xref: /openbmc/linux/fs/btrfs/volumes.c (revision 6cbefbdc)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 	[BTRFS_RAID_RAID10] = {
47 		.sub_stripes	= 2,
48 		.dev_stripes	= 1,
49 		.devs_max	= 0,	/* 0 == as many as possible */
50 		.devs_min	= 4,
51 		.tolerated_failures = 1,
52 		.devs_increment	= 2,
53 		.ncopies	= 2,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 	},
64 	[BTRFS_RAID_DUP] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 2,
67 		.devs_max	= 1,
68 		.devs_min	= 1,
69 		.tolerated_failures = 0,
70 		.devs_increment	= 1,
71 		.ncopies	= 2,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 	},
82 	[BTRFS_RAID_SINGLE] = {
83 		.sub_stripes	= 1,
84 		.dev_stripes	= 1,
85 		.devs_max	= 1,
86 		.devs_min	= 1,
87 		.tolerated_failures = 0,
88 		.devs_increment	= 1,
89 		.ncopies	= 1,
90 	},
91 	[BTRFS_RAID_RAID5] = {
92 		.sub_stripes	= 1,
93 		.dev_stripes	= 1,
94 		.devs_max	= 0,
95 		.devs_min	= 2,
96 		.tolerated_failures = 1,
97 		.devs_increment	= 1,
98 		.ncopies	= 2,
99 	},
100 	[BTRFS_RAID_RAID6] = {
101 		.sub_stripes	= 1,
102 		.dev_stripes	= 1,
103 		.devs_max	= 0,
104 		.devs_min	= 3,
105 		.tolerated_failures = 2,
106 		.devs_increment	= 1,
107 		.ncopies	= 3,
108 	},
109 };
110 
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116 	[BTRFS_RAID_SINGLE] = 0,
117 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120 
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 	[BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 	[BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 	[BTRFS_RAID_DUP]    = 0,
130 	[BTRFS_RAID_RAID0]  = 0,
131 	[BTRFS_RAID_SINGLE] = 0,
132 	[BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 	[BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135 
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 				struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 			     enum btrfs_map_op op,
144 			     u64 logical, u64 *length,
145 			     struct btrfs_bio **bbio_ret,
146 			     int mirror_num, int need_raid_map);
147 
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
151 {
152 	return &fs_uuids;
153 }
154 
155 /*
156  * alloc_fs_devices - allocate struct btrfs_fs_devices
157  * @fsid:	if not NULL, copy the uuid to fs_devices::fsid
158  *
159  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160  * The returned struct is not linked onto any lists and can be destroyed with
161  * kfree() right away.
162  */
163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164 {
165 	struct btrfs_fs_devices *fs_devs;
166 
167 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
168 	if (!fs_devs)
169 		return ERR_PTR(-ENOMEM);
170 
171 	mutex_init(&fs_devs->device_list_mutex);
172 
173 	INIT_LIST_HEAD(&fs_devs->devices);
174 	INIT_LIST_HEAD(&fs_devs->resized_devices);
175 	INIT_LIST_HEAD(&fs_devs->alloc_list);
176 	INIT_LIST_HEAD(&fs_devs->list);
177 	if (fsid)
178 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
179 
180 	return fs_devs;
181 }
182 
183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
184 {
185 	struct btrfs_device *device;
186 	WARN_ON(fs_devices->opened);
187 	while (!list_empty(&fs_devices->devices)) {
188 		device = list_entry(fs_devices->devices.next,
189 				    struct btrfs_device, dev_list);
190 		list_del(&device->dev_list);
191 		rcu_string_free(device->name);
192 		kfree(device);
193 	}
194 	kfree(fs_devices);
195 }
196 
197 static void btrfs_kobject_uevent(struct block_device *bdev,
198 				 enum kobject_action action)
199 {
200 	int ret;
201 
202 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
203 	if (ret)
204 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
205 			action,
206 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
207 			&disk_to_dev(bdev->bd_disk)->kobj);
208 }
209 
210 void btrfs_cleanup_fs_uuids(void)
211 {
212 	struct btrfs_fs_devices *fs_devices;
213 
214 	while (!list_empty(&fs_uuids)) {
215 		fs_devices = list_entry(fs_uuids.next,
216 					struct btrfs_fs_devices, list);
217 		list_del(&fs_devices->list);
218 		free_fs_devices(fs_devices);
219 	}
220 }
221 
222 static struct btrfs_device *__alloc_device(void)
223 {
224 	struct btrfs_device *dev;
225 
226 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
227 	if (!dev)
228 		return ERR_PTR(-ENOMEM);
229 
230 	/*
231 	 * Preallocate a bio that's always going to be used for flushing device
232 	 * barriers and matches the device lifespan
233 	 */
234 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
235 	if (!dev->flush_bio) {
236 		kfree(dev);
237 		return ERR_PTR(-ENOMEM);
238 	}
239 	bio_get(dev->flush_bio);
240 
241 	INIT_LIST_HEAD(&dev->dev_list);
242 	INIT_LIST_HEAD(&dev->dev_alloc_list);
243 	INIT_LIST_HEAD(&dev->resized_list);
244 
245 	spin_lock_init(&dev->io_lock);
246 
247 	spin_lock_init(&dev->reada_lock);
248 	atomic_set(&dev->reada_in_flight, 0);
249 	atomic_set(&dev->dev_stats_ccnt, 0);
250 	btrfs_device_data_ordered_init(dev);
251 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253 
254 	return dev;
255 }
256 
257 /*
258  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
259  * return NULL.
260  *
261  * If devid and uuid are both specified, the match must be exact, otherwise
262  * only devid is used.
263  */
264 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
265 		u64 devid, const u8 *uuid)
266 {
267 	struct list_head *head = &fs_devices->devices;
268 	struct btrfs_device *dev;
269 
270 	list_for_each_entry(dev, head, dev_list) {
271 		if (dev->devid == devid &&
272 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
273 			return dev;
274 		}
275 	}
276 	return NULL;
277 }
278 
279 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
280 {
281 	struct btrfs_fs_devices *fs_devices;
282 
283 	list_for_each_entry(fs_devices, &fs_uuids, list) {
284 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
285 			return fs_devices;
286 	}
287 	return NULL;
288 }
289 
290 static int
291 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
292 		      int flush, struct block_device **bdev,
293 		      struct buffer_head **bh)
294 {
295 	int ret;
296 
297 	*bdev = blkdev_get_by_path(device_path, flags, holder);
298 
299 	if (IS_ERR(*bdev)) {
300 		ret = PTR_ERR(*bdev);
301 		goto error;
302 	}
303 
304 	if (flush)
305 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
306 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
307 	if (ret) {
308 		blkdev_put(*bdev, flags);
309 		goto error;
310 	}
311 	invalidate_bdev(*bdev);
312 	*bh = btrfs_read_dev_super(*bdev);
313 	if (IS_ERR(*bh)) {
314 		ret = PTR_ERR(*bh);
315 		blkdev_put(*bdev, flags);
316 		goto error;
317 	}
318 
319 	return 0;
320 
321 error:
322 	*bdev = NULL;
323 	*bh = NULL;
324 	return ret;
325 }
326 
327 static void requeue_list(struct btrfs_pending_bios *pending_bios,
328 			struct bio *head, struct bio *tail)
329 {
330 
331 	struct bio *old_head;
332 
333 	old_head = pending_bios->head;
334 	pending_bios->head = head;
335 	if (pending_bios->tail)
336 		tail->bi_next = old_head;
337 	else
338 		pending_bios->tail = tail;
339 }
340 
341 /*
342  * we try to collect pending bios for a device so we don't get a large
343  * number of procs sending bios down to the same device.  This greatly
344  * improves the schedulers ability to collect and merge the bios.
345  *
346  * But, it also turns into a long list of bios to process and that is sure
347  * to eventually make the worker thread block.  The solution here is to
348  * make some progress and then put this work struct back at the end of
349  * the list if the block device is congested.  This way, multiple devices
350  * can make progress from a single worker thread.
351  */
352 static noinline void run_scheduled_bios(struct btrfs_device *device)
353 {
354 	struct btrfs_fs_info *fs_info = device->fs_info;
355 	struct bio *pending;
356 	struct backing_dev_info *bdi;
357 	struct btrfs_pending_bios *pending_bios;
358 	struct bio *tail;
359 	struct bio *cur;
360 	int again = 0;
361 	unsigned long num_run;
362 	unsigned long batch_run = 0;
363 	unsigned long last_waited = 0;
364 	int force_reg = 0;
365 	int sync_pending = 0;
366 	struct blk_plug plug;
367 
368 	/*
369 	 * this function runs all the bios we've collected for
370 	 * a particular device.  We don't want to wander off to
371 	 * another device without first sending all of these down.
372 	 * So, setup a plug here and finish it off before we return
373 	 */
374 	blk_start_plug(&plug);
375 
376 	bdi = device->bdev->bd_bdi;
377 
378 loop:
379 	spin_lock(&device->io_lock);
380 
381 loop_lock:
382 	num_run = 0;
383 
384 	/* take all the bios off the list at once and process them
385 	 * later on (without the lock held).  But, remember the
386 	 * tail and other pointers so the bios can be properly reinserted
387 	 * into the list if we hit congestion
388 	 */
389 	if (!force_reg && device->pending_sync_bios.head) {
390 		pending_bios = &device->pending_sync_bios;
391 		force_reg = 1;
392 	} else {
393 		pending_bios = &device->pending_bios;
394 		force_reg = 0;
395 	}
396 
397 	pending = pending_bios->head;
398 	tail = pending_bios->tail;
399 	WARN_ON(pending && !tail);
400 
401 	/*
402 	 * if pending was null this time around, no bios need processing
403 	 * at all and we can stop.  Otherwise it'll loop back up again
404 	 * and do an additional check so no bios are missed.
405 	 *
406 	 * device->running_pending is used to synchronize with the
407 	 * schedule_bio code.
408 	 */
409 	if (device->pending_sync_bios.head == NULL &&
410 	    device->pending_bios.head == NULL) {
411 		again = 0;
412 		device->running_pending = 0;
413 	} else {
414 		again = 1;
415 		device->running_pending = 1;
416 	}
417 
418 	pending_bios->head = NULL;
419 	pending_bios->tail = NULL;
420 
421 	spin_unlock(&device->io_lock);
422 
423 	while (pending) {
424 
425 		rmb();
426 		/* we want to work on both lists, but do more bios on the
427 		 * sync list than the regular list
428 		 */
429 		if ((num_run > 32 &&
430 		    pending_bios != &device->pending_sync_bios &&
431 		    device->pending_sync_bios.head) ||
432 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
433 		    device->pending_bios.head)) {
434 			spin_lock(&device->io_lock);
435 			requeue_list(pending_bios, pending, tail);
436 			goto loop_lock;
437 		}
438 
439 		cur = pending;
440 		pending = pending->bi_next;
441 		cur->bi_next = NULL;
442 
443 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
444 
445 		/*
446 		 * if we're doing the sync list, record that our
447 		 * plug has some sync requests on it
448 		 *
449 		 * If we're doing the regular list and there are
450 		 * sync requests sitting around, unplug before
451 		 * we add more
452 		 */
453 		if (pending_bios == &device->pending_sync_bios) {
454 			sync_pending = 1;
455 		} else if (sync_pending) {
456 			blk_finish_plug(&plug);
457 			blk_start_plug(&plug);
458 			sync_pending = 0;
459 		}
460 
461 		btrfsic_submit_bio(cur);
462 		num_run++;
463 		batch_run++;
464 
465 		cond_resched();
466 
467 		/*
468 		 * we made progress, there is more work to do and the bdi
469 		 * is now congested.  Back off and let other work structs
470 		 * run instead
471 		 */
472 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
473 		    fs_info->fs_devices->open_devices > 1) {
474 			struct io_context *ioc;
475 
476 			ioc = current->io_context;
477 
478 			/*
479 			 * the main goal here is that we don't want to
480 			 * block if we're going to be able to submit
481 			 * more requests without blocking.
482 			 *
483 			 * This code does two great things, it pokes into
484 			 * the elevator code from a filesystem _and_
485 			 * it makes assumptions about how batching works.
486 			 */
487 			if (ioc && ioc->nr_batch_requests > 0 &&
488 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
489 			    (last_waited == 0 ||
490 			     ioc->last_waited == last_waited)) {
491 				/*
492 				 * we want to go through our batch of
493 				 * requests and stop.  So, we copy out
494 				 * the ioc->last_waited time and test
495 				 * against it before looping
496 				 */
497 				last_waited = ioc->last_waited;
498 				cond_resched();
499 				continue;
500 			}
501 			spin_lock(&device->io_lock);
502 			requeue_list(pending_bios, pending, tail);
503 			device->running_pending = 1;
504 
505 			spin_unlock(&device->io_lock);
506 			btrfs_queue_work(fs_info->submit_workers,
507 					 &device->work);
508 			goto done;
509 		}
510 	}
511 
512 	cond_resched();
513 	if (again)
514 		goto loop;
515 
516 	spin_lock(&device->io_lock);
517 	if (device->pending_bios.head || device->pending_sync_bios.head)
518 		goto loop_lock;
519 	spin_unlock(&device->io_lock);
520 
521 done:
522 	blk_finish_plug(&plug);
523 }
524 
525 static void pending_bios_fn(struct btrfs_work *work)
526 {
527 	struct btrfs_device *device;
528 
529 	device = container_of(work, struct btrfs_device, work);
530 	run_scheduled_bios(device);
531 }
532 
533 
534 static void btrfs_free_stale_device(struct btrfs_device *cur_dev)
535 {
536 	struct btrfs_fs_devices *fs_devs;
537 	struct btrfs_device *dev;
538 
539 	if (!cur_dev->name)
540 		return;
541 
542 	list_for_each_entry(fs_devs, &fs_uuids, list) {
543 		int del = 1;
544 
545 		if (fs_devs->opened)
546 			continue;
547 		if (fs_devs->seeding)
548 			continue;
549 
550 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
551 
552 			if (dev == cur_dev)
553 				continue;
554 			if (!dev->name)
555 				continue;
556 
557 			/*
558 			 * Todo: This won't be enough. What if the same device
559 			 * comes back (with new uuid and) with its mapper path?
560 			 * But for now, this does help as mostly an admin will
561 			 * either use mapper or non mapper path throughout.
562 			 */
563 			rcu_read_lock();
564 			del = strcmp(rcu_str_deref(dev->name),
565 						rcu_str_deref(cur_dev->name));
566 			rcu_read_unlock();
567 			if (!del)
568 				break;
569 		}
570 
571 		if (!del) {
572 			/* delete the stale device */
573 			if (fs_devs->num_devices == 1) {
574 				btrfs_sysfs_remove_fsid(fs_devs);
575 				list_del(&fs_devs->list);
576 				free_fs_devices(fs_devs);
577 			} else {
578 				fs_devs->num_devices--;
579 				list_del(&dev->dev_list);
580 				rcu_string_free(dev->name);
581 				kfree(dev);
582 			}
583 			break;
584 		}
585 	}
586 }
587 
588 /*
589  * Add new device to list of registered devices
590  *
591  * Returns:
592  * 1   - first time device is seen
593  * 0   - device already known
594  * < 0 - error
595  */
596 static noinline int device_list_add(const char *path,
597 			   struct btrfs_super_block *disk_super,
598 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
599 {
600 	struct btrfs_device *device;
601 	struct btrfs_fs_devices *fs_devices;
602 	struct rcu_string *name;
603 	int ret = 0;
604 	u64 found_transid = btrfs_super_generation(disk_super);
605 
606 	fs_devices = find_fsid(disk_super->fsid);
607 	if (!fs_devices) {
608 		fs_devices = alloc_fs_devices(disk_super->fsid);
609 		if (IS_ERR(fs_devices))
610 			return PTR_ERR(fs_devices);
611 
612 		list_add(&fs_devices->list, &fs_uuids);
613 
614 		device = NULL;
615 	} else {
616 		device = find_device(fs_devices, devid,
617 				disk_super->dev_item.uuid);
618 	}
619 
620 	if (!device) {
621 		if (fs_devices->opened)
622 			return -EBUSY;
623 
624 		device = btrfs_alloc_device(NULL, &devid,
625 					    disk_super->dev_item.uuid);
626 		if (IS_ERR(device)) {
627 			/* we can safely leave the fs_devices entry around */
628 			return PTR_ERR(device);
629 		}
630 
631 		name = rcu_string_strdup(path, GFP_NOFS);
632 		if (!name) {
633 			kfree(device);
634 			return -ENOMEM;
635 		}
636 		rcu_assign_pointer(device->name, name);
637 
638 		mutex_lock(&fs_devices->device_list_mutex);
639 		list_add_rcu(&device->dev_list, &fs_devices->devices);
640 		fs_devices->num_devices++;
641 		mutex_unlock(&fs_devices->device_list_mutex);
642 
643 		ret = 1;
644 		device->fs_devices = fs_devices;
645 	} else if (!device->name || strcmp(device->name->str, path)) {
646 		/*
647 		 * When FS is already mounted.
648 		 * 1. If you are here and if the device->name is NULL that
649 		 *    means this device was missing at time of FS mount.
650 		 * 2. If you are here and if the device->name is different
651 		 *    from 'path' that means either
652 		 *      a. The same device disappeared and reappeared with
653 		 *         different name. or
654 		 *      b. The missing-disk-which-was-replaced, has
655 		 *         reappeared now.
656 		 *
657 		 * We must allow 1 and 2a above. But 2b would be a spurious
658 		 * and unintentional.
659 		 *
660 		 * Further in case of 1 and 2a above, the disk at 'path'
661 		 * would have missed some transaction when it was away and
662 		 * in case of 2a the stale bdev has to be updated as well.
663 		 * 2b must not be allowed at all time.
664 		 */
665 
666 		/*
667 		 * For now, we do allow update to btrfs_fs_device through the
668 		 * btrfs dev scan cli after FS has been mounted.  We're still
669 		 * tracking a problem where systems fail mount by subvolume id
670 		 * when we reject replacement on a mounted FS.
671 		 */
672 		if (!fs_devices->opened && found_transid < device->generation) {
673 			/*
674 			 * That is if the FS is _not_ mounted and if you
675 			 * are here, that means there is more than one
676 			 * disk with same uuid and devid.We keep the one
677 			 * with larger generation number or the last-in if
678 			 * generation are equal.
679 			 */
680 			return -EEXIST;
681 		}
682 
683 		name = rcu_string_strdup(path, GFP_NOFS);
684 		if (!name)
685 			return -ENOMEM;
686 		rcu_string_free(device->name);
687 		rcu_assign_pointer(device->name, name);
688 		if (device->missing) {
689 			fs_devices->missing_devices--;
690 			device->missing = 0;
691 		}
692 	}
693 
694 	/*
695 	 * Unmount does not free the btrfs_device struct but would zero
696 	 * generation along with most of the other members. So just update
697 	 * it back. We need it to pick the disk with largest generation
698 	 * (as above).
699 	 */
700 	if (!fs_devices->opened)
701 		device->generation = found_transid;
702 
703 	/*
704 	 * if there is new btrfs on an already registered device,
705 	 * then remove the stale device entry.
706 	 */
707 	if (ret > 0)
708 		btrfs_free_stale_device(device);
709 
710 	*fs_devices_ret = fs_devices;
711 
712 	return ret;
713 }
714 
715 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
716 {
717 	struct btrfs_fs_devices *fs_devices;
718 	struct btrfs_device *device;
719 	struct btrfs_device *orig_dev;
720 
721 	fs_devices = alloc_fs_devices(orig->fsid);
722 	if (IS_ERR(fs_devices))
723 		return fs_devices;
724 
725 	mutex_lock(&orig->device_list_mutex);
726 	fs_devices->total_devices = orig->total_devices;
727 
728 	/* We have held the volume lock, it is safe to get the devices. */
729 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
730 		struct rcu_string *name;
731 
732 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
733 					    orig_dev->uuid);
734 		if (IS_ERR(device))
735 			goto error;
736 
737 		/*
738 		 * This is ok to do without rcu read locked because we hold the
739 		 * uuid mutex so nothing we touch in here is going to disappear.
740 		 */
741 		if (orig_dev->name) {
742 			name = rcu_string_strdup(orig_dev->name->str,
743 					GFP_KERNEL);
744 			if (!name) {
745 				kfree(device);
746 				goto error;
747 			}
748 			rcu_assign_pointer(device->name, name);
749 		}
750 
751 		list_add(&device->dev_list, &fs_devices->devices);
752 		device->fs_devices = fs_devices;
753 		fs_devices->num_devices++;
754 	}
755 	mutex_unlock(&orig->device_list_mutex);
756 	return fs_devices;
757 error:
758 	mutex_unlock(&orig->device_list_mutex);
759 	free_fs_devices(fs_devices);
760 	return ERR_PTR(-ENOMEM);
761 }
762 
763 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
764 {
765 	struct btrfs_device *device, *next;
766 	struct btrfs_device *latest_dev = NULL;
767 
768 	mutex_lock(&uuid_mutex);
769 again:
770 	/* This is the initialized path, it is safe to release the devices. */
771 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
772 		if (device->in_fs_metadata) {
773 			if (!device->is_tgtdev_for_dev_replace &&
774 			    (!latest_dev ||
775 			     device->generation > latest_dev->generation)) {
776 				latest_dev = device;
777 			}
778 			continue;
779 		}
780 
781 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
782 			/*
783 			 * In the first step, keep the device which has
784 			 * the correct fsid and the devid that is used
785 			 * for the dev_replace procedure.
786 			 * In the second step, the dev_replace state is
787 			 * read from the device tree and it is known
788 			 * whether the procedure is really active or
789 			 * not, which means whether this device is
790 			 * used or whether it should be removed.
791 			 */
792 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
793 				continue;
794 			}
795 		}
796 		if (device->bdev) {
797 			blkdev_put(device->bdev, device->mode);
798 			device->bdev = NULL;
799 			fs_devices->open_devices--;
800 		}
801 		if (device->writeable) {
802 			list_del_init(&device->dev_alloc_list);
803 			device->writeable = 0;
804 			if (!device->is_tgtdev_for_dev_replace)
805 				fs_devices->rw_devices--;
806 		}
807 		list_del_init(&device->dev_list);
808 		fs_devices->num_devices--;
809 		rcu_string_free(device->name);
810 		kfree(device);
811 	}
812 
813 	if (fs_devices->seed) {
814 		fs_devices = fs_devices->seed;
815 		goto again;
816 	}
817 
818 	fs_devices->latest_bdev = latest_dev->bdev;
819 
820 	mutex_unlock(&uuid_mutex);
821 }
822 
823 static void __free_device(struct work_struct *work)
824 {
825 	struct btrfs_device *device;
826 
827 	device = container_of(work, struct btrfs_device, rcu_work);
828 	rcu_string_free(device->name);
829 	bio_put(device->flush_bio);
830 	kfree(device);
831 }
832 
833 static void free_device(struct rcu_head *head)
834 {
835 	struct btrfs_device *device;
836 
837 	device = container_of(head, struct btrfs_device, rcu);
838 
839 	INIT_WORK(&device->rcu_work, __free_device);
840 	schedule_work(&device->rcu_work);
841 }
842 
843 static void btrfs_close_bdev(struct btrfs_device *device)
844 {
845 	if (device->bdev && device->writeable) {
846 		sync_blockdev(device->bdev);
847 		invalidate_bdev(device->bdev);
848 	}
849 
850 	if (device->bdev)
851 		blkdev_put(device->bdev, device->mode);
852 }
853 
854 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
855 {
856 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
857 	struct btrfs_device *new_device;
858 	struct rcu_string *name;
859 
860 	if (device->bdev)
861 		fs_devices->open_devices--;
862 
863 	if (device->writeable &&
864 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
865 		list_del_init(&device->dev_alloc_list);
866 		fs_devices->rw_devices--;
867 	}
868 
869 	if (device->missing)
870 		fs_devices->missing_devices--;
871 
872 	new_device = btrfs_alloc_device(NULL, &device->devid,
873 					device->uuid);
874 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
875 
876 	/* Safe because we are under uuid_mutex */
877 	if (device->name) {
878 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
879 		BUG_ON(!name); /* -ENOMEM */
880 		rcu_assign_pointer(new_device->name, name);
881 	}
882 
883 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
884 	new_device->fs_devices = device->fs_devices;
885 }
886 
887 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
888 {
889 	struct btrfs_device *device, *tmp;
890 	struct list_head pending_put;
891 
892 	INIT_LIST_HEAD(&pending_put);
893 
894 	if (--fs_devices->opened > 0)
895 		return 0;
896 
897 	mutex_lock(&fs_devices->device_list_mutex);
898 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
899 		btrfs_prepare_close_one_device(device);
900 		list_add(&device->dev_list, &pending_put);
901 	}
902 	mutex_unlock(&fs_devices->device_list_mutex);
903 
904 	/*
905 	 * btrfs_show_devname() is using the device_list_mutex,
906 	 * sometimes call to blkdev_put() leads vfs calling
907 	 * into this func. So do put outside of device_list_mutex,
908 	 * as of now.
909 	 */
910 	while (!list_empty(&pending_put)) {
911 		device = list_first_entry(&pending_put,
912 				struct btrfs_device, dev_list);
913 		list_del(&device->dev_list);
914 		btrfs_close_bdev(device);
915 		call_rcu(&device->rcu, free_device);
916 	}
917 
918 	WARN_ON(fs_devices->open_devices);
919 	WARN_ON(fs_devices->rw_devices);
920 	fs_devices->opened = 0;
921 	fs_devices->seeding = 0;
922 
923 	return 0;
924 }
925 
926 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
927 {
928 	struct btrfs_fs_devices *seed_devices = NULL;
929 	int ret;
930 
931 	mutex_lock(&uuid_mutex);
932 	ret = __btrfs_close_devices(fs_devices);
933 	if (!fs_devices->opened) {
934 		seed_devices = fs_devices->seed;
935 		fs_devices->seed = NULL;
936 	}
937 	mutex_unlock(&uuid_mutex);
938 
939 	while (seed_devices) {
940 		fs_devices = seed_devices;
941 		seed_devices = fs_devices->seed;
942 		__btrfs_close_devices(fs_devices);
943 		free_fs_devices(fs_devices);
944 	}
945 	/*
946 	 * Wait for rcu kworkers under __btrfs_close_devices
947 	 * to finish all blkdev_puts so device is really
948 	 * free when umount is done.
949 	 */
950 	rcu_barrier();
951 	return ret;
952 }
953 
954 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
955 				fmode_t flags, void *holder)
956 {
957 	struct request_queue *q;
958 	struct block_device *bdev;
959 	struct list_head *head = &fs_devices->devices;
960 	struct btrfs_device *device;
961 	struct btrfs_device *latest_dev = NULL;
962 	struct buffer_head *bh;
963 	struct btrfs_super_block *disk_super;
964 	u64 devid;
965 	int seeding = 1;
966 	int ret = 0;
967 
968 	flags |= FMODE_EXCL;
969 
970 	list_for_each_entry(device, head, dev_list) {
971 		if (device->bdev)
972 			continue;
973 		if (!device->name)
974 			continue;
975 
976 		/* Just open everything we can; ignore failures here */
977 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
978 					    &bdev, &bh))
979 			continue;
980 
981 		disk_super = (struct btrfs_super_block *)bh->b_data;
982 		devid = btrfs_stack_device_id(&disk_super->dev_item);
983 		if (devid != device->devid)
984 			goto error_brelse;
985 
986 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
987 			   BTRFS_UUID_SIZE))
988 			goto error_brelse;
989 
990 		device->generation = btrfs_super_generation(disk_super);
991 		if (!latest_dev ||
992 		    device->generation > latest_dev->generation)
993 			latest_dev = device;
994 
995 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
996 			device->writeable = 0;
997 		} else {
998 			device->writeable = !bdev_read_only(bdev);
999 			seeding = 0;
1000 		}
1001 
1002 		q = bdev_get_queue(bdev);
1003 		if (blk_queue_discard(q))
1004 			device->can_discard = 1;
1005 		if (!blk_queue_nonrot(q))
1006 			fs_devices->rotating = 1;
1007 
1008 		device->bdev = bdev;
1009 		device->in_fs_metadata = 0;
1010 		device->mode = flags;
1011 
1012 		fs_devices->open_devices++;
1013 		if (device->writeable &&
1014 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1015 			fs_devices->rw_devices++;
1016 			list_add(&device->dev_alloc_list,
1017 				 &fs_devices->alloc_list);
1018 		}
1019 		brelse(bh);
1020 		continue;
1021 
1022 error_brelse:
1023 		brelse(bh);
1024 		blkdev_put(bdev, flags);
1025 		continue;
1026 	}
1027 	if (fs_devices->open_devices == 0) {
1028 		ret = -EINVAL;
1029 		goto out;
1030 	}
1031 	fs_devices->seeding = seeding;
1032 	fs_devices->opened = 1;
1033 	fs_devices->latest_bdev = latest_dev->bdev;
1034 	fs_devices->total_rw_bytes = 0;
1035 out:
1036 	return ret;
1037 }
1038 
1039 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1040 		       fmode_t flags, void *holder)
1041 {
1042 	int ret;
1043 
1044 	mutex_lock(&uuid_mutex);
1045 	if (fs_devices->opened) {
1046 		fs_devices->opened++;
1047 		ret = 0;
1048 	} else {
1049 		ret = __btrfs_open_devices(fs_devices, flags, holder);
1050 	}
1051 	mutex_unlock(&uuid_mutex);
1052 	return ret;
1053 }
1054 
1055 static void btrfs_release_disk_super(struct page *page)
1056 {
1057 	kunmap(page);
1058 	put_page(page);
1059 }
1060 
1061 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1062 				 struct page **page,
1063 				 struct btrfs_super_block **disk_super)
1064 {
1065 	void *p;
1066 	pgoff_t index;
1067 
1068 	/* make sure our super fits in the device */
1069 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1070 		return 1;
1071 
1072 	/* make sure our super fits in the page */
1073 	if (sizeof(**disk_super) > PAGE_SIZE)
1074 		return 1;
1075 
1076 	/* make sure our super doesn't straddle pages on disk */
1077 	index = bytenr >> PAGE_SHIFT;
1078 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1079 		return 1;
1080 
1081 	/* pull in the page with our super */
1082 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1083 				   index, GFP_KERNEL);
1084 
1085 	if (IS_ERR_OR_NULL(*page))
1086 		return 1;
1087 
1088 	p = kmap(*page);
1089 
1090 	/* align our pointer to the offset of the super block */
1091 	*disk_super = p + (bytenr & ~PAGE_MASK);
1092 
1093 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1094 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1095 		btrfs_release_disk_super(*page);
1096 		return 1;
1097 	}
1098 
1099 	if ((*disk_super)->label[0] &&
1100 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1101 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1102 
1103 	return 0;
1104 }
1105 
1106 /*
1107  * Look for a btrfs signature on a device. This may be called out of the mount path
1108  * and we are not allowed to call set_blocksize during the scan. The superblock
1109  * is read via pagecache
1110  */
1111 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1112 			  struct btrfs_fs_devices **fs_devices_ret)
1113 {
1114 	struct btrfs_super_block *disk_super;
1115 	struct block_device *bdev;
1116 	struct page *page;
1117 	int ret = -EINVAL;
1118 	u64 devid;
1119 	u64 transid;
1120 	u64 total_devices;
1121 	u64 bytenr;
1122 
1123 	/*
1124 	 * we would like to check all the supers, but that would make
1125 	 * a btrfs mount succeed after a mkfs from a different FS.
1126 	 * So, we need to add a special mount option to scan for
1127 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1128 	 */
1129 	bytenr = btrfs_sb_offset(0);
1130 	flags |= FMODE_EXCL;
1131 	mutex_lock(&uuid_mutex);
1132 
1133 	bdev = blkdev_get_by_path(path, flags, holder);
1134 	if (IS_ERR(bdev)) {
1135 		ret = PTR_ERR(bdev);
1136 		goto error;
1137 	}
1138 
1139 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1140 		goto error_bdev_put;
1141 
1142 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1143 	transid = btrfs_super_generation(disk_super);
1144 	total_devices = btrfs_super_num_devices(disk_super);
1145 
1146 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1147 	if (ret > 0) {
1148 		if (disk_super->label[0]) {
1149 			pr_info("BTRFS: device label %s ", disk_super->label);
1150 		} else {
1151 			pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1152 		}
1153 
1154 		pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1155 		ret = 0;
1156 	}
1157 	if (!ret && fs_devices_ret)
1158 		(*fs_devices_ret)->total_devices = total_devices;
1159 
1160 	btrfs_release_disk_super(page);
1161 
1162 error_bdev_put:
1163 	blkdev_put(bdev, flags);
1164 error:
1165 	mutex_unlock(&uuid_mutex);
1166 	return ret;
1167 }
1168 
1169 /* helper to account the used device space in the range */
1170 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1171 				   u64 end, u64 *length)
1172 {
1173 	struct btrfs_key key;
1174 	struct btrfs_root *root = device->fs_info->dev_root;
1175 	struct btrfs_dev_extent *dev_extent;
1176 	struct btrfs_path *path;
1177 	u64 extent_end;
1178 	int ret;
1179 	int slot;
1180 	struct extent_buffer *l;
1181 
1182 	*length = 0;
1183 
1184 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1185 		return 0;
1186 
1187 	path = btrfs_alloc_path();
1188 	if (!path)
1189 		return -ENOMEM;
1190 	path->reada = READA_FORWARD;
1191 
1192 	key.objectid = device->devid;
1193 	key.offset = start;
1194 	key.type = BTRFS_DEV_EXTENT_KEY;
1195 
1196 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1197 	if (ret < 0)
1198 		goto out;
1199 	if (ret > 0) {
1200 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1201 		if (ret < 0)
1202 			goto out;
1203 	}
1204 
1205 	while (1) {
1206 		l = path->nodes[0];
1207 		slot = path->slots[0];
1208 		if (slot >= btrfs_header_nritems(l)) {
1209 			ret = btrfs_next_leaf(root, path);
1210 			if (ret == 0)
1211 				continue;
1212 			if (ret < 0)
1213 				goto out;
1214 
1215 			break;
1216 		}
1217 		btrfs_item_key_to_cpu(l, &key, slot);
1218 
1219 		if (key.objectid < device->devid)
1220 			goto next;
1221 
1222 		if (key.objectid > device->devid)
1223 			break;
1224 
1225 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1226 			goto next;
1227 
1228 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1229 		extent_end = key.offset + btrfs_dev_extent_length(l,
1230 								  dev_extent);
1231 		if (key.offset <= start && extent_end > end) {
1232 			*length = end - start + 1;
1233 			break;
1234 		} else if (key.offset <= start && extent_end > start)
1235 			*length += extent_end - start;
1236 		else if (key.offset > start && extent_end <= end)
1237 			*length += extent_end - key.offset;
1238 		else if (key.offset > start && key.offset <= end) {
1239 			*length += end - key.offset + 1;
1240 			break;
1241 		} else if (key.offset > end)
1242 			break;
1243 
1244 next:
1245 		path->slots[0]++;
1246 	}
1247 	ret = 0;
1248 out:
1249 	btrfs_free_path(path);
1250 	return ret;
1251 }
1252 
1253 static int contains_pending_extent(struct btrfs_transaction *transaction,
1254 				   struct btrfs_device *device,
1255 				   u64 *start, u64 len)
1256 {
1257 	struct btrfs_fs_info *fs_info = device->fs_info;
1258 	struct extent_map *em;
1259 	struct list_head *search_list = &fs_info->pinned_chunks;
1260 	int ret = 0;
1261 	u64 physical_start = *start;
1262 
1263 	if (transaction)
1264 		search_list = &transaction->pending_chunks;
1265 again:
1266 	list_for_each_entry(em, search_list, list) {
1267 		struct map_lookup *map;
1268 		int i;
1269 
1270 		map = em->map_lookup;
1271 		for (i = 0; i < map->num_stripes; i++) {
1272 			u64 end;
1273 
1274 			if (map->stripes[i].dev != device)
1275 				continue;
1276 			if (map->stripes[i].physical >= physical_start + len ||
1277 			    map->stripes[i].physical + em->orig_block_len <=
1278 			    physical_start)
1279 				continue;
1280 			/*
1281 			 * Make sure that while processing the pinned list we do
1282 			 * not override our *start with a lower value, because
1283 			 * we can have pinned chunks that fall within this
1284 			 * device hole and that have lower physical addresses
1285 			 * than the pending chunks we processed before. If we
1286 			 * do not take this special care we can end up getting
1287 			 * 2 pending chunks that start at the same physical
1288 			 * device offsets because the end offset of a pinned
1289 			 * chunk can be equal to the start offset of some
1290 			 * pending chunk.
1291 			 */
1292 			end = map->stripes[i].physical + em->orig_block_len;
1293 			if (end > *start) {
1294 				*start = end;
1295 				ret = 1;
1296 			}
1297 		}
1298 	}
1299 	if (search_list != &fs_info->pinned_chunks) {
1300 		search_list = &fs_info->pinned_chunks;
1301 		goto again;
1302 	}
1303 
1304 	return ret;
1305 }
1306 
1307 
1308 /*
1309  * find_free_dev_extent_start - find free space in the specified device
1310  * @device:	  the device which we search the free space in
1311  * @num_bytes:	  the size of the free space that we need
1312  * @search_start: the position from which to begin the search
1313  * @start:	  store the start of the free space.
1314  * @len:	  the size of the free space. that we find, or the size
1315  *		  of the max free space if we don't find suitable free space
1316  *
1317  * this uses a pretty simple search, the expectation is that it is
1318  * called very infrequently and that a given device has a small number
1319  * of extents
1320  *
1321  * @start is used to store the start of the free space if we find. But if we
1322  * don't find suitable free space, it will be used to store the start position
1323  * of the max free space.
1324  *
1325  * @len is used to store the size of the free space that we find.
1326  * But if we don't find suitable free space, it is used to store the size of
1327  * the max free space.
1328  */
1329 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1330 			       struct btrfs_device *device, u64 num_bytes,
1331 			       u64 search_start, u64 *start, u64 *len)
1332 {
1333 	struct btrfs_fs_info *fs_info = device->fs_info;
1334 	struct btrfs_root *root = fs_info->dev_root;
1335 	struct btrfs_key key;
1336 	struct btrfs_dev_extent *dev_extent;
1337 	struct btrfs_path *path;
1338 	u64 hole_size;
1339 	u64 max_hole_start;
1340 	u64 max_hole_size;
1341 	u64 extent_end;
1342 	u64 search_end = device->total_bytes;
1343 	int ret;
1344 	int slot;
1345 	struct extent_buffer *l;
1346 
1347 	/*
1348 	 * We don't want to overwrite the superblock on the drive nor any area
1349 	 * used by the boot loader (grub for example), so we make sure to start
1350 	 * at an offset of at least 1MB.
1351 	 */
1352 	search_start = max_t(u64, search_start, SZ_1M);
1353 
1354 	path = btrfs_alloc_path();
1355 	if (!path)
1356 		return -ENOMEM;
1357 
1358 	max_hole_start = search_start;
1359 	max_hole_size = 0;
1360 
1361 again:
1362 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1363 		ret = -ENOSPC;
1364 		goto out;
1365 	}
1366 
1367 	path->reada = READA_FORWARD;
1368 	path->search_commit_root = 1;
1369 	path->skip_locking = 1;
1370 
1371 	key.objectid = device->devid;
1372 	key.offset = search_start;
1373 	key.type = BTRFS_DEV_EXTENT_KEY;
1374 
1375 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1376 	if (ret < 0)
1377 		goto out;
1378 	if (ret > 0) {
1379 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1380 		if (ret < 0)
1381 			goto out;
1382 	}
1383 
1384 	while (1) {
1385 		l = path->nodes[0];
1386 		slot = path->slots[0];
1387 		if (slot >= btrfs_header_nritems(l)) {
1388 			ret = btrfs_next_leaf(root, path);
1389 			if (ret == 0)
1390 				continue;
1391 			if (ret < 0)
1392 				goto out;
1393 
1394 			break;
1395 		}
1396 		btrfs_item_key_to_cpu(l, &key, slot);
1397 
1398 		if (key.objectid < device->devid)
1399 			goto next;
1400 
1401 		if (key.objectid > device->devid)
1402 			break;
1403 
1404 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1405 			goto next;
1406 
1407 		if (key.offset > search_start) {
1408 			hole_size = key.offset - search_start;
1409 
1410 			/*
1411 			 * Have to check before we set max_hole_start, otherwise
1412 			 * we could end up sending back this offset anyway.
1413 			 */
1414 			if (contains_pending_extent(transaction, device,
1415 						    &search_start,
1416 						    hole_size)) {
1417 				if (key.offset >= search_start) {
1418 					hole_size = key.offset - search_start;
1419 				} else {
1420 					WARN_ON_ONCE(1);
1421 					hole_size = 0;
1422 				}
1423 			}
1424 
1425 			if (hole_size > max_hole_size) {
1426 				max_hole_start = search_start;
1427 				max_hole_size = hole_size;
1428 			}
1429 
1430 			/*
1431 			 * If this free space is greater than which we need,
1432 			 * it must be the max free space that we have found
1433 			 * until now, so max_hole_start must point to the start
1434 			 * of this free space and the length of this free space
1435 			 * is stored in max_hole_size. Thus, we return
1436 			 * max_hole_start and max_hole_size and go back to the
1437 			 * caller.
1438 			 */
1439 			if (hole_size >= num_bytes) {
1440 				ret = 0;
1441 				goto out;
1442 			}
1443 		}
1444 
1445 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1446 		extent_end = key.offset + btrfs_dev_extent_length(l,
1447 								  dev_extent);
1448 		if (extent_end > search_start)
1449 			search_start = extent_end;
1450 next:
1451 		path->slots[0]++;
1452 		cond_resched();
1453 	}
1454 
1455 	/*
1456 	 * At this point, search_start should be the end of
1457 	 * allocated dev extents, and when shrinking the device,
1458 	 * search_end may be smaller than search_start.
1459 	 */
1460 	if (search_end > search_start) {
1461 		hole_size = search_end - search_start;
1462 
1463 		if (contains_pending_extent(transaction, device, &search_start,
1464 					    hole_size)) {
1465 			btrfs_release_path(path);
1466 			goto again;
1467 		}
1468 
1469 		if (hole_size > max_hole_size) {
1470 			max_hole_start = search_start;
1471 			max_hole_size = hole_size;
1472 		}
1473 	}
1474 
1475 	/* See above. */
1476 	if (max_hole_size < num_bytes)
1477 		ret = -ENOSPC;
1478 	else
1479 		ret = 0;
1480 
1481 out:
1482 	btrfs_free_path(path);
1483 	*start = max_hole_start;
1484 	if (len)
1485 		*len = max_hole_size;
1486 	return ret;
1487 }
1488 
1489 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1490 			 struct btrfs_device *device, u64 num_bytes,
1491 			 u64 *start, u64 *len)
1492 {
1493 	/* FIXME use last free of some kind */
1494 	return find_free_dev_extent_start(trans->transaction, device,
1495 					  num_bytes, 0, start, len);
1496 }
1497 
1498 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1499 			  struct btrfs_device *device,
1500 			  u64 start, u64 *dev_extent_len)
1501 {
1502 	struct btrfs_fs_info *fs_info = device->fs_info;
1503 	struct btrfs_root *root = fs_info->dev_root;
1504 	int ret;
1505 	struct btrfs_path *path;
1506 	struct btrfs_key key;
1507 	struct btrfs_key found_key;
1508 	struct extent_buffer *leaf = NULL;
1509 	struct btrfs_dev_extent *extent = NULL;
1510 
1511 	path = btrfs_alloc_path();
1512 	if (!path)
1513 		return -ENOMEM;
1514 
1515 	key.objectid = device->devid;
1516 	key.offset = start;
1517 	key.type = BTRFS_DEV_EXTENT_KEY;
1518 again:
1519 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1520 	if (ret > 0) {
1521 		ret = btrfs_previous_item(root, path, key.objectid,
1522 					  BTRFS_DEV_EXTENT_KEY);
1523 		if (ret)
1524 			goto out;
1525 		leaf = path->nodes[0];
1526 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1527 		extent = btrfs_item_ptr(leaf, path->slots[0],
1528 					struct btrfs_dev_extent);
1529 		BUG_ON(found_key.offset > start || found_key.offset +
1530 		       btrfs_dev_extent_length(leaf, extent) < start);
1531 		key = found_key;
1532 		btrfs_release_path(path);
1533 		goto again;
1534 	} else if (ret == 0) {
1535 		leaf = path->nodes[0];
1536 		extent = btrfs_item_ptr(leaf, path->slots[0],
1537 					struct btrfs_dev_extent);
1538 	} else {
1539 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1540 		goto out;
1541 	}
1542 
1543 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1544 
1545 	ret = btrfs_del_item(trans, root, path);
1546 	if (ret) {
1547 		btrfs_handle_fs_error(fs_info, ret,
1548 				      "Failed to remove dev extent item");
1549 	} else {
1550 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1551 	}
1552 out:
1553 	btrfs_free_path(path);
1554 	return ret;
1555 }
1556 
1557 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1558 				  struct btrfs_device *device,
1559 				  u64 chunk_offset, u64 start, u64 num_bytes)
1560 {
1561 	int ret;
1562 	struct btrfs_path *path;
1563 	struct btrfs_fs_info *fs_info = device->fs_info;
1564 	struct btrfs_root *root = fs_info->dev_root;
1565 	struct btrfs_dev_extent *extent;
1566 	struct extent_buffer *leaf;
1567 	struct btrfs_key key;
1568 
1569 	WARN_ON(!device->in_fs_metadata);
1570 	WARN_ON(device->is_tgtdev_for_dev_replace);
1571 	path = btrfs_alloc_path();
1572 	if (!path)
1573 		return -ENOMEM;
1574 
1575 	key.objectid = device->devid;
1576 	key.offset = start;
1577 	key.type = BTRFS_DEV_EXTENT_KEY;
1578 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1579 				      sizeof(*extent));
1580 	if (ret)
1581 		goto out;
1582 
1583 	leaf = path->nodes[0];
1584 	extent = btrfs_item_ptr(leaf, path->slots[0],
1585 				struct btrfs_dev_extent);
1586 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1587 					BTRFS_CHUNK_TREE_OBJECTID);
1588 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1589 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1590 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1591 
1592 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1593 	btrfs_mark_buffer_dirty(leaf);
1594 out:
1595 	btrfs_free_path(path);
1596 	return ret;
1597 }
1598 
1599 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1600 {
1601 	struct extent_map_tree *em_tree;
1602 	struct extent_map *em;
1603 	struct rb_node *n;
1604 	u64 ret = 0;
1605 
1606 	em_tree = &fs_info->mapping_tree.map_tree;
1607 	read_lock(&em_tree->lock);
1608 	n = rb_last(&em_tree->map);
1609 	if (n) {
1610 		em = rb_entry(n, struct extent_map, rb_node);
1611 		ret = em->start + em->len;
1612 	}
1613 	read_unlock(&em_tree->lock);
1614 
1615 	return ret;
1616 }
1617 
1618 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1619 				    u64 *devid_ret)
1620 {
1621 	int ret;
1622 	struct btrfs_key key;
1623 	struct btrfs_key found_key;
1624 	struct btrfs_path *path;
1625 
1626 	path = btrfs_alloc_path();
1627 	if (!path)
1628 		return -ENOMEM;
1629 
1630 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1631 	key.type = BTRFS_DEV_ITEM_KEY;
1632 	key.offset = (u64)-1;
1633 
1634 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1635 	if (ret < 0)
1636 		goto error;
1637 
1638 	BUG_ON(ret == 0); /* Corruption */
1639 
1640 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1641 				  BTRFS_DEV_ITEMS_OBJECTID,
1642 				  BTRFS_DEV_ITEM_KEY);
1643 	if (ret) {
1644 		*devid_ret = 1;
1645 	} else {
1646 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1647 				      path->slots[0]);
1648 		*devid_ret = found_key.offset + 1;
1649 	}
1650 	ret = 0;
1651 error:
1652 	btrfs_free_path(path);
1653 	return ret;
1654 }
1655 
1656 /*
1657  * the device information is stored in the chunk root
1658  * the btrfs_device struct should be fully filled in
1659  */
1660 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1661 			    struct btrfs_fs_info *fs_info,
1662 			    struct btrfs_device *device)
1663 {
1664 	struct btrfs_root *root = fs_info->chunk_root;
1665 	int ret;
1666 	struct btrfs_path *path;
1667 	struct btrfs_dev_item *dev_item;
1668 	struct extent_buffer *leaf;
1669 	struct btrfs_key key;
1670 	unsigned long ptr;
1671 
1672 	path = btrfs_alloc_path();
1673 	if (!path)
1674 		return -ENOMEM;
1675 
1676 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1677 	key.type = BTRFS_DEV_ITEM_KEY;
1678 	key.offset = device->devid;
1679 
1680 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1681 				      sizeof(*dev_item));
1682 	if (ret)
1683 		goto out;
1684 
1685 	leaf = path->nodes[0];
1686 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1687 
1688 	btrfs_set_device_id(leaf, dev_item, device->devid);
1689 	btrfs_set_device_generation(leaf, dev_item, 0);
1690 	btrfs_set_device_type(leaf, dev_item, device->type);
1691 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1692 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1693 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1694 	btrfs_set_device_total_bytes(leaf, dev_item,
1695 				     btrfs_device_get_disk_total_bytes(device));
1696 	btrfs_set_device_bytes_used(leaf, dev_item,
1697 				    btrfs_device_get_bytes_used(device));
1698 	btrfs_set_device_group(leaf, dev_item, 0);
1699 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1700 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1701 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1702 
1703 	ptr = btrfs_device_uuid(dev_item);
1704 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1705 	ptr = btrfs_device_fsid(dev_item);
1706 	write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1707 	btrfs_mark_buffer_dirty(leaf);
1708 
1709 	ret = 0;
1710 out:
1711 	btrfs_free_path(path);
1712 	return ret;
1713 }
1714 
1715 /*
1716  * Function to update ctime/mtime for a given device path.
1717  * Mainly used for ctime/mtime based probe like libblkid.
1718  */
1719 static void update_dev_time(const char *path_name)
1720 {
1721 	struct file *filp;
1722 
1723 	filp = filp_open(path_name, O_RDWR, 0);
1724 	if (IS_ERR(filp))
1725 		return;
1726 	file_update_time(filp);
1727 	filp_close(filp, NULL);
1728 }
1729 
1730 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1731 			     struct btrfs_device *device)
1732 {
1733 	struct btrfs_root *root = fs_info->chunk_root;
1734 	int ret;
1735 	struct btrfs_path *path;
1736 	struct btrfs_key key;
1737 	struct btrfs_trans_handle *trans;
1738 
1739 	path = btrfs_alloc_path();
1740 	if (!path)
1741 		return -ENOMEM;
1742 
1743 	trans = btrfs_start_transaction(root, 0);
1744 	if (IS_ERR(trans)) {
1745 		btrfs_free_path(path);
1746 		return PTR_ERR(trans);
1747 	}
1748 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1749 	key.type = BTRFS_DEV_ITEM_KEY;
1750 	key.offset = device->devid;
1751 
1752 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1753 	if (ret < 0)
1754 		goto out;
1755 
1756 	if (ret > 0) {
1757 		ret = -ENOENT;
1758 		goto out;
1759 	}
1760 
1761 	ret = btrfs_del_item(trans, root, path);
1762 	if (ret)
1763 		goto out;
1764 out:
1765 	btrfs_free_path(path);
1766 	btrfs_commit_transaction(trans);
1767 	return ret;
1768 }
1769 
1770 /*
1771  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1772  * filesystem. It's up to the caller to adjust that number regarding eg. device
1773  * replace.
1774  */
1775 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1776 		u64 num_devices)
1777 {
1778 	u64 all_avail;
1779 	unsigned seq;
1780 	int i;
1781 
1782 	do {
1783 		seq = read_seqbegin(&fs_info->profiles_lock);
1784 
1785 		all_avail = fs_info->avail_data_alloc_bits |
1786 			    fs_info->avail_system_alloc_bits |
1787 			    fs_info->avail_metadata_alloc_bits;
1788 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1789 
1790 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1791 		if (!(all_avail & btrfs_raid_group[i]))
1792 			continue;
1793 
1794 		if (num_devices < btrfs_raid_array[i].devs_min) {
1795 			int ret = btrfs_raid_mindev_error[i];
1796 
1797 			if (ret)
1798 				return ret;
1799 		}
1800 	}
1801 
1802 	return 0;
1803 }
1804 
1805 static struct btrfs_device * btrfs_find_next_active_device(
1806 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1807 {
1808 	struct btrfs_device *next_device;
1809 
1810 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1811 		if (next_device != device &&
1812 			!next_device->missing && next_device->bdev)
1813 			return next_device;
1814 	}
1815 
1816 	return NULL;
1817 }
1818 
1819 /*
1820  * Helper function to check if the given device is part of s_bdev / latest_bdev
1821  * and replace it with the provided or the next active device, in the context
1822  * where this function called, there should be always be another device (or
1823  * this_dev) which is active.
1824  */
1825 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1826 		struct btrfs_device *device, struct btrfs_device *this_dev)
1827 {
1828 	struct btrfs_device *next_device;
1829 
1830 	if (this_dev)
1831 		next_device = this_dev;
1832 	else
1833 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1834 								device);
1835 	ASSERT(next_device);
1836 
1837 	if (fs_info->sb->s_bdev &&
1838 			(fs_info->sb->s_bdev == device->bdev))
1839 		fs_info->sb->s_bdev = next_device->bdev;
1840 
1841 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1842 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1843 }
1844 
1845 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1846 		u64 devid)
1847 {
1848 	struct btrfs_device *device;
1849 	struct btrfs_fs_devices *cur_devices;
1850 	u64 num_devices;
1851 	int ret = 0;
1852 
1853 	mutex_lock(&uuid_mutex);
1854 
1855 	num_devices = fs_info->fs_devices->num_devices;
1856 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1857 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1858 		WARN_ON(num_devices < 1);
1859 		num_devices--;
1860 	}
1861 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1862 
1863 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1864 	if (ret)
1865 		goto out;
1866 
1867 	ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1868 					   &device);
1869 	if (ret)
1870 		goto out;
1871 
1872 	if (device->is_tgtdev_for_dev_replace) {
1873 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1874 		goto out;
1875 	}
1876 
1877 	if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1878 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1879 		goto out;
1880 	}
1881 
1882 	if (device->writeable) {
1883 		mutex_lock(&fs_info->chunk_mutex);
1884 		list_del_init(&device->dev_alloc_list);
1885 		device->fs_devices->rw_devices--;
1886 		mutex_unlock(&fs_info->chunk_mutex);
1887 	}
1888 
1889 	mutex_unlock(&uuid_mutex);
1890 	ret = btrfs_shrink_device(device, 0);
1891 	mutex_lock(&uuid_mutex);
1892 	if (ret)
1893 		goto error_undo;
1894 
1895 	/*
1896 	 * TODO: the superblock still includes this device in its num_devices
1897 	 * counter although write_all_supers() is not locked out. This
1898 	 * could give a filesystem state which requires a degraded mount.
1899 	 */
1900 	ret = btrfs_rm_dev_item(fs_info, device);
1901 	if (ret)
1902 		goto error_undo;
1903 
1904 	device->in_fs_metadata = 0;
1905 	btrfs_scrub_cancel_dev(fs_info, device);
1906 
1907 	/*
1908 	 * the device list mutex makes sure that we don't change
1909 	 * the device list while someone else is writing out all
1910 	 * the device supers. Whoever is writing all supers, should
1911 	 * lock the device list mutex before getting the number of
1912 	 * devices in the super block (super_copy). Conversely,
1913 	 * whoever updates the number of devices in the super block
1914 	 * (super_copy) should hold the device list mutex.
1915 	 */
1916 
1917 	cur_devices = device->fs_devices;
1918 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1919 	list_del_rcu(&device->dev_list);
1920 
1921 	device->fs_devices->num_devices--;
1922 	device->fs_devices->total_devices--;
1923 
1924 	if (device->missing)
1925 		device->fs_devices->missing_devices--;
1926 
1927 	btrfs_assign_next_active_device(fs_info, device, NULL);
1928 
1929 	if (device->bdev) {
1930 		device->fs_devices->open_devices--;
1931 		/* remove sysfs entry */
1932 		btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1933 	}
1934 
1935 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1936 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1937 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1938 
1939 	/*
1940 	 * at this point, the device is zero sized and detached from
1941 	 * the devices list.  All that's left is to zero out the old
1942 	 * supers and free the device.
1943 	 */
1944 	if (device->writeable)
1945 		btrfs_scratch_superblocks(device->bdev, device->name->str);
1946 
1947 	btrfs_close_bdev(device);
1948 	call_rcu(&device->rcu, free_device);
1949 
1950 	if (cur_devices->open_devices == 0) {
1951 		struct btrfs_fs_devices *fs_devices;
1952 		fs_devices = fs_info->fs_devices;
1953 		while (fs_devices) {
1954 			if (fs_devices->seed == cur_devices) {
1955 				fs_devices->seed = cur_devices->seed;
1956 				break;
1957 			}
1958 			fs_devices = fs_devices->seed;
1959 		}
1960 		cur_devices->seed = NULL;
1961 		__btrfs_close_devices(cur_devices);
1962 		free_fs_devices(cur_devices);
1963 	}
1964 
1965 out:
1966 	mutex_unlock(&uuid_mutex);
1967 	return ret;
1968 
1969 error_undo:
1970 	if (device->writeable) {
1971 		mutex_lock(&fs_info->chunk_mutex);
1972 		list_add(&device->dev_alloc_list,
1973 			 &fs_info->fs_devices->alloc_list);
1974 		device->fs_devices->rw_devices++;
1975 		mutex_unlock(&fs_info->chunk_mutex);
1976 	}
1977 	goto out;
1978 }
1979 
1980 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1981 					struct btrfs_device *srcdev)
1982 {
1983 	struct btrfs_fs_devices *fs_devices;
1984 
1985 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1986 
1987 	/*
1988 	 * in case of fs with no seed, srcdev->fs_devices will point
1989 	 * to fs_devices of fs_info. However when the dev being replaced is
1990 	 * a seed dev it will point to the seed's local fs_devices. In short
1991 	 * srcdev will have its correct fs_devices in both the cases.
1992 	 */
1993 	fs_devices = srcdev->fs_devices;
1994 
1995 	list_del_rcu(&srcdev->dev_list);
1996 	list_del_rcu(&srcdev->dev_alloc_list);
1997 	fs_devices->num_devices--;
1998 	if (srcdev->missing)
1999 		fs_devices->missing_devices--;
2000 
2001 	if (srcdev->writeable)
2002 		fs_devices->rw_devices--;
2003 
2004 	if (srcdev->bdev)
2005 		fs_devices->open_devices--;
2006 }
2007 
2008 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2009 				      struct btrfs_device *srcdev)
2010 {
2011 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2012 
2013 	if (srcdev->writeable) {
2014 		/* zero out the old super if it is writable */
2015 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2016 	}
2017 
2018 	btrfs_close_bdev(srcdev);
2019 	call_rcu(&srcdev->rcu, free_device);
2020 
2021 	/* if this is no devs we rather delete the fs_devices */
2022 	if (!fs_devices->num_devices) {
2023 		struct btrfs_fs_devices *tmp_fs_devices;
2024 
2025 		/*
2026 		 * On a mounted FS, num_devices can't be zero unless it's a
2027 		 * seed. In case of a seed device being replaced, the replace
2028 		 * target added to the sprout FS, so there will be no more
2029 		 * device left under the seed FS.
2030 		 */
2031 		ASSERT(fs_devices->seeding);
2032 
2033 		tmp_fs_devices = fs_info->fs_devices;
2034 		while (tmp_fs_devices) {
2035 			if (tmp_fs_devices->seed == fs_devices) {
2036 				tmp_fs_devices->seed = fs_devices->seed;
2037 				break;
2038 			}
2039 			tmp_fs_devices = tmp_fs_devices->seed;
2040 		}
2041 		fs_devices->seed = NULL;
2042 		__btrfs_close_devices(fs_devices);
2043 		free_fs_devices(fs_devices);
2044 	}
2045 }
2046 
2047 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2048 				      struct btrfs_device *tgtdev)
2049 {
2050 	mutex_lock(&uuid_mutex);
2051 	WARN_ON(!tgtdev);
2052 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2053 
2054 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2055 
2056 	if (tgtdev->bdev)
2057 		fs_info->fs_devices->open_devices--;
2058 
2059 	fs_info->fs_devices->num_devices--;
2060 
2061 	btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2062 
2063 	list_del_rcu(&tgtdev->dev_list);
2064 
2065 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2066 	mutex_unlock(&uuid_mutex);
2067 
2068 	/*
2069 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2070 	 * may lead to a call to btrfs_show_devname() which will try
2071 	 * to hold device_list_mutex. And here this device
2072 	 * is already out of device list, so we don't have to hold
2073 	 * the device_list_mutex lock.
2074 	 */
2075 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2076 
2077 	btrfs_close_bdev(tgtdev);
2078 	call_rcu(&tgtdev->rcu, free_device);
2079 }
2080 
2081 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2082 				     const char *device_path,
2083 				     struct btrfs_device **device)
2084 {
2085 	int ret = 0;
2086 	struct btrfs_super_block *disk_super;
2087 	u64 devid;
2088 	u8 *dev_uuid;
2089 	struct block_device *bdev;
2090 	struct buffer_head *bh;
2091 
2092 	*device = NULL;
2093 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2094 				    fs_info->bdev_holder, 0, &bdev, &bh);
2095 	if (ret)
2096 		return ret;
2097 	disk_super = (struct btrfs_super_block *)bh->b_data;
2098 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2099 	dev_uuid = disk_super->dev_item.uuid;
2100 	*device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2101 	brelse(bh);
2102 	if (!*device)
2103 		ret = -ENOENT;
2104 	blkdev_put(bdev, FMODE_READ);
2105 	return ret;
2106 }
2107 
2108 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2109 					 const char *device_path,
2110 					 struct btrfs_device **device)
2111 {
2112 	*device = NULL;
2113 	if (strcmp(device_path, "missing") == 0) {
2114 		struct list_head *devices;
2115 		struct btrfs_device *tmp;
2116 
2117 		devices = &fs_info->fs_devices->devices;
2118 		/*
2119 		 * It is safe to read the devices since the volume_mutex
2120 		 * is held by the caller.
2121 		 */
2122 		list_for_each_entry(tmp, devices, dev_list) {
2123 			if (tmp->in_fs_metadata && !tmp->bdev) {
2124 				*device = tmp;
2125 				break;
2126 			}
2127 		}
2128 
2129 		if (!*device)
2130 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2131 
2132 		return 0;
2133 	} else {
2134 		return btrfs_find_device_by_path(fs_info, device_path, device);
2135 	}
2136 }
2137 
2138 /*
2139  * Lookup a device given by device id, or the path if the id is 0.
2140  */
2141 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2142 				 const char *devpath,
2143 				 struct btrfs_device **device)
2144 {
2145 	int ret;
2146 
2147 	if (devid) {
2148 		ret = 0;
2149 		*device = btrfs_find_device(fs_info, devid, NULL, NULL);
2150 		if (!*device)
2151 			ret = -ENOENT;
2152 	} else {
2153 		if (!devpath || !devpath[0])
2154 			return -EINVAL;
2155 
2156 		ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2157 							   device);
2158 	}
2159 	return ret;
2160 }
2161 
2162 /*
2163  * does all the dirty work required for changing file system's UUID.
2164  */
2165 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2166 {
2167 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2168 	struct btrfs_fs_devices *old_devices;
2169 	struct btrfs_fs_devices *seed_devices;
2170 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2171 	struct btrfs_device *device;
2172 	u64 super_flags;
2173 
2174 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2175 	if (!fs_devices->seeding)
2176 		return -EINVAL;
2177 
2178 	seed_devices = alloc_fs_devices(NULL);
2179 	if (IS_ERR(seed_devices))
2180 		return PTR_ERR(seed_devices);
2181 
2182 	old_devices = clone_fs_devices(fs_devices);
2183 	if (IS_ERR(old_devices)) {
2184 		kfree(seed_devices);
2185 		return PTR_ERR(old_devices);
2186 	}
2187 
2188 	list_add(&old_devices->list, &fs_uuids);
2189 
2190 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2191 	seed_devices->opened = 1;
2192 	INIT_LIST_HEAD(&seed_devices->devices);
2193 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2194 	mutex_init(&seed_devices->device_list_mutex);
2195 
2196 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2197 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2198 			      synchronize_rcu);
2199 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2200 		device->fs_devices = seed_devices;
2201 
2202 	mutex_lock(&fs_info->chunk_mutex);
2203 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2204 	mutex_unlock(&fs_info->chunk_mutex);
2205 
2206 	fs_devices->seeding = 0;
2207 	fs_devices->num_devices = 0;
2208 	fs_devices->open_devices = 0;
2209 	fs_devices->missing_devices = 0;
2210 	fs_devices->rotating = 0;
2211 	fs_devices->seed = seed_devices;
2212 
2213 	generate_random_uuid(fs_devices->fsid);
2214 	memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2215 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2216 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2217 
2218 	super_flags = btrfs_super_flags(disk_super) &
2219 		      ~BTRFS_SUPER_FLAG_SEEDING;
2220 	btrfs_set_super_flags(disk_super, super_flags);
2221 
2222 	return 0;
2223 }
2224 
2225 /*
2226  * Store the expected generation for seed devices in device items.
2227  */
2228 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2229 			       struct btrfs_fs_info *fs_info)
2230 {
2231 	struct btrfs_root *root = fs_info->chunk_root;
2232 	struct btrfs_path *path;
2233 	struct extent_buffer *leaf;
2234 	struct btrfs_dev_item *dev_item;
2235 	struct btrfs_device *device;
2236 	struct btrfs_key key;
2237 	u8 fs_uuid[BTRFS_FSID_SIZE];
2238 	u8 dev_uuid[BTRFS_UUID_SIZE];
2239 	u64 devid;
2240 	int ret;
2241 
2242 	path = btrfs_alloc_path();
2243 	if (!path)
2244 		return -ENOMEM;
2245 
2246 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2247 	key.offset = 0;
2248 	key.type = BTRFS_DEV_ITEM_KEY;
2249 
2250 	while (1) {
2251 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2252 		if (ret < 0)
2253 			goto error;
2254 
2255 		leaf = path->nodes[0];
2256 next_slot:
2257 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2258 			ret = btrfs_next_leaf(root, path);
2259 			if (ret > 0)
2260 				break;
2261 			if (ret < 0)
2262 				goto error;
2263 			leaf = path->nodes[0];
2264 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2265 			btrfs_release_path(path);
2266 			continue;
2267 		}
2268 
2269 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2270 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2271 		    key.type != BTRFS_DEV_ITEM_KEY)
2272 			break;
2273 
2274 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2275 					  struct btrfs_dev_item);
2276 		devid = btrfs_device_id(leaf, dev_item);
2277 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2278 				   BTRFS_UUID_SIZE);
2279 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2280 				   BTRFS_FSID_SIZE);
2281 		device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2282 		BUG_ON(!device); /* Logic error */
2283 
2284 		if (device->fs_devices->seeding) {
2285 			btrfs_set_device_generation(leaf, dev_item,
2286 						    device->generation);
2287 			btrfs_mark_buffer_dirty(leaf);
2288 		}
2289 
2290 		path->slots[0]++;
2291 		goto next_slot;
2292 	}
2293 	ret = 0;
2294 error:
2295 	btrfs_free_path(path);
2296 	return ret;
2297 }
2298 
2299 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2300 {
2301 	struct btrfs_root *root = fs_info->dev_root;
2302 	struct request_queue *q;
2303 	struct btrfs_trans_handle *trans;
2304 	struct btrfs_device *device;
2305 	struct block_device *bdev;
2306 	struct list_head *devices;
2307 	struct super_block *sb = fs_info->sb;
2308 	struct rcu_string *name;
2309 	u64 tmp;
2310 	int seeding_dev = 0;
2311 	int ret = 0;
2312 	bool unlocked = false;
2313 
2314 	if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2315 		return -EROFS;
2316 
2317 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2318 				  fs_info->bdev_holder);
2319 	if (IS_ERR(bdev))
2320 		return PTR_ERR(bdev);
2321 
2322 	if (fs_info->fs_devices->seeding) {
2323 		seeding_dev = 1;
2324 		down_write(&sb->s_umount);
2325 		mutex_lock(&uuid_mutex);
2326 	}
2327 
2328 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2329 
2330 	devices = &fs_info->fs_devices->devices;
2331 
2332 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2333 	list_for_each_entry(device, devices, dev_list) {
2334 		if (device->bdev == bdev) {
2335 			ret = -EEXIST;
2336 			mutex_unlock(
2337 				&fs_info->fs_devices->device_list_mutex);
2338 			goto error;
2339 		}
2340 	}
2341 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2342 
2343 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2344 	if (IS_ERR(device)) {
2345 		/* we can safely leave the fs_devices entry around */
2346 		ret = PTR_ERR(device);
2347 		goto error;
2348 	}
2349 
2350 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2351 	if (!name) {
2352 		kfree(device);
2353 		ret = -ENOMEM;
2354 		goto error;
2355 	}
2356 	rcu_assign_pointer(device->name, name);
2357 
2358 	trans = btrfs_start_transaction(root, 0);
2359 	if (IS_ERR(trans)) {
2360 		rcu_string_free(device->name);
2361 		kfree(device);
2362 		ret = PTR_ERR(trans);
2363 		goto error;
2364 	}
2365 
2366 	q = bdev_get_queue(bdev);
2367 	if (blk_queue_discard(q))
2368 		device->can_discard = 1;
2369 	device->writeable = 1;
2370 	device->generation = trans->transid;
2371 	device->io_width = fs_info->sectorsize;
2372 	device->io_align = fs_info->sectorsize;
2373 	device->sector_size = fs_info->sectorsize;
2374 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2375 					 fs_info->sectorsize);
2376 	device->disk_total_bytes = device->total_bytes;
2377 	device->commit_total_bytes = device->total_bytes;
2378 	device->fs_info = fs_info;
2379 	device->bdev = bdev;
2380 	device->in_fs_metadata = 1;
2381 	device->is_tgtdev_for_dev_replace = 0;
2382 	device->mode = FMODE_EXCL;
2383 	device->dev_stats_valid = 1;
2384 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2385 
2386 	if (seeding_dev) {
2387 		sb->s_flags &= ~MS_RDONLY;
2388 		ret = btrfs_prepare_sprout(fs_info);
2389 		if (ret) {
2390 			btrfs_abort_transaction(trans, ret);
2391 			goto error_trans;
2392 		}
2393 	}
2394 
2395 	device->fs_devices = fs_info->fs_devices;
2396 
2397 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2398 	mutex_lock(&fs_info->chunk_mutex);
2399 	list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2400 	list_add(&device->dev_alloc_list,
2401 		 &fs_info->fs_devices->alloc_list);
2402 	fs_info->fs_devices->num_devices++;
2403 	fs_info->fs_devices->open_devices++;
2404 	fs_info->fs_devices->rw_devices++;
2405 	fs_info->fs_devices->total_devices++;
2406 	fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2407 
2408 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2409 
2410 	if (!blk_queue_nonrot(q))
2411 		fs_info->fs_devices->rotating = 1;
2412 
2413 	tmp = btrfs_super_total_bytes(fs_info->super_copy);
2414 	btrfs_set_super_total_bytes(fs_info->super_copy,
2415 		round_down(tmp + device->total_bytes, fs_info->sectorsize));
2416 
2417 	tmp = btrfs_super_num_devices(fs_info->super_copy);
2418 	btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2419 
2420 	/* add sysfs device entry */
2421 	btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2422 
2423 	/*
2424 	 * we've got more storage, clear any full flags on the space
2425 	 * infos
2426 	 */
2427 	btrfs_clear_space_info_full(fs_info);
2428 
2429 	mutex_unlock(&fs_info->chunk_mutex);
2430 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2431 
2432 	if (seeding_dev) {
2433 		mutex_lock(&fs_info->chunk_mutex);
2434 		ret = init_first_rw_device(trans, fs_info);
2435 		mutex_unlock(&fs_info->chunk_mutex);
2436 		if (ret) {
2437 			btrfs_abort_transaction(trans, ret);
2438 			goto error_sysfs;
2439 		}
2440 	}
2441 
2442 	ret = btrfs_add_device(trans, fs_info, device);
2443 	if (ret) {
2444 		btrfs_abort_transaction(trans, ret);
2445 		goto error_sysfs;
2446 	}
2447 
2448 	if (seeding_dev) {
2449 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2450 
2451 		ret = btrfs_finish_sprout(trans, fs_info);
2452 		if (ret) {
2453 			btrfs_abort_transaction(trans, ret);
2454 			goto error_sysfs;
2455 		}
2456 
2457 		/* Sprouting would change fsid of the mounted root,
2458 		 * so rename the fsid on the sysfs
2459 		 */
2460 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2461 						fs_info->fsid);
2462 		if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2463 			btrfs_warn(fs_info,
2464 				   "sysfs: failed to create fsid for sprout");
2465 	}
2466 
2467 	ret = btrfs_commit_transaction(trans);
2468 
2469 	if (seeding_dev) {
2470 		mutex_unlock(&uuid_mutex);
2471 		up_write(&sb->s_umount);
2472 		unlocked = true;
2473 
2474 		if (ret) /* transaction commit */
2475 			return ret;
2476 
2477 		ret = btrfs_relocate_sys_chunks(fs_info);
2478 		if (ret < 0)
2479 			btrfs_handle_fs_error(fs_info, ret,
2480 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2481 		trans = btrfs_attach_transaction(root);
2482 		if (IS_ERR(trans)) {
2483 			if (PTR_ERR(trans) == -ENOENT)
2484 				return 0;
2485 			ret = PTR_ERR(trans);
2486 			trans = NULL;
2487 			goto error_sysfs;
2488 		}
2489 		ret = btrfs_commit_transaction(trans);
2490 	}
2491 
2492 	/* Update ctime/mtime for libblkid */
2493 	update_dev_time(device_path);
2494 	return ret;
2495 
2496 error_sysfs:
2497 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2498 error_trans:
2499 	if (seeding_dev)
2500 		sb->s_flags |= MS_RDONLY;
2501 	if (trans)
2502 		btrfs_end_transaction(trans);
2503 	rcu_string_free(device->name);
2504 	kfree(device);
2505 error:
2506 	blkdev_put(bdev, FMODE_EXCL);
2507 	if (seeding_dev && !unlocked) {
2508 		mutex_unlock(&uuid_mutex);
2509 		up_write(&sb->s_umount);
2510 	}
2511 	return ret;
2512 }
2513 
2514 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2515 				  const char *device_path,
2516 				  struct btrfs_device *srcdev,
2517 				  struct btrfs_device **device_out)
2518 {
2519 	struct request_queue *q;
2520 	struct btrfs_device *device;
2521 	struct block_device *bdev;
2522 	struct list_head *devices;
2523 	struct rcu_string *name;
2524 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2525 	int ret = 0;
2526 
2527 	*device_out = NULL;
2528 	if (fs_info->fs_devices->seeding) {
2529 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2530 		return -EINVAL;
2531 	}
2532 
2533 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2534 				  fs_info->bdev_holder);
2535 	if (IS_ERR(bdev)) {
2536 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2537 		return PTR_ERR(bdev);
2538 	}
2539 
2540 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2541 
2542 	devices = &fs_info->fs_devices->devices;
2543 	list_for_each_entry(device, devices, dev_list) {
2544 		if (device->bdev == bdev) {
2545 			btrfs_err(fs_info,
2546 				  "target device is in the filesystem!");
2547 			ret = -EEXIST;
2548 			goto error;
2549 		}
2550 	}
2551 
2552 
2553 	if (i_size_read(bdev->bd_inode) <
2554 	    btrfs_device_get_total_bytes(srcdev)) {
2555 		btrfs_err(fs_info,
2556 			  "target device is smaller than source device!");
2557 		ret = -EINVAL;
2558 		goto error;
2559 	}
2560 
2561 
2562 	device = btrfs_alloc_device(NULL, &devid, NULL);
2563 	if (IS_ERR(device)) {
2564 		ret = PTR_ERR(device);
2565 		goto error;
2566 	}
2567 
2568 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2569 	if (!name) {
2570 		kfree(device);
2571 		ret = -ENOMEM;
2572 		goto error;
2573 	}
2574 	rcu_assign_pointer(device->name, name);
2575 
2576 	q = bdev_get_queue(bdev);
2577 	if (blk_queue_discard(q))
2578 		device->can_discard = 1;
2579 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2580 	device->writeable = 1;
2581 	device->generation = 0;
2582 	device->io_width = fs_info->sectorsize;
2583 	device->io_align = fs_info->sectorsize;
2584 	device->sector_size = fs_info->sectorsize;
2585 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2586 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2587 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2588 	ASSERT(list_empty(&srcdev->resized_list));
2589 	device->commit_total_bytes = srcdev->commit_total_bytes;
2590 	device->commit_bytes_used = device->bytes_used;
2591 	device->fs_info = fs_info;
2592 	device->bdev = bdev;
2593 	device->in_fs_metadata = 1;
2594 	device->is_tgtdev_for_dev_replace = 1;
2595 	device->mode = FMODE_EXCL;
2596 	device->dev_stats_valid = 1;
2597 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2598 	device->fs_devices = fs_info->fs_devices;
2599 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2600 	fs_info->fs_devices->num_devices++;
2601 	fs_info->fs_devices->open_devices++;
2602 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2603 
2604 	*device_out = device;
2605 	return ret;
2606 
2607 error:
2608 	blkdev_put(bdev, FMODE_EXCL);
2609 	return ret;
2610 }
2611 
2612 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2613 					      struct btrfs_device *tgtdev)
2614 {
2615 	u32 sectorsize = fs_info->sectorsize;
2616 
2617 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2618 	tgtdev->io_width = sectorsize;
2619 	tgtdev->io_align = sectorsize;
2620 	tgtdev->sector_size = sectorsize;
2621 	tgtdev->fs_info = fs_info;
2622 	tgtdev->in_fs_metadata = 1;
2623 }
2624 
2625 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2626 					struct btrfs_device *device)
2627 {
2628 	int ret;
2629 	struct btrfs_path *path;
2630 	struct btrfs_root *root = device->fs_info->chunk_root;
2631 	struct btrfs_dev_item *dev_item;
2632 	struct extent_buffer *leaf;
2633 	struct btrfs_key key;
2634 
2635 	path = btrfs_alloc_path();
2636 	if (!path)
2637 		return -ENOMEM;
2638 
2639 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2640 	key.type = BTRFS_DEV_ITEM_KEY;
2641 	key.offset = device->devid;
2642 
2643 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2644 	if (ret < 0)
2645 		goto out;
2646 
2647 	if (ret > 0) {
2648 		ret = -ENOENT;
2649 		goto out;
2650 	}
2651 
2652 	leaf = path->nodes[0];
2653 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2654 
2655 	btrfs_set_device_id(leaf, dev_item, device->devid);
2656 	btrfs_set_device_type(leaf, dev_item, device->type);
2657 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2658 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2659 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2660 	btrfs_set_device_total_bytes(leaf, dev_item,
2661 				     btrfs_device_get_disk_total_bytes(device));
2662 	btrfs_set_device_bytes_used(leaf, dev_item,
2663 				    btrfs_device_get_bytes_used(device));
2664 	btrfs_mark_buffer_dirty(leaf);
2665 
2666 out:
2667 	btrfs_free_path(path);
2668 	return ret;
2669 }
2670 
2671 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2672 		      struct btrfs_device *device, u64 new_size)
2673 {
2674 	struct btrfs_fs_info *fs_info = device->fs_info;
2675 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2676 	struct btrfs_fs_devices *fs_devices;
2677 	u64 old_total;
2678 	u64 diff;
2679 
2680 	if (!device->writeable)
2681 		return -EACCES;
2682 
2683 	new_size = round_down(new_size, fs_info->sectorsize);
2684 
2685 	mutex_lock(&fs_info->chunk_mutex);
2686 	old_total = btrfs_super_total_bytes(super_copy);
2687 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2688 
2689 	if (new_size <= device->total_bytes ||
2690 	    device->is_tgtdev_for_dev_replace) {
2691 		mutex_unlock(&fs_info->chunk_mutex);
2692 		return -EINVAL;
2693 	}
2694 
2695 	fs_devices = fs_info->fs_devices;
2696 
2697 	btrfs_set_super_total_bytes(super_copy,
2698 			round_down(old_total + diff, fs_info->sectorsize));
2699 	device->fs_devices->total_rw_bytes += diff;
2700 
2701 	btrfs_device_set_total_bytes(device, new_size);
2702 	btrfs_device_set_disk_total_bytes(device, new_size);
2703 	btrfs_clear_space_info_full(device->fs_info);
2704 	if (list_empty(&device->resized_list))
2705 		list_add_tail(&device->resized_list,
2706 			      &fs_devices->resized_devices);
2707 	mutex_unlock(&fs_info->chunk_mutex);
2708 
2709 	return btrfs_update_device(trans, device);
2710 }
2711 
2712 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2713 			    struct btrfs_fs_info *fs_info, u64 chunk_offset)
2714 {
2715 	struct btrfs_root *root = fs_info->chunk_root;
2716 	int ret;
2717 	struct btrfs_path *path;
2718 	struct btrfs_key key;
2719 
2720 	path = btrfs_alloc_path();
2721 	if (!path)
2722 		return -ENOMEM;
2723 
2724 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2725 	key.offset = chunk_offset;
2726 	key.type = BTRFS_CHUNK_ITEM_KEY;
2727 
2728 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2729 	if (ret < 0)
2730 		goto out;
2731 	else if (ret > 0) { /* Logic error or corruption */
2732 		btrfs_handle_fs_error(fs_info, -ENOENT,
2733 				      "Failed lookup while freeing chunk.");
2734 		ret = -ENOENT;
2735 		goto out;
2736 	}
2737 
2738 	ret = btrfs_del_item(trans, root, path);
2739 	if (ret < 0)
2740 		btrfs_handle_fs_error(fs_info, ret,
2741 				      "Failed to delete chunk item.");
2742 out:
2743 	btrfs_free_path(path);
2744 	return ret;
2745 }
2746 
2747 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2748 {
2749 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2750 	struct btrfs_disk_key *disk_key;
2751 	struct btrfs_chunk *chunk;
2752 	u8 *ptr;
2753 	int ret = 0;
2754 	u32 num_stripes;
2755 	u32 array_size;
2756 	u32 len = 0;
2757 	u32 cur;
2758 	struct btrfs_key key;
2759 
2760 	mutex_lock(&fs_info->chunk_mutex);
2761 	array_size = btrfs_super_sys_array_size(super_copy);
2762 
2763 	ptr = super_copy->sys_chunk_array;
2764 	cur = 0;
2765 
2766 	while (cur < array_size) {
2767 		disk_key = (struct btrfs_disk_key *)ptr;
2768 		btrfs_disk_key_to_cpu(&key, disk_key);
2769 
2770 		len = sizeof(*disk_key);
2771 
2772 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2773 			chunk = (struct btrfs_chunk *)(ptr + len);
2774 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2775 			len += btrfs_chunk_item_size(num_stripes);
2776 		} else {
2777 			ret = -EIO;
2778 			break;
2779 		}
2780 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2781 		    key.offset == chunk_offset) {
2782 			memmove(ptr, ptr + len, array_size - (cur + len));
2783 			array_size -= len;
2784 			btrfs_set_super_sys_array_size(super_copy, array_size);
2785 		} else {
2786 			ptr += len;
2787 			cur += len;
2788 		}
2789 	}
2790 	mutex_unlock(&fs_info->chunk_mutex);
2791 	return ret;
2792 }
2793 
2794 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2795 					u64 logical, u64 length)
2796 {
2797 	struct extent_map_tree *em_tree;
2798 	struct extent_map *em;
2799 
2800 	em_tree = &fs_info->mapping_tree.map_tree;
2801 	read_lock(&em_tree->lock);
2802 	em = lookup_extent_mapping(em_tree, logical, length);
2803 	read_unlock(&em_tree->lock);
2804 
2805 	if (!em) {
2806 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2807 			   logical, length);
2808 		return ERR_PTR(-EINVAL);
2809 	}
2810 
2811 	if (em->start > logical || em->start + em->len < logical) {
2812 		btrfs_crit(fs_info,
2813 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2814 			   logical, length, em->start, em->start + em->len);
2815 		free_extent_map(em);
2816 		return ERR_PTR(-EINVAL);
2817 	}
2818 
2819 	/* callers are responsible for dropping em's ref. */
2820 	return em;
2821 }
2822 
2823 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2824 		       struct btrfs_fs_info *fs_info, u64 chunk_offset)
2825 {
2826 	struct extent_map *em;
2827 	struct map_lookup *map;
2828 	u64 dev_extent_len = 0;
2829 	int i, ret = 0;
2830 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2831 
2832 	em = get_chunk_map(fs_info, chunk_offset, 1);
2833 	if (IS_ERR(em)) {
2834 		/*
2835 		 * This is a logic error, but we don't want to just rely on the
2836 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2837 		 * do anything we still error out.
2838 		 */
2839 		ASSERT(0);
2840 		return PTR_ERR(em);
2841 	}
2842 	map = em->map_lookup;
2843 	mutex_lock(&fs_info->chunk_mutex);
2844 	check_system_chunk(trans, fs_info, map->type);
2845 	mutex_unlock(&fs_info->chunk_mutex);
2846 
2847 	/*
2848 	 * Take the device list mutex to prevent races with the final phase of
2849 	 * a device replace operation that replaces the device object associated
2850 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2851 	 */
2852 	mutex_lock(&fs_devices->device_list_mutex);
2853 	for (i = 0; i < map->num_stripes; i++) {
2854 		struct btrfs_device *device = map->stripes[i].dev;
2855 		ret = btrfs_free_dev_extent(trans, device,
2856 					    map->stripes[i].physical,
2857 					    &dev_extent_len);
2858 		if (ret) {
2859 			mutex_unlock(&fs_devices->device_list_mutex);
2860 			btrfs_abort_transaction(trans, ret);
2861 			goto out;
2862 		}
2863 
2864 		if (device->bytes_used > 0) {
2865 			mutex_lock(&fs_info->chunk_mutex);
2866 			btrfs_device_set_bytes_used(device,
2867 					device->bytes_used - dev_extent_len);
2868 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2869 			btrfs_clear_space_info_full(fs_info);
2870 			mutex_unlock(&fs_info->chunk_mutex);
2871 		}
2872 
2873 		if (map->stripes[i].dev) {
2874 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2875 			if (ret) {
2876 				mutex_unlock(&fs_devices->device_list_mutex);
2877 				btrfs_abort_transaction(trans, ret);
2878 				goto out;
2879 			}
2880 		}
2881 	}
2882 	mutex_unlock(&fs_devices->device_list_mutex);
2883 
2884 	ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2885 	if (ret) {
2886 		btrfs_abort_transaction(trans, ret);
2887 		goto out;
2888 	}
2889 
2890 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2891 
2892 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2893 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2894 		if (ret) {
2895 			btrfs_abort_transaction(trans, ret);
2896 			goto out;
2897 		}
2898 	}
2899 
2900 	ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2901 	if (ret) {
2902 		btrfs_abort_transaction(trans, ret);
2903 		goto out;
2904 	}
2905 
2906 out:
2907 	/* once for us */
2908 	free_extent_map(em);
2909 	return ret;
2910 }
2911 
2912 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2913 {
2914 	struct btrfs_root *root = fs_info->chunk_root;
2915 	struct btrfs_trans_handle *trans;
2916 	int ret;
2917 
2918 	/*
2919 	 * Prevent races with automatic removal of unused block groups.
2920 	 * After we relocate and before we remove the chunk with offset
2921 	 * chunk_offset, automatic removal of the block group can kick in,
2922 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2923 	 *
2924 	 * Make sure to acquire this mutex before doing a tree search (dev
2925 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2926 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2927 	 * we release the path used to search the chunk/dev tree and before
2928 	 * the current task acquires this mutex and calls us.
2929 	 */
2930 	ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2931 
2932 	ret = btrfs_can_relocate(fs_info, chunk_offset);
2933 	if (ret)
2934 		return -ENOSPC;
2935 
2936 	/* step one, relocate all the extents inside this chunk */
2937 	btrfs_scrub_pause(fs_info);
2938 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2939 	btrfs_scrub_continue(fs_info);
2940 	if (ret)
2941 		return ret;
2942 
2943 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2944 						     chunk_offset);
2945 	if (IS_ERR(trans)) {
2946 		ret = PTR_ERR(trans);
2947 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2948 		return ret;
2949 	}
2950 
2951 	/*
2952 	 * step two, delete the device extents and the
2953 	 * chunk tree entries
2954 	 */
2955 	ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2956 	btrfs_end_transaction(trans);
2957 	return ret;
2958 }
2959 
2960 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2961 {
2962 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2963 	struct btrfs_path *path;
2964 	struct extent_buffer *leaf;
2965 	struct btrfs_chunk *chunk;
2966 	struct btrfs_key key;
2967 	struct btrfs_key found_key;
2968 	u64 chunk_type;
2969 	bool retried = false;
2970 	int failed = 0;
2971 	int ret;
2972 
2973 	path = btrfs_alloc_path();
2974 	if (!path)
2975 		return -ENOMEM;
2976 
2977 again:
2978 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2979 	key.offset = (u64)-1;
2980 	key.type = BTRFS_CHUNK_ITEM_KEY;
2981 
2982 	while (1) {
2983 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
2984 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2985 		if (ret < 0) {
2986 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2987 			goto error;
2988 		}
2989 		BUG_ON(ret == 0); /* Corruption */
2990 
2991 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2992 					  key.type);
2993 		if (ret)
2994 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2995 		if (ret < 0)
2996 			goto error;
2997 		if (ret > 0)
2998 			break;
2999 
3000 		leaf = path->nodes[0];
3001 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3002 
3003 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3004 				       struct btrfs_chunk);
3005 		chunk_type = btrfs_chunk_type(leaf, chunk);
3006 		btrfs_release_path(path);
3007 
3008 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3009 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3010 			if (ret == -ENOSPC)
3011 				failed++;
3012 			else
3013 				BUG_ON(ret);
3014 		}
3015 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3016 
3017 		if (found_key.offset == 0)
3018 			break;
3019 		key.offset = found_key.offset - 1;
3020 	}
3021 	ret = 0;
3022 	if (failed && !retried) {
3023 		failed = 0;
3024 		retried = true;
3025 		goto again;
3026 	} else if (WARN_ON(failed && retried)) {
3027 		ret = -ENOSPC;
3028 	}
3029 error:
3030 	btrfs_free_path(path);
3031 	return ret;
3032 }
3033 
3034 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3035 			       struct btrfs_balance_control *bctl)
3036 {
3037 	struct btrfs_root *root = fs_info->tree_root;
3038 	struct btrfs_trans_handle *trans;
3039 	struct btrfs_balance_item *item;
3040 	struct btrfs_disk_balance_args disk_bargs;
3041 	struct btrfs_path *path;
3042 	struct extent_buffer *leaf;
3043 	struct btrfs_key key;
3044 	int ret, err;
3045 
3046 	path = btrfs_alloc_path();
3047 	if (!path)
3048 		return -ENOMEM;
3049 
3050 	trans = btrfs_start_transaction(root, 0);
3051 	if (IS_ERR(trans)) {
3052 		btrfs_free_path(path);
3053 		return PTR_ERR(trans);
3054 	}
3055 
3056 	key.objectid = BTRFS_BALANCE_OBJECTID;
3057 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3058 	key.offset = 0;
3059 
3060 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3061 				      sizeof(*item));
3062 	if (ret)
3063 		goto out;
3064 
3065 	leaf = path->nodes[0];
3066 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3067 
3068 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3069 
3070 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3071 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3072 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3073 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3074 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3075 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3076 
3077 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3078 
3079 	btrfs_mark_buffer_dirty(leaf);
3080 out:
3081 	btrfs_free_path(path);
3082 	err = btrfs_commit_transaction(trans);
3083 	if (err && !ret)
3084 		ret = err;
3085 	return ret;
3086 }
3087 
3088 static int del_balance_item(struct btrfs_fs_info *fs_info)
3089 {
3090 	struct btrfs_root *root = fs_info->tree_root;
3091 	struct btrfs_trans_handle *trans;
3092 	struct btrfs_path *path;
3093 	struct btrfs_key key;
3094 	int ret, err;
3095 
3096 	path = btrfs_alloc_path();
3097 	if (!path)
3098 		return -ENOMEM;
3099 
3100 	trans = btrfs_start_transaction(root, 0);
3101 	if (IS_ERR(trans)) {
3102 		btrfs_free_path(path);
3103 		return PTR_ERR(trans);
3104 	}
3105 
3106 	key.objectid = BTRFS_BALANCE_OBJECTID;
3107 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3108 	key.offset = 0;
3109 
3110 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3111 	if (ret < 0)
3112 		goto out;
3113 	if (ret > 0) {
3114 		ret = -ENOENT;
3115 		goto out;
3116 	}
3117 
3118 	ret = btrfs_del_item(trans, root, path);
3119 out:
3120 	btrfs_free_path(path);
3121 	err = btrfs_commit_transaction(trans);
3122 	if (err && !ret)
3123 		ret = err;
3124 	return ret;
3125 }
3126 
3127 /*
3128  * This is a heuristic used to reduce the number of chunks balanced on
3129  * resume after balance was interrupted.
3130  */
3131 static void update_balance_args(struct btrfs_balance_control *bctl)
3132 {
3133 	/*
3134 	 * Turn on soft mode for chunk types that were being converted.
3135 	 */
3136 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3139 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3140 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3141 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3142 
3143 	/*
3144 	 * Turn on usage filter if is not already used.  The idea is
3145 	 * that chunks that we have already balanced should be
3146 	 * reasonably full.  Don't do it for chunks that are being
3147 	 * converted - that will keep us from relocating unconverted
3148 	 * (albeit full) chunks.
3149 	 */
3150 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3151 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3152 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3153 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3154 		bctl->data.usage = 90;
3155 	}
3156 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3157 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3158 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3159 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3160 		bctl->sys.usage = 90;
3161 	}
3162 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3163 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3164 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3165 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3166 		bctl->meta.usage = 90;
3167 	}
3168 }
3169 
3170 /*
3171  * Should be called with both balance and volume mutexes held to
3172  * serialize other volume operations (add_dev/rm_dev/resize) with
3173  * restriper.  Same goes for unset_balance_control.
3174  */
3175 static void set_balance_control(struct btrfs_balance_control *bctl)
3176 {
3177 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3178 
3179 	BUG_ON(fs_info->balance_ctl);
3180 
3181 	spin_lock(&fs_info->balance_lock);
3182 	fs_info->balance_ctl = bctl;
3183 	spin_unlock(&fs_info->balance_lock);
3184 }
3185 
3186 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3187 {
3188 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3189 
3190 	BUG_ON(!fs_info->balance_ctl);
3191 
3192 	spin_lock(&fs_info->balance_lock);
3193 	fs_info->balance_ctl = NULL;
3194 	spin_unlock(&fs_info->balance_lock);
3195 
3196 	kfree(bctl);
3197 }
3198 
3199 /*
3200  * Balance filters.  Return 1 if chunk should be filtered out
3201  * (should not be balanced).
3202  */
3203 static int chunk_profiles_filter(u64 chunk_type,
3204 				 struct btrfs_balance_args *bargs)
3205 {
3206 	chunk_type = chunk_to_extended(chunk_type) &
3207 				BTRFS_EXTENDED_PROFILE_MASK;
3208 
3209 	if (bargs->profiles & chunk_type)
3210 		return 0;
3211 
3212 	return 1;
3213 }
3214 
3215 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3216 			      struct btrfs_balance_args *bargs)
3217 {
3218 	struct btrfs_block_group_cache *cache;
3219 	u64 chunk_used;
3220 	u64 user_thresh_min;
3221 	u64 user_thresh_max;
3222 	int ret = 1;
3223 
3224 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3225 	chunk_used = btrfs_block_group_used(&cache->item);
3226 
3227 	if (bargs->usage_min == 0)
3228 		user_thresh_min = 0;
3229 	else
3230 		user_thresh_min = div_factor_fine(cache->key.offset,
3231 					bargs->usage_min);
3232 
3233 	if (bargs->usage_max == 0)
3234 		user_thresh_max = 1;
3235 	else if (bargs->usage_max > 100)
3236 		user_thresh_max = cache->key.offset;
3237 	else
3238 		user_thresh_max = div_factor_fine(cache->key.offset,
3239 					bargs->usage_max);
3240 
3241 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3242 		ret = 0;
3243 
3244 	btrfs_put_block_group(cache);
3245 	return ret;
3246 }
3247 
3248 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3249 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3250 {
3251 	struct btrfs_block_group_cache *cache;
3252 	u64 chunk_used, user_thresh;
3253 	int ret = 1;
3254 
3255 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3256 	chunk_used = btrfs_block_group_used(&cache->item);
3257 
3258 	if (bargs->usage_min == 0)
3259 		user_thresh = 1;
3260 	else if (bargs->usage > 100)
3261 		user_thresh = cache->key.offset;
3262 	else
3263 		user_thresh = div_factor_fine(cache->key.offset,
3264 					      bargs->usage);
3265 
3266 	if (chunk_used < user_thresh)
3267 		ret = 0;
3268 
3269 	btrfs_put_block_group(cache);
3270 	return ret;
3271 }
3272 
3273 static int chunk_devid_filter(struct extent_buffer *leaf,
3274 			      struct btrfs_chunk *chunk,
3275 			      struct btrfs_balance_args *bargs)
3276 {
3277 	struct btrfs_stripe *stripe;
3278 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3279 	int i;
3280 
3281 	for (i = 0; i < num_stripes; i++) {
3282 		stripe = btrfs_stripe_nr(chunk, i);
3283 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3284 			return 0;
3285 	}
3286 
3287 	return 1;
3288 }
3289 
3290 /* [pstart, pend) */
3291 static int chunk_drange_filter(struct extent_buffer *leaf,
3292 			       struct btrfs_chunk *chunk,
3293 			       struct btrfs_balance_args *bargs)
3294 {
3295 	struct btrfs_stripe *stripe;
3296 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3297 	u64 stripe_offset;
3298 	u64 stripe_length;
3299 	int factor;
3300 	int i;
3301 
3302 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3303 		return 0;
3304 
3305 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3306 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3307 		factor = num_stripes / 2;
3308 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3309 		factor = num_stripes - 1;
3310 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3311 		factor = num_stripes - 2;
3312 	} else {
3313 		factor = num_stripes;
3314 	}
3315 
3316 	for (i = 0; i < num_stripes; i++) {
3317 		stripe = btrfs_stripe_nr(chunk, i);
3318 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3319 			continue;
3320 
3321 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3322 		stripe_length = btrfs_chunk_length(leaf, chunk);
3323 		stripe_length = div_u64(stripe_length, factor);
3324 
3325 		if (stripe_offset < bargs->pend &&
3326 		    stripe_offset + stripe_length > bargs->pstart)
3327 			return 0;
3328 	}
3329 
3330 	return 1;
3331 }
3332 
3333 /* [vstart, vend) */
3334 static int chunk_vrange_filter(struct extent_buffer *leaf,
3335 			       struct btrfs_chunk *chunk,
3336 			       u64 chunk_offset,
3337 			       struct btrfs_balance_args *bargs)
3338 {
3339 	if (chunk_offset < bargs->vend &&
3340 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3341 		/* at least part of the chunk is inside this vrange */
3342 		return 0;
3343 
3344 	return 1;
3345 }
3346 
3347 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3348 			       struct btrfs_chunk *chunk,
3349 			       struct btrfs_balance_args *bargs)
3350 {
3351 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3352 
3353 	if (bargs->stripes_min <= num_stripes
3354 			&& num_stripes <= bargs->stripes_max)
3355 		return 0;
3356 
3357 	return 1;
3358 }
3359 
3360 static int chunk_soft_convert_filter(u64 chunk_type,
3361 				     struct btrfs_balance_args *bargs)
3362 {
3363 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3364 		return 0;
3365 
3366 	chunk_type = chunk_to_extended(chunk_type) &
3367 				BTRFS_EXTENDED_PROFILE_MASK;
3368 
3369 	if (bargs->target == chunk_type)
3370 		return 1;
3371 
3372 	return 0;
3373 }
3374 
3375 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3376 				struct extent_buffer *leaf,
3377 				struct btrfs_chunk *chunk, u64 chunk_offset)
3378 {
3379 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3380 	struct btrfs_balance_args *bargs = NULL;
3381 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3382 
3383 	/* type filter */
3384 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3385 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3386 		return 0;
3387 	}
3388 
3389 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3390 		bargs = &bctl->data;
3391 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3392 		bargs = &bctl->sys;
3393 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3394 		bargs = &bctl->meta;
3395 
3396 	/* profiles filter */
3397 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3398 	    chunk_profiles_filter(chunk_type, bargs)) {
3399 		return 0;
3400 	}
3401 
3402 	/* usage filter */
3403 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3404 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3405 		return 0;
3406 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3407 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3408 		return 0;
3409 	}
3410 
3411 	/* devid filter */
3412 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3413 	    chunk_devid_filter(leaf, chunk, bargs)) {
3414 		return 0;
3415 	}
3416 
3417 	/* drange filter, makes sense only with devid filter */
3418 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3419 	    chunk_drange_filter(leaf, chunk, bargs)) {
3420 		return 0;
3421 	}
3422 
3423 	/* vrange filter */
3424 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3425 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3426 		return 0;
3427 	}
3428 
3429 	/* stripes filter */
3430 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3431 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3432 		return 0;
3433 	}
3434 
3435 	/* soft profile changing mode */
3436 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3437 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3438 		return 0;
3439 	}
3440 
3441 	/*
3442 	 * limited by count, must be the last filter
3443 	 */
3444 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3445 		if (bargs->limit == 0)
3446 			return 0;
3447 		else
3448 			bargs->limit--;
3449 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3450 		/*
3451 		 * Same logic as the 'limit' filter; the minimum cannot be
3452 		 * determined here because we do not have the global information
3453 		 * about the count of all chunks that satisfy the filters.
3454 		 */
3455 		if (bargs->limit_max == 0)
3456 			return 0;
3457 		else
3458 			bargs->limit_max--;
3459 	}
3460 
3461 	return 1;
3462 }
3463 
3464 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3465 {
3466 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3467 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3468 	struct btrfs_root *dev_root = fs_info->dev_root;
3469 	struct list_head *devices;
3470 	struct btrfs_device *device;
3471 	u64 old_size;
3472 	u64 size_to_free;
3473 	u64 chunk_type;
3474 	struct btrfs_chunk *chunk;
3475 	struct btrfs_path *path = NULL;
3476 	struct btrfs_key key;
3477 	struct btrfs_key found_key;
3478 	struct btrfs_trans_handle *trans;
3479 	struct extent_buffer *leaf;
3480 	int slot;
3481 	int ret;
3482 	int enospc_errors = 0;
3483 	bool counting = true;
3484 	/* The single value limit and min/max limits use the same bytes in the */
3485 	u64 limit_data = bctl->data.limit;
3486 	u64 limit_meta = bctl->meta.limit;
3487 	u64 limit_sys = bctl->sys.limit;
3488 	u32 count_data = 0;
3489 	u32 count_meta = 0;
3490 	u32 count_sys = 0;
3491 	int chunk_reserved = 0;
3492 	u64 bytes_used = 0;
3493 
3494 	/* step one make some room on all the devices */
3495 	devices = &fs_info->fs_devices->devices;
3496 	list_for_each_entry(device, devices, dev_list) {
3497 		old_size = btrfs_device_get_total_bytes(device);
3498 		size_to_free = div_factor(old_size, 1);
3499 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3500 		if (!device->writeable ||
3501 		    btrfs_device_get_total_bytes(device) -
3502 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3503 		    device->is_tgtdev_for_dev_replace)
3504 			continue;
3505 
3506 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3507 		if (ret == -ENOSPC)
3508 			break;
3509 		if (ret) {
3510 			/* btrfs_shrink_device never returns ret > 0 */
3511 			WARN_ON(ret > 0);
3512 			goto error;
3513 		}
3514 
3515 		trans = btrfs_start_transaction(dev_root, 0);
3516 		if (IS_ERR(trans)) {
3517 			ret = PTR_ERR(trans);
3518 			btrfs_info_in_rcu(fs_info,
3519 		 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3520 					  rcu_str_deref(device->name), ret,
3521 					  old_size, old_size - size_to_free);
3522 			goto error;
3523 		}
3524 
3525 		ret = btrfs_grow_device(trans, device, old_size);
3526 		if (ret) {
3527 			btrfs_end_transaction(trans);
3528 			/* btrfs_grow_device never returns ret > 0 */
3529 			WARN_ON(ret > 0);
3530 			btrfs_info_in_rcu(fs_info,
3531 		 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3532 					  rcu_str_deref(device->name), ret,
3533 					  old_size, old_size - size_to_free);
3534 			goto error;
3535 		}
3536 
3537 		btrfs_end_transaction(trans);
3538 	}
3539 
3540 	/* step two, relocate all the chunks */
3541 	path = btrfs_alloc_path();
3542 	if (!path) {
3543 		ret = -ENOMEM;
3544 		goto error;
3545 	}
3546 
3547 	/* zero out stat counters */
3548 	spin_lock(&fs_info->balance_lock);
3549 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3550 	spin_unlock(&fs_info->balance_lock);
3551 again:
3552 	if (!counting) {
3553 		/*
3554 		 * The single value limit and min/max limits use the same bytes
3555 		 * in the
3556 		 */
3557 		bctl->data.limit = limit_data;
3558 		bctl->meta.limit = limit_meta;
3559 		bctl->sys.limit = limit_sys;
3560 	}
3561 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3562 	key.offset = (u64)-1;
3563 	key.type = BTRFS_CHUNK_ITEM_KEY;
3564 
3565 	while (1) {
3566 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3567 		    atomic_read(&fs_info->balance_cancel_req)) {
3568 			ret = -ECANCELED;
3569 			goto error;
3570 		}
3571 
3572 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3573 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3574 		if (ret < 0) {
3575 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3576 			goto error;
3577 		}
3578 
3579 		/*
3580 		 * this shouldn't happen, it means the last relocate
3581 		 * failed
3582 		 */
3583 		if (ret == 0)
3584 			BUG(); /* FIXME break ? */
3585 
3586 		ret = btrfs_previous_item(chunk_root, path, 0,
3587 					  BTRFS_CHUNK_ITEM_KEY);
3588 		if (ret) {
3589 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3590 			ret = 0;
3591 			break;
3592 		}
3593 
3594 		leaf = path->nodes[0];
3595 		slot = path->slots[0];
3596 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3597 
3598 		if (found_key.objectid != key.objectid) {
3599 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3600 			break;
3601 		}
3602 
3603 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3604 		chunk_type = btrfs_chunk_type(leaf, chunk);
3605 
3606 		if (!counting) {
3607 			spin_lock(&fs_info->balance_lock);
3608 			bctl->stat.considered++;
3609 			spin_unlock(&fs_info->balance_lock);
3610 		}
3611 
3612 		ret = should_balance_chunk(fs_info, leaf, chunk,
3613 					   found_key.offset);
3614 
3615 		btrfs_release_path(path);
3616 		if (!ret) {
3617 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3618 			goto loop;
3619 		}
3620 
3621 		if (counting) {
3622 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3623 			spin_lock(&fs_info->balance_lock);
3624 			bctl->stat.expected++;
3625 			spin_unlock(&fs_info->balance_lock);
3626 
3627 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3628 				count_data++;
3629 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3630 				count_sys++;
3631 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3632 				count_meta++;
3633 
3634 			goto loop;
3635 		}
3636 
3637 		/*
3638 		 * Apply limit_min filter, no need to check if the LIMITS
3639 		 * filter is used, limit_min is 0 by default
3640 		 */
3641 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3642 					count_data < bctl->data.limit_min)
3643 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3644 					count_meta < bctl->meta.limit_min)
3645 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3646 					count_sys < bctl->sys.limit_min)) {
3647 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3648 			goto loop;
3649 		}
3650 
3651 		ASSERT(fs_info->data_sinfo);
3652 		spin_lock(&fs_info->data_sinfo->lock);
3653 		bytes_used = fs_info->data_sinfo->bytes_used;
3654 		spin_unlock(&fs_info->data_sinfo->lock);
3655 
3656 		if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3657 		    !chunk_reserved && !bytes_used) {
3658 			trans = btrfs_start_transaction(chunk_root, 0);
3659 			if (IS_ERR(trans)) {
3660 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3661 				ret = PTR_ERR(trans);
3662 				goto error;
3663 			}
3664 
3665 			ret = btrfs_force_chunk_alloc(trans, fs_info,
3666 						      BTRFS_BLOCK_GROUP_DATA);
3667 			btrfs_end_transaction(trans);
3668 			if (ret < 0) {
3669 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3670 				goto error;
3671 			}
3672 			chunk_reserved = 1;
3673 		}
3674 
3675 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3676 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3677 		if (ret && ret != -ENOSPC)
3678 			goto error;
3679 		if (ret == -ENOSPC) {
3680 			enospc_errors++;
3681 		} else {
3682 			spin_lock(&fs_info->balance_lock);
3683 			bctl->stat.completed++;
3684 			spin_unlock(&fs_info->balance_lock);
3685 		}
3686 loop:
3687 		if (found_key.offset == 0)
3688 			break;
3689 		key.offset = found_key.offset - 1;
3690 	}
3691 
3692 	if (counting) {
3693 		btrfs_release_path(path);
3694 		counting = false;
3695 		goto again;
3696 	}
3697 error:
3698 	btrfs_free_path(path);
3699 	if (enospc_errors) {
3700 		btrfs_info(fs_info, "%d enospc errors during balance",
3701 			   enospc_errors);
3702 		if (!ret)
3703 			ret = -ENOSPC;
3704 	}
3705 
3706 	return ret;
3707 }
3708 
3709 /**
3710  * alloc_profile_is_valid - see if a given profile is valid and reduced
3711  * @flags: profile to validate
3712  * @extended: if true @flags is treated as an extended profile
3713  */
3714 static int alloc_profile_is_valid(u64 flags, int extended)
3715 {
3716 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3717 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3718 
3719 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3720 
3721 	/* 1) check that all other bits are zeroed */
3722 	if (flags & ~mask)
3723 		return 0;
3724 
3725 	/* 2) see if profile is reduced */
3726 	if (flags == 0)
3727 		return !extended; /* "0" is valid for usual profiles */
3728 
3729 	/* true if exactly one bit set */
3730 	return (flags & (flags - 1)) == 0;
3731 }
3732 
3733 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3734 {
3735 	/* cancel requested || normal exit path */
3736 	return atomic_read(&fs_info->balance_cancel_req) ||
3737 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3738 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3739 }
3740 
3741 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3742 {
3743 	int ret;
3744 
3745 	unset_balance_control(fs_info);
3746 	ret = del_balance_item(fs_info);
3747 	if (ret)
3748 		btrfs_handle_fs_error(fs_info, ret, NULL);
3749 
3750 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3751 }
3752 
3753 /* Non-zero return value signifies invalidity */
3754 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3755 		u64 allowed)
3756 {
3757 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3758 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3759 		 (bctl_arg->target & ~allowed)));
3760 }
3761 
3762 /*
3763  * Should be called with both balance and volume mutexes held
3764  */
3765 int btrfs_balance(struct btrfs_balance_control *bctl,
3766 		  struct btrfs_ioctl_balance_args *bargs)
3767 {
3768 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3769 	u64 meta_target, data_target;
3770 	u64 allowed;
3771 	int mixed = 0;
3772 	int ret;
3773 	u64 num_devices;
3774 	unsigned seq;
3775 
3776 	if (btrfs_fs_closing(fs_info) ||
3777 	    atomic_read(&fs_info->balance_pause_req) ||
3778 	    atomic_read(&fs_info->balance_cancel_req)) {
3779 		ret = -EINVAL;
3780 		goto out;
3781 	}
3782 
3783 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3784 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3785 		mixed = 1;
3786 
3787 	/*
3788 	 * In case of mixed groups both data and meta should be picked,
3789 	 * and identical options should be given for both of them.
3790 	 */
3791 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3792 	if (mixed && (bctl->flags & allowed)) {
3793 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3794 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3795 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3796 			btrfs_err(fs_info,
3797 				  "with mixed groups data and metadata balance options must be the same");
3798 			ret = -EINVAL;
3799 			goto out;
3800 		}
3801 	}
3802 
3803 	num_devices = fs_info->fs_devices->num_devices;
3804 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3805 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3806 		BUG_ON(num_devices < 1);
3807 		num_devices--;
3808 	}
3809 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3810 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3811 	if (num_devices > 1)
3812 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3813 	if (num_devices > 2)
3814 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3815 	if (num_devices > 3)
3816 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3817 			    BTRFS_BLOCK_GROUP_RAID6);
3818 	if (validate_convert_profile(&bctl->data, allowed)) {
3819 		btrfs_err(fs_info,
3820 			  "unable to start balance with target data profile %llu",
3821 			  bctl->data.target);
3822 		ret = -EINVAL;
3823 		goto out;
3824 	}
3825 	if (validate_convert_profile(&bctl->meta, allowed)) {
3826 		btrfs_err(fs_info,
3827 			  "unable to start balance with target metadata profile %llu",
3828 			  bctl->meta.target);
3829 		ret = -EINVAL;
3830 		goto out;
3831 	}
3832 	if (validate_convert_profile(&bctl->sys, allowed)) {
3833 		btrfs_err(fs_info,
3834 			  "unable to start balance with target system profile %llu",
3835 			  bctl->sys.target);
3836 		ret = -EINVAL;
3837 		goto out;
3838 	}
3839 
3840 	/* allow to reduce meta or sys integrity only if force set */
3841 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3842 			BTRFS_BLOCK_GROUP_RAID10 |
3843 			BTRFS_BLOCK_GROUP_RAID5 |
3844 			BTRFS_BLOCK_GROUP_RAID6;
3845 	do {
3846 		seq = read_seqbegin(&fs_info->profiles_lock);
3847 
3848 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3849 		     (fs_info->avail_system_alloc_bits & allowed) &&
3850 		     !(bctl->sys.target & allowed)) ||
3851 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3852 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3853 		     !(bctl->meta.target & allowed))) {
3854 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3855 				btrfs_info(fs_info,
3856 					   "force reducing metadata integrity");
3857 			} else {
3858 				btrfs_err(fs_info,
3859 					  "balance will reduce metadata integrity, use force if you want this");
3860 				ret = -EINVAL;
3861 				goto out;
3862 			}
3863 		}
3864 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3865 
3866 	/* if we're not converting, the target field is uninitialized */
3867 	meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3868 		bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3869 	data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3870 		bctl->data.target : fs_info->avail_data_alloc_bits;
3871 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3872 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3873 		btrfs_warn(fs_info,
3874 			   "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3875 			   meta_target, data_target);
3876 	}
3877 
3878 	ret = insert_balance_item(fs_info, bctl);
3879 	if (ret && ret != -EEXIST)
3880 		goto out;
3881 
3882 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3883 		BUG_ON(ret == -EEXIST);
3884 		set_balance_control(bctl);
3885 	} else {
3886 		BUG_ON(ret != -EEXIST);
3887 		spin_lock(&fs_info->balance_lock);
3888 		update_balance_args(bctl);
3889 		spin_unlock(&fs_info->balance_lock);
3890 	}
3891 
3892 	atomic_inc(&fs_info->balance_running);
3893 	mutex_unlock(&fs_info->balance_mutex);
3894 
3895 	ret = __btrfs_balance(fs_info);
3896 
3897 	mutex_lock(&fs_info->balance_mutex);
3898 	atomic_dec(&fs_info->balance_running);
3899 
3900 	if (bargs) {
3901 		memset(bargs, 0, sizeof(*bargs));
3902 		update_ioctl_balance_args(fs_info, 0, bargs);
3903 	}
3904 
3905 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3906 	    balance_need_close(fs_info)) {
3907 		__cancel_balance(fs_info);
3908 	}
3909 
3910 	wake_up(&fs_info->balance_wait_q);
3911 
3912 	return ret;
3913 out:
3914 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3915 		__cancel_balance(fs_info);
3916 	else {
3917 		kfree(bctl);
3918 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3919 	}
3920 	return ret;
3921 }
3922 
3923 static int balance_kthread(void *data)
3924 {
3925 	struct btrfs_fs_info *fs_info = data;
3926 	int ret = 0;
3927 
3928 	mutex_lock(&fs_info->volume_mutex);
3929 	mutex_lock(&fs_info->balance_mutex);
3930 
3931 	if (fs_info->balance_ctl) {
3932 		btrfs_info(fs_info, "continuing balance");
3933 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3934 	}
3935 
3936 	mutex_unlock(&fs_info->balance_mutex);
3937 	mutex_unlock(&fs_info->volume_mutex);
3938 
3939 	return ret;
3940 }
3941 
3942 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3943 {
3944 	struct task_struct *tsk;
3945 
3946 	spin_lock(&fs_info->balance_lock);
3947 	if (!fs_info->balance_ctl) {
3948 		spin_unlock(&fs_info->balance_lock);
3949 		return 0;
3950 	}
3951 	spin_unlock(&fs_info->balance_lock);
3952 
3953 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3954 		btrfs_info(fs_info, "force skipping balance");
3955 		return 0;
3956 	}
3957 
3958 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3959 	return PTR_ERR_OR_ZERO(tsk);
3960 }
3961 
3962 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3963 {
3964 	struct btrfs_balance_control *bctl;
3965 	struct btrfs_balance_item *item;
3966 	struct btrfs_disk_balance_args disk_bargs;
3967 	struct btrfs_path *path;
3968 	struct extent_buffer *leaf;
3969 	struct btrfs_key key;
3970 	int ret;
3971 
3972 	path = btrfs_alloc_path();
3973 	if (!path)
3974 		return -ENOMEM;
3975 
3976 	key.objectid = BTRFS_BALANCE_OBJECTID;
3977 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3978 	key.offset = 0;
3979 
3980 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3981 	if (ret < 0)
3982 		goto out;
3983 	if (ret > 0) { /* ret = -ENOENT; */
3984 		ret = 0;
3985 		goto out;
3986 	}
3987 
3988 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3989 	if (!bctl) {
3990 		ret = -ENOMEM;
3991 		goto out;
3992 	}
3993 
3994 	leaf = path->nodes[0];
3995 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3996 
3997 	bctl->fs_info = fs_info;
3998 	bctl->flags = btrfs_balance_flags(leaf, item);
3999 	bctl->flags |= BTRFS_BALANCE_RESUME;
4000 
4001 	btrfs_balance_data(leaf, item, &disk_bargs);
4002 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4003 	btrfs_balance_meta(leaf, item, &disk_bargs);
4004 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4005 	btrfs_balance_sys(leaf, item, &disk_bargs);
4006 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4007 
4008 	WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4009 
4010 	mutex_lock(&fs_info->volume_mutex);
4011 	mutex_lock(&fs_info->balance_mutex);
4012 
4013 	set_balance_control(bctl);
4014 
4015 	mutex_unlock(&fs_info->balance_mutex);
4016 	mutex_unlock(&fs_info->volume_mutex);
4017 out:
4018 	btrfs_free_path(path);
4019 	return ret;
4020 }
4021 
4022 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4023 {
4024 	int ret = 0;
4025 
4026 	mutex_lock(&fs_info->balance_mutex);
4027 	if (!fs_info->balance_ctl) {
4028 		mutex_unlock(&fs_info->balance_mutex);
4029 		return -ENOTCONN;
4030 	}
4031 
4032 	if (atomic_read(&fs_info->balance_running)) {
4033 		atomic_inc(&fs_info->balance_pause_req);
4034 		mutex_unlock(&fs_info->balance_mutex);
4035 
4036 		wait_event(fs_info->balance_wait_q,
4037 			   atomic_read(&fs_info->balance_running) == 0);
4038 
4039 		mutex_lock(&fs_info->balance_mutex);
4040 		/* we are good with balance_ctl ripped off from under us */
4041 		BUG_ON(atomic_read(&fs_info->balance_running));
4042 		atomic_dec(&fs_info->balance_pause_req);
4043 	} else {
4044 		ret = -ENOTCONN;
4045 	}
4046 
4047 	mutex_unlock(&fs_info->balance_mutex);
4048 	return ret;
4049 }
4050 
4051 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4052 {
4053 	if (sb_rdonly(fs_info->sb))
4054 		return -EROFS;
4055 
4056 	mutex_lock(&fs_info->balance_mutex);
4057 	if (!fs_info->balance_ctl) {
4058 		mutex_unlock(&fs_info->balance_mutex);
4059 		return -ENOTCONN;
4060 	}
4061 
4062 	atomic_inc(&fs_info->balance_cancel_req);
4063 	/*
4064 	 * if we are running just wait and return, balance item is
4065 	 * deleted in btrfs_balance in this case
4066 	 */
4067 	if (atomic_read(&fs_info->balance_running)) {
4068 		mutex_unlock(&fs_info->balance_mutex);
4069 		wait_event(fs_info->balance_wait_q,
4070 			   atomic_read(&fs_info->balance_running) == 0);
4071 		mutex_lock(&fs_info->balance_mutex);
4072 	} else {
4073 		/* __cancel_balance needs volume_mutex */
4074 		mutex_unlock(&fs_info->balance_mutex);
4075 		mutex_lock(&fs_info->volume_mutex);
4076 		mutex_lock(&fs_info->balance_mutex);
4077 
4078 		if (fs_info->balance_ctl)
4079 			__cancel_balance(fs_info);
4080 
4081 		mutex_unlock(&fs_info->volume_mutex);
4082 	}
4083 
4084 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4085 	atomic_dec(&fs_info->balance_cancel_req);
4086 	mutex_unlock(&fs_info->balance_mutex);
4087 	return 0;
4088 }
4089 
4090 static int btrfs_uuid_scan_kthread(void *data)
4091 {
4092 	struct btrfs_fs_info *fs_info = data;
4093 	struct btrfs_root *root = fs_info->tree_root;
4094 	struct btrfs_key key;
4095 	struct btrfs_path *path = NULL;
4096 	int ret = 0;
4097 	struct extent_buffer *eb;
4098 	int slot;
4099 	struct btrfs_root_item root_item;
4100 	u32 item_size;
4101 	struct btrfs_trans_handle *trans = NULL;
4102 
4103 	path = btrfs_alloc_path();
4104 	if (!path) {
4105 		ret = -ENOMEM;
4106 		goto out;
4107 	}
4108 
4109 	key.objectid = 0;
4110 	key.type = BTRFS_ROOT_ITEM_KEY;
4111 	key.offset = 0;
4112 
4113 	while (1) {
4114 		ret = btrfs_search_forward(root, &key, path, 0);
4115 		if (ret) {
4116 			if (ret > 0)
4117 				ret = 0;
4118 			break;
4119 		}
4120 
4121 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4122 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4123 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4124 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4125 			goto skip;
4126 
4127 		eb = path->nodes[0];
4128 		slot = path->slots[0];
4129 		item_size = btrfs_item_size_nr(eb, slot);
4130 		if (item_size < sizeof(root_item))
4131 			goto skip;
4132 
4133 		read_extent_buffer(eb, &root_item,
4134 				   btrfs_item_ptr_offset(eb, slot),
4135 				   (int)sizeof(root_item));
4136 		if (btrfs_root_refs(&root_item) == 0)
4137 			goto skip;
4138 
4139 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4140 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4141 			if (trans)
4142 				goto update_tree;
4143 
4144 			btrfs_release_path(path);
4145 			/*
4146 			 * 1 - subvol uuid item
4147 			 * 1 - received_subvol uuid item
4148 			 */
4149 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4150 			if (IS_ERR(trans)) {
4151 				ret = PTR_ERR(trans);
4152 				break;
4153 			}
4154 			continue;
4155 		} else {
4156 			goto skip;
4157 		}
4158 update_tree:
4159 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4160 			ret = btrfs_uuid_tree_add(trans, fs_info,
4161 						  root_item.uuid,
4162 						  BTRFS_UUID_KEY_SUBVOL,
4163 						  key.objectid);
4164 			if (ret < 0) {
4165 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4166 					ret);
4167 				break;
4168 			}
4169 		}
4170 
4171 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4172 			ret = btrfs_uuid_tree_add(trans, fs_info,
4173 						  root_item.received_uuid,
4174 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4175 						  key.objectid);
4176 			if (ret < 0) {
4177 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4178 					ret);
4179 				break;
4180 			}
4181 		}
4182 
4183 skip:
4184 		if (trans) {
4185 			ret = btrfs_end_transaction(trans);
4186 			trans = NULL;
4187 			if (ret)
4188 				break;
4189 		}
4190 
4191 		btrfs_release_path(path);
4192 		if (key.offset < (u64)-1) {
4193 			key.offset++;
4194 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4195 			key.offset = 0;
4196 			key.type = BTRFS_ROOT_ITEM_KEY;
4197 		} else if (key.objectid < (u64)-1) {
4198 			key.offset = 0;
4199 			key.type = BTRFS_ROOT_ITEM_KEY;
4200 			key.objectid++;
4201 		} else {
4202 			break;
4203 		}
4204 		cond_resched();
4205 	}
4206 
4207 out:
4208 	btrfs_free_path(path);
4209 	if (trans && !IS_ERR(trans))
4210 		btrfs_end_transaction(trans);
4211 	if (ret)
4212 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4213 	else
4214 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4215 	up(&fs_info->uuid_tree_rescan_sem);
4216 	return 0;
4217 }
4218 
4219 /*
4220  * Callback for btrfs_uuid_tree_iterate().
4221  * returns:
4222  * 0	check succeeded, the entry is not outdated.
4223  * < 0	if an error occurred.
4224  * > 0	if the check failed, which means the caller shall remove the entry.
4225  */
4226 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4227 				       u8 *uuid, u8 type, u64 subid)
4228 {
4229 	struct btrfs_key key;
4230 	int ret = 0;
4231 	struct btrfs_root *subvol_root;
4232 
4233 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4234 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4235 		goto out;
4236 
4237 	key.objectid = subid;
4238 	key.type = BTRFS_ROOT_ITEM_KEY;
4239 	key.offset = (u64)-1;
4240 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4241 	if (IS_ERR(subvol_root)) {
4242 		ret = PTR_ERR(subvol_root);
4243 		if (ret == -ENOENT)
4244 			ret = 1;
4245 		goto out;
4246 	}
4247 
4248 	switch (type) {
4249 	case BTRFS_UUID_KEY_SUBVOL:
4250 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4251 			ret = 1;
4252 		break;
4253 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4254 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4255 			   BTRFS_UUID_SIZE))
4256 			ret = 1;
4257 		break;
4258 	}
4259 
4260 out:
4261 	return ret;
4262 }
4263 
4264 static int btrfs_uuid_rescan_kthread(void *data)
4265 {
4266 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4267 	int ret;
4268 
4269 	/*
4270 	 * 1st step is to iterate through the existing UUID tree and
4271 	 * to delete all entries that contain outdated data.
4272 	 * 2nd step is to add all missing entries to the UUID tree.
4273 	 */
4274 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4275 	if (ret < 0) {
4276 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4277 		up(&fs_info->uuid_tree_rescan_sem);
4278 		return ret;
4279 	}
4280 	return btrfs_uuid_scan_kthread(data);
4281 }
4282 
4283 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4284 {
4285 	struct btrfs_trans_handle *trans;
4286 	struct btrfs_root *tree_root = fs_info->tree_root;
4287 	struct btrfs_root *uuid_root;
4288 	struct task_struct *task;
4289 	int ret;
4290 
4291 	/*
4292 	 * 1 - root node
4293 	 * 1 - root item
4294 	 */
4295 	trans = btrfs_start_transaction(tree_root, 2);
4296 	if (IS_ERR(trans))
4297 		return PTR_ERR(trans);
4298 
4299 	uuid_root = btrfs_create_tree(trans, fs_info,
4300 				      BTRFS_UUID_TREE_OBJECTID);
4301 	if (IS_ERR(uuid_root)) {
4302 		ret = PTR_ERR(uuid_root);
4303 		btrfs_abort_transaction(trans, ret);
4304 		btrfs_end_transaction(trans);
4305 		return ret;
4306 	}
4307 
4308 	fs_info->uuid_root = uuid_root;
4309 
4310 	ret = btrfs_commit_transaction(trans);
4311 	if (ret)
4312 		return ret;
4313 
4314 	down(&fs_info->uuid_tree_rescan_sem);
4315 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4316 	if (IS_ERR(task)) {
4317 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4318 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4319 		up(&fs_info->uuid_tree_rescan_sem);
4320 		return PTR_ERR(task);
4321 	}
4322 
4323 	return 0;
4324 }
4325 
4326 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4327 {
4328 	struct task_struct *task;
4329 
4330 	down(&fs_info->uuid_tree_rescan_sem);
4331 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4332 	if (IS_ERR(task)) {
4333 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4334 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4335 		up(&fs_info->uuid_tree_rescan_sem);
4336 		return PTR_ERR(task);
4337 	}
4338 
4339 	return 0;
4340 }
4341 
4342 /*
4343  * shrinking a device means finding all of the device extents past
4344  * the new size, and then following the back refs to the chunks.
4345  * The chunk relocation code actually frees the device extent
4346  */
4347 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4348 {
4349 	struct btrfs_fs_info *fs_info = device->fs_info;
4350 	struct btrfs_root *root = fs_info->dev_root;
4351 	struct btrfs_trans_handle *trans;
4352 	struct btrfs_dev_extent *dev_extent = NULL;
4353 	struct btrfs_path *path;
4354 	u64 length;
4355 	u64 chunk_offset;
4356 	int ret;
4357 	int slot;
4358 	int failed = 0;
4359 	bool retried = false;
4360 	bool checked_pending_chunks = false;
4361 	struct extent_buffer *l;
4362 	struct btrfs_key key;
4363 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4364 	u64 old_total = btrfs_super_total_bytes(super_copy);
4365 	u64 old_size = btrfs_device_get_total_bytes(device);
4366 	u64 diff;
4367 
4368 	new_size = round_down(new_size, fs_info->sectorsize);
4369 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4370 
4371 	if (device->is_tgtdev_for_dev_replace)
4372 		return -EINVAL;
4373 
4374 	path = btrfs_alloc_path();
4375 	if (!path)
4376 		return -ENOMEM;
4377 
4378 	path->reada = READA_FORWARD;
4379 
4380 	mutex_lock(&fs_info->chunk_mutex);
4381 
4382 	btrfs_device_set_total_bytes(device, new_size);
4383 	if (device->writeable) {
4384 		device->fs_devices->total_rw_bytes -= diff;
4385 		atomic64_sub(diff, &fs_info->free_chunk_space);
4386 	}
4387 	mutex_unlock(&fs_info->chunk_mutex);
4388 
4389 again:
4390 	key.objectid = device->devid;
4391 	key.offset = (u64)-1;
4392 	key.type = BTRFS_DEV_EXTENT_KEY;
4393 
4394 	do {
4395 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4396 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4397 		if (ret < 0) {
4398 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4399 			goto done;
4400 		}
4401 
4402 		ret = btrfs_previous_item(root, path, 0, key.type);
4403 		if (ret)
4404 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4405 		if (ret < 0)
4406 			goto done;
4407 		if (ret) {
4408 			ret = 0;
4409 			btrfs_release_path(path);
4410 			break;
4411 		}
4412 
4413 		l = path->nodes[0];
4414 		slot = path->slots[0];
4415 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4416 
4417 		if (key.objectid != device->devid) {
4418 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4419 			btrfs_release_path(path);
4420 			break;
4421 		}
4422 
4423 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4424 		length = btrfs_dev_extent_length(l, dev_extent);
4425 
4426 		if (key.offset + length <= new_size) {
4427 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4428 			btrfs_release_path(path);
4429 			break;
4430 		}
4431 
4432 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4433 		btrfs_release_path(path);
4434 
4435 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4436 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4437 		if (ret && ret != -ENOSPC)
4438 			goto done;
4439 		if (ret == -ENOSPC)
4440 			failed++;
4441 	} while (key.offset-- > 0);
4442 
4443 	if (failed && !retried) {
4444 		failed = 0;
4445 		retried = true;
4446 		goto again;
4447 	} else if (failed && retried) {
4448 		ret = -ENOSPC;
4449 		goto done;
4450 	}
4451 
4452 	/* Shrinking succeeded, else we would be at "done". */
4453 	trans = btrfs_start_transaction(root, 0);
4454 	if (IS_ERR(trans)) {
4455 		ret = PTR_ERR(trans);
4456 		goto done;
4457 	}
4458 
4459 	mutex_lock(&fs_info->chunk_mutex);
4460 
4461 	/*
4462 	 * We checked in the above loop all device extents that were already in
4463 	 * the device tree. However before we have updated the device's
4464 	 * total_bytes to the new size, we might have had chunk allocations that
4465 	 * have not complete yet (new block groups attached to transaction
4466 	 * handles), and therefore their device extents were not yet in the
4467 	 * device tree and we missed them in the loop above. So if we have any
4468 	 * pending chunk using a device extent that overlaps the device range
4469 	 * that we can not use anymore, commit the current transaction and
4470 	 * repeat the search on the device tree - this way we guarantee we will
4471 	 * not have chunks using device extents that end beyond 'new_size'.
4472 	 */
4473 	if (!checked_pending_chunks) {
4474 		u64 start = new_size;
4475 		u64 len = old_size - new_size;
4476 
4477 		if (contains_pending_extent(trans->transaction, device,
4478 					    &start, len)) {
4479 			mutex_unlock(&fs_info->chunk_mutex);
4480 			checked_pending_chunks = true;
4481 			failed = 0;
4482 			retried = false;
4483 			ret = btrfs_commit_transaction(trans);
4484 			if (ret)
4485 				goto done;
4486 			goto again;
4487 		}
4488 	}
4489 
4490 	btrfs_device_set_disk_total_bytes(device, new_size);
4491 	if (list_empty(&device->resized_list))
4492 		list_add_tail(&device->resized_list,
4493 			      &fs_info->fs_devices->resized_devices);
4494 
4495 	WARN_ON(diff > old_total);
4496 	btrfs_set_super_total_bytes(super_copy,
4497 			round_down(old_total - diff, fs_info->sectorsize));
4498 	mutex_unlock(&fs_info->chunk_mutex);
4499 
4500 	/* Now btrfs_update_device() will change the on-disk size. */
4501 	ret = btrfs_update_device(trans, device);
4502 	btrfs_end_transaction(trans);
4503 done:
4504 	btrfs_free_path(path);
4505 	if (ret) {
4506 		mutex_lock(&fs_info->chunk_mutex);
4507 		btrfs_device_set_total_bytes(device, old_size);
4508 		if (device->writeable)
4509 			device->fs_devices->total_rw_bytes += diff;
4510 		atomic64_add(diff, &fs_info->free_chunk_space);
4511 		mutex_unlock(&fs_info->chunk_mutex);
4512 	}
4513 	return ret;
4514 }
4515 
4516 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4517 			   struct btrfs_key *key,
4518 			   struct btrfs_chunk *chunk, int item_size)
4519 {
4520 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4521 	struct btrfs_disk_key disk_key;
4522 	u32 array_size;
4523 	u8 *ptr;
4524 
4525 	mutex_lock(&fs_info->chunk_mutex);
4526 	array_size = btrfs_super_sys_array_size(super_copy);
4527 	if (array_size + item_size + sizeof(disk_key)
4528 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4529 		mutex_unlock(&fs_info->chunk_mutex);
4530 		return -EFBIG;
4531 	}
4532 
4533 	ptr = super_copy->sys_chunk_array + array_size;
4534 	btrfs_cpu_key_to_disk(&disk_key, key);
4535 	memcpy(ptr, &disk_key, sizeof(disk_key));
4536 	ptr += sizeof(disk_key);
4537 	memcpy(ptr, chunk, item_size);
4538 	item_size += sizeof(disk_key);
4539 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4540 	mutex_unlock(&fs_info->chunk_mutex);
4541 
4542 	return 0;
4543 }
4544 
4545 /*
4546  * sort the devices in descending order by max_avail, total_avail
4547  */
4548 static int btrfs_cmp_device_info(const void *a, const void *b)
4549 {
4550 	const struct btrfs_device_info *di_a = a;
4551 	const struct btrfs_device_info *di_b = b;
4552 
4553 	if (di_a->max_avail > di_b->max_avail)
4554 		return -1;
4555 	if (di_a->max_avail < di_b->max_avail)
4556 		return 1;
4557 	if (di_a->total_avail > di_b->total_avail)
4558 		return -1;
4559 	if (di_a->total_avail < di_b->total_avail)
4560 		return 1;
4561 	return 0;
4562 }
4563 
4564 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4565 {
4566 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4567 		return;
4568 
4569 	btrfs_set_fs_incompat(info, RAID56);
4570 }
4571 
4572 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info)		\
4573 			- sizeof(struct btrfs_chunk))		\
4574 			/ sizeof(struct btrfs_stripe) + 1)
4575 
4576 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4577 				- 2 * sizeof(struct btrfs_disk_key)	\
4578 				- 2 * sizeof(struct btrfs_chunk))	\
4579 				/ sizeof(struct btrfs_stripe) + 1)
4580 
4581 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4582 			       u64 start, u64 type)
4583 {
4584 	struct btrfs_fs_info *info = trans->fs_info;
4585 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4586 	struct btrfs_device *device;
4587 	struct map_lookup *map = NULL;
4588 	struct extent_map_tree *em_tree;
4589 	struct extent_map *em;
4590 	struct btrfs_device_info *devices_info = NULL;
4591 	u64 total_avail;
4592 	int num_stripes;	/* total number of stripes to allocate */
4593 	int data_stripes;	/* number of stripes that count for
4594 				   block group size */
4595 	int sub_stripes;	/* sub_stripes info for map */
4596 	int dev_stripes;	/* stripes per dev */
4597 	int devs_max;		/* max devs to use */
4598 	int devs_min;		/* min devs needed */
4599 	int devs_increment;	/* ndevs has to be a multiple of this */
4600 	int ncopies;		/* how many copies to data has */
4601 	int ret;
4602 	u64 max_stripe_size;
4603 	u64 max_chunk_size;
4604 	u64 stripe_size;
4605 	u64 num_bytes;
4606 	int ndevs;
4607 	int i;
4608 	int j;
4609 	int index;
4610 
4611 	BUG_ON(!alloc_profile_is_valid(type, 0));
4612 
4613 	if (list_empty(&fs_devices->alloc_list))
4614 		return -ENOSPC;
4615 
4616 	index = __get_raid_index(type);
4617 
4618 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4619 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4620 	devs_max = btrfs_raid_array[index].devs_max;
4621 	devs_min = btrfs_raid_array[index].devs_min;
4622 	devs_increment = btrfs_raid_array[index].devs_increment;
4623 	ncopies = btrfs_raid_array[index].ncopies;
4624 
4625 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4626 		max_stripe_size = SZ_1G;
4627 		max_chunk_size = 10 * max_stripe_size;
4628 		if (!devs_max)
4629 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4630 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4631 		/* for larger filesystems, use larger metadata chunks */
4632 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4633 			max_stripe_size = SZ_1G;
4634 		else
4635 			max_stripe_size = SZ_256M;
4636 		max_chunk_size = max_stripe_size;
4637 		if (!devs_max)
4638 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4639 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4640 		max_stripe_size = SZ_32M;
4641 		max_chunk_size = 2 * max_stripe_size;
4642 		if (!devs_max)
4643 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4644 	} else {
4645 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4646 		       type);
4647 		BUG_ON(1);
4648 	}
4649 
4650 	/* we don't want a chunk larger than 10% of writeable space */
4651 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4652 			     max_chunk_size);
4653 
4654 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4655 			       GFP_NOFS);
4656 	if (!devices_info)
4657 		return -ENOMEM;
4658 
4659 	/*
4660 	 * in the first pass through the devices list, we gather information
4661 	 * about the available holes on each device.
4662 	 */
4663 	ndevs = 0;
4664 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4665 		u64 max_avail;
4666 		u64 dev_offset;
4667 
4668 		if (!device->writeable) {
4669 			WARN(1, KERN_ERR
4670 			       "BTRFS: read-only device in alloc_list\n");
4671 			continue;
4672 		}
4673 
4674 		if (!device->in_fs_metadata ||
4675 		    device->is_tgtdev_for_dev_replace)
4676 			continue;
4677 
4678 		if (device->total_bytes > device->bytes_used)
4679 			total_avail = device->total_bytes - device->bytes_used;
4680 		else
4681 			total_avail = 0;
4682 
4683 		/* If there is no space on this device, skip it. */
4684 		if (total_avail == 0)
4685 			continue;
4686 
4687 		ret = find_free_dev_extent(trans, device,
4688 					   max_stripe_size * dev_stripes,
4689 					   &dev_offset, &max_avail);
4690 		if (ret && ret != -ENOSPC)
4691 			goto error;
4692 
4693 		if (ret == 0)
4694 			max_avail = max_stripe_size * dev_stripes;
4695 
4696 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4697 			continue;
4698 
4699 		if (ndevs == fs_devices->rw_devices) {
4700 			WARN(1, "%s: found more than %llu devices\n",
4701 			     __func__, fs_devices->rw_devices);
4702 			break;
4703 		}
4704 		devices_info[ndevs].dev_offset = dev_offset;
4705 		devices_info[ndevs].max_avail = max_avail;
4706 		devices_info[ndevs].total_avail = total_avail;
4707 		devices_info[ndevs].dev = device;
4708 		++ndevs;
4709 	}
4710 
4711 	/*
4712 	 * now sort the devices by hole size / available space
4713 	 */
4714 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4715 	     btrfs_cmp_device_info, NULL);
4716 
4717 	/* round down to number of usable stripes */
4718 	ndevs = round_down(ndevs, devs_increment);
4719 
4720 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4721 		ret = -ENOSPC;
4722 		goto error;
4723 	}
4724 
4725 	ndevs = min(ndevs, devs_max);
4726 
4727 	/*
4728 	 * the primary goal is to maximize the number of stripes, so use as many
4729 	 * devices as possible, even if the stripes are not maximum sized.
4730 	 */
4731 	stripe_size = devices_info[ndevs-1].max_avail;
4732 	num_stripes = ndevs * dev_stripes;
4733 
4734 	/*
4735 	 * this will have to be fixed for RAID1 and RAID10 over
4736 	 * more drives
4737 	 */
4738 	data_stripes = num_stripes / ncopies;
4739 
4740 	if (type & BTRFS_BLOCK_GROUP_RAID5)
4741 		data_stripes = num_stripes - 1;
4742 
4743 	if (type & BTRFS_BLOCK_GROUP_RAID6)
4744 		data_stripes = num_stripes - 2;
4745 
4746 	/*
4747 	 * Use the number of data stripes to figure out how big this chunk
4748 	 * is really going to be in terms of logical address space,
4749 	 * and compare that answer with the max chunk size
4750 	 */
4751 	if (stripe_size * data_stripes > max_chunk_size) {
4752 		u64 mask = (1ULL << 24) - 1;
4753 
4754 		stripe_size = div_u64(max_chunk_size, data_stripes);
4755 
4756 		/* bump the answer up to a 16MB boundary */
4757 		stripe_size = (stripe_size + mask) & ~mask;
4758 
4759 		/* but don't go higher than the limits we found
4760 		 * while searching for free extents
4761 		 */
4762 		if (stripe_size > devices_info[ndevs-1].max_avail)
4763 			stripe_size = devices_info[ndevs-1].max_avail;
4764 	}
4765 
4766 	stripe_size = div_u64(stripe_size, dev_stripes);
4767 
4768 	/* align to BTRFS_STRIPE_LEN */
4769 	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4770 
4771 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4772 	if (!map) {
4773 		ret = -ENOMEM;
4774 		goto error;
4775 	}
4776 	map->num_stripes = num_stripes;
4777 
4778 	for (i = 0; i < ndevs; ++i) {
4779 		for (j = 0; j < dev_stripes; ++j) {
4780 			int s = i * dev_stripes + j;
4781 			map->stripes[s].dev = devices_info[i].dev;
4782 			map->stripes[s].physical = devices_info[i].dev_offset +
4783 						   j * stripe_size;
4784 		}
4785 	}
4786 	map->stripe_len = BTRFS_STRIPE_LEN;
4787 	map->io_align = BTRFS_STRIPE_LEN;
4788 	map->io_width = BTRFS_STRIPE_LEN;
4789 	map->type = type;
4790 	map->sub_stripes = sub_stripes;
4791 
4792 	num_bytes = stripe_size * data_stripes;
4793 
4794 	trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4795 
4796 	em = alloc_extent_map();
4797 	if (!em) {
4798 		kfree(map);
4799 		ret = -ENOMEM;
4800 		goto error;
4801 	}
4802 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4803 	em->map_lookup = map;
4804 	em->start = start;
4805 	em->len = num_bytes;
4806 	em->block_start = 0;
4807 	em->block_len = em->len;
4808 	em->orig_block_len = stripe_size;
4809 
4810 	em_tree = &info->mapping_tree.map_tree;
4811 	write_lock(&em_tree->lock);
4812 	ret = add_extent_mapping(em_tree, em, 0);
4813 	if (ret) {
4814 		write_unlock(&em_tree->lock);
4815 		free_extent_map(em);
4816 		goto error;
4817 	}
4818 
4819 	list_add_tail(&em->list, &trans->transaction->pending_chunks);
4820 	refcount_inc(&em->refs);
4821 	write_unlock(&em_tree->lock);
4822 
4823 	ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4824 	if (ret)
4825 		goto error_del_extent;
4826 
4827 	for (i = 0; i < map->num_stripes; i++) {
4828 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4829 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4830 	}
4831 
4832 	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4833 
4834 	free_extent_map(em);
4835 	check_raid56_incompat_flag(info, type);
4836 
4837 	kfree(devices_info);
4838 	return 0;
4839 
4840 error_del_extent:
4841 	write_lock(&em_tree->lock);
4842 	remove_extent_mapping(em_tree, em);
4843 	write_unlock(&em_tree->lock);
4844 
4845 	/* One for our allocation */
4846 	free_extent_map(em);
4847 	/* One for the tree reference */
4848 	free_extent_map(em);
4849 	/* One for the pending_chunks list reference */
4850 	free_extent_map(em);
4851 error:
4852 	kfree(devices_info);
4853 	return ret;
4854 }
4855 
4856 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4857 				struct btrfs_fs_info *fs_info,
4858 				u64 chunk_offset, u64 chunk_size)
4859 {
4860 	struct btrfs_root *extent_root = fs_info->extent_root;
4861 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4862 	struct btrfs_key key;
4863 	struct btrfs_device *device;
4864 	struct btrfs_chunk *chunk;
4865 	struct btrfs_stripe *stripe;
4866 	struct extent_map *em;
4867 	struct map_lookup *map;
4868 	size_t item_size;
4869 	u64 dev_offset;
4870 	u64 stripe_size;
4871 	int i = 0;
4872 	int ret = 0;
4873 
4874 	em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4875 	if (IS_ERR(em))
4876 		return PTR_ERR(em);
4877 
4878 	map = em->map_lookup;
4879 	item_size = btrfs_chunk_item_size(map->num_stripes);
4880 	stripe_size = em->orig_block_len;
4881 
4882 	chunk = kzalloc(item_size, GFP_NOFS);
4883 	if (!chunk) {
4884 		ret = -ENOMEM;
4885 		goto out;
4886 	}
4887 
4888 	/*
4889 	 * Take the device list mutex to prevent races with the final phase of
4890 	 * a device replace operation that replaces the device object associated
4891 	 * with the map's stripes, because the device object's id can change
4892 	 * at any time during that final phase of the device replace operation
4893 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4894 	 */
4895 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4896 	for (i = 0; i < map->num_stripes; i++) {
4897 		device = map->stripes[i].dev;
4898 		dev_offset = map->stripes[i].physical;
4899 
4900 		ret = btrfs_update_device(trans, device);
4901 		if (ret)
4902 			break;
4903 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4904 					     dev_offset, stripe_size);
4905 		if (ret)
4906 			break;
4907 	}
4908 	if (ret) {
4909 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4910 		goto out;
4911 	}
4912 
4913 	stripe = &chunk->stripe;
4914 	for (i = 0; i < map->num_stripes; i++) {
4915 		device = map->stripes[i].dev;
4916 		dev_offset = map->stripes[i].physical;
4917 
4918 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4919 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4920 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4921 		stripe++;
4922 	}
4923 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4924 
4925 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4926 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4927 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4928 	btrfs_set_stack_chunk_type(chunk, map->type);
4929 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4930 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4931 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4932 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4933 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4934 
4935 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4936 	key.type = BTRFS_CHUNK_ITEM_KEY;
4937 	key.offset = chunk_offset;
4938 
4939 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4940 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4941 		/*
4942 		 * TODO: Cleanup of inserted chunk root in case of
4943 		 * failure.
4944 		 */
4945 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4946 	}
4947 
4948 out:
4949 	kfree(chunk);
4950 	free_extent_map(em);
4951 	return ret;
4952 }
4953 
4954 /*
4955  * Chunk allocation falls into two parts. The first part does works
4956  * that make the new allocated chunk useable, but not do any operation
4957  * that modifies the chunk tree. The second part does the works that
4958  * require modifying the chunk tree. This division is important for the
4959  * bootstrap process of adding storage to a seed btrfs.
4960  */
4961 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4962 		      struct btrfs_fs_info *fs_info, u64 type)
4963 {
4964 	u64 chunk_offset;
4965 
4966 	ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4967 	chunk_offset = find_next_chunk(fs_info);
4968 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
4969 }
4970 
4971 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4972 					 struct btrfs_fs_info *fs_info)
4973 {
4974 	u64 chunk_offset;
4975 	u64 sys_chunk_offset;
4976 	u64 alloc_profile;
4977 	int ret;
4978 
4979 	chunk_offset = find_next_chunk(fs_info);
4980 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4981 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
4982 	if (ret)
4983 		return ret;
4984 
4985 	sys_chunk_offset = find_next_chunk(fs_info);
4986 	alloc_profile = btrfs_system_alloc_profile(fs_info);
4987 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
4988 	return ret;
4989 }
4990 
4991 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4992 {
4993 	int max_errors;
4994 
4995 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4996 			 BTRFS_BLOCK_GROUP_RAID10 |
4997 			 BTRFS_BLOCK_GROUP_RAID5 |
4998 			 BTRFS_BLOCK_GROUP_DUP)) {
4999 		max_errors = 1;
5000 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5001 		max_errors = 2;
5002 	} else {
5003 		max_errors = 0;
5004 	}
5005 
5006 	return max_errors;
5007 }
5008 
5009 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5010 {
5011 	struct extent_map *em;
5012 	struct map_lookup *map;
5013 	int readonly = 0;
5014 	int miss_ndevs = 0;
5015 	int i;
5016 
5017 	em = get_chunk_map(fs_info, chunk_offset, 1);
5018 	if (IS_ERR(em))
5019 		return 1;
5020 
5021 	map = em->map_lookup;
5022 	for (i = 0; i < map->num_stripes; i++) {
5023 		if (map->stripes[i].dev->missing) {
5024 			miss_ndevs++;
5025 			continue;
5026 		}
5027 
5028 		if (!map->stripes[i].dev->writeable) {
5029 			readonly = 1;
5030 			goto end;
5031 		}
5032 	}
5033 
5034 	/*
5035 	 * If the number of missing devices is larger than max errors,
5036 	 * we can not write the data into that chunk successfully, so
5037 	 * set it readonly.
5038 	 */
5039 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5040 		readonly = 1;
5041 end:
5042 	free_extent_map(em);
5043 	return readonly;
5044 }
5045 
5046 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5047 {
5048 	extent_map_tree_init(&tree->map_tree);
5049 }
5050 
5051 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5052 {
5053 	struct extent_map *em;
5054 
5055 	while (1) {
5056 		write_lock(&tree->map_tree.lock);
5057 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5058 		if (em)
5059 			remove_extent_mapping(&tree->map_tree, em);
5060 		write_unlock(&tree->map_tree.lock);
5061 		if (!em)
5062 			break;
5063 		/* once for us */
5064 		free_extent_map(em);
5065 		/* once for the tree */
5066 		free_extent_map(em);
5067 	}
5068 }
5069 
5070 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5071 {
5072 	struct extent_map *em;
5073 	struct map_lookup *map;
5074 	int ret;
5075 
5076 	em = get_chunk_map(fs_info, logical, len);
5077 	if (IS_ERR(em))
5078 		/*
5079 		 * We could return errors for these cases, but that could get
5080 		 * ugly and we'd probably do the same thing which is just not do
5081 		 * anything else and exit, so return 1 so the callers don't try
5082 		 * to use other copies.
5083 		 */
5084 		return 1;
5085 
5086 	map = em->map_lookup;
5087 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5088 		ret = map->num_stripes;
5089 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5090 		ret = map->sub_stripes;
5091 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5092 		ret = 2;
5093 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5094 		ret = 3;
5095 	else
5096 		ret = 1;
5097 	free_extent_map(em);
5098 
5099 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5100 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5101 	    fs_info->dev_replace.tgtdev)
5102 		ret++;
5103 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5104 
5105 	return ret;
5106 }
5107 
5108 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5109 				    u64 logical)
5110 {
5111 	struct extent_map *em;
5112 	struct map_lookup *map;
5113 	unsigned long len = fs_info->sectorsize;
5114 
5115 	em = get_chunk_map(fs_info, logical, len);
5116 
5117 	if (!WARN_ON(IS_ERR(em))) {
5118 		map = em->map_lookup;
5119 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5120 			len = map->stripe_len * nr_data_stripes(map);
5121 		free_extent_map(em);
5122 	}
5123 	return len;
5124 }
5125 
5126 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5127 {
5128 	struct extent_map *em;
5129 	struct map_lookup *map;
5130 	int ret = 0;
5131 
5132 	em = get_chunk_map(fs_info, logical, len);
5133 
5134 	if(!WARN_ON(IS_ERR(em))) {
5135 		map = em->map_lookup;
5136 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5137 			ret = 1;
5138 		free_extent_map(em);
5139 	}
5140 	return ret;
5141 }
5142 
5143 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5144 			    struct map_lookup *map, int first, int num,
5145 			    int optimal, int dev_replace_is_ongoing)
5146 {
5147 	int i;
5148 	int tolerance;
5149 	struct btrfs_device *srcdev;
5150 
5151 	if (dev_replace_is_ongoing &&
5152 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5153 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5154 		srcdev = fs_info->dev_replace.srcdev;
5155 	else
5156 		srcdev = NULL;
5157 
5158 	/*
5159 	 * try to avoid the drive that is the source drive for a
5160 	 * dev-replace procedure, only choose it if no other non-missing
5161 	 * mirror is available
5162 	 */
5163 	for (tolerance = 0; tolerance < 2; tolerance++) {
5164 		if (map->stripes[optimal].dev->bdev &&
5165 		    (tolerance || map->stripes[optimal].dev != srcdev))
5166 			return optimal;
5167 		for (i = first; i < first + num; i++) {
5168 			if (map->stripes[i].dev->bdev &&
5169 			    (tolerance || map->stripes[i].dev != srcdev))
5170 				return i;
5171 		}
5172 	}
5173 
5174 	/* we couldn't find one that doesn't fail.  Just return something
5175 	 * and the io error handling code will clean up eventually
5176 	 */
5177 	return optimal;
5178 }
5179 
5180 static inline int parity_smaller(u64 a, u64 b)
5181 {
5182 	return a > b;
5183 }
5184 
5185 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5186 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5187 {
5188 	struct btrfs_bio_stripe s;
5189 	int i;
5190 	u64 l;
5191 	int again = 1;
5192 
5193 	while (again) {
5194 		again = 0;
5195 		for (i = 0; i < num_stripes - 1; i++) {
5196 			if (parity_smaller(bbio->raid_map[i],
5197 					   bbio->raid_map[i+1])) {
5198 				s = bbio->stripes[i];
5199 				l = bbio->raid_map[i];
5200 				bbio->stripes[i] = bbio->stripes[i+1];
5201 				bbio->raid_map[i] = bbio->raid_map[i+1];
5202 				bbio->stripes[i+1] = s;
5203 				bbio->raid_map[i+1] = l;
5204 
5205 				again = 1;
5206 			}
5207 		}
5208 	}
5209 }
5210 
5211 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5212 {
5213 	struct btrfs_bio *bbio = kzalloc(
5214 		 /* the size of the btrfs_bio */
5215 		sizeof(struct btrfs_bio) +
5216 		/* plus the variable array for the stripes */
5217 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5218 		/* plus the variable array for the tgt dev */
5219 		sizeof(int) * (real_stripes) +
5220 		/*
5221 		 * plus the raid_map, which includes both the tgt dev
5222 		 * and the stripes
5223 		 */
5224 		sizeof(u64) * (total_stripes),
5225 		GFP_NOFS|__GFP_NOFAIL);
5226 
5227 	atomic_set(&bbio->error, 0);
5228 	refcount_set(&bbio->refs, 1);
5229 
5230 	return bbio;
5231 }
5232 
5233 void btrfs_get_bbio(struct btrfs_bio *bbio)
5234 {
5235 	WARN_ON(!refcount_read(&bbio->refs));
5236 	refcount_inc(&bbio->refs);
5237 }
5238 
5239 void btrfs_put_bbio(struct btrfs_bio *bbio)
5240 {
5241 	if (!bbio)
5242 		return;
5243 	if (refcount_dec_and_test(&bbio->refs))
5244 		kfree(bbio);
5245 }
5246 
5247 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5248 /*
5249  * Please note that, discard won't be sent to target device of device
5250  * replace.
5251  */
5252 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5253 					 u64 logical, u64 length,
5254 					 struct btrfs_bio **bbio_ret)
5255 {
5256 	struct extent_map *em;
5257 	struct map_lookup *map;
5258 	struct btrfs_bio *bbio;
5259 	u64 offset;
5260 	u64 stripe_nr;
5261 	u64 stripe_nr_end;
5262 	u64 stripe_end_offset;
5263 	u64 stripe_cnt;
5264 	u64 stripe_len;
5265 	u64 stripe_offset;
5266 	u64 num_stripes;
5267 	u32 stripe_index;
5268 	u32 factor = 0;
5269 	u32 sub_stripes = 0;
5270 	u64 stripes_per_dev = 0;
5271 	u32 remaining_stripes = 0;
5272 	u32 last_stripe = 0;
5273 	int ret = 0;
5274 	int i;
5275 
5276 	/* discard always return a bbio */
5277 	ASSERT(bbio_ret);
5278 
5279 	em = get_chunk_map(fs_info, logical, length);
5280 	if (IS_ERR(em))
5281 		return PTR_ERR(em);
5282 
5283 	map = em->map_lookup;
5284 	/* we don't discard raid56 yet */
5285 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5286 		ret = -EOPNOTSUPP;
5287 		goto out;
5288 	}
5289 
5290 	offset = logical - em->start;
5291 	length = min_t(u64, em->len - offset, length);
5292 
5293 	stripe_len = map->stripe_len;
5294 	/*
5295 	 * stripe_nr counts the total number of stripes we have to stride
5296 	 * to get to this block
5297 	 */
5298 	stripe_nr = div64_u64(offset, stripe_len);
5299 
5300 	/* stripe_offset is the offset of this block in its stripe */
5301 	stripe_offset = offset - stripe_nr * stripe_len;
5302 
5303 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5304 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5305 	stripe_cnt = stripe_nr_end - stripe_nr;
5306 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5307 			    (offset + length);
5308 	/*
5309 	 * after this, stripe_nr is the number of stripes on this
5310 	 * device we have to walk to find the data, and stripe_index is
5311 	 * the number of our device in the stripe array
5312 	 */
5313 	num_stripes = 1;
5314 	stripe_index = 0;
5315 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5316 			 BTRFS_BLOCK_GROUP_RAID10)) {
5317 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5318 			sub_stripes = 1;
5319 		else
5320 			sub_stripes = map->sub_stripes;
5321 
5322 		factor = map->num_stripes / sub_stripes;
5323 		num_stripes = min_t(u64, map->num_stripes,
5324 				    sub_stripes * stripe_cnt);
5325 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5326 		stripe_index *= sub_stripes;
5327 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5328 					      &remaining_stripes);
5329 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5330 		last_stripe *= sub_stripes;
5331 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5332 				BTRFS_BLOCK_GROUP_DUP)) {
5333 		num_stripes = map->num_stripes;
5334 	} else {
5335 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5336 					&stripe_index);
5337 	}
5338 
5339 	bbio = alloc_btrfs_bio(num_stripes, 0);
5340 	if (!bbio) {
5341 		ret = -ENOMEM;
5342 		goto out;
5343 	}
5344 
5345 	for (i = 0; i < num_stripes; i++) {
5346 		bbio->stripes[i].physical =
5347 			map->stripes[stripe_index].physical +
5348 			stripe_offset + stripe_nr * map->stripe_len;
5349 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5350 
5351 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5352 				 BTRFS_BLOCK_GROUP_RAID10)) {
5353 			bbio->stripes[i].length = stripes_per_dev *
5354 				map->stripe_len;
5355 
5356 			if (i / sub_stripes < remaining_stripes)
5357 				bbio->stripes[i].length +=
5358 					map->stripe_len;
5359 
5360 			/*
5361 			 * Special for the first stripe and
5362 			 * the last stripe:
5363 			 *
5364 			 * |-------|...|-------|
5365 			 *     |----------|
5366 			 *    off     end_off
5367 			 */
5368 			if (i < sub_stripes)
5369 				bbio->stripes[i].length -=
5370 					stripe_offset;
5371 
5372 			if (stripe_index >= last_stripe &&
5373 			    stripe_index <= (last_stripe +
5374 					     sub_stripes - 1))
5375 				bbio->stripes[i].length -=
5376 					stripe_end_offset;
5377 
5378 			if (i == sub_stripes - 1)
5379 				stripe_offset = 0;
5380 		} else {
5381 			bbio->stripes[i].length = length;
5382 		}
5383 
5384 		stripe_index++;
5385 		if (stripe_index == map->num_stripes) {
5386 			stripe_index = 0;
5387 			stripe_nr++;
5388 		}
5389 	}
5390 
5391 	*bbio_ret = bbio;
5392 	bbio->map_type = map->type;
5393 	bbio->num_stripes = num_stripes;
5394 out:
5395 	free_extent_map(em);
5396 	return ret;
5397 }
5398 
5399 /*
5400  * In dev-replace case, for repair case (that's the only case where the mirror
5401  * is selected explicitly when calling btrfs_map_block), blocks left of the
5402  * left cursor can also be read from the target drive.
5403  *
5404  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5405  * array of stripes.
5406  * For READ, it also needs to be supported using the same mirror number.
5407  *
5408  * If the requested block is not left of the left cursor, EIO is returned. This
5409  * can happen because btrfs_num_copies() returns one more in the dev-replace
5410  * case.
5411  */
5412 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5413 					 u64 logical, u64 length,
5414 					 u64 srcdev_devid, int *mirror_num,
5415 					 u64 *physical)
5416 {
5417 	struct btrfs_bio *bbio = NULL;
5418 	int num_stripes;
5419 	int index_srcdev = 0;
5420 	int found = 0;
5421 	u64 physical_of_found = 0;
5422 	int i;
5423 	int ret = 0;
5424 
5425 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5426 				logical, &length, &bbio, 0, 0);
5427 	if (ret) {
5428 		ASSERT(bbio == NULL);
5429 		return ret;
5430 	}
5431 
5432 	num_stripes = bbio->num_stripes;
5433 	if (*mirror_num > num_stripes) {
5434 		/*
5435 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5436 		 * that means that the requested area is not left of the left
5437 		 * cursor
5438 		 */
5439 		btrfs_put_bbio(bbio);
5440 		return -EIO;
5441 	}
5442 
5443 	/*
5444 	 * process the rest of the function using the mirror_num of the source
5445 	 * drive. Therefore look it up first.  At the end, patch the device
5446 	 * pointer to the one of the target drive.
5447 	 */
5448 	for (i = 0; i < num_stripes; i++) {
5449 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5450 			continue;
5451 
5452 		/*
5453 		 * In case of DUP, in order to keep it simple, only add the
5454 		 * mirror with the lowest physical address
5455 		 */
5456 		if (found &&
5457 		    physical_of_found <= bbio->stripes[i].physical)
5458 			continue;
5459 
5460 		index_srcdev = i;
5461 		found = 1;
5462 		physical_of_found = bbio->stripes[i].physical;
5463 	}
5464 
5465 	btrfs_put_bbio(bbio);
5466 
5467 	ASSERT(found);
5468 	if (!found)
5469 		return -EIO;
5470 
5471 	*mirror_num = index_srcdev + 1;
5472 	*physical = physical_of_found;
5473 	return ret;
5474 }
5475 
5476 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5477 				      struct btrfs_bio **bbio_ret,
5478 				      struct btrfs_dev_replace *dev_replace,
5479 				      int *num_stripes_ret, int *max_errors_ret)
5480 {
5481 	struct btrfs_bio *bbio = *bbio_ret;
5482 	u64 srcdev_devid = dev_replace->srcdev->devid;
5483 	int tgtdev_indexes = 0;
5484 	int num_stripes = *num_stripes_ret;
5485 	int max_errors = *max_errors_ret;
5486 	int i;
5487 
5488 	if (op == BTRFS_MAP_WRITE) {
5489 		int index_where_to_add;
5490 
5491 		/*
5492 		 * duplicate the write operations while the dev replace
5493 		 * procedure is running. Since the copying of the old disk to
5494 		 * the new disk takes place at run time while the filesystem is
5495 		 * mounted writable, the regular write operations to the old
5496 		 * disk have to be duplicated to go to the new disk as well.
5497 		 *
5498 		 * Note that device->missing is handled by the caller, and that
5499 		 * the write to the old disk is already set up in the stripes
5500 		 * array.
5501 		 */
5502 		index_where_to_add = num_stripes;
5503 		for (i = 0; i < num_stripes; i++) {
5504 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5505 				/* write to new disk, too */
5506 				struct btrfs_bio_stripe *new =
5507 					bbio->stripes + index_where_to_add;
5508 				struct btrfs_bio_stripe *old =
5509 					bbio->stripes + i;
5510 
5511 				new->physical = old->physical;
5512 				new->length = old->length;
5513 				new->dev = dev_replace->tgtdev;
5514 				bbio->tgtdev_map[i] = index_where_to_add;
5515 				index_where_to_add++;
5516 				max_errors++;
5517 				tgtdev_indexes++;
5518 			}
5519 		}
5520 		num_stripes = index_where_to_add;
5521 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5522 		int index_srcdev = 0;
5523 		int found = 0;
5524 		u64 physical_of_found = 0;
5525 
5526 		/*
5527 		 * During the dev-replace procedure, the target drive can also
5528 		 * be used to read data in case it is needed to repair a corrupt
5529 		 * block elsewhere. This is possible if the requested area is
5530 		 * left of the left cursor. In this area, the target drive is a
5531 		 * full copy of the source drive.
5532 		 */
5533 		for (i = 0; i < num_stripes; i++) {
5534 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5535 				/*
5536 				 * In case of DUP, in order to keep it simple,
5537 				 * only add the mirror with the lowest physical
5538 				 * address
5539 				 */
5540 				if (found &&
5541 				    physical_of_found <=
5542 				     bbio->stripes[i].physical)
5543 					continue;
5544 				index_srcdev = i;
5545 				found = 1;
5546 				physical_of_found = bbio->stripes[i].physical;
5547 			}
5548 		}
5549 		if (found) {
5550 			struct btrfs_bio_stripe *tgtdev_stripe =
5551 				bbio->stripes + num_stripes;
5552 
5553 			tgtdev_stripe->physical = physical_of_found;
5554 			tgtdev_stripe->length =
5555 				bbio->stripes[index_srcdev].length;
5556 			tgtdev_stripe->dev = dev_replace->tgtdev;
5557 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5558 
5559 			tgtdev_indexes++;
5560 			num_stripes++;
5561 		}
5562 	}
5563 
5564 	*num_stripes_ret = num_stripes;
5565 	*max_errors_ret = max_errors;
5566 	bbio->num_tgtdevs = tgtdev_indexes;
5567 	*bbio_ret = bbio;
5568 }
5569 
5570 static bool need_full_stripe(enum btrfs_map_op op)
5571 {
5572 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5573 }
5574 
5575 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5576 			     enum btrfs_map_op op,
5577 			     u64 logical, u64 *length,
5578 			     struct btrfs_bio **bbio_ret,
5579 			     int mirror_num, int need_raid_map)
5580 {
5581 	struct extent_map *em;
5582 	struct map_lookup *map;
5583 	u64 offset;
5584 	u64 stripe_offset;
5585 	u64 stripe_nr;
5586 	u64 stripe_len;
5587 	u32 stripe_index;
5588 	int i;
5589 	int ret = 0;
5590 	int num_stripes;
5591 	int max_errors = 0;
5592 	int tgtdev_indexes = 0;
5593 	struct btrfs_bio *bbio = NULL;
5594 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5595 	int dev_replace_is_ongoing = 0;
5596 	int num_alloc_stripes;
5597 	int patch_the_first_stripe_for_dev_replace = 0;
5598 	u64 physical_to_patch_in_first_stripe = 0;
5599 	u64 raid56_full_stripe_start = (u64)-1;
5600 
5601 	if (op == BTRFS_MAP_DISCARD)
5602 		return __btrfs_map_block_for_discard(fs_info, logical,
5603 						     *length, bbio_ret);
5604 
5605 	em = get_chunk_map(fs_info, logical, *length);
5606 	if (IS_ERR(em))
5607 		return PTR_ERR(em);
5608 
5609 	map = em->map_lookup;
5610 	offset = logical - em->start;
5611 
5612 	stripe_len = map->stripe_len;
5613 	stripe_nr = offset;
5614 	/*
5615 	 * stripe_nr counts the total number of stripes we have to stride
5616 	 * to get to this block
5617 	 */
5618 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5619 
5620 	stripe_offset = stripe_nr * stripe_len;
5621 	if (offset < stripe_offset) {
5622 		btrfs_crit(fs_info,
5623 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5624 			   stripe_offset, offset, em->start, logical,
5625 			   stripe_len);
5626 		free_extent_map(em);
5627 		return -EINVAL;
5628 	}
5629 
5630 	/* stripe_offset is the offset of this block in its stripe*/
5631 	stripe_offset = offset - stripe_offset;
5632 
5633 	/* if we're here for raid56, we need to know the stripe aligned start */
5634 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5635 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5636 		raid56_full_stripe_start = offset;
5637 
5638 		/* allow a write of a full stripe, but make sure we don't
5639 		 * allow straddling of stripes
5640 		 */
5641 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5642 				full_stripe_len);
5643 		raid56_full_stripe_start *= full_stripe_len;
5644 	}
5645 
5646 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5647 		u64 max_len;
5648 		/* For writes to RAID[56], allow a full stripeset across all disks.
5649 		   For other RAID types and for RAID[56] reads, just allow a single
5650 		   stripe (on a single disk). */
5651 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5652 		    (op == BTRFS_MAP_WRITE)) {
5653 			max_len = stripe_len * nr_data_stripes(map) -
5654 				(offset - raid56_full_stripe_start);
5655 		} else {
5656 			/* we limit the length of each bio to what fits in a stripe */
5657 			max_len = stripe_len - stripe_offset;
5658 		}
5659 		*length = min_t(u64, em->len - offset, max_len);
5660 	} else {
5661 		*length = em->len - offset;
5662 	}
5663 
5664 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5665 	   it cares about is the length */
5666 	if (!bbio_ret)
5667 		goto out;
5668 
5669 	btrfs_dev_replace_lock(dev_replace, 0);
5670 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5671 	if (!dev_replace_is_ongoing)
5672 		btrfs_dev_replace_unlock(dev_replace, 0);
5673 	else
5674 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5675 
5676 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5677 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5678 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5679 						    dev_replace->srcdev->devid,
5680 						    &mirror_num,
5681 					    &physical_to_patch_in_first_stripe);
5682 		if (ret)
5683 			goto out;
5684 		else
5685 			patch_the_first_stripe_for_dev_replace = 1;
5686 	} else if (mirror_num > map->num_stripes) {
5687 		mirror_num = 0;
5688 	}
5689 
5690 	num_stripes = 1;
5691 	stripe_index = 0;
5692 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5693 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5694 				&stripe_index);
5695 		if (!need_full_stripe(op))
5696 			mirror_num = 1;
5697 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5698 		if (need_full_stripe(op))
5699 			num_stripes = map->num_stripes;
5700 		else if (mirror_num)
5701 			stripe_index = mirror_num - 1;
5702 		else {
5703 			stripe_index = find_live_mirror(fs_info, map, 0,
5704 					    map->num_stripes,
5705 					    current->pid % map->num_stripes,
5706 					    dev_replace_is_ongoing);
5707 			mirror_num = stripe_index + 1;
5708 		}
5709 
5710 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5711 		if (need_full_stripe(op)) {
5712 			num_stripes = map->num_stripes;
5713 		} else if (mirror_num) {
5714 			stripe_index = mirror_num - 1;
5715 		} else {
5716 			mirror_num = 1;
5717 		}
5718 
5719 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5720 		u32 factor = map->num_stripes / map->sub_stripes;
5721 
5722 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5723 		stripe_index *= map->sub_stripes;
5724 
5725 		if (need_full_stripe(op))
5726 			num_stripes = map->sub_stripes;
5727 		else if (mirror_num)
5728 			stripe_index += mirror_num - 1;
5729 		else {
5730 			int old_stripe_index = stripe_index;
5731 			stripe_index = find_live_mirror(fs_info, map,
5732 					      stripe_index,
5733 					      map->sub_stripes, stripe_index +
5734 					      current->pid % map->sub_stripes,
5735 					      dev_replace_is_ongoing);
5736 			mirror_num = stripe_index - old_stripe_index + 1;
5737 		}
5738 
5739 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5740 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5741 			/* push stripe_nr back to the start of the full stripe */
5742 			stripe_nr = div64_u64(raid56_full_stripe_start,
5743 					stripe_len * nr_data_stripes(map));
5744 
5745 			/* RAID[56] write or recovery. Return all stripes */
5746 			num_stripes = map->num_stripes;
5747 			max_errors = nr_parity_stripes(map);
5748 
5749 			*length = map->stripe_len;
5750 			stripe_index = 0;
5751 			stripe_offset = 0;
5752 		} else {
5753 			/*
5754 			 * Mirror #0 or #1 means the original data block.
5755 			 * Mirror #2 is RAID5 parity block.
5756 			 * Mirror #3 is RAID6 Q block.
5757 			 */
5758 			stripe_nr = div_u64_rem(stripe_nr,
5759 					nr_data_stripes(map), &stripe_index);
5760 			if (mirror_num > 1)
5761 				stripe_index = nr_data_stripes(map) +
5762 						mirror_num - 2;
5763 
5764 			/* We distribute the parity blocks across stripes */
5765 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5766 					&stripe_index);
5767 			if (!need_full_stripe(op) && mirror_num <= 1)
5768 				mirror_num = 1;
5769 		}
5770 	} else {
5771 		/*
5772 		 * after this, stripe_nr is the number of stripes on this
5773 		 * device we have to walk to find the data, and stripe_index is
5774 		 * the number of our device in the stripe array
5775 		 */
5776 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5777 				&stripe_index);
5778 		mirror_num = stripe_index + 1;
5779 	}
5780 	if (stripe_index >= map->num_stripes) {
5781 		btrfs_crit(fs_info,
5782 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5783 			   stripe_index, map->num_stripes);
5784 		ret = -EINVAL;
5785 		goto out;
5786 	}
5787 
5788 	num_alloc_stripes = num_stripes;
5789 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5790 		if (op == BTRFS_MAP_WRITE)
5791 			num_alloc_stripes <<= 1;
5792 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
5793 			num_alloc_stripes++;
5794 		tgtdev_indexes = num_stripes;
5795 	}
5796 
5797 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5798 	if (!bbio) {
5799 		ret = -ENOMEM;
5800 		goto out;
5801 	}
5802 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5803 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5804 
5805 	/* build raid_map */
5806 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5807 	    (need_full_stripe(op) || mirror_num > 1)) {
5808 		u64 tmp;
5809 		unsigned rot;
5810 
5811 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5812 				 sizeof(struct btrfs_bio_stripe) *
5813 				 num_alloc_stripes +
5814 				 sizeof(int) * tgtdev_indexes);
5815 
5816 		/* Work out the disk rotation on this stripe-set */
5817 		div_u64_rem(stripe_nr, num_stripes, &rot);
5818 
5819 		/* Fill in the logical address of each stripe */
5820 		tmp = stripe_nr * nr_data_stripes(map);
5821 		for (i = 0; i < nr_data_stripes(map); i++)
5822 			bbio->raid_map[(i+rot) % num_stripes] =
5823 				em->start + (tmp + i) * map->stripe_len;
5824 
5825 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5826 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5827 			bbio->raid_map[(i+rot+1) % num_stripes] =
5828 				RAID6_Q_STRIPE;
5829 	}
5830 
5831 
5832 	for (i = 0; i < num_stripes; i++) {
5833 		bbio->stripes[i].physical =
5834 			map->stripes[stripe_index].physical +
5835 			stripe_offset +
5836 			stripe_nr * map->stripe_len;
5837 		bbio->stripes[i].dev =
5838 			map->stripes[stripe_index].dev;
5839 		stripe_index++;
5840 	}
5841 
5842 	if (need_full_stripe(op))
5843 		max_errors = btrfs_chunk_max_errors(map);
5844 
5845 	if (bbio->raid_map)
5846 		sort_parity_stripes(bbio, num_stripes);
5847 
5848 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5849 	    need_full_stripe(op)) {
5850 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5851 					  &max_errors);
5852 	}
5853 
5854 	*bbio_ret = bbio;
5855 	bbio->map_type = map->type;
5856 	bbio->num_stripes = num_stripes;
5857 	bbio->max_errors = max_errors;
5858 	bbio->mirror_num = mirror_num;
5859 
5860 	/*
5861 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5862 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5863 	 * available as a mirror
5864 	 */
5865 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5866 		WARN_ON(num_stripes > 1);
5867 		bbio->stripes[0].dev = dev_replace->tgtdev;
5868 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5869 		bbio->mirror_num = map->num_stripes + 1;
5870 	}
5871 out:
5872 	if (dev_replace_is_ongoing) {
5873 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
5874 		btrfs_dev_replace_unlock(dev_replace, 0);
5875 	}
5876 	free_extent_map(em);
5877 	return ret;
5878 }
5879 
5880 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5881 		      u64 logical, u64 *length,
5882 		      struct btrfs_bio **bbio_ret, int mirror_num)
5883 {
5884 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5885 				 mirror_num, 0);
5886 }
5887 
5888 /* For Scrub/replace */
5889 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5890 		     u64 logical, u64 *length,
5891 		     struct btrfs_bio **bbio_ret)
5892 {
5893 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5894 }
5895 
5896 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5897 		     u64 chunk_start, u64 physical, u64 devid,
5898 		     u64 **logical, int *naddrs, int *stripe_len)
5899 {
5900 	struct extent_map *em;
5901 	struct map_lookup *map;
5902 	u64 *buf;
5903 	u64 bytenr;
5904 	u64 length;
5905 	u64 stripe_nr;
5906 	u64 rmap_len;
5907 	int i, j, nr = 0;
5908 
5909 	em = get_chunk_map(fs_info, chunk_start, 1);
5910 	if (IS_ERR(em))
5911 		return -EIO;
5912 
5913 	map = em->map_lookup;
5914 	length = em->len;
5915 	rmap_len = map->stripe_len;
5916 
5917 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5918 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5919 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5920 		length = div_u64(length, map->num_stripes);
5921 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5922 		length = div_u64(length, nr_data_stripes(map));
5923 		rmap_len = map->stripe_len * nr_data_stripes(map);
5924 	}
5925 
5926 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5927 	BUG_ON(!buf); /* -ENOMEM */
5928 
5929 	for (i = 0; i < map->num_stripes; i++) {
5930 		if (devid && map->stripes[i].dev->devid != devid)
5931 			continue;
5932 		if (map->stripes[i].physical > physical ||
5933 		    map->stripes[i].physical + length <= physical)
5934 			continue;
5935 
5936 		stripe_nr = physical - map->stripes[i].physical;
5937 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5938 
5939 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5940 			stripe_nr = stripe_nr * map->num_stripes + i;
5941 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5942 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5943 			stripe_nr = stripe_nr * map->num_stripes + i;
5944 		} /* else if RAID[56], multiply by nr_data_stripes().
5945 		   * Alternatively, just use rmap_len below instead of
5946 		   * map->stripe_len */
5947 
5948 		bytenr = chunk_start + stripe_nr * rmap_len;
5949 		WARN_ON(nr >= map->num_stripes);
5950 		for (j = 0; j < nr; j++) {
5951 			if (buf[j] == bytenr)
5952 				break;
5953 		}
5954 		if (j == nr) {
5955 			WARN_ON(nr >= map->num_stripes);
5956 			buf[nr++] = bytenr;
5957 		}
5958 	}
5959 
5960 	*logical = buf;
5961 	*naddrs = nr;
5962 	*stripe_len = rmap_len;
5963 
5964 	free_extent_map(em);
5965 	return 0;
5966 }
5967 
5968 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5969 {
5970 	bio->bi_private = bbio->private;
5971 	bio->bi_end_io = bbio->end_io;
5972 	bio_endio(bio);
5973 
5974 	btrfs_put_bbio(bbio);
5975 }
5976 
5977 static void btrfs_end_bio(struct bio *bio)
5978 {
5979 	struct btrfs_bio *bbio = bio->bi_private;
5980 	int is_orig_bio = 0;
5981 
5982 	if (bio->bi_status) {
5983 		atomic_inc(&bbio->error);
5984 		if (bio->bi_status == BLK_STS_IOERR ||
5985 		    bio->bi_status == BLK_STS_TARGET) {
5986 			unsigned int stripe_index =
5987 				btrfs_io_bio(bio)->stripe_index;
5988 			struct btrfs_device *dev;
5989 
5990 			BUG_ON(stripe_index >= bbio->num_stripes);
5991 			dev = bbio->stripes[stripe_index].dev;
5992 			if (dev->bdev) {
5993 				if (bio_op(bio) == REQ_OP_WRITE)
5994 					btrfs_dev_stat_inc(dev,
5995 						BTRFS_DEV_STAT_WRITE_ERRS);
5996 				else
5997 					btrfs_dev_stat_inc(dev,
5998 						BTRFS_DEV_STAT_READ_ERRS);
5999 				if (bio->bi_opf & REQ_PREFLUSH)
6000 					btrfs_dev_stat_inc(dev,
6001 						BTRFS_DEV_STAT_FLUSH_ERRS);
6002 				btrfs_dev_stat_print_on_error(dev);
6003 			}
6004 		}
6005 	}
6006 
6007 	if (bio == bbio->orig_bio)
6008 		is_orig_bio = 1;
6009 
6010 	btrfs_bio_counter_dec(bbio->fs_info);
6011 
6012 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6013 		if (!is_orig_bio) {
6014 			bio_put(bio);
6015 			bio = bbio->orig_bio;
6016 		}
6017 
6018 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6019 		/* only send an error to the higher layers if it is
6020 		 * beyond the tolerance of the btrfs bio
6021 		 */
6022 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6023 			bio->bi_status = BLK_STS_IOERR;
6024 		} else {
6025 			/*
6026 			 * this bio is actually up to date, we didn't
6027 			 * go over the max number of errors
6028 			 */
6029 			bio->bi_status = BLK_STS_OK;
6030 		}
6031 
6032 		btrfs_end_bbio(bbio, bio);
6033 	} else if (!is_orig_bio) {
6034 		bio_put(bio);
6035 	}
6036 }
6037 
6038 /*
6039  * see run_scheduled_bios for a description of why bios are collected for
6040  * async submit.
6041  *
6042  * This will add one bio to the pending list for a device and make sure
6043  * the work struct is scheduled.
6044  */
6045 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6046 					struct bio *bio)
6047 {
6048 	struct btrfs_fs_info *fs_info = device->fs_info;
6049 	int should_queue = 1;
6050 	struct btrfs_pending_bios *pending_bios;
6051 
6052 	if (device->missing || !device->bdev) {
6053 		bio_io_error(bio);
6054 		return;
6055 	}
6056 
6057 	/* don't bother with additional async steps for reads, right now */
6058 	if (bio_op(bio) == REQ_OP_READ) {
6059 		bio_get(bio);
6060 		btrfsic_submit_bio(bio);
6061 		bio_put(bio);
6062 		return;
6063 	}
6064 
6065 	WARN_ON(bio->bi_next);
6066 	bio->bi_next = NULL;
6067 
6068 	spin_lock(&device->io_lock);
6069 	if (op_is_sync(bio->bi_opf))
6070 		pending_bios = &device->pending_sync_bios;
6071 	else
6072 		pending_bios = &device->pending_bios;
6073 
6074 	if (pending_bios->tail)
6075 		pending_bios->tail->bi_next = bio;
6076 
6077 	pending_bios->tail = bio;
6078 	if (!pending_bios->head)
6079 		pending_bios->head = bio;
6080 	if (device->running_pending)
6081 		should_queue = 0;
6082 
6083 	spin_unlock(&device->io_lock);
6084 
6085 	if (should_queue)
6086 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6087 }
6088 
6089 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6090 			      u64 physical, int dev_nr, int async)
6091 {
6092 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6093 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6094 
6095 	bio->bi_private = bbio;
6096 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6097 	bio->bi_end_io = btrfs_end_bio;
6098 	bio->bi_iter.bi_sector = physical >> 9;
6099 #ifdef DEBUG
6100 	{
6101 		struct rcu_string *name;
6102 
6103 		rcu_read_lock();
6104 		name = rcu_dereference(dev->name);
6105 		btrfs_debug(fs_info,
6106 			"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6107 			bio_op(bio), bio->bi_opf,
6108 			(u64)bio->bi_iter.bi_sector,
6109 			(u_long)dev->bdev->bd_dev, name->str, dev->devid,
6110 			bio->bi_iter.bi_size);
6111 		rcu_read_unlock();
6112 	}
6113 #endif
6114 	bio_set_dev(bio, dev->bdev);
6115 
6116 	btrfs_bio_counter_inc_noblocked(fs_info);
6117 
6118 	if (async)
6119 		btrfs_schedule_bio(dev, bio);
6120 	else
6121 		btrfsic_submit_bio(bio);
6122 }
6123 
6124 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6125 {
6126 	atomic_inc(&bbio->error);
6127 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6128 		/* Should be the original bio. */
6129 		WARN_ON(bio != bbio->orig_bio);
6130 
6131 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6132 		bio->bi_iter.bi_sector = logical >> 9;
6133 		if (atomic_read(&bbio->error) > bbio->max_errors)
6134 			bio->bi_status = BLK_STS_IOERR;
6135 		else
6136 			bio->bi_status = BLK_STS_OK;
6137 		btrfs_end_bbio(bbio, bio);
6138 	}
6139 }
6140 
6141 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6142 			   int mirror_num, int async_submit)
6143 {
6144 	struct btrfs_device *dev;
6145 	struct bio *first_bio = bio;
6146 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6147 	u64 length = 0;
6148 	u64 map_length;
6149 	int ret;
6150 	int dev_nr;
6151 	int total_devs;
6152 	struct btrfs_bio *bbio = NULL;
6153 
6154 	length = bio->bi_iter.bi_size;
6155 	map_length = length;
6156 
6157 	btrfs_bio_counter_inc_blocked(fs_info);
6158 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6159 				&map_length, &bbio, mirror_num, 1);
6160 	if (ret) {
6161 		btrfs_bio_counter_dec(fs_info);
6162 		return errno_to_blk_status(ret);
6163 	}
6164 
6165 	total_devs = bbio->num_stripes;
6166 	bbio->orig_bio = first_bio;
6167 	bbio->private = first_bio->bi_private;
6168 	bbio->end_io = first_bio->bi_end_io;
6169 	bbio->fs_info = fs_info;
6170 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6171 
6172 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6173 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6174 		/* In this case, map_length has been set to the length of
6175 		   a single stripe; not the whole write */
6176 		if (bio_op(bio) == REQ_OP_WRITE) {
6177 			ret = raid56_parity_write(fs_info, bio, bbio,
6178 						  map_length);
6179 		} else {
6180 			ret = raid56_parity_recover(fs_info, bio, bbio,
6181 						    map_length, mirror_num, 1);
6182 		}
6183 
6184 		btrfs_bio_counter_dec(fs_info);
6185 		return errno_to_blk_status(ret);
6186 	}
6187 
6188 	if (map_length < length) {
6189 		btrfs_crit(fs_info,
6190 			   "mapping failed logical %llu bio len %llu len %llu",
6191 			   logical, length, map_length);
6192 		BUG();
6193 	}
6194 
6195 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6196 		dev = bbio->stripes[dev_nr].dev;
6197 		if (!dev || !dev->bdev ||
6198 		    (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6199 			bbio_error(bbio, first_bio, logical);
6200 			continue;
6201 		}
6202 
6203 		if (dev_nr < total_devs - 1)
6204 			bio = btrfs_bio_clone(first_bio);
6205 		else
6206 			bio = first_bio;
6207 
6208 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6209 				  dev_nr, async_submit);
6210 	}
6211 	btrfs_bio_counter_dec(fs_info);
6212 	return BLK_STS_OK;
6213 }
6214 
6215 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6216 				       u8 *uuid, u8 *fsid)
6217 {
6218 	struct btrfs_device *device;
6219 	struct btrfs_fs_devices *cur_devices;
6220 
6221 	cur_devices = fs_info->fs_devices;
6222 	while (cur_devices) {
6223 		if (!fsid ||
6224 		    !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6225 			device = find_device(cur_devices, devid, uuid);
6226 			if (device)
6227 				return device;
6228 		}
6229 		cur_devices = cur_devices->seed;
6230 	}
6231 	return NULL;
6232 }
6233 
6234 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6235 					    u64 devid, u8 *dev_uuid)
6236 {
6237 	struct btrfs_device *device;
6238 
6239 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6240 	if (IS_ERR(device))
6241 		return device;
6242 
6243 	list_add(&device->dev_list, &fs_devices->devices);
6244 	device->fs_devices = fs_devices;
6245 	fs_devices->num_devices++;
6246 
6247 	device->missing = 1;
6248 	fs_devices->missing_devices++;
6249 
6250 	return device;
6251 }
6252 
6253 /**
6254  * btrfs_alloc_device - allocate struct btrfs_device
6255  * @fs_info:	used only for generating a new devid, can be NULL if
6256  *		devid is provided (i.e. @devid != NULL).
6257  * @devid:	a pointer to devid for this device.  If NULL a new devid
6258  *		is generated.
6259  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6260  *		is generated.
6261  *
6262  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6263  * on error.  Returned struct is not linked onto any lists and can be
6264  * destroyed with kfree() right away.
6265  */
6266 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6267 					const u64 *devid,
6268 					const u8 *uuid)
6269 {
6270 	struct btrfs_device *dev;
6271 	u64 tmp;
6272 
6273 	if (WARN_ON(!devid && !fs_info))
6274 		return ERR_PTR(-EINVAL);
6275 
6276 	dev = __alloc_device();
6277 	if (IS_ERR(dev))
6278 		return dev;
6279 
6280 	if (devid)
6281 		tmp = *devid;
6282 	else {
6283 		int ret;
6284 
6285 		ret = find_next_devid(fs_info, &tmp);
6286 		if (ret) {
6287 			kfree(dev);
6288 			return ERR_PTR(ret);
6289 		}
6290 	}
6291 	dev->devid = tmp;
6292 
6293 	if (uuid)
6294 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6295 	else
6296 		generate_random_uuid(dev->uuid);
6297 
6298 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6299 			pending_bios_fn, NULL, NULL);
6300 
6301 	return dev;
6302 }
6303 
6304 /* Return -EIO if any error, otherwise return 0. */
6305 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6306 				   struct extent_buffer *leaf,
6307 				   struct btrfs_chunk *chunk, u64 logical)
6308 {
6309 	u64 length;
6310 	u64 stripe_len;
6311 	u16 num_stripes;
6312 	u16 sub_stripes;
6313 	u64 type;
6314 
6315 	length = btrfs_chunk_length(leaf, chunk);
6316 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6317 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6318 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6319 	type = btrfs_chunk_type(leaf, chunk);
6320 
6321 	if (!num_stripes) {
6322 		btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6323 			  num_stripes);
6324 		return -EIO;
6325 	}
6326 	if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6327 		btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6328 		return -EIO;
6329 	}
6330 	if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6331 		btrfs_err(fs_info, "invalid chunk sectorsize %u",
6332 			  btrfs_chunk_sector_size(leaf, chunk));
6333 		return -EIO;
6334 	}
6335 	if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6336 		btrfs_err(fs_info, "invalid chunk length %llu", length);
6337 		return -EIO;
6338 	}
6339 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6340 		btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6341 			  stripe_len);
6342 		return -EIO;
6343 	}
6344 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6345 	    type) {
6346 		btrfs_err(fs_info, "unrecognized chunk type: %llu",
6347 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6348 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6349 			  btrfs_chunk_type(leaf, chunk));
6350 		return -EIO;
6351 	}
6352 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6353 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6354 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6355 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6356 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6357 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6358 	     num_stripes != 1)) {
6359 		btrfs_err(fs_info,
6360 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6361 			num_stripes, sub_stripes,
6362 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6363 		return -EIO;
6364 	}
6365 
6366 	return 0;
6367 }
6368 
6369 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6370 					u64 devid, u8 *uuid, bool error)
6371 {
6372 	if (error)
6373 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6374 			      devid, uuid);
6375 	else
6376 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6377 			      devid, uuid);
6378 }
6379 
6380 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6381 			  struct extent_buffer *leaf,
6382 			  struct btrfs_chunk *chunk)
6383 {
6384 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6385 	struct map_lookup *map;
6386 	struct extent_map *em;
6387 	u64 logical;
6388 	u64 length;
6389 	u64 devid;
6390 	u8 uuid[BTRFS_UUID_SIZE];
6391 	int num_stripes;
6392 	int ret;
6393 	int i;
6394 
6395 	logical = key->offset;
6396 	length = btrfs_chunk_length(leaf, chunk);
6397 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6398 
6399 	ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6400 	if (ret)
6401 		return ret;
6402 
6403 	read_lock(&map_tree->map_tree.lock);
6404 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6405 	read_unlock(&map_tree->map_tree.lock);
6406 
6407 	/* already mapped? */
6408 	if (em && em->start <= logical && em->start + em->len > logical) {
6409 		free_extent_map(em);
6410 		return 0;
6411 	} else if (em) {
6412 		free_extent_map(em);
6413 	}
6414 
6415 	em = alloc_extent_map();
6416 	if (!em)
6417 		return -ENOMEM;
6418 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6419 	if (!map) {
6420 		free_extent_map(em);
6421 		return -ENOMEM;
6422 	}
6423 
6424 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6425 	em->map_lookup = map;
6426 	em->start = logical;
6427 	em->len = length;
6428 	em->orig_start = 0;
6429 	em->block_start = 0;
6430 	em->block_len = em->len;
6431 
6432 	map->num_stripes = num_stripes;
6433 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6434 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6435 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6436 	map->type = btrfs_chunk_type(leaf, chunk);
6437 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6438 	for (i = 0; i < num_stripes; i++) {
6439 		map->stripes[i].physical =
6440 			btrfs_stripe_offset_nr(leaf, chunk, i);
6441 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6442 		read_extent_buffer(leaf, uuid, (unsigned long)
6443 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6444 				   BTRFS_UUID_SIZE);
6445 		map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6446 							uuid, NULL);
6447 		if (!map->stripes[i].dev &&
6448 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6449 			free_extent_map(em);
6450 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6451 			return -ENOENT;
6452 		}
6453 		if (!map->stripes[i].dev) {
6454 			map->stripes[i].dev =
6455 				add_missing_dev(fs_info->fs_devices, devid,
6456 						uuid);
6457 			if (IS_ERR(map->stripes[i].dev)) {
6458 				free_extent_map(em);
6459 				btrfs_err(fs_info,
6460 					"failed to init missing dev %llu: %ld",
6461 					devid, PTR_ERR(map->stripes[i].dev));
6462 				return PTR_ERR(map->stripes[i].dev);
6463 			}
6464 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6465 		}
6466 		map->stripes[i].dev->in_fs_metadata = 1;
6467 	}
6468 
6469 	write_lock(&map_tree->map_tree.lock);
6470 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6471 	write_unlock(&map_tree->map_tree.lock);
6472 	BUG_ON(ret); /* Tree corruption */
6473 	free_extent_map(em);
6474 
6475 	return 0;
6476 }
6477 
6478 static void fill_device_from_item(struct extent_buffer *leaf,
6479 				 struct btrfs_dev_item *dev_item,
6480 				 struct btrfs_device *device)
6481 {
6482 	unsigned long ptr;
6483 
6484 	device->devid = btrfs_device_id(leaf, dev_item);
6485 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6486 	device->total_bytes = device->disk_total_bytes;
6487 	device->commit_total_bytes = device->disk_total_bytes;
6488 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6489 	device->commit_bytes_used = device->bytes_used;
6490 	device->type = btrfs_device_type(leaf, dev_item);
6491 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6492 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6493 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6494 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6495 	device->is_tgtdev_for_dev_replace = 0;
6496 
6497 	ptr = btrfs_device_uuid(dev_item);
6498 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6499 }
6500 
6501 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6502 						  u8 *fsid)
6503 {
6504 	struct btrfs_fs_devices *fs_devices;
6505 	int ret;
6506 
6507 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6508 	ASSERT(fsid);
6509 
6510 	fs_devices = fs_info->fs_devices->seed;
6511 	while (fs_devices) {
6512 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6513 			return fs_devices;
6514 
6515 		fs_devices = fs_devices->seed;
6516 	}
6517 
6518 	fs_devices = find_fsid(fsid);
6519 	if (!fs_devices) {
6520 		if (!btrfs_test_opt(fs_info, DEGRADED))
6521 			return ERR_PTR(-ENOENT);
6522 
6523 		fs_devices = alloc_fs_devices(fsid);
6524 		if (IS_ERR(fs_devices))
6525 			return fs_devices;
6526 
6527 		fs_devices->seeding = 1;
6528 		fs_devices->opened = 1;
6529 		return fs_devices;
6530 	}
6531 
6532 	fs_devices = clone_fs_devices(fs_devices);
6533 	if (IS_ERR(fs_devices))
6534 		return fs_devices;
6535 
6536 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6537 				   fs_info->bdev_holder);
6538 	if (ret) {
6539 		free_fs_devices(fs_devices);
6540 		fs_devices = ERR_PTR(ret);
6541 		goto out;
6542 	}
6543 
6544 	if (!fs_devices->seeding) {
6545 		__btrfs_close_devices(fs_devices);
6546 		free_fs_devices(fs_devices);
6547 		fs_devices = ERR_PTR(-EINVAL);
6548 		goto out;
6549 	}
6550 
6551 	fs_devices->seed = fs_info->fs_devices->seed;
6552 	fs_info->fs_devices->seed = fs_devices;
6553 out:
6554 	return fs_devices;
6555 }
6556 
6557 static int read_one_dev(struct btrfs_fs_info *fs_info,
6558 			struct extent_buffer *leaf,
6559 			struct btrfs_dev_item *dev_item)
6560 {
6561 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6562 	struct btrfs_device *device;
6563 	u64 devid;
6564 	int ret;
6565 	u8 fs_uuid[BTRFS_FSID_SIZE];
6566 	u8 dev_uuid[BTRFS_UUID_SIZE];
6567 
6568 	devid = btrfs_device_id(leaf, dev_item);
6569 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6570 			   BTRFS_UUID_SIZE);
6571 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6572 			   BTRFS_FSID_SIZE);
6573 
6574 	if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6575 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6576 		if (IS_ERR(fs_devices))
6577 			return PTR_ERR(fs_devices);
6578 	}
6579 
6580 	device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6581 	if (!device) {
6582 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6583 			btrfs_report_missing_device(fs_info, devid,
6584 							dev_uuid, true);
6585 			return -ENOENT;
6586 		}
6587 
6588 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6589 		if (IS_ERR(device)) {
6590 			btrfs_err(fs_info,
6591 				"failed to add missing dev %llu: %ld",
6592 				devid, PTR_ERR(device));
6593 			return PTR_ERR(device);
6594 		}
6595 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6596 	} else {
6597 		if (!device->bdev) {
6598 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6599 				btrfs_report_missing_device(fs_info,
6600 						devid, dev_uuid, true);
6601 				return -ENOENT;
6602 			}
6603 			btrfs_report_missing_device(fs_info, devid,
6604 							dev_uuid, false);
6605 		}
6606 
6607 		if(!device->bdev && !device->missing) {
6608 			/*
6609 			 * this happens when a device that was properly setup
6610 			 * in the device info lists suddenly goes bad.
6611 			 * device->bdev is NULL, and so we have to set
6612 			 * device->missing to one here
6613 			 */
6614 			device->fs_devices->missing_devices++;
6615 			device->missing = 1;
6616 		}
6617 
6618 		/* Move the device to its own fs_devices */
6619 		if (device->fs_devices != fs_devices) {
6620 			ASSERT(device->missing);
6621 
6622 			list_move(&device->dev_list, &fs_devices->devices);
6623 			device->fs_devices->num_devices--;
6624 			fs_devices->num_devices++;
6625 
6626 			device->fs_devices->missing_devices--;
6627 			fs_devices->missing_devices++;
6628 
6629 			device->fs_devices = fs_devices;
6630 		}
6631 	}
6632 
6633 	if (device->fs_devices != fs_info->fs_devices) {
6634 		BUG_ON(device->writeable);
6635 		if (device->generation !=
6636 		    btrfs_device_generation(leaf, dev_item))
6637 			return -EINVAL;
6638 	}
6639 
6640 	fill_device_from_item(leaf, dev_item, device);
6641 	device->in_fs_metadata = 1;
6642 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6643 		device->fs_devices->total_rw_bytes += device->total_bytes;
6644 		atomic64_add(device->total_bytes - device->bytes_used,
6645 				&fs_info->free_chunk_space);
6646 	}
6647 	ret = 0;
6648 	return ret;
6649 }
6650 
6651 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6652 {
6653 	struct btrfs_root *root = fs_info->tree_root;
6654 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6655 	struct extent_buffer *sb;
6656 	struct btrfs_disk_key *disk_key;
6657 	struct btrfs_chunk *chunk;
6658 	u8 *array_ptr;
6659 	unsigned long sb_array_offset;
6660 	int ret = 0;
6661 	u32 num_stripes;
6662 	u32 array_size;
6663 	u32 len = 0;
6664 	u32 cur_offset;
6665 	u64 type;
6666 	struct btrfs_key key;
6667 
6668 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6669 	/*
6670 	 * This will create extent buffer of nodesize, superblock size is
6671 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6672 	 * overallocate but we can keep it as-is, only the first page is used.
6673 	 */
6674 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6675 	if (IS_ERR(sb))
6676 		return PTR_ERR(sb);
6677 	set_extent_buffer_uptodate(sb);
6678 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6679 	/*
6680 	 * The sb extent buffer is artificial and just used to read the system array.
6681 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6682 	 * pages up-to-date when the page is larger: extent does not cover the
6683 	 * whole page and consequently check_page_uptodate does not find all
6684 	 * the page's extents up-to-date (the hole beyond sb),
6685 	 * write_extent_buffer then triggers a WARN_ON.
6686 	 *
6687 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6688 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6689 	 * to silence the warning eg. on PowerPC 64.
6690 	 */
6691 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6692 		SetPageUptodate(sb->pages[0]);
6693 
6694 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6695 	array_size = btrfs_super_sys_array_size(super_copy);
6696 
6697 	array_ptr = super_copy->sys_chunk_array;
6698 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6699 	cur_offset = 0;
6700 
6701 	while (cur_offset < array_size) {
6702 		disk_key = (struct btrfs_disk_key *)array_ptr;
6703 		len = sizeof(*disk_key);
6704 		if (cur_offset + len > array_size)
6705 			goto out_short_read;
6706 
6707 		btrfs_disk_key_to_cpu(&key, disk_key);
6708 
6709 		array_ptr += len;
6710 		sb_array_offset += len;
6711 		cur_offset += len;
6712 
6713 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6714 			chunk = (struct btrfs_chunk *)sb_array_offset;
6715 			/*
6716 			 * At least one btrfs_chunk with one stripe must be
6717 			 * present, exact stripe count check comes afterwards
6718 			 */
6719 			len = btrfs_chunk_item_size(1);
6720 			if (cur_offset + len > array_size)
6721 				goto out_short_read;
6722 
6723 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6724 			if (!num_stripes) {
6725 				btrfs_err(fs_info,
6726 					"invalid number of stripes %u in sys_array at offset %u",
6727 					num_stripes, cur_offset);
6728 				ret = -EIO;
6729 				break;
6730 			}
6731 
6732 			type = btrfs_chunk_type(sb, chunk);
6733 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6734 				btrfs_err(fs_info,
6735 			    "invalid chunk type %llu in sys_array at offset %u",
6736 					type, cur_offset);
6737 				ret = -EIO;
6738 				break;
6739 			}
6740 
6741 			len = btrfs_chunk_item_size(num_stripes);
6742 			if (cur_offset + len > array_size)
6743 				goto out_short_read;
6744 
6745 			ret = read_one_chunk(fs_info, &key, sb, chunk);
6746 			if (ret)
6747 				break;
6748 		} else {
6749 			btrfs_err(fs_info,
6750 			    "unexpected item type %u in sys_array at offset %u",
6751 				  (u32)key.type, cur_offset);
6752 			ret = -EIO;
6753 			break;
6754 		}
6755 		array_ptr += len;
6756 		sb_array_offset += len;
6757 		cur_offset += len;
6758 	}
6759 	clear_extent_buffer_uptodate(sb);
6760 	free_extent_buffer_stale(sb);
6761 	return ret;
6762 
6763 out_short_read:
6764 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6765 			len, cur_offset);
6766 	clear_extent_buffer_uptodate(sb);
6767 	free_extent_buffer_stale(sb);
6768 	return -EIO;
6769 }
6770 
6771 /*
6772  * Check if all chunks in the fs are OK for read-write degraded mount
6773  *
6774  * Return true if all chunks meet the minimal RW mount requirements.
6775  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6776  */
6777 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6778 {
6779 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6780 	struct extent_map *em;
6781 	u64 next_start = 0;
6782 	bool ret = true;
6783 
6784 	read_lock(&map_tree->map_tree.lock);
6785 	em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6786 	read_unlock(&map_tree->map_tree.lock);
6787 	/* No chunk at all? Return false anyway */
6788 	if (!em) {
6789 		ret = false;
6790 		goto out;
6791 	}
6792 	while (em) {
6793 		struct map_lookup *map;
6794 		int missing = 0;
6795 		int max_tolerated;
6796 		int i;
6797 
6798 		map = em->map_lookup;
6799 		max_tolerated =
6800 			btrfs_get_num_tolerated_disk_barrier_failures(
6801 					map->type);
6802 		for (i = 0; i < map->num_stripes; i++) {
6803 			struct btrfs_device *dev = map->stripes[i].dev;
6804 
6805 			if (!dev || !dev->bdev || dev->missing ||
6806 			    dev->last_flush_error)
6807 				missing++;
6808 		}
6809 		if (missing > max_tolerated) {
6810 			btrfs_warn(fs_info,
6811 	"chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6812 				   em->start, missing, max_tolerated);
6813 			free_extent_map(em);
6814 			ret = false;
6815 			goto out;
6816 		}
6817 		next_start = extent_map_end(em);
6818 		free_extent_map(em);
6819 
6820 		read_lock(&map_tree->map_tree.lock);
6821 		em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6822 					   (u64)(-1) - next_start);
6823 		read_unlock(&map_tree->map_tree.lock);
6824 	}
6825 out:
6826 	return ret;
6827 }
6828 
6829 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6830 {
6831 	struct btrfs_root *root = fs_info->chunk_root;
6832 	struct btrfs_path *path;
6833 	struct extent_buffer *leaf;
6834 	struct btrfs_key key;
6835 	struct btrfs_key found_key;
6836 	int ret;
6837 	int slot;
6838 	u64 total_dev = 0;
6839 
6840 	path = btrfs_alloc_path();
6841 	if (!path)
6842 		return -ENOMEM;
6843 
6844 	mutex_lock(&uuid_mutex);
6845 	mutex_lock(&fs_info->chunk_mutex);
6846 
6847 	/*
6848 	 * Read all device items, and then all the chunk items. All
6849 	 * device items are found before any chunk item (their object id
6850 	 * is smaller than the lowest possible object id for a chunk
6851 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6852 	 */
6853 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6854 	key.offset = 0;
6855 	key.type = 0;
6856 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6857 	if (ret < 0)
6858 		goto error;
6859 	while (1) {
6860 		leaf = path->nodes[0];
6861 		slot = path->slots[0];
6862 		if (slot >= btrfs_header_nritems(leaf)) {
6863 			ret = btrfs_next_leaf(root, path);
6864 			if (ret == 0)
6865 				continue;
6866 			if (ret < 0)
6867 				goto error;
6868 			break;
6869 		}
6870 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6871 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6872 			struct btrfs_dev_item *dev_item;
6873 			dev_item = btrfs_item_ptr(leaf, slot,
6874 						  struct btrfs_dev_item);
6875 			ret = read_one_dev(fs_info, leaf, dev_item);
6876 			if (ret)
6877 				goto error;
6878 			total_dev++;
6879 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6880 			struct btrfs_chunk *chunk;
6881 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6882 			ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6883 			if (ret)
6884 				goto error;
6885 		}
6886 		path->slots[0]++;
6887 	}
6888 
6889 	/*
6890 	 * After loading chunk tree, we've got all device information,
6891 	 * do another round of validation checks.
6892 	 */
6893 	if (total_dev != fs_info->fs_devices->total_devices) {
6894 		btrfs_err(fs_info,
6895 	   "super_num_devices %llu mismatch with num_devices %llu found here",
6896 			  btrfs_super_num_devices(fs_info->super_copy),
6897 			  total_dev);
6898 		ret = -EINVAL;
6899 		goto error;
6900 	}
6901 	if (btrfs_super_total_bytes(fs_info->super_copy) <
6902 	    fs_info->fs_devices->total_rw_bytes) {
6903 		btrfs_err(fs_info,
6904 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6905 			  btrfs_super_total_bytes(fs_info->super_copy),
6906 			  fs_info->fs_devices->total_rw_bytes);
6907 		ret = -EINVAL;
6908 		goto error;
6909 	}
6910 	ret = 0;
6911 error:
6912 	mutex_unlock(&fs_info->chunk_mutex);
6913 	mutex_unlock(&uuid_mutex);
6914 
6915 	btrfs_free_path(path);
6916 	return ret;
6917 }
6918 
6919 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6920 {
6921 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6922 	struct btrfs_device *device;
6923 
6924 	while (fs_devices) {
6925 		mutex_lock(&fs_devices->device_list_mutex);
6926 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6927 			device->fs_info = fs_info;
6928 		mutex_unlock(&fs_devices->device_list_mutex);
6929 
6930 		fs_devices = fs_devices->seed;
6931 	}
6932 }
6933 
6934 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6935 {
6936 	int i;
6937 
6938 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6939 		btrfs_dev_stat_reset(dev, i);
6940 }
6941 
6942 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6943 {
6944 	struct btrfs_key key;
6945 	struct btrfs_key found_key;
6946 	struct btrfs_root *dev_root = fs_info->dev_root;
6947 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6948 	struct extent_buffer *eb;
6949 	int slot;
6950 	int ret = 0;
6951 	struct btrfs_device *device;
6952 	struct btrfs_path *path = NULL;
6953 	int i;
6954 
6955 	path = btrfs_alloc_path();
6956 	if (!path) {
6957 		ret = -ENOMEM;
6958 		goto out;
6959 	}
6960 
6961 	mutex_lock(&fs_devices->device_list_mutex);
6962 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6963 		int item_size;
6964 		struct btrfs_dev_stats_item *ptr;
6965 
6966 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
6967 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
6968 		key.offset = device->devid;
6969 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6970 		if (ret) {
6971 			__btrfs_reset_dev_stats(device);
6972 			device->dev_stats_valid = 1;
6973 			btrfs_release_path(path);
6974 			continue;
6975 		}
6976 		slot = path->slots[0];
6977 		eb = path->nodes[0];
6978 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6979 		item_size = btrfs_item_size_nr(eb, slot);
6980 
6981 		ptr = btrfs_item_ptr(eb, slot,
6982 				     struct btrfs_dev_stats_item);
6983 
6984 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6985 			if (item_size >= (1 + i) * sizeof(__le64))
6986 				btrfs_dev_stat_set(device, i,
6987 					btrfs_dev_stats_value(eb, ptr, i));
6988 			else
6989 				btrfs_dev_stat_reset(device, i);
6990 		}
6991 
6992 		device->dev_stats_valid = 1;
6993 		btrfs_dev_stat_print_on_load(device);
6994 		btrfs_release_path(path);
6995 	}
6996 	mutex_unlock(&fs_devices->device_list_mutex);
6997 
6998 out:
6999 	btrfs_free_path(path);
7000 	return ret < 0 ? ret : 0;
7001 }
7002 
7003 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7004 				struct btrfs_fs_info *fs_info,
7005 				struct btrfs_device *device)
7006 {
7007 	struct btrfs_root *dev_root = fs_info->dev_root;
7008 	struct btrfs_path *path;
7009 	struct btrfs_key key;
7010 	struct extent_buffer *eb;
7011 	struct btrfs_dev_stats_item *ptr;
7012 	int ret;
7013 	int i;
7014 
7015 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7016 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7017 	key.offset = device->devid;
7018 
7019 	path = btrfs_alloc_path();
7020 	if (!path)
7021 		return -ENOMEM;
7022 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7023 	if (ret < 0) {
7024 		btrfs_warn_in_rcu(fs_info,
7025 			"error %d while searching for dev_stats item for device %s",
7026 			      ret, rcu_str_deref(device->name));
7027 		goto out;
7028 	}
7029 
7030 	if (ret == 0 &&
7031 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7032 		/* need to delete old one and insert a new one */
7033 		ret = btrfs_del_item(trans, dev_root, path);
7034 		if (ret != 0) {
7035 			btrfs_warn_in_rcu(fs_info,
7036 				"delete too small dev_stats item for device %s failed %d",
7037 				      rcu_str_deref(device->name), ret);
7038 			goto out;
7039 		}
7040 		ret = 1;
7041 	}
7042 
7043 	if (ret == 1) {
7044 		/* need to insert a new item */
7045 		btrfs_release_path(path);
7046 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7047 					      &key, sizeof(*ptr));
7048 		if (ret < 0) {
7049 			btrfs_warn_in_rcu(fs_info,
7050 				"insert dev_stats item for device %s failed %d",
7051 				rcu_str_deref(device->name), ret);
7052 			goto out;
7053 		}
7054 	}
7055 
7056 	eb = path->nodes[0];
7057 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7058 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7059 		btrfs_set_dev_stats_value(eb, ptr, i,
7060 					  btrfs_dev_stat_read(device, i));
7061 	btrfs_mark_buffer_dirty(eb);
7062 
7063 out:
7064 	btrfs_free_path(path);
7065 	return ret;
7066 }
7067 
7068 /*
7069  * called from commit_transaction. Writes all changed device stats to disk.
7070  */
7071 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7072 			struct btrfs_fs_info *fs_info)
7073 {
7074 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7075 	struct btrfs_device *device;
7076 	int stats_cnt;
7077 	int ret = 0;
7078 
7079 	mutex_lock(&fs_devices->device_list_mutex);
7080 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7081 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7082 			continue;
7083 
7084 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7085 		ret = update_dev_stat_item(trans, fs_info, device);
7086 		if (!ret)
7087 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7088 	}
7089 	mutex_unlock(&fs_devices->device_list_mutex);
7090 
7091 	return ret;
7092 }
7093 
7094 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7095 {
7096 	btrfs_dev_stat_inc(dev, index);
7097 	btrfs_dev_stat_print_on_error(dev);
7098 }
7099 
7100 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7101 {
7102 	if (!dev->dev_stats_valid)
7103 		return;
7104 	btrfs_err_rl_in_rcu(dev->fs_info,
7105 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7106 			   rcu_str_deref(dev->name),
7107 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7108 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7109 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7110 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7111 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7112 }
7113 
7114 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7115 {
7116 	int i;
7117 
7118 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7119 		if (btrfs_dev_stat_read(dev, i) != 0)
7120 			break;
7121 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7122 		return; /* all values == 0, suppress message */
7123 
7124 	btrfs_info_in_rcu(dev->fs_info,
7125 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7126 	       rcu_str_deref(dev->name),
7127 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7128 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7129 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7130 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7131 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7132 }
7133 
7134 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7135 			struct btrfs_ioctl_get_dev_stats *stats)
7136 {
7137 	struct btrfs_device *dev;
7138 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7139 	int i;
7140 
7141 	mutex_lock(&fs_devices->device_list_mutex);
7142 	dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7143 	mutex_unlock(&fs_devices->device_list_mutex);
7144 
7145 	if (!dev) {
7146 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7147 		return -ENODEV;
7148 	} else if (!dev->dev_stats_valid) {
7149 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7150 		return -ENODEV;
7151 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7152 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7153 			if (stats->nr_items > i)
7154 				stats->values[i] =
7155 					btrfs_dev_stat_read_and_reset(dev, i);
7156 			else
7157 				btrfs_dev_stat_reset(dev, i);
7158 		}
7159 	} else {
7160 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7161 			if (stats->nr_items > i)
7162 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7163 	}
7164 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7165 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7166 	return 0;
7167 }
7168 
7169 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7170 {
7171 	struct buffer_head *bh;
7172 	struct btrfs_super_block *disk_super;
7173 	int copy_num;
7174 
7175 	if (!bdev)
7176 		return;
7177 
7178 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7179 		copy_num++) {
7180 
7181 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7182 			continue;
7183 
7184 		disk_super = (struct btrfs_super_block *)bh->b_data;
7185 
7186 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7187 		set_buffer_dirty(bh);
7188 		sync_dirty_buffer(bh);
7189 		brelse(bh);
7190 	}
7191 
7192 	/* Notify udev that device has changed */
7193 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7194 
7195 	/* Update ctime/mtime for device path for libblkid */
7196 	update_dev_time(device_path);
7197 }
7198 
7199 /*
7200  * Update the size of all devices, which is used for writing out the
7201  * super blocks.
7202  */
7203 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7204 {
7205 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7206 	struct btrfs_device *curr, *next;
7207 
7208 	if (list_empty(&fs_devices->resized_devices))
7209 		return;
7210 
7211 	mutex_lock(&fs_devices->device_list_mutex);
7212 	mutex_lock(&fs_info->chunk_mutex);
7213 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7214 				 resized_list) {
7215 		list_del_init(&curr->resized_list);
7216 		curr->commit_total_bytes = curr->disk_total_bytes;
7217 	}
7218 	mutex_unlock(&fs_info->chunk_mutex);
7219 	mutex_unlock(&fs_devices->device_list_mutex);
7220 }
7221 
7222 /* Must be invoked during the transaction commit */
7223 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7224 					struct btrfs_transaction *transaction)
7225 {
7226 	struct extent_map *em;
7227 	struct map_lookup *map;
7228 	struct btrfs_device *dev;
7229 	int i;
7230 
7231 	if (list_empty(&transaction->pending_chunks))
7232 		return;
7233 
7234 	/* In order to kick the device replace finish process */
7235 	mutex_lock(&fs_info->chunk_mutex);
7236 	list_for_each_entry(em, &transaction->pending_chunks, list) {
7237 		map = em->map_lookup;
7238 
7239 		for (i = 0; i < map->num_stripes; i++) {
7240 			dev = map->stripes[i].dev;
7241 			dev->commit_bytes_used = dev->bytes_used;
7242 		}
7243 	}
7244 	mutex_unlock(&fs_info->chunk_mutex);
7245 }
7246 
7247 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7248 {
7249 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7250 	while (fs_devices) {
7251 		fs_devices->fs_info = fs_info;
7252 		fs_devices = fs_devices->seed;
7253 	}
7254 }
7255 
7256 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7257 {
7258 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7259 	while (fs_devices) {
7260 		fs_devices->fs_info = NULL;
7261 		fs_devices = fs_devices->seed;
7262 	}
7263 }
7264