1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include <linux/namei.h> 18 #include "misc.h" 19 #include "ctree.h" 20 #include "extent_map.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "async-thread.h" 27 #include "check-integrity.h" 28 #include "rcu-string.h" 29 #include "dev-replace.h" 30 #include "sysfs.h" 31 #include "tree-checker.h" 32 #include "space-info.h" 33 #include "block-group.h" 34 #include "discard.h" 35 #include "zoned.h" 36 37 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 38 [BTRFS_RAID_RAID10] = { 39 .sub_stripes = 2, 40 .dev_stripes = 1, 41 .devs_max = 0, /* 0 == as many as possible */ 42 .devs_min = 2, 43 .tolerated_failures = 1, 44 .devs_increment = 2, 45 .ncopies = 2, 46 .nparity = 0, 47 .raid_name = "raid10", 48 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 49 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 50 }, 51 [BTRFS_RAID_RAID1] = { 52 .sub_stripes = 1, 53 .dev_stripes = 1, 54 .devs_max = 2, 55 .devs_min = 2, 56 .tolerated_failures = 1, 57 .devs_increment = 2, 58 .ncopies = 2, 59 .nparity = 0, 60 .raid_name = "raid1", 61 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 62 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 63 }, 64 [BTRFS_RAID_RAID1C3] = { 65 .sub_stripes = 1, 66 .dev_stripes = 1, 67 .devs_max = 3, 68 .devs_min = 3, 69 .tolerated_failures = 2, 70 .devs_increment = 3, 71 .ncopies = 3, 72 .nparity = 0, 73 .raid_name = "raid1c3", 74 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 75 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 76 }, 77 [BTRFS_RAID_RAID1C4] = { 78 .sub_stripes = 1, 79 .dev_stripes = 1, 80 .devs_max = 4, 81 .devs_min = 4, 82 .tolerated_failures = 3, 83 .devs_increment = 4, 84 .ncopies = 4, 85 .nparity = 0, 86 .raid_name = "raid1c4", 87 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 88 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 89 }, 90 [BTRFS_RAID_DUP] = { 91 .sub_stripes = 1, 92 .dev_stripes = 2, 93 .devs_max = 1, 94 .devs_min = 1, 95 .tolerated_failures = 0, 96 .devs_increment = 1, 97 .ncopies = 2, 98 .nparity = 0, 99 .raid_name = "dup", 100 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 101 .mindev_error = 0, 102 }, 103 [BTRFS_RAID_RAID0] = { 104 .sub_stripes = 1, 105 .dev_stripes = 1, 106 .devs_max = 0, 107 .devs_min = 1, 108 .tolerated_failures = 0, 109 .devs_increment = 1, 110 .ncopies = 1, 111 .nparity = 0, 112 .raid_name = "raid0", 113 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 114 .mindev_error = 0, 115 }, 116 [BTRFS_RAID_SINGLE] = { 117 .sub_stripes = 1, 118 .dev_stripes = 1, 119 .devs_max = 1, 120 .devs_min = 1, 121 .tolerated_failures = 0, 122 .devs_increment = 1, 123 .ncopies = 1, 124 .nparity = 0, 125 .raid_name = "single", 126 .bg_flag = 0, 127 .mindev_error = 0, 128 }, 129 [BTRFS_RAID_RAID5] = { 130 .sub_stripes = 1, 131 .dev_stripes = 1, 132 .devs_max = 0, 133 .devs_min = 2, 134 .tolerated_failures = 1, 135 .devs_increment = 1, 136 .ncopies = 1, 137 .nparity = 1, 138 .raid_name = "raid5", 139 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 140 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 141 }, 142 [BTRFS_RAID_RAID6] = { 143 .sub_stripes = 1, 144 .dev_stripes = 1, 145 .devs_max = 0, 146 .devs_min = 3, 147 .tolerated_failures = 2, 148 .devs_increment = 1, 149 .ncopies = 1, 150 .nparity = 2, 151 .raid_name = "raid6", 152 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 153 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 154 }, 155 }; 156 157 /* 158 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 159 * can be used as index to access btrfs_raid_array[]. 160 */ 161 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 162 { 163 if (flags & BTRFS_BLOCK_GROUP_RAID10) 164 return BTRFS_RAID_RAID10; 165 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 166 return BTRFS_RAID_RAID1; 167 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3) 168 return BTRFS_RAID_RAID1C3; 169 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4) 170 return BTRFS_RAID_RAID1C4; 171 else if (flags & BTRFS_BLOCK_GROUP_DUP) 172 return BTRFS_RAID_DUP; 173 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 174 return BTRFS_RAID_RAID0; 175 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 176 return BTRFS_RAID_RAID5; 177 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 178 return BTRFS_RAID_RAID6; 179 180 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 181 } 182 183 const char *btrfs_bg_type_to_raid_name(u64 flags) 184 { 185 const int index = btrfs_bg_flags_to_raid_index(flags); 186 187 if (index >= BTRFS_NR_RAID_TYPES) 188 return NULL; 189 190 return btrfs_raid_array[index].raid_name; 191 } 192 193 /* 194 * Fill @buf with textual description of @bg_flags, no more than @size_buf 195 * bytes including terminating null byte. 196 */ 197 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 198 { 199 int i; 200 int ret; 201 char *bp = buf; 202 u64 flags = bg_flags; 203 u32 size_bp = size_buf; 204 205 if (!flags) { 206 strcpy(bp, "NONE"); 207 return; 208 } 209 210 #define DESCRIBE_FLAG(flag, desc) \ 211 do { \ 212 if (flags & (flag)) { \ 213 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 214 if (ret < 0 || ret >= size_bp) \ 215 goto out_overflow; \ 216 size_bp -= ret; \ 217 bp += ret; \ 218 flags &= ~(flag); \ 219 } \ 220 } while (0) 221 222 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 225 226 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 227 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 228 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 229 btrfs_raid_array[i].raid_name); 230 #undef DESCRIBE_FLAG 231 232 if (flags) { 233 ret = snprintf(bp, size_bp, "0x%llx|", flags); 234 size_bp -= ret; 235 } 236 237 if (size_bp < size_buf) 238 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 239 240 /* 241 * The text is trimmed, it's up to the caller to provide sufficiently 242 * large buffer 243 */ 244 out_overflow:; 245 } 246 247 static int init_first_rw_device(struct btrfs_trans_handle *trans); 248 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 249 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 251 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 252 enum btrfs_map_op op, 253 u64 logical, u64 *length, 254 struct btrfs_io_context **bioc_ret, 255 int mirror_num, int need_raid_map); 256 257 /* 258 * Device locking 259 * ============== 260 * 261 * There are several mutexes that protect manipulation of devices and low-level 262 * structures like chunks but not block groups, extents or files 263 * 264 * uuid_mutex (global lock) 265 * ------------------------ 266 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 267 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 268 * device) or requested by the device= mount option 269 * 270 * the mutex can be very coarse and can cover long-running operations 271 * 272 * protects: updates to fs_devices counters like missing devices, rw devices, 273 * seeding, structure cloning, opening/closing devices at mount/umount time 274 * 275 * global::fs_devs - add, remove, updates to the global list 276 * 277 * does not protect: manipulation of the fs_devices::devices list in general 278 * but in mount context it could be used to exclude list modifications by eg. 279 * scan ioctl 280 * 281 * btrfs_device::name - renames (write side), read is RCU 282 * 283 * fs_devices::device_list_mutex (per-fs, with RCU) 284 * ------------------------------------------------ 285 * protects updates to fs_devices::devices, ie. adding and deleting 286 * 287 * simple list traversal with read-only actions can be done with RCU protection 288 * 289 * may be used to exclude some operations from running concurrently without any 290 * modifications to the list (see write_all_supers) 291 * 292 * Is not required at mount and close times, because our device list is 293 * protected by the uuid_mutex at that point. 294 * 295 * balance_mutex 296 * ------------- 297 * protects balance structures (status, state) and context accessed from 298 * several places (internally, ioctl) 299 * 300 * chunk_mutex 301 * ----------- 302 * protects chunks, adding or removing during allocation, trim or when a new 303 * device is added/removed. Additionally it also protects post_commit_list of 304 * individual devices, since they can be added to the transaction's 305 * post_commit_list only with chunk_mutex held. 306 * 307 * cleaner_mutex 308 * ------------- 309 * a big lock that is held by the cleaner thread and prevents running subvolume 310 * cleaning together with relocation or delayed iputs 311 * 312 * 313 * Lock nesting 314 * ============ 315 * 316 * uuid_mutex 317 * device_list_mutex 318 * chunk_mutex 319 * balance_mutex 320 * 321 * 322 * Exclusive operations 323 * ==================== 324 * 325 * Maintains the exclusivity of the following operations that apply to the 326 * whole filesystem and cannot run in parallel. 327 * 328 * - Balance (*) 329 * - Device add 330 * - Device remove 331 * - Device replace (*) 332 * - Resize 333 * 334 * The device operations (as above) can be in one of the following states: 335 * 336 * - Running state 337 * - Paused state 338 * - Completed state 339 * 340 * Only device operations marked with (*) can go into the Paused state for the 341 * following reasons: 342 * 343 * - ioctl (only Balance can be Paused through ioctl) 344 * - filesystem remounted as read-only 345 * - filesystem unmounted and mounted as read-only 346 * - system power-cycle and filesystem mounted as read-only 347 * - filesystem or device errors leading to forced read-only 348 * 349 * The status of exclusive operation is set and cleared atomically. 350 * During the course of Paused state, fs_info::exclusive_operation remains set. 351 * A device operation in Paused or Running state can be canceled or resumed 352 * either by ioctl (Balance only) or when remounted as read-write. 353 * The exclusive status is cleared when the device operation is canceled or 354 * completed. 355 */ 356 357 DEFINE_MUTEX(uuid_mutex); 358 static LIST_HEAD(fs_uuids); 359 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 360 { 361 return &fs_uuids; 362 } 363 364 /* 365 * alloc_fs_devices - allocate struct btrfs_fs_devices 366 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 367 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 368 * 369 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 370 * The returned struct is not linked onto any lists and can be destroyed with 371 * kfree() right away. 372 */ 373 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 374 const u8 *metadata_fsid) 375 { 376 struct btrfs_fs_devices *fs_devs; 377 378 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 379 if (!fs_devs) 380 return ERR_PTR(-ENOMEM); 381 382 mutex_init(&fs_devs->device_list_mutex); 383 384 INIT_LIST_HEAD(&fs_devs->devices); 385 INIT_LIST_HEAD(&fs_devs->alloc_list); 386 INIT_LIST_HEAD(&fs_devs->fs_list); 387 INIT_LIST_HEAD(&fs_devs->seed_list); 388 if (fsid) 389 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 390 391 if (metadata_fsid) 392 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 393 else if (fsid) 394 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 395 396 return fs_devs; 397 } 398 399 void btrfs_free_device(struct btrfs_device *device) 400 { 401 WARN_ON(!list_empty(&device->post_commit_list)); 402 rcu_string_free(device->name); 403 extent_io_tree_release(&device->alloc_state); 404 bio_put(device->flush_bio); 405 btrfs_destroy_dev_zone_info(device); 406 kfree(device); 407 } 408 409 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 410 { 411 struct btrfs_device *device; 412 WARN_ON(fs_devices->opened); 413 while (!list_empty(&fs_devices->devices)) { 414 device = list_entry(fs_devices->devices.next, 415 struct btrfs_device, dev_list); 416 list_del(&device->dev_list); 417 btrfs_free_device(device); 418 } 419 kfree(fs_devices); 420 } 421 422 void __exit btrfs_cleanup_fs_uuids(void) 423 { 424 struct btrfs_fs_devices *fs_devices; 425 426 while (!list_empty(&fs_uuids)) { 427 fs_devices = list_entry(fs_uuids.next, 428 struct btrfs_fs_devices, fs_list); 429 list_del(&fs_devices->fs_list); 430 free_fs_devices(fs_devices); 431 } 432 } 433 434 static noinline struct btrfs_fs_devices *find_fsid( 435 const u8 *fsid, const u8 *metadata_fsid) 436 { 437 struct btrfs_fs_devices *fs_devices; 438 439 ASSERT(fsid); 440 441 /* Handle non-split brain cases */ 442 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 443 if (metadata_fsid) { 444 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 445 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 446 BTRFS_FSID_SIZE) == 0) 447 return fs_devices; 448 } else { 449 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 450 return fs_devices; 451 } 452 } 453 return NULL; 454 } 455 456 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 457 struct btrfs_super_block *disk_super) 458 { 459 460 struct btrfs_fs_devices *fs_devices; 461 462 /* 463 * Handle scanned device having completed its fsid change but 464 * belonging to a fs_devices that was created by first scanning 465 * a device which didn't have its fsid/metadata_uuid changed 466 * at all and the CHANGING_FSID_V2 flag set. 467 */ 468 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 469 if (fs_devices->fsid_change && 470 memcmp(disk_super->metadata_uuid, fs_devices->fsid, 471 BTRFS_FSID_SIZE) == 0 && 472 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 473 BTRFS_FSID_SIZE) == 0) { 474 return fs_devices; 475 } 476 } 477 /* 478 * Handle scanned device having completed its fsid change but 479 * belonging to a fs_devices that was created by a device that 480 * has an outdated pair of fsid/metadata_uuid and 481 * CHANGING_FSID_V2 flag set. 482 */ 483 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 484 if (fs_devices->fsid_change && 485 memcmp(fs_devices->metadata_uuid, 486 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 487 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, 488 BTRFS_FSID_SIZE) == 0) { 489 return fs_devices; 490 } 491 } 492 493 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 494 } 495 496 497 static int 498 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 499 int flush, struct block_device **bdev, 500 struct btrfs_super_block **disk_super) 501 { 502 int ret; 503 504 *bdev = blkdev_get_by_path(device_path, flags, holder); 505 506 if (IS_ERR(*bdev)) { 507 ret = PTR_ERR(*bdev); 508 goto error; 509 } 510 511 if (flush) 512 sync_blockdev(*bdev); 513 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 514 if (ret) { 515 blkdev_put(*bdev, flags); 516 goto error; 517 } 518 invalidate_bdev(*bdev); 519 *disk_super = btrfs_read_dev_super(*bdev); 520 if (IS_ERR(*disk_super)) { 521 ret = PTR_ERR(*disk_super); 522 blkdev_put(*bdev, flags); 523 goto error; 524 } 525 526 return 0; 527 528 error: 529 *bdev = NULL; 530 return ret; 531 } 532 533 static bool device_path_matched(const char *path, struct btrfs_device *device) 534 { 535 int found; 536 537 rcu_read_lock(); 538 found = strcmp(rcu_str_deref(device->name), path); 539 rcu_read_unlock(); 540 541 return found == 0; 542 } 543 544 /* 545 * Search and remove all stale (devices which are not mounted) devices. 546 * When both inputs are NULL, it will search and release all stale devices. 547 * path: Optional. When provided will it release all unmounted devices 548 * matching this path only. 549 * skip_dev: Optional. Will skip this device when searching for the stale 550 * devices. 551 * Return: 0 for success or if @path is NULL. 552 * -EBUSY if @path is a mounted device. 553 * -ENOENT if @path does not match any device in the list. 554 */ 555 static int btrfs_free_stale_devices(const char *path, 556 struct btrfs_device *skip_device) 557 { 558 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 559 struct btrfs_device *device, *tmp_device; 560 int ret = 0; 561 562 lockdep_assert_held(&uuid_mutex); 563 564 if (path) 565 ret = -ENOENT; 566 567 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 568 569 mutex_lock(&fs_devices->device_list_mutex); 570 list_for_each_entry_safe(device, tmp_device, 571 &fs_devices->devices, dev_list) { 572 if (skip_device && skip_device == device) 573 continue; 574 if (path && !device->name) 575 continue; 576 if (path && !device_path_matched(path, device)) 577 continue; 578 if (fs_devices->opened) { 579 /* for an already deleted device return 0 */ 580 if (path && ret != 0) 581 ret = -EBUSY; 582 break; 583 } 584 585 /* delete the stale device */ 586 fs_devices->num_devices--; 587 list_del(&device->dev_list); 588 btrfs_free_device(device); 589 590 ret = 0; 591 } 592 mutex_unlock(&fs_devices->device_list_mutex); 593 594 if (fs_devices->num_devices == 0) { 595 btrfs_sysfs_remove_fsid(fs_devices); 596 list_del(&fs_devices->fs_list); 597 free_fs_devices(fs_devices); 598 } 599 } 600 601 return ret; 602 } 603 604 /* 605 * This is only used on mount, and we are protected from competing things 606 * messing with our fs_devices by the uuid_mutex, thus we do not need the 607 * fs_devices->device_list_mutex here. 608 */ 609 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 610 struct btrfs_device *device, fmode_t flags, 611 void *holder) 612 { 613 struct request_queue *q; 614 struct block_device *bdev; 615 struct btrfs_super_block *disk_super; 616 u64 devid; 617 int ret; 618 619 if (device->bdev) 620 return -EINVAL; 621 if (!device->name) 622 return -EINVAL; 623 624 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 625 &bdev, &disk_super); 626 if (ret) 627 return ret; 628 629 devid = btrfs_stack_device_id(&disk_super->dev_item); 630 if (devid != device->devid) 631 goto error_free_page; 632 633 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 634 goto error_free_page; 635 636 device->generation = btrfs_super_generation(disk_super); 637 638 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 639 if (btrfs_super_incompat_flags(disk_super) & 640 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 641 pr_err( 642 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 643 goto error_free_page; 644 } 645 646 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 647 fs_devices->seeding = true; 648 } else { 649 if (bdev_read_only(bdev)) 650 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 651 else 652 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 653 } 654 655 q = bdev_get_queue(bdev); 656 if (!blk_queue_nonrot(q)) 657 fs_devices->rotating = true; 658 659 device->bdev = bdev; 660 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 661 device->mode = flags; 662 663 fs_devices->open_devices++; 664 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 665 device->devid != BTRFS_DEV_REPLACE_DEVID) { 666 fs_devices->rw_devices++; 667 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 668 } 669 btrfs_release_disk_super(disk_super); 670 671 return 0; 672 673 error_free_page: 674 btrfs_release_disk_super(disk_super); 675 blkdev_put(bdev, flags); 676 677 return -EINVAL; 678 } 679 680 /* 681 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 682 * being created with a disk that has already completed its fsid change. Such 683 * disk can belong to an fs which has its FSID changed or to one which doesn't. 684 * Handle both cases here. 685 */ 686 static struct btrfs_fs_devices *find_fsid_inprogress( 687 struct btrfs_super_block *disk_super) 688 { 689 struct btrfs_fs_devices *fs_devices; 690 691 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 692 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 693 BTRFS_FSID_SIZE) != 0 && 694 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 695 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 696 return fs_devices; 697 } 698 } 699 700 return find_fsid(disk_super->fsid, NULL); 701 } 702 703 704 static struct btrfs_fs_devices *find_fsid_changed( 705 struct btrfs_super_block *disk_super) 706 { 707 struct btrfs_fs_devices *fs_devices; 708 709 /* 710 * Handles the case where scanned device is part of an fs that had 711 * multiple successful changes of FSID but currently device didn't 712 * observe it. Meaning our fsid will be different than theirs. We need 713 * to handle two subcases : 714 * 1 - The fs still continues to have different METADATA/FSID uuids. 715 * 2 - The fs is switched back to its original FSID (METADATA/FSID 716 * are equal). 717 */ 718 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 719 /* Changed UUIDs */ 720 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 721 BTRFS_FSID_SIZE) != 0 && 722 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 723 BTRFS_FSID_SIZE) == 0 && 724 memcmp(fs_devices->fsid, disk_super->fsid, 725 BTRFS_FSID_SIZE) != 0) 726 return fs_devices; 727 728 /* Unchanged UUIDs */ 729 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 730 BTRFS_FSID_SIZE) == 0 && 731 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 732 BTRFS_FSID_SIZE) == 0) 733 return fs_devices; 734 } 735 736 return NULL; 737 } 738 739 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 740 struct btrfs_super_block *disk_super) 741 { 742 struct btrfs_fs_devices *fs_devices; 743 744 /* 745 * Handle the case where the scanned device is part of an fs whose last 746 * metadata UUID change reverted it to the original FSID. At the same 747 * time * fs_devices was first created by another constitutent device 748 * which didn't fully observe the operation. This results in an 749 * btrfs_fs_devices created with metadata/fsid different AND 750 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 751 * fs_devices equal to the FSID of the disk. 752 */ 753 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 754 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 755 BTRFS_FSID_SIZE) != 0 && 756 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 757 BTRFS_FSID_SIZE) == 0 && 758 fs_devices->fsid_change) 759 return fs_devices; 760 } 761 762 return NULL; 763 } 764 /* 765 * Add new device to list of registered devices 766 * 767 * Returns: 768 * device pointer which was just added or updated when successful 769 * error pointer when failed 770 */ 771 static noinline struct btrfs_device *device_list_add(const char *path, 772 struct btrfs_super_block *disk_super, 773 bool *new_device_added) 774 { 775 struct btrfs_device *device; 776 struct btrfs_fs_devices *fs_devices = NULL; 777 struct rcu_string *name; 778 u64 found_transid = btrfs_super_generation(disk_super); 779 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 780 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 781 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 782 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 783 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 784 785 if (fsid_change_in_progress) { 786 if (!has_metadata_uuid) 787 fs_devices = find_fsid_inprogress(disk_super); 788 else 789 fs_devices = find_fsid_changed(disk_super); 790 } else if (has_metadata_uuid) { 791 fs_devices = find_fsid_with_metadata_uuid(disk_super); 792 } else { 793 fs_devices = find_fsid_reverted_metadata(disk_super); 794 if (!fs_devices) 795 fs_devices = find_fsid(disk_super->fsid, NULL); 796 } 797 798 799 if (!fs_devices) { 800 if (has_metadata_uuid) 801 fs_devices = alloc_fs_devices(disk_super->fsid, 802 disk_super->metadata_uuid); 803 else 804 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 805 806 if (IS_ERR(fs_devices)) 807 return ERR_CAST(fs_devices); 808 809 fs_devices->fsid_change = fsid_change_in_progress; 810 811 mutex_lock(&fs_devices->device_list_mutex); 812 list_add(&fs_devices->fs_list, &fs_uuids); 813 814 device = NULL; 815 } else { 816 struct btrfs_dev_lookup_args args = { 817 .devid = devid, 818 .uuid = disk_super->dev_item.uuid, 819 }; 820 821 mutex_lock(&fs_devices->device_list_mutex); 822 device = btrfs_find_device(fs_devices, &args); 823 824 /* 825 * If this disk has been pulled into an fs devices created by 826 * a device which had the CHANGING_FSID_V2 flag then replace the 827 * metadata_uuid/fsid values of the fs_devices. 828 */ 829 if (fs_devices->fsid_change && 830 found_transid > fs_devices->latest_generation) { 831 memcpy(fs_devices->fsid, disk_super->fsid, 832 BTRFS_FSID_SIZE); 833 834 if (has_metadata_uuid) 835 memcpy(fs_devices->metadata_uuid, 836 disk_super->metadata_uuid, 837 BTRFS_FSID_SIZE); 838 else 839 memcpy(fs_devices->metadata_uuid, 840 disk_super->fsid, BTRFS_FSID_SIZE); 841 842 fs_devices->fsid_change = false; 843 } 844 } 845 846 if (!device) { 847 if (fs_devices->opened) { 848 mutex_unlock(&fs_devices->device_list_mutex); 849 return ERR_PTR(-EBUSY); 850 } 851 852 device = btrfs_alloc_device(NULL, &devid, 853 disk_super->dev_item.uuid); 854 if (IS_ERR(device)) { 855 mutex_unlock(&fs_devices->device_list_mutex); 856 /* we can safely leave the fs_devices entry around */ 857 return device; 858 } 859 860 name = rcu_string_strdup(path, GFP_NOFS); 861 if (!name) { 862 btrfs_free_device(device); 863 mutex_unlock(&fs_devices->device_list_mutex); 864 return ERR_PTR(-ENOMEM); 865 } 866 rcu_assign_pointer(device->name, name); 867 868 list_add_rcu(&device->dev_list, &fs_devices->devices); 869 fs_devices->num_devices++; 870 871 device->fs_devices = fs_devices; 872 *new_device_added = true; 873 874 if (disk_super->label[0]) 875 pr_info( 876 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 877 disk_super->label, devid, found_transid, path, 878 current->comm, task_pid_nr(current)); 879 else 880 pr_info( 881 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 882 disk_super->fsid, devid, found_transid, path, 883 current->comm, task_pid_nr(current)); 884 885 } else if (!device->name || strcmp(device->name->str, path)) { 886 /* 887 * When FS is already mounted. 888 * 1. If you are here and if the device->name is NULL that 889 * means this device was missing at time of FS mount. 890 * 2. If you are here and if the device->name is different 891 * from 'path' that means either 892 * a. The same device disappeared and reappeared with 893 * different name. or 894 * b. The missing-disk-which-was-replaced, has 895 * reappeared now. 896 * 897 * We must allow 1 and 2a above. But 2b would be a spurious 898 * and unintentional. 899 * 900 * Further in case of 1 and 2a above, the disk at 'path' 901 * would have missed some transaction when it was away and 902 * in case of 2a the stale bdev has to be updated as well. 903 * 2b must not be allowed at all time. 904 */ 905 906 /* 907 * For now, we do allow update to btrfs_fs_device through the 908 * btrfs dev scan cli after FS has been mounted. We're still 909 * tracking a problem where systems fail mount by subvolume id 910 * when we reject replacement on a mounted FS. 911 */ 912 if (!fs_devices->opened && found_transid < device->generation) { 913 /* 914 * That is if the FS is _not_ mounted and if you 915 * are here, that means there is more than one 916 * disk with same uuid and devid.We keep the one 917 * with larger generation number or the last-in if 918 * generation are equal. 919 */ 920 mutex_unlock(&fs_devices->device_list_mutex); 921 return ERR_PTR(-EEXIST); 922 } 923 924 /* 925 * We are going to replace the device path for a given devid, 926 * make sure it's the same device if the device is mounted 927 */ 928 if (device->bdev) { 929 int error; 930 dev_t path_dev; 931 932 error = lookup_bdev(path, &path_dev); 933 if (error) { 934 mutex_unlock(&fs_devices->device_list_mutex); 935 return ERR_PTR(error); 936 } 937 938 if (device->bdev->bd_dev != path_dev) { 939 mutex_unlock(&fs_devices->device_list_mutex); 940 /* 941 * device->fs_info may not be reliable here, so 942 * pass in a NULL instead. This avoids a 943 * possible use-after-free when the fs_info and 944 * fs_info->sb are already torn down. 945 */ 946 btrfs_warn_in_rcu(NULL, 947 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 948 path, devid, found_transid, 949 current->comm, 950 task_pid_nr(current)); 951 return ERR_PTR(-EEXIST); 952 } 953 btrfs_info_in_rcu(device->fs_info, 954 "devid %llu device path %s changed to %s scanned by %s (%d)", 955 devid, rcu_str_deref(device->name), 956 path, current->comm, 957 task_pid_nr(current)); 958 } 959 960 name = rcu_string_strdup(path, GFP_NOFS); 961 if (!name) { 962 mutex_unlock(&fs_devices->device_list_mutex); 963 return ERR_PTR(-ENOMEM); 964 } 965 rcu_string_free(device->name); 966 rcu_assign_pointer(device->name, name); 967 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 968 fs_devices->missing_devices--; 969 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 970 } 971 } 972 973 /* 974 * Unmount does not free the btrfs_device struct but would zero 975 * generation along with most of the other members. So just update 976 * it back. We need it to pick the disk with largest generation 977 * (as above). 978 */ 979 if (!fs_devices->opened) { 980 device->generation = found_transid; 981 fs_devices->latest_generation = max_t(u64, found_transid, 982 fs_devices->latest_generation); 983 } 984 985 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 986 987 mutex_unlock(&fs_devices->device_list_mutex); 988 return device; 989 } 990 991 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 992 { 993 struct btrfs_fs_devices *fs_devices; 994 struct btrfs_device *device; 995 struct btrfs_device *orig_dev; 996 int ret = 0; 997 998 lockdep_assert_held(&uuid_mutex); 999 1000 fs_devices = alloc_fs_devices(orig->fsid, NULL); 1001 if (IS_ERR(fs_devices)) 1002 return fs_devices; 1003 1004 fs_devices->total_devices = orig->total_devices; 1005 1006 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1007 struct rcu_string *name; 1008 1009 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1010 orig_dev->uuid); 1011 if (IS_ERR(device)) { 1012 ret = PTR_ERR(device); 1013 goto error; 1014 } 1015 1016 /* 1017 * This is ok to do without rcu read locked because we hold the 1018 * uuid mutex so nothing we touch in here is going to disappear. 1019 */ 1020 if (orig_dev->name) { 1021 name = rcu_string_strdup(orig_dev->name->str, 1022 GFP_KERNEL); 1023 if (!name) { 1024 btrfs_free_device(device); 1025 ret = -ENOMEM; 1026 goto error; 1027 } 1028 rcu_assign_pointer(device->name, name); 1029 } 1030 1031 list_add(&device->dev_list, &fs_devices->devices); 1032 device->fs_devices = fs_devices; 1033 fs_devices->num_devices++; 1034 } 1035 return fs_devices; 1036 error: 1037 free_fs_devices(fs_devices); 1038 return ERR_PTR(ret); 1039 } 1040 1041 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1042 struct btrfs_device **latest_dev) 1043 { 1044 struct btrfs_device *device, *next; 1045 1046 /* This is the initialized path, it is safe to release the devices. */ 1047 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1048 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1049 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1050 &device->dev_state) && 1051 !test_bit(BTRFS_DEV_STATE_MISSING, 1052 &device->dev_state) && 1053 (!*latest_dev || 1054 device->generation > (*latest_dev)->generation)) { 1055 *latest_dev = device; 1056 } 1057 continue; 1058 } 1059 1060 /* 1061 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1062 * in btrfs_init_dev_replace() so just continue. 1063 */ 1064 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1065 continue; 1066 1067 if (device->bdev) { 1068 blkdev_put(device->bdev, device->mode); 1069 device->bdev = NULL; 1070 fs_devices->open_devices--; 1071 } 1072 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1073 list_del_init(&device->dev_alloc_list); 1074 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1075 fs_devices->rw_devices--; 1076 } 1077 list_del_init(&device->dev_list); 1078 fs_devices->num_devices--; 1079 btrfs_free_device(device); 1080 } 1081 1082 } 1083 1084 /* 1085 * After we have read the system tree and know devids belonging to this 1086 * filesystem, remove the device which does not belong there. 1087 */ 1088 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1089 { 1090 struct btrfs_device *latest_dev = NULL; 1091 struct btrfs_fs_devices *seed_dev; 1092 1093 mutex_lock(&uuid_mutex); 1094 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1095 1096 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1097 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1098 1099 fs_devices->latest_dev = latest_dev; 1100 1101 mutex_unlock(&uuid_mutex); 1102 } 1103 1104 static void btrfs_close_bdev(struct btrfs_device *device) 1105 { 1106 if (!device->bdev) 1107 return; 1108 1109 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1110 sync_blockdev(device->bdev); 1111 invalidate_bdev(device->bdev); 1112 } 1113 1114 blkdev_put(device->bdev, device->mode); 1115 } 1116 1117 static void btrfs_close_one_device(struct btrfs_device *device) 1118 { 1119 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1120 1121 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1122 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1123 list_del_init(&device->dev_alloc_list); 1124 fs_devices->rw_devices--; 1125 } 1126 1127 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1128 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1129 1130 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1131 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1132 fs_devices->missing_devices--; 1133 } 1134 1135 btrfs_close_bdev(device); 1136 if (device->bdev) { 1137 fs_devices->open_devices--; 1138 device->bdev = NULL; 1139 } 1140 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1141 btrfs_destroy_dev_zone_info(device); 1142 1143 device->fs_info = NULL; 1144 atomic_set(&device->dev_stats_ccnt, 0); 1145 extent_io_tree_release(&device->alloc_state); 1146 1147 /* 1148 * Reset the flush error record. We might have a transient flush error 1149 * in this mount, and if so we aborted the current transaction and set 1150 * the fs to an error state, guaranteeing no super blocks can be further 1151 * committed. However that error might be transient and if we unmount the 1152 * filesystem and mount it again, we should allow the mount to succeed 1153 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1154 * filesystem again we still get flush errors, then we will again abort 1155 * any transaction and set the error state, guaranteeing no commits of 1156 * unsafe super blocks. 1157 */ 1158 device->last_flush_error = 0; 1159 1160 /* Verify the device is back in a pristine state */ 1161 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1162 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1163 ASSERT(list_empty(&device->dev_alloc_list)); 1164 ASSERT(list_empty(&device->post_commit_list)); 1165 ASSERT(atomic_read(&device->reada_in_flight) == 0); 1166 } 1167 1168 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1169 { 1170 struct btrfs_device *device, *tmp; 1171 1172 lockdep_assert_held(&uuid_mutex); 1173 1174 if (--fs_devices->opened > 0) 1175 return; 1176 1177 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1178 btrfs_close_one_device(device); 1179 1180 WARN_ON(fs_devices->open_devices); 1181 WARN_ON(fs_devices->rw_devices); 1182 fs_devices->opened = 0; 1183 fs_devices->seeding = false; 1184 fs_devices->fs_info = NULL; 1185 } 1186 1187 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1188 { 1189 LIST_HEAD(list); 1190 struct btrfs_fs_devices *tmp; 1191 1192 mutex_lock(&uuid_mutex); 1193 close_fs_devices(fs_devices); 1194 if (!fs_devices->opened) 1195 list_splice_init(&fs_devices->seed_list, &list); 1196 1197 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1198 close_fs_devices(fs_devices); 1199 list_del(&fs_devices->seed_list); 1200 free_fs_devices(fs_devices); 1201 } 1202 mutex_unlock(&uuid_mutex); 1203 } 1204 1205 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1206 fmode_t flags, void *holder) 1207 { 1208 struct btrfs_device *device; 1209 struct btrfs_device *latest_dev = NULL; 1210 struct btrfs_device *tmp_device; 1211 1212 flags |= FMODE_EXCL; 1213 1214 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1215 dev_list) { 1216 int ret; 1217 1218 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1219 if (ret == 0 && 1220 (!latest_dev || device->generation > latest_dev->generation)) { 1221 latest_dev = device; 1222 } else if (ret == -ENODATA) { 1223 fs_devices->num_devices--; 1224 list_del(&device->dev_list); 1225 btrfs_free_device(device); 1226 } 1227 } 1228 if (fs_devices->open_devices == 0) 1229 return -EINVAL; 1230 1231 fs_devices->opened = 1; 1232 fs_devices->latest_dev = latest_dev; 1233 fs_devices->total_rw_bytes = 0; 1234 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1235 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1236 1237 return 0; 1238 } 1239 1240 static int devid_cmp(void *priv, const struct list_head *a, 1241 const struct list_head *b) 1242 { 1243 const struct btrfs_device *dev1, *dev2; 1244 1245 dev1 = list_entry(a, struct btrfs_device, dev_list); 1246 dev2 = list_entry(b, struct btrfs_device, dev_list); 1247 1248 if (dev1->devid < dev2->devid) 1249 return -1; 1250 else if (dev1->devid > dev2->devid) 1251 return 1; 1252 return 0; 1253 } 1254 1255 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1256 fmode_t flags, void *holder) 1257 { 1258 int ret; 1259 1260 lockdep_assert_held(&uuid_mutex); 1261 /* 1262 * The device_list_mutex cannot be taken here in case opening the 1263 * underlying device takes further locks like open_mutex. 1264 * 1265 * We also don't need the lock here as this is called during mount and 1266 * exclusion is provided by uuid_mutex 1267 */ 1268 1269 if (fs_devices->opened) { 1270 fs_devices->opened++; 1271 ret = 0; 1272 } else { 1273 list_sort(NULL, &fs_devices->devices, devid_cmp); 1274 ret = open_fs_devices(fs_devices, flags, holder); 1275 } 1276 1277 return ret; 1278 } 1279 1280 void btrfs_release_disk_super(struct btrfs_super_block *super) 1281 { 1282 struct page *page = virt_to_page(super); 1283 1284 put_page(page); 1285 } 1286 1287 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1288 u64 bytenr, u64 bytenr_orig) 1289 { 1290 struct btrfs_super_block *disk_super; 1291 struct page *page; 1292 void *p; 1293 pgoff_t index; 1294 1295 /* make sure our super fits in the device */ 1296 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1297 return ERR_PTR(-EINVAL); 1298 1299 /* make sure our super fits in the page */ 1300 if (sizeof(*disk_super) > PAGE_SIZE) 1301 return ERR_PTR(-EINVAL); 1302 1303 /* make sure our super doesn't straddle pages on disk */ 1304 index = bytenr >> PAGE_SHIFT; 1305 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1306 return ERR_PTR(-EINVAL); 1307 1308 /* pull in the page with our super */ 1309 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1310 1311 if (IS_ERR(page)) 1312 return ERR_CAST(page); 1313 1314 p = page_address(page); 1315 1316 /* align our pointer to the offset of the super block */ 1317 disk_super = p + offset_in_page(bytenr); 1318 1319 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1320 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1321 btrfs_release_disk_super(p); 1322 return ERR_PTR(-EINVAL); 1323 } 1324 1325 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1326 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1327 1328 return disk_super; 1329 } 1330 1331 int btrfs_forget_devices(const char *path) 1332 { 1333 int ret; 1334 1335 mutex_lock(&uuid_mutex); 1336 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1337 mutex_unlock(&uuid_mutex); 1338 1339 return ret; 1340 } 1341 1342 /* 1343 * Look for a btrfs signature on a device. This may be called out of the mount path 1344 * and we are not allowed to call set_blocksize during the scan. The superblock 1345 * is read via pagecache 1346 */ 1347 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1348 void *holder) 1349 { 1350 struct btrfs_super_block *disk_super; 1351 bool new_device_added = false; 1352 struct btrfs_device *device = NULL; 1353 struct block_device *bdev; 1354 u64 bytenr, bytenr_orig; 1355 int ret; 1356 1357 lockdep_assert_held(&uuid_mutex); 1358 1359 /* 1360 * we would like to check all the supers, but that would make 1361 * a btrfs mount succeed after a mkfs from a different FS. 1362 * So, we need to add a special mount option to scan for 1363 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1364 */ 1365 flags |= FMODE_EXCL; 1366 1367 bdev = blkdev_get_by_path(path, flags, holder); 1368 if (IS_ERR(bdev)) 1369 return ERR_CAST(bdev); 1370 1371 bytenr_orig = btrfs_sb_offset(0); 1372 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr); 1373 if (ret) 1374 return ERR_PTR(ret); 1375 1376 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig); 1377 if (IS_ERR(disk_super)) { 1378 device = ERR_CAST(disk_super); 1379 goto error_bdev_put; 1380 } 1381 1382 device = device_list_add(path, disk_super, &new_device_added); 1383 if (!IS_ERR(device)) { 1384 if (new_device_added) 1385 btrfs_free_stale_devices(path, device); 1386 } 1387 1388 btrfs_release_disk_super(disk_super); 1389 1390 error_bdev_put: 1391 blkdev_put(bdev, flags); 1392 1393 return device; 1394 } 1395 1396 /* 1397 * Try to find a chunk that intersects [start, start + len] range and when one 1398 * such is found, record the end of it in *start 1399 */ 1400 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1401 u64 len) 1402 { 1403 u64 physical_start, physical_end; 1404 1405 lockdep_assert_held(&device->fs_info->chunk_mutex); 1406 1407 if (!find_first_extent_bit(&device->alloc_state, *start, 1408 &physical_start, &physical_end, 1409 CHUNK_ALLOCATED, NULL)) { 1410 1411 if (in_range(physical_start, *start, len) || 1412 in_range(*start, physical_start, 1413 physical_end - physical_start)) { 1414 *start = physical_end + 1; 1415 return true; 1416 } 1417 } 1418 return false; 1419 } 1420 1421 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1422 { 1423 switch (device->fs_devices->chunk_alloc_policy) { 1424 case BTRFS_CHUNK_ALLOC_REGULAR: 1425 /* 1426 * We don't want to overwrite the superblock on the drive nor 1427 * any area used by the boot loader (grub for example), so we 1428 * make sure to start at an offset of at least 1MB. 1429 */ 1430 return max_t(u64, start, SZ_1M); 1431 case BTRFS_CHUNK_ALLOC_ZONED: 1432 /* 1433 * We don't care about the starting region like regular 1434 * allocator, because we anyway use/reserve the first two zones 1435 * for superblock logging. 1436 */ 1437 return ALIGN(start, device->zone_info->zone_size); 1438 default: 1439 BUG(); 1440 } 1441 } 1442 1443 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1444 u64 *hole_start, u64 *hole_size, 1445 u64 num_bytes) 1446 { 1447 u64 zone_size = device->zone_info->zone_size; 1448 u64 pos; 1449 int ret; 1450 bool changed = false; 1451 1452 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1453 1454 while (*hole_size > 0) { 1455 pos = btrfs_find_allocatable_zones(device, *hole_start, 1456 *hole_start + *hole_size, 1457 num_bytes); 1458 if (pos != *hole_start) { 1459 *hole_size = *hole_start + *hole_size - pos; 1460 *hole_start = pos; 1461 changed = true; 1462 if (*hole_size < num_bytes) 1463 break; 1464 } 1465 1466 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1467 1468 /* Range is ensured to be empty */ 1469 if (!ret) 1470 return changed; 1471 1472 /* Given hole range was invalid (outside of device) */ 1473 if (ret == -ERANGE) { 1474 *hole_start += *hole_size; 1475 *hole_size = 0; 1476 return true; 1477 } 1478 1479 *hole_start += zone_size; 1480 *hole_size -= zone_size; 1481 changed = true; 1482 } 1483 1484 return changed; 1485 } 1486 1487 /** 1488 * dev_extent_hole_check - check if specified hole is suitable for allocation 1489 * @device: the device which we have the hole 1490 * @hole_start: starting position of the hole 1491 * @hole_size: the size of the hole 1492 * @num_bytes: the size of the free space that we need 1493 * 1494 * This function may modify @hole_start and @hole_size to reflect the suitable 1495 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1496 */ 1497 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1498 u64 *hole_size, u64 num_bytes) 1499 { 1500 bool changed = false; 1501 u64 hole_end = *hole_start + *hole_size; 1502 1503 for (;;) { 1504 /* 1505 * Check before we set max_hole_start, otherwise we could end up 1506 * sending back this offset anyway. 1507 */ 1508 if (contains_pending_extent(device, hole_start, *hole_size)) { 1509 if (hole_end >= *hole_start) 1510 *hole_size = hole_end - *hole_start; 1511 else 1512 *hole_size = 0; 1513 changed = true; 1514 } 1515 1516 switch (device->fs_devices->chunk_alloc_policy) { 1517 case BTRFS_CHUNK_ALLOC_REGULAR: 1518 /* No extra check */ 1519 break; 1520 case BTRFS_CHUNK_ALLOC_ZONED: 1521 if (dev_extent_hole_check_zoned(device, hole_start, 1522 hole_size, num_bytes)) { 1523 changed = true; 1524 /* 1525 * The changed hole can contain pending extent. 1526 * Loop again to check that. 1527 */ 1528 continue; 1529 } 1530 break; 1531 default: 1532 BUG(); 1533 } 1534 1535 break; 1536 } 1537 1538 return changed; 1539 } 1540 1541 /* 1542 * find_free_dev_extent_start - find free space in the specified device 1543 * @device: the device which we search the free space in 1544 * @num_bytes: the size of the free space that we need 1545 * @search_start: the position from which to begin the search 1546 * @start: store the start of the free space. 1547 * @len: the size of the free space. that we find, or the size 1548 * of the max free space if we don't find suitable free space 1549 * 1550 * this uses a pretty simple search, the expectation is that it is 1551 * called very infrequently and that a given device has a small number 1552 * of extents 1553 * 1554 * @start is used to store the start of the free space if we find. But if we 1555 * don't find suitable free space, it will be used to store the start position 1556 * of the max free space. 1557 * 1558 * @len is used to store the size of the free space that we find. 1559 * But if we don't find suitable free space, it is used to store the size of 1560 * the max free space. 1561 * 1562 * NOTE: This function will search *commit* root of device tree, and does extra 1563 * check to ensure dev extents are not double allocated. 1564 * This makes the function safe to allocate dev extents but may not report 1565 * correct usable device space, as device extent freed in current transaction 1566 * is not reported as available. 1567 */ 1568 static int find_free_dev_extent_start(struct btrfs_device *device, 1569 u64 num_bytes, u64 search_start, u64 *start, 1570 u64 *len) 1571 { 1572 struct btrfs_fs_info *fs_info = device->fs_info; 1573 struct btrfs_root *root = fs_info->dev_root; 1574 struct btrfs_key key; 1575 struct btrfs_dev_extent *dev_extent; 1576 struct btrfs_path *path; 1577 u64 hole_size; 1578 u64 max_hole_start; 1579 u64 max_hole_size; 1580 u64 extent_end; 1581 u64 search_end = device->total_bytes; 1582 int ret; 1583 int slot; 1584 struct extent_buffer *l; 1585 1586 search_start = dev_extent_search_start(device, search_start); 1587 1588 WARN_ON(device->zone_info && 1589 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1590 1591 path = btrfs_alloc_path(); 1592 if (!path) 1593 return -ENOMEM; 1594 1595 max_hole_start = search_start; 1596 max_hole_size = 0; 1597 1598 again: 1599 if (search_start >= search_end || 1600 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1601 ret = -ENOSPC; 1602 goto out; 1603 } 1604 1605 path->reada = READA_FORWARD; 1606 path->search_commit_root = 1; 1607 path->skip_locking = 1; 1608 1609 key.objectid = device->devid; 1610 key.offset = search_start; 1611 key.type = BTRFS_DEV_EXTENT_KEY; 1612 1613 ret = btrfs_search_backwards(root, &key, path); 1614 if (ret < 0) 1615 goto out; 1616 1617 while (1) { 1618 l = path->nodes[0]; 1619 slot = path->slots[0]; 1620 if (slot >= btrfs_header_nritems(l)) { 1621 ret = btrfs_next_leaf(root, path); 1622 if (ret == 0) 1623 continue; 1624 if (ret < 0) 1625 goto out; 1626 1627 break; 1628 } 1629 btrfs_item_key_to_cpu(l, &key, slot); 1630 1631 if (key.objectid < device->devid) 1632 goto next; 1633 1634 if (key.objectid > device->devid) 1635 break; 1636 1637 if (key.type != BTRFS_DEV_EXTENT_KEY) 1638 goto next; 1639 1640 if (key.offset > search_start) { 1641 hole_size = key.offset - search_start; 1642 dev_extent_hole_check(device, &search_start, &hole_size, 1643 num_bytes); 1644 1645 if (hole_size > max_hole_size) { 1646 max_hole_start = search_start; 1647 max_hole_size = hole_size; 1648 } 1649 1650 /* 1651 * If this free space is greater than which we need, 1652 * it must be the max free space that we have found 1653 * until now, so max_hole_start must point to the start 1654 * of this free space and the length of this free space 1655 * is stored in max_hole_size. Thus, we return 1656 * max_hole_start and max_hole_size and go back to the 1657 * caller. 1658 */ 1659 if (hole_size >= num_bytes) { 1660 ret = 0; 1661 goto out; 1662 } 1663 } 1664 1665 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1666 extent_end = key.offset + btrfs_dev_extent_length(l, 1667 dev_extent); 1668 if (extent_end > search_start) 1669 search_start = extent_end; 1670 next: 1671 path->slots[0]++; 1672 cond_resched(); 1673 } 1674 1675 /* 1676 * At this point, search_start should be the end of 1677 * allocated dev extents, and when shrinking the device, 1678 * search_end may be smaller than search_start. 1679 */ 1680 if (search_end > search_start) { 1681 hole_size = search_end - search_start; 1682 if (dev_extent_hole_check(device, &search_start, &hole_size, 1683 num_bytes)) { 1684 btrfs_release_path(path); 1685 goto again; 1686 } 1687 1688 if (hole_size > max_hole_size) { 1689 max_hole_start = search_start; 1690 max_hole_size = hole_size; 1691 } 1692 } 1693 1694 /* See above. */ 1695 if (max_hole_size < num_bytes) 1696 ret = -ENOSPC; 1697 else 1698 ret = 0; 1699 1700 out: 1701 btrfs_free_path(path); 1702 *start = max_hole_start; 1703 if (len) 1704 *len = max_hole_size; 1705 return ret; 1706 } 1707 1708 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1709 u64 *start, u64 *len) 1710 { 1711 /* FIXME use last free of some kind */ 1712 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1713 } 1714 1715 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1716 struct btrfs_device *device, 1717 u64 start, u64 *dev_extent_len) 1718 { 1719 struct btrfs_fs_info *fs_info = device->fs_info; 1720 struct btrfs_root *root = fs_info->dev_root; 1721 int ret; 1722 struct btrfs_path *path; 1723 struct btrfs_key key; 1724 struct btrfs_key found_key; 1725 struct extent_buffer *leaf = NULL; 1726 struct btrfs_dev_extent *extent = NULL; 1727 1728 path = btrfs_alloc_path(); 1729 if (!path) 1730 return -ENOMEM; 1731 1732 key.objectid = device->devid; 1733 key.offset = start; 1734 key.type = BTRFS_DEV_EXTENT_KEY; 1735 again: 1736 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1737 if (ret > 0) { 1738 ret = btrfs_previous_item(root, path, key.objectid, 1739 BTRFS_DEV_EXTENT_KEY); 1740 if (ret) 1741 goto out; 1742 leaf = path->nodes[0]; 1743 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1744 extent = btrfs_item_ptr(leaf, path->slots[0], 1745 struct btrfs_dev_extent); 1746 BUG_ON(found_key.offset > start || found_key.offset + 1747 btrfs_dev_extent_length(leaf, extent) < start); 1748 key = found_key; 1749 btrfs_release_path(path); 1750 goto again; 1751 } else if (ret == 0) { 1752 leaf = path->nodes[0]; 1753 extent = btrfs_item_ptr(leaf, path->slots[0], 1754 struct btrfs_dev_extent); 1755 } else { 1756 goto out; 1757 } 1758 1759 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1760 1761 ret = btrfs_del_item(trans, root, path); 1762 if (ret == 0) 1763 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1764 out: 1765 btrfs_free_path(path); 1766 return ret; 1767 } 1768 1769 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1770 { 1771 struct extent_map_tree *em_tree; 1772 struct extent_map *em; 1773 struct rb_node *n; 1774 u64 ret = 0; 1775 1776 em_tree = &fs_info->mapping_tree; 1777 read_lock(&em_tree->lock); 1778 n = rb_last(&em_tree->map.rb_root); 1779 if (n) { 1780 em = rb_entry(n, struct extent_map, rb_node); 1781 ret = em->start + em->len; 1782 } 1783 read_unlock(&em_tree->lock); 1784 1785 return ret; 1786 } 1787 1788 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1789 u64 *devid_ret) 1790 { 1791 int ret; 1792 struct btrfs_key key; 1793 struct btrfs_key found_key; 1794 struct btrfs_path *path; 1795 1796 path = btrfs_alloc_path(); 1797 if (!path) 1798 return -ENOMEM; 1799 1800 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1801 key.type = BTRFS_DEV_ITEM_KEY; 1802 key.offset = (u64)-1; 1803 1804 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1805 if (ret < 0) 1806 goto error; 1807 1808 if (ret == 0) { 1809 /* Corruption */ 1810 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1811 ret = -EUCLEAN; 1812 goto error; 1813 } 1814 1815 ret = btrfs_previous_item(fs_info->chunk_root, path, 1816 BTRFS_DEV_ITEMS_OBJECTID, 1817 BTRFS_DEV_ITEM_KEY); 1818 if (ret) { 1819 *devid_ret = 1; 1820 } else { 1821 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1822 path->slots[0]); 1823 *devid_ret = found_key.offset + 1; 1824 } 1825 ret = 0; 1826 error: 1827 btrfs_free_path(path); 1828 return ret; 1829 } 1830 1831 /* 1832 * the device information is stored in the chunk root 1833 * the btrfs_device struct should be fully filled in 1834 */ 1835 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1836 struct btrfs_device *device) 1837 { 1838 int ret; 1839 struct btrfs_path *path; 1840 struct btrfs_dev_item *dev_item; 1841 struct extent_buffer *leaf; 1842 struct btrfs_key key; 1843 unsigned long ptr; 1844 1845 path = btrfs_alloc_path(); 1846 if (!path) 1847 return -ENOMEM; 1848 1849 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1850 key.type = BTRFS_DEV_ITEM_KEY; 1851 key.offset = device->devid; 1852 1853 btrfs_reserve_chunk_metadata(trans, true); 1854 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1855 &key, sizeof(*dev_item)); 1856 btrfs_trans_release_chunk_metadata(trans); 1857 if (ret) 1858 goto out; 1859 1860 leaf = path->nodes[0]; 1861 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1862 1863 btrfs_set_device_id(leaf, dev_item, device->devid); 1864 btrfs_set_device_generation(leaf, dev_item, 0); 1865 btrfs_set_device_type(leaf, dev_item, device->type); 1866 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1867 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1868 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1869 btrfs_set_device_total_bytes(leaf, dev_item, 1870 btrfs_device_get_disk_total_bytes(device)); 1871 btrfs_set_device_bytes_used(leaf, dev_item, 1872 btrfs_device_get_bytes_used(device)); 1873 btrfs_set_device_group(leaf, dev_item, 0); 1874 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1875 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1876 btrfs_set_device_start_offset(leaf, dev_item, 0); 1877 1878 ptr = btrfs_device_uuid(dev_item); 1879 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1880 ptr = btrfs_device_fsid(dev_item); 1881 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1882 ptr, BTRFS_FSID_SIZE); 1883 btrfs_mark_buffer_dirty(leaf); 1884 1885 ret = 0; 1886 out: 1887 btrfs_free_path(path); 1888 return ret; 1889 } 1890 1891 /* 1892 * Function to update ctime/mtime for a given device path. 1893 * Mainly used for ctime/mtime based probe like libblkid. 1894 * 1895 * We don't care about errors here, this is just to be kind to userspace. 1896 */ 1897 static void update_dev_time(const char *device_path) 1898 { 1899 struct path path; 1900 struct timespec64 now; 1901 int ret; 1902 1903 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1904 if (ret) 1905 return; 1906 1907 now = current_time(d_inode(path.dentry)); 1908 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME); 1909 path_put(&path); 1910 } 1911 1912 static int btrfs_rm_dev_item(struct btrfs_device *device) 1913 { 1914 struct btrfs_root *root = device->fs_info->chunk_root; 1915 int ret; 1916 struct btrfs_path *path; 1917 struct btrfs_key key; 1918 struct btrfs_trans_handle *trans; 1919 1920 path = btrfs_alloc_path(); 1921 if (!path) 1922 return -ENOMEM; 1923 1924 trans = btrfs_start_transaction(root, 0); 1925 if (IS_ERR(trans)) { 1926 btrfs_free_path(path); 1927 return PTR_ERR(trans); 1928 } 1929 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1930 key.type = BTRFS_DEV_ITEM_KEY; 1931 key.offset = device->devid; 1932 1933 btrfs_reserve_chunk_metadata(trans, false); 1934 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1935 btrfs_trans_release_chunk_metadata(trans); 1936 if (ret) { 1937 if (ret > 0) 1938 ret = -ENOENT; 1939 btrfs_abort_transaction(trans, ret); 1940 btrfs_end_transaction(trans); 1941 goto out; 1942 } 1943 1944 ret = btrfs_del_item(trans, root, path); 1945 if (ret) { 1946 btrfs_abort_transaction(trans, ret); 1947 btrfs_end_transaction(trans); 1948 } 1949 1950 out: 1951 btrfs_free_path(path); 1952 if (!ret) 1953 ret = btrfs_commit_transaction(trans); 1954 return ret; 1955 } 1956 1957 /* 1958 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1959 * filesystem. It's up to the caller to adjust that number regarding eg. device 1960 * replace. 1961 */ 1962 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1963 u64 num_devices) 1964 { 1965 u64 all_avail; 1966 unsigned seq; 1967 int i; 1968 1969 do { 1970 seq = read_seqbegin(&fs_info->profiles_lock); 1971 1972 all_avail = fs_info->avail_data_alloc_bits | 1973 fs_info->avail_system_alloc_bits | 1974 fs_info->avail_metadata_alloc_bits; 1975 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1976 1977 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1978 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1979 continue; 1980 1981 if (num_devices < btrfs_raid_array[i].devs_min) 1982 return btrfs_raid_array[i].mindev_error; 1983 } 1984 1985 return 0; 1986 } 1987 1988 static struct btrfs_device * btrfs_find_next_active_device( 1989 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1990 { 1991 struct btrfs_device *next_device; 1992 1993 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1994 if (next_device != device && 1995 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1996 && next_device->bdev) 1997 return next_device; 1998 } 1999 2000 return NULL; 2001 } 2002 2003 /* 2004 * Helper function to check if the given device is part of s_bdev / latest_dev 2005 * and replace it with the provided or the next active device, in the context 2006 * where this function called, there should be always be another device (or 2007 * this_dev) which is active. 2008 */ 2009 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2010 struct btrfs_device *next_device) 2011 { 2012 struct btrfs_fs_info *fs_info = device->fs_info; 2013 2014 if (!next_device) 2015 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2016 device); 2017 ASSERT(next_device); 2018 2019 if (fs_info->sb->s_bdev && 2020 (fs_info->sb->s_bdev == device->bdev)) 2021 fs_info->sb->s_bdev = next_device->bdev; 2022 2023 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2024 fs_info->fs_devices->latest_dev = next_device; 2025 } 2026 2027 /* 2028 * Return btrfs_fs_devices::num_devices excluding the device that's being 2029 * currently replaced. 2030 */ 2031 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2032 { 2033 u64 num_devices = fs_info->fs_devices->num_devices; 2034 2035 down_read(&fs_info->dev_replace.rwsem); 2036 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2037 ASSERT(num_devices > 1); 2038 num_devices--; 2039 } 2040 up_read(&fs_info->dev_replace.rwsem); 2041 2042 return num_devices; 2043 } 2044 2045 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2046 struct block_device *bdev, 2047 const char *device_path) 2048 { 2049 struct btrfs_super_block *disk_super; 2050 int copy_num; 2051 2052 if (!bdev) 2053 return; 2054 2055 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2056 struct page *page; 2057 int ret; 2058 2059 disk_super = btrfs_read_dev_one_super(bdev, copy_num); 2060 if (IS_ERR(disk_super)) 2061 continue; 2062 2063 if (bdev_is_zoned(bdev)) { 2064 btrfs_reset_sb_log_zones(bdev, copy_num); 2065 continue; 2066 } 2067 2068 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 2069 2070 page = virt_to_page(disk_super); 2071 set_page_dirty(page); 2072 lock_page(page); 2073 /* write_on_page() unlocks the page */ 2074 ret = write_one_page(page); 2075 if (ret) 2076 btrfs_warn(fs_info, 2077 "error clearing superblock number %d (%d)", 2078 copy_num, ret); 2079 btrfs_release_disk_super(disk_super); 2080 2081 } 2082 2083 /* Notify udev that device has changed */ 2084 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2085 2086 /* Update ctime/mtime for device path for libblkid */ 2087 update_dev_time(device_path); 2088 } 2089 2090 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2091 struct btrfs_dev_lookup_args *args, 2092 struct block_device **bdev, fmode_t *mode) 2093 { 2094 struct btrfs_device *device; 2095 struct btrfs_fs_devices *cur_devices; 2096 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2097 u64 num_devices; 2098 int ret = 0; 2099 2100 /* 2101 * The device list in fs_devices is accessed without locks (neither 2102 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2103 * filesystem and another device rm cannot run. 2104 */ 2105 num_devices = btrfs_num_devices(fs_info); 2106 2107 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2108 if (ret) 2109 goto out; 2110 2111 device = btrfs_find_device(fs_info->fs_devices, args); 2112 if (!device) { 2113 if (args->missing) 2114 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2115 else 2116 ret = -ENOENT; 2117 goto out; 2118 } 2119 2120 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2121 btrfs_warn_in_rcu(fs_info, 2122 "cannot remove device %s (devid %llu) due to active swapfile", 2123 rcu_str_deref(device->name), device->devid); 2124 ret = -ETXTBSY; 2125 goto out; 2126 } 2127 2128 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2129 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 2130 goto out; 2131 } 2132 2133 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2134 fs_info->fs_devices->rw_devices == 1) { 2135 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 2136 goto out; 2137 } 2138 2139 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2140 mutex_lock(&fs_info->chunk_mutex); 2141 list_del_init(&device->dev_alloc_list); 2142 device->fs_devices->rw_devices--; 2143 mutex_unlock(&fs_info->chunk_mutex); 2144 } 2145 2146 ret = btrfs_shrink_device(device, 0); 2147 if (!ret) 2148 btrfs_reada_remove_dev(device); 2149 if (ret) 2150 goto error_undo; 2151 2152 /* 2153 * TODO: the superblock still includes this device in its num_devices 2154 * counter although write_all_supers() is not locked out. This 2155 * could give a filesystem state which requires a degraded mount. 2156 */ 2157 ret = btrfs_rm_dev_item(device); 2158 if (ret) 2159 goto error_undo; 2160 2161 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2162 btrfs_scrub_cancel_dev(device); 2163 2164 /* 2165 * the device list mutex makes sure that we don't change 2166 * the device list while someone else is writing out all 2167 * the device supers. Whoever is writing all supers, should 2168 * lock the device list mutex before getting the number of 2169 * devices in the super block (super_copy). Conversely, 2170 * whoever updates the number of devices in the super block 2171 * (super_copy) should hold the device list mutex. 2172 */ 2173 2174 /* 2175 * In normal cases the cur_devices == fs_devices. But in case 2176 * of deleting a seed device, the cur_devices should point to 2177 * its own fs_devices listed under the fs_devices->seed_list. 2178 */ 2179 cur_devices = device->fs_devices; 2180 mutex_lock(&fs_devices->device_list_mutex); 2181 list_del_rcu(&device->dev_list); 2182 2183 cur_devices->num_devices--; 2184 cur_devices->total_devices--; 2185 /* Update total_devices of the parent fs_devices if it's seed */ 2186 if (cur_devices != fs_devices) 2187 fs_devices->total_devices--; 2188 2189 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2190 cur_devices->missing_devices--; 2191 2192 btrfs_assign_next_active_device(device, NULL); 2193 2194 if (device->bdev) { 2195 cur_devices->open_devices--; 2196 /* remove sysfs entry */ 2197 btrfs_sysfs_remove_device(device); 2198 } 2199 2200 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2201 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2202 mutex_unlock(&fs_devices->device_list_mutex); 2203 2204 /* 2205 * At this point, the device is zero sized and detached from the 2206 * devices list. All that's left is to zero out the old supers and 2207 * free the device. 2208 * 2209 * We cannot call btrfs_close_bdev() here because we're holding the sb 2210 * write lock, and blkdev_put() will pull in the ->open_mutex on the 2211 * block device and it's dependencies. Instead just flush the device 2212 * and let the caller do the final blkdev_put. 2213 */ 2214 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2215 btrfs_scratch_superblocks(fs_info, device->bdev, 2216 device->name->str); 2217 if (device->bdev) { 2218 sync_blockdev(device->bdev); 2219 invalidate_bdev(device->bdev); 2220 } 2221 } 2222 2223 *bdev = device->bdev; 2224 *mode = device->mode; 2225 synchronize_rcu(); 2226 btrfs_free_device(device); 2227 2228 /* 2229 * This can happen if cur_devices is the private seed devices list. We 2230 * cannot call close_fs_devices() here because it expects the uuid_mutex 2231 * to be held, but in fact we don't need that for the private 2232 * seed_devices, we can simply decrement cur_devices->opened and then 2233 * remove it from our list and free the fs_devices. 2234 */ 2235 if (cur_devices->num_devices == 0) { 2236 list_del_init(&cur_devices->seed_list); 2237 ASSERT(cur_devices->opened == 1); 2238 cur_devices->opened--; 2239 free_fs_devices(cur_devices); 2240 } 2241 2242 out: 2243 return ret; 2244 2245 error_undo: 2246 btrfs_reada_undo_remove_dev(device); 2247 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2248 mutex_lock(&fs_info->chunk_mutex); 2249 list_add(&device->dev_alloc_list, 2250 &fs_devices->alloc_list); 2251 device->fs_devices->rw_devices++; 2252 mutex_unlock(&fs_info->chunk_mutex); 2253 } 2254 goto out; 2255 } 2256 2257 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2258 { 2259 struct btrfs_fs_devices *fs_devices; 2260 2261 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2262 2263 /* 2264 * in case of fs with no seed, srcdev->fs_devices will point 2265 * to fs_devices of fs_info. However when the dev being replaced is 2266 * a seed dev it will point to the seed's local fs_devices. In short 2267 * srcdev will have its correct fs_devices in both the cases. 2268 */ 2269 fs_devices = srcdev->fs_devices; 2270 2271 list_del_rcu(&srcdev->dev_list); 2272 list_del(&srcdev->dev_alloc_list); 2273 fs_devices->num_devices--; 2274 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2275 fs_devices->missing_devices--; 2276 2277 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2278 fs_devices->rw_devices--; 2279 2280 if (srcdev->bdev) 2281 fs_devices->open_devices--; 2282 } 2283 2284 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2285 { 2286 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2287 2288 mutex_lock(&uuid_mutex); 2289 2290 btrfs_close_bdev(srcdev); 2291 synchronize_rcu(); 2292 btrfs_free_device(srcdev); 2293 2294 /* if this is no devs we rather delete the fs_devices */ 2295 if (!fs_devices->num_devices) { 2296 /* 2297 * On a mounted FS, num_devices can't be zero unless it's a 2298 * seed. In case of a seed device being replaced, the replace 2299 * target added to the sprout FS, so there will be no more 2300 * device left under the seed FS. 2301 */ 2302 ASSERT(fs_devices->seeding); 2303 2304 list_del_init(&fs_devices->seed_list); 2305 close_fs_devices(fs_devices); 2306 free_fs_devices(fs_devices); 2307 } 2308 mutex_unlock(&uuid_mutex); 2309 } 2310 2311 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2312 { 2313 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2314 2315 mutex_lock(&fs_devices->device_list_mutex); 2316 2317 btrfs_sysfs_remove_device(tgtdev); 2318 2319 if (tgtdev->bdev) 2320 fs_devices->open_devices--; 2321 2322 fs_devices->num_devices--; 2323 2324 btrfs_assign_next_active_device(tgtdev, NULL); 2325 2326 list_del_rcu(&tgtdev->dev_list); 2327 2328 mutex_unlock(&fs_devices->device_list_mutex); 2329 2330 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2331 tgtdev->name->str); 2332 2333 btrfs_close_bdev(tgtdev); 2334 synchronize_rcu(); 2335 btrfs_free_device(tgtdev); 2336 } 2337 2338 /** 2339 * Populate args from device at path 2340 * 2341 * @fs_info: the filesystem 2342 * @args: the args to populate 2343 * @path: the path to the device 2344 * 2345 * This will read the super block of the device at @path and populate @args with 2346 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2347 * lookup a device to operate on, but need to do it before we take any locks. 2348 * This properly handles the special case of "missing" that a user may pass in, 2349 * and does some basic sanity checks. The caller must make sure that @path is 2350 * properly NUL terminated before calling in, and must call 2351 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2352 * uuid buffers. 2353 * 2354 * Return: 0 for success, -errno for failure 2355 */ 2356 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2357 struct btrfs_dev_lookup_args *args, 2358 const char *path) 2359 { 2360 struct btrfs_super_block *disk_super; 2361 struct block_device *bdev; 2362 int ret; 2363 2364 if (!path || !path[0]) 2365 return -EINVAL; 2366 if (!strcmp(path, "missing")) { 2367 args->missing = true; 2368 return 0; 2369 } 2370 2371 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2372 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2373 if (!args->uuid || !args->fsid) { 2374 btrfs_put_dev_args_from_path(args); 2375 return -ENOMEM; 2376 } 2377 2378 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0, 2379 &bdev, &disk_super); 2380 if (ret) 2381 return ret; 2382 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2383 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2384 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2385 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2386 else 2387 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2388 btrfs_release_disk_super(disk_super); 2389 blkdev_put(bdev, FMODE_READ); 2390 return 0; 2391 } 2392 2393 /* 2394 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2395 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2396 * that don't need to be freed. 2397 */ 2398 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2399 { 2400 kfree(args->uuid); 2401 kfree(args->fsid); 2402 args->uuid = NULL; 2403 args->fsid = NULL; 2404 } 2405 2406 struct btrfs_device *btrfs_find_device_by_devspec( 2407 struct btrfs_fs_info *fs_info, u64 devid, 2408 const char *device_path) 2409 { 2410 BTRFS_DEV_LOOKUP_ARGS(args); 2411 struct btrfs_device *device; 2412 int ret; 2413 2414 if (devid) { 2415 args.devid = devid; 2416 device = btrfs_find_device(fs_info->fs_devices, &args); 2417 if (!device) 2418 return ERR_PTR(-ENOENT); 2419 return device; 2420 } 2421 2422 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2423 if (ret) 2424 return ERR_PTR(ret); 2425 device = btrfs_find_device(fs_info->fs_devices, &args); 2426 btrfs_put_dev_args_from_path(&args); 2427 if (!device) 2428 return ERR_PTR(-ENOENT); 2429 return device; 2430 } 2431 2432 /* 2433 * does all the dirty work required for changing file system's UUID. 2434 */ 2435 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2436 { 2437 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2438 struct btrfs_fs_devices *old_devices; 2439 struct btrfs_fs_devices *seed_devices; 2440 struct btrfs_super_block *disk_super = fs_info->super_copy; 2441 struct btrfs_device *device; 2442 u64 super_flags; 2443 2444 lockdep_assert_held(&uuid_mutex); 2445 if (!fs_devices->seeding) 2446 return -EINVAL; 2447 2448 /* 2449 * Private copy of the seed devices, anchored at 2450 * fs_info->fs_devices->seed_list 2451 */ 2452 seed_devices = alloc_fs_devices(NULL, NULL); 2453 if (IS_ERR(seed_devices)) 2454 return PTR_ERR(seed_devices); 2455 2456 /* 2457 * It's necessary to retain a copy of the original seed fs_devices in 2458 * fs_uuids so that filesystems which have been seeded can successfully 2459 * reference the seed device from open_seed_devices. This also supports 2460 * multiple fs seed. 2461 */ 2462 old_devices = clone_fs_devices(fs_devices); 2463 if (IS_ERR(old_devices)) { 2464 kfree(seed_devices); 2465 return PTR_ERR(old_devices); 2466 } 2467 2468 list_add(&old_devices->fs_list, &fs_uuids); 2469 2470 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2471 seed_devices->opened = 1; 2472 INIT_LIST_HEAD(&seed_devices->devices); 2473 INIT_LIST_HEAD(&seed_devices->alloc_list); 2474 mutex_init(&seed_devices->device_list_mutex); 2475 2476 mutex_lock(&fs_devices->device_list_mutex); 2477 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2478 synchronize_rcu); 2479 list_for_each_entry(device, &seed_devices->devices, dev_list) 2480 device->fs_devices = seed_devices; 2481 2482 fs_devices->seeding = false; 2483 fs_devices->num_devices = 0; 2484 fs_devices->open_devices = 0; 2485 fs_devices->missing_devices = 0; 2486 fs_devices->rotating = false; 2487 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2488 2489 generate_random_uuid(fs_devices->fsid); 2490 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2491 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2492 mutex_unlock(&fs_devices->device_list_mutex); 2493 2494 super_flags = btrfs_super_flags(disk_super) & 2495 ~BTRFS_SUPER_FLAG_SEEDING; 2496 btrfs_set_super_flags(disk_super, super_flags); 2497 2498 return 0; 2499 } 2500 2501 /* 2502 * Store the expected generation for seed devices in device items. 2503 */ 2504 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2505 { 2506 BTRFS_DEV_LOOKUP_ARGS(args); 2507 struct btrfs_fs_info *fs_info = trans->fs_info; 2508 struct btrfs_root *root = fs_info->chunk_root; 2509 struct btrfs_path *path; 2510 struct extent_buffer *leaf; 2511 struct btrfs_dev_item *dev_item; 2512 struct btrfs_device *device; 2513 struct btrfs_key key; 2514 u8 fs_uuid[BTRFS_FSID_SIZE]; 2515 u8 dev_uuid[BTRFS_UUID_SIZE]; 2516 int ret; 2517 2518 path = btrfs_alloc_path(); 2519 if (!path) 2520 return -ENOMEM; 2521 2522 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2523 key.offset = 0; 2524 key.type = BTRFS_DEV_ITEM_KEY; 2525 2526 while (1) { 2527 btrfs_reserve_chunk_metadata(trans, false); 2528 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2529 btrfs_trans_release_chunk_metadata(trans); 2530 if (ret < 0) 2531 goto error; 2532 2533 leaf = path->nodes[0]; 2534 next_slot: 2535 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2536 ret = btrfs_next_leaf(root, path); 2537 if (ret > 0) 2538 break; 2539 if (ret < 0) 2540 goto error; 2541 leaf = path->nodes[0]; 2542 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2543 btrfs_release_path(path); 2544 continue; 2545 } 2546 2547 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2548 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2549 key.type != BTRFS_DEV_ITEM_KEY) 2550 break; 2551 2552 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2553 struct btrfs_dev_item); 2554 args.devid = btrfs_device_id(leaf, dev_item); 2555 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2556 BTRFS_UUID_SIZE); 2557 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2558 BTRFS_FSID_SIZE); 2559 args.uuid = dev_uuid; 2560 args.fsid = fs_uuid; 2561 device = btrfs_find_device(fs_info->fs_devices, &args); 2562 BUG_ON(!device); /* Logic error */ 2563 2564 if (device->fs_devices->seeding) { 2565 btrfs_set_device_generation(leaf, dev_item, 2566 device->generation); 2567 btrfs_mark_buffer_dirty(leaf); 2568 } 2569 2570 path->slots[0]++; 2571 goto next_slot; 2572 } 2573 ret = 0; 2574 error: 2575 btrfs_free_path(path); 2576 return ret; 2577 } 2578 2579 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2580 { 2581 struct btrfs_root *root = fs_info->dev_root; 2582 struct request_queue *q; 2583 struct btrfs_trans_handle *trans; 2584 struct btrfs_device *device; 2585 struct block_device *bdev; 2586 struct super_block *sb = fs_info->sb; 2587 struct rcu_string *name; 2588 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2589 u64 orig_super_total_bytes; 2590 u64 orig_super_num_devices; 2591 int seeding_dev = 0; 2592 int ret = 0; 2593 bool locked = false; 2594 2595 if (sb_rdonly(sb) && !fs_devices->seeding) 2596 return -EROFS; 2597 2598 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2599 fs_info->bdev_holder); 2600 if (IS_ERR(bdev)) 2601 return PTR_ERR(bdev); 2602 2603 if (!btrfs_check_device_zone_type(fs_info, bdev)) { 2604 ret = -EINVAL; 2605 goto error; 2606 } 2607 2608 if (fs_devices->seeding) { 2609 seeding_dev = 1; 2610 down_write(&sb->s_umount); 2611 mutex_lock(&uuid_mutex); 2612 locked = true; 2613 } 2614 2615 sync_blockdev(bdev); 2616 2617 rcu_read_lock(); 2618 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2619 if (device->bdev == bdev) { 2620 ret = -EEXIST; 2621 rcu_read_unlock(); 2622 goto error; 2623 } 2624 } 2625 rcu_read_unlock(); 2626 2627 device = btrfs_alloc_device(fs_info, NULL, NULL); 2628 if (IS_ERR(device)) { 2629 /* we can safely leave the fs_devices entry around */ 2630 ret = PTR_ERR(device); 2631 goto error; 2632 } 2633 2634 name = rcu_string_strdup(device_path, GFP_KERNEL); 2635 if (!name) { 2636 ret = -ENOMEM; 2637 goto error_free_device; 2638 } 2639 rcu_assign_pointer(device->name, name); 2640 2641 device->fs_info = fs_info; 2642 device->bdev = bdev; 2643 2644 ret = btrfs_get_dev_zone_info(device); 2645 if (ret) 2646 goto error_free_device; 2647 2648 trans = btrfs_start_transaction(root, 0); 2649 if (IS_ERR(trans)) { 2650 ret = PTR_ERR(trans); 2651 goto error_free_zone; 2652 } 2653 2654 q = bdev_get_queue(bdev); 2655 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2656 device->generation = trans->transid; 2657 device->io_width = fs_info->sectorsize; 2658 device->io_align = fs_info->sectorsize; 2659 device->sector_size = fs_info->sectorsize; 2660 device->total_bytes = 2661 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize); 2662 device->disk_total_bytes = device->total_bytes; 2663 device->commit_total_bytes = device->total_bytes; 2664 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2665 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2666 device->mode = FMODE_EXCL; 2667 device->dev_stats_valid = 1; 2668 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2669 2670 if (seeding_dev) { 2671 btrfs_clear_sb_rdonly(sb); 2672 ret = btrfs_prepare_sprout(fs_info); 2673 if (ret) { 2674 btrfs_abort_transaction(trans, ret); 2675 goto error_trans; 2676 } 2677 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2678 device); 2679 } 2680 2681 device->fs_devices = fs_devices; 2682 2683 mutex_lock(&fs_devices->device_list_mutex); 2684 mutex_lock(&fs_info->chunk_mutex); 2685 list_add_rcu(&device->dev_list, &fs_devices->devices); 2686 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2687 fs_devices->num_devices++; 2688 fs_devices->open_devices++; 2689 fs_devices->rw_devices++; 2690 fs_devices->total_devices++; 2691 fs_devices->total_rw_bytes += device->total_bytes; 2692 2693 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2694 2695 if (!blk_queue_nonrot(q)) 2696 fs_devices->rotating = true; 2697 2698 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2699 btrfs_set_super_total_bytes(fs_info->super_copy, 2700 round_down(orig_super_total_bytes + device->total_bytes, 2701 fs_info->sectorsize)); 2702 2703 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2704 btrfs_set_super_num_devices(fs_info->super_copy, 2705 orig_super_num_devices + 1); 2706 2707 /* 2708 * we've got more storage, clear any full flags on the space 2709 * infos 2710 */ 2711 btrfs_clear_space_info_full(fs_info); 2712 2713 mutex_unlock(&fs_info->chunk_mutex); 2714 2715 /* Add sysfs device entry */ 2716 btrfs_sysfs_add_device(device); 2717 2718 mutex_unlock(&fs_devices->device_list_mutex); 2719 2720 if (seeding_dev) { 2721 mutex_lock(&fs_info->chunk_mutex); 2722 ret = init_first_rw_device(trans); 2723 mutex_unlock(&fs_info->chunk_mutex); 2724 if (ret) { 2725 btrfs_abort_transaction(trans, ret); 2726 goto error_sysfs; 2727 } 2728 } 2729 2730 ret = btrfs_add_dev_item(trans, device); 2731 if (ret) { 2732 btrfs_abort_transaction(trans, ret); 2733 goto error_sysfs; 2734 } 2735 2736 if (seeding_dev) { 2737 ret = btrfs_finish_sprout(trans); 2738 if (ret) { 2739 btrfs_abort_transaction(trans, ret); 2740 goto error_sysfs; 2741 } 2742 2743 /* 2744 * fs_devices now represents the newly sprouted filesystem and 2745 * its fsid has been changed by btrfs_prepare_sprout 2746 */ 2747 btrfs_sysfs_update_sprout_fsid(fs_devices); 2748 } 2749 2750 ret = btrfs_commit_transaction(trans); 2751 2752 if (seeding_dev) { 2753 mutex_unlock(&uuid_mutex); 2754 up_write(&sb->s_umount); 2755 locked = false; 2756 2757 if (ret) /* transaction commit */ 2758 return ret; 2759 2760 ret = btrfs_relocate_sys_chunks(fs_info); 2761 if (ret < 0) 2762 btrfs_handle_fs_error(fs_info, ret, 2763 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2764 trans = btrfs_attach_transaction(root); 2765 if (IS_ERR(trans)) { 2766 if (PTR_ERR(trans) == -ENOENT) 2767 return 0; 2768 ret = PTR_ERR(trans); 2769 trans = NULL; 2770 goto error_sysfs; 2771 } 2772 ret = btrfs_commit_transaction(trans); 2773 } 2774 2775 /* 2776 * Now that we have written a new super block to this device, check all 2777 * other fs_devices list if device_path alienates any other scanned 2778 * device. 2779 * We can ignore the return value as it typically returns -EINVAL and 2780 * only succeeds if the device was an alien. 2781 */ 2782 btrfs_forget_devices(device_path); 2783 2784 /* Update ctime/mtime for blkid or udev */ 2785 update_dev_time(device_path); 2786 2787 return ret; 2788 2789 error_sysfs: 2790 btrfs_sysfs_remove_device(device); 2791 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2792 mutex_lock(&fs_info->chunk_mutex); 2793 list_del_rcu(&device->dev_list); 2794 list_del(&device->dev_alloc_list); 2795 fs_info->fs_devices->num_devices--; 2796 fs_info->fs_devices->open_devices--; 2797 fs_info->fs_devices->rw_devices--; 2798 fs_info->fs_devices->total_devices--; 2799 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2800 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2801 btrfs_set_super_total_bytes(fs_info->super_copy, 2802 orig_super_total_bytes); 2803 btrfs_set_super_num_devices(fs_info->super_copy, 2804 orig_super_num_devices); 2805 mutex_unlock(&fs_info->chunk_mutex); 2806 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2807 error_trans: 2808 if (seeding_dev) 2809 btrfs_set_sb_rdonly(sb); 2810 if (trans) 2811 btrfs_end_transaction(trans); 2812 error_free_zone: 2813 btrfs_destroy_dev_zone_info(device); 2814 error_free_device: 2815 btrfs_free_device(device); 2816 error: 2817 blkdev_put(bdev, FMODE_EXCL); 2818 if (locked) { 2819 mutex_unlock(&uuid_mutex); 2820 up_write(&sb->s_umount); 2821 } 2822 return ret; 2823 } 2824 2825 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2826 struct btrfs_device *device) 2827 { 2828 int ret; 2829 struct btrfs_path *path; 2830 struct btrfs_root *root = device->fs_info->chunk_root; 2831 struct btrfs_dev_item *dev_item; 2832 struct extent_buffer *leaf; 2833 struct btrfs_key key; 2834 2835 path = btrfs_alloc_path(); 2836 if (!path) 2837 return -ENOMEM; 2838 2839 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2840 key.type = BTRFS_DEV_ITEM_KEY; 2841 key.offset = device->devid; 2842 2843 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2844 if (ret < 0) 2845 goto out; 2846 2847 if (ret > 0) { 2848 ret = -ENOENT; 2849 goto out; 2850 } 2851 2852 leaf = path->nodes[0]; 2853 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2854 2855 btrfs_set_device_id(leaf, dev_item, device->devid); 2856 btrfs_set_device_type(leaf, dev_item, device->type); 2857 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2858 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2859 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2860 btrfs_set_device_total_bytes(leaf, dev_item, 2861 btrfs_device_get_disk_total_bytes(device)); 2862 btrfs_set_device_bytes_used(leaf, dev_item, 2863 btrfs_device_get_bytes_used(device)); 2864 btrfs_mark_buffer_dirty(leaf); 2865 2866 out: 2867 btrfs_free_path(path); 2868 return ret; 2869 } 2870 2871 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2872 struct btrfs_device *device, u64 new_size) 2873 { 2874 struct btrfs_fs_info *fs_info = device->fs_info; 2875 struct btrfs_super_block *super_copy = fs_info->super_copy; 2876 u64 old_total; 2877 u64 diff; 2878 int ret; 2879 2880 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2881 return -EACCES; 2882 2883 new_size = round_down(new_size, fs_info->sectorsize); 2884 2885 mutex_lock(&fs_info->chunk_mutex); 2886 old_total = btrfs_super_total_bytes(super_copy); 2887 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2888 2889 if (new_size <= device->total_bytes || 2890 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2891 mutex_unlock(&fs_info->chunk_mutex); 2892 return -EINVAL; 2893 } 2894 2895 btrfs_set_super_total_bytes(super_copy, 2896 round_down(old_total + diff, fs_info->sectorsize)); 2897 device->fs_devices->total_rw_bytes += diff; 2898 2899 btrfs_device_set_total_bytes(device, new_size); 2900 btrfs_device_set_disk_total_bytes(device, new_size); 2901 btrfs_clear_space_info_full(device->fs_info); 2902 if (list_empty(&device->post_commit_list)) 2903 list_add_tail(&device->post_commit_list, 2904 &trans->transaction->dev_update_list); 2905 mutex_unlock(&fs_info->chunk_mutex); 2906 2907 btrfs_reserve_chunk_metadata(trans, false); 2908 ret = btrfs_update_device(trans, device); 2909 btrfs_trans_release_chunk_metadata(trans); 2910 2911 return ret; 2912 } 2913 2914 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2915 { 2916 struct btrfs_fs_info *fs_info = trans->fs_info; 2917 struct btrfs_root *root = fs_info->chunk_root; 2918 int ret; 2919 struct btrfs_path *path; 2920 struct btrfs_key key; 2921 2922 path = btrfs_alloc_path(); 2923 if (!path) 2924 return -ENOMEM; 2925 2926 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2927 key.offset = chunk_offset; 2928 key.type = BTRFS_CHUNK_ITEM_KEY; 2929 2930 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2931 if (ret < 0) 2932 goto out; 2933 else if (ret > 0) { /* Logic error or corruption */ 2934 btrfs_handle_fs_error(fs_info, -ENOENT, 2935 "Failed lookup while freeing chunk."); 2936 ret = -ENOENT; 2937 goto out; 2938 } 2939 2940 ret = btrfs_del_item(trans, root, path); 2941 if (ret < 0) 2942 btrfs_handle_fs_error(fs_info, ret, 2943 "Failed to delete chunk item."); 2944 out: 2945 btrfs_free_path(path); 2946 return ret; 2947 } 2948 2949 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2950 { 2951 struct btrfs_super_block *super_copy = fs_info->super_copy; 2952 struct btrfs_disk_key *disk_key; 2953 struct btrfs_chunk *chunk; 2954 u8 *ptr; 2955 int ret = 0; 2956 u32 num_stripes; 2957 u32 array_size; 2958 u32 len = 0; 2959 u32 cur; 2960 struct btrfs_key key; 2961 2962 lockdep_assert_held(&fs_info->chunk_mutex); 2963 array_size = btrfs_super_sys_array_size(super_copy); 2964 2965 ptr = super_copy->sys_chunk_array; 2966 cur = 0; 2967 2968 while (cur < array_size) { 2969 disk_key = (struct btrfs_disk_key *)ptr; 2970 btrfs_disk_key_to_cpu(&key, disk_key); 2971 2972 len = sizeof(*disk_key); 2973 2974 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2975 chunk = (struct btrfs_chunk *)(ptr + len); 2976 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2977 len += btrfs_chunk_item_size(num_stripes); 2978 } else { 2979 ret = -EIO; 2980 break; 2981 } 2982 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2983 key.offset == chunk_offset) { 2984 memmove(ptr, ptr + len, array_size - (cur + len)); 2985 array_size -= len; 2986 btrfs_set_super_sys_array_size(super_copy, array_size); 2987 } else { 2988 ptr += len; 2989 cur += len; 2990 } 2991 } 2992 return ret; 2993 } 2994 2995 /* 2996 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2997 * @logical: Logical block offset in bytes. 2998 * @length: Length of extent in bytes. 2999 * 3000 * Return: Chunk mapping or ERR_PTR. 3001 */ 3002 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3003 u64 logical, u64 length) 3004 { 3005 struct extent_map_tree *em_tree; 3006 struct extent_map *em; 3007 3008 em_tree = &fs_info->mapping_tree; 3009 read_lock(&em_tree->lock); 3010 em = lookup_extent_mapping(em_tree, logical, length); 3011 read_unlock(&em_tree->lock); 3012 3013 if (!em) { 3014 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 3015 logical, length); 3016 return ERR_PTR(-EINVAL); 3017 } 3018 3019 if (em->start > logical || em->start + em->len < logical) { 3020 btrfs_crit(fs_info, 3021 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 3022 logical, length, em->start, em->start + em->len); 3023 free_extent_map(em); 3024 return ERR_PTR(-EINVAL); 3025 } 3026 3027 /* callers are responsible for dropping em's ref. */ 3028 return em; 3029 } 3030 3031 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3032 struct map_lookup *map, u64 chunk_offset) 3033 { 3034 int i; 3035 3036 /* 3037 * Removing chunk items and updating the device items in the chunks btree 3038 * requires holding the chunk_mutex. 3039 * See the comment at btrfs_chunk_alloc() for the details. 3040 */ 3041 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3042 3043 for (i = 0; i < map->num_stripes; i++) { 3044 int ret; 3045 3046 ret = btrfs_update_device(trans, map->stripes[i].dev); 3047 if (ret) 3048 return ret; 3049 } 3050 3051 return btrfs_free_chunk(trans, chunk_offset); 3052 } 3053 3054 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3055 { 3056 struct btrfs_fs_info *fs_info = trans->fs_info; 3057 struct extent_map *em; 3058 struct map_lookup *map; 3059 u64 dev_extent_len = 0; 3060 int i, ret = 0; 3061 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3062 3063 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3064 if (IS_ERR(em)) { 3065 /* 3066 * This is a logic error, but we don't want to just rely on the 3067 * user having built with ASSERT enabled, so if ASSERT doesn't 3068 * do anything we still error out. 3069 */ 3070 ASSERT(0); 3071 return PTR_ERR(em); 3072 } 3073 map = em->map_lookup; 3074 3075 /* 3076 * First delete the device extent items from the devices btree. 3077 * We take the device_list_mutex to avoid racing with the finishing phase 3078 * of a device replace operation. See the comment below before acquiring 3079 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3080 * because that can result in a deadlock when deleting the device extent 3081 * items from the devices btree - COWing an extent buffer from the btree 3082 * may result in allocating a new metadata chunk, which would attempt to 3083 * lock again fs_info->chunk_mutex. 3084 */ 3085 mutex_lock(&fs_devices->device_list_mutex); 3086 for (i = 0; i < map->num_stripes; i++) { 3087 struct btrfs_device *device = map->stripes[i].dev; 3088 ret = btrfs_free_dev_extent(trans, device, 3089 map->stripes[i].physical, 3090 &dev_extent_len); 3091 if (ret) { 3092 mutex_unlock(&fs_devices->device_list_mutex); 3093 btrfs_abort_transaction(trans, ret); 3094 goto out; 3095 } 3096 3097 if (device->bytes_used > 0) { 3098 mutex_lock(&fs_info->chunk_mutex); 3099 btrfs_device_set_bytes_used(device, 3100 device->bytes_used - dev_extent_len); 3101 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3102 btrfs_clear_space_info_full(fs_info); 3103 mutex_unlock(&fs_info->chunk_mutex); 3104 } 3105 } 3106 mutex_unlock(&fs_devices->device_list_mutex); 3107 3108 /* 3109 * We acquire fs_info->chunk_mutex for 2 reasons: 3110 * 3111 * 1) Just like with the first phase of the chunk allocation, we must 3112 * reserve system space, do all chunk btree updates and deletions, and 3113 * update the system chunk array in the superblock while holding this 3114 * mutex. This is for similar reasons as explained on the comment at 3115 * the top of btrfs_chunk_alloc(); 3116 * 3117 * 2) Prevent races with the final phase of a device replace operation 3118 * that replaces the device object associated with the map's stripes, 3119 * because the device object's id can change at any time during that 3120 * final phase of the device replace operation 3121 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3122 * replaced device and then see it with an ID of 3123 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3124 * the device item, which does not exists on the chunk btree. 3125 * The finishing phase of device replace acquires both the 3126 * device_list_mutex and the chunk_mutex, in that order, so we are 3127 * safe by just acquiring the chunk_mutex. 3128 */ 3129 trans->removing_chunk = true; 3130 mutex_lock(&fs_info->chunk_mutex); 3131 3132 check_system_chunk(trans, map->type); 3133 3134 ret = remove_chunk_item(trans, map, chunk_offset); 3135 /* 3136 * Normally we should not get -ENOSPC since we reserved space before 3137 * through the call to check_system_chunk(). 3138 * 3139 * Despite our system space_info having enough free space, we may not 3140 * be able to allocate extents from its block groups, because all have 3141 * an incompatible profile, which will force us to allocate a new system 3142 * block group with the right profile, or right after we called 3143 * check_system_space() above, a scrub turned the only system block group 3144 * with enough free space into RO mode. 3145 * This is explained with more detail at do_chunk_alloc(). 3146 * 3147 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3148 */ 3149 if (ret == -ENOSPC) { 3150 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3151 struct btrfs_block_group *sys_bg; 3152 3153 sys_bg = btrfs_create_chunk(trans, sys_flags); 3154 if (IS_ERR(sys_bg)) { 3155 ret = PTR_ERR(sys_bg); 3156 btrfs_abort_transaction(trans, ret); 3157 goto out; 3158 } 3159 3160 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3161 if (ret) { 3162 btrfs_abort_transaction(trans, ret); 3163 goto out; 3164 } 3165 3166 ret = remove_chunk_item(trans, map, chunk_offset); 3167 if (ret) { 3168 btrfs_abort_transaction(trans, ret); 3169 goto out; 3170 } 3171 } else if (ret) { 3172 btrfs_abort_transaction(trans, ret); 3173 goto out; 3174 } 3175 3176 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3177 3178 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3179 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3180 if (ret) { 3181 btrfs_abort_transaction(trans, ret); 3182 goto out; 3183 } 3184 } 3185 3186 mutex_unlock(&fs_info->chunk_mutex); 3187 trans->removing_chunk = false; 3188 3189 /* 3190 * We are done with chunk btree updates and deletions, so release the 3191 * system space we previously reserved (with check_system_chunk()). 3192 */ 3193 btrfs_trans_release_chunk_metadata(trans); 3194 3195 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3196 if (ret) { 3197 btrfs_abort_transaction(trans, ret); 3198 goto out; 3199 } 3200 3201 out: 3202 if (trans->removing_chunk) { 3203 mutex_unlock(&fs_info->chunk_mutex); 3204 trans->removing_chunk = false; 3205 } 3206 /* once for us */ 3207 free_extent_map(em); 3208 return ret; 3209 } 3210 3211 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3212 { 3213 struct btrfs_root *root = fs_info->chunk_root; 3214 struct btrfs_trans_handle *trans; 3215 struct btrfs_block_group *block_group; 3216 u64 length; 3217 int ret; 3218 3219 /* 3220 * Prevent races with automatic removal of unused block groups. 3221 * After we relocate and before we remove the chunk with offset 3222 * chunk_offset, automatic removal of the block group can kick in, 3223 * resulting in a failure when calling btrfs_remove_chunk() below. 3224 * 3225 * Make sure to acquire this mutex before doing a tree search (dev 3226 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3227 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3228 * we release the path used to search the chunk/dev tree and before 3229 * the current task acquires this mutex and calls us. 3230 */ 3231 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3232 3233 /* step one, relocate all the extents inside this chunk */ 3234 btrfs_scrub_pause(fs_info); 3235 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3236 btrfs_scrub_continue(fs_info); 3237 if (ret) 3238 return ret; 3239 3240 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3241 if (!block_group) 3242 return -ENOENT; 3243 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3244 length = block_group->length; 3245 btrfs_put_block_group(block_group); 3246 3247 /* 3248 * On a zoned file system, discard the whole block group, this will 3249 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3250 * resetting the zone fails, don't treat it as a fatal problem from the 3251 * filesystem's point of view. 3252 */ 3253 if (btrfs_is_zoned(fs_info)) { 3254 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3255 if (ret) 3256 btrfs_info(fs_info, 3257 "failed to reset zone %llu after relocation", 3258 chunk_offset); 3259 } 3260 3261 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3262 chunk_offset); 3263 if (IS_ERR(trans)) { 3264 ret = PTR_ERR(trans); 3265 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3266 return ret; 3267 } 3268 3269 /* 3270 * step two, delete the device extents and the 3271 * chunk tree entries 3272 */ 3273 ret = btrfs_remove_chunk(trans, chunk_offset); 3274 btrfs_end_transaction(trans); 3275 return ret; 3276 } 3277 3278 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3279 { 3280 struct btrfs_root *chunk_root = fs_info->chunk_root; 3281 struct btrfs_path *path; 3282 struct extent_buffer *leaf; 3283 struct btrfs_chunk *chunk; 3284 struct btrfs_key key; 3285 struct btrfs_key found_key; 3286 u64 chunk_type; 3287 bool retried = false; 3288 int failed = 0; 3289 int ret; 3290 3291 path = btrfs_alloc_path(); 3292 if (!path) 3293 return -ENOMEM; 3294 3295 again: 3296 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3297 key.offset = (u64)-1; 3298 key.type = BTRFS_CHUNK_ITEM_KEY; 3299 3300 while (1) { 3301 mutex_lock(&fs_info->reclaim_bgs_lock); 3302 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3303 if (ret < 0) { 3304 mutex_unlock(&fs_info->reclaim_bgs_lock); 3305 goto error; 3306 } 3307 BUG_ON(ret == 0); /* Corruption */ 3308 3309 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3310 key.type); 3311 if (ret) 3312 mutex_unlock(&fs_info->reclaim_bgs_lock); 3313 if (ret < 0) 3314 goto error; 3315 if (ret > 0) 3316 break; 3317 3318 leaf = path->nodes[0]; 3319 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3320 3321 chunk = btrfs_item_ptr(leaf, path->slots[0], 3322 struct btrfs_chunk); 3323 chunk_type = btrfs_chunk_type(leaf, chunk); 3324 btrfs_release_path(path); 3325 3326 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3327 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3328 if (ret == -ENOSPC) 3329 failed++; 3330 else 3331 BUG_ON(ret); 3332 } 3333 mutex_unlock(&fs_info->reclaim_bgs_lock); 3334 3335 if (found_key.offset == 0) 3336 break; 3337 key.offset = found_key.offset - 1; 3338 } 3339 ret = 0; 3340 if (failed && !retried) { 3341 failed = 0; 3342 retried = true; 3343 goto again; 3344 } else if (WARN_ON(failed && retried)) { 3345 ret = -ENOSPC; 3346 } 3347 error: 3348 btrfs_free_path(path); 3349 return ret; 3350 } 3351 3352 /* 3353 * return 1 : allocate a data chunk successfully, 3354 * return <0: errors during allocating a data chunk, 3355 * return 0 : no need to allocate a data chunk. 3356 */ 3357 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3358 u64 chunk_offset) 3359 { 3360 struct btrfs_block_group *cache; 3361 u64 bytes_used; 3362 u64 chunk_type; 3363 3364 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3365 ASSERT(cache); 3366 chunk_type = cache->flags; 3367 btrfs_put_block_group(cache); 3368 3369 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3370 return 0; 3371 3372 spin_lock(&fs_info->data_sinfo->lock); 3373 bytes_used = fs_info->data_sinfo->bytes_used; 3374 spin_unlock(&fs_info->data_sinfo->lock); 3375 3376 if (!bytes_used) { 3377 struct btrfs_trans_handle *trans; 3378 int ret; 3379 3380 trans = btrfs_join_transaction(fs_info->tree_root); 3381 if (IS_ERR(trans)) 3382 return PTR_ERR(trans); 3383 3384 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3385 btrfs_end_transaction(trans); 3386 if (ret < 0) 3387 return ret; 3388 return 1; 3389 } 3390 3391 return 0; 3392 } 3393 3394 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3395 struct btrfs_balance_control *bctl) 3396 { 3397 struct btrfs_root *root = fs_info->tree_root; 3398 struct btrfs_trans_handle *trans; 3399 struct btrfs_balance_item *item; 3400 struct btrfs_disk_balance_args disk_bargs; 3401 struct btrfs_path *path; 3402 struct extent_buffer *leaf; 3403 struct btrfs_key key; 3404 int ret, err; 3405 3406 path = btrfs_alloc_path(); 3407 if (!path) 3408 return -ENOMEM; 3409 3410 trans = btrfs_start_transaction(root, 0); 3411 if (IS_ERR(trans)) { 3412 btrfs_free_path(path); 3413 return PTR_ERR(trans); 3414 } 3415 3416 key.objectid = BTRFS_BALANCE_OBJECTID; 3417 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3418 key.offset = 0; 3419 3420 ret = btrfs_insert_empty_item(trans, root, path, &key, 3421 sizeof(*item)); 3422 if (ret) 3423 goto out; 3424 3425 leaf = path->nodes[0]; 3426 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3427 3428 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3429 3430 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3431 btrfs_set_balance_data(leaf, item, &disk_bargs); 3432 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3433 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3434 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3435 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3436 3437 btrfs_set_balance_flags(leaf, item, bctl->flags); 3438 3439 btrfs_mark_buffer_dirty(leaf); 3440 out: 3441 btrfs_free_path(path); 3442 err = btrfs_commit_transaction(trans); 3443 if (err && !ret) 3444 ret = err; 3445 return ret; 3446 } 3447 3448 static int del_balance_item(struct btrfs_fs_info *fs_info) 3449 { 3450 struct btrfs_root *root = fs_info->tree_root; 3451 struct btrfs_trans_handle *trans; 3452 struct btrfs_path *path; 3453 struct btrfs_key key; 3454 int ret, err; 3455 3456 path = btrfs_alloc_path(); 3457 if (!path) 3458 return -ENOMEM; 3459 3460 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3461 if (IS_ERR(trans)) { 3462 btrfs_free_path(path); 3463 return PTR_ERR(trans); 3464 } 3465 3466 key.objectid = BTRFS_BALANCE_OBJECTID; 3467 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3468 key.offset = 0; 3469 3470 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3471 if (ret < 0) 3472 goto out; 3473 if (ret > 0) { 3474 ret = -ENOENT; 3475 goto out; 3476 } 3477 3478 ret = btrfs_del_item(trans, root, path); 3479 out: 3480 btrfs_free_path(path); 3481 err = btrfs_commit_transaction(trans); 3482 if (err && !ret) 3483 ret = err; 3484 return ret; 3485 } 3486 3487 /* 3488 * This is a heuristic used to reduce the number of chunks balanced on 3489 * resume after balance was interrupted. 3490 */ 3491 static void update_balance_args(struct btrfs_balance_control *bctl) 3492 { 3493 /* 3494 * Turn on soft mode for chunk types that were being converted. 3495 */ 3496 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3497 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3498 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3499 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3500 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3501 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3502 3503 /* 3504 * Turn on usage filter if is not already used. The idea is 3505 * that chunks that we have already balanced should be 3506 * reasonably full. Don't do it for chunks that are being 3507 * converted - that will keep us from relocating unconverted 3508 * (albeit full) chunks. 3509 */ 3510 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3511 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3512 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3513 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3514 bctl->data.usage = 90; 3515 } 3516 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3517 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3518 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3519 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3520 bctl->sys.usage = 90; 3521 } 3522 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3523 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3524 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3525 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3526 bctl->meta.usage = 90; 3527 } 3528 } 3529 3530 /* 3531 * Clear the balance status in fs_info and delete the balance item from disk. 3532 */ 3533 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3534 { 3535 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3536 int ret; 3537 3538 BUG_ON(!fs_info->balance_ctl); 3539 3540 spin_lock(&fs_info->balance_lock); 3541 fs_info->balance_ctl = NULL; 3542 spin_unlock(&fs_info->balance_lock); 3543 3544 kfree(bctl); 3545 ret = del_balance_item(fs_info); 3546 if (ret) 3547 btrfs_handle_fs_error(fs_info, ret, NULL); 3548 } 3549 3550 /* 3551 * Balance filters. Return 1 if chunk should be filtered out 3552 * (should not be balanced). 3553 */ 3554 static int chunk_profiles_filter(u64 chunk_type, 3555 struct btrfs_balance_args *bargs) 3556 { 3557 chunk_type = chunk_to_extended(chunk_type) & 3558 BTRFS_EXTENDED_PROFILE_MASK; 3559 3560 if (bargs->profiles & chunk_type) 3561 return 0; 3562 3563 return 1; 3564 } 3565 3566 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3567 struct btrfs_balance_args *bargs) 3568 { 3569 struct btrfs_block_group *cache; 3570 u64 chunk_used; 3571 u64 user_thresh_min; 3572 u64 user_thresh_max; 3573 int ret = 1; 3574 3575 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3576 chunk_used = cache->used; 3577 3578 if (bargs->usage_min == 0) 3579 user_thresh_min = 0; 3580 else 3581 user_thresh_min = div_factor_fine(cache->length, 3582 bargs->usage_min); 3583 3584 if (bargs->usage_max == 0) 3585 user_thresh_max = 1; 3586 else if (bargs->usage_max > 100) 3587 user_thresh_max = cache->length; 3588 else 3589 user_thresh_max = div_factor_fine(cache->length, 3590 bargs->usage_max); 3591 3592 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3593 ret = 0; 3594 3595 btrfs_put_block_group(cache); 3596 return ret; 3597 } 3598 3599 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3600 u64 chunk_offset, struct btrfs_balance_args *bargs) 3601 { 3602 struct btrfs_block_group *cache; 3603 u64 chunk_used, user_thresh; 3604 int ret = 1; 3605 3606 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3607 chunk_used = cache->used; 3608 3609 if (bargs->usage_min == 0) 3610 user_thresh = 1; 3611 else if (bargs->usage > 100) 3612 user_thresh = cache->length; 3613 else 3614 user_thresh = div_factor_fine(cache->length, bargs->usage); 3615 3616 if (chunk_used < user_thresh) 3617 ret = 0; 3618 3619 btrfs_put_block_group(cache); 3620 return ret; 3621 } 3622 3623 static int chunk_devid_filter(struct extent_buffer *leaf, 3624 struct btrfs_chunk *chunk, 3625 struct btrfs_balance_args *bargs) 3626 { 3627 struct btrfs_stripe *stripe; 3628 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3629 int i; 3630 3631 for (i = 0; i < num_stripes; i++) { 3632 stripe = btrfs_stripe_nr(chunk, i); 3633 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3634 return 0; 3635 } 3636 3637 return 1; 3638 } 3639 3640 static u64 calc_data_stripes(u64 type, int num_stripes) 3641 { 3642 const int index = btrfs_bg_flags_to_raid_index(type); 3643 const int ncopies = btrfs_raid_array[index].ncopies; 3644 const int nparity = btrfs_raid_array[index].nparity; 3645 3646 return (num_stripes - nparity) / ncopies; 3647 } 3648 3649 /* [pstart, pend) */ 3650 static int chunk_drange_filter(struct extent_buffer *leaf, 3651 struct btrfs_chunk *chunk, 3652 struct btrfs_balance_args *bargs) 3653 { 3654 struct btrfs_stripe *stripe; 3655 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3656 u64 stripe_offset; 3657 u64 stripe_length; 3658 u64 type; 3659 int factor; 3660 int i; 3661 3662 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3663 return 0; 3664 3665 type = btrfs_chunk_type(leaf, chunk); 3666 factor = calc_data_stripes(type, num_stripes); 3667 3668 for (i = 0; i < num_stripes; i++) { 3669 stripe = btrfs_stripe_nr(chunk, i); 3670 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3671 continue; 3672 3673 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3674 stripe_length = btrfs_chunk_length(leaf, chunk); 3675 stripe_length = div_u64(stripe_length, factor); 3676 3677 if (stripe_offset < bargs->pend && 3678 stripe_offset + stripe_length > bargs->pstart) 3679 return 0; 3680 } 3681 3682 return 1; 3683 } 3684 3685 /* [vstart, vend) */ 3686 static int chunk_vrange_filter(struct extent_buffer *leaf, 3687 struct btrfs_chunk *chunk, 3688 u64 chunk_offset, 3689 struct btrfs_balance_args *bargs) 3690 { 3691 if (chunk_offset < bargs->vend && 3692 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3693 /* at least part of the chunk is inside this vrange */ 3694 return 0; 3695 3696 return 1; 3697 } 3698 3699 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3700 struct btrfs_chunk *chunk, 3701 struct btrfs_balance_args *bargs) 3702 { 3703 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3704 3705 if (bargs->stripes_min <= num_stripes 3706 && num_stripes <= bargs->stripes_max) 3707 return 0; 3708 3709 return 1; 3710 } 3711 3712 static int chunk_soft_convert_filter(u64 chunk_type, 3713 struct btrfs_balance_args *bargs) 3714 { 3715 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3716 return 0; 3717 3718 chunk_type = chunk_to_extended(chunk_type) & 3719 BTRFS_EXTENDED_PROFILE_MASK; 3720 3721 if (bargs->target == chunk_type) 3722 return 1; 3723 3724 return 0; 3725 } 3726 3727 static int should_balance_chunk(struct extent_buffer *leaf, 3728 struct btrfs_chunk *chunk, u64 chunk_offset) 3729 { 3730 struct btrfs_fs_info *fs_info = leaf->fs_info; 3731 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3732 struct btrfs_balance_args *bargs = NULL; 3733 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3734 3735 /* type filter */ 3736 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3737 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3738 return 0; 3739 } 3740 3741 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3742 bargs = &bctl->data; 3743 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3744 bargs = &bctl->sys; 3745 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3746 bargs = &bctl->meta; 3747 3748 /* profiles filter */ 3749 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3750 chunk_profiles_filter(chunk_type, bargs)) { 3751 return 0; 3752 } 3753 3754 /* usage filter */ 3755 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3756 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3757 return 0; 3758 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3759 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3760 return 0; 3761 } 3762 3763 /* devid filter */ 3764 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3765 chunk_devid_filter(leaf, chunk, bargs)) { 3766 return 0; 3767 } 3768 3769 /* drange filter, makes sense only with devid filter */ 3770 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3771 chunk_drange_filter(leaf, chunk, bargs)) { 3772 return 0; 3773 } 3774 3775 /* vrange filter */ 3776 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3777 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3778 return 0; 3779 } 3780 3781 /* stripes filter */ 3782 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3783 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3784 return 0; 3785 } 3786 3787 /* soft profile changing mode */ 3788 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3789 chunk_soft_convert_filter(chunk_type, bargs)) { 3790 return 0; 3791 } 3792 3793 /* 3794 * limited by count, must be the last filter 3795 */ 3796 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3797 if (bargs->limit == 0) 3798 return 0; 3799 else 3800 bargs->limit--; 3801 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3802 /* 3803 * Same logic as the 'limit' filter; the minimum cannot be 3804 * determined here because we do not have the global information 3805 * about the count of all chunks that satisfy the filters. 3806 */ 3807 if (bargs->limit_max == 0) 3808 return 0; 3809 else 3810 bargs->limit_max--; 3811 } 3812 3813 return 1; 3814 } 3815 3816 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3817 { 3818 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3819 struct btrfs_root *chunk_root = fs_info->chunk_root; 3820 u64 chunk_type; 3821 struct btrfs_chunk *chunk; 3822 struct btrfs_path *path = NULL; 3823 struct btrfs_key key; 3824 struct btrfs_key found_key; 3825 struct extent_buffer *leaf; 3826 int slot; 3827 int ret; 3828 int enospc_errors = 0; 3829 bool counting = true; 3830 /* The single value limit and min/max limits use the same bytes in the */ 3831 u64 limit_data = bctl->data.limit; 3832 u64 limit_meta = bctl->meta.limit; 3833 u64 limit_sys = bctl->sys.limit; 3834 u32 count_data = 0; 3835 u32 count_meta = 0; 3836 u32 count_sys = 0; 3837 int chunk_reserved = 0; 3838 3839 path = btrfs_alloc_path(); 3840 if (!path) { 3841 ret = -ENOMEM; 3842 goto error; 3843 } 3844 3845 /* zero out stat counters */ 3846 spin_lock(&fs_info->balance_lock); 3847 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3848 spin_unlock(&fs_info->balance_lock); 3849 again: 3850 if (!counting) { 3851 /* 3852 * The single value limit and min/max limits use the same bytes 3853 * in the 3854 */ 3855 bctl->data.limit = limit_data; 3856 bctl->meta.limit = limit_meta; 3857 bctl->sys.limit = limit_sys; 3858 } 3859 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3860 key.offset = (u64)-1; 3861 key.type = BTRFS_CHUNK_ITEM_KEY; 3862 3863 while (1) { 3864 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3865 atomic_read(&fs_info->balance_cancel_req)) { 3866 ret = -ECANCELED; 3867 goto error; 3868 } 3869 3870 mutex_lock(&fs_info->reclaim_bgs_lock); 3871 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3872 if (ret < 0) { 3873 mutex_unlock(&fs_info->reclaim_bgs_lock); 3874 goto error; 3875 } 3876 3877 /* 3878 * this shouldn't happen, it means the last relocate 3879 * failed 3880 */ 3881 if (ret == 0) 3882 BUG(); /* FIXME break ? */ 3883 3884 ret = btrfs_previous_item(chunk_root, path, 0, 3885 BTRFS_CHUNK_ITEM_KEY); 3886 if (ret) { 3887 mutex_unlock(&fs_info->reclaim_bgs_lock); 3888 ret = 0; 3889 break; 3890 } 3891 3892 leaf = path->nodes[0]; 3893 slot = path->slots[0]; 3894 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3895 3896 if (found_key.objectid != key.objectid) { 3897 mutex_unlock(&fs_info->reclaim_bgs_lock); 3898 break; 3899 } 3900 3901 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3902 chunk_type = btrfs_chunk_type(leaf, chunk); 3903 3904 if (!counting) { 3905 spin_lock(&fs_info->balance_lock); 3906 bctl->stat.considered++; 3907 spin_unlock(&fs_info->balance_lock); 3908 } 3909 3910 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3911 3912 btrfs_release_path(path); 3913 if (!ret) { 3914 mutex_unlock(&fs_info->reclaim_bgs_lock); 3915 goto loop; 3916 } 3917 3918 if (counting) { 3919 mutex_unlock(&fs_info->reclaim_bgs_lock); 3920 spin_lock(&fs_info->balance_lock); 3921 bctl->stat.expected++; 3922 spin_unlock(&fs_info->balance_lock); 3923 3924 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3925 count_data++; 3926 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3927 count_sys++; 3928 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3929 count_meta++; 3930 3931 goto loop; 3932 } 3933 3934 /* 3935 * Apply limit_min filter, no need to check if the LIMITS 3936 * filter is used, limit_min is 0 by default 3937 */ 3938 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3939 count_data < bctl->data.limit_min) 3940 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3941 count_meta < bctl->meta.limit_min) 3942 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3943 count_sys < bctl->sys.limit_min)) { 3944 mutex_unlock(&fs_info->reclaim_bgs_lock); 3945 goto loop; 3946 } 3947 3948 if (!chunk_reserved) { 3949 /* 3950 * We may be relocating the only data chunk we have, 3951 * which could potentially end up with losing data's 3952 * raid profile, so lets allocate an empty one in 3953 * advance. 3954 */ 3955 ret = btrfs_may_alloc_data_chunk(fs_info, 3956 found_key.offset); 3957 if (ret < 0) { 3958 mutex_unlock(&fs_info->reclaim_bgs_lock); 3959 goto error; 3960 } else if (ret == 1) { 3961 chunk_reserved = 1; 3962 } 3963 } 3964 3965 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3966 mutex_unlock(&fs_info->reclaim_bgs_lock); 3967 if (ret == -ENOSPC) { 3968 enospc_errors++; 3969 } else if (ret == -ETXTBSY) { 3970 btrfs_info(fs_info, 3971 "skipping relocation of block group %llu due to active swapfile", 3972 found_key.offset); 3973 ret = 0; 3974 } else if (ret) { 3975 goto error; 3976 } else { 3977 spin_lock(&fs_info->balance_lock); 3978 bctl->stat.completed++; 3979 spin_unlock(&fs_info->balance_lock); 3980 } 3981 loop: 3982 if (found_key.offset == 0) 3983 break; 3984 key.offset = found_key.offset - 1; 3985 } 3986 3987 if (counting) { 3988 btrfs_release_path(path); 3989 counting = false; 3990 goto again; 3991 } 3992 error: 3993 btrfs_free_path(path); 3994 if (enospc_errors) { 3995 btrfs_info(fs_info, "%d enospc errors during balance", 3996 enospc_errors); 3997 if (!ret) 3998 ret = -ENOSPC; 3999 } 4000 4001 return ret; 4002 } 4003 4004 /** 4005 * alloc_profile_is_valid - see if a given profile is valid and reduced 4006 * @flags: profile to validate 4007 * @extended: if true @flags is treated as an extended profile 4008 */ 4009 static int alloc_profile_is_valid(u64 flags, int extended) 4010 { 4011 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4012 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4013 4014 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4015 4016 /* 1) check that all other bits are zeroed */ 4017 if (flags & ~mask) 4018 return 0; 4019 4020 /* 2) see if profile is reduced */ 4021 if (flags == 0) 4022 return !extended; /* "0" is valid for usual profiles */ 4023 4024 return has_single_bit_set(flags); 4025 } 4026 4027 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 4028 { 4029 /* cancel requested || normal exit path */ 4030 return atomic_read(&fs_info->balance_cancel_req) || 4031 (atomic_read(&fs_info->balance_pause_req) == 0 && 4032 atomic_read(&fs_info->balance_cancel_req) == 0); 4033 } 4034 4035 /* 4036 * Validate target profile against allowed profiles and return true if it's OK. 4037 * Otherwise print the error message and return false. 4038 */ 4039 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4040 const struct btrfs_balance_args *bargs, 4041 u64 allowed, const char *type) 4042 { 4043 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4044 return true; 4045 4046 if (fs_info->sectorsize < PAGE_SIZE && 4047 bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) { 4048 btrfs_err(fs_info, 4049 "RAID56 is not yet supported for sectorsize %u with page size %lu", 4050 fs_info->sectorsize, PAGE_SIZE); 4051 return false; 4052 } 4053 /* Profile is valid and does not have bits outside of the allowed set */ 4054 if (alloc_profile_is_valid(bargs->target, 1) && 4055 (bargs->target & ~allowed) == 0) 4056 return true; 4057 4058 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4059 type, btrfs_bg_type_to_raid_name(bargs->target)); 4060 return false; 4061 } 4062 4063 /* 4064 * Fill @buf with textual description of balance filter flags @bargs, up to 4065 * @size_buf including the terminating null. The output may be trimmed if it 4066 * does not fit into the provided buffer. 4067 */ 4068 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4069 u32 size_buf) 4070 { 4071 int ret; 4072 u32 size_bp = size_buf; 4073 char *bp = buf; 4074 u64 flags = bargs->flags; 4075 char tmp_buf[128] = {'\0'}; 4076 4077 if (!flags) 4078 return; 4079 4080 #define CHECK_APPEND_NOARG(a) \ 4081 do { \ 4082 ret = snprintf(bp, size_bp, (a)); \ 4083 if (ret < 0 || ret >= size_bp) \ 4084 goto out_overflow; \ 4085 size_bp -= ret; \ 4086 bp += ret; \ 4087 } while (0) 4088 4089 #define CHECK_APPEND_1ARG(a, v1) \ 4090 do { \ 4091 ret = snprintf(bp, size_bp, (a), (v1)); \ 4092 if (ret < 0 || ret >= size_bp) \ 4093 goto out_overflow; \ 4094 size_bp -= ret; \ 4095 bp += ret; \ 4096 } while (0) 4097 4098 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4099 do { \ 4100 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4101 if (ret < 0 || ret >= size_bp) \ 4102 goto out_overflow; \ 4103 size_bp -= ret; \ 4104 bp += ret; \ 4105 } while (0) 4106 4107 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4108 CHECK_APPEND_1ARG("convert=%s,", 4109 btrfs_bg_type_to_raid_name(bargs->target)); 4110 4111 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4112 CHECK_APPEND_NOARG("soft,"); 4113 4114 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4115 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4116 sizeof(tmp_buf)); 4117 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4118 } 4119 4120 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4121 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4122 4123 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4124 CHECK_APPEND_2ARG("usage=%u..%u,", 4125 bargs->usage_min, bargs->usage_max); 4126 4127 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4128 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4129 4130 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4131 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4132 bargs->pstart, bargs->pend); 4133 4134 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4135 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4136 bargs->vstart, bargs->vend); 4137 4138 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4139 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4140 4141 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4142 CHECK_APPEND_2ARG("limit=%u..%u,", 4143 bargs->limit_min, bargs->limit_max); 4144 4145 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4146 CHECK_APPEND_2ARG("stripes=%u..%u,", 4147 bargs->stripes_min, bargs->stripes_max); 4148 4149 #undef CHECK_APPEND_2ARG 4150 #undef CHECK_APPEND_1ARG 4151 #undef CHECK_APPEND_NOARG 4152 4153 out_overflow: 4154 4155 if (size_bp < size_buf) 4156 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4157 else 4158 buf[0] = '\0'; 4159 } 4160 4161 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4162 { 4163 u32 size_buf = 1024; 4164 char tmp_buf[192] = {'\0'}; 4165 char *buf; 4166 char *bp; 4167 u32 size_bp = size_buf; 4168 int ret; 4169 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4170 4171 buf = kzalloc(size_buf, GFP_KERNEL); 4172 if (!buf) 4173 return; 4174 4175 bp = buf; 4176 4177 #define CHECK_APPEND_1ARG(a, v1) \ 4178 do { \ 4179 ret = snprintf(bp, size_bp, (a), (v1)); \ 4180 if (ret < 0 || ret >= size_bp) \ 4181 goto out_overflow; \ 4182 size_bp -= ret; \ 4183 bp += ret; \ 4184 } while (0) 4185 4186 if (bctl->flags & BTRFS_BALANCE_FORCE) 4187 CHECK_APPEND_1ARG("%s", "-f "); 4188 4189 if (bctl->flags & BTRFS_BALANCE_DATA) { 4190 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4191 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4192 } 4193 4194 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4195 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4196 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4197 } 4198 4199 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4200 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4201 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4202 } 4203 4204 #undef CHECK_APPEND_1ARG 4205 4206 out_overflow: 4207 4208 if (size_bp < size_buf) 4209 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4210 btrfs_info(fs_info, "balance: %s %s", 4211 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4212 "resume" : "start", buf); 4213 4214 kfree(buf); 4215 } 4216 4217 /* 4218 * Should be called with balance mutexe held 4219 */ 4220 int btrfs_balance(struct btrfs_fs_info *fs_info, 4221 struct btrfs_balance_control *bctl, 4222 struct btrfs_ioctl_balance_args *bargs) 4223 { 4224 u64 meta_target, data_target; 4225 u64 allowed; 4226 int mixed = 0; 4227 int ret; 4228 u64 num_devices; 4229 unsigned seq; 4230 bool reducing_redundancy; 4231 int i; 4232 4233 if (btrfs_fs_closing(fs_info) || 4234 atomic_read(&fs_info->balance_pause_req) || 4235 btrfs_should_cancel_balance(fs_info)) { 4236 ret = -EINVAL; 4237 goto out; 4238 } 4239 4240 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4241 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4242 mixed = 1; 4243 4244 /* 4245 * In case of mixed groups both data and meta should be picked, 4246 * and identical options should be given for both of them. 4247 */ 4248 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4249 if (mixed && (bctl->flags & allowed)) { 4250 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4251 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4252 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4253 btrfs_err(fs_info, 4254 "balance: mixed groups data and metadata options must be the same"); 4255 ret = -EINVAL; 4256 goto out; 4257 } 4258 } 4259 4260 /* 4261 * rw_devices will not change at the moment, device add/delete/replace 4262 * are exclusive 4263 */ 4264 num_devices = fs_info->fs_devices->rw_devices; 4265 4266 /* 4267 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4268 * special bit for it, to make it easier to distinguish. Thus we need 4269 * to set it manually, or balance would refuse the profile. 4270 */ 4271 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4272 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4273 if (num_devices >= btrfs_raid_array[i].devs_min) 4274 allowed |= btrfs_raid_array[i].bg_flag; 4275 4276 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4277 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4278 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4279 ret = -EINVAL; 4280 goto out; 4281 } 4282 4283 /* 4284 * Allow to reduce metadata or system integrity only if force set for 4285 * profiles with redundancy (copies, parity) 4286 */ 4287 allowed = 0; 4288 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4289 if (btrfs_raid_array[i].ncopies >= 2 || 4290 btrfs_raid_array[i].tolerated_failures >= 1) 4291 allowed |= btrfs_raid_array[i].bg_flag; 4292 } 4293 do { 4294 seq = read_seqbegin(&fs_info->profiles_lock); 4295 4296 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4297 (fs_info->avail_system_alloc_bits & allowed) && 4298 !(bctl->sys.target & allowed)) || 4299 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4300 (fs_info->avail_metadata_alloc_bits & allowed) && 4301 !(bctl->meta.target & allowed))) 4302 reducing_redundancy = true; 4303 else 4304 reducing_redundancy = false; 4305 4306 /* if we're not converting, the target field is uninitialized */ 4307 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4308 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4309 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4310 bctl->data.target : fs_info->avail_data_alloc_bits; 4311 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4312 4313 if (reducing_redundancy) { 4314 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4315 btrfs_info(fs_info, 4316 "balance: force reducing metadata redundancy"); 4317 } else { 4318 btrfs_err(fs_info, 4319 "balance: reduces metadata redundancy, use --force if you want this"); 4320 ret = -EINVAL; 4321 goto out; 4322 } 4323 } 4324 4325 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4326 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4327 btrfs_warn(fs_info, 4328 "balance: metadata profile %s has lower redundancy than data profile %s", 4329 btrfs_bg_type_to_raid_name(meta_target), 4330 btrfs_bg_type_to_raid_name(data_target)); 4331 } 4332 4333 ret = insert_balance_item(fs_info, bctl); 4334 if (ret && ret != -EEXIST) 4335 goto out; 4336 4337 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4338 BUG_ON(ret == -EEXIST); 4339 BUG_ON(fs_info->balance_ctl); 4340 spin_lock(&fs_info->balance_lock); 4341 fs_info->balance_ctl = bctl; 4342 spin_unlock(&fs_info->balance_lock); 4343 } else { 4344 BUG_ON(ret != -EEXIST); 4345 spin_lock(&fs_info->balance_lock); 4346 update_balance_args(bctl); 4347 spin_unlock(&fs_info->balance_lock); 4348 } 4349 4350 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4351 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4352 describe_balance_start_or_resume(fs_info); 4353 mutex_unlock(&fs_info->balance_mutex); 4354 4355 ret = __btrfs_balance(fs_info); 4356 4357 mutex_lock(&fs_info->balance_mutex); 4358 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4359 btrfs_info(fs_info, "balance: paused"); 4360 /* 4361 * Balance can be canceled by: 4362 * 4363 * - Regular cancel request 4364 * Then ret == -ECANCELED and balance_cancel_req > 0 4365 * 4366 * - Fatal signal to "btrfs" process 4367 * Either the signal caught by wait_reserve_ticket() and callers 4368 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4369 * got -ECANCELED. 4370 * Either way, in this case balance_cancel_req = 0, and 4371 * ret == -EINTR or ret == -ECANCELED. 4372 * 4373 * So here we only check the return value to catch canceled balance. 4374 */ 4375 else if (ret == -ECANCELED || ret == -EINTR) 4376 btrfs_info(fs_info, "balance: canceled"); 4377 else 4378 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4379 4380 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4381 4382 if (bargs) { 4383 memset(bargs, 0, sizeof(*bargs)); 4384 btrfs_update_ioctl_balance_args(fs_info, bargs); 4385 } 4386 4387 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4388 balance_need_close(fs_info)) { 4389 reset_balance_state(fs_info); 4390 btrfs_exclop_finish(fs_info); 4391 } 4392 4393 wake_up(&fs_info->balance_wait_q); 4394 4395 return ret; 4396 out: 4397 if (bctl->flags & BTRFS_BALANCE_RESUME) 4398 reset_balance_state(fs_info); 4399 else 4400 kfree(bctl); 4401 btrfs_exclop_finish(fs_info); 4402 4403 return ret; 4404 } 4405 4406 static int balance_kthread(void *data) 4407 { 4408 struct btrfs_fs_info *fs_info = data; 4409 int ret = 0; 4410 4411 mutex_lock(&fs_info->balance_mutex); 4412 if (fs_info->balance_ctl) 4413 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4414 mutex_unlock(&fs_info->balance_mutex); 4415 4416 return ret; 4417 } 4418 4419 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4420 { 4421 struct task_struct *tsk; 4422 4423 mutex_lock(&fs_info->balance_mutex); 4424 if (!fs_info->balance_ctl) { 4425 mutex_unlock(&fs_info->balance_mutex); 4426 return 0; 4427 } 4428 mutex_unlock(&fs_info->balance_mutex); 4429 4430 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4431 btrfs_info(fs_info, "balance: resume skipped"); 4432 return 0; 4433 } 4434 4435 /* 4436 * A ro->rw remount sequence should continue with the paused balance 4437 * regardless of who pauses it, system or the user as of now, so set 4438 * the resume flag. 4439 */ 4440 spin_lock(&fs_info->balance_lock); 4441 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4442 spin_unlock(&fs_info->balance_lock); 4443 4444 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4445 return PTR_ERR_OR_ZERO(tsk); 4446 } 4447 4448 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4449 { 4450 struct btrfs_balance_control *bctl; 4451 struct btrfs_balance_item *item; 4452 struct btrfs_disk_balance_args disk_bargs; 4453 struct btrfs_path *path; 4454 struct extent_buffer *leaf; 4455 struct btrfs_key key; 4456 int ret; 4457 4458 path = btrfs_alloc_path(); 4459 if (!path) 4460 return -ENOMEM; 4461 4462 key.objectid = BTRFS_BALANCE_OBJECTID; 4463 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4464 key.offset = 0; 4465 4466 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4467 if (ret < 0) 4468 goto out; 4469 if (ret > 0) { /* ret = -ENOENT; */ 4470 ret = 0; 4471 goto out; 4472 } 4473 4474 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4475 if (!bctl) { 4476 ret = -ENOMEM; 4477 goto out; 4478 } 4479 4480 leaf = path->nodes[0]; 4481 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4482 4483 bctl->flags = btrfs_balance_flags(leaf, item); 4484 bctl->flags |= BTRFS_BALANCE_RESUME; 4485 4486 btrfs_balance_data(leaf, item, &disk_bargs); 4487 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4488 btrfs_balance_meta(leaf, item, &disk_bargs); 4489 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4490 btrfs_balance_sys(leaf, item, &disk_bargs); 4491 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4492 4493 /* 4494 * This should never happen, as the paused balance state is recovered 4495 * during mount without any chance of other exclusive ops to collide. 4496 * 4497 * This gives the exclusive op status to balance and keeps in paused 4498 * state until user intervention (cancel or umount). If the ownership 4499 * cannot be assigned, show a message but do not fail. The balance 4500 * is in a paused state and must have fs_info::balance_ctl properly 4501 * set up. 4502 */ 4503 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) 4504 btrfs_warn(fs_info, 4505 "balance: cannot set exclusive op status, resume manually"); 4506 4507 btrfs_release_path(path); 4508 4509 mutex_lock(&fs_info->balance_mutex); 4510 BUG_ON(fs_info->balance_ctl); 4511 spin_lock(&fs_info->balance_lock); 4512 fs_info->balance_ctl = bctl; 4513 spin_unlock(&fs_info->balance_lock); 4514 mutex_unlock(&fs_info->balance_mutex); 4515 out: 4516 btrfs_free_path(path); 4517 return ret; 4518 } 4519 4520 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4521 { 4522 int ret = 0; 4523 4524 mutex_lock(&fs_info->balance_mutex); 4525 if (!fs_info->balance_ctl) { 4526 mutex_unlock(&fs_info->balance_mutex); 4527 return -ENOTCONN; 4528 } 4529 4530 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4531 atomic_inc(&fs_info->balance_pause_req); 4532 mutex_unlock(&fs_info->balance_mutex); 4533 4534 wait_event(fs_info->balance_wait_q, 4535 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4536 4537 mutex_lock(&fs_info->balance_mutex); 4538 /* we are good with balance_ctl ripped off from under us */ 4539 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4540 atomic_dec(&fs_info->balance_pause_req); 4541 } else { 4542 ret = -ENOTCONN; 4543 } 4544 4545 mutex_unlock(&fs_info->balance_mutex); 4546 return ret; 4547 } 4548 4549 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4550 { 4551 mutex_lock(&fs_info->balance_mutex); 4552 if (!fs_info->balance_ctl) { 4553 mutex_unlock(&fs_info->balance_mutex); 4554 return -ENOTCONN; 4555 } 4556 4557 /* 4558 * A paused balance with the item stored on disk can be resumed at 4559 * mount time if the mount is read-write. Otherwise it's still paused 4560 * and we must not allow cancelling as it deletes the item. 4561 */ 4562 if (sb_rdonly(fs_info->sb)) { 4563 mutex_unlock(&fs_info->balance_mutex); 4564 return -EROFS; 4565 } 4566 4567 atomic_inc(&fs_info->balance_cancel_req); 4568 /* 4569 * if we are running just wait and return, balance item is 4570 * deleted in btrfs_balance in this case 4571 */ 4572 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4573 mutex_unlock(&fs_info->balance_mutex); 4574 wait_event(fs_info->balance_wait_q, 4575 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4576 mutex_lock(&fs_info->balance_mutex); 4577 } else { 4578 mutex_unlock(&fs_info->balance_mutex); 4579 /* 4580 * Lock released to allow other waiters to continue, we'll 4581 * reexamine the status again. 4582 */ 4583 mutex_lock(&fs_info->balance_mutex); 4584 4585 if (fs_info->balance_ctl) { 4586 reset_balance_state(fs_info); 4587 btrfs_exclop_finish(fs_info); 4588 btrfs_info(fs_info, "balance: canceled"); 4589 } 4590 } 4591 4592 BUG_ON(fs_info->balance_ctl || 4593 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4594 atomic_dec(&fs_info->balance_cancel_req); 4595 mutex_unlock(&fs_info->balance_mutex); 4596 return 0; 4597 } 4598 4599 int btrfs_uuid_scan_kthread(void *data) 4600 { 4601 struct btrfs_fs_info *fs_info = data; 4602 struct btrfs_root *root = fs_info->tree_root; 4603 struct btrfs_key key; 4604 struct btrfs_path *path = NULL; 4605 int ret = 0; 4606 struct extent_buffer *eb; 4607 int slot; 4608 struct btrfs_root_item root_item; 4609 u32 item_size; 4610 struct btrfs_trans_handle *trans = NULL; 4611 bool closing = false; 4612 4613 path = btrfs_alloc_path(); 4614 if (!path) { 4615 ret = -ENOMEM; 4616 goto out; 4617 } 4618 4619 key.objectid = 0; 4620 key.type = BTRFS_ROOT_ITEM_KEY; 4621 key.offset = 0; 4622 4623 while (1) { 4624 if (btrfs_fs_closing(fs_info)) { 4625 closing = true; 4626 break; 4627 } 4628 ret = btrfs_search_forward(root, &key, path, 4629 BTRFS_OLDEST_GENERATION); 4630 if (ret) { 4631 if (ret > 0) 4632 ret = 0; 4633 break; 4634 } 4635 4636 if (key.type != BTRFS_ROOT_ITEM_KEY || 4637 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4638 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4639 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4640 goto skip; 4641 4642 eb = path->nodes[0]; 4643 slot = path->slots[0]; 4644 item_size = btrfs_item_size_nr(eb, slot); 4645 if (item_size < sizeof(root_item)) 4646 goto skip; 4647 4648 read_extent_buffer(eb, &root_item, 4649 btrfs_item_ptr_offset(eb, slot), 4650 (int)sizeof(root_item)); 4651 if (btrfs_root_refs(&root_item) == 0) 4652 goto skip; 4653 4654 if (!btrfs_is_empty_uuid(root_item.uuid) || 4655 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4656 if (trans) 4657 goto update_tree; 4658 4659 btrfs_release_path(path); 4660 /* 4661 * 1 - subvol uuid item 4662 * 1 - received_subvol uuid item 4663 */ 4664 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4665 if (IS_ERR(trans)) { 4666 ret = PTR_ERR(trans); 4667 break; 4668 } 4669 continue; 4670 } else { 4671 goto skip; 4672 } 4673 update_tree: 4674 btrfs_release_path(path); 4675 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4676 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4677 BTRFS_UUID_KEY_SUBVOL, 4678 key.objectid); 4679 if (ret < 0) { 4680 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4681 ret); 4682 break; 4683 } 4684 } 4685 4686 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4687 ret = btrfs_uuid_tree_add(trans, 4688 root_item.received_uuid, 4689 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4690 key.objectid); 4691 if (ret < 0) { 4692 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4693 ret); 4694 break; 4695 } 4696 } 4697 4698 skip: 4699 btrfs_release_path(path); 4700 if (trans) { 4701 ret = btrfs_end_transaction(trans); 4702 trans = NULL; 4703 if (ret) 4704 break; 4705 } 4706 4707 if (key.offset < (u64)-1) { 4708 key.offset++; 4709 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4710 key.offset = 0; 4711 key.type = BTRFS_ROOT_ITEM_KEY; 4712 } else if (key.objectid < (u64)-1) { 4713 key.offset = 0; 4714 key.type = BTRFS_ROOT_ITEM_KEY; 4715 key.objectid++; 4716 } else { 4717 break; 4718 } 4719 cond_resched(); 4720 } 4721 4722 out: 4723 btrfs_free_path(path); 4724 if (trans && !IS_ERR(trans)) 4725 btrfs_end_transaction(trans); 4726 if (ret) 4727 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4728 else if (!closing) 4729 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4730 up(&fs_info->uuid_tree_rescan_sem); 4731 return 0; 4732 } 4733 4734 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4735 { 4736 struct btrfs_trans_handle *trans; 4737 struct btrfs_root *tree_root = fs_info->tree_root; 4738 struct btrfs_root *uuid_root; 4739 struct task_struct *task; 4740 int ret; 4741 4742 /* 4743 * 1 - root node 4744 * 1 - root item 4745 */ 4746 trans = btrfs_start_transaction(tree_root, 2); 4747 if (IS_ERR(trans)) 4748 return PTR_ERR(trans); 4749 4750 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4751 if (IS_ERR(uuid_root)) { 4752 ret = PTR_ERR(uuid_root); 4753 btrfs_abort_transaction(trans, ret); 4754 btrfs_end_transaction(trans); 4755 return ret; 4756 } 4757 4758 fs_info->uuid_root = uuid_root; 4759 4760 ret = btrfs_commit_transaction(trans); 4761 if (ret) 4762 return ret; 4763 4764 down(&fs_info->uuid_tree_rescan_sem); 4765 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4766 if (IS_ERR(task)) { 4767 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4768 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4769 up(&fs_info->uuid_tree_rescan_sem); 4770 return PTR_ERR(task); 4771 } 4772 4773 return 0; 4774 } 4775 4776 /* 4777 * shrinking a device means finding all of the device extents past 4778 * the new size, and then following the back refs to the chunks. 4779 * The chunk relocation code actually frees the device extent 4780 */ 4781 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4782 { 4783 struct btrfs_fs_info *fs_info = device->fs_info; 4784 struct btrfs_root *root = fs_info->dev_root; 4785 struct btrfs_trans_handle *trans; 4786 struct btrfs_dev_extent *dev_extent = NULL; 4787 struct btrfs_path *path; 4788 u64 length; 4789 u64 chunk_offset; 4790 int ret; 4791 int slot; 4792 int failed = 0; 4793 bool retried = false; 4794 struct extent_buffer *l; 4795 struct btrfs_key key; 4796 struct btrfs_super_block *super_copy = fs_info->super_copy; 4797 u64 old_total = btrfs_super_total_bytes(super_copy); 4798 u64 old_size = btrfs_device_get_total_bytes(device); 4799 u64 diff; 4800 u64 start; 4801 4802 new_size = round_down(new_size, fs_info->sectorsize); 4803 start = new_size; 4804 diff = round_down(old_size - new_size, fs_info->sectorsize); 4805 4806 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4807 return -EINVAL; 4808 4809 path = btrfs_alloc_path(); 4810 if (!path) 4811 return -ENOMEM; 4812 4813 path->reada = READA_BACK; 4814 4815 trans = btrfs_start_transaction(root, 0); 4816 if (IS_ERR(trans)) { 4817 btrfs_free_path(path); 4818 return PTR_ERR(trans); 4819 } 4820 4821 mutex_lock(&fs_info->chunk_mutex); 4822 4823 btrfs_device_set_total_bytes(device, new_size); 4824 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4825 device->fs_devices->total_rw_bytes -= diff; 4826 atomic64_sub(diff, &fs_info->free_chunk_space); 4827 } 4828 4829 /* 4830 * Once the device's size has been set to the new size, ensure all 4831 * in-memory chunks are synced to disk so that the loop below sees them 4832 * and relocates them accordingly. 4833 */ 4834 if (contains_pending_extent(device, &start, diff)) { 4835 mutex_unlock(&fs_info->chunk_mutex); 4836 ret = btrfs_commit_transaction(trans); 4837 if (ret) 4838 goto done; 4839 } else { 4840 mutex_unlock(&fs_info->chunk_mutex); 4841 btrfs_end_transaction(trans); 4842 } 4843 4844 again: 4845 key.objectid = device->devid; 4846 key.offset = (u64)-1; 4847 key.type = BTRFS_DEV_EXTENT_KEY; 4848 4849 do { 4850 mutex_lock(&fs_info->reclaim_bgs_lock); 4851 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4852 if (ret < 0) { 4853 mutex_unlock(&fs_info->reclaim_bgs_lock); 4854 goto done; 4855 } 4856 4857 ret = btrfs_previous_item(root, path, 0, key.type); 4858 if (ret) { 4859 mutex_unlock(&fs_info->reclaim_bgs_lock); 4860 if (ret < 0) 4861 goto done; 4862 ret = 0; 4863 btrfs_release_path(path); 4864 break; 4865 } 4866 4867 l = path->nodes[0]; 4868 slot = path->slots[0]; 4869 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4870 4871 if (key.objectid != device->devid) { 4872 mutex_unlock(&fs_info->reclaim_bgs_lock); 4873 btrfs_release_path(path); 4874 break; 4875 } 4876 4877 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4878 length = btrfs_dev_extent_length(l, dev_extent); 4879 4880 if (key.offset + length <= new_size) { 4881 mutex_unlock(&fs_info->reclaim_bgs_lock); 4882 btrfs_release_path(path); 4883 break; 4884 } 4885 4886 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4887 btrfs_release_path(path); 4888 4889 /* 4890 * We may be relocating the only data chunk we have, 4891 * which could potentially end up with losing data's 4892 * raid profile, so lets allocate an empty one in 4893 * advance. 4894 */ 4895 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4896 if (ret < 0) { 4897 mutex_unlock(&fs_info->reclaim_bgs_lock); 4898 goto done; 4899 } 4900 4901 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4902 mutex_unlock(&fs_info->reclaim_bgs_lock); 4903 if (ret == -ENOSPC) { 4904 failed++; 4905 } else if (ret) { 4906 if (ret == -ETXTBSY) { 4907 btrfs_warn(fs_info, 4908 "could not shrink block group %llu due to active swapfile", 4909 chunk_offset); 4910 } 4911 goto done; 4912 } 4913 } while (key.offset-- > 0); 4914 4915 if (failed && !retried) { 4916 failed = 0; 4917 retried = true; 4918 goto again; 4919 } else if (failed && retried) { 4920 ret = -ENOSPC; 4921 goto done; 4922 } 4923 4924 /* Shrinking succeeded, else we would be at "done". */ 4925 trans = btrfs_start_transaction(root, 0); 4926 if (IS_ERR(trans)) { 4927 ret = PTR_ERR(trans); 4928 goto done; 4929 } 4930 4931 mutex_lock(&fs_info->chunk_mutex); 4932 /* Clear all state bits beyond the shrunk device size */ 4933 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4934 CHUNK_STATE_MASK); 4935 4936 btrfs_device_set_disk_total_bytes(device, new_size); 4937 if (list_empty(&device->post_commit_list)) 4938 list_add_tail(&device->post_commit_list, 4939 &trans->transaction->dev_update_list); 4940 4941 WARN_ON(diff > old_total); 4942 btrfs_set_super_total_bytes(super_copy, 4943 round_down(old_total - diff, fs_info->sectorsize)); 4944 mutex_unlock(&fs_info->chunk_mutex); 4945 4946 btrfs_reserve_chunk_metadata(trans, false); 4947 /* Now btrfs_update_device() will change the on-disk size. */ 4948 ret = btrfs_update_device(trans, device); 4949 btrfs_trans_release_chunk_metadata(trans); 4950 if (ret < 0) { 4951 btrfs_abort_transaction(trans, ret); 4952 btrfs_end_transaction(trans); 4953 } else { 4954 ret = btrfs_commit_transaction(trans); 4955 } 4956 done: 4957 btrfs_free_path(path); 4958 if (ret) { 4959 mutex_lock(&fs_info->chunk_mutex); 4960 btrfs_device_set_total_bytes(device, old_size); 4961 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4962 device->fs_devices->total_rw_bytes += diff; 4963 atomic64_add(diff, &fs_info->free_chunk_space); 4964 mutex_unlock(&fs_info->chunk_mutex); 4965 } 4966 return ret; 4967 } 4968 4969 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4970 struct btrfs_key *key, 4971 struct btrfs_chunk *chunk, int item_size) 4972 { 4973 struct btrfs_super_block *super_copy = fs_info->super_copy; 4974 struct btrfs_disk_key disk_key; 4975 u32 array_size; 4976 u8 *ptr; 4977 4978 lockdep_assert_held(&fs_info->chunk_mutex); 4979 4980 array_size = btrfs_super_sys_array_size(super_copy); 4981 if (array_size + item_size + sizeof(disk_key) 4982 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 4983 return -EFBIG; 4984 4985 ptr = super_copy->sys_chunk_array + array_size; 4986 btrfs_cpu_key_to_disk(&disk_key, key); 4987 memcpy(ptr, &disk_key, sizeof(disk_key)); 4988 ptr += sizeof(disk_key); 4989 memcpy(ptr, chunk, item_size); 4990 item_size += sizeof(disk_key); 4991 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4992 4993 return 0; 4994 } 4995 4996 /* 4997 * sort the devices in descending order by max_avail, total_avail 4998 */ 4999 static int btrfs_cmp_device_info(const void *a, const void *b) 5000 { 5001 const struct btrfs_device_info *di_a = a; 5002 const struct btrfs_device_info *di_b = b; 5003 5004 if (di_a->max_avail > di_b->max_avail) 5005 return -1; 5006 if (di_a->max_avail < di_b->max_avail) 5007 return 1; 5008 if (di_a->total_avail > di_b->total_avail) 5009 return -1; 5010 if (di_a->total_avail < di_b->total_avail) 5011 return 1; 5012 return 0; 5013 } 5014 5015 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5016 { 5017 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5018 return; 5019 5020 btrfs_set_fs_incompat(info, RAID56); 5021 } 5022 5023 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5024 { 5025 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5026 return; 5027 5028 btrfs_set_fs_incompat(info, RAID1C34); 5029 } 5030 5031 /* 5032 * Structure used internally for btrfs_create_chunk() function. 5033 * Wraps needed parameters. 5034 */ 5035 struct alloc_chunk_ctl { 5036 u64 start; 5037 u64 type; 5038 /* Total number of stripes to allocate */ 5039 int num_stripes; 5040 /* sub_stripes info for map */ 5041 int sub_stripes; 5042 /* Stripes per device */ 5043 int dev_stripes; 5044 /* Maximum number of devices to use */ 5045 int devs_max; 5046 /* Minimum number of devices to use */ 5047 int devs_min; 5048 /* ndevs has to be a multiple of this */ 5049 int devs_increment; 5050 /* Number of copies */ 5051 int ncopies; 5052 /* Number of stripes worth of bytes to store parity information */ 5053 int nparity; 5054 u64 max_stripe_size; 5055 u64 max_chunk_size; 5056 u64 dev_extent_min; 5057 u64 stripe_size; 5058 u64 chunk_size; 5059 int ndevs; 5060 }; 5061 5062 static void init_alloc_chunk_ctl_policy_regular( 5063 struct btrfs_fs_devices *fs_devices, 5064 struct alloc_chunk_ctl *ctl) 5065 { 5066 u64 type = ctl->type; 5067 5068 if (type & BTRFS_BLOCK_GROUP_DATA) { 5069 ctl->max_stripe_size = SZ_1G; 5070 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 5071 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5072 /* For larger filesystems, use larger metadata chunks */ 5073 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 5074 ctl->max_stripe_size = SZ_1G; 5075 else 5076 ctl->max_stripe_size = SZ_256M; 5077 ctl->max_chunk_size = ctl->max_stripe_size; 5078 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5079 ctl->max_stripe_size = SZ_32M; 5080 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5081 ctl->devs_max = min_t(int, ctl->devs_max, 5082 BTRFS_MAX_DEVS_SYS_CHUNK); 5083 } else { 5084 BUG(); 5085 } 5086 5087 /* We don't want a chunk larger than 10% of writable space */ 5088 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 5089 ctl->max_chunk_size); 5090 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes; 5091 } 5092 5093 static void init_alloc_chunk_ctl_policy_zoned( 5094 struct btrfs_fs_devices *fs_devices, 5095 struct alloc_chunk_ctl *ctl) 5096 { 5097 u64 zone_size = fs_devices->fs_info->zone_size; 5098 u64 limit; 5099 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5100 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5101 u64 min_chunk_size = min_data_stripes * zone_size; 5102 u64 type = ctl->type; 5103 5104 ctl->max_stripe_size = zone_size; 5105 if (type & BTRFS_BLOCK_GROUP_DATA) { 5106 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5107 zone_size); 5108 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5109 ctl->max_chunk_size = ctl->max_stripe_size; 5110 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5111 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5112 ctl->devs_max = min_t(int, ctl->devs_max, 5113 BTRFS_MAX_DEVS_SYS_CHUNK); 5114 } else { 5115 BUG(); 5116 } 5117 5118 /* We don't want a chunk larger than 10% of writable space */ 5119 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1), 5120 zone_size), 5121 min_chunk_size); 5122 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5123 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5124 } 5125 5126 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5127 struct alloc_chunk_ctl *ctl) 5128 { 5129 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5130 5131 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5132 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5133 ctl->devs_max = btrfs_raid_array[index].devs_max; 5134 if (!ctl->devs_max) 5135 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5136 ctl->devs_min = btrfs_raid_array[index].devs_min; 5137 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5138 ctl->ncopies = btrfs_raid_array[index].ncopies; 5139 ctl->nparity = btrfs_raid_array[index].nparity; 5140 ctl->ndevs = 0; 5141 5142 switch (fs_devices->chunk_alloc_policy) { 5143 case BTRFS_CHUNK_ALLOC_REGULAR: 5144 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5145 break; 5146 case BTRFS_CHUNK_ALLOC_ZONED: 5147 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5148 break; 5149 default: 5150 BUG(); 5151 } 5152 } 5153 5154 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5155 struct alloc_chunk_ctl *ctl, 5156 struct btrfs_device_info *devices_info) 5157 { 5158 struct btrfs_fs_info *info = fs_devices->fs_info; 5159 struct btrfs_device *device; 5160 u64 total_avail; 5161 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5162 int ret; 5163 int ndevs = 0; 5164 u64 max_avail; 5165 u64 dev_offset; 5166 5167 /* 5168 * in the first pass through the devices list, we gather information 5169 * about the available holes on each device. 5170 */ 5171 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5172 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5173 WARN(1, KERN_ERR 5174 "BTRFS: read-only device in alloc_list\n"); 5175 continue; 5176 } 5177 5178 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5179 &device->dev_state) || 5180 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5181 continue; 5182 5183 if (device->total_bytes > device->bytes_used) 5184 total_avail = device->total_bytes - device->bytes_used; 5185 else 5186 total_avail = 0; 5187 5188 /* If there is no space on this device, skip it. */ 5189 if (total_avail < ctl->dev_extent_min) 5190 continue; 5191 5192 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5193 &max_avail); 5194 if (ret && ret != -ENOSPC) 5195 return ret; 5196 5197 if (ret == 0) 5198 max_avail = dev_extent_want; 5199 5200 if (max_avail < ctl->dev_extent_min) { 5201 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5202 btrfs_debug(info, 5203 "%s: devid %llu has no free space, have=%llu want=%llu", 5204 __func__, device->devid, max_avail, 5205 ctl->dev_extent_min); 5206 continue; 5207 } 5208 5209 if (ndevs == fs_devices->rw_devices) { 5210 WARN(1, "%s: found more than %llu devices\n", 5211 __func__, fs_devices->rw_devices); 5212 break; 5213 } 5214 devices_info[ndevs].dev_offset = dev_offset; 5215 devices_info[ndevs].max_avail = max_avail; 5216 devices_info[ndevs].total_avail = total_avail; 5217 devices_info[ndevs].dev = device; 5218 ++ndevs; 5219 } 5220 ctl->ndevs = ndevs; 5221 5222 /* 5223 * now sort the devices by hole size / available space 5224 */ 5225 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5226 btrfs_cmp_device_info, NULL); 5227 5228 return 0; 5229 } 5230 5231 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5232 struct btrfs_device_info *devices_info) 5233 { 5234 /* Number of stripes that count for block group size */ 5235 int data_stripes; 5236 5237 /* 5238 * The primary goal is to maximize the number of stripes, so use as 5239 * many devices as possible, even if the stripes are not maximum sized. 5240 * 5241 * The DUP profile stores more than one stripe per device, the 5242 * max_avail is the total size so we have to adjust. 5243 */ 5244 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5245 ctl->dev_stripes); 5246 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5247 5248 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5249 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5250 5251 /* 5252 * Use the number of data stripes to figure out how big this chunk is 5253 * really going to be in terms of logical address space, and compare 5254 * that answer with the max chunk size. If it's higher, we try to 5255 * reduce stripe_size. 5256 */ 5257 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5258 /* 5259 * Reduce stripe_size, round it up to a 16MB boundary again and 5260 * then use it, unless it ends up being even bigger than the 5261 * previous value we had already. 5262 */ 5263 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5264 data_stripes), SZ_16M), 5265 ctl->stripe_size); 5266 } 5267 5268 /* Align to BTRFS_STRIPE_LEN */ 5269 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5270 ctl->chunk_size = ctl->stripe_size * data_stripes; 5271 5272 return 0; 5273 } 5274 5275 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5276 struct btrfs_device_info *devices_info) 5277 { 5278 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5279 /* Number of stripes that count for block group size */ 5280 int data_stripes; 5281 5282 /* 5283 * It should hold because: 5284 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5285 */ 5286 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5287 5288 ctl->stripe_size = zone_size; 5289 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5290 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5291 5292 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5293 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5294 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5295 ctl->stripe_size) + ctl->nparity, 5296 ctl->dev_stripes); 5297 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5298 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5299 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5300 } 5301 5302 ctl->chunk_size = ctl->stripe_size * data_stripes; 5303 5304 return 0; 5305 } 5306 5307 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5308 struct alloc_chunk_ctl *ctl, 5309 struct btrfs_device_info *devices_info) 5310 { 5311 struct btrfs_fs_info *info = fs_devices->fs_info; 5312 5313 /* 5314 * Round down to number of usable stripes, devs_increment can be any 5315 * number so we can't use round_down() that requires power of 2, while 5316 * rounddown is safe. 5317 */ 5318 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5319 5320 if (ctl->ndevs < ctl->devs_min) { 5321 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5322 btrfs_debug(info, 5323 "%s: not enough devices with free space: have=%d minimum required=%d", 5324 __func__, ctl->ndevs, ctl->devs_min); 5325 } 5326 return -ENOSPC; 5327 } 5328 5329 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5330 5331 switch (fs_devices->chunk_alloc_policy) { 5332 case BTRFS_CHUNK_ALLOC_REGULAR: 5333 return decide_stripe_size_regular(ctl, devices_info); 5334 case BTRFS_CHUNK_ALLOC_ZONED: 5335 return decide_stripe_size_zoned(ctl, devices_info); 5336 default: 5337 BUG(); 5338 } 5339 } 5340 5341 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5342 struct alloc_chunk_ctl *ctl, 5343 struct btrfs_device_info *devices_info) 5344 { 5345 struct btrfs_fs_info *info = trans->fs_info; 5346 struct map_lookup *map = NULL; 5347 struct extent_map_tree *em_tree; 5348 struct btrfs_block_group *block_group; 5349 struct extent_map *em; 5350 u64 start = ctl->start; 5351 u64 type = ctl->type; 5352 int ret; 5353 int i; 5354 int j; 5355 5356 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5357 if (!map) 5358 return ERR_PTR(-ENOMEM); 5359 map->num_stripes = ctl->num_stripes; 5360 5361 for (i = 0; i < ctl->ndevs; ++i) { 5362 for (j = 0; j < ctl->dev_stripes; ++j) { 5363 int s = i * ctl->dev_stripes + j; 5364 map->stripes[s].dev = devices_info[i].dev; 5365 map->stripes[s].physical = devices_info[i].dev_offset + 5366 j * ctl->stripe_size; 5367 } 5368 } 5369 map->stripe_len = BTRFS_STRIPE_LEN; 5370 map->io_align = BTRFS_STRIPE_LEN; 5371 map->io_width = BTRFS_STRIPE_LEN; 5372 map->type = type; 5373 map->sub_stripes = ctl->sub_stripes; 5374 5375 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5376 5377 em = alloc_extent_map(); 5378 if (!em) { 5379 kfree(map); 5380 return ERR_PTR(-ENOMEM); 5381 } 5382 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5383 em->map_lookup = map; 5384 em->start = start; 5385 em->len = ctl->chunk_size; 5386 em->block_start = 0; 5387 em->block_len = em->len; 5388 em->orig_block_len = ctl->stripe_size; 5389 5390 em_tree = &info->mapping_tree; 5391 write_lock(&em_tree->lock); 5392 ret = add_extent_mapping(em_tree, em, 0); 5393 if (ret) { 5394 write_unlock(&em_tree->lock); 5395 free_extent_map(em); 5396 return ERR_PTR(ret); 5397 } 5398 write_unlock(&em_tree->lock); 5399 5400 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size); 5401 if (IS_ERR(block_group)) 5402 goto error_del_extent; 5403 5404 for (i = 0; i < map->num_stripes; i++) { 5405 struct btrfs_device *dev = map->stripes[i].dev; 5406 5407 btrfs_device_set_bytes_used(dev, 5408 dev->bytes_used + ctl->stripe_size); 5409 if (list_empty(&dev->post_commit_list)) 5410 list_add_tail(&dev->post_commit_list, 5411 &trans->transaction->dev_update_list); 5412 } 5413 5414 atomic64_sub(ctl->stripe_size * map->num_stripes, 5415 &info->free_chunk_space); 5416 5417 free_extent_map(em); 5418 check_raid56_incompat_flag(info, type); 5419 check_raid1c34_incompat_flag(info, type); 5420 5421 return block_group; 5422 5423 error_del_extent: 5424 write_lock(&em_tree->lock); 5425 remove_extent_mapping(em_tree, em); 5426 write_unlock(&em_tree->lock); 5427 5428 /* One for our allocation */ 5429 free_extent_map(em); 5430 /* One for the tree reference */ 5431 free_extent_map(em); 5432 5433 return block_group; 5434 } 5435 5436 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5437 u64 type) 5438 { 5439 struct btrfs_fs_info *info = trans->fs_info; 5440 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5441 struct btrfs_device_info *devices_info = NULL; 5442 struct alloc_chunk_ctl ctl; 5443 struct btrfs_block_group *block_group; 5444 int ret; 5445 5446 lockdep_assert_held(&info->chunk_mutex); 5447 5448 if (!alloc_profile_is_valid(type, 0)) { 5449 ASSERT(0); 5450 return ERR_PTR(-EINVAL); 5451 } 5452 5453 if (list_empty(&fs_devices->alloc_list)) { 5454 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5455 btrfs_debug(info, "%s: no writable device", __func__); 5456 return ERR_PTR(-ENOSPC); 5457 } 5458 5459 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5460 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5461 ASSERT(0); 5462 return ERR_PTR(-EINVAL); 5463 } 5464 5465 ctl.start = find_next_chunk(info); 5466 ctl.type = type; 5467 init_alloc_chunk_ctl(fs_devices, &ctl); 5468 5469 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5470 GFP_NOFS); 5471 if (!devices_info) 5472 return ERR_PTR(-ENOMEM); 5473 5474 ret = gather_device_info(fs_devices, &ctl, devices_info); 5475 if (ret < 0) { 5476 block_group = ERR_PTR(ret); 5477 goto out; 5478 } 5479 5480 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5481 if (ret < 0) { 5482 block_group = ERR_PTR(ret); 5483 goto out; 5484 } 5485 5486 block_group = create_chunk(trans, &ctl, devices_info); 5487 5488 out: 5489 kfree(devices_info); 5490 return block_group; 5491 } 5492 5493 /* 5494 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5495 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5496 * chunks. 5497 * 5498 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5499 * phases. 5500 */ 5501 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5502 struct btrfs_block_group *bg) 5503 { 5504 struct btrfs_fs_info *fs_info = trans->fs_info; 5505 struct btrfs_root *extent_root = fs_info->extent_root; 5506 struct btrfs_root *chunk_root = fs_info->chunk_root; 5507 struct btrfs_key key; 5508 struct btrfs_chunk *chunk; 5509 struct btrfs_stripe *stripe; 5510 struct extent_map *em; 5511 struct map_lookup *map; 5512 size_t item_size; 5513 int i; 5514 int ret; 5515 5516 /* 5517 * We take the chunk_mutex for 2 reasons: 5518 * 5519 * 1) Updates and insertions in the chunk btree must be done while holding 5520 * the chunk_mutex, as well as updating the system chunk array in the 5521 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5522 * details; 5523 * 5524 * 2) To prevent races with the final phase of a device replace operation 5525 * that replaces the device object associated with the map's stripes, 5526 * because the device object's id can change at any time during that 5527 * final phase of the device replace operation 5528 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5529 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5530 * which would cause a failure when updating the device item, which does 5531 * not exists, or persisting a stripe of the chunk item with such ID. 5532 * Here we can't use the device_list_mutex because our caller already 5533 * has locked the chunk_mutex, and the final phase of device replace 5534 * acquires both mutexes - first the device_list_mutex and then the 5535 * chunk_mutex. Using any of those two mutexes protects us from a 5536 * concurrent device replace. 5537 */ 5538 lockdep_assert_held(&fs_info->chunk_mutex); 5539 5540 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5541 if (IS_ERR(em)) { 5542 ret = PTR_ERR(em); 5543 btrfs_abort_transaction(trans, ret); 5544 return ret; 5545 } 5546 5547 map = em->map_lookup; 5548 item_size = btrfs_chunk_item_size(map->num_stripes); 5549 5550 chunk = kzalloc(item_size, GFP_NOFS); 5551 if (!chunk) { 5552 ret = -ENOMEM; 5553 btrfs_abort_transaction(trans, ret); 5554 goto out; 5555 } 5556 5557 for (i = 0; i < map->num_stripes; i++) { 5558 struct btrfs_device *device = map->stripes[i].dev; 5559 5560 ret = btrfs_update_device(trans, device); 5561 if (ret) 5562 goto out; 5563 } 5564 5565 stripe = &chunk->stripe; 5566 for (i = 0; i < map->num_stripes; i++) { 5567 struct btrfs_device *device = map->stripes[i].dev; 5568 const u64 dev_offset = map->stripes[i].physical; 5569 5570 btrfs_set_stack_stripe_devid(stripe, device->devid); 5571 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5572 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5573 stripe++; 5574 } 5575 5576 btrfs_set_stack_chunk_length(chunk, bg->length); 5577 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5578 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5579 btrfs_set_stack_chunk_type(chunk, map->type); 5580 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5581 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5582 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5583 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5584 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5585 5586 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5587 key.type = BTRFS_CHUNK_ITEM_KEY; 5588 key.offset = bg->start; 5589 5590 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5591 if (ret) 5592 goto out; 5593 5594 bg->chunk_item_inserted = 1; 5595 5596 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5597 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5598 if (ret) 5599 goto out; 5600 } 5601 5602 out: 5603 kfree(chunk); 5604 free_extent_map(em); 5605 return ret; 5606 } 5607 5608 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5609 { 5610 struct btrfs_fs_info *fs_info = trans->fs_info; 5611 u64 alloc_profile; 5612 struct btrfs_block_group *meta_bg; 5613 struct btrfs_block_group *sys_bg; 5614 5615 /* 5616 * When adding a new device for sprouting, the seed device is read-only 5617 * so we must first allocate a metadata and a system chunk. But before 5618 * adding the block group items to the extent, device and chunk btrees, 5619 * we must first: 5620 * 5621 * 1) Create both chunks without doing any changes to the btrees, as 5622 * otherwise we would get -ENOSPC since the block groups from the 5623 * seed device are read-only; 5624 * 5625 * 2) Add the device item for the new sprout device - finishing the setup 5626 * of a new block group requires updating the device item in the chunk 5627 * btree, so it must exist when we attempt to do it. The previous step 5628 * ensures this does not fail with -ENOSPC. 5629 * 5630 * After that we can add the block group items to their btrees: 5631 * update existing device item in the chunk btree, add a new block group 5632 * item to the extent btree, add a new chunk item to the chunk btree and 5633 * finally add the new device extent items to the devices btree. 5634 */ 5635 5636 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5637 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5638 if (IS_ERR(meta_bg)) 5639 return PTR_ERR(meta_bg); 5640 5641 alloc_profile = btrfs_system_alloc_profile(fs_info); 5642 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5643 if (IS_ERR(sys_bg)) 5644 return PTR_ERR(sys_bg); 5645 5646 return 0; 5647 } 5648 5649 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5650 { 5651 const int index = btrfs_bg_flags_to_raid_index(map->type); 5652 5653 return btrfs_raid_array[index].tolerated_failures; 5654 } 5655 5656 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5657 { 5658 struct extent_map *em; 5659 struct map_lookup *map; 5660 int miss_ndevs = 0; 5661 int i; 5662 bool ret = true; 5663 5664 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5665 if (IS_ERR(em)) 5666 return false; 5667 5668 map = em->map_lookup; 5669 for (i = 0; i < map->num_stripes; i++) { 5670 if (test_bit(BTRFS_DEV_STATE_MISSING, 5671 &map->stripes[i].dev->dev_state)) { 5672 miss_ndevs++; 5673 continue; 5674 } 5675 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5676 &map->stripes[i].dev->dev_state)) { 5677 ret = false; 5678 goto end; 5679 } 5680 } 5681 5682 /* 5683 * If the number of missing devices is larger than max errors, we can 5684 * not write the data into that chunk successfully. 5685 */ 5686 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5687 ret = false; 5688 end: 5689 free_extent_map(em); 5690 return ret; 5691 } 5692 5693 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5694 { 5695 struct extent_map *em; 5696 5697 while (1) { 5698 write_lock(&tree->lock); 5699 em = lookup_extent_mapping(tree, 0, (u64)-1); 5700 if (em) 5701 remove_extent_mapping(tree, em); 5702 write_unlock(&tree->lock); 5703 if (!em) 5704 break; 5705 /* once for us */ 5706 free_extent_map(em); 5707 /* once for the tree */ 5708 free_extent_map(em); 5709 } 5710 } 5711 5712 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5713 { 5714 struct extent_map *em; 5715 struct map_lookup *map; 5716 int ret; 5717 5718 em = btrfs_get_chunk_map(fs_info, logical, len); 5719 if (IS_ERR(em)) 5720 /* 5721 * We could return errors for these cases, but that could get 5722 * ugly and we'd probably do the same thing which is just not do 5723 * anything else and exit, so return 1 so the callers don't try 5724 * to use other copies. 5725 */ 5726 return 1; 5727 5728 map = em->map_lookup; 5729 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5730 ret = map->num_stripes; 5731 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5732 ret = map->sub_stripes; 5733 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5734 ret = 2; 5735 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5736 /* 5737 * There could be two corrupted data stripes, we need 5738 * to loop retry in order to rebuild the correct data. 5739 * 5740 * Fail a stripe at a time on every retry except the 5741 * stripe under reconstruction. 5742 */ 5743 ret = map->num_stripes; 5744 else 5745 ret = 1; 5746 free_extent_map(em); 5747 5748 down_read(&fs_info->dev_replace.rwsem); 5749 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5750 fs_info->dev_replace.tgtdev) 5751 ret++; 5752 up_read(&fs_info->dev_replace.rwsem); 5753 5754 return ret; 5755 } 5756 5757 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5758 u64 logical) 5759 { 5760 struct extent_map *em; 5761 struct map_lookup *map; 5762 unsigned long len = fs_info->sectorsize; 5763 5764 em = btrfs_get_chunk_map(fs_info, logical, len); 5765 5766 if (!WARN_ON(IS_ERR(em))) { 5767 map = em->map_lookup; 5768 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5769 len = map->stripe_len * nr_data_stripes(map); 5770 free_extent_map(em); 5771 } 5772 return len; 5773 } 5774 5775 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5776 { 5777 struct extent_map *em; 5778 struct map_lookup *map; 5779 int ret = 0; 5780 5781 em = btrfs_get_chunk_map(fs_info, logical, len); 5782 5783 if(!WARN_ON(IS_ERR(em))) { 5784 map = em->map_lookup; 5785 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5786 ret = 1; 5787 free_extent_map(em); 5788 } 5789 return ret; 5790 } 5791 5792 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5793 struct map_lookup *map, int first, 5794 int dev_replace_is_ongoing) 5795 { 5796 int i; 5797 int num_stripes; 5798 int preferred_mirror; 5799 int tolerance; 5800 struct btrfs_device *srcdev; 5801 5802 ASSERT((map->type & 5803 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5804 5805 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5806 num_stripes = map->sub_stripes; 5807 else 5808 num_stripes = map->num_stripes; 5809 5810 switch (fs_info->fs_devices->read_policy) { 5811 default: 5812 /* Shouldn't happen, just warn and use pid instead of failing */ 5813 btrfs_warn_rl(fs_info, 5814 "unknown read_policy type %u, reset to pid", 5815 fs_info->fs_devices->read_policy); 5816 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5817 fallthrough; 5818 case BTRFS_READ_POLICY_PID: 5819 preferred_mirror = first + (current->pid % num_stripes); 5820 break; 5821 } 5822 5823 if (dev_replace_is_ongoing && 5824 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5825 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5826 srcdev = fs_info->dev_replace.srcdev; 5827 else 5828 srcdev = NULL; 5829 5830 /* 5831 * try to avoid the drive that is the source drive for a 5832 * dev-replace procedure, only choose it if no other non-missing 5833 * mirror is available 5834 */ 5835 for (tolerance = 0; tolerance < 2; tolerance++) { 5836 if (map->stripes[preferred_mirror].dev->bdev && 5837 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5838 return preferred_mirror; 5839 for (i = first; i < first + num_stripes; i++) { 5840 if (map->stripes[i].dev->bdev && 5841 (tolerance || map->stripes[i].dev != srcdev)) 5842 return i; 5843 } 5844 } 5845 5846 /* we couldn't find one that doesn't fail. Just return something 5847 * and the io error handling code will clean up eventually 5848 */ 5849 return preferred_mirror; 5850 } 5851 5852 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5853 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes) 5854 { 5855 int i; 5856 int again = 1; 5857 5858 while (again) { 5859 again = 0; 5860 for (i = 0; i < num_stripes - 1; i++) { 5861 /* Swap if parity is on a smaller index */ 5862 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) { 5863 swap(bioc->stripes[i], bioc->stripes[i + 1]); 5864 swap(bioc->raid_map[i], bioc->raid_map[i + 1]); 5865 again = 1; 5866 } 5867 } 5868 } 5869 } 5870 5871 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 5872 int total_stripes, 5873 int real_stripes) 5874 { 5875 struct btrfs_io_context *bioc = kzalloc( 5876 /* The size of btrfs_io_context */ 5877 sizeof(struct btrfs_io_context) + 5878 /* Plus the variable array for the stripes */ 5879 sizeof(struct btrfs_io_stripe) * (total_stripes) + 5880 /* Plus the variable array for the tgt dev */ 5881 sizeof(int) * (real_stripes) + 5882 /* 5883 * Plus the raid_map, which includes both the tgt dev 5884 * and the stripes. 5885 */ 5886 sizeof(u64) * (total_stripes), 5887 GFP_NOFS|__GFP_NOFAIL); 5888 5889 atomic_set(&bioc->error, 0); 5890 refcount_set(&bioc->refs, 1); 5891 5892 bioc->fs_info = fs_info; 5893 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes); 5894 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes); 5895 5896 return bioc; 5897 } 5898 5899 void btrfs_get_bioc(struct btrfs_io_context *bioc) 5900 { 5901 WARN_ON(!refcount_read(&bioc->refs)); 5902 refcount_inc(&bioc->refs); 5903 } 5904 5905 void btrfs_put_bioc(struct btrfs_io_context *bioc) 5906 { 5907 if (!bioc) 5908 return; 5909 if (refcount_dec_and_test(&bioc->refs)) 5910 kfree(bioc); 5911 } 5912 5913 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5914 /* 5915 * Please note that, discard won't be sent to target device of device 5916 * replace. 5917 */ 5918 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5919 u64 logical, u64 *length_ret, 5920 struct btrfs_io_context **bioc_ret) 5921 { 5922 struct extent_map *em; 5923 struct map_lookup *map; 5924 struct btrfs_io_context *bioc; 5925 u64 length = *length_ret; 5926 u64 offset; 5927 u64 stripe_nr; 5928 u64 stripe_nr_end; 5929 u64 stripe_end_offset; 5930 u64 stripe_cnt; 5931 u64 stripe_len; 5932 u64 stripe_offset; 5933 u64 num_stripes; 5934 u32 stripe_index; 5935 u32 factor = 0; 5936 u32 sub_stripes = 0; 5937 u64 stripes_per_dev = 0; 5938 u32 remaining_stripes = 0; 5939 u32 last_stripe = 0; 5940 int ret = 0; 5941 int i; 5942 5943 /* Discard always returns a bioc. */ 5944 ASSERT(bioc_ret); 5945 5946 em = btrfs_get_chunk_map(fs_info, logical, length); 5947 if (IS_ERR(em)) 5948 return PTR_ERR(em); 5949 5950 map = em->map_lookup; 5951 /* we don't discard raid56 yet */ 5952 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5953 ret = -EOPNOTSUPP; 5954 goto out; 5955 } 5956 5957 offset = logical - em->start; 5958 length = min_t(u64, em->start + em->len - logical, length); 5959 *length_ret = length; 5960 5961 stripe_len = map->stripe_len; 5962 /* 5963 * stripe_nr counts the total number of stripes we have to stride 5964 * to get to this block 5965 */ 5966 stripe_nr = div64_u64(offset, stripe_len); 5967 5968 /* stripe_offset is the offset of this block in its stripe */ 5969 stripe_offset = offset - stripe_nr * stripe_len; 5970 5971 stripe_nr_end = round_up(offset + length, map->stripe_len); 5972 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5973 stripe_cnt = stripe_nr_end - stripe_nr; 5974 stripe_end_offset = stripe_nr_end * map->stripe_len - 5975 (offset + length); 5976 /* 5977 * after this, stripe_nr is the number of stripes on this 5978 * device we have to walk to find the data, and stripe_index is 5979 * the number of our device in the stripe array 5980 */ 5981 num_stripes = 1; 5982 stripe_index = 0; 5983 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5984 BTRFS_BLOCK_GROUP_RAID10)) { 5985 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5986 sub_stripes = 1; 5987 else 5988 sub_stripes = map->sub_stripes; 5989 5990 factor = map->num_stripes / sub_stripes; 5991 num_stripes = min_t(u64, map->num_stripes, 5992 sub_stripes * stripe_cnt); 5993 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5994 stripe_index *= sub_stripes; 5995 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5996 &remaining_stripes); 5997 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5998 last_stripe *= sub_stripes; 5999 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6000 BTRFS_BLOCK_GROUP_DUP)) { 6001 num_stripes = map->num_stripes; 6002 } else { 6003 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6004 &stripe_index); 6005 } 6006 6007 bioc = alloc_btrfs_io_context(fs_info, num_stripes, 0); 6008 if (!bioc) { 6009 ret = -ENOMEM; 6010 goto out; 6011 } 6012 6013 for (i = 0; i < num_stripes; i++) { 6014 bioc->stripes[i].physical = 6015 map->stripes[stripe_index].physical + 6016 stripe_offset + stripe_nr * map->stripe_len; 6017 bioc->stripes[i].dev = map->stripes[stripe_index].dev; 6018 6019 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6020 BTRFS_BLOCK_GROUP_RAID10)) { 6021 bioc->stripes[i].length = stripes_per_dev * 6022 map->stripe_len; 6023 6024 if (i / sub_stripes < remaining_stripes) 6025 bioc->stripes[i].length += map->stripe_len; 6026 6027 /* 6028 * Special for the first stripe and 6029 * the last stripe: 6030 * 6031 * |-------|...|-------| 6032 * |----------| 6033 * off end_off 6034 */ 6035 if (i < sub_stripes) 6036 bioc->stripes[i].length -= stripe_offset; 6037 6038 if (stripe_index >= last_stripe && 6039 stripe_index <= (last_stripe + 6040 sub_stripes - 1)) 6041 bioc->stripes[i].length -= stripe_end_offset; 6042 6043 if (i == sub_stripes - 1) 6044 stripe_offset = 0; 6045 } else { 6046 bioc->stripes[i].length = length; 6047 } 6048 6049 stripe_index++; 6050 if (stripe_index == map->num_stripes) { 6051 stripe_index = 0; 6052 stripe_nr++; 6053 } 6054 } 6055 6056 *bioc_ret = bioc; 6057 bioc->map_type = map->type; 6058 bioc->num_stripes = num_stripes; 6059 out: 6060 free_extent_map(em); 6061 return ret; 6062 } 6063 6064 /* 6065 * In dev-replace case, for repair case (that's the only case where the mirror 6066 * is selected explicitly when calling btrfs_map_block), blocks left of the 6067 * left cursor can also be read from the target drive. 6068 * 6069 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 6070 * array of stripes. 6071 * For READ, it also needs to be supported using the same mirror number. 6072 * 6073 * If the requested block is not left of the left cursor, EIO is returned. This 6074 * can happen because btrfs_num_copies() returns one more in the dev-replace 6075 * case. 6076 */ 6077 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 6078 u64 logical, u64 length, 6079 u64 srcdev_devid, int *mirror_num, 6080 u64 *physical) 6081 { 6082 struct btrfs_io_context *bioc = NULL; 6083 int num_stripes; 6084 int index_srcdev = 0; 6085 int found = 0; 6086 u64 physical_of_found = 0; 6087 int i; 6088 int ret = 0; 6089 6090 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 6091 logical, &length, &bioc, 0, 0); 6092 if (ret) { 6093 ASSERT(bioc == NULL); 6094 return ret; 6095 } 6096 6097 num_stripes = bioc->num_stripes; 6098 if (*mirror_num > num_stripes) { 6099 /* 6100 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 6101 * that means that the requested area is not left of the left 6102 * cursor 6103 */ 6104 btrfs_put_bioc(bioc); 6105 return -EIO; 6106 } 6107 6108 /* 6109 * process the rest of the function using the mirror_num of the source 6110 * drive. Therefore look it up first. At the end, patch the device 6111 * pointer to the one of the target drive. 6112 */ 6113 for (i = 0; i < num_stripes; i++) { 6114 if (bioc->stripes[i].dev->devid != srcdev_devid) 6115 continue; 6116 6117 /* 6118 * In case of DUP, in order to keep it simple, only add the 6119 * mirror with the lowest physical address 6120 */ 6121 if (found && 6122 physical_of_found <= bioc->stripes[i].physical) 6123 continue; 6124 6125 index_srcdev = i; 6126 found = 1; 6127 physical_of_found = bioc->stripes[i].physical; 6128 } 6129 6130 btrfs_put_bioc(bioc); 6131 6132 ASSERT(found); 6133 if (!found) 6134 return -EIO; 6135 6136 *mirror_num = index_srcdev + 1; 6137 *physical = physical_of_found; 6138 return ret; 6139 } 6140 6141 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6142 { 6143 struct btrfs_block_group *cache; 6144 bool ret; 6145 6146 /* Non zoned filesystem does not use "to_copy" flag */ 6147 if (!btrfs_is_zoned(fs_info)) 6148 return false; 6149 6150 cache = btrfs_lookup_block_group(fs_info, logical); 6151 6152 spin_lock(&cache->lock); 6153 ret = cache->to_copy; 6154 spin_unlock(&cache->lock); 6155 6156 btrfs_put_block_group(cache); 6157 return ret; 6158 } 6159 6160 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6161 struct btrfs_io_context **bioc_ret, 6162 struct btrfs_dev_replace *dev_replace, 6163 u64 logical, 6164 int *num_stripes_ret, int *max_errors_ret) 6165 { 6166 struct btrfs_io_context *bioc = *bioc_ret; 6167 u64 srcdev_devid = dev_replace->srcdev->devid; 6168 int tgtdev_indexes = 0; 6169 int num_stripes = *num_stripes_ret; 6170 int max_errors = *max_errors_ret; 6171 int i; 6172 6173 if (op == BTRFS_MAP_WRITE) { 6174 int index_where_to_add; 6175 6176 /* 6177 * A block group which have "to_copy" set will eventually 6178 * copied by dev-replace process. We can avoid cloning IO here. 6179 */ 6180 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6181 return; 6182 6183 /* 6184 * duplicate the write operations while the dev replace 6185 * procedure is running. Since the copying of the old disk to 6186 * the new disk takes place at run time while the filesystem is 6187 * mounted writable, the regular write operations to the old 6188 * disk have to be duplicated to go to the new disk as well. 6189 * 6190 * Note that device->missing is handled by the caller, and that 6191 * the write to the old disk is already set up in the stripes 6192 * array. 6193 */ 6194 index_where_to_add = num_stripes; 6195 for (i = 0; i < num_stripes; i++) { 6196 if (bioc->stripes[i].dev->devid == srcdev_devid) { 6197 /* write to new disk, too */ 6198 struct btrfs_io_stripe *new = 6199 bioc->stripes + index_where_to_add; 6200 struct btrfs_io_stripe *old = 6201 bioc->stripes + i; 6202 6203 new->physical = old->physical; 6204 new->length = old->length; 6205 new->dev = dev_replace->tgtdev; 6206 bioc->tgtdev_map[i] = index_where_to_add; 6207 index_where_to_add++; 6208 max_errors++; 6209 tgtdev_indexes++; 6210 } 6211 } 6212 num_stripes = index_where_to_add; 6213 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 6214 int index_srcdev = 0; 6215 int found = 0; 6216 u64 physical_of_found = 0; 6217 6218 /* 6219 * During the dev-replace procedure, the target drive can also 6220 * be used to read data in case it is needed to repair a corrupt 6221 * block elsewhere. This is possible if the requested area is 6222 * left of the left cursor. In this area, the target drive is a 6223 * full copy of the source drive. 6224 */ 6225 for (i = 0; i < num_stripes; i++) { 6226 if (bioc->stripes[i].dev->devid == srcdev_devid) { 6227 /* 6228 * In case of DUP, in order to keep it simple, 6229 * only add the mirror with the lowest physical 6230 * address 6231 */ 6232 if (found && 6233 physical_of_found <= bioc->stripes[i].physical) 6234 continue; 6235 index_srcdev = i; 6236 found = 1; 6237 physical_of_found = bioc->stripes[i].physical; 6238 } 6239 } 6240 if (found) { 6241 struct btrfs_io_stripe *tgtdev_stripe = 6242 bioc->stripes + num_stripes; 6243 6244 tgtdev_stripe->physical = physical_of_found; 6245 tgtdev_stripe->length = 6246 bioc->stripes[index_srcdev].length; 6247 tgtdev_stripe->dev = dev_replace->tgtdev; 6248 bioc->tgtdev_map[index_srcdev] = num_stripes; 6249 6250 tgtdev_indexes++; 6251 num_stripes++; 6252 } 6253 } 6254 6255 *num_stripes_ret = num_stripes; 6256 *max_errors_ret = max_errors; 6257 bioc->num_tgtdevs = tgtdev_indexes; 6258 *bioc_ret = bioc; 6259 } 6260 6261 static bool need_full_stripe(enum btrfs_map_op op) 6262 { 6263 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 6264 } 6265 6266 /* 6267 * Calculate the geometry of a particular (address, len) tuple. This 6268 * information is used to calculate how big a particular bio can get before it 6269 * straddles a stripe. 6270 * 6271 * @fs_info: the filesystem 6272 * @em: mapping containing the logical extent 6273 * @op: type of operation - write or read 6274 * @logical: address that we want to figure out the geometry of 6275 * @io_geom: pointer used to return values 6276 * 6277 * Returns < 0 in case a chunk for the given logical address cannot be found, 6278 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 6279 */ 6280 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em, 6281 enum btrfs_map_op op, u64 logical, 6282 struct btrfs_io_geometry *io_geom) 6283 { 6284 struct map_lookup *map; 6285 u64 len; 6286 u64 offset; 6287 u64 stripe_offset; 6288 u64 stripe_nr; 6289 u64 stripe_len; 6290 u64 raid56_full_stripe_start = (u64)-1; 6291 int data_stripes; 6292 6293 ASSERT(op != BTRFS_MAP_DISCARD); 6294 6295 map = em->map_lookup; 6296 /* Offset of this logical address in the chunk */ 6297 offset = logical - em->start; 6298 /* Len of a stripe in a chunk */ 6299 stripe_len = map->stripe_len; 6300 /* Stripe where this block falls in */ 6301 stripe_nr = div64_u64(offset, stripe_len); 6302 /* Offset of stripe in the chunk */ 6303 stripe_offset = stripe_nr * stripe_len; 6304 if (offset < stripe_offset) { 6305 btrfs_crit(fs_info, 6306 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 6307 stripe_offset, offset, em->start, logical, stripe_len); 6308 return -EINVAL; 6309 } 6310 6311 /* stripe_offset is the offset of this block in its stripe */ 6312 stripe_offset = offset - stripe_offset; 6313 data_stripes = nr_data_stripes(map); 6314 6315 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6316 u64 max_len = stripe_len - stripe_offset; 6317 6318 /* 6319 * In case of raid56, we need to know the stripe aligned start 6320 */ 6321 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6322 unsigned long full_stripe_len = stripe_len * data_stripes; 6323 raid56_full_stripe_start = offset; 6324 6325 /* 6326 * Allow a write of a full stripe, but make sure we 6327 * don't allow straddling of stripes 6328 */ 6329 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 6330 full_stripe_len); 6331 raid56_full_stripe_start *= full_stripe_len; 6332 6333 /* 6334 * For writes to RAID[56], allow a full stripeset across 6335 * all disks. For other RAID types and for RAID[56] 6336 * reads, just allow a single stripe (on a single disk). 6337 */ 6338 if (op == BTRFS_MAP_WRITE) { 6339 max_len = stripe_len * data_stripes - 6340 (offset - raid56_full_stripe_start); 6341 } 6342 } 6343 len = min_t(u64, em->len - offset, max_len); 6344 } else { 6345 len = em->len - offset; 6346 } 6347 6348 io_geom->len = len; 6349 io_geom->offset = offset; 6350 io_geom->stripe_len = stripe_len; 6351 io_geom->stripe_nr = stripe_nr; 6352 io_geom->stripe_offset = stripe_offset; 6353 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 6354 6355 return 0; 6356 } 6357 6358 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 6359 enum btrfs_map_op op, 6360 u64 logical, u64 *length, 6361 struct btrfs_io_context **bioc_ret, 6362 int mirror_num, int need_raid_map) 6363 { 6364 struct extent_map *em; 6365 struct map_lookup *map; 6366 u64 stripe_offset; 6367 u64 stripe_nr; 6368 u64 stripe_len; 6369 u32 stripe_index; 6370 int data_stripes; 6371 int i; 6372 int ret = 0; 6373 int num_stripes; 6374 int max_errors = 0; 6375 int tgtdev_indexes = 0; 6376 struct btrfs_io_context *bioc = NULL; 6377 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6378 int dev_replace_is_ongoing = 0; 6379 int num_alloc_stripes; 6380 int patch_the_first_stripe_for_dev_replace = 0; 6381 u64 physical_to_patch_in_first_stripe = 0; 6382 u64 raid56_full_stripe_start = (u64)-1; 6383 struct btrfs_io_geometry geom; 6384 6385 ASSERT(bioc_ret); 6386 ASSERT(op != BTRFS_MAP_DISCARD); 6387 6388 em = btrfs_get_chunk_map(fs_info, logical, *length); 6389 ASSERT(!IS_ERR(em)); 6390 6391 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom); 6392 if (ret < 0) 6393 return ret; 6394 6395 map = em->map_lookup; 6396 6397 *length = geom.len; 6398 stripe_len = geom.stripe_len; 6399 stripe_nr = geom.stripe_nr; 6400 stripe_offset = geom.stripe_offset; 6401 raid56_full_stripe_start = geom.raid56_stripe_offset; 6402 data_stripes = nr_data_stripes(map); 6403 6404 down_read(&dev_replace->rwsem); 6405 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6406 /* 6407 * Hold the semaphore for read during the whole operation, write is 6408 * requested at commit time but must wait. 6409 */ 6410 if (!dev_replace_is_ongoing) 6411 up_read(&dev_replace->rwsem); 6412 6413 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6414 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6415 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6416 dev_replace->srcdev->devid, 6417 &mirror_num, 6418 &physical_to_patch_in_first_stripe); 6419 if (ret) 6420 goto out; 6421 else 6422 patch_the_first_stripe_for_dev_replace = 1; 6423 } else if (mirror_num > map->num_stripes) { 6424 mirror_num = 0; 6425 } 6426 6427 num_stripes = 1; 6428 stripe_index = 0; 6429 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6430 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6431 &stripe_index); 6432 if (!need_full_stripe(op)) 6433 mirror_num = 1; 6434 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6435 if (need_full_stripe(op)) 6436 num_stripes = map->num_stripes; 6437 else if (mirror_num) 6438 stripe_index = mirror_num - 1; 6439 else { 6440 stripe_index = find_live_mirror(fs_info, map, 0, 6441 dev_replace_is_ongoing); 6442 mirror_num = stripe_index + 1; 6443 } 6444 6445 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6446 if (need_full_stripe(op)) { 6447 num_stripes = map->num_stripes; 6448 } else if (mirror_num) { 6449 stripe_index = mirror_num - 1; 6450 } else { 6451 mirror_num = 1; 6452 } 6453 6454 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6455 u32 factor = map->num_stripes / map->sub_stripes; 6456 6457 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6458 stripe_index *= map->sub_stripes; 6459 6460 if (need_full_stripe(op)) 6461 num_stripes = map->sub_stripes; 6462 else if (mirror_num) 6463 stripe_index += mirror_num - 1; 6464 else { 6465 int old_stripe_index = stripe_index; 6466 stripe_index = find_live_mirror(fs_info, map, 6467 stripe_index, 6468 dev_replace_is_ongoing); 6469 mirror_num = stripe_index - old_stripe_index + 1; 6470 } 6471 6472 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6473 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6474 /* push stripe_nr back to the start of the full stripe */ 6475 stripe_nr = div64_u64(raid56_full_stripe_start, 6476 stripe_len * data_stripes); 6477 6478 /* RAID[56] write or recovery. Return all stripes */ 6479 num_stripes = map->num_stripes; 6480 max_errors = nr_parity_stripes(map); 6481 6482 *length = map->stripe_len; 6483 stripe_index = 0; 6484 stripe_offset = 0; 6485 } else { 6486 /* 6487 * Mirror #0 or #1 means the original data block. 6488 * Mirror #2 is RAID5 parity block. 6489 * Mirror #3 is RAID6 Q block. 6490 */ 6491 stripe_nr = div_u64_rem(stripe_nr, 6492 data_stripes, &stripe_index); 6493 if (mirror_num > 1) 6494 stripe_index = data_stripes + mirror_num - 2; 6495 6496 /* We distribute the parity blocks across stripes */ 6497 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6498 &stripe_index); 6499 if (!need_full_stripe(op) && mirror_num <= 1) 6500 mirror_num = 1; 6501 } 6502 } else { 6503 /* 6504 * after this, stripe_nr is the number of stripes on this 6505 * device we have to walk to find the data, and stripe_index is 6506 * the number of our device in the stripe array 6507 */ 6508 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6509 &stripe_index); 6510 mirror_num = stripe_index + 1; 6511 } 6512 if (stripe_index >= map->num_stripes) { 6513 btrfs_crit(fs_info, 6514 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6515 stripe_index, map->num_stripes); 6516 ret = -EINVAL; 6517 goto out; 6518 } 6519 6520 num_alloc_stripes = num_stripes; 6521 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6522 if (op == BTRFS_MAP_WRITE) 6523 num_alloc_stripes <<= 1; 6524 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6525 num_alloc_stripes++; 6526 tgtdev_indexes = num_stripes; 6527 } 6528 6529 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes); 6530 if (!bioc) { 6531 ret = -ENOMEM; 6532 goto out; 6533 } 6534 6535 for (i = 0; i < num_stripes; i++) { 6536 bioc->stripes[i].physical = map->stripes[stripe_index].physical + 6537 stripe_offset + stripe_nr * map->stripe_len; 6538 bioc->stripes[i].dev = map->stripes[stripe_index].dev; 6539 stripe_index++; 6540 } 6541 6542 /* Build raid_map */ 6543 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6544 (need_full_stripe(op) || mirror_num > 1)) { 6545 u64 tmp; 6546 unsigned rot; 6547 6548 /* Work out the disk rotation on this stripe-set */ 6549 div_u64_rem(stripe_nr, num_stripes, &rot); 6550 6551 /* Fill in the logical address of each stripe */ 6552 tmp = stripe_nr * data_stripes; 6553 for (i = 0; i < data_stripes; i++) 6554 bioc->raid_map[(i + rot) % num_stripes] = 6555 em->start + (tmp + i) * map->stripe_len; 6556 6557 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE; 6558 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6559 bioc->raid_map[(i + rot + 1) % num_stripes] = 6560 RAID6_Q_STRIPE; 6561 6562 sort_parity_stripes(bioc, num_stripes); 6563 } 6564 6565 if (need_full_stripe(op)) 6566 max_errors = btrfs_chunk_max_errors(map); 6567 6568 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6569 need_full_stripe(op)) { 6570 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical, 6571 &num_stripes, &max_errors); 6572 } 6573 6574 *bioc_ret = bioc; 6575 bioc->map_type = map->type; 6576 bioc->num_stripes = num_stripes; 6577 bioc->max_errors = max_errors; 6578 bioc->mirror_num = mirror_num; 6579 6580 /* 6581 * this is the case that REQ_READ && dev_replace_is_ongoing && 6582 * mirror_num == num_stripes + 1 && dev_replace target drive is 6583 * available as a mirror 6584 */ 6585 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6586 WARN_ON(num_stripes > 1); 6587 bioc->stripes[0].dev = dev_replace->tgtdev; 6588 bioc->stripes[0].physical = physical_to_patch_in_first_stripe; 6589 bioc->mirror_num = map->num_stripes + 1; 6590 } 6591 out: 6592 if (dev_replace_is_ongoing) { 6593 lockdep_assert_held(&dev_replace->rwsem); 6594 /* Unlock and let waiting writers proceed */ 6595 up_read(&dev_replace->rwsem); 6596 } 6597 free_extent_map(em); 6598 return ret; 6599 } 6600 6601 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6602 u64 logical, u64 *length, 6603 struct btrfs_io_context **bioc_ret, int mirror_num) 6604 { 6605 if (op == BTRFS_MAP_DISCARD) 6606 return __btrfs_map_block_for_discard(fs_info, logical, 6607 length, bioc_ret); 6608 6609 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 6610 mirror_num, 0); 6611 } 6612 6613 /* For Scrub/replace */ 6614 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6615 u64 logical, u64 *length, 6616 struct btrfs_io_context **bioc_ret) 6617 { 6618 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1); 6619 } 6620 6621 static inline void btrfs_end_bioc(struct btrfs_io_context *bioc, struct bio *bio) 6622 { 6623 bio->bi_private = bioc->private; 6624 bio->bi_end_io = bioc->end_io; 6625 bio_endio(bio); 6626 6627 btrfs_put_bioc(bioc); 6628 } 6629 6630 static void btrfs_end_bio(struct bio *bio) 6631 { 6632 struct btrfs_io_context *bioc = bio->bi_private; 6633 int is_orig_bio = 0; 6634 6635 if (bio->bi_status) { 6636 atomic_inc(&bioc->error); 6637 if (bio->bi_status == BLK_STS_IOERR || 6638 bio->bi_status == BLK_STS_TARGET) { 6639 struct btrfs_device *dev = btrfs_bio(bio)->device; 6640 6641 ASSERT(dev->bdev); 6642 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 6643 btrfs_dev_stat_inc_and_print(dev, 6644 BTRFS_DEV_STAT_WRITE_ERRS); 6645 else if (!(bio->bi_opf & REQ_RAHEAD)) 6646 btrfs_dev_stat_inc_and_print(dev, 6647 BTRFS_DEV_STAT_READ_ERRS); 6648 if (bio->bi_opf & REQ_PREFLUSH) 6649 btrfs_dev_stat_inc_and_print(dev, 6650 BTRFS_DEV_STAT_FLUSH_ERRS); 6651 } 6652 } 6653 6654 if (bio == bioc->orig_bio) 6655 is_orig_bio = 1; 6656 6657 btrfs_bio_counter_dec(bioc->fs_info); 6658 6659 if (atomic_dec_and_test(&bioc->stripes_pending)) { 6660 if (!is_orig_bio) { 6661 bio_put(bio); 6662 bio = bioc->orig_bio; 6663 } 6664 6665 btrfs_bio(bio)->mirror_num = bioc->mirror_num; 6666 /* only send an error to the higher layers if it is 6667 * beyond the tolerance of the btrfs bio 6668 */ 6669 if (atomic_read(&bioc->error) > bioc->max_errors) { 6670 bio->bi_status = BLK_STS_IOERR; 6671 } else { 6672 /* 6673 * this bio is actually up to date, we didn't 6674 * go over the max number of errors 6675 */ 6676 bio->bi_status = BLK_STS_OK; 6677 } 6678 6679 btrfs_end_bioc(bioc, bio); 6680 } else if (!is_orig_bio) { 6681 bio_put(bio); 6682 } 6683 } 6684 6685 static void submit_stripe_bio(struct btrfs_io_context *bioc, struct bio *bio, 6686 u64 physical, struct btrfs_device *dev) 6687 { 6688 struct btrfs_fs_info *fs_info = bioc->fs_info; 6689 6690 bio->bi_private = bioc; 6691 btrfs_bio(bio)->device = dev; 6692 bio->bi_end_io = btrfs_end_bio; 6693 bio->bi_iter.bi_sector = physical >> 9; 6694 /* 6695 * For zone append writing, bi_sector must point the beginning of the 6696 * zone 6697 */ 6698 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 6699 if (btrfs_dev_is_sequential(dev, physical)) { 6700 u64 zone_start = round_down(physical, fs_info->zone_size); 6701 6702 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 6703 } else { 6704 bio->bi_opf &= ~REQ_OP_ZONE_APPEND; 6705 bio->bi_opf |= REQ_OP_WRITE; 6706 } 6707 } 6708 btrfs_debug_in_rcu(fs_info, 6709 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6710 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 6711 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name), 6712 dev->devid, bio->bi_iter.bi_size); 6713 bio_set_dev(bio, dev->bdev); 6714 6715 btrfs_bio_counter_inc_noblocked(fs_info); 6716 6717 btrfsic_submit_bio(bio); 6718 } 6719 6720 static void bioc_error(struct btrfs_io_context *bioc, struct bio *bio, u64 logical) 6721 { 6722 atomic_inc(&bioc->error); 6723 if (atomic_dec_and_test(&bioc->stripes_pending)) { 6724 /* Should be the original bio. */ 6725 WARN_ON(bio != bioc->orig_bio); 6726 6727 btrfs_bio(bio)->mirror_num = bioc->mirror_num; 6728 bio->bi_iter.bi_sector = logical >> 9; 6729 if (atomic_read(&bioc->error) > bioc->max_errors) 6730 bio->bi_status = BLK_STS_IOERR; 6731 else 6732 bio->bi_status = BLK_STS_OK; 6733 btrfs_end_bioc(bioc, bio); 6734 } 6735 } 6736 6737 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6738 int mirror_num) 6739 { 6740 struct btrfs_device *dev; 6741 struct bio *first_bio = bio; 6742 u64 logical = bio->bi_iter.bi_sector << 9; 6743 u64 length = 0; 6744 u64 map_length; 6745 int ret; 6746 int dev_nr; 6747 int total_devs; 6748 struct btrfs_io_context *bioc = NULL; 6749 6750 length = bio->bi_iter.bi_size; 6751 map_length = length; 6752 6753 btrfs_bio_counter_inc_blocked(fs_info); 6754 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6755 &map_length, &bioc, mirror_num, 1); 6756 if (ret) { 6757 btrfs_bio_counter_dec(fs_info); 6758 return errno_to_blk_status(ret); 6759 } 6760 6761 total_devs = bioc->num_stripes; 6762 bioc->orig_bio = first_bio; 6763 bioc->private = first_bio->bi_private; 6764 bioc->end_io = first_bio->bi_end_io; 6765 atomic_set(&bioc->stripes_pending, bioc->num_stripes); 6766 6767 if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6768 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) { 6769 /* In this case, map_length has been set to the length of 6770 a single stripe; not the whole write */ 6771 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 6772 ret = raid56_parity_write(bio, bioc, map_length); 6773 } else { 6774 ret = raid56_parity_recover(bio, bioc, map_length, 6775 mirror_num, 1); 6776 } 6777 6778 btrfs_bio_counter_dec(fs_info); 6779 return errno_to_blk_status(ret); 6780 } 6781 6782 if (map_length < length) { 6783 btrfs_crit(fs_info, 6784 "mapping failed logical %llu bio len %llu len %llu", 6785 logical, length, map_length); 6786 BUG(); 6787 } 6788 6789 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6790 dev = bioc->stripes[dev_nr].dev; 6791 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6792 &dev->dev_state) || 6793 (btrfs_op(first_bio) == BTRFS_MAP_WRITE && 6794 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6795 bioc_error(bioc, first_bio, logical); 6796 continue; 6797 } 6798 6799 if (dev_nr < total_devs - 1) 6800 bio = btrfs_bio_clone(first_bio); 6801 else 6802 bio = first_bio; 6803 6804 submit_stripe_bio(bioc, bio, bioc->stripes[dev_nr].physical, dev); 6805 } 6806 btrfs_bio_counter_dec(fs_info); 6807 return BLK_STS_OK; 6808 } 6809 6810 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6811 const struct btrfs_fs_devices *fs_devices) 6812 { 6813 if (args->fsid == NULL) 6814 return true; 6815 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6816 return true; 6817 return false; 6818 } 6819 6820 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6821 const struct btrfs_device *device) 6822 { 6823 ASSERT((args->devid != (u64)-1) || args->missing); 6824 6825 if ((args->devid != (u64)-1) && device->devid != args->devid) 6826 return false; 6827 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6828 return false; 6829 if (!args->missing) 6830 return true; 6831 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6832 !device->bdev) 6833 return true; 6834 return false; 6835 } 6836 6837 /* 6838 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6839 * return NULL. 6840 * 6841 * If devid and uuid are both specified, the match must be exact, otherwise 6842 * only devid is used. 6843 */ 6844 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6845 const struct btrfs_dev_lookup_args *args) 6846 { 6847 struct btrfs_device *device; 6848 struct btrfs_fs_devices *seed_devs; 6849 6850 if (dev_args_match_fs_devices(args, fs_devices)) { 6851 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6852 if (dev_args_match_device(args, device)) 6853 return device; 6854 } 6855 } 6856 6857 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6858 if (!dev_args_match_fs_devices(args, seed_devs)) 6859 continue; 6860 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6861 if (dev_args_match_device(args, device)) 6862 return device; 6863 } 6864 } 6865 6866 return NULL; 6867 } 6868 6869 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6870 u64 devid, u8 *dev_uuid) 6871 { 6872 struct btrfs_device *device; 6873 unsigned int nofs_flag; 6874 6875 /* 6876 * We call this under the chunk_mutex, so we want to use NOFS for this 6877 * allocation, however we don't want to change btrfs_alloc_device() to 6878 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6879 * places. 6880 */ 6881 nofs_flag = memalloc_nofs_save(); 6882 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6883 memalloc_nofs_restore(nofs_flag); 6884 if (IS_ERR(device)) 6885 return device; 6886 6887 list_add(&device->dev_list, &fs_devices->devices); 6888 device->fs_devices = fs_devices; 6889 fs_devices->num_devices++; 6890 6891 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6892 fs_devices->missing_devices++; 6893 6894 return device; 6895 } 6896 6897 /** 6898 * btrfs_alloc_device - allocate struct btrfs_device 6899 * @fs_info: used only for generating a new devid, can be NULL if 6900 * devid is provided (i.e. @devid != NULL). 6901 * @devid: a pointer to devid for this device. If NULL a new devid 6902 * is generated. 6903 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6904 * is generated. 6905 * 6906 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6907 * on error. Returned struct is not linked onto any lists and must be 6908 * destroyed with btrfs_free_device. 6909 */ 6910 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6911 const u64 *devid, 6912 const u8 *uuid) 6913 { 6914 struct btrfs_device *dev; 6915 u64 tmp; 6916 6917 if (WARN_ON(!devid && !fs_info)) 6918 return ERR_PTR(-EINVAL); 6919 6920 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6921 if (!dev) 6922 return ERR_PTR(-ENOMEM); 6923 6924 /* 6925 * Preallocate a bio that's always going to be used for flushing device 6926 * barriers and matches the device lifespan 6927 */ 6928 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0); 6929 if (!dev->flush_bio) { 6930 kfree(dev); 6931 return ERR_PTR(-ENOMEM); 6932 } 6933 6934 INIT_LIST_HEAD(&dev->dev_list); 6935 INIT_LIST_HEAD(&dev->dev_alloc_list); 6936 INIT_LIST_HEAD(&dev->post_commit_list); 6937 6938 atomic_set(&dev->reada_in_flight, 0); 6939 atomic_set(&dev->dev_stats_ccnt, 0); 6940 btrfs_device_data_ordered_init(dev); 6941 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 6942 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 6943 extent_io_tree_init(fs_info, &dev->alloc_state, 6944 IO_TREE_DEVICE_ALLOC_STATE, NULL); 6945 6946 if (devid) 6947 tmp = *devid; 6948 else { 6949 int ret; 6950 6951 ret = find_next_devid(fs_info, &tmp); 6952 if (ret) { 6953 btrfs_free_device(dev); 6954 return ERR_PTR(ret); 6955 } 6956 } 6957 dev->devid = tmp; 6958 6959 if (uuid) 6960 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6961 else 6962 generate_random_uuid(dev->uuid); 6963 6964 return dev; 6965 } 6966 6967 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6968 u64 devid, u8 *uuid, bool error) 6969 { 6970 if (error) 6971 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6972 devid, uuid); 6973 else 6974 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6975 devid, uuid); 6976 } 6977 6978 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 6979 { 6980 const int data_stripes = calc_data_stripes(type, num_stripes); 6981 6982 return div_u64(chunk_len, data_stripes); 6983 } 6984 6985 #if BITS_PER_LONG == 32 6986 /* 6987 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6988 * can't be accessed on 32bit systems. 6989 * 6990 * This function do mount time check to reject the fs if it already has 6991 * metadata chunk beyond that limit. 6992 */ 6993 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6994 u64 logical, u64 length, u64 type) 6995 { 6996 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6997 return 0; 6998 6999 if (logical + length < MAX_LFS_FILESIZE) 7000 return 0; 7001 7002 btrfs_err_32bit_limit(fs_info); 7003 return -EOVERFLOW; 7004 } 7005 7006 /* 7007 * This is to give early warning for any metadata chunk reaching 7008 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 7009 * Although we can still access the metadata, it's not going to be possible 7010 * once the limit is reached. 7011 */ 7012 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7013 u64 logical, u64 length, u64 type) 7014 { 7015 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7016 return; 7017 7018 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 7019 return; 7020 7021 btrfs_warn_32bit_limit(fs_info); 7022 } 7023 #endif 7024 7025 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 7026 struct btrfs_chunk *chunk) 7027 { 7028 BTRFS_DEV_LOOKUP_ARGS(args); 7029 struct btrfs_fs_info *fs_info = leaf->fs_info; 7030 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7031 struct map_lookup *map; 7032 struct extent_map *em; 7033 u64 logical; 7034 u64 length; 7035 u64 devid; 7036 u64 type; 7037 u8 uuid[BTRFS_UUID_SIZE]; 7038 int num_stripes; 7039 int ret; 7040 int i; 7041 7042 logical = key->offset; 7043 length = btrfs_chunk_length(leaf, chunk); 7044 type = btrfs_chunk_type(leaf, chunk); 7045 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7046 7047 #if BITS_PER_LONG == 32 7048 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7049 if (ret < 0) 7050 return ret; 7051 warn_32bit_meta_chunk(fs_info, logical, length, type); 7052 #endif 7053 7054 /* 7055 * Only need to verify chunk item if we're reading from sys chunk array, 7056 * as chunk item in tree block is already verified by tree-checker. 7057 */ 7058 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 7059 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 7060 if (ret) 7061 return ret; 7062 } 7063 7064 read_lock(&map_tree->lock); 7065 em = lookup_extent_mapping(map_tree, logical, 1); 7066 read_unlock(&map_tree->lock); 7067 7068 /* already mapped? */ 7069 if (em && em->start <= logical && em->start + em->len > logical) { 7070 free_extent_map(em); 7071 return 0; 7072 } else if (em) { 7073 free_extent_map(em); 7074 } 7075 7076 em = alloc_extent_map(); 7077 if (!em) 7078 return -ENOMEM; 7079 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 7080 if (!map) { 7081 free_extent_map(em); 7082 return -ENOMEM; 7083 } 7084 7085 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 7086 em->map_lookup = map; 7087 em->start = logical; 7088 em->len = length; 7089 em->orig_start = 0; 7090 em->block_start = 0; 7091 em->block_len = em->len; 7092 7093 map->num_stripes = num_stripes; 7094 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7095 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7096 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 7097 map->type = type; 7098 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 7099 map->verified_stripes = 0; 7100 em->orig_block_len = calc_stripe_length(type, em->len, 7101 map->num_stripes); 7102 for (i = 0; i < num_stripes; i++) { 7103 map->stripes[i].physical = 7104 btrfs_stripe_offset_nr(leaf, chunk, i); 7105 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7106 args.devid = devid; 7107 read_extent_buffer(leaf, uuid, (unsigned long) 7108 btrfs_stripe_dev_uuid_nr(chunk, i), 7109 BTRFS_UUID_SIZE); 7110 args.uuid = uuid; 7111 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7112 if (!map->stripes[i].dev && 7113 !btrfs_test_opt(fs_info, DEGRADED)) { 7114 free_extent_map(em); 7115 btrfs_report_missing_device(fs_info, devid, uuid, true); 7116 return -ENOENT; 7117 } 7118 if (!map->stripes[i].dev) { 7119 map->stripes[i].dev = 7120 add_missing_dev(fs_info->fs_devices, devid, 7121 uuid); 7122 if (IS_ERR(map->stripes[i].dev)) { 7123 free_extent_map(em); 7124 btrfs_err(fs_info, 7125 "failed to init missing dev %llu: %ld", 7126 devid, PTR_ERR(map->stripes[i].dev)); 7127 return PTR_ERR(map->stripes[i].dev); 7128 } 7129 btrfs_report_missing_device(fs_info, devid, uuid, false); 7130 } 7131 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7132 &(map->stripes[i].dev->dev_state)); 7133 7134 } 7135 7136 write_lock(&map_tree->lock); 7137 ret = add_extent_mapping(map_tree, em, 0); 7138 write_unlock(&map_tree->lock); 7139 if (ret < 0) { 7140 btrfs_err(fs_info, 7141 "failed to add chunk map, start=%llu len=%llu: %d", 7142 em->start, em->len, ret); 7143 } 7144 free_extent_map(em); 7145 7146 return ret; 7147 } 7148 7149 static void fill_device_from_item(struct extent_buffer *leaf, 7150 struct btrfs_dev_item *dev_item, 7151 struct btrfs_device *device) 7152 { 7153 unsigned long ptr; 7154 7155 device->devid = btrfs_device_id(leaf, dev_item); 7156 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7157 device->total_bytes = device->disk_total_bytes; 7158 device->commit_total_bytes = device->disk_total_bytes; 7159 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7160 device->commit_bytes_used = device->bytes_used; 7161 device->type = btrfs_device_type(leaf, dev_item); 7162 device->io_align = btrfs_device_io_align(leaf, dev_item); 7163 device->io_width = btrfs_device_io_width(leaf, dev_item); 7164 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7165 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7166 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7167 7168 ptr = btrfs_device_uuid(dev_item); 7169 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7170 } 7171 7172 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7173 u8 *fsid) 7174 { 7175 struct btrfs_fs_devices *fs_devices; 7176 int ret; 7177 7178 lockdep_assert_held(&uuid_mutex); 7179 ASSERT(fsid); 7180 7181 /* This will match only for multi-device seed fs */ 7182 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7183 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7184 return fs_devices; 7185 7186 7187 fs_devices = find_fsid(fsid, NULL); 7188 if (!fs_devices) { 7189 if (!btrfs_test_opt(fs_info, DEGRADED)) 7190 return ERR_PTR(-ENOENT); 7191 7192 fs_devices = alloc_fs_devices(fsid, NULL); 7193 if (IS_ERR(fs_devices)) 7194 return fs_devices; 7195 7196 fs_devices->seeding = true; 7197 fs_devices->opened = 1; 7198 return fs_devices; 7199 } 7200 7201 /* 7202 * Upon first call for a seed fs fsid, just create a private copy of the 7203 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7204 */ 7205 fs_devices = clone_fs_devices(fs_devices); 7206 if (IS_ERR(fs_devices)) 7207 return fs_devices; 7208 7209 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 7210 if (ret) { 7211 free_fs_devices(fs_devices); 7212 return ERR_PTR(ret); 7213 } 7214 7215 if (!fs_devices->seeding) { 7216 close_fs_devices(fs_devices); 7217 free_fs_devices(fs_devices); 7218 return ERR_PTR(-EINVAL); 7219 } 7220 7221 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7222 7223 return fs_devices; 7224 } 7225 7226 static int read_one_dev(struct extent_buffer *leaf, 7227 struct btrfs_dev_item *dev_item) 7228 { 7229 BTRFS_DEV_LOOKUP_ARGS(args); 7230 struct btrfs_fs_info *fs_info = leaf->fs_info; 7231 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7232 struct btrfs_device *device; 7233 u64 devid; 7234 int ret; 7235 u8 fs_uuid[BTRFS_FSID_SIZE]; 7236 u8 dev_uuid[BTRFS_UUID_SIZE]; 7237 7238 devid = args.devid = btrfs_device_id(leaf, dev_item); 7239 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7240 BTRFS_UUID_SIZE); 7241 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7242 BTRFS_FSID_SIZE); 7243 args.uuid = dev_uuid; 7244 args.fsid = fs_uuid; 7245 7246 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7247 fs_devices = open_seed_devices(fs_info, fs_uuid); 7248 if (IS_ERR(fs_devices)) 7249 return PTR_ERR(fs_devices); 7250 } 7251 7252 device = btrfs_find_device(fs_info->fs_devices, &args); 7253 if (!device) { 7254 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7255 btrfs_report_missing_device(fs_info, devid, 7256 dev_uuid, true); 7257 return -ENOENT; 7258 } 7259 7260 device = add_missing_dev(fs_devices, devid, dev_uuid); 7261 if (IS_ERR(device)) { 7262 btrfs_err(fs_info, 7263 "failed to add missing dev %llu: %ld", 7264 devid, PTR_ERR(device)); 7265 return PTR_ERR(device); 7266 } 7267 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7268 } else { 7269 if (!device->bdev) { 7270 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7271 btrfs_report_missing_device(fs_info, 7272 devid, dev_uuid, true); 7273 return -ENOENT; 7274 } 7275 btrfs_report_missing_device(fs_info, devid, 7276 dev_uuid, false); 7277 } 7278 7279 if (!device->bdev && 7280 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7281 /* 7282 * this happens when a device that was properly setup 7283 * in the device info lists suddenly goes bad. 7284 * device->bdev is NULL, and so we have to set 7285 * device->missing to one here 7286 */ 7287 device->fs_devices->missing_devices++; 7288 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7289 } 7290 7291 /* Move the device to its own fs_devices */ 7292 if (device->fs_devices != fs_devices) { 7293 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7294 &device->dev_state)); 7295 7296 list_move(&device->dev_list, &fs_devices->devices); 7297 device->fs_devices->num_devices--; 7298 fs_devices->num_devices++; 7299 7300 device->fs_devices->missing_devices--; 7301 fs_devices->missing_devices++; 7302 7303 device->fs_devices = fs_devices; 7304 } 7305 } 7306 7307 if (device->fs_devices != fs_info->fs_devices) { 7308 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7309 if (device->generation != 7310 btrfs_device_generation(leaf, dev_item)) 7311 return -EINVAL; 7312 } 7313 7314 fill_device_from_item(leaf, dev_item, device); 7315 if (device->bdev) { 7316 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7317 7318 if (device->total_bytes > max_total_bytes) { 7319 btrfs_err(fs_info, 7320 "device total_bytes should be at most %llu but found %llu", 7321 max_total_bytes, device->total_bytes); 7322 return -EINVAL; 7323 } 7324 } 7325 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7326 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7327 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7328 device->fs_devices->total_rw_bytes += device->total_bytes; 7329 atomic64_add(device->total_bytes - device->bytes_used, 7330 &fs_info->free_chunk_space); 7331 } 7332 ret = 0; 7333 return ret; 7334 } 7335 7336 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7337 { 7338 struct btrfs_root *root = fs_info->tree_root; 7339 struct btrfs_super_block *super_copy = fs_info->super_copy; 7340 struct extent_buffer *sb; 7341 struct btrfs_disk_key *disk_key; 7342 struct btrfs_chunk *chunk; 7343 u8 *array_ptr; 7344 unsigned long sb_array_offset; 7345 int ret = 0; 7346 u32 num_stripes; 7347 u32 array_size; 7348 u32 len = 0; 7349 u32 cur_offset; 7350 u64 type; 7351 struct btrfs_key key; 7352 7353 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7354 /* 7355 * This will create extent buffer of nodesize, superblock size is 7356 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 7357 * overallocate but we can keep it as-is, only the first page is used. 7358 */ 7359 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET, 7360 root->root_key.objectid, 0); 7361 if (IS_ERR(sb)) 7362 return PTR_ERR(sb); 7363 set_extent_buffer_uptodate(sb); 7364 /* 7365 * The sb extent buffer is artificial and just used to read the system array. 7366 * set_extent_buffer_uptodate() call does not properly mark all it's 7367 * pages up-to-date when the page is larger: extent does not cover the 7368 * whole page and consequently check_page_uptodate does not find all 7369 * the page's extents up-to-date (the hole beyond sb), 7370 * write_extent_buffer then triggers a WARN_ON. 7371 * 7372 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 7373 * but sb spans only this function. Add an explicit SetPageUptodate call 7374 * to silence the warning eg. on PowerPC 64. 7375 */ 7376 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 7377 SetPageUptodate(sb->pages[0]); 7378 7379 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7380 array_size = btrfs_super_sys_array_size(super_copy); 7381 7382 array_ptr = super_copy->sys_chunk_array; 7383 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7384 cur_offset = 0; 7385 7386 while (cur_offset < array_size) { 7387 disk_key = (struct btrfs_disk_key *)array_ptr; 7388 len = sizeof(*disk_key); 7389 if (cur_offset + len > array_size) 7390 goto out_short_read; 7391 7392 btrfs_disk_key_to_cpu(&key, disk_key); 7393 7394 array_ptr += len; 7395 sb_array_offset += len; 7396 cur_offset += len; 7397 7398 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7399 btrfs_err(fs_info, 7400 "unexpected item type %u in sys_array at offset %u", 7401 (u32)key.type, cur_offset); 7402 ret = -EIO; 7403 break; 7404 } 7405 7406 chunk = (struct btrfs_chunk *)sb_array_offset; 7407 /* 7408 * At least one btrfs_chunk with one stripe must be present, 7409 * exact stripe count check comes afterwards 7410 */ 7411 len = btrfs_chunk_item_size(1); 7412 if (cur_offset + len > array_size) 7413 goto out_short_read; 7414 7415 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7416 if (!num_stripes) { 7417 btrfs_err(fs_info, 7418 "invalid number of stripes %u in sys_array at offset %u", 7419 num_stripes, cur_offset); 7420 ret = -EIO; 7421 break; 7422 } 7423 7424 type = btrfs_chunk_type(sb, chunk); 7425 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7426 btrfs_err(fs_info, 7427 "invalid chunk type %llu in sys_array at offset %u", 7428 type, cur_offset); 7429 ret = -EIO; 7430 break; 7431 } 7432 7433 len = btrfs_chunk_item_size(num_stripes); 7434 if (cur_offset + len > array_size) 7435 goto out_short_read; 7436 7437 ret = read_one_chunk(&key, sb, chunk); 7438 if (ret) 7439 break; 7440 7441 array_ptr += len; 7442 sb_array_offset += len; 7443 cur_offset += len; 7444 } 7445 clear_extent_buffer_uptodate(sb); 7446 free_extent_buffer_stale(sb); 7447 return ret; 7448 7449 out_short_read: 7450 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7451 len, cur_offset); 7452 clear_extent_buffer_uptodate(sb); 7453 free_extent_buffer_stale(sb); 7454 return -EIO; 7455 } 7456 7457 /* 7458 * Check if all chunks in the fs are OK for read-write degraded mount 7459 * 7460 * If the @failing_dev is specified, it's accounted as missing. 7461 * 7462 * Return true if all chunks meet the minimal RW mount requirements. 7463 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7464 */ 7465 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7466 struct btrfs_device *failing_dev) 7467 { 7468 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7469 struct extent_map *em; 7470 u64 next_start = 0; 7471 bool ret = true; 7472 7473 read_lock(&map_tree->lock); 7474 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7475 read_unlock(&map_tree->lock); 7476 /* No chunk at all? Return false anyway */ 7477 if (!em) { 7478 ret = false; 7479 goto out; 7480 } 7481 while (em) { 7482 struct map_lookup *map; 7483 int missing = 0; 7484 int max_tolerated; 7485 int i; 7486 7487 map = em->map_lookup; 7488 max_tolerated = 7489 btrfs_get_num_tolerated_disk_barrier_failures( 7490 map->type); 7491 for (i = 0; i < map->num_stripes; i++) { 7492 struct btrfs_device *dev = map->stripes[i].dev; 7493 7494 if (!dev || !dev->bdev || 7495 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7496 dev->last_flush_error) 7497 missing++; 7498 else if (failing_dev && failing_dev == dev) 7499 missing++; 7500 } 7501 if (missing > max_tolerated) { 7502 if (!failing_dev) 7503 btrfs_warn(fs_info, 7504 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7505 em->start, missing, max_tolerated); 7506 free_extent_map(em); 7507 ret = false; 7508 goto out; 7509 } 7510 next_start = extent_map_end(em); 7511 free_extent_map(em); 7512 7513 read_lock(&map_tree->lock); 7514 em = lookup_extent_mapping(map_tree, next_start, 7515 (u64)(-1) - next_start); 7516 read_unlock(&map_tree->lock); 7517 } 7518 out: 7519 return ret; 7520 } 7521 7522 static void readahead_tree_node_children(struct extent_buffer *node) 7523 { 7524 int i; 7525 const int nr_items = btrfs_header_nritems(node); 7526 7527 for (i = 0; i < nr_items; i++) 7528 btrfs_readahead_node_child(node, i); 7529 } 7530 7531 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7532 { 7533 struct btrfs_root *root = fs_info->chunk_root; 7534 struct btrfs_path *path; 7535 struct extent_buffer *leaf; 7536 struct btrfs_key key; 7537 struct btrfs_key found_key; 7538 int ret; 7539 int slot; 7540 u64 total_dev = 0; 7541 u64 last_ra_node = 0; 7542 7543 path = btrfs_alloc_path(); 7544 if (!path) 7545 return -ENOMEM; 7546 7547 /* 7548 * uuid_mutex is needed only if we are mounting a sprout FS 7549 * otherwise we don't need it. 7550 */ 7551 mutex_lock(&uuid_mutex); 7552 7553 /* 7554 * It is possible for mount and umount to race in such a way that 7555 * we execute this code path, but open_fs_devices failed to clear 7556 * total_rw_bytes. We certainly want it cleared before reading the 7557 * device items, so clear it here. 7558 */ 7559 fs_info->fs_devices->total_rw_bytes = 0; 7560 7561 /* 7562 * Read all device items, and then all the chunk items. All 7563 * device items are found before any chunk item (their object id 7564 * is smaller than the lowest possible object id for a chunk 7565 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7566 */ 7567 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7568 key.offset = 0; 7569 key.type = 0; 7570 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7571 if (ret < 0) 7572 goto error; 7573 while (1) { 7574 struct extent_buffer *node; 7575 7576 leaf = path->nodes[0]; 7577 slot = path->slots[0]; 7578 if (slot >= btrfs_header_nritems(leaf)) { 7579 ret = btrfs_next_leaf(root, path); 7580 if (ret == 0) 7581 continue; 7582 if (ret < 0) 7583 goto error; 7584 break; 7585 } 7586 /* 7587 * The nodes on level 1 are not locked but we don't need to do 7588 * that during mount time as nothing else can access the tree 7589 */ 7590 node = path->nodes[1]; 7591 if (node) { 7592 if (last_ra_node != node->start) { 7593 readahead_tree_node_children(node); 7594 last_ra_node = node->start; 7595 } 7596 } 7597 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7598 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7599 struct btrfs_dev_item *dev_item; 7600 dev_item = btrfs_item_ptr(leaf, slot, 7601 struct btrfs_dev_item); 7602 ret = read_one_dev(leaf, dev_item); 7603 if (ret) 7604 goto error; 7605 total_dev++; 7606 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7607 struct btrfs_chunk *chunk; 7608 7609 /* 7610 * We are only called at mount time, so no need to take 7611 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7612 * we always lock first fs_info->chunk_mutex before 7613 * acquiring any locks on the chunk tree. This is a 7614 * requirement for chunk allocation, see the comment on 7615 * top of btrfs_chunk_alloc() for details. 7616 */ 7617 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7618 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7619 ret = read_one_chunk(&found_key, leaf, chunk); 7620 if (ret) 7621 goto error; 7622 } 7623 path->slots[0]++; 7624 } 7625 7626 /* 7627 * After loading chunk tree, we've got all device information, 7628 * do another round of validation checks. 7629 */ 7630 if (total_dev != fs_info->fs_devices->total_devices) { 7631 btrfs_err(fs_info, 7632 "super_num_devices %llu mismatch with num_devices %llu found here", 7633 btrfs_super_num_devices(fs_info->super_copy), 7634 total_dev); 7635 ret = -EINVAL; 7636 goto error; 7637 } 7638 if (btrfs_super_total_bytes(fs_info->super_copy) < 7639 fs_info->fs_devices->total_rw_bytes) { 7640 btrfs_err(fs_info, 7641 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7642 btrfs_super_total_bytes(fs_info->super_copy), 7643 fs_info->fs_devices->total_rw_bytes); 7644 ret = -EINVAL; 7645 goto error; 7646 } 7647 ret = 0; 7648 error: 7649 mutex_unlock(&uuid_mutex); 7650 7651 btrfs_free_path(path); 7652 return ret; 7653 } 7654 7655 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7656 { 7657 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7658 struct btrfs_device *device; 7659 7660 fs_devices->fs_info = fs_info; 7661 7662 mutex_lock(&fs_devices->device_list_mutex); 7663 list_for_each_entry(device, &fs_devices->devices, dev_list) 7664 device->fs_info = fs_info; 7665 7666 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7667 list_for_each_entry(device, &seed_devs->devices, dev_list) 7668 device->fs_info = fs_info; 7669 7670 seed_devs->fs_info = fs_info; 7671 } 7672 mutex_unlock(&fs_devices->device_list_mutex); 7673 } 7674 7675 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7676 const struct btrfs_dev_stats_item *ptr, 7677 int index) 7678 { 7679 u64 val; 7680 7681 read_extent_buffer(eb, &val, 7682 offsetof(struct btrfs_dev_stats_item, values) + 7683 ((unsigned long)ptr) + (index * sizeof(u64)), 7684 sizeof(val)); 7685 return val; 7686 } 7687 7688 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7689 struct btrfs_dev_stats_item *ptr, 7690 int index, u64 val) 7691 { 7692 write_extent_buffer(eb, &val, 7693 offsetof(struct btrfs_dev_stats_item, values) + 7694 ((unsigned long)ptr) + (index * sizeof(u64)), 7695 sizeof(val)); 7696 } 7697 7698 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7699 struct btrfs_path *path) 7700 { 7701 struct btrfs_dev_stats_item *ptr; 7702 struct extent_buffer *eb; 7703 struct btrfs_key key; 7704 int item_size; 7705 int i, ret, slot; 7706 7707 if (!device->fs_info->dev_root) 7708 return 0; 7709 7710 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7711 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7712 key.offset = device->devid; 7713 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7714 if (ret) { 7715 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7716 btrfs_dev_stat_set(device, i, 0); 7717 device->dev_stats_valid = 1; 7718 btrfs_release_path(path); 7719 return ret < 0 ? ret : 0; 7720 } 7721 slot = path->slots[0]; 7722 eb = path->nodes[0]; 7723 item_size = btrfs_item_size_nr(eb, slot); 7724 7725 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7726 7727 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7728 if (item_size >= (1 + i) * sizeof(__le64)) 7729 btrfs_dev_stat_set(device, i, 7730 btrfs_dev_stats_value(eb, ptr, i)); 7731 else 7732 btrfs_dev_stat_set(device, i, 0); 7733 } 7734 7735 device->dev_stats_valid = 1; 7736 btrfs_dev_stat_print_on_load(device); 7737 btrfs_release_path(path); 7738 7739 return 0; 7740 } 7741 7742 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7743 { 7744 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7745 struct btrfs_device *device; 7746 struct btrfs_path *path = NULL; 7747 int ret = 0; 7748 7749 path = btrfs_alloc_path(); 7750 if (!path) 7751 return -ENOMEM; 7752 7753 mutex_lock(&fs_devices->device_list_mutex); 7754 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7755 ret = btrfs_device_init_dev_stats(device, path); 7756 if (ret) 7757 goto out; 7758 } 7759 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7760 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7761 ret = btrfs_device_init_dev_stats(device, path); 7762 if (ret) 7763 goto out; 7764 } 7765 } 7766 out: 7767 mutex_unlock(&fs_devices->device_list_mutex); 7768 7769 btrfs_free_path(path); 7770 return ret; 7771 } 7772 7773 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7774 struct btrfs_device *device) 7775 { 7776 struct btrfs_fs_info *fs_info = trans->fs_info; 7777 struct btrfs_root *dev_root = fs_info->dev_root; 7778 struct btrfs_path *path; 7779 struct btrfs_key key; 7780 struct extent_buffer *eb; 7781 struct btrfs_dev_stats_item *ptr; 7782 int ret; 7783 int i; 7784 7785 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7786 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7787 key.offset = device->devid; 7788 7789 path = btrfs_alloc_path(); 7790 if (!path) 7791 return -ENOMEM; 7792 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7793 if (ret < 0) { 7794 btrfs_warn_in_rcu(fs_info, 7795 "error %d while searching for dev_stats item for device %s", 7796 ret, rcu_str_deref(device->name)); 7797 goto out; 7798 } 7799 7800 if (ret == 0 && 7801 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7802 /* need to delete old one and insert a new one */ 7803 ret = btrfs_del_item(trans, dev_root, path); 7804 if (ret != 0) { 7805 btrfs_warn_in_rcu(fs_info, 7806 "delete too small dev_stats item for device %s failed %d", 7807 rcu_str_deref(device->name), ret); 7808 goto out; 7809 } 7810 ret = 1; 7811 } 7812 7813 if (ret == 1) { 7814 /* need to insert a new item */ 7815 btrfs_release_path(path); 7816 ret = btrfs_insert_empty_item(trans, dev_root, path, 7817 &key, sizeof(*ptr)); 7818 if (ret < 0) { 7819 btrfs_warn_in_rcu(fs_info, 7820 "insert dev_stats item for device %s failed %d", 7821 rcu_str_deref(device->name), ret); 7822 goto out; 7823 } 7824 } 7825 7826 eb = path->nodes[0]; 7827 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7828 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7829 btrfs_set_dev_stats_value(eb, ptr, i, 7830 btrfs_dev_stat_read(device, i)); 7831 btrfs_mark_buffer_dirty(eb); 7832 7833 out: 7834 btrfs_free_path(path); 7835 return ret; 7836 } 7837 7838 /* 7839 * called from commit_transaction. Writes all changed device stats to disk. 7840 */ 7841 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7842 { 7843 struct btrfs_fs_info *fs_info = trans->fs_info; 7844 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7845 struct btrfs_device *device; 7846 int stats_cnt; 7847 int ret = 0; 7848 7849 mutex_lock(&fs_devices->device_list_mutex); 7850 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7851 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7852 if (!device->dev_stats_valid || stats_cnt == 0) 7853 continue; 7854 7855 7856 /* 7857 * There is a LOAD-LOAD control dependency between the value of 7858 * dev_stats_ccnt and updating the on-disk values which requires 7859 * reading the in-memory counters. Such control dependencies 7860 * require explicit read memory barriers. 7861 * 7862 * This memory barriers pairs with smp_mb__before_atomic in 7863 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7864 * barrier implied by atomic_xchg in 7865 * btrfs_dev_stats_read_and_reset 7866 */ 7867 smp_rmb(); 7868 7869 ret = update_dev_stat_item(trans, device); 7870 if (!ret) 7871 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7872 } 7873 mutex_unlock(&fs_devices->device_list_mutex); 7874 7875 return ret; 7876 } 7877 7878 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7879 { 7880 btrfs_dev_stat_inc(dev, index); 7881 btrfs_dev_stat_print_on_error(dev); 7882 } 7883 7884 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7885 { 7886 if (!dev->dev_stats_valid) 7887 return; 7888 btrfs_err_rl_in_rcu(dev->fs_info, 7889 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7890 rcu_str_deref(dev->name), 7891 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7892 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7893 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7894 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7895 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7896 } 7897 7898 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7899 { 7900 int i; 7901 7902 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7903 if (btrfs_dev_stat_read(dev, i) != 0) 7904 break; 7905 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7906 return; /* all values == 0, suppress message */ 7907 7908 btrfs_info_in_rcu(dev->fs_info, 7909 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7910 rcu_str_deref(dev->name), 7911 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7912 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7913 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7914 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7915 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7916 } 7917 7918 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7919 struct btrfs_ioctl_get_dev_stats *stats) 7920 { 7921 BTRFS_DEV_LOOKUP_ARGS(args); 7922 struct btrfs_device *dev; 7923 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7924 int i; 7925 7926 mutex_lock(&fs_devices->device_list_mutex); 7927 args.devid = stats->devid; 7928 dev = btrfs_find_device(fs_info->fs_devices, &args); 7929 mutex_unlock(&fs_devices->device_list_mutex); 7930 7931 if (!dev) { 7932 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7933 return -ENODEV; 7934 } else if (!dev->dev_stats_valid) { 7935 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7936 return -ENODEV; 7937 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7938 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7939 if (stats->nr_items > i) 7940 stats->values[i] = 7941 btrfs_dev_stat_read_and_reset(dev, i); 7942 else 7943 btrfs_dev_stat_set(dev, i, 0); 7944 } 7945 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7946 current->comm, task_pid_nr(current)); 7947 } else { 7948 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7949 if (stats->nr_items > i) 7950 stats->values[i] = btrfs_dev_stat_read(dev, i); 7951 } 7952 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7953 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7954 return 0; 7955 } 7956 7957 /* 7958 * Update the size and bytes used for each device where it changed. This is 7959 * delayed since we would otherwise get errors while writing out the 7960 * superblocks. 7961 * 7962 * Must be invoked during transaction commit. 7963 */ 7964 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7965 { 7966 struct btrfs_device *curr, *next; 7967 7968 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7969 7970 if (list_empty(&trans->dev_update_list)) 7971 return; 7972 7973 /* 7974 * We don't need the device_list_mutex here. This list is owned by the 7975 * transaction and the transaction must complete before the device is 7976 * released. 7977 */ 7978 mutex_lock(&trans->fs_info->chunk_mutex); 7979 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7980 post_commit_list) { 7981 list_del_init(&curr->post_commit_list); 7982 curr->commit_total_bytes = curr->disk_total_bytes; 7983 curr->commit_bytes_used = curr->bytes_used; 7984 } 7985 mutex_unlock(&trans->fs_info->chunk_mutex); 7986 } 7987 7988 /* 7989 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7990 */ 7991 int btrfs_bg_type_to_factor(u64 flags) 7992 { 7993 const int index = btrfs_bg_flags_to_raid_index(flags); 7994 7995 return btrfs_raid_array[index].ncopies; 7996 } 7997 7998 7999 8000 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 8001 u64 chunk_offset, u64 devid, 8002 u64 physical_offset, u64 physical_len) 8003 { 8004 struct btrfs_dev_lookup_args args = { .devid = devid }; 8005 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 8006 struct extent_map *em; 8007 struct map_lookup *map; 8008 struct btrfs_device *dev; 8009 u64 stripe_len; 8010 bool found = false; 8011 int ret = 0; 8012 int i; 8013 8014 read_lock(&em_tree->lock); 8015 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 8016 read_unlock(&em_tree->lock); 8017 8018 if (!em) { 8019 btrfs_err(fs_info, 8020 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 8021 physical_offset, devid); 8022 ret = -EUCLEAN; 8023 goto out; 8024 } 8025 8026 map = em->map_lookup; 8027 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 8028 if (physical_len != stripe_len) { 8029 btrfs_err(fs_info, 8030 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 8031 physical_offset, devid, em->start, physical_len, 8032 stripe_len); 8033 ret = -EUCLEAN; 8034 goto out; 8035 } 8036 8037 for (i = 0; i < map->num_stripes; i++) { 8038 if (map->stripes[i].dev->devid == devid && 8039 map->stripes[i].physical == physical_offset) { 8040 found = true; 8041 if (map->verified_stripes >= map->num_stripes) { 8042 btrfs_err(fs_info, 8043 "too many dev extents for chunk %llu found", 8044 em->start); 8045 ret = -EUCLEAN; 8046 goto out; 8047 } 8048 map->verified_stripes++; 8049 break; 8050 } 8051 } 8052 if (!found) { 8053 btrfs_err(fs_info, 8054 "dev extent physical offset %llu devid %llu has no corresponding chunk", 8055 physical_offset, devid); 8056 ret = -EUCLEAN; 8057 } 8058 8059 /* Make sure no dev extent is beyond device boundary */ 8060 dev = btrfs_find_device(fs_info->fs_devices, &args); 8061 if (!dev) { 8062 btrfs_err(fs_info, "failed to find devid %llu", devid); 8063 ret = -EUCLEAN; 8064 goto out; 8065 } 8066 8067 if (physical_offset + physical_len > dev->disk_total_bytes) { 8068 btrfs_err(fs_info, 8069 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 8070 devid, physical_offset, physical_len, 8071 dev->disk_total_bytes); 8072 ret = -EUCLEAN; 8073 goto out; 8074 } 8075 8076 if (dev->zone_info) { 8077 u64 zone_size = dev->zone_info->zone_size; 8078 8079 if (!IS_ALIGNED(physical_offset, zone_size) || 8080 !IS_ALIGNED(physical_len, zone_size)) { 8081 btrfs_err(fs_info, 8082 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 8083 devid, physical_offset, physical_len); 8084 ret = -EUCLEAN; 8085 goto out; 8086 } 8087 } 8088 8089 out: 8090 free_extent_map(em); 8091 return ret; 8092 } 8093 8094 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 8095 { 8096 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 8097 struct extent_map *em; 8098 struct rb_node *node; 8099 int ret = 0; 8100 8101 read_lock(&em_tree->lock); 8102 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 8103 em = rb_entry(node, struct extent_map, rb_node); 8104 if (em->map_lookup->num_stripes != 8105 em->map_lookup->verified_stripes) { 8106 btrfs_err(fs_info, 8107 "chunk %llu has missing dev extent, have %d expect %d", 8108 em->start, em->map_lookup->verified_stripes, 8109 em->map_lookup->num_stripes); 8110 ret = -EUCLEAN; 8111 goto out; 8112 } 8113 } 8114 out: 8115 read_unlock(&em_tree->lock); 8116 return ret; 8117 } 8118 8119 /* 8120 * Ensure that all dev extents are mapped to correct chunk, otherwise 8121 * later chunk allocation/free would cause unexpected behavior. 8122 * 8123 * NOTE: This will iterate through the whole device tree, which should be of 8124 * the same size level as the chunk tree. This slightly increases mount time. 8125 */ 8126 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8127 { 8128 struct btrfs_path *path; 8129 struct btrfs_root *root = fs_info->dev_root; 8130 struct btrfs_key key; 8131 u64 prev_devid = 0; 8132 u64 prev_dev_ext_end = 0; 8133 int ret = 0; 8134 8135 /* 8136 * We don't have a dev_root because we mounted with ignorebadroots and 8137 * failed to load the root, so we want to skip the verification in this 8138 * case for sure. 8139 * 8140 * However if the dev root is fine, but the tree itself is corrupted 8141 * we'd still fail to mount. This verification is only to make sure 8142 * writes can happen safely, so instead just bypass this check 8143 * completely in the case of IGNOREBADROOTS. 8144 */ 8145 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8146 return 0; 8147 8148 key.objectid = 1; 8149 key.type = BTRFS_DEV_EXTENT_KEY; 8150 key.offset = 0; 8151 8152 path = btrfs_alloc_path(); 8153 if (!path) 8154 return -ENOMEM; 8155 8156 path->reada = READA_FORWARD; 8157 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8158 if (ret < 0) 8159 goto out; 8160 8161 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8162 ret = btrfs_next_leaf(root, path); 8163 if (ret < 0) 8164 goto out; 8165 /* No dev extents at all? Not good */ 8166 if (ret > 0) { 8167 ret = -EUCLEAN; 8168 goto out; 8169 } 8170 } 8171 while (1) { 8172 struct extent_buffer *leaf = path->nodes[0]; 8173 struct btrfs_dev_extent *dext; 8174 int slot = path->slots[0]; 8175 u64 chunk_offset; 8176 u64 physical_offset; 8177 u64 physical_len; 8178 u64 devid; 8179 8180 btrfs_item_key_to_cpu(leaf, &key, slot); 8181 if (key.type != BTRFS_DEV_EXTENT_KEY) 8182 break; 8183 devid = key.objectid; 8184 physical_offset = key.offset; 8185 8186 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8187 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8188 physical_len = btrfs_dev_extent_length(leaf, dext); 8189 8190 /* Check if this dev extent overlaps with the previous one */ 8191 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8192 btrfs_err(fs_info, 8193 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8194 devid, physical_offset, prev_dev_ext_end); 8195 ret = -EUCLEAN; 8196 goto out; 8197 } 8198 8199 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8200 physical_offset, physical_len); 8201 if (ret < 0) 8202 goto out; 8203 prev_devid = devid; 8204 prev_dev_ext_end = physical_offset + physical_len; 8205 8206 ret = btrfs_next_item(root, path); 8207 if (ret < 0) 8208 goto out; 8209 if (ret > 0) { 8210 ret = 0; 8211 break; 8212 } 8213 } 8214 8215 /* Ensure all chunks have corresponding dev extents */ 8216 ret = verify_chunk_dev_extent_mapping(fs_info); 8217 out: 8218 btrfs_free_path(path); 8219 return ret; 8220 } 8221 8222 /* 8223 * Check whether the given block group or device is pinned by any inode being 8224 * used as a swapfile. 8225 */ 8226 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8227 { 8228 struct btrfs_swapfile_pin *sp; 8229 struct rb_node *node; 8230 8231 spin_lock(&fs_info->swapfile_pins_lock); 8232 node = fs_info->swapfile_pins.rb_node; 8233 while (node) { 8234 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8235 if (ptr < sp->ptr) 8236 node = node->rb_left; 8237 else if (ptr > sp->ptr) 8238 node = node->rb_right; 8239 else 8240 break; 8241 } 8242 spin_unlock(&fs_info->swapfile_pins_lock); 8243 return node != NULL; 8244 } 8245 8246 static int relocating_repair_kthread(void *data) 8247 { 8248 struct btrfs_block_group *cache = (struct btrfs_block_group *)data; 8249 struct btrfs_fs_info *fs_info = cache->fs_info; 8250 u64 target; 8251 int ret = 0; 8252 8253 target = cache->start; 8254 btrfs_put_block_group(cache); 8255 8256 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8257 btrfs_info(fs_info, 8258 "zoned: skip relocating block group %llu to repair: EBUSY", 8259 target); 8260 return -EBUSY; 8261 } 8262 8263 mutex_lock(&fs_info->reclaim_bgs_lock); 8264 8265 /* Ensure block group still exists */ 8266 cache = btrfs_lookup_block_group(fs_info, target); 8267 if (!cache) 8268 goto out; 8269 8270 if (!cache->relocating_repair) 8271 goto out; 8272 8273 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8274 if (ret < 0) 8275 goto out; 8276 8277 btrfs_info(fs_info, 8278 "zoned: relocating block group %llu to repair IO failure", 8279 target); 8280 ret = btrfs_relocate_chunk(fs_info, target); 8281 8282 out: 8283 if (cache) 8284 btrfs_put_block_group(cache); 8285 mutex_unlock(&fs_info->reclaim_bgs_lock); 8286 btrfs_exclop_finish(fs_info); 8287 8288 return ret; 8289 } 8290 8291 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8292 { 8293 struct btrfs_block_group *cache; 8294 8295 /* Do not attempt to repair in degraded state */ 8296 if (btrfs_test_opt(fs_info, DEGRADED)) 8297 return 0; 8298 8299 cache = btrfs_lookup_block_group(fs_info, logical); 8300 if (!cache) 8301 return 0; 8302 8303 spin_lock(&cache->lock); 8304 if (cache->relocating_repair) { 8305 spin_unlock(&cache->lock); 8306 btrfs_put_block_group(cache); 8307 return 0; 8308 } 8309 cache->relocating_repair = 1; 8310 spin_unlock(&cache->lock); 8311 8312 kthread_run(relocating_repair_kthread, cache, 8313 "btrfs-relocating-repair"); 8314 8315 return 0; 8316 } 8317