1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/iocontext.h> 24 #include <linux/capability.h> 25 #include <linux/ratelimit.h> 26 #include <linux/kthread.h> 27 #include <linux/raid/pq.h> 28 #include <linux/semaphore.h> 29 #include <linux/uuid.h> 30 #include <asm/div64.h> 31 #include "ctree.h" 32 #include "extent_map.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "raid56.h" 38 #include "async-thread.h" 39 #include "check-integrity.h" 40 #include "rcu-string.h" 41 #include "math.h" 42 #include "dev-replace.h" 43 #include "sysfs.h" 44 45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 46 [BTRFS_RAID_RAID10] = { 47 .sub_stripes = 2, 48 .dev_stripes = 1, 49 .devs_max = 0, /* 0 == as many as possible */ 50 .devs_min = 4, 51 .tolerated_failures = 1, 52 .devs_increment = 2, 53 .ncopies = 2, 54 }, 55 [BTRFS_RAID_RAID1] = { 56 .sub_stripes = 1, 57 .dev_stripes = 1, 58 .devs_max = 2, 59 .devs_min = 2, 60 .tolerated_failures = 1, 61 .devs_increment = 2, 62 .ncopies = 2, 63 }, 64 [BTRFS_RAID_DUP] = { 65 .sub_stripes = 1, 66 .dev_stripes = 2, 67 .devs_max = 1, 68 .devs_min = 1, 69 .tolerated_failures = 0, 70 .devs_increment = 1, 71 .ncopies = 2, 72 }, 73 [BTRFS_RAID_RAID0] = { 74 .sub_stripes = 1, 75 .dev_stripes = 1, 76 .devs_max = 0, 77 .devs_min = 2, 78 .tolerated_failures = 0, 79 .devs_increment = 1, 80 .ncopies = 1, 81 }, 82 [BTRFS_RAID_SINGLE] = { 83 .sub_stripes = 1, 84 .dev_stripes = 1, 85 .devs_max = 1, 86 .devs_min = 1, 87 .tolerated_failures = 0, 88 .devs_increment = 1, 89 .ncopies = 1, 90 }, 91 [BTRFS_RAID_RAID5] = { 92 .sub_stripes = 1, 93 .dev_stripes = 1, 94 .devs_max = 0, 95 .devs_min = 2, 96 .tolerated_failures = 1, 97 .devs_increment = 1, 98 .ncopies = 2, 99 }, 100 [BTRFS_RAID_RAID6] = { 101 .sub_stripes = 1, 102 .dev_stripes = 1, 103 .devs_max = 0, 104 .devs_min = 3, 105 .tolerated_failures = 2, 106 .devs_increment = 1, 107 .ncopies = 3, 108 }, 109 }; 110 111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = { 112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10, 113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1, 114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP, 115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0, 116 [BTRFS_RAID_SINGLE] = 0, 117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5, 118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6, 119 }; 120 121 /* 122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices 123 * condition is not met. Zero means there's no corresponding 124 * BTRFS_ERROR_DEV_*_NOT_MET value. 125 */ 126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = { 127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 129 [BTRFS_RAID_DUP] = 0, 130 [BTRFS_RAID_RAID0] = 0, 131 [BTRFS_RAID_SINGLE] = 0, 132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 134 }; 135 136 static int init_first_rw_device(struct btrfs_trans_handle *trans, 137 struct btrfs_fs_info *fs_info); 138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 142 143 DEFINE_MUTEX(uuid_mutex); 144 static LIST_HEAD(fs_uuids); 145 struct list_head *btrfs_get_fs_uuids(void) 146 { 147 return &fs_uuids; 148 } 149 150 static struct btrfs_fs_devices *__alloc_fs_devices(void) 151 { 152 struct btrfs_fs_devices *fs_devs; 153 154 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 155 if (!fs_devs) 156 return ERR_PTR(-ENOMEM); 157 158 mutex_init(&fs_devs->device_list_mutex); 159 160 INIT_LIST_HEAD(&fs_devs->devices); 161 INIT_LIST_HEAD(&fs_devs->resized_devices); 162 INIT_LIST_HEAD(&fs_devs->alloc_list); 163 INIT_LIST_HEAD(&fs_devs->list); 164 165 return fs_devs; 166 } 167 168 /** 169 * alloc_fs_devices - allocate struct btrfs_fs_devices 170 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is 171 * generated. 172 * 173 * Return: a pointer to a new &struct btrfs_fs_devices on success; 174 * ERR_PTR() on error. Returned struct is not linked onto any lists and 175 * can be destroyed with kfree() right away. 176 */ 177 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 178 { 179 struct btrfs_fs_devices *fs_devs; 180 181 fs_devs = __alloc_fs_devices(); 182 if (IS_ERR(fs_devs)) 183 return fs_devs; 184 185 if (fsid) 186 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 187 else 188 generate_random_uuid(fs_devs->fsid); 189 190 return fs_devs; 191 } 192 193 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 194 { 195 struct btrfs_device *device; 196 WARN_ON(fs_devices->opened); 197 while (!list_empty(&fs_devices->devices)) { 198 device = list_entry(fs_devices->devices.next, 199 struct btrfs_device, dev_list); 200 list_del(&device->dev_list); 201 rcu_string_free(device->name); 202 kfree(device); 203 } 204 kfree(fs_devices); 205 } 206 207 static void btrfs_kobject_uevent(struct block_device *bdev, 208 enum kobject_action action) 209 { 210 int ret; 211 212 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 213 if (ret) 214 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 215 action, 216 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 217 &disk_to_dev(bdev->bd_disk)->kobj); 218 } 219 220 void btrfs_cleanup_fs_uuids(void) 221 { 222 struct btrfs_fs_devices *fs_devices; 223 224 while (!list_empty(&fs_uuids)) { 225 fs_devices = list_entry(fs_uuids.next, 226 struct btrfs_fs_devices, list); 227 list_del(&fs_devices->list); 228 free_fs_devices(fs_devices); 229 } 230 } 231 232 static struct btrfs_device *__alloc_device(void) 233 { 234 struct btrfs_device *dev; 235 236 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 237 if (!dev) 238 return ERR_PTR(-ENOMEM); 239 240 INIT_LIST_HEAD(&dev->dev_list); 241 INIT_LIST_HEAD(&dev->dev_alloc_list); 242 INIT_LIST_HEAD(&dev->resized_list); 243 244 spin_lock_init(&dev->io_lock); 245 246 spin_lock_init(&dev->reada_lock); 247 atomic_set(&dev->reada_in_flight, 0); 248 atomic_set(&dev->dev_stats_ccnt, 0); 249 btrfs_device_data_ordered_init(dev); 250 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 251 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 252 253 return dev; 254 } 255 256 static noinline struct btrfs_device *__find_device(struct list_head *head, 257 u64 devid, u8 *uuid) 258 { 259 struct btrfs_device *dev; 260 261 list_for_each_entry(dev, head, dev_list) { 262 if (dev->devid == devid && 263 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 264 return dev; 265 } 266 } 267 return NULL; 268 } 269 270 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 271 { 272 struct btrfs_fs_devices *fs_devices; 273 274 list_for_each_entry(fs_devices, &fs_uuids, list) { 275 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 276 return fs_devices; 277 } 278 return NULL; 279 } 280 281 static int 282 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 283 int flush, struct block_device **bdev, 284 struct buffer_head **bh) 285 { 286 int ret; 287 288 *bdev = blkdev_get_by_path(device_path, flags, holder); 289 290 if (IS_ERR(*bdev)) { 291 ret = PTR_ERR(*bdev); 292 goto error; 293 } 294 295 if (flush) 296 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 297 ret = set_blocksize(*bdev, 4096); 298 if (ret) { 299 blkdev_put(*bdev, flags); 300 goto error; 301 } 302 invalidate_bdev(*bdev); 303 *bh = btrfs_read_dev_super(*bdev); 304 if (IS_ERR(*bh)) { 305 ret = PTR_ERR(*bh); 306 blkdev_put(*bdev, flags); 307 goto error; 308 } 309 310 return 0; 311 312 error: 313 *bdev = NULL; 314 *bh = NULL; 315 return ret; 316 } 317 318 static void requeue_list(struct btrfs_pending_bios *pending_bios, 319 struct bio *head, struct bio *tail) 320 { 321 322 struct bio *old_head; 323 324 old_head = pending_bios->head; 325 pending_bios->head = head; 326 if (pending_bios->tail) 327 tail->bi_next = old_head; 328 else 329 pending_bios->tail = tail; 330 } 331 332 /* 333 * we try to collect pending bios for a device so we don't get a large 334 * number of procs sending bios down to the same device. This greatly 335 * improves the schedulers ability to collect and merge the bios. 336 * 337 * But, it also turns into a long list of bios to process and that is sure 338 * to eventually make the worker thread block. The solution here is to 339 * make some progress and then put this work struct back at the end of 340 * the list if the block device is congested. This way, multiple devices 341 * can make progress from a single worker thread. 342 */ 343 static noinline void run_scheduled_bios(struct btrfs_device *device) 344 { 345 struct btrfs_fs_info *fs_info = device->fs_info; 346 struct bio *pending; 347 struct backing_dev_info *bdi; 348 struct btrfs_pending_bios *pending_bios; 349 struct bio *tail; 350 struct bio *cur; 351 int again = 0; 352 unsigned long num_run; 353 unsigned long batch_run = 0; 354 unsigned long limit; 355 unsigned long last_waited = 0; 356 int force_reg = 0; 357 int sync_pending = 0; 358 struct blk_plug plug; 359 360 /* 361 * this function runs all the bios we've collected for 362 * a particular device. We don't want to wander off to 363 * another device without first sending all of these down. 364 * So, setup a plug here and finish it off before we return 365 */ 366 blk_start_plug(&plug); 367 368 bdi = device->bdev->bd_bdi; 369 limit = btrfs_async_submit_limit(fs_info); 370 limit = limit * 2 / 3; 371 372 loop: 373 spin_lock(&device->io_lock); 374 375 loop_lock: 376 num_run = 0; 377 378 /* take all the bios off the list at once and process them 379 * later on (without the lock held). But, remember the 380 * tail and other pointers so the bios can be properly reinserted 381 * into the list if we hit congestion 382 */ 383 if (!force_reg && device->pending_sync_bios.head) { 384 pending_bios = &device->pending_sync_bios; 385 force_reg = 1; 386 } else { 387 pending_bios = &device->pending_bios; 388 force_reg = 0; 389 } 390 391 pending = pending_bios->head; 392 tail = pending_bios->tail; 393 WARN_ON(pending && !tail); 394 395 /* 396 * if pending was null this time around, no bios need processing 397 * at all and we can stop. Otherwise it'll loop back up again 398 * and do an additional check so no bios are missed. 399 * 400 * device->running_pending is used to synchronize with the 401 * schedule_bio code. 402 */ 403 if (device->pending_sync_bios.head == NULL && 404 device->pending_bios.head == NULL) { 405 again = 0; 406 device->running_pending = 0; 407 } else { 408 again = 1; 409 device->running_pending = 1; 410 } 411 412 pending_bios->head = NULL; 413 pending_bios->tail = NULL; 414 415 spin_unlock(&device->io_lock); 416 417 while (pending) { 418 419 rmb(); 420 /* we want to work on both lists, but do more bios on the 421 * sync list than the regular list 422 */ 423 if ((num_run > 32 && 424 pending_bios != &device->pending_sync_bios && 425 device->pending_sync_bios.head) || 426 (num_run > 64 && pending_bios == &device->pending_sync_bios && 427 device->pending_bios.head)) { 428 spin_lock(&device->io_lock); 429 requeue_list(pending_bios, pending, tail); 430 goto loop_lock; 431 } 432 433 cur = pending; 434 pending = pending->bi_next; 435 cur->bi_next = NULL; 436 437 /* 438 * atomic_dec_return implies a barrier for waitqueue_active 439 */ 440 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 441 waitqueue_active(&fs_info->async_submit_wait)) 442 wake_up(&fs_info->async_submit_wait); 443 444 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 445 446 /* 447 * if we're doing the sync list, record that our 448 * plug has some sync requests on it 449 * 450 * If we're doing the regular list and there are 451 * sync requests sitting around, unplug before 452 * we add more 453 */ 454 if (pending_bios == &device->pending_sync_bios) { 455 sync_pending = 1; 456 } else if (sync_pending) { 457 blk_finish_plug(&plug); 458 blk_start_plug(&plug); 459 sync_pending = 0; 460 } 461 462 btrfsic_submit_bio(cur); 463 num_run++; 464 batch_run++; 465 466 cond_resched(); 467 468 /* 469 * we made progress, there is more work to do and the bdi 470 * is now congested. Back off and let other work structs 471 * run instead 472 */ 473 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 474 fs_info->fs_devices->open_devices > 1) { 475 struct io_context *ioc; 476 477 ioc = current->io_context; 478 479 /* 480 * the main goal here is that we don't want to 481 * block if we're going to be able to submit 482 * more requests without blocking. 483 * 484 * This code does two great things, it pokes into 485 * the elevator code from a filesystem _and_ 486 * it makes assumptions about how batching works. 487 */ 488 if (ioc && ioc->nr_batch_requests > 0 && 489 time_before(jiffies, ioc->last_waited + HZ/50UL) && 490 (last_waited == 0 || 491 ioc->last_waited == last_waited)) { 492 /* 493 * we want to go through our batch of 494 * requests and stop. So, we copy out 495 * the ioc->last_waited time and test 496 * against it before looping 497 */ 498 last_waited = ioc->last_waited; 499 cond_resched(); 500 continue; 501 } 502 spin_lock(&device->io_lock); 503 requeue_list(pending_bios, pending, tail); 504 device->running_pending = 1; 505 506 spin_unlock(&device->io_lock); 507 btrfs_queue_work(fs_info->submit_workers, 508 &device->work); 509 goto done; 510 } 511 /* unplug every 64 requests just for good measure */ 512 if (batch_run % 64 == 0) { 513 blk_finish_plug(&plug); 514 blk_start_plug(&plug); 515 sync_pending = 0; 516 } 517 } 518 519 cond_resched(); 520 if (again) 521 goto loop; 522 523 spin_lock(&device->io_lock); 524 if (device->pending_bios.head || device->pending_sync_bios.head) 525 goto loop_lock; 526 spin_unlock(&device->io_lock); 527 528 done: 529 blk_finish_plug(&plug); 530 } 531 532 static void pending_bios_fn(struct btrfs_work *work) 533 { 534 struct btrfs_device *device; 535 536 device = container_of(work, struct btrfs_device, work); 537 run_scheduled_bios(device); 538 } 539 540 541 void btrfs_free_stale_device(struct btrfs_device *cur_dev) 542 { 543 struct btrfs_fs_devices *fs_devs; 544 struct btrfs_device *dev; 545 546 if (!cur_dev->name) 547 return; 548 549 list_for_each_entry(fs_devs, &fs_uuids, list) { 550 int del = 1; 551 552 if (fs_devs->opened) 553 continue; 554 if (fs_devs->seeding) 555 continue; 556 557 list_for_each_entry(dev, &fs_devs->devices, dev_list) { 558 559 if (dev == cur_dev) 560 continue; 561 if (!dev->name) 562 continue; 563 564 /* 565 * Todo: This won't be enough. What if the same device 566 * comes back (with new uuid and) with its mapper path? 567 * But for now, this does help as mostly an admin will 568 * either use mapper or non mapper path throughout. 569 */ 570 rcu_read_lock(); 571 del = strcmp(rcu_str_deref(dev->name), 572 rcu_str_deref(cur_dev->name)); 573 rcu_read_unlock(); 574 if (!del) 575 break; 576 } 577 578 if (!del) { 579 /* delete the stale device */ 580 if (fs_devs->num_devices == 1) { 581 btrfs_sysfs_remove_fsid(fs_devs); 582 list_del(&fs_devs->list); 583 free_fs_devices(fs_devs); 584 } else { 585 fs_devs->num_devices--; 586 list_del(&dev->dev_list); 587 rcu_string_free(dev->name); 588 kfree(dev); 589 } 590 break; 591 } 592 } 593 } 594 595 /* 596 * Add new device to list of registered devices 597 * 598 * Returns: 599 * 1 - first time device is seen 600 * 0 - device already known 601 * < 0 - error 602 */ 603 static noinline int device_list_add(const char *path, 604 struct btrfs_super_block *disk_super, 605 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 606 { 607 struct btrfs_device *device; 608 struct btrfs_fs_devices *fs_devices; 609 struct rcu_string *name; 610 int ret = 0; 611 u64 found_transid = btrfs_super_generation(disk_super); 612 613 fs_devices = find_fsid(disk_super->fsid); 614 if (!fs_devices) { 615 fs_devices = alloc_fs_devices(disk_super->fsid); 616 if (IS_ERR(fs_devices)) 617 return PTR_ERR(fs_devices); 618 619 list_add(&fs_devices->list, &fs_uuids); 620 621 device = NULL; 622 } else { 623 device = __find_device(&fs_devices->devices, devid, 624 disk_super->dev_item.uuid); 625 } 626 627 if (!device) { 628 if (fs_devices->opened) 629 return -EBUSY; 630 631 device = btrfs_alloc_device(NULL, &devid, 632 disk_super->dev_item.uuid); 633 if (IS_ERR(device)) { 634 /* we can safely leave the fs_devices entry around */ 635 return PTR_ERR(device); 636 } 637 638 name = rcu_string_strdup(path, GFP_NOFS); 639 if (!name) { 640 kfree(device); 641 return -ENOMEM; 642 } 643 rcu_assign_pointer(device->name, name); 644 645 mutex_lock(&fs_devices->device_list_mutex); 646 list_add_rcu(&device->dev_list, &fs_devices->devices); 647 fs_devices->num_devices++; 648 mutex_unlock(&fs_devices->device_list_mutex); 649 650 ret = 1; 651 device->fs_devices = fs_devices; 652 } else if (!device->name || strcmp(device->name->str, path)) { 653 /* 654 * When FS is already mounted. 655 * 1. If you are here and if the device->name is NULL that 656 * means this device was missing at time of FS mount. 657 * 2. If you are here and if the device->name is different 658 * from 'path' that means either 659 * a. The same device disappeared and reappeared with 660 * different name. or 661 * b. The missing-disk-which-was-replaced, has 662 * reappeared now. 663 * 664 * We must allow 1 and 2a above. But 2b would be a spurious 665 * and unintentional. 666 * 667 * Further in case of 1 and 2a above, the disk at 'path' 668 * would have missed some transaction when it was away and 669 * in case of 2a the stale bdev has to be updated as well. 670 * 2b must not be allowed at all time. 671 */ 672 673 /* 674 * For now, we do allow update to btrfs_fs_device through the 675 * btrfs dev scan cli after FS has been mounted. We're still 676 * tracking a problem where systems fail mount by subvolume id 677 * when we reject replacement on a mounted FS. 678 */ 679 if (!fs_devices->opened && found_transid < device->generation) { 680 /* 681 * That is if the FS is _not_ mounted and if you 682 * are here, that means there is more than one 683 * disk with same uuid and devid.We keep the one 684 * with larger generation number or the last-in if 685 * generation are equal. 686 */ 687 return -EEXIST; 688 } 689 690 name = rcu_string_strdup(path, GFP_NOFS); 691 if (!name) 692 return -ENOMEM; 693 rcu_string_free(device->name); 694 rcu_assign_pointer(device->name, name); 695 if (device->missing) { 696 fs_devices->missing_devices--; 697 device->missing = 0; 698 } 699 } 700 701 /* 702 * Unmount does not free the btrfs_device struct but would zero 703 * generation along with most of the other members. So just update 704 * it back. We need it to pick the disk with largest generation 705 * (as above). 706 */ 707 if (!fs_devices->opened) 708 device->generation = found_transid; 709 710 /* 711 * if there is new btrfs on an already registered device, 712 * then remove the stale device entry. 713 */ 714 if (ret > 0) 715 btrfs_free_stale_device(device); 716 717 *fs_devices_ret = fs_devices; 718 719 return ret; 720 } 721 722 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 723 { 724 struct btrfs_fs_devices *fs_devices; 725 struct btrfs_device *device; 726 struct btrfs_device *orig_dev; 727 728 fs_devices = alloc_fs_devices(orig->fsid); 729 if (IS_ERR(fs_devices)) 730 return fs_devices; 731 732 mutex_lock(&orig->device_list_mutex); 733 fs_devices->total_devices = orig->total_devices; 734 735 /* We have held the volume lock, it is safe to get the devices. */ 736 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 737 struct rcu_string *name; 738 739 device = btrfs_alloc_device(NULL, &orig_dev->devid, 740 orig_dev->uuid); 741 if (IS_ERR(device)) 742 goto error; 743 744 /* 745 * This is ok to do without rcu read locked because we hold the 746 * uuid mutex so nothing we touch in here is going to disappear. 747 */ 748 if (orig_dev->name) { 749 name = rcu_string_strdup(orig_dev->name->str, 750 GFP_KERNEL); 751 if (!name) { 752 kfree(device); 753 goto error; 754 } 755 rcu_assign_pointer(device->name, name); 756 } 757 758 list_add(&device->dev_list, &fs_devices->devices); 759 device->fs_devices = fs_devices; 760 fs_devices->num_devices++; 761 } 762 mutex_unlock(&orig->device_list_mutex); 763 return fs_devices; 764 error: 765 mutex_unlock(&orig->device_list_mutex); 766 free_fs_devices(fs_devices); 767 return ERR_PTR(-ENOMEM); 768 } 769 770 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step) 771 { 772 struct btrfs_device *device, *next; 773 struct btrfs_device *latest_dev = NULL; 774 775 mutex_lock(&uuid_mutex); 776 again: 777 /* This is the initialized path, it is safe to release the devices. */ 778 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 779 if (device->in_fs_metadata) { 780 if (!device->is_tgtdev_for_dev_replace && 781 (!latest_dev || 782 device->generation > latest_dev->generation)) { 783 latest_dev = device; 784 } 785 continue; 786 } 787 788 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 789 /* 790 * In the first step, keep the device which has 791 * the correct fsid and the devid that is used 792 * for the dev_replace procedure. 793 * In the second step, the dev_replace state is 794 * read from the device tree and it is known 795 * whether the procedure is really active or 796 * not, which means whether this device is 797 * used or whether it should be removed. 798 */ 799 if (step == 0 || device->is_tgtdev_for_dev_replace) { 800 continue; 801 } 802 } 803 if (device->bdev) { 804 blkdev_put(device->bdev, device->mode); 805 device->bdev = NULL; 806 fs_devices->open_devices--; 807 } 808 if (device->writeable) { 809 list_del_init(&device->dev_alloc_list); 810 device->writeable = 0; 811 if (!device->is_tgtdev_for_dev_replace) 812 fs_devices->rw_devices--; 813 } 814 list_del_init(&device->dev_list); 815 fs_devices->num_devices--; 816 rcu_string_free(device->name); 817 kfree(device); 818 } 819 820 if (fs_devices->seed) { 821 fs_devices = fs_devices->seed; 822 goto again; 823 } 824 825 fs_devices->latest_bdev = latest_dev->bdev; 826 827 mutex_unlock(&uuid_mutex); 828 } 829 830 static void __free_device(struct work_struct *work) 831 { 832 struct btrfs_device *device; 833 834 device = container_of(work, struct btrfs_device, rcu_work); 835 rcu_string_free(device->name); 836 kfree(device); 837 } 838 839 static void free_device(struct rcu_head *head) 840 { 841 struct btrfs_device *device; 842 843 device = container_of(head, struct btrfs_device, rcu); 844 845 INIT_WORK(&device->rcu_work, __free_device); 846 schedule_work(&device->rcu_work); 847 } 848 849 static void btrfs_close_bdev(struct btrfs_device *device) 850 { 851 if (device->bdev && device->writeable) { 852 sync_blockdev(device->bdev); 853 invalidate_bdev(device->bdev); 854 } 855 856 if (device->bdev) 857 blkdev_put(device->bdev, device->mode); 858 } 859 860 static void btrfs_prepare_close_one_device(struct btrfs_device *device) 861 { 862 struct btrfs_fs_devices *fs_devices = device->fs_devices; 863 struct btrfs_device *new_device; 864 struct rcu_string *name; 865 866 if (device->bdev) 867 fs_devices->open_devices--; 868 869 if (device->writeable && 870 device->devid != BTRFS_DEV_REPLACE_DEVID) { 871 list_del_init(&device->dev_alloc_list); 872 fs_devices->rw_devices--; 873 } 874 875 if (device->missing) 876 fs_devices->missing_devices--; 877 878 new_device = btrfs_alloc_device(NULL, &device->devid, 879 device->uuid); 880 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 881 882 /* Safe because we are under uuid_mutex */ 883 if (device->name) { 884 name = rcu_string_strdup(device->name->str, GFP_NOFS); 885 BUG_ON(!name); /* -ENOMEM */ 886 rcu_assign_pointer(new_device->name, name); 887 } 888 889 list_replace_rcu(&device->dev_list, &new_device->dev_list); 890 new_device->fs_devices = device->fs_devices; 891 } 892 893 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 894 { 895 struct btrfs_device *device, *tmp; 896 struct list_head pending_put; 897 898 INIT_LIST_HEAD(&pending_put); 899 900 if (--fs_devices->opened > 0) 901 return 0; 902 903 mutex_lock(&fs_devices->device_list_mutex); 904 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 905 btrfs_prepare_close_one_device(device); 906 list_add(&device->dev_list, &pending_put); 907 } 908 mutex_unlock(&fs_devices->device_list_mutex); 909 910 /* 911 * btrfs_show_devname() is using the device_list_mutex, 912 * sometimes call to blkdev_put() leads vfs calling 913 * into this func. So do put outside of device_list_mutex, 914 * as of now. 915 */ 916 while (!list_empty(&pending_put)) { 917 device = list_first_entry(&pending_put, 918 struct btrfs_device, dev_list); 919 list_del(&device->dev_list); 920 btrfs_close_bdev(device); 921 call_rcu(&device->rcu, free_device); 922 } 923 924 WARN_ON(fs_devices->open_devices); 925 WARN_ON(fs_devices->rw_devices); 926 fs_devices->opened = 0; 927 fs_devices->seeding = 0; 928 929 return 0; 930 } 931 932 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 933 { 934 struct btrfs_fs_devices *seed_devices = NULL; 935 int ret; 936 937 mutex_lock(&uuid_mutex); 938 ret = __btrfs_close_devices(fs_devices); 939 if (!fs_devices->opened) { 940 seed_devices = fs_devices->seed; 941 fs_devices->seed = NULL; 942 } 943 mutex_unlock(&uuid_mutex); 944 945 while (seed_devices) { 946 fs_devices = seed_devices; 947 seed_devices = fs_devices->seed; 948 __btrfs_close_devices(fs_devices); 949 free_fs_devices(fs_devices); 950 } 951 /* 952 * Wait for rcu kworkers under __btrfs_close_devices 953 * to finish all blkdev_puts so device is really 954 * free when umount is done. 955 */ 956 rcu_barrier(); 957 return ret; 958 } 959 960 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 961 fmode_t flags, void *holder) 962 { 963 struct request_queue *q; 964 struct block_device *bdev; 965 struct list_head *head = &fs_devices->devices; 966 struct btrfs_device *device; 967 struct btrfs_device *latest_dev = NULL; 968 struct buffer_head *bh; 969 struct btrfs_super_block *disk_super; 970 u64 devid; 971 int seeding = 1; 972 int ret = 0; 973 974 flags |= FMODE_EXCL; 975 976 list_for_each_entry(device, head, dev_list) { 977 if (device->bdev) 978 continue; 979 if (!device->name) 980 continue; 981 982 /* Just open everything we can; ignore failures here */ 983 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 984 &bdev, &bh)) 985 continue; 986 987 disk_super = (struct btrfs_super_block *)bh->b_data; 988 devid = btrfs_stack_device_id(&disk_super->dev_item); 989 if (devid != device->devid) 990 goto error_brelse; 991 992 if (memcmp(device->uuid, disk_super->dev_item.uuid, 993 BTRFS_UUID_SIZE)) 994 goto error_brelse; 995 996 device->generation = btrfs_super_generation(disk_super); 997 if (!latest_dev || 998 device->generation > latest_dev->generation) 999 latest_dev = device; 1000 1001 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 1002 device->writeable = 0; 1003 } else { 1004 device->writeable = !bdev_read_only(bdev); 1005 seeding = 0; 1006 } 1007 1008 q = bdev_get_queue(bdev); 1009 if (blk_queue_discard(q)) 1010 device->can_discard = 1; 1011 1012 device->bdev = bdev; 1013 device->in_fs_metadata = 0; 1014 device->mode = flags; 1015 1016 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 1017 fs_devices->rotating = 1; 1018 1019 fs_devices->open_devices++; 1020 if (device->writeable && 1021 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1022 fs_devices->rw_devices++; 1023 list_add(&device->dev_alloc_list, 1024 &fs_devices->alloc_list); 1025 } 1026 brelse(bh); 1027 continue; 1028 1029 error_brelse: 1030 brelse(bh); 1031 blkdev_put(bdev, flags); 1032 continue; 1033 } 1034 if (fs_devices->open_devices == 0) { 1035 ret = -EINVAL; 1036 goto out; 1037 } 1038 fs_devices->seeding = seeding; 1039 fs_devices->opened = 1; 1040 fs_devices->latest_bdev = latest_dev->bdev; 1041 fs_devices->total_rw_bytes = 0; 1042 out: 1043 return ret; 1044 } 1045 1046 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1047 fmode_t flags, void *holder) 1048 { 1049 int ret; 1050 1051 mutex_lock(&uuid_mutex); 1052 if (fs_devices->opened) { 1053 fs_devices->opened++; 1054 ret = 0; 1055 } else { 1056 ret = __btrfs_open_devices(fs_devices, flags, holder); 1057 } 1058 mutex_unlock(&uuid_mutex); 1059 return ret; 1060 } 1061 1062 void btrfs_release_disk_super(struct page *page) 1063 { 1064 kunmap(page); 1065 put_page(page); 1066 } 1067 1068 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, 1069 struct page **page, struct btrfs_super_block **disk_super) 1070 { 1071 void *p; 1072 pgoff_t index; 1073 1074 /* make sure our super fits in the device */ 1075 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1076 return 1; 1077 1078 /* make sure our super fits in the page */ 1079 if (sizeof(**disk_super) > PAGE_SIZE) 1080 return 1; 1081 1082 /* make sure our super doesn't straddle pages on disk */ 1083 index = bytenr >> PAGE_SHIFT; 1084 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) 1085 return 1; 1086 1087 /* pull in the page with our super */ 1088 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1089 index, GFP_KERNEL); 1090 1091 if (IS_ERR_OR_NULL(*page)) 1092 return 1; 1093 1094 p = kmap(*page); 1095 1096 /* align our pointer to the offset of the super block */ 1097 *disk_super = p + (bytenr & ~PAGE_MASK); 1098 1099 if (btrfs_super_bytenr(*disk_super) != bytenr || 1100 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { 1101 btrfs_release_disk_super(*page); 1102 return 1; 1103 } 1104 1105 if ((*disk_super)->label[0] && 1106 (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) 1107 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1108 1109 return 0; 1110 } 1111 1112 /* 1113 * Look for a btrfs signature on a device. This may be called out of the mount path 1114 * and we are not allowed to call set_blocksize during the scan. The superblock 1115 * is read via pagecache 1116 */ 1117 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 1118 struct btrfs_fs_devices **fs_devices_ret) 1119 { 1120 struct btrfs_super_block *disk_super; 1121 struct block_device *bdev; 1122 struct page *page; 1123 int ret = -EINVAL; 1124 u64 devid; 1125 u64 transid; 1126 u64 total_devices; 1127 u64 bytenr; 1128 1129 /* 1130 * we would like to check all the supers, but that would make 1131 * a btrfs mount succeed after a mkfs from a different FS. 1132 * So, we need to add a special mount option to scan for 1133 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1134 */ 1135 bytenr = btrfs_sb_offset(0); 1136 flags |= FMODE_EXCL; 1137 mutex_lock(&uuid_mutex); 1138 1139 bdev = blkdev_get_by_path(path, flags, holder); 1140 if (IS_ERR(bdev)) { 1141 ret = PTR_ERR(bdev); 1142 goto error; 1143 } 1144 1145 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) 1146 goto error_bdev_put; 1147 1148 devid = btrfs_stack_device_id(&disk_super->dev_item); 1149 transid = btrfs_super_generation(disk_super); 1150 total_devices = btrfs_super_num_devices(disk_super); 1151 1152 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 1153 if (ret > 0) { 1154 if (disk_super->label[0]) { 1155 pr_info("BTRFS: device label %s ", disk_super->label); 1156 } else { 1157 pr_info("BTRFS: device fsid %pU ", disk_super->fsid); 1158 } 1159 1160 pr_cont("devid %llu transid %llu %s\n", devid, transid, path); 1161 ret = 0; 1162 } 1163 if (!ret && fs_devices_ret) 1164 (*fs_devices_ret)->total_devices = total_devices; 1165 1166 btrfs_release_disk_super(page); 1167 1168 error_bdev_put: 1169 blkdev_put(bdev, flags); 1170 error: 1171 mutex_unlock(&uuid_mutex); 1172 return ret; 1173 } 1174 1175 /* helper to account the used device space in the range */ 1176 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 1177 u64 end, u64 *length) 1178 { 1179 struct btrfs_key key; 1180 struct btrfs_root *root = device->fs_info->dev_root; 1181 struct btrfs_dev_extent *dev_extent; 1182 struct btrfs_path *path; 1183 u64 extent_end; 1184 int ret; 1185 int slot; 1186 struct extent_buffer *l; 1187 1188 *length = 0; 1189 1190 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 1191 return 0; 1192 1193 path = btrfs_alloc_path(); 1194 if (!path) 1195 return -ENOMEM; 1196 path->reada = READA_FORWARD; 1197 1198 key.objectid = device->devid; 1199 key.offset = start; 1200 key.type = BTRFS_DEV_EXTENT_KEY; 1201 1202 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1203 if (ret < 0) 1204 goto out; 1205 if (ret > 0) { 1206 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1207 if (ret < 0) 1208 goto out; 1209 } 1210 1211 while (1) { 1212 l = path->nodes[0]; 1213 slot = path->slots[0]; 1214 if (slot >= btrfs_header_nritems(l)) { 1215 ret = btrfs_next_leaf(root, path); 1216 if (ret == 0) 1217 continue; 1218 if (ret < 0) 1219 goto out; 1220 1221 break; 1222 } 1223 btrfs_item_key_to_cpu(l, &key, slot); 1224 1225 if (key.objectid < device->devid) 1226 goto next; 1227 1228 if (key.objectid > device->devid) 1229 break; 1230 1231 if (key.type != BTRFS_DEV_EXTENT_KEY) 1232 goto next; 1233 1234 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1235 extent_end = key.offset + btrfs_dev_extent_length(l, 1236 dev_extent); 1237 if (key.offset <= start && extent_end > end) { 1238 *length = end - start + 1; 1239 break; 1240 } else if (key.offset <= start && extent_end > start) 1241 *length += extent_end - start; 1242 else if (key.offset > start && extent_end <= end) 1243 *length += extent_end - key.offset; 1244 else if (key.offset > start && key.offset <= end) { 1245 *length += end - key.offset + 1; 1246 break; 1247 } else if (key.offset > end) 1248 break; 1249 1250 next: 1251 path->slots[0]++; 1252 } 1253 ret = 0; 1254 out: 1255 btrfs_free_path(path); 1256 return ret; 1257 } 1258 1259 static int contains_pending_extent(struct btrfs_transaction *transaction, 1260 struct btrfs_device *device, 1261 u64 *start, u64 len) 1262 { 1263 struct btrfs_fs_info *fs_info = device->fs_info; 1264 struct extent_map *em; 1265 struct list_head *search_list = &fs_info->pinned_chunks; 1266 int ret = 0; 1267 u64 physical_start = *start; 1268 1269 if (transaction) 1270 search_list = &transaction->pending_chunks; 1271 again: 1272 list_for_each_entry(em, search_list, list) { 1273 struct map_lookup *map; 1274 int i; 1275 1276 map = em->map_lookup; 1277 for (i = 0; i < map->num_stripes; i++) { 1278 u64 end; 1279 1280 if (map->stripes[i].dev != device) 1281 continue; 1282 if (map->stripes[i].physical >= physical_start + len || 1283 map->stripes[i].physical + em->orig_block_len <= 1284 physical_start) 1285 continue; 1286 /* 1287 * Make sure that while processing the pinned list we do 1288 * not override our *start with a lower value, because 1289 * we can have pinned chunks that fall within this 1290 * device hole and that have lower physical addresses 1291 * than the pending chunks we processed before. If we 1292 * do not take this special care we can end up getting 1293 * 2 pending chunks that start at the same physical 1294 * device offsets because the end offset of a pinned 1295 * chunk can be equal to the start offset of some 1296 * pending chunk. 1297 */ 1298 end = map->stripes[i].physical + em->orig_block_len; 1299 if (end > *start) { 1300 *start = end; 1301 ret = 1; 1302 } 1303 } 1304 } 1305 if (search_list != &fs_info->pinned_chunks) { 1306 search_list = &fs_info->pinned_chunks; 1307 goto again; 1308 } 1309 1310 return ret; 1311 } 1312 1313 1314 /* 1315 * find_free_dev_extent_start - find free space in the specified device 1316 * @device: the device which we search the free space in 1317 * @num_bytes: the size of the free space that we need 1318 * @search_start: the position from which to begin the search 1319 * @start: store the start of the free space. 1320 * @len: the size of the free space. that we find, or the size 1321 * of the max free space if we don't find suitable free space 1322 * 1323 * this uses a pretty simple search, the expectation is that it is 1324 * called very infrequently and that a given device has a small number 1325 * of extents 1326 * 1327 * @start is used to store the start of the free space if we find. But if we 1328 * don't find suitable free space, it will be used to store the start position 1329 * of the max free space. 1330 * 1331 * @len is used to store the size of the free space that we find. 1332 * But if we don't find suitable free space, it is used to store the size of 1333 * the max free space. 1334 */ 1335 int find_free_dev_extent_start(struct btrfs_transaction *transaction, 1336 struct btrfs_device *device, u64 num_bytes, 1337 u64 search_start, u64 *start, u64 *len) 1338 { 1339 struct btrfs_fs_info *fs_info = device->fs_info; 1340 struct btrfs_root *root = fs_info->dev_root; 1341 struct btrfs_key key; 1342 struct btrfs_dev_extent *dev_extent; 1343 struct btrfs_path *path; 1344 u64 hole_size; 1345 u64 max_hole_start; 1346 u64 max_hole_size; 1347 u64 extent_end; 1348 u64 search_end = device->total_bytes; 1349 int ret; 1350 int slot; 1351 struct extent_buffer *l; 1352 u64 min_search_start; 1353 1354 /* 1355 * We don't want to overwrite the superblock on the drive nor any area 1356 * used by the boot loader (grub for example), so we make sure to start 1357 * at an offset of at least 1MB. 1358 */ 1359 min_search_start = max(fs_info->alloc_start, 1024ull * 1024); 1360 search_start = max(search_start, min_search_start); 1361 1362 path = btrfs_alloc_path(); 1363 if (!path) 1364 return -ENOMEM; 1365 1366 max_hole_start = search_start; 1367 max_hole_size = 0; 1368 1369 again: 1370 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1371 ret = -ENOSPC; 1372 goto out; 1373 } 1374 1375 path->reada = READA_FORWARD; 1376 path->search_commit_root = 1; 1377 path->skip_locking = 1; 1378 1379 key.objectid = device->devid; 1380 key.offset = search_start; 1381 key.type = BTRFS_DEV_EXTENT_KEY; 1382 1383 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1384 if (ret < 0) 1385 goto out; 1386 if (ret > 0) { 1387 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1388 if (ret < 0) 1389 goto out; 1390 } 1391 1392 while (1) { 1393 l = path->nodes[0]; 1394 slot = path->slots[0]; 1395 if (slot >= btrfs_header_nritems(l)) { 1396 ret = btrfs_next_leaf(root, path); 1397 if (ret == 0) 1398 continue; 1399 if (ret < 0) 1400 goto out; 1401 1402 break; 1403 } 1404 btrfs_item_key_to_cpu(l, &key, slot); 1405 1406 if (key.objectid < device->devid) 1407 goto next; 1408 1409 if (key.objectid > device->devid) 1410 break; 1411 1412 if (key.type != BTRFS_DEV_EXTENT_KEY) 1413 goto next; 1414 1415 if (key.offset > search_start) { 1416 hole_size = key.offset - search_start; 1417 1418 /* 1419 * Have to check before we set max_hole_start, otherwise 1420 * we could end up sending back this offset anyway. 1421 */ 1422 if (contains_pending_extent(transaction, device, 1423 &search_start, 1424 hole_size)) { 1425 if (key.offset >= search_start) { 1426 hole_size = key.offset - search_start; 1427 } else { 1428 WARN_ON_ONCE(1); 1429 hole_size = 0; 1430 } 1431 } 1432 1433 if (hole_size > max_hole_size) { 1434 max_hole_start = search_start; 1435 max_hole_size = hole_size; 1436 } 1437 1438 /* 1439 * If this free space is greater than which we need, 1440 * it must be the max free space that we have found 1441 * until now, so max_hole_start must point to the start 1442 * of this free space and the length of this free space 1443 * is stored in max_hole_size. Thus, we return 1444 * max_hole_start and max_hole_size and go back to the 1445 * caller. 1446 */ 1447 if (hole_size >= num_bytes) { 1448 ret = 0; 1449 goto out; 1450 } 1451 } 1452 1453 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1454 extent_end = key.offset + btrfs_dev_extent_length(l, 1455 dev_extent); 1456 if (extent_end > search_start) 1457 search_start = extent_end; 1458 next: 1459 path->slots[0]++; 1460 cond_resched(); 1461 } 1462 1463 /* 1464 * At this point, search_start should be the end of 1465 * allocated dev extents, and when shrinking the device, 1466 * search_end may be smaller than search_start. 1467 */ 1468 if (search_end > search_start) { 1469 hole_size = search_end - search_start; 1470 1471 if (contains_pending_extent(transaction, device, &search_start, 1472 hole_size)) { 1473 btrfs_release_path(path); 1474 goto again; 1475 } 1476 1477 if (hole_size > max_hole_size) { 1478 max_hole_start = search_start; 1479 max_hole_size = hole_size; 1480 } 1481 } 1482 1483 /* See above. */ 1484 if (max_hole_size < num_bytes) 1485 ret = -ENOSPC; 1486 else 1487 ret = 0; 1488 1489 out: 1490 btrfs_free_path(path); 1491 *start = max_hole_start; 1492 if (len) 1493 *len = max_hole_size; 1494 return ret; 1495 } 1496 1497 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1498 struct btrfs_device *device, u64 num_bytes, 1499 u64 *start, u64 *len) 1500 { 1501 /* FIXME use last free of some kind */ 1502 return find_free_dev_extent_start(trans->transaction, device, 1503 num_bytes, 0, start, len); 1504 } 1505 1506 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1507 struct btrfs_device *device, 1508 u64 start, u64 *dev_extent_len) 1509 { 1510 struct btrfs_fs_info *fs_info = device->fs_info; 1511 struct btrfs_root *root = fs_info->dev_root; 1512 int ret; 1513 struct btrfs_path *path; 1514 struct btrfs_key key; 1515 struct btrfs_key found_key; 1516 struct extent_buffer *leaf = NULL; 1517 struct btrfs_dev_extent *extent = NULL; 1518 1519 path = btrfs_alloc_path(); 1520 if (!path) 1521 return -ENOMEM; 1522 1523 key.objectid = device->devid; 1524 key.offset = start; 1525 key.type = BTRFS_DEV_EXTENT_KEY; 1526 again: 1527 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1528 if (ret > 0) { 1529 ret = btrfs_previous_item(root, path, key.objectid, 1530 BTRFS_DEV_EXTENT_KEY); 1531 if (ret) 1532 goto out; 1533 leaf = path->nodes[0]; 1534 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1535 extent = btrfs_item_ptr(leaf, path->slots[0], 1536 struct btrfs_dev_extent); 1537 BUG_ON(found_key.offset > start || found_key.offset + 1538 btrfs_dev_extent_length(leaf, extent) < start); 1539 key = found_key; 1540 btrfs_release_path(path); 1541 goto again; 1542 } else if (ret == 0) { 1543 leaf = path->nodes[0]; 1544 extent = btrfs_item_ptr(leaf, path->slots[0], 1545 struct btrfs_dev_extent); 1546 } else { 1547 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1548 goto out; 1549 } 1550 1551 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1552 1553 ret = btrfs_del_item(trans, root, path); 1554 if (ret) { 1555 btrfs_handle_fs_error(fs_info, ret, 1556 "Failed to remove dev extent item"); 1557 } else { 1558 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1559 } 1560 out: 1561 btrfs_free_path(path); 1562 return ret; 1563 } 1564 1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1566 struct btrfs_device *device, 1567 u64 chunk_tree, u64 chunk_objectid, 1568 u64 chunk_offset, u64 start, u64 num_bytes) 1569 { 1570 int ret; 1571 struct btrfs_path *path; 1572 struct btrfs_fs_info *fs_info = device->fs_info; 1573 struct btrfs_root *root = fs_info->dev_root; 1574 struct btrfs_dev_extent *extent; 1575 struct extent_buffer *leaf; 1576 struct btrfs_key key; 1577 1578 WARN_ON(!device->in_fs_metadata); 1579 WARN_ON(device->is_tgtdev_for_dev_replace); 1580 path = btrfs_alloc_path(); 1581 if (!path) 1582 return -ENOMEM; 1583 1584 key.objectid = device->devid; 1585 key.offset = start; 1586 key.type = BTRFS_DEV_EXTENT_KEY; 1587 ret = btrfs_insert_empty_item(trans, root, path, &key, 1588 sizeof(*extent)); 1589 if (ret) 1590 goto out; 1591 1592 leaf = path->nodes[0]; 1593 extent = btrfs_item_ptr(leaf, path->slots[0], 1594 struct btrfs_dev_extent); 1595 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1596 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1597 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1598 1599 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 1600 1601 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1602 btrfs_mark_buffer_dirty(leaf); 1603 out: 1604 btrfs_free_path(path); 1605 return ret; 1606 } 1607 1608 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1609 { 1610 struct extent_map_tree *em_tree; 1611 struct extent_map *em; 1612 struct rb_node *n; 1613 u64 ret = 0; 1614 1615 em_tree = &fs_info->mapping_tree.map_tree; 1616 read_lock(&em_tree->lock); 1617 n = rb_last(&em_tree->map); 1618 if (n) { 1619 em = rb_entry(n, struct extent_map, rb_node); 1620 ret = em->start + em->len; 1621 } 1622 read_unlock(&em_tree->lock); 1623 1624 return ret; 1625 } 1626 1627 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1628 u64 *devid_ret) 1629 { 1630 int ret; 1631 struct btrfs_key key; 1632 struct btrfs_key found_key; 1633 struct btrfs_path *path; 1634 1635 path = btrfs_alloc_path(); 1636 if (!path) 1637 return -ENOMEM; 1638 1639 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1640 key.type = BTRFS_DEV_ITEM_KEY; 1641 key.offset = (u64)-1; 1642 1643 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1644 if (ret < 0) 1645 goto error; 1646 1647 BUG_ON(ret == 0); /* Corruption */ 1648 1649 ret = btrfs_previous_item(fs_info->chunk_root, path, 1650 BTRFS_DEV_ITEMS_OBJECTID, 1651 BTRFS_DEV_ITEM_KEY); 1652 if (ret) { 1653 *devid_ret = 1; 1654 } else { 1655 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1656 path->slots[0]); 1657 *devid_ret = found_key.offset + 1; 1658 } 1659 ret = 0; 1660 error: 1661 btrfs_free_path(path); 1662 return ret; 1663 } 1664 1665 /* 1666 * the device information is stored in the chunk root 1667 * the btrfs_device struct should be fully filled in 1668 */ 1669 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1670 struct btrfs_fs_info *fs_info, 1671 struct btrfs_device *device) 1672 { 1673 struct btrfs_root *root = fs_info->chunk_root; 1674 int ret; 1675 struct btrfs_path *path; 1676 struct btrfs_dev_item *dev_item; 1677 struct extent_buffer *leaf; 1678 struct btrfs_key key; 1679 unsigned long ptr; 1680 1681 path = btrfs_alloc_path(); 1682 if (!path) 1683 return -ENOMEM; 1684 1685 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1686 key.type = BTRFS_DEV_ITEM_KEY; 1687 key.offset = device->devid; 1688 1689 ret = btrfs_insert_empty_item(trans, root, path, &key, 1690 sizeof(*dev_item)); 1691 if (ret) 1692 goto out; 1693 1694 leaf = path->nodes[0]; 1695 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1696 1697 btrfs_set_device_id(leaf, dev_item, device->devid); 1698 btrfs_set_device_generation(leaf, dev_item, 0); 1699 btrfs_set_device_type(leaf, dev_item, device->type); 1700 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1701 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1702 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1703 btrfs_set_device_total_bytes(leaf, dev_item, 1704 btrfs_device_get_disk_total_bytes(device)); 1705 btrfs_set_device_bytes_used(leaf, dev_item, 1706 btrfs_device_get_bytes_used(device)); 1707 btrfs_set_device_group(leaf, dev_item, 0); 1708 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1709 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1710 btrfs_set_device_start_offset(leaf, dev_item, 0); 1711 1712 ptr = btrfs_device_uuid(dev_item); 1713 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1714 ptr = btrfs_device_fsid(dev_item); 1715 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1716 btrfs_mark_buffer_dirty(leaf); 1717 1718 ret = 0; 1719 out: 1720 btrfs_free_path(path); 1721 return ret; 1722 } 1723 1724 /* 1725 * Function to update ctime/mtime for a given device path. 1726 * Mainly used for ctime/mtime based probe like libblkid. 1727 */ 1728 static void update_dev_time(char *path_name) 1729 { 1730 struct file *filp; 1731 1732 filp = filp_open(path_name, O_RDWR, 0); 1733 if (IS_ERR(filp)) 1734 return; 1735 file_update_time(filp); 1736 filp_close(filp, NULL); 1737 } 1738 1739 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info, 1740 struct btrfs_device *device) 1741 { 1742 struct btrfs_root *root = fs_info->chunk_root; 1743 int ret; 1744 struct btrfs_path *path; 1745 struct btrfs_key key; 1746 struct btrfs_trans_handle *trans; 1747 1748 path = btrfs_alloc_path(); 1749 if (!path) 1750 return -ENOMEM; 1751 1752 trans = btrfs_start_transaction(root, 0); 1753 if (IS_ERR(trans)) { 1754 btrfs_free_path(path); 1755 return PTR_ERR(trans); 1756 } 1757 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1758 key.type = BTRFS_DEV_ITEM_KEY; 1759 key.offset = device->devid; 1760 1761 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1762 if (ret < 0) 1763 goto out; 1764 1765 if (ret > 0) { 1766 ret = -ENOENT; 1767 goto out; 1768 } 1769 1770 ret = btrfs_del_item(trans, root, path); 1771 if (ret) 1772 goto out; 1773 out: 1774 btrfs_free_path(path); 1775 btrfs_commit_transaction(trans); 1776 return ret; 1777 } 1778 1779 /* 1780 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1781 * filesystem. It's up to the caller to adjust that number regarding eg. device 1782 * replace. 1783 */ 1784 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1785 u64 num_devices) 1786 { 1787 u64 all_avail; 1788 unsigned seq; 1789 int i; 1790 1791 do { 1792 seq = read_seqbegin(&fs_info->profiles_lock); 1793 1794 all_avail = fs_info->avail_data_alloc_bits | 1795 fs_info->avail_system_alloc_bits | 1796 fs_info->avail_metadata_alloc_bits; 1797 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1798 1799 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1800 if (!(all_avail & btrfs_raid_group[i])) 1801 continue; 1802 1803 if (num_devices < btrfs_raid_array[i].devs_min) { 1804 int ret = btrfs_raid_mindev_error[i]; 1805 1806 if (ret) 1807 return ret; 1808 } 1809 } 1810 1811 return 0; 1812 } 1813 1814 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs, 1815 struct btrfs_device *device) 1816 { 1817 struct btrfs_device *next_device; 1818 1819 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1820 if (next_device != device && 1821 !next_device->missing && next_device->bdev) 1822 return next_device; 1823 } 1824 1825 return NULL; 1826 } 1827 1828 /* 1829 * Helper function to check if the given device is part of s_bdev / latest_bdev 1830 * and replace it with the provided or the next active device, in the context 1831 * where this function called, there should be always be another device (or 1832 * this_dev) which is active. 1833 */ 1834 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info, 1835 struct btrfs_device *device, struct btrfs_device *this_dev) 1836 { 1837 struct btrfs_device *next_device; 1838 1839 if (this_dev) 1840 next_device = this_dev; 1841 else 1842 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1843 device); 1844 ASSERT(next_device); 1845 1846 if (fs_info->sb->s_bdev && 1847 (fs_info->sb->s_bdev == device->bdev)) 1848 fs_info->sb->s_bdev = next_device->bdev; 1849 1850 if (fs_info->fs_devices->latest_bdev == device->bdev) 1851 fs_info->fs_devices->latest_bdev = next_device->bdev; 1852 } 1853 1854 int btrfs_rm_device(struct btrfs_fs_info *fs_info, char *device_path, u64 devid) 1855 { 1856 struct btrfs_device *device; 1857 struct btrfs_fs_devices *cur_devices; 1858 u64 num_devices; 1859 int ret = 0; 1860 bool clear_super = false; 1861 1862 mutex_lock(&uuid_mutex); 1863 1864 num_devices = fs_info->fs_devices->num_devices; 1865 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 1866 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 1867 WARN_ON(num_devices < 1); 1868 num_devices--; 1869 } 1870 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 1871 1872 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 1873 if (ret) 1874 goto out; 1875 1876 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path, 1877 &device); 1878 if (ret) 1879 goto out; 1880 1881 if (device->is_tgtdev_for_dev_replace) { 1882 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1883 goto out; 1884 } 1885 1886 if (device->writeable && fs_info->fs_devices->rw_devices == 1) { 1887 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1888 goto out; 1889 } 1890 1891 if (device->writeable) { 1892 mutex_lock(&fs_info->chunk_mutex); 1893 list_del_init(&device->dev_alloc_list); 1894 device->fs_devices->rw_devices--; 1895 mutex_unlock(&fs_info->chunk_mutex); 1896 clear_super = true; 1897 } 1898 1899 mutex_unlock(&uuid_mutex); 1900 ret = btrfs_shrink_device(device, 0); 1901 mutex_lock(&uuid_mutex); 1902 if (ret) 1903 goto error_undo; 1904 1905 /* 1906 * TODO: the superblock still includes this device in its num_devices 1907 * counter although write_all_supers() is not locked out. This 1908 * could give a filesystem state which requires a degraded mount. 1909 */ 1910 ret = btrfs_rm_dev_item(fs_info, device); 1911 if (ret) 1912 goto error_undo; 1913 1914 device->in_fs_metadata = 0; 1915 btrfs_scrub_cancel_dev(fs_info, device); 1916 1917 /* 1918 * the device list mutex makes sure that we don't change 1919 * the device list while someone else is writing out all 1920 * the device supers. Whoever is writing all supers, should 1921 * lock the device list mutex before getting the number of 1922 * devices in the super block (super_copy). Conversely, 1923 * whoever updates the number of devices in the super block 1924 * (super_copy) should hold the device list mutex. 1925 */ 1926 1927 cur_devices = device->fs_devices; 1928 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1929 list_del_rcu(&device->dev_list); 1930 1931 device->fs_devices->num_devices--; 1932 device->fs_devices->total_devices--; 1933 1934 if (device->missing) 1935 device->fs_devices->missing_devices--; 1936 1937 btrfs_assign_next_active_device(fs_info, device, NULL); 1938 1939 if (device->bdev) { 1940 device->fs_devices->open_devices--; 1941 /* remove sysfs entry */ 1942 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device); 1943 } 1944 1945 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 1946 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 1947 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1948 1949 /* 1950 * at this point, the device is zero sized and detached from 1951 * the devices list. All that's left is to zero out the old 1952 * supers and free the device. 1953 */ 1954 if (device->writeable) 1955 btrfs_scratch_superblocks(device->bdev, device->name->str); 1956 1957 btrfs_close_bdev(device); 1958 call_rcu(&device->rcu, free_device); 1959 1960 if (cur_devices->open_devices == 0) { 1961 struct btrfs_fs_devices *fs_devices; 1962 fs_devices = fs_info->fs_devices; 1963 while (fs_devices) { 1964 if (fs_devices->seed == cur_devices) { 1965 fs_devices->seed = cur_devices->seed; 1966 break; 1967 } 1968 fs_devices = fs_devices->seed; 1969 } 1970 cur_devices->seed = NULL; 1971 __btrfs_close_devices(cur_devices); 1972 free_fs_devices(cur_devices); 1973 } 1974 1975 fs_info->num_tolerated_disk_barrier_failures = 1976 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 1977 1978 out: 1979 mutex_unlock(&uuid_mutex); 1980 return ret; 1981 1982 error_undo: 1983 if (device->writeable) { 1984 mutex_lock(&fs_info->chunk_mutex); 1985 list_add(&device->dev_alloc_list, 1986 &fs_info->fs_devices->alloc_list); 1987 device->fs_devices->rw_devices++; 1988 mutex_unlock(&fs_info->chunk_mutex); 1989 } 1990 goto out; 1991 } 1992 1993 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info, 1994 struct btrfs_device *srcdev) 1995 { 1996 struct btrfs_fs_devices *fs_devices; 1997 1998 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 1999 2000 /* 2001 * in case of fs with no seed, srcdev->fs_devices will point 2002 * to fs_devices of fs_info. However when the dev being replaced is 2003 * a seed dev it will point to the seed's local fs_devices. In short 2004 * srcdev will have its correct fs_devices in both the cases. 2005 */ 2006 fs_devices = srcdev->fs_devices; 2007 2008 list_del_rcu(&srcdev->dev_list); 2009 list_del_rcu(&srcdev->dev_alloc_list); 2010 fs_devices->num_devices--; 2011 if (srcdev->missing) 2012 fs_devices->missing_devices--; 2013 2014 if (srcdev->writeable) 2015 fs_devices->rw_devices--; 2016 2017 if (srcdev->bdev) 2018 fs_devices->open_devices--; 2019 } 2020 2021 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 2022 struct btrfs_device *srcdev) 2023 { 2024 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2025 2026 if (srcdev->writeable) { 2027 /* zero out the old super if it is writable */ 2028 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); 2029 } 2030 2031 btrfs_close_bdev(srcdev); 2032 2033 call_rcu(&srcdev->rcu, free_device); 2034 2035 /* 2036 * unless fs_devices is seed fs, num_devices shouldn't go 2037 * zero 2038 */ 2039 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding); 2040 2041 /* if this is no devs we rather delete the fs_devices */ 2042 if (!fs_devices->num_devices) { 2043 struct btrfs_fs_devices *tmp_fs_devices; 2044 2045 tmp_fs_devices = fs_info->fs_devices; 2046 while (tmp_fs_devices) { 2047 if (tmp_fs_devices->seed == fs_devices) { 2048 tmp_fs_devices->seed = fs_devices->seed; 2049 break; 2050 } 2051 tmp_fs_devices = tmp_fs_devices->seed; 2052 } 2053 fs_devices->seed = NULL; 2054 __btrfs_close_devices(fs_devices); 2055 free_fs_devices(fs_devices); 2056 } 2057 } 2058 2059 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 2060 struct btrfs_device *tgtdev) 2061 { 2062 mutex_lock(&uuid_mutex); 2063 WARN_ON(!tgtdev); 2064 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2065 2066 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev); 2067 2068 if (tgtdev->bdev) 2069 fs_info->fs_devices->open_devices--; 2070 2071 fs_info->fs_devices->num_devices--; 2072 2073 btrfs_assign_next_active_device(fs_info, tgtdev, NULL); 2074 2075 list_del_rcu(&tgtdev->dev_list); 2076 2077 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2078 mutex_unlock(&uuid_mutex); 2079 2080 /* 2081 * The update_dev_time() with in btrfs_scratch_superblocks() 2082 * may lead to a call to btrfs_show_devname() which will try 2083 * to hold device_list_mutex. And here this device 2084 * is already out of device list, so we don't have to hold 2085 * the device_list_mutex lock. 2086 */ 2087 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); 2088 2089 btrfs_close_bdev(tgtdev); 2090 call_rcu(&tgtdev->rcu, free_device); 2091 } 2092 2093 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info, 2094 char *device_path, 2095 struct btrfs_device **device) 2096 { 2097 int ret = 0; 2098 struct btrfs_super_block *disk_super; 2099 u64 devid; 2100 u8 *dev_uuid; 2101 struct block_device *bdev; 2102 struct buffer_head *bh; 2103 2104 *device = NULL; 2105 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2106 fs_info->bdev_holder, 0, &bdev, &bh); 2107 if (ret) 2108 return ret; 2109 disk_super = (struct btrfs_super_block *)bh->b_data; 2110 devid = btrfs_stack_device_id(&disk_super->dev_item); 2111 dev_uuid = disk_super->dev_item.uuid; 2112 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid); 2113 brelse(bh); 2114 if (!*device) 2115 ret = -ENOENT; 2116 blkdev_put(bdev, FMODE_READ); 2117 return ret; 2118 } 2119 2120 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info, 2121 char *device_path, 2122 struct btrfs_device **device) 2123 { 2124 *device = NULL; 2125 if (strcmp(device_path, "missing") == 0) { 2126 struct list_head *devices; 2127 struct btrfs_device *tmp; 2128 2129 devices = &fs_info->fs_devices->devices; 2130 /* 2131 * It is safe to read the devices since the volume_mutex 2132 * is held by the caller. 2133 */ 2134 list_for_each_entry(tmp, devices, dev_list) { 2135 if (tmp->in_fs_metadata && !tmp->bdev) { 2136 *device = tmp; 2137 break; 2138 } 2139 } 2140 2141 if (!*device) 2142 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2143 2144 return 0; 2145 } else { 2146 return btrfs_find_device_by_path(fs_info, device_path, device); 2147 } 2148 } 2149 2150 /* 2151 * Lookup a device given by device id, or the path if the id is 0. 2152 */ 2153 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid, 2154 char *devpath, struct btrfs_device **device) 2155 { 2156 int ret; 2157 2158 if (devid) { 2159 ret = 0; 2160 *device = btrfs_find_device(fs_info, devid, NULL, NULL); 2161 if (!*device) 2162 ret = -ENOENT; 2163 } else { 2164 if (!devpath || !devpath[0]) 2165 return -EINVAL; 2166 2167 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath, 2168 device); 2169 } 2170 return ret; 2171 } 2172 2173 /* 2174 * does all the dirty work required for changing file system's UUID. 2175 */ 2176 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2177 { 2178 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2179 struct btrfs_fs_devices *old_devices; 2180 struct btrfs_fs_devices *seed_devices; 2181 struct btrfs_super_block *disk_super = fs_info->super_copy; 2182 struct btrfs_device *device; 2183 u64 super_flags; 2184 2185 BUG_ON(!mutex_is_locked(&uuid_mutex)); 2186 if (!fs_devices->seeding) 2187 return -EINVAL; 2188 2189 seed_devices = __alloc_fs_devices(); 2190 if (IS_ERR(seed_devices)) 2191 return PTR_ERR(seed_devices); 2192 2193 old_devices = clone_fs_devices(fs_devices); 2194 if (IS_ERR(old_devices)) { 2195 kfree(seed_devices); 2196 return PTR_ERR(old_devices); 2197 } 2198 2199 list_add(&old_devices->list, &fs_uuids); 2200 2201 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2202 seed_devices->opened = 1; 2203 INIT_LIST_HEAD(&seed_devices->devices); 2204 INIT_LIST_HEAD(&seed_devices->alloc_list); 2205 mutex_init(&seed_devices->device_list_mutex); 2206 2207 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2208 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2209 synchronize_rcu); 2210 list_for_each_entry(device, &seed_devices->devices, dev_list) 2211 device->fs_devices = seed_devices; 2212 2213 mutex_lock(&fs_info->chunk_mutex); 2214 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2215 mutex_unlock(&fs_info->chunk_mutex); 2216 2217 fs_devices->seeding = 0; 2218 fs_devices->num_devices = 0; 2219 fs_devices->open_devices = 0; 2220 fs_devices->missing_devices = 0; 2221 fs_devices->rotating = 0; 2222 fs_devices->seed = seed_devices; 2223 2224 generate_random_uuid(fs_devices->fsid); 2225 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2226 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2227 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2228 2229 super_flags = btrfs_super_flags(disk_super) & 2230 ~BTRFS_SUPER_FLAG_SEEDING; 2231 btrfs_set_super_flags(disk_super, super_flags); 2232 2233 return 0; 2234 } 2235 2236 /* 2237 * Store the expected generation for seed devices in device items. 2238 */ 2239 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2240 struct btrfs_fs_info *fs_info) 2241 { 2242 struct btrfs_root *root = fs_info->chunk_root; 2243 struct btrfs_path *path; 2244 struct extent_buffer *leaf; 2245 struct btrfs_dev_item *dev_item; 2246 struct btrfs_device *device; 2247 struct btrfs_key key; 2248 u8 fs_uuid[BTRFS_UUID_SIZE]; 2249 u8 dev_uuid[BTRFS_UUID_SIZE]; 2250 u64 devid; 2251 int ret; 2252 2253 path = btrfs_alloc_path(); 2254 if (!path) 2255 return -ENOMEM; 2256 2257 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2258 key.offset = 0; 2259 key.type = BTRFS_DEV_ITEM_KEY; 2260 2261 while (1) { 2262 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2263 if (ret < 0) 2264 goto error; 2265 2266 leaf = path->nodes[0]; 2267 next_slot: 2268 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2269 ret = btrfs_next_leaf(root, path); 2270 if (ret > 0) 2271 break; 2272 if (ret < 0) 2273 goto error; 2274 leaf = path->nodes[0]; 2275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2276 btrfs_release_path(path); 2277 continue; 2278 } 2279 2280 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2281 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2282 key.type != BTRFS_DEV_ITEM_KEY) 2283 break; 2284 2285 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2286 struct btrfs_dev_item); 2287 devid = btrfs_device_id(leaf, dev_item); 2288 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2289 BTRFS_UUID_SIZE); 2290 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2291 BTRFS_UUID_SIZE); 2292 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid); 2293 BUG_ON(!device); /* Logic error */ 2294 2295 if (device->fs_devices->seeding) { 2296 btrfs_set_device_generation(leaf, dev_item, 2297 device->generation); 2298 btrfs_mark_buffer_dirty(leaf); 2299 } 2300 2301 path->slots[0]++; 2302 goto next_slot; 2303 } 2304 ret = 0; 2305 error: 2306 btrfs_free_path(path); 2307 return ret; 2308 } 2309 2310 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, char *device_path) 2311 { 2312 struct btrfs_root *root = fs_info->dev_root; 2313 struct request_queue *q; 2314 struct btrfs_trans_handle *trans; 2315 struct btrfs_device *device; 2316 struct block_device *bdev; 2317 struct list_head *devices; 2318 struct super_block *sb = fs_info->sb; 2319 struct rcu_string *name; 2320 u64 tmp; 2321 int seeding_dev = 0; 2322 int ret = 0; 2323 2324 if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding) 2325 return -EROFS; 2326 2327 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2328 fs_info->bdev_holder); 2329 if (IS_ERR(bdev)) 2330 return PTR_ERR(bdev); 2331 2332 if (fs_info->fs_devices->seeding) { 2333 seeding_dev = 1; 2334 down_write(&sb->s_umount); 2335 mutex_lock(&uuid_mutex); 2336 } 2337 2338 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2339 2340 devices = &fs_info->fs_devices->devices; 2341 2342 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2343 list_for_each_entry(device, devices, dev_list) { 2344 if (device->bdev == bdev) { 2345 ret = -EEXIST; 2346 mutex_unlock( 2347 &fs_info->fs_devices->device_list_mutex); 2348 goto error; 2349 } 2350 } 2351 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2352 2353 device = btrfs_alloc_device(fs_info, NULL, NULL); 2354 if (IS_ERR(device)) { 2355 /* we can safely leave the fs_devices entry around */ 2356 ret = PTR_ERR(device); 2357 goto error; 2358 } 2359 2360 name = rcu_string_strdup(device_path, GFP_KERNEL); 2361 if (!name) { 2362 kfree(device); 2363 ret = -ENOMEM; 2364 goto error; 2365 } 2366 rcu_assign_pointer(device->name, name); 2367 2368 trans = btrfs_start_transaction(root, 0); 2369 if (IS_ERR(trans)) { 2370 rcu_string_free(device->name); 2371 kfree(device); 2372 ret = PTR_ERR(trans); 2373 goto error; 2374 } 2375 2376 q = bdev_get_queue(bdev); 2377 if (blk_queue_discard(q)) 2378 device->can_discard = 1; 2379 device->writeable = 1; 2380 device->generation = trans->transid; 2381 device->io_width = fs_info->sectorsize; 2382 device->io_align = fs_info->sectorsize; 2383 device->sector_size = fs_info->sectorsize; 2384 device->total_bytes = i_size_read(bdev->bd_inode); 2385 device->disk_total_bytes = device->total_bytes; 2386 device->commit_total_bytes = device->total_bytes; 2387 device->fs_info = fs_info; 2388 device->bdev = bdev; 2389 device->in_fs_metadata = 1; 2390 device->is_tgtdev_for_dev_replace = 0; 2391 device->mode = FMODE_EXCL; 2392 device->dev_stats_valid = 1; 2393 set_blocksize(device->bdev, 4096); 2394 2395 if (seeding_dev) { 2396 sb->s_flags &= ~MS_RDONLY; 2397 ret = btrfs_prepare_sprout(fs_info); 2398 BUG_ON(ret); /* -ENOMEM */ 2399 } 2400 2401 device->fs_devices = fs_info->fs_devices; 2402 2403 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2404 mutex_lock(&fs_info->chunk_mutex); 2405 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices); 2406 list_add(&device->dev_alloc_list, 2407 &fs_info->fs_devices->alloc_list); 2408 fs_info->fs_devices->num_devices++; 2409 fs_info->fs_devices->open_devices++; 2410 fs_info->fs_devices->rw_devices++; 2411 fs_info->fs_devices->total_devices++; 2412 fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2413 2414 spin_lock(&fs_info->free_chunk_lock); 2415 fs_info->free_chunk_space += device->total_bytes; 2416 spin_unlock(&fs_info->free_chunk_lock); 2417 2418 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2419 fs_info->fs_devices->rotating = 1; 2420 2421 tmp = btrfs_super_total_bytes(fs_info->super_copy); 2422 btrfs_set_super_total_bytes(fs_info->super_copy, 2423 tmp + device->total_bytes); 2424 2425 tmp = btrfs_super_num_devices(fs_info->super_copy); 2426 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1); 2427 2428 /* add sysfs device entry */ 2429 btrfs_sysfs_add_device_link(fs_info->fs_devices, device); 2430 2431 /* 2432 * we've got more storage, clear any full flags on the space 2433 * infos 2434 */ 2435 btrfs_clear_space_info_full(fs_info); 2436 2437 mutex_unlock(&fs_info->chunk_mutex); 2438 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2439 2440 if (seeding_dev) { 2441 mutex_lock(&fs_info->chunk_mutex); 2442 ret = init_first_rw_device(trans, fs_info); 2443 mutex_unlock(&fs_info->chunk_mutex); 2444 if (ret) { 2445 btrfs_abort_transaction(trans, ret); 2446 goto error_trans; 2447 } 2448 } 2449 2450 ret = btrfs_add_device(trans, fs_info, device); 2451 if (ret) { 2452 btrfs_abort_transaction(trans, ret); 2453 goto error_trans; 2454 } 2455 2456 if (seeding_dev) { 2457 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2458 2459 ret = btrfs_finish_sprout(trans, fs_info); 2460 if (ret) { 2461 btrfs_abort_transaction(trans, ret); 2462 goto error_trans; 2463 } 2464 2465 /* Sprouting would change fsid of the mounted root, 2466 * so rename the fsid on the sysfs 2467 */ 2468 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2469 fs_info->fsid); 2470 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf)) 2471 btrfs_warn(fs_info, 2472 "sysfs: failed to create fsid for sprout"); 2473 } 2474 2475 fs_info->num_tolerated_disk_barrier_failures = 2476 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2477 ret = btrfs_commit_transaction(trans); 2478 2479 if (seeding_dev) { 2480 mutex_unlock(&uuid_mutex); 2481 up_write(&sb->s_umount); 2482 2483 if (ret) /* transaction commit */ 2484 return ret; 2485 2486 ret = btrfs_relocate_sys_chunks(fs_info); 2487 if (ret < 0) 2488 btrfs_handle_fs_error(fs_info, ret, 2489 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2490 trans = btrfs_attach_transaction(root); 2491 if (IS_ERR(trans)) { 2492 if (PTR_ERR(trans) == -ENOENT) 2493 return 0; 2494 return PTR_ERR(trans); 2495 } 2496 ret = btrfs_commit_transaction(trans); 2497 } 2498 2499 /* Update ctime/mtime for libblkid */ 2500 update_dev_time(device_path); 2501 return ret; 2502 2503 error_trans: 2504 btrfs_end_transaction(trans); 2505 rcu_string_free(device->name); 2506 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device); 2507 kfree(device); 2508 error: 2509 blkdev_put(bdev, FMODE_EXCL); 2510 if (seeding_dev) { 2511 mutex_unlock(&uuid_mutex); 2512 up_write(&sb->s_umount); 2513 } 2514 return ret; 2515 } 2516 2517 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 2518 char *device_path, 2519 struct btrfs_device *srcdev, 2520 struct btrfs_device **device_out) 2521 { 2522 struct request_queue *q; 2523 struct btrfs_device *device; 2524 struct block_device *bdev; 2525 struct list_head *devices; 2526 struct rcu_string *name; 2527 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2528 int ret = 0; 2529 2530 *device_out = NULL; 2531 if (fs_info->fs_devices->seeding) { 2532 btrfs_err(fs_info, "the filesystem is a seed filesystem!"); 2533 return -EINVAL; 2534 } 2535 2536 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2537 fs_info->bdev_holder); 2538 if (IS_ERR(bdev)) { 2539 btrfs_err(fs_info, "target device %s is invalid!", device_path); 2540 return PTR_ERR(bdev); 2541 } 2542 2543 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2544 2545 devices = &fs_info->fs_devices->devices; 2546 list_for_each_entry(device, devices, dev_list) { 2547 if (device->bdev == bdev) { 2548 btrfs_err(fs_info, 2549 "target device is in the filesystem!"); 2550 ret = -EEXIST; 2551 goto error; 2552 } 2553 } 2554 2555 2556 if (i_size_read(bdev->bd_inode) < 2557 btrfs_device_get_total_bytes(srcdev)) { 2558 btrfs_err(fs_info, 2559 "target device is smaller than source device!"); 2560 ret = -EINVAL; 2561 goto error; 2562 } 2563 2564 2565 device = btrfs_alloc_device(NULL, &devid, NULL); 2566 if (IS_ERR(device)) { 2567 ret = PTR_ERR(device); 2568 goto error; 2569 } 2570 2571 name = rcu_string_strdup(device_path, GFP_NOFS); 2572 if (!name) { 2573 kfree(device); 2574 ret = -ENOMEM; 2575 goto error; 2576 } 2577 rcu_assign_pointer(device->name, name); 2578 2579 q = bdev_get_queue(bdev); 2580 if (blk_queue_discard(q)) 2581 device->can_discard = 1; 2582 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2583 device->writeable = 1; 2584 device->generation = 0; 2585 device->io_width = fs_info->sectorsize; 2586 device->io_align = fs_info->sectorsize; 2587 device->sector_size = fs_info->sectorsize; 2588 device->total_bytes = btrfs_device_get_total_bytes(srcdev); 2589 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev); 2590 device->bytes_used = btrfs_device_get_bytes_used(srcdev); 2591 ASSERT(list_empty(&srcdev->resized_list)); 2592 device->commit_total_bytes = srcdev->commit_total_bytes; 2593 device->commit_bytes_used = device->bytes_used; 2594 device->fs_info = fs_info; 2595 device->bdev = bdev; 2596 device->in_fs_metadata = 1; 2597 device->is_tgtdev_for_dev_replace = 1; 2598 device->mode = FMODE_EXCL; 2599 device->dev_stats_valid = 1; 2600 set_blocksize(device->bdev, 4096); 2601 device->fs_devices = fs_info->fs_devices; 2602 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2603 fs_info->fs_devices->num_devices++; 2604 fs_info->fs_devices->open_devices++; 2605 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2606 2607 *device_out = device; 2608 return ret; 2609 2610 error: 2611 blkdev_put(bdev, FMODE_EXCL); 2612 return ret; 2613 } 2614 2615 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2616 struct btrfs_device *tgtdev) 2617 { 2618 u32 sectorsize = fs_info->sectorsize; 2619 2620 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2621 tgtdev->io_width = sectorsize; 2622 tgtdev->io_align = sectorsize; 2623 tgtdev->sector_size = sectorsize; 2624 tgtdev->fs_info = fs_info; 2625 tgtdev->in_fs_metadata = 1; 2626 } 2627 2628 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2629 struct btrfs_device *device) 2630 { 2631 int ret; 2632 struct btrfs_path *path; 2633 struct btrfs_root *root = device->fs_info->chunk_root; 2634 struct btrfs_dev_item *dev_item; 2635 struct extent_buffer *leaf; 2636 struct btrfs_key key; 2637 2638 path = btrfs_alloc_path(); 2639 if (!path) 2640 return -ENOMEM; 2641 2642 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2643 key.type = BTRFS_DEV_ITEM_KEY; 2644 key.offset = device->devid; 2645 2646 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2647 if (ret < 0) 2648 goto out; 2649 2650 if (ret > 0) { 2651 ret = -ENOENT; 2652 goto out; 2653 } 2654 2655 leaf = path->nodes[0]; 2656 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2657 2658 btrfs_set_device_id(leaf, dev_item, device->devid); 2659 btrfs_set_device_type(leaf, dev_item, device->type); 2660 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2661 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2662 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2663 btrfs_set_device_total_bytes(leaf, dev_item, 2664 btrfs_device_get_disk_total_bytes(device)); 2665 btrfs_set_device_bytes_used(leaf, dev_item, 2666 btrfs_device_get_bytes_used(device)); 2667 btrfs_mark_buffer_dirty(leaf); 2668 2669 out: 2670 btrfs_free_path(path); 2671 return ret; 2672 } 2673 2674 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2675 struct btrfs_device *device, u64 new_size) 2676 { 2677 struct btrfs_fs_info *fs_info = device->fs_info; 2678 struct btrfs_super_block *super_copy = fs_info->super_copy; 2679 struct btrfs_fs_devices *fs_devices; 2680 u64 old_total; 2681 u64 diff; 2682 2683 if (!device->writeable) 2684 return -EACCES; 2685 2686 mutex_lock(&fs_info->chunk_mutex); 2687 old_total = btrfs_super_total_bytes(super_copy); 2688 diff = new_size - device->total_bytes; 2689 2690 if (new_size <= device->total_bytes || 2691 device->is_tgtdev_for_dev_replace) { 2692 mutex_unlock(&fs_info->chunk_mutex); 2693 return -EINVAL; 2694 } 2695 2696 fs_devices = fs_info->fs_devices; 2697 2698 btrfs_set_super_total_bytes(super_copy, old_total + diff); 2699 device->fs_devices->total_rw_bytes += diff; 2700 2701 btrfs_device_set_total_bytes(device, new_size); 2702 btrfs_device_set_disk_total_bytes(device, new_size); 2703 btrfs_clear_space_info_full(device->fs_info); 2704 if (list_empty(&device->resized_list)) 2705 list_add_tail(&device->resized_list, 2706 &fs_devices->resized_devices); 2707 mutex_unlock(&fs_info->chunk_mutex); 2708 2709 return btrfs_update_device(trans, device); 2710 } 2711 2712 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2713 struct btrfs_fs_info *fs_info, u64 chunk_objectid, 2714 u64 chunk_offset) 2715 { 2716 struct btrfs_root *root = fs_info->chunk_root; 2717 int ret; 2718 struct btrfs_path *path; 2719 struct btrfs_key key; 2720 2721 path = btrfs_alloc_path(); 2722 if (!path) 2723 return -ENOMEM; 2724 2725 key.objectid = chunk_objectid; 2726 key.offset = chunk_offset; 2727 key.type = BTRFS_CHUNK_ITEM_KEY; 2728 2729 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2730 if (ret < 0) 2731 goto out; 2732 else if (ret > 0) { /* Logic error or corruption */ 2733 btrfs_handle_fs_error(fs_info, -ENOENT, 2734 "Failed lookup while freeing chunk."); 2735 ret = -ENOENT; 2736 goto out; 2737 } 2738 2739 ret = btrfs_del_item(trans, root, path); 2740 if (ret < 0) 2741 btrfs_handle_fs_error(fs_info, ret, 2742 "Failed to delete chunk item."); 2743 out: 2744 btrfs_free_path(path); 2745 return ret; 2746 } 2747 2748 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, 2749 u64 chunk_objectid, u64 chunk_offset) 2750 { 2751 struct btrfs_super_block *super_copy = fs_info->super_copy; 2752 struct btrfs_disk_key *disk_key; 2753 struct btrfs_chunk *chunk; 2754 u8 *ptr; 2755 int ret = 0; 2756 u32 num_stripes; 2757 u32 array_size; 2758 u32 len = 0; 2759 u32 cur; 2760 struct btrfs_key key; 2761 2762 mutex_lock(&fs_info->chunk_mutex); 2763 array_size = btrfs_super_sys_array_size(super_copy); 2764 2765 ptr = super_copy->sys_chunk_array; 2766 cur = 0; 2767 2768 while (cur < array_size) { 2769 disk_key = (struct btrfs_disk_key *)ptr; 2770 btrfs_disk_key_to_cpu(&key, disk_key); 2771 2772 len = sizeof(*disk_key); 2773 2774 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2775 chunk = (struct btrfs_chunk *)(ptr + len); 2776 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2777 len += btrfs_chunk_item_size(num_stripes); 2778 } else { 2779 ret = -EIO; 2780 break; 2781 } 2782 if (key.objectid == chunk_objectid && 2783 key.offset == chunk_offset) { 2784 memmove(ptr, ptr + len, array_size - (cur + len)); 2785 array_size -= len; 2786 btrfs_set_super_sys_array_size(super_copy, array_size); 2787 } else { 2788 ptr += len; 2789 cur += len; 2790 } 2791 } 2792 mutex_unlock(&fs_info->chunk_mutex); 2793 return ret; 2794 } 2795 2796 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, 2797 struct btrfs_fs_info *fs_info, u64 chunk_offset) 2798 { 2799 struct extent_map_tree *em_tree; 2800 struct extent_map *em; 2801 struct map_lookup *map; 2802 u64 dev_extent_len = 0; 2803 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2804 int i, ret = 0; 2805 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2806 2807 em_tree = &fs_info->mapping_tree.map_tree; 2808 2809 read_lock(&em_tree->lock); 2810 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2811 read_unlock(&em_tree->lock); 2812 2813 if (!em || em->start > chunk_offset || 2814 em->start + em->len < chunk_offset) { 2815 /* 2816 * This is a logic error, but we don't want to just rely on the 2817 * user having built with ASSERT enabled, so if ASSERT doesn't 2818 * do anything we still error out. 2819 */ 2820 ASSERT(0); 2821 if (em) 2822 free_extent_map(em); 2823 return -EINVAL; 2824 } 2825 map = em->map_lookup; 2826 mutex_lock(&fs_info->chunk_mutex); 2827 check_system_chunk(trans, fs_info, map->type); 2828 mutex_unlock(&fs_info->chunk_mutex); 2829 2830 /* 2831 * Take the device list mutex to prevent races with the final phase of 2832 * a device replace operation that replaces the device object associated 2833 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2834 */ 2835 mutex_lock(&fs_devices->device_list_mutex); 2836 for (i = 0; i < map->num_stripes; i++) { 2837 struct btrfs_device *device = map->stripes[i].dev; 2838 ret = btrfs_free_dev_extent(trans, device, 2839 map->stripes[i].physical, 2840 &dev_extent_len); 2841 if (ret) { 2842 mutex_unlock(&fs_devices->device_list_mutex); 2843 btrfs_abort_transaction(trans, ret); 2844 goto out; 2845 } 2846 2847 if (device->bytes_used > 0) { 2848 mutex_lock(&fs_info->chunk_mutex); 2849 btrfs_device_set_bytes_used(device, 2850 device->bytes_used - dev_extent_len); 2851 spin_lock(&fs_info->free_chunk_lock); 2852 fs_info->free_chunk_space += dev_extent_len; 2853 spin_unlock(&fs_info->free_chunk_lock); 2854 btrfs_clear_space_info_full(fs_info); 2855 mutex_unlock(&fs_info->chunk_mutex); 2856 } 2857 2858 if (map->stripes[i].dev) { 2859 ret = btrfs_update_device(trans, map->stripes[i].dev); 2860 if (ret) { 2861 mutex_unlock(&fs_devices->device_list_mutex); 2862 btrfs_abort_transaction(trans, ret); 2863 goto out; 2864 } 2865 } 2866 } 2867 mutex_unlock(&fs_devices->device_list_mutex); 2868 2869 ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset); 2870 if (ret) { 2871 btrfs_abort_transaction(trans, ret); 2872 goto out; 2873 } 2874 2875 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 2876 2877 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2878 ret = btrfs_del_sys_chunk(fs_info, chunk_objectid, 2879 chunk_offset); 2880 if (ret) { 2881 btrfs_abort_transaction(trans, ret); 2882 goto out; 2883 } 2884 } 2885 2886 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em); 2887 if (ret) { 2888 btrfs_abort_transaction(trans, ret); 2889 goto out; 2890 } 2891 2892 out: 2893 /* once for us */ 2894 free_extent_map(em); 2895 return ret; 2896 } 2897 2898 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2899 { 2900 struct btrfs_root *root = fs_info->chunk_root; 2901 struct btrfs_trans_handle *trans; 2902 int ret; 2903 2904 /* 2905 * Prevent races with automatic removal of unused block groups. 2906 * After we relocate and before we remove the chunk with offset 2907 * chunk_offset, automatic removal of the block group can kick in, 2908 * resulting in a failure when calling btrfs_remove_chunk() below. 2909 * 2910 * Make sure to acquire this mutex before doing a tree search (dev 2911 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 2912 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 2913 * we release the path used to search the chunk/dev tree and before 2914 * the current task acquires this mutex and calls us. 2915 */ 2916 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex)); 2917 2918 ret = btrfs_can_relocate(fs_info, chunk_offset); 2919 if (ret) 2920 return -ENOSPC; 2921 2922 /* step one, relocate all the extents inside this chunk */ 2923 btrfs_scrub_pause(fs_info); 2924 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 2925 btrfs_scrub_continue(fs_info); 2926 if (ret) 2927 return ret; 2928 2929 trans = btrfs_start_trans_remove_block_group(root->fs_info, 2930 chunk_offset); 2931 if (IS_ERR(trans)) { 2932 ret = PTR_ERR(trans); 2933 btrfs_handle_fs_error(root->fs_info, ret, NULL); 2934 return ret; 2935 } 2936 2937 /* 2938 * step two, delete the device extents and the 2939 * chunk tree entries 2940 */ 2941 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset); 2942 btrfs_end_transaction(trans); 2943 return ret; 2944 } 2945 2946 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 2947 { 2948 struct btrfs_root *chunk_root = fs_info->chunk_root; 2949 struct btrfs_path *path; 2950 struct extent_buffer *leaf; 2951 struct btrfs_chunk *chunk; 2952 struct btrfs_key key; 2953 struct btrfs_key found_key; 2954 u64 chunk_type; 2955 bool retried = false; 2956 int failed = 0; 2957 int ret; 2958 2959 path = btrfs_alloc_path(); 2960 if (!path) 2961 return -ENOMEM; 2962 2963 again: 2964 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2965 key.offset = (u64)-1; 2966 key.type = BTRFS_CHUNK_ITEM_KEY; 2967 2968 while (1) { 2969 mutex_lock(&fs_info->delete_unused_bgs_mutex); 2970 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2971 if (ret < 0) { 2972 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 2973 goto error; 2974 } 2975 BUG_ON(ret == 0); /* Corruption */ 2976 2977 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2978 key.type); 2979 if (ret) 2980 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 2981 if (ret < 0) 2982 goto error; 2983 if (ret > 0) 2984 break; 2985 2986 leaf = path->nodes[0]; 2987 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2988 2989 chunk = btrfs_item_ptr(leaf, path->slots[0], 2990 struct btrfs_chunk); 2991 chunk_type = btrfs_chunk_type(leaf, chunk); 2992 btrfs_release_path(path); 2993 2994 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2995 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 2996 if (ret == -ENOSPC) 2997 failed++; 2998 else 2999 BUG_ON(ret); 3000 } 3001 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3002 3003 if (found_key.offset == 0) 3004 break; 3005 key.offset = found_key.offset - 1; 3006 } 3007 ret = 0; 3008 if (failed && !retried) { 3009 failed = 0; 3010 retried = true; 3011 goto again; 3012 } else if (WARN_ON(failed && retried)) { 3013 ret = -ENOSPC; 3014 } 3015 error: 3016 btrfs_free_path(path); 3017 return ret; 3018 } 3019 3020 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3021 struct btrfs_balance_control *bctl) 3022 { 3023 struct btrfs_root *root = fs_info->tree_root; 3024 struct btrfs_trans_handle *trans; 3025 struct btrfs_balance_item *item; 3026 struct btrfs_disk_balance_args disk_bargs; 3027 struct btrfs_path *path; 3028 struct extent_buffer *leaf; 3029 struct btrfs_key key; 3030 int ret, err; 3031 3032 path = btrfs_alloc_path(); 3033 if (!path) 3034 return -ENOMEM; 3035 3036 trans = btrfs_start_transaction(root, 0); 3037 if (IS_ERR(trans)) { 3038 btrfs_free_path(path); 3039 return PTR_ERR(trans); 3040 } 3041 3042 key.objectid = BTRFS_BALANCE_OBJECTID; 3043 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3044 key.offset = 0; 3045 3046 ret = btrfs_insert_empty_item(trans, root, path, &key, 3047 sizeof(*item)); 3048 if (ret) 3049 goto out; 3050 3051 leaf = path->nodes[0]; 3052 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3053 3054 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3055 3056 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3057 btrfs_set_balance_data(leaf, item, &disk_bargs); 3058 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3059 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3060 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3061 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3062 3063 btrfs_set_balance_flags(leaf, item, bctl->flags); 3064 3065 btrfs_mark_buffer_dirty(leaf); 3066 out: 3067 btrfs_free_path(path); 3068 err = btrfs_commit_transaction(trans); 3069 if (err && !ret) 3070 ret = err; 3071 return ret; 3072 } 3073 3074 static int del_balance_item(struct btrfs_fs_info *fs_info) 3075 { 3076 struct btrfs_root *root = fs_info->tree_root; 3077 struct btrfs_trans_handle *trans; 3078 struct btrfs_path *path; 3079 struct btrfs_key key; 3080 int ret, err; 3081 3082 path = btrfs_alloc_path(); 3083 if (!path) 3084 return -ENOMEM; 3085 3086 trans = btrfs_start_transaction(root, 0); 3087 if (IS_ERR(trans)) { 3088 btrfs_free_path(path); 3089 return PTR_ERR(trans); 3090 } 3091 3092 key.objectid = BTRFS_BALANCE_OBJECTID; 3093 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3094 key.offset = 0; 3095 3096 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3097 if (ret < 0) 3098 goto out; 3099 if (ret > 0) { 3100 ret = -ENOENT; 3101 goto out; 3102 } 3103 3104 ret = btrfs_del_item(trans, root, path); 3105 out: 3106 btrfs_free_path(path); 3107 err = btrfs_commit_transaction(trans); 3108 if (err && !ret) 3109 ret = err; 3110 return ret; 3111 } 3112 3113 /* 3114 * This is a heuristic used to reduce the number of chunks balanced on 3115 * resume after balance was interrupted. 3116 */ 3117 static void update_balance_args(struct btrfs_balance_control *bctl) 3118 { 3119 /* 3120 * Turn on soft mode for chunk types that were being converted. 3121 */ 3122 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3123 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3124 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3125 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3126 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3127 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3128 3129 /* 3130 * Turn on usage filter if is not already used. The idea is 3131 * that chunks that we have already balanced should be 3132 * reasonably full. Don't do it for chunks that are being 3133 * converted - that will keep us from relocating unconverted 3134 * (albeit full) chunks. 3135 */ 3136 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3137 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3138 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3139 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3140 bctl->data.usage = 90; 3141 } 3142 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3143 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3144 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3145 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3146 bctl->sys.usage = 90; 3147 } 3148 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3149 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3150 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3151 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3152 bctl->meta.usage = 90; 3153 } 3154 } 3155 3156 /* 3157 * Should be called with both balance and volume mutexes held to 3158 * serialize other volume operations (add_dev/rm_dev/resize) with 3159 * restriper. Same goes for unset_balance_control. 3160 */ 3161 static void set_balance_control(struct btrfs_balance_control *bctl) 3162 { 3163 struct btrfs_fs_info *fs_info = bctl->fs_info; 3164 3165 BUG_ON(fs_info->balance_ctl); 3166 3167 spin_lock(&fs_info->balance_lock); 3168 fs_info->balance_ctl = bctl; 3169 spin_unlock(&fs_info->balance_lock); 3170 } 3171 3172 static void unset_balance_control(struct btrfs_fs_info *fs_info) 3173 { 3174 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3175 3176 BUG_ON(!fs_info->balance_ctl); 3177 3178 spin_lock(&fs_info->balance_lock); 3179 fs_info->balance_ctl = NULL; 3180 spin_unlock(&fs_info->balance_lock); 3181 3182 kfree(bctl); 3183 } 3184 3185 /* 3186 * Balance filters. Return 1 if chunk should be filtered out 3187 * (should not be balanced). 3188 */ 3189 static int chunk_profiles_filter(u64 chunk_type, 3190 struct btrfs_balance_args *bargs) 3191 { 3192 chunk_type = chunk_to_extended(chunk_type) & 3193 BTRFS_EXTENDED_PROFILE_MASK; 3194 3195 if (bargs->profiles & chunk_type) 3196 return 0; 3197 3198 return 1; 3199 } 3200 3201 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3202 struct btrfs_balance_args *bargs) 3203 { 3204 struct btrfs_block_group_cache *cache; 3205 u64 chunk_used; 3206 u64 user_thresh_min; 3207 u64 user_thresh_max; 3208 int ret = 1; 3209 3210 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3211 chunk_used = btrfs_block_group_used(&cache->item); 3212 3213 if (bargs->usage_min == 0) 3214 user_thresh_min = 0; 3215 else 3216 user_thresh_min = div_factor_fine(cache->key.offset, 3217 bargs->usage_min); 3218 3219 if (bargs->usage_max == 0) 3220 user_thresh_max = 1; 3221 else if (bargs->usage_max > 100) 3222 user_thresh_max = cache->key.offset; 3223 else 3224 user_thresh_max = div_factor_fine(cache->key.offset, 3225 bargs->usage_max); 3226 3227 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3228 ret = 0; 3229 3230 btrfs_put_block_group(cache); 3231 return ret; 3232 } 3233 3234 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3235 u64 chunk_offset, struct btrfs_balance_args *bargs) 3236 { 3237 struct btrfs_block_group_cache *cache; 3238 u64 chunk_used, user_thresh; 3239 int ret = 1; 3240 3241 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3242 chunk_used = btrfs_block_group_used(&cache->item); 3243 3244 if (bargs->usage_min == 0) 3245 user_thresh = 1; 3246 else if (bargs->usage > 100) 3247 user_thresh = cache->key.offset; 3248 else 3249 user_thresh = div_factor_fine(cache->key.offset, 3250 bargs->usage); 3251 3252 if (chunk_used < user_thresh) 3253 ret = 0; 3254 3255 btrfs_put_block_group(cache); 3256 return ret; 3257 } 3258 3259 static int chunk_devid_filter(struct extent_buffer *leaf, 3260 struct btrfs_chunk *chunk, 3261 struct btrfs_balance_args *bargs) 3262 { 3263 struct btrfs_stripe *stripe; 3264 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3265 int i; 3266 3267 for (i = 0; i < num_stripes; i++) { 3268 stripe = btrfs_stripe_nr(chunk, i); 3269 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3270 return 0; 3271 } 3272 3273 return 1; 3274 } 3275 3276 /* [pstart, pend) */ 3277 static int chunk_drange_filter(struct extent_buffer *leaf, 3278 struct btrfs_chunk *chunk, 3279 u64 chunk_offset, 3280 struct btrfs_balance_args *bargs) 3281 { 3282 struct btrfs_stripe *stripe; 3283 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3284 u64 stripe_offset; 3285 u64 stripe_length; 3286 int factor; 3287 int i; 3288 3289 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3290 return 0; 3291 3292 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3293 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3294 factor = num_stripes / 2; 3295 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3296 factor = num_stripes - 1; 3297 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3298 factor = num_stripes - 2; 3299 } else { 3300 factor = num_stripes; 3301 } 3302 3303 for (i = 0; i < num_stripes; i++) { 3304 stripe = btrfs_stripe_nr(chunk, i); 3305 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3306 continue; 3307 3308 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3309 stripe_length = btrfs_chunk_length(leaf, chunk); 3310 stripe_length = div_u64(stripe_length, factor); 3311 3312 if (stripe_offset < bargs->pend && 3313 stripe_offset + stripe_length > bargs->pstart) 3314 return 0; 3315 } 3316 3317 return 1; 3318 } 3319 3320 /* [vstart, vend) */ 3321 static int chunk_vrange_filter(struct extent_buffer *leaf, 3322 struct btrfs_chunk *chunk, 3323 u64 chunk_offset, 3324 struct btrfs_balance_args *bargs) 3325 { 3326 if (chunk_offset < bargs->vend && 3327 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3328 /* at least part of the chunk is inside this vrange */ 3329 return 0; 3330 3331 return 1; 3332 } 3333 3334 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3335 struct btrfs_chunk *chunk, 3336 struct btrfs_balance_args *bargs) 3337 { 3338 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3339 3340 if (bargs->stripes_min <= num_stripes 3341 && num_stripes <= bargs->stripes_max) 3342 return 0; 3343 3344 return 1; 3345 } 3346 3347 static int chunk_soft_convert_filter(u64 chunk_type, 3348 struct btrfs_balance_args *bargs) 3349 { 3350 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3351 return 0; 3352 3353 chunk_type = chunk_to_extended(chunk_type) & 3354 BTRFS_EXTENDED_PROFILE_MASK; 3355 3356 if (bargs->target == chunk_type) 3357 return 1; 3358 3359 return 0; 3360 } 3361 3362 static int should_balance_chunk(struct btrfs_fs_info *fs_info, 3363 struct extent_buffer *leaf, 3364 struct btrfs_chunk *chunk, u64 chunk_offset) 3365 { 3366 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3367 struct btrfs_balance_args *bargs = NULL; 3368 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3369 3370 /* type filter */ 3371 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3372 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3373 return 0; 3374 } 3375 3376 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3377 bargs = &bctl->data; 3378 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3379 bargs = &bctl->sys; 3380 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3381 bargs = &bctl->meta; 3382 3383 /* profiles filter */ 3384 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3385 chunk_profiles_filter(chunk_type, bargs)) { 3386 return 0; 3387 } 3388 3389 /* usage filter */ 3390 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3391 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3392 return 0; 3393 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3394 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3395 return 0; 3396 } 3397 3398 /* devid filter */ 3399 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3400 chunk_devid_filter(leaf, chunk, bargs)) { 3401 return 0; 3402 } 3403 3404 /* drange filter, makes sense only with devid filter */ 3405 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3406 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 3407 return 0; 3408 } 3409 3410 /* vrange filter */ 3411 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3412 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3413 return 0; 3414 } 3415 3416 /* stripes filter */ 3417 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3418 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3419 return 0; 3420 } 3421 3422 /* soft profile changing mode */ 3423 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3424 chunk_soft_convert_filter(chunk_type, bargs)) { 3425 return 0; 3426 } 3427 3428 /* 3429 * limited by count, must be the last filter 3430 */ 3431 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3432 if (bargs->limit == 0) 3433 return 0; 3434 else 3435 bargs->limit--; 3436 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3437 /* 3438 * Same logic as the 'limit' filter; the minimum cannot be 3439 * determined here because we do not have the global information 3440 * about the count of all chunks that satisfy the filters. 3441 */ 3442 if (bargs->limit_max == 0) 3443 return 0; 3444 else 3445 bargs->limit_max--; 3446 } 3447 3448 return 1; 3449 } 3450 3451 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3452 { 3453 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3454 struct btrfs_root *chunk_root = fs_info->chunk_root; 3455 struct btrfs_root *dev_root = fs_info->dev_root; 3456 struct list_head *devices; 3457 struct btrfs_device *device; 3458 u64 old_size; 3459 u64 size_to_free; 3460 u64 chunk_type; 3461 struct btrfs_chunk *chunk; 3462 struct btrfs_path *path = NULL; 3463 struct btrfs_key key; 3464 struct btrfs_key found_key; 3465 struct btrfs_trans_handle *trans; 3466 struct extent_buffer *leaf; 3467 int slot; 3468 int ret; 3469 int enospc_errors = 0; 3470 bool counting = true; 3471 /* The single value limit and min/max limits use the same bytes in the */ 3472 u64 limit_data = bctl->data.limit; 3473 u64 limit_meta = bctl->meta.limit; 3474 u64 limit_sys = bctl->sys.limit; 3475 u32 count_data = 0; 3476 u32 count_meta = 0; 3477 u32 count_sys = 0; 3478 int chunk_reserved = 0; 3479 u64 bytes_used = 0; 3480 3481 /* step one make some room on all the devices */ 3482 devices = &fs_info->fs_devices->devices; 3483 list_for_each_entry(device, devices, dev_list) { 3484 old_size = btrfs_device_get_total_bytes(device); 3485 size_to_free = div_factor(old_size, 1); 3486 size_to_free = min_t(u64, size_to_free, SZ_1M); 3487 if (!device->writeable || 3488 btrfs_device_get_total_bytes(device) - 3489 btrfs_device_get_bytes_used(device) > size_to_free || 3490 device->is_tgtdev_for_dev_replace) 3491 continue; 3492 3493 ret = btrfs_shrink_device(device, old_size - size_to_free); 3494 if (ret == -ENOSPC) 3495 break; 3496 if (ret) { 3497 /* btrfs_shrink_device never returns ret > 0 */ 3498 WARN_ON(ret > 0); 3499 goto error; 3500 } 3501 3502 trans = btrfs_start_transaction(dev_root, 0); 3503 if (IS_ERR(trans)) { 3504 ret = PTR_ERR(trans); 3505 btrfs_info_in_rcu(fs_info, 3506 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu", 3507 rcu_str_deref(device->name), ret, 3508 old_size, old_size - size_to_free); 3509 goto error; 3510 } 3511 3512 ret = btrfs_grow_device(trans, device, old_size); 3513 if (ret) { 3514 btrfs_end_transaction(trans); 3515 /* btrfs_grow_device never returns ret > 0 */ 3516 WARN_ON(ret > 0); 3517 btrfs_info_in_rcu(fs_info, 3518 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu", 3519 rcu_str_deref(device->name), ret, 3520 old_size, old_size - size_to_free); 3521 goto error; 3522 } 3523 3524 btrfs_end_transaction(trans); 3525 } 3526 3527 /* step two, relocate all the chunks */ 3528 path = btrfs_alloc_path(); 3529 if (!path) { 3530 ret = -ENOMEM; 3531 goto error; 3532 } 3533 3534 /* zero out stat counters */ 3535 spin_lock(&fs_info->balance_lock); 3536 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3537 spin_unlock(&fs_info->balance_lock); 3538 again: 3539 if (!counting) { 3540 /* 3541 * The single value limit and min/max limits use the same bytes 3542 * in the 3543 */ 3544 bctl->data.limit = limit_data; 3545 bctl->meta.limit = limit_meta; 3546 bctl->sys.limit = limit_sys; 3547 } 3548 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3549 key.offset = (u64)-1; 3550 key.type = BTRFS_CHUNK_ITEM_KEY; 3551 3552 while (1) { 3553 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3554 atomic_read(&fs_info->balance_cancel_req)) { 3555 ret = -ECANCELED; 3556 goto error; 3557 } 3558 3559 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3560 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3561 if (ret < 0) { 3562 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3563 goto error; 3564 } 3565 3566 /* 3567 * this shouldn't happen, it means the last relocate 3568 * failed 3569 */ 3570 if (ret == 0) 3571 BUG(); /* FIXME break ? */ 3572 3573 ret = btrfs_previous_item(chunk_root, path, 0, 3574 BTRFS_CHUNK_ITEM_KEY); 3575 if (ret) { 3576 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3577 ret = 0; 3578 break; 3579 } 3580 3581 leaf = path->nodes[0]; 3582 slot = path->slots[0]; 3583 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3584 3585 if (found_key.objectid != key.objectid) { 3586 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3587 break; 3588 } 3589 3590 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3591 chunk_type = btrfs_chunk_type(leaf, chunk); 3592 3593 if (!counting) { 3594 spin_lock(&fs_info->balance_lock); 3595 bctl->stat.considered++; 3596 spin_unlock(&fs_info->balance_lock); 3597 } 3598 3599 ret = should_balance_chunk(fs_info, leaf, chunk, 3600 found_key.offset); 3601 3602 btrfs_release_path(path); 3603 if (!ret) { 3604 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3605 goto loop; 3606 } 3607 3608 if (counting) { 3609 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3610 spin_lock(&fs_info->balance_lock); 3611 bctl->stat.expected++; 3612 spin_unlock(&fs_info->balance_lock); 3613 3614 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3615 count_data++; 3616 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3617 count_sys++; 3618 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3619 count_meta++; 3620 3621 goto loop; 3622 } 3623 3624 /* 3625 * Apply limit_min filter, no need to check if the LIMITS 3626 * filter is used, limit_min is 0 by default 3627 */ 3628 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3629 count_data < bctl->data.limit_min) 3630 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3631 count_meta < bctl->meta.limit_min) 3632 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3633 count_sys < bctl->sys.limit_min)) { 3634 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3635 goto loop; 3636 } 3637 3638 ASSERT(fs_info->data_sinfo); 3639 spin_lock(&fs_info->data_sinfo->lock); 3640 bytes_used = fs_info->data_sinfo->bytes_used; 3641 spin_unlock(&fs_info->data_sinfo->lock); 3642 3643 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3644 !chunk_reserved && !bytes_used) { 3645 trans = btrfs_start_transaction(chunk_root, 0); 3646 if (IS_ERR(trans)) { 3647 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3648 ret = PTR_ERR(trans); 3649 goto error; 3650 } 3651 3652 ret = btrfs_force_chunk_alloc(trans, fs_info, 3653 BTRFS_BLOCK_GROUP_DATA); 3654 btrfs_end_transaction(trans); 3655 if (ret < 0) { 3656 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3657 goto error; 3658 } 3659 chunk_reserved = 1; 3660 } 3661 3662 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3663 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3664 if (ret && ret != -ENOSPC) 3665 goto error; 3666 if (ret == -ENOSPC) { 3667 enospc_errors++; 3668 } else { 3669 spin_lock(&fs_info->balance_lock); 3670 bctl->stat.completed++; 3671 spin_unlock(&fs_info->balance_lock); 3672 } 3673 loop: 3674 if (found_key.offset == 0) 3675 break; 3676 key.offset = found_key.offset - 1; 3677 } 3678 3679 if (counting) { 3680 btrfs_release_path(path); 3681 counting = false; 3682 goto again; 3683 } 3684 error: 3685 btrfs_free_path(path); 3686 if (enospc_errors) { 3687 btrfs_info(fs_info, "%d enospc errors during balance", 3688 enospc_errors); 3689 if (!ret) 3690 ret = -ENOSPC; 3691 } 3692 3693 return ret; 3694 } 3695 3696 /** 3697 * alloc_profile_is_valid - see if a given profile is valid and reduced 3698 * @flags: profile to validate 3699 * @extended: if true @flags is treated as an extended profile 3700 */ 3701 static int alloc_profile_is_valid(u64 flags, int extended) 3702 { 3703 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3704 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3705 3706 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3707 3708 /* 1) check that all other bits are zeroed */ 3709 if (flags & ~mask) 3710 return 0; 3711 3712 /* 2) see if profile is reduced */ 3713 if (flags == 0) 3714 return !extended; /* "0" is valid for usual profiles */ 3715 3716 /* true if exactly one bit set */ 3717 return (flags & (flags - 1)) == 0; 3718 } 3719 3720 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3721 { 3722 /* cancel requested || normal exit path */ 3723 return atomic_read(&fs_info->balance_cancel_req) || 3724 (atomic_read(&fs_info->balance_pause_req) == 0 && 3725 atomic_read(&fs_info->balance_cancel_req) == 0); 3726 } 3727 3728 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3729 { 3730 int ret; 3731 3732 unset_balance_control(fs_info); 3733 ret = del_balance_item(fs_info); 3734 if (ret) 3735 btrfs_handle_fs_error(fs_info, ret, NULL); 3736 3737 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3738 } 3739 3740 /* Non-zero return value signifies invalidity */ 3741 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3742 u64 allowed) 3743 { 3744 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3745 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3746 (bctl_arg->target & ~allowed))); 3747 } 3748 3749 /* 3750 * Should be called with both balance and volume mutexes held 3751 */ 3752 int btrfs_balance(struct btrfs_balance_control *bctl, 3753 struct btrfs_ioctl_balance_args *bargs) 3754 { 3755 struct btrfs_fs_info *fs_info = bctl->fs_info; 3756 u64 allowed; 3757 int mixed = 0; 3758 int ret; 3759 u64 num_devices; 3760 unsigned seq; 3761 3762 if (btrfs_fs_closing(fs_info) || 3763 atomic_read(&fs_info->balance_pause_req) || 3764 atomic_read(&fs_info->balance_cancel_req)) { 3765 ret = -EINVAL; 3766 goto out; 3767 } 3768 3769 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3770 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3771 mixed = 1; 3772 3773 /* 3774 * In case of mixed groups both data and meta should be picked, 3775 * and identical options should be given for both of them. 3776 */ 3777 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3778 if (mixed && (bctl->flags & allowed)) { 3779 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3780 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3781 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3782 btrfs_err(fs_info, 3783 "with mixed groups data and metadata balance options must be the same"); 3784 ret = -EINVAL; 3785 goto out; 3786 } 3787 } 3788 3789 num_devices = fs_info->fs_devices->num_devices; 3790 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 3791 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3792 BUG_ON(num_devices < 1); 3793 num_devices--; 3794 } 3795 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 3796 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP; 3797 if (num_devices > 1) 3798 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3799 if (num_devices > 2) 3800 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3801 if (num_devices > 3) 3802 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3803 BTRFS_BLOCK_GROUP_RAID6); 3804 if (validate_convert_profile(&bctl->data, allowed)) { 3805 btrfs_err(fs_info, 3806 "unable to start balance with target data profile %llu", 3807 bctl->data.target); 3808 ret = -EINVAL; 3809 goto out; 3810 } 3811 if (validate_convert_profile(&bctl->meta, allowed)) { 3812 btrfs_err(fs_info, 3813 "unable to start balance with target metadata profile %llu", 3814 bctl->meta.target); 3815 ret = -EINVAL; 3816 goto out; 3817 } 3818 if (validate_convert_profile(&bctl->sys, allowed)) { 3819 btrfs_err(fs_info, 3820 "unable to start balance with target system profile %llu", 3821 bctl->sys.target); 3822 ret = -EINVAL; 3823 goto out; 3824 } 3825 3826 /* allow to reduce meta or sys integrity only if force set */ 3827 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3828 BTRFS_BLOCK_GROUP_RAID10 | 3829 BTRFS_BLOCK_GROUP_RAID5 | 3830 BTRFS_BLOCK_GROUP_RAID6; 3831 do { 3832 seq = read_seqbegin(&fs_info->profiles_lock); 3833 3834 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3835 (fs_info->avail_system_alloc_bits & allowed) && 3836 !(bctl->sys.target & allowed)) || 3837 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3838 (fs_info->avail_metadata_alloc_bits & allowed) && 3839 !(bctl->meta.target & allowed))) { 3840 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3841 btrfs_info(fs_info, 3842 "force reducing metadata integrity"); 3843 } else { 3844 btrfs_err(fs_info, 3845 "balance will reduce metadata integrity, use force if you want this"); 3846 ret = -EINVAL; 3847 goto out; 3848 } 3849 } 3850 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3851 3852 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) < 3853 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) { 3854 btrfs_warn(fs_info, 3855 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx", 3856 bctl->meta.target, bctl->data.target); 3857 } 3858 3859 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3860 fs_info->num_tolerated_disk_barrier_failures = min( 3861 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info), 3862 btrfs_get_num_tolerated_disk_barrier_failures( 3863 bctl->sys.target)); 3864 } 3865 3866 ret = insert_balance_item(fs_info, bctl); 3867 if (ret && ret != -EEXIST) 3868 goto out; 3869 3870 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3871 BUG_ON(ret == -EEXIST); 3872 set_balance_control(bctl); 3873 } else { 3874 BUG_ON(ret != -EEXIST); 3875 spin_lock(&fs_info->balance_lock); 3876 update_balance_args(bctl); 3877 spin_unlock(&fs_info->balance_lock); 3878 } 3879 3880 atomic_inc(&fs_info->balance_running); 3881 mutex_unlock(&fs_info->balance_mutex); 3882 3883 ret = __btrfs_balance(fs_info); 3884 3885 mutex_lock(&fs_info->balance_mutex); 3886 atomic_dec(&fs_info->balance_running); 3887 3888 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3889 fs_info->num_tolerated_disk_barrier_failures = 3890 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3891 } 3892 3893 if (bargs) { 3894 memset(bargs, 0, sizeof(*bargs)); 3895 update_ioctl_balance_args(fs_info, 0, bargs); 3896 } 3897 3898 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3899 balance_need_close(fs_info)) { 3900 __cancel_balance(fs_info); 3901 } 3902 3903 wake_up(&fs_info->balance_wait_q); 3904 3905 return ret; 3906 out: 3907 if (bctl->flags & BTRFS_BALANCE_RESUME) 3908 __cancel_balance(fs_info); 3909 else { 3910 kfree(bctl); 3911 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3912 } 3913 return ret; 3914 } 3915 3916 static int balance_kthread(void *data) 3917 { 3918 struct btrfs_fs_info *fs_info = data; 3919 int ret = 0; 3920 3921 mutex_lock(&fs_info->volume_mutex); 3922 mutex_lock(&fs_info->balance_mutex); 3923 3924 if (fs_info->balance_ctl) { 3925 btrfs_info(fs_info, "continuing balance"); 3926 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3927 } 3928 3929 mutex_unlock(&fs_info->balance_mutex); 3930 mutex_unlock(&fs_info->volume_mutex); 3931 3932 return ret; 3933 } 3934 3935 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3936 { 3937 struct task_struct *tsk; 3938 3939 spin_lock(&fs_info->balance_lock); 3940 if (!fs_info->balance_ctl) { 3941 spin_unlock(&fs_info->balance_lock); 3942 return 0; 3943 } 3944 spin_unlock(&fs_info->balance_lock); 3945 3946 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 3947 btrfs_info(fs_info, "force skipping balance"); 3948 return 0; 3949 } 3950 3951 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3952 return PTR_ERR_OR_ZERO(tsk); 3953 } 3954 3955 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3956 { 3957 struct btrfs_balance_control *bctl; 3958 struct btrfs_balance_item *item; 3959 struct btrfs_disk_balance_args disk_bargs; 3960 struct btrfs_path *path; 3961 struct extent_buffer *leaf; 3962 struct btrfs_key key; 3963 int ret; 3964 3965 path = btrfs_alloc_path(); 3966 if (!path) 3967 return -ENOMEM; 3968 3969 key.objectid = BTRFS_BALANCE_OBJECTID; 3970 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3971 key.offset = 0; 3972 3973 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3974 if (ret < 0) 3975 goto out; 3976 if (ret > 0) { /* ret = -ENOENT; */ 3977 ret = 0; 3978 goto out; 3979 } 3980 3981 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3982 if (!bctl) { 3983 ret = -ENOMEM; 3984 goto out; 3985 } 3986 3987 leaf = path->nodes[0]; 3988 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3989 3990 bctl->fs_info = fs_info; 3991 bctl->flags = btrfs_balance_flags(leaf, item); 3992 bctl->flags |= BTRFS_BALANCE_RESUME; 3993 3994 btrfs_balance_data(leaf, item, &disk_bargs); 3995 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 3996 btrfs_balance_meta(leaf, item, &disk_bargs); 3997 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 3998 btrfs_balance_sys(leaf, item, &disk_bargs); 3999 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4000 4001 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); 4002 4003 mutex_lock(&fs_info->volume_mutex); 4004 mutex_lock(&fs_info->balance_mutex); 4005 4006 set_balance_control(bctl); 4007 4008 mutex_unlock(&fs_info->balance_mutex); 4009 mutex_unlock(&fs_info->volume_mutex); 4010 out: 4011 btrfs_free_path(path); 4012 return ret; 4013 } 4014 4015 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4016 { 4017 int ret = 0; 4018 4019 mutex_lock(&fs_info->balance_mutex); 4020 if (!fs_info->balance_ctl) { 4021 mutex_unlock(&fs_info->balance_mutex); 4022 return -ENOTCONN; 4023 } 4024 4025 if (atomic_read(&fs_info->balance_running)) { 4026 atomic_inc(&fs_info->balance_pause_req); 4027 mutex_unlock(&fs_info->balance_mutex); 4028 4029 wait_event(fs_info->balance_wait_q, 4030 atomic_read(&fs_info->balance_running) == 0); 4031 4032 mutex_lock(&fs_info->balance_mutex); 4033 /* we are good with balance_ctl ripped off from under us */ 4034 BUG_ON(atomic_read(&fs_info->balance_running)); 4035 atomic_dec(&fs_info->balance_pause_req); 4036 } else { 4037 ret = -ENOTCONN; 4038 } 4039 4040 mutex_unlock(&fs_info->balance_mutex); 4041 return ret; 4042 } 4043 4044 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4045 { 4046 if (fs_info->sb->s_flags & MS_RDONLY) 4047 return -EROFS; 4048 4049 mutex_lock(&fs_info->balance_mutex); 4050 if (!fs_info->balance_ctl) { 4051 mutex_unlock(&fs_info->balance_mutex); 4052 return -ENOTCONN; 4053 } 4054 4055 atomic_inc(&fs_info->balance_cancel_req); 4056 /* 4057 * if we are running just wait and return, balance item is 4058 * deleted in btrfs_balance in this case 4059 */ 4060 if (atomic_read(&fs_info->balance_running)) { 4061 mutex_unlock(&fs_info->balance_mutex); 4062 wait_event(fs_info->balance_wait_q, 4063 atomic_read(&fs_info->balance_running) == 0); 4064 mutex_lock(&fs_info->balance_mutex); 4065 } else { 4066 /* __cancel_balance needs volume_mutex */ 4067 mutex_unlock(&fs_info->balance_mutex); 4068 mutex_lock(&fs_info->volume_mutex); 4069 mutex_lock(&fs_info->balance_mutex); 4070 4071 if (fs_info->balance_ctl) 4072 __cancel_balance(fs_info); 4073 4074 mutex_unlock(&fs_info->volume_mutex); 4075 } 4076 4077 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 4078 atomic_dec(&fs_info->balance_cancel_req); 4079 mutex_unlock(&fs_info->balance_mutex); 4080 return 0; 4081 } 4082 4083 static int btrfs_uuid_scan_kthread(void *data) 4084 { 4085 struct btrfs_fs_info *fs_info = data; 4086 struct btrfs_root *root = fs_info->tree_root; 4087 struct btrfs_key key; 4088 struct btrfs_key max_key; 4089 struct btrfs_path *path = NULL; 4090 int ret = 0; 4091 struct extent_buffer *eb; 4092 int slot; 4093 struct btrfs_root_item root_item; 4094 u32 item_size; 4095 struct btrfs_trans_handle *trans = NULL; 4096 4097 path = btrfs_alloc_path(); 4098 if (!path) { 4099 ret = -ENOMEM; 4100 goto out; 4101 } 4102 4103 key.objectid = 0; 4104 key.type = BTRFS_ROOT_ITEM_KEY; 4105 key.offset = 0; 4106 4107 max_key.objectid = (u64)-1; 4108 max_key.type = BTRFS_ROOT_ITEM_KEY; 4109 max_key.offset = (u64)-1; 4110 4111 while (1) { 4112 ret = btrfs_search_forward(root, &key, path, 0); 4113 if (ret) { 4114 if (ret > 0) 4115 ret = 0; 4116 break; 4117 } 4118 4119 if (key.type != BTRFS_ROOT_ITEM_KEY || 4120 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4121 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4122 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4123 goto skip; 4124 4125 eb = path->nodes[0]; 4126 slot = path->slots[0]; 4127 item_size = btrfs_item_size_nr(eb, slot); 4128 if (item_size < sizeof(root_item)) 4129 goto skip; 4130 4131 read_extent_buffer(eb, &root_item, 4132 btrfs_item_ptr_offset(eb, slot), 4133 (int)sizeof(root_item)); 4134 if (btrfs_root_refs(&root_item) == 0) 4135 goto skip; 4136 4137 if (!btrfs_is_empty_uuid(root_item.uuid) || 4138 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4139 if (trans) 4140 goto update_tree; 4141 4142 btrfs_release_path(path); 4143 /* 4144 * 1 - subvol uuid item 4145 * 1 - received_subvol uuid item 4146 */ 4147 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4148 if (IS_ERR(trans)) { 4149 ret = PTR_ERR(trans); 4150 break; 4151 } 4152 continue; 4153 } else { 4154 goto skip; 4155 } 4156 update_tree: 4157 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4158 ret = btrfs_uuid_tree_add(trans, fs_info, 4159 root_item.uuid, 4160 BTRFS_UUID_KEY_SUBVOL, 4161 key.objectid); 4162 if (ret < 0) { 4163 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4164 ret); 4165 break; 4166 } 4167 } 4168 4169 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4170 ret = btrfs_uuid_tree_add(trans, fs_info, 4171 root_item.received_uuid, 4172 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4173 key.objectid); 4174 if (ret < 0) { 4175 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4176 ret); 4177 break; 4178 } 4179 } 4180 4181 skip: 4182 if (trans) { 4183 ret = btrfs_end_transaction(trans); 4184 trans = NULL; 4185 if (ret) 4186 break; 4187 } 4188 4189 btrfs_release_path(path); 4190 if (key.offset < (u64)-1) { 4191 key.offset++; 4192 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4193 key.offset = 0; 4194 key.type = BTRFS_ROOT_ITEM_KEY; 4195 } else if (key.objectid < (u64)-1) { 4196 key.offset = 0; 4197 key.type = BTRFS_ROOT_ITEM_KEY; 4198 key.objectid++; 4199 } else { 4200 break; 4201 } 4202 cond_resched(); 4203 } 4204 4205 out: 4206 btrfs_free_path(path); 4207 if (trans && !IS_ERR(trans)) 4208 btrfs_end_transaction(trans); 4209 if (ret) 4210 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4211 else 4212 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4213 up(&fs_info->uuid_tree_rescan_sem); 4214 return 0; 4215 } 4216 4217 /* 4218 * Callback for btrfs_uuid_tree_iterate(). 4219 * returns: 4220 * 0 check succeeded, the entry is not outdated. 4221 * < 0 if an error occurred. 4222 * > 0 if the check failed, which means the caller shall remove the entry. 4223 */ 4224 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4225 u8 *uuid, u8 type, u64 subid) 4226 { 4227 struct btrfs_key key; 4228 int ret = 0; 4229 struct btrfs_root *subvol_root; 4230 4231 if (type != BTRFS_UUID_KEY_SUBVOL && 4232 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4233 goto out; 4234 4235 key.objectid = subid; 4236 key.type = BTRFS_ROOT_ITEM_KEY; 4237 key.offset = (u64)-1; 4238 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4239 if (IS_ERR(subvol_root)) { 4240 ret = PTR_ERR(subvol_root); 4241 if (ret == -ENOENT) 4242 ret = 1; 4243 goto out; 4244 } 4245 4246 switch (type) { 4247 case BTRFS_UUID_KEY_SUBVOL: 4248 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4249 ret = 1; 4250 break; 4251 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4252 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4253 BTRFS_UUID_SIZE)) 4254 ret = 1; 4255 break; 4256 } 4257 4258 out: 4259 return ret; 4260 } 4261 4262 static int btrfs_uuid_rescan_kthread(void *data) 4263 { 4264 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4265 int ret; 4266 4267 /* 4268 * 1st step is to iterate through the existing UUID tree and 4269 * to delete all entries that contain outdated data. 4270 * 2nd step is to add all missing entries to the UUID tree. 4271 */ 4272 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4273 if (ret < 0) { 4274 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4275 up(&fs_info->uuid_tree_rescan_sem); 4276 return ret; 4277 } 4278 return btrfs_uuid_scan_kthread(data); 4279 } 4280 4281 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4282 { 4283 struct btrfs_trans_handle *trans; 4284 struct btrfs_root *tree_root = fs_info->tree_root; 4285 struct btrfs_root *uuid_root; 4286 struct task_struct *task; 4287 int ret; 4288 4289 /* 4290 * 1 - root node 4291 * 1 - root item 4292 */ 4293 trans = btrfs_start_transaction(tree_root, 2); 4294 if (IS_ERR(trans)) 4295 return PTR_ERR(trans); 4296 4297 uuid_root = btrfs_create_tree(trans, fs_info, 4298 BTRFS_UUID_TREE_OBJECTID); 4299 if (IS_ERR(uuid_root)) { 4300 ret = PTR_ERR(uuid_root); 4301 btrfs_abort_transaction(trans, ret); 4302 btrfs_end_transaction(trans); 4303 return ret; 4304 } 4305 4306 fs_info->uuid_root = uuid_root; 4307 4308 ret = btrfs_commit_transaction(trans); 4309 if (ret) 4310 return ret; 4311 4312 down(&fs_info->uuid_tree_rescan_sem); 4313 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4314 if (IS_ERR(task)) { 4315 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4316 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4317 up(&fs_info->uuid_tree_rescan_sem); 4318 return PTR_ERR(task); 4319 } 4320 4321 return 0; 4322 } 4323 4324 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4325 { 4326 struct task_struct *task; 4327 4328 down(&fs_info->uuid_tree_rescan_sem); 4329 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4330 if (IS_ERR(task)) { 4331 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4332 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4333 up(&fs_info->uuid_tree_rescan_sem); 4334 return PTR_ERR(task); 4335 } 4336 4337 return 0; 4338 } 4339 4340 /* 4341 * shrinking a device means finding all of the device extents past 4342 * the new size, and then following the back refs to the chunks. 4343 * The chunk relocation code actually frees the device extent 4344 */ 4345 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4346 { 4347 struct btrfs_fs_info *fs_info = device->fs_info; 4348 struct btrfs_root *root = fs_info->dev_root; 4349 struct btrfs_trans_handle *trans; 4350 struct btrfs_dev_extent *dev_extent = NULL; 4351 struct btrfs_path *path; 4352 u64 length; 4353 u64 chunk_offset; 4354 int ret; 4355 int slot; 4356 int failed = 0; 4357 bool retried = false; 4358 bool checked_pending_chunks = false; 4359 struct extent_buffer *l; 4360 struct btrfs_key key; 4361 struct btrfs_super_block *super_copy = fs_info->super_copy; 4362 u64 old_total = btrfs_super_total_bytes(super_copy); 4363 u64 old_size = btrfs_device_get_total_bytes(device); 4364 u64 diff = old_size - new_size; 4365 4366 if (device->is_tgtdev_for_dev_replace) 4367 return -EINVAL; 4368 4369 path = btrfs_alloc_path(); 4370 if (!path) 4371 return -ENOMEM; 4372 4373 path->reada = READA_FORWARD; 4374 4375 mutex_lock(&fs_info->chunk_mutex); 4376 4377 btrfs_device_set_total_bytes(device, new_size); 4378 if (device->writeable) { 4379 device->fs_devices->total_rw_bytes -= diff; 4380 spin_lock(&fs_info->free_chunk_lock); 4381 fs_info->free_chunk_space -= diff; 4382 spin_unlock(&fs_info->free_chunk_lock); 4383 } 4384 mutex_unlock(&fs_info->chunk_mutex); 4385 4386 again: 4387 key.objectid = device->devid; 4388 key.offset = (u64)-1; 4389 key.type = BTRFS_DEV_EXTENT_KEY; 4390 4391 do { 4392 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4393 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4394 if (ret < 0) { 4395 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4396 goto done; 4397 } 4398 4399 ret = btrfs_previous_item(root, path, 0, key.type); 4400 if (ret) 4401 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4402 if (ret < 0) 4403 goto done; 4404 if (ret) { 4405 ret = 0; 4406 btrfs_release_path(path); 4407 break; 4408 } 4409 4410 l = path->nodes[0]; 4411 slot = path->slots[0]; 4412 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4413 4414 if (key.objectid != device->devid) { 4415 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4416 btrfs_release_path(path); 4417 break; 4418 } 4419 4420 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4421 length = btrfs_dev_extent_length(l, dev_extent); 4422 4423 if (key.offset + length <= new_size) { 4424 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4425 btrfs_release_path(path); 4426 break; 4427 } 4428 4429 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4430 btrfs_release_path(path); 4431 4432 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4433 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4434 if (ret && ret != -ENOSPC) 4435 goto done; 4436 if (ret == -ENOSPC) 4437 failed++; 4438 } while (key.offset-- > 0); 4439 4440 if (failed && !retried) { 4441 failed = 0; 4442 retried = true; 4443 goto again; 4444 } else if (failed && retried) { 4445 ret = -ENOSPC; 4446 goto done; 4447 } 4448 4449 /* Shrinking succeeded, else we would be at "done". */ 4450 trans = btrfs_start_transaction(root, 0); 4451 if (IS_ERR(trans)) { 4452 ret = PTR_ERR(trans); 4453 goto done; 4454 } 4455 4456 mutex_lock(&fs_info->chunk_mutex); 4457 4458 /* 4459 * We checked in the above loop all device extents that were already in 4460 * the device tree. However before we have updated the device's 4461 * total_bytes to the new size, we might have had chunk allocations that 4462 * have not complete yet (new block groups attached to transaction 4463 * handles), and therefore their device extents were not yet in the 4464 * device tree and we missed them in the loop above. So if we have any 4465 * pending chunk using a device extent that overlaps the device range 4466 * that we can not use anymore, commit the current transaction and 4467 * repeat the search on the device tree - this way we guarantee we will 4468 * not have chunks using device extents that end beyond 'new_size'. 4469 */ 4470 if (!checked_pending_chunks) { 4471 u64 start = new_size; 4472 u64 len = old_size - new_size; 4473 4474 if (contains_pending_extent(trans->transaction, device, 4475 &start, len)) { 4476 mutex_unlock(&fs_info->chunk_mutex); 4477 checked_pending_chunks = true; 4478 failed = 0; 4479 retried = false; 4480 ret = btrfs_commit_transaction(trans); 4481 if (ret) 4482 goto done; 4483 goto again; 4484 } 4485 } 4486 4487 btrfs_device_set_disk_total_bytes(device, new_size); 4488 if (list_empty(&device->resized_list)) 4489 list_add_tail(&device->resized_list, 4490 &fs_info->fs_devices->resized_devices); 4491 4492 WARN_ON(diff > old_total); 4493 btrfs_set_super_total_bytes(super_copy, old_total - diff); 4494 mutex_unlock(&fs_info->chunk_mutex); 4495 4496 /* Now btrfs_update_device() will change the on-disk size. */ 4497 ret = btrfs_update_device(trans, device); 4498 btrfs_end_transaction(trans); 4499 done: 4500 btrfs_free_path(path); 4501 if (ret) { 4502 mutex_lock(&fs_info->chunk_mutex); 4503 btrfs_device_set_total_bytes(device, old_size); 4504 if (device->writeable) 4505 device->fs_devices->total_rw_bytes += diff; 4506 spin_lock(&fs_info->free_chunk_lock); 4507 fs_info->free_chunk_space += diff; 4508 spin_unlock(&fs_info->free_chunk_lock); 4509 mutex_unlock(&fs_info->chunk_mutex); 4510 } 4511 return ret; 4512 } 4513 4514 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4515 struct btrfs_key *key, 4516 struct btrfs_chunk *chunk, int item_size) 4517 { 4518 struct btrfs_super_block *super_copy = fs_info->super_copy; 4519 struct btrfs_disk_key disk_key; 4520 u32 array_size; 4521 u8 *ptr; 4522 4523 mutex_lock(&fs_info->chunk_mutex); 4524 array_size = btrfs_super_sys_array_size(super_copy); 4525 if (array_size + item_size + sizeof(disk_key) 4526 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4527 mutex_unlock(&fs_info->chunk_mutex); 4528 return -EFBIG; 4529 } 4530 4531 ptr = super_copy->sys_chunk_array + array_size; 4532 btrfs_cpu_key_to_disk(&disk_key, key); 4533 memcpy(ptr, &disk_key, sizeof(disk_key)); 4534 ptr += sizeof(disk_key); 4535 memcpy(ptr, chunk, item_size); 4536 item_size += sizeof(disk_key); 4537 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4538 mutex_unlock(&fs_info->chunk_mutex); 4539 4540 return 0; 4541 } 4542 4543 /* 4544 * sort the devices in descending order by max_avail, total_avail 4545 */ 4546 static int btrfs_cmp_device_info(const void *a, const void *b) 4547 { 4548 const struct btrfs_device_info *di_a = a; 4549 const struct btrfs_device_info *di_b = b; 4550 4551 if (di_a->max_avail > di_b->max_avail) 4552 return -1; 4553 if (di_a->max_avail < di_b->max_avail) 4554 return 1; 4555 if (di_a->total_avail > di_b->total_avail) 4556 return -1; 4557 if (di_a->total_avail < di_b->total_avail) 4558 return 1; 4559 return 0; 4560 } 4561 4562 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) 4563 { 4564 /* TODO allow them to set a preferred stripe size */ 4565 return SZ_64K; 4566 } 4567 4568 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4569 { 4570 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4571 return; 4572 4573 btrfs_set_fs_incompat(info, RAID56); 4574 } 4575 4576 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \ 4577 - sizeof(struct btrfs_chunk)) \ 4578 / sizeof(struct btrfs_stripe) + 1) 4579 4580 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4581 - 2 * sizeof(struct btrfs_disk_key) \ 4582 - 2 * sizeof(struct btrfs_chunk)) \ 4583 / sizeof(struct btrfs_stripe) + 1) 4584 4585 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4586 u64 start, u64 type) 4587 { 4588 struct btrfs_fs_info *info = trans->fs_info; 4589 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4590 struct list_head *cur; 4591 struct map_lookup *map = NULL; 4592 struct extent_map_tree *em_tree; 4593 struct extent_map *em; 4594 struct btrfs_device_info *devices_info = NULL; 4595 u64 total_avail; 4596 int num_stripes; /* total number of stripes to allocate */ 4597 int data_stripes; /* number of stripes that count for 4598 block group size */ 4599 int sub_stripes; /* sub_stripes info for map */ 4600 int dev_stripes; /* stripes per dev */ 4601 int devs_max; /* max devs to use */ 4602 int devs_min; /* min devs needed */ 4603 int devs_increment; /* ndevs has to be a multiple of this */ 4604 int ncopies; /* how many copies to data has */ 4605 int ret; 4606 u64 max_stripe_size; 4607 u64 max_chunk_size; 4608 u64 stripe_size; 4609 u64 num_bytes; 4610 u64 raid_stripe_len = BTRFS_STRIPE_LEN; 4611 int ndevs; 4612 int i; 4613 int j; 4614 int index; 4615 4616 BUG_ON(!alloc_profile_is_valid(type, 0)); 4617 4618 if (list_empty(&fs_devices->alloc_list)) 4619 return -ENOSPC; 4620 4621 index = __get_raid_index(type); 4622 4623 sub_stripes = btrfs_raid_array[index].sub_stripes; 4624 dev_stripes = btrfs_raid_array[index].dev_stripes; 4625 devs_max = btrfs_raid_array[index].devs_max; 4626 devs_min = btrfs_raid_array[index].devs_min; 4627 devs_increment = btrfs_raid_array[index].devs_increment; 4628 ncopies = btrfs_raid_array[index].ncopies; 4629 4630 if (type & BTRFS_BLOCK_GROUP_DATA) { 4631 max_stripe_size = SZ_1G; 4632 max_chunk_size = 10 * max_stripe_size; 4633 if (!devs_max) 4634 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4635 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4636 /* for larger filesystems, use larger metadata chunks */ 4637 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4638 max_stripe_size = SZ_1G; 4639 else 4640 max_stripe_size = SZ_256M; 4641 max_chunk_size = max_stripe_size; 4642 if (!devs_max) 4643 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4644 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4645 max_stripe_size = SZ_32M; 4646 max_chunk_size = 2 * max_stripe_size; 4647 if (!devs_max) 4648 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4649 } else { 4650 btrfs_err(info, "invalid chunk type 0x%llx requested", 4651 type); 4652 BUG_ON(1); 4653 } 4654 4655 /* we don't want a chunk larger than 10% of writeable space */ 4656 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4657 max_chunk_size); 4658 4659 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4660 GFP_NOFS); 4661 if (!devices_info) 4662 return -ENOMEM; 4663 4664 cur = fs_devices->alloc_list.next; 4665 4666 /* 4667 * in the first pass through the devices list, we gather information 4668 * about the available holes on each device. 4669 */ 4670 ndevs = 0; 4671 while (cur != &fs_devices->alloc_list) { 4672 struct btrfs_device *device; 4673 u64 max_avail; 4674 u64 dev_offset; 4675 4676 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 4677 4678 cur = cur->next; 4679 4680 if (!device->writeable) { 4681 WARN(1, KERN_ERR 4682 "BTRFS: read-only device in alloc_list\n"); 4683 continue; 4684 } 4685 4686 if (!device->in_fs_metadata || 4687 device->is_tgtdev_for_dev_replace) 4688 continue; 4689 4690 if (device->total_bytes > device->bytes_used) 4691 total_avail = device->total_bytes - device->bytes_used; 4692 else 4693 total_avail = 0; 4694 4695 /* If there is no space on this device, skip it. */ 4696 if (total_avail == 0) 4697 continue; 4698 4699 ret = find_free_dev_extent(trans, device, 4700 max_stripe_size * dev_stripes, 4701 &dev_offset, &max_avail); 4702 if (ret && ret != -ENOSPC) 4703 goto error; 4704 4705 if (ret == 0) 4706 max_avail = max_stripe_size * dev_stripes; 4707 4708 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4709 continue; 4710 4711 if (ndevs == fs_devices->rw_devices) { 4712 WARN(1, "%s: found more than %llu devices\n", 4713 __func__, fs_devices->rw_devices); 4714 break; 4715 } 4716 devices_info[ndevs].dev_offset = dev_offset; 4717 devices_info[ndevs].max_avail = max_avail; 4718 devices_info[ndevs].total_avail = total_avail; 4719 devices_info[ndevs].dev = device; 4720 ++ndevs; 4721 } 4722 4723 /* 4724 * now sort the devices by hole size / available space 4725 */ 4726 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4727 btrfs_cmp_device_info, NULL); 4728 4729 /* round down to number of usable stripes */ 4730 ndevs -= ndevs % devs_increment; 4731 4732 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4733 ret = -ENOSPC; 4734 goto error; 4735 } 4736 4737 if (devs_max && ndevs > devs_max) 4738 ndevs = devs_max; 4739 /* 4740 * the primary goal is to maximize the number of stripes, so use as many 4741 * devices as possible, even if the stripes are not maximum sized. 4742 */ 4743 stripe_size = devices_info[ndevs-1].max_avail; 4744 num_stripes = ndevs * dev_stripes; 4745 4746 /* 4747 * this will have to be fixed for RAID1 and RAID10 over 4748 * more drives 4749 */ 4750 data_stripes = num_stripes / ncopies; 4751 4752 if (type & BTRFS_BLOCK_GROUP_RAID5) { 4753 raid_stripe_len = find_raid56_stripe_len(ndevs - 1, 4754 info->stripesize); 4755 data_stripes = num_stripes - 1; 4756 } 4757 if (type & BTRFS_BLOCK_GROUP_RAID6) { 4758 raid_stripe_len = find_raid56_stripe_len(ndevs - 2, 4759 info->stripesize); 4760 data_stripes = num_stripes - 2; 4761 } 4762 4763 /* 4764 * Use the number of data stripes to figure out how big this chunk 4765 * is really going to be in terms of logical address space, 4766 * and compare that answer with the max chunk size 4767 */ 4768 if (stripe_size * data_stripes > max_chunk_size) { 4769 u64 mask = (1ULL << 24) - 1; 4770 4771 stripe_size = div_u64(max_chunk_size, data_stripes); 4772 4773 /* bump the answer up to a 16MB boundary */ 4774 stripe_size = (stripe_size + mask) & ~mask; 4775 4776 /* but don't go higher than the limits we found 4777 * while searching for free extents 4778 */ 4779 if (stripe_size > devices_info[ndevs-1].max_avail) 4780 stripe_size = devices_info[ndevs-1].max_avail; 4781 } 4782 4783 stripe_size = div_u64(stripe_size, dev_stripes); 4784 4785 /* align to BTRFS_STRIPE_LEN */ 4786 stripe_size = div_u64(stripe_size, raid_stripe_len); 4787 stripe_size *= raid_stripe_len; 4788 4789 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4790 if (!map) { 4791 ret = -ENOMEM; 4792 goto error; 4793 } 4794 map->num_stripes = num_stripes; 4795 4796 for (i = 0; i < ndevs; ++i) { 4797 for (j = 0; j < dev_stripes; ++j) { 4798 int s = i * dev_stripes + j; 4799 map->stripes[s].dev = devices_info[i].dev; 4800 map->stripes[s].physical = devices_info[i].dev_offset + 4801 j * stripe_size; 4802 } 4803 } 4804 map->sector_size = info->sectorsize; 4805 map->stripe_len = raid_stripe_len; 4806 map->io_align = raid_stripe_len; 4807 map->io_width = raid_stripe_len; 4808 map->type = type; 4809 map->sub_stripes = sub_stripes; 4810 4811 num_bytes = stripe_size * data_stripes; 4812 4813 trace_btrfs_chunk_alloc(info, map, start, num_bytes); 4814 4815 em = alloc_extent_map(); 4816 if (!em) { 4817 kfree(map); 4818 ret = -ENOMEM; 4819 goto error; 4820 } 4821 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4822 em->map_lookup = map; 4823 em->start = start; 4824 em->len = num_bytes; 4825 em->block_start = 0; 4826 em->block_len = em->len; 4827 em->orig_block_len = stripe_size; 4828 4829 em_tree = &info->mapping_tree.map_tree; 4830 write_lock(&em_tree->lock); 4831 ret = add_extent_mapping(em_tree, em, 0); 4832 if (!ret) { 4833 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4834 atomic_inc(&em->refs); 4835 } 4836 write_unlock(&em_tree->lock); 4837 if (ret) { 4838 free_extent_map(em); 4839 goto error; 4840 } 4841 4842 ret = btrfs_make_block_group(trans, info, 0, type, 4843 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4844 start, num_bytes); 4845 if (ret) 4846 goto error_del_extent; 4847 4848 for (i = 0; i < map->num_stripes; i++) { 4849 num_bytes = map->stripes[i].dev->bytes_used + stripe_size; 4850 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); 4851 } 4852 4853 spin_lock(&info->free_chunk_lock); 4854 info->free_chunk_space -= (stripe_size * map->num_stripes); 4855 spin_unlock(&info->free_chunk_lock); 4856 4857 free_extent_map(em); 4858 check_raid56_incompat_flag(info, type); 4859 4860 kfree(devices_info); 4861 return 0; 4862 4863 error_del_extent: 4864 write_lock(&em_tree->lock); 4865 remove_extent_mapping(em_tree, em); 4866 write_unlock(&em_tree->lock); 4867 4868 /* One for our allocation */ 4869 free_extent_map(em); 4870 /* One for the tree reference */ 4871 free_extent_map(em); 4872 /* One for the pending_chunks list reference */ 4873 free_extent_map(em); 4874 error: 4875 kfree(devices_info); 4876 return ret; 4877 } 4878 4879 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4880 struct btrfs_fs_info *fs_info, 4881 u64 chunk_offset, u64 chunk_size) 4882 { 4883 struct btrfs_root *extent_root = fs_info->extent_root; 4884 struct btrfs_root *chunk_root = fs_info->chunk_root; 4885 struct btrfs_key key; 4886 struct btrfs_device *device; 4887 struct btrfs_chunk *chunk; 4888 struct btrfs_stripe *stripe; 4889 struct extent_map_tree *em_tree; 4890 struct extent_map *em; 4891 struct map_lookup *map; 4892 size_t item_size; 4893 u64 dev_offset; 4894 u64 stripe_size; 4895 int i = 0; 4896 int ret = 0; 4897 4898 em_tree = &fs_info->mapping_tree.map_tree; 4899 read_lock(&em_tree->lock); 4900 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size); 4901 read_unlock(&em_tree->lock); 4902 4903 if (!em) { 4904 btrfs_crit(fs_info, "unable to find logical %Lu len %Lu", 4905 chunk_offset, chunk_size); 4906 return -EINVAL; 4907 } 4908 4909 if (em->start != chunk_offset || em->len != chunk_size) { 4910 btrfs_crit(fs_info, 4911 "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu", 4912 chunk_offset, chunk_size, em->start, em->len); 4913 free_extent_map(em); 4914 return -EINVAL; 4915 } 4916 4917 map = em->map_lookup; 4918 item_size = btrfs_chunk_item_size(map->num_stripes); 4919 stripe_size = em->orig_block_len; 4920 4921 chunk = kzalloc(item_size, GFP_NOFS); 4922 if (!chunk) { 4923 ret = -ENOMEM; 4924 goto out; 4925 } 4926 4927 /* 4928 * Take the device list mutex to prevent races with the final phase of 4929 * a device replace operation that replaces the device object associated 4930 * with the map's stripes, because the device object's id can change 4931 * at any time during that final phase of the device replace operation 4932 * (dev-replace.c:btrfs_dev_replace_finishing()). 4933 */ 4934 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4935 for (i = 0; i < map->num_stripes; i++) { 4936 device = map->stripes[i].dev; 4937 dev_offset = map->stripes[i].physical; 4938 4939 ret = btrfs_update_device(trans, device); 4940 if (ret) 4941 break; 4942 ret = btrfs_alloc_dev_extent(trans, device, 4943 chunk_root->root_key.objectid, 4944 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4945 chunk_offset, dev_offset, 4946 stripe_size); 4947 if (ret) 4948 break; 4949 } 4950 if (ret) { 4951 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4952 goto out; 4953 } 4954 4955 stripe = &chunk->stripe; 4956 for (i = 0; i < map->num_stripes; i++) { 4957 device = map->stripes[i].dev; 4958 dev_offset = map->stripes[i].physical; 4959 4960 btrfs_set_stack_stripe_devid(stripe, device->devid); 4961 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4962 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4963 stripe++; 4964 } 4965 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4966 4967 btrfs_set_stack_chunk_length(chunk, chunk_size); 4968 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4969 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4970 btrfs_set_stack_chunk_type(chunk, map->type); 4971 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4972 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4973 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4974 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 4975 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4976 4977 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4978 key.type = BTRFS_CHUNK_ITEM_KEY; 4979 key.offset = chunk_offset; 4980 4981 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4982 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4983 /* 4984 * TODO: Cleanup of inserted chunk root in case of 4985 * failure. 4986 */ 4987 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 4988 } 4989 4990 out: 4991 kfree(chunk); 4992 free_extent_map(em); 4993 return ret; 4994 } 4995 4996 /* 4997 * Chunk allocation falls into two parts. The first part does works 4998 * that make the new allocated chunk useable, but not do any operation 4999 * that modifies the chunk tree. The second part does the works that 5000 * require modifying the chunk tree. This division is important for the 5001 * bootstrap process of adding storage to a seed btrfs. 5002 */ 5003 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 5004 struct btrfs_fs_info *fs_info, u64 type) 5005 { 5006 u64 chunk_offset; 5007 5008 ASSERT(mutex_is_locked(&fs_info->chunk_mutex)); 5009 chunk_offset = find_next_chunk(fs_info); 5010 return __btrfs_alloc_chunk(trans, chunk_offset, type); 5011 } 5012 5013 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 5014 struct btrfs_fs_info *fs_info) 5015 { 5016 struct btrfs_root *extent_root = fs_info->extent_root; 5017 u64 chunk_offset; 5018 u64 sys_chunk_offset; 5019 u64 alloc_profile; 5020 int ret; 5021 5022 chunk_offset = find_next_chunk(fs_info); 5023 alloc_profile = btrfs_get_alloc_profile(extent_root, 0); 5024 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile); 5025 if (ret) 5026 return ret; 5027 5028 sys_chunk_offset = find_next_chunk(fs_info); 5029 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); 5030 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile); 5031 return ret; 5032 } 5033 5034 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5035 { 5036 int max_errors; 5037 5038 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 5039 BTRFS_BLOCK_GROUP_RAID10 | 5040 BTRFS_BLOCK_GROUP_RAID5 | 5041 BTRFS_BLOCK_GROUP_DUP)) { 5042 max_errors = 1; 5043 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 5044 max_errors = 2; 5045 } else { 5046 max_errors = 0; 5047 } 5048 5049 return max_errors; 5050 } 5051 5052 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5053 { 5054 struct extent_map *em; 5055 struct map_lookup *map; 5056 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5057 int readonly = 0; 5058 int miss_ndevs = 0; 5059 int i; 5060 5061 read_lock(&map_tree->map_tree.lock); 5062 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 5063 read_unlock(&map_tree->map_tree.lock); 5064 if (!em) 5065 return 1; 5066 5067 map = em->map_lookup; 5068 for (i = 0; i < map->num_stripes; i++) { 5069 if (map->stripes[i].dev->missing) { 5070 miss_ndevs++; 5071 continue; 5072 } 5073 5074 if (!map->stripes[i].dev->writeable) { 5075 readonly = 1; 5076 goto end; 5077 } 5078 } 5079 5080 /* 5081 * If the number of missing devices is larger than max errors, 5082 * we can not write the data into that chunk successfully, so 5083 * set it readonly. 5084 */ 5085 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5086 readonly = 1; 5087 end: 5088 free_extent_map(em); 5089 return readonly; 5090 } 5091 5092 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 5093 { 5094 extent_map_tree_init(&tree->map_tree); 5095 } 5096 5097 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 5098 { 5099 struct extent_map *em; 5100 5101 while (1) { 5102 write_lock(&tree->map_tree.lock); 5103 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 5104 if (em) 5105 remove_extent_mapping(&tree->map_tree, em); 5106 write_unlock(&tree->map_tree.lock); 5107 if (!em) 5108 break; 5109 /* once for us */ 5110 free_extent_map(em); 5111 /* once for the tree */ 5112 free_extent_map(em); 5113 } 5114 } 5115 5116 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5117 { 5118 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5119 struct extent_map *em; 5120 struct map_lookup *map; 5121 struct extent_map_tree *em_tree = &map_tree->map_tree; 5122 int ret; 5123 5124 read_lock(&em_tree->lock); 5125 em = lookup_extent_mapping(em_tree, logical, len); 5126 read_unlock(&em_tree->lock); 5127 5128 /* 5129 * We could return errors for these cases, but that could get ugly and 5130 * we'd probably do the same thing which is just not do anything else 5131 * and exit, so return 1 so the callers don't try to use other copies. 5132 */ 5133 if (!em) { 5134 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical, 5135 logical+len); 5136 return 1; 5137 } 5138 5139 if (em->start > logical || em->start + em->len < logical) { 5140 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu", 5141 logical, logical+len, em->start, 5142 em->start + em->len); 5143 free_extent_map(em); 5144 return 1; 5145 } 5146 5147 map = em->map_lookup; 5148 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 5149 ret = map->num_stripes; 5150 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5151 ret = map->sub_stripes; 5152 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5153 ret = 2; 5154 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5155 ret = 3; 5156 else 5157 ret = 1; 5158 free_extent_map(em); 5159 5160 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 5161 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) 5162 ret++; 5163 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 5164 5165 return ret; 5166 } 5167 5168 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5169 struct btrfs_mapping_tree *map_tree, 5170 u64 logical) 5171 { 5172 struct extent_map *em; 5173 struct map_lookup *map; 5174 struct extent_map_tree *em_tree = &map_tree->map_tree; 5175 unsigned long len = fs_info->sectorsize; 5176 5177 read_lock(&em_tree->lock); 5178 em = lookup_extent_mapping(em_tree, logical, len); 5179 read_unlock(&em_tree->lock); 5180 BUG_ON(!em); 5181 5182 BUG_ON(em->start > logical || em->start + em->len < logical); 5183 map = em->map_lookup; 5184 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5185 len = map->stripe_len * nr_data_stripes(map); 5186 free_extent_map(em); 5187 return len; 5188 } 5189 5190 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, 5191 u64 logical, u64 len, int mirror_num) 5192 { 5193 struct extent_map *em; 5194 struct map_lookup *map; 5195 struct extent_map_tree *em_tree = &map_tree->map_tree; 5196 int ret = 0; 5197 5198 read_lock(&em_tree->lock); 5199 em = lookup_extent_mapping(em_tree, logical, len); 5200 read_unlock(&em_tree->lock); 5201 BUG_ON(!em); 5202 5203 BUG_ON(em->start > logical || em->start + em->len < logical); 5204 map = em->map_lookup; 5205 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5206 ret = 1; 5207 free_extent_map(em); 5208 return ret; 5209 } 5210 5211 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5212 struct map_lookup *map, int first, int num, 5213 int optimal, int dev_replace_is_ongoing) 5214 { 5215 int i; 5216 int tolerance; 5217 struct btrfs_device *srcdev; 5218 5219 if (dev_replace_is_ongoing && 5220 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5221 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5222 srcdev = fs_info->dev_replace.srcdev; 5223 else 5224 srcdev = NULL; 5225 5226 /* 5227 * try to avoid the drive that is the source drive for a 5228 * dev-replace procedure, only choose it if no other non-missing 5229 * mirror is available 5230 */ 5231 for (tolerance = 0; tolerance < 2; tolerance++) { 5232 if (map->stripes[optimal].dev->bdev && 5233 (tolerance || map->stripes[optimal].dev != srcdev)) 5234 return optimal; 5235 for (i = first; i < first + num; i++) { 5236 if (map->stripes[i].dev->bdev && 5237 (tolerance || map->stripes[i].dev != srcdev)) 5238 return i; 5239 } 5240 } 5241 5242 /* we couldn't find one that doesn't fail. Just return something 5243 * and the io error handling code will clean up eventually 5244 */ 5245 return optimal; 5246 } 5247 5248 static inline int parity_smaller(u64 a, u64 b) 5249 { 5250 return a > b; 5251 } 5252 5253 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5254 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5255 { 5256 struct btrfs_bio_stripe s; 5257 int i; 5258 u64 l; 5259 int again = 1; 5260 5261 while (again) { 5262 again = 0; 5263 for (i = 0; i < num_stripes - 1; i++) { 5264 if (parity_smaller(bbio->raid_map[i], 5265 bbio->raid_map[i+1])) { 5266 s = bbio->stripes[i]; 5267 l = bbio->raid_map[i]; 5268 bbio->stripes[i] = bbio->stripes[i+1]; 5269 bbio->raid_map[i] = bbio->raid_map[i+1]; 5270 bbio->stripes[i+1] = s; 5271 bbio->raid_map[i+1] = l; 5272 5273 again = 1; 5274 } 5275 } 5276 } 5277 } 5278 5279 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5280 { 5281 struct btrfs_bio *bbio = kzalloc( 5282 /* the size of the btrfs_bio */ 5283 sizeof(struct btrfs_bio) + 5284 /* plus the variable array for the stripes */ 5285 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5286 /* plus the variable array for the tgt dev */ 5287 sizeof(int) * (real_stripes) + 5288 /* 5289 * plus the raid_map, which includes both the tgt dev 5290 * and the stripes 5291 */ 5292 sizeof(u64) * (total_stripes), 5293 GFP_NOFS|__GFP_NOFAIL); 5294 5295 atomic_set(&bbio->error, 0); 5296 atomic_set(&bbio->refs, 1); 5297 5298 return bbio; 5299 } 5300 5301 void btrfs_get_bbio(struct btrfs_bio *bbio) 5302 { 5303 WARN_ON(!atomic_read(&bbio->refs)); 5304 atomic_inc(&bbio->refs); 5305 } 5306 5307 void btrfs_put_bbio(struct btrfs_bio *bbio) 5308 { 5309 if (!bbio) 5310 return; 5311 if (atomic_dec_and_test(&bbio->refs)) 5312 kfree(bbio); 5313 } 5314 5315 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 5316 enum btrfs_map_op op, 5317 u64 logical, u64 *length, 5318 struct btrfs_bio **bbio_ret, 5319 int mirror_num, int need_raid_map) 5320 { 5321 struct extent_map *em; 5322 struct map_lookup *map; 5323 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5324 struct extent_map_tree *em_tree = &map_tree->map_tree; 5325 u64 offset; 5326 u64 stripe_offset; 5327 u64 stripe_end_offset; 5328 u64 stripe_nr; 5329 u64 stripe_nr_orig; 5330 u64 stripe_nr_end; 5331 u64 stripe_len; 5332 u32 stripe_index; 5333 int i; 5334 int ret = 0; 5335 int num_stripes; 5336 int max_errors = 0; 5337 int tgtdev_indexes = 0; 5338 struct btrfs_bio *bbio = NULL; 5339 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 5340 int dev_replace_is_ongoing = 0; 5341 int num_alloc_stripes; 5342 int patch_the_first_stripe_for_dev_replace = 0; 5343 u64 physical_to_patch_in_first_stripe = 0; 5344 u64 raid56_full_stripe_start = (u64)-1; 5345 5346 read_lock(&em_tree->lock); 5347 em = lookup_extent_mapping(em_tree, logical, *length); 5348 read_unlock(&em_tree->lock); 5349 5350 if (!em) { 5351 btrfs_crit(fs_info, "unable to find logical %llu len %llu", 5352 logical, *length); 5353 return -EINVAL; 5354 } 5355 5356 if (em->start > logical || em->start + em->len < logical) { 5357 btrfs_crit(fs_info, 5358 "found a bad mapping, wanted %Lu, found %Lu-%Lu", 5359 logical, em->start, em->start + em->len); 5360 free_extent_map(em); 5361 return -EINVAL; 5362 } 5363 5364 map = em->map_lookup; 5365 offset = logical - em->start; 5366 5367 stripe_len = map->stripe_len; 5368 stripe_nr = offset; 5369 /* 5370 * stripe_nr counts the total number of stripes we have to stride 5371 * to get to this block 5372 */ 5373 stripe_nr = div64_u64(stripe_nr, stripe_len); 5374 5375 stripe_offset = stripe_nr * stripe_len; 5376 if (offset < stripe_offset) { 5377 btrfs_crit(fs_info, 5378 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu", 5379 stripe_offset, offset, em->start, logical, 5380 stripe_len); 5381 free_extent_map(em); 5382 return -EINVAL; 5383 } 5384 5385 /* stripe_offset is the offset of this block in its stripe*/ 5386 stripe_offset = offset - stripe_offset; 5387 5388 /* if we're here for raid56, we need to know the stripe aligned start */ 5389 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5390 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 5391 raid56_full_stripe_start = offset; 5392 5393 /* allow a write of a full stripe, but make sure we don't 5394 * allow straddling of stripes 5395 */ 5396 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5397 full_stripe_len); 5398 raid56_full_stripe_start *= full_stripe_len; 5399 } 5400 5401 if (op == BTRFS_MAP_DISCARD) { 5402 /* we don't discard raid56 yet */ 5403 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5404 ret = -EOPNOTSUPP; 5405 goto out; 5406 } 5407 *length = min_t(u64, em->len - offset, *length); 5408 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5409 u64 max_len; 5410 /* For writes to RAID[56], allow a full stripeset across all disks. 5411 For other RAID types and for RAID[56] reads, just allow a single 5412 stripe (on a single disk). */ 5413 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 5414 (op == BTRFS_MAP_WRITE)) { 5415 max_len = stripe_len * nr_data_stripes(map) - 5416 (offset - raid56_full_stripe_start); 5417 } else { 5418 /* we limit the length of each bio to what fits in a stripe */ 5419 max_len = stripe_len - stripe_offset; 5420 } 5421 *length = min_t(u64, em->len - offset, max_len); 5422 } else { 5423 *length = em->len - offset; 5424 } 5425 5426 /* This is for when we're called from btrfs_merge_bio_hook() and all 5427 it cares about is the length */ 5428 if (!bbio_ret) 5429 goto out; 5430 5431 btrfs_dev_replace_lock(dev_replace, 0); 5432 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5433 if (!dev_replace_is_ongoing) 5434 btrfs_dev_replace_unlock(dev_replace, 0); 5435 else 5436 btrfs_dev_replace_set_lock_blocking(dev_replace); 5437 5438 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5439 op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD && 5440 op != BTRFS_MAP_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) { 5441 /* 5442 * in dev-replace case, for repair case (that's the only 5443 * case where the mirror is selected explicitly when 5444 * calling btrfs_map_block), blocks left of the left cursor 5445 * can also be read from the target drive. 5446 * For REQ_GET_READ_MIRRORS, the target drive is added as 5447 * the last one to the array of stripes. For READ, it also 5448 * needs to be supported using the same mirror number. 5449 * If the requested block is not left of the left cursor, 5450 * EIO is returned. This can happen because btrfs_num_copies() 5451 * returns one more in the dev-replace case. 5452 */ 5453 u64 tmp_length = *length; 5454 struct btrfs_bio *tmp_bbio = NULL; 5455 int tmp_num_stripes; 5456 u64 srcdev_devid = dev_replace->srcdev->devid; 5457 int index_srcdev = 0; 5458 int found = 0; 5459 u64 physical_of_found = 0; 5460 5461 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5462 logical, &tmp_length, &tmp_bbio, 0, 0); 5463 if (ret) { 5464 WARN_ON(tmp_bbio != NULL); 5465 goto out; 5466 } 5467 5468 tmp_num_stripes = tmp_bbio->num_stripes; 5469 if (mirror_num > tmp_num_stripes) { 5470 /* 5471 * BTRFS_MAP_GET_READ_MIRRORS does not contain this 5472 * mirror, that means that the requested area 5473 * is not left of the left cursor 5474 */ 5475 ret = -EIO; 5476 btrfs_put_bbio(tmp_bbio); 5477 goto out; 5478 } 5479 5480 /* 5481 * process the rest of the function using the mirror_num 5482 * of the source drive. Therefore look it up first. 5483 * At the end, patch the device pointer to the one of the 5484 * target drive. 5485 */ 5486 for (i = 0; i < tmp_num_stripes; i++) { 5487 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid) 5488 continue; 5489 5490 /* 5491 * In case of DUP, in order to keep it simple, only add 5492 * the mirror with the lowest physical address 5493 */ 5494 if (found && 5495 physical_of_found <= tmp_bbio->stripes[i].physical) 5496 continue; 5497 5498 index_srcdev = i; 5499 found = 1; 5500 physical_of_found = tmp_bbio->stripes[i].physical; 5501 } 5502 5503 btrfs_put_bbio(tmp_bbio); 5504 5505 if (!found) { 5506 WARN_ON(1); 5507 ret = -EIO; 5508 goto out; 5509 } 5510 5511 mirror_num = index_srcdev + 1; 5512 patch_the_first_stripe_for_dev_replace = 1; 5513 physical_to_patch_in_first_stripe = physical_of_found; 5514 } else if (mirror_num > map->num_stripes) { 5515 mirror_num = 0; 5516 } 5517 5518 num_stripes = 1; 5519 stripe_index = 0; 5520 stripe_nr_orig = stripe_nr; 5521 stripe_nr_end = ALIGN(offset + *length, map->stripe_len); 5522 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len); 5523 stripe_end_offset = stripe_nr_end * map->stripe_len - 5524 (offset + *length); 5525 5526 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5527 if (op == BTRFS_MAP_DISCARD) 5528 num_stripes = min_t(u64, map->num_stripes, 5529 stripe_nr_end - stripe_nr_orig); 5530 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5531 &stripe_index); 5532 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD && 5533 op != BTRFS_MAP_GET_READ_MIRRORS) 5534 mirror_num = 1; 5535 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 5536 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD || 5537 op == BTRFS_MAP_GET_READ_MIRRORS) 5538 num_stripes = map->num_stripes; 5539 else if (mirror_num) 5540 stripe_index = mirror_num - 1; 5541 else { 5542 stripe_index = find_live_mirror(fs_info, map, 0, 5543 map->num_stripes, 5544 current->pid % map->num_stripes, 5545 dev_replace_is_ongoing); 5546 mirror_num = stripe_index + 1; 5547 } 5548 5549 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5550 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD || 5551 op == BTRFS_MAP_GET_READ_MIRRORS) { 5552 num_stripes = map->num_stripes; 5553 } else if (mirror_num) { 5554 stripe_index = mirror_num - 1; 5555 } else { 5556 mirror_num = 1; 5557 } 5558 5559 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5560 u32 factor = map->num_stripes / map->sub_stripes; 5561 5562 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5563 stripe_index *= map->sub_stripes; 5564 5565 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) 5566 num_stripes = map->sub_stripes; 5567 else if (op == BTRFS_MAP_DISCARD) 5568 num_stripes = min_t(u64, map->sub_stripes * 5569 (stripe_nr_end - stripe_nr_orig), 5570 map->num_stripes); 5571 else if (mirror_num) 5572 stripe_index += mirror_num - 1; 5573 else { 5574 int old_stripe_index = stripe_index; 5575 stripe_index = find_live_mirror(fs_info, map, 5576 stripe_index, 5577 map->sub_stripes, stripe_index + 5578 current->pid % map->sub_stripes, 5579 dev_replace_is_ongoing); 5580 mirror_num = stripe_index - old_stripe_index + 1; 5581 } 5582 5583 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5584 if (need_raid_map && 5585 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS || 5586 mirror_num > 1)) { 5587 /* push stripe_nr back to the start of the full stripe */ 5588 stripe_nr = div_u64(raid56_full_stripe_start, 5589 stripe_len * nr_data_stripes(map)); 5590 5591 /* RAID[56] write or recovery. Return all stripes */ 5592 num_stripes = map->num_stripes; 5593 max_errors = nr_parity_stripes(map); 5594 5595 *length = map->stripe_len; 5596 stripe_index = 0; 5597 stripe_offset = 0; 5598 } else { 5599 /* 5600 * Mirror #0 or #1 means the original data block. 5601 * Mirror #2 is RAID5 parity block. 5602 * Mirror #3 is RAID6 Q block. 5603 */ 5604 stripe_nr = div_u64_rem(stripe_nr, 5605 nr_data_stripes(map), &stripe_index); 5606 if (mirror_num > 1) 5607 stripe_index = nr_data_stripes(map) + 5608 mirror_num - 2; 5609 5610 /* We distribute the parity blocks across stripes */ 5611 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 5612 &stripe_index); 5613 if ((op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD && 5614 op != BTRFS_MAP_GET_READ_MIRRORS) && mirror_num <= 1) 5615 mirror_num = 1; 5616 } 5617 } else { 5618 /* 5619 * after this, stripe_nr is the number of stripes on this 5620 * device we have to walk to find the data, and stripe_index is 5621 * the number of our device in the stripe array 5622 */ 5623 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5624 &stripe_index); 5625 mirror_num = stripe_index + 1; 5626 } 5627 if (stripe_index >= map->num_stripes) { 5628 btrfs_crit(fs_info, 5629 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 5630 stripe_index, map->num_stripes); 5631 ret = -EINVAL; 5632 goto out; 5633 } 5634 5635 num_alloc_stripes = num_stripes; 5636 if (dev_replace_is_ongoing) { 5637 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD) 5638 num_alloc_stripes <<= 1; 5639 if (op == BTRFS_MAP_GET_READ_MIRRORS) 5640 num_alloc_stripes++; 5641 tgtdev_indexes = num_stripes; 5642 } 5643 5644 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 5645 if (!bbio) { 5646 ret = -ENOMEM; 5647 goto out; 5648 } 5649 if (dev_replace_is_ongoing) 5650 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 5651 5652 /* build raid_map */ 5653 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 5654 need_raid_map && 5655 ((op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) || 5656 mirror_num > 1)) { 5657 u64 tmp; 5658 unsigned rot; 5659 5660 bbio->raid_map = (u64 *)((void *)bbio->stripes + 5661 sizeof(struct btrfs_bio_stripe) * 5662 num_alloc_stripes + 5663 sizeof(int) * tgtdev_indexes); 5664 5665 /* Work out the disk rotation on this stripe-set */ 5666 div_u64_rem(stripe_nr, num_stripes, &rot); 5667 5668 /* Fill in the logical address of each stripe */ 5669 tmp = stripe_nr * nr_data_stripes(map); 5670 for (i = 0; i < nr_data_stripes(map); i++) 5671 bbio->raid_map[(i+rot) % num_stripes] = 5672 em->start + (tmp + i) * map->stripe_len; 5673 5674 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 5675 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5676 bbio->raid_map[(i+rot+1) % num_stripes] = 5677 RAID6_Q_STRIPE; 5678 } 5679 5680 if (op == BTRFS_MAP_DISCARD) { 5681 u32 factor = 0; 5682 u32 sub_stripes = 0; 5683 u64 stripes_per_dev = 0; 5684 u32 remaining_stripes = 0; 5685 u32 last_stripe = 0; 5686 5687 if (map->type & 5688 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 5689 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5690 sub_stripes = 1; 5691 else 5692 sub_stripes = map->sub_stripes; 5693 5694 factor = map->num_stripes / sub_stripes; 5695 stripes_per_dev = div_u64_rem(stripe_nr_end - 5696 stripe_nr_orig, 5697 factor, 5698 &remaining_stripes); 5699 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5700 last_stripe *= sub_stripes; 5701 } 5702 5703 for (i = 0; i < num_stripes; i++) { 5704 bbio->stripes[i].physical = 5705 map->stripes[stripe_index].physical + 5706 stripe_offset + stripe_nr * map->stripe_len; 5707 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5708 5709 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5710 BTRFS_BLOCK_GROUP_RAID10)) { 5711 bbio->stripes[i].length = stripes_per_dev * 5712 map->stripe_len; 5713 5714 if (i / sub_stripes < remaining_stripes) 5715 bbio->stripes[i].length += 5716 map->stripe_len; 5717 5718 /* 5719 * Special for the first stripe and 5720 * the last stripe: 5721 * 5722 * |-------|...|-------| 5723 * |----------| 5724 * off end_off 5725 */ 5726 if (i < sub_stripes) 5727 bbio->stripes[i].length -= 5728 stripe_offset; 5729 5730 if (stripe_index >= last_stripe && 5731 stripe_index <= (last_stripe + 5732 sub_stripes - 1)) 5733 bbio->stripes[i].length -= 5734 stripe_end_offset; 5735 5736 if (i == sub_stripes - 1) 5737 stripe_offset = 0; 5738 } else 5739 bbio->stripes[i].length = *length; 5740 5741 stripe_index++; 5742 if (stripe_index == map->num_stripes) { 5743 /* This could only happen for RAID0/10 */ 5744 stripe_index = 0; 5745 stripe_nr++; 5746 } 5747 } 5748 } else { 5749 for (i = 0; i < num_stripes; i++) { 5750 bbio->stripes[i].physical = 5751 map->stripes[stripe_index].physical + 5752 stripe_offset + 5753 stripe_nr * map->stripe_len; 5754 bbio->stripes[i].dev = 5755 map->stripes[stripe_index].dev; 5756 stripe_index++; 5757 } 5758 } 5759 5760 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) 5761 max_errors = btrfs_chunk_max_errors(map); 5762 5763 if (bbio->raid_map) 5764 sort_parity_stripes(bbio, num_stripes); 5765 5766 tgtdev_indexes = 0; 5767 if (dev_replace_is_ongoing && 5768 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD) && 5769 dev_replace->tgtdev != NULL) { 5770 int index_where_to_add; 5771 u64 srcdev_devid = dev_replace->srcdev->devid; 5772 5773 /* 5774 * duplicate the write operations while the dev replace 5775 * procedure is running. Since the copying of the old disk 5776 * to the new disk takes place at run time while the 5777 * filesystem is mounted writable, the regular write 5778 * operations to the old disk have to be duplicated to go 5779 * to the new disk as well. 5780 * Note that device->missing is handled by the caller, and 5781 * that the write to the old disk is already set up in the 5782 * stripes array. 5783 */ 5784 index_where_to_add = num_stripes; 5785 for (i = 0; i < num_stripes; i++) { 5786 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5787 /* write to new disk, too */ 5788 struct btrfs_bio_stripe *new = 5789 bbio->stripes + index_where_to_add; 5790 struct btrfs_bio_stripe *old = 5791 bbio->stripes + i; 5792 5793 new->physical = old->physical; 5794 new->length = old->length; 5795 new->dev = dev_replace->tgtdev; 5796 bbio->tgtdev_map[i] = index_where_to_add; 5797 index_where_to_add++; 5798 max_errors++; 5799 tgtdev_indexes++; 5800 } 5801 } 5802 num_stripes = index_where_to_add; 5803 } else if (dev_replace_is_ongoing && 5804 op == BTRFS_MAP_GET_READ_MIRRORS && 5805 dev_replace->tgtdev != NULL) { 5806 u64 srcdev_devid = dev_replace->srcdev->devid; 5807 int index_srcdev = 0; 5808 int found = 0; 5809 u64 physical_of_found = 0; 5810 5811 /* 5812 * During the dev-replace procedure, the target drive can 5813 * also be used to read data in case it is needed to repair 5814 * a corrupt block elsewhere. This is possible if the 5815 * requested area is left of the left cursor. In this area, 5816 * the target drive is a full copy of the source drive. 5817 */ 5818 for (i = 0; i < num_stripes; i++) { 5819 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5820 /* 5821 * In case of DUP, in order to keep it 5822 * simple, only add the mirror with the 5823 * lowest physical address 5824 */ 5825 if (found && 5826 physical_of_found <= 5827 bbio->stripes[i].physical) 5828 continue; 5829 index_srcdev = i; 5830 found = 1; 5831 physical_of_found = bbio->stripes[i].physical; 5832 } 5833 } 5834 if (found) { 5835 struct btrfs_bio_stripe *tgtdev_stripe = 5836 bbio->stripes + num_stripes; 5837 5838 tgtdev_stripe->physical = physical_of_found; 5839 tgtdev_stripe->length = 5840 bbio->stripes[index_srcdev].length; 5841 tgtdev_stripe->dev = dev_replace->tgtdev; 5842 bbio->tgtdev_map[index_srcdev] = num_stripes; 5843 5844 tgtdev_indexes++; 5845 num_stripes++; 5846 } 5847 } 5848 5849 *bbio_ret = bbio; 5850 bbio->map_type = map->type; 5851 bbio->num_stripes = num_stripes; 5852 bbio->max_errors = max_errors; 5853 bbio->mirror_num = mirror_num; 5854 bbio->num_tgtdevs = tgtdev_indexes; 5855 5856 /* 5857 * this is the case that REQ_READ && dev_replace_is_ongoing && 5858 * mirror_num == num_stripes + 1 && dev_replace target drive is 5859 * available as a mirror 5860 */ 5861 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5862 WARN_ON(num_stripes > 1); 5863 bbio->stripes[0].dev = dev_replace->tgtdev; 5864 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5865 bbio->mirror_num = map->num_stripes + 1; 5866 } 5867 out: 5868 if (dev_replace_is_ongoing) { 5869 btrfs_dev_replace_clear_lock_blocking(dev_replace); 5870 btrfs_dev_replace_unlock(dev_replace, 0); 5871 } 5872 free_extent_map(em); 5873 return ret; 5874 } 5875 5876 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5877 u64 logical, u64 *length, 5878 struct btrfs_bio **bbio_ret, int mirror_num) 5879 { 5880 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 5881 mirror_num, 0); 5882 } 5883 5884 /* For Scrub/replace */ 5885 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5886 u64 logical, u64 *length, 5887 struct btrfs_bio **bbio_ret, int mirror_num, 5888 int need_raid_map) 5889 { 5890 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 5891 mirror_num, need_raid_map); 5892 } 5893 5894 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, 5895 u64 chunk_start, u64 physical, u64 devid, 5896 u64 **logical, int *naddrs, int *stripe_len) 5897 { 5898 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5899 struct extent_map_tree *em_tree = &map_tree->map_tree; 5900 struct extent_map *em; 5901 struct map_lookup *map; 5902 u64 *buf; 5903 u64 bytenr; 5904 u64 length; 5905 u64 stripe_nr; 5906 u64 rmap_len; 5907 int i, j, nr = 0; 5908 5909 read_lock(&em_tree->lock); 5910 em = lookup_extent_mapping(em_tree, chunk_start, 1); 5911 read_unlock(&em_tree->lock); 5912 5913 if (!em) { 5914 btrfs_err(fs_info, "couldn't find em for chunk %Lu", 5915 chunk_start); 5916 return -EIO; 5917 } 5918 5919 if (em->start != chunk_start) { 5920 btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu", 5921 em->start, chunk_start); 5922 free_extent_map(em); 5923 return -EIO; 5924 } 5925 map = em->map_lookup; 5926 5927 length = em->len; 5928 rmap_len = map->stripe_len; 5929 5930 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5931 length = div_u64(length, map->num_stripes / map->sub_stripes); 5932 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5933 length = div_u64(length, map->num_stripes); 5934 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5935 length = div_u64(length, nr_data_stripes(map)); 5936 rmap_len = map->stripe_len * nr_data_stripes(map); 5937 } 5938 5939 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 5940 BUG_ON(!buf); /* -ENOMEM */ 5941 5942 for (i = 0; i < map->num_stripes; i++) { 5943 if (devid && map->stripes[i].dev->devid != devid) 5944 continue; 5945 if (map->stripes[i].physical > physical || 5946 map->stripes[i].physical + length <= physical) 5947 continue; 5948 5949 stripe_nr = physical - map->stripes[i].physical; 5950 stripe_nr = div_u64(stripe_nr, map->stripe_len); 5951 5952 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5953 stripe_nr = stripe_nr * map->num_stripes + i; 5954 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 5955 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5956 stripe_nr = stripe_nr * map->num_stripes + i; 5957 } /* else if RAID[56], multiply by nr_data_stripes(). 5958 * Alternatively, just use rmap_len below instead of 5959 * map->stripe_len */ 5960 5961 bytenr = chunk_start + stripe_nr * rmap_len; 5962 WARN_ON(nr >= map->num_stripes); 5963 for (j = 0; j < nr; j++) { 5964 if (buf[j] == bytenr) 5965 break; 5966 } 5967 if (j == nr) { 5968 WARN_ON(nr >= map->num_stripes); 5969 buf[nr++] = bytenr; 5970 } 5971 } 5972 5973 *logical = buf; 5974 *naddrs = nr; 5975 *stripe_len = rmap_len; 5976 5977 free_extent_map(em); 5978 return 0; 5979 } 5980 5981 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 5982 { 5983 bio->bi_private = bbio->private; 5984 bio->bi_end_io = bbio->end_io; 5985 bio_endio(bio); 5986 5987 btrfs_put_bbio(bbio); 5988 } 5989 5990 static void btrfs_end_bio(struct bio *bio) 5991 { 5992 struct btrfs_bio *bbio = bio->bi_private; 5993 int is_orig_bio = 0; 5994 5995 if (bio->bi_error) { 5996 atomic_inc(&bbio->error); 5997 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) { 5998 unsigned int stripe_index = 5999 btrfs_io_bio(bio)->stripe_index; 6000 struct btrfs_device *dev; 6001 6002 BUG_ON(stripe_index >= bbio->num_stripes); 6003 dev = bbio->stripes[stripe_index].dev; 6004 if (dev->bdev) { 6005 if (bio_op(bio) == REQ_OP_WRITE) 6006 btrfs_dev_stat_inc(dev, 6007 BTRFS_DEV_STAT_WRITE_ERRS); 6008 else 6009 btrfs_dev_stat_inc(dev, 6010 BTRFS_DEV_STAT_READ_ERRS); 6011 if (bio->bi_opf & REQ_PREFLUSH) 6012 btrfs_dev_stat_inc(dev, 6013 BTRFS_DEV_STAT_FLUSH_ERRS); 6014 btrfs_dev_stat_print_on_error(dev); 6015 } 6016 } 6017 } 6018 6019 if (bio == bbio->orig_bio) 6020 is_orig_bio = 1; 6021 6022 btrfs_bio_counter_dec(bbio->fs_info); 6023 6024 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6025 if (!is_orig_bio) { 6026 bio_put(bio); 6027 bio = bbio->orig_bio; 6028 } 6029 6030 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6031 /* only send an error to the higher layers if it is 6032 * beyond the tolerance of the btrfs bio 6033 */ 6034 if (atomic_read(&bbio->error) > bbio->max_errors) { 6035 bio->bi_error = -EIO; 6036 } else { 6037 /* 6038 * this bio is actually up to date, we didn't 6039 * go over the max number of errors 6040 */ 6041 bio->bi_error = 0; 6042 } 6043 6044 btrfs_end_bbio(bbio, bio); 6045 } else if (!is_orig_bio) { 6046 bio_put(bio); 6047 } 6048 } 6049 6050 /* 6051 * see run_scheduled_bios for a description of why bios are collected for 6052 * async submit. 6053 * 6054 * This will add one bio to the pending list for a device and make sure 6055 * the work struct is scheduled. 6056 */ 6057 static noinline void btrfs_schedule_bio(struct btrfs_device *device, 6058 struct bio *bio) 6059 { 6060 struct btrfs_fs_info *fs_info = device->fs_info; 6061 int should_queue = 1; 6062 struct btrfs_pending_bios *pending_bios; 6063 6064 if (device->missing || !device->bdev) { 6065 bio_io_error(bio); 6066 return; 6067 } 6068 6069 /* don't bother with additional async steps for reads, right now */ 6070 if (bio_op(bio) == REQ_OP_READ) { 6071 bio_get(bio); 6072 btrfsic_submit_bio(bio); 6073 bio_put(bio); 6074 return; 6075 } 6076 6077 /* 6078 * nr_async_bios allows us to reliably return congestion to the 6079 * higher layers. Otherwise, the async bio makes it appear we have 6080 * made progress against dirty pages when we've really just put it 6081 * on a queue for later 6082 */ 6083 atomic_inc(&fs_info->nr_async_bios); 6084 WARN_ON(bio->bi_next); 6085 bio->bi_next = NULL; 6086 6087 spin_lock(&device->io_lock); 6088 if (op_is_sync(bio->bi_opf)) 6089 pending_bios = &device->pending_sync_bios; 6090 else 6091 pending_bios = &device->pending_bios; 6092 6093 if (pending_bios->tail) 6094 pending_bios->tail->bi_next = bio; 6095 6096 pending_bios->tail = bio; 6097 if (!pending_bios->head) 6098 pending_bios->head = bio; 6099 if (device->running_pending) 6100 should_queue = 0; 6101 6102 spin_unlock(&device->io_lock); 6103 6104 if (should_queue) 6105 btrfs_queue_work(fs_info->submit_workers, &device->work); 6106 } 6107 6108 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6109 u64 physical, int dev_nr, int async) 6110 { 6111 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 6112 struct btrfs_fs_info *fs_info = bbio->fs_info; 6113 6114 bio->bi_private = bbio; 6115 btrfs_io_bio(bio)->stripe_index = dev_nr; 6116 bio->bi_end_io = btrfs_end_bio; 6117 bio->bi_iter.bi_sector = physical >> 9; 6118 #ifdef DEBUG 6119 { 6120 struct rcu_string *name; 6121 6122 rcu_read_lock(); 6123 name = rcu_dereference(dev->name); 6124 btrfs_debug(fs_info, 6125 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6126 bio_op(bio), bio->bi_opf, 6127 (u64)bio->bi_iter.bi_sector, 6128 (u_long)dev->bdev->bd_dev, name->str, dev->devid, 6129 bio->bi_iter.bi_size); 6130 rcu_read_unlock(); 6131 } 6132 #endif 6133 bio->bi_bdev = dev->bdev; 6134 6135 btrfs_bio_counter_inc_noblocked(fs_info); 6136 6137 if (async) 6138 btrfs_schedule_bio(dev, bio); 6139 else 6140 btrfsic_submit_bio(bio); 6141 } 6142 6143 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6144 { 6145 atomic_inc(&bbio->error); 6146 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6147 /* Should be the original bio. */ 6148 WARN_ON(bio != bbio->orig_bio); 6149 6150 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6151 bio->bi_iter.bi_sector = logical >> 9; 6152 bio->bi_error = -EIO; 6153 btrfs_end_bbio(bbio, bio); 6154 } 6155 } 6156 6157 int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6158 int mirror_num, int async_submit) 6159 { 6160 struct btrfs_device *dev; 6161 struct bio *first_bio = bio; 6162 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6163 u64 length = 0; 6164 u64 map_length; 6165 int ret; 6166 int dev_nr; 6167 int total_devs; 6168 struct btrfs_bio *bbio = NULL; 6169 6170 length = bio->bi_iter.bi_size; 6171 map_length = length; 6172 6173 btrfs_bio_counter_inc_blocked(fs_info); 6174 ret = __btrfs_map_block(fs_info, bio_op(bio), logical, 6175 &map_length, &bbio, mirror_num, 1); 6176 if (ret) { 6177 btrfs_bio_counter_dec(fs_info); 6178 return ret; 6179 } 6180 6181 total_devs = bbio->num_stripes; 6182 bbio->orig_bio = first_bio; 6183 bbio->private = first_bio->bi_private; 6184 bbio->end_io = first_bio->bi_end_io; 6185 bbio->fs_info = fs_info; 6186 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6187 6188 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6189 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6190 /* In this case, map_length has been set to the length of 6191 a single stripe; not the whole write */ 6192 if (bio_op(bio) == REQ_OP_WRITE) { 6193 ret = raid56_parity_write(fs_info, bio, bbio, 6194 map_length); 6195 } else { 6196 ret = raid56_parity_recover(fs_info, bio, bbio, 6197 map_length, mirror_num, 1); 6198 } 6199 6200 btrfs_bio_counter_dec(fs_info); 6201 return ret; 6202 } 6203 6204 if (map_length < length) { 6205 btrfs_crit(fs_info, 6206 "mapping failed logical %llu bio len %llu len %llu", 6207 logical, length, map_length); 6208 BUG(); 6209 } 6210 6211 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6212 dev = bbio->stripes[dev_nr].dev; 6213 if (!dev || !dev->bdev || 6214 (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) { 6215 bbio_error(bbio, first_bio, logical); 6216 continue; 6217 } 6218 6219 if (dev_nr < total_devs - 1) { 6220 bio = btrfs_bio_clone(first_bio, GFP_NOFS); 6221 BUG_ON(!bio); /* -ENOMEM */ 6222 } else 6223 bio = first_bio; 6224 6225 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, 6226 dev_nr, async_submit); 6227 } 6228 btrfs_bio_counter_dec(fs_info); 6229 return 0; 6230 } 6231 6232 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 6233 u8 *uuid, u8 *fsid) 6234 { 6235 struct btrfs_device *device; 6236 struct btrfs_fs_devices *cur_devices; 6237 6238 cur_devices = fs_info->fs_devices; 6239 while (cur_devices) { 6240 if (!fsid || 6241 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 6242 device = __find_device(&cur_devices->devices, 6243 devid, uuid); 6244 if (device) 6245 return device; 6246 } 6247 cur_devices = cur_devices->seed; 6248 } 6249 return NULL; 6250 } 6251 6252 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6253 u64 devid, u8 *dev_uuid) 6254 { 6255 struct btrfs_device *device; 6256 6257 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6258 if (IS_ERR(device)) 6259 return NULL; 6260 6261 list_add(&device->dev_list, &fs_devices->devices); 6262 device->fs_devices = fs_devices; 6263 fs_devices->num_devices++; 6264 6265 device->missing = 1; 6266 fs_devices->missing_devices++; 6267 6268 return device; 6269 } 6270 6271 /** 6272 * btrfs_alloc_device - allocate struct btrfs_device 6273 * @fs_info: used only for generating a new devid, can be NULL if 6274 * devid is provided (i.e. @devid != NULL). 6275 * @devid: a pointer to devid for this device. If NULL a new devid 6276 * is generated. 6277 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6278 * is generated. 6279 * 6280 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6281 * on error. Returned struct is not linked onto any lists and can be 6282 * destroyed with kfree() right away. 6283 */ 6284 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6285 const u64 *devid, 6286 const u8 *uuid) 6287 { 6288 struct btrfs_device *dev; 6289 u64 tmp; 6290 6291 if (WARN_ON(!devid && !fs_info)) 6292 return ERR_PTR(-EINVAL); 6293 6294 dev = __alloc_device(); 6295 if (IS_ERR(dev)) 6296 return dev; 6297 6298 if (devid) 6299 tmp = *devid; 6300 else { 6301 int ret; 6302 6303 ret = find_next_devid(fs_info, &tmp); 6304 if (ret) { 6305 kfree(dev); 6306 return ERR_PTR(ret); 6307 } 6308 } 6309 dev->devid = tmp; 6310 6311 if (uuid) 6312 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6313 else 6314 generate_random_uuid(dev->uuid); 6315 6316 btrfs_init_work(&dev->work, btrfs_submit_helper, 6317 pending_bios_fn, NULL, NULL); 6318 6319 return dev; 6320 } 6321 6322 /* Return -EIO if any error, otherwise return 0. */ 6323 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info, 6324 struct extent_buffer *leaf, 6325 struct btrfs_chunk *chunk, u64 logical) 6326 { 6327 u64 length; 6328 u64 stripe_len; 6329 u16 num_stripes; 6330 u16 sub_stripes; 6331 u64 type; 6332 6333 length = btrfs_chunk_length(leaf, chunk); 6334 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6335 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6336 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6337 type = btrfs_chunk_type(leaf, chunk); 6338 6339 if (!num_stripes) { 6340 btrfs_err(fs_info, "invalid chunk num_stripes: %u", 6341 num_stripes); 6342 return -EIO; 6343 } 6344 if (!IS_ALIGNED(logical, fs_info->sectorsize)) { 6345 btrfs_err(fs_info, "invalid chunk logical %llu", logical); 6346 return -EIO; 6347 } 6348 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) { 6349 btrfs_err(fs_info, "invalid chunk sectorsize %u", 6350 btrfs_chunk_sector_size(leaf, chunk)); 6351 return -EIO; 6352 } 6353 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) { 6354 btrfs_err(fs_info, "invalid chunk length %llu", length); 6355 return -EIO; 6356 } 6357 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) { 6358 btrfs_err(fs_info, "invalid chunk stripe length: %llu", 6359 stripe_len); 6360 return -EIO; 6361 } 6362 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6363 type) { 6364 btrfs_err(fs_info, "unrecognized chunk type: %llu", 6365 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 6366 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6367 btrfs_chunk_type(leaf, chunk)); 6368 return -EIO; 6369 } 6370 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) || 6371 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) || 6372 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) || 6373 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) || 6374 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) || 6375 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 6376 num_stripes != 1)) { 6377 btrfs_err(fs_info, 6378 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 6379 num_stripes, sub_stripes, 6380 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 6381 return -EIO; 6382 } 6383 6384 return 0; 6385 } 6386 6387 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 6388 struct extent_buffer *leaf, 6389 struct btrfs_chunk *chunk) 6390 { 6391 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 6392 struct map_lookup *map; 6393 struct extent_map *em; 6394 u64 logical; 6395 u64 length; 6396 u64 stripe_len; 6397 u64 devid; 6398 u8 uuid[BTRFS_UUID_SIZE]; 6399 int num_stripes; 6400 int ret; 6401 int i; 6402 6403 logical = key->offset; 6404 length = btrfs_chunk_length(leaf, chunk); 6405 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6406 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6407 6408 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical); 6409 if (ret) 6410 return ret; 6411 6412 read_lock(&map_tree->map_tree.lock); 6413 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 6414 read_unlock(&map_tree->map_tree.lock); 6415 6416 /* already mapped? */ 6417 if (em && em->start <= logical && em->start + em->len > logical) { 6418 free_extent_map(em); 6419 return 0; 6420 } else if (em) { 6421 free_extent_map(em); 6422 } 6423 6424 em = alloc_extent_map(); 6425 if (!em) 6426 return -ENOMEM; 6427 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6428 if (!map) { 6429 free_extent_map(em); 6430 return -ENOMEM; 6431 } 6432 6433 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6434 em->map_lookup = map; 6435 em->start = logical; 6436 em->len = length; 6437 em->orig_start = 0; 6438 em->block_start = 0; 6439 em->block_len = em->len; 6440 6441 map->num_stripes = num_stripes; 6442 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6443 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6444 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 6445 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6446 map->type = btrfs_chunk_type(leaf, chunk); 6447 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6448 for (i = 0; i < num_stripes; i++) { 6449 map->stripes[i].physical = 6450 btrfs_stripe_offset_nr(leaf, chunk, i); 6451 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6452 read_extent_buffer(leaf, uuid, (unsigned long) 6453 btrfs_stripe_dev_uuid_nr(chunk, i), 6454 BTRFS_UUID_SIZE); 6455 map->stripes[i].dev = btrfs_find_device(fs_info, devid, 6456 uuid, NULL); 6457 if (!map->stripes[i].dev && 6458 !btrfs_test_opt(fs_info, DEGRADED)) { 6459 free_extent_map(em); 6460 return -EIO; 6461 } 6462 if (!map->stripes[i].dev) { 6463 map->stripes[i].dev = 6464 add_missing_dev(fs_info->fs_devices, devid, 6465 uuid); 6466 if (!map->stripes[i].dev) { 6467 free_extent_map(em); 6468 return -EIO; 6469 } 6470 btrfs_warn(fs_info, "devid %llu uuid %pU is missing", 6471 devid, uuid); 6472 } 6473 map->stripes[i].dev->in_fs_metadata = 1; 6474 } 6475 6476 write_lock(&map_tree->map_tree.lock); 6477 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6478 write_unlock(&map_tree->map_tree.lock); 6479 BUG_ON(ret); /* Tree corruption */ 6480 free_extent_map(em); 6481 6482 return 0; 6483 } 6484 6485 static void fill_device_from_item(struct extent_buffer *leaf, 6486 struct btrfs_dev_item *dev_item, 6487 struct btrfs_device *device) 6488 { 6489 unsigned long ptr; 6490 6491 device->devid = btrfs_device_id(leaf, dev_item); 6492 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6493 device->total_bytes = device->disk_total_bytes; 6494 device->commit_total_bytes = device->disk_total_bytes; 6495 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6496 device->commit_bytes_used = device->bytes_used; 6497 device->type = btrfs_device_type(leaf, dev_item); 6498 device->io_align = btrfs_device_io_align(leaf, dev_item); 6499 device->io_width = btrfs_device_io_width(leaf, dev_item); 6500 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6501 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6502 device->is_tgtdev_for_dev_replace = 0; 6503 6504 ptr = btrfs_device_uuid(dev_item); 6505 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6506 } 6507 6508 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6509 u8 *fsid) 6510 { 6511 struct btrfs_fs_devices *fs_devices; 6512 int ret; 6513 6514 BUG_ON(!mutex_is_locked(&uuid_mutex)); 6515 6516 fs_devices = fs_info->fs_devices->seed; 6517 while (fs_devices) { 6518 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) 6519 return fs_devices; 6520 6521 fs_devices = fs_devices->seed; 6522 } 6523 6524 fs_devices = find_fsid(fsid); 6525 if (!fs_devices) { 6526 if (!btrfs_test_opt(fs_info, DEGRADED)) 6527 return ERR_PTR(-ENOENT); 6528 6529 fs_devices = alloc_fs_devices(fsid); 6530 if (IS_ERR(fs_devices)) 6531 return fs_devices; 6532 6533 fs_devices->seeding = 1; 6534 fs_devices->opened = 1; 6535 return fs_devices; 6536 } 6537 6538 fs_devices = clone_fs_devices(fs_devices); 6539 if (IS_ERR(fs_devices)) 6540 return fs_devices; 6541 6542 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 6543 fs_info->bdev_holder); 6544 if (ret) { 6545 free_fs_devices(fs_devices); 6546 fs_devices = ERR_PTR(ret); 6547 goto out; 6548 } 6549 6550 if (!fs_devices->seeding) { 6551 __btrfs_close_devices(fs_devices); 6552 free_fs_devices(fs_devices); 6553 fs_devices = ERR_PTR(-EINVAL); 6554 goto out; 6555 } 6556 6557 fs_devices->seed = fs_info->fs_devices->seed; 6558 fs_info->fs_devices->seed = fs_devices; 6559 out: 6560 return fs_devices; 6561 } 6562 6563 static int read_one_dev(struct btrfs_fs_info *fs_info, 6564 struct extent_buffer *leaf, 6565 struct btrfs_dev_item *dev_item) 6566 { 6567 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6568 struct btrfs_device *device; 6569 u64 devid; 6570 int ret; 6571 u8 fs_uuid[BTRFS_UUID_SIZE]; 6572 u8 dev_uuid[BTRFS_UUID_SIZE]; 6573 6574 devid = btrfs_device_id(leaf, dev_item); 6575 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6576 BTRFS_UUID_SIZE); 6577 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6578 BTRFS_UUID_SIZE); 6579 6580 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) { 6581 fs_devices = open_seed_devices(fs_info, fs_uuid); 6582 if (IS_ERR(fs_devices)) 6583 return PTR_ERR(fs_devices); 6584 } 6585 6586 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid); 6587 if (!device) { 6588 if (!btrfs_test_opt(fs_info, DEGRADED)) 6589 return -EIO; 6590 6591 device = add_missing_dev(fs_devices, devid, dev_uuid); 6592 if (!device) 6593 return -ENOMEM; 6594 btrfs_warn(fs_info, "devid %llu uuid %pU missing", 6595 devid, dev_uuid); 6596 } else { 6597 if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED)) 6598 return -EIO; 6599 6600 if(!device->bdev && !device->missing) { 6601 /* 6602 * this happens when a device that was properly setup 6603 * in the device info lists suddenly goes bad. 6604 * device->bdev is NULL, and so we have to set 6605 * device->missing to one here 6606 */ 6607 device->fs_devices->missing_devices++; 6608 device->missing = 1; 6609 } 6610 6611 /* Move the device to its own fs_devices */ 6612 if (device->fs_devices != fs_devices) { 6613 ASSERT(device->missing); 6614 6615 list_move(&device->dev_list, &fs_devices->devices); 6616 device->fs_devices->num_devices--; 6617 fs_devices->num_devices++; 6618 6619 device->fs_devices->missing_devices--; 6620 fs_devices->missing_devices++; 6621 6622 device->fs_devices = fs_devices; 6623 } 6624 } 6625 6626 if (device->fs_devices != fs_info->fs_devices) { 6627 BUG_ON(device->writeable); 6628 if (device->generation != 6629 btrfs_device_generation(leaf, dev_item)) 6630 return -EINVAL; 6631 } 6632 6633 fill_device_from_item(leaf, dev_item, device); 6634 device->in_fs_metadata = 1; 6635 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 6636 device->fs_devices->total_rw_bytes += device->total_bytes; 6637 spin_lock(&fs_info->free_chunk_lock); 6638 fs_info->free_chunk_space += device->total_bytes - 6639 device->bytes_used; 6640 spin_unlock(&fs_info->free_chunk_lock); 6641 } 6642 ret = 0; 6643 return ret; 6644 } 6645 6646 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 6647 { 6648 struct btrfs_root *root = fs_info->tree_root; 6649 struct btrfs_super_block *super_copy = fs_info->super_copy; 6650 struct extent_buffer *sb; 6651 struct btrfs_disk_key *disk_key; 6652 struct btrfs_chunk *chunk; 6653 u8 *array_ptr; 6654 unsigned long sb_array_offset; 6655 int ret = 0; 6656 u32 num_stripes; 6657 u32 array_size; 6658 u32 len = 0; 6659 u32 cur_offset; 6660 u64 type; 6661 struct btrfs_key key; 6662 6663 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 6664 /* 6665 * This will create extent buffer of nodesize, superblock size is 6666 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6667 * overallocate but we can keep it as-is, only the first page is used. 6668 */ 6669 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 6670 if (IS_ERR(sb)) 6671 return PTR_ERR(sb); 6672 set_extent_buffer_uptodate(sb); 6673 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6674 /* 6675 * The sb extent buffer is artificial and just used to read the system array. 6676 * set_extent_buffer_uptodate() call does not properly mark all it's 6677 * pages up-to-date when the page is larger: extent does not cover the 6678 * whole page and consequently check_page_uptodate does not find all 6679 * the page's extents up-to-date (the hole beyond sb), 6680 * write_extent_buffer then triggers a WARN_ON. 6681 * 6682 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6683 * but sb spans only this function. Add an explicit SetPageUptodate call 6684 * to silence the warning eg. on PowerPC 64. 6685 */ 6686 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 6687 SetPageUptodate(sb->pages[0]); 6688 6689 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6690 array_size = btrfs_super_sys_array_size(super_copy); 6691 6692 array_ptr = super_copy->sys_chunk_array; 6693 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6694 cur_offset = 0; 6695 6696 while (cur_offset < array_size) { 6697 disk_key = (struct btrfs_disk_key *)array_ptr; 6698 len = sizeof(*disk_key); 6699 if (cur_offset + len > array_size) 6700 goto out_short_read; 6701 6702 btrfs_disk_key_to_cpu(&key, disk_key); 6703 6704 array_ptr += len; 6705 sb_array_offset += len; 6706 cur_offset += len; 6707 6708 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 6709 chunk = (struct btrfs_chunk *)sb_array_offset; 6710 /* 6711 * At least one btrfs_chunk with one stripe must be 6712 * present, exact stripe count check comes afterwards 6713 */ 6714 len = btrfs_chunk_item_size(1); 6715 if (cur_offset + len > array_size) 6716 goto out_short_read; 6717 6718 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6719 if (!num_stripes) { 6720 btrfs_err(fs_info, 6721 "invalid number of stripes %u in sys_array at offset %u", 6722 num_stripes, cur_offset); 6723 ret = -EIO; 6724 break; 6725 } 6726 6727 type = btrfs_chunk_type(sb, chunk); 6728 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 6729 btrfs_err(fs_info, 6730 "invalid chunk type %llu in sys_array at offset %u", 6731 type, cur_offset); 6732 ret = -EIO; 6733 break; 6734 } 6735 6736 len = btrfs_chunk_item_size(num_stripes); 6737 if (cur_offset + len > array_size) 6738 goto out_short_read; 6739 6740 ret = read_one_chunk(fs_info, &key, sb, chunk); 6741 if (ret) 6742 break; 6743 } else { 6744 btrfs_err(fs_info, 6745 "unexpected item type %u in sys_array at offset %u", 6746 (u32)key.type, cur_offset); 6747 ret = -EIO; 6748 break; 6749 } 6750 array_ptr += len; 6751 sb_array_offset += len; 6752 cur_offset += len; 6753 } 6754 clear_extent_buffer_uptodate(sb); 6755 free_extent_buffer_stale(sb); 6756 return ret; 6757 6758 out_short_read: 6759 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 6760 len, cur_offset); 6761 clear_extent_buffer_uptodate(sb); 6762 free_extent_buffer_stale(sb); 6763 return -EIO; 6764 } 6765 6766 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 6767 { 6768 struct btrfs_root *root = fs_info->chunk_root; 6769 struct btrfs_path *path; 6770 struct extent_buffer *leaf; 6771 struct btrfs_key key; 6772 struct btrfs_key found_key; 6773 int ret; 6774 int slot; 6775 u64 total_dev = 0; 6776 6777 path = btrfs_alloc_path(); 6778 if (!path) 6779 return -ENOMEM; 6780 6781 mutex_lock(&uuid_mutex); 6782 mutex_lock(&fs_info->chunk_mutex); 6783 6784 /* 6785 * Read all device items, and then all the chunk items. All 6786 * device items are found before any chunk item (their object id 6787 * is smaller than the lowest possible object id for a chunk 6788 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6789 */ 6790 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6791 key.offset = 0; 6792 key.type = 0; 6793 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6794 if (ret < 0) 6795 goto error; 6796 while (1) { 6797 leaf = path->nodes[0]; 6798 slot = path->slots[0]; 6799 if (slot >= btrfs_header_nritems(leaf)) { 6800 ret = btrfs_next_leaf(root, path); 6801 if (ret == 0) 6802 continue; 6803 if (ret < 0) 6804 goto error; 6805 break; 6806 } 6807 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6808 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6809 struct btrfs_dev_item *dev_item; 6810 dev_item = btrfs_item_ptr(leaf, slot, 6811 struct btrfs_dev_item); 6812 ret = read_one_dev(fs_info, leaf, dev_item); 6813 if (ret) 6814 goto error; 6815 total_dev++; 6816 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6817 struct btrfs_chunk *chunk; 6818 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6819 ret = read_one_chunk(fs_info, &found_key, leaf, chunk); 6820 if (ret) 6821 goto error; 6822 } 6823 path->slots[0]++; 6824 } 6825 6826 /* 6827 * After loading chunk tree, we've got all device information, 6828 * do another round of validation checks. 6829 */ 6830 if (total_dev != fs_info->fs_devices->total_devices) { 6831 btrfs_err(fs_info, 6832 "super_num_devices %llu mismatch with num_devices %llu found here", 6833 btrfs_super_num_devices(fs_info->super_copy), 6834 total_dev); 6835 ret = -EINVAL; 6836 goto error; 6837 } 6838 if (btrfs_super_total_bytes(fs_info->super_copy) < 6839 fs_info->fs_devices->total_rw_bytes) { 6840 btrfs_err(fs_info, 6841 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 6842 btrfs_super_total_bytes(fs_info->super_copy), 6843 fs_info->fs_devices->total_rw_bytes); 6844 ret = -EINVAL; 6845 goto error; 6846 } 6847 ret = 0; 6848 error: 6849 mutex_unlock(&fs_info->chunk_mutex); 6850 mutex_unlock(&uuid_mutex); 6851 6852 btrfs_free_path(path); 6853 return ret; 6854 } 6855 6856 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6857 { 6858 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6859 struct btrfs_device *device; 6860 6861 while (fs_devices) { 6862 mutex_lock(&fs_devices->device_list_mutex); 6863 list_for_each_entry(device, &fs_devices->devices, dev_list) 6864 device->fs_info = fs_info; 6865 mutex_unlock(&fs_devices->device_list_mutex); 6866 6867 fs_devices = fs_devices->seed; 6868 } 6869 } 6870 6871 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6872 { 6873 int i; 6874 6875 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6876 btrfs_dev_stat_reset(dev, i); 6877 } 6878 6879 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6880 { 6881 struct btrfs_key key; 6882 struct btrfs_key found_key; 6883 struct btrfs_root *dev_root = fs_info->dev_root; 6884 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6885 struct extent_buffer *eb; 6886 int slot; 6887 int ret = 0; 6888 struct btrfs_device *device; 6889 struct btrfs_path *path = NULL; 6890 int i; 6891 6892 path = btrfs_alloc_path(); 6893 if (!path) { 6894 ret = -ENOMEM; 6895 goto out; 6896 } 6897 6898 mutex_lock(&fs_devices->device_list_mutex); 6899 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6900 int item_size; 6901 struct btrfs_dev_stats_item *ptr; 6902 6903 key.objectid = BTRFS_DEV_STATS_OBJECTID; 6904 key.type = BTRFS_PERSISTENT_ITEM_KEY; 6905 key.offset = device->devid; 6906 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6907 if (ret) { 6908 __btrfs_reset_dev_stats(device); 6909 device->dev_stats_valid = 1; 6910 btrfs_release_path(path); 6911 continue; 6912 } 6913 slot = path->slots[0]; 6914 eb = path->nodes[0]; 6915 btrfs_item_key_to_cpu(eb, &found_key, slot); 6916 item_size = btrfs_item_size_nr(eb, slot); 6917 6918 ptr = btrfs_item_ptr(eb, slot, 6919 struct btrfs_dev_stats_item); 6920 6921 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6922 if (item_size >= (1 + i) * sizeof(__le64)) 6923 btrfs_dev_stat_set(device, i, 6924 btrfs_dev_stats_value(eb, ptr, i)); 6925 else 6926 btrfs_dev_stat_reset(device, i); 6927 } 6928 6929 device->dev_stats_valid = 1; 6930 btrfs_dev_stat_print_on_load(device); 6931 btrfs_release_path(path); 6932 } 6933 mutex_unlock(&fs_devices->device_list_mutex); 6934 6935 out: 6936 btrfs_free_path(path); 6937 return ret < 0 ? ret : 0; 6938 } 6939 6940 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 6941 struct btrfs_fs_info *fs_info, 6942 struct btrfs_device *device) 6943 { 6944 struct btrfs_root *dev_root = fs_info->dev_root; 6945 struct btrfs_path *path; 6946 struct btrfs_key key; 6947 struct extent_buffer *eb; 6948 struct btrfs_dev_stats_item *ptr; 6949 int ret; 6950 int i; 6951 6952 key.objectid = BTRFS_DEV_STATS_OBJECTID; 6953 key.type = BTRFS_PERSISTENT_ITEM_KEY; 6954 key.offset = device->devid; 6955 6956 path = btrfs_alloc_path(); 6957 BUG_ON(!path); 6958 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 6959 if (ret < 0) { 6960 btrfs_warn_in_rcu(fs_info, 6961 "error %d while searching for dev_stats item for device %s", 6962 ret, rcu_str_deref(device->name)); 6963 goto out; 6964 } 6965 6966 if (ret == 0 && 6967 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 6968 /* need to delete old one and insert a new one */ 6969 ret = btrfs_del_item(trans, dev_root, path); 6970 if (ret != 0) { 6971 btrfs_warn_in_rcu(fs_info, 6972 "delete too small dev_stats item for device %s failed %d", 6973 rcu_str_deref(device->name), ret); 6974 goto out; 6975 } 6976 ret = 1; 6977 } 6978 6979 if (ret == 1) { 6980 /* need to insert a new item */ 6981 btrfs_release_path(path); 6982 ret = btrfs_insert_empty_item(trans, dev_root, path, 6983 &key, sizeof(*ptr)); 6984 if (ret < 0) { 6985 btrfs_warn_in_rcu(fs_info, 6986 "insert dev_stats item for device %s failed %d", 6987 rcu_str_deref(device->name), ret); 6988 goto out; 6989 } 6990 } 6991 6992 eb = path->nodes[0]; 6993 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 6994 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6995 btrfs_set_dev_stats_value(eb, ptr, i, 6996 btrfs_dev_stat_read(device, i)); 6997 btrfs_mark_buffer_dirty(eb); 6998 6999 out: 7000 btrfs_free_path(path); 7001 return ret; 7002 } 7003 7004 /* 7005 * called from commit_transaction. Writes all changed device stats to disk. 7006 */ 7007 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 7008 struct btrfs_fs_info *fs_info) 7009 { 7010 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7011 struct btrfs_device *device; 7012 int stats_cnt; 7013 int ret = 0; 7014 7015 mutex_lock(&fs_devices->device_list_mutex); 7016 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7017 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device)) 7018 continue; 7019 7020 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7021 ret = update_dev_stat_item(trans, fs_info, device); 7022 if (!ret) 7023 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7024 } 7025 mutex_unlock(&fs_devices->device_list_mutex); 7026 7027 return ret; 7028 } 7029 7030 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7031 { 7032 btrfs_dev_stat_inc(dev, index); 7033 btrfs_dev_stat_print_on_error(dev); 7034 } 7035 7036 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7037 { 7038 if (!dev->dev_stats_valid) 7039 return; 7040 btrfs_err_rl_in_rcu(dev->fs_info, 7041 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7042 rcu_str_deref(dev->name), 7043 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7044 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7045 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7046 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7047 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7048 } 7049 7050 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7051 { 7052 int i; 7053 7054 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7055 if (btrfs_dev_stat_read(dev, i) != 0) 7056 break; 7057 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7058 return; /* all values == 0, suppress message */ 7059 7060 btrfs_info_in_rcu(dev->fs_info, 7061 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7062 rcu_str_deref(dev->name), 7063 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7064 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7065 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7066 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7067 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7068 } 7069 7070 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7071 struct btrfs_ioctl_get_dev_stats *stats) 7072 { 7073 struct btrfs_device *dev; 7074 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7075 int i; 7076 7077 mutex_lock(&fs_devices->device_list_mutex); 7078 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL); 7079 mutex_unlock(&fs_devices->device_list_mutex); 7080 7081 if (!dev) { 7082 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7083 return -ENODEV; 7084 } else if (!dev->dev_stats_valid) { 7085 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7086 return -ENODEV; 7087 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7088 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7089 if (stats->nr_items > i) 7090 stats->values[i] = 7091 btrfs_dev_stat_read_and_reset(dev, i); 7092 else 7093 btrfs_dev_stat_reset(dev, i); 7094 } 7095 } else { 7096 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7097 if (stats->nr_items > i) 7098 stats->values[i] = btrfs_dev_stat_read(dev, i); 7099 } 7100 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7101 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7102 return 0; 7103 } 7104 7105 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path) 7106 { 7107 struct buffer_head *bh; 7108 struct btrfs_super_block *disk_super; 7109 int copy_num; 7110 7111 if (!bdev) 7112 return; 7113 7114 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 7115 copy_num++) { 7116 7117 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 7118 continue; 7119 7120 disk_super = (struct btrfs_super_block *)bh->b_data; 7121 7122 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 7123 set_buffer_dirty(bh); 7124 sync_dirty_buffer(bh); 7125 brelse(bh); 7126 } 7127 7128 /* Notify udev that device has changed */ 7129 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 7130 7131 /* Update ctime/mtime for device path for libblkid */ 7132 update_dev_time(device_path); 7133 } 7134 7135 /* 7136 * Update the size of all devices, which is used for writing out the 7137 * super blocks. 7138 */ 7139 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) 7140 { 7141 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7142 struct btrfs_device *curr, *next; 7143 7144 if (list_empty(&fs_devices->resized_devices)) 7145 return; 7146 7147 mutex_lock(&fs_devices->device_list_mutex); 7148 mutex_lock(&fs_info->chunk_mutex); 7149 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, 7150 resized_list) { 7151 list_del_init(&curr->resized_list); 7152 curr->commit_total_bytes = curr->disk_total_bytes; 7153 } 7154 mutex_unlock(&fs_info->chunk_mutex); 7155 mutex_unlock(&fs_devices->device_list_mutex); 7156 } 7157 7158 /* Must be invoked during the transaction commit */ 7159 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info, 7160 struct btrfs_transaction *transaction) 7161 { 7162 struct extent_map *em; 7163 struct map_lookup *map; 7164 struct btrfs_device *dev; 7165 int i; 7166 7167 if (list_empty(&transaction->pending_chunks)) 7168 return; 7169 7170 /* In order to kick the device replace finish process */ 7171 mutex_lock(&fs_info->chunk_mutex); 7172 list_for_each_entry(em, &transaction->pending_chunks, list) { 7173 map = em->map_lookup; 7174 7175 for (i = 0; i < map->num_stripes; i++) { 7176 dev = map->stripes[i].dev; 7177 dev->commit_bytes_used = dev->bytes_used; 7178 } 7179 } 7180 mutex_unlock(&fs_info->chunk_mutex); 7181 } 7182 7183 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 7184 { 7185 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7186 while (fs_devices) { 7187 fs_devices->fs_info = fs_info; 7188 fs_devices = fs_devices->seed; 7189 } 7190 } 7191 7192 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 7193 { 7194 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7195 while (fs_devices) { 7196 fs_devices->fs_info = NULL; 7197 fs_devices = fs_devices->seed; 7198 } 7199 } 7200