xref: /openbmc/linux/fs/btrfs/volumes.c (revision 78c99ba1)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/iocontext.h>
24 #include <asm/div64.h>
25 #include "compat.h"
26 #include "ctree.h"
27 #include "extent_map.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "print-tree.h"
31 #include "volumes.h"
32 #include "async-thread.h"
33 
34 struct map_lookup {
35 	u64 type;
36 	int io_align;
37 	int io_width;
38 	int stripe_len;
39 	int sector_size;
40 	int num_stripes;
41 	int sub_stripes;
42 	struct btrfs_bio_stripe stripes[];
43 };
44 
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 				struct btrfs_root *root,
47 				struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 
50 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
51 			    (sizeof(struct btrfs_bio_stripe) * (n)))
52 
53 static DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55 
56 void btrfs_lock_volumes(void)
57 {
58 	mutex_lock(&uuid_mutex);
59 }
60 
61 void btrfs_unlock_volumes(void)
62 {
63 	mutex_unlock(&uuid_mutex);
64 }
65 
66 static void lock_chunks(struct btrfs_root *root)
67 {
68 	mutex_lock(&root->fs_info->chunk_mutex);
69 }
70 
71 static void unlock_chunks(struct btrfs_root *root)
72 {
73 	mutex_unlock(&root->fs_info->chunk_mutex);
74 }
75 
76 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
77 {
78 	struct btrfs_device *device;
79 	WARN_ON(fs_devices->opened);
80 	while (!list_empty(&fs_devices->devices)) {
81 		device = list_entry(fs_devices->devices.next,
82 				    struct btrfs_device, dev_list);
83 		list_del(&device->dev_list);
84 		kfree(device->name);
85 		kfree(device);
86 	}
87 	kfree(fs_devices);
88 }
89 
90 int btrfs_cleanup_fs_uuids(void)
91 {
92 	struct btrfs_fs_devices *fs_devices;
93 
94 	while (!list_empty(&fs_uuids)) {
95 		fs_devices = list_entry(fs_uuids.next,
96 					struct btrfs_fs_devices, list);
97 		list_del(&fs_devices->list);
98 		free_fs_devices(fs_devices);
99 	}
100 	return 0;
101 }
102 
103 static noinline struct btrfs_device *__find_device(struct list_head *head,
104 						   u64 devid, u8 *uuid)
105 {
106 	struct btrfs_device *dev;
107 
108 	list_for_each_entry(dev, head, dev_list) {
109 		if (dev->devid == devid &&
110 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
111 			return dev;
112 		}
113 	}
114 	return NULL;
115 }
116 
117 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
118 {
119 	struct btrfs_fs_devices *fs_devices;
120 
121 	list_for_each_entry(fs_devices, &fs_uuids, list) {
122 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
123 			return fs_devices;
124 	}
125 	return NULL;
126 }
127 
128 static void requeue_list(struct btrfs_pending_bios *pending_bios,
129 			struct bio *head, struct bio *tail)
130 {
131 
132 	struct bio *old_head;
133 
134 	old_head = pending_bios->head;
135 	pending_bios->head = head;
136 	if (pending_bios->tail)
137 		tail->bi_next = old_head;
138 	else
139 		pending_bios->tail = tail;
140 }
141 
142 /*
143  * we try to collect pending bios for a device so we don't get a large
144  * number of procs sending bios down to the same device.  This greatly
145  * improves the schedulers ability to collect and merge the bios.
146  *
147  * But, it also turns into a long list of bios to process and that is sure
148  * to eventually make the worker thread block.  The solution here is to
149  * make some progress and then put this work struct back at the end of
150  * the list if the block device is congested.  This way, multiple devices
151  * can make progress from a single worker thread.
152  */
153 static noinline int run_scheduled_bios(struct btrfs_device *device)
154 {
155 	struct bio *pending;
156 	struct backing_dev_info *bdi;
157 	struct btrfs_fs_info *fs_info;
158 	struct btrfs_pending_bios *pending_bios;
159 	struct bio *tail;
160 	struct bio *cur;
161 	int again = 0;
162 	unsigned long num_run;
163 	unsigned long num_sync_run;
164 	unsigned long limit;
165 	unsigned long last_waited = 0;
166 
167 	bdi = blk_get_backing_dev_info(device->bdev);
168 	fs_info = device->dev_root->fs_info;
169 	limit = btrfs_async_submit_limit(fs_info);
170 	limit = limit * 2 / 3;
171 
172 	/* we want to make sure that every time we switch from the sync
173 	 * list to the normal list, we unplug
174 	 */
175 	num_sync_run = 0;
176 
177 loop:
178 	spin_lock(&device->io_lock);
179 	num_run = 0;
180 
181 loop_lock:
182 
183 	/* take all the bios off the list at once and process them
184 	 * later on (without the lock held).  But, remember the
185 	 * tail and other pointers so the bios can be properly reinserted
186 	 * into the list if we hit congestion
187 	 */
188 	if (device->pending_sync_bios.head)
189 		pending_bios = &device->pending_sync_bios;
190 	else
191 		pending_bios = &device->pending_bios;
192 
193 	pending = pending_bios->head;
194 	tail = pending_bios->tail;
195 	WARN_ON(pending && !tail);
196 
197 	/*
198 	 * if pending was null this time around, no bios need processing
199 	 * at all and we can stop.  Otherwise it'll loop back up again
200 	 * and do an additional check so no bios are missed.
201 	 *
202 	 * device->running_pending is used to synchronize with the
203 	 * schedule_bio code.
204 	 */
205 	if (device->pending_sync_bios.head == NULL &&
206 	    device->pending_bios.head == NULL) {
207 		again = 0;
208 		device->running_pending = 0;
209 	} else {
210 		again = 1;
211 		device->running_pending = 1;
212 	}
213 
214 	pending_bios->head = NULL;
215 	pending_bios->tail = NULL;
216 
217 	spin_unlock(&device->io_lock);
218 
219 	/*
220 	 * if we're doing the regular priority list, make sure we unplug
221 	 * for any high prio bios we've sent down
222 	 */
223 	if (pending_bios == &device->pending_bios && num_sync_run > 0) {
224 		num_sync_run = 0;
225 		blk_run_backing_dev(bdi, NULL);
226 	}
227 
228 	while (pending) {
229 
230 		rmb();
231 		if (pending_bios != &device->pending_sync_bios &&
232 		    device->pending_sync_bios.head &&
233 		    num_run > 16) {
234 			cond_resched();
235 			spin_lock(&device->io_lock);
236 			requeue_list(pending_bios, pending, tail);
237 			goto loop_lock;
238 		}
239 
240 		cur = pending;
241 		pending = pending->bi_next;
242 		cur->bi_next = NULL;
243 		atomic_dec(&fs_info->nr_async_bios);
244 
245 		if (atomic_read(&fs_info->nr_async_bios) < limit &&
246 		    waitqueue_active(&fs_info->async_submit_wait))
247 			wake_up(&fs_info->async_submit_wait);
248 
249 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
250 		submit_bio(cur->bi_rw, cur);
251 		num_run++;
252 		if (bio_sync(cur))
253 			num_sync_run++;
254 
255 		if (need_resched()) {
256 			if (num_sync_run) {
257 				blk_run_backing_dev(bdi, NULL);
258 				num_sync_run = 0;
259 			}
260 			cond_resched();
261 		}
262 
263 		/*
264 		 * we made progress, there is more work to do and the bdi
265 		 * is now congested.  Back off and let other work structs
266 		 * run instead
267 		 */
268 		if (pending && bdi_write_congested(bdi) && num_run > 16 &&
269 		    fs_info->fs_devices->open_devices > 1) {
270 			struct io_context *ioc;
271 
272 			ioc = current->io_context;
273 
274 			/*
275 			 * the main goal here is that we don't want to
276 			 * block if we're going to be able to submit
277 			 * more requests without blocking.
278 			 *
279 			 * This code does two great things, it pokes into
280 			 * the elevator code from a filesystem _and_
281 			 * it makes assumptions about how batching works.
282 			 */
283 			if (ioc && ioc->nr_batch_requests > 0 &&
284 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
285 			    (last_waited == 0 ||
286 			     ioc->last_waited == last_waited)) {
287 				/*
288 				 * we want to go through our batch of
289 				 * requests and stop.  So, we copy out
290 				 * the ioc->last_waited time and test
291 				 * against it before looping
292 				 */
293 				last_waited = ioc->last_waited;
294 				if (need_resched()) {
295 					if (num_sync_run) {
296 						blk_run_backing_dev(bdi, NULL);
297 						num_sync_run = 0;
298 					}
299 					cond_resched();
300 				}
301 				continue;
302 			}
303 			spin_lock(&device->io_lock);
304 			requeue_list(pending_bios, pending, tail);
305 			device->running_pending = 1;
306 
307 			spin_unlock(&device->io_lock);
308 			btrfs_requeue_work(&device->work);
309 			goto done;
310 		}
311 	}
312 
313 	if (num_sync_run) {
314 		num_sync_run = 0;
315 		blk_run_backing_dev(bdi, NULL);
316 	}
317 
318 	cond_resched();
319 	if (again)
320 		goto loop;
321 
322 	spin_lock(&device->io_lock);
323 	if (device->pending_bios.head || device->pending_sync_bios.head)
324 		goto loop_lock;
325 	spin_unlock(&device->io_lock);
326 
327 	/*
328 	 * IO has already been through a long path to get here.  Checksumming,
329 	 * async helper threads, perhaps compression.  We've done a pretty
330 	 * good job of collecting a batch of IO and should just unplug
331 	 * the device right away.
332 	 *
333 	 * This will help anyone who is waiting on the IO, they might have
334 	 * already unplugged, but managed to do so before the bio they
335 	 * cared about found its way down here.
336 	 */
337 	blk_run_backing_dev(bdi, NULL);
338 done:
339 	return 0;
340 }
341 
342 static void pending_bios_fn(struct btrfs_work *work)
343 {
344 	struct btrfs_device *device;
345 
346 	device = container_of(work, struct btrfs_device, work);
347 	run_scheduled_bios(device);
348 }
349 
350 static noinline int device_list_add(const char *path,
351 			   struct btrfs_super_block *disk_super,
352 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
353 {
354 	struct btrfs_device *device;
355 	struct btrfs_fs_devices *fs_devices;
356 	u64 found_transid = btrfs_super_generation(disk_super);
357 
358 	fs_devices = find_fsid(disk_super->fsid);
359 	if (!fs_devices) {
360 		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
361 		if (!fs_devices)
362 			return -ENOMEM;
363 		INIT_LIST_HEAD(&fs_devices->devices);
364 		INIT_LIST_HEAD(&fs_devices->alloc_list);
365 		list_add(&fs_devices->list, &fs_uuids);
366 		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
367 		fs_devices->latest_devid = devid;
368 		fs_devices->latest_trans = found_transid;
369 		device = NULL;
370 	} else {
371 		device = __find_device(&fs_devices->devices, devid,
372 				       disk_super->dev_item.uuid);
373 	}
374 	if (!device) {
375 		if (fs_devices->opened)
376 			return -EBUSY;
377 
378 		device = kzalloc(sizeof(*device), GFP_NOFS);
379 		if (!device) {
380 			/* we can safely leave the fs_devices entry around */
381 			return -ENOMEM;
382 		}
383 		device->devid = devid;
384 		device->work.func = pending_bios_fn;
385 		memcpy(device->uuid, disk_super->dev_item.uuid,
386 		       BTRFS_UUID_SIZE);
387 		device->barriers = 1;
388 		spin_lock_init(&device->io_lock);
389 		device->name = kstrdup(path, GFP_NOFS);
390 		if (!device->name) {
391 			kfree(device);
392 			return -ENOMEM;
393 		}
394 		INIT_LIST_HEAD(&device->dev_alloc_list);
395 		list_add(&device->dev_list, &fs_devices->devices);
396 		device->fs_devices = fs_devices;
397 		fs_devices->num_devices++;
398 	}
399 
400 	if (found_transid > fs_devices->latest_trans) {
401 		fs_devices->latest_devid = devid;
402 		fs_devices->latest_trans = found_transid;
403 	}
404 	*fs_devices_ret = fs_devices;
405 	return 0;
406 }
407 
408 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
409 {
410 	struct btrfs_fs_devices *fs_devices;
411 	struct btrfs_device *device;
412 	struct btrfs_device *orig_dev;
413 
414 	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
415 	if (!fs_devices)
416 		return ERR_PTR(-ENOMEM);
417 
418 	INIT_LIST_HEAD(&fs_devices->devices);
419 	INIT_LIST_HEAD(&fs_devices->alloc_list);
420 	INIT_LIST_HEAD(&fs_devices->list);
421 	fs_devices->latest_devid = orig->latest_devid;
422 	fs_devices->latest_trans = orig->latest_trans;
423 	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
424 
425 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
426 		device = kzalloc(sizeof(*device), GFP_NOFS);
427 		if (!device)
428 			goto error;
429 
430 		device->name = kstrdup(orig_dev->name, GFP_NOFS);
431 		if (!device->name)
432 			goto error;
433 
434 		device->devid = orig_dev->devid;
435 		device->work.func = pending_bios_fn;
436 		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
437 		device->barriers = 1;
438 		spin_lock_init(&device->io_lock);
439 		INIT_LIST_HEAD(&device->dev_list);
440 		INIT_LIST_HEAD(&device->dev_alloc_list);
441 
442 		list_add(&device->dev_list, &fs_devices->devices);
443 		device->fs_devices = fs_devices;
444 		fs_devices->num_devices++;
445 	}
446 	return fs_devices;
447 error:
448 	free_fs_devices(fs_devices);
449 	return ERR_PTR(-ENOMEM);
450 }
451 
452 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
453 {
454 	struct btrfs_device *device, *next;
455 
456 	mutex_lock(&uuid_mutex);
457 again:
458 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
459 		if (device->in_fs_metadata)
460 			continue;
461 
462 		if (device->bdev) {
463 			close_bdev_exclusive(device->bdev, device->mode);
464 			device->bdev = NULL;
465 			fs_devices->open_devices--;
466 		}
467 		if (device->writeable) {
468 			list_del_init(&device->dev_alloc_list);
469 			device->writeable = 0;
470 			fs_devices->rw_devices--;
471 		}
472 		list_del_init(&device->dev_list);
473 		fs_devices->num_devices--;
474 		kfree(device->name);
475 		kfree(device);
476 	}
477 
478 	if (fs_devices->seed) {
479 		fs_devices = fs_devices->seed;
480 		goto again;
481 	}
482 
483 	mutex_unlock(&uuid_mutex);
484 	return 0;
485 }
486 
487 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
488 {
489 	struct btrfs_device *device;
490 
491 	if (--fs_devices->opened > 0)
492 		return 0;
493 
494 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
495 		if (device->bdev) {
496 			close_bdev_exclusive(device->bdev, device->mode);
497 			fs_devices->open_devices--;
498 		}
499 		if (device->writeable) {
500 			list_del_init(&device->dev_alloc_list);
501 			fs_devices->rw_devices--;
502 		}
503 
504 		device->bdev = NULL;
505 		device->writeable = 0;
506 		device->in_fs_metadata = 0;
507 	}
508 	WARN_ON(fs_devices->open_devices);
509 	WARN_ON(fs_devices->rw_devices);
510 	fs_devices->opened = 0;
511 	fs_devices->seeding = 0;
512 
513 	return 0;
514 }
515 
516 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
517 {
518 	struct btrfs_fs_devices *seed_devices = NULL;
519 	int ret;
520 
521 	mutex_lock(&uuid_mutex);
522 	ret = __btrfs_close_devices(fs_devices);
523 	if (!fs_devices->opened) {
524 		seed_devices = fs_devices->seed;
525 		fs_devices->seed = NULL;
526 	}
527 	mutex_unlock(&uuid_mutex);
528 
529 	while (seed_devices) {
530 		fs_devices = seed_devices;
531 		seed_devices = fs_devices->seed;
532 		__btrfs_close_devices(fs_devices);
533 		free_fs_devices(fs_devices);
534 	}
535 	return ret;
536 }
537 
538 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
539 				fmode_t flags, void *holder)
540 {
541 	struct block_device *bdev;
542 	struct list_head *head = &fs_devices->devices;
543 	struct btrfs_device *device;
544 	struct block_device *latest_bdev = NULL;
545 	struct buffer_head *bh;
546 	struct btrfs_super_block *disk_super;
547 	u64 latest_devid = 0;
548 	u64 latest_transid = 0;
549 	u64 devid;
550 	int seeding = 1;
551 	int ret = 0;
552 
553 	list_for_each_entry(device, head, dev_list) {
554 		if (device->bdev)
555 			continue;
556 		if (!device->name)
557 			continue;
558 
559 		bdev = open_bdev_exclusive(device->name, flags, holder);
560 		if (IS_ERR(bdev)) {
561 			printk(KERN_INFO "open %s failed\n", device->name);
562 			goto error;
563 		}
564 		set_blocksize(bdev, 4096);
565 
566 		bh = btrfs_read_dev_super(bdev);
567 		if (!bh)
568 			goto error_close;
569 
570 		disk_super = (struct btrfs_super_block *)bh->b_data;
571 		devid = le64_to_cpu(disk_super->dev_item.devid);
572 		if (devid != device->devid)
573 			goto error_brelse;
574 
575 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
576 			   BTRFS_UUID_SIZE))
577 			goto error_brelse;
578 
579 		device->generation = btrfs_super_generation(disk_super);
580 		if (!latest_transid || device->generation > latest_transid) {
581 			latest_devid = devid;
582 			latest_transid = device->generation;
583 			latest_bdev = bdev;
584 		}
585 
586 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
587 			device->writeable = 0;
588 		} else {
589 			device->writeable = !bdev_read_only(bdev);
590 			seeding = 0;
591 		}
592 
593 		device->bdev = bdev;
594 		device->in_fs_metadata = 0;
595 		device->mode = flags;
596 
597 		fs_devices->open_devices++;
598 		if (device->writeable) {
599 			fs_devices->rw_devices++;
600 			list_add(&device->dev_alloc_list,
601 				 &fs_devices->alloc_list);
602 		}
603 		continue;
604 
605 error_brelse:
606 		brelse(bh);
607 error_close:
608 		close_bdev_exclusive(bdev, FMODE_READ);
609 error:
610 		continue;
611 	}
612 	if (fs_devices->open_devices == 0) {
613 		ret = -EIO;
614 		goto out;
615 	}
616 	fs_devices->seeding = seeding;
617 	fs_devices->opened = 1;
618 	fs_devices->latest_bdev = latest_bdev;
619 	fs_devices->latest_devid = latest_devid;
620 	fs_devices->latest_trans = latest_transid;
621 	fs_devices->total_rw_bytes = 0;
622 out:
623 	return ret;
624 }
625 
626 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
627 		       fmode_t flags, void *holder)
628 {
629 	int ret;
630 
631 	mutex_lock(&uuid_mutex);
632 	if (fs_devices->opened) {
633 		fs_devices->opened++;
634 		ret = 0;
635 	} else {
636 		ret = __btrfs_open_devices(fs_devices, flags, holder);
637 	}
638 	mutex_unlock(&uuid_mutex);
639 	return ret;
640 }
641 
642 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
643 			  struct btrfs_fs_devices **fs_devices_ret)
644 {
645 	struct btrfs_super_block *disk_super;
646 	struct block_device *bdev;
647 	struct buffer_head *bh;
648 	int ret;
649 	u64 devid;
650 	u64 transid;
651 
652 	mutex_lock(&uuid_mutex);
653 
654 	bdev = open_bdev_exclusive(path, flags, holder);
655 
656 	if (IS_ERR(bdev)) {
657 		ret = PTR_ERR(bdev);
658 		goto error;
659 	}
660 
661 	ret = set_blocksize(bdev, 4096);
662 	if (ret)
663 		goto error_close;
664 	bh = btrfs_read_dev_super(bdev);
665 	if (!bh) {
666 		ret = -EIO;
667 		goto error_close;
668 	}
669 	disk_super = (struct btrfs_super_block *)bh->b_data;
670 	devid = le64_to_cpu(disk_super->dev_item.devid);
671 	transid = btrfs_super_generation(disk_super);
672 	if (disk_super->label[0])
673 		printk(KERN_INFO "device label %s ", disk_super->label);
674 	else {
675 		/* FIXME, make a readl uuid parser */
676 		printk(KERN_INFO "device fsid %llx-%llx ",
677 		       *(unsigned long long *)disk_super->fsid,
678 		       *(unsigned long long *)(disk_super->fsid + 8));
679 	}
680 	printk(KERN_CONT "devid %llu transid %llu %s\n",
681 	       (unsigned long long)devid, (unsigned long long)transid, path);
682 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
683 
684 	brelse(bh);
685 error_close:
686 	close_bdev_exclusive(bdev, flags);
687 error:
688 	mutex_unlock(&uuid_mutex);
689 	return ret;
690 }
691 
692 /*
693  * this uses a pretty simple search, the expectation is that it is
694  * called very infrequently and that a given device has a small number
695  * of extents
696  */
697 static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans,
698 					 struct btrfs_device *device,
699 					 u64 num_bytes, u64 *start)
700 {
701 	struct btrfs_key key;
702 	struct btrfs_root *root = device->dev_root;
703 	struct btrfs_dev_extent *dev_extent = NULL;
704 	struct btrfs_path *path;
705 	u64 hole_size = 0;
706 	u64 last_byte = 0;
707 	u64 search_start = 0;
708 	u64 search_end = device->total_bytes;
709 	int ret;
710 	int slot = 0;
711 	int start_found;
712 	struct extent_buffer *l;
713 
714 	path = btrfs_alloc_path();
715 	if (!path)
716 		return -ENOMEM;
717 	path->reada = 2;
718 	start_found = 0;
719 
720 	/* FIXME use last free of some kind */
721 
722 	/* we don't want to overwrite the superblock on the drive,
723 	 * so we make sure to start at an offset of at least 1MB
724 	 */
725 	search_start = max((u64)1024 * 1024, search_start);
726 
727 	if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
728 		search_start = max(root->fs_info->alloc_start, search_start);
729 
730 	key.objectid = device->devid;
731 	key.offset = search_start;
732 	key.type = BTRFS_DEV_EXTENT_KEY;
733 	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
734 	if (ret < 0)
735 		goto error;
736 	ret = btrfs_previous_item(root, path, 0, key.type);
737 	if (ret < 0)
738 		goto error;
739 	l = path->nodes[0];
740 	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
741 	while (1) {
742 		l = path->nodes[0];
743 		slot = path->slots[0];
744 		if (slot >= btrfs_header_nritems(l)) {
745 			ret = btrfs_next_leaf(root, path);
746 			if (ret == 0)
747 				continue;
748 			if (ret < 0)
749 				goto error;
750 no_more_items:
751 			if (!start_found) {
752 				if (search_start >= search_end) {
753 					ret = -ENOSPC;
754 					goto error;
755 				}
756 				*start = search_start;
757 				start_found = 1;
758 				goto check_pending;
759 			}
760 			*start = last_byte > search_start ?
761 				last_byte : search_start;
762 			if (search_end <= *start) {
763 				ret = -ENOSPC;
764 				goto error;
765 			}
766 			goto check_pending;
767 		}
768 		btrfs_item_key_to_cpu(l, &key, slot);
769 
770 		if (key.objectid < device->devid)
771 			goto next;
772 
773 		if (key.objectid > device->devid)
774 			goto no_more_items;
775 
776 		if (key.offset >= search_start && key.offset > last_byte &&
777 		    start_found) {
778 			if (last_byte < search_start)
779 				last_byte = search_start;
780 			hole_size = key.offset - last_byte;
781 			if (key.offset > last_byte &&
782 			    hole_size >= num_bytes) {
783 				*start = last_byte;
784 				goto check_pending;
785 			}
786 		}
787 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
788 			goto next;
789 
790 		start_found = 1;
791 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
792 		last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
793 next:
794 		path->slots[0]++;
795 		cond_resched();
796 	}
797 check_pending:
798 	/* we have to make sure we didn't find an extent that has already
799 	 * been allocated by the map tree or the original allocation
800 	 */
801 	BUG_ON(*start < search_start);
802 
803 	if (*start + num_bytes > search_end) {
804 		ret = -ENOSPC;
805 		goto error;
806 	}
807 	/* check for pending inserts here */
808 	ret = 0;
809 
810 error:
811 	btrfs_free_path(path);
812 	return ret;
813 }
814 
815 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
816 			  struct btrfs_device *device,
817 			  u64 start)
818 {
819 	int ret;
820 	struct btrfs_path *path;
821 	struct btrfs_root *root = device->dev_root;
822 	struct btrfs_key key;
823 	struct btrfs_key found_key;
824 	struct extent_buffer *leaf = NULL;
825 	struct btrfs_dev_extent *extent = NULL;
826 
827 	path = btrfs_alloc_path();
828 	if (!path)
829 		return -ENOMEM;
830 
831 	key.objectid = device->devid;
832 	key.offset = start;
833 	key.type = BTRFS_DEV_EXTENT_KEY;
834 
835 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
836 	if (ret > 0) {
837 		ret = btrfs_previous_item(root, path, key.objectid,
838 					  BTRFS_DEV_EXTENT_KEY);
839 		BUG_ON(ret);
840 		leaf = path->nodes[0];
841 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
842 		extent = btrfs_item_ptr(leaf, path->slots[0],
843 					struct btrfs_dev_extent);
844 		BUG_ON(found_key.offset > start || found_key.offset +
845 		       btrfs_dev_extent_length(leaf, extent) < start);
846 		ret = 0;
847 	} else if (ret == 0) {
848 		leaf = path->nodes[0];
849 		extent = btrfs_item_ptr(leaf, path->slots[0],
850 					struct btrfs_dev_extent);
851 	}
852 	BUG_ON(ret);
853 
854 	if (device->bytes_used > 0)
855 		device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
856 	ret = btrfs_del_item(trans, root, path);
857 	BUG_ON(ret);
858 
859 	btrfs_free_path(path);
860 	return ret;
861 }
862 
863 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
864 			   struct btrfs_device *device,
865 			   u64 chunk_tree, u64 chunk_objectid,
866 			   u64 chunk_offset, u64 start, u64 num_bytes)
867 {
868 	int ret;
869 	struct btrfs_path *path;
870 	struct btrfs_root *root = device->dev_root;
871 	struct btrfs_dev_extent *extent;
872 	struct extent_buffer *leaf;
873 	struct btrfs_key key;
874 
875 	WARN_ON(!device->in_fs_metadata);
876 	path = btrfs_alloc_path();
877 	if (!path)
878 		return -ENOMEM;
879 
880 	key.objectid = device->devid;
881 	key.offset = start;
882 	key.type = BTRFS_DEV_EXTENT_KEY;
883 	ret = btrfs_insert_empty_item(trans, root, path, &key,
884 				      sizeof(*extent));
885 	BUG_ON(ret);
886 
887 	leaf = path->nodes[0];
888 	extent = btrfs_item_ptr(leaf, path->slots[0],
889 				struct btrfs_dev_extent);
890 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
891 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
892 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
893 
894 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
895 		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
896 		    BTRFS_UUID_SIZE);
897 
898 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
899 	btrfs_mark_buffer_dirty(leaf);
900 	btrfs_free_path(path);
901 	return ret;
902 }
903 
904 static noinline int find_next_chunk(struct btrfs_root *root,
905 				    u64 objectid, u64 *offset)
906 {
907 	struct btrfs_path *path;
908 	int ret;
909 	struct btrfs_key key;
910 	struct btrfs_chunk *chunk;
911 	struct btrfs_key found_key;
912 
913 	path = btrfs_alloc_path();
914 	BUG_ON(!path);
915 
916 	key.objectid = objectid;
917 	key.offset = (u64)-1;
918 	key.type = BTRFS_CHUNK_ITEM_KEY;
919 
920 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
921 	if (ret < 0)
922 		goto error;
923 
924 	BUG_ON(ret == 0);
925 
926 	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
927 	if (ret) {
928 		*offset = 0;
929 	} else {
930 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
931 				      path->slots[0]);
932 		if (found_key.objectid != objectid)
933 			*offset = 0;
934 		else {
935 			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
936 					       struct btrfs_chunk);
937 			*offset = found_key.offset +
938 				btrfs_chunk_length(path->nodes[0], chunk);
939 		}
940 	}
941 	ret = 0;
942 error:
943 	btrfs_free_path(path);
944 	return ret;
945 }
946 
947 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
948 {
949 	int ret;
950 	struct btrfs_key key;
951 	struct btrfs_key found_key;
952 	struct btrfs_path *path;
953 
954 	root = root->fs_info->chunk_root;
955 
956 	path = btrfs_alloc_path();
957 	if (!path)
958 		return -ENOMEM;
959 
960 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
961 	key.type = BTRFS_DEV_ITEM_KEY;
962 	key.offset = (u64)-1;
963 
964 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
965 	if (ret < 0)
966 		goto error;
967 
968 	BUG_ON(ret == 0);
969 
970 	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
971 				  BTRFS_DEV_ITEM_KEY);
972 	if (ret) {
973 		*objectid = 1;
974 	} else {
975 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
976 				      path->slots[0]);
977 		*objectid = found_key.offset + 1;
978 	}
979 	ret = 0;
980 error:
981 	btrfs_free_path(path);
982 	return ret;
983 }
984 
985 /*
986  * the device information is stored in the chunk root
987  * the btrfs_device struct should be fully filled in
988  */
989 int btrfs_add_device(struct btrfs_trans_handle *trans,
990 		     struct btrfs_root *root,
991 		     struct btrfs_device *device)
992 {
993 	int ret;
994 	struct btrfs_path *path;
995 	struct btrfs_dev_item *dev_item;
996 	struct extent_buffer *leaf;
997 	struct btrfs_key key;
998 	unsigned long ptr;
999 
1000 	root = root->fs_info->chunk_root;
1001 
1002 	path = btrfs_alloc_path();
1003 	if (!path)
1004 		return -ENOMEM;
1005 
1006 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1007 	key.type = BTRFS_DEV_ITEM_KEY;
1008 	key.offset = device->devid;
1009 
1010 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1011 				      sizeof(*dev_item));
1012 	if (ret)
1013 		goto out;
1014 
1015 	leaf = path->nodes[0];
1016 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1017 
1018 	btrfs_set_device_id(leaf, dev_item, device->devid);
1019 	btrfs_set_device_generation(leaf, dev_item, 0);
1020 	btrfs_set_device_type(leaf, dev_item, device->type);
1021 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1022 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1023 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1024 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1025 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1026 	btrfs_set_device_group(leaf, dev_item, 0);
1027 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1028 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1029 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1030 
1031 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1032 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1033 	ptr = (unsigned long)btrfs_device_fsid(dev_item);
1034 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1035 	btrfs_mark_buffer_dirty(leaf);
1036 
1037 	ret = 0;
1038 out:
1039 	btrfs_free_path(path);
1040 	return ret;
1041 }
1042 
1043 static int btrfs_rm_dev_item(struct btrfs_root *root,
1044 			     struct btrfs_device *device)
1045 {
1046 	int ret;
1047 	struct btrfs_path *path;
1048 	struct btrfs_key key;
1049 	struct btrfs_trans_handle *trans;
1050 
1051 	root = root->fs_info->chunk_root;
1052 
1053 	path = btrfs_alloc_path();
1054 	if (!path)
1055 		return -ENOMEM;
1056 
1057 	trans = btrfs_start_transaction(root, 1);
1058 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1059 	key.type = BTRFS_DEV_ITEM_KEY;
1060 	key.offset = device->devid;
1061 	lock_chunks(root);
1062 
1063 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1064 	if (ret < 0)
1065 		goto out;
1066 
1067 	if (ret > 0) {
1068 		ret = -ENOENT;
1069 		goto out;
1070 	}
1071 
1072 	ret = btrfs_del_item(trans, root, path);
1073 	if (ret)
1074 		goto out;
1075 out:
1076 	btrfs_free_path(path);
1077 	unlock_chunks(root);
1078 	btrfs_commit_transaction(trans, root);
1079 	return ret;
1080 }
1081 
1082 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1083 {
1084 	struct btrfs_device *device;
1085 	struct btrfs_device *next_device;
1086 	struct block_device *bdev;
1087 	struct buffer_head *bh = NULL;
1088 	struct btrfs_super_block *disk_super;
1089 	u64 all_avail;
1090 	u64 devid;
1091 	u64 num_devices;
1092 	u8 *dev_uuid;
1093 	int ret = 0;
1094 
1095 	mutex_lock(&uuid_mutex);
1096 	mutex_lock(&root->fs_info->volume_mutex);
1097 
1098 	all_avail = root->fs_info->avail_data_alloc_bits |
1099 		root->fs_info->avail_system_alloc_bits |
1100 		root->fs_info->avail_metadata_alloc_bits;
1101 
1102 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1103 	    root->fs_info->fs_devices->rw_devices <= 4) {
1104 		printk(KERN_ERR "btrfs: unable to go below four devices "
1105 		       "on raid10\n");
1106 		ret = -EINVAL;
1107 		goto out;
1108 	}
1109 
1110 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1111 	    root->fs_info->fs_devices->rw_devices <= 2) {
1112 		printk(KERN_ERR "btrfs: unable to go below two "
1113 		       "devices on raid1\n");
1114 		ret = -EINVAL;
1115 		goto out;
1116 	}
1117 
1118 	if (strcmp(device_path, "missing") == 0) {
1119 		struct list_head *devices;
1120 		struct btrfs_device *tmp;
1121 
1122 		device = NULL;
1123 		devices = &root->fs_info->fs_devices->devices;
1124 		list_for_each_entry(tmp, devices, dev_list) {
1125 			if (tmp->in_fs_metadata && !tmp->bdev) {
1126 				device = tmp;
1127 				break;
1128 			}
1129 		}
1130 		bdev = NULL;
1131 		bh = NULL;
1132 		disk_super = NULL;
1133 		if (!device) {
1134 			printk(KERN_ERR "btrfs: no missing devices found to "
1135 			       "remove\n");
1136 			goto out;
1137 		}
1138 	} else {
1139 		bdev = open_bdev_exclusive(device_path, FMODE_READ,
1140 				      root->fs_info->bdev_holder);
1141 		if (IS_ERR(bdev)) {
1142 			ret = PTR_ERR(bdev);
1143 			goto out;
1144 		}
1145 
1146 		set_blocksize(bdev, 4096);
1147 		bh = btrfs_read_dev_super(bdev);
1148 		if (!bh) {
1149 			ret = -EIO;
1150 			goto error_close;
1151 		}
1152 		disk_super = (struct btrfs_super_block *)bh->b_data;
1153 		devid = le64_to_cpu(disk_super->dev_item.devid);
1154 		dev_uuid = disk_super->dev_item.uuid;
1155 		device = btrfs_find_device(root, devid, dev_uuid,
1156 					   disk_super->fsid);
1157 		if (!device) {
1158 			ret = -ENOENT;
1159 			goto error_brelse;
1160 		}
1161 	}
1162 
1163 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1164 		printk(KERN_ERR "btrfs: unable to remove the only writeable "
1165 		       "device\n");
1166 		ret = -EINVAL;
1167 		goto error_brelse;
1168 	}
1169 
1170 	if (device->writeable) {
1171 		list_del_init(&device->dev_alloc_list);
1172 		root->fs_info->fs_devices->rw_devices--;
1173 	}
1174 
1175 	ret = btrfs_shrink_device(device, 0);
1176 	if (ret)
1177 		goto error_brelse;
1178 
1179 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1180 	if (ret)
1181 		goto error_brelse;
1182 
1183 	device->in_fs_metadata = 0;
1184 	list_del_init(&device->dev_list);
1185 	device->fs_devices->num_devices--;
1186 
1187 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1188 				 struct btrfs_device, dev_list);
1189 	if (device->bdev == root->fs_info->sb->s_bdev)
1190 		root->fs_info->sb->s_bdev = next_device->bdev;
1191 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1192 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1193 
1194 	if (device->bdev) {
1195 		close_bdev_exclusive(device->bdev, device->mode);
1196 		device->bdev = NULL;
1197 		device->fs_devices->open_devices--;
1198 	}
1199 
1200 	num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1201 	btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1202 
1203 	if (device->fs_devices->open_devices == 0) {
1204 		struct btrfs_fs_devices *fs_devices;
1205 		fs_devices = root->fs_info->fs_devices;
1206 		while (fs_devices) {
1207 			if (fs_devices->seed == device->fs_devices)
1208 				break;
1209 			fs_devices = fs_devices->seed;
1210 		}
1211 		fs_devices->seed = device->fs_devices->seed;
1212 		device->fs_devices->seed = NULL;
1213 		__btrfs_close_devices(device->fs_devices);
1214 		free_fs_devices(device->fs_devices);
1215 	}
1216 
1217 	/*
1218 	 * at this point, the device is zero sized.  We want to
1219 	 * remove it from the devices list and zero out the old super
1220 	 */
1221 	if (device->writeable) {
1222 		/* make sure this device isn't detected as part of
1223 		 * the FS anymore
1224 		 */
1225 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1226 		set_buffer_dirty(bh);
1227 		sync_dirty_buffer(bh);
1228 	}
1229 
1230 	kfree(device->name);
1231 	kfree(device);
1232 	ret = 0;
1233 
1234 error_brelse:
1235 	brelse(bh);
1236 error_close:
1237 	if (bdev)
1238 		close_bdev_exclusive(bdev, FMODE_READ);
1239 out:
1240 	mutex_unlock(&root->fs_info->volume_mutex);
1241 	mutex_unlock(&uuid_mutex);
1242 	return ret;
1243 }
1244 
1245 /*
1246  * does all the dirty work required for changing file system's UUID.
1247  */
1248 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1249 				struct btrfs_root *root)
1250 {
1251 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1252 	struct btrfs_fs_devices *old_devices;
1253 	struct btrfs_fs_devices *seed_devices;
1254 	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1255 	struct btrfs_device *device;
1256 	u64 super_flags;
1257 
1258 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1259 	if (!fs_devices->seeding)
1260 		return -EINVAL;
1261 
1262 	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1263 	if (!seed_devices)
1264 		return -ENOMEM;
1265 
1266 	old_devices = clone_fs_devices(fs_devices);
1267 	if (IS_ERR(old_devices)) {
1268 		kfree(seed_devices);
1269 		return PTR_ERR(old_devices);
1270 	}
1271 
1272 	list_add(&old_devices->list, &fs_uuids);
1273 
1274 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1275 	seed_devices->opened = 1;
1276 	INIT_LIST_HEAD(&seed_devices->devices);
1277 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1278 	list_splice_init(&fs_devices->devices, &seed_devices->devices);
1279 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1280 	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1281 		device->fs_devices = seed_devices;
1282 	}
1283 
1284 	fs_devices->seeding = 0;
1285 	fs_devices->num_devices = 0;
1286 	fs_devices->open_devices = 0;
1287 	fs_devices->seed = seed_devices;
1288 
1289 	generate_random_uuid(fs_devices->fsid);
1290 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1291 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1292 	super_flags = btrfs_super_flags(disk_super) &
1293 		      ~BTRFS_SUPER_FLAG_SEEDING;
1294 	btrfs_set_super_flags(disk_super, super_flags);
1295 
1296 	return 0;
1297 }
1298 
1299 /*
1300  * strore the expected generation for seed devices in device items.
1301  */
1302 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1303 			       struct btrfs_root *root)
1304 {
1305 	struct btrfs_path *path;
1306 	struct extent_buffer *leaf;
1307 	struct btrfs_dev_item *dev_item;
1308 	struct btrfs_device *device;
1309 	struct btrfs_key key;
1310 	u8 fs_uuid[BTRFS_UUID_SIZE];
1311 	u8 dev_uuid[BTRFS_UUID_SIZE];
1312 	u64 devid;
1313 	int ret;
1314 
1315 	path = btrfs_alloc_path();
1316 	if (!path)
1317 		return -ENOMEM;
1318 
1319 	root = root->fs_info->chunk_root;
1320 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1321 	key.offset = 0;
1322 	key.type = BTRFS_DEV_ITEM_KEY;
1323 
1324 	while (1) {
1325 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1326 		if (ret < 0)
1327 			goto error;
1328 
1329 		leaf = path->nodes[0];
1330 next_slot:
1331 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1332 			ret = btrfs_next_leaf(root, path);
1333 			if (ret > 0)
1334 				break;
1335 			if (ret < 0)
1336 				goto error;
1337 			leaf = path->nodes[0];
1338 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1339 			btrfs_release_path(root, path);
1340 			continue;
1341 		}
1342 
1343 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1344 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1345 		    key.type != BTRFS_DEV_ITEM_KEY)
1346 			break;
1347 
1348 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
1349 					  struct btrfs_dev_item);
1350 		devid = btrfs_device_id(leaf, dev_item);
1351 		read_extent_buffer(leaf, dev_uuid,
1352 				   (unsigned long)btrfs_device_uuid(dev_item),
1353 				   BTRFS_UUID_SIZE);
1354 		read_extent_buffer(leaf, fs_uuid,
1355 				   (unsigned long)btrfs_device_fsid(dev_item),
1356 				   BTRFS_UUID_SIZE);
1357 		device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1358 		BUG_ON(!device);
1359 
1360 		if (device->fs_devices->seeding) {
1361 			btrfs_set_device_generation(leaf, dev_item,
1362 						    device->generation);
1363 			btrfs_mark_buffer_dirty(leaf);
1364 		}
1365 
1366 		path->slots[0]++;
1367 		goto next_slot;
1368 	}
1369 	ret = 0;
1370 error:
1371 	btrfs_free_path(path);
1372 	return ret;
1373 }
1374 
1375 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1376 {
1377 	struct btrfs_trans_handle *trans;
1378 	struct btrfs_device *device;
1379 	struct block_device *bdev;
1380 	struct list_head *devices;
1381 	struct super_block *sb = root->fs_info->sb;
1382 	u64 total_bytes;
1383 	int seeding_dev = 0;
1384 	int ret = 0;
1385 
1386 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1387 		return -EINVAL;
1388 
1389 	bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
1390 	if (!bdev)
1391 		return -EIO;
1392 
1393 	if (root->fs_info->fs_devices->seeding) {
1394 		seeding_dev = 1;
1395 		down_write(&sb->s_umount);
1396 		mutex_lock(&uuid_mutex);
1397 	}
1398 
1399 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
1400 	mutex_lock(&root->fs_info->volume_mutex);
1401 
1402 	devices = &root->fs_info->fs_devices->devices;
1403 	list_for_each_entry(device, devices, dev_list) {
1404 		if (device->bdev == bdev) {
1405 			ret = -EEXIST;
1406 			goto error;
1407 		}
1408 	}
1409 
1410 	device = kzalloc(sizeof(*device), GFP_NOFS);
1411 	if (!device) {
1412 		/* we can safely leave the fs_devices entry around */
1413 		ret = -ENOMEM;
1414 		goto error;
1415 	}
1416 
1417 	device->name = kstrdup(device_path, GFP_NOFS);
1418 	if (!device->name) {
1419 		kfree(device);
1420 		ret = -ENOMEM;
1421 		goto error;
1422 	}
1423 
1424 	ret = find_next_devid(root, &device->devid);
1425 	if (ret) {
1426 		kfree(device);
1427 		goto error;
1428 	}
1429 
1430 	trans = btrfs_start_transaction(root, 1);
1431 	lock_chunks(root);
1432 
1433 	device->barriers = 1;
1434 	device->writeable = 1;
1435 	device->work.func = pending_bios_fn;
1436 	generate_random_uuid(device->uuid);
1437 	spin_lock_init(&device->io_lock);
1438 	device->generation = trans->transid;
1439 	device->io_width = root->sectorsize;
1440 	device->io_align = root->sectorsize;
1441 	device->sector_size = root->sectorsize;
1442 	device->total_bytes = i_size_read(bdev->bd_inode);
1443 	device->disk_total_bytes = device->total_bytes;
1444 	device->dev_root = root->fs_info->dev_root;
1445 	device->bdev = bdev;
1446 	device->in_fs_metadata = 1;
1447 	device->mode = 0;
1448 	set_blocksize(device->bdev, 4096);
1449 
1450 	if (seeding_dev) {
1451 		sb->s_flags &= ~MS_RDONLY;
1452 		ret = btrfs_prepare_sprout(trans, root);
1453 		BUG_ON(ret);
1454 	}
1455 
1456 	device->fs_devices = root->fs_info->fs_devices;
1457 	list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1458 	list_add(&device->dev_alloc_list,
1459 		 &root->fs_info->fs_devices->alloc_list);
1460 	root->fs_info->fs_devices->num_devices++;
1461 	root->fs_info->fs_devices->open_devices++;
1462 	root->fs_info->fs_devices->rw_devices++;
1463 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1464 
1465 	total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1466 	btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1467 				    total_bytes + device->total_bytes);
1468 
1469 	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1470 	btrfs_set_super_num_devices(&root->fs_info->super_copy,
1471 				    total_bytes + 1);
1472 
1473 	if (seeding_dev) {
1474 		ret = init_first_rw_device(trans, root, device);
1475 		BUG_ON(ret);
1476 		ret = btrfs_finish_sprout(trans, root);
1477 		BUG_ON(ret);
1478 	} else {
1479 		ret = btrfs_add_device(trans, root, device);
1480 	}
1481 
1482 	/*
1483 	 * we've got more storage, clear any full flags on the space
1484 	 * infos
1485 	 */
1486 	btrfs_clear_space_info_full(root->fs_info);
1487 
1488 	unlock_chunks(root);
1489 	btrfs_commit_transaction(trans, root);
1490 
1491 	if (seeding_dev) {
1492 		mutex_unlock(&uuid_mutex);
1493 		up_write(&sb->s_umount);
1494 
1495 		ret = btrfs_relocate_sys_chunks(root);
1496 		BUG_ON(ret);
1497 	}
1498 out:
1499 	mutex_unlock(&root->fs_info->volume_mutex);
1500 	return ret;
1501 error:
1502 	close_bdev_exclusive(bdev, 0);
1503 	if (seeding_dev) {
1504 		mutex_unlock(&uuid_mutex);
1505 		up_write(&sb->s_umount);
1506 	}
1507 	goto out;
1508 }
1509 
1510 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1511 					struct btrfs_device *device)
1512 {
1513 	int ret;
1514 	struct btrfs_path *path;
1515 	struct btrfs_root *root;
1516 	struct btrfs_dev_item *dev_item;
1517 	struct extent_buffer *leaf;
1518 	struct btrfs_key key;
1519 
1520 	root = device->dev_root->fs_info->chunk_root;
1521 
1522 	path = btrfs_alloc_path();
1523 	if (!path)
1524 		return -ENOMEM;
1525 
1526 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1527 	key.type = BTRFS_DEV_ITEM_KEY;
1528 	key.offset = device->devid;
1529 
1530 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1531 	if (ret < 0)
1532 		goto out;
1533 
1534 	if (ret > 0) {
1535 		ret = -ENOENT;
1536 		goto out;
1537 	}
1538 
1539 	leaf = path->nodes[0];
1540 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1541 
1542 	btrfs_set_device_id(leaf, dev_item, device->devid);
1543 	btrfs_set_device_type(leaf, dev_item, device->type);
1544 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1545 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1546 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1547 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1548 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1549 	btrfs_mark_buffer_dirty(leaf);
1550 
1551 out:
1552 	btrfs_free_path(path);
1553 	return ret;
1554 }
1555 
1556 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1557 		      struct btrfs_device *device, u64 new_size)
1558 {
1559 	struct btrfs_super_block *super_copy =
1560 		&device->dev_root->fs_info->super_copy;
1561 	u64 old_total = btrfs_super_total_bytes(super_copy);
1562 	u64 diff = new_size - device->total_bytes;
1563 
1564 	if (!device->writeable)
1565 		return -EACCES;
1566 	if (new_size <= device->total_bytes)
1567 		return -EINVAL;
1568 
1569 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
1570 	device->fs_devices->total_rw_bytes += diff;
1571 
1572 	device->total_bytes = new_size;
1573 	btrfs_clear_space_info_full(device->dev_root->fs_info);
1574 
1575 	return btrfs_update_device(trans, device);
1576 }
1577 
1578 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1579 		      struct btrfs_device *device, u64 new_size)
1580 {
1581 	int ret;
1582 	lock_chunks(device->dev_root);
1583 	ret = __btrfs_grow_device(trans, device, new_size);
1584 	unlock_chunks(device->dev_root);
1585 	return ret;
1586 }
1587 
1588 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1589 			    struct btrfs_root *root,
1590 			    u64 chunk_tree, u64 chunk_objectid,
1591 			    u64 chunk_offset)
1592 {
1593 	int ret;
1594 	struct btrfs_path *path;
1595 	struct btrfs_key key;
1596 
1597 	root = root->fs_info->chunk_root;
1598 	path = btrfs_alloc_path();
1599 	if (!path)
1600 		return -ENOMEM;
1601 
1602 	key.objectid = chunk_objectid;
1603 	key.offset = chunk_offset;
1604 	key.type = BTRFS_CHUNK_ITEM_KEY;
1605 
1606 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1607 	BUG_ON(ret);
1608 
1609 	ret = btrfs_del_item(trans, root, path);
1610 	BUG_ON(ret);
1611 
1612 	btrfs_free_path(path);
1613 	return 0;
1614 }
1615 
1616 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1617 			chunk_offset)
1618 {
1619 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1620 	struct btrfs_disk_key *disk_key;
1621 	struct btrfs_chunk *chunk;
1622 	u8 *ptr;
1623 	int ret = 0;
1624 	u32 num_stripes;
1625 	u32 array_size;
1626 	u32 len = 0;
1627 	u32 cur;
1628 	struct btrfs_key key;
1629 
1630 	array_size = btrfs_super_sys_array_size(super_copy);
1631 
1632 	ptr = super_copy->sys_chunk_array;
1633 	cur = 0;
1634 
1635 	while (cur < array_size) {
1636 		disk_key = (struct btrfs_disk_key *)ptr;
1637 		btrfs_disk_key_to_cpu(&key, disk_key);
1638 
1639 		len = sizeof(*disk_key);
1640 
1641 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1642 			chunk = (struct btrfs_chunk *)(ptr + len);
1643 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1644 			len += btrfs_chunk_item_size(num_stripes);
1645 		} else {
1646 			ret = -EIO;
1647 			break;
1648 		}
1649 		if (key.objectid == chunk_objectid &&
1650 		    key.offset == chunk_offset) {
1651 			memmove(ptr, ptr + len, array_size - (cur + len));
1652 			array_size -= len;
1653 			btrfs_set_super_sys_array_size(super_copy, array_size);
1654 		} else {
1655 			ptr += len;
1656 			cur += len;
1657 		}
1658 	}
1659 	return ret;
1660 }
1661 
1662 static int btrfs_relocate_chunk(struct btrfs_root *root,
1663 			 u64 chunk_tree, u64 chunk_objectid,
1664 			 u64 chunk_offset)
1665 {
1666 	struct extent_map_tree *em_tree;
1667 	struct btrfs_root *extent_root;
1668 	struct btrfs_trans_handle *trans;
1669 	struct extent_map *em;
1670 	struct map_lookup *map;
1671 	int ret;
1672 	int i;
1673 
1674 	printk(KERN_INFO "btrfs relocating chunk %llu\n",
1675 	       (unsigned long long)chunk_offset);
1676 	root = root->fs_info->chunk_root;
1677 	extent_root = root->fs_info->extent_root;
1678 	em_tree = &root->fs_info->mapping_tree.map_tree;
1679 
1680 	/* step one, relocate all the extents inside this chunk */
1681 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1682 	BUG_ON(ret);
1683 
1684 	trans = btrfs_start_transaction(root, 1);
1685 	BUG_ON(!trans);
1686 
1687 	lock_chunks(root);
1688 
1689 	/*
1690 	 * step two, delete the device extents and the
1691 	 * chunk tree entries
1692 	 */
1693 	spin_lock(&em_tree->lock);
1694 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1695 	spin_unlock(&em_tree->lock);
1696 
1697 	BUG_ON(em->start > chunk_offset ||
1698 	       em->start + em->len < chunk_offset);
1699 	map = (struct map_lookup *)em->bdev;
1700 
1701 	for (i = 0; i < map->num_stripes; i++) {
1702 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1703 					    map->stripes[i].physical);
1704 		BUG_ON(ret);
1705 
1706 		if (map->stripes[i].dev) {
1707 			ret = btrfs_update_device(trans, map->stripes[i].dev);
1708 			BUG_ON(ret);
1709 		}
1710 	}
1711 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1712 			       chunk_offset);
1713 
1714 	BUG_ON(ret);
1715 
1716 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1717 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1718 		BUG_ON(ret);
1719 	}
1720 
1721 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1722 	BUG_ON(ret);
1723 
1724 	spin_lock(&em_tree->lock);
1725 	remove_extent_mapping(em_tree, em);
1726 	spin_unlock(&em_tree->lock);
1727 
1728 	kfree(map);
1729 	em->bdev = NULL;
1730 
1731 	/* once for the tree */
1732 	free_extent_map(em);
1733 	/* once for us */
1734 	free_extent_map(em);
1735 
1736 	unlock_chunks(root);
1737 	btrfs_end_transaction(trans, root);
1738 	return 0;
1739 }
1740 
1741 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1742 {
1743 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1744 	struct btrfs_path *path;
1745 	struct extent_buffer *leaf;
1746 	struct btrfs_chunk *chunk;
1747 	struct btrfs_key key;
1748 	struct btrfs_key found_key;
1749 	u64 chunk_tree = chunk_root->root_key.objectid;
1750 	u64 chunk_type;
1751 	int ret;
1752 
1753 	path = btrfs_alloc_path();
1754 	if (!path)
1755 		return -ENOMEM;
1756 
1757 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1758 	key.offset = (u64)-1;
1759 	key.type = BTRFS_CHUNK_ITEM_KEY;
1760 
1761 	while (1) {
1762 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1763 		if (ret < 0)
1764 			goto error;
1765 		BUG_ON(ret == 0);
1766 
1767 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
1768 					  key.type);
1769 		if (ret < 0)
1770 			goto error;
1771 		if (ret > 0)
1772 			break;
1773 
1774 		leaf = path->nodes[0];
1775 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1776 
1777 		chunk = btrfs_item_ptr(leaf, path->slots[0],
1778 				       struct btrfs_chunk);
1779 		chunk_type = btrfs_chunk_type(leaf, chunk);
1780 		btrfs_release_path(chunk_root, path);
1781 
1782 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1783 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1784 						   found_key.objectid,
1785 						   found_key.offset);
1786 			BUG_ON(ret);
1787 		}
1788 
1789 		if (found_key.offset == 0)
1790 			break;
1791 		key.offset = found_key.offset - 1;
1792 	}
1793 	ret = 0;
1794 error:
1795 	btrfs_free_path(path);
1796 	return ret;
1797 }
1798 
1799 static u64 div_factor(u64 num, int factor)
1800 {
1801 	if (factor == 10)
1802 		return num;
1803 	num *= factor;
1804 	do_div(num, 10);
1805 	return num;
1806 }
1807 
1808 int btrfs_balance(struct btrfs_root *dev_root)
1809 {
1810 	int ret;
1811 	struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1812 	struct btrfs_device *device;
1813 	u64 old_size;
1814 	u64 size_to_free;
1815 	struct btrfs_path *path;
1816 	struct btrfs_key key;
1817 	struct btrfs_chunk *chunk;
1818 	struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1819 	struct btrfs_trans_handle *trans;
1820 	struct btrfs_key found_key;
1821 
1822 	if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1823 		return -EROFS;
1824 
1825 	mutex_lock(&dev_root->fs_info->volume_mutex);
1826 	dev_root = dev_root->fs_info->dev_root;
1827 
1828 	/* step one make some room on all the devices */
1829 	list_for_each_entry(device, devices, dev_list) {
1830 		old_size = device->total_bytes;
1831 		size_to_free = div_factor(old_size, 1);
1832 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1833 		if (!device->writeable ||
1834 		    device->total_bytes - device->bytes_used > size_to_free)
1835 			continue;
1836 
1837 		ret = btrfs_shrink_device(device, old_size - size_to_free);
1838 		BUG_ON(ret);
1839 
1840 		trans = btrfs_start_transaction(dev_root, 1);
1841 		BUG_ON(!trans);
1842 
1843 		ret = btrfs_grow_device(trans, device, old_size);
1844 		BUG_ON(ret);
1845 
1846 		btrfs_end_transaction(trans, dev_root);
1847 	}
1848 
1849 	/* step two, relocate all the chunks */
1850 	path = btrfs_alloc_path();
1851 	BUG_ON(!path);
1852 
1853 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1854 	key.offset = (u64)-1;
1855 	key.type = BTRFS_CHUNK_ITEM_KEY;
1856 
1857 	while (1) {
1858 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1859 		if (ret < 0)
1860 			goto error;
1861 
1862 		/*
1863 		 * this shouldn't happen, it means the last relocate
1864 		 * failed
1865 		 */
1866 		if (ret == 0)
1867 			break;
1868 
1869 		ret = btrfs_previous_item(chunk_root, path, 0,
1870 					  BTRFS_CHUNK_ITEM_KEY);
1871 		if (ret)
1872 			break;
1873 
1874 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1875 				      path->slots[0]);
1876 		if (found_key.objectid != key.objectid)
1877 			break;
1878 
1879 		chunk = btrfs_item_ptr(path->nodes[0],
1880 				       path->slots[0],
1881 				       struct btrfs_chunk);
1882 		key.offset = found_key.offset;
1883 		/* chunk zero is special */
1884 		if (key.offset == 0)
1885 			break;
1886 
1887 		btrfs_release_path(chunk_root, path);
1888 		ret = btrfs_relocate_chunk(chunk_root,
1889 					   chunk_root->root_key.objectid,
1890 					   found_key.objectid,
1891 					   found_key.offset);
1892 		BUG_ON(ret);
1893 	}
1894 	ret = 0;
1895 error:
1896 	btrfs_free_path(path);
1897 	mutex_unlock(&dev_root->fs_info->volume_mutex);
1898 	return ret;
1899 }
1900 
1901 /*
1902  * shrinking a device means finding all of the device extents past
1903  * the new size, and then following the back refs to the chunks.
1904  * The chunk relocation code actually frees the device extent
1905  */
1906 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1907 {
1908 	struct btrfs_trans_handle *trans;
1909 	struct btrfs_root *root = device->dev_root;
1910 	struct btrfs_dev_extent *dev_extent = NULL;
1911 	struct btrfs_path *path;
1912 	u64 length;
1913 	u64 chunk_tree;
1914 	u64 chunk_objectid;
1915 	u64 chunk_offset;
1916 	int ret;
1917 	int slot;
1918 	struct extent_buffer *l;
1919 	struct btrfs_key key;
1920 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1921 	u64 old_total = btrfs_super_total_bytes(super_copy);
1922 	u64 diff = device->total_bytes - new_size;
1923 
1924 	if (new_size >= device->total_bytes)
1925 		return -EINVAL;
1926 
1927 	path = btrfs_alloc_path();
1928 	if (!path)
1929 		return -ENOMEM;
1930 
1931 	trans = btrfs_start_transaction(root, 1);
1932 	if (!trans) {
1933 		ret = -ENOMEM;
1934 		goto done;
1935 	}
1936 
1937 	path->reada = 2;
1938 
1939 	lock_chunks(root);
1940 
1941 	device->total_bytes = new_size;
1942 	if (device->writeable)
1943 		device->fs_devices->total_rw_bytes -= diff;
1944 	unlock_chunks(root);
1945 	btrfs_end_transaction(trans, root);
1946 
1947 	key.objectid = device->devid;
1948 	key.offset = (u64)-1;
1949 	key.type = BTRFS_DEV_EXTENT_KEY;
1950 
1951 	while (1) {
1952 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1953 		if (ret < 0)
1954 			goto done;
1955 
1956 		ret = btrfs_previous_item(root, path, 0, key.type);
1957 		if (ret < 0)
1958 			goto done;
1959 		if (ret) {
1960 			ret = 0;
1961 			goto done;
1962 		}
1963 
1964 		l = path->nodes[0];
1965 		slot = path->slots[0];
1966 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1967 
1968 		if (key.objectid != device->devid)
1969 			goto done;
1970 
1971 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1972 		length = btrfs_dev_extent_length(l, dev_extent);
1973 
1974 		if (key.offset + length <= new_size)
1975 			break;
1976 
1977 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1978 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1979 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1980 		btrfs_release_path(root, path);
1981 
1982 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
1983 					   chunk_offset);
1984 		if (ret)
1985 			goto done;
1986 	}
1987 
1988 	/* Shrinking succeeded, else we would be at "done". */
1989 	trans = btrfs_start_transaction(root, 1);
1990 	if (!trans) {
1991 		ret = -ENOMEM;
1992 		goto done;
1993 	}
1994 	lock_chunks(root);
1995 
1996 	device->disk_total_bytes = new_size;
1997 	/* Now btrfs_update_device() will change the on-disk size. */
1998 	ret = btrfs_update_device(trans, device);
1999 	if (ret) {
2000 		unlock_chunks(root);
2001 		btrfs_end_transaction(trans, root);
2002 		goto done;
2003 	}
2004 	WARN_ON(diff > old_total);
2005 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
2006 	unlock_chunks(root);
2007 	btrfs_end_transaction(trans, root);
2008 done:
2009 	btrfs_free_path(path);
2010 	return ret;
2011 }
2012 
2013 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2014 			   struct btrfs_root *root,
2015 			   struct btrfs_key *key,
2016 			   struct btrfs_chunk *chunk, int item_size)
2017 {
2018 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2019 	struct btrfs_disk_key disk_key;
2020 	u32 array_size;
2021 	u8 *ptr;
2022 
2023 	array_size = btrfs_super_sys_array_size(super_copy);
2024 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2025 		return -EFBIG;
2026 
2027 	ptr = super_copy->sys_chunk_array + array_size;
2028 	btrfs_cpu_key_to_disk(&disk_key, key);
2029 	memcpy(ptr, &disk_key, sizeof(disk_key));
2030 	ptr += sizeof(disk_key);
2031 	memcpy(ptr, chunk, item_size);
2032 	item_size += sizeof(disk_key);
2033 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2034 	return 0;
2035 }
2036 
2037 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2038 					int num_stripes, int sub_stripes)
2039 {
2040 	if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2041 		return calc_size;
2042 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2043 		return calc_size * (num_stripes / sub_stripes);
2044 	else
2045 		return calc_size * num_stripes;
2046 }
2047 
2048 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2049 			       struct btrfs_root *extent_root,
2050 			       struct map_lookup **map_ret,
2051 			       u64 *num_bytes, u64 *stripe_size,
2052 			       u64 start, u64 type)
2053 {
2054 	struct btrfs_fs_info *info = extent_root->fs_info;
2055 	struct btrfs_device *device = NULL;
2056 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
2057 	struct list_head *cur;
2058 	struct map_lookup *map = NULL;
2059 	struct extent_map_tree *em_tree;
2060 	struct extent_map *em;
2061 	struct list_head private_devs;
2062 	int min_stripe_size = 1 * 1024 * 1024;
2063 	u64 calc_size = 1024 * 1024 * 1024;
2064 	u64 max_chunk_size = calc_size;
2065 	u64 min_free;
2066 	u64 avail;
2067 	u64 max_avail = 0;
2068 	u64 dev_offset;
2069 	int num_stripes = 1;
2070 	int min_stripes = 1;
2071 	int sub_stripes = 0;
2072 	int looped = 0;
2073 	int ret;
2074 	int index;
2075 	int stripe_len = 64 * 1024;
2076 
2077 	if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2078 	    (type & BTRFS_BLOCK_GROUP_DUP)) {
2079 		WARN_ON(1);
2080 		type &= ~BTRFS_BLOCK_GROUP_DUP;
2081 	}
2082 	if (list_empty(&fs_devices->alloc_list))
2083 		return -ENOSPC;
2084 
2085 	if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2086 		num_stripes = fs_devices->rw_devices;
2087 		min_stripes = 2;
2088 	}
2089 	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2090 		num_stripes = 2;
2091 		min_stripes = 2;
2092 	}
2093 	if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2094 		num_stripes = min_t(u64, 2, fs_devices->rw_devices);
2095 		if (num_stripes < 2)
2096 			return -ENOSPC;
2097 		min_stripes = 2;
2098 	}
2099 	if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2100 		num_stripes = fs_devices->rw_devices;
2101 		if (num_stripes < 4)
2102 			return -ENOSPC;
2103 		num_stripes &= ~(u32)1;
2104 		sub_stripes = 2;
2105 		min_stripes = 4;
2106 	}
2107 
2108 	if (type & BTRFS_BLOCK_GROUP_DATA) {
2109 		max_chunk_size = 10 * calc_size;
2110 		min_stripe_size = 64 * 1024 * 1024;
2111 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2112 		max_chunk_size = 4 * calc_size;
2113 		min_stripe_size = 32 * 1024 * 1024;
2114 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2115 		calc_size = 8 * 1024 * 1024;
2116 		max_chunk_size = calc_size * 2;
2117 		min_stripe_size = 1 * 1024 * 1024;
2118 	}
2119 
2120 	/* we don't want a chunk larger than 10% of writeable space */
2121 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2122 			     max_chunk_size);
2123 
2124 again:
2125 	if (!map || map->num_stripes != num_stripes) {
2126 		kfree(map);
2127 		map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2128 		if (!map)
2129 			return -ENOMEM;
2130 		map->num_stripes = num_stripes;
2131 	}
2132 
2133 	if (calc_size * num_stripes > max_chunk_size) {
2134 		calc_size = max_chunk_size;
2135 		do_div(calc_size, num_stripes);
2136 		do_div(calc_size, stripe_len);
2137 		calc_size *= stripe_len;
2138 	}
2139 	/* we don't want tiny stripes */
2140 	calc_size = max_t(u64, min_stripe_size, calc_size);
2141 
2142 	do_div(calc_size, stripe_len);
2143 	calc_size *= stripe_len;
2144 
2145 	cur = fs_devices->alloc_list.next;
2146 	index = 0;
2147 
2148 	if (type & BTRFS_BLOCK_GROUP_DUP)
2149 		min_free = calc_size * 2;
2150 	else
2151 		min_free = calc_size;
2152 
2153 	/*
2154 	 * we add 1MB because we never use the first 1MB of the device, unless
2155 	 * we've looped, then we are likely allocating the maximum amount of
2156 	 * space left already
2157 	 */
2158 	if (!looped)
2159 		min_free += 1024 * 1024;
2160 
2161 	INIT_LIST_HEAD(&private_devs);
2162 	while (index < num_stripes) {
2163 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2164 		BUG_ON(!device->writeable);
2165 		if (device->total_bytes > device->bytes_used)
2166 			avail = device->total_bytes - device->bytes_used;
2167 		else
2168 			avail = 0;
2169 		cur = cur->next;
2170 
2171 		if (device->in_fs_metadata && avail >= min_free) {
2172 			ret = find_free_dev_extent(trans, device,
2173 						   min_free, &dev_offset);
2174 			if (ret == 0) {
2175 				list_move_tail(&device->dev_alloc_list,
2176 					       &private_devs);
2177 				map->stripes[index].dev = device;
2178 				map->stripes[index].physical = dev_offset;
2179 				index++;
2180 				if (type & BTRFS_BLOCK_GROUP_DUP) {
2181 					map->stripes[index].dev = device;
2182 					map->stripes[index].physical =
2183 						dev_offset + calc_size;
2184 					index++;
2185 				}
2186 			}
2187 		} else if (device->in_fs_metadata && avail > max_avail)
2188 			max_avail = avail;
2189 		if (cur == &fs_devices->alloc_list)
2190 			break;
2191 	}
2192 	list_splice(&private_devs, &fs_devices->alloc_list);
2193 	if (index < num_stripes) {
2194 		if (index >= min_stripes) {
2195 			num_stripes = index;
2196 			if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2197 				num_stripes /= sub_stripes;
2198 				num_stripes *= sub_stripes;
2199 			}
2200 			looped = 1;
2201 			goto again;
2202 		}
2203 		if (!looped && max_avail > 0) {
2204 			looped = 1;
2205 			calc_size = max_avail;
2206 			goto again;
2207 		}
2208 		kfree(map);
2209 		return -ENOSPC;
2210 	}
2211 	map->sector_size = extent_root->sectorsize;
2212 	map->stripe_len = stripe_len;
2213 	map->io_align = stripe_len;
2214 	map->io_width = stripe_len;
2215 	map->type = type;
2216 	map->num_stripes = num_stripes;
2217 	map->sub_stripes = sub_stripes;
2218 
2219 	*map_ret = map;
2220 	*stripe_size = calc_size;
2221 	*num_bytes = chunk_bytes_by_type(type, calc_size,
2222 					 num_stripes, sub_stripes);
2223 
2224 	em = alloc_extent_map(GFP_NOFS);
2225 	if (!em) {
2226 		kfree(map);
2227 		return -ENOMEM;
2228 	}
2229 	em->bdev = (struct block_device *)map;
2230 	em->start = start;
2231 	em->len = *num_bytes;
2232 	em->block_start = 0;
2233 	em->block_len = em->len;
2234 
2235 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2236 	spin_lock(&em_tree->lock);
2237 	ret = add_extent_mapping(em_tree, em);
2238 	spin_unlock(&em_tree->lock);
2239 	BUG_ON(ret);
2240 	free_extent_map(em);
2241 
2242 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
2243 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2244 				     start, *num_bytes);
2245 	BUG_ON(ret);
2246 
2247 	index = 0;
2248 	while (index < map->num_stripes) {
2249 		device = map->stripes[index].dev;
2250 		dev_offset = map->stripes[index].physical;
2251 
2252 		ret = btrfs_alloc_dev_extent(trans, device,
2253 				info->chunk_root->root_key.objectid,
2254 				BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2255 				start, dev_offset, calc_size);
2256 		BUG_ON(ret);
2257 		index++;
2258 	}
2259 
2260 	return 0;
2261 }
2262 
2263 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2264 				struct btrfs_root *extent_root,
2265 				struct map_lookup *map, u64 chunk_offset,
2266 				u64 chunk_size, u64 stripe_size)
2267 {
2268 	u64 dev_offset;
2269 	struct btrfs_key key;
2270 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2271 	struct btrfs_device *device;
2272 	struct btrfs_chunk *chunk;
2273 	struct btrfs_stripe *stripe;
2274 	size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2275 	int index = 0;
2276 	int ret;
2277 
2278 	chunk = kzalloc(item_size, GFP_NOFS);
2279 	if (!chunk)
2280 		return -ENOMEM;
2281 
2282 	index = 0;
2283 	while (index < map->num_stripes) {
2284 		device = map->stripes[index].dev;
2285 		device->bytes_used += stripe_size;
2286 		ret = btrfs_update_device(trans, device);
2287 		BUG_ON(ret);
2288 		index++;
2289 	}
2290 
2291 	index = 0;
2292 	stripe = &chunk->stripe;
2293 	while (index < map->num_stripes) {
2294 		device = map->stripes[index].dev;
2295 		dev_offset = map->stripes[index].physical;
2296 
2297 		btrfs_set_stack_stripe_devid(stripe, device->devid);
2298 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
2299 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2300 		stripe++;
2301 		index++;
2302 	}
2303 
2304 	btrfs_set_stack_chunk_length(chunk, chunk_size);
2305 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2306 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2307 	btrfs_set_stack_chunk_type(chunk, map->type);
2308 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2309 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2310 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2311 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2312 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2313 
2314 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2315 	key.type = BTRFS_CHUNK_ITEM_KEY;
2316 	key.offset = chunk_offset;
2317 
2318 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2319 	BUG_ON(ret);
2320 
2321 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2322 		ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2323 					     item_size);
2324 		BUG_ON(ret);
2325 	}
2326 	kfree(chunk);
2327 	return 0;
2328 }
2329 
2330 /*
2331  * Chunk allocation falls into two parts. The first part does works
2332  * that make the new allocated chunk useable, but not do any operation
2333  * that modifies the chunk tree. The second part does the works that
2334  * require modifying the chunk tree. This division is important for the
2335  * bootstrap process of adding storage to a seed btrfs.
2336  */
2337 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2338 		      struct btrfs_root *extent_root, u64 type)
2339 {
2340 	u64 chunk_offset;
2341 	u64 chunk_size;
2342 	u64 stripe_size;
2343 	struct map_lookup *map;
2344 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2345 	int ret;
2346 
2347 	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2348 			      &chunk_offset);
2349 	if (ret)
2350 		return ret;
2351 
2352 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2353 				  &stripe_size, chunk_offset, type);
2354 	if (ret)
2355 		return ret;
2356 
2357 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2358 				   chunk_size, stripe_size);
2359 	BUG_ON(ret);
2360 	return 0;
2361 }
2362 
2363 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2364 					 struct btrfs_root *root,
2365 					 struct btrfs_device *device)
2366 {
2367 	u64 chunk_offset;
2368 	u64 sys_chunk_offset;
2369 	u64 chunk_size;
2370 	u64 sys_chunk_size;
2371 	u64 stripe_size;
2372 	u64 sys_stripe_size;
2373 	u64 alloc_profile;
2374 	struct map_lookup *map;
2375 	struct map_lookup *sys_map;
2376 	struct btrfs_fs_info *fs_info = root->fs_info;
2377 	struct btrfs_root *extent_root = fs_info->extent_root;
2378 	int ret;
2379 
2380 	ret = find_next_chunk(fs_info->chunk_root,
2381 			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2382 	BUG_ON(ret);
2383 
2384 	alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2385 			(fs_info->metadata_alloc_profile &
2386 			 fs_info->avail_metadata_alloc_bits);
2387 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2388 
2389 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2390 				  &stripe_size, chunk_offset, alloc_profile);
2391 	BUG_ON(ret);
2392 
2393 	sys_chunk_offset = chunk_offset + chunk_size;
2394 
2395 	alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2396 			(fs_info->system_alloc_profile &
2397 			 fs_info->avail_system_alloc_bits);
2398 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2399 
2400 	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2401 				  &sys_chunk_size, &sys_stripe_size,
2402 				  sys_chunk_offset, alloc_profile);
2403 	BUG_ON(ret);
2404 
2405 	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2406 	BUG_ON(ret);
2407 
2408 	/*
2409 	 * Modifying chunk tree needs allocating new blocks from both
2410 	 * system block group and metadata block group. So we only can
2411 	 * do operations require modifying the chunk tree after both
2412 	 * block groups were created.
2413 	 */
2414 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2415 				   chunk_size, stripe_size);
2416 	BUG_ON(ret);
2417 
2418 	ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2419 				   sys_chunk_offset, sys_chunk_size,
2420 				   sys_stripe_size);
2421 	BUG_ON(ret);
2422 	return 0;
2423 }
2424 
2425 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2426 {
2427 	struct extent_map *em;
2428 	struct map_lookup *map;
2429 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2430 	int readonly = 0;
2431 	int i;
2432 
2433 	spin_lock(&map_tree->map_tree.lock);
2434 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2435 	spin_unlock(&map_tree->map_tree.lock);
2436 	if (!em)
2437 		return 1;
2438 
2439 	map = (struct map_lookup *)em->bdev;
2440 	for (i = 0; i < map->num_stripes; i++) {
2441 		if (!map->stripes[i].dev->writeable) {
2442 			readonly = 1;
2443 			break;
2444 		}
2445 	}
2446 	free_extent_map(em);
2447 	return readonly;
2448 }
2449 
2450 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2451 {
2452 	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2453 }
2454 
2455 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2456 {
2457 	struct extent_map *em;
2458 
2459 	while (1) {
2460 		spin_lock(&tree->map_tree.lock);
2461 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2462 		if (em)
2463 			remove_extent_mapping(&tree->map_tree, em);
2464 		spin_unlock(&tree->map_tree.lock);
2465 		if (!em)
2466 			break;
2467 		kfree(em->bdev);
2468 		/* once for us */
2469 		free_extent_map(em);
2470 		/* once for the tree */
2471 		free_extent_map(em);
2472 	}
2473 }
2474 
2475 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2476 {
2477 	struct extent_map *em;
2478 	struct map_lookup *map;
2479 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2480 	int ret;
2481 
2482 	spin_lock(&em_tree->lock);
2483 	em = lookup_extent_mapping(em_tree, logical, len);
2484 	spin_unlock(&em_tree->lock);
2485 	BUG_ON(!em);
2486 
2487 	BUG_ON(em->start > logical || em->start + em->len < logical);
2488 	map = (struct map_lookup *)em->bdev;
2489 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2490 		ret = map->num_stripes;
2491 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2492 		ret = map->sub_stripes;
2493 	else
2494 		ret = 1;
2495 	free_extent_map(em);
2496 	return ret;
2497 }
2498 
2499 static int find_live_mirror(struct map_lookup *map, int first, int num,
2500 			    int optimal)
2501 {
2502 	int i;
2503 	if (map->stripes[optimal].dev->bdev)
2504 		return optimal;
2505 	for (i = first; i < first + num; i++) {
2506 		if (map->stripes[i].dev->bdev)
2507 			return i;
2508 	}
2509 	/* we couldn't find one that doesn't fail.  Just return something
2510 	 * and the io error handling code will clean up eventually
2511 	 */
2512 	return optimal;
2513 }
2514 
2515 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2516 			     u64 logical, u64 *length,
2517 			     struct btrfs_multi_bio **multi_ret,
2518 			     int mirror_num, struct page *unplug_page)
2519 {
2520 	struct extent_map *em;
2521 	struct map_lookup *map;
2522 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2523 	u64 offset;
2524 	u64 stripe_offset;
2525 	u64 stripe_nr;
2526 	int stripes_allocated = 8;
2527 	int stripes_required = 1;
2528 	int stripe_index;
2529 	int i;
2530 	int num_stripes;
2531 	int max_errors = 0;
2532 	struct btrfs_multi_bio *multi = NULL;
2533 
2534 	if (multi_ret && !(rw & (1 << BIO_RW)))
2535 		stripes_allocated = 1;
2536 again:
2537 	if (multi_ret) {
2538 		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2539 				GFP_NOFS);
2540 		if (!multi)
2541 			return -ENOMEM;
2542 
2543 		atomic_set(&multi->error, 0);
2544 	}
2545 
2546 	spin_lock(&em_tree->lock);
2547 	em = lookup_extent_mapping(em_tree, logical, *length);
2548 	spin_unlock(&em_tree->lock);
2549 
2550 	if (!em && unplug_page)
2551 		return 0;
2552 
2553 	if (!em) {
2554 		printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2555 		       (unsigned long long)logical,
2556 		       (unsigned long long)*length);
2557 		BUG();
2558 	}
2559 
2560 	BUG_ON(em->start > logical || em->start + em->len < logical);
2561 	map = (struct map_lookup *)em->bdev;
2562 	offset = logical - em->start;
2563 
2564 	if (mirror_num > map->num_stripes)
2565 		mirror_num = 0;
2566 
2567 	/* if our multi bio struct is too small, back off and try again */
2568 	if (rw & (1 << BIO_RW)) {
2569 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2570 				 BTRFS_BLOCK_GROUP_DUP)) {
2571 			stripes_required = map->num_stripes;
2572 			max_errors = 1;
2573 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2574 			stripes_required = map->sub_stripes;
2575 			max_errors = 1;
2576 		}
2577 	}
2578 	if (multi_ret && (rw & (1 << BIO_RW)) &&
2579 	    stripes_allocated < stripes_required) {
2580 		stripes_allocated = map->num_stripes;
2581 		free_extent_map(em);
2582 		kfree(multi);
2583 		goto again;
2584 	}
2585 	stripe_nr = offset;
2586 	/*
2587 	 * stripe_nr counts the total number of stripes we have to stride
2588 	 * to get to this block
2589 	 */
2590 	do_div(stripe_nr, map->stripe_len);
2591 
2592 	stripe_offset = stripe_nr * map->stripe_len;
2593 	BUG_ON(offset < stripe_offset);
2594 
2595 	/* stripe_offset is the offset of this block in its stripe*/
2596 	stripe_offset = offset - stripe_offset;
2597 
2598 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2599 			 BTRFS_BLOCK_GROUP_RAID10 |
2600 			 BTRFS_BLOCK_GROUP_DUP)) {
2601 		/* we limit the length of each bio to what fits in a stripe */
2602 		*length = min_t(u64, em->len - offset,
2603 			      map->stripe_len - stripe_offset);
2604 	} else {
2605 		*length = em->len - offset;
2606 	}
2607 
2608 	if (!multi_ret && !unplug_page)
2609 		goto out;
2610 
2611 	num_stripes = 1;
2612 	stripe_index = 0;
2613 	if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2614 		if (unplug_page || (rw & (1 << BIO_RW)))
2615 			num_stripes = map->num_stripes;
2616 		else if (mirror_num)
2617 			stripe_index = mirror_num - 1;
2618 		else {
2619 			stripe_index = find_live_mirror(map, 0,
2620 					    map->num_stripes,
2621 					    current->pid % map->num_stripes);
2622 		}
2623 
2624 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2625 		if (rw & (1 << BIO_RW))
2626 			num_stripes = map->num_stripes;
2627 		else if (mirror_num)
2628 			stripe_index = mirror_num - 1;
2629 
2630 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2631 		int factor = map->num_stripes / map->sub_stripes;
2632 
2633 		stripe_index = do_div(stripe_nr, factor);
2634 		stripe_index *= map->sub_stripes;
2635 
2636 		if (unplug_page || (rw & (1 << BIO_RW)))
2637 			num_stripes = map->sub_stripes;
2638 		else if (mirror_num)
2639 			stripe_index += mirror_num - 1;
2640 		else {
2641 			stripe_index = find_live_mirror(map, stripe_index,
2642 					      map->sub_stripes, stripe_index +
2643 					      current->pid % map->sub_stripes);
2644 		}
2645 	} else {
2646 		/*
2647 		 * after this do_div call, stripe_nr is the number of stripes
2648 		 * on this device we have to walk to find the data, and
2649 		 * stripe_index is the number of our device in the stripe array
2650 		 */
2651 		stripe_index = do_div(stripe_nr, map->num_stripes);
2652 	}
2653 	BUG_ON(stripe_index >= map->num_stripes);
2654 
2655 	for (i = 0; i < num_stripes; i++) {
2656 		if (unplug_page) {
2657 			struct btrfs_device *device;
2658 			struct backing_dev_info *bdi;
2659 
2660 			device = map->stripes[stripe_index].dev;
2661 			if (device->bdev) {
2662 				bdi = blk_get_backing_dev_info(device->bdev);
2663 				if (bdi->unplug_io_fn)
2664 					bdi->unplug_io_fn(bdi, unplug_page);
2665 			}
2666 		} else {
2667 			multi->stripes[i].physical =
2668 				map->stripes[stripe_index].physical +
2669 				stripe_offset + stripe_nr * map->stripe_len;
2670 			multi->stripes[i].dev = map->stripes[stripe_index].dev;
2671 		}
2672 		stripe_index++;
2673 	}
2674 	if (multi_ret) {
2675 		*multi_ret = multi;
2676 		multi->num_stripes = num_stripes;
2677 		multi->max_errors = max_errors;
2678 	}
2679 out:
2680 	free_extent_map(em);
2681 	return 0;
2682 }
2683 
2684 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2685 		      u64 logical, u64 *length,
2686 		      struct btrfs_multi_bio **multi_ret, int mirror_num)
2687 {
2688 	return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2689 				 mirror_num, NULL);
2690 }
2691 
2692 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
2693 		     u64 chunk_start, u64 physical, u64 devid,
2694 		     u64 **logical, int *naddrs, int *stripe_len)
2695 {
2696 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2697 	struct extent_map *em;
2698 	struct map_lookup *map;
2699 	u64 *buf;
2700 	u64 bytenr;
2701 	u64 length;
2702 	u64 stripe_nr;
2703 	int i, j, nr = 0;
2704 
2705 	spin_lock(&em_tree->lock);
2706 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
2707 	spin_unlock(&em_tree->lock);
2708 
2709 	BUG_ON(!em || em->start != chunk_start);
2710 	map = (struct map_lookup *)em->bdev;
2711 
2712 	length = em->len;
2713 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2714 		do_div(length, map->num_stripes / map->sub_stripes);
2715 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
2716 		do_div(length, map->num_stripes);
2717 
2718 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
2719 	BUG_ON(!buf);
2720 
2721 	for (i = 0; i < map->num_stripes; i++) {
2722 		if (devid && map->stripes[i].dev->devid != devid)
2723 			continue;
2724 		if (map->stripes[i].physical > physical ||
2725 		    map->stripes[i].physical + length <= physical)
2726 			continue;
2727 
2728 		stripe_nr = physical - map->stripes[i].physical;
2729 		do_div(stripe_nr, map->stripe_len);
2730 
2731 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2732 			stripe_nr = stripe_nr * map->num_stripes + i;
2733 			do_div(stripe_nr, map->sub_stripes);
2734 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2735 			stripe_nr = stripe_nr * map->num_stripes + i;
2736 		}
2737 		bytenr = chunk_start + stripe_nr * map->stripe_len;
2738 		WARN_ON(nr >= map->num_stripes);
2739 		for (j = 0; j < nr; j++) {
2740 			if (buf[j] == bytenr)
2741 				break;
2742 		}
2743 		if (j == nr) {
2744 			WARN_ON(nr >= map->num_stripes);
2745 			buf[nr++] = bytenr;
2746 		}
2747 	}
2748 
2749 	for (i = 0; i > nr; i++) {
2750 		struct btrfs_multi_bio *multi;
2751 		struct btrfs_bio_stripe *stripe;
2752 		int ret;
2753 
2754 		length = 1;
2755 		ret = btrfs_map_block(map_tree, WRITE, buf[i],
2756 				      &length, &multi, 0);
2757 		BUG_ON(ret);
2758 
2759 		stripe = multi->stripes;
2760 		for (j = 0; j < multi->num_stripes; j++) {
2761 			if (stripe->physical >= physical &&
2762 			    physical < stripe->physical + length)
2763 				break;
2764 		}
2765 		BUG_ON(j >= multi->num_stripes);
2766 		kfree(multi);
2767 	}
2768 
2769 	*logical = buf;
2770 	*naddrs = nr;
2771 	*stripe_len = map->stripe_len;
2772 
2773 	free_extent_map(em);
2774 	return 0;
2775 }
2776 
2777 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2778 		      u64 logical, struct page *page)
2779 {
2780 	u64 length = PAGE_CACHE_SIZE;
2781 	return __btrfs_map_block(map_tree, READ, logical, &length,
2782 				 NULL, 0, page);
2783 }
2784 
2785 static void end_bio_multi_stripe(struct bio *bio, int err)
2786 {
2787 	struct btrfs_multi_bio *multi = bio->bi_private;
2788 	int is_orig_bio = 0;
2789 
2790 	if (err)
2791 		atomic_inc(&multi->error);
2792 
2793 	if (bio == multi->orig_bio)
2794 		is_orig_bio = 1;
2795 
2796 	if (atomic_dec_and_test(&multi->stripes_pending)) {
2797 		if (!is_orig_bio) {
2798 			bio_put(bio);
2799 			bio = multi->orig_bio;
2800 		}
2801 		bio->bi_private = multi->private;
2802 		bio->bi_end_io = multi->end_io;
2803 		/* only send an error to the higher layers if it is
2804 		 * beyond the tolerance of the multi-bio
2805 		 */
2806 		if (atomic_read(&multi->error) > multi->max_errors) {
2807 			err = -EIO;
2808 		} else if (err) {
2809 			/*
2810 			 * this bio is actually up to date, we didn't
2811 			 * go over the max number of errors
2812 			 */
2813 			set_bit(BIO_UPTODATE, &bio->bi_flags);
2814 			err = 0;
2815 		}
2816 		kfree(multi);
2817 
2818 		bio_endio(bio, err);
2819 	} else if (!is_orig_bio) {
2820 		bio_put(bio);
2821 	}
2822 }
2823 
2824 struct async_sched {
2825 	struct bio *bio;
2826 	int rw;
2827 	struct btrfs_fs_info *info;
2828 	struct btrfs_work work;
2829 };
2830 
2831 /*
2832  * see run_scheduled_bios for a description of why bios are collected for
2833  * async submit.
2834  *
2835  * This will add one bio to the pending list for a device and make sure
2836  * the work struct is scheduled.
2837  */
2838 static noinline int schedule_bio(struct btrfs_root *root,
2839 				 struct btrfs_device *device,
2840 				 int rw, struct bio *bio)
2841 {
2842 	int should_queue = 1;
2843 	struct btrfs_pending_bios *pending_bios;
2844 
2845 	/* don't bother with additional async steps for reads, right now */
2846 	if (!(rw & (1 << BIO_RW))) {
2847 		bio_get(bio);
2848 		submit_bio(rw, bio);
2849 		bio_put(bio);
2850 		return 0;
2851 	}
2852 
2853 	/*
2854 	 * nr_async_bios allows us to reliably return congestion to the
2855 	 * higher layers.  Otherwise, the async bio makes it appear we have
2856 	 * made progress against dirty pages when we've really just put it
2857 	 * on a queue for later
2858 	 */
2859 	atomic_inc(&root->fs_info->nr_async_bios);
2860 	WARN_ON(bio->bi_next);
2861 	bio->bi_next = NULL;
2862 	bio->bi_rw |= rw;
2863 
2864 	spin_lock(&device->io_lock);
2865 	if (bio_sync(bio))
2866 		pending_bios = &device->pending_sync_bios;
2867 	else
2868 		pending_bios = &device->pending_bios;
2869 
2870 	if (pending_bios->tail)
2871 		pending_bios->tail->bi_next = bio;
2872 
2873 	pending_bios->tail = bio;
2874 	if (!pending_bios->head)
2875 		pending_bios->head = bio;
2876 	if (device->running_pending)
2877 		should_queue = 0;
2878 
2879 	spin_unlock(&device->io_lock);
2880 
2881 	if (should_queue)
2882 		btrfs_queue_worker(&root->fs_info->submit_workers,
2883 				   &device->work);
2884 	return 0;
2885 }
2886 
2887 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
2888 		  int mirror_num, int async_submit)
2889 {
2890 	struct btrfs_mapping_tree *map_tree;
2891 	struct btrfs_device *dev;
2892 	struct bio *first_bio = bio;
2893 	u64 logical = (u64)bio->bi_sector << 9;
2894 	u64 length = 0;
2895 	u64 map_length;
2896 	struct btrfs_multi_bio *multi = NULL;
2897 	int ret;
2898 	int dev_nr = 0;
2899 	int total_devs = 1;
2900 
2901 	length = bio->bi_size;
2902 	map_tree = &root->fs_info->mapping_tree;
2903 	map_length = length;
2904 
2905 	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2906 			      mirror_num);
2907 	BUG_ON(ret);
2908 
2909 	total_devs = multi->num_stripes;
2910 	if (map_length < length) {
2911 		printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
2912 		       "len %llu\n", (unsigned long long)logical,
2913 		       (unsigned long long)length,
2914 		       (unsigned long long)map_length);
2915 		BUG();
2916 	}
2917 	multi->end_io = first_bio->bi_end_io;
2918 	multi->private = first_bio->bi_private;
2919 	multi->orig_bio = first_bio;
2920 	atomic_set(&multi->stripes_pending, multi->num_stripes);
2921 
2922 	while (dev_nr < total_devs) {
2923 		if (total_devs > 1) {
2924 			if (dev_nr < total_devs - 1) {
2925 				bio = bio_clone(first_bio, GFP_NOFS);
2926 				BUG_ON(!bio);
2927 			} else {
2928 				bio = first_bio;
2929 			}
2930 			bio->bi_private = multi;
2931 			bio->bi_end_io = end_bio_multi_stripe;
2932 		}
2933 		bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2934 		dev = multi->stripes[dev_nr].dev;
2935 		BUG_ON(rw == WRITE && !dev->writeable);
2936 		if (dev && dev->bdev) {
2937 			bio->bi_bdev = dev->bdev;
2938 			if (async_submit)
2939 				schedule_bio(root, dev, rw, bio);
2940 			else
2941 				submit_bio(rw, bio);
2942 		} else {
2943 			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2944 			bio->bi_sector = logical >> 9;
2945 			bio_endio(bio, -EIO);
2946 		}
2947 		dev_nr++;
2948 	}
2949 	if (total_devs == 1)
2950 		kfree(multi);
2951 	return 0;
2952 }
2953 
2954 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2955 				       u8 *uuid, u8 *fsid)
2956 {
2957 	struct btrfs_device *device;
2958 	struct btrfs_fs_devices *cur_devices;
2959 
2960 	cur_devices = root->fs_info->fs_devices;
2961 	while (cur_devices) {
2962 		if (!fsid ||
2963 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
2964 			device = __find_device(&cur_devices->devices,
2965 					       devid, uuid);
2966 			if (device)
2967 				return device;
2968 		}
2969 		cur_devices = cur_devices->seed;
2970 	}
2971 	return NULL;
2972 }
2973 
2974 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
2975 					    u64 devid, u8 *dev_uuid)
2976 {
2977 	struct btrfs_device *device;
2978 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2979 
2980 	device = kzalloc(sizeof(*device), GFP_NOFS);
2981 	if (!device)
2982 		return NULL;
2983 	list_add(&device->dev_list,
2984 		 &fs_devices->devices);
2985 	device->barriers = 1;
2986 	device->dev_root = root->fs_info->dev_root;
2987 	device->devid = devid;
2988 	device->work.func = pending_bios_fn;
2989 	device->fs_devices = fs_devices;
2990 	fs_devices->num_devices++;
2991 	spin_lock_init(&device->io_lock);
2992 	INIT_LIST_HEAD(&device->dev_alloc_list);
2993 	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
2994 	return device;
2995 }
2996 
2997 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
2998 			  struct extent_buffer *leaf,
2999 			  struct btrfs_chunk *chunk)
3000 {
3001 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3002 	struct map_lookup *map;
3003 	struct extent_map *em;
3004 	u64 logical;
3005 	u64 length;
3006 	u64 devid;
3007 	u8 uuid[BTRFS_UUID_SIZE];
3008 	int num_stripes;
3009 	int ret;
3010 	int i;
3011 
3012 	logical = key->offset;
3013 	length = btrfs_chunk_length(leaf, chunk);
3014 
3015 	spin_lock(&map_tree->map_tree.lock);
3016 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3017 	spin_unlock(&map_tree->map_tree.lock);
3018 
3019 	/* already mapped? */
3020 	if (em && em->start <= logical && em->start + em->len > logical) {
3021 		free_extent_map(em);
3022 		return 0;
3023 	} else if (em) {
3024 		free_extent_map(em);
3025 	}
3026 
3027 	em = alloc_extent_map(GFP_NOFS);
3028 	if (!em)
3029 		return -ENOMEM;
3030 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3031 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3032 	if (!map) {
3033 		free_extent_map(em);
3034 		return -ENOMEM;
3035 	}
3036 
3037 	em->bdev = (struct block_device *)map;
3038 	em->start = logical;
3039 	em->len = length;
3040 	em->block_start = 0;
3041 	em->block_len = em->len;
3042 
3043 	map->num_stripes = num_stripes;
3044 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
3045 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
3046 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3047 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3048 	map->type = btrfs_chunk_type(leaf, chunk);
3049 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3050 	for (i = 0; i < num_stripes; i++) {
3051 		map->stripes[i].physical =
3052 			btrfs_stripe_offset_nr(leaf, chunk, i);
3053 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3054 		read_extent_buffer(leaf, uuid, (unsigned long)
3055 				   btrfs_stripe_dev_uuid_nr(chunk, i),
3056 				   BTRFS_UUID_SIZE);
3057 		map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3058 							NULL);
3059 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3060 			kfree(map);
3061 			free_extent_map(em);
3062 			return -EIO;
3063 		}
3064 		if (!map->stripes[i].dev) {
3065 			map->stripes[i].dev =
3066 				add_missing_dev(root, devid, uuid);
3067 			if (!map->stripes[i].dev) {
3068 				kfree(map);
3069 				free_extent_map(em);
3070 				return -EIO;
3071 			}
3072 		}
3073 		map->stripes[i].dev->in_fs_metadata = 1;
3074 	}
3075 
3076 	spin_lock(&map_tree->map_tree.lock);
3077 	ret = add_extent_mapping(&map_tree->map_tree, em);
3078 	spin_unlock(&map_tree->map_tree.lock);
3079 	BUG_ON(ret);
3080 	free_extent_map(em);
3081 
3082 	return 0;
3083 }
3084 
3085 static int fill_device_from_item(struct extent_buffer *leaf,
3086 				 struct btrfs_dev_item *dev_item,
3087 				 struct btrfs_device *device)
3088 {
3089 	unsigned long ptr;
3090 
3091 	device->devid = btrfs_device_id(leaf, dev_item);
3092 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3093 	device->total_bytes = device->disk_total_bytes;
3094 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3095 	device->type = btrfs_device_type(leaf, dev_item);
3096 	device->io_align = btrfs_device_io_align(leaf, dev_item);
3097 	device->io_width = btrfs_device_io_width(leaf, dev_item);
3098 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3099 
3100 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
3101 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3102 
3103 	return 0;
3104 }
3105 
3106 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3107 {
3108 	struct btrfs_fs_devices *fs_devices;
3109 	int ret;
3110 
3111 	mutex_lock(&uuid_mutex);
3112 
3113 	fs_devices = root->fs_info->fs_devices->seed;
3114 	while (fs_devices) {
3115 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3116 			ret = 0;
3117 			goto out;
3118 		}
3119 		fs_devices = fs_devices->seed;
3120 	}
3121 
3122 	fs_devices = find_fsid(fsid);
3123 	if (!fs_devices) {
3124 		ret = -ENOENT;
3125 		goto out;
3126 	}
3127 
3128 	fs_devices = clone_fs_devices(fs_devices);
3129 	if (IS_ERR(fs_devices)) {
3130 		ret = PTR_ERR(fs_devices);
3131 		goto out;
3132 	}
3133 
3134 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3135 				   root->fs_info->bdev_holder);
3136 	if (ret)
3137 		goto out;
3138 
3139 	if (!fs_devices->seeding) {
3140 		__btrfs_close_devices(fs_devices);
3141 		free_fs_devices(fs_devices);
3142 		ret = -EINVAL;
3143 		goto out;
3144 	}
3145 
3146 	fs_devices->seed = root->fs_info->fs_devices->seed;
3147 	root->fs_info->fs_devices->seed = fs_devices;
3148 out:
3149 	mutex_unlock(&uuid_mutex);
3150 	return ret;
3151 }
3152 
3153 static int read_one_dev(struct btrfs_root *root,
3154 			struct extent_buffer *leaf,
3155 			struct btrfs_dev_item *dev_item)
3156 {
3157 	struct btrfs_device *device;
3158 	u64 devid;
3159 	int ret;
3160 	u8 fs_uuid[BTRFS_UUID_SIZE];
3161 	u8 dev_uuid[BTRFS_UUID_SIZE];
3162 
3163 	devid = btrfs_device_id(leaf, dev_item);
3164 	read_extent_buffer(leaf, dev_uuid,
3165 			   (unsigned long)btrfs_device_uuid(dev_item),
3166 			   BTRFS_UUID_SIZE);
3167 	read_extent_buffer(leaf, fs_uuid,
3168 			   (unsigned long)btrfs_device_fsid(dev_item),
3169 			   BTRFS_UUID_SIZE);
3170 
3171 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3172 		ret = open_seed_devices(root, fs_uuid);
3173 		if (ret && !btrfs_test_opt(root, DEGRADED))
3174 			return ret;
3175 	}
3176 
3177 	device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3178 	if (!device || !device->bdev) {
3179 		if (!btrfs_test_opt(root, DEGRADED))
3180 			return -EIO;
3181 
3182 		if (!device) {
3183 			printk(KERN_WARNING "warning devid %llu missing\n",
3184 			       (unsigned long long)devid);
3185 			device = add_missing_dev(root, devid, dev_uuid);
3186 			if (!device)
3187 				return -ENOMEM;
3188 		}
3189 	}
3190 
3191 	if (device->fs_devices != root->fs_info->fs_devices) {
3192 		BUG_ON(device->writeable);
3193 		if (device->generation !=
3194 		    btrfs_device_generation(leaf, dev_item))
3195 			return -EINVAL;
3196 	}
3197 
3198 	fill_device_from_item(leaf, dev_item, device);
3199 	device->dev_root = root->fs_info->dev_root;
3200 	device->in_fs_metadata = 1;
3201 	if (device->writeable)
3202 		device->fs_devices->total_rw_bytes += device->total_bytes;
3203 	ret = 0;
3204 	return ret;
3205 }
3206 
3207 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3208 {
3209 	struct btrfs_dev_item *dev_item;
3210 
3211 	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3212 						     dev_item);
3213 	return read_one_dev(root, buf, dev_item);
3214 }
3215 
3216 int btrfs_read_sys_array(struct btrfs_root *root)
3217 {
3218 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3219 	struct extent_buffer *sb;
3220 	struct btrfs_disk_key *disk_key;
3221 	struct btrfs_chunk *chunk;
3222 	u8 *ptr;
3223 	unsigned long sb_ptr;
3224 	int ret = 0;
3225 	u32 num_stripes;
3226 	u32 array_size;
3227 	u32 len = 0;
3228 	u32 cur;
3229 	struct btrfs_key key;
3230 
3231 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3232 					  BTRFS_SUPER_INFO_SIZE);
3233 	if (!sb)
3234 		return -ENOMEM;
3235 	btrfs_set_buffer_uptodate(sb);
3236 	btrfs_set_buffer_lockdep_class(sb, 0);
3237 
3238 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3239 	array_size = btrfs_super_sys_array_size(super_copy);
3240 
3241 	ptr = super_copy->sys_chunk_array;
3242 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3243 	cur = 0;
3244 
3245 	while (cur < array_size) {
3246 		disk_key = (struct btrfs_disk_key *)ptr;
3247 		btrfs_disk_key_to_cpu(&key, disk_key);
3248 
3249 		len = sizeof(*disk_key); ptr += len;
3250 		sb_ptr += len;
3251 		cur += len;
3252 
3253 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3254 			chunk = (struct btrfs_chunk *)sb_ptr;
3255 			ret = read_one_chunk(root, &key, sb, chunk);
3256 			if (ret)
3257 				break;
3258 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3259 			len = btrfs_chunk_item_size(num_stripes);
3260 		} else {
3261 			ret = -EIO;
3262 			break;
3263 		}
3264 		ptr += len;
3265 		sb_ptr += len;
3266 		cur += len;
3267 	}
3268 	free_extent_buffer(sb);
3269 	return ret;
3270 }
3271 
3272 int btrfs_read_chunk_tree(struct btrfs_root *root)
3273 {
3274 	struct btrfs_path *path;
3275 	struct extent_buffer *leaf;
3276 	struct btrfs_key key;
3277 	struct btrfs_key found_key;
3278 	int ret;
3279 	int slot;
3280 
3281 	root = root->fs_info->chunk_root;
3282 
3283 	path = btrfs_alloc_path();
3284 	if (!path)
3285 		return -ENOMEM;
3286 
3287 	/* first we search for all of the device items, and then we
3288 	 * read in all of the chunk items.  This way we can create chunk
3289 	 * mappings that reference all of the devices that are afound
3290 	 */
3291 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3292 	key.offset = 0;
3293 	key.type = 0;
3294 again:
3295 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3296 	while (1) {
3297 		leaf = path->nodes[0];
3298 		slot = path->slots[0];
3299 		if (slot >= btrfs_header_nritems(leaf)) {
3300 			ret = btrfs_next_leaf(root, path);
3301 			if (ret == 0)
3302 				continue;
3303 			if (ret < 0)
3304 				goto error;
3305 			break;
3306 		}
3307 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3308 		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3309 			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3310 				break;
3311 			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3312 				struct btrfs_dev_item *dev_item;
3313 				dev_item = btrfs_item_ptr(leaf, slot,
3314 						  struct btrfs_dev_item);
3315 				ret = read_one_dev(root, leaf, dev_item);
3316 				if (ret)
3317 					goto error;
3318 			}
3319 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3320 			struct btrfs_chunk *chunk;
3321 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3322 			ret = read_one_chunk(root, &found_key, leaf, chunk);
3323 			if (ret)
3324 				goto error;
3325 		}
3326 		path->slots[0]++;
3327 	}
3328 	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3329 		key.objectid = 0;
3330 		btrfs_release_path(root, path);
3331 		goto again;
3332 	}
3333 	ret = 0;
3334 error:
3335 	btrfs_free_path(path);
3336 	return ret;
3337 }
3338