xref: /openbmc/linux/fs/btrfs/volumes.c (revision 7af6fbdd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 
35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
36 	[BTRFS_RAID_RAID10] = {
37 		.sub_stripes	= 2,
38 		.dev_stripes	= 1,
39 		.devs_max	= 0,	/* 0 == as many as possible */
40 		.devs_min	= 4,
41 		.tolerated_failures = 1,
42 		.devs_increment	= 2,
43 		.ncopies	= 2,
44 		.nparity        = 0,
45 		.raid_name	= "raid10",
46 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
47 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
48 	},
49 	[BTRFS_RAID_RAID1] = {
50 		.sub_stripes	= 1,
51 		.dev_stripes	= 1,
52 		.devs_max	= 2,
53 		.devs_min	= 2,
54 		.tolerated_failures = 1,
55 		.devs_increment	= 2,
56 		.ncopies	= 2,
57 		.nparity        = 0,
58 		.raid_name	= "raid1",
59 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
60 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
61 	},
62 	[BTRFS_RAID_RAID1C3] = {
63 		.sub_stripes	= 1,
64 		.dev_stripes	= 1,
65 		.devs_max	= 3,
66 		.devs_min	= 3,
67 		.tolerated_failures = 2,
68 		.devs_increment	= 3,
69 		.ncopies	= 3,
70 		.nparity        = 0,
71 		.raid_name	= "raid1c3",
72 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
73 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
74 	},
75 	[BTRFS_RAID_RAID1C4] = {
76 		.sub_stripes	= 1,
77 		.dev_stripes	= 1,
78 		.devs_max	= 4,
79 		.devs_min	= 4,
80 		.tolerated_failures = 3,
81 		.devs_increment	= 4,
82 		.ncopies	= 4,
83 		.nparity        = 0,
84 		.raid_name	= "raid1c4",
85 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
86 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
87 	},
88 	[BTRFS_RAID_DUP] = {
89 		.sub_stripes	= 1,
90 		.dev_stripes	= 2,
91 		.devs_max	= 1,
92 		.devs_min	= 1,
93 		.tolerated_failures = 0,
94 		.devs_increment	= 1,
95 		.ncopies	= 2,
96 		.nparity        = 0,
97 		.raid_name	= "dup",
98 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
99 		.mindev_error	= 0,
100 	},
101 	[BTRFS_RAID_RAID0] = {
102 		.sub_stripes	= 1,
103 		.dev_stripes	= 1,
104 		.devs_max	= 0,
105 		.devs_min	= 2,
106 		.tolerated_failures = 0,
107 		.devs_increment	= 1,
108 		.ncopies	= 1,
109 		.nparity        = 0,
110 		.raid_name	= "raid0",
111 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
112 		.mindev_error	= 0,
113 	},
114 	[BTRFS_RAID_SINGLE] = {
115 		.sub_stripes	= 1,
116 		.dev_stripes	= 1,
117 		.devs_max	= 1,
118 		.devs_min	= 1,
119 		.tolerated_failures = 0,
120 		.devs_increment	= 1,
121 		.ncopies	= 1,
122 		.nparity        = 0,
123 		.raid_name	= "single",
124 		.bg_flag	= 0,
125 		.mindev_error	= 0,
126 	},
127 	[BTRFS_RAID_RAID5] = {
128 		.sub_stripes	= 1,
129 		.dev_stripes	= 1,
130 		.devs_max	= 0,
131 		.devs_min	= 2,
132 		.tolerated_failures = 1,
133 		.devs_increment	= 1,
134 		.ncopies	= 1,
135 		.nparity        = 1,
136 		.raid_name	= "raid5",
137 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
138 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
139 	},
140 	[BTRFS_RAID_RAID6] = {
141 		.sub_stripes	= 1,
142 		.dev_stripes	= 1,
143 		.devs_max	= 0,
144 		.devs_min	= 3,
145 		.tolerated_failures = 2,
146 		.devs_increment	= 1,
147 		.ncopies	= 1,
148 		.nparity        = 2,
149 		.raid_name	= "raid6",
150 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
151 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
152 	},
153 };
154 
155 const char *btrfs_bg_type_to_raid_name(u64 flags)
156 {
157 	const int index = btrfs_bg_flags_to_raid_index(flags);
158 
159 	if (index >= BTRFS_NR_RAID_TYPES)
160 		return NULL;
161 
162 	return btrfs_raid_array[index].raid_name;
163 }
164 
165 /*
166  * Fill @buf with textual description of @bg_flags, no more than @size_buf
167  * bytes including terminating null byte.
168  */
169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
170 {
171 	int i;
172 	int ret;
173 	char *bp = buf;
174 	u64 flags = bg_flags;
175 	u32 size_bp = size_buf;
176 
177 	if (!flags) {
178 		strcpy(bp, "NONE");
179 		return;
180 	}
181 
182 #define DESCRIBE_FLAG(flag, desc)						\
183 	do {								\
184 		if (flags & (flag)) {					\
185 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
186 			if (ret < 0 || ret >= size_bp)			\
187 				goto out_overflow;			\
188 			size_bp -= ret;					\
189 			bp += ret;					\
190 			flags &= ~(flag);				\
191 		}							\
192 	} while (0)
193 
194 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
195 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
196 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
197 
198 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
199 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
200 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
201 			      btrfs_raid_array[i].raid_name);
202 #undef DESCRIBE_FLAG
203 
204 	if (flags) {
205 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
206 		size_bp -= ret;
207 	}
208 
209 	if (size_bp < size_buf)
210 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
211 
212 	/*
213 	 * The text is trimmed, it's up to the caller to provide sufficiently
214 	 * large buffer
215 	 */
216 out_overflow:;
217 }
218 
219 static int init_first_rw_device(struct btrfs_trans_handle *trans);
220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
224 			     enum btrfs_map_op op,
225 			     u64 logical, u64 *length,
226 			     struct btrfs_bio **bbio_ret,
227 			     int mirror_num, int need_raid_map);
228 
229 /*
230  * Device locking
231  * ==============
232  *
233  * There are several mutexes that protect manipulation of devices and low-level
234  * structures like chunks but not block groups, extents or files
235  *
236  * uuid_mutex (global lock)
237  * ------------------------
238  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
239  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
240  * device) or requested by the device= mount option
241  *
242  * the mutex can be very coarse and can cover long-running operations
243  *
244  * protects: updates to fs_devices counters like missing devices, rw devices,
245  * seeding, structure cloning, opening/closing devices at mount/umount time
246  *
247  * global::fs_devs - add, remove, updates to the global list
248  *
249  * does not protect: manipulation of the fs_devices::devices list in general
250  * but in mount context it could be used to exclude list modifications by eg.
251  * scan ioctl
252  *
253  * btrfs_device::name - renames (write side), read is RCU
254  *
255  * fs_devices::device_list_mutex (per-fs, with RCU)
256  * ------------------------------------------------
257  * protects updates to fs_devices::devices, ie. adding and deleting
258  *
259  * simple list traversal with read-only actions can be done with RCU protection
260  *
261  * may be used to exclude some operations from running concurrently without any
262  * modifications to the list (see write_all_supers)
263  *
264  * Is not required at mount and close times, because our device list is
265  * protected by the uuid_mutex at that point.
266  *
267  * balance_mutex
268  * -------------
269  * protects balance structures (status, state) and context accessed from
270  * several places (internally, ioctl)
271  *
272  * chunk_mutex
273  * -----------
274  * protects chunks, adding or removing during allocation, trim or when a new
275  * device is added/removed. Additionally it also protects post_commit_list of
276  * individual devices, since they can be added to the transaction's
277  * post_commit_list only with chunk_mutex held.
278  *
279  * cleaner_mutex
280  * -------------
281  * a big lock that is held by the cleaner thread and prevents running subvolume
282  * cleaning together with relocation or delayed iputs
283  *
284  *
285  * Lock nesting
286  * ============
287  *
288  * uuid_mutex
289  *   device_list_mutex
290  *     chunk_mutex
291  *   balance_mutex
292  *
293  *
294  * Exclusive operations
295  * ====================
296  *
297  * Maintains the exclusivity of the following operations that apply to the
298  * whole filesystem and cannot run in parallel.
299  *
300  * - Balance (*)
301  * - Device add
302  * - Device remove
303  * - Device replace (*)
304  * - Resize
305  *
306  * The device operations (as above) can be in one of the following states:
307  *
308  * - Running state
309  * - Paused state
310  * - Completed state
311  *
312  * Only device operations marked with (*) can go into the Paused state for the
313  * following reasons:
314  *
315  * - ioctl (only Balance can be Paused through ioctl)
316  * - filesystem remounted as read-only
317  * - filesystem unmounted and mounted as read-only
318  * - system power-cycle and filesystem mounted as read-only
319  * - filesystem or device errors leading to forced read-only
320  *
321  * The status of exclusive operation is set and cleared atomically.
322  * During the course of Paused state, fs_info::exclusive_operation remains set.
323  * A device operation in Paused or Running state can be canceled or resumed
324  * either by ioctl (Balance only) or when remounted as read-write.
325  * The exclusive status is cleared when the device operation is canceled or
326  * completed.
327  */
328 
329 DEFINE_MUTEX(uuid_mutex);
330 static LIST_HEAD(fs_uuids);
331 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
332 {
333 	return &fs_uuids;
334 }
335 
336 /*
337  * alloc_fs_devices - allocate struct btrfs_fs_devices
338  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
339  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
340  *
341  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
342  * The returned struct is not linked onto any lists and can be destroyed with
343  * kfree() right away.
344  */
345 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
346 						 const u8 *metadata_fsid)
347 {
348 	struct btrfs_fs_devices *fs_devs;
349 
350 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
351 	if (!fs_devs)
352 		return ERR_PTR(-ENOMEM);
353 
354 	mutex_init(&fs_devs->device_list_mutex);
355 
356 	INIT_LIST_HEAD(&fs_devs->devices);
357 	INIT_LIST_HEAD(&fs_devs->alloc_list);
358 	INIT_LIST_HEAD(&fs_devs->fs_list);
359 	INIT_LIST_HEAD(&fs_devs->seed_list);
360 	if (fsid)
361 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
362 
363 	if (metadata_fsid)
364 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
365 	else if (fsid)
366 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
367 
368 	return fs_devs;
369 }
370 
371 void btrfs_free_device(struct btrfs_device *device)
372 {
373 	WARN_ON(!list_empty(&device->post_commit_list));
374 	rcu_string_free(device->name);
375 	extent_io_tree_release(&device->alloc_state);
376 	bio_put(device->flush_bio);
377 	kfree(device);
378 }
379 
380 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
381 {
382 	struct btrfs_device *device;
383 	WARN_ON(fs_devices->opened);
384 	while (!list_empty(&fs_devices->devices)) {
385 		device = list_entry(fs_devices->devices.next,
386 				    struct btrfs_device, dev_list);
387 		list_del(&device->dev_list);
388 		btrfs_free_device(device);
389 	}
390 	kfree(fs_devices);
391 }
392 
393 void __exit btrfs_cleanup_fs_uuids(void)
394 {
395 	struct btrfs_fs_devices *fs_devices;
396 
397 	while (!list_empty(&fs_uuids)) {
398 		fs_devices = list_entry(fs_uuids.next,
399 					struct btrfs_fs_devices, fs_list);
400 		list_del(&fs_devices->fs_list);
401 		free_fs_devices(fs_devices);
402 	}
403 }
404 
405 /*
406  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
407  * Returned struct is not linked onto any lists and must be destroyed using
408  * btrfs_free_device.
409  */
410 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
411 {
412 	struct btrfs_device *dev;
413 
414 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
415 	if (!dev)
416 		return ERR_PTR(-ENOMEM);
417 
418 	/*
419 	 * Preallocate a bio that's always going to be used for flushing device
420 	 * barriers and matches the device lifespan
421 	 */
422 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
423 	if (!dev->flush_bio) {
424 		kfree(dev);
425 		return ERR_PTR(-ENOMEM);
426 	}
427 
428 	INIT_LIST_HEAD(&dev->dev_list);
429 	INIT_LIST_HEAD(&dev->dev_alloc_list);
430 	INIT_LIST_HEAD(&dev->post_commit_list);
431 
432 	atomic_set(&dev->reada_in_flight, 0);
433 	atomic_set(&dev->dev_stats_ccnt, 0);
434 	btrfs_device_data_ordered_init(dev);
435 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
436 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
437 	extent_io_tree_init(fs_info, &dev->alloc_state,
438 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
439 
440 	return dev;
441 }
442 
443 static noinline struct btrfs_fs_devices *find_fsid(
444 		const u8 *fsid, const u8 *metadata_fsid)
445 {
446 	struct btrfs_fs_devices *fs_devices;
447 
448 	ASSERT(fsid);
449 
450 	/* Handle non-split brain cases */
451 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
452 		if (metadata_fsid) {
453 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
454 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
455 				      BTRFS_FSID_SIZE) == 0)
456 				return fs_devices;
457 		} else {
458 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
459 				return fs_devices;
460 		}
461 	}
462 	return NULL;
463 }
464 
465 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
466 				struct btrfs_super_block *disk_super)
467 {
468 
469 	struct btrfs_fs_devices *fs_devices;
470 
471 	/*
472 	 * Handle scanned device having completed its fsid change but
473 	 * belonging to a fs_devices that was created by first scanning
474 	 * a device which didn't have its fsid/metadata_uuid changed
475 	 * at all and the CHANGING_FSID_V2 flag set.
476 	 */
477 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
478 		if (fs_devices->fsid_change &&
479 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
480 			   BTRFS_FSID_SIZE) == 0 &&
481 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
482 			   BTRFS_FSID_SIZE) == 0) {
483 			return fs_devices;
484 		}
485 	}
486 	/*
487 	 * Handle scanned device having completed its fsid change but
488 	 * belonging to a fs_devices that was created by a device that
489 	 * has an outdated pair of fsid/metadata_uuid and
490 	 * CHANGING_FSID_V2 flag set.
491 	 */
492 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
493 		if (fs_devices->fsid_change &&
494 		    memcmp(fs_devices->metadata_uuid,
495 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
496 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
497 			   BTRFS_FSID_SIZE) == 0) {
498 			return fs_devices;
499 		}
500 	}
501 
502 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
503 }
504 
505 
506 static int
507 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
508 		      int flush, struct block_device **bdev,
509 		      struct btrfs_super_block **disk_super)
510 {
511 	int ret;
512 
513 	*bdev = blkdev_get_by_path(device_path, flags, holder);
514 
515 	if (IS_ERR(*bdev)) {
516 		ret = PTR_ERR(*bdev);
517 		goto error;
518 	}
519 
520 	if (flush)
521 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
522 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
523 	if (ret) {
524 		blkdev_put(*bdev, flags);
525 		goto error;
526 	}
527 	invalidate_bdev(*bdev);
528 	*disk_super = btrfs_read_dev_super(*bdev);
529 	if (IS_ERR(*disk_super)) {
530 		ret = PTR_ERR(*disk_super);
531 		blkdev_put(*bdev, flags);
532 		goto error;
533 	}
534 
535 	return 0;
536 
537 error:
538 	*bdev = NULL;
539 	return ret;
540 }
541 
542 static bool device_path_matched(const char *path, struct btrfs_device *device)
543 {
544 	int found;
545 
546 	rcu_read_lock();
547 	found = strcmp(rcu_str_deref(device->name), path);
548 	rcu_read_unlock();
549 
550 	return found == 0;
551 }
552 
553 /*
554  *  Search and remove all stale (devices which are not mounted) devices.
555  *  When both inputs are NULL, it will search and release all stale devices.
556  *  path:	Optional. When provided will it release all unmounted devices
557  *		matching this path only.
558  *  skip_dev:	Optional. Will skip this device when searching for the stale
559  *		devices.
560  *  Return:	0 for success or if @path is NULL.
561  * 		-EBUSY if @path is a mounted device.
562  * 		-ENOENT if @path does not match any device in the list.
563  */
564 static int btrfs_free_stale_devices(const char *path,
565 				     struct btrfs_device *skip_device)
566 {
567 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
568 	struct btrfs_device *device, *tmp_device;
569 	int ret = 0;
570 
571 	if (path)
572 		ret = -ENOENT;
573 
574 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
575 
576 		mutex_lock(&fs_devices->device_list_mutex);
577 		list_for_each_entry_safe(device, tmp_device,
578 					 &fs_devices->devices, dev_list) {
579 			if (skip_device && skip_device == device)
580 				continue;
581 			if (path && !device->name)
582 				continue;
583 			if (path && !device_path_matched(path, device))
584 				continue;
585 			if (fs_devices->opened) {
586 				/* for an already deleted device return 0 */
587 				if (path && ret != 0)
588 					ret = -EBUSY;
589 				break;
590 			}
591 
592 			/* delete the stale device */
593 			fs_devices->num_devices--;
594 			list_del(&device->dev_list);
595 			btrfs_free_device(device);
596 
597 			ret = 0;
598 		}
599 		mutex_unlock(&fs_devices->device_list_mutex);
600 
601 		if (fs_devices->num_devices == 0) {
602 			btrfs_sysfs_remove_fsid(fs_devices);
603 			list_del(&fs_devices->fs_list);
604 			free_fs_devices(fs_devices);
605 		}
606 	}
607 
608 	return ret;
609 }
610 
611 /*
612  * This is only used on mount, and we are protected from competing things
613  * messing with our fs_devices by the uuid_mutex, thus we do not need the
614  * fs_devices->device_list_mutex here.
615  */
616 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
617 			struct btrfs_device *device, fmode_t flags,
618 			void *holder)
619 {
620 	struct request_queue *q;
621 	struct block_device *bdev;
622 	struct btrfs_super_block *disk_super;
623 	u64 devid;
624 	int ret;
625 
626 	if (device->bdev)
627 		return -EINVAL;
628 	if (!device->name)
629 		return -EINVAL;
630 
631 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
632 				    &bdev, &disk_super);
633 	if (ret)
634 		return ret;
635 
636 	devid = btrfs_stack_device_id(&disk_super->dev_item);
637 	if (devid != device->devid)
638 		goto error_free_page;
639 
640 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
641 		goto error_free_page;
642 
643 	device->generation = btrfs_super_generation(disk_super);
644 
645 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
646 		if (btrfs_super_incompat_flags(disk_super) &
647 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
648 			pr_err(
649 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
650 			goto error_free_page;
651 		}
652 
653 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654 		fs_devices->seeding = true;
655 	} else {
656 		if (bdev_read_only(bdev))
657 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
658 		else
659 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 	}
661 
662 	q = bdev_get_queue(bdev);
663 	if (!blk_queue_nonrot(q))
664 		fs_devices->rotating = true;
665 
666 	device->bdev = bdev;
667 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
668 	device->mode = flags;
669 
670 	fs_devices->open_devices++;
671 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
672 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
673 		fs_devices->rw_devices++;
674 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
675 	}
676 	btrfs_release_disk_super(disk_super);
677 
678 	return 0;
679 
680 error_free_page:
681 	btrfs_release_disk_super(disk_super);
682 	blkdev_put(bdev, flags);
683 
684 	return -EINVAL;
685 }
686 
687 /*
688  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
689  * being created with a disk that has already completed its fsid change. Such
690  * disk can belong to an fs which has its FSID changed or to one which doesn't.
691  * Handle both cases here.
692  */
693 static struct btrfs_fs_devices *find_fsid_inprogress(
694 					struct btrfs_super_block *disk_super)
695 {
696 	struct btrfs_fs_devices *fs_devices;
697 
698 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
699 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
700 			   BTRFS_FSID_SIZE) != 0 &&
701 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
702 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
703 			return fs_devices;
704 		}
705 	}
706 
707 	return find_fsid(disk_super->fsid, NULL);
708 }
709 
710 
711 static struct btrfs_fs_devices *find_fsid_changed(
712 					struct btrfs_super_block *disk_super)
713 {
714 	struct btrfs_fs_devices *fs_devices;
715 
716 	/*
717 	 * Handles the case where scanned device is part of an fs that had
718 	 * multiple successful changes of FSID but curently device didn't
719 	 * observe it. Meaning our fsid will be different than theirs. We need
720 	 * to handle two subcases :
721 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
722 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
723 	 *  are equal).
724 	 */
725 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
726 		/* Changed UUIDs */
727 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
728 			   BTRFS_FSID_SIZE) != 0 &&
729 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
730 			   BTRFS_FSID_SIZE) == 0 &&
731 		    memcmp(fs_devices->fsid, disk_super->fsid,
732 			   BTRFS_FSID_SIZE) != 0)
733 			return fs_devices;
734 
735 		/* Unchanged UUIDs */
736 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737 			   BTRFS_FSID_SIZE) == 0 &&
738 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739 			   BTRFS_FSID_SIZE) == 0)
740 			return fs_devices;
741 	}
742 
743 	return NULL;
744 }
745 
746 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747 				struct btrfs_super_block *disk_super)
748 {
749 	struct btrfs_fs_devices *fs_devices;
750 
751 	/*
752 	 * Handle the case where the scanned device is part of an fs whose last
753 	 * metadata UUID change reverted it to the original FSID. At the same
754 	 * time * fs_devices was first created by another constitutent device
755 	 * which didn't fully observe the operation. This results in an
756 	 * btrfs_fs_devices created with metadata/fsid different AND
757 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758 	 * fs_devices equal to the FSID of the disk.
759 	 */
760 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
761 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
762 			   BTRFS_FSID_SIZE) != 0 &&
763 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
764 			   BTRFS_FSID_SIZE) == 0 &&
765 		    fs_devices->fsid_change)
766 			return fs_devices;
767 	}
768 
769 	return NULL;
770 }
771 /*
772  * Add new device to list of registered devices
773  *
774  * Returns:
775  * device pointer which was just added or updated when successful
776  * error pointer when failed
777  */
778 static noinline struct btrfs_device *device_list_add(const char *path,
779 			   struct btrfs_super_block *disk_super,
780 			   bool *new_device_added)
781 {
782 	struct btrfs_device *device;
783 	struct btrfs_fs_devices *fs_devices = NULL;
784 	struct rcu_string *name;
785 	u64 found_transid = btrfs_super_generation(disk_super);
786 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
787 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
788 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
789 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
790 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
791 
792 	if (fsid_change_in_progress) {
793 		if (!has_metadata_uuid)
794 			fs_devices = find_fsid_inprogress(disk_super);
795 		else
796 			fs_devices = find_fsid_changed(disk_super);
797 	} else if (has_metadata_uuid) {
798 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
799 	} else {
800 		fs_devices = find_fsid_reverted_metadata(disk_super);
801 		if (!fs_devices)
802 			fs_devices = find_fsid(disk_super->fsid, NULL);
803 	}
804 
805 
806 	if (!fs_devices) {
807 		if (has_metadata_uuid)
808 			fs_devices = alloc_fs_devices(disk_super->fsid,
809 						      disk_super->metadata_uuid);
810 		else
811 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
812 
813 		if (IS_ERR(fs_devices))
814 			return ERR_CAST(fs_devices);
815 
816 		fs_devices->fsid_change = fsid_change_in_progress;
817 
818 		mutex_lock(&fs_devices->device_list_mutex);
819 		list_add(&fs_devices->fs_list, &fs_uuids);
820 
821 		device = NULL;
822 	} else {
823 		mutex_lock(&fs_devices->device_list_mutex);
824 		device = btrfs_find_device(fs_devices, devid,
825 				disk_super->dev_item.uuid, NULL, false);
826 
827 		/*
828 		 * If this disk has been pulled into an fs devices created by
829 		 * a device which had the CHANGING_FSID_V2 flag then replace the
830 		 * metadata_uuid/fsid values of the fs_devices.
831 		 */
832 		if (fs_devices->fsid_change &&
833 		    found_transid > fs_devices->latest_generation) {
834 			memcpy(fs_devices->fsid, disk_super->fsid,
835 					BTRFS_FSID_SIZE);
836 
837 			if (has_metadata_uuid)
838 				memcpy(fs_devices->metadata_uuid,
839 				       disk_super->metadata_uuid,
840 				       BTRFS_FSID_SIZE);
841 			else
842 				memcpy(fs_devices->metadata_uuid,
843 				       disk_super->fsid, BTRFS_FSID_SIZE);
844 
845 			fs_devices->fsid_change = false;
846 		}
847 	}
848 
849 	if (!device) {
850 		if (fs_devices->opened) {
851 			mutex_unlock(&fs_devices->device_list_mutex);
852 			return ERR_PTR(-EBUSY);
853 		}
854 
855 		device = btrfs_alloc_device(NULL, &devid,
856 					    disk_super->dev_item.uuid);
857 		if (IS_ERR(device)) {
858 			mutex_unlock(&fs_devices->device_list_mutex);
859 			/* we can safely leave the fs_devices entry around */
860 			return device;
861 		}
862 
863 		name = rcu_string_strdup(path, GFP_NOFS);
864 		if (!name) {
865 			btrfs_free_device(device);
866 			mutex_unlock(&fs_devices->device_list_mutex);
867 			return ERR_PTR(-ENOMEM);
868 		}
869 		rcu_assign_pointer(device->name, name);
870 
871 		list_add_rcu(&device->dev_list, &fs_devices->devices);
872 		fs_devices->num_devices++;
873 
874 		device->fs_devices = fs_devices;
875 		*new_device_added = true;
876 
877 		if (disk_super->label[0])
878 			pr_info(
879 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
880 				disk_super->label, devid, found_transid, path,
881 				current->comm, task_pid_nr(current));
882 		else
883 			pr_info(
884 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
885 				disk_super->fsid, devid, found_transid, path,
886 				current->comm, task_pid_nr(current));
887 
888 	} else if (!device->name || strcmp(device->name->str, path)) {
889 		/*
890 		 * When FS is already mounted.
891 		 * 1. If you are here and if the device->name is NULL that
892 		 *    means this device was missing at time of FS mount.
893 		 * 2. If you are here and if the device->name is different
894 		 *    from 'path' that means either
895 		 *      a. The same device disappeared and reappeared with
896 		 *         different name. or
897 		 *      b. The missing-disk-which-was-replaced, has
898 		 *         reappeared now.
899 		 *
900 		 * We must allow 1 and 2a above. But 2b would be a spurious
901 		 * and unintentional.
902 		 *
903 		 * Further in case of 1 and 2a above, the disk at 'path'
904 		 * would have missed some transaction when it was away and
905 		 * in case of 2a the stale bdev has to be updated as well.
906 		 * 2b must not be allowed at all time.
907 		 */
908 
909 		/*
910 		 * For now, we do allow update to btrfs_fs_device through the
911 		 * btrfs dev scan cli after FS has been mounted.  We're still
912 		 * tracking a problem where systems fail mount by subvolume id
913 		 * when we reject replacement on a mounted FS.
914 		 */
915 		if (!fs_devices->opened && found_transid < device->generation) {
916 			/*
917 			 * That is if the FS is _not_ mounted and if you
918 			 * are here, that means there is more than one
919 			 * disk with same uuid and devid.We keep the one
920 			 * with larger generation number or the last-in if
921 			 * generation are equal.
922 			 */
923 			mutex_unlock(&fs_devices->device_list_mutex);
924 			return ERR_PTR(-EEXIST);
925 		}
926 
927 		/*
928 		 * We are going to replace the device path for a given devid,
929 		 * make sure it's the same device if the device is mounted
930 		 */
931 		if (device->bdev) {
932 			struct block_device *path_bdev;
933 
934 			path_bdev = lookup_bdev(path);
935 			if (IS_ERR(path_bdev)) {
936 				mutex_unlock(&fs_devices->device_list_mutex);
937 				return ERR_CAST(path_bdev);
938 			}
939 
940 			if (device->bdev != path_bdev) {
941 				bdput(path_bdev);
942 				mutex_unlock(&fs_devices->device_list_mutex);
943 				btrfs_warn_in_rcu(device->fs_info,
944 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
945 						  path, devid, found_transid,
946 						  current->comm,
947 						  task_pid_nr(current));
948 				return ERR_PTR(-EEXIST);
949 			}
950 			bdput(path_bdev);
951 			btrfs_info_in_rcu(device->fs_info,
952 	"devid %llu device path %s changed to %s scanned by %s (%d)",
953 					  devid, rcu_str_deref(device->name),
954 					  path, current->comm,
955 					  task_pid_nr(current));
956 		}
957 
958 		name = rcu_string_strdup(path, GFP_NOFS);
959 		if (!name) {
960 			mutex_unlock(&fs_devices->device_list_mutex);
961 			return ERR_PTR(-ENOMEM);
962 		}
963 		rcu_string_free(device->name);
964 		rcu_assign_pointer(device->name, name);
965 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
966 			fs_devices->missing_devices--;
967 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
968 		}
969 	}
970 
971 	/*
972 	 * Unmount does not free the btrfs_device struct but would zero
973 	 * generation along with most of the other members. So just update
974 	 * it back. We need it to pick the disk with largest generation
975 	 * (as above).
976 	 */
977 	if (!fs_devices->opened) {
978 		device->generation = found_transid;
979 		fs_devices->latest_generation = max_t(u64, found_transid,
980 						fs_devices->latest_generation);
981 	}
982 
983 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
984 
985 	mutex_unlock(&fs_devices->device_list_mutex);
986 	return device;
987 }
988 
989 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
990 {
991 	struct btrfs_fs_devices *fs_devices;
992 	struct btrfs_device *device;
993 	struct btrfs_device *orig_dev;
994 	int ret = 0;
995 
996 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
997 	if (IS_ERR(fs_devices))
998 		return fs_devices;
999 
1000 	mutex_lock(&orig->device_list_mutex);
1001 	fs_devices->total_devices = orig->total_devices;
1002 
1003 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1004 		struct rcu_string *name;
1005 
1006 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1007 					    orig_dev->uuid);
1008 		if (IS_ERR(device)) {
1009 			ret = PTR_ERR(device);
1010 			goto error;
1011 		}
1012 
1013 		/*
1014 		 * This is ok to do without rcu read locked because we hold the
1015 		 * uuid mutex so nothing we touch in here is going to disappear.
1016 		 */
1017 		if (orig_dev->name) {
1018 			name = rcu_string_strdup(orig_dev->name->str,
1019 					GFP_KERNEL);
1020 			if (!name) {
1021 				btrfs_free_device(device);
1022 				ret = -ENOMEM;
1023 				goto error;
1024 			}
1025 			rcu_assign_pointer(device->name, name);
1026 		}
1027 
1028 		list_add(&device->dev_list, &fs_devices->devices);
1029 		device->fs_devices = fs_devices;
1030 		fs_devices->num_devices++;
1031 	}
1032 	mutex_unlock(&orig->device_list_mutex);
1033 	return fs_devices;
1034 error:
1035 	mutex_unlock(&orig->device_list_mutex);
1036 	free_fs_devices(fs_devices);
1037 	return ERR_PTR(ret);
1038 }
1039 
1040 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1041 				      int step, struct btrfs_device **latest_dev)
1042 {
1043 	struct btrfs_device *device, *next;
1044 
1045 	/* This is the initialized path, it is safe to release the devices. */
1046 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1047 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1048 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1049 				      &device->dev_state) &&
1050 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1051 				      &device->dev_state) &&
1052 			    (!*latest_dev ||
1053 			     device->generation > (*latest_dev)->generation)) {
1054 				*latest_dev = device;
1055 			}
1056 			continue;
1057 		}
1058 
1059 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1060 			/*
1061 			 * In the first step, keep the device which has
1062 			 * the correct fsid and the devid that is used
1063 			 * for the dev_replace procedure.
1064 			 * In the second step, the dev_replace state is
1065 			 * read from the device tree and it is known
1066 			 * whether the procedure is really active or
1067 			 * not, which means whether this device is
1068 			 * used or whether it should be removed.
1069 			 */
1070 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1071 						  &device->dev_state)) {
1072 				continue;
1073 			}
1074 		}
1075 		if (device->bdev) {
1076 			blkdev_put(device->bdev, device->mode);
1077 			device->bdev = NULL;
1078 			fs_devices->open_devices--;
1079 		}
1080 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1081 			list_del_init(&device->dev_alloc_list);
1082 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1083 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1084 				      &device->dev_state))
1085 				fs_devices->rw_devices--;
1086 		}
1087 		list_del_init(&device->dev_list);
1088 		fs_devices->num_devices--;
1089 		btrfs_free_device(device);
1090 	}
1091 
1092 }
1093 
1094 /*
1095  * After we have read the system tree and know devids belonging to this
1096  * filesystem, remove the device which does not belong there.
1097  */
1098 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1099 {
1100 	struct btrfs_device *latest_dev = NULL;
1101 	struct btrfs_fs_devices *seed_dev;
1102 
1103 	mutex_lock(&uuid_mutex);
1104 	__btrfs_free_extra_devids(fs_devices, step, &latest_dev);
1105 
1106 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1107 		__btrfs_free_extra_devids(seed_dev, step, &latest_dev);
1108 
1109 	fs_devices->latest_bdev = latest_dev->bdev;
1110 
1111 	mutex_unlock(&uuid_mutex);
1112 }
1113 
1114 static void btrfs_close_bdev(struct btrfs_device *device)
1115 {
1116 	if (!device->bdev)
1117 		return;
1118 
1119 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1120 		sync_blockdev(device->bdev);
1121 		invalidate_bdev(device->bdev);
1122 	}
1123 
1124 	blkdev_put(device->bdev, device->mode);
1125 }
1126 
1127 static void btrfs_close_one_device(struct btrfs_device *device)
1128 {
1129 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1130 
1131 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1132 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1133 		list_del_init(&device->dev_alloc_list);
1134 		fs_devices->rw_devices--;
1135 	}
1136 
1137 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1138 		fs_devices->missing_devices--;
1139 
1140 	btrfs_close_bdev(device);
1141 	if (device->bdev) {
1142 		fs_devices->open_devices--;
1143 		device->bdev = NULL;
1144 	}
1145 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1146 
1147 	device->fs_info = NULL;
1148 	atomic_set(&device->dev_stats_ccnt, 0);
1149 	extent_io_tree_release(&device->alloc_state);
1150 
1151 	/* Verify the device is back in a pristine state  */
1152 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1153 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1154 	ASSERT(list_empty(&device->dev_alloc_list));
1155 	ASSERT(list_empty(&device->post_commit_list));
1156 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1157 }
1158 
1159 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160 {
1161 	struct btrfs_device *device, *tmp;
1162 
1163 	lockdep_assert_held(&uuid_mutex);
1164 
1165 	if (--fs_devices->opened > 0)
1166 		return;
1167 
1168 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169 		btrfs_close_one_device(device);
1170 
1171 	WARN_ON(fs_devices->open_devices);
1172 	WARN_ON(fs_devices->rw_devices);
1173 	fs_devices->opened = 0;
1174 	fs_devices->seeding = false;
1175 	fs_devices->fs_info = NULL;
1176 }
1177 
1178 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1179 {
1180 	LIST_HEAD(list);
1181 	struct btrfs_fs_devices *tmp;
1182 
1183 	mutex_lock(&uuid_mutex);
1184 	close_fs_devices(fs_devices);
1185 	if (!fs_devices->opened)
1186 		list_splice_init(&fs_devices->seed_list, &list);
1187 
1188 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1189 		close_fs_devices(fs_devices);
1190 		list_del(&fs_devices->seed_list);
1191 		free_fs_devices(fs_devices);
1192 	}
1193 	mutex_unlock(&uuid_mutex);
1194 }
1195 
1196 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1197 				fmode_t flags, void *holder)
1198 {
1199 	struct btrfs_device *device;
1200 	struct btrfs_device *latest_dev = NULL;
1201 	struct btrfs_device *tmp_device;
1202 
1203 	flags |= FMODE_EXCL;
1204 
1205 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1206 				 dev_list) {
1207 		int ret;
1208 
1209 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1210 		if (ret == 0 &&
1211 		    (!latest_dev || device->generation > latest_dev->generation)) {
1212 			latest_dev = device;
1213 		} else if (ret == -ENODATA) {
1214 			fs_devices->num_devices--;
1215 			list_del(&device->dev_list);
1216 			btrfs_free_device(device);
1217 		}
1218 	}
1219 	if (fs_devices->open_devices == 0)
1220 		return -EINVAL;
1221 
1222 	fs_devices->opened = 1;
1223 	fs_devices->latest_bdev = latest_dev->bdev;
1224 	fs_devices->total_rw_bytes = 0;
1225 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1226 
1227 	return 0;
1228 }
1229 
1230 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1231 {
1232 	struct btrfs_device *dev1, *dev2;
1233 
1234 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1235 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1236 
1237 	if (dev1->devid < dev2->devid)
1238 		return -1;
1239 	else if (dev1->devid > dev2->devid)
1240 		return 1;
1241 	return 0;
1242 }
1243 
1244 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1245 		       fmode_t flags, void *holder)
1246 {
1247 	int ret;
1248 
1249 	lockdep_assert_held(&uuid_mutex);
1250 	/*
1251 	 * The device_list_mutex cannot be taken here in case opening the
1252 	 * underlying device takes further locks like bd_mutex.
1253 	 *
1254 	 * We also don't need the lock here as this is called during mount and
1255 	 * exclusion is provided by uuid_mutex
1256 	 */
1257 
1258 	if (fs_devices->opened) {
1259 		fs_devices->opened++;
1260 		ret = 0;
1261 	} else {
1262 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1263 		ret = open_fs_devices(fs_devices, flags, holder);
1264 	}
1265 
1266 	return ret;
1267 }
1268 
1269 void btrfs_release_disk_super(struct btrfs_super_block *super)
1270 {
1271 	struct page *page = virt_to_page(super);
1272 
1273 	put_page(page);
1274 }
1275 
1276 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1277 						       u64 bytenr)
1278 {
1279 	struct btrfs_super_block *disk_super;
1280 	struct page *page;
1281 	void *p;
1282 	pgoff_t index;
1283 
1284 	/* make sure our super fits in the device */
1285 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1286 		return ERR_PTR(-EINVAL);
1287 
1288 	/* make sure our super fits in the page */
1289 	if (sizeof(*disk_super) > PAGE_SIZE)
1290 		return ERR_PTR(-EINVAL);
1291 
1292 	/* make sure our super doesn't straddle pages on disk */
1293 	index = bytenr >> PAGE_SHIFT;
1294 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1295 		return ERR_PTR(-EINVAL);
1296 
1297 	/* pull in the page with our super */
1298 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1299 
1300 	if (IS_ERR(page))
1301 		return ERR_CAST(page);
1302 
1303 	p = page_address(page);
1304 
1305 	/* align our pointer to the offset of the super block */
1306 	disk_super = p + offset_in_page(bytenr);
1307 
1308 	if (btrfs_super_bytenr(disk_super) != bytenr ||
1309 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1310 		btrfs_release_disk_super(p);
1311 		return ERR_PTR(-EINVAL);
1312 	}
1313 
1314 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1315 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1316 
1317 	return disk_super;
1318 }
1319 
1320 int btrfs_forget_devices(const char *path)
1321 {
1322 	int ret;
1323 
1324 	mutex_lock(&uuid_mutex);
1325 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1326 	mutex_unlock(&uuid_mutex);
1327 
1328 	return ret;
1329 }
1330 
1331 /*
1332  * Look for a btrfs signature on a device. This may be called out of the mount path
1333  * and we are not allowed to call set_blocksize during the scan. The superblock
1334  * is read via pagecache
1335  */
1336 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1337 					   void *holder)
1338 {
1339 	struct btrfs_super_block *disk_super;
1340 	bool new_device_added = false;
1341 	struct btrfs_device *device = NULL;
1342 	struct block_device *bdev;
1343 	u64 bytenr;
1344 
1345 	lockdep_assert_held(&uuid_mutex);
1346 
1347 	/*
1348 	 * we would like to check all the supers, but that would make
1349 	 * a btrfs mount succeed after a mkfs from a different FS.
1350 	 * So, we need to add a special mount option to scan for
1351 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1352 	 */
1353 	bytenr = btrfs_sb_offset(0);
1354 	flags |= FMODE_EXCL;
1355 
1356 	bdev = blkdev_get_by_path(path, flags, holder);
1357 	if (IS_ERR(bdev))
1358 		return ERR_CAST(bdev);
1359 
1360 	disk_super = btrfs_read_disk_super(bdev, bytenr);
1361 	if (IS_ERR(disk_super)) {
1362 		device = ERR_CAST(disk_super);
1363 		goto error_bdev_put;
1364 	}
1365 
1366 	device = device_list_add(path, disk_super, &new_device_added);
1367 	if (!IS_ERR(device)) {
1368 		if (new_device_added)
1369 			btrfs_free_stale_devices(path, device);
1370 	}
1371 
1372 	btrfs_release_disk_super(disk_super);
1373 
1374 error_bdev_put:
1375 	blkdev_put(bdev, flags);
1376 
1377 	return device;
1378 }
1379 
1380 /*
1381  * Try to find a chunk that intersects [start, start + len] range and when one
1382  * such is found, record the end of it in *start
1383  */
1384 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1385 				    u64 len)
1386 {
1387 	u64 physical_start, physical_end;
1388 
1389 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1390 
1391 	if (!find_first_extent_bit(&device->alloc_state, *start,
1392 				   &physical_start, &physical_end,
1393 				   CHUNK_ALLOCATED, NULL)) {
1394 
1395 		if (in_range(physical_start, *start, len) ||
1396 		    in_range(*start, physical_start,
1397 			     physical_end - physical_start)) {
1398 			*start = physical_end + 1;
1399 			return true;
1400 		}
1401 	}
1402 	return false;
1403 }
1404 
1405 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1406 {
1407 	switch (device->fs_devices->chunk_alloc_policy) {
1408 	case BTRFS_CHUNK_ALLOC_REGULAR:
1409 		/*
1410 		 * We don't want to overwrite the superblock on the drive nor
1411 		 * any area used by the boot loader (grub for example), so we
1412 		 * make sure to start at an offset of at least 1MB.
1413 		 */
1414 		return max_t(u64, start, SZ_1M);
1415 	default:
1416 		BUG();
1417 	}
1418 }
1419 
1420 /**
1421  * dev_extent_hole_check - check if specified hole is suitable for allocation
1422  * @device:	the device which we have the hole
1423  * @hole_start: starting position of the hole
1424  * @hole_size:	the size of the hole
1425  * @num_bytes:	the size of the free space that we need
1426  *
1427  * This function may modify @hole_start and @hole_end to reflect the suitable
1428  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1429  */
1430 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1431 				  u64 *hole_size, u64 num_bytes)
1432 {
1433 	bool changed = false;
1434 	u64 hole_end = *hole_start + *hole_size;
1435 
1436 	/*
1437 	 * Check before we set max_hole_start, otherwise we could end up
1438 	 * sending back this offset anyway.
1439 	 */
1440 	if (contains_pending_extent(device, hole_start, *hole_size)) {
1441 		if (hole_end >= *hole_start)
1442 			*hole_size = hole_end - *hole_start;
1443 		else
1444 			*hole_size = 0;
1445 		changed = true;
1446 	}
1447 
1448 	switch (device->fs_devices->chunk_alloc_policy) {
1449 	case BTRFS_CHUNK_ALLOC_REGULAR:
1450 		/* No extra check */
1451 		break;
1452 	default:
1453 		BUG();
1454 	}
1455 
1456 	return changed;
1457 }
1458 
1459 /*
1460  * find_free_dev_extent_start - find free space in the specified device
1461  * @device:	  the device which we search the free space in
1462  * @num_bytes:	  the size of the free space that we need
1463  * @search_start: the position from which to begin the search
1464  * @start:	  store the start of the free space.
1465  * @len:	  the size of the free space. that we find, or the size
1466  *		  of the max free space if we don't find suitable free space
1467  *
1468  * this uses a pretty simple search, the expectation is that it is
1469  * called very infrequently and that a given device has a small number
1470  * of extents
1471  *
1472  * @start is used to store the start of the free space if we find. But if we
1473  * don't find suitable free space, it will be used to store the start position
1474  * of the max free space.
1475  *
1476  * @len is used to store the size of the free space that we find.
1477  * But if we don't find suitable free space, it is used to store the size of
1478  * the max free space.
1479  *
1480  * NOTE: This function will search *commit* root of device tree, and does extra
1481  * check to ensure dev extents are not double allocated.
1482  * This makes the function safe to allocate dev extents but may not report
1483  * correct usable device space, as device extent freed in current transaction
1484  * is not reported as avaiable.
1485  */
1486 static int find_free_dev_extent_start(struct btrfs_device *device,
1487 				u64 num_bytes, u64 search_start, u64 *start,
1488 				u64 *len)
1489 {
1490 	struct btrfs_fs_info *fs_info = device->fs_info;
1491 	struct btrfs_root *root = fs_info->dev_root;
1492 	struct btrfs_key key;
1493 	struct btrfs_dev_extent *dev_extent;
1494 	struct btrfs_path *path;
1495 	u64 hole_size;
1496 	u64 max_hole_start;
1497 	u64 max_hole_size;
1498 	u64 extent_end;
1499 	u64 search_end = device->total_bytes;
1500 	int ret;
1501 	int slot;
1502 	struct extent_buffer *l;
1503 
1504 	search_start = dev_extent_search_start(device, search_start);
1505 
1506 	path = btrfs_alloc_path();
1507 	if (!path)
1508 		return -ENOMEM;
1509 
1510 	max_hole_start = search_start;
1511 	max_hole_size = 0;
1512 
1513 again:
1514 	if (search_start >= search_end ||
1515 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1516 		ret = -ENOSPC;
1517 		goto out;
1518 	}
1519 
1520 	path->reada = READA_FORWARD;
1521 	path->search_commit_root = 1;
1522 	path->skip_locking = 1;
1523 
1524 	key.objectid = device->devid;
1525 	key.offset = search_start;
1526 	key.type = BTRFS_DEV_EXTENT_KEY;
1527 
1528 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1529 	if (ret < 0)
1530 		goto out;
1531 	if (ret > 0) {
1532 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1533 		if (ret < 0)
1534 			goto out;
1535 	}
1536 
1537 	while (1) {
1538 		l = path->nodes[0];
1539 		slot = path->slots[0];
1540 		if (slot >= btrfs_header_nritems(l)) {
1541 			ret = btrfs_next_leaf(root, path);
1542 			if (ret == 0)
1543 				continue;
1544 			if (ret < 0)
1545 				goto out;
1546 
1547 			break;
1548 		}
1549 		btrfs_item_key_to_cpu(l, &key, slot);
1550 
1551 		if (key.objectid < device->devid)
1552 			goto next;
1553 
1554 		if (key.objectid > device->devid)
1555 			break;
1556 
1557 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1558 			goto next;
1559 
1560 		if (key.offset > search_start) {
1561 			hole_size = key.offset - search_start;
1562 			dev_extent_hole_check(device, &search_start, &hole_size,
1563 					      num_bytes);
1564 
1565 			if (hole_size > max_hole_size) {
1566 				max_hole_start = search_start;
1567 				max_hole_size = hole_size;
1568 			}
1569 
1570 			/*
1571 			 * If this free space is greater than which we need,
1572 			 * it must be the max free space that we have found
1573 			 * until now, so max_hole_start must point to the start
1574 			 * of this free space and the length of this free space
1575 			 * is stored in max_hole_size. Thus, we return
1576 			 * max_hole_start and max_hole_size and go back to the
1577 			 * caller.
1578 			 */
1579 			if (hole_size >= num_bytes) {
1580 				ret = 0;
1581 				goto out;
1582 			}
1583 		}
1584 
1585 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1586 		extent_end = key.offset + btrfs_dev_extent_length(l,
1587 								  dev_extent);
1588 		if (extent_end > search_start)
1589 			search_start = extent_end;
1590 next:
1591 		path->slots[0]++;
1592 		cond_resched();
1593 	}
1594 
1595 	/*
1596 	 * At this point, search_start should be the end of
1597 	 * allocated dev extents, and when shrinking the device,
1598 	 * search_end may be smaller than search_start.
1599 	 */
1600 	if (search_end > search_start) {
1601 		hole_size = search_end - search_start;
1602 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1603 					  num_bytes)) {
1604 			btrfs_release_path(path);
1605 			goto again;
1606 		}
1607 
1608 		if (hole_size > max_hole_size) {
1609 			max_hole_start = search_start;
1610 			max_hole_size = hole_size;
1611 		}
1612 	}
1613 
1614 	/* See above. */
1615 	if (max_hole_size < num_bytes)
1616 		ret = -ENOSPC;
1617 	else
1618 		ret = 0;
1619 
1620 out:
1621 	btrfs_free_path(path);
1622 	*start = max_hole_start;
1623 	if (len)
1624 		*len = max_hole_size;
1625 	return ret;
1626 }
1627 
1628 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1629 			 u64 *start, u64 *len)
1630 {
1631 	/* FIXME use last free of some kind */
1632 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1633 }
1634 
1635 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1636 			  struct btrfs_device *device,
1637 			  u64 start, u64 *dev_extent_len)
1638 {
1639 	struct btrfs_fs_info *fs_info = device->fs_info;
1640 	struct btrfs_root *root = fs_info->dev_root;
1641 	int ret;
1642 	struct btrfs_path *path;
1643 	struct btrfs_key key;
1644 	struct btrfs_key found_key;
1645 	struct extent_buffer *leaf = NULL;
1646 	struct btrfs_dev_extent *extent = NULL;
1647 
1648 	path = btrfs_alloc_path();
1649 	if (!path)
1650 		return -ENOMEM;
1651 
1652 	key.objectid = device->devid;
1653 	key.offset = start;
1654 	key.type = BTRFS_DEV_EXTENT_KEY;
1655 again:
1656 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1657 	if (ret > 0) {
1658 		ret = btrfs_previous_item(root, path, key.objectid,
1659 					  BTRFS_DEV_EXTENT_KEY);
1660 		if (ret)
1661 			goto out;
1662 		leaf = path->nodes[0];
1663 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1664 		extent = btrfs_item_ptr(leaf, path->slots[0],
1665 					struct btrfs_dev_extent);
1666 		BUG_ON(found_key.offset > start || found_key.offset +
1667 		       btrfs_dev_extent_length(leaf, extent) < start);
1668 		key = found_key;
1669 		btrfs_release_path(path);
1670 		goto again;
1671 	} else if (ret == 0) {
1672 		leaf = path->nodes[0];
1673 		extent = btrfs_item_ptr(leaf, path->slots[0],
1674 					struct btrfs_dev_extent);
1675 	} else {
1676 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1677 		goto out;
1678 	}
1679 
1680 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1681 
1682 	ret = btrfs_del_item(trans, root, path);
1683 	if (ret) {
1684 		btrfs_handle_fs_error(fs_info, ret,
1685 				      "Failed to remove dev extent item");
1686 	} else {
1687 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1688 	}
1689 out:
1690 	btrfs_free_path(path);
1691 	return ret;
1692 }
1693 
1694 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1695 				  struct btrfs_device *device,
1696 				  u64 chunk_offset, u64 start, u64 num_bytes)
1697 {
1698 	int ret;
1699 	struct btrfs_path *path;
1700 	struct btrfs_fs_info *fs_info = device->fs_info;
1701 	struct btrfs_root *root = fs_info->dev_root;
1702 	struct btrfs_dev_extent *extent;
1703 	struct extent_buffer *leaf;
1704 	struct btrfs_key key;
1705 
1706 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1707 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1708 	path = btrfs_alloc_path();
1709 	if (!path)
1710 		return -ENOMEM;
1711 
1712 	key.objectid = device->devid;
1713 	key.offset = start;
1714 	key.type = BTRFS_DEV_EXTENT_KEY;
1715 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1716 				      sizeof(*extent));
1717 	if (ret)
1718 		goto out;
1719 
1720 	leaf = path->nodes[0];
1721 	extent = btrfs_item_ptr(leaf, path->slots[0],
1722 				struct btrfs_dev_extent);
1723 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1724 					BTRFS_CHUNK_TREE_OBJECTID);
1725 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1726 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1727 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1728 
1729 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1730 	btrfs_mark_buffer_dirty(leaf);
1731 out:
1732 	btrfs_free_path(path);
1733 	return ret;
1734 }
1735 
1736 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1737 {
1738 	struct extent_map_tree *em_tree;
1739 	struct extent_map *em;
1740 	struct rb_node *n;
1741 	u64 ret = 0;
1742 
1743 	em_tree = &fs_info->mapping_tree;
1744 	read_lock(&em_tree->lock);
1745 	n = rb_last(&em_tree->map.rb_root);
1746 	if (n) {
1747 		em = rb_entry(n, struct extent_map, rb_node);
1748 		ret = em->start + em->len;
1749 	}
1750 	read_unlock(&em_tree->lock);
1751 
1752 	return ret;
1753 }
1754 
1755 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1756 				    u64 *devid_ret)
1757 {
1758 	int ret;
1759 	struct btrfs_key key;
1760 	struct btrfs_key found_key;
1761 	struct btrfs_path *path;
1762 
1763 	path = btrfs_alloc_path();
1764 	if (!path)
1765 		return -ENOMEM;
1766 
1767 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1768 	key.type = BTRFS_DEV_ITEM_KEY;
1769 	key.offset = (u64)-1;
1770 
1771 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1772 	if (ret < 0)
1773 		goto error;
1774 
1775 	if (ret == 0) {
1776 		/* Corruption */
1777 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1778 		ret = -EUCLEAN;
1779 		goto error;
1780 	}
1781 
1782 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1783 				  BTRFS_DEV_ITEMS_OBJECTID,
1784 				  BTRFS_DEV_ITEM_KEY);
1785 	if (ret) {
1786 		*devid_ret = 1;
1787 	} else {
1788 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1789 				      path->slots[0]);
1790 		*devid_ret = found_key.offset + 1;
1791 	}
1792 	ret = 0;
1793 error:
1794 	btrfs_free_path(path);
1795 	return ret;
1796 }
1797 
1798 /*
1799  * the device information is stored in the chunk root
1800  * the btrfs_device struct should be fully filled in
1801  */
1802 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1803 			    struct btrfs_device *device)
1804 {
1805 	int ret;
1806 	struct btrfs_path *path;
1807 	struct btrfs_dev_item *dev_item;
1808 	struct extent_buffer *leaf;
1809 	struct btrfs_key key;
1810 	unsigned long ptr;
1811 
1812 	path = btrfs_alloc_path();
1813 	if (!path)
1814 		return -ENOMEM;
1815 
1816 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1817 	key.type = BTRFS_DEV_ITEM_KEY;
1818 	key.offset = device->devid;
1819 
1820 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1821 				      &key, sizeof(*dev_item));
1822 	if (ret)
1823 		goto out;
1824 
1825 	leaf = path->nodes[0];
1826 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1827 
1828 	btrfs_set_device_id(leaf, dev_item, device->devid);
1829 	btrfs_set_device_generation(leaf, dev_item, 0);
1830 	btrfs_set_device_type(leaf, dev_item, device->type);
1831 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1832 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1833 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1834 	btrfs_set_device_total_bytes(leaf, dev_item,
1835 				     btrfs_device_get_disk_total_bytes(device));
1836 	btrfs_set_device_bytes_used(leaf, dev_item,
1837 				    btrfs_device_get_bytes_used(device));
1838 	btrfs_set_device_group(leaf, dev_item, 0);
1839 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1840 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1841 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1842 
1843 	ptr = btrfs_device_uuid(dev_item);
1844 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1845 	ptr = btrfs_device_fsid(dev_item);
1846 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1847 			    ptr, BTRFS_FSID_SIZE);
1848 	btrfs_mark_buffer_dirty(leaf);
1849 
1850 	ret = 0;
1851 out:
1852 	btrfs_free_path(path);
1853 	return ret;
1854 }
1855 
1856 /*
1857  * Function to update ctime/mtime for a given device path.
1858  * Mainly used for ctime/mtime based probe like libblkid.
1859  */
1860 static void update_dev_time(const char *path_name)
1861 {
1862 	struct file *filp;
1863 
1864 	filp = filp_open(path_name, O_RDWR, 0);
1865 	if (IS_ERR(filp))
1866 		return;
1867 	file_update_time(filp);
1868 	filp_close(filp, NULL);
1869 }
1870 
1871 static int btrfs_rm_dev_item(struct btrfs_device *device)
1872 {
1873 	struct btrfs_root *root = device->fs_info->chunk_root;
1874 	int ret;
1875 	struct btrfs_path *path;
1876 	struct btrfs_key key;
1877 	struct btrfs_trans_handle *trans;
1878 
1879 	path = btrfs_alloc_path();
1880 	if (!path)
1881 		return -ENOMEM;
1882 
1883 	trans = btrfs_start_transaction(root, 0);
1884 	if (IS_ERR(trans)) {
1885 		btrfs_free_path(path);
1886 		return PTR_ERR(trans);
1887 	}
1888 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1889 	key.type = BTRFS_DEV_ITEM_KEY;
1890 	key.offset = device->devid;
1891 
1892 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1893 	if (ret) {
1894 		if (ret > 0)
1895 			ret = -ENOENT;
1896 		btrfs_abort_transaction(trans, ret);
1897 		btrfs_end_transaction(trans);
1898 		goto out;
1899 	}
1900 
1901 	ret = btrfs_del_item(trans, root, path);
1902 	if (ret) {
1903 		btrfs_abort_transaction(trans, ret);
1904 		btrfs_end_transaction(trans);
1905 	}
1906 
1907 out:
1908 	btrfs_free_path(path);
1909 	if (!ret)
1910 		ret = btrfs_commit_transaction(trans);
1911 	return ret;
1912 }
1913 
1914 /*
1915  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1916  * filesystem. It's up to the caller to adjust that number regarding eg. device
1917  * replace.
1918  */
1919 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1920 		u64 num_devices)
1921 {
1922 	u64 all_avail;
1923 	unsigned seq;
1924 	int i;
1925 
1926 	do {
1927 		seq = read_seqbegin(&fs_info->profiles_lock);
1928 
1929 		all_avail = fs_info->avail_data_alloc_bits |
1930 			    fs_info->avail_system_alloc_bits |
1931 			    fs_info->avail_metadata_alloc_bits;
1932 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1933 
1934 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1935 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1936 			continue;
1937 
1938 		if (num_devices < btrfs_raid_array[i].devs_min) {
1939 			int ret = btrfs_raid_array[i].mindev_error;
1940 
1941 			if (ret)
1942 				return ret;
1943 		}
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 static struct btrfs_device * btrfs_find_next_active_device(
1950 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1951 {
1952 	struct btrfs_device *next_device;
1953 
1954 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1955 		if (next_device != device &&
1956 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1957 		    && next_device->bdev)
1958 			return next_device;
1959 	}
1960 
1961 	return NULL;
1962 }
1963 
1964 /*
1965  * Helper function to check if the given device is part of s_bdev / latest_bdev
1966  * and replace it with the provided or the next active device, in the context
1967  * where this function called, there should be always be another device (or
1968  * this_dev) which is active.
1969  */
1970 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1971 					    struct btrfs_device *next_device)
1972 {
1973 	struct btrfs_fs_info *fs_info = device->fs_info;
1974 
1975 	if (!next_device)
1976 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1977 							    device);
1978 	ASSERT(next_device);
1979 
1980 	if (fs_info->sb->s_bdev &&
1981 			(fs_info->sb->s_bdev == device->bdev))
1982 		fs_info->sb->s_bdev = next_device->bdev;
1983 
1984 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1985 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1986 }
1987 
1988 /*
1989  * Return btrfs_fs_devices::num_devices excluding the device that's being
1990  * currently replaced.
1991  */
1992 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1993 {
1994 	u64 num_devices = fs_info->fs_devices->num_devices;
1995 
1996 	down_read(&fs_info->dev_replace.rwsem);
1997 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1998 		ASSERT(num_devices > 1);
1999 		num_devices--;
2000 	}
2001 	up_read(&fs_info->dev_replace.rwsem);
2002 
2003 	return num_devices;
2004 }
2005 
2006 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2007 			       struct block_device *bdev,
2008 			       const char *device_path)
2009 {
2010 	struct btrfs_super_block *disk_super;
2011 	int copy_num;
2012 
2013 	if (!bdev)
2014 		return;
2015 
2016 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2017 		struct page *page;
2018 		int ret;
2019 
2020 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2021 		if (IS_ERR(disk_super))
2022 			continue;
2023 
2024 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2025 
2026 		page = virt_to_page(disk_super);
2027 		set_page_dirty(page);
2028 		lock_page(page);
2029 		/* write_on_page() unlocks the page */
2030 		ret = write_one_page(page);
2031 		if (ret)
2032 			btrfs_warn(fs_info,
2033 				"error clearing superblock number %d (%d)",
2034 				copy_num, ret);
2035 		btrfs_release_disk_super(disk_super);
2036 
2037 	}
2038 
2039 	/* Notify udev that device has changed */
2040 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2041 
2042 	/* Update ctime/mtime for device path for libblkid */
2043 	update_dev_time(device_path);
2044 }
2045 
2046 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2047 		    u64 devid)
2048 {
2049 	struct btrfs_device *device;
2050 	struct btrfs_fs_devices *cur_devices;
2051 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2052 	u64 num_devices;
2053 	int ret = 0;
2054 
2055 	mutex_lock(&uuid_mutex);
2056 
2057 	num_devices = btrfs_num_devices(fs_info);
2058 
2059 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2060 	if (ret)
2061 		goto out;
2062 
2063 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2064 
2065 	if (IS_ERR(device)) {
2066 		if (PTR_ERR(device) == -ENOENT &&
2067 		    strcmp(device_path, "missing") == 0)
2068 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2069 		else
2070 			ret = PTR_ERR(device);
2071 		goto out;
2072 	}
2073 
2074 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2075 		btrfs_warn_in_rcu(fs_info,
2076 		  "cannot remove device %s (devid %llu) due to active swapfile",
2077 				  rcu_str_deref(device->name), device->devid);
2078 		ret = -ETXTBSY;
2079 		goto out;
2080 	}
2081 
2082 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2083 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2084 		goto out;
2085 	}
2086 
2087 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2088 	    fs_info->fs_devices->rw_devices == 1) {
2089 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2090 		goto out;
2091 	}
2092 
2093 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2094 		mutex_lock(&fs_info->chunk_mutex);
2095 		list_del_init(&device->dev_alloc_list);
2096 		device->fs_devices->rw_devices--;
2097 		mutex_unlock(&fs_info->chunk_mutex);
2098 	}
2099 
2100 	mutex_unlock(&uuid_mutex);
2101 	ret = btrfs_shrink_device(device, 0);
2102 	mutex_lock(&uuid_mutex);
2103 	if (ret)
2104 		goto error_undo;
2105 
2106 	/*
2107 	 * TODO: the superblock still includes this device in its num_devices
2108 	 * counter although write_all_supers() is not locked out. This
2109 	 * could give a filesystem state which requires a degraded mount.
2110 	 */
2111 	ret = btrfs_rm_dev_item(device);
2112 	if (ret)
2113 		goto error_undo;
2114 
2115 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2116 	btrfs_scrub_cancel_dev(device);
2117 
2118 	/*
2119 	 * the device list mutex makes sure that we don't change
2120 	 * the device list while someone else is writing out all
2121 	 * the device supers. Whoever is writing all supers, should
2122 	 * lock the device list mutex before getting the number of
2123 	 * devices in the super block (super_copy). Conversely,
2124 	 * whoever updates the number of devices in the super block
2125 	 * (super_copy) should hold the device list mutex.
2126 	 */
2127 
2128 	/*
2129 	 * In normal cases the cur_devices == fs_devices. But in case
2130 	 * of deleting a seed device, the cur_devices should point to
2131 	 * its own fs_devices listed under the fs_devices->seed.
2132 	 */
2133 	cur_devices = device->fs_devices;
2134 	mutex_lock(&fs_devices->device_list_mutex);
2135 	list_del_rcu(&device->dev_list);
2136 
2137 	cur_devices->num_devices--;
2138 	cur_devices->total_devices--;
2139 	/* Update total_devices of the parent fs_devices if it's seed */
2140 	if (cur_devices != fs_devices)
2141 		fs_devices->total_devices--;
2142 
2143 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2144 		cur_devices->missing_devices--;
2145 
2146 	btrfs_assign_next_active_device(device, NULL);
2147 
2148 	if (device->bdev) {
2149 		cur_devices->open_devices--;
2150 		/* remove sysfs entry */
2151 		btrfs_sysfs_remove_device(device);
2152 	}
2153 
2154 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2155 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2156 	mutex_unlock(&fs_devices->device_list_mutex);
2157 
2158 	/*
2159 	 * at this point, the device is zero sized and detached from
2160 	 * the devices list.  All that's left is to zero out the old
2161 	 * supers and free the device.
2162 	 */
2163 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2164 		btrfs_scratch_superblocks(fs_info, device->bdev,
2165 					  device->name->str);
2166 
2167 	btrfs_close_bdev(device);
2168 	synchronize_rcu();
2169 	btrfs_free_device(device);
2170 
2171 	if (cur_devices->open_devices == 0) {
2172 		list_del_init(&cur_devices->seed_list);
2173 		close_fs_devices(cur_devices);
2174 		free_fs_devices(cur_devices);
2175 	}
2176 
2177 out:
2178 	mutex_unlock(&uuid_mutex);
2179 	return ret;
2180 
2181 error_undo:
2182 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2183 		mutex_lock(&fs_info->chunk_mutex);
2184 		list_add(&device->dev_alloc_list,
2185 			 &fs_devices->alloc_list);
2186 		device->fs_devices->rw_devices++;
2187 		mutex_unlock(&fs_info->chunk_mutex);
2188 	}
2189 	goto out;
2190 }
2191 
2192 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2193 {
2194 	struct btrfs_fs_devices *fs_devices;
2195 
2196 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2197 
2198 	/*
2199 	 * in case of fs with no seed, srcdev->fs_devices will point
2200 	 * to fs_devices of fs_info. However when the dev being replaced is
2201 	 * a seed dev it will point to the seed's local fs_devices. In short
2202 	 * srcdev will have its correct fs_devices in both the cases.
2203 	 */
2204 	fs_devices = srcdev->fs_devices;
2205 
2206 	list_del_rcu(&srcdev->dev_list);
2207 	list_del(&srcdev->dev_alloc_list);
2208 	fs_devices->num_devices--;
2209 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2210 		fs_devices->missing_devices--;
2211 
2212 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2213 		fs_devices->rw_devices--;
2214 
2215 	if (srcdev->bdev)
2216 		fs_devices->open_devices--;
2217 }
2218 
2219 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2220 {
2221 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2222 
2223 	mutex_lock(&uuid_mutex);
2224 
2225 	btrfs_close_bdev(srcdev);
2226 	synchronize_rcu();
2227 	btrfs_free_device(srcdev);
2228 
2229 	/* if this is no devs we rather delete the fs_devices */
2230 	if (!fs_devices->num_devices) {
2231 		/*
2232 		 * On a mounted FS, num_devices can't be zero unless it's a
2233 		 * seed. In case of a seed device being replaced, the replace
2234 		 * target added to the sprout FS, so there will be no more
2235 		 * device left under the seed FS.
2236 		 */
2237 		ASSERT(fs_devices->seeding);
2238 
2239 		list_del_init(&fs_devices->seed_list);
2240 		close_fs_devices(fs_devices);
2241 		free_fs_devices(fs_devices);
2242 	}
2243 	mutex_unlock(&uuid_mutex);
2244 }
2245 
2246 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2247 {
2248 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2249 
2250 	mutex_lock(&fs_devices->device_list_mutex);
2251 
2252 	btrfs_sysfs_remove_device(tgtdev);
2253 
2254 	if (tgtdev->bdev)
2255 		fs_devices->open_devices--;
2256 
2257 	fs_devices->num_devices--;
2258 
2259 	btrfs_assign_next_active_device(tgtdev, NULL);
2260 
2261 	list_del_rcu(&tgtdev->dev_list);
2262 
2263 	mutex_unlock(&fs_devices->device_list_mutex);
2264 
2265 	/*
2266 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2267 	 * may lead to a call to btrfs_show_devname() which will try
2268 	 * to hold device_list_mutex. And here this device
2269 	 * is already out of device list, so we don't have to hold
2270 	 * the device_list_mutex lock.
2271 	 */
2272 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2273 				  tgtdev->name->str);
2274 
2275 	btrfs_close_bdev(tgtdev);
2276 	synchronize_rcu();
2277 	btrfs_free_device(tgtdev);
2278 }
2279 
2280 static struct btrfs_device *btrfs_find_device_by_path(
2281 		struct btrfs_fs_info *fs_info, const char *device_path)
2282 {
2283 	int ret = 0;
2284 	struct btrfs_super_block *disk_super;
2285 	u64 devid;
2286 	u8 *dev_uuid;
2287 	struct block_device *bdev;
2288 	struct btrfs_device *device;
2289 
2290 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2291 				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2292 	if (ret)
2293 		return ERR_PTR(ret);
2294 
2295 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2296 	dev_uuid = disk_super->dev_item.uuid;
2297 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2298 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2299 					   disk_super->metadata_uuid, true);
2300 	else
2301 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2302 					   disk_super->fsid, true);
2303 
2304 	btrfs_release_disk_super(disk_super);
2305 	if (!device)
2306 		device = ERR_PTR(-ENOENT);
2307 	blkdev_put(bdev, FMODE_READ);
2308 	return device;
2309 }
2310 
2311 /*
2312  * Lookup a device given by device id, or the path if the id is 0.
2313  */
2314 struct btrfs_device *btrfs_find_device_by_devspec(
2315 		struct btrfs_fs_info *fs_info, u64 devid,
2316 		const char *device_path)
2317 {
2318 	struct btrfs_device *device;
2319 
2320 	if (devid) {
2321 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2322 					   NULL, true);
2323 		if (!device)
2324 			return ERR_PTR(-ENOENT);
2325 		return device;
2326 	}
2327 
2328 	if (!device_path || !device_path[0])
2329 		return ERR_PTR(-EINVAL);
2330 
2331 	if (strcmp(device_path, "missing") == 0) {
2332 		/* Find first missing device */
2333 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2334 				    dev_list) {
2335 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2336 				     &device->dev_state) && !device->bdev)
2337 				return device;
2338 		}
2339 		return ERR_PTR(-ENOENT);
2340 	}
2341 
2342 	return btrfs_find_device_by_path(fs_info, device_path);
2343 }
2344 
2345 /*
2346  * does all the dirty work required for changing file system's UUID.
2347  */
2348 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2349 {
2350 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2351 	struct btrfs_fs_devices *old_devices;
2352 	struct btrfs_fs_devices *seed_devices;
2353 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2354 	struct btrfs_device *device;
2355 	u64 super_flags;
2356 
2357 	lockdep_assert_held(&uuid_mutex);
2358 	if (!fs_devices->seeding)
2359 		return -EINVAL;
2360 
2361 	/*
2362 	 * Private copy of the seed devices, anchored at
2363 	 * fs_info->fs_devices->seed_list
2364 	 */
2365 	seed_devices = alloc_fs_devices(NULL, NULL);
2366 	if (IS_ERR(seed_devices))
2367 		return PTR_ERR(seed_devices);
2368 
2369 	/*
2370 	 * It's necessary to retain a copy of the original seed fs_devices in
2371 	 * fs_uuids so that filesystems which have been seeded can successfully
2372 	 * reference the seed device from open_seed_devices. This also supports
2373 	 * multiple fs seed.
2374 	 */
2375 	old_devices = clone_fs_devices(fs_devices);
2376 	if (IS_ERR(old_devices)) {
2377 		kfree(seed_devices);
2378 		return PTR_ERR(old_devices);
2379 	}
2380 
2381 	list_add(&old_devices->fs_list, &fs_uuids);
2382 
2383 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2384 	seed_devices->opened = 1;
2385 	INIT_LIST_HEAD(&seed_devices->devices);
2386 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2387 	mutex_init(&seed_devices->device_list_mutex);
2388 
2389 	mutex_lock(&fs_devices->device_list_mutex);
2390 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2391 			      synchronize_rcu);
2392 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2393 		device->fs_devices = seed_devices;
2394 
2395 	fs_devices->seeding = false;
2396 	fs_devices->num_devices = 0;
2397 	fs_devices->open_devices = 0;
2398 	fs_devices->missing_devices = 0;
2399 	fs_devices->rotating = false;
2400 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2401 
2402 	generate_random_uuid(fs_devices->fsid);
2403 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2404 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2405 	mutex_unlock(&fs_devices->device_list_mutex);
2406 
2407 	super_flags = btrfs_super_flags(disk_super) &
2408 		      ~BTRFS_SUPER_FLAG_SEEDING;
2409 	btrfs_set_super_flags(disk_super, super_flags);
2410 
2411 	return 0;
2412 }
2413 
2414 /*
2415  * Store the expected generation for seed devices in device items.
2416  */
2417 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2418 {
2419 	struct btrfs_fs_info *fs_info = trans->fs_info;
2420 	struct btrfs_root *root = fs_info->chunk_root;
2421 	struct btrfs_path *path;
2422 	struct extent_buffer *leaf;
2423 	struct btrfs_dev_item *dev_item;
2424 	struct btrfs_device *device;
2425 	struct btrfs_key key;
2426 	u8 fs_uuid[BTRFS_FSID_SIZE];
2427 	u8 dev_uuid[BTRFS_UUID_SIZE];
2428 	u64 devid;
2429 	int ret;
2430 
2431 	path = btrfs_alloc_path();
2432 	if (!path)
2433 		return -ENOMEM;
2434 
2435 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2436 	key.offset = 0;
2437 	key.type = BTRFS_DEV_ITEM_KEY;
2438 
2439 	while (1) {
2440 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2441 		if (ret < 0)
2442 			goto error;
2443 
2444 		leaf = path->nodes[0];
2445 next_slot:
2446 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2447 			ret = btrfs_next_leaf(root, path);
2448 			if (ret > 0)
2449 				break;
2450 			if (ret < 0)
2451 				goto error;
2452 			leaf = path->nodes[0];
2453 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2454 			btrfs_release_path(path);
2455 			continue;
2456 		}
2457 
2458 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2459 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2460 		    key.type != BTRFS_DEV_ITEM_KEY)
2461 			break;
2462 
2463 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2464 					  struct btrfs_dev_item);
2465 		devid = btrfs_device_id(leaf, dev_item);
2466 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2467 				   BTRFS_UUID_SIZE);
2468 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2469 				   BTRFS_FSID_SIZE);
2470 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2471 					   fs_uuid, true);
2472 		BUG_ON(!device); /* Logic error */
2473 
2474 		if (device->fs_devices->seeding) {
2475 			btrfs_set_device_generation(leaf, dev_item,
2476 						    device->generation);
2477 			btrfs_mark_buffer_dirty(leaf);
2478 		}
2479 
2480 		path->slots[0]++;
2481 		goto next_slot;
2482 	}
2483 	ret = 0;
2484 error:
2485 	btrfs_free_path(path);
2486 	return ret;
2487 }
2488 
2489 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2490 {
2491 	struct btrfs_root *root = fs_info->dev_root;
2492 	struct request_queue *q;
2493 	struct btrfs_trans_handle *trans;
2494 	struct btrfs_device *device;
2495 	struct block_device *bdev;
2496 	struct super_block *sb = fs_info->sb;
2497 	struct rcu_string *name;
2498 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2499 	u64 orig_super_total_bytes;
2500 	u64 orig_super_num_devices;
2501 	int seeding_dev = 0;
2502 	int ret = 0;
2503 	bool locked = false;
2504 
2505 	if (sb_rdonly(sb) && !fs_devices->seeding)
2506 		return -EROFS;
2507 
2508 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2509 				  fs_info->bdev_holder);
2510 	if (IS_ERR(bdev))
2511 		return PTR_ERR(bdev);
2512 
2513 	if (fs_devices->seeding) {
2514 		seeding_dev = 1;
2515 		down_write(&sb->s_umount);
2516 		mutex_lock(&uuid_mutex);
2517 		locked = true;
2518 	}
2519 
2520 	sync_blockdev(bdev);
2521 
2522 	rcu_read_lock();
2523 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2524 		if (device->bdev == bdev) {
2525 			ret = -EEXIST;
2526 			rcu_read_unlock();
2527 			goto error;
2528 		}
2529 	}
2530 	rcu_read_unlock();
2531 
2532 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2533 	if (IS_ERR(device)) {
2534 		/* we can safely leave the fs_devices entry around */
2535 		ret = PTR_ERR(device);
2536 		goto error;
2537 	}
2538 
2539 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2540 	if (!name) {
2541 		ret = -ENOMEM;
2542 		goto error_free_device;
2543 	}
2544 	rcu_assign_pointer(device->name, name);
2545 
2546 	trans = btrfs_start_transaction(root, 0);
2547 	if (IS_ERR(trans)) {
2548 		ret = PTR_ERR(trans);
2549 		goto error_free_device;
2550 	}
2551 
2552 	q = bdev_get_queue(bdev);
2553 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2554 	device->generation = trans->transid;
2555 	device->io_width = fs_info->sectorsize;
2556 	device->io_align = fs_info->sectorsize;
2557 	device->sector_size = fs_info->sectorsize;
2558 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2559 					 fs_info->sectorsize);
2560 	device->disk_total_bytes = device->total_bytes;
2561 	device->commit_total_bytes = device->total_bytes;
2562 	device->fs_info = fs_info;
2563 	device->bdev = bdev;
2564 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2565 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2566 	device->mode = FMODE_EXCL;
2567 	device->dev_stats_valid = 1;
2568 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2569 
2570 	if (seeding_dev) {
2571 		sb->s_flags &= ~SB_RDONLY;
2572 		ret = btrfs_prepare_sprout(fs_info);
2573 		if (ret) {
2574 			btrfs_abort_transaction(trans, ret);
2575 			goto error_trans;
2576 		}
2577 	}
2578 
2579 	device->fs_devices = fs_devices;
2580 
2581 	mutex_lock(&fs_devices->device_list_mutex);
2582 	mutex_lock(&fs_info->chunk_mutex);
2583 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2584 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2585 	fs_devices->num_devices++;
2586 	fs_devices->open_devices++;
2587 	fs_devices->rw_devices++;
2588 	fs_devices->total_devices++;
2589 	fs_devices->total_rw_bytes += device->total_bytes;
2590 
2591 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2592 
2593 	if (!blk_queue_nonrot(q))
2594 		fs_devices->rotating = true;
2595 
2596 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2597 	btrfs_set_super_total_bytes(fs_info->super_copy,
2598 		round_down(orig_super_total_bytes + device->total_bytes,
2599 			   fs_info->sectorsize));
2600 
2601 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2602 	btrfs_set_super_num_devices(fs_info->super_copy,
2603 				    orig_super_num_devices + 1);
2604 
2605 	/*
2606 	 * we've got more storage, clear any full flags on the space
2607 	 * infos
2608 	 */
2609 	btrfs_clear_space_info_full(fs_info);
2610 
2611 	mutex_unlock(&fs_info->chunk_mutex);
2612 
2613 	/* Add sysfs device entry */
2614 	btrfs_sysfs_add_device(device);
2615 
2616 	mutex_unlock(&fs_devices->device_list_mutex);
2617 
2618 	if (seeding_dev) {
2619 		mutex_lock(&fs_info->chunk_mutex);
2620 		ret = init_first_rw_device(trans);
2621 		mutex_unlock(&fs_info->chunk_mutex);
2622 		if (ret) {
2623 			btrfs_abort_transaction(trans, ret);
2624 			goto error_sysfs;
2625 		}
2626 	}
2627 
2628 	ret = btrfs_add_dev_item(trans, device);
2629 	if (ret) {
2630 		btrfs_abort_transaction(trans, ret);
2631 		goto error_sysfs;
2632 	}
2633 
2634 	if (seeding_dev) {
2635 		ret = btrfs_finish_sprout(trans);
2636 		if (ret) {
2637 			btrfs_abort_transaction(trans, ret);
2638 			goto error_sysfs;
2639 		}
2640 
2641 		/*
2642 		 * fs_devices now represents the newly sprouted filesystem and
2643 		 * its fsid has been changed by btrfs_prepare_sprout
2644 		 */
2645 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2646 	}
2647 
2648 	ret = btrfs_commit_transaction(trans);
2649 
2650 	if (seeding_dev) {
2651 		mutex_unlock(&uuid_mutex);
2652 		up_write(&sb->s_umount);
2653 		locked = false;
2654 
2655 		if (ret) /* transaction commit */
2656 			return ret;
2657 
2658 		ret = btrfs_relocate_sys_chunks(fs_info);
2659 		if (ret < 0)
2660 			btrfs_handle_fs_error(fs_info, ret,
2661 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2662 		trans = btrfs_attach_transaction(root);
2663 		if (IS_ERR(trans)) {
2664 			if (PTR_ERR(trans) == -ENOENT)
2665 				return 0;
2666 			ret = PTR_ERR(trans);
2667 			trans = NULL;
2668 			goto error_sysfs;
2669 		}
2670 		ret = btrfs_commit_transaction(trans);
2671 	}
2672 
2673 	/*
2674 	 * Now that we have written a new super block to this device, check all
2675 	 * other fs_devices list if device_path alienates any other scanned
2676 	 * device.
2677 	 * We can ignore the return value as it typically returns -EINVAL and
2678 	 * only succeeds if the device was an alien.
2679 	 */
2680 	btrfs_forget_devices(device_path);
2681 
2682 	/* Update ctime/mtime for blkid or udev */
2683 	update_dev_time(device_path);
2684 
2685 	return ret;
2686 
2687 error_sysfs:
2688 	btrfs_sysfs_remove_device(device);
2689 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2690 	mutex_lock(&fs_info->chunk_mutex);
2691 	list_del_rcu(&device->dev_list);
2692 	list_del(&device->dev_alloc_list);
2693 	fs_info->fs_devices->num_devices--;
2694 	fs_info->fs_devices->open_devices--;
2695 	fs_info->fs_devices->rw_devices--;
2696 	fs_info->fs_devices->total_devices--;
2697 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2698 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2699 	btrfs_set_super_total_bytes(fs_info->super_copy,
2700 				    orig_super_total_bytes);
2701 	btrfs_set_super_num_devices(fs_info->super_copy,
2702 				    orig_super_num_devices);
2703 	mutex_unlock(&fs_info->chunk_mutex);
2704 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2705 error_trans:
2706 	if (seeding_dev)
2707 		sb->s_flags |= SB_RDONLY;
2708 	if (trans)
2709 		btrfs_end_transaction(trans);
2710 error_free_device:
2711 	btrfs_free_device(device);
2712 error:
2713 	blkdev_put(bdev, FMODE_EXCL);
2714 	if (locked) {
2715 		mutex_unlock(&uuid_mutex);
2716 		up_write(&sb->s_umount);
2717 	}
2718 	return ret;
2719 }
2720 
2721 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2722 					struct btrfs_device *device)
2723 {
2724 	int ret;
2725 	struct btrfs_path *path;
2726 	struct btrfs_root *root = device->fs_info->chunk_root;
2727 	struct btrfs_dev_item *dev_item;
2728 	struct extent_buffer *leaf;
2729 	struct btrfs_key key;
2730 
2731 	path = btrfs_alloc_path();
2732 	if (!path)
2733 		return -ENOMEM;
2734 
2735 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2736 	key.type = BTRFS_DEV_ITEM_KEY;
2737 	key.offset = device->devid;
2738 
2739 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2740 	if (ret < 0)
2741 		goto out;
2742 
2743 	if (ret > 0) {
2744 		ret = -ENOENT;
2745 		goto out;
2746 	}
2747 
2748 	leaf = path->nodes[0];
2749 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2750 
2751 	btrfs_set_device_id(leaf, dev_item, device->devid);
2752 	btrfs_set_device_type(leaf, dev_item, device->type);
2753 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2754 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2755 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2756 	btrfs_set_device_total_bytes(leaf, dev_item,
2757 				     btrfs_device_get_disk_total_bytes(device));
2758 	btrfs_set_device_bytes_used(leaf, dev_item,
2759 				    btrfs_device_get_bytes_used(device));
2760 	btrfs_mark_buffer_dirty(leaf);
2761 
2762 out:
2763 	btrfs_free_path(path);
2764 	return ret;
2765 }
2766 
2767 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2768 		      struct btrfs_device *device, u64 new_size)
2769 {
2770 	struct btrfs_fs_info *fs_info = device->fs_info;
2771 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2772 	u64 old_total;
2773 	u64 diff;
2774 
2775 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2776 		return -EACCES;
2777 
2778 	new_size = round_down(new_size, fs_info->sectorsize);
2779 
2780 	mutex_lock(&fs_info->chunk_mutex);
2781 	old_total = btrfs_super_total_bytes(super_copy);
2782 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2783 
2784 	if (new_size <= device->total_bytes ||
2785 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2786 		mutex_unlock(&fs_info->chunk_mutex);
2787 		return -EINVAL;
2788 	}
2789 
2790 	btrfs_set_super_total_bytes(super_copy,
2791 			round_down(old_total + diff, fs_info->sectorsize));
2792 	device->fs_devices->total_rw_bytes += diff;
2793 
2794 	btrfs_device_set_total_bytes(device, new_size);
2795 	btrfs_device_set_disk_total_bytes(device, new_size);
2796 	btrfs_clear_space_info_full(device->fs_info);
2797 	if (list_empty(&device->post_commit_list))
2798 		list_add_tail(&device->post_commit_list,
2799 			      &trans->transaction->dev_update_list);
2800 	mutex_unlock(&fs_info->chunk_mutex);
2801 
2802 	return btrfs_update_device(trans, device);
2803 }
2804 
2805 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2806 {
2807 	struct btrfs_fs_info *fs_info = trans->fs_info;
2808 	struct btrfs_root *root = fs_info->chunk_root;
2809 	int ret;
2810 	struct btrfs_path *path;
2811 	struct btrfs_key key;
2812 
2813 	path = btrfs_alloc_path();
2814 	if (!path)
2815 		return -ENOMEM;
2816 
2817 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2818 	key.offset = chunk_offset;
2819 	key.type = BTRFS_CHUNK_ITEM_KEY;
2820 
2821 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2822 	if (ret < 0)
2823 		goto out;
2824 	else if (ret > 0) { /* Logic error or corruption */
2825 		btrfs_handle_fs_error(fs_info, -ENOENT,
2826 				      "Failed lookup while freeing chunk.");
2827 		ret = -ENOENT;
2828 		goto out;
2829 	}
2830 
2831 	ret = btrfs_del_item(trans, root, path);
2832 	if (ret < 0)
2833 		btrfs_handle_fs_error(fs_info, ret,
2834 				      "Failed to delete chunk item.");
2835 out:
2836 	btrfs_free_path(path);
2837 	return ret;
2838 }
2839 
2840 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2841 {
2842 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2843 	struct btrfs_disk_key *disk_key;
2844 	struct btrfs_chunk *chunk;
2845 	u8 *ptr;
2846 	int ret = 0;
2847 	u32 num_stripes;
2848 	u32 array_size;
2849 	u32 len = 0;
2850 	u32 cur;
2851 	struct btrfs_key key;
2852 
2853 	mutex_lock(&fs_info->chunk_mutex);
2854 	array_size = btrfs_super_sys_array_size(super_copy);
2855 
2856 	ptr = super_copy->sys_chunk_array;
2857 	cur = 0;
2858 
2859 	while (cur < array_size) {
2860 		disk_key = (struct btrfs_disk_key *)ptr;
2861 		btrfs_disk_key_to_cpu(&key, disk_key);
2862 
2863 		len = sizeof(*disk_key);
2864 
2865 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2866 			chunk = (struct btrfs_chunk *)(ptr + len);
2867 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2868 			len += btrfs_chunk_item_size(num_stripes);
2869 		} else {
2870 			ret = -EIO;
2871 			break;
2872 		}
2873 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2874 		    key.offset == chunk_offset) {
2875 			memmove(ptr, ptr + len, array_size - (cur + len));
2876 			array_size -= len;
2877 			btrfs_set_super_sys_array_size(super_copy, array_size);
2878 		} else {
2879 			ptr += len;
2880 			cur += len;
2881 		}
2882 	}
2883 	mutex_unlock(&fs_info->chunk_mutex);
2884 	return ret;
2885 }
2886 
2887 /*
2888  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2889  * @logical: Logical block offset in bytes.
2890  * @length: Length of extent in bytes.
2891  *
2892  * Return: Chunk mapping or ERR_PTR.
2893  */
2894 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2895 				       u64 logical, u64 length)
2896 {
2897 	struct extent_map_tree *em_tree;
2898 	struct extent_map *em;
2899 
2900 	em_tree = &fs_info->mapping_tree;
2901 	read_lock(&em_tree->lock);
2902 	em = lookup_extent_mapping(em_tree, logical, length);
2903 	read_unlock(&em_tree->lock);
2904 
2905 	if (!em) {
2906 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2907 			   logical, length);
2908 		return ERR_PTR(-EINVAL);
2909 	}
2910 
2911 	if (em->start > logical || em->start + em->len < logical) {
2912 		btrfs_crit(fs_info,
2913 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2914 			   logical, length, em->start, em->start + em->len);
2915 		free_extent_map(em);
2916 		return ERR_PTR(-EINVAL);
2917 	}
2918 
2919 	/* callers are responsible for dropping em's ref. */
2920 	return em;
2921 }
2922 
2923 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2924 {
2925 	struct btrfs_fs_info *fs_info = trans->fs_info;
2926 	struct extent_map *em;
2927 	struct map_lookup *map;
2928 	u64 dev_extent_len = 0;
2929 	int i, ret = 0;
2930 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2931 
2932 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2933 	if (IS_ERR(em)) {
2934 		/*
2935 		 * This is a logic error, but we don't want to just rely on the
2936 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2937 		 * do anything we still error out.
2938 		 */
2939 		ASSERT(0);
2940 		return PTR_ERR(em);
2941 	}
2942 	map = em->map_lookup;
2943 	mutex_lock(&fs_info->chunk_mutex);
2944 	check_system_chunk(trans, map->type);
2945 	mutex_unlock(&fs_info->chunk_mutex);
2946 
2947 	/*
2948 	 * Take the device list mutex to prevent races with the final phase of
2949 	 * a device replace operation that replaces the device object associated
2950 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2951 	 */
2952 	mutex_lock(&fs_devices->device_list_mutex);
2953 	for (i = 0; i < map->num_stripes; i++) {
2954 		struct btrfs_device *device = map->stripes[i].dev;
2955 		ret = btrfs_free_dev_extent(trans, device,
2956 					    map->stripes[i].physical,
2957 					    &dev_extent_len);
2958 		if (ret) {
2959 			mutex_unlock(&fs_devices->device_list_mutex);
2960 			btrfs_abort_transaction(trans, ret);
2961 			goto out;
2962 		}
2963 
2964 		if (device->bytes_used > 0) {
2965 			mutex_lock(&fs_info->chunk_mutex);
2966 			btrfs_device_set_bytes_used(device,
2967 					device->bytes_used - dev_extent_len);
2968 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2969 			btrfs_clear_space_info_full(fs_info);
2970 			mutex_unlock(&fs_info->chunk_mutex);
2971 		}
2972 
2973 		ret = btrfs_update_device(trans, device);
2974 		if (ret) {
2975 			mutex_unlock(&fs_devices->device_list_mutex);
2976 			btrfs_abort_transaction(trans, ret);
2977 			goto out;
2978 		}
2979 	}
2980 	mutex_unlock(&fs_devices->device_list_mutex);
2981 
2982 	ret = btrfs_free_chunk(trans, chunk_offset);
2983 	if (ret) {
2984 		btrfs_abort_transaction(trans, ret);
2985 		goto out;
2986 	}
2987 
2988 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2989 
2990 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2991 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2992 		if (ret) {
2993 			btrfs_abort_transaction(trans, ret);
2994 			goto out;
2995 		}
2996 	}
2997 
2998 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
2999 	if (ret) {
3000 		btrfs_abort_transaction(trans, ret);
3001 		goto out;
3002 	}
3003 
3004 out:
3005 	/* once for us */
3006 	free_extent_map(em);
3007 	return ret;
3008 }
3009 
3010 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3011 {
3012 	struct btrfs_root *root = fs_info->chunk_root;
3013 	struct btrfs_trans_handle *trans;
3014 	struct btrfs_block_group *block_group;
3015 	int ret;
3016 
3017 	/*
3018 	 * Prevent races with automatic removal of unused block groups.
3019 	 * After we relocate and before we remove the chunk with offset
3020 	 * chunk_offset, automatic removal of the block group can kick in,
3021 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3022 	 *
3023 	 * Make sure to acquire this mutex before doing a tree search (dev
3024 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3025 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3026 	 * we release the path used to search the chunk/dev tree and before
3027 	 * the current task acquires this mutex and calls us.
3028 	 */
3029 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3030 
3031 	/* step one, relocate all the extents inside this chunk */
3032 	btrfs_scrub_pause(fs_info);
3033 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3034 	btrfs_scrub_continue(fs_info);
3035 	if (ret)
3036 		return ret;
3037 
3038 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3039 	if (!block_group)
3040 		return -ENOENT;
3041 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3042 	btrfs_put_block_group(block_group);
3043 
3044 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3045 						     chunk_offset);
3046 	if (IS_ERR(trans)) {
3047 		ret = PTR_ERR(trans);
3048 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3049 		return ret;
3050 	}
3051 
3052 	/*
3053 	 * step two, delete the device extents and the
3054 	 * chunk tree entries
3055 	 */
3056 	ret = btrfs_remove_chunk(trans, chunk_offset);
3057 	btrfs_end_transaction(trans);
3058 	return ret;
3059 }
3060 
3061 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3062 {
3063 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3064 	struct btrfs_path *path;
3065 	struct extent_buffer *leaf;
3066 	struct btrfs_chunk *chunk;
3067 	struct btrfs_key key;
3068 	struct btrfs_key found_key;
3069 	u64 chunk_type;
3070 	bool retried = false;
3071 	int failed = 0;
3072 	int ret;
3073 
3074 	path = btrfs_alloc_path();
3075 	if (!path)
3076 		return -ENOMEM;
3077 
3078 again:
3079 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3080 	key.offset = (u64)-1;
3081 	key.type = BTRFS_CHUNK_ITEM_KEY;
3082 
3083 	while (1) {
3084 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3085 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3086 		if (ret < 0) {
3087 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3088 			goto error;
3089 		}
3090 		BUG_ON(ret == 0); /* Corruption */
3091 
3092 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3093 					  key.type);
3094 		if (ret)
3095 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3096 		if (ret < 0)
3097 			goto error;
3098 		if (ret > 0)
3099 			break;
3100 
3101 		leaf = path->nodes[0];
3102 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3103 
3104 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3105 				       struct btrfs_chunk);
3106 		chunk_type = btrfs_chunk_type(leaf, chunk);
3107 		btrfs_release_path(path);
3108 
3109 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3110 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3111 			if (ret == -ENOSPC)
3112 				failed++;
3113 			else
3114 				BUG_ON(ret);
3115 		}
3116 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3117 
3118 		if (found_key.offset == 0)
3119 			break;
3120 		key.offset = found_key.offset - 1;
3121 	}
3122 	ret = 0;
3123 	if (failed && !retried) {
3124 		failed = 0;
3125 		retried = true;
3126 		goto again;
3127 	} else if (WARN_ON(failed && retried)) {
3128 		ret = -ENOSPC;
3129 	}
3130 error:
3131 	btrfs_free_path(path);
3132 	return ret;
3133 }
3134 
3135 /*
3136  * return 1 : allocate a data chunk successfully,
3137  * return <0: errors during allocating a data chunk,
3138  * return 0 : no need to allocate a data chunk.
3139  */
3140 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3141 				      u64 chunk_offset)
3142 {
3143 	struct btrfs_block_group *cache;
3144 	u64 bytes_used;
3145 	u64 chunk_type;
3146 
3147 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3148 	ASSERT(cache);
3149 	chunk_type = cache->flags;
3150 	btrfs_put_block_group(cache);
3151 
3152 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3153 		return 0;
3154 
3155 	spin_lock(&fs_info->data_sinfo->lock);
3156 	bytes_used = fs_info->data_sinfo->bytes_used;
3157 	spin_unlock(&fs_info->data_sinfo->lock);
3158 
3159 	if (!bytes_used) {
3160 		struct btrfs_trans_handle *trans;
3161 		int ret;
3162 
3163 		trans =	btrfs_join_transaction(fs_info->tree_root);
3164 		if (IS_ERR(trans))
3165 			return PTR_ERR(trans);
3166 
3167 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3168 		btrfs_end_transaction(trans);
3169 		if (ret < 0)
3170 			return ret;
3171 		return 1;
3172 	}
3173 
3174 	return 0;
3175 }
3176 
3177 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3178 			       struct btrfs_balance_control *bctl)
3179 {
3180 	struct btrfs_root *root = fs_info->tree_root;
3181 	struct btrfs_trans_handle *trans;
3182 	struct btrfs_balance_item *item;
3183 	struct btrfs_disk_balance_args disk_bargs;
3184 	struct btrfs_path *path;
3185 	struct extent_buffer *leaf;
3186 	struct btrfs_key key;
3187 	int ret, err;
3188 
3189 	path = btrfs_alloc_path();
3190 	if (!path)
3191 		return -ENOMEM;
3192 
3193 	trans = btrfs_start_transaction(root, 0);
3194 	if (IS_ERR(trans)) {
3195 		btrfs_free_path(path);
3196 		return PTR_ERR(trans);
3197 	}
3198 
3199 	key.objectid = BTRFS_BALANCE_OBJECTID;
3200 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3201 	key.offset = 0;
3202 
3203 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3204 				      sizeof(*item));
3205 	if (ret)
3206 		goto out;
3207 
3208 	leaf = path->nodes[0];
3209 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3210 
3211 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3212 
3213 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3214 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3215 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3216 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3217 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3218 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3219 
3220 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3221 
3222 	btrfs_mark_buffer_dirty(leaf);
3223 out:
3224 	btrfs_free_path(path);
3225 	err = btrfs_commit_transaction(trans);
3226 	if (err && !ret)
3227 		ret = err;
3228 	return ret;
3229 }
3230 
3231 static int del_balance_item(struct btrfs_fs_info *fs_info)
3232 {
3233 	struct btrfs_root *root = fs_info->tree_root;
3234 	struct btrfs_trans_handle *trans;
3235 	struct btrfs_path *path;
3236 	struct btrfs_key key;
3237 	int ret, err;
3238 
3239 	path = btrfs_alloc_path();
3240 	if (!path)
3241 		return -ENOMEM;
3242 
3243 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3244 	if (IS_ERR(trans)) {
3245 		btrfs_free_path(path);
3246 		return PTR_ERR(trans);
3247 	}
3248 
3249 	key.objectid = BTRFS_BALANCE_OBJECTID;
3250 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3251 	key.offset = 0;
3252 
3253 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3254 	if (ret < 0)
3255 		goto out;
3256 	if (ret > 0) {
3257 		ret = -ENOENT;
3258 		goto out;
3259 	}
3260 
3261 	ret = btrfs_del_item(trans, root, path);
3262 out:
3263 	btrfs_free_path(path);
3264 	err = btrfs_commit_transaction(trans);
3265 	if (err && !ret)
3266 		ret = err;
3267 	return ret;
3268 }
3269 
3270 /*
3271  * This is a heuristic used to reduce the number of chunks balanced on
3272  * resume after balance was interrupted.
3273  */
3274 static void update_balance_args(struct btrfs_balance_control *bctl)
3275 {
3276 	/*
3277 	 * Turn on soft mode for chunk types that were being converted.
3278 	 */
3279 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3280 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3281 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3282 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3283 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3284 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3285 
3286 	/*
3287 	 * Turn on usage filter if is not already used.  The idea is
3288 	 * that chunks that we have already balanced should be
3289 	 * reasonably full.  Don't do it for chunks that are being
3290 	 * converted - that will keep us from relocating unconverted
3291 	 * (albeit full) chunks.
3292 	 */
3293 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3294 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3295 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3296 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3297 		bctl->data.usage = 90;
3298 	}
3299 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3300 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3301 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3302 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3303 		bctl->sys.usage = 90;
3304 	}
3305 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3306 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3307 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3308 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3309 		bctl->meta.usage = 90;
3310 	}
3311 }
3312 
3313 /*
3314  * Clear the balance status in fs_info and delete the balance item from disk.
3315  */
3316 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3317 {
3318 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3319 	int ret;
3320 
3321 	BUG_ON(!fs_info->balance_ctl);
3322 
3323 	spin_lock(&fs_info->balance_lock);
3324 	fs_info->balance_ctl = NULL;
3325 	spin_unlock(&fs_info->balance_lock);
3326 
3327 	kfree(bctl);
3328 	ret = del_balance_item(fs_info);
3329 	if (ret)
3330 		btrfs_handle_fs_error(fs_info, ret, NULL);
3331 }
3332 
3333 /*
3334  * Balance filters.  Return 1 if chunk should be filtered out
3335  * (should not be balanced).
3336  */
3337 static int chunk_profiles_filter(u64 chunk_type,
3338 				 struct btrfs_balance_args *bargs)
3339 {
3340 	chunk_type = chunk_to_extended(chunk_type) &
3341 				BTRFS_EXTENDED_PROFILE_MASK;
3342 
3343 	if (bargs->profiles & chunk_type)
3344 		return 0;
3345 
3346 	return 1;
3347 }
3348 
3349 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3350 			      struct btrfs_balance_args *bargs)
3351 {
3352 	struct btrfs_block_group *cache;
3353 	u64 chunk_used;
3354 	u64 user_thresh_min;
3355 	u64 user_thresh_max;
3356 	int ret = 1;
3357 
3358 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3359 	chunk_used = cache->used;
3360 
3361 	if (bargs->usage_min == 0)
3362 		user_thresh_min = 0;
3363 	else
3364 		user_thresh_min = div_factor_fine(cache->length,
3365 						  bargs->usage_min);
3366 
3367 	if (bargs->usage_max == 0)
3368 		user_thresh_max = 1;
3369 	else if (bargs->usage_max > 100)
3370 		user_thresh_max = cache->length;
3371 	else
3372 		user_thresh_max = div_factor_fine(cache->length,
3373 						  bargs->usage_max);
3374 
3375 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3376 		ret = 0;
3377 
3378 	btrfs_put_block_group(cache);
3379 	return ret;
3380 }
3381 
3382 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3383 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3384 {
3385 	struct btrfs_block_group *cache;
3386 	u64 chunk_used, user_thresh;
3387 	int ret = 1;
3388 
3389 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3390 	chunk_used = cache->used;
3391 
3392 	if (bargs->usage_min == 0)
3393 		user_thresh = 1;
3394 	else if (bargs->usage > 100)
3395 		user_thresh = cache->length;
3396 	else
3397 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3398 
3399 	if (chunk_used < user_thresh)
3400 		ret = 0;
3401 
3402 	btrfs_put_block_group(cache);
3403 	return ret;
3404 }
3405 
3406 static int chunk_devid_filter(struct extent_buffer *leaf,
3407 			      struct btrfs_chunk *chunk,
3408 			      struct btrfs_balance_args *bargs)
3409 {
3410 	struct btrfs_stripe *stripe;
3411 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3412 	int i;
3413 
3414 	for (i = 0; i < num_stripes; i++) {
3415 		stripe = btrfs_stripe_nr(chunk, i);
3416 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3417 			return 0;
3418 	}
3419 
3420 	return 1;
3421 }
3422 
3423 static u64 calc_data_stripes(u64 type, int num_stripes)
3424 {
3425 	const int index = btrfs_bg_flags_to_raid_index(type);
3426 	const int ncopies = btrfs_raid_array[index].ncopies;
3427 	const int nparity = btrfs_raid_array[index].nparity;
3428 
3429 	if (nparity)
3430 		return num_stripes - nparity;
3431 	else
3432 		return num_stripes / ncopies;
3433 }
3434 
3435 /* [pstart, pend) */
3436 static int chunk_drange_filter(struct extent_buffer *leaf,
3437 			       struct btrfs_chunk *chunk,
3438 			       struct btrfs_balance_args *bargs)
3439 {
3440 	struct btrfs_stripe *stripe;
3441 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3442 	u64 stripe_offset;
3443 	u64 stripe_length;
3444 	u64 type;
3445 	int factor;
3446 	int i;
3447 
3448 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3449 		return 0;
3450 
3451 	type = btrfs_chunk_type(leaf, chunk);
3452 	factor = calc_data_stripes(type, num_stripes);
3453 
3454 	for (i = 0; i < num_stripes; i++) {
3455 		stripe = btrfs_stripe_nr(chunk, i);
3456 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3457 			continue;
3458 
3459 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3460 		stripe_length = btrfs_chunk_length(leaf, chunk);
3461 		stripe_length = div_u64(stripe_length, factor);
3462 
3463 		if (stripe_offset < bargs->pend &&
3464 		    stripe_offset + stripe_length > bargs->pstart)
3465 			return 0;
3466 	}
3467 
3468 	return 1;
3469 }
3470 
3471 /* [vstart, vend) */
3472 static int chunk_vrange_filter(struct extent_buffer *leaf,
3473 			       struct btrfs_chunk *chunk,
3474 			       u64 chunk_offset,
3475 			       struct btrfs_balance_args *bargs)
3476 {
3477 	if (chunk_offset < bargs->vend &&
3478 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3479 		/* at least part of the chunk is inside this vrange */
3480 		return 0;
3481 
3482 	return 1;
3483 }
3484 
3485 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3486 			       struct btrfs_chunk *chunk,
3487 			       struct btrfs_balance_args *bargs)
3488 {
3489 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3490 
3491 	if (bargs->stripes_min <= num_stripes
3492 			&& num_stripes <= bargs->stripes_max)
3493 		return 0;
3494 
3495 	return 1;
3496 }
3497 
3498 static int chunk_soft_convert_filter(u64 chunk_type,
3499 				     struct btrfs_balance_args *bargs)
3500 {
3501 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3502 		return 0;
3503 
3504 	chunk_type = chunk_to_extended(chunk_type) &
3505 				BTRFS_EXTENDED_PROFILE_MASK;
3506 
3507 	if (bargs->target == chunk_type)
3508 		return 1;
3509 
3510 	return 0;
3511 }
3512 
3513 static int should_balance_chunk(struct extent_buffer *leaf,
3514 				struct btrfs_chunk *chunk, u64 chunk_offset)
3515 {
3516 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3517 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3518 	struct btrfs_balance_args *bargs = NULL;
3519 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3520 
3521 	/* type filter */
3522 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3523 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3524 		return 0;
3525 	}
3526 
3527 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3528 		bargs = &bctl->data;
3529 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3530 		bargs = &bctl->sys;
3531 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3532 		bargs = &bctl->meta;
3533 
3534 	/* profiles filter */
3535 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3536 	    chunk_profiles_filter(chunk_type, bargs)) {
3537 		return 0;
3538 	}
3539 
3540 	/* usage filter */
3541 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3542 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3543 		return 0;
3544 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3545 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3546 		return 0;
3547 	}
3548 
3549 	/* devid filter */
3550 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3551 	    chunk_devid_filter(leaf, chunk, bargs)) {
3552 		return 0;
3553 	}
3554 
3555 	/* drange filter, makes sense only with devid filter */
3556 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3557 	    chunk_drange_filter(leaf, chunk, bargs)) {
3558 		return 0;
3559 	}
3560 
3561 	/* vrange filter */
3562 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3563 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3564 		return 0;
3565 	}
3566 
3567 	/* stripes filter */
3568 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3569 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3570 		return 0;
3571 	}
3572 
3573 	/* soft profile changing mode */
3574 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3575 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3576 		return 0;
3577 	}
3578 
3579 	/*
3580 	 * limited by count, must be the last filter
3581 	 */
3582 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3583 		if (bargs->limit == 0)
3584 			return 0;
3585 		else
3586 			bargs->limit--;
3587 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3588 		/*
3589 		 * Same logic as the 'limit' filter; the minimum cannot be
3590 		 * determined here because we do not have the global information
3591 		 * about the count of all chunks that satisfy the filters.
3592 		 */
3593 		if (bargs->limit_max == 0)
3594 			return 0;
3595 		else
3596 			bargs->limit_max--;
3597 	}
3598 
3599 	return 1;
3600 }
3601 
3602 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3603 {
3604 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3605 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3606 	u64 chunk_type;
3607 	struct btrfs_chunk *chunk;
3608 	struct btrfs_path *path = NULL;
3609 	struct btrfs_key key;
3610 	struct btrfs_key found_key;
3611 	struct extent_buffer *leaf;
3612 	int slot;
3613 	int ret;
3614 	int enospc_errors = 0;
3615 	bool counting = true;
3616 	/* The single value limit and min/max limits use the same bytes in the */
3617 	u64 limit_data = bctl->data.limit;
3618 	u64 limit_meta = bctl->meta.limit;
3619 	u64 limit_sys = bctl->sys.limit;
3620 	u32 count_data = 0;
3621 	u32 count_meta = 0;
3622 	u32 count_sys = 0;
3623 	int chunk_reserved = 0;
3624 
3625 	path = btrfs_alloc_path();
3626 	if (!path) {
3627 		ret = -ENOMEM;
3628 		goto error;
3629 	}
3630 
3631 	/* zero out stat counters */
3632 	spin_lock(&fs_info->balance_lock);
3633 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3634 	spin_unlock(&fs_info->balance_lock);
3635 again:
3636 	if (!counting) {
3637 		/*
3638 		 * The single value limit and min/max limits use the same bytes
3639 		 * in the
3640 		 */
3641 		bctl->data.limit = limit_data;
3642 		bctl->meta.limit = limit_meta;
3643 		bctl->sys.limit = limit_sys;
3644 	}
3645 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3646 	key.offset = (u64)-1;
3647 	key.type = BTRFS_CHUNK_ITEM_KEY;
3648 
3649 	while (1) {
3650 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3651 		    atomic_read(&fs_info->balance_cancel_req)) {
3652 			ret = -ECANCELED;
3653 			goto error;
3654 		}
3655 
3656 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3657 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3658 		if (ret < 0) {
3659 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3660 			goto error;
3661 		}
3662 
3663 		/*
3664 		 * this shouldn't happen, it means the last relocate
3665 		 * failed
3666 		 */
3667 		if (ret == 0)
3668 			BUG(); /* FIXME break ? */
3669 
3670 		ret = btrfs_previous_item(chunk_root, path, 0,
3671 					  BTRFS_CHUNK_ITEM_KEY);
3672 		if (ret) {
3673 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3674 			ret = 0;
3675 			break;
3676 		}
3677 
3678 		leaf = path->nodes[0];
3679 		slot = path->slots[0];
3680 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3681 
3682 		if (found_key.objectid != key.objectid) {
3683 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3684 			break;
3685 		}
3686 
3687 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3688 		chunk_type = btrfs_chunk_type(leaf, chunk);
3689 
3690 		if (!counting) {
3691 			spin_lock(&fs_info->balance_lock);
3692 			bctl->stat.considered++;
3693 			spin_unlock(&fs_info->balance_lock);
3694 		}
3695 
3696 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3697 
3698 		btrfs_release_path(path);
3699 		if (!ret) {
3700 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3701 			goto loop;
3702 		}
3703 
3704 		if (counting) {
3705 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3706 			spin_lock(&fs_info->balance_lock);
3707 			bctl->stat.expected++;
3708 			spin_unlock(&fs_info->balance_lock);
3709 
3710 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3711 				count_data++;
3712 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3713 				count_sys++;
3714 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3715 				count_meta++;
3716 
3717 			goto loop;
3718 		}
3719 
3720 		/*
3721 		 * Apply limit_min filter, no need to check if the LIMITS
3722 		 * filter is used, limit_min is 0 by default
3723 		 */
3724 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3725 					count_data < bctl->data.limit_min)
3726 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3727 					count_meta < bctl->meta.limit_min)
3728 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3729 					count_sys < bctl->sys.limit_min)) {
3730 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3731 			goto loop;
3732 		}
3733 
3734 		if (!chunk_reserved) {
3735 			/*
3736 			 * We may be relocating the only data chunk we have,
3737 			 * which could potentially end up with losing data's
3738 			 * raid profile, so lets allocate an empty one in
3739 			 * advance.
3740 			 */
3741 			ret = btrfs_may_alloc_data_chunk(fs_info,
3742 							 found_key.offset);
3743 			if (ret < 0) {
3744 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3745 				goto error;
3746 			} else if (ret == 1) {
3747 				chunk_reserved = 1;
3748 			}
3749 		}
3750 
3751 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3752 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3753 		if (ret == -ENOSPC) {
3754 			enospc_errors++;
3755 		} else if (ret == -ETXTBSY) {
3756 			btrfs_info(fs_info,
3757 	   "skipping relocation of block group %llu due to active swapfile",
3758 				   found_key.offset);
3759 			ret = 0;
3760 		} else if (ret) {
3761 			goto error;
3762 		} else {
3763 			spin_lock(&fs_info->balance_lock);
3764 			bctl->stat.completed++;
3765 			spin_unlock(&fs_info->balance_lock);
3766 		}
3767 loop:
3768 		if (found_key.offset == 0)
3769 			break;
3770 		key.offset = found_key.offset - 1;
3771 	}
3772 
3773 	if (counting) {
3774 		btrfs_release_path(path);
3775 		counting = false;
3776 		goto again;
3777 	}
3778 error:
3779 	btrfs_free_path(path);
3780 	if (enospc_errors) {
3781 		btrfs_info(fs_info, "%d enospc errors during balance",
3782 			   enospc_errors);
3783 		if (!ret)
3784 			ret = -ENOSPC;
3785 	}
3786 
3787 	return ret;
3788 }
3789 
3790 /**
3791  * alloc_profile_is_valid - see if a given profile is valid and reduced
3792  * @flags: profile to validate
3793  * @extended: if true @flags is treated as an extended profile
3794  */
3795 static int alloc_profile_is_valid(u64 flags, int extended)
3796 {
3797 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3798 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3799 
3800 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3801 
3802 	/* 1) check that all other bits are zeroed */
3803 	if (flags & ~mask)
3804 		return 0;
3805 
3806 	/* 2) see if profile is reduced */
3807 	if (flags == 0)
3808 		return !extended; /* "0" is valid for usual profiles */
3809 
3810 	return has_single_bit_set(flags);
3811 }
3812 
3813 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3814 {
3815 	/* cancel requested || normal exit path */
3816 	return atomic_read(&fs_info->balance_cancel_req) ||
3817 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3818 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3819 }
3820 
3821 /*
3822  * Validate target profile against allowed profiles and return true if it's OK.
3823  * Otherwise print the error message and return false.
3824  */
3825 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3826 		const struct btrfs_balance_args *bargs,
3827 		u64 allowed, const char *type)
3828 {
3829 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3830 		return true;
3831 
3832 	/* Profile is valid and does not have bits outside of the allowed set */
3833 	if (alloc_profile_is_valid(bargs->target, 1) &&
3834 	    (bargs->target & ~allowed) == 0)
3835 		return true;
3836 
3837 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3838 			type, btrfs_bg_type_to_raid_name(bargs->target));
3839 	return false;
3840 }
3841 
3842 /*
3843  * Fill @buf with textual description of balance filter flags @bargs, up to
3844  * @size_buf including the terminating null. The output may be trimmed if it
3845  * does not fit into the provided buffer.
3846  */
3847 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3848 				 u32 size_buf)
3849 {
3850 	int ret;
3851 	u32 size_bp = size_buf;
3852 	char *bp = buf;
3853 	u64 flags = bargs->flags;
3854 	char tmp_buf[128] = {'\0'};
3855 
3856 	if (!flags)
3857 		return;
3858 
3859 #define CHECK_APPEND_NOARG(a)						\
3860 	do {								\
3861 		ret = snprintf(bp, size_bp, (a));			\
3862 		if (ret < 0 || ret >= size_bp)				\
3863 			goto out_overflow;				\
3864 		size_bp -= ret;						\
3865 		bp += ret;						\
3866 	} while (0)
3867 
3868 #define CHECK_APPEND_1ARG(a, v1)					\
3869 	do {								\
3870 		ret = snprintf(bp, size_bp, (a), (v1));			\
3871 		if (ret < 0 || ret >= size_bp)				\
3872 			goto out_overflow;				\
3873 		size_bp -= ret;						\
3874 		bp += ret;						\
3875 	} while (0)
3876 
3877 #define CHECK_APPEND_2ARG(a, v1, v2)					\
3878 	do {								\
3879 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
3880 		if (ret < 0 || ret >= size_bp)				\
3881 			goto out_overflow;				\
3882 		size_bp -= ret;						\
3883 		bp += ret;						\
3884 	} while (0)
3885 
3886 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3887 		CHECK_APPEND_1ARG("convert=%s,",
3888 				  btrfs_bg_type_to_raid_name(bargs->target));
3889 
3890 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
3891 		CHECK_APPEND_NOARG("soft,");
3892 
3893 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3894 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3895 					    sizeof(tmp_buf));
3896 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3897 	}
3898 
3899 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
3900 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3901 
3902 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3903 		CHECK_APPEND_2ARG("usage=%u..%u,",
3904 				  bargs->usage_min, bargs->usage_max);
3905 
3906 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
3907 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3908 
3909 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3910 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
3911 				  bargs->pstart, bargs->pend);
3912 
3913 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3914 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3915 				  bargs->vstart, bargs->vend);
3916 
3917 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3918 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3919 
3920 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3921 		CHECK_APPEND_2ARG("limit=%u..%u,",
3922 				bargs->limit_min, bargs->limit_max);
3923 
3924 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3925 		CHECK_APPEND_2ARG("stripes=%u..%u,",
3926 				  bargs->stripes_min, bargs->stripes_max);
3927 
3928 #undef CHECK_APPEND_2ARG
3929 #undef CHECK_APPEND_1ARG
3930 #undef CHECK_APPEND_NOARG
3931 
3932 out_overflow:
3933 
3934 	if (size_bp < size_buf)
3935 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3936 	else
3937 		buf[0] = '\0';
3938 }
3939 
3940 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3941 {
3942 	u32 size_buf = 1024;
3943 	char tmp_buf[192] = {'\0'};
3944 	char *buf;
3945 	char *bp;
3946 	u32 size_bp = size_buf;
3947 	int ret;
3948 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3949 
3950 	buf = kzalloc(size_buf, GFP_KERNEL);
3951 	if (!buf)
3952 		return;
3953 
3954 	bp = buf;
3955 
3956 #define CHECK_APPEND_1ARG(a, v1)					\
3957 	do {								\
3958 		ret = snprintf(bp, size_bp, (a), (v1));			\
3959 		if (ret < 0 || ret >= size_bp)				\
3960 			goto out_overflow;				\
3961 		size_bp -= ret;						\
3962 		bp += ret;						\
3963 	} while (0)
3964 
3965 	if (bctl->flags & BTRFS_BALANCE_FORCE)
3966 		CHECK_APPEND_1ARG("%s", "-f ");
3967 
3968 	if (bctl->flags & BTRFS_BALANCE_DATA) {
3969 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3970 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3971 	}
3972 
3973 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
3974 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3975 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3976 	}
3977 
3978 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3979 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3980 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3981 	}
3982 
3983 #undef CHECK_APPEND_1ARG
3984 
3985 out_overflow:
3986 
3987 	if (size_bp < size_buf)
3988 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3989 	btrfs_info(fs_info, "balance: %s %s",
3990 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
3991 		   "resume" : "start", buf);
3992 
3993 	kfree(buf);
3994 }
3995 
3996 /*
3997  * Should be called with balance mutexe held
3998  */
3999 int btrfs_balance(struct btrfs_fs_info *fs_info,
4000 		  struct btrfs_balance_control *bctl,
4001 		  struct btrfs_ioctl_balance_args *bargs)
4002 {
4003 	u64 meta_target, data_target;
4004 	u64 allowed;
4005 	int mixed = 0;
4006 	int ret;
4007 	u64 num_devices;
4008 	unsigned seq;
4009 	bool reducing_redundancy;
4010 	int i;
4011 
4012 	if (btrfs_fs_closing(fs_info) ||
4013 	    atomic_read(&fs_info->balance_pause_req) ||
4014 	    btrfs_should_cancel_balance(fs_info)) {
4015 		ret = -EINVAL;
4016 		goto out;
4017 	}
4018 
4019 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4020 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4021 		mixed = 1;
4022 
4023 	/*
4024 	 * In case of mixed groups both data and meta should be picked,
4025 	 * and identical options should be given for both of them.
4026 	 */
4027 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4028 	if (mixed && (bctl->flags & allowed)) {
4029 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4030 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4031 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4032 			btrfs_err(fs_info,
4033 	  "balance: mixed groups data and metadata options must be the same");
4034 			ret = -EINVAL;
4035 			goto out;
4036 		}
4037 	}
4038 
4039 	/*
4040 	 * rw_devices will not change at the moment, device add/delete/replace
4041 	 * are exclusive
4042 	 */
4043 	num_devices = fs_info->fs_devices->rw_devices;
4044 
4045 	/*
4046 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4047 	 * special bit for it, to make it easier to distinguish.  Thus we need
4048 	 * to set it manually, or balance would refuse the profile.
4049 	 */
4050 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4051 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4052 		if (num_devices >= btrfs_raid_array[i].devs_min)
4053 			allowed |= btrfs_raid_array[i].bg_flag;
4054 
4055 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4056 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4057 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4058 		ret = -EINVAL;
4059 		goto out;
4060 	}
4061 
4062 	/*
4063 	 * Allow to reduce metadata or system integrity only if force set for
4064 	 * profiles with redundancy (copies, parity)
4065 	 */
4066 	allowed = 0;
4067 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4068 		if (btrfs_raid_array[i].ncopies >= 2 ||
4069 		    btrfs_raid_array[i].tolerated_failures >= 1)
4070 			allowed |= btrfs_raid_array[i].bg_flag;
4071 	}
4072 	do {
4073 		seq = read_seqbegin(&fs_info->profiles_lock);
4074 
4075 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4076 		     (fs_info->avail_system_alloc_bits & allowed) &&
4077 		     !(bctl->sys.target & allowed)) ||
4078 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4079 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4080 		     !(bctl->meta.target & allowed)))
4081 			reducing_redundancy = true;
4082 		else
4083 			reducing_redundancy = false;
4084 
4085 		/* if we're not converting, the target field is uninitialized */
4086 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4087 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4088 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4089 			bctl->data.target : fs_info->avail_data_alloc_bits;
4090 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4091 
4092 	if (reducing_redundancy) {
4093 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4094 			btrfs_info(fs_info,
4095 			   "balance: force reducing metadata redundancy");
4096 		} else {
4097 			btrfs_err(fs_info,
4098 	"balance: reduces metadata redundancy, use --force if you want this");
4099 			ret = -EINVAL;
4100 			goto out;
4101 		}
4102 	}
4103 
4104 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4105 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4106 		btrfs_warn(fs_info,
4107 	"balance: metadata profile %s has lower redundancy than data profile %s",
4108 				btrfs_bg_type_to_raid_name(meta_target),
4109 				btrfs_bg_type_to_raid_name(data_target));
4110 	}
4111 
4112 	if (fs_info->send_in_progress) {
4113 		btrfs_warn_rl(fs_info,
4114 "cannot run balance while send operations are in progress (%d in progress)",
4115 			      fs_info->send_in_progress);
4116 		ret = -EAGAIN;
4117 		goto out;
4118 	}
4119 
4120 	ret = insert_balance_item(fs_info, bctl);
4121 	if (ret && ret != -EEXIST)
4122 		goto out;
4123 
4124 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4125 		BUG_ON(ret == -EEXIST);
4126 		BUG_ON(fs_info->balance_ctl);
4127 		spin_lock(&fs_info->balance_lock);
4128 		fs_info->balance_ctl = bctl;
4129 		spin_unlock(&fs_info->balance_lock);
4130 	} else {
4131 		BUG_ON(ret != -EEXIST);
4132 		spin_lock(&fs_info->balance_lock);
4133 		update_balance_args(bctl);
4134 		spin_unlock(&fs_info->balance_lock);
4135 	}
4136 
4137 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4138 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4139 	describe_balance_start_or_resume(fs_info);
4140 	mutex_unlock(&fs_info->balance_mutex);
4141 
4142 	ret = __btrfs_balance(fs_info);
4143 
4144 	mutex_lock(&fs_info->balance_mutex);
4145 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4146 		btrfs_info(fs_info, "balance: paused");
4147 	/*
4148 	 * Balance can be canceled by:
4149 	 *
4150 	 * - Regular cancel request
4151 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4152 	 *
4153 	 * - Fatal signal to "btrfs" process
4154 	 *   Either the signal caught by wait_reserve_ticket() and callers
4155 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4156 	 *   got -ECANCELED.
4157 	 *   Either way, in this case balance_cancel_req = 0, and
4158 	 *   ret == -EINTR or ret == -ECANCELED.
4159 	 *
4160 	 * So here we only check the return value to catch canceled balance.
4161 	 */
4162 	else if (ret == -ECANCELED || ret == -EINTR)
4163 		btrfs_info(fs_info, "balance: canceled");
4164 	else
4165 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4166 
4167 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4168 
4169 	if (bargs) {
4170 		memset(bargs, 0, sizeof(*bargs));
4171 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4172 	}
4173 
4174 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4175 	    balance_need_close(fs_info)) {
4176 		reset_balance_state(fs_info);
4177 		btrfs_exclop_finish(fs_info);
4178 	}
4179 
4180 	wake_up(&fs_info->balance_wait_q);
4181 
4182 	return ret;
4183 out:
4184 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4185 		reset_balance_state(fs_info);
4186 	else
4187 		kfree(bctl);
4188 	btrfs_exclop_finish(fs_info);
4189 
4190 	return ret;
4191 }
4192 
4193 static int balance_kthread(void *data)
4194 {
4195 	struct btrfs_fs_info *fs_info = data;
4196 	int ret = 0;
4197 
4198 	mutex_lock(&fs_info->balance_mutex);
4199 	if (fs_info->balance_ctl)
4200 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4201 	mutex_unlock(&fs_info->balance_mutex);
4202 
4203 	return ret;
4204 }
4205 
4206 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4207 {
4208 	struct task_struct *tsk;
4209 
4210 	mutex_lock(&fs_info->balance_mutex);
4211 	if (!fs_info->balance_ctl) {
4212 		mutex_unlock(&fs_info->balance_mutex);
4213 		return 0;
4214 	}
4215 	mutex_unlock(&fs_info->balance_mutex);
4216 
4217 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4218 		btrfs_info(fs_info, "balance: resume skipped");
4219 		return 0;
4220 	}
4221 
4222 	/*
4223 	 * A ro->rw remount sequence should continue with the paused balance
4224 	 * regardless of who pauses it, system or the user as of now, so set
4225 	 * the resume flag.
4226 	 */
4227 	spin_lock(&fs_info->balance_lock);
4228 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4229 	spin_unlock(&fs_info->balance_lock);
4230 
4231 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4232 	return PTR_ERR_OR_ZERO(tsk);
4233 }
4234 
4235 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4236 {
4237 	struct btrfs_balance_control *bctl;
4238 	struct btrfs_balance_item *item;
4239 	struct btrfs_disk_balance_args disk_bargs;
4240 	struct btrfs_path *path;
4241 	struct extent_buffer *leaf;
4242 	struct btrfs_key key;
4243 	int ret;
4244 
4245 	path = btrfs_alloc_path();
4246 	if (!path)
4247 		return -ENOMEM;
4248 
4249 	key.objectid = BTRFS_BALANCE_OBJECTID;
4250 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4251 	key.offset = 0;
4252 
4253 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4254 	if (ret < 0)
4255 		goto out;
4256 	if (ret > 0) { /* ret = -ENOENT; */
4257 		ret = 0;
4258 		goto out;
4259 	}
4260 
4261 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4262 	if (!bctl) {
4263 		ret = -ENOMEM;
4264 		goto out;
4265 	}
4266 
4267 	leaf = path->nodes[0];
4268 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4269 
4270 	bctl->flags = btrfs_balance_flags(leaf, item);
4271 	bctl->flags |= BTRFS_BALANCE_RESUME;
4272 
4273 	btrfs_balance_data(leaf, item, &disk_bargs);
4274 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4275 	btrfs_balance_meta(leaf, item, &disk_bargs);
4276 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4277 	btrfs_balance_sys(leaf, item, &disk_bargs);
4278 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4279 
4280 	/*
4281 	 * This should never happen, as the paused balance state is recovered
4282 	 * during mount without any chance of other exclusive ops to collide.
4283 	 *
4284 	 * This gives the exclusive op status to balance and keeps in paused
4285 	 * state until user intervention (cancel or umount). If the ownership
4286 	 * cannot be assigned, show a message but do not fail. The balance
4287 	 * is in a paused state and must have fs_info::balance_ctl properly
4288 	 * set up.
4289 	 */
4290 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4291 		btrfs_warn(fs_info,
4292 	"balance: cannot set exclusive op status, resume manually");
4293 
4294 	mutex_lock(&fs_info->balance_mutex);
4295 	BUG_ON(fs_info->balance_ctl);
4296 	spin_lock(&fs_info->balance_lock);
4297 	fs_info->balance_ctl = bctl;
4298 	spin_unlock(&fs_info->balance_lock);
4299 	mutex_unlock(&fs_info->balance_mutex);
4300 out:
4301 	btrfs_free_path(path);
4302 	return ret;
4303 }
4304 
4305 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4306 {
4307 	int ret = 0;
4308 
4309 	mutex_lock(&fs_info->balance_mutex);
4310 	if (!fs_info->balance_ctl) {
4311 		mutex_unlock(&fs_info->balance_mutex);
4312 		return -ENOTCONN;
4313 	}
4314 
4315 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4316 		atomic_inc(&fs_info->balance_pause_req);
4317 		mutex_unlock(&fs_info->balance_mutex);
4318 
4319 		wait_event(fs_info->balance_wait_q,
4320 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4321 
4322 		mutex_lock(&fs_info->balance_mutex);
4323 		/* we are good with balance_ctl ripped off from under us */
4324 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4325 		atomic_dec(&fs_info->balance_pause_req);
4326 	} else {
4327 		ret = -ENOTCONN;
4328 	}
4329 
4330 	mutex_unlock(&fs_info->balance_mutex);
4331 	return ret;
4332 }
4333 
4334 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4335 {
4336 	mutex_lock(&fs_info->balance_mutex);
4337 	if (!fs_info->balance_ctl) {
4338 		mutex_unlock(&fs_info->balance_mutex);
4339 		return -ENOTCONN;
4340 	}
4341 
4342 	/*
4343 	 * A paused balance with the item stored on disk can be resumed at
4344 	 * mount time if the mount is read-write. Otherwise it's still paused
4345 	 * and we must not allow cancelling as it deletes the item.
4346 	 */
4347 	if (sb_rdonly(fs_info->sb)) {
4348 		mutex_unlock(&fs_info->balance_mutex);
4349 		return -EROFS;
4350 	}
4351 
4352 	atomic_inc(&fs_info->balance_cancel_req);
4353 	/*
4354 	 * if we are running just wait and return, balance item is
4355 	 * deleted in btrfs_balance in this case
4356 	 */
4357 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4358 		mutex_unlock(&fs_info->balance_mutex);
4359 		wait_event(fs_info->balance_wait_q,
4360 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4361 		mutex_lock(&fs_info->balance_mutex);
4362 	} else {
4363 		mutex_unlock(&fs_info->balance_mutex);
4364 		/*
4365 		 * Lock released to allow other waiters to continue, we'll
4366 		 * reexamine the status again.
4367 		 */
4368 		mutex_lock(&fs_info->balance_mutex);
4369 
4370 		if (fs_info->balance_ctl) {
4371 			reset_balance_state(fs_info);
4372 			btrfs_exclop_finish(fs_info);
4373 			btrfs_info(fs_info, "balance: canceled");
4374 		}
4375 	}
4376 
4377 	BUG_ON(fs_info->balance_ctl ||
4378 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4379 	atomic_dec(&fs_info->balance_cancel_req);
4380 	mutex_unlock(&fs_info->balance_mutex);
4381 	return 0;
4382 }
4383 
4384 int btrfs_uuid_scan_kthread(void *data)
4385 {
4386 	struct btrfs_fs_info *fs_info = data;
4387 	struct btrfs_root *root = fs_info->tree_root;
4388 	struct btrfs_key key;
4389 	struct btrfs_path *path = NULL;
4390 	int ret = 0;
4391 	struct extent_buffer *eb;
4392 	int slot;
4393 	struct btrfs_root_item root_item;
4394 	u32 item_size;
4395 	struct btrfs_trans_handle *trans = NULL;
4396 	bool closing = false;
4397 
4398 	path = btrfs_alloc_path();
4399 	if (!path) {
4400 		ret = -ENOMEM;
4401 		goto out;
4402 	}
4403 
4404 	key.objectid = 0;
4405 	key.type = BTRFS_ROOT_ITEM_KEY;
4406 	key.offset = 0;
4407 
4408 	while (1) {
4409 		if (btrfs_fs_closing(fs_info)) {
4410 			closing = true;
4411 			break;
4412 		}
4413 		ret = btrfs_search_forward(root, &key, path,
4414 				BTRFS_OLDEST_GENERATION);
4415 		if (ret) {
4416 			if (ret > 0)
4417 				ret = 0;
4418 			break;
4419 		}
4420 
4421 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4422 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4423 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4424 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4425 			goto skip;
4426 
4427 		eb = path->nodes[0];
4428 		slot = path->slots[0];
4429 		item_size = btrfs_item_size_nr(eb, slot);
4430 		if (item_size < sizeof(root_item))
4431 			goto skip;
4432 
4433 		read_extent_buffer(eb, &root_item,
4434 				   btrfs_item_ptr_offset(eb, slot),
4435 				   (int)sizeof(root_item));
4436 		if (btrfs_root_refs(&root_item) == 0)
4437 			goto skip;
4438 
4439 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4440 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4441 			if (trans)
4442 				goto update_tree;
4443 
4444 			btrfs_release_path(path);
4445 			/*
4446 			 * 1 - subvol uuid item
4447 			 * 1 - received_subvol uuid item
4448 			 */
4449 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4450 			if (IS_ERR(trans)) {
4451 				ret = PTR_ERR(trans);
4452 				break;
4453 			}
4454 			continue;
4455 		} else {
4456 			goto skip;
4457 		}
4458 update_tree:
4459 		btrfs_release_path(path);
4460 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4461 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4462 						  BTRFS_UUID_KEY_SUBVOL,
4463 						  key.objectid);
4464 			if (ret < 0) {
4465 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4466 					ret);
4467 				break;
4468 			}
4469 		}
4470 
4471 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4472 			ret = btrfs_uuid_tree_add(trans,
4473 						  root_item.received_uuid,
4474 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4475 						  key.objectid);
4476 			if (ret < 0) {
4477 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4478 					ret);
4479 				break;
4480 			}
4481 		}
4482 
4483 skip:
4484 		btrfs_release_path(path);
4485 		if (trans) {
4486 			ret = btrfs_end_transaction(trans);
4487 			trans = NULL;
4488 			if (ret)
4489 				break;
4490 		}
4491 
4492 		if (key.offset < (u64)-1) {
4493 			key.offset++;
4494 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4495 			key.offset = 0;
4496 			key.type = BTRFS_ROOT_ITEM_KEY;
4497 		} else if (key.objectid < (u64)-1) {
4498 			key.offset = 0;
4499 			key.type = BTRFS_ROOT_ITEM_KEY;
4500 			key.objectid++;
4501 		} else {
4502 			break;
4503 		}
4504 		cond_resched();
4505 	}
4506 
4507 out:
4508 	btrfs_free_path(path);
4509 	if (trans && !IS_ERR(trans))
4510 		btrfs_end_transaction(trans);
4511 	if (ret)
4512 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4513 	else if (!closing)
4514 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4515 	up(&fs_info->uuid_tree_rescan_sem);
4516 	return 0;
4517 }
4518 
4519 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4520 {
4521 	struct btrfs_trans_handle *trans;
4522 	struct btrfs_root *tree_root = fs_info->tree_root;
4523 	struct btrfs_root *uuid_root;
4524 	struct task_struct *task;
4525 	int ret;
4526 
4527 	/*
4528 	 * 1 - root node
4529 	 * 1 - root item
4530 	 */
4531 	trans = btrfs_start_transaction(tree_root, 2);
4532 	if (IS_ERR(trans))
4533 		return PTR_ERR(trans);
4534 
4535 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4536 	if (IS_ERR(uuid_root)) {
4537 		ret = PTR_ERR(uuid_root);
4538 		btrfs_abort_transaction(trans, ret);
4539 		btrfs_end_transaction(trans);
4540 		return ret;
4541 	}
4542 
4543 	fs_info->uuid_root = uuid_root;
4544 
4545 	ret = btrfs_commit_transaction(trans);
4546 	if (ret)
4547 		return ret;
4548 
4549 	down(&fs_info->uuid_tree_rescan_sem);
4550 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4551 	if (IS_ERR(task)) {
4552 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4553 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4554 		up(&fs_info->uuid_tree_rescan_sem);
4555 		return PTR_ERR(task);
4556 	}
4557 
4558 	return 0;
4559 }
4560 
4561 /*
4562  * shrinking a device means finding all of the device extents past
4563  * the new size, and then following the back refs to the chunks.
4564  * The chunk relocation code actually frees the device extent
4565  */
4566 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4567 {
4568 	struct btrfs_fs_info *fs_info = device->fs_info;
4569 	struct btrfs_root *root = fs_info->dev_root;
4570 	struct btrfs_trans_handle *trans;
4571 	struct btrfs_dev_extent *dev_extent = NULL;
4572 	struct btrfs_path *path;
4573 	u64 length;
4574 	u64 chunk_offset;
4575 	int ret;
4576 	int slot;
4577 	int failed = 0;
4578 	bool retried = false;
4579 	struct extent_buffer *l;
4580 	struct btrfs_key key;
4581 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4582 	u64 old_total = btrfs_super_total_bytes(super_copy);
4583 	u64 old_size = btrfs_device_get_total_bytes(device);
4584 	u64 diff;
4585 	u64 start;
4586 
4587 	new_size = round_down(new_size, fs_info->sectorsize);
4588 	start = new_size;
4589 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4590 
4591 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4592 		return -EINVAL;
4593 
4594 	path = btrfs_alloc_path();
4595 	if (!path)
4596 		return -ENOMEM;
4597 
4598 	path->reada = READA_BACK;
4599 
4600 	trans = btrfs_start_transaction(root, 0);
4601 	if (IS_ERR(trans)) {
4602 		btrfs_free_path(path);
4603 		return PTR_ERR(trans);
4604 	}
4605 
4606 	mutex_lock(&fs_info->chunk_mutex);
4607 
4608 	btrfs_device_set_total_bytes(device, new_size);
4609 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4610 		device->fs_devices->total_rw_bytes -= diff;
4611 		atomic64_sub(diff, &fs_info->free_chunk_space);
4612 	}
4613 
4614 	/*
4615 	 * Once the device's size has been set to the new size, ensure all
4616 	 * in-memory chunks are synced to disk so that the loop below sees them
4617 	 * and relocates them accordingly.
4618 	 */
4619 	if (contains_pending_extent(device, &start, diff)) {
4620 		mutex_unlock(&fs_info->chunk_mutex);
4621 		ret = btrfs_commit_transaction(trans);
4622 		if (ret)
4623 			goto done;
4624 	} else {
4625 		mutex_unlock(&fs_info->chunk_mutex);
4626 		btrfs_end_transaction(trans);
4627 	}
4628 
4629 again:
4630 	key.objectid = device->devid;
4631 	key.offset = (u64)-1;
4632 	key.type = BTRFS_DEV_EXTENT_KEY;
4633 
4634 	do {
4635 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4636 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4637 		if (ret < 0) {
4638 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4639 			goto done;
4640 		}
4641 
4642 		ret = btrfs_previous_item(root, path, 0, key.type);
4643 		if (ret)
4644 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4645 		if (ret < 0)
4646 			goto done;
4647 		if (ret) {
4648 			ret = 0;
4649 			btrfs_release_path(path);
4650 			break;
4651 		}
4652 
4653 		l = path->nodes[0];
4654 		slot = path->slots[0];
4655 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4656 
4657 		if (key.objectid != device->devid) {
4658 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4659 			btrfs_release_path(path);
4660 			break;
4661 		}
4662 
4663 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4664 		length = btrfs_dev_extent_length(l, dev_extent);
4665 
4666 		if (key.offset + length <= new_size) {
4667 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4668 			btrfs_release_path(path);
4669 			break;
4670 		}
4671 
4672 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4673 		btrfs_release_path(path);
4674 
4675 		/*
4676 		 * We may be relocating the only data chunk we have,
4677 		 * which could potentially end up with losing data's
4678 		 * raid profile, so lets allocate an empty one in
4679 		 * advance.
4680 		 */
4681 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4682 		if (ret < 0) {
4683 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4684 			goto done;
4685 		}
4686 
4687 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4688 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4689 		if (ret == -ENOSPC) {
4690 			failed++;
4691 		} else if (ret) {
4692 			if (ret == -ETXTBSY) {
4693 				btrfs_warn(fs_info,
4694 		   "could not shrink block group %llu due to active swapfile",
4695 					   chunk_offset);
4696 			}
4697 			goto done;
4698 		}
4699 	} while (key.offset-- > 0);
4700 
4701 	if (failed && !retried) {
4702 		failed = 0;
4703 		retried = true;
4704 		goto again;
4705 	} else if (failed && retried) {
4706 		ret = -ENOSPC;
4707 		goto done;
4708 	}
4709 
4710 	/* Shrinking succeeded, else we would be at "done". */
4711 	trans = btrfs_start_transaction(root, 0);
4712 	if (IS_ERR(trans)) {
4713 		ret = PTR_ERR(trans);
4714 		goto done;
4715 	}
4716 
4717 	mutex_lock(&fs_info->chunk_mutex);
4718 	/* Clear all state bits beyond the shrunk device size */
4719 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4720 			  CHUNK_STATE_MASK);
4721 
4722 	btrfs_device_set_disk_total_bytes(device, new_size);
4723 	if (list_empty(&device->post_commit_list))
4724 		list_add_tail(&device->post_commit_list,
4725 			      &trans->transaction->dev_update_list);
4726 
4727 	WARN_ON(diff > old_total);
4728 	btrfs_set_super_total_bytes(super_copy,
4729 			round_down(old_total - diff, fs_info->sectorsize));
4730 	mutex_unlock(&fs_info->chunk_mutex);
4731 
4732 	/* Now btrfs_update_device() will change the on-disk size. */
4733 	ret = btrfs_update_device(trans, device);
4734 	if (ret < 0) {
4735 		btrfs_abort_transaction(trans, ret);
4736 		btrfs_end_transaction(trans);
4737 	} else {
4738 		ret = btrfs_commit_transaction(trans);
4739 	}
4740 done:
4741 	btrfs_free_path(path);
4742 	if (ret) {
4743 		mutex_lock(&fs_info->chunk_mutex);
4744 		btrfs_device_set_total_bytes(device, old_size);
4745 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4746 			device->fs_devices->total_rw_bytes += diff;
4747 		atomic64_add(diff, &fs_info->free_chunk_space);
4748 		mutex_unlock(&fs_info->chunk_mutex);
4749 	}
4750 	return ret;
4751 }
4752 
4753 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4754 			   struct btrfs_key *key,
4755 			   struct btrfs_chunk *chunk, int item_size)
4756 {
4757 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4758 	struct btrfs_disk_key disk_key;
4759 	u32 array_size;
4760 	u8 *ptr;
4761 
4762 	mutex_lock(&fs_info->chunk_mutex);
4763 	array_size = btrfs_super_sys_array_size(super_copy);
4764 	if (array_size + item_size + sizeof(disk_key)
4765 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4766 		mutex_unlock(&fs_info->chunk_mutex);
4767 		return -EFBIG;
4768 	}
4769 
4770 	ptr = super_copy->sys_chunk_array + array_size;
4771 	btrfs_cpu_key_to_disk(&disk_key, key);
4772 	memcpy(ptr, &disk_key, sizeof(disk_key));
4773 	ptr += sizeof(disk_key);
4774 	memcpy(ptr, chunk, item_size);
4775 	item_size += sizeof(disk_key);
4776 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4777 	mutex_unlock(&fs_info->chunk_mutex);
4778 
4779 	return 0;
4780 }
4781 
4782 /*
4783  * sort the devices in descending order by max_avail, total_avail
4784  */
4785 static int btrfs_cmp_device_info(const void *a, const void *b)
4786 {
4787 	const struct btrfs_device_info *di_a = a;
4788 	const struct btrfs_device_info *di_b = b;
4789 
4790 	if (di_a->max_avail > di_b->max_avail)
4791 		return -1;
4792 	if (di_a->max_avail < di_b->max_avail)
4793 		return 1;
4794 	if (di_a->total_avail > di_b->total_avail)
4795 		return -1;
4796 	if (di_a->total_avail < di_b->total_avail)
4797 		return 1;
4798 	return 0;
4799 }
4800 
4801 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4802 {
4803 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4804 		return;
4805 
4806 	btrfs_set_fs_incompat(info, RAID56);
4807 }
4808 
4809 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4810 {
4811 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4812 		return;
4813 
4814 	btrfs_set_fs_incompat(info, RAID1C34);
4815 }
4816 
4817 /*
4818  * Structure used internally for __btrfs_alloc_chunk() function.
4819  * Wraps needed parameters.
4820  */
4821 struct alloc_chunk_ctl {
4822 	u64 start;
4823 	u64 type;
4824 	/* Total number of stripes to allocate */
4825 	int num_stripes;
4826 	/* sub_stripes info for map */
4827 	int sub_stripes;
4828 	/* Stripes per device */
4829 	int dev_stripes;
4830 	/* Maximum number of devices to use */
4831 	int devs_max;
4832 	/* Minimum number of devices to use */
4833 	int devs_min;
4834 	/* ndevs has to be a multiple of this */
4835 	int devs_increment;
4836 	/* Number of copies */
4837 	int ncopies;
4838 	/* Number of stripes worth of bytes to store parity information */
4839 	int nparity;
4840 	u64 max_stripe_size;
4841 	u64 max_chunk_size;
4842 	u64 dev_extent_min;
4843 	u64 stripe_size;
4844 	u64 chunk_size;
4845 	int ndevs;
4846 };
4847 
4848 static void init_alloc_chunk_ctl_policy_regular(
4849 				struct btrfs_fs_devices *fs_devices,
4850 				struct alloc_chunk_ctl *ctl)
4851 {
4852 	u64 type = ctl->type;
4853 
4854 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4855 		ctl->max_stripe_size = SZ_1G;
4856 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4857 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4858 		/* For larger filesystems, use larger metadata chunks */
4859 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4860 			ctl->max_stripe_size = SZ_1G;
4861 		else
4862 			ctl->max_stripe_size = SZ_256M;
4863 		ctl->max_chunk_size = ctl->max_stripe_size;
4864 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4865 		ctl->max_stripe_size = SZ_32M;
4866 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4867 		ctl->devs_max = min_t(int, ctl->devs_max,
4868 				      BTRFS_MAX_DEVS_SYS_CHUNK);
4869 	} else {
4870 		BUG();
4871 	}
4872 
4873 	/* We don't want a chunk larger than 10% of writable space */
4874 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4875 				  ctl->max_chunk_size);
4876 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4877 }
4878 
4879 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4880 				 struct alloc_chunk_ctl *ctl)
4881 {
4882 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
4883 
4884 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4885 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4886 	ctl->devs_max = btrfs_raid_array[index].devs_max;
4887 	if (!ctl->devs_max)
4888 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4889 	ctl->devs_min = btrfs_raid_array[index].devs_min;
4890 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4891 	ctl->ncopies = btrfs_raid_array[index].ncopies;
4892 	ctl->nparity = btrfs_raid_array[index].nparity;
4893 	ctl->ndevs = 0;
4894 
4895 	switch (fs_devices->chunk_alloc_policy) {
4896 	case BTRFS_CHUNK_ALLOC_REGULAR:
4897 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4898 		break;
4899 	default:
4900 		BUG();
4901 	}
4902 }
4903 
4904 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4905 			      struct alloc_chunk_ctl *ctl,
4906 			      struct btrfs_device_info *devices_info)
4907 {
4908 	struct btrfs_fs_info *info = fs_devices->fs_info;
4909 	struct btrfs_device *device;
4910 	u64 total_avail;
4911 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4912 	int ret;
4913 	int ndevs = 0;
4914 	u64 max_avail;
4915 	u64 dev_offset;
4916 
4917 	/*
4918 	 * in the first pass through the devices list, we gather information
4919 	 * about the available holes on each device.
4920 	 */
4921 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4922 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4923 			WARN(1, KERN_ERR
4924 			       "BTRFS: read-only device in alloc_list\n");
4925 			continue;
4926 		}
4927 
4928 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4929 					&device->dev_state) ||
4930 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4931 			continue;
4932 
4933 		if (device->total_bytes > device->bytes_used)
4934 			total_avail = device->total_bytes - device->bytes_used;
4935 		else
4936 			total_avail = 0;
4937 
4938 		/* If there is no space on this device, skip it. */
4939 		if (total_avail < ctl->dev_extent_min)
4940 			continue;
4941 
4942 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4943 					   &max_avail);
4944 		if (ret && ret != -ENOSPC)
4945 			return ret;
4946 
4947 		if (ret == 0)
4948 			max_avail = dev_extent_want;
4949 
4950 		if (max_avail < ctl->dev_extent_min) {
4951 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
4952 				btrfs_debug(info,
4953 			"%s: devid %llu has no free space, have=%llu want=%llu",
4954 					    __func__, device->devid, max_avail,
4955 					    ctl->dev_extent_min);
4956 			continue;
4957 		}
4958 
4959 		if (ndevs == fs_devices->rw_devices) {
4960 			WARN(1, "%s: found more than %llu devices\n",
4961 			     __func__, fs_devices->rw_devices);
4962 			break;
4963 		}
4964 		devices_info[ndevs].dev_offset = dev_offset;
4965 		devices_info[ndevs].max_avail = max_avail;
4966 		devices_info[ndevs].total_avail = total_avail;
4967 		devices_info[ndevs].dev = device;
4968 		++ndevs;
4969 	}
4970 	ctl->ndevs = ndevs;
4971 
4972 	/*
4973 	 * now sort the devices by hole size / available space
4974 	 */
4975 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4976 	     btrfs_cmp_device_info, NULL);
4977 
4978 	return 0;
4979 }
4980 
4981 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
4982 				      struct btrfs_device_info *devices_info)
4983 {
4984 	/* Number of stripes that count for block group size */
4985 	int data_stripes;
4986 
4987 	/*
4988 	 * The primary goal is to maximize the number of stripes, so use as
4989 	 * many devices as possible, even if the stripes are not maximum sized.
4990 	 *
4991 	 * The DUP profile stores more than one stripe per device, the
4992 	 * max_avail is the total size so we have to adjust.
4993 	 */
4994 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
4995 				   ctl->dev_stripes);
4996 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
4997 
4998 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
4999 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5000 
5001 	/*
5002 	 * Use the number of data stripes to figure out how big this chunk is
5003 	 * really going to be in terms of logical address space, and compare
5004 	 * that answer with the max chunk size. If it's higher, we try to
5005 	 * reduce stripe_size.
5006 	 */
5007 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5008 		/*
5009 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5010 		 * then use it, unless it ends up being even bigger than the
5011 		 * previous value we had already.
5012 		 */
5013 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5014 							data_stripes), SZ_16M),
5015 				       ctl->stripe_size);
5016 	}
5017 
5018 	/* Align to BTRFS_STRIPE_LEN */
5019 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5020 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5021 
5022 	return 0;
5023 }
5024 
5025 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5026 			      struct alloc_chunk_ctl *ctl,
5027 			      struct btrfs_device_info *devices_info)
5028 {
5029 	struct btrfs_fs_info *info = fs_devices->fs_info;
5030 
5031 	/*
5032 	 * Round down to number of usable stripes, devs_increment can be any
5033 	 * number so we can't use round_down() that requires power of 2, while
5034 	 * rounddown is safe.
5035 	 */
5036 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5037 
5038 	if (ctl->ndevs < ctl->devs_min) {
5039 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5040 			btrfs_debug(info,
5041 	"%s: not enough devices with free space: have=%d minimum required=%d",
5042 				    __func__, ctl->ndevs, ctl->devs_min);
5043 		}
5044 		return -ENOSPC;
5045 	}
5046 
5047 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5048 
5049 	switch (fs_devices->chunk_alloc_policy) {
5050 	case BTRFS_CHUNK_ALLOC_REGULAR:
5051 		return decide_stripe_size_regular(ctl, devices_info);
5052 	default:
5053 		BUG();
5054 	}
5055 }
5056 
5057 static int create_chunk(struct btrfs_trans_handle *trans,
5058 			struct alloc_chunk_ctl *ctl,
5059 			struct btrfs_device_info *devices_info)
5060 {
5061 	struct btrfs_fs_info *info = trans->fs_info;
5062 	struct map_lookup *map = NULL;
5063 	struct extent_map_tree *em_tree;
5064 	struct extent_map *em;
5065 	u64 start = ctl->start;
5066 	u64 type = ctl->type;
5067 	int ret;
5068 	int i;
5069 	int j;
5070 
5071 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5072 	if (!map)
5073 		return -ENOMEM;
5074 	map->num_stripes = ctl->num_stripes;
5075 
5076 	for (i = 0; i < ctl->ndevs; ++i) {
5077 		for (j = 0; j < ctl->dev_stripes; ++j) {
5078 			int s = i * ctl->dev_stripes + j;
5079 			map->stripes[s].dev = devices_info[i].dev;
5080 			map->stripes[s].physical = devices_info[i].dev_offset +
5081 						   j * ctl->stripe_size;
5082 		}
5083 	}
5084 	map->stripe_len = BTRFS_STRIPE_LEN;
5085 	map->io_align = BTRFS_STRIPE_LEN;
5086 	map->io_width = BTRFS_STRIPE_LEN;
5087 	map->type = type;
5088 	map->sub_stripes = ctl->sub_stripes;
5089 
5090 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5091 
5092 	em = alloc_extent_map();
5093 	if (!em) {
5094 		kfree(map);
5095 		return -ENOMEM;
5096 	}
5097 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5098 	em->map_lookup = map;
5099 	em->start = start;
5100 	em->len = ctl->chunk_size;
5101 	em->block_start = 0;
5102 	em->block_len = em->len;
5103 	em->orig_block_len = ctl->stripe_size;
5104 
5105 	em_tree = &info->mapping_tree;
5106 	write_lock(&em_tree->lock);
5107 	ret = add_extent_mapping(em_tree, em, 0);
5108 	if (ret) {
5109 		write_unlock(&em_tree->lock);
5110 		free_extent_map(em);
5111 		return ret;
5112 	}
5113 	write_unlock(&em_tree->lock);
5114 
5115 	ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5116 	if (ret)
5117 		goto error_del_extent;
5118 
5119 	for (i = 0; i < map->num_stripes; i++) {
5120 		struct btrfs_device *dev = map->stripes[i].dev;
5121 
5122 		btrfs_device_set_bytes_used(dev,
5123 					    dev->bytes_used + ctl->stripe_size);
5124 		if (list_empty(&dev->post_commit_list))
5125 			list_add_tail(&dev->post_commit_list,
5126 				      &trans->transaction->dev_update_list);
5127 	}
5128 
5129 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5130 		     &info->free_chunk_space);
5131 
5132 	free_extent_map(em);
5133 	check_raid56_incompat_flag(info, type);
5134 	check_raid1c34_incompat_flag(info, type);
5135 
5136 	return 0;
5137 
5138 error_del_extent:
5139 	write_lock(&em_tree->lock);
5140 	remove_extent_mapping(em_tree, em);
5141 	write_unlock(&em_tree->lock);
5142 
5143 	/* One for our allocation */
5144 	free_extent_map(em);
5145 	/* One for the tree reference */
5146 	free_extent_map(em);
5147 
5148 	return ret;
5149 }
5150 
5151 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5152 {
5153 	struct btrfs_fs_info *info = trans->fs_info;
5154 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5155 	struct btrfs_device_info *devices_info = NULL;
5156 	struct alloc_chunk_ctl ctl;
5157 	int ret;
5158 
5159 	lockdep_assert_held(&info->chunk_mutex);
5160 
5161 	if (!alloc_profile_is_valid(type, 0)) {
5162 		ASSERT(0);
5163 		return -EINVAL;
5164 	}
5165 
5166 	if (list_empty(&fs_devices->alloc_list)) {
5167 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5168 			btrfs_debug(info, "%s: no writable device", __func__);
5169 		return -ENOSPC;
5170 	}
5171 
5172 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5173 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5174 		ASSERT(0);
5175 		return -EINVAL;
5176 	}
5177 
5178 	ctl.start = find_next_chunk(info);
5179 	ctl.type = type;
5180 	init_alloc_chunk_ctl(fs_devices, &ctl);
5181 
5182 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5183 			       GFP_NOFS);
5184 	if (!devices_info)
5185 		return -ENOMEM;
5186 
5187 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5188 	if (ret < 0)
5189 		goto out;
5190 
5191 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5192 	if (ret < 0)
5193 		goto out;
5194 
5195 	ret = create_chunk(trans, &ctl, devices_info);
5196 
5197 out:
5198 	kfree(devices_info);
5199 	return ret;
5200 }
5201 
5202 /*
5203  * Chunk allocation falls into two parts. The first part does work
5204  * that makes the new allocated chunk usable, but does not do any operation
5205  * that modifies the chunk tree. The second part does the work that
5206  * requires modifying the chunk tree. This division is important for the
5207  * bootstrap process of adding storage to a seed btrfs.
5208  */
5209 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5210 			     u64 chunk_offset, u64 chunk_size)
5211 {
5212 	struct btrfs_fs_info *fs_info = trans->fs_info;
5213 	struct btrfs_root *extent_root = fs_info->extent_root;
5214 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5215 	struct btrfs_key key;
5216 	struct btrfs_device *device;
5217 	struct btrfs_chunk *chunk;
5218 	struct btrfs_stripe *stripe;
5219 	struct extent_map *em;
5220 	struct map_lookup *map;
5221 	size_t item_size;
5222 	u64 dev_offset;
5223 	u64 stripe_size;
5224 	int i = 0;
5225 	int ret = 0;
5226 
5227 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5228 	if (IS_ERR(em))
5229 		return PTR_ERR(em);
5230 
5231 	map = em->map_lookup;
5232 	item_size = btrfs_chunk_item_size(map->num_stripes);
5233 	stripe_size = em->orig_block_len;
5234 
5235 	chunk = kzalloc(item_size, GFP_NOFS);
5236 	if (!chunk) {
5237 		ret = -ENOMEM;
5238 		goto out;
5239 	}
5240 
5241 	/*
5242 	 * Take the device list mutex to prevent races with the final phase of
5243 	 * a device replace operation that replaces the device object associated
5244 	 * with the map's stripes, because the device object's id can change
5245 	 * at any time during that final phase of the device replace operation
5246 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5247 	 */
5248 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5249 	for (i = 0; i < map->num_stripes; i++) {
5250 		device = map->stripes[i].dev;
5251 		dev_offset = map->stripes[i].physical;
5252 
5253 		ret = btrfs_update_device(trans, device);
5254 		if (ret)
5255 			break;
5256 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5257 					     dev_offset, stripe_size);
5258 		if (ret)
5259 			break;
5260 	}
5261 	if (ret) {
5262 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5263 		goto out;
5264 	}
5265 
5266 	stripe = &chunk->stripe;
5267 	for (i = 0; i < map->num_stripes; i++) {
5268 		device = map->stripes[i].dev;
5269 		dev_offset = map->stripes[i].physical;
5270 
5271 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5272 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5273 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5274 		stripe++;
5275 	}
5276 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5277 
5278 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5279 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5280 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5281 	btrfs_set_stack_chunk_type(chunk, map->type);
5282 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5283 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5284 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5285 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5286 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5287 
5288 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5289 	key.type = BTRFS_CHUNK_ITEM_KEY;
5290 	key.offset = chunk_offset;
5291 
5292 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5293 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5294 		/*
5295 		 * TODO: Cleanup of inserted chunk root in case of
5296 		 * failure.
5297 		 */
5298 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5299 	}
5300 
5301 out:
5302 	kfree(chunk);
5303 	free_extent_map(em);
5304 	return ret;
5305 }
5306 
5307 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5308 {
5309 	struct btrfs_fs_info *fs_info = trans->fs_info;
5310 	u64 alloc_profile;
5311 	int ret;
5312 
5313 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5314 	ret = btrfs_alloc_chunk(trans, alloc_profile);
5315 	if (ret)
5316 		return ret;
5317 
5318 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5319 	ret = btrfs_alloc_chunk(trans, alloc_profile);
5320 	return ret;
5321 }
5322 
5323 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5324 {
5325 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5326 
5327 	return btrfs_raid_array[index].tolerated_failures;
5328 }
5329 
5330 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5331 {
5332 	struct extent_map *em;
5333 	struct map_lookup *map;
5334 	int readonly = 0;
5335 	int miss_ndevs = 0;
5336 	int i;
5337 
5338 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5339 	if (IS_ERR(em))
5340 		return 1;
5341 
5342 	map = em->map_lookup;
5343 	for (i = 0; i < map->num_stripes; i++) {
5344 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5345 					&map->stripes[i].dev->dev_state)) {
5346 			miss_ndevs++;
5347 			continue;
5348 		}
5349 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5350 					&map->stripes[i].dev->dev_state)) {
5351 			readonly = 1;
5352 			goto end;
5353 		}
5354 	}
5355 
5356 	/*
5357 	 * If the number of missing devices is larger than max errors,
5358 	 * we can not write the data into that chunk successfully, so
5359 	 * set it readonly.
5360 	 */
5361 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5362 		readonly = 1;
5363 end:
5364 	free_extent_map(em);
5365 	return readonly;
5366 }
5367 
5368 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5369 {
5370 	struct extent_map *em;
5371 
5372 	while (1) {
5373 		write_lock(&tree->lock);
5374 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5375 		if (em)
5376 			remove_extent_mapping(tree, em);
5377 		write_unlock(&tree->lock);
5378 		if (!em)
5379 			break;
5380 		/* once for us */
5381 		free_extent_map(em);
5382 		/* once for the tree */
5383 		free_extent_map(em);
5384 	}
5385 }
5386 
5387 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5388 {
5389 	struct extent_map *em;
5390 	struct map_lookup *map;
5391 	int ret;
5392 
5393 	em = btrfs_get_chunk_map(fs_info, logical, len);
5394 	if (IS_ERR(em))
5395 		/*
5396 		 * We could return errors for these cases, but that could get
5397 		 * ugly and we'd probably do the same thing which is just not do
5398 		 * anything else and exit, so return 1 so the callers don't try
5399 		 * to use other copies.
5400 		 */
5401 		return 1;
5402 
5403 	map = em->map_lookup;
5404 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5405 		ret = map->num_stripes;
5406 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5407 		ret = map->sub_stripes;
5408 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5409 		ret = 2;
5410 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5411 		/*
5412 		 * There could be two corrupted data stripes, we need
5413 		 * to loop retry in order to rebuild the correct data.
5414 		 *
5415 		 * Fail a stripe at a time on every retry except the
5416 		 * stripe under reconstruction.
5417 		 */
5418 		ret = map->num_stripes;
5419 	else
5420 		ret = 1;
5421 	free_extent_map(em);
5422 
5423 	down_read(&fs_info->dev_replace.rwsem);
5424 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5425 	    fs_info->dev_replace.tgtdev)
5426 		ret++;
5427 	up_read(&fs_info->dev_replace.rwsem);
5428 
5429 	return ret;
5430 }
5431 
5432 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5433 				    u64 logical)
5434 {
5435 	struct extent_map *em;
5436 	struct map_lookup *map;
5437 	unsigned long len = fs_info->sectorsize;
5438 
5439 	em = btrfs_get_chunk_map(fs_info, logical, len);
5440 
5441 	if (!WARN_ON(IS_ERR(em))) {
5442 		map = em->map_lookup;
5443 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5444 			len = map->stripe_len * nr_data_stripes(map);
5445 		free_extent_map(em);
5446 	}
5447 	return len;
5448 }
5449 
5450 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5451 {
5452 	struct extent_map *em;
5453 	struct map_lookup *map;
5454 	int ret = 0;
5455 
5456 	em = btrfs_get_chunk_map(fs_info, logical, len);
5457 
5458 	if(!WARN_ON(IS_ERR(em))) {
5459 		map = em->map_lookup;
5460 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5461 			ret = 1;
5462 		free_extent_map(em);
5463 	}
5464 	return ret;
5465 }
5466 
5467 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5468 			    struct map_lookup *map, int first,
5469 			    int dev_replace_is_ongoing)
5470 {
5471 	int i;
5472 	int num_stripes;
5473 	int preferred_mirror;
5474 	int tolerance;
5475 	struct btrfs_device *srcdev;
5476 
5477 	ASSERT((map->type &
5478 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5479 
5480 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5481 		num_stripes = map->sub_stripes;
5482 	else
5483 		num_stripes = map->num_stripes;
5484 
5485 	preferred_mirror = first + current->pid % num_stripes;
5486 
5487 	if (dev_replace_is_ongoing &&
5488 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5489 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5490 		srcdev = fs_info->dev_replace.srcdev;
5491 	else
5492 		srcdev = NULL;
5493 
5494 	/*
5495 	 * try to avoid the drive that is the source drive for a
5496 	 * dev-replace procedure, only choose it if no other non-missing
5497 	 * mirror is available
5498 	 */
5499 	for (tolerance = 0; tolerance < 2; tolerance++) {
5500 		if (map->stripes[preferred_mirror].dev->bdev &&
5501 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5502 			return preferred_mirror;
5503 		for (i = first; i < first + num_stripes; i++) {
5504 			if (map->stripes[i].dev->bdev &&
5505 			    (tolerance || map->stripes[i].dev != srcdev))
5506 				return i;
5507 		}
5508 	}
5509 
5510 	/* we couldn't find one that doesn't fail.  Just return something
5511 	 * and the io error handling code will clean up eventually
5512 	 */
5513 	return preferred_mirror;
5514 }
5515 
5516 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5517 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5518 {
5519 	int i;
5520 	int again = 1;
5521 
5522 	while (again) {
5523 		again = 0;
5524 		for (i = 0; i < num_stripes - 1; i++) {
5525 			/* Swap if parity is on a smaller index */
5526 			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5527 				swap(bbio->stripes[i], bbio->stripes[i + 1]);
5528 				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5529 				again = 1;
5530 			}
5531 		}
5532 	}
5533 }
5534 
5535 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5536 {
5537 	struct btrfs_bio *bbio = kzalloc(
5538 		 /* the size of the btrfs_bio */
5539 		sizeof(struct btrfs_bio) +
5540 		/* plus the variable array for the stripes */
5541 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5542 		/* plus the variable array for the tgt dev */
5543 		sizeof(int) * (real_stripes) +
5544 		/*
5545 		 * plus the raid_map, which includes both the tgt dev
5546 		 * and the stripes
5547 		 */
5548 		sizeof(u64) * (total_stripes),
5549 		GFP_NOFS|__GFP_NOFAIL);
5550 
5551 	atomic_set(&bbio->error, 0);
5552 	refcount_set(&bbio->refs, 1);
5553 
5554 	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5555 	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5556 
5557 	return bbio;
5558 }
5559 
5560 void btrfs_get_bbio(struct btrfs_bio *bbio)
5561 {
5562 	WARN_ON(!refcount_read(&bbio->refs));
5563 	refcount_inc(&bbio->refs);
5564 }
5565 
5566 void btrfs_put_bbio(struct btrfs_bio *bbio)
5567 {
5568 	if (!bbio)
5569 		return;
5570 	if (refcount_dec_and_test(&bbio->refs))
5571 		kfree(bbio);
5572 }
5573 
5574 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5575 /*
5576  * Please note that, discard won't be sent to target device of device
5577  * replace.
5578  */
5579 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5580 					 u64 logical, u64 *length_ret,
5581 					 struct btrfs_bio **bbio_ret)
5582 {
5583 	struct extent_map *em;
5584 	struct map_lookup *map;
5585 	struct btrfs_bio *bbio;
5586 	u64 length = *length_ret;
5587 	u64 offset;
5588 	u64 stripe_nr;
5589 	u64 stripe_nr_end;
5590 	u64 stripe_end_offset;
5591 	u64 stripe_cnt;
5592 	u64 stripe_len;
5593 	u64 stripe_offset;
5594 	u64 num_stripes;
5595 	u32 stripe_index;
5596 	u32 factor = 0;
5597 	u32 sub_stripes = 0;
5598 	u64 stripes_per_dev = 0;
5599 	u32 remaining_stripes = 0;
5600 	u32 last_stripe = 0;
5601 	int ret = 0;
5602 	int i;
5603 
5604 	/* discard always return a bbio */
5605 	ASSERT(bbio_ret);
5606 
5607 	em = btrfs_get_chunk_map(fs_info, logical, length);
5608 	if (IS_ERR(em))
5609 		return PTR_ERR(em);
5610 
5611 	map = em->map_lookup;
5612 	/* we don't discard raid56 yet */
5613 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5614 		ret = -EOPNOTSUPP;
5615 		goto out;
5616 	}
5617 
5618 	offset = logical - em->start;
5619 	length = min_t(u64, em->start + em->len - logical, length);
5620 	*length_ret = length;
5621 
5622 	stripe_len = map->stripe_len;
5623 	/*
5624 	 * stripe_nr counts the total number of stripes we have to stride
5625 	 * to get to this block
5626 	 */
5627 	stripe_nr = div64_u64(offset, stripe_len);
5628 
5629 	/* stripe_offset is the offset of this block in its stripe */
5630 	stripe_offset = offset - stripe_nr * stripe_len;
5631 
5632 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5633 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5634 	stripe_cnt = stripe_nr_end - stripe_nr;
5635 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5636 			    (offset + length);
5637 	/*
5638 	 * after this, stripe_nr is the number of stripes on this
5639 	 * device we have to walk to find the data, and stripe_index is
5640 	 * the number of our device in the stripe array
5641 	 */
5642 	num_stripes = 1;
5643 	stripe_index = 0;
5644 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5645 			 BTRFS_BLOCK_GROUP_RAID10)) {
5646 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5647 			sub_stripes = 1;
5648 		else
5649 			sub_stripes = map->sub_stripes;
5650 
5651 		factor = map->num_stripes / sub_stripes;
5652 		num_stripes = min_t(u64, map->num_stripes,
5653 				    sub_stripes * stripe_cnt);
5654 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5655 		stripe_index *= sub_stripes;
5656 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5657 					      &remaining_stripes);
5658 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5659 		last_stripe *= sub_stripes;
5660 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5661 				BTRFS_BLOCK_GROUP_DUP)) {
5662 		num_stripes = map->num_stripes;
5663 	} else {
5664 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5665 					&stripe_index);
5666 	}
5667 
5668 	bbio = alloc_btrfs_bio(num_stripes, 0);
5669 	if (!bbio) {
5670 		ret = -ENOMEM;
5671 		goto out;
5672 	}
5673 
5674 	for (i = 0; i < num_stripes; i++) {
5675 		bbio->stripes[i].physical =
5676 			map->stripes[stripe_index].physical +
5677 			stripe_offset + stripe_nr * map->stripe_len;
5678 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5679 
5680 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5681 				 BTRFS_BLOCK_GROUP_RAID10)) {
5682 			bbio->stripes[i].length = stripes_per_dev *
5683 				map->stripe_len;
5684 
5685 			if (i / sub_stripes < remaining_stripes)
5686 				bbio->stripes[i].length +=
5687 					map->stripe_len;
5688 
5689 			/*
5690 			 * Special for the first stripe and
5691 			 * the last stripe:
5692 			 *
5693 			 * |-------|...|-------|
5694 			 *     |----------|
5695 			 *    off     end_off
5696 			 */
5697 			if (i < sub_stripes)
5698 				bbio->stripes[i].length -=
5699 					stripe_offset;
5700 
5701 			if (stripe_index >= last_stripe &&
5702 			    stripe_index <= (last_stripe +
5703 					     sub_stripes - 1))
5704 				bbio->stripes[i].length -=
5705 					stripe_end_offset;
5706 
5707 			if (i == sub_stripes - 1)
5708 				stripe_offset = 0;
5709 		} else {
5710 			bbio->stripes[i].length = length;
5711 		}
5712 
5713 		stripe_index++;
5714 		if (stripe_index == map->num_stripes) {
5715 			stripe_index = 0;
5716 			stripe_nr++;
5717 		}
5718 	}
5719 
5720 	*bbio_ret = bbio;
5721 	bbio->map_type = map->type;
5722 	bbio->num_stripes = num_stripes;
5723 out:
5724 	free_extent_map(em);
5725 	return ret;
5726 }
5727 
5728 /*
5729  * In dev-replace case, for repair case (that's the only case where the mirror
5730  * is selected explicitly when calling btrfs_map_block), blocks left of the
5731  * left cursor can also be read from the target drive.
5732  *
5733  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5734  * array of stripes.
5735  * For READ, it also needs to be supported using the same mirror number.
5736  *
5737  * If the requested block is not left of the left cursor, EIO is returned. This
5738  * can happen because btrfs_num_copies() returns one more in the dev-replace
5739  * case.
5740  */
5741 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5742 					 u64 logical, u64 length,
5743 					 u64 srcdev_devid, int *mirror_num,
5744 					 u64 *physical)
5745 {
5746 	struct btrfs_bio *bbio = NULL;
5747 	int num_stripes;
5748 	int index_srcdev = 0;
5749 	int found = 0;
5750 	u64 physical_of_found = 0;
5751 	int i;
5752 	int ret = 0;
5753 
5754 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5755 				logical, &length, &bbio, 0, 0);
5756 	if (ret) {
5757 		ASSERT(bbio == NULL);
5758 		return ret;
5759 	}
5760 
5761 	num_stripes = bbio->num_stripes;
5762 	if (*mirror_num > num_stripes) {
5763 		/*
5764 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5765 		 * that means that the requested area is not left of the left
5766 		 * cursor
5767 		 */
5768 		btrfs_put_bbio(bbio);
5769 		return -EIO;
5770 	}
5771 
5772 	/*
5773 	 * process the rest of the function using the mirror_num of the source
5774 	 * drive. Therefore look it up first.  At the end, patch the device
5775 	 * pointer to the one of the target drive.
5776 	 */
5777 	for (i = 0; i < num_stripes; i++) {
5778 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5779 			continue;
5780 
5781 		/*
5782 		 * In case of DUP, in order to keep it simple, only add the
5783 		 * mirror with the lowest physical address
5784 		 */
5785 		if (found &&
5786 		    physical_of_found <= bbio->stripes[i].physical)
5787 			continue;
5788 
5789 		index_srcdev = i;
5790 		found = 1;
5791 		physical_of_found = bbio->stripes[i].physical;
5792 	}
5793 
5794 	btrfs_put_bbio(bbio);
5795 
5796 	ASSERT(found);
5797 	if (!found)
5798 		return -EIO;
5799 
5800 	*mirror_num = index_srcdev + 1;
5801 	*physical = physical_of_found;
5802 	return ret;
5803 }
5804 
5805 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5806 				      struct btrfs_bio **bbio_ret,
5807 				      struct btrfs_dev_replace *dev_replace,
5808 				      int *num_stripes_ret, int *max_errors_ret)
5809 {
5810 	struct btrfs_bio *bbio = *bbio_ret;
5811 	u64 srcdev_devid = dev_replace->srcdev->devid;
5812 	int tgtdev_indexes = 0;
5813 	int num_stripes = *num_stripes_ret;
5814 	int max_errors = *max_errors_ret;
5815 	int i;
5816 
5817 	if (op == BTRFS_MAP_WRITE) {
5818 		int index_where_to_add;
5819 
5820 		/*
5821 		 * duplicate the write operations while the dev replace
5822 		 * procedure is running. Since the copying of the old disk to
5823 		 * the new disk takes place at run time while the filesystem is
5824 		 * mounted writable, the regular write operations to the old
5825 		 * disk have to be duplicated to go to the new disk as well.
5826 		 *
5827 		 * Note that device->missing is handled by the caller, and that
5828 		 * the write to the old disk is already set up in the stripes
5829 		 * array.
5830 		 */
5831 		index_where_to_add = num_stripes;
5832 		for (i = 0; i < num_stripes; i++) {
5833 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5834 				/* write to new disk, too */
5835 				struct btrfs_bio_stripe *new =
5836 					bbio->stripes + index_where_to_add;
5837 				struct btrfs_bio_stripe *old =
5838 					bbio->stripes + i;
5839 
5840 				new->physical = old->physical;
5841 				new->length = old->length;
5842 				new->dev = dev_replace->tgtdev;
5843 				bbio->tgtdev_map[i] = index_where_to_add;
5844 				index_where_to_add++;
5845 				max_errors++;
5846 				tgtdev_indexes++;
5847 			}
5848 		}
5849 		num_stripes = index_where_to_add;
5850 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5851 		int index_srcdev = 0;
5852 		int found = 0;
5853 		u64 physical_of_found = 0;
5854 
5855 		/*
5856 		 * During the dev-replace procedure, the target drive can also
5857 		 * be used to read data in case it is needed to repair a corrupt
5858 		 * block elsewhere. This is possible if the requested area is
5859 		 * left of the left cursor. In this area, the target drive is a
5860 		 * full copy of the source drive.
5861 		 */
5862 		for (i = 0; i < num_stripes; i++) {
5863 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5864 				/*
5865 				 * In case of DUP, in order to keep it simple,
5866 				 * only add the mirror with the lowest physical
5867 				 * address
5868 				 */
5869 				if (found &&
5870 				    physical_of_found <=
5871 				     bbio->stripes[i].physical)
5872 					continue;
5873 				index_srcdev = i;
5874 				found = 1;
5875 				physical_of_found = bbio->stripes[i].physical;
5876 			}
5877 		}
5878 		if (found) {
5879 			struct btrfs_bio_stripe *tgtdev_stripe =
5880 				bbio->stripes + num_stripes;
5881 
5882 			tgtdev_stripe->physical = physical_of_found;
5883 			tgtdev_stripe->length =
5884 				bbio->stripes[index_srcdev].length;
5885 			tgtdev_stripe->dev = dev_replace->tgtdev;
5886 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5887 
5888 			tgtdev_indexes++;
5889 			num_stripes++;
5890 		}
5891 	}
5892 
5893 	*num_stripes_ret = num_stripes;
5894 	*max_errors_ret = max_errors;
5895 	bbio->num_tgtdevs = tgtdev_indexes;
5896 	*bbio_ret = bbio;
5897 }
5898 
5899 static bool need_full_stripe(enum btrfs_map_op op)
5900 {
5901 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5902 }
5903 
5904 /*
5905  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5906  *		       tuple. This information is used to calculate how big a
5907  *		       particular bio can get before it straddles a stripe.
5908  *
5909  * @fs_info - the filesystem
5910  * @logical - address that we want to figure out the geometry of
5911  * @len	    - the length of IO we are going to perform, starting at @logical
5912  * @op      - type of operation - write or read
5913  * @io_geom - pointer used to return values
5914  *
5915  * Returns < 0 in case a chunk for the given logical address cannot be found,
5916  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5917  */
5918 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5919 			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5920 {
5921 	struct extent_map *em;
5922 	struct map_lookup *map;
5923 	u64 offset;
5924 	u64 stripe_offset;
5925 	u64 stripe_nr;
5926 	u64 stripe_len;
5927 	u64 raid56_full_stripe_start = (u64)-1;
5928 	int data_stripes;
5929 	int ret = 0;
5930 
5931 	ASSERT(op != BTRFS_MAP_DISCARD);
5932 
5933 	em = btrfs_get_chunk_map(fs_info, logical, len);
5934 	if (IS_ERR(em))
5935 		return PTR_ERR(em);
5936 
5937 	map = em->map_lookup;
5938 	/* Offset of this logical address in the chunk */
5939 	offset = logical - em->start;
5940 	/* Len of a stripe in a chunk */
5941 	stripe_len = map->stripe_len;
5942 	/* Stripe wher this block falls in */
5943 	stripe_nr = div64_u64(offset, stripe_len);
5944 	/* Offset of stripe in the chunk */
5945 	stripe_offset = stripe_nr * stripe_len;
5946 	if (offset < stripe_offset) {
5947 		btrfs_crit(fs_info,
5948 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5949 			stripe_offset, offset, em->start, logical, stripe_len);
5950 		ret = -EINVAL;
5951 		goto out;
5952 	}
5953 
5954 	/* stripe_offset is the offset of this block in its stripe */
5955 	stripe_offset = offset - stripe_offset;
5956 	data_stripes = nr_data_stripes(map);
5957 
5958 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5959 		u64 max_len = stripe_len - stripe_offset;
5960 
5961 		/*
5962 		 * In case of raid56, we need to know the stripe aligned start
5963 		 */
5964 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5965 			unsigned long full_stripe_len = stripe_len * data_stripes;
5966 			raid56_full_stripe_start = offset;
5967 
5968 			/*
5969 			 * Allow a write of a full stripe, but make sure we
5970 			 * don't allow straddling of stripes
5971 			 */
5972 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5973 					full_stripe_len);
5974 			raid56_full_stripe_start *= full_stripe_len;
5975 
5976 			/*
5977 			 * For writes to RAID[56], allow a full stripeset across
5978 			 * all disks. For other RAID types and for RAID[56]
5979 			 * reads, just allow a single stripe (on a single disk).
5980 			 */
5981 			if (op == BTRFS_MAP_WRITE) {
5982 				max_len = stripe_len * data_stripes -
5983 					  (offset - raid56_full_stripe_start);
5984 			}
5985 		}
5986 		len = min_t(u64, em->len - offset, max_len);
5987 	} else {
5988 		len = em->len - offset;
5989 	}
5990 
5991 	io_geom->len = len;
5992 	io_geom->offset = offset;
5993 	io_geom->stripe_len = stripe_len;
5994 	io_geom->stripe_nr = stripe_nr;
5995 	io_geom->stripe_offset = stripe_offset;
5996 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
5997 
5998 out:
5999 	/* once for us */
6000 	free_extent_map(em);
6001 	return ret;
6002 }
6003 
6004 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6005 			     enum btrfs_map_op op,
6006 			     u64 logical, u64 *length,
6007 			     struct btrfs_bio **bbio_ret,
6008 			     int mirror_num, int need_raid_map)
6009 {
6010 	struct extent_map *em;
6011 	struct map_lookup *map;
6012 	u64 stripe_offset;
6013 	u64 stripe_nr;
6014 	u64 stripe_len;
6015 	u32 stripe_index;
6016 	int data_stripes;
6017 	int i;
6018 	int ret = 0;
6019 	int num_stripes;
6020 	int max_errors = 0;
6021 	int tgtdev_indexes = 0;
6022 	struct btrfs_bio *bbio = NULL;
6023 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6024 	int dev_replace_is_ongoing = 0;
6025 	int num_alloc_stripes;
6026 	int patch_the_first_stripe_for_dev_replace = 0;
6027 	u64 physical_to_patch_in_first_stripe = 0;
6028 	u64 raid56_full_stripe_start = (u64)-1;
6029 	struct btrfs_io_geometry geom;
6030 
6031 	ASSERT(bbio_ret);
6032 	ASSERT(op != BTRFS_MAP_DISCARD);
6033 
6034 	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6035 	if (ret < 0)
6036 		return ret;
6037 
6038 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6039 	ASSERT(!IS_ERR(em));
6040 	map = em->map_lookup;
6041 
6042 	*length = geom.len;
6043 	stripe_len = geom.stripe_len;
6044 	stripe_nr = geom.stripe_nr;
6045 	stripe_offset = geom.stripe_offset;
6046 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6047 	data_stripes = nr_data_stripes(map);
6048 
6049 	down_read(&dev_replace->rwsem);
6050 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6051 	/*
6052 	 * Hold the semaphore for read during the whole operation, write is
6053 	 * requested at commit time but must wait.
6054 	 */
6055 	if (!dev_replace_is_ongoing)
6056 		up_read(&dev_replace->rwsem);
6057 
6058 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6059 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6060 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6061 						    dev_replace->srcdev->devid,
6062 						    &mirror_num,
6063 					    &physical_to_patch_in_first_stripe);
6064 		if (ret)
6065 			goto out;
6066 		else
6067 			patch_the_first_stripe_for_dev_replace = 1;
6068 	} else if (mirror_num > map->num_stripes) {
6069 		mirror_num = 0;
6070 	}
6071 
6072 	num_stripes = 1;
6073 	stripe_index = 0;
6074 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6075 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6076 				&stripe_index);
6077 		if (!need_full_stripe(op))
6078 			mirror_num = 1;
6079 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6080 		if (need_full_stripe(op))
6081 			num_stripes = map->num_stripes;
6082 		else if (mirror_num)
6083 			stripe_index = mirror_num - 1;
6084 		else {
6085 			stripe_index = find_live_mirror(fs_info, map, 0,
6086 					    dev_replace_is_ongoing);
6087 			mirror_num = stripe_index + 1;
6088 		}
6089 
6090 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6091 		if (need_full_stripe(op)) {
6092 			num_stripes = map->num_stripes;
6093 		} else if (mirror_num) {
6094 			stripe_index = mirror_num - 1;
6095 		} else {
6096 			mirror_num = 1;
6097 		}
6098 
6099 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6100 		u32 factor = map->num_stripes / map->sub_stripes;
6101 
6102 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6103 		stripe_index *= map->sub_stripes;
6104 
6105 		if (need_full_stripe(op))
6106 			num_stripes = map->sub_stripes;
6107 		else if (mirror_num)
6108 			stripe_index += mirror_num - 1;
6109 		else {
6110 			int old_stripe_index = stripe_index;
6111 			stripe_index = find_live_mirror(fs_info, map,
6112 					      stripe_index,
6113 					      dev_replace_is_ongoing);
6114 			mirror_num = stripe_index - old_stripe_index + 1;
6115 		}
6116 
6117 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6118 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6119 			/* push stripe_nr back to the start of the full stripe */
6120 			stripe_nr = div64_u64(raid56_full_stripe_start,
6121 					stripe_len * data_stripes);
6122 
6123 			/* RAID[56] write or recovery. Return all stripes */
6124 			num_stripes = map->num_stripes;
6125 			max_errors = nr_parity_stripes(map);
6126 
6127 			*length = map->stripe_len;
6128 			stripe_index = 0;
6129 			stripe_offset = 0;
6130 		} else {
6131 			/*
6132 			 * Mirror #0 or #1 means the original data block.
6133 			 * Mirror #2 is RAID5 parity block.
6134 			 * Mirror #3 is RAID6 Q block.
6135 			 */
6136 			stripe_nr = div_u64_rem(stripe_nr,
6137 					data_stripes, &stripe_index);
6138 			if (mirror_num > 1)
6139 				stripe_index = data_stripes + mirror_num - 2;
6140 
6141 			/* We distribute the parity blocks across stripes */
6142 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6143 					&stripe_index);
6144 			if (!need_full_stripe(op) && mirror_num <= 1)
6145 				mirror_num = 1;
6146 		}
6147 	} else {
6148 		/*
6149 		 * after this, stripe_nr is the number of stripes on this
6150 		 * device we have to walk to find the data, and stripe_index is
6151 		 * the number of our device in the stripe array
6152 		 */
6153 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6154 				&stripe_index);
6155 		mirror_num = stripe_index + 1;
6156 	}
6157 	if (stripe_index >= map->num_stripes) {
6158 		btrfs_crit(fs_info,
6159 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6160 			   stripe_index, map->num_stripes);
6161 		ret = -EINVAL;
6162 		goto out;
6163 	}
6164 
6165 	num_alloc_stripes = num_stripes;
6166 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6167 		if (op == BTRFS_MAP_WRITE)
6168 			num_alloc_stripes <<= 1;
6169 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6170 			num_alloc_stripes++;
6171 		tgtdev_indexes = num_stripes;
6172 	}
6173 
6174 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6175 	if (!bbio) {
6176 		ret = -ENOMEM;
6177 		goto out;
6178 	}
6179 
6180 	for (i = 0; i < num_stripes; i++) {
6181 		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6182 			stripe_offset + stripe_nr * map->stripe_len;
6183 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6184 		stripe_index++;
6185 	}
6186 
6187 	/* build raid_map */
6188 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6189 	    (need_full_stripe(op) || mirror_num > 1)) {
6190 		u64 tmp;
6191 		unsigned rot;
6192 
6193 		/* Work out the disk rotation on this stripe-set */
6194 		div_u64_rem(stripe_nr, num_stripes, &rot);
6195 
6196 		/* Fill in the logical address of each stripe */
6197 		tmp = stripe_nr * data_stripes;
6198 		for (i = 0; i < data_stripes; i++)
6199 			bbio->raid_map[(i+rot) % num_stripes] =
6200 				em->start + (tmp + i) * map->stripe_len;
6201 
6202 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6203 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6204 			bbio->raid_map[(i+rot+1) % num_stripes] =
6205 				RAID6_Q_STRIPE;
6206 
6207 		sort_parity_stripes(bbio, num_stripes);
6208 	}
6209 
6210 	if (need_full_stripe(op))
6211 		max_errors = btrfs_chunk_max_errors(map);
6212 
6213 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6214 	    need_full_stripe(op)) {
6215 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6216 					  &max_errors);
6217 	}
6218 
6219 	*bbio_ret = bbio;
6220 	bbio->map_type = map->type;
6221 	bbio->num_stripes = num_stripes;
6222 	bbio->max_errors = max_errors;
6223 	bbio->mirror_num = mirror_num;
6224 
6225 	/*
6226 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6227 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6228 	 * available as a mirror
6229 	 */
6230 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6231 		WARN_ON(num_stripes > 1);
6232 		bbio->stripes[0].dev = dev_replace->tgtdev;
6233 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6234 		bbio->mirror_num = map->num_stripes + 1;
6235 	}
6236 out:
6237 	if (dev_replace_is_ongoing) {
6238 		lockdep_assert_held(&dev_replace->rwsem);
6239 		/* Unlock and let waiting writers proceed */
6240 		up_read(&dev_replace->rwsem);
6241 	}
6242 	free_extent_map(em);
6243 	return ret;
6244 }
6245 
6246 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6247 		      u64 logical, u64 *length,
6248 		      struct btrfs_bio **bbio_ret, int mirror_num)
6249 {
6250 	if (op == BTRFS_MAP_DISCARD)
6251 		return __btrfs_map_block_for_discard(fs_info, logical,
6252 						     length, bbio_ret);
6253 
6254 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6255 				 mirror_num, 0);
6256 }
6257 
6258 /* For Scrub/replace */
6259 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6260 		     u64 logical, u64 *length,
6261 		     struct btrfs_bio **bbio_ret)
6262 {
6263 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6264 }
6265 
6266 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6267 {
6268 	bio->bi_private = bbio->private;
6269 	bio->bi_end_io = bbio->end_io;
6270 	bio_endio(bio);
6271 
6272 	btrfs_put_bbio(bbio);
6273 }
6274 
6275 static void btrfs_end_bio(struct bio *bio)
6276 {
6277 	struct btrfs_bio *bbio = bio->bi_private;
6278 	int is_orig_bio = 0;
6279 
6280 	if (bio->bi_status) {
6281 		atomic_inc(&bbio->error);
6282 		if (bio->bi_status == BLK_STS_IOERR ||
6283 		    bio->bi_status == BLK_STS_TARGET) {
6284 			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6285 
6286 			ASSERT(dev->bdev);
6287 			if (bio_op(bio) == REQ_OP_WRITE)
6288 				btrfs_dev_stat_inc_and_print(dev,
6289 						BTRFS_DEV_STAT_WRITE_ERRS);
6290 			else if (!(bio->bi_opf & REQ_RAHEAD))
6291 				btrfs_dev_stat_inc_and_print(dev,
6292 						BTRFS_DEV_STAT_READ_ERRS);
6293 			if (bio->bi_opf & REQ_PREFLUSH)
6294 				btrfs_dev_stat_inc_and_print(dev,
6295 						BTRFS_DEV_STAT_FLUSH_ERRS);
6296 		}
6297 	}
6298 
6299 	if (bio == bbio->orig_bio)
6300 		is_orig_bio = 1;
6301 
6302 	btrfs_bio_counter_dec(bbio->fs_info);
6303 
6304 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6305 		if (!is_orig_bio) {
6306 			bio_put(bio);
6307 			bio = bbio->orig_bio;
6308 		}
6309 
6310 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6311 		/* only send an error to the higher layers if it is
6312 		 * beyond the tolerance of the btrfs bio
6313 		 */
6314 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6315 			bio->bi_status = BLK_STS_IOERR;
6316 		} else {
6317 			/*
6318 			 * this bio is actually up to date, we didn't
6319 			 * go over the max number of errors
6320 			 */
6321 			bio->bi_status = BLK_STS_OK;
6322 		}
6323 
6324 		btrfs_end_bbio(bbio, bio);
6325 	} else if (!is_orig_bio) {
6326 		bio_put(bio);
6327 	}
6328 }
6329 
6330 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6331 			      u64 physical, struct btrfs_device *dev)
6332 {
6333 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6334 
6335 	bio->bi_private = bbio;
6336 	btrfs_io_bio(bio)->device = dev;
6337 	bio->bi_end_io = btrfs_end_bio;
6338 	bio->bi_iter.bi_sector = physical >> 9;
6339 	btrfs_debug_in_rcu(fs_info,
6340 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6341 		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6342 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6343 		dev->devid, bio->bi_iter.bi_size);
6344 	bio_set_dev(bio, dev->bdev);
6345 
6346 	btrfs_bio_counter_inc_noblocked(fs_info);
6347 
6348 	btrfsic_submit_bio(bio);
6349 }
6350 
6351 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6352 {
6353 	atomic_inc(&bbio->error);
6354 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6355 		/* Should be the original bio. */
6356 		WARN_ON(bio != bbio->orig_bio);
6357 
6358 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6359 		bio->bi_iter.bi_sector = logical >> 9;
6360 		if (atomic_read(&bbio->error) > bbio->max_errors)
6361 			bio->bi_status = BLK_STS_IOERR;
6362 		else
6363 			bio->bi_status = BLK_STS_OK;
6364 		btrfs_end_bbio(bbio, bio);
6365 	}
6366 }
6367 
6368 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6369 			   int mirror_num)
6370 {
6371 	struct btrfs_device *dev;
6372 	struct bio *first_bio = bio;
6373 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6374 	u64 length = 0;
6375 	u64 map_length;
6376 	int ret;
6377 	int dev_nr;
6378 	int total_devs;
6379 	struct btrfs_bio *bbio = NULL;
6380 
6381 	length = bio->bi_iter.bi_size;
6382 	map_length = length;
6383 
6384 	btrfs_bio_counter_inc_blocked(fs_info);
6385 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6386 				&map_length, &bbio, mirror_num, 1);
6387 	if (ret) {
6388 		btrfs_bio_counter_dec(fs_info);
6389 		return errno_to_blk_status(ret);
6390 	}
6391 
6392 	total_devs = bbio->num_stripes;
6393 	bbio->orig_bio = first_bio;
6394 	bbio->private = first_bio->bi_private;
6395 	bbio->end_io = first_bio->bi_end_io;
6396 	bbio->fs_info = fs_info;
6397 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6398 
6399 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6400 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6401 		/* In this case, map_length has been set to the length of
6402 		   a single stripe; not the whole write */
6403 		if (bio_op(bio) == REQ_OP_WRITE) {
6404 			ret = raid56_parity_write(fs_info, bio, bbio,
6405 						  map_length);
6406 		} else {
6407 			ret = raid56_parity_recover(fs_info, bio, bbio,
6408 						    map_length, mirror_num, 1);
6409 		}
6410 
6411 		btrfs_bio_counter_dec(fs_info);
6412 		return errno_to_blk_status(ret);
6413 	}
6414 
6415 	if (map_length < length) {
6416 		btrfs_crit(fs_info,
6417 			   "mapping failed logical %llu bio len %llu len %llu",
6418 			   logical, length, map_length);
6419 		BUG();
6420 	}
6421 
6422 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6423 		dev = bbio->stripes[dev_nr].dev;
6424 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6425 						   &dev->dev_state) ||
6426 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6427 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6428 			bbio_error(bbio, first_bio, logical);
6429 			continue;
6430 		}
6431 
6432 		if (dev_nr < total_devs - 1)
6433 			bio = btrfs_bio_clone(first_bio);
6434 		else
6435 			bio = first_bio;
6436 
6437 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6438 	}
6439 	btrfs_bio_counter_dec(fs_info);
6440 	return BLK_STS_OK;
6441 }
6442 
6443 /*
6444  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6445  * return NULL.
6446  *
6447  * If devid and uuid are both specified, the match must be exact, otherwise
6448  * only devid is used.
6449  *
6450  * If @seed is true, traverse through the seed devices.
6451  */
6452 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6453 				       u64 devid, u8 *uuid, u8 *fsid,
6454 				       bool seed)
6455 {
6456 	struct btrfs_device *device;
6457 	struct btrfs_fs_devices *seed_devs;
6458 
6459 	if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6460 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6461 			if (device->devid == devid &&
6462 			    (!uuid || memcmp(device->uuid, uuid,
6463 					     BTRFS_UUID_SIZE) == 0))
6464 				return device;
6465 		}
6466 	}
6467 
6468 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6469 		if (!fsid ||
6470 		    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6471 			list_for_each_entry(device, &seed_devs->devices,
6472 					    dev_list) {
6473 				if (device->devid == devid &&
6474 				    (!uuid || memcmp(device->uuid, uuid,
6475 						     BTRFS_UUID_SIZE) == 0))
6476 					return device;
6477 			}
6478 		}
6479 	}
6480 
6481 	return NULL;
6482 }
6483 
6484 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6485 					    u64 devid, u8 *dev_uuid)
6486 {
6487 	struct btrfs_device *device;
6488 	unsigned int nofs_flag;
6489 
6490 	/*
6491 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6492 	 * allocation, however we don't want to change btrfs_alloc_device() to
6493 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6494 	 * places.
6495 	 */
6496 	nofs_flag = memalloc_nofs_save();
6497 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6498 	memalloc_nofs_restore(nofs_flag);
6499 	if (IS_ERR(device))
6500 		return device;
6501 
6502 	list_add(&device->dev_list, &fs_devices->devices);
6503 	device->fs_devices = fs_devices;
6504 	fs_devices->num_devices++;
6505 
6506 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6507 	fs_devices->missing_devices++;
6508 
6509 	return device;
6510 }
6511 
6512 /**
6513  * btrfs_alloc_device - allocate struct btrfs_device
6514  * @fs_info:	used only for generating a new devid, can be NULL if
6515  *		devid is provided (i.e. @devid != NULL).
6516  * @devid:	a pointer to devid for this device.  If NULL a new devid
6517  *		is generated.
6518  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6519  *		is generated.
6520  *
6521  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6522  * on error.  Returned struct is not linked onto any lists and must be
6523  * destroyed with btrfs_free_device.
6524  */
6525 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6526 					const u64 *devid,
6527 					const u8 *uuid)
6528 {
6529 	struct btrfs_device *dev;
6530 	u64 tmp;
6531 
6532 	if (WARN_ON(!devid && !fs_info))
6533 		return ERR_PTR(-EINVAL);
6534 
6535 	dev = __alloc_device(fs_info);
6536 	if (IS_ERR(dev))
6537 		return dev;
6538 
6539 	if (devid)
6540 		tmp = *devid;
6541 	else {
6542 		int ret;
6543 
6544 		ret = find_next_devid(fs_info, &tmp);
6545 		if (ret) {
6546 			btrfs_free_device(dev);
6547 			return ERR_PTR(ret);
6548 		}
6549 	}
6550 	dev->devid = tmp;
6551 
6552 	if (uuid)
6553 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6554 	else
6555 		generate_random_uuid(dev->uuid);
6556 
6557 	return dev;
6558 }
6559 
6560 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6561 					u64 devid, u8 *uuid, bool error)
6562 {
6563 	if (error)
6564 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6565 			      devid, uuid);
6566 	else
6567 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6568 			      devid, uuid);
6569 }
6570 
6571 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6572 {
6573 	int index = btrfs_bg_flags_to_raid_index(type);
6574 	int ncopies = btrfs_raid_array[index].ncopies;
6575 	const int nparity = btrfs_raid_array[index].nparity;
6576 	int data_stripes;
6577 
6578 	if (nparity)
6579 		data_stripes = num_stripes - nparity;
6580 	else
6581 		data_stripes = num_stripes / ncopies;
6582 
6583 	return div_u64(chunk_len, data_stripes);
6584 }
6585 
6586 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6587 			  struct btrfs_chunk *chunk)
6588 {
6589 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6590 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6591 	struct map_lookup *map;
6592 	struct extent_map *em;
6593 	u64 logical;
6594 	u64 length;
6595 	u64 devid;
6596 	u8 uuid[BTRFS_UUID_SIZE];
6597 	int num_stripes;
6598 	int ret;
6599 	int i;
6600 
6601 	logical = key->offset;
6602 	length = btrfs_chunk_length(leaf, chunk);
6603 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6604 
6605 	/*
6606 	 * Only need to verify chunk item if we're reading from sys chunk array,
6607 	 * as chunk item in tree block is already verified by tree-checker.
6608 	 */
6609 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6610 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6611 		if (ret)
6612 			return ret;
6613 	}
6614 
6615 	read_lock(&map_tree->lock);
6616 	em = lookup_extent_mapping(map_tree, logical, 1);
6617 	read_unlock(&map_tree->lock);
6618 
6619 	/* already mapped? */
6620 	if (em && em->start <= logical && em->start + em->len > logical) {
6621 		free_extent_map(em);
6622 		return 0;
6623 	} else if (em) {
6624 		free_extent_map(em);
6625 	}
6626 
6627 	em = alloc_extent_map();
6628 	if (!em)
6629 		return -ENOMEM;
6630 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6631 	if (!map) {
6632 		free_extent_map(em);
6633 		return -ENOMEM;
6634 	}
6635 
6636 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6637 	em->map_lookup = map;
6638 	em->start = logical;
6639 	em->len = length;
6640 	em->orig_start = 0;
6641 	em->block_start = 0;
6642 	em->block_len = em->len;
6643 
6644 	map->num_stripes = num_stripes;
6645 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6646 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6647 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6648 	map->type = btrfs_chunk_type(leaf, chunk);
6649 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6650 	map->verified_stripes = 0;
6651 	em->orig_block_len = calc_stripe_length(map->type, em->len,
6652 						map->num_stripes);
6653 	for (i = 0; i < num_stripes; i++) {
6654 		map->stripes[i].physical =
6655 			btrfs_stripe_offset_nr(leaf, chunk, i);
6656 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6657 		read_extent_buffer(leaf, uuid, (unsigned long)
6658 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6659 				   BTRFS_UUID_SIZE);
6660 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6661 							devid, uuid, NULL, true);
6662 		if (!map->stripes[i].dev &&
6663 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6664 			free_extent_map(em);
6665 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6666 			return -ENOENT;
6667 		}
6668 		if (!map->stripes[i].dev) {
6669 			map->stripes[i].dev =
6670 				add_missing_dev(fs_info->fs_devices, devid,
6671 						uuid);
6672 			if (IS_ERR(map->stripes[i].dev)) {
6673 				free_extent_map(em);
6674 				btrfs_err(fs_info,
6675 					"failed to init missing dev %llu: %ld",
6676 					devid, PTR_ERR(map->stripes[i].dev));
6677 				return PTR_ERR(map->stripes[i].dev);
6678 			}
6679 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6680 		}
6681 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6682 				&(map->stripes[i].dev->dev_state));
6683 
6684 	}
6685 
6686 	write_lock(&map_tree->lock);
6687 	ret = add_extent_mapping(map_tree, em, 0);
6688 	write_unlock(&map_tree->lock);
6689 	if (ret < 0) {
6690 		btrfs_err(fs_info,
6691 			  "failed to add chunk map, start=%llu len=%llu: %d",
6692 			  em->start, em->len, ret);
6693 	}
6694 	free_extent_map(em);
6695 
6696 	return ret;
6697 }
6698 
6699 static void fill_device_from_item(struct extent_buffer *leaf,
6700 				 struct btrfs_dev_item *dev_item,
6701 				 struct btrfs_device *device)
6702 {
6703 	unsigned long ptr;
6704 
6705 	device->devid = btrfs_device_id(leaf, dev_item);
6706 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6707 	device->total_bytes = device->disk_total_bytes;
6708 	device->commit_total_bytes = device->disk_total_bytes;
6709 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6710 	device->commit_bytes_used = device->bytes_used;
6711 	device->type = btrfs_device_type(leaf, dev_item);
6712 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6713 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6714 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6715 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6716 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6717 
6718 	ptr = btrfs_device_uuid(dev_item);
6719 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6720 }
6721 
6722 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6723 						  u8 *fsid)
6724 {
6725 	struct btrfs_fs_devices *fs_devices;
6726 	int ret;
6727 
6728 	lockdep_assert_held(&uuid_mutex);
6729 	ASSERT(fsid);
6730 
6731 	/* This will match only for multi-device seed fs */
6732 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6733 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6734 			return fs_devices;
6735 
6736 
6737 	fs_devices = find_fsid(fsid, NULL);
6738 	if (!fs_devices) {
6739 		if (!btrfs_test_opt(fs_info, DEGRADED))
6740 			return ERR_PTR(-ENOENT);
6741 
6742 		fs_devices = alloc_fs_devices(fsid, NULL);
6743 		if (IS_ERR(fs_devices))
6744 			return fs_devices;
6745 
6746 		fs_devices->seeding = true;
6747 		fs_devices->opened = 1;
6748 		return fs_devices;
6749 	}
6750 
6751 	/*
6752 	 * Upon first call for a seed fs fsid, just create a private copy of the
6753 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6754 	 */
6755 	fs_devices = clone_fs_devices(fs_devices);
6756 	if (IS_ERR(fs_devices))
6757 		return fs_devices;
6758 
6759 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6760 	if (ret) {
6761 		free_fs_devices(fs_devices);
6762 		return ERR_PTR(ret);
6763 	}
6764 
6765 	if (!fs_devices->seeding) {
6766 		close_fs_devices(fs_devices);
6767 		free_fs_devices(fs_devices);
6768 		return ERR_PTR(-EINVAL);
6769 	}
6770 
6771 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6772 
6773 	return fs_devices;
6774 }
6775 
6776 static int read_one_dev(struct extent_buffer *leaf,
6777 			struct btrfs_dev_item *dev_item)
6778 {
6779 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6780 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6781 	struct btrfs_device *device;
6782 	u64 devid;
6783 	int ret;
6784 	u8 fs_uuid[BTRFS_FSID_SIZE];
6785 	u8 dev_uuid[BTRFS_UUID_SIZE];
6786 
6787 	devid = btrfs_device_id(leaf, dev_item);
6788 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6789 			   BTRFS_UUID_SIZE);
6790 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6791 			   BTRFS_FSID_SIZE);
6792 
6793 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6794 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6795 		if (IS_ERR(fs_devices))
6796 			return PTR_ERR(fs_devices);
6797 	}
6798 
6799 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6800 				   fs_uuid, true);
6801 	if (!device) {
6802 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6803 			btrfs_report_missing_device(fs_info, devid,
6804 							dev_uuid, true);
6805 			return -ENOENT;
6806 		}
6807 
6808 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6809 		if (IS_ERR(device)) {
6810 			btrfs_err(fs_info,
6811 				"failed to add missing dev %llu: %ld",
6812 				devid, PTR_ERR(device));
6813 			return PTR_ERR(device);
6814 		}
6815 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6816 	} else {
6817 		if (!device->bdev) {
6818 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6819 				btrfs_report_missing_device(fs_info,
6820 						devid, dev_uuid, true);
6821 				return -ENOENT;
6822 			}
6823 			btrfs_report_missing_device(fs_info, devid,
6824 							dev_uuid, false);
6825 		}
6826 
6827 		if (!device->bdev &&
6828 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6829 			/*
6830 			 * this happens when a device that was properly setup
6831 			 * in the device info lists suddenly goes bad.
6832 			 * device->bdev is NULL, and so we have to set
6833 			 * device->missing to one here
6834 			 */
6835 			device->fs_devices->missing_devices++;
6836 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6837 		}
6838 
6839 		/* Move the device to its own fs_devices */
6840 		if (device->fs_devices != fs_devices) {
6841 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6842 							&device->dev_state));
6843 
6844 			list_move(&device->dev_list, &fs_devices->devices);
6845 			device->fs_devices->num_devices--;
6846 			fs_devices->num_devices++;
6847 
6848 			device->fs_devices->missing_devices--;
6849 			fs_devices->missing_devices++;
6850 
6851 			device->fs_devices = fs_devices;
6852 		}
6853 	}
6854 
6855 	if (device->fs_devices != fs_info->fs_devices) {
6856 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6857 		if (device->generation !=
6858 		    btrfs_device_generation(leaf, dev_item))
6859 			return -EINVAL;
6860 	}
6861 
6862 	fill_device_from_item(leaf, dev_item, device);
6863 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6864 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6865 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6866 		device->fs_devices->total_rw_bytes += device->total_bytes;
6867 		atomic64_add(device->total_bytes - device->bytes_used,
6868 				&fs_info->free_chunk_space);
6869 	}
6870 	ret = 0;
6871 	return ret;
6872 }
6873 
6874 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6875 {
6876 	struct btrfs_root *root = fs_info->tree_root;
6877 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6878 	struct extent_buffer *sb;
6879 	struct btrfs_disk_key *disk_key;
6880 	struct btrfs_chunk *chunk;
6881 	u8 *array_ptr;
6882 	unsigned long sb_array_offset;
6883 	int ret = 0;
6884 	u32 num_stripes;
6885 	u32 array_size;
6886 	u32 len = 0;
6887 	u32 cur_offset;
6888 	u64 type;
6889 	struct btrfs_key key;
6890 
6891 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6892 	/*
6893 	 * This will create extent buffer of nodesize, superblock size is
6894 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6895 	 * overallocate but we can keep it as-is, only the first page is used.
6896 	 */
6897 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6898 	if (IS_ERR(sb))
6899 		return PTR_ERR(sb);
6900 	set_extent_buffer_uptodate(sb);
6901 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6902 	/*
6903 	 * The sb extent buffer is artificial and just used to read the system array.
6904 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6905 	 * pages up-to-date when the page is larger: extent does not cover the
6906 	 * whole page and consequently check_page_uptodate does not find all
6907 	 * the page's extents up-to-date (the hole beyond sb),
6908 	 * write_extent_buffer then triggers a WARN_ON.
6909 	 *
6910 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6911 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6912 	 * to silence the warning eg. on PowerPC 64.
6913 	 */
6914 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6915 		SetPageUptodate(sb->pages[0]);
6916 
6917 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6918 	array_size = btrfs_super_sys_array_size(super_copy);
6919 
6920 	array_ptr = super_copy->sys_chunk_array;
6921 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6922 	cur_offset = 0;
6923 
6924 	while (cur_offset < array_size) {
6925 		disk_key = (struct btrfs_disk_key *)array_ptr;
6926 		len = sizeof(*disk_key);
6927 		if (cur_offset + len > array_size)
6928 			goto out_short_read;
6929 
6930 		btrfs_disk_key_to_cpu(&key, disk_key);
6931 
6932 		array_ptr += len;
6933 		sb_array_offset += len;
6934 		cur_offset += len;
6935 
6936 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6937 			btrfs_err(fs_info,
6938 			    "unexpected item type %u in sys_array at offset %u",
6939 				  (u32)key.type, cur_offset);
6940 			ret = -EIO;
6941 			break;
6942 		}
6943 
6944 		chunk = (struct btrfs_chunk *)sb_array_offset;
6945 		/*
6946 		 * At least one btrfs_chunk with one stripe must be present,
6947 		 * exact stripe count check comes afterwards
6948 		 */
6949 		len = btrfs_chunk_item_size(1);
6950 		if (cur_offset + len > array_size)
6951 			goto out_short_read;
6952 
6953 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6954 		if (!num_stripes) {
6955 			btrfs_err(fs_info,
6956 			"invalid number of stripes %u in sys_array at offset %u",
6957 				  num_stripes, cur_offset);
6958 			ret = -EIO;
6959 			break;
6960 		}
6961 
6962 		type = btrfs_chunk_type(sb, chunk);
6963 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6964 			btrfs_err(fs_info,
6965 			"invalid chunk type %llu in sys_array at offset %u",
6966 				  type, cur_offset);
6967 			ret = -EIO;
6968 			break;
6969 		}
6970 
6971 		len = btrfs_chunk_item_size(num_stripes);
6972 		if (cur_offset + len > array_size)
6973 			goto out_short_read;
6974 
6975 		ret = read_one_chunk(&key, sb, chunk);
6976 		if (ret)
6977 			break;
6978 
6979 		array_ptr += len;
6980 		sb_array_offset += len;
6981 		cur_offset += len;
6982 	}
6983 	clear_extent_buffer_uptodate(sb);
6984 	free_extent_buffer_stale(sb);
6985 	return ret;
6986 
6987 out_short_read:
6988 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6989 			len, cur_offset);
6990 	clear_extent_buffer_uptodate(sb);
6991 	free_extent_buffer_stale(sb);
6992 	return -EIO;
6993 }
6994 
6995 /*
6996  * Check if all chunks in the fs are OK for read-write degraded mount
6997  *
6998  * If the @failing_dev is specified, it's accounted as missing.
6999  *
7000  * Return true if all chunks meet the minimal RW mount requirements.
7001  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7002  */
7003 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7004 					struct btrfs_device *failing_dev)
7005 {
7006 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7007 	struct extent_map *em;
7008 	u64 next_start = 0;
7009 	bool ret = true;
7010 
7011 	read_lock(&map_tree->lock);
7012 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7013 	read_unlock(&map_tree->lock);
7014 	/* No chunk at all? Return false anyway */
7015 	if (!em) {
7016 		ret = false;
7017 		goto out;
7018 	}
7019 	while (em) {
7020 		struct map_lookup *map;
7021 		int missing = 0;
7022 		int max_tolerated;
7023 		int i;
7024 
7025 		map = em->map_lookup;
7026 		max_tolerated =
7027 			btrfs_get_num_tolerated_disk_barrier_failures(
7028 					map->type);
7029 		for (i = 0; i < map->num_stripes; i++) {
7030 			struct btrfs_device *dev = map->stripes[i].dev;
7031 
7032 			if (!dev || !dev->bdev ||
7033 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7034 			    dev->last_flush_error)
7035 				missing++;
7036 			else if (failing_dev && failing_dev == dev)
7037 				missing++;
7038 		}
7039 		if (missing > max_tolerated) {
7040 			if (!failing_dev)
7041 				btrfs_warn(fs_info,
7042 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7043 				   em->start, missing, max_tolerated);
7044 			free_extent_map(em);
7045 			ret = false;
7046 			goto out;
7047 		}
7048 		next_start = extent_map_end(em);
7049 		free_extent_map(em);
7050 
7051 		read_lock(&map_tree->lock);
7052 		em = lookup_extent_mapping(map_tree, next_start,
7053 					   (u64)(-1) - next_start);
7054 		read_unlock(&map_tree->lock);
7055 	}
7056 out:
7057 	return ret;
7058 }
7059 
7060 static void readahead_tree_node_children(struct extent_buffer *node)
7061 {
7062 	int i;
7063 	const int nr_items = btrfs_header_nritems(node);
7064 
7065 	for (i = 0; i < nr_items; i++) {
7066 		u64 start;
7067 
7068 		start = btrfs_node_blockptr(node, i);
7069 		readahead_tree_block(node->fs_info, start);
7070 	}
7071 }
7072 
7073 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7074 {
7075 	struct btrfs_root *root = fs_info->chunk_root;
7076 	struct btrfs_path *path;
7077 	struct extent_buffer *leaf;
7078 	struct btrfs_key key;
7079 	struct btrfs_key found_key;
7080 	int ret;
7081 	int slot;
7082 	u64 total_dev = 0;
7083 	u64 last_ra_node = 0;
7084 
7085 	path = btrfs_alloc_path();
7086 	if (!path)
7087 		return -ENOMEM;
7088 
7089 	/*
7090 	 * uuid_mutex is needed only if we are mounting a sprout FS
7091 	 * otherwise we don't need it.
7092 	 */
7093 	mutex_lock(&uuid_mutex);
7094 
7095 	/*
7096 	 * It is possible for mount and umount to race in such a way that
7097 	 * we execute this code path, but open_fs_devices failed to clear
7098 	 * total_rw_bytes. We certainly want it cleared before reading the
7099 	 * device items, so clear it here.
7100 	 */
7101 	fs_info->fs_devices->total_rw_bytes = 0;
7102 
7103 	/*
7104 	 * Read all device items, and then all the chunk items. All
7105 	 * device items are found before any chunk item (their object id
7106 	 * is smaller than the lowest possible object id for a chunk
7107 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7108 	 */
7109 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7110 	key.offset = 0;
7111 	key.type = 0;
7112 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7113 	if (ret < 0)
7114 		goto error;
7115 	while (1) {
7116 		struct extent_buffer *node;
7117 
7118 		leaf = path->nodes[0];
7119 		slot = path->slots[0];
7120 		if (slot >= btrfs_header_nritems(leaf)) {
7121 			ret = btrfs_next_leaf(root, path);
7122 			if (ret == 0)
7123 				continue;
7124 			if (ret < 0)
7125 				goto error;
7126 			break;
7127 		}
7128 		/*
7129 		 * The nodes on level 1 are not locked but we don't need to do
7130 		 * that during mount time as nothing else can access the tree
7131 		 */
7132 		node = path->nodes[1];
7133 		if (node) {
7134 			if (last_ra_node != node->start) {
7135 				readahead_tree_node_children(node);
7136 				last_ra_node = node->start;
7137 			}
7138 		}
7139 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7140 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7141 			struct btrfs_dev_item *dev_item;
7142 			dev_item = btrfs_item_ptr(leaf, slot,
7143 						  struct btrfs_dev_item);
7144 			ret = read_one_dev(leaf, dev_item);
7145 			if (ret)
7146 				goto error;
7147 			total_dev++;
7148 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7149 			struct btrfs_chunk *chunk;
7150 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7151 			mutex_lock(&fs_info->chunk_mutex);
7152 			ret = read_one_chunk(&found_key, leaf, chunk);
7153 			mutex_unlock(&fs_info->chunk_mutex);
7154 			if (ret)
7155 				goto error;
7156 		}
7157 		path->slots[0]++;
7158 	}
7159 
7160 	/*
7161 	 * After loading chunk tree, we've got all device information,
7162 	 * do another round of validation checks.
7163 	 */
7164 	if (total_dev != fs_info->fs_devices->total_devices) {
7165 		btrfs_err(fs_info,
7166 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7167 			  btrfs_super_num_devices(fs_info->super_copy),
7168 			  total_dev);
7169 		ret = -EINVAL;
7170 		goto error;
7171 	}
7172 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7173 	    fs_info->fs_devices->total_rw_bytes) {
7174 		btrfs_err(fs_info,
7175 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7176 			  btrfs_super_total_bytes(fs_info->super_copy),
7177 			  fs_info->fs_devices->total_rw_bytes);
7178 		ret = -EINVAL;
7179 		goto error;
7180 	}
7181 	ret = 0;
7182 error:
7183 	mutex_unlock(&uuid_mutex);
7184 
7185 	btrfs_free_path(path);
7186 	return ret;
7187 }
7188 
7189 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7190 {
7191 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7192 	struct btrfs_device *device;
7193 
7194 	fs_devices->fs_info = fs_info;
7195 
7196 	mutex_lock(&fs_devices->device_list_mutex);
7197 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7198 		device->fs_info = fs_info;
7199 
7200 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7201 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7202 			device->fs_info = fs_info;
7203 
7204 		seed_devs->fs_info = fs_info;
7205 	}
7206 	mutex_unlock(&fs_devices->device_list_mutex);
7207 }
7208 
7209 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7210 				 const struct btrfs_dev_stats_item *ptr,
7211 				 int index)
7212 {
7213 	u64 val;
7214 
7215 	read_extent_buffer(eb, &val,
7216 			   offsetof(struct btrfs_dev_stats_item, values) +
7217 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7218 			   sizeof(val));
7219 	return val;
7220 }
7221 
7222 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7223 				      struct btrfs_dev_stats_item *ptr,
7224 				      int index, u64 val)
7225 {
7226 	write_extent_buffer(eb, &val,
7227 			    offsetof(struct btrfs_dev_stats_item, values) +
7228 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7229 			    sizeof(val));
7230 }
7231 
7232 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7233 				       struct btrfs_path *path)
7234 {
7235 	struct btrfs_dev_stats_item *ptr;
7236 	struct extent_buffer *eb;
7237 	struct btrfs_key key;
7238 	int item_size;
7239 	int i, ret, slot;
7240 
7241 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7242 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7243 	key.offset = device->devid;
7244 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7245 	if (ret) {
7246 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7247 			btrfs_dev_stat_set(device, i, 0);
7248 		device->dev_stats_valid = 1;
7249 		btrfs_release_path(path);
7250 		return ret < 0 ? ret : 0;
7251 	}
7252 	slot = path->slots[0];
7253 	eb = path->nodes[0];
7254 	item_size = btrfs_item_size_nr(eb, slot);
7255 
7256 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7257 
7258 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7259 		if (item_size >= (1 + i) * sizeof(__le64))
7260 			btrfs_dev_stat_set(device, i,
7261 					   btrfs_dev_stats_value(eb, ptr, i));
7262 		else
7263 			btrfs_dev_stat_set(device, i, 0);
7264 	}
7265 
7266 	device->dev_stats_valid = 1;
7267 	btrfs_dev_stat_print_on_load(device);
7268 	btrfs_release_path(path);
7269 
7270 	return 0;
7271 }
7272 
7273 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7274 {
7275 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7276 	struct btrfs_device *device;
7277 	struct btrfs_path *path = NULL;
7278 	int ret = 0;
7279 
7280 	path = btrfs_alloc_path();
7281 	if (!path)
7282 		return -ENOMEM;
7283 
7284 	mutex_lock(&fs_devices->device_list_mutex);
7285 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7286 		ret = btrfs_device_init_dev_stats(device, path);
7287 		if (ret)
7288 			goto out;
7289 	}
7290 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7291 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7292 			ret = btrfs_device_init_dev_stats(device, path);
7293 			if (ret)
7294 				goto out;
7295 		}
7296 	}
7297 out:
7298 	mutex_unlock(&fs_devices->device_list_mutex);
7299 
7300 	btrfs_free_path(path);
7301 	return ret;
7302 }
7303 
7304 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7305 				struct btrfs_device *device)
7306 {
7307 	struct btrfs_fs_info *fs_info = trans->fs_info;
7308 	struct btrfs_root *dev_root = fs_info->dev_root;
7309 	struct btrfs_path *path;
7310 	struct btrfs_key key;
7311 	struct extent_buffer *eb;
7312 	struct btrfs_dev_stats_item *ptr;
7313 	int ret;
7314 	int i;
7315 
7316 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7317 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7318 	key.offset = device->devid;
7319 
7320 	path = btrfs_alloc_path();
7321 	if (!path)
7322 		return -ENOMEM;
7323 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7324 	if (ret < 0) {
7325 		btrfs_warn_in_rcu(fs_info,
7326 			"error %d while searching for dev_stats item for device %s",
7327 			      ret, rcu_str_deref(device->name));
7328 		goto out;
7329 	}
7330 
7331 	if (ret == 0 &&
7332 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7333 		/* need to delete old one and insert a new one */
7334 		ret = btrfs_del_item(trans, dev_root, path);
7335 		if (ret != 0) {
7336 			btrfs_warn_in_rcu(fs_info,
7337 				"delete too small dev_stats item for device %s failed %d",
7338 				      rcu_str_deref(device->name), ret);
7339 			goto out;
7340 		}
7341 		ret = 1;
7342 	}
7343 
7344 	if (ret == 1) {
7345 		/* need to insert a new item */
7346 		btrfs_release_path(path);
7347 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7348 					      &key, sizeof(*ptr));
7349 		if (ret < 0) {
7350 			btrfs_warn_in_rcu(fs_info,
7351 				"insert dev_stats item for device %s failed %d",
7352 				rcu_str_deref(device->name), ret);
7353 			goto out;
7354 		}
7355 	}
7356 
7357 	eb = path->nodes[0];
7358 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7359 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7360 		btrfs_set_dev_stats_value(eb, ptr, i,
7361 					  btrfs_dev_stat_read(device, i));
7362 	btrfs_mark_buffer_dirty(eb);
7363 
7364 out:
7365 	btrfs_free_path(path);
7366 	return ret;
7367 }
7368 
7369 /*
7370  * called from commit_transaction. Writes all changed device stats to disk.
7371  */
7372 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7373 {
7374 	struct btrfs_fs_info *fs_info = trans->fs_info;
7375 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7376 	struct btrfs_device *device;
7377 	int stats_cnt;
7378 	int ret = 0;
7379 
7380 	mutex_lock(&fs_devices->device_list_mutex);
7381 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7382 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7383 		if (!device->dev_stats_valid || stats_cnt == 0)
7384 			continue;
7385 
7386 
7387 		/*
7388 		 * There is a LOAD-LOAD control dependency between the value of
7389 		 * dev_stats_ccnt and updating the on-disk values which requires
7390 		 * reading the in-memory counters. Such control dependencies
7391 		 * require explicit read memory barriers.
7392 		 *
7393 		 * This memory barriers pairs with smp_mb__before_atomic in
7394 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7395 		 * barrier implied by atomic_xchg in
7396 		 * btrfs_dev_stats_read_and_reset
7397 		 */
7398 		smp_rmb();
7399 
7400 		ret = update_dev_stat_item(trans, device);
7401 		if (!ret)
7402 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7403 	}
7404 	mutex_unlock(&fs_devices->device_list_mutex);
7405 
7406 	return ret;
7407 }
7408 
7409 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7410 {
7411 	btrfs_dev_stat_inc(dev, index);
7412 	btrfs_dev_stat_print_on_error(dev);
7413 }
7414 
7415 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7416 {
7417 	if (!dev->dev_stats_valid)
7418 		return;
7419 	btrfs_err_rl_in_rcu(dev->fs_info,
7420 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7421 			   rcu_str_deref(dev->name),
7422 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7423 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7424 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7425 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7426 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7427 }
7428 
7429 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7430 {
7431 	int i;
7432 
7433 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7434 		if (btrfs_dev_stat_read(dev, i) != 0)
7435 			break;
7436 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7437 		return; /* all values == 0, suppress message */
7438 
7439 	btrfs_info_in_rcu(dev->fs_info,
7440 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7441 	       rcu_str_deref(dev->name),
7442 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7443 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7444 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7445 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7446 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7447 }
7448 
7449 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7450 			struct btrfs_ioctl_get_dev_stats *stats)
7451 {
7452 	struct btrfs_device *dev;
7453 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7454 	int i;
7455 
7456 	mutex_lock(&fs_devices->device_list_mutex);
7457 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7458 				true);
7459 	mutex_unlock(&fs_devices->device_list_mutex);
7460 
7461 	if (!dev) {
7462 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7463 		return -ENODEV;
7464 	} else if (!dev->dev_stats_valid) {
7465 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7466 		return -ENODEV;
7467 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7468 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7469 			if (stats->nr_items > i)
7470 				stats->values[i] =
7471 					btrfs_dev_stat_read_and_reset(dev, i);
7472 			else
7473 				btrfs_dev_stat_set(dev, i, 0);
7474 		}
7475 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7476 			   current->comm, task_pid_nr(current));
7477 	} else {
7478 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7479 			if (stats->nr_items > i)
7480 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7481 	}
7482 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7483 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7484 	return 0;
7485 }
7486 
7487 /*
7488  * Update the size and bytes used for each device where it changed.  This is
7489  * delayed since we would otherwise get errors while writing out the
7490  * superblocks.
7491  *
7492  * Must be invoked during transaction commit.
7493  */
7494 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7495 {
7496 	struct btrfs_device *curr, *next;
7497 
7498 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7499 
7500 	if (list_empty(&trans->dev_update_list))
7501 		return;
7502 
7503 	/*
7504 	 * We don't need the device_list_mutex here.  This list is owned by the
7505 	 * transaction and the transaction must complete before the device is
7506 	 * released.
7507 	 */
7508 	mutex_lock(&trans->fs_info->chunk_mutex);
7509 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7510 				 post_commit_list) {
7511 		list_del_init(&curr->post_commit_list);
7512 		curr->commit_total_bytes = curr->disk_total_bytes;
7513 		curr->commit_bytes_used = curr->bytes_used;
7514 	}
7515 	mutex_unlock(&trans->fs_info->chunk_mutex);
7516 }
7517 
7518 /*
7519  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7520  */
7521 int btrfs_bg_type_to_factor(u64 flags)
7522 {
7523 	const int index = btrfs_bg_flags_to_raid_index(flags);
7524 
7525 	return btrfs_raid_array[index].ncopies;
7526 }
7527 
7528 
7529 
7530 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7531 				 u64 chunk_offset, u64 devid,
7532 				 u64 physical_offset, u64 physical_len)
7533 {
7534 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7535 	struct extent_map *em;
7536 	struct map_lookup *map;
7537 	struct btrfs_device *dev;
7538 	u64 stripe_len;
7539 	bool found = false;
7540 	int ret = 0;
7541 	int i;
7542 
7543 	read_lock(&em_tree->lock);
7544 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7545 	read_unlock(&em_tree->lock);
7546 
7547 	if (!em) {
7548 		btrfs_err(fs_info,
7549 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7550 			  physical_offset, devid);
7551 		ret = -EUCLEAN;
7552 		goto out;
7553 	}
7554 
7555 	map = em->map_lookup;
7556 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7557 	if (physical_len != stripe_len) {
7558 		btrfs_err(fs_info,
7559 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7560 			  physical_offset, devid, em->start, physical_len,
7561 			  stripe_len);
7562 		ret = -EUCLEAN;
7563 		goto out;
7564 	}
7565 
7566 	for (i = 0; i < map->num_stripes; i++) {
7567 		if (map->stripes[i].dev->devid == devid &&
7568 		    map->stripes[i].physical == physical_offset) {
7569 			found = true;
7570 			if (map->verified_stripes >= map->num_stripes) {
7571 				btrfs_err(fs_info,
7572 				"too many dev extents for chunk %llu found",
7573 					  em->start);
7574 				ret = -EUCLEAN;
7575 				goto out;
7576 			}
7577 			map->verified_stripes++;
7578 			break;
7579 		}
7580 	}
7581 	if (!found) {
7582 		btrfs_err(fs_info,
7583 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7584 			physical_offset, devid);
7585 		ret = -EUCLEAN;
7586 	}
7587 
7588 	/* Make sure no dev extent is beyond device bondary */
7589 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7590 	if (!dev) {
7591 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7592 		ret = -EUCLEAN;
7593 		goto out;
7594 	}
7595 
7596 	/* It's possible this device is a dummy for seed device */
7597 	if (dev->disk_total_bytes == 0) {
7598 		struct btrfs_fs_devices *devs;
7599 
7600 		devs = list_first_entry(&fs_info->fs_devices->seed_list,
7601 					struct btrfs_fs_devices, seed_list);
7602 		dev = btrfs_find_device(devs, devid, NULL, NULL, false);
7603 		if (!dev) {
7604 			btrfs_err(fs_info, "failed to find seed devid %llu",
7605 				  devid);
7606 			ret = -EUCLEAN;
7607 			goto out;
7608 		}
7609 	}
7610 
7611 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7612 		btrfs_err(fs_info,
7613 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7614 			  devid, physical_offset, physical_len,
7615 			  dev->disk_total_bytes);
7616 		ret = -EUCLEAN;
7617 		goto out;
7618 	}
7619 out:
7620 	free_extent_map(em);
7621 	return ret;
7622 }
7623 
7624 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7625 {
7626 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7627 	struct extent_map *em;
7628 	struct rb_node *node;
7629 	int ret = 0;
7630 
7631 	read_lock(&em_tree->lock);
7632 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7633 		em = rb_entry(node, struct extent_map, rb_node);
7634 		if (em->map_lookup->num_stripes !=
7635 		    em->map_lookup->verified_stripes) {
7636 			btrfs_err(fs_info,
7637 			"chunk %llu has missing dev extent, have %d expect %d",
7638 				  em->start, em->map_lookup->verified_stripes,
7639 				  em->map_lookup->num_stripes);
7640 			ret = -EUCLEAN;
7641 			goto out;
7642 		}
7643 	}
7644 out:
7645 	read_unlock(&em_tree->lock);
7646 	return ret;
7647 }
7648 
7649 /*
7650  * Ensure that all dev extents are mapped to correct chunk, otherwise
7651  * later chunk allocation/free would cause unexpected behavior.
7652  *
7653  * NOTE: This will iterate through the whole device tree, which should be of
7654  * the same size level as the chunk tree.  This slightly increases mount time.
7655  */
7656 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7657 {
7658 	struct btrfs_path *path;
7659 	struct btrfs_root *root = fs_info->dev_root;
7660 	struct btrfs_key key;
7661 	u64 prev_devid = 0;
7662 	u64 prev_dev_ext_end = 0;
7663 	int ret = 0;
7664 
7665 	key.objectid = 1;
7666 	key.type = BTRFS_DEV_EXTENT_KEY;
7667 	key.offset = 0;
7668 
7669 	path = btrfs_alloc_path();
7670 	if (!path)
7671 		return -ENOMEM;
7672 
7673 	path->reada = READA_FORWARD;
7674 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7675 	if (ret < 0)
7676 		goto out;
7677 
7678 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7679 		ret = btrfs_next_item(root, path);
7680 		if (ret < 0)
7681 			goto out;
7682 		/* No dev extents at all? Not good */
7683 		if (ret > 0) {
7684 			ret = -EUCLEAN;
7685 			goto out;
7686 		}
7687 	}
7688 	while (1) {
7689 		struct extent_buffer *leaf = path->nodes[0];
7690 		struct btrfs_dev_extent *dext;
7691 		int slot = path->slots[0];
7692 		u64 chunk_offset;
7693 		u64 physical_offset;
7694 		u64 physical_len;
7695 		u64 devid;
7696 
7697 		btrfs_item_key_to_cpu(leaf, &key, slot);
7698 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7699 			break;
7700 		devid = key.objectid;
7701 		physical_offset = key.offset;
7702 
7703 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7704 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7705 		physical_len = btrfs_dev_extent_length(leaf, dext);
7706 
7707 		/* Check if this dev extent overlaps with the previous one */
7708 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7709 			btrfs_err(fs_info,
7710 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7711 				  devid, physical_offset, prev_dev_ext_end);
7712 			ret = -EUCLEAN;
7713 			goto out;
7714 		}
7715 
7716 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7717 					    physical_offset, physical_len);
7718 		if (ret < 0)
7719 			goto out;
7720 		prev_devid = devid;
7721 		prev_dev_ext_end = physical_offset + physical_len;
7722 
7723 		ret = btrfs_next_item(root, path);
7724 		if (ret < 0)
7725 			goto out;
7726 		if (ret > 0) {
7727 			ret = 0;
7728 			break;
7729 		}
7730 	}
7731 
7732 	/* Ensure all chunks have corresponding dev extents */
7733 	ret = verify_chunk_dev_extent_mapping(fs_info);
7734 out:
7735 	btrfs_free_path(path);
7736 	return ret;
7737 }
7738 
7739 /*
7740  * Check whether the given block group or device is pinned by any inode being
7741  * used as a swapfile.
7742  */
7743 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7744 {
7745 	struct btrfs_swapfile_pin *sp;
7746 	struct rb_node *node;
7747 
7748 	spin_lock(&fs_info->swapfile_pins_lock);
7749 	node = fs_info->swapfile_pins.rb_node;
7750 	while (node) {
7751 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7752 		if (ptr < sp->ptr)
7753 			node = node->rb_left;
7754 		else if (ptr > sp->ptr)
7755 			node = node->rb_right;
7756 		else
7757 			break;
7758 	}
7759 	spin_unlock(&fs_info->swapfile_pins_lock);
7760 	return node != NULL;
7761 }
7762