1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "extent_map.h" 18 #include "disk-io.h" 19 #include "transaction.h" 20 #include "print-tree.h" 21 #include "volumes.h" 22 #include "raid56.h" 23 #include "rcu-string.h" 24 #include "dev-replace.h" 25 #include "sysfs.h" 26 #include "tree-checker.h" 27 #include "space-info.h" 28 #include "block-group.h" 29 #include "discard.h" 30 #include "zoned.h" 31 #include "fs.h" 32 #include "accessors.h" 33 #include "uuid-tree.h" 34 #include "ioctl.h" 35 #include "relocation.h" 36 #include "scrub.h" 37 #include "super.h" 38 39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 40 BTRFS_BLOCK_GROUP_RAID10 | \ 41 BTRFS_BLOCK_GROUP_RAID56_MASK) 42 43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 44 [BTRFS_RAID_RAID10] = { 45 .sub_stripes = 2, 46 .dev_stripes = 1, 47 .devs_max = 0, /* 0 == as many as possible */ 48 .devs_min = 2, 49 .tolerated_failures = 1, 50 .devs_increment = 2, 51 .ncopies = 2, 52 .nparity = 0, 53 .raid_name = "raid10", 54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 56 }, 57 [BTRFS_RAID_RAID1] = { 58 .sub_stripes = 1, 59 .dev_stripes = 1, 60 .devs_max = 2, 61 .devs_min = 2, 62 .tolerated_failures = 1, 63 .devs_increment = 2, 64 .ncopies = 2, 65 .nparity = 0, 66 .raid_name = "raid1", 67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 69 }, 70 [BTRFS_RAID_RAID1C3] = { 71 .sub_stripes = 1, 72 .dev_stripes = 1, 73 .devs_max = 3, 74 .devs_min = 3, 75 .tolerated_failures = 2, 76 .devs_increment = 3, 77 .ncopies = 3, 78 .nparity = 0, 79 .raid_name = "raid1c3", 80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 82 }, 83 [BTRFS_RAID_RAID1C4] = { 84 .sub_stripes = 1, 85 .dev_stripes = 1, 86 .devs_max = 4, 87 .devs_min = 4, 88 .tolerated_failures = 3, 89 .devs_increment = 4, 90 .ncopies = 4, 91 .nparity = 0, 92 .raid_name = "raid1c4", 93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 95 }, 96 [BTRFS_RAID_DUP] = { 97 .sub_stripes = 1, 98 .dev_stripes = 2, 99 .devs_max = 1, 100 .devs_min = 1, 101 .tolerated_failures = 0, 102 .devs_increment = 1, 103 .ncopies = 2, 104 .nparity = 0, 105 .raid_name = "dup", 106 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 107 .mindev_error = 0, 108 }, 109 [BTRFS_RAID_RAID0] = { 110 .sub_stripes = 1, 111 .dev_stripes = 1, 112 .devs_max = 0, 113 .devs_min = 1, 114 .tolerated_failures = 0, 115 .devs_increment = 1, 116 .ncopies = 1, 117 .nparity = 0, 118 .raid_name = "raid0", 119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 120 .mindev_error = 0, 121 }, 122 [BTRFS_RAID_SINGLE] = { 123 .sub_stripes = 1, 124 .dev_stripes = 1, 125 .devs_max = 1, 126 .devs_min = 1, 127 .tolerated_failures = 0, 128 .devs_increment = 1, 129 .ncopies = 1, 130 .nparity = 0, 131 .raid_name = "single", 132 .bg_flag = 0, 133 .mindev_error = 0, 134 }, 135 [BTRFS_RAID_RAID5] = { 136 .sub_stripes = 1, 137 .dev_stripes = 1, 138 .devs_max = 0, 139 .devs_min = 2, 140 .tolerated_failures = 1, 141 .devs_increment = 1, 142 .ncopies = 1, 143 .nparity = 1, 144 .raid_name = "raid5", 145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 147 }, 148 [BTRFS_RAID_RAID6] = { 149 .sub_stripes = 1, 150 .dev_stripes = 1, 151 .devs_max = 0, 152 .devs_min = 3, 153 .tolerated_failures = 2, 154 .devs_increment = 1, 155 .ncopies = 1, 156 .nparity = 2, 157 .raid_name = "raid6", 158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 160 }, 161 }; 162 163 /* 164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 165 * can be used as index to access btrfs_raid_array[]. 166 */ 167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 168 { 169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 170 171 if (!profile) 172 return BTRFS_RAID_SINGLE; 173 174 return BTRFS_BG_FLAG_TO_INDEX(profile); 175 } 176 177 const char *btrfs_bg_type_to_raid_name(u64 flags) 178 { 179 const int index = btrfs_bg_flags_to_raid_index(flags); 180 181 if (index >= BTRFS_NR_RAID_TYPES) 182 return NULL; 183 184 return btrfs_raid_array[index].raid_name; 185 } 186 187 int btrfs_nr_parity_stripes(u64 type) 188 { 189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 190 191 return btrfs_raid_array[index].nparity; 192 } 193 194 /* 195 * Fill @buf with textual description of @bg_flags, no more than @size_buf 196 * bytes including terminating null byte. 197 */ 198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 199 { 200 int i; 201 int ret; 202 char *bp = buf; 203 u64 flags = bg_flags; 204 u32 size_bp = size_buf; 205 206 if (!flags) { 207 strcpy(bp, "NONE"); 208 return; 209 } 210 211 #define DESCRIBE_FLAG(flag, desc) \ 212 do { \ 213 if (flags & (flag)) { \ 214 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 215 if (ret < 0 || ret >= size_bp) \ 216 goto out_overflow; \ 217 size_bp -= ret; \ 218 bp += ret; \ 219 flags &= ~(flag); \ 220 } \ 221 } while (0) 222 223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 226 227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 230 btrfs_raid_array[i].raid_name); 231 #undef DESCRIBE_FLAG 232 233 if (flags) { 234 ret = snprintf(bp, size_bp, "0x%llx|", flags); 235 size_bp -= ret; 236 } 237 238 if (size_bp < size_buf) 239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 240 241 /* 242 * The text is trimmed, it's up to the caller to provide sufficiently 243 * large buffer 244 */ 245 out_overflow:; 246 } 247 248 static int init_first_rw_device(struct btrfs_trans_handle *trans); 249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 251 252 /* 253 * Device locking 254 * ============== 255 * 256 * There are several mutexes that protect manipulation of devices and low-level 257 * structures like chunks but not block groups, extents or files 258 * 259 * uuid_mutex (global lock) 260 * ------------------------ 261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 263 * device) or requested by the device= mount option 264 * 265 * the mutex can be very coarse and can cover long-running operations 266 * 267 * protects: updates to fs_devices counters like missing devices, rw devices, 268 * seeding, structure cloning, opening/closing devices at mount/umount time 269 * 270 * global::fs_devs - add, remove, updates to the global list 271 * 272 * does not protect: manipulation of the fs_devices::devices list in general 273 * but in mount context it could be used to exclude list modifications by eg. 274 * scan ioctl 275 * 276 * btrfs_device::name - renames (write side), read is RCU 277 * 278 * fs_devices::device_list_mutex (per-fs, with RCU) 279 * ------------------------------------------------ 280 * protects updates to fs_devices::devices, ie. adding and deleting 281 * 282 * simple list traversal with read-only actions can be done with RCU protection 283 * 284 * may be used to exclude some operations from running concurrently without any 285 * modifications to the list (see write_all_supers) 286 * 287 * Is not required at mount and close times, because our device list is 288 * protected by the uuid_mutex at that point. 289 * 290 * balance_mutex 291 * ------------- 292 * protects balance structures (status, state) and context accessed from 293 * several places (internally, ioctl) 294 * 295 * chunk_mutex 296 * ----------- 297 * protects chunks, adding or removing during allocation, trim or when a new 298 * device is added/removed. Additionally it also protects post_commit_list of 299 * individual devices, since they can be added to the transaction's 300 * post_commit_list only with chunk_mutex held. 301 * 302 * cleaner_mutex 303 * ------------- 304 * a big lock that is held by the cleaner thread and prevents running subvolume 305 * cleaning together with relocation or delayed iputs 306 * 307 * 308 * Lock nesting 309 * ============ 310 * 311 * uuid_mutex 312 * device_list_mutex 313 * chunk_mutex 314 * balance_mutex 315 * 316 * 317 * Exclusive operations 318 * ==================== 319 * 320 * Maintains the exclusivity of the following operations that apply to the 321 * whole filesystem and cannot run in parallel. 322 * 323 * - Balance (*) 324 * - Device add 325 * - Device remove 326 * - Device replace (*) 327 * - Resize 328 * 329 * The device operations (as above) can be in one of the following states: 330 * 331 * - Running state 332 * - Paused state 333 * - Completed state 334 * 335 * Only device operations marked with (*) can go into the Paused state for the 336 * following reasons: 337 * 338 * - ioctl (only Balance can be Paused through ioctl) 339 * - filesystem remounted as read-only 340 * - filesystem unmounted and mounted as read-only 341 * - system power-cycle and filesystem mounted as read-only 342 * - filesystem or device errors leading to forced read-only 343 * 344 * The status of exclusive operation is set and cleared atomically. 345 * During the course of Paused state, fs_info::exclusive_operation remains set. 346 * A device operation in Paused or Running state can be canceled or resumed 347 * either by ioctl (Balance only) or when remounted as read-write. 348 * The exclusive status is cleared when the device operation is canceled or 349 * completed. 350 */ 351 352 DEFINE_MUTEX(uuid_mutex); 353 static LIST_HEAD(fs_uuids); 354 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 355 { 356 return &fs_uuids; 357 } 358 359 /* 360 * alloc_fs_devices - allocate struct btrfs_fs_devices 361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 363 * 364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 365 * The returned struct is not linked onto any lists and can be destroyed with 366 * kfree() right away. 367 */ 368 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 369 const u8 *metadata_fsid) 370 { 371 struct btrfs_fs_devices *fs_devs; 372 373 ASSERT(fsid || !metadata_fsid); 374 375 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 376 if (!fs_devs) 377 return ERR_PTR(-ENOMEM); 378 379 mutex_init(&fs_devs->device_list_mutex); 380 381 INIT_LIST_HEAD(&fs_devs->devices); 382 INIT_LIST_HEAD(&fs_devs->alloc_list); 383 INIT_LIST_HEAD(&fs_devs->fs_list); 384 INIT_LIST_HEAD(&fs_devs->seed_list); 385 386 if (fsid) { 387 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 388 memcpy(fs_devs->metadata_uuid, 389 metadata_fsid ?: fsid, BTRFS_FSID_SIZE); 390 } 391 392 return fs_devs; 393 } 394 395 static void btrfs_free_device(struct btrfs_device *device) 396 { 397 WARN_ON(!list_empty(&device->post_commit_list)); 398 rcu_string_free(device->name); 399 extent_io_tree_release(&device->alloc_state); 400 btrfs_destroy_dev_zone_info(device); 401 kfree(device); 402 } 403 404 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 405 { 406 struct btrfs_device *device; 407 408 WARN_ON(fs_devices->opened); 409 while (!list_empty(&fs_devices->devices)) { 410 device = list_entry(fs_devices->devices.next, 411 struct btrfs_device, dev_list); 412 list_del(&device->dev_list); 413 btrfs_free_device(device); 414 } 415 kfree(fs_devices); 416 } 417 418 void __exit btrfs_cleanup_fs_uuids(void) 419 { 420 struct btrfs_fs_devices *fs_devices; 421 422 while (!list_empty(&fs_uuids)) { 423 fs_devices = list_entry(fs_uuids.next, 424 struct btrfs_fs_devices, fs_list); 425 list_del(&fs_devices->fs_list); 426 free_fs_devices(fs_devices); 427 } 428 } 429 430 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 431 const u8 *fsid, const u8 *metadata_fsid) 432 { 433 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 434 return false; 435 436 if (!metadata_fsid) 437 return true; 438 439 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 440 return false; 441 442 return true; 443 } 444 445 static noinline struct btrfs_fs_devices *find_fsid( 446 const u8 *fsid, const u8 *metadata_fsid) 447 { 448 struct btrfs_fs_devices *fs_devices; 449 450 ASSERT(fsid); 451 452 /* Handle non-split brain cases */ 453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 454 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 455 return fs_devices; 456 } 457 return NULL; 458 } 459 460 /* 461 * First check if the metadata_uuid is different from the fsid in the given 462 * fs_devices. Then check if the given fsid is the same as the metadata_uuid 463 * in the fs_devices. If it is, return true; otherwise, return false. 464 */ 465 static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices, 466 const u8 *fsid) 467 { 468 return memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 469 BTRFS_FSID_SIZE) != 0 && 470 memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0; 471 } 472 473 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 474 struct btrfs_super_block *disk_super) 475 { 476 477 struct btrfs_fs_devices *fs_devices; 478 479 /* 480 * Handle scanned device having completed its fsid change but 481 * belonging to a fs_devices that was created by first scanning 482 * a device which didn't have its fsid/metadata_uuid changed 483 * at all and the CHANGING_FSID_V2 flag set. 484 */ 485 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 486 if (!fs_devices->fsid_change) 487 continue; 488 489 if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid, 490 fs_devices->fsid)) 491 return fs_devices; 492 } 493 494 /* 495 * Handle scanned device having completed its fsid change but 496 * belonging to a fs_devices that was created by a device that 497 * has an outdated pair of fsid/metadata_uuid and 498 * CHANGING_FSID_V2 flag set. 499 */ 500 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 501 if (!fs_devices->fsid_change) 502 continue; 503 504 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid)) 505 return fs_devices; 506 } 507 508 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 509 } 510 511 512 static int 513 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 514 int flush, struct block_device **bdev, 515 struct btrfs_super_block **disk_super) 516 { 517 int ret; 518 519 *bdev = blkdev_get_by_path(device_path, flags, holder, NULL); 520 521 if (IS_ERR(*bdev)) { 522 ret = PTR_ERR(*bdev); 523 goto error; 524 } 525 526 if (flush) 527 sync_blockdev(*bdev); 528 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 529 if (ret) { 530 blkdev_put(*bdev, holder); 531 goto error; 532 } 533 invalidate_bdev(*bdev); 534 *disk_super = btrfs_read_dev_super(*bdev); 535 if (IS_ERR(*disk_super)) { 536 ret = PTR_ERR(*disk_super); 537 blkdev_put(*bdev, holder); 538 goto error; 539 } 540 541 return 0; 542 543 error: 544 *bdev = NULL; 545 return ret; 546 } 547 548 /* 549 * Search and remove all stale devices (which are not mounted). When both 550 * inputs are NULL, it will search and release all stale devices. 551 * 552 * @devt: Optional. When provided will it release all unmounted devices 553 * matching this devt only. 554 * @skip_device: Optional. Will skip this device when searching for the stale 555 * devices. 556 * 557 * Return: 0 for success or if @devt is 0. 558 * -EBUSY if @devt is a mounted device. 559 * -ENOENT if @devt does not match any device in the list. 560 */ 561 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 562 { 563 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 564 struct btrfs_device *device, *tmp_device; 565 int ret = 0; 566 567 lockdep_assert_held(&uuid_mutex); 568 569 if (devt) 570 ret = -ENOENT; 571 572 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 573 574 mutex_lock(&fs_devices->device_list_mutex); 575 list_for_each_entry_safe(device, tmp_device, 576 &fs_devices->devices, dev_list) { 577 if (skip_device && skip_device == device) 578 continue; 579 if (devt && devt != device->devt) 580 continue; 581 if (fs_devices->opened) { 582 /* for an already deleted device return 0 */ 583 if (devt && ret != 0) 584 ret = -EBUSY; 585 break; 586 } 587 588 /* delete the stale device */ 589 fs_devices->num_devices--; 590 list_del(&device->dev_list); 591 btrfs_free_device(device); 592 593 ret = 0; 594 } 595 mutex_unlock(&fs_devices->device_list_mutex); 596 597 if (fs_devices->num_devices == 0) { 598 btrfs_sysfs_remove_fsid(fs_devices); 599 list_del(&fs_devices->fs_list); 600 free_fs_devices(fs_devices); 601 } 602 } 603 604 return ret; 605 } 606 607 /* 608 * This is only used on mount, and we are protected from competing things 609 * messing with our fs_devices by the uuid_mutex, thus we do not need the 610 * fs_devices->device_list_mutex here. 611 */ 612 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 613 struct btrfs_device *device, blk_mode_t flags, 614 void *holder) 615 { 616 struct block_device *bdev; 617 struct btrfs_super_block *disk_super; 618 u64 devid; 619 int ret; 620 621 if (device->bdev) 622 return -EINVAL; 623 if (!device->name) 624 return -EINVAL; 625 626 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 627 &bdev, &disk_super); 628 if (ret) 629 return ret; 630 631 devid = btrfs_stack_device_id(&disk_super->dev_item); 632 if (devid != device->devid) 633 goto error_free_page; 634 635 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 636 goto error_free_page; 637 638 device->generation = btrfs_super_generation(disk_super); 639 640 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 641 if (btrfs_super_incompat_flags(disk_super) & 642 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 643 pr_err( 644 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 645 goto error_free_page; 646 } 647 648 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 649 fs_devices->seeding = true; 650 } else { 651 if (bdev_read_only(bdev)) 652 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 653 else 654 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 655 } 656 657 if (!bdev_nonrot(bdev)) 658 fs_devices->rotating = true; 659 660 if (bdev_max_discard_sectors(bdev)) 661 fs_devices->discardable = true; 662 663 device->bdev = bdev; 664 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 665 device->holder = holder; 666 667 fs_devices->open_devices++; 668 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 669 device->devid != BTRFS_DEV_REPLACE_DEVID) { 670 fs_devices->rw_devices++; 671 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 672 } 673 btrfs_release_disk_super(disk_super); 674 675 return 0; 676 677 error_free_page: 678 btrfs_release_disk_super(disk_super); 679 blkdev_put(bdev, holder); 680 681 return -EINVAL; 682 } 683 684 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb) 685 { 686 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 687 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 688 689 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 690 } 691 692 /* 693 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 694 * being created with a disk that has already completed its fsid change. Such 695 * disk can belong to an fs which has its FSID changed or to one which doesn't. 696 * Handle both cases here. 697 */ 698 static struct btrfs_fs_devices *find_fsid_inprogress( 699 struct btrfs_super_block *disk_super) 700 { 701 struct btrfs_fs_devices *fs_devices; 702 703 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 704 if (fs_devices->fsid_change) 705 continue; 706 707 if (check_fsid_changed(fs_devices, disk_super->fsid)) 708 return fs_devices; 709 } 710 711 return find_fsid(disk_super->fsid, NULL); 712 } 713 714 static struct btrfs_fs_devices *find_fsid_changed( 715 struct btrfs_super_block *disk_super) 716 { 717 struct btrfs_fs_devices *fs_devices; 718 719 /* 720 * Handles the case where scanned device is part of an fs that had 721 * multiple successful changes of FSID but currently device didn't 722 * observe it. Meaning our fsid will be different than theirs. We need 723 * to handle two subcases : 724 * 1 - The fs still continues to have different METADATA/FSID uuids. 725 * 2 - The fs is switched back to its original FSID (METADATA/FSID 726 * are equal). 727 */ 728 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 729 /* Changed UUIDs */ 730 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) && 731 memcmp(fs_devices->fsid, disk_super->fsid, 732 BTRFS_FSID_SIZE) != 0) 733 return fs_devices; 734 735 /* Unchanged UUIDs */ 736 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 737 BTRFS_FSID_SIZE) == 0 && 738 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 739 BTRFS_FSID_SIZE) == 0) 740 return fs_devices; 741 } 742 743 return NULL; 744 } 745 746 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 747 struct btrfs_super_block *disk_super) 748 { 749 struct btrfs_fs_devices *fs_devices; 750 751 /* 752 * Handle the case where the scanned device is part of an fs whose last 753 * metadata UUID change reverted it to the original FSID. At the same 754 * time fs_devices was first created by another constituent device 755 * which didn't fully observe the operation. This results in an 756 * btrfs_fs_devices created with metadata/fsid different AND 757 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 758 * fs_devices equal to the FSID of the disk. 759 */ 760 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 761 if (!fs_devices->fsid_change) 762 continue; 763 764 if (check_fsid_changed(fs_devices, disk_super->fsid)) 765 return fs_devices; 766 } 767 768 return NULL; 769 } 770 /* 771 * Add new device to list of registered devices 772 * 773 * Returns: 774 * device pointer which was just added or updated when successful 775 * error pointer when failed 776 */ 777 static noinline struct btrfs_device *device_list_add(const char *path, 778 struct btrfs_super_block *disk_super, 779 bool *new_device_added) 780 { 781 struct btrfs_device *device; 782 struct btrfs_fs_devices *fs_devices = NULL; 783 struct rcu_string *name; 784 u64 found_transid = btrfs_super_generation(disk_super); 785 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 786 dev_t path_devt; 787 int error; 788 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 789 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 790 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 791 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 792 793 error = lookup_bdev(path, &path_devt); 794 if (error) { 795 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 796 path, error); 797 return ERR_PTR(error); 798 } 799 800 if (fsid_change_in_progress) { 801 if (!has_metadata_uuid) 802 fs_devices = find_fsid_inprogress(disk_super); 803 else 804 fs_devices = find_fsid_changed(disk_super); 805 } else if (has_metadata_uuid) { 806 fs_devices = find_fsid_with_metadata_uuid(disk_super); 807 } else { 808 fs_devices = find_fsid_reverted_metadata(disk_super); 809 if (!fs_devices) 810 fs_devices = find_fsid(disk_super->fsid, NULL); 811 } 812 813 814 if (!fs_devices) { 815 fs_devices = alloc_fs_devices(disk_super->fsid, 816 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 817 if (IS_ERR(fs_devices)) 818 return ERR_CAST(fs_devices); 819 820 fs_devices->fsid_change = fsid_change_in_progress; 821 822 mutex_lock(&fs_devices->device_list_mutex); 823 list_add(&fs_devices->fs_list, &fs_uuids); 824 825 device = NULL; 826 } else { 827 struct btrfs_dev_lookup_args args = { 828 .devid = devid, 829 .uuid = disk_super->dev_item.uuid, 830 }; 831 832 mutex_lock(&fs_devices->device_list_mutex); 833 device = btrfs_find_device(fs_devices, &args); 834 835 /* 836 * If this disk has been pulled into an fs devices created by 837 * a device which had the CHANGING_FSID_V2 flag then replace the 838 * metadata_uuid/fsid values of the fs_devices. 839 */ 840 if (fs_devices->fsid_change && 841 found_transid > fs_devices->latest_generation) { 842 memcpy(fs_devices->fsid, disk_super->fsid, 843 BTRFS_FSID_SIZE); 844 memcpy(fs_devices->metadata_uuid, 845 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 846 fs_devices->fsid_change = false; 847 } 848 } 849 850 if (!device) { 851 unsigned int nofs_flag; 852 853 if (fs_devices->opened) { 854 btrfs_err(NULL, 855 "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 856 path, fs_devices->fsid, current->comm, 857 task_pid_nr(current)); 858 mutex_unlock(&fs_devices->device_list_mutex); 859 return ERR_PTR(-EBUSY); 860 } 861 862 nofs_flag = memalloc_nofs_save(); 863 device = btrfs_alloc_device(NULL, &devid, 864 disk_super->dev_item.uuid, path); 865 memalloc_nofs_restore(nofs_flag); 866 if (IS_ERR(device)) { 867 mutex_unlock(&fs_devices->device_list_mutex); 868 /* we can safely leave the fs_devices entry around */ 869 return device; 870 } 871 872 device->devt = path_devt; 873 874 list_add_rcu(&device->dev_list, &fs_devices->devices); 875 fs_devices->num_devices++; 876 877 device->fs_devices = fs_devices; 878 *new_device_added = true; 879 880 if (disk_super->label[0]) 881 pr_info( 882 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 883 disk_super->label, devid, found_transid, path, 884 current->comm, task_pid_nr(current)); 885 else 886 pr_info( 887 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 888 disk_super->fsid, devid, found_transid, path, 889 current->comm, task_pid_nr(current)); 890 891 } else if (!device->name || strcmp(device->name->str, path)) { 892 /* 893 * When FS is already mounted. 894 * 1. If you are here and if the device->name is NULL that 895 * means this device was missing at time of FS mount. 896 * 2. If you are here and if the device->name is different 897 * from 'path' that means either 898 * a. The same device disappeared and reappeared with 899 * different name. or 900 * b. The missing-disk-which-was-replaced, has 901 * reappeared now. 902 * 903 * We must allow 1 and 2a above. But 2b would be a spurious 904 * and unintentional. 905 * 906 * Further in case of 1 and 2a above, the disk at 'path' 907 * would have missed some transaction when it was away and 908 * in case of 2a the stale bdev has to be updated as well. 909 * 2b must not be allowed at all time. 910 */ 911 912 /* 913 * For now, we do allow update to btrfs_fs_device through the 914 * btrfs dev scan cli after FS has been mounted. We're still 915 * tracking a problem where systems fail mount by subvolume id 916 * when we reject replacement on a mounted FS. 917 */ 918 if (!fs_devices->opened && found_transid < device->generation) { 919 /* 920 * That is if the FS is _not_ mounted and if you 921 * are here, that means there is more than one 922 * disk with same uuid and devid.We keep the one 923 * with larger generation number or the last-in if 924 * generation are equal. 925 */ 926 mutex_unlock(&fs_devices->device_list_mutex); 927 btrfs_err(NULL, 928 "device %s already registered with a higher generation, found %llu expect %llu", 929 path, found_transid, device->generation); 930 return ERR_PTR(-EEXIST); 931 } 932 933 /* 934 * We are going to replace the device path for a given devid, 935 * make sure it's the same device if the device is mounted 936 * 937 * NOTE: the device->fs_info may not be reliable here so pass 938 * in a NULL to message helpers instead. This avoids a possible 939 * use-after-free when the fs_info and fs_info->sb are already 940 * torn down. 941 */ 942 if (device->bdev) { 943 if (device->devt != path_devt) { 944 mutex_unlock(&fs_devices->device_list_mutex); 945 btrfs_warn_in_rcu(NULL, 946 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 947 path, devid, found_transid, 948 current->comm, 949 task_pid_nr(current)); 950 return ERR_PTR(-EEXIST); 951 } 952 btrfs_info_in_rcu(NULL, 953 "devid %llu device path %s changed to %s scanned by %s (%d)", 954 devid, btrfs_dev_name(device), 955 path, current->comm, 956 task_pid_nr(current)); 957 } 958 959 name = rcu_string_strdup(path, GFP_NOFS); 960 if (!name) { 961 mutex_unlock(&fs_devices->device_list_mutex); 962 return ERR_PTR(-ENOMEM); 963 } 964 rcu_string_free(device->name); 965 rcu_assign_pointer(device->name, name); 966 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 967 fs_devices->missing_devices--; 968 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 969 } 970 device->devt = path_devt; 971 } 972 973 /* 974 * Unmount does not free the btrfs_device struct but would zero 975 * generation along with most of the other members. So just update 976 * it back. We need it to pick the disk with largest generation 977 * (as above). 978 */ 979 if (!fs_devices->opened) { 980 device->generation = found_transid; 981 fs_devices->latest_generation = max_t(u64, found_transid, 982 fs_devices->latest_generation); 983 } 984 985 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 986 987 mutex_unlock(&fs_devices->device_list_mutex); 988 return device; 989 } 990 991 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 992 { 993 struct btrfs_fs_devices *fs_devices; 994 struct btrfs_device *device; 995 struct btrfs_device *orig_dev; 996 int ret = 0; 997 998 lockdep_assert_held(&uuid_mutex); 999 1000 fs_devices = alloc_fs_devices(orig->fsid, NULL); 1001 if (IS_ERR(fs_devices)) 1002 return fs_devices; 1003 1004 fs_devices->total_devices = orig->total_devices; 1005 1006 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1007 const char *dev_path = NULL; 1008 1009 /* 1010 * This is ok to do without RCU read locked because we hold the 1011 * uuid mutex so nothing we touch in here is going to disappear. 1012 */ 1013 if (orig_dev->name) 1014 dev_path = orig_dev->name->str; 1015 1016 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1017 orig_dev->uuid, dev_path); 1018 if (IS_ERR(device)) { 1019 ret = PTR_ERR(device); 1020 goto error; 1021 } 1022 1023 if (orig_dev->zone_info) { 1024 struct btrfs_zoned_device_info *zone_info; 1025 1026 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1027 if (!zone_info) { 1028 btrfs_free_device(device); 1029 ret = -ENOMEM; 1030 goto error; 1031 } 1032 device->zone_info = zone_info; 1033 } 1034 1035 list_add(&device->dev_list, &fs_devices->devices); 1036 device->fs_devices = fs_devices; 1037 fs_devices->num_devices++; 1038 } 1039 return fs_devices; 1040 error: 1041 free_fs_devices(fs_devices); 1042 return ERR_PTR(ret); 1043 } 1044 1045 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1046 struct btrfs_device **latest_dev) 1047 { 1048 struct btrfs_device *device, *next; 1049 1050 /* This is the initialized path, it is safe to release the devices. */ 1051 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1052 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1053 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1054 &device->dev_state) && 1055 !test_bit(BTRFS_DEV_STATE_MISSING, 1056 &device->dev_state) && 1057 (!*latest_dev || 1058 device->generation > (*latest_dev)->generation)) { 1059 *latest_dev = device; 1060 } 1061 continue; 1062 } 1063 1064 /* 1065 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1066 * in btrfs_init_dev_replace() so just continue. 1067 */ 1068 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1069 continue; 1070 1071 if (device->bdev) { 1072 blkdev_put(device->bdev, device->holder); 1073 device->bdev = NULL; 1074 fs_devices->open_devices--; 1075 } 1076 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1077 list_del_init(&device->dev_alloc_list); 1078 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1079 fs_devices->rw_devices--; 1080 } 1081 list_del_init(&device->dev_list); 1082 fs_devices->num_devices--; 1083 btrfs_free_device(device); 1084 } 1085 1086 } 1087 1088 /* 1089 * After we have read the system tree and know devids belonging to this 1090 * filesystem, remove the device which does not belong there. 1091 */ 1092 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1093 { 1094 struct btrfs_device *latest_dev = NULL; 1095 struct btrfs_fs_devices *seed_dev; 1096 1097 mutex_lock(&uuid_mutex); 1098 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1099 1100 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1101 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1102 1103 fs_devices->latest_dev = latest_dev; 1104 1105 mutex_unlock(&uuid_mutex); 1106 } 1107 1108 static void btrfs_close_bdev(struct btrfs_device *device) 1109 { 1110 if (!device->bdev) 1111 return; 1112 1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1114 sync_blockdev(device->bdev); 1115 invalidate_bdev(device->bdev); 1116 } 1117 1118 blkdev_put(device->bdev, device->holder); 1119 } 1120 1121 static void btrfs_close_one_device(struct btrfs_device *device) 1122 { 1123 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1124 1125 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1126 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1127 list_del_init(&device->dev_alloc_list); 1128 fs_devices->rw_devices--; 1129 } 1130 1131 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1132 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1133 1134 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1135 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1136 fs_devices->missing_devices--; 1137 } 1138 1139 btrfs_close_bdev(device); 1140 if (device->bdev) { 1141 fs_devices->open_devices--; 1142 device->bdev = NULL; 1143 } 1144 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1145 btrfs_destroy_dev_zone_info(device); 1146 1147 device->fs_info = NULL; 1148 atomic_set(&device->dev_stats_ccnt, 0); 1149 extent_io_tree_release(&device->alloc_state); 1150 1151 /* 1152 * Reset the flush error record. We might have a transient flush error 1153 * in this mount, and if so we aborted the current transaction and set 1154 * the fs to an error state, guaranteeing no super blocks can be further 1155 * committed. However that error might be transient and if we unmount the 1156 * filesystem and mount it again, we should allow the mount to succeed 1157 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1158 * filesystem again we still get flush errors, then we will again abort 1159 * any transaction and set the error state, guaranteeing no commits of 1160 * unsafe super blocks. 1161 */ 1162 device->last_flush_error = 0; 1163 1164 /* Verify the device is back in a pristine state */ 1165 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1166 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1167 WARN_ON(!list_empty(&device->dev_alloc_list)); 1168 WARN_ON(!list_empty(&device->post_commit_list)); 1169 } 1170 1171 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1172 { 1173 struct btrfs_device *device, *tmp; 1174 1175 lockdep_assert_held(&uuid_mutex); 1176 1177 if (--fs_devices->opened > 0) 1178 return; 1179 1180 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1181 btrfs_close_one_device(device); 1182 1183 WARN_ON(fs_devices->open_devices); 1184 WARN_ON(fs_devices->rw_devices); 1185 fs_devices->opened = 0; 1186 fs_devices->seeding = false; 1187 fs_devices->fs_info = NULL; 1188 } 1189 1190 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1191 { 1192 LIST_HEAD(list); 1193 struct btrfs_fs_devices *tmp; 1194 1195 mutex_lock(&uuid_mutex); 1196 close_fs_devices(fs_devices); 1197 if (!fs_devices->opened) { 1198 list_splice_init(&fs_devices->seed_list, &list); 1199 1200 /* 1201 * If the struct btrfs_fs_devices is not assembled with any 1202 * other device, it can be re-initialized during the next mount 1203 * without the needing device-scan step. Therefore, it can be 1204 * fully freed. 1205 */ 1206 if (fs_devices->num_devices == 1) { 1207 list_del(&fs_devices->fs_list); 1208 free_fs_devices(fs_devices); 1209 } 1210 } 1211 1212 1213 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1214 close_fs_devices(fs_devices); 1215 list_del(&fs_devices->seed_list); 1216 free_fs_devices(fs_devices); 1217 } 1218 mutex_unlock(&uuid_mutex); 1219 } 1220 1221 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1222 blk_mode_t flags, void *holder) 1223 { 1224 struct btrfs_device *device; 1225 struct btrfs_device *latest_dev = NULL; 1226 struct btrfs_device *tmp_device; 1227 int ret = 0; 1228 1229 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1230 dev_list) { 1231 int ret2; 1232 1233 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder); 1234 if (ret2 == 0 && 1235 (!latest_dev || device->generation > latest_dev->generation)) { 1236 latest_dev = device; 1237 } else if (ret2 == -ENODATA) { 1238 fs_devices->num_devices--; 1239 list_del(&device->dev_list); 1240 btrfs_free_device(device); 1241 } 1242 if (ret == 0 && ret2 != 0) 1243 ret = ret2; 1244 } 1245 1246 if (fs_devices->open_devices == 0) { 1247 if (ret) 1248 return ret; 1249 return -EINVAL; 1250 } 1251 1252 fs_devices->opened = 1; 1253 fs_devices->latest_dev = latest_dev; 1254 fs_devices->total_rw_bytes = 0; 1255 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1256 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1257 1258 return 0; 1259 } 1260 1261 static int devid_cmp(void *priv, const struct list_head *a, 1262 const struct list_head *b) 1263 { 1264 const struct btrfs_device *dev1, *dev2; 1265 1266 dev1 = list_entry(a, struct btrfs_device, dev_list); 1267 dev2 = list_entry(b, struct btrfs_device, dev_list); 1268 1269 if (dev1->devid < dev2->devid) 1270 return -1; 1271 else if (dev1->devid > dev2->devid) 1272 return 1; 1273 return 0; 1274 } 1275 1276 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1277 blk_mode_t flags, void *holder) 1278 { 1279 int ret; 1280 1281 lockdep_assert_held(&uuid_mutex); 1282 /* 1283 * The device_list_mutex cannot be taken here in case opening the 1284 * underlying device takes further locks like open_mutex. 1285 * 1286 * We also don't need the lock here as this is called during mount and 1287 * exclusion is provided by uuid_mutex 1288 */ 1289 1290 if (fs_devices->opened) { 1291 fs_devices->opened++; 1292 ret = 0; 1293 } else { 1294 list_sort(NULL, &fs_devices->devices, devid_cmp); 1295 ret = open_fs_devices(fs_devices, flags, holder); 1296 } 1297 1298 return ret; 1299 } 1300 1301 void btrfs_release_disk_super(struct btrfs_super_block *super) 1302 { 1303 struct page *page = virt_to_page(super); 1304 1305 put_page(page); 1306 } 1307 1308 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1309 u64 bytenr, u64 bytenr_orig) 1310 { 1311 struct btrfs_super_block *disk_super; 1312 struct page *page; 1313 void *p; 1314 pgoff_t index; 1315 1316 /* make sure our super fits in the device */ 1317 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1318 return ERR_PTR(-EINVAL); 1319 1320 /* make sure our super fits in the page */ 1321 if (sizeof(*disk_super) > PAGE_SIZE) 1322 return ERR_PTR(-EINVAL); 1323 1324 /* make sure our super doesn't straddle pages on disk */ 1325 index = bytenr >> PAGE_SHIFT; 1326 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1327 return ERR_PTR(-EINVAL); 1328 1329 /* pull in the page with our super */ 1330 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1331 1332 if (IS_ERR(page)) 1333 return ERR_CAST(page); 1334 1335 p = page_address(page); 1336 1337 /* align our pointer to the offset of the super block */ 1338 disk_super = p + offset_in_page(bytenr); 1339 1340 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1341 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1342 btrfs_release_disk_super(p); 1343 return ERR_PTR(-EINVAL); 1344 } 1345 1346 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1347 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1348 1349 return disk_super; 1350 } 1351 1352 int btrfs_forget_devices(dev_t devt) 1353 { 1354 int ret; 1355 1356 mutex_lock(&uuid_mutex); 1357 ret = btrfs_free_stale_devices(devt, NULL); 1358 mutex_unlock(&uuid_mutex); 1359 1360 return ret; 1361 } 1362 1363 /* 1364 * Look for a btrfs signature on a device. This may be called out of the mount path 1365 * and we are not allowed to call set_blocksize during the scan. The superblock 1366 * is read via pagecache 1367 */ 1368 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags) 1369 { 1370 struct btrfs_super_block *disk_super; 1371 bool new_device_added = false; 1372 struct btrfs_device *device = NULL; 1373 struct block_device *bdev; 1374 u64 bytenr, bytenr_orig; 1375 int ret; 1376 1377 lockdep_assert_held(&uuid_mutex); 1378 1379 /* 1380 * we would like to check all the supers, but that would make 1381 * a btrfs mount succeed after a mkfs from a different FS. 1382 * So, we need to add a special mount option to scan for 1383 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1384 */ 1385 1386 /* 1387 * Avoid an exclusive open here, as the systemd-udev may initiate the 1388 * device scan which may race with the user's mount or mkfs command, 1389 * resulting in failure. 1390 * Since the device scan is solely for reading purposes, there is no 1391 * need for an exclusive open. Additionally, the devices are read again 1392 * during the mount process. It is ok to get some inconsistent 1393 * values temporarily, as the device paths of the fsid are the only 1394 * required information for assembling the volume. 1395 */ 1396 bdev = blkdev_get_by_path(path, flags, NULL, NULL); 1397 if (IS_ERR(bdev)) 1398 return ERR_CAST(bdev); 1399 1400 bytenr_orig = btrfs_sb_offset(0); 1401 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr); 1402 if (ret) { 1403 device = ERR_PTR(ret); 1404 goto error_bdev_put; 1405 } 1406 1407 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig); 1408 if (IS_ERR(disk_super)) { 1409 device = ERR_CAST(disk_super); 1410 goto error_bdev_put; 1411 } 1412 1413 device = device_list_add(path, disk_super, &new_device_added); 1414 if (!IS_ERR(device) && new_device_added) 1415 btrfs_free_stale_devices(device->devt, device); 1416 1417 btrfs_release_disk_super(disk_super); 1418 1419 error_bdev_put: 1420 blkdev_put(bdev, NULL); 1421 1422 return device; 1423 } 1424 1425 /* 1426 * Try to find a chunk that intersects [start, start + len] range and when one 1427 * such is found, record the end of it in *start 1428 */ 1429 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1430 u64 len) 1431 { 1432 u64 physical_start, physical_end; 1433 1434 lockdep_assert_held(&device->fs_info->chunk_mutex); 1435 1436 if (find_first_extent_bit(&device->alloc_state, *start, 1437 &physical_start, &physical_end, 1438 CHUNK_ALLOCATED, NULL)) { 1439 1440 if (in_range(physical_start, *start, len) || 1441 in_range(*start, physical_start, 1442 physical_end + 1 - physical_start)) { 1443 *start = physical_end + 1; 1444 return true; 1445 } 1446 } 1447 return false; 1448 } 1449 1450 static u64 dev_extent_search_start(struct btrfs_device *device) 1451 { 1452 switch (device->fs_devices->chunk_alloc_policy) { 1453 case BTRFS_CHUNK_ALLOC_REGULAR: 1454 return BTRFS_DEVICE_RANGE_RESERVED; 1455 case BTRFS_CHUNK_ALLOC_ZONED: 1456 /* 1457 * We don't care about the starting region like regular 1458 * allocator, because we anyway use/reserve the first two zones 1459 * for superblock logging. 1460 */ 1461 return 0; 1462 default: 1463 BUG(); 1464 } 1465 } 1466 1467 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1468 u64 *hole_start, u64 *hole_size, 1469 u64 num_bytes) 1470 { 1471 u64 zone_size = device->zone_info->zone_size; 1472 u64 pos; 1473 int ret; 1474 bool changed = false; 1475 1476 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1477 1478 while (*hole_size > 0) { 1479 pos = btrfs_find_allocatable_zones(device, *hole_start, 1480 *hole_start + *hole_size, 1481 num_bytes); 1482 if (pos != *hole_start) { 1483 *hole_size = *hole_start + *hole_size - pos; 1484 *hole_start = pos; 1485 changed = true; 1486 if (*hole_size < num_bytes) 1487 break; 1488 } 1489 1490 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1491 1492 /* Range is ensured to be empty */ 1493 if (!ret) 1494 return changed; 1495 1496 /* Given hole range was invalid (outside of device) */ 1497 if (ret == -ERANGE) { 1498 *hole_start += *hole_size; 1499 *hole_size = 0; 1500 return true; 1501 } 1502 1503 *hole_start += zone_size; 1504 *hole_size -= zone_size; 1505 changed = true; 1506 } 1507 1508 return changed; 1509 } 1510 1511 /* 1512 * Check if specified hole is suitable for allocation. 1513 * 1514 * @device: the device which we have the hole 1515 * @hole_start: starting position of the hole 1516 * @hole_size: the size of the hole 1517 * @num_bytes: the size of the free space that we need 1518 * 1519 * This function may modify @hole_start and @hole_size to reflect the suitable 1520 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1521 */ 1522 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1523 u64 *hole_size, u64 num_bytes) 1524 { 1525 bool changed = false; 1526 u64 hole_end = *hole_start + *hole_size; 1527 1528 for (;;) { 1529 /* 1530 * Check before we set max_hole_start, otherwise we could end up 1531 * sending back this offset anyway. 1532 */ 1533 if (contains_pending_extent(device, hole_start, *hole_size)) { 1534 if (hole_end >= *hole_start) 1535 *hole_size = hole_end - *hole_start; 1536 else 1537 *hole_size = 0; 1538 changed = true; 1539 } 1540 1541 switch (device->fs_devices->chunk_alloc_policy) { 1542 case BTRFS_CHUNK_ALLOC_REGULAR: 1543 /* No extra check */ 1544 break; 1545 case BTRFS_CHUNK_ALLOC_ZONED: 1546 if (dev_extent_hole_check_zoned(device, hole_start, 1547 hole_size, num_bytes)) { 1548 changed = true; 1549 /* 1550 * The changed hole can contain pending extent. 1551 * Loop again to check that. 1552 */ 1553 continue; 1554 } 1555 break; 1556 default: 1557 BUG(); 1558 } 1559 1560 break; 1561 } 1562 1563 return changed; 1564 } 1565 1566 /* 1567 * Find free space in the specified device. 1568 * 1569 * @device: the device which we search the free space in 1570 * @num_bytes: the size of the free space that we need 1571 * @search_start: the position from which to begin the search 1572 * @start: store the start of the free space. 1573 * @len: the size of the free space. that we find, or the size 1574 * of the max free space if we don't find suitable free space 1575 * 1576 * This does a pretty simple search, the expectation is that it is called very 1577 * infrequently and that a given device has a small number of extents. 1578 * 1579 * @start is used to store the start of the free space if we find. But if we 1580 * don't find suitable free space, it will be used to store the start position 1581 * of the max free space. 1582 * 1583 * @len is used to store the size of the free space that we find. 1584 * But if we don't find suitable free space, it is used to store the size of 1585 * the max free space. 1586 * 1587 * NOTE: This function will search *commit* root of device tree, and does extra 1588 * check to ensure dev extents are not double allocated. 1589 * This makes the function safe to allocate dev extents but may not report 1590 * correct usable device space, as device extent freed in current transaction 1591 * is not reported as available. 1592 */ 1593 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1594 u64 *start, u64 *len) 1595 { 1596 struct btrfs_fs_info *fs_info = device->fs_info; 1597 struct btrfs_root *root = fs_info->dev_root; 1598 struct btrfs_key key; 1599 struct btrfs_dev_extent *dev_extent; 1600 struct btrfs_path *path; 1601 u64 search_start; 1602 u64 hole_size; 1603 u64 max_hole_start; 1604 u64 max_hole_size = 0; 1605 u64 extent_end; 1606 u64 search_end = device->total_bytes; 1607 int ret; 1608 int slot; 1609 struct extent_buffer *l; 1610 1611 search_start = dev_extent_search_start(device); 1612 max_hole_start = search_start; 1613 1614 WARN_ON(device->zone_info && 1615 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1616 1617 path = btrfs_alloc_path(); 1618 if (!path) { 1619 ret = -ENOMEM; 1620 goto out; 1621 } 1622 again: 1623 if (search_start >= search_end || 1624 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1625 ret = -ENOSPC; 1626 goto out; 1627 } 1628 1629 path->reada = READA_FORWARD; 1630 path->search_commit_root = 1; 1631 path->skip_locking = 1; 1632 1633 key.objectid = device->devid; 1634 key.offset = search_start; 1635 key.type = BTRFS_DEV_EXTENT_KEY; 1636 1637 ret = btrfs_search_backwards(root, &key, path); 1638 if (ret < 0) 1639 goto out; 1640 1641 while (search_start < search_end) { 1642 l = path->nodes[0]; 1643 slot = path->slots[0]; 1644 if (slot >= btrfs_header_nritems(l)) { 1645 ret = btrfs_next_leaf(root, path); 1646 if (ret == 0) 1647 continue; 1648 if (ret < 0) 1649 goto out; 1650 1651 break; 1652 } 1653 btrfs_item_key_to_cpu(l, &key, slot); 1654 1655 if (key.objectid < device->devid) 1656 goto next; 1657 1658 if (key.objectid > device->devid) 1659 break; 1660 1661 if (key.type != BTRFS_DEV_EXTENT_KEY) 1662 goto next; 1663 1664 if (key.offset > search_end) 1665 break; 1666 1667 if (key.offset > search_start) { 1668 hole_size = key.offset - search_start; 1669 dev_extent_hole_check(device, &search_start, &hole_size, 1670 num_bytes); 1671 1672 if (hole_size > max_hole_size) { 1673 max_hole_start = search_start; 1674 max_hole_size = hole_size; 1675 } 1676 1677 /* 1678 * If this free space is greater than which we need, 1679 * it must be the max free space that we have found 1680 * until now, so max_hole_start must point to the start 1681 * of this free space and the length of this free space 1682 * is stored in max_hole_size. Thus, we return 1683 * max_hole_start and max_hole_size and go back to the 1684 * caller. 1685 */ 1686 if (hole_size >= num_bytes) { 1687 ret = 0; 1688 goto out; 1689 } 1690 } 1691 1692 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1693 extent_end = key.offset + btrfs_dev_extent_length(l, 1694 dev_extent); 1695 if (extent_end > search_start) 1696 search_start = extent_end; 1697 next: 1698 path->slots[0]++; 1699 cond_resched(); 1700 } 1701 1702 /* 1703 * At this point, search_start should be the end of 1704 * allocated dev extents, and when shrinking the device, 1705 * search_end may be smaller than search_start. 1706 */ 1707 if (search_end > search_start) { 1708 hole_size = search_end - search_start; 1709 if (dev_extent_hole_check(device, &search_start, &hole_size, 1710 num_bytes)) { 1711 btrfs_release_path(path); 1712 goto again; 1713 } 1714 1715 if (hole_size > max_hole_size) { 1716 max_hole_start = search_start; 1717 max_hole_size = hole_size; 1718 } 1719 } 1720 1721 /* See above. */ 1722 if (max_hole_size < num_bytes) 1723 ret = -ENOSPC; 1724 else 1725 ret = 0; 1726 1727 ASSERT(max_hole_start + max_hole_size <= search_end); 1728 out: 1729 btrfs_free_path(path); 1730 *start = max_hole_start; 1731 if (len) 1732 *len = max_hole_size; 1733 return ret; 1734 } 1735 1736 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1737 struct btrfs_device *device, 1738 u64 start, u64 *dev_extent_len) 1739 { 1740 struct btrfs_fs_info *fs_info = device->fs_info; 1741 struct btrfs_root *root = fs_info->dev_root; 1742 int ret; 1743 struct btrfs_path *path; 1744 struct btrfs_key key; 1745 struct btrfs_key found_key; 1746 struct extent_buffer *leaf = NULL; 1747 struct btrfs_dev_extent *extent = NULL; 1748 1749 path = btrfs_alloc_path(); 1750 if (!path) 1751 return -ENOMEM; 1752 1753 key.objectid = device->devid; 1754 key.offset = start; 1755 key.type = BTRFS_DEV_EXTENT_KEY; 1756 again: 1757 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1758 if (ret > 0) { 1759 ret = btrfs_previous_item(root, path, key.objectid, 1760 BTRFS_DEV_EXTENT_KEY); 1761 if (ret) 1762 goto out; 1763 leaf = path->nodes[0]; 1764 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1765 extent = btrfs_item_ptr(leaf, path->slots[0], 1766 struct btrfs_dev_extent); 1767 BUG_ON(found_key.offset > start || found_key.offset + 1768 btrfs_dev_extent_length(leaf, extent) < start); 1769 key = found_key; 1770 btrfs_release_path(path); 1771 goto again; 1772 } else if (ret == 0) { 1773 leaf = path->nodes[0]; 1774 extent = btrfs_item_ptr(leaf, path->slots[0], 1775 struct btrfs_dev_extent); 1776 } else { 1777 goto out; 1778 } 1779 1780 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1781 1782 ret = btrfs_del_item(trans, root, path); 1783 if (ret == 0) 1784 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1785 out: 1786 btrfs_free_path(path); 1787 return ret; 1788 } 1789 1790 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1791 { 1792 struct extent_map_tree *em_tree; 1793 struct extent_map *em; 1794 struct rb_node *n; 1795 u64 ret = 0; 1796 1797 em_tree = &fs_info->mapping_tree; 1798 read_lock(&em_tree->lock); 1799 n = rb_last(&em_tree->map.rb_root); 1800 if (n) { 1801 em = rb_entry(n, struct extent_map, rb_node); 1802 ret = em->start + em->len; 1803 } 1804 read_unlock(&em_tree->lock); 1805 1806 return ret; 1807 } 1808 1809 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1810 u64 *devid_ret) 1811 { 1812 int ret; 1813 struct btrfs_key key; 1814 struct btrfs_key found_key; 1815 struct btrfs_path *path; 1816 1817 path = btrfs_alloc_path(); 1818 if (!path) 1819 return -ENOMEM; 1820 1821 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1822 key.type = BTRFS_DEV_ITEM_KEY; 1823 key.offset = (u64)-1; 1824 1825 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1826 if (ret < 0) 1827 goto error; 1828 1829 if (ret == 0) { 1830 /* Corruption */ 1831 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1832 ret = -EUCLEAN; 1833 goto error; 1834 } 1835 1836 ret = btrfs_previous_item(fs_info->chunk_root, path, 1837 BTRFS_DEV_ITEMS_OBJECTID, 1838 BTRFS_DEV_ITEM_KEY); 1839 if (ret) { 1840 *devid_ret = 1; 1841 } else { 1842 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1843 path->slots[0]); 1844 *devid_ret = found_key.offset + 1; 1845 } 1846 ret = 0; 1847 error: 1848 btrfs_free_path(path); 1849 return ret; 1850 } 1851 1852 /* 1853 * the device information is stored in the chunk root 1854 * the btrfs_device struct should be fully filled in 1855 */ 1856 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1857 struct btrfs_device *device) 1858 { 1859 int ret; 1860 struct btrfs_path *path; 1861 struct btrfs_dev_item *dev_item; 1862 struct extent_buffer *leaf; 1863 struct btrfs_key key; 1864 unsigned long ptr; 1865 1866 path = btrfs_alloc_path(); 1867 if (!path) 1868 return -ENOMEM; 1869 1870 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1871 key.type = BTRFS_DEV_ITEM_KEY; 1872 key.offset = device->devid; 1873 1874 btrfs_reserve_chunk_metadata(trans, true); 1875 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1876 &key, sizeof(*dev_item)); 1877 btrfs_trans_release_chunk_metadata(trans); 1878 if (ret) 1879 goto out; 1880 1881 leaf = path->nodes[0]; 1882 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1883 1884 btrfs_set_device_id(leaf, dev_item, device->devid); 1885 btrfs_set_device_generation(leaf, dev_item, 0); 1886 btrfs_set_device_type(leaf, dev_item, device->type); 1887 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1888 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1889 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1890 btrfs_set_device_total_bytes(leaf, dev_item, 1891 btrfs_device_get_disk_total_bytes(device)); 1892 btrfs_set_device_bytes_used(leaf, dev_item, 1893 btrfs_device_get_bytes_used(device)); 1894 btrfs_set_device_group(leaf, dev_item, 0); 1895 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1896 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1897 btrfs_set_device_start_offset(leaf, dev_item, 0); 1898 1899 ptr = btrfs_device_uuid(dev_item); 1900 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1901 ptr = btrfs_device_fsid(dev_item); 1902 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1903 ptr, BTRFS_FSID_SIZE); 1904 btrfs_mark_buffer_dirty(trans, leaf); 1905 1906 ret = 0; 1907 out: 1908 btrfs_free_path(path); 1909 return ret; 1910 } 1911 1912 /* 1913 * Function to update ctime/mtime for a given device path. 1914 * Mainly used for ctime/mtime based probe like libblkid. 1915 * 1916 * We don't care about errors here, this is just to be kind to userspace. 1917 */ 1918 static void update_dev_time(const char *device_path) 1919 { 1920 struct path path; 1921 int ret; 1922 1923 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1924 if (ret) 1925 return; 1926 1927 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); 1928 path_put(&path); 1929 } 1930 1931 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 1932 struct btrfs_device *device) 1933 { 1934 struct btrfs_root *root = device->fs_info->chunk_root; 1935 int ret; 1936 struct btrfs_path *path; 1937 struct btrfs_key key; 1938 1939 path = btrfs_alloc_path(); 1940 if (!path) 1941 return -ENOMEM; 1942 1943 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1944 key.type = BTRFS_DEV_ITEM_KEY; 1945 key.offset = device->devid; 1946 1947 btrfs_reserve_chunk_metadata(trans, false); 1948 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1949 btrfs_trans_release_chunk_metadata(trans); 1950 if (ret) { 1951 if (ret > 0) 1952 ret = -ENOENT; 1953 goto out; 1954 } 1955 1956 ret = btrfs_del_item(trans, root, path); 1957 out: 1958 btrfs_free_path(path); 1959 return ret; 1960 } 1961 1962 /* 1963 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1964 * filesystem. It's up to the caller to adjust that number regarding eg. device 1965 * replace. 1966 */ 1967 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1968 u64 num_devices) 1969 { 1970 u64 all_avail; 1971 unsigned seq; 1972 int i; 1973 1974 do { 1975 seq = read_seqbegin(&fs_info->profiles_lock); 1976 1977 all_avail = fs_info->avail_data_alloc_bits | 1978 fs_info->avail_system_alloc_bits | 1979 fs_info->avail_metadata_alloc_bits; 1980 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1981 1982 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1983 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1984 continue; 1985 1986 if (num_devices < btrfs_raid_array[i].devs_min) 1987 return btrfs_raid_array[i].mindev_error; 1988 } 1989 1990 return 0; 1991 } 1992 1993 static struct btrfs_device * btrfs_find_next_active_device( 1994 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1995 { 1996 struct btrfs_device *next_device; 1997 1998 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1999 if (next_device != device && 2000 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2001 && next_device->bdev) 2002 return next_device; 2003 } 2004 2005 return NULL; 2006 } 2007 2008 /* 2009 * Helper function to check if the given device is part of s_bdev / latest_dev 2010 * and replace it with the provided or the next active device, in the context 2011 * where this function called, there should be always be another device (or 2012 * this_dev) which is active. 2013 */ 2014 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2015 struct btrfs_device *next_device) 2016 { 2017 struct btrfs_fs_info *fs_info = device->fs_info; 2018 2019 if (!next_device) 2020 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2021 device); 2022 ASSERT(next_device); 2023 2024 if (fs_info->sb->s_bdev && 2025 (fs_info->sb->s_bdev == device->bdev)) 2026 fs_info->sb->s_bdev = next_device->bdev; 2027 2028 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2029 fs_info->fs_devices->latest_dev = next_device; 2030 } 2031 2032 /* 2033 * Return btrfs_fs_devices::num_devices excluding the device that's being 2034 * currently replaced. 2035 */ 2036 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2037 { 2038 u64 num_devices = fs_info->fs_devices->num_devices; 2039 2040 down_read(&fs_info->dev_replace.rwsem); 2041 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2042 ASSERT(num_devices > 1); 2043 num_devices--; 2044 } 2045 up_read(&fs_info->dev_replace.rwsem); 2046 2047 return num_devices; 2048 } 2049 2050 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2051 struct block_device *bdev, int copy_num) 2052 { 2053 struct btrfs_super_block *disk_super; 2054 const size_t len = sizeof(disk_super->magic); 2055 const u64 bytenr = btrfs_sb_offset(copy_num); 2056 int ret; 2057 2058 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr); 2059 if (IS_ERR(disk_super)) 2060 return; 2061 2062 memset(&disk_super->magic, 0, len); 2063 folio_mark_dirty(virt_to_folio(disk_super)); 2064 btrfs_release_disk_super(disk_super); 2065 2066 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2067 if (ret) 2068 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2069 copy_num, ret); 2070 } 2071 2072 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2073 struct block_device *bdev, 2074 const char *device_path) 2075 { 2076 int copy_num; 2077 2078 if (!bdev) 2079 return; 2080 2081 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2082 if (bdev_is_zoned(bdev)) 2083 btrfs_reset_sb_log_zones(bdev, copy_num); 2084 else 2085 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2086 } 2087 2088 /* Notify udev that device has changed */ 2089 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2090 2091 /* Update ctime/mtime for device path for libblkid */ 2092 update_dev_time(device_path); 2093 } 2094 2095 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2096 struct btrfs_dev_lookup_args *args, 2097 struct block_device **bdev, void **holder) 2098 { 2099 struct btrfs_trans_handle *trans; 2100 struct btrfs_device *device; 2101 struct btrfs_fs_devices *cur_devices; 2102 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2103 u64 num_devices; 2104 int ret = 0; 2105 2106 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2107 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2108 return -EINVAL; 2109 } 2110 2111 /* 2112 * The device list in fs_devices is accessed without locks (neither 2113 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2114 * filesystem and another device rm cannot run. 2115 */ 2116 num_devices = btrfs_num_devices(fs_info); 2117 2118 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2119 if (ret) 2120 return ret; 2121 2122 device = btrfs_find_device(fs_info->fs_devices, args); 2123 if (!device) { 2124 if (args->missing) 2125 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2126 else 2127 ret = -ENOENT; 2128 return ret; 2129 } 2130 2131 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2132 btrfs_warn_in_rcu(fs_info, 2133 "cannot remove device %s (devid %llu) due to active swapfile", 2134 btrfs_dev_name(device), device->devid); 2135 return -ETXTBSY; 2136 } 2137 2138 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2139 return BTRFS_ERROR_DEV_TGT_REPLACE; 2140 2141 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2142 fs_info->fs_devices->rw_devices == 1) 2143 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2144 2145 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2146 mutex_lock(&fs_info->chunk_mutex); 2147 list_del_init(&device->dev_alloc_list); 2148 device->fs_devices->rw_devices--; 2149 mutex_unlock(&fs_info->chunk_mutex); 2150 } 2151 2152 ret = btrfs_shrink_device(device, 0); 2153 if (ret) 2154 goto error_undo; 2155 2156 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2157 if (IS_ERR(trans)) { 2158 ret = PTR_ERR(trans); 2159 goto error_undo; 2160 } 2161 2162 ret = btrfs_rm_dev_item(trans, device); 2163 if (ret) { 2164 /* Any error in dev item removal is critical */ 2165 btrfs_crit(fs_info, 2166 "failed to remove device item for devid %llu: %d", 2167 device->devid, ret); 2168 btrfs_abort_transaction(trans, ret); 2169 btrfs_end_transaction(trans); 2170 return ret; 2171 } 2172 2173 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2174 btrfs_scrub_cancel_dev(device); 2175 2176 /* 2177 * the device list mutex makes sure that we don't change 2178 * the device list while someone else is writing out all 2179 * the device supers. Whoever is writing all supers, should 2180 * lock the device list mutex before getting the number of 2181 * devices in the super block (super_copy). Conversely, 2182 * whoever updates the number of devices in the super block 2183 * (super_copy) should hold the device list mutex. 2184 */ 2185 2186 /* 2187 * In normal cases the cur_devices == fs_devices. But in case 2188 * of deleting a seed device, the cur_devices should point to 2189 * its own fs_devices listed under the fs_devices->seed_list. 2190 */ 2191 cur_devices = device->fs_devices; 2192 mutex_lock(&fs_devices->device_list_mutex); 2193 list_del_rcu(&device->dev_list); 2194 2195 cur_devices->num_devices--; 2196 cur_devices->total_devices--; 2197 /* Update total_devices of the parent fs_devices if it's seed */ 2198 if (cur_devices != fs_devices) 2199 fs_devices->total_devices--; 2200 2201 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2202 cur_devices->missing_devices--; 2203 2204 btrfs_assign_next_active_device(device, NULL); 2205 2206 if (device->bdev) { 2207 cur_devices->open_devices--; 2208 /* remove sysfs entry */ 2209 btrfs_sysfs_remove_device(device); 2210 } 2211 2212 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2213 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2214 mutex_unlock(&fs_devices->device_list_mutex); 2215 2216 /* 2217 * At this point, the device is zero sized and detached from the 2218 * devices list. All that's left is to zero out the old supers and 2219 * free the device. 2220 * 2221 * We cannot call btrfs_close_bdev() here because we're holding the sb 2222 * write lock, and blkdev_put() will pull in the ->open_mutex on the 2223 * block device and it's dependencies. Instead just flush the device 2224 * and let the caller do the final blkdev_put. 2225 */ 2226 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2227 btrfs_scratch_superblocks(fs_info, device->bdev, 2228 device->name->str); 2229 if (device->bdev) { 2230 sync_blockdev(device->bdev); 2231 invalidate_bdev(device->bdev); 2232 } 2233 } 2234 2235 *bdev = device->bdev; 2236 *holder = device->holder; 2237 synchronize_rcu(); 2238 btrfs_free_device(device); 2239 2240 /* 2241 * This can happen if cur_devices is the private seed devices list. We 2242 * cannot call close_fs_devices() here because it expects the uuid_mutex 2243 * to be held, but in fact we don't need that for the private 2244 * seed_devices, we can simply decrement cur_devices->opened and then 2245 * remove it from our list and free the fs_devices. 2246 */ 2247 if (cur_devices->num_devices == 0) { 2248 list_del_init(&cur_devices->seed_list); 2249 ASSERT(cur_devices->opened == 1); 2250 cur_devices->opened--; 2251 free_fs_devices(cur_devices); 2252 } 2253 2254 ret = btrfs_commit_transaction(trans); 2255 2256 return ret; 2257 2258 error_undo: 2259 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2260 mutex_lock(&fs_info->chunk_mutex); 2261 list_add(&device->dev_alloc_list, 2262 &fs_devices->alloc_list); 2263 device->fs_devices->rw_devices++; 2264 mutex_unlock(&fs_info->chunk_mutex); 2265 } 2266 return ret; 2267 } 2268 2269 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2270 { 2271 struct btrfs_fs_devices *fs_devices; 2272 2273 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2274 2275 /* 2276 * in case of fs with no seed, srcdev->fs_devices will point 2277 * to fs_devices of fs_info. However when the dev being replaced is 2278 * a seed dev it will point to the seed's local fs_devices. In short 2279 * srcdev will have its correct fs_devices in both the cases. 2280 */ 2281 fs_devices = srcdev->fs_devices; 2282 2283 list_del_rcu(&srcdev->dev_list); 2284 list_del(&srcdev->dev_alloc_list); 2285 fs_devices->num_devices--; 2286 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2287 fs_devices->missing_devices--; 2288 2289 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2290 fs_devices->rw_devices--; 2291 2292 if (srcdev->bdev) 2293 fs_devices->open_devices--; 2294 } 2295 2296 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2297 { 2298 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2299 2300 mutex_lock(&uuid_mutex); 2301 2302 btrfs_close_bdev(srcdev); 2303 synchronize_rcu(); 2304 btrfs_free_device(srcdev); 2305 2306 /* if this is no devs we rather delete the fs_devices */ 2307 if (!fs_devices->num_devices) { 2308 /* 2309 * On a mounted FS, num_devices can't be zero unless it's a 2310 * seed. In case of a seed device being replaced, the replace 2311 * target added to the sprout FS, so there will be no more 2312 * device left under the seed FS. 2313 */ 2314 ASSERT(fs_devices->seeding); 2315 2316 list_del_init(&fs_devices->seed_list); 2317 close_fs_devices(fs_devices); 2318 free_fs_devices(fs_devices); 2319 } 2320 mutex_unlock(&uuid_mutex); 2321 } 2322 2323 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2324 { 2325 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2326 2327 mutex_lock(&fs_devices->device_list_mutex); 2328 2329 btrfs_sysfs_remove_device(tgtdev); 2330 2331 if (tgtdev->bdev) 2332 fs_devices->open_devices--; 2333 2334 fs_devices->num_devices--; 2335 2336 btrfs_assign_next_active_device(tgtdev, NULL); 2337 2338 list_del_rcu(&tgtdev->dev_list); 2339 2340 mutex_unlock(&fs_devices->device_list_mutex); 2341 2342 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2343 tgtdev->name->str); 2344 2345 btrfs_close_bdev(tgtdev); 2346 synchronize_rcu(); 2347 btrfs_free_device(tgtdev); 2348 } 2349 2350 /* 2351 * Populate args from device at path. 2352 * 2353 * @fs_info: the filesystem 2354 * @args: the args to populate 2355 * @path: the path to the device 2356 * 2357 * This will read the super block of the device at @path and populate @args with 2358 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2359 * lookup a device to operate on, but need to do it before we take any locks. 2360 * This properly handles the special case of "missing" that a user may pass in, 2361 * and does some basic sanity checks. The caller must make sure that @path is 2362 * properly NUL terminated before calling in, and must call 2363 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2364 * uuid buffers. 2365 * 2366 * Return: 0 for success, -errno for failure 2367 */ 2368 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2369 struct btrfs_dev_lookup_args *args, 2370 const char *path) 2371 { 2372 struct btrfs_super_block *disk_super; 2373 struct block_device *bdev; 2374 int ret; 2375 2376 if (!path || !path[0]) 2377 return -EINVAL; 2378 if (!strcmp(path, "missing")) { 2379 args->missing = true; 2380 return 0; 2381 } 2382 2383 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2384 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2385 if (!args->uuid || !args->fsid) { 2386 btrfs_put_dev_args_from_path(args); 2387 return -ENOMEM; 2388 } 2389 2390 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2391 &bdev, &disk_super); 2392 if (ret) { 2393 btrfs_put_dev_args_from_path(args); 2394 return ret; 2395 } 2396 2397 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2398 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2399 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2400 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2401 else 2402 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2403 btrfs_release_disk_super(disk_super); 2404 blkdev_put(bdev, NULL); 2405 return 0; 2406 } 2407 2408 /* 2409 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2410 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2411 * that don't need to be freed. 2412 */ 2413 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2414 { 2415 kfree(args->uuid); 2416 kfree(args->fsid); 2417 args->uuid = NULL; 2418 args->fsid = NULL; 2419 } 2420 2421 struct btrfs_device *btrfs_find_device_by_devspec( 2422 struct btrfs_fs_info *fs_info, u64 devid, 2423 const char *device_path) 2424 { 2425 BTRFS_DEV_LOOKUP_ARGS(args); 2426 struct btrfs_device *device; 2427 int ret; 2428 2429 if (devid) { 2430 args.devid = devid; 2431 device = btrfs_find_device(fs_info->fs_devices, &args); 2432 if (!device) 2433 return ERR_PTR(-ENOENT); 2434 return device; 2435 } 2436 2437 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2438 if (ret) 2439 return ERR_PTR(ret); 2440 device = btrfs_find_device(fs_info->fs_devices, &args); 2441 btrfs_put_dev_args_from_path(&args); 2442 if (!device) 2443 return ERR_PTR(-ENOENT); 2444 return device; 2445 } 2446 2447 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2448 { 2449 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2450 struct btrfs_fs_devices *old_devices; 2451 struct btrfs_fs_devices *seed_devices; 2452 2453 lockdep_assert_held(&uuid_mutex); 2454 if (!fs_devices->seeding) 2455 return ERR_PTR(-EINVAL); 2456 2457 /* 2458 * Private copy of the seed devices, anchored at 2459 * fs_info->fs_devices->seed_list 2460 */ 2461 seed_devices = alloc_fs_devices(NULL, NULL); 2462 if (IS_ERR(seed_devices)) 2463 return seed_devices; 2464 2465 /* 2466 * It's necessary to retain a copy of the original seed fs_devices in 2467 * fs_uuids so that filesystems which have been seeded can successfully 2468 * reference the seed device from open_seed_devices. This also supports 2469 * multiple fs seed. 2470 */ 2471 old_devices = clone_fs_devices(fs_devices); 2472 if (IS_ERR(old_devices)) { 2473 kfree(seed_devices); 2474 return old_devices; 2475 } 2476 2477 list_add(&old_devices->fs_list, &fs_uuids); 2478 2479 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2480 seed_devices->opened = 1; 2481 INIT_LIST_HEAD(&seed_devices->devices); 2482 INIT_LIST_HEAD(&seed_devices->alloc_list); 2483 mutex_init(&seed_devices->device_list_mutex); 2484 2485 return seed_devices; 2486 } 2487 2488 /* 2489 * Splice seed devices into the sprout fs_devices. 2490 * Generate a new fsid for the sprouted read-write filesystem. 2491 */ 2492 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2493 struct btrfs_fs_devices *seed_devices) 2494 { 2495 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2496 struct btrfs_super_block *disk_super = fs_info->super_copy; 2497 struct btrfs_device *device; 2498 u64 super_flags; 2499 2500 /* 2501 * We are updating the fsid, the thread leading to device_list_add() 2502 * could race, so uuid_mutex is needed. 2503 */ 2504 lockdep_assert_held(&uuid_mutex); 2505 2506 /* 2507 * The threads listed below may traverse dev_list but can do that without 2508 * device_list_mutex: 2509 * - All device ops and balance - as we are in btrfs_exclop_start. 2510 * - Various dev_list readers - are using RCU. 2511 * - btrfs_ioctl_fitrim() - is using RCU. 2512 * 2513 * For-read threads as below are using device_list_mutex: 2514 * - Readonly scrub btrfs_scrub_dev() 2515 * - Readonly scrub btrfs_scrub_progress() 2516 * - btrfs_get_dev_stats() 2517 */ 2518 lockdep_assert_held(&fs_devices->device_list_mutex); 2519 2520 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2521 synchronize_rcu); 2522 list_for_each_entry(device, &seed_devices->devices, dev_list) 2523 device->fs_devices = seed_devices; 2524 2525 fs_devices->seeding = false; 2526 fs_devices->num_devices = 0; 2527 fs_devices->open_devices = 0; 2528 fs_devices->missing_devices = 0; 2529 fs_devices->rotating = false; 2530 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2531 2532 generate_random_uuid(fs_devices->fsid); 2533 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2534 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2535 2536 super_flags = btrfs_super_flags(disk_super) & 2537 ~BTRFS_SUPER_FLAG_SEEDING; 2538 btrfs_set_super_flags(disk_super, super_flags); 2539 } 2540 2541 /* 2542 * Store the expected generation for seed devices in device items. 2543 */ 2544 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2545 { 2546 BTRFS_DEV_LOOKUP_ARGS(args); 2547 struct btrfs_fs_info *fs_info = trans->fs_info; 2548 struct btrfs_root *root = fs_info->chunk_root; 2549 struct btrfs_path *path; 2550 struct extent_buffer *leaf; 2551 struct btrfs_dev_item *dev_item; 2552 struct btrfs_device *device; 2553 struct btrfs_key key; 2554 u8 fs_uuid[BTRFS_FSID_SIZE]; 2555 u8 dev_uuid[BTRFS_UUID_SIZE]; 2556 int ret; 2557 2558 path = btrfs_alloc_path(); 2559 if (!path) 2560 return -ENOMEM; 2561 2562 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2563 key.offset = 0; 2564 key.type = BTRFS_DEV_ITEM_KEY; 2565 2566 while (1) { 2567 btrfs_reserve_chunk_metadata(trans, false); 2568 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2569 btrfs_trans_release_chunk_metadata(trans); 2570 if (ret < 0) 2571 goto error; 2572 2573 leaf = path->nodes[0]; 2574 next_slot: 2575 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2576 ret = btrfs_next_leaf(root, path); 2577 if (ret > 0) 2578 break; 2579 if (ret < 0) 2580 goto error; 2581 leaf = path->nodes[0]; 2582 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2583 btrfs_release_path(path); 2584 continue; 2585 } 2586 2587 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2588 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2589 key.type != BTRFS_DEV_ITEM_KEY) 2590 break; 2591 2592 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2593 struct btrfs_dev_item); 2594 args.devid = btrfs_device_id(leaf, dev_item); 2595 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2596 BTRFS_UUID_SIZE); 2597 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2598 BTRFS_FSID_SIZE); 2599 args.uuid = dev_uuid; 2600 args.fsid = fs_uuid; 2601 device = btrfs_find_device(fs_info->fs_devices, &args); 2602 BUG_ON(!device); /* Logic error */ 2603 2604 if (device->fs_devices->seeding) { 2605 btrfs_set_device_generation(leaf, dev_item, 2606 device->generation); 2607 btrfs_mark_buffer_dirty(trans, leaf); 2608 } 2609 2610 path->slots[0]++; 2611 goto next_slot; 2612 } 2613 ret = 0; 2614 error: 2615 btrfs_free_path(path); 2616 return ret; 2617 } 2618 2619 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2620 { 2621 struct btrfs_root *root = fs_info->dev_root; 2622 struct btrfs_trans_handle *trans; 2623 struct btrfs_device *device; 2624 struct block_device *bdev; 2625 struct super_block *sb = fs_info->sb; 2626 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2627 struct btrfs_fs_devices *seed_devices = NULL; 2628 u64 orig_super_total_bytes; 2629 u64 orig_super_num_devices; 2630 int ret = 0; 2631 bool seeding_dev = false; 2632 bool locked = false; 2633 2634 if (sb_rdonly(sb) && !fs_devices->seeding) 2635 return -EROFS; 2636 2637 bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE, 2638 fs_info->bdev_holder, NULL); 2639 if (IS_ERR(bdev)) 2640 return PTR_ERR(bdev); 2641 2642 if (!btrfs_check_device_zone_type(fs_info, bdev)) { 2643 ret = -EINVAL; 2644 goto error; 2645 } 2646 2647 if (fs_devices->seeding) { 2648 seeding_dev = true; 2649 down_write(&sb->s_umount); 2650 mutex_lock(&uuid_mutex); 2651 locked = true; 2652 } 2653 2654 sync_blockdev(bdev); 2655 2656 rcu_read_lock(); 2657 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2658 if (device->bdev == bdev) { 2659 ret = -EEXIST; 2660 rcu_read_unlock(); 2661 goto error; 2662 } 2663 } 2664 rcu_read_unlock(); 2665 2666 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2667 if (IS_ERR(device)) { 2668 /* we can safely leave the fs_devices entry around */ 2669 ret = PTR_ERR(device); 2670 goto error; 2671 } 2672 2673 device->fs_info = fs_info; 2674 device->bdev = bdev; 2675 ret = lookup_bdev(device_path, &device->devt); 2676 if (ret) 2677 goto error_free_device; 2678 2679 ret = btrfs_get_dev_zone_info(device, false); 2680 if (ret) 2681 goto error_free_device; 2682 2683 trans = btrfs_start_transaction(root, 0); 2684 if (IS_ERR(trans)) { 2685 ret = PTR_ERR(trans); 2686 goto error_free_zone; 2687 } 2688 2689 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2690 device->generation = trans->transid; 2691 device->io_width = fs_info->sectorsize; 2692 device->io_align = fs_info->sectorsize; 2693 device->sector_size = fs_info->sectorsize; 2694 device->total_bytes = 2695 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize); 2696 device->disk_total_bytes = device->total_bytes; 2697 device->commit_total_bytes = device->total_bytes; 2698 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2699 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2700 device->holder = fs_info->bdev_holder; 2701 device->dev_stats_valid = 1; 2702 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2703 2704 if (seeding_dev) { 2705 btrfs_clear_sb_rdonly(sb); 2706 2707 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2708 seed_devices = btrfs_init_sprout(fs_info); 2709 if (IS_ERR(seed_devices)) { 2710 ret = PTR_ERR(seed_devices); 2711 btrfs_abort_transaction(trans, ret); 2712 goto error_trans; 2713 } 2714 } 2715 2716 mutex_lock(&fs_devices->device_list_mutex); 2717 if (seeding_dev) { 2718 btrfs_setup_sprout(fs_info, seed_devices); 2719 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2720 device); 2721 } 2722 2723 device->fs_devices = fs_devices; 2724 2725 mutex_lock(&fs_info->chunk_mutex); 2726 list_add_rcu(&device->dev_list, &fs_devices->devices); 2727 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2728 fs_devices->num_devices++; 2729 fs_devices->open_devices++; 2730 fs_devices->rw_devices++; 2731 fs_devices->total_devices++; 2732 fs_devices->total_rw_bytes += device->total_bytes; 2733 2734 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2735 2736 if (!bdev_nonrot(bdev)) 2737 fs_devices->rotating = true; 2738 2739 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2740 btrfs_set_super_total_bytes(fs_info->super_copy, 2741 round_down(orig_super_total_bytes + device->total_bytes, 2742 fs_info->sectorsize)); 2743 2744 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2745 btrfs_set_super_num_devices(fs_info->super_copy, 2746 orig_super_num_devices + 1); 2747 2748 /* 2749 * we've got more storage, clear any full flags on the space 2750 * infos 2751 */ 2752 btrfs_clear_space_info_full(fs_info); 2753 2754 mutex_unlock(&fs_info->chunk_mutex); 2755 2756 /* Add sysfs device entry */ 2757 btrfs_sysfs_add_device(device); 2758 2759 mutex_unlock(&fs_devices->device_list_mutex); 2760 2761 if (seeding_dev) { 2762 mutex_lock(&fs_info->chunk_mutex); 2763 ret = init_first_rw_device(trans); 2764 mutex_unlock(&fs_info->chunk_mutex); 2765 if (ret) { 2766 btrfs_abort_transaction(trans, ret); 2767 goto error_sysfs; 2768 } 2769 } 2770 2771 ret = btrfs_add_dev_item(trans, device); 2772 if (ret) { 2773 btrfs_abort_transaction(trans, ret); 2774 goto error_sysfs; 2775 } 2776 2777 if (seeding_dev) { 2778 ret = btrfs_finish_sprout(trans); 2779 if (ret) { 2780 btrfs_abort_transaction(trans, ret); 2781 goto error_sysfs; 2782 } 2783 2784 /* 2785 * fs_devices now represents the newly sprouted filesystem and 2786 * its fsid has been changed by btrfs_sprout_splice(). 2787 */ 2788 btrfs_sysfs_update_sprout_fsid(fs_devices); 2789 } 2790 2791 ret = btrfs_commit_transaction(trans); 2792 2793 if (seeding_dev) { 2794 mutex_unlock(&uuid_mutex); 2795 up_write(&sb->s_umount); 2796 locked = false; 2797 2798 if (ret) /* transaction commit */ 2799 return ret; 2800 2801 ret = btrfs_relocate_sys_chunks(fs_info); 2802 if (ret < 0) 2803 btrfs_handle_fs_error(fs_info, ret, 2804 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2805 trans = btrfs_attach_transaction(root); 2806 if (IS_ERR(trans)) { 2807 if (PTR_ERR(trans) == -ENOENT) 2808 return 0; 2809 ret = PTR_ERR(trans); 2810 trans = NULL; 2811 goto error_sysfs; 2812 } 2813 ret = btrfs_commit_transaction(trans); 2814 } 2815 2816 /* 2817 * Now that we have written a new super block to this device, check all 2818 * other fs_devices list if device_path alienates any other scanned 2819 * device. 2820 * We can ignore the return value as it typically returns -EINVAL and 2821 * only succeeds if the device was an alien. 2822 */ 2823 btrfs_forget_devices(device->devt); 2824 2825 /* Update ctime/mtime for blkid or udev */ 2826 update_dev_time(device_path); 2827 2828 return ret; 2829 2830 error_sysfs: 2831 btrfs_sysfs_remove_device(device); 2832 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2833 mutex_lock(&fs_info->chunk_mutex); 2834 list_del_rcu(&device->dev_list); 2835 list_del(&device->dev_alloc_list); 2836 fs_info->fs_devices->num_devices--; 2837 fs_info->fs_devices->open_devices--; 2838 fs_info->fs_devices->rw_devices--; 2839 fs_info->fs_devices->total_devices--; 2840 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2841 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2842 btrfs_set_super_total_bytes(fs_info->super_copy, 2843 orig_super_total_bytes); 2844 btrfs_set_super_num_devices(fs_info->super_copy, 2845 orig_super_num_devices); 2846 mutex_unlock(&fs_info->chunk_mutex); 2847 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2848 error_trans: 2849 if (seeding_dev) 2850 btrfs_set_sb_rdonly(sb); 2851 if (trans) 2852 btrfs_end_transaction(trans); 2853 error_free_zone: 2854 btrfs_destroy_dev_zone_info(device); 2855 error_free_device: 2856 btrfs_free_device(device); 2857 error: 2858 blkdev_put(bdev, fs_info->bdev_holder); 2859 if (locked) { 2860 mutex_unlock(&uuid_mutex); 2861 up_write(&sb->s_umount); 2862 } 2863 return ret; 2864 } 2865 2866 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2867 struct btrfs_device *device) 2868 { 2869 int ret; 2870 struct btrfs_path *path; 2871 struct btrfs_root *root = device->fs_info->chunk_root; 2872 struct btrfs_dev_item *dev_item; 2873 struct extent_buffer *leaf; 2874 struct btrfs_key key; 2875 2876 path = btrfs_alloc_path(); 2877 if (!path) 2878 return -ENOMEM; 2879 2880 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2881 key.type = BTRFS_DEV_ITEM_KEY; 2882 key.offset = device->devid; 2883 2884 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2885 if (ret < 0) 2886 goto out; 2887 2888 if (ret > 0) { 2889 ret = -ENOENT; 2890 goto out; 2891 } 2892 2893 leaf = path->nodes[0]; 2894 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2895 2896 btrfs_set_device_id(leaf, dev_item, device->devid); 2897 btrfs_set_device_type(leaf, dev_item, device->type); 2898 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2899 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2900 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2901 btrfs_set_device_total_bytes(leaf, dev_item, 2902 btrfs_device_get_disk_total_bytes(device)); 2903 btrfs_set_device_bytes_used(leaf, dev_item, 2904 btrfs_device_get_bytes_used(device)); 2905 btrfs_mark_buffer_dirty(trans, leaf); 2906 2907 out: 2908 btrfs_free_path(path); 2909 return ret; 2910 } 2911 2912 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2913 struct btrfs_device *device, u64 new_size) 2914 { 2915 struct btrfs_fs_info *fs_info = device->fs_info; 2916 struct btrfs_super_block *super_copy = fs_info->super_copy; 2917 u64 old_total; 2918 u64 diff; 2919 int ret; 2920 2921 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2922 return -EACCES; 2923 2924 new_size = round_down(new_size, fs_info->sectorsize); 2925 2926 mutex_lock(&fs_info->chunk_mutex); 2927 old_total = btrfs_super_total_bytes(super_copy); 2928 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2929 2930 if (new_size <= device->total_bytes || 2931 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2932 mutex_unlock(&fs_info->chunk_mutex); 2933 return -EINVAL; 2934 } 2935 2936 btrfs_set_super_total_bytes(super_copy, 2937 round_down(old_total + diff, fs_info->sectorsize)); 2938 device->fs_devices->total_rw_bytes += diff; 2939 2940 btrfs_device_set_total_bytes(device, new_size); 2941 btrfs_device_set_disk_total_bytes(device, new_size); 2942 btrfs_clear_space_info_full(device->fs_info); 2943 if (list_empty(&device->post_commit_list)) 2944 list_add_tail(&device->post_commit_list, 2945 &trans->transaction->dev_update_list); 2946 mutex_unlock(&fs_info->chunk_mutex); 2947 2948 btrfs_reserve_chunk_metadata(trans, false); 2949 ret = btrfs_update_device(trans, device); 2950 btrfs_trans_release_chunk_metadata(trans); 2951 2952 return ret; 2953 } 2954 2955 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2956 { 2957 struct btrfs_fs_info *fs_info = trans->fs_info; 2958 struct btrfs_root *root = fs_info->chunk_root; 2959 int ret; 2960 struct btrfs_path *path; 2961 struct btrfs_key key; 2962 2963 path = btrfs_alloc_path(); 2964 if (!path) 2965 return -ENOMEM; 2966 2967 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2968 key.offset = chunk_offset; 2969 key.type = BTRFS_CHUNK_ITEM_KEY; 2970 2971 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2972 if (ret < 0) 2973 goto out; 2974 else if (ret > 0) { /* Logic error or corruption */ 2975 btrfs_handle_fs_error(fs_info, -ENOENT, 2976 "Failed lookup while freeing chunk."); 2977 ret = -ENOENT; 2978 goto out; 2979 } 2980 2981 ret = btrfs_del_item(trans, root, path); 2982 if (ret < 0) 2983 btrfs_handle_fs_error(fs_info, ret, 2984 "Failed to delete chunk item."); 2985 out: 2986 btrfs_free_path(path); 2987 return ret; 2988 } 2989 2990 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2991 { 2992 struct btrfs_super_block *super_copy = fs_info->super_copy; 2993 struct btrfs_disk_key *disk_key; 2994 struct btrfs_chunk *chunk; 2995 u8 *ptr; 2996 int ret = 0; 2997 u32 num_stripes; 2998 u32 array_size; 2999 u32 len = 0; 3000 u32 cur; 3001 struct btrfs_key key; 3002 3003 lockdep_assert_held(&fs_info->chunk_mutex); 3004 array_size = btrfs_super_sys_array_size(super_copy); 3005 3006 ptr = super_copy->sys_chunk_array; 3007 cur = 0; 3008 3009 while (cur < array_size) { 3010 disk_key = (struct btrfs_disk_key *)ptr; 3011 btrfs_disk_key_to_cpu(&key, disk_key); 3012 3013 len = sizeof(*disk_key); 3014 3015 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3016 chunk = (struct btrfs_chunk *)(ptr + len); 3017 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3018 len += btrfs_chunk_item_size(num_stripes); 3019 } else { 3020 ret = -EIO; 3021 break; 3022 } 3023 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3024 key.offset == chunk_offset) { 3025 memmove(ptr, ptr + len, array_size - (cur + len)); 3026 array_size -= len; 3027 btrfs_set_super_sys_array_size(super_copy, array_size); 3028 } else { 3029 ptr += len; 3030 cur += len; 3031 } 3032 } 3033 return ret; 3034 } 3035 3036 /* 3037 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 3038 * @logical: Logical block offset in bytes. 3039 * @length: Length of extent in bytes. 3040 * 3041 * Return: Chunk mapping or ERR_PTR. 3042 */ 3043 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3044 u64 logical, u64 length) 3045 { 3046 struct extent_map_tree *em_tree; 3047 struct extent_map *em; 3048 3049 em_tree = &fs_info->mapping_tree; 3050 read_lock(&em_tree->lock); 3051 em = lookup_extent_mapping(em_tree, logical, length); 3052 read_unlock(&em_tree->lock); 3053 3054 if (!em) { 3055 btrfs_crit(fs_info, 3056 "unable to find chunk map for logical %llu length %llu", 3057 logical, length); 3058 return ERR_PTR(-EINVAL); 3059 } 3060 3061 if (em->start > logical || em->start + em->len <= logical) { 3062 btrfs_crit(fs_info, 3063 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3064 logical, logical + length, em->start, em->start + em->len); 3065 free_extent_map(em); 3066 return ERR_PTR(-EINVAL); 3067 } 3068 3069 /* callers are responsible for dropping em's ref. */ 3070 return em; 3071 } 3072 3073 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3074 struct map_lookup *map, u64 chunk_offset) 3075 { 3076 int i; 3077 3078 /* 3079 * Removing chunk items and updating the device items in the chunks btree 3080 * requires holding the chunk_mutex. 3081 * See the comment at btrfs_chunk_alloc() for the details. 3082 */ 3083 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3084 3085 for (i = 0; i < map->num_stripes; i++) { 3086 int ret; 3087 3088 ret = btrfs_update_device(trans, map->stripes[i].dev); 3089 if (ret) 3090 return ret; 3091 } 3092 3093 return btrfs_free_chunk(trans, chunk_offset); 3094 } 3095 3096 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3097 { 3098 struct btrfs_fs_info *fs_info = trans->fs_info; 3099 struct extent_map *em; 3100 struct map_lookup *map; 3101 u64 dev_extent_len = 0; 3102 int i, ret = 0; 3103 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3104 3105 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3106 if (IS_ERR(em)) { 3107 /* 3108 * This is a logic error, but we don't want to just rely on the 3109 * user having built with ASSERT enabled, so if ASSERT doesn't 3110 * do anything we still error out. 3111 */ 3112 ASSERT(0); 3113 return PTR_ERR(em); 3114 } 3115 map = em->map_lookup; 3116 3117 /* 3118 * First delete the device extent items from the devices btree. 3119 * We take the device_list_mutex to avoid racing with the finishing phase 3120 * of a device replace operation. See the comment below before acquiring 3121 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3122 * because that can result in a deadlock when deleting the device extent 3123 * items from the devices btree - COWing an extent buffer from the btree 3124 * may result in allocating a new metadata chunk, which would attempt to 3125 * lock again fs_info->chunk_mutex. 3126 */ 3127 mutex_lock(&fs_devices->device_list_mutex); 3128 for (i = 0; i < map->num_stripes; i++) { 3129 struct btrfs_device *device = map->stripes[i].dev; 3130 ret = btrfs_free_dev_extent(trans, device, 3131 map->stripes[i].physical, 3132 &dev_extent_len); 3133 if (ret) { 3134 mutex_unlock(&fs_devices->device_list_mutex); 3135 btrfs_abort_transaction(trans, ret); 3136 goto out; 3137 } 3138 3139 if (device->bytes_used > 0) { 3140 mutex_lock(&fs_info->chunk_mutex); 3141 btrfs_device_set_bytes_used(device, 3142 device->bytes_used - dev_extent_len); 3143 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3144 btrfs_clear_space_info_full(fs_info); 3145 mutex_unlock(&fs_info->chunk_mutex); 3146 } 3147 } 3148 mutex_unlock(&fs_devices->device_list_mutex); 3149 3150 /* 3151 * We acquire fs_info->chunk_mutex for 2 reasons: 3152 * 3153 * 1) Just like with the first phase of the chunk allocation, we must 3154 * reserve system space, do all chunk btree updates and deletions, and 3155 * update the system chunk array in the superblock while holding this 3156 * mutex. This is for similar reasons as explained on the comment at 3157 * the top of btrfs_chunk_alloc(); 3158 * 3159 * 2) Prevent races with the final phase of a device replace operation 3160 * that replaces the device object associated with the map's stripes, 3161 * because the device object's id can change at any time during that 3162 * final phase of the device replace operation 3163 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3164 * replaced device and then see it with an ID of 3165 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3166 * the device item, which does not exists on the chunk btree. 3167 * The finishing phase of device replace acquires both the 3168 * device_list_mutex and the chunk_mutex, in that order, so we are 3169 * safe by just acquiring the chunk_mutex. 3170 */ 3171 trans->removing_chunk = true; 3172 mutex_lock(&fs_info->chunk_mutex); 3173 3174 check_system_chunk(trans, map->type); 3175 3176 ret = remove_chunk_item(trans, map, chunk_offset); 3177 /* 3178 * Normally we should not get -ENOSPC since we reserved space before 3179 * through the call to check_system_chunk(). 3180 * 3181 * Despite our system space_info having enough free space, we may not 3182 * be able to allocate extents from its block groups, because all have 3183 * an incompatible profile, which will force us to allocate a new system 3184 * block group with the right profile, or right after we called 3185 * check_system_space() above, a scrub turned the only system block group 3186 * with enough free space into RO mode. 3187 * This is explained with more detail at do_chunk_alloc(). 3188 * 3189 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3190 */ 3191 if (ret == -ENOSPC) { 3192 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3193 struct btrfs_block_group *sys_bg; 3194 3195 sys_bg = btrfs_create_chunk(trans, sys_flags); 3196 if (IS_ERR(sys_bg)) { 3197 ret = PTR_ERR(sys_bg); 3198 btrfs_abort_transaction(trans, ret); 3199 goto out; 3200 } 3201 3202 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3203 if (ret) { 3204 btrfs_abort_transaction(trans, ret); 3205 goto out; 3206 } 3207 3208 ret = remove_chunk_item(trans, map, chunk_offset); 3209 if (ret) { 3210 btrfs_abort_transaction(trans, ret); 3211 goto out; 3212 } 3213 } else if (ret) { 3214 btrfs_abort_transaction(trans, ret); 3215 goto out; 3216 } 3217 3218 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3219 3220 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3221 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3222 if (ret) { 3223 btrfs_abort_transaction(trans, ret); 3224 goto out; 3225 } 3226 } 3227 3228 mutex_unlock(&fs_info->chunk_mutex); 3229 trans->removing_chunk = false; 3230 3231 /* 3232 * We are done with chunk btree updates and deletions, so release the 3233 * system space we previously reserved (with check_system_chunk()). 3234 */ 3235 btrfs_trans_release_chunk_metadata(trans); 3236 3237 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3238 if (ret) { 3239 btrfs_abort_transaction(trans, ret); 3240 goto out; 3241 } 3242 3243 out: 3244 if (trans->removing_chunk) { 3245 mutex_unlock(&fs_info->chunk_mutex); 3246 trans->removing_chunk = false; 3247 } 3248 /* once for us */ 3249 free_extent_map(em); 3250 return ret; 3251 } 3252 3253 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3254 { 3255 struct btrfs_root *root = fs_info->chunk_root; 3256 struct btrfs_trans_handle *trans; 3257 struct btrfs_block_group *block_group; 3258 u64 length; 3259 int ret; 3260 3261 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3262 btrfs_err(fs_info, 3263 "relocate: not supported on extent tree v2 yet"); 3264 return -EINVAL; 3265 } 3266 3267 /* 3268 * Prevent races with automatic removal of unused block groups. 3269 * After we relocate and before we remove the chunk with offset 3270 * chunk_offset, automatic removal of the block group can kick in, 3271 * resulting in a failure when calling btrfs_remove_chunk() below. 3272 * 3273 * Make sure to acquire this mutex before doing a tree search (dev 3274 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3275 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3276 * we release the path used to search the chunk/dev tree and before 3277 * the current task acquires this mutex and calls us. 3278 */ 3279 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3280 3281 /* step one, relocate all the extents inside this chunk */ 3282 btrfs_scrub_pause(fs_info); 3283 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3284 btrfs_scrub_continue(fs_info); 3285 if (ret) { 3286 /* 3287 * If we had a transaction abort, stop all running scrubs. 3288 * See transaction.c:cleanup_transaction() why we do it here. 3289 */ 3290 if (BTRFS_FS_ERROR(fs_info)) 3291 btrfs_scrub_cancel(fs_info); 3292 return ret; 3293 } 3294 3295 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3296 if (!block_group) 3297 return -ENOENT; 3298 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3299 length = block_group->length; 3300 btrfs_put_block_group(block_group); 3301 3302 /* 3303 * On a zoned file system, discard the whole block group, this will 3304 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3305 * resetting the zone fails, don't treat it as a fatal problem from the 3306 * filesystem's point of view. 3307 */ 3308 if (btrfs_is_zoned(fs_info)) { 3309 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3310 if (ret) 3311 btrfs_info(fs_info, 3312 "failed to reset zone %llu after relocation", 3313 chunk_offset); 3314 } 3315 3316 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3317 chunk_offset); 3318 if (IS_ERR(trans)) { 3319 ret = PTR_ERR(trans); 3320 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3321 return ret; 3322 } 3323 3324 /* 3325 * step two, delete the device extents and the 3326 * chunk tree entries 3327 */ 3328 ret = btrfs_remove_chunk(trans, chunk_offset); 3329 btrfs_end_transaction(trans); 3330 return ret; 3331 } 3332 3333 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3334 { 3335 struct btrfs_root *chunk_root = fs_info->chunk_root; 3336 struct btrfs_path *path; 3337 struct extent_buffer *leaf; 3338 struct btrfs_chunk *chunk; 3339 struct btrfs_key key; 3340 struct btrfs_key found_key; 3341 u64 chunk_type; 3342 bool retried = false; 3343 int failed = 0; 3344 int ret; 3345 3346 path = btrfs_alloc_path(); 3347 if (!path) 3348 return -ENOMEM; 3349 3350 again: 3351 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3352 key.offset = (u64)-1; 3353 key.type = BTRFS_CHUNK_ITEM_KEY; 3354 3355 while (1) { 3356 mutex_lock(&fs_info->reclaim_bgs_lock); 3357 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3358 if (ret < 0) { 3359 mutex_unlock(&fs_info->reclaim_bgs_lock); 3360 goto error; 3361 } 3362 if (ret == 0) { 3363 /* 3364 * On the first search we would find chunk tree with 3365 * offset -1, which is not possible. On subsequent 3366 * loops this would find an existing item on an invalid 3367 * offset (one less than the previous one, wrong 3368 * alignment and size). 3369 */ 3370 ret = -EUCLEAN; 3371 mutex_unlock(&fs_info->reclaim_bgs_lock); 3372 goto error; 3373 } 3374 3375 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3376 key.type); 3377 if (ret) 3378 mutex_unlock(&fs_info->reclaim_bgs_lock); 3379 if (ret < 0) 3380 goto error; 3381 if (ret > 0) 3382 break; 3383 3384 leaf = path->nodes[0]; 3385 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3386 3387 chunk = btrfs_item_ptr(leaf, path->slots[0], 3388 struct btrfs_chunk); 3389 chunk_type = btrfs_chunk_type(leaf, chunk); 3390 btrfs_release_path(path); 3391 3392 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3393 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3394 if (ret == -ENOSPC) 3395 failed++; 3396 else 3397 BUG_ON(ret); 3398 } 3399 mutex_unlock(&fs_info->reclaim_bgs_lock); 3400 3401 if (found_key.offset == 0) 3402 break; 3403 key.offset = found_key.offset - 1; 3404 } 3405 ret = 0; 3406 if (failed && !retried) { 3407 failed = 0; 3408 retried = true; 3409 goto again; 3410 } else if (WARN_ON(failed && retried)) { 3411 ret = -ENOSPC; 3412 } 3413 error: 3414 btrfs_free_path(path); 3415 return ret; 3416 } 3417 3418 /* 3419 * return 1 : allocate a data chunk successfully, 3420 * return <0: errors during allocating a data chunk, 3421 * return 0 : no need to allocate a data chunk. 3422 */ 3423 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3424 u64 chunk_offset) 3425 { 3426 struct btrfs_block_group *cache; 3427 u64 bytes_used; 3428 u64 chunk_type; 3429 3430 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3431 ASSERT(cache); 3432 chunk_type = cache->flags; 3433 btrfs_put_block_group(cache); 3434 3435 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3436 return 0; 3437 3438 spin_lock(&fs_info->data_sinfo->lock); 3439 bytes_used = fs_info->data_sinfo->bytes_used; 3440 spin_unlock(&fs_info->data_sinfo->lock); 3441 3442 if (!bytes_used) { 3443 struct btrfs_trans_handle *trans; 3444 int ret; 3445 3446 trans = btrfs_join_transaction(fs_info->tree_root); 3447 if (IS_ERR(trans)) 3448 return PTR_ERR(trans); 3449 3450 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3451 btrfs_end_transaction(trans); 3452 if (ret < 0) 3453 return ret; 3454 return 1; 3455 } 3456 3457 return 0; 3458 } 3459 3460 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3461 struct btrfs_balance_control *bctl) 3462 { 3463 struct btrfs_root *root = fs_info->tree_root; 3464 struct btrfs_trans_handle *trans; 3465 struct btrfs_balance_item *item; 3466 struct btrfs_disk_balance_args disk_bargs; 3467 struct btrfs_path *path; 3468 struct extent_buffer *leaf; 3469 struct btrfs_key key; 3470 int ret, err; 3471 3472 path = btrfs_alloc_path(); 3473 if (!path) 3474 return -ENOMEM; 3475 3476 trans = btrfs_start_transaction(root, 0); 3477 if (IS_ERR(trans)) { 3478 btrfs_free_path(path); 3479 return PTR_ERR(trans); 3480 } 3481 3482 key.objectid = BTRFS_BALANCE_OBJECTID; 3483 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3484 key.offset = 0; 3485 3486 ret = btrfs_insert_empty_item(trans, root, path, &key, 3487 sizeof(*item)); 3488 if (ret) 3489 goto out; 3490 3491 leaf = path->nodes[0]; 3492 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3493 3494 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3495 3496 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3497 btrfs_set_balance_data(leaf, item, &disk_bargs); 3498 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3499 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3500 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3501 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3502 3503 btrfs_set_balance_flags(leaf, item, bctl->flags); 3504 3505 btrfs_mark_buffer_dirty(trans, leaf); 3506 out: 3507 btrfs_free_path(path); 3508 err = btrfs_commit_transaction(trans); 3509 if (err && !ret) 3510 ret = err; 3511 return ret; 3512 } 3513 3514 static int del_balance_item(struct btrfs_fs_info *fs_info) 3515 { 3516 struct btrfs_root *root = fs_info->tree_root; 3517 struct btrfs_trans_handle *trans; 3518 struct btrfs_path *path; 3519 struct btrfs_key key; 3520 int ret, err; 3521 3522 path = btrfs_alloc_path(); 3523 if (!path) 3524 return -ENOMEM; 3525 3526 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3527 if (IS_ERR(trans)) { 3528 btrfs_free_path(path); 3529 return PTR_ERR(trans); 3530 } 3531 3532 key.objectid = BTRFS_BALANCE_OBJECTID; 3533 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3534 key.offset = 0; 3535 3536 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3537 if (ret < 0) 3538 goto out; 3539 if (ret > 0) { 3540 ret = -ENOENT; 3541 goto out; 3542 } 3543 3544 ret = btrfs_del_item(trans, root, path); 3545 out: 3546 btrfs_free_path(path); 3547 err = btrfs_commit_transaction(trans); 3548 if (err && !ret) 3549 ret = err; 3550 return ret; 3551 } 3552 3553 /* 3554 * This is a heuristic used to reduce the number of chunks balanced on 3555 * resume after balance was interrupted. 3556 */ 3557 static void update_balance_args(struct btrfs_balance_control *bctl) 3558 { 3559 /* 3560 * Turn on soft mode for chunk types that were being converted. 3561 */ 3562 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3563 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3564 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3565 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3566 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3567 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3568 3569 /* 3570 * Turn on usage filter if is not already used. The idea is 3571 * that chunks that we have already balanced should be 3572 * reasonably full. Don't do it for chunks that are being 3573 * converted - that will keep us from relocating unconverted 3574 * (albeit full) chunks. 3575 */ 3576 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3577 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3578 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3579 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3580 bctl->data.usage = 90; 3581 } 3582 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3583 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3584 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3585 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3586 bctl->sys.usage = 90; 3587 } 3588 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3589 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3590 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3591 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3592 bctl->meta.usage = 90; 3593 } 3594 } 3595 3596 /* 3597 * Clear the balance status in fs_info and delete the balance item from disk. 3598 */ 3599 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3600 { 3601 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3602 int ret; 3603 3604 BUG_ON(!fs_info->balance_ctl); 3605 3606 spin_lock(&fs_info->balance_lock); 3607 fs_info->balance_ctl = NULL; 3608 spin_unlock(&fs_info->balance_lock); 3609 3610 kfree(bctl); 3611 ret = del_balance_item(fs_info); 3612 if (ret) 3613 btrfs_handle_fs_error(fs_info, ret, NULL); 3614 } 3615 3616 /* 3617 * Balance filters. Return 1 if chunk should be filtered out 3618 * (should not be balanced). 3619 */ 3620 static int chunk_profiles_filter(u64 chunk_type, 3621 struct btrfs_balance_args *bargs) 3622 { 3623 chunk_type = chunk_to_extended(chunk_type) & 3624 BTRFS_EXTENDED_PROFILE_MASK; 3625 3626 if (bargs->profiles & chunk_type) 3627 return 0; 3628 3629 return 1; 3630 } 3631 3632 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3633 struct btrfs_balance_args *bargs) 3634 { 3635 struct btrfs_block_group *cache; 3636 u64 chunk_used; 3637 u64 user_thresh_min; 3638 u64 user_thresh_max; 3639 int ret = 1; 3640 3641 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3642 chunk_used = cache->used; 3643 3644 if (bargs->usage_min == 0) 3645 user_thresh_min = 0; 3646 else 3647 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3648 3649 if (bargs->usage_max == 0) 3650 user_thresh_max = 1; 3651 else if (bargs->usage_max > 100) 3652 user_thresh_max = cache->length; 3653 else 3654 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3655 3656 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3657 ret = 0; 3658 3659 btrfs_put_block_group(cache); 3660 return ret; 3661 } 3662 3663 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3664 u64 chunk_offset, struct btrfs_balance_args *bargs) 3665 { 3666 struct btrfs_block_group *cache; 3667 u64 chunk_used, user_thresh; 3668 int ret = 1; 3669 3670 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3671 chunk_used = cache->used; 3672 3673 if (bargs->usage_min == 0) 3674 user_thresh = 1; 3675 else if (bargs->usage > 100) 3676 user_thresh = cache->length; 3677 else 3678 user_thresh = mult_perc(cache->length, bargs->usage); 3679 3680 if (chunk_used < user_thresh) 3681 ret = 0; 3682 3683 btrfs_put_block_group(cache); 3684 return ret; 3685 } 3686 3687 static int chunk_devid_filter(struct extent_buffer *leaf, 3688 struct btrfs_chunk *chunk, 3689 struct btrfs_balance_args *bargs) 3690 { 3691 struct btrfs_stripe *stripe; 3692 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3693 int i; 3694 3695 for (i = 0; i < num_stripes; i++) { 3696 stripe = btrfs_stripe_nr(chunk, i); 3697 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3698 return 0; 3699 } 3700 3701 return 1; 3702 } 3703 3704 static u64 calc_data_stripes(u64 type, int num_stripes) 3705 { 3706 const int index = btrfs_bg_flags_to_raid_index(type); 3707 const int ncopies = btrfs_raid_array[index].ncopies; 3708 const int nparity = btrfs_raid_array[index].nparity; 3709 3710 return (num_stripes - nparity) / ncopies; 3711 } 3712 3713 /* [pstart, pend) */ 3714 static int chunk_drange_filter(struct extent_buffer *leaf, 3715 struct btrfs_chunk *chunk, 3716 struct btrfs_balance_args *bargs) 3717 { 3718 struct btrfs_stripe *stripe; 3719 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3720 u64 stripe_offset; 3721 u64 stripe_length; 3722 u64 type; 3723 int factor; 3724 int i; 3725 3726 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3727 return 0; 3728 3729 type = btrfs_chunk_type(leaf, chunk); 3730 factor = calc_data_stripes(type, num_stripes); 3731 3732 for (i = 0; i < num_stripes; i++) { 3733 stripe = btrfs_stripe_nr(chunk, i); 3734 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3735 continue; 3736 3737 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3738 stripe_length = btrfs_chunk_length(leaf, chunk); 3739 stripe_length = div_u64(stripe_length, factor); 3740 3741 if (stripe_offset < bargs->pend && 3742 stripe_offset + stripe_length > bargs->pstart) 3743 return 0; 3744 } 3745 3746 return 1; 3747 } 3748 3749 /* [vstart, vend) */ 3750 static int chunk_vrange_filter(struct extent_buffer *leaf, 3751 struct btrfs_chunk *chunk, 3752 u64 chunk_offset, 3753 struct btrfs_balance_args *bargs) 3754 { 3755 if (chunk_offset < bargs->vend && 3756 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3757 /* at least part of the chunk is inside this vrange */ 3758 return 0; 3759 3760 return 1; 3761 } 3762 3763 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3764 struct btrfs_chunk *chunk, 3765 struct btrfs_balance_args *bargs) 3766 { 3767 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3768 3769 if (bargs->stripes_min <= num_stripes 3770 && num_stripes <= bargs->stripes_max) 3771 return 0; 3772 3773 return 1; 3774 } 3775 3776 static int chunk_soft_convert_filter(u64 chunk_type, 3777 struct btrfs_balance_args *bargs) 3778 { 3779 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3780 return 0; 3781 3782 chunk_type = chunk_to_extended(chunk_type) & 3783 BTRFS_EXTENDED_PROFILE_MASK; 3784 3785 if (bargs->target == chunk_type) 3786 return 1; 3787 3788 return 0; 3789 } 3790 3791 static int should_balance_chunk(struct extent_buffer *leaf, 3792 struct btrfs_chunk *chunk, u64 chunk_offset) 3793 { 3794 struct btrfs_fs_info *fs_info = leaf->fs_info; 3795 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3796 struct btrfs_balance_args *bargs = NULL; 3797 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3798 3799 /* type filter */ 3800 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3801 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3802 return 0; 3803 } 3804 3805 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3806 bargs = &bctl->data; 3807 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3808 bargs = &bctl->sys; 3809 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3810 bargs = &bctl->meta; 3811 3812 /* profiles filter */ 3813 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3814 chunk_profiles_filter(chunk_type, bargs)) { 3815 return 0; 3816 } 3817 3818 /* usage filter */ 3819 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3820 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3821 return 0; 3822 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3823 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3824 return 0; 3825 } 3826 3827 /* devid filter */ 3828 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3829 chunk_devid_filter(leaf, chunk, bargs)) { 3830 return 0; 3831 } 3832 3833 /* drange filter, makes sense only with devid filter */ 3834 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3835 chunk_drange_filter(leaf, chunk, bargs)) { 3836 return 0; 3837 } 3838 3839 /* vrange filter */ 3840 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3841 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3842 return 0; 3843 } 3844 3845 /* stripes filter */ 3846 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3847 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3848 return 0; 3849 } 3850 3851 /* soft profile changing mode */ 3852 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3853 chunk_soft_convert_filter(chunk_type, bargs)) { 3854 return 0; 3855 } 3856 3857 /* 3858 * limited by count, must be the last filter 3859 */ 3860 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3861 if (bargs->limit == 0) 3862 return 0; 3863 else 3864 bargs->limit--; 3865 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3866 /* 3867 * Same logic as the 'limit' filter; the minimum cannot be 3868 * determined here because we do not have the global information 3869 * about the count of all chunks that satisfy the filters. 3870 */ 3871 if (bargs->limit_max == 0) 3872 return 0; 3873 else 3874 bargs->limit_max--; 3875 } 3876 3877 return 1; 3878 } 3879 3880 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3881 { 3882 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3883 struct btrfs_root *chunk_root = fs_info->chunk_root; 3884 u64 chunk_type; 3885 struct btrfs_chunk *chunk; 3886 struct btrfs_path *path = NULL; 3887 struct btrfs_key key; 3888 struct btrfs_key found_key; 3889 struct extent_buffer *leaf; 3890 int slot; 3891 int ret; 3892 int enospc_errors = 0; 3893 bool counting = true; 3894 /* The single value limit and min/max limits use the same bytes in the */ 3895 u64 limit_data = bctl->data.limit; 3896 u64 limit_meta = bctl->meta.limit; 3897 u64 limit_sys = bctl->sys.limit; 3898 u32 count_data = 0; 3899 u32 count_meta = 0; 3900 u32 count_sys = 0; 3901 int chunk_reserved = 0; 3902 3903 path = btrfs_alloc_path(); 3904 if (!path) { 3905 ret = -ENOMEM; 3906 goto error; 3907 } 3908 3909 /* zero out stat counters */ 3910 spin_lock(&fs_info->balance_lock); 3911 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3912 spin_unlock(&fs_info->balance_lock); 3913 again: 3914 if (!counting) { 3915 /* 3916 * The single value limit and min/max limits use the same bytes 3917 * in the 3918 */ 3919 bctl->data.limit = limit_data; 3920 bctl->meta.limit = limit_meta; 3921 bctl->sys.limit = limit_sys; 3922 } 3923 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3924 key.offset = (u64)-1; 3925 key.type = BTRFS_CHUNK_ITEM_KEY; 3926 3927 while (1) { 3928 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3929 atomic_read(&fs_info->balance_cancel_req)) { 3930 ret = -ECANCELED; 3931 goto error; 3932 } 3933 3934 mutex_lock(&fs_info->reclaim_bgs_lock); 3935 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3936 if (ret < 0) { 3937 mutex_unlock(&fs_info->reclaim_bgs_lock); 3938 goto error; 3939 } 3940 3941 /* 3942 * this shouldn't happen, it means the last relocate 3943 * failed 3944 */ 3945 if (ret == 0) 3946 BUG(); /* FIXME break ? */ 3947 3948 ret = btrfs_previous_item(chunk_root, path, 0, 3949 BTRFS_CHUNK_ITEM_KEY); 3950 if (ret) { 3951 mutex_unlock(&fs_info->reclaim_bgs_lock); 3952 ret = 0; 3953 break; 3954 } 3955 3956 leaf = path->nodes[0]; 3957 slot = path->slots[0]; 3958 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3959 3960 if (found_key.objectid != key.objectid) { 3961 mutex_unlock(&fs_info->reclaim_bgs_lock); 3962 break; 3963 } 3964 3965 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3966 chunk_type = btrfs_chunk_type(leaf, chunk); 3967 3968 if (!counting) { 3969 spin_lock(&fs_info->balance_lock); 3970 bctl->stat.considered++; 3971 spin_unlock(&fs_info->balance_lock); 3972 } 3973 3974 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3975 3976 btrfs_release_path(path); 3977 if (!ret) { 3978 mutex_unlock(&fs_info->reclaim_bgs_lock); 3979 goto loop; 3980 } 3981 3982 if (counting) { 3983 mutex_unlock(&fs_info->reclaim_bgs_lock); 3984 spin_lock(&fs_info->balance_lock); 3985 bctl->stat.expected++; 3986 spin_unlock(&fs_info->balance_lock); 3987 3988 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3989 count_data++; 3990 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3991 count_sys++; 3992 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3993 count_meta++; 3994 3995 goto loop; 3996 } 3997 3998 /* 3999 * Apply limit_min filter, no need to check if the LIMITS 4000 * filter is used, limit_min is 0 by default 4001 */ 4002 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4003 count_data < bctl->data.limit_min) 4004 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4005 count_meta < bctl->meta.limit_min) 4006 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4007 count_sys < bctl->sys.limit_min)) { 4008 mutex_unlock(&fs_info->reclaim_bgs_lock); 4009 goto loop; 4010 } 4011 4012 if (!chunk_reserved) { 4013 /* 4014 * We may be relocating the only data chunk we have, 4015 * which could potentially end up with losing data's 4016 * raid profile, so lets allocate an empty one in 4017 * advance. 4018 */ 4019 ret = btrfs_may_alloc_data_chunk(fs_info, 4020 found_key.offset); 4021 if (ret < 0) { 4022 mutex_unlock(&fs_info->reclaim_bgs_lock); 4023 goto error; 4024 } else if (ret == 1) { 4025 chunk_reserved = 1; 4026 } 4027 } 4028 4029 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 4030 mutex_unlock(&fs_info->reclaim_bgs_lock); 4031 if (ret == -ENOSPC) { 4032 enospc_errors++; 4033 } else if (ret == -ETXTBSY) { 4034 btrfs_info(fs_info, 4035 "skipping relocation of block group %llu due to active swapfile", 4036 found_key.offset); 4037 ret = 0; 4038 } else if (ret) { 4039 goto error; 4040 } else { 4041 spin_lock(&fs_info->balance_lock); 4042 bctl->stat.completed++; 4043 spin_unlock(&fs_info->balance_lock); 4044 } 4045 loop: 4046 if (found_key.offset == 0) 4047 break; 4048 key.offset = found_key.offset - 1; 4049 } 4050 4051 if (counting) { 4052 btrfs_release_path(path); 4053 counting = false; 4054 goto again; 4055 } 4056 error: 4057 btrfs_free_path(path); 4058 if (enospc_errors) { 4059 btrfs_info(fs_info, "%d enospc errors during balance", 4060 enospc_errors); 4061 if (!ret) 4062 ret = -ENOSPC; 4063 } 4064 4065 return ret; 4066 } 4067 4068 /* 4069 * See if a given profile is valid and reduced. 4070 * 4071 * @flags: profile to validate 4072 * @extended: if true @flags is treated as an extended profile 4073 */ 4074 static int alloc_profile_is_valid(u64 flags, int extended) 4075 { 4076 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4077 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4078 4079 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4080 4081 /* 1) check that all other bits are zeroed */ 4082 if (flags & ~mask) 4083 return 0; 4084 4085 /* 2) see if profile is reduced */ 4086 if (flags == 0) 4087 return !extended; /* "0" is valid for usual profiles */ 4088 4089 return has_single_bit_set(flags); 4090 } 4091 4092 /* 4093 * Validate target profile against allowed profiles and return true if it's OK. 4094 * Otherwise print the error message and return false. 4095 */ 4096 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4097 const struct btrfs_balance_args *bargs, 4098 u64 allowed, const char *type) 4099 { 4100 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4101 return true; 4102 4103 /* Profile is valid and does not have bits outside of the allowed set */ 4104 if (alloc_profile_is_valid(bargs->target, 1) && 4105 (bargs->target & ~allowed) == 0) 4106 return true; 4107 4108 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4109 type, btrfs_bg_type_to_raid_name(bargs->target)); 4110 return false; 4111 } 4112 4113 /* 4114 * Fill @buf with textual description of balance filter flags @bargs, up to 4115 * @size_buf including the terminating null. The output may be trimmed if it 4116 * does not fit into the provided buffer. 4117 */ 4118 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4119 u32 size_buf) 4120 { 4121 int ret; 4122 u32 size_bp = size_buf; 4123 char *bp = buf; 4124 u64 flags = bargs->flags; 4125 char tmp_buf[128] = {'\0'}; 4126 4127 if (!flags) 4128 return; 4129 4130 #define CHECK_APPEND_NOARG(a) \ 4131 do { \ 4132 ret = snprintf(bp, size_bp, (a)); \ 4133 if (ret < 0 || ret >= size_bp) \ 4134 goto out_overflow; \ 4135 size_bp -= ret; \ 4136 bp += ret; \ 4137 } while (0) 4138 4139 #define CHECK_APPEND_1ARG(a, v1) \ 4140 do { \ 4141 ret = snprintf(bp, size_bp, (a), (v1)); \ 4142 if (ret < 0 || ret >= size_bp) \ 4143 goto out_overflow; \ 4144 size_bp -= ret; \ 4145 bp += ret; \ 4146 } while (0) 4147 4148 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4149 do { \ 4150 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4151 if (ret < 0 || ret >= size_bp) \ 4152 goto out_overflow; \ 4153 size_bp -= ret; \ 4154 bp += ret; \ 4155 } while (0) 4156 4157 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4158 CHECK_APPEND_1ARG("convert=%s,", 4159 btrfs_bg_type_to_raid_name(bargs->target)); 4160 4161 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4162 CHECK_APPEND_NOARG("soft,"); 4163 4164 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4165 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4166 sizeof(tmp_buf)); 4167 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4168 } 4169 4170 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4171 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4172 4173 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4174 CHECK_APPEND_2ARG("usage=%u..%u,", 4175 bargs->usage_min, bargs->usage_max); 4176 4177 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4178 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4179 4180 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4181 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4182 bargs->pstart, bargs->pend); 4183 4184 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4185 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4186 bargs->vstart, bargs->vend); 4187 4188 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4189 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4190 4191 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4192 CHECK_APPEND_2ARG("limit=%u..%u,", 4193 bargs->limit_min, bargs->limit_max); 4194 4195 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4196 CHECK_APPEND_2ARG("stripes=%u..%u,", 4197 bargs->stripes_min, bargs->stripes_max); 4198 4199 #undef CHECK_APPEND_2ARG 4200 #undef CHECK_APPEND_1ARG 4201 #undef CHECK_APPEND_NOARG 4202 4203 out_overflow: 4204 4205 if (size_bp < size_buf) 4206 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4207 else 4208 buf[0] = '\0'; 4209 } 4210 4211 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4212 { 4213 u32 size_buf = 1024; 4214 char tmp_buf[192] = {'\0'}; 4215 char *buf; 4216 char *bp; 4217 u32 size_bp = size_buf; 4218 int ret; 4219 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4220 4221 buf = kzalloc(size_buf, GFP_KERNEL); 4222 if (!buf) 4223 return; 4224 4225 bp = buf; 4226 4227 #define CHECK_APPEND_1ARG(a, v1) \ 4228 do { \ 4229 ret = snprintf(bp, size_bp, (a), (v1)); \ 4230 if (ret < 0 || ret >= size_bp) \ 4231 goto out_overflow; \ 4232 size_bp -= ret; \ 4233 bp += ret; \ 4234 } while (0) 4235 4236 if (bctl->flags & BTRFS_BALANCE_FORCE) 4237 CHECK_APPEND_1ARG("%s", "-f "); 4238 4239 if (bctl->flags & BTRFS_BALANCE_DATA) { 4240 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4241 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4242 } 4243 4244 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4245 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4246 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4247 } 4248 4249 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4250 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4251 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4252 } 4253 4254 #undef CHECK_APPEND_1ARG 4255 4256 out_overflow: 4257 4258 if (size_bp < size_buf) 4259 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4260 btrfs_info(fs_info, "balance: %s %s", 4261 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4262 "resume" : "start", buf); 4263 4264 kfree(buf); 4265 } 4266 4267 /* 4268 * Should be called with balance mutexe held 4269 */ 4270 int btrfs_balance(struct btrfs_fs_info *fs_info, 4271 struct btrfs_balance_control *bctl, 4272 struct btrfs_ioctl_balance_args *bargs) 4273 { 4274 u64 meta_target, data_target; 4275 u64 allowed; 4276 int mixed = 0; 4277 int ret; 4278 u64 num_devices; 4279 unsigned seq; 4280 bool reducing_redundancy; 4281 bool paused = false; 4282 int i; 4283 4284 if (btrfs_fs_closing(fs_info) || 4285 atomic_read(&fs_info->balance_pause_req) || 4286 btrfs_should_cancel_balance(fs_info)) { 4287 ret = -EINVAL; 4288 goto out; 4289 } 4290 4291 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4292 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4293 mixed = 1; 4294 4295 /* 4296 * In case of mixed groups both data and meta should be picked, 4297 * and identical options should be given for both of them. 4298 */ 4299 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4300 if (mixed && (bctl->flags & allowed)) { 4301 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4302 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4303 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4304 btrfs_err(fs_info, 4305 "balance: mixed groups data and metadata options must be the same"); 4306 ret = -EINVAL; 4307 goto out; 4308 } 4309 } 4310 4311 /* 4312 * rw_devices will not change at the moment, device add/delete/replace 4313 * are exclusive 4314 */ 4315 num_devices = fs_info->fs_devices->rw_devices; 4316 4317 /* 4318 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4319 * special bit for it, to make it easier to distinguish. Thus we need 4320 * to set it manually, or balance would refuse the profile. 4321 */ 4322 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4323 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4324 if (num_devices >= btrfs_raid_array[i].devs_min) 4325 allowed |= btrfs_raid_array[i].bg_flag; 4326 4327 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4328 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4329 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4330 ret = -EINVAL; 4331 goto out; 4332 } 4333 4334 /* 4335 * Allow to reduce metadata or system integrity only if force set for 4336 * profiles with redundancy (copies, parity) 4337 */ 4338 allowed = 0; 4339 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4340 if (btrfs_raid_array[i].ncopies >= 2 || 4341 btrfs_raid_array[i].tolerated_failures >= 1) 4342 allowed |= btrfs_raid_array[i].bg_flag; 4343 } 4344 do { 4345 seq = read_seqbegin(&fs_info->profiles_lock); 4346 4347 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4348 (fs_info->avail_system_alloc_bits & allowed) && 4349 !(bctl->sys.target & allowed)) || 4350 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4351 (fs_info->avail_metadata_alloc_bits & allowed) && 4352 !(bctl->meta.target & allowed))) 4353 reducing_redundancy = true; 4354 else 4355 reducing_redundancy = false; 4356 4357 /* if we're not converting, the target field is uninitialized */ 4358 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4359 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4360 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4361 bctl->data.target : fs_info->avail_data_alloc_bits; 4362 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4363 4364 if (reducing_redundancy) { 4365 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4366 btrfs_info(fs_info, 4367 "balance: force reducing metadata redundancy"); 4368 } else { 4369 btrfs_err(fs_info, 4370 "balance: reduces metadata redundancy, use --force if you want this"); 4371 ret = -EINVAL; 4372 goto out; 4373 } 4374 } 4375 4376 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4377 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4378 btrfs_warn(fs_info, 4379 "balance: metadata profile %s has lower redundancy than data profile %s", 4380 btrfs_bg_type_to_raid_name(meta_target), 4381 btrfs_bg_type_to_raid_name(data_target)); 4382 } 4383 4384 ret = insert_balance_item(fs_info, bctl); 4385 if (ret && ret != -EEXIST) 4386 goto out; 4387 4388 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4389 BUG_ON(ret == -EEXIST); 4390 BUG_ON(fs_info->balance_ctl); 4391 spin_lock(&fs_info->balance_lock); 4392 fs_info->balance_ctl = bctl; 4393 spin_unlock(&fs_info->balance_lock); 4394 } else { 4395 BUG_ON(ret != -EEXIST); 4396 spin_lock(&fs_info->balance_lock); 4397 update_balance_args(bctl); 4398 spin_unlock(&fs_info->balance_lock); 4399 } 4400 4401 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4402 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4403 describe_balance_start_or_resume(fs_info); 4404 mutex_unlock(&fs_info->balance_mutex); 4405 4406 ret = __btrfs_balance(fs_info); 4407 4408 mutex_lock(&fs_info->balance_mutex); 4409 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4410 btrfs_info(fs_info, "balance: paused"); 4411 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4412 paused = true; 4413 } 4414 /* 4415 * Balance can be canceled by: 4416 * 4417 * - Regular cancel request 4418 * Then ret == -ECANCELED and balance_cancel_req > 0 4419 * 4420 * - Fatal signal to "btrfs" process 4421 * Either the signal caught by wait_reserve_ticket() and callers 4422 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4423 * got -ECANCELED. 4424 * Either way, in this case balance_cancel_req = 0, and 4425 * ret == -EINTR or ret == -ECANCELED. 4426 * 4427 * So here we only check the return value to catch canceled balance. 4428 */ 4429 else if (ret == -ECANCELED || ret == -EINTR) 4430 btrfs_info(fs_info, "balance: canceled"); 4431 else 4432 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4433 4434 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4435 4436 if (bargs) { 4437 memset(bargs, 0, sizeof(*bargs)); 4438 btrfs_update_ioctl_balance_args(fs_info, bargs); 4439 } 4440 4441 /* We didn't pause, we can clean everything up. */ 4442 if (!paused) { 4443 reset_balance_state(fs_info); 4444 btrfs_exclop_finish(fs_info); 4445 } 4446 4447 wake_up(&fs_info->balance_wait_q); 4448 4449 return ret; 4450 out: 4451 if (bctl->flags & BTRFS_BALANCE_RESUME) 4452 reset_balance_state(fs_info); 4453 else 4454 kfree(bctl); 4455 btrfs_exclop_finish(fs_info); 4456 4457 return ret; 4458 } 4459 4460 static int balance_kthread(void *data) 4461 { 4462 struct btrfs_fs_info *fs_info = data; 4463 int ret = 0; 4464 4465 sb_start_write(fs_info->sb); 4466 mutex_lock(&fs_info->balance_mutex); 4467 if (fs_info->balance_ctl) 4468 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4469 mutex_unlock(&fs_info->balance_mutex); 4470 sb_end_write(fs_info->sb); 4471 4472 return ret; 4473 } 4474 4475 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4476 { 4477 struct task_struct *tsk; 4478 4479 mutex_lock(&fs_info->balance_mutex); 4480 if (!fs_info->balance_ctl) { 4481 mutex_unlock(&fs_info->balance_mutex); 4482 return 0; 4483 } 4484 mutex_unlock(&fs_info->balance_mutex); 4485 4486 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4487 btrfs_info(fs_info, "balance: resume skipped"); 4488 return 0; 4489 } 4490 4491 spin_lock(&fs_info->super_lock); 4492 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4493 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4494 spin_unlock(&fs_info->super_lock); 4495 /* 4496 * A ro->rw remount sequence should continue with the paused balance 4497 * regardless of who pauses it, system or the user as of now, so set 4498 * the resume flag. 4499 */ 4500 spin_lock(&fs_info->balance_lock); 4501 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4502 spin_unlock(&fs_info->balance_lock); 4503 4504 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4505 return PTR_ERR_OR_ZERO(tsk); 4506 } 4507 4508 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4509 { 4510 struct btrfs_balance_control *bctl; 4511 struct btrfs_balance_item *item; 4512 struct btrfs_disk_balance_args disk_bargs; 4513 struct btrfs_path *path; 4514 struct extent_buffer *leaf; 4515 struct btrfs_key key; 4516 int ret; 4517 4518 path = btrfs_alloc_path(); 4519 if (!path) 4520 return -ENOMEM; 4521 4522 key.objectid = BTRFS_BALANCE_OBJECTID; 4523 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4524 key.offset = 0; 4525 4526 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4527 if (ret < 0) 4528 goto out; 4529 if (ret > 0) { /* ret = -ENOENT; */ 4530 ret = 0; 4531 goto out; 4532 } 4533 4534 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4535 if (!bctl) { 4536 ret = -ENOMEM; 4537 goto out; 4538 } 4539 4540 leaf = path->nodes[0]; 4541 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4542 4543 bctl->flags = btrfs_balance_flags(leaf, item); 4544 bctl->flags |= BTRFS_BALANCE_RESUME; 4545 4546 btrfs_balance_data(leaf, item, &disk_bargs); 4547 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4548 btrfs_balance_meta(leaf, item, &disk_bargs); 4549 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4550 btrfs_balance_sys(leaf, item, &disk_bargs); 4551 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4552 4553 /* 4554 * This should never happen, as the paused balance state is recovered 4555 * during mount without any chance of other exclusive ops to collide. 4556 * 4557 * This gives the exclusive op status to balance and keeps in paused 4558 * state until user intervention (cancel or umount). If the ownership 4559 * cannot be assigned, show a message but do not fail. The balance 4560 * is in a paused state and must have fs_info::balance_ctl properly 4561 * set up. 4562 */ 4563 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4564 btrfs_warn(fs_info, 4565 "balance: cannot set exclusive op status, resume manually"); 4566 4567 btrfs_release_path(path); 4568 4569 mutex_lock(&fs_info->balance_mutex); 4570 BUG_ON(fs_info->balance_ctl); 4571 spin_lock(&fs_info->balance_lock); 4572 fs_info->balance_ctl = bctl; 4573 spin_unlock(&fs_info->balance_lock); 4574 mutex_unlock(&fs_info->balance_mutex); 4575 out: 4576 btrfs_free_path(path); 4577 return ret; 4578 } 4579 4580 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4581 { 4582 int ret = 0; 4583 4584 mutex_lock(&fs_info->balance_mutex); 4585 if (!fs_info->balance_ctl) { 4586 mutex_unlock(&fs_info->balance_mutex); 4587 return -ENOTCONN; 4588 } 4589 4590 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4591 atomic_inc(&fs_info->balance_pause_req); 4592 mutex_unlock(&fs_info->balance_mutex); 4593 4594 wait_event(fs_info->balance_wait_q, 4595 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4596 4597 mutex_lock(&fs_info->balance_mutex); 4598 /* we are good with balance_ctl ripped off from under us */ 4599 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4600 atomic_dec(&fs_info->balance_pause_req); 4601 } else { 4602 ret = -ENOTCONN; 4603 } 4604 4605 mutex_unlock(&fs_info->balance_mutex); 4606 return ret; 4607 } 4608 4609 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4610 { 4611 mutex_lock(&fs_info->balance_mutex); 4612 if (!fs_info->balance_ctl) { 4613 mutex_unlock(&fs_info->balance_mutex); 4614 return -ENOTCONN; 4615 } 4616 4617 /* 4618 * A paused balance with the item stored on disk can be resumed at 4619 * mount time if the mount is read-write. Otherwise it's still paused 4620 * and we must not allow cancelling as it deletes the item. 4621 */ 4622 if (sb_rdonly(fs_info->sb)) { 4623 mutex_unlock(&fs_info->balance_mutex); 4624 return -EROFS; 4625 } 4626 4627 atomic_inc(&fs_info->balance_cancel_req); 4628 /* 4629 * if we are running just wait and return, balance item is 4630 * deleted in btrfs_balance in this case 4631 */ 4632 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4633 mutex_unlock(&fs_info->balance_mutex); 4634 wait_event(fs_info->balance_wait_q, 4635 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4636 mutex_lock(&fs_info->balance_mutex); 4637 } else { 4638 mutex_unlock(&fs_info->balance_mutex); 4639 /* 4640 * Lock released to allow other waiters to continue, we'll 4641 * reexamine the status again. 4642 */ 4643 mutex_lock(&fs_info->balance_mutex); 4644 4645 if (fs_info->balance_ctl) { 4646 reset_balance_state(fs_info); 4647 btrfs_exclop_finish(fs_info); 4648 btrfs_info(fs_info, "balance: canceled"); 4649 } 4650 } 4651 4652 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4653 atomic_dec(&fs_info->balance_cancel_req); 4654 mutex_unlock(&fs_info->balance_mutex); 4655 return 0; 4656 } 4657 4658 int btrfs_uuid_scan_kthread(void *data) 4659 { 4660 struct btrfs_fs_info *fs_info = data; 4661 struct btrfs_root *root = fs_info->tree_root; 4662 struct btrfs_key key; 4663 struct btrfs_path *path = NULL; 4664 int ret = 0; 4665 struct extent_buffer *eb; 4666 int slot; 4667 struct btrfs_root_item root_item; 4668 u32 item_size; 4669 struct btrfs_trans_handle *trans = NULL; 4670 bool closing = false; 4671 4672 path = btrfs_alloc_path(); 4673 if (!path) { 4674 ret = -ENOMEM; 4675 goto out; 4676 } 4677 4678 key.objectid = 0; 4679 key.type = BTRFS_ROOT_ITEM_KEY; 4680 key.offset = 0; 4681 4682 while (1) { 4683 if (btrfs_fs_closing(fs_info)) { 4684 closing = true; 4685 break; 4686 } 4687 ret = btrfs_search_forward(root, &key, path, 4688 BTRFS_OLDEST_GENERATION); 4689 if (ret) { 4690 if (ret > 0) 4691 ret = 0; 4692 break; 4693 } 4694 4695 if (key.type != BTRFS_ROOT_ITEM_KEY || 4696 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4697 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4698 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4699 goto skip; 4700 4701 eb = path->nodes[0]; 4702 slot = path->slots[0]; 4703 item_size = btrfs_item_size(eb, slot); 4704 if (item_size < sizeof(root_item)) 4705 goto skip; 4706 4707 read_extent_buffer(eb, &root_item, 4708 btrfs_item_ptr_offset(eb, slot), 4709 (int)sizeof(root_item)); 4710 if (btrfs_root_refs(&root_item) == 0) 4711 goto skip; 4712 4713 if (!btrfs_is_empty_uuid(root_item.uuid) || 4714 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4715 if (trans) 4716 goto update_tree; 4717 4718 btrfs_release_path(path); 4719 /* 4720 * 1 - subvol uuid item 4721 * 1 - received_subvol uuid item 4722 */ 4723 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4724 if (IS_ERR(trans)) { 4725 ret = PTR_ERR(trans); 4726 break; 4727 } 4728 continue; 4729 } else { 4730 goto skip; 4731 } 4732 update_tree: 4733 btrfs_release_path(path); 4734 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4735 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4736 BTRFS_UUID_KEY_SUBVOL, 4737 key.objectid); 4738 if (ret < 0) { 4739 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4740 ret); 4741 break; 4742 } 4743 } 4744 4745 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4746 ret = btrfs_uuid_tree_add(trans, 4747 root_item.received_uuid, 4748 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4749 key.objectid); 4750 if (ret < 0) { 4751 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4752 ret); 4753 break; 4754 } 4755 } 4756 4757 skip: 4758 btrfs_release_path(path); 4759 if (trans) { 4760 ret = btrfs_end_transaction(trans); 4761 trans = NULL; 4762 if (ret) 4763 break; 4764 } 4765 4766 if (key.offset < (u64)-1) { 4767 key.offset++; 4768 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4769 key.offset = 0; 4770 key.type = BTRFS_ROOT_ITEM_KEY; 4771 } else if (key.objectid < (u64)-1) { 4772 key.offset = 0; 4773 key.type = BTRFS_ROOT_ITEM_KEY; 4774 key.objectid++; 4775 } else { 4776 break; 4777 } 4778 cond_resched(); 4779 } 4780 4781 out: 4782 btrfs_free_path(path); 4783 if (trans && !IS_ERR(trans)) 4784 btrfs_end_transaction(trans); 4785 if (ret) 4786 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4787 else if (!closing) 4788 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4789 up(&fs_info->uuid_tree_rescan_sem); 4790 return 0; 4791 } 4792 4793 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4794 { 4795 struct btrfs_trans_handle *trans; 4796 struct btrfs_root *tree_root = fs_info->tree_root; 4797 struct btrfs_root *uuid_root; 4798 struct task_struct *task; 4799 int ret; 4800 4801 /* 4802 * 1 - root node 4803 * 1 - root item 4804 */ 4805 trans = btrfs_start_transaction(tree_root, 2); 4806 if (IS_ERR(trans)) 4807 return PTR_ERR(trans); 4808 4809 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4810 if (IS_ERR(uuid_root)) { 4811 ret = PTR_ERR(uuid_root); 4812 btrfs_abort_transaction(trans, ret); 4813 btrfs_end_transaction(trans); 4814 return ret; 4815 } 4816 4817 fs_info->uuid_root = uuid_root; 4818 4819 ret = btrfs_commit_transaction(trans); 4820 if (ret) 4821 return ret; 4822 4823 down(&fs_info->uuid_tree_rescan_sem); 4824 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4825 if (IS_ERR(task)) { 4826 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4827 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4828 up(&fs_info->uuid_tree_rescan_sem); 4829 return PTR_ERR(task); 4830 } 4831 4832 return 0; 4833 } 4834 4835 /* 4836 * shrinking a device means finding all of the device extents past 4837 * the new size, and then following the back refs to the chunks. 4838 * The chunk relocation code actually frees the device extent 4839 */ 4840 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4841 { 4842 struct btrfs_fs_info *fs_info = device->fs_info; 4843 struct btrfs_root *root = fs_info->dev_root; 4844 struct btrfs_trans_handle *trans; 4845 struct btrfs_dev_extent *dev_extent = NULL; 4846 struct btrfs_path *path; 4847 u64 length; 4848 u64 chunk_offset; 4849 int ret; 4850 int slot; 4851 int failed = 0; 4852 bool retried = false; 4853 struct extent_buffer *l; 4854 struct btrfs_key key; 4855 struct btrfs_super_block *super_copy = fs_info->super_copy; 4856 u64 old_total = btrfs_super_total_bytes(super_copy); 4857 u64 old_size = btrfs_device_get_total_bytes(device); 4858 u64 diff; 4859 u64 start; 4860 4861 new_size = round_down(new_size, fs_info->sectorsize); 4862 start = new_size; 4863 diff = round_down(old_size - new_size, fs_info->sectorsize); 4864 4865 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4866 return -EINVAL; 4867 4868 path = btrfs_alloc_path(); 4869 if (!path) 4870 return -ENOMEM; 4871 4872 path->reada = READA_BACK; 4873 4874 trans = btrfs_start_transaction(root, 0); 4875 if (IS_ERR(trans)) { 4876 btrfs_free_path(path); 4877 return PTR_ERR(trans); 4878 } 4879 4880 mutex_lock(&fs_info->chunk_mutex); 4881 4882 btrfs_device_set_total_bytes(device, new_size); 4883 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4884 device->fs_devices->total_rw_bytes -= diff; 4885 atomic64_sub(diff, &fs_info->free_chunk_space); 4886 } 4887 4888 /* 4889 * Once the device's size has been set to the new size, ensure all 4890 * in-memory chunks are synced to disk so that the loop below sees them 4891 * and relocates them accordingly. 4892 */ 4893 if (contains_pending_extent(device, &start, diff)) { 4894 mutex_unlock(&fs_info->chunk_mutex); 4895 ret = btrfs_commit_transaction(trans); 4896 if (ret) 4897 goto done; 4898 } else { 4899 mutex_unlock(&fs_info->chunk_mutex); 4900 btrfs_end_transaction(trans); 4901 } 4902 4903 again: 4904 key.objectid = device->devid; 4905 key.offset = (u64)-1; 4906 key.type = BTRFS_DEV_EXTENT_KEY; 4907 4908 do { 4909 mutex_lock(&fs_info->reclaim_bgs_lock); 4910 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4911 if (ret < 0) { 4912 mutex_unlock(&fs_info->reclaim_bgs_lock); 4913 goto done; 4914 } 4915 4916 ret = btrfs_previous_item(root, path, 0, key.type); 4917 if (ret) { 4918 mutex_unlock(&fs_info->reclaim_bgs_lock); 4919 if (ret < 0) 4920 goto done; 4921 ret = 0; 4922 btrfs_release_path(path); 4923 break; 4924 } 4925 4926 l = path->nodes[0]; 4927 slot = path->slots[0]; 4928 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4929 4930 if (key.objectid != device->devid) { 4931 mutex_unlock(&fs_info->reclaim_bgs_lock); 4932 btrfs_release_path(path); 4933 break; 4934 } 4935 4936 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4937 length = btrfs_dev_extent_length(l, dev_extent); 4938 4939 if (key.offset + length <= new_size) { 4940 mutex_unlock(&fs_info->reclaim_bgs_lock); 4941 btrfs_release_path(path); 4942 break; 4943 } 4944 4945 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4946 btrfs_release_path(path); 4947 4948 /* 4949 * We may be relocating the only data chunk we have, 4950 * which could potentially end up with losing data's 4951 * raid profile, so lets allocate an empty one in 4952 * advance. 4953 */ 4954 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4955 if (ret < 0) { 4956 mutex_unlock(&fs_info->reclaim_bgs_lock); 4957 goto done; 4958 } 4959 4960 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4961 mutex_unlock(&fs_info->reclaim_bgs_lock); 4962 if (ret == -ENOSPC) { 4963 failed++; 4964 } else if (ret) { 4965 if (ret == -ETXTBSY) { 4966 btrfs_warn(fs_info, 4967 "could not shrink block group %llu due to active swapfile", 4968 chunk_offset); 4969 } 4970 goto done; 4971 } 4972 } while (key.offset-- > 0); 4973 4974 if (failed && !retried) { 4975 failed = 0; 4976 retried = true; 4977 goto again; 4978 } else if (failed && retried) { 4979 ret = -ENOSPC; 4980 goto done; 4981 } 4982 4983 /* Shrinking succeeded, else we would be at "done". */ 4984 trans = btrfs_start_transaction(root, 0); 4985 if (IS_ERR(trans)) { 4986 ret = PTR_ERR(trans); 4987 goto done; 4988 } 4989 4990 mutex_lock(&fs_info->chunk_mutex); 4991 /* Clear all state bits beyond the shrunk device size */ 4992 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4993 CHUNK_STATE_MASK); 4994 4995 btrfs_device_set_disk_total_bytes(device, new_size); 4996 if (list_empty(&device->post_commit_list)) 4997 list_add_tail(&device->post_commit_list, 4998 &trans->transaction->dev_update_list); 4999 5000 WARN_ON(diff > old_total); 5001 btrfs_set_super_total_bytes(super_copy, 5002 round_down(old_total - diff, fs_info->sectorsize)); 5003 mutex_unlock(&fs_info->chunk_mutex); 5004 5005 btrfs_reserve_chunk_metadata(trans, false); 5006 /* Now btrfs_update_device() will change the on-disk size. */ 5007 ret = btrfs_update_device(trans, device); 5008 btrfs_trans_release_chunk_metadata(trans); 5009 if (ret < 0) { 5010 btrfs_abort_transaction(trans, ret); 5011 btrfs_end_transaction(trans); 5012 } else { 5013 ret = btrfs_commit_transaction(trans); 5014 } 5015 done: 5016 btrfs_free_path(path); 5017 if (ret) { 5018 mutex_lock(&fs_info->chunk_mutex); 5019 btrfs_device_set_total_bytes(device, old_size); 5020 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5021 device->fs_devices->total_rw_bytes += diff; 5022 atomic64_add(diff, &fs_info->free_chunk_space); 5023 mutex_unlock(&fs_info->chunk_mutex); 5024 } 5025 return ret; 5026 } 5027 5028 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5029 struct btrfs_key *key, 5030 struct btrfs_chunk *chunk, int item_size) 5031 { 5032 struct btrfs_super_block *super_copy = fs_info->super_copy; 5033 struct btrfs_disk_key disk_key; 5034 u32 array_size; 5035 u8 *ptr; 5036 5037 lockdep_assert_held(&fs_info->chunk_mutex); 5038 5039 array_size = btrfs_super_sys_array_size(super_copy); 5040 if (array_size + item_size + sizeof(disk_key) 5041 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5042 return -EFBIG; 5043 5044 ptr = super_copy->sys_chunk_array + array_size; 5045 btrfs_cpu_key_to_disk(&disk_key, key); 5046 memcpy(ptr, &disk_key, sizeof(disk_key)); 5047 ptr += sizeof(disk_key); 5048 memcpy(ptr, chunk, item_size); 5049 item_size += sizeof(disk_key); 5050 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5051 5052 return 0; 5053 } 5054 5055 /* 5056 * sort the devices in descending order by max_avail, total_avail 5057 */ 5058 static int btrfs_cmp_device_info(const void *a, const void *b) 5059 { 5060 const struct btrfs_device_info *di_a = a; 5061 const struct btrfs_device_info *di_b = b; 5062 5063 if (di_a->max_avail > di_b->max_avail) 5064 return -1; 5065 if (di_a->max_avail < di_b->max_avail) 5066 return 1; 5067 if (di_a->total_avail > di_b->total_avail) 5068 return -1; 5069 if (di_a->total_avail < di_b->total_avail) 5070 return 1; 5071 return 0; 5072 } 5073 5074 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5075 { 5076 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5077 return; 5078 5079 btrfs_set_fs_incompat(info, RAID56); 5080 } 5081 5082 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5083 { 5084 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5085 return; 5086 5087 btrfs_set_fs_incompat(info, RAID1C34); 5088 } 5089 5090 /* 5091 * Structure used internally for btrfs_create_chunk() function. 5092 * Wraps needed parameters. 5093 */ 5094 struct alloc_chunk_ctl { 5095 u64 start; 5096 u64 type; 5097 /* Total number of stripes to allocate */ 5098 int num_stripes; 5099 /* sub_stripes info for map */ 5100 int sub_stripes; 5101 /* Stripes per device */ 5102 int dev_stripes; 5103 /* Maximum number of devices to use */ 5104 int devs_max; 5105 /* Minimum number of devices to use */ 5106 int devs_min; 5107 /* ndevs has to be a multiple of this */ 5108 int devs_increment; 5109 /* Number of copies */ 5110 int ncopies; 5111 /* Number of stripes worth of bytes to store parity information */ 5112 int nparity; 5113 u64 max_stripe_size; 5114 u64 max_chunk_size; 5115 u64 dev_extent_min; 5116 u64 stripe_size; 5117 u64 chunk_size; 5118 int ndevs; 5119 }; 5120 5121 static void init_alloc_chunk_ctl_policy_regular( 5122 struct btrfs_fs_devices *fs_devices, 5123 struct alloc_chunk_ctl *ctl) 5124 { 5125 struct btrfs_space_info *space_info; 5126 5127 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5128 ASSERT(space_info); 5129 5130 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5131 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5132 5133 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5134 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5135 5136 /* We don't want a chunk larger than 10% of writable space */ 5137 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5138 ctl->max_chunk_size); 5139 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5140 } 5141 5142 static void init_alloc_chunk_ctl_policy_zoned( 5143 struct btrfs_fs_devices *fs_devices, 5144 struct alloc_chunk_ctl *ctl) 5145 { 5146 u64 zone_size = fs_devices->fs_info->zone_size; 5147 u64 limit; 5148 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5149 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5150 u64 min_chunk_size = min_data_stripes * zone_size; 5151 u64 type = ctl->type; 5152 5153 ctl->max_stripe_size = zone_size; 5154 if (type & BTRFS_BLOCK_GROUP_DATA) { 5155 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5156 zone_size); 5157 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5158 ctl->max_chunk_size = ctl->max_stripe_size; 5159 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5160 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5161 ctl->devs_max = min_t(int, ctl->devs_max, 5162 BTRFS_MAX_DEVS_SYS_CHUNK); 5163 } else { 5164 BUG(); 5165 } 5166 5167 /* We don't want a chunk larger than 10% of writable space */ 5168 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5169 zone_size), 5170 min_chunk_size); 5171 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5172 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5173 } 5174 5175 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5176 struct alloc_chunk_ctl *ctl) 5177 { 5178 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5179 5180 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5181 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5182 ctl->devs_max = btrfs_raid_array[index].devs_max; 5183 if (!ctl->devs_max) 5184 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5185 ctl->devs_min = btrfs_raid_array[index].devs_min; 5186 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5187 ctl->ncopies = btrfs_raid_array[index].ncopies; 5188 ctl->nparity = btrfs_raid_array[index].nparity; 5189 ctl->ndevs = 0; 5190 5191 switch (fs_devices->chunk_alloc_policy) { 5192 case BTRFS_CHUNK_ALLOC_REGULAR: 5193 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5194 break; 5195 case BTRFS_CHUNK_ALLOC_ZONED: 5196 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5197 break; 5198 default: 5199 BUG(); 5200 } 5201 } 5202 5203 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5204 struct alloc_chunk_ctl *ctl, 5205 struct btrfs_device_info *devices_info) 5206 { 5207 struct btrfs_fs_info *info = fs_devices->fs_info; 5208 struct btrfs_device *device; 5209 u64 total_avail; 5210 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5211 int ret; 5212 int ndevs = 0; 5213 u64 max_avail; 5214 u64 dev_offset; 5215 5216 /* 5217 * in the first pass through the devices list, we gather information 5218 * about the available holes on each device. 5219 */ 5220 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5221 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5222 WARN(1, KERN_ERR 5223 "BTRFS: read-only device in alloc_list\n"); 5224 continue; 5225 } 5226 5227 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5228 &device->dev_state) || 5229 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5230 continue; 5231 5232 if (device->total_bytes > device->bytes_used) 5233 total_avail = device->total_bytes - device->bytes_used; 5234 else 5235 total_avail = 0; 5236 5237 /* If there is no space on this device, skip it. */ 5238 if (total_avail < ctl->dev_extent_min) 5239 continue; 5240 5241 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5242 &max_avail); 5243 if (ret && ret != -ENOSPC) 5244 return ret; 5245 5246 if (ret == 0) 5247 max_avail = dev_extent_want; 5248 5249 if (max_avail < ctl->dev_extent_min) { 5250 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5251 btrfs_debug(info, 5252 "%s: devid %llu has no free space, have=%llu want=%llu", 5253 __func__, device->devid, max_avail, 5254 ctl->dev_extent_min); 5255 continue; 5256 } 5257 5258 if (ndevs == fs_devices->rw_devices) { 5259 WARN(1, "%s: found more than %llu devices\n", 5260 __func__, fs_devices->rw_devices); 5261 break; 5262 } 5263 devices_info[ndevs].dev_offset = dev_offset; 5264 devices_info[ndevs].max_avail = max_avail; 5265 devices_info[ndevs].total_avail = total_avail; 5266 devices_info[ndevs].dev = device; 5267 ++ndevs; 5268 } 5269 ctl->ndevs = ndevs; 5270 5271 /* 5272 * now sort the devices by hole size / available space 5273 */ 5274 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5275 btrfs_cmp_device_info, NULL); 5276 5277 return 0; 5278 } 5279 5280 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5281 struct btrfs_device_info *devices_info) 5282 { 5283 /* Number of stripes that count for block group size */ 5284 int data_stripes; 5285 5286 /* 5287 * The primary goal is to maximize the number of stripes, so use as 5288 * many devices as possible, even if the stripes are not maximum sized. 5289 * 5290 * The DUP profile stores more than one stripe per device, the 5291 * max_avail is the total size so we have to adjust. 5292 */ 5293 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5294 ctl->dev_stripes); 5295 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5296 5297 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5298 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5299 5300 /* 5301 * Use the number of data stripes to figure out how big this chunk is 5302 * really going to be in terms of logical address space, and compare 5303 * that answer with the max chunk size. If it's higher, we try to 5304 * reduce stripe_size. 5305 */ 5306 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5307 /* 5308 * Reduce stripe_size, round it up to a 16MB boundary again and 5309 * then use it, unless it ends up being even bigger than the 5310 * previous value we had already. 5311 */ 5312 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5313 data_stripes), SZ_16M), 5314 ctl->stripe_size); 5315 } 5316 5317 /* Stripe size should not go beyond 1G. */ 5318 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5319 5320 /* Align to BTRFS_STRIPE_LEN */ 5321 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5322 ctl->chunk_size = ctl->stripe_size * data_stripes; 5323 5324 return 0; 5325 } 5326 5327 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5328 struct btrfs_device_info *devices_info) 5329 { 5330 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5331 /* Number of stripes that count for block group size */ 5332 int data_stripes; 5333 5334 /* 5335 * It should hold because: 5336 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5337 */ 5338 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5339 5340 ctl->stripe_size = zone_size; 5341 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5342 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5343 5344 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5345 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5346 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5347 ctl->stripe_size) + ctl->nparity, 5348 ctl->dev_stripes); 5349 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5350 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5351 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5352 } 5353 5354 ctl->chunk_size = ctl->stripe_size * data_stripes; 5355 5356 return 0; 5357 } 5358 5359 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5360 struct alloc_chunk_ctl *ctl, 5361 struct btrfs_device_info *devices_info) 5362 { 5363 struct btrfs_fs_info *info = fs_devices->fs_info; 5364 5365 /* 5366 * Round down to number of usable stripes, devs_increment can be any 5367 * number so we can't use round_down() that requires power of 2, while 5368 * rounddown is safe. 5369 */ 5370 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5371 5372 if (ctl->ndevs < ctl->devs_min) { 5373 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5374 btrfs_debug(info, 5375 "%s: not enough devices with free space: have=%d minimum required=%d", 5376 __func__, ctl->ndevs, ctl->devs_min); 5377 } 5378 return -ENOSPC; 5379 } 5380 5381 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5382 5383 switch (fs_devices->chunk_alloc_policy) { 5384 case BTRFS_CHUNK_ALLOC_REGULAR: 5385 return decide_stripe_size_regular(ctl, devices_info); 5386 case BTRFS_CHUNK_ALLOC_ZONED: 5387 return decide_stripe_size_zoned(ctl, devices_info); 5388 default: 5389 BUG(); 5390 } 5391 } 5392 5393 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5394 struct alloc_chunk_ctl *ctl, 5395 struct btrfs_device_info *devices_info) 5396 { 5397 struct btrfs_fs_info *info = trans->fs_info; 5398 struct map_lookup *map = NULL; 5399 struct extent_map_tree *em_tree; 5400 struct btrfs_block_group *block_group; 5401 struct extent_map *em; 5402 u64 start = ctl->start; 5403 u64 type = ctl->type; 5404 int ret; 5405 int i; 5406 int j; 5407 5408 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5409 if (!map) 5410 return ERR_PTR(-ENOMEM); 5411 map->num_stripes = ctl->num_stripes; 5412 5413 for (i = 0; i < ctl->ndevs; ++i) { 5414 for (j = 0; j < ctl->dev_stripes; ++j) { 5415 int s = i * ctl->dev_stripes + j; 5416 map->stripes[s].dev = devices_info[i].dev; 5417 map->stripes[s].physical = devices_info[i].dev_offset + 5418 j * ctl->stripe_size; 5419 } 5420 } 5421 map->io_align = BTRFS_STRIPE_LEN; 5422 map->io_width = BTRFS_STRIPE_LEN; 5423 map->type = type; 5424 map->sub_stripes = ctl->sub_stripes; 5425 5426 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5427 5428 em = alloc_extent_map(); 5429 if (!em) { 5430 kfree(map); 5431 return ERR_PTR(-ENOMEM); 5432 } 5433 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5434 em->map_lookup = map; 5435 em->start = start; 5436 em->len = ctl->chunk_size; 5437 em->block_start = 0; 5438 em->block_len = em->len; 5439 em->orig_block_len = ctl->stripe_size; 5440 5441 em_tree = &info->mapping_tree; 5442 write_lock(&em_tree->lock); 5443 ret = add_extent_mapping(em_tree, em, 0); 5444 if (ret) { 5445 write_unlock(&em_tree->lock); 5446 free_extent_map(em); 5447 return ERR_PTR(ret); 5448 } 5449 write_unlock(&em_tree->lock); 5450 5451 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size); 5452 if (IS_ERR(block_group)) 5453 goto error_del_extent; 5454 5455 for (i = 0; i < map->num_stripes; i++) { 5456 struct btrfs_device *dev = map->stripes[i].dev; 5457 5458 btrfs_device_set_bytes_used(dev, 5459 dev->bytes_used + ctl->stripe_size); 5460 if (list_empty(&dev->post_commit_list)) 5461 list_add_tail(&dev->post_commit_list, 5462 &trans->transaction->dev_update_list); 5463 } 5464 5465 atomic64_sub(ctl->stripe_size * map->num_stripes, 5466 &info->free_chunk_space); 5467 5468 free_extent_map(em); 5469 check_raid56_incompat_flag(info, type); 5470 check_raid1c34_incompat_flag(info, type); 5471 5472 return block_group; 5473 5474 error_del_extent: 5475 write_lock(&em_tree->lock); 5476 remove_extent_mapping(em_tree, em); 5477 write_unlock(&em_tree->lock); 5478 5479 /* One for our allocation */ 5480 free_extent_map(em); 5481 /* One for the tree reference */ 5482 free_extent_map(em); 5483 5484 return block_group; 5485 } 5486 5487 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5488 u64 type) 5489 { 5490 struct btrfs_fs_info *info = trans->fs_info; 5491 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5492 struct btrfs_device_info *devices_info = NULL; 5493 struct alloc_chunk_ctl ctl; 5494 struct btrfs_block_group *block_group; 5495 int ret; 5496 5497 lockdep_assert_held(&info->chunk_mutex); 5498 5499 if (!alloc_profile_is_valid(type, 0)) { 5500 ASSERT(0); 5501 return ERR_PTR(-EINVAL); 5502 } 5503 5504 if (list_empty(&fs_devices->alloc_list)) { 5505 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5506 btrfs_debug(info, "%s: no writable device", __func__); 5507 return ERR_PTR(-ENOSPC); 5508 } 5509 5510 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5511 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5512 ASSERT(0); 5513 return ERR_PTR(-EINVAL); 5514 } 5515 5516 ctl.start = find_next_chunk(info); 5517 ctl.type = type; 5518 init_alloc_chunk_ctl(fs_devices, &ctl); 5519 5520 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5521 GFP_NOFS); 5522 if (!devices_info) 5523 return ERR_PTR(-ENOMEM); 5524 5525 ret = gather_device_info(fs_devices, &ctl, devices_info); 5526 if (ret < 0) { 5527 block_group = ERR_PTR(ret); 5528 goto out; 5529 } 5530 5531 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5532 if (ret < 0) { 5533 block_group = ERR_PTR(ret); 5534 goto out; 5535 } 5536 5537 block_group = create_chunk(trans, &ctl, devices_info); 5538 5539 out: 5540 kfree(devices_info); 5541 return block_group; 5542 } 5543 5544 /* 5545 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5546 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5547 * chunks. 5548 * 5549 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5550 * phases. 5551 */ 5552 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5553 struct btrfs_block_group *bg) 5554 { 5555 struct btrfs_fs_info *fs_info = trans->fs_info; 5556 struct btrfs_root *chunk_root = fs_info->chunk_root; 5557 struct btrfs_key key; 5558 struct btrfs_chunk *chunk; 5559 struct btrfs_stripe *stripe; 5560 struct extent_map *em; 5561 struct map_lookup *map; 5562 size_t item_size; 5563 int i; 5564 int ret; 5565 5566 /* 5567 * We take the chunk_mutex for 2 reasons: 5568 * 5569 * 1) Updates and insertions in the chunk btree must be done while holding 5570 * the chunk_mutex, as well as updating the system chunk array in the 5571 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5572 * details; 5573 * 5574 * 2) To prevent races with the final phase of a device replace operation 5575 * that replaces the device object associated with the map's stripes, 5576 * because the device object's id can change at any time during that 5577 * final phase of the device replace operation 5578 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5579 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5580 * which would cause a failure when updating the device item, which does 5581 * not exists, or persisting a stripe of the chunk item with such ID. 5582 * Here we can't use the device_list_mutex because our caller already 5583 * has locked the chunk_mutex, and the final phase of device replace 5584 * acquires both mutexes - first the device_list_mutex and then the 5585 * chunk_mutex. Using any of those two mutexes protects us from a 5586 * concurrent device replace. 5587 */ 5588 lockdep_assert_held(&fs_info->chunk_mutex); 5589 5590 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5591 if (IS_ERR(em)) { 5592 ret = PTR_ERR(em); 5593 btrfs_abort_transaction(trans, ret); 5594 return ret; 5595 } 5596 5597 map = em->map_lookup; 5598 item_size = btrfs_chunk_item_size(map->num_stripes); 5599 5600 chunk = kzalloc(item_size, GFP_NOFS); 5601 if (!chunk) { 5602 ret = -ENOMEM; 5603 btrfs_abort_transaction(trans, ret); 5604 goto out; 5605 } 5606 5607 for (i = 0; i < map->num_stripes; i++) { 5608 struct btrfs_device *device = map->stripes[i].dev; 5609 5610 ret = btrfs_update_device(trans, device); 5611 if (ret) 5612 goto out; 5613 } 5614 5615 stripe = &chunk->stripe; 5616 for (i = 0; i < map->num_stripes; i++) { 5617 struct btrfs_device *device = map->stripes[i].dev; 5618 const u64 dev_offset = map->stripes[i].physical; 5619 5620 btrfs_set_stack_stripe_devid(stripe, device->devid); 5621 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5622 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5623 stripe++; 5624 } 5625 5626 btrfs_set_stack_chunk_length(chunk, bg->length); 5627 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5628 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5629 btrfs_set_stack_chunk_type(chunk, map->type); 5630 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5631 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5632 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5633 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5634 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5635 5636 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5637 key.type = BTRFS_CHUNK_ITEM_KEY; 5638 key.offset = bg->start; 5639 5640 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5641 if (ret) 5642 goto out; 5643 5644 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5645 5646 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5647 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5648 if (ret) 5649 goto out; 5650 } 5651 5652 out: 5653 kfree(chunk); 5654 free_extent_map(em); 5655 return ret; 5656 } 5657 5658 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5659 { 5660 struct btrfs_fs_info *fs_info = trans->fs_info; 5661 u64 alloc_profile; 5662 struct btrfs_block_group *meta_bg; 5663 struct btrfs_block_group *sys_bg; 5664 5665 /* 5666 * When adding a new device for sprouting, the seed device is read-only 5667 * so we must first allocate a metadata and a system chunk. But before 5668 * adding the block group items to the extent, device and chunk btrees, 5669 * we must first: 5670 * 5671 * 1) Create both chunks without doing any changes to the btrees, as 5672 * otherwise we would get -ENOSPC since the block groups from the 5673 * seed device are read-only; 5674 * 5675 * 2) Add the device item for the new sprout device - finishing the setup 5676 * of a new block group requires updating the device item in the chunk 5677 * btree, so it must exist when we attempt to do it. The previous step 5678 * ensures this does not fail with -ENOSPC. 5679 * 5680 * After that we can add the block group items to their btrees: 5681 * update existing device item in the chunk btree, add a new block group 5682 * item to the extent btree, add a new chunk item to the chunk btree and 5683 * finally add the new device extent items to the devices btree. 5684 */ 5685 5686 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5687 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5688 if (IS_ERR(meta_bg)) 5689 return PTR_ERR(meta_bg); 5690 5691 alloc_profile = btrfs_system_alloc_profile(fs_info); 5692 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5693 if (IS_ERR(sys_bg)) 5694 return PTR_ERR(sys_bg); 5695 5696 return 0; 5697 } 5698 5699 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5700 { 5701 const int index = btrfs_bg_flags_to_raid_index(map->type); 5702 5703 return btrfs_raid_array[index].tolerated_failures; 5704 } 5705 5706 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5707 { 5708 struct extent_map *em; 5709 struct map_lookup *map; 5710 int miss_ndevs = 0; 5711 int i; 5712 bool ret = true; 5713 5714 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5715 if (IS_ERR(em)) 5716 return false; 5717 5718 map = em->map_lookup; 5719 for (i = 0; i < map->num_stripes; i++) { 5720 if (test_bit(BTRFS_DEV_STATE_MISSING, 5721 &map->stripes[i].dev->dev_state)) { 5722 miss_ndevs++; 5723 continue; 5724 } 5725 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5726 &map->stripes[i].dev->dev_state)) { 5727 ret = false; 5728 goto end; 5729 } 5730 } 5731 5732 /* 5733 * If the number of missing devices is larger than max errors, we can 5734 * not write the data into that chunk successfully. 5735 */ 5736 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5737 ret = false; 5738 end: 5739 free_extent_map(em); 5740 return ret; 5741 } 5742 5743 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5744 { 5745 struct extent_map *em; 5746 5747 while (1) { 5748 write_lock(&tree->lock); 5749 em = lookup_extent_mapping(tree, 0, (u64)-1); 5750 if (em) 5751 remove_extent_mapping(tree, em); 5752 write_unlock(&tree->lock); 5753 if (!em) 5754 break; 5755 /* once for us */ 5756 free_extent_map(em); 5757 /* once for the tree */ 5758 free_extent_map(em); 5759 } 5760 } 5761 5762 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5763 { 5764 struct extent_map *em; 5765 struct map_lookup *map; 5766 enum btrfs_raid_types index; 5767 int ret = 1; 5768 5769 em = btrfs_get_chunk_map(fs_info, logical, len); 5770 if (IS_ERR(em)) 5771 /* 5772 * We could return errors for these cases, but that could get 5773 * ugly and we'd probably do the same thing which is just not do 5774 * anything else and exit, so return 1 so the callers don't try 5775 * to use other copies. 5776 */ 5777 return 1; 5778 5779 map = em->map_lookup; 5780 index = btrfs_bg_flags_to_raid_index(map->type); 5781 5782 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5783 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5784 ret = btrfs_raid_array[index].ncopies; 5785 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5786 ret = 2; 5787 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5788 /* 5789 * There could be two corrupted data stripes, we need 5790 * to loop retry in order to rebuild the correct data. 5791 * 5792 * Fail a stripe at a time on every retry except the 5793 * stripe under reconstruction. 5794 */ 5795 ret = map->num_stripes; 5796 free_extent_map(em); 5797 return ret; 5798 } 5799 5800 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5801 u64 logical) 5802 { 5803 struct extent_map *em; 5804 struct map_lookup *map; 5805 unsigned long len = fs_info->sectorsize; 5806 5807 if (!btrfs_fs_incompat(fs_info, RAID56)) 5808 return len; 5809 5810 em = btrfs_get_chunk_map(fs_info, logical, len); 5811 5812 if (!WARN_ON(IS_ERR(em))) { 5813 map = em->map_lookup; 5814 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5815 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5816 free_extent_map(em); 5817 } 5818 return len; 5819 } 5820 5821 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5822 { 5823 struct extent_map *em; 5824 struct map_lookup *map; 5825 int ret = 0; 5826 5827 if (!btrfs_fs_incompat(fs_info, RAID56)) 5828 return 0; 5829 5830 em = btrfs_get_chunk_map(fs_info, logical, len); 5831 5832 if(!WARN_ON(IS_ERR(em))) { 5833 map = em->map_lookup; 5834 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5835 ret = 1; 5836 free_extent_map(em); 5837 } 5838 return ret; 5839 } 5840 5841 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5842 struct map_lookup *map, int first, 5843 int dev_replace_is_ongoing) 5844 { 5845 int i; 5846 int num_stripes; 5847 int preferred_mirror; 5848 int tolerance; 5849 struct btrfs_device *srcdev; 5850 5851 ASSERT((map->type & 5852 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5853 5854 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5855 num_stripes = map->sub_stripes; 5856 else 5857 num_stripes = map->num_stripes; 5858 5859 switch (fs_info->fs_devices->read_policy) { 5860 default: 5861 /* Shouldn't happen, just warn and use pid instead of failing */ 5862 btrfs_warn_rl(fs_info, 5863 "unknown read_policy type %u, reset to pid", 5864 fs_info->fs_devices->read_policy); 5865 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5866 fallthrough; 5867 case BTRFS_READ_POLICY_PID: 5868 preferred_mirror = first + (current->pid % num_stripes); 5869 break; 5870 } 5871 5872 if (dev_replace_is_ongoing && 5873 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5874 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5875 srcdev = fs_info->dev_replace.srcdev; 5876 else 5877 srcdev = NULL; 5878 5879 /* 5880 * try to avoid the drive that is the source drive for a 5881 * dev-replace procedure, only choose it if no other non-missing 5882 * mirror is available 5883 */ 5884 for (tolerance = 0; tolerance < 2; tolerance++) { 5885 if (map->stripes[preferred_mirror].dev->bdev && 5886 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5887 return preferred_mirror; 5888 for (i = first; i < first + num_stripes; i++) { 5889 if (map->stripes[i].dev->bdev && 5890 (tolerance || map->stripes[i].dev != srcdev)) 5891 return i; 5892 } 5893 } 5894 5895 /* we couldn't find one that doesn't fail. Just return something 5896 * and the io error handling code will clean up eventually 5897 */ 5898 return preferred_mirror; 5899 } 5900 5901 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 5902 u16 total_stripes) 5903 { 5904 struct btrfs_io_context *bioc; 5905 5906 bioc = kzalloc( 5907 /* The size of btrfs_io_context */ 5908 sizeof(struct btrfs_io_context) + 5909 /* Plus the variable array for the stripes */ 5910 sizeof(struct btrfs_io_stripe) * (total_stripes), 5911 GFP_NOFS); 5912 5913 if (!bioc) 5914 return NULL; 5915 5916 refcount_set(&bioc->refs, 1); 5917 5918 bioc->fs_info = fs_info; 5919 bioc->replace_stripe_src = -1; 5920 bioc->full_stripe_logical = (u64)-1; 5921 5922 return bioc; 5923 } 5924 5925 void btrfs_get_bioc(struct btrfs_io_context *bioc) 5926 { 5927 WARN_ON(!refcount_read(&bioc->refs)); 5928 refcount_inc(&bioc->refs); 5929 } 5930 5931 void btrfs_put_bioc(struct btrfs_io_context *bioc) 5932 { 5933 if (!bioc) 5934 return; 5935 if (refcount_dec_and_test(&bioc->refs)) 5936 kfree(bioc); 5937 } 5938 5939 /* 5940 * Please note that, discard won't be sent to target device of device 5941 * replace. 5942 */ 5943 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 5944 u64 logical, u64 *length_ret, 5945 u32 *num_stripes) 5946 { 5947 struct extent_map *em; 5948 struct map_lookup *map; 5949 struct btrfs_discard_stripe *stripes; 5950 u64 length = *length_ret; 5951 u64 offset; 5952 u32 stripe_nr; 5953 u32 stripe_nr_end; 5954 u32 stripe_cnt; 5955 u64 stripe_end_offset; 5956 u64 stripe_offset; 5957 u32 stripe_index; 5958 u32 factor = 0; 5959 u32 sub_stripes = 0; 5960 u32 stripes_per_dev = 0; 5961 u32 remaining_stripes = 0; 5962 u32 last_stripe = 0; 5963 int ret; 5964 int i; 5965 5966 em = btrfs_get_chunk_map(fs_info, logical, length); 5967 if (IS_ERR(em)) 5968 return ERR_CAST(em); 5969 5970 map = em->map_lookup; 5971 5972 /* we don't discard raid56 yet */ 5973 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5974 ret = -EOPNOTSUPP; 5975 goto out_free_map; 5976 } 5977 5978 offset = logical - em->start; 5979 length = min_t(u64, em->start + em->len - logical, length); 5980 *length_ret = length; 5981 5982 /* 5983 * stripe_nr counts the total number of stripes we have to stride 5984 * to get to this block 5985 */ 5986 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 5987 5988 /* stripe_offset is the offset of this block in its stripe */ 5989 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 5990 5991 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 5992 BTRFS_STRIPE_LEN_SHIFT; 5993 stripe_cnt = stripe_nr_end - stripe_nr; 5994 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 5995 (offset + length); 5996 /* 5997 * after this, stripe_nr is the number of stripes on this 5998 * device we have to walk to find the data, and stripe_index is 5999 * the number of our device in the stripe array 6000 */ 6001 *num_stripes = 1; 6002 stripe_index = 0; 6003 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6004 BTRFS_BLOCK_GROUP_RAID10)) { 6005 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6006 sub_stripes = 1; 6007 else 6008 sub_stripes = map->sub_stripes; 6009 6010 factor = map->num_stripes / sub_stripes; 6011 *num_stripes = min_t(u64, map->num_stripes, 6012 sub_stripes * stripe_cnt); 6013 stripe_index = stripe_nr % factor; 6014 stripe_nr /= factor; 6015 stripe_index *= sub_stripes; 6016 6017 remaining_stripes = stripe_cnt % factor; 6018 stripes_per_dev = stripe_cnt / factor; 6019 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6020 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6021 BTRFS_BLOCK_GROUP_DUP)) { 6022 *num_stripes = map->num_stripes; 6023 } else { 6024 stripe_index = stripe_nr % map->num_stripes; 6025 stripe_nr /= map->num_stripes; 6026 } 6027 6028 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6029 if (!stripes) { 6030 ret = -ENOMEM; 6031 goto out_free_map; 6032 } 6033 6034 for (i = 0; i < *num_stripes; i++) { 6035 stripes[i].physical = 6036 map->stripes[stripe_index].physical + 6037 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6038 stripes[i].dev = map->stripes[stripe_index].dev; 6039 6040 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6041 BTRFS_BLOCK_GROUP_RAID10)) { 6042 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6043 6044 if (i / sub_stripes < remaining_stripes) 6045 stripes[i].length += BTRFS_STRIPE_LEN; 6046 6047 /* 6048 * Special for the first stripe and 6049 * the last stripe: 6050 * 6051 * |-------|...|-------| 6052 * |----------| 6053 * off end_off 6054 */ 6055 if (i < sub_stripes) 6056 stripes[i].length -= stripe_offset; 6057 6058 if (stripe_index >= last_stripe && 6059 stripe_index <= (last_stripe + 6060 sub_stripes - 1)) 6061 stripes[i].length -= stripe_end_offset; 6062 6063 if (i == sub_stripes - 1) 6064 stripe_offset = 0; 6065 } else { 6066 stripes[i].length = length; 6067 } 6068 6069 stripe_index++; 6070 if (stripe_index == map->num_stripes) { 6071 stripe_index = 0; 6072 stripe_nr++; 6073 } 6074 } 6075 6076 free_extent_map(em); 6077 return stripes; 6078 out_free_map: 6079 free_extent_map(em); 6080 return ERR_PTR(ret); 6081 } 6082 6083 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6084 { 6085 struct btrfs_block_group *cache; 6086 bool ret; 6087 6088 /* Non zoned filesystem does not use "to_copy" flag */ 6089 if (!btrfs_is_zoned(fs_info)) 6090 return false; 6091 6092 cache = btrfs_lookup_block_group(fs_info, logical); 6093 6094 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6095 6096 btrfs_put_block_group(cache); 6097 return ret; 6098 } 6099 6100 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6101 struct btrfs_io_context *bioc, 6102 struct btrfs_dev_replace *dev_replace, 6103 u64 logical, 6104 int *num_stripes_ret, int *max_errors_ret) 6105 { 6106 u64 srcdev_devid = dev_replace->srcdev->devid; 6107 /* 6108 * At this stage, num_stripes is still the real number of stripes, 6109 * excluding the duplicated stripes. 6110 */ 6111 int num_stripes = *num_stripes_ret; 6112 int nr_extra_stripes = 0; 6113 int max_errors = *max_errors_ret; 6114 int i; 6115 6116 /* 6117 * A block group which has "to_copy" set will eventually be copied by 6118 * the dev-replace process. We can avoid cloning IO here. 6119 */ 6120 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6121 return; 6122 6123 /* 6124 * Duplicate the write operations while the dev-replace procedure is 6125 * running. Since the copying of the old disk to the new disk takes 6126 * place at run time while the filesystem is mounted writable, the 6127 * regular write operations to the old disk have to be duplicated to go 6128 * to the new disk as well. 6129 * 6130 * Note that device->missing is handled by the caller, and that the 6131 * write to the old disk is already set up in the stripes array. 6132 */ 6133 for (i = 0; i < num_stripes; i++) { 6134 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6135 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6136 6137 if (old->dev->devid != srcdev_devid) 6138 continue; 6139 6140 new->physical = old->physical; 6141 new->dev = dev_replace->tgtdev; 6142 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6143 bioc->replace_stripe_src = i; 6144 nr_extra_stripes++; 6145 } 6146 6147 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6148 ASSERT(nr_extra_stripes <= 2); 6149 /* 6150 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6151 * replace. 6152 * If we have 2 extra stripes, only choose the one with smaller physical. 6153 */ 6154 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6155 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6156 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6157 6158 /* Only DUP can have two extra stripes. */ 6159 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP); 6160 6161 /* 6162 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6163 * The extra stripe would still be there, but won't be accessed. 6164 */ 6165 if (first->physical > second->physical) { 6166 swap(second->physical, first->physical); 6167 swap(second->dev, first->dev); 6168 nr_extra_stripes--; 6169 } 6170 } 6171 6172 *num_stripes_ret = num_stripes + nr_extra_stripes; 6173 *max_errors_ret = max_errors + nr_extra_stripes; 6174 bioc->replace_nr_stripes = nr_extra_stripes; 6175 } 6176 6177 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op, 6178 u64 offset, u32 *stripe_nr, u64 *stripe_offset, 6179 u64 *full_stripe_start) 6180 { 6181 /* 6182 * Stripe_nr is the stripe where this block falls. stripe_offset is 6183 * the offset of this block in its stripe. 6184 */ 6185 *stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6186 *stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6187 ASSERT(*stripe_offset < U32_MAX); 6188 6189 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6190 unsigned long full_stripe_len = 6191 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6192 6193 /* 6194 * For full stripe start, we use previously calculated 6195 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6196 * STRIPE_LEN. 6197 * 6198 * By this we can avoid u64 division completely. And we have 6199 * to go rounddown(), not round_down(), as nr_data_stripes is 6200 * not ensured to be power of 2. 6201 */ 6202 *full_stripe_start = 6203 btrfs_stripe_nr_to_offset( 6204 rounddown(*stripe_nr, nr_data_stripes(map))); 6205 6206 ASSERT(*full_stripe_start + full_stripe_len > offset); 6207 ASSERT(*full_stripe_start <= offset); 6208 /* 6209 * For writes to RAID56, allow to write a full stripe set, but 6210 * no straddling of stripe sets. 6211 */ 6212 if (op == BTRFS_MAP_WRITE) 6213 return full_stripe_len - (offset - *full_stripe_start); 6214 } 6215 6216 /* 6217 * For other RAID types and for RAID56 reads, allow a single stripe (on 6218 * a single disk). 6219 */ 6220 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6221 return BTRFS_STRIPE_LEN - *stripe_offset; 6222 return U64_MAX; 6223 } 6224 6225 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map, 6226 u32 stripe_index, u64 stripe_offset, u32 stripe_nr) 6227 { 6228 dst->dev = map->stripes[stripe_index].dev; 6229 dst->physical = map->stripes[stripe_index].physical + 6230 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6231 } 6232 6233 /* 6234 * Map one logical range to one or more physical ranges. 6235 * 6236 * @length: (Mandatory) mapped length of this run. 6237 * One logical range can be split into different segments 6238 * due to factors like zones and RAID0/5/6/10 stripe 6239 * boundaries. 6240 * 6241 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6242 * which has one or more physical ranges (btrfs_io_stripe) 6243 * recorded inside. 6244 * Caller should call btrfs_put_bioc() to free it after use. 6245 * 6246 * @smap: (Optional) single physical range optimization. 6247 * If the map request can be fulfilled by one single 6248 * physical range, and this is parameter is not NULL, 6249 * then @bioc_ret would be NULL, and @smap would be 6250 * updated. 6251 * 6252 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6253 * value is 0. 6254 * 6255 * Mirror number 0 means to choose any live mirrors. 6256 * 6257 * For non-RAID56 profiles, non-zero mirror_num means 6258 * the Nth mirror. (e.g. mirror_num 1 means the first 6259 * copy). 6260 * 6261 * For RAID56 profile, mirror 1 means rebuild from P and 6262 * the remaining data stripes. 6263 * 6264 * For RAID6 profile, mirror > 2 means mark another 6265 * data/P stripe error and rebuild from the remaining 6266 * stripes.. 6267 * 6268 * @need_raid_map: (Used only for integrity checker) whether the map wants 6269 * a full stripe map (including all data and P/Q stripes) 6270 * for RAID56. Should always be 1 except integrity checker. 6271 */ 6272 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6273 u64 logical, u64 *length, 6274 struct btrfs_io_context **bioc_ret, 6275 struct btrfs_io_stripe *smap, int *mirror_num_ret, 6276 int need_raid_map) 6277 { 6278 struct extent_map *em; 6279 struct map_lookup *map; 6280 u64 map_offset; 6281 u64 stripe_offset; 6282 u32 stripe_nr; 6283 u32 stripe_index; 6284 int data_stripes; 6285 int i; 6286 int ret = 0; 6287 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6288 int num_stripes; 6289 int num_copies; 6290 int max_errors = 0; 6291 struct btrfs_io_context *bioc = NULL; 6292 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6293 int dev_replace_is_ongoing = 0; 6294 u16 num_alloc_stripes; 6295 u64 raid56_full_stripe_start = (u64)-1; 6296 u64 max_len; 6297 6298 ASSERT(bioc_ret); 6299 6300 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize); 6301 if (mirror_num > num_copies) 6302 return -EINVAL; 6303 6304 em = btrfs_get_chunk_map(fs_info, logical, *length); 6305 if (IS_ERR(em)) 6306 return PTR_ERR(em); 6307 6308 map = em->map_lookup; 6309 data_stripes = nr_data_stripes(map); 6310 6311 map_offset = logical - em->start; 6312 max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr, 6313 &stripe_offset, &raid56_full_stripe_start); 6314 *length = min_t(u64, em->len - map_offset, max_len); 6315 6316 down_read(&dev_replace->rwsem); 6317 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6318 /* 6319 * Hold the semaphore for read during the whole operation, write is 6320 * requested at commit time but must wait. 6321 */ 6322 if (!dev_replace_is_ongoing) 6323 up_read(&dev_replace->rwsem); 6324 6325 num_stripes = 1; 6326 stripe_index = 0; 6327 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6328 stripe_index = stripe_nr % map->num_stripes; 6329 stripe_nr /= map->num_stripes; 6330 if (op == BTRFS_MAP_READ) 6331 mirror_num = 1; 6332 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6333 if (op != BTRFS_MAP_READ) { 6334 num_stripes = map->num_stripes; 6335 } else if (mirror_num) { 6336 stripe_index = mirror_num - 1; 6337 } else { 6338 stripe_index = find_live_mirror(fs_info, map, 0, 6339 dev_replace_is_ongoing); 6340 mirror_num = stripe_index + 1; 6341 } 6342 6343 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6344 if (op != BTRFS_MAP_READ) { 6345 num_stripes = map->num_stripes; 6346 } else if (mirror_num) { 6347 stripe_index = mirror_num - 1; 6348 } else { 6349 mirror_num = 1; 6350 } 6351 6352 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6353 u32 factor = map->num_stripes / map->sub_stripes; 6354 6355 stripe_index = (stripe_nr % factor) * map->sub_stripes; 6356 stripe_nr /= factor; 6357 6358 if (op != BTRFS_MAP_READ) 6359 num_stripes = map->sub_stripes; 6360 else if (mirror_num) 6361 stripe_index += mirror_num - 1; 6362 else { 6363 int old_stripe_index = stripe_index; 6364 stripe_index = find_live_mirror(fs_info, map, 6365 stripe_index, 6366 dev_replace_is_ongoing); 6367 mirror_num = stripe_index - old_stripe_index + 1; 6368 } 6369 6370 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6371 if (need_raid_map && (op != BTRFS_MAP_READ || mirror_num > 1)) { 6372 /* 6373 * Push stripe_nr back to the start of the full stripe 6374 * For those cases needing a full stripe, @stripe_nr 6375 * is the full stripe number. 6376 * 6377 * Originally we go raid56_full_stripe_start / full_stripe_len, 6378 * but that can be expensive. Here we just divide 6379 * @stripe_nr with @data_stripes. 6380 */ 6381 stripe_nr /= data_stripes; 6382 6383 /* RAID[56] write or recovery. Return all stripes */ 6384 num_stripes = map->num_stripes; 6385 max_errors = btrfs_chunk_max_errors(map); 6386 6387 /* Return the length to the full stripe end */ 6388 *length = min(logical + *length, 6389 raid56_full_stripe_start + em->start + 6390 btrfs_stripe_nr_to_offset(data_stripes)) - 6391 logical; 6392 stripe_index = 0; 6393 stripe_offset = 0; 6394 } else { 6395 /* 6396 * Mirror #0 or #1 means the original data block. 6397 * Mirror #2 is RAID5 parity block. 6398 * Mirror #3 is RAID6 Q block. 6399 */ 6400 stripe_index = stripe_nr % data_stripes; 6401 stripe_nr /= data_stripes; 6402 if (mirror_num > 1) 6403 stripe_index = data_stripes + mirror_num - 2; 6404 6405 /* We distribute the parity blocks across stripes */ 6406 stripe_index = (stripe_nr + stripe_index) % map->num_stripes; 6407 if (op == BTRFS_MAP_READ && mirror_num <= 1) 6408 mirror_num = 1; 6409 } 6410 } else { 6411 /* 6412 * After this, stripe_nr is the number of stripes on this 6413 * device we have to walk to find the data, and stripe_index is 6414 * the number of our device in the stripe array 6415 */ 6416 stripe_index = stripe_nr % map->num_stripes; 6417 stripe_nr /= map->num_stripes; 6418 mirror_num = stripe_index + 1; 6419 } 6420 if (stripe_index >= map->num_stripes) { 6421 btrfs_crit(fs_info, 6422 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6423 stripe_index, map->num_stripes); 6424 ret = -EINVAL; 6425 goto out; 6426 } 6427 6428 num_alloc_stripes = num_stripes; 6429 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6430 op != BTRFS_MAP_READ) 6431 /* 6432 * For replace case, we need to add extra stripes for extra 6433 * duplicated stripes. 6434 * 6435 * For both WRITE and GET_READ_MIRRORS, we may have at most 6436 * 2 more stripes (DUP types, otherwise 1). 6437 */ 6438 num_alloc_stripes += 2; 6439 6440 /* 6441 * If this I/O maps to a single device, try to return the device and 6442 * physical block information on the stack instead of allocating an 6443 * I/O context structure. 6444 */ 6445 if (smap && num_alloc_stripes == 1 && 6446 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) { 6447 set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr); 6448 if (mirror_num_ret) 6449 *mirror_num_ret = mirror_num; 6450 *bioc_ret = NULL; 6451 ret = 0; 6452 goto out; 6453 } 6454 6455 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes); 6456 if (!bioc) { 6457 ret = -ENOMEM; 6458 goto out; 6459 } 6460 bioc->map_type = map->type; 6461 6462 /* 6463 * For RAID56 full map, we need to make sure the stripes[] follows the 6464 * rule that data stripes are all ordered, then followed with P and Q 6465 * (if we have). 6466 * 6467 * It's still mostly the same as other profiles, just with extra rotation. 6468 */ 6469 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6470 (op != BTRFS_MAP_READ || mirror_num > 1)) { 6471 /* 6472 * For RAID56 @stripe_nr is already the number of full stripes 6473 * before us, which is also the rotation value (needs to modulo 6474 * with num_stripes). 6475 * 6476 * In this case, we just add @stripe_nr with @i, then do the 6477 * modulo, to reduce one modulo call. 6478 */ 6479 bioc->full_stripe_logical = em->start + 6480 btrfs_stripe_nr_to_offset(stripe_nr * data_stripes); 6481 for (i = 0; i < num_stripes; i++) 6482 set_io_stripe(&bioc->stripes[i], map, 6483 (i + stripe_nr) % num_stripes, 6484 stripe_offset, stripe_nr); 6485 } else { 6486 /* 6487 * For all other non-RAID56 profiles, just copy the target 6488 * stripe into the bioc. 6489 */ 6490 for (i = 0; i < num_stripes; i++) { 6491 set_io_stripe(&bioc->stripes[i], map, stripe_index, 6492 stripe_offset, stripe_nr); 6493 stripe_index++; 6494 } 6495 } 6496 6497 if (op != BTRFS_MAP_READ) 6498 max_errors = btrfs_chunk_max_errors(map); 6499 6500 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6501 op != BTRFS_MAP_READ) { 6502 handle_ops_on_dev_replace(op, bioc, dev_replace, logical, 6503 &num_stripes, &max_errors); 6504 } 6505 6506 *bioc_ret = bioc; 6507 bioc->num_stripes = num_stripes; 6508 bioc->max_errors = max_errors; 6509 bioc->mirror_num = mirror_num; 6510 6511 out: 6512 if (dev_replace_is_ongoing) { 6513 lockdep_assert_held(&dev_replace->rwsem); 6514 /* Unlock and let waiting writers proceed */ 6515 up_read(&dev_replace->rwsem); 6516 } 6517 free_extent_map(em); 6518 return ret; 6519 } 6520 6521 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6522 const struct btrfs_fs_devices *fs_devices) 6523 { 6524 if (args->fsid == NULL) 6525 return true; 6526 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6527 return true; 6528 return false; 6529 } 6530 6531 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6532 const struct btrfs_device *device) 6533 { 6534 if (args->missing) { 6535 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6536 !device->bdev) 6537 return true; 6538 return false; 6539 } 6540 6541 if (device->devid != args->devid) 6542 return false; 6543 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6544 return false; 6545 return true; 6546 } 6547 6548 /* 6549 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6550 * return NULL. 6551 * 6552 * If devid and uuid are both specified, the match must be exact, otherwise 6553 * only devid is used. 6554 */ 6555 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6556 const struct btrfs_dev_lookup_args *args) 6557 { 6558 struct btrfs_device *device; 6559 struct btrfs_fs_devices *seed_devs; 6560 6561 if (dev_args_match_fs_devices(args, fs_devices)) { 6562 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6563 if (dev_args_match_device(args, device)) 6564 return device; 6565 } 6566 } 6567 6568 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6569 if (!dev_args_match_fs_devices(args, seed_devs)) 6570 continue; 6571 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6572 if (dev_args_match_device(args, device)) 6573 return device; 6574 } 6575 } 6576 6577 return NULL; 6578 } 6579 6580 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6581 u64 devid, u8 *dev_uuid) 6582 { 6583 struct btrfs_device *device; 6584 unsigned int nofs_flag; 6585 6586 /* 6587 * We call this under the chunk_mutex, so we want to use NOFS for this 6588 * allocation, however we don't want to change btrfs_alloc_device() to 6589 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6590 * places. 6591 */ 6592 6593 nofs_flag = memalloc_nofs_save(); 6594 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6595 memalloc_nofs_restore(nofs_flag); 6596 if (IS_ERR(device)) 6597 return device; 6598 6599 list_add(&device->dev_list, &fs_devices->devices); 6600 device->fs_devices = fs_devices; 6601 fs_devices->num_devices++; 6602 6603 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6604 fs_devices->missing_devices++; 6605 6606 return device; 6607 } 6608 6609 /* 6610 * Allocate new device struct, set up devid and UUID. 6611 * 6612 * @fs_info: used only for generating a new devid, can be NULL if 6613 * devid is provided (i.e. @devid != NULL). 6614 * @devid: a pointer to devid for this device. If NULL a new devid 6615 * is generated. 6616 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6617 * is generated. 6618 * @path: a pointer to device path if available, NULL otherwise. 6619 * 6620 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6621 * on error. Returned struct is not linked onto any lists and must be 6622 * destroyed with btrfs_free_device. 6623 */ 6624 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6625 const u64 *devid, const u8 *uuid, 6626 const char *path) 6627 { 6628 struct btrfs_device *dev; 6629 u64 tmp; 6630 6631 if (WARN_ON(!devid && !fs_info)) 6632 return ERR_PTR(-EINVAL); 6633 6634 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6635 if (!dev) 6636 return ERR_PTR(-ENOMEM); 6637 6638 INIT_LIST_HEAD(&dev->dev_list); 6639 INIT_LIST_HEAD(&dev->dev_alloc_list); 6640 INIT_LIST_HEAD(&dev->post_commit_list); 6641 6642 atomic_set(&dev->dev_stats_ccnt, 0); 6643 btrfs_device_data_ordered_init(dev); 6644 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6645 6646 if (devid) 6647 tmp = *devid; 6648 else { 6649 int ret; 6650 6651 ret = find_next_devid(fs_info, &tmp); 6652 if (ret) { 6653 btrfs_free_device(dev); 6654 return ERR_PTR(ret); 6655 } 6656 } 6657 dev->devid = tmp; 6658 6659 if (uuid) 6660 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6661 else 6662 generate_random_uuid(dev->uuid); 6663 6664 if (path) { 6665 struct rcu_string *name; 6666 6667 name = rcu_string_strdup(path, GFP_KERNEL); 6668 if (!name) { 6669 btrfs_free_device(dev); 6670 return ERR_PTR(-ENOMEM); 6671 } 6672 rcu_assign_pointer(dev->name, name); 6673 } 6674 6675 return dev; 6676 } 6677 6678 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6679 u64 devid, u8 *uuid, bool error) 6680 { 6681 if (error) 6682 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6683 devid, uuid); 6684 else 6685 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6686 devid, uuid); 6687 } 6688 6689 u64 btrfs_calc_stripe_length(const struct extent_map *em) 6690 { 6691 const struct map_lookup *map = em->map_lookup; 6692 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6693 6694 return div_u64(em->len, data_stripes); 6695 } 6696 6697 #if BITS_PER_LONG == 32 6698 /* 6699 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6700 * can't be accessed on 32bit systems. 6701 * 6702 * This function do mount time check to reject the fs if it already has 6703 * metadata chunk beyond that limit. 6704 */ 6705 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6706 u64 logical, u64 length, u64 type) 6707 { 6708 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6709 return 0; 6710 6711 if (logical + length < MAX_LFS_FILESIZE) 6712 return 0; 6713 6714 btrfs_err_32bit_limit(fs_info); 6715 return -EOVERFLOW; 6716 } 6717 6718 /* 6719 * This is to give early warning for any metadata chunk reaching 6720 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6721 * Although we can still access the metadata, it's not going to be possible 6722 * once the limit is reached. 6723 */ 6724 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6725 u64 logical, u64 length, u64 type) 6726 { 6727 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6728 return; 6729 6730 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6731 return; 6732 6733 btrfs_warn_32bit_limit(fs_info); 6734 } 6735 #endif 6736 6737 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 6738 u64 devid, u8 *uuid) 6739 { 6740 struct btrfs_device *dev; 6741 6742 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6743 btrfs_report_missing_device(fs_info, devid, uuid, true); 6744 return ERR_PTR(-ENOENT); 6745 } 6746 6747 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 6748 if (IS_ERR(dev)) { 6749 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 6750 devid, PTR_ERR(dev)); 6751 return dev; 6752 } 6753 btrfs_report_missing_device(fs_info, devid, uuid, false); 6754 6755 return dev; 6756 } 6757 6758 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6759 struct btrfs_chunk *chunk) 6760 { 6761 BTRFS_DEV_LOOKUP_ARGS(args); 6762 struct btrfs_fs_info *fs_info = leaf->fs_info; 6763 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6764 struct map_lookup *map; 6765 struct extent_map *em; 6766 u64 logical; 6767 u64 length; 6768 u64 devid; 6769 u64 type; 6770 u8 uuid[BTRFS_UUID_SIZE]; 6771 int index; 6772 int num_stripes; 6773 int ret; 6774 int i; 6775 6776 logical = key->offset; 6777 length = btrfs_chunk_length(leaf, chunk); 6778 type = btrfs_chunk_type(leaf, chunk); 6779 index = btrfs_bg_flags_to_raid_index(type); 6780 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6781 6782 #if BITS_PER_LONG == 32 6783 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 6784 if (ret < 0) 6785 return ret; 6786 warn_32bit_meta_chunk(fs_info, logical, length, type); 6787 #endif 6788 6789 /* 6790 * Only need to verify chunk item if we're reading from sys chunk array, 6791 * as chunk item in tree block is already verified by tree-checker. 6792 */ 6793 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6794 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6795 if (ret) 6796 return ret; 6797 } 6798 6799 read_lock(&map_tree->lock); 6800 em = lookup_extent_mapping(map_tree, logical, 1); 6801 read_unlock(&map_tree->lock); 6802 6803 /* already mapped? */ 6804 if (em && em->start <= logical && em->start + em->len > logical) { 6805 free_extent_map(em); 6806 return 0; 6807 } else if (em) { 6808 free_extent_map(em); 6809 } 6810 6811 em = alloc_extent_map(); 6812 if (!em) 6813 return -ENOMEM; 6814 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6815 if (!map) { 6816 free_extent_map(em); 6817 return -ENOMEM; 6818 } 6819 6820 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6821 em->map_lookup = map; 6822 em->start = logical; 6823 em->len = length; 6824 em->orig_start = 0; 6825 em->block_start = 0; 6826 em->block_len = em->len; 6827 6828 map->num_stripes = num_stripes; 6829 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6830 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6831 map->type = type; 6832 /* 6833 * We can't use the sub_stripes value, as for profiles other than 6834 * RAID10, they may have 0 as sub_stripes for filesystems created by 6835 * older mkfs (<v5.4). 6836 * In that case, it can cause divide-by-zero errors later. 6837 * Since currently sub_stripes is fixed for each profile, let's 6838 * use the trusted value instead. 6839 */ 6840 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 6841 map->verified_stripes = 0; 6842 em->orig_block_len = btrfs_calc_stripe_length(em); 6843 for (i = 0; i < num_stripes; i++) { 6844 map->stripes[i].physical = 6845 btrfs_stripe_offset_nr(leaf, chunk, i); 6846 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6847 args.devid = devid; 6848 read_extent_buffer(leaf, uuid, (unsigned long) 6849 btrfs_stripe_dev_uuid_nr(chunk, i), 6850 BTRFS_UUID_SIZE); 6851 args.uuid = uuid; 6852 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 6853 if (!map->stripes[i].dev) { 6854 map->stripes[i].dev = handle_missing_device(fs_info, 6855 devid, uuid); 6856 if (IS_ERR(map->stripes[i].dev)) { 6857 ret = PTR_ERR(map->stripes[i].dev); 6858 free_extent_map(em); 6859 return ret; 6860 } 6861 } 6862 6863 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6864 &(map->stripes[i].dev->dev_state)); 6865 } 6866 6867 write_lock(&map_tree->lock); 6868 ret = add_extent_mapping(map_tree, em, 0); 6869 write_unlock(&map_tree->lock); 6870 if (ret < 0) { 6871 btrfs_err(fs_info, 6872 "failed to add chunk map, start=%llu len=%llu: %d", 6873 em->start, em->len, ret); 6874 } 6875 free_extent_map(em); 6876 6877 return ret; 6878 } 6879 6880 static void fill_device_from_item(struct extent_buffer *leaf, 6881 struct btrfs_dev_item *dev_item, 6882 struct btrfs_device *device) 6883 { 6884 unsigned long ptr; 6885 6886 device->devid = btrfs_device_id(leaf, dev_item); 6887 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6888 device->total_bytes = device->disk_total_bytes; 6889 device->commit_total_bytes = device->disk_total_bytes; 6890 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6891 device->commit_bytes_used = device->bytes_used; 6892 device->type = btrfs_device_type(leaf, dev_item); 6893 device->io_align = btrfs_device_io_align(leaf, dev_item); 6894 device->io_width = btrfs_device_io_width(leaf, dev_item); 6895 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6896 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6897 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6898 6899 ptr = btrfs_device_uuid(dev_item); 6900 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6901 } 6902 6903 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6904 u8 *fsid) 6905 { 6906 struct btrfs_fs_devices *fs_devices; 6907 int ret; 6908 6909 lockdep_assert_held(&uuid_mutex); 6910 ASSERT(fsid); 6911 6912 /* This will match only for multi-device seed fs */ 6913 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 6914 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6915 return fs_devices; 6916 6917 6918 fs_devices = find_fsid(fsid, NULL); 6919 if (!fs_devices) { 6920 if (!btrfs_test_opt(fs_info, DEGRADED)) 6921 return ERR_PTR(-ENOENT); 6922 6923 fs_devices = alloc_fs_devices(fsid, NULL); 6924 if (IS_ERR(fs_devices)) 6925 return fs_devices; 6926 6927 fs_devices->seeding = true; 6928 fs_devices->opened = 1; 6929 return fs_devices; 6930 } 6931 6932 /* 6933 * Upon first call for a seed fs fsid, just create a private copy of the 6934 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 6935 */ 6936 fs_devices = clone_fs_devices(fs_devices); 6937 if (IS_ERR(fs_devices)) 6938 return fs_devices; 6939 6940 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); 6941 if (ret) { 6942 free_fs_devices(fs_devices); 6943 return ERR_PTR(ret); 6944 } 6945 6946 if (!fs_devices->seeding) { 6947 close_fs_devices(fs_devices); 6948 free_fs_devices(fs_devices); 6949 return ERR_PTR(-EINVAL); 6950 } 6951 6952 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 6953 6954 return fs_devices; 6955 } 6956 6957 static int read_one_dev(struct extent_buffer *leaf, 6958 struct btrfs_dev_item *dev_item) 6959 { 6960 BTRFS_DEV_LOOKUP_ARGS(args); 6961 struct btrfs_fs_info *fs_info = leaf->fs_info; 6962 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6963 struct btrfs_device *device; 6964 u64 devid; 6965 int ret; 6966 u8 fs_uuid[BTRFS_FSID_SIZE]; 6967 u8 dev_uuid[BTRFS_UUID_SIZE]; 6968 6969 devid = btrfs_device_id(leaf, dev_item); 6970 args.devid = devid; 6971 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6972 BTRFS_UUID_SIZE); 6973 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6974 BTRFS_FSID_SIZE); 6975 args.uuid = dev_uuid; 6976 args.fsid = fs_uuid; 6977 6978 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6979 fs_devices = open_seed_devices(fs_info, fs_uuid); 6980 if (IS_ERR(fs_devices)) 6981 return PTR_ERR(fs_devices); 6982 } 6983 6984 device = btrfs_find_device(fs_info->fs_devices, &args); 6985 if (!device) { 6986 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6987 btrfs_report_missing_device(fs_info, devid, 6988 dev_uuid, true); 6989 return -ENOENT; 6990 } 6991 6992 device = add_missing_dev(fs_devices, devid, dev_uuid); 6993 if (IS_ERR(device)) { 6994 btrfs_err(fs_info, 6995 "failed to add missing dev %llu: %ld", 6996 devid, PTR_ERR(device)); 6997 return PTR_ERR(device); 6998 } 6999 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7000 } else { 7001 if (!device->bdev) { 7002 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7003 btrfs_report_missing_device(fs_info, 7004 devid, dev_uuid, true); 7005 return -ENOENT; 7006 } 7007 btrfs_report_missing_device(fs_info, devid, 7008 dev_uuid, false); 7009 } 7010 7011 if (!device->bdev && 7012 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7013 /* 7014 * this happens when a device that was properly setup 7015 * in the device info lists suddenly goes bad. 7016 * device->bdev is NULL, and so we have to set 7017 * device->missing to one here 7018 */ 7019 device->fs_devices->missing_devices++; 7020 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7021 } 7022 7023 /* Move the device to its own fs_devices */ 7024 if (device->fs_devices != fs_devices) { 7025 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7026 &device->dev_state)); 7027 7028 list_move(&device->dev_list, &fs_devices->devices); 7029 device->fs_devices->num_devices--; 7030 fs_devices->num_devices++; 7031 7032 device->fs_devices->missing_devices--; 7033 fs_devices->missing_devices++; 7034 7035 device->fs_devices = fs_devices; 7036 } 7037 } 7038 7039 if (device->fs_devices != fs_info->fs_devices) { 7040 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7041 if (device->generation != 7042 btrfs_device_generation(leaf, dev_item)) 7043 return -EINVAL; 7044 } 7045 7046 fill_device_from_item(leaf, dev_item, device); 7047 if (device->bdev) { 7048 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7049 7050 if (device->total_bytes > max_total_bytes) { 7051 btrfs_err(fs_info, 7052 "device total_bytes should be at most %llu but found %llu", 7053 max_total_bytes, device->total_bytes); 7054 return -EINVAL; 7055 } 7056 } 7057 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7058 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7059 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7060 device->fs_devices->total_rw_bytes += device->total_bytes; 7061 atomic64_add(device->total_bytes - device->bytes_used, 7062 &fs_info->free_chunk_space); 7063 } 7064 ret = 0; 7065 return ret; 7066 } 7067 7068 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7069 { 7070 struct btrfs_super_block *super_copy = fs_info->super_copy; 7071 struct extent_buffer *sb; 7072 struct btrfs_disk_key *disk_key; 7073 struct btrfs_chunk *chunk; 7074 u8 *array_ptr; 7075 unsigned long sb_array_offset; 7076 int ret = 0; 7077 u32 num_stripes; 7078 u32 array_size; 7079 u32 len = 0; 7080 u32 cur_offset; 7081 u64 type; 7082 struct btrfs_key key; 7083 7084 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7085 7086 /* 7087 * We allocated a dummy extent, just to use extent buffer accessors. 7088 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7089 * that's fine, we will not go beyond system chunk array anyway. 7090 */ 7091 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7092 if (!sb) 7093 return -ENOMEM; 7094 set_extent_buffer_uptodate(sb); 7095 7096 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7097 array_size = btrfs_super_sys_array_size(super_copy); 7098 7099 array_ptr = super_copy->sys_chunk_array; 7100 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7101 cur_offset = 0; 7102 7103 while (cur_offset < array_size) { 7104 disk_key = (struct btrfs_disk_key *)array_ptr; 7105 len = sizeof(*disk_key); 7106 if (cur_offset + len > array_size) 7107 goto out_short_read; 7108 7109 btrfs_disk_key_to_cpu(&key, disk_key); 7110 7111 array_ptr += len; 7112 sb_array_offset += len; 7113 cur_offset += len; 7114 7115 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7116 btrfs_err(fs_info, 7117 "unexpected item type %u in sys_array at offset %u", 7118 (u32)key.type, cur_offset); 7119 ret = -EIO; 7120 break; 7121 } 7122 7123 chunk = (struct btrfs_chunk *)sb_array_offset; 7124 /* 7125 * At least one btrfs_chunk with one stripe must be present, 7126 * exact stripe count check comes afterwards 7127 */ 7128 len = btrfs_chunk_item_size(1); 7129 if (cur_offset + len > array_size) 7130 goto out_short_read; 7131 7132 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7133 if (!num_stripes) { 7134 btrfs_err(fs_info, 7135 "invalid number of stripes %u in sys_array at offset %u", 7136 num_stripes, cur_offset); 7137 ret = -EIO; 7138 break; 7139 } 7140 7141 type = btrfs_chunk_type(sb, chunk); 7142 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7143 btrfs_err(fs_info, 7144 "invalid chunk type %llu in sys_array at offset %u", 7145 type, cur_offset); 7146 ret = -EIO; 7147 break; 7148 } 7149 7150 len = btrfs_chunk_item_size(num_stripes); 7151 if (cur_offset + len > array_size) 7152 goto out_short_read; 7153 7154 ret = read_one_chunk(&key, sb, chunk); 7155 if (ret) 7156 break; 7157 7158 array_ptr += len; 7159 sb_array_offset += len; 7160 cur_offset += len; 7161 } 7162 clear_extent_buffer_uptodate(sb); 7163 free_extent_buffer_stale(sb); 7164 return ret; 7165 7166 out_short_read: 7167 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7168 len, cur_offset); 7169 clear_extent_buffer_uptodate(sb); 7170 free_extent_buffer_stale(sb); 7171 return -EIO; 7172 } 7173 7174 /* 7175 * Check if all chunks in the fs are OK for read-write degraded mount 7176 * 7177 * If the @failing_dev is specified, it's accounted as missing. 7178 * 7179 * Return true if all chunks meet the minimal RW mount requirements. 7180 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7181 */ 7182 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7183 struct btrfs_device *failing_dev) 7184 { 7185 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7186 struct extent_map *em; 7187 u64 next_start = 0; 7188 bool ret = true; 7189 7190 read_lock(&map_tree->lock); 7191 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7192 read_unlock(&map_tree->lock); 7193 /* No chunk at all? Return false anyway */ 7194 if (!em) { 7195 ret = false; 7196 goto out; 7197 } 7198 while (em) { 7199 struct map_lookup *map; 7200 int missing = 0; 7201 int max_tolerated; 7202 int i; 7203 7204 map = em->map_lookup; 7205 max_tolerated = 7206 btrfs_get_num_tolerated_disk_barrier_failures( 7207 map->type); 7208 for (i = 0; i < map->num_stripes; i++) { 7209 struct btrfs_device *dev = map->stripes[i].dev; 7210 7211 if (!dev || !dev->bdev || 7212 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7213 dev->last_flush_error) 7214 missing++; 7215 else if (failing_dev && failing_dev == dev) 7216 missing++; 7217 } 7218 if (missing > max_tolerated) { 7219 if (!failing_dev) 7220 btrfs_warn(fs_info, 7221 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7222 em->start, missing, max_tolerated); 7223 free_extent_map(em); 7224 ret = false; 7225 goto out; 7226 } 7227 next_start = extent_map_end(em); 7228 free_extent_map(em); 7229 7230 read_lock(&map_tree->lock); 7231 em = lookup_extent_mapping(map_tree, next_start, 7232 (u64)(-1) - next_start); 7233 read_unlock(&map_tree->lock); 7234 } 7235 out: 7236 return ret; 7237 } 7238 7239 static void readahead_tree_node_children(struct extent_buffer *node) 7240 { 7241 int i; 7242 const int nr_items = btrfs_header_nritems(node); 7243 7244 for (i = 0; i < nr_items; i++) 7245 btrfs_readahead_node_child(node, i); 7246 } 7247 7248 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7249 { 7250 struct btrfs_root *root = fs_info->chunk_root; 7251 struct btrfs_path *path; 7252 struct extent_buffer *leaf; 7253 struct btrfs_key key; 7254 struct btrfs_key found_key; 7255 int ret; 7256 int slot; 7257 int iter_ret = 0; 7258 u64 total_dev = 0; 7259 u64 last_ra_node = 0; 7260 7261 path = btrfs_alloc_path(); 7262 if (!path) 7263 return -ENOMEM; 7264 7265 /* 7266 * uuid_mutex is needed only if we are mounting a sprout FS 7267 * otherwise we don't need it. 7268 */ 7269 mutex_lock(&uuid_mutex); 7270 7271 /* 7272 * It is possible for mount and umount to race in such a way that 7273 * we execute this code path, but open_fs_devices failed to clear 7274 * total_rw_bytes. We certainly want it cleared before reading the 7275 * device items, so clear it here. 7276 */ 7277 fs_info->fs_devices->total_rw_bytes = 0; 7278 7279 /* 7280 * Lockdep complains about possible circular locking dependency between 7281 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7282 * used for freeze procection of a fs (struct super_block.s_writers), 7283 * which we take when starting a transaction, and extent buffers of the 7284 * chunk tree if we call read_one_dev() while holding a lock on an 7285 * extent buffer of the chunk tree. Since we are mounting the filesystem 7286 * and at this point there can't be any concurrent task modifying the 7287 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7288 */ 7289 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7290 path->skip_locking = 1; 7291 7292 /* 7293 * Read all device items, and then all the chunk items. All 7294 * device items are found before any chunk item (their object id 7295 * is smaller than the lowest possible object id for a chunk 7296 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7297 */ 7298 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7299 key.offset = 0; 7300 key.type = 0; 7301 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7302 struct extent_buffer *node = path->nodes[1]; 7303 7304 leaf = path->nodes[0]; 7305 slot = path->slots[0]; 7306 7307 if (node) { 7308 if (last_ra_node != node->start) { 7309 readahead_tree_node_children(node); 7310 last_ra_node = node->start; 7311 } 7312 } 7313 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7314 struct btrfs_dev_item *dev_item; 7315 dev_item = btrfs_item_ptr(leaf, slot, 7316 struct btrfs_dev_item); 7317 ret = read_one_dev(leaf, dev_item); 7318 if (ret) 7319 goto error; 7320 total_dev++; 7321 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7322 struct btrfs_chunk *chunk; 7323 7324 /* 7325 * We are only called at mount time, so no need to take 7326 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7327 * we always lock first fs_info->chunk_mutex before 7328 * acquiring any locks on the chunk tree. This is a 7329 * requirement for chunk allocation, see the comment on 7330 * top of btrfs_chunk_alloc() for details. 7331 */ 7332 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7333 ret = read_one_chunk(&found_key, leaf, chunk); 7334 if (ret) 7335 goto error; 7336 } 7337 } 7338 /* Catch error found during iteration */ 7339 if (iter_ret < 0) { 7340 ret = iter_ret; 7341 goto error; 7342 } 7343 7344 /* 7345 * After loading chunk tree, we've got all device information, 7346 * do another round of validation checks. 7347 */ 7348 if (total_dev != fs_info->fs_devices->total_devices) { 7349 btrfs_warn(fs_info, 7350 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7351 btrfs_super_num_devices(fs_info->super_copy), 7352 total_dev); 7353 fs_info->fs_devices->total_devices = total_dev; 7354 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7355 } 7356 if (btrfs_super_total_bytes(fs_info->super_copy) < 7357 fs_info->fs_devices->total_rw_bytes) { 7358 btrfs_err(fs_info, 7359 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7360 btrfs_super_total_bytes(fs_info->super_copy), 7361 fs_info->fs_devices->total_rw_bytes); 7362 ret = -EINVAL; 7363 goto error; 7364 } 7365 ret = 0; 7366 error: 7367 mutex_unlock(&uuid_mutex); 7368 7369 btrfs_free_path(path); 7370 return ret; 7371 } 7372 7373 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7374 { 7375 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7376 struct btrfs_device *device; 7377 int ret = 0; 7378 7379 fs_devices->fs_info = fs_info; 7380 7381 mutex_lock(&fs_devices->device_list_mutex); 7382 list_for_each_entry(device, &fs_devices->devices, dev_list) 7383 device->fs_info = fs_info; 7384 7385 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7386 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7387 device->fs_info = fs_info; 7388 ret = btrfs_get_dev_zone_info(device, false); 7389 if (ret) 7390 break; 7391 } 7392 7393 seed_devs->fs_info = fs_info; 7394 } 7395 mutex_unlock(&fs_devices->device_list_mutex); 7396 7397 return ret; 7398 } 7399 7400 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7401 const struct btrfs_dev_stats_item *ptr, 7402 int index) 7403 { 7404 u64 val; 7405 7406 read_extent_buffer(eb, &val, 7407 offsetof(struct btrfs_dev_stats_item, values) + 7408 ((unsigned long)ptr) + (index * sizeof(u64)), 7409 sizeof(val)); 7410 return val; 7411 } 7412 7413 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7414 struct btrfs_dev_stats_item *ptr, 7415 int index, u64 val) 7416 { 7417 write_extent_buffer(eb, &val, 7418 offsetof(struct btrfs_dev_stats_item, values) + 7419 ((unsigned long)ptr) + (index * sizeof(u64)), 7420 sizeof(val)); 7421 } 7422 7423 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7424 struct btrfs_path *path) 7425 { 7426 struct btrfs_dev_stats_item *ptr; 7427 struct extent_buffer *eb; 7428 struct btrfs_key key; 7429 int item_size; 7430 int i, ret, slot; 7431 7432 if (!device->fs_info->dev_root) 7433 return 0; 7434 7435 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7436 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7437 key.offset = device->devid; 7438 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7439 if (ret) { 7440 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7441 btrfs_dev_stat_set(device, i, 0); 7442 device->dev_stats_valid = 1; 7443 btrfs_release_path(path); 7444 return ret < 0 ? ret : 0; 7445 } 7446 slot = path->slots[0]; 7447 eb = path->nodes[0]; 7448 item_size = btrfs_item_size(eb, slot); 7449 7450 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7451 7452 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7453 if (item_size >= (1 + i) * sizeof(__le64)) 7454 btrfs_dev_stat_set(device, i, 7455 btrfs_dev_stats_value(eb, ptr, i)); 7456 else 7457 btrfs_dev_stat_set(device, i, 0); 7458 } 7459 7460 device->dev_stats_valid = 1; 7461 btrfs_dev_stat_print_on_load(device); 7462 btrfs_release_path(path); 7463 7464 return 0; 7465 } 7466 7467 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7468 { 7469 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7470 struct btrfs_device *device; 7471 struct btrfs_path *path = NULL; 7472 int ret = 0; 7473 7474 path = btrfs_alloc_path(); 7475 if (!path) 7476 return -ENOMEM; 7477 7478 mutex_lock(&fs_devices->device_list_mutex); 7479 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7480 ret = btrfs_device_init_dev_stats(device, path); 7481 if (ret) 7482 goto out; 7483 } 7484 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7485 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7486 ret = btrfs_device_init_dev_stats(device, path); 7487 if (ret) 7488 goto out; 7489 } 7490 } 7491 out: 7492 mutex_unlock(&fs_devices->device_list_mutex); 7493 7494 btrfs_free_path(path); 7495 return ret; 7496 } 7497 7498 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7499 struct btrfs_device *device) 7500 { 7501 struct btrfs_fs_info *fs_info = trans->fs_info; 7502 struct btrfs_root *dev_root = fs_info->dev_root; 7503 struct btrfs_path *path; 7504 struct btrfs_key key; 7505 struct extent_buffer *eb; 7506 struct btrfs_dev_stats_item *ptr; 7507 int ret; 7508 int i; 7509 7510 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7511 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7512 key.offset = device->devid; 7513 7514 path = btrfs_alloc_path(); 7515 if (!path) 7516 return -ENOMEM; 7517 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7518 if (ret < 0) { 7519 btrfs_warn_in_rcu(fs_info, 7520 "error %d while searching for dev_stats item for device %s", 7521 ret, btrfs_dev_name(device)); 7522 goto out; 7523 } 7524 7525 if (ret == 0 && 7526 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7527 /* need to delete old one and insert a new one */ 7528 ret = btrfs_del_item(trans, dev_root, path); 7529 if (ret != 0) { 7530 btrfs_warn_in_rcu(fs_info, 7531 "delete too small dev_stats item for device %s failed %d", 7532 btrfs_dev_name(device), ret); 7533 goto out; 7534 } 7535 ret = 1; 7536 } 7537 7538 if (ret == 1) { 7539 /* need to insert a new item */ 7540 btrfs_release_path(path); 7541 ret = btrfs_insert_empty_item(trans, dev_root, path, 7542 &key, sizeof(*ptr)); 7543 if (ret < 0) { 7544 btrfs_warn_in_rcu(fs_info, 7545 "insert dev_stats item for device %s failed %d", 7546 btrfs_dev_name(device), ret); 7547 goto out; 7548 } 7549 } 7550 7551 eb = path->nodes[0]; 7552 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7553 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7554 btrfs_set_dev_stats_value(eb, ptr, i, 7555 btrfs_dev_stat_read(device, i)); 7556 btrfs_mark_buffer_dirty(trans, eb); 7557 7558 out: 7559 btrfs_free_path(path); 7560 return ret; 7561 } 7562 7563 /* 7564 * called from commit_transaction. Writes all changed device stats to disk. 7565 */ 7566 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7567 { 7568 struct btrfs_fs_info *fs_info = trans->fs_info; 7569 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7570 struct btrfs_device *device; 7571 int stats_cnt; 7572 int ret = 0; 7573 7574 mutex_lock(&fs_devices->device_list_mutex); 7575 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7576 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7577 if (!device->dev_stats_valid || stats_cnt == 0) 7578 continue; 7579 7580 7581 /* 7582 * There is a LOAD-LOAD control dependency between the value of 7583 * dev_stats_ccnt and updating the on-disk values which requires 7584 * reading the in-memory counters. Such control dependencies 7585 * require explicit read memory barriers. 7586 * 7587 * This memory barriers pairs with smp_mb__before_atomic in 7588 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7589 * barrier implied by atomic_xchg in 7590 * btrfs_dev_stats_read_and_reset 7591 */ 7592 smp_rmb(); 7593 7594 ret = update_dev_stat_item(trans, device); 7595 if (!ret) 7596 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7597 } 7598 mutex_unlock(&fs_devices->device_list_mutex); 7599 7600 return ret; 7601 } 7602 7603 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7604 { 7605 btrfs_dev_stat_inc(dev, index); 7606 7607 if (!dev->dev_stats_valid) 7608 return; 7609 btrfs_err_rl_in_rcu(dev->fs_info, 7610 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7611 btrfs_dev_name(dev), 7612 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7613 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7614 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7615 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7616 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7617 } 7618 7619 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7620 { 7621 int i; 7622 7623 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7624 if (btrfs_dev_stat_read(dev, i) != 0) 7625 break; 7626 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7627 return; /* all values == 0, suppress message */ 7628 7629 btrfs_info_in_rcu(dev->fs_info, 7630 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7631 btrfs_dev_name(dev), 7632 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7633 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7634 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7635 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7636 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7637 } 7638 7639 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7640 struct btrfs_ioctl_get_dev_stats *stats) 7641 { 7642 BTRFS_DEV_LOOKUP_ARGS(args); 7643 struct btrfs_device *dev; 7644 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7645 int i; 7646 7647 mutex_lock(&fs_devices->device_list_mutex); 7648 args.devid = stats->devid; 7649 dev = btrfs_find_device(fs_info->fs_devices, &args); 7650 mutex_unlock(&fs_devices->device_list_mutex); 7651 7652 if (!dev) { 7653 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7654 return -ENODEV; 7655 } else if (!dev->dev_stats_valid) { 7656 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7657 return -ENODEV; 7658 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7659 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7660 if (stats->nr_items > i) 7661 stats->values[i] = 7662 btrfs_dev_stat_read_and_reset(dev, i); 7663 else 7664 btrfs_dev_stat_set(dev, i, 0); 7665 } 7666 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7667 current->comm, task_pid_nr(current)); 7668 } else { 7669 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7670 if (stats->nr_items > i) 7671 stats->values[i] = btrfs_dev_stat_read(dev, i); 7672 } 7673 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7674 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7675 return 0; 7676 } 7677 7678 /* 7679 * Update the size and bytes used for each device where it changed. This is 7680 * delayed since we would otherwise get errors while writing out the 7681 * superblocks. 7682 * 7683 * Must be invoked during transaction commit. 7684 */ 7685 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7686 { 7687 struct btrfs_device *curr, *next; 7688 7689 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7690 7691 if (list_empty(&trans->dev_update_list)) 7692 return; 7693 7694 /* 7695 * We don't need the device_list_mutex here. This list is owned by the 7696 * transaction and the transaction must complete before the device is 7697 * released. 7698 */ 7699 mutex_lock(&trans->fs_info->chunk_mutex); 7700 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7701 post_commit_list) { 7702 list_del_init(&curr->post_commit_list); 7703 curr->commit_total_bytes = curr->disk_total_bytes; 7704 curr->commit_bytes_used = curr->bytes_used; 7705 } 7706 mutex_unlock(&trans->fs_info->chunk_mutex); 7707 } 7708 7709 /* 7710 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7711 */ 7712 int btrfs_bg_type_to_factor(u64 flags) 7713 { 7714 const int index = btrfs_bg_flags_to_raid_index(flags); 7715 7716 return btrfs_raid_array[index].ncopies; 7717 } 7718 7719 7720 7721 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7722 u64 chunk_offset, u64 devid, 7723 u64 physical_offset, u64 physical_len) 7724 { 7725 struct btrfs_dev_lookup_args args = { .devid = devid }; 7726 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7727 struct extent_map *em; 7728 struct map_lookup *map; 7729 struct btrfs_device *dev; 7730 u64 stripe_len; 7731 bool found = false; 7732 int ret = 0; 7733 int i; 7734 7735 read_lock(&em_tree->lock); 7736 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7737 read_unlock(&em_tree->lock); 7738 7739 if (!em) { 7740 btrfs_err(fs_info, 7741 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7742 physical_offset, devid); 7743 ret = -EUCLEAN; 7744 goto out; 7745 } 7746 7747 map = em->map_lookup; 7748 stripe_len = btrfs_calc_stripe_length(em); 7749 if (physical_len != stripe_len) { 7750 btrfs_err(fs_info, 7751 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7752 physical_offset, devid, em->start, physical_len, 7753 stripe_len); 7754 ret = -EUCLEAN; 7755 goto out; 7756 } 7757 7758 /* 7759 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 7760 * space. Although kernel can handle it without problem, better to warn 7761 * the users. 7762 */ 7763 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7764 btrfs_warn(fs_info, 7765 "devid %llu physical %llu len %llu inside the reserved space", 7766 devid, physical_offset, physical_len); 7767 7768 for (i = 0; i < map->num_stripes; i++) { 7769 if (map->stripes[i].dev->devid == devid && 7770 map->stripes[i].physical == physical_offset) { 7771 found = true; 7772 if (map->verified_stripes >= map->num_stripes) { 7773 btrfs_err(fs_info, 7774 "too many dev extents for chunk %llu found", 7775 em->start); 7776 ret = -EUCLEAN; 7777 goto out; 7778 } 7779 map->verified_stripes++; 7780 break; 7781 } 7782 } 7783 if (!found) { 7784 btrfs_err(fs_info, 7785 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7786 physical_offset, devid); 7787 ret = -EUCLEAN; 7788 } 7789 7790 /* Make sure no dev extent is beyond device boundary */ 7791 dev = btrfs_find_device(fs_info->fs_devices, &args); 7792 if (!dev) { 7793 btrfs_err(fs_info, "failed to find devid %llu", devid); 7794 ret = -EUCLEAN; 7795 goto out; 7796 } 7797 7798 if (physical_offset + physical_len > dev->disk_total_bytes) { 7799 btrfs_err(fs_info, 7800 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7801 devid, physical_offset, physical_len, 7802 dev->disk_total_bytes); 7803 ret = -EUCLEAN; 7804 goto out; 7805 } 7806 7807 if (dev->zone_info) { 7808 u64 zone_size = dev->zone_info->zone_size; 7809 7810 if (!IS_ALIGNED(physical_offset, zone_size) || 7811 !IS_ALIGNED(physical_len, zone_size)) { 7812 btrfs_err(fs_info, 7813 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 7814 devid, physical_offset, physical_len); 7815 ret = -EUCLEAN; 7816 goto out; 7817 } 7818 } 7819 7820 out: 7821 free_extent_map(em); 7822 return ret; 7823 } 7824 7825 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7826 { 7827 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7828 struct extent_map *em; 7829 struct rb_node *node; 7830 int ret = 0; 7831 7832 read_lock(&em_tree->lock); 7833 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7834 em = rb_entry(node, struct extent_map, rb_node); 7835 if (em->map_lookup->num_stripes != 7836 em->map_lookup->verified_stripes) { 7837 btrfs_err(fs_info, 7838 "chunk %llu has missing dev extent, have %d expect %d", 7839 em->start, em->map_lookup->verified_stripes, 7840 em->map_lookup->num_stripes); 7841 ret = -EUCLEAN; 7842 goto out; 7843 } 7844 } 7845 out: 7846 read_unlock(&em_tree->lock); 7847 return ret; 7848 } 7849 7850 /* 7851 * Ensure that all dev extents are mapped to correct chunk, otherwise 7852 * later chunk allocation/free would cause unexpected behavior. 7853 * 7854 * NOTE: This will iterate through the whole device tree, which should be of 7855 * the same size level as the chunk tree. This slightly increases mount time. 7856 */ 7857 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7858 { 7859 struct btrfs_path *path; 7860 struct btrfs_root *root = fs_info->dev_root; 7861 struct btrfs_key key; 7862 u64 prev_devid = 0; 7863 u64 prev_dev_ext_end = 0; 7864 int ret = 0; 7865 7866 /* 7867 * We don't have a dev_root because we mounted with ignorebadroots and 7868 * failed to load the root, so we want to skip the verification in this 7869 * case for sure. 7870 * 7871 * However if the dev root is fine, but the tree itself is corrupted 7872 * we'd still fail to mount. This verification is only to make sure 7873 * writes can happen safely, so instead just bypass this check 7874 * completely in the case of IGNOREBADROOTS. 7875 */ 7876 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 7877 return 0; 7878 7879 key.objectid = 1; 7880 key.type = BTRFS_DEV_EXTENT_KEY; 7881 key.offset = 0; 7882 7883 path = btrfs_alloc_path(); 7884 if (!path) 7885 return -ENOMEM; 7886 7887 path->reada = READA_FORWARD; 7888 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7889 if (ret < 0) 7890 goto out; 7891 7892 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7893 ret = btrfs_next_leaf(root, path); 7894 if (ret < 0) 7895 goto out; 7896 /* No dev extents at all? Not good */ 7897 if (ret > 0) { 7898 ret = -EUCLEAN; 7899 goto out; 7900 } 7901 } 7902 while (1) { 7903 struct extent_buffer *leaf = path->nodes[0]; 7904 struct btrfs_dev_extent *dext; 7905 int slot = path->slots[0]; 7906 u64 chunk_offset; 7907 u64 physical_offset; 7908 u64 physical_len; 7909 u64 devid; 7910 7911 btrfs_item_key_to_cpu(leaf, &key, slot); 7912 if (key.type != BTRFS_DEV_EXTENT_KEY) 7913 break; 7914 devid = key.objectid; 7915 physical_offset = key.offset; 7916 7917 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7918 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7919 physical_len = btrfs_dev_extent_length(leaf, dext); 7920 7921 /* Check if this dev extent overlaps with the previous one */ 7922 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7923 btrfs_err(fs_info, 7924 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7925 devid, physical_offset, prev_dev_ext_end); 7926 ret = -EUCLEAN; 7927 goto out; 7928 } 7929 7930 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7931 physical_offset, physical_len); 7932 if (ret < 0) 7933 goto out; 7934 prev_devid = devid; 7935 prev_dev_ext_end = physical_offset + physical_len; 7936 7937 ret = btrfs_next_item(root, path); 7938 if (ret < 0) 7939 goto out; 7940 if (ret > 0) { 7941 ret = 0; 7942 break; 7943 } 7944 } 7945 7946 /* Ensure all chunks have corresponding dev extents */ 7947 ret = verify_chunk_dev_extent_mapping(fs_info); 7948 out: 7949 btrfs_free_path(path); 7950 return ret; 7951 } 7952 7953 /* 7954 * Check whether the given block group or device is pinned by any inode being 7955 * used as a swapfile. 7956 */ 7957 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7958 { 7959 struct btrfs_swapfile_pin *sp; 7960 struct rb_node *node; 7961 7962 spin_lock(&fs_info->swapfile_pins_lock); 7963 node = fs_info->swapfile_pins.rb_node; 7964 while (node) { 7965 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7966 if (ptr < sp->ptr) 7967 node = node->rb_left; 7968 else if (ptr > sp->ptr) 7969 node = node->rb_right; 7970 else 7971 break; 7972 } 7973 spin_unlock(&fs_info->swapfile_pins_lock); 7974 return node != NULL; 7975 } 7976 7977 static int relocating_repair_kthread(void *data) 7978 { 7979 struct btrfs_block_group *cache = data; 7980 struct btrfs_fs_info *fs_info = cache->fs_info; 7981 u64 target; 7982 int ret = 0; 7983 7984 target = cache->start; 7985 btrfs_put_block_group(cache); 7986 7987 sb_start_write(fs_info->sb); 7988 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 7989 btrfs_info(fs_info, 7990 "zoned: skip relocating block group %llu to repair: EBUSY", 7991 target); 7992 sb_end_write(fs_info->sb); 7993 return -EBUSY; 7994 } 7995 7996 mutex_lock(&fs_info->reclaim_bgs_lock); 7997 7998 /* Ensure block group still exists */ 7999 cache = btrfs_lookup_block_group(fs_info, target); 8000 if (!cache) 8001 goto out; 8002 8003 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8004 goto out; 8005 8006 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8007 if (ret < 0) 8008 goto out; 8009 8010 btrfs_info(fs_info, 8011 "zoned: relocating block group %llu to repair IO failure", 8012 target); 8013 ret = btrfs_relocate_chunk(fs_info, target); 8014 8015 out: 8016 if (cache) 8017 btrfs_put_block_group(cache); 8018 mutex_unlock(&fs_info->reclaim_bgs_lock); 8019 btrfs_exclop_finish(fs_info); 8020 sb_end_write(fs_info->sb); 8021 8022 return ret; 8023 } 8024 8025 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8026 { 8027 struct btrfs_block_group *cache; 8028 8029 if (!btrfs_is_zoned(fs_info)) 8030 return false; 8031 8032 /* Do not attempt to repair in degraded state */ 8033 if (btrfs_test_opt(fs_info, DEGRADED)) 8034 return true; 8035 8036 cache = btrfs_lookup_block_group(fs_info, logical); 8037 if (!cache) 8038 return true; 8039 8040 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8041 btrfs_put_block_group(cache); 8042 return true; 8043 } 8044 8045 kthread_run(relocating_repair_kthread, cache, 8046 "btrfs-relocating-repair"); 8047 8048 return true; 8049 } 8050 8051 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8052 struct btrfs_io_stripe *smap, 8053 u64 logical) 8054 { 8055 int data_stripes = nr_bioc_data_stripes(bioc); 8056 int i; 8057 8058 for (i = 0; i < data_stripes; i++) { 8059 u64 stripe_start = bioc->full_stripe_logical + 8060 btrfs_stripe_nr_to_offset(i); 8061 8062 if (logical >= stripe_start && 8063 logical < stripe_start + BTRFS_STRIPE_LEN) 8064 break; 8065 } 8066 ASSERT(i < data_stripes); 8067 smap->dev = bioc->stripes[i].dev; 8068 smap->physical = bioc->stripes[i].physical + 8069 ((logical - bioc->full_stripe_logical) & 8070 BTRFS_STRIPE_LEN_MASK); 8071 } 8072 8073 /* 8074 * Map a repair write into a single device. 8075 * 8076 * A repair write is triggered by read time repair or scrub, which would only 8077 * update the contents of a single device. 8078 * Not update any other mirrors nor go through RMW path. 8079 * 8080 * Callers should ensure: 8081 * 8082 * - Call btrfs_bio_counter_inc_blocked() first 8083 * - The range does not cross stripe boundary 8084 * - Has a valid @mirror_num passed in. 8085 */ 8086 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8087 struct btrfs_io_stripe *smap, u64 logical, 8088 u32 length, int mirror_num) 8089 { 8090 struct btrfs_io_context *bioc = NULL; 8091 u64 map_length = length; 8092 int mirror_ret = mirror_num; 8093 int ret; 8094 8095 ASSERT(mirror_num > 0); 8096 8097 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8098 &bioc, smap, &mirror_ret, true); 8099 if (ret < 0) 8100 return ret; 8101 8102 /* The map range should not cross stripe boundary. */ 8103 ASSERT(map_length >= length); 8104 8105 /* Already mapped to single stripe. */ 8106 if (!bioc) 8107 goto out; 8108 8109 /* Map the RAID56 multi-stripe writes to a single one. */ 8110 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8111 map_raid56_repair_block(bioc, smap, logical); 8112 goto out; 8113 } 8114 8115 ASSERT(mirror_num <= bioc->num_stripes); 8116 smap->dev = bioc->stripes[mirror_num - 1].dev; 8117 smap->physical = bioc->stripes[mirror_num - 1].physical; 8118 out: 8119 btrfs_put_bioc(bioc); 8120 ASSERT(smap->dev); 8121 return 0; 8122 } 8123