xref: /openbmc/linux/fs/btrfs/volumes.c (revision 611f0e00)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <asm/div64.h>
22 #include "ctree.h"
23 #include "extent_map.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "volumes.h"
28 
29 struct stripe {
30 	struct btrfs_device *dev;
31 	u64 physical;
32 };
33 
34 struct multi_bio {
35 	atomic_t stripes;
36 	bio_end_io_t *end_io;
37 	void *private;
38 	int error;
39 };
40 
41 struct map_lookup {
42 	u64 type;
43 	int io_align;
44 	int io_width;
45 	int stripe_len;
46 	int sector_size;
47 	int num_stripes;
48 	struct stripe stripes[];
49 };
50 
51 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
52 			    (sizeof(struct stripe) * (n)))
53 
54 static DEFINE_MUTEX(uuid_mutex);
55 static LIST_HEAD(fs_uuids);
56 
57 int btrfs_cleanup_fs_uuids(void)
58 {
59 	struct btrfs_fs_devices *fs_devices;
60 	struct list_head *uuid_cur;
61 	struct list_head *devices_cur;
62 	struct btrfs_device *dev;
63 
64 	list_for_each(uuid_cur, &fs_uuids) {
65 		fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
66 					list);
67 		while(!list_empty(&fs_devices->devices)) {
68 			devices_cur = fs_devices->devices.next;
69 			dev = list_entry(devices_cur, struct btrfs_device,
70 					 dev_list);
71 			printk("uuid cleanup finds %s\n", dev->name);
72 			if (dev->bdev) {
73 				printk("closing\n");
74 				close_bdev_excl(dev->bdev);
75 			}
76 			list_del(&dev->dev_list);
77 			kfree(dev);
78 		}
79 	}
80 	return 0;
81 }
82 
83 static struct btrfs_device *__find_device(struct list_head *head, u64 devid)
84 {
85 	struct btrfs_device *dev;
86 	struct list_head *cur;
87 
88 	list_for_each(cur, head) {
89 		dev = list_entry(cur, struct btrfs_device, dev_list);
90 		if (dev->devid == devid)
91 			return dev;
92 	}
93 	return NULL;
94 }
95 
96 static struct btrfs_fs_devices *find_fsid(u8 *fsid)
97 {
98 	struct list_head *cur;
99 	struct btrfs_fs_devices *fs_devices;
100 
101 	list_for_each(cur, &fs_uuids) {
102 		fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
103 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
104 			return fs_devices;
105 	}
106 	return NULL;
107 }
108 
109 static int device_list_add(const char *path,
110 			   struct btrfs_super_block *disk_super,
111 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
112 {
113 	struct btrfs_device *device;
114 	struct btrfs_fs_devices *fs_devices;
115 	u64 found_transid = btrfs_super_generation(disk_super);
116 
117 	fs_devices = find_fsid(disk_super->fsid);
118 	if (!fs_devices) {
119 		fs_devices = kmalloc(sizeof(*fs_devices), GFP_NOFS);
120 		if (!fs_devices)
121 			return -ENOMEM;
122 		INIT_LIST_HEAD(&fs_devices->devices);
123 		list_add(&fs_devices->list, &fs_uuids);
124 		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
125 		fs_devices->latest_devid = devid;
126 		fs_devices->latest_trans = found_transid;
127 		fs_devices->lowest_devid = (u64)-1;
128 		fs_devices->num_devices = 0;
129 		device = NULL;
130 	} else {
131 		device = __find_device(&fs_devices->devices, devid);
132 	}
133 	if (!device) {
134 		device = kzalloc(sizeof(*device), GFP_NOFS);
135 		if (!device) {
136 			/* we can safely leave the fs_devices entry around */
137 			return -ENOMEM;
138 		}
139 		device->devid = devid;
140 		device->name = kstrdup(path, GFP_NOFS);
141 		if (!device->name) {
142 			kfree(device);
143 			return -ENOMEM;
144 		}
145 		list_add(&device->dev_list, &fs_devices->devices);
146 		fs_devices->num_devices++;
147 	}
148 
149 	if (found_transid > fs_devices->latest_trans) {
150 		fs_devices->latest_devid = devid;
151 		fs_devices->latest_trans = found_transid;
152 	}
153 	if (fs_devices->lowest_devid > devid) {
154 		fs_devices->lowest_devid = devid;
155 		printk("lowest devid now %Lu\n", devid);
156 	}
157 	*fs_devices_ret = fs_devices;
158 	return 0;
159 }
160 
161 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
162 {
163 	struct list_head *head = &fs_devices->devices;
164 	struct list_head *cur;
165 	struct btrfs_device *device;
166 
167 	mutex_lock(&uuid_mutex);
168 	list_for_each(cur, head) {
169 		device = list_entry(cur, struct btrfs_device, dev_list);
170 		if (device->bdev) {
171 			close_bdev_excl(device->bdev);
172 			printk("close devices closes %s\n", device->name);
173 		}
174 		device->bdev = NULL;
175 	}
176 	mutex_unlock(&uuid_mutex);
177 	return 0;
178 }
179 
180 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
181 		       int flags, void *holder)
182 {
183 	struct block_device *bdev;
184 	struct list_head *head = &fs_devices->devices;
185 	struct list_head *cur;
186 	struct btrfs_device *device;
187 	int ret;
188 
189 	mutex_lock(&uuid_mutex);
190 	list_for_each(cur, head) {
191 		device = list_entry(cur, struct btrfs_device, dev_list);
192 		bdev = open_bdev_excl(device->name, flags, holder);
193 printk("opening %s devid %Lu\n", device->name, device->devid);
194 		if (IS_ERR(bdev)) {
195 			printk("open %s failed\n", device->name);
196 			ret = PTR_ERR(bdev);
197 			goto fail;
198 		}
199 		if (device->devid == fs_devices->latest_devid)
200 			fs_devices->latest_bdev = bdev;
201 		if (device->devid == fs_devices->lowest_devid) {
202 			fs_devices->lowest_bdev = bdev;
203 printk("lowest bdev %s\n", device->name);
204 		}
205 		device->bdev = bdev;
206 	}
207 	mutex_unlock(&uuid_mutex);
208 	return 0;
209 fail:
210 	mutex_unlock(&uuid_mutex);
211 	btrfs_close_devices(fs_devices);
212 	return ret;
213 }
214 
215 int btrfs_scan_one_device(const char *path, int flags, void *holder,
216 			  struct btrfs_fs_devices **fs_devices_ret)
217 {
218 	struct btrfs_super_block *disk_super;
219 	struct block_device *bdev;
220 	struct buffer_head *bh;
221 	int ret;
222 	u64 devid;
223 
224 	mutex_lock(&uuid_mutex);
225 
226 	printk("scan one opens %s\n", path);
227 	bdev = open_bdev_excl(path, flags, holder);
228 
229 	if (IS_ERR(bdev)) {
230 		printk("open failed\n");
231 		ret = PTR_ERR(bdev);
232 		goto error;
233 	}
234 
235 	ret = set_blocksize(bdev, 4096);
236 	if (ret)
237 		goto error_close;
238 	bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
239 	if (!bh) {
240 		ret = -EIO;
241 		goto error_close;
242 	}
243 	disk_super = (struct btrfs_super_block *)bh->b_data;
244 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
245 	    sizeof(disk_super->magic))) {
246 		printk("no btrfs found on %s\n", path);
247 		ret = -EINVAL;
248 		goto error_brelse;
249 	}
250 	devid = le64_to_cpu(disk_super->dev_item.devid);
251 	printk("found device %Lu on %s\n", devid, path);
252 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
253 
254 error_brelse:
255 	brelse(bh);
256 error_close:
257 	close_bdev_excl(bdev);
258 	printk("scan one closes bdev %s\n", path);
259 error:
260 	mutex_unlock(&uuid_mutex);
261 	return ret;
262 }
263 
264 /*
265  * this uses a pretty simple search, the expectation is that it is
266  * called very infrequently and that a given device has a small number
267  * of extents
268  */
269 static int find_free_dev_extent(struct btrfs_trans_handle *trans,
270 				struct btrfs_device *device,
271 				struct btrfs_path *path,
272 				u64 num_bytes, u64 *start)
273 {
274 	struct btrfs_key key;
275 	struct btrfs_root *root = device->dev_root;
276 	struct btrfs_dev_extent *dev_extent = NULL;
277 	u64 hole_size = 0;
278 	u64 last_byte = 0;
279 	u64 search_start = 0;
280 	u64 search_end = device->total_bytes;
281 	int ret;
282 	int slot = 0;
283 	int start_found;
284 	struct extent_buffer *l;
285 
286 	start_found = 0;
287 	path->reada = 2;
288 
289 	/* FIXME use last free of some kind */
290 
291 	/* we don't want to overwrite the superblock on the drive,
292 	 * so we make sure to start at an offset of at least 1MB
293 	 */
294 	search_start = max((u64)1024 * 1024, search_start);
295 	key.objectid = device->devid;
296 	key.offset = search_start;
297 	key.type = BTRFS_DEV_EXTENT_KEY;
298 	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
299 	if (ret < 0)
300 		goto error;
301 	ret = btrfs_previous_item(root, path, 0, key.type);
302 	if (ret < 0)
303 		goto error;
304 	l = path->nodes[0];
305 	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
306 	while (1) {
307 		l = path->nodes[0];
308 		slot = path->slots[0];
309 		if (slot >= btrfs_header_nritems(l)) {
310 			ret = btrfs_next_leaf(root, path);
311 			if (ret == 0)
312 				continue;
313 			if (ret < 0)
314 				goto error;
315 no_more_items:
316 			if (!start_found) {
317 				if (search_start >= search_end) {
318 					ret = -ENOSPC;
319 					goto error;
320 				}
321 				*start = search_start;
322 				start_found = 1;
323 				goto check_pending;
324 			}
325 			*start = last_byte > search_start ?
326 				last_byte : search_start;
327 			if (search_end <= *start) {
328 				ret = -ENOSPC;
329 				goto error;
330 			}
331 			goto check_pending;
332 		}
333 		btrfs_item_key_to_cpu(l, &key, slot);
334 
335 		if (key.objectid < device->devid)
336 			goto next;
337 
338 		if (key.objectid > device->devid)
339 			goto no_more_items;
340 
341 		if (key.offset >= search_start && key.offset > last_byte &&
342 		    start_found) {
343 			if (last_byte < search_start)
344 				last_byte = search_start;
345 			hole_size = key.offset - last_byte;
346 			if (key.offset > last_byte &&
347 			    hole_size >= num_bytes) {
348 				*start = last_byte;
349 				goto check_pending;
350 			}
351 		}
352 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
353 			goto next;
354 		}
355 
356 		start_found = 1;
357 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
358 		last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
359 next:
360 		path->slots[0]++;
361 		cond_resched();
362 	}
363 check_pending:
364 	/* we have to make sure we didn't find an extent that has already
365 	 * been allocated by the map tree or the original allocation
366 	 */
367 	btrfs_release_path(root, path);
368 	BUG_ON(*start < search_start);
369 
370 	if (*start + num_bytes > search_end) {
371 		ret = -ENOSPC;
372 		goto error;
373 	}
374 	/* check for pending inserts here */
375 	return 0;
376 
377 error:
378 	btrfs_release_path(root, path);
379 	return ret;
380 }
381 
382 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
383 			   struct btrfs_device *device,
384 			   u64 owner, u64 num_bytes, u64 *start)
385 {
386 	int ret;
387 	struct btrfs_path *path;
388 	struct btrfs_root *root = device->dev_root;
389 	struct btrfs_dev_extent *extent;
390 	struct extent_buffer *leaf;
391 	struct btrfs_key key;
392 
393 	path = btrfs_alloc_path();
394 	if (!path)
395 		return -ENOMEM;
396 
397 	ret = find_free_dev_extent(trans, device, path, num_bytes, start);
398 	if (ret) {
399 		goto err;
400 	}
401 
402 	key.objectid = device->devid;
403 	key.offset = *start;
404 	key.type = BTRFS_DEV_EXTENT_KEY;
405 	ret = btrfs_insert_empty_item(trans, root, path, &key,
406 				      sizeof(*extent));
407 	BUG_ON(ret);
408 
409 	leaf = path->nodes[0];
410 	extent = btrfs_item_ptr(leaf, path->slots[0],
411 				struct btrfs_dev_extent);
412 	btrfs_set_dev_extent_owner(leaf, extent, owner);
413 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
414 	btrfs_mark_buffer_dirty(leaf);
415 err:
416 	btrfs_free_path(path);
417 	return ret;
418 }
419 
420 static int find_next_chunk(struct btrfs_root *root, u64 *objectid)
421 {
422 	struct btrfs_path *path;
423 	int ret;
424 	struct btrfs_key key;
425 	struct btrfs_key found_key;
426 
427 	path = btrfs_alloc_path();
428 	BUG_ON(!path);
429 
430 	key.objectid = (u64)-1;
431 	key.offset = (u64)-1;
432 	key.type = BTRFS_CHUNK_ITEM_KEY;
433 
434 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
435 	if (ret < 0)
436 		goto error;
437 
438 	BUG_ON(ret == 0);
439 
440 	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
441 	if (ret) {
442 		*objectid = 0;
443 	} else {
444 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
445 				      path->slots[0]);
446 		*objectid = found_key.objectid + found_key.offset;
447 	}
448 	ret = 0;
449 error:
450 	btrfs_free_path(path);
451 	return ret;
452 }
453 
454 static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
455 			   u64 *objectid)
456 {
457 	int ret;
458 	struct btrfs_key key;
459 	struct btrfs_key found_key;
460 
461 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
462 	key.type = BTRFS_DEV_ITEM_KEY;
463 	key.offset = (u64)-1;
464 
465 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
466 	if (ret < 0)
467 		goto error;
468 
469 	BUG_ON(ret == 0);
470 
471 	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
472 				  BTRFS_DEV_ITEM_KEY);
473 	if (ret) {
474 		*objectid = 1;
475 	} else {
476 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
477 				      path->slots[0]);
478 		*objectid = found_key.offset + 1;
479 	}
480 	ret = 0;
481 error:
482 	btrfs_release_path(root, path);
483 	return ret;
484 }
485 
486 /*
487  * the device information is stored in the chunk root
488  * the btrfs_device struct should be fully filled in
489  */
490 int btrfs_add_device(struct btrfs_trans_handle *trans,
491 		     struct btrfs_root *root,
492 		     struct btrfs_device *device)
493 {
494 	int ret;
495 	struct btrfs_path *path;
496 	struct btrfs_dev_item *dev_item;
497 	struct extent_buffer *leaf;
498 	struct btrfs_key key;
499 	unsigned long ptr;
500 	u64 free_devid;
501 
502 	root = root->fs_info->chunk_root;
503 
504 	path = btrfs_alloc_path();
505 	if (!path)
506 		return -ENOMEM;
507 
508 	ret = find_next_devid(root, path, &free_devid);
509 	if (ret)
510 		goto out;
511 
512 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
513 	key.type = BTRFS_DEV_ITEM_KEY;
514 	key.offset = free_devid;
515 
516 	ret = btrfs_insert_empty_item(trans, root, path, &key,
517 				      sizeof(*dev_item));
518 	if (ret)
519 		goto out;
520 
521 	leaf = path->nodes[0];
522 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
523 
524 	device->devid = free_devid;
525 	btrfs_set_device_id(leaf, dev_item, device->devid);
526 	btrfs_set_device_type(leaf, dev_item, device->type);
527 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
528 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
529 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
530 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
531 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
532 
533 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
534 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_DEV_UUID_SIZE);
535 	btrfs_mark_buffer_dirty(leaf);
536 	ret = 0;
537 
538 out:
539 	btrfs_free_path(path);
540 	return ret;
541 }
542 int btrfs_update_device(struct btrfs_trans_handle *trans,
543 			struct btrfs_device *device)
544 {
545 	int ret;
546 	struct btrfs_path *path;
547 	struct btrfs_root *root;
548 	struct btrfs_dev_item *dev_item;
549 	struct extent_buffer *leaf;
550 	struct btrfs_key key;
551 
552 	root = device->dev_root->fs_info->chunk_root;
553 
554 	path = btrfs_alloc_path();
555 	if (!path)
556 		return -ENOMEM;
557 
558 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
559 	key.type = BTRFS_DEV_ITEM_KEY;
560 	key.offset = device->devid;
561 
562 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
563 	if (ret < 0)
564 		goto out;
565 
566 	if (ret > 0) {
567 		ret = -ENOENT;
568 		goto out;
569 	}
570 
571 	leaf = path->nodes[0];
572 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
573 
574 	btrfs_set_device_id(leaf, dev_item, device->devid);
575 	btrfs_set_device_type(leaf, dev_item, device->type);
576 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
577 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
578 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
579 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
580 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
581 	btrfs_mark_buffer_dirty(leaf);
582 
583 out:
584 	btrfs_free_path(path);
585 	return ret;
586 }
587 
588 int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
589 			   struct btrfs_root *root,
590 			   struct btrfs_key *key,
591 			   struct btrfs_chunk *chunk, int item_size)
592 {
593 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
594 	struct btrfs_disk_key disk_key;
595 	u32 array_size;
596 	u8 *ptr;
597 
598 	array_size = btrfs_super_sys_array_size(super_copy);
599 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
600 		return -EFBIG;
601 
602 	ptr = super_copy->sys_chunk_array + array_size;
603 	btrfs_cpu_key_to_disk(&disk_key, key);
604 	memcpy(ptr, &disk_key, sizeof(disk_key));
605 	ptr += sizeof(disk_key);
606 	memcpy(ptr, chunk, item_size);
607 	item_size += sizeof(disk_key);
608 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
609 	return 0;
610 }
611 
612 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
613 		      struct btrfs_root *extent_root, u64 *start,
614 		      u64 *num_bytes, u64 type)
615 {
616 	u64 dev_offset;
617 	struct btrfs_fs_info *info = extent_root->fs_info;
618 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
619 	struct btrfs_stripe *stripes;
620 	struct btrfs_device *device = NULL;
621 	struct btrfs_chunk *chunk;
622 	struct list_head private_devs;
623 	struct list_head *dev_list = &extent_root->fs_info->fs_devices->devices;
624 	struct list_head *cur;
625 	struct extent_map_tree *em_tree;
626 	struct map_lookup *map;
627 	struct extent_map *em;
628 	u64 physical;
629 	u64 calc_size = 1024 * 1024 * 1024;
630 	u64 min_free = calc_size;
631 	u64 avail;
632 	u64 max_avail = 0;
633 	int num_stripes = 1;
634 	int looped = 0;
635 	int ret;
636 	int index;
637 	int stripe_len = 64 * 1024;
638 	struct btrfs_key key;
639 
640 	if (list_empty(dev_list))
641 		return -ENOSPC;
642 
643 	if (type & (BTRFS_BLOCK_GROUP_RAID0))
644 		num_stripes = btrfs_super_num_devices(&info->super_copy);
645 	if (type & (BTRFS_BLOCK_GROUP_DUP))
646 		num_stripes = 2;
647 	if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
648 		num_stripes = min_t(u64, 2,
649 				  btrfs_super_num_devices(&info->super_copy));
650 	}
651 again:
652 	INIT_LIST_HEAD(&private_devs);
653 	cur = dev_list->next;
654 	index = 0;
655 
656 	if (type & BTRFS_BLOCK_GROUP_DUP)
657 		min_free = calc_size * 2;
658 
659 	/* build a private list of devices we will allocate from */
660 	while(index < num_stripes) {
661 		device = list_entry(cur, struct btrfs_device, dev_list);
662 
663 		avail = device->total_bytes - device->bytes_used;
664 		cur = cur->next;
665 		if (avail > max_avail)
666 			max_avail = avail;
667 		if (avail >= min_free) {
668 			list_move_tail(&device->dev_list, &private_devs);
669 			index++;
670 			if (type & BTRFS_BLOCK_GROUP_DUP)
671 				index++;
672 		}
673 		if (cur == dev_list)
674 			break;
675 	}
676 	if (index < num_stripes) {
677 		list_splice(&private_devs, dev_list);
678 		if (!looped && max_avail > 0) {
679 			looped = 1;
680 			calc_size = max_avail;
681 			goto again;
682 		}
683 		return -ENOSPC;
684 	}
685 
686 	ret = find_next_chunk(chunk_root, &key.objectid);
687 	if (ret)
688 		return ret;
689 
690 	chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
691 	if (!chunk)
692 		return -ENOMEM;
693 
694 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
695 	if (!map) {
696 		kfree(chunk);
697 		return -ENOMEM;
698 	}
699 
700 	stripes = &chunk->stripe;
701 
702 	if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
703 		*num_bytes = calc_size;
704 	else
705 		*num_bytes = calc_size * num_stripes;
706 
707 	index = 0;
708 printk("new chunk type %Lu start %Lu size %Lu\n", type, key.objectid, *num_bytes);
709 	while(index < num_stripes) {
710 		BUG_ON(list_empty(&private_devs));
711 		cur = private_devs.next;
712 		device = list_entry(cur, struct btrfs_device, dev_list);
713 
714 		/* loop over this device again if we're doing a dup group */
715 		if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
716 		    (index == num_stripes - 1))
717 			list_move_tail(&device->dev_list, dev_list);
718 
719 		ret = btrfs_alloc_dev_extent(trans, device,
720 					     key.objectid,
721 					     calc_size, &dev_offset);
722 		BUG_ON(ret);
723 printk("alloc chunk start %Lu size %Lu from dev %Lu type %Lu\n", key.objectid, calc_size, device->devid, type);
724 		device->bytes_used += calc_size;
725 		ret = btrfs_update_device(trans, device);
726 		BUG_ON(ret);
727 
728 		map->stripes[index].dev = device;
729 		map->stripes[index].physical = dev_offset;
730 		btrfs_set_stack_stripe_devid(stripes + index, device->devid);
731 		btrfs_set_stack_stripe_offset(stripes + index, dev_offset);
732 		physical = dev_offset;
733 		index++;
734 	}
735 	BUG_ON(!list_empty(&private_devs));
736 
737 	/* key.objectid was set above */
738 	key.offset = *num_bytes;
739 	key.type = BTRFS_CHUNK_ITEM_KEY;
740 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
741 	btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
742 	btrfs_set_stack_chunk_type(chunk, type);
743 	btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
744 	btrfs_set_stack_chunk_io_align(chunk, stripe_len);
745 	btrfs_set_stack_chunk_io_width(chunk, stripe_len);
746 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
747 	map->sector_size = extent_root->sectorsize;
748 	map->stripe_len = stripe_len;
749 	map->io_align = stripe_len;
750 	map->io_width = stripe_len;
751 	map->type = type;
752 	map->num_stripes = num_stripes;
753 
754 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
755 				btrfs_chunk_item_size(num_stripes));
756 	BUG_ON(ret);
757 	*start = key.objectid;
758 
759 	em = alloc_extent_map(GFP_NOFS);
760 	if (!em)
761 		return -ENOMEM;
762 	em->bdev = (struct block_device *)map;
763 	em->start = key.objectid;
764 	em->len = key.offset;
765 	em->block_start = 0;
766 
767 	kfree(chunk);
768 
769 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
770 	spin_lock(&em_tree->lock);
771 	ret = add_extent_mapping(em_tree, em);
772 	BUG_ON(ret);
773 	spin_unlock(&em_tree->lock);
774 	free_extent_map(em);
775 	return ret;
776 }
777 
778 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
779 {
780 	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
781 }
782 
783 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
784 {
785 	struct extent_map *em;
786 
787 	while(1) {
788 		spin_lock(&tree->map_tree.lock);
789 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
790 		if (em)
791 			remove_extent_mapping(&tree->map_tree, em);
792 		spin_unlock(&tree->map_tree.lock);
793 		if (!em)
794 			break;
795 		kfree(em->bdev);
796 		/* once for us */
797 		free_extent_map(em);
798 		/* once for the tree */
799 		free_extent_map(em);
800 	}
801 }
802 
803 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
804 		    int dev_nr, u64 logical, u64 *phys, u64 *length,
805 		    struct btrfs_device **dev, int *total_devs)
806 {
807 	struct extent_map *em;
808 	struct map_lookup *map;
809 	struct extent_map_tree *em_tree = &map_tree->map_tree;
810 	u64 offset;
811 	u64 stripe_offset;
812 	u64 stripe_nr;
813 	int stripe_index;
814 
815 
816 	spin_lock(&em_tree->lock);
817 	em = lookup_extent_mapping(em_tree, logical, *length);
818 	BUG_ON(!em);
819 
820 	BUG_ON(em->start > logical || em->start + em->len < logical);
821 	map = (struct map_lookup *)em->bdev;
822 	offset = logical - em->start;
823 
824 	stripe_nr = offset;
825 	/*
826 	 * stripe_nr counts the total number of stripes we have to stride
827 	 * to get to this block
828 	 */
829 	do_div(stripe_nr, map->stripe_len);
830 
831 	stripe_offset = stripe_nr * map->stripe_len;
832 	BUG_ON(offset < stripe_offset);
833 
834 	/* stripe_offset is the offset of this block in its stripe*/
835 	stripe_offset = offset - stripe_offset;
836 
837 	if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
838 		stripe_index = dev_nr;
839 		if (rw & (1 << BIO_RW))
840 			*total_devs = map->num_stripes;
841 		else {
842 			int i;
843 			u64 least = (u64)-1;
844 			struct btrfs_device *cur;
845 
846 			for (i = 0; i < map->num_stripes; i++) {
847 				cur = map->stripes[i].dev;
848 				spin_lock(&cur->io_lock);
849 				if (cur->total_ios < least) {
850 					least = cur->total_ios;
851 					stripe_index = i;
852 				}
853 				spin_unlock(&cur->io_lock);
854 			}
855 			*total_devs = 1;
856 		}
857 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
858 		if (rw == WRITE) {
859 			*total_devs = map->num_stripes;
860 			stripe_index = dev_nr;
861 		} else {
862 			stripe_index = 0;
863 			*total_devs = 1;
864 		}
865 	} else {
866 		/*
867 		 * after this do_div call, stripe_nr is the number of stripes
868 		 * on this device we have to walk to find the data, and
869 		 * stripe_index is the number of our device in the stripe array
870 		 */
871 		stripe_index = do_div(stripe_nr, map->num_stripes);
872 	}
873 	BUG_ON(stripe_index >= map->num_stripes);
874 	*phys = map->stripes[stripe_index].physical + stripe_offset +
875 		stripe_nr * map->stripe_len;
876 
877 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
878 			 BTRFS_BLOCK_GROUP_DUP)) {
879 		/* we limit the length of each bio to what fits in a stripe */
880 		*length = min_t(u64, em->len - offset,
881 			      map->stripe_len - stripe_offset);
882 	} else {
883 		*length = em->len - offset;
884 	}
885 	*dev = map->stripes[stripe_index].dev;
886 	free_extent_map(em);
887 	spin_unlock(&em_tree->lock);
888 	return 0;
889 }
890 
891 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
892 static void end_bio_multi_stripe(struct bio *bio, int err)
893 #else
894 static int end_bio_multi_stripe(struct bio *bio,
895 				   unsigned int bytes_done, int err)
896 #endif
897 {
898 	struct multi_bio *multi = bio->bi_private;
899 
900 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
901 	if (bio->bi_size)
902 		return 1;
903 #endif
904 	if (err)
905 		multi->error = err;
906 
907 	if (atomic_dec_and_test(&multi->stripes)) {
908 		bio->bi_private = multi->private;
909 		bio->bi_end_io = multi->end_io;
910 
911 		if (!err && multi->error)
912 			err = multi->error;
913 		kfree(multi);
914 
915 		bio_endio(bio, err);
916 	} else {
917 		bio_put(bio);
918 	}
919 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
920 	return 0;
921 #endif
922 }
923 
924 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio)
925 {
926 	struct btrfs_mapping_tree *map_tree;
927 	struct btrfs_device *dev;
928 	struct bio *first_bio = bio;
929 	u64 logical = bio->bi_sector << 9;
930 	u64 physical;
931 	u64 length = 0;
932 	u64 map_length;
933 	struct bio_vec *bvec;
934 	struct multi_bio *multi = NULL;
935 	int i;
936 	int ret;
937 	int dev_nr = 0;
938 	int total_devs = 1;
939 
940 	bio_for_each_segment(bvec, bio, i) {
941 		length += bvec->bv_len;
942 	}
943 
944 	map_tree = &root->fs_info->mapping_tree;
945 	map_length = length;
946 	while(dev_nr < total_devs) {
947 		ret = btrfs_map_block(map_tree, rw, dev_nr, logical,
948 				      &physical, &map_length, &dev,
949 				      &total_devs);
950 		if (map_length < length) {
951 			printk("mapping failed logical %Lu bio len %Lu physical %Lu "
952 			       "len %Lu\n", logical, length, physical, map_length);
953 			BUG();
954 		}
955 		BUG_ON(map_length < length);
956 		if (total_devs > 1) {
957 			if (!multi) {
958 				multi = kmalloc(sizeof(*multi), GFP_NOFS);
959 				atomic_set(&multi->stripes, 1);
960 				multi->end_io = bio->bi_end_io;
961 				multi->private = first_bio->bi_private;
962 				multi->error = 0;
963 			} else {
964 				atomic_inc(&multi->stripes);
965 			}
966 			if (dev_nr < total_devs - 1) {
967 				bio = bio_clone(first_bio, GFP_NOFS);
968 				BUG_ON(!bio);
969 			} else {
970 				bio = first_bio;
971 			}
972 			bio->bi_private = multi;
973 			bio->bi_end_io = end_bio_multi_stripe;
974 		}
975 		bio->bi_sector = physical >> 9;
976 		bio->bi_bdev = dev->bdev;
977 		spin_lock(&dev->io_lock);
978 		dev->total_ios++;
979 		spin_unlock(&dev->io_lock);
980 		submit_bio(rw, bio);
981 		dev_nr++;
982 	}
983 	return 0;
984 }
985 
986 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid)
987 {
988 	struct list_head *head = &root->fs_info->fs_devices->devices;
989 
990 	return __find_device(head, devid);
991 }
992 
993 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
994 			  struct extent_buffer *leaf,
995 			  struct btrfs_chunk *chunk)
996 {
997 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
998 	struct map_lookup *map;
999 	struct extent_map *em;
1000 	u64 logical;
1001 	u64 length;
1002 	u64 devid;
1003 	int num_stripes;
1004 	int ret;
1005 	int i;
1006 
1007 	logical = key->objectid;
1008 	length = key->offset;
1009 	spin_lock(&map_tree->map_tree.lock);
1010 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
1011 
1012 	/* already mapped? */
1013 	if (em && em->start <= logical && em->start + em->len > logical) {
1014 		free_extent_map(em);
1015 		spin_unlock(&map_tree->map_tree.lock);
1016 		return 0;
1017 	} else if (em) {
1018 		free_extent_map(em);
1019 	}
1020 	spin_unlock(&map_tree->map_tree.lock);
1021 
1022 	map = kzalloc(sizeof(*map), GFP_NOFS);
1023 	if (!map)
1024 		return -ENOMEM;
1025 
1026 	em = alloc_extent_map(GFP_NOFS);
1027 	if (!em)
1028 		return -ENOMEM;
1029 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1030 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1031 	if (!map) {
1032 		free_extent_map(em);
1033 		return -ENOMEM;
1034 	}
1035 
1036 	em->bdev = (struct block_device *)map;
1037 	em->start = logical;
1038 	em->len = length;
1039 	em->block_start = 0;
1040 
1041 	map->num_stripes = num_stripes;
1042 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
1043 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
1044 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1045 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1046 	map->type = btrfs_chunk_type(leaf, chunk);
1047 	for (i = 0; i < num_stripes; i++) {
1048 		map->stripes[i].physical =
1049 			btrfs_stripe_offset_nr(leaf, chunk, i);
1050 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1051 		map->stripes[i].dev = btrfs_find_device(root, devid);
1052 		if (!map->stripes[i].dev) {
1053 			kfree(map);
1054 			free_extent_map(em);
1055 			return -EIO;
1056 		}
1057 	}
1058 
1059 	spin_lock(&map_tree->map_tree.lock);
1060 	ret = add_extent_mapping(&map_tree->map_tree, em);
1061 	BUG_ON(ret);
1062 	spin_unlock(&map_tree->map_tree.lock);
1063 	free_extent_map(em);
1064 
1065 	return 0;
1066 }
1067 
1068 static int fill_device_from_item(struct extent_buffer *leaf,
1069 				 struct btrfs_dev_item *dev_item,
1070 				 struct btrfs_device *device)
1071 {
1072 	unsigned long ptr;
1073 
1074 	device->devid = btrfs_device_id(leaf, dev_item);
1075 	device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1076 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1077 	device->type = btrfs_device_type(leaf, dev_item);
1078 	device->io_align = btrfs_device_io_align(leaf, dev_item);
1079 	device->io_width = btrfs_device_io_width(leaf, dev_item);
1080 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
1081 
1082 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1083 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_DEV_UUID_SIZE);
1084 
1085 	return 0;
1086 }
1087 
1088 static int read_one_dev(struct btrfs_root *root,
1089 			struct extent_buffer *leaf,
1090 			struct btrfs_dev_item *dev_item)
1091 {
1092 	struct btrfs_device *device;
1093 	u64 devid;
1094 	int ret;
1095 
1096 	devid = btrfs_device_id(leaf, dev_item);
1097 	device = btrfs_find_device(root, devid);
1098 	if (!device) {
1099 		printk("warning devid %Lu not found already\n", devid);
1100 		device = kmalloc(sizeof(*device), GFP_NOFS);
1101 		if (!device)
1102 			return -ENOMEM;
1103 		list_add(&device->dev_list,
1104 			 &root->fs_info->fs_devices->devices);
1105 		device->total_ios = 0;
1106 		spin_lock_init(&device->io_lock);
1107 	}
1108 
1109 	fill_device_from_item(leaf, dev_item, device);
1110 	device->dev_root = root->fs_info->dev_root;
1111 	ret = 0;
1112 #if 0
1113 	ret = btrfs_open_device(device);
1114 	if (ret) {
1115 		kfree(device);
1116 	}
1117 #endif
1118 	return ret;
1119 }
1120 
1121 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
1122 {
1123 	struct btrfs_dev_item *dev_item;
1124 
1125 	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1126 						     dev_item);
1127 	return read_one_dev(root, buf, dev_item);
1128 }
1129 
1130 int btrfs_read_sys_array(struct btrfs_root *root)
1131 {
1132 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1133 	struct extent_buffer *sb = root->fs_info->sb_buffer;
1134 	struct btrfs_disk_key *disk_key;
1135 	struct btrfs_chunk *chunk;
1136 	struct btrfs_key key;
1137 	u32 num_stripes;
1138 	u32 array_size;
1139 	u32 len = 0;
1140 	u8 *ptr;
1141 	unsigned long sb_ptr;
1142 	u32 cur;
1143 	int ret;
1144 
1145 	array_size = btrfs_super_sys_array_size(super_copy);
1146 
1147 	/*
1148 	 * we do this loop twice, once for the device items and
1149 	 * once for all of the chunks.  This way there are device
1150 	 * structs filled in for every chunk
1151 	 */
1152 	ptr = super_copy->sys_chunk_array;
1153 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
1154 	cur = 0;
1155 
1156 	while (cur < array_size) {
1157 		disk_key = (struct btrfs_disk_key *)ptr;
1158 		btrfs_disk_key_to_cpu(&key, disk_key);
1159 
1160 		len = sizeof(*disk_key);
1161 		ptr += len;
1162 		sb_ptr += len;
1163 		cur += len;
1164 
1165 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1166 			chunk = (struct btrfs_chunk *)sb_ptr;
1167 			ret = read_one_chunk(root, &key, sb, chunk);
1168 			BUG_ON(ret);
1169 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1170 			len = btrfs_chunk_item_size(num_stripes);
1171 		} else {
1172 			BUG();
1173 		}
1174 		ptr += len;
1175 		sb_ptr += len;
1176 		cur += len;
1177 	}
1178 	return 0;
1179 }
1180 
1181 int btrfs_read_chunk_tree(struct btrfs_root *root)
1182 {
1183 	struct btrfs_path *path;
1184 	struct extent_buffer *leaf;
1185 	struct btrfs_key key;
1186 	struct btrfs_key found_key;
1187 	int ret;
1188 	int slot;
1189 
1190 	root = root->fs_info->chunk_root;
1191 
1192 	path = btrfs_alloc_path();
1193 	if (!path)
1194 		return -ENOMEM;
1195 
1196 	/* first we search for all of the device items, and then we
1197 	 * read in all of the chunk items.  This way we can create chunk
1198 	 * mappings that reference all of the devices that are afound
1199 	 */
1200 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1201 	key.offset = 0;
1202 	key.type = 0;
1203 again:
1204 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1205 	while(1) {
1206 		leaf = path->nodes[0];
1207 		slot = path->slots[0];
1208 		if (slot >= btrfs_header_nritems(leaf)) {
1209 			ret = btrfs_next_leaf(root, path);
1210 			if (ret == 0)
1211 				continue;
1212 			if (ret < 0)
1213 				goto error;
1214 			break;
1215 		}
1216 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1217 		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1218 			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
1219 				break;
1220 			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1221 				struct btrfs_dev_item *dev_item;
1222 				dev_item = btrfs_item_ptr(leaf, slot,
1223 						  struct btrfs_dev_item);
1224 				ret = read_one_dev(root, leaf, dev_item);
1225 				BUG_ON(ret);
1226 			}
1227 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1228 			struct btrfs_chunk *chunk;
1229 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1230 			ret = read_one_chunk(root, &found_key, leaf, chunk);
1231 		}
1232 		path->slots[0]++;
1233 	}
1234 	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1235 		key.objectid = 0;
1236 		btrfs_release_path(root, path);
1237 		goto again;
1238 	}
1239 
1240 	btrfs_free_path(path);
1241 	ret = 0;
1242 error:
1243 	return ret;
1244 }
1245 
1246