xref: /openbmc/linux/fs/btrfs/volumes.c (revision 759426c7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "extent_map.h"
18 #include "disk-io.h"
19 #include "transaction.h"
20 #include "print-tree.h"
21 #include "volumes.h"
22 #include "raid56.h"
23 #include "rcu-string.h"
24 #include "dev-replace.h"
25 #include "sysfs.h"
26 #include "tree-checker.h"
27 #include "space-info.h"
28 #include "block-group.h"
29 #include "discard.h"
30 #include "zoned.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 #include "super.h"
38 
39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
40 					 BTRFS_BLOCK_GROUP_RAID10 | \
41 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
42 
43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 	[BTRFS_RAID_RAID10] = {
45 		.sub_stripes	= 2,
46 		.dev_stripes	= 1,
47 		.devs_max	= 0,	/* 0 == as many as possible */
48 		.devs_min	= 2,
49 		.tolerated_failures = 1,
50 		.devs_increment	= 2,
51 		.ncopies	= 2,
52 		.nparity        = 0,
53 		.raid_name	= "raid10",
54 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
55 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 	},
57 	[BTRFS_RAID_RAID1] = {
58 		.sub_stripes	= 1,
59 		.dev_stripes	= 1,
60 		.devs_max	= 2,
61 		.devs_min	= 2,
62 		.tolerated_failures = 1,
63 		.devs_increment	= 2,
64 		.ncopies	= 2,
65 		.nparity        = 0,
66 		.raid_name	= "raid1",
67 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
68 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 	},
70 	[BTRFS_RAID_RAID1C3] = {
71 		.sub_stripes	= 1,
72 		.dev_stripes	= 1,
73 		.devs_max	= 3,
74 		.devs_min	= 3,
75 		.tolerated_failures = 2,
76 		.devs_increment	= 3,
77 		.ncopies	= 3,
78 		.nparity        = 0,
79 		.raid_name	= "raid1c3",
80 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
81 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 	},
83 	[BTRFS_RAID_RAID1C4] = {
84 		.sub_stripes	= 1,
85 		.dev_stripes	= 1,
86 		.devs_max	= 4,
87 		.devs_min	= 4,
88 		.tolerated_failures = 3,
89 		.devs_increment	= 4,
90 		.ncopies	= 4,
91 		.nparity        = 0,
92 		.raid_name	= "raid1c4",
93 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
94 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 	},
96 	[BTRFS_RAID_DUP] = {
97 		.sub_stripes	= 1,
98 		.dev_stripes	= 2,
99 		.devs_max	= 1,
100 		.devs_min	= 1,
101 		.tolerated_failures = 0,
102 		.devs_increment	= 1,
103 		.ncopies	= 2,
104 		.nparity        = 0,
105 		.raid_name	= "dup",
106 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
107 		.mindev_error	= 0,
108 	},
109 	[BTRFS_RAID_RAID0] = {
110 		.sub_stripes	= 1,
111 		.dev_stripes	= 1,
112 		.devs_max	= 0,
113 		.devs_min	= 1,
114 		.tolerated_failures = 0,
115 		.devs_increment	= 1,
116 		.ncopies	= 1,
117 		.nparity        = 0,
118 		.raid_name	= "raid0",
119 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
120 		.mindev_error	= 0,
121 	},
122 	[BTRFS_RAID_SINGLE] = {
123 		.sub_stripes	= 1,
124 		.dev_stripes	= 1,
125 		.devs_max	= 1,
126 		.devs_min	= 1,
127 		.tolerated_failures = 0,
128 		.devs_increment	= 1,
129 		.ncopies	= 1,
130 		.nparity        = 0,
131 		.raid_name	= "single",
132 		.bg_flag	= 0,
133 		.mindev_error	= 0,
134 	},
135 	[BTRFS_RAID_RAID5] = {
136 		.sub_stripes	= 1,
137 		.dev_stripes	= 1,
138 		.devs_max	= 0,
139 		.devs_min	= 2,
140 		.tolerated_failures = 1,
141 		.devs_increment	= 1,
142 		.ncopies	= 1,
143 		.nparity        = 1,
144 		.raid_name	= "raid5",
145 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
146 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 	},
148 	[BTRFS_RAID_RAID6] = {
149 		.sub_stripes	= 1,
150 		.dev_stripes	= 1,
151 		.devs_max	= 0,
152 		.devs_min	= 3,
153 		.tolerated_failures = 2,
154 		.devs_increment	= 1,
155 		.ncopies	= 1,
156 		.nparity        = 2,
157 		.raid_name	= "raid6",
158 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
159 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 	},
161 };
162 
163 /*
164  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165  * can be used as index to access btrfs_raid_array[].
166  */
167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168 {
169 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170 
171 	if (!profile)
172 		return BTRFS_RAID_SINGLE;
173 
174 	return BTRFS_BG_FLAG_TO_INDEX(profile);
175 }
176 
177 const char *btrfs_bg_type_to_raid_name(u64 flags)
178 {
179 	const int index = btrfs_bg_flags_to_raid_index(flags);
180 
181 	if (index >= BTRFS_NR_RAID_TYPES)
182 		return NULL;
183 
184 	return btrfs_raid_array[index].raid_name;
185 }
186 
187 int btrfs_nr_parity_stripes(u64 type)
188 {
189 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190 
191 	return btrfs_raid_array[index].nparity;
192 }
193 
194 /*
195  * Fill @buf with textual description of @bg_flags, no more than @size_buf
196  * bytes including terminating null byte.
197  */
198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199 {
200 	int i;
201 	int ret;
202 	char *bp = buf;
203 	u64 flags = bg_flags;
204 	u32 size_bp = size_buf;
205 
206 	if (!flags) {
207 		strcpy(bp, "NONE");
208 		return;
209 	}
210 
211 #define DESCRIBE_FLAG(flag, desc)						\
212 	do {								\
213 		if (flags & (flag)) {					\
214 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
215 			if (ret < 0 || ret >= size_bp)			\
216 				goto out_overflow;			\
217 			size_bp -= ret;					\
218 			bp += ret;					\
219 			flags &= ~(flag);				\
220 		}							\
221 	} while (0)
222 
223 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226 
227 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 			      btrfs_raid_array[i].raid_name);
231 #undef DESCRIBE_FLAG
232 
233 	if (flags) {
234 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 		size_bp -= ret;
236 	}
237 
238 	if (size_bp < size_buf)
239 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240 
241 	/*
242 	 * The text is trimmed, it's up to the caller to provide sufficiently
243 	 * large buffer
244 	 */
245 out_overflow:;
246 }
247 
248 static int init_first_rw_device(struct btrfs_trans_handle *trans);
249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251 
252 /*
253  * Device locking
254  * ==============
255  *
256  * There are several mutexes that protect manipulation of devices and low-level
257  * structures like chunks but not block groups, extents or files
258  *
259  * uuid_mutex (global lock)
260  * ------------------------
261  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263  * device) or requested by the device= mount option
264  *
265  * the mutex can be very coarse and can cover long-running operations
266  *
267  * protects: updates to fs_devices counters like missing devices, rw devices,
268  * seeding, structure cloning, opening/closing devices at mount/umount time
269  *
270  * global::fs_devs - add, remove, updates to the global list
271  *
272  * does not protect: manipulation of the fs_devices::devices list in general
273  * but in mount context it could be used to exclude list modifications by eg.
274  * scan ioctl
275  *
276  * btrfs_device::name - renames (write side), read is RCU
277  *
278  * fs_devices::device_list_mutex (per-fs, with RCU)
279  * ------------------------------------------------
280  * protects updates to fs_devices::devices, ie. adding and deleting
281  *
282  * simple list traversal with read-only actions can be done with RCU protection
283  *
284  * may be used to exclude some operations from running concurrently without any
285  * modifications to the list (see write_all_supers)
286  *
287  * Is not required at mount and close times, because our device list is
288  * protected by the uuid_mutex at that point.
289  *
290  * balance_mutex
291  * -------------
292  * protects balance structures (status, state) and context accessed from
293  * several places (internally, ioctl)
294  *
295  * chunk_mutex
296  * -----------
297  * protects chunks, adding or removing during allocation, trim or when a new
298  * device is added/removed. Additionally it also protects post_commit_list of
299  * individual devices, since they can be added to the transaction's
300  * post_commit_list only with chunk_mutex held.
301  *
302  * cleaner_mutex
303  * -------------
304  * a big lock that is held by the cleaner thread and prevents running subvolume
305  * cleaning together with relocation or delayed iputs
306  *
307  *
308  * Lock nesting
309  * ============
310  *
311  * uuid_mutex
312  *   device_list_mutex
313  *     chunk_mutex
314  *   balance_mutex
315  *
316  *
317  * Exclusive operations
318  * ====================
319  *
320  * Maintains the exclusivity of the following operations that apply to the
321  * whole filesystem and cannot run in parallel.
322  *
323  * - Balance (*)
324  * - Device add
325  * - Device remove
326  * - Device replace (*)
327  * - Resize
328  *
329  * The device operations (as above) can be in one of the following states:
330  *
331  * - Running state
332  * - Paused state
333  * - Completed state
334  *
335  * Only device operations marked with (*) can go into the Paused state for the
336  * following reasons:
337  *
338  * - ioctl (only Balance can be Paused through ioctl)
339  * - filesystem remounted as read-only
340  * - filesystem unmounted and mounted as read-only
341  * - system power-cycle and filesystem mounted as read-only
342  * - filesystem or device errors leading to forced read-only
343  *
344  * The status of exclusive operation is set and cleared atomically.
345  * During the course of Paused state, fs_info::exclusive_operation remains set.
346  * A device operation in Paused or Running state can be canceled or resumed
347  * either by ioctl (Balance only) or when remounted as read-write.
348  * The exclusive status is cleared when the device operation is canceled or
349  * completed.
350  */
351 
352 DEFINE_MUTEX(uuid_mutex);
353 static LIST_HEAD(fs_uuids);
354 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
355 {
356 	return &fs_uuids;
357 }
358 
359 /*
360  * alloc_fs_devices - allocate struct btrfs_fs_devices
361  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
362  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
363  *
364  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365  * The returned struct is not linked onto any lists and can be destroyed with
366  * kfree() right away.
367  */
368 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 						 const u8 *metadata_fsid)
370 {
371 	struct btrfs_fs_devices *fs_devs;
372 
373 	ASSERT(fsid || !metadata_fsid);
374 
375 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
376 	if (!fs_devs)
377 		return ERR_PTR(-ENOMEM);
378 
379 	mutex_init(&fs_devs->device_list_mutex);
380 
381 	INIT_LIST_HEAD(&fs_devs->devices);
382 	INIT_LIST_HEAD(&fs_devs->alloc_list);
383 	INIT_LIST_HEAD(&fs_devs->fs_list);
384 	INIT_LIST_HEAD(&fs_devs->seed_list);
385 
386 	if (fsid) {
387 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
388 		memcpy(fs_devs->metadata_uuid,
389 		       metadata_fsid ?: fsid, BTRFS_FSID_SIZE);
390 	}
391 
392 	return fs_devs;
393 }
394 
395 static void btrfs_free_device(struct btrfs_device *device)
396 {
397 	WARN_ON(!list_empty(&device->post_commit_list));
398 	rcu_string_free(device->name);
399 	extent_io_tree_release(&device->alloc_state);
400 	btrfs_destroy_dev_zone_info(device);
401 	kfree(device);
402 }
403 
404 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
405 {
406 	struct btrfs_device *device;
407 
408 	WARN_ON(fs_devices->opened);
409 	while (!list_empty(&fs_devices->devices)) {
410 		device = list_entry(fs_devices->devices.next,
411 				    struct btrfs_device, dev_list);
412 		list_del(&device->dev_list);
413 		btrfs_free_device(device);
414 	}
415 	kfree(fs_devices);
416 }
417 
418 void __exit btrfs_cleanup_fs_uuids(void)
419 {
420 	struct btrfs_fs_devices *fs_devices;
421 
422 	while (!list_empty(&fs_uuids)) {
423 		fs_devices = list_entry(fs_uuids.next,
424 					struct btrfs_fs_devices, fs_list);
425 		list_del(&fs_devices->fs_list);
426 		free_fs_devices(fs_devices);
427 	}
428 }
429 
430 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
431 				  const u8 *fsid, const u8 *metadata_fsid)
432 {
433 	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
434 		return false;
435 
436 	if (!metadata_fsid)
437 		return true;
438 
439 	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
440 		return false;
441 
442 	return true;
443 }
444 
445 static noinline struct btrfs_fs_devices *find_fsid(
446 		const u8 *fsid, const u8 *metadata_fsid)
447 {
448 	struct btrfs_fs_devices *fs_devices;
449 
450 	ASSERT(fsid);
451 
452 	/* Handle non-split brain cases */
453 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
455 			return fs_devices;
456 	}
457 	return NULL;
458 }
459 
460 /*
461  * First check if the metadata_uuid is different from the fsid in the given
462  * fs_devices. Then check if the given fsid is the same as the metadata_uuid
463  * in the fs_devices. If it is, return true; otherwise, return false.
464  */
465 static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices,
466 				      const u8 *fsid)
467 {
468 	return memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
469 		      BTRFS_FSID_SIZE) != 0 &&
470 	       memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0;
471 }
472 
473 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
474 				struct btrfs_super_block *disk_super)
475 {
476 
477 	struct btrfs_fs_devices *fs_devices;
478 
479 	/*
480 	 * Handle scanned device having completed its fsid change but
481 	 * belonging to a fs_devices that was created by first scanning
482 	 * a device which didn't have its fsid/metadata_uuid changed
483 	 * at all and the CHANGING_FSID_V2 flag set.
484 	 */
485 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
486 		if (!fs_devices->fsid_change)
487 			continue;
488 
489 		if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid,
490 					  fs_devices->fsid))
491 			return fs_devices;
492 	}
493 
494 	/*
495 	 * Handle scanned device having completed its fsid change but
496 	 * belonging to a fs_devices that was created by a device that
497 	 * has an outdated pair of fsid/metadata_uuid and
498 	 * CHANGING_FSID_V2 flag set.
499 	 */
500 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
501 		if (!fs_devices->fsid_change)
502 			continue;
503 
504 		if (check_fsid_changed(fs_devices, disk_super->metadata_uuid))
505 			return fs_devices;
506 	}
507 
508 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
509 }
510 
511 
512 static int
513 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
514 		      int flush, struct block_device **bdev,
515 		      struct btrfs_super_block **disk_super)
516 {
517 	int ret;
518 
519 	*bdev = blkdev_get_by_path(device_path, flags, holder, NULL);
520 
521 	if (IS_ERR(*bdev)) {
522 		ret = PTR_ERR(*bdev);
523 		goto error;
524 	}
525 
526 	if (flush)
527 		sync_blockdev(*bdev);
528 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
529 	if (ret) {
530 		blkdev_put(*bdev, holder);
531 		goto error;
532 	}
533 	invalidate_bdev(*bdev);
534 	*disk_super = btrfs_read_dev_super(*bdev);
535 	if (IS_ERR(*disk_super)) {
536 		ret = PTR_ERR(*disk_super);
537 		blkdev_put(*bdev, holder);
538 		goto error;
539 	}
540 
541 	return 0;
542 
543 error:
544 	*bdev = NULL;
545 	return ret;
546 }
547 
548 /*
549  *  Search and remove all stale devices (which are not mounted).  When both
550  *  inputs are NULL, it will search and release all stale devices.
551  *
552  *  @devt:         Optional. When provided will it release all unmounted devices
553  *                 matching this devt only.
554  *  @skip_device:  Optional. Will skip this device when searching for the stale
555  *                 devices.
556  *
557  *  Return:	0 for success or if @devt is 0.
558  *		-EBUSY if @devt is a mounted device.
559  *		-ENOENT if @devt does not match any device in the list.
560  */
561 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
562 {
563 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
564 	struct btrfs_device *device, *tmp_device;
565 	int ret = 0;
566 
567 	lockdep_assert_held(&uuid_mutex);
568 
569 	if (devt)
570 		ret = -ENOENT;
571 
572 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
573 
574 		mutex_lock(&fs_devices->device_list_mutex);
575 		list_for_each_entry_safe(device, tmp_device,
576 					 &fs_devices->devices, dev_list) {
577 			if (skip_device && skip_device == device)
578 				continue;
579 			if (devt && devt != device->devt)
580 				continue;
581 			if (fs_devices->opened) {
582 				/* for an already deleted device return 0 */
583 				if (devt && ret != 0)
584 					ret = -EBUSY;
585 				break;
586 			}
587 
588 			/* delete the stale device */
589 			fs_devices->num_devices--;
590 			list_del(&device->dev_list);
591 			btrfs_free_device(device);
592 
593 			ret = 0;
594 		}
595 		mutex_unlock(&fs_devices->device_list_mutex);
596 
597 		if (fs_devices->num_devices == 0) {
598 			btrfs_sysfs_remove_fsid(fs_devices);
599 			list_del(&fs_devices->fs_list);
600 			free_fs_devices(fs_devices);
601 		}
602 	}
603 
604 	return ret;
605 }
606 
607 /*
608  * This is only used on mount, and we are protected from competing things
609  * messing with our fs_devices by the uuid_mutex, thus we do not need the
610  * fs_devices->device_list_mutex here.
611  */
612 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
613 			struct btrfs_device *device, blk_mode_t flags,
614 			void *holder)
615 {
616 	struct block_device *bdev;
617 	struct btrfs_super_block *disk_super;
618 	u64 devid;
619 	int ret;
620 
621 	if (device->bdev)
622 		return -EINVAL;
623 	if (!device->name)
624 		return -EINVAL;
625 
626 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
627 				    &bdev, &disk_super);
628 	if (ret)
629 		return ret;
630 
631 	devid = btrfs_stack_device_id(&disk_super->dev_item);
632 	if (devid != device->devid)
633 		goto error_free_page;
634 
635 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
636 		goto error_free_page;
637 
638 	device->generation = btrfs_super_generation(disk_super);
639 
640 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
641 		if (btrfs_super_incompat_flags(disk_super) &
642 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
643 			pr_err(
644 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
645 			goto error_free_page;
646 		}
647 
648 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
649 		fs_devices->seeding = true;
650 	} else {
651 		if (bdev_read_only(bdev))
652 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653 		else
654 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
655 	}
656 
657 	if (!bdev_nonrot(bdev))
658 		fs_devices->rotating = true;
659 
660 	if (bdev_max_discard_sectors(bdev))
661 		fs_devices->discardable = true;
662 
663 	device->bdev = bdev;
664 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
665 	device->holder = holder;
666 
667 	fs_devices->open_devices++;
668 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
669 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
670 		fs_devices->rw_devices++;
671 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
672 	}
673 	btrfs_release_disk_super(disk_super);
674 
675 	return 0;
676 
677 error_free_page:
678 	btrfs_release_disk_super(disk_super);
679 	blkdev_put(bdev, holder);
680 
681 	return -EINVAL;
682 }
683 
684 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
685 {
686 	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
687 				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
688 
689 	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
690 }
691 
692 /*
693  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
694  * being created with a disk that has already completed its fsid change. Such
695  * disk can belong to an fs which has its FSID changed or to one which doesn't.
696  * Handle both cases here.
697  */
698 static struct btrfs_fs_devices *find_fsid_inprogress(
699 					struct btrfs_super_block *disk_super)
700 {
701 	struct btrfs_fs_devices *fs_devices;
702 
703 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
704 		if (fs_devices->fsid_change)
705 			continue;
706 
707 		if (check_fsid_changed(fs_devices,  disk_super->fsid))
708 			return fs_devices;
709 	}
710 
711 	return find_fsid(disk_super->fsid, NULL);
712 }
713 
714 static struct btrfs_fs_devices *find_fsid_changed(
715 					struct btrfs_super_block *disk_super)
716 {
717 	struct btrfs_fs_devices *fs_devices;
718 
719 	/*
720 	 * Handles the case where scanned device is part of an fs that had
721 	 * multiple successful changes of FSID but currently device didn't
722 	 * observe it. Meaning our fsid will be different than theirs. We need
723 	 * to handle two subcases :
724 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
725 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
726 	 *  are equal).
727 	 */
728 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
729 		/* Changed UUIDs */
730 		if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) &&
731 		    memcmp(fs_devices->fsid, disk_super->fsid,
732 			   BTRFS_FSID_SIZE) != 0)
733 			return fs_devices;
734 
735 		/* Unchanged UUIDs */
736 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737 			   BTRFS_FSID_SIZE) == 0 &&
738 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739 			   BTRFS_FSID_SIZE) == 0)
740 			return fs_devices;
741 	}
742 
743 	return NULL;
744 }
745 
746 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747 				struct btrfs_super_block *disk_super)
748 {
749 	struct btrfs_fs_devices *fs_devices;
750 
751 	/*
752 	 * Handle the case where the scanned device is part of an fs whose last
753 	 * metadata UUID change reverted it to the original FSID. At the same
754 	 * time fs_devices was first created by another constituent device
755 	 * which didn't fully observe the operation. This results in an
756 	 * btrfs_fs_devices created with metadata/fsid different AND
757 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758 	 * fs_devices equal to the FSID of the disk.
759 	 */
760 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
761 		if (!fs_devices->fsid_change)
762 			continue;
763 
764 		if (check_fsid_changed(fs_devices, disk_super->fsid))
765 			return fs_devices;
766 	}
767 
768 	return NULL;
769 }
770 /*
771  * Add new device to list of registered devices
772  *
773  * Returns:
774  * device pointer which was just added or updated when successful
775  * error pointer when failed
776  */
777 static noinline struct btrfs_device *device_list_add(const char *path,
778 			   struct btrfs_super_block *disk_super,
779 			   bool *new_device_added)
780 {
781 	struct btrfs_device *device;
782 	struct btrfs_fs_devices *fs_devices = NULL;
783 	struct rcu_string *name;
784 	u64 found_transid = btrfs_super_generation(disk_super);
785 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
786 	dev_t path_devt;
787 	int error;
788 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
789 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
790 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
791 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
792 
793 	error = lookup_bdev(path, &path_devt);
794 	if (error) {
795 		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
796 			  path, error);
797 		return ERR_PTR(error);
798 	}
799 
800 	if (fsid_change_in_progress) {
801 		if (!has_metadata_uuid)
802 			fs_devices = find_fsid_inprogress(disk_super);
803 		else
804 			fs_devices = find_fsid_changed(disk_super);
805 	} else if (has_metadata_uuid) {
806 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
807 	} else {
808 		fs_devices = find_fsid_reverted_metadata(disk_super);
809 		if (!fs_devices)
810 			fs_devices = find_fsid(disk_super->fsid, NULL);
811 	}
812 
813 
814 	if (!fs_devices) {
815 		fs_devices = alloc_fs_devices(disk_super->fsid,
816 				has_metadata_uuid ? disk_super->metadata_uuid : NULL);
817 		if (IS_ERR(fs_devices))
818 			return ERR_CAST(fs_devices);
819 
820 		fs_devices->fsid_change = fsid_change_in_progress;
821 
822 		mutex_lock(&fs_devices->device_list_mutex);
823 		list_add(&fs_devices->fs_list, &fs_uuids);
824 
825 		device = NULL;
826 	} else {
827 		struct btrfs_dev_lookup_args args = {
828 			.devid = devid,
829 			.uuid = disk_super->dev_item.uuid,
830 		};
831 
832 		mutex_lock(&fs_devices->device_list_mutex);
833 		device = btrfs_find_device(fs_devices, &args);
834 
835 		/*
836 		 * If this disk has been pulled into an fs devices created by
837 		 * a device which had the CHANGING_FSID_V2 flag then replace the
838 		 * metadata_uuid/fsid values of the fs_devices.
839 		 */
840 		if (fs_devices->fsid_change &&
841 		    found_transid > fs_devices->latest_generation) {
842 			memcpy(fs_devices->fsid, disk_super->fsid,
843 					BTRFS_FSID_SIZE);
844 			memcpy(fs_devices->metadata_uuid,
845 			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
846 			fs_devices->fsid_change = false;
847 		}
848 	}
849 
850 	if (!device) {
851 		unsigned int nofs_flag;
852 
853 		if (fs_devices->opened) {
854 			btrfs_err(NULL,
855 "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
856 				  path, fs_devices->fsid, current->comm,
857 				  task_pid_nr(current));
858 			mutex_unlock(&fs_devices->device_list_mutex);
859 			return ERR_PTR(-EBUSY);
860 		}
861 
862 		nofs_flag = memalloc_nofs_save();
863 		device = btrfs_alloc_device(NULL, &devid,
864 					    disk_super->dev_item.uuid, path);
865 		memalloc_nofs_restore(nofs_flag);
866 		if (IS_ERR(device)) {
867 			mutex_unlock(&fs_devices->device_list_mutex);
868 			/* we can safely leave the fs_devices entry around */
869 			return device;
870 		}
871 
872 		device->devt = path_devt;
873 
874 		list_add_rcu(&device->dev_list, &fs_devices->devices);
875 		fs_devices->num_devices++;
876 
877 		device->fs_devices = fs_devices;
878 		*new_device_added = true;
879 
880 		if (disk_super->label[0])
881 			pr_info(
882 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
883 				disk_super->label, devid, found_transid, path,
884 				current->comm, task_pid_nr(current));
885 		else
886 			pr_info(
887 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
888 				disk_super->fsid, devid, found_transid, path,
889 				current->comm, task_pid_nr(current));
890 
891 	} else if (!device->name || strcmp(device->name->str, path)) {
892 		/*
893 		 * When FS is already mounted.
894 		 * 1. If you are here and if the device->name is NULL that
895 		 *    means this device was missing at time of FS mount.
896 		 * 2. If you are here and if the device->name is different
897 		 *    from 'path' that means either
898 		 *      a. The same device disappeared and reappeared with
899 		 *         different name. or
900 		 *      b. The missing-disk-which-was-replaced, has
901 		 *         reappeared now.
902 		 *
903 		 * We must allow 1 and 2a above. But 2b would be a spurious
904 		 * and unintentional.
905 		 *
906 		 * Further in case of 1 and 2a above, the disk at 'path'
907 		 * would have missed some transaction when it was away and
908 		 * in case of 2a the stale bdev has to be updated as well.
909 		 * 2b must not be allowed at all time.
910 		 */
911 
912 		/*
913 		 * For now, we do allow update to btrfs_fs_device through the
914 		 * btrfs dev scan cli after FS has been mounted.  We're still
915 		 * tracking a problem where systems fail mount by subvolume id
916 		 * when we reject replacement on a mounted FS.
917 		 */
918 		if (!fs_devices->opened && found_transid < device->generation) {
919 			/*
920 			 * That is if the FS is _not_ mounted and if you
921 			 * are here, that means there is more than one
922 			 * disk with same uuid and devid.We keep the one
923 			 * with larger generation number or the last-in if
924 			 * generation are equal.
925 			 */
926 			mutex_unlock(&fs_devices->device_list_mutex);
927 			btrfs_err(NULL,
928 "device %s already registered with a higher generation, found %llu expect %llu",
929 				  path, found_transid, device->generation);
930 			return ERR_PTR(-EEXIST);
931 		}
932 
933 		/*
934 		 * We are going to replace the device path for a given devid,
935 		 * make sure it's the same device if the device is mounted
936 		 *
937 		 * NOTE: the device->fs_info may not be reliable here so pass
938 		 * in a NULL to message helpers instead. This avoids a possible
939 		 * use-after-free when the fs_info and fs_info->sb are already
940 		 * torn down.
941 		 */
942 		if (device->bdev) {
943 			if (device->devt != path_devt) {
944 				mutex_unlock(&fs_devices->device_list_mutex);
945 				btrfs_warn_in_rcu(NULL,
946 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
947 						  path, devid, found_transid,
948 						  current->comm,
949 						  task_pid_nr(current));
950 				return ERR_PTR(-EEXIST);
951 			}
952 			btrfs_info_in_rcu(NULL,
953 	"devid %llu device path %s changed to %s scanned by %s (%d)",
954 					  devid, btrfs_dev_name(device),
955 					  path, current->comm,
956 					  task_pid_nr(current));
957 		}
958 
959 		name = rcu_string_strdup(path, GFP_NOFS);
960 		if (!name) {
961 			mutex_unlock(&fs_devices->device_list_mutex);
962 			return ERR_PTR(-ENOMEM);
963 		}
964 		rcu_string_free(device->name);
965 		rcu_assign_pointer(device->name, name);
966 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
967 			fs_devices->missing_devices--;
968 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
969 		}
970 		device->devt = path_devt;
971 	}
972 
973 	/*
974 	 * Unmount does not free the btrfs_device struct but would zero
975 	 * generation along with most of the other members. So just update
976 	 * it back. We need it to pick the disk with largest generation
977 	 * (as above).
978 	 */
979 	if (!fs_devices->opened) {
980 		device->generation = found_transid;
981 		fs_devices->latest_generation = max_t(u64, found_transid,
982 						fs_devices->latest_generation);
983 	}
984 
985 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
986 
987 	mutex_unlock(&fs_devices->device_list_mutex);
988 	return device;
989 }
990 
991 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
992 {
993 	struct btrfs_fs_devices *fs_devices;
994 	struct btrfs_device *device;
995 	struct btrfs_device *orig_dev;
996 	int ret = 0;
997 
998 	lockdep_assert_held(&uuid_mutex);
999 
1000 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1001 	if (IS_ERR(fs_devices))
1002 		return fs_devices;
1003 
1004 	fs_devices->total_devices = orig->total_devices;
1005 
1006 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1007 		const char *dev_path = NULL;
1008 
1009 		/*
1010 		 * This is ok to do without RCU read locked because we hold the
1011 		 * uuid mutex so nothing we touch in here is going to disappear.
1012 		 */
1013 		if (orig_dev->name)
1014 			dev_path = orig_dev->name->str;
1015 
1016 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1017 					    orig_dev->uuid, dev_path);
1018 		if (IS_ERR(device)) {
1019 			ret = PTR_ERR(device);
1020 			goto error;
1021 		}
1022 
1023 		if (orig_dev->zone_info) {
1024 			struct btrfs_zoned_device_info *zone_info;
1025 
1026 			zone_info = btrfs_clone_dev_zone_info(orig_dev);
1027 			if (!zone_info) {
1028 				btrfs_free_device(device);
1029 				ret = -ENOMEM;
1030 				goto error;
1031 			}
1032 			device->zone_info = zone_info;
1033 		}
1034 
1035 		list_add(&device->dev_list, &fs_devices->devices);
1036 		device->fs_devices = fs_devices;
1037 		fs_devices->num_devices++;
1038 	}
1039 	return fs_devices;
1040 error:
1041 	free_fs_devices(fs_devices);
1042 	return ERR_PTR(ret);
1043 }
1044 
1045 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1046 				      struct btrfs_device **latest_dev)
1047 {
1048 	struct btrfs_device *device, *next;
1049 
1050 	/* This is the initialized path, it is safe to release the devices. */
1051 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1052 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1053 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1054 				      &device->dev_state) &&
1055 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1056 				      &device->dev_state) &&
1057 			    (!*latest_dev ||
1058 			     device->generation > (*latest_dev)->generation)) {
1059 				*latest_dev = device;
1060 			}
1061 			continue;
1062 		}
1063 
1064 		/*
1065 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1066 		 * in btrfs_init_dev_replace() so just continue.
1067 		 */
1068 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1069 			continue;
1070 
1071 		if (device->bdev) {
1072 			blkdev_put(device->bdev, device->holder);
1073 			device->bdev = NULL;
1074 			fs_devices->open_devices--;
1075 		}
1076 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1077 			list_del_init(&device->dev_alloc_list);
1078 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1079 			fs_devices->rw_devices--;
1080 		}
1081 		list_del_init(&device->dev_list);
1082 		fs_devices->num_devices--;
1083 		btrfs_free_device(device);
1084 	}
1085 
1086 }
1087 
1088 /*
1089  * After we have read the system tree and know devids belonging to this
1090  * filesystem, remove the device which does not belong there.
1091  */
1092 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1093 {
1094 	struct btrfs_device *latest_dev = NULL;
1095 	struct btrfs_fs_devices *seed_dev;
1096 
1097 	mutex_lock(&uuid_mutex);
1098 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1099 
1100 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1101 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1102 
1103 	fs_devices->latest_dev = latest_dev;
1104 
1105 	mutex_unlock(&uuid_mutex);
1106 }
1107 
1108 static void btrfs_close_bdev(struct btrfs_device *device)
1109 {
1110 	if (!device->bdev)
1111 		return;
1112 
1113 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1114 		sync_blockdev(device->bdev);
1115 		invalidate_bdev(device->bdev);
1116 	}
1117 
1118 	blkdev_put(device->bdev, device->holder);
1119 }
1120 
1121 static void btrfs_close_one_device(struct btrfs_device *device)
1122 {
1123 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1124 
1125 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1126 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1127 		list_del_init(&device->dev_alloc_list);
1128 		fs_devices->rw_devices--;
1129 	}
1130 
1131 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1132 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1133 
1134 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1135 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1136 		fs_devices->missing_devices--;
1137 	}
1138 
1139 	btrfs_close_bdev(device);
1140 	if (device->bdev) {
1141 		fs_devices->open_devices--;
1142 		device->bdev = NULL;
1143 	}
1144 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1145 	btrfs_destroy_dev_zone_info(device);
1146 
1147 	device->fs_info = NULL;
1148 	atomic_set(&device->dev_stats_ccnt, 0);
1149 	extent_io_tree_release(&device->alloc_state);
1150 
1151 	/*
1152 	 * Reset the flush error record. We might have a transient flush error
1153 	 * in this mount, and if so we aborted the current transaction and set
1154 	 * the fs to an error state, guaranteeing no super blocks can be further
1155 	 * committed. However that error might be transient and if we unmount the
1156 	 * filesystem and mount it again, we should allow the mount to succeed
1157 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1158 	 * filesystem again we still get flush errors, then we will again abort
1159 	 * any transaction and set the error state, guaranteeing no commits of
1160 	 * unsafe super blocks.
1161 	 */
1162 	device->last_flush_error = 0;
1163 
1164 	/* Verify the device is back in a pristine state  */
1165 	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1166 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1167 	WARN_ON(!list_empty(&device->dev_alloc_list));
1168 	WARN_ON(!list_empty(&device->post_commit_list));
1169 }
1170 
1171 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1172 {
1173 	struct btrfs_device *device, *tmp;
1174 
1175 	lockdep_assert_held(&uuid_mutex);
1176 
1177 	if (--fs_devices->opened > 0)
1178 		return;
1179 
1180 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1181 		btrfs_close_one_device(device);
1182 
1183 	WARN_ON(fs_devices->open_devices);
1184 	WARN_ON(fs_devices->rw_devices);
1185 	fs_devices->opened = 0;
1186 	fs_devices->seeding = false;
1187 	fs_devices->fs_info = NULL;
1188 }
1189 
1190 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1191 {
1192 	LIST_HEAD(list);
1193 	struct btrfs_fs_devices *tmp;
1194 
1195 	mutex_lock(&uuid_mutex);
1196 	close_fs_devices(fs_devices);
1197 	if (!fs_devices->opened) {
1198 		list_splice_init(&fs_devices->seed_list, &list);
1199 
1200 		/*
1201 		 * If the struct btrfs_fs_devices is not assembled with any
1202 		 * other device, it can be re-initialized during the next mount
1203 		 * without the needing device-scan step. Therefore, it can be
1204 		 * fully freed.
1205 		 */
1206 		if (fs_devices->num_devices == 1) {
1207 			list_del(&fs_devices->fs_list);
1208 			free_fs_devices(fs_devices);
1209 		}
1210 	}
1211 
1212 
1213 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1214 		close_fs_devices(fs_devices);
1215 		list_del(&fs_devices->seed_list);
1216 		free_fs_devices(fs_devices);
1217 	}
1218 	mutex_unlock(&uuid_mutex);
1219 }
1220 
1221 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1222 				blk_mode_t flags, void *holder)
1223 {
1224 	struct btrfs_device *device;
1225 	struct btrfs_device *latest_dev = NULL;
1226 	struct btrfs_device *tmp_device;
1227 
1228 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1229 				 dev_list) {
1230 		int ret;
1231 
1232 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1233 		if (ret == 0 &&
1234 		    (!latest_dev || device->generation > latest_dev->generation)) {
1235 			latest_dev = device;
1236 		} else if (ret == -ENODATA) {
1237 			fs_devices->num_devices--;
1238 			list_del(&device->dev_list);
1239 			btrfs_free_device(device);
1240 		}
1241 	}
1242 	if (fs_devices->open_devices == 0)
1243 		return -EINVAL;
1244 
1245 	fs_devices->opened = 1;
1246 	fs_devices->latest_dev = latest_dev;
1247 	fs_devices->total_rw_bytes = 0;
1248 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1249 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1250 
1251 	return 0;
1252 }
1253 
1254 static int devid_cmp(void *priv, const struct list_head *a,
1255 		     const struct list_head *b)
1256 {
1257 	const struct btrfs_device *dev1, *dev2;
1258 
1259 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1260 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1261 
1262 	if (dev1->devid < dev2->devid)
1263 		return -1;
1264 	else if (dev1->devid > dev2->devid)
1265 		return 1;
1266 	return 0;
1267 }
1268 
1269 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1270 		       blk_mode_t flags, void *holder)
1271 {
1272 	int ret;
1273 
1274 	lockdep_assert_held(&uuid_mutex);
1275 	/*
1276 	 * The device_list_mutex cannot be taken here in case opening the
1277 	 * underlying device takes further locks like open_mutex.
1278 	 *
1279 	 * We also don't need the lock here as this is called during mount and
1280 	 * exclusion is provided by uuid_mutex
1281 	 */
1282 
1283 	if (fs_devices->opened) {
1284 		fs_devices->opened++;
1285 		ret = 0;
1286 	} else {
1287 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1288 		ret = open_fs_devices(fs_devices, flags, holder);
1289 	}
1290 
1291 	return ret;
1292 }
1293 
1294 void btrfs_release_disk_super(struct btrfs_super_block *super)
1295 {
1296 	struct page *page = virt_to_page(super);
1297 
1298 	put_page(page);
1299 }
1300 
1301 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1302 						       u64 bytenr, u64 bytenr_orig)
1303 {
1304 	struct btrfs_super_block *disk_super;
1305 	struct page *page;
1306 	void *p;
1307 	pgoff_t index;
1308 
1309 	/* make sure our super fits in the device */
1310 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1311 		return ERR_PTR(-EINVAL);
1312 
1313 	/* make sure our super fits in the page */
1314 	if (sizeof(*disk_super) > PAGE_SIZE)
1315 		return ERR_PTR(-EINVAL);
1316 
1317 	/* make sure our super doesn't straddle pages on disk */
1318 	index = bytenr >> PAGE_SHIFT;
1319 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1320 		return ERR_PTR(-EINVAL);
1321 
1322 	/* pull in the page with our super */
1323 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1324 
1325 	if (IS_ERR(page))
1326 		return ERR_CAST(page);
1327 
1328 	p = page_address(page);
1329 
1330 	/* align our pointer to the offset of the super block */
1331 	disk_super = p + offset_in_page(bytenr);
1332 
1333 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1334 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1335 		btrfs_release_disk_super(p);
1336 		return ERR_PTR(-EINVAL);
1337 	}
1338 
1339 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1340 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1341 
1342 	return disk_super;
1343 }
1344 
1345 int btrfs_forget_devices(dev_t devt)
1346 {
1347 	int ret;
1348 
1349 	mutex_lock(&uuid_mutex);
1350 	ret = btrfs_free_stale_devices(devt, NULL);
1351 	mutex_unlock(&uuid_mutex);
1352 
1353 	return ret;
1354 }
1355 
1356 /*
1357  * Look for a btrfs signature on a device. This may be called out of the mount path
1358  * and we are not allowed to call set_blocksize during the scan. The superblock
1359  * is read via pagecache
1360  */
1361 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags)
1362 {
1363 	struct btrfs_super_block *disk_super;
1364 	bool new_device_added = false;
1365 	struct btrfs_device *device = NULL;
1366 	struct block_device *bdev;
1367 	u64 bytenr, bytenr_orig;
1368 	int ret;
1369 
1370 	lockdep_assert_held(&uuid_mutex);
1371 
1372 	/*
1373 	 * we would like to check all the supers, but that would make
1374 	 * a btrfs mount succeed after a mkfs from a different FS.
1375 	 * So, we need to add a special mount option to scan for
1376 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1377 	 */
1378 
1379 	/*
1380 	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1381 	 * device scan which may race with the user's mount or mkfs command,
1382 	 * resulting in failure.
1383 	 * Since the device scan is solely for reading purposes, there is no
1384 	 * need for an exclusive open. Additionally, the devices are read again
1385 	 * during the mount process. It is ok to get some inconsistent
1386 	 * values temporarily, as the device paths of the fsid are the only
1387 	 * required information for assembling the volume.
1388 	 */
1389 	bdev = blkdev_get_by_path(path, flags, NULL, NULL);
1390 	if (IS_ERR(bdev))
1391 		return ERR_CAST(bdev);
1392 
1393 	bytenr_orig = btrfs_sb_offset(0);
1394 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1395 	if (ret) {
1396 		device = ERR_PTR(ret);
1397 		goto error_bdev_put;
1398 	}
1399 
1400 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1401 	if (IS_ERR(disk_super)) {
1402 		device = ERR_CAST(disk_super);
1403 		goto error_bdev_put;
1404 	}
1405 
1406 	device = device_list_add(path, disk_super, &new_device_added);
1407 	if (!IS_ERR(device) && new_device_added)
1408 		btrfs_free_stale_devices(device->devt, device);
1409 
1410 	btrfs_release_disk_super(disk_super);
1411 
1412 error_bdev_put:
1413 	blkdev_put(bdev, NULL);
1414 
1415 	return device;
1416 }
1417 
1418 /*
1419  * Try to find a chunk that intersects [start, start + len] range and when one
1420  * such is found, record the end of it in *start
1421  */
1422 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1423 				    u64 len)
1424 {
1425 	u64 physical_start, physical_end;
1426 
1427 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1428 
1429 	if (find_first_extent_bit(&device->alloc_state, *start,
1430 				  &physical_start, &physical_end,
1431 				  CHUNK_ALLOCATED, NULL)) {
1432 
1433 		if (in_range(physical_start, *start, len) ||
1434 		    in_range(*start, physical_start,
1435 			     physical_end - physical_start)) {
1436 			*start = physical_end + 1;
1437 			return true;
1438 		}
1439 	}
1440 	return false;
1441 }
1442 
1443 static u64 dev_extent_search_start(struct btrfs_device *device)
1444 {
1445 	switch (device->fs_devices->chunk_alloc_policy) {
1446 	case BTRFS_CHUNK_ALLOC_REGULAR:
1447 		return BTRFS_DEVICE_RANGE_RESERVED;
1448 	case BTRFS_CHUNK_ALLOC_ZONED:
1449 		/*
1450 		 * We don't care about the starting region like regular
1451 		 * allocator, because we anyway use/reserve the first two zones
1452 		 * for superblock logging.
1453 		 */
1454 		return 0;
1455 	default:
1456 		BUG();
1457 	}
1458 }
1459 
1460 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1461 					u64 *hole_start, u64 *hole_size,
1462 					u64 num_bytes)
1463 {
1464 	u64 zone_size = device->zone_info->zone_size;
1465 	u64 pos;
1466 	int ret;
1467 	bool changed = false;
1468 
1469 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1470 
1471 	while (*hole_size > 0) {
1472 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1473 						   *hole_start + *hole_size,
1474 						   num_bytes);
1475 		if (pos != *hole_start) {
1476 			*hole_size = *hole_start + *hole_size - pos;
1477 			*hole_start = pos;
1478 			changed = true;
1479 			if (*hole_size < num_bytes)
1480 				break;
1481 		}
1482 
1483 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1484 
1485 		/* Range is ensured to be empty */
1486 		if (!ret)
1487 			return changed;
1488 
1489 		/* Given hole range was invalid (outside of device) */
1490 		if (ret == -ERANGE) {
1491 			*hole_start += *hole_size;
1492 			*hole_size = 0;
1493 			return true;
1494 		}
1495 
1496 		*hole_start += zone_size;
1497 		*hole_size -= zone_size;
1498 		changed = true;
1499 	}
1500 
1501 	return changed;
1502 }
1503 
1504 /*
1505  * Check if specified hole is suitable for allocation.
1506  *
1507  * @device:	the device which we have the hole
1508  * @hole_start: starting position of the hole
1509  * @hole_size:	the size of the hole
1510  * @num_bytes:	the size of the free space that we need
1511  *
1512  * This function may modify @hole_start and @hole_size to reflect the suitable
1513  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1514  */
1515 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1516 				  u64 *hole_size, u64 num_bytes)
1517 {
1518 	bool changed = false;
1519 	u64 hole_end = *hole_start + *hole_size;
1520 
1521 	for (;;) {
1522 		/*
1523 		 * Check before we set max_hole_start, otherwise we could end up
1524 		 * sending back this offset anyway.
1525 		 */
1526 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1527 			if (hole_end >= *hole_start)
1528 				*hole_size = hole_end - *hole_start;
1529 			else
1530 				*hole_size = 0;
1531 			changed = true;
1532 		}
1533 
1534 		switch (device->fs_devices->chunk_alloc_policy) {
1535 		case BTRFS_CHUNK_ALLOC_REGULAR:
1536 			/* No extra check */
1537 			break;
1538 		case BTRFS_CHUNK_ALLOC_ZONED:
1539 			if (dev_extent_hole_check_zoned(device, hole_start,
1540 							hole_size, num_bytes)) {
1541 				changed = true;
1542 				/*
1543 				 * The changed hole can contain pending extent.
1544 				 * Loop again to check that.
1545 				 */
1546 				continue;
1547 			}
1548 			break;
1549 		default:
1550 			BUG();
1551 		}
1552 
1553 		break;
1554 	}
1555 
1556 	return changed;
1557 }
1558 
1559 /*
1560  * Find free space in the specified device.
1561  *
1562  * @device:	  the device which we search the free space in
1563  * @num_bytes:	  the size of the free space that we need
1564  * @search_start: the position from which to begin the search
1565  * @start:	  store the start of the free space.
1566  * @len:	  the size of the free space. that we find, or the size
1567  *		  of the max free space if we don't find suitable free space
1568  *
1569  * This does a pretty simple search, the expectation is that it is called very
1570  * infrequently and that a given device has a small number of extents.
1571  *
1572  * @start is used to store the start of the free space if we find. But if we
1573  * don't find suitable free space, it will be used to store the start position
1574  * of the max free space.
1575  *
1576  * @len is used to store the size of the free space that we find.
1577  * But if we don't find suitable free space, it is used to store the size of
1578  * the max free space.
1579  *
1580  * NOTE: This function will search *commit* root of device tree, and does extra
1581  * check to ensure dev extents are not double allocated.
1582  * This makes the function safe to allocate dev extents but may not report
1583  * correct usable device space, as device extent freed in current transaction
1584  * is not reported as available.
1585  */
1586 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1587 				u64 *start, u64 *len)
1588 {
1589 	struct btrfs_fs_info *fs_info = device->fs_info;
1590 	struct btrfs_root *root = fs_info->dev_root;
1591 	struct btrfs_key key;
1592 	struct btrfs_dev_extent *dev_extent;
1593 	struct btrfs_path *path;
1594 	u64 search_start;
1595 	u64 hole_size;
1596 	u64 max_hole_start;
1597 	u64 max_hole_size = 0;
1598 	u64 extent_end;
1599 	u64 search_end = device->total_bytes;
1600 	int ret;
1601 	int slot;
1602 	struct extent_buffer *l;
1603 
1604 	search_start = dev_extent_search_start(device);
1605 	max_hole_start = search_start;
1606 
1607 	WARN_ON(device->zone_info &&
1608 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1609 
1610 	path = btrfs_alloc_path();
1611 	if (!path) {
1612 		ret = -ENOMEM;
1613 		goto out;
1614 	}
1615 again:
1616 	if (search_start >= search_end ||
1617 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1618 		ret = -ENOSPC;
1619 		goto out;
1620 	}
1621 
1622 	path->reada = READA_FORWARD;
1623 	path->search_commit_root = 1;
1624 	path->skip_locking = 1;
1625 
1626 	key.objectid = device->devid;
1627 	key.offset = search_start;
1628 	key.type = BTRFS_DEV_EXTENT_KEY;
1629 
1630 	ret = btrfs_search_backwards(root, &key, path);
1631 	if (ret < 0)
1632 		goto out;
1633 
1634 	while (search_start < search_end) {
1635 		l = path->nodes[0];
1636 		slot = path->slots[0];
1637 		if (slot >= btrfs_header_nritems(l)) {
1638 			ret = btrfs_next_leaf(root, path);
1639 			if (ret == 0)
1640 				continue;
1641 			if (ret < 0)
1642 				goto out;
1643 
1644 			break;
1645 		}
1646 		btrfs_item_key_to_cpu(l, &key, slot);
1647 
1648 		if (key.objectid < device->devid)
1649 			goto next;
1650 
1651 		if (key.objectid > device->devid)
1652 			break;
1653 
1654 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1655 			goto next;
1656 
1657 		if (key.offset > search_end)
1658 			break;
1659 
1660 		if (key.offset > search_start) {
1661 			hole_size = key.offset - search_start;
1662 			dev_extent_hole_check(device, &search_start, &hole_size,
1663 					      num_bytes);
1664 
1665 			if (hole_size > max_hole_size) {
1666 				max_hole_start = search_start;
1667 				max_hole_size = hole_size;
1668 			}
1669 
1670 			/*
1671 			 * If this free space is greater than which we need,
1672 			 * it must be the max free space that we have found
1673 			 * until now, so max_hole_start must point to the start
1674 			 * of this free space and the length of this free space
1675 			 * is stored in max_hole_size. Thus, we return
1676 			 * max_hole_start and max_hole_size and go back to the
1677 			 * caller.
1678 			 */
1679 			if (hole_size >= num_bytes) {
1680 				ret = 0;
1681 				goto out;
1682 			}
1683 		}
1684 
1685 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1686 		extent_end = key.offset + btrfs_dev_extent_length(l,
1687 								  dev_extent);
1688 		if (extent_end > search_start)
1689 			search_start = extent_end;
1690 next:
1691 		path->slots[0]++;
1692 		cond_resched();
1693 	}
1694 
1695 	/*
1696 	 * At this point, search_start should be the end of
1697 	 * allocated dev extents, and when shrinking the device,
1698 	 * search_end may be smaller than search_start.
1699 	 */
1700 	if (search_end > search_start) {
1701 		hole_size = search_end - search_start;
1702 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1703 					  num_bytes)) {
1704 			btrfs_release_path(path);
1705 			goto again;
1706 		}
1707 
1708 		if (hole_size > max_hole_size) {
1709 			max_hole_start = search_start;
1710 			max_hole_size = hole_size;
1711 		}
1712 	}
1713 
1714 	/* See above. */
1715 	if (max_hole_size < num_bytes)
1716 		ret = -ENOSPC;
1717 	else
1718 		ret = 0;
1719 
1720 	ASSERT(max_hole_start + max_hole_size <= search_end);
1721 out:
1722 	btrfs_free_path(path);
1723 	*start = max_hole_start;
1724 	if (len)
1725 		*len = max_hole_size;
1726 	return ret;
1727 }
1728 
1729 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1730 			  struct btrfs_device *device,
1731 			  u64 start, u64 *dev_extent_len)
1732 {
1733 	struct btrfs_fs_info *fs_info = device->fs_info;
1734 	struct btrfs_root *root = fs_info->dev_root;
1735 	int ret;
1736 	struct btrfs_path *path;
1737 	struct btrfs_key key;
1738 	struct btrfs_key found_key;
1739 	struct extent_buffer *leaf = NULL;
1740 	struct btrfs_dev_extent *extent = NULL;
1741 
1742 	path = btrfs_alloc_path();
1743 	if (!path)
1744 		return -ENOMEM;
1745 
1746 	key.objectid = device->devid;
1747 	key.offset = start;
1748 	key.type = BTRFS_DEV_EXTENT_KEY;
1749 again:
1750 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1751 	if (ret > 0) {
1752 		ret = btrfs_previous_item(root, path, key.objectid,
1753 					  BTRFS_DEV_EXTENT_KEY);
1754 		if (ret)
1755 			goto out;
1756 		leaf = path->nodes[0];
1757 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1758 		extent = btrfs_item_ptr(leaf, path->slots[0],
1759 					struct btrfs_dev_extent);
1760 		BUG_ON(found_key.offset > start || found_key.offset +
1761 		       btrfs_dev_extent_length(leaf, extent) < start);
1762 		key = found_key;
1763 		btrfs_release_path(path);
1764 		goto again;
1765 	} else if (ret == 0) {
1766 		leaf = path->nodes[0];
1767 		extent = btrfs_item_ptr(leaf, path->slots[0],
1768 					struct btrfs_dev_extent);
1769 	} else {
1770 		goto out;
1771 	}
1772 
1773 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1774 
1775 	ret = btrfs_del_item(trans, root, path);
1776 	if (ret == 0)
1777 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1778 out:
1779 	btrfs_free_path(path);
1780 	return ret;
1781 }
1782 
1783 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1784 {
1785 	struct extent_map_tree *em_tree;
1786 	struct extent_map *em;
1787 	struct rb_node *n;
1788 	u64 ret = 0;
1789 
1790 	em_tree = &fs_info->mapping_tree;
1791 	read_lock(&em_tree->lock);
1792 	n = rb_last(&em_tree->map.rb_root);
1793 	if (n) {
1794 		em = rb_entry(n, struct extent_map, rb_node);
1795 		ret = em->start + em->len;
1796 	}
1797 	read_unlock(&em_tree->lock);
1798 
1799 	return ret;
1800 }
1801 
1802 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1803 				    u64 *devid_ret)
1804 {
1805 	int ret;
1806 	struct btrfs_key key;
1807 	struct btrfs_key found_key;
1808 	struct btrfs_path *path;
1809 
1810 	path = btrfs_alloc_path();
1811 	if (!path)
1812 		return -ENOMEM;
1813 
1814 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1815 	key.type = BTRFS_DEV_ITEM_KEY;
1816 	key.offset = (u64)-1;
1817 
1818 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1819 	if (ret < 0)
1820 		goto error;
1821 
1822 	if (ret == 0) {
1823 		/* Corruption */
1824 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1825 		ret = -EUCLEAN;
1826 		goto error;
1827 	}
1828 
1829 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1830 				  BTRFS_DEV_ITEMS_OBJECTID,
1831 				  BTRFS_DEV_ITEM_KEY);
1832 	if (ret) {
1833 		*devid_ret = 1;
1834 	} else {
1835 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1836 				      path->slots[0]);
1837 		*devid_ret = found_key.offset + 1;
1838 	}
1839 	ret = 0;
1840 error:
1841 	btrfs_free_path(path);
1842 	return ret;
1843 }
1844 
1845 /*
1846  * the device information is stored in the chunk root
1847  * the btrfs_device struct should be fully filled in
1848  */
1849 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1850 			    struct btrfs_device *device)
1851 {
1852 	int ret;
1853 	struct btrfs_path *path;
1854 	struct btrfs_dev_item *dev_item;
1855 	struct extent_buffer *leaf;
1856 	struct btrfs_key key;
1857 	unsigned long ptr;
1858 
1859 	path = btrfs_alloc_path();
1860 	if (!path)
1861 		return -ENOMEM;
1862 
1863 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1864 	key.type = BTRFS_DEV_ITEM_KEY;
1865 	key.offset = device->devid;
1866 
1867 	btrfs_reserve_chunk_metadata(trans, true);
1868 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1869 				      &key, sizeof(*dev_item));
1870 	btrfs_trans_release_chunk_metadata(trans);
1871 	if (ret)
1872 		goto out;
1873 
1874 	leaf = path->nodes[0];
1875 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1876 
1877 	btrfs_set_device_id(leaf, dev_item, device->devid);
1878 	btrfs_set_device_generation(leaf, dev_item, 0);
1879 	btrfs_set_device_type(leaf, dev_item, device->type);
1880 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1881 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1882 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1883 	btrfs_set_device_total_bytes(leaf, dev_item,
1884 				     btrfs_device_get_disk_total_bytes(device));
1885 	btrfs_set_device_bytes_used(leaf, dev_item,
1886 				    btrfs_device_get_bytes_used(device));
1887 	btrfs_set_device_group(leaf, dev_item, 0);
1888 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1889 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1890 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1891 
1892 	ptr = btrfs_device_uuid(dev_item);
1893 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1894 	ptr = btrfs_device_fsid(dev_item);
1895 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1896 			    ptr, BTRFS_FSID_SIZE);
1897 	btrfs_mark_buffer_dirty(leaf);
1898 
1899 	ret = 0;
1900 out:
1901 	btrfs_free_path(path);
1902 	return ret;
1903 }
1904 
1905 /*
1906  * Function to update ctime/mtime for a given device path.
1907  * Mainly used for ctime/mtime based probe like libblkid.
1908  *
1909  * We don't care about errors here, this is just to be kind to userspace.
1910  */
1911 static void update_dev_time(const char *device_path)
1912 {
1913 	struct path path;
1914 	int ret;
1915 
1916 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1917 	if (ret)
1918 		return;
1919 
1920 	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1921 	path_put(&path);
1922 }
1923 
1924 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1925 			     struct btrfs_device *device)
1926 {
1927 	struct btrfs_root *root = device->fs_info->chunk_root;
1928 	int ret;
1929 	struct btrfs_path *path;
1930 	struct btrfs_key key;
1931 
1932 	path = btrfs_alloc_path();
1933 	if (!path)
1934 		return -ENOMEM;
1935 
1936 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1937 	key.type = BTRFS_DEV_ITEM_KEY;
1938 	key.offset = device->devid;
1939 
1940 	btrfs_reserve_chunk_metadata(trans, false);
1941 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1942 	btrfs_trans_release_chunk_metadata(trans);
1943 	if (ret) {
1944 		if (ret > 0)
1945 			ret = -ENOENT;
1946 		goto out;
1947 	}
1948 
1949 	ret = btrfs_del_item(trans, root, path);
1950 out:
1951 	btrfs_free_path(path);
1952 	return ret;
1953 }
1954 
1955 /*
1956  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1957  * filesystem. It's up to the caller to adjust that number regarding eg. device
1958  * replace.
1959  */
1960 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1961 		u64 num_devices)
1962 {
1963 	u64 all_avail;
1964 	unsigned seq;
1965 	int i;
1966 
1967 	do {
1968 		seq = read_seqbegin(&fs_info->profiles_lock);
1969 
1970 		all_avail = fs_info->avail_data_alloc_bits |
1971 			    fs_info->avail_system_alloc_bits |
1972 			    fs_info->avail_metadata_alloc_bits;
1973 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1974 
1975 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1976 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1977 			continue;
1978 
1979 		if (num_devices < btrfs_raid_array[i].devs_min)
1980 			return btrfs_raid_array[i].mindev_error;
1981 	}
1982 
1983 	return 0;
1984 }
1985 
1986 static struct btrfs_device * btrfs_find_next_active_device(
1987 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1988 {
1989 	struct btrfs_device *next_device;
1990 
1991 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1992 		if (next_device != device &&
1993 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1994 		    && next_device->bdev)
1995 			return next_device;
1996 	}
1997 
1998 	return NULL;
1999 }
2000 
2001 /*
2002  * Helper function to check if the given device is part of s_bdev / latest_dev
2003  * and replace it with the provided or the next active device, in the context
2004  * where this function called, there should be always be another device (or
2005  * this_dev) which is active.
2006  */
2007 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2008 					    struct btrfs_device *next_device)
2009 {
2010 	struct btrfs_fs_info *fs_info = device->fs_info;
2011 
2012 	if (!next_device)
2013 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2014 							    device);
2015 	ASSERT(next_device);
2016 
2017 	if (fs_info->sb->s_bdev &&
2018 			(fs_info->sb->s_bdev == device->bdev))
2019 		fs_info->sb->s_bdev = next_device->bdev;
2020 
2021 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2022 		fs_info->fs_devices->latest_dev = next_device;
2023 }
2024 
2025 /*
2026  * Return btrfs_fs_devices::num_devices excluding the device that's being
2027  * currently replaced.
2028  */
2029 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2030 {
2031 	u64 num_devices = fs_info->fs_devices->num_devices;
2032 
2033 	down_read(&fs_info->dev_replace.rwsem);
2034 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2035 		ASSERT(num_devices > 1);
2036 		num_devices--;
2037 	}
2038 	up_read(&fs_info->dev_replace.rwsem);
2039 
2040 	return num_devices;
2041 }
2042 
2043 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2044 				     struct block_device *bdev, int copy_num)
2045 {
2046 	struct btrfs_super_block *disk_super;
2047 	const size_t len = sizeof(disk_super->magic);
2048 	const u64 bytenr = btrfs_sb_offset(copy_num);
2049 	int ret;
2050 
2051 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2052 	if (IS_ERR(disk_super))
2053 		return;
2054 
2055 	memset(&disk_super->magic, 0, len);
2056 	folio_mark_dirty(virt_to_folio(disk_super));
2057 	btrfs_release_disk_super(disk_super);
2058 
2059 	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2060 	if (ret)
2061 		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2062 			copy_num, ret);
2063 }
2064 
2065 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2066 			       struct block_device *bdev,
2067 			       const char *device_path)
2068 {
2069 	int copy_num;
2070 
2071 	if (!bdev)
2072 		return;
2073 
2074 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2075 		if (bdev_is_zoned(bdev))
2076 			btrfs_reset_sb_log_zones(bdev, copy_num);
2077 		else
2078 			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2079 	}
2080 
2081 	/* Notify udev that device has changed */
2082 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2083 
2084 	/* Update ctime/mtime for device path for libblkid */
2085 	update_dev_time(device_path);
2086 }
2087 
2088 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2089 		    struct btrfs_dev_lookup_args *args,
2090 		    struct block_device **bdev, void **holder)
2091 {
2092 	struct btrfs_trans_handle *trans;
2093 	struct btrfs_device *device;
2094 	struct btrfs_fs_devices *cur_devices;
2095 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2096 	u64 num_devices;
2097 	int ret = 0;
2098 
2099 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2100 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2101 		return -EINVAL;
2102 	}
2103 
2104 	/*
2105 	 * The device list in fs_devices is accessed without locks (neither
2106 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2107 	 * filesystem and another device rm cannot run.
2108 	 */
2109 	num_devices = btrfs_num_devices(fs_info);
2110 
2111 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2112 	if (ret)
2113 		return ret;
2114 
2115 	device = btrfs_find_device(fs_info->fs_devices, args);
2116 	if (!device) {
2117 		if (args->missing)
2118 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2119 		else
2120 			ret = -ENOENT;
2121 		return ret;
2122 	}
2123 
2124 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2125 		btrfs_warn_in_rcu(fs_info,
2126 		  "cannot remove device %s (devid %llu) due to active swapfile",
2127 				  btrfs_dev_name(device), device->devid);
2128 		return -ETXTBSY;
2129 	}
2130 
2131 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2132 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2133 
2134 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2135 	    fs_info->fs_devices->rw_devices == 1)
2136 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2137 
2138 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2139 		mutex_lock(&fs_info->chunk_mutex);
2140 		list_del_init(&device->dev_alloc_list);
2141 		device->fs_devices->rw_devices--;
2142 		mutex_unlock(&fs_info->chunk_mutex);
2143 	}
2144 
2145 	ret = btrfs_shrink_device(device, 0);
2146 	if (ret)
2147 		goto error_undo;
2148 
2149 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2150 	if (IS_ERR(trans)) {
2151 		ret = PTR_ERR(trans);
2152 		goto error_undo;
2153 	}
2154 
2155 	ret = btrfs_rm_dev_item(trans, device);
2156 	if (ret) {
2157 		/* Any error in dev item removal is critical */
2158 		btrfs_crit(fs_info,
2159 			   "failed to remove device item for devid %llu: %d",
2160 			   device->devid, ret);
2161 		btrfs_abort_transaction(trans, ret);
2162 		btrfs_end_transaction(trans);
2163 		return ret;
2164 	}
2165 
2166 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2167 	btrfs_scrub_cancel_dev(device);
2168 
2169 	/*
2170 	 * the device list mutex makes sure that we don't change
2171 	 * the device list while someone else is writing out all
2172 	 * the device supers. Whoever is writing all supers, should
2173 	 * lock the device list mutex before getting the number of
2174 	 * devices in the super block (super_copy). Conversely,
2175 	 * whoever updates the number of devices in the super block
2176 	 * (super_copy) should hold the device list mutex.
2177 	 */
2178 
2179 	/*
2180 	 * In normal cases the cur_devices == fs_devices. But in case
2181 	 * of deleting a seed device, the cur_devices should point to
2182 	 * its own fs_devices listed under the fs_devices->seed_list.
2183 	 */
2184 	cur_devices = device->fs_devices;
2185 	mutex_lock(&fs_devices->device_list_mutex);
2186 	list_del_rcu(&device->dev_list);
2187 
2188 	cur_devices->num_devices--;
2189 	cur_devices->total_devices--;
2190 	/* Update total_devices of the parent fs_devices if it's seed */
2191 	if (cur_devices != fs_devices)
2192 		fs_devices->total_devices--;
2193 
2194 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2195 		cur_devices->missing_devices--;
2196 
2197 	btrfs_assign_next_active_device(device, NULL);
2198 
2199 	if (device->bdev) {
2200 		cur_devices->open_devices--;
2201 		/* remove sysfs entry */
2202 		btrfs_sysfs_remove_device(device);
2203 	}
2204 
2205 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2206 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2207 	mutex_unlock(&fs_devices->device_list_mutex);
2208 
2209 	/*
2210 	 * At this point, the device is zero sized and detached from the
2211 	 * devices list.  All that's left is to zero out the old supers and
2212 	 * free the device.
2213 	 *
2214 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2215 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2216 	 * block device and it's dependencies.  Instead just flush the device
2217 	 * and let the caller do the final blkdev_put.
2218 	 */
2219 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2220 		btrfs_scratch_superblocks(fs_info, device->bdev,
2221 					  device->name->str);
2222 		if (device->bdev) {
2223 			sync_blockdev(device->bdev);
2224 			invalidate_bdev(device->bdev);
2225 		}
2226 	}
2227 
2228 	*bdev = device->bdev;
2229 	*holder = device->holder;
2230 	synchronize_rcu();
2231 	btrfs_free_device(device);
2232 
2233 	/*
2234 	 * This can happen if cur_devices is the private seed devices list.  We
2235 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2236 	 * to be held, but in fact we don't need that for the private
2237 	 * seed_devices, we can simply decrement cur_devices->opened and then
2238 	 * remove it from our list and free the fs_devices.
2239 	 */
2240 	if (cur_devices->num_devices == 0) {
2241 		list_del_init(&cur_devices->seed_list);
2242 		ASSERT(cur_devices->opened == 1);
2243 		cur_devices->opened--;
2244 		free_fs_devices(cur_devices);
2245 	}
2246 
2247 	ret = btrfs_commit_transaction(trans);
2248 
2249 	return ret;
2250 
2251 error_undo:
2252 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2253 		mutex_lock(&fs_info->chunk_mutex);
2254 		list_add(&device->dev_alloc_list,
2255 			 &fs_devices->alloc_list);
2256 		device->fs_devices->rw_devices++;
2257 		mutex_unlock(&fs_info->chunk_mutex);
2258 	}
2259 	return ret;
2260 }
2261 
2262 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2263 {
2264 	struct btrfs_fs_devices *fs_devices;
2265 
2266 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2267 
2268 	/*
2269 	 * in case of fs with no seed, srcdev->fs_devices will point
2270 	 * to fs_devices of fs_info. However when the dev being replaced is
2271 	 * a seed dev it will point to the seed's local fs_devices. In short
2272 	 * srcdev will have its correct fs_devices in both the cases.
2273 	 */
2274 	fs_devices = srcdev->fs_devices;
2275 
2276 	list_del_rcu(&srcdev->dev_list);
2277 	list_del(&srcdev->dev_alloc_list);
2278 	fs_devices->num_devices--;
2279 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2280 		fs_devices->missing_devices--;
2281 
2282 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2283 		fs_devices->rw_devices--;
2284 
2285 	if (srcdev->bdev)
2286 		fs_devices->open_devices--;
2287 }
2288 
2289 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2290 {
2291 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2292 
2293 	mutex_lock(&uuid_mutex);
2294 
2295 	btrfs_close_bdev(srcdev);
2296 	synchronize_rcu();
2297 	btrfs_free_device(srcdev);
2298 
2299 	/* if this is no devs we rather delete the fs_devices */
2300 	if (!fs_devices->num_devices) {
2301 		/*
2302 		 * On a mounted FS, num_devices can't be zero unless it's a
2303 		 * seed. In case of a seed device being replaced, the replace
2304 		 * target added to the sprout FS, so there will be no more
2305 		 * device left under the seed FS.
2306 		 */
2307 		ASSERT(fs_devices->seeding);
2308 
2309 		list_del_init(&fs_devices->seed_list);
2310 		close_fs_devices(fs_devices);
2311 		free_fs_devices(fs_devices);
2312 	}
2313 	mutex_unlock(&uuid_mutex);
2314 }
2315 
2316 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2317 {
2318 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2319 
2320 	mutex_lock(&fs_devices->device_list_mutex);
2321 
2322 	btrfs_sysfs_remove_device(tgtdev);
2323 
2324 	if (tgtdev->bdev)
2325 		fs_devices->open_devices--;
2326 
2327 	fs_devices->num_devices--;
2328 
2329 	btrfs_assign_next_active_device(tgtdev, NULL);
2330 
2331 	list_del_rcu(&tgtdev->dev_list);
2332 
2333 	mutex_unlock(&fs_devices->device_list_mutex);
2334 
2335 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2336 				  tgtdev->name->str);
2337 
2338 	btrfs_close_bdev(tgtdev);
2339 	synchronize_rcu();
2340 	btrfs_free_device(tgtdev);
2341 }
2342 
2343 /*
2344  * Populate args from device at path.
2345  *
2346  * @fs_info:	the filesystem
2347  * @args:	the args to populate
2348  * @path:	the path to the device
2349  *
2350  * This will read the super block of the device at @path and populate @args with
2351  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2352  * lookup a device to operate on, but need to do it before we take any locks.
2353  * This properly handles the special case of "missing" that a user may pass in,
2354  * and does some basic sanity checks.  The caller must make sure that @path is
2355  * properly NUL terminated before calling in, and must call
2356  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2357  * uuid buffers.
2358  *
2359  * Return: 0 for success, -errno for failure
2360  */
2361 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2362 				 struct btrfs_dev_lookup_args *args,
2363 				 const char *path)
2364 {
2365 	struct btrfs_super_block *disk_super;
2366 	struct block_device *bdev;
2367 	int ret;
2368 
2369 	if (!path || !path[0])
2370 		return -EINVAL;
2371 	if (!strcmp(path, "missing")) {
2372 		args->missing = true;
2373 		return 0;
2374 	}
2375 
2376 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2377 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2378 	if (!args->uuid || !args->fsid) {
2379 		btrfs_put_dev_args_from_path(args);
2380 		return -ENOMEM;
2381 	}
2382 
2383 	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2384 				    &bdev, &disk_super);
2385 	if (ret) {
2386 		btrfs_put_dev_args_from_path(args);
2387 		return ret;
2388 	}
2389 
2390 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2391 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2392 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2393 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2394 	else
2395 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2396 	btrfs_release_disk_super(disk_super);
2397 	blkdev_put(bdev, NULL);
2398 	return 0;
2399 }
2400 
2401 /*
2402  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2403  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2404  * that don't need to be freed.
2405  */
2406 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2407 {
2408 	kfree(args->uuid);
2409 	kfree(args->fsid);
2410 	args->uuid = NULL;
2411 	args->fsid = NULL;
2412 }
2413 
2414 struct btrfs_device *btrfs_find_device_by_devspec(
2415 		struct btrfs_fs_info *fs_info, u64 devid,
2416 		const char *device_path)
2417 {
2418 	BTRFS_DEV_LOOKUP_ARGS(args);
2419 	struct btrfs_device *device;
2420 	int ret;
2421 
2422 	if (devid) {
2423 		args.devid = devid;
2424 		device = btrfs_find_device(fs_info->fs_devices, &args);
2425 		if (!device)
2426 			return ERR_PTR(-ENOENT);
2427 		return device;
2428 	}
2429 
2430 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2431 	if (ret)
2432 		return ERR_PTR(ret);
2433 	device = btrfs_find_device(fs_info->fs_devices, &args);
2434 	btrfs_put_dev_args_from_path(&args);
2435 	if (!device)
2436 		return ERR_PTR(-ENOENT);
2437 	return device;
2438 }
2439 
2440 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2441 {
2442 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2443 	struct btrfs_fs_devices *old_devices;
2444 	struct btrfs_fs_devices *seed_devices;
2445 
2446 	lockdep_assert_held(&uuid_mutex);
2447 	if (!fs_devices->seeding)
2448 		return ERR_PTR(-EINVAL);
2449 
2450 	/*
2451 	 * Private copy of the seed devices, anchored at
2452 	 * fs_info->fs_devices->seed_list
2453 	 */
2454 	seed_devices = alloc_fs_devices(NULL, NULL);
2455 	if (IS_ERR(seed_devices))
2456 		return seed_devices;
2457 
2458 	/*
2459 	 * It's necessary to retain a copy of the original seed fs_devices in
2460 	 * fs_uuids so that filesystems which have been seeded can successfully
2461 	 * reference the seed device from open_seed_devices. This also supports
2462 	 * multiple fs seed.
2463 	 */
2464 	old_devices = clone_fs_devices(fs_devices);
2465 	if (IS_ERR(old_devices)) {
2466 		kfree(seed_devices);
2467 		return old_devices;
2468 	}
2469 
2470 	list_add(&old_devices->fs_list, &fs_uuids);
2471 
2472 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2473 	seed_devices->opened = 1;
2474 	INIT_LIST_HEAD(&seed_devices->devices);
2475 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2476 	mutex_init(&seed_devices->device_list_mutex);
2477 
2478 	return seed_devices;
2479 }
2480 
2481 /*
2482  * Splice seed devices into the sprout fs_devices.
2483  * Generate a new fsid for the sprouted read-write filesystem.
2484  */
2485 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2486 			       struct btrfs_fs_devices *seed_devices)
2487 {
2488 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2489 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2490 	struct btrfs_device *device;
2491 	u64 super_flags;
2492 
2493 	/*
2494 	 * We are updating the fsid, the thread leading to device_list_add()
2495 	 * could race, so uuid_mutex is needed.
2496 	 */
2497 	lockdep_assert_held(&uuid_mutex);
2498 
2499 	/*
2500 	 * The threads listed below may traverse dev_list but can do that without
2501 	 * device_list_mutex:
2502 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2503 	 * - Various dev_list readers - are using RCU.
2504 	 * - btrfs_ioctl_fitrim() - is using RCU.
2505 	 *
2506 	 * For-read threads as below are using device_list_mutex:
2507 	 * - Readonly scrub btrfs_scrub_dev()
2508 	 * - Readonly scrub btrfs_scrub_progress()
2509 	 * - btrfs_get_dev_stats()
2510 	 */
2511 	lockdep_assert_held(&fs_devices->device_list_mutex);
2512 
2513 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2514 			      synchronize_rcu);
2515 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2516 		device->fs_devices = seed_devices;
2517 
2518 	fs_devices->seeding = false;
2519 	fs_devices->num_devices = 0;
2520 	fs_devices->open_devices = 0;
2521 	fs_devices->missing_devices = 0;
2522 	fs_devices->rotating = false;
2523 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2524 
2525 	generate_random_uuid(fs_devices->fsid);
2526 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2527 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2528 
2529 	super_flags = btrfs_super_flags(disk_super) &
2530 		      ~BTRFS_SUPER_FLAG_SEEDING;
2531 	btrfs_set_super_flags(disk_super, super_flags);
2532 }
2533 
2534 /*
2535  * Store the expected generation for seed devices in device items.
2536  */
2537 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2538 {
2539 	BTRFS_DEV_LOOKUP_ARGS(args);
2540 	struct btrfs_fs_info *fs_info = trans->fs_info;
2541 	struct btrfs_root *root = fs_info->chunk_root;
2542 	struct btrfs_path *path;
2543 	struct extent_buffer *leaf;
2544 	struct btrfs_dev_item *dev_item;
2545 	struct btrfs_device *device;
2546 	struct btrfs_key key;
2547 	u8 fs_uuid[BTRFS_FSID_SIZE];
2548 	u8 dev_uuid[BTRFS_UUID_SIZE];
2549 	int ret;
2550 
2551 	path = btrfs_alloc_path();
2552 	if (!path)
2553 		return -ENOMEM;
2554 
2555 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2556 	key.offset = 0;
2557 	key.type = BTRFS_DEV_ITEM_KEY;
2558 
2559 	while (1) {
2560 		btrfs_reserve_chunk_metadata(trans, false);
2561 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2562 		btrfs_trans_release_chunk_metadata(trans);
2563 		if (ret < 0)
2564 			goto error;
2565 
2566 		leaf = path->nodes[0];
2567 next_slot:
2568 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2569 			ret = btrfs_next_leaf(root, path);
2570 			if (ret > 0)
2571 				break;
2572 			if (ret < 0)
2573 				goto error;
2574 			leaf = path->nodes[0];
2575 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2576 			btrfs_release_path(path);
2577 			continue;
2578 		}
2579 
2580 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2581 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2582 		    key.type != BTRFS_DEV_ITEM_KEY)
2583 			break;
2584 
2585 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2586 					  struct btrfs_dev_item);
2587 		args.devid = btrfs_device_id(leaf, dev_item);
2588 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2589 				   BTRFS_UUID_SIZE);
2590 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2591 				   BTRFS_FSID_SIZE);
2592 		args.uuid = dev_uuid;
2593 		args.fsid = fs_uuid;
2594 		device = btrfs_find_device(fs_info->fs_devices, &args);
2595 		BUG_ON(!device); /* Logic error */
2596 
2597 		if (device->fs_devices->seeding) {
2598 			btrfs_set_device_generation(leaf, dev_item,
2599 						    device->generation);
2600 			btrfs_mark_buffer_dirty(leaf);
2601 		}
2602 
2603 		path->slots[0]++;
2604 		goto next_slot;
2605 	}
2606 	ret = 0;
2607 error:
2608 	btrfs_free_path(path);
2609 	return ret;
2610 }
2611 
2612 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2613 {
2614 	struct btrfs_root *root = fs_info->dev_root;
2615 	struct btrfs_trans_handle *trans;
2616 	struct btrfs_device *device;
2617 	struct block_device *bdev;
2618 	struct super_block *sb = fs_info->sb;
2619 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2620 	struct btrfs_fs_devices *seed_devices = NULL;
2621 	u64 orig_super_total_bytes;
2622 	u64 orig_super_num_devices;
2623 	int ret = 0;
2624 	bool seeding_dev = false;
2625 	bool locked = false;
2626 
2627 	if (sb_rdonly(sb) && !fs_devices->seeding)
2628 		return -EROFS;
2629 
2630 	bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE,
2631 				  fs_info->bdev_holder, NULL);
2632 	if (IS_ERR(bdev))
2633 		return PTR_ERR(bdev);
2634 
2635 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2636 		ret = -EINVAL;
2637 		goto error;
2638 	}
2639 
2640 	if (fs_devices->seeding) {
2641 		seeding_dev = true;
2642 		down_write(&sb->s_umount);
2643 		mutex_lock(&uuid_mutex);
2644 		locked = true;
2645 	}
2646 
2647 	sync_blockdev(bdev);
2648 
2649 	rcu_read_lock();
2650 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2651 		if (device->bdev == bdev) {
2652 			ret = -EEXIST;
2653 			rcu_read_unlock();
2654 			goto error;
2655 		}
2656 	}
2657 	rcu_read_unlock();
2658 
2659 	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2660 	if (IS_ERR(device)) {
2661 		/* we can safely leave the fs_devices entry around */
2662 		ret = PTR_ERR(device);
2663 		goto error;
2664 	}
2665 
2666 	device->fs_info = fs_info;
2667 	device->bdev = bdev;
2668 	ret = lookup_bdev(device_path, &device->devt);
2669 	if (ret)
2670 		goto error_free_device;
2671 
2672 	ret = btrfs_get_dev_zone_info(device, false);
2673 	if (ret)
2674 		goto error_free_device;
2675 
2676 	trans = btrfs_start_transaction(root, 0);
2677 	if (IS_ERR(trans)) {
2678 		ret = PTR_ERR(trans);
2679 		goto error_free_zone;
2680 	}
2681 
2682 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2683 	device->generation = trans->transid;
2684 	device->io_width = fs_info->sectorsize;
2685 	device->io_align = fs_info->sectorsize;
2686 	device->sector_size = fs_info->sectorsize;
2687 	device->total_bytes =
2688 		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2689 	device->disk_total_bytes = device->total_bytes;
2690 	device->commit_total_bytes = device->total_bytes;
2691 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2692 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2693 	device->holder = fs_info->bdev_holder;
2694 	device->dev_stats_valid = 1;
2695 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2696 
2697 	if (seeding_dev) {
2698 		btrfs_clear_sb_rdonly(sb);
2699 
2700 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2701 		seed_devices = btrfs_init_sprout(fs_info);
2702 		if (IS_ERR(seed_devices)) {
2703 			ret = PTR_ERR(seed_devices);
2704 			btrfs_abort_transaction(trans, ret);
2705 			goto error_trans;
2706 		}
2707 	}
2708 
2709 	mutex_lock(&fs_devices->device_list_mutex);
2710 	if (seeding_dev) {
2711 		btrfs_setup_sprout(fs_info, seed_devices);
2712 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2713 						device);
2714 	}
2715 
2716 	device->fs_devices = fs_devices;
2717 
2718 	mutex_lock(&fs_info->chunk_mutex);
2719 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2720 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2721 	fs_devices->num_devices++;
2722 	fs_devices->open_devices++;
2723 	fs_devices->rw_devices++;
2724 	fs_devices->total_devices++;
2725 	fs_devices->total_rw_bytes += device->total_bytes;
2726 
2727 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2728 
2729 	if (!bdev_nonrot(bdev))
2730 		fs_devices->rotating = true;
2731 
2732 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2733 	btrfs_set_super_total_bytes(fs_info->super_copy,
2734 		round_down(orig_super_total_bytes + device->total_bytes,
2735 			   fs_info->sectorsize));
2736 
2737 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2738 	btrfs_set_super_num_devices(fs_info->super_copy,
2739 				    orig_super_num_devices + 1);
2740 
2741 	/*
2742 	 * we've got more storage, clear any full flags on the space
2743 	 * infos
2744 	 */
2745 	btrfs_clear_space_info_full(fs_info);
2746 
2747 	mutex_unlock(&fs_info->chunk_mutex);
2748 
2749 	/* Add sysfs device entry */
2750 	btrfs_sysfs_add_device(device);
2751 
2752 	mutex_unlock(&fs_devices->device_list_mutex);
2753 
2754 	if (seeding_dev) {
2755 		mutex_lock(&fs_info->chunk_mutex);
2756 		ret = init_first_rw_device(trans);
2757 		mutex_unlock(&fs_info->chunk_mutex);
2758 		if (ret) {
2759 			btrfs_abort_transaction(trans, ret);
2760 			goto error_sysfs;
2761 		}
2762 	}
2763 
2764 	ret = btrfs_add_dev_item(trans, device);
2765 	if (ret) {
2766 		btrfs_abort_transaction(trans, ret);
2767 		goto error_sysfs;
2768 	}
2769 
2770 	if (seeding_dev) {
2771 		ret = btrfs_finish_sprout(trans);
2772 		if (ret) {
2773 			btrfs_abort_transaction(trans, ret);
2774 			goto error_sysfs;
2775 		}
2776 
2777 		/*
2778 		 * fs_devices now represents the newly sprouted filesystem and
2779 		 * its fsid has been changed by btrfs_sprout_splice().
2780 		 */
2781 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2782 	}
2783 
2784 	ret = btrfs_commit_transaction(trans);
2785 
2786 	if (seeding_dev) {
2787 		mutex_unlock(&uuid_mutex);
2788 		up_write(&sb->s_umount);
2789 		locked = false;
2790 
2791 		if (ret) /* transaction commit */
2792 			return ret;
2793 
2794 		ret = btrfs_relocate_sys_chunks(fs_info);
2795 		if (ret < 0)
2796 			btrfs_handle_fs_error(fs_info, ret,
2797 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2798 		trans = btrfs_attach_transaction(root);
2799 		if (IS_ERR(trans)) {
2800 			if (PTR_ERR(trans) == -ENOENT)
2801 				return 0;
2802 			ret = PTR_ERR(trans);
2803 			trans = NULL;
2804 			goto error_sysfs;
2805 		}
2806 		ret = btrfs_commit_transaction(trans);
2807 	}
2808 
2809 	/*
2810 	 * Now that we have written a new super block to this device, check all
2811 	 * other fs_devices list if device_path alienates any other scanned
2812 	 * device.
2813 	 * We can ignore the return value as it typically returns -EINVAL and
2814 	 * only succeeds if the device was an alien.
2815 	 */
2816 	btrfs_forget_devices(device->devt);
2817 
2818 	/* Update ctime/mtime for blkid or udev */
2819 	update_dev_time(device_path);
2820 
2821 	return ret;
2822 
2823 error_sysfs:
2824 	btrfs_sysfs_remove_device(device);
2825 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2826 	mutex_lock(&fs_info->chunk_mutex);
2827 	list_del_rcu(&device->dev_list);
2828 	list_del(&device->dev_alloc_list);
2829 	fs_info->fs_devices->num_devices--;
2830 	fs_info->fs_devices->open_devices--;
2831 	fs_info->fs_devices->rw_devices--;
2832 	fs_info->fs_devices->total_devices--;
2833 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2834 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2835 	btrfs_set_super_total_bytes(fs_info->super_copy,
2836 				    orig_super_total_bytes);
2837 	btrfs_set_super_num_devices(fs_info->super_copy,
2838 				    orig_super_num_devices);
2839 	mutex_unlock(&fs_info->chunk_mutex);
2840 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2841 error_trans:
2842 	if (seeding_dev)
2843 		btrfs_set_sb_rdonly(sb);
2844 	if (trans)
2845 		btrfs_end_transaction(trans);
2846 error_free_zone:
2847 	btrfs_destroy_dev_zone_info(device);
2848 error_free_device:
2849 	btrfs_free_device(device);
2850 error:
2851 	blkdev_put(bdev, fs_info->bdev_holder);
2852 	if (locked) {
2853 		mutex_unlock(&uuid_mutex);
2854 		up_write(&sb->s_umount);
2855 	}
2856 	return ret;
2857 }
2858 
2859 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2860 					struct btrfs_device *device)
2861 {
2862 	int ret;
2863 	struct btrfs_path *path;
2864 	struct btrfs_root *root = device->fs_info->chunk_root;
2865 	struct btrfs_dev_item *dev_item;
2866 	struct extent_buffer *leaf;
2867 	struct btrfs_key key;
2868 
2869 	path = btrfs_alloc_path();
2870 	if (!path)
2871 		return -ENOMEM;
2872 
2873 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2874 	key.type = BTRFS_DEV_ITEM_KEY;
2875 	key.offset = device->devid;
2876 
2877 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2878 	if (ret < 0)
2879 		goto out;
2880 
2881 	if (ret > 0) {
2882 		ret = -ENOENT;
2883 		goto out;
2884 	}
2885 
2886 	leaf = path->nodes[0];
2887 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2888 
2889 	btrfs_set_device_id(leaf, dev_item, device->devid);
2890 	btrfs_set_device_type(leaf, dev_item, device->type);
2891 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2892 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2893 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2894 	btrfs_set_device_total_bytes(leaf, dev_item,
2895 				     btrfs_device_get_disk_total_bytes(device));
2896 	btrfs_set_device_bytes_used(leaf, dev_item,
2897 				    btrfs_device_get_bytes_used(device));
2898 	btrfs_mark_buffer_dirty(leaf);
2899 
2900 out:
2901 	btrfs_free_path(path);
2902 	return ret;
2903 }
2904 
2905 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2906 		      struct btrfs_device *device, u64 new_size)
2907 {
2908 	struct btrfs_fs_info *fs_info = device->fs_info;
2909 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2910 	u64 old_total;
2911 	u64 diff;
2912 	int ret;
2913 
2914 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2915 		return -EACCES;
2916 
2917 	new_size = round_down(new_size, fs_info->sectorsize);
2918 
2919 	mutex_lock(&fs_info->chunk_mutex);
2920 	old_total = btrfs_super_total_bytes(super_copy);
2921 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2922 
2923 	if (new_size <= device->total_bytes ||
2924 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2925 		mutex_unlock(&fs_info->chunk_mutex);
2926 		return -EINVAL;
2927 	}
2928 
2929 	btrfs_set_super_total_bytes(super_copy,
2930 			round_down(old_total + diff, fs_info->sectorsize));
2931 	device->fs_devices->total_rw_bytes += diff;
2932 
2933 	btrfs_device_set_total_bytes(device, new_size);
2934 	btrfs_device_set_disk_total_bytes(device, new_size);
2935 	btrfs_clear_space_info_full(device->fs_info);
2936 	if (list_empty(&device->post_commit_list))
2937 		list_add_tail(&device->post_commit_list,
2938 			      &trans->transaction->dev_update_list);
2939 	mutex_unlock(&fs_info->chunk_mutex);
2940 
2941 	btrfs_reserve_chunk_metadata(trans, false);
2942 	ret = btrfs_update_device(trans, device);
2943 	btrfs_trans_release_chunk_metadata(trans);
2944 
2945 	return ret;
2946 }
2947 
2948 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2949 {
2950 	struct btrfs_fs_info *fs_info = trans->fs_info;
2951 	struct btrfs_root *root = fs_info->chunk_root;
2952 	int ret;
2953 	struct btrfs_path *path;
2954 	struct btrfs_key key;
2955 
2956 	path = btrfs_alloc_path();
2957 	if (!path)
2958 		return -ENOMEM;
2959 
2960 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2961 	key.offset = chunk_offset;
2962 	key.type = BTRFS_CHUNK_ITEM_KEY;
2963 
2964 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2965 	if (ret < 0)
2966 		goto out;
2967 	else if (ret > 0) { /* Logic error or corruption */
2968 		btrfs_handle_fs_error(fs_info, -ENOENT,
2969 				      "Failed lookup while freeing chunk.");
2970 		ret = -ENOENT;
2971 		goto out;
2972 	}
2973 
2974 	ret = btrfs_del_item(trans, root, path);
2975 	if (ret < 0)
2976 		btrfs_handle_fs_error(fs_info, ret,
2977 				      "Failed to delete chunk item.");
2978 out:
2979 	btrfs_free_path(path);
2980 	return ret;
2981 }
2982 
2983 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2984 {
2985 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2986 	struct btrfs_disk_key *disk_key;
2987 	struct btrfs_chunk *chunk;
2988 	u8 *ptr;
2989 	int ret = 0;
2990 	u32 num_stripes;
2991 	u32 array_size;
2992 	u32 len = 0;
2993 	u32 cur;
2994 	struct btrfs_key key;
2995 
2996 	lockdep_assert_held(&fs_info->chunk_mutex);
2997 	array_size = btrfs_super_sys_array_size(super_copy);
2998 
2999 	ptr = super_copy->sys_chunk_array;
3000 	cur = 0;
3001 
3002 	while (cur < array_size) {
3003 		disk_key = (struct btrfs_disk_key *)ptr;
3004 		btrfs_disk_key_to_cpu(&key, disk_key);
3005 
3006 		len = sizeof(*disk_key);
3007 
3008 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3009 			chunk = (struct btrfs_chunk *)(ptr + len);
3010 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3011 			len += btrfs_chunk_item_size(num_stripes);
3012 		} else {
3013 			ret = -EIO;
3014 			break;
3015 		}
3016 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3017 		    key.offset == chunk_offset) {
3018 			memmove(ptr, ptr + len, array_size - (cur + len));
3019 			array_size -= len;
3020 			btrfs_set_super_sys_array_size(super_copy, array_size);
3021 		} else {
3022 			ptr += len;
3023 			cur += len;
3024 		}
3025 	}
3026 	return ret;
3027 }
3028 
3029 /*
3030  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3031  * @logical: Logical block offset in bytes.
3032  * @length: Length of extent in bytes.
3033  *
3034  * Return: Chunk mapping or ERR_PTR.
3035  */
3036 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3037 				       u64 logical, u64 length)
3038 {
3039 	struct extent_map_tree *em_tree;
3040 	struct extent_map *em;
3041 
3042 	em_tree = &fs_info->mapping_tree;
3043 	read_lock(&em_tree->lock);
3044 	em = lookup_extent_mapping(em_tree, logical, length);
3045 	read_unlock(&em_tree->lock);
3046 
3047 	if (!em) {
3048 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3049 			   logical, length);
3050 		return ERR_PTR(-EINVAL);
3051 	}
3052 
3053 	if (em->start > logical || em->start + em->len < logical) {
3054 		btrfs_crit(fs_info,
3055 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3056 			   logical, length, em->start, em->start + em->len);
3057 		free_extent_map(em);
3058 		return ERR_PTR(-EINVAL);
3059 	}
3060 
3061 	/* callers are responsible for dropping em's ref. */
3062 	return em;
3063 }
3064 
3065 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3066 			     struct map_lookup *map, u64 chunk_offset)
3067 {
3068 	int i;
3069 
3070 	/*
3071 	 * Removing chunk items and updating the device items in the chunks btree
3072 	 * requires holding the chunk_mutex.
3073 	 * See the comment at btrfs_chunk_alloc() for the details.
3074 	 */
3075 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3076 
3077 	for (i = 0; i < map->num_stripes; i++) {
3078 		int ret;
3079 
3080 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3081 		if (ret)
3082 			return ret;
3083 	}
3084 
3085 	return btrfs_free_chunk(trans, chunk_offset);
3086 }
3087 
3088 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3089 {
3090 	struct btrfs_fs_info *fs_info = trans->fs_info;
3091 	struct extent_map *em;
3092 	struct map_lookup *map;
3093 	u64 dev_extent_len = 0;
3094 	int i, ret = 0;
3095 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3096 
3097 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3098 	if (IS_ERR(em)) {
3099 		/*
3100 		 * This is a logic error, but we don't want to just rely on the
3101 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3102 		 * do anything we still error out.
3103 		 */
3104 		ASSERT(0);
3105 		return PTR_ERR(em);
3106 	}
3107 	map = em->map_lookup;
3108 
3109 	/*
3110 	 * First delete the device extent items from the devices btree.
3111 	 * We take the device_list_mutex to avoid racing with the finishing phase
3112 	 * of a device replace operation. See the comment below before acquiring
3113 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3114 	 * because that can result in a deadlock when deleting the device extent
3115 	 * items from the devices btree - COWing an extent buffer from the btree
3116 	 * may result in allocating a new metadata chunk, which would attempt to
3117 	 * lock again fs_info->chunk_mutex.
3118 	 */
3119 	mutex_lock(&fs_devices->device_list_mutex);
3120 	for (i = 0; i < map->num_stripes; i++) {
3121 		struct btrfs_device *device = map->stripes[i].dev;
3122 		ret = btrfs_free_dev_extent(trans, device,
3123 					    map->stripes[i].physical,
3124 					    &dev_extent_len);
3125 		if (ret) {
3126 			mutex_unlock(&fs_devices->device_list_mutex);
3127 			btrfs_abort_transaction(trans, ret);
3128 			goto out;
3129 		}
3130 
3131 		if (device->bytes_used > 0) {
3132 			mutex_lock(&fs_info->chunk_mutex);
3133 			btrfs_device_set_bytes_used(device,
3134 					device->bytes_used - dev_extent_len);
3135 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3136 			btrfs_clear_space_info_full(fs_info);
3137 			mutex_unlock(&fs_info->chunk_mutex);
3138 		}
3139 	}
3140 	mutex_unlock(&fs_devices->device_list_mutex);
3141 
3142 	/*
3143 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3144 	 *
3145 	 * 1) Just like with the first phase of the chunk allocation, we must
3146 	 *    reserve system space, do all chunk btree updates and deletions, and
3147 	 *    update the system chunk array in the superblock while holding this
3148 	 *    mutex. This is for similar reasons as explained on the comment at
3149 	 *    the top of btrfs_chunk_alloc();
3150 	 *
3151 	 * 2) Prevent races with the final phase of a device replace operation
3152 	 *    that replaces the device object associated with the map's stripes,
3153 	 *    because the device object's id can change at any time during that
3154 	 *    final phase of the device replace operation
3155 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3156 	 *    replaced device and then see it with an ID of
3157 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3158 	 *    the device item, which does not exists on the chunk btree.
3159 	 *    The finishing phase of device replace acquires both the
3160 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3161 	 *    safe by just acquiring the chunk_mutex.
3162 	 */
3163 	trans->removing_chunk = true;
3164 	mutex_lock(&fs_info->chunk_mutex);
3165 
3166 	check_system_chunk(trans, map->type);
3167 
3168 	ret = remove_chunk_item(trans, map, chunk_offset);
3169 	/*
3170 	 * Normally we should not get -ENOSPC since we reserved space before
3171 	 * through the call to check_system_chunk().
3172 	 *
3173 	 * Despite our system space_info having enough free space, we may not
3174 	 * be able to allocate extents from its block groups, because all have
3175 	 * an incompatible profile, which will force us to allocate a new system
3176 	 * block group with the right profile, or right after we called
3177 	 * check_system_space() above, a scrub turned the only system block group
3178 	 * with enough free space into RO mode.
3179 	 * This is explained with more detail at do_chunk_alloc().
3180 	 *
3181 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3182 	 */
3183 	if (ret == -ENOSPC) {
3184 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3185 		struct btrfs_block_group *sys_bg;
3186 
3187 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3188 		if (IS_ERR(sys_bg)) {
3189 			ret = PTR_ERR(sys_bg);
3190 			btrfs_abort_transaction(trans, ret);
3191 			goto out;
3192 		}
3193 
3194 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3195 		if (ret) {
3196 			btrfs_abort_transaction(trans, ret);
3197 			goto out;
3198 		}
3199 
3200 		ret = remove_chunk_item(trans, map, chunk_offset);
3201 		if (ret) {
3202 			btrfs_abort_transaction(trans, ret);
3203 			goto out;
3204 		}
3205 	} else if (ret) {
3206 		btrfs_abort_transaction(trans, ret);
3207 		goto out;
3208 	}
3209 
3210 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3211 
3212 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3213 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3214 		if (ret) {
3215 			btrfs_abort_transaction(trans, ret);
3216 			goto out;
3217 		}
3218 	}
3219 
3220 	mutex_unlock(&fs_info->chunk_mutex);
3221 	trans->removing_chunk = false;
3222 
3223 	/*
3224 	 * We are done with chunk btree updates and deletions, so release the
3225 	 * system space we previously reserved (with check_system_chunk()).
3226 	 */
3227 	btrfs_trans_release_chunk_metadata(trans);
3228 
3229 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3230 	if (ret) {
3231 		btrfs_abort_transaction(trans, ret);
3232 		goto out;
3233 	}
3234 
3235 out:
3236 	if (trans->removing_chunk) {
3237 		mutex_unlock(&fs_info->chunk_mutex);
3238 		trans->removing_chunk = false;
3239 	}
3240 	/* once for us */
3241 	free_extent_map(em);
3242 	return ret;
3243 }
3244 
3245 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3246 {
3247 	struct btrfs_root *root = fs_info->chunk_root;
3248 	struct btrfs_trans_handle *trans;
3249 	struct btrfs_block_group *block_group;
3250 	u64 length;
3251 	int ret;
3252 
3253 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3254 		btrfs_err(fs_info,
3255 			  "relocate: not supported on extent tree v2 yet");
3256 		return -EINVAL;
3257 	}
3258 
3259 	/*
3260 	 * Prevent races with automatic removal of unused block groups.
3261 	 * After we relocate and before we remove the chunk with offset
3262 	 * chunk_offset, automatic removal of the block group can kick in,
3263 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3264 	 *
3265 	 * Make sure to acquire this mutex before doing a tree search (dev
3266 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3267 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3268 	 * we release the path used to search the chunk/dev tree and before
3269 	 * the current task acquires this mutex and calls us.
3270 	 */
3271 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3272 
3273 	/* step one, relocate all the extents inside this chunk */
3274 	btrfs_scrub_pause(fs_info);
3275 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3276 	btrfs_scrub_continue(fs_info);
3277 	if (ret) {
3278 		/*
3279 		 * If we had a transaction abort, stop all running scrubs.
3280 		 * See transaction.c:cleanup_transaction() why we do it here.
3281 		 */
3282 		if (BTRFS_FS_ERROR(fs_info))
3283 			btrfs_scrub_cancel(fs_info);
3284 		return ret;
3285 	}
3286 
3287 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3288 	if (!block_group)
3289 		return -ENOENT;
3290 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3291 	length = block_group->length;
3292 	btrfs_put_block_group(block_group);
3293 
3294 	/*
3295 	 * On a zoned file system, discard the whole block group, this will
3296 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3297 	 * resetting the zone fails, don't treat it as a fatal problem from the
3298 	 * filesystem's point of view.
3299 	 */
3300 	if (btrfs_is_zoned(fs_info)) {
3301 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3302 		if (ret)
3303 			btrfs_info(fs_info,
3304 				"failed to reset zone %llu after relocation",
3305 				chunk_offset);
3306 	}
3307 
3308 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3309 						     chunk_offset);
3310 	if (IS_ERR(trans)) {
3311 		ret = PTR_ERR(trans);
3312 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3313 		return ret;
3314 	}
3315 
3316 	/*
3317 	 * step two, delete the device extents and the
3318 	 * chunk tree entries
3319 	 */
3320 	ret = btrfs_remove_chunk(trans, chunk_offset);
3321 	btrfs_end_transaction(trans);
3322 	return ret;
3323 }
3324 
3325 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3326 {
3327 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3328 	struct btrfs_path *path;
3329 	struct extent_buffer *leaf;
3330 	struct btrfs_chunk *chunk;
3331 	struct btrfs_key key;
3332 	struct btrfs_key found_key;
3333 	u64 chunk_type;
3334 	bool retried = false;
3335 	int failed = 0;
3336 	int ret;
3337 
3338 	path = btrfs_alloc_path();
3339 	if (!path)
3340 		return -ENOMEM;
3341 
3342 again:
3343 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3344 	key.offset = (u64)-1;
3345 	key.type = BTRFS_CHUNK_ITEM_KEY;
3346 
3347 	while (1) {
3348 		mutex_lock(&fs_info->reclaim_bgs_lock);
3349 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3350 		if (ret < 0) {
3351 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3352 			goto error;
3353 		}
3354 		BUG_ON(ret == 0); /* Corruption */
3355 
3356 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3357 					  key.type);
3358 		if (ret)
3359 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3360 		if (ret < 0)
3361 			goto error;
3362 		if (ret > 0)
3363 			break;
3364 
3365 		leaf = path->nodes[0];
3366 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3367 
3368 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3369 				       struct btrfs_chunk);
3370 		chunk_type = btrfs_chunk_type(leaf, chunk);
3371 		btrfs_release_path(path);
3372 
3373 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3374 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3375 			if (ret == -ENOSPC)
3376 				failed++;
3377 			else
3378 				BUG_ON(ret);
3379 		}
3380 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3381 
3382 		if (found_key.offset == 0)
3383 			break;
3384 		key.offset = found_key.offset - 1;
3385 	}
3386 	ret = 0;
3387 	if (failed && !retried) {
3388 		failed = 0;
3389 		retried = true;
3390 		goto again;
3391 	} else if (WARN_ON(failed && retried)) {
3392 		ret = -ENOSPC;
3393 	}
3394 error:
3395 	btrfs_free_path(path);
3396 	return ret;
3397 }
3398 
3399 /*
3400  * return 1 : allocate a data chunk successfully,
3401  * return <0: errors during allocating a data chunk,
3402  * return 0 : no need to allocate a data chunk.
3403  */
3404 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3405 				      u64 chunk_offset)
3406 {
3407 	struct btrfs_block_group *cache;
3408 	u64 bytes_used;
3409 	u64 chunk_type;
3410 
3411 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3412 	ASSERT(cache);
3413 	chunk_type = cache->flags;
3414 	btrfs_put_block_group(cache);
3415 
3416 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3417 		return 0;
3418 
3419 	spin_lock(&fs_info->data_sinfo->lock);
3420 	bytes_used = fs_info->data_sinfo->bytes_used;
3421 	spin_unlock(&fs_info->data_sinfo->lock);
3422 
3423 	if (!bytes_used) {
3424 		struct btrfs_trans_handle *trans;
3425 		int ret;
3426 
3427 		trans =	btrfs_join_transaction(fs_info->tree_root);
3428 		if (IS_ERR(trans))
3429 			return PTR_ERR(trans);
3430 
3431 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3432 		btrfs_end_transaction(trans);
3433 		if (ret < 0)
3434 			return ret;
3435 		return 1;
3436 	}
3437 
3438 	return 0;
3439 }
3440 
3441 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3442 			       struct btrfs_balance_control *bctl)
3443 {
3444 	struct btrfs_root *root = fs_info->tree_root;
3445 	struct btrfs_trans_handle *trans;
3446 	struct btrfs_balance_item *item;
3447 	struct btrfs_disk_balance_args disk_bargs;
3448 	struct btrfs_path *path;
3449 	struct extent_buffer *leaf;
3450 	struct btrfs_key key;
3451 	int ret, err;
3452 
3453 	path = btrfs_alloc_path();
3454 	if (!path)
3455 		return -ENOMEM;
3456 
3457 	trans = btrfs_start_transaction(root, 0);
3458 	if (IS_ERR(trans)) {
3459 		btrfs_free_path(path);
3460 		return PTR_ERR(trans);
3461 	}
3462 
3463 	key.objectid = BTRFS_BALANCE_OBJECTID;
3464 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3465 	key.offset = 0;
3466 
3467 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3468 				      sizeof(*item));
3469 	if (ret)
3470 		goto out;
3471 
3472 	leaf = path->nodes[0];
3473 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3474 
3475 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3476 
3477 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3478 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3479 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3480 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3481 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3482 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3483 
3484 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3485 
3486 	btrfs_mark_buffer_dirty(leaf);
3487 out:
3488 	btrfs_free_path(path);
3489 	err = btrfs_commit_transaction(trans);
3490 	if (err && !ret)
3491 		ret = err;
3492 	return ret;
3493 }
3494 
3495 static int del_balance_item(struct btrfs_fs_info *fs_info)
3496 {
3497 	struct btrfs_root *root = fs_info->tree_root;
3498 	struct btrfs_trans_handle *trans;
3499 	struct btrfs_path *path;
3500 	struct btrfs_key key;
3501 	int ret, err;
3502 
3503 	path = btrfs_alloc_path();
3504 	if (!path)
3505 		return -ENOMEM;
3506 
3507 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3508 	if (IS_ERR(trans)) {
3509 		btrfs_free_path(path);
3510 		return PTR_ERR(trans);
3511 	}
3512 
3513 	key.objectid = BTRFS_BALANCE_OBJECTID;
3514 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3515 	key.offset = 0;
3516 
3517 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3518 	if (ret < 0)
3519 		goto out;
3520 	if (ret > 0) {
3521 		ret = -ENOENT;
3522 		goto out;
3523 	}
3524 
3525 	ret = btrfs_del_item(trans, root, path);
3526 out:
3527 	btrfs_free_path(path);
3528 	err = btrfs_commit_transaction(trans);
3529 	if (err && !ret)
3530 		ret = err;
3531 	return ret;
3532 }
3533 
3534 /*
3535  * This is a heuristic used to reduce the number of chunks balanced on
3536  * resume after balance was interrupted.
3537  */
3538 static void update_balance_args(struct btrfs_balance_control *bctl)
3539 {
3540 	/*
3541 	 * Turn on soft mode for chunk types that were being converted.
3542 	 */
3543 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3544 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3545 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3546 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3547 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3548 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3549 
3550 	/*
3551 	 * Turn on usage filter if is not already used.  The idea is
3552 	 * that chunks that we have already balanced should be
3553 	 * reasonably full.  Don't do it for chunks that are being
3554 	 * converted - that will keep us from relocating unconverted
3555 	 * (albeit full) chunks.
3556 	 */
3557 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3558 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3559 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3560 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3561 		bctl->data.usage = 90;
3562 	}
3563 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3564 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3565 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3566 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3567 		bctl->sys.usage = 90;
3568 	}
3569 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3570 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3571 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3572 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3573 		bctl->meta.usage = 90;
3574 	}
3575 }
3576 
3577 /*
3578  * Clear the balance status in fs_info and delete the balance item from disk.
3579  */
3580 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3581 {
3582 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3583 	int ret;
3584 
3585 	BUG_ON(!fs_info->balance_ctl);
3586 
3587 	spin_lock(&fs_info->balance_lock);
3588 	fs_info->balance_ctl = NULL;
3589 	spin_unlock(&fs_info->balance_lock);
3590 
3591 	kfree(bctl);
3592 	ret = del_balance_item(fs_info);
3593 	if (ret)
3594 		btrfs_handle_fs_error(fs_info, ret, NULL);
3595 }
3596 
3597 /*
3598  * Balance filters.  Return 1 if chunk should be filtered out
3599  * (should not be balanced).
3600  */
3601 static int chunk_profiles_filter(u64 chunk_type,
3602 				 struct btrfs_balance_args *bargs)
3603 {
3604 	chunk_type = chunk_to_extended(chunk_type) &
3605 				BTRFS_EXTENDED_PROFILE_MASK;
3606 
3607 	if (bargs->profiles & chunk_type)
3608 		return 0;
3609 
3610 	return 1;
3611 }
3612 
3613 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3614 			      struct btrfs_balance_args *bargs)
3615 {
3616 	struct btrfs_block_group *cache;
3617 	u64 chunk_used;
3618 	u64 user_thresh_min;
3619 	u64 user_thresh_max;
3620 	int ret = 1;
3621 
3622 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3623 	chunk_used = cache->used;
3624 
3625 	if (bargs->usage_min == 0)
3626 		user_thresh_min = 0;
3627 	else
3628 		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3629 
3630 	if (bargs->usage_max == 0)
3631 		user_thresh_max = 1;
3632 	else if (bargs->usage_max > 100)
3633 		user_thresh_max = cache->length;
3634 	else
3635 		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3636 
3637 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3638 		ret = 0;
3639 
3640 	btrfs_put_block_group(cache);
3641 	return ret;
3642 }
3643 
3644 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3645 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3646 {
3647 	struct btrfs_block_group *cache;
3648 	u64 chunk_used, user_thresh;
3649 	int ret = 1;
3650 
3651 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3652 	chunk_used = cache->used;
3653 
3654 	if (bargs->usage_min == 0)
3655 		user_thresh = 1;
3656 	else if (bargs->usage > 100)
3657 		user_thresh = cache->length;
3658 	else
3659 		user_thresh = mult_perc(cache->length, bargs->usage);
3660 
3661 	if (chunk_used < user_thresh)
3662 		ret = 0;
3663 
3664 	btrfs_put_block_group(cache);
3665 	return ret;
3666 }
3667 
3668 static int chunk_devid_filter(struct extent_buffer *leaf,
3669 			      struct btrfs_chunk *chunk,
3670 			      struct btrfs_balance_args *bargs)
3671 {
3672 	struct btrfs_stripe *stripe;
3673 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3674 	int i;
3675 
3676 	for (i = 0; i < num_stripes; i++) {
3677 		stripe = btrfs_stripe_nr(chunk, i);
3678 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3679 			return 0;
3680 	}
3681 
3682 	return 1;
3683 }
3684 
3685 static u64 calc_data_stripes(u64 type, int num_stripes)
3686 {
3687 	const int index = btrfs_bg_flags_to_raid_index(type);
3688 	const int ncopies = btrfs_raid_array[index].ncopies;
3689 	const int nparity = btrfs_raid_array[index].nparity;
3690 
3691 	return (num_stripes - nparity) / ncopies;
3692 }
3693 
3694 /* [pstart, pend) */
3695 static int chunk_drange_filter(struct extent_buffer *leaf,
3696 			       struct btrfs_chunk *chunk,
3697 			       struct btrfs_balance_args *bargs)
3698 {
3699 	struct btrfs_stripe *stripe;
3700 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3701 	u64 stripe_offset;
3702 	u64 stripe_length;
3703 	u64 type;
3704 	int factor;
3705 	int i;
3706 
3707 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3708 		return 0;
3709 
3710 	type = btrfs_chunk_type(leaf, chunk);
3711 	factor = calc_data_stripes(type, num_stripes);
3712 
3713 	for (i = 0; i < num_stripes; i++) {
3714 		stripe = btrfs_stripe_nr(chunk, i);
3715 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3716 			continue;
3717 
3718 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3719 		stripe_length = btrfs_chunk_length(leaf, chunk);
3720 		stripe_length = div_u64(stripe_length, factor);
3721 
3722 		if (stripe_offset < bargs->pend &&
3723 		    stripe_offset + stripe_length > bargs->pstart)
3724 			return 0;
3725 	}
3726 
3727 	return 1;
3728 }
3729 
3730 /* [vstart, vend) */
3731 static int chunk_vrange_filter(struct extent_buffer *leaf,
3732 			       struct btrfs_chunk *chunk,
3733 			       u64 chunk_offset,
3734 			       struct btrfs_balance_args *bargs)
3735 {
3736 	if (chunk_offset < bargs->vend &&
3737 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3738 		/* at least part of the chunk is inside this vrange */
3739 		return 0;
3740 
3741 	return 1;
3742 }
3743 
3744 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3745 			       struct btrfs_chunk *chunk,
3746 			       struct btrfs_balance_args *bargs)
3747 {
3748 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3749 
3750 	if (bargs->stripes_min <= num_stripes
3751 			&& num_stripes <= bargs->stripes_max)
3752 		return 0;
3753 
3754 	return 1;
3755 }
3756 
3757 static int chunk_soft_convert_filter(u64 chunk_type,
3758 				     struct btrfs_balance_args *bargs)
3759 {
3760 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3761 		return 0;
3762 
3763 	chunk_type = chunk_to_extended(chunk_type) &
3764 				BTRFS_EXTENDED_PROFILE_MASK;
3765 
3766 	if (bargs->target == chunk_type)
3767 		return 1;
3768 
3769 	return 0;
3770 }
3771 
3772 static int should_balance_chunk(struct extent_buffer *leaf,
3773 				struct btrfs_chunk *chunk, u64 chunk_offset)
3774 {
3775 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3776 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3777 	struct btrfs_balance_args *bargs = NULL;
3778 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3779 
3780 	/* type filter */
3781 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3782 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3783 		return 0;
3784 	}
3785 
3786 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3787 		bargs = &bctl->data;
3788 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3789 		bargs = &bctl->sys;
3790 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3791 		bargs = &bctl->meta;
3792 
3793 	/* profiles filter */
3794 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3795 	    chunk_profiles_filter(chunk_type, bargs)) {
3796 		return 0;
3797 	}
3798 
3799 	/* usage filter */
3800 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3801 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3802 		return 0;
3803 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3804 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3805 		return 0;
3806 	}
3807 
3808 	/* devid filter */
3809 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3810 	    chunk_devid_filter(leaf, chunk, bargs)) {
3811 		return 0;
3812 	}
3813 
3814 	/* drange filter, makes sense only with devid filter */
3815 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3816 	    chunk_drange_filter(leaf, chunk, bargs)) {
3817 		return 0;
3818 	}
3819 
3820 	/* vrange filter */
3821 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3822 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3823 		return 0;
3824 	}
3825 
3826 	/* stripes filter */
3827 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3828 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3829 		return 0;
3830 	}
3831 
3832 	/* soft profile changing mode */
3833 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3834 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3835 		return 0;
3836 	}
3837 
3838 	/*
3839 	 * limited by count, must be the last filter
3840 	 */
3841 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3842 		if (bargs->limit == 0)
3843 			return 0;
3844 		else
3845 			bargs->limit--;
3846 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3847 		/*
3848 		 * Same logic as the 'limit' filter; the minimum cannot be
3849 		 * determined here because we do not have the global information
3850 		 * about the count of all chunks that satisfy the filters.
3851 		 */
3852 		if (bargs->limit_max == 0)
3853 			return 0;
3854 		else
3855 			bargs->limit_max--;
3856 	}
3857 
3858 	return 1;
3859 }
3860 
3861 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3862 {
3863 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3864 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3865 	u64 chunk_type;
3866 	struct btrfs_chunk *chunk;
3867 	struct btrfs_path *path = NULL;
3868 	struct btrfs_key key;
3869 	struct btrfs_key found_key;
3870 	struct extent_buffer *leaf;
3871 	int slot;
3872 	int ret;
3873 	int enospc_errors = 0;
3874 	bool counting = true;
3875 	/* The single value limit and min/max limits use the same bytes in the */
3876 	u64 limit_data = bctl->data.limit;
3877 	u64 limit_meta = bctl->meta.limit;
3878 	u64 limit_sys = bctl->sys.limit;
3879 	u32 count_data = 0;
3880 	u32 count_meta = 0;
3881 	u32 count_sys = 0;
3882 	int chunk_reserved = 0;
3883 
3884 	path = btrfs_alloc_path();
3885 	if (!path) {
3886 		ret = -ENOMEM;
3887 		goto error;
3888 	}
3889 
3890 	/* zero out stat counters */
3891 	spin_lock(&fs_info->balance_lock);
3892 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3893 	spin_unlock(&fs_info->balance_lock);
3894 again:
3895 	if (!counting) {
3896 		/*
3897 		 * The single value limit and min/max limits use the same bytes
3898 		 * in the
3899 		 */
3900 		bctl->data.limit = limit_data;
3901 		bctl->meta.limit = limit_meta;
3902 		bctl->sys.limit = limit_sys;
3903 	}
3904 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3905 	key.offset = (u64)-1;
3906 	key.type = BTRFS_CHUNK_ITEM_KEY;
3907 
3908 	while (1) {
3909 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3910 		    atomic_read(&fs_info->balance_cancel_req)) {
3911 			ret = -ECANCELED;
3912 			goto error;
3913 		}
3914 
3915 		mutex_lock(&fs_info->reclaim_bgs_lock);
3916 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3917 		if (ret < 0) {
3918 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3919 			goto error;
3920 		}
3921 
3922 		/*
3923 		 * this shouldn't happen, it means the last relocate
3924 		 * failed
3925 		 */
3926 		if (ret == 0)
3927 			BUG(); /* FIXME break ? */
3928 
3929 		ret = btrfs_previous_item(chunk_root, path, 0,
3930 					  BTRFS_CHUNK_ITEM_KEY);
3931 		if (ret) {
3932 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3933 			ret = 0;
3934 			break;
3935 		}
3936 
3937 		leaf = path->nodes[0];
3938 		slot = path->slots[0];
3939 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3940 
3941 		if (found_key.objectid != key.objectid) {
3942 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3943 			break;
3944 		}
3945 
3946 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3947 		chunk_type = btrfs_chunk_type(leaf, chunk);
3948 
3949 		if (!counting) {
3950 			spin_lock(&fs_info->balance_lock);
3951 			bctl->stat.considered++;
3952 			spin_unlock(&fs_info->balance_lock);
3953 		}
3954 
3955 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3956 
3957 		btrfs_release_path(path);
3958 		if (!ret) {
3959 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3960 			goto loop;
3961 		}
3962 
3963 		if (counting) {
3964 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3965 			spin_lock(&fs_info->balance_lock);
3966 			bctl->stat.expected++;
3967 			spin_unlock(&fs_info->balance_lock);
3968 
3969 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3970 				count_data++;
3971 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3972 				count_sys++;
3973 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3974 				count_meta++;
3975 
3976 			goto loop;
3977 		}
3978 
3979 		/*
3980 		 * Apply limit_min filter, no need to check if the LIMITS
3981 		 * filter is used, limit_min is 0 by default
3982 		 */
3983 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3984 					count_data < bctl->data.limit_min)
3985 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3986 					count_meta < bctl->meta.limit_min)
3987 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3988 					count_sys < bctl->sys.limit_min)) {
3989 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3990 			goto loop;
3991 		}
3992 
3993 		if (!chunk_reserved) {
3994 			/*
3995 			 * We may be relocating the only data chunk we have,
3996 			 * which could potentially end up with losing data's
3997 			 * raid profile, so lets allocate an empty one in
3998 			 * advance.
3999 			 */
4000 			ret = btrfs_may_alloc_data_chunk(fs_info,
4001 							 found_key.offset);
4002 			if (ret < 0) {
4003 				mutex_unlock(&fs_info->reclaim_bgs_lock);
4004 				goto error;
4005 			} else if (ret == 1) {
4006 				chunk_reserved = 1;
4007 			}
4008 		}
4009 
4010 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4011 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4012 		if (ret == -ENOSPC) {
4013 			enospc_errors++;
4014 		} else if (ret == -ETXTBSY) {
4015 			btrfs_info(fs_info,
4016 	   "skipping relocation of block group %llu due to active swapfile",
4017 				   found_key.offset);
4018 			ret = 0;
4019 		} else if (ret) {
4020 			goto error;
4021 		} else {
4022 			spin_lock(&fs_info->balance_lock);
4023 			bctl->stat.completed++;
4024 			spin_unlock(&fs_info->balance_lock);
4025 		}
4026 loop:
4027 		if (found_key.offset == 0)
4028 			break;
4029 		key.offset = found_key.offset - 1;
4030 	}
4031 
4032 	if (counting) {
4033 		btrfs_release_path(path);
4034 		counting = false;
4035 		goto again;
4036 	}
4037 error:
4038 	btrfs_free_path(path);
4039 	if (enospc_errors) {
4040 		btrfs_info(fs_info, "%d enospc errors during balance",
4041 			   enospc_errors);
4042 		if (!ret)
4043 			ret = -ENOSPC;
4044 	}
4045 
4046 	return ret;
4047 }
4048 
4049 /*
4050  * See if a given profile is valid and reduced.
4051  *
4052  * @flags:     profile to validate
4053  * @extended:  if true @flags is treated as an extended profile
4054  */
4055 static int alloc_profile_is_valid(u64 flags, int extended)
4056 {
4057 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4058 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4059 
4060 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4061 
4062 	/* 1) check that all other bits are zeroed */
4063 	if (flags & ~mask)
4064 		return 0;
4065 
4066 	/* 2) see if profile is reduced */
4067 	if (flags == 0)
4068 		return !extended; /* "0" is valid for usual profiles */
4069 
4070 	return has_single_bit_set(flags);
4071 }
4072 
4073 /*
4074  * Validate target profile against allowed profiles and return true if it's OK.
4075  * Otherwise print the error message and return false.
4076  */
4077 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4078 		const struct btrfs_balance_args *bargs,
4079 		u64 allowed, const char *type)
4080 {
4081 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4082 		return true;
4083 
4084 	/* Profile is valid and does not have bits outside of the allowed set */
4085 	if (alloc_profile_is_valid(bargs->target, 1) &&
4086 	    (bargs->target & ~allowed) == 0)
4087 		return true;
4088 
4089 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4090 			type, btrfs_bg_type_to_raid_name(bargs->target));
4091 	return false;
4092 }
4093 
4094 /*
4095  * Fill @buf with textual description of balance filter flags @bargs, up to
4096  * @size_buf including the terminating null. The output may be trimmed if it
4097  * does not fit into the provided buffer.
4098  */
4099 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4100 				 u32 size_buf)
4101 {
4102 	int ret;
4103 	u32 size_bp = size_buf;
4104 	char *bp = buf;
4105 	u64 flags = bargs->flags;
4106 	char tmp_buf[128] = {'\0'};
4107 
4108 	if (!flags)
4109 		return;
4110 
4111 #define CHECK_APPEND_NOARG(a)						\
4112 	do {								\
4113 		ret = snprintf(bp, size_bp, (a));			\
4114 		if (ret < 0 || ret >= size_bp)				\
4115 			goto out_overflow;				\
4116 		size_bp -= ret;						\
4117 		bp += ret;						\
4118 	} while (0)
4119 
4120 #define CHECK_APPEND_1ARG(a, v1)					\
4121 	do {								\
4122 		ret = snprintf(bp, size_bp, (a), (v1));			\
4123 		if (ret < 0 || ret >= size_bp)				\
4124 			goto out_overflow;				\
4125 		size_bp -= ret;						\
4126 		bp += ret;						\
4127 	} while (0)
4128 
4129 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4130 	do {								\
4131 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4132 		if (ret < 0 || ret >= size_bp)				\
4133 			goto out_overflow;				\
4134 		size_bp -= ret;						\
4135 		bp += ret;						\
4136 	} while (0)
4137 
4138 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4139 		CHECK_APPEND_1ARG("convert=%s,",
4140 				  btrfs_bg_type_to_raid_name(bargs->target));
4141 
4142 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4143 		CHECK_APPEND_NOARG("soft,");
4144 
4145 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4146 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4147 					    sizeof(tmp_buf));
4148 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4149 	}
4150 
4151 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4152 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4153 
4154 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4155 		CHECK_APPEND_2ARG("usage=%u..%u,",
4156 				  bargs->usage_min, bargs->usage_max);
4157 
4158 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4159 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4160 
4161 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4162 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4163 				  bargs->pstart, bargs->pend);
4164 
4165 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4166 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4167 				  bargs->vstart, bargs->vend);
4168 
4169 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4170 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4171 
4172 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4173 		CHECK_APPEND_2ARG("limit=%u..%u,",
4174 				bargs->limit_min, bargs->limit_max);
4175 
4176 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4177 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4178 				  bargs->stripes_min, bargs->stripes_max);
4179 
4180 #undef CHECK_APPEND_2ARG
4181 #undef CHECK_APPEND_1ARG
4182 #undef CHECK_APPEND_NOARG
4183 
4184 out_overflow:
4185 
4186 	if (size_bp < size_buf)
4187 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4188 	else
4189 		buf[0] = '\0';
4190 }
4191 
4192 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4193 {
4194 	u32 size_buf = 1024;
4195 	char tmp_buf[192] = {'\0'};
4196 	char *buf;
4197 	char *bp;
4198 	u32 size_bp = size_buf;
4199 	int ret;
4200 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4201 
4202 	buf = kzalloc(size_buf, GFP_KERNEL);
4203 	if (!buf)
4204 		return;
4205 
4206 	bp = buf;
4207 
4208 #define CHECK_APPEND_1ARG(a, v1)					\
4209 	do {								\
4210 		ret = snprintf(bp, size_bp, (a), (v1));			\
4211 		if (ret < 0 || ret >= size_bp)				\
4212 			goto out_overflow;				\
4213 		size_bp -= ret;						\
4214 		bp += ret;						\
4215 	} while (0)
4216 
4217 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4218 		CHECK_APPEND_1ARG("%s", "-f ");
4219 
4220 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4221 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4222 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4223 	}
4224 
4225 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4226 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4227 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4228 	}
4229 
4230 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4231 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4232 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4233 	}
4234 
4235 #undef CHECK_APPEND_1ARG
4236 
4237 out_overflow:
4238 
4239 	if (size_bp < size_buf)
4240 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4241 	btrfs_info(fs_info, "balance: %s %s",
4242 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4243 		   "resume" : "start", buf);
4244 
4245 	kfree(buf);
4246 }
4247 
4248 /*
4249  * Should be called with balance mutexe held
4250  */
4251 int btrfs_balance(struct btrfs_fs_info *fs_info,
4252 		  struct btrfs_balance_control *bctl,
4253 		  struct btrfs_ioctl_balance_args *bargs)
4254 {
4255 	u64 meta_target, data_target;
4256 	u64 allowed;
4257 	int mixed = 0;
4258 	int ret;
4259 	u64 num_devices;
4260 	unsigned seq;
4261 	bool reducing_redundancy;
4262 	bool paused = false;
4263 	int i;
4264 
4265 	if (btrfs_fs_closing(fs_info) ||
4266 	    atomic_read(&fs_info->balance_pause_req) ||
4267 	    btrfs_should_cancel_balance(fs_info)) {
4268 		ret = -EINVAL;
4269 		goto out;
4270 	}
4271 
4272 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4273 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4274 		mixed = 1;
4275 
4276 	/*
4277 	 * In case of mixed groups both data and meta should be picked,
4278 	 * and identical options should be given for both of them.
4279 	 */
4280 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4281 	if (mixed && (bctl->flags & allowed)) {
4282 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4283 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4284 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4285 			btrfs_err(fs_info,
4286 	  "balance: mixed groups data and metadata options must be the same");
4287 			ret = -EINVAL;
4288 			goto out;
4289 		}
4290 	}
4291 
4292 	/*
4293 	 * rw_devices will not change at the moment, device add/delete/replace
4294 	 * are exclusive
4295 	 */
4296 	num_devices = fs_info->fs_devices->rw_devices;
4297 
4298 	/*
4299 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4300 	 * special bit for it, to make it easier to distinguish.  Thus we need
4301 	 * to set it manually, or balance would refuse the profile.
4302 	 */
4303 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4304 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4305 		if (num_devices >= btrfs_raid_array[i].devs_min)
4306 			allowed |= btrfs_raid_array[i].bg_flag;
4307 
4308 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4309 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4310 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4311 		ret = -EINVAL;
4312 		goto out;
4313 	}
4314 
4315 	/*
4316 	 * Allow to reduce metadata or system integrity only if force set for
4317 	 * profiles with redundancy (copies, parity)
4318 	 */
4319 	allowed = 0;
4320 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4321 		if (btrfs_raid_array[i].ncopies >= 2 ||
4322 		    btrfs_raid_array[i].tolerated_failures >= 1)
4323 			allowed |= btrfs_raid_array[i].bg_flag;
4324 	}
4325 	do {
4326 		seq = read_seqbegin(&fs_info->profiles_lock);
4327 
4328 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4329 		     (fs_info->avail_system_alloc_bits & allowed) &&
4330 		     !(bctl->sys.target & allowed)) ||
4331 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4332 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4333 		     !(bctl->meta.target & allowed)))
4334 			reducing_redundancy = true;
4335 		else
4336 			reducing_redundancy = false;
4337 
4338 		/* if we're not converting, the target field is uninitialized */
4339 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4340 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4341 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4342 			bctl->data.target : fs_info->avail_data_alloc_bits;
4343 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4344 
4345 	if (reducing_redundancy) {
4346 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4347 			btrfs_info(fs_info,
4348 			   "balance: force reducing metadata redundancy");
4349 		} else {
4350 			btrfs_err(fs_info,
4351 	"balance: reduces metadata redundancy, use --force if you want this");
4352 			ret = -EINVAL;
4353 			goto out;
4354 		}
4355 	}
4356 
4357 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4358 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4359 		btrfs_warn(fs_info,
4360 	"balance: metadata profile %s has lower redundancy than data profile %s",
4361 				btrfs_bg_type_to_raid_name(meta_target),
4362 				btrfs_bg_type_to_raid_name(data_target));
4363 	}
4364 
4365 	ret = insert_balance_item(fs_info, bctl);
4366 	if (ret && ret != -EEXIST)
4367 		goto out;
4368 
4369 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4370 		BUG_ON(ret == -EEXIST);
4371 		BUG_ON(fs_info->balance_ctl);
4372 		spin_lock(&fs_info->balance_lock);
4373 		fs_info->balance_ctl = bctl;
4374 		spin_unlock(&fs_info->balance_lock);
4375 	} else {
4376 		BUG_ON(ret != -EEXIST);
4377 		spin_lock(&fs_info->balance_lock);
4378 		update_balance_args(bctl);
4379 		spin_unlock(&fs_info->balance_lock);
4380 	}
4381 
4382 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4383 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4384 	describe_balance_start_or_resume(fs_info);
4385 	mutex_unlock(&fs_info->balance_mutex);
4386 
4387 	ret = __btrfs_balance(fs_info);
4388 
4389 	mutex_lock(&fs_info->balance_mutex);
4390 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4391 		btrfs_info(fs_info, "balance: paused");
4392 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4393 		paused = true;
4394 	}
4395 	/*
4396 	 * Balance can be canceled by:
4397 	 *
4398 	 * - Regular cancel request
4399 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4400 	 *
4401 	 * - Fatal signal to "btrfs" process
4402 	 *   Either the signal caught by wait_reserve_ticket() and callers
4403 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4404 	 *   got -ECANCELED.
4405 	 *   Either way, in this case balance_cancel_req = 0, and
4406 	 *   ret == -EINTR or ret == -ECANCELED.
4407 	 *
4408 	 * So here we only check the return value to catch canceled balance.
4409 	 */
4410 	else if (ret == -ECANCELED || ret == -EINTR)
4411 		btrfs_info(fs_info, "balance: canceled");
4412 	else
4413 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4414 
4415 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4416 
4417 	if (bargs) {
4418 		memset(bargs, 0, sizeof(*bargs));
4419 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4420 	}
4421 
4422 	/* We didn't pause, we can clean everything up. */
4423 	if (!paused) {
4424 		reset_balance_state(fs_info);
4425 		btrfs_exclop_finish(fs_info);
4426 	}
4427 
4428 	wake_up(&fs_info->balance_wait_q);
4429 
4430 	return ret;
4431 out:
4432 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4433 		reset_balance_state(fs_info);
4434 	else
4435 		kfree(bctl);
4436 	btrfs_exclop_finish(fs_info);
4437 
4438 	return ret;
4439 }
4440 
4441 static int balance_kthread(void *data)
4442 {
4443 	struct btrfs_fs_info *fs_info = data;
4444 	int ret = 0;
4445 
4446 	sb_start_write(fs_info->sb);
4447 	mutex_lock(&fs_info->balance_mutex);
4448 	if (fs_info->balance_ctl)
4449 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4450 	mutex_unlock(&fs_info->balance_mutex);
4451 	sb_end_write(fs_info->sb);
4452 
4453 	return ret;
4454 }
4455 
4456 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4457 {
4458 	struct task_struct *tsk;
4459 
4460 	mutex_lock(&fs_info->balance_mutex);
4461 	if (!fs_info->balance_ctl) {
4462 		mutex_unlock(&fs_info->balance_mutex);
4463 		return 0;
4464 	}
4465 	mutex_unlock(&fs_info->balance_mutex);
4466 
4467 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4468 		btrfs_info(fs_info, "balance: resume skipped");
4469 		return 0;
4470 	}
4471 
4472 	spin_lock(&fs_info->super_lock);
4473 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4474 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4475 	spin_unlock(&fs_info->super_lock);
4476 	/*
4477 	 * A ro->rw remount sequence should continue with the paused balance
4478 	 * regardless of who pauses it, system or the user as of now, so set
4479 	 * the resume flag.
4480 	 */
4481 	spin_lock(&fs_info->balance_lock);
4482 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4483 	spin_unlock(&fs_info->balance_lock);
4484 
4485 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4486 	return PTR_ERR_OR_ZERO(tsk);
4487 }
4488 
4489 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4490 {
4491 	struct btrfs_balance_control *bctl;
4492 	struct btrfs_balance_item *item;
4493 	struct btrfs_disk_balance_args disk_bargs;
4494 	struct btrfs_path *path;
4495 	struct extent_buffer *leaf;
4496 	struct btrfs_key key;
4497 	int ret;
4498 
4499 	path = btrfs_alloc_path();
4500 	if (!path)
4501 		return -ENOMEM;
4502 
4503 	key.objectid = BTRFS_BALANCE_OBJECTID;
4504 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4505 	key.offset = 0;
4506 
4507 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4508 	if (ret < 0)
4509 		goto out;
4510 	if (ret > 0) { /* ret = -ENOENT; */
4511 		ret = 0;
4512 		goto out;
4513 	}
4514 
4515 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4516 	if (!bctl) {
4517 		ret = -ENOMEM;
4518 		goto out;
4519 	}
4520 
4521 	leaf = path->nodes[0];
4522 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4523 
4524 	bctl->flags = btrfs_balance_flags(leaf, item);
4525 	bctl->flags |= BTRFS_BALANCE_RESUME;
4526 
4527 	btrfs_balance_data(leaf, item, &disk_bargs);
4528 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4529 	btrfs_balance_meta(leaf, item, &disk_bargs);
4530 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4531 	btrfs_balance_sys(leaf, item, &disk_bargs);
4532 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4533 
4534 	/*
4535 	 * This should never happen, as the paused balance state is recovered
4536 	 * during mount without any chance of other exclusive ops to collide.
4537 	 *
4538 	 * This gives the exclusive op status to balance and keeps in paused
4539 	 * state until user intervention (cancel or umount). If the ownership
4540 	 * cannot be assigned, show a message but do not fail. The balance
4541 	 * is in a paused state and must have fs_info::balance_ctl properly
4542 	 * set up.
4543 	 */
4544 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4545 		btrfs_warn(fs_info,
4546 	"balance: cannot set exclusive op status, resume manually");
4547 
4548 	btrfs_release_path(path);
4549 
4550 	mutex_lock(&fs_info->balance_mutex);
4551 	BUG_ON(fs_info->balance_ctl);
4552 	spin_lock(&fs_info->balance_lock);
4553 	fs_info->balance_ctl = bctl;
4554 	spin_unlock(&fs_info->balance_lock);
4555 	mutex_unlock(&fs_info->balance_mutex);
4556 out:
4557 	btrfs_free_path(path);
4558 	return ret;
4559 }
4560 
4561 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4562 {
4563 	int ret = 0;
4564 
4565 	mutex_lock(&fs_info->balance_mutex);
4566 	if (!fs_info->balance_ctl) {
4567 		mutex_unlock(&fs_info->balance_mutex);
4568 		return -ENOTCONN;
4569 	}
4570 
4571 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4572 		atomic_inc(&fs_info->balance_pause_req);
4573 		mutex_unlock(&fs_info->balance_mutex);
4574 
4575 		wait_event(fs_info->balance_wait_q,
4576 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4577 
4578 		mutex_lock(&fs_info->balance_mutex);
4579 		/* we are good with balance_ctl ripped off from under us */
4580 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4581 		atomic_dec(&fs_info->balance_pause_req);
4582 	} else {
4583 		ret = -ENOTCONN;
4584 	}
4585 
4586 	mutex_unlock(&fs_info->balance_mutex);
4587 	return ret;
4588 }
4589 
4590 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4591 {
4592 	mutex_lock(&fs_info->balance_mutex);
4593 	if (!fs_info->balance_ctl) {
4594 		mutex_unlock(&fs_info->balance_mutex);
4595 		return -ENOTCONN;
4596 	}
4597 
4598 	/*
4599 	 * A paused balance with the item stored on disk can be resumed at
4600 	 * mount time if the mount is read-write. Otherwise it's still paused
4601 	 * and we must not allow cancelling as it deletes the item.
4602 	 */
4603 	if (sb_rdonly(fs_info->sb)) {
4604 		mutex_unlock(&fs_info->balance_mutex);
4605 		return -EROFS;
4606 	}
4607 
4608 	atomic_inc(&fs_info->balance_cancel_req);
4609 	/*
4610 	 * if we are running just wait and return, balance item is
4611 	 * deleted in btrfs_balance in this case
4612 	 */
4613 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4614 		mutex_unlock(&fs_info->balance_mutex);
4615 		wait_event(fs_info->balance_wait_q,
4616 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4617 		mutex_lock(&fs_info->balance_mutex);
4618 	} else {
4619 		mutex_unlock(&fs_info->balance_mutex);
4620 		/*
4621 		 * Lock released to allow other waiters to continue, we'll
4622 		 * reexamine the status again.
4623 		 */
4624 		mutex_lock(&fs_info->balance_mutex);
4625 
4626 		if (fs_info->balance_ctl) {
4627 			reset_balance_state(fs_info);
4628 			btrfs_exclop_finish(fs_info);
4629 			btrfs_info(fs_info, "balance: canceled");
4630 		}
4631 	}
4632 
4633 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4634 	atomic_dec(&fs_info->balance_cancel_req);
4635 	mutex_unlock(&fs_info->balance_mutex);
4636 	return 0;
4637 }
4638 
4639 int btrfs_uuid_scan_kthread(void *data)
4640 {
4641 	struct btrfs_fs_info *fs_info = data;
4642 	struct btrfs_root *root = fs_info->tree_root;
4643 	struct btrfs_key key;
4644 	struct btrfs_path *path = NULL;
4645 	int ret = 0;
4646 	struct extent_buffer *eb;
4647 	int slot;
4648 	struct btrfs_root_item root_item;
4649 	u32 item_size;
4650 	struct btrfs_trans_handle *trans = NULL;
4651 	bool closing = false;
4652 
4653 	path = btrfs_alloc_path();
4654 	if (!path) {
4655 		ret = -ENOMEM;
4656 		goto out;
4657 	}
4658 
4659 	key.objectid = 0;
4660 	key.type = BTRFS_ROOT_ITEM_KEY;
4661 	key.offset = 0;
4662 
4663 	while (1) {
4664 		if (btrfs_fs_closing(fs_info)) {
4665 			closing = true;
4666 			break;
4667 		}
4668 		ret = btrfs_search_forward(root, &key, path,
4669 				BTRFS_OLDEST_GENERATION);
4670 		if (ret) {
4671 			if (ret > 0)
4672 				ret = 0;
4673 			break;
4674 		}
4675 
4676 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4677 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4678 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4679 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4680 			goto skip;
4681 
4682 		eb = path->nodes[0];
4683 		slot = path->slots[0];
4684 		item_size = btrfs_item_size(eb, slot);
4685 		if (item_size < sizeof(root_item))
4686 			goto skip;
4687 
4688 		read_extent_buffer(eb, &root_item,
4689 				   btrfs_item_ptr_offset(eb, slot),
4690 				   (int)sizeof(root_item));
4691 		if (btrfs_root_refs(&root_item) == 0)
4692 			goto skip;
4693 
4694 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4695 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4696 			if (trans)
4697 				goto update_tree;
4698 
4699 			btrfs_release_path(path);
4700 			/*
4701 			 * 1 - subvol uuid item
4702 			 * 1 - received_subvol uuid item
4703 			 */
4704 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4705 			if (IS_ERR(trans)) {
4706 				ret = PTR_ERR(trans);
4707 				break;
4708 			}
4709 			continue;
4710 		} else {
4711 			goto skip;
4712 		}
4713 update_tree:
4714 		btrfs_release_path(path);
4715 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4716 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4717 						  BTRFS_UUID_KEY_SUBVOL,
4718 						  key.objectid);
4719 			if (ret < 0) {
4720 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4721 					ret);
4722 				break;
4723 			}
4724 		}
4725 
4726 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4727 			ret = btrfs_uuid_tree_add(trans,
4728 						  root_item.received_uuid,
4729 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4730 						  key.objectid);
4731 			if (ret < 0) {
4732 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4733 					ret);
4734 				break;
4735 			}
4736 		}
4737 
4738 skip:
4739 		btrfs_release_path(path);
4740 		if (trans) {
4741 			ret = btrfs_end_transaction(trans);
4742 			trans = NULL;
4743 			if (ret)
4744 				break;
4745 		}
4746 
4747 		if (key.offset < (u64)-1) {
4748 			key.offset++;
4749 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4750 			key.offset = 0;
4751 			key.type = BTRFS_ROOT_ITEM_KEY;
4752 		} else if (key.objectid < (u64)-1) {
4753 			key.offset = 0;
4754 			key.type = BTRFS_ROOT_ITEM_KEY;
4755 			key.objectid++;
4756 		} else {
4757 			break;
4758 		}
4759 		cond_resched();
4760 	}
4761 
4762 out:
4763 	btrfs_free_path(path);
4764 	if (trans && !IS_ERR(trans))
4765 		btrfs_end_transaction(trans);
4766 	if (ret)
4767 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4768 	else if (!closing)
4769 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4770 	up(&fs_info->uuid_tree_rescan_sem);
4771 	return 0;
4772 }
4773 
4774 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4775 {
4776 	struct btrfs_trans_handle *trans;
4777 	struct btrfs_root *tree_root = fs_info->tree_root;
4778 	struct btrfs_root *uuid_root;
4779 	struct task_struct *task;
4780 	int ret;
4781 
4782 	/*
4783 	 * 1 - root node
4784 	 * 1 - root item
4785 	 */
4786 	trans = btrfs_start_transaction(tree_root, 2);
4787 	if (IS_ERR(trans))
4788 		return PTR_ERR(trans);
4789 
4790 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4791 	if (IS_ERR(uuid_root)) {
4792 		ret = PTR_ERR(uuid_root);
4793 		btrfs_abort_transaction(trans, ret);
4794 		btrfs_end_transaction(trans);
4795 		return ret;
4796 	}
4797 
4798 	fs_info->uuid_root = uuid_root;
4799 
4800 	ret = btrfs_commit_transaction(trans);
4801 	if (ret)
4802 		return ret;
4803 
4804 	down(&fs_info->uuid_tree_rescan_sem);
4805 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4806 	if (IS_ERR(task)) {
4807 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4808 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4809 		up(&fs_info->uuid_tree_rescan_sem);
4810 		return PTR_ERR(task);
4811 	}
4812 
4813 	return 0;
4814 }
4815 
4816 /*
4817  * shrinking a device means finding all of the device extents past
4818  * the new size, and then following the back refs to the chunks.
4819  * The chunk relocation code actually frees the device extent
4820  */
4821 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4822 {
4823 	struct btrfs_fs_info *fs_info = device->fs_info;
4824 	struct btrfs_root *root = fs_info->dev_root;
4825 	struct btrfs_trans_handle *trans;
4826 	struct btrfs_dev_extent *dev_extent = NULL;
4827 	struct btrfs_path *path;
4828 	u64 length;
4829 	u64 chunk_offset;
4830 	int ret;
4831 	int slot;
4832 	int failed = 0;
4833 	bool retried = false;
4834 	struct extent_buffer *l;
4835 	struct btrfs_key key;
4836 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4837 	u64 old_total = btrfs_super_total_bytes(super_copy);
4838 	u64 old_size = btrfs_device_get_total_bytes(device);
4839 	u64 diff;
4840 	u64 start;
4841 
4842 	new_size = round_down(new_size, fs_info->sectorsize);
4843 	start = new_size;
4844 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4845 
4846 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4847 		return -EINVAL;
4848 
4849 	path = btrfs_alloc_path();
4850 	if (!path)
4851 		return -ENOMEM;
4852 
4853 	path->reada = READA_BACK;
4854 
4855 	trans = btrfs_start_transaction(root, 0);
4856 	if (IS_ERR(trans)) {
4857 		btrfs_free_path(path);
4858 		return PTR_ERR(trans);
4859 	}
4860 
4861 	mutex_lock(&fs_info->chunk_mutex);
4862 
4863 	btrfs_device_set_total_bytes(device, new_size);
4864 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4865 		device->fs_devices->total_rw_bytes -= diff;
4866 		atomic64_sub(diff, &fs_info->free_chunk_space);
4867 	}
4868 
4869 	/*
4870 	 * Once the device's size has been set to the new size, ensure all
4871 	 * in-memory chunks are synced to disk so that the loop below sees them
4872 	 * and relocates them accordingly.
4873 	 */
4874 	if (contains_pending_extent(device, &start, diff)) {
4875 		mutex_unlock(&fs_info->chunk_mutex);
4876 		ret = btrfs_commit_transaction(trans);
4877 		if (ret)
4878 			goto done;
4879 	} else {
4880 		mutex_unlock(&fs_info->chunk_mutex);
4881 		btrfs_end_transaction(trans);
4882 	}
4883 
4884 again:
4885 	key.objectid = device->devid;
4886 	key.offset = (u64)-1;
4887 	key.type = BTRFS_DEV_EXTENT_KEY;
4888 
4889 	do {
4890 		mutex_lock(&fs_info->reclaim_bgs_lock);
4891 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4892 		if (ret < 0) {
4893 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4894 			goto done;
4895 		}
4896 
4897 		ret = btrfs_previous_item(root, path, 0, key.type);
4898 		if (ret) {
4899 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4900 			if (ret < 0)
4901 				goto done;
4902 			ret = 0;
4903 			btrfs_release_path(path);
4904 			break;
4905 		}
4906 
4907 		l = path->nodes[0];
4908 		slot = path->slots[0];
4909 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4910 
4911 		if (key.objectid != device->devid) {
4912 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4913 			btrfs_release_path(path);
4914 			break;
4915 		}
4916 
4917 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4918 		length = btrfs_dev_extent_length(l, dev_extent);
4919 
4920 		if (key.offset + length <= new_size) {
4921 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4922 			btrfs_release_path(path);
4923 			break;
4924 		}
4925 
4926 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4927 		btrfs_release_path(path);
4928 
4929 		/*
4930 		 * We may be relocating the only data chunk we have,
4931 		 * which could potentially end up with losing data's
4932 		 * raid profile, so lets allocate an empty one in
4933 		 * advance.
4934 		 */
4935 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4936 		if (ret < 0) {
4937 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4938 			goto done;
4939 		}
4940 
4941 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4942 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4943 		if (ret == -ENOSPC) {
4944 			failed++;
4945 		} else if (ret) {
4946 			if (ret == -ETXTBSY) {
4947 				btrfs_warn(fs_info,
4948 		   "could not shrink block group %llu due to active swapfile",
4949 					   chunk_offset);
4950 			}
4951 			goto done;
4952 		}
4953 	} while (key.offset-- > 0);
4954 
4955 	if (failed && !retried) {
4956 		failed = 0;
4957 		retried = true;
4958 		goto again;
4959 	} else if (failed && retried) {
4960 		ret = -ENOSPC;
4961 		goto done;
4962 	}
4963 
4964 	/* Shrinking succeeded, else we would be at "done". */
4965 	trans = btrfs_start_transaction(root, 0);
4966 	if (IS_ERR(trans)) {
4967 		ret = PTR_ERR(trans);
4968 		goto done;
4969 	}
4970 
4971 	mutex_lock(&fs_info->chunk_mutex);
4972 	/* Clear all state bits beyond the shrunk device size */
4973 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4974 			  CHUNK_STATE_MASK);
4975 
4976 	btrfs_device_set_disk_total_bytes(device, new_size);
4977 	if (list_empty(&device->post_commit_list))
4978 		list_add_tail(&device->post_commit_list,
4979 			      &trans->transaction->dev_update_list);
4980 
4981 	WARN_ON(diff > old_total);
4982 	btrfs_set_super_total_bytes(super_copy,
4983 			round_down(old_total - diff, fs_info->sectorsize));
4984 	mutex_unlock(&fs_info->chunk_mutex);
4985 
4986 	btrfs_reserve_chunk_metadata(trans, false);
4987 	/* Now btrfs_update_device() will change the on-disk size. */
4988 	ret = btrfs_update_device(trans, device);
4989 	btrfs_trans_release_chunk_metadata(trans);
4990 	if (ret < 0) {
4991 		btrfs_abort_transaction(trans, ret);
4992 		btrfs_end_transaction(trans);
4993 	} else {
4994 		ret = btrfs_commit_transaction(trans);
4995 	}
4996 done:
4997 	btrfs_free_path(path);
4998 	if (ret) {
4999 		mutex_lock(&fs_info->chunk_mutex);
5000 		btrfs_device_set_total_bytes(device, old_size);
5001 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5002 			device->fs_devices->total_rw_bytes += diff;
5003 		atomic64_add(diff, &fs_info->free_chunk_space);
5004 		mutex_unlock(&fs_info->chunk_mutex);
5005 	}
5006 	return ret;
5007 }
5008 
5009 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5010 			   struct btrfs_key *key,
5011 			   struct btrfs_chunk *chunk, int item_size)
5012 {
5013 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5014 	struct btrfs_disk_key disk_key;
5015 	u32 array_size;
5016 	u8 *ptr;
5017 
5018 	lockdep_assert_held(&fs_info->chunk_mutex);
5019 
5020 	array_size = btrfs_super_sys_array_size(super_copy);
5021 	if (array_size + item_size + sizeof(disk_key)
5022 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5023 		return -EFBIG;
5024 
5025 	ptr = super_copy->sys_chunk_array + array_size;
5026 	btrfs_cpu_key_to_disk(&disk_key, key);
5027 	memcpy(ptr, &disk_key, sizeof(disk_key));
5028 	ptr += sizeof(disk_key);
5029 	memcpy(ptr, chunk, item_size);
5030 	item_size += sizeof(disk_key);
5031 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5032 
5033 	return 0;
5034 }
5035 
5036 /*
5037  * sort the devices in descending order by max_avail, total_avail
5038  */
5039 static int btrfs_cmp_device_info(const void *a, const void *b)
5040 {
5041 	const struct btrfs_device_info *di_a = a;
5042 	const struct btrfs_device_info *di_b = b;
5043 
5044 	if (di_a->max_avail > di_b->max_avail)
5045 		return -1;
5046 	if (di_a->max_avail < di_b->max_avail)
5047 		return 1;
5048 	if (di_a->total_avail > di_b->total_avail)
5049 		return -1;
5050 	if (di_a->total_avail < di_b->total_avail)
5051 		return 1;
5052 	return 0;
5053 }
5054 
5055 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5056 {
5057 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5058 		return;
5059 
5060 	btrfs_set_fs_incompat(info, RAID56);
5061 }
5062 
5063 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5064 {
5065 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5066 		return;
5067 
5068 	btrfs_set_fs_incompat(info, RAID1C34);
5069 }
5070 
5071 /*
5072  * Structure used internally for btrfs_create_chunk() function.
5073  * Wraps needed parameters.
5074  */
5075 struct alloc_chunk_ctl {
5076 	u64 start;
5077 	u64 type;
5078 	/* Total number of stripes to allocate */
5079 	int num_stripes;
5080 	/* sub_stripes info for map */
5081 	int sub_stripes;
5082 	/* Stripes per device */
5083 	int dev_stripes;
5084 	/* Maximum number of devices to use */
5085 	int devs_max;
5086 	/* Minimum number of devices to use */
5087 	int devs_min;
5088 	/* ndevs has to be a multiple of this */
5089 	int devs_increment;
5090 	/* Number of copies */
5091 	int ncopies;
5092 	/* Number of stripes worth of bytes to store parity information */
5093 	int nparity;
5094 	u64 max_stripe_size;
5095 	u64 max_chunk_size;
5096 	u64 dev_extent_min;
5097 	u64 stripe_size;
5098 	u64 chunk_size;
5099 	int ndevs;
5100 };
5101 
5102 static void init_alloc_chunk_ctl_policy_regular(
5103 				struct btrfs_fs_devices *fs_devices,
5104 				struct alloc_chunk_ctl *ctl)
5105 {
5106 	struct btrfs_space_info *space_info;
5107 
5108 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5109 	ASSERT(space_info);
5110 
5111 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5112 	ctl->max_stripe_size = ctl->max_chunk_size;
5113 
5114 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5115 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5116 
5117 	/* We don't want a chunk larger than 10% of writable space */
5118 	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5119 				  ctl->max_chunk_size);
5120 	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5121 }
5122 
5123 static void init_alloc_chunk_ctl_policy_zoned(
5124 				      struct btrfs_fs_devices *fs_devices,
5125 				      struct alloc_chunk_ctl *ctl)
5126 {
5127 	u64 zone_size = fs_devices->fs_info->zone_size;
5128 	u64 limit;
5129 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5130 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5131 	u64 min_chunk_size = min_data_stripes * zone_size;
5132 	u64 type = ctl->type;
5133 
5134 	ctl->max_stripe_size = zone_size;
5135 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5136 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5137 						 zone_size);
5138 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5139 		ctl->max_chunk_size = ctl->max_stripe_size;
5140 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5141 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5142 		ctl->devs_max = min_t(int, ctl->devs_max,
5143 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5144 	} else {
5145 		BUG();
5146 	}
5147 
5148 	/* We don't want a chunk larger than 10% of writable space */
5149 	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5150 			       zone_size),
5151 		    min_chunk_size);
5152 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5153 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5154 }
5155 
5156 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5157 				 struct alloc_chunk_ctl *ctl)
5158 {
5159 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5160 
5161 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5162 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5163 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5164 	if (!ctl->devs_max)
5165 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5166 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5167 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5168 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5169 	ctl->nparity = btrfs_raid_array[index].nparity;
5170 	ctl->ndevs = 0;
5171 
5172 	switch (fs_devices->chunk_alloc_policy) {
5173 	case BTRFS_CHUNK_ALLOC_REGULAR:
5174 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5175 		break;
5176 	case BTRFS_CHUNK_ALLOC_ZONED:
5177 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5178 		break;
5179 	default:
5180 		BUG();
5181 	}
5182 }
5183 
5184 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5185 			      struct alloc_chunk_ctl *ctl,
5186 			      struct btrfs_device_info *devices_info)
5187 {
5188 	struct btrfs_fs_info *info = fs_devices->fs_info;
5189 	struct btrfs_device *device;
5190 	u64 total_avail;
5191 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5192 	int ret;
5193 	int ndevs = 0;
5194 	u64 max_avail;
5195 	u64 dev_offset;
5196 
5197 	/*
5198 	 * in the first pass through the devices list, we gather information
5199 	 * about the available holes on each device.
5200 	 */
5201 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5202 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5203 			WARN(1, KERN_ERR
5204 			       "BTRFS: read-only device in alloc_list\n");
5205 			continue;
5206 		}
5207 
5208 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5209 					&device->dev_state) ||
5210 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5211 			continue;
5212 
5213 		if (device->total_bytes > device->bytes_used)
5214 			total_avail = device->total_bytes - device->bytes_used;
5215 		else
5216 			total_avail = 0;
5217 
5218 		/* If there is no space on this device, skip it. */
5219 		if (total_avail < ctl->dev_extent_min)
5220 			continue;
5221 
5222 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5223 					   &max_avail);
5224 		if (ret && ret != -ENOSPC)
5225 			return ret;
5226 
5227 		if (ret == 0)
5228 			max_avail = dev_extent_want;
5229 
5230 		if (max_avail < ctl->dev_extent_min) {
5231 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5232 				btrfs_debug(info,
5233 			"%s: devid %llu has no free space, have=%llu want=%llu",
5234 					    __func__, device->devid, max_avail,
5235 					    ctl->dev_extent_min);
5236 			continue;
5237 		}
5238 
5239 		if (ndevs == fs_devices->rw_devices) {
5240 			WARN(1, "%s: found more than %llu devices\n",
5241 			     __func__, fs_devices->rw_devices);
5242 			break;
5243 		}
5244 		devices_info[ndevs].dev_offset = dev_offset;
5245 		devices_info[ndevs].max_avail = max_avail;
5246 		devices_info[ndevs].total_avail = total_avail;
5247 		devices_info[ndevs].dev = device;
5248 		++ndevs;
5249 	}
5250 	ctl->ndevs = ndevs;
5251 
5252 	/*
5253 	 * now sort the devices by hole size / available space
5254 	 */
5255 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5256 	     btrfs_cmp_device_info, NULL);
5257 
5258 	return 0;
5259 }
5260 
5261 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5262 				      struct btrfs_device_info *devices_info)
5263 {
5264 	/* Number of stripes that count for block group size */
5265 	int data_stripes;
5266 
5267 	/*
5268 	 * The primary goal is to maximize the number of stripes, so use as
5269 	 * many devices as possible, even if the stripes are not maximum sized.
5270 	 *
5271 	 * The DUP profile stores more than one stripe per device, the
5272 	 * max_avail is the total size so we have to adjust.
5273 	 */
5274 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5275 				   ctl->dev_stripes);
5276 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5277 
5278 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5279 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5280 
5281 	/*
5282 	 * Use the number of data stripes to figure out how big this chunk is
5283 	 * really going to be in terms of logical address space, and compare
5284 	 * that answer with the max chunk size. If it's higher, we try to
5285 	 * reduce stripe_size.
5286 	 */
5287 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5288 		/*
5289 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5290 		 * then use it, unless it ends up being even bigger than the
5291 		 * previous value we had already.
5292 		 */
5293 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5294 							data_stripes), SZ_16M),
5295 				       ctl->stripe_size);
5296 	}
5297 
5298 	/* Stripe size should not go beyond 1G. */
5299 	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5300 
5301 	/* Align to BTRFS_STRIPE_LEN */
5302 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5303 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5304 
5305 	return 0;
5306 }
5307 
5308 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5309 				    struct btrfs_device_info *devices_info)
5310 {
5311 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5312 	/* Number of stripes that count for block group size */
5313 	int data_stripes;
5314 
5315 	/*
5316 	 * It should hold because:
5317 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5318 	 */
5319 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5320 
5321 	ctl->stripe_size = zone_size;
5322 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5323 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5324 
5325 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5326 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5327 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5328 					     ctl->stripe_size) + ctl->nparity,
5329 				     ctl->dev_stripes);
5330 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5331 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5332 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5333 	}
5334 
5335 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5336 
5337 	return 0;
5338 }
5339 
5340 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5341 			      struct alloc_chunk_ctl *ctl,
5342 			      struct btrfs_device_info *devices_info)
5343 {
5344 	struct btrfs_fs_info *info = fs_devices->fs_info;
5345 
5346 	/*
5347 	 * Round down to number of usable stripes, devs_increment can be any
5348 	 * number so we can't use round_down() that requires power of 2, while
5349 	 * rounddown is safe.
5350 	 */
5351 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5352 
5353 	if (ctl->ndevs < ctl->devs_min) {
5354 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5355 			btrfs_debug(info,
5356 	"%s: not enough devices with free space: have=%d minimum required=%d",
5357 				    __func__, ctl->ndevs, ctl->devs_min);
5358 		}
5359 		return -ENOSPC;
5360 	}
5361 
5362 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5363 
5364 	switch (fs_devices->chunk_alloc_policy) {
5365 	case BTRFS_CHUNK_ALLOC_REGULAR:
5366 		return decide_stripe_size_regular(ctl, devices_info);
5367 	case BTRFS_CHUNK_ALLOC_ZONED:
5368 		return decide_stripe_size_zoned(ctl, devices_info);
5369 	default:
5370 		BUG();
5371 	}
5372 }
5373 
5374 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5375 			struct alloc_chunk_ctl *ctl,
5376 			struct btrfs_device_info *devices_info)
5377 {
5378 	struct btrfs_fs_info *info = trans->fs_info;
5379 	struct map_lookup *map = NULL;
5380 	struct extent_map_tree *em_tree;
5381 	struct btrfs_block_group *block_group;
5382 	struct extent_map *em;
5383 	u64 start = ctl->start;
5384 	u64 type = ctl->type;
5385 	int ret;
5386 	int i;
5387 	int j;
5388 
5389 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5390 	if (!map)
5391 		return ERR_PTR(-ENOMEM);
5392 	map->num_stripes = ctl->num_stripes;
5393 
5394 	for (i = 0; i < ctl->ndevs; ++i) {
5395 		for (j = 0; j < ctl->dev_stripes; ++j) {
5396 			int s = i * ctl->dev_stripes + j;
5397 			map->stripes[s].dev = devices_info[i].dev;
5398 			map->stripes[s].physical = devices_info[i].dev_offset +
5399 						   j * ctl->stripe_size;
5400 		}
5401 	}
5402 	map->io_align = BTRFS_STRIPE_LEN;
5403 	map->io_width = BTRFS_STRIPE_LEN;
5404 	map->type = type;
5405 	map->sub_stripes = ctl->sub_stripes;
5406 
5407 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5408 
5409 	em = alloc_extent_map();
5410 	if (!em) {
5411 		kfree(map);
5412 		return ERR_PTR(-ENOMEM);
5413 	}
5414 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5415 	em->map_lookup = map;
5416 	em->start = start;
5417 	em->len = ctl->chunk_size;
5418 	em->block_start = 0;
5419 	em->block_len = em->len;
5420 	em->orig_block_len = ctl->stripe_size;
5421 
5422 	em_tree = &info->mapping_tree;
5423 	write_lock(&em_tree->lock);
5424 	ret = add_extent_mapping(em_tree, em, 0);
5425 	if (ret) {
5426 		write_unlock(&em_tree->lock);
5427 		free_extent_map(em);
5428 		return ERR_PTR(ret);
5429 	}
5430 	write_unlock(&em_tree->lock);
5431 
5432 	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5433 	if (IS_ERR(block_group))
5434 		goto error_del_extent;
5435 
5436 	for (i = 0; i < map->num_stripes; i++) {
5437 		struct btrfs_device *dev = map->stripes[i].dev;
5438 
5439 		btrfs_device_set_bytes_used(dev,
5440 					    dev->bytes_used + ctl->stripe_size);
5441 		if (list_empty(&dev->post_commit_list))
5442 			list_add_tail(&dev->post_commit_list,
5443 				      &trans->transaction->dev_update_list);
5444 	}
5445 
5446 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5447 		     &info->free_chunk_space);
5448 
5449 	free_extent_map(em);
5450 	check_raid56_incompat_flag(info, type);
5451 	check_raid1c34_incompat_flag(info, type);
5452 
5453 	return block_group;
5454 
5455 error_del_extent:
5456 	write_lock(&em_tree->lock);
5457 	remove_extent_mapping(em_tree, em);
5458 	write_unlock(&em_tree->lock);
5459 
5460 	/* One for our allocation */
5461 	free_extent_map(em);
5462 	/* One for the tree reference */
5463 	free_extent_map(em);
5464 
5465 	return block_group;
5466 }
5467 
5468 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5469 					    u64 type)
5470 {
5471 	struct btrfs_fs_info *info = trans->fs_info;
5472 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5473 	struct btrfs_device_info *devices_info = NULL;
5474 	struct alloc_chunk_ctl ctl;
5475 	struct btrfs_block_group *block_group;
5476 	int ret;
5477 
5478 	lockdep_assert_held(&info->chunk_mutex);
5479 
5480 	if (!alloc_profile_is_valid(type, 0)) {
5481 		ASSERT(0);
5482 		return ERR_PTR(-EINVAL);
5483 	}
5484 
5485 	if (list_empty(&fs_devices->alloc_list)) {
5486 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5487 			btrfs_debug(info, "%s: no writable device", __func__);
5488 		return ERR_PTR(-ENOSPC);
5489 	}
5490 
5491 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5492 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5493 		ASSERT(0);
5494 		return ERR_PTR(-EINVAL);
5495 	}
5496 
5497 	ctl.start = find_next_chunk(info);
5498 	ctl.type = type;
5499 	init_alloc_chunk_ctl(fs_devices, &ctl);
5500 
5501 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5502 			       GFP_NOFS);
5503 	if (!devices_info)
5504 		return ERR_PTR(-ENOMEM);
5505 
5506 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5507 	if (ret < 0) {
5508 		block_group = ERR_PTR(ret);
5509 		goto out;
5510 	}
5511 
5512 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5513 	if (ret < 0) {
5514 		block_group = ERR_PTR(ret);
5515 		goto out;
5516 	}
5517 
5518 	block_group = create_chunk(trans, &ctl, devices_info);
5519 
5520 out:
5521 	kfree(devices_info);
5522 	return block_group;
5523 }
5524 
5525 /*
5526  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5527  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5528  * chunks.
5529  *
5530  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5531  * phases.
5532  */
5533 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5534 				     struct btrfs_block_group *bg)
5535 {
5536 	struct btrfs_fs_info *fs_info = trans->fs_info;
5537 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5538 	struct btrfs_key key;
5539 	struct btrfs_chunk *chunk;
5540 	struct btrfs_stripe *stripe;
5541 	struct extent_map *em;
5542 	struct map_lookup *map;
5543 	size_t item_size;
5544 	int i;
5545 	int ret;
5546 
5547 	/*
5548 	 * We take the chunk_mutex for 2 reasons:
5549 	 *
5550 	 * 1) Updates and insertions in the chunk btree must be done while holding
5551 	 *    the chunk_mutex, as well as updating the system chunk array in the
5552 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5553 	 *    details;
5554 	 *
5555 	 * 2) To prevent races with the final phase of a device replace operation
5556 	 *    that replaces the device object associated with the map's stripes,
5557 	 *    because the device object's id can change at any time during that
5558 	 *    final phase of the device replace operation
5559 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5560 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5561 	 *    which would cause a failure when updating the device item, which does
5562 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5563 	 *    Here we can't use the device_list_mutex because our caller already
5564 	 *    has locked the chunk_mutex, and the final phase of device replace
5565 	 *    acquires both mutexes - first the device_list_mutex and then the
5566 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5567 	 *    concurrent device replace.
5568 	 */
5569 	lockdep_assert_held(&fs_info->chunk_mutex);
5570 
5571 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5572 	if (IS_ERR(em)) {
5573 		ret = PTR_ERR(em);
5574 		btrfs_abort_transaction(trans, ret);
5575 		return ret;
5576 	}
5577 
5578 	map = em->map_lookup;
5579 	item_size = btrfs_chunk_item_size(map->num_stripes);
5580 
5581 	chunk = kzalloc(item_size, GFP_NOFS);
5582 	if (!chunk) {
5583 		ret = -ENOMEM;
5584 		btrfs_abort_transaction(trans, ret);
5585 		goto out;
5586 	}
5587 
5588 	for (i = 0; i < map->num_stripes; i++) {
5589 		struct btrfs_device *device = map->stripes[i].dev;
5590 
5591 		ret = btrfs_update_device(trans, device);
5592 		if (ret)
5593 			goto out;
5594 	}
5595 
5596 	stripe = &chunk->stripe;
5597 	for (i = 0; i < map->num_stripes; i++) {
5598 		struct btrfs_device *device = map->stripes[i].dev;
5599 		const u64 dev_offset = map->stripes[i].physical;
5600 
5601 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5602 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5603 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5604 		stripe++;
5605 	}
5606 
5607 	btrfs_set_stack_chunk_length(chunk, bg->length);
5608 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5609 	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5610 	btrfs_set_stack_chunk_type(chunk, map->type);
5611 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5612 	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5613 	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5614 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5615 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5616 
5617 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5618 	key.type = BTRFS_CHUNK_ITEM_KEY;
5619 	key.offset = bg->start;
5620 
5621 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5622 	if (ret)
5623 		goto out;
5624 
5625 	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5626 
5627 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5628 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5629 		if (ret)
5630 			goto out;
5631 	}
5632 
5633 out:
5634 	kfree(chunk);
5635 	free_extent_map(em);
5636 	return ret;
5637 }
5638 
5639 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5640 {
5641 	struct btrfs_fs_info *fs_info = trans->fs_info;
5642 	u64 alloc_profile;
5643 	struct btrfs_block_group *meta_bg;
5644 	struct btrfs_block_group *sys_bg;
5645 
5646 	/*
5647 	 * When adding a new device for sprouting, the seed device is read-only
5648 	 * so we must first allocate a metadata and a system chunk. But before
5649 	 * adding the block group items to the extent, device and chunk btrees,
5650 	 * we must first:
5651 	 *
5652 	 * 1) Create both chunks without doing any changes to the btrees, as
5653 	 *    otherwise we would get -ENOSPC since the block groups from the
5654 	 *    seed device are read-only;
5655 	 *
5656 	 * 2) Add the device item for the new sprout device - finishing the setup
5657 	 *    of a new block group requires updating the device item in the chunk
5658 	 *    btree, so it must exist when we attempt to do it. The previous step
5659 	 *    ensures this does not fail with -ENOSPC.
5660 	 *
5661 	 * After that we can add the block group items to their btrees:
5662 	 * update existing device item in the chunk btree, add a new block group
5663 	 * item to the extent btree, add a new chunk item to the chunk btree and
5664 	 * finally add the new device extent items to the devices btree.
5665 	 */
5666 
5667 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5668 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5669 	if (IS_ERR(meta_bg))
5670 		return PTR_ERR(meta_bg);
5671 
5672 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5673 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5674 	if (IS_ERR(sys_bg))
5675 		return PTR_ERR(sys_bg);
5676 
5677 	return 0;
5678 }
5679 
5680 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5681 {
5682 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5683 
5684 	return btrfs_raid_array[index].tolerated_failures;
5685 }
5686 
5687 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5688 {
5689 	struct extent_map *em;
5690 	struct map_lookup *map;
5691 	int miss_ndevs = 0;
5692 	int i;
5693 	bool ret = true;
5694 
5695 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5696 	if (IS_ERR(em))
5697 		return false;
5698 
5699 	map = em->map_lookup;
5700 	for (i = 0; i < map->num_stripes; i++) {
5701 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5702 					&map->stripes[i].dev->dev_state)) {
5703 			miss_ndevs++;
5704 			continue;
5705 		}
5706 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5707 					&map->stripes[i].dev->dev_state)) {
5708 			ret = false;
5709 			goto end;
5710 		}
5711 	}
5712 
5713 	/*
5714 	 * If the number of missing devices is larger than max errors, we can
5715 	 * not write the data into that chunk successfully.
5716 	 */
5717 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5718 		ret = false;
5719 end:
5720 	free_extent_map(em);
5721 	return ret;
5722 }
5723 
5724 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5725 {
5726 	struct extent_map *em;
5727 
5728 	while (1) {
5729 		write_lock(&tree->lock);
5730 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5731 		if (em)
5732 			remove_extent_mapping(tree, em);
5733 		write_unlock(&tree->lock);
5734 		if (!em)
5735 			break;
5736 		/* once for us */
5737 		free_extent_map(em);
5738 		/* once for the tree */
5739 		free_extent_map(em);
5740 	}
5741 }
5742 
5743 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5744 {
5745 	struct extent_map *em;
5746 	struct map_lookup *map;
5747 	enum btrfs_raid_types index;
5748 	int ret = 1;
5749 
5750 	em = btrfs_get_chunk_map(fs_info, logical, len);
5751 	if (IS_ERR(em))
5752 		/*
5753 		 * We could return errors for these cases, but that could get
5754 		 * ugly and we'd probably do the same thing which is just not do
5755 		 * anything else and exit, so return 1 so the callers don't try
5756 		 * to use other copies.
5757 		 */
5758 		return 1;
5759 
5760 	map = em->map_lookup;
5761 	index = btrfs_bg_flags_to_raid_index(map->type);
5762 
5763 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5764 	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5765 		ret = btrfs_raid_array[index].ncopies;
5766 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5767 		ret = 2;
5768 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5769 		/*
5770 		 * There could be two corrupted data stripes, we need
5771 		 * to loop retry in order to rebuild the correct data.
5772 		 *
5773 		 * Fail a stripe at a time on every retry except the
5774 		 * stripe under reconstruction.
5775 		 */
5776 		ret = map->num_stripes;
5777 	free_extent_map(em);
5778 	return ret;
5779 }
5780 
5781 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5782 				    u64 logical)
5783 {
5784 	struct extent_map *em;
5785 	struct map_lookup *map;
5786 	unsigned long len = fs_info->sectorsize;
5787 
5788 	if (!btrfs_fs_incompat(fs_info, RAID56))
5789 		return len;
5790 
5791 	em = btrfs_get_chunk_map(fs_info, logical, len);
5792 
5793 	if (!WARN_ON(IS_ERR(em))) {
5794 		map = em->map_lookup;
5795 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5796 			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5797 		free_extent_map(em);
5798 	}
5799 	return len;
5800 }
5801 
5802 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5803 {
5804 	struct extent_map *em;
5805 	struct map_lookup *map;
5806 	int ret = 0;
5807 
5808 	if (!btrfs_fs_incompat(fs_info, RAID56))
5809 		return 0;
5810 
5811 	em = btrfs_get_chunk_map(fs_info, logical, len);
5812 
5813 	if(!WARN_ON(IS_ERR(em))) {
5814 		map = em->map_lookup;
5815 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5816 			ret = 1;
5817 		free_extent_map(em);
5818 	}
5819 	return ret;
5820 }
5821 
5822 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5823 			    struct map_lookup *map, int first,
5824 			    int dev_replace_is_ongoing)
5825 {
5826 	int i;
5827 	int num_stripes;
5828 	int preferred_mirror;
5829 	int tolerance;
5830 	struct btrfs_device *srcdev;
5831 
5832 	ASSERT((map->type &
5833 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5834 
5835 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5836 		num_stripes = map->sub_stripes;
5837 	else
5838 		num_stripes = map->num_stripes;
5839 
5840 	switch (fs_info->fs_devices->read_policy) {
5841 	default:
5842 		/* Shouldn't happen, just warn and use pid instead of failing */
5843 		btrfs_warn_rl(fs_info,
5844 			      "unknown read_policy type %u, reset to pid",
5845 			      fs_info->fs_devices->read_policy);
5846 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5847 		fallthrough;
5848 	case BTRFS_READ_POLICY_PID:
5849 		preferred_mirror = first + (current->pid % num_stripes);
5850 		break;
5851 	}
5852 
5853 	if (dev_replace_is_ongoing &&
5854 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5855 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5856 		srcdev = fs_info->dev_replace.srcdev;
5857 	else
5858 		srcdev = NULL;
5859 
5860 	/*
5861 	 * try to avoid the drive that is the source drive for a
5862 	 * dev-replace procedure, only choose it if no other non-missing
5863 	 * mirror is available
5864 	 */
5865 	for (tolerance = 0; tolerance < 2; tolerance++) {
5866 		if (map->stripes[preferred_mirror].dev->bdev &&
5867 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5868 			return preferred_mirror;
5869 		for (i = first; i < first + num_stripes; i++) {
5870 			if (map->stripes[i].dev->bdev &&
5871 			    (tolerance || map->stripes[i].dev != srcdev))
5872 				return i;
5873 		}
5874 	}
5875 
5876 	/* we couldn't find one that doesn't fail.  Just return something
5877 	 * and the io error handling code will clean up eventually
5878 	 */
5879 	return preferred_mirror;
5880 }
5881 
5882 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5883 						       u16 total_stripes)
5884 {
5885 	struct btrfs_io_context *bioc;
5886 
5887 	bioc = kzalloc(
5888 		 /* The size of btrfs_io_context */
5889 		sizeof(struct btrfs_io_context) +
5890 		/* Plus the variable array for the stripes */
5891 		sizeof(struct btrfs_io_stripe) * (total_stripes),
5892 		GFP_NOFS);
5893 
5894 	if (!bioc)
5895 		return NULL;
5896 
5897 	refcount_set(&bioc->refs, 1);
5898 
5899 	bioc->fs_info = fs_info;
5900 	bioc->replace_stripe_src = -1;
5901 	bioc->full_stripe_logical = (u64)-1;
5902 
5903 	return bioc;
5904 }
5905 
5906 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5907 {
5908 	WARN_ON(!refcount_read(&bioc->refs));
5909 	refcount_inc(&bioc->refs);
5910 }
5911 
5912 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5913 {
5914 	if (!bioc)
5915 		return;
5916 	if (refcount_dec_and_test(&bioc->refs))
5917 		kfree(bioc);
5918 }
5919 
5920 /*
5921  * Please note that, discard won't be sent to target device of device
5922  * replace.
5923  */
5924 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5925 					       u64 logical, u64 *length_ret,
5926 					       u32 *num_stripes)
5927 {
5928 	struct extent_map *em;
5929 	struct map_lookup *map;
5930 	struct btrfs_discard_stripe *stripes;
5931 	u64 length = *length_ret;
5932 	u64 offset;
5933 	u32 stripe_nr;
5934 	u32 stripe_nr_end;
5935 	u32 stripe_cnt;
5936 	u64 stripe_end_offset;
5937 	u64 stripe_offset;
5938 	u32 stripe_index;
5939 	u32 factor = 0;
5940 	u32 sub_stripes = 0;
5941 	u32 stripes_per_dev = 0;
5942 	u32 remaining_stripes = 0;
5943 	u32 last_stripe = 0;
5944 	int ret;
5945 	int i;
5946 
5947 	em = btrfs_get_chunk_map(fs_info, logical, length);
5948 	if (IS_ERR(em))
5949 		return ERR_CAST(em);
5950 
5951 	map = em->map_lookup;
5952 
5953 	/* we don't discard raid56 yet */
5954 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5955 		ret = -EOPNOTSUPP;
5956 		goto out_free_map;
5957 	}
5958 
5959 	offset = logical - em->start;
5960 	length = min_t(u64, em->start + em->len - logical, length);
5961 	*length_ret = length;
5962 
5963 	/*
5964 	 * stripe_nr counts the total number of stripes we have to stride
5965 	 * to get to this block
5966 	 */
5967 	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
5968 
5969 	/* stripe_offset is the offset of this block in its stripe */
5970 	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
5971 
5972 	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
5973 			BTRFS_STRIPE_LEN_SHIFT;
5974 	stripe_cnt = stripe_nr_end - stripe_nr;
5975 	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
5976 			    (offset + length);
5977 	/*
5978 	 * after this, stripe_nr is the number of stripes on this
5979 	 * device we have to walk to find the data, and stripe_index is
5980 	 * the number of our device in the stripe array
5981 	 */
5982 	*num_stripes = 1;
5983 	stripe_index = 0;
5984 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5985 			 BTRFS_BLOCK_GROUP_RAID10)) {
5986 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5987 			sub_stripes = 1;
5988 		else
5989 			sub_stripes = map->sub_stripes;
5990 
5991 		factor = map->num_stripes / sub_stripes;
5992 		*num_stripes = min_t(u64, map->num_stripes,
5993 				    sub_stripes * stripe_cnt);
5994 		stripe_index = stripe_nr % factor;
5995 		stripe_nr /= factor;
5996 		stripe_index *= sub_stripes;
5997 
5998 		remaining_stripes = stripe_cnt % factor;
5999 		stripes_per_dev = stripe_cnt / factor;
6000 		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6001 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6002 				BTRFS_BLOCK_GROUP_DUP)) {
6003 		*num_stripes = map->num_stripes;
6004 	} else {
6005 		stripe_index = stripe_nr % map->num_stripes;
6006 		stripe_nr /= map->num_stripes;
6007 	}
6008 
6009 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6010 	if (!stripes) {
6011 		ret = -ENOMEM;
6012 		goto out_free_map;
6013 	}
6014 
6015 	for (i = 0; i < *num_stripes; i++) {
6016 		stripes[i].physical =
6017 			map->stripes[stripe_index].physical +
6018 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6019 		stripes[i].dev = map->stripes[stripe_index].dev;
6020 
6021 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6022 				 BTRFS_BLOCK_GROUP_RAID10)) {
6023 			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6024 
6025 			if (i / sub_stripes < remaining_stripes)
6026 				stripes[i].length += BTRFS_STRIPE_LEN;
6027 
6028 			/*
6029 			 * Special for the first stripe and
6030 			 * the last stripe:
6031 			 *
6032 			 * |-------|...|-------|
6033 			 *     |----------|
6034 			 *    off     end_off
6035 			 */
6036 			if (i < sub_stripes)
6037 				stripes[i].length -= stripe_offset;
6038 
6039 			if (stripe_index >= last_stripe &&
6040 			    stripe_index <= (last_stripe +
6041 					     sub_stripes - 1))
6042 				stripes[i].length -= stripe_end_offset;
6043 
6044 			if (i == sub_stripes - 1)
6045 				stripe_offset = 0;
6046 		} else {
6047 			stripes[i].length = length;
6048 		}
6049 
6050 		stripe_index++;
6051 		if (stripe_index == map->num_stripes) {
6052 			stripe_index = 0;
6053 			stripe_nr++;
6054 		}
6055 	}
6056 
6057 	free_extent_map(em);
6058 	return stripes;
6059 out_free_map:
6060 	free_extent_map(em);
6061 	return ERR_PTR(ret);
6062 }
6063 
6064 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6065 {
6066 	struct btrfs_block_group *cache;
6067 	bool ret;
6068 
6069 	/* Non zoned filesystem does not use "to_copy" flag */
6070 	if (!btrfs_is_zoned(fs_info))
6071 		return false;
6072 
6073 	cache = btrfs_lookup_block_group(fs_info, logical);
6074 
6075 	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6076 
6077 	btrfs_put_block_group(cache);
6078 	return ret;
6079 }
6080 
6081 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6082 				      struct btrfs_io_context *bioc,
6083 				      struct btrfs_dev_replace *dev_replace,
6084 				      u64 logical,
6085 				      int *num_stripes_ret, int *max_errors_ret)
6086 {
6087 	u64 srcdev_devid = dev_replace->srcdev->devid;
6088 	/*
6089 	 * At this stage, num_stripes is still the real number of stripes,
6090 	 * excluding the duplicated stripes.
6091 	 */
6092 	int num_stripes = *num_stripes_ret;
6093 	int nr_extra_stripes = 0;
6094 	int max_errors = *max_errors_ret;
6095 	int i;
6096 
6097 	/*
6098 	 * A block group which has "to_copy" set will eventually be copied by
6099 	 * the dev-replace process. We can avoid cloning IO here.
6100 	 */
6101 	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6102 		return;
6103 
6104 	/*
6105 	 * Duplicate the write operations while the dev-replace procedure is
6106 	 * running. Since the copying of the old disk to the new disk takes
6107 	 * place at run time while the filesystem is mounted writable, the
6108 	 * regular write operations to the old disk have to be duplicated to go
6109 	 * to the new disk as well.
6110 	 *
6111 	 * Note that device->missing is handled by the caller, and that the
6112 	 * write to the old disk is already set up in the stripes array.
6113 	 */
6114 	for (i = 0; i < num_stripes; i++) {
6115 		struct btrfs_io_stripe *old = &bioc->stripes[i];
6116 		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6117 
6118 		if (old->dev->devid != srcdev_devid)
6119 			continue;
6120 
6121 		new->physical = old->physical;
6122 		new->dev = dev_replace->tgtdev;
6123 		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6124 			bioc->replace_stripe_src = i;
6125 		nr_extra_stripes++;
6126 	}
6127 
6128 	/* We can only have at most 2 extra nr_stripes (for DUP). */
6129 	ASSERT(nr_extra_stripes <= 2);
6130 	/*
6131 	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6132 	 * replace.
6133 	 * If we have 2 extra stripes, only choose the one with smaller physical.
6134 	 */
6135 	if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6136 		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6137 		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6138 
6139 		/* Only DUP can have two extra stripes. */
6140 		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6141 
6142 		/*
6143 		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6144 		 * The extra stripe would still be there, but won't be accessed.
6145 		 */
6146 		if (first->physical > second->physical) {
6147 			swap(second->physical, first->physical);
6148 			swap(second->dev, first->dev);
6149 			nr_extra_stripes--;
6150 		}
6151 	}
6152 
6153 	*num_stripes_ret = num_stripes + nr_extra_stripes;
6154 	*max_errors_ret = max_errors + nr_extra_stripes;
6155 	bioc->replace_nr_stripes = nr_extra_stripes;
6156 }
6157 
6158 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
6159 			    u64 offset, u32 *stripe_nr, u64 *stripe_offset,
6160 			    u64 *full_stripe_start)
6161 {
6162 	/*
6163 	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6164 	 * the offset of this block in its stripe.
6165 	 */
6166 	*stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6167 	*stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6168 	ASSERT(*stripe_offset < U32_MAX);
6169 
6170 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6171 		unsigned long full_stripe_len =
6172 			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6173 
6174 		/*
6175 		 * For full stripe start, we use previously calculated
6176 		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6177 		 * STRIPE_LEN.
6178 		 *
6179 		 * By this we can avoid u64 division completely.  And we have
6180 		 * to go rounddown(), not round_down(), as nr_data_stripes is
6181 		 * not ensured to be power of 2.
6182 		 */
6183 		*full_stripe_start =
6184 			btrfs_stripe_nr_to_offset(
6185 				rounddown(*stripe_nr, nr_data_stripes(map)));
6186 
6187 		ASSERT(*full_stripe_start + full_stripe_len > offset);
6188 		ASSERT(*full_stripe_start <= offset);
6189 		/*
6190 		 * For writes to RAID56, allow to write a full stripe set, but
6191 		 * no straddling of stripe sets.
6192 		 */
6193 		if (op == BTRFS_MAP_WRITE)
6194 			return full_stripe_len - (offset - *full_stripe_start);
6195 	}
6196 
6197 	/*
6198 	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6199 	 * a single disk).
6200 	 */
6201 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6202 		return BTRFS_STRIPE_LEN - *stripe_offset;
6203 	return U64_MAX;
6204 }
6205 
6206 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6207 			  u32 stripe_index, u64 stripe_offset, u32 stripe_nr)
6208 {
6209 	dst->dev = map->stripes[stripe_index].dev;
6210 	dst->physical = map->stripes[stripe_index].physical +
6211 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6212 }
6213 
6214 /*
6215  * Map one logical range to one or more physical ranges.
6216  *
6217  * @length:		(Mandatory) mapped length of this run.
6218  *			One logical range can be split into different segments
6219  *			due to factors like zones and RAID0/5/6/10 stripe
6220  *			boundaries.
6221  *
6222  * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6223  *			which has one or more physical ranges (btrfs_io_stripe)
6224  *			recorded inside.
6225  *			Caller should call btrfs_put_bioc() to free it after use.
6226  *
6227  * @smap:		(Optional) single physical range optimization.
6228  *			If the map request can be fulfilled by one single
6229  *			physical range, and this is parameter is not NULL,
6230  *			then @bioc_ret would be NULL, and @smap would be
6231  *			updated.
6232  *
6233  * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6234  *			value is 0.
6235  *
6236  *			Mirror number 0 means to choose any live mirrors.
6237  *
6238  *			For non-RAID56 profiles, non-zero mirror_num means
6239  *			the Nth mirror. (e.g. mirror_num 1 means the first
6240  *			copy).
6241  *
6242  *			For RAID56 profile, mirror 1 means rebuild from P and
6243  *			the remaining data stripes.
6244  *
6245  *			For RAID6 profile, mirror > 2 means mark another
6246  *			data/P stripe error and rebuild from the remaining
6247  *			stripes..
6248  *
6249  * @need_raid_map:	(Used only for integrity checker) whether the map wants
6250  *                      a full stripe map (including all data and P/Q stripes)
6251  *                      for RAID56. Should always be 1 except integrity checker.
6252  */
6253 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6254 		    u64 logical, u64 *length,
6255 		    struct btrfs_io_context **bioc_ret,
6256 		    struct btrfs_io_stripe *smap, int *mirror_num_ret,
6257 		    int need_raid_map)
6258 {
6259 	struct extent_map *em;
6260 	struct map_lookup *map;
6261 	u64 map_offset;
6262 	u64 stripe_offset;
6263 	u32 stripe_nr;
6264 	u32 stripe_index;
6265 	int data_stripes;
6266 	int i;
6267 	int ret = 0;
6268 	int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6269 	int num_stripes;
6270 	int num_copies;
6271 	int max_errors = 0;
6272 	struct btrfs_io_context *bioc = NULL;
6273 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6274 	int dev_replace_is_ongoing = 0;
6275 	u16 num_alloc_stripes;
6276 	u64 raid56_full_stripe_start = (u64)-1;
6277 	u64 max_len;
6278 
6279 	ASSERT(bioc_ret);
6280 
6281 	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6282 	if (mirror_num > num_copies)
6283 		return -EINVAL;
6284 
6285 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6286 	if (IS_ERR(em))
6287 		return PTR_ERR(em);
6288 
6289 	map = em->map_lookup;
6290 	data_stripes = nr_data_stripes(map);
6291 
6292 	map_offset = logical - em->start;
6293 	max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
6294 				   &stripe_offset, &raid56_full_stripe_start);
6295 	*length = min_t(u64, em->len - map_offset, max_len);
6296 
6297 	down_read(&dev_replace->rwsem);
6298 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6299 	/*
6300 	 * Hold the semaphore for read during the whole operation, write is
6301 	 * requested at commit time but must wait.
6302 	 */
6303 	if (!dev_replace_is_ongoing)
6304 		up_read(&dev_replace->rwsem);
6305 
6306 	num_stripes = 1;
6307 	stripe_index = 0;
6308 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6309 		stripe_index = stripe_nr % map->num_stripes;
6310 		stripe_nr /= map->num_stripes;
6311 		if (op == BTRFS_MAP_READ)
6312 			mirror_num = 1;
6313 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6314 		if (op != BTRFS_MAP_READ) {
6315 			num_stripes = map->num_stripes;
6316 		} else if (mirror_num) {
6317 			stripe_index = mirror_num - 1;
6318 		} else {
6319 			stripe_index = find_live_mirror(fs_info, map, 0,
6320 					    dev_replace_is_ongoing);
6321 			mirror_num = stripe_index + 1;
6322 		}
6323 
6324 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6325 		if (op != BTRFS_MAP_READ) {
6326 			num_stripes = map->num_stripes;
6327 		} else if (mirror_num) {
6328 			stripe_index = mirror_num - 1;
6329 		} else {
6330 			mirror_num = 1;
6331 		}
6332 
6333 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6334 		u32 factor = map->num_stripes / map->sub_stripes;
6335 
6336 		stripe_index = (stripe_nr % factor) * map->sub_stripes;
6337 		stripe_nr /= factor;
6338 
6339 		if (op != BTRFS_MAP_READ)
6340 			num_stripes = map->sub_stripes;
6341 		else if (mirror_num)
6342 			stripe_index += mirror_num - 1;
6343 		else {
6344 			int old_stripe_index = stripe_index;
6345 			stripe_index = find_live_mirror(fs_info, map,
6346 					      stripe_index,
6347 					      dev_replace_is_ongoing);
6348 			mirror_num = stripe_index - old_stripe_index + 1;
6349 		}
6350 
6351 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6352 		if (need_raid_map && (op != BTRFS_MAP_READ || mirror_num > 1)) {
6353 			/*
6354 			 * Push stripe_nr back to the start of the full stripe
6355 			 * For those cases needing a full stripe, @stripe_nr
6356 			 * is the full stripe number.
6357 			 *
6358 			 * Originally we go raid56_full_stripe_start / full_stripe_len,
6359 			 * but that can be expensive.  Here we just divide
6360 			 * @stripe_nr with @data_stripes.
6361 			 */
6362 			stripe_nr /= data_stripes;
6363 
6364 			/* RAID[56] write or recovery. Return all stripes */
6365 			num_stripes = map->num_stripes;
6366 			max_errors = btrfs_chunk_max_errors(map);
6367 
6368 			/* Return the length to the full stripe end */
6369 			*length = min(logical + *length,
6370 				      raid56_full_stripe_start + em->start +
6371 				      btrfs_stripe_nr_to_offset(data_stripes)) -
6372 				  logical;
6373 			stripe_index = 0;
6374 			stripe_offset = 0;
6375 		} else {
6376 			/*
6377 			 * Mirror #0 or #1 means the original data block.
6378 			 * Mirror #2 is RAID5 parity block.
6379 			 * Mirror #3 is RAID6 Q block.
6380 			 */
6381 			stripe_index = stripe_nr % data_stripes;
6382 			stripe_nr /= data_stripes;
6383 			if (mirror_num > 1)
6384 				stripe_index = data_stripes + mirror_num - 2;
6385 
6386 			/* We distribute the parity blocks across stripes */
6387 			stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
6388 			if (op == BTRFS_MAP_READ && mirror_num <= 1)
6389 				mirror_num = 1;
6390 		}
6391 	} else {
6392 		/*
6393 		 * After this, stripe_nr is the number of stripes on this
6394 		 * device we have to walk to find the data, and stripe_index is
6395 		 * the number of our device in the stripe array
6396 		 */
6397 		stripe_index = stripe_nr % map->num_stripes;
6398 		stripe_nr /= map->num_stripes;
6399 		mirror_num = stripe_index + 1;
6400 	}
6401 	if (stripe_index >= map->num_stripes) {
6402 		btrfs_crit(fs_info,
6403 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6404 			   stripe_index, map->num_stripes);
6405 		ret = -EINVAL;
6406 		goto out;
6407 	}
6408 
6409 	num_alloc_stripes = num_stripes;
6410 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6411 	    op != BTRFS_MAP_READ)
6412 		/*
6413 		 * For replace case, we need to add extra stripes for extra
6414 		 * duplicated stripes.
6415 		 *
6416 		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6417 		 * 2 more stripes (DUP types, otherwise 1).
6418 		 */
6419 		num_alloc_stripes += 2;
6420 
6421 	/*
6422 	 * If this I/O maps to a single device, try to return the device and
6423 	 * physical block information on the stack instead of allocating an
6424 	 * I/O context structure.
6425 	 */
6426 	if (smap && num_alloc_stripes == 1 &&
6427 	    !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) {
6428 		set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr);
6429 		if (mirror_num_ret)
6430 			*mirror_num_ret = mirror_num;
6431 		*bioc_ret = NULL;
6432 		ret = 0;
6433 		goto out;
6434 	}
6435 
6436 	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes);
6437 	if (!bioc) {
6438 		ret = -ENOMEM;
6439 		goto out;
6440 	}
6441 	bioc->map_type = map->type;
6442 
6443 	/*
6444 	 * For RAID56 full map, we need to make sure the stripes[] follows the
6445 	 * rule that data stripes are all ordered, then followed with P and Q
6446 	 * (if we have).
6447 	 *
6448 	 * It's still mostly the same as other profiles, just with extra rotation.
6449 	 */
6450 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6451 	    (op != BTRFS_MAP_READ || mirror_num > 1)) {
6452 		/*
6453 		 * For RAID56 @stripe_nr is already the number of full stripes
6454 		 * before us, which is also the rotation value (needs to modulo
6455 		 * with num_stripes).
6456 		 *
6457 		 * In this case, we just add @stripe_nr with @i, then do the
6458 		 * modulo, to reduce one modulo call.
6459 		 */
6460 		bioc->full_stripe_logical = em->start +
6461 			btrfs_stripe_nr_to_offset(stripe_nr * data_stripes);
6462 		for (i = 0; i < num_stripes; i++)
6463 			set_io_stripe(&bioc->stripes[i], map,
6464 				      (i + stripe_nr) % num_stripes,
6465 				      stripe_offset, stripe_nr);
6466 	} else {
6467 		/*
6468 		 * For all other non-RAID56 profiles, just copy the target
6469 		 * stripe into the bioc.
6470 		 */
6471 		for (i = 0; i < num_stripes; i++) {
6472 			set_io_stripe(&bioc->stripes[i], map, stripe_index,
6473 				      stripe_offset, stripe_nr);
6474 			stripe_index++;
6475 		}
6476 	}
6477 
6478 	if (op != BTRFS_MAP_READ)
6479 		max_errors = btrfs_chunk_max_errors(map);
6480 
6481 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6482 	    op != BTRFS_MAP_READ) {
6483 		handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6484 					  &num_stripes, &max_errors);
6485 	}
6486 
6487 	*bioc_ret = bioc;
6488 	bioc->num_stripes = num_stripes;
6489 	bioc->max_errors = max_errors;
6490 	bioc->mirror_num = mirror_num;
6491 
6492 out:
6493 	if (dev_replace_is_ongoing) {
6494 		lockdep_assert_held(&dev_replace->rwsem);
6495 		/* Unlock and let waiting writers proceed */
6496 		up_read(&dev_replace->rwsem);
6497 	}
6498 	free_extent_map(em);
6499 	return ret;
6500 }
6501 
6502 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6503 				      const struct btrfs_fs_devices *fs_devices)
6504 {
6505 	if (args->fsid == NULL)
6506 		return true;
6507 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6508 		return true;
6509 	return false;
6510 }
6511 
6512 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6513 				  const struct btrfs_device *device)
6514 {
6515 	if (args->missing) {
6516 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6517 		    !device->bdev)
6518 			return true;
6519 		return false;
6520 	}
6521 
6522 	if (device->devid != args->devid)
6523 		return false;
6524 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6525 		return false;
6526 	return true;
6527 }
6528 
6529 /*
6530  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6531  * return NULL.
6532  *
6533  * If devid and uuid are both specified, the match must be exact, otherwise
6534  * only devid is used.
6535  */
6536 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6537 				       const struct btrfs_dev_lookup_args *args)
6538 {
6539 	struct btrfs_device *device;
6540 	struct btrfs_fs_devices *seed_devs;
6541 
6542 	if (dev_args_match_fs_devices(args, fs_devices)) {
6543 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6544 			if (dev_args_match_device(args, device))
6545 				return device;
6546 		}
6547 	}
6548 
6549 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6550 		if (!dev_args_match_fs_devices(args, seed_devs))
6551 			continue;
6552 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6553 			if (dev_args_match_device(args, device))
6554 				return device;
6555 		}
6556 	}
6557 
6558 	return NULL;
6559 }
6560 
6561 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6562 					    u64 devid, u8 *dev_uuid)
6563 {
6564 	struct btrfs_device *device;
6565 	unsigned int nofs_flag;
6566 
6567 	/*
6568 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6569 	 * allocation, however we don't want to change btrfs_alloc_device() to
6570 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6571 	 * places.
6572 	 */
6573 
6574 	nofs_flag = memalloc_nofs_save();
6575 	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6576 	memalloc_nofs_restore(nofs_flag);
6577 	if (IS_ERR(device))
6578 		return device;
6579 
6580 	list_add(&device->dev_list, &fs_devices->devices);
6581 	device->fs_devices = fs_devices;
6582 	fs_devices->num_devices++;
6583 
6584 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6585 	fs_devices->missing_devices++;
6586 
6587 	return device;
6588 }
6589 
6590 /*
6591  * Allocate new device struct, set up devid and UUID.
6592  *
6593  * @fs_info:	used only for generating a new devid, can be NULL if
6594  *		devid is provided (i.e. @devid != NULL).
6595  * @devid:	a pointer to devid for this device.  If NULL a new devid
6596  *		is generated.
6597  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6598  *		is generated.
6599  * @path:	a pointer to device path if available, NULL otherwise.
6600  *
6601  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6602  * on error.  Returned struct is not linked onto any lists and must be
6603  * destroyed with btrfs_free_device.
6604  */
6605 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6606 					const u64 *devid, const u8 *uuid,
6607 					const char *path)
6608 {
6609 	struct btrfs_device *dev;
6610 	u64 tmp;
6611 
6612 	if (WARN_ON(!devid && !fs_info))
6613 		return ERR_PTR(-EINVAL);
6614 
6615 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6616 	if (!dev)
6617 		return ERR_PTR(-ENOMEM);
6618 
6619 	INIT_LIST_HEAD(&dev->dev_list);
6620 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6621 	INIT_LIST_HEAD(&dev->post_commit_list);
6622 
6623 	atomic_set(&dev->dev_stats_ccnt, 0);
6624 	btrfs_device_data_ordered_init(dev);
6625 	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6626 
6627 	if (devid)
6628 		tmp = *devid;
6629 	else {
6630 		int ret;
6631 
6632 		ret = find_next_devid(fs_info, &tmp);
6633 		if (ret) {
6634 			btrfs_free_device(dev);
6635 			return ERR_PTR(ret);
6636 		}
6637 	}
6638 	dev->devid = tmp;
6639 
6640 	if (uuid)
6641 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6642 	else
6643 		generate_random_uuid(dev->uuid);
6644 
6645 	if (path) {
6646 		struct rcu_string *name;
6647 
6648 		name = rcu_string_strdup(path, GFP_KERNEL);
6649 		if (!name) {
6650 			btrfs_free_device(dev);
6651 			return ERR_PTR(-ENOMEM);
6652 		}
6653 		rcu_assign_pointer(dev->name, name);
6654 	}
6655 
6656 	return dev;
6657 }
6658 
6659 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6660 					u64 devid, u8 *uuid, bool error)
6661 {
6662 	if (error)
6663 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6664 			      devid, uuid);
6665 	else
6666 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6667 			      devid, uuid);
6668 }
6669 
6670 u64 btrfs_calc_stripe_length(const struct extent_map *em)
6671 {
6672 	const struct map_lookup *map = em->map_lookup;
6673 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6674 
6675 	return div_u64(em->len, data_stripes);
6676 }
6677 
6678 #if BITS_PER_LONG == 32
6679 /*
6680  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6681  * can't be accessed on 32bit systems.
6682  *
6683  * This function do mount time check to reject the fs if it already has
6684  * metadata chunk beyond that limit.
6685  */
6686 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6687 				  u64 logical, u64 length, u64 type)
6688 {
6689 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6690 		return 0;
6691 
6692 	if (logical + length < MAX_LFS_FILESIZE)
6693 		return 0;
6694 
6695 	btrfs_err_32bit_limit(fs_info);
6696 	return -EOVERFLOW;
6697 }
6698 
6699 /*
6700  * This is to give early warning for any metadata chunk reaching
6701  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6702  * Although we can still access the metadata, it's not going to be possible
6703  * once the limit is reached.
6704  */
6705 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6706 				  u64 logical, u64 length, u64 type)
6707 {
6708 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6709 		return;
6710 
6711 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6712 		return;
6713 
6714 	btrfs_warn_32bit_limit(fs_info);
6715 }
6716 #endif
6717 
6718 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6719 						  u64 devid, u8 *uuid)
6720 {
6721 	struct btrfs_device *dev;
6722 
6723 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6724 		btrfs_report_missing_device(fs_info, devid, uuid, true);
6725 		return ERR_PTR(-ENOENT);
6726 	}
6727 
6728 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6729 	if (IS_ERR(dev)) {
6730 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6731 			  devid, PTR_ERR(dev));
6732 		return dev;
6733 	}
6734 	btrfs_report_missing_device(fs_info, devid, uuid, false);
6735 
6736 	return dev;
6737 }
6738 
6739 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6740 			  struct btrfs_chunk *chunk)
6741 {
6742 	BTRFS_DEV_LOOKUP_ARGS(args);
6743 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6744 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6745 	struct map_lookup *map;
6746 	struct extent_map *em;
6747 	u64 logical;
6748 	u64 length;
6749 	u64 devid;
6750 	u64 type;
6751 	u8 uuid[BTRFS_UUID_SIZE];
6752 	int index;
6753 	int num_stripes;
6754 	int ret;
6755 	int i;
6756 
6757 	logical = key->offset;
6758 	length = btrfs_chunk_length(leaf, chunk);
6759 	type = btrfs_chunk_type(leaf, chunk);
6760 	index = btrfs_bg_flags_to_raid_index(type);
6761 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6762 
6763 #if BITS_PER_LONG == 32
6764 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6765 	if (ret < 0)
6766 		return ret;
6767 	warn_32bit_meta_chunk(fs_info, logical, length, type);
6768 #endif
6769 
6770 	/*
6771 	 * Only need to verify chunk item if we're reading from sys chunk array,
6772 	 * as chunk item in tree block is already verified by tree-checker.
6773 	 */
6774 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6775 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6776 		if (ret)
6777 			return ret;
6778 	}
6779 
6780 	read_lock(&map_tree->lock);
6781 	em = lookup_extent_mapping(map_tree, logical, 1);
6782 	read_unlock(&map_tree->lock);
6783 
6784 	/* already mapped? */
6785 	if (em && em->start <= logical && em->start + em->len > logical) {
6786 		free_extent_map(em);
6787 		return 0;
6788 	} else if (em) {
6789 		free_extent_map(em);
6790 	}
6791 
6792 	em = alloc_extent_map();
6793 	if (!em)
6794 		return -ENOMEM;
6795 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6796 	if (!map) {
6797 		free_extent_map(em);
6798 		return -ENOMEM;
6799 	}
6800 
6801 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6802 	em->map_lookup = map;
6803 	em->start = logical;
6804 	em->len = length;
6805 	em->orig_start = 0;
6806 	em->block_start = 0;
6807 	em->block_len = em->len;
6808 
6809 	map->num_stripes = num_stripes;
6810 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6811 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6812 	map->type = type;
6813 	/*
6814 	 * We can't use the sub_stripes value, as for profiles other than
6815 	 * RAID10, they may have 0 as sub_stripes for filesystems created by
6816 	 * older mkfs (<v5.4).
6817 	 * In that case, it can cause divide-by-zero errors later.
6818 	 * Since currently sub_stripes is fixed for each profile, let's
6819 	 * use the trusted value instead.
6820 	 */
6821 	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6822 	map->verified_stripes = 0;
6823 	em->orig_block_len = btrfs_calc_stripe_length(em);
6824 	for (i = 0; i < num_stripes; i++) {
6825 		map->stripes[i].physical =
6826 			btrfs_stripe_offset_nr(leaf, chunk, i);
6827 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6828 		args.devid = devid;
6829 		read_extent_buffer(leaf, uuid, (unsigned long)
6830 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6831 				   BTRFS_UUID_SIZE);
6832 		args.uuid = uuid;
6833 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6834 		if (!map->stripes[i].dev) {
6835 			map->stripes[i].dev = handle_missing_device(fs_info,
6836 								    devid, uuid);
6837 			if (IS_ERR(map->stripes[i].dev)) {
6838 				ret = PTR_ERR(map->stripes[i].dev);
6839 				free_extent_map(em);
6840 				return ret;
6841 			}
6842 		}
6843 
6844 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6845 				&(map->stripes[i].dev->dev_state));
6846 	}
6847 
6848 	write_lock(&map_tree->lock);
6849 	ret = add_extent_mapping(map_tree, em, 0);
6850 	write_unlock(&map_tree->lock);
6851 	if (ret < 0) {
6852 		btrfs_err(fs_info,
6853 			  "failed to add chunk map, start=%llu len=%llu: %d",
6854 			  em->start, em->len, ret);
6855 	}
6856 	free_extent_map(em);
6857 
6858 	return ret;
6859 }
6860 
6861 static void fill_device_from_item(struct extent_buffer *leaf,
6862 				 struct btrfs_dev_item *dev_item,
6863 				 struct btrfs_device *device)
6864 {
6865 	unsigned long ptr;
6866 
6867 	device->devid = btrfs_device_id(leaf, dev_item);
6868 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6869 	device->total_bytes = device->disk_total_bytes;
6870 	device->commit_total_bytes = device->disk_total_bytes;
6871 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6872 	device->commit_bytes_used = device->bytes_used;
6873 	device->type = btrfs_device_type(leaf, dev_item);
6874 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6875 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6876 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6877 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6878 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6879 
6880 	ptr = btrfs_device_uuid(dev_item);
6881 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6882 }
6883 
6884 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6885 						  u8 *fsid)
6886 {
6887 	struct btrfs_fs_devices *fs_devices;
6888 	int ret;
6889 
6890 	lockdep_assert_held(&uuid_mutex);
6891 	ASSERT(fsid);
6892 
6893 	/* This will match only for multi-device seed fs */
6894 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6895 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6896 			return fs_devices;
6897 
6898 
6899 	fs_devices = find_fsid(fsid, NULL);
6900 	if (!fs_devices) {
6901 		if (!btrfs_test_opt(fs_info, DEGRADED))
6902 			return ERR_PTR(-ENOENT);
6903 
6904 		fs_devices = alloc_fs_devices(fsid, NULL);
6905 		if (IS_ERR(fs_devices))
6906 			return fs_devices;
6907 
6908 		fs_devices->seeding = true;
6909 		fs_devices->opened = 1;
6910 		return fs_devices;
6911 	}
6912 
6913 	/*
6914 	 * Upon first call for a seed fs fsid, just create a private copy of the
6915 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6916 	 */
6917 	fs_devices = clone_fs_devices(fs_devices);
6918 	if (IS_ERR(fs_devices))
6919 		return fs_devices;
6920 
6921 	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
6922 	if (ret) {
6923 		free_fs_devices(fs_devices);
6924 		return ERR_PTR(ret);
6925 	}
6926 
6927 	if (!fs_devices->seeding) {
6928 		close_fs_devices(fs_devices);
6929 		free_fs_devices(fs_devices);
6930 		return ERR_PTR(-EINVAL);
6931 	}
6932 
6933 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6934 
6935 	return fs_devices;
6936 }
6937 
6938 static int read_one_dev(struct extent_buffer *leaf,
6939 			struct btrfs_dev_item *dev_item)
6940 {
6941 	BTRFS_DEV_LOOKUP_ARGS(args);
6942 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6943 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6944 	struct btrfs_device *device;
6945 	u64 devid;
6946 	int ret;
6947 	u8 fs_uuid[BTRFS_FSID_SIZE];
6948 	u8 dev_uuid[BTRFS_UUID_SIZE];
6949 
6950 	devid = btrfs_device_id(leaf, dev_item);
6951 	args.devid = devid;
6952 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6953 			   BTRFS_UUID_SIZE);
6954 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6955 			   BTRFS_FSID_SIZE);
6956 	args.uuid = dev_uuid;
6957 	args.fsid = fs_uuid;
6958 
6959 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6960 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6961 		if (IS_ERR(fs_devices))
6962 			return PTR_ERR(fs_devices);
6963 	}
6964 
6965 	device = btrfs_find_device(fs_info->fs_devices, &args);
6966 	if (!device) {
6967 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6968 			btrfs_report_missing_device(fs_info, devid,
6969 							dev_uuid, true);
6970 			return -ENOENT;
6971 		}
6972 
6973 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6974 		if (IS_ERR(device)) {
6975 			btrfs_err(fs_info,
6976 				"failed to add missing dev %llu: %ld",
6977 				devid, PTR_ERR(device));
6978 			return PTR_ERR(device);
6979 		}
6980 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6981 	} else {
6982 		if (!device->bdev) {
6983 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6984 				btrfs_report_missing_device(fs_info,
6985 						devid, dev_uuid, true);
6986 				return -ENOENT;
6987 			}
6988 			btrfs_report_missing_device(fs_info, devid,
6989 							dev_uuid, false);
6990 		}
6991 
6992 		if (!device->bdev &&
6993 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6994 			/*
6995 			 * this happens when a device that was properly setup
6996 			 * in the device info lists suddenly goes bad.
6997 			 * device->bdev is NULL, and so we have to set
6998 			 * device->missing to one here
6999 			 */
7000 			device->fs_devices->missing_devices++;
7001 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7002 		}
7003 
7004 		/* Move the device to its own fs_devices */
7005 		if (device->fs_devices != fs_devices) {
7006 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7007 							&device->dev_state));
7008 
7009 			list_move(&device->dev_list, &fs_devices->devices);
7010 			device->fs_devices->num_devices--;
7011 			fs_devices->num_devices++;
7012 
7013 			device->fs_devices->missing_devices--;
7014 			fs_devices->missing_devices++;
7015 
7016 			device->fs_devices = fs_devices;
7017 		}
7018 	}
7019 
7020 	if (device->fs_devices != fs_info->fs_devices) {
7021 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7022 		if (device->generation !=
7023 		    btrfs_device_generation(leaf, dev_item))
7024 			return -EINVAL;
7025 	}
7026 
7027 	fill_device_from_item(leaf, dev_item, device);
7028 	if (device->bdev) {
7029 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7030 
7031 		if (device->total_bytes > max_total_bytes) {
7032 			btrfs_err(fs_info,
7033 			"device total_bytes should be at most %llu but found %llu",
7034 				  max_total_bytes, device->total_bytes);
7035 			return -EINVAL;
7036 		}
7037 	}
7038 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7039 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7040 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7041 		device->fs_devices->total_rw_bytes += device->total_bytes;
7042 		atomic64_add(device->total_bytes - device->bytes_used,
7043 				&fs_info->free_chunk_space);
7044 	}
7045 	ret = 0;
7046 	return ret;
7047 }
7048 
7049 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7050 {
7051 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7052 	struct extent_buffer *sb;
7053 	struct btrfs_disk_key *disk_key;
7054 	struct btrfs_chunk *chunk;
7055 	u8 *array_ptr;
7056 	unsigned long sb_array_offset;
7057 	int ret = 0;
7058 	u32 num_stripes;
7059 	u32 array_size;
7060 	u32 len = 0;
7061 	u32 cur_offset;
7062 	u64 type;
7063 	struct btrfs_key key;
7064 
7065 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7066 
7067 	/*
7068 	 * We allocated a dummy extent, just to use extent buffer accessors.
7069 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7070 	 * that's fine, we will not go beyond system chunk array anyway.
7071 	 */
7072 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7073 	if (!sb)
7074 		return -ENOMEM;
7075 	set_extent_buffer_uptodate(sb);
7076 
7077 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7078 	array_size = btrfs_super_sys_array_size(super_copy);
7079 
7080 	array_ptr = super_copy->sys_chunk_array;
7081 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7082 	cur_offset = 0;
7083 
7084 	while (cur_offset < array_size) {
7085 		disk_key = (struct btrfs_disk_key *)array_ptr;
7086 		len = sizeof(*disk_key);
7087 		if (cur_offset + len > array_size)
7088 			goto out_short_read;
7089 
7090 		btrfs_disk_key_to_cpu(&key, disk_key);
7091 
7092 		array_ptr += len;
7093 		sb_array_offset += len;
7094 		cur_offset += len;
7095 
7096 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7097 			btrfs_err(fs_info,
7098 			    "unexpected item type %u in sys_array at offset %u",
7099 				  (u32)key.type, cur_offset);
7100 			ret = -EIO;
7101 			break;
7102 		}
7103 
7104 		chunk = (struct btrfs_chunk *)sb_array_offset;
7105 		/*
7106 		 * At least one btrfs_chunk with one stripe must be present,
7107 		 * exact stripe count check comes afterwards
7108 		 */
7109 		len = btrfs_chunk_item_size(1);
7110 		if (cur_offset + len > array_size)
7111 			goto out_short_read;
7112 
7113 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7114 		if (!num_stripes) {
7115 			btrfs_err(fs_info,
7116 			"invalid number of stripes %u in sys_array at offset %u",
7117 				  num_stripes, cur_offset);
7118 			ret = -EIO;
7119 			break;
7120 		}
7121 
7122 		type = btrfs_chunk_type(sb, chunk);
7123 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7124 			btrfs_err(fs_info,
7125 			"invalid chunk type %llu in sys_array at offset %u",
7126 				  type, cur_offset);
7127 			ret = -EIO;
7128 			break;
7129 		}
7130 
7131 		len = btrfs_chunk_item_size(num_stripes);
7132 		if (cur_offset + len > array_size)
7133 			goto out_short_read;
7134 
7135 		ret = read_one_chunk(&key, sb, chunk);
7136 		if (ret)
7137 			break;
7138 
7139 		array_ptr += len;
7140 		sb_array_offset += len;
7141 		cur_offset += len;
7142 	}
7143 	clear_extent_buffer_uptodate(sb);
7144 	free_extent_buffer_stale(sb);
7145 	return ret;
7146 
7147 out_short_read:
7148 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7149 			len, cur_offset);
7150 	clear_extent_buffer_uptodate(sb);
7151 	free_extent_buffer_stale(sb);
7152 	return -EIO;
7153 }
7154 
7155 /*
7156  * Check if all chunks in the fs are OK for read-write degraded mount
7157  *
7158  * If the @failing_dev is specified, it's accounted as missing.
7159  *
7160  * Return true if all chunks meet the minimal RW mount requirements.
7161  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7162  */
7163 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7164 					struct btrfs_device *failing_dev)
7165 {
7166 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7167 	struct extent_map *em;
7168 	u64 next_start = 0;
7169 	bool ret = true;
7170 
7171 	read_lock(&map_tree->lock);
7172 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7173 	read_unlock(&map_tree->lock);
7174 	/* No chunk at all? Return false anyway */
7175 	if (!em) {
7176 		ret = false;
7177 		goto out;
7178 	}
7179 	while (em) {
7180 		struct map_lookup *map;
7181 		int missing = 0;
7182 		int max_tolerated;
7183 		int i;
7184 
7185 		map = em->map_lookup;
7186 		max_tolerated =
7187 			btrfs_get_num_tolerated_disk_barrier_failures(
7188 					map->type);
7189 		for (i = 0; i < map->num_stripes; i++) {
7190 			struct btrfs_device *dev = map->stripes[i].dev;
7191 
7192 			if (!dev || !dev->bdev ||
7193 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7194 			    dev->last_flush_error)
7195 				missing++;
7196 			else if (failing_dev && failing_dev == dev)
7197 				missing++;
7198 		}
7199 		if (missing > max_tolerated) {
7200 			if (!failing_dev)
7201 				btrfs_warn(fs_info,
7202 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7203 				   em->start, missing, max_tolerated);
7204 			free_extent_map(em);
7205 			ret = false;
7206 			goto out;
7207 		}
7208 		next_start = extent_map_end(em);
7209 		free_extent_map(em);
7210 
7211 		read_lock(&map_tree->lock);
7212 		em = lookup_extent_mapping(map_tree, next_start,
7213 					   (u64)(-1) - next_start);
7214 		read_unlock(&map_tree->lock);
7215 	}
7216 out:
7217 	return ret;
7218 }
7219 
7220 static void readahead_tree_node_children(struct extent_buffer *node)
7221 {
7222 	int i;
7223 	const int nr_items = btrfs_header_nritems(node);
7224 
7225 	for (i = 0; i < nr_items; i++)
7226 		btrfs_readahead_node_child(node, i);
7227 }
7228 
7229 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7230 {
7231 	struct btrfs_root *root = fs_info->chunk_root;
7232 	struct btrfs_path *path;
7233 	struct extent_buffer *leaf;
7234 	struct btrfs_key key;
7235 	struct btrfs_key found_key;
7236 	int ret;
7237 	int slot;
7238 	int iter_ret = 0;
7239 	u64 total_dev = 0;
7240 	u64 last_ra_node = 0;
7241 
7242 	path = btrfs_alloc_path();
7243 	if (!path)
7244 		return -ENOMEM;
7245 
7246 	/*
7247 	 * uuid_mutex is needed only if we are mounting a sprout FS
7248 	 * otherwise we don't need it.
7249 	 */
7250 	mutex_lock(&uuid_mutex);
7251 
7252 	/*
7253 	 * It is possible for mount and umount to race in such a way that
7254 	 * we execute this code path, but open_fs_devices failed to clear
7255 	 * total_rw_bytes. We certainly want it cleared before reading the
7256 	 * device items, so clear it here.
7257 	 */
7258 	fs_info->fs_devices->total_rw_bytes = 0;
7259 
7260 	/*
7261 	 * Lockdep complains about possible circular locking dependency between
7262 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7263 	 * used for freeze procection of a fs (struct super_block.s_writers),
7264 	 * which we take when starting a transaction, and extent buffers of the
7265 	 * chunk tree if we call read_one_dev() while holding a lock on an
7266 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7267 	 * and at this point there can't be any concurrent task modifying the
7268 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7269 	 */
7270 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7271 	path->skip_locking = 1;
7272 
7273 	/*
7274 	 * Read all device items, and then all the chunk items. All
7275 	 * device items are found before any chunk item (their object id
7276 	 * is smaller than the lowest possible object id for a chunk
7277 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7278 	 */
7279 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7280 	key.offset = 0;
7281 	key.type = 0;
7282 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7283 		struct extent_buffer *node = path->nodes[1];
7284 
7285 		leaf = path->nodes[0];
7286 		slot = path->slots[0];
7287 
7288 		if (node) {
7289 			if (last_ra_node != node->start) {
7290 				readahead_tree_node_children(node);
7291 				last_ra_node = node->start;
7292 			}
7293 		}
7294 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7295 			struct btrfs_dev_item *dev_item;
7296 			dev_item = btrfs_item_ptr(leaf, slot,
7297 						  struct btrfs_dev_item);
7298 			ret = read_one_dev(leaf, dev_item);
7299 			if (ret)
7300 				goto error;
7301 			total_dev++;
7302 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7303 			struct btrfs_chunk *chunk;
7304 
7305 			/*
7306 			 * We are only called at mount time, so no need to take
7307 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7308 			 * we always lock first fs_info->chunk_mutex before
7309 			 * acquiring any locks on the chunk tree. This is a
7310 			 * requirement for chunk allocation, see the comment on
7311 			 * top of btrfs_chunk_alloc() for details.
7312 			 */
7313 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7314 			ret = read_one_chunk(&found_key, leaf, chunk);
7315 			if (ret)
7316 				goto error;
7317 		}
7318 	}
7319 	/* Catch error found during iteration */
7320 	if (iter_ret < 0) {
7321 		ret = iter_ret;
7322 		goto error;
7323 	}
7324 
7325 	/*
7326 	 * After loading chunk tree, we've got all device information,
7327 	 * do another round of validation checks.
7328 	 */
7329 	if (total_dev != fs_info->fs_devices->total_devices) {
7330 		btrfs_warn(fs_info,
7331 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7332 			  btrfs_super_num_devices(fs_info->super_copy),
7333 			  total_dev);
7334 		fs_info->fs_devices->total_devices = total_dev;
7335 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7336 	}
7337 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7338 	    fs_info->fs_devices->total_rw_bytes) {
7339 		btrfs_err(fs_info,
7340 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7341 			  btrfs_super_total_bytes(fs_info->super_copy),
7342 			  fs_info->fs_devices->total_rw_bytes);
7343 		ret = -EINVAL;
7344 		goto error;
7345 	}
7346 	ret = 0;
7347 error:
7348 	mutex_unlock(&uuid_mutex);
7349 
7350 	btrfs_free_path(path);
7351 	return ret;
7352 }
7353 
7354 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7355 {
7356 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7357 	struct btrfs_device *device;
7358 	int ret = 0;
7359 
7360 	fs_devices->fs_info = fs_info;
7361 
7362 	mutex_lock(&fs_devices->device_list_mutex);
7363 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7364 		device->fs_info = fs_info;
7365 
7366 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7367 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7368 			device->fs_info = fs_info;
7369 			ret = btrfs_get_dev_zone_info(device, false);
7370 			if (ret)
7371 				break;
7372 		}
7373 
7374 		seed_devs->fs_info = fs_info;
7375 	}
7376 	mutex_unlock(&fs_devices->device_list_mutex);
7377 
7378 	return ret;
7379 }
7380 
7381 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7382 				 const struct btrfs_dev_stats_item *ptr,
7383 				 int index)
7384 {
7385 	u64 val;
7386 
7387 	read_extent_buffer(eb, &val,
7388 			   offsetof(struct btrfs_dev_stats_item, values) +
7389 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7390 			   sizeof(val));
7391 	return val;
7392 }
7393 
7394 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7395 				      struct btrfs_dev_stats_item *ptr,
7396 				      int index, u64 val)
7397 {
7398 	write_extent_buffer(eb, &val,
7399 			    offsetof(struct btrfs_dev_stats_item, values) +
7400 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7401 			    sizeof(val));
7402 }
7403 
7404 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7405 				       struct btrfs_path *path)
7406 {
7407 	struct btrfs_dev_stats_item *ptr;
7408 	struct extent_buffer *eb;
7409 	struct btrfs_key key;
7410 	int item_size;
7411 	int i, ret, slot;
7412 
7413 	if (!device->fs_info->dev_root)
7414 		return 0;
7415 
7416 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7417 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7418 	key.offset = device->devid;
7419 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7420 	if (ret) {
7421 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7422 			btrfs_dev_stat_set(device, i, 0);
7423 		device->dev_stats_valid = 1;
7424 		btrfs_release_path(path);
7425 		return ret < 0 ? ret : 0;
7426 	}
7427 	slot = path->slots[0];
7428 	eb = path->nodes[0];
7429 	item_size = btrfs_item_size(eb, slot);
7430 
7431 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7432 
7433 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7434 		if (item_size >= (1 + i) * sizeof(__le64))
7435 			btrfs_dev_stat_set(device, i,
7436 					   btrfs_dev_stats_value(eb, ptr, i));
7437 		else
7438 			btrfs_dev_stat_set(device, i, 0);
7439 	}
7440 
7441 	device->dev_stats_valid = 1;
7442 	btrfs_dev_stat_print_on_load(device);
7443 	btrfs_release_path(path);
7444 
7445 	return 0;
7446 }
7447 
7448 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7449 {
7450 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7451 	struct btrfs_device *device;
7452 	struct btrfs_path *path = NULL;
7453 	int ret = 0;
7454 
7455 	path = btrfs_alloc_path();
7456 	if (!path)
7457 		return -ENOMEM;
7458 
7459 	mutex_lock(&fs_devices->device_list_mutex);
7460 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7461 		ret = btrfs_device_init_dev_stats(device, path);
7462 		if (ret)
7463 			goto out;
7464 	}
7465 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7466 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7467 			ret = btrfs_device_init_dev_stats(device, path);
7468 			if (ret)
7469 				goto out;
7470 		}
7471 	}
7472 out:
7473 	mutex_unlock(&fs_devices->device_list_mutex);
7474 
7475 	btrfs_free_path(path);
7476 	return ret;
7477 }
7478 
7479 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7480 				struct btrfs_device *device)
7481 {
7482 	struct btrfs_fs_info *fs_info = trans->fs_info;
7483 	struct btrfs_root *dev_root = fs_info->dev_root;
7484 	struct btrfs_path *path;
7485 	struct btrfs_key key;
7486 	struct extent_buffer *eb;
7487 	struct btrfs_dev_stats_item *ptr;
7488 	int ret;
7489 	int i;
7490 
7491 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7492 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7493 	key.offset = device->devid;
7494 
7495 	path = btrfs_alloc_path();
7496 	if (!path)
7497 		return -ENOMEM;
7498 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7499 	if (ret < 0) {
7500 		btrfs_warn_in_rcu(fs_info,
7501 			"error %d while searching for dev_stats item for device %s",
7502 				  ret, btrfs_dev_name(device));
7503 		goto out;
7504 	}
7505 
7506 	if (ret == 0 &&
7507 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7508 		/* need to delete old one and insert a new one */
7509 		ret = btrfs_del_item(trans, dev_root, path);
7510 		if (ret != 0) {
7511 			btrfs_warn_in_rcu(fs_info,
7512 				"delete too small dev_stats item for device %s failed %d",
7513 					  btrfs_dev_name(device), ret);
7514 			goto out;
7515 		}
7516 		ret = 1;
7517 	}
7518 
7519 	if (ret == 1) {
7520 		/* need to insert a new item */
7521 		btrfs_release_path(path);
7522 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7523 					      &key, sizeof(*ptr));
7524 		if (ret < 0) {
7525 			btrfs_warn_in_rcu(fs_info,
7526 				"insert dev_stats item for device %s failed %d",
7527 				btrfs_dev_name(device), ret);
7528 			goto out;
7529 		}
7530 	}
7531 
7532 	eb = path->nodes[0];
7533 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7534 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7535 		btrfs_set_dev_stats_value(eb, ptr, i,
7536 					  btrfs_dev_stat_read(device, i));
7537 	btrfs_mark_buffer_dirty(eb);
7538 
7539 out:
7540 	btrfs_free_path(path);
7541 	return ret;
7542 }
7543 
7544 /*
7545  * called from commit_transaction. Writes all changed device stats to disk.
7546  */
7547 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7548 {
7549 	struct btrfs_fs_info *fs_info = trans->fs_info;
7550 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7551 	struct btrfs_device *device;
7552 	int stats_cnt;
7553 	int ret = 0;
7554 
7555 	mutex_lock(&fs_devices->device_list_mutex);
7556 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7557 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7558 		if (!device->dev_stats_valid || stats_cnt == 0)
7559 			continue;
7560 
7561 
7562 		/*
7563 		 * There is a LOAD-LOAD control dependency between the value of
7564 		 * dev_stats_ccnt and updating the on-disk values which requires
7565 		 * reading the in-memory counters. Such control dependencies
7566 		 * require explicit read memory barriers.
7567 		 *
7568 		 * This memory barriers pairs with smp_mb__before_atomic in
7569 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7570 		 * barrier implied by atomic_xchg in
7571 		 * btrfs_dev_stats_read_and_reset
7572 		 */
7573 		smp_rmb();
7574 
7575 		ret = update_dev_stat_item(trans, device);
7576 		if (!ret)
7577 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7578 	}
7579 	mutex_unlock(&fs_devices->device_list_mutex);
7580 
7581 	return ret;
7582 }
7583 
7584 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7585 {
7586 	btrfs_dev_stat_inc(dev, index);
7587 
7588 	if (!dev->dev_stats_valid)
7589 		return;
7590 	btrfs_err_rl_in_rcu(dev->fs_info,
7591 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7592 			   btrfs_dev_name(dev),
7593 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7594 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7595 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7596 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7597 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7598 }
7599 
7600 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7601 {
7602 	int i;
7603 
7604 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7605 		if (btrfs_dev_stat_read(dev, i) != 0)
7606 			break;
7607 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7608 		return; /* all values == 0, suppress message */
7609 
7610 	btrfs_info_in_rcu(dev->fs_info,
7611 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7612 	       btrfs_dev_name(dev),
7613 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7614 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7615 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7616 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7617 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7618 }
7619 
7620 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7621 			struct btrfs_ioctl_get_dev_stats *stats)
7622 {
7623 	BTRFS_DEV_LOOKUP_ARGS(args);
7624 	struct btrfs_device *dev;
7625 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7626 	int i;
7627 
7628 	mutex_lock(&fs_devices->device_list_mutex);
7629 	args.devid = stats->devid;
7630 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7631 	mutex_unlock(&fs_devices->device_list_mutex);
7632 
7633 	if (!dev) {
7634 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7635 		return -ENODEV;
7636 	} else if (!dev->dev_stats_valid) {
7637 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7638 		return -ENODEV;
7639 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7640 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7641 			if (stats->nr_items > i)
7642 				stats->values[i] =
7643 					btrfs_dev_stat_read_and_reset(dev, i);
7644 			else
7645 				btrfs_dev_stat_set(dev, i, 0);
7646 		}
7647 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7648 			   current->comm, task_pid_nr(current));
7649 	} else {
7650 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7651 			if (stats->nr_items > i)
7652 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7653 	}
7654 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7655 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7656 	return 0;
7657 }
7658 
7659 /*
7660  * Update the size and bytes used for each device where it changed.  This is
7661  * delayed since we would otherwise get errors while writing out the
7662  * superblocks.
7663  *
7664  * Must be invoked during transaction commit.
7665  */
7666 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7667 {
7668 	struct btrfs_device *curr, *next;
7669 
7670 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7671 
7672 	if (list_empty(&trans->dev_update_list))
7673 		return;
7674 
7675 	/*
7676 	 * We don't need the device_list_mutex here.  This list is owned by the
7677 	 * transaction and the transaction must complete before the device is
7678 	 * released.
7679 	 */
7680 	mutex_lock(&trans->fs_info->chunk_mutex);
7681 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7682 				 post_commit_list) {
7683 		list_del_init(&curr->post_commit_list);
7684 		curr->commit_total_bytes = curr->disk_total_bytes;
7685 		curr->commit_bytes_used = curr->bytes_used;
7686 	}
7687 	mutex_unlock(&trans->fs_info->chunk_mutex);
7688 }
7689 
7690 /*
7691  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7692  */
7693 int btrfs_bg_type_to_factor(u64 flags)
7694 {
7695 	const int index = btrfs_bg_flags_to_raid_index(flags);
7696 
7697 	return btrfs_raid_array[index].ncopies;
7698 }
7699 
7700 
7701 
7702 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7703 				 u64 chunk_offset, u64 devid,
7704 				 u64 physical_offset, u64 physical_len)
7705 {
7706 	struct btrfs_dev_lookup_args args = { .devid = devid };
7707 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7708 	struct extent_map *em;
7709 	struct map_lookup *map;
7710 	struct btrfs_device *dev;
7711 	u64 stripe_len;
7712 	bool found = false;
7713 	int ret = 0;
7714 	int i;
7715 
7716 	read_lock(&em_tree->lock);
7717 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7718 	read_unlock(&em_tree->lock);
7719 
7720 	if (!em) {
7721 		btrfs_err(fs_info,
7722 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7723 			  physical_offset, devid);
7724 		ret = -EUCLEAN;
7725 		goto out;
7726 	}
7727 
7728 	map = em->map_lookup;
7729 	stripe_len = btrfs_calc_stripe_length(em);
7730 	if (physical_len != stripe_len) {
7731 		btrfs_err(fs_info,
7732 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7733 			  physical_offset, devid, em->start, physical_len,
7734 			  stripe_len);
7735 		ret = -EUCLEAN;
7736 		goto out;
7737 	}
7738 
7739 	/*
7740 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7741 	 * space. Although kernel can handle it without problem, better to warn
7742 	 * the users.
7743 	 */
7744 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7745 		btrfs_warn(fs_info,
7746 		"devid %llu physical %llu len %llu inside the reserved space",
7747 			   devid, physical_offset, physical_len);
7748 
7749 	for (i = 0; i < map->num_stripes; i++) {
7750 		if (map->stripes[i].dev->devid == devid &&
7751 		    map->stripes[i].physical == physical_offset) {
7752 			found = true;
7753 			if (map->verified_stripes >= map->num_stripes) {
7754 				btrfs_err(fs_info,
7755 				"too many dev extents for chunk %llu found",
7756 					  em->start);
7757 				ret = -EUCLEAN;
7758 				goto out;
7759 			}
7760 			map->verified_stripes++;
7761 			break;
7762 		}
7763 	}
7764 	if (!found) {
7765 		btrfs_err(fs_info,
7766 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7767 			physical_offset, devid);
7768 		ret = -EUCLEAN;
7769 	}
7770 
7771 	/* Make sure no dev extent is beyond device boundary */
7772 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7773 	if (!dev) {
7774 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7775 		ret = -EUCLEAN;
7776 		goto out;
7777 	}
7778 
7779 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7780 		btrfs_err(fs_info,
7781 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7782 			  devid, physical_offset, physical_len,
7783 			  dev->disk_total_bytes);
7784 		ret = -EUCLEAN;
7785 		goto out;
7786 	}
7787 
7788 	if (dev->zone_info) {
7789 		u64 zone_size = dev->zone_info->zone_size;
7790 
7791 		if (!IS_ALIGNED(physical_offset, zone_size) ||
7792 		    !IS_ALIGNED(physical_len, zone_size)) {
7793 			btrfs_err(fs_info,
7794 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7795 				  devid, physical_offset, physical_len);
7796 			ret = -EUCLEAN;
7797 			goto out;
7798 		}
7799 	}
7800 
7801 out:
7802 	free_extent_map(em);
7803 	return ret;
7804 }
7805 
7806 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7807 {
7808 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7809 	struct extent_map *em;
7810 	struct rb_node *node;
7811 	int ret = 0;
7812 
7813 	read_lock(&em_tree->lock);
7814 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7815 		em = rb_entry(node, struct extent_map, rb_node);
7816 		if (em->map_lookup->num_stripes !=
7817 		    em->map_lookup->verified_stripes) {
7818 			btrfs_err(fs_info,
7819 			"chunk %llu has missing dev extent, have %d expect %d",
7820 				  em->start, em->map_lookup->verified_stripes,
7821 				  em->map_lookup->num_stripes);
7822 			ret = -EUCLEAN;
7823 			goto out;
7824 		}
7825 	}
7826 out:
7827 	read_unlock(&em_tree->lock);
7828 	return ret;
7829 }
7830 
7831 /*
7832  * Ensure that all dev extents are mapped to correct chunk, otherwise
7833  * later chunk allocation/free would cause unexpected behavior.
7834  *
7835  * NOTE: This will iterate through the whole device tree, which should be of
7836  * the same size level as the chunk tree.  This slightly increases mount time.
7837  */
7838 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7839 {
7840 	struct btrfs_path *path;
7841 	struct btrfs_root *root = fs_info->dev_root;
7842 	struct btrfs_key key;
7843 	u64 prev_devid = 0;
7844 	u64 prev_dev_ext_end = 0;
7845 	int ret = 0;
7846 
7847 	/*
7848 	 * We don't have a dev_root because we mounted with ignorebadroots and
7849 	 * failed to load the root, so we want to skip the verification in this
7850 	 * case for sure.
7851 	 *
7852 	 * However if the dev root is fine, but the tree itself is corrupted
7853 	 * we'd still fail to mount.  This verification is only to make sure
7854 	 * writes can happen safely, so instead just bypass this check
7855 	 * completely in the case of IGNOREBADROOTS.
7856 	 */
7857 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7858 		return 0;
7859 
7860 	key.objectid = 1;
7861 	key.type = BTRFS_DEV_EXTENT_KEY;
7862 	key.offset = 0;
7863 
7864 	path = btrfs_alloc_path();
7865 	if (!path)
7866 		return -ENOMEM;
7867 
7868 	path->reada = READA_FORWARD;
7869 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7870 	if (ret < 0)
7871 		goto out;
7872 
7873 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7874 		ret = btrfs_next_leaf(root, path);
7875 		if (ret < 0)
7876 			goto out;
7877 		/* No dev extents at all? Not good */
7878 		if (ret > 0) {
7879 			ret = -EUCLEAN;
7880 			goto out;
7881 		}
7882 	}
7883 	while (1) {
7884 		struct extent_buffer *leaf = path->nodes[0];
7885 		struct btrfs_dev_extent *dext;
7886 		int slot = path->slots[0];
7887 		u64 chunk_offset;
7888 		u64 physical_offset;
7889 		u64 physical_len;
7890 		u64 devid;
7891 
7892 		btrfs_item_key_to_cpu(leaf, &key, slot);
7893 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7894 			break;
7895 		devid = key.objectid;
7896 		physical_offset = key.offset;
7897 
7898 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7899 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7900 		physical_len = btrfs_dev_extent_length(leaf, dext);
7901 
7902 		/* Check if this dev extent overlaps with the previous one */
7903 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7904 			btrfs_err(fs_info,
7905 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7906 				  devid, physical_offset, prev_dev_ext_end);
7907 			ret = -EUCLEAN;
7908 			goto out;
7909 		}
7910 
7911 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7912 					    physical_offset, physical_len);
7913 		if (ret < 0)
7914 			goto out;
7915 		prev_devid = devid;
7916 		prev_dev_ext_end = physical_offset + physical_len;
7917 
7918 		ret = btrfs_next_item(root, path);
7919 		if (ret < 0)
7920 			goto out;
7921 		if (ret > 0) {
7922 			ret = 0;
7923 			break;
7924 		}
7925 	}
7926 
7927 	/* Ensure all chunks have corresponding dev extents */
7928 	ret = verify_chunk_dev_extent_mapping(fs_info);
7929 out:
7930 	btrfs_free_path(path);
7931 	return ret;
7932 }
7933 
7934 /*
7935  * Check whether the given block group or device is pinned by any inode being
7936  * used as a swapfile.
7937  */
7938 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7939 {
7940 	struct btrfs_swapfile_pin *sp;
7941 	struct rb_node *node;
7942 
7943 	spin_lock(&fs_info->swapfile_pins_lock);
7944 	node = fs_info->swapfile_pins.rb_node;
7945 	while (node) {
7946 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7947 		if (ptr < sp->ptr)
7948 			node = node->rb_left;
7949 		else if (ptr > sp->ptr)
7950 			node = node->rb_right;
7951 		else
7952 			break;
7953 	}
7954 	spin_unlock(&fs_info->swapfile_pins_lock);
7955 	return node != NULL;
7956 }
7957 
7958 static int relocating_repair_kthread(void *data)
7959 {
7960 	struct btrfs_block_group *cache = data;
7961 	struct btrfs_fs_info *fs_info = cache->fs_info;
7962 	u64 target;
7963 	int ret = 0;
7964 
7965 	target = cache->start;
7966 	btrfs_put_block_group(cache);
7967 
7968 	sb_start_write(fs_info->sb);
7969 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
7970 		btrfs_info(fs_info,
7971 			   "zoned: skip relocating block group %llu to repair: EBUSY",
7972 			   target);
7973 		sb_end_write(fs_info->sb);
7974 		return -EBUSY;
7975 	}
7976 
7977 	mutex_lock(&fs_info->reclaim_bgs_lock);
7978 
7979 	/* Ensure block group still exists */
7980 	cache = btrfs_lookup_block_group(fs_info, target);
7981 	if (!cache)
7982 		goto out;
7983 
7984 	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
7985 		goto out;
7986 
7987 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
7988 	if (ret < 0)
7989 		goto out;
7990 
7991 	btrfs_info(fs_info,
7992 		   "zoned: relocating block group %llu to repair IO failure",
7993 		   target);
7994 	ret = btrfs_relocate_chunk(fs_info, target);
7995 
7996 out:
7997 	if (cache)
7998 		btrfs_put_block_group(cache);
7999 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8000 	btrfs_exclop_finish(fs_info);
8001 	sb_end_write(fs_info->sb);
8002 
8003 	return ret;
8004 }
8005 
8006 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8007 {
8008 	struct btrfs_block_group *cache;
8009 
8010 	if (!btrfs_is_zoned(fs_info))
8011 		return false;
8012 
8013 	/* Do not attempt to repair in degraded state */
8014 	if (btrfs_test_opt(fs_info, DEGRADED))
8015 		return true;
8016 
8017 	cache = btrfs_lookup_block_group(fs_info, logical);
8018 	if (!cache)
8019 		return true;
8020 
8021 	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8022 		btrfs_put_block_group(cache);
8023 		return true;
8024 	}
8025 
8026 	kthread_run(relocating_repair_kthread, cache,
8027 		    "btrfs-relocating-repair");
8028 
8029 	return true;
8030 }
8031 
8032 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8033 				    struct btrfs_io_stripe *smap,
8034 				    u64 logical)
8035 {
8036 	int data_stripes = nr_bioc_data_stripes(bioc);
8037 	int i;
8038 
8039 	for (i = 0; i < data_stripes; i++) {
8040 		u64 stripe_start = bioc->full_stripe_logical +
8041 				   btrfs_stripe_nr_to_offset(i);
8042 
8043 		if (logical >= stripe_start &&
8044 		    logical < stripe_start + BTRFS_STRIPE_LEN)
8045 			break;
8046 	}
8047 	ASSERT(i < data_stripes);
8048 	smap->dev = bioc->stripes[i].dev;
8049 	smap->physical = bioc->stripes[i].physical +
8050 			((logical - bioc->full_stripe_logical) &
8051 			 BTRFS_STRIPE_LEN_MASK);
8052 }
8053 
8054 /*
8055  * Map a repair write into a single device.
8056  *
8057  * A repair write is triggered by read time repair or scrub, which would only
8058  * update the contents of a single device.
8059  * Not update any other mirrors nor go through RMW path.
8060  *
8061  * Callers should ensure:
8062  *
8063  * - Call btrfs_bio_counter_inc_blocked() first
8064  * - The range does not cross stripe boundary
8065  * - Has a valid @mirror_num passed in.
8066  */
8067 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8068 			   struct btrfs_io_stripe *smap, u64 logical,
8069 			   u32 length, int mirror_num)
8070 {
8071 	struct btrfs_io_context *bioc = NULL;
8072 	u64 map_length = length;
8073 	int mirror_ret = mirror_num;
8074 	int ret;
8075 
8076 	ASSERT(mirror_num > 0);
8077 
8078 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8079 			      &bioc, smap, &mirror_ret, true);
8080 	if (ret < 0)
8081 		return ret;
8082 
8083 	/* The map range should not cross stripe boundary. */
8084 	ASSERT(map_length >= length);
8085 
8086 	/* Already mapped to single stripe. */
8087 	if (!bioc)
8088 		goto out;
8089 
8090 	/* Map the RAID56 multi-stripe writes to a single one. */
8091 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8092 		map_raid56_repair_block(bioc, smap, logical);
8093 		goto out;
8094 	}
8095 
8096 	ASSERT(mirror_num <= bioc->num_stripes);
8097 	smap->dev = bioc->stripes[mirror_num - 1].dev;
8098 	smap->physical = bioc->stripes[mirror_num - 1].physical;
8099 out:
8100 	btrfs_put_bioc(bioc);
8101 	ASSERT(smap->dev);
8102 	return 0;
8103 }
8104