xref: /openbmc/linux/fs/btrfs/volumes.c (revision 75f25bd3)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <asm/div64.h>
27 #include "compat.h"
28 #include "ctree.h"
29 #include "extent_map.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "async-thread.h"
35 
36 static int init_first_rw_device(struct btrfs_trans_handle *trans,
37 				struct btrfs_root *root,
38 				struct btrfs_device *device);
39 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
40 
41 static DEFINE_MUTEX(uuid_mutex);
42 static LIST_HEAD(fs_uuids);
43 
44 static void lock_chunks(struct btrfs_root *root)
45 {
46 	mutex_lock(&root->fs_info->chunk_mutex);
47 }
48 
49 static void unlock_chunks(struct btrfs_root *root)
50 {
51 	mutex_unlock(&root->fs_info->chunk_mutex);
52 }
53 
54 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
55 {
56 	struct btrfs_device *device;
57 	WARN_ON(fs_devices->opened);
58 	while (!list_empty(&fs_devices->devices)) {
59 		device = list_entry(fs_devices->devices.next,
60 				    struct btrfs_device, dev_list);
61 		list_del(&device->dev_list);
62 		kfree(device->name);
63 		kfree(device);
64 	}
65 	kfree(fs_devices);
66 }
67 
68 int btrfs_cleanup_fs_uuids(void)
69 {
70 	struct btrfs_fs_devices *fs_devices;
71 
72 	while (!list_empty(&fs_uuids)) {
73 		fs_devices = list_entry(fs_uuids.next,
74 					struct btrfs_fs_devices, list);
75 		list_del(&fs_devices->list);
76 		free_fs_devices(fs_devices);
77 	}
78 	return 0;
79 }
80 
81 static noinline struct btrfs_device *__find_device(struct list_head *head,
82 						   u64 devid, u8 *uuid)
83 {
84 	struct btrfs_device *dev;
85 
86 	list_for_each_entry(dev, head, dev_list) {
87 		if (dev->devid == devid &&
88 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
89 			return dev;
90 		}
91 	}
92 	return NULL;
93 }
94 
95 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
96 {
97 	struct btrfs_fs_devices *fs_devices;
98 
99 	list_for_each_entry(fs_devices, &fs_uuids, list) {
100 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
101 			return fs_devices;
102 	}
103 	return NULL;
104 }
105 
106 static void requeue_list(struct btrfs_pending_bios *pending_bios,
107 			struct bio *head, struct bio *tail)
108 {
109 
110 	struct bio *old_head;
111 
112 	old_head = pending_bios->head;
113 	pending_bios->head = head;
114 	if (pending_bios->tail)
115 		tail->bi_next = old_head;
116 	else
117 		pending_bios->tail = tail;
118 }
119 
120 /*
121  * we try to collect pending bios for a device so we don't get a large
122  * number of procs sending bios down to the same device.  This greatly
123  * improves the schedulers ability to collect and merge the bios.
124  *
125  * But, it also turns into a long list of bios to process and that is sure
126  * to eventually make the worker thread block.  The solution here is to
127  * make some progress and then put this work struct back at the end of
128  * the list if the block device is congested.  This way, multiple devices
129  * can make progress from a single worker thread.
130  */
131 static noinline int run_scheduled_bios(struct btrfs_device *device)
132 {
133 	struct bio *pending;
134 	struct backing_dev_info *bdi;
135 	struct btrfs_fs_info *fs_info;
136 	struct btrfs_pending_bios *pending_bios;
137 	struct bio *tail;
138 	struct bio *cur;
139 	int again = 0;
140 	unsigned long num_run;
141 	unsigned long batch_run = 0;
142 	unsigned long limit;
143 	unsigned long last_waited = 0;
144 	int force_reg = 0;
145 	struct blk_plug plug;
146 
147 	/*
148 	 * this function runs all the bios we've collected for
149 	 * a particular device.  We don't want to wander off to
150 	 * another device without first sending all of these down.
151 	 * So, setup a plug here and finish it off before we return
152 	 */
153 	blk_start_plug(&plug);
154 
155 	bdi = blk_get_backing_dev_info(device->bdev);
156 	fs_info = device->dev_root->fs_info;
157 	limit = btrfs_async_submit_limit(fs_info);
158 	limit = limit * 2 / 3;
159 
160 loop:
161 	spin_lock(&device->io_lock);
162 
163 loop_lock:
164 	num_run = 0;
165 
166 	/* take all the bios off the list at once and process them
167 	 * later on (without the lock held).  But, remember the
168 	 * tail and other pointers so the bios can be properly reinserted
169 	 * into the list if we hit congestion
170 	 */
171 	if (!force_reg && device->pending_sync_bios.head) {
172 		pending_bios = &device->pending_sync_bios;
173 		force_reg = 1;
174 	} else {
175 		pending_bios = &device->pending_bios;
176 		force_reg = 0;
177 	}
178 
179 	pending = pending_bios->head;
180 	tail = pending_bios->tail;
181 	WARN_ON(pending && !tail);
182 
183 	/*
184 	 * if pending was null this time around, no bios need processing
185 	 * at all and we can stop.  Otherwise it'll loop back up again
186 	 * and do an additional check so no bios are missed.
187 	 *
188 	 * device->running_pending is used to synchronize with the
189 	 * schedule_bio code.
190 	 */
191 	if (device->pending_sync_bios.head == NULL &&
192 	    device->pending_bios.head == NULL) {
193 		again = 0;
194 		device->running_pending = 0;
195 	} else {
196 		again = 1;
197 		device->running_pending = 1;
198 	}
199 
200 	pending_bios->head = NULL;
201 	pending_bios->tail = NULL;
202 
203 	spin_unlock(&device->io_lock);
204 
205 	while (pending) {
206 
207 		rmb();
208 		/* we want to work on both lists, but do more bios on the
209 		 * sync list than the regular list
210 		 */
211 		if ((num_run > 32 &&
212 		    pending_bios != &device->pending_sync_bios &&
213 		    device->pending_sync_bios.head) ||
214 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
215 		    device->pending_bios.head)) {
216 			spin_lock(&device->io_lock);
217 			requeue_list(pending_bios, pending, tail);
218 			goto loop_lock;
219 		}
220 
221 		cur = pending;
222 		pending = pending->bi_next;
223 		cur->bi_next = NULL;
224 		atomic_dec(&fs_info->nr_async_bios);
225 
226 		if (atomic_read(&fs_info->nr_async_bios) < limit &&
227 		    waitqueue_active(&fs_info->async_submit_wait))
228 			wake_up(&fs_info->async_submit_wait);
229 
230 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
231 
232 		submit_bio(cur->bi_rw, cur);
233 		num_run++;
234 		batch_run++;
235 		if (need_resched())
236 			cond_resched();
237 
238 		/*
239 		 * we made progress, there is more work to do and the bdi
240 		 * is now congested.  Back off and let other work structs
241 		 * run instead
242 		 */
243 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
244 		    fs_info->fs_devices->open_devices > 1) {
245 			struct io_context *ioc;
246 
247 			ioc = current->io_context;
248 
249 			/*
250 			 * the main goal here is that we don't want to
251 			 * block if we're going to be able to submit
252 			 * more requests without blocking.
253 			 *
254 			 * This code does two great things, it pokes into
255 			 * the elevator code from a filesystem _and_
256 			 * it makes assumptions about how batching works.
257 			 */
258 			if (ioc && ioc->nr_batch_requests > 0 &&
259 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
260 			    (last_waited == 0 ||
261 			     ioc->last_waited == last_waited)) {
262 				/*
263 				 * we want to go through our batch of
264 				 * requests and stop.  So, we copy out
265 				 * the ioc->last_waited time and test
266 				 * against it before looping
267 				 */
268 				last_waited = ioc->last_waited;
269 				if (need_resched())
270 					cond_resched();
271 				continue;
272 			}
273 			spin_lock(&device->io_lock);
274 			requeue_list(pending_bios, pending, tail);
275 			device->running_pending = 1;
276 
277 			spin_unlock(&device->io_lock);
278 			btrfs_requeue_work(&device->work);
279 			goto done;
280 		}
281 	}
282 
283 	cond_resched();
284 	if (again)
285 		goto loop;
286 
287 	spin_lock(&device->io_lock);
288 	if (device->pending_bios.head || device->pending_sync_bios.head)
289 		goto loop_lock;
290 	spin_unlock(&device->io_lock);
291 
292 done:
293 	blk_finish_plug(&plug);
294 	return 0;
295 }
296 
297 static void pending_bios_fn(struct btrfs_work *work)
298 {
299 	struct btrfs_device *device;
300 
301 	device = container_of(work, struct btrfs_device, work);
302 	run_scheduled_bios(device);
303 }
304 
305 static noinline int device_list_add(const char *path,
306 			   struct btrfs_super_block *disk_super,
307 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
308 {
309 	struct btrfs_device *device;
310 	struct btrfs_fs_devices *fs_devices;
311 	u64 found_transid = btrfs_super_generation(disk_super);
312 	char *name;
313 
314 	fs_devices = find_fsid(disk_super->fsid);
315 	if (!fs_devices) {
316 		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
317 		if (!fs_devices)
318 			return -ENOMEM;
319 		INIT_LIST_HEAD(&fs_devices->devices);
320 		INIT_LIST_HEAD(&fs_devices->alloc_list);
321 		list_add(&fs_devices->list, &fs_uuids);
322 		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
323 		fs_devices->latest_devid = devid;
324 		fs_devices->latest_trans = found_transid;
325 		mutex_init(&fs_devices->device_list_mutex);
326 		device = NULL;
327 	} else {
328 		device = __find_device(&fs_devices->devices, devid,
329 				       disk_super->dev_item.uuid);
330 	}
331 	if (!device) {
332 		if (fs_devices->opened)
333 			return -EBUSY;
334 
335 		device = kzalloc(sizeof(*device), GFP_NOFS);
336 		if (!device) {
337 			/* we can safely leave the fs_devices entry around */
338 			return -ENOMEM;
339 		}
340 		device->devid = devid;
341 		device->work.func = pending_bios_fn;
342 		memcpy(device->uuid, disk_super->dev_item.uuid,
343 		       BTRFS_UUID_SIZE);
344 		spin_lock_init(&device->io_lock);
345 		device->name = kstrdup(path, GFP_NOFS);
346 		if (!device->name) {
347 			kfree(device);
348 			return -ENOMEM;
349 		}
350 		INIT_LIST_HEAD(&device->dev_alloc_list);
351 
352 		mutex_lock(&fs_devices->device_list_mutex);
353 		list_add_rcu(&device->dev_list, &fs_devices->devices);
354 		mutex_unlock(&fs_devices->device_list_mutex);
355 
356 		device->fs_devices = fs_devices;
357 		fs_devices->num_devices++;
358 	} else if (!device->name || strcmp(device->name, path)) {
359 		name = kstrdup(path, GFP_NOFS);
360 		if (!name)
361 			return -ENOMEM;
362 		kfree(device->name);
363 		device->name = name;
364 		if (device->missing) {
365 			fs_devices->missing_devices--;
366 			device->missing = 0;
367 		}
368 	}
369 
370 	if (found_transid > fs_devices->latest_trans) {
371 		fs_devices->latest_devid = devid;
372 		fs_devices->latest_trans = found_transid;
373 	}
374 	*fs_devices_ret = fs_devices;
375 	return 0;
376 }
377 
378 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
379 {
380 	struct btrfs_fs_devices *fs_devices;
381 	struct btrfs_device *device;
382 	struct btrfs_device *orig_dev;
383 
384 	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
385 	if (!fs_devices)
386 		return ERR_PTR(-ENOMEM);
387 
388 	INIT_LIST_HEAD(&fs_devices->devices);
389 	INIT_LIST_HEAD(&fs_devices->alloc_list);
390 	INIT_LIST_HEAD(&fs_devices->list);
391 	mutex_init(&fs_devices->device_list_mutex);
392 	fs_devices->latest_devid = orig->latest_devid;
393 	fs_devices->latest_trans = orig->latest_trans;
394 	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
395 
396 	/* We have held the volume lock, it is safe to get the devices. */
397 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
398 		device = kzalloc(sizeof(*device), GFP_NOFS);
399 		if (!device)
400 			goto error;
401 
402 		device->name = kstrdup(orig_dev->name, GFP_NOFS);
403 		if (!device->name) {
404 			kfree(device);
405 			goto error;
406 		}
407 
408 		device->devid = orig_dev->devid;
409 		device->work.func = pending_bios_fn;
410 		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
411 		spin_lock_init(&device->io_lock);
412 		INIT_LIST_HEAD(&device->dev_list);
413 		INIT_LIST_HEAD(&device->dev_alloc_list);
414 
415 		list_add(&device->dev_list, &fs_devices->devices);
416 		device->fs_devices = fs_devices;
417 		fs_devices->num_devices++;
418 	}
419 	return fs_devices;
420 error:
421 	free_fs_devices(fs_devices);
422 	return ERR_PTR(-ENOMEM);
423 }
424 
425 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
426 {
427 	struct btrfs_device *device, *next;
428 
429 	mutex_lock(&uuid_mutex);
430 again:
431 	/* This is the initialized path, it is safe to release the devices. */
432 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
433 		if (device->in_fs_metadata)
434 			continue;
435 
436 		if (device->bdev) {
437 			blkdev_put(device->bdev, device->mode);
438 			device->bdev = NULL;
439 			fs_devices->open_devices--;
440 		}
441 		if (device->writeable) {
442 			list_del_init(&device->dev_alloc_list);
443 			device->writeable = 0;
444 			fs_devices->rw_devices--;
445 		}
446 		list_del_init(&device->dev_list);
447 		fs_devices->num_devices--;
448 		kfree(device->name);
449 		kfree(device);
450 	}
451 
452 	if (fs_devices->seed) {
453 		fs_devices = fs_devices->seed;
454 		goto again;
455 	}
456 
457 	mutex_unlock(&uuid_mutex);
458 	return 0;
459 }
460 
461 static void __free_device(struct work_struct *work)
462 {
463 	struct btrfs_device *device;
464 
465 	device = container_of(work, struct btrfs_device, rcu_work);
466 
467 	if (device->bdev)
468 		blkdev_put(device->bdev, device->mode);
469 
470 	kfree(device->name);
471 	kfree(device);
472 }
473 
474 static void free_device(struct rcu_head *head)
475 {
476 	struct btrfs_device *device;
477 
478 	device = container_of(head, struct btrfs_device, rcu);
479 
480 	INIT_WORK(&device->rcu_work, __free_device);
481 	schedule_work(&device->rcu_work);
482 }
483 
484 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
485 {
486 	struct btrfs_device *device;
487 
488 	if (--fs_devices->opened > 0)
489 		return 0;
490 
491 	mutex_lock(&fs_devices->device_list_mutex);
492 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
493 		struct btrfs_device *new_device;
494 
495 		if (device->bdev)
496 			fs_devices->open_devices--;
497 
498 		if (device->writeable) {
499 			list_del_init(&device->dev_alloc_list);
500 			fs_devices->rw_devices--;
501 		}
502 
503 		new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
504 		BUG_ON(!new_device);
505 		memcpy(new_device, device, sizeof(*new_device));
506 		new_device->name = kstrdup(device->name, GFP_NOFS);
507 		BUG_ON(device->name && !new_device->name);
508 		new_device->bdev = NULL;
509 		new_device->writeable = 0;
510 		new_device->in_fs_metadata = 0;
511 		list_replace_rcu(&device->dev_list, &new_device->dev_list);
512 
513 		call_rcu(&device->rcu, free_device);
514 	}
515 	mutex_unlock(&fs_devices->device_list_mutex);
516 
517 	WARN_ON(fs_devices->open_devices);
518 	WARN_ON(fs_devices->rw_devices);
519 	fs_devices->opened = 0;
520 	fs_devices->seeding = 0;
521 
522 	return 0;
523 }
524 
525 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
526 {
527 	struct btrfs_fs_devices *seed_devices = NULL;
528 	int ret;
529 
530 	mutex_lock(&uuid_mutex);
531 	ret = __btrfs_close_devices(fs_devices);
532 	if (!fs_devices->opened) {
533 		seed_devices = fs_devices->seed;
534 		fs_devices->seed = NULL;
535 	}
536 	mutex_unlock(&uuid_mutex);
537 
538 	while (seed_devices) {
539 		fs_devices = seed_devices;
540 		seed_devices = fs_devices->seed;
541 		__btrfs_close_devices(fs_devices);
542 		free_fs_devices(fs_devices);
543 	}
544 	return ret;
545 }
546 
547 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
548 				fmode_t flags, void *holder)
549 {
550 	struct block_device *bdev;
551 	struct list_head *head = &fs_devices->devices;
552 	struct btrfs_device *device;
553 	struct block_device *latest_bdev = NULL;
554 	struct buffer_head *bh;
555 	struct btrfs_super_block *disk_super;
556 	u64 latest_devid = 0;
557 	u64 latest_transid = 0;
558 	u64 devid;
559 	int seeding = 1;
560 	int ret = 0;
561 
562 	flags |= FMODE_EXCL;
563 
564 	list_for_each_entry(device, head, dev_list) {
565 		if (device->bdev)
566 			continue;
567 		if (!device->name)
568 			continue;
569 
570 		bdev = blkdev_get_by_path(device->name, flags, holder);
571 		if (IS_ERR(bdev)) {
572 			printk(KERN_INFO "open %s failed\n", device->name);
573 			goto error;
574 		}
575 		set_blocksize(bdev, 4096);
576 
577 		bh = btrfs_read_dev_super(bdev);
578 		if (!bh) {
579 			ret = -EINVAL;
580 			goto error_close;
581 		}
582 
583 		disk_super = (struct btrfs_super_block *)bh->b_data;
584 		devid = btrfs_stack_device_id(&disk_super->dev_item);
585 		if (devid != device->devid)
586 			goto error_brelse;
587 
588 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
589 			   BTRFS_UUID_SIZE))
590 			goto error_brelse;
591 
592 		device->generation = btrfs_super_generation(disk_super);
593 		if (!latest_transid || device->generation > latest_transid) {
594 			latest_devid = devid;
595 			latest_transid = device->generation;
596 			latest_bdev = bdev;
597 		}
598 
599 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
600 			device->writeable = 0;
601 		} else {
602 			device->writeable = !bdev_read_only(bdev);
603 			seeding = 0;
604 		}
605 
606 		device->bdev = bdev;
607 		device->in_fs_metadata = 0;
608 		device->mode = flags;
609 
610 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
611 			fs_devices->rotating = 1;
612 
613 		fs_devices->open_devices++;
614 		if (device->writeable) {
615 			fs_devices->rw_devices++;
616 			list_add(&device->dev_alloc_list,
617 				 &fs_devices->alloc_list);
618 		}
619 		brelse(bh);
620 		continue;
621 
622 error_brelse:
623 		brelse(bh);
624 error_close:
625 		blkdev_put(bdev, flags);
626 error:
627 		continue;
628 	}
629 	if (fs_devices->open_devices == 0) {
630 		ret = -EIO;
631 		goto out;
632 	}
633 	fs_devices->seeding = seeding;
634 	fs_devices->opened = 1;
635 	fs_devices->latest_bdev = latest_bdev;
636 	fs_devices->latest_devid = latest_devid;
637 	fs_devices->latest_trans = latest_transid;
638 	fs_devices->total_rw_bytes = 0;
639 out:
640 	return ret;
641 }
642 
643 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
644 		       fmode_t flags, void *holder)
645 {
646 	int ret;
647 
648 	mutex_lock(&uuid_mutex);
649 	if (fs_devices->opened) {
650 		fs_devices->opened++;
651 		ret = 0;
652 	} else {
653 		ret = __btrfs_open_devices(fs_devices, flags, holder);
654 	}
655 	mutex_unlock(&uuid_mutex);
656 	return ret;
657 }
658 
659 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
660 			  struct btrfs_fs_devices **fs_devices_ret)
661 {
662 	struct btrfs_super_block *disk_super;
663 	struct block_device *bdev;
664 	struct buffer_head *bh;
665 	int ret;
666 	u64 devid;
667 	u64 transid;
668 
669 	mutex_lock(&uuid_mutex);
670 
671 	flags |= FMODE_EXCL;
672 	bdev = blkdev_get_by_path(path, flags, holder);
673 
674 	if (IS_ERR(bdev)) {
675 		ret = PTR_ERR(bdev);
676 		goto error;
677 	}
678 
679 	ret = set_blocksize(bdev, 4096);
680 	if (ret)
681 		goto error_close;
682 	bh = btrfs_read_dev_super(bdev);
683 	if (!bh) {
684 		ret = -EINVAL;
685 		goto error_close;
686 	}
687 	disk_super = (struct btrfs_super_block *)bh->b_data;
688 	devid = btrfs_stack_device_id(&disk_super->dev_item);
689 	transid = btrfs_super_generation(disk_super);
690 	if (disk_super->label[0])
691 		printk(KERN_INFO "device label %s ", disk_super->label);
692 	else
693 		printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
694 	printk(KERN_CONT "devid %llu transid %llu %s\n",
695 	       (unsigned long long)devid, (unsigned long long)transid, path);
696 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
697 
698 	brelse(bh);
699 error_close:
700 	blkdev_put(bdev, flags);
701 error:
702 	mutex_unlock(&uuid_mutex);
703 	return ret;
704 }
705 
706 /* helper to account the used device space in the range */
707 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
708 				   u64 end, u64 *length)
709 {
710 	struct btrfs_key key;
711 	struct btrfs_root *root = device->dev_root;
712 	struct btrfs_dev_extent *dev_extent;
713 	struct btrfs_path *path;
714 	u64 extent_end;
715 	int ret;
716 	int slot;
717 	struct extent_buffer *l;
718 
719 	*length = 0;
720 
721 	if (start >= device->total_bytes)
722 		return 0;
723 
724 	path = btrfs_alloc_path();
725 	if (!path)
726 		return -ENOMEM;
727 	path->reada = 2;
728 
729 	key.objectid = device->devid;
730 	key.offset = start;
731 	key.type = BTRFS_DEV_EXTENT_KEY;
732 
733 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
734 	if (ret < 0)
735 		goto out;
736 	if (ret > 0) {
737 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
738 		if (ret < 0)
739 			goto out;
740 	}
741 
742 	while (1) {
743 		l = path->nodes[0];
744 		slot = path->slots[0];
745 		if (slot >= btrfs_header_nritems(l)) {
746 			ret = btrfs_next_leaf(root, path);
747 			if (ret == 0)
748 				continue;
749 			if (ret < 0)
750 				goto out;
751 
752 			break;
753 		}
754 		btrfs_item_key_to_cpu(l, &key, slot);
755 
756 		if (key.objectid < device->devid)
757 			goto next;
758 
759 		if (key.objectid > device->devid)
760 			break;
761 
762 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
763 			goto next;
764 
765 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
766 		extent_end = key.offset + btrfs_dev_extent_length(l,
767 								  dev_extent);
768 		if (key.offset <= start && extent_end > end) {
769 			*length = end - start + 1;
770 			break;
771 		} else if (key.offset <= start && extent_end > start)
772 			*length += extent_end - start;
773 		else if (key.offset > start && extent_end <= end)
774 			*length += extent_end - key.offset;
775 		else if (key.offset > start && key.offset <= end) {
776 			*length += end - key.offset + 1;
777 			break;
778 		} else if (key.offset > end)
779 			break;
780 
781 next:
782 		path->slots[0]++;
783 	}
784 	ret = 0;
785 out:
786 	btrfs_free_path(path);
787 	return ret;
788 }
789 
790 /*
791  * find_free_dev_extent - find free space in the specified device
792  * @trans:	transaction handler
793  * @device:	the device which we search the free space in
794  * @num_bytes:	the size of the free space that we need
795  * @start:	store the start of the free space.
796  * @len:	the size of the free space. that we find, or the size of the max
797  * 		free space if we don't find suitable free space
798  *
799  * this uses a pretty simple search, the expectation is that it is
800  * called very infrequently and that a given device has a small number
801  * of extents
802  *
803  * @start is used to store the start of the free space if we find. But if we
804  * don't find suitable free space, it will be used to store the start position
805  * of the max free space.
806  *
807  * @len is used to store the size of the free space that we find.
808  * But if we don't find suitable free space, it is used to store the size of
809  * the max free space.
810  */
811 int find_free_dev_extent(struct btrfs_trans_handle *trans,
812 			 struct btrfs_device *device, u64 num_bytes,
813 			 u64 *start, u64 *len)
814 {
815 	struct btrfs_key key;
816 	struct btrfs_root *root = device->dev_root;
817 	struct btrfs_dev_extent *dev_extent;
818 	struct btrfs_path *path;
819 	u64 hole_size;
820 	u64 max_hole_start;
821 	u64 max_hole_size;
822 	u64 extent_end;
823 	u64 search_start;
824 	u64 search_end = device->total_bytes;
825 	int ret;
826 	int slot;
827 	struct extent_buffer *l;
828 
829 	/* FIXME use last free of some kind */
830 
831 	/* we don't want to overwrite the superblock on the drive,
832 	 * so we make sure to start at an offset of at least 1MB
833 	 */
834 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
835 
836 	max_hole_start = search_start;
837 	max_hole_size = 0;
838 
839 	if (search_start >= search_end) {
840 		ret = -ENOSPC;
841 		goto error;
842 	}
843 
844 	path = btrfs_alloc_path();
845 	if (!path) {
846 		ret = -ENOMEM;
847 		goto error;
848 	}
849 	path->reada = 2;
850 
851 	key.objectid = device->devid;
852 	key.offset = search_start;
853 	key.type = BTRFS_DEV_EXTENT_KEY;
854 
855 	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
856 	if (ret < 0)
857 		goto out;
858 	if (ret > 0) {
859 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
860 		if (ret < 0)
861 			goto out;
862 	}
863 
864 	while (1) {
865 		l = path->nodes[0];
866 		slot = path->slots[0];
867 		if (slot >= btrfs_header_nritems(l)) {
868 			ret = btrfs_next_leaf(root, path);
869 			if (ret == 0)
870 				continue;
871 			if (ret < 0)
872 				goto out;
873 
874 			break;
875 		}
876 		btrfs_item_key_to_cpu(l, &key, slot);
877 
878 		if (key.objectid < device->devid)
879 			goto next;
880 
881 		if (key.objectid > device->devid)
882 			break;
883 
884 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
885 			goto next;
886 
887 		if (key.offset > search_start) {
888 			hole_size = key.offset - search_start;
889 
890 			if (hole_size > max_hole_size) {
891 				max_hole_start = search_start;
892 				max_hole_size = hole_size;
893 			}
894 
895 			/*
896 			 * If this free space is greater than which we need,
897 			 * it must be the max free space that we have found
898 			 * until now, so max_hole_start must point to the start
899 			 * of this free space and the length of this free space
900 			 * is stored in max_hole_size. Thus, we return
901 			 * max_hole_start and max_hole_size and go back to the
902 			 * caller.
903 			 */
904 			if (hole_size >= num_bytes) {
905 				ret = 0;
906 				goto out;
907 			}
908 		}
909 
910 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
911 		extent_end = key.offset + btrfs_dev_extent_length(l,
912 								  dev_extent);
913 		if (extent_end > search_start)
914 			search_start = extent_end;
915 next:
916 		path->slots[0]++;
917 		cond_resched();
918 	}
919 
920 	hole_size = search_end- search_start;
921 	if (hole_size > max_hole_size) {
922 		max_hole_start = search_start;
923 		max_hole_size = hole_size;
924 	}
925 
926 	/* See above. */
927 	if (hole_size < num_bytes)
928 		ret = -ENOSPC;
929 	else
930 		ret = 0;
931 
932 out:
933 	btrfs_free_path(path);
934 error:
935 	*start = max_hole_start;
936 	if (len)
937 		*len = max_hole_size;
938 	return ret;
939 }
940 
941 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
942 			  struct btrfs_device *device,
943 			  u64 start)
944 {
945 	int ret;
946 	struct btrfs_path *path;
947 	struct btrfs_root *root = device->dev_root;
948 	struct btrfs_key key;
949 	struct btrfs_key found_key;
950 	struct extent_buffer *leaf = NULL;
951 	struct btrfs_dev_extent *extent = NULL;
952 
953 	path = btrfs_alloc_path();
954 	if (!path)
955 		return -ENOMEM;
956 
957 	key.objectid = device->devid;
958 	key.offset = start;
959 	key.type = BTRFS_DEV_EXTENT_KEY;
960 
961 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
962 	if (ret > 0) {
963 		ret = btrfs_previous_item(root, path, key.objectid,
964 					  BTRFS_DEV_EXTENT_KEY);
965 		if (ret)
966 			goto out;
967 		leaf = path->nodes[0];
968 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
969 		extent = btrfs_item_ptr(leaf, path->slots[0],
970 					struct btrfs_dev_extent);
971 		BUG_ON(found_key.offset > start || found_key.offset +
972 		       btrfs_dev_extent_length(leaf, extent) < start);
973 	} else if (ret == 0) {
974 		leaf = path->nodes[0];
975 		extent = btrfs_item_ptr(leaf, path->slots[0],
976 					struct btrfs_dev_extent);
977 	}
978 	BUG_ON(ret);
979 
980 	if (device->bytes_used > 0)
981 		device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
982 	ret = btrfs_del_item(trans, root, path);
983 
984 out:
985 	btrfs_free_path(path);
986 	return ret;
987 }
988 
989 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
990 			   struct btrfs_device *device,
991 			   u64 chunk_tree, u64 chunk_objectid,
992 			   u64 chunk_offset, u64 start, u64 num_bytes)
993 {
994 	int ret;
995 	struct btrfs_path *path;
996 	struct btrfs_root *root = device->dev_root;
997 	struct btrfs_dev_extent *extent;
998 	struct extent_buffer *leaf;
999 	struct btrfs_key key;
1000 
1001 	WARN_ON(!device->in_fs_metadata);
1002 	path = btrfs_alloc_path();
1003 	if (!path)
1004 		return -ENOMEM;
1005 
1006 	key.objectid = device->devid;
1007 	key.offset = start;
1008 	key.type = BTRFS_DEV_EXTENT_KEY;
1009 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1010 				      sizeof(*extent));
1011 	BUG_ON(ret);
1012 
1013 	leaf = path->nodes[0];
1014 	extent = btrfs_item_ptr(leaf, path->slots[0],
1015 				struct btrfs_dev_extent);
1016 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1017 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1018 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1019 
1020 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1021 		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1022 		    BTRFS_UUID_SIZE);
1023 
1024 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1025 	btrfs_mark_buffer_dirty(leaf);
1026 	btrfs_free_path(path);
1027 	return ret;
1028 }
1029 
1030 static noinline int find_next_chunk(struct btrfs_root *root,
1031 				    u64 objectid, u64 *offset)
1032 {
1033 	struct btrfs_path *path;
1034 	int ret;
1035 	struct btrfs_key key;
1036 	struct btrfs_chunk *chunk;
1037 	struct btrfs_key found_key;
1038 
1039 	path = btrfs_alloc_path();
1040 	if (!path)
1041 		return -ENOMEM;
1042 
1043 	key.objectid = objectid;
1044 	key.offset = (u64)-1;
1045 	key.type = BTRFS_CHUNK_ITEM_KEY;
1046 
1047 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1048 	if (ret < 0)
1049 		goto error;
1050 
1051 	BUG_ON(ret == 0);
1052 
1053 	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1054 	if (ret) {
1055 		*offset = 0;
1056 	} else {
1057 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1058 				      path->slots[0]);
1059 		if (found_key.objectid != objectid)
1060 			*offset = 0;
1061 		else {
1062 			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1063 					       struct btrfs_chunk);
1064 			*offset = found_key.offset +
1065 				btrfs_chunk_length(path->nodes[0], chunk);
1066 		}
1067 	}
1068 	ret = 0;
1069 error:
1070 	btrfs_free_path(path);
1071 	return ret;
1072 }
1073 
1074 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1075 {
1076 	int ret;
1077 	struct btrfs_key key;
1078 	struct btrfs_key found_key;
1079 	struct btrfs_path *path;
1080 
1081 	root = root->fs_info->chunk_root;
1082 
1083 	path = btrfs_alloc_path();
1084 	if (!path)
1085 		return -ENOMEM;
1086 
1087 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1088 	key.type = BTRFS_DEV_ITEM_KEY;
1089 	key.offset = (u64)-1;
1090 
1091 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1092 	if (ret < 0)
1093 		goto error;
1094 
1095 	BUG_ON(ret == 0);
1096 
1097 	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1098 				  BTRFS_DEV_ITEM_KEY);
1099 	if (ret) {
1100 		*objectid = 1;
1101 	} else {
1102 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1103 				      path->slots[0]);
1104 		*objectid = found_key.offset + 1;
1105 	}
1106 	ret = 0;
1107 error:
1108 	btrfs_free_path(path);
1109 	return ret;
1110 }
1111 
1112 /*
1113  * the device information is stored in the chunk root
1114  * the btrfs_device struct should be fully filled in
1115  */
1116 int btrfs_add_device(struct btrfs_trans_handle *trans,
1117 		     struct btrfs_root *root,
1118 		     struct btrfs_device *device)
1119 {
1120 	int ret;
1121 	struct btrfs_path *path;
1122 	struct btrfs_dev_item *dev_item;
1123 	struct extent_buffer *leaf;
1124 	struct btrfs_key key;
1125 	unsigned long ptr;
1126 
1127 	root = root->fs_info->chunk_root;
1128 
1129 	path = btrfs_alloc_path();
1130 	if (!path)
1131 		return -ENOMEM;
1132 
1133 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1134 	key.type = BTRFS_DEV_ITEM_KEY;
1135 	key.offset = device->devid;
1136 
1137 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1138 				      sizeof(*dev_item));
1139 	if (ret)
1140 		goto out;
1141 
1142 	leaf = path->nodes[0];
1143 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1144 
1145 	btrfs_set_device_id(leaf, dev_item, device->devid);
1146 	btrfs_set_device_generation(leaf, dev_item, 0);
1147 	btrfs_set_device_type(leaf, dev_item, device->type);
1148 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1149 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1150 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1151 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1152 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1153 	btrfs_set_device_group(leaf, dev_item, 0);
1154 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1155 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1156 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1157 
1158 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1159 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1160 	ptr = (unsigned long)btrfs_device_fsid(dev_item);
1161 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1162 	btrfs_mark_buffer_dirty(leaf);
1163 
1164 	ret = 0;
1165 out:
1166 	btrfs_free_path(path);
1167 	return ret;
1168 }
1169 
1170 static int btrfs_rm_dev_item(struct btrfs_root *root,
1171 			     struct btrfs_device *device)
1172 {
1173 	int ret;
1174 	struct btrfs_path *path;
1175 	struct btrfs_key key;
1176 	struct btrfs_trans_handle *trans;
1177 
1178 	root = root->fs_info->chunk_root;
1179 
1180 	path = btrfs_alloc_path();
1181 	if (!path)
1182 		return -ENOMEM;
1183 
1184 	trans = btrfs_start_transaction(root, 0);
1185 	if (IS_ERR(trans)) {
1186 		btrfs_free_path(path);
1187 		return PTR_ERR(trans);
1188 	}
1189 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1190 	key.type = BTRFS_DEV_ITEM_KEY;
1191 	key.offset = device->devid;
1192 	lock_chunks(root);
1193 
1194 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1195 	if (ret < 0)
1196 		goto out;
1197 
1198 	if (ret > 0) {
1199 		ret = -ENOENT;
1200 		goto out;
1201 	}
1202 
1203 	ret = btrfs_del_item(trans, root, path);
1204 	if (ret)
1205 		goto out;
1206 out:
1207 	btrfs_free_path(path);
1208 	unlock_chunks(root);
1209 	btrfs_commit_transaction(trans, root);
1210 	return ret;
1211 }
1212 
1213 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1214 {
1215 	struct btrfs_device *device;
1216 	struct btrfs_device *next_device;
1217 	struct block_device *bdev;
1218 	struct buffer_head *bh = NULL;
1219 	struct btrfs_super_block *disk_super;
1220 	struct btrfs_fs_devices *cur_devices;
1221 	u64 all_avail;
1222 	u64 devid;
1223 	u64 num_devices;
1224 	u8 *dev_uuid;
1225 	int ret = 0;
1226 	bool clear_super = false;
1227 
1228 	mutex_lock(&uuid_mutex);
1229 	mutex_lock(&root->fs_info->volume_mutex);
1230 
1231 	all_avail = root->fs_info->avail_data_alloc_bits |
1232 		root->fs_info->avail_system_alloc_bits |
1233 		root->fs_info->avail_metadata_alloc_bits;
1234 
1235 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1236 	    root->fs_info->fs_devices->num_devices <= 4) {
1237 		printk(KERN_ERR "btrfs: unable to go below four devices "
1238 		       "on raid10\n");
1239 		ret = -EINVAL;
1240 		goto out;
1241 	}
1242 
1243 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1244 	    root->fs_info->fs_devices->num_devices <= 2) {
1245 		printk(KERN_ERR "btrfs: unable to go below two "
1246 		       "devices on raid1\n");
1247 		ret = -EINVAL;
1248 		goto out;
1249 	}
1250 
1251 	if (strcmp(device_path, "missing") == 0) {
1252 		struct list_head *devices;
1253 		struct btrfs_device *tmp;
1254 
1255 		device = NULL;
1256 		devices = &root->fs_info->fs_devices->devices;
1257 		/*
1258 		 * It is safe to read the devices since the volume_mutex
1259 		 * is held.
1260 		 */
1261 		list_for_each_entry(tmp, devices, dev_list) {
1262 			if (tmp->in_fs_metadata && !tmp->bdev) {
1263 				device = tmp;
1264 				break;
1265 			}
1266 		}
1267 		bdev = NULL;
1268 		bh = NULL;
1269 		disk_super = NULL;
1270 		if (!device) {
1271 			printk(KERN_ERR "btrfs: no missing devices found to "
1272 			       "remove\n");
1273 			goto out;
1274 		}
1275 	} else {
1276 		bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1277 					  root->fs_info->bdev_holder);
1278 		if (IS_ERR(bdev)) {
1279 			ret = PTR_ERR(bdev);
1280 			goto out;
1281 		}
1282 
1283 		set_blocksize(bdev, 4096);
1284 		bh = btrfs_read_dev_super(bdev);
1285 		if (!bh) {
1286 			ret = -EINVAL;
1287 			goto error_close;
1288 		}
1289 		disk_super = (struct btrfs_super_block *)bh->b_data;
1290 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1291 		dev_uuid = disk_super->dev_item.uuid;
1292 		device = btrfs_find_device(root, devid, dev_uuid,
1293 					   disk_super->fsid);
1294 		if (!device) {
1295 			ret = -ENOENT;
1296 			goto error_brelse;
1297 		}
1298 	}
1299 
1300 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1301 		printk(KERN_ERR "btrfs: unable to remove the only writeable "
1302 		       "device\n");
1303 		ret = -EINVAL;
1304 		goto error_brelse;
1305 	}
1306 
1307 	if (device->writeable) {
1308 		lock_chunks(root);
1309 		list_del_init(&device->dev_alloc_list);
1310 		unlock_chunks(root);
1311 		root->fs_info->fs_devices->rw_devices--;
1312 		clear_super = true;
1313 	}
1314 
1315 	ret = btrfs_shrink_device(device, 0);
1316 	if (ret)
1317 		goto error_undo;
1318 
1319 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1320 	if (ret)
1321 		goto error_undo;
1322 
1323 	device->in_fs_metadata = 0;
1324 	btrfs_scrub_cancel_dev(root, device);
1325 
1326 	/*
1327 	 * the device list mutex makes sure that we don't change
1328 	 * the device list while someone else is writing out all
1329 	 * the device supers.
1330 	 */
1331 
1332 	cur_devices = device->fs_devices;
1333 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1334 	list_del_rcu(&device->dev_list);
1335 
1336 	device->fs_devices->num_devices--;
1337 
1338 	if (device->missing)
1339 		root->fs_info->fs_devices->missing_devices--;
1340 
1341 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1342 				 struct btrfs_device, dev_list);
1343 	if (device->bdev == root->fs_info->sb->s_bdev)
1344 		root->fs_info->sb->s_bdev = next_device->bdev;
1345 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1346 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1347 
1348 	if (device->bdev)
1349 		device->fs_devices->open_devices--;
1350 
1351 	call_rcu(&device->rcu, free_device);
1352 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1353 
1354 	num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1355 	btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1356 
1357 	if (cur_devices->open_devices == 0) {
1358 		struct btrfs_fs_devices *fs_devices;
1359 		fs_devices = root->fs_info->fs_devices;
1360 		while (fs_devices) {
1361 			if (fs_devices->seed == cur_devices)
1362 				break;
1363 			fs_devices = fs_devices->seed;
1364 		}
1365 		fs_devices->seed = cur_devices->seed;
1366 		cur_devices->seed = NULL;
1367 		lock_chunks(root);
1368 		__btrfs_close_devices(cur_devices);
1369 		unlock_chunks(root);
1370 		free_fs_devices(cur_devices);
1371 	}
1372 
1373 	/*
1374 	 * at this point, the device is zero sized.  We want to
1375 	 * remove it from the devices list and zero out the old super
1376 	 */
1377 	if (clear_super) {
1378 		/* make sure this device isn't detected as part of
1379 		 * the FS anymore
1380 		 */
1381 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1382 		set_buffer_dirty(bh);
1383 		sync_dirty_buffer(bh);
1384 	}
1385 
1386 	ret = 0;
1387 
1388 error_brelse:
1389 	brelse(bh);
1390 error_close:
1391 	if (bdev)
1392 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1393 out:
1394 	mutex_unlock(&root->fs_info->volume_mutex);
1395 	mutex_unlock(&uuid_mutex);
1396 	return ret;
1397 error_undo:
1398 	if (device->writeable) {
1399 		lock_chunks(root);
1400 		list_add(&device->dev_alloc_list,
1401 			 &root->fs_info->fs_devices->alloc_list);
1402 		unlock_chunks(root);
1403 		root->fs_info->fs_devices->rw_devices++;
1404 	}
1405 	goto error_brelse;
1406 }
1407 
1408 /*
1409  * does all the dirty work required for changing file system's UUID.
1410  */
1411 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1412 				struct btrfs_root *root)
1413 {
1414 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1415 	struct btrfs_fs_devices *old_devices;
1416 	struct btrfs_fs_devices *seed_devices;
1417 	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1418 	struct btrfs_device *device;
1419 	u64 super_flags;
1420 
1421 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1422 	if (!fs_devices->seeding)
1423 		return -EINVAL;
1424 
1425 	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1426 	if (!seed_devices)
1427 		return -ENOMEM;
1428 
1429 	old_devices = clone_fs_devices(fs_devices);
1430 	if (IS_ERR(old_devices)) {
1431 		kfree(seed_devices);
1432 		return PTR_ERR(old_devices);
1433 	}
1434 
1435 	list_add(&old_devices->list, &fs_uuids);
1436 
1437 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1438 	seed_devices->opened = 1;
1439 	INIT_LIST_HEAD(&seed_devices->devices);
1440 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1441 	mutex_init(&seed_devices->device_list_mutex);
1442 
1443 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1444 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1445 			      synchronize_rcu);
1446 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1447 
1448 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1449 	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1450 		device->fs_devices = seed_devices;
1451 	}
1452 
1453 	fs_devices->seeding = 0;
1454 	fs_devices->num_devices = 0;
1455 	fs_devices->open_devices = 0;
1456 	fs_devices->seed = seed_devices;
1457 
1458 	generate_random_uuid(fs_devices->fsid);
1459 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1460 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1461 	super_flags = btrfs_super_flags(disk_super) &
1462 		      ~BTRFS_SUPER_FLAG_SEEDING;
1463 	btrfs_set_super_flags(disk_super, super_flags);
1464 
1465 	return 0;
1466 }
1467 
1468 /*
1469  * strore the expected generation for seed devices in device items.
1470  */
1471 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1472 			       struct btrfs_root *root)
1473 {
1474 	struct btrfs_path *path;
1475 	struct extent_buffer *leaf;
1476 	struct btrfs_dev_item *dev_item;
1477 	struct btrfs_device *device;
1478 	struct btrfs_key key;
1479 	u8 fs_uuid[BTRFS_UUID_SIZE];
1480 	u8 dev_uuid[BTRFS_UUID_SIZE];
1481 	u64 devid;
1482 	int ret;
1483 
1484 	path = btrfs_alloc_path();
1485 	if (!path)
1486 		return -ENOMEM;
1487 
1488 	root = root->fs_info->chunk_root;
1489 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1490 	key.offset = 0;
1491 	key.type = BTRFS_DEV_ITEM_KEY;
1492 
1493 	while (1) {
1494 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1495 		if (ret < 0)
1496 			goto error;
1497 
1498 		leaf = path->nodes[0];
1499 next_slot:
1500 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1501 			ret = btrfs_next_leaf(root, path);
1502 			if (ret > 0)
1503 				break;
1504 			if (ret < 0)
1505 				goto error;
1506 			leaf = path->nodes[0];
1507 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1508 			btrfs_release_path(path);
1509 			continue;
1510 		}
1511 
1512 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1513 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1514 		    key.type != BTRFS_DEV_ITEM_KEY)
1515 			break;
1516 
1517 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
1518 					  struct btrfs_dev_item);
1519 		devid = btrfs_device_id(leaf, dev_item);
1520 		read_extent_buffer(leaf, dev_uuid,
1521 				   (unsigned long)btrfs_device_uuid(dev_item),
1522 				   BTRFS_UUID_SIZE);
1523 		read_extent_buffer(leaf, fs_uuid,
1524 				   (unsigned long)btrfs_device_fsid(dev_item),
1525 				   BTRFS_UUID_SIZE);
1526 		device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1527 		BUG_ON(!device);
1528 
1529 		if (device->fs_devices->seeding) {
1530 			btrfs_set_device_generation(leaf, dev_item,
1531 						    device->generation);
1532 			btrfs_mark_buffer_dirty(leaf);
1533 		}
1534 
1535 		path->slots[0]++;
1536 		goto next_slot;
1537 	}
1538 	ret = 0;
1539 error:
1540 	btrfs_free_path(path);
1541 	return ret;
1542 }
1543 
1544 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1545 {
1546 	struct btrfs_trans_handle *trans;
1547 	struct btrfs_device *device;
1548 	struct block_device *bdev;
1549 	struct list_head *devices;
1550 	struct super_block *sb = root->fs_info->sb;
1551 	u64 total_bytes;
1552 	int seeding_dev = 0;
1553 	int ret = 0;
1554 
1555 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1556 		return -EINVAL;
1557 
1558 	bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
1559 				  root->fs_info->bdev_holder);
1560 	if (IS_ERR(bdev))
1561 		return PTR_ERR(bdev);
1562 
1563 	if (root->fs_info->fs_devices->seeding) {
1564 		seeding_dev = 1;
1565 		down_write(&sb->s_umount);
1566 		mutex_lock(&uuid_mutex);
1567 	}
1568 
1569 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
1570 	mutex_lock(&root->fs_info->volume_mutex);
1571 
1572 	devices = &root->fs_info->fs_devices->devices;
1573 	/*
1574 	 * we have the volume lock, so we don't need the extra
1575 	 * device list mutex while reading the list here.
1576 	 */
1577 	list_for_each_entry(device, devices, dev_list) {
1578 		if (device->bdev == bdev) {
1579 			ret = -EEXIST;
1580 			goto error;
1581 		}
1582 	}
1583 
1584 	device = kzalloc(sizeof(*device), GFP_NOFS);
1585 	if (!device) {
1586 		/* we can safely leave the fs_devices entry around */
1587 		ret = -ENOMEM;
1588 		goto error;
1589 	}
1590 
1591 	device->name = kstrdup(device_path, GFP_NOFS);
1592 	if (!device->name) {
1593 		kfree(device);
1594 		ret = -ENOMEM;
1595 		goto error;
1596 	}
1597 
1598 	ret = find_next_devid(root, &device->devid);
1599 	if (ret) {
1600 		kfree(device->name);
1601 		kfree(device);
1602 		goto error;
1603 	}
1604 
1605 	trans = btrfs_start_transaction(root, 0);
1606 	if (IS_ERR(trans)) {
1607 		kfree(device->name);
1608 		kfree(device);
1609 		ret = PTR_ERR(trans);
1610 		goto error;
1611 	}
1612 
1613 	lock_chunks(root);
1614 
1615 	device->writeable = 1;
1616 	device->work.func = pending_bios_fn;
1617 	generate_random_uuid(device->uuid);
1618 	spin_lock_init(&device->io_lock);
1619 	device->generation = trans->transid;
1620 	device->io_width = root->sectorsize;
1621 	device->io_align = root->sectorsize;
1622 	device->sector_size = root->sectorsize;
1623 	device->total_bytes = i_size_read(bdev->bd_inode);
1624 	device->disk_total_bytes = device->total_bytes;
1625 	device->dev_root = root->fs_info->dev_root;
1626 	device->bdev = bdev;
1627 	device->in_fs_metadata = 1;
1628 	device->mode = FMODE_EXCL;
1629 	set_blocksize(device->bdev, 4096);
1630 
1631 	if (seeding_dev) {
1632 		sb->s_flags &= ~MS_RDONLY;
1633 		ret = btrfs_prepare_sprout(trans, root);
1634 		BUG_ON(ret);
1635 	}
1636 
1637 	device->fs_devices = root->fs_info->fs_devices;
1638 
1639 	/*
1640 	 * we don't want write_supers to jump in here with our device
1641 	 * half setup
1642 	 */
1643 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1644 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
1645 	list_add(&device->dev_alloc_list,
1646 		 &root->fs_info->fs_devices->alloc_list);
1647 	root->fs_info->fs_devices->num_devices++;
1648 	root->fs_info->fs_devices->open_devices++;
1649 	root->fs_info->fs_devices->rw_devices++;
1650 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1651 
1652 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1653 		root->fs_info->fs_devices->rotating = 1;
1654 
1655 	total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1656 	btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1657 				    total_bytes + device->total_bytes);
1658 
1659 	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1660 	btrfs_set_super_num_devices(&root->fs_info->super_copy,
1661 				    total_bytes + 1);
1662 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1663 
1664 	if (seeding_dev) {
1665 		ret = init_first_rw_device(trans, root, device);
1666 		BUG_ON(ret);
1667 		ret = btrfs_finish_sprout(trans, root);
1668 		BUG_ON(ret);
1669 	} else {
1670 		ret = btrfs_add_device(trans, root, device);
1671 	}
1672 
1673 	/*
1674 	 * we've got more storage, clear any full flags on the space
1675 	 * infos
1676 	 */
1677 	btrfs_clear_space_info_full(root->fs_info);
1678 
1679 	unlock_chunks(root);
1680 	btrfs_commit_transaction(trans, root);
1681 
1682 	if (seeding_dev) {
1683 		mutex_unlock(&uuid_mutex);
1684 		up_write(&sb->s_umount);
1685 
1686 		ret = btrfs_relocate_sys_chunks(root);
1687 		BUG_ON(ret);
1688 	}
1689 out:
1690 	mutex_unlock(&root->fs_info->volume_mutex);
1691 	return ret;
1692 error:
1693 	blkdev_put(bdev, FMODE_EXCL);
1694 	if (seeding_dev) {
1695 		mutex_unlock(&uuid_mutex);
1696 		up_write(&sb->s_umount);
1697 	}
1698 	goto out;
1699 }
1700 
1701 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1702 					struct btrfs_device *device)
1703 {
1704 	int ret;
1705 	struct btrfs_path *path;
1706 	struct btrfs_root *root;
1707 	struct btrfs_dev_item *dev_item;
1708 	struct extent_buffer *leaf;
1709 	struct btrfs_key key;
1710 
1711 	root = device->dev_root->fs_info->chunk_root;
1712 
1713 	path = btrfs_alloc_path();
1714 	if (!path)
1715 		return -ENOMEM;
1716 
1717 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1718 	key.type = BTRFS_DEV_ITEM_KEY;
1719 	key.offset = device->devid;
1720 
1721 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1722 	if (ret < 0)
1723 		goto out;
1724 
1725 	if (ret > 0) {
1726 		ret = -ENOENT;
1727 		goto out;
1728 	}
1729 
1730 	leaf = path->nodes[0];
1731 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1732 
1733 	btrfs_set_device_id(leaf, dev_item, device->devid);
1734 	btrfs_set_device_type(leaf, dev_item, device->type);
1735 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1736 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1737 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1738 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1739 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1740 	btrfs_mark_buffer_dirty(leaf);
1741 
1742 out:
1743 	btrfs_free_path(path);
1744 	return ret;
1745 }
1746 
1747 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1748 		      struct btrfs_device *device, u64 new_size)
1749 {
1750 	struct btrfs_super_block *super_copy =
1751 		&device->dev_root->fs_info->super_copy;
1752 	u64 old_total = btrfs_super_total_bytes(super_copy);
1753 	u64 diff = new_size - device->total_bytes;
1754 
1755 	if (!device->writeable)
1756 		return -EACCES;
1757 	if (new_size <= device->total_bytes)
1758 		return -EINVAL;
1759 
1760 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
1761 	device->fs_devices->total_rw_bytes += diff;
1762 
1763 	device->total_bytes = new_size;
1764 	device->disk_total_bytes = new_size;
1765 	btrfs_clear_space_info_full(device->dev_root->fs_info);
1766 
1767 	return btrfs_update_device(trans, device);
1768 }
1769 
1770 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1771 		      struct btrfs_device *device, u64 new_size)
1772 {
1773 	int ret;
1774 	lock_chunks(device->dev_root);
1775 	ret = __btrfs_grow_device(trans, device, new_size);
1776 	unlock_chunks(device->dev_root);
1777 	return ret;
1778 }
1779 
1780 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1781 			    struct btrfs_root *root,
1782 			    u64 chunk_tree, u64 chunk_objectid,
1783 			    u64 chunk_offset)
1784 {
1785 	int ret;
1786 	struct btrfs_path *path;
1787 	struct btrfs_key key;
1788 
1789 	root = root->fs_info->chunk_root;
1790 	path = btrfs_alloc_path();
1791 	if (!path)
1792 		return -ENOMEM;
1793 
1794 	key.objectid = chunk_objectid;
1795 	key.offset = chunk_offset;
1796 	key.type = BTRFS_CHUNK_ITEM_KEY;
1797 
1798 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1799 	BUG_ON(ret);
1800 
1801 	ret = btrfs_del_item(trans, root, path);
1802 
1803 	btrfs_free_path(path);
1804 	return ret;
1805 }
1806 
1807 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1808 			chunk_offset)
1809 {
1810 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1811 	struct btrfs_disk_key *disk_key;
1812 	struct btrfs_chunk *chunk;
1813 	u8 *ptr;
1814 	int ret = 0;
1815 	u32 num_stripes;
1816 	u32 array_size;
1817 	u32 len = 0;
1818 	u32 cur;
1819 	struct btrfs_key key;
1820 
1821 	array_size = btrfs_super_sys_array_size(super_copy);
1822 
1823 	ptr = super_copy->sys_chunk_array;
1824 	cur = 0;
1825 
1826 	while (cur < array_size) {
1827 		disk_key = (struct btrfs_disk_key *)ptr;
1828 		btrfs_disk_key_to_cpu(&key, disk_key);
1829 
1830 		len = sizeof(*disk_key);
1831 
1832 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1833 			chunk = (struct btrfs_chunk *)(ptr + len);
1834 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1835 			len += btrfs_chunk_item_size(num_stripes);
1836 		} else {
1837 			ret = -EIO;
1838 			break;
1839 		}
1840 		if (key.objectid == chunk_objectid &&
1841 		    key.offset == chunk_offset) {
1842 			memmove(ptr, ptr + len, array_size - (cur + len));
1843 			array_size -= len;
1844 			btrfs_set_super_sys_array_size(super_copy, array_size);
1845 		} else {
1846 			ptr += len;
1847 			cur += len;
1848 		}
1849 	}
1850 	return ret;
1851 }
1852 
1853 static int btrfs_relocate_chunk(struct btrfs_root *root,
1854 			 u64 chunk_tree, u64 chunk_objectid,
1855 			 u64 chunk_offset)
1856 {
1857 	struct extent_map_tree *em_tree;
1858 	struct btrfs_root *extent_root;
1859 	struct btrfs_trans_handle *trans;
1860 	struct extent_map *em;
1861 	struct map_lookup *map;
1862 	int ret;
1863 	int i;
1864 
1865 	root = root->fs_info->chunk_root;
1866 	extent_root = root->fs_info->extent_root;
1867 	em_tree = &root->fs_info->mapping_tree.map_tree;
1868 
1869 	ret = btrfs_can_relocate(extent_root, chunk_offset);
1870 	if (ret)
1871 		return -ENOSPC;
1872 
1873 	/* step one, relocate all the extents inside this chunk */
1874 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1875 	if (ret)
1876 		return ret;
1877 
1878 	trans = btrfs_start_transaction(root, 0);
1879 	BUG_ON(IS_ERR(trans));
1880 
1881 	lock_chunks(root);
1882 
1883 	/*
1884 	 * step two, delete the device extents and the
1885 	 * chunk tree entries
1886 	 */
1887 	read_lock(&em_tree->lock);
1888 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1889 	read_unlock(&em_tree->lock);
1890 
1891 	BUG_ON(em->start > chunk_offset ||
1892 	       em->start + em->len < chunk_offset);
1893 	map = (struct map_lookup *)em->bdev;
1894 
1895 	for (i = 0; i < map->num_stripes; i++) {
1896 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1897 					    map->stripes[i].physical);
1898 		BUG_ON(ret);
1899 
1900 		if (map->stripes[i].dev) {
1901 			ret = btrfs_update_device(trans, map->stripes[i].dev);
1902 			BUG_ON(ret);
1903 		}
1904 	}
1905 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1906 			       chunk_offset);
1907 
1908 	BUG_ON(ret);
1909 
1910 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
1911 
1912 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1913 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1914 		BUG_ON(ret);
1915 	}
1916 
1917 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1918 	BUG_ON(ret);
1919 
1920 	write_lock(&em_tree->lock);
1921 	remove_extent_mapping(em_tree, em);
1922 	write_unlock(&em_tree->lock);
1923 
1924 	kfree(map);
1925 	em->bdev = NULL;
1926 
1927 	/* once for the tree */
1928 	free_extent_map(em);
1929 	/* once for us */
1930 	free_extent_map(em);
1931 
1932 	unlock_chunks(root);
1933 	btrfs_end_transaction(trans, root);
1934 	return 0;
1935 }
1936 
1937 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1938 {
1939 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1940 	struct btrfs_path *path;
1941 	struct extent_buffer *leaf;
1942 	struct btrfs_chunk *chunk;
1943 	struct btrfs_key key;
1944 	struct btrfs_key found_key;
1945 	u64 chunk_tree = chunk_root->root_key.objectid;
1946 	u64 chunk_type;
1947 	bool retried = false;
1948 	int failed = 0;
1949 	int ret;
1950 
1951 	path = btrfs_alloc_path();
1952 	if (!path)
1953 		return -ENOMEM;
1954 
1955 again:
1956 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1957 	key.offset = (u64)-1;
1958 	key.type = BTRFS_CHUNK_ITEM_KEY;
1959 
1960 	while (1) {
1961 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1962 		if (ret < 0)
1963 			goto error;
1964 		BUG_ON(ret == 0);
1965 
1966 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
1967 					  key.type);
1968 		if (ret < 0)
1969 			goto error;
1970 		if (ret > 0)
1971 			break;
1972 
1973 		leaf = path->nodes[0];
1974 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1975 
1976 		chunk = btrfs_item_ptr(leaf, path->slots[0],
1977 				       struct btrfs_chunk);
1978 		chunk_type = btrfs_chunk_type(leaf, chunk);
1979 		btrfs_release_path(path);
1980 
1981 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1982 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1983 						   found_key.objectid,
1984 						   found_key.offset);
1985 			if (ret == -ENOSPC)
1986 				failed++;
1987 			else if (ret)
1988 				BUG();
1989 		}
1990 
1991 		if (found_key.offset == 0)
1992 			break;
1993 		key.offset = found_key.offset - 1;
1994 	}
1995 	ret = 0;
1996 	if (failed && !retried) {
1997 		failed = 0;
1998 		retried = true;
1999 		goto again;
2000 	} else if (failed && retried) {
2001 		WARN_ON(1);
2002 		ret = -ENOSPC;
2003 	}
2004 error:
2005 	btrfs_free_path(path);
2006 	return ret;
2007 }
2008 
2009 static u64 div_factor(u64 num, int factor)
2010 {
2011 	if (factor == 10)
2012 		return num;
2013 	num *= factor;
2014 	do_div(num, 10);
2015 	return num;
2016 }
2017 
2018 int btrfs_balance(struct btrfs_root *dev_root)
2019 {
2020 	int ret;
2021 	struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2022 	struct btrfs_device *device;
2023 	u64 old_size;
2024 	u64 size_to_free;
2025 	struct btrfs_path *path;
2026 	struct btrfs_key key;
2027 	struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2028 	struct btrfs_trans_handle *trans;
2029 	struct btrfs_key found_key;
2030 
2031 	if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2032 		return -EROFS;
2033 
2034 	if (!capable(CAP_SYS_ADMIN))
2035 		return -EPERM;
2036 
2037 	mutex_lock(&dev_root->fs_info->volume_mutex);
2038 	dev_root = dev_root->fs_info->dev_root;
2039 
2040 	/* step one make some room on all the devices */
2041 	list_for_each_entry(device, devices, dev_list) {
2042 		old_size = device->total_bytes;
2043 		size_to_free = div_factor(old_size, 1);
2044 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2045 		if (!device->writeable ||
2046 		    device->total_bytes - device->bytes_used > size_to_free)
2047 			continue;
2048 
2049 		ret = btrfs_shrink_device(device, old_size - size_to_free);
2050 		if (ret == -ENOSPC)
2051 			break;
2052 		BUG_ON(ret);
2053 
2054 		trans = btrfs_start_transaction(dev_root, 0);
2055 		BUG_ON(IS_ERR(trans));
2056 
2057 		ret = btrfs_grow_device(trans, device, old_size);
2058 		BUG_ON(ret);
2059 
2060 		btrfs_end_transaction(trans, dev_root);
2061 	}
2062 
2063 	/* step two, relocate all the chunks */
2064 	path = btrfs_alloc_path();
2065 	if (!path) {
2066 		ret = -ENOMEM;
2067 		goto error;
2068 	}
2069 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2070 	key.offset = (u64)-1;
2071 	key.type = BTRFS_CHUNK_ITEM_KEY;
2072 
2073 	while (1) {
2074 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2075 		if (ret < 0)
2076 			goto error;
2077 
2078 		/*
2079 		 * this shouldn't happen, it means the last relocate
2080 		 * failed
2081 		 */
2082 		if (ret == 0)
2083 			break;
2084 
2085 		ret = btrfs_previous_item(chunk_root, path, 0,
2086 					  BTRFS_CHUNK_ITEM_KEY);
2087 		if (ret)
2088 			break;
2089 
2090 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2091 				      path->slots[0]);
2092 		if (found_key.objectid != key.objectid)
2093 			break;
2094 
2095 		/* chunk zero is special */
2096 		if (found_key.offset == 0)
2097 			break;
2098 
2099 		btrfs_release_path(path);
2100 		ret = btrfs_relocate_chunk(chunk_root,
2101 					   chunk_root->root_key.objectid,
2102 					   found_key.objectid,
2103 					   found_key.offset);
2104 		if (ret && ret != -ENOSPC)
2105 			goto error;
2106 		key.offset = found_key.offset - 1;
2107 	}
2108 	ret = 0;
2109 error:
2110 	btrfs_free_path(path);
2111 	mutex_unlock(&dev_root->fs_info->volume_mutex);
2112 	return ret;
2113 }
2114 
2115 /*
2116  * shrinking a device means finding all of the device extents past
2117  * the new size, and then following the back refs to the chunks.
2118  * The chunk relocation code actually frees the device extent
2119  */
2120 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2121 {
2122 	struct btrfs_trans_handle *trans;
2123 	struct btrfs_root *root = device->dev_root;
2124 	struct btrfs_dev_extent *dev_extent = NULL;
2125 	struct btrfs_path *path;
2126 	u64 length;
2127 	u64 chunk_tree;
2128 	u64 chunk_objectid;
2129 	u64 chunk_offset;
2130 	int ret;
2131 	int slot;
2132 	int failed = 0;
2133 	bool retried = false;
2134 	struct extent_buffer *l;
2135 	struct btrfs_key key;
2136 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2137 	u64 old_total = btrfs_super_total_bytes(super_copy);
2138 	u64 old_size = device->total_bytes;
2139 	u64 diff = device->total_bytes - new_size;
2140 
2141 	if (new_size >= device->total_bytes)
2142 		return -EINVAL;
2143 
2144 	path = btrfs_alloc_path();
2145 	if (!path)
2146 		return -ENOMEM;
2147 
2148 	path->reada = 2;
2149 
2150 	lock_chunks(root);
2151 
2152 	device->total_bytes = new_size;
2153 	if (device->writeable)
2154 		device->fs_devices->total_rw_bytes -= diff;
2155 	unlock_chunks(root);
2156 
2157 again:
2158 	key.objectid = device->devid;
2159 	key.offset = (u64)-1;
2160 	key.type = BTRFS_DEV_EXTENT_KEY;
2161 
2162 	while (1) {
2163 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2164 		if (ret < 0)
2165 			goto done;
2166 
2167 		ret = btrfs_previous_item(root, path, 0, key.type);
2168 		if (ret < 0)
2169 			goto done;
2170 		if (ret) {
2171 			ret = 0;
2172 			btrfs_release_path(path);
2173 			break;
2174 		}
2175 
2176 		l = path->nodes[0];
2177 		slot = path->slots[0];
2178 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2179 
2180 		if (key.objectid != device->devid) {
2181 			btrfs_release_path(path);
2182 			break;
2183 		}
2184 
2185 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2186 		length = btrfs_dev_extent_length(l, dev_extent);
2187 
2188 		if (key.offset + length <= new_size) {
2189 			btrfs_release_path(path);
2190 			break;
2191 		}
2192 
2193 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2194 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2195 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2196 		btrfs_release_path(path);
2197 
2198 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2199 					   chunk_offset);
2200 		if (ret && ret != -ENOSPC)
2201 			goto done;
2202 		if (ret == -ENOSPC)
2203 			failed++;
2204 		key.offset -= 1;
2205 	}
2206 
2207 	if (failed && !retried) {
2208 		failed = 0;
2209 		retried = true;
2210 		goto again;
2211 	} else if (failed && retried) {
2212 		ret = -ENOSPC;
2213 		lock_chunks(root);
2214 
2215 		device->total_bytes = old_size;
2216 		if (device->writeable)
2217 			device->fs_devices->total_rw_bytes += diff;
2218 		unlock_chunks(root);
2219 		goto done;
2220 	}
2221 
2222 	/* Shrinking succeeded, else we would be at "done". */
2223 	trans = btrfs_start_transaction(root, 0);
2224 	if (IS_ERR(trans)) {
2225 		ret = PTR_ERR(trans);
2226 		goto done;
2227 	}
2228 
2229 	lock_chunks(root);
2230 
2231 	device->disk_total_bytes = new_size;
2232 	/* Now btrfs_update_device() will change the on-disk size. */
2233 	ret = btrfs_update_device(trans, device);
2234 	if (ret) {
2235 		unlock_chunks(root);
2236 		btrfs_end_transaction(trans, root);
2237 		goto done;
2238 	}
2239 	WARN_ON(diff > old_total);
2240 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
2241 	unlock_chunks(root);
2242 	btrfs_end_transaction(trans, root);
2243 done:
2244 	btrfs_free_path(path);
2245 	return ret;
2246 }
2247 
2248 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2249 			   struct btrfs_root *root,
2250 			   struct btrfs_key *key,
2251 			   struct btrfs_chunk *chunk, int item_size)
2252 {
2253 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2254 	struct btrfs_disk_key disk_key;
2255 	u32 array_size;
2256 	u8 *ptr;
2257 
2258 	array_size = btrfs_super_sys_array_size(super_copy);
2259 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2260 		return -EFBIG;
2261 
2262 	ptr = super_copy->sys_chunk_array + array_size;
2263 	btrfs_cpu_key_to_disk(&disk_key, key);
2264 	memcpy(ptr, &disk_key, sizeof(disk_key));
2265 	ptr += sizeof(disk_key);
2266 	memcpy(ptr, chunk, item_size);
2267 	item_size += sizeof(disk_key);
2268 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2269 	return 0;
2270 }
2271 
2272 /*
2273  * sort the devices in descending order by max_avail, total_avail
2274  */
2275 static int btrfs_cmp_device_info(const void *a, const void *b)
2276 {
2277 	const struct btrfs_device_info *di_a = a;
2278 	const struct btrfs_device_info *di_b = b;
2279 
2280 	if (di_a->max_avail > di_b->max_avail)
2281 		return -1;
2282 	if (di_a->max_avail < di_b->max_avail)
2283 		return 1;
2284 	if (di_a->total_avail > di_b->total_avail)
2285 		return -1;
2286 	if (di_a->total_avail < di_b->total_avail)
2287 		return 1;
2288 	return 0;
2289 }
2290 
2291 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2292 			       struct btrfs_root *extent_root,
2293 			       struct map_lookup **map_ret,
2294 			       u64 *num_bytes_out, u64 *stripe_size_out,
2295 			       u64 start, u64 type)
2296 {
2297 	struct btrfs_fs_info *info = extent_root->fs_info;
2298 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
2299 	struct list_head *cur;
2300 	struct map_lookup *map = NULL;
2301 	struct extent_map_tree *em_tree;
2302 	struct extent_map *em;
2303 	struct btrfs_device_info *devices_info = NULL;
2304 	u64 total_avail;
2305 	int num_stripes;	/* total number of stripes to allocate */
2306 	int sub_stripes;	/* sub_stripes info for map */
2307 	int dev_stripes;	/* stripes per dev */
2308 	int devs_max;		/* max devs to use */
2309 	int devs_min;		/* min devs needed */
2310 	int devs_increment;	/* ndevs has to be a multiple of this */
2311 	int ncopies;		/* how many copies to data has */
2312 	int ret;
2313 	u64 max_stripe_size;
2314 	u64 max_chunk_size;
2315 	u64 stripe_size;
2316 	u64 num_bytes;
2317 	int ndevs;
2318 	int i;
2319 	int j;
2320 
2321 	if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2322 	    (type & BTRFS_BLOCK_GROUP_DUP)) {
2323 		WARN_ON(1);
2324 		type &= ~BTRFS_BLOCK_GROUP_DUP;
2325 	}
2326 
2327 	if (list_empty(&fs_devices->alloc_list))
2328 		return -ENOSPC;
2329 
2330 	sub_stripes = 1;
2331 	dev_stripes = 1;
2332 	devs_increment = 1;
2333 	ncopies = 1;
2334 	devs_max = 0;	/* 0 == as many as possible */
2335 	devs_min = 1;
2336 
2337 	/*
2338 	 * define the properties of each RAID type.
2339 	 * FIXME: move this to a global table and use it in all RAID
2340 	 * calculation code
2341 	 */
2342 	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2343 		dev_stripes = 2;
2344 		ncopies = 2;
2345 		devs_max = 1;
2346 	} else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2347 		devs_min = 2;
2348 	} else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2349 		devs_increment = 2;
2350 		ncopies = 2;
2351 		devs_max = 2;
2352 		devs_min = 2;
2353 	} else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2354 		sub_stripes = 2;
2355 		devs_increment = 2;
2356 		ncopies = 2;
2357 		devs_min = 4;
2358 	} else {
2359 		devs_max = 1;
2360 	}
2361 
2362 	if (type & BTRFS_BLOCK_GROUP_DATA) {
2363 		max_stripe_size = 1024 * 1024 * 1024;
2364 		max_chunk_size = 10 * max_stripe_size;
2365 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2366 		max_stripe_size = 256 * 1024 * 1024;
2367 		max_chunk_size = max_stripe_size;
2368 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2369 		max_stripe_size = 8 * 1024 * 1024;
2370 		max_chunk_size = 2 * max_stripe_size;
2371 	} else {
2372 		printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
2373 		       type);
2374 		BUG_ON(1);
2375 	}
2376 
2377 	/* we don't want a chunk larger than 10% of writeable space */
2378 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2379 			     max_chunk_size);
2380 
2381 	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2382 			       GFP_NOFS);
2383 	if (!devices_info)
2384 		return -ENOMEM;
2385 
2386 	cur = fs_devices->alloc_list.next;
2387 
2388 	/*
2389 	 * in the first pass through the devices list, we gather information
2390 	 * about the available holes on each device.
2391 	 */
2392 	ndevs = 0;
2393 	while (cur != &fs_devices->alloc_list) {
2394 		struct btrfs_device *device;
2395 		u64 max_avail;
2396 		u64 dev_offset;
2397 
2398 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2399 
2400 		cur = cur->next;
2401 
2402 		if (!device->writeable) {
2403 			printk(KERN_ERR
2404 			       "btrfs: read-only device in alloc_list\n");
2405 			WARN_ON(1);
2406 			continue;
2407 		}
2408 
2409 		if (!device->in_fs_metadata)
2410 			continue;
2411 
2412 		if (device->total_bytes > device->bytes_used)
2413 			total_avail = device->total_bytes - device->bytes_used;
2414 		else
2415 			total_avail = 0;
2416 		/* avail is off by max(alloc_start, 1MB), but that is the same
2417 		 * for all devices, so it doesn't hurt the sorting later on
2418 		 */
2419 
2420 		ret = find_free_dev_extent(trans, device,
2421 					   max_stripe_size * dev_stripes,
2422 					   &dev_offset, &max_avail);
2423 		if (ret && ret != -ENOSPC)
2424 			goto error;
2425 
2426 		if (ret == 0)
2427 			max_avail = max_stripe_size * dev_stripes;
2428 
2429 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
2430 			continue;
2431 
2432 		devices_info[ndevs].dev_offset = dev_offset;
2433 		devices_info[ndevs].max_avail = max_avail;
2434 		devices_info[ndevs].total_avail = total_avail;
2435 		devices_info[ndevs].dev = device;
2436 		++ndevs;
2437 	}
2438 
2439 	/*
2440 	 * now sort the devices by hole size / available space
2441 	 */
2442 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
2443 	     btrfs_cmp_device_info, NULL);
2444 
2445 	/* round down to number of usable stripes */
2446 	ndevs -= ndevs % devs_increment;
2447 
2448 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
2449 		ret = -ENOSPC;
2450 		goto error;
2451 	}
2452 
2453 	if (devs_max && ndevs > devs_max)
2454 		ndevs = devs_max;
2455 	/*
2456 	 * the primary goal is to maximize the number of stripes, so use as many
2457 	 * devices as possible, even if the stripes are not maximum sized.
2458 	 */
2459 	stripe_size = devices_info[ndevs-1].max_avail;
2460 	num_stripes = ndevs * dev_stripes;
2461 
2462 	if (stripe_size * num_stripes > max_chunk_size * ncopies) {
2463 		stripe_size = max_chunk_size * ncopies;
2464 		do_div(stripe_size, num_stripes);
2465 	}
2466 
2467 	do_div(stripe_size, dev_stripes);
2468 	do_div(stripe_size, BTRFS_STRIPE_LEN);
2469 	stripe_size *= BTRFS_STRIPE_LEN;
2470 
2471 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2472 	if (!map) {
2473 		ret = -ENOMEM;
2474 		goto error;
2475 	}
2476 	map->num_stripes = num_stripes;
2477 
2478 	for (i = 0; i < ndevs; ++i) {
2479 		for (j = 0; j < dev_stripes; ++j) {
2480 			int s = i * dev_stripes + j;
2481 			map->stripes[s].dev = devices_info[i].dev;
2482 			map->stripes[s].physical = devices_info[i].dev_offset +
2483 						   j * stripe_size;
2484 		}
2485 	}
2486 	map->sector_size = extent_root->sectorsize;
2487 	map->stripe_len = BTRFS_STRIPE_LEN;
2488 	map->io_align = BTRFS_STRIPE_LEN;
2489 	map->io_width = BTRFS_STRIPE_LEN;
2490 	map->type = type;
2491 	map->sub_stripes = sub_stripes;
2492 
2493 	*map_ret = map;
2494 	num_bytes = stripe_size * (num_stripes / ncopies);
2495 
2496 	*stripe_size_out = stripe_size;
2497 	*num_bytes_out = num_bytes;
2498 
2499 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
2500 
2501 	em = alloc_extent_map();
2502 	if (!em) {
2503 		ret = -ENOMEM;
2504 		goto error;
2505 	}
2506 	em->bdev = (struct block_device *)map;
2507 	em->start = start;
2508 	em->len = num_bytes;
2509 	em->block_start = 0;
2510 	em->block_len = em->len;
2511 
2512 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2513 	write_lock(&em_tree->lock);
2514 	ret = add_extent_mapping(em_tree, em);
2515 	write_unlock(&em_tree->lock);
2516 	BUG_ON(ret);
2517 	free_extent_map(em);
2518 
2519 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
2520 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2521 				     start, num_bytes);
2522 	BUG_ON(ret);
2523 
2524 	for (i = 0; i < map->num_stripes; ++i) {
2525 		struct btrfs_device *device;
2526 		u64 dev_offset;
2527 
2528 		device = map->stripes[i].dev;
2529 		dev_offset = map->stripes[i].physical;
2530 
2531 		ret = btrfs_alloc_dev_extent(trans, device,
2532 				info->chunk_root->root_key.objectid,
2533 				BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2534 				start, dev_offset, stripe_size);
2535 		BUG_ON(ret);
2536 	}
2537 
2538 	kfree(devices_info);
2539 	return 0;
2540 
2541 error:
2542 	kfree(map);
2543 	kfree(devices_info);
2544 	return ret;
2545 }
2546 
2547 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2548 				struct btrfs_root *extent_root,
2549 				struct map_lookup *map, u64 chunk_offset,
2550 				u64 chunk_size, u64 stripe_size)
2551 {
2552 	u64 dev_offset;
2553 	struct btrfs_key key;
2554 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2555 	struct btrfs_device *device;
2556 	struct btrfs_chunk *chunk;
2557 	struct btrfs_stripe *stripe;
2558 	size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2559 	int index = 0;
2560 	int ret;
2561 
2562 	chunk = kzalloc(item_size, GFP_NOFS);
2563 	if (!chunk)
2564 		return -ENOMEM;
2565 
2566 	index = 0;
2567 	while (index < map->num_stripes) {
2568 		device = map->stripes[index].dev;
2569 		device->bytes_used += stripe_size;
2570 		ret = btrfs_update_device(trans, device);
2571 		BUG_ON(ret);
2572 		index++;
2573 	}
2574 
2575 	index = 0;
2576 	stripe = &chunk->stripe;
2577 	while (index < map->num_stripes) {
2578 		device = map->stripes[index].dev;
2579 		dev_offset = map->stripes[index].physical;
2580 
2581 		btrfs_set_stack_stripe_devid(stripe, device->devid);
2582 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
2583 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2584 		stripe++;
2585 		index++;
2586 	}
2587 
2588 	btrfs_set_stack_chunk_length(chunk, chunk_size);
2589 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2590 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2591 	btrfs_set_stack_chunk_type(chunk, map->type);
2592 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2593 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2594 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2595 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2596 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2597 
2598 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2599 	key.type = BTRFS_CHUNK_ITEM_KEY;
2600 	key.offset = chunk_offset;
2601 
2602 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2603 	BUG_ON(ret);
2604 
2605 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2606 		ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2607 					     item_size);
2608 		BUG_ON(ret);
2609 	}
2610 
2611 	kfree(chunk);
2612 	return 0;
2613 }
2614 
2615 /*
2616  * Chunk allocation falls into two parts. The first part does works
2617  * that make the new allocated chunk useable, but not do any operation
2618  * that modifies the chunk tree. The second part does the works that
2619  * require modifying the chunk tree. This division is important for the
2620  * bootstrap process of adding storage to a seed btrfs.
2621  */
2622 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2623 		      struct btrfs_root *extent_root, u64 type)
2624 {
2625 	u64 chunk_offset;
2626 	u64 chunk_size;
2627 	u64 stripe_size;
2628 	struct map_lookup *map;
2629 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2630 	int ret;
2631 
2632 	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2633 			      &chunk_offset);
2634 	if (ret)
2635 		return ret;
2636 
2637 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2638 				  &stripe_size, chunk_offset, type);
2639 	if (ret)
2640 		return ret;
2641 
2642 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2643 				   chunk_size, stripe_size);
2644 	BUG_ON(ret);
2645 	return 0;
2646 }
2647 
2648 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2649 					 struct btrfs_root *root,
2650 					 struct btrfs_device *device)
2651 {
2652 	u64 chunk_offset;
2653 	u64 sys_chunk_offset;
2654 	u64 chunk_size;
2655 	u64 sys_chunk_size;
2656 	u64 stripe_size;
2657 	u64 sys_stripe_size;
2658 	u64 alloc_profile;
2659 	struct map_lookup *map;
2660 	struct map_lookup *sys_map;
2661 	struct btrfs_fs_info *fs_info = root->fs_info;
2662 	struct btrfs_root *extent_root = fs_info->extent_root;
2663 	int ret;
2664 
2665 	ret = find_next_chunk(fs_info->chunk_root,
2666 			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2667 	if (ret)
2668 		return ret;
2669 
2670 	alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2671 			(fs_info->metadata_alloc_profile &
2672 			 fs_info->avail_metadata_alloc_bits);
2673 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2674 
2675 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2676 				  &stripe_size, chunk_offset, alloc_profile);
2677 	BUG_ON(ret);
2678 
2679 	sys_chunk_offset = chunk_offset + chunk_size;
2680 
2681 	alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2682 			(fs_info->system_alloc_profile &
2683 			 fs_info->avail_system_alloc_bits);
2684 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2685 
2686 	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2687 				  &sys_chunk_size, &sys_stripe_size,
2688 				  sys_chunk_offset, alloc_profile);
2689 	BUG_ON(ret);
2690 
2691 	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2692 	BUG_ON(ret);
2693 
2694 	/*
2695 	 * Modifying chunk tree needs allocating new blocks from both
2696 	 * system block group and metadata block group. So we only can
2697 	 * do operations require modifying the chunk tree after both
2698 	 * block groups were created.
2699 	 */
2700 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2701 				   chunk_size, stripe_size);
2702 	BUG_ON(ret);
2703 
2704 	ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2705 				   sys_chunk_offset, sys_chunk_size,
2706 				   sys_stripe_size);
2707 	BUG_ON(ret);
2708 	return 0;
2709 }
2710 
2711 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2712 {
2713 	struct extent_map *em;
2714 	struct map_lookup *map;
2715 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2716 	int readonly = 0;
2717 	int i;
2718 
2719 	read_lock(&map_tree->map_tree.lock);
2720 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2721 	read_unlock(&map_tree->map_tree.lock);
2722 	if (!em)
2723 		return 1;
2724 
2725 	if (btrfs_test_opt(root, DEGRADED)) {
2726 		free_extent_map(em);
2727 		return 0;
2728 	}
2729 
2730 	map = (struct map_lookup *)em->bdev;
2731 	for (i = 0; i < map->num_stripes; i++) {
2732 		if (!map->stripes[i].dev->writeable) {
2733 			readonly = 1;
2734 			break;
2735 		}
2736 	}
2737 	free_extent_map(em);
2738 	return readonly;
2739 }
2740 
2741 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2742 {
2743 	extent_map_tree_init(&tree->map_tree);
2744 }
2745 
2746 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2747 {
2748 	struct extent_map *em;
2749 
2750 	while (1) {
2751 		write_lock(&tree->map_tree.lock);
2752 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2753 		if (em)
2754 			remove_extent_mapping(&tree->map_tree, em);
2755 		write_unlock(&tree->map_tree.lock);
2756 		if (!em)
2757 			break;
2758 		kfree(em->bdev);
2759 		/* once for us */
2760 		free_extent_map(em);
2761 		/* once for the tree */
2762 		free_extent_map(em);
2763 	}
2764 }
2765 
2766 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2767 {
2768 	struct extent_map *em;
2769 	struct map_lookup *map;
2770 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2771 	int ret;
2772 
2773 	read_lock(&em_tree->lock);
2774 	em = lookup_extent_mapping(em_tree, logical, len);
2775 	read_unlock(&em_tree->lock);
2776 	BUG_ON(!em);
2777 
2778 	BUG_ON(em->start > logical || em->start + em->len < logical);
2779 	map = (struct map_lookup *)em->bdev;
2780 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2781 		ret = map->num_stripes;
2782 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2783 		ret = map->sub_stripes;
2784 	else
2785 		ret = 1;
2786 	free_extent_map(em);
2787 	return ret;
2788 }
2789 
2790 static int find_live_mirror(struct map_lookup *map, int first, int num,
2791 			    int optimal)
2792 {
2793 	int i;
2794 	if (map->stripes[optimal].dev->bdev)
2795 		return optimal;
2796 	for (i = first; i < first + num; i++) {
2797 		if (map->stripes[i].dev->bdev)
2798 			return i;
2799 	}
2800 	/* we couldn't find one that doesn't fail.  Just return something
2801 	 * and the io error handling code will clean up eventually
2802 	 */
2803 	return optimal;
2804 }
2805 
2806 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2807 			     u64 logical, u64 *length,
2808 			     struct btrfs_multi_bio **multi_ret,
2809 			     int mirror_num)
2810 {
2811 	struct extent_map *em;
2812 	struct map_lookup *map;
2813 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2814 	u64 offset;
2815 	u64 stripe_offset;
2816 	u64 stripe_end_offset;
2817 	u64 stripe_nr;
2818 	u64 stripe_nr_orig;
2819 	u64 stripe_nr_end;
2820 	int stripes_allocated = 8;
2821 	int stripes_required = 1;
2822 	int stripe_index;
2823 	int i;
2824 	int num_stripes;
2825 	int max_errors = 0;
2826 	struct btrfs_multi_bio *multi = NULL;
2827 
2828 	if (multi_ret && !(rw & (REQ_WRITE | REQ_DISCARD)))
2829 		stripes_allocated = 1;
2830 again:
2831 	if (multi_ret) {
2832 		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2833 				GFP_NOFS);
2834 		if (!multi)
2835 			return -ENOMEM;
2836 
2837 		atomic_set(&multi->error, 0);
2838 	}
2839 
2840 	read_lock(&em_tree->lock);
2841 	em = lookup_extent_mapping(em_tree, logical, *length);
2842 	read_unlock(&em_tree->lock);
2843 
2844 	if (!em) {
2845 		printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2846 		       (unsigned long long)logical,
2847 		       (unsigned long long)*length);
2848 		BUG();
2849 	}
2850 
2851 	BUG_ON(em->start > logical || em->start + em->len < logical);
2852 	map = (struct map_lookup *)em->bdev;
2853 	offset = logical - em->start;
2854 
2855 	if (mirror_num > map->num_stripes)
2856 		mirror_num = 0;
2857 
2858 	/* if our multi bio struct is too small, back off and try again */
2859 	if (rw & REQ_WRITE) {
2860 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2861 				 BTRFS_BLOCK_GROUP_DUP)) {
2862 			stripes_required = map->num_stripes;
2863 			max_errors = 1;
2864 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2865 			stripes_required = map->sub_stripes;
2866 			max_errors = 1;
2867 		}
2868 	}
2869 	if (rw & REQ_DISCARD) {
2870 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2871 				 BTRFS_BLOCK_GROUP_RAID1 |
2872 				 BTRFS_BLOCK_GROUP_DUP |
2873 				 BTRFS_BLOCK_GROUP_RAID10)) {
2874 			stripes_required = map->num_stripes;
2875 		}
2876 	}
2877 	if (multi_ret && (rw & (REQ_WRITE | REQ_DISCARD)) &&
2878 	    stripes_allocated < stripes_required) {
2879 		stripes_allocated = map->num_stripes;
2880 		free_extent_map(em);
2881 		kfree(multi);
2882 		goto again;
2883 	}
2884 	stripe_nr = offset;
2885 	/*
2886 	 * stripe_nr counts the total number of stripes we have to stride
2887 	 * to get to this block
2888 	 */
2889 	do_div(stripe_nr, map->stripe_len);
2890 
2891 	stripe_offset = stripe_nr * map->stripe_len;
2892 	BUG_ON(offset < stripe_offset);
2893 
2894 	/* stripe_offset is the offset of this block in its stripe*/
2895 	stripe_offset = offset - stripe_offset;
2896 
2897 	if (rw & REQ_DISCARD)
2898 		*length = min_t(u64, em->len - offset, *length);
2899 	else if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2900 			      BTRFS_BLOCK_GROUP_RAID1 |
2901 			      BTRFS_BLOCK_GROUP_RAID10 |
2902 			      BTRFS_BLOCK_GROUP_DUP)) {
2903 		/* we limit the length of each bio to what fits in a stripe */
2904 		*length = min_t(u64, em->len - offset,
2905 				map->stripe_len - stripe_offset);
2906 	} else {
2907 		*length = em->len - offset;
2908 	}
2909 
2910 	if (!multi_ret)
2911 		goto out;
2912 
2913 	num_stripes = 1;
2914 	stripe_index = 0;
2915 	stripe_nr_orig = stripe_nr;
2916 	stripe_nr_end = (offset + *length + map->stripe_len - 1) &
2917 			(~(map->stripe_len - 1));
2918 	do_div(stripe_nr_end, map->stripe_len);
2919 	stripe_end_offset = stripe_nr_end * map->stripe_len -
2920 			    (offset + *length);
2921 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2922 		if (rw & REQ_DISCARD)
2923 			num_stripes = min_t(u64, map->num_stripes,
2924 					    stripe_nr_end - stripe_nr_orig);
2925 		stripe_index = do_div(stripe_nr, map->num_stripes);
2926 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2927 		if (rw & (REQ_WRITE | REQ_DISCARD))
2928 			num_stripes = map->num_stripes;
2929 		else if (mirror_num)
2930 			stripe_index = mirror_num - 1;
2931 		else {
2932 			stripe_index = find_live_mirror(map, 0,
2933 					    map->num_stripes,
2934 					    current->pid % map->num_stripes);
2935 		}
2936 
2937 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2938 		if (rw & (REQ_WRITE | REQ_DISCARD))
2939 			num_stripes = map->num_stripes;
2940 		else if (mirror_num)
2941 			stripe_index = mirror_num - 1;
2942 
2943 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2944 		int factor = map->num_stripes / map->sub_stripes;
2945 
2946 		stripe_index = do_div(stripe_nr, factor);
2947 		stripe_index *= map->sub_stripes;
2948 
2949 		if (rw & REQ_WRITE)
2950 			num_stripes = map->sub_stripes;
2951 		else if (rw & REQ_DISCARD)
2952 			num_stripes = min_t(u64, map->sub_stripes *
2953 					    (stripe_nr_end - stripe_nr_orig),
2954 					    map->num_stripes);
2955 		else if (mirror_num)
2956 			stripe_index += mirror_num - 1;
2957 		else {
2958 			stripe_index = find_live_mirror(map, stripe_index,
2959 					      map->sub_stripes, stripe_index +
2960 					      current->pid % map->sub_stripes);
2961 		}
2962 	} else {
2963 		/*
2964 		 * after this do_div call, stripe_nr is the number of stripes
2965 		 * on this device we have to walk to find the data, and
2966 		 * stripe_index is the number of our device in the stripe array
2967 		 */
2968 		stripe_index = do_div(stripe_nr, map->num_stripes);
2969 	}
2970 	BUG_ON(stripe_index >= map->num_stripes);
2971 
2972 	if (rw & REQ_DISCARD) {
2973 		for (i = 0; i < num_stripes; i++) {
2974 			multi->stripes[i].physical =
2975 				map->stripes[stripe_index].physical +
2976 				stripe_offset + stripe_nr * map->stripe_len;
2977 			multi->stripes[i].dev = map->stripes[stripe_index].dev;
2978 
2979 			if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2980 				u64 stripes;
2981 				u32 last_stripe = 0;
2982 				int j;
2983 
2984 				div_u64_rem(stripe_nr_end - 1,
2985 					    map->num_stripes,
2986 					    &last_stripe);
2987 
2988 				for (j = 0; j < map->num_stripes; j++) {
2989 					u32 test;
2990 
2991 					div_u64_rem(stripe_nr_end - 1 - j,
2992 						    map->num_stripes, &test);
2993 					if (test == stripe_index)
2994 						break;
2995 				}
2996 				stripes = stripe_nr_end - 1 - j;
2997 				do_div(stripes, map->num_stripes);
2998 				multi->stripes[i].length = map->stripe_len *
2999 					(stripes - stripe_nr + 1);
3000 
3001 				if (i == 0) {
3002 					multi->stripes[i].length -=
3003 						stripe_offset;
3004 					stripe_offset = 0;
3005 				}
3006 				if (stripe_index == last_stripe)
3007 					multi->stripes[i].length -=
3008 						stripe_end_offset;
3009 			} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3010 				u64 stripes;
3011 				int j;
3012 				int factor = map->num_stripes /
3013 					     map->sub_stripes;
3014 				u32 last_stripe = 0;
3015 
3016 				div_u64_rem(stripe_nr_end - 1,
3017 					    factor, &last_stripe);
3018 				last_stripe *= map->sub_stripes;
3019 
3020 				for (j = 0; j < factor; j++) {
3021 					u32 test;
3022 
3023 					div_u64_rem(stripe_nr_end - 1 - j,
3024 						    factor, &test);
3025 
3026 					if (test ==
3027 					    stripe_index / map->sub_stripes)
3028 						break;
3029 				}
3030 				stripes = stripe_nr_end - 1 - j;
3031 				do_div(stripes, factor);
3032 				multi->stripes[i].length = map->stripe_len *
3033 					(stripes - stripe_nr + 1);
3034 
3035 				if (i < map->sub_stripes) {
3036 					multi->stripes[i].length -=
3037 						stripe_offset;
3038 					if (i == map->sub_stripes - 1)
3039 						stripe_offset = 0;
3040 				}
3041 				if (stripe_index >= last_stripe &&
3042 				    stripe_index <= (last_stripe +
3043 						     map->sub_stripes - 1)) {
3044 					multi->stripes[i].length -=
3045 						stripe_end_offset;
3046 				}
3047 			} else
3048 				multi->stripes[i].length = *length;
3049 
3050 			stripe_index++;
3051 			if (stripe_index == map->num_stripes) {
3052 				/* This could only happen for RAID0/10 */
3053 				stripe_index = 0;
3054 				stripe_nr++;
3055 			}
3056 		}
3057 	} else {
3058 		for (i = 0; i < num_stripes; i++) {
3059 			multi->stripes[i].physical =
3060 				map->stripes[stripe_index].physical +
3061 				stripe_offset +
3062 				stripe_nr * map->stripe_len;
3063 			multi->stripes[i].dev =
3064 				map->stripes[stripe_index].dev;
3065 			stripe_index++;
3066 		}
3067 	}
3068 	if (multi_ret) {
3069 		*multi_ret = multi;
3070 		multi->num_stripes = num_stripes;
3071 		multi->max_errors = max_errors;
3072 	}
3073 out:
3074 	free_extent_map(em);
3075 	return 0;
3076 }
3077 
3078 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3079 		      u64 logical, u64 *length,
3080 		      struct btrfs_multi_bio **multi_ret, int mirror_num)
3081 {
3082 	return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3083 				 mirror_num);
3084 }
3085 
3086 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3087 		     u64 chunk_start, u64 physical, u64 devid,
3088 		     u64 **logical, int *naddrs, int *stripe_len)
3089 {
3090 	struct extent_map_tree *em_tree = &map_tree->map_tree;
3091 	struct extent_map *em;
3092 	struct map_lookup *map;
3093 	u64 *buf;
3094 	u64 bytenr;
3095 	u64 length;
3096 	u64 stripe_nr;
3097 	int i, j, nr = 0;
3098 
3099 	read_lock(&em_tree->lock);
3100 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
3101 	read_unlock(&em_tree->lock);
3102 
3103 	BUG_ON(!em || em->start != chunk_start);
3104 	map = (struct map_lookup *)em->bdev;
3105 
3106 	length = em->len;
3107 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3108 		do_div(length, map->num_stripes / map->sub_stripes);
3109 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3110 		do_div(length, map->num_stripes);
3111 
3112 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3113 	BUG_ON(!buf);
3114 
3115 	for (i = 0; i < map->num_stripes; i++) {
3116 		if (devid && map->stripes[i].dev->devid != devid)
3117 			continue;
3118 		if (map->stripes[i].physical > physical ||
3119 		    map->stripes[i].physical + length <= physical)
3120 			continue;
3121 
3122 		stripe_nr = physical - map->stripes[i].physical;
3123 		do_div(stripe_nr, map->stripe_len);
3124 
3125 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3126 			stripe_nr = stripe_nr * map->num_stripes + i;
3127 			do_div(stripe_nr, map->sub_stripes);
3128 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3129 			stripe_nr = stripe_nr * map->num_stripes + i;
3130 		}
3131 		bytenr = chunk_start + stripe_nr * map->stripe_len;
3132 		WARN_ON(nr >= map->num_stripes);
3133 		for (j = 0; j < nr; j++) {
3134 			if (buf[j] == bytenr)
3135 				break;
3136 		}
3137 		if (j == nr) {
3138 			WARN_ON(nr >= map->num_stripes);
3139 			buf[nr++] = bytenr;
3140 		}
3141 	}
3142 
3143 	*logical = buf;
3144 	*naddrs = nr;
3145 	*stripe_len = map->stripe_len;
3146 
3147 	free_extent_map(em);
3148 	return 0;
3149 }
3150 
3151 static void end_bio_multi_stripe(struct bio *bio, int err)
3152 {
3153 	struct btrfs_multi_bio *multi = bio->bi_private;
3154 	int is_orig_bio = 0;
3155 
3156 	if (err)
3157 		atomic_inc(&multi->error);
3158 
3159 	if (bio == multi->orig_bio)
3160 		is_orig_bio = 1;
3161 
3162 	if (atomic_dec_and_test(&multi->stripes_pending)) {
3163 		if (!is_orig_bio) {
3164 			bio_put(bio);
3165 			bio = multi->orig_bio;
3166 		}
3167 		bio->bi_private = multi->private;
3168 		bio->bi_end_io = multi->end_io;
3169 		/* only send an error to the higher layers if it is
3170 		 * beyond the tolerance of the multi-bio
3171 		 */
3172 		if (atomic_read(&multi->error) > multi->max_errors) {
3173 			err = -EIO;
3174 		} else if (err) {
3175 			/*
3176 			 * this bio is actually up to date, we didn't
3177 			 * go over the max number of errors
3178 			 */
3179 			set_bit(BIO_UPTODATE, &bio->bi_flags);
3180 			err = 0;
3181 		}
3182 		kfree(multi);
3183 
3184 		bio_endio(bio, err);
3185 	} else if (!is_orig_bio) {
3186 		bio_put(bio);
3187 	}
3188 }
3189 
3190 struct async_sched {
3191 	struct bio *bio;
3192 	int rw;
3193 	struct btrfs_fs_info *info;
3194 	struct btrfs_work work;
3195 };
3196 
3197 /*
3198  * see run_scheduled_bios for a description of why bios are collected for
3199  * async submit.
3200  *
3201  * This will add one bio to the pending list for a device and make sure
3202  * the work struct is scheduled.
3203  */
3204 static noinline int schedule_bio(struct btrfs_root *root,
3205 				 struct btrfs_device *device,
3206 				 int rw, struct bio *bio)
3207 {
3208 	int should_queue = 1;
3209 	struct btrfs_pending_bios *pending_bios;
3210 
3211 	/* don't bother with additional async steps for reads, right now */
3212 	if (!(rw & REQ_WRITE)) {
3213 		bio_get(bio);
3214 		submit_bio(rw, bio);
3215 		bio_put(bio);
3216 		return 0;
3217 	}
3218 
3219 	/*
3220 	 * nr_async_bios allows us to reliably return congestion to the
3221 	 * higher layers.  Otherwise, the async bio makes it appear we have
3222 	 * made progress against dirty pages when we've really just put it
3223 	 * on a queue for later
3224 	 */
3225 	atomic_inc(&root->fs_info->nr_async_bios);
3226 	WARN_ON(bio->bi_next);
3227 	bio->bi_next = NULL;
3228 	bio->bi_rw |= rw;
3229 
3230 	spin_lock(&device->io_lock);
3231 	if (bio->bi_rw & REQ_SYNC)
3232 		pending_bios = &device->pending_sync_bios;
3233 	else
3234 		pending_bios = &device->pending_bios;
3235 
3236 	if (pending_bios->tail)
3237 		pending_bios->tail->bi_next = bio;
3238 
3239 	pending_bios->tail = bio;
3240 	if (!pending_bios->head)
3241 		pending_bios->head = bio;
3242 	if (device->running_pending)
3243 		should_queue = 0;
3244 
3245 	spin_unlock(&device->io_lock);
3246 
3247 	if (should_queue)
3248 		btrfs_queue_worker(&root->fs_info->submit_workers,
3249 				   &device->work);
3250 	return 0;
3251 }
3252 
3253 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
3254 		  int mirror_num, int async_submit)
3255 {
3256 	struct btrfs_mapping_tree *map_tree;
3257 	struct btrfs_device *dev;
3258 	struct bio *first_bio = bio;
3259 	u64 logical = (u64)bio->bi_sector << 9;
3260 	u64 length = 0;
3261 	u64 map_length;
3262 	struct btrfs_multi_bio *multi = NULL;
3263 	int ret;
3264 	int dev_nr = 0;
3265 	int total_devs = 1;
3266 
3267 	length = bio->bi_size;
3268 	map_tree = &root->fs_info->mapping_tree;
3269 	map_length = length;
3270 
3271 	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3272 			      mirror_num);
3273 	BUG_ON(ret);
3274 
3275 	total_devs = multi->num_stripes;
3276 	if (map_length < length) {
3277 		printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3278 		       "len %llu\n", (unsigned long long)logical,
3279 		       (unsigned long long)length,
3280 		       (unsigned long long)map_length);
3281 		BUG();
3282 	}
3283 	multi->end_io = first_bio->bi_end_io;
3284 	multi->private = first_bio->bi_private;
3285 	multi->orig_bio = first_bio;
3286 	atomic_set(&multi->stripes_pending, multi->num_stripes);
3287 
3288 	while (dev_nr < total_devs) {
3289 		if (total_devs > 1) {
3290 			if (dev_nr < total_devs - 1) {
3291 				bio = bio_clone(first_bio, GFP_NOFS);
3292 				BUG_ON(!bio);
3293 			} else {
3294 				bio = first_bio;
3295 			}
3296 			bio->bi_private = multi;
3297 			bio->bi_end_io = end_bio_multi_stripe;
3298 		}
3299 		bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3300 		dev = multi->stripes[dev_nr].dev;
3301 		if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
3302 			bio->bi_bdev = dev->bdev;
3303 			if (async_submit)
3304 				schedule_bio(root, dev, rw, bio);
3305 			else
3306 				submit_bio(rw, bio);
3307 		} else {
3308 			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3309 			bio->bi_sector = logical >> 9;
3310 			bio_endio(bio, -EIO);
3311 		}
3312 		dev_nr++;
3313 	}
3314 	if (total_devs == 1)
3315 		kfree(multi);
3316 	return 0;
3317 }
3318 
3319 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3320 				       u8 *uuid, u8 *fsid)
3321 {
3322 	struct btrfs_device *device;
3323 	struct btrfs_fs_devices *cur_devices;
3324 
3325 	cur_devices = root->fs_info->fs_devices;
3326 	while (cur_devices) {
3327 		if (!fsid ||
3328 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3329 			device = __find_device(&cur_devices->devices,
3330 					       devid, uuid);
3331 			if (device)
3332 				return device;
3333 		}
3334 		cur_devices = cur_devices->seed;
3335 	}
3336 	return NULL;
3337 }
3338 
3339 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3340 					    u64 devid, u8 *dev_uuid)
3341 {
3342 	struct btrfs_device *device;
3343 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3344 
3345 	device = kzalloc(sizeof(*device), GFP_NOFS);
3346 	if (!device)
3347 		return NULL;
3348 	list_add(&device->dev_list,
3349 		 &fs_devices->devices);
3350 	device->dev_root = root->fs_info->dev_root;
3351 	device->devid = devid;
3352 	device->work.func = pending_bios_fn;
3353 	device->fs_devices = fs_devices;
3354 	device->missing = 1;
3355 	fs_devices->num_devices++;
3356 	fs_devices->missing_devices++;
3357 	spin_lock_init(&device->io_lock);
3358 	INIT_LIST_HEAD(&device->dev_alloc_list);
3359 	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3360 	return device;
3361 }
3362 
3363 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3364 			  struct extent_buffer *leaf,
3365 			  struct btrfs_chunk *chunk)
3366 {
3367 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3368 	struct map_lookup *map;
3369 	struct extent_map *em;
3370 	u64 logical;
3371 	u64 length;
3372 	u64 devid;
3373 	u8 uuid[BTRFS_UUID_SIZE];
3374 	int num_stripes;
3375 	int ret;
3376 	int i;
3377 
3378 	logical = key->offset;
3379 	length = btrfs_chunk_length(leaf, chunk);
3380 
3381 	read_lock(&map_tree->map_tree.lock);
3382 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3383 	read_unlock(&map_tree->map_tree.lock);
3384 
3385 	/* already mapped? */
3386 	if (em && em->start <= logical && em->start + em->len > logical) {
3387 		free_extent_map(em);
3388 		return 0;
3389 	} else if (em) {
3390 		free_extent_map(em);
3391 	}
3392 
3393 	em = alloc_extent_map();
3394 	if (!em)
3395 		return -ENOMEM;
3396 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3397 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3398 	if (!map) {
3399 		free_extent_map(em);
3400 		return -ENOMEM;
3401 	}
3402 
3403 	em->bdev = (struct block_device *)map;
3404 	em->start = logical;
3405 	em->len = length;
3406 	em->block_start = 0;
3407 	em->block_len = em->len;
3408 
3409 	map->num_stripes = num_stripes;
3410 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
3411 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
3412 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3413 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3414 	map->type = btrfs_chunk_type(leaf, chunk);
3415 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3416 	for (i = 0; i < num_stripes; i++) {
3417 		map->stripes[i].physical =
3418 			btrfs_stripe_offset_nr(leaf, chunk, i);
3419 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3420 		read_extent_buffer(leaf, uuid, (unsigned long)
3421 				   btrfs_stripe_dev_uuid_nr(chunk, i),
3422 				   BTRFS_UUID_SIZE);
3423 		map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3424 							NULL);
3425 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3426 			kfree(map);
3427 			free_extent_map(em);
3428 			return -EIO;
3429 		}
3430 		if (!map->stripes[i].dev) {
3431 			map->stripes[i].dev =
3432 				add_missing_dev(root, devid, uuid);
3433 			if (!map->stripes[i].dev) {
3434 				kfree(map);
3435 				free_extent_map(em);
3436 				return -EIO;
3437 			}
3438 		}
3439 		map->stripes[i].dev->in_fs_metadata = 1;
3440 	}
3441 
3442 	write_lock(&map_tree->map_tree.lock);
3443 	ret = add_extent_mapping(&map_tree->map_tree, em);
3444 	write_unlock(&map_tree->map_tree.lock);
3445 	BUG_ON(ret);
3446 	free_extent_map(em);
3447 
3448 	return 0;
3449 }
3450 
3451 static int fill_device_from_item(struct extent_buffer *leaf,
3452 				 struct btrfs_dev_item *dev_item,
3453 				 struct btrfs_device *device)
3454 {
3455 	unsigned long ptr;
3456 
3457 	device->devid = btrfs_device_id(leaf, dev_item);
3458 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3459 	device->total_bytes = device->disk_total_bytes;
3460 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3461 	device->type = btrfs_device_type(leaf, dev_item);
3462 	device->io_align = btrfs_device_io_align(leaf, dev_item);
3463 	device->io_width = btrfs_device_io_width(leaf, dev_item);
3464 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3465 
3466 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
3467 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3468 
3469 	return 0;
3470 }
3471 
3472 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3473 {
3474 	struct btrfs_fs_devices *fs_devices;
3475 	int ret;
3476 
3477 	mutex_lock(&uuid_mutex);
3478 
3479 	fs_devices = root->fs_info->fs_devices->seed;
3480 	while (fs_devices) {
3481 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3482 			ret = 0;
3483 			goto out;
3484 		}
3485 		fs_devices = fs_devices->seed;
3486 	}
3487 
3488 	fs_devices = find_fsid(fsid);
3489 	if (!fs_devices) {
3490 		ret = -ENOENT;
3491 		goto out;
3492 	}
3493 
3494 	fs_devices = clone_fs_devices(fs_devices);
3495 	if (IS_ERR(fs_devices)) {
3496 		ret = PTR_ERR(fs_devices);
3497 		goto out;
3498 	}
3499 
3500 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3501 				   root->fs_info->bdev_holder);
3502 	if (ret)
3503 		goto out;
3504 
3505 	if (!fs_devices->seeding) {
3506 		__btrfs_close_devices(fs_devices);
3507 		free_fs_devices(fs_devices);
3508 		ret = -EINVAL;
3509 		goto out;
3510 	}
3511 
3512 	fs_devices->seed = root->fs_info->fs_devices->seed;
3513 	root->fs_info->fs_devices->seed = fs_devices;
3514 out:
3515 	mutex_unlock(&uuid_mutex);
3516 	return ret;
3517 }
3518 
3519 static int read_one_dev(struct btrfs_root *root,
3520 			struct extent_buffer *leaf,
3521 			struct btrfs_dev_item *dev_item)
3522 {
3523 	struct btrfs_device *device;
3524 	u64 devid;
3525 	int ret;
3526 	u8 fs_uuid[BTRFS_UUID_SIZE];
3527 	u8 dev_uuid[BTRFS_UUID_SIZE];
3528 
3529 	devid = btrfs_device_id(leaf, dev_item);
3530 	read_extent_buffer(leaf, dev_uuid,
3531 			   (unsigned long)btrfs_device_uuid(dev_item),
3532 			   BTRFS_UUID_SIZE);
3533 	read_extent_buffer(leaf, fs_uuid,
3534 			   (unsigned long)btrfs_device_fsid(dev_item),
3535 			   BTRFS_UUID_SIZE);
3536 
3537 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3538 		ret = open_seed_devices(root, fs_uuid);
3539 		if (ret && !btrfs_test_opt(root, DEGRADED))
3540 			return ret;
3541 	}
3542 
3543 	device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3544 	if (!device || !device->bdev) {
3545 		if (!btrfs_test_opt(root, DEGRADED))
3546 			return -EIO;
3547 
3548 		if (!device) {
3549 			printk(KERN_WARNING "warning devid %llu missing\n",
3550 			       (unsigned long long)devid);
3551 			device = add_missing_dev(root, devid, dev_uuid);
3552 			if (!device)
3553 				return -ENOMEM;
3554 		} else if (!device->missing) {
3555 			/*
3556 			 * this happens when a device that was properly setup
3557 			 * in the device info lists suddenly goes bad.
3558 			 * device->bdev is NULL, and so we have to set
3559 			 * device->missing to one here
3560 			 */
3561 			root->fs_info->fs_devices->missing_devices++;
3562 			device->missing = 1;
3563 		}
3564 	}
3565 
3566 	if (device->fs_devices != root->fs_info->fs_devices) {
3567 		BUG_ON(device->writeable);
3568 		if (device->generation !=
3569 		    btrfs_device_generation(leaf, dev_item))
3570 			return -EINVAL;
3571 	}
3572 
3573 	fill_device_from_item(leaf, dev_item, device);
3574 	device->dev_root = root->fs_info->dev_root;
3575 	device->in_fs_metadata = 1;
3576 	if (device->writeable)
3577 		device->fs_devices->total_rw_bytes += device->total_bytes;
3578 	ret = 0;
3579 	return ret;
3580 }
3581 
3582 int btrfs_read_sys_array(struct btrfs_root *root)
3583 {
3584 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3585 	struct extent_buffer *sb;
3586 	struct btrfs_disk_key *disk_key;
3587 	struct btrfs_chunk *chunk;
3588 	u8 *ptr;
3589 	unsigned long sb_ptr;
3590 	int ret = 0;
3591 	u32 num_stripes;
3592 	u32 array_size;
3593 	u32 len = 0;
3594 	u32 cur;
3595 	struct btrfs_key key;
3596 
3597 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3598 					  BTRFS_SUPER_INFO_SIZE);
3599 	if (!sb)
3600 		return -ENOMEM;
3601 	btrfs_set_buffer_uptodate(sb);
3602 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
3603 
3604 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3605 	array_size = btrfs_super_sys_array_size(super_copy);
3606 
3607 	ptr = super_copy->sys_chunk_array;
3608 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3609 	cur = 0;
3610 
3611 	while (cur < array_size) {
3612 		disk_key = (struct btrfs_disk_key *)ptr;
3613 		btrfs_disk_key_to_cpu(&key, disk_key);
3614 
3615 		len = sizeof(*disk_key); ptr += len;
3616 		sb_ptr += len;
3617 		cur += len;
3618 
3619 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3620 			chunk = (struct btrfs_chunk *)sb_ptr;
3621 			ret = read_one_chunk(root, &key, sb, chunk);
3622 			if (ret)
3623 				break;
3624 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3625 			len = btrfs_chunk_item_size(num_stripes);
3626 		} else {
3627 			ret = -EIO;
3628 			break;
3629 		}
3630 		ptr += len;
3631 		sb_ptr += len;
3632 		cur += len;
3633 	}
3634 	free_extent_buffer(sb);
3635 	return ret;
3636 }
3637 
3638 int btrfs_read_chunk_tree(struct btrfs_root *root)
3639 {
3640 	struct btrfs_path *path;
3641 	struct extent_buffer *leaf;
3642 	struct btrfs_key key;
3643 	struct btrfs_key found_key;
3644 	int ret;
3645 	int slot;
3646 
3647 	root = root->fs_info->chunk_root;
3648 
3649 	path = btrfs_alloc_path();
3650 	if (!path)
3651 		return -ENOMEM;
3652 
3653 	/* first we search for all of the device items, and then we
3654 	 * read in all of the chunk items.  This way we can create chunk
3655 	 * mappings that reference all of the devices that are afound
3656 	 */
3657 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3658 	key.offset = 0;
3659 	key.type = 0;
3660 again:
3661 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3662 	if (ret < 0)
3663 		goto error;
3664 	while (1) {
3665 		leaf = path->nodes[0];
3666 		slot = path->slots[0];
3667 		if (slot >= btrfs_header_nritems(leaf)) {
3668 			ret = btrfs_next_leaf(root, path);
3669 			if (ret == 0)
3670 				continue;
3671 			if (ret < 0)
3672 				goto error;
3673 			break;
3674 		}
3675 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3676 		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3677 			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3678 				break;
3679 			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3680 				struct btrfs_dev_item *dev_item;
3681 				dev_item = btrfs_item_ptr(leaf, slot,
3682 						  struct btrfs_dev_item);
3683 				ret = read_one_dev(root, leaf, dev_item);
3684 				if (ret)
3685 					goto error;
3686 			}
3687 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3688 			struct btrfs_chunk *chunk;
3689 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3690 			ret = read_one_chunk(root, &found_key, leaf, chunk);
3691 			if (ret)
3692 				goto error;
3693 		}
3694 		path->slots[0]++;
3695 	}
3696 	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3697 		key.objectid = 0;
3698 		btrfs_release_path(path);
3699 		goto again;
3700 	}
3701 	ret = 0;
3702 error:
3703 	btrfs_free_path(path);
3704 	return ret;
3705 }
3706