1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/iocontext.h> 24 #include <linux/capability.h> 25 #include <linux/ratelimit.h> 26 #include <linux/kthread.h> 27 #include <linux/raid/pq.h> 28 #include <linux/semaphore.h> 29 #include <linux/uuid.h> 30 #include <asm/div64.h> 31 #include "ctree.h" 32 #include "extent_map.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "raid56.h" 38 #include "async-thread.h" 39 #include "check-integrity.h" 40 #include "rcu-string.h" 41 #include "math.h" 42 #include "dev-replace.h" 43 #include "sysfs.h" 44 45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 46 [BTRFS_RAID_RAID10] = { 47 .sub_stripes = 2, 48 .dev_stripes = 1, 49 .devs_max = 0, /* 0 == as many as possible */ 50 .devs_min = 4, 51 .tolerated_failures = 1, 52 .devs_increment = 2, 53 .ncopies = 2, 54 }, 55 [BTRFS_RAID_RAID1] = { 56 .sub_stripes = 1, 57 .dev_stripes = 1, 58 .devs_max = 2, 59 .devs_min = 2, 60 .tolerated_failures = 1, 61 .devs_increment = 2, 62 .ncopies = 2, 63 }, 64 [BTRFS_RAID_DUP] = { 65 .sub_stripes = 1, 66 .dev_stripes = 2, 67 .devs_max = 1, 68 .devs_min = 1, 69 .tolerated_failures = 0, 70 .devs_increment = 1, 71 .ncopies = 2, 72 }, 73 [BTRFS_RAID_RAID0] = { 74 .sub_stripes = 1, 75 .dev_stripes = 1, 76 .devs_max = 0, 77 .devs_min = 2, 78 .tolerated_failures = 0, 79 .devs_increment = 1, 80 .ncopies = 1, 81 }, 82 [BTRFS_RAID_SINGLE] = { 83 .sub_stripes = 1, 84 .dev_stripes = 1, 85 .devs_max = 1, 86 .devs_min = 1, 87 .tolerated_failures = 0, 88 .devs_increment = 1, 89 .ncopies = 1, 90 }, 91 [BTRFS_RAID_RAID5] = { 92 .sub_stripes = 1, 93 .dev_stripes = 1, 94 .devs_max = 0, 95 .devs_min = 2, 96 .tolerated_failures = 1, 97 .devs_increment = 1, 98 .ncopies = 2, 99 }, 100 [BTRFS_RAID_RAID6] = { 101 .sub_stripes = 1, 102 .dev_stripes = 1, 103 .devs_max = 0, 104 .devs_min = 3, 105 .tolerated_failures = 2, 106 .devs_increment = 1, 107 .ncopies = 3, 108 }, 109 }; 110 111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = { 112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10, 113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1, 114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP, 115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0, 116 [BTRFS_RAID_SINGLE] = 0, 117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5, 118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6, 119 }; 120 121 /* 122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices 123 * condition is not met. Zero means there's no corresponding 124 * BTRFS_ERROR_DEV_*_NOT_MET value. 125 */ 126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = { 127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 129 [BTRFS_RAID_DUP] = 0, 130 [BTRFS_RAID_RAID0] = 0, 131 [BTRFS_RAID_SINGLE] = 0, 132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 134 }; 135 136 static int init_first_rw_device(struct btrfs_trans_handle *trans, 137 struct btrfs_root *root, 138 struct btrfs_device *device); 139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 143 static void btrfs_close_one_device(struct btrfs_device *device); 144 145 DEFINE_MUTEX(uuid_mutex); 146 static LIST_HEAD(fs_uuids); 147 struct list_head *btrfs_get_fs_uuids(void) 148 { 149 return &fs_uuids; 150 } 151 152 static struct btrfs_fs_devices *__alloc_fs_devices(void) 153 { 154 struct btrfs_fs_devices *fs_devs; 155 156 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 157 if (!fs_devs) 158 return ERR_PTR(-ENOMEM); 159 160 mutex_init(&fs_devs->device_list_mutex); 161 162 INIT_LIST_HEAD(&fs_devs->devices); 163 INIT_LIST_HEAD(&fs_devs->resized_devices); 164 INIT_LIST_HEAD(&fs_devs->alloc_list); 165 INIT_LIST_HEAD(&fs_devs->list); 166 167 return fs_devs; 168 } 169 170 /** 171 * alloc_fs_devices - allocate struct btrfs_fs_devices 172 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is 173 * generated. 174 * 175 * Return: a pointer to a new &struct btrfs_fs_devices on success; 176 * ERR_PTR() on error. Returned struct is not linked onto any lists and 177 * can be destroyed with kfree() right away. 178 */ 179 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 180 { 181 struct btrfs_fs_devices *fs_devs; 182 183 fs_devs = __alloc_fs_devices(); 184 if (IS_ERR(fs_devs)) 185 return fs_devs; 186 187 if (fsid) 188 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 189 else 190 generate_random_uuid(fs_devs->fsid); 191 192 return fs_devs; 193 } 194 195 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 196 { 197 struct btrfs_device *device; 198 WARN_ON(fs_devices->opened); 199 while (!list_empty(&fs_devices->devices)) { 200 device = list_entry(fs_devices->devices.next, 201 struct btrfs_device, dev_list); 202 list_del(&device->dev_list); 203 rcu_string_free(device->name); 204 kfree(device); 205 } 206 kfree(fs_devices); 207 } 208 209 static void btrfs_kobject_uevent(struct block_device *bdev, 210 enum kobject_action action) 211 { 212 int ret; 213 214 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 215 if (ret) 216 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 217 action, 218 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 219 &disk_to_dev(bdev->bd_disk)->kobj); 220 } 221 222 void btrfs_cleanup_fs_uuids(void) 223 { 224 struct btrfs_fs_devices *fs_devices; 225 226 while (!list_empty(&fs_uuids)) { 227 fs_devices = list_entry(fs_uuids.next, 228 struct btrfs_fs_devices, list); 229 list_del(&fs_devices->list); 230 free_fs_devices(fs_devices); 231 } 232 } 233 234 static struct btrfs_device *__alloc_device(void) 235 { 236 struct btrfs_device *dev; 237 238 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 239 if (!dev) 240 return ERR_PTR(-ENOMEM); 241 242 INIT_LIST_HEAD(&dev->dev_list); 243 INIT_LIST_HEAD(&dev->dev_alloc_list); 244 INIT_LIST_HEAD(&dev->resized_list); 245 246 spin_lock_init(&dev->io_lock); 247 248 spin_lock_init(&dev->reada_lock); 249 atomic_set(&dev->reada_in_flight, 0); 250 atomic_set(&dev->dev_stats_ccnt, 0); 251 btrfs_device_data_ordered_init(dev); 252 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 253 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 254 255 return dev; 256 } 257 258 static noinline struct btrfs_device *__find_device(struct list_head *head, 259 u64 devid, u8 *uuid) 260 { 261 struct btrfs_device *dev; 262 263 list_for_each_entry(dev, head, dev_list) { 264 if (dev->devid == devid && 265 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 266 return dev; 267 } 268 } 269 return NULL; 270 } 271 272 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 273 { 274 struct btrfs_fs_devices *fs_devices; 275 276 list_for_each_entry(fs_devices, &fs_uuids, list) { 277 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 278 return fs_devices; 279 } 280 return NULL; 281 } 282 283 static int 284 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 285 int flush, struct block_device **bdev, 286 struct buffer_head **bh) 287 { 288 int ret; 289 290 *bdev = blkdev_get_by_path(device_path, flags, holder); 291 292 if (IS_ERR(*bdev)) { 293 ret = PTR_ERR(*bdev); 294 goto error; 295 } 296 297 if (flush) 298 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 299 ret = set_blocksize(*bdev, 4096); 300 if (ret) { 301 blkdev_put(*bdev, flags); 302 goto error; 303 } 304 invalidate_bdev(*bdev); 305 *bh = btrfs_read_dev_super(*bdev); 306 if (IS_ERR(*bh)) { 307 ret = PTR_ERR(*bh); 308 blkdev_put(*bdev, flags); 309 goto error; 310 } 311 312 return 0; 313 314 error: 315 *bdev = NULL; 316 *bh = NULL; 317 return ret; 318 } 319 320 static void requeue_list(struct btrfs_pending_bios *pending_bios, 321 struct bio *head, struct bio *tail) 322 { 323 324 struct bio *old_head; 325 326 old_head = pending_bios->head; 327 pending_bios->head = head; 328 if (pending_bios->tail) 329 tail->bi_next = old_head; 330 else 331 pending_bios->tail = tail; 332 } 333 334 /* 335 * we try to collect pending bios for a device so we don't get a large 336 * number of procs sending bios down to the same device. This greatly 337 * improves the schedulers ability to collect and merge the bios. 338 * 339 * But, it also turns into a long list of bios to process and that is sure 340 * to eventually make the worker thread block. The solution here is to 341 * make some progress and then put this work struct back at the end of 342 * the list if the block device is congested. This way, multiple devices 343 * can make progress from a single worker thread. 344 */ 345 static noinline void run_scheduled_bios(struct btrfs_device *device) 346 { 347 struct bio *pending; 348 struct backing_dev_info *bdi; 349 struct btrfs_fs_info *fs_info; 350 struct btrfs_pending_bios *pending_bios; 351 struct bio *tail; 352 struct bio *cur; 353 int again = 0; 354 unsigned long num_run; 355 unsigned long batch_run = 0; 356 unsigned long limit; 357 unsigned long last_waited = 0; 358 int force_reg = 0; 359 int sync_pending = 0; 360 struct blk_plug plug; 361 362 /* 363 * this function runs all the bios we've collected for 364 * a particular device. We don't want to wander off to 365 * another device without first sending all of these down. 366 * So, setup a plug here and finish it off before we return 367 */ 368 blk_start_plug(&plug); 369 370 bdi = blk_get_backing_dev_info(device->bdev); 371 fs_info = device->dev_root->fs_info; 372 limit = btrfs_async_submit_limit(fs_info); 373 limit = limit * 2 / 3; 374 375 loop: 376 spin_lock(&device->io_lock); 377 378 loop_lock: 379 num_run = 0; 380 381 /* take all the bios off the list at once and process them 382 * later on (without the lock held). But, remember the 383 * tail and other pointers so the bios can be properly reinserted 384 * into the list if we hit congestion 385 */ 386 if (!force_reg && device->pending_sync_bios.head) { 387 pending_bios = &device->pending_sync_bios; 388 force_reg = 1; 389 } else { 390 pending_bios = &device->pending_bios; 391 force_reg = 0; 392 } 393 394 pending = pending_bios->head; 395 tail = pending_bios->tail; 396 WARN_ON(pending && !tail); 397 398 /* 399 * if pending was null this time around, no bios need processing 400 * at all and we can stop. Otherwise it'll loop back up again 401 * and do an additional check so no bios are missed. 402 * 403 * device->running_pending is used to synchronize with the 404 * schedule_bio code. 405 */ 406 if (device->pending_sync_bios.head == NULL && 407 device->pending_bios.head == NULL) { 408 again = 0; 409 device->running_pending = 0; 410 } else { 411 again = 1; 412 device->running_pending = 1; 413 } 414 415 pending_bios->head = NULL; 416 pending_bios->tail = NULL; 417 418 spin_unlock(&device->io_lock); 419 420 while (pending) { 421 422 rmb(); 423 /* we want to work on both lists, but do more bios on the 424 * sync list than the regular list 425 */ 426 if ((num_run > 32 && 427 pending_bios != &device->pending_sync_bios && 428 device->pending_sync_bios.head) || 429 (num_run > 64 && pending_bios == &device->pending_sync_bios && 430 device->pending_bios.head)) { 431 spin_lock(&device->io_lock); 432 requeue_list(pending_bios, pending, tail); 433 goto loop_lock; 434 } 435 436 cur = pending; 437 pending = pending->bi_next; 438 cur->bi_next = NULL; 439 440 /* 441 * atomic_dec_return implies a barrier for waitqueue_active 442 */ 443 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 444 waitqueue_active(&fs_info->async_submit_wait)) 445 wake_up(&fs_info->async_submit_wait); 446 447 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 448 449 /* 450 * if we're doing the sync list, record that our 451 * plug has some sync requests on it 452 * 453 * If we're doing the regular list and there are 454 * sync requests sitting around, unplug before 455 * we add more 456 */ 457 if (pending_bios == &device->pending_sync_bios) { 458 sync_pending = 1; 459 } else if (sync_pending) { 460 blk_finish_plug(&plug); 461 blk_start_plug(&plug); 462 sync_pending = 0; 463 } 464 465 btrfsic_submit_bio(cur->bi_rw, cur); 466 num_run++; 467 batch_run++; 468 469 cond_resched(); 470 471 /* 472 * we made progress, there is more work to do and the bdi 473 * is now congested. Back off and let other work structs 474 * run instead 475 */ 476 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 477 fs_info->fs_devices->open_devices > 1) { 478 struct io_context *ioc; 479 480 ioc = current->io_context; 481 482 /* 483 * the main goal here is that we don't want to 484 * block if we're going to be able to submit 485 * more requests without blocking. 486 * 487 * This code does two great things, it pokes into 488 * the elevator code from a filesystem _and_ 489 * it makes assumptions about how batching works. 490 */ 491 if (ioc && ioc->nr_batch_requests > 0 && 492 time_before(jiffies, ioc->last_waited + HZ/50UL) && 493 (last_waited == 0 || 494 ioc->last_waited == last_waited)) { 495 /* 496 * we want to go through our batch of 497 * requests and stop. So, we copy out 498 * the ioc->last_waited time and test 499 * against it before looping 500 */ 501 last_waited = ioc->last_waited; 502 cond_resched(); 503 continue; 504 } 505 spin_lock(&device->io_lock); 506 requeue_list(pending_bios, pending, tail); 507 device->running_pending = 1; 508 509 spin_unlock(&device->io_lock); 510 btrfs_queue_work(fs_info->submit_workers, 511 &device->work); 512 goto done; 513 } 514 /* unplug every 64 requests just for good measure */ 515 if (batch_run % 64 == 0) { 516 blk_finish_plug(&plug); 517 blk_start_plug(&plug); 518 sync_pending = 0; 519 } 520 } 521 522 cond_resched(); 523 if (again) 524 goto loop; 525 526 spin_lock(&device->io_lock); 527 if (device->pending_bios.head || device->pending_sync_bios.head) 528 goto loop_lock; 529 spin_unlock(&device->io_lock); 530 531 done: 532 blk_finish_plug(&plug); 533 } 534 535 static void pending_bios_fn(struct btrfs_work *work) 536 { 537 struct btrfs_device *device; 538 539 device = container_of(work, struct btrfs_device, work); 540 run_scheduled_bios(device); 541 } 542 543 544 void btrfs_free_stale_device(struct btrfs_device *cur_dev) 545 { 546 struct btrfs_fs_devices *fs_devs; 547 struct btrfs_device *dev; 548 549 if (!cur_dev->name) 550 return; 551 552 list_for_each_entry(fs_devs, &fs_uuids, list) { 553 int del = 1; 554 555 if (fs_devs->opened) 556 continue; 557 if (fs_devs->seeding) 558 continue; 559 560 list_for_each_entry(dev, &fs_devs->devices, dev_list) { 561 562 if (dev == cur_dev) 563 continue; 564 if (!dev->name) 565 continue; 566 567 /* 568 * Todo: This won't be enough. What if the same device 569 * comes back (with new uuid and) with its mapper path? 570 * But for now, this does help as mostly an admin will 571 * either use mapper or non mapper path throughout. 572 */ 573 rcu_read_lock(); 574 del = strcmp(rcu_str_deref(dev->name), 575 rcu_str_deref(cur_dev->name)); 576 rcu_read_unlock(); 577 if (!del) 578 break; 579 } 580 581 if (!del) { 582 /* delete the stale device */ 583 if (fs_devs->num_devices == 1) { 584 btrfs_sysfs_remove_fsid(fs_devs); 585 list_del(&fs_devs->list); 586 free_fs_devices(fs_devs); 587 } else { 588 fs_devs->num_devices--; 589 list_del(&dev->dev_list); 590 rcu_string_free(dev->name); 591 kfree(dev); 592 } 593 break; 594 } 595 } 596 } 597 598 /* 599 * Add new device to list of registered devices 600 * 601 * Returns: 602 * 1 - first time device is seen 603 * 0 - device already known 604 * < 0 - error 605 */ 606 static noinline int device_list_add(const char *path, 607 struct btrfs_super_block *disk_super, 608 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 609 { 610 struct btrfs_device *device; 611 struct btrfs_fs_devices *fs_devices; 612 struct rcu_string *name; 613 int ret = 0; 614 u64 found_transid = btrfs_super_generation(disk_super); 615 616 fs_devices = find_fsid(disk_super->fsid); 617 if (!fs_devices) { 618 fs_devices = alloc_fs_devices(disk_super->fsid); 619 if (IS_ERR(fs_devices)) 620 return PTR_ERR(fs_devices); 621 622 list_add(&fs_devices->list, &fs_uuids); 623 624 device = NULL; 625 } else { 626 device = __find_device(&fs_devices->devices, devid, 627 disk_super->dev_item.uuid); 628 } 629 630 if (!device) { 631 if (fs_devices->opened) 632 return -EBUSY; 633 634 device = btrfs_alloc_device(NULL, &devid, 635 disk_super->dev_item.uuid); 636 if (IS_ERR(device)) { 637 /* we can safely leave the fs_devices entry around */ 638 return PTR_ERR(device); 639 } 640 641 name = rcu_string_strdup(path, GFP_NOFS); 642 if (!name) { 643 kfree(device); 644 return -ENOMEM; 645 } 646 rcu_assign_pointer(device->name, name); 647 648 mutex_lock(&fs_devices->device_list_mutex); 649 list_add_rcu(&device->dev_list, &fs_devices->devices); 650 fs_devices->num_devices++; 651 mutex_unlock(&fs_devices->device_list_mutex); 652 653 ret = 1; 654 device->fs_devices = fs_devices; 655 } else if (!device->name || strcmp(device->name->str, path)) { 656 /* 657 * When FS is already mounted. 658 * 1. If you are here and if the device->name is NULL that 659 * means this device was missing at time of FS mount. 660 * 2. If you are here and if the device->name is different 661 * from 'path' that means either 662 * a. The same device disappeared and reappeared with 663 * different name. or 664 * b. The missing-disk-which-was-replaced, has 665 * reappeared now. 666 * 667 * We must allow 1 and 2a above. But 2b would be a spurious 668 * and unintentional. 669 * 670 * Further in case of 1 and 2a above, the disk at 'path' 671 * would have missed some transaction when it was away and 672 * in case of 2a the stale bdev has to be updated as well. 673 * 2b must not be allowed at all time. 674 */ 675 676 /* 677 * For now, we do allow update to btrfs_fs_device through the 678 * btrfs dev scan cli after FS has been mounted. We're still 679 * tracking a problem where systems fail mount by subvolume id 680 * when we reject replacement on a mounted FS. 681 */ 682 if (!fs_devices->opened && found_transid < device->generation) { 683 /* 684 * That is if the FS is _not_ mounted and if you 685 * are here, that means there is more than one 686 * disk with same uuid and devid.We keep the one 687 * with larger generation number or the last-in if 688 * generation are equal. 689 */ 690 return -EEXIST; 691 } 692 693 name = rcu_string_strdup(path, GFP_NOFS); 694 if (!name) 695 return -ENOMEM; 696 rcu_string_free(device->name); 697 rcu_assign_pointer(device->name, name); 698 if (device->missing) { 699 fs_devices->missing_devices--; 700 device->missing = 0; 701 } 702 } 703 704 /* 705 * Unmount does not free the btrfs_device struct but would zero 706 * generation along with most of the other members. So just update 707 * it back. We need it to pick the disk with largest generation 708 * (as above). 709 */ 710 if (!fs_devices->opened) 711 device->generation = found_transid; 712 713 /* 714 * if there is new btrfs on an already registered device, 715 * then remove the stale device entry. 716 */ 717 if (ret > 0) 718 btrfs_free_stale_device(device); 719 720 *fs_devices_ret = fs_devices; 721 722 return ret; 723 } 724 725 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 726 { 727 struct btrfs_fs_devices *fs_devices; 728 struct btrfs_device *device; 729 struct btrfs_device *orig_dev; 730 731 fs_devices = alloc_fs_devices(orig->fsid); 732 if (IS_ERR(fs_devices)) 733 return fs_devices; 734 735 mutex_lock(&orig->device_list_mutex); 736 fs_devices->total_devices = orig->total_devices; 737 738 /* We have held the volume lock, it is safe to get the devices. */ 739 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 740 struct rcu_string *name; 741 742 device = btrfs_alloc_device(NULL, &orig_dev->devid, 743 orig_dev->uuid); 744 if (IS_ERR(device)) 745 goto error; 746 747 /* 748 * This is ok to do without rcu read locked because we hold the 749 * uuid mutex so nothing we touch in here is going to disappear. 750 */ 751 if (orig_dev->name) { 752 name = rcu_string_strdup(orig_dev->name->str, 753 GFP_KERNEL); 754 if (!name) { 755 kfree(device); 756 goto error; 757 } 758 rcu_assign_pointer(device->name, name); 759 } 760 761 list_add(&device->dev_list, &fs_devices->devices); 762 device->fs_devices = fs_devices; 763 fs_devices->num_devices++; 764 } 765 mutex_unlock(&orig->device_list_mutex); 766 return fs_devices; 767 error: 768 mutex_unlock(&orig->device_list_mutex); 769 free_fs_devices(fs_devices); 770 return ERR_PTR(-ENOMEM); 771 } 772 773 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step) 774 { 775 struct btrfs_device *device, *next; 776 struct btrfs_device *latest_dev = NULL; 777 778 mutex_lock(&uuid_mutex); 779 again: 780 /* This is the initialized path, it is safe to release the devices. */ 781 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 782 if (device->in_fs_metadata) { 783 if (!device->is_tgtdev_for_dev_replace && 784 (!latest_dev || 785 device->generation > latest_dev->generation)) { 786 latest_dev = device; 787 } 788 continue; 789 } 790 791 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 792 /* 793 * In the first step, keep the device which has 794 * the correct fsid and the devid that is used 795 * for the dev_replace procedure. 796 * In the second step, the dev_replace state is 797 * read from the device tree and it is known 798 * whether the procedure is really active or 799 * not, which means whether this device is 800 * used or whether it should be removed. 801 */ 802 if (step == 0 || device->is_tgtdev_for_dev_replace) { 803 continue; 804 } 805 } 806 if (device->bdev) { 807 blkdev_put(device->bdev, device->mode); 808 device->bdev = NULL; 809 fs_devices->open_devices--; 810 } 811 if (device->writeable) { 812 list_del_init(&device->dev_alloc_list); 813 device->writeable = 0; 814 if (!device->is_tgtdev_for_dev_replace) 815 fs_devices->rw_devices--; 816 } 817 list_del_init(&device->dev_list); 818 fs_devices->num_devices--; 819 rcu_string_free(device->name); 820 kfree(device); 821 } 822 823 if (fs_devices->seed) { 824 fs_devices = fs_devices->seed; 825 goto again; 826 } 827 828 fs_devices->latest_bdev = latest_dev->bdev; 829 830 mutex_unlock(&uuid_mutex); 831 } 832 833 static void __free_device(struct work_struct *work) 834 { 835 struct btrfs_device *device; 836 837 device = container_of(work, struct btrfs_device, rcu_work); 838 839 if (device->bdev) 840 blkdev_put(device->bdev, device->mode); 841 842 rcu_string_free(device->name); 843 kfree(device); 844 } 845 846 static void free_device(struct rcu_head *head) 847 { 848 struct btrfs_device *device; 849 850 device = container_of(head, struct btrfs_device, rcu); 851 852 INIT_WORK(&device->rcu_work, __free_device); 853 schedule_work(&device->rcu_work); 854 } 855 856 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 857 { 858 struct btrfs_device *device, *tmp; 859 860 if (--fs_devices->opened > 0) 861 return 0; 862 863 mutex_lock(&fs_devices->device_list_mutex); 864 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 865 btrfs_close_one_device(device); 866 } 867 mutex_unlock(&fs_devices->device_list_mutex); 868 869 WARN_ON(fs_devices->open_devices); 870 WARN_ON(fs_devices->rw_devices); 871 fs_devices->opened = 0; 872 fs_devices->seeding = 0; 873 874 return 0; 875 } 876 877 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 878 { 879 struct btrfs_fs_devices *seed_devices = NULL; 880 int ret; 881 882 mutex_lock(&uuid_mutex); 883 ret = __btrfs_close_devices(fs_devices); 884 if (!fs_devices->opened) { 885 seed_devices = fs_devices->seed; 886 fs_devices->seed = NULL; 887 } 888 mutex_unlock(&uuid_mutex); 889 890 while (seed_devices) { 891 fs_devices = seed_devices; 892 seed_devices = fs_devices->seed; 893 __btrfs_close_devices(fs_devices); 894 free_fs_devices(fs_devices); 895 } 896 /* 897 * Wait for rcu kworkers under __btrfs_close_devices 898 * to finish all blkdev_puts so device is really 899 * free when umount is done. 900 */ 901 rcu_barrier(); 902 return ret; 903 } 904 905 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 906 fmode_t flags, void *holder) 907 { 908 struct request_queue *q; 909 struct block_device *bdev; 910 struct list_head *head = &fs_devices->devices; 911 struct btrfs_device *device; 912 struct btrfs_device *latest_dev = NULL; 913 struct buffer_head *bh; 914 struct btrfs_super_block *disk_super; 915 u64 devid; 916 int seeding = 1; 917 int ret = 0; 918 919 flags |= FMODE_EXCL; 920 921 list_for_each_entry(device, head, dev_list) { 922 if (device->bdev) 923 continue; 924 if (!device->name) 925 continue; 926 927 /* Just open everything we can; ignore failures here */ 928 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 929 &bdev, &bh)) 930 continue; 931 932 disk_super = (struct btrfs_super_block *)bh->b_data; 933 devid = btrfs_stack_device_id(&disk_super->dev_item); 934 if (devid != device->devid) 935 goto error_brelse; 936 937 if (memcmp(device->uuid, disk_super->dev_item.uuid, 938 BTRFS_UUID_SIZE)) 939 goto error_brelse; 940 941 device->generation = btrfs_super_generation(disk_super); 942 if (!latest_dev || 943 device->generation > latest_dev->generation) 944 latest_dev = device; 945 946 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 947 device->writeable = 0; 948 } else { 949 device->writeable = !bdev_read_only(bdev); 950 seeding = 0; 951 } 952 953 q = bdev_get_queue(bdev); 954 if (blk_queue_discard(q)) 955 device->can_discard = 1; 956 957 device->bdev = bdev; 958 device->in_fs_metadata = 0; 959 device->mode = flags; 960 961 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 962 fs_devices->rotating = 1; 963 964 fs_devices->open_devices++; 965 if (device->writeable && 966 device->devid != BTRFS_DEV_REPLACE_DEVID) { 967 fs_devices->rw_devices++; 968 list_add(&device->dev_alloc_list, 969 &fs_devices->alloc_list); 970 } 971 brelse(bh); 972 continue; 973 974 error_brelse: 975 brelse(bh); 976 blkdev_put(bdev, flags); 977 continue; 978 } 979 if (fs_devices->open_devices == 0) { 980 ret = -EINVAL; 981 goto out; 982 } 983 fs_devices->seeding = seeding; 984 fs_devices->opened = 1; 985 fs_devices->latest_bdev = latest_dev->bdev; 986 fs_devices->total_rw_bytes = 0; 987 out: 988 return ret; 989 } 990 991 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 992 fmode_t flags, void *holder) 993 { 994 int ret; 995 996 mutex_lock(&uuid_mutex); 997 if (fs_devices->opened) { 998 fs_devices->opened++; 999 ret = 0; 1000 } else { 1001 ret = __btrfs_open_devices(fs_devices, flags, holder); 1002 } 1003 mutex_unlock(&uuid_mutex); 1004 return ret; 1005 } 1006 1007 void btrfs_release_disk_super(struct page *page) 1008 { 1009 kunmap(page); 1010 put_page(page); 1011 } 1012 1013 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, 1014 struct page **page, struct btrfs_super_block **disk_super) 1015 { 1016 void *p; 1017 pgoff_t index; 1018 1019 /* make sure our super fits in the device */ 1020 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1021 return 1; 1022 1023 /* make sure our super fits in the page */ 1024 if (sizeof(**disk_super) > PAGE_SIZE) 1025 return 1; 1026 1027 /* make sure our super doesn't straddle pages on disk */ 1028 index = bytenr >> PAGE_SHIFT; 1029 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) 1030 return 1; 1031 1032 /* pull in the page with our super */ 1033 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1034 index, GFP_KERNEL); 1035 1036 if (IS_ERR_OR_NULL(*page)) 1037 return 1; 1038 1039 p = kmap(*page); 1040 1041 /* align our pointer to the offset of the super block */ 1042 *disk_super = p + (bytenr & ~PAGE_MASK); 1043 1044 if (btrfs_super_bytenr(*disk_super) != bytenr || 1045 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { 1046 btrfs_release_disk_super(*page); 1047 return 1; 1048 } 1049 1050 if ((*disk_super)->label[0] && 1051 (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) 1052 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1053 1054 return 0; 1055 } 1056 1057 /* 1058 * Look for a btrfs signature on a device. This may be called out of the mount path 1059 * and we are not allowed to call set_blocksize during the scan. The superblock 1060 * is read via pagecache 1061 */ 1062 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 1063 struct btrfs_fs_devices **fs_devices_ret) 1064 { 1065 struct btrfs_super_block *disk_super; 1066 struct block_device *bdev; 1067 struct page *page; 1068 int ret = -EINVAL; 1069 u64 devid; 1070 u64 transid; 1071 u64 total_devices; 1072 u64 bytenr; 1073 1074 /* 1075 * we would like to check all the supers, but that would make 1076 * a btrfs mount succeed after a mkfs from a different FS. 1077 * So, we need to add a special mount option to scan for 1078 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1079 */ 1080 bytenr = btrfs_sb_offset(0); 1081 flags |= FMODE_EXCL; 1082 mutex_lock(&uuid_mutex); 1083 1084 bdev = blkdev_get_by_path(path, flags, holder); 1085 if (IS_ERR(bdev)) { 1086 ret = PTR_ERR(bdev); 1087 goto error; 1088 } 1089 1090 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) 1091 goto error_bdev_put; 1092 1093 devid = btrfs_stack_device_id(&disk_super->dev_item); 1094 transid = btrfs_super_generation(disk_super); 1095 total_devices = btrfs_super_num_devices(disk_super); 1096 1097 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 1098 if (ret > 0) { 1099 if (disk_super->label[0]) { 1100 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label); 1101 } else { 1102 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid); 1103 } 1104 1105 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path); 1106 ret = 0; 1107 } 1108 if (!ret && fs_devices_ret) 1109 (*fs_devices_ret)->total_devices = total_devices; 1110 1111 btrfs_release_disk_super(page); 1112 1113 error_bdev_put: 1114 blkdev_put(bdev, flags); 1115 error: 1116 mutex_unlock(&uuid_mutex); 1117 return ret; 1118 } 1119 1120 /* helper to account the used device space in the range */ 1121 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 1122 u64 end, u64 *length) 1123 { 1124 struct btrfs_key key; 1125 struct btrfs_root *root = device->dev_root; 1126 struct btrfs_dev_extent *dev_extent; 1127 struct btrfs_path *path; 1128 u64 extent_end; 1129 int ret; 1130 int slot; 1131 struct extent_buffer *l; 1132 1133 *length = 0; 1134 1135 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 1136 return 0; 1137 1138 path = btrfs_alloc_path(); 1139 if (!path) 1140 return -ENOMEM; 1141 path->reada = READA_FORWARD; 1142 1143 key.objectid = device->devid; 1144 key.offset = start; 1145 key.type = BTRFS_DEV_EXTENT_KEY; 1146 1147 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1148 if (ret < 0) 1149 goto out; 1150 if (ret > 0) { 1151 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1152 if (ret < 0) 1153 goto out; 1154 } 1155 1156 while (1) { 1157 l = path->nodes[0]; 1158 slot = path->slots[0]; 1159 if (slot >= btrfs_header_nritems(l)) { 1160 ret = btrfs_next_leaf(root, path); 1161 if (ret == 0) 1162 continue; 1163 if (ret < 0) 1164 goto out; 1165 1166 break; 1167 } 1168 btrfs_item_key_to_cpu(l, &key, slot); 1169 1170 if (key.objectid < device->devid) 1171 goto next; 1172 1173 if (key.objectid > device->devid) 1174 break; 1175 1176 if (key.type != BTRFS_DEV_EXTENT_KEY) 1177 goto next; 1178 1179 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1180 extent_end = key.offset + btrfs_dev_extent_length(l, 1181 dev_extent); 1182 if (key.offset <= start && extent_end > end) { 1183 *length = end - start + 1; 1184 break; 1185 } else if (key.offset <= start && extent_end > start) 1186 *length += extent_end - start; 1187 else if (key.offset > start && extent_end <= end) 1188 *length += extent_end - key.offset; 1189 else if (key.offset > start && key.offset <= end) { 1190 *length += end - key.offset + 1; 1191 break; 1192 } else if (key.offset > end) 1193 break; 1194 1195 next: 1196 path->slots[0]++; 1197 } 1198 ret = 0; 1199 out: 1200 btrfs_free_path(path); 1201 return ret; 1202 } 1203 1204 static int contains_pending_extent(struct btrfs_transaction *transaction, 1205 struct btrfs_device *device, 1206 u64 *start, u64 len) 1207 { 1208 struct btrfs_fs_info *fs_info = device->dev_root->fs_info; 1209 struct extent_map *em; 1210 struct list_head *search_list = &fs_info->pinned_chunks; 1211 int ret = 0; 1212 u64 physical_start = *start; 1213 1214 if (transaction) 1215 search_list = &transaction->pending_chunks; 1216 again: 1217 list_for_each_entry(em, search_list, list) { 1218 struct map_lookup *map; 1219 int i; 1220 1221 map = em->map_lookup; 1222 for (i = 0; i < map->num_stripes; i++) { 1223 u64 end; 1224 1225 if (map->stripes[i].dev != device) 1226 continue; 1227 if (map->stripes[i].physical >= physical_start + len || 1228 map->stripes[i].physical + em->orig_block_len <= 1229 physical_start) 1230 continue; 1231 /* 1232 * Make sure that while processing the pinned list we do 1233 * not override our *start with a lower value, because 1234 * we can have pinned chunks that fall within this 1235 * device hole and that have lower physical addresses 1236 * than the pending chunks we processed before. If we 1237 * do not take this special care we can end up getting 1238 * 2 pending chunks that start at the same physical 1239 * device offsets because the end offset of a pinned 1240 * chunk can be equal to the start offset of some 1241 * pending chunk. 1242 */ 1243 end = map->stripes[i].physical + em->orig_block_len; 1244 if (end > *start) { 1245 *start = end; 1246 ret = 1; 1247 } 1248 } 1249 } 1250 if (search_list != &fs_info->pinned_chunks) { 1251 search_list = &fs_info->pinned_chunks; 1252 goto again; 1253 } 1254 1255 return ret; 1256 } 1257 1258 1259 /* 1260 * find_free_dev_extent_start - find free space in the specified device 1261 * @device: the device which we search the free space in 1262 * @num_bytes: the size of the free space that we need 1263 * @search_start: the position from which to begin the search 1264 * @start: store the start of the free space. 1265 * @len: the size of the free space. that we find, or the size 1266 * of the max free space if we don't find suitable free space 1267 * 1268 * this uses a pretty simple search, the expectation is that it is 1269 * called very infrequently and that a given device has a small number 1270 * of extents 1271 * 1272 * @start is used to store the start of the free space if we find. But if we 1273 * don't find suitable free space, it will be used to store the start position 1274 * of the max free space. 1275 * 1276 * @len is used to store the size of the free space that we find. 1277 * But if we don't find suitable free space, it is used to store the size of 1278 * the max free space. 1279 */ 1280 int find_free_dev_extent_start(struct btrfs_transaction *transaction, 1281 struct btrfs_device *device, u64 num_bytes, 1282 u64 search_start, u64 *start, u64 *len) 1283 { 1284 struct btrfs_key key; 1285 struct btrfs_root *root = device->dev_root; 1286 struct btrfs_dev_extent *dev_extent; 1287 struct btrfs_path *path; 1288 u64 hole_size; 1289 u64 max_hole_start; 1290 u64 max_hole_size; 1291 u64 extent_end; 1292 u64 search_end = device->total_bytes; 1293 int ret; 1294 int slot; 1295 struct extent_buffer *l; 1296 u64 min_search_start; 1297 1298 /* 1299 * We don't want to overwrite the superblock on the drive nor any area 1300 * used by the boot loader (grub for example), so we make sure to start 1301 * at an offset of at least 1MB. 1302 */ 1303 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 1304 search_start = max(search_start, min_search_start); 1305 1306 path = btrfs_alloc_path(); 1307 if (!path) 1308 return -ENOMEM; 1309 1310 max_hole_start = search_start; 1311 max_hole_size = 0; 1312 1313 again: 1314 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1315 ret = -ENOSPC; 1316 goto out; 1317 } 1318 1319 path->reada = READA_FORWARD; 1320 path->search_commit_root = 1; 1321 path->skip_locking = 1; 1322 1323 key.objectid = device->devid; 1324 key.offset = search_start; 1325 key.type = BTRFS_DEV_EXTENT_KEY; 1326 1327 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1328 if (ret < 0) 1329 goto out; 1330 if (ret > 0) { 1331 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1332 if (ret < 0) 1333 goto out; 1334 } 1335 1336 while (1) { 1337 l = path->nodes[0]; 1338 slot = path->slots[0]; 1339 if (slot >= btrfs_header_nritems(l)) { 1340 ret = btrfs_next_leaf(root, path); 1341 if (ret == 0) 1342 continue; 1343 if (ret < 0) 1344 goto out; 1345 1346 break; 1347 } 1348 btrfs_item_key_to_cpu(l, &key, slot); 1349 1350 if (key.objectid < device->devid) 1351 goto next; 1352 1353 if (key.objectid > device->devid) 1354 break; 1355 1356 if (key.type != BTRFS_DEV_EXTENT_KEY) 1357 goto next; 1358 1359 if (key.offset > search_start) { 1360 hole_size = key.offset - search_start; 1361 1362 /* 1363 * Have to check before we set max_hole_start, otherwise 1364 * we could end up sending back this offset anyway. 1365 */ 1366 if (contains_pending_extent(transaction, device, 1367 &search_start, 1368 hole_size)) { 1369 if (key.offset >= search_start) { 1370 hole_size = key.offset - search_start; 1371 } else { 1372 WARN_ON_ONCE(1); 1373 hole_size = 0; 1374 } 1375 } 1376 1377 if (hole_size > max_hole_size) { 1378 max_hole_start = search_start; 1379 max_hole_size = hole_size; 1380 } 1381 1382 /* 1383 * If this free space is greater than which we need, 1384 * it must be the max free space that we have found 1385 * until now, so max_hole_start must point to the start 1386 * of this free space and the length of this free space 1387 * is stored in max_hole_size. Thus, we return 1388 * max_hole_start and max_hole_size and go back to the 1389 * caller. 1390 */ 1391 if (hole_size >= num_bytes) { 1392 ret = 0; 1393 goto out; 1394 } 1395 } 1396 1397 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1398 extent_end = key.offset + btrfs_dev_extent_length(l, 1399 dev_extent); 1400 if (extent_end > search_start) 1401 search_start = extent_end; 1402 next: 1403 path->slots[0]++; 1404 cond_resched(); 1405 } 1406 1407 /* 1408 * At this point, search_start should be the end of 1409 * allocated dev extents, and when shrinking the device, 1410 * search_end may be smaller than search_start. 1411 */ 1412 if (search_end > search_start) { 1413 hole_size = search_end - search_start; 1414 1415 if (contains_pending_extent(transaction, device, &search_start, 1416 hole_size)) { 1417 btrfs_release_path(path); 1418 goto again; 1419 } 1420 1421 if (hole_size > max_hole_size) { 1422 max_hole_start = search_start; 1423 max_hole_size = hole_size; 1424 } 1425 } 1426 1427 /* See above. */ 1428 if (max_hole_size < num_bytes) 1429 ret = -ENOSPC; 1430 else 1431 ret = 0; 1432 1433 out: 1434 btrfs_free_path(path); 1435 *start = max_hole_start; 1436 if (len) 1437 *len = max_hole_size; 1438 return ret; 1439 } 1440 1441 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1442 struct btrfs_device *device, u64 num_bytes, 1443 u64 *start, u64 *len) 1444 { 1445 /* FIXME use last free of some kind */ 1446 return find_free_dev_extent_start(trans->transaction, device, 1447 num_bytes, 0, start, len); 1448 } 1449 1450 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1451 struct btrfs_device *device, 1452 u64 start, u64 *dev_extent_len) 1453 { 1454 int ret; 1455 struct btrfs_path *path; 1456 struct btrfs_root *root = device->dev_root; 1457 struct btrfs_key key; 1458 struct btrfs_key found_key; 1459 struct extent_buffer *leaf = NULL; 1460 struct btrfs_dev_extent *extent = NULL; 1461 1462 path = btrfs_alloc_path(); 1463 if (!path) 1464 return -ENOMEM; 1465 1466 key.objectid = device->devid; 1467 key.offset = start; 1468 key.type = BTRFS_DEV_EXTENT_KEY; 1469 again: 1470 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1471 if (ret > 0) { 1472 ret = btrfs_previous_item(root, path, key.objectid, 1473 BTRFS_DEV_EXTENT_KEY); 1474 if (ret) 1475 goto out; 1476 leaf = path->nodes[0]; 1477 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1478 extent = btrfs_item_ptr(leaf, path->slots[0], 1479 struct btrfs_dev_extent); 1480 BUG_ON(found_key.offset > start || found_key.offset + 1481 btrfs_dev_extent_length(leaf, extent) < start); 1482 key = found_key; 1483 btrfs_release_path(path); 1484 goto again; 1485 } else if (ret == 0) { 1486 leaf = path->nodes[0]; 1487 extent = btrfs_item_ptr(leaf, path->slots[0], 1488 struct btrfs_dev_extent); 1489 } else { 1490 btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed"); 1491 goto out; 1492 } 1493 1494 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1495 1496 ret = btrfs_del_item(trans, root, path); 1497 if (ret) { 1498 btrfs_handle_fs_error(root->fs_info, ret, 1499 "Failed to remove dev extent item"); 1500 } else { 1501 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1502 } 1503 out: 1504 btrfs_free_path(path); 1505 return ret; 1506 } 1507 1508 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1509 struct btrfs_device *device, 1510 u64 chunk_tree, u64 chunk_objectid, 1511 u64 chunk_offset, u64 start, u64 num_bytes) 1512 { 1513 int ret; 1514 struct btrfs_path *path; 1515 struct btrfs_root *root = device->dev_root; 1516 struct btrfs_dev_extent *extent; 1517 struct extent_buffer *leaf; 1518 struct btrfs_key key; 1519 1520 WARN_ON(!device->in_fs_metadata); 1521 WARN_ON(device->is_tgtdev_for_dev_replace); 1522 path = btrfs_alloc_path(); 1523 if (!path) 1524 return -ENOMEM; 1525 1526 key.objectid = device->devid; 1527 key.offset = start; 1528 key.type = BTRFS_DEV_EXTENT_KEY; 1529 ret = btrfs_insert_empty_item(trans, root, path, &key, 1530 sizeof(*extent)); 1531 if (ret) 1532 goto out; 1533 1534 leaf = path->nodes[0]; 1535 extent = btrfs_item_ptr(leaf, path->slots[0], 1536 struct btrfs_dev_extent); 1537 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1538 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1539 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1540 1541 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1542 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE); 1543 1544 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1545 btrfs_mark_buffer_dirty(leaf); 1546 out: 1547 btrfs_free_path(path); 1548 return ret; 1549 } 1550 1551 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1552 { 1553 struct extent_map_tree *em_tree; 1554 struct extent_map *em; 1555 struct rb_node *n; 1556 u64 ret = 0; 1557 1558 em_tree = &fs_info->mapping_tree.map_tree; 1559 read_lock(&em_tree->lock); 1560 n = rb_last(&em_tree->map); 1561 if (n) { 1562 em = rb_entry(n, struct extent_map, rb_node); 1563 ret = em->start + em->len; 1564 } 1565 read_unlock(&em_tree->lock); 1566 1567 return ret; 1568 } 1569 1570 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1571 u64 *devid_ret) 1572 { 1573 int ret; 1574 struct btrfs_key key; 1575 struct btrfs_key found_key; 1576 struct btrfs_path *path; 1577 1578 path = btrfs_alloc_path(); 1579 if (!path) 1580 return -ENOMEM; 1581 1582 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1583 key.type = BTRFS_DEV_ITEM_KEY; 1584 key.offset = (u64)-1; 1585 1586 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1587 if (ret < 0) 1588 goto error; 1589 1590 BUG_ON(ret == 0); /* Corruption */ 1591 1592 ret = btrfs_previous_item(fs_info->chunk_root, path, 1593 BTRFS_DEV_ITEMS_OBJECTID, 1594 BTRFS_DEV_ITEM_KEY); 1595 if (ret) { 1596 *devid_ret = 1; 1597 } else { 1598 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1599 path->slots[0]); 1600 *devid_ret = found_key.offset + 1; 1601 } 1602 ret = 0; 1603 error: 1604 btrfs_free_path(path); 1605 return ret; 1606 } 1607 1608 /* 1609 * the device information is stored in the chunk root 1610 * the btrfs_device struct should be fully filled in 1611 */ 1612 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1613 struct btrfs_root *root, 1614 struct btrfs_device *device) 1615 { 1616 int ret; 1617 struct btrfs_path *path; 1618 struct btrfs_dev_item *dev_item; 1619 struct extent_buffer *leaf; 1620 struct btrfs_key key; 1621 unsigned long ptr; 1622 1623 root = root->fs_info->chunk_root; 1624 1625 path = btrfs_alloc_path(); 1626 if (!path) 1627 return -ENOMEM; 1628 1629 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1630 key.type = BTRFS_DEV_ITEM_KEY; 1631 key.offset = device->devid; 1632 1633 ret = btrfs_insert_empty_item(trans, root, path, &key, 1634 sizeof(*dev_item)); 1635 if (ret) 1636 goto out; 1637 1638 leaf = path->nodes[0]; 1639 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1640 1641 btrfs_set_device_id(leaf, dev_item, device->devid); 1642 btrfs_set_device_generation(leaf, dev_item, 0); 1643 btrfs_set_device_type(leaf, dev_item, device->type); 1644 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1645 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1646 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1647 btrfs_set_device_total_bytes(leaf, dev_item, 1648 btrfs_device_get_disk_total_bytes(device)); 1649 btrfs_set_device_bytes_used(leaf, dev_item, 1650 btrfs_device_get_bytes_used(device)); 1651 btrfs_set_device_group(leaf, dev_item, 0); 1652 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1653 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1654 btrfs_set_device_start_offset(leaf, dev_item, 0); 1655 1656 ptr = btrfs_device_uuid(dev_item); 1657 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1658 ptr = btrfs_device_fsid(dev_item); 1659 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1660 btrfs_mark_buffer_dirty(leaf); 1661 1662 ret = 0; 1663 out: 1664 btrfs_free_path(path); 1665 return ret; 1666 } 1667 1668 /* 1669 * Function to update ctime/mtime for a given device path. 1670 * Mainly used for ctime/mtime based probe like libblkid. 1671 */ 1672 static void update_dev_time(char *path_name) 1673 { 1674 struct file *filp; 1675 1676 filp = filp_open(path_name, O_RDWR, 0); 1677 if (IS_ERR(filp)) 1678 return; 1679 file_update_time(filp); 1680 filp_close(filp, NULL); 1681 } 1682 1683 static int btrfs_rm_dev_item(struct btrfs_root *root, 1684 struct btrfs_device *device) 1685 { 1686 int ret; 1687 struct btrfs_path *path; 1688 struct btrfs_key key; 1689 struct btrfs_trans_handle *trans; 1690 1691 root = root->fs_info->chunk_root; 1692 1693 path = btrfs_alloc_path(); 1694 if (!path) 1695 return -ENOMEM; 1696 1697 trans = btrfs_start_transaction(root, 0); 1698 if (IS_ERR(trans)) { 1699 btrfs_free_path(path); 1700 return PTR_ERR(trans); 1701 } 1702 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1703 key.type = BTRFS_DEV_ITEM_KEY; 1704 key.offset = device->devid; 1705 1706 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1707 if (ret < 0) 1708 goto out; 1709 1710 if (ret > 0) { 1711 ret = -ENOENT; 1712 goto out; 1713 } 1714 1715 ret = btrfs_del_item(trans, root, path); 1716 if (ret) 1717 goto out; 1718 out: 1719 btrfs_free_path(path); 1720 btrfs_commit_transaction(trans, root); 1721 return ret; 1722 } 1723 1724 /* 1725 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1726 * filesystem. It's up to the caller to adjust that number regarding eg. device 1727 * replace. 1728 */ 1729 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1730 u64 num_devices) 1731 { 1732 u64 all_avail; 1733 unsigned seq; 1734 int i; 1735 1736 do { 1737 seq = read_seqbegin(&fs_info->profiles_lock); 1738 1739 all_avail = fs_info->avail_data_alloc_bits | 1740 fs_info->avail_system_alloc_bits | 1741 fs_info->avail_metadata_alloc_bits; 1742 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1743 1744 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1745 if (!(all_avail & btrfs_raid_group[i])) 1746 continue; 1747 1748 if (num_devices < btrfs_raid_array[i].devs_min) { 1749 int ret = btrfs_raid_mindev_error[i]; 1750 1751 if (ret) 1752 return ret; 1753 } 1754 } 1755 1756 return 0; 1757 } 1758 1759 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs, 1760 struct btrfs_device *device) 1761 { 1762 struct btrfs_device *next_device; 1763 1764 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1765 if (next_device != device && 1766 !next_device->missing && next_device->bdev) 1767 return next_device; 1768 } 1769 1770 return NULL; 1771 } 1772 1773 /* 1774 * Helper function to check if the given device is part of s_bdev / latest_bdev 1775 * and replace it with the provided or the next active device, in the context 1776 * where this function called, there should be always be another device (or 1777 * this_dev) which is active. 1778 */ 1779 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info, 1780 struct btrfs_device *device, struct btrfs_device *this_dev) 1781 { 1782 struct btrfs_device *next_device; 1783 1784 if (this_dev) 1785 next_device = this_dev; 1786 else 1787 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1788 device); 1789 ASSERT(next_device); 1790 1791 if (fs_info->sb->s_bdev && 1792 (fs_info->sb->s_bdev == device->bdev)) 1793 fs_info->sb->s_bdev = next_device->bdev; 1794 1795 if (fs_info->fs_devices->latest_bdev == device->bdev) 1796 fs_info->fs_devices->latest_bdev = next_device->bdev; 1797 } 1798 1799 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid) 1800 { 1801 struct btrfs_device *device; 1802 struct btrfs_fs_devices *cur_devices; 1803 u64 num_devices; 1804 int ret = 0; 1805 bool clear_super = false; 1806 char *dev_name = NULL; 1807 1808 mutex_lock(&uuid_mutex); 1809 1810 num_devices = root->fs_info->fs_devices->num_devices; 1811 btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0); 1812 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) { 1813 WARN_ON(num_devices < 1); 1814 num_devices--; 1815 } 1816 btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0); 1817 1818 ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1); 1819 if (ret) 1820 goto out; 1821 1822 ret = btrfs_find_device_by_devspec(root, devid, device_path, 1823 &device); 1824 if (ret) 1825 goto out; 1826 1827 if (device->is_tgtdev_for_dev_replace) { 1828 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1829 goto out; 1830 } 1831 1832 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1833 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1834 goto out; 1835 } 1836 1837 if (device->writeable) { 1838 lock_chunks(root); 1839 list_del_init(&device->dev_alloc_list); 1840 device->fs_devices->rw_devices--; 1841 unlock_chunks(root); 1842 dev_name = kstrdup(device->name->str, GFP_KERNEL); 1843 if (!dev_name) { 1844 ret = -ENOMEM; 1845 goto error_undo; 1846 } 1847 clear_super = true; 1848 } 1849 1850 mutex_unlock(&uuid_mutex); 1851 ret = btrfs_shrink_device(device, 0); 1852 mutex_lock(&uuid_mutex); 1853 if (ret) 1854 goto error_undo; 1855 1856 /* 1857 * TODO: the superblock still includes this device in its num_devices 1858 * counter although write_all_supers() is not locked out. This 1859 * could give a filesystem state which requires a degraded mount. 1860 */ 1861 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1862 if (ret) 1863 goto error_undo; 1864 1865 device->in_fs_metadata = 0; 1866 btrfs_scrub_cancel_dev(root->fs_info, device); 1867 1868 /* 1869 * the device list mutex makes sure that we don't change 1870 * the device list while someone else is writing out all 1871 * the device supers. Whoever is writing all supers, should 1872 * lock the device list mutex before getting the number of 1873 * devices in the super block (super_copy). Conversely, 1874 * whoever updates the number of devices in the super block 1875 * (super_copy) should hold the device list mutex. 1876 */ 1877 1878 cur_devices = device->fs_devices; 1879 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1880 list_del_rcu(&device->dev_list); 1881 1882 device->fs_devices->num_devices--; 1883 device->fs_devices->total_devices--; 1884 1885 if (device->missing) 1886 device->fs_devices->missing_devices--; 1887 1888 btrfs_assign_next_active_device(root->fs_info, device, NULL); 1889 1890 if (device->bdev) { 1891 device->fs_devices->open_devices--; 1892 /* remove sysfs entry */ 1893 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device); 1894 } 1895 1896 call_rcu(&device->rcu, free_device); 1897 1898 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1899 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1900 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1901 1902 if (cur_devices->open_devices == 0) { 1903 struct btrfs_fs_devices *fs_devices; 1904 fs_devices = root->fs_info->fs_devices; 1905 while (fs_devices) { 1906 if (fs_devices->seed == cur_devices) { 1907 fs_devices->seed = cur_devices->seed; 1908 break; 1909 } 1910 fs_devices = fs_devices->seed; 1911 } 1912 cur_devices->seed = NULL; 1913 __btrfs_close_devices(cur_devices); 1914 free_fs_devices(cur_devices); 1915 } 1916 1917 root->fs_info->num_tolerated_disk_barrier_failures = 1918 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1919 1920 /* 1921 * at this point, the device is zero sized. We want to 1922 * remove it from the devices list and zero out the old super 1923 */ 1924 if (clear_super) { 1925 struct block_device *bdev; 1926 1927 bdev = blkdev_get_by_path(dev_name, FMODE_READ | FMODE_EXCL, 1928 root->fs_info->bdev_holder); 1929 if (!IS_ERR(bdev)) { 1930 btrfs_scratch_superblocks(bdev, dev_name); 1931 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1932 } 1933 } 1934 1935 out: 1936 kfree(dev_name); 1937 1938 mutex_unlock(&uuid_mutex); 1939 return ret; 1940 1941 error_undo: 1942 if (device->writeable) { 1943 lock_chunks(root); 1944 list_add(&device->dev_alloc_list, 1945 &root->fs_info->fs_devices->alloc_list); 1946 device->fs_devices->rw_devices++; 1947 unlock_chunks(root); 1948 } 1949 goto out; 1950 } 1951 1952 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info, 1953 struct btrfs_device *srcdev) 1954 { 1955 struct btrfs_fs_devices *fs_devices; 1956 1957 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 1958 1959 /* 1960 * in case of fs with no seed, srcdev->fs_devices will point 1961 * to fs_devices of fs_info. However when the dev being replaced is 1962 * a seed dev it will point to the seed's local fs_devices. In short 1963 * srcdev will have its correct fs_devices in both the cases. 1964 */ 1965 fs_devices = srcdev->fs_devices; 1966 1967 list_del_rcu(&srcdev->dev_list); 1968 list_del_rcu(&srcdev->dev_alloc_list); 1969 fs_devices->num_devices--; 1970 if (srcdev->missing) 1971 fs_devices->missing_devices--; 1972 1973 if (srcdev->writeable) 1974 fs_devices->rw_devices--; 1975 1976 if (srcdev->bdev) 1977 fs_devices->open_devices--; 1978 } 1979 1980 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 1981 struct btrfs_device *srcdev) 1982 { 1983 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 1984 1985 if (srcdev->writeable) { 1986 /* zero out the old super if it is writable */ 1987 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); 1988 } 1989 call_rcu(&srcdev->rcu, free_device); 1990 1991 /* 1992 * unless fs_devices is seed fs, num_devices shouldn't go 1993 * zero 1994 */ 1995 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding); 1996 1997 /* if this is no devs we rather delete the fs_devices */ 1998 if (!fs_devices->num_devices) { 1999 struct btrfs_fs_devices *tmp_fs_devices; 2000 2001 tmp_fs_devices = fs_info->fs_devices; 2002 while (tmp_fs_devices) { 2003 if (tmp_fs_devices->seed == fs_devices) { 2004 tmp_fs_devices->seed = fs_devices->seed; 2005 break; 2006 } 2007 tmp_fs_devices = tmp_fs_devices->seed; 2008 } 2009 fs_devices->seed = NULL; 2010 __btrfs_close_devices(fs_devices); 2011 free_fs_devices(fs_devices); 2012 } 2013 } 2014 2015 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 2016 struct btrfs_device *tgtdev) 2017 { 2018 mutex_lock(&uuid_mutex); 2019 WARN_ON(!tgtdev); 2020 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2021 2022 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev); 2023 2024 if (tgtdev->bdev) 2025 fs_info->fs_devices->open_devices--; 2026 2027 fs_info->fs_devices->num_devices--; 2028 2029 btrfs_assign_next_active_device(fs_info, tgtdev, NULL); 2030 2031 list_del_rcu(&tgtdev->dev_list); 2032 2033 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2034 mutex_unlock(&uuid_mutex); 2035 2036 /* 2037 * The update_dev_time() with in btrfs_scratch_superblocks() 2038 * may lead to a call to btrfs_show_devname() which will try 2039 * to hold device_list_mutex. And here this device 2040 * is already out of device list, so we don't have to hold 2041 * the device_list_mutex lock. 2042 */ 2043 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); 2044 call_rcu(&tgtdev->rcu, free_device); 2045 } 2046 2047 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path, 2048 struct btrfs_device **device) 2049 { 2050 int ret = 0; 2051 struct btrfs_super_block *disk_super; 2052 u64 devid; 2053 u8 *dev_uuid; 2054 struct block_device *bdev; 2055 struct buffer_head *bh; 2056 2057 *device = NULL; 2058 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2059 root->fs_info->bdev_holder, 0, &bdev, &bh); 2060 if (ret) 2061 return ret; 2062 disk_super = (struct btrfs_super_block *)bh->b_data; 2063 devid = btrfs_stack_device_id(&disk_super->dev_item); 2064 dev_uuid = disk_super->dev_item.uuid; 2065 *device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2066 disk_super->fsid); 2067 brelse(bh); 2068 if (!*device) 2069 ret = -ENOENT; 2070 blkdev_put(bdev, FMODE_READ); 2071 return ret; 2072 } 2073 2074 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root, 2075 char *device_path, 2076 struct btrfs_device **device) 2077 { 2078 *device = NULL; 2079 if (strcmp(device_path, "missing") == 0) { 2080 struct list_head *devices; 2081 struct btrfs_device *tmp; 2082 2083 devices = &root->fs_info->fs_devices->devices; 2084 /* 2085 * It is safe to read the devices since the volume_mutex 2086 * is held by the caller. 2087 */ 2088 list_for_each_entry(tmp, devices, dev_list) { 2089 if (tmp->in_fs_metadata && !tmp->bdev) { 2090 *device = tmp; 2091 break; 2092 } 2093 } 2094 2095 if (!*device) 2096 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2097 2098 return 0; 2099 } else { 2100 return btrfs_find_device_by_path(root, device_path, device); 2101 } 2102 } 2103 2104 /* 2105 * Lookup a device given by device id, or the path if the id is 0. 2106 */ 2107 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid, 2108 char *devpath, 2109 struct btrfs_device **device) 2110 { 2111 int ret; 2112 2113 if (devid) { 2114 ret = 0; 2115 *device = btrfs_find_device(root->fs_info, devid, NULL, 2116 NULL); 2117 if (!*device) 2118 ret = -ENOENT; 2119 } else { 2120 if (!devpath || !devpath[0]) 2121 return -EINVAL; 2122 2123 ret = btrfs_find_device_missing_or_by_path(root, devpath, 2124 device); 2125 } 2126 return ret; 2127 } 2128 2129 /* 2130 * does all the dirty work required for changing file system's UUID. 2131 */ 2132 static int btrfs_prepare_sprout(struct btrfs_root *root) 2133 { 2134 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2135 struct btrfs_fs_devices *old_devices; 2136 struct btrfs_fs_devices *seed_devices; 2137 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 2138 struct btrfs_device *device; 2139 u64 super_flags; 2140 2141 BUG_ON(!mutex_is_locked(&uuid_mutex)); 2142 if (!fs_devices->seeding) 2143 return -EINVAL; 2144 2145 seed_devices = __alloc_fs_devices(); 2146 if (IS_ERR(seed_devices)) 2147 return PTR_ERR(seed_devices); 2148 2149 old_devices = clone_fs_devices(fs_devices); 2150 if (IS_ERR(old_devices)) { 2151 kfree(seed_devices); 2152 return PTR_ERR(old_devices); 2153 } 2154 2155 list_add(&old_devices->list, &fs_uuids); 2156 2157 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2158 seed_devices->opened = 1; 2159 INIT_LIST_HEAD(&seed_devices->devices); 2160 INIT_LIST_HEAD(&seed_devices->alloc_list); 2161 mutex_init(&seed_devices->device_list_mutex); 2162 2163 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2164 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2165 synchronize_rcu); 2166 list_for_each_entry(device, &seed_devices->devices, dev_list) 2167 device->fs_devices = seed_devices; 2168 2169 lock_chunks(root); 2170 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2171 unlock_chunks(root); 2172 2173 fs_devices->seeding = 0; 2174 fs_devices->num_devices = 0; 2175 fs_devices->open_devices = 0; 2176 fs_devices->missing_devices = 0; 2177 fs_devices->rotating = 0; 2178 fs_devices->seed = seed_devices; 2179 2180 generate_random_uuid(fs_devices->fsid); 2181 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2182 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2183 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2184 2185 super_flags = btrfs_super_flags(disk_super) & 2186 ~BTRFS_SUPER_FLAG_SEEDING; 2187 btrfs_set_super_flags(disk_super, super_flags); 2188 2189 return 0; 2190 } 2191 2192 /* 2193 * Store the expected generation for seed devices in device items. 2194 */ 2195 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2196 struct btrfs_root *root) 2197 { 2198 struct btrfs_path *path; 2199 struct extent_buffer *leaf; 2200 struct btrfs_dev_item *dev_item; 2201 struct btrfs_device *device; 2202 struct btrfs_key key; 2203 u8 fs_uuid[BTRFS_UUID_SIZE]; 2204 u8 dev_uuid[BTRFS_UUID_SIZE]; 2205 u64 devid; 2206 int ret; 2207 2208 path = btrfs_alloc_path(); 2209 if (!path) 2210 return -ENOMEM; 2211 2212 root = root->fs_info->chunk_root; 2213 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2214 key.offset = 0; 2215 key.type = BTRFS_DEV_ITEM_KEY; 2216 2217 while (1) { 2218 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2219 if (ret < 0) 2220 goto error; 2221 2222 leaf = path->nodes[0]; 2223 next_slot: 2224 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2225 ret = btrfs_next_leaf(root, path); 2226 if (ret > 0) 2227 break; 2228 if (ret < 0) 2229 goto error; 2230 leaf = path->nodes[0]; 2231 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2232 btrfs_release_path(path); 2233 continue; 2234 } 2235 2236 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2237 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2238 key.type != BTRFS_DEV_ITEM_KEY) 2239 break; 2240 2241 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2242 struct btrfs_dev_item); 2243 devid = btrfs_device_id(leaf, dev_item); 2244 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2245 BTRFS_UUID_SIZE); 2246 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2247 BTRFS_UUID_SIZE); 2248 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2249 fs_uuid); 2250 BUG_ON(!device); /* Logic error */ 2251 2252 if (device->fs_devices->seeding) { 2253 btrfs_set_device_generation(leaf, dev_item, 2254 device->generation); 2255 btrfs_mark_buffer_dirty(leaf); 2256 } 2257 2258 path->slots[0]++; 2259 goto next_slot; 2260 } 2261 ret = 0; 2262 error: 2263 btrfs_free_path(path); 2264 return ret; 2265 } 2266 2267 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 2268 { 2269 struct request_queue *q; 2270 struct btrfs_trans_handle *trans; 2271 struct btrfs_device *device; 2272 struct block_device *bdev; 2273 struct list_head *devices; 2274 struct super_block *sb = root->fs_info->sb; 2275 struct rcu_string *name; 2276 u64 tmp; 2277 int seeding_dev = 0; 2278 int ret = 0; 2279 2280 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 2281 return -EROFS; 2282 2283 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2284 root->fs_info->bdev_holder); 2285 if (IS_ERR(bdev)) 2286 return PTR_ERR(bdev); 2287 2288 if (root->fs_info->fs_devices->seeding) { 2289 seeding_dev = 1; 2290 down_write(&sb->s_umount); 2291 mutex_lock(&uuid_mutex); 2292 } 2293 2294 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2295 2296 devices = &root->fs_info->fs_devices->devices; 2297 2298 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2299 list_for_each_entry(device, devices, dev_list) { 2300 if (device->bdev == bdev) { 2301 ret = -EEXIST; 2302 mutex_unlock( 2303 &root->fs_info->fs_devices->device_list_mutex); 2304 goto error; 2305 } 2306 } 2307 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2308 2309 device = btrfs_alloc_device(root->fs_info, NULL, NULL); 2310 if (IS_ERR(device)) { 2311 /* we can safely leave the fs_devices entry around */ 2312 ret = PTR_ERR(device); 2313 goto error; 2314 } 2315 2316 name = rcu_string_strdup(device_path, GFP_KERNEL); 2317 if (!name) { 2318 kfree(device); 2319 ret = -ENOMEM; 2320 goto error; 2321 } 2322 rcu_assign_pointer(device->name, name); 2323 2324 trans = btrfs_start_transaction(root, 0); 2325 if (IS_ERR(trans)) { 2326 rcu_string_free(device->name); 2327 kfree(device); 2328 ret = PTR_ERR(trans); 2329 goto error; 2330 } 2331 2332 q = bdev_get_queue(bdev); 2333 if (blk_queue_discard(q)) 2334 device->can_discard = 1; 2335 device->writeable = 1; 2336 device->generation = trans->transid; 2337 device->io_width = root->sectorsize; 2338 device->io_align = root->sectorsize; 2339 device->sector_size = root->sectorsize; 2340 device->total_bytes = i_size_read(bdev->bd_inode); 2341 device->disk_total_bytes = device->total_bytes; 2342 device->commit_total_bytes = device->total_bytes; 2343 device->dev_root = root->fs_info->dev_root; 2344 device->bdev = bdev; 2345 device->in_fs_metadata = 1; 2346 device->is_tgtdev_for_dev_replace = 0; 2347 device->mode = FMODE_EXCL; 2348 device->dev_stats_valid = 1; 2349 set_blocksize(device->bdev, 4096); 2350 2351 if (seeding_dev) { 2352 sb->s_flags &= ~MS_RDONLY; 2353 ret = btrfs_prepare_sprout(root); 2354 BUG_ON(ret); /* -ENOMEM */ 2355 } 2356 2357 device->fs_devices = root->fs_info->fs_devices; 2358 2359 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2360 lock_chunks(root); 2361 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 2362 list_add(&device->dev_alloc_list, 2363 &root->fs_info->fs_devices->alloc_list); 2364 root->fs_info->fs_devices->num_devices++; 2365 root->fs_info->fs_devices->open_devices++; 2366 root->fs_info->fs_devices->rw_devices++; 2367 root->fs_info->fs_devices->total_devices++; 2368 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2369 2370 spin_lock(&root->fs_info->free_chunk_lock); 2371 root->fs_info->free_chunk_space += device->total_bytes; 2372 spin_unlock(&root->fs_info->free_chunk_lock); 2373 2374 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2375 root->fs_info->fs_devices->rotating = 1; 2376 2377 tmp = btrfs_super_total_bytes(root->fs_info->super_copy); 2378 btrfs_set_super_total_bytes(root->fs_info->super_copy, 2379 tmp + device->total_bytes); 2380 2381 tmp = btrfs_super_num_devices(root->fs_info->super_copy); 2382 btrfs_set_super_num_devices(root->fs_info->super_copy, 2383 tmp + 1); 2384 2385 /* add sysfs device entry */ 2386 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device); 2387 2388 /* 2389 * we've got more storage, clear any full flags on the space 2390 * infos 2391 */ 2392 btrfs_clear_space_info_full(root->fs_info); 2393 2394 unlock_chunks(root); 2395 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2396 2397 if (seeding_dev) { 2398 lock_chunks(root); 2399 ret = init_first_rw_device(trans, root, device); 2400 unlock_chunks(root); 2401 if (ret) { 2402 btrfs_abort_transaction(trans, root, ret); 2403 goto error_trans; 2404 } 2405 } 2406 2407 ret = btrfs_add_device(trans, root, device); 2408 if (ret) { 2409 btrfs_abort_transaction(trans, root, ret); 2410 goto error_trans; 2411 } 2412 2413 if (seeding_dev) { 2414 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2415 2416 ret = btrfs_finish_sprout(trans, root); 2417 if (ret) { 2418 btrfs_abort_transaction(trans, root, ret); 2419 goto error_trans; 2420 } 2421 2422 /* Sprouting would change fsid of the mounted root, 2423 * so rename the fsid on the sysfs 2424 */ 2425 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2426 root->fs_info->fsid); 2427 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj, 2428 fsid_buf)) 2429 btrfs_warn(root->fs_info, 2430 "sysfs: failed to create fsid for sprout"); 2431 } 2432 2433 root->fs_info->num_tolerated_disk_barrier_failures = 2434 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 2435 ret = btrfs_commit_transaction(trans, root); 2436 2437 if (seeding_dev) { 2438 mutex_unlock(&uuid_mutex); 2439 up_write(&sb->s_umount); 2440 2441 if (ret) /* transaction commit */ 2442 return ret; 2443 2444 ret = btrfs_relocate_sys_chunks(root); 2445 if (ret < 0) 2446 btrfs_handle_fs_error(root->fs_info, ret, 2447 "Failed to relocate sys chunks after " 2448 "device initialization. This can be fixed " 2449 "using the \"btrfs balance\" command."); 2450 trans = btrfs_attach_transaction(root); 2451 if (IS_ERR(trans)) { 2452 if (PTR_ERR(trans) == -ENOENT) 2453 return 0; 2454 return PTR_ERR(trans); 2455 } 2456 ret = btrfs_commit_transaction(trans, root); 2457 } 2458 2459 /* Update ctime/mtime for libblkid */ 2460 update_dev_time(device_path); 2461 return ret; 2462 2463 error_trans: 2464 btrfs_end_transaction(trans, root); 2465 rcu_string_free(device->name); 2466 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device); 2467 kfree(device); 2468 error: 2469 blkdev_put(bdev, FMODE_EXCL); 2470 if (seeding_dev) { 2471 mutex_unlock(&uuid_mutex); 2472 up_write(&sb->s_umount); 2473 } 2474 return ret; 2475 } 2476 2477 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path, 2478 struct btrfs_device *srcdev, 2479 struct btrfs_device **device_out) 2480 { 2481 struct request_queue *q; 2482 struct btrfs_device *device; 2483 struct block_device *bdev; 2484 struct btrfs_fs_info *fs_info = root->fs_info; 2485 struct list_head *devices; 2486 struct rcu_string *name; 2487 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2488 int ret = 0; 2489 2490 *device_out = NULL; 2491 if (fs_info->fs_devices->seeding) { 2492 btrfs_err(fs_info, "the filesystem is a seed filesystem!"); 2493 return -EINVAL; 2494 } 2495 2496 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2497 fs_info->bdev_holder); 2498 if (IS_ERR(bdev)) { 2499 btrfs_err(fs_info, "target device %s is invalid!", device_path); 2500 return PTR_ERR(bdev); 2501 } 2502 2503 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2504 2505 devices = &fs_info->fs_devices->devices; 2506 list_for_each_entry(device, devices, dev_list) { 2507 if (device->bdev == bdev) { 2508 btrfs_err(fs_info, "target device is in the filesystem!"); 2509 ret = -EEXIST; 2510 goto error; 2511 } 2512 } 2513 2514 2515 if (i_size_read(bdev->bd_inode) < 2516 btrfs_device_get_total_bytes(srcdev)) { 2517 btrfs_err(fs_info, "target device is smaller than source device!"); 2518 ret = -EINVAL; 2519 goto error; 2520 } 2521 2522 2523 device = btrfs_alloc_device(NULL, &devid, NULL); 2524 if (IS_ERR(device)) { 2525 ret = PTR_ERR(device); 2526 goto error; 2527 } 2528 2529 name = rcu_string_strdup(device_path, GFP_NOFS); 2530 if (!name) { 2531 kfree(device); 2532 ret = -ENOMEM; 2533 goto error; 2534 } 2535 rcu_assign_pointer(device->name, name); 2536 2537 q = bdev_get_queue(bdev); 2538 if (blk_queue_discard(q)) 2539 device->can_discard = 1; 2540 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2541 device->writeable = 1; 2542 device->generation = 0; 2543 device->io_width = root->sectorsize; 2544 device->io_align = root->sectorsize; 2545 device->sector_size = root->sectorsize; 2546 device->total_bytes = btrfs_device_get_total_bytes(srcdev); 2547 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev); 2548 device->bytes_used = btrfs_device_get_bytes_used(srcdev); 2549 ASSERT(list_empty(&srcdev->resized_list)); 2550 device->commit_total_bytes = srcdev->commit_total_bytes; 2551 device->commit_bytes_used = device->bytes_used; 2552 device->dev_root = fs_info->dev_root; 2553 device->bdev = bdev; 2554 device->in_fs_metadata = 1; 2555 device->is_tgtdev_for_dev_replace = 1; 2556 device->mode = FMODE_EXCL; 2557 device->dev_stats_valid = 1; 2558 set_blocksize(device->bdev, 4096); 2559 device->fs_devices = fs_info->fs_devices; 2560 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2561 fs_info->fs_devices->num_devices++; 2562 fs_info->fs_devices->open_devices++; 2563 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2564 2565 *device_out = device; 2566 return ret; 2567 2568 error: 2569 blkdev_put(bdev, FMODE_EXCL); 2570 return ret; 2571 } 2572 2573 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2574 struct btrfs_device *tgtdev) 2575 { 2576 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2577 tgtdev->io_width = fs_info->dev_root->sectorsize; 2578 tgtdev->io_align = fs_info->dev_root->sectorsize; 2579 tgtdev->sector_size = fs_info->dev_root->sectorsize; 2580 tgtdev->dev_root = fs_info->dev_root; 2581 tgtdev->in_fs_metadata = 1; 2582 } 2583 2584 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2585 struct btrfs_device *device) 2586 { 2587 int ret; 2588 struct btrfs_path *path; 2589 struct btrfs_root *root; 2590 struct btrfs_dev_item *dev_item; 2591 struct extent_buffer *leaf; 2592 struct btrfs_key key; 2593 2594 root = device->dev_root->fs_info->chunk_root; 2595 2596 path = btrfs_alloc_path(); 2597 if (!path) 2598 return -ENOMEM; 2599 2600 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2601 key.type = BTRFS_DEV_ITEM_KEY; 2602 key.offset = device->devid; 2603 2604 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2605 if (ret < 0) 2606 goto out; 2607 2608 if (ret > 0) { 2609 ret = -ENOENT; 2610 goto out; 2611 } 2612 2613 leaf = path->nodes[0]; 2614 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2615 2616 btrfs_set_device_id(leaf, dev_item, device->devid); 2617 btrfs_set_device_type(leaf, dev_item, device->type); 2618 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2619 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2620 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2621 btrfs_set_device_total_bytes(leaf, dev_item, 2622 btrfs_device_get_disk_total_bytes(device)); 2623 btrfs_set_device_bytes_used(leaf, dev_item, 2624 btrfs_device_get_bytes_used(device)); 2625 btrfs_mark_buffer_dirty(leaf); 2626 2627 out: 2628 btrfs_free_path(path); 2629 return ret; 2630 } 2631 2632 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2633 struct btrfs_device *device, u64 new_size) 2634 { 2635 struct btrfs_super_block *super_copy = 2636 device->dev_root->fs_info->super_copy; 2637 struct btrfs_fs_devices *fs_devices; 2638 u64 old_total; 2639 u64 diff; 2640 2641 if (!device->writeable) 2642 return -EACCES; 2643 2644 lock_chunks(device->dev_root); 2645 old_total = btrfs_super_total_bytes(super_copy); 2646 diff = new_size - device->total_bytes; 2647 2648 if (new_size <= device->total_bytes || 2649 device->is_tgtdev_for_dev_replace) { 2650 unlock_chunks(device->dev_root); 2651 return -EINVAL; 2652 } 2653 2654 fs_devices = device->dev_root->fs_info->fs_devices; 2655 2656 btrfs_set_super_total_bytes(super_copy, old_total + diff); 2657 device->fs_devices->total_rw_bytes += diff; 2658 2659 btrfs_device_set_total_bytes(device, new_size); 2660 btrfs_device_set_disk_total_bytes(device, new_size); 2661 btrfs_clear_space_info_full(device->dev_root->fs_info); 2662 if (list_empty(&device->resized_list)) 2663 list_add_tail(&device->resized_list, 2664 &fs_devices->resized_devices); 2665 unlock_chunks(device->dev_root); 2666 2667 return btrfs_update_device(trans, device); 2668 } 2669 2670 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2671 struct btrfs_root *root, u64 chunk_objectid, 2672 u64 chunk_offset) 2673 { 2674 int ret; 2675 struct btrfs_path *path; 2676 struct btrfs_key key; 2677 2678 root = root->fs_info->chunk_root; 2679 path = btrfs_alloc_path(); 2680 if (!path) 2681 return -ENOMEM; 2682 2683 key.objectid = chunk_objectid; 2684 key.offset = chunk_offset; 2685 key.type = BTRFS_CHUNK_ITEM_KEY; 2686 2687 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2688 if (ret < 0) 2689 goto out; 2690 else if (ret > 0) { /* Logic error or corruption */ 2691 btrfs_handle_fs_error(root->fs_info, -ENOENT, 2692 "Failed lookup while freeing chunk."); 2693 ret = -ENOENT; 2694 goto out; 2695 } 2696 2697 ret = btrfs_del_item(trans, root, path); 2698 if (ret < 0) 2699 btrfs_handle_fs_error(root->fs_info, ret, 2700 "Failed to delete chunk item."); 2701 out: 2702 btrfs_free_path(path); 2703 return ret; 2704 } 2705 2706 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 2707 chunk_offset) 2708 { 2709 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 2710 struct btrfs_disk_key *disk_key; 2711 struct btrfs_chunk *chunk; 2712 u8 *ptr; 2713 int ret = 0; 2714 u32 num_stripes; 2715 u32 array_size; 2716 u32 len = 0; 2717 u32 cur; 2718 struct btrfs_key key; 2719 2720 lock_chunks(root); 2721 array_size = btrfs_super_sys_array_size(super_copy); 2722 2723 ptr = super_copy->sys_chunk_array; 2724 cur = 0; 2725 2726 while (cur < array_size) { 2727 disk_key = (struct btrfs_disk_key *)ptr; 2728 btrfs_disk_key_to_cpu(&key, disk_key); 2729 2730 len = sizeof(*disk_key); 2731 2732 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2733 chunk = (struct btrfs_chunk *)(ptr + len); 2734 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2735 len += btrfs_chunk_item_size(num_stripes); 2736 } else { 2737 ret = -EIO; 2738 break; 2739 } 2740 if (key.objectid == chunk_objectid && 2741 key.offset == chunk_offset) { 2742 memmove(ptr, ptr + len, array_size - (cur + len)); 2743 array_size -= len; 2744 btrfs_set_super_sys_array_size(super_copy, array_size); 2745 } else { 2746 ptr += len; 2747 cur += len; 2748 } 2749 } 2750 unlock_chunks(root); 2751 return ret; 2752 } 2753 2754 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, 2755 struct btrfs_root *root, u64 chunk_offset) 2756 { 2757 struct extent_map_tree *em_tree; 2758 struct extent_map *em; 2759 struct btrfs_root *extent_root = root->fs_info->extent_root; 2760 struct map_lookup *map; 2761 u64 dev_extent_len = 0; 2762 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2763 int i, ret = 0; 2764 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2765 2766 /* Just in case */ 2767 root = root->fs_info->chunk_root; 2768 em_tree = &root->fs_info->mapping_tree.map_tree; 2769 2770 read_lock(&em_tree->lock); 2771 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2772 read_unlock(&em_tree->lock); 2773 2774 if (!em || em->start > chunk_offset || 2775 em->start + em->len < chunk_offset) { 2776 /* 2777 * This is a logic error, but we don't want to just rely on the 2778 * user having built with ASSERT enabled, so if ASSERT doesn't 2779 * do anything we still error out. 2780 */ 2781 ASSERT(0); 2782 if (em) 2783 free_extent_map(em); 2784 return -EINVAL; 2785 } 2786 map = em->map_lookup; 2787 lock_chunks(root->fs_info->chunk_root); 2788 check_system_chunk(trans, extent_root, map->type); 2789 unlock_chunks(root->fs_info->chunk_root); 2790 2791 /* 2792 * Take the device list mutex to prevent races with the final phase of 2793 * a device replace operation that replaces the device object associated 2794 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2795 */ 2796 mutex_lock(&fs_devices->device_list_mutex); 2797 for (i = 0; i < map->num_stripes; i++) { 2798 struct btrfs_device *device = map->stripes[i].dev; 2799 ret = btrfs_free_dev_extent(trans, device, 2800 map->stripes[i].physical, 2801 &dev_extent_len); 2802 if (ret) { 2803 mutex_unlock(&fs_devices->device_list_mutex); 2804 btrfs_abort_transaction(trans, root, ret); 2805 goto out; 2806 } 2807 2808 if (device->bytes_used > 0) { 2809 lock_chunks(root); 2810 btrfs_device_set_bytes_used(device, 2811 device->bytes_used - dev_extent_len); 2812 spin_lock(&root->fs_info->free_chunk_lock); 2813 root->fs_info->free_chunk_space += dev_extent_len; 2814 spin_unlock(&root->fs_info->free_chunk_lock); 2815 btrfs_clear_space_info_full(root->fs_info); 2816 unlock_chunks(root); 2817 } 2818 2819 if (map->stripes[i].dev) { 2820 ret = btrfs_update_device(trans, map->stripes[i].dev); 2821 if (ret) { 2822 mutex_unlock(&fs_devices->device_list_mutex); 2823 btrfs_abort_transaction(trans, root, ret); 2824 goto out; 2825 } 2826 } 2827 } 2828 mutex_unlock(&fs_devices->device_list_mutex); 2829 2830 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset); 2831 if (ret) { 2832 btrfs_abort_transaction(trans, root, ret); 2833 goto out; 2834 } 2835 2836 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2837 2838 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2839 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2840 if (ret) { 2841 btrfs_abort_transaction(trans, root, ret); 2842 goto out; 2843 } 2844 } 2845 2846 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em); 2847 if (ret) { 2848 btrfs_abort_transaction(trans, extent_root, ret); 2849 goto out; 2850 } 2851 2852 out: 2853 /* once for us */ 2854 free_extent_map(em); 2855 return ret; 2856 } 2857 2858 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset) 2859 { 2860 struct btrfs_root *extent_root; 2861 struct btrfs_trans_handle *trans; 2862 int ret; 2863 2864 root = root->fs_info->chunk_root; 2865 extent_root = root->fs_info->extent_root; 2866 2867 /* 2868 * Prevent races with automatic removal of unused block groups. 2869 * After we relocate and before we remove the chunk with offset 2870 * chunk_offset, automatic removal of the block group can kick in, 2871 * resulting in a failure when calling btrfs_remove_chunk() below. 2872 * 2873 * Make sure to acquire this mutex before doing a tree search (dev 2874 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 2875 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 2876 * we release the path used to search the chunk/dev tree and before 2877 * the current task acquires this mutex and calls us. 2878 */ 2879 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex)); 2880 2881 ret = btrfs_can_relocate(extent_root, chunk_offset); 2882 if (ret) 2883 return -ENOSPC; 2884 2885 /* step one, relocate all the extents inside this chunk */ 2886 btrfs_scrub_pause(root); 2887 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2888 btrfs_scrub_continue(root); 2889 if (ret) 2890 return ret; 2891 2892 trans = btrfs_start_trans_remove_block_group(root->fs_info, 2893 chunk_offset); 2894 if (IS_ERR(trans)) { 2895 ret = PTR_ERR(trans); 2896 btrfs_handle_fs_error(root->fs_info, ret, NULL); 2897 return ret; 2898 } 2899 2900 /* 2901 * step two, delete the device extents and the 2902 * chunk tree entries 2903 */ 2904 ret = btrfs_remove_chunk(trans, root, chunk_offset); 2905 btrfs_end_transaction(trans, root); 2906 return ret; 2907 } 2908 2909 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2910 { 2911 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2912 struct btrfs_path *path; 2913 struct extent_buffer *leaf; 2914 struct btrfs_chunk *chunk; 2915 struct btrfs_key key; 2916 struct btrfs_key found_key; 2917 u64 chunk_type; 2918 bool retried = false; 2919 int failed = 0; 2920 int ret; 2921 2922 path = btrfs_alloc_path(); 2923 if (!path) 2924 return -ENOMEM; 2925 2926 again: 2927 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2928 key.offset = (u64)-1; 2929 key.type = BTRFS_CHUNK_ITEM_KEY; 2930 2931 while (1) { 2932 mutex_lock(&root->fs_info->delete_unused_bgs_mutex); 2933 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2934 if (ret < 0) { 2935 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 2936 goto error; 2937 } 2938 BUG_ON(ret == 0); /* Corruption */ 2939 2940 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2941 key.type); 2942 if (ret) 2943 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 2944 if (ret < 0) 2945 goto error; 2946 if (ret > 0) 2947 break; 2948 2949 leaf = path->nodes[0]; 2950 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2951 2952 chunk = btrfs_item_ptr(leaf, path->slots[0], 2953 struct btrfs_chunk); 2954 chunk_type = btrfs_chunk_type(leaf, chunk); 2955 btrfs_release_path(path); 2956 2957 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2958 ret = btrfs_relocate_chunk(chunk_root, 2959 found_key.offset); 2960 if (ret == -ENOSPC) 2961 failed++; 2962 else 2963 BUG_ON(ret); 2964 } 2965 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 2966 2967 if (found_key.offset == 0) 2968 break; 2969 key.offset = found_key.offset - 1; 2970 } 2971 ret = 0; 2972 if (failed && !retried) { 2973 failed = 0; 2974 retried = true; 2975 goto again; 2976 } else if (WARN_ON(failed && retried)) { 2977 ret = -ENOSPC; 2978 } 2979 error: 2980 btrfs_free_path(path); 2981 return ret; 2982 } 2983 2984 static int insert_balance_item(struct btrfs_root *root, 2985 struct btrfs_balance_control *bctl) 2986 { 2987 struct btrfs_trans_handle *trans; 2988 struct btrfs_balance_item *item; 2989 struct btrfs_disk_balance_args disk_bargs; 2990 struct btrfs_path *path; 2991 struct extent_buffer *leaf; 2992 struct btrfs_key key; 2993 int ret, err; 2994 2995 path = btrfs_alloc_path(); 2996 if (!path) 2997 return -ENOMEM; 2998 2999 trans = btrfs_start_transaction(root, 0); 3000 if (IS_ERR(trans)) { 3001 btrfs_free_path(path); 3002 return PTR_ERR(trans); 3003 } 3004 3005 key.objectid = BTRFS_BALANCE_OBJECTID; 3006 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3007 key.offset = 0; 3008 3009 ret = btrfs_insert_empty_item(trans, root, path, &key, 3010 sizeof(*item)); 3011 if (ret) 3012 goto out; 3013 3014 leaf = path->nodes[0]; 3015 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3016 3017 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 3018 3019 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3020 btrfs_set_balance_data(leaf, item, &disk_bargs); 3021 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3022 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3023 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3024 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3025 3026 btrfs_set_balance_flags(leaf, item, bctl->flags); 3027 3028 btrfs_mark_buffer_dirty(leaf); 3029 out: 3030 btrfs_free_path(path); 3031 err = btrfs_commit_transaction(trans, root); 3032 if (err && !ret) 3033 ret = err; 3034 return ret; 3035 } 3036 3037 static int del_balance_item(struct btrfs_root *root) 3038 { 3039 struct btrfs_trans_handle *trans; 3040 struct btrfs_path *path; 3041 struct btrfs_key key; 3042 int ret, err; 3043 3044 path = btrfs_alloc_path(); 3045 if (!path) 3046 return -ENOMEM; 3047 3048 trans = btrfs_start_transaction(root, 0); 3049 if (IS_ERR(trans)) { 3050 btrfs_free_path(path); 3051 return PTR_ERR(trans); 3052 } 3053 3054 key.objectid = BTRFS_BALANCE_OBJECTID; 3055 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3056 key.offset = 0; 3057 3058 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3059 if (ret < 0) 3060 goto out; 3061 if (ret > 0) { 3062 ret = -ENOENT; 3063 goto out; 3064 } 3065 3066 ret = btrfs_del_item(trans, root, path); 3067 out: 3068 btrfs_free_path(path); 3069 err = btrfs_commit_transaction(trans, root); 3070 if (err && !ret) 3071 ret = err; 3072 return ret; 3073 } 3074 3075 /* 3076 * This is a heuristic used to reduce the number of chunks balanced on 3077 * resume after balance was interrupted. 3078 */ 3079 static void update_balance_args(struct btrfs_balance_control *bctl) 3080 { 3081 /* 3082 * Turn on soft mode for chunk types that were being converted. 3083 */ 3084 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3085 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3086 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3087 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3088 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3089 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3090 3091 /* 3092 * Turn on usage filter if is not already used. The idea is 3093 * that chunks that we have already balanced should be 3094 * reasonably full. Don't do it for chunks that are being 3095 * converted - that will keep us from relocating unconverted 3096 * (albeit full) chunks. 3097 */ 3098 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3099 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3100 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3101 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3102 bctl->data.usage = 90; 3103 } 3104 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3105 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3106 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3107 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3108 bctl->sys.usage = 90; 3109 } 3110 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3111 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3112 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3113 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3114 bctl->meta.usage = 90; 3115 } 3116 } 3117 3118 /* 3119 * Should be called with both balance and volume mutexes held to 3120 * serialize other volume operations (add_dev/rm_dev/resize) with 3121 * restriper. Same goes for unset_balance_control. 3122 */ 3123 static void set_balance_control(struct btrfs_balance_control *bctl) 3124 { 3125 struct btrfs_fs_info *fs_info = bctl->fs_info; 3126 3127 BUG_ON(fs_info->balance_ctl); 3128 3129 spin_lock(&fs_info->balance_lock); 3130 fs_info->balance_ctl = bctl; 3131 spin_unlock(&fs_info->balance_lock); 3132 } 3133 3134 static void unset_balance_control(struct btrfs_fs_info *fs_info) 3135 { 3136 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3137 3138 BUG_ON(!fs_info->balance_ctl); 3139 3140 spin_lock(&fs_info->balance_lock); 3141 fs_info->balance_ctl = NULL; 3142 spin_unlock(&fs_info->balance_lock); 3143 3144 kfree(bctl); 3145 } 3146 3147 /* 3148 * Balance filters. Return 1 if chunk should be filtered out 3149 * (should not be balanced). 3150 */ 3151 static int chunk_profiles_filter(u64 chunk_type, 3152 struct btrfs_balance_args *bargs) 3153 { 3154 chunk_type = chunk_to_extended(chunk_type) & 3155 BTRFS_EXTENDED_PROFILE_MASK; 3156 3157 if (bargs->profiles & chunk_type) 3158 return 0; 3159 3160 return 1; 3161 } 3162 3163 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3164 struct btrfs_balance_args *bargs) 3165 { 3166 struct btrfs_block_group_cache *cache; 3167 u64 chunk_used; 3168 u64 user_thresh_min; 3169 u64 user_thresh_max; 3170 int ret = 1; 3171 3172 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3173 chunk_used = btrfs_block_group_used(&cache->item); 3174 3175 if (bargs->usage_min == 0) 3176 user_thresh_min = 0; 3177 else 3178 user_thresh_min = div_factor_fine(cache->key.offset, 3179 bargs->usage_min); 3180 3181 if (bargs->usage_max == 0) 3182 user_thresh_max = 1; 3183 else if (bargs->usage_max > 100) 3184 user_thresh_max = cache->key.offset; 3185 else 3186 user_thresh_max = div_factor_fine(cache->key.offset, 3187 bargs->usage_max); 3188 3189 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3190 ret = 0; 3191 3192 btrfs_put_block_group(cache); 3193 return ret; 3194 } 3195 3196 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3197 u64 chunk_offset, struct btrfs_balance_args *bargs) 3198 { 3199 struct btrfs_block_group_cache *cache; 3200 u64 chunk_used, user_thresh; 3201 int ret = 1; 3202 3203 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3204 chunk_used = btrfs_block_group_used(&cache->item); 3205 3206 if (bargs->usage_min == 0) 3207 user_thresh = 1; 3208 else if (bargs->usage > 100) 3209 user_thresh = cache->key.offset; 3210 else 3211 user_thresh = div_factor_fine(cache->key.offset, 3212 bargs->usage); 3213 3214 if (chunk_used < user_thresh) 3215 ret = 0; 3216 3217 btrfs_put_block_group(cache); 3218 return ret; 3219 } 3220 3221 static int chunk_devid_filter(struct extent_buffer *leaf, 3222 struct btrfs_chunk *chunk, 3223 struct btrfs_balance_args *bargs) 3224 { 3225 struct btrfs_stripe *stripe; 3226 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3227 int i; 3228 3229 for (i = 0; i < num_stripes; i++) { 3230 stripe = btrfs_stripe_nr(chunk, i); 3231 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3232 return 0; 3233 } 3234 3235 return 1; 3236 } 3237 3238 /* [pstart, pend) */ 3239 static int chunk_drange_filter(struct extent_buffer *leaf, 3240 struct btrfs_chunk *chunk, 3241 u64 chunk_offset, 3242 struct btrfs_balance_args *bargs) 3243 { 3244 struct btrfs_stripe *stripe; 3245 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3246 u64 stripe_offset; 3247 u64 stripe_length; 3248 int factor; 3249 int i; 3250 3251 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3252 return 0; 3253 3254 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3255 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3256 factor = num_stripes / 2; 3257 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3258 factor = num_stripes - 1; 3259 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3260 factor = num_stripes - 2; 3261 } else { 3262 factor = num_stripes; 3263 } 3264 3265 for (i = 0; i < num_stripes; i++) { 3266 stripe = btrfs_stripe_nr(chunk, i); 3267 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3268 continue; 3269 3270 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3271 stripe_length = btrfs_chunk_length(leaf, chunk); 3272 stripe_length = div_u64(stripe_length, factor); 3273 3274 if (stripe_offset < bargs->pend && 3275 stripe_offset + stripe_length > bargs->pstart) 3276 return 0; 3277 } 3278 3279 return 1; 3280 } 3281 3282 /* [vstart, vend) */ 3283 static int chunk_vrange_filter(struct extent_buffer *leaf, 3284 struct btrfs_chunk *chunk, 3285 u64 chunk_offset, 3286 struct btrfs_balance_args *bargs) 3287 { 3288 if (chunk_offset < bargs->vend && 3289 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3290 /* at least part of the chunk is inside this vrange */ 3291 return 0; 3292 3293 return 1; 3294 } 3295 3296 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3297 struct btrfs_chunk *chunk, 3298 struct btrfs_balance_args *bargs) 3299 { 3300 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3301 3302 if (bargs->stripes_min <= num_stripes 3303 && num_stripes <= bargs->stripes_max) 3304 return 0; 3305 3306 return 1; 3307 } 3308 3309 static int chunk_soft_convert_filter(u64 chunk_type, 3310 struct btrfs_balance_args *bargs) 3311 { 3312 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3313 return 0; 3314 3315 chunk_type = chunk_to_extended(chunk_type) & 3316 BTRFS_EXTENDED_PROFILE_MASK; 3317 3318 if (bargs->target == chunk_type) 3319 return 1; 3320 3321 return 0; 3322 } 3323 3324 static int should_balance_chunk(struct btrfs_root *root, 3325 struct extent_buffer *leaf, 3326 struct btrfs_chunk *chunk, u64 chunk_offset) 3327 { 3328 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 3329 struct btrfs_balance_args *bargs = NULL; 3330 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3331 3332 /* type filter */ 3333 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3334 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3335 return 0; 3336 } 3337 3338 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3339 bargs = &bctl->data; 3340 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3341 bargs = &bctl->sys; 3342 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3343 bargs = &bctl->meta; 3344 3345 /* profiles filter */ 3346 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3347 chunk_profiles_filter(chunk_type, bargs)) { 3348 return 0; 3349 } 3350 3351 /* usage filter */ 3352 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3353 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 3354 return 0; 3355 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3356 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) { 3357 return 0; 3358 } 3359 3360 /* devid filter */ 3361 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3362 chunk_devid_filter(leaf, chunk, bargs)) { 3363 return 0; 3364 } 3365 3366 /* drange filter, makes sense only with devid filter */ 3367 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3368 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 3369 return 0; 3370 } 3371 3372 /* vrange filter */ 3373 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3374 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3375 return 0; 3376 } 3377 3378 /* stripes filter */ 3379 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3380 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3381 return 0; 3382 } 3383 3384 /* soft profile changing mode */ 3385 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3386 chunk_soft_convert_filter(chunk_type, bargs)) { 3387 return 0; 3388 } 3389 3390 /* 3391 * limited by count, must be the last filter 3392 */ 3393 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3394 if (bargs->limit == 0) 3395 return 0; 3396 else 3397 bargs->limit--; 3398 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3399 /* 3400 * Same logic as the 'limit' filter; the minimum cannot be 3401 * determined here because we do not have the global information 3402 * about the count of all chunks that satisfy the filters. 3403 */ 3404 if (bargs->limit_max == 0) 3405 return 0; 3406 else 3407 bargs->limit_max--; 3408 } 3409 3410 return 1; 3411 } 3412 3413 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3414 { 3415 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3416 struct btrfs_root *chunk_root = fs_info->chunk_root; 3417 struct btrfs_root *dev_root = fs_info->dev_root; 3418 struct list_head *devices; 3419 struct btrfs_device *device; 3420 u64 old_size; 3421 u64 size_to_free; 3422 u64 chunk_type; 3423 struct btrfs_chunk *chunk; 3424 struct btrfs_path *path; 3425 struct btrfs_key key; 3426 struct btrfs_key found_key; 3427 struct btrfs_trans_handle *trans; 3428 struct extent_buffer *leaf; 3429 int slot; 3430 int ret; 3431 int enospc_errors = 0; 3432 bool counting = true; 3433 /* The single value limit and min/max limits use the same bytes in the */ 3434 u64 limit_data = bctl->data.limit; 3435 u64 limit_meta = bctl->meta.limit; 3436 u64 limit_sys = bctl->sys.limit; 3437 u32 count_data = 0; 3438 u32 count_meta = 0; 3439 u32 count_sys = 0; 3440 int chunk_reserved = 0; 3441 u64 bytes_used = 0; 3442 3443 /* step one make some room on all the devices */ 3444 devices = &fs_info->fs_devices->devices; 3445 list_for_each_entry(device, devices, dev_list) { 3446 old_size = btrfs_device_get_total_bytes(device); 3447 size_to_free = div_factor(old_size, 1); 3448 size_to_free = min_t(u64, size_to_free, SZ_1M); 3449 if (!device->writeable || 3450 btrfs_device_get_total_bytes(device) - 3451 btrfs_device_get_bytes_used(device) > size_to_free || 3452 device->is_tgtdev_for_dev_replace) 3453 continue; 3454 3455 ret = btrfs_shrink_device(device, old_size - size_to_free); 3456 if (ret == -ENOSPC) 3457 break; 3458 BUG_ON(ret); 3459 3460 trans = btrfs_start_transaction(dev_root, 0); 3461 BUG_ON(IS_ERR(trans)); 3462 3463 ret = btrfs_grow_device(trans, device, old_size); 3464 BUG_ON(ret); 3465 3466 btrfs_end_transaction(trans, dev_root); 3467 } 3468 3469 /* step two, relocate all the chunks */ 3470 path = btrfs_alloc_path(); 3471 if (!path) { 3472 ret = -ENOMEM; 3473 goto error; 3474 } 3475 3476 /* zero out stat counters */ 3477 spin_lock(&fs_info->balance_lock); 3478 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3479 spin_unlock(&fs_info->balance_lock); 3480 again: 3481 if (!counting) { 3482 /* 3483 * The single value limit and min/max limits use the same bytes 3484 * in the 3485 */ 3486 bctl->data.limit = limit_data; 3487 bctl->meta.limit = limit_meta; 3488 bctl->sys.limit = limit_sys; 3489 } 3490 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3491 key.offset = (u64)-1; 3492 key.type = BTRFS_CHUNK_ITEM_KEY; 3493 3494 while (1) { 3495 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3496 atomic_read(&fs_info->balance_cancel_req)) { 3497 ret = -ECANCELED; 3498 goto error; 3499 } 3500 3501 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3502 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3503 if (ret < 0) { 3504 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3505 goto error; 3506 } 3507 3508 /* 3509 * this shouldn't happen, it means the last relocate 3510 * failed 3511 */ 3512 if (ret == 0) 3513 BUG(); /* FIXME break ? */ 3514 3515 ret = btrfs_previous_item(chunk_root, path, 0, 3516 BTRFS_CHUNK_ITEM_KEY); 3517 if (ret) { 3518 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3519 ret = 0; 3520 break; 3521 } 3522 3523 leaf = path->nodes[0]; 3524 slot = path->slots[0]; 3525 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3526 3527 if (found_key.objectid != key.objectid) { 3528 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3529 break; 3530 } 3531 3532 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3533 chunk_type = btrfs_chunk_type(leaf, chunk); 3534 3535 if (!counting) { 3536 spin_lock(&fs_info->balance_lock); 3537 bctl->stat.considered++; 3538 spin_unlock(&fs_info->balance_lock); 3539 } 3540 3541 ret = should_balance_chunk(chunk_root, leaf, chunk, 3542 found_key.offset); 3543 3544 btrfs_release_path(path); 3545 if (!ret) { 3546 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3547 goto loop; 3548 } 3549 3550 if (counting) { 3551 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3552 spin_lock(&fs_info->balance_lock); 3553 bctl->stat.expected++; 3554 spin_unlock(&fs_info->balance_lock); 3555 3556 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3557 count_data++; 3558 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3559 count_sys++; 3560 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3561 count_meta++; 3562 3563 goto loop; 3564 } 3565 3566 /* 3567 * Apply limit_min filter, no need to check if the LIMITS 3568 * filter is used, limit_min is 0 by default 3569 */ 3570 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3571 count_data < bctl->data.limit_min) 3572 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3573 count_meta < bctl->meta.limit_min) 3574 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3575 count_sys < bctl->sys.limit_min)) { 3576 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3577 goto loop; 3578 } 3579 3580 ASSERT(fs_info->data_sinfo); 3581 spin_lock(&fs_info->data_sinfo->lock); 3582 bytes_used = fs_info->data_sinfo->bytes_used; 3583 spin_unlock(&fs_info->data_sinfo->lock); 3584 3585 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3586 !chunk_reserved && !bytes_used) { 3587 trans = btrfs_start_transaction(chunk_root, 0); 3588 if (IS_ERR(trans)) { 3589 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3590 ret = PTR_ERR(trans); 3591 goto error; 3592 } 3593 3594 ret = btrfs_force_chunk_alloc(trans, chunk_root, 3595 BTRFS_BLOCK_GROUP_DATA); 3596 btrfs_end_transaction(trans, chunk_root); 3597 if (ret < 0) { 3598 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3599 goto error; 3600 } 3601 chunk_reserved = 1; 3602 } 3603 3604 ret = btrfs_relocate_chunk(chunk_root, 3605 found_key.offset); 3606 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3607 if (ret && ret != -ENOSPC) 3608 goto error; 3609 if (ret == -ENOSPC) { 3610 enospc_errors++; 3611 } else { 3612 spin_lock(&fs_info->balance_lock); 3613 bctl->stat.completed++; 3614 spin_unlock(&fs_info->balance_lock); 3615 } 3616 loop: 3617 if (found_key.offset == 0) 3618 break; 3619 key.offset = found_key.offset - 1; 3620 } 3621 3622 if (counting) { 3623 btrfs_release_path(path); 3624 counting = false; 3625 goto again; 3626 } 3627 error: 3628 btrfs_free_path(path); 3629 if (enospc_errors) { 3630 btrfs_info(fs_info, "%d enospc errors during balance", 3631 enospc_errors); 3632 if (!ret) 3633 ret = -ENOSPC; 3634 } 3635 3636 return ret; 3637 } 3638 3639 /** 3640 * alloc_profile_is_valid - see if a given profile is valid and reduced 3641 * @flags: profile to validate 3642 * @extended: if true @flags is treated as an extended profile 3643 */ 3644 static int alloc_profile_is_valid(u64 flags, int extended) 3645 { 3646 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3647 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3648 3649 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3650 3651 /* 1) check that all other bits are zeroed */ 3652 if (flags & ~mask) 3653 return 0; 3654 3655 /* 2) see if profile is reduced */ 3656 if (flags == 0) 3657 return !extended; /* "0" is valid for usual profiles */ 3658 3659 /* true if exactly one bit set */ 3660 return (flags & (flags - 1)) == 0; 3661 } 3662 3663 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3664 { 3665 /* cancel requested || normal exit path */ 3666 return atomic_read(&fs_info->balance_cancel_req) || 3667 (atomic_read(&fs_info->balance_pause_req) == 0 && 3668 atomic_read(&fs_info->balance_cancel_req) == 0); 3669 } 3670 3671 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3672 { 3673 int ret; 3674 3675 unset_balance_control(fs_info); 3676 ret = del_balance_item(fs_info->tree_root); 3677 if (ret) 3678 btrfs_handle_fs_error(fs_info, ret, NULL); 3679 3680 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3681 } 3682 3683 /* Non-zero return value signifies invalidity */ 3684 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3685 u64 allowed) 3686 { 3687 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3688 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3689 (bctl_arg->target & ~allowed))); 3690 } 3691 3692 /* 3693 * Should be called with both balance and volume mutexes held 3694 */ 3695 int btrfs_balance(struct btrfs_balance_control *bctl, 3696 struct btrfs_ioctl_balance_args *bargs) 3697 { 3698 struct btrfs_fs_info *fs_info = bctl->fs_info; 3699 u64 allowed; 3700 int mixed = 0; 3701 int ret; 3702 u64 num_devices; 3703 unsigned seq; 3704 3705 if (btrfs_fs_closing(fs_info) || 3706 atomic_read(&fs_info->balance_pause_req) || 3707 atomic_read(&fs_info->balance_cancel_req)) { 3708 ret = -EINVAL; 3709 goto out; 3710 } 3711 3712 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3713 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3714 mixed = 1; 3715 3716 /* 3717 * In case of mixed groups both data and meta should be picked, 3718 * and identical options should be given for both of them. 3719 */ 3720 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3721 if (mixed && (bctl->flags & allowed)) { 3722 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3723 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3724 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3725 btrfs_err(fs_info, "with mixed groups data and " 3726 "metadata balance options must be the same"); 3727 ret = -EINVAL; 3728 goto out; 3729 } 3730 } 3731 3732 num_devices = fs_info->fs_devices->num_devices; 3733 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 3734 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3735 BUG_ON(num_devices < 1); 3736 num_devices--; 3737 } 3738 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 3739 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP; 3740 if (num_devices > 1) 3741 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3742 if (num_devices > 2) 3743 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3744 if (num_devices > 3) 3745 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3746 BTRFS_BLOCK_GROUP_RAID6); 3747 if (validate_convert_profile(&bctl->data, allowed)) { 3748 btrfs_err(fs_info, "unable to start balance with target " 3749 "data profile %llu", 3750 bctl->data.target); 3751 ret = -EINVAL; 3752 goto out; 3753 } 3754 if (validate_convert_profile(&bctl->meta, allowed)) { 3755 btrfs_err(fs_info, 3756 "unable to start balance with target metadata profile %llu", 3757 bctl->meta.target); 3758 ret = -EINVAL; 3759 goto out; 3760 } 3761 if (validate_convert_profile(&bctl->sys, allowed)) { 3762 btrfs_err(fs_info, 3763 "unable to start balance with target system profile %llu", 3764 bctl->sys.target); 3765 ret = -EINVAL; 3766 goto out; 3767 } 3768 3769 /* allow to reduce meta or sys integrity only if force set */ 3770 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3771 BTRFS_BLOCK_GROUP_RAID10 | 3772 BTRFS_BLOCK_GROUP_RAID5 | 3773 BTRFS_BLOCK_GROUP_RAID6; 3774 do { 3775 seq = read_seqbegin(&fs_info->profiles_lock); 3776 3777 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3778 (fs_info->avail_system_alloc_bits & allowed) && 3779 !(bctl->sys.target & allowed)) || 3780 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3781 (fs_info->avail_metadata_alloc_bits & allowed) && 3782 !(bctl->meta.target & allowed))) { 3783 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3784 btrfs_info(fs_info, "force reducing metadata integrity"); 3785 } else { 3786 btrfs_err(fs_info, "balance will reduce metadata " 3787 "integrity, use force if you want this"); 3788 ret = -EINVAL; 3789 goto out; 3790 } 3791 } 3792 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3793 3794 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) < 3795 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) { 3796 btrfs_warn(fs_info, 3797 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx", 3798 bctl->meta.target, bctl->data.target); 3799 } 3800 3801 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3802 fs_info->num_tolerated_disk_barrier_failures = min( 3803 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info), 3804 btrfs_get_num_tolerated_disk_barrier_failures( 3805 bctl->sys.target)); 3806 } 3807 3808 ret = insert_balance_item(fs_info->tree_root, bctl); 3809 if (ret && ret != -EEXIST) 3810 goto out; 3811 3812 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3813 BUG_ON(ret == -EEXIST); 3814 set_balance_control(bctl); 3815 } else { 3816 BUG_ON(ret != -EEXIST); 3817 spin_lock(&fs_info->balance_lock); 3818 update_balance_args(bctl); 3819 spin_unlock(&fs_info->balance_lock); 3820 } 3821 3822 atomic_inc(&fs_info->balance_running); 3823 mutex_unlock(&fs_info->balance_mutex); 3824 3825 ret = __btrfs_balance(fs_info); 3826 3827 mutex_lock(&fs_info->balance_mutex); 3828 atomic_dec(&fs_info->balance_running); 3829 3830 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3831 fs_info->num_tolerated_disk_barrier_failures = 3832 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3833 } 3834 3835 if (bargs) { 3836 memset(bargs, 0, sizeof(*bargs)); 3837 update_ioctl_balance_args(fs_info, 0, bargs); 3838 } 3839 3840 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3841 balance_need_close(fs_info)) { 3842 __cancel_balance(fs_info); 3843 } 3844 3845 wake_up(&fs_info->balance_wait_q); 3846 3847 return ret; 3848 out: 3849 if (bctl->flags & BTRFS_BALANCE_RESUME) 3850 __cancel_balance(fs_info); 3851 else { 3852 kfree(bctl); 3853 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3854 } 3855 return ret; 3856 } 3857 3858 static int balance_kthread(void *data) 3859 { 3860 struct btrfs_fs_info *fs_info = data; 3861 int ret = 0; 3862 3863 mutex_lock(&fs_info->volume_mutex); 3864 mutex_lock(&fs_info->balance_mutex); 3865 3866 if (fs_info->balance_ctl) { 3867 btrfs_info(fs_info, "continuing balance"); 3868 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3869 } 3870 3871 mutex_unlock(&fs_info->balance_mutex); 3872 mutex_unlock(&fs_info->volume_mutex); 3873 3874 return ret; 3875 } 3876 3877 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3878 { 3879 struct task_struct *tsk; 3880 3881 spin_lock(&fs_info->balance_lock); 3882 if (!fs_info->balance_ctl) { 3883 spin_unlock(&fs_info->balance_lock); 3884 return 0; 3885 } 3886 spin_unlock(&fs_info->balance_lock); 3887 3888 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 3889 btrfs_info(fs_info, "force skipping balance"); 3890 return 0; 3891 } 3892 3893 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3894 return PTR_ERR_OR_ZERO(tsk); 3895 } 3896 3897 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3898 { 3899 struct btrfs_balance_control *bctl; 3900 struct btrfs_balance_item *item; 3901 struct btrfs_disk_balance_args disk_bargs; 3902 struct btrfs_path *path; 3903 struct extent_buffer *leaf; 3904 struct btrfs_key key; 3905 int ret; 3906 3907 path = btrfs_alloc_path(); 3908 if (!path) 3909 return -ENOMEM; 3910 3911 key.objectid = BTRFS_BALANCE_OBJECTID; 3912 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3913 key.offset = 0; 3914 3915 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3916 if (ret < 0) 3917 goto out; 3918 if (ret > 0) { /* ret = -ENOENT; */ 3919 ret = 0; 3920 goto out; 3921 } 3922 3923 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3924 if (!bctl) { 3925 ret = -ENOMEM; 3926 goto out; 3927 } 3928 3929 leaf = path->nodes[0]; 3930 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3931 3932 bctl->fs_info = fs_info; 3933 bctl->flags = btrfs_balance_flags(leaf, item); 3934 bctl->flags |= BTRFS_BALANCE_RESUME; 3935 3936 btrfs_balance_data(leaf, item, &disk_bargs); 3937 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 3938 btrfs_balance_meta(leaf, item, &disk_bargs); 3939 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 3940 btrfs_balance_sys(leaf, item, &disk_bargs); 3941 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 3942 3943 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); 3944 3945 mutex_lock(&fs_info->volume_mutex); 3946 mutex_lock(&fs_info->balance_mutex); 3947 3948 set_balance_control(bctl); 3949 3950 mutex_unlock(&fs_info->balance_mutex); 3951 mutex_unlock(&fs_info->volume_mutex); 3952 out: 3953 btrfs_free_path(path); 3954 return ret; 3955 } 3956 3957 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 3958 { 3959 int ret = 0; 3960 3961 mutex_lock(&fs_info->balance_mutex); 3962 if (!fs_info->balance_ctl) { 3963 mutex_unlock(&fs_info->balance_mutex); 3964 return -ENOTCONN; 3965 } 3966 3967 if (atomic_read(&fs_info->balance_running)) { 3968 atomic_inc(&fs_info->balance_pause_req); 3969 mutex_unlock(&fs_info->balance_mutex); 3970 3971 wait_event(fs_info->balance_wait_q, 3972 atomic_read(&fs_info->balance_running) == 0); 3973 3974 mutex_lock(&fs_info->balance_mutex); 3975 /* we are good with balance_ctl ripped off from under us */ 3976 BUG_ON(atomic_read(&fs_info->balance_running)); 3977 atomic_dec(&fs_info->balance_pause_req); 3978 } else { 3979 ret = -ENOTCONN; 3980 } 3981 3982 mutex_unlock(&fs_info->balance_mutex); 3983 return ret; 3984 } 3985 3986 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 3987 { 3988 if (fs_info->sb->s_flags & MS_RDONLY) 3989 return -EROFS; 3990 3991 mutex_lock(&fs_info->balance_mutex); 3992 if (!fs_info->balance_ctl) { 3993 mutex_unlock(&fs_info->balance_mutex); 3994 return -ENOTCONN; 3995 } 3996 3997 atomic_inc(&fs_info->balance_cancel_req); 3998 /* 3999 * if we are running just wait and return, balance item is 4000 * deleted in btrfs_balance in this case 4001 */ 4002 if (atomic_read(&fs_info->balance_running)) { 4003 mutex_unlock(&fs_info->balance_mutex); 4004 wait_event(fs_info->balance_wait_q, 4005 atomic_read(&fs_info->balance_running) == 0); 4006 mutex_lock(&fs_info->balance_mutex); 4007 } else { 4008 /* __cancel_balance needs volume_mutex */ 4009 mutex_unlock(&fs_info->balance_mutex); 4010 mutex_lock(&fs_info->volume_mutex); 4011 mutex_lock(&fs_info->balance_mutex); 4012 4013 if (fs_info->balance_ctl) 4014 __cancel_balance(fs_info); 4015 4016 mutex_unlock(&fs_info->volume_mutex); 4017 } 4018 4019 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 4020 atomic_dec(&fs_info->balance_cancel_req); 4021 mutex_unlock(&fs_info->balance_mutex); 4022 return 0; 4023 } 4024 4025 static int btrfs_uuid_scan_kthread(void *data) 4026 { 4027 struct btrfs_fs_info *fs_info = data; 4028 struct btrfs_root *root = fs_info->tree_root; 4029 struct btrfs_key key; 4030 struct btrfs_key max_key; 4031 struct btrfs_path *path = NULL; 4032 int ret = 0; 4033 struct extent_buffer *eb; 4034 int slot; 4035 struct btrfs_root_item root_item; 4036 u32 item_size; 4037 struct btrfs_trans_handle *trans = NULL; 4038 4039 path = btrfs_alloc_path(); 4040 if (!path) { 4041 ret = -ENOMEM; 4042 goto out; 4043 } 4044 4045 key.objectid = 0; 4046 key.type = BTRFS_ROOT_ITEM_KEY; 4047 key.offset = 0; 4048 4049 max_key.objectid = (u64)-1; 4050 max_key.type = BTRFS_ROOT_ITEM_KEY; 4051 max_key.offset = (u64)-1; 4052 4053 while (1) { 4054 ret = btrfs_search_forward(root, &key, path, 0); 4055 if (ret) { 4056 if (ret > 0) 4057 ret = 0; 4058 break; 4059 } 4060 4061 if (key.type != BTRFS_ROOT_ITEM_KEY || 4062 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4063 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4064 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4065 goto skip; 4066 4067 eb = path->nodes[0]; 4068 slot = path->slots[0]; 4069 item_size = btrfs_item_size_nr(eb, slot); 4070 if (item_size < sizeof(root_item)) 4071 goto skip; 4072 4073 read_extent_buffer(eb, &root_item, 4074 btrfs_item_ptr_offset(eb, slot), 4075 (int)sizeof(root_item)); 4076 if (btrfs_root_refs(&root_item) == 0) 4077 goto skip; 4078 4079 if (!btrfs_is_empty_uuid(root_item.uuid) || 4080 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4081 if (trans) 4082 goto update_tree; 4083 4084 btrfs_release_path(path); 4085 /* 4086 * 1 - subvol uuid item 4087 * 1 - received_subvol uuid item 4088 */ 4089 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4090 if (IS_ERR(trans)) { 4091 ret = PTR_ERR(trans); 4092 break; 4093 } 4094 continue; 4095 } else { 4096 goto skip; 4097 } 4098 update_tree: 4099 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4100 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 4101 root_item.uuid, 4102 BTRFS_UUID_KEY_SUBVOL, 4103 key.objectid); 4104 if (ret < 0) { 4105 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4106 ret); 4107 break; 4108 } 4109 } 4110 4111 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4112 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 4113 root_item.received_uuid, 4114 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4115 key.objectid); 4116 if (ret < 0) { 4117 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4118 ret); 4119 break; 4120 } 4121 } 4122 4123 skip: 4124 if (trans) { 4125 ret = btrfs_end_transaction(trans, fs_info->uuid_root); 4126 trans = NULL; 4127 if (ret) 4128 break; 4129 } 4130 4131 btrfs_release_path(path); 4132 if (key.offset < (u64)-1) { 4133 key.offset++; 4134 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4135 key.offset = 0; 4136 key.type = BTRFS_ROOT_ITEM_KEY; 4137 } else if (key.objectid < (u64)-1) { 4138 key.offset = 0; 4139 key.type = BTRFS_ROOT_ITEM_KEY; 4140 key.objectid++; 4141 } else { 4142 break; 4143 } 4144 cond_resched(); 4145 } 4146 4147 out: 4148 btrfs_free_path(path); 4149 if (trans && !IS_ERR(trans)) 4150 btrfs_end_transaction(trans, fs_info->uuid_root); 4151 if (ret) 4152 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4153 else 4154 fs_info->update_uuid_tree_gen = 1; 4155 up(&fs_info->uuid_tree_rescan_sem); 4156 return 0; 4157 } 4158 4159 /* 4160 * Callback for btrfs_uuid_tree_iterate(). 4161 * returns: 4162 * 0 check succeeded, the entry is not outdated. 4163 * < 0 if an error occurred. 4164 * > 0 if the check failed, which means the caller shall remove the entry. 4165 */ 4166 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4167 u8 *uuid, u8 type, u64 subid) 4168 { 4169 struct btrfs_key key; 4170 int ret = 0; 4171 struct btrfs_root *subvol_root; 4172 4173 if (type != BTRFS_UUID_KEY_SUBVOL && 4174 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4175 goto out; 4176 4177 key.objectid = subid; 4178 key.type = BTRFS_ROOT_ITEM_KEY; 4179 key.offset = (u64)-1; 4180 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4181 if (IS_ERR(subvol_root)) { 4182 ret = PTR_ERR(subvol_root); 4183 if (ret == -ENOENT) 4184 ret = 1; 4185 goto out; 4186 } 4187 4188 switch (type) { 4189 case BTRFS_UUID_KEY_SUBVOL: 4190 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4191 ret = 1; 4192 break; 4193 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4194 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4195 BTRFS_UUID_SIZE)) 4196 ret = 1; 4197 break; 4198 } 4199 4200 out: 4201 return ret; 4202 } 4203 4204 static int btrfs_uuid_rescan_kthread(void *data) 4205 { 4206 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4207 int ret; 4208 4209 /* 4210 * 1st step is to iterate through the existing UUID tree and 4211 * to delete all entries that contain outdated data. 4212 * 2nd step is to add all missing entries to the UUID tree. 4213 */ 4214 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4215 if (ret < 0) { 4216 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4217 up(&fs_info->uuid_tree_rescan_sem); 4218 return ret; 4219 } 4220 return btrfs_uuid_scan_kthread(data); 4221 } 4222 4223 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4224 { 4225 struct btrfs_trans_handle *trans; 4226 struct btrfs_root *tree_root = fs_info->tree_root; 4227 struct btrfs_root *uuid_root; 4228 struct task_struct *task; 4229 int ret; 4230 4231 /* 4232 * 1 - root node 4233 * 1 - root item 4234 */ 4235 trans = btrfs_start_transaction(tree_root, 2); 4236 if (IS_ERR(trans)) 4237 return PTR_ERR(trans); 4238 4239 uuid_root = btrfs_create_tree(trans, fs_info, 4240 BTRFS_UUID_TREE_OBJECTID); 4241 if (IS_ERR(uuid_root)) { 4242 ret = PTR_ERR(uuid_root); 4243 btrfs_abort_transaction(trans, tree_root, ret); 4244 btrfs_end_transaction(trans, tree_root); 4245 return ret; 4246 } 4247 4248 fs_info->uuid_root = uuid_root; 4249 4250 ret = btrfs_commit_transaction(trans, tree_root); 4251 if (ret) 4252 return ret; 4253 4254 down(&fs_info->uuid_tree_rescan_sem); 4255 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4256 if (IS_ERR(task)) { 4257 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4258 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4259 up(&fs_info->uuid_tree_rescan_sem); 4260 return PTR_ERR(task); 4261 } 4262 4263 return 0; 4264 } 4265 4266 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4267 { 4268 struct task_struct *task; 4269 4270 down(&fs_info->uuid_tree_rescan_sem); 4271 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4272 if (IS_ERR(task)) { 4273 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4274 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4275 up(&fs_info->uuid_tree_rescan_sem); 4276 return PTR_ERR(task); 4277 } 4278 4279 return 0; 4280 } 4281 4282 /* 4283 * shrinking a device means finding all of the device extents past 4284 * the new size, and then following the back refs to the chunks. 4285 * The chunk relocation code actually frees the device extent 4286 */ 4287 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4288 { 4289 struct btrfs_trans_handle *trans; 4290 struct btrfs_root *root = device->dev_root; 4291 struct btrfs_dev_extent *dev_extent = NULL; 4292 struct btrfs_path *path; 4293 u64 length; 4294 u64 chunk_offset; 4295 int ret; 4296 int slot; 4297 int failed = 0; 4298 bool retried = false; 4299 bool checked_pending_chunks = false; 4300 struct extent_buffer *l; 4301 struct btrfs_key key; 4302 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4303 u64 old_total = btrfs_super_total_bytes(super_copy); 4304 u64 old_size = btrfs_device_get_total_bytes(device); 4305 u64 diff = old_size - new_size; 4306 4307 if (device->is_tgtdev_for_dev_replace) 4308 return -EINVAL; 4309 4310 path = btrfs_alloc_path(); 4311 if (!path) 4312 return -ENOMEM; 4313 4314 path->reada = READA_FORWARD; 4315 4316 lock_chunks(root); 4317 4318 btrfs_device_set_total_bytes(device, new_size); 4319 if (device->writeable) { 4320 device->fs_devices->total_rw_bytes -= diff; 4321 spin_lock(&root->fs_info->free_chunk_lock); 4322 root->fs_info->free_chunk_space -= diff; 4323 spin_unlock(&root->fs_info->free_chunk_lock); 4324 } 4325 unlock_chunks(root); 4326 4327 again: 4328 key.objectid = device->devid; 4329 key.offset = (u64)-1; 4330 key.type = BTRFS_DEV_EXTENT_KEY; 4331 4332 do { 4333 mutex_lock(&root->fs_info->delete_unused_bgs_mutex); 4334 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4335 if (ret < 0) { 4336 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4337 goto done; 4338 } 4339 4340 ret = btrfs_previous_item(root, path, 0, key.type); 4341 if (ret) 4342 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4343 if (ret < 0) 4344 goto done; 4345 if (ret) { 4346 ret = 0; 4347 btrfs_release_path(path); 4348 break; 4349 } 4350 4351 l = path->nodes[0]; 4352 slot = path->slots[0]; 4353 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4354 4355 if (key.objectid != device->devid) { 4356 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4357 btrfs_release_path(path); 4358 break; 4359 } 4360 4361 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4362 length = btrfs_dev_extent_length(l, dev_extent); 4363 4364 if (key.offset + length <= new_size) { 4365 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4366 btrfs_release_path(path); 4367 break; 4368 } 4369 4370 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4371 btrfs_release_path(path); 4372 4373 ret = btrfs_relocate_chunk(root, chunk_offset); 4374 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4375 if (ret && ret != -ENOSPC) 4376 goto done; 4377 if (ret == -ENOSPC) 4378 failed++; 4379 } while (key.offset-- > 0); 4380 4381 if (failed && !retried) { 4382 failed = 0; 4383 retried = true; 4384 goto again; 4385 } else if (failed && retried) { 4386 ret = -ENOSPC; 4387 goto done; 4388 } 4389 4390 /* Shrinking succeeded, else we would be at "done". */ 4391 trans = btrfs_start_transaction(root, 0); 4392 if (IS_ERR(trans)) { 4393 ret = PTR_ERR(trans); 4394 goto done; 4395 } 4396 4397 lock_chunks(root); 4398 4399 /* 4400 * We checked in the above loop all device extents that were already in 4401 * the device tree. However before we have updated the device's 4402 * total_bytes to the new size, we might have had chunk allocations that 4403 * have not complete yet (new block groups attached to transaction 4404 * handles), and therefore their device extents were not yet in the 4405 * device tree and we missed them in the loop above. So if we have any 4406 * pending chunk using a device extent that overlaps the device range 4407 * that we can not use anymore, commit the current transaction and 4408 * repeat the search on the device tree - this way we guarantee we will 4409 * not have chunks using device extents that end beyond 'new_size'. 4410 */ 4411 if (!checked_pending_chunks) { 4412 u64 start = new_size; 4413 u64 len = old_size - new_size; 4414 4415 if (contains_pending_extent(trans->transaction, device, 4416 &start, len)) { 4417 unlock_chunks(root); 4418 checked_pending_chunks = true; 4419 failed = 0; 4420 retried = false; 4421 ret = btrfs_commit_transaction(trans, root); 4422 if (ret) 4423 goto done; 4424 goto again; 4425 } 4426 } 4427 4428 btrfs_device_set_disk_total_bytes(device, new_size); 4429 if (list_empty(&device->resized_list)) 4430 list_add_tail(&device->resized_list, 4431 &root->fs_info->fs_devices->resized_devices); 4432 4433 WARN_ON(diff > old_total); 4434 btrfs_set_super_total_bytes(super_copy, old_total - diff); 4435 unlock_chunks(root); 4436 4437 /* Now btrfs_update_device() will change the on-disk size. */ 4438 ret = btrfs_update_device(trans, device); 4439 btrfs_end_transaction(trans, root); 4440 done: 4441 btrfs_free_path(path); 4442 if (ret) { 4443 lock_chunks(root); 4444 btrfs_device_set_total_bytes(device, old_size); 4445 if (device->writeable) 4446 device->fs_devices->total_rw_bytes += diff; 4447 spin_lock(&root->fs_info->free_chunk_lock); 4448 root->fs_info->free_chunk_space += diff; 4449 spin_unlock(&root->fs_info->free_chunk_lock); 4450 unlock_chunks(root); 4451 } 4452 return ret; 4453 } 4454 4455 static int btrfs_add_system_chunk(struct btrfs_root *root, 4456 struct btrfs_key *key, 4457 struct btrfs_chunk *chunk, int item_size) 4458 { 4459 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4460 struct btrfs_disk_key disk_key; 4461 u32 array_size; 4462 u8 *ptr; 4463 4464 lock_chunks(root); 4465 array_size = btrfs_super_sys_array_size(super_copy); 4466 if (array_size + item_size + sizeof(disk_key) 4467 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4468 unlock_chunks(root); 4469 return -EFBIG; 4470 } 4471 4472 ptr = super_copy->sys_chunk_array + array_size; 4473 btrfs_cpu_key_to_disk(&disk_key, key); 4474 memcpy(ptr, &disk_key, sizeof(disk_key)); 4475 ptr += sizeof(disk_key); 4476 memcpy(ptr, chunk, item_size); 4477 item_size += sizeof(disk_key); 4478 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4479 unlock_chunks(root); 4480 4481 return 0; 4482 } 4483 4484 /* 4485 * sort the devices in descending order by max_avail, total_avail 4486 */ 4487 static int btrfs_cmp_device_info(const void *a, const void *b) 4488 { 4489 const struct btrfs_device_info *di_a = a; 4490 const struct btrfs_device_info *di_b = b; 4491 4492 if (di_a->max_avail > di_b->max_avail) 4493 return -1; 4494 if (di_a->max_avail < di_b->max_avail) 4495 return 1; 4496 if (di_a->total_avail > di_b->total_avail) 4497 return -1; 4498 if (di_a->total_avail < di_b->total_avail) 4499 return 1; 4500 return 0; 4501 } 4502 4503 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) 4504 { 4505 /* TODO allow them to set a preferred stripe size */ 4506 return SZ_64K; 4507 } 4508 4509 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4510 { 4511 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4512 return; 4513 4514 btrfs_set_fs_incompat(info, RAID56); 4515 } 4516 4517 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \ 4518 - sizeof(struct btrfs_item) \ 4519 - sizeof(struct btrfs_chunk)) \ 4520 / sizeof(struct btrfs_stripe) + 1) 4521 4522 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4523 - 2 * sizeof(struct btrfs_disk_key) \ 4524 - 2 * sizeof(struct btrfs_chunk)) \ 4525 / sizeof(struct btrfs_stripe) + 1) 4526 4527 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4528 struct btrfs_root *extent_root, u64 start, 4529 u64 type) 4530 { 4531 struct btrfs_fs_info *info = extent_root->fs_info; 4532 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4533 struct list_head *cur; 4534 struct map_lookup *map = NULL; 4535 struct extent_map_tree *em_tree; 4536 struct extent_map *em; 4537 struct btrfs_device_info *devices_info = NULL; 4538 u64 total_avail; 4539 int num_stripes; /* total number of stripes to allocate */ 4540 int data_stripes; /* number of stripes that count for 4541 block group size */ 4542 int sub_stripes; /* sub_stripes info for map */ 4543 int dev_stripes; /* stripes per dev */ 4544 int devs_max; /* max devs to use */ 4545 int devs_min; /* min devs needed */ 4546 int devs_increment; /* ndevs has to be a multiple of this */ 4547 int ncopies; /* how many copies to data has */ 4548 int ret; 4549 u64 max_stripe_size; 4550 u64 max_chunk_size; 4551 u64 stripe_size; 4552 u64 num_bytes; 4553 u64 raid_stripe_len = BTRFS_STRIPE_LEN; 4554 int ndevs; 4555 int i; 4556 int j; 4557 int index; 4558 4559 BUG_ON(!alloc_profile_is_valid(type, 0)); 4560 4561 if (list_empty(&fs_devices->alloc_list)) 4562 return -ENOSPC; 4563 4564 index = __get_raid_index(type); 4565 4566 sub_stripes = btrfs_raid_array[index].sub_stripes; 4567 dev_stripes = btrfs_raid_array[index].dev_stripes; 4568 devs_max = btrfs_raid_array[index].devs_max; 4569 devs_min = btrfs_raid_array[index].devs_min; 4570 devs_increment = btrfs_raid_array[index].devs_increment; 4571 ncopies = btrfs_raid_array[index].ncopies; 4572 4573 if (type & BTRFS_BLOCK_GROUP_DATA) { 4574 max_stripe_size = SZ_1G; 4575 max_chunk_size = 10 * max_stripe_size; 4576 if (!devs_max) 4577 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4578 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4579 /* for larger filesystems, use larger metadata chunks */ 4580 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4581 max_stripe_size = SZ_1G; 4582 else 4583 max_stripe_size = SZ_256M; 4584 max_chunk_size = max_stripe_size; 4585 if (!devs_max) 4586 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4587 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4588 max_stripe_size = SZ_32M; 4589 max_chunk_size = 2 * max_stripe_size; 4590 if (!devs_max) 4591 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4592 } else { 4593 btrfs_err(info, "invalid chunk type 0x%llx requested", 4594 type); 4595 BUG_ON(1); 4596 } 4597 4598 /* we don't want a chunk larger than 10% of writeable space */ 4599 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4600 max_chunk_size); 4601 4602 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4603 GFP_NOFS); 4604 if (!devices_info) 4605 return -ENOMEM; 4606 4607 cur = fs_devices->alloc_list.next; 4608 4609 /* 4610 * in the first pass through the devices list, we gather information 4611 * about the available holes on each device. 4612 */ 4613 ndevs = 0; 4614 while (cur != &fs_devices->alloc_list) { 4615 struct btrfs_device *device; 4616 u64 max_avail; 4617 u64 dev_offset; 4618 4619 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 4620 4621 cur = cur->next; 4622 4623 if (!device->writeable) { 4624 WARN(1, KERN_ERR 4625 "BTRFS: read-only device in alloc_list\n"); 4626 continue; 4627 } 4628 4629 if (!device->in_fs_metadata || 4630 device->is_tgtdev_for_dev_replace) 4631 continue; 4632 4633 if (device->total_bytes > device->bytes_used) 4634 total_avail = device->total_bytes - device->bytes_used; 4635 else 4636 total_avail = 0; 4637 4638 /* If there is no space on this device, skip it. */ 4639 if (total_avail == 0) 4640 continue; 4641 4642 ret = find_free_dev_extent(trans, device, 4643 max_stripe_size * dev_stripes, 4644 &dev_offset, &max_avail); 4645 if (ret && ret != -ENOSPC) 4646 goto error; 4647 4648 if (ret == 0) 4649 max_avail = max_stripe_size * dev_stripes; 4650 4651 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4652 continue; 4653 4654 if (ndevs == fs_devices->rw_devices) { 4655 WARN(1, "%s: found more than %llu devices\n", 4656 __func__, fs_devices->rw_devices); 4657 break; 4658 } 4659 devices_info[ndevs].dev_offset = dev_offset; 4660 devices_info[ndevs].max_avail = max_avail; 4661 devices_info[ndevs].total_avail = total_avail; 4662 devices_info[ndevs].dev = device; 4663 ++ndevs; 4664 } 4665 4666 /* 4667 * now sort the devices by hole size / available space 4668 */ 4669 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4670 btrfs_cmp_device_info, NULL); 4671 4672 /* round down to number of usable stripes */ 4673 ndevs -= ndevs % devs_increment; 4674 4675 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4676 ret = -ENOSPC; 4677 goto error; 4678 } 4679 4680 if (devs_max && ndevs > devs_max) 4681 ndevs = devs_max; 4682 /* 4683 * the primary goal is to maximize the number of stripes, so use as many 4684 * devices as possible, even if the stripes are not maximum sized. 4685 */ 4686 stripe_size = devices_info[ndevs-1].max_avail; 4687 num_stripes = ndevs * dev_stripes; 4688 4689 /* 4690 * this will have to be fixed for RAID1 and RAID10 over 4691 * more drives 4692 */ 4693 data_stripes = num_stripes / ncopies; 4694 4695 if (type & BTRFS_BLOCK_GROUP_RAID5) { 4696 raid_stripe_len = find_raid56_stripe_len(ndevs - 1, 4697 btrfs_super_stripesize(info->super_copy)); 4698 data_stripes = num_stripes - 1; 4699 } 4700 if (type & BTRFS_BLOCK_GROUP_RAID6) { 4701 raid_stripe_len = find_raid56_stripe_len(ndevs - 2, 4702 btrfs_super_stripesize(info->super_copy)); 4703 data_stripes = num_stripes - 2; 4704 } 4705 4706 /* 4707 * Use the number of data stripes to figure out how big this chunk 4708 * is really going to be in terms of logical address space, 4709 * and compare that answer with the max chunk size 4710 */ 4711 if (stripe_size * data_stripes > max_chunk_size) { 4712 u64 mask = (1ULL << 24) - 1; 4713 4714 stripe_size = div_u64(max_chunk_size, data_stripes); 4715 4716 /* bump the answer up to a 16MB boundary */ 4717 stripe_size = (stripe_size + mask) & ~mask; 4718 4719 /* but don't go higher than the limits we found 4720 * while searching for free extents 4721 */ 4722 if (stripe_size > devices_info[ndevs-1].max_avail) 4723 stripe_size = devices_info[ndevs-1].max_avail; 4724 } 4725 4726 stripe_size = div_u64(stripe_size, dev_stripes); 4727 4728 /* align to BTRFS_STRIPE_LEN */ 4729 stripe_size = div_u64(stripe_size, raid_stripe_len); 4730 stripe_size *= raid_stripe_len; 4731 4732 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4733 if (!map) { 4734 ret = -ENOMEM; 4735 goto error; 4736 } 4737 map->num_stripes = num_stripes; 4738 4739 for (i = 0; i < ndevs; ++i) { 4740 for (j = 0; j < dev_stripes; ++j) { 4741 int s = i * dev_stripes + j; 4742 map->stripes[s].dev = devices_info[i].dev; 4743 map->stripes[s].physical = devices_info[i].dev_offset + 4744 j * stripe_size; 4745 } 4746 } 4747 map->sector_size = extent_root->sectorsize; 4748 map->stripe_len = raid_stripe_len; 4749 map->io_align = raid_stripe_len; 4750 map->io_width = raid_stripe_len; 4751 map->type = type; 4752 map->sub_stripes = sub_stripes; 4753 4754 num_bytes = stripe_size * data_stripes; 4755 4756 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 4757 4758 em = alloc_extent_map(); 4759 if (!em) { 4760 kfree(map); 4761 ret = -ENOMEM; 4762 goto error; 4763 } 4764 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4765 em->map_lookup = map; 4766 em->start = start; 4767 em->len = num_bytes; 4768 em->block_start = 0; 4769 em->block_len = em->len; 4770 em->orig_block_len = stripe_size; 4771 4772 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4773 write_lock(&em_tree->lock); 4774 ret = add_extent_mapping(em_tree, em, 0); 4775 if (!ret) { 4776 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4777 atomic_inc(&em->refs); 4778 } 4779 write_unlock(&em_tree->lock); 4780 if (ret) { 4781 free_extent_map(em); 4782 goto error; 4783 } 4784 4785 ret = btrfs_make_block_group(trans, extent_root, 0, type, 4786 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4787 start, num_bytes); 4788 if (ret) 4789 goto error_del_extent; 4790 4791 for (i = 0; i < map->num_stripes; i++) { 4792 num_bytes = map->stripes[i].dev->bytes_used + stripe_size; 4793 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); 4794 } 4795 4796 spin_lock(&extent_root->fs_info->free_chunk_lock); 4797 extent_root->fs_info->free_chunk_space -= (stripe_size * 4798 map->num_stripes); 4799 spin_unlock(&extent_root->fs_info->free_chunk_lock); 4800 4801 free_extent_map(em); 4802 check_raid56_incompat_flag(extent_root->fs_info, type); 4803 4804 kfree(devices_info); 4805 return 0; 4806 4807 error_del_extent: 4808 write_lock(&em_tree->lock); 4809 remove_extent_mapping(em_tree, em); 4810 write_unlock(&em_tree->lock); 4811 4812 /* One for our allocation */ 4813 free_extent_map(em); 4814 /* One for the tree reference */ 4815 free_extent_map(em); 4816 /* One for the pending_chunks list reference */ 4817 free_extent_map(em); 4818 error: 4819 kfree(devices_info); 4820 return ret; 4821 } 4822 4823 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4824 struct btrfs_root *extent_root, 4825 u64 chunk_offset, u64 chunk_size) 4826 { 4827 struct btrfs_key key; 4828 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 4829 struct btrfs_device *device; 4830 struct btrfs_chunk *chunk; 4831 struct btrfs_stripe *stripe; 4832 struct extent_map_tree *em_tree; 4833 struct extent_map *em; 4834 struct map_lookup *map; 4835 size_t item_size; 4836 u64 dev_offset; 4837 u64 stripe_size; 4838 int i = 0; 4839 int ret = 0; 4840 4841 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4842 read_lock(&em_tree->lock); 4843 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size); 4844 read_unlock(&em_tree->lock); 4845 4846 if (!em) { 4847 btrfs_crit(extent_root->fs_info, "unable to find logical " 4848 "%Lu len %Lu", chunk_offset, chunk_size); 4849 return -EINVAL; 4850 } 4851 4852 if (em->start != chunk_offset || em->len != chunk_size) { 4853 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted" 4854 " %Lu-%Lu, found %Lu-%Lu", chunk_offset, 4855 chunk_size, em->start, em->len); 4856 free_extent_map(em); 4857 return -EINVAL; 4858 } 4859 4860 map = em->map_lookup; 4861 item_size = btrfs_chunk_item_size(map->num_stripes); 4862 stripe_size = em->orig_block_len; 4863 4864 chunk = kzalloc(item_size, GFP_NOFS); 4865 if (!chunk) { 4866 ret = -ENOMEM; 4867 goto out; 4868 } 4869 4870 /* 4871 * Take the device list mutex to prevent races with the final phase of 4872 * a device replace operation that replaces the device object associated 4873 * with the map's stripes, because the device object's id can change 4874 * at any time during that final phase of the device replace operation 4875 * (dev-replace.c:btrfs_dev_replace_finishing()). 4876 */ 4877 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex); 4878 for (i = 0; i < map->num_stripes; i++) { 4879 device = map->stripes[i].dev; 4880 dev_offset = map->stripes[i].physical; 4881 4882 ret = btrfs_update_device(trans, device); 4883 if (ret) 4884 break; 4885 ret = btrfs_alloc_dev_extent(trans, device, 4886 chunk_root->root_key.objectid, 4887 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4888 chunk_offset, dev_offset, 4889 stripe_size); 4890 if (ret) 4891 break; 4892 } 4893 if (ret) { 4894 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex); 4895 goto out; 4896 } 4897 4898 stripe = &chunk->stripe; 4899 for (i = 0; i < map->num_stripes; i++) { 4900 device = map->stripes[i].dev; 4901 dev_offset = map->stripes[i].physical; 4902 4903 btrfs_set_stack_stripe_devid(stripe, device->devid); 4904 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4905 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4906 stripe++; 4907 } 4908 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex); 4909 4910 btrfs_set_stack_chunk_length(chunk, chunk_size); 4911 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4912 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4913 btrfs_set_stack_chunk_type(chunk, map->type); 4914 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4915 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4916 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4917 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 4918 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4919 4920 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4921 key.type = BTRFS_CHUNK_ITEM_KEY; 4922 key.offset = chunk_offset; 4923 4924 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4925 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4926 /* 4927 * TODO: Cleanup of inserted chunk root in case of 4928 * failure. 4929 */ 4930 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 4931 item_size); 4932 } 4933 4934 out: 4935 kfree(chunk); 4936 free_extent_map(em); 4937 return ret; 4938 } 4939 4940 /* 4941 * Chunk allocation falls into two parts. The first part does works 4942 * that make the new allocated chunk useable, but not do any operation 4943 * that modifies the chunk tree. The second part does the works that 4944 * require modifying the chunk tree. This division is important for the 4945 * bootstrap process of adding storage to a seed btrfs. 4946 */ 4947 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4948 struct btrfs_root *extent_root, u64 type) 4949 { 4950 u64 chunk_offset; 4951 4952 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex)); 4953 chunk_offset = find_next_chunk(extent_root->fs_info); 4954 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type); 4955 } 4956 4957 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 4958 struct btrfs_root *root, 4959 struct btrfs_device *device) 4960 { 4961 u64 chunk_offset; 4962 u64 sys_chunk_offset; 4963 u64 alloc_profile; 4964 struct btrfs_fs_info *fs_info = root->fs_info; 4965 struct btrfs_root *extent_root = fs_info->extent_root; 4966 int ret; 4967 4968 chunk_offset = find_next_chunk(fs_info); 4969 alloc_profile = btrfs_get_alloc_profile(extent_root, 0); 4970 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset, 4971 alloc_profile); 4972 if (ret) 4973 return ret; 4974 4975 sys_chunk_offset = find_next_chunk(root->fs_info); 4976 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); 4977 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset, 4978 alloc_profile); 4979 return ret; 4980 } 4981 4982 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 4983 { 4984 int max_errors; 4985 4986 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 4987 BTRFS_BLOCK_GROUP_RAID10 | 4988 BTRFS_BLOCK_GROUP_RAID5 | 4989 BTRFS_BLOCK_GROUP_DUP)) { 4990 max_errors = 1; 4991 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 4992 max_errors = 2; 4993 } else { 4994 max_errors = 0; 4995 } 4996 4997 return max_errors; 4998 } 4999 5000 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 5001 { 5002 struct extent_map *em; 5003 struct map_lookup *map; 5004 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5005 int readonly = 0; 5006 int miss_ndevs = 0; 5007 int i; 5008 5009 read_lock(&map_tree->map_tree.lock); 5010 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 5011 read_unlock(&map_tree->map_tree.lock); 5012 if (!em) 5013 return 1; 5014 5015 map = em->map_lookup; 5016 for (i = 0; i < map->num_stripes; i++) { 5017 if (map->stripes[i].dev->missing) { 5018 miss_ndevs++; 5019 continue; 5020 } 5021 5022 if (!map->stripes[i].dev->writeable) { 5023 readonly = 1; 5024 goto end; 5025 } 5026 } 5027 5028 /* 5029 * If the number of missing devices is larger than max errors, 5030 * we can not write the data into that chunk successfully, so 5031 * set it readonly. 5032 */ 5033 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5034 readonly = 1; 5035 end: 5036 free_extent_map(em); 5037 return readonly; 5038 } 5039 5040 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 5041 { 5042 extent_map_tree_init(&tree->map_tree); 5043 } 5044 5045 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 5046 { 5047 struct extent_map *em; 5048 5049 while (1) { 5050 write_lock(&tree->map_tree.lock); 5051 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 5052 if (em) 5053 remove_extent_mapping(&tree->map_tree, em); 5054 write_unlock(&tree->map_tree.lock); 5055 if (!em) 5056 break; 5057 /* once for us */ 5058 free_extent_map(em); 5059 /* once for the tree */ 5060 free_extent_map(em); 5061 } 5062 } 5063 5064 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5065 { 5066 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5067 struct extent_map *em; 5068 struct map_lookup *map; 5069 struct extent_map_tree *em_tree = &map_tree->map_tree; 5070 int ret; 5071 5072 read_lock(&em_tree->lock); 5073 em = lookup_extent_mapping(em_tree, logical, len); 5074 read_unlock(&em_tree->lock); 5075 5076 /* 5077 * We could return errors for these cases, but that could get ugly and 5078 * we'd probably do the same thing which is just not do anything else 5079 * and exit, so return 1 so the callers don't try to use other copies. 5080 */ 5081 if (!em) { 5082 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical, 5083 logical+len); 5084 return 1; 5085 } 5086 5087 if (em->start > logical || em->start + em->len < logical) { 5088 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got " 5089 "%Lu-%Lu", logical, logical+len, em->start, 5090 em->start + em->len); 5091 free_extent_map(em); 5092 return 1; 5093 } 5094 5095 map = em->map_lookup; 5096 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 5097 ret = map->num_stripes; 5098 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5099 ret = map->sub_stripes; 5100 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5101 ret = 2; 5102 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5103 ret = 3; 5104 else 5105 ret = 1; 5106 free_extent_map(em); 5107 5108 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 5109 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) 5110 ret++; 5111 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 5112 5113 return ret; 5114 } 5115 5116 unsigned long btrfs_full_stripe_len(struct btrfs_root *root, 5117 struct btrfs_mapping_tree *map_tree, 5118 u64 logical) 5119 { 5120 struct extent_map *em; 5121 struct map_lookup *map; 5122 struct extent_map_tree *em_tree = &map_tree->map_tree; 5123 unsigned long len = root->sectorsize; 5124 5125 read_lock(&em_tree->lock); 5126 em = lookup_extent_mapping(em_tree, logical, len); 5127 read_unlock(&em_tree->lock); 5128 BUG_ON(!em); 5129 5130 BUG_ON(em->start > logical || em->start + em->len < logical); 5131 map = em->map_lookup; 5132 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5133 len = map->stripe_len * nr_data_stripes(map); 5134 free_extent_map(em); 5135 return len; 5136 } 5137 5138 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, 5139 u64 logical, u64 len, int mirror_num) 5140 { 5141 struct extent_map *em; 5142 struct map_lookup *map; 5143 struct extent_map_tree *em_tree = &map_tree->map_tree; 5144 int ret = 0; 5145 5146 read_lock(&em_tree->lock); 5147 em = lookup_extent_mapping(em_tree, logical, len); 5148 read_unlock(&em_tree->lock); 5149 BUG_ON(!em); 5150 5151 BUG_ON(em->start > logical || em->start + em->len < logical); 5152 map = em->map_lookup; 5153 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5154 ret = 1; 5155 free_extent_map(em); 5156 return ret; 5157 } 5158 5159 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5160 struct map_lookup *map, int first, int num, 5161 int optimal, int dev_replace_is_ongoing) 5162 { 5163 int i; 5164 int tolerance; 5165 struct btrfs_device *srcdev; 5166 5167 if (dev_replace_is_ongoing && 5168 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5169 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5170 srcdev = fs_info->dev_replace.srcdev; 5171 else 5172 srcdev = NULL; 5173 5174 /* 5175 * try to avoid the drive that is the source drive for a 5176 * dev-replace procedure, only choose it if no other non-missing 5177 * mirror is available 5178 */ 5179 for (tolerance = 0; tolerance < 2; tolerance++) { 5180 if (map->stripes[optimal].dev->bdev && 5181 (tolerance || map->stripes[optimal].dev != srcdev)) 5182 return optimal; 5183 for (i = first; i < first + num; i++) { 5184 if (map->stripes[i].dev->bdev && 5185 (tolerance || map->stripes[i].dev != srcdev)) 5186 return i; 5187 } 5188 } 5189 5190 /* we couldn't find one that doesn't fail. Just return something 5191 * and the io error handling code will clean up eventually 5192 */ 5193 return optimal; 5194 } 5195 5196 static inline int parity_smaller(u64 a, u64 b) 5197 { 5198 return a > b; 5199 } 5200 5201 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5202 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5203 { 5204 struct btrfs_bio_stripe s; 5205 int i; 5206 u64 l; 5207 int again = 1; 5208 5209 while (again) { 5210 again = 0; 5211 for (i = 0; i < num_stripes - 1; i++) { 5212 if (parity_smaller(bbio->raid_map[i], 5213 bbio->raid_map[i+1])) { 5214 s = bbio->stripes[i]; 5215 l = bbio->raid_map[i]; 5216 bbio->stripes[i] = bbio->stripes[i+1]; 5217 bbio->raid_map[i] = bbio->raid_map[i+1]; 5218 bbio->stripes[i+1] = s; 5219 bbio->raid_map[i+1] = l; 5220 5221 again = 1; 5222 } 5223 } 5224 } 5225 } 5226 5227 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5228 { 5229 struct btrfs_bio *bbio = kzalloc( 5230 /* the size of the btrfs_bio */ 5231 sizeof(struct btrfs_bio) + 5232 /* plus the variable array for the stripes */ 5233 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5234 /* plus the variable array for the tgt dev */ 5235 sizeof(int) * (real_stripes) + 5236 /* 5237 * plus the raid_map, which includes both the tgt dev 5238 * and the stripes 5239 */ 5240 sizeof(u64) * (total_stripes), 5241 GFP_NOFS|__GFP_NOFAIL); 5242 5243 atomic_set(&bbio->error, 0); 5244 atomic_set(&bbio->refs, 1); 5245 5246 return bbio; 5247 } 5248 5249 void btrfs_get_bbio(struct btrfs_bio *bbio) 5250 { 5251 WARN_ON(!atomic_read(&bbio->refs)); 5252 atomic_inc(&bbio->refs); 5253 } 5254 5255 void btrfs_put_bbio(struct btrfs_bio *bbio) 5256 { 5257 if (!bbio) 5258 return; 5259 if (atomic_dec_and_test(&bbio->refs)) 5260 kfree(bbio); 5261 } 5262 5263 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5264 u64 logical, u64 *length, 5265 struct btrfs_bio **bbio_ret, 5266 int mirror_num, int need_raid_map) 5267 { 5268 struct extent_map *em; 5269 struct map_lookup *map; 5270 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5271 struct extent_map_tree *em_tree = &map_tree->map_tree; 5272 u64 offset; 5273 u64 stripe_offset; 5274 u64 stripe_end_offset; 5275 u64 stripe_nr; 5276 u64 stripe_nr_orig; 5277 u64 stripe_nr_end; 5278 u64 stripe_len; 5279 u32 stripe_index; 5280 int i; 5281 int ret = 0; 5282 int num_stripes; 5283 int max_errors = 0; 5284 int tgtdev_indexes = 0; 5285 struct btrfs_bio *bbio = NULL; 5286 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 5287 int dev_replace_is_ongoing = 0; 5288 int num_alloc_stripes; 5289 int patch_the_first_stripe_for_dev_replace = 0; 5290 u64 physical_to_patch_in_first_stripe = 0; 5291 u64 raid56_full_stripe_start = (u64)-1; 5292 5293 read_lock(&em_tree->lock); 5294 em = lookup_extent_mapping(em_tree, logical, *length); 5295 read_unlock(&em_tree->lock); 5296 5297 if (!em) { 5298 btrfs_crit(fs_info, "unable to find logical %llu len %llu", 5299 logical, *length); 5300 return -EINVAL; 5301 } 5302 5303 if (em->start > logical || em->start + em->len < logical) { 5304 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, " 5305 "found %Lu-%Lu", logical, em->start, 5306 em->start + em->len); 5307 free_extent_map(em); 5308 return -EINVAL; 5309 } 5310 5311 map = em->map_lookup; 5312 offset = logical - em->start; 5313 5314 stripe_len = map->stripe_len; 5315 stripe_nr = offset; 5316 /* 5317 * stripe_nr counts the total number of stripes we have to stride 5318 * to get to this block 5319 */ 5320 stripe_nr = div64_u64(stripe_nr, stripe_len); 5321 5322 stripe_offset = stripe_nr * stripe_len; 5323 if (offset < stripe_offset) { 5324 btrfs_crit(fs_info, "stripe math has gone wrong, " 5325 "stripe_offset=%llu, offset=%llu, start=%llu, " 5326 "logical=%llu, stripe_len=%llu", 5327 stripe_offset, offset, em->start, logical, 5328 stripe_len); 5329 free_extent_map(em); 5330 return -EINVAL; 5331 } 5332 5333 /* stripe_offset is the offset of this block in its stripe*/ 5334 stripe_offset = offset - stripe_offset; 5335 5336 /* if we're here for raid56, we need to know the stripe aligned start */ 5337 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5338 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 5339 raid56_full_stripe_start = offset; 5340 5341 /* allow a write of a full stripe, but make sure we don't 5342 * allow straddling of stripes 5343 */ 5344 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5345 full_stripe_len); 5346 raid56_full_stripe_start *= full_stripe_len; 5347 } 5348 5349 if (rw & REQ_DISCARD) { 5350 /* we don't discard raid56 yet */ 5351 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5352 ret = -EOPNOTSUPP; 5353 goto out; 5354 } 5355 *length = min_t(u64, em->len - offset, *length); 5356 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5357 u64 max_len; 5358 /* For writes to RAID[56], allow a full stripeset across all disks. 5359 For other RAID types and for RAID[56] reads, just allow a single 5360 stripe (on a single disk). */ 5361 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 5362 (rw & REQ_WRITE)) { 5363 max_len = stripe_len * nr_data_stripes(map) - 5364 (offset - raid56_full_stripe_start); 5365 } else { 5366 /* we limit the length of each bio to what fits in a stripe */ 5367 max_len = stripe_len - stripe_offset; 5368 } 5369 *length = min_t(u64, em->len - offset, max_len); 5370 } else { 5371 *length = em->len - offset; 5372 } 5373 5374 /* This is for when we're called from btrfs_merge_bio_hook() and all 5375 it cares about is the length */ 5376 if (!bbio_ret) 5377 goto out; 5378 5379 btrfs_dev_replace_lock(dev_replace, 0); 5380 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5381 if (!dev_replace_is_ongoing) 5382 btrfs_dev_replace_unlock(dev_replace, 0); 5383 else 5384 btrfs_dev_replace_set_lock_blocking(dev_replace); 5385 5386 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5387 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) && 5388 dev_replace->tgtdev != NULL) { 5389 /* 5390 * in dev-replace case, for repair case (that's the only 5391 * case where the mirror is selected explicitly when 5392 * calling btrfs_map_block), blocks left of the left cursor 5393 * can also be read from the target drive. 5394 * For REQ_GET_READ_MIRRORS, the target drive is added as 5395 * the last one to the array of stripes. For READ, it also 5396 * needs to be supported using the same mirror number. 5397 * If the requested block is not left of the left cursor, 5398 * EIO is returned. This can happen because btrfs_num_copies() 5399 * returns one more in the dev-replace case. 5400 */ 5401 u64 tmp_length = *length; 5402 struct btrfs_bio *tmp_bbio = NULL; 5403 int tmp_num_stripes; 5404 u64 srcdev_devid = dev_replace->srcdev->devid; 5405 int index_srcdev = 0; 5406 int found = 0; 5407 u64 physical_of_found = 0; 5408 5409 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, 5410 logical, &tmp_length, &tmp_bbio, 0, 0); 5411 if (ret) { 5412 WARN_ON(tmp_bbio != NULL); 5413 goto out; 5414 } 5415 5416 tmp_num_stripes = tmp_bbio->num_stripes; 5417 if (mirror_num > tmp_num_stripes) { 5418 /* 5419 * REQ_GET_READ_MIRRORS does not contain this 5420 * mirror, that means that the requested area 5421 * is not left of the left cursor 5422 */ 5423 ret = -EIO; 5424 btrfs_put_bbio(tmp_bbio); 5425 goto out; 5426 } 5427 5428 /* 5429 * process the rest of the function using the mirror_num 5430 * of the source drive. Therefore look it up first. 5431 * At the end, patch the device pointer to the one of the 5432 * target drive. 5433 */ 5434 for (i = 0; i < tmp_num_stripes; i++) { 5435 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid) 5436 continue; 5437 5438 /* 5439 * In case of DUP, in order to keep it simple, only add 5440 * the mirror with the lowest physical address 5441 */ 5442 if (found && 5443 physical_of_found <= tmp_bbio->stripes[i].physical) 5444 continue; 5445 5446 index_srcdev = i; 5447 found = 1; 5448 physical_of_found = tmp_bbio->stripes[i].physical; 5449 } 5450 5451 btrfs_put_bbio(tmp_bbio); 5452 5453 if (!found) { 5454 WARN_ON(1); 5455 ret = -EIO; 5456 goto out; 5457 } 5458 5459 mirror_num = index_srcdev + 1; 5460 patch_the_first_stripe_for_dev_replace = 1; 5461 physical_to_patch_in_first_stripe = physical_of_found; 5462 } else if (mirror_num > map->num_stripes) { 5463 mirror_num = 0; 5464 } 5465 5466 num_stripes = 1; 5467 stripe_index = 0; 5468 stripe_nr_orig = stripe_nr; 5469 stripe_nr_end = ALIGN(offset + *length, map->stripe_len); 5470 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len); 5471 stripe_end_offset = stripe_nr_end * map->stripe_len - 5472 (offset + *length); 5473 5474 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5475 if (rw & REQ_DISCARD) 5476 num_stripes = min_t(u64, map->num_stripes, 5477 stripe_nr_end - stripe_nr_orig); 5478 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5479 &stripe_index); 5480 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))) 5481 mirror_num = 1; 5482 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 5483 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) 5484 num_stripes = map->num_stripes; 5485 else if (mirror_num) 5486 stripe_index = mirror_num - 1; 5487 else { 5488 stripe_index = find_live_mirror(fs_info, map, 0, 5489 map->num_stripes, 5490 current->pid % map->num_stripes, 5491 dev_replace_is_ongoing); 5492 mirror_num = stripe_index + 1; 5493 } 5494 5495 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5496 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) { 5497 num_stripes = map->num_stripes; 5498 } else if (mirror_num) { 5499 stripe_index = mirror_num - 1; 5500 } else { 5501 mirror_num = 1; 5502 } 5503 5504 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5505 u32 factor = map->num_stripes / map->sub_stripes; 5506 5507 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5508 stripe_index *= map->sub_stripes; 5509 5510 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5511 num_stripes = map->sub_stripes; 5512 else if (rw & REQ_DISCARD) 5513 num_stripes = min_t(u64, map->sub_stripes * 5514 (stripe_nr_end - stripe_nr_orig), 5515 map->num_stripes); 5516 else if (mirror_num) 5517 stripe_index += mirror_num - 1; 5518 else { 5519 int old_stripe_index = stripe_index; 5520 stripe_index = find_live_mirror(fs_info, map, 5521 stripe_index, 5522 map->sub_stripes, stripe_index + 5523 current->pid % map->sub_stripes, 5524 dev_replace_is_ongoing); 5525 mirror_num = stripe_index - old_stripe_index + 1; 5526 } 5527 5528 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5529 if (need_raid_map && 5530 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) || 5531 mirror_num > 1)) { 5532 /* push stripe_nr back to the start of the full stripe */ 5533 stripe_nr = div_u64(raid56_full_stripe_start, 5534 stripe_len * nr_data_stripes(map)); 5535 5536 /* RAID[56] write or recovery. Return all stripes */ 5537 num_stripes = map->num_stripes; 5538 max_errors = nr_parity_stripes(map); 5539 5540 *length = map->stripe_len; 5541 stripe_index = 0; 5542 stripe_offset = 0; 5543 } else { 5544 /* 5545 * Mirror #0 or #1 means the original data block. 5546 * Mirror #2 is RAID5 parity block. 5547 * Mirror #3 is RAID6 Q block. 5548 */ 5549 stripe_nr = div_u64_rem(stripe_nr, 5550 nr_data_stripes(map), &stripe_index); 5551 if (mirror_num > 1) 5552 stripe_index = nr_data_stripes(map) + 5553 mirror_num - 2; 5554 5555 /* We distribute the parity blocks across stripes */ 5556 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 5557 &stripe_index); 5558 if (!(rw & (REQ_WRITE | REQ_DISCARD | 5559 REQ_GET_READ_MIRRORS)) && mirror_num <= 1) 5560 mirror_num = 1; 5561 } 5562 } else { 5563 /* 5564 * after this, stripe_nr is the number of stripes on this 5565 * device we have to walk to find the data, and stripe_index is 5566 * the number of our device in the stripe array 5567 */ 5568 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5569 &stripe_index); 5570 mirror_num = stripe_index + 1; 5571 } 5572 if (stripe_index >= map->num_stripes) { 5573 btrfs_crit(fs_info, "stripe index math went horribly wrong, " 5574 "got stripe_index=%u, num_stripes=%u", 5575 stripe_index, map->num_stripes); 5576 ret = -EINVAL; 5577 goto out; 5578 } 5579 5580 num_alloc_stripes = num_stripes; 5581 if (dev_replace_is_ongoing) { 5582 if (rw & (REQ_WRITE | REQ_DISCARD)) 5583 num_alloc_stripes <<= 1; 5584 if (rw & REQ_GET_READ_MIRRORS) 5585 num_alloc_stripes++; 5586 tgtdev_indexes = num_stripes; 5587 } 5588 5589 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 5590 if (!bbio) { 5591 ret = -ENOMEM; 5592 goto out; 5593 } 5594 if (dev_replace_is_ongoing) 5595 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 5596 5597 /* build raid_map */ 5598 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 5599 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) || 5600 mirror_num > 1)) { 5601 u64 tmp; 5602 unsigned rot; 5603 5604 bbio->raid_map = (u64 *)((void *)bbio->stripes + 5605 sizeof(struct btrfs_bio_stripe) * 5606 num_alloc_stripes + 5607 sizeof(int) * tgtdev_indexes); 5608 5609 /* Work out the disk rotation on this stripe-set */ 5610 div_u64_rem(stripe_nr, num_stripes, &rot); 5611 5612 /* Fill in the logical address of each stripe */ 5613 tmp = stripe_nr * nr_data_stripes(map); 5614 for (i = 0; i < nr_data_stripes(map); i++) 5615 bbio->raid_map[(i+rot) % num_stripes] = 5616 em->start + (tmp + i) * map->stripe_len; 5617 5618 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 5619 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5620 bbio->raid_map[(i+rot+1) % num_stripes] = 5621 RAID6_Q_STRIPE; 5622 } 5623 5624 if (rw & REQ_DISCARD) { 5625 u32 factor = 0; 5626 u32 sub_stripes = 0; 5627 u64 stripes_per_dev = 0; 5628 u32 remaining_stripes = 0; 5629 u32 last_stripe = 0; 5630 5631 if (map->type & 5632 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 5633 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5634 sub_stripes = 1; 5635 else 5636 sub_stripes = map->sub_stripes; 5637 5638 factor = map->num_stripes / sub_stripes; 5639 stripes_per_dev = div_u64_rem(stripe_nr_end - 5640 stripe_nr_orig, 5641 factor, 5642 &remaining_stripes); 5643 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5644 last_stripe *= sub_stripes; 5645 } 5646 5647 for (i = 0; i < num_stripes; i++) { 5648 bbio->stripes[i].physical = 5649 map->stripes[stripe_index].physical + 5650 stripe_offset + stripe_nr * map->stripe_len; 5651 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5652 5653 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5654 BTRFS_BLOCK_GROUP_RAID10)) { 5655 bbio->stripes[i].length = stripes_per_dev * 5656 map->stripe_len; 5657 5658 if (i / sub_stripes < remaining_stripes) 5659 bbio->stripes[i].length += 5660 map->stripe_len; 5661 5662 /* 5663 * Special for the first stripe and 5664 * the last stripe: 5665 * 5666 * |-------|...|-------| 5667 * |----------| 5668 * off end_off 5669 */ 5670 if (i < sub_stripes) 5671 bbio->stripes[i].length -= 5672 stripe_offset; 5673 5674 if (stripe_index >= last_stripe && 5675 stripe_index <= (last_stripe + 5676 sub_stripes - 1)) 5677 bbio->stripes[i].length -= 5678 stripe_end_offset; 5679 5680 if (i == sub_stripes - 1) 5681 stripe_offset = 0; 5682 } else 5683 bbio->stripes[i].length = *length; 5684 5685 stripe_index++; 5686 if (stripe_index == map->num_stripes) { 5687 /* This could only happen for RAID0/10 */ 5688 stripe_index = 0; 5689 stripe_nr++; 5690 } 5691 } 5692 } else { 5693 for (i = 0; i < num_stripes; i++) { 5694 bbio->stripes[i].physical = 5695 map->stripes[stripe_index].physical + 5696 stripe_offset + 5697 stripe_nr * map->stripe_len; 5698 bbio->stripes[i].dev = 5699 map->stripes[stripe_index].dev; 5700 stripe_index++; 5701 } 5702 } 5703 5704 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5705 max_errors = btrfs_chunk_max_errors(map); 5706 5707 if (bbio->raid_map) 5708 sort_parity_stripes(bbio, num_stripes); 5709 5710 tgtdev_indexes = 0; 5711 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) && 5712 dev_replace->tgtdev != NULL) { 5713 int index_where_to_add; 5714 u64 srcdev_devid = dev_replace->srcdev->devid; 5715 5716 /* 5717 * duplicate the write operations while the dev replace 5718 * procedure is running. Since the copying of the old disk 5719 * to the new disk takes place at run time while the 5720 * filesystem is mounted writable, the regular write 5721 * operations to the old disk have to be duplicated to go 5722 * to the new disk as well. 5723 * Note that device->missing is handled by the caller, and 5724 * that the write to the old disk is already set up in the 5725 * stripes array. 5726 */ 5727 index_where_to_add = num_stripes; 5728 for (i = 0; i < num_stripes; i++) { 5729 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5730 /* write to new disk, too */ 5731 struct btrfs_bio_stripe *new = 5732 bbio->stripes + index_where_to_add; 5733 struct btrfs_bio_stripe *old = 5734 bbio->stripes + i; 5735 5736 new->physical = old->physical; 5737 new->length = old->length; 5738 new->dev = dev_replace->tgtdev; 5739 bbio->tgtdev_map[i] = index_where_to_add; 5740 index_where_to_add++; 5741 max_errors++; 5742 tgtdev_indexes++; 5743 } 5744 } 5745 num_stripes = index_where_to_add; 5746 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) && 5747 dev_replace->tgtdev != NULL) { 5748 u64 srcdev_devid = dev_replace->srcdev->devid; 5749 int index_srcdev = 0; 5750 int found = 0; 5751 u64 physical_of_found = 0; 5752 5753 /* 5754 * During the dev-replace procedure, the target drive can 5755 * also be used to read data in case it is needed to repair 5756 * a corrupt block elsewhere. This is possible if the 5757 * requested area is left of the left cursor. In this area, 5758 * the target drive is a full copy of the source drive. 5759 */ 5760 for (i = 0; i < num_stripes; i++) { 5761 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5762 /* 5763 * In case of DUP, in order to keep it 5764 * simple, only add the mirror with the 5765 * lowest physical address 5766 */ 5767 if (found && 5768 physical_of_found <= 5769 bbio->stripes[i].physical) 5770 continue; 5771 index_srcdev = i; 5772 found = 1; 5773 physical_of_found = bbio->stripes[i].physical; 5774 } 5775 } 5776 if (found) { 5777 struct btrfs_bio_stripe *tgtdev_stripe = 5778 bbio->stripes + num_stripes; 5779 5780 tgtdev_stripe->physical = physical_of_found; 5781 tgtdev_stripe->length = 5782 bbio->stripes[index_srcdev].length; 5783 tgtdev_stripe->dev = dev_replace->tgtdev; 5784 bbio->tgtdev_map[index_srcdev] = num_stripes; 5785 5786 tgtdev_indexes++; 5787 num_stripes++; 5788 } 5789 } 5790 5791 *bbio_ret = bbio; 5792 bbio->map_type = map->type; 5793 bbio->num_stripes = num_stripes; 5794 bbio->max_errors = max_errors; 5795 bbio->mirror_num = mirror_num; 5796 bbio->num_tgtdevs = tgtdev_indexes; 5797 5798 /* 5799 * this is the case that REQ_READ && dev_replace_is_ongoing && 5800 * mirror_num == num_stripes + 1 && dev_replace target drive is 5801 * available as a mirror 5802 */ 5803 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5804 WARN_ON(num_stripes > 1); 5805 bbio->stripes[0].dev = dev_replace->tgtdev; 5806 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5807 bbio->mirror_num = map->num_stripes + 1; 5808 } 5809 out: 5810 if (dev_replace_is_ongoing) { 5811 btrfs_dev_replace_clear_lock_blocking(dev_replace); 5812 btrfs_dev_replace_unlock(dev_replace, 0); 5813 } 5814 free_extent_map(em); 5815 return ret; 5816 } 5817 5818 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5819 u64 logical, u64 *length, 5820 struct btrfs_bio **bbio_ret, int mirror_num) 5821 { 5822 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5823 mirror_num, 0); 5824 } 5825 5826 /* For Scrub/replace */ 5827 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw, 5828 u64 logical, u64 *length, 5829 struct btrfs_bio **bbio_ret, int mirror_num, 5830 int need_raid_map) 5831 { 5832 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5833 mirror_num, need_raid_map); 5834 } 5835 5836 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 5837 u64 chunk_start, u64 physical, u64 devid, 5838 u64 **logical, int *naddrs, int *stripe_len) 5839 { 5840 struct extent_map_tree *em_tree = &map_tree->map_tree; 5841 struct extent_map *em; 5842 struct map_lookup *map; 5843 u64 *buf; 5844 u64 bytenr; 5845 u64 length; 5846 u64 stripe_nr; 5847 u64 rmap_len; 5848 int i, j, nr = 0; 5849 5850 read_lock(&em_tree->lock); 5851 em = lookup_extent_mapping(em_tree, chunk_start, 1); 5852 read_unlock(&em_tree->lock); 5853 5854 if (!em) { 5855 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n", 5856 chunk_start); 5857 return -EIO; 5858 } 5859 5860 if (em->start != chunk_start) { 5861 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n", 5862 em->start, chunk_start); 5863 free_extent_map(em); 5864 return -EIO; 5865 } 5866 map = em->map_lookup; 5867 5868 length = em->len; 5869 rmap_len = map->stripe_len; 5870 5871 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5872 length = div_u64(length, map->num_stripes / map->sub_stripes); 5873 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5874 length = div_u64(length, map->num_stripes); 5875 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5876 length = div_u64(length, nr_data_stripes(map)); 5877 rmap_len = map->stripe_len * nr_data_stripes(map); 5878 } 5879 5880 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 5881 BUG_ON(!buf); /* -ENOMEM */ 5882 5883 for (i = 0; i < map->num_stripes; i++) { 5884 if (devid && map->stripes[i].dev->devid != devid) 5885 continue; 5886 if (map->stripes[i].physical > physical || 5887 map->stripes[i].physical + length <= physical) 5888 continue; 5889 5890 stripe_nr = physical - map->stripes[i].physical; 5891 stripe_nr = div_u64(stripe_nr, map->stripe_len); 5892 5893 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5894 stripe_nr = stripe_nr * map->num_stripes + i; 5895 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 5896 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5897 stripe_nr = stripe_nr * map->num_stripes + i; 5898 } /* else if RAID[56], multiply by nr_data_stripes(). 5899 * Alternatively, just use rmap_len below instead of 5900 * map->stripe_len */ 5901 5902 bytenr = chunk_start + stripe_nr * rmap_len; 5903 WARN_ON(nr >= map->num_stripes); 5904 for (j = 0; j < nr; j++) { 5905 if (buf[j] == bytenr) 5906 break; 5907 } 5908 if (j == nr) { 5909 WARN_ON(nr >= map->num_stripes); 5910 buf[nr++] = bytenr; 5911 } 5912 } 5913 5914 *logical = buf; 5915 *naddrs = nr; 5916 *stripe_len = rmap_len; 5917 5918 free_extent_map(em); 5919 return 0; 5920 } 5921 5922 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 5923 { 5924 bio->bi_private = bbio->private; 5925 bio->bi_end_io = bbio->end_io; 5926 bio_endio(bio); 5927 5928 btrfs_put_bbio(bbio); 5929 } 5930 5931 static void btrfs_end_bio(struct bio *bio) 5932 { 5933 struct btrfs_bio *bbio = bio->bi_private; 5934 int is_orig_bio = 0; 5935 5936 if (bio->bi_error) { 5937 atomic_inc(&bbio->error); 5938 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) { 5939 unsigned int stripe_index = 5940 btrfs_io_bio(bio)->stripe_index; 5941 struct btrfs_device *dev; 5942 5943 BUG_ON(stripe_index >= bbio->num_stripes); 5944 dev = bbio->stripes[stripe_index].dev; 5945 if (dev->bdev) { 5946 if (bio->bi_rw & WRITE) 5947 btrfs_dev_stat_inc(dev, 5948 BTRFS_DEV_STAT_WRITE_ERRS); 5949 else 5950 btrfs_dev_stat_inc(dev, 5951 BTRFS_DEV_STAT_READ_ERRS); 5952 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) 5953 btrfs_dev_stat_inc(dev, 5954 BTRFS_DEV_STAT_FLUSH_ERRS); 5955 btrfs_dev_stat_print_on_error(dev); 5956 } 5957 } 5958 } 5959 5960 if (bio == bbio->orig_bio) 5961 is_orig_bio = 1; 5962 5963 btrfs_bio_counter_dec(bbio->fs_info); 5964 5965 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5966 if (!is_orig_bio) { 5967 bio_put(bio); 5968 bio = bbio->orig_bio; 5969 } 5970 5971 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5972 /* only send an error to the higher layers if it is 5973 * beyond the tolerance of the btrfs bio 5974 */ 5975 if (atomic_read(&bbio->error) > bbio->max_errors) { 5976 bio->bi_error = -EIO; 5977 } else { 5978 /* 5979 * this bio is actually up to date, we didn't 5980 * go over the max number of errors 5981 */ 5982 bio->bi_error = 0; 5983 } 5984 5985 btrfs_end_bbio(bbio, bio); 5986 } else if (!is_orig_bio) { 5987 bio_put(bio); 5988 } 5989 } 5990 5991 /* 5992 * see run_scheduled_bios for a description of why bios are collected for 5993 * async submit. 5994 * 5995 * This will add one bio to the pending list for a device and make sure 5996 * the work struct is scheduled. 5997 */ 5998 static noinline void btrfs_schedule_bio(struct btrfs_root *root, 5999 struct btrfs_device *device, 6000 int rw, struct bio *bio) 6001 { 6002 int should_queue = 1; 6003 struct btrfs_pending_bios *pending_bios; 6004 6005 if (device->missing || !device->bdev) { 6006 bio_io_error(bio); 6007 return; 6008 } 6009 6010 /* don't bother with additional async steps for reads, right now */ 6011 if (!(rw & REQ_WRITE)) { 6012 bio_get(bio); 6013 btrfsic_submit_bio(rw, bio); 6014 bio_put(bio); 6015 return; 6016 } 6017 6018 /* 6019 * nr_async_bios allows us to reliably return congestion to the 6020 * higher layers. Otherwise, the async bio makes it appear we have 6021 * made progress against dirty pages when we've really just put it 6022 * on a queue for later 6023 */ 6024 atomic_inc(&root->fs_info->nr_async_bios); 6025 WARN_ON(bio->bi_next); 6026 bio->bi_next = NULL; 6027 bio->bi_rw |= rw; 6028 6029 spin_lock(&device->io_lock); 6030 if (bio->bi_rw & REQ_SYNC) 6031 pending_bios = &device->pending_sync_bios; 6032 else 6033 pending_bios = &device->pending_bios; 6034 6035 if (pending_bios->tail) 6036 pending_bios->tail->bi_next = bio; 6037 6038 pending_bios->tail = bio; 6039 if (!pending_bios->head) 6040 pending_bios->head = bio; 6041 if (device->running_pending) 6042 should_queue = 0; 6043 6044 spin_unlock(&device->io_lock); 6045 6046 if (should_queue) 6047 btrfs_queue_work(root->fs_info->submit_workers, 6048 &device->work); 6049 } 6050 6051 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 6052 struct bio *bio, u64 physical, int dev_nr, 6053 int rw, int async) 6054 { 6055 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 6056 6057 bio->bi_private = bbio; 6058 btrfs_io_bio(bio)->stripe_index = dev_nr; 6059 bio->bi_end_io = btrfs_end_bio; 6060 bio->bi_iter.bi_sector = physical >> 9; 6061 #ifdef DEBUG 6062 { 6063 struct rcu_string *name; 6064 6065 rcu_read_lock(); 6066 name = rcu_dereference(dev->name); 6067 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu " 6068 "(%s id %llu), size=%u\n", rw, 6069 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev, 6070 name->str, dev->devid, bio->bi_iter.bi_size); 6071 rcu_read_unlock(); 6072 } 6073 #endif 6074 bio->bi_bdev = dev->bdev; 6075 6076 btrfs_bio_counter_inc_noblocked(root->fs_info); 6077 6078 if (async) 6079 btrfs_schedule_bio(root, dev, rw, bio); 6080 else 6081 btrfsic_submit_bio(rw, bio); 6082 } 6083 6084 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6085 { 6086 atomic_inc(&bbio->error); 6087 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6088 /* Should be the original bio. */ 6089 WARN_ON(bio != bbio->orig_bio); 6090 6091 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6092 bio->bi_iter.bi_sector = logical >> 9; 6093 bio->bi_error = -EIO; 6094 btrfs_end_bbio(bbio, bio); 6095 } 6096 } 6097 6098 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 6099 int mirror_num, int async_submit) 6100 { 6101 struct btrfs_device *dev; 6102 struct bio *first_bio = bio; 6103 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6104 u64 length = 0; 6105 u64 map_length; 6106 int ret; 6107 int dev_nr; 6108 int total_devs; 6109 struct btrfs_bio *bbio = NULL; 6110 6111 length = bio->bi_iter.bi_size; 6112 map_length = length; 6113 6114 btrfs_bio_counter_inc_blocked(root->fs_info); 6115 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio, 6116 mirror_num, 1); 6117 if (ret) { 6118 btrfs_bio_counter_dec(root->fs_info); 6119 return ret; 6120 } 6121 6122 total_devs = bbio->num_stripes; 6123 bbio->orig_bio = first_bio; 6124 bbio->private = first_bio->bi_private; 6125 bbio->end_io = first_bio->bi_end_io; 6126 bbio->fs_info = root->fs_info; 6127 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6128 6129 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6130 ((rw & WRITE) || (mirror_num > 1))) { 6131 /* In this case, map_length has been set to the length of 6132 a single stripe; not the whole write */ 6133 if (rw & WRITE) { 6134 ret = raid56_parity_write(root, bio, bbio, map_length); 6135 } else { 6136 ret = raid56_parity_recover(root, bio, bbio, map_length, 6137 mirror_num, 1); 6138 } 6139 6140 btrfs_bio_counter_dec(root->fs_info); 6141 return ret; 6142 } 6143 6144 if (map_length < length) { 6145 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu", 6146 logical, length, map_length); 6147 BUG(); 6148 } 6149 6150 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6151 dev = bbio->stripes[dev_nr].dev; 6152 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) { 6153 bbio_error(bbio, first_bio, logical); 6154 continue; 6155 } 6156 6157 if (dev_nr < total_devs - 1) { 6158 bio = btrfs_bio_clone(first_bio, GFP_NOFS); 6159 BUG_ON(!bio); /* -ENOMEM */ 6160 } else 6161 bio = first_bio; 6162 6163 submit_stripe_bio(root, bbio, bio, 6164 bbio->stripes[dev_nr].physical, dev_nr, rw, 6165 async_submit); 6166 } 6167 btrfs_bio_counter_dec(root->fs_info); 6168 return 0; 6169 } 6170 6171 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 6172 u8 *uuid, u8 *fsid) 6173 { 6174 struct btrfs_device *device; 6175 struct btrfs_fs_devices *cur_devices; 6176 6177 cur_devices = fs_info->fs_devices; 6178 while (cur_devices) { 6179 if (!fsid || 6180 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 6181 device = __find_device(&cur_devices->devices, 6182 devid, uuid); 6183 if (device) 6184 return device; 6185 } 6186 cur_devices = cur_devices->seed; 6187 } 6188 return NULL; 6189 } 6190 6191 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 6192 struct btrfs_fs_devices *fs_devices, 6193 u64 devid, u8 *dev_uuid) 6194 { 6195 struct btrfs_device *device; 6196 6197 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6198 if (IS_ERR(device)) 6199 return NULL; 6200 6201 list_add(&device->dev_list, &fs_devices->devices); 6202 device->fs_devices = fs_devices; 6203 fs_devices->num_devices++; 6204 6205 device->missing = 1; 6206 fs_devices->missing_devices++; 6207 6208 return device; 6209 } 6210 6211 /** 6212 * btrfs_alloc_device - allocate struct btrfs_device 6213 * @fs_info: used only for generating a new devid, can be NULL if 6214 * devid is provided (i.e. @devid != NULL). 6215 * @devid: a pointer to devid for this device. If NULL a new devid 6216 * is generated. 6217 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6218 * is generated. 6219 * 6220 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6221 * on error. Returned struct is not linked onto any lists and can be 6222 * destroyed with kfree() right away. 6223 */ 6224 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6225 const u64 *devid, 6226 const u8 *uuid) 6227 { 6228 struct btrfs_device *dev; 6229 u64 tmp; 6230 6231 if (WARN_ON(!devid && !fs_info)) 6232 return ERR_PTR(-EINVAL); 6233 6234 dev = __alloc_device(); 6235 if (IS_ERR(dev)) 6236 return dev; 6237 6238 if (devid) 6239 tmp = *devid; 6240 else { 6241 int ret; 6242 6243 ret = find_next_devid(fs_info, &tmp); 6244 if (ret) { 6245 kfree(dev); 6246 return ERR_PTR(ret); 6247 } 6248 } 6249 dev->devid = tmp; 6250 6251 if (uuid) 6252 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6253 else 6254 generate_random_uuid(dev->uuid); 6255 6256 btrfs_init_work(&dev->work, btrfs_submit_helper, 6257 pending_bios_fn, NULL, NULL); 6258 6259 return dev; 6260 } 6261 6262 /* Return -EIO if any error, otherwise return 0. */ 6263 static int btrfs_check_chunk_valid(struct btrfs_root *root, 6264 struct extent_buffer *leaf, 6265 struct btrfs_chunk *chunk, u64 logical) 6266 { 6267 u64 length; 6268 u64 stripe_len; 6269 u16 num_stripes; 6270 u16 sub_stripes; 6271 u64 type; 6272 6273 length = btrfs_chunk_length(leaf, chunk); 6274 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6275 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6276 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6277 type = btrfs_chunk_type(leaf, chunk); 6278 6279 if (!num_stripes) { 6280 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u", 6281 num_stripes); 6282 return -EIO; 6283 } 6284 if (!IS_ALIGNED(logical, root->sectorsize)) { 6285 btrfs_err(root->fs_info, 6286 "invalid chunk logical %llu", logical); 6287 return -EIO; 6288 } 6289 if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) { 6290 btrfs_err(root->fs_info, "invalid chunk sectorsize %u", 6291 btrfs_chunk_sector_size(leaf, chunk)); 6292 return -EIO; 6293 } 6294 if (!length || !IS_ALIGNED(length, root->sectorsize)) { 6295 btrfs_err(root->fs_info, 6296 "invalid chunk length %llu", length); 6297 return -EIO; 6298 } 6299 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) { 6300 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu", 6301 stripe_len); 6302 return -EIO; 6303 } 6304 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6305 type) { 6306 btrfs_err(root->fs_info, "unrecognized chunk type: %llu", 6307 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 6308 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6309 btrfs_chunk_type(leaf, chunk)); 6310 return -EIO; 6311 } 6312 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) || 6313 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) || 6314 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) || 6315 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) || 6316 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) || 6317 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 6318 num_stripes != 1)) { 6319 btrfs_err(root->fs_info, 6320 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 6321 num_stripes, sub_stripes, 6322 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 6323 return -EIO; 6324 } 6325 6326 return 0; 6327 } 6328 6329 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 6330 struct extent_buffer *leaf, 6331 struct btrfs_chunk *chunk) 6332 { 6333 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 6334 struct map_lookup *map; 6335 struct extent_map *em; 6336 u64 logical; 6337 u64 length; 6338 u64 stripe_len; 6339 u64 devid; 6340 u8 uuid[BTRFS_UUID_SIZE]; 6341 int num_stripes; 6342 int ret; 6343 int i; 6344 6345 logical = key->offset; 6346 length = btrfs_chunk_length(leaf, chunk); 6347 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6348 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6349 6350 ret = btrfs_check_chunk_valid(root, leaf, chunk, logical); 6351 if (ret) 6352 return ret; 6353 6354 read_lock(&map_tree->map_tree.lock); 6355 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 6356 read_unlock(&map_tree->map_tree.lock); 6357 6358 /* already mapped? */ 6359 if (em && em->start <= logical && em->start + em->len > logical) { 6360 free_extent_map(em); 6361 return 0; 6362 } else if (em) { 6363 free_extent_map(em); 6364 } 6365 6366 em = alloc_extent_map(); 6367 if (!em) 6368 return -ENOMEM; 6369 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6370 if (!map) { 6371 free_extent_map(em); 6372 return -ENOMEM; 6373 } 6374 6375 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6376 em->map_lookup = map; 6377 em->start = logical; 6378 em->len = length; 6379 em->orig_start = 0; 6380 em->block_start = 0; 6381 em->block_len = em->len; 6382 6383 map->num_stripes = num_stripes; 6384 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6385 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6386 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 6387 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6388 map->type = btrfs_chunk_type(leaf, chunk); 6389 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6390 for (i = 0; i < num_stripes; i++) { 6391 map->stripes[i].physical = 6392 btrfs_stripe_offset_nr(leaf, chunk, i); 6393 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6394 read_extent_buffer(leaf, uuid, (unsigned long) 6395 btrfs_stripe_dev_uuid_nr(chunk, i), 6396 BTRFS_UUID_SIZE); 6397 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid, 6398 uuid, NULL); 6399 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 6400 free_extent_map(em); 6401 return -EIO; 6402 } 6403 if (!map->stripes[i].dev) { 6404 map->stripes[i].dev = 6405 add_missing_dev(root, root->fs_info->fs_devices, 6406 devid, uuid); 6407 if (!map->stripes[i].dev) { 6408 free_extent_map(em); 6409 return -EIO; 6410 } 6411 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing", 6412 devid, uuid); 6413 } 6414 map->stripes[i].dev->in_fs_metadata = 1; 6415 } 6416 6417 write_lock(&map_tree->map_tree.lock); 6418 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6419 write_unlock(&map_tree->map_tree.lock); 6420 BUG_ON(ret); /* Tree corruption */ 6421 free_extent_map(em); 6422 6423 return 0; 6424 } 6425 6426 static void fill_device_from_item(struct extent_buffer *leaf, 6427 struct btrfs_dev_item *dev_item, 6428 struct btrfs_device *device) 6429 { 6430 unsigned long ptr; 6431 6432 device->devid = btrfs_device_id(leaf, dev_item); 6433 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6434 device->total_bytes = device->disk_total_bytes; 6435 device->commit_total_bytes = device->disk_total_bytes; 6436 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6437 device->commit_bytes_used = device->bytes_used; 6438 device->type = btrfs_device_type(leaf, dev_item); 6439 device->io_align = btrfs_device_io_align(leaf, dev_item); 6440 device->io_width = btrfs_device_io_width(leaf, dev_item); 6441 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6442 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6443 device->is_tgtdev_for_dev_replace = 0; 6444 6445 ptr = btrfs_device_uuid(dev_item); 6446 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6447 } 6448 6449 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root, 6450 u8 *fsid) 6451 { 6452 struct btrfs_fs_devices *fs_devices; 6453 int ret; 6454 6455 BUG_ON(!mutex_is_locked(&uuid_mutex)); 6456 6457 fs_devices = root->fs_info->fs_devices->seed; 6458 while (fs_devices) { 6459 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) 6460 return fs_devices; 6461 6462 fs_devices = fs_devices->seed; 6463 } 6464 6465 fs_devices = find_fsid(fsid); 6466 if (!fs_devices) { 6467 if (!btrfs_test_opt(root, DEGRADED)) 6468 return ERR_PTR(-ENOENT); 6469 6470 fs_devices = alloc_fs_devices(fsid); 6471 if (IS_ERR(fs_devices)) 6472 return fs_devices; 6473 6474 fs_devices->seeding = 1; 6475 fs_devices->opened = 1; 6476 return fs_devices; 6477 } 6478 6479 fs_devices = clone_fs_devices(fs_devices); 6480 if (IS_ERR(fs_devices)) 6481 return fs_devices; 6482 6483 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 6484 root->fs_info->bdev_holder); 6485 if (ret) { 6486 free_fs_devices(fs_devices); 6487 fs_devices = ERR_PTR(ret); 6488 goto out; 6489 } 6490 6491 if (!fs_devices->seeding) { 6492 __btrfs_close_devices(fs_devices); 6493 free_fs_devices(fs_devices); 6494 fs_devices = ERR_PTR(-EINVAL); 6495 goto out; 6496 } 6497 6498 fs_devices->seed = root->fs_info->fs_devices->seed; 6499 root->fs_info->fs_devices->seed = fs_devices; 6500 out: 6501 return fs_devices; 6502 } 6503 6504 static int read_one_dev(struct btrfs_root *root, 6505 struct extent_buffer *leaf, 6506 struct btrfs_dev_item *dev_item) 6507 { 6508 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6509 struct btrfs_device *device; 6510 u64 devid; 6511 int ret; 6512 u8 fs_uuid[BTRFS_UUID_SIZE]; 6513 u8 dev_uuid[BTRFS_UUID_SIZE]; 6514 6515 devid = btrfs_device_id(leaf, dev_item); 6516 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6517 BTRFS_UUID_SIZE); 6518 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6519 BTRFS_UUID_SIZE); 6520 6521 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 6522 fs_devices = open_seed_devices(root, fs_uuid); 6523 if (IS_ERR(fs_devices)) 6524 return PTR_ERR(fs_devices); 6525 } 6526 6527 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid); 6528 if (!device) { 6529 if (!btrfs_test_opt(root, DEGRADED)) 6530 return -EIO; 6531 6532 device = add_missing_dev(root, fs_devices, devid, dev_uuid); 6533 if (!device) 6534 return -ENOMEM; 6535 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing", 6536 devid, dev_uuid); 6537 } else { 6538 if (!device->bdev && !btrfs_test_opt(root, DEGRADED)) 6539 return -EIO; 6540 6541 if(!device->bdev && !device->missing) { 6542 /* 6543 * this happens when a device that was properly setup 6544 * in the device info lists suddenly goes bad. 6545 * device->bdev is NULL, and so we have to set 6546 * device->missing to one here 6547 */ 6548 device->fs_devices->missing_devices++; 6549 device->missing = 1; 6550 } 6551 6552 /* Move the device to its own fs_devices */ 6553 if (device->fs_devices != fs_devices) { 6554 ASSERT(device->missing); 6555 6556 list_move(&device->dev_list, &fs_devices->devices); 6557 device->fs_devices->num_devices--; 6558 fs_devices->num_devices++; 6559 6560 device->fs_devices->missing_devices--; 6561 fs_devices->missing_devices++; 6562 6563 device->fs_devices = fs_devices; 6564 } 6565 } 6566 6567 if (device->fs_devices != root->fs_info->fs_devices) { 6568 BUG_ON(device->writeable); 6569 if (device->generation != 6570 btrfs_device_generation(leaf, dev_item)) 6571 return -EINVAL; 6572 } 6573 6574 fill_device_from_item(leaf, dev_item, device); 6575 device->in_fs_metadata = 1; 6576 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 6577 device->fs_devices->total_rw_bytes += device->total_bytes; 6578 spin_lock(&root->fs_info->free_chunk_lock); 6579 root->fs_info->free_chunk_space += device->total_bytes - 6580 device->bytes_used; 6581 spin_unlock(&root->fs_info->free_chunk_lock); 6582 } 6583 ret = 0; 6584 return ret; 6585 } 6586 6587 int btrfs_read_sys_array(struct btrfs_root *root) 6588 { 6589 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 6590 struct extent_buffer *sb; 6591 struct btrfs_disk_key *disk_key; 6592 struct btrfs_chunk *chunk; 6593 u8 *array_ptr; 6594 unsigned long sb_array_offset; 6595 int ret = 0; 6596 u32 num_stripes; 6597 u32 array_size; 6598 u32 len = 0; 6599 u32 cur_offset; 6600 u64 type; 6601 struct btrfs_key key; 6602 6603 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize); 6604 /* 6605 * This will create extent buffer of nodesize, superblock size is 6606 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6607 * overallocate but we can keep it as-is, only the first page is used. 6608 */ 6609 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET); 6610 if (!sb) 6611 return -ENOMEM; 6612 set_extent_buffer_uptodate(sb); 6613 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6614 /* 6615 * The sb extent buffer is artificial and just used to read the system array. 6616 * set_extent_buffer_uptodate() call does not properly mark all it's 6617 * pages up-to-date when the page is larger: extent does not cover the 6618 * whole page and consequently check_page_uptodate does not find all 6619 * the page's extents up-to-date (the hole beyond sb), 6620 * write_extent_buffer then triggers a WARN_ON. 6621 * 6622 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6623 * but sb spans only this function. Add an explicit SetPageUptodate call 6624 * to silence the warning eg. on PowerPC 64. 6625 */ 6626 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 6627 SetPageUptodate(sb->pages[0]); 6628 6629 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6630 array_size = btrfs_super_sys_array_size(super_copy); 6631 6632 array_ptr = super_copy->sys_chunk_array; 6633 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6634 cur_offset = 0; 6635 6636 while (cur_offset < array_size) { 6637 disk_key = (struct btrfs_disk_key *)array_ptr; 6638 len = sizeof(*disk_key); 6639 if (cur_offset + len > array_size) 6640 goto out_short_read; 6641 6642 btrfs_disk_key_to_cpu(&key, disk_key); 6643 6644 array_ptr += len; 6645 sb_array_offset += len; 6646 cur_offset += len; 6647 6648 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 6649 chunk = (struct btrfs_chunk *)sb_array_offset; 6650 /* 6651 * At least one btrfs_chunk with one stripe must be 6652 * present, exact stripe count check comes afterwards 6653 */ 6654 len = btrfs_chunk_item_size(1); 6655 if (cur_offset + len > array_size) 6656 goto out_short_read; 6657 6658 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6659 if (!num_stripes) { 6660 printk(KERN_ERR 6661 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n", 6662 num_stripes, cur_offset); 6663 ret = -EIO; 6664 break; 6665 } 6666 6667 type = btrfs_chunk_type(sb, chunk); 6668 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 6669 btrfs_err(root->fs_info, 6670 "invalid chunk type %llu in sys_array at offset %u", 6671 type, cur_offset); 6672 ret = -EIO; 6673 break; 6674 } 6675 6676 len = btrfs_chunk_item_size(num_stripes); 6677 if (cur_offset + len > array_size) 6678 goto out_short_read; 6679 6680 ret = read_one_chunk(root, &key, sb, chunk); 6681 if (ret) 6682 break; 6683 } else { 6684 printk(KERN_ERR 6685 "BTRFS: unexpected item type %u in sys_array at offset %u\n", 6686 (u32)key.type, cur_offset); 6687 ret = -EIO; 6688 break; 6689 } 6690 array_ptr += len; 6691 sb_array_offset += len; 6692 cur_offset += len; 6693 } 6694 clear_extent_buffer_uptodate(sb); 6695 free_extent_buffer_stale(sb); 6696 return ret; 6697 6698 out_short_read: 6699 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n", 6700 len, cur_offset); 6701 clear_extent_buffer_uptodate(sb); 6702 free_extent_buffer_stale(sb); 6703 return -EIO; 6704 } 6705 6706 int btrfs_read_chunk_tree(struct btrfs_root *root) 6707 { 6708 struct btrfs_path *path; 6709 struct extent_buffer *leaf; 6710 struct btrfs_key key; 6711 struct btrfs_key found_key; 6712 int ret; 6713 int slot; 6714 u64 total_dev = 0; 6715 6716 root = root->fs_info->chunk_root; 6717 6718 path = btrfs_alloc_path(); 6719 if (!path) 6720 return -ENOMEM; 6721 6722 mutex_lock(&uuid_mutex); 6723 lock_chunks(root); 6724 6725 /* 6726 * Read all device items, and then all the chunk items. All 6727 * device items are found before any chunk item (their object id 6728 * is smaller than the lowest possible object id for a chunk 6729 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6730 */ 6731 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6732 key.offset = 0; 6733 key.type = 0; 6734 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6735 if (ret < 0) 6736 goto error; 6737 while (1) { 6738 leaf = path->nodes[0]; 6739 slot = path->slots[0]; 6740 if (slot >= btrfs_header_nritems(leaf)) { 6741 ret = btrfs_next_leaf(root, path); 6742 if (ret == 0) 6743 continue; 6744 if (ret < 0) 6745 goto error; 6746 break; 6747 } 6748 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6749 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6750 struct btrfs_dev_item *dev_item; 6751 dev_item = btrfs_item_ptr(leaf, slot, 6752 struct btrfs_dev_item); 6753 ret = read_one_dev(root, leaf, dev_item); 6754 if (ret) 6755 goto error; 6756 total_dev++; 6757 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6758 struct btrfs_chunk *chunk; 6759 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6760 ret = read_one_chunk(root, &found_key, leaf, chunk); 6761 if (ret) 6762 goto error; 6763 } 6764 path->slots[0]++; 6765 } 6766 6767 /* 6768 * After loading chunk tree, we've got all device information, 6769 * do another round of validation checks. 6770 */ 6771 if (total_dev != root->fs_info->fs_devices->total_devices) { 6772 btrfs_err(root->fs_info, 6773 "super_num_devices %llu mismatch with num_devices %llu found here", 6774 btrfs_super_num_devices(root->fs_info->super_copy), 6775 total_dev); 6776 ret = -EINVAL; 6777 goto error; 6778 } 6779 if (btrfs_super_total_bytes(root->fs_info->super_copy) < 6780 root->fs_info->fs_devices->total_rw_bytes) { 6781 btrfs_err(root->fs_info, 6782 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 6783 btrfs_super_total_bytes(root->fs_info->super_copy), 6784 root->fs_info->fs_devices->total_rw_bytes); 6785 ret = -EINVAL; 6786 goto error; 6787 } 6788 ret = 0; 6789 error: 6790 unlock_chunks(root); 6791 mutex_unlock(&uuid_mutex); 6792 6793 btrfs_free_path(path); 6794 return ret; 6795 } 6796 6797 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6798 { 6799 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6800 struct btrfs_device *device; 6801 6802 while (fs_devices) { 6803 mutex_lock(&fs_devices->device_list_mutex); 6804 list_for_each_entry(device, &fs_devices->devices, dev_list) 6805 device->dev_root = fs_info->dev_root; 6806 mutex_unlock(&fs_devices->device_list_mutex); 6807 6808 fs_devices = fs_devices->seed; 6809 } 6810 } 6811 6812 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6813 { 6814 int i; 6815 6816 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6817 btrfs_dev_stat_reset(dev, i); 6818 } 6819 6820 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6821 { 6822 struct btrfs_key key; 6823 struct btrfs_key found_key; 6824 struct btrfs_root *dev_root = fs_info->dev_root; 6825 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6826 struct extent_buffer *eb; 6827 int slot; 6828 int ret = 0; 6829 struct btrfs_device *device; 6830 struct btrfs_path *path = NULL; 6831 int i; 6832 6833 path = btrfs_alloc_path(); 6834 if (!path) { 6835 ret = -ENOMEM; 6836 goto out; 6837 } 6838 6839 mutex_lock(&fs_devices->device_list_mutex); 6840 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6841 int item_size; 6842 struct btrfs_dev_stats_item *ptr; 6843 6844 key.objectid = BTRFS_DEV_STATS_OBJECTID; 6845 key.type = BTRFS_PERSISTENT_ITEM_KEY; 6846 key.offset = device->devid; 6847 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6848 if (ret) { 6849 __btrfs_reset_dev_stats(device); 6850 device->dev_stats_valid = 1; 6851 btrfs_release_path(path); 6852 continue; 6853 } 6854 slot = path->slots[0]; 6855 eb = path->nodes[0]; 6856 btrfs_item_key_to_cpu(eb, &found_key, slot); 6857 item_size = btrfs_item_size_nr(eb, slot); 6858 6859 ptr = btrfs_item_ptr(eb, slot, 6860 struct btrfs_dev_stats_item); 6861 6862 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6863 if (item_size >= (1 + i) * sizeof(__le64)) 6864 btrfs_dev_stat_set(device, i, 6865 btrfs_dev_stats_value(eb, ptr, i)); 6866 else 6867 btrfs_dev_stat_reset(device, i); 6868 } 6869 6870 device->dev_stats_valid = 1; 6871 btrfs_dev_stat_print_on_load(device); 6872 btrfs_release_path(path); 6873 } 6874 mutex_unlock(&fs_devices->device_list_mutex); 6875 6876 out: 6877 btrfs_free_path(path); 6878 return ret < 0 ? ret : 0; 6879 } 6880 6881 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 6882 struct btrfs_root *dev_root, 6883 struct btrfs_device *device) 6884 { 6885 struct btrfs_path *path; 6886 struct btrfs_key key; 6887 struct extent_buffer *eb; 6888 struct btrfs_dev_stats_item *ptr; 6889 int ret; 6890 int i; 6891 6892 key.objectid = BTRFS_DEV_STATS_OBJECTID; 6893 key.type = BTRFS_PERSISTENT_ITEM_KEY; 6894 key.offset = device->devid; 6895 6896 path = btrfs_alloc_path(); 6897 BUG_ON(!path); 6898 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 6899 if (ret < 0) { 6900 btrfs_warn_in_rcu(dev_root->fs_info, 6901 "error %d while searching for dev_stats item for device %s", 6902 ret, rcu_str_deref(device->name)); 6903 goto out; 6904 } 6905 6906 if (ret == 0 && 6907 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 6908 /* need to delete old one and insert a new one */ 6909 ret = btrfs_del_item(trans, dev_root, path); 6910 if (ret != 0) { 6911 btrfs_warn_in_rcu(dev_root->fs_info, 6912 "delete too small dev_stats item for device %s failed %d", 6913 rcu_str_deref(device->name), ret); 6914 goto out; 6915 } 6916 ret = 1; 6917 } 6918 6919 if (ret == 1) { 6920 /* need to insert a new item */ 6921 btrfs_release_path(path); 6922 ret = btrfs_insert_empty_item(trans, dev_root, path, 6923 &key, sizeof(*ptr)); 6924 if (ret < 0) { 6925 btrfs_warn_in_rcu(dev_root->fs_info, 6926 "insert dev_stats item for device %s failed %d", 6927 rcu_str_deref(device->name), ret); 6928 goto out; 6929 } 6930 } 6931 6932 eb = path->nodes[0]; 6933 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 6934 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6935 btrfs_set_dev_stats_value(eb, ptr, i, 6936 btrfs_dev_stat_read(device, i)); 6937 btrfs_mark_buffer_dirty(eb); 6938 6939 out: 6940 btrfs_free_path(path); 6941 return ret; 6942 } 6943 6944 /* 6945 * called from commit_transaction. Writes all changed device stats to disk. 6946 */ 6947 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 6948 struct btrfs_fs_info *fs_info) 6949 { 6950 struct btrfs_root *dev_root = fs_info->dev_root; 6951 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6952 struct btrfs_device *device; 6953 int stats_cnt; 6954 int ret = 0; 6955 6956 mutex_lock(&fs_devices->device_list_mutex); 6957 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6958 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device)) 6959 continue; 6960 6961 stats_cnt = atomic_read(&device->dev_stats_ccnt); 6962 ret = update_dev_stat_item(trans, dev_root, device); 6963 if (!ret) 6964 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 6965 } 6966 mutex_unlock(&fs_devices->device_list_mutex); 6967 6968 return ret; 6969 } 6970 6971 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 6972 { 6973 btrfs_dev_stat_inc(dev, index); 6974 btrfs_dev_stat_print_on_error(dev); 6975 } 6976 6977 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 6978 { 6979 if (!dev->dev_stats_valid) 6980 return; 6981 btrfs_err_rl_in_rcu(dev->dev_root->fs_info, 6982 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 6983 rcu_str_deref(dev->name), 6984 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6985 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6986 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6987 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6988 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6989 } 6990 6991 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 6992 { 6993 int i; 6994 6995 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6996 if (btrfs_dev_stat_read(dev, i) != 0) 6997 break; 6998 if (i == BTRFS_DEV_STAT_VALUES_MAX) 6999 return; /* all values == 0, suppress message */ 7000 7001 btrfs_info_in_rcu(dev->dev_root->fs_info, 7002 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7003 rcu_str_deref(dev->name), 7004 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7005 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7006 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7007 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7008 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7009 } 7010 7011 int btrfs_get_dev_stats(struct btrfs_root *root, 7012 struct btrfs_ioctl_get_dev_stats *stats) 7013 { 7014 struct btrfs_device *dev; 7015 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 7016 int i; 7017 7018 mutex_lock(&fs_devices->device_list_mutex); 7019 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL); 7020 mutex_unlock(&fs_devices->device_list_mutex); 7021 7022 if (!dev) { 7023 btrfs_warn(root->fs_info, "get dev_stats failed, device not found"); 7024 return -ENODEV; 7025 } else if (!dev->dev_stats_valid) { 7026 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid"); 7027 return -ENODEV; 7028 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7029 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7030 if (stats->nr_items > i) 7031 stats->values[i] = 7032 btrfs_dev_stat_read_and_reset(dev, i); 7033 else 7034 btrfs_dev_stat_reset(dev, i); 7035 } 7036 } else { 7037 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7038 if (stats->nr_items > i) 7039 stats->values[i] = btrfs_dev_stat_read(dev, i); 7040 } 7041 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7042 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7043 return 0; 7044 } 7045 7046 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path) 7047 { 7048 struct buffer_head *bh; 7049 struct btrfs_super_block *disk_super; 7050 int copy_num; 7051 7052 if (!bdev) 7053 return; 7054 7055 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 7056 copy_num++) { 7057 7058 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 7059 continue; 7060 7061 disk_super = (struct btrfs_super_block *)bh->b_data; 7062 7063 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 7064 set_buffer_dirty(bh); 7065 sync_dirty_buffer(bh); 7066 brelse(bh); 7067 } 7068 7069 /* Notify udev that device has changed */ 7070 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 7071 7072 /* Update ctime/mtime for device path for libblkid */ 7073 update_dev_time(device_path); 7074 } 7075 7076 /* 7077 * Update the size of all devices, which is used for writing out the 7078 * super blocks. 7079 */ 7080 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) 7081 { 7082 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7083 struct btrfs_device *curr, *next; 7084 7085 if (list_empty(&fs_devices->resized_devices)) 7086 return; 7087 7088 mutex_lock(&fs_devices->device_list_mutex); 7089 lock_chunks(fs_info->dev_root); 7090 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, 7091 resized_list) { 7092 list_del_init(&curr->resized_list); 7093 curr->commit_total_bytes = curr->disk_total_bytes; 7094 } 7095 unlock_chunks(fs_info->dev_root); 7096 mutex_unlock(&fs_devices->device_list_mutex); 7097 } 7098 7099 /* Must be invoked during the transaction commit */ 7100 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root, 7101 struct btrfs_transaction *transaction) 7102 { 7103 struct extent_map *em; 7104 struct map_lookup *map; 7105 struct btrfs_device *dev; 7106 int i; 7107 7108 if (list_empty(&transaction->pending_chunks)) 7109 return; 7110 7111 /* In order to kick the device replace finish process */ 7112 lock_chunks(root); 7113 list_for_each_entry(em, &transaction->pending_chunks, list) { 7114 map = em->map_lookup; 7115 7116 for (i = 0; i < map->num_stripes; i++) { 7117 dev = map->stripes[i].dev; 7118 dev->commit_bytes_used = dev->bytes_used; 7119 } 7120 } 7121 unlock_chunks(root); 7122 } 7123 7124 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 7125 { 7126 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7127 while (fs_devices) { 7128 fs_devices->fs_info = fs_info; 7129 fs_devices = fs_devices->seed; 7130 } 7131 } 7132 7133 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 7134 { 7135 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7136 while (fs_devices) { 7137 fs_devices->fs_info = NULL; 7138 fs_devices = fs_devices->seed; 7139 } 7140 } 7141 7142 static void btrfs_close_one_device(struct btrfs_device *device) 7143 { 7144 struct btrfs_fs_devices *fs_devices = device->fs_devices; 7145 struct btrfs_device *new_device; 7146 struct rcu_string *name; 7147 7148 if (device->bdev) 7149 fs_devices->open_devices--; 7150 7151 if (device->writeable && 7152 device->devid != BTRFS_DEV_REPLACE_DEVID) { 7153 list_del_init(&device->dev_alloc_list); 7154 fs_devices->rw_devices--; 7155 } 7156 7157 if (device->missing) 7158 fs_devices->missing_devices--; 7159 7160 new_device = btrfs_alloc_device(NULL, &device->devid, 7161 device->uuid); 7162 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 7163 7164 /* Safe because we are under uuid_mutex */ 7165 if (device->name) { 7166 name = rcu_string_strdup(device->name->str, GFP_NOFS); 7167 BUG_ON(!name); /* -ENOMEM */ 7168 rcu_assign_pointer(new_device->name, name); 7169 } 7170 7171 list_replace_rcu(&device->dev_list, &new_device->dev_list); 7172 new_device->fs_devices = device->fs_devices; 7173 7174 call_rcu(&device->rcu, free_device); 7175 } 7176