xref: /openbmc/linux/fs/btrfs/volumes.c (revision 7bcae826)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 	[BTRFS_RAID_RAID10] = {
47 		.sub_stripes	= 2,
48 		.dev_stripes	= 1,
49 		.devs_max	= 0,	/* 0 == as many as possible */
50 		.devs_min	= 4,
51 		.tolerated_failures = 1,
52 		.devs_increment	= 2,
53 		.ncopies	= 2,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 	},
64 	[BTRFS_RAID_DUP] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 2,
67 		.devs_max	= 1,
68 		.devs_min	= 1,
69 		.tolerated_failures = 0,
70 		.devs_increment	= 1,
71 		.ncopies	= 2,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 	},
82 	[BTRFS_RAID_SINGLE] = {
83 		.sub_stripes	= 1,
84 		.dev_stripes	= 1,
85 		.devs_max	= 1,
86 		.devs_min	= 1,
87 		.tolerated_failures = 0,
88 		.devs_increment	= 1,
89 		.ncopies	= 1,
90 	},
91 	[BTRFS_RAID_RAID5] = {
92 		.sub_stripes	= 1,
93 		.dev_stripes	= 1,
94 		.devs_max	= 0,
95 		.devs_min	= 2,
96 		.tolerated_failures = 1,
97 		.devs_increment	= 1,
98 		.ncopies	= 2,
99 	},
100 	[BTRFS_RAID_RAID6] = {
101 		.sub_stripes	= 1,
102 		.dev_stripes	= 1,
103 		.devs_max	= 0,
104 		.devs_min	= 3,
105 		.tolerated_failures = 2,
106 		.devs_increment	= 1,
107 		.ncopies	= 3,
108 	},
109 };
110 
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116 	[BTRFS_RAID_SINGLE] = 0,
117 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120 
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 	[BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 	[BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 	[BTRFS_RAID_DUP]    = 0,
130 	[BTRFS_RAID_RAID0]  = 0,
131 	[BTRFS_RAID_SINGLE] = 0,
132 	[BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 	[BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135 
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 				struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 
143 DEFINE_MUTEX(uuid_mutex);
144 static LIST_HEAD(fs_uuids);
145 struct list_head *btrfs_get_fs_uuids(void)
146 {
147 	return &fs_uuids;
148 }
149 
150 static struct btrfs_fs_devices *__alloc_fs_devices(void)
151 {
152 	struct btrfs_fs_devices *fs_devs;
153 
154 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
155 	if (!fs_devs)
156 		return ERR_PTR(-ENOMEM);
157 
158 	mutex_init(&fs_devs->device_list_mutex);
159 
160 	INIT_LIST_HEAD(&fs_devs->devices);
161 	INIT_LIST_HEAD(&fs_devs->resized_devices);
162 	INIT_LIST_HEAD(&fs_devs->alloc_list);
163 	INIT_LIST_HEAD(&fs_devs->list);
164 
165 	return fs_devs;
166 }
167 
168 /**
169  * alloc_fs_devices - allocate struct btrfs_fs_devices
170  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
171  *		generated.
172  *
173  * Return: a pointer to a new &struct btrfs_fs_devices on success;
174  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
175  * can be destroyed with kfree() right away.
176  */
177 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
178 {
179 	struct btrfs_fs_devices *fs_devs;
180 
181 	fs_devs = __alloc_fs_devices();
182 	if (IS_ERR(fs_devs))
183 		return fs_devs;
184 
185 	if (fsid)
186 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
187 	else
188 		generate_random_uuid(fs_devs->fsid);
189 
190 	return fs_devs;
191 }
192 
193 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
194 {
195 	struct btrfs_device *device;
196 	WARN_ON(fs_devices->opened);
197 	while (!list_empty(&fs_devices->devices)) {
198 		device = list_entry(fs_devices->devices.next,
199 				    struct btrfs_device, dev_list);
200 		list_del(&device->dev_list);
201 		rcu_string_free(device->name);
202 		kfree(device);
203 	}
204 	kfree(fs_devices);
205 }
206 
207 static void btrfs_kobject_uevent(struct block_device *bdev,
208 				 enum kobject_action action)
209 {
210 	int ret;
211 
212 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
213 	if (ret)
214 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
215 			action,
216 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
217 			&disk_to_dev(bdev->bd_disk)->kobj);
218 }
219 
220 void btrfs_cleanup_fs_uuids(void)
221 {
222 	struct btrfs_fs_devices *fs_devices;
223 
224 	while (!list_empty(&fs_uuids)) {
225 		fs_devices = list_entry(fs_uuids.next,
226 					struct btrfs_fs_devices, list);
227 		list_del(&fs_devices->list);
228 		free_fs_devices(fs_devices);
229 	}
230 }
231 
232 static struct btrfs_device *__alloc_device(void)
233 {
234 	struct btrfs_device *dev;
235 
236 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
237 	if (!dev)
238 		return ERR_PTR(-ENOMEM);
239 
240 	INIT_LIST_HEAD(&dev->dev_list);
241 	INIT_LIST_HEAD(&dev->dev_alloc_list);
242 	INIT_LIST_HEAD(&dev->resized_list);
243 
244 	spin_lock_init(&dev->io_lock);
245 
246 	spin_lock_init(&dev->reada_lock);
247 	atomic_set(&dev->reada_in_flight, 0);
248 	atomic_set(&dev->dev_stats_ccnt, 0);
249 	btrfs_device_data_ordered_init(dev);
250 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
251 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 
253 	return dev;
254 }
255 
256 static noinline struct btrfs_device *__find_device(struct list_head *head,
257 						   u64 devid, u8 *uuid)
258 {
259 	struct btrfs_device *dev;
260 
261 	list_for_each_entry(dev, head, dev_list) {
262 		if (dev->devid == devid &&
263 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
264 			return dev;
265 		}
266 	}
267 	return NULL;
268 }
269 
270 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
271 {
272 	struct btrfs_fs_devices *fs_devices;
273 
274 	list_for_each_entry(fs_devices, &fs_uuids, list) {
275 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
276 			return fs_devices;
277 	}
278 	return NULL;
279 }
280 
281 static int
282 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
283 		      int flush, struct block_device **bdev,
284 		      struct buffer_head **bh)
285 {
286 	int ret;
287 
288 	*bdev = blkdev_get_by_path(device_path, flags, holder);
289 
290 	if (IS_ERR(*bdev)) {
291 		ret = PTR_ERR(*bdev);
292 		goto error;
293 	}
294 
295 	if (flush)
296 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
297 	ret = set_blocksize(*bdev, 4096);
298 	if (ret) {
299 		blkdev_put(*bdev, flags);
300 		goto error;
301 	}
302 	invalidate_bdev(*bdev);
303 	*bh = btrfs_read_dev_super(*bdev);
304 	if (IS_ERR(*bh)) {
305 		ret = PTR_ERR(*bh);
306 		blkdev_put(*bdev, flags);
307 		goto error;
308 	}
309 
310 	return 0;
311 
312 error:
313 	*bdev = NULL;
314 	*bh = NULL;
315 	return ret;
316 }
317 
318 static void requeue_list(struct btrfs_pending_bios *pending_bios,
319 			struct bio *head, struct bio *tail)
320 {
321 
322 	struct bio *old_head;
323 
324 	old_head = pending_bios->head;
325 	pending_bios->head = head;
326 	if (pending_bios->tail)
327 		tail->bi_next = old_head;
328 	else
329 		pending_bios->tail = tail;
330 }
331 
332 /*
333  * we try to collect pending bios for a device so we don't get a large
334  * number of procs sending bios down to the same device.  This greatly
335  * improves the schedulers ability to collect and merge the bios.
336  *
337  * But, it also turns into a long list of bios to process and that is sure
338  * to eventually make the worker thread block.  The solution here is to
339  * make some progress and then put this work struct back at the end of
340  * the list if the block device is congested.  This way, multiple devices
341  * can make progress from a single worker thread.
342  */
343 static noinline void run_scheduled_bios(struct btrfs_device *device)
344 {
345 	struct btrfs_fs_info *fs_info = device->fs_info;
346 	struct bio *pending;
347 	struct backing_dev_info *bdi;
348 	struct btrfs_pending_bios *pending_bios;
349 	struct bio *tail;
350 	struct bio *cur;
351 	int again = 0;
352 	unsigned long num_run;
353 	unsigned long batch_run = 0;
354 	unsigned long limit;
355 	unsigned long last_waited = 0;
356 	int force_reg = 0;
357 	int sync_pending = 0;
358 	struct blk_plug plug;
359 
360 	/*
361 	 * this function runs all the bios we've collected for
362 	 * a particular device.  We don't want to wander off to
363 	 * another device without first sending all of these down.
364 	 * So, setup a plug here and finish it off before we return
365 	 */
366 	blk_start_plug(&plug);
367 
368 	bdi = device->bdev->bd_bdi;
369 	limit = btrfs_async_submit_limit(fs_info);
370 	limit = limit * 2 / 3;
371 
372 loop:
373 	spin_lock(&device->io_lock);
374 
375 loop_lock:
376 	num_run = 0;
377 
378 	/* take all the bios off the list at once and process them
379 	 * later on (without the lock held).  But, remember the
380 	 * tail and other pointers so the bios can be properly reinserted
381 	 * into the list if we hit congestion
382 	 */
383 	if (!force_reg && device->pending_sync_bios.head) {
384 		pending_bios = &device->pending_sync_bios;
385 		force_reg = 1;
386 	} else {
387 		pending_bios = &device->pending_bios;
388 		force_reg = 0;
389 	}
390 
391 	pending = pending_bios->head;
392 	tail = pending_bios->tail;
393 	WARN_ON(pending && !tail);
394 
395 	/*
396 	 * if pending was null this time around, no bios need processing
397 	 * at all and we can stop.  Otherwise it'll loop back up again
398 	 * and do an additional check so no bios are missed.
399 	 *
400 	 * device->running_pending is used to synchronize with the
401 	 * schedule_bio code.
402 	 */
403 	if (device->pending_sync_bios.head == NULL &&
404 	    device->pending_bios.head == NULL) {
405 		again = 0;
406 		device->running_pending = 0;
407 	} else {
408 		again = 1;
409 		device->running_pending = 1;
410 	}
411 
412 	pending_bios->head = NULL;
413 	pending_bios->tail = NULL;
414 
415 	spin_unlock(&device->io_lock);
416 
417 	while (pending) {
418 
419 		rmb();
420 		/* we want to work on both lists, but do more bios on the
421 		 * sync list than the regular list
422 		 */
423 		if ((num_run > 32 &&
424 		    pending_bios != &device->pending_sync_bios &&
425 		    device->pending_sync_bios.head) ||
426 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
427 		    device->pending_bios.head)) {
428 			spin_lock(&device->io_lock);
429 			requeue_list(pending_bios, pending, tail);
430 			goto loop_lock;
431 		}
432 
433 		cur = pending;
434 		pending = pending->bi_next;
435 		cur->bi_next = NULL;
436 
437 		/*
438 		 * atomic_dec_return implies a barrier for waitqueue_active
439 		 */
440 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
441 		    waitqueue_active(&fs_info->async_submit_wait))
442 			wake_up(&fs_info->async_submit_wait);
443 
444 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
445 
446 		/*
447 		 * if we're doing the sync list, record that our
448 		 * plug has some sync requests on it
449 		 *
450 		 * If we're doing the regular list and there are
451 		 * sync requests sitting around, unplug before
452 		 * we add more
453 		 */
454 		if (pending_bios == &device->pending_sync_bios) {
455 			sync_pending = 1;
456 		} else if (sync_pending) {
457 			blk_finish_plug(&plug);
458 			blk_start_plug(&plug);
459 			sync_pending = 0;
460 		}
461 
462 		btrfsic_submit_bio(cur);
463 		num_run++;
464 		batch_run++;
465 
466 		cond_resched();
467 
468 		/*
469 		 * we made progress, there is more work to do and the bdi
470 		 * is now congested.  Back off and let other work structs
471 		 * run instead
472 		 */
473 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
474 		    fs_info->fs_devices->open_devices > 1) {
475 			struct io_context *ioc;
476 
477 			ioc = current->io_context;
478 
479 			/*
480 			 * the main goal here is that we don't want to
481 			 * block if we're going to be able to submit
482 			 * more requests without blocking.
483 			 *
484 			 * This code does two great things, it pokes into
485 			 * the elevator code from a filesystem _and_
486 			 * it makes assumptions about how batching works.
487 			 */
488 			if (ioc && ioc->nr_batch_requests > 0 &&
489 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
490 			    (last_waited == 0 ||
491 			     ioc->last_waited == last_waited)) {
492 				/*
493 				 * we want to go through our batch of
494 				 * requests and stop.  So, we copy out
495 				 * the ioc->last_waited time and test
496 				 * against it before looping
497 				 */
498 				last_waited = ioc->last_waited;
499 				cond_resched();
500 				continue;
501 			}
502 			spin_lock(&device->io_lock);
503 			requeue_list(pending_bios, pending, tail);
504 			device->running_pending = 1;
505 
506 			spin_unlock(&device->io_lock);
507 			btrfs_queue_work(fs_info->submit_workers,
508 					 &device->work);
509 			goto done;
510 		}
511 		/* unplug every 64 requests just for good measure */
512 		if (batch_run % 64 == 0) {
513 			blk_finish_plug(&plug);
514 			blk_start_plug(&plug);
515 			sync_pending = 0;
516 		}
517 	}
518 
519 	cond_resched();
520 	if (again)
521 		goto loop;
522 
523 	spin_lock(&device->io_lock);
524 	if (device->pending_bios.head || device->pending_sync_bios.head)
525 		goto loop_lock;
526 	spin_unlock(&device->io_lock);
527 
528 done:
529 	blk_finish_plug(&plug);
530 }
531 
532 static void pending_bios_fn(struct btrfs_work *work)
533 {
534 	struct btrfs_device *device;
535 
536 	device = container_of(work, struct btrfs_device, work);
537 	run_scheduled_bios(device);
538 }
539 
540 
541 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
542 {
543 	struct btrfs_fs_devices *fs_devs;
544 	struct btrfs_device *dev;
545 
546 	if (!cur_dev->name)
547 		return;
548 
549 	list_for_each_entry(fs_devs, &fs_uuids, list) {
550 		int del = 1;
551 
552 		if (fs_devs->opened)
553 			continue;
554 		if (fs_devs->seeding)
555 			continue;
556 
557 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
558 
559 			if (dev == cur_dev)
560 				continue;
561 			if (!dev->name)
562 				continue;
563 
564 			/*
565 			 * Todo: This won't be enough. What if the same device
566 			 * comes back (with new uuid and) with its mapper path?
567 			 * But for now, this does help as mostly an admin will
568 			 * either use mapper or non mapper path throughout.
569 			 */
570 			rcu_read_lock();
571 			del = strcmp(rcu_str_deref(dev->name),
572 						rcu_str_deref(cur_dev->name));
573 			rcu_read_unlock();
574 			if (!del)
575 				break;
576 		}
577 
578 		if (!del) {
579 			/* delete the stale device */
580 			if (fs_devs->num_devices == 1) {
581 				btrfs_sysfs_remove_fsid(fs_devs);
582 				list_del(&fs_devs->list);
583 				free_fs_devices(fs_devs);
584 			} else {
585 				fs_devs->num_devices--;
586 				list_del(&dev->dev_list);
587 				rcu_string_free(dev->name);
588 				kfree(dev);
589 			}
590 			break;
591 		}
592 	}
593 }
594 
595 /*
596  * Add new device to list of registered devices
597  *
598  * Returns:
599  * 1   - first time device is seen
600  * 0   - device already known
601  * < 0 - error
602  */
603 static noinline int device_list_add(const char *path,
604 			   struct btrfs_super_block *disk_super,
605 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
606 {
607 	struct btrfs_device *device;
608 	struct btrfs_fs_devices *fs_devices;
609 	struct rcu_string *name;
610 	int ret = 0;
611 	u64 found_transid = btrfs_super_generation(disk_super);
612 
613 	fs_devices = find_fsid(disk_super->fsid);
614 	if (!fs_devices) {
615 		fs_devices = alloc_fs_devices(disk_super->fsid);
616 		if (IS_ERR(fs_devices))
617 			return PTR_ERR(fs_devices);
618 
619 		list_add(&fs_devices->list, &fs_uuids);
620 
621 		device = NULL;
622 	} else {
623 		device = __find_device(&fs_devices->devices, devid,
624 				       disk_super->dev_item.uuid);
625 	}
626 
627 	if (!device) {
628 		if (fs_devices->opened)
629 			return -EBUSY;
630 
631 		device = btrfs_alloc_device(NULL, &devid,
632 					    disk_super->dev_item.uuid);
633 		if (IS_ERR(device)) {
634 			/* we can safely leave the fs_devices entry around */
635 			return PTR_ERR(device);
636 		}
637 
638 		name = rcu_string_strdup(path, GFP_NOFS);
639 		if (!name) {
640 			kfree(device);
641 			return -ENOMEM;
642 		}
643 		rcu_assign_pointer(device->name, name);
644 
645 		mutex_lock(&fs_devices->device_list_mutex);
646 		list_add_rcu(&device->dev_list, &fs_devices->devices);
647 		fs_devices->num_devices++;
648 		mutex_unlock(&fs_devices->device_list_mutex);
649 
650 		ret = 1;
651 		device->fs_devices = fs_devices;
652 	} else if (!device->name || strcmp(device->name->str, path)) {
653 		/*
654 		 * When FS is already mounted.
655 		 * 1. If you are here and if the device->name is NULL that
656 		 *    means this device was missing at time of FS mount.
657 		 * 2. If you are here and if the device->name is different
658 		 *    from 'path' that means either
659 		 *      a. The same device disappeared and reappeared with
660 		 *         different name. or
661 		 *      b. The missing-disk-which-was-replaced, has
662 		 *         reappeared now.
663 		 *
664 		 * We must allow 1 and 2a above. But 2b would be a spurious
665 		 * and unintentional.
666 		 *
667 		 * Further in case of 1 and 2a above, the disk at 'path'
668 		 * would have missed some transaction when it was away and
669 		 * in case of 2a the stale bdev has to be updated as well.
670 		 * 2b must not be allowed at all time.
671 		 */
672 
673 		/*
674 		 * For now, we do allow update to btrfs_fs_device through the
675 		 * btrfs dev scan cli after FS has been mounted.  We're still
676 		 * tracking a problem where systems fail mount by subvolume id
677 		 * when we reject replacement on a mounted FS.
678 		 */
679 		if (!fs_devices->opened && found_transid < device->generation) {
680 			/*
681 			 * That is if the FS is _not_ mounted and if you
682 			 * are here, that means there is more than one
683 			 * disk with same uuid and devid.We keep the one
684 			 * with larger generation number or the last-in if
685 			 * generation are equal.
686 			 */
687 			return -EEXIST;
688 		}
689 
690 		name = rcu_string_strdup(path, GFP_NOFS);
691 		if (!name)
692 			return -ENOMEM;
693 		rcu_string_free(device->name);
694 		rcu_assign_pointer(device->name, name);
695 		if (device->missing) {
696 			fs_devices->missing_devices--;
697 			device->missing = 0;
698 		}
699 	}
700 
701 	/*
702 	 * Unmount does not free the btrfs_device struct but would zero
703 	 * generation along with most of the other members. So just update
704 	 * it back. We need it to pick the disk with largest generation
705 	 * (as above).
706 	 */
707 	if (!fs_devices->opened)
708 		device->generation = found_transid;
709 
710 	/*
711 	 * if there is new btrfs on an already registered device,
712 	 * then remove the stale device entry.
713 	 */
714 	if (ret > 0)
715 		btrfs_free_stale_device(device);
716 
717 	*fs_devices_ret = fs_devices;
718 
719 	return ret;
720 }
721 
722 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
723 {
724 	struct btrfs_fs_devices *fs_devices;
725 	struct btrfs_device *device;
726 	struct btrfs_device *orig_dev;
727 
728 	fs_devices = alloc_fs_devices(orig->fsid);
729 	if (IS_ERR(fs_devices))
730 		return fs_devices;
731 
732 	mutex_lock(&orig->device_list_mutex);
733 	fs_devices->total_devices = orig->total_devices;
734 
735 	/* We have held the volume lock, it is safe to get the devices. */
736 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
737 		struct rcu_string *name;
738 
739 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
740 					    orig_dev->uuid);
741 		if (IS_ERR(device))
742 			goto error;
743 
744 		/*
745 		 * This is ok to do without rcu read locked because we hold the
746 		 * uuid mutex so nothing we touch in here is going to disappear.
747 		 */
748 		if (orig_dev->name) {
749 			name = rcu_string_strdup(orig_dev->name->str,
750 					GFP_KERNEL);
751 			if (!name) {
752 				kfree(device);
753 				goto error;
754 			}
755 			rcu_assign_pointer(device->name, name);
756 		}
757 
758 		list_add(&device->dev_list, &fs_devices->devices);
759 		device->fs_devices = fs_devices;
760 		fs_devices->num_devices++;
761 	}
762 	mutex_unlock(&orig->device_list_mutex);
763 	return fs_devices;
764 error:
765 	mutex_unlock(&orig->device_list_mutex);
766 	free_fs_devices(fs_devices);
767 	return ERR_PTR(-ENOMEM);
768 }
769 
770 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
771 {
772 	struct btrfs_device *device, *next;
773 	struct btrfs_device *latest_dev = NULL;
774 
775 	mutex_lock(&uuid_mutex);
776 again:
777 	/* This is the initialized path, it is safe to release the devices. */
778 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
779 		if (device->in_fs_metadata) {
780 			if (!device->is_tgtdev_for_dev_replace &&
781 			    (!latest_dev ||
782 			     device->generation > latest_dev->generation)) {
783 				latest_dev = device;
784 			}
785 			continue;
786 		}
787 
788 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
789 			/*
790 			 * In the first step, keep the device which has
791 			 * the correct fsid and the devid that is used
792 			 * for the dev_replace procedure.
793 			 * In the second step, the dev_replace state is
794 			 * read from the device tree and it is known
795 			 * whether the procedure is really active or
796 			 * not, which means whether this device is
797 			 * used or whether it should be removed.
798 			 */
799 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
800 				continue;
801 			}
802 		}
803 		if (device->bdev) {
804 			blkdev_put(device->bdev, device->mode);
805 			device->bdev = NULL;
806 			fs_devices->open_devices--;
807 		}
808 		if (device->writeable) {
809 			list_del_init(&device->dev_alloc_list);
810 			device->writeable = 0;
811 			if (!device->is_tgtdev_for_dev_replace)
812 				fs_devices->rw_devices--;
813 		}
814 		list_del_init(&device->dev_list);
815 		fs_devices->num_devices--;
816 		rcu_string_free(device->name);
817 		kfree(device);
818 	}
819 
820 	if (fs_devices->seed) {
821 		fs_devices = fs_devices->seed;
822 		goto again;
823 	}
824 
825 	fs_devices->latest_bdev = latest_dev->bdev;
826 
827 	mutex_unlock(&uuid_mutex);
828 }
829 
830 static void __free_device(struct work_struct *work)
831 {
832 	struct btrfs_device *device;
833 
834 	device = container_of(work, struct btrfs_device, rcu_work);
835 	rcu_string_free(device->name);
836 	kfree(device);
837 }
838 
839 static void free_device(struct rcu_head *head)
840 {
841 	struct btrfs_device *device;
842 
843 	device = container_of(head, struct btrfs_device, rcu);
844 
845 	INIT_WORK(&device->rcu_work, __free_device);
846 	schedule_work(&device->rcu_work);
847 }
848 
849 static void btrfs_close_bdev(struct btrfs_device *device)
850 {
851 	if (device->bdev && device->writeable) {
852 		sync_blockdev(device->bdev);
853 		invalidate_bdev(device->bdev);
854 	}
855 
856 	if (device->bdev)
857 		blkdev_put(device->bdev, device->mode);
858 }
859 
860 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
861 {
862 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
863 	struct btrfs_device *new_device;
864 	struct rcu_string *name;
865 
866 	if (device->bdev)
867 		fs_devices->open_devices--;
868 
869 	if (device->writeable &&
870 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
871 		list_del_init(&device->dev_alloc_list);
872 		fs_devices->rw_devices--;
873 	}
874 
875 	if (device->missing)
876 		fs_devices->missing_devices--;
877 
878 	new_device = btrfs_alloc_device(NULL, &device->devid,
879 					device->uuid);
880 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
881 
882 	/* Safe because we are under uuid_mutex */
883 	if (device->name) {
884 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
885 		BUG_ON(!name); /* -ENOMEM */
886 		rcu_assign_pointer(new_device->name, name);
887 	}
888 
889 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
890 	new_device->fs_devices = device->fs_devices;
891 }
892 
893 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
894 {
895 	struct btrfs_device *device, *tmp;
896 	struct list_head pending_put;
897 
898 	INIT_LIST_HEAD(&pending_put);
899 
900 	if (--fs_devices->opened > 0)
901 		return 0;
902 
903 	mutex_lock(&fs_devices->device_list_mutex);
904 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
905 		btrfs_prepare_close_one_device(device);
906 		list_add(&device->dev_list, &pending_put);
907 	}
908 	mutex_unlock(&fs_devices->device_list_mutex);
909 
910 	/*
911 	 * btrfs_show_devname() is using the device_list_mutex,
912 	 * sometimes call to blkdev_put() leads vfs calling
913 	 * into this func. So do put outside of device_list_mutex,
914 	 * as of now.
915 	 */
916 	while (!list_empty(&pending_put)) {
917 		device = list_first_entry(&pending_put,
918 				struct btrfs_device, dev_list);
919 		list_del(&device->dev_list);
920 		btrfs_close_bdev(device);
921 		call_rcu(&device->rcu, free_device);
922 	}
923 
924 	WARN_ON(fs_devices->open_devices);
925 	WARN_ON(fs_devices->rw_devices);
926 	fs_devices->opened = 0;
927 	fs_devices->seeding = 0;
928 
929 	return 0;
930 }
931 
932 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
933 {
934 	struct btrfs_fs_devices *seed_devices = NULL;
935 	int ret;
936 
937 	mutex_lock(&uuid_mutex);
938 	ret = __btrfs_close_devices(fs_devices);
939 	if (!fs_devices->opened) {
940 		seed_devices = fs_devices->seed;
941 		fs_devices->seed = NULL;
942 	}
943 	mutex_unlock(&uuid_mutex);
944 
945 	while (seed_devices) {
946 		fs_devices = seed_devices;
947 		seed_devices = fs_devices->seed;
948 		__btrfs_close_devices(fs_devices);
949 		free_fs_devices(fs_devices);
950 	}
951 	/*
952 	 * Wait for rcu kworkers under __btrfs_close_devices
953 	 * to finish all blkdev_puts so device is really
954 	 * free when umount is done.
955 	 */
956 	rcu_barrier();
957 	return ret;
958 }
959 
960 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
961 				fmode_t flags, void *holder)
962 {
963 	struct request_queue *q;
964 	struct block_device *bdev;
965 	struct list_head *head = &fs_devices->devices;
966 	struct btrfs_device *device;
967 	struct btrfs_device *latest_dev = NULL;
968 	struct buffer_head *bh;
969 	struct btrfs_super_block *disk_super;
970 	u64 devid;
971 	int seeding = 1;
972 	int ret = 0;
973 
974 	flags |= FMODE_EXCL;
975 
976 	list_for_each_entry(device, head, dev_list) {
977 		if (device->bdev)
978 			continue;
979 		if (!device->name)
980 			continue;
981 
982 		/* Just open everything we can; ignore failures here */
983 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
984 					    &bdev, &bh))
985 			continue;
986 
987 		disk_super = (struct btrfs_super_block *)bh->b_data;
988 		devid = btrfs_stack_device_id(&disk_super->dev_item);
989 		if (devid != device->devid)
990 			goto error_brelse;
991 
992 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
993 			   BTRFS_UUID_SIZE))
994 			goto error_brelse;
995 
996 		device->generation = btrfs_super_generation(disk_super);
997 		if (!latest_dev ||
998 		    device->generation > latest_dev->generation)
999 			latest_dev = device;
1000 
1001 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1002 			device->writeable = 0;
1003 		} else {
1004 			device->writeable = !bdev_read_only(bdev);
1005 			seeding = 0;
1006 		}
1007 
1008 		q = bdev_get_queue(bdev);
1009 		if (blk_queue_discard(q))
1010 			device->can_discard = 1;
1011 
1012 		device->bdev = bdev;
1013 		device->in_fs_metadata = 0;
1014 		device->mode = flags;
1015 
1016 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1017 			fs_devices->rotating = 1;
1018 
1019 		fs_devices->open_devices++;
1020 		if (device->writeable &&
1021 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1022 			fs_devices->rw_devices++;
1023 			list_add(&device->dev_alloc_list,
1024 				 &fs_devices->alloc_list);
1025 		}
1026 		brelse(bh);
1027 		continue;
1028 
1029 error_brelse:
1030 		brelse(bh);
1031 		blkdev_put(bdev, flags);
1032 		continue;
1033 	}
1034 	if (fs_devices->open_devices == 0) {
1035 		ret = -EINVAL;
1036 		goto out;
1037 	}
1038 	fs_devices->seeding = seeding;
1039 	fs_devices->opened = 1;
1040 	fs_devices->latest_bdev = latest_dev->bdev;
1041 	fs_devices->total_rw_bytes = 0;
1042 out:
1043 	return ret;
1044 }
1045 
1046 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1047 		       fmode_t flags, void *holder)
1048 {
1049 	int ret;
1050 
1051 	mutex_lock(&uuid_mutex);
1052 	if (fs_devices->opened) {
1053 		fs_devices->opened++;
1054 		ret = 0;
1055 	} else {
1056 		ret = __btrfs_open_devices(fs_devices, flags, holder);
1057 	}
1058 	mutex_unlock(&uuid_mutex);
1059 	return ret;
1060 }
1061 
1062 void btrfs_release_disk_super(struct page *page)
1063 {
1064 	kunmap(page);
1065 	put_page(page);
1066 }
1067 
1068 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1069 		struct page **page, struct btrfs_super_block **disk_super)
1070 {
1071 	void *p;
1072 	pgoff_t index;
1073 
1074 	/* make sure our super fits in the device */
1075 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1076 		return 1;
1077 
1078 	/* make sure our super fits in the page */
1079 	if (sizeof(**disk_super) > PAGE_SIZE)
1080 		return 1;
1081 
1082 	/* make sure our super doesn't straddle pages on disk */
1083 	index = bytenr >> PAGE_SHIFT;
1084 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1085 		return 1;
1086 
1087 	/* pull in the page with our super */
1088 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1089 				   index, GFP_KERNEL);
1090 
1091 	if (IS_ERR_OR_NULL(*page))
1092 		return 1;
1093 
1094 	p = kmap(*page);
1095 
1096 	/* align our pointer to the offset of the super block */
1097 	*disk_super = p + (bytenr & ~PAGE_MASK);
1098 
1099 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1100 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1101 		btrfs_release_disk_super(*page);
1102 		return 1;
1103 	}
1104 
1105 	if ((*disk_super)->label[0] &&
1106 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1107 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1108 
1109 	return 0;
1110 }
1111 
1112 /*
1113  * Look for a btrfs signature on a device. This may be called out of the mount path
1114  * and we are not allowed to call set_blocksize during the scan. The superblock
1115  * is read via pagecache
1116  */
1117 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1118 			  struct btrfs_fs_devices **fs_devices_ret)
1119 {
1120 	struct btrfs_super_block *disk_super;
1121 	struct block_device *bdev;
1122 	struct page *page;
1123 	int ret = -EINVAL;
1124 	u64 devid;
1125 	u64 transid;
1126 	u64 total_devices;
1127 	u64 bytenr;
1128 
1129 	/*
1130 	 * we would like to check all the supers, but that would make
1131 	 * a btrfs mount succeed after a mkfs from a different FS.
1132 	 * So, we need to add a special mount option to scan for
1133 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1134 	 */
1135 	bytenr = btrfs_sb_offset(0);
1136 	flags |= FMODE_EXCL;
1137 	mutex_lock(&uuid_mutex);
1138 
1139 	bdev = blkdev_get_by_path(path, flags, holder);
1140 	if (IS_ERR(bdev)) {
1141 		ret = PTR_ERR(bdev);
1142 		goto error;
1143 	}
1144 
1145 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1146 		goto error_bdev_put;
1147 
1148 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1149 	transid = btrfs_super_generation(disk_super);
1150 	total_devices = btrfs_super_num_devices(disk_super);
1151 
1152 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1153 	if (ret > 0) {
1154 		if (disk_super->label[0]) {
1155 			pr_info("BTRFS: device label %s ", disk_super->label);
1156 		} else {
1157 			pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1158 		}
1159 
1160 		pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1161 		ret = 0;
1162 	}
1163 	if (!ret && fs_devices_ret)
1164 		(*fs_devices_ret)->total_devices = total_devices;
1165 
1166 	btrfs_release_disk_super(page);
1167 
1168 error_bdev_put:
1169 	blkdev_put(bdev, flags);
1170 error:
1171 	mutex_unlock(&uuid_mutex);
1172 	return ret;
1173 }
1174 
1175 /* helper to account the used device space in the range */
1176 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1177 				   u64 end, u64 *length)
1178 {
1179 	struct btrfs_key key;
1180 	struct btrfs_root *root = device->fs_info->dev_root;
1181 	struct btrfs_dev_extent *dev_extent;
1182 	struct btrfs_path *path;
1183 	u64 extent_end;
1184 	int ret;
1185 	int slot;
1186 	struct extent_buffer *l;
1187 
1188 	*length = 0;
1189 
1190 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1191 		return 0;
1192 
1193 	path = btrfs_alloc_path();
1194 	if (!path)
1195 		return -ENOMEM;
1196 	path->reada = READA_FORWARD;
1197 
1198 	key.objectid = device->devid;
1199 	key.offset = start;
1200 	key.type = BTRFS_DEV_EXTENT_KEY;
1201 
1202 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1203 	if (ret < 0)
1204 		goto out;
1205 	if (ret > 0) {
1206 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1207 		if (ret < 0)
1208 			goto out;
1209 	}
1210 
1211 	while (1) {
1212 		l = path->nodes[0];
1213 		slot = path->slots[0];
1214 		if (slot >= btrfs_header_nritems(l)) {
1215 			ret = btrfs_next_leaf(root, path);
1216 			if (ret == 0)
1217 				continue;
1218 			if (ret < 0)
1219 				goto out;
1220 
1221 			break;
1222 		}
1223 		btrfs_item_key_to_cpu(l, &key, slot);
1224 
1225 		if (key.objectid < device->devid)
1226 			goto next;
1227 
1228 		if (key.objectid > device->devid)
1229 			break;
1230 
1231 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1232 			goto next;
1233 
1234 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1235 		extent_end = key.offset + btrfs_dev_extent_length(l,
1236 								  dev_extent);
1237 		if (key.offset <= start && extent_end > end) {
1238 			*length = end - start + 1;
1239 			break;
1240 		} else if (key.offset <= start && extent_end > start)
1241 			*length += extent_end - start;
1242 		else if (key.offset > start && extent_end <= end)
1243 			*length += extent_end - key.offset;
1244 		else if (key.offset > start && key.offset <= end) {
1245 			*length += end - key.offset + 1;
1246 			break;
1247 		} else if (key.offset > end)
1248 			break;
1249 
1250 next:
1251 		path->slots[0]++;
1252 	}
1253 	ret = 0;
1254 out:
1255 	btrfs_free_path(path);
1256 	return ret;
1257 }
1258 
1259 static int contains_pending_extent(struct btrfs_transaction *transaction,
1260 				   struct btrfs_device *device,
1261 				   u64 *start, u64 len)
1262 {
1263 	struct btrfs_fs_info *fs_info = device->fs_info;
1264 	struct extent_map *em;
1265 	struct list_head *search_list = &fs_info->pinned_chunks;
1266 	int ret = 0;
1267 	u64 physical_start = *start;
1268 
1269 	if (transaction)
1270 		search_list = &transaction->pending_chunks;
1271 again:
1272 	list_for_each_entry(em, search_list, list) {
1273 		struct map_lookup *map;
1274 		int i;
1275 
1276 		map = em->map_lookup;
1277 		for (i = 0; i < map->num_stripes; i++) {
1278 			u64 end;
1279 
1280 			if (map->stripes[i].dev != device)
1281 				continue;
1282 			if (map->stripes[i].physical >= physical_start + len ||
1283 			    map->stripes[i].physical + em->orig_block_len <=
1284 			    physical_start)
1285 				continue;
1286 			/*
1287 			 * Make sure that while processing the pinned list we do
1288 			 * not override our *start with a lower value, because
1289 			 * we can have pinned chunks that fall within this
1290 			 * device hole and that have lower physical addresses
1291 			 * than the pending chunks we processed before. If we
1292 			 * do not take this special care we can end up getting
1293 			 * 2 pending chunks that start at the same physical
1294 			 * device offsets because the end offset of a pinned
1295 			 * chunk can be equal to the start offset of some
1296 			 * pending chunk.
1297 			 */
1298 			end = map->stripes[i].physical + em->orig_block_len;
1299 			if (end > *start) {
1300 				*start = end;
1301 				ret = 1;
1302 			}
1303 		}
1304 	}
1305 	if (search_list != &fs_info->pinned_chunks) {
1306 		search_list = &fs_info->pinned_chunks;
1307 		goto again;
1308 	}
1309 
1310 	return ret;
1311 }
1312 
1313 
1314 /*
1315  * find_free_dev_extent_start - find free space in the specified device
1316  * @device:	  the device which we search the free space in
1317  * @num_bytes:	  the size of the free space that we need
1318  * @search_start: the position from which to begin the search
1319  * @start:	  store the start of the free space.
1320  * @len:	  the size of the free space. that we find, or the size
1321  *		  of the max free space if we don't find suitable free space
1322  *
1323  * this uses a pretty simple search, the expectation is that it is
1324  * called very infrequently and that a given device has a small number
1325  * of extents
1326  *
1327  * @start is used to store the start of the free space if we find. But if we
1328  * don't find suitable free space, it will be used to store the start position
1329  * of the max free space.
1330  *
1331  * @len is used to store the size of the free space that we find.
1332  * But if we don't find suitable free space, it is used to store the size of
1333  * the max free space.
1334  */
1335 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1336 			       struct btrfs_device *device, u64 num_bytes,
1337 			       u64 search_start, u64 *start, u64 *len)
1338 {
1339 	struct btrfs_fs_info *fs_info = device->fs_info;
1340 	struct btrfs_root *root = fs_info->dev_root;
1341 	struct btrfs_key key;
1342 	struct btrfs_dev_extent *dev_extent;
1343 	struct btrfs_path *path;
1344 	u64 hole_size;
1345 	u64 max_hole_start;
1346 	u64 max_hole_size;
1347 	u64 extent_end;
1348 	u64 search_end = device->total_bytes;
1349 	int ret;
1350 	int slot;
1351 	struct extent_buffer *l;
1352 	u64 min_search_start;
1353 
1354 	/*
1355 	 * We don't want to overwrite the superblock on the drive nor any area
1356 	 * used by the boot loader (grub for example), so we make sure to start
1357 	 * at an offset of at least 1MB.
1358 	 */
1359 	min_search_start = max(fs_info->alloc_start, 1024ull * 1024);
1360 	search_start = max(search_start, min_search_start);
1361 
1362 	path = btrfs_alloc_path();
1363 	if (!path)
1364 		return -ENOMEM;
1365 
1366 	max_hole_start = search_start;
1367 	max_hole_size = 0;
1368 
1369 again:
1370 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1371 		ret = -ENOSPC;
1372 		goto out;
1373 	}
1374 
1375 	path->reada = READA_FORWARD;
1376 	path->search_commit_root = 1;
1377 	path->skip_locking = 1;
1378 
1379 	key.objectid = device->devid;
1380 	key.offset = search_start;
1381 	key.type = BTRFS_DEV_EXTENT_KEY;
1382 
1383 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1384 	if (ret < 0)
1385 		goto out;
1386 	if (ret > 0) {
1387 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1388 		if (ret < 0)
1389 			goto out;
1390 	}
1391 
1392 	while (1) {
1393 		l = path->nodes[0];
1394 		slot = path->slots[0];
1395 		if (slot >= btrfs_header_nritems(l)) {
1396 			ret = btrfs_next_leaf(root, path);
1397 			if (ret == 0)
1398 				continue;
1399 			if (ret < 0)
1400 				goto out;
1401 
1402 			break;
1403 		}
1404 		btrfs_item_key_to_cpu(l, &key, slot);
1405 
1406 		if (key.objectid < device->devid)
1407 			goto next;
1408 
1409 		if (key.objectid > device->devid)
1410 			break;
1411 
1412 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1413 			goto next;
1414 
1415 		if (key.offset > search_start) {
1416 			hole_size = key.offset - search_start;
1417 
1418 			/*
1419 			 * Have to check before we set max_hole_start, otherwise
1420 			 * we could end up sending back this offset anyway.
1421 			 */
1422 			if (contains_pending_extent(transaction, device,
1423 						    &search_start,
1424 						    hole_size)) {
1425 				if (key.offset >= search_start) {
1426 					hole_size = key.offset - search_start;
1427 				} else {
1428 					WARN_ON_ONCE(1);
1429 					hole_size = 0;
1430 				}
1431 			}
1432 
1433 			if (hole_size > max_hole_size) {
1434 				max_hole_start = search_start;
1435 				max_hole_size = hole_size;
1436 			}
1437 
1438 			/*
1439 			 * If this free space is greater than which we need,
1440 			 * it must be the max free space that we have found
1441 			 * until now, so max_hole_start must point to the start
1442 			 * of this free space and the length of this free space
1443 			 * is stored in max_hole_size. Thus, we return
1444 			 * max_hole_start and max_hole_size and go back to the
1445 			 * caller.
1446 			 */
1447 			if (hole_size >= num_bytes) {
1448 				ret = 0;
1449 				goto out;
1450 			}
1451 		}
1452 
1453 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1454 		extent_end = key.offset + btrfs_dev_extent_length(l,
1455 								  dev_extent);
1456 		if (extent_end > search_start)
1457 			search_start = extent_end;
1458 next:
1459 		path->slots[0]++;
1460 		cond_resched();
1461 	}
1462 
1463 	/*
1464 	 * At this point, search_start should be the end of
1465 	 * allocated dev extents, and when shrinking the device,
1466 	 * search_end may be smaller than search_start.
1467 	 */
1468 	if (search_end > search_start) {
1469 		hole_size = search_end - search_start;
1470 
1471 		if (contains_pending_extent(transaction, device, &search_start,
1472 					    hole_size)) {
1473 			btrfs_release_path(path);
1474 			goto again;
1475 		}
1476 
1477 		if (hole_size > max_hole_size) {
1478 			max_hole_start = search_start;
1479 			max_hole_size = hole_size;
1480 		}
1481 	}
1482 
1483 	/* See above. */
1484 	if (max_hole_size < num_bytes)
1485 		ret = -ENOSPC;
1486 	else
1487 		ret = 0;
1488 
1489 out:
1490 	btrfs_free_path(path);
1491 	*start = max_hole_start;
1492 	if (len)
1493 		*len = max_hole_size;
1494 	return ret;
1495 }
1496 
1497 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1498 			 struct btrfs_device *device, u64 num_bytes,
1499 			 u64 *start, u64 *len)
1500 {
1501 	/* FIXME use last free of some kind */
1502 	return find_free_dev_extent_start(trans->transaction, device,
1503 					  num_bytes, 0, start, len);
1504 }
1505 
1506 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1507 			  struct btrfs_device *device,
1508 			  u64 start, u64 *dev_extent_len)
1509 {
1510 	struct btrfs_fs_info *fs_info = device->fs_info;
1511 	struct btrfs_root *root = fs_info->dev_root;
1512 	int ret;
1513 	struct btrfs_path *path;
1514 	struct btrfs_key key;
1515 	struct btrfs_key found_key;
1516 	struct extent_buffer *leaf = NULL;
1517 	struct btrfs_dev_extent *extent = NULL;
1518 
1519 	path = btrfs_alloc_path();
1520 	if (!path)
1521 		return -ENOMEM;
1522 
1523 	key.objectid = device->devid;
1524 	key.offset = start;
1525 	key.type = BTRFS_DEV_EXTENT_KEY;
1526 again:
1527 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528 	if (ret > 0) {
1529 		ret = btrfs_previous_item(root, path, key.objectid,
1530 					  BTRFS_DEV_EXTENT_KEY);
1531 		if (ret)
1532 			goto out;
1533 		leaf = path->nodes[0];
1534 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1535 		extent = btrfs_item_ptr(leaf, path->slots[0],
1536 					struct btrfs_dev_extent);
1537 		BUG_ON(found_key.offset > start || found_key.offset +
1538 		       btrfs_dev_extent_length(leaf, extent) < start);
1539 		key = found_key;
1540 		btrfs_release_path(path);
1541 		goto again;
1542 	} else if (ret == 0) {
1543 		leaf = path->nodes[0];
1544 		extent = btrfs_item_ptr(leaf, path->slots[0],
1545 					struct btrfs_dev_extent);
1546 	} else {
1547 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1548 		goto out;
1549 	}
1550 
1551 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1552 
1553 	ret = btrfs_del_item(trans, root, path);
1554 	if (ret) {
1555 		btrfs_handle_fs_error(fs_info, ret,
1556 				      "Failed to remove dev extent item");
1557 	} else {
1558 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1559 	}
1560 out:
1561 	btrfs_free_path(path);
1562 	return ret;
1563 }
1564 
1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1566 				  struct btrfs_device *device,
1567 				  u64 chunk_tree, u64 chunk_objectid,
1568 				  u64 chunk_offset, u64 start, u64 num_bytes)
1569 {
1570 	int ret;
1571 	struct btrfs_path *path;
1572 	struct btrfs_fs_info *fs_info = device->fs_info;
1573 	struct btrfs_root *root = fs_info->dev_root;
1574 	struct btrfs_dev_extent *extent;
1575 	struct extent_buffer *leaf;
1576 	struct btrfs_key key;
1577 
1578 	WARN_ON(!device->in_fs_metadata);
1579 	WARN_ON(device->is_tgtdev_for_dev_replace);
1580 	path = btrfs_alloc_path();
1581 	if (!path)
1582 		return -ENOMEM;
1583 
1584 	key.objectid = device->devid;
1585 	key.offset = start;
1586 	key.type = BTRFS_DEV_EXTENT_KEY;
1587 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1588 				      sizeof(*extent));
1589 	if (ret)
1590 		goto out;
1591 
1592 	leaf = path->nodes[0];
1593 	extent = btrfs_item_ptr(leaf, path->slots[0],
1594 				struct btrfs_dev_extent);
1595 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1596 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1597 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1598 
1599 	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1600 
1601 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1602 	btrfs_mark_buffer_dirty(leaf);
1603 out:
1604 	btrfs_free_path(path);
1605 	return ret;
1606 }
1607 
1608 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1609 {
1610 	struct extent_map_tree *em_tree;
1611 	struct extent_map *em;
1612 	struct rb_node *n;
1613 	u64 ret = 0;
1614 
1615 	em_tree = &fs_info->mapping_tree.map_tree;
1616 	read_lock(&em_tree->lock);
1617 	n = rb_last(&em_tree->map);
1618 	if (n) {
1619 		em = rb_entry(n, struct extent_map, rb_node);
1620 		ret = em->start + em->len;
1621 	}
1622 	read_unlock(&em_tree->lock);
1623 
1624 	return ret;
1625 }
1626 
1627 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1628 				    u64 *devid_ret)
1629 {
1630 	int ret;
1631 	struct btrfs_key key;
1632 	struct btrfs_key found_key;
1633 	struct btrfs_path *path;
1634 
1635 	path = btrfs_alloc_path();
1636 	if (!path)
1637 		return -ENOMEM;
1638 
1639 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1640 	key.type = BTRFS_DEV_ITEM_KEY;
1641 	key.offset = (u64)-1;
1642 
1643 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1644 	if (ret < 0)
1645 		goto error;
1646 
1647 	BUG_ON(ret == 0); /* Corruption */
1648 
1649 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1650 				  BTRFS_DEV_ITEMS_OBJECTID,
1651 				  BTRFS_DEV_ITEM_KEY);
1652 	if (ret) {
1653 		*devid_ret = 1;
1654 	} else {
1655 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1656 				      path->slots[0]);
1657 		*devid_ret = found_key.offset + 1;
1658 	}
1659 	ret = 0;
1660 error:
1661 	btrfs_free_path(path);
1662 	return ret;
1663 }
1664 
1665 /*
1666  * the device information is stored in the chunk root
1667  * the btrfs_device struct should be fully filled in
1668  */
1669 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1670 			    struct btrfs_fs_info *fs_info,
1671 			    struct btrfs_device *device)
1672 {
1673 	struct btrfs_root *root = fs_info->chunk_root;
1674 	int ret;
1675 	struct btrfs_path *path;
1676 	struct btrfs_dev_item *dev_item;
1677 	struct extent_buffer *leaf;
1678 	struct btrfs_key key;
1679 	unsigned long ptr;
1680 
1681 	path = btrfs_alloc_path();
1682 	if (!path)
1683 		return -ENOMEM;
1684 
1685 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1686 	key.type = BTRFS_DEV_ITEM_KEY;
1687 	key.offset = device->devid;
1688 
1689 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1690 				      sizeof(*dev_item));
1691 	if (ret)
1692 		goto out;
1693 
1694 	leaf = path->nodes[0];
1695 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1696 
1697 	btrfs_set_device_id(leaf, dev_item, device->devid);
1698 	btrfs_set_device_generation(leaf, dev_item, 0);
1699 	btrfs_set_device_type(leaf, dev_item, device->type);
1700 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1701 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1702 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1703 	btrfs_set_device_total_bytes(leaf, dev_item,
1704 				     btrfs_device_get_disk_total_bytes(device));
1705 	btrfs_set_device_bytes_used(leaf, dev_item,
1706 				    btrfs_device_get_bytes_used(device));
1707 	btrfs_set_device_group(leaf, dev_item, 0);
1708 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1709 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1710 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1711 
1712 	ptr = btrfs_device_uuid(dev_item);
1713 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1714 	ptr = btrfs_device_fsid(dev_item);
1715 	write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1716 	btrfs_mark_buffer_dirty(leaf);
1717 
1718 	ret = 0;
1719 out:
1720 	btrfs_free_path(path);
1721 	return ret;
1722 }
1723 
1724 /*
1725  * Function to update ctime/mtime for a given device path.
1726  * Mainly used for ctime/mtime based probe like libblkid.
1727  */
1728 static void update_dev_time(char *path_name)
1729 {
1730 	struct file *filp;
1731 
1732 	filp = filp_open(path_name, O_RDWR, 0);
1733 	if (IS_ERR(filp))
1734 		return;
1735 	file_update_time(filp);
1736 	filp_close(filp, NULL);
1737 }
1738 
1739 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1740 			     struct btrfs_device *device)
1741 {
1742 	struct btrfs_root *root = fs_info->chunk_root;
1743 	int ret;
1744 	struct btrfs_path *path;
1745 	struct btrfs_key key;
1746 	struct btrfs_trans_handle *trans;
1747 
1748 	path = btrfs_alloc_path();
1749 	if (!path)
1750 		return -ENOMEM;
1751 
1752 	trans = btrfs_start_transaction(root, 0);
1753 	if (IS_ERR(trans)) {
1754 		btrfs_free_path(path);
1755 		return PTR_ERR(trans);
1756 	}
1757 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1758 	key.type = BTRFS_DEV_ITEM_KEY;
1759 	key.offset = device->devid;
1760 
1761 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1762 	if (ret < 0)
1763 		goto out;
1764 
1765 	if (ret > 0) {
1766 		ret = -ENOENT;
1767 		goto out;
1768 	}
1769 
1770 	ret = btrfs_del_item(trans, root, path);
1771 	if (ret)
1772 		goto out;
1773 out:
1774 	btrfs_free_path(path);
1775 	btrfs_commit_transaction(trans);
1776 	return ret;
1777 }
1778 
1779 /*
1780  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1781  * filesystem. It's up to the caller to adjust that number regarding eg. device
1782  * replace.
1783  */
1784 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1785 		u64 num_devices)
1786 {
1787 	u64 all_avail;
1788 	unsigned seq;
1789 	int i;
1790 
1791 	do {
1792 		seq = read_seqbegin(&fs_info->profiles_lock);
1793 
1794 		all_avail = fs_info->avail_data_alloc_bits |
1795 			    fs_info->avail_system_alloc_bits |
1796 			    fs_info->avail_metadata_alloc_bits;
1797 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1798 
1799 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1800 		if (!(all_avail & btrfs_raid_group[i]))
1801 			continue;
1802 
1803 		if (num_devices < btrfs_raid_array[i].devs_min) {
1804 			int ret = btrfs_raid_mindev_error[i];
1805 
1806 			if (ret)
1807 				return ret;
1808 		}
1809 	}
1810 
1811 	return 0;
1812 }
1813 
1814 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1815 					struct btrfs_device *device)
1816 {
1817 	struct btrfs_device *next_device;
1818 
1819 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1820 		if (next_device != device &&
1821 			!next_device->missing && next_device->bdev)
1822 			return next_device;
1823 	}
1824 
1825 	return NULL;
1826 }
1827 
1828 /*
1829  * Helper function to check if the given device is part of s_bdev / latest_bdev
1830  * and replace it with the provided or the next active device, in the context
1831  * where this function called, there should be always be another device (or
1832  * this_dev) which is active.
1833  */
1834 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1835 		struct btrfs_device *device, struct btrfs_device *this_dev)
1836 {
1837 	struct btrfs_device *next_device;
1838 
1839 	if (this_dev)
1840 		next_device = this_dev;
1841 	else
1842 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1843 								device);
1844 	ASSERT(next_device);
1845 
1846 	if (fs_info->sb->s_bdev &&
1847 			(fs_info->sb->s_bdev == device->bdev))
1848 		fs_info->sb->s_bdev = next_device->bdev;
1849 
1850 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1851 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1852 }
1853 
1854 int btrfs_rm_device(struct btrfs_fs_info *fs_info, char *device_path, u64 devid)
1855 {
1856 	struct btrfs_device *device;
1857 	struct btrfs_fs_devices *cur_devices;
1858 	u64 num_devices;
1859 	int ret = 0;
1860 	bool clear_super = false;
1861 
1862 	mutex_lock(&uuid_mutex);
1863 
1864 	num_devices = fs_info->fs_devices->num_devices;
1865 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1866 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1867 		WARN_ON(num_devices < 1);
1868 		num_devices--;
1869 	}
1870 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1871 
1872 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1873 	if (ret)
1874 		goto out;
1875 
1876 	ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1877 					   &device);
1878 	if (ret)
1879 		goto out;
1880 
1881 	if (device->is_tgtdev_for_dev_replace) {
1882 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1883 		goto out;
1884 	}
1885 
1886 	if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1887 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1888 		goto out;
1889 	}
1890 
1891 	if (device->writeable) {
1892 		mutex_lock(&fs_info->chunk_mutex);
1893 		list_del_init(&device->dev_alloc_list);
1894 		device->fs_devices->rw_devices--;
1895 		mutex_unlock(&fs_info->chunk_mutex);
1896 		clear_super = true;
1897 	}
1898 
1899 	mutex_unlock(&uuid_mutex);
1900 	ret = btrfs_shrink_device(device, 0);
1901 	mutex_lock(&uuid_mutex);
1902 	if (ret)
1903 		goto error_undo;
1904 
1905 	/*
1906 	 * TODO: the superblock still includes this device in its num_devices
1907 	 * counter although write_all_supers() is not locked out. This
1908 	 * could give a filesystem state which requires a degraded mount.
1909 	 */
1910 	ret = btrfs_rm_dev_item(fs_info, device);
1911 	if (ret)
1912 		goto error_undo;
1913 
1914 	device->in_fs_metadata = 0;
1915 	btrfs_scrub_cancel_dev(fs_info, device);
1916 
1917 	/*
1918 	 * the device list mutex makes sure that we don't change
1919 	 * the device list while someone else is writing out all
1920 	 * the device supers. Whoever is writing all supers, should
1921 	 * lock the device list mutex before getting the number of
1922 	 * devices in the super block (super_copy). Conversely,
1923 	 * whoever updates the number of devices in the super block
1924 	 * (super_copy) should hold the device list mutex.
1925 	 */
1926 
1927 	cur_devices = device->fs_devices;
1928 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1929 	list_del_rcu(&device->dev_list);
1930 
1931 	device->fs_devices->num_devices--;
1932 	device->fs_devices->total_devices--;
1933 
1934 	if (device->missing)
1935 		device->fs_devices->missing_devices--;
1936 
1937 	btrfs_assign_next_active_device(fs_info, device, NULL);
1938 
1939 	if (device->bdev) {
1940 		device->fs_devices->open_devices--;
1941 		/* remove sysfs entry */
1942 		btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1943 	}
1944 
1945 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1946 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1947 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1948 
1949 	/*
1950 	 * at this point, the device is zero sized and detached from
1951 	 * the devices list.  All that's left is to zero out the old
1952 	 * supers and free the device.
1953 	 */
1954 	if (device->writeable)
1955 		btrfs_scratch_superblocks(device->bdev, device->name->str);
1956 
1957 	btrfs_close_bdev(device);
1958 	call_rcu(&device->rcu, free_device);
1959 
1960 	if (cur_devices->open_devices == 0) {
1961 		struct btrfs_fs_devices *fs_devices;
1962 		fs_devices = fs_info->fs_devices;
1963 		while (fs_devices) {
1964 			if (fs_devices->seed == cur_devices) {
1965 				fs_devices->seed = cur_devices->seed;
1966 				break;
1967 			}
1968 			fs_devices = fs_devices->seed;
1969 		}
1970 		cur_devices->seed = NULL;
1971 		__btrfs_close_devices(cur_devices);
1972 		free_fs_devices(cur_devices);
1973 	}
1974 
1975 	fs_info->num_tolerated_disk_barrier_failures =
1976 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
1977 
1978 out:
1979 	mutex_unlock(&uuid_mutex);
1980 	return ret;
1981 
1982 error_undo:
1983 	if (device->writeable) {
1984 		mutex_lock(&fs_info->chunk_mutex);
1985 		list_add(&device->dev_alloc_list,
1986 			 &fs_info->fs_devices->alloc_list);
1987 		device->fs_devices->rw_devices++;
1988 		mutex_unlock(&fs_info->chunk_mutex);
1989 	}
1990 	goto out;
1991 }
1992 
1993 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1994 					struct btrfs_device *srcdev)
1995 {
1996 	struct btrfs_fs_devices *fs_devices;
1997 
1998 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1999 
2000 	/*
2001 	 * in case of fs with no seed, srcdev->fs_devices will point
2002 	 * to fs_devices of fs_info. However when the dev being replaced is
2003 	 * a seed dev it will point to the seed's local fs_devices. In short
2004 	 * srcdev will have its correct fs_devices in both the cases.
2005 	 */
2006 	fs_devices = srcdev->fs_devices;
2007 
2008 	list_del_rcu(&srcdev->dev_list);
2009 	list_del_rcu(&srcdev->dev_alloc_list);
2010 	fs_devices->num_devices--;
2011 	if (srcdev->missing)
2012 		fs_devices->missing_devices--;
2013 
2014 	if (srcdev->writeable)
2015 		fs_devices->rw_devices--;
2016 
2017 	if (srcdev->bdev)
2018 		fs_devices->open_devices--;
2019 }
2020 
2021 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2022 				      struct btrfs_device *srcdev)
2023 {
2024 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2025 
2026 	if (srcdev->writeable) {
2027 		/* zero out the old super if it is writable */
2028 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2029 	}
2030 
2031 	btrfs_close_bdev(srcdev);
2032 
2033 	call_rcu(&srcdev->rcu, free_device);
2034 
2035 	/*
2036 	 * unless fs_devices is seed fs, num_devices shouldn't go
2037 	 * zero
2038 	 */
2039 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2040 
2041 	/* if this is no devs we rather delete the fs_devices */
2042 	if (!fs_devices->num_devices) {
2043 		struct btrfs_fs_devices *tmp_fs_devices;
2044 
2045 		tmp_fs_devices = fs_info->fs_devices;
2046 		while (tmp_fs_devices) {
2047 			if (tmp_fs_devices->seed == fs_devices) {
2048 				tmp_fs_devices->seed = fs_devices->seed;
2049 				break;
2050 			}
2051 			tmp_fs_devices = tmp_fs_devices->seed;
2052 		}
2053 		fs_devices->seed = NULL;
2054 		__btrfs_close_devices(fs_devices);
2055 		free_fs_devices(fs_devices);
2056 	}
2057 }
2058 
2059 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2060 				      struct btrfs_device *tgtdev)
2061 {
2062 	mutex_lock(&uuid_mutex);
2063 	WARN_ON(!tgtdev);
2064 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2065 
2066 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2067 
2068 	if (tgtdev->bdev)
2069 		fs_info->fs_devices->open_devices--;
2070 
2071 	fs_info->fs_devices->num_devices--;
2072 
2073 	btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2074 
2075 	list_del_rcu(&tgtdev->dev_list);
2076 
2077 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2078 	mutex_unlock(&uuid_mutex);
2079 
2080 	/*
2081 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2082 	 * may lead to a call to btrfs_show_devname() which will try
2083 	 * to hold device_list_mutex. And here this device
2084 	 * is already out of device list, so we don't have to hold
2085 	 * the device_list_mutex lock.
2086 	 */
2087 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2088 
2089 	btrfs_close_bdev(tgtdev);
2090 	call_rcu(&tgtdev->rcu, free_device);
2091 }
2092 
2093 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2094 				     char *device_path,
2095 				     struct btrfs_device **device)
2096 {
2097 	int ret = 0;
2098 	struct btrfs_super_block *disk_super;
2099 	u64 devid;
2100 	u8 *dev_uuid;
2101 	struct block_device *bdev;
2102 	struct buffer_head *bh;
2103 
2104 	*device = NULL;
2105 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2106 				    fs_info->bdev_holder, 0, &bdev, &bh);
2107 	if (ret)
2108 		return ret;
2109 	disk_super = (struct btrfs_super_block *)bh->b_data;
2110 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2111 	dev_uuid = disk_super->dev_item.uuid;
2112 	*device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2113 	brelse(bh);
2114 	if (!*device)
2115 		ret = -ENOENT;
2116 	blkdev_put(bdev, FMODE_READ);
2117 	return ret;
2118 }
2119 
2120 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2121 					 char *device_path,
2122 					 struct btrfs_device **device)
2123 {
2124 	*device = NULL;
2125 	if (strcmp(device_path, "missing") == 0) {
2126 		struct list_head *devices;
2127 		struct btrfs_device *tmp;
2128 
2129 		devices = &fs_info->fs_devices->devices;
2130 		/*
2131 		 * It is safe to read the devices since the volume_mutex
2132 		 * is held by the caller.
2133 		 */
2134 		list_for_each_entry(tmp, devices, dev_list) {
2135 			if (tmp->in_fs_metadata && !tmp->bdev) {
2136 				*device = tmp;
2137 				break;
2138 			}
2139 		}
2140 
2141 		if (!*device)
2142 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2143 
2144 		return 0;
2145 	} else {
2146 		return btrfs_find_device_by_path(fs_info, device_path, device);
2147 	}
2148 }
2149 
2150 /*
2151  * Lookup a device given by device id, or the path if the id is 0.
2152  */
2153 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2154 				 char *devpath, struct btrfs_device **device)
2155 {
2156 	int ret;
2157 
2158 	if (devid) {
2159 		ret = 0;
2160 		*device = btrfs_find_device(fs_info, devid, NULL, NULL);
2161 		if (!*device)
2162 			ret = -ENOENT;
2163 	} else {
2164 		if (!devpath || !devpath[0])
2165 			return -EINVAL;
2166 
2167 		ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2168 							   device);
2169 	}
2170 	return ret;
2171 }
2172 
2173 /*
2174  * does all the dirty work required for changing file system's UUID.
2175  */
2176 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2177 {
2178 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2179 	struct btrfs_fs_devices *old_devices;
2180 	struct btrfs_fs_devices *seed_devices;
2181 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2182 	struct btrfs_device *device;
2183 	u64 super_flags;
2184 
2185 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2186 	if (!fs_devices->seeding)
2187 		return -EINVAL;
2188 
2189 	seed_devices = __alloc_fs_devices();
2190 	if (IS_ERR(seed_devices))
2191 		return PTR_ERR(seed_devices);
2192 
2193 	old_devices = clone_fs_devices(fs_devices);
2194 	if (IS_ERR(old_devices)) {
2195 		kfree(seed_devices);
2196 		return PTR_ERR(old_devices);
2197 	}
2198 
2199 	list_add(&old_devices->list, &fs_uuids);
2200 
2201 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2202 	seed_devices->opened = 1;
2203 	INIT_LIST_HEAD(&seed_devices->devices);
2204 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2205 	mutex_init(&seed_devices->device_list_mutex);
2206 
2207 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2208 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2209 			      synchronize_rcu);
2210 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2211 		device->fs_devices = seed_devices;
2212 
2213 	mutex_lock(&fs_info->chunk_mutex);
2214 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2215 	mutex_unlock(&fs_info->chunk_mutex);
2216 
2217 	fs_devices->seeding = 0;
2218 	fs_devices->num_devices = 0;
2219 	fs_devices->open_devices = 0;
2220 	fs_devices->missing_devices = 0;
2221 	fs_devices->rotating = 0;
2222 	fs_devices->seed = seed_devices;
2223 
2224 	generate_random_uuid(fs_devices->fsid);
2225 	memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2226 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2227 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2228 
2229 	super_flags = btrfs_super_flags(disk_super) &
2230 		      ~BTRFS_SUPER_FLAG_SEEDING;
2231 	btrfs_set_super_flags(disk_super, super_flags);
2232 
2233 	return 0;
2234 }
2235 
2236 /*
2237  * Store the expected generation for seed devices in device items.
2238  */
2239 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2240 			       struct btrfs_fs_info *fs_info)
2241 {
2242 	struct btrfs_root *root = fs_info->chunk_root;
2243 	struct btrfs_path *path;
2244 	struct extent_buffer *leaf;
2245 	struct btrfs_dev_item *dev_item;
2246 	struct btrfs_device *device;
2247 	struct btrfs_key key;
2248 	u8 fs_uuid[BTRFS_UUID_SIZE];
2249 	u8 dev_uuid[BTRFS_UUID_SIZE];
2250 	u64 devid;
2251 	int ret;
2252 
2253 	path = btrfs_alloc_path();
2254 	if (!path)
2255 		return -ENOMEM;
2256 
2257 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2258 	key.offset = 0;
2259 	key.type = BTRFS_DEV_ITEM_KEY;
2260 
2261 	while (1) {
2262 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2263 		if (ret < 0)
2264 			goto error;
2265 
2266 		leaf = path->nodes[0];
2267 next_slot:
2268 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2269 			ret = btrfs_next_leaf(root, path);
2270 			if (ret > 0)
2271 				break;
2272 			if (ret < 0)
2273 				goto error;
2274 			leaf = path->nodes[0];
2275 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2276 			btrfs_release_path(path);
2277 			continue;
2278 		}
2279 
2280 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2281 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2282 		    key.type != BTRFS_DEV_ITEM_KEY)
2283 			break;
2284 
2285 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2286 					  struct btrfs_dev_item);
2287 		devid = btrfs_device_id(leaf, dev_item);
2288 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2289 				   BTRFS_UUID_SIZE);
2290 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2291 				   BTRFS_UUID_SIZE);
2292 		device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2293 		BUG_ON(!device); /* Logic error */
2294 
2295 		if (device->fs_devices->seeding) {
2296 			btrfs_set_device_generation(leaf, dev_item,
2297 						    device->generation);
2298 			btrfs_mark_buffer_dirty(leaf);
2299 		}
2300 
2301 		path->slots[0]++;
2302 		goto next_slot;
2303 	}
2304 	ret = 0;
2305 error:
2306 	btrfs_free_path(path);
2307 	return ret;
2308 }
2309 
2310 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, char *device_path)
2311 {
2312 	struct btrfs_root *root = fs_info->dev_root;
2313 	struct request_queue *q;
2314 	struct btrfs_trans_handle *trans;
2315 	struct btrfs_device *device;
2316 	struct block_device *bdev;
2317 	struct list_head *devices;
2318 	struct super_block *sb = fs_info->sb;
2319 	struct rcu_string *name;
2320 	u64 tmp;
2321 	int seeding_dev = 0;
2322 	int ret = 0;
2323 
2324 	if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
2325 		return -EROFS;
2326 
2327 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2328 				  fs_info->bdev_holder);
2329 	if (IS_ERR(bdev))
2330 		return PTR_ERR(bdev);
2331 
2332 	if (fs_info->fs_devices->seeding) {
2333 		seeding_dev = 1;
2334 		down_write(&sb->s_umount);
2335 		mutex_lock(&uuid_mutex);
2336 	}
2337 
2338 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2339 
2340 	devices = &fs_info->fs_devices->devices;
2341 
2342 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2343 	list_for_each_entry(device, devices, dev_list) {
2344 		if (device->bdev == bdev) {
2345 			ret = -EEXIST;
2346 			mutex_unlock(
2347 				&fs_info->fs_devices->device_list_mutex);
2348 			goto error;
2349 		}
2350 	}
2351 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2352 
2353 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2354 	if (IS_ERR(device)) {
2355 		/* we can safely leave the fs_devices entry around */
2356 		ret = PTR_ERR(device);
2357 		goto error;
2358 	}
2359 
2360 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2361 	if (!name) {
2362 		kfree(device);
2363 		ret = -ENOMEM;
2364 		goto error;
2365 	}
2366 	rcu_assign_pointer(device->name, name);
2367 
2368 	trans = btrfs_start_transaction(root, 0);
2369 	if (IS_ERR(trans)) {
2370 		rcu_string_free(device->name);
2371 		kfree(device);
2372 		ret = PTR_ERR(trans);
2373 		goto error;
2374 	}
2375 
2376 	q = bdev_get_queue(bdev);
2377 	if (blk_queue_discard(q))
2378 		device->can_discard = 1;
2379 	device->writeable = 1;
2380 	device->generation = trans->transid;
2381 	device->io_width = fs_info->sectorsize;
2382 	device->io_align = fs_info->sectorsize;
2383 	device->sector_size = fs_info->sectorsize;
2384 	device->total_bytes = i_size_read(bdev->bd_inode);
2385 	device->disk_total_bytes = device->total_bytes;
2386 	device->commit_total_bytes = device->total_bytes;
2387 	device->fs_info = fs_info;
2388 	device->bdev = bdev;
2389 	device->in_fs_metadata = 1;
2390 	device->is_tgtdev_for_dev_replace = 0;
2391 	device->mode = FMODE_EXCL;
2392 	device->dev_stats_valid = 1;
2393 	set_blocksize(device->bdev, 4096);
2394 
2395 	if (seeding_dev) {
2396 		sb->s_flags &= ~MS_RDONLY;
2397 		ret = btrfs_prepare_sprout(fs_info);
2398 		BUG_ON(ret); /* -ENOMEM */
2399 	}
2400 
2401 	device->fs_devices = fs_info->fs_devices;
2402 
2403 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2404 	mutex_lock(&fs_info->chunk_mutex);
2405 	list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2406 	list_add(&device->dev_alloc_list,
2407 		 &fs_info->fs_devices->alloc_list);
2408 	fs_info->fs_devices->num_devices++;
2409 	fs_info->fs_devices->open_devices++;
2410 	fs_info->fs_devices->rw_devices++;
2411 	fs_info->fs_devices->total_devices++;
2412 	fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2413 
2414 	spin_lock(&fs_info->free_chunk_lock);
2415 	fs_info->free_chunk_space += device->total_bytes;
2416 	spin_unlock(&fs_info->free_chunk_lock);
2417 
2418 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2419 		fs_info->fs_devices->rotating = 1;
2420 
2421 	tmp = btrfs_super_total_bytes(fs_info->super_copy);
2422 	btrfs_set_super_total_bytes(fs_info->super_copy,
2423 				    tmp + device->total_bytes);
2424 
2425 	tmp = btrfs_super_num_devices(fs_info->super_copy);
2426 	btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2427 
2428 	/* add sysfs device entry */
2429 	btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2430 
2431 	/*
2432 	 * we've got more storage, clear any full flags on the space
2433 	 * infos
2434 	 */
2435 	btrfs_clear_space_info_full(fs_info);
2436 
2437 	mutex_unlock(&fs_info->chunk_mutex);
2438 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2439 
2440 	if (seeding_dev) {
2441 		mutex_lock(&fs_info->chunk_mutex);
2442 		ret = init_first_rw_device(trans, fs_info);
2443 		mutex_unlock(&fs_info->chunk_mutex);
2444 		if (ret) {
2445 			btrfs_abort_transaction(trans, ret);
2446 			goto error_trans;
2447 		}
2448 	}
2449 
2450 	ret = btrfs_add_device(trans, fs_info, device);
2451 	if (ret) {
2452 		btrfs_abort_transaction(trans, ret);
2453 		goto error_trans;
2454 	}
2455 
2456 	if (seeding_dev) {
2457 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2458 
2459 		ret = btrfs_finish_sprout(trans, fs_info);
2460 		if (ret) {
2461 			btrfs_abort_transaction(trans, ret);
2462 			goto error_trans;
2463 		}
2464 
2465 		/* Sprouting would change fsid of the mounted root,
2466 		 * so rename the fsid on the sysfs
2467 		 */
2468 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2469 						fs_info->fsid);
2470 		if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2471 			btrfs_warn(fs_info,
2472 				   "sysfs: failed to create fsid for sprout");
2473 	}
2474 
2475 	fs_info->num_tolerated_disk_barrier_failures =
2476 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2477 	ret = btrfs_commit_transaction(trans);
2478 
2479 	if (seeding_dev) {
2480 		mutex_unlock(&uuid_mutex);
2481 		up_write(&sb->s_umount);
2482 
2483 		if (ret) /* transaction commit */
2484 			return ret;
2485 
2486 		ret = btrfs_relocate_sys_chunks(fs_info);
2487 		if (ret < 0)
2488 			btrfs_handle_fs_error(fs_info, ret,
2489 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2490 		trans = btrfs_attach_transaction(root);
2491 		if (IS_ERR(trans)) {
2492 			if (PTR_ERR(trans) == -ENOENT)
2493 				return 0;
2494 			return PTR_ERR(trans);
2495 		}
2496 		ret = btrfs_commit_transaction(trans);
2497 	}
2498 
2499 	/* Update ctime/mtime for libblkid */
2500 	update_dev_time(device_path);
2501 	return ret;
2502 
2503 error_trans:
2504 	btrfs_end_transaction(trans);
2505 	rcu_string_free(device->name);
2506 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2507 	kfree(device);
2508 error:
2509 	blkdev_put(bdev, FMODE_EXCL);
2510 	if (seeding_dev) {
2511 		mutex_unlock(&uuid_mutex);
2512 		up_write(&sb->s_umount);
2513 	}
2514 	return ret;
2515 }
2516 
2517 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2518 				  char *device_path,
2519 				  struct btrfs_device *srcdev,
2520 				  struct btrfs_device **device_out)
2521 {
2522 	struct request_queue *q;
2523 	struct btrfs_device *device;
2524 	struct block_device *bdev;
2525 	struct list_head *devices;
2526 	struct rcu_string *name;
2527 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2528 	int ret = 0;
2529 
2530 	*device_out = NULL;
2531 	if (fs_info->fs_devices->seeding) {
2532 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2533 		return -EINVAL;
2534 	}
2535 
2536 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2537 				  fs_info->bdev_holder);
2538 	if (IS_ERR(bdev)) {
2539 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2540 		return PTR_ERR(bdev);
2541 	}
2542 
2543 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2544 
2545 	devices = &fs_info->fs_devices->devices;
2546 	list_for_each_entry(device, devices, dev_list) {
2547 		if (device->bdev == bdev) {
2548 			btrfs_err(fs_info,
2549 				  "target device is in the filesystem!");
2550 			ret = -EEXIST;
2551 			goto error;
2552 		}
2553 	}
2554 
2555 
2556 	if (i_size_read(bdev->bd_inode) <
2557 	    btrfs_device_get_total_bytes(srcdev)) {
2558 		btrfs_err(fs_info,
2559 			  "target device is smaller than source device!");
2560 		ret = -EINVAL;
2561 		goto error;
2562 	}
2563 
2564 
2565 	device = btrfs_alloc_device(NULL, &devid, NULL);
2566 	if (IS_ERR(device)) {
2567 		ret = PTR_ERR(device);
2568 		goto error;
2569 	}
2570 
2571 	name = rcu_string_strdup(device_path, GFP_NOFS);
2572 	if (!name) {
2573 		kfree(device);
2574 		ret = -ENOMEM;
2575 		goto error;
2576 	}
2577 	rcu_assign_pointer(device->name, name);
2578 
2579 	q = bdev_get_queue(bdev);
2580 	if (blk_queue_discard(q))
2581 		device->can_discard = 1;
2582 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2583 	device->writeable = 1;
2584 	device->generation = 0;
2585 	device->io_width = fs_info->sectorsize;
2586 	device->io_align = fs_info->sectorsize;
2587 	device->sector_size = fs_info->sectorsize;
2588 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2589 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2590 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2591 	ASSERT(list_empty(&srcdev->resized_list));
2592 	device->commit_total_bytes = srcdev->commit_total_bytes;
2593 	device->commit_bytes_used = device->bytes_used;
2594 	device->fs_info = fs_info;
2595 	device->bdev = bdev;
2596 	device->in_fs_metadata = 1;
2597 	device->is_tgtdev_for_dev_replace = 1;
2598 	device->mode = FMODE_EXCL;
2599 	device->dev_stats_valid = 1;
2600 	set_blocksize(device->bdev, 4096);
2601 	device->fs_devices = fs_info->fs_devices;
2602 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2603 	fs_info->fs_devices->num_devices++;
2604 	fs_info->fs_devices->open_devices++;
2605 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2606 
2607 	*device_out = device;
2608 	return ret;
2609 
2610 error:
2611 	blkdev_put(bdev, FMODE_EXCL);
2612 	return ret;
2613 }
2614 
2615 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2616 					      struct btrfs_device *tgtdev)
2617 {
2618 	u32 sectorsize = fs_info->sectorsize;
2619 
2620 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2621 	tgtdev->io_width = sectorsize;
2622 	tgtdev->io_align = sectorsize;
2623 	tgtdev->sector_size = sectorsize;
2624 	tgtdev->fs_info = fs_info;
2625 	tgtdev->in_fs_metadata = 1;
2626 }
2627 
2628 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2629 					struct btrfs_device *device)
2630 {
2631 	int ret;
2632 	struct btrfs_path *path;
2633 	struct btrfs_root *root = device->fs_info->chunk_root;
2634 	struct btrfs_dev_item *dev_item;
2635 	struct extent_buffer *leaf;
2636 	struct btrfs_key key;
2637 
2638 	path = btrfs_alloc_path();
2639 	if (!path)
2640 		return -ENOMEM;
2641 
2642 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2643 	key.type = BTRFS_DEV_ITEM_KEY;
2644 	key.offset = device->devid;
2645 
2646 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2647 	if (ret < 0)
2648 		goto out;
2649 
2650 	if (ret > 0) {
2651 		ret = -ENOENT;
2652 		goto out;
2653 	}
2654 
2655 	leaf = path->nodes[0];
2656 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2657 
2658 	btrfs_set_device_id(leaf, dev_item, device->devid);
2659 	btrfs_set_device_type(leaf, dev_item, device->type);
2660 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2661 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2662 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2663 	btrfs_set_device_total_bytes(leaf, dev_item,
2664 				     btrfs_device_get_disk_total_bytes(device));
2665 	btrfs_set_device_bytes_used(leaf, dev_item,
2666 				    btrfs_device_get_bytes_used(device));
2667 	btrfs_mark_buffer_dirty(leaf);
2668 
2669 out:
2670 	btrfs_free_path(path);
2671 	return ret;
2672 }
2673 
2674 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2675 		      struct btrfs_device *device, u64 new_size)
2676 {
2677 	struct btrfs_fs_info *fs_info = device->fs_info;
2678 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2679 	struct btrfs_fs_devices *fs_devices;
2680 	u64 old_total;
2681 	u64 diff;
2682 
2683 	if (!device->writeable)
2684 		return -EACCES;
2685 
2686 	mutex_lock(&fs_info->chunk_mutex);
2687 	old_total = btrfs_super_total_bytes(super_copy);
2688 	diff = new_size - device->total_bytes;
2689 
2690 	if (new_size <= device->total_bytes ||
2691 	    device->is_tgtdev_for_dev_replace) {
2692 		mutex_unlock(&fs_info->chunk_mutex);
2693 		return -EINVAL;
2694 	}
2695 
2696 	fs_devices = fs_info->fs_devices;
2697 
2698 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2699 	device->fs_devices->total_rw_bytes += diff;
2700 
2701 	btrfs_device_set_total_bytes(device, new_size);
2702 	btrfs_device_set_disk_total_bytes(device, new_size);
2703 	btrfs_clear_space_info_full(device->fs_info);
2704 	if (list_empty(&device->resized_list))
2705 		list_add_tail(&device->resized_list,
2706 			      &fs_devices->resized_devices);
2707 	mutex_unlock(&fs_info->chunk_mutex);
2708 
2709 	return btrfs_update_device(trans, device);
2710 }
2711 
2712 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2713 			    struct btrfs_fs_info *fs_info, u64 chunk_objectid,
2714 			    u64 chunk_offset)
2715 {
2716 	struct btrfs_root *root = fs_info->chunk_root;
2717 	int ret;
2718 	struct btrfs_path *path;
2719 	struct btrfs_key key;
2720 
2721 	path = btrfs_alloc_path();
2722 	if (!path)
2723 		return -ENOMEM;
2724 
2725 	key.objectid = chunk_objectid;
2726 	key.offset = chunk_offset;
2727 	key.type = BTRFS_CHUNK_ITEM_KEY;
2728 
2729 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2730 	if (ret < 0)
2731 		goto out;
2732 	else if (ret > 0) { /* Logic error or corruption */
2733 		btrfs_handle_fs_error(fs_info, -ENOENT,
2734 				      "Failed lookup while freeing chunk.");
2735 		ret = -ENOENT;
2736 		goto out;
2737 	}
2738 
2739 	ret = btrfs_del_item(trans, root, path);
2740 	if (ret < 0)
2741 		btrfs_handle_fs_error(fs_info, ret,
2742 				      "Failed to delete chunk item.");
2743 out:
2744 	btrfs_free_path(path);
2745 	return ret;
2746 }
2747 
2748 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2749 			       u64 chunk_objectid, u64 chunk_offset)
2750 {
2751 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2752 	struct btrfs_disk_key *disk_key;
2753 	struct btrfs_chunk *chunk;
2754 	u8 *ptr;
2755 	int ret = 0;
2756 	u32 num_stripes;
2757 	u32 array_size;
2758 	u32 len = 0;
2759 	u32 cur;
2760 	struct btrfs_key key;
2761 
2762 	mutex_lock(&fs_info->chunk_mutex);
2763 	array_size = btrfs_super_sys_array_size(super_copy);
2764 
2765 	ptr = super_copy->sys_chunk_array;
2766 	cur = 0;
2767 
2768 	while (cur < array_size) {
2769 		disk_key = (struct btrfs_disk_key *)ptr;
2770 		btrfs_disk_key_to_cpu(&key, disk_key);
2771 
2772 		len = sizeof(*disk_key);
2773 
2774 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2775 			chunk = (struct btrfs_chunk *)(ptr + len);
2776 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2777 			len += btrfs_chunk_item_size(num_stripes);
2778 		} else {
2779 			ret = -EIO;
2780 			break;
2781 		}
2782 		if (key.objectid == chunk_objectid &&
2783 		    key.offset == chunk_offset) {
2784 			memmove(ptr, ptr + len, array_size - (cur + len));
2785 			array_size -= len;
2786 			btrfs_set_super_sys_array_size(super_copy, array_size);
2787 		} else {
2788 			ptr += len;
2789 			cur += len;
2790 		}
2791 	}
2792 	mutex_unlock(&fs_info->chunk_mutex);
2793 	return ret;
2794 }
2795 
2796 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2797 		       struct btrfs_fs_info *fs_info, u64 chunk_offset)
2798 {
2799 	struct extent_map_tree *em_tree;
2800 	struct extent_map *em;
2801 	struct map_lookup *map;
2802 	u64 dev_extent_len = 0;
2803 	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2804 	int i, ret = 0;
2805 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2806 
2807 	em_tree = &fs_info->mapping_tree.map_tree;
2808 
2809 	read_lock(&em_tree->lock);
2810 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2811 	read_unlock(&em_tree->lock);
2812 
2813 	if (!em || em->start > chunk_offset ||
2814 	    em->start + em->len < chunk_offset) {
2815 		/*
2816 		 * This is a logic error, but we don't want to just rely on the
2817 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2818 		 * do anything we still error out.
2819 		 */
2820 		ASSERT(0);
2821 		if (em)
2822 			free_extent_map(em);
2823 		return -EINVAL;
2824 	}
2825 	map = em->map_lookup;
2826 	mutex_lock(&fs_info->chunk_mutex);
2827 	check_system_chunk(trans, fs_info, map->type);
2828 	mutex_unlock(&fs_info->chunk_mutex);
2829 
2830 	/*
2831 	 * Take the device list mutex to prevent races with the final phase of
2832 	 * a device replace operation that replaces the device object associated
2833 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2834 	 */
2835 	mutex_lock(&fs_devices->device_list_mutex);
2836 	for (i = 0; i < map->num_stripes; i++) {
2837 		struct btrfs_device *device = map->stripes[i].dev;
2838 		ret = btrfs_free_dev_extent(trans, device,
2839 					    map->stripes[i].physical,
2840 					    &dev_extent_len);
2841 		if (ret) {
2842 			mutex_unlock(&fs_devices->device_list_mutex);
2843 			btrfs_abort_transaction(trans, ret);
2844 			goto out;
2845 		}
2846 
2847 		if (device->bytes_used > 0) {
2848 			mutex_lock(&fs_info->chunk_mutex);
2849 			btrfs_device_set_bytes_used(device,
2850 					device->bytes_used - dev_extent_len);
2851 			spin_lock(&fs_info->free_chunk_lock);
2852 			fs_info->free_chunk_space += dev_extent_len;
2853 			spin_unlock(&fs_info->free_chunk_lock);
2854 			btrfs_clear_space_info_full(fs_info);
2855 			mutex_unlock(&fs_info->chunk_mutex);
2856 		}
2857 
2858 		if (map->stripes[i].dev) {
2859 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2860 			if (ret) {
2861 				mutex_unlock(&fs_devices->device_list_mutex);
2862 				btrfs_abort_transaction(trans, ret);
2863 				goto out;
2864 			}
2865 		}
2866 	}
2867 	mutex_unlock(&fs_devices->device_list_mutex);
2868 
2869 	ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
2870 	if (ret) {
2871 		btrfs_abort_transaction(trans, ret);
2872 		goto out;
2873 	}
2874 
2875 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2876 
2877 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2878 		ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2879 					  chunk_offset);
2880 		if (ret) {
2881 			btrfs_abort_transaction(trans, ret);
2882 			goto out;
2883 		}
2884 	}
2885 
2886 	ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2887 	if (ret) {
2888 		btrfs_abort_transaction(trans, ret);
2889 		goto out;
2890 	}
2891 
2892 out:
2893 	/* once for us */
2894 	free_extent_map(em);
2895 	return ret;
2896 }
2897 
2898 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2899 {
2900 	struct btrfs_root *root = fs_info->chunk_root;
2901 	struct btrfs_trans_handle *trans;
2902 	int ret;
2903 
2904 	/*
2905 	 * Prevent races with automatic removal of unused block groups.
2906 	 * After we relocate and before we remove the chunk with offset
2907 	 * chunk_offset, automatic removal of the block group can kick in,
2908 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2909 	 *
2910 	 * Make sure to acquire this mutex before doing a tree search (dev
2911 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2912 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2913 	 * we release the path used to search the chunk/dev tree and before
2914 	 * the current task acquires this mutex and calls us.
2915 	 */
2916 	ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2917 
2918 	ret = btrfs_can_relocate(fs_info, chunk_offset);
2919 	if (ret)
2920 		return -ENOSPC;
2921 
2922 	/* step one, relocate all the extents inside this chunk */
2923 	btrfs_scrub_pause(fs_info);
2924 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2925 	btrfs_scrub_continue(fs_info);
2926 	if (ret)
2927 		return ret;
2928 
2929 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2930 						     chunk_offset);
2931 	if (IS_ERR(trans)) {
2932 		ret = PTR_ERR(trans);
2933 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2934 		return ret;
2935 	}
2936 
2937 	/*
2938 	 * step two, delete the device extents and the
2939 	 * chunk tree entries
2940 	 */
2941 	ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2942 	btrfs_end_transaction(trans);
2943 	return ret;
2944 }
2945 
2946 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2947 {
2948 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2949 	struct btrfs_path *path;
2950 	struct extent_buffer *leaf;
2951 	struct btrfs_chunk *chunk;
2952 	struct btrfs_key key;
2953 	struct btrfs_key found_key;
2954 	u64 chunk_type;
2955 	bool retried = false;
2956 	int failed = 0;
2957 	int ret;
2958 
2959 	path = btrfs_alloc_path();
2960 	if (!path)
2961 		return -ENOMEM;
2962 
2963 again:
2964 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2965 	key.offset = (u64)-1;
2966 	key.type = BTRFS_CHUNK_ITEM_KEY;
2967 
2968 	while (1) {
2969 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
2970 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2971 		if (ret < 0) {
2972 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2973 			goto error;
2974 		}
2975 		BUG_ON(ret == 0); /* Corruption */
2976 
2977 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2978 					  key.type);
2979 		if (ret)
2980 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2981 		if (ret < 0)
2982 			goto error;
2983 		if (ret > 0)
2984 			break;
2985 
2986 		leaf = path->nodes[0];
2987 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2988 
2989 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2990 				       struct btrfs_chunk);
2991 		chunk_type = btrfs_chunk_type(leaf, chunk);
2992 		btrfs_release_path(path);
2993 
2994 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2995 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2996 			if (ret == -ENOSPC)
2997 				failed++;
2998 			else
2999 				BUG_ON(ret);
3000 		}
3001 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3002 
3003 		if (found_key.offset == 0)
3004 			break;
3005 		key.offset = found_key.offset - 1;
3006 	}
3007 	ret = 0;
3008 	if (failed && !retried) {
3009 		failed = 0;
3010 		retried = true;
3011 		goto again;
3012 	} else if (WARN_ON(failed && retried)) {
3013 		ret = -ENOSPC;
3014 	}
3015 error:
3016 	btrfs_free_path(path);
3017 	return ret;
3018 }
3019 
3020 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3021 			       struct btrfs_balance_control *bctl)
3022 {
3023 	struct btrfs_root *root = fs_info->tree_root;
3024 	struct btrfs_trans_handle *trans;
3025 	struct btrfs_balance_item *item;
3026 	struct btrfs_disk_balance_args disk_bargs;
3027 	struct btrfs_path *path;
3028 	struct extent_buffer *leaf;
3029 	struct btrfs_key key;
3030 	int ret, err;
3031 
3032 	path = btrfs_alloc_path();
3033 	if (!path)
3034 		return -ENOMEM;
3035 
3036 	trans = btrfs_start_transaction(root, 0);
3037 	if (IS_ERR(trans)) {
3038 		btrfs_free_path(path);
3039 		return PTR_ERR(trans);
3040 	}
3041 
3042 	key.objectid = BTRFS_BALANCE_OBJECTID;
3043 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3044 	key.offset = 0;
3045 
3046 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3047 				      sizeof(*item));
3048 	if (ret)
3049 		goto out;
3050 
3051 	leaf = path->nodes[0];
3052 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3053 
3054 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3055 
3056 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3057 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3058 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3059 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3060 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3061 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3062 
3063 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3064 
3065 	btrfs_mark_buffer_dirty(leaf);
3066 out:
3067 	btrfs_free_path(path);
3068 	err = btrfs_commit_transaction(trans);
3069 	if (err && !ret)
3070 		ret = err;
3071 	return ret;
3072 }
3073 
3074 static int del_balance_item(struct btrfs_fs_info *fs_info)
3075 {
3076 	struct btrfs_root *root = fs_info->tree_root;
3077 	struct btrfs_trans_handle *trans;
3078 	struct btrfs_path *path;
3079 	struct btrfs_key key;
3080 	int ret, err;
3081 
3082 	path = btrfs_alloc_path();
3083 	if (!path)
3084 		return -ENOMEM;
3085 
3086 	trans = btrfs_start_transaction(root, 0);
3087 	if (IS_ERR(trans)) {
3088 		btrfs_free_path(path);
3089 		return PTR_ERR(trans);
3090 	}
3091 
3092 	key.objectid = BTRFS_BALANCE_OBJECTID;
3093 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3094 	key.offset = 0;
3095 
3096 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3097 	if (ret < 0)
3098 		goto out;
3099 	if (ret > 0) {
3100 		ret = -ENOENT;
3101 		goto out;
3102 	}
3103 
3104 	ret = btrfs_del_item(trans, root, path);
3105 out:
3106 	btrfs_free_path(path);
3107 	err = btrfs_commit_transaction(trans);
3108 	if (err && !ret)
3109 		ret = err;
3110 	return ret;
3111 }
3112 
3113 /*
3114  * This is a heuristic used to reduce the number of chunks balanced on
3115  * resume after balance was interrupted.
3116  */
3117 static void update_balance_args(struct btrfs_balance_control *bctl)
3118 {
3119 	/*
3120 	 * Turn on soft mode for chunk types that were being converted.
3121 	 */
3122 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3123 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3124 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3125 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3126 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3127 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3128 
3129 	/*
3130 	 * Turn on usage filter if is not already used.  The idea is
3131 	 * that chunks that we have already balanced should be
3132 	 * reasonably full.  Don't do it for chunks that are being
3133 	 * converted - that will keep us from relocating unconverted
3134 	 * (albeit full) chunks.
3135 	 */
3136 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3137 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3138 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3139 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3140 		bctl->data.usage = 90;
3141 	}
3142 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3143 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3144 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3145 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3146 		bctl->sys.usage = 90;
3147 	}
3148 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3149 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3150 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3151 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3152 		bctl->meta.usage = 90;
3153 	}
3154 }
3155 
3156 /*
3157  * Should be called with both balance and volume mutexes held to
3158  * serialize other volume operations (add_dev/rm_dev/resize) with
3159  * restriper.  Same goes for unset_balance_control.
3160  */
3161 static void set_balance_control(struct btrfs_balance_control *bctl)
3162 {
3163 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3164 
3165 	BUG_ON(fs_info->balance_ctl);
3166 
3167 	spin_lock(&fs_info->balance_lock);
3168 	fs_info->balance_ctl = bctl;
3169 	spin_unlock(&fs_info->balance_lock);
3170 }
3171 
3172 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3173 {
3174 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3175 
3176 	BUG_ON(!fs_info->balance_ctl);
3177 
3178 	spin_lock(&fs_info->balance_lock);
3179 	fs_info->balance_ctl = NULL;
3180 	spin_unlock(&fs_info->balance_lock);
3181 
3182 	kfree(bctl);
3183 }
3184 
3185 /*
3186  * Balance filters.  Return 1 if chunk should be filtered out
3187  * (should not be balanced).
3188  */
3189 static int chunk_profiles_filter(u64 chunk_type,
3190 				 struct btrfs_balance_args *bargs)
3191 {
3192 	chunk_type = chunk_to_extended(chunk_type) &
3193 				BTRFS_EXTENDED_PROFILE_MASK;
3194 
3195 	if (bargs->profiles & chunk_type)
3196 		return 0;
3197 
3198 	return 1;
3199 }
3200 
3201 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3202 			      struct btrfs_balance_args *bargs)
3203 {
3204 	struct btrfs_block_group_cache *cache;
3205 	u64 chunk_used;
3206 	u64 user_thresh_min;
3207 	u64 user_thresh_max;
3208 	int ret = 1;
3209 
3210 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3211 	chunk_used = btrfs_block_group_used(&cache->item);
3212 
3213 	if (bargs->usage_min == 0)
3214 		user_thresh_min = 0;
3215 	else
3216 		user_thresh_min = div_factor_fine(cache->key.offset,
3217 					bargs->usage_min);
3218 
3219 	if (bargs->usage_max == 0)
3220 		user_thresh_max = 1;
3221 	else if (bargs->usage_max > 100)
3222 		user_thresh_max = cache->key.offset;
3223 	else
3224 		user_thresh_max = div_factor_fine(cache->key.offset,
3225 					bargs->usage_max);
3226 
3227 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3228 		ret = 0;
3229 
3230 	btrfs_put_block_group(cache);
3231 	return ret;
3232 }
3233 
3234 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3235 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3236 {
3237 	struct btrfs_block_group_cache *cache;
3238 	u64 chunk_used, user_thresh;
3239 	int ret = 1;
3240 
3241 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3242 	chunk_used = btrfs_block_group_used(&cache->item);
3243 
3244 	if (bargs->usage_min == 0)
3245 		user_thresh = 1;
3246 	else if (bargs->usage > 100)
3247 		user_thresh = cache->key.offset;
3248 	else
3249 		user_thresh = div_factor_fine(cache->key.offset,
3250 					      bargs->usage);
3251 
3252 	if (chunk_used < user_thresh)
3253 		ret = 0;
3254 
3255 	btrfs_put_block_group(cache);
3256 	return ret;
3257 }
3258 
3259 static int chunk_devid_filter(struct extent_buffer *leaf,
3260 			      struct btrfs_chunk *chunk,
3261 			      struct btrfs_balance_args *bargs)
3262 {
3263 	struct btrfs_stripe *stripe;
3264 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3265 	int i;
3266 
3267 	for (i = 0; i < num_stripes; i++) {
3268 		stripe = btrfs_stripe_nr(chunk, i);
3269 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3270 			return 0;
3271 	}
3272 
3273 	return 1;
3274 }
3275 
3276 /* [pstart, pend) */
3277 static int chunk_drange_filter(struct extent_buffer *leaf,
3278 			       struct btrfs_chunk *chunk,
3279 			       u64 chunk_offset,
3280 			       struct btrfs_balance_args *bargs)
3281 {
3282 	struct btrfs_stripe *stripe;
3283 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3284 	u64 stripe_offset;
3285 	u64 stripe_length;
3286 	int factor;
3287 	int i;
3288 
3289 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3290 		return 0;
3291 
3292 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3293 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3294 		factor = num_stripes / 2;
3295 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3296 		factor = num_stripes - 1;
3297 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3298 		factor = num_stripes - 2;
3299 	} else {
3300 		factor = num_stripes;
3301 	}
3302 
3303 	for (i = 0; i < num_stripes; i++) {
3304 		stripe = btrfs_stripe_nr(chunk, i);
3305 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3306 			continue;
3307 
3308 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3309 		stripe_length = btrfs_chunk_length(leaf, chunk);
3310 		stripe_length = div_u64(stripe_length, factor);
3311 
3312 		if (stripe_offset < bargs->pend &&
3313 		    stripe_offset + stripe_length > bargs->pstart)
3314 			return 0;
3315 	}
3316 
3317 	return 1;
3318 }
3319 
3320 /* [vstart, vend) */
3321 static int chunk_vrange_filter(struct extent_buffer *leaf,
3322 			       struct btrfs_chunk *chunk,
3323 			       u64 chunk_offset,
3324 			       struct btrfs_balance_args *bargs)
3325 {
3326 	if (chunk_offset < bargs->vend &&
3327 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3328 		/* at least part of the chunk is inside this vrange */
3329 		return 0;
3330 
3331 	return 1;
3332 }
3333 
3334 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3335 			       struct btrfs_chunk *chunk,
3336 			       struct btrfs_balance_args *bargs)
3337 {
3338 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3339 
3340 	if (bargs->stripes_min <= num_stripes
3341 			&& num_stripes <= bargs->stripes_max)
3342 		return 0;
3343 
3344 	return 1;
3345 }
3346 
3347 static int chunk_soft_convert_filter(u64 chunk_type,
3348 				     struct btrfs_balance_args *bargs)
3349 {
3350 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3351 		return 0;
3352 
3353 	chunk_type = chunk_to_extended(chunk_type) &
3354 				BTRFS_EXTENDED_PROFILE_MASK;
3355 
3356 	if (bargs->target == chunk_type)
3357 		return 1;
3358 
3359 	return 0;
3360 }
3361 
3362 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3363 				struct extent_buffer *leaf,
3364 				struct btrfs_chunk *chunk, u64 chunk_offset)
3365 {
3366 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3367 	struct btrfs_balance_args *bargs = NULL;
3368 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3369 
3370 	/* type filter */
3371 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3372 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3373 		return 0;
3374 	}
3375 
3376 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3377 		bargs = &bctl->data;
3378 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3379 		bargs = &bctl->sys;
3380 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3381 		bargs = &bctl->meta;
3382 
3383 	/* profiles filter */
3384 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3385 	    chunk_profiles_filter(chunk_type, bargs)) {
3386 		return 0;
3387 	}
3388 
3389 	/* usage filter */
3390 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3391 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3392 		return 0;
3393 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3394 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3395 		return 0;
3396 	}
3397 
3398 	/* devid filter */
3399 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3400 	    chunk_devid_filter(leaf, chunk, bargs)) {
3401 		return 0;
3402 	}
3403 
3404 	/* drange filter, makes sense only with devid filter */
3405 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3406 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3407 		return 0;
3408 	}
3409 
3410 	/* vrange filter */
3411 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3412 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3413 		return 0;
3414 	}
3415 
3416 	/* stripes filter */
3417 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3418 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3419 		return 0;
3420 	}
3421 
3422 	/* soft profile changing mode */
3423 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3424 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3425 		return 0;
3426 	}
3427 
3428 	/*
3429 	 * limited by count, must be the last filter
3430 	 */
3431 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3432 		if (bargs->limit == 0)
3433 			return 0;
3434 		else
3435 			bargs->limit--;
3436 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3437 		/*
3438 		 * Same logic as the 'limit' filter; the minimum cannot be
3439 		 * determined here because we do not have the global information
3440 		 * about the count of all chunks that satisfy the filters.
3441 		 */
3442 		if (bargs->limit_max == 0)
3443 			return 0;
3444 		else
3445 			bargs->limit_max--;
3446 	}
3447 
3448 	return 1;
3449 }
3450 
3451 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3452 {
3453 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3454 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3455 	struct btrfs_root *dev_root = fs_info->dev_root;
3456 	struct list_head *devices;
3457 	struct btrfs_device *device;
3458 	u64 old_size;
3459 	u64 size_to_free;
3460 	u64 chunk_type;
3461 	struct btrfs_chunk *chunk;
3462 	struct btrfs_path *path = NULL;
3463 	struct btrfs_key key;
3464 	struct btrfs_key found_key;
3465 	struct btrfs_trans_handle *trans;
3466 	struct extent_buffer *leaf;
3467 	int slot;
3468 	int ret;
3469 	int enospc_errors = 0;
3470 	bool counting = true;
3471 	/* The single value limit and min/max limits use the same bytes in the */
3472 	u64 limit_data = bctl->data.limit;
3473 	u64 limit_meta = bctl->meta.limit;
3474 	u64 limit_sys = bctl->sys.limit;
3475 	u32 count_data = 0;
3476 	u32 count_meta = 0;
3477 	u32 count_sys = 0;
3478 	int chunk_reserved = 0;
3479 	u64 bytes_used = 0;
3480 
3481 	/* step one make some room on all the devices */
3482 	devices = &fs_info->fs_devices->devices;
3483 	list_for_each_entry(device, devices, dev_list) {
3484 		old_size = btrfs_device_get_total_bytes(device);
3485 		size_to_free = div_factor(old_size, 1);
3486 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3487 		if (!device->writeable ||
3488 		    btrfs_device_get_total_bytes(device) -
3489 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3490 		    device->is_tgtdev_for_dev_replace)
3491 			continue;
3492 
3493 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3494 		if (ret == -ENOSPC)
3495 			break;
3496 		if (ret) {
3497 			/* btrfs_shrink_device never returns ret > 0 */
3498 			WARN_ON(ret > 0);
3499 			goto error;
3500 		}
3501 
3502 		trans = btrfs_start_transaction(dev_root, 0);
3503 		if (IS_ERR(trans)) {
3504 			ret = PTR_ERR(trans);
3505 			btrfs_info_in_rcu(fs_info,
3506 		 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3507 					  rcu_str_deref(device->name), ret,
3508 					  old_size, old_size - size_to_free);
3509 			goto error;
3510 		}
3511 
3512 		ret = btrfs_grow_device(trans, device, old_size);
3513 		if (ret) {
3514 			btrfs_end_transaction(trans);
3515 			/* btrfs_grow_device never returns ret > 0 */
3516 			WARN_ON(ret > 0);
3517 			btrfs_info_in_rcu(fs_info,
3518 		 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3519 					  rcu_str_deref(device->name), ret,
3520 					  old_size, old_size - size_to_free);
3521 			goto error;
3522 		}
3523 
3524 		btrfs_end_transaction(trans);
3525 	}
3526 
3527 	/* step two, relocate all the chunks */
3528 	path = btrfs_alloc_path();
3529 	if (!path) {
3530 		ret = -ENOMEM;
3531 		goto error;
3532 	}
3533 
3534 	/* zero out stat counters */
3535 	spin_lock(&fs_info->balance_lock);
3536 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3537 	spin_unlock(&fs_info->balance_lock);
3538 again:
3539 	if (!counting) {
3540 		/*
3541 		 * The single value limit and min/max limits use the same bytes
3542 		 * in the
3543 		 */
3544 		bctl->data.limit = limit_data;
3545 		bctl->meta.limit = limit_meta;
3546 		bctl->sys.limit = limit_sys;
3547 	}
3548 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3549 	key.offset = (u64)-1;
3550 	key.type = BTRFS_CHUNK_ITEM_KEY;
3551 
3552 	while (1) {
3553 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3554 		    atomic_read(&fs_info->balance_cancel_req)) {
3555 			ret = -ECANCELED;
3556 			goto error;
3557 		}
3558 
3559 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3560 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3561 		if (ret < 0) {
3562 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3563 			goto error;
3564 		}
3565 
3566 		/*
3567 		 * this shouldn't happen, it means the last relocate
3568 		 * failed
3569 		 */
3570 		if (ret == 0)
3571 			BUG(); /* FIXME break ? */
3572 
3573 		ret = btrfs_previous_item(chunk_root, path, 0,
3574 					  BTRFS_CHUNK_ITEM_KEY);
3575 		if (ret) {
3576 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3577 			ret = 0;
3578 			break;
3579 		}
3580 
3581 		leaf = path->nodes[0];
3582 		slot = path->slots[0];
3583 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3584 
3585 		if (found_key.objectid != key.objectid) {
3586 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3587 			break;
3588 		}
3589 
3590 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3591 		chunk_type = btrfs_chunk_type(leaf, chunk);
3592 
3593 		if (!counting) {
3594 			spin_lock(&fs_info->balance_lock);
3595 			bctl->stat.considered++;
3596 			spin_unlock(&fs_info->balance_lock);
3597 		}
3598 
3599 		ret = should_balance_chunk(fs_info, leaf, chunk,
3600 					   found_key.offset);
3601 
3602 		btrfs_release_path(path);
3603 		if (!ret) {
3604 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3605 			goto loop;
3606 		}
3607 
3608 		if (counting) {
3609 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3610 			spin_lock(&fs_info->balance_lock);
3611 			bctl->stat.expected++;
3612 			spin_unlock(&fs_info->balance_lock);
3613 
3614 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3615 				count_data++;
3616 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3617 				count_sys++;
3618 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3619 				count_meta++;
3620 
3621 			goto loop;
3622 		}
3623 
3624 		/*
3625 		 * Apply limit_min filter, no need to check if the LIMITS
3626 		 * filter is used, limit_min is 0 by default
3627 		 */
3628 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3629 					count_data < bctl->data.limit_min)
3630 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3631 					count_meta < bctl->meta.limit_min)
3632 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3633 					count_sys < bctl->sys.limit_min)) {
3634 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3635 			goto loop;
3636 		}
3637 
3638 		ASSERT(fs_info->data_sinfo);
3639 		spin_lock(&fs_info->data_sinfo->lock);
3640 		bytes_used = fs_info->data_sinfo->bytes_used;
3641 		spin_unlock(&fs_info->data_sinfo->lock);
3642 
3643 		if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3644 		    !chunk_reserved && !bytes_used) {
3645 			trans = btrfs_start_transaction(chunk_root, 0);
3646 			if (IS_ERR(trans)) {
3647 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3648 				ret = PTR_ERR(trans);
3649 				goto error;
3650 			}
3651 
3652 			ret = btrfs_force_chunk_alloc(trans, fs_info,
3653 						      BTRFS_BLOCK_GROUP_DATA);
3654 			btrfs_end_transaction(trans);
3655 			if (ret < 0) {
3656 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3657 				goto error;
3658 			}
3659 			chunk_reserved = 1;
3660 		}
3661 
3662 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3663 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3664 		if (ret && ret != -ENOSPC)
3665 			goto error;
3666 		if (ret == -ENOSPC) {
3667 			enospc_errors++;
3668 		} else {
3669 			spin_lock(&fs_info->balance_lock);
3670 			bctl->stat.completed++;
3671 			spin_unlock(&fs_info->balance_lock);
3672 		}
3673 loop:
3674 		if (found_key.offset == 0)
3675 			break;
3676 		key.offset = found_key.offset - 1;
3677 	}
3678 
3679 	if (counting) {
3680 		btrfs_release_path(path);
3681 		counting = false;
3682 		goto again;
3683 	}
3684 error:
3685 	btrfs_free_path(path);
3686 	if (enospc_errors) {
3687 		btrfs_info(fs_info, "%d enospc errors during balance",
3688 			   enospc_errors);
3689 		if (!ret)
3690 			ret = -ENOSPC;
3691 	}
3692 
3693 	return ret;
3694 }
3695 
3696 /**
3697  * alloc_profile_is_valid - see if a given profile is valid and reduced
3698  * @flags: profile to validate
3699  * @extended: if true @flags is treated as an extended profile
3700  */
3701 static int alloc_profile_is_valid(u64 flags, int extended)
3702 {
3703 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3704 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3705 
3706 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3707 
3708 	/* 1) check that all other bits are zeroed */
3709 	if (flags & ~mask)
3710 		return 0;
3711 
3712 	/* 2) see if profile is reduced */
3713 	if (flags == 0)
3714 		return !extended; /* "0" is valid for usual profiles */
3715 
3716 	/* true if exactly one bit set */
3717 	return (flags & (flags - 1)) == 0;
3718 }
3719 
3720 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3721 {
3722 	/* cancel requested || normal exit path */
3723 	return atomic_read(&fs_info->balance_cancel_req) ||
3724 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3725 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3726 }
3727 
3728 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3729 {
3730 	int ret;
3731 
3732 	unset_balance_control(fs_info);
3733 	ret = del_balance_item(fs_info);
3734 	if (ret)
3735 		btrfs_handle_fs_error(fs_info, ret, NULL);
3736 
3737 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3738 }
3739 
3740 /* Non-zero return value signifies invalidity */
3741 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3742 		u64 allowed)
3743 {
3744 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3745 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3746 		 (bctl_arg->target & ~allowed)));
3747 }
3748 
3749 /*
3750  * Should be called with both balance and volume mutexes held
3751  */
3752 int btrfs_balance(struct btrfs_balance_control *bctl,
3753 		  struct btrfs_ioctl_balance_args *bargs)
3754 {
3755 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3756 	u64 allowed;
3757 	int mixed = 0;
3758 	int ret;
3759 	u64 num_devices;
3760 	unsigned seq;
3761 
3762 	if (btrfs_fs_closing(fs_info) ||
3763 	    atomic_read(&fs_info->balance_pause_req) ||
3764 	    atomic_read(&fs_info->balance_cancel_req)) {
3765 		ret = -EINVAL;
3766 		goto out;
3767 	}
3768 
3769 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3770 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3771 		mixed = 1;
3772 
3773 	/*
3774 	 * In case of mixed groups both data and meta should be picked,
3775 	 * and identical options should be given for both of them.
3776 	 */
3777 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3778 	if (mixed && (bctl->flags & allowed)) {
3779 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3780 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3781 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3782 			btrfs_err(fs_info,
3783 				  "with mixed groups data and metadata balance options must be the same");
3784 			ret = -EINVAL;
3785 			goto out;
3786 		}
3787 	}
3788 
3789 	num_devices = fs_info->fs_devices->num_devices;
3790 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3791 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3792 		BUG_ON(num_devices < 1);
3793 		num_devices--;
3794 	}
3795 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3796 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3797 	if (num_devices > 1)
3798 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3799 	if (num_devices > 2)
3800 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3801 	if (num_devices > 3)
3802 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3803 			    BTRFS_BLOCK_GROUP_RAID6);
3804 	if (validate_convert_profile(&bctl->data, allowed)) {
3805 		btrfs_err(fs_info,
3806 			  "unable to start balance with target data profile %llu",
3807 			  bctl->data.target);
3808 		ret = -EINVAL;
3809 		goto out;
3810 	}
3811 	if (validate_convert_profile(&bctl->meta, allowed)) {
3812 		btrfs_err(fs_info,
3813 			  "unable to start balance with target metadata profile %llu",
3814 			  bctl->meta.target);
3815 		ret = -EINVAL;
3816 		goto out;
3817 	}
3818 	if (validate_convert_profile(&bctl->sys, allowed)) {
3819 		btrfs_err(fs_info,
3820 			  "unable to start balance with target system profile %llu",
3821 			  bctl->sys.target);
3822 		ret = -EINVAL;
3823 		goto out;
3824 	}
3825 
3826 	/* allow to reduce meta or sys integrity only if force set */
3827 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3828 			BTRFS_BLOCK_GROUP_RAID10 |
3829 			BTRFS_BLOCK_GROUP_RAID5 |
3830 			BTRFS_BLOCK_GROUP_RAID6;
3831 	do {
3832 		seq = read_seqbegin(&fs_info->profiles_lock);
3833 
3834 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3835 		     (fs_info->avail_system_alloc_bits & allowed) &&
3836 		     !(bctl->sys.target & allowed)) ||
3837 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3838 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3839 		     !(bctl->meta.target & allowed))) {
3840 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3841 				btrfs_info(fs_info,
3842 					   "force reducing metadata integrity");
3843 			} else {
3844 				btrfs_err(fs_info,
3845 					  "balance will reduce metadata integrity, use force if you want this");
3846 				ret = -EINVAL;
3847 				goto out;
3848 			}
3849 		}
3850 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3851 
3852 	if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3853 		btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3854 		btrfs_warn(fs_info,
3855 			   "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3856 			   bctl->meta.target, bctl->data.target);
3857 	}
3858 
3859 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3860 		fs_info->num_tolerated_disk_barrier_failures = min(
3861 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3862 			btrfs_get_num_tolerated_disk_barrier_failures(
3863 				bctl->sys.target));
3864 	}
3865 
3866 	ret = insert_balance_item(fs_info, bctl);
3867 	if (ret && ret != -EEXIST)
3868 		goto out;
3869 
3870 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3871 		BUG_ON(ret == -EEXIST);
3872 		set_balance_control(bctl);
3873 	} else {
3874 		BUG_ON(ret != -EEXIST);
3875 		spin_lock(&fs_info->balance_lock);
3876 		update_balance_args(bctl);
3877 		spin_unlock(&fs_info->balance_lock);
3878 	}
3879 
3880 	atomic_inc(&fs_info->balance_running);
3881 	mutex_unlock(&fs_info->balance_mutex);
3882 
3883 	ret = __btrfs_balance(fs_info);
3884 
3885 	mutex_lock(&fs_info->balance_mutex);
3886 	atomic_dec(&fs_info->balance_running);
3887 
3888 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3889 		fs_info->num_tolerated_disk_barrier_failures =
3890 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3891 	}
3892 
3893 	if (bargs) {
3894 		memset(bargs, 0, sizeof(*bargs));
3895 		update_ioctl_balance_args(fs_info, 0, bargs);
3896 	}
3897 
3898 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3899 	    balance_need_close(fs_info)) {
3900 		__cancel_balance(fs_info);
3901 	}
3902 
3903 	wake_up(&fs_info->balance_wait_q);
3904 
3905 	return ret;
3906 out:
3907 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3908 		__cancel_balance(fs_info);
3909 	else {
3910 		kfree(bctl);
3911 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3912 	}
3913 	return ret;
3914 }
3915 
3916 static int balance_kthread(void *data)
3917 {
3918 	struct btrfs_fs_info *fs_info = data;
3919 	int ret = 0;
3920 
3921 	mutex_lock(&fs_info->volume_mutex);
3922 	mutex_lock(&fs_info->balance_mutex);
3923 
3924 	if (fs_info->balance_ctl) {
3925 		btrfs_info(fs_info, "continuing balance");
3926 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3927 	}
3928 
3929 	mutex_unlock(&fs_info->balance_mutex);
3930 	mutex_unlock(&fs_info->volume_mutex);
3931 
3932 	return ret;
3933 }
3934 
3935 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3936 {
3937 	struct task_struct *tsk;
3938 
3939 	spin_lock(&fs_info->balance_lock);
3940 	if (!fs_info->balance_ctl) {
3941 		spin_unlock(&fs_info->balance_lock);
3942 		return 0;
3943 	}
3944 	spin_unlock(&fs_info->balance_lock);
3945 
3946 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3947 		btrfs_info(fs_info, "force skipping balance");
3948 		return 0;
3949 	}
3950 
3951 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3952 	return PTR_ERR_OR_ZERO(tsk);
3953 }
3954 
3955 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3956 {
3957 	struct btrfs_balance_control *bctl;
3958 	struct btrfs_balance_item *item;
3959 	struct btrfs_disk_balance_args disk_bargs;
3960 	struct btrfs_path *path;
3961 	struct extent_buffer *leaf;
3962 	struct btrfs_key key;
3963 	int ret;
3964 
3965 	path = btrfs_alloc_path();
3966 	if (!path)
3967 		return -ENOMEM;
3968 
3969 	key.objectid = BTRFS_BALANCE_OBJECTID;
3970 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3971 	key.offset = 0;
3972 
3973 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3974 	if (ret < 0)
3975 		goto out;
3976 	if (ret > 0) { /* ret = -ENOENT; */
3977 		ret = 0;
3978 		goto out;
3979 	}
3980 
3981 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3982 	if (!bctl) {
3983 		ret = -ENOMEM;
3984 		goto out;
3985 	}
3986 
3987 	leaf = path->nodes[0];
3988 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3989 
3990 	bctl->fs_info = fs_info;
3991 	bctl->flags = btrfs_balance_flags(leaf, item);
3992 	bctl->flags |= BTRFS_BALANCE_RESUME;
3993 
3994 	btrfs_balance_data(leaf, item, &disk_bargs);
3995 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3996 	btrfs_balance_meta(leaf, item, &disk_bargs);
3997 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3998 	btrfs_balance_sys(leaf, item, &disk_bargs);
3999 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4000 
4001 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4002 
4003 	mutex_lock(&fs_info->volume_mutex);
4004 	mutex_lock(&fs_info->balance_mutex);
4005 
4006 	set_balance_control(bctl);
4007 
4008 	mutex_unlock(&fs_info->balance_mutex);
4009 	mutex_unlock(&fs_info->volume_mutex);
4010 out:
4011 	btrfs_free_path(path);
4012 	return ret;
4013 }
4014 
4015 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4016 {
4017 	int ret = 0;
4018 
4019 	mutex_lock(&fs_info->balance_mutex);
4020 	if (!fs_info->balance_ctl) {
4021 		mutex_unlock(&fs_info->balance_mutex);
4022 		return -ENOTCONN;
4023 	}
4024 
4025 	if (atomic_read(&fs_info->balance_running)) {
4026 		atomic_inc(&fs_info->balance_pause_req);
4027 		mutex_unlock(&fs_info->balance_mutex);
4028 
4029 		wait_event(fs_info->balance_wait_q,
4030 			   atomic_read(&fs_info->balance_running) == 0);
4031 
4032 		mutex_lock(&fs_info->balance_mutex);
4033 		/* we are good with balance_ctl ripped off from under us */
4034 		BUG_ON(atomic_read(&fs_info->balance_running));
4035 		atomic_dec(&fs_info->balance_pause_req);
4036 	} else {
4037 		ret = -ENOTCONN;
4038 	}
4039 
4040 	mutex_unlock(&fs_info->balance_mutex);
4041 	return ret;
4042 }
4043 
4044 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4045 {
4046 	if (fs_info->sb->s_flags & MS_RDONLY)
4047 		return -EROFS;
4048 
4049 	mutex_lock(&fs_info->balance_mutex);
4050 	if (!fs_info->balance_ctl) {
4051 		mutex_unlock(&fs_info->balance_mutex);
4052 		return -ENOTCONN;
4053 	}
4054 
4055 	atomic_inc(&fs_info->balance_cancel_req);
4056 	/*
4057 	 * if we are running just wait and return, balance item is
4058 	 * deleted in btrfs_balance in this case
4059 	 */
4060 	if (atomic_read(&fs_info->balance_running)) {
4061 		mutex_unlock(&fs_info->balance_mutex);
4062 		wait_event(fs_info->balance_wait_q,
4063 			   atomic_read(&fs_info->balance_running) == 0);
4064 		mutex_lock(&fs_info->balance_mutex);
4065 	} else {
4066 		/* __cancel_balance needs volume_mutex */
4067 		mutex_unlock(&fs_info->balance_mutex);
4068 		mutex_lock(&fs_info->volume_mutex);
4069 		mutex_lock(&fs_info->balance_mutex);
4070 
4071 		if (fs_info->balance_ctl)
4072 			__cancel_balance(fs_info);
4073 
4074 		mutex_unlock(&fs_info->volume_mutex);
4075 	}
4076 
4077 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4078 	atomic_dec(&fs_info->balance_cancel_req);
4079 	mutex_unlock(&fs_info->balance_mutex);
4080 	return 0;
4081 }
4082 
4083 static int btrfs_uuid_scan_kthread(void *data)
4084 {
4085 	struct btrfs_fs_info *fs_info = data;
4086 	struct btrfs_root *root = fs_info->tree_root;
4087 	struct btrfs_key key;
4088 	struct btrfs_key max_key;
4089 	struct btrfs_path *path = NULL;
4090 	int ret = 0;
4091 	struct extent_buffer *eb;
4092 	int slot;
4093 	struct btrfs_root_item root_item;
4094 	u32 item_size;
4095 	struct btrfs_trans_handle *trans = NULL;
4096 
4097 	path = btrfs_alloc_path();
4098 	if (!path) {
4099 		ret = -ENOMEM;
4100 		goto out;
4101 	}
4102 
4103 	key.objectid = 0;
4104 	key.type = BTRFS_ROOT_ITEM_KEY;
4105 	key.offset = 0;
4106 
4107 	max_key.objectid = (u64)-1;
4108 	max_key.type = BTRFS_ROOT_ITEM_KEY;
4109 	max_key.offset = (u64)-1;
4110 
4111 	while (1) {
4112 		ret = btrfs_search_forward(root, &key, path, 0);
4113 		if (ret) {
4114 			if (ret > 0)
4115 				ret = 0;
4116 			break;
4117 		}
4118 
4119 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4120 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4121 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4122 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4123 			goto skip;
4124 
4125 		eb = path->nodes[0];
4126 		slot = path->slots[0];
4127 		item_size = btrfs_item_size_nr(eb, slot);
4128 		if (item_size < sizeof(root_item))
4129 			goto skip;
4130 
4131 		read_extent_buffer(eb, &root_item,
4132 				   btrfs_item_ptr_offset(eb, slot),
4133 				   (int)sizeof(root_item));
4134 		if (btrfs_root_refs(&root_item) == 0)
4135 			goto skip;
4136 
4137 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4138 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4139 			if (trans)
4140 				goto update_tree;
4141 
4142 			btrfs_release_path(path);
4143 			/*
4144 			 * 1 - subvol uuid item
4145 			 * 1 - received_subvol uuid item
4146 			 */
4147 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4148 			if (IS_ERR(trans)) {
4149 				ret = PTR_ERR(trans);
4150 				break;
4151 			}
4152 			continue;
4153 		} else {
4154 			goto skip;
4155 		}
4156 update_tree:
4157 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4158 			ret = btrfs_uuid_tree_add(trans, fs_info,
4159 						  root_item.uuid,
4160 						  BTRFS_UUID_KEY_SUBVOL,
4161 						  key.objectid);
4162 			if (ret < 0) {
4163 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4164 					ret);
4165 				break;
4166 			}
4167 		}
4168 
4169 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4170 			ret = btrfs_uuid_tree_add(trans, fs_info,
4171 						  root_item.received_uuid,
4172 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4173 						  key.objectid);
4174 			if (ret < 0) {
4175 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4176 					ret);
4177 				break;
4178 			}
4179 		}
4180 
4181 skip:
4182 		if (trans) {
4183 			ret = btrfs_end_transaction(trans);
4184 			trans = NULL;
4185 			if (ret)
4186 				break;
4187 		}
4188 
4189 		btrfs_release_path(path);
4190 		if (key.offset < (u64)-1) {
4191 			key.offset++;
4192 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4193 			key.offset = 0;
4194 			key.type = BTRFS_ROOT_ITEM_KEY;
4195 		} else if (key.objectid < (u64)-1) {
4196 			key.offset = 0;
4197 			key.type = BTRFS_ROOT_ITEM_KEY;
4198 			key.objectid++;
4199 		} else {
4200 			break;
4201 		}
4202 		cond_resched();
4203 	}
4204 
4205 out:
4206 	btrfs_free_path(path);
4207 	if (trans && !IS_ERR(trans))
4208 		btrfs_end_transaction(trans);
4209 	if (ret)
4210 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4211 	else
4212 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4213 	up(&fs_info->uuid_tree_rescan_sem);
4214 	return 0;
4215 }
4216 
4217 /*
4218  * Callback for btrfs_uuid_tree_iterate().
4219  * returns:
4220  * 0	check succeeded, the entry is not outdated.
4221  * < 0	if an error occurred.
4222  * > 0	if the check failed, which means the caller shall remove the entry.
4223  */
4224 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4225 				       u8 *uuid, u8 type, u64 subid)
4226 {
4227 	struct btrfs_key key;
4228 	int ret = 0;
4229 	struct btrfs_root *subvol_root;
4230 
4231 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4232 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4233 		goto out;
4234 
4235 	key.objectid = subid;
4236 	key.type = BTRFS_ROOT_ITEM_KEY;
4237 	key.offset = (u64)-1;
4238 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4239 	if (IS_ERR(subvol_root)) {
4240 		ret = PTR_ERR(subvol_root);
4241 		if (ret == -ENOENT)
4242 			ret = 1;
4243 		goto out;
4244 	}
4245 
4246 	switch (type) {
4247 	case BTRFS_UUID_KEY_SUBVOL:
4248 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4249 			ret = 1;
4250 		break;
4251 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4252 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4253 			   BTRFS_UUID_SIZE))
4254 			ret = 1;
4255 		break;
4256 	}
4257 
4258 out:
4259 	return ret;
4260 }
4261 
4262 static int btrfs_uuid_rescan_kthread(void *data)
4263 {
4264 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4265 	int ret;
4266 
4267 	/*
4268 	 * 1st step is to iterate through the existing UUID tree and
4269 	 * to delete all entries that contain outdated data.
4270 	 * 2nd step is to add all missing entries to the UUID tree.
4271 	 */
4272 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4273 	if (ret < 0) {
4274 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4275 		up(&fs_info->uuid_tree_rescan_sem);
4276 		return ret;
4277 	}
4278 	return btrfs_uuid_scan_kthread(data);
4279 }
4280 
4281 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4282 {
4283 	struct btrfs_trans_handle *trans;
4284 	struct btrfs_root *tree_root = fs_info->tree_root;
4285 	struct btrfs_root *uuid_root;
4286 	struct task_struct *task;
4287 	int ret;
4288 
4289 	/*
4290 	 * 1 - root node
4291 	 * 1 - root item
4292 	 */
4293 	trans = btrfs_start_transaction(tree_root, 2);
4294 	if (IS_ERR(trans))
4295 		return PTR_ERR(trans);
4296 
4297 	uuid_root = btrfs_create_tree(trans, fs_info,
4298 				      BTRFS_UUID_TREE_OBJECTID);
4299 	if (IS_ERR(uuid_root)) {
4300 		ret = PTR_ERR(uuid_root);
4301 		btrfs_abort_transaction(trans, ret);
4302 		btrfs_end_transaction(trans);
4303 		return ret;
4304 	}
4305 
4306 	fs_info->uuid_root = uuid_root;
4307 
4308 	ret = btrfs_commit_transaction(trans);
4309 	if (ret)
4310 		return ret;
4311 
4312 	down(&fs_info->uuid_tree_rescan_sem);
4313 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4314 	if (IS_ERR(task)) {
4315 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4316 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4317 		up(&fs_info->uuid_tree_rescan_sem);
4318 		return PTR_ERR(task);
4319 	}
4320 
4321 	return 0;
4322 }
4323 
4324 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4325 {
4326 	struct task_struct *task;
4327 
4328 	down(&fs_info->uuid_tree_rescan_sem);
4329 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4330 	if (IS_ERR(task)) {
4331 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4332 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4333 		up(&fs_info->uuid_tree_rescan_sem);
4334 		return PTR_ERR(task);
4335 	}
4336 
4337 	return 0;
4338 }
4339 
4340 /*
4341  * shrinking a device means finding all of the device extents past
4342  * the new size, and then following the back refs to the chunks.
4343  * The chunk relocation code actually frees the device extent
4344  */
4345 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4346 {
4347 	struct btrfs_fs_info *fs_info = device->fs_info;
4348 	struct btrfs_root *root = fs_info->dev_root;
4349 	struct btrfs_trans_handle *trans;
4350 	struct btrfs_dev_extent *dev_extent = NULL;
4351 	struct btrfs_path *path;
4352 	u64 length;
4353 	u64 chunk_offset;
4354 	int ret;
4355 	int slot;
4356 	int failed = 0;
4357 	bool retried = false;
4358 	bool checked_pending_chunks = false;
4359 	struct extent_buffer *l;
4360 	struct btrfs_key key;
4361 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4362 	u64 old_total = btrfs_super_total_bytes(super_copy);
4363 	u64 old_size = btrfs_device_get_total_bytes(device);
4364 	u64 diff = old_size - new_size;
4365 
4366 	if (device->is_tgtdev_for_dev_replace)
4367 		return -EINVAL;
4368 
4369 	path = btrfs_alloc_path();
4370 	if (!path)
4371 		return -ENOMEM;
4372 
4373 	path->reada = READA_FORWARD;
4374 
4375 	mutex_lock(&fs_info->chunk_mutex);
4376 
4377 	btrfs_device_set_total_bytes(device, new_size);
4378 	if (device->writeable) {
4379 		device->fs_devices->total_rw_bytes -= diff;
4380 		spin_lock(&fs_info->free_chunk_lock);
4381 		fs_info->free_chunk_space -= diff;
4382 		spin_unlock(&fs_info->free_chunk_lock);
4383 	}
4384 	mutex_unlock(&fs_info->chunk_mutex);
4385 
4386 again:
4387 	key.objectid = device->devid;
4388 	key.offset = (u64)-1;
4389 	key.type = BTRFS_DEV_EXTENT_KEY;
4390 
4391 	do {
4392 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4393 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4394 		if (ret < 0) {
4395 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4396 			goto done;
4397 		}
4398 
4399 		ret = btrfs_previous_item(root, path, 0, key.type);
4400 		if (ret)
4401 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4402 		if (ret < 0)
4403 			goto done;
4404 		if (ret) {
4405 			ret = 0;
4406 			btrfs_release_path(path);
4407 			break;
4408 		}
4409 
4410 		l = path->nodes[0];
4411 		slot = path->slots[0];
4412 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4413 
4414 		if (key.objectid != device->devid) {
4415 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4416 			btrfs_release_path(path);
4417 			break;
4418 		}
4419 
4420 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4421 		length = btrfs_dev_extent_length(l, dev_extent);
4422 
4423 		if (key.offset + length <= new_size) {
4424 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4425 			btrfs_release_path(path);
4426 			break;
4427 		}
4428 
4429 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4430 		btrfs_release_path(path);
4431 
4432 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4433 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4434 		if (ret && ret != -ENOSPC)
4435 			goto done;
4436 		if (ret == -ENOSPC)
4437 			failed++;
4438 	} while (key.offset-- > 0);
4439 
4440 	if (failed && !retried) {
4441 		failed = 0;
4442 		retried = true;
4443 		goto again;
4444 	} else if (failed && retried) {
4445 		ret = -ENOSPC;
4446 		goto done;
4447 	}
4448 
4449 	/* Shrinking succeeded, else we would be at "done". */
4450 	trans = btrfs_start_transaction(root, 0);
4451 	if (IS_ERR(trans)) {
4452 		ret = PTR_ERR(trans);
4453 		goto done;
4454 	}
4455 
4456 	mutex_lock(&fs_info->chunk_mutex);
4457 
4458 	/*
4459 	 * We checked in the above loop all device extents that were already in
4460 	 * the device tree. However before we have updated the device's
4461 	 * total_bytes to the new size, we might have had chunk allocations that
4462 	 * have not complete yet (new block groups attached to transaction
4463 	 * handles), and therefore their device extents were not yet in the
4464 	 * device tree and we missed them in the loop above. So if we have any
4465 	 * pending chunk using a device extent that overlaps the device range
4466 	 * that we can not use anymore, commit the current transaction and
4467 	 * repeat the search on the device tree - this way we guarantee we will
4468 	 * not have chunks using device extents that end beyond 'new_size'.
4469 	 */
4470 	if (!checked_pending_chunks) {
4471 		u64 start = new_size;
4472 		u64 len = old_size - new_size;
4473 
4474 		if (contains_pending_extent(trans->transaction, device,
4475 					    &start, len)) {
4476 			mutex_unlock(&fs_info->chunk_mutex);
4477 			checked_pending_chunks = true;
4478 			failed = 0;
4479 			retried = false;
4480 			ret = btrfs_commit_transaction(trans);
4481 			if (ret)
4482 				goto done;
4483 			goto again;
4484 		}
4485 	}
4486 
4487 	btrfs_device_set_disk_total_bytes(device, new_size);
4488 	if (list_empty(&device->resized_list))
4489 		list_add_tail(&device->resized_list,
4490 			      &fs_info->fs_devices->resized_devices);
4491 
4492 	WARN_ON(diff > old_total);
4493 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
4494 	mutex_unlock(&fs_info->chunk_mutex);
4495 
4496 	/* Now btrfs_update_device() will change the on-disk size. */
4497 	ret = btrfs_update_device(trans, device);
4498 	btrfs_end_transaction(trans);
4499 done:
4500 	btrfs_free_path(path);
4501 	if (ret) {
4502 		mutex_lock(&fs_info->chunk_mutex);
4503 		btrfs_device_set_total_bytes(device, old_size);
4504 		if (device->writeable)
4505 			device->fs_devices->total_rw_bytes += diff;
4506 		spin_lock(&fs_info->free_chunk_lock);
4507 		fs_info->free_chunk_space += diff;
4508 		spin_unlock(&fs_info->free_chunk_lock);
4509 		mutex_unlock(&fs_info->chunk_mutex);
4510 	}
4511 	return ret;
4512 }
4513 
4514 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4515 			   struct btrfs_key *key,
4516 			   struct btrfs_chunk *chunk, int item_size)
4517 {
4518 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4519 	struct btrfs_disk_key disk_key;
4520 	u32 array_size;
4521 	u8 *ptr;
4522 
4523 	mutex_lock(&fs_info->chunk_mutex);
4524 	array_size = btrfs_super_sys_array_size(super_copy);
4525 	if (array_size + item_size + sizeof(disk_key)
4526 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4527 		mutex_unlock(&fs_info->chunk_mutex);
4528 		return -EFBIG;
4529 	}
4530 
4531 	ptr = super_copy->sys_chunk_array + array_size;
4532 	btrfs_cpu_key_to_disk(&disk_key, key);
4533 	memcpy(ptr, &disk_key, sizeof(disk_key));
4534 	ptr += sizeof(disk_key);
4535 	memcpy(ptr, chunk, item_size);
4536 	item_size += sizeof(disk_key);
4537 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4538 	mutex_unlock(&fs_info->chunk_mutex);
4539 
4540 	return 0;
4541 }
4542 
4543 /*
4544  * sort the devices in descending order by max_avail, total_avail
4545  */
4546 static int btrfs_cmp_device_info(const void *a, const void *b)
4547 {
4548 	const struct btrfs_device_info *di_a = a;
4549 	const struct btrfs_device_info *di_b = b;
4550 
4551 	if (di_a->max_avail > di_b->max_avail)
4552 		return -1;
4553 	if (di_a->max_avail < di_b->max_avail)
4554 		return 1;
4555 	if (di_a->total_avail > di_b->total_avail)
4556 		return -1;
4557 	if (di_a->total_avail < di_b->total_avail)
4558 		return 1;
4559 	return 0;
4560 }
4561 
4562 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4563 {
4564 	/* TODO allow them to set a preferred stripe size */
4565 	return SZ_64K;
4566 }
4567 
4568 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4569 {
4570 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4571 		return;
4572 
4573 	btrfs_set_fs_incompat(info, RAID56);
4574 }
4575 
4576 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info)		\
4577 			- sizeof(struct btrfs_chunk))		\
4578 			/ sizeof(struct btrfs_stripe) + 1)
4579 
4580 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4581 				- 2 * sizeof(struct btrfs_disk_key)	\
4582 				- 2 * sizeof(struct btrfs_chunk))	\
4583 				/ sizeof(struct btrfs_stripe) + 1)
4584 
4585 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4586 			       u64 start, u64 type)
4587 {
4588 	struct btrfs_fs_info *info = trans->fs_info;
4589 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4590 	struct list_head *cur;
4591 	struct map_lookup *map = NULL;
4592 	struct extent_map_tree *em_tree;
4593 	struct extent_map *em;
4594 	struct btrfs_device_info *devices_info = NULL;
4595 	u64 total_avail;
4596 	int num_stripes;	/* total number of stripes to allocate */
4597 	int data_stripes;	/* number of stripes that count for
4598 				   block group size */
4599 	int sub_stripes;	/* sub_stripes info for map */
4600 	int dev_stripes;	/* stripes per dev */
4601 	int devs_max;		/* max devs to use */
4602 	int devs_min;		/* min devs needed */
4603 	int devs_increment;	/* ndevs has to be a multiple of this */
4604 	int ncopies;		/* how many copies to data has */
4605 	int ret;
4606 	u64 max_stripe_size;
4607 	u64 max_chunk_size;
4608 	u64 stripe_size;
4609 	u64 num_bytes;
4610 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4611 	int ndevs;
4612 	int i;
4613 	int j;
4614 	int index;
4615 
4616 	BUG_ON(!alloc_profile_is_valid(type, 0));
4617 
4618 	if (list_empty(&fs_devices->alloc_list))
4619 		return -ENOSPC;
4620 
4621 	index = __get_raid_index(type);
4622 
4623 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4624 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4625 	devs_max = btrfs_raid_array[index].devs_max;
4626 	devs_min = btrfs_raid_array[index].devs_min;
4627 	devs_increment = btrfs_raid_array[index].devs_increment;
4628 	ncopies = btrfs_raid_array[index].ncopies;
4629 
4630 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4631 		max_stripe_size = SZ_1G;
4632 		max_chunk_size = 10 * max_stripe_size;
4633 		if (!devs_max)
4634 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4635 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4636 		/* for larger filesystems, use larger metadata chunks */
4637 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4638 			max_stripe_size = SZ_1G;
4639 		else
4640 			max_stripe_size = SZ_256M;
4641 		max_chunk_size = max_stripe_size;
4642 		if (!devs_max)
4643 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4644 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4645 		max_stripe_size = SZ_32M;
4646 		max_chunk_size = 2 * max_stripe_size;
4647 		if (!devs_max)
4648 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4649 	} else {
4650 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4651 		       type);
4652 		BUG_ON(1);
4653 	}
4654 
4655 	/* we don't want a chunk larger than 10% of writeable space */
4656 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4657 			     max_chunk_size);
4658 
4659 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4660 			       GFP_NOFS);
4661 	if (!devices_info)
4662 		return -ENOMEM;
4663 
4664 	cur = fs_devices->alloc_list.next;
4665 
4666 	/*
4667 	 * in the first pass through the devices list, we gather information
4668 	 * about the available holes on each device.
4669 	 */
4670 	ndevs = 0;
4671 	while (cur != &fs_devices->alloc_list) {
4672 		struct btrfs_device *device;
4673 		u64 max_avail;
4674 		u64 dev_offset;
4675 
4676 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4677 
4678 		cur = cur->next;
4679 
4680 		if (!device->writeable) {
4681 			WARN(1, KERN_ERR
4682 			       "BTRFS: read-only device in alloc_list\n");
4683 			continue;
4684 		}
4685 
4686 		if (!device->in_fs_metadata ||
4687 		    device->is_tgtdev_for_dev_replace)
4688 			continue;
4689 
4690 		if (device->total_bytes > device->bytes_used)
4691 			total_avail = device->total_bytes - device->bytes_used;
4692 		else
4693 			total_avail = 0;
4694 
4695 		/* If there is no space on this device, skip it. */
4696 		if (total_avail == 0)
4697 			continue;
4698 
4699 		ret = find_free_dev_extent(trans, device,
4700 					   max_stripe_size * dev_stripes,
4701 					   &dev_offset, &max_avail);
4702 		if (ret && ret != -ENOSPC)
4703 			goto error;
4704 
4705 		if (ret == 0)
4706 			max_avail = max_stripe_size * dev_stripes;
4707 
4708 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4709 			continue;
4710 
4711 		if (ndevs == fs_devices->rw_devices) {
4712 			WARN(1, "%s: found more than %llu devices\n",
4713 			     __func__, fs_devices->rw_devices);
4714 			break;
4715 		}
4716 		devices_info[ndevs].dev_offset = dev_offset;
4717 		devices_info[ndevs].max_avail = max_avail;
4718 		devices_info[ndevs].total_avail = total_avail;
4719 		devices_info[ndevs].dev = device;
4720 		++ndevs;
4721 	}
4722 
4723 	/*
4724 	 * now sort the devices by hole size / available space
4725 	 */
4726 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4727 	     btrfs_cmp_device_info, NULL);
4728 
4729 	/* round down to number of usable stripes */
4730 	ndevs -= ndevs % devs_increment;
4731 
4732 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4733 		ret = -ENOSPC;
4734 		goto error;
4735 	}
4736 
4737 	if (devs_max && ndevs > devs_max)
4738 		ndevs = devs_max;
4739 	/*
4740 	 * the primary goal is to maximize the number of stripes, so use as many
4741 	 * devices as possible, even if the stripes are not maximum sized.
4742 	 */
4743 	stripe_size = devices_info[ndevs-1].max_avail;
4744 	num_stripes = ndevs * dev_stripes;
4745 
4746 	/*
4747 	 * this will have to be fixed for RAID1 and RAID10 over
4748 	 * more drives
4749 	 */
4750 	data_stripes = num_stripes / ncopies;
4751 
4752 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4753 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4754 							 info->stripesize);
4755 		data_stripes = num_stripes - 1;
4756 	}
4757 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4758 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4759 							 info->stripesize);
4760 		data_stripes = num_stripes - 2;
4761 	}
4762 
4763 	/*
4764 	 * Use the number of data stripes to figure out how big this chunk
4765 	 * is really going to be in terms of logical address space,
4766 	 * and compare that answer with the max chunk size
4767 	 */
4768 	if (stripe_size * data_stripes > max_chunk_size) {
4769 		u64 mask = (1ULL << 24) - 1;
4770 
4771 		stripe_size = div_u64(max_chunk_size, data_stripes);
4772 
4773 		/* bump the answer up to a 16MB boundary */
4774 		stripe_size = (stripe_size + mask) & ~mask;
4775 
4776 		/* but don't go higher than the limits we found
4777 		 * while searching for free extents
4778 		 */
4779 		if (stripe_size > devices_info[ndevs-1].max_avail)
4780 			stripe_size = devices_info[ndevs-1].max_avail;
4781 	}
4782 
4783 	stripe_size = div_u64(stripe_size, dev_stripes);
4784 
4785 	/* align to BTRFS_STRIPE_LEN */
4786 	stripe_size = div_u64(stripe_size, raid_stripe_len);
4787 	stripe_size *= raid_stripe_len;
4788 
4789 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4790 	if (!map) {
4791 		ret = -ENOMEM;
4792 		goto error;
4793 	}
4794 	map->num_stripes = num_stripes;
4795 
4796 	for (i = 0; i < ndevs; ++i) {
4797 		for (j = 0; j < dev_stripes; ++j) {
4798 			int s = i * dev_stripes + j;
4799 			map->stripes[s].dev = devices_info[i].dev;
4800 			map->stripes[s].physical = devices_info[i].dev_offset +
4801 						   j * stripe_size;
4802 		}
4803 	}
4804 	map->sector_size = info->sectorsize;
4805 	map->stripe_len = raid_stripe_len;
4806 	map->io_align = raid_stripe_len;
4807 	map->io_width = raid_stripe_len;
4808 	map->type = type;
4809 	map->sub_stripes = sub_stripes;
4810 
4811 	num_bytes = stripe_size * data_stripes;
4812 
4813 	trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4814 
4815 	em = alloc_extent_map();
4816 	if (!em) {
4817 		kfree(map);
4818 		ret = -ENOMEM;
4819 		goto error;
4820 	}
4821 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4822 	em->map_lookup = map;
4823 	em->start = start;
4824 	em->len = num_bytes;
4825 	em->block_start = 0;
4826 	em->block_len = em->len;
4827 	em->orig_block_len = stripe_size;
4828 
4829 	em_tree = &info->mapping_tree.map_tree;
4830 	write_lock(&em_tree->lock);
4831 	ret = add_extent_mapping(em_tree, em, 0);
4832 	if (!ret) {
4833 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4834 		atomic_inc(&em->refs);
4835 	}
4836 	write_unlock(&em_tree->lock);
4837 	if (ret) {
4838 		free_extent_map(em);
4839 		goto error;
4840 	}
4841 
4842 	ret = btrfs_make_block_group(trans, info, 0, type,
4843 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4844 				     start, num_bytes);
4845 	if (ret)
4846 		goto error_del_extent;
4847 
4848 	for (i = 0; i < map->num_stripes; i++) {
4849 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4850 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4851 	}
4852 
4853 	spin_lock(&info->free_chunk_lock);
4854 	info->free_chunk_space -= (stripe_size * map->num_stripes);
4855 	spin_unlock(&info->free_chunk_lock);
4856 
4857 	free_extent_map(em);
4858 	check_raid56_incompat_flag(info, type);
4859 
4860 	kfree(devices_info);
4861 	return 0;
4862 
4863 error_del_extent:
4864 	write_lock(&em_tree->lock);
4865 	remove_extent_mapping(em_tree, em);
4866 	write_unlock(&em_tree->lock);
4867 
4868 	/* One for our allocation */
4869 	free_extent_map(em);
4870 	/* One for the tree reference */
4871 	free_extent_map(em);
4872 	/* One for the pending_chunks list reference */
4873 	free_extent_map(em);
4874 error:
4875 	kfree(devices_info);
4876 	return ret;
4877 }
4878 
4879 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4880 				struct btrfs_fs_info *fs_info,
4881 				u64 chunk_offset, u64 chunk_size)
4882 {
4883 	struct btrfs_root *extent_root = fs_info->extent_root;
4884 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4885 	struct btrfs_key key;
4886 	struct btrfs_device *device;
4887 	struct btrfs_chunk *chunk;
4888 	struct btrfs_stripe *stripe;
4889 	struct extent_map_tree *em_tree;
4890 	struct extent_map *em;
4891 	struct map_lookup *map;
4892 	size_t item_size;
4893 	u64 dev_offset;
4894 	u64 stripe_size;
4895 	int i = 0;
4896 	int ret = 0;
4897 
4898 	em_tree = &fs_info->mapping_tree.map_tree;
4899 	read_lock(&em_tree->lock);
4900 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4901 	read_unlock(&em_tree->lock);
4902 
4903 	if (!em) {
4904 		btrfs_crit(fs_info, "unable to find logical %Lu len %Lu",
4905 			   chunk_offset, chunk_size);
4906 		return -EINVAL;
4907 	}
4908 
4909 	if (em->start != chunk_offset || em->len != chunk_size) {
4910 		btrfs_crit(fs_info,
4911 			   "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4912 			    chunk_offset, chunk_size, em->start, em->len);
4913 		free_extent_map(em);
4914 		return -EINVAL;
4915 	}
4916 
4917 	map = em->map_lookup;
4918 	item_size = btrfs_chunk_item_size(map->num_stripes);
4919 	stripe_size = em->orig_block_len;
4920 
4921 	chunk = kzalloc(item_size, GFP_NOFS);
4922 	if (!chunk) {
4923 		ret = -ENOMEM;
4924 		goto out;
4925 	}
4926 
4927 	/*
4928 	 * Take the device list mutex to prevent races with the final phase of
4929 	 * a device replace operation that replaces the device object associated
4930 	 * with the map's stripes, because the device object's id can change
4931 	 * at any time during that final phase of the device replace operation
4932 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4933 	 */
4934 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4935 	for (i = 0; i < map->num_stripes; i++) {
4936 		device = map->stripes[i].dev;
4937 		dev_offset = map->stripes[i].physical;
4938 
4939 		ret = btrfs_update_device(trans, device);
4940 		if (ret)
4941 			break;
4942 		ret = btrfs_alloc_dev_extent(trans, device,
4943 					     chunk_root->root_key.objectid,
4944 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4945 					     chunk_offset, dev_offset,
4946 					     stripe_size);
4947 		if (ret)
4948 			break;
4949 	}
4950 	if (ret) {
4951 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4952 		goto out;
4953 	}
4954 
4955 	stripe = &chunk->stripe;
4956 	for (i = 0; i < map->num_stripes; i++) {
4957 		device = map->stripes[i].dev;
4958 		dev_offset = map->stripes[i].physical;
4959 
4960 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4961 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4962 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4963 		stripe++;
4964 	}
4965 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4966 
4967 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4968 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4969 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4970 	btrfs_set_stack_chunk_type(chunk, map->type);
4971 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4972 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4973 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4974 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4975 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4976 
4977 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4978 	key.type = BTRFS_CHUNK_ITEM_KEY;
4979 	key.offset = chunk_offset;
4980 
4981 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4982 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4983 		/*
4984 		 * TODO: Cleanup of inserted chunk root in case of
4985 		 * failure.
4986 		 */
4987 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4988 	}
4989 
4990 out:
4991 	kfree(chunk);
4992 	free_extent_map(em);
4993 	return ret;
4994 }
4995 
4996 /*
4997  * Chunk allocation falls into two parts. The first part does works
4998  * that make the new allocated chunk useable, but not do any operation
4999  * that modifies the chunk tree. The second part does the works that
5000  * require modifying the chunk tree. This division is important for the
5001  * bootstrap process of adding storage to a seed btrfs.
5002  */
5003 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5004 		      struct btrfs_fs_info *fs_info, u64 type)
5005 {
5006 	u64 chunk_offset;
5007 
5008 	ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5009 	chunk_offset = find_next_chunk(fs_info);
5010 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
5011 }
5012 
5013 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5014 					 struct btrfs_fs_info *fs_info)
5015 {
5016 	struct btrfs_root *extent_root = fs_info->extent_root;
5017 	u64 chunk_offset;
5018 	u64 sys_chunk_offset;
5019 	u64 alloc_profile;
5020 	int ret;
5021 
5022 	chunk_offset = find_next_chunk(fs_info);
5023 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5024 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5025 	if (ret)
5026 		return ret;
5027 
5028 	sys_chunk_offset = find_next_chunk(fs_info);
5029 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5030 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5031 	return ret;
5032 }
5033 
5034 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5035 {
5036 	int max_errors;
5037 
5038 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5039 			 BTRFS_BLOCK_GROUP_RAID10 |
5040 			 BTRFS_BLOCK_GROUP_RAID5 |
5041 			 BTRFS_BLOCK_GROUP_DUP)) {
5042 		max_errors = 1;
5043 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5044 		max_errors = 2;
5045 	} else {
5046 		max_errors = 0;
5047 	}
5048 
5049 	return max_errors;
5050 }
5051 
5052 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5053 {
5054 	struct extent_map *em;
5055 	struct map_lookup *map;
5056 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5057 	int readonly = 0;
5058 	int miss_ndevs = 0;
5059 	int i;
5060 
5061 	read_lock(&map_tree->map_tree.lock);
5062 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5063 	read_unlock(&map_tree->map_tree.lock);
5064 	if (!em)
5065 		return 1;
5066 
5067 	map = em->map_lookup;
5068 	for (i = 0; i < map->num_stripes; i++) {
5069 		if (map->stripes[i].dev->missing) {
5070 			miss_ndevs++;
5071 			continue;
5072 		}
5073 
5074 		if (!map->stripes[i].dev->writeable) {
5075 			readonly = 1;
5076 			goto end;
5077 		}
5078 	}
5079 
5080 	/*
5081 	 * If the number of missing devices is larger than max errors,
5082 	 * we can not write the data into that chunk successfully, so
5083 	 * set it readonly.
5084 	 */
5085 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5086 		readonly = 1;
5087 end:
5088 	free_extent_map(em);
5089 	return readonly;
5090 }
5091 
5092 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5093 {
5094 	extent_map_tree_init(&tree->map_tree);
5095 }
5096 
5097 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5098 {
5099 	struct extent_map *em;
5100 
5101 	while (1) {
5102 		write_lock(&tree->map_tree.lock);
5103 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5104 		if (em)
5105 			remove_extent_mapping(&tree->map_tree, em);
5106 		write_unlock(&tree->map_tree.lock);
5107 		if (!em)
5108 			break;
5109 		/* once for us */
5110 		free_extent_map(em);
5111 		/* once for the tree */
5112 		free_extent_map(em);
5113 	}
5114 }
5115 
5116 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5117 {
5118 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5119 	struct extent_map *em;
5120 	struct map_lookup *map;
5121 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5122 	int ret;
5123 
5124 	read_lock(&em_tree->lock);
5125 	em = lookup_extent_mapping(em_tree, logical, len);
5126 	read_unlock(&em_tree->lock);
5127 
5128 	/*
5129 	 * We could return errors for these cases, but that could get ugly and
5130 	 * we'd probably do the same thing which is just not do anything else
5131 	 * and exit, so return 1 so the callers don't try to use other copies.
5132 	 */
5133 	if (!em) {
5134 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5135 			    logical+len);
5136 		return 1;
5137 	}
5138 
5139 	if (em->start > logical || em->start + em->len < logical) {
5140 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5141 			   logical, logical+len, em->start,
5142 			   em->start + em->len);
5143 		free_extent_map(em);
5144 		return 1;
5145 	}
5146 
5147 	map = em->map_lookup;
5148 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5149 		ret = map->num_stripes;
5150 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5151 		ret = map->sub_stripes;
5152 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5153 		ret = 2;
5154 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5155 		ret = 3;
5156 	else
5157 		ret = 1;
5158 	free_extent_map(em);
5159 
5160 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5161 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5162 		ret++;
5163 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5164 
5165 	return ret;
5166 }
5167 
5168 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5169 				    struct btrfs_mapping_tree *map_tree,
5170 				    u64 logical)
5171 {
5172 	struct extent_map *em;
5173 	struct map_lookup *map;
5174 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5175 	unsigned long len = fs_info->sectorsize;
5176 
5177 	read_lock(&em_tree->lock);
5178 	em = lookup_extent_mapping(em_tree, logical, len);
5179 	read_unlock(&em_tree->lock);
5180 	BUG_ON(!em);
5181 
5182 	BUG_ON(em->start > logical || em->start + em->len < logical);
5183 	map = em->map_lookup;
5184 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5185 		len = map->stripe_len * nr_data_stripes(map);
5186 	free_extent_map(em);
5187 	return len;
5188 }
5189 
5190 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5191 			   u64 logical, u64 len, int mirror_num)
5192 {
5193 	struct extent_map *em;
5194 	struct map_lookup *map;
5195 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5196 	int ret = 0;
5197 
5198 	read_lock(&em_tree->lock);
5199 	em = lookup_extent_mapping(em_tree, logical, len);
5200 	read_unlock(&em_tree->lock);
5201 	BUG_ON(!em);
5202 
5203 	BUG_ON(em->start > logical || em->start + em->len < logical);
5204 	map = em->map_lookup;
5205 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5206 		ret = 1;
5207 	free_extent_map(em);
5208 	return ret;
5209 }
5210 
5211 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5212 			    struct map_lookup *map, int first, int num,
5213 			    int optimal, int dev_replace_is_ongoing)
5214 {
5215 	int i;
5216 	int tolerance;
5217 	struct btrfs_device *srcdev;
5218 
5219 	if (dev_replace_is_ongoing &&
5220 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5221 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5222 		srcdev = fs_info->dev_replace.srcdev;
5223 	else
5224 		srcdev = NULL;
5225 
5226 	/*
5227 	 * try to avoid the drive that is the source drive for a
5228 	 * dev-replace procedure, only choose it if no other non-missing
5229 	 * mirror is available
5230 	 */
5231 	for (tolerance = 0; tolerance < 2; tolerance++) {
5232 		if (map->stripes[optimal].dev->bdev &&
5233 		    (tolerance || map->stripes[optimal].dev != srcdev))
5234 			return optimal;
5235 		for (i = first; i < first + num; i++) {
5236 			if (map->stripes[i].dev->bdev &&
5237 			    (tolerance || map->stripes[i].dev != srcdev))
5238 				return i;
5239 		}
5240 	}
5241 
5242 	/* we couldn't find one that doesn't fail.  Just return something
5243 	 * and the io error handling code will clean up eventually
5244 	 */
5245 	return optimal;
5246 }
5247 
5248 static inline int parity_smaller(u64 a, u64 b)
5249 {
5250 	return a > b;
5251 }
5252 
5253 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5254 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5255 {
5256 	struct btrfs_bio_stripe s;
5257 	int i;
5258 	u64 l;
5259 	int again = 1;
5260 
5261 	while (again) {
5262 		again = 0;
5263 		for (i = 0; i < num_stripes - 1; i++) {
5264 			if (parity_smaller(bbio->raid_map[i],
5265 					   bbio->raid_map[i+1])) {
5266 				s = bbio->stripes[i];
5267 				l = bbio->raid_map[i];
5268 				bbio->stripes[i] = bbio->stripes[i+1];
5269 				bbio->raid_map[i] = bbio->raid_map[i+1];
5270 				bbio->stripes[i+1] = s;
5271 				bbio->raid_map[i+1] = l;
5272 
5273 				again = 1;
5274 			}
5275 		}
5276 	}
5277 }
5278 
5279 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5280 {
5281 	struct btrfs_bio *bbio = kzalloc(
5282 		 /* the size of the btrfs_bio */
5283 		sizeof(struct btrfs_bio) +
5284 		/* plus the variable array for the stripes */
5285 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5286 		/* plus the variable array for the tgt dev */
5287 		sizeof(int) * (real_stripes) +
5288 		/*
5289 		 * plus the raid_map, which includes both the tgt dev
5290 		 * and the stripes
5291 		 */
5292 		sizeof(u64) * (total_stripes),
5293 		GFP_NOFS|__GFP_NOFAIL);
5294 
5295 	atomic_set(&bbio->error, 0);
5296 	atomic_set(&bbio->refs, 1);
5297 
5298 	return bbio;
5299 }
5300 
5301 void btrfs_get_bbio(struct btrfs_bio *bbio)
5302 {
5303 	WARN_ON(!atomic_read(&bbio->refs));
5304 	atomic_inc(&bbio->refs);
5305 }
5306 
5307 void btrfs_put_bbio(struct btrfs_bio *bbio)
5308 {
5309 	if (!bbio)
5310 		return;
5311 	if (atomic_dec_and_test(&bbio->refs))
5312 		kfree(bbio);
5313 }
5314 
5315 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5316 			     enum btrfs_map_op op,
5317 			     u64 logical, u64 *length,
5318 			     struct btrfs_bio **bbio_ret,
5319 			     int mirror_num, int need_raid_map)
5320 {
5321 	struct extent_map *em;
5322 	struct map_lookup *map;
5323 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5324 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5325 	u64 offset;
5326 	u64 stripe_offset;
5327 	u64 stripe_end_offset;
5328 	u64 stripe_nr;
5329 	u64 stripe_nr_orig;
5330 	u64 stripe_nr_end;
5331 	u64 stripe_len;
5332 	u32 stripe_index;
5333 	int i;
5334 	int ret = 0;
5335 	int num_stripes;
5336 	int max_errors = 0;
5337 	int tgtdev_indexes = 0;
5338 	struct btrfs_bio *bbio = NULL;
5339 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5340 	int dev_replace_is_ongoing = 0;
5341 	int num_alloc_stripes;
5342 	int patch_the_first_stripe_for_dev_replace = 0;
5343 	u64 physical_to_patch_in_first_stripe = 0;
5344 	u64 raid56_full_stripe_start = (u64)-1;
5345 
5346 	read_lock(&em_tree->lock);
5347 	em = lookup_extent_mapping(em_tree, logical, *length);
5348 	read_unlock(&em_tree->lock);
5349 
5350 	if (!em) {
5351 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5352 			logical, *length);
5353 		return -EINVAL;
5354 	}
5355 
5356 	if (em->start > logical || em->start + em->len < logical) {
5357 		btrfs_crit(fs_info,
5358 			   "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5359 			   logical, em->start, em->start + em->len);
5360 		free_extent_map(em);
5361 		return -EINVAL;
5362 	}
5363 
5364 	map = em->map_lookup;
5365 	offset = logical - em->start;
5366 
5367 	stripe_len = map->stripe_len;
5368 	stripe_nr = offset;
5369 	/*
5370 	 * stripe_nr counts the total number of stripes we have to stride
5371 	 * to get to this block
5372 	 */
5373 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5374 
5375 	stripe_offset = stripe_nr * stripe_len;
5376 	if (offset < stripe_offset) {
5377 		btrfs_crit(fs_info,
5378 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5379 			   stripe_offset, offset, em->start, logical,
5380 			   stripe_len);
5381 		free_extent_map(em);
5382 		return -EINVAL;
5383 	}
5384 
5385 	/* stripe_offset is the offset of this block in its stripe*/
5386 	stripe_offset = offset - stripe_offset;
5387 
5388 	/* if we're here for raid56, we need to know the stripe aligned start */
5389 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5390 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5391 		raid56_full_stripe_start = offset;
5392 
5393 		/* allow a write of a full stripe, but make sure we don't
5394 		 * allow straddling of stripes
5395 		 */
5396 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5397 				full_stripe_len);
5398 		raid56_full_stripe_start *= full_stripe_len;
5399 	}
5400 
5401 	if (op == BTRFS_MAP_DISCARD) {
5402 		/* we don't discard raid56 yet */
5403 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5404 			ret = -EOPNOTSUPP;
5405 			goto out;
5406 		}
5407 		*length = min_t(u64, em->len - offset, *length);
5408 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5409 		u64 max_len;
5410 		/* For writes to RAID[56], allow a full stripeset across all disks.
5411 		   For other RAID types and for RAID[56] reads, just allow a single
5412 		   stripe (on a single disk). */
5413 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5414 		    (op == BTRFS_MAP_WRITE)) {
5415 			max_len = stripe_len * nr_data_stripes(map) -
5416 				(offset - raid56_full_stripe_start);
5417 		} else {
5418 			/* we limit the length of each bio to what fits in a stripe */
5419 			max_len = stripe_len - stripe_offset;
5420 		}
5421 		*length = min_t(u64, em->len - offset, max_len);
5422 	} else {
5423 		*length = em->len - offset;
5424 	}
5425 
5426 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5427 	   it cares about is the length */
5428 	if (!bbio_ret)
5429 		goto out;
5430 
5431 	btrfs_dev_replace_lock(dev_replace, 0);
5432 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5433 	if (!dev_replace_is_ongoing)
5434 		btrfs_dev_replace_unlock(dev_replace, 0);
5435 	else
5436 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5437 
5438 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5439 	    op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5440 	    op != BTRFS_MAP_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5441 		/*
5442 		 * in dev-replace case, for repair case (that's the only
5443 		 * case where the mirror is selected explicitly when
5444 		 * calling btrfs_map_block), blocks left of the left cursor
5445 		 * can also be read from the target drive.
5446 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
5447 		 * the last one to the array of stripes. For READ, it also
5448 		 * needs to be supported using the same mirror number.
5449 		 * If the requested block is not left of the left cursor,
5450 		 * EIO is returned. This can happen because btrfs_num_copies()
5451 		 * returns one more in the dev-replace case.
5452 		 */
5453 		u64 tmp_length = *length;
5454 		struct btrfs_bio *tmp_bbio = NULL;
5455 		int tmp_num_stripes;
5456 		u64 srcdev_devid = dev_replace->srcdev->devid;
5457 		int index_srcdev = 0;
5458 		int found = 0;
5459 		u64 physical_of_found = 0;
5460 
5461 		ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5462 			     logical, &tmp_length, &tmp_bbio, 0, 0);
5463 		if (ret) {
5464 			WARN_ON(tmp_bbio != NULL);
5465 			goto out;
5466 		}
5467 
5468 		tmp_num_stripes = tmp_bbio->num_stripes;
5469 		if (mirror_num > tmp_num_stripes) {
5470 			/*
5471 			 * BTRFS_MAP_GET_READ_MIRRORS does not contain this
5472 			 * mirror, that means that the requested area
5473 			 * is not left of the left cursor
5474 			 */
5475 			ret = -EIO;
5476 			btrfs_put_bbio(tmp_bbio);
5477 			goto out;
5478 		}
5479 
5480 		/*
5481 		 * process the rest of the function using the mirror_num
5482 		 * of the source drive. Therefore look it up first.
5483 		 * At the end, patch the device pointer to the one of the
5484 		 * target drive.
5485 		 */
5486 		for (i = 0; i < tmp_num_stripes; i++) {
5487 			if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5488 				continue;
5489 
5490 			/*
5491 			 * In case of DUP, in order to keep it simple, only add
5492 			 * the mirror with the lowest physical address
5493 			 */
5494 			if (found &&
5495 			    physical_of_found <= tmp_bbio->stripes[i].physical)
5496 				continue;
5497 
5498 			index_srcdev = i;
5499 			found = 1;
5500 			physical_of_found = tmp_bbio->stripes[i].physical;
5501 		}
5502 
5503 		btrfs_put_bbio(tmp_bbio);
5504 
5505 		if (!found) {
5506 			WARN_ON(1);
5507 			ret = -EIO;
5508 			goto out;
5509 		}
5510 
5511 		mirror_num = index_srcdev + 1;
5512 		patch_the_first_stripe_for_dev_replace = 1;
5513 		physical_to_patch_in_first_stripe = physical_of_found;
5514 	} else if (mirror_num > map->num_stripes) {
5515 		mirror_num = 0;
5516 	}
5517 
5518 	num_stripes = 1;
5519 	stripe_index = 0;
5520 	stripe_nr_orig = stripe_nr;
5521 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5522 	stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5523 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5524 			    (offset + *length);
5525 
5526 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5527 		if (op == BTRFS_MAP_DISCARD)
5528 			num_stripes = min_t(u64, map->num_stripes,
5529 					    stripe_nr_end - stripe_nr_orig);
5530 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5531 				&stripe_index);
5532 		if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5533 		    op != BTRFS_MAP_GET_READ_MIRRORS)
5534 			mirror_num = 1;
5535 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5536 		if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5537 		    op == BTRFS_MAP_GET_READ_MIRRORS)
5538 			num_stripes = map->num_stripes;
5539 		else if (mirror_num)
5540 			stripe_index = mirror_num - 1;
5541 		else {
5542 			stripe_index = find_live_mirror(fs_info, map, 0,
5543 					    map->num_stripes,
5544 					    current->pid % map->num_stripes,
5545 					    dev_replace_is_ongoing);
5546 			mirror_num = stripe_index + 1;
5547 		}
5548 
5549 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5550 		if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5551 		    op == BTRFS_MAP_GET_READ_MIRRORS) {
5552 			num_stripes = map->num_stripes;
5553 		} else if (mirror_num) {
5554 			stripe_index = mirror_num - 1;
5555 		} else {
5556 			mirror_num = 1;
5557 		}
5558 
5559 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5560 		u32 factor = map->num_stripes / map->sub_stripes;
5561 
5562 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5563 		stripe_index *= map->sub_stripes;
5564 
5565 		if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5566 			num_stripes = map->sub_stripes;
5567 		else if (op == BTRFS_MAP_DISCARD)
5568 			num_stripes = min_t(u64, map->sub_stripes *
5569 					    (stripe_nr_end - stripe_nr_orig),
5570 					    map->num_stripes);
5571 		else if (mirror_num)
5572 			stripe_index += mirror_num - 1;
5573 		else {
5574 			int old_stripe_index = stripe_index;
5575 			stripe_index = find_live_mirror(fs_info, map,
5576 					      stripe_index,
5577 					      map->sub_stripes, stripe_index +
5578 					      current->pid % map->sub_stripes,
5579 					      dev_replace_is_ongoing);
5580 			mirror_num = stripe_index - old_stripe_index + 1;
5581 		}
5582 
5583 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5584 		if (need_raid_map &&
5585 		    (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5586 		     mirror_num > 1)) {
5587 			/* push stripe_nr back to the start of the full stripe */
5588 			stripe_nr = div_u64(raid56_full_stripe_start,
5589 					stripe_len * nr_data_stripes(map));
5590 
5591 			/* RAID[56] write or recovery. Return all stripes */
5592 			num_stripes = map->num_stripes;
5593 			max_errors = nr_parity_stripes(map);
5594 
5595 			*length = map->stripe_len;
5596 			stripe_index = 0;
5597 			stripe_offset = 0;
5598 		} else {
5599 			/*
5600 			 * Mirror #0 or #1 means the original data block.
5601 			 * Mirror #2 is RAID5 parity block.
5602 			 * Mirror #3 is RAID6 Q block.
5603 			 */
5604 			stripe_nr = div_u64_rem(stripe_nr,
5605 					nr_data_stripes(map), &stripe_index);
5606 			if (mirror_num > 1)
5607 				stripe_index = nr_data_stripes(map) +
5608 						mirror_num - 2;
5609 
5610 			/* We distribute the parity blocks across stripes */
5611 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5612 					&stripe_index);
5613 			if ((op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5614 			    op != BTRFS_MAP_GET_READ_MIRRORS) && mirror_num <= 1)
5615 				mirror_num = 1;
5616 		}
5617 	} else {
5618 		/*
5619 		 * after this, stripe_nr is the number of stripes on this
5620 		 * device we have to walk to find the data, and stripe_index is
5621 		 * the number of our device in the stripe array
5622 		 */
5623 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5624 				&stripe_index);
5625 		mirror_num = stripe_index + 1;
5626 	}
5627 	if (stripe_index >= map->num_stripes) {
5628 		btrfs_crit(fs_info,
5629 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5630 			   stripe_index, map->num_stripes);
5631 		ret = -EINVAL;
5632 		goto out;
5633 	}
5634 
5635 	num_alloc_stripes = num_stripes;
5636 	if (dev_replace_is_ongoing) {
5637 		if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD)
5638 			num_alloc_stripes <<= 1;
5639 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
5640 			num_alloc_stripes++;
5641 		tgtdev_indexes = num_stripes;
5642 	}
5643 
5644 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5645 	if (!bbio) {
5646 		ret = -ENOMEM;
5647 		goto out;
5648 	}
5649 	if (dev_replace_is_ongoing)
5650 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5651 
5652 	/* build raid_map */
5653 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5654 	    need_raid_map &&
5655 	    ((op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) ||
5656 	    mirror_num > 1)) {
5657 		u64 tmp;
5658 		unsigned rot;
5659 
5660 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5661 				 sizeof(struct btrfs_bio_stripe) *
5662 				 num_alloc_stripes +
5663 				 sizeof(int) * tgtdev_indexes);
5664 
5665 		/* Work out the disk rotation on this stripe-set */
5666 		div_u64_rem(stripe_nr, num_stripes, &rot);
5667 
5668 		/* Fill in the logical address of each stripe */
5669 		tmp = stripe_nr * nr_data_stripes(map);
5670 		for (i = 0; i < nr_data_stripes(map); i++)
5671 			bbio->raid_map[(i+rot) % num_stripes] =
5672 				em->start + (tmp + i) * map->stripe_len;
5673 
5674 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5675 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5676 			bbio->raid_map[(i+rot+1) % num_stripes] =
5677 				RAID6_Q_STRIPE;
5678 	}
5679 
5680 	if (op == BTRFS_MAP_DISCARD) {
5681 		u32 factor = 0;
5682 		u32 sub_stripes = 0;
5683 		u64 stripes_per_dev = 0;
5684 		u32 remaining_stripes = 0;
5685 		u32 last_stripe = 0;
5686 
5687 		if (map->type &
5688 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5689 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5690 				sub_stripes = 1;
5691 			else
5692 				sub_stripes = map->sub_stripes;
5693 
5694 			factor = map->num_stripes / sub_stripes;
5695 			stripes_per_dev = div_u64_rem(stripe_nr_end -
5696 						      stripe_nr_orig,
5697 						      factor,
5698 						      &remaining_stripes);
5699 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5700 			last_stripe *= sub_stripes;
5701 		}
5702 
5703 		for (i = 0; i < num_stripes; i++) {
5704 			bbio->stripes[i].physical =
5705 				map->stripes[stripe_index].physical +
5706 				stripe_offset + stripe_nr * map->stripe_len;
5707 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5708 
5709 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5710 					 BTRFS_BLOCK_GROUP_RAID10)) {
5711 				bbio->stripes[i].length = stripes_per_dev *
5712 							  map->stripe_len;
5713 
5714 				if (i / sub_stripes < remaining_stripes)
5715 					bbio->stripes[i].length +=
5716 						map->stripe_len;
5717 
5718 				/*
5719 				 * Special for the first stripe and
5720 				 * the last stripe:
5721 				 *
5722 				 * |-------|...|-------|
5723 				 *     |----------|
5724 				 *    off     end_off
5725 				 */
5726 				if (i < sub_stripes)
5727 					bbio->stripes[i].length -=
5728 						stripe_offset;
5729 
5730 				if (stripe_index >= last_stripe &&
5731 				    stripe_index <= (last_stripe +
5732 						     sub_stripes - 1))
5733 					bbio->stripes[i].length -=
5734 						stripe_end_offset;
5735 
5736 				if (i == sub_stripes - 1)
5737 					stripe_offset = 0;
5738 			} else
5739 				bbio->stripes[i].length = *length;
5740 
5741 			stripe_index++;
5742 			if (stripe_index == map->num_stripes) {
5743 				/* This could only happen for RAID0/10 */
5744 				stripe_index = 0;
5745 				stripe_nr++;
5746 			}
5747 		}
5748 	} else {
5749 		for (i = 0; i < num_stripes; i++) {
5750 			bbio->stripes[i].physical =
5751 				map->stripes[stripe_index].physical +
5752 				stripe_offset +
5753 				stripe_nr * map->stripe_len;
5754 			bbio->stripes[i].dev =
5755 				map->stripes[stripe_index].dev;
5756 			stripe_index++;
5757 		}
5758 	}
5759 
5760 	if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5761 		max_errors = btrfs_chunk_max_errors(map);
5762 
5763 	if (bbio->raid_map)
5764 		sort_parity_stripes(bbio, num_stripes);
5765 
5766 	tgtdev_indexes = 0;
5767 	if (dev_replace_is_ongoing &&
5768 	   (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD) &&
5769 	    dev_replace->tgtdev != NULL) {
5770 		int index_where_to_add;
5771 		u64 srcdev_devid = dev_replace->srcdev->devid;
5772 
5773 		/*
5774 		 * duplicate the write operations while the dev replace
5775 		 * procedure is running. Since the copying of the old disk
5776 		 * to the new disk takes place at run time while the
5777 		 * filesystem is mounted writable, the regular write
5778 		 * operations to the old disk have to be duplicated to go
5779 		 * to the new disk as well.
5780 		 * Note that device->missing is handled by the caller, and
5781 		 * that the write to the old disk is already set up in the
5782 		 * stripes array.
5783 		 */
5784 		index_where_to_add = num_stripes;
5785 		for (i = 0; i < num_stripes; i++) {
5786 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5787 				/* write to new disk, too */
5788 				struct btrfs_bio_stripe *new =
5789 					bbio->stripes + index_where_to_add;
5790 				struct btrfs_bio_stripe *old =
5791 					bbio->stripes + i;
5792 
5793 				new->physical = old->physical;
5794 				new->length = old->length;
5795 				new->dev = dev_replace->tgtdev;
5796 				bbio->tgtdev_map[i] = index_where_to_add;
5797 				index_where_to_add++;
5798 				max_errors++;
5799 				tgtdev_indexes++;
5800 			}
5801 		}
5802 		num_stripes = index_where_to_add;
5803 	} else if (dev_replace_is_ongoing &&
5804 		   op == BTRFS_MAP_GET_READ_MIRRORS &&
5805 		   dev_replace->tgtdev != NULL) {
5806 		u64 srcdev_devid = dev_replace->srcdev->devid;
5807 		int index_srcdev = 0;
5808 		int found = 0;
5809 		u64 physical_of_found = 0;
5810 
5811 		/*
5812 		 * During the dev-replace procedure, the target drive can
5813 		 * also be used to read data in case it is needed to repair
5814 		 * a corrupt block elsewhere. This is possible if the
5815 		 * requested area is left of the left cursor. In this area,
5816 		 * the target drive is a full copy of the source drive.
5817 		 */
5818 		for (i = 0; i < num_stripes; i++) {
5819 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5820 				/*
5821 				 * In case of DUP, in order to keep it
5822 				 * simple, only add the mirror with the
5823 				 * lowest physical address
5824 				 */
5825 				if (found &&
5826 				    physical_of_found <=
5827 				     bbio->stripes[i].physical)
5828 					continue;
5829 				index_srcdev = i;
5830 				found = 1;
5831 				physical_of_found = bbio->stripes[i].physical;
5832 			}
5833 		}
5834 		if (found) {
5835 			struct btrfs_bio_stripe *tgtdev_stripe =
5836 				bbio->stripes + num_stripes;
5837 
5838 			tgtdev_stripe->physical = physical_of_found;
5839 			tgtdev_stripe->length =
5840 				bbio->stripes[index_srcdev].length;
5841 			tgtdev_stripe->dev = dev_replace->tgtdev;
5842 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5843 
5844 			tgtdev_indexes++;
5845 			num_stripes++;
5846 		}
5847 	}
5848 
5849 	*bbio_ret = bbio;
5850 	bbio->map_type = map->type;
5851 	bbio->num_stripes = num_stripes;
5852 	bbio->max_errors = max_errors;
5853 	bbio->mirror_num = mirror_num;
5854 	bbio->num_tgtdevs = tgtdev_indexes;
5855 
5856 	/*
5857 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5858 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5859 	 * available as a mirror
5860 	 */
5861 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5862 		WARN_ON(num_stripes > 1);
5863 		bbio->stripes[0].dev = dev_replace->tgtdev;
5864 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5865 		bbio->mirror_num = map->num_stripes + 1;
5866 	}
5867 out:
5868 	if (dev_replace_is_ongoing) {
5869 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
5870 		btrfs_dev_replace_unlock(dev_replace, 0);
5871 	}
5872 	free_extent_map(em);
5873 	return ret;
5874 }
5875 
5876 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5877 		      u64 logical, u64 *length,
5878 		      struct btrfs_bio **bbio_ret, int mirror_num)
5879 {
5880 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5881 				 mirror_num, 0);
5882 }
5883 
5884 /* For Scrub/replace */
5885 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5886 		     u64 logical, u64 *length,
5887 		     struct btrfs_bio **bbio_ret, int mirror_num,
5888 		     int need_raid_map)
5889 {
5890 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5891 				 mirror_num, need_raid_map);
5892 }
5893 
5894 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5895 		     u64 chunk_start, u64 physical, u64 devid,
5896 		     u64 **logical, int *naddrs, int *stripe_len)
5897 {
5898 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5899 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5900 	struct extent_map *em;
5901 	struct map_lookup *map;
5902 	u64 *buf;
5903 	u64 bytenr;
5904 	u64 length;
5905 	u64 stripe_nr;
5906 	u64 rmap_len;
5907 	int i, j, nr = 0;
5908 
5909 	read_lock(&em_tree->lock);
5910 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5911 	read_unlock(&em_tree->lock);
5912 
5913 	if (!em) {
5914 		btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5915 			chunk_start);
5916 		return -EIO;
5917 	}
5918 
5919 	if (em->start != chunk_start) {
5920 		btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
5921 		       em->start, chunk_start);
5922 		free_extent_map(em);
5923 		return -EIO;
5924 	}
5925 	map = em->map_lookup;
5926 
5927 	length = em->len;
5928 	rmap_len = map->stripe_len;
5929 
5930 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5931 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5932 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5933 		length = div_u64(length, map->num_stripes);
5934 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5935 		length = div_u64(length, nr_data_stripes(map));
5936 		rmap_len = map->stripe_len * nr_data_stripes(map);
5937 	}
5938 
5939 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5940 	BUG_ON(!buf); /* -ENOMEM */
5941 
5942 	for (i = 0; i < map->num_stripes; i++) {
5943 		if (devid && map->stripes[i].dev->devid != devid)
5944 			continue;
5945 		if (map->stripes[i].physical > physical ||
5946 		    map->stripes[i].physical + length <= physical)
5947 			continue;
5948 
5949 		stripe_nr = physical - map->stripes[i].physical;
5950 		stripe_nr = div_u64(stripe_nr, map->stripe_len);
5951 
5952 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5953 			stripe_nr = stripe_nr * map->num_stripes + i;
5954 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5955 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5956 			stripe_nr = stripe_nr * map->num_stripes + i;
5957 		} /* else if RAID[56], multiply by nr_data_stripes().
5958 		   * Alternatively, just use rmap_len below instead of
5959 		   * map->stripe_len */
5960 
5961 		bytenr = chunk_start + stripe_nr * rmap_len;
5962 		WARN_ON(nr >= map->num_stripes);
5963 		for (j = 0; j < nr; j++) {
5964 			if (buf[j] == bytenr)
5965 				break;
5966 		}
5967 		if (j == nr) {
5968 			WARN_ON(nr >= map->num_stripes);
5969 			buf[nr++] = bytenr;
5970 		}
5971 	}
5972 
5973 	*logical = buf;
5974 	*naddrs = nr;
5975 	*stripe_len = rmap_len;
5976 
5977 	free_extent_map(em);
5978 	return 0;
5979 }
5980 
5981 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5982 {
5983 	bio->bi_private = bbio->private;
5984 	bio->bi_end_io = bbio->end_io;
5985 	bio_endio(bio);
5986 
5987 	btrfs_put_bbio(bbio);
5988 }
5989 
5990 static void btrfs_end_bio(struct bio *bio)
5991 {
5992 	struct btrfs_bio *bbio = bio->bi_private;
5993 	int is_orig_bio = 0;
5994 
5995 	if (bio->bi_error) {
5996 		atomic_inc(&bbio->error);
5997 		if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5998 			unsigned int stripe_index =
5999 				btrfs_io_bio(bio)->stripe_index;
6000 			struct btrfs_device *dev;
6001 
6002 			BUG_ON(stripe_index >= bbio->num_stripes);
6003 			dev = bbio->stripes[stripe_index].dev;
6004 			if (dev->bdev) {
6005 				if (bio_op(bio) == REQ_OP_WRITE)
6006 					btrfs_dev_stat_inc(dev,
6007 						BTRFS_DEV_STAT_WRITE_ERRS);
6008 				else
6009 					btrfs_dev_stat_inc(dev,
6010 						BTRFS_DEV_STAT_READ_ERRS);
6011 				if (bio->bi_opf & REQ_PREFLUSH)
6012 					btrfs_dev_stat_inc(dev,
6013 						BTRFS_DEV_STAT_FLUSH_ERRS);
6014 				btrfs_dev_stat_print_on_error(dev);
6015 			}
6016 		}
6017 	}
6018 
6019 	if (bio == bbio->orig_bio)
6020 		is_orig_bio = 1;
6021 
6022 	btrfs_bio_counter_dec(bbio->fs_info);
6023 
6024 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6025 		if (!is_orig_bio) {
6026 			bio_put(bio);
6027 			bio = bbio->orig_bio;
6028 		}
6029 
6030 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6031 		/* only send an error to the higher layers if it is
6032 		 * beyond the tolerance of the btrfs bio
6033 		 */
6034 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6035 			bio->bi_error = -EIO;
6036 		} else {
6037 			/*
6038 			 * this bio is actually up to date, we didn't
6039 			 * go over the max number of errors
6040 			 */
6041 			bio->bi_error = 0;
6042 		}
6043 
6044 		btrfs_end_bbio(bbio, bio);
6045 	} else if (!is_orig_bio) {
6046 		bio_put(bio);
6047 	}
6048 }
6049 
6050 /*
6051  * see run_scheduled_bios for a description of why bios are collected for
6052  * async submit.
6053  *
6054  * This will add one bio to the pending list for a device and make sure
6055  * the work struct is scheduled.
6056  */
6057 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6058 					struct bio *bio)
6059 {
6060 	struct btrfs_fs_info *fs_info = device->fs_info;
6061 	int should_queue = 1;
6062 	struct btrfs_pending_bios *pending_bios;
6063 
6064 	if (device->missing || !device->bdev) {
6065 		bio_io_error(bio);
6066 		return;
6067 	}
6068 
6069 	/* don't bother with additional async steps for reads, right now */
6070 	if (bio_op(bio) == REQ_OP_READ) {
6071 		bio_get(bio);
6072 		btrfsic_submit_bio(bio);
6073 		bio_put(bio);
6074 		return;
6075 	}
6076 
6077 	/*
6078 	 * nr_async_bios allows us to reliably return congestion to the
6079 	 * higher layers.  Otherwise, the async bio makes it appear we have
6080 	 * made progress against dirty pages when we've really just put it
6081 	 * on a queue for later
6082 	 */
6083 	atomic_inc(&fs_info->nr_async_bios);
6084 	WARN_ON(bio->bi_next);
6085 	bio->bi_next = NULL;
6086 
6087 	spin_lock(&device->io_lock);
6088 	if (op_is_sync(bio->bi_opf))
6089 		pending_bios = &device->pending_sync_bios;
6090 	else
6091 		pending_bios = &device->pending_bios;
6092 
6093 	if (pending_bios->tail)
6094 		pending_bios->tail->bi_next = bio;
6095 
6096 	pending_bios->tail = bio;
6097 	if (!pending_bios->head)
6098 		pending_bios->head = bio;
6099 	if (device->running_pending)
6100 		should_queue = 0;
6101 
6102 	spin_unlock(&device->io_lock);
6103 
6104 	if (should_queue)
6105 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6106 }
6107 
6108 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6109 			      u64 physical, int dev_nr, int async)
6110 {
6111 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6112 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6113 
6114 	bio->bi_private = bbio;
6115 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6116 	bio->bi_end_io = btrfs_end_bio;
6117 	bio->bi_iter.bi_sector = physical >> 9;
6118 #ifdef DEBUG
6119 	{
6120 		struct rcu_string *name;
6121 
6122 		rcu_read_lock();
6123 		name = rcu_dereference(dev->name);
6124 		btrfs_debug(fs_info,
6125 			"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6126 			bio_op(bio), bio->bi_opf,
6127 			(u64)bio->bi_iter.bi_sector,
6128 			(u_long)dev->bdev->bd_dev, name->str, dev->devid,
6129 			bio->bi_iter.bi_size);
6130 		rcu_read_unlock();
6131 	}
6132 #endif
6133 	bio->bi_bdev = dev->bdev;
6134 
6135 	btrfs_bio_counter_inc_noblocked(fs_info);
6136 
6137 	if (async)
6138 		btrfs_schedule_bio(dev, bio);
6139 	else
6140 		btrfsic_submit_bio(bio);
6141 }
6142 
6143 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6144 {
6145 	atomic_inc(&bbio->error);
6146 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6147 		/* Should be the original bio. */
6148 		WARN_ON(bio != bbio->orig_bio);
6149 
6150 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6151 		bio->bi_iter.bi_sector = logical >> 9;
6152 		bio->bi_error = -EIO;
6153 		btrfs_end_bbio(bbio, bio);
6154 	}
6155 }
6156 
6157 int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6158 		  int mirror_num, int async_submit)
6159 {
6160 	struct btrfs_device *dev;
6161 	struct bio *first_bio = bio;
6162 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6163 	u64 length = 0;
6164 	u64 map_length;
6165 	int ret;
6166 	int dev_nr;
6167 	int total_devs;
6168 	struct btrfs_bio *bbio = NULL;
6169 
6170 	length = bio->bi_iter.bi_size;
6171 	map_length = length;
6172 
6173 	btrfs_bio_counter_inc_blocked(fs_info);
6174 	ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
6175 				&map_length, &bbio, mirror_num, 1);
6176 	if (ret) {
6177 		btrfs_bio_counter_dec(fs_info);
6178 		return ret;
6179 	}
6180 
6181 	total_devs = bbio->num_stripes;
6182 	bbio->orig_bio = first_bio;
6183 	bbio->private = first_bio->bi_private;
6184 	bbio->end_io = first_bio->bi_end_io;
6185 	bbio->fs_info = fs_info;
6186 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6187 
6188 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6189 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6190 		/* In this case, map_length has been set to the length of
6191 		   a single stripe; not the whole write */
6192 		if (bio_op(bio) == REQ_OP_WRITE) {
6193 			ret = raid56_parity_write(fs_info, bio, bbio,
6194 						  map_length);
6195 		} else {
6196 			ret = raid56_parity_recover(fs_info, bio, bbio,
6197 						    map_length, mirror_num, 1);
6198 		}
6199 
6200 		btrfs_bio_counter_dec(fs_info);
6201 		return ret;
6202 	}
6203 
6204 	if (map_length < length) {
6205 		btrfs_crit(fs_info,
6206 			   "mapping failed logical %llu bio len %llu len %llu",
6207 			   logical, length, map_length);
6208 		BUG();
6209 	}
6210 
6211 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6212 		dev = bbio->stripes[dev_nr].dev;
6213 		if (!dev || !dev->bdev ||
6214 		    (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
6215 			bbio_error(bbio, first_bio, logical);
6216 			continue;
6217 		}
6218 
6219 		if (dev_nr < total_devs - 1) {
6220 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6221 			BUG_ON(!bio); /* -ENOMEM */
6222 		} else
6223 			bio = first_bio;
6224 
6225 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6226 				  dev_nr, async_submit);
6227 	}
6228 	btrfs_bio_counter_dec(fs_info);
6229 	return 0;
6230 }
6231 
6232 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6233 				       u8 *uuid, u8 *fsid)
6234 {
6235 	struct btrfs_device *device;
6236 	struct btrfs_fs_devices *cur_devices;
6237 
6238 	cur_devices = fs_info->fs_devices;
6239 	while (cur_devices) {
6240 		if (!fsid ||
6241 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6242 			device = __find_device(&cur_devices->devices,
6243 					       devid, uuid);
6244 			if (device)
6245 				return device;
6246 		}
6247 		cur_devices = cur_devices->seed;
6248 	}
6249 	return NULL;
6250 }
6251 
6252 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6253 					    u64 devid, u8 *dev_uuid)
6254 {
6255 	struct btrfs_device *device;
6256 
6257 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6258 	if (IS_ERR(device))
6259 		return NULL;
6260 
6261 	list_add(&device->dev_list, &fs_devices->devices);
6262 	device->fs_devices = fs_devices;
6263 	fs_devices->num_devices++;
6264 
6265 	device->missing = 1;
6266 	fs_devices->missing_devices++;
6267 
6268 	return device;
6269 }
6270 
6271 /**
6272  * btrfs_alloc_device - allocate struct btrfs_device
6273  * @fs_info:	used only for generating a new devid, can be NULL if
6274  *		devid is provided (i.e. @devid != NULL).
6275  * @devid:	a pointer to devid for this device.  If NULL a new devid
6276  *		is generated.
6277  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6278  *		is generated.
6279  *
6280  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6281  * on error.  Returned struct is not linked onto any lists and can be
6282  * destroyed with kfree() right away.
6283  */
6284 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6285 					const u64 *devid,
6286 					const u8 *uuid)
6287 {
6288 	struct btrfs_device *dev;
6289 	u64 tmp;
6290 
6291 	if (WARN_ON(!devid && !fs_info))
6292 		return ERR_PTR(-EINVAL);
6293 
6294 	dev = __alloc_device();
6295 	if (IS_ERR(dev))
6296 		return dev;
6297 
6298 	if (devid)
6299 		tmp = *devid;
6300 	else {
6301 		int ret;
6302 
6303 		ret = find_next_devid(fs_info, &tmp);
6304 		if (ret) {
6305 			kfree(dev);
6306 			return ERR_PTR(ret);
6307 		}
6308 	}
6309 	dev->devid = tmp;
6310 
6311 	if (uuid)
6312 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6313 	else
6314 		generate_random_uuid(dev->uuid);
6315 
6316 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6317 			pending_bios_fn, NULL, NULL);
6318 
6319 	return dev;
6320 }
6321 
6322 /* Return -EIO if any error, otherwise return 0. */
6323 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6324 				   struct extent_buffer *leaf,
6325 				   struct btrfs_chunk *chunk, u64 logical)
6326 {
6327 	u64 length;
6328 	u64 stripe_len;
6329 	u16 num_stripes;
6330 	u16 sub_stripes;
6331 	u64 type;
6332 
6333 	length = btrfs_chunk_length(leaf, chunk);
6334 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6335 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6336 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6337 	type = btrfs_chunk_type(leaf, chunk);
6338 
6339 	if (!num_stripes) {
6340 		btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6341 			  num_stripes);
6342 		return -EIO;
6343 	}
6344 	if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6345 		btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6346 		return -EIO;
6347 	}
6348 	if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6349 		btrfs_err(fs_info, "invalid chunk sectorsize %u",
6350 			  btrfs_chunk_sector_size(leaf, chunk));
6351 		return -EIO;
6352 	}
6353 	if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6354 		btrfs_err(fs_info, "invalid chunk length %llu", length);
6355 		return -EIO;
6356 	}
6357 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6358 		btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6359 			  stripe_len);
6360 		return -EIO;
6361 	}
6362 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6363 	    type) {
6364 		btrfs_err(fs_info, "unrecognized chunk type: %llu",
6365 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6366 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6367 			  btrfs_chunk_type(leaf, chunk));
6368 		return -EIO;
6369 	}
6370 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6371 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6372 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6373 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6374 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6375 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6376 	     num_stripes != 1)) {
6377 		btrfs_err(fs_info,
6378 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6379 			num_stripes, sub_stripes,
6380 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6381 		return -EIO;
6382 	}
6383 
6384 	return 0;
6385 }
6386 
6387 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6388 			  struct extent_buffer *leaf,
6389 			  struct btrfs_chunk *chunk)
6390 {
6391 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6392 	struct map_lookup *map;
6393 	struct extent_map *em;
6394 	u64 logical;
6395 	u64 length;
6396 	u64 stripe_len;
6397 	u64 devid;
6398 	u8 uuid[BTRFS_UUID_SIZE];
6399 	int num_stripes;
6400 	int ret;
6401 	int i;
6402 
6403 	logical = key->offset;
6404 	length = btrfs_chunk_length(leaf, chunk);
6405 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6406 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6407 
6408 	ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6409 	if (ret)
6410 		return ret;
6411 
6412 	read_lock(&map_tree->map_tree.lock);
6413 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6414 	read_unlock(&map_tree->map_tree.lock);
6415 
6416 	/* already mapped? */
6417 	if (em && em->start <= logical && em->start + em->len > logical) {
6418 		free_extent_map(em);
6419 		return 0;
6420 	} else if (em) {
6421 		free_extent_map(em);
6422 	}
6423 
6424 	em = alloc_extent_map();
6425 	if (!em)
6426 		return -ENOMEM;
6427 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6428 	if (!map) {
6429 		free_extent_map(em);
6430 		return -ENOMEM;
6431 	}
6432 
6433 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6434 	em->map_lookup = map;
6435 	em->start = logical;
6436 	em->len = length;
6437 	em->orig_start = 0;
6438 	em->block_start = 0;
6439 	em->block_len = em->len;
6440 
6441 	map->num_stripes = num_stripes;
6442 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6443 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6444 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6445 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6446 	map->type = btrfs_chunk_type(leaf, chunk);
6447 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6448 	for (i = 0; i < num_stripes; i++) {
6449 		map->stripes[i].physical =
6450 			btrfs_stripe_offset_nr(leaf, chunk, i);
6451 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6452 		read_extent_buffer(leaf, uuid, (unsigned long)
6453 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6454 				   BTRFS_UUID_SIZE);
6455 		map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6456 							uuid, NULL);
6457 		if (!map->stripes[i].dev &&
6458 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6459 			free_extent_map(em);
6460 			return -EIO;
6461 		}
6462 		if (!map->stripes[i].dev) {
6463 			map->stripes[i].dev =
6464 				add_missing_dev(fs_info->fs_devices, devid,
6465 						uuid);
6466 			if (!map->stripes[i].dev) {
6467 				free_extent_map(em);
6468 				return -EIO;
6469 			}
6470 			btrfs_warn(fs_info, "devid %llu uuid %pU is missing",
6471 				   devid, uuid);
6472 		}
6473 		map->stripes[i].dev->in_fs_metadata = 1;
6474 	}
6475 
6476 	write_lock(&map_tree->map_tree.lock);
6477 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6478 	write_unlock(&map_tree->map_tree.lock);
6479 	BUG_ON(ret); /* Tree corruption */
6480 	free_extent_map(em);
6481 
6482 	return 0;
6483 }
6484 
6485 static void fill_device_from_item(struct extent_buffer *leaf,
6486 				 struct btrfs_dev_item *dev_item,
6487 				 struct btrfs_device *device)
6488 {
6489 	unsigned long ptr;
6490 
6491 	device->devid = btrfs_device_id(leaf, dev_item);
6492 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6493 	device->total_bytes = device->disk_total_bytes;
6494 	device->commit_total_bytes = device->disk_total_bytes;
6495 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6496 	device->commit_bytes_used = device->bytes_used;
6497 	device->type = btrfs_device_type(leaf, dev_item);
6498 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6499 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6500 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6501 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6502 	device->is_tgtdev_for_dev_replace = 0;
6503 
6504 	ptr = btrfs_device_uuid(dev_item);
6505 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6506 }
6507 
6508 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6509 						  u8 *fsid)
6510 {
6511 	struct btrfs_fs_devices *fs_devices;
6512 	int ret;
6513 
6514 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6515 
6516 	fs_devices = fs_info->fs_devices->seed;
6517 	while (fs_devices) {
6518 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6519 			return fs_devices;
6520 
6521 		fs_devices = fs_devices->seed;
6522 	}
6523 
6524 	fs_devices = find_fsid(fsid);
6525 	if (!fs_devices) {
6526 		if (!btrfs_test_opt(fs_info, DEGRADED))
6527 			return ERR_PTR(-ENOENT);
6528 
6529 		fs_devices = alloc_fs_devices(fsid);
6530 		if (IS_ERR(fs_devices))
6531 			return fs_devices;
6532 
6533 		fs_devices->seeding = 1;
6534 		fs_devices->opened = 1;
6535 		return fs_devices;
6536 	}
6537 
6538 	fs_devices = clone_fs_devices(fs_devices);
6539 	if (IS_ERR(fs_devices))
6540 		return fs_devices;
6541 
6542 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6543 				   fs_info->bdev_holder);
6544 	if (ret) {
6545 		free_fs_devices(fs_devices);
6546 		fs_devices = ERR_PTR(ret);
6547 		goto out;
6548 	}
6549 
6550 	if (!fs_devices->seeding) {
6551 		__btrfs_close_devices(fs_devices);
6552 		free_fs_devices(fs_devices);
6553 		fs_devices = ERR_PTR(-EINVAL);
6554 		goto out;
6555 	}
6556 
6557 	fs_devices->seed = fs_info->fs_devices->seed;
6558 	fs_info->fs_devices->seed = fs_devices;
6559 out:
6560 	return fs_devices;
6561 }
6562 
6563 static int read_one_dev(struct btrfs_fs_info *fs_info,
6564 			struct extent_buffer *leaf,
6565 			struct btrfs_dev_item *dev_item)
6566 {
6567 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6568 	struct btrfs_device *device;
6569 	u64 devid;
6570 	int ret;
6571 	u8 fs_uuid[BTRFS_UUID_SIZE];
6572 	u8 dev_uuid[BTRFS_UUID_SIZE];
6573 
6574 	devid = btrfs_device_id(leaf, dev_item);
6575 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6576 			   BTRFS_UUID_SIZE);
6577 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6578 			   BTRFS_UUID_SIZE);
6579 
6580 	if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
6581 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6582 		if (IS_ERR(fs_devices))
6583 			return PTR_ERR(fs_devices);
6584 	}
6585 
6586 	device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6587 	if (!device) {
6588 		if (!btrfs_test_opt(fs_info, DEGRADED))
6589 			return -EIO;
6590 
6591 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6592 		if (!device)
6593 			return -ENOMEM;
6594 		btrfs_warn(fs_info, "devid %llu uuid %pU missing",
6595 				devid, dev_uuid);
6596 	} else {
6597 		if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED))
6598 			return -EIO;
6599 
6600 		if(!device->bdev && !device->missing) {
6601 			/*
6602 			 * this happens when a device that was properly setup
6603 			 * in the device info lists suddenly goes bad.
6604 			 * device->bdev is NULL, and so we have to set
6605 			 * device->missing to one here
6606 			 */
6607 			device->fs_devices->missing_devices++;
6608 			device->missing = 1;
6609 		}
6610 
6611 		/* Move the device to its own fs_devices */
6612 		if (device->fs_devices != fs_devices) {
6613 			ASSERT(device->missing);
6614 
6615 			list_move(&device->dev_list, &fs_devices->devices);
6616 			device->fs_devices->num_devices--;
6617 			fs_devices->num_devices++;
6618 
6619 			device->fs_devices->missing_devices--;
6620 			fs_devices->missing_devices++;
6621 
6622 			device->fs_devices = fs_devices;
6623 		}
6624 	}
6625 
6626 	if (device->fs_devices != fs_info->fs_devices) {
6627 		BUG_ON(device->writeable);
6628 		if (device->generation !=
6629 		    btrfs_device_generation(leaf, dev_item))
6630 			return -EINVAL;
6631 	}
6632 
6633 	fill_device_from_item(leaf, dev_item, device);
6634 	device->in_fs_metadata = 1;
6635 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6636 		device->fs_devices->total_rw_bytes += device->total_bytes;
6637 		spin_lock(&fs_info->free_chunk_lock);
6638 		fs_info->free_chunk_space += device->total_bytes -
6639 			device->bytes_used;
6640 		spin_unlock(&fs_info->free_chunk_lock);
6641 	}
6642 	ret = 0;
6643 	return ret;
6644 }
6645 
6646 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6647 {
6648 	struct btrfs_root *root = fs_info->tree_root;
6649 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6650 	struct extent_buffer *sb;
6651 	struct btrfs_disk_key *disk_key;
6652 	struct btrfs_chunk *chunk;
6653 	u8 *array_ptr;
6654 	unsigned long sb_array_offset;
6655 	int ret = 0;
6656 	u32 num_stripes;
6657 	u32 array_size;
6658 	u32 len = 0;
6659 	u32 cur_offset;
6660 	u64 type;
6661 	struct btrfs_key key;
6662 
6663 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6664 	/*
6665 	 * This will create extent buffer of nodesize, superblock size is
6666 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6667 	 * overallocate but we can keep it as-is, only the first page is used.
6668 	 */
6669 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6670 	if (IS_ERR(sb))
6671 		return PTR_ERR(sb);
6672 	set_extent_buffer_uptodate(sb);
6673 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6674 	/*
6675 	 * The sb extent buffer is artificial and just used to read the system array.
6676 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6677 	 * pages up-to-date when the page is larger: extent does not cover the
6678 	 * whole page and consequently check_page_uptodate does not find all
6679 	 * the page's extents up-to-date (the hole beyond sb),
6680 	 * write_extent_buffer then triggers a WARN_ON.
6681 	 *
6682 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6683 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6684 	 * to silence the warning eg. on PowerPC 64.
6685 	 */
6686 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6687 		SetPageUptodate(sb->pages[0]);
6688 
6689 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6690 	array_size = btrfs_super_sys_array_size(super_copy);
6691 
6692 	array_ptr = super_copy->sys_chunk_array;
6693 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6694 	cur_offset = 0;
6695 
6696 	while (cur_offset < array_size) {
6697 		disk_key = (struct btrfs_disk_key *)array_ptr;
6698 		len = sizeof(*disk_key);
6699 		if (cur_offset + len > array_size)
6700 			goto out_short_read;
6701 
6702 		btrfs_disk_key_to_cpu(&key, disk_key);
6703 
6704 		array_ptr += len;
6705 		sb_array_offset += len;
6706 		cur_offset += len;
6707 
6708 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6709 			chunk = (struct btrfs_chunk *)sb_array_offset;
6710 			/*
6711 			 * At least one btrfs_chunk with one stripe must be
6712 			 * present, exact stripe count check comes afterwards
6713 			 */
6714 			len = btrfs_chunk_item_size(1);
6715 			if (cur_offset + len > array_size)
6716 				goto out_short_read;
6717 
6718 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6719 			if (!num_stripes) {
6720 				btrfs_err(fs_info,
6721 					"invalid number of stripes %u in sys_array at offset %u",
6722 					num_stripes, cur_offset);
6723 				ret = -EIO;
6724 				break;
6725 			}
6726 
6727 			type = btrfs_chunk_type(sb, chunk);
6728 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6729 				btrfs_err(fs_info,
6730 			    "invalid chunk type %llu in sys_array at offset %u",
6731 					type, cur_offset);
6732 				ret = -EIO;
6733 				break;
6734 			}
6735 
6736 			len = btrfs_chunk_item_size(num_stripes);
6737 			if (cur_offset + len > array_size)
6738 				goto out_short_read;
6739 
6740 			ret = read_one_chunk(fs_info, &key, sb, chunk);
6741 			if (ret)
6742 				break;
6743 		} else {
6744 			btrfs_err(fs_info,
6745 			    "unexpected item type %u in sys_array at offset %u",
6746 				  (u32)key.type, cur_offset);
6747 			ret = -EIO;
6748 			break;
6749 		}
6750 		array_ptr += len;
6751 		sb_array_offset += len;
6752 		cur_offset += len;
6753 	}
6754 	clear_extent_buffer_uptodate(sb);
6755 	free_extent_buffer_stale(sb);
6756 	return ret;
6757 
6758 out_short_read:
6759 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6760 			len, cur_offset);
6761 	clear_extent_buffer_uptodate(sb);
6762 	free_extent_buffer_stale(sb);
6763 	return -EIO;
6764 }
6765 
6766 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6767 {
6768 	struct btrfs_root *root = fs_info->chunk_root;
6769 	struct btrfs_path *path;
6770 	struct extent_buffer *leaf;
6771 	struct btrfs_key key;
6772 	struct btrfs_key found_key;
6773 	int ret;
6774 	int slot;
6775 	u64 total_dev = 0;
6776 
6777 	path = btrfs_alloc_path();
6778 	if (!path)
6779 		return -ENOMEM;
6780 
6781 	mutex_lock(&uuid_mutex);
6782 	mutex_lock(&fs_info->chunk_mutex);
6783 
6784 	/*
6785 	 * Read all device items, and then all the chunk items. All
6786 	 * device items are found before any chunk item (their object id
6787 	 * is smaller than the lowest possible object id for a chunk
6788 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6789 	 */
6790 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6791 	key.offset = 0;
6792 	key.type = 0;
6793 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6794 	if (ret < 0)
6795 		goto error;
6796 	while (1) {
6797 		leaf = path->nodes[0];
6798 		slot = path->slots[0];
6799 		if (slot >= btrfs_header_nritems(leaf)) {
6800 			ret = btrfs_next_leaf(root, path);
6801 			if (ret == 0)
6802 				continue;
6803 			if (ret < 0)
6804 				goto error;
6805 			break;
6806 		}
6807 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6808 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6809 			struct btrfs_dev_item *dev_item;
6810 			dev_item = btrfs_item_ptr(leaf, slot,
6811 						  struct btrfs_dev_item);
6812 			ret = read_one_dev(fs_info, leaf, dev_item);
6813 			if (ret)
6814 				goto error;
6815 			total_dev++;
6816 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6817 			struct btrfs_chunk *chunk;
6818 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6819 			ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6820 			if (ret)
6821 				goto error;
6822 		}
6823 		path->slots[0]++;
6824 	}
6825 
6826 	/*
6827 	 * After loading chunk tree, we've got all device information,
6828 	 * do another round of validation checks.
6829 	 */
6830 	if (total_dev != fs_info->fs_devices->total_devices) {
6831 		btrfs_err(fs_info,
6832 	   "super_num_devices %llu mismatch with num_devices %llu found here",
6833 			  btrfs_super_num_devices(fs_info->super_copy),
6834 			  total_dev);
6835 		ret = -EINVAL;
6836 		goto error;
6837 	}
6838 	if (btrfs_super_total_bytes(fs_info->super_copy) <
6839 	    fs_info->fs_devices->total_rw_bytes) {
6840 		btrfs_err(fs_info,
6841 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6842 			  btrfs_super_total_bytes(fs_info->super_copy),
6843 			  fs_info->fs_devices->total_rw_bytes);
6844 		ret = -EINVAL;
6845 		goto error;
6846 	}
6847 	ret = 0;
6848 error:
6849 	mutex_unlock(&fs_info->chunk_mutex);
6850 	mutex_unlock(&uuid_mutex);
6851 
6852 	btrfs_free_path(path);
6853 	return ret;
6854 }
6855 
6856 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6857 {
6858 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6859 	struct btrfs_device *device;
6860 
6861 	while (fs_devices) {
6862 		mutex_lock(&fs_devices->device_list_mutex);
6863 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6864 			device->fs_info = fs_info;
6865 		mutex_unlock(&fs_devices->device_list_mutex);
6866 
6867 		fs_devices = fs_devices->seed;
6868 	}
6869 }
6870 
6871 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6872 {
6873 	int i;
6874 
6875 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6876 		btrfs_dev_stat_reset(dev, i);
6877 }
6878 
6879 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6880 {
6881 	struct btrfs_key key;
6882 	struct btrfs_key found_key;
6883 	struct btrfs_root *dev_root = fs_info->dev_root;
6884 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6885 	struct extent_buffer *eb;
6886 	int slot;
6887 	int ret = 0;
6888 	struct btrfs_device *device;
6889 	struct btrfs_path *path = NULL;
6890 	int i;
6891 
6892 	path = btrfs_alloc_path();
6893 	if (!path) {
6894 		ret = -ENOMEM;
6895 		goto out;
6896 	}
6897 
6898 	mutex_lock(&fs_devices->device_list_mutex);
6899 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6900 		int item_size;
6901 		struct btrfs_dev_stats_item *ptr;
6902 
6903 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
6904 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
6905 		key.offset = device->devid;
6906 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6907 		if (ret) {
6908 			__btrfs_reset_dev_stats(device);
6909 			device->dev_stats_valid = 1;
6910 			btrfs_release_path(path);
6911 			continue;
6912 		}
6913 		slot = path->slots[0];
6914 		eb = path->nodes[0];
6915 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6916 		item_size = btrfs_item_size_nr(eb, slot);
6917 
6918 		ptr = btrfs_item_ptr(eb, slot,
6919 				     struct btrfs_dev_stats_item);
6920 
6921 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6922 			if (item_size >= (1 + i) * sizeof(__le64))
6923 				btrfs_dev_stat_set(device, i,
6924 					btrfs_dev_stats_value(eb, ptr, i));
6925 			else
6926 				btrfs_dev_stat_reset(device, i);
6927 		}
6928 
6929 		device->dev_stats_valid = 1;
6930 		btrfs_dev_stat_print_on_load(device);
6931 		btrfs_release_path(path);
6932 	}
6933 	mutex_unlock(&fs_devices->device_list_mutex);
6934 
6935 out:
6936 	btrfs_free_path(path);
6937 	return ret < 0 ? ret : 0;
6938 }
6939 
6940 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6941 				struct btrfs_fs_info *fs_info,
6942 				struct btrfs_device *device)
6943 {
6944 	struct btrfs_root *dev_root = fs_info->dev_root;
6945 	struct btrfs_path *path;
6946 	struct btrfs_key key;
6947 	struct extent_buffer *eb;
6948 	struct btrfs_dev_stats_item *ptr;
6949 	int ret;
6950 	int i;
6951 
6952 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
6953 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
6954 	key.offset = device->devid;
6955 
6956 	path = btrfs_alloc_path();
6957 	BUG_ON(!path);
6958 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6959 	if (ret < 0) {
6960 		btrfs_warn_in_rcu(fs_info,
6961 			"error %d while searching for dev_stats item for device %s",
6962 			      ret, rcu_str_deref(device->name));
6963 		goto out;
6964 	}
6965 
6966 	if (ret == 0 &&
6967 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6968 		/* need to delete old one and insert a new one */
6969 		ret = btrfs_del_item(trans, dev_root, path);
6970 		if (ret != 0) {
6971 			btrfs_warn_in_rcu(fs_info,
6972 				"delete too small dev_stats item for device %s failed %d",
6973 				      rcu_str_deref(device->name), ret);
6974 			goto out;
6975 		}
6976 		ret = 1;
6977 	}
6978 
6979 	if (ret == 1) {
6980 		/* need to insert a new item */
6981 		btrfs_release_path(path);
6982 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6983 					      &key, sizeof(*ptr));
6984 		if (ret < 0) {
6985 			btrfs_warn_in_rcu(fs_info,
6986 				"insert dev_stats item for device %s failed %d",
6987 				rcu_str_deref(device->name), ret);
6988 			goto out;
6989 		}
6990 	}
6991 
6992 	eb = path->nodes[0];
6993 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6994 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6995 		btrfs_set_dev_stats_value(eb, ptr, i,
6996 					  btrfs_dev_stat_read(device, i));
6997 	btrfs_mark_buffer_dirty(eb);
6998 
6999 out:
7000 	btrfs_free_path(path);
7001 	return ret;
7002 }
7003 
7004 /*
7005  * called from commit_transaction. Writes all changed device stats to disk.
7006  */
7007 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7008 			struct btrfs_fs_info *fs_info)
7009 {
7010 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7011 	struct btrfs_device *device;
7012 	int stats_cnt;
7013 	int ret = 0;
7014 
7015 	mutex_lock(&fs_devices->device_list_mutex);
7016 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7017 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7018 			continue;
7019 
7020 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7021 		ret = update_dev_stat_item(trans, fs_info, device);
7022 		if (!ret)
7023 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7024 	}
7025 	mutex_unlock(&fs_devices->device_list_mutex);
7026 
7027 	return ret;
7028 }
7029 
7030 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7031 {
7032 	btrfs_dev_stat_inc(dev, index);
7033 	btrfs_dev_stat_print_on_error(dev);
7034 }
7035 
7036 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7037 {
7038 	if (!dev->dev_stats_valid)
7039 		return;
7040 	btrfs_err_rl_in_rcu(dev->fs_info,
7041 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7042 			   rcu_str_deref(dev->name),
7043 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7044 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7045 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7046 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7047 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7048 }
7049 
7050 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7051 {
7052 	int i;
7053 
7054 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7055 		if (btrfs_dev_stat_read(dev, i) != 0)
7056 			break;
7057 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7058 		return; /* all values == 0, suppress message */
7059 
7060 	btrfs_info_in_rcu(dev->fs_info,
7061 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7062 	       rcu_str_deref(dev->name),
7063 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7064 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7065 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7066 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7067 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7068 }
7069 
7070 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7071 			struct btrfs_ioctl_get_dev_stats *stats)
7072 {
7073 	struct btrfs_device *dev;
7074 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7075 	int i;
7076 
7077 	mutex_lock(&fs_devices->device_list_mutex);
7078 	dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7079 	mutex_unlock(&fs_devices->device_list_mutex);
7080 
7081 	if (!dev) {
7082 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7083 		return -ENODEV;
7084 	} else if (!dev->dev_stats_valid) {
7085 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7086 		return -ENODEV;
7087 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7088 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7089 			if (stats->nr_items > i)
7090 				stats->values[i] =
7091 					btrfs_dev_stat_read_and_reset(dev, i);
7092 			else
7093 				btrfs_dev_stat_reset(dev, i);
7094 		}
7095 	} else {
7096 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7097 			if (stats->nr_items > i)
7098 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7099 	}
7100 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7101 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7102 	return 0;
7103 }
7104 
7105 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7106 {
7107 	struct buffer_head *bh;
7108 	struct btrfs_super_block *disk_super;
7109 	int copy_num;
7110 
7111 	if (!bdev)
7112 		return;
7113 
7114 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7115 		copy_num++) {
7116 
7117 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7118 			continue;
7119 
7120 		disk_super = (struct btrfs_super_block *)bh->b_data;
7121 
7122 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7123 		set_buffer_dirty(bh);
7124 		sync_dirty_buffer(bh);
7125 		brelse(bh);
7126 	}
7127 
7128 	/* Notify udev that device has changed */
7129 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7130 
7131 	/* Update ctime/mtime for device path for libblkid */
7132 	update_dev_time(device_path);
7133 }
7134 
7135 /*
7136  * Update the size of all devices, which is used for writing out the
7137  * super blocks.
7138  */
7139 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7140 {
7141 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7142 	struct btrfs_device *curr, *next;
7143 
7144 	if (list_empty(&fs_devices->resized_devices))
7145 		return;
7146 
7147 	mutex_lock(&fs_devices->device_list_mutex);
7148 	mutex_lock(&fs_info->chunk_mutex);
7149 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7150 				 resized_list) {
7151 		list_del_init(&curr->resized_list);
7152 		curr->commit_total_bytes = curr->disk_total_bytes;
7153 	}
7154 	mutex_unlock(&fs_info->chunk_mutex);
7155 	mutex_unlock(&fs_devices->device_list_mutex);
7156 }
7157 
7158 /* Must be invoked during the transaction commit */
7159 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7160 					struct btrfs_transaction *transaction)
7161 {
7162 	struct extent_map *em;
7163 	struct map_lookup *map;
7164 	struct btrfs_device *dev;
7165 	int i;
7166 
7167 	if (list_empty(&transaction->pending_chunks))
7168 		return;
7169 
7170 	/* In order to kick the device replace finish process */
7171 	mutex_lock(&fs_info->chunk_mutex);
7172 	list_for_each_entry(em, &transaction->pending_chunks, list) {
7173 		map = em->map_lookup;
7174 
7175 		for (i = 0; i < map->num_stripes; i++) {
7176 			dev = map->stripes[i].dev;
7177 			dev->commit_bytes_used = dev->bytes_used;
7178 		}
7179 	}
7180 	mutex_unlock(&fs_info->chunk_mutex);
7181 }
7182 
7183 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7184 {
7185 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7186 	while (fs_devices) {
7187 		fs_devices->fs_info = fs_info;
7188 		fs_devices = fs_devices->seed;
7189 	}
7190 }
7191 
7192 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7193 {
7194 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7195 	while (fs_devices) {
7196 		fs_devices->fs_info = NULL;
7197 		fs_devices = fs_devices->seed;
7198 	}
7199 }
7200