1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include "misc.h" 18 #include "ctree.h" 19 #include "extent_map.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "async-thread.h" 26 #include "check-integrity.h" 27 #include "rcu-string.h" 28 #include "dev-replace.h" 29 #include "sysfs.h" 30 #include "tree-checker.h" 31 #include "space-info.h" 32 #include "block-group.h" 33 #include "discard.h" 34 35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 36 [BTRFS_RAID_RAID10] = { 37 .sub_stripes = 2, 38 .dev_stripes = 1, 39 .devs_max = 0, /* 0 == as many as possible */ 40 .devs_min = 4, 41 .tolerated_failures = 1, 42 .devs_increment = 2, 43 .ncopies = 2, 44 .nparity = 0, 45 .raid_name = "raid10", 46 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 47 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 48 }, 49 [BTRFS_RAID_RAID1] = { 50 .sub_stripes = 1, 51 .dev_stripes = 1, 52 .devs_max = 2, 53 .devs_min = 2, 54 .tolerated_failures = 1, 55 .devs_increment = 2, 56 .ncopies = 2, 57 .nparity = 0, 58 .raid_name = "raid1", 59 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 60 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 61 }, 62 [BTRFS_RAID_RAID1C3] = { 63 .sub_stripes = 1, 64 .dev_stripes = 1, 65 .devs_max = 3, 66 .devs_min = 3, 67 .tolerated_failures = 2, 68 .devs_increment = 3, 69 .ncopies = 3, 70 .nparity = 0, 71 .raid_name = "raid1c3", 72 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 73 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 74 }, 75 [BTRFS_RAID_RAID1C4] = { 76 .sub_stripes = 1, 77 .dev_stripes = 1, 78 .devs_max = 4, 79 .devs_min = 4, 80 .tolerated_failures = 3, 81 .devs_increment = 4, 82 .ncopies = 4, 83 .nparity = 0, 84 .raid_name = "raid1c4", 85 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 86 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 87 }, 88 [BTRFS_RAID_DUP] = { 89 .sub_stripes = 1, 90 .dev_stripes = 2, 91 .devs_max = 1, 92 .devs_min = 1, 93 .tolerated_failures = 0, 94 .devs_increment = 1, 95 .ncopies = 2, 96 .nparity = 0, 97 .raid_name = "dup", 98 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 99 .mindev_error = 0, 100 }, 101 [BTRFS_RAID_RAID0] = { 102 .sub_stripes = 1, 103 .dev_stripes = 1, 104 .devs_max = 0, 105 .devs_min = 2, 106 .tolerated_failures = 0, 107 .devs_increment = 1, 108 .ncopies = 1, 109 .nparity = 0, 110 .raid_name = "raid0", 111 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 112 .mindev_error = 0, 113 }, 114 [BTRFS_RAID_SINGLE] = { 115 .sub_stripes = 1, 116 .dev_stripes = 1, 117 .devs_max = 1, 118 .devs_min = 1, 119 .tolerated_failures = 0, 120 .devs_increment = 1, 121 .ncopies = 1, 122 .nparity = 0, 123 .raid_name = "single", 124 .bg_flag = 0, 125 .mindev_error = 0, 126 }, 127 [BTRFS_RAID_RAID5] = { 128 .sub_stripes = 1, 129 .dev_stripes = 1, 130 .devs_max = 0, 131 .devs_min = 2, 132 .tolerated_failures = 1, 133 .devs_increment = 1, 134 .ncopies = 1, 135 .nparity = 1, 136 .raid_name = "raid5", 137 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 138 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 139 }, 140 [BTRFS_RAID_RAID6] = { 141 .sub_stripes = 1, 142 .dev_stripes = 1, 143 .devs_max = 0, 144 .devs_min = 3, 145 .tolerated_failures = 2, 146 .devs_increment = 1, 147 .ncopies = 1, 148 .nparity = 2, 149 .raid_name = "raid6", 150 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 151 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 152 }, 153 }; 154 155 const char *btrfs_bg_type_to_raid_name(u64 flags) 156 { 157 const int index = btrfs_bg_flags_to_raid_index(flags); 158 159 if (index >= BTRFS_NR_RAID_TYPES) 160 return NULL; 161 162 return btrfs_raid_array[index].raid_name; 163 } 164 165 /* 166 * Fill @buf with textual description of @bg_flags, no more than @size_buf 167 * bytes including terminating null byte. 168 */ 169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 170 { 171 int i; 172 int ret; 173 char *bp = buf; 174 u64 flags = bg_flags; 175 u32 size_bp = size_buf; 176 177 if (!flags) { 178 strcpy(bp, "NONE"); 179 return; 180 } 181 182 #define DESCRIBE_FLAG(flag, desc) \ 183 do { \ 184 if (flags & (flag)) { \ 185 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 186 if (ret < 0 || ret >= size_bp) \ 187 goto out_overflow; \ 188 size_bp -= ret; \ 189 bp += ret; \ 190 flags &= ~(flag); \ 191 } \ 192 } while (0) 193 194 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 197 198 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 199 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 200 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 201 btrfs_raid_array[i].raid_name); 202 #undef DESCRIBE_FLAG 203 204 if (flags) { 205 ret = snprintf(bp, size_bp, "0x%llx|", flags); 206 size_bp -= ret; 207 } 208 209 if (size_bp < size_buf) 210 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 211 212 /* 213 * The text is trimmed, it's up to the caller to provide sufficiently 214 * large buffer 215 */ 216 out_overflow:; 217 } 218 219 static int init_first_rw_device(struct btrfs_trans_handle *trans); 220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 224 enum btrfs_map_op op, 225 u64 logical, u64 *length, 226 struct btrfs_bio **bbio_ret, 227 int mirror_num, int need_raid_map); 228 229 /* 230 * Device locking 231 * ============== 232 * 233 * There are several mutexes that protect manipulation of devices and low-level 234 * structures like chunks but not block groups, extents or files 235 * 236 * uuid_mutex (global lock) 237 * ------------------------ 238 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 239 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 240 * device) or requested by the device= mount option 241 * 242 * the mutex can be very coarse and can cover long-running operations 243 * 244 * protects: updates to fs_devices counters like missing devices, rw devices, 245 * seeding, structure cloning, opening/closing devices at mount/umount time 246 * 247 * global::fs_devs - add, remove, updates to the global list 248 * 249 * does not protect: manipulation of the fs_devices::devices list in general 250 * but in mount context it could be used to exclude list modifications by eg. 251 * scan ioctl 252 * 253 * btrfs_device::name - renames (write side), read is RCU 254 * 255 * fs_devices::device_list_mutex (per-fs, with RCU) 256 * ------------------------------------------------ 257 * protects updates to fs_devices::devices, ie. adding and deleting 258 * 259 * simple list traversal with read-only actions can be done with RCU protection 260 * 261 * may be used to exclude some operations from running concurrently without any 262 * modifications to the list (see write_all_supers) 263 * 264 * Is not required at mount and close times, because our device list is 265 * protected by the uuid_mutex at that point. 266 * 267 * balance_mutex 268 * ------------- 269 * protects balance structures (status, state) and context accessed from 270 * several places (internally, ioctl) 271 * 272 * chunk_mutex 273 * ----------- 274 * protects chunks, adding or removing during allocation, trim or when a new 275 * device is added/removed. Additionally it also protects post_commit_list of 276 * individual devices, since they can be added to the transaction's 277 * post_commit_list only with chunk_mutex held. 278 * 279 * cleaner_mutex 280 * ------------- 281 * a big lock that is held by the cleaner thread and prevents running subvolume 282 * cleaning together with relocation or delayed iputs 283 * 284 * 285 * Lock nesting 286 * ============ 287 * 288 * uuid_mutex 289 * device_list_mutex 290 * chunk_mutex 291 * balance_mutex 292 * 293 * 294 * Exclusive operations 295 * ==================== 296 * 297 * Maintains the exclusivity of the following operations that apply to the 298 * whole filesystem and cannot run in parallel. 299 * 300 * - Balance (*) 301 * - Device add 302 * - Device remove 303 * - Device replace (*) 304 * - Resize 305 * 306 * The device operations (as above) can be in one of the following states: 307 * 308 * - Running state 309 * - Paused state 310 * - Completed state 311 * 312 * Only device operations marked with (*) can go into the Paused state for the 313 * following reasons: 314 * 315 * - ioctl (only Balance can be Paused through ioctl) 316 * - filesystem remounted as read-only 317 * - filesystem unmounted and mounted as read-only 318 * - system power-cycle and filesystem mounted as read-only 319 * - filesystem or device errors leading to forced read-only 320 * 321 * The status of exclusive operation is set and cleared atomically. 322 * During the course of Paused state, fs_info::exclusive_operation remains set. 323 * A device operation in Paused or Running state can be canceled or resumed 324 * either by ioctl (Balance only) or when remounted as read-write. 325 * The exclusive status is cleared when the device operation is canceled or 326 * completed. 327 */ 328 329 DEFINE_MUTEX(uuid_mutex); 330 static LIST_HEAD(fs_uuids); 331 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 332 { 333 return &fs_uuids; 334 } 335 336 /* 337 * alloc_fs_devices - allocate struct btrfs_fs_devices 338 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 339 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 340 * 341 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 342 * The returned struct is not linked onto any lists and can be destroyed with 343 * kfree() right away. 344 */ 345 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 346 const u8 *metadata_fsid) 347 { 348 struct btrfs_fs_devices *fs_devs; 349 350 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 351 if (!fs_devs) 352 return ERR_PTR(-ENOMEM); 353 354 mutex_init(&fs_devs->device_list_mutex); 355 356 INIT_LIST_HEAD(&fs_devs->devices); 357 INIT_LIST_HEAD(&fs_devs->alloc_list); 358 INIT_LIST_HEAD(&fs_devs->fs_list); 359 INIT_LIST_HEAD(&fs_devs->seed_list); 360 if (fsid) 361 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 362 363 if (metadata_fsid) 364 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 365 else if (fsid) 366 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 367 368 return fs_devs; 369 } 370 371 void btrfs_free_device(struct btrfs_device *device) 372 { 373 WARN_ON(!list_empty(&device->post_commit_list)); 374 rcu_string_free(device->name); 375 extent_io_tree_release(&device->alloc_state); 376 bio_put(device->flush_bio); 377 kfree(device); 378 } 379 380 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 381 { 382 struct btrfs_device *device; 383 WARN_ON(fs_devices->opened); 384 while (!list_empty(&fs_devices->devices)) { 385 device = list_entry(fs_devices->devices.next, 386 struct btrfs_device, dev_list); 387 list_del(&device->dev_list); 388 btrfs_free_device(device); 389 } 390 kfree(fs_devices); 391 } 392 393 void __exit btrfs_cleanup_fs_uuids(void) 394 { 395 struct btrfs_fs_devices *fs_devices; 396 397 while (!list_empty(&fs_uuids)) { 398 fs_devices = list_entry(fs_uuids.next, 399 struct btrfs_fs_devices, fs_list); 400 list_del(&fs_devices->fs_list); 401 free_fs_devices(fs_devices); 402 } 403 } 404 405 /* 406 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 407 * Returned struct is not linked onto any lists and must be destroyed using 408 * btrfs_free_device. 409 */ 410 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info) 411 { 412 struct btrfs_device *dev; 413 414 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 415 if (!dev) 416 return ERR_PTR(-ENOMEM); 417 418 /* 419 * Preallocate a bio that's always going to be used for flushing device 420 * barriers and matches the device lifespan 421 */ 422 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 423 if (!dev->flush_bio) { 424 kfree(dev); 425 return ERR_PTR(-ENOMEM); 426 } 427 428 INIT_LIST_HEAD(&dev->dev_list); 429 INIT_LIST_HEAD(&dev->dev_alloc_list); 430 INIT_LIST_HEAD(&dev->post_commit_list); 431 432 atomic_set(&dev->reada_in_flight, 0); 433 atomic_set(&dev->dev_stats_ccnt, 0); 434 btrfs_device_data_ordered_init(dev); 435 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 436 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 437 extent_io_tree_init(fs_info, &dev->alloc_state, 438 IO_TREE_DEVICE_ALLOC_STATE, NULL); 439 440 return dev; 441 } 442 443 static noinline struct btrfs_fs_devices *find_fsid( 444 const u8 *fsid, const u8 *metadata_fsid) 445 { 446 struct btrfs_fs_devices *fs_devices; 447 448 ASSERT(fsid); 449 450 /* Handle non-split brain cases */ 451 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 452 if (metadata_fsid) { 453 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 454 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 455 BTRFS_FSID_SIZE) == 0) 456 return fs_devices; 457 } else { 458 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 459 return fs_devices; 460 } 461 } 462 return NULL; 463 } 464 465 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 466 struct btrfs_super_block *disk_super) 467 { 468 469 struct btrfs_fs_devices *fs_devices; 470 471 /* 472 * Handle scanned device having completed its fsid change but 473 * belonging to a fs_devices that was created by first scanning 474 * a device which didn't have its fsid/metadata_uuid changed 475 * at all and the CHANGING_FSID_V2 flag set. 476 */ 477 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 478 if (fs_devices->fsid_change && 479 memcmp(disk_super->metadata_uuid, fs_devices->fsid, 480 BTRFS_FSID_SIZE) == 0 && 481 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 482 BTRFS_FSID_SIZE) == 0) { 483 return fs_devices; 484 } 485 } 486 /* 487 * Handle scanned device having completed its fsid change but 488 * belonging to a fs_devices that was created by a device that 489 * has an outdated pair of fsid/metadata_uuid and 490 * CHANGING_FSID_V2 flag set. 491 */ 492 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 493 if (fs_devices->fsid_change && 494 memcmp(fs_devices->metadata_uuid, 495 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 496 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, 497 BTRFS_FSID_SIZE) == 0) { 498 return fs_devices; 499 } 500 } 501 502 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 503 } 504 505 506 static int 507 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 508 int flush, struct block_device **bdev, 509 struct btrfs_super_block **disk_super) 510 { 511 int ret; 512 513 *bdev = blkdev_get_by_path(device_path, flags, holder); 514 515 if (IS_ERR(*bdev)) { 516 ret = PTR_ERR(*bdev); 517 goto error; 518 } 519 520 if (flush) 521 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 522 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 523 if (ret) { 524 blkdev_put(*bdev, flags); 525 goto error; 526 } 527 invalidate_bdev(*bdev); 528 *disk_super = btrfs_read_dev_super(*bdev); 529 if (IS_ERR(*disk_super)) { 530 ret = PTR_ERR(*disk_super); 531 blkdev_put(*bdev, flags); 532 goto error; 533 } 534 535 return 0; 536 537 error: 538 *bdev = NULL; 539 return ret; 540 } 541 542 static bool device_path_matched(const char *path, struct btrfs_device *device) 543 { 544 int found; 545 546 rcu_read_lock(); 547 found = strcmp(rcu_str_deref(device->name), path); 548 rcu_read_unlock(); 549 550 return found == 0; 551 } 552 553 /* 554 * Search and remove all stale (devices which are not mounted) devices. 555 * When both inputs are NULL, it will search and release all stale devices. 556 * path: Optional. When provided will it release all unmounted devices 557 * matching this path only. 558 * skip_dev: Optional. Will skip this device when searching for the stale 559 * devices. 560 * Return: 0 for success or if @path is NULL. 561 * -EBUSY if @path is a mounted device. 562 * -ENOENT if @path does not match any device in the list. 563 */ 564 static int btrfs_free_stale_devices(const char *path, 565 struct btrfs_device *skip_device) 566 { 567 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 568 struct btrfs_device *device, *tmp_device; 569 int ret = 0; 570 571 if (path) 572 ret = -ENOENT; 573 574 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 575 576 mutex_lock(&fs_devices->device_list_mutex); 577 list_for_each_entry_safe(device, tmp_device, 578 &fs_devices->devices, dev_list) { 579 if (skip_device && skip_device == device) 580 continue; 581 if (path && !device->name) 582 continue; 583 if (path && !device_path_matched(path, device)) 584 continue; 585 if (fs_devices->opened) { 586 /* for an already deleted device return 0 */ 587 if (path && ret != 0) 588 ret = -EBUSY; 589 break; 590 } 591 592 /* delete the stale device */ 593 fs_devices->num_devices--; 594 list_del(&device->dev_list); 595 btrfs_free_device(device); 596 597 ret = 0; 598 } 599 mutex_unlock(&fs_devices->device_list_mutex); 600 601 if (fs_devices->num_devices == 0) { 602 btrfs_sysfs_remove_fsid(fs_devices); 603 list_del(&fs_devices->fs_list); 604 free_fs_devices(fs_devices); 605 } 606 } 607 608 return ret; 609 } 610 611 /* 612 * This is only used on mount, and we are protected from competing things 613 * messing with our fs_devices by the uuid_mutex, thus we do not need the 614 * fs_devices->device_list_mutex here. 615 */ 616 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 617 struct btrfs_device *device, fmode_t flags, 618 void *holder) 619 { 620 struct request_queue *q; 621 struct block_device *bdev; 622 struct btrfs_super_block *disk_super; 623 u64 devid; 624 int ret; 625 626 if (device->bdev) 627 return -EINVAL; 628 if (!device->name) 629 return -EINVAL; 630 631 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 632 &bdev, &disk_super); 633 if (ret) 634 return ret; 635 636 devid = btrfs_stack_device_id(&disk_super->dev_item); 637 if (devid != device->devid) 638 goto error_free_page; 639 640 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 641 goto error_free_page; 642 643 device->generation = btrfs_super_generation(disk_super); 644 645 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 646 if (btrfs_super_incompat_flags(disk_super) & 647 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 648 pr_err( 649 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 650 goto error_free_page; 651 } 652 653 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 654 fs_devices->seeding = true; 655 } else { 656 if (bdev_read_only(bdev)) 657 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 658 else 659 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 660 } 661 662 q = bdev_get_queue(bdev); 663 if (!blk_queue_nonrot(q)) 664 fs_devices->rotating = true; 665 666 device->bdev = bdev; 667 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 668 device->mode = flags; 669 670 fs_devices->open_devices++; 671 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 672 device->devid != BTRFS_DEV_REPLACE_DEVID) { 673 fs_devices->rw_devices++; 674 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 675 } 676 btrfs_release_disk_super(disk_super); 677 678 return 0; 679 680 error_free_page: 681 btrfs_release_disk_super(disk_super); 682 blkdev_put(bdev, flags); 683 684 return -EINVAL; 685 } 686 687 /* 688 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 689 * being created with a disk that has already completed its fsid change. Such 690 * disk can belong to an fs which has its FSID changed or to one which doesn't. 691 * Handle both cases here. 692 */ 693 static struct btrfs_fs_devices *find_fsid_inprogress( 694 struct btrfs_super_block *disk_super) 695 { 696 struct btrfs_fs_devices *fs_devices; 697 698 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 699 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 700 BTRFS_FSID_SIZE) != 0 && 701 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 702 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 703 return fs_devices; 704 } 705 } 706 707 return find_fsid(disk_super->fsid, NULL); 708 } 709 710 711 static struct btrfs_fs_devices *find_fsid_changed( 712 struct btrfs_super_block *disk_super) 713 { 714 struct btrfs_fs_devices *fs_devices; 715 716 /* 717 * Handles the case where scanned device is part of an fs that had 718 * multiple successful changes of FSID but curently device didn't 719 * observe it. Meaning our fsid will be different than theirs. We need 720 * to handle two subcases : 721 * 1 - The fs still continues to have different METADATA/FSID uuids. 722 * 2 - The fs is switched back to its original FSID (METADATA/FSID 723 * are equal). 724 */ 725 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 726 /* Changed UUIDs */ 727 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 728 BTRFS_FSID_SIZE) != 0 && 729 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 730 BTRFS_FSID_SIZE) == 0 && 731 memcmp(fs_devices->fsid, disk_super->fsid, 732 BTRFS_FSID_SIZE) != 0) 733 return fs_devices; 734 735 /* Unchanged UUIDs */ 736 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 737 BTRFS_FSID_SIZE) == 0 && 738 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 739 BTRFS_FSID_SIZE) == 0) 740 return fs_devices; 741 } 742 743 return NULL; 744 } 745 746 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 747 struct btrfs_super_block *disk_super) 748 { 749 struct btrfs_fs_devices *fs_devices; 750 751 /* 752 * Handle the case where the scanned device is part of an fs whose last 753 * metadata UUID change reverted it to the original FSID. At the same 754 * time * fs_devices was first created by another constitutent device 755 * which didn't fully observe the operation. This results in an 756 * btrfs_fs_devices created with metadata/fsid different AND 757 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 758 * fs_devices equal to the FSID of the disk. 759 */ 760 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 761 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 762 BTRFS_FSID_SIZE) != 0 && 763 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 764 BTRFS_FSID_SIZE) == 0 && 765 fs_devices->fsid_change) 766 return fs_devices; 767 } 768 769 return NULL; 770 } 771 /* 772 * Add new device to list of registered devices 773 * 774 * Returns: 775 * device pointer which was just added or updated when successful 776 * error pointer when failed 777 */ 778 static noinline struct btrfs_device *device_list_add(const char *path, 779 struct btrfs_super_block *disk_super, 780 bool *new_device_added) 781 { 782 struct btrfs_device *device; 783 struct btrfs_fs_devices *fs_devices = NULL; 784 struct rcu_string *name; 785 u64 found_transid = btrfs_super_generation(disk_super); 786 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 787 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 788 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 789 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 790 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 791 792 if (fsid_change_in_progress) { 793 if (!has_metadata_uuid) 794 fs_devices = find_fsid_inprogress(disk_super); 795 else 796 fs_devices = find_fsid_changed(disk_super); 797 } else if (has_metadata_uuid) { 798 fs_devices = find_fsid_with_metadata_uuid(disk_super); 799 } else { 800 fs_devices = find_fsid_reverted_metadata(disk_super); 801 if (!fs_devices) 802 fs_devices = find_fsid(disk_super->fsid, NULL); 803 } 804 805 806 if (!fs_devices) { 807 if (has_metadata_uuid) 808 fs_devices = alloc_fs_devices(disk_super->fsid, 809 disk_super->metadata_uuid); 810 else 811 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 812 813 if (IS_ERR(fs_devices)) 814 return ERR_CAST(fs_devices); 815 816 fs_devices->fsid_change = fsid_change_in_progress; 817 818 mutex_lock(&fs_devices->device_list_mutex); 819 list_add(&fs_devices->fs_list, &fs_uuids); 820 821 device = NULL; 822 } else { 823 mutex_lock(&fs_devices->device_list_mutex); 824 device = btrfs_find_device(fs_devices, devid, 825 disk_super->dev_item.uuid, NULL, false); 826 827 /* 828 * If this disk has been pulled into an fs devices created by 829 * a device which had the CHANGING_FSID_V2 flag then replace the 830 * metadata_uuid/fsid values of the fs_devices. 831 */ 832 if (fs_devices->fsid_change && 833 found_transid > fs_devices->latest_generation) { 834 memcpy(fs_devices->fsid, disk_super->fsid, 835 BTRFS_FSID_SIZE); 836 837 if (has_metadata_uuid) 838 memcpy(fs_devices->metadata_uuid, 839 disk_super->metadata_uuid, 840 BTRFS_FSID_SIZE); 841 else 842 memcpy(fs_devices->metadata_uuid, 843 disk_super->fsid, BTRFS_FSID_SIZE); 844 845 fs_devices->fsid_change = false; 846 } 847 } 848 849 if (!device) { 850 if (fs_devices->opened) { 851 mutex_unlock(&fs_devices->device_list_mutex); 852 return ERR_PTR(-EBUSY); 853 } 854 855 device = btrfs_alloc_device(NULL, &devid, 856 disk_super->dev_item.uuid); 857 if (IS_ERR(device)) { 858 mutex_unlock(&fs_devices->device_list_mutex); 859 /* we can safely leave the fs_devices entry around */ 860 return device; 861 } 862 863 name = rcu_string_strdup(path, GFP_NOFS); 864 if (!name) { 865 btrfs_free_device(device); 866 mutex_unlock(&fs_devices->device_list_mutex); 867 return ERR_PTR(-ENOMEM); 868 } 869 rcu_assign_pointer(device->name, name); 870 871 list_add_rcu(&device->dev_list, &fs_devices->devices); 872 fs_devices->num_devices++; 873 874 device->fs_devices = fs_devices; 875 *new_device_added = true; 876 877 if (disk_super->label[0]) 878 pr_info( 879 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 880 disk_super->label, devid, found_transid, path, 881 current->comm, task_pid_nr(current)); 882 else 883 pr_info( 884 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 885 disk_super->fsid, devid, found_transid, path, 886 current->comm, task_pid_nr(current)); 887 888 } else if (!device->name || strcmp(device->name->str, path)) { 889 /* 890 * When FS is already mounted. 891 * 1. If you are here and if the device->name is NULL that 892 * means this device was missing at time of FS mount. 893 * 2. If you are here and if the device->name is different 894 * from 'path' that means either 895 * a. The same device disappeared and reappeared with 896 * different name. or 897 * b. The missing-disk-which-was-replaced, has 898 * reappeared now. 899 * 900 * We must allow 1 and 2a above. But 2b would be a spurious 901 * and unintentional. 902 * 903 * Further in case of 1 and 2a above, the disk at 'path' 904 * would have missed some transaction when it was away and 905 * in case of 2a the stale bdev has to be updated as well. 906 * 2b must not be allowed at all time. 907 */ 908 909 /* 910 * For now, we do allow update to btrfs_fs_device through the 911 * btrfs dev scan cli after FS has been mounted. We're still 912 * tracking a problem where systems fail mount by subvolume id 913 * when we reject replacement on a mounted FS. 914 */ 915 if (!fs_devices->opened && found_transid < device->generation) { 916 /* 917 * That is if the FS is _not_ mounted and if you 918 * are here, that means there is more than one 919 * disk with same uuid and devid.We keep the one 920 * with larger generation number or the last-in if 921 * generation are equal. 922 */ 923 mutex_unlock(&fs_devices->device_list_mutex); 924 return ERR_PTR(-EEXIST); 925 } 926 927 /* 928 * We are going to replace the device path for a given devid, 929 * make sure it's the same device if the device is mounted 930 */ 931 if (device->bdev) { 932 struct block_device *path_bdev; 933 934 path_bdev = lookup_bdev(path); 935 if (IS_ERR(path_bdev)) { 936 mutex_unlock(&fs_devices->device_list_mutex); 937 return ERR_CAST(path_bdev); 938 } 939 940 if (device->bdev != path_bdev) { 941 bdput(path_bdev); 942 mutex_unlock(&fs_devices->device_list_mutex); 943 btrfs_warn_in_rcu(device->fs_info, 944 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 945 path, devid, found_transid, 946 current->comm, 947 task_pid_nr(current)); 948 return ERR_PTR(-EEXIST); 949 } 950 bdput(path_bdev); 951 btrfs_info_in_rcu(device->fs_info, 952 "devid %llu device path %s changed to %s scanned by %s (%d)", 953 devid, rcu_str_deref(device->name), 954 path, current->comm, 955 task_pid_nr(current)); 956 } 957 958 name = rcu_string_strdup(path, GFP_NOFS); 959 if (!name) { 960 mutex_unlock(&fs_devices->device_list_mutex); 961 return ERR_PTR(-ENOMEM); 962 } 963 rcu_string_free(device->name); 964 rcu_assign_pointer(device->name, name); 965 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 966 fs_devices->missing_devices--; 967 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 968 } 969 } 970 971 /* 972 * Unmount does not free the btrfs_device struct but would zero 973 * generation along with most of the other members. So just update 974 * it back. We need it to pick the disk with largest generation 975 * (as above). 976 */ 977 if (!fs_devices->opened) { 978 device->generation = found_transid; 979 fs_devices->latest_generation = max_t(u64, found_transid, 980 fs_devices->latest_generation); 981 } 982 983 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 984 985 mutex_unlock(&fs_devices->device_list_mutex); 986 return device; 987 } 988 989 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 990 { 991 struct btrfs_fs_devices *fs_devices; 992 struct btrfs_device *device; 993 struct btrfs_device *orig_dev; 994 int ret = 0; 995 996 fs_devices = alloc_fs_devices(orig->fsid, NULL); 997 if (IS_ERR(fs_devices)) 998 return fs_devices; 999 1000 mutex_lock(&orig->device_list_mutex); 1001 fs_devices->total_devices = orig->total_devices; 1002 1003 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1004 struct rcu_string *name; 1005 1006 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1007 orig_dev->uuid); 1008 if (IS_ERR(device)) { 1009 ret = PTR_ERR(device); 1010 goto error; 1011 } 1012 1013 /* 1014 * This is ok to do without rcu read locked because we hold the 1015 * uuid mutex so nothing we touch in here is going to disappear. 1016 */ 1017 if (orig_dev->name) { 1018 name = rcu_string_strdup(orig_dev->name->str, 1019 GFP_KERNEL); 1020 if (!name) { 1021 btrfs_free_device(device); 1022 ret = -ENOMEM; 1023 goto error; 1024 } 1025 rcu_assign_pointer(device->name, name); 1026 } 1027 1028 list_add(&device->dev_list, &fs_devices->devices); 1029 device->fs_devices = fs_devices; 1030 fs_devices->num_devices++; 1031 } 1032 mutex_unlock(&orig->device_list_mutex); 1033 return fs_devices; 1034 error: 1035 mutex_unlock(&orig->device_list_mutex); 1036 free_fs_devices(fs_devices); 1037 return ERR_PTR(ret); 1038 } 1039 1040 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1041 int step, struct btrfs_device **latest_dev) 1042 { 1043 struct btrfs_device *device, *next; 1044 1045 /* This is the initialized path, it is safe to release the devices. */ 1046 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1047 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1048 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1049 &device->dev_state) && 1050 !test_bit(BTRFS_DEV_STATE_MISSING, 1051 &device->dev_state) && 1052 (!*latest_dev || 1053 device->generation > (*latest_dev)->generation)) { 1054 *latest_dev = device; 1055 } 1056 continue; 1057 } 1058 1059 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 1060 /* 1061 * In the first step, keep the device which has 1062 * the correct fsid and the devid that is used 1063 * for the dev_replace procedure. 1064 * In the second step, the dev_replace state is 1065 * read from the device tree and it is known 1066 * whether the procedure is really active or 1067 * not, which means whether this device is 1068 * used or whether it should be removed. 1069 */ 1070 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1071 &device->dev_state)) { 1072 continue; 1073 } 1074 } 1075 if (device->bdev) { 1076 blkdev_put(device->bdev, device->mode); 1077 device->bdev = NULL; 1078 fs_devices->open_devices--; 1079 } 1080 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1081 list_del_init(&device->dev_alloc_list); 1082 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1083 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1084 &device->dev_state)) 1085 fs_devices->rw_devices--; 1086 } 1087 list_del_init(&device->dev_list); 1088 fs_devices->num_devices--; 1089 btrfs_free_device(device); 1090 } 1091 1092 } 1093 1094 /* 1095 * After we have read the system tree and know devids belonging to this 1096 * filesystem, remove the device which does not belong there. 1097 */ 1098 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) 1099 { 1100 struct btrfs_device *latest_dev = NULL; 1101 struct btrfs_fs_devices *seed_dev; 1102 1103 mutex_lock(&uuid_mutex); 1104 __btrfs_free_extra_devids(fs_devices, step, &latest_dev); 1105 1106 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1107 __btrfs_free_extra_devids(seed_dev, step, &latest_dev); 1108 1109 fs_devices->latest_bdev = latest_dev->bdev; 1110 1111 mutex_unlock(&uuid_mutex); 1112 } 1113 1114 static void btrfs_close_bdev(struct btrfs_device *device) 1115 { 1116 if (!device->bdev) 1117 return; 1118 1119 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1120 sync_blockdev(device->bdev); 1121 invalidate_bdev(device->bdev); 1122 } 1123 1124 blkdev_put(device->bdev, device->mode); 1125 } 1126 1127 static void btrfs_close_one_device(struct btrfs_device *device) 1128 { 1129 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1130 1131 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1132 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1133 list_del_init(&device->dev_alloc_list); 1134 fs_devices->rw_devices--; 1135 } 1136 1137 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 1138 fs_devices->missing_devices--; 1139 1140 btrfs_close_bdev(device); 1141 if (device->bdev) { 1142 fs_devices->open_devices--; 1143 device->bdev = NULL; 1144 } 1145 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1146 1147 device->fs_info = NULL; 1148 atomic_set(&device->dev_stats_ccnt, 0); 1149 extent_io_tree_release(&device->alloc_state); 1150 1151 /* Verify the device is back in a pristine state */ 1152 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1153 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1154 ASSERT(list_empty(&device->dev_alloc_list)); 1155 ASSERT(list_empty(&device->post_commit_list)); 1156 ASSERT(atomic_read(&device->reada_in_flight) == 0); 1157 } 1158 1159 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1160 { 1161 struct btrfs_device *device, *tmp; 1162 1163 lockdep_assert_held(&uuid_mutex); 1164 1165 if (--fs_devices->opened > 0) 1166 return; 1167 1168 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1169 btrfs_close_one_device(device); 1170 1171 WARN_ON(fs_devices->open_devices); 1172 WARN_ON(fs_devices->rw_devices); 1173 fs_devices->opened = 0; 1174 fs_devices->seeding = false; 1175 fs_devices->fs_info = NULL; 1176 } 1177 1178 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1179 { 1180 LIST_HEAD(list); 1181 struct btrfs_fs_devices *tmp; 1182 1183 mutex_lock(&uuid_mutex); 1184 close_fs_devices(fs_devices); 1185 if (!fs_devices->opened) 1186 list_splice_init(&fs_devices->seed_list, &list); 1187 1188 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1189 close_fs_devices(fs_devices); 1190 list_del(&fs_devices->seed_list); 1191 free_fs_devices(fs_devices); 1192 } 1193 mutex_unlock(&uuid_mutex); 1194 } 1195 1196 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1197 fmode_t flags, void *holder) 1198 { 1199 struct btrfs_device *device; 1200 struct btrfs_device *latest_dev = NULL; 1201 struct btrfs_device *tmp_device; 1202 1203 flags |= FMODE_EXCL; 1204 1205 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1206 dev_list) { 1207 int ret; 1208 1209 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1210 if (ret == 0 && 1211 (!latest_dev || device->generation > latest_dev->generation)) { 1212 latest_dev = device; 1213 } else if (ret == -ENODATA) { 1214 fs_devices->num_devices--; 1215 list_del(&device->dev_list); 1216 btrfs_free_device(device); 1217 } 1218 } 1219 if (fs_devices->open_devices == 0) 1220 return -EINVAL; 1221 1222 fs_devices->opened = 1; 1223 fs_devices->latest_bdev = latest_dev->bdev; 1224 fs_devices->total_rw_bytes = 0; 1225 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1226 1227 return 0; 1228 } 1229 1230 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b) 1231 { 1232 struct btrfs_device *dev1, *dev2; 1233 1234 dev1 = list_entry(a, struct btrfs_device, dev_list); 1235 dev2 = list_entry(b, struct btrfs_device, dev_list); 1236 1237 if (dev1->devid < dev2->devid) 1238 return -1; 1239 else if (dev1->devid > dev2->devid) 1240 return 1; 1241 return 0; 1242 } 1243 1244 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1245 fmode_t flags, void *holder) 1246 { 1247 int ret; 1248 1249 lockdep_assert_held(&uuid_mutex); 1250 /* 1251 * The device_list_mutex cannot be taken here in case opening the 1252 * underlying device takes further locks like bd_mutex. 1253 * 1254 * We also don't need the lock here as this is called during mount and 1255 * exclusion is provided by uuid_mutex 1256 */ 1257 1258 if (fs_devices->opened) { 1259 fs_devices->opened++; 1260 ret = 0; 1261 } else { 1262 list_sort(NULL, &fs_devices->devices, devid_cmp); 1263 ret = open_fs_devices(fs_devices, flags, holder); 1264 } 1265 1266 return ret; 1267 } 1268 1269 void btrfs_release_disk_super(struct btrfs_super_block *super) 1270 { 1271 struct page *page = virt_to_page(super); 1272 1273 put_page(page); 1274 } 1275 1276 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1277 u64 bytenr) 1278 { 1279 struct btrfs_super_block *disk_super; 1280 struct page *page; 1281 void *p; 1282 pgoff_t index; 1283 1284 /* make sure our super fits in the device */ 1285 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1286 return ERR_PTR(-EINVAL); 1287 1288 /* make sure our super fits in the page */ 1289 if (sizeof(*disk_super) > PAGE_SIZE) 1290 return ERR_PTR(-EINVAL); 1291 1292 /* make sure our super doesn't straddle pages on disk */ 1293 index = bytenr >> PAGE_SHIFT; 1294 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1295 return ERR_PTR(-EINVAL); 1296 1297 /* pull in the page with our super */ 1298 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1299 1300 if (IS_ERR(page)) 1301 return ERR_CAST(page); 1302 1303 p = page_address(page); 1304 1305 /* align our pointer to the offset of the super block */ 1306 disk_super = p + offset_in_page(bytenr); 1307 1308 if (btrfs_super_bytenr(disk_super) != bytenr || 1309 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1310 btrfs_release_disk_super(p); 1311 return ERR_PTR(-EINVAL); 1312 } 1313 1314 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1315 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1316 1317 return disk_super; 1318 } 1319 1320 int btrfs_forget_devices(const char *path) 1321 { 1322 int ret; 1323 1324 mutex_lock(&uuid_mutex); 1325 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1326 mutex_unlock(&uuid_mutex); 1327 1328 return ret; 1329 } 1330 1331 /* 1332 * Look for a btrfs signature on a device. This may be called out of the mount path 1333 * and we are not allowed to call set_blocksize during the scan. The superblock 1334 * is read via pagecache 1335 */ 1336 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1337 void *holder) 1338 { 1339 struct btrfs_super_block *disk_super; 1340 bool new_device_added = false; 1341 struct btrfs_device *device = NULL; 1342 struct block_device *bdev; 1343 u64 bytenr; 1344 1345 lockdep_assert_held(&uuid_mutex); 1346 1347 /* 1348 * we would like to check all the supers, but that would make 1349 * a btrfs mount succeed after a mkfs from a different FS. 1350 * So, we need to add a special mount option to scan for 1351 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1352 */ 1353 bytenr = btrfs_sb_offset(0); 1354 flags |= FMODE_EXCL; 1355 1356 bdev = blkdev_get_by_path(path, flags, holder); 1357 if (IS_ERR(bdev)) 1358 return ERR_CAST(bdev); 1359 1360 disk_super = btrfs_read_disk_super(bdev, bytenr); 1361 if (IS_ERR(disk_super)) { 1362 device = ERR_CAST(disk_super); 1363 goto error_bdev_put; 1364 } 1365 1366 device = device_list_add(path, disk_super, &new_device_added); 1367 if (!IS_ERR(device)) { 1368 if (new_device_added) 1369 btrfs_free_stale_devices(path, device); 1370 } 1371 1372 btrfs_release_disk_super(disk_super); 1373 1374 error_bdev_put: 1375 blkdev_put(bdev, flags); 1376 1377 return device; 1378 } 1379 1380 /* 1381 * Try to find a chunk that intersects [start, start + len] range and when one 1382 * such is found, record the end of it in *start 1383 */ 1384 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1385 u64 len) 1386 { 1387 u64 physical_start, physical_end; 1388 1389 lockdep_assert_held(&device->fs_info->chunk_mutex); 1390 1391 if (!find_first_extent_bit(&device->alloc_state, *start, 1392 &physical_start, &physical_end, 1393 CHUNK_ALLOCATED, NULL)) { 1394 1395 if (in_range(physical_start, *start, len) || 1396 in_range(*start, physical_start, 1397 physical_end - physical_start)) { 1398 *start = physical_end + 1; 1399 return true; 1400 } 1401 } 1402 return false; 1403 } 1404 1405 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1406 { 1407 switch (device->fs_devices->chunk_alloc_policy) { 1408 case BTRFS_CHUNK_ALLOC_REGULAR: 1409 /* 1410 * We don't want to overwrite the superblock on the drive nor 1411 * any area used by the boot loader (grub for example), so we 1412 * make sure to start at an offset of at least 1MB. 1413 */ 1414 return max_t(u64, start, SZ_1M); 1415 default: 1416 BUG(); 1417 } 1418 } 1419 1420 /** 1421 * dev_extent_hole_check - check if specified hole is suitable for allocation 1422 * @device: the device which we have the hole 1423 * @hole_start: starting position of the hole 1424 * @hole_size: the size of the hole 1425 * @num_bytes: the size of the free space that we need 1426 * 1427 * This function may modify @hole_start and @hole_end to reflect the suitable 1428 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1429 */ 1430 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1431 u64 *hole_size, u64 num_bytes) 1432 { 1433 bool changed = false; 1434 u64 hole_end = *hole_start + *hole_size; 1435 1436 /* 1437 * Check before we set max_hole_start, otherwise we could end up 1438 * sending back this offset anyway. 1439 */ 1440 if (contains_pending_extent(device, hole_start, *hole_size)) { 1441 if (hole_end >= *hole_start) 1442 *hole_size = hole_end - *hole_start; 1443 else 1444 *hole_size = 0; 1445 changed = true; 1446 } 1447 1448 switch (device->fs_devices->chunk_alloc_policy) { 1449 case BTRFS_CHUNK_ALLOC_REGULAR: 1450 /* No extra check */ 1451 break; 1452 default: 1453 BUG(); 1454 } 1455 1456 return changed; 1457 } 1458 1459 /* 1460 * find_free_dev_extent_start - find free space in the specified device 1461 * @device: the device which we search the free space in 1462 * @num_bytes: the size of the free space that we need 1463 * @search_start: the position from which to begin the search 1464 * @start: store the start of the free space. 1465 * @len: the size of the free space. that we find, or the size 1466 * of the max free space if we don't find suitable free space 1467 * 1468 * this uses a pretty simple search, the expectation is that it is 1469 * called very infrequently and that a given device has a small number 1470 * of extents 1471 * 1472 * @start is used to store the start of the free space if we find. But if we 1473 * don't find suitable free space, it will be used to store the start position 1474 * of the max free space. 1475 * 1476 * @len is used to store the size of the free space that we find. 1477 * But if we don't find suitable free space, it is used to store the size of 1478 * the max free space. 1479 * 1480 * NOTE: This function will search *commit* root of device tree, and does extra 1481 * check to ensure dev extents are not double allocated. 1482 * This makes the function safe to allocate dev extents but may not report 1483 * correct usable device space, as device extent freed in current transaction 1484 * is not reported as avaiable. 1485 */ 1486 static int find_free_dev_extent_start(struct btrfs_device *device, 1487 u64 num_bytes, u64 search_start, u64 *start, 1488 u64 *len) 1489 { 1490 struct btrfs_fs_info *fs_info = device->fs_info; 1491 struct btrfs_root *root = fs_info->dev_root; 1492 struct btrfs_key key; 1493 struct btrfs_dev_extent *dev_extent; 1494 struct btrfs_path *path; 1495 u64 hole_size; 1496 u64 max_hole_start; 1497 u64 max_hole_size; 1498 u64 extent_end; 1499 u64 search_end = device->total_bytes; 1500 int ret; 1501 int slot; 1502 struct extent_buffer *l; 1503 1504 search_start = dev_extent_search_start(device, search_start); 1505 1506 path = btrfs_alloc_path(); 1507 if (!path) 1508 return -ENOMEM; 1509 1510 max_hole_start = search_start; 1511 max_hole_size = 0; 1512 1513 again: 1514 if (search_start >= search_end || 1515 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1516 ret = -ENOSPC; 1517 goto out; 1518 } 1519 1520 path->reada = READA_FORWARD; 1521 path->search_commit_root = 1; 1522 path->skip_locking = 1; 1523 1524 key.objectid = device->devid; 1525 key.offset = search_start; 1526 key.type = BTRFS_DEV_EXTENT_KEY; 1527 1528 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1529 if (ret < 0) 1530 goto out; 1531 if (ret > 0) { 1532 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1533 if (ret < 0) 1534 goto out; 1535 } 1536 1537 while (1) { 1538 l = path->nodes[0]; 1539 slot = path->slots[0]; 1540 if (slot >= btrfs_header_nritems(l)) { 1541 ret = btrfs_next_leaf(root, path); 1542 if (ret == 0) 1543 continue; 1544 if (ret < 0) 1545 goto out; 1546 1547 break; 1548 } 1549 btrfs_item_key_to_cpu(l, &key, slot); 1550 1551 if (key.objectid < device->devid) 1552 goto next; 1553 1554 if (key.objectid > device->devid) 1555 break; 1556 1557 if (key.type != BTRFS_DEV_EXTENT_KEY) 1558 goto next; 1559 1560 if (key.offset > search_start) { 1561 hole_size = key.offset - search_start; 1562 dev_extent_hole_check(device, &search_start, &hole_size, 1563 num_bytes); 1564 1565 if (hole_size > max_hole_size) { 1566 max_hole_start = search_start; 1567 max_hole_size = hole_size; 1568 } 1569 1570 /* 1571 * If this free space is greater than which we need, 1572 * it must be the max free space that we have found 1573 * until now, so max_hole_start must point to the start 1574 * of this free space and the length of this free space 1575 * is stored in max_hole_size. Thus, we return 1576 * max_hole_start and max_hole_size and go back to the 1577 * caller. 1578 */ 1579 if (hole_size >= num_bytes) { 1580 ret = 0; 1581 goto out; 1582 } 1583 } 1584 1585 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1586 extent_end = key.offset + btrfs_dev_extent_length(l, 1587 dev_extent); 1588 if (extent_end > search_start) 1589 search_start = extent_end; 1590 next: 1591 path->slots[0]++; 1592 cond_resched(); 1593 } 1594 1595 /* 1596 * At this point, search_start should be the end of 1597 * allocated dev extents, and when shrinking the device, 1598 * search_end may be smaller than search_start. 1599 */ 1600 if (search_end > search_start) { 1601 hole_size = search_end - search_start; 1602 if (dev_extent_hole_check(device, &search_start, &hole_size, 1603 num_bytes)) { 1604 btrfs_release_path(path); 1605 goto again; 1606 } 1607 1608 if (hole_size > max_hole_size) { 1609 max_hole_start = search_start; 1610 max_hole_size = hole_size; 1611 } 1612 } 1613 1614 /* See above. */ 1615 if (max_hole_size < num_bytes) 1616 ret = -ENOSPC; 1617 else 1618 ret = 0; 1619 1620 out: 1621 btrfs_free_path(path); 1622 *start = max_hole_start; 1623 if (len) 1624 *len = max_hole_size; 1625 return ret; 1626 } 1627 1628 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1629 u64 *start, u64 *len) 1630 { 1631 /* FIXME use last free of some kind */ 1632 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1633 } 1634 1635 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1636 struct btrfs_device *device, 1637 u64 start, u64 *dev_extent_len) 1638 { 1639 struct btrfs_fs_info *fs_info = device->fs_info; 1640 struct btrfs_root *root = fs_info->dev_root; 1641 int ret; 1642 struct btrfs_path *path; 1643 struct btrfs_key key; 1644 struct btrfs_key found_key; 1645 struct extent_buffer *leaf = NULL; 1646 struct btrfs_dev_extent *extent = NULL; 1647 1648 path = btrfs_alloc_path(); 1649 if (!path) 1650 return -ENOMEM; 1651 1652 key.objectid = device->devid; 1653 key.offset = start; 1654 key.type = BTRFS_DEV_EXTENT_KEY; 1655 again: 1656 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1657 if (ret > 0) { 1658 ret = btrfs_previous_item(root, path, key.objectid, 1659 BTRFS_DEV_EXTENT_KEY); 1660 if (ret) 1661 goto out; 1662 leaf = path->nodes[0]; 1663 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1664 extent = btrfs_item_ptr(leaf, path->slots[0], 1665 struct btrfs_dev_extent); 1666 BUG_ON(found_key.offset > start || found_key.offset + 1667 btrfs_dev_extent_length(leaf, extent) < start); 1668 key = found_key; 1669 btrfs_release_path(path); 1670 goto again; 1671 } else if (ret == 0) { 1672 leaf = path->nodes[0]; 1673 extent = btrfs_item_ptr(leaf, path->slots[0], 1674 struct btrfs_dev_extent); 1675 } else { 1676 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1677 goto out; 1678 } 1679 1680 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1681 1682 ret = btrfs_del_item(trans, root, path); 1683 if (ret) { 1684 btrfs_handle_fs_error(fs_info, ret, 1685 "Failed to remove dev extent item"); 1686 } else { 1687 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1688 } 1689 out: 1690 btrfs_free_path(path); 1691 return ret; 1692 } 1693 1694 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1695 struct btrfs_device *device, 1696 u64 chunk_offset, u64 start, u64 num_bytes) 1697 { 1698 int ret; 1699 struct btrfs_path *path; 1700 struct btrfs_fs_info *fs_info = device->fs_info; 1701 struct btrfs_root *root = fs_info->dev_root; 1702 struct btrfs_dev_extent *extent; 1703 struct extent_buffer *leaf; 1704 struct btrfs_key key; 1705 1706 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1707 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1708 path = btrfs_alloc_path(); 1709 if (!path) 1710 return -ENOMEM; 1711 1712 key.objectid = device->devid; 1713 key.offset = start; 1714 key.type = BTRFS_DEV_EXTENT_KEY; 1715 ret = btrfs_insert_empty_item(trans, root, path, &key, 1716 sizeof(*extent)); 1717 if (ret) 1718 goto out; 1719 1720 leaf = path->nodes[0]; 1721 extent = btrfs_item_ptr(leaf, path->slots[0], 1722 struct btrfs_dev_extent); 1723 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1724 BTRFS_CHUNK_TREE_OBJECTID); 1725 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1726 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1727 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1728 1729 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1730 btrfs_mark_buffer_dirty(leaf); 1731 out: 1732 btrfs_free_path(path); 1733 return ret; 1734 } 1735 1736 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1737 { 1738 struct extent_map_tree *em_tree; 1739 struct extent_map *em; 1740 struct rb_node *n; 1741 u64 ret = 0; 1742 1743 em_tree = &fs_info->mapping_tree; 1744 read_lock(&em_tree->lock); 1745 n = rb_last(&em_tree->map.rb_root); 1746 if (n) { 1747 em = rb_entry(n, struct extent_map, rb_node); 1748 ret = em->start + em->len; 1749 } 1750 read_unlock(&em_tree->lock); 1751 1752 return ret; 1753 } 1754 1755 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1756 u64 *devid_ret) 1757 { 1758 int ret; 1759 struct btrfs_key key; 1760 struct btrfs_key found_key; 1761 struct btrfs_path *path; 1762 1763 path = btrfs_alloc_path(); 1764 if (!path) 1765 return -ENOMEM; 1766 1767 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1768 key.type = BTRFS_DEV_ITEM_KEY; 1769 key.offset = (u64)-1; 1770 1771 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1772 if (ret < 0) 1773 goto error; 1774 1775 if (ret == 0) { 1776 /* Corruption */ 1777 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1778 ret = -EUCLEAN; 1779 goto error; 1780 } 1781 1782 ret = btrfs_previous_item(fs_info->chunk_root, path, 1783 BTRFS_DEV_ITEMS_OBJECTID, 1784 BTRFS_DEV_ITEM_KEY); 1785 if (ret) { 1786 *devid_ret = 1; 1787 } else { 1788 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1789 path->slots[0]); 1790 *devid_ret = found_key.offset + 1; 1791 } 1792 ret = 0; 1793 error: 1794 btrfs_free_path(path); 1795 return ret; 1796 } 1797 1798 /* 1799 * the device information is stored in the chunk root 1800 * the btrfs_device struct should be fully filled in 1801 */ 1802 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1803 struct btrfs_device *device) 1804 { 1805 int ret; 1806 struct btrfs_path *path; 1807 struct btrfs_dev_item *dev_item; 1808 struct extent_buffer *leaf; 1809 struct btrfs_key key; 1810 unsigned long ptr; 1811 1812 path = btrfs_alloc_path(); 1813 if (!path) 1814 return -ENOMEM; 1815 1816 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1817 key.type = BTRFS_DEV_ITEM_KEY; 1818 key.offset = device->devid; 1819 1820 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1821 &key, sizeof(*dev_item)); 1822 if (ret) 1823 goto out; 1824 1825 leaf = path->nodes[0]; 1826 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1827 1828 btrfs_set_device_id(leaf, dev_item, device->devid); 1829 btrfs_set_device_generation(leaf, dev_item, 0); 1830 btrfs_set_device_type(leaf, dev_item, device->type); 1831 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1832 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1833 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1834 btrfs_set_device_total_bytes(leaf, dev_item, 1835 btrfs_device_get_disk_total_bytes(device)); 1836 btrfs_set_device_bytes_used(leaf, dev_item, 1837 btrfs_device_get_bytes_used(device)); 1838 btrfs_set_device_group(leaf, dev_item, 0); 1839 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1840 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1841 btrfs_set_device_start_offset(leaf, dev_item, 0); 1842 1843 ptr = btrfs_device_uuid(dev_item); 1844 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1845 ptr = btrfs_device_fsid(dev_item); 1846 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1847 ptr, BTRFS_FSID_SIZE); 1848 btrfs_mark_buffer_dirty(leaf); 1849 1850 ret = 0; 1851 out: 1852 btrfs_free_path(path); 1853 return ret; 1854 } 1855 1856 /* 1857 * Function to update ctime/mtime for a given device path. 1858 * Mainly used for ctime/mtime based probe like libblkid. 1859 */ 1860 static void update_dev_time(const char *path_name) 1861 { 1862 struct file *filp; 1863 1864 filp = filp_open(path_name, O_RDWR, 0); 1865 if (IS_ERR(filp)) 1866 return; 1867 file_update_time(filp); 1868 filp_close(filp, NULL); 1869 } 1870 1871 static int btrfs_rm_dev_item(struct btrfs_device *device) 1872 { 1873 struct btrfs_root *root = device->fs_info->chunk_root; 1874 int ret; 1875 struct btrfs_path *path; 1876 struct btrfs_key key; 1877 struct btrfs_trans_handle *trans; 1878 1879 path = btrfs_alloc_path(); 1880 if (!path) 1881 return -ENOMEM; 1882 1883 trans = btrfs_start_transaction(root, 0); 1884 if (IS_ERR(trans)) { 1885 btrfs_free_path(path); 1886 return PTR_ERR(trans); 1887 } 1888 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1889 key.type = BTRFS_DEV_ITEM_KEY; 1890 key.offset = device->devid; 1891 1892 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1893 if (ret) { 1894 if (ret > 0) 1895 ret = -ENOENT; 1896 btrfs_abort_transaction(trans, ret); 1897 btrfs_end_transaction(trans); 1898 goto out; 1899 } 1900 1901 ret = btrfs_del_item(trans, root, path); 1902 if (ret) { 1903 btrfs_abort_transaction(trans, ret); 1904 btrfs_end_transaction(trans); 1905 } 1906 1907 out: 1908 btrfs_free_path(path); 1909 if (!ret) 1910 ret = btrfs_commit_transaction(trans); 1911 return ret; 1912 } 1913 1914 /* 1915 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1916 * filesystem. It's up to the caller to adjust that number regarding eg. device 1917 * replace. 1918 */ 1919 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1920 u64 num_devices) 1921 { 1922 u64 all_avail; 1923 unsigned seq; 1924 int i; 1925 1926 do { 1927 seq = read_seqbegin(&fs_info->profiles_lock); 1928 1929 all_avail = fs_info->avail_data_alloc_bits | 1930 fs_info->avail_system_alloc_bits | 1931 fs_info->avail_metadata_alloc_bits; 1932 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1933 1934 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1935 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1936 continue; 1937 1938 if (num_devices < btrfs_raid_array[i].devs_min) { 1939 int ret = btrfs_raid_array[i].mindev_error; 1940 1941 if (ret) 1942 return ret; 1943 } 1944 } 1945 1946 return 0; 1947 } 1948 1949 static struct btrfs_device * btrfs_find_next_active_device( 1950 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1951 { 1952 struct btrfs_device *next_device; 1953 1954 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1955 if (next_device != device && 1956 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1957 && next_device->bdev) 1958 return next_device; 1959 } 1960 1961 return NULL; 1962 } 1963 1964 /* 1965 * Helper function to check if the given device is part of s_bdev / latest_bdev 1966 * and replace it with the provided or the next active device, in the context 1967 * where this function called, there should be always be another device (or 1968 * this_dev) which is active. 1969 */ 1970 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 1971 struct btrfs_device *next_device) 1972 { 1973 struct btrfs_fs_info *fs_info = device->fs_info; 1974 1975 if (!next_device) 1976 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1977 device); 1978 ASSERT(next_device); 1979 1980 if (fs_info->sb->s_bdev && 1981 (fs_info->sb->s_bdev == device->bdev)) 1982 fs_info->sb->s_bdev = next_device->bdev; 1983 1984 if (fs_info->fs_devices->latest_bdev == device->bdev) 1985 fs_info->fs_devices->latest_bdev = next_device->bdev; 1986 } 1987 1988 /* 1989 * Return btrfs_fs_devices::num_devices excluding the device that's being 1990 * currently replaced. 1991 */ 1992 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 1993 { 1994 u64 num_devices = fs_info->fs_devices->num_devices; 1995 1996 down_read(&fs_info->dev_replace.rwsem); 1997 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 1998 ASSERT(num_devices > 1); 1999 num_devices--; 2000 } 2001 up_read(&fs_info->dev_replace.rwsem); 2002 2003 return num_devices; 2004 } 2005 2006 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2007 struct block_device *bdev, 2008 const char *device_path) 2009 { 2010 struct btrfs_super_block *disk_super; 2011 int copy_num; 2012 2013 if (!bdev) 2014 return; 2015 2016 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2017 struct page *page; 2018 int ret; 2019 2020 disk_super = btrfs_read_dev_one_super(bdev, copy_num); 2021 if (IS_ERR(disk_super)) 2022 continue; 2023 2024 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 2025 2026 page = virt_to_page(disk_super); 2027 set_page_dirty(page); 2028 lock_page(page); 2029 /* write_on_page() unlocks the page */ 2030 ret = write_one_page(page); 2031 if (ret) 2032 btrfs_warn(fs_info, 2033 "error clearing superblock number %d (%d)", 2034 copy_num, ret); 2035 btrfs_release_disk_super(disk_super); 2036 2037 } 2038 2039 /* Notify udev that device has changed */ 2040 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2041 2042 /* Update ctime/mtime for device path for libblkid */ 2043 update_dev_time(device_path); 2044 } 2045 2046 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 2047 u64 devid) 2048 { 2049 struct btrfs_device *device; 2050 struct btrfs_fs_devices *cur_devices; 2051 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2052 u64 num_devices; 2053 int ret = 0; 2054 2055 mutex_lock(&uuid_mutex); 2056 2057 num_devices = btrfs_num_devices(fs_info); 2058 2059 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2060 if (ret) 2061 goto out; 2062 2063 device = btrfs_find_device_by_devspec(fs_info, devid, device_path); 2064 2065 if (IS_ERR(device)) { 2066 if (PTR_ERR(device) == -ENOENT && 2067 strcmp(device_path, "missing") == 0) 2068 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2069 else 2070 ret = PTR_ERR(device); 2071 goto out; 2072 } 2073 2074 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2075 btrfs_warn_in_rcu(fs_info, 2076 "cannot remove device %s (devid %llu) due to active swapfile", 2077 rcu_str_deref(device->name), device->devid); 2078 ret = -ETXTBSY; 2079 goto out; 2080 } 2081 2082 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2083 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 2084 goto out; 2085 } 2086 2087 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2088 fs_info->fs_devices->rw_devices == 1) { 2089 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 2090 goto out; 2091 } 2092 2093 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2094 mutex_lock(&fs_info->chunk_mutex); 2095 list_del_init(&device->dev_alloc_list); 2096 device->fs_devices->rw_devices--; 2097 mutex_unlock(&fs_info->chunk_mutex); 2098 } 2099 2100 mutex_unlock(&uuid_mutex); 2101 ret = btrfs_shrink_device(device, 0); 2102 mutex_lock(&uuid_mutex); 2103 if (ret) 2104 goto error_undo; 2105 2106 /* 2107 * TODO: the superblock still includes this device in its num_devices 2108 * counter although write_all_supers() is not locked out. This 2109 * could give a filesystem state which requires a degraded mount. 2110 */ 2111 ret = btrfs_rm_dev_item(device); 2112 if (ret) 2113 goto error_undo; 2114 2115 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2116 btrfs_scrub_cancel_dev(device); 2117 2118 /* 2119 * the device list mutex makes sure that we don't change 2120 * the device list while someone else is writing out all 2121 * the device supers. Whoever is writing all supers, should 2122 * lock the device list mutex before getting the number of 2123 * devices in the super block (super_copy). Conversely, 2124 * whoever updates the number of devices in the super block 2125 * (super_copy) should hold the device list mutex. 2126 */ 2127 2128 /* 2129 * In normal cases the cur_devices == fs_devices. But in case 2130 * of deleting a seed device, the cur_devices should point to 2131 * its own fs_devices listed under the fs_devices->seed. 2132 */ 2133 cur_devices = device->fs_devices; 2134 mutex_lock(&fs_devices->device_list_mutex); 2135 list_del_rcu(&device->dev_list); 2136 2137 cur_devices->num_devices--; 2138 cur_devices->total_devices--; 2139 /* Update total_devices of the parent fs_devices if it's seed */ 2140 if (cur_devices != fs_devices) 2141 fs_devices->total_devices--; 2142 2143 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2144 cur_devices->missing_devices--; 2145 2146 btrfs_assign_next_active_device(device, NULL); 2147 2148 if (device->bdev) { 2149 cur_devices->open_devices--; 2150 /* remove sysfs entry */ 2151 btrfs_sysfs_remove_device(device); 2152 } 2153 2154 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2155 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2156 mutex_unlock(&fs_devices->device_list_mutex); 2157 2158 /* 2159 * at this point, the device is zero sized and detached from 2160 * the devices list. All that's left is to zero out the old 2161 * supers and free the device. 2162 */ 2163 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2164 btrfs_scratch_superblocks(fs_info, device->bdev, 2165 device->name->str); 2166 2167 btrfs_close_bdev(device); 2168 synchronize_rcu(); 2169 btrfs_free_device(device); 2170 2171 if (cur_devices->open_devices == 0) { 2172 list_del_init(&cur_devices->seed_list); 2173 close_fs_devices(cur_devices); 2174 free_fs_devices(cur_devices); 2175 } 2176 2177 out: 2178 mutex_unlock(&uuid_mutex); 2179 return ret; 2180 2181 error_undo: 2182 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2183 mutex_lock(&fs_info->chunk_mutex); 2184 list_add(&device->dev_alloc_list, 2185 &fs_devices->alloc_list); 2186 device->fs_devices->rw_devices++; 2187 mutex_unlock(&fs_info->chunk_mutex); 2188 } 2189 goto out; 2190 } 2191 2192 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2193 { 2194 struct btrfs_fs_devices *fs_devices; 2195 2196 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2197 2198 /* 2199 * in case of fs with no seed, srcdev->fs_devices will point 2200 * to fs_devices of fs_info. However when the dev being replaced is 2201 * a seed dev it will point to the seed's local fs_devices. In short 2202 * srcdev will have its correct fs_devices in both the cases. 2203 */ 2204 fs_devices = srcdev->fs_devices; 2205 2206 list_del_rcu(&srcdev->dev_list); 2207 list_del(&srcdev->dev_alloc_list); 2208 fs_devices->num_devices--; 2209 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2210 fs_devices->missing_devices--; 2211 2212 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2213 fs_devices->rw_devices--; 2214 2215 if (srcdev->bdev) 2216 fs_devices->open_devices--; 2217 } 2218 2219 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2220 { 2221 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2222 2223 mutex_lock(&uuid_mutex); 2224 2225 btrfs_close_bdev(srcdev); 2226 synchronize_rcu(); 2227 btrfs_free_device(srcdev); 2228 2229 /* if this is no devs we rather delete the fs_devices */ 2230 if (!fs_devices->num_devices) { 2231 /* 2232 * On a mounted FS, num_devices can't be zero unless it's a 2233 * seed. In case of a seed device being replaced, the replace 2234 * target added to the sprout FS, so there will be no more 2235 * device left under the seed FS. 2236 */ 2237 ASSERT(fs_devices->seeding); 2238 2239 list_del_init(&fs_devices->seed_list); 2240 close_fs_devices(fs_devices); 2241 free_fs_devices(fs_devices); 2242 } 2243 mutex_unlock(&uuid_mutex); 2244 } 2245 2246 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2247 { 2248 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2249 2250 mutex_lock(&fs_devices->device_list_mutex); 2251 2252 btrfs_sysfs_remove_device(tgtdev); 2253 2254 if (tgtdev->bdev) 2255 fs_devices->open_devices--; 2256 2257 fs_devices->num_devices--; 2258 2259 btrfs_assign_next_active_device(tgtdev, NULL); 2260 2261 list_del_rcu(&tgtdev->dev_list); 2262 2263 mutex_unlock(&fs_devices->device_list_mutex); 2264 2265 /* 2266 * The update_dev_time() with in btrfs_scratch_superblocks() 2267 * may lead to a call to btrfs_show_devname() which will try 2268 * to hold device_list_mutex. And here this device 2269 * is already out of device list, so we don't have to hold 2270 * the device_list_mutex lock. 2271 */ 2272 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2273 tgtdev->name->str); 2274 2275 btrfs_close_bdev(tgtdev); 2276 synchronize_rcu(); 2277 btrfs_free_device(tgtdev); 2278 } 2279 2280 static struct btrfs_device *btrfs_find_device_by_path( 2281 struct btrfs_fs_info *fs_info, const char *device_path) 2282 { 2283 int ret = 0; 2284 struct btrfs_super_block *disk_super; 2285 u64 devid; 2286 u8 *dev_uuid; 2287 struct block_device *bdev; 2288 struct btrfs_device *device; 2289 2290 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2291 fs_info->bdev_holder, 0, &bdev, &disk_super); 2292 if (ret) 2293 return ERR_PTR(ret); 2294 2295 devid = btrfs_stack_device_id(&disk_super->dev_item); 2296 dev_uuid = disk_super->dev_item.uuid; 2297 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2298 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2299 disk_super->metadata_uuid, true); 2300 else 2301 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2302 disk_super->fsid, true); 2303 2304 btrfs_release_disk_super(disk_super); 2305 if (!device) 2306 device = ERR_PTR(-ENOENT); 2307 blkdev_put(bdev, FMODE_READ); 2308 return device; 2309 } 2310 2311 /* 2312 * Lookup a device given by device id, or the path if the id is 0. 2313 */ 2314 struct btrfs_device *btrfs_find_device_by_devspec( 2315 struct btrfs_fs_info *fs_info, u64 devid, 2316 const char *device_path) 2317 { 2318 struct btrfs_device *device; 2319 2320 if (devid) { 2321 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, 2322 NULL, true); 2323 if (!device) 2324 return ERR_PTR(-ENOENT); 2325 return device; 2326 } 2327 2328 if (!device_path || !device_path[0]) 2329 return ERR_PTR(-EINVAL); 2330 2331 if (strcmp(device_path, "missing") == 0) { 2332 /* Find first missing device */ 2333 list_for_each_entry(device, &fs_info->fs_devices->devices, 2334 dev_list) { 2335 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2336 &device->dev_state) && !device->bdev) 2337 return device; 2338 } 2339 return ERR_PTR(-ENOENT); 2340 } 2341 2342 return btrfs_find_device_by_path(fs_info, device_path); 2343 } 2344 2345 /* 2346 * does all the dirty work required for changing file system's UUID. 2347 */ 2348 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2349 { 2350 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2351 struct btrfs_fs_devices *old_devices; 2352 struct btrfs_fs_devices *seed_devices; 2353 struct btrfs_super_block *disk_super = fs_info->super_copy; 2354 struct btrfs_device *device; 2355 u64 super_flags; 2356 2357 lockdep_assert_held(&uuid_mutex); 2358 if (!fs_devices->seeding) 2359 return -EINVAL; 2360 2361 /* 2362 * Private copy of the seed devices, anchored at 2363 * fs_info->fs_devices->seed_list 2364 */ 2365 seed_devices = alloc_fs_devices(NULL, NULL); 2366 if (IS_ERR(seed_devices)) 2367 return PTR_ERR(seed_devices); 2368 2369 /* 2370 * It's necessary to retain a copy of the original seed fs_devices in 2371 * fs_uuids so that filesystems which have been seeded can successfully 2372 * reference the seed device from open_seed_devices. This also supports 2373 * multiple fs seed. 2374 */ 2375 old_devices = clone_fs_devices(fs_devices); 2376 if (IS_ERR(old_devices)) { 2377 kfree(seed_devices); 2378 return PTR_ERR(old_devices); 2379 } 2380 2381 list_add(&old_devices->fs_list, &fs_uuids); 2382 2383 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2384 seed_devices->opened = 1; 2385 INIT_LIST_HEAD(&seed_devices->devices); 2386 INIT_LIST_HEAD(&seed_devices->alloc_list); 2387 mutex_init(&seed_devices->device_list_mutex); 2388 2389 mutex_lock(&fs_devices->device_list_mutex); 2390 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2391 synchronize_rcu); 2392 list_for_each_entry(device, &seed_devices->devices, dev_list) 2393 device->fs_devices = seed_devices; 2394 2395 fs_devices->seeding = false; 2396 fs_devices->num_devices = 0; 2397 fs_devices->open_devices = 0; 2398 fs_devices->missing_devices = 0; 2399 fs_devices->rotating = false; 2400 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2401 2402 generate_random_uuid(fs_devices->fsid); 2403 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2404 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2405 mutex_unlock(&fs_devices->device_list_mutex); 2406 2407 super_flags = btrfs_super_flags(disk_super) & 2408 ~BTRFS_SUPER_FLAG_SEEDING; 2409 btrfs_set_super_flags(disk_super, super_flags); 2410 2411 return 0; 2412 } 2413 2414 /* 2415 * Store the expected generation for seed devices in device items. 2416 */ 2417 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2418 { 2419 struct btrfs_fs_info *fs_info = trans->fs_info; 2420 struct btrfs_root *root = fs_info->chunk_root; 2421 struct btrfs_path *path; 2422 struct extent_buffer *leaf; 2423 struct btrfs_dev_item *dev_item; 2424 struct btrfs_device *device; 2425 struct btrfs_key key; 2426 u8 fs_uuid[BTRFS_FSID_SIZE]; 2427 u8 dev_uuid[BTRFS_UUID_SIZE]; 2428 u64 devid; 2429 int ret; 2430 2431 path = btrfs_alloc_path(); 2432 if (!path) 2433 return -ENOMEM; 2434 2435 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2436 key.offset = 0; 2437 key.type = BTRFS_DEV_ITEM_KEY; 2438 2439 while (1) { 2440 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2441 if (ret < 0) 2442 goto error; 2443 2444 leaf = path->nodes[0]; 2445 next_slot: 2446 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2447 ret = btrfs_next_leaf(root, path); 2448 if (ret > 0) 2449 break; 2450 if (ret < 0) 2451 goto error; 2452 leaf = path->nodes[0]; 2453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2454 btrfs_release_path(path); 2455 continue; 2456 } 2457 2458 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2459 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2460 key.type != BTRFS_DEV_ITEM_KEY) 2461 break; 2462 2463 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2464 struct btrfs_dev_item); 2465 devid = btrfs_device_id(leaf, dev_item); 2466 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2467 BTRFS_UUID_SIZE); 2468 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2469 BTRFS_FSID_SIZE); 2470 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2471 fs_uuid, true); 2472 BUG_ON(!device); /* Logic error */ 2473 2474 if (device->fs_devices->seeding) { 2475 btrfs_set_device_generation(leaf, dev_item, 2476 device->generation); 2477 btrfs_mark_buffer_dirty(leaf); 2478 } 2479 2480 path->slots[0]++; 2481 goto next_slot; 2482 } 2483 ret = 0; 2484 error: 2485 btrfs_free_path(path); 2486 return ret; 2487 } 2488 2489 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2490 { 2491 struct btrfs_root *root = fs_info->dev_root; 2492 struct request_queue *q; 2493 struct btrfs_trans_handle *trans; 2494 struct btrfs_device *device; 2495 struct block_device *bdev; 2496 struct super_block *sb = fs_info->sb; 2497 struct rcu_string *name; 2498 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2499 u64 orig_super_total_bytes; 2500 u64 orig_super_num_devices; 2501 int seeding_dev = 0; 2502 int ret = 0; 2503 bool locked = false; 2504 2505 if (sb_rdonly(sb) && !fs_devices->seeding) 2506 return -EROFS; 2507 2508 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2509 fs_info->bdev_holder); 2510 if (IS_ERR(bdev)) 2511 return PTR_ERR(bdev); 2512 2513 if (fs_devices->seeding) { 2514 seeding_dev = 1; 2515 down_write(&sb->s_umount); 2516 mutex_lock(&uuid_mutex); 2517 locked = true; 2518 } 2519 2520 sync_blockdev(bdev); 2521 2522 rcu_read_lock(); 2523 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2524 if (device->bdev == bdev) { 2525 ret = -EEXIST; 2526 rcu_read_unlock(); 2527 goto error; 2528 } 2529 } 2530 rcu_read_unlock(); 2531 2532 device = btrfs_alloc_device(fs_info, NULL, NULL); 2533 if (IS_ERR(device)) { 2534 /* we can safely leave the fs_devices entry around */ 2535 ret = PTR_ERR(device); 2536 goto error; 2537 } 2538 2539 name = rcu_string_strdup(device_path, GFP_KERNEL); 2540 if (!name) { 2541 ret = -ENOMEM; 2542 goto error_free_device; 2543 } 2544 rcu_assign_pointer(device->name, name); 2545 2546 trans = btrfs_start_transaction(root, 0); 2547 if (IS_ERR(trans)) { 2548 ret = PTR_ERR(trans); 2549 goto error_free_device; 2550 } 2551 2552 q = bdev_get_queue(bdev); 2553 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2554 device->generation = trans->transid; 2555 device->io_width = fs_info->sectorsize; 2556 device->io_align = fs_info->sectorsize; 2557 device->sector_size = fs_info->sectorsize; 2558 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2559 fs_info->sectorsize); 2560 device->disk_total_bytes = device->total_bytes; 2561 device->commit_total_bytes = device->total_bytes; 2562 device->fs_info = fs_info; 2563 device->bdev = bdev; 2564 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2565 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2566 device->mode = FMODE_EXCL; 2567 device->dev_stats_valid = 1; 2568 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2569 2570 if (seeding_dev) { 2571 sb->s_flags &= ~SB_RDONLY; 2572 ret = btrfs_prepare_sprout(fs_info); 2573 if (ret) { 2574 btrfs_abort_transaction(trans, ret); 2575 goto error_trans; 2576 } 2577 } 2578 2579 device->fs_devices = fs_devices; 2580 2581 mutex_lock(&fs_devices->device_list_mutex); 2582 mutex_lock(&fs_info->chunk_mutex); 2583 list_add_rcu(&device->dev_list, &fs_devices->devices); 2584 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2585 fs_devices->num_devices++; 2586 fs_devices->open_devices++; 2587 fs_devices->rw_devices++; 2588 fs_devices->total_devices++; 2589 fs_devices->total_rw_bytes += device->total_bytes; 2590 2591 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2592 2593 if (!blk_queue_nonrot(q)) 2594 fs_devices->rotating = true; 2595 2596 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2597 btrfs_set_super_total_bytes(fs_info->super_copy, 2598 round_down(orig_super_total_bytes + device->total_bytes, 2599 fs_info->sectorsize)); 2600 2601 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2602 btrfs_set_super_num_devices(fs_info->super_copy, 2603 orig_super_num_devices + 1); 2604 2605 /* 2606 * we've got more storage, clear any full flags on the space 2607 * infos 2608 */ 2609 btrfs_clear_space_info_full(fs_info); 2610 2611 mutex_unlock(&fs_info->chunk_mutex); 2612 2613 /* Add sysfs device entry */ 2614 btrfs_sysfs_add_device(device); 2615 2616 mutex_unlock(&fs_devices->device_list_mutex); 2617 2618 if (seeding_dev) { 2619 mutex_lock(&fs_info->chunk_mutex); 2620 ret = init_first_rw_device(trans); 2621 mutex_unlock(&fs_info->chunk_mutex); 2622 if (ret) { 2623 btrfs_abort_transaction(trans, ret); 2624 goto error_sysfs; 2625 } 2626 } 2627 2628 ret = btrfs_add_dev_item(trans, device); 2629 if (ret) { 2630 btrfs_abort_transaction(trans, ret); 2631 goto error_sysfs; 2632 } 2633 2634 if (seeding_dev) { 2635 ret = btrfs_finish_sprout(trans); 2636 if (ret) { 2637 btrfs_abort_transaction(trans, ret); 2638 goto error_sysfs; 2639 } 2640 2641 /* 2642 * fs_devices now represents the newly sprouted filesystem and 2643 * its fsid has been changed by btrfs_prepare_sprout 2644 */ 2645 btrfs_sysfs_update_sprout_fsid(fs_devices); 2646 } 2647 2648 ret = btrfs_commit_transaction(trans); 2649 2650 if (seeding_dev) { 2651 mutex_unlock(&uuid_mutex); 2652 up_write(&sb->s_umount); 2653 locked = false; 2654 2655 if (ret) /* transaction commit */ 2656 return ret; 2657 2658 ret = btrfs_relocate_sys_chunks(fs_info); 2659 if (ret < 0) 2660 btrfs_handle_fs_error(fs_info, ret, 2661 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2662 trans = btrfs_attach_transaction(root); 2663 if (IS_ERR(trans)) { 2664 if (PTR_ERR(trans) == -ENOENT) 2665 return 0; 2666 ret = PTR_ERR(trans); 2667 trans = NULL; 2668 goto error_sysfs; 2669 } 2670 ret = btrfs_commit_transaction(trans); 2671 } 2672 2673 /* 2674 * Now that we have written a new super block to this device, check all 2675 * other fs_devices list if device_path alienates any other scanned 2676 * device. 2677 * We can ignore the return value as it typically returns -EINVAL and 2678 * only succeeds if the device was an alien. 2679 */ 2680 btrfs_forget_devices(device_path); 2681 2682 /* Update ctime/mtime for blkid or udev */ 2683 update_dev_time(device_path); 2684 2685 return ret; 2686 2687 error_sysfs: 2688 btrfs_sysfs_remove_device(device); 2689 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2690 mutex_lock(&fs_info->chunk_mutex); 2691 list_del_rcu(&device->dev_list); 2692 list_del(&device->dev_alloc_list); 2693 fs_info->fs_devices->num_devices--; 2694 fs_info->fs_devices->open_devices--; 2695 fs_info->fs_devices->rw_devices--; 2696 fs_info->fs_devices->total_devices--; 2697 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2698 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2699 btrfs_set_super_total_bytes(fs_info->super_copy, 2700 orig_super_total_bytes); 2701 btrfs_set_super_num_devices(fs_info->super_copy, 2702 orig_super_num_devices); 2703 mutex_unlock(&fs_info->chunk_mutex); 2704 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2705 error_trans: 2706 if (seeding_dev) 2707 sb->s_flags |= SB_RDONLY; 2708 if (trans) 2709 btrfs_end_transaction(trans); 2710 error_free_device: 2711 btrfs_free_device(device); 2712 error: 2713 blkdev_put(bdev, FMODE_EXCL); 2714 if (locked) { 2715 mutex_unlock(&uuid_mutex); 2716 up_write(&sb->s_umount); 2717 } 2718 return ret; 2719 } 2720 2721 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2722 struct btrfs_device *device) 2723 { 2724 int ret; 2725 struct btrfs_path *path; 2726 struct btrfs_root *root = device->fs_info->chunk_root; 2727 struct btrfs_dev_item *dev_item; 2728 struct extent_buffer *leaf; 2729 struct btrfs_key key; 2730 2731 path = btrfs_alloc_path(); 2732 if (!path) 2733 return -ENOMEM; 2734 2735 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2736 key.type = BTRFS_DEV_ITEM_KEY; 2737 key.offset = device->devid; 2738 2739 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2740 if (ret < 0) 2741 goto out; 2742 2743 if (ret > 0) { 2744 ret = -ENOENT; 2745 goto out; 2746 } 2747 2748 leaf = path->nodes[0]; 2749 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2750 2751 btrfs_set_device_id(leaf, dev_item, device->devid); 2752 btrfs_set_device_type(leaf, dev_item, device->type); 2753 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2754 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2755 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2756 btrfs_set_device_total_bytes(leaf, dev_item, 2757 btrfs_device_get_disk_total_bytes(device)); 2758 btrfs_set_device_bytes_used(leaf, dev_item, 2759 btrfs_device_get_bytes_used(device)); 2760 btrfs_mark_buffer_dirty(leaf); 2761 2762 out: 2763 btrfs_free_path(path); 2764 return ret; 2765 } 2766 2767 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2768 struct btrfs_device *device, u64 new_size) 2769 { 2770 struct btrfs_fs_info *fs_info = device->fs_info; 2771 struct btrfs_super_block *super_copy = fs_info->super_copy; 2772 u64 old_total; 2773 u64 diff; 2774 2775 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2776 return -EACCES; 2777 2778 new_size = round_down(new_size, fs_info->sectorsize); 2779 2780 mutex_lock(&fs_info->chunk_mutex); 2781 old_total = btrfs_super_total_bytes(super_copy); 2782 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2783 2784 if (new_size <= device->total_bytes || 2785 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2786 mutex_unlock(&fs_info->chunk_mutex); 2787 return -EINVAL; 2788 } 2789 2790 btrfs_set_super_total_bytes(super_copy, 2791 round_down(old_total + diff, fs_info->sectorsize)); 2792 device->fs_devices->total_rw_bytes += diff; 2793 2794 btrfs_device_set_total_bytes(device, new_size); 2795 btrfs_device_set_disk_total_bytes(device, new_size); 2796 btrfs_clear_space_info_full(device->fs_info); 2797 if (list_empty(&device->post_commit_list)) 2798 list_add_tail(&device->post_commit_list, 2799 &trans->transaction->dev_update_list); 2800 mutex_unlock(&fs_info->chunk_mutex); 2801 2802 return btrfs_update_device(trans, device); 2803 } 2804 2805 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2806 { 2807 struct btrfs_fs_info *fs_info = trans->fs_info; 2808 struct btrfs_root *root = fs_info->chunk_root; 2809 int ret; 2810 struct btrfs_path *path; 2811 struct btrfs_key key; 2812 2813 path = btrfs_alloc_path(); 2814 if (!path) 2815 return -ENOMEM; 2816 2817 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2818 key.offset = chunk_offset; 2819 key.type = BTRFS_CHUNK_ITEM_KEY; 2820 2821 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2822 if (ret < 0) 2823 goto out; 2824 else if (ret > 0) { /* Logic error or corruption */ 2825 btrfs_handle_fs_error(fs_info, -ENOENT, 2826 "Failed lookup while freeing chunk."); 2827 ret = -ENOENT; 2828 goto out; 2829 } 2830 2831 ret = btrfs_del_item(trans, root, path); 2832 if (ret < 0) 2833 btrfs_handle_fs_error(fs_info, ret, 2834 "Failed to delete chunk item."); 2835 out: 2836 btrfs_free_path(path); 2837 return ret; 2838 } 2839 2840 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2841 { 2842 struct btrfs_super_block *super_copy = fs_info->super_copy; 2843 struct btrfs_disk_key *disk_key; 2844 struct btrfs_chunk *chunk; 2845 u8 *ptr; 2846 int ret = 0; 2847 u32 num_stripes; 2848 u32 array_size; 2849 u32 len = 0; 2850 u32 cur; 2851 struct btrfs_key key; 2852 2853 mutex_lock(&fs_info->chunk_mutex); 2854 array_size = btrfs_super_sys_array_size(super_copy); 2855 2856 ptr = super_copy->sys_chunk_array; 2857 cur = 0; 2858 2859 while (cur < array_size) { 2860 disk_key = (struct btrfs_disk_key *)ptr; 2861 btrfs_disk_key_to_cpu(&key, disk_key); 2862 2863 len = sizeof(*disk_key); 2864 2865 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2866 chunk = (struct btrfs_chunk *)(ptr + len); 2867 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2868 len += btrfs_chunk_item_size(num_stripes); 2869 } else { 2870 ret = -EIO; 2871 break; 2872 } 2873 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2874 key.offset == chunk_offset) { 2875 memmove(ptr, ptr + len, array_size - (cur + len)); 2876 array_size -= len; 2877 btrfs_set_super_sys_array_size(super_copy, array_size); 2878 } else { 2879 ptr += len; 2880 cur += len; 2881 } 2882 } 2883 mutex_unlock(&fs_info->chunk_mutex); 2884 return ret; 2885 } 2886 2887 /* 2888 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2889 * @logical: Logical block offset in bytes. 2890 * @length: Length of extent in bytes. 2891 * 2892 * Return: Chunk mapping or ERR_PTR. 2893 */ 2894 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2895 u64 logical, u64 length) 2896 { 2897 struct extent_map_tree *em_tree; 2898 struct extent_map *em; 2899 2900 em_tree = &fs_info->mapping_tree; 2901 read_lock(&em_tree->lock); 2902 em = lookup_extent_mapping(em_tree, logical, length); 2903 read_unlock(&em_tree->lock); 2904 2905 if (!em) { 2906 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2907 logical, length); 2908 return ERR_PTR(-EINVAL); 2909 } 2910 2911 if (em->start > logical || em->start + em->len < logical) { 2912 btrfs_crit(fs_info, 2913 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 2914 logical, length, em->start, em->start + em->len); 2915 free_extent_map(em); 2916 return ERR_PTR(-EINVAL); 2917 } 2918 2919 /* callers are responsible for dropping em's ref. */ 2920 return em; 2921 } 2922 2923 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2924 { 2925 struct btrfs_fs_info *fs_info = trans->fs_info; 2926 struct extent_map *em; 2927 struct map_lookup *map; 2928 u64 dev_extent_len = 0; 2929 int i, ret = 0; 2930 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2931 2932 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 2933 if (IS_ERR(em)) { 2934 /* 2935 * This is a logic error, but we don't want to just rely on the 2936 * user having built with ASSERT enabled, so if ASSERT doesn't 2937 * do anything we still error out. 2938 */ 2939 ASSERT(0); 2940 return PTR_ERR(em); 2941 } 2942 map = em->map_lookup; 2943 mutex_lock(&fs_info->chunk_mutex); 2944 check_system_chunk(trans, map->type); 2945 mutex_unlock(&fs_info->chunk_mutex); 2946 2947 /* 2948 * Take the device list mutex to prevent races with the final phase of 2949 * a device replace operation that replaces the device object associated 2950 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2951 */ 2952 mutex_lock(&fs_devices->device_list_mutex); 2953 for (i = 0; i < map->num_stripes; i++) { 2954 struct btrfs_device *device = map->stripes[i].dev; 2955 ret = btrfs_free_dev_extent(trans, device, 2956 map->stripes[i].physical, 2957 &dev_extent_len); 2958 if (ret) { 2959 mutex_unlock(&fs_devices->device_list_mutex); 2960 btrfs_abort_transaction(trans, ret); 2961 goto out; 2962 } 2963 2964 if (device->bytes_used > 0) { 2965 mutex_lock(&fs_info->chunk_mutex); 2966 btrfs_device_set_bytes_used(device, 2967 device->bytes_used - dev_extent_len); 2968 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 2969 btrfs_clear_space_info_full(fs_info); 2970 mutex_unlock(&fs_info->chunk_mutex); 2971 } 2972 2973 ret = btrfs_update_device(trans, device); 2974 if (ret) { 2975 mutex_unlock(&fs_devices->device_list_mutex); 2976 btrfs_abort_transaction(trans, ret); 2977 goto out; 2978 } 2979 } 2980 mutex_unlock(&fs_devices->device_list_mutex); 2981 2982 ret = btrfs_free_chunk(trans, chunk_offset); 2983 if (ret) { 2984 btrfs_abort_transaction(trans, ret); 2985 goto out; 2986 } 2987 2988 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 2989 2990 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2991 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 2992 if (ret) { 2993 btrfs_abort_transaction(trans, ret); 2994 goto out; 2995 } 2996 } 2997 2998 ret = btrfs_remove_block_group(trans, chunk_offset, em); 2999 if (ret) { 3000 btrfs_abort_transaction(trans, ret); 3001 goto out; 3002 } 3003 3004 out: 3005 /* once for us */ 3006 free_extent_map(em); 3007 return ret; 3008 } 3009 3010 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3011 { 3012 struct btrfs_root *root = fs_info->chunk_root; 3013 struct btrfs_trans_handle *trans; 3014 struct btrfs_block_group *block_group; 3015 int ret; 3016 3017 /* 3018 * Prevent races with automatic removal of unused block groups. 3019 * After we relocate and before we remove the chunk with offset 3020 * chunk_offset, automatic removal of the block group can kick in, 3021 * resulting in a failure when calling btrfs_remove_chunk() below. 3022 * 3023 * Make sure to acquire this mutex before doing a tree search (dev 3024 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3025 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3026 * we release the path used to search the chunk/dev tree and before 3027 * the current task acquires this mutex and calls us. 3028 */ 3029 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); 3030 3031 /* step one, relocate all the extents inside this chunk */ 3032 btrfs_scrub_pause(fs_info); 3033 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3034 btrfs_scrub_continue(fs_info); 3035 if (ret) 3036 return ret; 3037 3038 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3039 if (!block_group) 3040 return -ENOENT; 3041 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3042 btrfs_put_block_group(block_group); 3043 3044 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3045 chunk_offset); 3046 if (IS_ERR(trans)) { 3047 ret = PTR_ERR(trans); 3048 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3049 return ret; 3050 } 3051 3052 /* 3053 * step two, delete the device extents and the 3054 * chunk tree entries 3055 */ 3056 ret = btrfs_remove_chunk(trans, chunk_offset); 3057 btrfs_end_transaction(trans); 3058 return ret; 3059 } 3060 3061 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3062 { 3063 struct btrfs_root *chunk_root = fs_info->chunk_root; 3064 struct btrfs_path *path; 3065 struct extent_buffer *leaf; 3066 struct btrfs_chunk *chunk; 3067 struct btrfs_key key; 3068 struct btrfs_key found_key; 3069 u64 chunk_type; 3070 bool retried = false; 3071 int failed = 0; 3072 int ret; 3073 3074 path = btrfs_alloc_path(); 3075 if (!path) 3076 return -ENOMEM; 3077 3078 again: 3079 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3080 key.offset = (u64)-1; 3081 key.type = BTRFS_CHUNK_ITEM_KEY; 3082 3083 while (1) { 3084 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3085 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3086 if (ret < 0) { 3087 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3088 goto error; 3089 } 3090 BUG_ON(ret == 0); /* Corruption */ 3091 3092 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3093 key.type); 3094 if (ret) 3095 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3096 if (ret < 0) 3097 goto error; 3098 if (ret > 0) 3099 break; 3100 3101 leaf = path->nodes[0]; 3102 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3103 3104 chunk = btrfs_item_ptr(leaf, path->slots[0], 3105 struct btrfs_chunk); 3106 chunk_type = btrfs_chunk_type(leaf, chunk); 3107 btrfs_release_path(path); 3108 3109 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3110 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3111 if (ret == -ENOSPC) 3112 failed++; 3113 else 3114 BUG_ON(ret); 3115 } 3116 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3117 3118 if (found_key.offset == 0) 3119 break; 3120 key.offset = found_key.offset - 1; 3121 } 3122 ret = 0; 3123 if (failed && !retried) { 3124 failed = 0; 3125 retried = true; 3126 goto again; 3127 } else if (WARN_ON(failed && retried)) { 3128 ret = -ENOSPC; 3129 } 3130 error: 3131 btrfs_free_path(path); 3132 return ret; 3133 } 3134 3135 /* 3136 * return 1 : allocate a data chunk successfully, 3137 * return <0: errors during allocating a data chunk, 3138 * return 0 : no need to allocate a data chunk. 3139 */ 3140 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3141 u64 chunk_offset) 3142 { 3143 struct btrfs_block_group *cache; 3144 u64 bytes_used; 3145 u64 chunk_type; 3146 3147 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3148 ASSERT(cache); 3149 chunk_type = cache->flags; 3150 btrfs_put_block_group(cache); 3151 3152 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3153 return 0; 3154 3155 spin_lock(&fs_info->data_sinfo->lock); 3156 bytes_used = fs_info->data_sinfo->bytes_used; 3157 spin_unlock(&fs_info->data_sinfo->lock); 3158 3159 if (!bytes_used) { 3160 struct btrfs_trans_handle *trans; 3161 int ret; 3162 3163 trans = btrfs_join_transaction(fs_info->tree_root); 3164 if (IS_ERR(trans)) 3165 return PTR_ERR(trans); 3166 3167 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3168 btrfs_end_transaction(trans); 3169 if (ret < 0) 3170 return ret; 3171 return 1; 3172 } 3173 3174 return 0; 3175 } 3176 3177 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3178 struct btrfs_balance_control *bctl) 3179 { 3180 struct btrfs_root *root = fs_info->tree_root; 3181 struct btrfs_trans_handle *trans; 3182 struct btrfs_balance_item *item; 3183 struct btrfs_disk_balance_args disk_bargs; 3184 struct btrfs_path *path; 3185 struct extent_buffer *leaf; 3186 struct btrfs_key key; 3187 int ret, err; 3188 3189 path = btrfs_alloc_path(); 3190 if (!path) 3191 return -ENOMEM; 3192 3193 trans = btrfs_start_transaction(root, 0); 3194 if (IS_ERR(trans)) { 3195 btrfs_free_path(path); 3196 return PTR_ERR(trans); 3197 } 3198 3199 key.objectid = BTRFS_BALANCE_OBJECTID; 3200 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3201 key.offset = 0; 3202 3203 ret = btrfs_insert_empty_item(trans, root, path, &key, 3204 sizeof(*item)); 3205 if (ret) 3206 goto out; 3207 3208 leaf = path->nodes[0]; 3209 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3210 3211 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3212 3213 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3214 btrfs_set_balance_data(leaf, item, &disk_bargs); 3215 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3216 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3217 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3218 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3219 3220 btrfs_set_balance_flags(leaf, item, bctl->flags); 3221 3222 btrfs_mark_buffer_dirty(leaf); 3223 out: 3224 btrfs_free_path(path); 3225 err = btrfs_commit_transaction(trans); 3226 if (err && !ret) 3227 ret = err; 3228 return ret; 3229 } 3230 3231 static int del_balance_item(struct btrfs_fs_info *fs_info) 3232 { 3233 struct btrfs_root *root = fs_info->tree_root; 3234 struct btrfs_trans_handle *trans; 3235 struct btrfs_path *path; 3236 struct btrfs_key key; 3237 int ret, err; 3238 3239 path = btrfs_alloc_path(); 3240 if (!path) 3241 return -ENOMEM; 3242 3243 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3244 if (IS_ERR(trans)) { 3245 btrfs_free_path(path); 3246 return PTR_ERR(trans); 3247 } 3248 3249 key.objectid = BTRFS_BALANCE_OBJECTID; 3250 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3251 key.offset = 0; 3252 3253 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3254 if (ret < 0) 3255 goto out; 3256 if (ret > 0) { 3257 ret = -ENOENT; 3258 goto out; 3259 } 3260 3261 ret = btrfs_del_item(trans, root, path); 3262 out: 3263 btrfs_free_path(path); 3264 err = btrfs_commit_transaction(trans); 3265 if (err && !ret) 3266 ret = err; 3267 return ret; 3268 } 3269 3270 /* 3271 * This is a heuristic used to reduce the number of chunks balanced on 3272 * resume after balance was interrupted. 3273 */ 3274 static void update_balance_args(struct btrfs_balance_control *bctl) 3275 { 3276 /* 3277 * Turn on soft mode for chunk types that were being converted. 3278 */ 3279 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3280 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3281 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3282 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3283 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3284 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3285 3286 /* 3287 * Turn on usage filter if is not already used. The idea is 3288 * that chunks that we have already balanced should be 3289 * reasonably full. Don't do it for chunks that are being 3290 * converted - that will keep us from relocating unconverted 3291 * (albeit full) chunks. 3292 */ 3293 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3294 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3295 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3296 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3297 bctl->data.usage = 90; 3298 } 3299 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3300 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3301 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3302 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3303 bctl->sys.usage = 90; 3304 } 3305 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3306 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3307 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3308 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3309 bctl->meta.usage = 90; 3310 } 3311 } 3312 3313 /* 3314 * Clear the balance status in fs_info and delete the balance item from disk. 3315 */ 3316 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3317 { 3318 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3319 int ret; 3320 3321 BUG_ON(!fs_info->balance_ctl); 3322 3323 spin_lock(&fs_info->balance_lock); 3324 fs_info->balance_ctl = NULL; 3325 spin_unlock(&fs_info->balance_lock); 3326 3327 kfree(bctl); 3328 ret = del_balance_item(fs_info); 3329 if (ret) 3330 btrfs_handle_fs_error(fs_info, ret, NULL); 3331 } 3332 3333 /* 3334 * Balance filters. Return 1 if chunk should be filtered out 3335 * (should not be balanced). 3336 */ 3337 static int chunk_profiles_filter(u64 chunk_type, 3338 struct btrfs_balance_args *bargs) 3339 { 3340 chunk_type = chunk_to_extended(chunk_type) & 3341 BTRFS_EXTENDED_PROFILE_MASK; 3342 3343 if (bargs->profiles & chunk_type) 3344 return 0; 3345 3346 return 1; 3347 } 3348 3349 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3350 struct btrfs_balance_args *bargs) 3351 { 3352 struct btrfs_block_group *cache; 3353 u64 chunk_used; 3354 u64 user_thresh_min; 3355 u64 user_thresh_max; 3356 int ret = 1; 3357 3358 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3359 chunk_used = cache->used; 3360 3361 if (bargs->usage_min == 0) 3362 user_thresh_min = 0; 3363 else 3364 user_thresh_min = div_factor_fine(cache->length, 3365 bargs->usage_min); 3366 3367 if (bargs->usage_max == 0) 3368 user_thresh_max = 1; 3369 else if (bargs->usage_max > 100) 3370 user_thresh_max = cache->length; 3371 else 3372 user_thresh_max = div_factor_fine(cache->length, 3373 bargs->usage_max); 3374 3375 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3376 ret = 0; 3377 3378 btrfs_put_block_group(cache); 3379 return ret; 3380 } 3381 3382 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3383 u64 chunk_offset, struct btrfs_balance_args *bargs) 3384 { 3385 struct btrfs_block_group *cache; 3386 u64 chunk_used, user_thresh; 3387 int ret = 1; 3388 3389 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3390 chunk_used = cache->used; 3391 3392 if (bargs->usage_min == 0) 3393 user_thresh = 1; 3394 else if (bargs->usage > 100) 3395 user_thresh = cache->length; 3396 else 3397 user_thresh = div_factor_fine(cache->length, bargs->usage); 3398 3399 if (chunk_used < user_thresh) 3400 ret = 0; 3401 3402 btrfs_put_block_group(cache); 3403 return ret; 3404 } 3405 3406 static int chunk_devid_filter(struct extent_buffer *leaf, 3407 struct btrfs_chunk *chunk, 3408 struct btrfs_balance_args *bargs) 3409 { 3410 struct btrfs_stripe *stripe; 3411 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3412 int i; 3413 3414 for (i = 0; i < num_stripes; i++) { 3415 stripe = btrfs_stripe_nr(chunk, i); 3416 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3417 return 0; 3418 } 3419 3420 return 1; 3421 } 3422 3423 static u64 calc_data_stripes(u64 type, int num_stripes) 3424 { 3425 const int index = btrfs_bg_flags_to_raid_index(type); 3426 const int ncopies = btrfs_raid_array[index].ncopies; 3427 const int nparity = btrfs_raid_array[index].nparity; 3428 3429 if (nparity) 3430 return num_stripes - nparity; 3431 else 3432 return num_stripes / ncopies; 3433 } 3434 3435 /* [pstart, pend) */ 3436 static int chunk_drange_filter(struct extent_buffer *leaf, 3437 struct btrfs_chunk *chunk, 3438 struct btrfs_balance_args *bargs) 3439 { 3440 struct btrfs_stripe *stripe; 3441 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3442 u64 stripe_offset; 3443 u64 stripe_length; 3444 u64 type; 3445 int factor; 3446 int i; 3447 3448 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3449 return 0; 3450 3451 type = btrfs_chunk_type(leaf, chunk); 3452 factor = calc_data_stripes(type, num_stripes); 3453 3454 for (i = 0; i < num_stripes; i++) { 3455 stripe = btrfs_stripe_nr(chunk, i); 3456 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3457 continue; 3458 3459 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3460 stripe_length = btrfs_chunk_length(leaf, chunk); 3461 stripe_length = div_u64(stripe_length, factor); 3462 3463 if (stripe_offset < bargs->pend && 3464 stripe_offset + stripe_length > bargs->pstart) 3465 return 0; 3466 } 3467 3468 return 1; 3469 } 3470 3471 /* [vstart, vend) */ 3472 static int chunk_vrange_filter(struct extent_buffer *leaf, 3473 struct btrfs_chunk *chunk, 3474 u64 chunk_offset, 3475 struct btrfs_balance_args *bargs) 3476 { 3477 if (chunk_offset < bargs->vend && 3478 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3479 /* at least part of the chunk is inside this vrange */ 3480 return 0; 3481 3482 return 1; 3483 } 3484 3485 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3486 struct btrfs_chunk *chunk, 3487 struct btrfs_balance_args *bargs) 3488 { 3489 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3490 3491 if (bargs->stripes_min <= num_stripes 3492 && num_stripes <= bargs->stripes_max) 3493 return 0; 3494 3495 return 1; 3496 } 3497 3498 static int chunk_soft_convert_filter(u64 chunk_type, 3499 struct btrfs_balance_args *bargs) 3500 { 3501 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3502 return 0; 3503 3504 chunk_type = chunk_to_extended(chunk_type) & 3505 BTRFS_EXTENDED_PROFILE_MASK; 3506 3507 if (bargs->target == chunk_type) 3508 return 1; 3509 3510 return 0; 3511 } 3512 3513 static int should_balance_chunk(struct extent_buffer *leaf, 3514 struct btrfs_chunk *chunk, u64 chunk_offset) 3515 { 3516 struct btrfs_fs_info *fs_info = leaf->fs_info; 3517 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3518 struct btrfs_balance_args *bargs = NULL; 3519 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3520 3521 /* type filter */ 3522 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3523 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3524 return 0; 3525 } 3526 3527 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3528 bargs = &bctl->data; 3529 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3530 bargs = &bctl->sys; 3531 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3532 bargs = &bctl->meta; 3533 3534 /* profiles filter */ 3535 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3536 chunk_profiles_filter(chunk_type, bargs)) { 3537 return 0; 3538 } 3539 3540 /* usage filter */ 3541 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3542 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3543 return 0; 3544 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3545 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3546 return 0; 3547 } 3548 3549 /* devid filter */ 3550 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3551 chunk_devid_filter(leaf, chunk, bargs)) { 3552 return 0; 3553 } 3554 3555 /* drange filter, makes sense only with devid filter */ 3556 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3557 chunk_drange_filter(leaf, chunk, bargs)) { 3558 return 0; 3559 } 3560 3561 /* vrange filter */ 3562 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3563 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3564 return 0; 3565 } 3566 3567 /* stripes filter */ 3568 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3569 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3570 return 0; 3571 } 3572 3573 /* soft profile changing mode */ 3574 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3575 chunk_soft_convert_filter(chunk_type, bargs)) { 3576 return 0; 3577 } 3578 3579 /* 3580 * limited by count, must be the last filter 3581 */ 3582 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3583 if (bargs->limit == 0) 3584 return 0; 3585 else 3586 bargs->limit--; 3587 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3588 /* 3589 * Same logic as the 'limit' filter; the minimum cannot be 3590 * determined here because we do not have the global information 3591 * about the count of all chunks that satisfy the filters. 3592 */ 3593 if (bargs->limit_max == 0) 3594 return 0; 3595 else 3596 bargs->limit_max--; 3597 } 3598 3599 return 1; 3600 } 3601 3602 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3603 { 3604 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3605 struct btrfs_root *chunk_root = fs_info->chunk_root; 3606 u64 chunk_type; 3607 struct btrfs_chunk *chunk; 3608 struct btrfs_path *path = NULL; 3609 struct btrfs_key key; 3610 struct btrfs_key found_key; 3611 struct extent_buffer *leaf; 3612 int slot; 3613 int ret; 3614 int enospc_errors = 0; 3615 bool counting = true; 3616 /* The single value limit and min/max limits use the same bytes in the */ 3617 u64 limit_data = bctl->data.limit; 3618 u64 limit_meta = bctl->meta.limit; 3619 u64 limit_sys = bctl->sys.limit; 3620 u32 count_data = 0; 3621 u32 count_meta = 0; 3622 u32 count_sys = 0; 3623 int chunk_reserved = 0; 3624 3625 path = btrfs_alloc_path(); 3626 if (!path) { 3627 ret = -ENOMEM; 3628 goto error; 3629 } 3630 3631 /* zero out stat counters */ 3632 spin_lock(&fs_info->balance_lock); 3633 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3634 spin_unlock(&fs_info->balance_lock); 3635 again: 3636 if (!counting) { 3637 /* 3638 * The single value limit and min/max limits use the same bytes 3639 * in the 3640 */ 3641 bctl->data.limit = limit_data; 3642 bctl->meta.limit = limit_meta; 3643 bctl->sys.limit = limit_sys; 3644 } 3645 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3646 key.offset = (u64)-1; 3647 key.type = BTRFS_CHUNK_ITEM_KEY; 3648 3649 while (1) { 3650 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3651 atomic_read(&fs_info->balance_cancel_req)) { 3652 ret = -ECANCELED; 3653 goto error; 3654 } 3655 3656 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3657 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3658 if (ret < 0) { 3659 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3660 goto error; 3661 } 3662 3663 /* 3664 * this shouldn't happen, it means the last relocate 3665 * failed 3666 */ 3667 if (ret == 0) 3668 BUG(); /* FIXME break ? */ 3669 3670 ret = btrfs_previous_item(chunk_root, path, 0, 3671 BTRFS_CHUNK_ITEM_KEY); 3672 if (ret) { 3673 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3674 ret = 0; 3675 break; 3676 } 3677 3678 leaf = path->nodes[0]; 3679 slot = path->slots[0]; 3680 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3681 3682 if (found_key.objectid != key.objectid) { 3683 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3684 break; 3685 } 3686 3687 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3688 chunk_type = btrfs_chunk_type(leaf, chunk); 3689 3690 if (!counting) { 3691 spin_lock(&fs_info->balance_lock); 3692 bctl->stat.considered++; 3693 spin_unlock(&fs_info->balance_lock); 3694 } 3695 3696 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3697 3698 btrfs_release_path(path); 3699 if (!ret) { 3700 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3701 goto loop; 3702 } 3703 3704 if (counting) { 3705 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3706 spin_lock(&fs_info->balance_lock); 3707 bctl->stat.expected++; 3708 spin_unlock(&fs_info->balance_lock); 3709 3710 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3711 count_data++; 3712 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3713 count_sys++; 3714 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3715 count_meta++; 3716 3717 goto loop; 3718 } 3719 3720 /* 3721 * Apply limit_min filter, no need to check if the LIMITS 3722 * filter is used, limit_min is 0 by default 3723 */ 3724 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3725 count_data < bctl->data.limit_min) 3726 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3727 count_meta < bctl->meta.limit_min) 3728 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3729 count_sys < bctl->sys.limit_min)) { 3730 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3731 goto loop; 3732 } 3733 3734 if (!chunk_reserved) { 3735 /* 3736 * We may be relocating the only data chunk we have, 3737 * which could potentially end up with losing data's 3738 * raid profile, so lets allocate an empty one in 3739 * advance. 3740 */ 3741 ret = btrfs_may_alloc_data_chunk(fs_info, 3742 found_key.offset); 3743 if (ret < 0) { 3744 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3745 goto error; 3746 } else if (ret == 1) { 3747 chunk_reserved = 1; 3748 } 3749 } 3750 3751 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3752 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3753 if (ret == -ENOSPC) { 3754 enospc_errors++; 3755 } else if (ret == -ETXTBSY) { 3756 btrfs_info(fs_info, 3757 "skipping relocation of block group %llu due to active swapfile", 3758 found_key.offset); 3759 ret = 0; 3760 } else if (ret) { 3761 goto error; 3762 } else { 3763 spin_lock(&fs_info->balance_lock); 3764 bctl->stat.completed++; 3765 spin_unlock(&fs_info->balance_lock); 3766 } 3767 loop: 3768 if (found_key.offset == 0) 3769 break; 3770 key.offset = found_key.offset - 1; 3771 } 3772 3773 if (counting) { 3774 btrfs_release_path(path); 3775 counting = false; 3776 goto again; 3777 } 3778 error: 3779 btrfs_free_path(path); 3780 if (enospc_errors) { 3781 btrfs_info(fs_info, "%d enospc errors during balance", 3782 enospc_errors); 3783 if (!ret) 3784 ret = -ENOSPC; 3785 } 3786 3787 return ret; 3788 } 3789 3790 /** 3791 * alloc_profile_is_valid - see if a given profile is valid and reduced 3792 * @flags: profile to validate 3793 * @extended: if true @flags is treated as an extended profile 3794 */ 3795 static int alloc_profile_is_valid(u64 flags, int extended) 3796 { 3797 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3798 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3799 3800 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3801 3802 /* 1) check that all other bits are zeroed */ 3803 if (flags & ~mask) 3804 return 0; 3805 3806 /* 2) see if profile is reduced */ 3807 if (flags == 0) 3808 return !extended; /* "0" is valid for usual profiles */ 3809 3810 return has_single_bit_set(flags); 3811 } 3812 3813 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3814 { 3815 /* cancel requested || normal exit path */ 3816 return atomic_read(&fs_info->balance_cancel_req) || 3817 (atomic_read(&fs_info->balance_pause_req) == 0 && 3818 atomic_read(&fs_info->balance_cancel_req) == 0); 3819 } 3820 3821 /* 3822 * Validate target profile against allowed profiles and return true if it's OK. 3823 * Otherwise print the error message and return false. 3824 */ 3825 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 3826 const struct btrfs_balance_args *bargs, 3827 u64 allowed, const char *type) 3828 { 3829 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3830 return true; 3831 3832 /* Profile is valid and does not have bits outside of the allowed set */ 3833 if (alloc_profile_is_valid(bargs->target, 1) && 3834 (bargs->target & ~allowed) == 0) 3835 return true; 3836 3837 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 3838 type, btrfs_bg_type_to_raid_name(bargs->target)); 3839 return false; 3840 } 3841 3842 /* 3843 * Fill @buf with textual description of balance filter flags @bargs, up to 3844 * @size_buf including the terminating null. The output may be trimmed if it 3845 * does not fit into the provided buffer. 3846 */ 3847 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 3848 u32 size_buf) 3849 { 3850 int ret; 3851 u32 size_bp = size_buf; 3852 char *bp = buf; 3853 u64 flags = bargs->flags; 3854 char tmp_buf[128] = {'\0'}; 3855 3856 if (!flags) 3857 return; 3858 3859 #define CHECK_APPEND_NOARG(a) \ 3860 do { \ 3861 ret = snprintf(bp, size_bp, (a)); \ 3862 if (ret < 0 || ret >= size_bp) \ 3863 goto out_overflow; \ 3864 size_bp -= ret; \ 3865 bp += ret; \ 3866 } while (0) 3867 3868 #define CHECK_APPEND_1ARG(a, v1) \ 3869 do { \ 3870 ret = snprintf(bp, size_bp, (a), (v1)); \ 3871 if (ret < 0 || ret >= size_bp) \ 3872 goto out_overflow; \ 3873 size_bp -= ret; \ 3874 bp += ret; \ 3875 } while (0) 3876 3877 #define CHECK_APPEND_2ARG(a, v1, v2) \ 3878 do { \ 3879 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 3880 if (ret < 0 || ret >= size_bp) \ 3881 goto out_overflow; \ 3882 size_bp -= ret; \ 3883 bp += ret; \ 3884 } while (0) 3885 3886 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 3887 CHECK_APPEND_1ARG("convert=%s,", 3888 btrfs_bg_type_to_raid_name(bargs->target)); 3889 3890 if (flags & BTRFS_BALANCE_ARGS_SOFT) 3891 CHECK_APPEND_NOARG("soft,"); 3892 3893 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 3894 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 3895 sizeof(tmp_buf)); 3896 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 3897 } 3898 3899 if (flags & BTRFS_BALANCE_ARGS_USAGE) 3900 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 3901 3902 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 3903 CHECK_APPEND_2ARG("usage=%u..%u,", 3904 bargs->usage_min, bargs->usage_max); 3905 3906 if (flags & BTRFS_BALANCE_ARGS_DEVID) 3907 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 3908 3909 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 3910 CHECK_APPEND_2ARG("drange=%llu..%llu,", 3911 bargs->pstart, bargs->pend); 3912 3913 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 3914 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 3915 bargs->vstart, bargs->vend); 3916 3917 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 3918 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 3919 3920 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 3921 CHECK_APPEND_2ARG("limit=%u..%u,", 3922 bargs->limit_min, bargs->limit_max); 3923 3924 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 3925 CHECK_APPEND_2ARG("stripes=%u..%u,", 3926 bargs->stripes_min, bargs->stripes_max); 3927 3928 #undef CHECK_APPEND_2ARG 3929 #undef CHECK_APPEND_1ARG 3930 #undef CHECK_APPEND_NOARG 3931 3932 out_overflow: 3933 3934 if (size_bp < size_buf) 3935 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 3936 else 3937 buf[0] = '\0'; 3938 } 3939 3940 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 3941 { 3942 u32 size_buf = 1024; 3943 char tmp_buf[192] = {'\0'}; 3944 char *buf; 3945 char *bp; 3946 u32 size_bp = size_buf; 3947 int ret; 3948 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3949 3950 buf = kzalloc(size_buf, GFP_KERNEL); 3951 if (!buf) 3952 return; 3953 3954 bp = buf; 3955 3956 #define CHECK_APPEND_1ARG(a, v1) \ 3957 do { \ 3958 ret = snprintf(bp, size_bp, (a), (v1)); \ 3959 if (ret < 0 || ret >= size_bp) \ 3960 goto out_overflow; \ 3961 size_bp -= ret; \ 3962 bp += ret; \ 3963 } while (0) 3964 3965 if (bctl->flags & BTRFS_BALANCE_FORCE) 3966 CHECK_APPEND_1ARG("%s", "-f "); 3967 3968 if (bctl->flags & BTRFS_BALANCE_DATA) { 3969 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 3970 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 3971 } 3972 3973 if (bctl->flags & BTRFS_BALANCE_METADATA) { 3974 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 3975 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 3976 } 3977 3978 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 3979 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 3980 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 3981 } 3982 3983 #undef CHECK_APPEND_1ARG 3984 3985 out_overflow: 3986 3987 if (size_bp < size_buf) 3988 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 3989 btrfs_info(fs_info, "balance: %s %s", 3990 (bctl->flags & BTRFS_BALANCE_RESUME) ? 3991 "resume" : "start", buf); 3992 3993 kfree(buf); 3994 } 3995 3996 /* 3997 * Should be called with balance mutexe held 3998 */ 3999 int btrfs_balance(struct btrfs_fs_info *fs_info, 4000 struct btrfs_balance_control *bctl, 4001 struct btrfs_ioctl_balance_args *bargs) 4002 { 4003 u64 meta_target, data_target; 4004 u64 allowed; 4005 int mixed = 0; 4006 int ret; 4007 u64 num_devices; 4008 unsigned seq; 4009 bool reducing_redundancy; 4010 int i; 4011 4012 if (btrfs_fs_closing(fs_info) || 4013 atomic_read(&fs_info->balance_pause_req) || 4014 btrfs_should_cancel_balance(fs_info)) { 4015 ret = -EINVAL; 4016 goto out; 4017 } 4018 4019 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4020 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4021 mixed = 1; 4022 4023 /* 4024 * In case of mixed groups both data and meta should be picked, 4025 * and identical options should be given for both of them. 4026 */ 4027 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4028 if (mixed && (bctl->flags & allowed)) { 4029 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4030 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4031 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4032 btrfs_err(fs_info, 4033 "balance: mixed groups data and metadata options must be the same"); 4034 ret = -EINVAL; 4035 goto out; 4036 } 4037 } 4038 4039 /* 4040 * rw_devices will not change at the moment, device add/delete/replace 4041 * are exclusive 4042 */ 4043 num_devices = fs_info->fs_devices->rw_devices; 4044 4045 /* 4046 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4047 * special bit for it, to make it easier to distinguish. Thus we need 4048 * to set it manually, or balance would refuse the profile. 4049 */ 4050 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4051 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4052 if (num_devices >= btrfs_raid_array[i].devs_min) 4053 allowed |= btrfs_raid_array[i].bg_flag; 4054 4055 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4056 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4057 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4058 ret = -EINVAL; 4059 goto out; 4060 } 4061 4062 /* 4063 * Allow to reduce metadata or system integrity only if force set for 4064 * profiles with redundancy (copies, parity) 4065 */ 4066 allowed = 0; 4067 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4068 if (btrfs_raid_array[i].ncopies >= 2 || 4069 btrfs_raid_array[i].tolerated_failures >= 1) 4070 allowed |= btrfs_raid_array[i].bg_flag; 4071 } 4072 do { 4073 seq = read_seqbegin(&fs_info->profiles_lock); 4074 4075 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4076 (fs_info->avail_system_alloc_bits & allowed) && 4077 !(bctl->sys.target & allowed)) || 4078 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4079 (fs_info->avail_metadata_alloc_bits & allowed) && 4080 !(bctl->meta.target & allowed))) 4081 reducing_redundancy = true; 4082 else 4083 reducing_redundancy = false; 4084 4085 /* if we're not converting, the target field is uninitialized */ 4086 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4087 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4088 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4089 bctl->data.target : fs_info->avail_data_alloc_bits; 4090 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4091 4092 if (reducing_redundancy) { 4093 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4094 btrfs_info(fs_info, 4095 "balance: force reducing metadata redundancy"); 4096 } else { 4097 btrfs_err(fs_info, 4098 "balance: reduces metadata redundancy, use --force if you want this"); 4099 ret = -EINVAL; 4100 goto out; 4101 } 4102 } 4103 4104 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4105 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4106 btrfs_warn(fs_info, 4107 "balance: metadata profile %s has lower redundancy than data profile %s", 4108 btrfs_bg_type_to_raid_name(meta_target), 4109 btrfs_bg_type_to_raid_name(data_target)); 4110 } 4111 4112 if (fs_info->send_in_progress) { 4113 btrfs_warn_rl(fs_info, 4114 "cannot run balance while send operations are in progress (%d in progress)", 4115 fs_info->send_in_progress); 4116 ret = -EAGAIN; 4117 goto out; 4118 } 4119 4120 ret = insert_balance_item(fs_info, bctl); 4121 if (ret && ret != -EEXIST) 4122 goto out; 4123 4124 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4125 BUG_ON(ret == -EEXIST); 4126 BUG_ON(fs_info->balance_ctl); 4127 spin_lock(&fs_info->balance_lock); 4128 fs_info->balance_ctl = bctl; 4129 spin_unlock(&fs_info->balance_lock); 4130 } else { 4131 BUG_ON(ret != -EEXIST); 4132 spin_lock(&fs_info->balance_lock); 4133 update_balance_args(bctl); 4134 spin_unlock(&fs_info->balance_lock); 4135 } 4136 4137 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4138 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4139 describe_balance_start_or_resume(fs_info); 4140 mutex_unlock(&fs_info->balance_mutex); 4141 4142 ret = __btrfs_balance(fs_info); 4143 4144 mutex_lock(&fs_info->balance_mutex); 4145 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4146 btrfs_info(fs_info, "balance: paused"); 4147 /* 4148 * Balance can be canceled by: 4149 * 4150 * - Regular cancel request 4151 * Then ret == -ECANCELED and balance_cancel_req > 0 4152 * 4153 * - Fatal signal to "btrfs" process 4154 * Either the signal caught by wait_reserve_ticket() and callers 4155 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4156 * got -ECANCELED. 4157 * Either way, in this case balance_cancel_req = 0, and 4158 * ret == -EINTR or ret == -ECANCELED. 4159 * 4160 * So here we only check the return value to catch canceled balance. 4161 */ 4162 else if (ret == -ECANCELED || ret == -EINTR) 4163 btrfs_info(fs_info, "balance: canceled"); 4164 else 4165 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4166 4167 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4168 4169 if (bargs) { 4170 memset(bargs, 0, sizeof(*bargs)); 4171 btrfs_update_ioctl_balance_args(fs_info, bargs); 4172 } 4173 4174 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4175 balance_need_close(fs_info)) { 4176 reset_balance_state(fs_info); 4177 btrfs_exclop_finish(fs_info); 4178 } 4179 4180 wake_up(&fs_info->balance_wait_q); 4181 4182 return ret; 4183 out: 4184 if (bctl->flags & BTRFS_BALANCE_RESUME) 4185 reset_balance_state(fs_info); 4186 else 4187 kfree(bctl); 4188 btrfs_exclop_finish(fs_info); 4189 4190 return ret; 4191 } 4192 4193 static int balance_kthread(void *data) 4194 { 4195 struct btrfs_fs_info *fs_info = data; 4196 int ret = 0; 4197 4198 mutex_lock(&fs_info->balance_mutex); 4199 if (fs_info->balance_ctl) 4200 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4201 mutex_unlock(&fs_info->balance_mutex); 4202 4203 return ret; 4204 } 4205 4206 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4207 { 4208 struct task_struct *tsk; 4209 4210 mutex_lock(&fs_info->balance_mutex); 4211 if (!fs_info->balance_ctl) { 4212 mutex_unlock(&fs_info->balance_mutex); 4213 return 0; 4214 } 4215 mutex_unlock(&fs_info->balance_mutex); 4216 4217 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4218 btrfs_info(fs_info, "balance: resume skipped"); 4219 return 0; 4220 } 4221 4222 /* 4223 * A ro->rw remount sequence should continue with the paused balance 4224 * regardless of who pauses it, system or the user as of now, so set 4225 * the resume flag. 4226 */ 4227 spin_lock(&fs_info->balance_lock); 4228 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4229 spin_unlock(&fs_info->balance_lock); 4230 4231 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4232 return PTR_ERR_OR_ZERO(tsk); 4233 } 4234 4235 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4236 { 4237 struct btrfs_balance_control *bctl; 4238 struct btrfs_balance_item *item; 4239 struct btrfs_disk_balance_args disk_bargs; 4240 struct btrfs_path *path; 4241 struct extent_buffer *leaf; 4242 struct btrfs_key key; 4243 int ret; 4244 4245 path = btrfs_alloc_path(); 4246 if (!path) 4247 return -ENOMEM; 4248 4249 key.objectid = BTRFS_BALANCE_OBJECTID; 4250 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4251 key.offset = 0; 4252 4253 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4254 if (ret < 0) 4255 goto out; 4256 if (ret > 0) { /* ret = -ENOENT; */ 4257 ret = 0; 4258 goto out; 4259 } 4260 4261 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4262 if (!bctl) { 4263 ret = -ENOMEM; 4264 goto out; 4265 } 4266 4267 leaf = path->nodes[0]; 4268 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4269 4270 bctl->flags = btrfs_balance_flags(leaf, item); 4271 bctl->flags |= BTRFS_BALANCE_RESUME; 4272 4273 btrfs_balance_data(leaf, item, &disk_bargs); 4274 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4275 btrfs_balance_meta(leaf, item, &disk_bargs); 4276 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4277 btrfs_balance_sys(leaf, item, &disk_bargs); 4278 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4279 4280 /* 4281 * This should never happen, as the paused balance state is recovered 4282 * during mount without any chance of other exclusive ops to collide. 4283 * 4284 * This gives the exclusive op status to balance and keeps in paused 4285 * state until user intervention (cancel or umount). If the ownership 4286 * cannot be assigned, show a message but do not fail. The balance 4287 * is in a paused state and must have fs_info::balance_ctl properly 4288 * set up. 4289 */ 4290 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) 4291 btrfs_warn(fs_info, 4292 "balance: cannot set exclusive op status, resume manually"); 4293 4294 mutex_lock(&fs_info->balance_mutex); 4295 BUG_ON(fs_info->balance_ctl); 4296 spin_lock(&fs_info->balance_lock); 4297 fs_info->balance_ctl = bctl; 4298 spin_unlock(&fs_info->balance_lock); 4299 mutex_unlock(&fs_info->balance_mutex); 4300 out: 4301 btrfs_free_path(path); 4302 return ret; 4303 } 4304 4305 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4306 { 4307 int ret = 0; 4308 4309 mutex_lock(&fs_info->balance_mutex); 4310 if (!fs_info->balance_ctl) { 4311 mutex_unlock(&fs_info->balance_mutex); 4312 return -ENOTCONN; 4313 } 4314 4315 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4316 atomic_inc(&fs_info->balance_pause_req); 4317 mutex_unlock(&fs_info->balance_mutex); 4318 4319 wait_event(fs_info->balance_wait_q, 4320 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4321 4322 mutex_lock(&fs_info->balance_mutex); 4323 /* we are good with balance_ctl ripped off from under us */ 4324 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4325 atomic_dec(&fs_info->balance_pause_req); 4326 } else { 4327 ret = -ENOTCONN; 4328 } 4329 4330 mutex_unlock(&fs_info->balance_mutex); 4331 return ret; 4332 } 4333 4334 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4335 { 4336 mutex_lock(&fs_info->balance_mutex); 4337 if (!fs_info->balance_ctl) { 4338 mutex_unlock(&fs_info->balance_mutex); 4339 return -ENOTCONN; 4340 } 4341 4342 /* 4343 * A paused balance with the item stored on disk can be resumed at 4344 * mount time if the mount is read-write. Otherwise it's still paused 4345 * and we must not allow cancelling as it deletes the item. 4346 */ 4347 if (sb_rdonly(fs_info->sb)) { 4348 mutex_unlock(&fs_info->balance_mutex); 4349 return -EROFS; 4350 } 4351 4352 atomic_inc(&fs_info->balance_cancel_req); 4353 /* 4354 * if we are running just wait and return, balance item is 4355 * deleted in btrfs_balance in this case 4356 */ 4357 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4358 mutex_unlock(&fs_info->balance_mutex); 4359 wait_event(fs_info->balance_wait_q, 4360 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4361 mutex_lock(&fs_info->balance_mutex); 4362 } else { 4363 mutex_unlock(&fs_info->balance_mutex); 4364 /* 4365 * Lock released to allow other waiters to continue, we'll 4366 * reexamine the status again. 4367 */ 4368 mutex_lock(&fs_info->balance_mutex); 4369 4370 if (fs_info->balance_ctl) { 4371 reset_balance_state(fs_info); 4372 btrfs_exclop_finish(fs_info); 4373 btrfs_info(fs_info, "balance: canceled"); 4374 } 4375 } 4376 4377 BUG_ON(fs_info->balance_ctl || 4378 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4379 atomic_dec(&fs_info->balance_cancel_req); 4380 mutex_unlock(&fs_info->balance_mutex); 4381 return 0; 4382 } 4383 4384 int btrfs_uuid_scan_kthread(void *data) 4385 { 4386 struct btrfs_fs_info *fs_info = data; 4387 struct btrfs_root *root = fs_info->tree_root; 4388 struct btrfs_key key; 4389 struct btrfs_path *path = NULL; 4390 int ret = 0; 4391 struct extent_buffer *eb; 4392 int slot; 4393 struct btrfs_root_item root_item; 4394 u32 item_size; 4395 struct btrfs_trans_handle *trans = NULL; 4396 bool closing = false; 4397 4398 path = btrfs_alloc_path(); 4399 if (!path) { 4400 ret = -ENOMEM; 4401 goto out; 4402 } 4403 4404 key.objectid = 0; 4405 key.type = BTRFS_ROOT_ITEM_KEY; 4406 key.offset = 0; 4407 4408 while (1) { 4409 if (btrfs_fs_closing(fs_info)) { 4410 closing = true; 4411 break; 4412 } 4413 ret = btrfs_search_forward(root, &key, path, 4414 BTRFS_OLDEST_GENERATION); 4415 if (ret) { 4416 if (ret > 0) 4417 ret = 0; 4418 break; 4419 } 4420 4421 if (key.type != BTRFS_ROOT_ITEM_KEY || 4422 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4423 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4424 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4425 goto skip; 4426 4427 eb = path->nodes[0]; 4428 slot = path->slots[0]; 4429 item_size = btrfs_item_size_nr(eb, slot); 4430 if (item_size < sizeof(root_item)) 4431 goto skip; 4432 4433 read_extent_buffer(eb, &root_item, 4434 btrfs_item_ptr_offset(eb, slot), 4435 (int)sizeof(root_item)); 4436 if (btrfs_root_refs(&root_item) == 0) 4437 goto skip; 4438 4439 if (!btrfs_is_empty_uuid(root_item.uuid) || 4440 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4441 if (trans) 4442 goto update_tree; 4443 4444 btrfs_release_path(path); 4445 /* 4446 * 1 - subvol uuid item 4447 * 1 - received_subvol uuid item 4448 */ 4449 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4450 if (IS_ERR(trans)) { 4451 ret = PTR_ERR(trans); 4452 break; 4453 } 4454 continue; 4455 } else { 4456 goto skip; 4457 } 4458 update_tree: 4459 btrfs_release_path(path); 4460 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4461 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4462 BTRFS_UUID_KEY_SUBVOL, 4463 key.objectid); 4464 if (ret < 0) { 4465 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4466 ret); 4467 break; 4468 } 4469 } 4470 4471 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4472 ret = btrfs_uuid_tree_add(trans, 4473 root_item.received_uuid, 4474 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4475 key.objectid); 4476 if (ret < 0) { 4477 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4478 ret); 4479 break; 4480 } 4481 } 4482 4483 skip: 4484 btrfs_release_path(path); 4485 if (trans) { 4486 ret = btrfs_end_transaction(trans); 4487 trans = NULL; 4488 if (ret) 4489 break; 4490 } 4491 4492 if (key.offset < (u64)-1) { 4493 key.offset++; 4494 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4495 key.offset = 0; 4496 key.type = BTRFS_ROOT_ITEM_KEY; 4497 } else if (key.objectid < (u64)-1) { 4498 key.offset = 0; 4499 key.type = BTRFS_ROOT_ITEM_KEY; 4500 key.objectid++; 4501 } else { 4502 break; 4503 } 4504 cond_resched(); 4505 } 4506 4507 out: 4508 btrfs_free_path(path); 4509 if (trans && !IS_ERR(trans)) 4510 btrfs_end_transaction(trans); 4511 if (ret) 4512 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4513 else if (!closing) 4514 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4515 up(&fs_info->uuid_tree_rescan_sem); 4516 return 0; 4517 } 4518 4519 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4520 { 4521 struct btrfs_trans_handle *trans; 4522 struct btrfs_root *tree_root = fs_info->tree_root; 4523 struct btrfs_root *uuid_root; 4524 struct task_struct *task; 4525 int ret; 4526 4527 /* 4528 * 1 - root node 4529 * 1 - root item 4530 */ 4531 trans = btrfs_start_transaction(tree_root, 2); 4532 if (IS_ERR(trans)) 4533 return PTR_ERR(trans); 4534 4535 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4536 if (IS_ERR(uuid_root)) { 4537 ret = PTR_ERR(uuid_root); 4538 btrfs_abort_transaction(trans, ret); 4539 btrfs_end_transaction(trans); 4540 return ret; 4541 } 4542 4543 fs_info->uuid_root = uuid_root; 4544 4545 ret = btrfs_commit_transaction(trans); 4546 if (ret) 4547 return ret; 4548 4549 down(&fs_info->uuid_tree_rescan_sem); 4550 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4551 if (IS_ERR(task)) { 4552 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4553 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4554 up(&fs_info->uuid_tree_rescan_sem); 4555 return PTR_ERR(task); 4556 } 4557 4558 return 0; 4559 } 4560 4561 /* 4562 * shrinking a device means finding all of the device extents past 4563 * the new size, and then following the back refs to the chunks. 4564 * The chunk relocation code actually frees the device extent 4565 */ 4566 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4567 { 4568 struct btrfs_fs_info *fs_info = device->fs_info; 4569 struct btrfs_root *root = fs_info->dev_root; 4570 struct btrfs_trans_handle *trans; 4571 struct btrfs_dev_extent *dev_extent = NULL; 4572 struct btrfs_path *path; 4573 u64 length; 4574 u64 chunk_offset; 4575 int ret; 4576 int slot; 4577 int failed = 0; 4578 bool retried = false; 4579 struct extent_buffer *l; 4580 struct btrfs_key key; 4581 struct btrfs_super_block *super_copy = fs_info->super_copy; 4582 u64 old_total = btrfs_super_total_bytes(super_copy); 4583 u64 old_size = btrfs_device_get_total_bytes(device); 4584 u64 diff; 4585 u64 start; 4586 4587 new_size = round_down(new_size, fs_info->sectorsize); 4588 start = new_size; 4589 diff = round_down(old_size - new_size, fs_info->sectorsize); 4590 4591 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4592 return -EINVAL; 4593 4594 path = btrfs_alloc_path(); 4595 if (!path) 4596 return -ENOMEM; 4597 4598 path->reada = READA_BACK; 4599 4600 trans = btrfs_start_transaction(root, 0); 4601 if (IS_ERR(trans)) { 4602 btrfs_free_path(path); 4603 return PTR_ERR(trans); 4604 } 4605 4606 mutex_lock(&fs_info->chunk_mutex); 4607 4608 btrfs_device_set_total_bytes(device, new_size); 4609 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4610 device->fs_devices->total_rw_bytes -= diff; 4611 atomic64_sub(diff, &fs_info->free_chunk_space); 4612 } 4613 4614 /* 4615 * Once the device's size has been set to the new size, ensure all 4616 * in-memory chunks are synced to disk so that the loop below sees them 4617 * and relocates them accordingly. 4618 */ 4619 if (contains_pending_extent(device, &start, diff)) { 4620 mutex_unlock(&fs_info->chunk_mutex); 4621 ret = btrfs_commit_transaction(trans); 4622 if (ret) 4623 goto done; 4624 } else { 4625 mutex_unlock(&fs_info->chunk_mutex); 4626 btrfs_end_transaction(trans); 4627 } 4628 4629 again: 4630 key.objectid = device->devid; 4631 key.offset = (u64)-1; 4632 key.type = BTRFS_DEV_EXTENT_KEY; 4633 4634 do { 4635 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4636 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4637 if (ret < 0) { 4638 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4639 goto done; 4640 } 4641 4642 ret = btrfs_previous_item(root, path, 0, key.type); 4643 if (ret) 4644 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4645 if (ret < 0) 4646 goto done; 4647 if (ret) { 4648 ret = 0; 4649 btrfs_release_path(path); 4650 break; 4651 } 4652 4653 l = path->nodes[0]; 4654 slot = path->slots[0]; 4655 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4656 4657 if (key.objectid != device->devid) { 4658 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4659 btrfs_release_path(path); 4660 break; 4661 } 4662 4663 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4664 length = btrfs_dev_extent_length(l, dev_extent); 4665 4666 if (key.offset + length <= new_size) { 4667 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4668 btrfs_release_path(path); 4669 break; 4670 } 4671 4672 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4673 btrfs_release_path(path); 4674 4675 /* 4676 * We may be relocating the only data chunk we have, 4677 * which could potentially end up with losing data's 4678 * raid profile, so lets allocate an empty one in 4679 * advance. 4680 */ 4681 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4682 if (ret < 0) { 4683 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4684 goto done; 4685 } 4686 4687 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4688 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4689 if (ret == -ENOSPC) { 4690 failed++; 4691 } else if (ret) { 4692 if (ret == -ETXTBSY) { 4693 btrfs_warn(fs_info, 4694 "could not shrink block group %llu due to active swapfile", 4695 chunk_offset); 4696 } 4697 goto done; 4698 } 4699 } while (key.offset-- > 0); 4700 4701 if (failed && !retried) { 4702 failed = 0; 4703 retried = true; 4704 goto again; 4705 } else if (failed && retried) { 4706 ret = -ENOSPC; 4707 goto done; 4708 } 4709 4710 /* Shrinking succeeded, else we would be at "done". */ 4711 trans = btrfs_start_transaction(root, 0); 4712 if (IS_ERR(trans)) { 4713 ret = PTR_ERR(trans); 4714 goto done; 4715 } 4716 4717 mutex_lock(&fs_info->chunk_mutex); 4718 /* Clear all state bits beyond the shrunk device size */ 4719 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4720 CHUNK_STATE_MASK); 4721 4722 btrfs_device_set_disk_total_bytes(device, new_size); 4723 if (list_empty(&device->post_commit_list)) 4724 list_add_tail(&device->post_commit_list, 4725 &trans->transaction->dev_update_list); 4726 4727 WARN_ON(diff > old_total); 4728 btrfs_set_super_total_bytes(super_copy, 4729 round_down(old_total - diff, fs_info->sectorsize)); 4730 mutex_unlock(&fs_info->chunk_mutex); 4731 4732 /* Now btrfs_update_device() will change the on-disk size. */ 4733 ret = btrfs_update_device(trans, device); 4734 if (ret < 0) { 4735 btrfs_abort_transaction(trans, ret); 4736 btrfs_end_transaction(trans); 4737 } else { 4738 ret = btrfs_commit_transaction(trans); 4739 } 4740 done: 4741 btrfs_free_path(path); 4742 if (ret) { 4743 mutex_lock(&fs_info->chunk_mutex); 4744 btrfs_device_set_total_bytes(device, old_size); 4745 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4746 device->fs_devices->total_rw_bytes += diff; 4747 atomic64_add(diff, &fs_info->free_chunk_space); 4748 mutex_unlock(&fs_info->chunk_mutex); 4749 } 4750 return ret; 4751 } 4752 4753 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4754 struct btrfs_key *key, 4755 struct btrfs_chunk *chunk, int item_size) 4756 { 4757 struct btrfs_super_block *super_copy = fs_info->super_copy; 4758 struct btrfs_disk_key disk_key; 4759 u32 array_size; 4760 u8 *ptr; 4761 4762 mutex_lock(&fs_info->chunk_mutex); 4763 array_size = btrfs_super_sys_array_size(super_copy); 4764 if (array_size + item_size + sizeof(disk_key) 4765 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4766 mutex_unlock(&fs_info->chunk_mutex); 4767 return -EFBIG; 4768 } 4769 4770 ptr = super_copy->sys_chunk_array + array_size; 4771 btrfs_cpu_key_to_disk(&disk_key, key); 4772 memcpy(ptr, &disk_key, sizeof(disk_key)); 4773 ptr += sizeof(disk_key); 4774 memcpy(ptr, chunk, item_size); 4775 item_size += sizeof(disk_key); 4776 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4777 mutex_unlock(&fs_info->chunk_mutex); 4778 4779 return 0; 4780 } 4781 4782 /* 4783 * sort the devices in descending order by max_avail, total_avail 4784 */ 4785 static int btrfs_cmp_device_info(const void *a, const void *b) 4786 { 4787 const struct btrfs_device_info *di_a = a; 4788 const struct btrfs_device_info *di_b = b; 4789 4790 if (di_a->max_avail > di_b->max_avail) 4791 return -1; 4792 if (di_a->max_avail < di_b->max_avail) 4793 return 1; 4794 if (di_a->total_avail > di_b->total_avail) 4795 return -1; 4796 if (di_a->total_avail < di_b->total_avail) 4797 return 1; 4798 return 0; 4799 } 4800 4801 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4802 { 4803 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4804 return; 4805 4806 btrfs_set_fs_incompat(info, RAID56); 4807 } 4808 4809 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 4810 { 4811 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 4812 return; 4813 4814 btrfs_set_fs_incompat(info, RAID1C34); 4815 } 4816 4817 /* 4818 * Structure used internally for __btrfs_alloc_chunk() function. 4819 * Wraps needed parameters. 4820 */ 4821 struct alloc_chunk_ctl { 4822 u64 start; 4823 u64 type; 4824 /* Total number of stripes to allocate */ 4825 int num_stripes; 4826 /* sub_stripes info for map */ 4827 int sub_stripes; 4828 /* Stripes per device */ 4829 int dev_stripes; 4830 /* Maximum number of devices to use */ 4831 int devs_max; 4832 /* Minimum number of devices to use */ 4833 int devs_min; 4834 /* ndevs has to be a multiple of this */ 4835 int devs_increment; 4836 /* Number of copies */ 4837 int ncopies; 4838 /* Number of stripes worth of bytes to store parity information */ 4839 int nparity; 4840 u64 max_stripe_size; 4841 u64 max_chunk_size; 4842 u64 dev_extent_min; 4843 u64 stripe_size; 4844 u64 chunk_size; 4845 int ndevs; 4846 }; 4847 4848 static void init_alloc_chunk_ctl_policy_regular( 4849 struct btrfs_fs_devices *fs_devices, 4850 struct alloc_chunk_ctl *ctl) 4851 { 4852 u64 type = ctl->type; 4853 4854 if (type & BTRFS_BLOCK_GROUP_DATA) { 4855 ctl->max_stripe_size = SZ_1G; 4856 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 4857 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4858 /* For larger filesystems, use larger metadata chunks */ 4859 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4860 ctl->max_stripe_size = SZ_1G; 4861 else 4862 ctl->max_stripe_size = SZ_256M; 4863 ctl->max_chunk_size = ctl->max_stripe_size; 4864 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4865 ctl->max_stripe_size = SZ_32M; 4866 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 4867 ctl->devs_max = min_t(int, ctl->devs_max, 4868 BTRFS_MAX_DEVS_SYS_CHUNK); 4869 } else { 4870 BUG(); 4871 } 4872 4873 /* We don't want a chunk larger than 10% of writable space */ 4874 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4875 ctl->max_chunk_size); 4876 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes; 4877 } 4878 4879 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 4880 struct alloc_chunk_ctl *ctl) 4881 { 4882 int index = btrfs_bg_flags_to_raid_index(ctl->type); 4883 4884 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 4885 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 4886 ctl->devs_max = btrfs_raid_array[index].devs_max; 4887 if (!ctl->devs_max) 4888 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 4889 ctl->devs_min = btrfs_raid_array[index].devs_min; 4890 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 4891 ctl->ncopies = btrfs_raid_array[index].ncopies; 4892 ctl->nparity = btrfs_raid_array[index].nparity; 4893 ctl->ndevs = 0; 4894 4895 switch (fs_devices->chunk_alloc_policy) { 4896 case BTRFS_CHUNK_ALLOC_REGULAR: 4897 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 4898 break; 4899 default: 4900 BUG(); 4901 } 4902 } 4903 4904 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 4905 struct alloc_chunk_ctl *ctl, 4906 struct btrfs_device_info *devices_info) 4907 { 4908 struct btrfs_fs_info *info = fs_devices->fs_info; 4909 struct btrfs_device *device; 4910 u64 total_avail; 4911 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 4912 int ret; 4913 int ndevs = 0; 4914 u64 max_avail; 4915 u64 dev_offset; 4916 4917 /* 4918 * in the first pass through the devices list, we gather information 4919 * about the available holes on each device. 4920 */ 4921 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 4922 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4923 WARN(1, KERN_ERR 4924 "BTRFS: read-only device in alloc_list\n"); 4925 continue; 4926 } 4927 4928 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 4929 &device->dev_state) || 4930 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4931 continue; 4932 4933 if (device->total_bytes > device->bytes_used) 4934 total_avail = device->total_bytes - device->bytes_used; 4935 else 4936 total_avail = 0; 4937 4938 /* If there is no space on this device, skip it. */ 4939 if (total_avail < ctl->dev_extent_min) 4940 continue; 4941 4942 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 4943 &max_avail); 4944 if (ret && ret != -ENOSPC) 4945 return ret; 4946 4947 if (ret == 0) 4948 max_avail = dev_extent_want; 4949 4950 if (max_avail < ctl->dev_extent_min) { 4951 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 4952 btrfs_debug(info, 4953 "%s: devid %llu has no free space, have=%llu want=%llu", 4954 __func__, device->devid, max_avail, 4955 ctl->dev_extent_min); 4956 continue; 4957 } 4958 4959 if (ndevs == fs_devices->rw_devices) { 4960 WARN(1, "%s: found more than %llu devices\n", 4961 __func__, fs_devices->rw_devices); 4962 break; 4963 } 4964 devices_info[ndevs].dev_offset = dev_offset; 4965 devices_info[ndevs].max_avail = max_avail; 4966 devices_info[ndevs].total_avail = total_avail; 4967 devices_info[ndevs].dev = device; 4968 ++ndevs; 4969 } 4970 ctl->ndevs = ndevs; 4971 4972 /* 4973 * now sort the devices by hole size / available space 4974 */ 4975 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4976 btrfs_cmp_device_info, NULL); 4977 4978 return 0; 4979 } 4980 4981 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 4982 struct btrfs_device_info *devices_info) 4983 { 4984 /* Number of stripes that count for block group size */ 4985 int data_stripes; 4986 4987 /* 4988 * The primary goal is to maximize the number of stripes, so use as 4989 * many devices as possible, even if the stripes are not maximum sized. 4990 * 4991 * The DUP profile stores more than one stripe per device, the 4992 * max_avail is the total size so we have to adjust. 4993 */ 4994 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 4995 ctl->dev_stripes); 4996 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 4997 4998 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 4999 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5000 5001 /* 5002 * Use the number of data stripes to figure out how big this chunk is 5003 * really going to be in terms of logical address space, and compare 5004 * that answer with the max chunk size. If it's higher, we try to 5005 * reduce stripe_size. 5006 */ 5007 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5008 /* 5009 * Reduce stripe_size, round it up to a 16MB boundary again and 5010 * then use it, unless it ends up being even bigger than the 5011 * previous value we had already. 5012 */ 5013 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5014 data_stripes), SZ_16M), 5015 ctl->stripe_size); 5016 } 5017 5018 /* Align to BTRFS_STRIPE_LEN */ 5019 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5020 ctl->chunk_size = ctl->stripe_size * data_stripes; 5021 5022 return 0; 5023 } 5024 5025 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5026 struct alloc_chunk_ctl *ctl, 5027 struct btrfs_device_info *devices_info) 5028 { 5029 struct btrfs_fs_info *info = fs_devices->fs_info; 5030 5031 /* 5032 * Round down to number of usable stripes, devs_increment can be any 5033 * number so we can't use round_down() that requires power of 2, while 5034 * rounddown is safe. 5035 */ 5036 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5037 5038 if (ctl->ndevs < ctl->devs_min) { 5039 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5040 btrfs_debug(info, 5041 "%s: not enough devices with free space: have=%d minimum required=%d", 5042 __func__, ctl->ndevs, ctl->devs_min); 5043 } 5044 return -ENOSPC; 5045 } 5046 5047 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5048 5049 switch (fs_devices->chunk_alloc_policy) { 5050 case BTRFS_CHUNK_ALLOC_REGULAR: 5051 return decide_stripe_size_regular(ctl, devices_info); 5052 default: 5053 BUG(); 5054 } 5055 } 5056 5057 static int create_chunk(struct btrfs_trans_handle *trans, 5058 struct alloc_chunk_ctl *ctl, 5059 struct btrfs_device_info *devices_info) 5060 { 5061 struct btrfs_fs_info *info = trans->fs_info; 5062 struct map_lookup *map = NULL; 5063 struct extent_map_tree *em_tree; 5064 struct extent_map *em; 5065 u64 start = ctl->start; 5066 u64 type = ctl->type; 5067 int ret; 5068 int i; 5069 int j; 5070 5071 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5072 if (!map) 5073 return -ENOMEM; 5074 map->num_stripes = ctl->num_stripes; 5075 5076 for (i = 0; i < ctl->ndevs; ++i) { 5077 for (j = 0; j < ctl->dev_stripes; ++j) { 5078 int s = i * ctl->dev_stripes + j; 5079 map->stripes[s].dev = devices_info[i].dev; 5080 map->stripes[s].physical = devices_info[i].dev_offset + 5081 j * ctl->stripe_size; 5082 } 5083 } 5084 map->stripe_len = BTRFS_STRIPE_LEN; 5085 map->io_align = BTRFS_STRIPE_LEN; 5086 map->io_width = BTRFS_STRIPE_LEN; 5087 map->type = type; 5088 map->sub_stripes = ctl->sub_stripes; 5089 5090 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5091 5092 em = alloc_extent_map(); 5093 if (!em) { 5094 kfree(map); 5095 return -ENOMEM; 5096 } 5097 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5098 em->map_lookup = map; 5099 em->start = start; 5100 em->len = ctl->chunk_size; 5101 em->block_start = 0; 5102 em->block_len = em->len; 5103 em->orig_block_len = ctl->stripe_size; 5104 5105 em_tree = &info->mapping_tree; 5106 write_lock(&em_tree->lock); 5107 ret = add_extent_mapping(em_tree, em, 0); 5108 if (ret) { 5109 write_unlock(&em_tree->lock); 5110 free_extent_map(em); 5111 return ret; 5112 } 5113 write_unlock(&em_tree->lock); 5114 5115 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size); 5116 if (ret) 5117 goto error_del_extent; 5118 5119 for (i = 0; i < map->num_stripes; i++) { 5120 struct btrfs_device *dev = map->stripes[i].dev; 5121 5122 btrfs_device_set_bytes_used(dev, 5123 dev->bytes_used + ctl->stripe_size); 5124 if (list_empty(&dev->post_commit_list)) 5125 list_add_tail(&dev->post_commit_list, 5126 &trans->transaction->dev_update_list); 5127 } 5128 5129 atomic64_sub(ctl->stripe_size * map->num_stripes, 5130 &info->free_chunk_space); 5131 5132 free_extent_map(em); 5133 check_raid56_incompat_flag(info, type); 5134 check_raid1c34_incompat_flag(info, type); 5135 5136 return 0; 5137 5138 error_del_extent: 5139 write_lock(&em_tree->lock); 5140 remove_extent_mapping(em_tree, em); 5141 write_unlock(&em_tree->lock); 5142 5143 /* One for our allocation */ 5144 free_extent_map(em); 5145 /* One for the tree reference */ 5146 free_extent_map(em); 5147 5148 return ret; 5149 } 5150 5151 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) 5152 { 5153 struct btrfs_fs_info *info = trans->fs_info; 5154 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5155 struct btrfs_device_info *devices_info = NULL; 5156 struct alloc_chunk_ctl ctl; 5157 int ret; 5158 5159 lockdep_assert_held(&info->chunk_mutex); 5160 5161 if (!alloc_profile_is_valid(type, 0)) { 5162 ASSERT(0); 5163 return -EINVAL; 5164 } 5165 5166 if (list_empty(&fs_devices->alloc_list)) { 5167 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5168 btrfs_debug(info, "%s: no writable device", __func__); 5169 return -ENOSPC; 5170 } 5171 5172 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5173 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5174 ASSERT(0); 5175 return -EINVAL; 5176 } 5177 5178 ctl.start = find_next_chunk(info); 5179 ctl.type = type; 5180 init_alloc_chunk_ctl(fs_devices, &ctl); 5181 5182 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5183 GFP_NOFS); 5184 if (!devices_info) 5185 return -ENOMEM; 5186 5187 ret = gather_device_info(fs_devices, &ctl, devices_info); 5188 if (ret < 0) 5189 goto out; 5190 5191 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5192 if (ret < 0) 5193 goto out; 5194 5195 ret = create_chunk(trans, &ctl, devices_info); 5196 5197 out: 5198 kfree(devices_info); 5199 return ret; 5200 } 5201 5202 /* 5203 * Chunk allocation falls into two parts. The first part does work 5204 * that makes the new allocated chunk usable, but does not do any operation 5205 * that modifies the chunk tree. The second part does the work that 5206 * requires modifying the chunk tree. This division is important for the 5207 * bootstrap process of adding storage to a seed btrfs. 5208 */ 5209 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 5210 u64 chunk_offset, u64 chunk_size) 5211 { 5212 struct btrfs_fs_info *fs_info = trans->fs_info; 5213 struct btrfs_root *extent_root = fs_info->extent_root; 5214 struct btrfs_root *chunk_root = fs_info->chunk_root; 5215 struct btrfs_key key; 5216 struct btrfs_device *device; 5217 struct btrfs_chunk *chunk; 5218 struct btrfs_stripe *stripe; 5219 struct extent_map *em; 5220 struct map_lookup *map; 5221 size_t item_size; 5222 u64 dev_offset; 5223 u64 stripe_size; 5224 int i = 0; 5225 int ret = 0; 5226 5227 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 5228 if (IS_ERR(em)) 5229 return PTR_ERR(em); 5230 5231 map = em->map_lookup; 5232 item_size = btrfs_chunk_item_size(map->num_stripes); 5233 stripe_size = em->orig_block_len; 5234 5235 chunk = kzalloc(item_size, GFP_NOFS); 5236 if (!chunk) { 5237 ret = -ENOMEM; 5238 goto out; 5239 } 5240 5241 /* 5242 * Take the device list mutex to prevent races with the final phase of 5243 * a device replace operation that replaces the device object associated 5244 * with the map's stripes, because the device object's id can change 5245 * at any time during that final phase of the device replace operation 5246 * (dev-replace.c:btrfs_dev_replace_finishing()). 5247 */ 5248 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5249 for (i = 0; i < map->num_stripes; i++) { 5250 device = map->stripes[i].dev; 5251 dev_offset = map->stripes[i].physical; 5252 5253 ret = btrfs_update_device(trans, device); 5254 if (ret) 5255 break; 5256 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5257 dev_offset, stripe_size); 5258 if (ret) 5259 break; 5260 } 5261 if (ret) { 5262 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5263 goto out; 5264 } 5265 5266 stripe = &chunk->stripe; 5267 for (i = 0; i < map->num_stripes; i++) { 5268 device = map->stripes[i].dev; 5269 dev_offset = map->stripes[i].physical; 5270 5271 btrfs_set_stack_stripe_devid(stripe, device->devid); 5272 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5273 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5274 stripe++; 5275 } 5276 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5277 5278 btrfs_set_stack_chunk_length(chunk, chunk_size); 5279 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5280 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5281 btrfs_set_stack_chunk_type(chunk, map->type); 5282 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5283 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5284 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5285 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5286 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5287 5288 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5289 key.type = BTRFS_CHUNK_ITEM_KEY; 5290 key.offset = chunk_offset; 5291 5292 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5293 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5294 /* 5295 * TODO: Cleanup of inserted chunk root in case of 5296 * failure. 5297 */ 5298 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5299 } 5300 5301 out: 5302 kfree(chunk); 5303 free_extent_map(em); 5304 return ret; 5305 } 5306 5307 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5308 { 5309 struct btrfs_fs_info *fs_info = trans->fs_info; 5310 u64 alloc_profile; 5311 int ret; 5312 5313 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5314 ret = btrfs_alloc_chunk(trans, alloc_profile); 5315 if (ret) 5316 return ret; 5317 5318 alloc_profile = btrfs_system_alloc_profile(fs_info); 5319 ret = btrfs_alloc_chunk(trans, alloc_profile); 5320 return ret; 5321 } 5322 5323 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5324 { 5325 const int index = btrfs_bg_flags_to_raid_index(map->type); 5326 5327 return btrfs_raid_array[index].tolerated_failures; 5328 } 5329 5330 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5331 { 5332 struct extent_map *em; 5333 struct map_lookup *map; 5334 int readonly = 0; 5335 int miss_ndevs = 0; 5336 int i; 5337 5338 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5339 if (IS_ERR(em)) 5340 return 1; 5341 5342 map = em->map_lookup; 5343 for (i = 0; i < map->num_stripes; i++) { 5344 if (test_bit(BTRFS_DEV_STATE_MISSING, 5345 &map->stripes[i].dev->dev_state)) { 5346 miss_ndevs++; 5347 continue; 5348 } 5349 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5350 &map->stripes[i].dev->dev_state)) { 5351 readonly = 1; 5352 goto end; 5353 } 5354 } 5355 5356 /* 5357 * If the number of missing devices is larger than max errors, 5358 * we can not write the data into that chunk successfully, so 5359 * set it readonly. 5360 */ 5361 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5362 readonly = 1; 5363 end: 5364 free_extent_map(em); 5365 return readonly; 5366 } 5367 5368 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5369 { 5370 struct extent_map *em; 5371 5372 while (1) { 5373 write_lock(&tree->lock); 5374 em = lookup_extent_mapping(tree, 0, (u64)-1); 5375 if (em) 5376 remove_extent_mapping(tree, em); 5377 write_unlock(&tree->lock); 5378 if (!em) 5379 break; 5380 /* once for us */ 5381 free_extent_map(em); 5382 /* once for the tree */ 5383 free_extent_map(em); 5384 } 5385 } 5386 5387 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5388 { 5389 struct extent_map *em; 5390 struct map_lookup *map; 5391 int ret; 5392 5393 em = btrfs_get_chunk_map(fs_info, logical, len); 5394 if (IS_ERR(em)) 5395 /* 5396 * We could return errors for these cases, but that could get 5397 * ugly and we'd probably do the same thing which is just not do 5398 * anything else and exit, so return 1 so the callers don't try 5399 * to use other copies. 5400 */ 5401 return 1; 5402 5403 map = em->map_lookup; 5404 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5405 ret = map->num_stripes; 5406 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5407 ret = map->sub_stripes; 5408 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5409 ret = 2; 5410 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5411 /* 5412 * There could be two corrupted data stripes, we need 5413 * to loop retry in order to rebuild the correct data. 5414 * 5415 * Fail a stripe at a time on every retry except the 5416 * stripe under reconstruction. 5417 */ 5418 ret = map->num_stripes; 5419 else 5420 ret = 1; 5421 free_extent_map(em); 5422 5423 down_read(&fs_info->dev_replace.rwsem); 5424 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5425 fs_info->dev_replace.tgtdev) 5426 ret++; 5427 up_read(&fs_info->dev_replace.rwsem); 5428 5429 return ret; 5430 } 5431 5432 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5433 u64 logical) 5434 { 5435 struct extent_map *em; 5436 struct map_lookup *map; 5437 unsigned long len = fs_info->sectorsize; 5438 5439 em = btrfs_get_chunk_map(fs_info, logical, len); 5440 5441 if (!WARN_ON(IS_ERR(em))) { 5442 map = em->map_lookup; 5443 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5444 len = map->stripe_len * nr_data_stripes(map); 5445 free_extent_map(em); 5446 } 5447 return len; 5448 } 5449 5450 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5451 { 5452 struct extent_map *em; 5453 struct map_lookup *map; 5454 int ret = 0; 5455 5456 em = btrfs_get_chunk_map(fs_info, logical, len); 5457 5458 if(!WARN_ON(IS_ERR(em))) { 5459 map = em->map_lookup; 5460 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5461 ret = 1; 5462 free_extent_map(em); 5463 } 5464 return ret; 5465 } 5466 5467 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5468 struct map_lookup *map, int first, 5469 int dev_replace_is_ongoing) 5470 { 5471 int i; 5472 int num_stripes; 5473 int preferred_mirror; 5474 int tolerance; 5475 struct btrfs_device *srcdev; 5476 5477 ASSERT((map->type & 5478 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5479 5480 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5481 num_stripes = map->sub_stripes; 5482 else 5483 num_stripes = map->num_stripes; 5484 5485 preferred_mirror = first + current->pid % num_stripes; 5486 5487 if (dev_replace_is_ongoing && 5488 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5489 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5490 srcdev = fs_info->dev_replace.srcdev; 5491 else 5492 srcdev = NULL; 5493 5494 /* 5495 * try to avoid the drive that is the source drive for a 5496 * dev-replace procedure, only choose it if no other non-missing 5497 * mirror is available 5498 */ 5499 for (tolerance = 0; tolerance < 2; tolerance++) { 5500 if (map->stripes[preferred_mirror].dev->bdev && 5501 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5502 return preferred_mirror; 5503 for (i = first; i < first + num_stripes; i++) { 5504 if (map->stripes[i].dev->bdev && 5505 (tolerance || map->stripes[i].dev != srcdev)) 5506 return i; 5507 } 5508 } 5509 5510 /* we couldn't find one that doesn't fail. Just return something 5511 * and the io error handling code will clean up eventually 5512 */ 5513 return preferred_mirror; 5514 } 5515 5516 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5517 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5518 { 5519 int i; 5520 int again = 1; 5521 5522 while (again) { 5523 again = 0; 5524 for (i = 0; i < num_stripes - 1; i++) { 5525 /* Swap if parity is on a smaller index */ 5526 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) { 5527 swap(bbio->stripes[i], bbio->stripes[i + 1]); 5528 swap(bbio->raid_map[i], bbio->raid_map[i + 1]); 5529 again = 1; 5530 } 5531 } 5532 } 5533 } 5534 5535 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5536 { 5537 struct btrfs_bio *bbio = kzalloc( 5538 /* the size of the btrfs_bio */ 5539 sizeof(struct btrfs_bio) + 5540 /* plus the variable array for the stripes */ 5541 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5542 /* plus the variable array for the tgt dev */ 5543 sizeof(int) * (real_stripes) + 5544 /* 5545 * plus the raid_map, which includes both the tgt dev 5546 * and the stripes 5547 */ 5548 sizeof(u64) * (total_stripes), 5549 GFP_NOFS|__GFP_NOFAIL); 5550 5551 atomic_set(&bbio->error, 0); 5552 refcount_set(&bbio->refs, 1); 5553 5554 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes); 5555 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes); 5556 5557 return bbio; 5558 } 5559 5560 void btrfs_get_bbio(struct btrfs_bio *bbio) 5561 { 5562 WARN_ON(!refcount_read(&bbio->refs)); 5563 refcount_inc(&bbio->refs); 5564 } 5565 5566 void btrfs_put_bbio(struct btrfs_bio *bbio) 5567 { 5568 if (!bbio) 5569 return; 5570 if (refcount_dec_and_test(&bbio->refs)) 5571 kfree(bbio); 5572 } 5573 5574 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5575 /* 5576 * Please note that, discard won't be sent to target device of device 5577 * replace. 5578 */ 5579 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5580 u64 logical, u64 *length_ret, 5581 struct btrfs_bio **bbio_ret) 5582 { 5583 struct extent_map *em; 5584 struct map_lookup *map; 5585 struct btrfs_bio *bbio; 5586 u64 length = *length_ret; 5587 u64 offset; 5588 u64 stripe_nr; 5589 u64 stripe_nr_end; 5590 u64 stripe_end_offset; 5591 u64 stripe_cnt; 5592 u64 stripe_len; 5593 u64 stripe_offset; 5594 u64 num_stripes; 5595 u32 stripe_index; 5596 u32 factor = 0; 5597 u32 sub_stripes = 0; 5598 u64 stripes_per_dev = 0; 5599 u32 remaining_stripes = 0; 5600 u32 last_stripe = 0; 5601 int ret = 0; 5602 int i; 5603 5604 /* discard always return a bbio */ 5605 ASSERT(bbio_ret); 5606 5607 em = btrfs_get_chunk_map(fs_info, logical, length); 5608 if (IS_ERR(em)) 5609 return PTR_ERR(em); 5610 5611 map = em->map_lookup; 5612 /* we don't discard raid56 yet */ 5613 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5614 ret = -EOPNOTSUPP; 5615 goto out; 5616 } 5617 5618 offset = logical - em->start; 5619 length = min_t(u64, em->start + em->len - logical, length); 5620 *length_ret = length; 5621 5622 stripe_len = map->stripe_len; 5623 /* 5624 * stripe_nr counts the total number of stripes we have to stride 5625 * to get to this block 5626 */ 5627 stripe_nr = div64_u64(offset, stripe_len); 5628 5629 /* stripe_offset is the offset of this block in its stripe */ 5630 stripe_offset = offset - stripe_nr * stripe_len; 5631 5632 stripe_nr_end = round_up(offset + length, map->stripe_len); 5633 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5634 stripe_cnt = stripe_nr_end - stripe_nr; 5635 stripe_end_offset = stripe_nr_end * map->stripe_len - 5636 (offset + length); 5637 /* 5638 * after this, stripe_nr is the number of stripes on this 5639 * device we have to walk to find the data, and stripe_index is 5640 * the number of our device in the stripe array 5641 */ 5642 num_stripes = 1; 5643 stripe_index = 0; 5644 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5645 BTRFS_BLOCK_GROUP_RAID10)) { 5646 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5647 sub_stripes = 1; 5648 else 5649 sub_stripes = map->sub_stripes; 5650 5651 factor = map->num_stripes / sub_stripes; 5652 num_stripes = min_t(u64, map->num_stripes, 5653 sub_stripes * stripe_cnt); 5654 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5655 stripe_index *= sub_stripes; 5656 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5657 &remaining_stripes); 5658 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5659 last_stripe *= sub_stripes; 5660 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 5661 BTRFS_BLOCK_GROUP_DUP)) { 5662 num_stripes = map->num_stripes; 5663 } else { 5664 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5665 &stripe_index); 5666 } 5667 5668 bbio = alloc_btrfs_bio(num_stripes, 0); 5669 if (!bbio) { 5670 ret = -ENOMEM; 5671 goto out; 5672 } 5673 5674 for (i = 0; i < num_stripes; i++) { 5675 bbio->stripes[i].physical = 5676 map->stripes[stripe_index].physical + 5677 stripe_offset + stripe_nr * map->stripe_len; 5678 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5679 5680 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5681 BTRFS_BLOCK_GROUP_RAID10)) { 5682 bbio->stripes[i].length = stripes_per_dev * 5683 map->stripe_len; 5684 5685 if (i / sub_stripes < remaining_stripes) 5686 bbio->stripes[i].length += 5687 map->stripe_len; 5688 5689 /* 5690 * Special for the first stripe and 5691 * the last stripe: 5692 * 5693 * |-------|...|-------| 5694 * |----------| 5695 * off end_off 5696 */ 5697 if (i < sub_stripes) 5698 bbio->stripes[i].length -= 5699 stripe_offset; 5700 5701 if (stripe_index >= last_stripe && 5702 stripe_index <= (last_stripe + 5703 sub_stripes - 1)) 5704 bbio->stripes[i].length -= 5705 stripe_end_offset; 5706 5707 if (i == sub_stripes - 1) 5708 stripe_offset = 0; 5709 } else { 5710 bbio->stripes[i].length = length; 5711 } 5712 5713 stripe_index++; 5714 if (stripe_index == map->num_stripes) { 5715 stripe_index = 0; 5716 stripe_nr++; 5717 } 5718 } 5719 5720 *bbio_ret = bbio; 5721 bbio->map_type = map->type; 5722 bbio->num_stripes = num_stripes; 5723 out: 5724 free_extent_map(em); 5725 return ret; 5726 } 5727 5728 /* 5729 * In dev-replace case, for repair case (that's the only case where the mirror 5730 * is selected explicitly when calling btrfs_map_block), blocks left of the 5731 * left cursor can also be read from the target drive. 5732 * 5733 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5734 * array of stripes. 5735 * For READ, it also needs to be supported using the same mirror number. 5736 * 5737 * If the requested block is not left of the left cursor, EIO is returned. This 5738 * can happen because btrfs_num_copies() returns one more in the dev-replace 5739 * case. 5740 */ 5741 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5742 u64 logical, u64 length, 5743 u64 srcdev_devid, int *mirror_num, 5744 u64 *physical) 5745 { 5746 struct btrfs_bio *bbio = NULL; 5747 int num_stripes; 5748 int index_srcdev = 0; 5749 int found = 0; 5750 u64 physical_of_found = 0; 5751 int i; 5752 int ret = 0; 5753 5754 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5755 logical, &length, &bbio, 0, 0); 5756 if (ret) { 5757 ASSERT(bbio == NULL); 5758 return ret; 5759 } 5760 5761 num_stripes = bbio->num_stripes; 5762 if (*mirror_num > num_stripes) { 5763 /* 5764 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5765 * that means that the requested area is not left of the left 5766 * cursor 5767 */ 5768 btrfs_put_bbio(bbio); 5769 return -EIO; 5770 } 5771 5772 /* 5773 * process the rest of the function using the mirror_num of the source 5774 * drive. Therefore look it up first. At the end, patch the device 5775 * pointer to the one of the target drive. 5776 */ 5777 for (i = 0; i < num_stripes; i++) { 5778 if (bbio->stripes[i].dev->devid != srcdev_devid) 5779 continue; 5780 5781 /* 5782 * In case of DUP, in order to keep it simple, only add the 5783 * mirror with the lowest physical address 5784 */ 5785 if (found && 5786 physical_of_found <= bbio->stripes[i].physical) 5787 continue; 5788 5789 index_srcdev = i; 5790 found = 1; 5791 physical_of_found = bbio->stripes[i].physical; 5792 } 5793 5794 btrfs_put_bbio(bbio); 5795 5796 ASSERT(found); 5797 if (!found) 5798 return -EIO; 5799 5800 *mirror_num = index_srcdev + 1; 5801 *physical = physical_of_found; 5802 return ret; 5803 } 5804 5805 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5806 struct btrfs_bio **bbio_ret, 5807 struct btrfs_dev_replace *dev_replace, 5808 int *num_stripes_ret, int *max_errors_ret) 5809 { 5810 struct btrfs_bio *bbio = *bbio_ret; 5811 u64 srcdev_devid = dev_replace->srcdev->devid; 5812 int tgtdev_indexes = 0; 5813 int num_stripes = *num_stripes_ret; 5814 int max_errors = *max_errors_ret; 5815 int i; 5816 5817 if (op == BTRFS_MAP_WRITE) { 5818 int index_where_to_add; 5819 5820 /* 5821 * duplicate the write operations while the dev replace 5822 * procedure is running. Since the copying of the old disk to 5823 * the new disk takes place at run time while the filesystem is 5824 * mounted writable, the regular write operations to the old 5825 * disk have to be duplicated to go to the new disk as well. 5826 * 5827 * Note that device->missing is handled by the caller, and that 5828 * the write to the old disk is already set up in the stripes 5829 * array. 5830 */ 5831 index_where_to_add = num_stripes; 5832 for (i = 0; i < num_stripes; i++) { 5833 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5834 /* write to new disk, too */ 5835 struct btrfs_bio_stripe *new = 5836 bbio->stripes + index_where_to_add; 5837 struct btrfs_bio_stripe *old = 5838 bbio->stripes + i; 5839 5840 new->physical = old->physical; 5841 new->length = old->length; 5842 new->dev = dev_replace->tgtdev; 5843 bbio->tgtdev_map[i] = index_where_to_add; 5844 index_where_to_add++; 5845 max_errors++; 5846 tgtdev_indexes++; 5847 } 5848 } 5849 num_stripes = index_where_to_add; 5850 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5851 int index_srcdev = 0; 5852 int found = 0; 5853 u64 physical_of_found = 0; 5854 5855 /* 5856 * During the dev-replace procedure, the target drive can also 5857 * be used to read data in case it is needed to repair a corrupt 5858 * block elsewhere. This is possible if the requested area is 5859 * left of the left cursor. In this area, the target drive is a 5860 * full copy of the source drive. 5861 */ 5862 for (i = 0; i < num_stripes; i++) { 5863 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5864 /* 5865 * In case of DUP, in order to keep it simple, 5866 * only add the mirror with the lowest physical 5867 * address 5868 */ 5869 if (found && 5870 physical_of_found <= 5871 bbio->stripes[i].physical) 5872 continue; 5873 index_srcdev = i; 5874 found = 1; 5875 physical_of_found = bbio->stripes[i].physical; 5876 } 5877 } 5878 if (found) { 5879 struct btrfs_bio_stripe *tgtdev_stripe = 5880 bbio->stripes + num_stripes; 5881 5882 tgtdev_stripe->physical = physical_of_found; 5883 tgtdev_stripe->length = 5884 bbio->stripes[index_srcdev].length; 5885 tgtdev_stripe->dev = dev_replace->tgtdev; 5886 bbio->tgtdev_map[index_srcdev] = num_stripes; 5887 5888 tgtdev_indexes++; 5889 num_stripes++; 5890 } 5891 } 5892 5893 *num_stripes_ret = num_stripes; 5894 *max_errors_ret = max_errors; 5895 bbio->num_tgtdevs = tgtdev_indexes; 5896 *bbio_ret = bbio; 5897 } 5898 5899 static bool need_full_stripe(enum btrfs_map_op op) 5900 { 5901 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5902 } 5903 5904 /* 5905 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len) 5906 * tuple. This information is used to calculate how big a 5907 * particular bio can get before it straddles a stripe. 5908 * 5909 * @fs_info - the filesystem 5910 * @logical - address that we want to figure out the geometry of 5911 * @len - the length of IO we are going to perform, starting at @logical 5912 * @op - type of operation - write or read 5913 * @io_geom - pointer used to return values 5914 * 5915 * Returns < 0 in case a chunk for the given logical address cannot be found, 5916 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 5917 */ 5918 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5919 u64 logical, u64 len, struct btrfs_io_geometry *io_geom) 5920 { 5921 struct extent_map *em; 5922 struct map_lookup *map; 5923 u64 offset; 5924 u64 stripe_offset; 5925 u64 stripe_nr; 5926 u64 stripe_len; 5927 u64 raid56_full_stripe_start = (u64)-1; 5928 int data_stripes; 5929 int ret = 0; 5930 5931 ASSERT(op != BTRFS_MAP_DISCARD); 5932 5933 em = btrfs_get_chunk_map(fs_info, logical, len); 5934 if (IS_ERR(em)) 5935 return PTR_ERR(em); 5936 5937 map = em->map_lookup; 5938 /* Offset of this logical address in the chunk */ 5939 offset = logical - em->start; 5940 /* Len of a stripe in a chunk */ 5941 stripe_len = map->stripe_len; 5942 /* Stripe wher this block falls in */ 5943 stripe_nr = div64_u64(offset, stripe_len); 5944 /* Offset of stripe in the chunk */ 5945 stripe_offset = stripe_nr * stripe_len; 5946 if (offset < stripe_offset) { 5947 btrfs_crit(fs_info, 5948 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 5949 stripe_offset, offset, em->start, logical, stripe_len); 5950 ret = -EINVAL; 5951 goto out; 5952 } 5953 5954 /* stripe_offset is the offset of this block in its stripe */ 5955 stripe_offset = offset - stripe_offset; 5956 data_stripes = nr_data_stripes(map); 5957 5958 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5959 u64 max_len = stripe_len - stripe_offset; 5960 5961 /* 5962 * In case of raid56, we need to know the stripe aligned start 5963 */ 5964 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5965 unsigned long full_stripe_len = stripe_len * data_stripes; 5966 raid56_full_stripe_start = offset; 5967 5968 /* 5969 * Allow a write of a full stripe, but make sure we 5970 * don't allow straddling of stripes 5971 */ 5972 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5973 full_stripe_len); 5974 raid56_full_stripe_start *= full_stripe_len; 5975 5976 /* 5977 * For writes to RAID[56], allow a full stripeset across 5978 * all disks. For other RAID types and for RAID[56] 5979 * reads, just allow a single stripe (on a single disk). 5980 */ 5981 if (op == BTRFS_MAP_WRITE) { 5982 max_len = stripe_len * data_stripes - 5983 (offset - raid56_full_stripe_start); 5984 } 5985 } 5986 len = min_t(u64, em->len - offset, max_len); 5987 } else { 5988 len = em->len - offset; 5989 } 5990 5991 io_geom->len = len; 5992 io_geom->offset = offset; 5993 io_geom->stripe_len = stripe_len; 5994 io_geom->stripe_nr = stripe_nr; 5995 io_geom->stripe_offset = stripe_offset; 5996 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 5997 5998 out: 5999 /* once for us */ 6000 free_extent_map(em); 6001 return ret; 6002 } 6003 6004 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 6005 enum btrfs_map_op op, 6006 u64 logical, u64 *length, 6007 struct btrfs_bio **bbio_ret, 6008 int mirror_num, int need_raid_map) 6009 { 6010 struct extent_map *em; 6011 struct map_lookup *map; 6012 u64 stripe_offset; 6013 u64 stripe_nr; 6014 u64 stripe_len; 6015 u32 stripe_index; 6016 int data_stripes; 6017 int i; 6018 int ret = 0; 6019 int num_stripes; 6020 int max_errors = 0; 6021 int tgtdev_indexes = 0; 6022 struct btrfs_bio *bbio = NULL; 6023 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6024 int dev_replace_is_ongoing = 0; 6025 int num_alloc_stripes; 6026 int patch_the_first_stripe_for_dev_replace = 0; 6027 u64 physical_to_patch_in_first_stripe = 0; 6028 u64 raid56_full_stripe_start = (u64)-1; 6029 struct btrfs_io_geometry geom; 6030 6031 ASSERT(bbio_ret); 6032 ASSERT(op != BTRFS_MAP_DISCARD); 6033 6034 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom); 6035 if (ret < 0) 6036 return ret; 6037 6038 em = btrfs_get_chunk_map(fs_info, logical, *length); 6039 ASSERT(!IS_ERR(em)); 6040 map = em->map_lookup; 6041 6042 *length = geom.len; 6043 stripe_len = geom.stripe_len; 6044 stripe_nr = geom.stripe_nr; 6045 stripe_offset = geom.stripe_offset; 6046 raid56_full_stripe_start = geom.raid56_stripe_offset; 6047 data_stripes = nr_data_stripes(map); 6048 6049 down_read(&dev_replace->rwsem); 6050 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6051 /* 6052 * Hold the semaphore for read during the whole operation, write is 6053 * requested at commit time but must wait. 6054 */ 6055 if (!dev_replace_is_ongoing) 6056 up_read(&dev_replace->rwsem); 6057 6058 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6059 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6060 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6061 dev_replace->srcdev->devid, 6062 &mirror_num, 6063 &physical_to_patch_in_first_stripe); 6064 if (ret) 6065 goto out; 6066 else 6067 patch_the_first_stripe_for_dev_replace = 1; 6068 } else if (mirror_num > map->num_stripes) { 6069 mirror_num = 0; 6070 } 6071 6072 num_stripes = 1; 6073 stripe_index = 0; 6074 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6075 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6076 &stripe_index); 6077 if (!need_full_stripe(op)) 6078 mirror_num = 1; 6079 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6080 if (need_full_stripe(op)) 6081 num_stripes = map->num_stripes; 6082 else if (mirror_num) 6083 stripe_index = mirror_num - 1; 6084 else { 6085 stripe_index = find_live_mirror(fs_info, map, 0, 6086 dev_replace_is_ongoing); 6087 mirror_num = stripe_index + 1; 6088 } 6089 6090 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6091 if (need_full_stripe(op)) { 6092 num_stripes = map->num_stripes; 6093 } else if (mirror_num) { 6094 stripe_index = mirror_num - 1; 6095 } else { 6096 mirror_num = 1; 6097 } 6098 6099 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6100 u32 factor = map->num_stripes / map->sub_stripes; 6101 6102 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6103 stripe_index *= map->sub_stripes; 6104 6105 if (need_full_stripe(op)) 6106 num_stripes = map->sub_stripes; 6107 else if (mirror_num) 6108 stripe_index += mirror_num - 1; 6109 else { 6110 int old_stripe_index = stripe_index; 6111 stripe_index = find_live_mirror(fs_info, map, 6112 stripe_index, 6113 dev_replace_is_ongoing); 6114 mirror_num = stripe_index - old_stripe_index + 1; 6115 } 6116 6117 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6118 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6119 /* push stripe_nr back to the start of the full stripe */ 6120 stripe_nr = div64_u64(raid56_full_stripe_start, 6121 stripe_len * data_stripes); 6122 6123 /* RAID[56] write or recovery. Return all stripes */ 6124 num_stripes = map->num_stripes; 6125 max_errors = nr_parity_stripes(map); 6126 6127 *length = map->stripe_len; 6128 stripe_index = 0; 6129 stripe_offset = 0; 6130 } else { 6131 /* 6132 * Mirror #0 or #1 means the original data block. 6133 * Mirror #2 is RAID5 parity block. 6134 * Mirror #3 is RAID6 Q block. 6135 */ 6136 stripe_nr = div_u64_rem(stripe_nr, 6137 data_stripes, &stripe_index); 6138 if (mirror_num > 1) 6139 stripe_index = data_stripes + mirror_num - 2; 6140 6141 /* We distribute the parity blocks across stripes */ 6142 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6143 &stripe_index); 6144 if (!need_full_stripe(op) && mirror_num <= 1) 6145 mirror_num = 1; 6146 } 6147 } else { 6148 /* 6149 * after this, stripe_nr is the number of stripes on this 6150 * device we have to walk to find the data, and stripe_index is 6151 * the number of our device in the stripe array 6152 */ 6153 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6154 &stripe_index); 6155 mirror_num = stripe_index + 1; 6156 } 6157 if (stripe_index >= map->num_stripes) { 6158 btrfs_crit(fs_info, 6159 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6160 stripe_index, map->num_stripes); 6161 ret = -EINVAL; 6162 goto out; 6163 } 6164 6165 num_alloc_stripes = num_stripes; 6166 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6167 if (op == BTRFS_MAP_WRITE) 6168 num_alloc_stripes <<= 1; 6169 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6170 num_alloc_stripes++; 6171 tgtdev_indexes = num_stripes; 6172 } 6173 6174 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 6175 if (!bbio) { 6176 ret = -ENOMEM; 6177 goto out; 6178 } 6179 6180 for (i = 0; i < num_stripes; i++) { 6181 bbio->stripes[i].physical = map->stripes[stripe_index].physical + 6182 stripe_offset + stripe_nr * map->stripe_len; 6183 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 6184 stripe_index++; 6185 } 6186 6187 /* build raid_map */ 6188 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6189 (need_full_stripe(op) || mirror_num > 1)) { 6190 u64 tmp; 6191 unsigned rot; 6192 6193 /* Work out the disk rotation on this stripe-set */ 6194 div_u64_rem(stripe_nr, num_stripes, &rot); 6195 6196 /* Fill in the logical address of each stripe */ 6197 tmp = stripe_nr * data_stripes; 6198 for (i = 0; i < data_stripes; i++) 6199 bbio->raid_map[(i+rot) % num_stripes] = 6200 em->start + (tmp + i) * map->stripe_len; 6201 6202 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 6203 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6204 bbio->raid_map[(i+rot+1) % num_stripes] = 6205 RAID6_Q_STRIPE; 6206 6207 sort_parity_stripes(bbio, num_stripes); 6208 } 6209 6210 if (need_full_stripe(op)) 6211 max_errors = btrfs_chunk_max_errors(map); 6212 6213 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6214 need_full_stripe(op)) { 6215 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 6216 &max_errors); 6217 } 6218 6219 *bbio_ret = bbio; 6220 bbio->map_type = map->type; 6221 bbio->num_stripes = num_stripes; 6222 bbio->max_errors = max_errors; 6223 bbio->mirror_num = mirror_num; 6224 6225 /* 6226 * this is the case that REQ_READ && dev_replace_is_ongoing && 6227 * mirror_num == num_stripes + 1 && dev_replace target drive is 6228 * available as a mirror 6229 */ 6230 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6231 WARN_ON(num_stripes > 1); 6232 bbio->stripes[0].dev = dev_replace->tgtdev; 6233 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 6234 bbio->mirror_num = map->num_stripes + 1; 6235 } 6236 out: 6237 if (dev_replace_is_ongoing) { 6238 lockdep_assert_held(&dev_replace->rwsem); 6239 /* Unlock and let waiting writers proceed */ 6240 up_read(&dev_replace->rwsem); 6241 } 6242 free_extent_map(em); 6243 return ret; 6244 } 6245 6246 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6247 u64 logical, u64 *length, 6248 struct btrfs_bio **bbio_ret, int mirror_num) 6249 { 6250 if (op == BTRFS_MAP_DISCARD) 6251 return __btrfs_map_block_for_discard(fs_info, logical, 6252 length, bbio_ret); 6253 6254 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 6255 mirror_num, 0); 6256 } 6257 6258 /* For Scrub/replace */ 6259 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6260 u64 logical, u64 *length, 6261 struct btrfs_bio **bbio_ret) 6262 { 6263 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6264 } 6265 6266 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6267 { 6268 bio->bi_private = bbio->private; 6269 bio->bi_end_io = bbio->end_io; 6270 bio_endio(bio); 6271 6272 btrfs_put_bbio(bbio); 6273 } 6274 6275 static void btrfs_end_bio(struct bio *bio) 6276 { 6277 struct btrfs_bio *bbio = bio->bi_private; 6278 int is_orig_bio = 0; 6279 6280 if (bio->bi_status) { 6281 atomic_inc(&bbio->error); 6282 if (bio->bi_status == BLK_STS_IOERR || 6283 bio->bi_status == BLK_STS_TARGET) { 6284 struct btrfs_device *dev = btrfs_io_bio(bio)->device; 6285 6286 ASSERT(dev->bdev); 6287 if (bio_op(bio) == REQ_OP_WRITE) 6288 btrfs_dev_stat_inc_and_print(dev, 6289 BTRFS_DEV_STAT_WRITE_ERRS); 6290 else if (!(bio->bi_opf & REQ_RAHEAD)) 6291 btrfs_dev_stat_inc_and_print(dev, 6292 BTRFS_DEV_STAT_READ_ERRS); 6293 if (bio->bi_opf & REQ_PREFLUSH) 6294 btrfs_dev_stat_inc_and_print(dev, 6295 BTRFS_DEV_STAT_FLUSH_ERRS); 6296 } 6297 } 6298 6299 if (bio == bbio->orig_bio) 6300 is_orig_bio = 1; 6301 6302 btrfs_bio_counter_dec(bbio->fs_info); 6303 6304 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6305 if (!is_orig_bio) { 6306 bio_put(bio); 6307 bio = bbio->orig_bio; 6308 } 6309 6310 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6311 /* only send an error to the higher layers if it is 6312 * beyond the tolerance of the btrfs bio 6313 */ 6314 if (atomic_read(&bbio->error) > bbio->max_errors) { 6315 bio->bi_status = BLK_STS_IOERR; 6316 } else { 6317 /* 6318 * this bio is actually up to date, we didn't 6319 * go over the max number of errors 6320 */ 6321 bio->bi_status = BLK_STS_OK; 6322 } 6323 6324 btrfs_end_bbio(bbio, bio); 6325 } else if (!is_orig_bio) { 6326 bio_put(bio); 6327 } 6328 } 6329 6330 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6331 u64 physical, struct btrfs_device *dev) 6332 { 6333 struct btrfs_fs_info *fs_info = bbio->fs_info; 6334 6335 bio->bi_private = bbio; 6336 btrfs_io_bio(bio)->device = dev; 6337 bio->bi_end_io = btrfs_end_bio; 6338 bio->bi_iter.bi_sector = physical >> 9; 6339 btrfs_debug_in_rcu(fs_info, 6340 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6341 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector, 6342 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name), 6343 dev->devid, bio->bi_iter.bi_size); 6344 bio_set_dev(bio, dev->bdev); 6345 6346 btrfs_bio_counter_inc_noblocked(fs_info); 6347 6348 btrfsic_submit_bio(bio); 6349 } 6350 6351 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6352 { 6353 atomic_inc(&bbio->error); 6354 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6355 /* Should be the original bio. */ 6356 WARN_ON(bio != bbio->orig_bio); 6357 6358 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6359 bio->bi_iter.bi_sector = logical >> 9; 6360 if (atomic_read(&bbio->error) > bbio->max_errors) 6361 bio->bi_status = BLK_STS_IOERR; 6362 else 6363 bio->bi_status = BLK_STS_OK; 6364 btrfs_end_bbio(bbio, bio); 6365 } 6366 } 6367 6368 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6369 int mirror_num) 6370 { 6371 struct btrfs_device *dev; 6372 struct bio *first_bio = bio; 6373 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6374 u64 length = 0; 6375 u64 map_length; 6376 int ret; 6377 int dev_nr; 6378 int total_devs; 6379 struct btrfs_bio *bbio = NULL; 6380 6381 length = bio->bi_iter.bi_size; 6382 map_length = length; 6383 6384 btrfs_bio_counter_inc_blocked(fs_info); 6385 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6386 &map_length, &bbio, mirror_num, 1); 6387 if (ret) { 6388 btrfs_bio_counter_dec(fs_info); 6389 return errno_to_blk_status(ret); 6390 } 6391 6392 total_devs = bbio->num_stripes; 6393 bbio->orig_bio = first_bio; 6394 bbio->private = first_bio->bi_private; 6395 bbio->end_io = first_bio->bi_end_io; 6396 bbio->fs_info = fs_info; 6397 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6398 6399 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6400 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6401 /* In this case, map_length has been set to the length of 6402 a single stripe; not the whole write */ 6403 if (bio_op(bio) == REQ_OP_WRITE) { 6404 ret = raid56_parity_write(fs_info, bio, bbio, 6405 map_length); 6406 } else { 6407 ret = raid56_parity_recover(fs_info, bio, bbio, 6408 map_length, mirror_num, 1); 6409 } 6410 6411 btrfs_bio_counter_dec(fs_info); 6412 return errno_to_blk_status(ret); 6413 } 6414 6415 if (map_length < length) { 6416 btrfs_crit(fs_info, 6417 "mapping failed logical %llu bio len %llu len %llu", 6418 logical, length, map_length); 6419 BUG(); 6420 } 6421 6422 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6423 dev = bbio->stripes[dev_nr].dev; 6424 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6425 &dev->dev_state) || 6426 (bio_op(first_bio) == REQ_OP_WRITE && 6427 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6428 bbio_error(bbio, first_bio, logical); 6429 continue; 6430 } 6431 6432 if (dev_nr < total_devs - 1) 6433 bio = btrfs_bio_clone(first_bio); 6434 else 6435 bio = first_bio; 6436 6437 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev); 6438 } 6439 btrfs_bio_counter_dec(fs_info); 6440 return BLK_STS_OK; 6441 } 6442 6443 /* 6444 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6445 * return NULL. 6446 * 6447 * If devid and uuid are both specified, the match must be exact, otherwise 6448 * only devid is used. 6449 * 6450 * If @seed is true, traverse through the seed devices. 6451 */ 6452 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 6453 u64 devid, u8 *uuid, u8 *fsid, 6454 bool seed) 6455 { 6456 struct btrfs_device *device; 6457 struct btrfs_fs_devices *seed_devs; 6458 6459 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6460 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6461 if (device->devid == devid && 6462 (!uuid || memcmp(device->uuid, uuid, 6463 BTRFS_UUID_SIZE) == 0)) 6464 return device; 6465 } 6466 } 6467 6468 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6469 if (!fsid || 6470 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6471 list_for_each_entry(device, &seed_devs->devices, 6472 dev_list) { 6473 if (device->devid == devid && 6474 (!uuid || memcmp(device->uuid, uuid, 6475 BTRFS_UUID_SIZE) == 0)) 6476 return device; 6477 } 6478 } 6479 } 6480 6481 return NULL; 6482 } 6483 6484 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6485 u64 devid, u8 *dev_uuid) 6486 { 6487 struct btrfs_device *device; 6488 unsigned int nofs_flag; 6489 6490 /* 6491 * We call this under the chunk_mutex, so we want to use NOFS for this 6492 * allocation, however we don't want to change btrfs_alloc_device() to 6493 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6494 * places. 6495 */ 6496 nofs_flag = memalloc_nofs_save(); 6497 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6498 memalloc_nofs_restore(nofs_flag); 6499 if (IS_ERR(device)) 6500 return device; 6501 6502 list_add(&device->dev_list, &fs_devices->devices); 6503 device->fs_devices = fs_devices; 6504 fs_devices->num_devices++; 6505 6506 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6507 fs_devices->missing_devices++; 6508 6509 return device; 6510 } 6511 6512 /** 6513 * btrfs_alloc_device - allocate struct btrfs_device 6514 * @fs_info: used only for generating a new devid, can be NULL if 6515 * devid is provided (i.e. @devid != NULL). 6516 * @devid: a pointer to devid for this device. If NULL a new devid 6517 * is generated. 6518 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6519 * is generated. 6520 * 6521 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6522 * on error. Returned struct is not linked onto any lists and must be 6523 * destroyed with btrfs_free_device. 6524 */ 6525 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6526 const u64 *devid, 6527 const u8 *uuid) 6528 { 6529 struct btrfs_device *dev; 6530 u64 tmp; 6531 6532 if (WARN_ON(!devid && !fs_info)) 6533 return ERR_PTR(-EINVAL); 6534 6535 dev = __alloc_device(fs_info); 6536 if (IS_ERR(dev)) 6537 return dev; 6538 6539 if (devid) 6540 tmp = *devid; 6541 else { 6542 int ret; 6543 6544 ret = find_next_devid(fs_info, &tmp); 6545 if (ret) { 6546 btrfs_free_device(dev); 6547 return ERR_PTR(ret); 6548 } 6549 } 6550 dev->devid = tmp; 6551 6552 if (uuid) 6553 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6554 else 6555 generate_random_uuid(dev->uuid); 6556 6557 return dev; 6558 } 6559 6560 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6561 u64 devid, u8 *uuid, bool error) 6562 { 6563 if (error) 6564 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6565 devid, uuid); 6566 else 6567 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6568 devid, uuid); 6569 } 6570 6571 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 6572 { 6573 int index = btrfs_bg_flags_to_raid_index(type); 6574 int ncopies = btrfs_raid_array[index].ncopies; 6575 const int nparity = btrfs_raid_array[index].nparity; 6576 int data_stripes; 6577 6578 if (nparity) 6579 data_stripes = num_stripes - nparity; 6580 else 6581 data_stripes = num_stripes / ncopies; 6582 6583 return div_u64(chunk_len, data_stripes); 6584 } 6585 6586 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6587 struct btrfs_chunk *chunk) 6588 { 6589 struct btrfs_fs_info *fs_info = leaf->fs_info; 6590 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6591 struct map_lookup *map; 6592 struct extent_map *em; 6593 u64 logical; 6594 u64 length; 6595 u64 devid; 6596 u8 uuid[BTRFS_UUID_SIZE]; 6597 int num_stripes; 6598 int ret; 6599 int i; 6600 6601 logical = key->offset; 6602 length = btrfs_chunk_length(leaf, chunk); 6603 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6604 6605 /* 6606 * Only need to verify chunk item if we're reading from sys chunk array, 6607 * as chunk item in tree block is already verified by tree-checker. 6608 */ 6609 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6610 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6611 if (ret) 6612 return ret; 6613 } 6614 6615 read_lock(&map_tree->lock); 6616 em = lookup_extent_mapping(map_tree, logical, 1); 6617 read_unlock(&map_tree->lock); 6618 6619 /* already mapped? */ 6620 if (em && em->start <= logical && em->start + em->len > logical) { 6621 free_extent_map(em); 6622 return 0; 6623 } else if (em) { 6624 free_extent_map(em); 6625 } 6626 6627 em = alloc_extent_map(); 6628 if (!em) 6629 return -ENOMEM; 6630 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6631 if (!map) { 6632 free_extent_map(em); 6633 return -ENOMEM; 6634 } 6635 6636 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6637 em->map_lookup = map; 6638 em->start = logical; 6639 em->len = length; 6640 em->orig_start = 0; 6641 em->block_start = 0; 6642 em->block_len = em->len; 6643 6644 map->num_stripes = num_stripes; 6645 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6646 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6647 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6648 map->type = btrfs_chunk_type(leaf, chunk); 6649 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6650 map->verified_stripes = 0; 6651 em->orig_block_len = calc_stripe_length(map->type, em->len, 6652 map->num_stripes); 6653 for (i = 0; i < num_stripes; i++) { 6654 map->stripes[i].physical = 6655 btrfs_stripe_offset_nr(leaf, chunk, i); 6656 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6657 read_extent_buffer(leaf, uuid, (unsigned long) 6658 btrfs_stripe_dev_uuid_nr(chunk, i), 6659 BTRFS_UUID_SIZE); 6660 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, 6661 devid, uuid, NULL, true); 6662 if (!map->stripes[i].dev && 6663 !btrfs_test_opt(fs_info, DEGRADED)) { 6664 free_extent_map(em); 6665 btrfs_report_missing_device(fs_info, devid, uuid, true); 6666 return -ENOENT; 6667 } 6668 if (!map->stripes[i].dev) { 6669 map->stripes[i].dev = 6670 add_missing_dev(fs_info->fs_devices, devid, 6671 uuid); 6672 if (IS_ERR(map->stripes[i].dev)) { 6673 free_extent_map(em); 6674 btrfs_err(fs_info, 6675 "failed to init missing dev %llu: %ld", 6676 devid, PTR_ERR(map->stripes[i].dev)); 6677 return PTR_ERR(map->stripes[i].dev); 6678 } 6679 btrfs_report_missing_device(fs_info, devid, uuid, false); 6680 } 6681 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6682 &(map->stripes[i].dev->dev_state)); 6683 6684 } 6685 6686 write_lock(&map_tree->lock); 6687 ret = add_extent_mapping(map_tree, em, 0); 6688 write_unlock(&map_tree->lock); 6689 if (ret < 0) { 6690 btrfs_err(fs_info, 6691 "failed to add chunk map, start=%llu len=%llu: %d", 6692 em->start, em->len, ret); 6693 } 6694 free_extent_map(em); 6695 6696 return ret; 6697 } 6698 6699 static void fill_device_from_item(struct extent_buffer *leaf, 6700 struct btrfs_dev_item *dev_item, 6701 struct btrfs_device *device) 6702 { 6703 unsigned long ptr; 6704 6705 device->devid = btrfs_device_id(leaf, dev_item); 6706 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6707 device->total_bytes = device->disk_total_bytes; 6708 device->commit_total_bytes = device->disk_total_bytes; 6709 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6710 device->commit_bytes_used = device->bytes_used; 6711 device->type = btrfs_device_type(leaf, dev_item); 6712 device->io_align = btrfs_device_io_align(leaf, dev_item); 6713 device->io_width = btrfs_device_io_width(leaf, dev_item); 6714 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6715 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6716 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6717 6718 ptr = btrfs_device_uuid(dev_item); 6719 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6720 } 6721 6722 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6723 u8 *fsid) 6724 { 6725 struct btrfs_fs_devices *fs_devices; 6726 int ret; 6727 6728 lockdep_assert_held(&uuid_mutex); 6729 ASSERT(fsid); 6730 6731 /* This will match only for multi-device seed fs */ 6732 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 6733 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6734 return fs_devices; 6735 6736 6737 fs_devices = find_fsid(fsid, NULL); 6738 if (!fs_devices) { 6739 if (!btrfs_test_opt(fs_info, DEGRADED)) 6740 return ERR_PTR(-ENOENT); 6741 6742 fs_devices = alloc_fs_devices(fsid, NULL); 6743 if (IS_ERR(fs_devices)) 6744 return fs_devices; 6745 6746 fs_devices->seeding = true; 6747 fs_devices->opened = 1; 6748 return fs_devices; 6749 } 6750 6751 /* 6752 * Upon first call for a seed fs fsid, just create a private copy of the 6753 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 6754 */ 6755 fs_devices = clone_fs_devices(fs_devices); 6756 if (IS_ERR(fs_devices)) 6757 return fs_devices; 6758 6759 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 6760 if (ret) { 6761 free_fs_devices(fs_devices); 6762 return ERR_PTR(ret); 6763 } 6764 6765 if (!fs_devices->seeding) { 6766 close_fs_devices(fs_devices); 6767 free_fs_devices(fs_devices); 6768 return ERR_PTR(-EINVAL); 6769 } 6770 6771 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 6772 6773 return fs_devices; 6774 } 6775 6776 static int read_one_dev(struct extent_buffer *leaf, 6777 struct btrfs_dev_item *dev_item) 6778 { 6779 struct btrfs_fs_info *fs_info = leaf->fs_info; 6780 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6781 struct btrfs_device *device; 6782 u64 devid; 6783 int ret; 6784 u8 fs_uuid[BTRFS_FSID_SIZE]; 6785 u8 dev_uuid[BTRFS_UUID_SIZE]; 6786 6787 devid = btrfs_device_id(leaf, dev_item); 6788 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6789 BTRFS_UUID_SIZE); 6790 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6791 BTRFS_FSID_SIZE); 6792 6793 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6794 fs_devices = open_seed_devices(fs_info, fs_uuid); 6795 if (IS_ERR(fs_devices)) 6796 return PTR_ERR(fs_devices); 6797 } 6798 6799 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 6800 fs_uuid, true); 6801 if (!device) { 6802 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6803 btrfs_report_missing_device(fs_info, devid, 6804 dev_uuid, true); 6805 return -ENOENT; 6806 } 6807 6808 device = add_missing_dev(fs_devices, devid, dev_uuid); 6809 if (IS_ERR(device)) { 6810 btrfs_err(fs_info, 6811 "failed to add missing dev %llu: %ld", 6812 devid, PTR_ERR(device)); 6813 return PTR_ERR(device); 6814 } 6815 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6816 } else { 6817 if (!device->bdev) { 6818 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6819 btrfs_report_missing_device(fs_info, 6820 devid, dev_uuid, true); 6821 return -ENOENT; 6822 } 6823 btrfs_report_missing_device(fs_info, devid, 6824 dev_uuid, false); 6825 } 6826 6827 if (!device->bdev && 6828 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6829 /* 6830 * this happens when a device that was properly setup 6831 * in the device info lists suddenly goes bad. 6832 * device->bdev is NULL, and so we have to set 6833 * device->missing to one here 6834 */ 6835 device->fs_devices->missing_devices++; 6836 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6837 } 6838 6839 /* Move the device to its own fs_devices */ 6840 if (device->fs_devices != fs_devices) { 6841 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 6842 &device->dev_state)); 6843 6844 list_move(&device->dev_list, &fs_devices->devices); 6845 device->fs_devices->num_devices--; 6846 fs_devices->num_devices++; 6847 6848 device->fs_devices->missing_devices--; 6849 fs_devices->missing_devices++; 6850 6851 device->fs_devices = fs_devices; 6852 } 6853 } 6854 6855 if (device->fs_devices != fs_info->fs_devices) { 6856 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 6857 if (device->generation != 6858 btrfs_device_generation(leaf, dev_item)) 6859 return -EINVAL; 6860 } 6861 6862 fill_device_from_item(leaf, dev_item, device); 6863 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 6864 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 6865 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 6866 device->fs_devices->total_rw_bytes += device->total_bytes; 6867 atomic64_add(device->total_bytes - device->bytes_used, 6868 &fs_info->free_chunk_space); 6869 } 6870 ret = 0; 6871 return ret; 6872 } 6873 6874 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 6875 { 6876 struct btrfs_root *root = fs_info->tree_root; 6877 struct btrfs_super_block *super_copy = fs_info->super_copy; 6878 struct extent_buffer *sb; 6879 struct btrfs_disk_key *disk_key; 6880 struct btrfs_chunk *chunk; 6881 u8 *array_ptr; 6882 unsigned long sb_array_offset; 6883 int ret = 0; 6884 u32 num_stripes; 6885 u32 array_size; 6886 u32 len = 0; 6887 u32 cur_offset; 6888 u64 type; 6889 struct btrfs_key key; 6890 6891 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 6892 /* 6893 * This will create extent buffer of nodesize, superblock size is 6894 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6895 * overallocate but we can keep it as-is, only the first page is used. 6896 */ 6897 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 6898 if (IS_ERR(sb)) 6899 return PTR_ERR(sb); 6900 set_extent_buffer_uptodate(sb); 6901 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6902 /* 6903 * The sb extent buffer is artificial and just used to read the system array. 6904 * set_extent_buffer_uptodate() call does not properly mark all it's 6905 * pages up-to-date when the page is larger: extent does not cover the 6906 * whole page and consequently check_page_uptodate does not find all 6907 * the page's extents up-to-date (the hole beyond sb), 6908 * write_extent_buffer then triggers a WARN_ON. 6909 * 6910 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6911 * but sb spans only this function. Add an explicit SetPageUptodate call 6912 * to silence the warning eg. on PowerPC 64. 6913 */ 6914 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 6915 SetPageUptodate(sb->pages[0]); 6916 6917 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6918 array_size = btrfs_super_sys_array_size(super_copy); 6919 6920 array_ptr = super_copy->sys_chunk_array; 6921 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6922 cur_offset = 0; 6923 6924 while (cur_offset < array_size) { 6925 disk_key = (struct btrfs_disk_key *)array_ptr; 6926 len = sizeof(*disk_key); 6927 if (cur_offset + len > array_size) 6928 goto out_short_read; 6929 6930 btrfs_disk_key_to_cpu(&key, disk_key); 6931 6932 array_ptr += len; 6933 sb_array_offset += len; 6934 cur_offset += len; 6935 6936 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 6937 btrfs_err(fs_info, 6938 "unexpected item type %u in sys_array at offset %u", 6939 (u32)key.type, cur_offset); 6940 ret = -EIO; 6941 break; 6942 } 6943 6944 chunk = (struct btrfs_chunk *)sb_array_offset; 6945 /* 6946 * At least one btrfs_chunk with one stripe must be present, 6947 * exact stripe count check comes afterwards 6948 */ 6949 len = btrfs_chunk_item_size(1); 6950 if (cur_offset + len > array_size) 6951 goto out_short_read; 6952 6953 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6954 if (!num_stripes) { 6955 btrfs_err(fs_info, 6956 "invalid number of stripes %u in sys_array at offset %u", 6957 num_stripes, cur_offset); 6958 ret = -EIO; 6959 break; 6960 } 6961 6962 type = btrfs_chunk_type(sb, chunk); 6963 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 6964 btrfs_err(fs_info, 6965 "invalid chunk type %llu in sys_array at offset %u", 6966 type, cur_offset); 6967 ret = -EIO; 6968 break; 6969 } 6970 6971 len = btrfs_chunk_item_size(num_stripes); 6972 if (cur_offset + len > array_size) 6973 goto out_short_read; 6974 6975 ret = read_one_chunk(&key, sb, chunk); 6976 if (ret) 6977 break; 6978 6979 array_ptr += len; 6980 sb_array_offset += len; 6981 cur_offset += len; 6982 } 6983 clear_extent_buffer_uptodate(sb); 6984 free_extent_buffer_stale(sb); 6985 return ret; 6986 6987 out_short_read: 6988 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 6989 len, cur_offset); 6990 clear_extent_buffer_uptodate(sb); 6991 free_extent_buffer_stale(sb); 6992 return -EIO; 6993 } 6994 6995 /* 6996 * Check if all chunks in the fs are OK for read-write degraded mount 6997 * 6998 * If the @failing_dev is specified, it's accounted as missing. 6999 * 7000 * Return true if all chunks meet the minimal RW mount requirements. 7001 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7002 */ 7003 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7004 struct btrfs_device *failing_dev) 7005 { 7006 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7007 struct extent_map *em; 7008 u64 next_start = 0; 7009 bool ret = true; 7010 7011 read_lock(&map_tree->lock); 7012 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7013 read_unlock(&map_tree->lock); 7014 /* No chunk at all? Return false anyway */ 7015 if (!em) { 7016 ret = false; 7017 goto out; 7018 } 7019 while (em) { 7020 struct map_lookup *map; 7021 int missing = 0; 7022 int max_tolerated; 7023 int i; 7024 7025 map = em->map_lookup; 7026 max_tolerated = 7027 btrfs_get_num_tolerated_disk_barrier_failures( 7028 map->type); 7029 for (i = 0; i < map->num_stripes; i++) { 7030 struct btrfs_device *dev = map->stripes[i].dev; 7031 7032 if (!dev || !dev->bdev || 7033 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7034 dev->last_flush_error) 7035 missing++; 7036 else if (failing_dev && failing_dev == dev) 7037 missing++; 7038 } 7039 if (missing > max_tolerated) { 7040 if (!failing_dev) 7041 btrfs_warn(fs_info, 7042 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7043 em->start, missing, max_tolerated); 7044 free_extent_map(em); 7045 ret = false; 7046 goto out; 7047 } 7048 next_start = extent_map_end(em); 7049 free_extent_map(em); 7050 7051 read_lock(&map_tree->lock); 7052 em = lookup_extent_mapping(map_tree, next_start, 7053 (u64)(-1) - next_start); 7054 read_unlock(&map_tree->lock); 7055 } 7056 out: 7057 return ret; 7058 } 7059 7060 static void readahead_tree_node_children(struct extent_buffer *node) 7061 { 7062 int i; 7063 const int nr_items = btrfs_header_nritems(node); 7064 7065 for (i = 0; i < nr_items; i++) { 7066 u64 start; 7067 7068 start = btrfs_node_blockptr(node, i); 7069 readahead_tree_block(node->fs_info, start); 7070 } 7071 } 7072 7073 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7074 { 7075 struct btrfs_root *root = fs_info->chunk_root; 7076 struct btrfs_path *path; 7077 struct extent_buffer *leaf; 7078 struct btrfs_key key; 7079 struct btrfs_key found_key; 7080 int ret; 7081 int slot; 7082 u64 total_dev = 0; 7083 u64 last_ra_node = 0; 7084 7085 path = btrfs_alloc_path(); 7086 if (!path) 7087 return -ENOMEM; 7088 7089 /* 7090 * uuid_mutex is needed only if we are mounting a sprout FS 7091 * otherwise we don't need it. 7092 */ 7093 mutex_lock(&uuid_mutex); 7094 7095 /* 7096 * It is possible for mount and umount to race in such a way that 7097 * we execute this code path, but open_fs_devices failed to clear 7098 * total_rw_bytes. We certainly want it cleared before reading the 7099 * device items, so clear it here. 7100 */ 7101 fs_info->fs_devices->total_rw_bytes = 0; 7102 7103 /* 7104 * Read all device items, and then all the chunk items. All 7105 * device items are found before any chunk item (their object id 7106 * is smaller than the lowest possible object id for a chunk 7107 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7108 */ 7109 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7110 key.offset = 0; 7111 key.type = 0; 7112 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7113 if (ret < 0) 7114 goto error; 7115 while (1) { 7116 struct extent_buffer *node; 7117 7118 leaf = path->nodes[0]; 7119 slot = path->slots[0]; 7120 if (slot >= btrfs_header_nritems(leaf)) { 7121 ret = btrfs_next_leaf(root, path); 7122 if (ret == 0) 7123 continue; 7124 if (ret < 0) 7125 goto error; 7126 break; 7127 } 7128 /* 7129 * The nodes on level 1 are not locked but we don't need to do 7130 * that during mount time as nothing else can access the tree 7131 */ 7132 node = path->nodes[1]; 7133 if (node) { 7134 if (last_ra_node != node->start) { 7135 readahead_tree_node_children(node); 7136 last_ra_node = node->start; 7137 } 7138 } 7139 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7140 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7141 struct btrfs_dev_item *dev_item; 7142 dev_item = btrfs_item_ptr(leaf, slot, 7143 struct btrfs_dev_item); 7144 ret = read_one_dev(leaf, dev_item); 7145 if (ret) 7146 goto error; 7147 total_dev++; 7148 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7149 struct btrfs_chunk *chunk; 7150 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7151 mutex_lock(&fs_info->chunk_mutex); 7152 ret = read_one_chunk(&found_key, leaf, chunk); 7153 mutex_unlock(&fs_info->chunk_mutex); 7154 if (ret) 7155 goto error; 7156 } 7157 path->slots[0]++; 7158 } 7159 7160 /* 7161 * After loading chunk tree, we've got all device information, 7162 * do another round of validation checks. 7163 */ 7164 if (total_dev != fs_info->fs_devices->total_devices) { 7165 btrfs_err(fs_info, 7166 "super_num_devices %llu mismatch with num_devices %llu found here", 7167 btrfs_super_num_devices(fs_info->super_copy), 7168 total_dev); 7169 ret = -EINVAL; 7170 goto error; 7171 } 7172 if (btrfs_super_total_bytes(fs_info->super_copy) < 7173 fs_info->fs_devices->total_rw_bytes) { 7174 btrfs_err(fs_info, 7175 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7176 btrfs_super_total_bytes(fs_info->super_copy), 7177 fs_info->fs_devices->total_rw_bytes); 7178 ret = -EINVAL; 7179 goto error; 7180 } 7181 ret = 0; 7182 error: 7183 mutex_unlock(&uuid_mutex); 7184 7185 btrfs_free_path(path); 7186 return ret; 7187 } 7188 7189 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7190 { 7191 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7192 struct btrfs_device *device; 7193 7194 fs_devices->fs_info = fs_info; 7195 7196 mutex_lock(&fs_devices->device_list_mutex); 7197 list_for_each_entry(device, &fs_devices->devices, dev_list) 7198 device->fs_info = fs_info; 7199 7200 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7201 list_for_each_entry(device, &seed_devs->devices, dev_list) 7202 device->fs_info = fs_info; 7203 7204 seed_devs->fs_info = fs_info; 7205 } 7206 mutex_unlock(&fs_devices->device_list_mutex); 7207 } 7208 7209 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7210 const struct btrfs_dev_stats_item *ptr, 7211 int index) 7212 { 7213 u64 val; 7214 7215 read_extent_buffer(eb, &val, 7216 offsetof(struct btrfs_dev_stats_item, values) + 7217 ((unsigned long)ptr) + (index * sizeof(u64)), 7218 sizeof(val)); 7219 return val; 7220 } 7221 7222 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7223 struct btrfs_dev_stats_item *ptr, 7224 int index, u64 val) 7225 { 7226 write_extent_buffer(eb, &val, 7227 offsetof(struct btrfs_dev_stats_item, values) + 7228 ((unsigned long)ptr) + (index * sizeof(u64)), 7229 sizeof(val)); 7230 } 7231 7232 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7233 struct btrfs_path *path) 7234 { 7235 struct btrfs_dev_stats_item *ptr; 7236 struct extent_buffer *eb; 7237 struct btrfs_key key; 7238 int item_size; 7239 int i, ret, slot; 7240 7241 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7242 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7243 key.offset = device->devid; 7244 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7245 if (ret) { 7246 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7247 btrfs_dev_stat_set(device, i, 0); 7248 device->dev_stats_valid = 1; 7249 btrfs_release_path(path); 7250 return ret < 0 ? ret : 0; 7251 } 7252 slot = path->slots[0]; 7253 eb = path->nodes[0]; 7254 item_size = btrfs_item_size_nr(eb, slot); 7255 7256 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7257 7258 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7259 if (item_size >= (1 + i) * sizeof(__le64)) 7260 btrfs_dev_stat_set(device, i, 7261 btrfs_dev_stats_value(eb, ptr, i)); 7262 else 7263 btrfs_dev_stat_set(device, i, 0); 7264 } 7265 7266 device->dev_stats_valid = 1; 7267 btrfs_dev_stat_print_on_load(device); 7268 btrfs_release_path(path); 7269 7270 return 0; 7271 } 7272 7273 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7274 { 7275 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7276 struct btrfs_device *device; 7277 struct btrfs_path *path = NULL; 7278 int ret = 0; 7279 7280 path = btrfs_alloc_path(); 7281 if (!path) 7282 return -ENOMEM; 7283 7284 mutex_lock(&fs_devices->device_list_mutex); 7285 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7286 ret = btrfs_device_init_dev_stats(device, path); 7287 if (ret) 7288 goto out; 7289 } 7290 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7291 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7292 ret = btrfs_device_init_dev_stats(device, path); 7293 if (ret) 7294 goto out; 7295 } 7296 } 7297 out: 7298 mutex_unlock(&fs_devices->device_list_mutex); 7299 7300 btrfs_free_path(path); 7301 return ret; 7302 } 7303 7304 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7305 struct btrfs_device *device) 7306 { 7307 struct btrfs_fs_info *fs_info = trans->fs_info; 7308 struct btrfs_root *dev_root = fs_info->dev_root; 7309 struct btrfs_path *path; 7310 struct btrfs_key key; 7311 struct extent_buffer *eb; 7312 struct btrfs_dev_stats_item *ptr; 7313 int ret; 7314 int i; 7315 7316 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7317 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7318 key.offset = device->devid; 7319 7320 path = btrfs_alloc_path(); 7321 if (!path) 7322 return -ENOMEM; 7323 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7324 if (ret < 0) { 7325 btrfs_warn_in_rcu(fs_info, 7326 "error %d while searching for dev_stats item for device %s", 7327 ret, rcu_str_deref(device->name)); 7328 goto out; 7329 } 7330 7331 if (ret == 0 && 7332 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7333 /* need to delete old one and insert a new one */ 7334 ret = btrfs_del_item(trans, dev_root, path); 7335 if (ret != 0) { 7336 btrfs_warn_in_rcu(fs_info, 7337 "delete too small dev_stats item for device %s failed %d", 7338 rcu_str_deref(device->name), ret); 7339 goto out; 7340 } 7341 ret = 1; 7342 } 7343 7344 if (ret == 1) { 7345 /* need to insert a new item */ 7346 btrfs_release_path(path); 7347 ret = btrfs_insert_empty_item(trans, dev_root, path, 7348 &key, sizeof(*ptr)); 7349 if (ret < 0) { 7350 btrfs_warn_in_rcu(fs_info, 7351 "insert dev_stats item for device %s failed %d", 7352 rcu_str_deref(device->name), ret); 7353 goto out; 7354 } 7355 } 7356 7357 eb = path->nodes[0]; 7358 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7359 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7360 btrfs_set_dev_stats_value(eb, ptr, i, 7361 btrfs_dev_stat_read(device, i)); 7362 btrfs_mark_buffer_dirty(eb); 7363 7364 out: 7365 btrfs_free_path(path); 7366 return ret; 7367 } 7368 7369 /* 7370 * called from commit_transaction. Writes all changed device stats to disk. 7371 */ 7372 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7373 { 7374 struct btrfs_fs_info *fs_info = trans->fs_info; 7375 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7376 struct btrfs_device *device; 7377 int stats_cnt; 7378 int ret = 0; 7379 7380 mutex_lock(&fs_devices->device_list_mutex); 7381 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7382 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7383 if (!device->dev_stats_valid || stats_cnt == 0) 7384 continue; 7385 7386 7387 /* 7388 * There is a LOAD-LOAD control dependency between the value of 7389 * dev_stats_ccnt and updating the on-disk values which requires 7390 * reading the in-memory counters. Such control dependencies 7391 * require explicit read memory barriers. 7392 * 7393 * This memory barriers pairs with smp_mb__before_atomic in 7394 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7395 * barrier implied by atomic_xchg in 7396 * btrfs_dev_stats_read_and_reset 7397 */ 7398 smp_rmb(); 7399 7400 ret = update_dev_stat_item(trans, device); 7401 if (!ret) 7402 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7403 } 7404 mutex_unlock(&fs_devices->device_list_mutex); 7405 7406 return ret; 7407 } 7408 7409 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7410 { 7411 btrfs_dev_stat_inc(dev, index); 7412 btrfs_dev_stat_print_on_error(dev); 7413 } 7414 7415 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7416 { 7417 if (!dev->dev_stats_valid) 7418 return; 7419 btrfs_err_rl_in_rcu(dev->fs_info, 7420 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7421 rcu_str_deref(dev->name), 7422 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7423 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7424 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7425 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7426 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7427 } 7428 7429 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7430 { 7431 int i; 7432 7433 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7434 if (btrfs_dev_stat_read(dev, i) != 0) 7435 break; 7436 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7437 return; /* all values == 0, suppress message */ 7438 7439 btrfs_info_in_rcu(dev->fs_info, 7440 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7441 rcu_str_deref(dev->name), 7442 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7443 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7444 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7445 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7446 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7447 } 7448 7449 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7450 struct btrfs_ioctl_get_dev_stats *stats) 7451 { 7452 struct btrfs_device *dev; 7453 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7454 int i; 7455 7456 mutex_lock(&fs_devices->device_list_mutex); 7457 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL, 7458 true); 7459 mutex_unlock(&fs_devices->device_list_mutex); 7460 7461 if (!dev) { 7462 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7463 return -ENODEV; 7464 } else if (!dev->dev_stats_valid) { 7465 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7466 return -ENODEV; 7467 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7468 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7469 if (stats->nr_items > i) 7470 stats->values[i] = 7471 btrfs_dev_stat_read_and_reset(dev, i); 7472 else 7473 btrfs_dev_stat_set(dev, i, 0); 7474 } 7475 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7476 current->comm, task_pid_nr(current)); 7477 } else { 7478 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7479 if (stats->nr_items > i) 7480 stats->values[i] = btrfs_dev_stat_read(dev, i); 7481 } 7482 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7483 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7484 return 0; 7485 } 7486 7487 /* 7488 * Update the size and bytes used for each device where it changed. This is 7489 * delayed since we would otherwise get errors while writing out the 7490 * superblocks. 7491 * 7492 * Must be invoked during transaction commit. 7493 */ 7494 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7495 { 7496 struct btrfs_device *curr, *next; 7497 7498 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7499 7500 if (list_empty(&trans->dev_update_list)) 7501 return; 7502 7503 /* 7504 * We don't need the device_list_mutex here. This list is owned by the 7505 * transaction and the transaction must complete before the device is 7506 * released. 7507 */ 7508 mutex_lock(&trans->fs_info->chunk_mutex); 7509 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7510 post_commit_list) { 7511 list_del_init(&curr->post_commit_list); 7512 curr->commit_total_bytes = curr->disk_total_bytes; 7513 curr->commit_bytes_used = curr->bytes_used; 7514 } 7515 mutex_unlock(&trans->fs_info->chunk_mutex); 7516 } 7517 7518 /* 7519 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7520 */ 7521 int btrfs_bg_type_to_factor(u64 flags) 7522 { 7523 const int index = btrfs_bg_flags_to_raid_index(flags); 7524 7525 return btrfs_raid_array[index].ncopies; 7526 } 7527 7528 7529 7530 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7531 u64 chunk_offset, u64 devid, 7532 u64 physical_offset, u64 physical_len) 7533 { 7534 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7535 struct extent_map *em; 7536 struct map_lookup *map; 7537 struct btrfs_device *dev; 7538 u64 stripe_len; 7539 bool found = false; 7540 int ret = 0; 7541 int i; 7542 7543 read_lock(&em_tree->lock); 7544 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7545 read_unlock(&em_tree->lock); 7546 7547 if (!em) { 7548 btrfs_err(fs_info, 7549 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7550 physical_offset, devid); 7551 ret = -EUCLEAN; 7552 goto out; 7553 } 7554 7555 map = em->map_lookup; 7556 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 7557 if (physical_len != stripe_len) { 7558 btrfs_err(fs_info, 7559 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7560 physical_offset, devid, em->start, physical_len, 7561 stripe_len); 7562 ret = -EUCLEAN; 7563 goto out; 7564 } 7565 7566 for (i = 0; i < map->num_stripes; i++) { 7567 if (map->stripes[i].dev->devid == devid && 7568 map->stripes[i].physical == physical_offset) { 7569 found = true; 7570 if (map->verified_stripes >= map->num_stripes) { 7571 btrfs_err(fs_info, 7572 "too many dev extents for chunk %llu found", 7573 em->start); 7574 ret = -EUCLEAN; 7575 goto out; 7576 } 7577 map->verified_stripes++; 7578 break; 7579 } 7580 } 7581 if (!found) { 7582 btrfs_err(fs_info, 7583 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7584 physical_offset, devid); 7585 ret = -EUCLEAN; 7586 } 7587 7588 /* Make sure no dev extent is beyond device bondary */ 7589 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 7590 if (!dev) { 7591 btrfs_err(fs_info, "failed to find devid %llu", devid); 7592 ret = -EUCLEAN; 7593 goto out; 7594 } 7595 7596 /* It's possible this device is a dummy for seed device */ 7597 if (dev->disk_total_bytes == 0) { 7598 struct btrfs_fs_devices *devs; 7599 7600 devs = list_first_entry(&fs_info->fs_devices->seed_list, 7601 struct btrfs_fs_devices, seed_list); 7602 dev = btrfs_find_device(devs, devid, NULL, NULL, false); 7603 if (!dev) { 7604 btrfs_err(fs_info, "failed to find seed devid %llu", 7605 devid); 7606 ret = -EUCLEAN; 7607 goto out; 7608 } 7609 } 7610 7611 if (physical_offset + physical_len > dev->disk_total_bytes) { 7612 btrfs_err(fs_info, 7613 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7614 devid, physical_offset, physical_len, 7615 dev->disk_total_bytes); 7616 ret = -EUCLEAN; 7617 goto out; 7618 } 7619 out: 7620 free_extent_map(em); 7621 return ret; 7622 } 7623 7624 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7625 { 7626 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7627 struct extent_map *em; 7628 struct rb_node *node; 7629 int ret = 0; 7630 7631 read_lock(&em_tree->lock); 7632 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7633 em = rb_entry(node, struct extent_map, rb_node); 7634 if (em->map_lookup->num_stripes != 7635 em->map_lookup->verified_stripes) { 7636 btrfs_err(fs_info, 7637 "chunk %llu has missing dev extent, have %d expect %d", 7638 em->start, em->map_lookup->verified_stripes, 7639 em->map_lookup->num_stripes); 7640 ret = -EUCLEAN; 7641 goto out; 7642 } 7643 } 7644 out: 7645 read_unlock(&em_tree->lock); 7646 return ret; 7647 } 7648 7649 /* 7650 * Ensure that all dev extents are mapped to correct chunk, otherwise 7651 * later chunk allocation/free would cause unexpected behavior. 7652 * 7653 * NOTE: This will iterate through the whole device tree, which should be of 7654 * the same size level as the chunk tree. This slightly increases mount time. 7655 */ 7656 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7657 { 7658 struct btrfs_path *path; 7659 struct btrfs_root *root = fs_info->dev_root; 7660 struct btrfs_key key; 7661 u64 prev_devid = 0; 7662 u64 prev_dev_ext_end = 0; 7663 int ret = 0; 7664 7665 key.objectid = 1; 7666 key.type = BTRFS_DEV_EXTENT_KEY; 7667 key.offset = 0; 7668 7669 path = btrfs_alloc_path(); 7670 if (!path) 7671 return -ENOMEM; 7672 7673 path->reada = READA_FORWARD; 7674 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7675 if (ret < 0) 7676 goto out; 7677 7678 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7679 ret = btrfs_next_item(root, path); 7680 if (ret < 0) 7681 goto out; 7682 /* No dev extents at all? Not good */ 7683 if (ret > 0) { 7684 ret = -EUCLEAN; 7685 goto out; 7686 } 7687 } 7688 while (1) { 7689 struct extent_buffer *leaf = path->nodes[0]; 7690 struct btrfs_dev_extent *dext; 7691 int slot = path->slots[0]; 7692 u64 chunk_offset; 7693 u64 physical_offset; 7694 u64 physical_len; 7695 u64 devid; 7696 7697 btrfs_item_key_to_cpu(leaf, &key, slot); 7698 if (key.type != BTRFS_DEV_EXTENT_KEY) 7699 break; 7700 devid = key.objectid; 7701 physical_offset = key.offset; 7702 7703 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7704 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7705 physical_len = btrfs_dev_extent_length(leaf, dext); 7706 7707 /* Check if this dev extent overlaps with the previous one */ 7708 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7709 btrfs_err(fs_info, 7710 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7711 devid, physical_offset, prev_dev_ext_end); 7712 ret = -EUCLEAN; 7713 goto out; 7714 } 7715 7716 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7717 physical_offset, physical_len); 7718 if (ret < 0) 7719 goto out; 7720 prev_devid = devid; 7721 prev_dev_ext_end = physical_offset + physical_len; 7722 7723 ret = btrfs_next_item(root, path); 7724 if (ret < 0) 7725 goto out; 7726 if (ret > 0) { 7727 ret = 0; 7728 break; 7729 } 7730 } 7731 7732 /* Ensure all chunks have corresponding dev extents */ 7733 ret = verify_chunk_dev_extent_mapping(fs_info); 7734 out: 7735 btrfs_free_path(path); 7736 return ret; 7737 } 7738 7739 /* 7740 * Check whether the given block group or device is pinned by any inode being 7741 * used as a swapfile. 7742 */ 7743 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7744 { 7745 struct btrfs_swapfile_pin *sp; 7746 struct rb_node *node; 7747 7748 spin_lock(&fs_info->swapfile_pins_lock); 7749 node = fs_info->swapfile_pins.rb_node; 7750 while (node) { 7751 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7752 if (ptr < sp->ptr) 7753 node = node->rb_left; 7754 else if (ptr > sp->ptr) 7755 node = node->rb_right; 7756 else 7757 break; 7758 } 7759 spin_unlock(&fs_info->swapfile_pins_lock); 7760 return node != NULL; 7761 } 7762