1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/iocontext.h> 24 #include <linux/capability.h> 25 #include <linux/ratelimit.h> 26 #include <linux/kthread.h> 27 #include <linux/raid/pq.h> 28 #include <linux/semaphore.h> 29 #include <linux/uuid.h> 30 #include <asm/div64.h> 31 #include "ctree.h" 32 #include "extent_map.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "raid56.h" 38 #include "async-thread.h" 39 #include "check-integrity.h" 40 #include "rcu-string.h" 41 #include "math.h" 42 #include "dev-replace.h" 43 #include "sysfs.h" 44 45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 46 [BTRFS_RAID_RAID10] = { 47 .sub_stripes = 2, 48 .dev_stripes = 1, 49 .devs_max = 0, /* 0 == as many as possible */ 50 .devs_min = 4, 51 .tolerated_failures = 1, 52 .devs_increment = 2, 53 .ncopies = 2, 54 }, 55 [BTRFS_RAID_RAID1] = { 56 .sub_stripes = 1, 57 .dev_stripes = 1, 58 .devs_max = 2, 59 .devs_min = 2, 60 .tolerated_failures = 1, 61 .devs_increment = 2, 62 .ncopies = 2, 63 }, 64 [BTRFS_RAID_DUP] = { 65 .sub_stripes = 1, 66 .dev_stripes = 2, 67 .devs_max = 1, 68 .devs_min = 1, 69 .tolerated_failures = 0, 70 .devs_increment = 1, 71 .ncopies = 2, 72 }, 73 [BTRFS_RAID_RAID0] = { 74 .sub_stripes = 1, 75 .dev_stripes = 1, 76 .devs_max = 0, 77 .devs_min = 2, 78 .tolerated_failures = 0, 79 .devs_increment = 1, 80 .ncopies = 1, 81 }, 82 [BTRFS_RAID_SINGLE] = { 83 .sub_stripes = 1, 84 .dev_stripes = 1, 85 .devs_max = 1, 86 .devs_min = 1, 87 .tolerated_failures = 0, 88 .devs_increment = 1, 89 .ncopies = 1, 90 }, 91 [BTRFS_RAID_RAID5] = { 92 .sub_stripes = 1, 93 .dev_stripes = 1, 94 .devs_max = 0, 95 .devs_min = 2, 96 .tolerated_failures = 1, 97 .devs_increment = 1, 98 .ncopies = 2, 99 }, 100 [BTRFS_RAID_RAID6] = { 101 .sub_stripes = 1, 102 .dev_stripes = 1, 103 .devs_max = 0, 104 .devs_min = 3, 105 .tolerated_failures = 2, 106 .devs_increment = 1, 107 .ncopies = 3, 108 }, 109 }; 110 111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = { 112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10, 113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1, 114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP, 115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0, 116 [BTRFS_RAID_SINGLE] = 0, 117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5, 118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6, 119 }; 120 121 /* 122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices 123 * condition is not met. Zero means there's no corresponding 124 * BTRFS_ERROR_DEV_*_NOT_MET value. 125 */ 126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = { 127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 129 [BTRFS_RAID_DUP] = 0, 130 [BTRFS_RAID_RAID0] = 0, 131 [BTRFS_RAID_SINGLE] = 0, 132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 134 }; 135 136 static int init_first_rw_device(struct btrfs_trans_handle *trans, 137 struct btrfs_fs_info *fs_info); 138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 143 enum btrfs_map_op op, 144 u64 logical, u64 *length, 145 struct btrfs_bio **bbio_ret, 146 int mirror_num, int need_raid_map); 147 148 DEFINE_MUTEX(uuid_mutex); 149 static LIST_HEAD(fs_uuids); 150 struct list_head *btrfs_get_fs_uuids(void) 151 { 152 return &fs_uuids; 153 } 154 155 /* 156 * alloc_fs_devices - allocate struct btrfs_fs_devices 157 * @fsid: if not NULL, copy the uuid to fs_devices::fsid 158 * 159 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 160 * The returned struct is not linked onto any lists and can be destroyed with 161 * kfree() right away. 162 */ 163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 164 { 165 struct btrfs_fs_devices *fs_devs; 166 167 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 168 if (!fs_devs) 169 return ERR_PTR(-ENOMEM); 170 171 mutex_init(&fs_devs->device_list_mutex); 172 173 INIT_LIST_HEAD(&fs_devs->devices); 174 INIT_LIST_HEAD(&fs_devs->resized_devices); 175 INIT_LIST_HEAD(&fs_devs->alloc_list); 176 INIT_LIST_HEAD(&fs_devs->list); 177 if (fsid) 178 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 179 180 return fs_devs; 181 } 182 183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 184 { 185 struct btrfs_device *device; 186 WARN_ON(fs_devices->opened); 187 while (!list_empty(&fs_devices->devices)) { 188 device = list_entry(fs_devices->devices.next, 189 struct btrfs_device, dev_list); 190 list_del(&device->dev_list); 191 rcu_string_free(device->name); 192 kfree(device); 193 } 194 kfree(fs_devices); 195 } 196 197 static void btrfs_kobject_uevent(struct block_device *bdev, 198 enum kobject_action action) 199 { 200 int ret; 201 202 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 203 if (ret) 204 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 205 action, 206 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 207 &disk_to_dev(bdev->bd_disk)->kobj); 208 } 209 210 void btrfs_cleanup_fs_uuids(void) 211 { 212 struct btrfs_fs_devices *fs_devices; 213 214 while (!list_empty(&fs_uuids)) { 215 fs_devices = list_entry(fs_uuids.next, 216 struct btrfs_fs_devices, list); 217 list_del(&fs_devices->list); 218 free_fs_devices(fs_devices); 219 } 220 } 221 222 static struct btrfs_device *__alloc_device(void) 223 { 224 struct btrfs_device *dev; 225 226 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 227 if (!dev) 228 return ERR_PTR(-ENOMEM); 229 230 /* 231 * Preallocate a bio that's always going to be used for flushing device 232 * barriers and matches the device lifespan 233 */ 234 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 235 if (!dev->flush_bio) { 236 kfree(dev); 237 return ERR_PTR(-ENOMEM); 238 } 239 bio_get(dev->flush_bio); 240 241 INIT_LIST_HEAD(&dev->dev_list); 242 INIT_LIST_HEAD(&dev->dev_alloc_list); 243 INIT_LIST_HEAD(&dev->resized_list); 244 245 spin_lock_init(&dev->io_lock); 246 247 spin_lock_init(&dev->reada_lock); 248 atomic_set(&dev->reada_in_flight, 0); 249 atomic_set(&dev->dev_stats_ccnt, 0); 250 btrfs_device_data_ordered_init(dev); 251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 253 254 return dev; 255 } 256 257 /* 258 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 259 * return NULL. 260 * 261 * If devid and uuid are both specified, the match must be exact, otherwise 262 * only devid is used. 263 */ 264 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices, 265 u64 devid, const u8 *uuid) 266 { 267 struct list_head *head = &fs_devices->devices; 268 struct btrfs_device *dev; 269 270 list_for_each_entry(dev, head, dev_list) { 271 if (dev->devid == devid && 272 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 273 return dev; 274 } 275 } 276 return NULL; 277 } 278 279 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 280 { 281 struct btrfs_fs_devices *fs_devices; 282 283 list_for_each_entry(fs_devices, &fs_uuids, list) { 284 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 285 return fs_devices; 286 } 287 return NULL; 288 } 289 290 static int 291 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 292 int flush, struct block_device **bdev, 293 struct buffer_head **bh) 294 { 295 int ret; 296 297 *bdev = blkdev_get_by_path(device_path, flags, holder); 298 299 if (IS_ERR(*bdev)) { 300 ret = PTR_ERR(*bdev); 301 goto error; 302 } 303 304 if (flush) 305 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 306 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 307 if (ret) { 308 blkdev_put(*bdev, flags); 309 goto error; 310 } 311 invalidate_bdev(*bdev); 312 *bh = btrfs_read_dev_super(*bdev); 313 if (IS_ERR(*bh)) { 314 ret = PTR_ERR(*bh); 315 blkdev_put(*bdev, flags); 316 goto error; 317 } 318 319 return 0; 320 321 error: 322 *bdev = NULL; 323 *bh = NULL; 324 return ret; 325 } 326 327 static void requeue_list(struct btrfs_pending_bios *pending_bios, 328 struct bio *head, struct bio *tail) 329 { 330 331 struct bio *old_head; 332 333 old_head = pending_bios->head; 334 pending_bios->head = head; 335 if (pending_bios->tail) 336 tail->bi_next = old_head; 337 else 338 pending_bios->tail = tail; 339 } 340 341 /* 342 * we try to collect pending bios for a device so we don't get a large 343 * number of procs sending bios down to the same device. This greatly 344 * improves the schedulers ability to collect and merge the bios. 345 * 346 * But, it also turns into a long list of bios to process and that is sure 347 * to eventually make the worker thread block. The solution here is to 348 * make some progress and then put this work struct back at the end of 349 * the list if the block device is congested. This way, multiple devices 350 * can make progress from a single worker thread. 351 */ 352 static noinline void run_scheduled_bios(struct btrfs_device *device) 353 { 354 struct btrfs_fs_info *fs_info = device->fs_info; 355 struct bio *pending; 356 struct backing_dev_info *bdi; 357 struct btrfs_pending_bios *pending_bios; 358 struct bio *tail; 359 struct bio *cur; 360 int again = 0; 361 unsigned long num_run; 362 unsigned long batch_run = 0; 363 unsigned long last_waited = 0; 364 int force_reg = 0; 365 int sync_pending = 0; 366 struct blk_plug plug; 367 368 /* 369 * this function runs all the bios we've collected for 370 * a particular device. We don't want to wander off to 371 * another device without first sending all of these down. 372 * So, setup a plug here and finish it off before we return 373 */ 374 blk_start_plug(&plug); 375 376 bdi = device->bdev->bd_bdi; 377 378 loop: 379 spin_lock(&device->io_lock); 380 381 loop_lock: 382 num_run = 0; 383 384 /* take all the bios off the list at once and process them 385 * later on (without the lock held). But, remember the 386 * tail and other pointers so the bios can be properly reinserted 387 * into the list if we hit congestion 388 */ 389 if (!force_reg && device->pending_sync_bios.head) { 390 pending_bios = &device->pending_sync_bios; 391 force_reg = 1; 392 } else { 393 pending_bios = &device->pending_bios; 394 force_reg = 0; 395 } 396 397 pending = pending_bios->head; 398 tail = pending_bios->tail; 399 WARN_ON(pending && !tail); 400 401 /* 402 * if pending was null this time around, no bios need processing 403 * at all and we can stop. Otherwise it'll loop back up again 404 * and do an additional check so no bios are missed. 405 * 406 * device->running_pending is used to synchronize with the 407 * schedule_bio code. 408 */ 409 if (device->pending_sync_bios.head == NULL && 410 device->pending_bios.head == NULL) { 411 again = 0; 412 device->running_pending = 0; 413 } else { 414 again = 1; 415 device->running_pending = 1; 416 } 417 418 pending_bios->head = NULL; 419 pending_bios->tail = NULL; 420 421 spin_unlock(&device->io_lock); 422 423 while (pending) { 424 425 rmb(); 426 /* we want to work on both lists, but do more bios on the 427 * sync list than the regular list 428 */ 429 if ((num_run > 32 && 430 pending_bios != &device->pending_sync_bios && 431 device->pending_sync_bios.head) || 432 (num_run > 64 && pending_bios == &device->pending_sync_bios && 433 device->pending_bios.head)) { 434 spin_lock(&device->io_lock); 435 requeue_list(pending_bios, pending, tail); 436 goto loop_lock; 437 } 438 439 cur = pending; 440 pending = pending->bi_next; 441 cur->bi_next = NULL; 442 443 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 444 445 /* 446 * if we're doing the sync list, record that our 447 * plug has some sync requests on it 448 * 449 * If we're doing the regular list and there are 450 * sync requests sitting around, unplug before 451 * we add more 452 */ 453 if (pending_bios == &device->pending_sync_bios) { 454 sync_pending = 1; 455 } else if (sync_pending) { 456 blk_finish_plug(&plug); 457 blk_start_plug(&plug); 458 sync_pending = 0; 459 } 460 461 btrfsic_submit_bio(cur); 462 num_run++; 463 batch_run++; 464 465 cond_resched(); 466 467 /* 468 * we made progress, there is more work to do and the bdi 469 * is now congested. Back off and let other work structs 470 * run instead 471 */ 472 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 473 fs_info->fs_devices->open_devices > 1) { 474 struct io_context *ioc; 475 476 ioc = current->io_context; 477 478 /* 479 * the main goal here is that we don't want to 480 * block if we're going to be able to submit 481 * more requests without blocking. 482 * 483 * This code does two great things, it pokes into 484 * the elevator code from a filesystem _and_ 485 * it makes assumptions about how batching works. 486 */ 487 if (ioc && ioc->nr_batch_requests > 0 && 488 time_before(jiffies, ioc->last_waited + HZ/50UL) && 489 (last_waited == 0 || 490 ioc->last_waited == last_waited)) { 491 /* 492 * we want to go through our batch of 493 * requests and stop. So, we copy out 494 * the ioc->last_waited time and test 495 * against it before looping 496 */ 497 last_waited = ioc->last_waited; 498 cond_resched(); 499 continue; 500 } 501 spin_lock(&device->io_lock); 502 requeue_list(pending_bios, pending, tail); 503 device->running_pending = 1; 504 505 spin_unlock(&device->io_lock); 506 btrfs_queue_work(fs_info->submit_workers, 507 &device->work); 508 goto done; 509 } 510 } 511 512 cond_resched(); 513 if (again) 514 goto loop; 515 516 spin_lock(&device->io_lock); 517 if (device->pending_bios.head || device->pending_sync_bios.head) 518 goto loop_lock; 519 spin_unlock(&device->io_lock); 520 521 done: 522 blk_finish_plug(&plug); 523 } 524 525 static void pending_bios_fn(struct btrfs_work *work) 526 { 527 struct btrfs_device *device; 528 529 device = container_of(work, struct btrfs_device, work); 530 run_scheduled_bios(device); 531 } 532 533 534 static void btrfs_free_stale_device(struct btrfs_device *cur_dev) 535 { 536 struct btrfs_fs_devices *fs_devs; 537 struct btrfs_device *dev; 538 539 if (!cur_dev->name) 540 return; 541 542 list_for_each_entry(fs_devs, &fs_uuids, list) { 543 int del = 1; 544 545 if (fs_devs->opened) 546 continue; 547 if (fs_devs->seeding) 548 continue; 549 550 list_for_each_entry(dev, &fs_devs->devices, dev_list) { 551 552 if (dev == cur_dev) 553 continue; 554 if (!dev->name) 555 continue; 556 557 /* 558 * Todo: This won't be enough. What if the same device 559 * comes back (with new uuid and) with its mapper path? 560 * But for now, this does help as mostly an admin will 561 * either use mapper or non mapper path throughout. 562 */ 563 rcu_read_lock(); 564 del = strcmp(rcu_str_deref(dev->name), 565 rcu_str_deref(cur_dev->name)); 566 rcu_read_unlock(); 567 if (!del) 568 break; 569 } 570 571 if (!del) { 572 /* delete the stale device */ 573 if (fs_devs->num_devices == 1) { 574 btrfs_sysfs_remove_fsid(fs_devs); 575 list_del(&fs_devs->list); 576 free_fs_devices(fs_devs); 577 } else { 578 fs_devs->num_devices--; 579 list_del(&dev->dev_list); 580 rcu_string_free(dev->name); 581 kfree(dev); 582 } 583 break; 584 } 585 } 586 } 587 588 /* 589 * Add new device to list of registered devices 590 * 591 * Returns: 592 * 1 - first time device is seen 593 * 0 - device already known 594 * < 0 - error 595 */ 596 static noinline int device_list_add(const char *path, 597 struct btrfs_super_block *disk_super, 598 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 599 { 600 struct btrfs_device *device; 601 struct btrfs_fs_devices *fs_devices; 602 struct rcu_string *name; 603 int ret = 0; 604 u64 found_transid = btrfs_super_generation(disk_super); 605 606 fs_devices = find_fsid(disk_super->fsid); 607 if (!fs_devices) { 608 fs_devices = alloc_fs_devices(disk_super->fsid); 609 if (IS_ERR(fs_devices)) 610 return PTR_ERR(fs_devices); 611 612 list_add(&fs_devices->list, &fs_uuids); 613 614 device = NULL; 615 } else { 616 device = find_device(fs_devices, devid, 617 disk_super->dev_item.uuid); 618 } 619 620 if (!device) { 621 if (fs_devices->opened) 622 return -EBUSY; 623 624 device = btrfs_alloc_device(NULL, &devid, 625 disk_super->dev_item.uuid); 626 if (IS_ERR(device)) { 627 /* we can safely leave the fs_devices entry around */ 628 return PTR_ERR(device); 629 } 630 631 name = rcu_string_strdup(path, GFP_NOFS); 632 if (!name) { 633 kfree(device); 634 return -ENOMEM; 635 } 636 rcu_assign_pointer(device->name, name); 637 638 mutex_lock(&fs_devices->device_list_mutex); 639 list_add_rcu(&device->dev_list, &fs_devices->devices); 640 fs_devices->num_devices++; 641 mutex_unlock(&fs_devices->device_list_mutex); 642 643 ret = 1; 644 device->fs_devices = fs_devices; 645 } else if (!device->name || strcmp(device->name->str, path)) { 646 /* 647 * When FS is already mounted. 648 * 1. If you are here and if the device->name is NULL that 649 * means this device was missing at time of FS mount. 650 * 2. If you are here and if the device->name is different 651 * from 'path' that means either 652 * a. The same device disappeared and reappeared with 653 * different name. or 654 * b. The missing-disk-which-was-replaced, has 655 * reappeared now. 656 * 657 * We must allow 1 and 2a above. But 2b would be a spurious 658 * and unintentional. 659 * 660 * Further in case of 1 and 2a above, the disk at 'path' 661 * would have missed some transaction when it was away and 662 * in case of 2a the stale bdev has to be updated as well. 663 * 2b must not be allowed at all time. 664 */ 665 666 /* 667 * For now, we do allow update to btrfs_fs_device through the 668 * btrfs dev scan cli after FS has been mounted. We're still 669 * tracking a problem where systems fail mount by subvolume id 670 * when we reject replacement on a mounted FS. 671 */ 672 if (!fs_devices->opened && found_transid < device->generation) { 673 /* 674 * That is if the FS is _not_ mounted and if you 675 * are here, that means there is more than one 676 * disk with same uuid and devid.We keep the one 677 * with larger generation number or the last-in if 678 * generation are equal. 679 */ 680 return -EEXIST; 681 } 682 683 name = rcu_string_strdup(path, GFP_NOFS); 684 if (!name) 685 return -ENOMEM; 686 rcu_string_free(device->name); 687 rcu_assign_pointer(device->name, name); 688 if (device->missing) { 689 fs_devices->missing_devices--; 690 device->missing = 0; 691 } 692 } 693 694 /* 695 * Unmount does not free the btrfs_device struct but would zero 696 * generation along with most of the other members. So just update 697 * it back. We need it to pick the disk with largest generation 698 * (as above). 699 */ 700 if (!fs_devices->opened) 701 device->generation = found_transid; 702 703 /* 704 * if there is new btrfs on an already registered device, 705 * then remove the stale device entry. 706 */ 707 if (ret > 0) 708 btrfs_free_stale_device(device); 709 710 *fs_devices_ret = fs_devices; 711 712 return ret; 713 } 714 715 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 716 { 717 struct btrfs_fs_devices *fs_devices; 718 struct btrfs_device *device; 719 struct btrfs_device *orig_dev; 720 721 fs_devices = alloc_fs_devices(orig->fsid); 722 if (IS_ERR(fs_devices)) 723 return fs_devices; 724 725 mutex_lock(&orig->device_list_mutex); 726 fs_devices->total_devices = orig->total_devices; 727 728 /* We have held the volume lock, it is safe to get the devices. */ 729 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 730 struct rcu_string *name; 731 732 device = btrfs_alloc_device(NULL, &orig_dev->devid, 733 orig_dev->uuid); 734 if (IS_ERR(device)) 735 goto error; 736 737 /* 738 * This is ok to do without rcu read locked because we hold the 739 * uuid mutex so nothing we touch in here is going to disappear. 740 */ 741 if (orig_dev->name) { 742 name = rcu_string_strdup(orig_dev->name->str, 743 GFP_KERNEL); 744 if (!name) { 745 kfree(device); 746 goto error; 747 } 748 rcu_assign_pointer(device->name, name); 749 } 750 751 list_add(&device->dev_list, &fs_devices->devices); 752 device->fs_devices = fs_devices; 753 fs_devices->num_devices++; 754 } 755 mutex_unlock(&orig->device_list_mutex); 756 return fs_devices; 757 error: 758 mutex_unlock(&orig->device_list_mutex); 759 free_fs_devices(fs_devices); 760 return ERR_PTR(-ENOMEM); 761 } 762 763 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step) 764 { 765 struct btrfs_device *device, *next; 766 struct btrfs_device *latest_dev = NULL; 767 768 mutex_lock(&uuid_mutex); 769 again: 770 /* This is the initialized path, it is safe to release the devices. */ 771 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 772 if (device->in_fs_metadata) { 773 if (!device->is_tgtdev_for_dev_replace && 774 (!latest_dev || 775 device->generation > latest_dev->generation)) { 776 latest_dev = device; 777 } 778 continue; 779 } 780 781 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 782 /* 783 * In the first step, keep the device which has 784 * the correct fsid and the devid that is used 785 * for the dev_replace procedure. 786 * In the second step, the dev_replace state is 787 * read from the device tree and it is known 788 * whether the procedure is really active or 789 * not, which means whether this device is 790 * used or whether it should be removed. 791 */ 792 if (step == 0 || device->is_tgtdev_for_dev_replace) { 793 continue; 794 } 795 } 796 if (device->bdev) { 797 blkdev_put(device->bdev, device->mode); 798 device->bdev = NULL; 799 fs_devices->open_devices--; 800 } 801 if (device->writeable) { 802 list_del_init(&device->dev_alloc_list); 803 device->writeable = 0; 804 if (!device->is_tgtdev_for_dev_replace) 805 fs_devices->rw_devices--; 806 } 807 list_del_init(&device->dev_list); 808 fs_devices->num_devices--; 809 rcu_string_free(device->name); 810 kfree(device); 811 } 812 813 if (fs_devices->seed) { 814 fs_devices = fs_devices->seed; 815 goto again; 816 } 817 818 fs_devices->latest_bdev = latest_dev->bdev; 819 820 mutex_unlock(&uuid_mutex); 821 } 822 823 static void __free_device(struct work_struct *work) 824 { 825 struct btrfs_device *device; 826 827 device = container_of(work, struct btrfs_device, rcu_work); 828 rcu_string_free(device->name); 829 bio_put(device->flush_bio); 830 kfree(device); 831 } 832 833 static void free_device(struct rcu_head *head) 834 { 835 struct btrfs_device *device; 836 837 device = container_of(head, struct btrfs_device, rcu); 838 839 INIT_WORK(&device->rcu_work, __free_device); 840 schedule_work(&device->rcu_work); 841 } 842 843 static void btrfs_close_bdev(struct btrfs_device *device) 844 { 845 if (device->bdev && device->writeable) { 846 sync_blockdev(device->bdev); 847 invalidate_bdev(device->bdev); 848 } 849 850 if (device->bdev) 851 blkdev_put(device->bdev, device->mode); 852 } 853 854 static void btrfs_prepare_close_one_device(struct btrfs_device *device) 855 { 856 struct btrfs_fs_devices *fs_devices = device->fs_devices; 857 struct btrfs_device *new_device; 858 struct rcu_string *name; 859 860 if (device->bdev) 861 fs_devices->open_devices--; 862 863 if (device->writeable && 864 device->devid != BTRFS_DEV_REPLACE_DEVID) { 865 list_del_init(&device->dev_alloc_list); 866 fs_devices->rw_devices--; 867 } 868 869 if (device->missing) 870 fs_devices->missing_devices--; 871 872 new_device = btrfs_alloc_device(NULL, &device->devid, 873 device->uuid); 874 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 875 876 /* Safe because we are under uuid_mutex */ 877 if (device->name) { 878 name = rcu_string_strdup(device->name->str, GFP_NOFS); 879 BUG_ON(!name); /* -ENOMEM */ 880 rcu_assign_pointer(new_device->name, name); 881 } 882 883 list_replace_rcu(&device->dev_list, &new_device->dev_list); 884 new_device->fs_devices = device->fs_devices; 885 } 886 887 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 888 { 889 struct btrfs_device *device, *tmp; 890 struct list_head pending_put; 891 892 INIT_LIST_HEAD(&pending_put); 893 894 if (--fs_devices->opened > 0) 895 return 0; 896 897 mutex_lock(&fs_devices->device_list_mutex); 898 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 899 btrfs_prepare_close_one_device(device); 900 list_add(&device->dev_list, &pending_put); 901 } 902 mutex_unlock(&fs_devices->device_list_mutex); 903 904 /* 905 * btrfs_show_devname() is using the device_list_mutex, 906 * sometimes call to blkdev_put() leads vfs calling 907 * into this func. So do put outside of device_list_mutex, 908 * as of now. 909 */ 910 while (!list_empty(&pending_put)) { 911 device = list_first_entry(&pending_put, 912 struct btrfs_device, dev_list); 913 list_del(&device->dev_list); 914 btrfs_close_bdev(device); 915 call_rcu(&device->rcu, free_device); 916 } 917 918 WARN_ON(fs_devices->open_devices); 919 WARN_ON(fs_devices->rw_devices); 920 fs_devices->opened = 0; 921 fs_devices->seeding = 0; 922 923 return 0; 924 } 925 926 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 927 { 928 struct btrfs_fs_devices *seed_devices = NULL; 929 int ret; 930 931 mutex_lock(&uuid_mutex); 932 ret = __btrfs_close_devices(fs_devices); 933 if (!fs_devices->opened) { 934 seed_devices = fs_devices->seed; 935 fs_devices->seed = NULL; 936 } 937 mutex_unlock(&uuid_mutex); 938 939 while (seed_devices) { 940 fs_devices = seed_devices; 941 seed_devices = fs_devices->seed; 942 __btrfs_close_devices(fs_devices); 943 free_fs_devices(fs_devices); 944 } 945 /* 946 * Wait for rcu kworkers under __btrfs_close_devices 947 * to finish all blkdev_puts so device is really 948 * free when umount is done. 949 */ 950 rcu_barrier(); 951 return ret; 952 } 953 954 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 955 fmode_t flags, void *holder) 956 { 957 struct request_queue *q; 958 struct block_device *bdev; 959 struct list_head *head = &fs_devices->devices; 960 struct btrfs_device *device; 961 struct btrfs_device *latest_dev = NULL; 962 struct buffer_head *bh; 963 struct btrfs_super_block *disk_super; 964 u64 devid; 965 int seeding = 1; 966 int ret = 0; 967 968 flags |= FMODE_EXCL; 969 970 list_for_each_entry(device, head, dev_list) { 971 if (device->bdev) 972 continue; 973 if (!device->name) 974 continue; 975 976 /* Just open everything we can; ignore failures here */ 977 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 978 &bdev, &bh)) 979 continue; 980 981 disk_super = (struct btrfs_super_block *)bh->b_data; 982 devid = btrfs_stack_device_id(&disk_super->dev_item); 983 if (devid != device->devid) 984 goto error_brelse; 985 986 if (memcmp(device->uuid, disk_super->dev_item.uuid, 987 BTRFS_UUID_SIZE)) 988 goto error_brelse; 989 990 device->generation = btrfs_super_generation(disk_super); 991 if (!latest_dev || 992 device->generation > latest_dev->generation) 993 latest_dev = device; 994 995 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 996 device->writeable = 0; 997 } else { 998 device->writeable = !bdev_read_only(bdev); 999 seeding = 0; 1000 } 1001 1002 q = bdev_get_queue(bdev); 1003 if (blk_queue_discard(q)) 1004 device->can_discard = 1; 1005 if (!blk_queue_nonrot(q)) 1006 fs_devices->rotating = 1; 1007 1008 device->bdev = bdev; 1009 device->in_fs_metadata = 0; 1010 device->mode = flags; 1011 1012 fs_devices->open_devices++; 1013 if (device->writeable && 1014 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1015 fs_devices->rw_devices++; 1016 list_add(&device->dev_alloc_list, 1017 &fs_devices->alloc_list); 1018 } 1019 brelse(bh); 1020 continue; 1021 1022 error_brelse: 1023 brelse(bh); 1024 blkdev_put(bdev, flags); 1025 continue; 1026 } 1027 if (fs_devices->open_devices == 0) { 1028 ret = -EINVAL; 1029 goto out; 1030 } 1031 fs_devices->seeding = seeding; 1032 fs_devices->opened = 1; 1033 fs_devices->latest_bdev = latest_dev->bdev; 1034 fs_devices->total_rw_bytes = 0; 1035 out: 1036 return ret; 1037 } 1038 1039 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1040 fmode_t flags, void *holder) 1041 { 1042 int ret; 1043 1044 mutex_lock(&uuid_mutex); 1045 if (fs_devices->opened) { 1046 fs_devices->opened++; 1047 ret = 0; 1048 } else { 1049 ret = __btrfs_open_devices(fs_devices, flags, holder); 1050 } 1051 mutex_unlock(&uuid_mutex); 1052 return ret; 1053 } 1054 1055 static void btrfs_release_disk_super(struct page *page) 1056 { 1057 kunmap(page); 1058 put_page(page); 1059 } 1060 1061 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, 1062 struct page **page, 1063 struct btrfs_super_block **disk_super) 1064 { 1065 void *p; 1066 pgoff_t index; 1067 1068 /* make sure our super fits in the device */ 1069 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1070 return 1; 1071 1072 /* make sure our super fits in the page */ 1073 if (sizeof(**disk_super) > PAGE_SIZE) 1074 return 1; 1075 1076 /* make sure our super doesn't straddle pages on disk */ 1077 index = bytenr >> PAGE_SHIFT; 1078 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) 1079 return 1; 1080 1081 /* pull in the page with our super */ 1082 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1083 index, GFP_KERNEL); 1084 1085 if (IS_ERR_OR_NULL(*page)) 1086 return 1; 1087 1088 p = kmap(*page); 1089 1090 /* align our pointer to the offset of the super block */ 1091 *disk_super = p + (bytenr & ~PAGE_MASK); 1092 1093 if (btrfs_super_bytenr(*disk_super) != bytenr || 1094 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { 1095 btrfs_release_disk_super(*page); 1096 return 1; 1097 } 1098 1099 if ((*disk_super)->label[0] && 1100 (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) 1101 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1102 1103 return 0; 1104 } 1105 1106 /* 1107 * Look for a btrfs signature on a device. This may be called out of the mount path 1108 * and we are not allowed to call set_blocksize during the scan. The superblock 1109 * is read via pagecache 1110 */ 1111 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 1112 struct btrfs_fs_devices **fs_devices_ret) 1113 { 1114 struct btrfs_super_block *disk_super; 1115 struct block_device *bdev; 1116 struct page *page; 1117 int ret = -EINVAL; 1118 u64 devid; 1119 u64 transid; 1120 u64 total_devices; 1121 u64 bytenr; 1122 1123 /* 1124 * we would like to check all the supers, but that would make 1125 * a btrfs mount succeed after a mkfs from a different FS. 1126 * So, we need to add a special mount option to scan for 1127 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1128 */ 1129 bytenr = btrfs_sb_offset(0); 1130 flags |= FMODE_EXCL; 1131 mutex_lock(&uuid_mutex); 1132 1133 bdev = blkdev_get_by_path(path, flags, holder); 1134 if (IS_ERR(bdev)) { 1135 ret = PTR_ERR(bdev); 1136 goto error; 1137 } 1138 1139 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) 1140 goto error_bdev_put; 1141 1142 devid = btrfs_stack_device_id(&disk_super->dev_item); 1143 transid = btrfs_super_generation(disk_super); 1144 total_devices = btrfs_super_num_devices(disk_super); 1145 1146 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 1147 if (ret > 0) { 1148 if (disk_super->label[0]) { 1149 pr_info("BTRFS: device label %s ", disk_super->label); 1150 } else { 1151 pr_info("BTRFS: device fsid %pU ", disk_super->fsid); 1152 } 1153 1154 pr_cont("devid %llu transid %llu %s\n", devid, transid, path); 1155 ret = 0; 1156 } 1157 if (!ret && fs_devices_ret) 1158 (*fs_devices_ret)->total_devices = total_devices; 1159 1160 btrfs_release_disk_super(page); 1161 1162 error_bdev_put: 1163 blkdev_put(bdev, flags); 1164 error: 1165 mutex_unlock(&uuid_mutex); 1166 return ret; 1167 } 1168 1169 /* helper to account the used device space in the range */ 1170 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 1171 u64 end, u64 *length) 1172 { 1173 struct btrfs_key key; 1174 struct btrfs_root *root = device->fs_info->dev_root; 1175 struct btrfs_dev_extent *dev_extent; 1176 struct btrfs_path *path; 1177 u64 extent_end; 1178 int ret; 1179 int slot; 1180 struct extent_buffer *l; 1181 1182 *length = 0; 1183 1184 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 1185 return 0; 1186 1187 path = btrfs_alloc_path(); 1188 if (!path) 1189 return -ENOMEM; 1190 path->reada = READA_FORWARD; 1191 1192 key.objectid = device->devid; 1193 key.offset = start; 1194 key.type = BTRFS_DEV_EXTENT_KEY; 1195 1196 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1197 if (ret < 0) 1198 goto out; 1199 if (ret > 0) { 1200 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1201 if (ret < 0) 1202 goto out; 1203 } 1204 1205 while (1) { 1206 l = path->nodes[0]; 1207 slot = path->slots[0]; 1208 if (slot >= btrfs_header_nritems(l)) { 1209 ret = btrfs_next_leaf(root, path); 1210 if (ret == 0) 1211 continue; 1212 if (ret < 0) 1213 goto out; 1214 1215 break; 1216 } 1217 btrfs_item_key_to_cpu(l, &key, slot); 1218 1219 if (key.objectid < device->devid) 1220 goto next; 1221 1222 if (key.objectid > device->devid) 1223 break; 1224 1225 if (key.type != BTRFS_DEV_EXTENT_KEY) 1226 goto next; 1227 1228 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1229 extent_end = key.offset + btrfs_dev_extent_length(l, 1230 dev_extent); 1231 if (key.offset <= start && extent_end > end) { 1232 *length = end - start + 1; 1233 break; 1234 } else if (key.offset <= start && extent_end > start) 1235 *length += extent_end - start; 1236 else if (key.offset > start && extent_end <= end) 1237 *length += extent_end - key.offset; 1238 else if (key.offset > start && key.offset <= end) { 1239 *length += end - key.offset + 1; 1240 break; 1241 } else if (key.offset > end) 1242 break; 1243 1244 next: 1245 path->slots[0]++; 1246 } 1247 ret = 0; 1248 out: 1249 btrfs_free_path(path); 1250 return ret; 1251 } 1252 1253 static int contains_pending_extent(struct btrfs_transaction *transaction, 1254 struct btrfs_device *device, 1255 u64 *start, u64 len) 1256 { 1257 struct btrfs_fs_info *fs_info = device->fs_info; 1258 struct extent_map *em; 1259 struct list_head *search_list = &fs_info->pinned_chunks; 1260 int ret = 0; 1261 u64 physical_start = *start; 1262 1263 if (transaction) 1264 search_list = &transaction->pending_chunks; 1265 again: 1266 list_for_each_entry(em, search_list, list) { 1267 struct map_lookup *map; 1268 int i; 1269 1270 map = em->map_lookup; 1271 for (i = 0; i < map->num_stripes; i++) { 1272 u64 end; 1273 1274 if (map->stripes[i].dev != device) 1275 continue; 1276 if (map->stripes[i].physical >= physical_start + len || 1277 map->stripes[i].physical + em->orig_block_len <= 1278 physical_start) 1279 continue; 1280 /* 1281 * Make sure that while processing the pinned list we do 1282 * not override our *start with a lower value, because 1283 * we can have pinned chunks that fall within this 1284 * device hole and that have lower physical addresses 1285 * than the pending chunks we processed before. If we 1286 * do not take this special care we can end up getting 1287 * 2 pending chunks that start at the same physical 1288 * device offsets because the end offset of a pinned 1289 * chunk can be equal to the start offset of some 1290 * pending chunk. 1291 */ 1292 end = map->stripes[i].physical + em->orig_block_len; 1293 if (end > *start) { 1294 *start = end; 1295 ret = 1; 1296 } 1297 } 1298 } 1299 if (search_list != &fs_info->pinned_chunks) { 1300 search_list = &fs_info->pinned_chunks; 1301 goto again; 1302 } 1303 1304 return ret; 1305 } 1306 1307 1308 /* 1309 * find_free_dev_extent_start - find free space in the specified device 1310 * @device: the device which we search the free space in 1311 * @num_bytes: the size of the free space that we need 1312 * @search_start: the position from which to begin the search 1313 * @start: store the start of the free space. 1314 * @len: the size of the free space. that we find, or the size 1315 * of the max free space if we don't find suitable free space 1316 * 1317 * this uses a pretty simple search, the expectation is that it is 1318 * called very infrequently and that a given device has a small number 1319 * of extents 1320 * 1321 * @start is used to store the start of the free space if we find. But if we 1322 * don't find suitable free space, it will be used to store the start position 1323 * of the max free space. 1324 * 1325 * @len is used to store the size of the free space that we find. 1326 * But if we don't find suitable free space, it is used to store the size of 1327 * the max free space. 1328 */ 1329 int find_free_dev_extent_start(struct btrfs_transaction *transaction, 1330 struct btrfs_device *device, u64 num_bytes, 1331 u64 search_start, u64 *start, u64 *len) 1332 { 1333 struct btrfs_fs_info *fs_info = device->fs_info; 1334 struct btrfs_root *root = fs_info->dev_root; 1335 struct btrfs_key key; 1336 struct btrfs_dev_extent *dev_extent; 1337 struct btrfs_path *path; 1338 u64 hole_size; 1339 u64 max_hole_start; 1340 u64 max_hole_size; 1341 u64 extent_end; 1342 u64 search_end = device->total_bytes; 1343 int ret; 1344 int slot; 1345 struct extent_buffer *l; 1346 1347 /* 1348 * We don't want to overwrite the superblock on the drive nor any area 1349 * used by the boot loader (grub for example), so we make sure to start 1350 * at an offset of at least 1MB. 1351 */ 1352 search_start = max_t(u64, search_start, SZ_1M); 1353 1354 path = btrfs_alloc_path(); 1355 if (!path) 1356 return -ENOMEM; 1357 1358 max_hole_start = search_start; 1359 max_hole_size = 0; 1360 1361 again: 1362 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1363 ret = -ENOSPC; 1364 goto out; 1365 } 1366 1367 path->reada = READA_FORWARD; 1368 path->search_commit_root = 1; 1369 path->skip_locking = 1; 1370 1371 key.objectid = device->devid; 1372 key.offset = search_start; 1373 key.type = BTRFS_DEV_EXTENT_KEY; 1374 1375 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1376 if (ret < 0) 1377 goto out; 1378 if (ret > 0) { 1379 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1380 if (ret < 0) 1381 goto out; 1382 } 1383 1384 while (1) { 1385 l = path->nodes[0]; 1386 slot = path->slots[0]; 1387 if (slot >= btrfs_header_nritems(l)) { 1388 ret = btrfs_next_leaf(root, path); 1389 if (ret == 0) 1390 continue; 1391 if (ret < 0) 1392 goto out; 1393 1394 break; 1395 } 1396 btrfs_item_key_to_cpu(l, &key, slot); 1397 1398 if (key.objectid < device->devid) 1399 goto next; 1400 1401 if (key.objectid > device->devid) 1402 break; 1403 1404 if (key.type != BTRFS_DEV_EXTENT_KEY) 1405 goto next; 1406 1407 if (key.offset > search_start) { 1408 hole_size = key.offset - search_start; 1409 1410 /* 1411 * Have to check before we set max_hole_start, otherwise 1412 * we could end up sending back this offset anyway. 1413 */ 1414 if (contains_pending_extent(transaction, device, 1415 &search_start, 1416 hole_size)) { 1417 if (key.offset >= search_start) { 1418 hole_size = key.offset - search_start; 1419 } else { 1420 WARN_ON_ONCE(1); 1421 hole_size = 0; 1422 } 1423 } 1424 1425 if (hole_size > max_hole_size) { 1426 max_hole_start = search_start; 1427 max_hole_size = hole_size; 1428 } 1429 1430 /* 1431 * If this free space is greater than which we need, 1432 * it must be the max free space that we have found 1433 * until now, so max_hole_start must point to the start 1434 * of this free space and the length of this free space 1435 * is stored in max_hole_size. Thus, we return 1436 * max_hole_start and max_hole_size and go back to the 1437 * caller. 1438 */ 1439 if (hole_size >= num_bytes) { 1440 ret = 0; 1441 goto out; 1442 } 1443 } 1444 1445 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1446 extent_end = key.offset + btrfs_dev_extent_length(l, 1447 dev_extent); 1448 if (extent_end > search_start) 1449 search_start = extent_end; 1450 next: 1451 path->slots[0]++; 1452 cond_resched(); 1453 } 1454 1455 /* 1456 * At this point, search_start should be the end of 1457 * allocated dev extents, and when shrinking the device, 1458 * search_end may be smaller than search_start. 1459 */ 1460 if (search_end > search_start) { 1461 hole_size = search_end - search_start; 1462 1463 if (contains_pending_extent(transaction, device, &search_start, 1464 hole_size)) { 1465 btrfs_release_path(path); 1466 goto again; 1467 } 1468 1469 if (hole_size > max_hole_size) { 1470 max_hole_start = search_start; 1471 max_hole_size = hole_size; 1472 } 1473 } 1474 1475 /* See above. */ 1476 if (max_hole_size < num_bytes) 1477 ret = -ENOSPC; 1478 else 1479 ret = 0; 1480 1481 out: 1482 btrfs_free_path(path); 1483 *start = max_hole_start; 1484 if (len) 1485 *len = max_hole_size; 1486 return ret; 1487 } 1488 1489 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1490 struct btrfs_device *device, u64 num_bytes, 1491 u64 *start, u64 *len) 1492 { 1493 /* FIXME use last free of some kind */ 1494 return find_free_dev_extent_start(trans->transaction, device, 1495 num_bytes, 0, start, len); 1496 } 1497 1498 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1499 struct btrfs_device *device, 1500 u64 start, u64 *dev_extent_len) 1501 { 1502 struct btrfs_fs_info *fs_info = device->fs_info; 1503 struct btrfs_root *root = fs_info->dev_root; 1504 int ret; 1505 struct btrfs_path *path; 1506 struct btrfs_key key; 1507 struct btrfs_key found_key; 1508 struct extent_buffer *leaf = NULL; 1509 struct btrfs_dev_extent *extent = NULL; 1510 1511 path = btrfs_alloc_path(); 1512 if (!path) 1513 return -ENOMEM; 1514 1515 key.objectid = device->devid; 1516 key.offset = start; 1517 key.type = BTRFS_DEV_EXTENT_KEY; 1518 again: 1519 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1520 if (ret > 0) { 1521 ret = btrfs_previous_item(root, path, key.objectid, 1522 BTRFS_DEV_EXTENT_KEY); 1523 if (ret) 1524 goto out; 1525 leaf = path->nodes[0]; 1526 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1527 extent = btrfs_item_ptr(leaf, path->slots[0], 1528 struct btrfs_dev_extent); 1529 BUG_ON(found_key.offset > start || found_key.offset + 1530 btrfs_dev_extent_length(leaf, extent) < start); 1531 key = found_key; 1532 btrfs_release_path(path); 1533 goto again; 1534 } else if (ret == 0) { 1535 leaf = path->nodes[0]; 1536 extent = btrfs_item_ptr(leaf, path->slots[0], 1537 struct btrfs_dev_extent); 1538 } else { 1539 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1540 goto out; 1541 } 1542 1543 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1544 1545 ret = btrfs_del_item(trans, root, path); 1546 if (ret) { 1547 btrfs_handle_fs_error(fs_info, ret, 1548 "Failed to remove dev extent item"); 1549 } else { 1550 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1551 } 1552 out: 1553 btrfs_free_path(path); 1554 return ret; 1555 } 1556 1557 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1558 struct btrfs_device *device, 1559 u64 chunk_offset, u64 start, u64 num_bytes) 1560 { 1561 int ret; 1562 struct btrfs_path *path; 1563 struct btrfs_fs_info *fs_info = device->fs_info; 1564 struct btrfs_root *root = fs_info->dev_root; 1565 struct btrfs_dev_extent *extent; 1566 struct extent_buffer *leaf; 1567 struct btrfs_key key; 1568 1569 WARN_ON(!device->in_fs_metadata); 1570 WARN_ON(device->is_tgtdev_for_dev_replace); 1571 path = btrfs_alloc_path(); 1572 if (!path) 1573 return -ENOMEM; 1574 1575 key.objectid = device->devid; 1576 key.offset = start; 1577 key.type = BTRFS_DEV_EXTENT_KEY; 1578 ret = btrfs_insert_empty_item(trans, root, path, &key, 1579 sizeof(*extent)); 1580 if (ret) 1581 goto out; 1582 1583 leaf = path->nodes[0]; 1584 extent = btrfs_item_ptr(leaf, path->slots[0], 1585 struct btrfs_dev_extent); 1586 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1587 BTRFS_CHUNK_TREE_OBJECTID); 1588 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1589 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1590 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1591 1592 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1593 btrfs_mark_buffer_dirty(leaf); 1594 out: 1595 btrfs_free_path(path); 1596 return ret; 1597 } 1598 1599 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1600 { 1601 struct extent_map_tree *em_tree; 1602 struct extent_map *em; 1603 struct rb_node *n; 1604 u64 ret = 0; 1605 1606 em_tree = &fs_info->mapping_tree.map_tree; 1607 read_lock(&em_tree->lock); 1608 n = rb_last(&em_tree->map); 1609 if (n) { 1610 em = rb_entry(n, struct extent_map, rb_node); 1611 ret = em->start + em->len; 1612 } 1613 read_unlock(&em_tree->lock); 1614 1615 return ret; 1616 } 1617 1618 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1619 u64 *devid_ret) 1620 { 1621 int ret; 1622 struct btrfs_key key; 1623 struct btrfs_key found_key; 1624 struct btrfs_path *path; 1625 1626 path = btrfs_alloc_path(); 1627 if (!path) 1628 return -ENOMEM; 1629 1630 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1631 key.type = BTRFS_DEV_ITEM_KEY; 1632 key.offset = (u64)-1; 1633 1634 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1635 if (ret < 0) 1636 goto error; 1637 1638 BUG_ON(ret == 0); /* Corruption */ 1639 1640 ret = btrfs_previous_item(fs_info->chunk_root, path, 1641 BTRFS_DEV_ITEMS_OBJECTID, 1642 BTRFS_DEV_ITEM_KEY); 1643 if (ret) { 1644 *devid_ret = 1; 1645 } else { 1646 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1647 path->slots[0]); 1648 *devid_ret = found_key.offset + 1; 1649 } 1650 ret = 0; 1651 error: 1652 btrfs_free_path(path); 1653 return ret; 1654 } 1655 1656 /* 1657 * the device information is stored in the chunk root 1658 * the btrfs_device struct should be fully filled in 1659 */ 1660 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1661 struct btrfs_fs_info *fs_info, 1662 struct btrfs_device *device) 1663 { 1664 struct btrfs_root *root = fs_info->chunk_root; 1665 int ret; 1666 struct btrfs_path *path; 1667 struct btrfs_dev_item *dev_item; 1668 struct extent_buffer *leaf; 1669 struct btrfs_key key; 1670 unsigned long ptr; 1671 1672 path = btrfs_alloc_path(); 1673 if (!path) 1674 return -ENOMEM; 1675 1676 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1677 key.type = BTRFS_DEV_ITEM_KEY; 1678 key.offset = device->devid; 1679 1680 ret = btrfs_insert_empty_item(trans, root, path, &key, 1681 sizeof(*dev_item)); 1682 if (ret) 1683 goto out; 1684 1685 leaf = path->nodes[0]; 1686 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1687 1688 btrfs_set_device_id(leaf, dev_item, device->devid); 1689 btrfs_set_device_generation(leaf, dev_item, 0); 1690 btrfs_set_device_type(leaf, dev_item, device->type); 1691 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1692 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1693 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1694 btrfs_set_device_total_bytes(leaf, dev_item, 1695 btrfs_device_get_disk_total_bytes(device)); 1696 btrfs_set_device_bytes_used(leaf, dev_item, 1697 btrfs_device_get_bytes_used(device)); 1698 btrfs_set_device_group(leaf, dev_item, 0); 1699 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1700 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1701 btrfs_set_device_start_offset(leaf, dev_item, 0); 1702 1703 ptr = btrfs_device_uuid(dev_item); 1704 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1705 ptr = btrfs_device_fsid(dev_item); 1706 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE); 1707 btrfs_mark_buffer_dirty(leaf); 1708 1709 ret = 0; 1710 out: 1711 btrfs_free_path(path); 1712 return ret; 1713 } 1714 1715 /* 1716 * Function to update ctime/mtime for a given device path. 1717 * Mainly used for ctime/mtime based probe like libblkid. 1718 */ 1719 static void update_dev_time(const char *path_name) 1720 { 1721 struct file *filp; 1722 1723 filp = filp_open(path_name, O_RDWR, 0); 1724 if (IS_ERR(filp)) 1725 return; 1726 file_update_time(filp); 1727 filp_close(filp, NULL); 1728 } 1729 1730 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info, 1731 struct btrfs_device *device) 1732 { 1733 struct btrfs_root *root = fs_info->chunk_root; 1734 int ret; 1735 struct btrfs_path *path; 1736 struct btrfs_key key; 1737 struct btrfs_trans_handle *trans; 1738 1739 path = btrfs_alloc_path(); 1740 if (!path) 1741 return -ENOMEM; 1742 1743 trans = btrfs_start_transaction(root, 0); 1744 if (IS_ERR(trans)) { 1745 btrfs_free_path(path); 1746 return PTR_ERR(trans); 1747 } 1748 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1749 key.type = BTRFS_DEV_ITEM_KEY; 1750 key.offset = device->devid; 1751 1752 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1753 if (ret < 0) 1754 goto out; 1755 1756 if (ret > 0) { 1757 ret = -ENOENT; 1758 goto out; 1759 } 1760 1761 ret = btrfs_del_item(trans, root, path); 1762 if (ret) 1763 goto out; 1764 out: 1765 btrfs_free_path(path); 1766 btrfs_commit_transaction(trans); 1767 return ret; 1768 } 1769 1770 /* 1771 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1772 * filesystem. It's up to the caller to adjust that number regarding eg. device 1773 * replace. 1774 */ 1775 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1776 u64 num_devices) 1777 { 1778 u64 all_avail; 1779 unsigned seq; 1780 int i; 1781 1782 do { 1783 seq = read_seqbegin(&fs_info->profiles_lock); 1784 1785 all_avail = fs_info->avail_data_alloc_bits | 1786 fs_info->avail_system_alloc_bits | 1787 fs_info->avail_metadata_alloc_bits; 1788 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1789 1790 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1791 if (!(all_avail & btrfs_raid_group[i])) 1792 continue; 1793 1794 if (num_devices < btrfs_raid_array[i].devs_min) { 1795 int ret = btrfs_raid_mindev_error[i]; 1796 1797 if (ret) 1798 return ret; 1799 } 1800 } 1801 1802 return 0; 1803 } 1804 1805 static struct btrfs_device * btrfs_find_next_active_device( 1806 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1807 { 1808 struct btrfs_device *next_device; 1809 1810 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1811 if (next_device != device && 1812 !next_device->missing && next_device->bdev) 1813 return next_device; 1814 } 1815 1816 return NULL; 1817 } 1818 1819 /* 1820 * Helper function to check if the given device is part of s_bdev / latest_bdev 1821 * and replace it with the provided or the next active device, in the context 1822 * where this function called, there should be always be another device (or 1823 * this_dev) which is active. 1824 */ 1825 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info, 1826 struct btrfs_device *device, struct btrfs_device *this_dev) 1827 { 1828 struct btrfs_device *next_device; 1829 1830 if (this_dev) 1831 next_device = this_dev; 1832 else 1833 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1834 device); 1835 ASSERT(next_device); 1836 1837 if (fs_info->sb->s_bdev && 1838 (fs_info->sb->s_bdev == device->bdev)) 1839 fs_info->sb->s_bdev = next_device->bdev; 1840 1841 if (fs_info->fs_devices->latest_bdev == device->bdev) 1842 fs_info->fs_devices->latest_bdev = next_device->bdev; 1843 } 1844 1845 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 1846 u64 devid) 1847 { 1848 struct btrfs_device *device; 1849 struct btrfs_fs_devices *cur_devices; 1850 u64 num_devices; 1851 int ret = 0; 1852 1853 mutex_lock(&uuid_mutex); 1854 1855 num_devices = fs_info->fs_devices->num_devices; 1856 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 1857 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 1858 WARN_ON(num_devices < 1); 1859 num_devices--; 1860 } 1861 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 1862 1863 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 1864 if (ret) 1865 goto out; 1866 1867 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path, 1868 &device); 1869 if (ret) 1870 goto out; 1871 1872 if (device->is_tgtdev_for_dev_replace) { 1873 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1874 goto out; 1875 } 1876 1877 if (device->writeable && fs_info->fs_devices->rw_devices == 1) { 1878 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1879 goto out; 1880 } 1881 1882 if (device->writeable) { 1883 mutex_lock(&fs_info->chunk_mutex); 1884 list_del_init(&device->dev_alloc_list); 1885 device->fs_devices->rw_devices--; 1886 mutex_unlock(&fs_info->chunk_mutex); 1887 } 1888 1889 mutex_unlock(&uuid_mutex); 1890 ret = btrfs_shrink_device(device, 0); 1891 mutex_lock(&uuid_mutex); 1892 if (ret) 1893 goto error_undo; 1894 1895 /* 1896 * TODO: the superblock still includes this device in its num_devices 1897 * counter although write_all_supers() is not locked out. This 1898 * could give a filesystem state which requires a degraded mount. 1899 */ 1900 ret = btrfs_rm_dev_item(fs_info, device); 1901 if (ret) 1902 goto error_undo; 1903 1904 device->in_fs_metadata = 0; 1905 btrfs_scrub_cancel_dev(fs_info, device); 1906 1907 /* 1908 * the device list mutex makes sure that we don't change 1909 * the device list while someone else is writing out all 1910 * the device supers. Whoever is writing all supers, should 1911 * lock the device list mutex before getting the number of 1912 * devices in the super block (super_copy). Conversely, 1913 * whoever updates the number of devices in the super block 1914 * (super_copy) should hold the device list mutex. 1915 */ 1916 1917 cur_devices = device->fs_devices; 1918 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1919 list_del_rcu(&device->dev_list); 1920 1921 device->fs_devices->num_devices--; 1922 device->fs_devices->total_devices--; 1923 1924 if (device->missing) 1925 device->fs_devices->missing_devices--; 1926 1927 btrfs_assign_next_active_device(fs_info, device, NULL); 1928 1929 if (device->bdev) { 1930 device->fs_devices->open_devices--; 1931 /* remove sysfs entry */ 1932 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device); 1933 } 1934 1935 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 1936 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 1937 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1938 1939 /* 1940 * at this point, the device is zero sized and detached from 1941 * the devices list. All that's left is to zero out the old 1942 * supers and free the device. 1943 */ 1944 if (device->writeable) 1945 btrfs_scratch_superblocks(device->bdev, device->name->str); 1946 1947 btrfs_close_bdev(device); 1948 call_rcu(&device->rcu, free_device); 1949 1950 if (cur_devices->open_devices == 0) { 1951 struct btrfs_fs_devices *fs_devices; 1952 fs_devices = fs_info->fs_devices; 1953 while (fs_devices) { 1954 if (fs_devices->seed == cur_devices) { 1955 fs_devices->seed = cur_devices->seed; 1956 break; 1957 } 1958 fs_devices = fs_devices->seed; 1959 } 1960 cur_devices->seed = NULL; 1961 __btrfs_close_devices(cur_devices); 1962 free_fs_devices(cur_devices); 1963 } 1964 1965 out: 1966 mutex_unlock(&uuid_mutex); 1967 return ret; 1968 1969 error_undo: 1970 if (device->writeable) { 1971 mutex_lock(&fs_info->chunk_mutex); 1972 list_add(&device->dev_alloc_list, 1973 &fs_info->fs_devices->alloc_list); 1974 device->fs_devices->rw_devices++; 1975 mutex_unlock(&fs_info->chunk_mutex); 1976 } 1977 goto out; 1978 } 1979 1980 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info, 1981 struct btrfs_device *srcdev) 1982 { 1983 struct btrfs_fs_devices *fs_devices; 1984 1985 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 1986 1987 /* 1988 * in case of fs with no seed, srcdev->fs_devices will point 1989 * to fs_devices of fs_info. However when the dev being replaced is 1990 * a seed dev it will point to the seed's local fs_devices. In short 1991 * srcdev will have its correct fs_devices in both the cases. 1992 */ 1993 fs_devices = srcdev->fs_devices; 1994 1995 list_del_rcu(&srcdev->dev_list); 1996 list_del_rcu(&srcdev->dev_alloc_list); 1997 fs_devices->num_devices--; 1998 if (srcdev->missing) 1999 fs_devices->missing_devices--; 2000 2001 if (srcdev->writeable) 2002 fs_devices->rw_devices--; 2003 2004 if (srcdev->bdev) 2005 fs_devices->open_devices--; 2006 } 2007 2008 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 2009 struct btrfs_device *srcdev) 2010 { 2011 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2012 2013 if (srcdev->writeable) { 2014 /* zero out the old super if it is writable */ 2015 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); 2016 } 2017 2018 btrfs_close_bdev(srcdev); 2019 call_rcu(&srcdev->rcu, free_device); 2020 2021 /* if this is no devs we rather delete the fs_devices */ 2022 if (!fs_devices->num_devices) { 2023 struct btrfs_fs_devices *tmp_fs_devices; 2024 2025 /* 2026 * On a mounted FS, num_devices can't be zero unless it's a 2027 * seed. In case of a seed device being replaced, the replace 2028 * target added to the sprout FS, so there will be no more 2029 * device left under the seed FS. 2030 */ 2031 ASSERT(fs_devices->seeding); 2032 2033 tmp_fs_devices = fs_info->fs_devices; 2034 while (tmp_fs_devices) { 2035 if (tmp_fs_devices->seed == fs_devices) { 2036 tmp_fs_devices->seed = fs_devices->seed; 2037 break; 2038 } 2039 tmp_fs_devices = tmp_fs_devices->seed; 2040 } 2041 fs_devices->seed = NULL; 2042 __btrfs_close_devices(fs_devices); 2043 free_fs_devices(fs_devices); 2044 } 2045 } 2046 2047 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 2048 struct btrfs_device *tgtdev) 2049 { 2050 mutex_lock(&uuid_mutex); 2051 WARN_ON(!tgtdev); 2052 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2053 2054 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev); 2055 2056 if (tgtdev->bdev) 2057 fs_info->fs_devices->open_devices--; 2058 2059 fs_info->fs_devices->num_devices--; 2060 2061 btrfs_assign_next_active_device(fs_info, tgtdev, NULL); 2062 2063 list_del_rcu(&tgtdev->dev_list); 2064 2065 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2066 mutex_unlock(&uuid_mutex); 2067 2068 /* 2069 * The update_dev_time() with in btrfs_scratch_superblocks() 2070 * may lead to a call to btrfs_show_devname() which will try 2071 * to hold device_list_mutex. And here this device 2072 * is already out of device list, so we don't have to hold 2073 * the device_list_mutex lock. 2074 */ 2075 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); 2076 2077 btrfs_close_bdev(tgtdev); 2078 call_rcu(&tgtdev->rcu, free_device); 2079 } 2080 2081 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info, 2082 const char *device_path, 2083 struct btrfs_device **device) 2084 { 2085 int ret = 0; 2086 struct btrfs_super_block *disk_super; 2087 u64 devid; 2088 u8 *dev_uuid; 2089 struct block_device *bdev; 2090 struct buffer_head *bh; 2091 2092 *device = NULL; 2093 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2094 fs_info->bdev_holder, 0, &bdev, &bh); 2095 if (ret) 2096 return ret; 2097 disk_super = (struct btrfs_super_block *)bh->b_data; 2098 devid = btrfs_stack_device_id(&disk_super->dev_item); 2099 dev_uuid = disk_super->dev_item.uuid; 2100 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid); 2101 brelse(bh); 2102 if (!*device) 2103 ret = -ENOENT; 2104 blkdev_put(bdev, FMODE_READ); 2105 return ret; 2106 } 2107 2108 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info, 2109 const char *device_path, 2110 struct btrfs_device **device) 2111 { 2112 *device = NULL; 2113 if (strcmp(device_path, "missing") == 0) { 2114 struct list_head *devices; 2115 struct btrfs_device *tmp; 2116 2117 devices = &fs_info->fs_devices->devices; 2118 /* 2119 * It is safe to read the devices since the volume_mutex 2120 * is held by the caller. 2121 */ 2122 list_for_each_entry(tmp, devices, dev_list) { 2123 if (tmp->in_fs_metadata && !tmp->bdev) { 2124 *device = tmp; 2125 break; 2126 } 2127 } 2128 2129 if (!*device) 2130 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2131 2132 return 0; 2133 } else { 2134 return btrfs_find_device_by_path(fs_info, device_path, device); 2135 } 2136 } 2137 2138 /* 2139 * Lookup a device given by device id, or the path if the id is 0. 2140 */ 2141 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid, 2142 const char *devpath, 2143 struct btrfs_device **device) 2144 { 2145 int ret; 2146 2147 if (devid) { 2148 ret = 0; 2149 *device = btrfs_find_device(fs_info, devid, NULL, NULL); 2150 if (!*device) 2151 ret = -ENOENT; 2152 } else { 2153 if (!devpath || !devpath[0]) 2154 return -EINVAL; 2155 2156 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath, 2157 device); 2158 } 2159 return ret; 2160 } 2161 2162 /* 2163 * does all the dirty work required for changing file system's UUID. 2164 */ 2165 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2166 { 2167 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2168 struct btrfs_fs_devices *old_devices; 2169 struct btrfs_fs_devices *seed_devices; 2170 struct btrfs_super_block *disk_super = fs_info->super_copy; 2171 struct btrfs_device *device; 2172 u64 super_flags; 2173 2174 BUG_ON(!mutex_is_locked(&uuid_mutex)); 2175 if (!fs_devices->seeding) 2176 return -EINVAL; 2177 2178 seed_devices = alloc_fs_devices(NULL); 2179 if (IS_ERR(seed_devices)) 2180 return PTR_ERR(seed_devices); 2181 2182 old_devices = clone_fs_devices(fs_devices); 2183 if (IS_ERR(old_devices)) { 2184 kfree(seed_devices); 2185 return PTR_ERR(old_devices); 2186 } 2187 2188 list_add(&old_devices->list, &fs_uuids); 2189 2190 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2191 seed_devices->opened = 1; 2192 INIT_LIST_HEAD(&seed_devices->devices); 2193 INIT_LIST_HEAD(&seed_devices->alloc_list); 2194 mutex_init(&seed_devices->device_list_mutex); 2195 2196 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2197 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2198 synchronize_rcu); 2199 list_for_each_entry(device, &seed_devices->devices, dev_list) 2200 device->fs_devices = seed_devices; 2201 2202 mutex_lock(&fs_info->chunk_mutex); 2203 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2204 mutex_unlock(&fs_info->chunk_mutex); 2205 2206 fs_devices->seeding = 0; 2207 fs_devices->num_devices = 0; 2208 fs_devices->open_devices = 0; 2209 fs_devices->missing_devices = 0; 2210 fs_devices->rotating = 0; 2211 fs_devices->seed = seed_devices; 2212 2213 generate_random_uuid(fs_devices->fsid); 2214 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2215 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2216 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2217 2218 super_flags = btrfs_super_flags(disk_super) & 2219 ~BTRFS_SUPER_FLAG_SEEDING; 2220 btrfs_set_super_flags(disk_super, super_flags); 2221 2222 return 0; 2223 } 2224 2225 /* 2226 * Store the expected generation for seed devices in device items. 2227 */ 2228 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2229 struct btrfs_fs_info *fs_info) 2230 { 2231 struct btrfs_root *root = fs_info->chunk_root; 2232 struct btrfs_path *path; 2233 struct extent_buffer *leaf; 2234 struct btrfs_dev_item *dev_item; 2235 struct btrfs_device *device; 2236 struct btrfs_key key; 2237 u8 fs_uuid[BTRFS_FSID_SIZE]; 2238 u8 dev_uuid[BTRFS_UUID_SIZE]; 2239 u64 devid; 2240 int ret; 2241 2242 path = btrfs_alloc_path(); 2243 if (!path) 2244 return -ENOMEM; 2245 2246 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2247 key.offset = 0; 2248 key.type = BTRFS_DEV_ITEM_KEY; 2249 2250 while (1) { 2251 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2252 if (ret < 0) 2253 goto error; 2254 2255 leaf = path->nodes[0]; 2256 next_slot: 2257 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2258 ret = btrfs_next_leaf(root, path); 2259 if (ret > 0) 2260 break; 2261 if (ret < 0) 2262 goto error; 2263 leaf = path->nodes[0]; 2264 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2265 btrfs_release_path(path); 2266 continue; 2267 } 2268 2269 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2270 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2271 key.type != BTRFS_DEV_ITEM_KEY) 2272 break; 2273 2274 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2275 struct btrfs_dev_item); 2276 devid = btrfs_device_id(leaf, dev_item); 2277 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2278 BTRFS_UUID_SIZE); 2279 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2280 BTRFS_FSID_SIZE); 2281 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid); 2282 BUG_ON(!device); /* Logic error */ 2283 2284 if (device->fs_devices->seeding) { 2285 btrfs_set_device_generation(leaf, dev_item, 2286 device->generation); 2287 btrfs_mark_buffer_dirty(leaf); 2288 } 2289 2290 path->slots[0]++; 2291 goto next_slot; 2292 } 2293 ret = 0; 2294 error: 2295 btrfs_free_path(path); 2296 return ret; 2297 } 2298 2299 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2300 { 2301 struct btrfs_root *root = fs_info->dev_root; 2302 struct request_queue *q; 2303 struct btrfs_trans_handle *trans; 2304 struct btrfs_device *device; 2305 struct block_device *bdev; 2306 struct list_head *devices; 2307 struct super_block *sb = fs_info->sb; 2308 struct rcu_string *name; 2309 u64 tmp; 2310 int seeding_dev = 0; 2311 int ret = 0; 2312 bool unlocked = false; 2313 2314 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding) 2315 return -EROFS; 2316 2317 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2318 fs_info->bdev_holder); 2319 if (IS_ERR(bdev)) 2320 return PTR_ERR(bdev); 2321 2322 if (fs_info->fs_devices->seeding) { 2323 seeding_dev = 1; 2324 down_write(&sb->s_umount); 2325 mutex_lock(&uuid_mutex); 2326 } 2327 2328 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2329 2330 devices = &fs_info->fs_devices->devices; 2331 2332 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2333 list_for_each_entry(device, devices, dev_list) { 2334 if (device->bdev == bdev) { 2335 ret = -EEXIST; 2336 mutex_unlock( 2337 &fs_info->fs_devices->device_list_mutex); 2338 goto error; 2339 } 2340 } 2341 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2342 2343 device = btrfs_alloc_device(fs_info, NULL, NULL); 2344 if (IS_ERR(device)) { 2345 /* we can safely leave the fs_devices entry around */ 2346 ret = PTR_ERR(device); 2347 goto error; 2348 } 2349 2350 name = rcu_string_strdup(device_path, GFP_KERNEL); 2351 if (!name) { 2352 kfree(device); 2353 ret = -ENOMEM; 2354 goto error; 2355 } 2356 rcu_assign_pointer(device->name, name); 2357 2358 trans = btrfs_start_transaction(root, 0); 2359 if (IS_ERR(trans)) { 2360 rcu_string_free(device->name); 2361 kfree(device); 2362 ret = PTR_ERR(trans); 2363 goto error; 2364 } 2365 2366 q = bdev_get_queue(bdev); 2367 if (blk_queue_discard(q)) 2368 device->can_discard = 1; 2369 device->writeable = 1; 2370 device->generation = trans->transid; 2371 device->io_width = fs_info->sectorsize; 2372 device->io_align = fs_info->sectorsize; 2373 device->sector_size = fs_info->sectorsize; 2374 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2375 fs_info->sectorsize); 2376 device->disk_total_bytes = device->total_bytes; 2377 device->commit_total_bytes = device->total_bytes; 2378 device->fs_info = fs_info; 2379 device->bdev = bdev; 2380 device->in_fs_metadata = 1; 2381 device->is_tgtdev_for_dev_replace = 0; 2382 device->mode = FMODE_EXCL; 2383 device->dev_stats_valid = 1; 2384 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2385 2386 if (seeding_dev) { 2387 sb->s_flags &= ~MS_RDONLY; 2388 ret = btrfs_prepare_sprout(fs_info); 2389 if (ret) { 2390 btrfs_abort_transaction(trans, ret); 2391 goto error_trans; 2392 } 2393 } 2394 2395 device->fs_devices = fs_info->fs_devices; 2396 2397 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2398 mutex_lock(&fs_info->chunk_mutex); 2399 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices); 2400 list_add(&device->dev_alloc_list, 2401 &fs_info->fs_devices->alloc_list); 2402 fs_info->fs_devices->num_devices++; 2403 fs_info->fs_devices->open_devices++; 2404 fs_info->fs_devices->rw_devices++; 2405 fs_info->fs_devices->total_devices++; 2406 fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2407 2408 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2409 2410 if (!blk_queue_nonrot(q)) 2411 fs_info->fs_devices->rotating = 1; 2412 2413 tmp = btrfs_super_total_bytes(fs_info->super_copy); 2414 btrfs_set_super_total_bytes(fs_info->super_copy, 2415 round_down(tmp + device->total_bytes, fs_info->sectorsize)); 2416 2417 tmp = btrfs_super_num_devices(fs_info->super_copy); 2418 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1); 2419 2420 /* add sysfs device entry */ 2421 btrfs_sysfs_add_device_link(fs_info->fs_devices, device); 2422 2423 /* 2424 * we've got more storage, clear any full flags on the space 2425 * infos 2426 */ 2427 btrfs_clear_space_info_full(fs_info); 2428 2429 mutex_unlock(&fs_info->chunk_mutex); 2430 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2431 2432 if (seeding_dev) { 2433 mutex_lock(&fs_info->chunk_mutex); 2434 ret = init_first_rw_device(trans, fs_info); 2435 mutex_unlock(&fs_info->chunk_mutex); 2436 if (ret) { 2437 btrfs_abort_transaction(trans, ret); 2438 goto error_sysfs; 2439 } 2440 } 2441 2442 ret = btrfs_add_device(trans, fs_info, device); 2443 if (ret) { 2444 btrfs_abort_transaction(trans, ret); 2445 goto error_sysfs; 2446 } 2447 2448 if (seeding_dev) { 2449 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2450 2451 ret = btrfs_finish_sprout(trans, fs_info); 2452 if (ret) { 2453 btrfs_abort_transaction(trans, ret); 2454 goto error_sysfs; 2455 } 2456 2457 /* Sprouting would change fsid of the mounted root, 2458 * so rename the fsid on the sysfs 2459 */ 2460 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2461 fs_info->fsid); 2462 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf)) 2463 btrfs_warn(fs_info, 2464 "sysfs: failed to create fsid for sprout"); 2465 } 2466 2467 ret = btrfs_commit_transaction(trans); 2468 2469 if (seeding_dev) { 2470 mutex_unlock(&uuid_mutex); 2471 up_write(&sb->s_umount); 2472 unlocked = true; 2473 2474 if (ret) /* transaction commit */ 2475 return ret; 2476 2477 ret = btrfs_relocate_sys_chunks(fs_info); 2478 if (ret < 0) 2479 btrfs_handle_fs_error(fs_info, ret, 2480 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2481 trans = btrfs_attach_transaction(root); 2482 if (IS_ERR(trans)) { 2483 if (PTR_ERR(trans) == -ENOENT) 2484 return 0; 2485 ret = PTR_ERR(trans); 2486 trans = NULL; 2487 goto error_sysfs; 2488 } 2489 ret = btrfs_commit_transaction(trans); 2490 } 2491 2492 /* Update ctime/mtime for libblkid */ 2493 update_dev_time(device_path); 2494 return ret; 2495 2496 error_sysfs: 2497 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device); 2498 error_trans: 2499 if (seeding_dev) 2500 sb->s_flags |= MS_RDONLY; 2501 if (trans) 2502 btrfs_end_transaction(trans); 2503 rcu_string_free(device->name); 2504 kfree(device); 2505 error: 2506 blkdev_put(bdev, FMODE_EXCL); 2507 if (seeding_dev && !unlocked) { 2508 mutex_unlock(&uuid_mutex); 2509 up_write(&sb->s_umount); 2510 } 2511 return ret; 2512 } 2513 2514 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 2515 const char *device_path, 2516 struct btrfs_device *srcdev, 2517 struct btrfs_device **device_out) 2518 { 2519 struct request_queue *q; 2520 struct btrfs_device *device; 2521 struct block_device *bdev; 2522 struct list_head *devices; 2523 struct rcu_string *name; 2524 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2525 int ret = 0; 2526 2527 *device_out = NULL; 2528 if (fs_info->fs_devices->seeding) { 2529 btrfs_err(fs_info, "the filesystem is a seed filesystem!"); 2530 return -EINVAL; 2531 } 2532 2533 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2534 fs_info->bdev_holder); 2535 if (IS_ERR(bdev)) { 2536 btrfs_err(fs_info, "target device %s is invalid!", device_path); 2537 return PTR_ERR(bdev); 2538 } 2539 2540 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2541 2542 devices = &fs_info->fs_devices->devices; 2543 list_for_each_entry(device, devices, dev_list) { 2544 if (device->bdev == bdev) { 2545 btrfs_err(fs_info, 2546 "target device is in the filesystem!"); 2547 ret = -EEXIST; 2548 goto error; 2549 } 2550 } 2551 2552 2553 if (i_size_read(bdev->bd_inode) < 2554 btrfs_device_get_total_bytes(srcdev)) { 2555 btrfs_err(fs_info, 2556 "target device is smaller than source device!"); 2557 ret = -EINVAL; 2558 goto error; 2559 } 2560 2561 2562 device = btrfs_alloc_device(NULL, &devid, NULL); 2563 if (IS_ERR(device)) { 2564 ret = PTR_ERR(device); 2565 goto error; 2566 } 2567 2568 name = rcu_string_strdup(device_path, GFP_KERNEL); 2569 if (!name) { 2570 kfree(device); 2571 ret = -ENOMEM; 2572 goto error; 2573 } 2574 rcu_assign_pointer(device->name, name); 2575 2576 q = bdev_get_queue(bdev); 2577 if (blk_queue_discard(q)) 2578 device->can_discard = 1; 2579 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2580 device->writeable = 1; 2581 device->generation = 0; 2582 device->io_width = fs_info->sectorsize; 2583 device->io_align = fs_info->sectorsize; 2584 device->sector_size = fs_info->sectorsize; 2585 device->total_bytes = btrfs_device_get_total_bytes(srcdev); 2586 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev); 2587 device->bytes_used = btrfs_device_get_bytes_used(srcdev); 2588 ASSERT(list_empty(&srcdev->resized_list)); 2589 device->commit_total_bytes = srcdev->commit_total_bytes; 2590 device->commit_bytes_used = device->bytes_used; 2591 device->fs_info = fs_info; 2592 device->bdev = bdev; 2593 device->in_fs_metadata = 1; 2594 device->is_tgtdev_for_dev_replace = 1; 2595 device->mode = FMODE_EXCL; 2596 device->dev_stats_valid = 1; 2597 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2598 device->fs_devices = fs_info->fs_devices; 2599 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2600 fs_info->fs_devices->num_devices++; 2601 fs_info->fs_devices->open_devices++; 2602 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2603 2604 *device_out = device; 2605 return ret; 2606 2607 error: 2608 blkdev_put(bdev, FMODE_EXCL); 2609 return ret; 2610 } 2611 2612 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2613 struct btrfs_device *tgtdev) 2614 { 2615 u32 sectorsize = fs_info->sectorsize; 2616 2617 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2618 tgtdev->io_width = sectorsize; 2619 tgtdev->io_align = sectorsize; 2620 tgtdev->sector_size = sectorsize; 2621 tgtdev->fs_info = fs_info; 2622 tgtdev->in_fs_metadata = 1; 2623 } 2624 2625 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2626 struct btrfs_device *device) 2627 { 2628 int ret; 2629 struct btrfs_path *path; 2630 struct btrfs_root *root = device->fs_info->chunk_root; 2631 struct btrfs_dev_item *dev_item; 2632 struct extent_buffer *leaf; 2633 struct btrfs_key key; 2634 2635 path = btrfs_alloc_path(); 2636 if (!path) 2637 return -ENOMEM; 2638 2639 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2640 key.type = BTRFS_DEV_ITEM_KEY; 2641 key.offset = device->devid; 2642 2643 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2644 if (ret < 0) 2645 goto out; 2646 2647 if (ret > 0) { 2648 ret = -ENOENT; 2649 goto out; 2650 } 2651 2652 leaf = path->nodes[0]; 2653 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2654 2655 btrfs_set_device_id(leaf, dev_item, device->devid); 2656 btrfs_set_device_type(leaf, dev_item, device->type); 2657 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2658 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2659 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2660 btrfs_set_device_total_bytes(leaf, dev_item, 2661 btrfs_device_get_disk_total_bytes(device)); 2662 btrfs_set_device_bytes_used(leaf, dev_item, 2663 btrfs_device_get_bytes_used(device)); 2664 btrfs_mark_buffer_dirty(leaf); 2665 2666 out: 2667 btrfs_free_path(path); 2668 return ret; 2669 } 2670 2671 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2672 struct btrfs_device *device, u64 new_size) 2673 { 2674 struct btrfs_fs_info *fs_info = device->fs_info; 2675 struct btrfs_super_block *super_copy = fs_info->super_copy; 2676 struct btrfs_fs_devices *fs_devices; 2677 u64 old_total; 2678 u64 diff; 2679 2680 if (!device->writeable) 2681 return -EACCES; 2682 2683 new_size = round_down(new_size, fs_info->sectorsize); 2684 2685 mutex_lock(&fs_info->chunk_mutex); 2686 old_total = btrfs_super_total_bytes(super_copy); 2687 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2688 2689 if (new_size <= device->total_bytes || 2690 device->is_tgtdev_for_dev_replace) { 2691 mutex_unlock(&fs_info->chunk_mutex); 2692 return -EINVAL; 2693 } 2694 2695 fs_devices = fs_info->fs_devices; 2696 2697 btrfs_set_super_total_bytes(super_copy, 2698 round_down(old_total + diff, fs_info->sectorsize)); 2699 device->fs_devices->total_rw_bytes += diff; 2700 2701 btrfs_device_set_total_bytes(device, new_size); 2702 btrfs_device_set_disk_total_bytes(device, new_size); 2703 btrfs_clear_space_info_full(device->fs_info); 2704 if (list_empty(&device->resized_list)) 2705 list_add_tail(&device->resized_list, 2706 &fs_devices->resized_devices); 2707 mutex_unlock(&fs_info->chunk_mutex); 2708 2709 return btrfs_update_device(trans, device); 2710 } 2711 2712 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2713 struct btrfs_fs_info *fs_info, u64 chunk_offset) 2714 { 2715 struct btrfs_root *root = fs_info->chunk_root; 2716 int ret; 2717 struct btrfs_path *path; 2718 struct btrfs_key key; 2719 2720 path = btrfs_alloc_path(); 2721 if (!path) 2722 return -ENOMEM; 2723 2724 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2725 key.offset = chunk_offset; 2726 key.type = BTRFS_CHUNK_ITEM_KEY; 2727 2728 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2729 if (ret < 0) 2730 goto out; 2731 else if (ret > 0) { /* Logic error or corruption */ 2732 btrfs_handle_fs_error(fs_info, -ENOENT, 2733 "Failed lookup while freeing chunk."); 2734 ret = -ENOENT; 2735 goto out; 2736 } 2737 2738 ret = btrfs_del_item(trans, root, path); 2739 if (ret < 0) 2740 btrfs_handle_fs_error(fs_info, ret, 2741 "Failed to delete chunk item."); 2742 out: 2743 btrfs_free_path(path); 2744 return ret; 2745 } 2746 2747 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2748 { 2749 struct btrfs_super_block *super_copy = fs_info->super_copy; 2750 struct btrfs_disk_key *disk_key; 2751 struct btrfs_chunk *chunk; 2752 u8 *ptr; 2753 int ret = 0; 2754 u32 num_stripes; 2755 u32 array_size; 2756 u32 len = 0; 2757 u32 cur; 2758 struct btrfs_key key; 2759 2760 mutex_lock(&fs_info->chunk_mutex); 2761 array_size = btrfs_super_sys_array_size(super_copy); 2762 2763 ptr = super_copy->sys_chunk_array; 2764 cur = 0; 2765 2766 while (cur < array_size) { 2767 disk_key = (struct btrfs_disk_key *)ptr; 2768 btrfs_disk_key_to_cpu(&key, disk_key); 2769 2770 len = sizeof(*disk_key); 2771 2772 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2773 chunk = (struct btrfs_chunk *)(ptr + len); 2774 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2775 len += btrfs_chunk_item_size(num_stripes); 2776 } else { 2777 ret = -EIO; 2778 break; 2779 } 2780 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2781 key.offset == chunk_offset) { 2782 memmove(ptr, ptr + len, array_size - (cur + len)); 2783 array_size -= len; 2784 btrfs_set_super_sys_array_size(super_copy, array_size); 2785 } else { 2786 ptr += len; 2787 cur += len; 2788 } 2789 } 2790 mutex_unlock(&fs_info->chunk_mutex); 2791 return ret; 2792 } 2793 2794 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info, 2795 u64 logical, u64 length) 2796 { 2797 struct extent_map_tree *em_tree; 2798 struct extent_map *em; 2799 2800 em_tree = &fs_info->mapping_tree.map_tree; 2801 read_lock(&em_tree->lock); 2802 em = lookup_extent_mapping(em_tree, logical, length); 2803 read_unlock(&em_tree->lock); 2804 2805 if (!em) { 2806 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2807 logical, length); 2808 return ERR_PTR(-EINVAL); 2809 } 2810 2811 if (em->start > logical || em->start + em->len < logical) { 2812 btrfs_crit(fs_info, 2813 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 2814 logical, length, em->start, em->start + em->len); 2815 free_extent_map(em); 2816 return ERR_PTR(-EINVAL); 2817 } 2818 2819 /* callers are responsible for dropping em's ref. */ 2820 return em; 2821 } 2822 2823 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, 2824 struct btrfs_fs_info *fs_info, u64 chunk_offset) 2825 { 2826 struct extent_map *em; 2827 struct map_lookup *map; 2828 u64 dev_extent_len = 0; 2829 int i, ret = 0; 2830 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2831 2832 em = get_chunk_map(fs_info, chunk_offset, 1); 2833 if (IS_ERR(em)) { 2834 /* 2835 * This is a logic error, but we don't want to just rely on the 2836 * user having built with ASSERT enabled, so if ASSERT doesn't 2837 * do anything we still error out. 2838 */ 2839 ASSERT(0); 2840 return PTR_ERR(em); 2841 } 2842 map = em->map_lookup; 2843 mutex_lock(&fs_info->chunk_mutex); 2844 check_system_chunk(trans, fs_info, map->type); 2845 mutex_unlock(&fs_info->chunk_mutex); 2846 2847 /* 2848 * Take the device list mutex to prevent races with the final phase of 2849 * a device replace operation that replaces the device object associated 2850 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2851 */ 2852 mutex_lock(&fs_devices->device_list_mutex); 2853 for (i = 0; i < map->num_stripes; i++) { 2854 struct btrfs_device *device = map->stripes[i].dev; 2855 ret = btrfs_free_dev_extent(trans, device, 2856 map->stripes[i].physical, 2857 &dev_extent_len); 2858 if (ret) { 2859 mutex_unlock(&fs_devices->device_list_mutex); 2860 btrfs_abort_transaction(trans, ret); 2861 goto out; 2862 } 2863 2864 if (device->bytes_used > 0) { 2865 mutex_lock(&fs_info->chunk_mutex); 2866 btrfs_device_set_bytes_used(device, 2867 device->bytes_used - dev_extent_len); 2868 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 2869 btrfs_clear_space_info_full(fs_info); 2870 mutex_unlock(&fs_info->chunk_mutex); 2871 } 2872 2873 if (map->stripes[i].dev) { 2874 ret = btrfs_update_device(trans, map->stripes[i].dev); 2875 if (ret) { 2876 mutex_unlock(&fs_devices->device_list_mutex); 2877 btrfs_abort_transaction(trans, ret); 2878 goto out; 2879 } 2880 } 2881 } 2882 mutex_unlock(&fs_devices->device_list_mutex); 2883 2884 ret = btrfs_free_chunk(trans, fs_info, chunk_offset); 2885 if (ret) { 2886 btrfs_abort_transaction(trans, ret); 2887 goto out; 2888 } 2889 2890 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 2891 2892 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2893 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 2894 if (ret) { 2895 btrfs_abort_transaction(trans, ret); 2896 goto out; 2897 } 2898 } 2899 2900 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em); 2901 if (ret) { 2902 btrfs_abort_transaction(trans, ret); 2903 goto out; 2904 } 2905 2906 out: 2907 /* once for us */ 2908 free_extent_map(em); 2909 return ret; 2910 } 2911 2912 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2913 { 2914 struct btrfs_root *root = fs_info->chunk_root; 2915 struct btrfs_trans_handle *trans; 2916 int ret; 2917 2918 /* 2919 * Prevent races with automatic removal of unused block groups. 2920 * After we relocate and before we remove the chunk with offset 2921 * chunk_offset, automatic removal of the block group can kick in, 2922 * resulting in a failure when calling btrfs_remove_chunk() below. 2923 * 2924 * Make sure to acquire this mutex before doing a tree search (dev 2925 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 2926 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 2927 * we release the path used to search the chunk/dev tree and before 2928 * the current task acquires this mutex and calls us. 2929 */ 2930 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex)); 2931 2932 ret = btrfs_can_relocate(fs_info, chunk_offset); 2933 if (ret) 2934 return -ENOSPC; 2935 2936 /* step one, relocate all the extents inside this chunk */ 2937 btrfs_scrub_pause(fs_info); 2938 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 2939 btrfs_scrub_continue(fs_info); 2940 if (ret) 2941 return ret; 2942 2943 trans = btrfs_start_trans_remove_block_group(root->fs_info, 2944 chunk_offset); 2945 if (IS_ERR(trans)) { 2946 ret = PTR_ERR(trans); 2947 btrfs_handle_fs_error(root->fs_info, ret, NULL); 2948 return ret; 2949 } 2950 2951 /* 2952 * step two, delete the device extents and the 2953 * chunk tree entries 2954 */ 2955 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset); 2956 btrfs_end_transaction(trans); 2957 return ret; 2958 } 2959 2960 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 2961 { 2962 struct btrfs_root *chunk_root = fs_info->chunk_root; 2963 struct btrfs_path *path; 2964 struct extent_buffer *leaf; 2965 struct btrfs_chunk *chunk; 2966 struct btrfs_key key; 2967 struct btrfs_key found_key; 2968 u64 chunk_type; 2969 bool retried = false; 2970 int failed = 0; 2971 int ret; 2972 2973 path = btrfs_alloc_path(); 2974 if (!path) 2975 return -ENOMEM; 2976 2977 again: 2978 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2979 key.offset = (u64)-1; 2980 key.type = BTRFS_CHUNK_ITEM_KEY; 2981 2982 while (1) { 2983 mutex_lock(&fs_info->delete_unused_bgs_mutex); 2984 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2985 if (ret < 0) { 2986 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 2987 goto error; 2988 } 2989 BUG_ON(ret == 0); /* Corruption */ 2990 2991 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2992 key.type); 2993 if (ret) 2994 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 2995 if (ret < 0) 2996 goto error; 2997 if (ret > 0) 2998 break; 2999 3000 leaf = path->nodes[0]; 3001 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3002 3003 chunk = btrfs_item_ptr(leaf, path->slots[0], 3004 struct btrfs_chunk); 3005 chunk_type = btrfs_chunk_type(leaf, chunk); 3006 btrfs_release_path(path); 3007 3008 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3009 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3010 if (ret == -ENOSPC) 3011 failed++; 3012 else 3013 BUG_ON(ret); 3014 } 3015 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3016 3017 if (found_key.offset == 0) 3018 break; 3019 key.offset = found_key.offset - 1; 3020 } 3021 ret = 0; 3022 if (failed && !retried) { 3023 failed = 0; 3024 retried = true; 3025 goto again; 3026 } else if (WARN_ON(failed && retried)) { 3027 ret = -ENOSPC; 3028 } 3029 error: 3030 btrfs_free_path(path); 3031 return ret; 3032 } 3033 3034 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3035 struct btrfs_balance_control *bctl) 3036 { 3037 struct btrfs_root *root = fs_info->tree_root; 3038 struct btrfs_trans_handle *trans; 3039 struct btrfs_balance_item *item; 3040 struct btrfs_disk_balance_args disk_bargs; 3041 struct btrfs_path *path; 3042 struct extent_buffer *leaf; 3043 struct btrfs_key key; 3044 int ret, err; 3045 3046 path = btrfs_alloc_path(); 3047 if (!path) 3048 return -ENOMEM; 3049 3050 trans = btrfs_start_transaction(root, 0); 3051 if (IS_ERR(trans)) { 3052 btrfs_free_path(path); 3053 return PTR_ERR(trans); 3054 } 3055 3056 key.objectid = BTRFS_BALANCE_OBJECTID; 3057 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3058 key.offset = 0; 3059 3060 ret = btrfs_insert_empty_item(trans, root, path, &key, 3061 sizeof(*item)); 3062 if (ret) 3063 goto out; 3064 3065 leaf = path->nodes[0]; 3066 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3067 3068 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3069 3070 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3071 btrfs_set_balance_data(leaf, item, &disk_bargs); 3072 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3073 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3074 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3075 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3076 3077 btrfs_set_balance_flags(leaf, item, bctl->flags); 3078 3079 btrfs_mark_buffer_dirty(leaf); 3080 out: 3081 btrfs_free_path(path); 3082 err = btrfs_commit_transaction(trans); 3083 if (err && !ret) 3084 ret = err; 3085 return ret; 3086 } 3087 3088 static int del_balance_item(struct btrfs_fs_info *fs_info) 3089 { 3090 struct btrfs_root *root = fs_info->tree_root; 3091 struct btrfs_trans_handle *trans; 3092 struct btrfs_path *path; 3093 struct btrfs_key key; 3094 int ret, err; 3095 3096 path = btrfs_alloc_path(); 3097 if (!path) 3098 return -ENOMEM; 3099 3100 trans = btrfs_start_transaction(root, 0); 3101 if (IS_ERR(trans)) { 3102 btrfs_free_path(path); 3103 return PTR_ERR(trans); 3104 } 3105 3106 key.objectid = BTRFS_BALANCE_OBJECTID; 3107 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3108 key.offset = 0; 3109 3110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3111 if (ret < 0) 3112 goto out; 3113 if (ret > 0) { 3114 ret = -ENOENT; 3115 goto out; 3116 } 3117 3118 ret = btrfs_del_item(trans, root, path); 3119 out: 3120 btrfs_free_path(path); 3121 err = btrfs_commit_transaction(trans); 3122 if (err && !ret) 3123 ret = err; 3124 return ret; 3125 } 3126 3127 /* 3128 * This is a heuristic used to reduce the number of chunks balanced on 3129 * resume after balance was interrupted. 3130 */ 3131 static void update_balance_args(struct btrfs_balance_control *bctl) 3132 { 3133 /* 3134 * Turn on soft mode for chunk types that were being converted. 3135 */ 3136 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3137 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3138 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3139 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3140 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3141 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3142 3143 /* 3144 * Turn on usage filter if is not already used. The idea is 3145 * that chunks that we have already balanced should be 3146 * reasonably full. Don't do it for chunks that are being 3147 * converted - that will keep us from relocating unconverted 3148 * (albeit full) chunks. 3149 */ 3150 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3151 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3152 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3153 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3154 bctl->data.usage = 90; 3155 } 3156 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3157 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3158 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3159 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3160 bctl->sys.usage = 90; 3161 } 3162 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3163 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3164 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3165 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3166 bctl->meta.usage = 90; 3167 } 3168 } 3169 3170 /* 3171 * Should be called with both balance and volume mutexes held to 3172 * serialize other volume operations (add_dev/rm_dev/resize) with 3173 * restriper. Same goes for unset_balance_control. 3174 */ 3175 static void set_balance_control(struct btrfs_balance_control *bctl) 3176 { 3177 struct btrfs_fs_info *fs_info = bctl->fs_info; 3178 3179 BUG_ON(fs_info->balance_ctl); 3180 3181 spin_lock(&fs_info->balance_lock); 3182 fs_info->balance_ctl = bctl; 3183 spin_unlock(&fs_info->balance_lock); 3184 } 3185 3186 static void unset_balance_control(struct btrfs_fs_info *fs_info) 3187 { 3188 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3189 3190 BUG_ON(!fs_info->balance_ctl); 3191 3192 spin_lock(&fs_info->balance_lock); 3193 fs_info->balance_ctl = NULL; 3194 spin_unlock(&fs_info->balance_lock); 3195 3196 kfree(bctl); 3197 } 3198 3199 /* 3200 * Balance filters. Return 1 if chunk should be filtered out 3201 * (should not be balanced). 3202 */ 3203 static int chunk_profiles_filter(u64 chunk_type, 3204 struct btrfs_balance_args *bargs) 3205 { 3206 chunk_type = chunk_to_extended(chunk_type) & 3207 BTRFS_EXTENDED_PROFILE_MASK; 3208 3209 if (bargs->profiles & chunk_type) 3210 return 0; 3211 3212 return 1; 3213 } 3214 3215 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3216 struct btrfs_balance_args *bargs) 3217 { 3218 struct btrfs_block_group_cache *cache; 3219 u64 chunk_used; 3220 u64 user_thresh_min; 3221 u64 user_thresh_max; 3222 int ret = 1; 3223 3224 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3225 chunk_used = btrfs_block_group_used(&cache->item); 3226 3227 if (bargs->usage_min == 0) 3228 user_thresh_min = 0; 3229 else 3230 user_thresh_min = div_factor_fine(cache->key.offset, 3231 bargs->usage_min); 3232 3233 if (bargs->usage_max == 0) 3234 user_thresh_max = 1; 3235 else if (bargs->usage_max > 100) 3236 user_thresh_max = cache->key.offset; 3237 else 3238 user_thresh_max = div_factor_fine(cache->key.offset, 3239 bargs->usage_max); 3240 3241 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3242 ret = 0; 3243 3244 btrfs_put_block_group(cache); 3245 return ret; 3246 } 3247 3248 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3249 u64 chunk_offset, struct btrfs_balance_args *bargs) 3250 { 3251 struct btrfs_block_group_cache *cache; 3252 u64 chunk_used, user_thresh; 3253 int ret = 1; 3254 3255 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3256 chunk_used = btrfs_block_group_used(&cache->item); 3257 3258 if (bargs->usage_min == 0) 3259 user_thresh = 1; 3260 else if (bargs->usage > 100) 3261 user_thresh = cache->key.offset; 3262 else 3263 user_thresh = div_factor_fine(cache->key.offset, 3264 bargs->usage); 3265 3266 if (chunk_used < user_thresh) 3267 ret = 0; 3268 3269 btrfs_put_block_group(cache); 3270 return ret; 3271 } 3272 3273 static int chunk_devid_filter(struct extent_buffer *leaf, 3274 struct btrfs_chunk *chunk, 3275 struct btrfs_balance_args *bargs) 3276 { 3277 struct btrfs_stripe *stripe; 3278 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3279 int i; 3280 3281 for (i = 0; i < num_stripes; i++) { 3282 stripe = btrfs_stripe_nr(chunk, i); 3283 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3284 return 0; 3285 } 3286 3287 return 1; 3288 } 3289 3290 /* [pstart, pend) */ 3291 static int chunk_drange_filter(struct extent_buffer *leaf, 3292 struct btrfs_chunk *chunk, 3293 struct btrfs_balance_args *bargs) 3294 { 3295 struct btrfs_stripe *stripe; 3296 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3297 u64 stripe_offset; 3298 u64 stripe_length; 3299 int factor; 3300 int i; 3301 3302 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3303 return 0; 3304 3305 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3306 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3307 factor = num_stripes / 2; 3308 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3309 factor = num_stripes - 1; 3310 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3311 factor = num_stripes - 2; 3312 } else { 3313 factor = num_stripes; 3314 } 3315 3316 for (i = 0; i < num_stripes; i++) { 3317 stripe = btrfs_stripe_nr(chunk, i); 3318 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3319 continue; 3320 3321 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3322 stripe_length = btrfs_chunk_length(leaf, chunk); 3323 stripe_length = div_u64(stripe_length, factor); 3324 3325 if (stripe_offset < bargs->pend && 3326 stripe_offset + stripe_length > bargs->pstart) 3327 return 0; 3328 } 3329 3330 return 1; 3331 } 3332 3333 /* [vstart, vend) */ 3334 static int chunk_vrange_filter(struct extent_buffer *leaf, 3335 struct btrfs_chunk *chunk, 3336 u64 chunk_offset, 3337 struct btrfs_balance_args *bargs) 3338 { 3339 if (chunk_offset < bargs->vend && 3340 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3341 /* at least part of the chunk is inside this vrange */ 3342 return 0; 3343 3344 return 1; 3345 } 3346 3347 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3348 struct btrfs_chunk *chunk, 3349 struct btrfs_balance_args *bargs) 3350 { 3351 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3352 3353 if (bargs->stripes_min <= num_stripes 3354 && num_stripes <= bargs->stripes_max) 3355 return 0; 3356 3357 return 1; 3358 } 3359 3360 static int chunk_soft_convert_filter(u64 chunk_type, 3361 struct btrfs_balance_args *bargs) 3362 { 3363 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3364 return 0; 3365 3366 chunk_type = chunk_to_extended(chunk_type) & 3367 BTRFS_EXTENDED_PROFILE_MASK; 3368 3369 if (bargs->target == chunk_type) 3370 return 1; 3371 3372 return 0; 3373 } 3374 3375 static int should_balance_chunk(struct btrfs_fs_info *fs_info, 3376 struct extent_buffer *leaf, 3377 struct btrfs_chunk *chunk, u64 chunk_offset) 3378 { 3379 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3380 struct btrfs_balance_args *bargs = NULL; 3381 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3382 3383 /* type filter */ 3384 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3385 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3386 return 0; 3387 } 3388 3389 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3390 bargs = &bctl->data; 3391 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3392 bargs = &bctl->sys; 3393 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3394 bargs = &bctl->meta; 3395 3396 /* profiles filter */ 3397 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3398 chunk_profiles_filter(chunk_type, bargs)) { 3399 return 0; 3400 } 3401 3402 /* usage filter */ 3403 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3404 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3405 return 0; 3406 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3407 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3408 return 0; 3409 } 3410 3411 /* devid filter */ 3412 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3413 chunk_devid_filter(leaf, chunk, bargs)) { 3414 return 0; 3415 } 3416 3417 /* drange filter, makes sense only with devid filter */ 3418 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3419 chunk_drange_filter(leaf, chunk, bargs)) { 3420 return 0; 3421 } 3422 3423 /* vrange filter */ 3424 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3425 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3426 return 0; 3427 } 3428 3429 /* stripes filter */ 3430 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3431 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3432 return 0; 3433 } 3434 3435 /* soft profile changing mode */ 3436 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3437 chunk_soft_convert_filter(chunk_type, bargs)) { 3438 return 0; 3439 } 3440 3441 /* 3442 * limited by count, must be the last filter 3443 */ 3444 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3445 if (bargs->limit == 0) 3446 return 0; 3447 else 3448 bargs->limit--; 3449 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3450 /* 3451 * Same logic as the 'limit' filter; the minimum cannot be 3452 * determined here because we do not have the global information 3453 * about the count of all chunks that satisfy the filters. 3454 */ 3455 if (bargs->limit_max == 0) 3456 return 0; 3457 else 3458 bargs->limit_max--; 3459 } 3460 3461 return 1; 3462 } 3463 3464 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3465 { 3466 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3467 struct btrfs_root *chunk_root = fs_info->chunk_root; 3468 struct btrfs_root *dev_root = fs_info->dev_root; 3469 struct list_head *devices; 3470 struct btrfs_device *device; 3471 u64 old_size; 3472 u64 size_to_free; 3473 u64 chunk_type; 3474 struct btrfs_chunk *chunk; 3475 struct btrfs_path *path = NULL; 3476 struct btrfs_key key; 3477 struct btrfs_key found_key; 3478 struct btrfs_trans_handle *trans; 3479 struct extent_buffer *leaf; 3480 int slot; 3481 int ret; 3482 int enospc_errors = 0; 3483 bool counting = true; 3484 /* The single value limit and min/max limits use the same bytes in the */ 3485 u64 limit_data = bctl->data.limit; 3486 u64 limit_meta = bctl->meta.limit; 3487 u64 limit_sys = bctl->sys.limit; 3488 u32 count_data = 0; 3489 u32 count_meta = 0; 3490 u32 count_sys = 0; 3491 int chunk_reserved = 0; 3492 u64 bytes_used = 0; 3493 3494 /* step one make some room on all the devices */ 3495 devices = &fs_info->fs_devices->devices; 3496 list_for_each_entry(device, devices, dev_list) { 3497 old_size = btrfs_device_get_total_bytes(device); 3498 size_to_free = div_factor(old_size, 1); 3499 size_to_free = min_t(u64, size_to_free, SZ_1M); 3500 if (!device->writeable || 3501 btrfs_device_get_total_bytes(device) - 3502 btrfs_device_get_bytes_used(device) > size_to_free || 3503 device->is_tgtdev_for_dev_replace) 3504 continue; 3505 3506 ret = btrfs_shrink_device(device, old_size - size_to_free); 3507 if (ret == -ENOSPC) 3508 break; 3509 if (ret) { 3510 /* btrfs_shrink_device never returns ret > 0 */ 3511 WARN_ON(ret > 0); 3512 goto error; 3513 } 3514 3515 trans = btrfs_start_transaction(dev_root, 0); 3516 if (IS_ERR(trans)) { 3517 ret = PTR_ERR(trans); 3518 btrfs_info_in_rcu(fs_info, 3519 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu", 3520 rcu_str_deref(device->name), ret, 3521 old_size, old_size - size_to_free); 3522 goto error; 3523 } 3524 3525 ret = btrfs_grow_device(trans, device, old_size); 3526 if (ret) { 3527 btrfs_end_transaction(trans); 3528 /* btrfs_grow_device never returns ret > 0 */ 3529 WARN_ON(ret > 0); 3530 btrfs_info_in_rcu(fs_info, 3531 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu", 3532 rcu_str_deref(device->name), ret, 3533 old_size, old_size - size_to_free); 3534 goto error; 3535 } 3536 3537 btrfs_end_transaction(trans); 3538 } 3539 3540 /* step two, relocate all the chunks */ 3541 path = btrfs_alloc_path(); 3542 if (!path) { 3543 ret = -ENOMEM; 3544 goto error; 3545 } 3546 3547 /* zero out stat counters */ 3548 spin_lock(&fs_info->balance_lock); 3549 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3550 spin_unlock(&fs_info->balance_lock); 3551 again: 3552 if (!counting) { 3553 /* 3554 * The single value limit and min/max limits use the same bytes 3555 * in the 3556 */ 3557 bctl->data.limit = limit_data; 3558 bctl->meta.limit = limit_meta; 3559 bctl->sys.limit = limit_sys; 3560 } 3561 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3562 key.offset = (u64)-1; 3563 key.type = BTRFS_CHUNK_ITEM_KEY; 3564 3565 while (1) { 3566 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3567 atomic_read(&fs_info->balance_cancel_req)) { 3568 ret = -ECANCELED; 3569 goto error; 3570 } 3571 3572 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3573 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3574 if (ret < 0) { 3575 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3576 goto error; 3577 } 3578 3579 /* 3580 * this shouldn't happen, it means the last relocate 3581 * failed 3582 */ 3583 if (ret == 0) 3584 BUG(); /* FIXME break ? */ 3585 3586 ret = btrfs_previous_item(chunk_root, path, 0, 3587 BTRFS_CHUNK_ITEM_KEY); 3588 if (ret) { 3589 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3590 ret = 0; 3591 break; 3592 } 3593 3594 leaf = path->nodes[0]; 3595 slot = path->slots[0]; 3596 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3597 3598 if (found_key.objectid != key.objectid) { 3599 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3600 break; 3601 } 3602 3603 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3604 chunk_type = btrfs_chunk_type(leaf, chunk); 3605 3606 if (!counting) { 3607 spin_lock(&fs_info->balance_lock); 3608 bctl->stat.considered++; 3609 spin_unlock(&fs_info->balance_lock); 3610 } 3611 3612 ret = should_balance_chunk(fs_info, leaf, chunk, 3613 found_key.offset); 3614 3615 btrfs_release_path(path); 3616 if (!ret) { 3617 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3618 goto loop; 3619 } 3620 3621 if (counting) { 3622 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3623 spin_lock(&fs_info->balance_lock); 3624 bctl->stat.expected++; 3625 spin_unlock(&fs_info->balance_lock); 3626 3627 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3628 count_data++; 3629 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3630 count_sys++; 3631 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3632 count_meta++; 3633 3634 goto loop; 3635 } 3636 3637 /* 3638 * Apply limit_min filter, no need to check if the LIMITS 3639 * filter is used, limit_min is 0 by default 3640 */ 3641 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3642 count_data < bctl->data.limit_min) 3643 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3644 count_meta < bctl->meta.limit_min) 3645 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3646 count_sys < bctl->sys.limit_min)) { 3647 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3648 goto loop; 3649 } 3650 3651 ASSERT(fs_info->data_sinfo); 3652 spin_lock(&fs_info->data_sinfo->lock); 3653 bytes_used = fs_info->data_sinfo->bytes_used; 3654 spin_unlock(&fs_info->data_sinfo->lock); 3655 3656 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3657 !chunk_reserved && !bytes_used) { 3658 trans = btrfs_start_transaction(chunk_root, 0); 3659 if (IS_ERR(trans)) { 3660 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3661 ret = PTR_ERR(trans); 3662 goto error; 3663 } 3664 3665 ret = btrfs_force_chunk_alloc(trans, fs_info, 3666 BTRFS_BLOCK_GROUP_DATA); 3667 btrfs_end_transaction(trans); 3668 if (ret < 0) { 3669 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3670 goto error; 3671 } 3672 chunk_reserved = 1; 3673 } 3674 3675 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3676 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3677 if (ret && ret != -ENOSPC) 3678 goto error; 3679 if (ret == -ENOSPC) { 3680 enospc_errors++; 3681 } else { 3682 spin_lock(&fs_info->balance_lock); 3683 bctl->stat.completed++; 3684 spin_unlock(&fs_info->balance_lock); 3685 } 3686 loop: 3687 if (found_key.offset == 0) 3688 break; 3689 key.offset = found_key.offset - 1; 3690 } 3691 3692 if (counting) { 3693 btrfs_release_path(path); 3694 counting = false; 3695 goto again; 3696 } 3697 error: 3698 btrfs_free_path(path); 3699 if (enospc_errors) { 3700 btrfs_info(fs_info, "%d enospc errors during balance", 3701 enospc_errors); 3702 if (!ret) 3703 ret = -ENOSPC; 3704 } 3705 3706 return ret; 3707 } 3708 3709 /** 3710 * alloc_profile_is_valid - see if a given profile is valid and reduced 3711 * @flags: profile to validate 3712 * @extended: if true @flags is treated as an extended profile 3713 */ 3714 static int alloc_profile_is_valid(u64 flags, int extended) 3715 { 3716 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3717 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3718 3719 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3720 3721 /* 1) check that all other bits are zeroed */ 3722 if (flags & ~mask) 3723 return 0; 3724 3725 /* 2) see if profile is reduced */ 3726 if (flags == 0) 3727 return !extended; /* "0" is valid for usual profiles */ 3728 3729 /* true if exactly one bit set */ 3730 return (flags & (flags - 1)) == 0; 3731 } 3732 3733 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3734 { 3735 /* cancel requested || normal exit path */ 3736 return atomic_read(&fs_info->balance_cancel_req) || 3737 (atomic_read(&fs_info->balance_pause_req) == 0 && 3738 atomic_read(&fs_info->balance_cancel_req) == 0); 3739 } 3740 3741 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3742 { 3743 int ret; 3744 3745 unset_balance_control(fs_info); 3746 ret = del_balance_item(fs_info); 3747 if (ret) 3748 btrfs_handle_fs_error(fs_info, ret, NULL); 3749 3750 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3751 } 3752 3753 /* Non-zero return value signifies invalidity */ 3754 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3755 u64 allowed) 3756 { 3757 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3758 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3759 (bctl_arg->target & ~allowed))); 3760 } 3761 3762 /* 3763 * Should be called with both balance and volume mutexes held 3764 */ 3765 int btrfs_balance(struct btrfs_balance_control *bctl, 3766 struct btrfs_ioctl_balance_args *bargs) 3767 { 3768 struct btrfs_fs_info *fs_info = bctl->fs_info; 3769 u64 meta_target, data_target; 3770 u64 allowed; 3771 int mixed = 0; 3772 int ret; 3773 u64 num_devices; 3774 unsigned seq; 3775 3776 if (btrfs_fs_closing(fs_info) || 3777 atomic_read(&fs_info->balance_pause_req) || 3778 atomic_read(&fs_info->balance_cancel_req)) { 3779 ret = -EINVAL; 3780 goto out; 3781 } 3782 3783 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3784 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3785 mixed = 1; 3786 3787 /* 3788 * In case of mixed groups both data and meta should be picked, 3789 * and identical options should be given for both of them. 3790 */ 3791 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3792 if (mixed && (bctl->flags & allowed)) { 3793 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3794 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3795 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3796 btrfs_err(fs_info, 3797 "with mixed groups data and metadata balance options must be the same"); 3798 ret = -EINVAL; 3799 goto out; 3800 } 3801 } 3802 3803 num_devices = fs_info->fs_devices->num_devices; 3804 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 3805 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3806 BUG_ON(num_devices < 1); 3807 num_devices--; 3808 } 3809 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 3810 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP; 3811 if (num_devices > 1) 3812 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3813 if (num_devices > 2) 3814 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3815 if (num_devices > 3) 3816 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3817 BTRFS_BLOCK_GROUP_RAID6); 3818 if (validate_convert_profile(&bctl->data, allowed)) { 3819 btrfs_err(fs_info, 3820 "unable to start balance with target data profile %llu", 3821 bctl->data.target); 3822 ret = -EINVAL; 3823 goto out; 3824 } 3825 if (validate_convert_profile(&bctl->meta, allowed)) { 3826 btrfs_err(fs_info, 3827 "unable to start balance with target metadata profile %llu", 3828 bctl->meta.target); 3829 ret = -EINVAL; 3830 goto out; 3831 } 3832 if (validate_convert_profile(&bctl->sys, allowed)) { 3833 btrfs_err(fs_info, 3834 "unable to start balance with target system profile %llu", 3835 bctl->sys.target); 3836 ret = -EINVAL; 3837 goto out; 3838 } 3839 3840 /* allow to reduce meta or sys integrity only if force set */ 3841 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3842 BTRFS_BLOCK_GROUP_RAID10 | 3843 BTRFS_BLOCK_GROUP_RAID5 | 3844 BTRFS_BLOCK_GROUP_RAID6; 3845 do { 3846 seq = read_seqbegin(&fs_info->profiles_lock); 3847 3848 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3849 (fs_info->avail_system_alloc_bits & allowed) && 3850 !(bctl->sys.target & allowed)) || 3851 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3852 (fs_info->avail_metadata_alloc_bits & allowed) && 3853 !(bctl->meta.target & allowed))) { 3854 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3855 btrfs_info(fs_info, 3856 "force reducing metadata integrity"); 3857 } else { 3858 btrfs_err(fs_info, 3859 "balance will reduce metadata integrity, use force if you want this"); 3860 ret = -EINVAL; 3861 goto out; 3862 } 3863 } 3864 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3865 3866 /* if we're not converting, the target field is uninitialized */ 3867 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 3868 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 3869 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 3870 bctl->data.target : fs_info->avail_data_alloc_bits; 3871 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 3872 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 3873 btrfs_warn(fs_info, 3874 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx", 3875 meta_target, data_target); 3876 } 3877 3878 ret = insert_balance_item(fs_info, bctl); 3879 if (ret && ret != -EEXIST) 3880 goto out; 3881 3882 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3883 BUG_ON(ret == -EEXIST); 3884 set_balance_control(bctl); 3885 } else { 3886 BUG_ON(ret != -EEXIST); 3887 spin_lock(&fs_info->balance_lock); 3888 update_balance_args(bctl); 3889 spin_unlock(&fs_info->balance_lock); 3890 } 3891 3892 atomic_inc(&fs_info->balance_running); 3893 mutex_unlock(&fs_info->balance_mutex); 3894 3895 ret = __btrfs_balance(fs_info); 3896 3897 mutex_lock(&fs_info->balance_mutex); 3898 atomic_dec(&fs_info->balance_running); 3899 3900 if (bargs) { 3901 memset(bargs, 0, sizeof(*bargs)); 3902 update_ioctl_balance_args(fs_info, 0, bargs); 3903 } 3904 3905 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3906 balance_need_close(fs_info)) { 3907 __cancel_balance(fs_info); 3908 } 3909 3910 wake_up(&fs_info->balance_wait_q); 3911 3912 return ret; 3913 out: 3914 if (bctl->flags & BTRFS_BALANCE_RESUME) 3915 __cancel_balance(fs_info); 3916 else { 3917 kfree(bctl); 3918 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3919 } 3920 return ret; 3921 } 3922 3923 static int balance_kthread(void *data) 3924 { 3925 struct btrfs_fs_info *fs_info = data; 3926 int ret = 0; 3927 3928 mutex_lock(&fs_info->volume_mutex); 3929 mutex_lock(&fs_info->balance_mutex); 3930 3931 if (fs_info->balance_ctl) { 3932 btrfs_info(fs_info, "continuing balance"); 3933 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3934 } 3935 3936 mutex_unlock(&fs_info->balance_mutex); 3937 mutex_unlock(&fs_info->volume_mutex); 3938 3939 return ret; 3940 } 3941 3942 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3943 { 3944 struct task_struct *tsk; 3945 3946 spin_lock(&fs_info->balance_lock); 3947 if (!fs_info->balance_ctl) { 3948 spin_unlock(&fs_info->balance_lock); 3949 return 0; 3950 } 3951 spin_unlock(&fs_info->balance_lock); 3952 3953 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 3954 btrfs_info(fs_info, "force skipping balance"); 3955 return 0; 3956 } 3957 3958 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3959 return PTR_ERR_OR_ZERO(tsk); 3960 } 3961 3962 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3963 { 3964 struct btrfs_balance_control *bctl; 3965 struct btrfs_balance_item *item; 3966 struct btrfs_disk_balance_args disk_bargs; 3967 struct btrfs_path *path; 3968 struct extent_buffer *leaf; 3969 struct btrfs_key key; 3970 int ret; 3971 3972 path = btrfs_alloc_path(); 3973 if (!path) 3974 return -ENOMEM; 3975 3976 key.objectid = BTRFS_BALANCE_OBJECTID; 3977 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3978 key.offset = 0; 3979 3980 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3981 if (ret < 0) 3982 goto out; 3983 if (ret > 0) { /* ret = -ENOENT; */ 3984 ret = 0; 3985 goto out; 3986 } 3987 3988 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3989 if (!bctl) { 3990 ret = -ENOMEM; 3991 goto out; 3992 } 3993 3994 leaf = path->nodes[0]; 3995 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3996 3997 bctl->fs_info = fs_info; 3998 bctl->flags = btrfs_balance_flags(leaf, item); 3999 bctl->flags |= BTRFS_BALANCE_RESUME; 4000 4001 btrfs_balance_data(leaf, item, &disk_bargs); 4002 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4003 btrfs_balance_meta(leaf, item, &disk_bargs); 4004 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4005 btrfs_balance_sys(leaf, item, &disk_bargs); 4006 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4007 4008 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4009 4010 mutex_lock(&fs_info->volume_mutex); 4011 mutex_lock(&fs_info->balance_mutex); 4012 4013 set_balance_control(bctl); 4014 4015 mutex_unlock(&fs_info->balance_mutex); 4016 mutex_unlock(&fs_info->volume_mutex); 4017 out: 4018 btrfs_free_path(path); 4019 return ret; 4020 } 4021 4022 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4023 { 4024 int ret = 0; 4025 4026 mutex_lock(&fs_info->balance_mutex); 4027 if (!fs_info->balance_ctl) { 4028 mutex_unlock(&fs_info->balance_mutex); 4029 return -ENOTCONN; 4030 } 4031 4032 if (atomic_read(&fs_info->balance_running)) { 4033 atomic_inc(&fs_info->balance_pause_req); 4034 mutex_unlock(&fs_info->balance_mutex); 4035 4036 wait_event(fs_info->balance_wait_q, 4037 atomic_read(&fs_info->balance_running) == 0); 4038 4039 mutex_lock(&fs_info->balance_mutex); 4040 /* we are good with balance_ctl ripped off from under us */ 4041 BUG_ON(atomic_read(&fs_info->balance_running)); 4042 atomic_dec(&fs_info->balance_pause_req); 4043 } else { 4044 ret = -ENOTCONN; 4045 } 4046 4047 mutex_unlock(&fs_info->balance_mutex); 4048 return ret; 4049 } 4050 4051 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4052 { 4053 if (sb_rdonly(fs_info->sb)) 4054 return -EROFS; 4055 4056 mutex_lock(&fs_info->balance_mutex); 4057 if (!fs_info->balance_ctl) { 4058 mutex_unlock(&fs_info->balance_mutex); 4059 return -ENOTCONN; 4060 } 4061 4062 atomic_inc(&fs_info->balance_cancel_req); 4063 /* 4064 * if we are running just wait and return, balance item is 4065 * deleted in btrfs_balance in this case 4066 */ 4067 if (atomic_read(&fs_info->balance_running)) { 4068 mutex_unlock(&fs_info->balance_mutex); 4069 wait_event(fs_info->balance_wait_q, 4070 atomic_read(&fs_info->balance_running) == 0); 4071 mutex_lock(&fs_info->balance_mutex); 4072 } else { 4073 /* __cancel_balance needs volume_mutex */ 4074 mutex_unlock(&fs_info->balance_mutex); 4075 mutex_lock(&fs_info->volume_mutex); 4076 mutex_lock(&fs_info->balance_mutex); 4077 4078 if (fs_info->balance_ctl) 4079 __cancel_balance(fs_info); 4080 4081 mutex_unlock(&fs_info->volume_mutex); 4082 } 4083 4084 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 4085 atomic_dec(&fs_info->balance_cancel_req); 4086 mutex_unlock(&fs_info->balance_mutex); 4087 return 0; 4088 } 4089 4090 static int btrfs_uuid_scan_kthread(void *data) 4091 { 4092 struct btrfs_fs_info *fs_info = data; 4093 struct btrfs_root *root = fs_info->tree_root; 4094 struct btrfs_key key; 4095 struct btrfs_path *path = NULL; 4096 int ret = 0; 4097 struct extent_buffer *eb; 4098 int slot; 4099 struct btrfs_root_item root_item; 4100 u32 item_size; 4101 struct btrfs_trans_handle *trans = NULL; 4102 4103 path = btrfs_alloc_path(); 4104 if (!path) { 4105 ret = -ENOMEM; 4106 goto out; 4107 } 4108 4109 key.objectid = 0; 4110 key.type = BTRFS_ROOT_ITEM_KEY; 4111 key.offset = 0; 4112 4113 while (1) { 4114 ret = btrfs_search_forward(root, &key, path, 0); 4115 if (ret) { 4116 if (ret > 0) 4117 ret = 0; 4118 break; 4119 } 4120 4121 if (key.type != BTRFS_ROOT_ITEM_KEY || 4122 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4123 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4124 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4125 goto skip; 4126 4127 eb = path->nodes[0]; 4128 slot = path->slots[0]; 4129 item_size = btrfs_item_size_nr(eb, slot); 4130 if (item_size < sizeof(root_item)) 4131 goto skip; 4132 4133 read_extent_buffer(eb, &root_item, 4134 btrfs_item_ptr_offset(eb, slot), 4135 (int)sizeof(root_item)); 4136 if (btrfs_root_refs(&root_item) == 0) 4137 goto skip; 4138 4139 if (!btrfs_is_empty_uuid(root_item.uuid) || 4140 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4141 if (trans) 4142 goto update_tree; 4143 4144 btrfs_release_path(path); 4145 /* 4146 * 1 - subvol uuid item 4147 * 1 - received_subvol uuid item 4148 */ 4149 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4150 if (IS_ERR(trans)) { 4151 ret = PTR_ERR(trans); 4152 break; 4153 } 4154 continue; 4155 } else { 4156 goto skip; 4157 } 4158 update_tree: 4159 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4160 ret = btrfs_uuid_tree_add(trans, fs_info, 4161 root_item.uuid, 4162 BTRFS_UUID_KEY_SUBVOL, 4163 key.objectid); 4164 if (ret < 0) { 4165 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4166 ret); 4167 break; 4168 } 4169 } 4170 4171 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4172 ret = btrfs_uuid_tree_add(trans, fs_info, 4173 root_item.received_uuid, 4174 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4175 key.objectid); 4176 if (ret < 0) { 4177 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4178 ret); 4179 break; 4180 } 4181 } 4182 4183 skip: 4184 if (trans) { 4185 ret = btrfs_end_transaction(trans); 4186 trans = NULL; 4187 if (ret) 4188 break; 4189 } 4190 4191 btrfs_release_path(path); 4192 if (key.offset < (u64)-1) { 4193 key.offset++; 4194 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4195 key.offset = 0; 4196 key.type = BTRFS_ROOT_ITEM_KEY; 4197 } else if (key.objectid < (u64)-1) { 4198 key.offset = 0; 4199 key.type = BTRFS_ROOT_ITEM_KEY; 4200 key.objectid++; 4201 } else { 4202 break; 4203 } 4204 cond_resched(); 4205 } 4206 4207 out: 4208 btrfs_free_path(path); 4209 if (trans && !IS_ERR(trans)) 4210 btrfs_end_transaction(trans); 4211 if (ret) 4212 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4213 else 4214 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4215 up(&fs_info->uuid_tree_rescan_sem); 4216 return 0; 4217 } 4218 4219 /* 4220 * Callback for btrfs_uuid_tree_iterate(). 4221 * returns: 4222 * 0 check succeeded, the entry is not outdated. 4223 * < 0 if an error occurred. 4224 * > 0 if the check failed, which means the caller shall remove the entry. 4225 */ 4226 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4227 u8 *uuid, u8 type, u64 subid) 4228 { 4229 struct btrfs_key key; 4230 int ret = 0; 4231 struct btrfs_root *subvol_root; 4232 4233 if (type != BTRFS_UUID_KEY_SUBVOL && 4234 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4235 goto out; 4236 4237 key.objectid = subid; 4238 key.type = BTRFS_ROOT_ITEM_KEY; 4239 key.offset = (u64)-1; 4240 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4241 if (IS_ERR(subvol_root)) { 4242 ret = PTR_ERR(subvol_root); 4243 if (ret == -ENOENT) 4244 ret = 1; 4245 goto out; 4246 } 4247 4248 switch (type) { 4249 case BTRFS_UUID_KEY_SUBVOL: 4250 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4251 ret = 1; 4252 break; 4253 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4254 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4255 BTRFS_UUID_SIZE)) 4256 ret = 1; 4257 break; 4258 } 4259 4260 out: 4261 return ret; 4262 } 4263 4264 static int btrfs_uuid_rescan_kthread(void *data) 4265 { 4266 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4267 int ret; 4268 4269 /* 4270 * 1st step is to iterate through the existing UUID tree and 4271 * to delete all entries that contain outdated data. 4272 * 2nd step is to add all missing entries to the UUID tree. 4273 */ 4274 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4275 if (ret < 0) { 4276 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4277 up(&fs_info->uuid_tree_rescan_sem); 4278 return ret; 4279 } 4280 return btrfs_uuid_scan_kthread(data); 4281 } 4282 4283 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4284 { 4285 struct btrfs_trans_handle *trans; 4286 struct btrfs_root *tree_root = fs_info->tree_root; 4287 struct btrfs_root *uuid_root; 4288 struct task_struct *task; 4289 int ret; 4290 4291 /* 4292 * 1 - root node 4293 * 1 - root item 4294 */ 4295 trans = btrfs_start_transaction(tree_root, 2); 4296 if (IS_ERR(trans)) 4297 return PTR_ERR(trans); 4298 4299 uuid_root = btrfs_create_tree(trans, fs_info, 4300 BTRFS_UUID_TREE_OBJECTID); 4301 if (IS_ERR(uuid_root)) { 4302 ret = PTR_ERR(uuid_root); 4303 btrfs_abort_transaction(trans, ret); 4304 btrfs_end_transaction(trans); 4305 return ret; 4306 } 4307 4308 fs_info->uuid_root = uuid_root; 4309 4310 ret = btrfs_commit_transaction(trans); 4311 if (ret) 4312 return ret; 4313 4314 down(&fs_info->uuid_tree_rescan_sem); 4315 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4316 if (IS_ERR(task)) { 4317 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4318 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4319 up(&fs_info->uuid_tree_rescan_sem); 4320 return PTR_ERR(task); 4321 } 4322 4323 return 0; 4324 } 4325 4326 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4327 { 4328 struct task_struct *task; 4329 4330 down(&fs_info->uuid_tree_rescan_sem); 4331 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4332 if (IS_ERR(task)) { 4333 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4334 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4335 up(&fs_info->uuid_tree_rescan_sem); 4336 return PTR_ERR(task); 4337 } 4338 4339 return 0; 4340 } 4341 4342 /* 4343 * shrinking a device means finding all of the device extents past 4344 * the new size, and then following the back refs to the chunks. 4345 * The chunk relocation code actually frees the device extent 4346 */ 4347 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4348 { 4349 struct btrfs_fs_info *fs_info = device->fs_info; 4350 struct btrfs_root *root = fs_info->dev_root; 4351 struct btrfs_trans_handle *trans; 4352 struct btrfs_dev_extent *dev_extent = NULL; 4353 struct btrfs_path *path; 4354 u64 length; 4355 u64 chunk_offset; 4356 int ret; 4357 int slot; 4358 int failed = 0; 4359 bool retried = false; 4360 bool checked_pending_chunks = false; 4361 struct extent_buffer *l; 4362 struct btrfs_key key; 4363 struct btrfs_super_block *super_copy = fs_info->super_copy; 4364 u64 old_total = btrfs_super_total_bytes(super_copy); 4365 u64 old_size = btrfs_device_get_total_bytes(device); 4366 u64 diff; 4367 4368 new_size = round_down(new_size, fs_info->sectorsize); 4369 diff = round_down(old_size - new_size, fs_info->sectorsize); 4370 4371 if (device->is_tgtdev_for_dev_replace) 4372 return -EINVAL; 4373 4374 path = btrfs_alloc_path(); 4375 if (!path) 4376 return -ENOMEM; 4377 4378 path->reada = READA_FORWARD; 4379 4380 mutex_lock(&fs_info->chunk_mutex); 4381 4382 btrfs_device_set_total_bytes(device, new_size); 4383 if (device->writeable) { 4384 device->fs_devices->total_rw_bytes -= diff; 4385 atomic64_sub(diff, &fs_info->free_chunk_space); 4386 } 4387 mutex_unlock(&fs_info->chunk_mutex); 4388 4389 again: 4390 key.objectid = device->devid; 4391 key.offset = (u64)-1; 4392 key.type = BTRFS_DEV_EXTENT_KEY; 4393 4394 do { 4395 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4396 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4397 if (ret < 0) { 4398 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4399 goto done; 4400 } 4401 4402 ret = btrfs_previous_item(root, path, 0, key.type); 4403 if (ret) 4404 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4405 if (ret < 0) 4406 goto done; 4407 if (ret) { 4408 ret = 0; 4409 btrfs_release_path(path); 4410 break; 4411 } 4412 4413 l = path->nodes[0]; 4414 slot = path->slots[0]; 4415 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4416 4417 if (key.objectid != device->devid) { 4418 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4419 btrfs_release_path(path); 4420 break; 4421 } 4422 4423 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4424 length = btrfs_dev_extent_length(l, dev_extent); 4425 4426 if (key.offset + length <= new_size) { 4427 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4428 btrfs_release_path(path); 4429 break; 4430 } 4431 4432 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4433 btrfs_release_path(path); 4434 4435 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4436 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4437 if (ret && ret != -ENOSPC) 4438 goto done; 4439 if (ret == -ENOSPC) 4440 failed++; 4441 } while (key.offset-- > 0); 4442 4443 if (failed && !retried) { 4444 failed = 0; 4445 retried = true; 4446 goto again; 4447 } else if (failed && retried) { 4448 ret = -ENOSPC; 4449 goto done; 4450 } 4451 4452 /* Shrinking succeeded, else we would be at "done". */ 4453 trans = btrfs_start_transaction(root, 0); 4454 if (IS_ERR(trans)) { 4455 ret = PTR_ERR(trans); 4456 goto done; 4457 } 4458 4459 mutex_lock(&fs_info->chunk_mutex); 4460 4461 /* 4462 * We checked in the above loop all device extents that were already in 4463 * the device tree. However before we have updated the device's 4464 * total_bytes to the new size, we might have had chunk allocations that 4465 * have not complete yet (new block groups attached to transaction 4466 * handles), and therefore their device extents were not yet in the 4467 * device tree and we missed them in the loop above. So if we have any 4468 * pending chunk using a device extent that overlaps the device range 4469 * that we can not use anymore, commit the current transaction and 4470 * repeat the search on the device tree - this way we guarantee we will 4471 * not have chunks using device extents that end beyond 'new_size'. 4472 */ 4473 if (!checked_pending_chunks) { 4474 u64 start = new_size; 4475 u64 len = old_size - new_size; 4476 4477 if (contains_pending_extent(trans->transaction, device, 4478 &start, len)) { 4479 mutex_unlock(&fs_info->chunk_mutex); 4480 checked_pending_chunks = true; 4481 failed = 0; 4482 retried = false; 4483 ret = btrfs_commit_transaction(trans); 4484 if (ret) 4485 goto done; 4486 goto again; 4487 } 4488 } 4489 4490 btrfs_device_set_disk_total_bytes(device, new_size); 4491 if (list_empty(&device->resized_list)) 4492 list_add_tail(&device->resized_list, 4493 &fs_info->fs_devices->resized_devices); 4494 4495 WARN_ON(diff > old_total); 4496 btrfs_set_super_total_bytes(super_copy, 4497 round_down(old_total - diff, fs_info->sectorsize)); 4498 mutex_unlock(&fs_info->chunk_mutex); 4499 4500 /* Now btrfs_update_device() will change the on-disk size. */ 4501 ret = btrfs_update_device(trans, device); 4502 btrfs_end_transaction(trans); 4503 done: 4504 btrfs_free_path(path); 4505 if (ret) { 4506 mutex_lock(&fs_info->chunk_mutex); 4507 btrfs_device_set_total_bytes(device, old_size); 4508 if (device->writeable) 4509 device->fs_devices->total_rw_bytes += diff; 4510 atomic64_add(diff, &fs_info->free_chunk_space); 4511 mutex_unlock(&fs_info->chunk_mutex); 4512 } 4513 return ret; 4514 } 4515 4516 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4517 struct btrfs_key *key, 4518 struct btrfs_chunk *chunk, int item_size) 4519 { 4520 struct btrfs_super_block *super_copy = fs_info->super_copy; 4521 struct btrfs_disk_key disk_key; 4522 u32 array_size; 4523 u8 *ptr; 4524 4525 mutex_lock(&fs_info->chunk_mutex); 4526 array_size = btrfs_super_sys_array_size(super_copy); 4527 if (array_size + item_size + sizeof(disk_key) 4528 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4529 mutex_unlock(&fs_info->chunk_mutex); 4530 return -EFBIG; 4531 } 4532 4533 ptr = super_copy->sys_chunk_array + array_size; 4534 btrfs_cpu_key_to_disk(&disk_key, key); 4535 memcpy(ptr, &disk_key, sizeof(disk_key)); 4536 ptr += sizeof(disk_key); 4537 memcpy(ptr, chunk, item_size); 4538 item_size += sizeof(disk_key); 4539 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4540 mutex_unlock(&fs_info->chunk_mutex); 4541 4542 return 0; 4543 } 4544 4545 /* 4546 * sort the devices in descending order by max_avail, total_avail 4547 */ 4548 static int btrfs_cmp_device_info(const void *a, const void *b) 4549 { 4550 const struct btrfs_device_info *di_a = a; 4551 const struct btrfs_device_info *di_b = b; 4552 4553 if (di_a->max_avail > di_b->max_avail) 4554 return -1; 4555 if (di_a->max_avail < di_b->max_avail) 4556 return 1; 4557 if (di_a->total_avail > di_b->total_avail) 4558 return -1; 4559 if (di_a->total_avail < di_b->total_avail) 4560 return 1; 4561 return 0; 4562 } 4563 4564 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4565 { 4566 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4567 return; 4568 4569 btrfs_set_fs_incompat(info, RAID56); 4570 } 4571 4572 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \ 4573 - sizeof(struct btrfs_chunk)) \ 4574 / sizeof(struct btrfs_stripe) + 1) 4575 4576 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4577 - 2 * sizeof(struct btrfs_disk_key) \ 4578 - 2 * sizeof(struct btrfs_chunk)) \ 4579 / sizeof(struct btrfs_stripe) + 1) 4580 4581 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4582 u64 start, u64 type) 4583 { 4584 struct btrfs_fs_info *info = trans->fs_info; 4585 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4586 struct btrfs_device *device; 4587 struct map_lookup *map = NULL; 4588 struct extent_map_tree *em_tree; 4589 struct extent_map *em; 4590 struct btrfs_device_info *devices_info = NULL; 4591 u64 total_avail; 4592 int num_stripes; /* total number of stripes to allocate */ 4593 int data_stripes; /* number of stripes that count for 4594 block group size */ 4595 int sub_stripes; /* sub_stripes info for map */ 4596 int dev_stripes; /* stripes per dev */ 4597 int devs_max; /* max devs to use */ 4598 int devs_min; /* min devs needed */ 4599 int devs_increment; /* ndevs has to be a multiple of this */ 4600 int ncopies; /* how many copies to data has */ 4601 int ret; 4602 u64 max_stripe_size; 4603 u64 max_chunk_size; 4604 u64 stripe_size; 4605 u64 num_bytes; 4606 int ndevs; 4607 int i; 4608 int j; 4609 int index; 4610 4611 BUG_ON(!alloc_profile_is_valid(type, 0)); 4612 4613 if (list_empty(&fs_devices->alloc_list)) 4614 return -ENOSPC; 4615 4616 index = __get_raid_index(type); 4617 4618 sub_stripes = btrfs_raid_array[index].sub_stripes; 4619 dev_stripes = btrfs_raid_array[index].dev_stripes; 4620 devs_max = btrfs_raid_array[index].devs_max; 4621 devs_min = btrfs_raid_array[index].devs_min; 4622 devs_increment = btrfs_raid_array[index].devs_increment; 4623 ncopies = btrfs_raid_array[index].ncopies; 4624 4625 if (type & BTRFS_BLOCK_GROUP_DATA) { 4626 max_stripe_size = SZ_1G; 4627 max_chunk_size = 10 * max_stripe_size; 4628 if (!devs_max) 4629 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4630 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4631 /* for larger filesystems, use larger metadata chunks */ 4632 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4633 max_stripe_size = SZ_1G; 4634 else 4635 max_stripe_size = SZ_256M; 4636 max_chunk_size = max_stripe_size; 4637 if (!devs_max) 4638 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4639 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4640 max_stripe_size = SZ_32M; 4641 max_chunk_size = 2 * max_stripe_size; 4642 if (!devs_max) 4643 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4644 } else { 4645 btrfs_err(info, "invalid chunk type 0x%llx requested", 4646 type); 4647 BUG_ON(1); 4648 } 4649 4650 /* we don't want a chunk larger than 10% of writeable space */ 4651 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4652 max_chunk_size); 4653 4654 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4655 GFP_NOFS); 4656 if (!devices_info) 4657 return -ENOMEM; 4658 4659 /* 4660 * in the first pass through the devices list, we gather information 4661 * about the available holes on each device. 4662 */ 4663 ndevs = 0; 4664 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 4665 u64 max_avail; 4666 u64 dev_offset; 4667 4668 if (!device->writeable) { 4669 WARN(1, KERN_ERR 4670 "BTRFS: read-only device in alloc_list\n"); 4671 continue; 4672 } 4673 4674 if (!device->in_fs_metadata || 4675 device->is_tgtdev_for_dev_replace) 4676 continue; 4677 4678 if (device->total_bytes > device->bytes_used) 4679 total_avail = device->total_bytes - device->bytes_used; 4680 else 4681 total_avail = 0; 4682 4683 /* If there is no space on this device, skip it. */ 4684 if (total_avail == 0) 4685 continue; 4686 4687 ret = find_free_dev_extent(trans, device, 4688 max_stripe_size * dev_stripes, 4689 &dev_offset, &max_avail); 4690 if (ret && ret != -ENOSPC) 4691 goto error; 4692 4693 if (ret == 0) 4694 max_avail = max_stripe_size * dev_stripes; 4695 4696 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4697 continue; 4698 4699 if (ndevs == fs_devices->rw_devices) { 4700 WARN(1, "%s: found more than %llu devices\n", 4701 __func__, fs_devices->rw_devices); 4702 break; 4703 } 4704 devices_info[ndevs].dev_offset = dev_offset; 4705 devices_info[ndevs].max_avail = max_avail; 4706 devices_info[ndevs].total_avail = total_avail; 4707 devices_info[ndevs].dev = device; 4708 ++ndevs; 4709 } 4710 4711 /* 4712 * now sort the devices by hole size / available space 4713 */ 4714 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4715 btrfs_cmp_device_info, NULL); 4716 4717 /* round down to number of usable stripes */ 4718 ndevs = round_down(ndevs, devs_increment); 4719 4720 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4721 ret = -ENOSPC; 4722 goto error; 4723 } 4724 4725 ndevs = min(ndevs, devs_max); 4726 4727 /* 4728 * the primary goal is to maximize the number of stripes, so use as many 4729 * devices as possible, even if the stripes are not maximum sized. 4730 */ 4731 stripe_size = devices_info[ndevs-1].max_avail; 4732 num_stripes = ndevs * dev_stripes; 4733 4734 /* 4735 * this will have to be fixed for RAID1 and RAID10 over 4736 * more drives 4737 */ 4738 data_stripes = num_stripes / ncopies; 4739 4740 if (type & BTRFS_BLOCK_GROUP_RAID5) 4741 data_stripes = num_stripes - 1; 4742 4743 if (type & BTRFS_BLOCK_GROUP_RAID6) 4744 data_stripes = num_stripes - 2; 4745 4746 /* 4747 * Use the number of data stripes to figure out how big this chunk 4748 * is really going to be in terms of logical address space, 4749 * and compare that answer with the max chunk size 4750 */ 4751 if (stripe_size * data_stripes > max_chunk_size) { 4752 u64 mask = (1ULL << 24) - 1; 4753 4754 stripe_size = div_u64(max_chunk_size, data_stripes); 4755 4756 /* bump the answer up to a 16MB boundary */ 4757 stripe_size = (stripe_size + mask) & ~mask; 4758 4759 /* but don't go higher than the limits we found 4760 * while searching for free extents 4761 */ 4762 if (stripe_size > devices_info[ndevs-1].max_avail) 4763 stripe_size = devices_info[ndevs-1].max_avail; 4764 } 4765 4766 stripe_size = div_u64(stripe_size, dev_stripes); 4767 4768 /* align to BTRFS_STRIPE_LEN */ 4769 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN); 4770 4771 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4772 if (!map) { 4773 ret = -ENOMEM; 4774 goto error; 4775 } 4776 map->num_stripes = num_stripes; 4777 4778 for (i = 0; i < ndevs; ++i) { 4779 for (j = 0; j < dev_stripes; ++j) { 4780 int s = i * dev_stripes + j; 4781 map->stripes[s].dev = devices_info[i].dev; 4782 map->stripes[s].physical = devices_info[i].dev_offset + 4783 j * stripe_size; 4784 } 4785 } 4786 map->stripe_len = BTRFS_STRIPE_LEN; 4787 map->io_align = BTRFS_STRIPE_LEN; 4788 map->io_width = BTRFS_STRIPE_LEN; 4789 map->type = type; 4790 map->sub_stripes = sub_stripes; 4791 4792 num_bytes = stripe_size * data_stripes; 4793 4794 trace_btrfs_chunk_alloc(info, map, start, num_bytes); 4795 4796 em = alloc_extent_map(); 4797 if (!em) { 4798 kfree(map); 4799 ret = -ENOMEM; 4800 goto error; 4801 } 4802 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4803 em->map_lookup = map; 4804 em->start = start; 4805 em->len = num_bytes; 4806 em->block_start = 0; 4807 em->block_len = em->len; 4808 em->orig_block_len = stripe_size; 4809 4810 em_tree = &info->mapping_tree.map_tree; 4811 write_lock(&em_tree->lock); 4812 ret = add_extent_mapping(em_tree, em, 0); 4813 if (ret) { 4814 write_unlock(&em_tree->lock); 4815 free_extent_map(em); 4816 goto error; 4817 } 4818 4819 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4820 refcount_inc(&em->refs); 4821 write_unlock(&em_tree->lock); 4822 4823 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes); 4824 if (ret) 4825 goto error_del_extent; 4826 4827 for (i = 0; i < map->num_stripes; i++) { 4828 num_bytes = map->stripes[i].dev->bytes_used + stripe_size; 4829 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); 4830 } 4831 4832 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space); 4833 4834 free_extent_map(em); 4835 check_raid56_incompat_flag(info, type); 4836 4837 kfree(devices_info); 4838 return 0; 4839 4840 error_del_extent: 4841 write_lock(&em_tree->lock); 4842 remove_extent_mapping(em_tree, em); 4843 write_unlock(&em_tree->lock); 4844 4845 /* One for our allocation */ 4846 free_extent_map(em); 4847 /* One for the tree reference */ 4848 free_extent_map(em); 4849 /* One for the pending_chunks list reference */ 4850 free_extent_map(em); 4851 error: 4852 kfree(devices_info); 4853 return ret; 4854 } 4855 4856 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4857 struct btrfs_fs_info *fs_info, 4858 u64 chunk_offset, u64 chunk_size) 4859 { 4860 struct btrfs_root *extent_root = fs_info->extent_root; 4861 struct btrfs_root *chunk_root = fs_info->chunk_root; 4862 struct btrfs_key key; 4863 struct btrfs_device *device; 4864 struct btrfs_chunk *chunk; 4865 struct btrfs_stripe *stripe; 4866 struct extent_map *em; 4867 struct map_lookup *map; 4868 size_t item_size; 4869 u64 dev_offset; 4870 u64 stripe_size; 4871 int i = 0; 4872 int ret = 0; 4873 4874 em = get_chunk_map(fs_info, chunk_offset, chunk_size); 4875 if (IS_ERR(em)) 4876 return PTR_ERR(em); 4877 4878 map = em->map_lookup; 4879 item_size = btrfs_chunk_item_size(map->num_stripes); 4880 stripe_size = em->orig_block_len; 4881 4882 chunk = kzalloc(item_size, GFP_NOFS); 4883 if (!chunk) { 4884 ret = -ENOMEM; 4885 goto out; 4886 } 4887 4888 /* 4889 * Take the device list mutex to prevent races with the final phase of 4890 * a device replace operation that replaces the device object associated 4891 * with the map's stripes, because the device object's id can change 4892 * at any time during that final phase of the device replace operation 4893 * (dev-replace.c:btrfs_dev_replace_finishing()). 4894 */ 4895 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4896 for (i = 0; i < map->num_stripes; i++) { 4897 device = map->stripes[i].dev; 4898 dev_offset = map->stripes[i].physical; 4899 4900 ret = btrfs_update_device(trans, device); 4901 if (ret) 4902 break; 4903 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 4904 dev_offset, stripe_size); 4905 if (ret) 4906 break; 4907 } 4908 if (ret) { 4909 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4910 goto out; 4911 } 4912 4913 stripe = &chunk->stripe; 4914 for (i = 0; i < map->num_stripes; i++) { 4915 device = map->stripes[i].dev; 4916 dev_offset = map->stripes[i].physical; 4917 4918 btrfs_set_stack_stripe_devid(stripe, device->devid); 4919 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4920 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4921 stripe++; 4922 } 4923 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4924 4925 btrfs_set_stack_chunk_length(chunk, chunk_size); 4926 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4927 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4928 btrfs_set_stack_chunk_type(chunk, map->type); 4929 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4930 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4931 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4932 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 4933 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4934 4935 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4936 key.type = BTRFS_CHUNK_ITEM_KEY; 4937 key.offset = chunk_offset; 4938 4939 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4940 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4941 /* 4942 * TODO: Cleanup of inserted chunk root in case of 4943 * failure. 4944 */ 4945 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 4946 } 4947 4948 out: 4949 kfree(chunk); 4950 free_extent_map(em); 4951 return ret; 4952 } 4953 4954 /* 4955 * Chunk allocation falls into two parts. The first part does works 4956 * that make the new allocated chunk useable, but not do any operation 4957 * that modifies the chunk tree. The second part does the works that 4958 * require modifying the chunk tree. This division is important for the 4959 * bootstrap process of adding storage to a seed btrfs. 4960 */ 4961 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4962 struct btrfs_fs_info *fs_info, u64 type) 4963 { 4964 u64 chunk_offset; 4965 4966 ASSERT(mutex_is_locked(&fs_info->chunk_mutex)); 4967 chunk_offset = find_next_chunk(fs_info); 4968 return __btrfs_alloc_chunk(trans, chunk_offset, type); 4969 } 4970 4971 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 4972 struct btrfs_fs_info *fs_info) 4973 { 4974 u64 chunk_offset; 4975 u64 sys_chunk_offset; 4976 u64 alloc_profile; 4977 int ret; 4978 4979 chunk_offset = find_next_chunk(fs_info); 4980 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 4981 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile); 4982 if (ret) 4983 return ret; 4984 4985 sys_chunk_offset = find_next_chunk(fs_info); 4986 alloc_profile = btrfs_system_alloc_profile(fs_info); 4987 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile); 4988 return ret; 4989 } 4990 4991 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 4992 { 4993 int max_errors; 4994 4995 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 4996 BTRFS_BLOCK_GROUP_RAID10 | 4997 BTRFS_BLOCK_GROUP_RAID5 | 4998 BTRFS_BLOCK_GROUP_DUP)) { 4999 max_errors = 1; 5000 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 5001 max_errors = 2; 5002 } else { 5003 max_errors = 0; 5004 } 5005 5006 return max_errors; 5007 } 5008 5009 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5010 { 5011 struct extent_map *em; 5012 struct map_lookup *map; 5013 int readonly = 0; 5014 int miss_ndevs = 0; 5015 int i; 5016 5017 em = get_chunk_map(fs_info, chunk_offset, 1); 5018 if (IS_ERR(em)) 5019 return 1; 5020 5021 map = em->map_lookup; 5022 for (i = 0; i < map->num_stripes; i++) { 5023 if (map->stripes[i].dev->missing) { 5024 miss_ndevs++; 5025 continue; 5026 } 5027 5028 if (!map->stripes[i].dev->writeable) { 5029 readonly = 1; 5030 goto end; 5031 } 5032 } 5033 5034 /* 5035 * If the number of missing devices is larger than max errors, 5036 * we can not write the data into that chunk successfully, so 5037 * set it readonly. 5038 */ 5039 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5040 readonly = 1; 5041 end: 5042 free_extent_map(em); 5043 return readonly; 5044 } 5045 5046 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 5047 { 5048 extent_map_tree_init(&tree->map_tree); 5049 } 5050 5051 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 5052 { 5053 struct extent_map *em; 5054 5055 while (1) { 5056 write_lock(&tree->map_tree.lock); 5057 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 5058 if (em) 5059 remove_extent_mapping(&tree->map_tree, em); 5060 write_unlock(&tree->map_tree.lock); 5061 if (!em) 5062 break; 5063 /* once for us */ 5064 free_extent_map(em); 5065 /* once for the tree */ 5066 free_extent_map(em); 5067 } 5068 } 5069 5070 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5071 { 5072 struct extent_map *em; 5073 struct map_lookup *map; 5074 int ret; 5075 5076 em = get_chunk_map(fs_info, logical, len); 5077 if (IS_ERR(em)) 5078 /* 5079 * We could return errors for these cases, but that could get 5080 * ugly and we'd probably do the same thing which is just not do 5081 * anything else and exit, so return 1 so the callers don't try 5082 * to use other copies. 5083 */ 5084 return 1; 5085 5086 map = em->map_lookup; 5087 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 5088 ret = map->num_stripes; 5089 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5090 ret = map->sub_stripes; 5091 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5092 ret = 2; 5093 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5094 ret = 3; 5095 else 5096 ret = 1; 5097 free_extent_map(em); 5098 5099 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 5100 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5101 fs_info->dev_replace.tgtdev) 5102 ret++; 5103 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 5104 5105 return ret; 5106 } 5107 5108 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5109 u64 logical) 5110 { 5111 struct extent_map *em; 5112 struct map_lookup *map; 5113 unsigned long len = fs_info->sectorsize; 5114 5115 em = get_chunk_map(fs_info, logical, len); 5116 5117 if (!WARN_ON(IS_ERR(em))) { 5118 map = em->map_lookup; 5119 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5120 len = map->stripe_len * nr_data_stripes(map); 5121 free_extent_map(em); 5122 } 5123 return len; 5124 } 5125 5126 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5127 { 5128 struct extent_map *em; 5129 struct map_lookup *map; 5130 int ret = 0; 5131 5132 em = get_chunk_map(fs_info, logical, len); 5133 5134 if(!WARN_ON(IS_ERR(em))) { 5135 map = em->map_lookup; 5136 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5137 ret = 1; 5138 free_extent_map(em); 5139 } 5140 return ret; 5141 } 5142 5143 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5144 struct map_lookup *map, int first, int num, 5145 int optimal, int dev_replace_is_ongoing) 5146 { 5147 int i; 5148 int tolerance; 5149 struct btrfs_device *srcdev; 5150 5151 if (dev_replace_is_ongoing && 5152 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5153 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5154 srcdev = fs_info->dev_replace.srcdev; 5155 else 5156 srcdev = NULL; 5157 5158 /* 5159 * try to avoid the drive that is the source drive for a 5160 * dev-replace procedure, only choose it if no other non-missing 5161 * mirror is available 5162 */ 5163 for (tolerance = 0; tolerance < 2; tolerance++) { 5164 if (map->stripes[optimal].dev->bdev && 5165 (tolerance || map->stripes[optimal].dev != srcdev)) 5166 return optimal; 5167 for (i = first; i < first + num; i++) { 5168 if (map->stripes[i].dev->bdev && 5169 (tolerance || map->stripes[i].dev != srcdev)) 5170 return i; 5171 } 5172 } 5173 5174 /* we couldn't find one that doesn't fail. Just return something 5175 * and the io error handling code will clean up eventually 5176 */ 5177 return optimal; 5178 } 5179 5180 static inline int parity_smaller(u64 a, u64 b) 5181 { 5182 return a > b; 5183 } 5184 5185 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5186 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5187 { 5188 struct btrfs_bio_stripe s; 5189 int i; 5190 u64 l; 5191 int again = 1; 5192 5193 while (again) { 5194 again = 0; 5195 for (i = 0; i < num_stripes - 1; i++) { 5196 if (parity_smaller(bbio->raid_map[i], 5197 bbio->raid_map[i+1])) { 5198 s = bbio->stripes[i]; 5199 l = bbio->raid_map[i]; 5200 bbio->stripes[i] = bbio->stripes[i+1]; 5201 bbio->raid_map[i] = bbio->raid_map[i+1]; 5202 bbio->stripes[i+1] = s; 5203 bbio->raid_map[i+1] = l; 5204 5205 again = 1; 5206 } 5207 } 5208 } 5209 } 5210 5211 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5212 { 5213 struct btrfs_bio *bbio = kzalloc( 5214 /* the size of the btrfs_bio */ 5215 sizeof(struct btrfs_bio) + 5216 /* plus the variable array for the stripes */ 5217 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5218 /* plus the variable array for the tgt dev */ 5219 sizeof(int) * (real_stripes) + 5220 /* 5221 * plus the raid_map, which includes both the tgt dev 5222 * and the stripes 5223 */ 5224 sizeof(u64) * (total_stripes), 5225 GFP_NOFS|__GFP_NOFAIL); 5226 5227 atomic_set(&bbio->error, 0); 5228 refcount_set(&bbio->refs, 1); 5229 5230 return bbio; 5231 } 5232 5233 void btrfs_get_bbio(struct btrfs_bio *bbio) 5234 { 5235 WARN_ON(!refcount_read(&bbio->refs)); 5236 refcount_inc(&bbio->refs); 5237 } 5238 5239 void btrfs_put_bbio(struct btrfs_bio *bbio) 5240 { 5241 if (!bbio) 5242 return; 5243 if (refcount_dec_and_test(&bbio->refs)) 5244 kfree(bbio); 5245 } 5246 5247 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5248 /* 5249 * Please note that, discard won't be sent to target device of device 5250 * replace. 5251 */ 5252 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5253 u64 logical, u64 length, 5254 struct btrfs_bio **bbio_ret) 5255 { 5256 struct extent_map *em; 5257 struct map_lookup *map; 5258 struct btrfs_bio *bbio; 5259 u64 offset; 5260 u64 stripe_nr; 5261 u64 stripe_nr_end; 5262 u64 stripe_end_offset; 5263 u64 stripe_cnt; 5264 u64 stripe_len; 5265 u64 stripe_offset; 5266 u64 num_stripes; 5267 u32 stripe_index; 5268 u32 factor = 0; 5269 u32 sub_stripes = 0; 5270 u64 stripes_per_dev = 0; 5271 u32 remaining_stripes = 0; 5272 u32 last_stripe = 0; 5273 int ret = 0; 5274 int i; 5275 5276 /* discard always return a bbio */ 5277 ASSERT(bbio_ret); 5278 5279 em = get_chunk_map(fs_info, logical, length); 5280 if (IS_ERR(em)) 5281 return PTR_ERR(em); 5282 5283 map = em->map_lookup; 5284 /* we don't discard raid56 yet */ 5285 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5286 ret = -EOPNOTSUPP; 5287 goto out; 5288 } 5289 5290 offset = logical - em->start; 5291 length = min_t(u64, em->len - offset, length); 5292 5293 stripe_len = map->stripe_len; 5294 /* 5295 * stripe_nr counts the total number of stripes we have to stride 5296 * to get to this block 5297 */ 5298 stripe_nr = div64_u64(offset, stripe_len); 5299 5300 /* stripe_offset is the offset of this block in its stripe */ 5301 stripe_offset = offset - stripe_nr * stripe_len; 5302 5303 stripe_nr_end = round_up(offset + length, map->stripe_len); 5304 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5305 stripe_cnt = stripe_nr_end - stripe_nr; 5306 stripe_end_offset = stripe_nr_end * map->stripe_len - 5307 (offset + length); 5308 /* 5309 * after this, stripe_nr is the number of stripes on this 5310 * device we have to walk to find the data, and stripe_index is 5311 * the number of our device in the stripe array 5312 */ 5313 num_stripes = 1; 5314 stripe_index = 0; 5315 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5316 BTRFS_BLOCK_GROUP_RAID10)) { 5317 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5318 sub_stripes = 1; 5319 else 5320 sub_stripes = map->sub_stripes; 5321 5322 factor = map->num_stripes / sub_stripes; 5323 num_stripes = min_t(u64, map->num_stripes, 5324 sub_stripes * stripe_cnt); 5325 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5326 stripe_index *= sub_stripes; 5327 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5328 &remaining_stripes); 5329 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5330 last_stripe *= sub_stripes; 5331 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 5332 BTRFS_BLOCK_GROUP_DUP)) { 5333 num_stripes = map->num_stripes; 5334 } else { 5335 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5336 &stripe_index); 5337 } 5338 5339 bbio = alloc_btrfs_bio(num_stripes, 0); 5340 if (!bbio) { 5341 ret = -ENOMEM; 5342 goto out; 5343 } 5344 5345 for (i = 0; i < num_stripes; i++) { 5346 bbio->stripes[i].physical = 5347 map->stripes[stripe_index].physical + 5348 stripe_offset + stripe_nr * map->stripe_len; 5349 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5350 5351 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5352 BTRFS_BLOCK_GROUP_RAID10)) { 5353 bbio->stripes[i].length = stripes_per_dev * 5354 map->stripe_len; 5355 5356 if (i / sub_stripes < remaining_stripes) 5357 bbio->stripes[i].length += 5358 map->stripe_len; 5359 5360 /* 5361 * Special for the first stripe and 5362 * the last stripe: 5363 * 5364 * |-------|...|-------| 5365 * |----------| 5366 * off end_off 5367 */ 5368 if (i < sub_stripes) 5369 bbio->stripes[i].length -= 5370 stripe_offset; 5371 5372 if (stripe_index >= last_stripe && 5373 stripe_index <= (last_stripe + 5374 sub_stripes - 1)) 5375 bbio->stripes[i].length -= 5376 stripe_end_offset; 5377 5378 if (i == sub_stripes - 1) 5379 stripe_offset = 0; 5380 } else { 5381 bbio->stripes[i].length = length; 5382 } 5383 5384 stripe_index++; 5385 if (stripe_index == map->num_stripes) { 5386 stripe_index = 0; 5387 stripe_nr++; 5388 } 5389 } 5390 5391 *bbio_ret = bbio; 5392 bbio->map_type = map->type; 5393 bbio->num_stripes = num_stripes; 5394 out: 5395 free_extent_map(em); 5396 return ret; 5397 } 5398 5399 /* 5400 * In dev-replace case, for repair case (that's the only case where the mirror 5401 * is selected explicitly when calling btrfs_map_block), blocks left of the 5402 * left cursor can also be read from the target drive. 5403 * 5404 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5405 * array of stripes. 5406 * For READ, it also needs to be supported using the same mirror number. 5407 * 5408 * If the requested block is not left of the left cursor, EIO is returned. This 5409 * can happen because btrfs_num_copies() returns one more in the dev-replace 5410 * case. 5411 */ 5412 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5413 u64 logical, u64 length, 5414 u64 srcdev_devid, int *mirror_num, 5415 u64 *physical) 5416 { 5417 struct btrfs_bio *bbio = NULL; 5418 int num_stripes; 5419 int index_srcdev = 0; 5420 int found = 0; 5421 u64 physical_of_found = 0; 5422 int i; 5423 int ret = 0; 5424 5425 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5426 logical, &length, &bbio, 0, 0); 5427 if (ret) { 5428 ASSERT(bbio == NULL); 5429 return ret; 5430 } 5431 5432 num_stripes = bbio->num_stripes; 5433 if (*mirror_num > num_stripes) { 5434 /* 5435 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5436 * that means that the requested area is not left of the left 5437 * cursor 5438 */ 5439 btrfs_put_bbio(bbio); 5440 return -EIO; 5441 } 5442 5443 /* 5444 * process the rest of the function using the mirror_num of the source 5445 * drive. Therefore look it up first. At the end, patch the device 5446 * pointer to the one of the target drive. 5447 */ 5448 for (i = 0; i < num_stripes; i++) { 5449 if (bbio->stripes[i].dev->devid != srcdev_devid) 5450 continue; 5451 5452 /* 5453 * In case of DUP, in order to keep it simple, only add the 5454 * mirror with the lowest physical address 5455 */ 5456 if (found && 5457 physical_of_found <= bbio->stripes[i].physical) 5458 continue; 5459 5460 index_srcdev = i; 5461 found = 1; 5462 physical_of_found = bbio->stripes[i].physical; 5463 } 5464 5465 btrfs_put_bbio(bbio); 5466 5467 ASSERT(found); 5468 if (!found) 5469 return -EIO; 5470 5471 *mirror_num = index_srcdev + 1; 5472 *physical = physical_of_found; 5473 return ret; 5474 } 5475 5476 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5477 struct btrfs_bio **bbio_ret, 5478 struct btrfs_dev_replace *dev_replace, 5479 int *num_stripes_ret, int *max_errors_ret) 5480 { 5481 struct btrfs_bio *bbio = *bbio_ret; 5482 u64 srcdev_devid = dev_replace->srcdev->devid; 5483 int tgtdev_indexes = 0; 5484 int num_stripes = *num_stripes_ret; 5485 int max_errors = *max_errors_ret; 5486 int i; 5487 5488 if (op == BTRFS_MAP_WRITE) { 5489 int index_where_to_add; 5490 5491 /* 5492 * duplicate the write operations while the dev replace 5493 * procedure is running. Since the copying of the old disk to 5494 * the new disk takes place at run time while the filesystem is 5495 * mounted writable, the regular write operations to the old 5496 * disk have to be duplicated to go to the new disk as well. 5497 * 5498 * Note that device->missing is handled by the caller, and that 5499 * the write to the old disk is already set up in the stripes 5500 * array. 5501 */ 5502 index_where_to_add = num_stripes; 5503 for (i = 0; i < num_stripes; i++) { 5504 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5505 /* write to new disk, too */ 5506 struct btrfs_bio_stripe *new = 5507 bbio->stripes + index_where_to_add; 5508 struct btrfs_bio_stripe *old = 5509 bbio->stripes + i; 5510 5511 new->physical = old->physical; 5512 new->length = old->length; 5513 new->dev = dev_replace->tgtdev; 5514 bbio->tgtdev_map[i] = index_where_to_add; 5515 index_where_to_add++; 5516 max_errors++; 5517 tgtdev_indexes++; 5518 } 5519 } 5520 num_stripes = index_where_to_add; 5521 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5522 int index_srcdev = 0; 5523 int found = 0; 5524 u64 physical_of_found = 0; 5525 5526 /* 5527 * During the dev-replace procedure, the target drive can also 5528 * be used to read data in case it is needed to repair a corrupt 5529 * block elsewhere. This is possible if the requested area is 5530 * left of the left cursor. In this area, the target drive is a 5531 * full copy of the source drive. 5532 */ 5533 for (i = 0; i < num_stripes; i++) { 5534 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5535 /* 5536 * In case of DUP, in order to keep it simple, 5537 * only add the mirror with the lowest physical 5538 * address 5539 */ 5540 if (found && 5541 physical_of_found <= 5542 bbio->stripes[i].physical) 5543 continue; 5544 index_srcdev = i; 5545 found = 1; 5546 physical_of_found = bbio->stripes[i].physical; 5547 } 5548 } 5549 if (found) { 5550 struct btrfs_bio_stripe *tgtdev_stripe = 5551 bbio->stripes + num_stripes; 5552 5553 tgtdev_stripe->physical = physical_of_found; 5554 tgtdev_stripe->length = 5555 bbio->stripes[index_srcdev].length; 5556 tgtdev_stripe->dev = dev_replace->tgtdev; 5557 bbio->tgtdev_map[index_srcdev] = num_stripes; 5558 5559 tgtdev_indexes++; 5560 num_stripes++; 5561 } 5562 } 5563 5564 *num_stripes_ret = num_stripes; 5565 *max_errors_ret = max_errors; 5566 bbio->num_tgtdevs = tgtdev_indexes; 5567 *bbio_ret = bbio; 5568 } 5569 5570 static bool need_full_stripe(enum btrfs_map_op op) 5571 { 5572 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5573 } 5574 5575 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 5576 enum btrfs_map_op op, 5577 u64 logical, u64 *length, 5578 struct btrfs_bio **bbio_ret, 5579 int mirror_num, int need_raid_map) 5580 { 5581 struct extent_map *em; 5582 struct map_lookup *map; 5583 u64 offset; 5584 u64 stripe_offset; 5585 u64 stripe_nr; 5586 u64 stripe_len; 5587 u32 stripe_index; 5588 int i; 5589 int ret = 0; 5590 int num_stripes; 5591 int max_errors = 0; 5592 int tgtdev_indexes = 0; 5593 struct btrfs_bio *bbio = NULL; 5594 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 5595 int dev_replace_is_ongoing = 0; 5596 int num_alloc_stripes; 5597 int patch_the_first_stripe_for_dev_replace = 0; 5598 u64 physical_to_patch_in_first_stripe = 0; 5599 u64 raid56_full_stripe_start = (u64)-1; 5600 5601 if (op == BTRFS_MAP_DISCARD) 5602 return __btrfs_map_block_for_discard(fs_info, logical, 5603 *length, bbio_ret); 5604 5605 em = get_chunk_map(fs_info, logical, *length); 5606 if (IS_ERR(em)) 5607 return PTR_ERR(em); 5608 5609 map = em->map_lookup; 5610 offset = logical - em->start; 5611 5612 stripe_len = map->stripe_len; 5613 stripe_nr = offset; 5614 /* 5615 * stripe_nr counts the total number of stripes we have to stride 5616 * to get to this block 5617 */ 5618 stripe_nr = div64_u64(stripe_nr, stripe_len); 5619 5620 stripe_offset = stripe_nr * stripe_len; 5621 if (offset < stripe_offset) { 5622 btrfs_crit(fs_info, 5623 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu", 5624 stripe_offset, offset, em->start, logical, 5625 stripe_len); 5626 free_extent_map(em); 5627 return -EINVAL; 5628 } 5629 5630 /* stripe_offset is the offset of this block in its stripe*/ 5631 stripe_offset = offset - stripe_offset; 5632 5633 /* if we're here for raid56, we need to know the stripe aligned start */ 5634 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5635 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 5636 raid56_full_stripe_start = offset; 5637 5638 /* allow a write of a full stripe, but make sure we don't 5639 * allow straddling of stripes 5640 */ 5641 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5642 full_stripe_len); 5643 raid56_full_stripe_start *= full_stripe_len; 5644 } 5645 5646 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5647 u64 max_len; 5648 /* For writes to RAID[56], allow a full stripeset across all disks. 5649 For other RAID types and for RAID[56] reads, just allow a single 5650 stripe (on a single disk). */ 5651 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 5652 (op == BTRFS_MAP_WRITE)) { 5653 max_len = stripe_len * nr_data_stripes(map) - 5654 (offset - raid56_full_stripe_start); 5655 } else { 5656 /* we limit the length of each bio to what fits in a stripe */ 5657 max_len = stripe_len - stripe_offset; 5658 } 5659 *length = min_t(u64, em->len - offset, max_len); 5660 } else { 5661 *length = em->len - offset; 5662 } 5663 5664 /* This is for when we're called from btrfs_merge_bio_hook() and all 5665 it cares about is the length */ 5666 if (!bbio_ret) 5667 goto out; 5668 5669 btrfs_dev_replace_lock(dev_replace, 0); 5670 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5671 if (!dev_replace_is_ongoing) 5672 btrfs_dev_replace_unlock(dev_replace, 0); 5673 else 5674 btrfs_dev_replace_set_lock_blocking(dev_replace); 5675 5676 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5677 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 5678 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 5679 dev_replace->srcdev->devid, 5680 &mirror_num, 5681 &physical_to_patch_in_first_stripe); 5682 if (ret) 5683 goto out; 5684 else 5685 patch_the_first_stripe_for_dev_replace = 1; 5686 } else if (mirror_num > map->num_stripes) { 5687 mirror_num = 0; 5688 } 5689 5690 num_stripes = 1; 5691 stripe_index = 0; 5692 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5693 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5694 &stripe_index); 5695 if (!need_full_stripe(op)) 5696 mirror_num = 1; 5697 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 5698 if (need_full_stripe(op)) 5699 num_stripes = map->num_stripes; 5700 else if (mirror_num) 5701 stripe_index = mirror_num - 1; 5702 else { 5703 stripe_index = find_live_mirror(fs_info, map, 0, 5704 map->num_stripes, 5705 current->pid % map->num_stripes, 5706 dev_replace_is_ongoing); 5707 mirror_num = stripe_index + 1; 5708 } 5709 5710 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5711 if (need_full_stripe(op)) { 5712 num_stripes = map->num_stripes; 5713 } else if (mirror_num) { 5714 stripe_index = mirror_num - 1; 5715 } else { 5716 mirror_num = 1; 5717 } 5718 5719 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5720 u32 factor = map->num_stripes / map->sub_stripes; 5721 5722 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5723 stripe_index *= map->sub_stripes; 5724 5725 if (need_full_stripe(op)) 5726 num_stripes = map->sub_stripes; 5727 else if (mirror_num) 5728 stripe_index += mirror_num - 1; 5729 else { 5730 int old_stripe_index = stripe_index; 5731 stripe_index = find_live_mirror(fs_info, map, 5732 stripe_index, 5733 map->sub_stripes, stripe_index + 5734 current->pid % map->sub_stripes, 5735 dev_replace_is_ongoing); 5736 mirror_num = stripe_index - old_stripe_index + 1; 5737 } 5738 5739 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5740 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 5741 /* push stripe_nr back to the start of the full stripe */ 5742 stripe_nr = div64_u64(raid56_full_stripe_start, 5743 stripe_len * nr_data_stripes(map)); 5744 5745 /* RAID[56] write or recovery. Return all stripes */ 5746 num_stripes = map->num_stripes; 5747 max_errors = nr_parity_stripes(map); 5748 5749 *length = map->stripe_len; 5750 stripe_index = 0; 5751 stripe_offset = 0; 5752 } else { 5753 /* 5754 * Mirror #0 or #1 means the original data block. 5755 * Mirror #2 is RAID5 parity block. 5756 * Mirror #3 is RAID6 Q block. 5757 */ 5758 stripe_nr = div_u64_rem(stripe_nr, 5759 nr_data_stripes(map), &stripe_index); 5760 if (mirror_num > 1) 5761 stripe_index = nr_data_stripes(map) + 5762 mirror_num - 2; 5763 5764 /* We distribute the parity blocks across stripes */ 5765 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 5766 &stripe_index); 5767 if (!need_full_stripe(op) && mirror_num <= 1) 5768 mirror_num = 1; 5769 } 5770 } else { 5771 /* 5772 * after this, stripe_nr is the number of stripes on this 5773 * device we have to walk to find the data, and stripe_index is 5774 * the number of our device in the stripe array 5775 */ 5776 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5777 &stripe_index); 5778 mirror_num = stripe_index + 1; 5779 } 5780 if (stripe_index >= map->num_stripes) { 5781 btrfs_crit(fs_info, 5782 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 5783 stripe_index, map->num_stripes); 5784 ret = -EINVAL; 5785 goto out; 5786 } 5787 5788 num_alloc_stripes = num_stripes; 5789 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 5790 if (op == BTRFS_MAP_WRITE) 5791 num_alloc_stripes <<= 1; 5792 if (op == BTRFS_MAP_GET_READ_MIRRORS) 5793 num_alloc_stripes++; 5794 tgtdev_indexes = num_stripes; 5795 } 5796 5797 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 5798 if (!bbio) { 5799 ret = -ENOMEM; 5800 goto out; 5801 } 5802 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 5803 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 5804 5805 /* build raid_map */ 5806 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 5807 (need_full_stripe(op) || mirror_num > 1)) { 5808 u64 tmp; 5809 unsigned rot; 5810 5811 bbio->raid_map = (u64 *)((void *)bbio->stripes + 5812 sizeof(struct btrfs_bio_stripe) * 5813 num_alloc_stripes + 5814 sizeof(int) * tgtdev_indexes); 5815 5816 /* Work out the disk rotation on this stripe-set */ 5817 div_u64_rem(stripe_nr, num_stripes, &rot); 5818 5819 /* Fill in the logical address of each stripe */ 5820 tmp = stripe_nr * nr_data_stripes(map); 5821 for (i = 0; i < nr_data_stripes(map); i++) 5822 bbio->raid_map[(i+rot) % num_stripes] = 5823 em->start + (tmp + i) * map->stripe_len; 5824 5825 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 5826 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5827 bbio->raid_map[(i+rot+1) % num_stripes] = 5828 RAID6_Q_STRIPE; 5829 } 5830 5831 5832 for (i = 0; i < num_stripes; i++) { 5833 bbio->stripes[i].physical = 5834 map->stripes[stripe_index].physical + 5835 stripe_offset + 5836 stripe_nr * map->stripe_len; 5837 bbio->stripes[i].dev = 5838 map->stripes[stripe_index].dev; 5839 stripe_index++; 5840 } 5841 5842 if (need_full_stripe(op)) 5843 max_errors = btrfs_chunk_max_errors(map); 5844 5845 if (bbio->raid_map) 5846 sort_parity_stripes(bbio, num_stripes); 5847 5848 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 5849 need_full_stripe(op)) { 5850 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 5851 &max_errors); 5852 } 5853 5854 *bbio_ret = bbio; 5855 bbio->map_type = map->type; 5856 bbio->num_stripes = num_stripes; 5857 bbio->max_errors = max_errors; 5858 bbio->mirror_num = mirror_num; 5859 5860 /* 5861 * this is the case that REQ_READ && dev_replace_is_ongoing && 5862 * mirror_num == num_stripes + 1 && dev_replace target drive is 5863 * available as a mirror 5864 */ 5865 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5866 WARN_ON(num_stripes > 1); 5867 bbio->stripes[0].dev = dev_replace->tgtdev; 5868 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5869 bbio->mirror_num = map->num_stripes + 1; 5870 } 5871 out: 5872 if (dev_replace_is_ongoing) { 5873 btrfs_dev_replace_clear_lock_blocking(dev_replace); 5874 btrfs_dev_replace_unlock(dev_replace, 0); 5875 } 5876 free_extent_map(em); 5877 return ret; 5878 } 5879 5880 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5881 u64 logical, u64 *length, 5882 struct btrfs_bio **bbio_ret, int mirror_num) 5883 { 5884 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 5885 mirror_num, 0); 5886 } 5887 5888 /* For Scrub/replace */ 5889 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5890 u64 logical, u64 *length, 5891 struct btrfs_bio **bbio_ret) 5892 { 5893 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 5894 } 5895 5896 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, 5897 u64 chunk_start, u64 physical, u64 devid, 5898 u64 **logical, int *naddrs, int *stripe_len) 5899 { 5900 struct extent_map *em; 5901 struct map_lookup *map; 5902 u64 *buf; 5903 u64 bytenr; 5904 u64 length; 5905 u64 stripe_nr; 5906 u64 rmap_len; 5907 int i, j, nr = 0; 5908 5909 em = get_chunk_map(fs_info, chunk_start, 1); 5910 if (IS_ERR(em)) 5911 return -EIO; 5912 5913 map = em->map_lookup; 5914 length = em->len; 5915 rmap_len = map->stripe_len; 5916 5917 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5918 length = div_u64(length, map->num_stripes / map->sub_stripes); 5919 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5920 length = div_u64(length, map->num_stripes); 5921 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5922 length = div_u64(length, nr_data_stripes(map)); 5923 rmap_len = map->stripe_len * nr_data_stripes(map); 5924 } 5925 5926 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 5927 BUG_ON(!buf); /* -ENOMEM */ 5928 5929 for (i = 0; i < map->num_stripes; i++) { 5930 if (devid && map->stripes[i].dev->devid != devid) 5931 continue; 5932 if (map->stripes[i].physical > physical || 5933 map->stripes[i].physical + length <= physical) 5934 continue; 5935 5936 stripe_nr = physical - map->stripes[i].physical; 5937 stripe_nr = div64_u64(stripe_nr, map->stripe_len); 5938 5939 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5940 stripe_nr = stripe_nr * map->num_stripes + i; 5941 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 5942 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5943 stripe_nr = stripe_nr * map->num_stripes + i; 5944 } /* else if RAID[56], multiply by nr_data_stripes(). 5945 * Alternatively, just use rmap_len below instead of 5946 * map->stripe_len */ 5947 5948 bytenr = chunk_start + stripe_nr * rmap_len; 5949 WARN_ON(nr >= map->num_stripes); 5950 for (j = 0; j < nr; j++) { 5951 if (buf[j] == bytenr) 5952 break; 5953 } 5954 if (j == nr) { 5955 WARN_ON(nr >= map->num_stripes); 5956 buf[nr++] = bytenr; 5957 } 5958 } 5959 5960 *logical = buf; 5961 *naddrs = nr; 5962 *stripe_len = rmap_len; 5963 5964 free_extent_map(em); 5965 return 0; 5966 } 5967 5968 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 5969 { 5970 bio->bi_private = bbio->private; 5971 bio->bi_end_io = bbio->end_io; 5972 bio_endio(bio); 5973 5974 btrfs_put_bbio(bbio); 5975 } 5976 5977 static void btrfs_end_bio(struct bio *bio) 5978 { 5979 struct btrfs_bio *bbio = bio->bi_private; 5980 int is_orig_bio = 0; 5981 5982 if (bio->bi_status) { 5983 atomic_inc(&bbio->error); 5984 if (bio->bi_status == BLK_STS_IOERR || 5985 bio->bi_status == BLK_STS_TARGET) { 5986 unsigned int stripe_index = 5987 btrfs_io_bio(bio)->stripe_index; 5988 struct btrfs_device *dev; 5989 5990 BUG_ON(stripe_index >= bbio->num_stripes); 5991 dev = bbio->stripes[stripe_index].dev; 5992 if (dev->bdev) { 5993 if (bio_op(bio) == REQ_OP_WRITE) 5994 btrfs_dev_stat_inc(dev, 5995 BTRFS_DEV_STAT_WRITE_ERRS); 5996 else 5997 btrfs_dev_stat_inc(dev, 5998 BTRFS_DEV_STAT_READ_ERRS); 5999 if (bio->bi_opf & REQ_PREFLUSH) 6000 btrfs_dev_stat_inc(dev, 6001 BTRFS_DEV_STAT_FLUSH_ERRS); 6002 btrfs_dev_stat_print_on_error(dev); 6003 } 6004 } 6005 } 6006 6007 if (bio == bbio->orig_bio) 6008 is_orig_bio = 1; 6009 6010 btrfs_bio_counter_dec(bbio->fs_info); 6011 6012 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6013 if (!is_orig_bio) { 6014 bio_put(bio); 6015 bio = bbio->orig_bio; 6016 } 6017 6018 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6019 /* only send an error to the higher layers if it is 6020 * beyond the tolerance of the btrfs bio 6021 */ 6022 if (atomic_read(&bbio->error) > bbio->max_errors) { 6023 bio->bi_status = BLK_STS_IOERR; 6024 } else { 6025 /* 6026 * this bio is actually up to date, we didn't 6027 * go over the max number of errors 6028 */ 6029 bio->bi_status = BLK_STS_OK; 6030 } 6031 6032 btrfs_end_bbio(bbio, bio); 6033 } else if (!is_orig_bio) { 6034 bio_put(bio); 6035 } 6036 } 6037 6038 /* 6039 * see run_scheduled_bios for a description of why bios are collected for 6040 * async submit. 6041 * 6042 * This will add one bio to the pending list for a device and make sure 6043 * the work struct is scheduled. 6044 */ 6045 static noinline void btrfs_schedule_bio(struct btrfs_device *device, 6046 struct bio *bio) 6047 { 6048 struct btrfs_fs_info *fs_info = device->fs_info; 6049 int should_queue = 1; 6050 struct btrfs_pending_bios *pending_bios; 6051 6052 if (device->missing || !device->bdev) { 6053 bio_io_error(bio); 6054 return; 6055 } 6056 6057 /* don't bother with additional async steps for reads, right now */ 6058 if (bio_op(bio) == REQ_OP_READ) { 6059 bio_get(bio); 6060 btrfsic_submit_bio(bio); 6061 bio_put(bio); 6062 return; 6063 } 6064 6065 WARN_ON(bio->bi_next); 6066 bio->bi_next = NULL; 6067 6068 spin_lock(&device->io_lock); 6069 if (op_is_sync(bio->bi_opf)) 6070 pending_bios = &device->pending_sync_bios; 6071 else 6072 pending_bios = &device->pending_bios; 6073 6074 if (pending_bios->tail) 6075 pending_bios->tail->bi_next = bio; 6076 6077 pending_bios->tail = bio; 6078 if (!pending_bios->head) 6079 pending_bios->head = bio; 6080 if (device->running_pending) 6081 should_queue = 0; 6082 6083 spin_unlock(&device->io_lock); 6084 6085 if (should_queue) 6086 btrfs_queue_work(fs_info->submit_workers, &device->work); 6087 } 6088 6089 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6090 u64 physical, int dev_nr, int async) 6091 { 6092 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 6093 struct btrfs_fs_info *fs_info = bbio->fs_info; 6094 6095 bio->bi_private = bbio; 6096 btrfs_io_bio(bio)->stripe_index = dev_nr; 6097 bio->bi_end_io = btrfs_end_bio; 6098 bio->bi_iter.bi_sector = physical >> 9; 6099 #ifdef DEBUG 6100 { 6101 struct rcu_string *name; 6102 6103 rcu_read_lock(); 6104 name = rcu_dereference(dev->name); 6105 btrfs_debug(fs_info, 6106 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6107 bio_op(bio), bio->bi_opf, 6108 (u64)bio->bi_iter.bi_sector, 6109 (u_long)dev->bdev->bd_dev, name->str, dev->devid, 6110 bio->bi_iter.bi_size); 6111 rcu_read_unlock(); 6112 } 6113 #endif 6114 bio_set_dev(bio, dev->bdev); 6115 6116 btrfs_bio_counter_inc_noblocked(fs_info); 6117 6118 if (async) 6119 btrfs_schedule_bio(dev, bio); 6120 else 6121 btrfsic_submit_bio(bio); 6122 } 6123 6124 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6125 { 6126 atomic_inc(&bbio->error); 6127 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6128 /* Should be the original bio. */ 6129 WARN_ON(bio != bbio->orig_bio); 6130 6131 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6132 bio->bi_iter.bi_sector = logical >> 9; 6133 if (atomic_read(&bbio->error) > bbio->max_errors) 6134 bio->bi_status = BLK_STS_IOERR; 6135 else 6136 bio->bi_status = BLK_STS_OK; 6137 btrfs_end_bbio(bbio, bio); 6138 } 6139 } 6140 6141 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6142 int mirror_num, int async_submit) 6143 { 6144 struct btrfs_device *dev; 6145 struct bio *first_bio = bio; 6146 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6147 u64 length = 0; 6148 u64 map_length; 6149 int ret; 6150 int dev_nr; 6151 int total_devs; 6152 struct btrfs_bio *bbio = NULL; 6153 6154 length = bio->bi_iter.bi_size; 6155 map_length = length; 6156 6157 btrfs_bio_counter_inc_blocked(fs_info); 6158 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6159 &map_length, &bbio, mirror_num, 1); 6160 if (ret) { 6161 btrfs_bio_counter_dec(fs_info); 6162 return errno_to_blk_status(ret); 6163 } 6164 6165 total_devs = bbio->num_stripes; 6166 bbio->orig_bio = first_bio; 6167 bbio->private = first_bio->bi_private; 6168 bbio->end_io = first_bio->bi_end_io; 6169 bbio->fs_info = fs_info; 6170 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6171 6172 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6173 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6174 /* In this case, map_length has been set to the length of 6175 a single stripe; not the whole write */ 6176 if (bio_op(bio) == REQ_OP_WRITE) { 6177 ret = raid56_parity_write(fs_info, bio, bbio, 6178 map_length); 6179 } else { 6180 ret = raid56_parity_recover(fs_info, bio, bbio, 6181 map_length, mirror_num, 1); 6182 } 6183 6184 btrfs_bio_counter_dec(fs_info); 6185 return errno_to_blk_status(ret); 6186 } 6187 6188 if (map_length < length) { 6189 btrfs_crit(fs_info, 6190 "mapping failed logical %llu bio len %llu len %llu", 6191 logical, length, map_length); 6192 BUG(); 6193 } 6194 6195 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6196 dev = bbio->stripes[dev_nr].dev; 6197 if (!dev || !dev->bdev || 6198 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) { 6199 bbio_error(bbio, first_bio, logical); 6200 continue; 6201 } 6202 6203 if (dev_nr < total_devs - 1) 6204 bio = btrfs_bio_clone(first_bio); 6205 else 6206 bio = first_bio; 6207 6208 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, 6209 dev_nr, async_submit); 6210 } 6211 btrfs_bio_counter_dec(fs_info); 6212 return BLK_STS_OK; 6213 } 6214 6215 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 6216 u8 *uuid, u8 *fsid) 6217 { 6218 struct btrfs_device *device; 6219 struct btrfs_fs_devices *cur_devices; 6220 6221 cur_devices = fs_info->fs_devices; 6222 while (cur_devices) { 6223 if (!fsid || 6224 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) { 6225 device = find_device(cur_devices, devid, uuid); 6226 if (device) 6227 return device; 6228 } 6229 cur_devices = cur_devices->seed; 6230 } 6231 return NULL; 6232 } 6233 6234 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6235 u64 devid, u8 *dev_uuid) 6236 { 6237 struct btrfs_device *device; 6238 6239 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6240 if (IS_ERR(device)) 6241 return device; 6242 6243 list_add(&device->dev_list, &fs_devices->devices); 6244 device->fs_devices = fs_devices; 6245 fs_devices->num_devices++; 6246 6247 device->missing = 1; 6248 fs_devices->missing_devices++; 6249 6250 return device; 6251 } 6252 6253 /** 6254 * btrfs_alloc_device - allocate struct btrfs_device 6255 * @fs_info: used only for generating a new devid, can be NULL if 6256 * devid is provided (i.e. @devid != NULL). 6257 * @devid: a pointer to devid for this device. If NULL a new devid 6258 * is generated. 6259 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6260 * is generated. 6261 * 6262 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6263 * on error. Returned struct is not linked onto any lists and can be 6264 * destroyed with kfree() right away. 6265 */ 6266 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6267 const u64 *devid, 6268 const u8 *uuid) 6269 { 6270 struct btrfs_device *dev; 6271 u64 tmp; 6272 6273 if (WARN_ON(!devid && !fs_info)) 6274 return ERR_PTR(-EINVAL); 6275 6276 dev = __alloc_device(); 6277 if (IS_ERR(dev)) 6278 return dev; 6279 6280 if (devid) 6281 tmp = *devid; 6282 else { 6283 int ret; 6284 6285 ret = find_next_devid(fs_info, &tmp); 6286 if (ret) { 6287 kfree(dev); 6288 return ERR_PTR(ret); 6289 } 6290 } 6291 dev->devid = tmp; 6292 6293 if (uuid) 6294 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6295 else 6296 generate_random_uuid(dev->uuid); 6297 6298 btrfs_init_work(&dev->work, btrfs_submit_helper, 6299 pending_bios_fn, NULL, NULL); 6300 6301 return dev; 6302 } 6303 6304 /* Return -EIO if any error, otherwise return 0. */ 6305 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info, 6306 struct extent_buffer *leaf, 6307 struct btrfs_chunk *chunk, u64 logical) 6308 { 6309 u64 length; 6310 u64 stripe_len; 6311 u16 num_stripes; 6312 u16 sub_stripes; 6313 u64 type; 6314 6315 length = btrfs_chunk_length(leaf, chunk); 6316 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6317 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6318 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6319 type = btrfs_chunk_type(leaf, chunk); 6320 6321 if (!num_stripes) { 6322 btrfs_err(fs_info, "invalid chunk num_stripes: %u", 6323 num_stripes); 6324 return -EIO; 6325 } 6326 if (!IS_ALIGNED(logical, fs_info->sectorsize)) { 6327 btrfs_err(fs_info, "invalid chunk logical %llu", logical); 6328 return -EIO; 6329 } 6330 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) { 6331 btrfs_err(fs_info, "invalid chunk sectorsize %u", 6332 btrfs_chunk_sector_size(leaf, chunk)); 6333 return -EIO; 6334 } 6335 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) { 6336 btrfs_err(fs_info, "invalid chunk length %llu", length); 6337 return -EIO; 6338 } 6339 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) { 6340 btrfs_err(fs_info, "invalid chunk stripe length: %llu", 6341 stripe_len); 6342 return -EIO; 6343 } 6344 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6345 type) { 6346 btrfs_err(fs_info, "unrecognized chunk type: %llu", 6347 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 6348 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6349 btrfs_chunk_type(leaf, chunk)); 6350 return -EIO; 6351 } 6352 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) || 6353 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) || 6354 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) || 6355 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) || 6356 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) || 6357 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 6358 num_stripes != 1)) { 6359 btrfs_err(fs_info, 6360 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 6361 num_stripes, sub_stripes, 6362 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 6363 return -EIO; 6364 } 6365 6366 return 0; 6367 } 6368 6369 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6370 u64 devid, u8 *uuid, bool error) 6371 { 6372 if (error) 6373 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6374 devid, uuid); 6375 else 6376 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6377 devid, uuid); 6378 } 6379 6380 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 6381 struct extent_buffer *leaf, 6382 struct btrfs_chunk *chunk) 6383 { 6384 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 6385 struct map_lookup *map; 6386 struct extent_map *em; 6387 u64 logical; 6388 u64 length; 6389 u64 devid; 6390 u8 uuid[BTRFS_UUID_SIZE]; 6391 int num_stripes; 6392 int ret; 6393 int i; 6394 6395 logical = key->offset; 6396 length = btrfs_chunk_length(leaf, chunk); 6397 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6398 6399 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical); 6400 if (ret) 6401 return ret; 6402 6403 read_lock(&map_tree->map_tree.lock); 6404 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 6405 read_unlock(&map_tree->map_tree.lock); 6406 6407 /* already mapped? */ 6408 if (em && em->start <= logical && em->start + em->len > logical) { 6409 free_extent_map(em); 6410 return 0; 6411 } else if (em) { 6412 free_extent_map(em); 6413 } 6414 6415 em = alloc_extent_map(); 6416 if (!em) 6417 return -ENOMEM; 6418 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6419 if (!map) { 6420 free_extent_map(em); 6421 return -ENOMEM; 6422 } 6423 6424 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6425 em->map_lookup = map; 6426 em->start = logical; 6427 em->len = length; 6428 em->orig_start = 0; 6429 em->block_start = 0; 6430 em->block_len = em->len; 6431 6432 map->num_stripes = num_stripes; 6433 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6434 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6435 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6436 map->type = btrfs_chunk_type(leaf, chunk); 6437 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6438 for (i = 0; i < num_stripes; i++) { 6439 map->stripes[i].physical = 6440 btrfs_stripe_offset_nr(leaf, chunk, i); 6441 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6442 read_extent_buffer(leaf, uuid, (unsigned long) 6443 btrfs_stripe_dev_uuid_nr(chunk, i), 6444 BTRFS_UUID_SIZE); 6445 map->stripes[i].dev = btrfs_find_device(fs_info, devid, 6446 uuid, NULL); 6447 if (!map->stripes[i].dev && 6448 !btrfs_test_opt(fs_info, DEGRADED)) { 6449 free_extent_map(em); 6450 btrfs_report_missing_device(fs_info, devid, uuid, true); 6451 return -ENOENT; 6452 } 6453 if (!map->stripes[i].dev) { 6454 map->stripes[i].dev = 6455 add_missing_dev(fs_info->fs_devices, devid, 6456 uuid); 6457 if (IS_ERR(map->stripes[i].dev)) { 6458 free_extent_map(em); 6459 btrfs_err(fs_info, 6460 "failed to init missing dev %llu: %ld", 6461 devid, PTR_ERR(map->stripes[i].dev)); 6462 return PTR_ERR(map->stripes[i].dev); 6463 } 6464 btrfs_report_missing_device(fs_info, devid, uuid, false); 6465 } 6466 map->stripes[i].dev->in_fs_metadata = 1; 6467 } 6468 6469 write_lock(&map_tree->map_tree.lock); 6470 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6471 write_unlock(&map_tree->map_tree.lock); 6472 BUG_ON(ret); /* Tree corruption */ 6473 free_extent_map(em); 6474 6475 return 0; 6476 } 6477 6478 static void fill_device_from_item(struct extent_buffer *leaf, 6479 struct btrfs_dev_item *dev_item, 6480 struct btrfs_device *device) 6481 { 6482 unsigned long ptr; 6483 6484 device->devid = btrfs_device_id(leaf, dev_item); 6485 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6486 device->total_bytes = device->disk_total_bytes; 6487 device->commit_total_bytes = device->disk_total_bytes; 6488 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6489 device->commit_bytes_used = device->bytes_used; 6490 device->type = btrfs_device_type(leaf, dev_item); 6491 device->io_align = btrfs_device_io_align(leaf, dev_item); 6492 device->io_width = btrfs_device_io_width(leaf, dev_item); 6493 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6494 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6495 device->is_tgtdev_for_dev_replace = 0; 6496 6497 ptr = btrfs_device_uuid(dev_item); 6498 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6499 } 6500 6501 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6502 u8 *fsid) 6503 { 6504 struct btrfs_fs_devices *fs_devices; 6505 int ret; 6506 6507 BUG_ON(!mutex_is_locked(&uuid_mutex)); 6508 ASSERT(fsid); 6509 6510 fs_devices = fs_info->fs_devices->seed; 6511 while (fs_devices) { 6512 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6513 return fs_devices; 6514 6515 fs_devices = fs_devices->seed; 6516 } 6517 6518 fs_devices = find_fsid(fsid); 6519 if (!fs_devices) { 6520 if (!btrfs_test_opt(fs_info, DEGRADED)) 6521 return ERR_PTR(-ENOENT); 6522 6523 fs_devices = alloc_fs_devices(fsid); 6524 if (IS_ERR(fs_devices)) 6525 return fs_devices; 6526 6527 fs_devices->seeding = 1; 6528 fs_devices->opened = 1; 6529 return fs_devices; 6530 } 6531 6532 fs_devices = clone_fs_devices(fs_devices); 6533 if (IS_ERR(fs_devices)) 6534 return fs_devices; 6535 6536 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 6537 fs_info->bdev_holder); 6538 if (ret) { 6539 free_fs_devices(fs_devices); 6540 fs_devices = ERR_PTR(ret); 6541 goto out; 6542 } 6543 6544 if (!fs_devices->seeding) { 6545 __btrfs_close_devices(fs_devices); 6546 free_fs_devices(fs_devices); 6547 fs_devices = ERR_PTR(-EINVAL); 6548 goto out; 6549 } 6550 6551 fs_devices->seed = fs_info->fs_devices->seed; 6552 fs_info->fs_devices->seed = fs_devices; 6553 out: 6554 return fs_devices; 6555 } 6556 6557 static int read_one_dev(struct btrfs_fs_info *fs_info, 6558 struct extent_buffer *leaf, 6559 struct btrfs_dev_item *dev_item) 6560 { 6561 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6562 struct btrfs_device *device; 6563 u64 devid; 6564 int ret; 6565 u8 fs_uuid[BTRFS_FSID_SIZE]; 6566 u8 dev_uuid[BTRFS_UUID_SIZE]; 6567 6568 devid = btrfs_device_id(leaf, dev_item); 6569 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6570 BTRFS_UUID_SIZE); 6571 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6572 BTRFS_FSID_SIZE); 6573 6574 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) { 6575 fs_devices = open_seed_devices(fs_info, fs_uuid); 6576 if (IS_ERR(fs_devices)) 6577 return PTR_ERR(fs_devices); 6578 } 6579 6580 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid); 6581 if (!device) { 6582 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6583 btrfs_report_missing_device(fs_info, devid, 6584 dev_uuid, true); 6585 return -ENOENT; 6586 } 6587 6588 device = add_missing_dev(fs_devices, devid, dev_uuid); 6589 if (IS_ERR(device)) { 6590 btrfs_err(fs_info, 6591 "failed to add missing dev %llu: %ld", 6592 devid, PTR_ERR(device)); 6593 return PTR_ERR(device); 6594 } 6595 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6596 } else { 6597 if (!device->bdev) { 6598 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6599 btrfs_report_missing_device(fs_info, 6600 devid, dev_uuid, true); 6601 return -ENOENT; 6602 } 6603 btrfs_report_missing_device(fs_info, devid, 6604 dev_uuid, false); 6605 } 6606 6607 if(!device->bdev && !device->missing) { 6608 /* 6609 * this happens when a device that was properly setup 6610 * in the device info lists suddenly goes bad. 6611 * device->bdev is NULL, and so we have to set 6612 * device->missing to one here 6613 */ 6614 device->fs_devices->missing_devices++; 6615 device->missing = 1; 6616 } 6617 6618 /* Move the device to its own fs_devices */ 6619 if (device->fs_devices != fs_devices) { 6620 ASSERT(device->missing); 6621 6622 list_move(&device->dev_list, &fs_devices->devices); 6623 device->fs_devices->num_devices--; 6624 fs_devices->num_devices++; 6625 6626 device->fs_devices->missing_devices--; 6627 fs_devices->missing_devices++; 6628 6629 device->fs_devices = fs_devices; 6630 } 6631 } 6632 6633 if (device->fs_devices != fs_info->fs_devices) { 6634 BUG_ON(device->writeable); 6635 if (device->generation != 6636 btrfs_device_generation(leaf, dev_item)) 6637 return -EINVAL; 6638 } 6639 6640 fill_device_from_item(leaf, dev_item, device); 6641 device->in_fs_metadata = 1; 6642 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 6643 device->fs_devices->total_rw_bytes += device->total_bytes; 6644 atomic64_add(device->total_bytes - device->bytes_used, 6645 &fs_info->free_chunk_space); 6646 } 6647 ret = 0; 6648 return ret; 6649 } 6650 6651 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 6652 { 6653 struct btrfs_root *root = fs_info->tree_root; 6654 struct btrfs_super_block *super_copy = fs_info->super_copy; 6655 struct extent_buffer *sb; 6656 struct btrfs_disk_key *disk_key; 6657 struct btrfs_chunk *chunk; 6658 u8 *array_ptr; 6659 unsigned long sb_array_offset; 6660 int ret = 0; 6661 u32 num_stripes; 6662 u32 array_size; 6663 u32 len = 0; 6664 u32 cur_offset; 6665 u64 type; 6666 struct btrfs_key key; 6667 6668 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 6669 /* 6670 * This will create extent buffer of nodesize, superblock size is 6671 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6672 * overallocate but we can keep it as-is, only the first page is used. 6673 */ 6674 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 6675 if (IS_ERR(sb)) 6676 return PTR_ERR(sb); 6677 set_extent_buffer_uptodate(sb); 6678 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6679 /* 6680 * The sb extent buffer is artificial and just used to read the system array. 6681 * set_extent_buffer_uptodate() call does not properly mark all it's 6682 * pages up-to-date when the page is larger: extent does not cover the 6683 * whole page and consequently check_page_uptodate does not find all 6684 * the page's extents up-to-date (the hole beyond sb), 6685 * write_extent_buffer then triggers a WARN_ON. 6686 * 6687 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6688 * but sb spans only this function. Add an explicit SetPageUptodate call 6689 * to silence the warning eg. on PowerPC 64. 6690 */ 6691 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 6692 SetPageUptodate(sb->pages[0]); 6693 6694 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6695 array_size = btrfs_super_sys_array_size(super_copy); 6696 6697 array_ptr = super_copy->sys_chunk_array; 6698 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6699 cur_offset = 0; 6700 6701 while (cur_offset < array_size) { 6702 disk_key = (struct btrfs_disk_key *)array_ptr; 6703 len = sizeof(*disk_key); 6704 if (cur_offset + len > array_size) 6705 goto out_short_read; 6706 6707 btrfs_disk_key_to_cpu(&key, disk_key); 6708 6709 array_ptr += len; 6710 sb_array_offset += len; 6711 cur_offset += len; 6712 6713 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 6714 chunk = (struct btrfs_chunk *)sb_array_offset; 6715 /* 6716 * At least one btrfs_chunk with one stripe must be 6717 * present, exact stripe count check comes afterwards 6718 */ 6719 len = btrfs_chunk_item_size(1); 6720 if (cur_offset + len > array_size) 6721 goto out_short_read; 6722 6723 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6724 if (!num_stripes) { 6725 btrfs_err(fs_info, 6726 "invalid number of stripes %u in sys_array at offset %u", 6727 num_stripes, cur_offset); 6728 ret = -EIO; 6729 break; 6730 } 6731 6732 type = btrfs_chunk_type(sb, chunk); 6733 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 6734 btrfs_err(fs_info, 6735 "invalid chunk type %llu in sys_array at offset %u", 6736 type, cur_offset); 6737 ret = -EIO; 6738 break; 6739 } 6740 6741 len = btrfs_chunk_item_size(num_stripes); 6742 if (cur_offset + len > array_size) 6743 goto out_short_read; 6744 6745 ret = read_one_chunk(fs_info, &key, sb, chunk); 6746 if (ret) 6747 break; 6748 } else { 6749 btrfs_err(fs_info, 6750 "unexpected item type %u in sys_array at offset %u", 6751 (u32)key.type, cur_offset); 6752 ret = -EIO; 6753 break; 6754 } 6755 array_ptr += len; 6756 sb_array_offset += len; 6757 cur_offset += len; 6758 } 6759 clear_extent_buffer_uptodate(sb); 6760 free_extent_buffer_stale(sb); 6761 return ret; 6762 6763 out_short_read: 6764 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 6765 len, cur_offset); 6766 clear_extent_buffer_uptodate(sb); 6767 free_extent_buffer_stale(sb); 6768 return -EIO; 6769 } 6770 6771 /* 6772 * Check if all chunks in the fs are OK for read-write degraded mount 6773 * 6774 * Return true if all chunks meet the minimal RW mount requirements. 6775 * Return false if any chunk doesn't meet the minimal RW mount requirements. 6776 */ 6777 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info) 6778 { 6779 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 6780 struct extent_map *em; 6781 u64 next_start = 0; 6782 bool ret = true; 6783 6784 read_lock(&map_tree->map_tree.lock); 6785 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1); 6786 read_unlock(&map_tree->map_tree.lock); 6787 /* No chunk at all? Return false anyway */ 6788 if (!em) { 6789 ret = false; 6790 goto out; 6791 } 6792 while (em) { 6793 struct map_lookup *map; 6794 int missing = 0; 6795 int max_tolerated; 6796 int i; 6797 6798 map = em->map_lookup; 6799 max_tolerated = 6800 btrfs_get_num_tolerated_disk_barrier_failures( 6801 map->type); 6802 for (i = 0; i < map->num_stripes; i++) { 6803 struct btrfs_device *dev = map->stripes[i].dev; 6804 6805 if (!dev || !dev->bdev || dev->missing || 6806 dev->last_flush_error) 6807 missing++; 6808 } 6809 if (missing > max_tolerated) { 6810 btrfs_warn(fs_info, 6811 "chunk %llu missing %d devices, max tolerance is %d for writeable mount", 6812 em->start, missing, max_tolerated); 6813 free_extent_map(em); 6814 ret = false; 6815 goto out; 6816 } 6817 next_start = extent_map_end(em); 6818 free_extent_map(em); 6819 6820 read_lock(&map_tree->map_tree.lock); 6821 em = lookup_extent_mapping(&map_tree->map_tree, next_start, 6822 (u64)(-1) - next_start); 6823 read_unlock(&map_tree->map_tree.lock); 6824 } 6825 out: 6826 return ret; 6827 } 6828 6829 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 6830 { 6831 struct btrfs_root *root = fs_info->chunk_root; 6832 struct btrfs_path *path; 6833 struct extent_buffer *leaf; 6834 struct btrfs_key key; 6835 struct btrfs_key found_key; 6836 int ret; 6837 int slot; 6838 u64 total_dev = 0; 6839 6840 path = btrfs_alloc_path(); 6841 if (!path) 6842 return -ENOMEM; 6843 6844 mutex_lock(&uuid_mutex); 6845 mutex_lock(&fs_info->chunk_mutex); 6846 6847 /* 6848 * Read all device items, and then all the chunk items. All 6849 * device items are found before any chunk item (their object id 6850 * is smaller than the lowest possible object id for a chunk 6851 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6852 */ 6853 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6854 key.offset = 0; 6855 key.type = 0; 6856 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6857 if (ret < 0) 6858 goto error; 6859 while (1) { 6860 leaf = path->nodes[0]; 6861 slot = path->slots[0]; 6862 if (slot >= btrfs_header_nritems(leaf)) { 6863 ret = btrfs_next_leaf(root, path); 6864 if (ret == 0) 6865 continue; 6866 if (ret < 0) 6867 goto error; 6868 break; 6869 } 6870 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6871 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6872 struct btrfs_dev_item *dev_item; 6873 dev_item = btrfs_item_ptr(leaf, slot, 6874 struct btrfs_dev_item); 6875 ret = read_one_dev(fs_info, leaf, dev_item); 6876 if (ret) 6877 goto error; 6878 total_dev++; 6879 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6880 struct btrfs_chunk *chunk; 6881 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6882 ret = read_one_chunk(fs_info, &found_key, leaf, chunk); 6883 if (ret) 6884 goto error; 6885 } 6886 path->slots[0]++; 6887 } 6888 6889 /* 6890 * After loading chunk tree, we've got all device information, 6891 * do another round of validation checks. 6892 */ 6893 if (total_dev != fs_info->fs_devices->total_devices) { 6894 btrfs_err(fs_info, 6895 "super_num_devices %llu mismatch with num_devices %llu found here", 6896 btrfs_super_num_devices(fs_info->super_copy), 6897 total_dev); 6898 ret = -EINVAL; 6899 goto error; 6900 } 6901 if (btrfs_super_total_bytes(fs_info->super_copy) < 6902 fs_info->fs_devices->total_rw_bytes) { 6903 btrfs_err(fs_info, 6904 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 6905 btrfs_super_total_bytes(fs_info->super_copy), 6906 fs_info->fs_devices->total_rw_bytes); 6907 ret = -EINVAL; 6908 goto error; 6909 } 6910 ret = 0; 6911 error: 6912 mutex_unlock(&fs_info->chunk_mutex); 6913 mutex_unlock(&uuid_mutex); 6914 6915 btrfs_free_path(path); 6916 return ret; 6917 } 6918 6919 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6920 { 6921 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6922 struct btrfs_device *device; 6923 6924 while (fs_devices) { 6925 mutex_lock(&fs_devices->device_list_mutex); 6926 list_for_each_entry(device, &fs_devices->devices, dev_list) 6927 device->fs_info = fs_info; 6928 mutex_unlock(&fs_devices->device_list_mutex); 6929 6930 fs_devices = fs_devices->seed; 6931 } 6932 } 6933 6934 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6935 { 6936 int i; 6937 6938 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6939 btrfs_dev_stat_reset(dev, i); 6940 } 6941 6942 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6943 { 6944 struct btrfs_key key; 6945 struct btrfs_key found_key; 6946 struct btrfs_root *dev_root = fs_info->dev_root; 6947 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6948 struct extent_buffer *eb; 6949 int slot; 6950 int ret = 0; 6951 struct btrfs_device *device; 6952 struct btrfs_path *path = NULL; 6953 int i; 6954 6955 path = btrfs_alloc_path(); 6956 if (!path) { 6957 ret = -ENOMEM; 6958 goto out; 6959 } 6960 6961 mutex_lock(&fs_devices->device_list_mutex); 6962 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6963 int item_size; 6964 struct btrfs_dev_stats_item *ptr; 6965 6966 key.objectid = BTRFS_DEV_STATS_OBJECTID; 6967 key.type = BTRFS_PERSISTENT_ITEM_KEY; 6968 key.offset = device->devid; 6969 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6970 if (ret) { 6971 __btrfs_reset_dev_stats(device); 6972 device->dev_stats_valid = 1; 6973 btrfs_release_path(path); 6974 continue; 6975 } 6976 slot = path->slots[0]; 6977 eb = path->nodes[0]; 6978 btrfs_item_key_to_cpu(eb, &found_key, slot); 6979 item_size = btrfs_item_size_nr(eb, slot); 6980 6981 ptr = btrfs_item_ptr(eb, slot, 6982 struct btrfs_dev_stats_item); 6983 6984 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6985 if (item_size >= (1 + i) * sizeof(__le64)) 6986 btrfs_dev_stat_set(device, i, 6987 btrfs_dev_stats_value(eb, ptr, i)); 6988 else 6989 btrfs_dev_stat_reset(device, i); 6990 } 6991 6992 device->dev_stats_valid = 1; 6993 btrfs_dev_stat_print_on_load(device); 6994 btrfs_release_path(path); 6995 } 6996 mutex_unlock(&fs_devices->device_list_mutex); 6997 6998 out: 6999 btrfs_free_path(path); 7000 return ret < 0 ? ret : 0; 7001 } 7002 7003 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7004 struct btrfs_fs_info *fs_info, 7005 struct btrfs_device *device) 7006 { 7007 struct btrfs_root *dev_root = fs_info->dev_root; 7008 struct btrfs_path *path; 7009 struct btrfs_key key; 7010 struct extent_buffer *eb; 7011 struct btrfs_dev_stats_item *ptr; 7012 int ret; 7013 int i; 7014 7015 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7016 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7017 key.offset = device->devid; 7018 7019 path = btrfs_alloc_path(); 7020 if (!path) 7021 return -ENOMEM; 7022 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7023 if (ret < 0) { 7024 btrfs_warn_in_rcu(fs_info, 7025 "error %d while searching for dev_stats item for device %s", 7026 ret, rcu_str_deref(device->name)); 7027 goto out; 7028 } 7029 7030 if (ret == 0 && 7031 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7032 /* need to delete old one and insert a new one */ 7033 ret = btrfs_del_item(trans, dev_root, path); 7034 if (ret != 0) { 7035 btrfs_warn_in_rcu(fs_info, 7036 "delete too small dev_stats item for device %s failed %d", 7037 rcu_str_deref(device->name), ret); 7038 goto out; 7039 } 7040 ret = 1; 7041 } 7042 7043 if (ret == 1) { 7044 /* need to insert a new item */ 7045 btrfs_release_path(path); 7046 ret = btrfs_insert_empty_item(trans, dev_root, path, 7047 &key, sizeof(*ptr)); 7048 if (ret < 0) { 7049 btrfs_warn_in_rcu(fs_info, 7050 "insert dev_stats item for device %s failed %d", 7051 rcu_str_deref(device->name), ret); 7052 goto out; 7053 } 7054 } 7055 7056 eb = path->nodes[0]; 7057 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7058 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7059 btrfs_set_dev_stats_value(eb, ptr, i, 7060 btrfs_dev_stat_read(device, i)); 7061 btrfs_mark_buffer_dirty(eb); 7062 7063 out: 7064 btrfs_free_path(path); 7065 return ret; 7066 } 7067 7068 /* 7069 * called from commit_transaction. Writes all changed device stats to disk. 7070 */ 7071 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 7072 struct btrfs_fs_info *fs_info) 7073 { 7074 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7075 struct btrfs_device *device; 7076 int stats_cnt; 7077 int ret = 0; 7078 7079 mutex_lock(&fs_devices->device_list_mutex); 7080 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7081 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device)) 7082 continue; 7083 7084 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7085 ret = update_dev_stat_item(trans, fs_info, device); 7086 if (!ret) 7087 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7088 } 7089 mutex_unlock(&fs_devices->device_list_mutex); 7090 7091 return ret; 7092 } 7093 7094 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7095 { 7096 btrfs_dev_stat_inc(dev, index); 7097 btrfs_dev_stat_print_on_error(dev); 7098 } 7099 7100 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7101 { 7102 if (!dev->dev_stats_valid) 7103 return; 7104 btrfs_err_rl_in_rcu(dev->fs_info, 7105 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7106 rcu_str_deref(dev->name), 7107 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7108 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7109 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7110 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7111 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7112 } 7113 7114 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7115 { 7116 int i; 7117 7118 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7119 if (btrfs_dev_stat_read(dev, i) != 0) 7120 break; 7121 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7122 return; /* all values == 0, suppress message */ 7123 7124 btrfs_info_in_rcu(dev->fs_info, 7125 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7126 rcu_str_deref(dev->name), 7127 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7128 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7129 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7130 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7131 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7132 } 7133 7134 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7135 struct btrfs_ioctl_get_dev_stats *stats) 7136 { 7137 struct btrfs_device *dev; 7138 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7139 int i; 7140 7141 mutex_lock(&fs_devices->device_list_mutex); 7142 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL); 7143 mutex_unlock(&fs_devices->device_list_mutex); 7144 7145 if (!dev) { 7146 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7147 return -ENODEV; 7148 } else if (!dev->dev_stats_valid) { 7149 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7150 return -ENODEV; 7151 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7152 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7153 if (stats->nr_items > i) 7154 stats->values[i] = 7155 btrfs_dev_stat_read_and_reset(dev, i); 7156 else 7157 btrfs_dev_stat_reset(dev, i); 7158 } 7159 } else { 7160 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7161 if (stats->nr_items > i) 7162 stats->values[i] = btrfs_dev_stat_read(dev, i); 7163 } 7164 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7165 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7166 return 0; 7167 } 7168 7169 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path) 7170 { 7171 struct buffer_head *bh; 7172 struct btrfs_super_block *disk_super; 7173 int copy_num; 7174 7175 if (!bdev) 7176 return; 7177 7178 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 7179 copy_num++) { 7180 7181 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 7182 continue; 7183 7184 disk_super = (struct btrfs_super_block *)bh->b_data; 7185 7186 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 7187 set_buffer_dirty(bh); 7188 sync_dirty_buffer(bh); 7189 brelse(bh); 7190 } 7191 7192 /* Notify udev that device has changed */ 7193 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 7194 7195 /* Update ctime/mtime for device path for libblkid */ 7196 update_dev_time(device_path); 7197 } 7198 7199 /* 7200 * Update the size of all devices, which is used for writing out the 7201 * super blocks. 7202 */ 7203 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) 7204 { 7205 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7206 struct btrfs_device *curr, *next; 7207 7208 if (list_empty(&fs_devices->resized_devices)) 7209 return; 7210 7211 mutex_lock(&fs_devices->device_list_mutex); 7212 mutex_lock(&fs_info->chunk_mutex); 7213 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, 7214 resized_list) { 7215 list_del_init(&curr->resized_list); 7216 curr->commit_total_bytes = curr->disk_total_bytes; 7217 } 7218 mutex_unlock(&fs_info->chunk_mutex); 7219 mutex_unlock(&fs_devices->device_list_mutex); 7220 } 7221 7222 /* Must be invoked during the transaction commit */ 7223 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info, 7224 struct btrfs_transaction *transaction) 7225 { 7226 struct extent_map *em; 7227 struct map_lookup *map; 7228 struct btrfs_device *dev; 7229 int i; 7230 7231 if (list_empty(&transaction->pending_chunks)) 7232 return; 7233 7234 /* In order to kick the device replace finish process */ 7235 mutex_lock(&fs_info->chunk_mutex); 7236 list_for_each_entry(em, &transaction->pending_chunks, list) { 7237 map = em->map_lookup; 7238 7239 for (i = 0; i < map->num_stripes; i++) { 7240 dev = map->stripes[i].dev; 7241 dev->commit_bytes_used = dev->bytes_used; 7242 } 7243 } 7244 mutex_unlock(&fs_info->chunk_mutex); 7245 } 7246 7247 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 7248 { 7249 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7250 while (fs_devices) { 7251 fs_devices->fs_info = fs_info; 7252 fs_devices = fs_devices->seed; 7253 } 7254 } 7255 7256 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 7257 { 7258 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7259 while (fs_devices) { 7260 fs_devices->fs_info = NULL; 7261 fs_devices = fs_devices->seed; 7262 } 7263 } 7264