1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include "misc.h" 18 #include "ctree.h" 19 #include "extent_map.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "async-thread.h" 26 #include "check-integrity.h" 27 #include "rcu-string.h" 28 #include "dev-replace.h" 29 #include "sysfs.h" 30 #include "tree-checker.h" 31 #include "space-info.h" 32 #include "block-group.h" 33 #include "discard.h" 34 35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 36 [BTRFS_RAID_RAID10] = { 37 .sub_stripes = 2, 38 .dev_stripes = 1, 39 .devs_max = 0, /* 0 == as many as possible */ 40 .devs_min = 4, 41 .tolerated_failures = 1, 42 .devs_increment = 2, 43 .ncopies = 2, 44 .nparity = 0, 45 .raid_name = "raid10", 46 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 47 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 48 }, 49 [BTRFS_RAID_RAID1] = { 50 .sub_stripes = 1, 51 .dev_stripes = 1, 52 .devs_max = 2, 53 .devs_min = 2, 54 .tolerated_failures = 1, 55 .devs_increment = 2, 56 .ncopies = 2, 57 .nparity = 0, 58 .raid_name = "raid1", 59 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 60 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 61 }, 62 [BTRFS_RAID_RAID1C3] = { 63 .sub_stripes = 1, 64 .dev_stripes = 1, 65 .devs_max = 3, 66 .devs_min = 3, 67 .tolerated_failures = 2, 68 .devs_increment = 3, 69 .ncopies = 3, 70 .nparity = 0, 71 .raid_name = "raid1c3", 72 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 73 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 74 }, 75 [BTRFS_RAID_RAID1C4] = { 76 .sub_stripes = 1, 77 .dev_stripes = 1, 78 .devs_max = 4, 79 .devs_min = 4, 80 .tolerated_failures = 3, 81 .devs_increment = 4, 82 .ncopies = 4, 83 .nparity = 0, 84 .raid_name = "raid1c4", 85 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 86 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 87 }, 88 [BTRFS_RAID_DUP] = { 89 .sub_stripes = 1, 90 .dev_stripes = 2, 91 .devs_max = 1, 92 .devs_min = 1, 93 .tolerated_failures = 0, 94 .devs_increment = 1, 95 .ncopies = 2, 96 .nparity = 0, 97 .raid_name = "dup", 98 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 99 .mindev_error = 0, 100 }, 101 [BTRFS_RAID_RAID0] = { 102 .sub_stripes = 1, 103 .dev_stripes = 1, 104 .devs_max = 0, 105 .devs_min = 2, 106 .tolerated_failures = 0, 107 .devs_increment = 1, 108 .ncopies = 1, 109 .nparity = 0, 110 .raid_name = "raid0", 111 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 112 .mindev_error = 0, 113 }, 114 [BTRFS_RAID_SINGLE] = { 115 .sub_stripes = 1, 116 .dev_stripes = 1, 117 .devs_max = 1, 118 .devs_min = 1, 119 .tolerated_failures = 0, 120 .devs_increment = 1, 121 .ncopies = 1, 122 .nparity = 0, 123 .raid_name = "single", 124 .bg_flag = 0, 125 .mindev_error = 0, 126 }, 127 [BTRFS_RAID_RAID5] = { 128 .sub_stripes = 1, 129 .dev_stripes = 1, 130 .devs_max = 0, 131 .devs_min = 2, 132 .tolerated_failures = 1, 133 .devs_increment = 1, 134 .ncopies = 1, 135 .nparity = 1, 136 .raid_name = "raid5", 137 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 138 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 139 }, 140 [BTRFS_RAID_RAID6] = { 141 .sub_stripes = 1, 142 .dev_stripes = 1, 143 .devs_max = 0, 144 .devs_min = 3, 145 .tolerated_failures = 2, 146 .devs_increment = 1, 147 .ncopies = 1, 148 .nparity = 2, 149 .raid_name = "raid6", 150 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 151 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 152 }, 153 }; 154 155 const char *btrfs_bg_type_to_raid_name(u64 flags) 156 { 157 const int index = btrfs_bg_flags_to_raid_index(flags); 158 159 if (index >= BTRFS_NR_RAID_TYPES) 160 return NULL; 161 162 return btrfs_raid_array[index].raid_name; 163 } 164 165 /* 166 * Fill @buf with textual description of @bg_flags, no more than @size_buf 167 * bytes including terminating null byte. 168 */ 169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 170 { 171 int i; 172 int ret; 173 char *bp = buf; 174 u64 flags = bg_flags; 175 u32 size_bp = size_buf; 176 177 if (!flags) { 178 strcpy(bp, "NONE"); 179 return; 180 } 181 182 #define DESCRIBE_FLAG(flag, desc) \ 183 do { \ 184 if (flags & (flag)) { \ 185 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 186 if (ret < 0 || ret >= size_bp) \ 187 goto out_overflow; \ 188 size_bp -= ret; \ 189 bp += ret; \ 190 flags &= ~(flag); \ 191 } \ 192 } while (0) 193 194 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 197 198 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 199 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 200 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 201 btrfs_raid_array[i].raid_name); 202 #undef DESCRIBE_FLAG 203 204 if (flags) { 205 ret = snprintf(bp, size_bp, "0x%llx|", flags); 206 size_bp -= ret; 207 } 208 209 if (size_bp < size_buf) 210 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 211 212 /* 213 * The text is trimmed, it's up to the caller to provide sufficiently 214 * large buffer 215 */ 216 out_overflow:; 217 } 218 219 static int init_first_rw_device(struct btrfs_trans_handle *trans); 220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 224 enum btrfs_map_op op, 225 u64 logical, u64 *length, 226 struct btrfs_bio **bbio_ret, 227 int mirror_num, int need_raid_map); 228 229 /* 230 * Device locking 231 * ============== 232 * 233 * There are several mutexes that protect manipulation of devices and low-level 234 * structures like chunks but not block groups, extents or files 235 * 236 * uuid_mutex (global lock) 237 * ------------------------ 238 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 239 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 240 * device) or requested by the device= mount option 241 * 242 * the mutex can be very coarse and can cover long-running operations 243 * 244 * protects: updates to fs_devices counters like missing devices, rw devices, 245 * seeding, structure cloning, opening/closing devices at mount/umount time 246 * 247 * global::fs_devs - add, remove, updates to the global list 248 * 249 * does not protect: manipulation of the fs_devices::devices list in general 250 * but in mount context it could be used to exclude list modifications by eg. 251 * scan ioctl 252 * 253 * btrfs_device::name - renames (write side), read is RCU 254 * 255 * fs_devices::device_list_mutex (per-fs, with RCU) 256 * ------------------------------------------------ 257 * protects updates to fs_devices::devices, ie. adding and deleting 258 * 259 * simple list traversal with read-only actions can be done with RCU protection 260 * 261 * may be used to exclude some operations from running concurrently without any 262 * modifications to the list (see write_all_supers) 263 * 264 * Is not required at mount and close times, because our device list is 265 * protected by the uuid_mutex at that point. 266 * 267 * balance_mutex 268 * ------------- 269 * protects balance structures (status, state) and context accessed from 270 * several places (internally, ioctl) 271 * 272 * chunk_mutex 273 * ----------- 274 * protects chunks, adding or removing during allocation, trim or when a new 275 * device is added/removed. Additionally it also protects post_commit_list of 276 * individual devices, since they can be added to the transaction's 277 * post_commit_list only with chunk_mutex held. 278 * 279 * cleaner_mutex 280 * ------------- 281 * a big lock that is held by the cleaner thread and prevents running subvolume 282 * cleaning together with relocation or delayed iputs 283 * 284 * 285 * Lock nesting 286 * ============ 287 * 288 * uuid_mutex 289 * device_list_mutex 290 * chunk_mutex 291 * balance_mutex 292 * 293 * 294 * Exclusive operations 295 * ==================== 296 * 297 * Maintains the exclusivity of the following operations that apply to the 298 * whole filesystem and cannot run in parallel. 299 * 300 * - Balance (*) 301 * - Device add 302 * - Device remove 303 * - Device replace (*) 304 * - Resize 305 * 306 * The device operations (as above) can be in one of the following states: 307 * 308 * - Running state 309 * - Paused state 310 * - Completed state 311 * 312 * Only device operations marked with (*) can go into the Paused state for the 313 * following reasons: 314 * 315 * - ioctl (only Balance can be Paused through ioctl) 316 * - filesystem remounted as read-only 317 * - filesystem unmounted and mounted as read-only 318 * - system power-cycle and filesystem mounted as read-only 319 * - filesystem or device errors leading to forced read-only 320 * 321 * The status of exclusive operation is set and cleared atomically. 322 * During the course of Paused state, fs_info::exclusive_operation remains set. 323 * A device operation in Paused or Running state can be canceled or resumed 324 * either by ioctl (Balance only) or when remounted as read-write. 325 * The exclusive status is cleared when the device operation is canceled or 326 * completed. 327 */ 328 329 DEFINE_MUTEX(uuid_mutex); 330 static LIST_HEAD(fs_uuids); 331 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 332 { 333 return &fs_uuids; 334 } 335 336 /* 337 * alloc_fs_devices - allocate struct btrfs_fs_devices 338 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 339 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 340 * 341 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 342 * The returned struct is not linked onto any lists and can be destroyed with 343 * kfree() right away. 344 */ 345 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 346 const u8 *metadata_fsid) 347 { 348 struct btrfs_fs_devices *fs_devs; 349 350 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 351 if (!fs_devs) 352 return ERR_PTR(-ENOMEM); 353 354 mutex_init(&fs_devs->device_list_mutex); 355 356 INIT_LIST_HEAD(&fs_devs->devices); 357 INIT_LIST_HEAD(&fs_devs->alloc_list); 358 INIT_LIST_HEAD(&fs_devs->fs_list); 359 INIT_LIST_HEAD(&fs_devs->seed_list); 360 if (fsid) 361 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 362 363 if (metadata_fsid) 364 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 365 else if (fsid) 366 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 367 368 return fs_devs; 369 } 370 371 void btrfs_free_device(struct btrfs_device *device) 372 { 373 WARN_ON(!list_empty(&device->post_commit_list)); 374 rcu_string_free(device->name); 375 extent_io_tree_release(&device->alloc_state); 376 bio_put(device->flush_bio); 377 kfree(device); 378 } 379 380 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 381 { 382 struct btrfs_device *device; 383 WARN_ON(fs_devices->opened); 384 while (!list_empty(&fs_devices->devices)) { 385 device = list_entry(fs_devices->devices.next, 386 struct btrfs_device, dev_list); 387 list_del(&device->dev_list); 388 btrfs_free_device(device); 389 } 390 kfree(fs_devices); 391 } 392 393 void __exit btrfs_cleanup_fs_uuids(void) 394 { 395 struct btrfs_fs_devices *fs_devices; 396 397 while (!list_empty(&fs_uuids)) { 398 fs_devices = list_entry(fs_uuids.next, 399 struct btrfs_fs_devices, fs_list); 400 list_del(&fs_devices->fs_list); 401 free_fs_devices(fs_devices); 402 } 403 } 404 405 /* 406 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 407 * Returned struct is not linked onto any lists and must be destroyed using 408 * btrfs_free_device. 409 */ 410 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info) 411 { 412 struct btrfs_device *dev; 413 414 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 415 if (!dev) 416 return ERR_PTR(-ENOMEM); 417 418 /* 419 * Preallocate a bio that's always going to be used for flushing device 420 * barriers and matches the device lifespan 421 */ 422 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 423 if (!dev->flush_bio) { 424 kfree(dev); 425 return ERR_PTR(-ENOMEM); 426 } 427 428 INIT_LIST_HEAD(&dev->dev_list); 429 INIT_LIST_HEAD(&dev->dev_alloc_list); 430 INIT_LIST_HEAD(&dev->post_commit_list); 431 432 atomic_set(&dev->reada_in_flight, 0); 433 atomic_set(&dev->dev_stats_ccnt, 0); 434 btrfs_device_data_ordered_init(dev, fs_info); 435 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 436 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 437 extent_io_tree_init(fs_info, &dev->alloc_state, 438 IO_TREE_DEVICE_ALLOC_STATE, NULL); 439 440 return dev; 441 } 442 443 static noinline struct btrfs_fs_devices *find_fsid( 444 const u8 *fsid, const u8 *metadata_fsid) 445 { 446 struct btrfs_fs_devices *fs_devices; 447 448 ASSERT(fsid); 449 450 /* Handle non-split brain cases */ 451 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 452 if (metadata_fsid) { 453 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 454 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 455 BTRFS_FSID_SIZE) == 0) 456 return fs_devices; 457 } else { 458 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 459 return fs_devices; 460 } 461 } 462 return NULL; 463 } 464 465 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 466 struct btrfs_super_block *disk_super) 467 { 468 469 struct btrfs_fs_devices *fs_devices; 470 471 /* 472 * Handle scanned device having completed its fsid change but 473 * belonging to a fs_devices that was created by first scanning 474 * a device which didn't have its fsid/metadata_uuid changed 475 * at all and the CHANGING_FSID_V2 flag set. 476 */ 477 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 478 if (fs_devices->fsid_change && 479 memcmp(disk_super->metadata_uuid, fs_devices->fsid, 480 BTRFS_FSID_SIZE) == 0 && 481 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 482 BTRFS_FSID_SIZE) == 0) { 483 return fs_devices; 484 } 485 } 486 /* 487 * Handle scanned device having completed its fsid change but 488 * belonging to a fs_devices that was created by a device that 489 * has an outdated pair of fsid/metadata_uuid and 490 * CHANGING_FSID_V2 flag set. 491 */ 492 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 493 if (fs_devices->fsid_change && 494 memcmp(fs_devices->metadata_uuid, 495 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 496 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, 497 BTRFS_FSID_SIZE) == 0) { 498 return fs_devices; 499 } 500 } 501 502 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 503 } 504 505 506 static int 507 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 508 int flush, struct block_device **bdev, 509 struct btrfs_super_block **disk_super) 510 { 511 int ret; 512 513 *bdev = blkdev_get_by_path(device_path, flags, holder); 514 515 if (IS_ERR(*bdev)) { 516 ret = PTR_ERR(*bdev); 517 goto error; 518 } 519 520 if (flush) 521 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 522 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 523 if (ret) { 524 blkdev_put(*bdev, flags); 525 goto error; 526 } 527 invalidate_bdev(*bdev); 528 *disk_super = btrfs_read_dev_super(*bdev); 529 if (IS_ERR(*disk_super)) { 530 ret = PTR_ERR(*disk_super); 531 blkdev_put(*bdev, flags); 532 goto error; 533 } 534 535 return 0; 536 537 error: 538 *bdev = NULL; 539 return ret; 540 } 541 542 static bool device_path_matched(const char *path, struct btrfs_device *device) 543 { 544 int found; 545 546 rcu_read_lock(); 547 found = strcmp(rcu_str_deref(device->name), path); 548 rcu_read_unlock(); 549 550 return found == 0; 551 } 552 553 /* 554 * Search and remove all stale (devices which are not mounted) devices. 555 * When both inputs are NULL, it will search and release all stale devices. 556 * path: Optional. When provided will it release all unmounted devices 557 * matching this path only. 558 * skip_dev: Optional. Will skip this device when searching for the stale 559 * devices. 560 * Return: 0 for success or if @path is NULL. 561 * -EBUSY if @path is a mounted device. 562 * -ENOENT if @path does not match any device in the list. 563 */ 564 static int btrfs_free_stale_devices(const char *path, 565 struct btrfs_device *skip_device) 566 { 567 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 568 struct btrfs_device *device, *tmp_device; 569 int ret = 0; 570 571 if (path) 572 ret = -ENOENT; 573 574 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 575 576 mutex_lock(&fs_devices->device_list_mutex); 577 list_for_each_entry_safe(device, tmp_device, 578 &fs_devices->devices, dev_list) { 579 if (skip_device && skip_device == device) 580 continue; 581 if (path && !device->name) 582 continue; 583 if (path && !device_path_matched(path, device)) 584 continue; 585 if (fs_devices->opened) { 586 /* for an already deleted device return 0 */ 587 if (path && ret != 0) 588 ret = -EBUSY; 589 break; 590 } 591 592 /* delete the stale device */ 593 fs_devices->num_devices--; 594 list_del(&device->dev_list); 595 btrfs_free_device(device); 596 597 ret = 0; 598 } 599 mutex_unlock(&fs_devices->device_list_mutex); 600 601 if (fs_devices->num_devices == 0) { 602 btrfs_sysfs_remove_fsid(fs_devices); 603 list_del(&fs_devices->fs_list); 604 free_fs_devices(fs_devices); 605 } 606 } 607 608 return ret; 609 } 610 611 /* 612 * This is only used on mount, and we are protected from competing things 613 * messing with our fs_devices by the uuid_mutex, thus we do not need the 614 * fs_devices->device_list_mutex here. 615 */ 616 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 617 struct btrfs_device *device, fmode_t flags, 618 void *holder) 619 { 620 struct request_queue *q; 621 struct block_device *bdev; 622 struct btrfs_super_block *disk_super; 623 u64 devid; 624 int ret; 625 626 if (device->bdev) 627 return -EINVAL; 628 if (!device->name) 629 return -EINVAL; 630 631 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 632 &bdev, &disk_super); 633 if (ret) 634 return ret; 635 636 devid = btrfs_stack_device_id(&disk_super->dev_item); 637 if (devid != device->devid) 638 goto error_free_page; 639 640 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 641 goto error_free_page; 642 643 device->generation = btrfs_super_generation(disk_super); 644 645 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 646 if (btrfs_super_incompat_flags(disk_super) & 647 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 648 pr_err( 649 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 650 goto error_free_page; 651 } 652 653 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 654 fs_devices->seeding = true; 655 } else { 656 if (bdev_read_only(bdev)) 657 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 658 else 659 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 660 } 661 662 q = bdev_get_queue(bdev); 663 if (!blk_queue_nonrot(q)) 664 fs_devices->rotating = true; 665 666 device->bdev = bdev; 667 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 668 device->mode = flags; 669 670 fs_devices->open_devices++; 671 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 672 device->devid != BTRFS_DEV_REPLACE_DEVID) { 673 fs_devices->rw_devices++; 674 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 675 } 676 btrfs_release_disk_super(disk_super); 677 678 return 0; 679 680 error_free_page: 681 btrfs_release_disk_super(disk_super); 682 blkdev_put(bdev, flags); 683 684 return -EINVAL; 685 } 686 687 /* 688 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 689 * being created with a disk that has already completed its fsid change. Such 690 * disk can belong to an fs which has its FSID changed or to one which doesn't. 691 * Handle both cases here. 692 */ 693 static struct btrfs_fs_devices *find_fsid_inprogress( 694 struct btrfs_super_block *disk_super) 695 { 696 struct btrfs_fs_devices *fs_devices; 697 698 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 699 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 700 BTRFS_FSID_SIZE) != 0 && 701 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 702 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 703 return fs_devices; 704 } 705 } 706 707 return find_fsid(disk_super->fsid, NULL); 708 } 709 710 711 static struct btrfs_fs_devices *find_fsid_changed( 712 struct btrfs_super_block *disk_super) 713 { 714 struct btrfs_fs_devices *fs_devices; 715 716 /* 717 * Handles the case where scanned device is part of an fs that had 718 * multiple successful changes of FSID but curently device didn't 719 * observe it. Meaning our fsid will be different than theirs. We need 720 * to handle two subcases : 721 * 1 - The fs still continues to have different METADATA/FSID uuids. 722 * 2 - The fs is switched back to its original FSID (METADATA/FSID 723 * are equal). 724 */ 725 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 726 /* Changed UUIDs */ 727 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 728 BTRFS_FSID_SIZE) != 0 && 729 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 730 BTRFS_FSID_SIZE) == 0 && 731 memcmp(fs_devices->fsid, disk_super->fsid, 732 BTRFS_FSID_SIZE) != 0) 733 return fs_devices; 734 735 /* Unchanged UUIDs */ 736 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 737 BTRFS_FSID_SIZE) == 0 && 738 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 739 BTRFS_FSID_SIZE) == 0) 740 return fs_devices; 741 } 742 743 return NULL; 744 } 745 746 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 747 struct btrfs_super_block *disk_super) 748 { 749 struct btrfs_fs_devices *fs_devices; 750 751 /* 752 * Handle the case where the scanned device is part of an fs whose last 753 * metadata UUID change reverted it to the original FSID. At the same 754 * time * fs_devices was first created by another constitutent device 755 * which didn't fully observe the operation. This results in an 756 * btrfs_fs_devices created with metadata/fsid different AND 757 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 758 * fs_devices equal to the FSID of the disk. 759 */ 760 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 761 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 762 BTRFS_FSID_SIZE) != 0 && 763 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 764 BTRFS_FSID_SIZE) == 0 && 765 fs_devices->fsid_change) 766 return fs_devices; 767 } 768 769 return NULL; 770 } 771 /* 772 * Add new device to list of registered devices 773 * 774 * Returns: 775 * device pointer which was just added or updated when successful 776 * error pointer when failed 777 */ 778 static noinline struct btrfs_device *device_list_add(const char *path, 779 struct btrfs_super_block *disk_super, 780 bool *new_device_added) 781 { 782 struct btrfs_device *device; 783 struct btrfs_fs_devices *fs_devices = NULL; 784 struct rcu_string *name; 785 u64 found_transid = btrfs_super_generation(disk_super); 786 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 787 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 788 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 789 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 790 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 791 792 if (fsid_change_in_progress) { 793 if (!has_metadata_uuid) 794 fs_devices = find_fsid_inprogress(disk_super); 795 else 796 fs_devices = find_fsid_changed(disk_super); 797 } else if (has_metadata_uuid) { 798 fs_devices = find_fsid_with_metadata_uuid(disk_super); 799 } else { 800 fs_devices = find_fsid_reverted_metadata(disk_super); 801 if (!fs_devices) 802 fs_devices = find_fsid(disk_super->fsid, NULL); 803 } 804 805 806 if (!fs_devices) { 807 if (has_metadata_uuid) 808 fs_devices = alloc_fs_devices(disk_super->fsid, 809 disk_super->metadata_uuid); 810 else 811 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 812 813 if (IS_ERR(fs_devices)) 814 return ERR_CAST(fs_devices); 815 816 fs_devices->fsid_change = fsid_change_in_progress; 817 818 mutex_lock(&fs_devices->device_list_mutex); 819 list_add(&fs_devices->fs_list, &fs_uuids); 820 821 device = NULL; 822 } else { 823 mutex_lock(&fs_devices->device_list_mutex); 824 device = btrfs_find_device(fs_devices, devid, 825 disk_super->dev_item.uuid, NULL, false); 826 827 /* 828 * If this disk has been pulled into an fs devices created by 829 * a device which had the CHANGING_FSID_V2 flag then replace the 830 * metadata_uuid/fsid values of the fs_devices. 831 */ 832 if (fs_devices->fsid_change && 833 found_transid > fs_devices->latest_generation) { 834 memcpy(fs_devices->fsid, disk_super->fsid, 835 BTRFS_FSID_SIZE); 836 837 if (has_metadata_uuid) 838 memcpy(fs_devices->metadata_uuid, 839 disk_super->metadata_uuid, 840 BTRFS_FSID_SIZE); 841 else 842 memcpy(fs_devices->metadata_uuid, 843 disk_super->fsid, BTRFS_FSID_SIZE); 844 845 fs_devices->fsid_change = false; 846 } 847 } 848 849 if (!device) { 850 if (fs_devices->opened) { 851 mutex_unlock(&fs_devices->device_list_mutex); 852 return ERR_PTR(-EBUSY); 853 } 854 855 device = btrfs_alloc_device(NULL, &devid, 856 disk_super->dev_item.uuid); 857 if (IS_ERR(device)) { 858 mutex_unlock(&fs_devices->device_list_mutex); 859 /* we can safely leave the fs_devices entry around */ 860 return device; 861 } 862 863 name = rcu_string_strdup(path, GFP_NOFS); 864 if (!name) { 865 btrfs_free_device(device); 866 mutex_unlock(&fs_devices->device_list_mutex); 867 return ERR_PTR(-ENOMEM); 868 } 869 rcu_assign_pointer(device->name, name); 870 871 list_add_rcu(&device->dev_list, &fs_devices->devices); 872 fs_devices->num_devices++; 873 874 device->fs_devices = fs_devices; 875 *new_device_added = true; 876 877 if (disk_super->label[0]) 878 pr_info( 879 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 880 disk_super->label, devid, found_transid, path, 881 current->comm, task_pid_nr(current)); 882 else 883 pr_info( 884 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 885 disk_super->fsid, devid, found_transid, path, 886 current->comm, task_pid_nr(current)); 887 888 } else if (!device->name || strcmp(device->name->str, path)) { 889 /* 890 * When FS is already mounted. 891 * 1. If you are here and if the device->name is NULL that 892 * means this device was missing at time of FS mount. 893 * 2. If you are here and if the device->name is different 894 * from 'path' that means either 895 * a. The same device disappeared and reappeared with 896 * different name. or 897 * b. The missing-disk-which-was-replaced, has 898 * reappeared now. 899 * 900 * We must allow 1 and 2a above. But 2b would be a spurious 901 * and unintentional. 902 * 903 * Further in case of 1 and 2a above, the disk at 'path' 904 * would have missed some transaction when it was away and 905 * in case of 2a the stale bdev has to be updated as well. 906 * 2b must not be allowed at all time. 907 */ 908 909 /* 910 * For now, we do allow update to btrfs_fs_device through the 911 * btrfs dev scan cli after FS has been mounted. We're still 912 * tracking a problem where systems fail mount by subvolume id 913 * when we reject replacement on a mounted FS. 914 */ 915 if (!fs_devices->opened && found_transid < device->generation) { 916 /* 917 * That is if the FS is _not_ mounted and if you 918 * are here, that means there is more than one 919 * disk with same uuid and devid.We keep the one 920 * with larger generation number or the last-in if 921 * generation are equal. 922 */ 923 mutex_unlock(&fs_devices->device_list_mutex); 924 return ERR_PTR(-EEXIST); 925 } 926 927 /* 928 * We are going to replace the device path for a given devid, 929 * make sure it's the same device if the device is mounted 930 */ 931 if (device->bdev) { 932 struct block_device *path_bdev; 933 934 path_bdev = lookup_bdev(path); 935 if (IS_ERR(path_bdev)) { 936 mutex_unlock(&fs_devices->device_list_mutex); 937 return ERR_CAST(path_bdev); 938 } 939 940 if (device->bdev != path_bdev) { 941 bdput(path_bdev); 942 mutex_unlock(&fs_devices->device_list_mutex); 943 /* 944 * device->fs_info may not be reliable here, so 945 * pass in a NULL instead. This avoids a 946 * possible use-after-free when the fs_info and 947 * fs_info->sb are already torn down. 948 */ 949 btrfs_warn_in_rcu(NULL, 950 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 951 path, devid, found_transid, 952 current->comm, 953 task_pid_nr(current)); 954 return ERR_PTR(-EEXIST); 955 } 956 bdput(path_bdev); 957 btrfs_info_in_rcu(device->fs_info, 958 "devid %llu device path %s changed to %s scanned by %s (%d)", 959 devid, rcu_str_deref(device->name), 960 path, current->comm, 961 task_pid_nr(current)); 962 } 963 964 name = rcu_string_strdup(path, GFP_NOFS); 965 if (!name) { 966 mutex_unlock(&fs_devices->device_list_mutex); 967 return ERR_PTR(-ENOMEM); 968 } 969 rcu_string_free(device->name); 970 rcu_assign_pointer(device->name, name); 971 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 972 fs_devices->missing_devices--; 973 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 974 } 975 } 976 977 /* 978 * Unmount does not free the btrfs_device struct but would zero 979 * generation along with most of the other members. So just update 980 * it back. We need it to pick the disk with largest generation 981 * (as above). 982 */ 983 if (!fs_devices->opened) { 984 device->generation = found_transid; 985 fs_devices->latest_generation = max_t(u64, found_transid, 986 fs_devices->latest_generation); 987 } 988 989 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 990 991 mutex_unlock(&fs_devices->device_list_mutex); 992 return device; 993 } 994 995 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 996 { 997 struct btrfs_fs_devices *fs_devices; 998 struct btrfs_device *device; 999 struct btrfs_device *orig_dev; 1000 int ret = 0; 1001 1002 fs_devices = alloc_fs_devices(orig->fsid, NULL); 1003 if (IS_ERR(fs_devices)) 1004 return fs_devices; 1005 1006 mutex_lock(&orig->device_list_mutex); 1007 fs_devices->total_devices = orig->total_devices; 1008 1009 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1010 struct rcu_string *name; 1011 1012 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1013 orig_dev->uuid); 1014 if (IS_ERR(device)) { 1015 ret = PTR_ERR(device); 1016 goto error; 1017 } 1018 1019 /* 1020 * This is ok to do without rcu read locked because we hold the 1021 * uuid mutex so nothing we touch in here is going to disappear. 1022 */ 1023 if (orig_dev->name) { 1024 name = rcu_string_strdup(orig_dev->name->str, 1025 GFP_KERNEL); 1026 if (!name) { 1027 btrfs_free_device(device); 1028 ret = -ENOMEM; 1029 goto error; 1030 } 1031 rcu_assign_pointer(device->name, name); 1032 } 1033 1034 list_add(&device->dev_list, &fs_devices->devices); 1035 device->fs_devices = fs_devices; 1036 fs_devices->num_devices++; 1037 } 1038 mutex_unlock(&orig->device_list_mutex); 1039 return fs_devices; 1040 error: 1041 mutex_unlock(&orig->device_list_mutex); 1042 free_fs_devices(fs_devices); 1043 return ERR_PTR(ret); 1044 } 1045 1046 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1047 int step, struct btrfs_device **latest_dev) 1048 { 1049 struct btrfs_device *device, *next; 1050 1051 /* This is the initialized path, it is safe to release the devices. */ 1052 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1053 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1054 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1055 &device->dev_state) && 1056 !test_bit(BTRFS_DEV_STATE_MISSING, 1057 &device->dev_state) && 1058 (!*latest_dev || 1059 device->generation > (*latest_dev)->generation)) { 1060 *latest_dev = device; 1061 } 1062 continue; 1063 } 1064 1065 /* 1066 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1067 * in btrfs_init_dev_replace() so just continue. 1068 */ 1069 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1070 continue; 1071 1072 if (device->bdev) { 1073 blkdev_put(device->bdev, device->mode); 1074 device->bdev = NULL; 1075 fs_devices->open_devices--; 1076 } 1077 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1078 list_del_init(&device->dev_alloc_list); 1079 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1080 } 1081 list_del_init(&device->dev_list); 1082 fs_devices->num_devices--; 1083 btrfs_free_device(device); 1084 } 1085 1086 } 1087 1088 /* 1089 * After we have read the system tree and know devids belonging to this 1090 * filesystem, remove the device which does not belong there. 1091 */ 1092 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) 1093 { 1094 struct btrfs_device *latest_dev = NULL; 1095 struct btrfs_fs_devices *seed_dev; 1096 1097 mutex_lock(&uuid_mutex); 1098 __btrfs_free_extra_devids(fs_devices, step, &latest_dev); 1099 1100 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1101 __btrfs_free_extra_devids(seed_dev, step, &latest_dev); 1102 1103 fs_devices->latest_bdev = latest_dev->bdev; 1104 1105 mutex_unlock(&uuid_mutex); 1106 } 1107 1108 static void btrfs_close_bdev(struct btrfs_device *device) 1109 { 1110 if (!device->bdev) 1111 return; 1112 1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1114 sync_blockdev(device->bdev); 1115 invalidate_bdev(device->bdev); 1116 } 1117 1118 blkdev_put(device->bdev, device->mode); 1119 } 1120 1121 static void btrfs_close_one_device(struct btrfs_device *device) 1122 { 1123 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1124 1125 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1126 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1127 list_del_init(&device->dev_alloc_list); 1128 fs_devices->rw_devices--; 1129 } 1130 1131 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 1132 fs_devices->missing_devices--; 1133 1134 btrfs_close_bdev(device); 1135 if (device->bdev) { 1136 fs_devices->open_devices--; 1137 device->bdev = NULL; 1138 } 1139 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1140 1141 device->fs_info = NULL; 1142 atomic_set(&device->dev_stats_ccnt, 0); 1143 extent_io_tree_release(&device->alloc_state); 1144 1145 /* Verify the device is back in a pristine state */ 1146 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1147 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1148 ASSERT(list_empty(&device->dev_alloc_list)); 1149 ASSERT(list_empty(&device->post_commit_list)); 1150 ASSERT(atomic_read(&device->reada_in_flight) == 0); 1151 } 1152 1153 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1154 { 1155 struct btrfs_device *device, *tmp; 1156 1157 lockdep_assert_held(&uuid_mutex); 1158 1159 if (--fs_devices->opened > 0) 1160 return; 1161 1162 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1163 btrfs_close_one_device(device); 1164 1165 WARN_ON(fs_devices->open_devices); 1166 WARN_ON(fs_devices->rw_devices); 1167 fs_devices->opened = 0; 1168 fs_devices->seeding = false; 1169 fs_devices->fs_info = NULL; 1170 } 1171 1172 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1173 { 1174 LIST_HEAD(list); 1175 struct btrfs_fs_devices *tmp; 1176 1177 mutex_lock(&uuid_mutex); 1178 close_fs_devices(fs_devices); 1179 if (!fs_devices->opened) 1180 list_splice_init(&fs_devices->seed_list, &list); 1181 1182 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1183 close_fs_devices(fs_devices); 1184 list_del(&fs_devices->seed_list); 1185 free_fs_devices(fs_devices); 1186 } 1187 mutex_unlock(&uuid_mutex); 1188 } 1189 1190 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1191 fmode_t flags, void *holder) 1192 { 1193 struct btrfs_device *device; 1194 struct btrfs_device *latest_dev = NULL; 1195 struct btrfs_device *tmp_device; 1196 1197 flags |= FMODE_EXCL; 1198 1199 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1200 dev_list) { 1201 int ret; 1202 1203 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1204 if (ret == 0 && 1205 (!latest_dev || device->generation > latest_dev->generation)) { 1206 latest_dev = device; 1207 } else if (ret == -ENODATA) { 1208 fs_devices->num_devices--; 1209 list_del(&device->dev_list); 1210 btrfs_free_device(device); 1211 } 1212 } 1213 if (fs_devices->open_devices == 0) 1214 return -EINVAL; 1215 1216 fs_devices->opened = 1; 1217 fs_devices->latest_bdev = latest_dev->bdev; 1218 fs_devices->total_rw_bytes = 0; 1219 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1220 1221 return 0; 1222 } 1223 1224 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b) 1225 { 1226 struct btrfs_device *dev1, *dev2; 1227 1228 dev1 = list_entry(a, struct btrfs_device, dev_list); 1229 dev2 = list_entry(b, struct btrfs_device, dev_list); 1230 1231 if (dev1->devid < dev2->devid) 1232 return -1; 1233 else if (dev1->devid > dev2->devid) 1234 return 1; 1235 return 0; 1236 } 1237 1238 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1239 fmode_t flags, void *holder) 1240 { 1241 int ret; 1242 1243 lockdep_assert_held(&uuid_mutex); 1244 /* 1245 * The device_list_mutex cannot be taken here in case opening the 1246 * underlying device takes further locks like bd_mutex. 1247 * 1248 * We also don't need the lock here as this is called during mount and 1249 * exclusion is provided by uuid_mutex 1250 */ 1251 1252 if (fs_devices->opened) { 1253 fs_devices->opened++; 1254 ret = 0; 1255 } else { 1256 list_sort(NULL, &fs_devices->devices, devid_cmp); 1257 ret = open_fs_devices(fs_devices, flags, holder); 1258 } 1259 1260 return ret; 1261 } 1262 1263 void btrfs_release_disk_super(struct btrfs_super_block *super) 1264 { 1265 struct page *page = virt_to_page(super); 1266 1267 put_page(page); 1268 } 1269 1270 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1271 u64 bytenr) 1272 { 1273 struct btrfs_super_block *disk_super; 1274 struct page *page; 1275 void *p; 1276 pgoff_t index; 1277 1278 /* make sure our super fits in the device */ 1279 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1280 return ERR_PTR(-EINVAL); 1281 1282 /* make sure our super fits in the page */ 1283 if (sizeof(*disk_super) > PAGE_SIZE) 1284 return ERR_PTR(-EINVAL); 1285 1286 /* make sure our super doesn't straddle pages on disk */ 1287 index = bytenr >> PAGE_SHIFT; 1288 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1289 return ERR_PTR(-EINVAL); 1290 1291 /* pull in the page with our super */ 1292 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1293 1294 if (IS_ERR(page)) 1295 return ERR_CAST(page); 1296 1297 p = page_address(page); 1298 1299 /* align our pointer to the offset of the super block */ 1300 disk_super = p + offset_in_page(bytenr); 1301 1302 if (btrfs_super_bytenr(disk_super) != bytenr || 1303 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1304 btrfs_release_disk_super(p); 1305 return ERR_PTR(-EINVAL); 1306 } 1307 1308 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1309 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1310 1311 return disk_super; 1312 } 1313 1314 int btrfs_forget_devices(const char *path) 1315 { 1316 int ret; 1317 1318 mutex_lock(&uuid_mutex); 1319 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1320 mutex_unlock(&uuid_mutex); 1321 1322 return ret; 1323 } 1324 1325 /* 1326 * Look for a btrfs signature on a device. This may be called out of the mount path 1327 * and we are not allowed to call set_blocksize during the scan. The superblock 1328 * is read via pagecache 1329 */ 1330 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1331 void *holder) 1332 { 1333 struct btrfs_super_block *disk_super; 1334 bool new_device_added = false; 1335 struct btrfs_device *device = NULL; 1336 struct block_device *bdev; 1337 u64 bytenr; 1338 1339 lockdep_assert_held(&uuid_mutex); 1340 1341 /* 1342 * we would like to check all the supers, but that would make 1343 * a btrfs mount succeed after a mkfs from a different FS. 1344 * So, we need to add a special mount option to scan for 1345 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1346 */ 1347 bytenr = btrfs_sb_offset(0); 1348 flags |= FMODE_EXCL; 1349 1350 bdev = blkdev_get_by_path(path, flags, holder); 1351 if (IS_ERR(bdev)) 1352 return ERR_CAST(bdev); 1353 1354 disk_super = btrfs_read_disk_super(bdev, bytenr); 1355 if (IS_ERR(disk_super)) { 1356 device = ERR_CAST(disk_super); 1357 goto error_bdev_put; 1358 } 1359 1360 device = device_list_add(path, disk_super, &new_device_added); 1361 if (!IS_ERR(device)) { 1362 if (new_device_added) 1363 btrfs_free_stale_devices(path, device); 1364 } 1365 1366 btrfs_release_disk_super(disk_super); 1367 1368 error_bdev_put: 1369 blkdev_put(bdev, flags); 1370 1371 return device; 1372 } 1373 1374 /* 1375 * Try to find a chunk that intersects [start, start + len] range and when one 1376 * such is found, record the end of it in *start 1377 */ 1378 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1379 u64 len) 1380 { 1381 u64 physical_start, physical_end; 1382 1383 lockdep_assert_held(&device->fs_info->chunk_mutex); 1384 1385 if (!find_first_extent_bit(&device->alloc_state, *start, 1386 &physical_start, &physical_end, 1387 CHUNK_ALLOCATED, NULL)) { 1388 1389 if (in_range(physical_start, *start, len) || 1390 in_range(*start, physical_start, 1391 physical_end - physical_start)) { 1392 *start = physical_end + 1; 1393 return true; 1394 } 1395 } 1396 return false; 1397 } 1398 1399 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1400 { 1401 switch (device->fs_devices->chunk_alloc_policy) { 1402 case BTRFS_CHUNK_ALLOC_REGULAR: 1403 /* 1404 * We don't want to overwrite the superblock on the drive nor 1405 * any area used by the boot loader (grub for example), so we 1406 * make sure to start at an offset of at least 1MB. 1407 */ 1408 return max_t(u64, start, SZ_1M); 1409 default: 1410 BUG(); 1411 } 1412 } 1413 1414 /** 1415 * dev_extent_hole_check - check if specified hole is suitable for allocation 1416 * @device: the device which we have the hole 1417 * @hole_start: starting position of the hole 1418 * @hole_size: the size of the hole 1419 * @num_bytes: the size of the free space that we need 1420 * 1421 * This function may modify @hole_start and @hole_end to reflect the suitable 1422 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1423 */ 1424 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1425 u64 *hole_size, u64 num_bytes) 1426 { 1427 bool changed = false; 1428 u64 hole_end = *hole_start + *hole_size; 1429 1430 /* 1431 * Check before we set max_hole_start, otherwise we could end up 1432 * sending back this offset anyway. 1433 */ 1434 if (contains_pending_extent(device, hole_start, *hole_size)) { 1435 if (hole_end >= *hole_start) 1436 *hole_size = hole_end - *hole_start; 1437 else 1438 *hole_size = 0; 1439 changed = true; 1440 } 1441 1442 switch (device->fs_devices->chunk_alloc_policy) { 1443 case BTRFS_CHUNK_ALLOC_REGULAR: 1444 /* No extra check */ 1445 break; 1446 default: 1447 BUG(); 1448 } 1449 1450 return changed; 1451 } 1452 1453 /* 1454 * find_free_dev_extent_start - find free space in the specified device 1455 * @device: the device which we search the free space in 1456 * @num_bytes: the size of the free space that we need 1457 * @search_start: the position from which to begin the search 1458 * @start: store the start of the free space. 1459 * @len: the size of the free space. that we find, or the size 1460 * of the max free space if we don't find suitable free space 1461 * 1462 * this uses a pretty simple search, the expectation is that it is 1463 * called very infrequently and that a given device has a small number 1464 * of extents 1465 * 1466 * @start is used to store the start of the free space if we find. But if we 1467 * don't find suitable free space, it will be used to store the start position 1468 * of the max free space. 1469 * 1470 * @len is used to store the size of the free space that we find. 1471 * But if we don't find suitable free space, it is used to store the size of 1472 * the max free space. 1473 * 1474 * NOTE: This function will search *commit* root of device tree, and does extra 1475 * check to ensure dev extents are not double allocated. 1476 * This makes the function safe to allocate dev extents but may not report 1477 * correct usable device space, as device extent freed in current transaction 1478 * is not reported as avaiable. 1479 */ 1480 static int find_free_dev_extent_start(struct btrfs_device *device, 1481 u64 num_bytes, u64 search_start, u64 *start, 1482 u64 *len) 1483 { 1484 struct btrfs_fs_info *fs_info = device->fs_info; 1485 struct btrfs_root *root = fs_info->dev_root; 1486 struct btrfs_key key; 1487 struct btrfs_dev_extent *dev_extent; 1488 struct btrfs_path *path; 1489 u64 hole_size; 1490 u64 max_hole_start; 1491 u64 max_hole_size; 1492 u64 extent_end; 1493 u64 search_end = device->total_bytes; 1494 int ret; 1495 int slot; 1496 struct extent_buffer *l; 1497 1498 search_start = dev_extent_search_start(device, search_start); 1499 1500 path = btrfs_alloc_path(); 1501 if (!path) 1502 return -ENOMEM; 1503 1504 max_hole_start = search_start; 1505 max_hole_size = 0; 1506 1507 again: 1508 if (search_start >= search_end || 1509 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1510 ret = -ENOSPC; 1511 goto out; 1512 } 1513 1514 path->reada = READA_FORWARD; 1515 path->search_commit_root = 1; 1516 path->skip_locking = 1; 1517 1518 key.objectid = device->devid; 1519 key.offset = search_start; 1520 key.type = BTRFS_DEV_EXTENT_KEY; 1521 1522 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1523 if (ret < 0) 1524 goto out; 1525 if (ret > 0) { 1526 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1527 if (ret < 0) 1528 goto out; 1529 } 1530 1531 while (1) { 1532 l = path->nodes[0]; 1533 slot = path->slots[0]; 1534 if (slot >= btrfs_header_nritems(l)) { 1535 ret = btrfs_next_leaf(root, path); 1536 if (ret == 0) 1537 continue; 1538 if (ret < 0) 1539 goto out; 1540 1541 break; 1542 } 1543 btrfs_item_key_to_cpu(l, &key, slot); 1544 1545 if (key.objectid < device->devid) 1546 goto next; 1547 1548 if (key.objectid > device->devid) 1549 break; 1550 1551 if (key.type != BTRFS_DEV_EXTENT_KEY) 1552 goto next; 1553 1554 if (key.offset > search_start) { 1555 hole_size = key.offset - search_start; 1556 dev_extent_hole_check(device, &search_start, &hole_size, 1557 num_bytes); 1558 1559 if (hole_size > max_hole_size) { 1560 max_hole_start = search_start; 1561 max_hole_size = hole_size; 1562 } 1563 1564 /* 1565 * If this free space is greater than which we need, 1566 * it must be the max free space that we have found 1567 * until now, so max_hole_start must point to the start 1568 * of this free space and the length of this free space 1569 * is stored in max_hole_size. Thus, we return 1570 * max_hole_start and max_hole_size and go back to the 1571 * caller. 1572 */ 1573 if (hole_size >= num_bytes) { 1574 ret = 0; 1575 goto out; 1576 } 1577 } 1578 1579 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1580 extent_end = key.offset + btrfs_dev_extent_length(l, 1581 dev_extent); 1582 if (extent_end > search_start) 1583 search_start = extent_end; 1584 next: 1585 path->slots[0]++; 1586 cond_resched(); 1587 } 1588 1589 /* 1590 * At this point, search_start should be the end of 1591 * allocated dev extents, and when shrinking the device, 1592 * search_end may be smaller than search_start. 1593 */ 1594 if (search_end > search_start) { 1595 hole_size = search_end - search_start; 1596 if (dev_extent_hole_check(device, &search_start, &hole_size, 1597 num_bytes)) { 1598 btrfs_release_path(path); 1599 goto again; 1600 } 1601 1602 if (hole_size > max_hole_size) { 1603 max_hole_start = search_start; 1604 max_hole_size = hole_size; 1605 } 1606 } 1607 1608 /* See above. */ 1609 if (max_hole_size < num_bytes) 1610 ret = -ENOSPC; 1611 else 1612 ret = 0; 1613 1614 out: 1615 btrfs_free_path(path); 1616 *start = max_hole_start; 1617 if (len) 1618 *len = max_hole_size; 1619 return ret; 1620 } 1621 1622 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1623 u64 *start, u64 *len) 1624 { 1625 /* FIXME use last free of some kind */ 1626 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1627 } 1628 1629 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1630 struct btrfs_device *device, 1631 u64 start, u64 *dev_extent_len) 1632 { 1633 struct btrfs_fs_info *fs_info = device->fs_info; 1634 struct btrfs_root *root = fs_info->dev_root; 1635 int ret; 1636 struct btrfs_path *path; 1637 struct btrfs_key key; 1638 struct btrfs_key found_key; 1639 struct extent_buffer *leaf = NULL; 1640 struct btrfs_dev_extent *extent = NULL; 1641 1642 path = btrfs_alloc_path(); 1643 if (!path) 1644 return -ENOMEM; 1645 1646 key.objectid = device->devid; 1647 key.offset = start; 1648 key.type = BTRFS_DEV_EXTENT_KEY; 1649 again: 1650 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1651 if (ret > 0) { 1652 ret = btrfs_previous_item(root, path, key.objectid, 1653 BTRFS_DEV_EXTENT_KEY); 1654 if (ret) 1655 goto out; 1656 leaf = path->nodes[0]; 1657 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1658 extent = btrfs_item_ptr(leaf, path->slots[0], 1659 struct btrfs_dev_extent); 1660 BUG_ON(found_key.offset > start || found_key.offset + 1661 btrfs_dev_extent_length(leaf, extent) < start); 1662 key = found_key; 1663 btrfs_release_path(path); 1664 goto again; 1665 } else if (ret == 0) { 1666 leaf = path->nodes[0]; 1667 extent = btrfs_item_ptr(leaf, path->slots[0], 1668 struct btrfs_dev_extent); 1669 } else { 1670 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1671 goto out; 1672 } 1673 1674 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1675 1676 ret = btrfs_del_item(trans, root, path); 1677 if (ret) { 1678 btrfs_handle_fs_error(fs_info, ret, 1679 "Failed to remove dev extent item"); 1680 } else { 1681 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1682 } 1683 out: 1684 btrfs_free_path(path); 1685 return ret; 1686 } 1687 1688 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1689 struct btrfs_device *device, 1690 u64 chunk_offset, u64 start, u64 num_bytes) 1691 { 1692 int ret; 1693 struct btrfs_path *path; 1694 struct btrfs_fs_info *fs_info = device->fs_info; 1695 struct btrfs_root *root = fs_info->dev_root; 1696 struct btrfs_dev_extent *extent; 1697 struct extent_buffer *leaf; 1698 struct btrfs_key key; 1699 1700 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1701 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1702 path = btrfs_alloc_path(); 1703 if (!path) 1704 return -ENOMEM; 1705 1706 key.objectid = device->devid; 1707 key.offset = start; 1708 key.type = BTRFS_DEV_EXTENT_KEY; 1709 ret = btrfs_insert_empty_item(trans, root, path, &key, 1710 sizeof(*extent)); 1711 if (ret) 1712 goto out; 1713 1714 leaf = path->nodes[0]; 1715 extent = btrfs_item_ptr(leaf, path->slots[0], 1716 struct btrfs_dev_extent); 1717 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1718 BTRFS_CHUNK_TREE_OBJECTID); 1719 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1720 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1721 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1722 1723 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1724 btrfs_mark_buffer_dirty(leaf); 1725 out: 1726 btrfs_free_path(path); 1727 return ret; 1728 } 1729 1730 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1731 { 1732 struct extent_map_tree *em_tree; 1733 struct extent_map *em; 1734 struct rb_node *n; 1735 u64 ret = 0; 1736 1737 em_tree = &fs_info->mapping_tree; 1738 read_lock(&em_tree->lock); 1739 n = rb_last(&em_tree->map.rb_root); 1740 if (n) { 1741 em = rb_entry(n, struct extent_map, rb_node); 1742 ret = em->start + em->len; 1743 } 1744 read_unlock(&em_tree->lock); 1745 1746 return ret; 1747 } 1748 1749 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1750 u64 *devid_ret) 1751 { 1752 int ret; 1753 struct btrfs_key key; 1754 struct btrfs_key found_key; 1755 struct btrfs_path *path; 1756 1757 path = btrfs_alloc_path(); 1758 if (!path) 1759 return -ENOMEM; 1760 1761 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1762 key.type = BTRFS_DEV_ITEM_KEY; 1763 key.offset = (u64)-1; 1764 1765 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1766 if (ret < 0) 1767 goto error; 1768 1769 if (ret == 0) { 1770 /* Corruption */ 1771 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1772 ret = -EUCLEAN; 1773 goto error; 1774 } 1775 1776 ret = btrfs_previous_item(fs_info->chunk_root, path, 1777 BTRFS_DEV_ITEMS_OBJECTID, 1778 BTRFS_DEV_ITEM_KEY); 1779 if (ret) { 1780 *devid_ret = 1; 1781 } else { 1782 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1783 path->slots[0]); 1784 *devid_ret = found_key.offset + 1; 1785 } 1786 ret = 0; 1787 error: 1788 btrfs_free_path(path); 1789 return ret; 1790 } 1791 1792 /* 1793 * the device information is stored in the chunk root 1794 * the btrfs_device struct should be fully filled in 1795 */ 1796 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1797 struct btrfs_device *device) 1798 { 1799 int ret; 1800 struct btrfs_path *path; 1801 struct btrfs_dev_item *dev_item; 1802 struct extent_buffer *leaf; 1803 struct btrfs_key key; 1804 unsigned long ptr; 1805 1806 path = btrfs_alloc_path(); 1807 if (!path) 1808 return -ENOMEM; 1809 1810 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1811 key.type = BTRFS_DEV_ITEM_KEY; 1812 key.offset = device->devid; 1813 1814 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1815 &key, sizeof(*dev_item)); 1816 if (ret) 1817 goto out; 1818 1819 leaf = path->nodes[0]; 1820 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1821 1822 btrfs_set_device_id(leaf, dev_item, device->devid); 1823 btrfs_set_device_generation(leaf, dev_item, 0); 1824 btrfs_set_device_type(leaf, dev_item, device->type); 1825 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1826 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1827 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1828 btrfs_set_device_total_bytes(leaf, dev_item, 1829 btrfs_device_get_disk_total_bytes(device)); 1830 btrfs_set_device_bytes_used(leaf, dev_item, 1831 btrfs_device_get_bytes_used(device)); 1832 btrfs_set_device_group(leaf, dev_item, 0); 1833 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1834 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1835 btrfs_set_device_start_offset(leaf, dev_item, 0); 1836 1837 ptr = btrfs_device_uuid(dev_item); 1838 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1839 ptr = btrfs_device_fsid(dev_item); 1840 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1841 ptr, BTRFS_FSID_SIZE); 1842 btrfs_mark_buffer_dirty(leaf); 1843 1844 ret = 0; 1845 out: 1846 btrfs_free_path(path); 1847 return ret; 1848 } 1849 1850 /* 1851 * Function to update ctime/mtime for a given device path. 1852 * Mainly used for ctime/mtime based probe like libblkid. 1853 */ 1854 static void update_dev_time(const char *path_name) 1855 { 1856 struct file *filp; 1857 1858 filp = filp_open(path_name, O_RDWR, 0); 1859 if (IS_ERR(filp)) 1860 return; 1861 file_update_time(filp); 1862 filp_close(filp, NULL); 1863 } 1864 1865 static int btrfs_rm_dev_item(struct btrfs_device *device) 1866 { 1867 struct btrfs_root *root = device->fs_info->chunk_root; 1868 int ret; 1869 struct btrfs_path *path; 1870 struct btrfs_key key; 1871 struct btrfs_trans_handle *trans; 1872 1873 path = btrfs_alloc_path(); 1874 if (!path) 1875 return -ENOMEM; 1876 1877 trans = btrfs_start_transaction(root, 0); 1878 if (IS_ERR(trans)) { 1879 btrfs_free_path(path); 1880 return PTR_ERR(trans); 1881 } 1882 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1883 key.type = BTRFS_DEV_ITEM_KEY; 1884 key.offset = device->devid; 1885 1886 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1887 if (ret) { 1888 if (ret > 0) 1889 ret = -ENOENT; 1890 btrfs_abort_transaction(trans, ret); 1891 btrfs_end_transaction(trans); 1892 goto out; 1893 } 1894 1895 ret = btrfs_del_item(trans, root, path); 1896 if (ret) { 1897 btrfs_abort_transaction(trans, ret); 1898 btrfs_end_transaction(trans); 1899 } 1900 1901 out: 1902 btrfs_free_path(path); 1903 if (!ret) 1904 ret = btrfs_commit_transaction(trans); 1905 return ret; 1906 } 1907 1908 /* 1909 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1910 * filesystem. It's up to the caller to adjust that number regarding eg. device 1911 * replace. 1912 */ 1913 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1914 u64 num_devices) 1915 { 1916 u64 all_avail; 1917 unsigned seq; 1918 int i; 1919 1920 do { 1921 seq = read_seqbegin(&fs_info->profiles_lock); 1922 1923 all_avail = fs_info->avail_data_alloc_bits | 1924 fs_info->avail_system_alloc_bits | 1925 fs_info->avail_metadata_alloc_bits; 1926 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1927 1928 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1929 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1930 continue; 1931 1932 if (num_devices < btrfs_raid_array[i].devs_min) { 1933 int ret = btrfs_raid_array[i].mindev_error; 1934 1935 if (ret) 1936 return ret; 1937 } 1938 } 1939 1940 return 0; 1941 } 1942 1943 static struct btrfs_device * btrfs_find_next_active_device( 1944 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1945 { 1946 struct btrfs_device *next_device; 1947 1948 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1949 if (next_device != device && 1950 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1951 && next_device->bdev) 1952 return next_device; 1953 } 1954 1955 return NULL; 1956 } 1957 1958 /* 1959 * Helper function to check if the given device is part of s_bdev / latest_bdev 1960 * and replace it with the provided or the next active device, in the context 1961 * where this function called, there should be always be another device (or 1962 * this_dev) which is active. 1963 */ 1964 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 1965 struct btrfs_device *next_device) 1966 { 1967 struct btrfs_fs_info *fs_info = device->fs_info; 1968 1969 if (!next_device) 1970 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1971 device); 1972 ASSERT(next_device); 1973 1974 if (fs_info->sb->s_bdev && 1975 (fs_info->sb->s_bdev == device->bdev)) 1976 fs_info->sb->s_bdev = next_device->bdev; 1977 1978 if (fs_info->fs_devices->latest_bdev == device->bdev) 1979 fs_info->fs_devices->latest_bdev = next_device->bdev; 1980 } 1981 1982 /* 1983 * Return btrfs_fs_devices::num_devices excluding the device that's being 1984 * currently replaced. 1985 */ 1986 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 1987 { 1988 u64 num_devices = fs_info->fs_devices->num_devices; 1989 1990 down_read(&fs_info->dev_replace.rwsem); 1991 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 1992 ASSERT(num_devices > 1); 1993 num_devices--; 1994 } 1995 up_read(&fs_info->dev_replace.rwsem); 1996 1997 return num_devices; 1998 } 1999 2000 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2001 struct block_device *bdev, 2002 const char *device_path) 2003 { 2004 struct btrfs_super_block *disk_super; 2005 int copy_num; 2006 2007 if (!bdev) 2008 return; 2009 2010 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2011 struct page *page; 2012 int ret; 2013 2014 disk_super = btrfs_read_dev_one_super(bdev, copy_num); 2015 if (IS_ERR(disk_super)) 2016 continue; 2017 2018 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 2019 2020 page = virt_to_page(disk_super); 2021 set_page_dirty(page); 2022 lock_page(page); 2023 /* write_on_page() unlocks the page */ 2024 ret = write_one_page(page); 2025 if (ret) 2026 btrfs_warn(fs_info, 2027 "error clearing superblock number %d (%d)", 2028 copy_num, ret); 2029 btrfs_release_disk_super(disk_super); 2030 2031 } 2032 2033 /* Notify udev that device has changed */ 2034 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2035 2036 /* Update ctime/mtime for device path for libblkid */ 2037 update_dev_time(device_path); 2038 } 2039 2040 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 2041 u64 devid) 2042 { 2043 struct btrfs_device *device; 2044 struct btrfs_fs_devices *cur_devices; 2045 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2046 u64 num_devices; 2047 int ret = 0; 2048 2049 mutex_lock(&uuid_mutex); 2050 2051 num_devices = btrfs_num_devices(fs_info); 2052 2053 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2054 if (ret) 2055 goto out; 2056 2057 device = btrfs_find_device_by_devspec(fs_info, devid, device_path); 2058 2059 if (IS_ERR(device)) { 2060 if (PTR_ERR(device) == -ENOENT && 2061 strcmp(device_path, "missing") == 0) 2062 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2063 else 2064 ret = PTR_ERR(device); 2065 goto out; 2066 } 2067 2068 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2069 btrfs_warn_in_rcu(fs_info, 2070 "cannot remove device %s (devid %llu) due to active swapfile", 2071 rcu_str_deref(device->name), device->devid); 2072 ret = -ETXTBSY; 2073 goto out; 2074 } 2075 2076 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2077 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 2078 goto out; 2079 } 2080 2081 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2082 fs_info->fs_devices->rw_devices == 1) { 2083 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 2084 goto out; 2085 } 2086 2087 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2088 mutex_lock(&fs_info->chunk_mutex); 2089 list_del_init(&device->dev_alloc_list); 2090 device->fs_devices->rw_devices--; 2091 mutex_unlock(&fs_info->chunk_mutex); 2092 } 2093 2094 mutex_unlock(&uuid_mutex); 2095 ret = btrfs_shrink_device(device, 0); 2096 if (!ret) 2097 btrfs_reada_remove_dev(device); 2098 mutex_lock(&uuid_mutex); 2099 if (ret) 2100 goto error_undo; 2101 2102 /* 2103 * TODO: the superblock still includes this device in its num_devices 2104 * counter although write_all_supers() is not locked out. This 2105 * could give a filesystem state which requires a degraded mount. 2106 */ 2107 ret = btrfs_rm_dev_item(device); 2108 if (ret) 2109 goto error_undo; 2110 2111 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2112 btrfs_scrub_cancel_dev(device); 2113 2114 /* 2115 * the device list mutex makes sure that we don't change 2116 * the device list while someone else is writing out all 2117 * the device supers. Whoever is writing all supers, should 2118 * lock the device list mutex before getting the number of 2119 * devices in the super block (super_copy). Conversely, 2120 * whoever updates the number of devices in the super block 2121 * (super_copy) should hold the device list mutex. 2122 */ 2123 2124 /* 2125 * In normal cases the cur_devices == fs_devices. But in case 2126 * of deleting a seed device, the cur_devices should point to 2127 * its own fs_devices listed under the fs_devices->seed. 2128 */ 2129 cur_devices = device->fs_devices; 2130 mutex_lock(&fs_devices->device_list_mutex); 2131 list_del_rcu(&device->dev_list); 2132 2133 cur_devices->num_devices--; 2134 cur_devices->total_devices--; 2135 /* Update total_devices of the parent fs_devices if it's seed */ 2136 if (cur_devices != fs_devices) 2137 fs_devices->total_devices--; 2138 2139 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2140 cur_devices->missing_devices--; 2141 2142 btrfs_assign_next_active_device(device, NULL); 2143 2144 if (device->bdev) { 2145 cur_devices->open_devices--; 2146 /* remove sysfs entry */ 2147 btrfs_sysfs_remove_device(device); 2148 } 2149 2150 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2151 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2152 mutex_unlock(&fs_devices->device_list_mutex); 2153 2154 /* 2155 * at this point, the device is zero sized and detached from 2156 * the devices list. All that's left is to zero out the old 2157 * supers and free the device. 2158 */ 2159 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2160 btrfs_scratch_superblocks(fs_info, device->bdev, 2161 device->name->str); 2162 2163 btrfs_close_bdev(device); 2164 synchronize_rcu(); 2165 btrfs_free_device(device); 2166 2167 if (cur_devices->open_devices == 0) { 2168 list_del_init(&cur_devices->seed_list); 2169 close_fs_devices(cur_devices); 2170 free_fs_devices(cur_devices); 2171 } 2172 2173 out: 2174 mutex_unlock(&uuid_mutex); 2175 return ret; 2176 2177 error_undo: 2178 btrfs_reada_undo_remove_dev(device); 2179 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2180 mutex_lock(&fs_info->chunk_mutex); 2181 list_add(&device->dev_alloc_list, 2182 &fs_devices->alloc_list); 2183 device->fs_devices->rw_devices++; 2184 mutex_unlock(&fs_info->chunk_mutex); 2185 } 2186 goto out; 2187 } 2188 2189 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2190 { 2191 struct btrfs_fs_devices *fs_devices; 2192 2193 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2194 2195 /* 2196 * in case of fs with no seed, srcdev->fs_devices will point 2197 * to fs_devices of fs_info. However when the dev being replaced is 2198 * a seed dev it will point to the seed's local fs_devices. In short 2199 * srcdev will have its correct fs_devices in both the cases. 2200 */ 2201 fs_devices = srcdev->fs_devices; 2202 2203 list_del_rcu(&srcdev->dev_list); 2204 list_del(&srcdev->dev_alloc_list); 2205 fs_devices->num_devices--; 2206 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2207 fs_devices->missing_devices--; 2208 2209 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2210 fs_devices->rw_devices--; 2211 2212 if (srcdev->bdev) 2213 fs_devices->open_devices--; 2214 } 2215 2216 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2217 { 2218 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2219 2220 mutex_lock(&uuid_mutex); 2221 2222 btrfs_close_bdev(srcdev); 2223 synchronize_rcu(); 2224 btrfs_free_device(srcdev); 2225 2226 /* if this is no devs we rather delete the fs_devices */ 2227 if (!fs_devices->num_devices) { 2228 /* 2229 * On a mounted FS, num_devices can't be zero unless it's a 2230 * seed. In case of a seed device being replaced, the replace 2231 * target added to the sprout FS, so there will be no more 2232 * device left under the seed FS. 2233 */ 2234 ASSERT(fs_devices->seeding); 2235 2236 list_del_init(&fs_devices->seed_list); 2237 close_fs_devices(fs_devices); 2238 free_fs_devices(fs_devices); 2239 } 2240 mutex_unlock(&uuid_mutex); 2241 } 2242 2243 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2244 { 2245 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2246 2247 mutex_lock(&fs_devices->device_list_mutex); 2248 2249 btrfs_sysfs_remove_device(tgtdev); 2250 2251 if (tgtdev->bdev) 2252 fs_devices->open_devices--; 2253 2254 fs_devices->num_devices--; 2255 2256 btrfs_assign_next_active_device(tgtdev, NULL); 2257 2258 list_del_rcu(&tgtdev->dev_list); 2259 2260 mutex_unlock(&fs_devices->device_list_mutex); 2261 2262 /* 2263 * The update_dev_time() with in btrfs_scratch_superblocks() 2264 * may lead to a call to btrfs_show_devname() which will try 2265 * to hold device_list_mutex. And here this device 2266 * is already out of device list, so we don't have to hold 2267 * the device_list_mutex lock. 2268 */ 2269 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2270 tgtdev->name->str); 2271 2272 btrfs_close_bdev(tgtdev); 2273 synchronize_rcu(); 2274 btrfs_free_device(tgtdev); 2275 } 2276 2277 static struct btrfs_device *btrfs_find_device_by_path( 2278 struct btrfs_fs_info *fs_info, const char *device_path) 2279 { 2280 int ret = 0; 2281 struct btrfs_super_block *disk_super; 2282 u64 devid; 2283 u8 *dev_uuid; 2284 struct block_device *bdev; 2285 struct btrfs_device *device; 2286 2287 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2288 fs_info->bdev_holder, 0, &bdev, &disk_super); 2289 if (ret) 2290 return ERR_PTR(ret); 2291 2292 devid = btrfs_stack_device_id(&disk_super->dev_item); 2293 dev_uuid = disk_super->dev_item.uuid; 2294 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2295 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2296 disk_super->metadata_uuid, true); 2297 else 2298 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2299 disk_super->fsid, true); 2300 2301 btrfs_release_disk_super(disk_super); 2302 if (!device) 2303 device = ERR_PTR(-ENOENT); 2304 blkdev_put(bdev, FMODE_READ); 2305 return device; 2306 } 2307 2308 /* 2309 * Lookup a device given by device id, or the path if the id is 0. 2310 */ 2311 struct btrfs_device *btrfs_find_device_by_devspec( 2312 struct btrfs_fs_info *fs_info, u64 devid, 2313 const char *device_path) 2314 { 2315 struct btrfs_device *device; 2316 2317 if (devid) { 2318 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, 2319 NULL, true); 2320 if (!device) 2321 return ERR_PTR(-ENOENT); 2322 return device; 2323 } 2324 2325 if (!device_path || !device_path[0]) 2326 return ERR_PTR(-EINVAL); 2327 2328 if (strcmp(device_path, "missing") == 0) { 2329 /* Find first missing device */ 2330 list_for_each_entry(device, &fs_info->fs_devices->devices, 2331 dev_list) { 2332 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2333 &device->dev_state) && !device->bdev) 2334 return device; 2335 } 2336 return ERR_PTR(-ENOENT); 2337 } 2338 2339 return btrfs_find_device_by_path(fs_info, device_path); 2340 } 2341 2342 /* 2343 * does all the dirty work required for changing file system's UUID. 2344 */ 2345 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2346 { 2347 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2348 struct btrfs_fs_devices *old_devices; 2349 struct btrfs_fs_devices *seed_devices; 2350 struct btrfs_super_block *disk_super = fs_info->super_copy; 2351 struct btrfs_device *device; 2352 u64 super_flags; 2353 2354 lockdep_assert_held(&uuid_mutex); 2355 if (!fs_devices->seeding) 2356 return -EINVAL; 2357 2358 /* 2359 * Private copy of the seed devices, anchored at 2360 * fs_info->fs_devices->seed_list 2361 */ 2362 seed_devices = alloc_fs_devices(NULL, NULL); 2363 if (IS_ERR(seed_devices)) 2364 return PTR_ERR(seed_devices); 2365 2366 /* 2367 * It's necessary to retain a copy of the original seed fs_devices in 2368 * fs_uuids so that filesystems which have been seeded can successfully 2369 * reference the seed device from open_seed_devices. This also supports 2370 * multiple fs seed. 2371 */ 2372 old_devices = clone_fs_devices(fs_devices); 2373 if (IS_ERR(old_devices)) { 2374 kfree(seed_devices); 2375 return PTR_ERR(old_devices); 2376 } 2377 2378 list_add(&old_devices->fs_list, &fs_uuids); 2379 2380 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2381 seed_devices->opened = 1; 2382 INIT_LIST_HEAD(&seed_devices->devices); 2383 INIT_LIST_HEAD(&seed_devices->alloc_list); 2384 mutex_init(&seed_devices->device_list_mutex); 2385 2386 mutex_lock(&fs_devices->device_list_mutex); 2387 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2388 synchronize_rcu); 2389 list_for_each_entry(device, &seed_devices->devices, dev_list) 2390 device->fs_devices = seed_devices; 2391 2392 fs_devices->seeding = false; 2393 fs_devices->num_devices = 0; 2394 fs_devices->open_devices = 0; 2395 fs_devices->missing_devices = 0; 2396 fs_devices->rotating = false; 2397 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2398 2399 generate_random_uuid(fs_devices->fsid); 2400 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2401 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2402 mutex_unlock(&fs_devices->device_list_mutex); 2403 2404 super_flags = btrfs_super_flags(disk_super) & 2405 ~BTRFS_SUPER_FLAG_SEEDING; 2406 btrfs_set_super_flags(disk_super, super_flags); 2407 2408 return 0; 2409 } 2410 2411 /* 2412 * Store the expected generation for seed devices in device items. 2413 */ 2414 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2415 { 2416 struct btrfs_fs_info *fs_info = trans->fs_info; 2417 struct btrfs_root *root = fs_info->chunk_root; 2418 struct btrfs_path *path; 2419 struct extent_buffer *leaf; 2420 struct btrfs_dev_item *dev_item; 2421 struct btrfs_device *device; 2422 struct btrfs_key key; 2423 u8 fs_uuid[BTRFS_FSID_SIZE]; 2424 u8 dev_uuid[BTRFS_UUID_SIZE]; 2425 u64 devid; 2426 int ret; 2427 2428 path = btrfs_alloc_path(); 2429 if (!path) 2430 return -ENOMEM; 2431 2432 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2433 key.offset = 0; 2434 key.type = BTRFS_DEV_ITEM_KEY; 2435 2436 while (1) { 2437 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2438 if (ret < 0) 2439 goto error; 2440 2441 leaf = path->nodes[0]; 2442 next_slot: 2443 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2444 ret = btrfs_next_leaf(root, path); 2445 if (ret > 0) 2446 break; 2447 if (ret < 0) 2448 goto error; 2449 leaf = path->nodes[0]; 2450 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2451 btrfs_release_path(path); 2452 continue; 2453 } 2454 2455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2456 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2457 key.type != BTRFS_DEV_ITEM_KEY) 2458 break; 2459 2460 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2461 struct btrfs_dev_item); 2462 devid = btrfs_device_id(leaf, dev_item); 2463 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2464 BTRFS_UUID_SIZE); 2465 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2466 BTRFS_FSID_SIZE); 2467 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2468 fs_uuid, true); 2469 BUG_ON(!device); /* Logic error */ 2470 2471 if (device->fs_devices->seeding) { 2472 btrfs_set_device_generation(leaf, dev_item, 2473 device->generation); 2474 btrfs_mark_buffer_dirty(leaf); 2475 } 2476 2477 path->slots[0]++; 2478 goto next_slot; 2479 } 2480 ret = 0; 2481 error: 2482 btrfs_free_path(path); 2483 return ret; 2484 } 2485 2486 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2487 { 2488 struct btrfs_root *root = fs_info->dev_root; 2489 struct request_queue *q; 2490 struct btrfs_trans_handle *trans; 2491 struct btrfs_device *device; 2492 struct block_device *bdev; 2493 struct super_block *sb = fs_info->sb; 2494 struct rcu_string *name; 2495 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2496 u64 orig_super_total_bytes; 2497 u64 orig_super_num_devices; 2498 int seeding_dev = 0; 2499 int ret = 0; 2500 bool locked = false; 2501 2502 if (sb_rdonly(sb) && !fs_devices->seeding) 2503 return -EROFS; 2504 2505 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2506 fs_info->bdev_holder); 2507 if (IS_ERR(bdev)) 2508 return PTR_ERR(bdev); 2509 2510 if (fs_devices->seeding) { 2511 seeding_dev = 1; 2512 down_write(&sb->s_umount); 2513 mutex_lock(&uuid_mutex); 2514 locked = true; 2515 } 2516 2517 sync_blockdev(bdev); 2518 2519 rcu_read_lock(); 2520 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2521 if (device->bdev == bdev) { 2522 ret = -EEXIST; 2523 rcu_read_unlock(); 2524 goto error; 2525 } 2526 } 2527 rcu_read_unlock(); 2528 2529 device = btrfs_alloc_device(fs_info, NULL, NULL); 2530 if (IS_ERR(device)) { 2531 /* we can safely leave the fs_devices entry around */ 2532 ret = PTR_ERR(device); 2533 goto error; 2534 } 2535 2536 name = rcu_string_strdup(device_path, GFP_KERNEL); 2537 if (!name) { 2538 ret = -ENOMEM; 2539 goto error_free_device; 2540 } 2541 rcu_assign_pointer(device->name, name); 2542 2543 trans = btrfs_start_transaction(root, 0); 2544 if (IS_ERR(trans)) { 2545 ret = PTR_ERR(trans); 2546 goto error_free_device; 2547 } 2548 2549 q = bdev_get_queue(bdev); 2550 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2551 device->generation = trans->transid; 2552 device->io_width = fs_info->sectorsize; 2553 device->io_align = fs_info->sectorsize; 2554 device->sector_size = fs_info->sectorsize; 2555 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2556 fs_info->sectorsize); 2557 device->disk_total_bytes = device->total_bytes; 2558 device->commit_total_bytes = device->total_bytes; 2559 device->fs_info = fs_info; 2560 device->bdev = bdev; 2561 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2562 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2563 device->mode = FMODE_EXCL; 2564 device->dev_stats_valid = 1; 2565 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2566 2567 if (seeding_dev) { 2568 sb->s_flags &= ~SB_RDONLY; 2569 ret = btrfs_prepare_sprout(fs_info); 2570 if (ret) { 2571 btrfs_abort_transaction(trans, ret); 2572 goto error_trans; 2573 } 2574 } 2575 2576 device->fs_devices = fs_devices; 2577 2578 mutex_lock(&fs_devices->device_list_mutex); 2579 mutex_lock(&fs_info->chunk_mutex); 2580 list_add_rcu(&device->dev_list, &fs_devices->devices); 2581 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2582 fs_devices->num_devices++; 2583 fs_devices->open_devices++; 2584 fs_devices->rw_devices++; 2585 fs_devices->total_devices++; 2586 fs_devices->total_rw_bytes += device->total_bytes; 2587 2588 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2589 2590 if (!blk_queue_nonrot(q)) 2591 fs_devices->rotating = true; 2592 2593 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2594 btrfs_set_super_total_bytes(fs_info->super_copy, 2595 round_down(orig_super_total_bytes + device->total_bytes, 2596 fs_info->sectorsize)); 2597 2598 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2599 btrfs_set_super_num_devices(fs_info->super_copy, 2600 orig_super_num_devices + 1); 2601 2602 /* 2603 * we've got more storage, clear any full flags on the space 2604 * infos 2605 */ 2606 btrfs_clear_space_info_full(fs_info); 2607 2608 mutex_unlock(&fs_info->chunk_mutex); 2609 2610 /* Add sysfs device entry */ 2611 btrfs_sysfs_add_device(device); 2612 2613 mutex_unlock(&fs_devices->device_list_mutex); 2614 2615 if (seeding_dev) { 2616 mutex_lock(&fs_info->chunk_mutex); 2617 ret = init_first_rw_device(trans); 2618 mutex_unlock(&fs_info->chunk_mutex); 2619 if (ret) { 2620 btrfs_abort_transaction(trans, ret); 2621 goto error_sysfs; 2622 } 2623 } 2624 2625 ret = btrfs_add_dev_item(trans, device); 2626 if (ret) { 2627 btrfs_abort_transaction(trans, ret); 2628 goto error_sysfs; 2629 } 2630 2631 if (seeding_dev) { 2632 ret = btrfs_finish_sprout(trans); 2633 if (ret) { 2634 btrfs_abort_transaction(trans, ret); 2635 goto error_sysfs; 2636 } 2637 2638 /* 2639 * fs_devices now represents the newly sprouted filesystem and 2640 * its fsid has been changed by btrfs_prepare_sprout 2641 */ 2642 btrfs_sysfs_update_sprout_fsid(fs_devices); 2643 } 2644 2645 ret = btrfs_commit_transaction(trans); 2646 2647 if (seeding_dev) { 2648 mutex_unlock(&uuid_mutex); 2649 up_write(&sb->s_umount); 2650 locked = false; 2651 2652 if (ret) /* transaction commit */ 2653 return ret; 2654 2655 ret = btrfs_relocate_sys_chunks(fs_info); 2656 if (ret < 0) 2657 btrfs_handle_fs_error(fs_info, ret, 2658 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2659 trans = btrfs_attach_transaction(root); 2660 if (IS_ERR(trans)) { 2661 if (PTR_ERR(trans) == -ENOENT) 2662 return 0; 2663 ret = PTR_ERR(trans); 2664 trans = NULL; 2665 goto error_sysfs; 2666 } 2667 ret = btrfs_commit_transaction(trans); 2668 } 2669 2670 /* 2671 * Now that we have written a new super block to this device, check all 2672 * other fs_devices list if device_path alienates any other scanned 2673 * device. 2674 * We can ignore the return value as it typically returns -EINVAL and 2675 * only succeeds if the device was an alien. 2676 */ 2677 btrfs_forget_devices(device_path); 2678 2679 /* Update ctime/mtime for blkid or udev */ 2680 update_dev_time(device_path); 2681 2682 return ret; 2683 2684 error_sysfs: 2685 btrfs_sysfs_remove_device(device); 2686 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2687 mutex_lock(&fs_info->chunk_mutex); 2688 list_del_rcu(&device->dev_list); 2689 list_del(&device->dev_alloc_list); 2690 fs_info->fs_devices->num_devices--; 2691 fs_info->fs_devices->open_devices--; 2692 fs_info->fs_devices->rw_devices--; 2693 fs_info->fs_devices->total_devices--; 2694 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2695 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2696 btrfs_set_super_total_bytes(fs_info->super_copy, 2697 orig_super_total_bytes); 2698 btrfs_set_super_num_devices(fs_info->super_copy, 2699 orig_super_num_devices); 2700 mutex_unlock(&fs_info->chunk_mutex); 2701 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2702 error_trans: 2703 if (seeding_dev) 2704 sb->s_flags |= SB_RDONLY; 2705 if (trans) 2706 btrfs_end_transaction(trans); 2707 error_free_device: 2708 btrfs_free_device(device); 2709 error: 2710 blkdev_put(bdev, FMODE_EXCL); 2711 if (locked) { 2712 mutex_unlock(&uuid_mutex); 2713 up_write(&sb->s_umount); 2714 } 2715 return ret; 2716 } 2717 2718 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2719 struct btrfs_device *device) 2720 { 2721 int ret; 2722 struct btrfs_path *path; 2723 struct btrfs_root *root = device->fs_info->chunk_root; 2724 struct btrfs_dev_item *dev_item; 2725 struct extent_buffer *leaf; 2726 struct btrfs_key key; 2727 2728 path = btrfs_alloc_path(); 2729 if (!path) 2730 return -ENOMEM; 2731 2732 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2733 key.type = BTRFS_DEV_ITEM_KEY; 2734 key.offset = device->devid; 2735 2736 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2737 if (ret < 0) 2738 goto out; 2739 2740 if (ret > 0) { 2741 ret = -ENOENT; 2742 goto out; 2743 } 2744 2745 leaf = path->nodes[0]; 2746 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2747 2748 btrfs_set_device_id(leaf, dev_item, device->devid); 2749 btrfs_set_device_type(leaf, dev_item, device->type); 2750 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2751 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2752 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2753 btrfs_set_device_total_bytes(leaf, dev_item, 2754 btrfs_device_get_disk_total_bytes(device)); 2755 btrfs_set_device_bytes_used(leaf, dev_item, 2756 btrfs_device_get_bytes_used(device)); 2757 btrfs_mark_buffer_dirty(leaf); 2758 2759 out: 2760 btrfs_free_path(path); 2761 return ret; 2762 } 2763 2764 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2765 struct btrfs_device *device, u64 new_size) 2766 { 2767 struct btrfs_fs_info *fs_info = device->fs_info; 2768 struct btrfs_super_block *super_copy = fs_info->super_copy; 2769 u64 old_total; 2770 u64 diff; 2771 2772 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2773 return -EACCES; 2774 2775 new_size = round_down(new_size, fs_info->sectorsize); 2776 2777 mutex_lock(&fs_info->chunk_mutex); 2778 old_total = btrfs_super_total_bytes(super_copy); 2779 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2780 2781 if (new_size <= device->total_bytes || 2782 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2783 mutex_unlock(&fs_info->chunk_mutex); 2784 return -EINVAL; 2785 } 2786 2787 btrfs_set_super_total_bytes(super_copy, 2788 round_down(old_total + diff, fs_info->sectorsize)); 2789 device->fs_devices->total_rw_bytes += diff; 2790 2791 btrfs_device_set_total_bytes(device, new_size); 2792 btrfs_device_set_disk_total_bytes(device, new_size); 2793 btrfs_clear_space_info_full(device->fs_info); 2794 if (list_empty(&device->post_commit_list)) 2795 list_add_tail(&device->post_commit_list, 2796 &trans->transaction->dev_update_list); 2797 mutex_unlock(&fs_info->chunk_mutex); 2798 2799 return btrfs_update_device(trans, device); 2800 } 2801 2802 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2803 { 2804 struct btrfs_fs_info *fs_info = trans->fs_info; 2805 struct btrfs_root *root = fs_info->chunk_root; 2806 int ret; 2807 struct btrfs_path *path; 2808 struct btrfs_key key; 2809 2810 path = btrfs_alloc_path(); 2811 if (!path) 2812 return -ENOMEM; 2813 2814 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2815 key.offset = chunk_offset; 2816 key.type = BTRFS_CHUNK_ITEM_KEY; 2817 2818 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2819 if (ret < 0) 2820 goto out; 2821 else if (ret > 0) { /* Logic error or corruption */ 2822 btrfs_handle_fs_error(fs_info, -ENOENT, 2823 "Failed lookup while freeing chunk."); 2824 ret = -ENOENT; 2825 goto out; 2826 } 2827 2828 ret = btrfs_del_item(trans, root, path); 2829 if (ret < 0) 2830 btrfs_handle_fs_error(fs_info, ret, 2831 "Failed to delete chunk item."); 2832 out: 2833 btrfs_free_path(path); 2834 return ret; 2835 } 2836 2837 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2838 { 2839 struct btrfs_super_block *super_copy = fs_info->super_copy; 2840 struct btrfs_disk_key *disk_key; 2841 struct btrfs_chunk *chunk; 2842 u8 *ptr; 2843 int ret = 0; 2844 u32 num_stripes; 2845 u32 array_size; 2846 u32 len = 0; 2847 u32 cur; 2848 struct btrfs_key key; 2849 2850 mutex_lock(&fs_info->chunk_mutex); 2851 array_size = btrfs_super_sys_array_size(super_copy); 2852 2853 ptr = super_copy->sys_chunk_array; 2854 cur = 0; 2855 2856 while (cur < array_size) { 2857 disk_key = (struct btrfs_disk_key *)ptr; 2858 btrfs_disk_key_to_cpu(&key, disk_key); 2859 2860 len = sizeof(*disk_key); 2861 2862 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2863 chunk = (struct btrfs_chunk *)(ptr + len); 2864 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2865 len += btrfs_chunk_item_size(num_stripes); 2866 } else { 2867 ret = -EIO; 2868 break; 2869 } 2870 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2871 key.offset == chunk_offset) { 2872 memmove(ptr, ptr + len, array_size - (cur + len)); 2873 array_size -= len; 2874 btrfs_set_super_sys_array_size(super_copy, array_size); 2875 } else { 2876 ptr += len; 2877 cur += len; 2878 } 2879 } 2880 mutex_unlock(&fs_info->chunk_mutex); 2881 return ret; 2882 } 2883 2884 /* 2885 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2886 * @logical: Logical block offset in bytes. 2887 * @length: Length of extent in bytes. 2888 * 2889 * Return: Chunk mapping or ERR_PTR. 2890 */ 2891 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2892 u64 logical, u64 length) 2893 { 2894 struct extent_map_tree *em_tree; 2895 struct extent_map *em; 2896 2897 em_tree = &fs_info->mapping_tree; 2898 read_lock(&em_tree->lock); 2899 em = lookup_extent_mapping(em_tree, logical, length); 2900 read_unlock(&em_tree->lock); 2901 2902 if (!em) { 2903 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2904 logical, length); 2905 return ERR_PTR(-EINVAL); 2906 } 2907 2908 if (em->start > logical || em->start + em->len < logical) { 2909 btrfs_crit(fs_info, 2910 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 2911 logical, length, em->start, em->start + em->len); 2912 free_extent_map(em); 2913 return ERR_PTR(-EINVAL); 2914 } 2915 2916 /* callers are responsible for dropping em's ref. */ 2917 return em; 2918 } 2919 2920 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2921 { 2922 struct btrfs_fs_info *fs_info = trans->fs_info; 2923 struct extent_map *em; 2924 struct map_lookup *map; 2925 u64 dev_extent_len = 0; 2926 int i, ret = 0; 2927 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2928 2929 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 2930 if (IS_ERR(em)) { 2931 /* 2932 * This is a logic error, but we don't want to just rely on the 2933 * user having built with ASSERT enabled, so if ASSERT doesn't 2934 * do anything we still error out. 2935 */ 2936 ASSERT(0); 2937 return PTR_ERR(em); 2938 } 2939 map = em->map_lookup; 2940 mutex_lock(&fs_info->chunk_mutex); 2941 check_system_chunk(trans, map->type); 2942 mutex_unlock(&fs_info->chunk_mutex); 2943 2944 /* 2945 * Take the device list mutex to prevent races with the final phase of 2946 * a device replace operation that replaces the device object associated 2947 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2948 */ 2949 mutex_lock(&fs_devices->device_list_mutex); 2950 for (i = 0; i < map->num_stripes; i++) { 2951 struct btrfs_device *device = map->stripes[i].dev; 2952 ret = btrfs_free_dev_extent(trans, device, 2953 map->stripes[i].physical, 2954 &dev_extent_len); 2955 if (ret) { 2956 mutex_unlock(&fs_devices->device_list_mutex); 2957 btrfs_abort_transaction(trans, ret); 2958 goto out; 2959 } 2960 2961 if (device->bytes_used > 0) { 2962 mutex_lock(&fs_info->chunk_mutex); 2963 btrfs_device_set_bytes_used(device, 2964 device->bytes_used - dev_extent_len); 2965 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 2966 btrfs_clear_space_info_full(fs_info); 2967 mutex_unlock(&fs_info->chunk_mutex); 2968 } 2969 2970 ret = btrfs_update_device(trans, device); 2971 if (ret) { 2972 mutex_unlock(&fs_devices->device_list_mutex); 2973 btrfs_abort_transaction(trans, ret); 2974 goto out; 2975 } 2976 } 2977 mutex_unlock(&fs_devices->device_list_mutex); 2978 2979 ret = btrfs_free_chunk(trans, chunk_offset); 2980 if (ret) { 2981 btrfs_abort_transaction(trans, ret); 2982 goto out; 2983 } 2984 2985 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 2986 2987 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2988 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 2989 if (ret) { 2990 btrfs_abort_transaction(trans, ret); 2991 goto out; 2992 } 2993 } 2994 2995 ret = btrfs_remove_block_group(trans, chunk_offset, em); 2996 if (ret) { 2997 btrfs_abort_transaction(trans, ret); 2998 goto out; 2999 } 3000 3001 out: 3002 /* once for us */ 3003 free_extent_map(em); 3004 return ret; 3005 } 3006 3007 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3008 { 3009 struct btrfs_root *root = fs_info->chunk_root; 3010 struct btrfs_trans_handle *trans; 3011 struct btrfs_block_group *block_group; 3012 int ret; 3013 3014 /* 3015 * Prevent races with automatic removal of unused block groups. 3016 * After we relocate and before we remove the chunk with offset 3017 * chunk_offset, automatic removal of the block group can kick in, 3018 * resulting in a failure when calling btrfs_remove_chunk() below. 3019 * 3020 * Make sure to acquire this mutex before doing a tree search (dev 3021 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3022 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3023 * we release the path used to search the chunk/dev tree and before 3024 * the current task acquires this mutex and calls us. 3025 */ 3026 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); 3027 3028 /* step one, relocate all the extents inside this chunk */ 3029 btrfs_scrub_pause(fs_info); 3030 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3031 btrfs_scrub_continue(fs_info); 3032 if (ret) 3033 return ret; 3034 3035 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3036 if (!block_group) 3037 return -ENOENT; 3038 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3039 btrfs_put_block_group(block_group); 3040 3041 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3042 chunk_offset); 3043 if (IS_ERR(trans)) { 3044 ret = PTR_ERR(trans); 3045 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3046 return ret; 3047 } 3048 3049 /* 3050 * step two, delete the device extents and the 3051 * chunk tree entries 3052 */ 3053 ret = btrfs_remove_chunk(trans, chunk_offset); 3054 btrfs_end_transaction(trans); 3055 return ret; 3056 } 3057 3058 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3059 { 3060 struct btrfs_root *chunk_root = fs_info->chunk_root; 3061 struct btrfs_path *path; 3062 struct extent_buffer *leaf; 3063 struct btrfs_chunk *chunk; 3064 struct btrfs_key key; 3065 struct btrfs_key found_key; 3066 u64 chunk_type; 3067 bool retried = false; 3068 int failed = 0; 3069 int ret; 3070 3071 path = btrfs_alloc_path(); 3072 if (!path) 3073 return -ENOMEM; 3074 3075 again: 3076 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3077 key.offset = (u64)-1; 3078 key.type = BTRFS_CHUNK_ITEM_KEY; 3079 3080 while (1) { 3081 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3082 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3083 if (ret < 0) { 3084 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3085 goto error; 3086 } 3087 BUG_ON(ret == 0); /* Corruption */ 3088 3089 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3090 key.type); 3091 if (ret) 3092 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3093 if (ret < 0) 3094 goto error; 3095 if (ret > 0) 3096 break; 3097 3098 leaf = path->nodes[0]; 3099 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3100 3101 chunk = btrfs_item_ptr(leaf, path->slots[0], 3102 struct btrfs_chunk); 3103 chunk_type = btrfs_chunk_type(leaf, chunk); 3104 btrfs_release_path(path); 3105 3106 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3107 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3108 if (ret == -ENOSPC) 3109 failed++; 3110 else 3111 BUG_ON(ret); 3112 } 3113 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3114 3115 if (found_key.offset == 0) 3116 break; 3117 key.offset = found_key.offset - 1; 3118 } 3119 ret = 0; 3120 if (failed && !retried) { 3121 failed = 0; 3122 retried = true; 3123 goto again; 3124 } else if (WARN_ON(failed && retried)) { 3125 ret = -ENOSPC; 3126 } 3127 error: 3128 btrfs_free_path(path); 3129 return ret; 3130 } 3131 3132 /* 3133 * return 1 : allocate a data chunk successfully, 3134 * return <0: errors during allocating a data chunk, 3135 * return 0 : no need to allocate a data chunk. 3136 */ 3137 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3138 u64 chunk_offset) 3139 { 3140 struct btrfs_block_group *cache; 3141 u64 bytes_used; 3142 u64 chunk_type; 3143 3144 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3145 ASSERT(cache); 3146 chunk_type = cache->flags; 3147 btrfs_put_block_group(cache); 3148 3149 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3150 return 0; 3151 3152 spin_lock(&fs_info->data_sinfo->lock); 3153 bytes_used = fs_info->data_sinfo->bytes_used; 3154 spin_unlock(&fs_info->data_sinfo->lock); 3155 3156 if (!bytes_used) { 3157 struct btrfs_trans_handle *trans; 3158 int ret; 3159 3160 trans = btrfs_join_transaction(fs_info->tree_root); 3161 if (IS_ERR(trans)) 3162 return PTR_ERR(trans); 3163 3164 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3165 btrfs_end_transaction(trans); 3166 if (ret < 0) 3167 return ret; 3168 return 1; 3169 } 3170 3171 return 0; 3172 } 3173 3174 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3175 struct btrfs_balance_control *bctl) 3176 { 3177 struct btrfs_root *root = fs_info->tree_root; 3178 struct btrfs_trans_handle *trans; 3179 struct btrfs_balance_item *item; 3180 struct btrfs_disk_balance_args disk_bargs; 3181 struct btrfs_path *path; 3182 struct extent_buffer *leaf; 3183 struct btrfs_key key; 3184 int ret, err; 3185 3186 path = btrfs_alloc_path(); 3187 if (!path) 3188 return -ENOMEM; 3189 3190 trans = btrfs_start_transaction(root, 0); 3191 if (IS_ERR(trans)) { 3192 btrfs_free_path(path); 3193 return PTR_ERR(trans); 3194 } 3195 3196 key.objectid = BTRFS_BALANCE_OBJECTID; 3197 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3198 key.offset = 0; 3199 3200 ret = btrfs_insert_empty_item(trans, root, path, &key, 3201 sizeof(*item)); 3202 if (ret) 3203 goto out; 3204 3205 leaf = path->nodes[0]; 3206 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3207 3208 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3209 3210 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3211 btrfs_set_balance_data(leaf, item, &disk_bargs); 3212 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3213 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3214 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3215 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3216 3217 btrfs_set_balance_flags(leaf, item, bctl->flags); 3218 3219 btrfs_mark_buffer_dirty(leaf); 3220 out: 3221 btrfs_free_path(path); 3222 err = btrfs_commit_transaction(trans); 3223 if (err && !ret) 3224 ret = err; 3225 return ret; 3226 } 3227 3228 static int del_balance_item(struct btrfs_fs_info *fs_info) 3229 { 3230 struct btrfs_root *root = fs_info->tree_root; 3231 struct btrfs_trans_handle *trans; 3232 struct btrfs_path *path; 3233 struct btrfs_key key; 3234 int ret, err; 3235 3236 path = btrfs_alloc_path(); 3237 if (!path) 3238 return -ENOMEM; 3239 3240 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3241 if (IS_ERR(trans)) { 3242 btrfs_free_path(path); 3243 return PTR_ERR(trans); 3244 } 3245 3246 key.objectid = BTRFS_BALANCE_OBJECTID; 3247 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3248 key.offset = 0; 3249 3250 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3251 if (ret < 0) 3252 goto out; 3253 if (ret > 0) { 3254 ret = -ENOENT; 3255 goto out; 3256 } 3257 3258 ret = btrfs_del_item(trans, root, path); 3259 out: 3260 btrfs_free_path(path); 3261 err = btrfs_commit_transaction(trans); 3262 if (err && !ret) 3263 ret = err; 3264 return ret; 3265 } 3266 3267 /* 3268 * This is a heuristic used to reduce the number of chunks balanced on 3269 * resume after balance was interrupted. 3270 */ 3271 static void update_balance_args(struct btrfs_balance_control *bctl) 3272 { 3273 /* 3274 * Turn on soft mode for chunk types that were being converted. 3275 */ 3276 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3277 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3278 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3279 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3280 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3281 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3282 3283 /* 3284 * Turn on usage filter if is not already used. The idea is 3285 * that chunks that we have already balanced should be 3286 * reasonably full. Don't do it for chunks that are being 3287 * converted - that will keep us from relocating unconverted 3288 * (albeit full) chunks. 3289 */ 3290 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3291 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3292 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3293 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3294 bctl->data.usage = 90; 3295 } 3296 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3297 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3298 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3299 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3300 bctl->sys.usage = 90; 3301 } 3302 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3303 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3304 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3305 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3306 bctl->meta.usage = 90; 3307 } 3308 } 3309 3310 /* 3311 * Clear the balance status in fs_info and delete the balance item from disk. 3312 */ 3313 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3314 { 3315 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3316 int ret; 3317 3318 BUG_ON(!fs_info->balance_ctl); 3319 3320 spin_lock(&fs_info->balance_lock); 3321 fs_info->balance_ctl = NULL; 3322 spin_unlock(&fs_info->balance_lock); 3323 3324 kfree(bctl); 3325 ret = del_balance_item(fs_info); 3326 if (ret) 3327 btrfs_handle_fs_error(fs_info, ret, NULL); 3328 } 3329 3330 /* 3331 * Balance filters. Return 1 if chunk should be filtered out 3332 * (should not be balanced). 3333 */ 3334 static int chunk_profiles_filter(u64 chunk_type, 3335 struct btrfs_balance_args *bargs) 3336 { 3337 chunk_type = chunk_to_extended(chunk_type) & 3338 BTRFS_EXTENDED_PROFILE_MASK; 3339 3340 if (bargs->profiles & chunk_type) 3341 return 0; 3342 3343 return 1; 3344 } 3345 3346 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3347 struct btrfs_balance_args *bargs) 3348 { 3349 struct btrfs_block_group *cache; 3350 u64 chunk_used; 3351 u64 user_thresh_min; 3352 u64 user_thresh_max; 3353 int ret = 1; 3354 3355 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3356 chunk_used = cache->used; 3357 3358 if (bargs->usage_min == 0) 3359 user_thresh_min = 0; 3360 else 3361 user_thresh_min = div_factor_fine(cache->length, 3362 bargs->usage_min); 3363 3364 if (bargs->usage_max == 0) 3365 user_thresh_max = 1; 3366 else if (bargs->usage_max > 100) 3367 user_thresh_max = cache->length; 3368 else 3369 user_thresh_max = div_factor_fine(cache->length, 3370 bargs->usage_max); 3371 3372 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3373 ret = 0; 3374 3375 btrfs_put_block_group(cache); 3376 return ret; 3377 } 3378 3379 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3380 u64 chunk_offset, struct btrfs_balance_args *bargs) 3381 { 3382 struct btrfs_block_group *cache; 3383 u64 chunk_used, user_thresh; 3384 int ret = 1; 3385 3386 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3387 chunk_used = cache->used; 3388 3389 if (bargs->usage_min == 0) 3390 user_thresh = 1; 3391 else if (bargs->usage > 100) 3392 user_thresh = cache->length; 3393 else 3394 user_thresh = div_factor_fine(cache->length, bargs->usage); 3395 3396 if (chunk_used < user_thresh) 3397 ret = 0; 3398 3399 btrfs_put_block_group(cache); 3400 return ret; 3401 } 3402 3403 static int chunk_devid_filter(struct extent_buffer *leaf, 3404 struct btrfs_chunk *chunk, 3405 struct btrfs_balance_args *bargs) 3406 { 3407 struct btrfs_stripe *stripe; 3408 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3409 int i; 3410 3411 for (i = 0; i < num_stripes; i++) { 3412 stripe = btrfs_stripe_nr(chunk, i); 3413 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3414 return 0; 3415 } 3416 3417 return 1; 3418 } 3419 3420 static u64 calc_data_stripes(u64 type, int num_stripes) 3421 { 3422 const int index = btrfs_bg_flags_to_raid_index(type); 3423 const int ncopies = btrfs_raid_array[index].ncopies; 3424 const int nparity = btrfs_raid_array[index].nparity; 3425 3426 if (nparity) 3427 return num_stripes - nparity; 3428 else 3429 return num_stripes / ncopies; 3430 } 3431 3432 /* [pstart, pend) */ 3433 static int chunk_drange_filter(struct extent_buffer *leaf, 3434 struct btrfs_chunk *chunk, 3435 struct btrfs_balance_args *bargs) 3436 { 3437 struct btrfs_stripe *stripe; 3438 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3439 u64 stripe_offset; 3440 u64 stripe_length; 3441 u64 type; 3442 int factor; 3443 int i; 3444 3445 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3446 return 0; 3447 3448 type = btrfs_chunk_type(leaf, chunk); 3449 factor = calc_data_stripes(type, num_stripes); 3450 3451 for (i = 0; i < num_stripes; i++) { 3452 stripe = btrfs_stripe_nr(chunk, i); 3453 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3454 continue; 3455 3456 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3457 stripe_length = btrfs_chunk_length(leaf, chunk); 3458 stripe_length = div_u64(stripe_length, factor); 3459 3460 if (stripe_offset < bargs->pend && 3461 stripe_offset + stripe_length > bargs->pstart) 3462 return 0; 3463 } 3464 3465 return 1; 3466 } 3467 3468 /* [vstart, vend) */ 3469 static int chunk_vrange_filter(struct extent_buffer *leaf, 3470 struct btrfs_chunk *chunk, 3471 u64 chunk_offset, 3472 struct btrfs_balance_args *bargs) 3473 { 3474 if (chunk_offset < bargs->vend && 3475 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3476 /* at least part of the chunk is inside this vrange */ 3477 return 0; 3478 3479 return 1; 3480 } 3481 3482 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3483 struct btrfs_chunk *chunk, 3484 struct btrfs_balance_args *bargs) 3485 { 3486 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3487 3488 if (bargs->stripes_min <= num_stripes 3489 && num_stripes <= bargs->stripes_max) 3490 return 0; 3491 3492 return 1; 3493 } 3494 3495 static int chunk_soft_convert_filter(u64 chunk_type, 3496 struct btrfs_balance_args *bargs) 3497 { 3498 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3499 return 0; 3500 3501 chunk_type = chunk_to_extended(chunk_type) & 3502 BTRFS_EXTENDED_PROFILE_MASK; 3503 3504 if (bargs->target == chunk_type) 3505 return 1; 3506 3507 return 0; 3508 } 3509 3510 static int should_balance_chunk(struct extent_buffer *leaf, 3511 struct btrfs_chunk *chunk, u64 chunk_offset) 3512 { 3513 struct btrfs_fs_info *fs_info = leaf->fs_info; 3514 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3515 struct btrfs_balance_args *bargs = NULL; 3516 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3517 3518 /* type filter */ 3519 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3520 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3521 return 0; 3522 } 3523 3524 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3525 bargs = &bctl->data; 3526 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3527 bargs = &bctl->sys; 3528 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3529 bargs = &bctl->meta; 3530 3531 /* profiles filter */ 3532 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3533 chunk_profiles_filter(chunk_type, bargs)) { 3534 return 0; 3535 } 3536 3537 /* usage filter */ 3538 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3539 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3540 return 0; 3541 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3542 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3543 return 0; 3544 } 3545 3546 /* devid filter */ 3547 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3548 chunk_devid_filter(leaf, chunk, bargs)) { 3549 return 0; 3550 } 3551 3552 /* drange filter, makes sense only with devid filter */ 3553 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3554 chunk_drange_filter(leaf, chunk, bargs)) { 3555 return 0; 3556 } 3557 3558 /* vrange filter */ 3559 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3560 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3561 return 0; 3562 } 3563 3564 /* stripes filter */ 3565 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3566 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3567 return 0; 3568 } 3569 3570 /* soft profile changing mode */ 3571 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3572 chunk_soft_convert_filter(chunk_type, bargs)) { 3573 return 0; 3574 } 3575 3576 /* 3577 * limited by count, must be the last filter 3578 */ 3579 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3580 if (bargs->limit == 0) 3581 return 0; 3582 else 3583 bargs->limit--; 3584 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3585 /* 3586 * Same logic as the 'limit' filter; the minimum cannot be 3587 * determined here because we do not have the global information 3588 * about the count of all chunks that satisfy the filters. 3589 */ 3590 if (bargs->limit_max == 0) 3591 return 0; 3592 else 3593 bargs->limit_max--; 3594 } 3595 3596 return 1; 3597 } 3598 3599 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3600 { 3601 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3602 struct btrfs_root *chunk_root = fs_info->chunk_root; 3603 u64 chunk_type; 3604 struct btrfs_chunk *chunk; 3605 struct btrfs_path *path = NULL; 3606 struct btrfs_key key; 3607 struct btrfs_key found_key; 3608 struct extent_buffer *leaf; 3609 int slot; 3610 int ret; 3611 int enospc_errors = 0; 3612 bool counting = true; 3613 /* The single value limit and min/max limits use the same bytes in the */ 3614 u64 limit_data = bctl->data.limit; 3615 u64 limit_meta = bctl->meta.limit; 3616 u64 limit_sys = bctl->sys.limit; 3617 u32 count_data = 0; 3618 u32 count_meta = 0; 3619 u32 count_sys = 0; 3620 int chunk_reserved = 0; 3621 3622 path = btrfs_alloc_path(); 3623 if (!path) { 3624 ret = -ENOMEM; 3625 goto error; 3626 } 3627 3628 /* zero out stat counters */ 3629 spin_lock(&fs_info->balance_lock); 3630 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3631 spin_unlock(&fs_info->balance_lock); 3632 again: 3633 if (!counting) { 3634 /* 3635 * The single value limit and min/max limits use the same bytes 3636 * in the 3637 */ 3638 bctl->data.limit = limit_data; 3639 bctl->meta.limit = limit_meta; 3640 bctl->sys.limit = limit_sys; 3641 } 3642 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3643 key.offset = (u64)-1; 3644 key.type = BTRFS_CHUNK_ITEM_KEY; 3645 3646 while (1) { 3647 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3648 atomic_read(&fs_info->balance_cancel_req)) { 3649 ret = -ECANCELED; 3650 goto error; 3651 } 3652 3653 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3654 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3655 if (ret < 0) { 3656 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3657 goto error; 3658 } 3659 3660 /* 3661 * this shouldn't happen, it means the last relocate 3662 * failed 3663 */ 3664 if (ret == 0) 3665 BUG(); /* FIXME break ? */ 3666 3667 ret = btrfs_previous_item(chunk_root, path, 0, 3668 BTRFS_CHUNK_ITEM_KEY); 3669 if (ret) { 3670 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3671 ret = 0; 3672 break; 3673 } 3674 3675 leaf = path->nodes[0]; 3676 slot = path->slots[0]; 3677 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3678 3679 if (found_key.objectid != key.objectid) { 3680 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3681 break; 3682 } 3683 3684 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3685 chunk_type = btrfs_chunk_type(leaf, chunk); 3686 3687 if (!counting) { 3688 spin_lock(&fs_info->balance_lock); 3689 bctl->stat.considered++; 3690 spin_unlock(&fs_info->balance_lock); 3691 } 3692 3693 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3694 3695 btrfs_release_path(path); 3696 if (!ret) { 3697 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3698 goto loop; 3699 } 3700 3701 if (counting) { 3702 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3703 spin_lock(&fs_info->balance_lock); 3704 bctl->stat.expected++; 3705 spin_unlock(&fs_info->balance_lock); 3706 3707 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3708 count_data++; 3709 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3710 count_sys++; 3711 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3712 count_meta++; 3713 3714 goto loop; 3715 } 3716 3717 /* 3718 * Apply limit_min filter, no need to check if the LIMITS 3719 * filter is used, limit_min is 0 by default 3720 */ 3721 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3722 count_data < bctl->data.limit_min) 3723 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3724 count_meta < bctl->meta.limit_min) 3725 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3726 count_sys < bctl->sys.limit_min)) { 3727 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3728 goto loop; 3729 } 3730 3731 if (!chunk_reserved) { 3732 /* 3733 * We may be relocating the only data chunk we have, 3734 * which could potentially end up with losing data's 3735 * raid profile, so lets allocate an empty one in 3736 * advance. 3737 */ 3738 ret = btrfs_may_alloc_data_chunk(fs_info, 3739 found_key.offset); 3740 if (ret < 0) { 3741 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3742 goto error; 3743 } else if (ret == 1) { 3744 chunk_reserved = 1; 3745 } 3746 } 3747 3748 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3749 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3750 if (ret == -ENOSPC) { 3751 enospc_errors++; 3752 } else if (ret == -ETXTBSY) { 3753 btrfs_info(fs_info, 3754 "skipping relocation of block group %llu due to active swapfile", 3755 found_key.offset); 3756 ret = 0; 3757 } else if (ret) { 3758 goto error; 3759 } else { 3760 spin_lock(&fs_info->balance_lock); 3761 bctl->stat.completed++; 3762 spin_unlock(&fs_info->balance_lock); 3763 } 3764 loop: 3765 if (found_key.offset == 0) 3766 break; 3767 key.offset = found_key.offset - 1; 3768 } 3769 3770 if (counting) { 3771 btrfs_release_path(path); 3772 counting = false; 3773 goto again; 3774 } 3775 error: 3776 btrfs_free_path(path); 3777 if (enospc_errors) { 3778 btrfs_info(fs_info, "%d enospc errors during balance", 3779 enospc_errors); 3780 if (!ret) 3781 ret = -ENOSPC; 3782 } 3783 3784 return ret; 3785 } 3786 3787 /** 3788 * alloc_profile_is_valid - see if a given profile is valid and reduced 3789 * @flags: profile to validate 3790 * @extended: if true @flags is treated as an extended profile 3791 */ 3792 static int alloc_profile_is_valid(u64 flags, int extended) 3793 { 3794 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3795 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3796 3797 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3798 3799 /* 1) check that all other bits are zeroed */ 3800 if (flags & ~mask) 3801 return 0; 3802 3803 /* 2) see if profile is reduced */ 3804 if (flags == 0) 3805 return !extended; /* "0" is valid for usual profiles */ 3806 3807 return has_single_bit_set(flags); 3808 } 3809 3810 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3811 { 3812 /* cancel requested || normal exit path */ 3813 return atomic_read(&fs_info->balance_cancel_req) || 3814 (atomic_read(&fs_info->balance_pause_req) == 0 && 3815 atomic_read(&fs_info->balance_cancel_req) == 0); 3816 } 3817 3818 /* 3819 * Validate target profile against allowed profiles and return true if it's OK. 3820 * Otherwise print the error message and return false. 3821 */ 3822 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 3823 const struct btrfs_balance_args *bargs, 3824 u64 allowed, const char *type) 3825 { 3826 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3827 return true; 3828 3829 /* Profile is valid and does not have bits outside of the allowed set */ 3830 if (alloc_profile_is_valid(bargs->target, 1) && 3831 (bargs->target & ~allowed) == 0) 3832 return true; 3833 3834 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 3835 type, btrfs_bg_type_to_raid_name(bargs->target)); 3836 return false; 3837 } 3838 3839 /* 3840 * Fill @buf with textual description of balance filter flags @bargs, up to 3841 * @size_buf including the terminating null. The output may be trimmed if it 3842 * does not fit into the provided buffer. 3843 */ 3844 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 3845 u32 size_buf) 3846 { 3847 int ret; 3848 u32 size_bp = size_buf; 3849 char *bp = buf; 3850 u64 flags = bargs->flags; 3851 char tmp_buf[128] = {'\0'}; 3852 3853 if (!flags) 3854 return; 3855 3856 #define CHECK_APPEND_NOARG(a) \ 3857 do { \ 3858 ret = snprintf(bp, size_bp, (a)); \ 3859 if (ret < 0 || ret >= size_bp) \ 3860 goto out_overflow; \ 3861 size_bp -= ret; \ 3862 bp += ret; \ 3863 } while (0) 3864 3865 #define CHECK_APPEND_1ARG(a, v1) \ 3866 do { \ 3867 ret = snprintf(bp, size_bp, (a), (v1)); \ 3868 if (ret < 0 || ret >= size_bp) \ 3869 goto out_overflow; \ 3870 size_bp -= ret; \ 3871 bp += ret; \ 3872 } while (0) 3873 3874 #define CHECK_APPEND_2ARG(a, v1, v2) \ 3875 do { \ 3876 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 3877 if (ret < 0 || ret >= size_bp) \ 3878 goto out_overflow; \ 3879 size_bp -= ret; \ 3880 bp += ret; \ 3881 } while (0) 3882 3883 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 3884 CHECK_APPEND_1ARG("convert=%s,", 3885 btrfs_bg_type_to_raid_name(bargs->target)); 3886 3887 if (flags & BTRFS_BALANCE_ARGS_SOFT) 3888 CHECK_APPEND_NOARG("soft,"); 3889 3890 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 3891 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 3892 sizeof(tmp_buf)); 3893 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 3894 } 3895 3896 if (flags & BTRFS_BALANCE_ARGS_USAGE) 3897 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 3898 3899 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 3900 CHECK_APPEND_2ARG("usage=%u..%u,", 3901 bargs->usage_min, bargs->usage_max); 3902 3903 if (flags & BTRFS_BALANCE_ARGS_DEVID) 3904 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 3905 3906 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 3907 CHECK_APPEND_2ARG("drange=%llu..%llu,", 3908 bargs->pstart, bargs->pend); 3909 3910 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 3911 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 3912 bargs->vstart, bargs->vend); 3913 3914 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 3915 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 3916 3917 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 3918 CHECK_APPEND_2ARG("limit=%u..%u,", 3919 bargs->limit_min, bargs->limit_max); 3920 3921 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 3922 CHECK_APPEND_2ARG("stripes=%u..%u,", 3923 bargs->stripes_min, bargs->stripes_max); 3924 3925 #undef CHECK_APPEND_2ARG 3926 #undef CHECK_APPEND_1ARG 3927 #undef CHECK_APPEND_NOARG 3928 3929 out_overflow: 3930 3931 if (size_bp < size_buf) 3932 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 3933 else 3934 buf[0] = '\0'; 3935 } 3936 3937 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 3938 { 3939 u32 size_buf = 1024; 3940 char tmp_buf[192] = {'\0'}; 3941 char *buf; 3942 char *bp; 3943 u32 size_bp = size_buf; 3944 int ret; 3945 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3946 3947 buf = kzalloc(size_buf, GFP_KERNEL); 3948 if (!buf) 3949 return; 3950 3951 bp = buf; 3952 3953 #define CHECK_APPEND_1ARG(a, v1) \ 3954 do { \ 3955 ret = snprintf(bp, size_bp, (a), (v1)); \ 3956 if (ret < 0 || ret >= size_bp) \ 3957 goto out_overflow; \ 3958 size_bp -= ret; \ 3959 bp += ret; \ 3960 } while (0) 3961 3962 if (bctl->flags & BTRFS_BALANCE_FORCE) 3963 CHECK_APPEND_1ARG("%s", "-f "); 3964 3965 if (bctl->flags & BTRFS_BALANCE_DATA) { 3966 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 3967 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 3968 } 3969 3970 if (bctl->flags & BTRFS_BALANCE_METADATA) { 3971 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 3972 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 3973 } 3974 3975 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 3976 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 3977 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 3978 } 3979 3980 #undef CHECK_APPEND_1ARG 3981 3982 out_overflow: 3983 3984 if (size_bp < size_buf) 3985 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 3986 btrfs_info(fs_info, "balance: %s %s", 3987 (bctl->flags & BTRFS_BALANCE_RESUME) ? 3988 "resume" : "start", buf); 3989 3990 kfree(buf); 3991 } 3992 3993 /* 3994 * Should be called with balance mutexe held 3995 */ 3996 int btrfs_balance(struct btrfs_fs_info *fs_info, 3997 struct btrfs_balance_control *bctl, 3998 struct btrfs_ioctl_balance_args *bargs) 3999 { 4000 u64 meta_target, data_target; 4001 u64 allowed; 4002 int mixed = 0; 4003 int ret; 4004 u64 num_devices; 4005 unsigned seq; 4006 bool reducing_redundancy; 4007 int i; 4008 4009 if (btrfs_fs_closing(fs_info) || 4010 atomic_read(&fs_info->balance_pause_req) || 4011 btrfs_should_cancel_balance(fs_info)) { 4012 ret = -EINVAL; 4013 goto out; 4014 } 4015 4016 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4017 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4018 mixed = 1; 4019 4020 /* 4021 * In case of mixed groups both data and meta should be picked, 4022 * and identical options should be given for both of them. 4023 */ 4024 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4025 if (mixed && (bctl->flags & allowed)) { 4026 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4027 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4028 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4029 btrfs_err(fs_info, 4030 "balance: mixed groups data and metadata options must be the same"); 4031 ret = -EINVAL; 4032 goto out; 4033 } 4034 } 4035 4036 /* 4037 * rw_devices will not change at the moment, device add/delete/replace 4038 * are exclusive 4039 */ 4040 num_devices = fs_info->fs_devices->rw_devices; 4041 4042 /* 4043 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4044 * special bit for it, to make it easier to distinguish. Thus we need 4045 * to set it manually, or balance would refuse the profile. 4046 */ 4047 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4048 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4049 if (num_devices >= btrfs_raid_array[i].devs_min) 4050 allowed |= btrfs_raid_array[i].bg_flag; 4051 4052 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4053 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4054 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4055 ret = -EINVAL; 4056 goto out; 4057 } 4058 4059 /* 4060 * Allow to reduce metadata or system integrity only if force set for 4061 * profiles with redundancy (copies, parity) 4062 */ 4063 allowed = 0; 4064 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4065 if (btrfs_raid_array[i].ncopies >= 2 || 4066 btrfs_raid_array[i].tolerated_failures >= 1) 4067 allowed |= btrfs_raid_array[i].bg_flag; 4068 } 4069 do { 4070 seq = read_seqbegin(&fs_info->profiles_lock); 4071 4072 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4073 (fs_info->avail_system_alloc_bits & allowed) && 4074 !(bctl->sys.target & allowed)) || 4075 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4076 (fs_info->avail_metadata_alloc_bits & allowed) && 4077 !(bctl->meta.target & allowed))) 4078 reducing_redundancy = true; 4079 else 4080 reducing_redundancy = false; 4081 4082 /* if we're not converting, the target field is uninitialized */ 4083 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4084 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4085 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4086 bctl->data.target : fs_info->avail_data_alloc_bits; 4087 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4088 4089 if (reducing_redundancy) { 4090 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4091 btrfs_info(fs_info, 4092 "balance: force reducing metadata redundancy"); 4093 } else { 4094 btrfs_err(fs_info, 4095 "balance: reduces metadata redundancy, use --force if you want this"); 4096 ret = -EINVAL; 4097 goto out; 4098 } 4099 } 4100 4101 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4102 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4103 btrfs_warn(fs_info, 4104 "balance: metadata profile %s has lower redundancy than data profile %s", 4105 btrfs_bg_type_to_raid_name(meta_target), 4106 btrfs_bg_type_to_raid_name(data_target)); 4107 } 4108 4109 if (fs_info->send_in_progress) { 4110 btrfs_warn_rl(fs_info, 4111 "cannot run balance while send operations are in progress (%d in progress)", 4112 fs_info->send_in_progress); 4113 ret = -EAGAIN; 4114 goto out; 4115 } 4116 4117 ret = insert_balance_item(fs_info, bctl); 4118 if (ret && ret != -EEXIST) 4119 goto out; 4120 4121 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4122 BUG_ON(ret == -EEXIST); 4123 BUG_ON(fs_info->balance_ctl); 4124 spin_lock(&fs_info->balance_lock); 4125 fs_info->balance_ctl = bctl; 4126 spin_unlock(&fs_info->balance_lock); 4127 } else { 4128 BUG_ON(ret != -EEXIST); 4129 spin_lock(&fs_info->balance_lock); 4130 update_balance_args(bctl); 4131 spin_unlock(&fs_info->balance_lock); 4132 } 4133 4134 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4135 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4136 describe_balance_start_or_resume(fs_info); 4137 mutex_unlock(&fs_info->balance_mutex); 4138 4139 ret = __btrfs_balance(fs_info); 4140 4141 mutex_lock(&fs_info->balance_mutex); 4142 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4143 btrfs_info(fs_info, "balance: paused"); 4144 /* 4145 * Balance can be canceled by: 4146 * 4147 * - Regular cancel request 4148 * Then ret == -ECANCELED and balance_cancel_req > 0 4149 * 4150 * - Fatal signal to "btrfs" process 4151 * Either the signal caught by wait_reserve_ticket() and callers 4152 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4153 * got -ECANCELED. 4154 * Either way, in this case balance_cancel_req = 0, and 4155 * ret == -EINTR or ret == -ECANCELED. 4156 * 4157 * So here we only check the return value to catch canceled balance. 4158 */ 4159 else if (ret == -ECANCELED || ret == -EINTR) 4160 btrfs_info(fs_info, "balance: canceled"); 4161 else 4162 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4163 4164 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4165 4166 if (bargs) { 4167 memset(bargs, 0, sizeof(*bargs)); 4168 btrfs_update_ioctl_balance_args(fs_info, bargs); 4169 } 4170 4171 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4172 balance_need_close(fs_info)) { 4173 reset_balance_state(fs_info); 4174 btrfs_exclop_finish(fs_info); 4175 } 4176 4177 wake_up(&fs_info->balance_wait_q); 4178 4179 return ret; 4180 out: 4181 if (bctl->flags & BTRFS_BALANCE_RESUME) 4182 reset_balance_state(fs_info); 4183 else 4184 kfree(bctl); 4185 btrfs_exclop_finish(fs_info); 4186 4187 return ret; 4188 } 4189 4190 static int balance_kthread(void *data) 4191 { 4192 struct btrfs_fs_info *fs_info = data; 4193 int ret = 0; 4194 4195 mutex_lock(&fs_info->balance_mutex); 4196 if (fs_info->balance_ctl) 4197 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4198 mutex_unlock(&fs_info->balance_mutex); 4199 4200 return ret; 4201 } 4202 4203 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4204 { 4205 struct task_struct *tsk; 4206 4207 mutex_lock(&fs_info->balance_mutex); 4208 if (!fs_info->balance_ctl) { 4209 mutex_unlock(&fs_info->balance_mutex); 4210 return 0; 4211 } 4212 mutex_unlock(&fs_info->balance_mutex); 4213 4214 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4215 btrfs_info(fs_info, "balance: resume skipped"); 4216 return 0; 4217 } 4218 4219 /* 4220 * A ro->rw remount sequence should continue with the paused balance 4221 * regardless of who pauses it, system or the user as of now, so set 4222 * the resume flag. 4223 */ 4224 spin_lock(&fs_info->balance_lock); 4225 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4226 spin_unlock(&fs_info->balance_lock); 4227 4228 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4229 return PTR_ERR_OR_ZERO(tsk); 4230 } 4231 4232 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4233 { 4234 struct btrfs_balance_control *bctl; 4235 struct btrfs_balance_item *item; 4236 struct btrfs_disk_balance_args disk_bargs; 4237 struct btrfs_path *path; 4238 struct extent_buffer *leaf; 4239 struct btrfs_key key; 4240 int ret; 4241 4242 path = btrfs_alloc_path(); 4243 if (!path) 4244 return -ENOMEM; 4245 4246 key.objectid = BTRFS_BALANCE_OBJECTID; 4247 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4248 key.offset = 0; 4249 4250 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4251 if (ret < 0) 4252 goto out; 4253 if (ret > 0) { /* ret = -ENOENT; */ 4254 ret = 0; 4255 goto out; 4256 } 4257 4258 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4259 if (!bctl) { 4260 ret = -ENOMEM; 4261 goto out; 4262 } 4263 4264 leaf = path->nodes[0]; 4265 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4266 4267 bctl->flags = btrfs_balance_flags(leaf, item); 4268 bctl->flags |= BTRFS_BALANCE_RESUME; 4269 4270 btrfs_balance_data(leaf, item, &disk_bargs); 4271 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4272 btrfs_balance_meta(leaf, item, &disk_bargs); 4273 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4274 btrfs_balance_sys(leaf, item, &disk_bargs); 4275 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4276 4277 /* 4278 * This should never happen, as the paused balance state is recovered 4279 * during mount without any chance of other exclusive ops to collide. 4280 * 4281 * This gives the exclusive op status to balance and keeps in paused 4282 * state until user intervention (cancel or umount). If the ownership 4283 * cannot be assigned, show a message but do not fail. The balance 4284 * is in a paused state and must have fs_info::balance_ctl properly 4285 * set up. 4286 */ 4287 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) 4288 btrfs_warn(fs_info, 4289 "balance: cannot set exclusive op status, resume manually"); 4290 4291 mutex_lock(&fs_info->balance_mutex); 4292 BUG_ON(fs_info->balance_ctl); 4293 spin_lock(&fs_info->balance_lock); 4294 fs_info->balance_ctl = bctl; 4295 spin_unlock(&fs_info->balance_lock); 4296 mutex_unlock(&fs_info->balance_mutex); 4297 out: 4298 btrfs_free_path(path); 4299 return ret; 4300 } 4301 4302 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4303 { 4304 int ret = 0; 4305 4306 mutex_lock(&fs_info->balance_mutex); 4307 if (!fs_info->balance_ctl) { 4308 mutex_unlock(&fs_info->balance_mutex); 4309 return -ENOTCONN; 4310 } 4311 4312 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4313 atomic_inc(&fs_info->balance_pause_req); 4314 mutex_unlock(&fs_info->balance_mutex); 4315 4316 wait_event(fs_info->balance_wait_q, 4317 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4318 4319 mutex_lock(&fs_info->balance_mutex); 4320 /* we are good with balance_ctl ripped off from under us */ 4321 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4322 atomic_dec(&fs_info->balance_pause_req); 4323 } else { 4324 ret = -ENOTCONN; 4325 } 4326 4327 mutex_unlock(&fs_info->balance_mutex); 4328 return ret; 4329 } 4330 4331 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4332 { 4333 mutex_lock(&fs_info->balance_mutex); 4334 if (!fs_info->balance_ctl) { 4335 mutex_unlock(&fs_info->balance_mutex); 4336 return -ENOTCONN; 4337 } 4338 4339 /* 4340 * A paused balance with the item stored on disk can be resumed at 4341 * mount time if the mount is read-write. Otherwise it's still paused 4342 * and we must not allow cancelling as it deletes the item. 4343 */ 4344 if (sb_rdonly(fs_info->sb)) { 4345 mutex_unlock(&fs_info->balance_mutex); 4346 return -EROFS; 4347 } 4348 4349 atomic_inc(&fs_info->balance_cancel_req); 4350 /* 4351 * if we are running just wait and return, balance item is 4352 * deleted in btrfs_balance in this case 4353 */ 4354 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4355 mutex_unlock(&fs_info->balance_mutex); 4356 wait_event(fs_info->balance_wait_q, 4357 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4358 mutex_lock(&fs_info->balance_mutex); 4359 } else { 4360 mutex_unlock(&fs_info->balance_mutex); 4361 /* 4362 * Lock released to allow other waiters to continue, we'll 4363 * reexamine the status again. 4364 */ 4365 mutex_lock(&fs_info->balance_mutex); 4366 4367 if (fs_info->balance_ctl) { 4368 reset_balance_state(fs_info); 4369 btrfs_exclop_finish(fs_info); 4370 btrfs_info(fs_info, "balance: canceled"); 4371 } 4372 } 4373 4374 BUG_ON(fs_info->balance_ctl || 4375 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4376 atomic_dec(&fs_info->balance_cancel_req); 4377 mutex_unlock(&fs_info->balance_mutex); 4378 return 0; 4379 } 4380 4381 int btrfs_uuid_scan_kthread(void *data) 4382 { 4383 struct btrfs_fs_info *fs_info = data; 4384 struct btrfs_root *root = fs_info->tree_root; 4385 struct btrfs_key key; 4386 struct btrfs_path *path = NULL; 4387 int ret = 0; 4388 struct extent_buffer *eb; 4389 int slot; 4390 struct btrfs_root_item root_item; 4391 u32 item_size; 4392 struct btrfs_trans_handle *trans = NULL; 4393 bool closing = false; 4394 4395 path = btrfs_alloc_path(); 4396 if (!path) { 4397 ret = -ENOMEM; 4398 goto out; 4399 } 4400 4401 key.objectid = 0; 4402 key.type = BTRFS_ROOT_ITEM_KEY; 4403 key.offset = 0; 4404 4405 while (1) { 4406 if (btrfs_fs_closing(fs_info)) { 4407 closing = true; 4408 break; 4409 } 4410 ret = btrfs_search_forward(root, &key, path, 4411 BTRFS_OLDEST_GENERATION); 4412 if (ret) { 4413 if (ret > 0) 4414 ret = 0; 4415 break; 4416 } 4417 4418 if (key.type != BTRFS_ROOT_ITEM_KEY || 4419 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4420 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4421 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4422 goto skip; 4423 4424 eb = path->nodes[0]; 4425 slot = path->slots[0]; 4426 item_size = btrfs_item_size_nr(eb, slot); 4427 if (item_size < sizeof(root_item)) 4428 goto skip; 4429 4430 read_extent_buffer(eb, &root_item, 4431 btrfs_item_ptr_offset(eb, slot), 4432 (int)sizeof(root_item)); 4433 if (btrfs_root_refs(&root_item) == 0) 4434 goto skip; 4435 4436 if (!btrfs_is_empty_uuid(root_item.uuid) || 4437 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4438 if (trans) 4439 goto update_tree; 4440 4441 btrfs_release_path(path); 4442 /* 4443 * 1 - subvol uuid item 4444 * 1 - received_subvol uuid item 4445 */ 4446 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4447 if (IS_ERR(trans)) { 4448 ret = PTR_ERR(trans); 4449 break; 4450 } 4451 continue; 4452 } else { 4453 goto skip; 4454 } 4455 update_tree: 4456 btrfs_release_path(path); 4457 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4458 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4459 BTRFS_UUID_KEY_SUBVOL, 4460 key.objectid); 4461 if (ret < 0) { 4462 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4463 ret); 4464 break; 4465 } 4466 } 4467 4468 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4469 ret = btrfs_uuid_tree_add(trans, 4470 root_item.received_uuid, 4471 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4472 key.objectid); 4473 if (ret < 0) { 4474 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4475 ret); 4476 break; 4477 } 4478 } 4479 4480 skip: 4481 btrfs_release_path(path); 4482 if (trans) { 4483 ret = btrfs_end_transaction(trans); 4484 trans = NULL; 4485 if (ret) 4486 break; 4487 } 4488 4489 if (key.offset < (u64)-1) { 4490 key.offset++; 4491 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4492 key.offset = 0; 4493 key.type = BTRFS_ROOT_ITEM_KEY; 4494 } else if (key.objectid < (u64)-1) { 4495 key.offset = 0; 4496 key.type = BTRFS_ROOT_ITEM_KEY; 4497 key.objectid++; 4498 } else { 4499 break; 4500 } 4501 cond_resched(); 4502 } 4503 4504 out: 4505 btrfs_free_path(path); 4506 if (trans && !IS_ERR(trans)) 4507 btrfs_end_transaction(trans); 4508 if (ret) 4509 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4510 else if (!closing) 4511 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4512 up(&fs_info->uuid_tree_rescan_sem); 4513 return 0; 4514 } 4515 4516 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4517 { 4518 struct btrfs_trans_handle *trans; 4519 struct btrfs_root *tree_root = fs_info->tree_root; 4520 struct btrfs_root *uuid_root; 4521 struct task_struct *task; 4522 int ret; 4523 4524 /* 4525 * 1 - root node 4526 * 1 - root item 4527 */ 4528 trans = btrfs_start_transaction(tree_root, 2); 4529 if (IS_ERR(trans)) 4530 return PTR_ERR(trans); 4531 4532 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4533 if (IS_ERR(uuid_root)) { 4534 ret = PTR_ERR(uuid_root); 4535 btrfs_abort_transaction(trans, ret); 4536 btrfs_end_transaction(trans); 4537 return ret; 4538 } 4539 4540 fs_info->uuid_root = uuid_root; 4541 4542 ret = btrfs_commit_transaction(trans); 4543 if (ret) 4544 return ret; 4545 4546 down(&fs_info->uuid_tree_rescan_sem); 4547 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4548 if (IS_ERR(task)) { 4549 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4550 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4551 up(&fs_info->uuid_tree_rescan_sem); 4552 return PTR_ERR(task); 4553 } 4554 4555 return 0; 4556 } 4557 4558 /* 4559 * shrinking a device means finding all of the device extents past 4560 * the new size, and then following the back refs to the chunks. 4561 * The chunk relocation code actually frees the device extent 4562 */ 4563 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4564 { 4565 struct btrfs_fs_info *fs_info = device->fs_info; 4566 struct btrfs_root *root = fs_info->dev_root; 4567 struct btrfs_trans_handle *trans; 4568 struct btrfs_dev_extent *dev_extent = NULL; 4569 struct btrfs_path *path; 4570 u64 length; 4571 u64 chunk_offset; 4572 int ret; 4573 int slot; 4574 int failed = 0; 4575 bool retried = false; 4576 struct extent_buffer *l; 4577 struct btrfs_key key; 4578 struct btrfs_super_block *super_copy = fs_info->super_copy; 4579 u64 old_total = btrfs_super_total_bytes(super_copy); 4580 u64 old_size = btrfs_device_get_total_bytes(device); 4581 u64 diff; 4582 u64 start; 4583 4584 new_size = round_down(new_size, fs_info->sectorsize); 4585 start = new_size; 4586 diff = round_down(old_size - new_size, fs_info->sectorsize); 4587 4588 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4589 return -EINVAL; 4590 4591 path = btrfs_alloc_path(); 4592 if (!path) 4593 return -ENOMEM; 4594 4595 path->reada = READA_BACK; 4596 4597 trans = btrfs_start_transaction(root, 0); 4598 if (IS_ERR(trans)) { 4599 btrfs_free_path(path); 4600 return PTR_ERR(trans); 4601 } 4602 4603 mutex_lock(&fs_info->chunk_mutex); 4604 4605 btrfs_device_set_total_bytes(device, new_size); 4606 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4607 device->fs_devices->total_rw_bytes -= diff; 4608 atomic64_sub(diff, &fs_info->free_chunk_space); 4609 } 4610 4611 /* 4612 * Once the device's size has been set to the new size, ensure all 4613 * in-memory chunks are synced to disk so that the loop below sees them 4614 * and relocates them accordingly. 4615 */ 4616 if (contains_pending_extent(device, &start, diff)) { 4617 mutex_unlock(&fs_info->chunk_mutex); 4618 ret = btrfs_commit_transaction(trans); 4619 if (ret) 4620 goto done; 4621 } else { 4622 mutex_unlock(&fs_info->chunk_mutex); 4623 btrfs_end_transaction(trans); 4624 } 4625 4626 again: 4627 key.objectid = device->devid; 4628 key.offset = (u64)-1; 4629 key.type = BTRFS_DEV_EXTENT_KEY; 4630 4631 do { 4632 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4633 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4634 if (ret < 0) { 4635 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4636 goto done; 4637 } 4638 4639 ret = btrfs_previous_item(root, path, 0, key.type); 4640 if (ret) 4641 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4642 if (ret < 0) 4643 goto done; 4644 if (ret) { 4645 ret = 0; 4646 btrfs_release_path(path); 4647 break; 4648 } 4649 4650 l = path->nodes[0]; 4651 slot = path->slots[0]; 4652 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4653 4654 if (key.objectid != device->devid) { 4655 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4656 btrfs_release_path(path); 4657 break; 4658 } 4659 4660 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4661 length = btrfs_dev_extent_length(l, dev_extent); 4662 4663 if (key.offset + length <= new_size) { 4664 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4665 btrfs_release_path(path); 4666 break; 4667 } 4668 4669 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4670 btrfs_release_path(path); 4671 4672 /* 4673 * We may be relocating the only data chunk we have, 4674 * which could potentially end up with losing data's 4675 * raid profile, so lets allocate an empty one in 4676 * advance. 4677 */ 4678 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4679 if (ret < 0) { 4680 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4681 goto done; 4682 } 4683 4684 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4685 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4686 if (ret == -ENOSPC) { 4687 failed++; 4688 } else if (ret) { 4689 if (ret == -ETXTBSY) { 4690 btrfs_warn(fs_info, 4691 "could not shrink block group %llu due to active swapfile", 4692 chunk_offset); 4693 } 4694 goto done; 4695 } 4696 } while (key.offset-- > 0); 4697 4698 if (failed && !retried) { 4699 failed = 0; 4700 retried = true; 4701 goto again; 4702 } else if (failed && retried) { 4703 ret = -ENOSPC; 4704 goto done; 4705 } 4706 4707 /* Shrinking succeeded, else we would be at "done". */ 4708 trans = btrfs_start_transaction(root, 0); 4709 if (IS_ERR(trans)) { 4710 ret = PTR_ERR(trans); 4711 goto done; 4712 } 4713 4714 mutex_lock(&fs_info->chunk_mutex); 4715 /* Clear all state bits beyond the shrunk device size */ 4716 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4717 CHUNK_STATE_MASK); 4718 4719 btrfs_device_set_disk_total_bytes(device, new_size); 4720 if (list_empty(&device->post_commit_list)) 4721 list_add_tail(&device->post_commit_list, 4722 &trans->transaction->dev_update_list); 4723 4724 WARN_ON(diff > old_total); 4725 btrfs_set_super_total_bytes(super_copy, 4726 round_down(old_total - diff, fs_info->sectorsize)); 4727 mutex_unlock(&fs_info->chunk_mutex); 4728 4729 /* Now btrfs_update_device() will change the on-disk size. */ 4730 ret = btrfs_update_device(trans, device); 4731 if (ret < 0) { 4732 btrfs_abort_transaction(trans, ret); 4733 btrfs_end_transaction(trans); 4734 } else { 4735 ret = btrfs_commit_transaction(trans); 4736 } 4737 done: 4738 btrfs_free_path(path); 4739 if (ret) { 4740 mutex_lock(&fs_info->chunk_mutex); 4741 btrfs_device_set_total_bytes(device, old_size); 4742 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4743 device->fs_devices->total_rw_bytes += diff; 4744 atomic64_add(diff, &fs_info->free_chunk_space); 4745 mutex_unlock(&fs_info->chunk_mutex); 4746 } 4747 return ret; 4748 } 4749 4750 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4751 struct btrfs_key *key, 4752 struct btrfs_chunk *chunk, int item_size) 4753 { 4754 struct btrfs_super_block *super_copy = fs_info->super_copy; 4755 struct btrfs_disk_key disk_key; 4756 u32 array_size; 4757 u8 *ptr; 4758 4759 mutex_lock(&fs_info->chunk_mutex); 4760 array_size = btrfs_super_sys_array_size(super_copy); 4761 if (array_size + item_size + sizeof(disk_key) 4762 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4763 mutex_unlock(&fs_info->chunk_mutex); 4764 return -EFBIG; 4765 } 4766 4767 ptr = super_copy->sys_chunk_array + array_size; 4768 btrfs_cpu_key_to_disk(&disk_key, key); 4769 memcpy(ptr, &disk_key, sizeof(disk_key)); 4770 ptr += sizeof(disk_key); 4771 memcpy(ptr, chunk, item_size); 4772 item_size += sizeof(disk_key); 4773 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4774 mutex_unlock(&fs_info->chunk_mutex); 4775 4776 return 0; 4777 } 4778 4779 /* 4780 * sort the devices in descending order by max_avail, total_avail 4781 */ 4782 static int btrfs_cmp_device_info(const void *a, const void *b) 4783 { 4784 const struct btrfs_device_info *di_a = a; 4785 const struct btrfs_device_info *di_b = b; 4786 4787 if (di_a->max_avail > di_b->max_avail) 4788 return -1; 4789 if (di_a->max_avail < di_b->max_avail) 4790 return 1; 4791 if (di_a->total_avail > di_b->total_avail) 4792 return -1; 4793 if (di_a->total_avail < di_b->total_avail) 4794 return 1; 4795 return 0; 4796 } 4797 4798 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4799 { 4800 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4801 return; 4802 4803 btrfs_set_fs_incompat(info, RAID56); 4804 } 4805 4806 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 4807 { 4808 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 4809 return; 4810 4811 btrfs_set_fs_incompat(info, RAID1C34); 4812 } 4813 4814 /* 4815 * Structure used internally for __btrfs_alloc_chunk() function. 4816 * Wraps needed parameters. 4817 */ 4818 struct alloc_chunk_ctl { 4819 u64 start; 4820 u64 type; 4821 /* Total number of stripes to allocate */ 4822 int num_stripes; 4823 /* sub_stripes info for map */ 4824 int sub_stripes; 4825 /* Stripes per device */ 4826 int dev_stripes; 4827 /* Maximum number of devices to use */ 4828 int devs_max; 4829 /* Minimum number of devices to use */ 4830 int devs_min; 4831 /* ndevs has to be a multiple of this */ 4832 int devs_increment; 4833 /* Number of copies */ 4834 int ncopies; 4835 /* Number of stripes worth of bytes to store parity information */ 4836 int nparity; 4837 u64 max_stripe_size; 4838 u64 max_chunk_size; 4839 u64 dev_extent_min; 4840 u64 stripe_size; 4841 u64 chunk_size; 4842 int ndevs; 4843 }; 4844 4845 static void init_alloc_chunk_ctl_policy_regular( 4846 struct btrfs_fs_devices *fs_devices, 4847 struct alloc_chunk_ctl *ctl) 4848 { 4849 u64 type = ctl->type; 4850 4851 if (type & BTRFS_BLOCK_GROUP_DATA) { 4852 ctl->max_stripe_size = SZ_1G; 4853 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 4854 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4855 /* For larger filesystems, use larger metadata chunks */ 4856 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4857 ctl->max_stripe_size = SZ_1G; 4858 else 4859 ctl->max_stripe_size = SZ_256M; 4860 ctl->max_chunk_size = ctl->max_stripe_size; 4861 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4862 ctl->max_stripe_size = SZ_32M; 4863 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 4864 ctl->devs_max = min_t(int, ctl->devs_max, 4865 BTRFS_MAX_DEVS_SYS_CHUNK); 4866 } else { 4867 BUG(); 4868 } 4869 4870 /* We don't want a chunk larger than 10% of writable space */ 4871 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4872 ctl->max_chunk_size); 4873 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes; 4874 } 4875 4876 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 4877 struct alloc_chunk_ctl *ctl) 4878 { 4879 int index = btrfs_bg_flags_to_raid_index(ctl->type); 4880 4881 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 4882 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 4883 ctl->devs_max = btrfs_raid_array[index].devs_max; 4884 if (!ctl->devs_max) 4885 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 4886 ctl->devs_min = btrfs_raid_array[index].devs_min; 4887 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 4888 ctl->ncopies = btrfs_raid_array[index].ncopies; 4889 ctl->nparity = btrfs_raid_array[index].nparity; 4890 ctl->ndevs = 0; 4891 4892 switch (fs_devices->chunk_alloc_policy) { 4893 case BTRFS_CHUNK_ALLOC_REGULAR: 4894 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 4895 break; 4896 default: 4897 BUG(); 4898 } 4899 } 4900 4901 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 4902 struct alloc_chunk_ctl *ctl, 4903 struct btrfs_device_info *devices_info) 4904 { 4905 struct btrfs_fs_info *info = fs_devices->fs_info; 4906 struct btrfs_device *device; 4907 u64 total_avail; 4908 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 4909 int ret; 4910 int ndevs = 0; 4911 u64 max_avail; 4912 u64 dev_offset; 4913 4914 /* 4915 * in the first pass through the devices list, we gather information 4916 * about the available holes on each device. 4917 */ 4918 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 4919 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4920 WARN(1, KERN_ERR 4921 "BTRFS: read-only device in alloc_list\n"); 4922 continue; 4923 } 4924 4925 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 4926 &device->dev_state) || 4927 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4928 continue; 4929 4930 if (device->total_bytes > device->bytes_used) 4931 total_avail = device->total_bytes - device->bytes_used; 4932 else 4933 total_avail = 0; 4934 4935 /* If there is no space on this device, skip it. */ 4936 if (total_avail < ctl->dev_extent_min) 4937 continue; 4938 4939 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 4940 &max_avail); 4941 if (ret && ret != -ENOSPC) 4942 return ret; 4943 4944 if (ret == 0) 4945 max_avail = dev_extent_want; 4946 4947 if (max_avail < ctl->dev_extent_min) { 4948 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 4949 btrfs_debug(info, 4950 "%s: devid %llu has no free space, have=%llu want=%llu", 4951 __func__, device->devid, max_avail, 4952 ctl->dev_extent_min); 4953 continue; 4954 } 4955 4956 if (ndevs == fs_devices->rw_devices) { 4957 WARN(1, "%s: found more than %llu devices\n", 4958 __func__, fs_devices->rw_devices); 4959 break; 4960 } 4961 devices_info[ndevs].dev_offset = dev_offset; 4962 devices_info[ndevs].max_avail = max_avail; 4963 devices_info[ndevs].total_avail = total_avail; 4964 devices_info[ndevs].dev = device; 4965 ++ndevs; 4966 } 4967 ctl->ndevs = ndevs; 4968 4969 /* 4970 * now sort the devices by hole size / available space 4971 */ 4972 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4973 btrfs_cmp_device_info, NULL); 4974 4975 return 0; 4976 } 4977 4978 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 4979 struct btrfs_device_info *devices_info) 4980 { 4981 /* Number of stripes that count for block group size */ 4982 int data_stripes; 4983 4984 /* 4985 * The primary goal is to maximize the number of stripes, so use as 4986 * many devices as possible, even if the stripes are not maximum sized. 4987 * 4988 * The DUP profile stores more than one stripe per device, the 4989 * max_avail is the total size so we have to adjust. 4990 */ 4991 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 4992 ctl->dev_stripes); 4993 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 4994 4995 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 4996 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 4997 4998 /* 4999 * Use the number of data stripes to figure out how big this chunk is 5000 * really going to be in terms of logical address space, and compare 5001 * that answer with the max chunk size. If it's higher, we try to 5002 * reduce stripe_size. 5003 */ 5004 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5005 /* 5006 * Reduce stripe_size, round it up to a 16MB boundary again and 5007 * then use it, unless it ends up being even bigger than the 5008 * previous value we had already. 5009 */ 5010 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5011 data_stripes), SZ_16M), 5012 ctl->stripe_size); 5013 } 5014 5015 /* Align to BTRFS_STRIPE_LEN */ 5016 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5017 ctl->chunk_size = ctl->stripe_size * data_stripes; 5018 5019 return 0; 5020 } 5021 5022 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5023 struct alloc_chunk_ctl *ctl, 5024 struct btrfs_device_info *devices_info) 5025 { 5026 struct btrfs_fs_info *info = fs_devices->fs_info; 5027 5028 /* 5029 * Round down to number of usable stripes, devs_increment can be any 5030 * number so we can't use round_down() that requires power of 2, while 5031 * rounddown is safe. 5032 */ 5033 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5034 5035 if (ctl->ndevs < ctl->devs_min) { 5036 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5037 btrfs_debug(info, 5038 "%s: not enough devices with free space: have=%d minimum required=%d", 5039 __func__, ctl->ndevs, ctl->devs_min); 5040 } 5041 return -ENOSPC; 5042 } 5043 5044 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5045 5046 switch (fs_devices->chunk_alloc_policy) { 5047 case BTRFS_CHUNK_ALLOC_REGULAR: 5048 return decide_stripe_size_regular(ctl, devices_info); 5049 default: 5050 BUG(); 5051 } 5052 } 5053 5054 static int create_chunk(struct btrfs_trans_handle *trans, 5055 struct alloc_chunk_ctl *ctl, 5056 struct btrfs_device_info *devices_info) 5057 { 5058 struct btrfs_fs_info *info = trans->fs_info; 5059 struct map_lookup *map = NULL; 5060 struct extent_map_tree *em_tree; 5061 struct extent_map *em; 5062 u64 start = ctl->start; 5063 u64 type = ctl->type; 5064 int ret; 5065 int i; 5066 int j; 5067 5068 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5069 if (!map) 5070 return -ENOMEM; 5071 map->num_stripes = ctl->num_stripes; 5072 5073 for (i = 0; i < ctl->ndevs; ++i) { 5074 for (j = 0; j < ctl->dev_stripes; ++j) { 5075 int s = i * ctl->dev_stripes + j; 5076 map->stripes[s].dev = devices_info[i].dev; 5077 map->stripes[s].physical = devices_info[i].dev_offset + 5078 j * ctl->stripe_size; 5079 } 5080 } 5081 map->stripe_len = BTRFS_STRIPE_LEN; 5082 map->io_align = BTRFS_STRIPE_LEN; 5083 map->io_width = BTRFS_STRIPE_LEN; 5084 map->type = type; 5085 map->sub_stripes = ctl->sub_stripes; 5086 5087 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5088 5089 em = alloc_extent_map(); 5090 if (!em) { 5091 kfree(map); 5092 return -ENOMEM; 5093 } 5094 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5095 em->map_lookup = map; 5096 em->start = start; 5097 em->len = ctl->chunk_size; 5098 em->block_start = 0; 5099 em->block_len = em->len; 5100 em->orig_block_len = ctl->stripe_size; 5101 5102 em_tree = &info->mapping_tree; 5103 write_lock(&em_tree->lock); 5104 ret = add_extent_mapping(em_tree, em, 0); 5105 if (ret) { 5106 write_unlock(&em_tree->lock); 5107 free_extent_map(em); 5108 return ret; 5109 } 5110 write_unlock(&em_tree->lock); 5111 5112 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size); 5113 if (ret) 5114 goto error_del_extent; 5115 5116 for (i = 0; i < map->num_stripes; i++) { 5117 struct btrfs_device *dev = map->stripes[i].dev; 5118 5119 btrfs_device_set_bytes_used(dev, 5120 dev->bytes_used + ctl->stripe_size); 5121 if (list_empty(&dev->post_commit_list)) 5122 list_add_tail(&dev->post_commit_list, 5123 &trans->transaction->dev_update_list); 5124 } 5125 5126 atomic64_sub(ctl->stripe_size * map->num_stripes, 5127 &info->free_chunk_space); 5128 5129 free_extent_map(em); 5130 check_raid56_incompat_flag(info, type); 5131 check_raid1c34_incompat_flag(info, type); 5132 5133 return 0; 5134 5135 error_del_extent: 5136 write_lock(&em_tree->lock); 5137 remove_extent_mapping(em_tree, em); 5138 write_unlock(&em_tree->lock); 5139 5140 /* One for our allocation */ 5141 free_extent_map(em); 5142 /* One for the tree reference */ 5143 free_extent_map(em); 5144 5145 return ret; 5146 } 5147 5148 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) 5149 { 5150 struct btrfs_fs_info *info = trans->fs_info; 5151 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5152 struct btrfs_device_info *devices_info = NULL; 5153 struct alloc_chunk_ctl ctl; 5154 int ret; 5155 5156 lockdep_assert_held(&info->chunk_mutex); 5157 5158 if (!alloc_profile_is_valid(type, 0)) { 5159 ASSERT(0); 5160 return -EINVAL; 5161 } 5162 5163 if (list_empty(&fs_devices->alloc_list)) { 5164 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5165 btrfs_debug(info, "%s: no writable device", __func__); 5166 return -ENOSPC; 5167 } 5168 5169 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5170 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5171 ASSERT(0); 5172 return -EINVAL; 5173 } 5174 5175 ctl.start = find_next_chunk(info); 5176 ctl.type = type; 5177 init_alloc_chunk_ctl(fs_devices, &ctl); 5178 5179 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5180 GFP_NOFS); 5181 if (!devices_info) 5182 return -ENOMEM; 5183 5184 ret = gather_device_info(fs_devices, &ctl, devices_info); 5185 if (ret < 0) 5186 goto out; 5187 5188 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5189 if (ret < 0) 5190 goto out; 5191 5192 ret = create_chunk(trans, &ctl, devices_info); 5193 5194 out: 5195 kfree(devices_info); 5196 return ret; 5197 } 5198 5199 /* 5200 * Chunk allocation falls into two parts. The first part does work 5201 * that makes the new allocated chunk usable, but does not do any operation 5202 * that modifies the chunk tree. The second part does the work that 5203 * requires modifying the chunk tree. This division is important for the 5204 * bootstrap process of adding storage to a seed btrfs. 5205 */ 5206 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 5207 u64 chunk_offset, u64 chunk_size) 5208 { 5209 struct btrfs_fs_info *fs_info = trans->fs_info; 5210 struct btrfs_root *extent_root = fs_info->extent_root; 5211 struct btrfs_root *chunk_root = fs_info->chunk_root; 5212 struct btrfs_key key; 5213 struct btrfs_device *device; 5214 struct btrfs_chunk *chunk; 5215 struct btrfs_stripe *stripe; 5216 struct extent_map *em; 5217 struct map_lookup *map; 5218 size_t item_size; 5219 u64 dev_offset; 5220 u64 stripe_size; 5221 int i = 0; 5222 int ret = 0; 5223 5224 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 5225 if (IS_ERR(em)) 5226 return PTR_ERR(em); 5227 5228 map = em->map_lookup; 5229 item_size = btrfs_chunk_item_size(map->num_stripes); 5230 stripe_size = em->orig_block_len; 5231 5232 chunk = kzalloc(item_size, GFP_NOFS); 5233 if (!chunk) { 5234 ret = -ENOMEM; 5235 goto out; 5236 } 5237 5238 /* 5239 * Take the device list mutex to prevent races with the final phase of 5240 * a device replace operation that replaces the device object associated 5241 * with the map's stripes, because the device object's id can change 5242 * at any time during that final phase of the device replace operation 5243 * (dev-replace.c:btrfs_dev_replace_finishing()). 5244 */ 5245 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5246 for (i = 0; i < map->num_stripes; i++) { 5247 device = map->stripes[i].dev; 5248 dev_offset = map->stripes[i].physical; 5249 5250 ret = btrfs_update_device(trans, device); 5251 if (ret) 5252 break; 5253 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5254 dev_offset, stripe_size); 5255 if (ret) 5256 break; 5257 } 5258 if (ret) { 5259 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5260 goto out; 5261 } 5262 5263 stripe = &chunk->stripe; 5264 for (i = 0; i < map->num_stripes; i++) { 5265 device = map->stripes[i].dev; 5266 dev_offset = map->stripes[i].physical; 5267 5268 btrfs_set_stack_stripe_devid(stripe, device->devid); 5269 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5270 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5271 stripe++; 5272 } 5273 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5274 5275 btrfs_set_stack_chunk_length(chunk, chunk_size); 5276 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5277 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5278 btrfs_set_stack_chunk_type(chunk, map->type); 5279 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5280 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5281 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5282 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5283 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5284 5285 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5286 key.type = BTRFS_CHUNK_ITEM_KEY; 5287 key.offset = chunk_offset; 5288 5289 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5290 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5291 /* 5292 * TODO: Cleanup of inserted chunk root in case of 5293 * failure. 5294 */ 5295 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5296 } 5297 5298 out: 5299 kfree(chunk); 5300 free_extent_map(em); 5301 return ret; 5302 } 5303 5304 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5305 { 5306 struct btrfs_fs_info *fs_info = trans->fs_info; 5307 u64 alloc_profile; 5308 int ret; 5309 5310 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5311 ret = btrfs_alloc_chunk(trans, alloc_profile); 5312 if (ret) 5313 return ret; 5314 5315 alloc_profile = btrfs_system_alloc_profile(fs_info); 5316 ret = btrfs_alloc_chunk(trans, alloc_profile); 5317 return ret; 5318 } 5319 5320 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5321 { 5322 const int index = btrfs_bg_flags_to_raid_index(map->type); 5323 5324 return btrfs_raid_array[index].tolerated_failures; 5325 } 5326 5327 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5328 { 5329 struct extent_map *em; 5330 struct map_lookup *map; 5331 int readonly = 0; 5332 int miss_ndevs = 0; 5333 int i; 5334 5335 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5336 if (IS_ERR(em)) 5337 return 1; 5338 5339 map = em->map_lookup; 5340 for (i = 0; i < map->num_stripes; i++) { 5341 if (test_bit(BTRFS_DEV_STATE_MISSING, 5342 &map->stripes[i].dev->dev_state)) { 5343 miss_ndevs++; 5344 continue; 5345 } 5346 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5347 &map->stripes[i].dev->dev_state)) { 5348 readonly = 1; 5349 goto end; 5350 } 5351 } 5352 5353 /* 5354 * If the number of missing devices is larger than max errors, 5355 * we can not write the data into that chunk successfully, so 5356 * set it readonly. 5357 */ 5358 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5359 readonly = 1; 5360 end: 5361 free_extent_map(em); 5362 return readonly; 5363 } 5364 5365 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5366 { 5367 struct extent_map *em; 5368 5369 while (1) { 5370 write_lock(&tree->lock); 5371 em = lookup_extent_mapping(tree, 0, (u64)-1); 5372 if (em) 5373 remove_extent_mapping(tree, em); 5374 write_unlock(&tree->lock); 5375 if (!em) 5376 break; 5377 /* once for us */ 5378 free_extent_map(em); 5379 /* once for the tree */ 5380 free_extent_map(em); 5381 } 5382 } 5383 5384 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5385 { 5386 struct extent_map *em; 5387 struct map_lookup *map; 5388 int ret; 5389 5390 em = btrfs_get_chunk_map(fs_info, logical, len); 5391 if (IS_ERR(em)) 5392 /* 5393 * We could return errors for these cases, but that could get 5394 * ugly and we'd probably do the same thing which is just not do 5395 * anything else and exit, so return 1 so the callers don't try 5396 * to use other copies. 5397 */ 5398 return 1; 5399 5400 map = em->map_lookup; 5401 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5402 ret = map->num_stripes; 5403 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5404 ret = map->sub_stripes; 5405 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5406 ret = 2; 5407 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5408 /* 5409 * There could be two corrupted data stripes, we need 5410 * to loop retry in order to rebuild the correct data. 5411 * 5412 * Fail a stripe at a time on every retry except the 5413 * stripe under reconstruction. 5414 */ 5415 ret = map->num_stripes; 5416 else 5417 ret = 1; 5418 free_extent_map(em); 5419 5420 down_read(&fs_info->dev_replace.rwsem); 5421 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5422 fs_info->dev_replace.tgtdev) 5423 ret++; 5424 up_read(&fs_info->dev_replace.rwsem); 5425 5426 return ret; 5427 } 5428 5429 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5430 u64 logical) 5431 { 5432 struct extent_map *em; 5433 struct map_lookup *map; 5434 unsigned long len = fs_info->sectorsize; 5435 5436 em = btrfs_get_chunk_map(fs_info, logical, len); 5437 5438 if (!WARN_ON(IS_ERR(em))) { 5439 map = em->map_lookup; 5440 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5441 len = map->stripe_len * nr_data_stripes(map); 5442 free_extent_map(em); 5443 } 5444 return len; 5445 } 5446 5447 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5448 { 5449 struct extent_map *em; 5450 struct map_lookup *map; 5451 int ret = 0; 5452 5453 em = btrfs_get_chunk_map(fs_info, logical, len); 5454 5455 if(!WARN_ON(IS_ERR(em))) { 5456 map = em->map_lookup; 5457 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5458 ret = 1; 5459 free_extent_map(em); 5460 } 5461 return ret; 5462 } 5463 5464 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5465 struct map_lookup *map, int first, 5466 int dev_replace_is_ongoing) 5467 { 5468 int i; 5469 int num_stripes; 5470 int preferred_mirror; 5471 int tolerance; 5472 struct btrfs_device *srcdev; 5473 5474 ASSERT((map->type & 5475 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5476 5477 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5478 num_stripes = map->sub_stripes; 5479 else 5480 num_stripes = map->num_stripes; 5481 5482 preferred_mirror = first + current->pid % num_stripes; 5483 5484 if (dev_replace_is_ongoing && 5485 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5486 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5487 srcdev = fs_info->dev_replace.srcdev; 5488 else 5489 srcdev = NULL; 5490 5491 /* 5492 * try to avoid the drive that is the source drive for a 5493 * dev-replace procedure, only choose it if no other non-missing 5494 * mirror is available 5495 */ 5496 for (tolerance = 0; tolerance < 2; tolerance++) { 5497 if (map->stripes[preferred_mirror].dev->bdev && 5498 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5499 return preferred_mirror; 5500 for (i = first; i < first + num_stripes; i++) { 5501 if (map->stripes[i].dev->bdev && 5502 (tolerance || map->stripes[i].dev != srcdev)) 5503 return i; 5504 } 5505 } 5506 5507 /* we couldn't find one that doesn't fail. Just return something 5508 * and the io error handling code will clean up eventually 5509 */ 5510 return preferred_mirror; 5511 } 5512 5513 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5514 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5515 { 5516 int i; 5517 int again = 1; 5518 5519 while (again) { 5520 again = 0; 5521 for (i = 0; i < num_stripes - 1; i++) { 5522 /* Swap if parity is on a smaller index */ 5523 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) { 5524 swap(bbio->stripes[i], bbio->stripes[i + 1]); 5525 swap(bbio->raid_map[i], bbio->raid_map[i + 1]); 5526 again = 1; 5527 } 5528 } 5529 } 5530 } 5531 5532 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5533 { 5534 struct btrfs_bio *bbio = kzalloc( 5535 /* the size of the btrfs_bio */ 5536 sizeof(struct btrfs_bio) + 5537 /* plus the variable array for the stripes */ 5538 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5539 /* plus the variable array for the tgt dev */ 5540 sizeof(int) * (real_stripes) + 5541 /* 5542 * plus the raid_map, which includes both the tgt dev 5543 * and the stripes 5544 */ 5545 sizeof(u64) * (total_stripes), 5546 GFP_NOFS|__GFP_NOFAIL); 5547 5548 atomic_set(&bbio->error, 0); 5549 refcount_set(&bbio->refs, 1); 5550 5551 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes); 5552 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes); 5553 5554 return bbio; 5555 } 5556 5557 void btrfs_get_bbio(struct btrfs_bio *bbio) 5558 { 5559 WARN_ON(!refcount_read(&bbio->refs)); 5560 refcount_inc(&bbio->refs); 5561 } 5562 5563 void btrfs_put_bbio(struct btrfs_bio *bbio) 5564 { 5565 if (!bbio) 5566 return; 5567 if (refcount_dec_and_test(&bbio->refs)) 5568 kfree(bbio); 5569 } 5570 5571 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5572 /* 5573 * Please note that, discard won't be sent to target device of device 5574 * replace. 5575 */ 5576 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5577 u64 logical, u64 *length_ret, 5578 struct btrfs_bio **bbio_ret) 5579 { 5580 struct extent_map *em; 5581 struct map_lookup *map; 5582 struct btrfs_bio *bbio; 5583 u64 length = *length_ret; 5584 u64 offset; 5585 u64 stripe_nr; 5586 u64 stripe_nr_end; 5587 u64 stripe_end_offset; 5588 u64 stripe_cnt; 5589 u64 stripe_len; 5590 u64 stripe_offset; 5591 u64 num_stripes; 5592 u32 stripe_index; 5593 u32 factor = 0; 5594 u32 sub_stripes = 0; 5595 u64 stripes_per_dev = 0; 5596 u32 remaining_stripes = 0; 5597 u32 last_stripe = 0; 5598 int ret = 0; 5599 int i; 5600 5601 /* discard always return a bbio */ 5602 ASSERT(bbio_ret); 5603 5604 em = btrfs_get_chunk_map(fs_info, logical, length); 5605 if (IS_ERR(em)) 5606 return PTR_ERR(em); 5607 5608 map = em->map_lookup; 5609 /* we don't discard raid56 yet */ 5610 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5611 ret = -EOPNOTSUPP; 5612 goto out; 5613 } 5614 5615 offset = logical - em->start; 5616 length = min_t(u64, em->start + em->len - logical, length); 5617 *length_ret = length; 5618 5619 stripe_len = map->stripe_len; 5620 /* 5621 * stripe_nr counts the total number of stripes we have to stride 5622 * to get to this block 5623 */ 5624 stripe_nr = div64_u64(offset, stripe_len); 5625 5626 /* stripe_offset is the offset of this block in its stripe */ 5627 stripe_offset = offset - stripe_nr * stripe_len; 5628 5629 stripe_nr_end = round_up(offset + length, map->stripe_len); 5630 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5631 stripe_cnt = stripe_nr_end - stripe_nr; 5632 stripe_end_offset = stripe_nr_end * map->stripe_len - 5633 (offset + length); 5634 /* 5635 * after this, stripe_nr is the number of stripes on this 5636 * device we have to walk to find the data, and stripe_index is 5637 * the number of our device in the stripe array 5638 */ 5639 num_stripes = 1; 5640 stripe_index = 0; 5641 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5642 BTRFS_BLOCK_GROUP_RAID10)) { 5643 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5644 sub_stripes = 1; 5645 else 5646 sub_stripes = map->sub_stripes; 5647 5648 factor = map->num_stripes / sub_stripes; 5649 num_stripes = min_t(u64, map->num_stripes, 5650 sub_stripes * stripe_cnt); 5651 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5652 stripe_index *= sub_stripes; 5653 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5654 &remaining_stripes); 5655 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5656 last_stripe *= sub_stripes; 5657 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 5658 BTRFS_BLOCK_GROUP_DUP)) { 5659 num_stripes = map->num_stripes; 5660 } else { 5661 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5662 &stripe_index); 5663 } 5664 5665 bbio = alloc_btrfs_bio(num_stripes, 0); 5666 if (!bbio) { 5667 ret = -ENOMEM; 5668 goto out; 5669 } 5670 5671 for (i = 0; i < num_stripes; i++) { 5672 bbio->stripes[i].physical = 5673 map->stripes[stripe_index].physical + 5674 stripe_offset + stripe_nr * map->stripe_len; 5675 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5676 5677 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5678 BTRFS_BLOCK_GROUP_RAID10)) { 5679 bbio->stripes[i].length = stripes_per_dev * 5680 map->stripe_len; 5681 5682 if (i / sub_stripes < remaining_stripes) 5683 bbio->stripes[i].length += 5684 map->stripe_len; 5685 5686 /* 5687 * Special for the first stripe and 5688 * the last stripe: 5689 * 5690 * |-------|...|-------| 5691 * |----------| 5692 * off end_off 5693 */ 5694 if (i < sub_stripes) 5695 bbio->stripes[i].length -= 5696 stripe_offset; 5697 5698 if (stripe_index >= last_stripe && 5699 stripe_index <= (last_stripe + 5700 sub_stripes - 1)) 5701 bbio->stripes[i].length -= 5702 stripe_end_offset; 5703 5704 if (i == sub_stripes - 1) 5705 stripe_offset = 0; 5706 } else { 5707 bbio->stripes[i].length = length; 5708 } 5709 5710 stripe_index++; 5711 if (stripe_index == map->num_stripes) { 5712 stripe_index = 0; 5713 stripe_nr++; 5714 } 5715 } 5716 5717 *bbio_ret = bbio; 5718 bbio->map_type = map->type; 5719 bbio->num_stripes = num_stripes; 5720 out: 5721 free_extent_map(em); 5722 return ret; 5723 } 5724 5725 /* 5726 * In dev-replace case, for repair case (that's the only case where the mirror 5727 * is selected explicitly when calling btrfs_map_block), blocks left of the 5728 * left cursor can also be read from the target drive. 5729 * 5730 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5731 * array of stripes. 5732 * For READ, it also needs to be supported using the same mirror number. 5733 * 5734 * If the requested block is not left of the left cursor, EIO is returned. This 5735 * can happen because btrfs_num_copies() returns one more in the dev-replace 5736 * case. 5737 */ 5738 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5739 u64 logical, u64 length, 5740 u64 srcdev_devid, int *mirror_num, 5741 u64 *physical) 5742 { 5743 struct btrfs_bio *bbio = NULL; 5744 int num_stripes; 5745 int index_srcdev = 0; 5746 int found = 0; 5747 u64 physical_of_found = 0; 5748 int i; 5749 int ret = 0; 5750 5751 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5752 logical, &length, &bbio, 0, 0); 5753 if (ret) { 5754 ASSERT(bbio == NULL); 5755 return ret; 5756 } 5757 5758 num_stripes = bbio->num_stripes; 5759 if (*mirror_num > num_stripes) { 5760 /* 5761 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5762 * that means that the requested area is not left of the left 5763 * cursor 5764 */ 5765 btrfs_put_bbio(bbio); 5766 return -EIO; 5767 } 5768 5769 /* 5770 * process the rest of the function using the mirror_num of the source 5771 * drive. Therefore look it up first. At the end, patch the device 5772 * pointer to the one of the target drive. 5773 */ 5774 for (i = 0; i < num_stripes; i++) { 5775 if (bbio->stripes[i].dev->devid != srcdev_devid) 5776 continue; 5777 5778 /* 5779 * In case of DUP, in order to keep it simple, only add the 5780 * mirror with the lowest physical address 5781 */ 5782 if (found && 5783 physical_of_found <= bbio->stripes[i].physical) 5784 continue; 5785 5786 index_srcdev = i; 5787 found = 1; 5788 physical_of_found = bbio->stripes[i].physical; 5789 } 5790 5791 btrfs_put_bbio(bbio); 5792 5793 ASSERT(found); 5794 if (!found) 5795 return -EIO; 5796 5797 *mirror_num = index_srcdev + 1; 5798 *physical = physical_of_found; 5799 return ret; 5800 } 5801 5802 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5803 struct btrfs_bio **bbio_ret, 5804 struct btrfs_dev_replace *dev_replace, 5805 int *num_stripes_ret, int *max_errors_ret) 5806 { 5807 struct btrfs_bio *bbio = *bbio_ret; 5808 u64 srcdev_devid = dev_replace->srcdev->devid; 5809 int tgtdev_indexes = 0; 5810 int num_stripes = *num_stripes_ret; 5811 int max_errors = *max_errors_ret; 5812 int i; 5813 5814 if (op == BTRFS_MAP_WRITE) { 5815 int index_where_to_add; 5816 5817 /* 5818 * duplicate the write operations while the dev replace 5819 * procedure is running. Since the copying of the old disk to 5820 * the new disk takes place at run time while the filesystem is 5821 * mounted writable, the regular write operations to the old 5822 * disk have to be duplicated to go to the new disk as well. 5823 * 5824 * Note that device->missing is handled by the caller, and that 5825 * the write to the old disk is already set up in the stripes 5826 * array. 5827 */ 5828 index_where_to_add = num_stripes; 5829 for (i = 0; i < num_stripes; i++) { 5830 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5831 /* write to new disk, too */ 5832 struct btrfs_bio_stripe *new = 5833 bbio->stripes + index_where_to_add; 5834 struct btrfs_bio_stripe *old = 5835 bbio->stripes + i; 5836 5837 new->physical = old->physical; 5838 new->length = old->length; 5839 new->dev = dev_replace->tgtdev; 5840 bbio->tgtdev_map[i] = index_where_to_add; 5841 index_where_to_add++; 5842 max_errors++; 5843 tgtdev_indexes++; 5844 } 5845 } 5846 num_stripes = index_where_to_add; 5847 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5848 int index_srcdev = 0; 5849 int found = 0; 5850 u64 physical_of_found = 0; 5851 5852 /* 5853 * During the dev-replace procedure, the target drive can also 5854 * be used to read data in case it is needed to repair a corrupt 5855 * block elsewhere. This is possible if the requested area is 5856 * left of the left cursor. In this area, the target drive is a 5857 * full copy of the source drive. 5858 */ 5859 for (i = 0; i < num_stripes; i++) { 5860 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5861 /* 5862 * In case of DUP, in order to keep it simple, 5863 * only add the mirror with the lowest physical 5864 * address 5865 */ 5866 if (found && 5867 physical_of_found <= 5868 bbio->stripes[i].physical) 5869 continue; 5870 index_srcdev = i; 5871 found = 1; 5872 physical_of_found = bbio->stripes[i].physical; 5873 } 5874 } 5875 if (found) { 5876 struct btrfs_bio_stripe *tgtdev_stripe = 5877 bbio->stripes + num_stripes; 5878 5879 tgtdev_stripe->physical = physical_of_found; 5880 tgtdev_stripe->length = 5881 bbio->stripes[index_srcdev].length; 5882 tgtdev_stripe->dev = dev_replace->tgtdev; 5883 bbio->tgtdev_map[index_srcdev] = num_stripes; 5884 5885 tgtdev_indexes++; 5886 num_stripes++; 5887 } 5888 } 5889 5890 *num_stripes_ret = num_stripes; 5891 *max_errors_ret = max_errors; 5892 bbio->num_tgtdevs = tgtdev_indexes; 5893 *bbio_ret = bbio; 5894 } 5895 5896 static bool need_full_stripe(enum btrfs_map_op op) 5897 { 5898 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5899 } 5900 5901 /* 5902 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len) 5903 * tuple. This information is used to calculate how big a 5904 * particular bio can get before it straddles a stripe. 5905 * 5906 * @fs_info - the filesystem 5907 * @logical - address that we want to figure out the geometry of 5908 * @len - the length of IO we are going to perform, starting at @logical 5909 * @op - type of operation - write or read 5910 * @io_geom - pointer used to return values 5911 * 5912 * Returns < 0 in case a chunk for the given logical address cannot be found, 5913 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 5914 */ 5915 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5916 u64 logical, u64 len, struct btrfs_io_geometry *io_geom) 5917 { 5918 struct extent_map *em; 5919 struct map_lookup *map; 5920 u64 offset; 5921 u64 stripe_offset; 5922 u64 stripe_nr; 5923 u64 stripe_len; 5924 u64 raid56_full_stripe_start = (u64)-1; 5925 int data_stripes; 5926 int ret = 0; 5927 5928 ASSERT(op != BTRFS_MAP_DISCARD); 5929 5930 em = btrfs_get_chunk_map(fs_info, logical, len); 5931 if (IS_ERR(em)) 5932 return PTR_ERR(em); 5933 5934 map = em->map_lookup; 5935 /* Offset of this logical address in the chunk */ 5936 offset = logical - em->start; 5937 /* Len of a stripe in a chunk */ 5938 stripe_len = map->stripe_len; 5939 /* Stripe wher this block falls in */ 5940 stripe_nr = div64_u64(offset, stripe_len); 5941 /* Offset of stripe in the chunk */ 5942 stripe_offset = stripe_nr * stripe_len; 5943 if (offset < stripe_offset) { 5944 btrfs_crit(fs_info, 5945 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 5946 stripe_offset, offset, em->start, logical, stripe_len); 5947 ret = -EINVAL; 5948 goto out; 5949 } 5950 5951 /* stripe_offset is the offset of this block in its stripe */ 5952 stripe_offset = offset - stripe_offset; 5953 data_stripes = nr_data_stripes(map); 5954 5955 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5956 u64 max_len = stripe_len - stripe_offset; 5957 5958 /* 5959 * In case of raid56, we need to know the stripe aligned start 5960 */ 5961 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5962 unsigned long full_stripe_len = stripe_len * data_stripes; 5963 raid56_full_stripe_start = offset; 5964 5965 /* 5966 * Allow a write of a full stripe, but make sure we 5967 * don't allow straddling of stripes 5968 */ 5969 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5970 full_stripe_len); 5971 raid56_full_stripe_start *= full_stripe_len; 5972 5973 /* 5974 * For writes to RAID[56], allow a full stripeset across 5975 * all disks. For other RAID types and for RAID[56] 5976 * reads, just allow a single stripe (on a single disk). 5977 */ 5978 if (op == BTRFS_MAP_WRITE) { 5979 max_len = stripe_len * data_stripes - 5980 (offset - raid56_full_stripe_start); 5981 } 5982 } 5983 len = min_t(u64, em->len - offset, max_len); 5984 } else { 5985 len = em->len - offset; 5986 } 5987 5988 io_geom->len = len; 5989 io_geom->offset = offset; 5990 io_geom->stripe_len = stripe_len; 5991 io_geom->stripe_nr = stripe_nr; 5992 io_geom->stripe_offset = stripe_offset; 5993 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 5994 5995 out: 5996 /* once for us */ 5997 free_extent_map(em); 5998 return ret; 5999 } 6000 6001 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 6002 enum btrfs_map_op op, 6003 u64 logical, u64 *length, 6004 struct btrfs_bio **bbio_ret, 6005 int mirror_num, int need_raid_map) 6006 { 6007 struct extent_map *em; 6008 struct map_lookup *map; 6009 u64 stripe_offset; 6010 u64 stripe_nr; 6011 u64 stripe_len; 6012 u32 stripe_index; 6013 int data_stripes; 6014 int i; 6015 int ret = 0; 6016 int num_stripes; 6017 int max_errors = 0; 6018 int tgtdev_indexes = 0; 6019 struct btrfs_bio *bbio = NULL; 6020 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6021 int dev_replace_is_ongoing = 0; 6022 int num_alloc_stripes; 6023 int patch_the_first_stripe_for_dev_replace = 0; 6024 u64 physical_to_patch_in_first_stripe = 0; 6025 u64 raid56_full_stripe_start = (u64)-1; 6026 struct btrfs_io_geometry geom; 6027 6028 ASSERT(bbio_ret); 6029 ASSERT(op != BTRFS_MAP_DISCARD); 6030 6031 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom); 6032 if (ret < 0) 6033 return ret; 6034 6035 em = btrfs_get_chunk_map(fs_info, logical, *length); 6036 ASSERT(!IS_ERR(em)); 6037 map = em->map_lookup; 6038 6039 *length = geom.len; 6040 stripe_len = geom.stripe_len; 6041 stripe_nr = geom.stripe_nr; 6042 stripe_offset = geom.stripe_offset; 6043 raid56_full_stripe_start = geom.raid56_stripe_offset; 6044 data_stripes = nr_data_stripes(map); 6045 6046 down_read(&dev_replace->rwsem); 6047 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6048 /* 6049 * Hold the semaphore for read during the whole operation, write is 6050 * requested at commit time but must wait. 6051 */ 6052 if (!dev_replace_is_ongoing) 6053 up_read(&dev_replace->rwsem); 6054 6055 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6056 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6057 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6058 dev_replace->srcdev->devid, 6059 &mirror_num, 6060 &physical_to_patch_in_first_stripe); 6061 if (ret) 6062 goto out; 6063 else 6064 patch_the_first_stripe_for_dev_replace = 1; 6065 } else if (mirror_num > map->num_stripes) { 6066 mirror_num = 0; 6067 } 6068 6069 num_stripes = 1; 6070 stripe_index = 0; 6071 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6072 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6073 &stripe_index); 6074 if (!need_full_stripe(op)) 6075 mirror_num = 1; 6076 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6077 if (need_full_stripe(op)) 6078 num_stripes = map->num_stripes; 6079 else if (mirror_num) 6080 stripe_index = mirror_num - 1; 6081 else { 6082 stripe_index = find_live_mirror(fs_info, map, 0, 6083 dev_replace_is_ongoing); 6084 mirror_num = stripe_index + 1; 6085 } 6086 6087 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6088 if (need_full_stripe(op)) { 6089 num_stripes = map->num_stripes; 6090 } else if (mirror_num) { 6091 stripe_index = mirror_num - 1; 6092 } else { 6093 mirror_num = 1; 6094 } 6095 6096 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6097 u32 factor = map->num_stripes / map->sub_stripes; 6098 6099 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6100 stripe_index *= map->sub_stripes; 6101 6102 if (need_full_stripe(op)) 6103 num_stripes = map->sub_stripes; 6104 else if (mirror_num) 6105 stripe_index += mirror_num - 1; 6106 else { 6107 int old_stripe_index = stripe_index; 6108 stripe_index = find_live_mirror(fs_info, map, 6109 stripe_index, 6110 dev_replace_is_ongoing); 6111 mirror_num = stripe_index - old_stripe_index + 1; 6112 } 6113 6114 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6115 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6116 /* push stripe_nr back to the start of the full stripe */ 6117 stripe_nr = div64_u64(raid56_full_stripe_start, 6118 stripe_len * data_stripes); 6119 6120 /* RAID[56] write or recovery. Return all stripes */ 6121 num_stripes = map->num_stripes; 6122 max_errors = nr_parity_stripes(map); 6123 6124 *length = map->stripe_len; 6125 stripe_index = 0; 6126 stripe_offset = 0; 6127 } else { 6128 /* 6129 * Mirror #0 or #1 means the original data block. 6130 * Mirror #2 is RAID5 parity block. 6131 * Mirror #3 is RAID6 Q block. 6132 */ 6133 stripe_nr = div_u64_rem(stripe_nr, 6134 data_stripes, &stripe_index); 6135 if (mirror_num > 1) 6136 stripe_index = data_stripes + mirror_num - 2; 6137 6138 /* We distribute the parity blocks across stripes */ 6139 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6140 &stripe_index); 6141 if (!need_full_stripe(op) && mirror_num <= 1) 6142 mirror_num = 1; 6143 } 6144 } else { 6145 /* 6146 * after this, stripe_nr is the number of stripes on this 6147 * device we have to walk to find the data, and stripe_index is 6148 * the number of our device in the stripe array 6149 */ 6150 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6151 &stripe_index); 6152 mirror_num = stripe_index + 1; 6153 } 6154 if (stripe_index >= map->num_stripes) { 6155 btrfs_crit(fs_info, 6156 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6157 stripe_index, map->num_stripes); 6158 ret = -EINVAL; 6159 goto out; 6160 } 6161 6162 num_alloc_stripes = num_stripes; 6163 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6164 if (op == BTRFS_MAP_WRITE) 6165 num_alloc_stripes <<= 1; 6166 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6167 num_alloc_stripes++; 6168 tgtdev_indexes = num_stripes; 6169 } 6170 6171 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 6172 if (!bbio) { 6173 ret = -ENOMEM; 6174 goto out; 6175 } 6176 6177 for (i = 0; i < num_stripes; i++) { 6178 bbio->stripes[i].physical = map->stripes[stripe_index].physical + 6179 stripe_offset + stripe_nr * map->stripe_len; 6180 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 6181 stripe_index++; 6182 } 6183 6184 /* build raid_map */ 6185 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6186 (need_full_stripe(op) || mirror_num > 1)) { 6187 u64 tmp; 6188 unsigned rot; 6189 6190 /* Work out the disk rotation on this stripe-set */ 6191 div_u64_rem(stripe_nr, num_stripes, &rot); 6192 6193 /* Fill in the logical address of each stripe */ 6194 tmp = stripe_nr * data_stripes; 6195 for (i = 0; i < data_stripes; i++) 6196 bbio->raid_map[(i+rot) % num_stripes] = 6197 em->start + (tmp + i) * map->stripe_len; 6198 6199 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 6200 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6201 bbio->raid_map[(i+rot+1) % num_stripes] = 6202 RAID6_Q_STRIPE; 6203 6204 sort_parity_stripes(bbio, num_stripes); 6205 } 6206 6207 if (need_full_stripe(op)) 6208 max_errors = btrfs_chunk_max_errors(map); 6209 6210 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6211 need_full_stripe(op)) { 6212 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 6213 &max_errors); 6214 } 6215 6216 *bbio_ret = bbio; 6217 bbio->map_type = map->type; 6218 bbio->num_stripes = num_stripes; 6219 bbio->max_errors = max_errors; 6220 bbio->mirror_num = mirror_num; 6221 6222 /* 6223 * this is the case that REQ_READ && dev_replace_is_ongoing && 6224 * mirror_num == num_stripes + 1 && dev_replace target drive is 6225 * available as a mirror 6226 */ 6227 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6228 WARN_ON(num_stripes > 1); 6229 bbio->stripes[0].dev = dev_replace->tgtdev; 6230 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 6231 bbio->mirror_num = map->num_stripes + 1; 6232 } 6233 out: 6234 if (dev_replace_is_ongoing) { 6235 lockdep_assert_held(&dev_replace->rwsem); 6236 /* Unlock and let waiting writers proceed */ 6237 up_read(&dev_replace->rwsem); 6238 } 6239 free_extent_map(em); 6240 return ret; 6241 } 6242 6243 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6244 u64 logical, u64 *length, 6245 struct btrfs_bio **bbio_ret, int mirror_num) 6246 { 6247 if (op == BTRFS_MAP_DISCARD) 6248 return __btrfs_map_block_for_discard(fs_info, logical, 6249 length, bbio_ret); 6250 6251 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 6252 mirror_num, 0); 6253 } 6254 6255 /* For Scrub/replace */ 6256 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6257 u64 logical, u64 *length, 6258 struct btrfs_bio **bbio_ret) 6259 { 6260 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6261 } 6262 6263 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6264 { 6265 bio->bi_private = bbio->private; 6266 bio->bi_end_io = bbio->end_io; 6267 bio_endio(bio); 6268 6269 btrfs_put_bbio(bbio); 6270 } 6271 6272 static void btrfs_end_bio(struct bio *bio) 6273 { 6274 struct btrfs_bio *bbio = bio->bi_private; 6275 int is_orig_bio = 0; 6276 6277 if (bio->bi_status) { 6278 atomic_inc(&bbio->error); 6279 if (bio->bi_status == BLK_STS_IOERR || 6280 bio->bi_status == BLK_STS_TARGET) { 6281 struct btrfs_device *dev = btrfs_io_bio(bio)->device; 6282 6283 ASSERT(dev->bdev); 6284 if (bio_op(bio) == REQ_OP_WRITE) 6285 btrfs_dev_stat_inc_and_print(dev, 6286 BTRFS_DEV_STAT_WRITE_ERRS); 6287 else if (!(bio->bi_opf & REQ_RAHEAD)) 6288 btrfs_dev_stat_inc_and_print(dev, 6289 BTRFS_DEV_STAT_READ_ERRS); 6290 if (bio->bi_opf & REQ_PREFLUSH) 6291 btrfs_dev_stat_inc_and_print(dev, 6292 BTRFS_DEV_STAT_FLUSH_ERRS); 6293 } 6294 } 6295 6296 if (bio == bbio->orig_bio) 6297 is_orig_bio = 1; 6298 6299 btrfs_bio_counter_dec(bbio->fs_info); 6300 6301 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6302 if (!is_orig_bio) { 6303 bio_put(bio); 6304 bio = bbio->orig_bio; 6305 } 6306 6307 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6308 /* only send an error to the higher layers if it is 6309 * beyond the tolerance of the btrfs bio 6310 */ 6311 if (atomic_read(&bbio->error) > bbio->max_errors) { 6312 bio->bi_status = BLK_STS_IOERR; 6313 } else { 6314 /* 6315 * this bio is actually up to date, we didn't 6316 * go over the max number of errors 6317 */ 6318 bio->bi_status = BLK_STS_OK; 6319 } 6320 6321 btrfs_end_bbio(bbio, bio); 6322 } else if (!is_orig_bio) { 6323 bio_put(bio); 6324 } 6325 } 6326 6327 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6328 u64 physical, struct btrfs_device *dev) 6329 { 6330 struct btrfs_fs_info *fs_info = bbio->fs_info; 6331 6332 bio->bi_private = bbio; 6333 btrfs_io_bio(bio)->device = dev; 6334 bio->bi_end_io = btrfs_end_bio; 6335 bio->bi_iter.bi_sector = physical >> 9; 6336 btrfs_debug_in_rcu(fs_info, 6337 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6338 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector, 6339 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name), 6340 dev->devid, bio->bi_iter.bi_size); 6341 bio_set_dev(bio, dev->bdev); 6342 6343 btrfs_bio_counter_inc_noblocked(fs_info); 6344 6345 btrfsic_submit_bio(bio); 6346 } 6347 6348 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6349 { 6350 atomic_inc(&bbio->error); 6351 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6352 /* Should be the original bio. */ 6353 WARN_ON(bio != bbio->orig_bio); 6354 6355 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6356 bio->bi_iter.bi_sector = logical >> 9; 6357 if (atomic_read(&bbio->error) > bbio->max_errors) 6358 bio->bi_status = BLK_STS_IOERR; 6359 else 6360 bio->bi_status = BLK_STS_OK; 6361 btrfs_end_bbio(bbio, bio); 6362 } 6363 } 6364 6365 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6366 int mirror_num) 6367 { 6368 struct btrfs_device *dev; 6369 struct bio *first_bio = bio; 6370 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6371 u64 length = 0; 6372 u64 map_length; 6373 int ret; 6374 int dev_nr; 6375 int total_devs; 6376 struct btrfs_bio *bbio = NULL; 6377 6378 length = bio->bi_iter.bi_size; 6379 map_length = length; 6380 6381 btrfs_bio_counter_inc_blocked(fs_info); 6382 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6383 &map_length, &bbio, mirror_num, 1); 6384 if (ret) { 6385 btrfs_bio_counter_dec(fs_info); 6386 return errno_to_blk_status(ret); 6387 } 6388 6389 total_devs = bbio->num_stripes; 6390 bbio->orig_bio = first_bio; 6391 bbio->private = first_bio->bi_private; 6392 bbio->end_io = first_bio->bi_end_io; 6393 bbio->fs_info = fs_info; 6394 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6395 6396 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6397 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6398 /* In this case, map_length has been set to the length of 6399 a single stripe; not the whole write */ 6400 if (bio_op(bio) == REQ_OP_WRITE) { 6401 ret = raid56_parity_write(fs_info, bio, bbio, 6402 map_length); 6403 } else { 6404 ret = raid56_parity_recover(fs_info, bio, bbio, 6405 map_length, mirror_num, 1); 6406 } 6407 6408 btrfs_bio_counter_dec(fs_info); 6409 return errno_to_blk_status(ret); 6410 } 6411 6412 if (map_length < length) { 6413 btrfs_crit(fs_info, 6414 "mapping failed logical %llu bio len %llu len %llu", 6415 logical, length, map_length); 6416 BUG(); 6417 } 6418 6419 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6420 dev = bbio->stripes[dev_nr].dev; 6421 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6422 &dev->dev_state) || 6423 (bio_op(first_bio) == REQ_OP_WRITE && 6424 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6425 bbio_error(bbio, first_bio, logical); 6426 continue; 6427 } 6428 6429 if (dev_nr < total_devs - 1) 6430 bio = btrfs_bio_clone(first_bio); 6431 else 6432 bio = first_bio; 6433 6434 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev); 6435 } 6436 btrfs_bio_counter_dec(fs_info); 6437 return BLK_STS_OK; 6438 } 6439 6440 /* 6441 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6442 * return NULL. 6443 * 6444 * If devid and uuid are both specified, the match must be exact, otherwise 6445 * only devid is used. 6446 * 6447 * If @seed is true, traverse through the seed devices. 6448 */ 6449 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 6450 u64 devid, u8 *uuid, u8 *fsid, 6451 bool seed) 6452 { 6453 struct btrfs_device *device; 6454 struct btrfs_fs_devices *seed_devs; 6455 6456 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6457 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6458 if (device->devid == devid && 6459 (!uuid || memcmp(device->uuid, uuid, 6460 BTRFS_UUID_SIZE) == 0)) 6461 return device; 6462 } 6463 } 6464 6465 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6466 if (!fsid || 6467 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6468 list_for_each_entry(device, &seed_devs->devices, 6469 dev_list) { 6470 if (device->devid == devid && 6471 (!uuid || memcmp(device->uuid, uuid, 6472 BTRFS_UUID_SIZE) == 0)) 6473 return device; 6474 } 6475 } 6476 } 6477 6478 return NULL; 6479 } 6480 6481 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6482 u64 devid, u8 *dev_uuid) 6483 { 6484 struct btrfs_device *device; 6485 unsigned int nofs_flag; 6486 6487 /* 6488 * We call this under the chunk_mutex, so we want to use NOFS for this 6489 * allocation, however we don't want to change btrfs_alloc_device() to 6490 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6491 * places. 6492 */ 6493 nofs_flag = memalloc_nofs_save(); 6494 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6495 memalloc_nofs_restore(nofs_flag); 6496 if (IS_ERR(device)) 6497 return device; 6498 6499 list_add(&device->dev_list, &fs_devices->devices); 6500 device->fs_devices = fs_devices; 6501 fs_devices->num_devices++; 6502 6503 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6504 fs_devices->missing_devices++; 6505 6506 return device; 6507 } 6508 6509 /** 6510 * btrfs_alloc_device - allocate struct btrfs_device 6511 * @fs_info: used only for generating a new devid, can be NULL if 6512 * devid is provided (i.e. @devid != NULL). 6513 * @devid: a pointer to devid for this device. If NULL a new devid 6514 * is generated. 6515 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6516 * is generated. 6517 * 6518 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6519 * on error. Returned struct is not linked onto any lists and must be 6520 * destroyed with btrfs_free_device. 6521 */ 6522 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6523 const u64 *devid, 6524 const u8 *uuid) 6525 { 6526 struct btrfs_device *dev; 6527 u64 tmp; 6528 6529 if (WARN_ON(!devid && !fs_info)) 6530 return ERR_PTR(-EINVAL); 6531 6532 dev = __alloc_device(fs_info); 6533 if (IS_ERR(dev)) 6534 return dev; 6535 6536 if (devid) 6537 tmp = *devid; 6538 else { 6539 int ret; 6540 6541 ret = find_next_devid(fs_info, &tmp); 6542 if (ret) { 6543 btrfs_free_device(dev); 6544 return ERR_PTR(ret); 6545 } 6546 } 6547 dev->devid = tmp; 6548 6549 if (uuid) 6550 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6551 else 6552 generate_random_uuid(dev->uuid); 6553 6554 return dev; 6555 } 6556 6557 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6558 u64 devid, u8 *uuid, bool error) 6559 { 6560 if (error) 6561 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6562 devid, uuid); 6563 else 6564 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6565 devid, uuid); 6566 } 6567 6568 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 6569 { 6570 int index = btrfs_bg_flags_to_raid_index(type); 6571 int ncopies = btrfs_raid_array[index].ncopies; 6572 const int nparity = btrfs_raid_array[index].nparity; 6573 int data_stripes; 6574 6575 if (nparity) 6576 data_stripes = num_stripes - nparity; 6577 else 6578 data_stripes = num_stripes / ncopies; 6579 6580 return div_u64(chunk_len, data_stripes); 6581 } 6582 6583 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6584 struct btrfs_chunk *chunk) 6585 { 6586 struct btrfs_fs_info *fs_info = leaf->fs_info; 6587 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6588 struct map_lookup *map; 6589 struct extent_map *em; 6590 u64 logical; 6591 u64 length; 6592 u64 devid; 6593 u8 uuid[BTRFS_UUID_SIZE]; 6594 int num_stripes; 6595 int ret; 6596 int i; 6597 6598 logical = key->offset; 6599 length = btrfs_chunk_length(leaf, chunk); 6600 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6601 6602 /* 6603 * Only need to verify chunk item if we're reading from sys chunk array, 6604 * as chunk item in tree block is already verified by tree-checker. 6605 */ 6606 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6607 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6608 if (ret) 6609 return ret; 6610 } 6611 6612 read_lock(&map_tree->lock); 6613 em = lookup_extent_mapping(map_tree, logical, 1); 6614 read_unlock(&map_tree->lock); 6615 6616 /* already mapped? */ 6617 if (em && em->start <= logical && em->start + em->len > logical) { 6618 free_extent_map(em); 6619 return 0; 6620 } else if (em) { 6621 free_extent_map(em); 6622 } 6623 6624 em = alloc_extent_map(); 6625 if (!em) 6626 return -ENOMEM; 6627 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6628 if (!map) { 6629 free_extent_map(em); 6630 return -ENOMEM; 6631 } 6632 6633 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6634 em->map_lookup = map; 6635 em->start = logical; 6636 em->len = length; 6637 em->orig_start = 0; 6638 em->block_start = 0; 6639 em->block_len = em->len; 6640 6641 map->num_stripes = num_stripes; 6642 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6643 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6644 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6645 map->type = btrfs_chunk_type(leaf, chunk); 6646 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6647 map->verified_stripes = 0; 6648 em->orig_block_len = calc_stripe_length(map->type, em->len, 6649 map->num_stripes); 6650 for (i = 0; i < num_stripes; i++) { 6651 map->stripes[i].physical = 6652 btrfs_stripe_offset_nr(leaf, chunk, i); 6653 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6654 read_extent_buffer(leaf, uuid, (unsigned long) 6655 btrfs_stripe_dev_uuid_nr(chunk, i), 6656 BTRFS_UUID_SIZE); 6657 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, 6658 devid, uuid, NULL, true); 6659 if (!map->stripes[i].dev && 6660 !btrfs_test_opt(fs_info, DEGRADED)) { 6661 free_extent_map(em); 6662 btrfs_report_missing_device(fs_info, devid, uuid, true); 6663 return -ENOENT; 6664 } 6665 if (!map->stripes[i].dev) { 6666 map->stripes[i].dev = 6667 add_missing_dev(fs_info->fs_devices, devid, 6668 uuid); 6669 if (IS_ERR(map->stripes[i].dev)) { 6670 free_extent_map(em); 6671 btrfs_err(fs_info, 6672 "failed to init missing dev %llu: %ld", 6673 devid, PTR_ERR(map->stripes[i].dev)); 6674 return PTR_ERR(map->stripes[i].dev); 6675 } 6676 btrfs_report_missing_device(fs_info, devid, uuid, false); 6677 } 6678 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6679 &(map->stripes[i].dev->dev_state)); 6680 6681 } 6682 6683 write_lock(&map_tree->lock); 6684 ret = add_extent_mapping(map_tree, em, 0); 6685 write_unlock(&map_tree->lock); 6686 if (ret < 0) { 6687 btrfs_err(fs_info, 6688 "failed to add chunk map, start=%llu len=%llu: %d", 6689 em->start, em->len, ret); 6690 } 6691 free_extent_map(em); 6692 6693 return ret; 6694 } 6695 6696 static void fill_device_from_item(struct extent_buffer *leaf, 6697 struct btrfs_dev_item *dev_item, 6698 struct btrfs_device *device) 6699 { 6700 unsigned long ptr; 6701 6702 device->devid = btrfs_device_id(leaf, dev_item); 6703 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6704 device->total_bytes = device->disk_total_bytes; 6705 device->commit_total_bytes = device->disk_total_bytes; 6706 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6707 device->commit_bytes_used = device->bytes_used; 6708 device->type = btrfs_device_type(leaf, dev_item); 6709 device->io_align = btrfs_device_io_align(leaf, dev_item); 6710 device->io_width = btrfs_device_io_width(leaf, dev_item); 6711 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6712 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6713 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6714 6715 ptr = btrfs_device_uuid(dev_item); 6716 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6717 } 6718 6719 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6720 u8 *fsid) 6721 { 6722 struct btrfs_fs_devices *fs_devices; 6723 int ret; 6724 6725 lockdep_assert_held(&uuid_mutex); 6726 ASSERT(fsid); 6727 6728 /* This will match only for multi-device seed fs */ 6729 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 6730 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6731 return fs_devices; 6732 6733 6734 fs_devices = find_fsid(fsid, NULL); 6735 if (!fs_devices) { 6736 if (!btrfs_test_opt(fs_info, DEGRADED)) 6737 return ERR_PTR(-ENOENT); 6738 6739 fs_devices = alloc_fs_devices(fsid, NULL); 6740 if (IS_ERR(fs_devices)) 6741 return fs_devices; 6742 6743 fs_devices->seeding = true; 6744 fs_devices->opened = 1; 6745 return fs_devices; 6746 } 6747 6748 /* 6749 * Upon first call for a seed fs fsid, just create a private copy of the 6750 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 6751 */ 6752 fs_devices = clone_fs_devices(fs_devices); 6753 if (IS_ERR(fs_devices)) 6754 return fs_devices; 6755 6756 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 6757 if (ret) { 6758 free_fs_devices(fs_devices); 6759 return ERR_PTR(ret); 6760 } 6761 6762 if (!fs_devices->seeding) { 6763 close_fs_devices(fs_devices); 6764 free_fs_devices(fs_devices); 6765 return ERR_PTR(-EINVAL); 6766 } 6767 6768 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 6769 6770 return fs_devices; 6771 } 6772 6773 static int read_one_dev(struct extent_buffer *leaf, 6774 struct btrfs_dev_item *dev_item) 6775 { 6776 struct btrfs_fs_info *fs_info = leaf->fs_info; 6777 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6778 struct btrfs_device *device; 6779 u64 devid; 6780 int ret; 6781 u8 fs_uuid[BTRFS_FSID_SIZE]; 6782 u8 dev_uuid[BTRFS_UUID_SIZE]; 6783 6784 devid = btrfs_device_id(leaf, dev_item); 6785 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6786 BTRFS_UUID_SIZE); 6787 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6788 BTRFS_FSID_SIZE); 6789 6790 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6791 fs_devices = open_seed_devices(fs_info, fs_uuid); 6792 if (IS_ERR(fs_devices)) 6793 return PTR_ERR(fs_devices); 6794 } 6795 6796 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 6797 fs_uuid, true); 6798 if (!device) { 6799 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6800 btrfs_report_missing_device(fs_info, devid, 6801 dev_uuid, true); 6802 return -ENOENT; 6803 } 6804 6805 device = add_missing_dev(fs_devices, devid, dev_uuid); 6806 if (IS_ERR(device)) { 6807 btrfs_err(fs_info, 6808 "failed to add missing dev %llu: %ld", 6809 devid, PTR_ERR(device)); 6810 return PTR_ERR(device); 6811 } 6812 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6813 } else { 6814 if (!device->bdev) { 6815 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6816 btrfs_report_missing_device(fs_info, 6817 devid, dev_uuid, true); 6818 return -ENOENT; 6819 } 6820 btrfs_report_missing_device(fs_info, devid, 6821 dev_uuid, false); 6822 } 6823 6824 if (!device->bdev && 6825 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6826 /* 6827 * this happens when a device that was properly setup 6828 * in the device info lists suddenly goes bad. 6829 * device->bdev is NULL, and so we have to set 6830 * device->missing to one here 6831 */ 6832 device->fs_devices->missing_devices++; 6833 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6834 } 6835 6836 /* Move the device to its own fs_devices */ 6837 if (device->fs_devices != fs_devices) { 6838 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 6839 &device->dev_state)); 6840 6841 list_move(&device->dev_list, &fs_devices->devices); 6842 device->fs_devices->num_devices--; 6843 fs_devices->num_devices++; 6844 6845 device->fs_devices->missing_devices--; 6846 fs_devices->missing_devices++; 6847 6848 device->fs_devices = fs_devices; 6849 } 6850 } 6851 6852 if (device->fs_devices != fs_info->fs_devices) { 6853 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 6854 if (device->generation != 6855 btrfs_device_generation(leaf, dev_item)) 6856 return -EINVAL; 6857 } 6858 6859 fill_device_from_item(leaf, dev_item, device); 6860 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 6861 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 6862 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 6863 device->fs_devices->total_rw_bytes += device->total_bytes; 6864 atomic64_add(device->total_bytes - device->bytes_used, 6865 &fs_info->free_chunk_space); 6866 } 6867 ret = 0; 6868 return ret; 6869 } 6870 6871 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 6872 { 6873 struct btrfs_root *root = fs_info->tree_root; 6874 struct btrfs_super_block *super_copy = fs_info->super_copy; 6875 struct extent_buffer *sb; 6876 struct btrfs_disk_key *disk_key; 6877 struct btrfs_chunk *chunk; 6878 u8 *array_ptr; 6879 unsigned long sb_array_offset; 6880 int ret = 0; 6881 u32 num_stripes; 6882 u32 array_size; 6883 u32 len = 0; 6884 u32 cur_offset; 6885 u64 type; 6886 struct btrfs_key key; 6887 6888 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 6889 /* 6890 * This will create extent buffer of nodesize, superblock size is 6891 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6892 * overallocate but we can keep it as-is, only the first page is used. 6893 */ 6894 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 6895 if (IS_ERR(sb)) 6896 return PTR_ERR(sb); 6897 set_extent_buffer_uptodate(sb); 6898 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6899 /* 6900 * The sb extent buffer is artificial and just used to read the system array. 6901 * set_extent_buffer_uptodate() call does not properly mark all it's 6902 * pages up-to-date when the page is larger: extent does not cover the 6903 * whole page and consequently check_page_uptodate does not find all 6904 * the page's extents up-to-date (the hole beyond sb), 6905 * write_extent_buffer then triggers a WARN_ON. 6906 * 6907 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6908 * but sb spans only this function. Add an explicit SetPageUptodate call 6909 * to silence the warning eg. on PowerPC 64. 6910 */ 6911 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 6912 SetPageUptodate(sb->pages[0]); 6913 6914 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6915 array_size = btrfs_super_sys_array_size(super_copy); 6916 6917 array_ptr = super_copy->sys_chunk_array; 6918 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6919 cur_offset = 0; 6920 6921 while (cur_offset < array_size) { 6922 disk_key = (struct btrfs_disk_key *)array_ptr; 6923 len = sizeof(*disk_key); 6924 if (cur_offset + len > array_size) 6925 goto out_short_read; 6926 6927 btrfs_disk_key_to_cpu(&key, disk_key); 6928 6929 array_ptr += len; 6930 sb_array_offset += len; 6931 cur_offset += len; 6932 6933 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 6934 btrfs_err(fs_info, 6935 "unexpected item type %u in sys_array at offset %u", 6936 (u32)key.type, cur_offset); 6937 ret = -EIO; 6938 break; 6939 } 6940 6941 chunk = (struct btrfs_chunk *)sb_array_offset; 6942 /* 6943 * At least one btrfs_chunk with one stripe must be present, 6944 * exact stripe count check comes afterwards 6945 */ 6946 len = btrfs_chunk_item_size(1); 6947 if (cur_offset + len > array_size) 6948 goto out_short_read; 6949 6950 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6951 if (!num_stripes) { 6952 btrfs_err(fs_info, 6953 "invalid number of stripes %u in sys_array at offset %u", 6954 num_stripes, cur_offset); 6955 ret = -EIO; 6956 break; 6957 } 6958 6959 type = btrfs_chunk_type(sb, chunk); 6960 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 6961 btrfs_err(fs_info, 6962 "invalid chunk type %llu in sys_array at offset %u", 6963 type, cur_offset); 6964 ret = -EIO; 6965 break; 6966 } 6967 6968 len = btrfs_chunk_item_size(num_stripes); 6969 if (cur_offset + len > array_size) 6970 goto out_short_read; 6971 6972 ret = read_one_chunk(&key, sb, chunk); 6973 if (ret) 6974 break; 6975 6976 array_ptr += len; 6977 sb_array_offset += len; 6978 cur_offset += len; 6979 } 6980 clear_extent_buffer_uptodate(sb); 6981 free_extent_buffer_stale(sb); 6982 return ret; 6983 6984 out_short_read: 6985 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 6986 len, cur_offset); 6987 clear_extent_buffer_uptodate(sb); 6988 free_extent_buffer_stale(sb); 6989 return -EIO; 6990 } 6991 6992 /* 6993 * Check if all chunks in the fs are OK for read-write degraded mount 6994 * 6995 * If the @failing_dev is specified, it's accounted as missing. 6996 * 6997 * Return true if all chunks meet the minimal RW mount requirements. 6998 * Return false if any chunk doesn't meet the minimal RW mount requirements. 6999 */ 7000 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7001 struct btrfs_device *failing_dev) 7002 { 7003 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7004 struct extent_map *em; 7005 u64 next_start = 0; 7006 bool ret = true; 7007 7008 read_lock(&map_tree->lock); 7009 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7010 read_unlock(&map_tree->lock); 7011 /* No chunk at all? Return false anyway */ 7012 if (!em) { 7013 ret = false; 7014 goto out; 7015 } 7016 while (em) { 7017 struct map_lookup *map; 7018 int missing = 0; 7019 int max_tolerated; 7020 int i; 7021 7022 map = em->map_lookup; 7023 max_tolerated = 7024 btrfs_get_num_tolerated_disk_barrier_failures( 7025 map->type); 7026 for (i = 0; i < map->num_stripes; i++) { 7027 struct btrfs_device *dev = map->stripes[i].dev; 7028 7029 if (!dev || !dev->bdev || 7030 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7031 dev->last_flush_error) 7032 missing++; 7033 else if (failing_dev && failing_dev == dev) 7034 missing++; 7035 } 7036 if (missing > max_tolerated) { 7037 if (!failing_dev) 7038 btrfs_warn(fs_info, 7039 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7040 em->start, missing, max_tolerated); 7041 free_extent_map(em); 7042 ret = false; 7043 goto out; 7044 } 7045 next_start = extent_map_end(em); 7046 free_extent_map(em); 7047 7048 read_lock(&map_tree->lock); 7049 em = lookup_extent_mapping(map_tree, next_start, 7050 (u64)(-1) - next_start); 7051 read_unlock(&map_tree->lock); 7052 } 7053 out: 7054 return ret; 7055 } 7056 7057 static void readahead_tree_node_children(struct extent_buffer *node) 7058 { 7059 int i; 7060 const int nr_items = btrfs_header_nritems(node); 7061 7062 for (i = 0; i < nr_items; i++) { 7063 u64 start; 7064 7065 start = btrfs_node_blockptr(node, i); 7066 readahead_tree_block(node->fs_info, start); 7067 } 7068 } 7069 7070 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7071 { 7072 struct btrfs_root *root = fs_info->chunk_root; 7073 struct btrfs_path *path; 7074 struct extent_buffer *leaf; 7075 struct btrfs_key key; 7076 struct btrfs_key found_key; 7077 int ret; 7078 int slot; 7079 u64 total_dev = 0; 7080 u64 last_ra_node = 0; 7081 7082 path = btrfs_alloc_path(); 7083 if (!path) 7084 return -ENOMEM; 7085 7086 /* 7087 * uuid_mutex is needed only if we are mounting a sprout FS 7088 * otherwise we don't need it. 7089 */ 7090 mutex_lock(&uuid_mutex); 7091 7092 /* 7093 * It is possible for mount and umount to race in such a way that 7094 * we execute this code path, but open_fs_devices failed to clear 7095 * total_rw_bytes. We certainly want it cleared before reading the 7096 * device items, so clear it here. 7097 */ 7098 fs_info->fs_devices->total_rw_bytes = 0; 7099 7100 /* 7101 * Read all device items, and then all the chunk items. All 7102 * device items are found before any chunk item (their object id 7103 * is smaller than the lowest possible object id for a chunk 7104 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7105 */ 7106 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7107 key.offset = 0; 7108 key.type = 0; 7109 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7110 if (ret < 0) 7111 goto error; 7112 while (1) { 7113 struct extent_buffer *node; 7114 7115 leaf = path->nodes[0]; 7116 slot = path->slots[0]; 7117 if (slot >= btrfs_header_nritems(leaf)) { 7118 ret = btrfs_next_leaf(root, path); 7119 if (ret == 0) 7120 continue; 7121 if (ret < 0) 7122 goto error; 7123 break; 7124 } 7125 /* 7126 * The nodes on level 1 are not locked but we don't need to do 7127 * that during mount time as nothing else can access the tree 7128 */ 7129 node = path->nodes[1]; 7130 if (node) { 7131 if (last_ra_node != node->start) { 7132 readahead_tree_node_children(node); 7133 last_ra_node = node->start; 7134 } 7135 } 7136 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7137 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7138 struct btrfs_dev_item *dev_item; 7139 dev_item = btrfs_item_ptr(leaf, slot, 7140 struct btrfs_dev_item); 7141 ret = read_one_dev(leaf, dev_item); 7142 if (ret) 7143 goto error; 7144 total_dev++; 7145 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7146 struct btrfs_chunk *chunk; 7147 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7148 mutex_lock(&fs_info->chunk_mutex); 7149 ret = read_one_chunk(&found_key, leaf, chunk); 7150 mutex_unlock(&fs_info->chunk_mutex); 7151 if (ret) 7152 goto error; 7153 } 7154 path->slots[0]++; 7155 } 7156 7157 /* 7158 * After loading chunk tree, we've got all device information, 7159 * do another round of validation checks. 7160 */ 7161 if (total_dev != fs_info->fs_devices->total_devices) { 7162 btrfs_err(fs_info, 7163 "super_num_devices %llu mismatch with num_devices %llu found here", 7164 btrfs_super_num_devices(fs_info->super_copy), 7165 total_dev); 7166 ret = -EINVAL; 7167 goto error; 7168 } 7169 if (btrfs_super_total_bytes(fs_info->super_copy) < 7170 fs_info->fs_devices->total_rw_bytes) { 7171 btrfs_err(fs_info, 7172 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7173 btrfs_super_total_bytes(fs_info->super_copy), 7174 fs_info->fs_devices->total_rw_bytes); 7175 ret = -EINVAL; 7176 goto error; 7177 } 7178 ret = 0; 7179 error: 7180 mutex_unlock(&uuid_mutex); 7181 7182 btrfs_free_path(path); 7183 return ret; 7184 } 7185 7186 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7187 { 7188 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7189 struct btrfs_device *device; 7190 7191 fs_devices->fs_info = fs_info; 7192 7193 mutex_lock(&fs_devices->device_list_mutex); 7194 list_for_each_entry(device, &fs_devices->devices, dev_list) 7195 device->fs_info = fs_info; 7196 7197 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7198 list_for_each_entry(device, &seed_devs->devices, dev_list) 7199 device->fs_info = fs_info; 7200 7201 seed_devs->fs_info = fs_info; 7202 } 7203 mutex_unlock(&fs_devices->device_list_mutex); 7204 } 7205 7206 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7207 const struct btrfs_dev_stats_item *ptr, 7208 int index) 7209 { 7210 u64 val; 7211 7212 read_extent_buffer(eb, &val, 7213 offsetof(struct btrfs_dev_stats_item, values) + 7214 ((unsigned long)ptr) + (index * sizeof(u64)), 7215 sizeof(val)); 7216 return val; 7217 } 7218 7219 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7220 struct btrfs_dev_stats_item *ptr, 7221 int index, u64 val) 7222 { 7223 write_extent_buffer(eb, &val, 7224 offsetof(struct btrfs_dev_stats_item, values) + 7225 ((unsigned long)ptr) + (index * sizeof(u64)), 7226 sizeof(val)); 7227 } 7228 7229 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7230 struct btrfs_path *path) 7231 { 7232 struct btrfs_dev_stats_item *ptr; 7233 struct extent_buffer *eb; 7234 struct btrfs_key key; 7235 int item_size; 7236 int i, ret, slot; 7237 7238 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7239 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7240 key.offset = device->devid; 7241 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7242 if (ret) { 7243 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7244 btrfs_dev_stat_set(device, i, 0); 7245 device->dev_stats_valid = 1; 7246 btrfs_release_path(path); 7247 return ret < 0 ? ret : 0; 7248 } 7249 slot = path->slots[0]; 7250 eb = path->nodes[0]; 7251 item_size = btrfs_item_size_nr(eb, slot); 7252 7253 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7254 7255 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7256 if (item_size >= (1 + i) * sizeof(__le64)) 7257 btrfs_dev_stat_set(device, i, 7258 btrfs_dev_stats_value(eb, ptr, i)); 7259 else 7260 btrfs_dev_stat_set(device, i, 0); 7261 } 7262 7263 device->dev_stats_valid = 1; 7264 btrfs_dev_stat_print_on_load(device); 7265 btrfs_release_path(path); 7266 7267 return 0; 7268 } 7269 7270 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7271 { 7272 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7273 struct btrfs_device *device; 7274 struct btrfs_path *path = NULL; 7275 int ret = 0; 7276 7277 path = btrfs_alloc_path(); 7278 if (!path) 7279 return -ENOMEM; 7280 7281 mutex_lock(&fs_devices->device_list_mutex); 7282 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7283 ret = btrfs_device_init_dev_stats(device, path); 7284 if (ret) 7285 goto out; 7286 } 7287 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7288 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7289 ret = btrfs_device_init_dev_stats(device, path); 7290 if (ret) 7291 goto out; 7292 } 7293 } 7294 out: 7295 mutex_unlock(&fs_devices->device_list_mutex); 7296 7297 btrfs_free_path(path); 7298 return ret; 7299 } 7300 7301 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7302 struct btrfs_device *device) 7303 { 7304 struct btrfs_fs_info *fs_info = trans->fs_info; 7305 struct btrfs_root *dev_root = fs_info->dev_root; 7306 struct btrfs_path *path; 7307 struct btrfs_key key; 7308 struct extent_buffer *eb; 7309 struct btrfs_dev_stats_item *ptr; 7310 int ret; 7311 int i; 7312 7313 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7314 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7315 key.offset = device->devid; 7316 7317 path = btrfs_alloc_path(); 7318 if (!path) 7319 return -ENOMEM; 7320 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7321 if (ret < 0) { 7322 btrfs_warn_in_rcu(fs_info, 7323 "error %d while searching for dev_stats item for device %s", 7324 ret, rcu_str_deref(device->name)); 7325 goto out; 7326 } 7327 7328 if (ret == 0 && 7329 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7330 /* need to delete old one and insert a new one */ 7331 ret = btrfs_del_item(trans, dev_root, path); 7332 if (ret != 0) { 7333 btrfs_warn_in_rcu(fs_info, 7334 "delete too small dev_stats item for device %s failed %d", 7335 rcu_str_deref(device->name), ret); 7336 goto out; 7337 } 7338 ret = 1; 7339 } 7340 7341 if (ret == 1) { 7342 /* need to insert a new item */ 7343 btrfs_release_path(path); 7344 ret = btrfs_insert_empty_item(trans, dev_root, path, 7345 &key, sizeof(*ptr)); 7346 if (ret < 0) { 7347 btrfs_warn_in_rcu(fs_info, 7348 "insert dev_stats item for device %s failed %d", 7349 rcu_str_deref(device->name), ret); 7350 goto out; 7351 } 7352 } 7353 7354 eb = path->nodes[0]; 7355 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7356 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7357 btrfs_set_dev_stats_value(eb, ptr, i, 7358 btrfs_dev_stat_read(device, i)); 7359 btrfs_mark_buffer_dirty(eb); 7360 7361 out: 7362 btrfs_free_path(path); 7363 return ret; 7364 } 7365 7366 /* 7367 * called from commit_transaction. Writes all changed device stats to disk. 7368 */ 7369 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7370 { 7371 struct btrfs_fs_info *fs_info = trans->fs_info; 7372 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7373 struct btrfs_device *device; 7374 int stats_cnt; 7375 int ret = 0; 7376 7377 mutex_lock(&fs_devices->device_list_mutex); 7378 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7379 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7380 if (!device->dev_stats_valid || stats_cnt == 0) 7381 continue; 7382 7383 7384 /* 7385 * There is a LOAD-LOAD control dependency between the value of 7386 * dev_stats_ccnt and updating the on-disk values which requires 7387 * reading the in-memory counters. Such control dependencies 7388 * require explicit read memory barriers. 7389 * 7390 * This memory barriers pairs with smp_mb__before_atomic in 7391 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7392 * barrier implied by atomic_xchg in 7393 * btrfs_dev_stats_read_and_reset 7394 */ 7395 smp_rmb(); 7396 7397 ret = update_dev_stat_item(trans, device); 7398 if (!ret) 7399 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7400 } 7401 mutex_unlock(&fs_devices->device_list_mutex); 7402 7403 return ret; 7404 } 7405 7406 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7407 { 7408 btrfs_dev_stat_inc(dev, index); 7409 btrfs_dev_stat_print_on_error(dev); 7410 } 7411 7412 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7413 { 7414 if (!dev->dev_stats_valid) 7415 return; 7416 btrfs_err_rl_in_rcu(dev->fs_info, 7417 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7418 rcu_str_deref(dev->name), 7419 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7420 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7421 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7422 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7423 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7424 } 7425 7426 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7427 { 7428 int i; 7429 7430 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7431 if (btrfs_dev_stat_read(dev, i) != 0) 7432 break; 7433 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7434 return; /* all values == 0, suppress message */ 7435 7436 btrfs_info_in_rcu(dev->fs_info, 7437 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7438 rcu_str_deref(dev->name), 7439 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7440 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7441 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7442 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7443 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7444 } 7445 7446 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7447 struct btrfs_ioctl_get_dev_stats *stats) 7448 { 7449 struct btrfs_device *dev; 7450 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7451 int i; 7452 7453 mutex_lock(&fs_devices->device_list_mutex); 7454 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL, 7455 true); 7456 mutex_unlock(&fs_devices->device_list_mutex); 7457 7458 if (!dev) { 7459 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7460 return -ENODEV; 7461 } else if (!dev->dev_stats_valid) { 7462 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7463 return -ENODEV; 7464 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7465 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7466 if (stats->nr_items > i) 7467 stats->values[i] = 7468 btrfs_dev_stat_read_and_reset(dev, i); 7469 else 7470 btrfs_dev_stat_set(dev, i, 0); 7471 } 7472 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7473 current->comm, task_pid_nr(current)); 7474 } else { 7475 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7476 if (stats->nr_items > i) 7477 stats->values[i] = btrfs_dev_stat_read(dev, i); 7478 } 7479 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7480 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7481 return 0; 7482 } 7483 7484 /* 7485 * Update the size and bytes used for each device where it changed. This is 7486 * delayed since we would otherwise get errors while writing out the 7487 * superblocks. 7488 * 7489 * Must be invoked during transaction commit. 7490 */ 7491 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7492 { 7493 struct btrfs_device *curr, *next; 7494 7495 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7496 7497 if (list_empty(&trans->dev_update_list)) 7498 return; 7499 7500 /* 7501 * We don't need the device_list_mutex here. This list is owned by the 7502 * transaction and the transaction must complete before the device is 7503 * released. 7504 */ 7505 mutex_lock(&trans->fs_info->chunk_mutex); 7506 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7507 post_commit_list) { 7508 list_del_init(&curr->post_commit_list); 7509 curr->commit_total_bytes = curr->disk_total_bytes; 7510 curr->commit_bytes_used = curr->bytes_used; 7511 } 7512 mutex_unlock(&trans->fs_info->chunk_mutex); 7513 } 7514 7515 /* 7516 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7517 */ 7518 int btrfs_bg_type_to_factor(u64 flags) 7519 { 7520 const int index = btrfs_bg_flags_to_raid_index(flags); 7521 7522 return btrfs_raid_array[index].ncopies; 7523 } 7524 7525 7526 7527 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7528 u64 chunk_offset, u64 devid, 7529 u64 physical_offset, u64 physical_len) 7530 { 7531 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7532 struct extent_map *em; 7533 struct map_lookup *map; 7534 struct btrfs_device *dev; 7535 u64 stripe_len; 7536 bool found = false; 7537 int ret = 0; 7538 int i; 7539 7540 read_lock(&em_tree->lock); 7541 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7542 read_unlock(&em_tree->lock); 7543 7544 if (!em) { 7545 btrfs_err(fs_info, 7546 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7547 physical_offset, devid); 7548 ret = -EUCLEAN; 7549 goto out; 7550 } 7551 7552 map = em->map_lookup; 7553 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 7554 if (physical_len != stripe_len) { 7555 btrfs_err(fs_info, 7556 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7557 physical_offset, devid, em->start, physical_len, 7558 stripe_len); 7559 ret = -EUCLEAN; 7560 goto out; 7561 } 7562 7563 for (i = 0; i < map->num_stripes; i++) { 7564 if (map->stripes[i].dev->devid == devid && 7565 map->stripes[i].physical == physical_offset) { 7566 found = true; 7567 if (map->verified_stripes >= map->num_stripes) { 7568 btrfs_err(fs_info, 7569 "too many dev extents for chunk %llu found", 7570 em->start); 7571 ret = -EUCLEAN; 7572 goto out; 7573 } 7574 map->verified_stripes++; 7575 break; 7576 } 7577 } 7578 if (!found) { 7579 btrfs_err(fs_info, 7580 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7581 physical_offset, devid); 7582 ret = -EUCLEAN; 7583 } 7584 7585 /* Make sure no dev extent is beyond device bondary */ 7586 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 7587 if (!dev) { 7588 btrfs_err(fs_info, "failed to find devid %llu", devid); 7589 ret = -EUCLEAN; 7590 goto out; 7591 } 7592 7593 /* It's possible this device is a dummy for seed device */ 7594 if (dev->disk_total_bytes == 0) { 7595 struct btrfs_fs_devices *devs; 7596 7597 devs = list_first_entry(&fs_info->fs_devices->seed_list, 7598 struct btrfs_fs_devices, seed_list); 7599 dev = btrfs_find_device(devs, devid, NULL, NULL, false); 7600 if (!dev) { 7601 btrfs_err(fs_info, "failed to find seed devid %llu", 7602 devid); 7603 ret = -EUCLEAN; 7604 goto out; 7605 } 7606 } 7607 7608 if (physical_offset + physical_len > dev->disk_total_bytes) { 7609 btrfs_err(fs_info, 7610 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7611 devid, physical_offset, physical_len, 7612 dev->disk_total_bytes); 7613 ret = -EUCLEAN; 7614 goto out; 7615 } 7616 out: 7617 free_extent_map(em); 7618 return ret; 7619 } 7620 7621 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7622 { 7623 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7624 struct extent_map *em; 7625 struct rb_node *node; 7626 int ret = 0; 7627 7628 read_lock(&em_tree->lock); 7629 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7630 em = rb_entry(node, struct extent_map, rb_node); 7631 if (em->map_lookup->num_stripes != 7632 em->map_lookup->verified_stripes) { 7633 btrfs_err(fs_info, 7634 "chunk %llu has missing dev extent, have %d expect %d", 7635 em->start, em->map_lookup->verified_stripes, 7636 em->map_lookup->num_stripes); 7637 ret = -EUCLEAN; 7638 goto out; 7639 } 7640 } 7641 out: 7642 read_unlock(&em_tree->lock); 7643 return ret; 7644 } 7645 7646 /* 7647 * Ensure that all dev extents are mapped to correct chunk, otherwise 7648 * later chunk allocation/free would cause unexpected behavior. 7649 * 7650 * NOTE: This will iterate through the whole device tree, which should be of 7651 * the same size level as the chunk tree. This slightly increases mount time. 7652 */ 7653 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7654 { 7655 struct btrfs_path *path; 7656 struct btrfs_root *root = fs_info->dev_root; 7657 struct btrfs_key key; 7658 u64 prev_devid = 0; 7659 u64 prev_dev_ext_end = 0; 7660 int ret = 0; 7661 7662 key.objectid = 1; 7663 key.type = BTRFS_DEV_EXTENT_KEY; 7664 key.offset = 0; 7665 7666 path = btrfs_alloc_path(); 7667 if (!path) 7668 return -ENOMEM; 7669 7670 path->reada = READA_FORWARD; 7671 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7672 if (ret < 0) 7673 goto out; 7674 7675 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7676 ret = btrfs_next_item(root, path); 7677 if (ret < 0) 7678 goto out; 7679 /* No dev extents at all? Not good */ 7680 if (ret > 0) { 7681 ret = -EUCLEAN; 7682 goto out; 7683 } 7684 } 7685 while (1) { 7686 struct extent_buffer *leaf = path->nodes[0]; 7687 struct btrfs_dev_extent *dext; 7688 int slot = path->slots[0]; 7689 u64 chunk_offset; 7690 u64 physical_offset; 7691 u64 physical_len; 7692 u64 devid; 7693 7694 btrfs_item_key_to_cpu(leaf, &key, slot); 7695 if (key.type != BTRFS_DEV_EXTENT_KEY) 7696 break; 7697 devid = key.objectid; 7698 physical_offset = key.offset; 7699 7700 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7701 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7702 physical_len = btrfs_dev_extent_length(leaf, dext); 7703 7704 /* Check if this dev extent overlaps with the previous one */ 7705 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7706 btrfs_err(fs_info, 7707 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7708 devid, physical_offset, prev_dev_ext_end); 7709 ret = -EUCLEAN; 7710 goto out; 7711 } 7712 7713 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7714 physical_offset, physical_len); 7715 if (ret < 0) 7716 goto out; 7717 prev_devid = devid; 7718 prev_dev_ext_end = physical_offset + physical_len; 7719 7720 ret = btrfs_next_item(root, path); 7721 if (ret < 0) 7722 goto out; 7723 if (ret > 0) { 7724 ret = 0; 7725 break; 7726 } 7727 } 7728 7729 /* Ensure all chunks have corresponding dev extents */ 7730 ret = verify_chunk_dev_extent_mapping(fs_info); 7731 out: 7732 btrfs_free_path(path); 7733 return ret; 7734 } 7735 7736 /* 7737 * Check whether the given block group or device is pinned by any inode being 7738 * used as a swapfile. 7739 */ 7740 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7741 { 7742 struct btrfs_swapfile_pin *sp; 7743 struct rb_node *node; 7744 7745 spin_lock(&fs_info->swapfile_pins_lock); 7746 node = fs_info->swapfile_pins.rb_node; 7747 while (node) { 7748 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7749 if (ptr < sp->ptr) 7750 node = node->rb_left; 7751 else if (ptr > sp->ptr) 7752 node = node->rb_right; 7753 else 7754 break; 7755 } 7756 spin_unlock(&fs_info->swapfile_pins_lock); 7757 return node != NULL; 7758 } 7759