xref: /openbmc/linux/fs/btrfs/volumes.c (revision 5e012745)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 
33 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
34 	[BTRFS_RAID_RAID10] = {
35 		.sub_stripes	= 2,
36 		.dev_stripes	= 1,
37 		.devs_max	= 0,	/* 0 == as many as possible */
38 		.devs_min	= 4,
39 		.tolerated_failures = 1,
40 		.devs_increment	= 2,
41 		.ncopies	= 2,
42 		.nparity        = 0,
43 		.raid_name	= "raid10",
44 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
45 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
46 	},
47 	[BTRFS_RAID_RAID1] = {
48 		.sub_stripes	= 1,
49 		.dev_stripes	= 1,
50 		.devs_max	= 2,
51 		.devs_min	= 2,
52 		.tolerated_failures = 1,
53 		.devs_increment	= 2,
54 		.ncopies	= 2,
55 		.nparity        = 0,
56 		.raid_name	= "raid1",
57 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
58 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
59 	},
60 	[BTRFS_RAID_DUP] = {
61 		.sub_stripes	= 1,
62 		.dev_stripes	= 2,
63 		.devs_max	= 1,
64 		.devs_min	= 1,
65 		.tolerated_failures = 0,
66 		.devs_increment	= 1,
67 		.ncopies	= 2,
68 		.nparity        = 0,
69 		.raid_name	= "dup",
70 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
71 		.mindev_error	= 0,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 		.nparity        = 0,
82 		.raid_name	= "raid0",
83 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
84 		.mindev_error	= 0,
85 	},
86 	[BTRFS_RAID_SINGLE] = {
87 		.sub_stripes	= 1,
88 		.dev_stripes	= 1,
89 		.devs_max	= 1,
90 		.devs_min	= 1,
91 		.tolerated_failures = 0,
92 		.devs_increment	= 1,
93 		.ncopies	= 1,
94 		.nparity        = 0,
95 		.raid_name	= "single",
96 		.bg_flag	= 0,
97 		.mindev_error	= 0,
98 	},
99 	[BTRFS_RAID_RAID5] = {
100 		.sub_stripes	= 1,
101 		.dev_stripes	= 1,
102 		.devs_max	= 0,
103 		.devs_min	= 2,
104 		.tolerated_failures = 1,
105 		.devs_increment	= 1,
106 		.ncopies	= 1,
107 		.nparity        = 1,
108 		.raid_name	= "raid5",
109 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
110 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
111 	},
112 	[BTRFS_RAID_RAID6] = {
113 		.sub_stripes	= 1,
114 		.dev_stripes	= 1,
115 		.devs_max	= 0,
116 		.devs_min	= 3,
117 		.tolerated_failures = 2,
118 		.devs_increment	= 1,
119 		.ncopies	= 1,
120 		.nparity        = 2,
121 		.raid_name	= "raid6",
122 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
123 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
124 	},
125 };
126 
127 const char *btrfs_bg_type_to_raid_name(u64 flags)
128 {
129 	const int index = btrfs_bg_flags_to_raid_index(flags);
130 
131 	if (index >= BTRFS_NR_RAID_TYPES)
132 		return NULL;
133 
134 	return btrfs_raid_array[index].raid_name;
135 }
136 
137 /*
138  * Fill @buf with textual description of @bg_flags, no more than @size_buf
139  * bytes including terminating null byte.
140  */
141 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
142 {
143 	int i;
144 	int ret;
145 	char *bp = buf;
146 	u64 flags = bg_flags;
147 	u32 size_bp = size_buf;
148 
149 	if (!flags) {
150 		strcpy(bp, "NONE");
151 		return;
152 	}
153 
154 #define DESCRIBE_FLAG(flag, desc)						\
155 	do {								\
156 		if (flags & (flag)) {					\
157 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
158 			if (ret < 0 || ret >= size_bp)			\
159 				goto out_overflow;			\
160 			size_bp -= ret;					\
161 			bp += ret;					\
162 			flags &= ~(flag);				\
163 		}							\
164 	} while (0)
165 
166 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
167 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
168 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
169 
170 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
171 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
172 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
173 			      btrfs_raid_array[i].raid_name);
174 #undef DESCRIBE_FLAG
175 
176 	if (flags) {
177 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
178 		size_bp -= ret;
179 	}
180 
181 	if (size_bp < size_buf)
182 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
183 
184 	/*
185 	 * The text is trimmed, it's up to the caller to provide sufficiently
186 	 * large buffer
187 	 */
188 out_overflow:;
189 }
190 
191 static int init_first_rw_device(struct btrfs_trans_handle *trans);
192 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
193 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
194 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
195 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
196 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
197 			     enum btrfs_map_op op,
198 			     u64 logical, u64 *length,
199 			     struct btrfs_bio **bbio_ret,
200 			     int mirror_num, int need_raid_map);
201 
202 /*
203  * Device locking
204  * ==============
205  *
206  * There are several mutexes that protect manipulation of devices and low-level
207  * structures like chunks but not block groups, extents or files
208  *
209  * uuid_mutex (global lock)
210  * ------------------------
211  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
212  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
213  * device) or requested by the device= mount option
214  *
215  * the mutex can be very coarse and can cover long-running operations
216  *
217  * protects: updates to fs_devices counters like missing devices, rw devices,
218  * seeding, structure cloning, opening/closing devices at mount/umount time
219  *
220  * global::fs_devs - add, remove, updates to the global list
221  *
222  * does not protect: manipulation of the fs_devices::devices list!
223  *
224  * btrfs_device::name - renames (write side), read is RCU
225  *
226  * fs_devices::device_list_mutex (per-fs, with RCU)
227  * ------------------------------------------------
228  * protects updates to fs_devices::devices, ie. adding and deleting
229  *
230  * simple list traversal with read-only actions can be done with RCU protection
231  *
232  * may be used to exclude some operations from running concurrently without any
233  * modifications to the list (see write_all_supers)
234  *
235  * balance_mutex
236  * -------------
237  * protects balance structures (status, state) and context accessed from
238  * several places (internally, ioctl)
239  *
240  * chunk_mutex
241  * -----------
242  * protects chunks, adding or removing during allocation, trim or when a new
243  * device is added/removed. Additionally it also protects post_commit_list of
244  * individual devices, since they can be added to the transaction's
245  * post_commit_list only with chunk_mutex held.
246  *
247  * cleaner_mutex
248  * -------------
249  * a big lock that is held by the cleaner thread and prevents running subvolume
250  * cleaning together with relocation or delayed iputs
251  *
252  *
253  * Lock nesting
254  * ============
255  *
256  * uuid_mutex
257  *   volume_mutex
258  *     device_list_mutex
259  *       chunk_mutex
260  *     balance_mutex
261  *
262  *
263  * Exclusive operations, BTRFS_FS_EXCL_OP
264  * ======================================
265  *
266  * Maintains the exclusivity of the following operations that apply to the
267  * whole filesystem and cannot run in parallel.
268  *
269  * - Balance (*)
270  * - Device add
271  * - Device remove
272  * - Device replace (*)
273  * - Resize
274  *
275  * The device operations (as above) can be in one of the following states:
276  *
277  * - Running state
278  * - Paused state
279  * - Completed state
280  *
281  * Only device operations marked with (*) can go into the Paused state for the
282  * following reasons:
283  *
284  * - ioctl (only Balance can be Paused through ioctl)
285  * - filesystem remounted as read-only
286  * - filesystem unmounted and mounted as read-only
287  * - system power-cycle and filesystem mounted as read-only
288  * - filesystem or device errors leading to forced read-only
289  *
290  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
291  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
292  * A device operation in Paused or Running state can be canceled or resumed
293  * either by ioctl (Balance only) or when remounted as read-write.
294  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
295  * completed.
296  */
297 
298 DEFINE_MUTEX(uuid_mutex);
299 static LIST_HEAD(fs_uuids);
300 struct list_head *btrfs_get_fs_uuids(void)
301 {
302 	return &fs_uuids;
303 }
304 
305 /*
306  * alloc_fs_devices - allocate struct btrfs_fs_devices
307  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
308  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
309  *
310  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
311  * The returned struct is not linked onto any lists and can be destroyed with
312  * kfree() right away.
313  */
314 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
315 						 const u8 *metadata_fsid)
316 {
317 	struct btrfs_fs_devices *fs_devs;
318 
319 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
320 	if (!fs_devs)
321 		return ERR_PTR(-ENOMEM);
322 
323 	mutex_init(&fs_devs->device_list_mutex);
324 
325 	INIT_LIST_HEAD(&fs_devs->devices);
326 	INIT_LIST_HEAD(&fs_devs->alloc_list);
327 	INIT_LIST_HEAD(&fs_devs->fs_list);
328 	if (fsid)
329 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
330 
331 	if (metadata_fsid)
332 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
333 	else if (fsid)
334 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
335 
336 	return fs_devs;
337 }
338 
339 void btrfs_free_device(struct btrfs_device *device)
340 {
341 	WARN_ON(!list_empty(&device->post_commit_list));
342 	rcu_string_free(device->name);
343 	extent_io_tree_release(&device->alloc_state);
344 	bio_put(device->flush_bio);
345 	kfree(device);
346 }
347 
348 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
349 {
350 	struct btrfs_device *device;
351 	WARN_ON(fs_devices->opened);
352 	while (!list_empty(&fs_devices->devices)) {
353 		device = list_entry(fs_devices->devices.next,
354 				    struct btrfs_device, dev_list);
355 		list_del(&device->dev_list);
356 		btrfs_free_device(device);
357 	}
358 	kfree(fs_devices);
359 }
360 
361 static void btrfs_kobject_uevent(struct block_device *bdev,
362 				 enum kobject_action action)
363 {
364 	int ret;
365 
366 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
367 	if (ret)
368 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
369 			action,
370 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
371 			&disk_to_dev(bdev->bd_disk)->kobj);
372 }
373 
374 void __exit btrfs_cleanup_fs_uuids(void)
375 {
376 	struct btrfs_fs_devices *fs_devices;
377 
378 	while (!list_empty(&fs_uuids)) {
379 		fs_devices = list_entry(fs_uuids.next,
380 					struct btrfs_fs_devices, fs_list);
381 		list_del(&fs_devices->fs_list);
382 		free_fs_devices(fs_devices);
383 	}
384 }
385 
386 /*
387  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
388  * Returned struct is not linked onto any lists and must be destroyed using
389  * btrfs_free_device.
390  */
391 static struct btrfs_device *__alloc_device(void)
392 {
393 	struct btrfs_device *dev;
394 
395 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
396 	if (!dev)
397 		return ERR_PTR(-ENOMEM);
398 
399 	/*
400 	 * Preallocate a bio that's always going to be used for flushing device
401 	 * barriers and matches the device lifespan
402 	 */
403 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
404 	if (!dev->flush_bio) {
405 		kfree(dev);
406 		return ERR_PTR(-ENOMEM);
407 	}
408 
409 	INIT_LIST_HEAD(&dev->dev_list);
410 	INIT_LIST_HEAD(&dev->dev_alloc_list);
411 	INIT_LIST_HEAD(&dev->post_commit_list);
412 
413 	spin_lock_init(&dev->io_lock);
414 
415 	atomic_set(&dev->reada_in_flight, 0);
416 	atomic_set(&dev->dev_stats_ccnt, 0);
417 	btrfs_device_data_ordered_init(dev);
418 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
419 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
420 	extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
421 
422 	return dev;
423 }
424 
425 static noinline struct btrfs_fs_devices *find_fsid(
426 		const u8 *fsid, const u8 *metadata_fsid)
427 {
428 	struct btrfs_fs_devices *fs_devices;
429 
430 	ASSERT(fsid);
431 
432 	if (metadata_fsid) {
433 		/*
434 		 * Handle scanned device having completed its fsid change but
435 		 * belonging to a fs_devices that was created by first scanning
436 		 * a device which didn't have its fsid/metadata_uuid changed
437 		 * at all and the CHANGING_FSID_V2 flag set.
438 		 */
439 		list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
440 			if (fs_devices->fsid_change &&
441 			    memcmp(metadata_fsid, fs_devices->fsid,
442 				   BTRFS_FSID_SIZE) == 0 &&
443 			    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
444 				   BTRFS_FSID_SIZE) == 0) {
445 				return fs_devices;
446 			}
447 		}
448 		/*
449 		 * Handle scanned device having completed its fsid change but
450 		 * belonging to a fs_devices that was created by a device that
451 		 * has an outdated pair of fsid/metadata_uuid and
452 		 * CHANGING_FSID_V2 flag set.
453 		 */
454 		list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
455 			if (fs_devices->fsid_change &&
456 			    memcmp(fs_devices->metadata_uuid,
457 				   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
458 			    memcmp(metadata_fsid, fs_devices->metadata_uuid,
459 				   BTRFS_FSID_SIZE) == 0) {
460 				return fs_devices;
461 			}
462 		}
463 	}
464 
465 	/* Handle non-split brain cases */
466 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
467 		if (metadata_fsid) {
468 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
469 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
470 				      BTRFS_FSID_SIZE) == 0)
471 				return fs_devices;
472 		} else {
473 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
474 				return fs_devices;
475 		}
476 	}
477 	return NULL;
478 }
479 
480 static int
481 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
482 		      int flush, struct block_device **bdev,
483 		      struct buffer_head **bh)
484 {
485 	int ret;
486 
487 	*bdev = blkdev_get_by_path(device_path, flags, holder);
488 
489 	if (IS_ERR(*bdev)) {
490 		ret = PTR_ERR(*bdev);
491 		goto error;
492 	}
493 
494 	if (flush)
495 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
496 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
497 	if (ret) {
498 		blkdev_put(*bdev, flags);
499 		goto error;
500 	}
501 	invalidate_bdev(*bdev);
502 	*bh = btrfs_read_dev_super(*bdev);
503 	if (IS_ERR(*bh)) {
504 		ret = PTR_ERR(*bh);
505 		blkdev_put(*bdev, flags);
506 		goto error;
507 	}
508 
509 	return 0;
510 
511 error:
512 	*bdev = NULL;
513 	*bh = NULL;
514 	return ret;
515 }
516 
517 static void requeue_list(struct btrfs_pending_bios *pending_bios,
518 			struct bio *head, struct bio *tail)
519 {
520 
521 	struct bio *old_head;
522 
523 	old_head = pending_bios->head;
524 	pending_bios->head = head;
525 	if (pending_bios->tail)
526 		tail->bi_next = old_head;
527 	else
528 		pending_bios->tail = tail;
529 }
530 
531 /*
532  * we try to collect pending bios for a device so we don't get a large
533  * number of procs sending bios down to the same device.  This greatly
534  * improves the schedulers ability to collect and merge the bios.
535  *
536  * But, it also turns into a long list of bios to process and that is sure
537  * to eventually make the worker thread block.  The solution here is to
538  * make some progress and then put this work struct back at the end of
539  * the list if the block device is congested.  This way, multiple devices
540  * can make progress from a single worker thread.
541  */
542 static noinline void run_scheduled_bios(struct btrfs_device *device)
543 {
544 	struct btrfs_fs_info *fs_info = device->fs_info;
545 	struct bio *pending;
546 	struct backing_dev_info *bdi;
547 	struct btrfs_pending_bios *pending_bios;
548 	struct bio *tail;
549 	struct bio *cur;
550 	int again = 0;
551 	unsigned long num_run;
552 	unsigned long batch_run = 0;
553 	unsigned long last_waited = 0;
554 	int force_reg = 0;
555 	int sync_pending = 0;
556 	struct blk_plug plug;
557 
558 	/*
559 	 * this function runs all the bios we've collected for
560 	 * a particular device.  We don't want to wander off to
561 	 * another device without first sending all of these down.
562 	 * So, setup a plug here and finish it off before we return
563 	 */
564 	blk_start_plug(&plug);
565 
566 	bdi = device->bdev->bd_bdi;
567 
568 loop:
569 	spin_lock(&device->io_lock);
570 
571 loop_lock:
572 	num_run = 0;
573 
574 	/* take all the bios off the list at once and process them
575 	 * later on (without the lock held).  But, remember the
576 	 * tail and other pointers so the bios can be properly reinserted
577 	 * into the list if we hit congestion
578 	 */
579 	if (!force_reg && device->pending_sync_bios.head) {
580 		pending_bios = &device->pending_sync_bios;
581 		force_reg = 1;
582 	} else {
583 		pending_bios = &device->pending_bios;
584 		force_reg = 0;
585 	}
586 
587 	pending = pending_bios->head;
588 	tail = pending_bios->tail;
589 	WARN_ON(pending && !tail);
590 
591 	/*
592 	 * if pending was null this time around, no bios need processing
593 	 * at all and we can stop.  Otherwise it'll loop back up again
594 	 * and do an additional check so no bios are missed.
595 	 *
596 	 * device->running_pending is used to synchronize with the
597 	 * schedule_bio code.
598 	 */
599 	if (device->pending_sync_bios.head == NULL &&
600 	    device->pending_bios.head == NULL) {
601 		again = 0;
602 		device->running_pending = 0;
603 	} else {
604 		again = 1;
605 		device->running_pending = 1;
606 	}
607 
608 	pending_bios->head = NULL;
609 	pending_bios->tail = NULL;
610 
611 	spin_unlock(&device->io_lock);
612 
613 	while (pending) {
614 
615 		rmb();
616 		/* we want to work on both lists, but do more bios on the
617 		 * sync list than the regular list
618 		 */
619 		if ((num_run > 32 &&
620 		    pending_bios != &device->pending_sync_bios &&
621 		    device->pending_sync_bios.head) ||
622 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
623 		    device->pending_bios.head)) {
624 			spin_lock(&device->io_lock);
625 			requeue_list(pending_bios, pending, tail);
626 			goto loop_lock;
627 		}
628 
629 		cur = pending;
630 		pending = pending->bi_next;
631 		cur->bi_next = NULL;
632 
633 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
634 
635 		/*
636 		 * if we're doing the sync list, record that our
637 		 * plug has some sync requests on it
638 		 *
639 		 * If we're doing the regular list and there are
640 		 * sync requests sitting around, unplug before
641 		 * we add more
642 		 */
643 		if (pending_bios == &device->pending_sync_bios) {
644 			sync_pending = 1;
645 		} else if (sync_pending) {
646 			blk_finish_plug(&plug);
647 			blk_start_plug(&plug);
648 			sync_pending = 0;
649 		}
650 
651 		btrfsic_submit_bio(cur);
652 		num_run++;
653 		batch_run++;
654 
655 		cond_resched();
656 
657 		/*
658 		 * we made progress, there is more work to do and the bdi
659 		 * is now congested.  Back off and let other work structs
660 		 * run instead
661 		 */
662 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
663 		    fs_info->fs_devices->open_devices > 1) {
664 			struct io_context *ioc;
665 
666 			ioc = current->io_context;
667 
668 			/*
669 			 * the main goal here is that we don't want to
670 			 * block if we're going to be able to submit
671 			 * more requests without blocking.
672 			 *
673 			 * This code does two great things, it pokes into
674 			 * the elevator code from a filesystem _and_
675 			 * it makes assumptions about how batching works.
676 			 */
677 			if (ioc && ioc->nr_batch_requests > 0 &&
678 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
679 			    (last_waited == 0 ||
680 			     ioc->last_waited == last_waited)) {
681 				/*
682 				 * we want to go through our batch of
683 				 * requests and stop.  So, we copy out
684 				 * the ioc->last_waited time and test
685 				 * against it before looping
686 				 */
687 				last_waited = ioc->last_waited;
688 				cond_resched();
689 				continue;
690 			}
691 			spin_lock(&device->io_lock);
692 			requeue_list(pending_bios, pending, tail);
693 			device->running_pending = 1;
694 
695 			spin_unlock(&device->io_lock);
696 			btrfs_queue_work(fs_info->submit_workers,
697 					 &device->work);
698 			goto done;
699 		}
700 	}
701 
702 	cond_resched();
703 	if (again)
704 		goto loop;
705 
706 	spin_lock(&device->io_lock);
707 	if (device->pending_bios.head || device->pending_sync_bios.head)
708 		goto loop_lock;
709 	spin_unlock(&device->io_lock);
710 
711 done:
712 	blk_finish_plug(&plug);
713 }
714 
715 static void pending_bios_fn(struct btrfs_work *work)
716 {
717 	struct btrfs_device *device;
718 
719 	device = container_of(work, struct btrfs_device, work);
720 	run_scheduled_bios(device);
721 }
722 
723 static bool device_path_matched(const char *path, struct btrfs_device *device)
724 {
725 	int found;
726 
727 	rcu_read_lock();
728 	found = strcmp(rcu_str_deref(device->name), path);
729 	rcu_read_unlock();
730 
731 	return found == 0;
732 }
733 
734 /*
735  *  Search and remove all stale (devices which are not mounted) devices.
736  *  When both inputs are NULL, it will search and release all stale devices.
737  *  path:	Optional. When provided will it release all unmounted devices
738  *		matching this path only.
739  *  skip_dev:	Optional. Will skip this device when searching for the stale
740  *		devices.
741  *  Return:	0 for success or if @path is NULL.
742  * 		-EBUSY if @path is a mounted device.
743  * 		-ENOENT if @path does not match any device in the list.
744  */
745 static int btrfs_free_stale_devices(const char *path,
746 				     struct btrfs_device *skip_device)
747 {
748 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
749 	struct btrfs_device *device, *tmp_device;
750 	int ret = 0;
751 
752 	if (path)
753 		ret = -ENOENT;
754 
755 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
756 
757 		mutex_lock(&fs_devices->device_list_mutex);
758 		list_for_each_entry_safe(device, tmp_device,
759 					 &fs_devices->devices, dev_list) {
760 			if (skip_device && skip_device == device)
761 				continue;
762 			if (path && !device->name)
763 				continue;
764 			if (path && !device_path_matched(path, device))
765 				continue;
766 			if (fs_devices->opened) {
767 				/* for an already deleted device return 0 */
768 				if (path && ret != 0)
769 					ret = -EBUSY;
770 				break;
771 			}
772 
773 			/* delete the stale device */
774 			fs_devices->num_devices--;
775 			list_del(&device->dev_list);
776 			btrfs_free_device(device);
777 
778 			ret = 0;
779 			if (fs_devices->num_devices == 0)
780 				break;
781 		}
782 		mutex_unlock(&fs_devices->device_list_mutex);
783 
784 		if (fs_devices->num_devices == 0) {
785 			btrfs_sysfs_remove_fsid(fs_devices);
786 			list_del(&fs_devices->fs_list);
787 			free_fs_devices(fs_devices);
788 		}
789 	}
790 
791 	return ret;
792 }
793 
794 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
795 			struct btrfs_device *device, fmode_t flags,
796 			void *holder)
797 {
798 	struct request_queue *q;
799 	struct block_device *bdev;
800 	struct buffer_head *bh;
801 	struct btrfs_super_block *disk_super;
802 	u64 devid;
803 	int ret;
804 
805 	if (device->bdev)
806 		return -EINVAL;
807 	if (!device->name)
808 		return -EINVAL;
809 
810 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
811 				    &bdev, &bh);
812 	if (ret)
813 		return ret;
814 
815 	disk_super = (struct btrfs_super_block *)bh->b_data;
816 	devid = btrfs_stack_device_id(&disk_super->dev_item);
817 	if (devid != device->devid)
818 		goto error_brelse;
819 
820 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
821 		goto error_brelse;
822 
823 	device->generation = btrfs_super_generation(disk_super);
824 
825 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
826 		if (btrfs_super_incompat_flags(disk_super) &
827 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
828 			pr_err(
829 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
830 			goto error_brelse;
831 		}
832 
833 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
834 		fs_devices->seeding = 1;
835 	} else {
836 		if (bdev_read_only(bdev))
837 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
838 		else
839 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
840 	}
841 
842 	q = bdev_get_queue(bdev);
843 	if (!blk_queue_nonrot(q))
844 		fs_devices->rotating = 1;
845 
846 	device->bdev = bdev;
847 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
848 	device->mode = flags;
849 
850 	fs_devices->open_devices++;
851 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
852 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
853 		fs_devices->rw_devices++;
854 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
855 	}
856 	brelse(bh);
857 
858 	return 0;
859 
860 error_brelse:
861 	brelse(bh);
862 	blkdev_put(bdev, flags);
863 
864 	return -EINVAL;
865 }
866 
867 /*
868  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
869  * being created with a disk that has already completed its fsid change.
870  */
871 static struct btrfs_fs_devices *find_fsid_inprogress(
872 					struct btrfs_super_block *disk_super)
873 {
874 	struct btrfs_fs_devices *fs_devices;
875 
876 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
877 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
878 			   BTRFS_FSID_SIZE) != 0 &&
879 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
880 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
881 			return fs_devices;
882 		}
883 	}
884 
885 	return NULL;
886 }
887 
888 
889 static struct btrfs_fs_devices *find_fsid_changed(
890 					struct btrfs_super_block *disk_super)
891 {
892 	struct btrfs_fs_devices *fs_devices;
893 
894 	/*
895 	 * Handles the case where scanned device is part of an fs that had
896 	 * multiple successful changes of FSID but curently device didn't
897 	 * observe it. Meaning our fsid will be different than theirs.
898 	 */
899 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
900 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
901 			   BTRFS_FSID_SIZE) != 0 &&
902 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
903 			   BTRFS_FSID_SIZE) == 0 &&
904 		    memcmp(fs_devices->fsid, disk_super->fsid,
905 			   BTRFS_FSID_SIZE) != 0) {
906 			return fs_devices;
907 		}
908 	}
909 
910 	return NULL;
911 }
912 /*
913  * Add new device to list of registered devices
914  *
915  * Returns:
916  * device pointer which was just added or updated when successful
917  * error pointer when failed
918  */
919 static noinline struct btrfs_device *device_list_add(const char *path,
920 			   struct btrfs_super_block *disk_super,
921 			   bool *new_device_added)
922 {
923 	struct btrfs_device *device;
924 	struct btrfs_fs_devices *fs_devices = NULL;
925 	struct rcu_string *name;
926 	u64 found_transid = btrfs_super_generation(disk_super);
927 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
928 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
929 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
930 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
931 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
932 
933 	if (fsid_change_in_progress) {
934 		if (!has_metadata_uuid) {
935 			/*
936 			 * When we have an image which has CHANGING_FSID_V2 set
937 			 * it might belong to either a filesystem which has
938 			 * disks with completed fsid change or it might belong
939 			 * to fs with no UUID changes in effect, handle both.
940 			 */
941 			fs_devices = find_fsid_inprogress(disk_super);
942 			if (!fs_devices)
943 				fs_devices = find_fsid(disk_super->fsid, NULL);
944 		} else {
945 			fs_devices = find_fsid_changed(disk_super);
946 		}
947 	} else if (has_metadata_uuid) {
948 		fs_devices = find_fsid(disk_super->fsid,
949 				       disk_super->metadata_uuid);
950 	} else {
951 		fs_devices = find_fsid(disk_super->fsid, NULL);
952 	}
953 
954 
955 	if (!fs_devices) {
956 		if (has_metadata_uuid)
957 			fs_devices = alloc_fs_devices(disk_super->fsid,
958 						      disk_super->metadata_uuid);
959 		else
960 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
961 
962 		if (IS_ERR(fs_devices))
963 			return ERR_CAST(fs_devices);
964 
965 		fs_devices->fsid_change = fsid_change_in_progress;
966 
967 		mutex_lock(&fs_devices->device_list_mutex);
968 		list_add(&fs_devices->fs_list, &fs_uuids);
969 
970 		device = NULL;
971 	} else {
972 		mutex_lock(&fs_devices->device_list_mutex);
973 		device = btrfs_find_device(fs_devices, devid,
974 				disk_super->dev_item.uuid, NULL, false);
975 
976 		/*
977 		 * If this disk has been pulled into an fs devices created by
978 		 * a device which had the CHANGING_FSID_V2 flag then replace the
979 		 * metadata_uuid/fsid values of the fs_devices.
980 		 */
981 		if (has_metadata_uuid && fs_devices->fsid_change &&
982 		    found_transid > fs_devices->latest_generation) {
983 			memcpy(fs_devices->fsid, disk_super->fsid,
984 					BTRFS_FSID_SIZE);
985 			memcpy(fs_devices->metadata_uuid,
986 					disk_super->metadata_uuid, BTRFS_FSID_SIZE);
987 
988 			fs_devices->fsid_change = false;
989 		}
990 	}
991 
992 	if (!device) {
993 		if (fs_devices->opened) {
994 			mutex_unlock(&fs_devices->device_list_mutex);
995 			return ERR_PTR(-EBUSY);
996 		}
997 
998 		device = btrfs_alloc_device(NULL, &devid,
999 					    disk_super->dev_item.uuid);
1000 		if (IS_ERR(device)) {
1001 			mutex_unlock(&fs_devices->device_list_mutex);
1002 			/* we can safely leave the fs_devices entry around */
1003 			return device;
1004 		}
1005 
1006 		name = rcu_string_strdup(path, GFP_NOFS);
1007 		if (!name) {
1008 			btrfs_free_device(device);
1009 			mutex_unlock(&fs_devices->device_list_mutex);
1010 			return ERR_PTR(-ENOMEM);
1011 		}
1012 		rcu_assign_pointer(device->name, name);
1013 
1014 		list_add_rcu(&device->dev_list, &fs_devices->devices);
1015 		fs_devices->num_devices++;
1016 
1017 		device->fs_devices = fs_devices;
1018 		*new_device_added = true;
1019 
1020 		if (disk_super->label[0])
1021 			pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1022 				disk_super->label, devid, found_transid, path);
1023 		else
1024 			pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1025 				disk_super->fsid, devid, found_transid, path);
1026 
1027 	} else if (!device->name || strcmp(device->name->str, path)) {
1028 		/*
1029 		 * When FS is already mounted.
1030 		 * 1. If you are here and if the device->name is NULL that
1031 		 *    means this device was missing at time of FS mount.
1032 		 * 2. If you are here and if the device->name is different
1033 		 *    from 'path' that means either
1034 		 *      a. The same device disappeared and reappeared with
1035 		 *         different name. or
1036 		 *      b. The missing-disk-which-was-replaced, has
1037 		 *         reappeared now.
1038 		 *
1039 		 * We must allow 1 and 2a above. But 2b would be a spurious
1040 		 * and unintentional.
1041 		 *
1042 		 * Further in case of 1 and 2a above, the disk at 'path'
1043 		 * would have missed some transaction when it was away and
1044 		 * in case of 2a the stale bdev has to be updated as well.
1045 		 * 2b must not be allowed at all time.
1046 		 */
1047 
1048 		/*
1049 		 * For now, we do allow update to btrfs_fs_device through the
1050 		 * btrfs dev scan cli after FS has been mounted.  We're still
1051 		 * tracking a problem where systems fail mount by subvolume id
1052 		 * when we reject replacement on a mounted FS.
1053 		 */
1054 		if (!fs_devices->opened && found_transid < device->generation) {
1055 			/*
1056 			 * That is if the FS is _not_ mounted and if you
1057 			 * are here, that means there is more than one
1058 			 * disk with same uuid and devid.We keep the one
1059 			 * with larger generation number or the last-in if
1060 			 * generation are equal.
1061 			 */
1062 			mutex_unlock(&fs_devices->device_list_mutex);
1063 			return ERR_PTR(-EEXIST);
1064 		}
1065 
1066 		/*
1067 		 * We are going to replace the device path for a given devid,
1068 		 * make sure it's the same device if the device is mounted
1069 		 */
1070 		if (device->bdev) {
1071 			struct block_device *path_bdev;
1072 
1073 			path_bdev = lookup_bdev(path);
1074 			if (IS_ERR(path_bdev)) {
1075 				mutex_unlock(&fs_devices->device_list_mutex);
1076 				return ERR_CAST(path_bdev);
1077 			}
1078 
1079 			if (device->bdev != path_bdev) {
1080 				bdput(path_bdev);
1081 				mutex_unlock(&fs_devices->device_list_mutex);
1082 				btrfs_warn_in_rcu(device->fs_info,
1083 			"duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1084 					disk_super->fsid, devid,
1085 					rcu_str_deref(device->name), path);
1086 				return ERR_PTR(-EEXIST);
1087 			}
1088 			bdput(path_bdev);
1089 			btrfs_info_in_rcu(device->fs_info,
1090 				"device fsid %pU devid %llu moved old:%s new:%s",
1091 				disk_super->fsid, devid,
1092 				rcu_str_deref(device->name), path);
1093 		}
1094 
1095 		name = rcu_string_strdup(path, GFP_NOFS);
1096 		if (!name) {
1097 			mutex_unlock(&fs_devices->device_list_mutex);
1098 			return ERR_PTR(-ENOMEM);
1099 		}
1100 		rcu_string_free(device->name);
1101 		rcu_assign_pointer(device->name, name);
1102 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1103 			fs_devices->missing_devices--;
1104 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1105 		}
1106 	}
1107 
1108 	/*
1109 	 * Unmount does not free the btrfs_device struct but would zero
1110 	 * generation along with most of the other members. So just update
1111 	 * it back. We need it to pick the disk with largest generation
1112 	 * (as above).
1113 	 */
1114 	if (!fs_devices->opened) {
1115 		device->generation = found_transid;
1116 		fs_devices->latest_generation = max_t(u64, found_transid,
1117 						fs_devices->latest_generation);
1118 	}
1119 
1120 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1121 
1122 	mutex_unlock(&fs_devices->device_list_mutex);
1123 	return device;
1124 }
1125 
1126 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1127 {
1128 	struct btrfs_fs_devices *fs_devices;
1129 	struct btrfs_device *device;
1130 	struct btrfs_device *orig_dev;
1131 
1132 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1133 	if (IS_ERR(fs_devices))
1134 		return fs_devices;
1135 
1136 	mutex_lock(&orig->device_list_mutex);
1137 	fs_devices->total_devices = orig->total_devices;
1138 
1139 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1140 		struct rcu_string *name;
1141 
1142 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1143 					    orig_dev->uuid);
1144 		if (IS_ERR(device))
1145 			goto error;
1146 
1147 		/*
1148 		 * This is ok to do without rcu read locked because we hold the
1149 		 * uuid mutex so nothing we touch in here is going to disappear.
1150 		 */
1151 		if (orig_dev->name) {
1152 			name = rcu_string_strdup(orig_dev->name->str,
1153 					GFP_KERNEL);
1154 			if (!name) {
1155 				btrfs_free_device(device);
1156 				goto error;
1157 			}
1158 			rcu_assign_pointer(device->name, name);
1159 		}
1160 
1161 		list_add(&device->dev_list, &fs_devices->devices);
1162 		device->fs_devices = fs_devices;
1163 		fs_devices->num_devices++;
1164 	}
1165 	mutex_unlock(&orig->device_list_mutex);
1166 	return fs_devices;
1167 error:
1168 	mutex_unlock(&orig->device_list_mutex);
1169 	free_fs_devices(fs_devices);
1170 	return ERR_PTR(-ENOMEM);
1171 }
1172 
1173 /*
1174  * After we have read the system tree and know devids belonging to
1175  * this filesystem, remove the device which does not belong there.
1176  */
1177 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1178 {
1179 	struct btrfs_device *device, *next;
1180 	struct btrfs_device *latest_dev = NULL;
1181 
1182 	mutex_lock(&uuid_mutex);
1183 again:
1184 	/* This is the initialized path, it is safe to release the devices. */
1185 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1186 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1187 							&device->dev_state)) {
1188 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1189 			     &device->dev_state) &&
1190 			     (!latest_dev ||
1191 			      device->generation > latest_dev->generation)) {
1192 				latest_dev = device;
1193 			}
1194 			continue;
1195 		}
1196 
1197 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1198 			/*
1199 			 * In the first step, keep the device which has
1200 			 * the correct fsid and the devid that is used
1201 			 * for the dev_replace procedure.
1202 			 * In the second step, the dev_replace state is
1203 			 * read from the device tree and it is known
1204 			 * whether the procedure is really active or
1205 			 * not, which means whether this device is
1206 			 * used or whether it should be removed.
1207 			 */
1208 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1209 						  &device->dev_state)) {
1210 				continue;
1211 			}
1212 		}
1213 		if (device->bdev) {
1214 			blkdev_put(device->bdev, device->mode);
1215 			device->bdev = NULL;
1216 			fs_devices->open_devices--;
1217 		}
1218 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1219 			list_del_init(&device->dev_alloc_list);
1220 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1221 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1222 				      &device->dev_state))
1223 				fs_devices->rw_devices--;
1224 		}
1225 		list_del_init(&device->dev_list);
1226 		fs_devices->num_devices--;
1227 		btrfs_free_device(device);
1228 	}
1229 
1230 	if (fs_devices->seed) {
1231 		fs_devices = fs_devices->seed;
1232 		goto again;
1233 	}
1234 
1235 	fs_devices->latest_bdev = latest_dev->bdev;
1236 
1237 	mutex_unlock(&uuid_mutex);
1238 }
1239 
1240 static void btrfs_close_bdev(struct btrfs_device *device)
1241 {
1242 	if (!device->bdev)
1243 		return;
1244 
1245 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1246 		sync_blockdev(device->bdev);
1247 		invalidate_bdev(device->bdev);
1248 	}
1249 
1250 	blkdev_put(device->bdev, device->mode);
1251 }
1252 
1253 static void btrfs_close_one_device(struct btrfs_device *device)
1254 {
1255 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1256 	struct btrfs_device *new_device;
1257 	struct rcu_string *name;
1258 
1259 	if (device->bdev)
1260 		fs_devices->open_devices--;
1261 
1262 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1263 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1264 		list_del_init(&device->dev_alloc_list);
1265 		fs_devices->rw_devices--;
1266 	}
1267 
1268 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1269 		fs_devices->missing_devices--;
1270 
1271 	btrfs_close_bdev(device);
1272 
1273 	new_device = btrfs_alloc_device(NULL, &device->devid,
1274 					device->uuid);
1275 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1276 
1277 	/* Safe because we are under uuid_mutex */
1278 	if (device->name) {
1279 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
1280 		BUG_ON(!name); /* -ENOMEM */
1281 		rcu_assign_pointer(new_device->name, name);
1282 	}
1283 
1284 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
1285 	new_device->fs_devices = device->fs_devices;
1286 
1287 	synchronize_rcu();
1288 	btrfs_free_device(device);
1289 }
1290 
1291 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1292 {
1293 	struct btrfs_device *device, *tmp;
1294 
1295 	if (--fs_devices->opened > 0)
1296 		return 0;
1297 
1298 	mutex_lock(&fs_devices->device_list_mutex);
1299 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1300 		btrfs_close_one_device(device);
1301 	}
1302 	mutex_unlock(&fs_devices->device_list_mutex);
1303 
1304 	WARN_ON(fs_devices->open_devices);
1305 	WARN_ON(fs_devices->rw_devices);
1306 	fs_devices->opened = 0;
1307 	fs_devices->seeding = 0;
1308 
1309 	return 0;
1310 }
1311 
1312 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1313 {
1314 	struct btrfs_fs_devices *seed_devices = NULL;
1315 	int ret;
1316 
1317 	mutex_lock(&uuid_mutex);
1318 	ret = close_fs_devices(fs_devices);
1319 	if (!fs_devices->opened) {
1320 		seed_devices = fs_devices->seed;
1321 		fs_devices->seed = NULL;
1322 	}
1323 	mutex_unlock(&uuid_mutex);
1324 
1325 	while (seed_devices) {
1326 		fs_devices = seed_devices;
1327 		seed_devices = fs_devices->seed;
1328 		close_fs_devices(fs_devices);
1329 		free_fs_devices(fs_devices);
1330 	}
1331 	return ret;
1332 }
1333 
1334 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1335 				fmode_t flags, void *holder)
1336 {
1337 	struct btrfs_device *device;
1338 	struct btrfs_device *latest_dev = NULL;
1339 	int ret = 0;
1340 
1341 	flags |= FMODE_EXCL;
1342 
1343 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1344 		/* Just open everything we can; ignore failures here */
1345 		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1346 			continue;
1347 
1348 		if (!latest_dev ||
1349 		    device->generation > latest_dev->generation)
1350 			latest_dev = device;
1351 	}
1352 	if (fs_devices->open_devices == 0) {
1353 		ret = -EINVAL;
1354 		goto out;
1355 	}
1356 	fs_devices->opened = 1;
1357 	fs_devices->latest_bdev = latest_dev->bdev;
1358 	fs_devices->total_rw_bytes = 0;
1359 out:
1360 	return ret;
1361 }
1362 
1363 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1364 {
1365 	struct btrfs_device *dev1, *dev2;
1366 
1367 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1368 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1369 
1370 	if (dev1->devid < dev2->devid)
1371 		return -1;
1372 	else if (dev1->devid > dev2->devid)
1373 		return 1;
1374 	return 0;
1375 }
1376 
1377 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1378 		       fmode_t flags, void *holder)
1379 {
1380 	int ret;
1381 
1382 	lockdep_assert_held(&uuid_mutex);
1383 
1384 	mutex_lock(&fs_devices->device_list_mutex);
1385 	if (fs_devices->opened) {
1386 		fs_devices->opened++;
1387 		ret = 0;
1388 	} else {
1389 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1390 		ret = open_fs_devices(fs_devices, flags, holder);
1391 	}
1392 	mutex_unlock(&fs_devices->device_list_mutex);
1393 
1394 	return ret;
1395 }
1396 
1397 static void btrfs_release_disk_super(struct page *page)
1398 {
1399 	kunmap(page);
1400 	put_page(page);
1401 }
1402 
1403 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1404 				 struct page **page,
1405 				 struct btrfs_super_block **disk_super)
1406 {
1407 	void *p;
1408 	pgoff_t index;
1409 
1410 	/* make sure our super fits in the device */
1411 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1412 		return 1;
1413 
1414 	/* make sure our super fits in the page */
1415 	if (sizeof(**disk_super) > PAGE_SIZE)
1416 		return 1;
1417 
1418 	/* make sure our super doesn't straddle pages on disk */
1419 	index = bytenr >> PAGE_SHIFT;
1420 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1421 		return 1;
1422 
1423 	/* pull in the page with our super */
1424 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1425 				   index, GFP_KERNEL);
1426 
1427 	if (IS_ERR_OR_NULL(*page))
1428 		return 1;
1429 
1430 	p = kmap(*page);
1431 
1432 	/* align our pointer to the offset of the super block */
1433 	*disk_super = p + offset_in_page(bytenr);
1434 
1435 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1436 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1437 		btrfs_release_disk_super(*page);
1438 		return 1;
1439 	}
1440 
1441 	if ((*disk_super)->label[0] &&
1442 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1443 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1444 
1445 	return 0;
1446 }
1447 
1448 int btrfs_forget_devices(const char *path)
1449 {
1450 	int ret;
1451 
1452 	mutex_lock(&uuid_mutex);
1453 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1454 	mutex_unlock(&uuid_mutex);
1455 
1456 	return ret;
1457 }
1458 
1459 /*
1460  * Look for a btrfs signature on a device. This may be called out of the mount path
1461  * and we are not allowed to call set_blocksize during the scan. The superblock
1462  * is read via pagecache
1463  */
1464 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1465 					   void *holder)
1466 {
1467 	struct btrfs_super_block *disk_super;
1468 	bool new_device_added = false;
1469 	struct btrfs_device *device = NULL;
1470 	struct block_device *bdev;
1471 	struct page *page;
1472 	u64 bytenr;
1473 
1474 	lockdep_assert_held(&uuid_mutex);
1475 
1476 	/*
1477 	 * we would like to check all the supers, but that would make
1478 	 * a btrfs mount succeed after a mkfs from a different FS.
1479 	 * So, we need to add a special mount option to scan for
1480 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1481 	 */
1482 	bytenr = btrfs_sb_offset(0);
1483 	flags |= FMODE_EXCL;
1484 
1485 	bdev = blkdev_get_by_path(path, flags, holder);
1486 	if (IS_ERR(bdev))
1487 		return ERR_CAST(bdev);
1488 
1489 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1490 		device = ERR_PTR(-EINVAL);
1491 		goto error_bdev_put;
1492 	}
1493 
1494 	device = device_list_add(path, disk_super, &new_device_added);
1495 	if (!IS_ERR(device)) {
1496 		if (new_device_added)
1497 			btrfs_free_stale_devices(path, device);
1498 	}
1499 
1500 	btrfs_release_disk_super(page);
1501 
1502 error_bdev_put:
1503 	blkdev_put(bdev, flags);
1504 
1505 	return device;
1506 }
1507 
1508 /*
1509  * Try to find a chunk that intersects [start, start + len] range and when one
1510  * such is found, record the end of it in *start
1511  */
1512 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1513 				    u64 len)
1514 {
1515 	u64 physical_start, physical_end;
1516 
1517 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1518 
1519 	if (!find_first_extent_bit(&device->alloc_state, *start,
1520 				   &physical_start, &physical_end,
1521 				   CHUNK_ALLOCATED, NULL)) {
1522 
1523 		if (in_range(physical_start, *start, len) ||
1524 		    in_range(*start, physical_start,
1525 			     physical_end - physical_start)) {
1526 			*start = physical_end + 1;
1527 			return true;
1528 		}
1529 	}
1530 	return false;
1531 }
1532 
1533 
1534 /*
1535  * find_free_dev_extent_start - find free space in the specified device
1536  * @device:	  the device which we search the free space in
1537  * @num_bytes:	  the size of the free space that we need
1538  * @search_start: the position from which to begin the search
1539  * @start:	  store the start of the free space.
1540  * @len:	  the size of the free space. that we find, or the size
1541  *		  of the max free space if we don't find suitable free space
1542  *
1543  * this uses a pretty simple search, the expectation is that it is
1544  * called very infrequently and that a given device has a small number
1545  * of extents
1546  *
1547  * @start is used to store the start of the free space if we find. But if we
1548  * don't find suitable free space, it will be used to store the start position
1549  * of the max free space.
1550  *
1551  * @len is used to store the size of the free space that we find.
1552  * But if we don't find suitable free space, it is used to store the size of
1553  * the max free space.
1554  */
1555 int find_free_dev_extent_start(struct btrfs_device *device, u64 num_bytes,
1556 			       u64 search_start, u64 *start, u64 *len)
1557 {
1558 	struct btrfs_fs_info *fs_info = device->fs_info;
1559 	struct btrfs_root *root = fs_info->dev_root;
1560 	struct btrfs_key key;
1561 	struct btrfs_dev_extent *dev_extent;
1562 	struct btrfs_path *path;
1563 	u64 hole_size;
1564 	u64 max_hole_start;
1565 	u64 max_hole_size;
1566 	u64 extent_end;
1567 	u64 search_end = device->total_bytes;
1568 	int ret;
1569 	int slot;
1570 	struct extent_buffer *l;
1571 
1572 	/*
1573 	 * We don't want to overwrite the superblock on the drive nor any area
1574 	 * used by the boot loader (grub for example), so we make sure to start
1575 	 * at an offset of at least 1MB.
1576 	 */
1577 	search_start = max_t(u64, search_start, SZ_1M);
1578 
1579 	path = btrfs_alloc_path();
1580 	if (!path)
1581 		return -ENOMEM;
1582 
1583 	max_hole_start = search_start;
1584 	max_hole_size = 0;
1585 
1586 again:
1587 	if (search_start >= search_end ||
1588 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1589 		ret = -ENOSPC;
1590 		goto out;
1591 	}
1592 
1593 	path->reada = READA_FORWARD;
1594 	path->search_commit_root = 1;
1595 	path->skip_locking = 1;
1596 
1597 	key.objectid = device->devid;
1598 	key.offset = search_start;
1599 	key.type = BTRFS_DEV_EXTENT_KEY;
1600 
1601 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1602 	if (ret < 0)
1603 		goto out;
1604 	if (ret > 0) {
1605 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1606 		if (ret < 0)
1607 			goto out;
1608 	}
1609 
1610 	while (1) {
1611 		l = path->nodes[0];
1612 		slot = path->slots[0];
1613 		if (slot >= btrfs_header_nritems(l)) {
1614 			ret = btrfs_next_leaf(root, path);
1615 			if (ret == 0)
1616 				continue;
1617 			if (ret < 0)
1618 				goto out;
1619 
1620 			break;
1621 		}
1622 		btrfs_item_key_to_cpu(l, &key, slot);
1623 
1624 		if (key.objectid < device->devid)
1625 			goto next;
1626 
1627 		if (key.objectid > device->devid)
1628 			break;
1629 
1630 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1631 			goto next;
1632 
1633 		if (key.offset > search_start) {
1634 			hole_size = key.offset - search_start;
1635 
1636 			/*
1637 			 * Have to check before we set max_hole_start, otherwise
1638 			 * we could end up sending back this offset anyway.
1639 			 */
1640 			if (contains_pending_extent(device, &search_start,
1641 						    hole_size)) {
1642 				if (key.offset >= search_start)
1643 					hole_size = key.offset - search_start;
1644 				else
1645 					hole_size = 0;
1646 			}
1647 
1648 			if (hole_size > max_hole_size) {
1649 				max_hole_start = search_start;
1650 				max_hole_size = hole_size;
1651 			}
1652 
1653 			/*
1654 			 * If this free space is greater than which we need,
1655 			 * it must be the max free space that we have found
1656 			 * until now, so max_hole_start must point to the start
1657 			 * of this free space and the length of this free space
1658 			 * is stored in max_hole_size. Thus, we return
1659 			 * max_hole_start and max_hole_size and go back to the
1660 			 * caller.
1661 			 */
1662 			if (hole_size >= num_bytes) {
1663 				ret = 0;
1664 				goto out;
1665 			}
1666 		}
1667 
1668 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1669 		extent_end = key.offset + btrfs_dev_extent_length(l,
1670 								  dev_extent);
1671 		if (extent_end > search_start)
1672 			search_start = extent_end;
1673 next:
1674 		path->slots[0]++;
1675 		cond_resched();
1676 	}
1677 
1678 	/*
1679 	 * At this point, search_start should be the end of
1680 	 * allocated dev extents, and when shrinking the device,
1681 	 * search_end may be smaller than search_start.
1682 	 */
1683 	if (search_end > search_start) {
1684 		hole_size = search_end - search_start;
1685 
1686 		if (contains_pending_extent(device, &search_start, hole_size)) {
1687 			btrfs_release_path(path);
1688 			goto again;
1689 		}
1690 
1691 		if (hole_size > max_hole_size) {
1692 			max_hole_start = search_start;
1693 			max_hole_size = hole_size;
1694 		}
1695 	}
1696 
1697 	/* See above. */
1698 	if (max_hole_size < num_bytes)
1699 		ret = -ENOSPC;
1700 	else
1701 		ret = 0;
1702 
1703 out:
1704 	btrfs_free_path(path);
1705 	*start = max_hole_start;
1706 	if (len)
1707 		*len = max_hole_size;
1708 	return ret;
1709 }
1710 
1711 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1712 			 u64 *start, u64 *len)
1713 {
1714 	/* FIXME use last free of some kind */
1715 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1716 }
1717 
1718 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1719 			  struct btrfs_device *device,
1720 			  u64 start, u64 *dev_extent_len)
1721 {
1722 	struct btrfs_fs_info *fs_info = device->fs_info;
1723 	struct btrfs_root *root = fs_info->dev_root;
1724 	int ret;
1725 	struct btrfs_path *path;
1726 	struct btrfs_key key;
1727 	struct btrfs_key found_key;
1728 	struct extent_buffer *leaf = NULL;
1729 	struct btrfs_dev_extent *extent = NULL;
1730 
1731 	path = btrfs_alloc_path();
1732 	if (!path)
1733 		return -ENOMEM;
1734 
1735 	key.objectid = device->devid;
1736 	key.offset = start;
1737 	key.type = BTRFS_DEV_EXTENT_KEY;
1738 again:
1739 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1740 	if (ret > 0) {
1741 		ret = btrfs_previous_item(root, path, key.objectid,
1742 					  BTRFS_DEV_EXTENT_KEY);
1743 		if (ret)
1744 			goto out;
1745 		leaf = path->nodes[0];
1746 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1747 		extent = btrfs_item_ptr(leaf, path->slots[0],
1748 					struct btrfs_dev_extent);
1749 		BUG_ON(found_key.offset > start || found_key.offset +
1750 		       btrfs_dev_extent_length(leaf, extent) < start);
1751 		key = found_key;
1752 		btrfs_release_path(path);
1753 		goto again;
1754 	} else if (ret == 0) {
1755 		leaf = path->nodes[0];
1756 		extent = btrfs_item_ptr(leaf, path->slots[0],
1757 					struct btrfs_dev_extent);
1758 	} else {
1759 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1760 		goto out;
1761 	}
1762 
1763 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1764 
1765 	ret = btrfs_del_item(trans, root, path);
1766 	if (ret) {
1767 		btrfs_handle_fs_error(fs_info, ret,
1768 				      "Failed to remove dev extent item");
1769 	} else {
1770 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1771 	}
1772 out:
1773 	btrfs_free_path(path);
1774 	return ret;
1775 }
1776 
1777 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1778 				  struct btrfs_device *device,
1779 				  u64 chunk_offset, u64 start, u64 num_bytes)
1780 {
1781 	int ret;
1782 	struct btrfs_path *path;
1783 	struct btrfs_fs_info *fs_info = device->fs_info;
1784 	struct btrfs_root *root = fs_info->dev_root;
1785 	struct btrfs_dev_extent *extent;
1786 	struct extent_buffer *leaf;
1787 	struct btrfs_key key;
1788 
1789 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1790 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1791 	path = btrfs_alloc_path();
1792 	if (!path)
1793 		return -ENOMEM;
1794 
1795 	key.objectid = device->devid;
1796 	key.offset = start;
1797 	key.type = BTRFS_DEV_EXTENT_KEY;
1798 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1799 				      sizeof(*extent));
1800 	if (ret)
1801 		goto out;
1802 
1803 	leaf = path->nodes[0];
1804 	extent = btrfs_item_ptr(leaf, path->slots[0],
1805 				struct btrfs_dev_extent);
1806 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1807 					BTRFS_CHUNK_TREE_OBJECTID);
1808 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1809 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1810 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1811 
1812 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1813 	btrfs_mark_buffer_dirty(leaf);
1814 out:
1815 	btrfs_free_path(path);
1816 	return ret;
1817 }
1818 
1819 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1820 {
1821 	struct extent_map_tree *em_tree;
1822 	struct extent_map *em;
1823 	struct rb_node *n;
1824 	u64 ret = 0;
1825 
1826 	em_tree = &fs_info->mapping_tree;
1827 	read_lock(&em_tree->lock);
1828 	n = rb_last(&em_tree->map.rb_root);
1829 	if (n) {
1830 		em = rb_entry(n, struct extent_map, rb_node);
1831 		ret = em->start + em->len;
1832 	}
1833 	read_unlock(&em_tree->lock);
1834 
1835 	return ret;
1836 }
1837 
1838 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1839 				    u64 *devid_ret)
1840 {
1841 	int ret;
1842 	struct btrfs_key key;
1843 	struct btrfs_key found_key;
1844 	struct btrfs_path *path;
1845 
1846 	path = btrfs_alloc_path();
1847 	if (!path)
1848 		return -ENOMEM;
1849 
1850 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1851 	key.type = BTRFS_DEV_ITEM_KEY;
1852 	key.offset = (u64)-1;
1853 
1854 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1855 	if (ret < 0)
1856 		goto error;
1857 
1858 	BUG_ON(ret == 0); /* Corruption */
1859 
1860 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1861 				  BTRFS_DEV_ITEMS_OBJECTID,
1862 				  BTRFS_DEV_ITEM_KEY);
1863 	if (ret) {
1864 		*devid_ret = 1;
1865 	} else {
1866 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1867 				      path->slots[0]);
1868 		*devid_ret = found_key.offset + 1;
1869 	}
1870 	ret = 0;
1871 error:
1872 	btrfs_free_path(path);
1873 	return ret;
1874 }
1875 
1876 /*
1877  * the device information is stored in the chunk root
1878  * the btrfs_device struct should be fully filled in
1879  */
1880 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1881 			    struct btrfs_device *device)
1882 {
1883 	int ret;
1884 	struct btrfs_path *path;
1885 	struct btrfs_dev_item *dev_item;
1886 	struct extent_buffer *leaf;
1887 	struct btrfs_key key;
1888 	unsigned long ptr;
1889 
1890 	path = btrfs_alloc_path();
1891 	if (!path)
1892 		return -ENOMEM;
1893 
1894 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1895 	key.type = BTRFS_DEV_ITEM_KEY;
1896 	key.offset = device->devid;
1897 
1898 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1899 				      &key, sizeof(*dev_item));
1900 	if (ret)
1901 		goto out;
1902 
1903 	leaf = path->nodes[0];
1904 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1905 
1906 	btrfs_set_device_id(leaf, dev_item, device->devid);
1907 	btrfs_set_device_generation(leaf, dev_item, 0);
1908 	btrfs_set_device_type(leaf, dev_item, device->type);
1909 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1910 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1911 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1912 	btrfs_set_device_total_bytes(leaf, dev_item,
1913 				     btrfs_device_get_disk_total_bytes(device));
1914 	btrfs_set_device_bytes_used(leaf, dev_item,
1915 				    btrfs_device_get_bytes_used(device));
1916 	btrfs_set_device_group(leaf, dev_item, 0);
1917 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1918 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1919 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1920 
1921 	ptr = btrfs_device_uuid(dev_item);
1922 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1923 	ptr = btrfs_device_fsid(dev_item);
1924 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1925 			    ptr, BTRFS_FSID_SIZE);
1926 	btrfs_mark_buffer_dirty(leaf);
1927 
1928 	ret = 0;
1929 out:
1930 	btrfs_free_path(path);
1931 	return ret;
1932 }
1933 
1934 /*
1935  * Function to update ctime/mtime for a given device path.
1936  * Mainly used for ctime/mtime based probe like libblkid.
1937  */
1938 static void update_dev_time(const char *path_name)
1939 {
1940 	struct file *filp;
1941 
1942 	filp = filp_open(path_name, O_RDWR, 0);
1943 	if (IS_ERR(filp))
1944 		return;
1945 	file_update_time(filp);
1946 	filp_close(filp, NULL);
1947 }
1948 
1949 static int btrfs_rm_dev_item(struct btrfs_device *device)
1950 {
1951 	struct btrfs_root *root = device->fs_info->chunk_root;
1952 	int ret;
1953 	struct btrfs_path *path;
1954 	struct btrfs_key key;
1955 	struct btrfs_trans_handle *trans;
1956 
1957 	path = btrfs_alloc_path();
1958 	if (!path)
1959 		return -ENOMEM;
1960 
1961 	trans = btrfs_start_transaction(root, 0);
1962 	if (IS_ERR(trans)) {
1963 		btrfs_free_path(path);
1964 		return PTR_ERR(trans);
1965 	}
1966 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1967 	key.type = BTRFS_DEV_ITEM_KEY;
1968 	key.offset = device->devid;
1969 
1970 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1971 	if (ret) {
1972 		if (ret > 0)
1973 			ret = -ENOENT;
1974 		btrfs_abort_transaction(trans, ret);
1975 		btrfs_end_transaction(trans);
1976 		goto out;
1977 	}
1978 
1979 	ret = btrfs_del_item(trans, root, path);
1980 	if (ret) {
1981 		btrfs_abort_transaction(trans, ret);
1982 		btrfs_end_transaction(trans);
1983 	}
1984 
1985 out:
1986 	btrfs_free_path(path);
1987 	if (!ret)
1988 		ret = btrfs_commit_transaction(trans);
1989 	return ret;
1990 }
1991 
1992 /*
1993  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1994  * filesystem. It's up to the caller to adjust that number regarding eg. device
1995  * replace.
1996  */
1997 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1998 		u64 num_devices)
1999 {
2000 	u64 all_avail;
2001 	unsigned seq;
2002 	int i;
2003 
2004 	do {
2005 		seq = read_seqbegin(&fs_info->profiles_lock);
2006 
2007 		all_avail = fs_info->avail_data_alloc_bits |
2008 			    fs_info->avail_system_alloc_bits |
2009 			    fs_info->avail_metadata_alloc_bits;
2010 	} while (read_seqretry(&fs_info->profiles_lock, seq));
2011 
2012 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2013 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2014 			continue;
2015 
2016 		if (num_devices < btrfs_raid_array[i].devs_min) {
2017 			int ret = btrfs_raid_array[i].mindev_error;
2018 
2019 			if (ret)
2020 				return ret;
2021 		}
2022 	}
2023 
2024 	return 0;
2025 }
2026 
2027 static struct btrfs_device * btrfs_find_next_active_device(
2028 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2029 {
2030 	struct btrfs_device *next_device;
2031 
2032 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2033 		if (next_device != device &&
2034 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2035 		    && next_device->bdev)
2036 			return next_device;
2037 	}
2038 
2039 	return NULL;
2040 }
2041 
2042 /*
2043  * Helper function to check if the given device is part of s_bdev / latest_bdev
2044  * and replace it with the provided or the next active device, in the context
2045  * where this function called, there should be always be another device (or
2046  * this_dev) which is active.
2047  */
2048 void btrfs_assign_next_active_device(struct btrfs_device *device,
2049 				     struct btrfs_device *this_dev)
2050 {
2051 	struct btrfs_fs_info *fs_info = device->fs_info;
2052 	struct btrfs_device *next_device;
2053 
2054 	if (this_dev)
2055 		next_device = this_dev;
2056 	else
2057 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2058 								device);
2059 	ASSERT(next_device);
2060 
2061 	if (fs_info->sb->s_bdev &&
2062 			(fs_info->sb->s_bdev == device->bdev))
2063 		fs_info->sb->s_bdev = next_device->bdev;
2064 
2065 	if (fs_info->fs_devices->latest_bdev == device->bdev)
2066 		fs_info->fs_devices->latest_bdev = next_device->bdev;
2067 }
2068 
2069 /*
2070  * Return btrfs_fs_devices::num_devices excluding the device that's being
2071  * currently replaced.
2072  */
2073 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2074 {
2075 	u64 num_devices = fs_info->fs_devices->num_devices;
2076 
2077 	down_read(&fs_info->dev_replace.rwsem);
2078 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2079 		ASSERT(num_devices > 1);
2080 		num_devices--;
2081 	}
2082 	up_read(&fs_info->dev_replace.rwsem);
2083 
2084 	return num_devices;
2085 }
2086 
2087 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2088 		u64 devid)
2089 {
2090 	struct btrfs_device *device;
2091 	struct btrfs_fs_devices *cur_devices;
2092 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2093 	u64 num_devices;
2094 	int ret = 0;
2095 
2096 	mutex_lock(&uuid_mutex);
2097 
2098 	num_devices = btrfs_num_devices(fs_info);
2099 
2100 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2101 	if (ret)
2102 		goto out;
2103 
2104 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2105 
2106 	if (IS_ERR(device)) {
2107 		if (PTR_ERR(device) == -ENOENT &&
2108 		    strcmp(device_path, "missing") == 0)
2109 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2110 		else
2111 			ret = PTR_ERR(device);
2112 		goto out;
2113 	}
2114 
2115 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2116 		btrfs_warn_in_rcu(fs_info,
2117 		  "cannot remove device %s (devid %llu) due to active swapfile",
2118 				  rcu_str_deref(device->name), device->devid);
2119 		ret = -ETXTBSY;
2120 		goto out;
2121 	}
2122 
2123 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2124 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2125 		goto out;
2126 	}
2127 
2128 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2129 	    fs_info->fs_devices->rw_devices == 1) {
2130 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2131 		goto out;
2132 	}
2133 
2134 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2135 		mutex_lock(&fs_info->chunk_mutex);
2136 		list_del_init(&device->dev_alloc_list);
2137 		device->fs_devices->rw_devices--;
2138 		mutex_unlock(&fs_info->chunk_mutex);
2139 	}
2140 
2141 	mutex_unlock(&uuid_mutex);
2142 	ret = btrfs_shrink_device(device, 0);
2143 	mutex_lock(&uuid_mutex);
2144 	if (ret)
2145 		goto error_undo;
2146 
2147 	/*
2148 	 * TODO: the superblock still includes this device in its num_devices
2149 	 * counter although write_all_supers() is not locked out. This
2150 	 * could give a filesystem state which requires a degraded mount.
2151 	 */
2152 	ret = btrfs_rm_dev_item(device);
2153 	if (ret)
2154 		goto error_undo;
2155 
2156 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2157 	btrfs_scrub_cancel_dev(device);
2158 
2159 	/*
2160 	 * the device list mutex makes sure that we don't change
2161 	 * the device list while someone else is writing out all
2162 	 * the device supers. Whoever is writing all supers, should
2163 	 * lock the device list mutex before getting the number of
2164 	 * devices in the super block (super_copy). Conversely,
2165 	 * whoever updates the number of devices in the super block
2166 	 * (super_copy) should hold the device list mutex.
2167 	 */
2168 
2169 	/*
2170 	 * In normal cases the cur_devices == fs_devices. But in case
2171 	 * of deleting a seed device, the cur_devices should point to
2172 	 * its own fs_devices listed under the fs_devices->seed.
2173 	 */
2174 	cur_devices = device->fs_devices;
2175 	mutex_lock(&fs_devices->device_list_mutex);
2176 	list_del_rcu(&device->dev_list);
2177 
2178 	cur_devices->num_devices--;
2179 	cur_devices->total_devices--;
2180 	/* Update total_devices of the parent fs_devices if it's seed */
2181 	if (cur_devices != fs_devices)
2182 		fs_devices->total_devices--;
2183 
2184 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2185 		cur_devices->missing_devices--;
2186 
2187 	btrfs_assign_next_active_device(device, NULL);
2188 
2189 	if (device->bdev) {
2190 		cur_devices->open_devices--;
2191 		/* remove sysfs entry */
2192 		btrfs_sysfs_rm_device_link(fs_devices, device);
2193 	}
2194 
2195 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2196 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2197 	mutex_unlock(&fs_devices->device_list_mutex);
2198 
2199 	/*
2200 	 * at this point, the device is zero sized and detached from
2201 	 * the devices list.  All that's left is to zero out the old
2202 	 * supers and free the device.
2203 	 */
2204 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2205 		btrfs_scratch_superblocks(device->bdev, device->name->str);
2206 
2207 	btrfs_close_bdev(device);
2208 	synchronize_rcu();
2209 	btrfs_free_device(device);
2210 
2211 	if (cur_devices->open_devices == 0) {
2212 		while (fs_devices) {
2213 			if (fs_devices->seed == cur_devices) {
2214 				fs_devices->seed = cur_devices->seed;
2215 				break;
2216 			}
2217 			fs_devices = fs_devices->seed;
2218 		}
2219 		cur_devices->seed = NULL;
2220 		close_fs_devices(cur_devices);
2221 		free_fs_devices(cur_devices);
2222 	}
2223 
2224 out:
2225 	mutex_unlock(&uuid_mutex);
2226 	return ret;
2227 
2228 error_undo:
2229 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2230 		mutex_lock(&fs_info->chunk_mutex);
2231 		list_add(&device->dev_alloc_list,
2232 			 &fs_devices->alloc_list);
2233 		device->fs_devices->rw_devices++;
2234 		mutex_unlock(&fs_info->chunk_mutex);
2235 	}
2236 	goto out;
2237 }
2238 
2239 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2240 {
2241 	struct btrfs_fs_devices *fs_devices;
2242 
2243 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2244 
2245 	/*
2246 	 * in case of fs with no seed, srcdev->fs_devices will point
2247 	 * to fs_devices of fs_info. However when the dev being replaced is
2248 	 * a seed dev it will point to the seed's local fs_devices. In short
2249 	 * srcdev will have its correct fs_devices in both the cases.
2250 	 */
2251 	fs_devices = srcdev->fs_devices;
2252 
2253 	list_del_rcu(&srcdev->dev_list);
2254 	list_del(&srcdev->dev_alloc_list);
2255 	fs_devices->num_devices--;
2256 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2257 		fs_devices->missing_devices--;
2258 
2259 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2260 		fs_devices->rw_devices--;
2261 
2262 	if (srcdev->bdev)
2263 		fs_devices->open_devices--;
2264 }
2265 
2266 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2267 {
2268 	struct btrfs_fs_info *fs_info = srcdev->fs_info;
2269 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2270 
2271 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2272 		/* zero out the old super if it is writable */
2273 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2274 	}
2275 
2276 	btrfs_close_bdev(srcdev);
2277 	synchronize_rcu();
2278 	btrfs_free_device(srcdev);
2279 
2280 	/* if this is no devs we rather delete the fs_devices */
2281 	if (!fs_devices->num_devices) {
2282 		struct btrfs_fs_devices *tmp_fs_devices;
2283 
2284 		/*
2285 		 * On a mounted FS, num_devices can't be zero unless it's a
2286 		 * seed. In case of a seed device being replaced, the replace
2287 		 * target added to the sprout FS, so there will be no more
2288 		 * device left under the seed FS.
2289 		 */
2290 		ASSERT(fs_devices->seeding);
2291 
2292 		tmp_fs_devices = fs_info->fs_devices;
2293 		while (tmp_fs_devices) {
2294 			if (tmp_fs_devices->seed == fs_devices) {
2295 				tmp_fs_devices->seed = fs_devices->seed;
2296 				break;
2297 			}
2298 			tmp_fs_devices = tmp_fs_devices->seed;
2299 		}
2300 		fs_devices->seed = NULL;
2301 		close_fs_devices(fs_devices);
2302 		free_fs_devices(fs_devices);
2303 	}
2304 }
2305 
2306 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2307 {
2308 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2309 
2310 	WARN_ON(!tgtdev);
2311 	mutex_lock(&fs_devices->device_list_mutex);
2312 
2313 	btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2314 
2315 	if (tgtdev->bdev)
2316 		fs_devices->open_devices--;
2317 
2318 	fs_devices->num_devices--;
2319 
2320 	btrfs_assign_next_active_device(tgtdev, NULL);
2321 
2322 	list_del_rcu(&tgtdev->dev_list);
2323 
2324 	mutex_unlock(&fs_devices->device_list_mutex);
2325 
2326 	/*
2327 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2328 	 * may lead to a call to btrfs_show_devname() which will try
2329 	 * to hold device_list_mutex. And here this device
2330 	 * is already out of device list, so we don't have to hold
2331 	 * the device_list_mutex lock.
2332 	 */
2333 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2334 
2335 	btrfs_close_bdev(tgtdev);
2336 	synchronize_rcu();
2337 	btrfs_free_device(tgtdev);
2338 }
2339 
2340 static struct btrfs_device *btrfs_find_device_by_path(
2341 		struct btrfs_fs_info *fs_info, const char *device_path)
2342 {
2343 	int ret = 0;
2344 	struct btrfs_super_block *disk_super;
2345 	u64 devid;
2346 	u8 *dev_uuid;
2347 	struct block_device *bdev;
2348 	struct buffer_head *bh;
2349 	struct btrfs_device *device;
2350 
2351 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2352 				    fs_info->bdev_holder, 0, &bdev, &bh);
2353 	if (ret)
2354 		return ERR_PTR(ret);
2355 	disk_super = (struct btrfs_super_block *)bh->b_data;
2356 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2357 	dev_uuid = disk_super->dev_item.uuid;
2358 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2359 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2360 					   disk_super->metadata_uuid, true);
2361 	else
2362 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2363 					   disk_super->fsid, true);
2364 
2365 	brelse(bh);
2366 	if (!device)
2367 		device = ERR_PTR(-ENOENT);
2368 	blkdev_put(bdev, FMODE_READ);
2369 	return device;
2370 }
2371 
2372 /*
2373  * Lookup a device given by device id, or the path if the id is 0.
2374  */
2375 struct btrfs_device *btrfs_find_device_by_devspec(
2376 		struct btrfs_fs_info *fs_info, u64 devid,
2377 		const char *device_path)
2378 {
2379 	struct btrfs_device *device;
2380 
2381 	if (devid) {
2382 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2383 					   NULL, true);
2384 		if (!device)
2385 			return ERR_PTR(-ENOENT);
2386 		return device;
2387 	}
2388 
2389 	if (!device_path || !device_path[0])
2390 		return ERR_PTR(-EINVAL);
2391 
2392 	if (strcmp(device_path, "missing") == 0) {
2393 		/* Find first missing device */
2394 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2395 				    dev_list) {
2396 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2397 				     &device->dev_state) && !device->bdev)
2398 				return device;
2399 		}
2400 		return ERR_PTR(-ENOENT);
2401 	}
2402 
2403 	return btrfs_find_device_by_path(fs_info, device_path);
2404 }
2405 
2406 /*
2407  * does all the dirty work required for changing file system's UUID.
2408  */
2409 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2410 {
2411 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2412 	struct btrfs_fs_devices *old_devices;
2413 	struct btrfs_fs_devices *seed_devices;
2414 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2415 	struct btrfs_device *device;
2416 	u64 super_flags;
2417 
2418 	lockdep_assert_held(&uuid_mutex);
2419 	if (!fs_devices->seeding)
2420 		return -EINVAL;
2421 
2422 	seed_devices = alloc_fs_devices(NULL, NULL);
2423 	if (IS_ERR(seed_devices))
2424 		return PTR_ERR(seed_devices);
2425 
2426 	old_devices = clone_fs_devices(fs_devices);
2427 	if (IS_ERR(old_devices)) {
2428 		kfree(seed_devices);
2429 		return PTR_ERR(old_devices);
2430 	}
2431 
2432 	list_add(&old_devices->fs_list, &fs_uuids);
2433 
2434 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2435 	seed_devices->opened = 1;
2436 	INIT_LIST_HEAD(&seed_devices->devices);
2437 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2438 	mutex_init(&seed_devices->device_list_mutex);
2439 
2440 	mutex_lock(&fs_devices->device_list_mutex);
2441 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2442 			      synchronize_rcu);
2443 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2444 		device->fs_devices = seed_devices;
2445 
2446 	mutex_lock(&fs_info->chunk_mutex);
2447 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2448 	mutex_unlock(&fs_info->chunk_mutex);
2449 
2450 	fs_devices->seeding = 0;
2451 	fs_devices->num_devices = 0;
2452 	fs_devices->open_devices = 0;
2453 	fs_devices->missing_devices = 0;
2454 	fs_devices->rotating = 0;
2455 	fs_devices->seed = seed_devices;
2456 
2457 	generate_random_uuid(fs_devices->fsid);
2458 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2459 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2460 	mutex_unlock(&fs_devices->device_list_mutex);
2461 
2462 	super_flags = btrfs_super_flags(disk_super) &
2463 		      ~BTRFS_SUPER_FLAG_SEEDING;
2464 	btrfs_set_super_flags(disk_super, super_flags);
2465 
2466 	return 0;
2467 }
2468 
2469 /*
2470  * Store the expected generation for seed devices in device items.
2471  */
2472 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2473 {
2474 	struct btrfs_fs_info *fs_info = trans->fs_info;
2475 	struct btrfs_root *root = fs_info->chunk_root;
2476 	struct btrfs_path *path;
2477 	struct extent_buffer *leaf;
2478 	struct btrfs_dev_item *dev_item;
2479 	struct btrfs_device *device;
2480 	struct btrfs_key key;
2481 	u8 fs_uuid[BTRFS_FSID_SIZE];
2482 	u8 dev_uuid[BTRFS_UUID_SIZE];
2483 	u64 devid;
2484 	int ret;
2485 
2486 	path = btrfs_alloc_path();
2487 	if (!path)
2488 		return -ENOMEM;
2489 
2490 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2491 	key.offset = 0;
2492 	key.type = BTRFS_DEV_ITEM_KEY;
2493 
2494 	while (1) {
2495 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2496 		if (ret < 0)
2497 			goto error;
2498 
2499 		leaf = path->nodes[0];
2500 next_slot:
2501 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2502 			ret = btrfs_next_leaf(root, path);
2503 			if (ret > 0)
2504 				break;
2505 			if (ret < 0)
2506 				goto error;
2507 			leaf = path->nodes[0];
2508 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2509 			btrfs_release_path(path);
2510 			continue;
2511 		}
2512 
2513 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2514 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2515 		    key.type != BTRFS_DEV_ITEM_KEY)
2516 			break;
2517 
2518 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2519 					  struct btrfs_dev_item);
2520 		devid = btrfs_device_id(leaf, dev_item);
2521 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2522 				   BTRFS_UUID_SIZE);
2523 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2524 				   BTRFS_FSID_SIZE);
2525 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2526 					   fs_uuid, true);
2527 		BUG_ON(!device); /* Logic error */
2528 
2529 		if (device->fs_devices->seeding) {
2530 			btrfs_set_device_generation(leaf, dev_item,
2531 						    device->generation);
2532 			btrfs_mark_buffer_dirty(leaf);
2533 		}
2534 
2535 		path->slots[0]++;
2536 		goto next_slot;
2537 	}
2538 	ret = 0;
2539 error:
2540 	btrfs_free_path(path);
2541 	return ret;
2542 }
2543 
2544 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2545 {
2546 	struct btrfs_root *root = fs_info->dev_root;
2547 	struct request_queue *q;
2548 	struct btrfs_trans_handle *trans;
2549 	struct btrfs_device *device;
2550 	struct block_device *bdev;
2551 	struct super_block *sb = fs_info->sb;
2552 	struct rcu_string *name;
2553 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2554 	u64 orig_super_total_bytes;
2555 	u64 orig_super_num_devices;
2556 	int seeding_dev = 0;
2557 	int ret = 0;
2558 	bool unlocked = false;
2559 
2560 	if (sb_rdonly(sb) && !fs_devices->seeding)
2561 		return -EROFS;
2562 
2563 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2564 				  fs_info->bdev_holder);
2565 	if (IS_ERR(bdev))
2566 		return PTR_ERR(bdev);
2567 
2568 	if (fs_devices->seeding) {
2569 		seeding_dev = 1;
2570 		down_write(&sb->s_umount);
2571 		mutex_lock(&uuid_mutex);
2572 	}
2573 
2574 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2575 
2576 	mutex_lock(&fs_devices->device_list_mutex);
2577 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2578 		if (device->bdev == bdev) {
2579 			ret = -EEXIST;
2580 			mutex_unlock(
2581 				&fs_devices->device_list_mutex);
2582 			goto error;
2583 		}
2584 	}
2585 	mutex_unlock(&fs_devices->device_list_mutex);
2586 
2587 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2588 	if (IS_ERR(device)) {
2589 		/* we can safely leave the fs_devices entry around */
2590 		ret = PTR_ERR(device);
2591 		goto error;
2592 	}
2593 
2594 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2595 	if (!name) {
2596 		ret = -ENOMEM;
2597 		goto error_free_device;
2598 	}
2599 	rcu_assign_pointer(device->name, name);
2600 
2601 	trans = btrfs_start_transaction(root, 0);
2602 	if (IS_ERR(trans)) {
2603 		ret = PTR_ERR(trans);
2604 		goto error_free_device;
2605 	}
2606 
2607 	q = bdev_get_queue(bdev);
2608 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2609 	device->generation = trans->transid;
2610 	device->io_width = fs_info->sectorsize;
2611 	device->io_align = fs_info->sectorsize;
2612 	device->sector_size = fs_info->sectorsize;
2613 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2614 					 fs_info->sectorsize);
2615 	device->disk_total_bytes = device->total_bytes;
2616 	device->commit_total_bytes = device->total_bytes;
2617 	device->fs_info = fs_info;
2618 	device->bdev = bdev;
2619 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2620 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2621 	device->mode = FMODE_EXCL;
2622 	device->dev_stats_valid = 1;
2623 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2624 
2625 	if (seeding_dev) {
2626 		sb->s_flags &= ~SB_RDONLY;
2627 		ret = btrfs_prepare_sprout(fs_info);
2628 		if (ret) {
2629 			btrfs_abort_transaction(trans, ret);
2630 			goto error_trans;
2631 		}
2632 	}
2633 
2634 	device->fs_devices = fs_devices;
2635 
2636 	mutex_lock(&fs_devices->device_list_mutex);
2637 	mutex_lock(&fs_info->chunk_mutex);
2638 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2639 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2640 	fs_devices->num_devices++;
2641 	fs_devices->open_devices++;
2642 	fs_devices->rw_devices++;
2643 	fs_devices->total_devices++;
2644 	fs_devices->total_rw_bytes += device->total_bytes;
2645 
2646 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2647 
2648 	if (!blk_queue_nonrot(q))
2649 		fs_devices->rotating = 1;
2650 
2651 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2652 	btrfs_set_super_total_bytes(fs_info->super_copy,
2653 		round_down(orig_super_total_bytes + device->total_bytes,
2654 			   fs_info->sectorsize));
2655 
2656 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2657 	btrfs_set_super_num_devices(fs_info->super_copy,
2658 				    orig_super_num_devices + 1);
2659 
2660 	/* add sysfs device entry */
2661 	btrfs_sysfs_add_device_link(fs_devices, device);
2662 
2663 	/*
2664 	 * we've got more storage, clear any full flags on the space
2665 	 * infos
2666 	 */
2667 	btrfs_clear_space_info_full(fs_info);
2668 
2669 	mutex_unlock(&fs_info->chunk_mutex);
2670 	mutex_unlock(&fs_devices->device_list_mutex);
2671 
2672 	if (seeding_dev) {
2673 		mutex_lock(&fs_info->chunk_mutex);
2674 		ret = init_first_rw_device(trans);
2675 		mutex_unlock(&fs_info->chunk_mutex);
2676 		if (ret) {
2677 			btrfs_abort_transaction(trans, ret);
2678 			goto error_sysfs;
2679 		}
2680 	}
2681 
2682 	ret = btrfs_add_dev_item(trans, device);
2683 	if (ret) {
2684 		btrfs_abort_transaction(trans, ret);
2685 		goto error_sysfs;
2686 	}
2687 
2688 	if (seeding_dev) {
2689 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2690 
2691 		ret = btrfs_finish_sprout(trans);
2692 		if (ret) {
2693 			btrfs_abort_transaction(trans, ret);
2694 			goto error_sysfs;
2695 		}
2696 
2697 		/* Sprouting would change fsid of the mounted root,
2698 		 * so rename the fsid on the sysfs
2699 		 */
2700 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2701 						fs_info->fs_devices->fsid);
2702 		if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2703 			btrfs_warn(fs_info,
2704 				   "sysfs: failed to create fsid for sprout");
2705 	}
2706 
2707 	ret = btrfs_commit_transaction(trans);
2708 
2709 	if (seeding_dev) {
2710 		mutex_unlock(&uuid_mutex);
2711 		up_write(&sb->s_umount);
2712 		unlocked = true;
2713 
2714 		if (ret) /* transaction commit */
2715 			return ret;
2716 
2717 		ret = btrfs_relocate_sys_chunks(fs_info);
2718 		if (ret < 0)
2719 			btrfs_handle_fs_error(fs_info, ret,
2720 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2721 		trans = btrfs_attach_transaction(root);
2722 		if (IS_ERR(trans)) {
2723 			if (PTR_ERR(trans) == -ENOENT)
2724 				return 0;
2725 			ret = PTR_ERR(trans);
2726 			trans = NULL;
2727 			goto error_sysfs;
2728 		}
2729 		ret = btrfs_commit_transaction(trans);
2730 	}
2731 
2732 	/* Update ctime/mtime for libblkid */
2733 	update_dev_time(device_path);
2734 	return ret;
2735 
2736 error_sysfs:
2737 	btrfs_sysfs_rm_device_link(fs_devices, device);
2738 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2739 	mutex_lock(&fs_info->chunk_mutex);
2740 	list_del_rcu(&device->dev_list);
2741 	list_del(&device->dev_alloc_list);
2742 	fs_info->fs_devices->num_devices--;
2743 	fs_info->fs_devices->open_devices--;
2744 	fs_info->fs_devices->rw_devices--;
2745 	fs_info->fs_devices->total_devices--;
2746 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2747 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2748 	btrfs_set_super_total_bytes(fs_info->super_copy,
2749 				    orig_super_total_bytes);
2750 	btrfs_set_super_num_devices(fs_info->super_copy,
2751 				    orig_super_num_devices);
2752 	mutex_unlock(&fs_info->chunk_mutex);
2753 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2754 error_trans:
2755 	if (seeding_dev)
2756 		sb->s_flags |= SB_RDONLY;
2757 	if (trans)
2758 		btrfs_end_transaction(trans);
2759 error_free_device:
2760 	btrfs_free_device(device);
2761 error:
2762 	blkdev_put(bdev, FMODE_EXCL);
2763 	if (seeding_dev && !unlocked) {
2764 		mutex_unlock(&uuid_mutex);
2765 		up_write(&sb->s_umount);
2766 	}
2767 	return ret;
2768 }
2769 
2770 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2771 					struct btrfs_device *device)
2772 {
2773 	int ret;
2774 	struct btrfs_path *path;
2775 	struct btrfs_root *root = device->fs_info->chunk_root;
2776 	struct btrfs_dev_item *dev_item;
2777 	struct extent_buffer *leaf;
2778 	struct btrfs_key key;
2779 
2780 	path = btrfs_alloc_path();
2781 	if (!path)
2782 		return -ENOMEM;
2783 
2784 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2785 	key.type = BTRFS_DEV_ITEM_KEY;
2786 	key.offset = device->devid;
2787 
2788 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2789 	if (ret < 0)
2790 		goto out;
2791 
2792 	if (ret > 0) {
2793 		ret = -ENOENT;
2794 		goto out;
2795 	}
2796 
2797 	leaf = path->nodes[0];
2798 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2799 
2800 	btrfs_set_device_id(leaf, dev_item, device->devid);
2801 	btrfs_set_device_type(leaf, dev_item, device->type);
2802 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2803 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2804 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2805 	btrfs_set_device_total_bytes(leaf, dev_item,
2806 				     btrfs_device_get_disk_total_bytes(device));
2807 	btrfs_set_device_bytes_used(leaf, dev_item,
2808 				    btrfs_device_get_bytes_used(device));
2809 	btrfs_mark_buffer_dirty(leaf);
2810 
2811 out:
2812 	btrfs_free_path(path);
2813 	return ret;
2814 }
2815 
2816 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2817 		      struct btrfs_device *device, u64 new_size)
2818 {
2819 	struct btrfs_fs_info *fs_info = device->fs_info;
2820 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2821 	u64 old_total;
2822 	u64 diff;
2823 
2824 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2825 		return -EACCES;
2826 
2827 	new_size = round_down(new_size, fs_info->sectorsize);
2828 
2829 	mutex_lock(&fs_info->chunk_mutex);
2830 	old_total = btrfs_super_total_bytes(super_copy);
2831 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2832 
2833 	if (new_size <= device->total_bytes ||
2834 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2835 		mutex_unlock(&fs_info->chunk_mutex);
2836 		return -EINVAL;
2837 	}
2838 
2839 	btrfs_set_super_total_bytes(super_copy,
2840 			round_down(old_total + diff, fs_info->sectorsize));
2841 	device->fs_devices->total_rw_bytes += diff;
2842 
2843 	btrfs_device_set_total_bytes(device, new_size);
2844 	btrfs_device_set_disk_total_bytes(device, new_size);
2845 	btrfs_clear_space_info_full(device->fs_info);
2846 	if (list_empty(&device->post_commit_list))
2847 		list_add_tail(&device->post_commit_list,
2848 			      &trans->transaction->dev_update_list);
2849 	mutex_unlock(&fs_info->chunk_mutex);
2850 
2851 	return btrfs_update_device(trans, device);
2852 }
2853 
2854 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2855 {
2856 	struct btrfs_fs_info *fs_info = trans->fs_info;
2857 	struct btrfs_root *root = fs_info->chunk_root;
2858 	int ret;
2859 	struct btrfs_path *path;
2860 	struct btrfs_key key;
2861 
2862 	path = btrfs_alloc_path();
2863 	if (!path)
2864 		return -ENOMEM;
2865 
2866 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2867 	key.offset = chunk_offset;
2868 	key.type = BTRFS_CHUNK_ITEM_KEY;
2869 
2870 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2871 	if (ret < 0)
2872 		goto out;
2873 	else if (ret > 0) { /* Logic error or corruption */
2874 		btrfs_handle_fs_error(fs_info, -ENOENT,
2875 				      "Failed lookup while freeing chunk.");
2876 		ret = -ENOENT;
2877 		goto out;
2878 	}
2879 
2880 	ret = btrfs_del_item(trans, root, path);
2881 	if (ret < 0)
2882 		btrfs_handle_fs_error(fs_info, ret,
2883 				      "Failed to delete chunk item.");
2884 out:
2885 	btrfs_free_path(path);
2886 	return ret;
2887 }
2888 
2889 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2890 {
2891 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2892 	struct btrfs_disk_key *disk_key;
2893 	struct btrfs_chunk *chunk;
2894 	u8 *ptr;
2895 	int ret = 0;
2896 	u32 num_stripes;
2897 	u32 array_size;
2898 	u32 len = 0;
2899 	u32 cur;
2900 	struct btrfs_key key;
2901 
2902 	mutex_lock(&fs_info->chunk_mutex);
2903 	array_size = btrfs_super_sys_array_size(super_copy);
2904 
2905 	ptr = super_copy->sys_chunk_array;
2906 	cur = 0;
2907 
2908 	while (cur < array_size) {
2909 		disk_key = (struct btrfs_disk_key *)ptr;
2910 		btrfs_disk_key_to_cpu(&key, disk_key);
2911 
2912 		len = sizeof(*disk_key);
2913 
2914 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2915 			chunk = (struct btrfs_chunk *)(ptr + len);
2916 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2917 			len += btrfs_chunk_item_size(num_stripes);
2918 		} else {
2919 			ret = -EIO;
2920 			break;
2921 		}
2922 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2923 		    key.offset == chunk_offset) {
2924 			memmove(ptr, ptr + len, array_size - (cur + len));
2925 			array_size -= len;
2926 			btrfs_set_super_sys_array_size(super_copy, array_size);
2927 		} else {
2928 			ptr += len;
2929 			cur += len;
2930 		}
2931 	}
2932 	mutex_unlock(&fs_info->chunk_mutex);
2933 	return ret;
2934 }
2935 
2936 /*
2937  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2938  * @logical: Logical block offset in bytes.
2939  * @length: Length of extent in bytes.
2940  *
2941  * Return: Chunk mapping or ERR_PTR.
2942  */
2943 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2944 				       u64 logical, u64 length)
2945 {
2946 	struct extent_map_tree *em_tree;
2947 	struct extent_map *em;
2948 
2949 	em_tree = &fs_info->mapping_tree;
2950 	read_lock(&em_tree->lock);
2951 	em = lookup_extent_mapping(em_tree, logical, length);
2952 	read_unlock(&em_tree->lock);
2953 
2954 	if (!em) {
2955 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2956 			   logical, length);
2957 		return ERR_PTR(-EINVAL);
2958 	}
2959 
2960 	if (em->start > logical || em->start + em->len < logical) {
2961 		btrfs_crit(fs_info,
2962 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2963 			   logical, length, em->start, em->start + em->len);
2964 		free_extent_map(em);
2965 		return ERR_PTR(-EINVAL);
2966 	}
2967 
2968 	/* callers are responsible for dropping em's ref. */
2969 	return em;
2970 }
2971 
2972 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2973 {
2974 	struct btrfs_fs_info *fs_info = trans->fs_info;
2975 	struct extent_map *em;
2976 	struct map_lookup *map;
2977 	u64 dev_extent_len = 0;
2978 	int i, ret = 0;
2979 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2980 
2981 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2982 	if (IS_ERR(em)) {
2983 		/*
2984 		 * This is a logic error, but we don't want to just rely on the
2985 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2986 		 * do anything we still error out.
2987 		 */
2988 		ASSERT(0);
2989 		return PTR_ERR(em);
2990 	}
2991 	map = em->map_lookup;
2992 	mutex_lock(&fs_info->chunk_mutex);
2993 	check_system_chunk(trans, map->type);
2994 	mutex_unlock(&fs_info->chunk_mutex);
2995 
2996 	/*
2997 	 * Take the device list mutex to prevent races with the final phase of
2998 	 * a device replace operation that replaces the device object associated
2999 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3000 	 */
3001 	mutex_lock(&fs_devices->device_list_mutex);
3002 	for (i = 0; i < map->num_stripes; i++) {
3003 		struct btrfs_device *device = map->stripes[i].dev;
3004 		ret = btrfs_free_dev_extent(trans, device,
3005 					    map->stripes[i].physical,
3006 					    &dev_extent_len);
3007 		if (ret) {
3008 			mutex_unlock(&fs_devices->device_list_mutex);
3009 			btrfs_abort_transaction(trans, ret);
3010 			goto out;
3011 		}
3012 
3013 		if (device->bytes_used > 0) {
3014 			mutex_lock(&fs_info->chunk_mutex);
3015 			btrfs_device_set_bytes_used(device,
3016 					device->bytes_used - dev_extent_len);
3017 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3018 			btrfs_clear_space_info_full(fs_info);
3019 			mutex_unlock(&fs_info->chunk_mutex);
3020 		}
3021 
3022 		ret = btrfs_update_device(trans, device);
3023 		if (ret) {
3024 			mutex_unlock(&fs_devices->device_list_mutex);
3025 			btrfs_abort_transaction(trans, ret);
3026 			goto out;
3027 		}
3028 	}
3029 	mutex_unlock(&fs_devices->device_list_mutex);
3030 
3031 	ret = btrfs_free_chunk(trans, chunk_offset);
3032 	if (ret) {
3033 		btrfs_abort_transaction(trans, ret);
3034 		goto out;
3035 	}
3036 
3037 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3038 
3039 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3040 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3041 		if (ret) {
3042 			btrfs_abort_transaction(trans, ret);
3043 			goto out;
3044 		}
3045 	}
3046 
3047 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3048 	if (ret) {
3049 		btrfs_abort_transaction(trans, ret);
3050 		goto out;
3051 	}
3052 
3053 out:
3054 	/* once for us */
3055 	free_extent_map(em);
3056 	return ret;
3057 }
3058 
3059 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3060 {
3061 	struct btrfs_root *root = fs_info->chunk_root;
3062 	struct btrfs_trans_handle *trans;
3063 	int ret;
3064 
3065 	/*
3066 	 * Prevent races with automatic removal of unused block groups.
3067 	 * After we relocate and before we remove the chunk with offset
3068 	 * chunk_offset, automatic removal of the block group can kick in,
3069 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3070 	 *
3071 	 * Make sure to acquire this mutex before doing a tree search (dev
3072 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3073 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3074 	 * we release the path used to search the chunk/dev tree and before
3075 	 * the current task acquires this mutex and calls us.
3076 	 */
3077 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3078 
3079 	ret = btrfs_can_relocate(fs_info, chunk_offset);
3080 	if (ret)
3081 		return -ENOSPC;
3082 
3083 	/* step one, relocate all the extents inside this chunk */
3084 	btrfs_scrub_pause(fs_info);
3085 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3086 	btrfs_scrub_continue(fs_info);
3087 	if (ret)
3088 		return ret;
3089 
3090 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3091 						     chunk_offset);
3092 	if (IS_ERR(trans)) {
3093 		ret = PTR_ERR(trans);
3094 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3095 		return ret;
3096 	}
3097 
3098 	/*
3099 	 * step two, delete the device extents and the
3100 	 * chunk tree entries
3101 	 */
3102 	ret = btrfs_remove_chunk(trans, chunk_offset);
3103 	btrfs_end_transaction(trans);
3104 	return ret;
3105 }
3106 
3107 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3108 {
3109 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3110 	struct btrfs_path *path;
3111 	struct extent_buffer *leaf;
3112 	struct btrfs_chunk *chunk;
3113 	struct btrfs_key key;
3114 	struct btrfs_key found_key;
3115 	u64 chunk_type;
3116 	bool retried = false;
3117 	int failed = 0;
3118 	int ret;
3119 
3120 	path = btrfs_alloc_path();
3121 	if (!path)
3122 		return -ENOMEM;
3123 
3124 again:
3125 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3126 	key.offset = (u64)-1;
3127 	key.type = BTRFS_CHUNK_ITEM_KEY;
3128 
3129 	while (1) {
3130 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3131 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3132 		if (ret < 0) {
3133 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3134 			goto error;
3135 		}
3136 		BUG_ON(ret == 0); /* Corruption */
3137 
3138 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3139 					  key.type);
3140 		if (ret)
3141 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3142 		if (ret < 0)
3143 			goto error;
3144 		if (ret > 0)
3145 			break;
3146 
3147 		leaf = path->nodes[0];
3148 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3149 
3150 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3151 				       struct btrfs_chunk);
3152 		chunk_type = btrfs_chunk_type(leaf, chunk);
3153 		btrfs_release_path(path);
3154 
3155 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3156 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3157 			if (ret == -ENOSPC)
3158 				failed++;
3159 			else
3160 				BUG_ON(ret);
3161 		}
3162 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3163 
3164 		if (found_key.offset == 0)
3165 			break;
3166 		key.offset = found_key.offset - 1;
3167 	}
3168 	ret = 0;
3169 	if (failed && !retried) {
3170 		failed = 0;
3171 		retried = true;
3172 		goto again;
3173 	} else if (WARN_ON(failed && retried)) {
3174 		ret = -ENOSPC;
3175 	}
3176 error:
3177 	btrfs_free_path(path);
3178 	return ret;
3179 }
3180 
3181 /*
3182  * return 1 : allocate a data chunk successfully,
3183  * return <0: errors during allocating a data chunk,
3184  * return 0 : no need to allocate a data chunk.
3185  */
3186 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3187 				      u64 chunk_offset)
3188 {
3189 	struct btrfs_block_group_cache *cache;
3190 	u64 bytes_used;
3191 	u64 chunk_type;
3192 
3193 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3194 	ASSERT(cache);
3195 	chunk_type = cache->flags;
3196 	btrfs_put_block_group(cache);
3197 
3198 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3199 		spin_lock(&fs_info->data_sinfo->lock);
3200 		bytes_used = fs_info->data_sinfo->bytes_used;
3201 		spin_unlock(&fs_info->data_sinfo->lock);
3202 
3203 		if (!bytes_used) {
3204 			struct btrfs_trans_handle *trans;
3205 			int ret;
3206 
3207 			trans =	btrfs_join_transaction(fs_info->tree_root);
3208 			if (IS_ERR(trans))
3209 				return PTR_ERR(trans);
3210 
3211 			ret = btrfs_force_chunk_alloc(trans,
3212 						      BTRFS_BLOCK_GROUP_DATA);
3213 			btrfs_end_transaction(trans);
3214 			if (ret < 0)
3215 				return ret;
3216 			return 1;
3217 		}
3218 	}
3219 	return 0;
3220 }
3221 
3222 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3223 			       struct btrfs_balance_control *bctl)
3224 {
3225 	struct btrfs_root *root = fs_info->tree_root;
3226 	struct btrfs_trans_handle *trans;
3227 	struct btrfs_balance_item *item;
3228 	struct btrfs_disk_balance_args disk_bargs;
3229 	struct btrfs_path *path;
3230 	struct extent_buffer *leaf;
3231 	struct btrfs_key key;
3232 	int ret, err;
3233 
3234 	path = btrfs_alloc_path();
3235 	if (!path)
3236 		return -ENOMEM;
3237 
3238 	trans = btrfs_start_transaction(root, 0);
3239 	if (IS_ERR(trans)) {
3240 		btrfs_free_path(path);
3241 		return PTR_ERR(trans);
3242 	}
3243 
3244 	key.objectid = BTRFS_BALANCE_OBJECTID;
3245 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3246 	key.offset = 0;
3247 
3248 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3249 				      sizeof(*item));
3250 	if (ret)
3251 		goto out;
3252 
3253 	leaf = path->nodes[0];
3254 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3255 
3256 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3257 
3258 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3259 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3260 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3261 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3262 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3263 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3264 
3265 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3266 
3267 	btrfs_mark_buffer_dirty(leaf);
3268 out:
3269 	btrfs_free_path(path);
3270 	err = btrfs_commit_transaction(trans);
3271 	if (err && !ret)
3272 		ret = err;
3273 	return ret;
3274 }
3275 
3276 static int del_balance_item(struct btrfs_fs_info *fs_info)
3277 {
3278 	struct btrfs_root *root = fs_info->tree_root;
3279 	struct btrfs_trans_handle *trans;
3280 	struct btrfs_path *path;
3281 	struct btrfs_key key;
3282 	int ret, err;
3283 
3284 	path = btrfs_alloc_path();
3285 	if (!path)
3286 		return -ENOMEM;
3287 
3288 	trans = btrfs_start_transaction(root, 0);
3289 	if (IS_ERR(trans)) {
3290 		btrfs_free_path(path);
3291 		return PTR_ERR(trans);
3292 	}
3293 
3294 	key.objectid = BTRFS_BALANCE_OBJECTID;
3295 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3296 	key.offset = 0;
3297 
3298 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3299 	if (ret < 0)
3300 		goto out;
3301 	if (ret > 0) {
3302 		ret = -ENOENT;
3303 		goto out;
3304 	}
3305 
3306 	ret = btrfs_del_item(trans, root, path);
3307 out:
3308 	btrfs_free_path(path);
3309 	err = btrfs_commit_transaction(trans);
3310 	if (err && !ret)
3311 		ret = err;
3312 	return ret;
3313 }
3314 
3315 /*
3316  * This is a heuristic used to reduce the number of chunks balanced on
3317  * resume after balance was interrupted.
3318  */
3319 static void update_balance_args(struct btrfs_balance_control *bctl)
3320 {
3321 	/*
3322 	 * Turn on soft mode for chunk types that were being converted.
3323 	 */
3324 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3325 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3326 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3327 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3328 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3329 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3330 
3331 	/*
3332 	 * Turn on usage filter if is not already used.  The idea is
3333 	 * that chunks that we have already balanced should be
3334 	 * reasonably full.  Don't do it for chunks that are being
3335 	 * converted - that will keep us from relocating unconverted
3336 	 * (albeit full) chunks.
3337 	 */
3338 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3339 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3340 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3341 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3342 		bctl->data.usage = 90;
3343 	}
3344 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3345 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3346 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3347 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3348 		bctl->sys.usage = 90;
3349 	}
3350 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3351 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3352 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3353 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3354 		bctl->meta.usage = 90;
3355 	}
3356 }
3357 
3358 /*
3359  * Clear the balance status in fs_info and delete the balance item from disk.
3360  */
3361 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3362 {
3363 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3364 	int ret;
3365 
3366 	BUG_ON(!fs_info->balance_ctl);
3367 
3368 	spin_lock(&fs_info->balance_lock);
3369 	fs_info->balance_ctl = NULL;
3370 	spin_unlock(&fs_info->balance_lock);
3371 
3372 	kfree(bctl);
3373 	ret = del_balance_item(fs_info);
3374 	if (ret)
3375 		btrfs_handle_fs_error(fs_info, ret, NULL);
3376 }
3377 
3378 /*
3379  * Balance filters.  Return 1 if chunk should be filtered out
3380  * (should not be balanced).
3381  */
3382 static int chunk_profiles_filter(u64 chunk_type,
3383 				 struct btrfs_balance_args *bargs)
3384 {
3385 	chunk_type = chunk_to_extended(chunk_type) &
3386 				BTRFS_EXTENDED_PROFILE_MASK;
3387 
3388 	if (bargs->profiles & chunk_type)
3389 		return 0;
3390 
3391 	return 1;
3392 }
3393 
3394 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3395 			      struct btrfs_balance_args *bargs)
3396 {
3397 	struct btrfs_block_group_cache *cache;
3398 	u64 chunk_used;
3399 	u64 user_thresh_min;
3400 	u64 user_thresh_max;
3401 	int ret = 1;
3402 
3403 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3404 	chunk_used = btrfs_block_group_used(&cache->item);
3405 
3406 	if (bargs->usage_min == 0)
3407 		user_thresh_min = 0;
3408 	else
3409 		user_thresh_min = div_factor_fine(cache->key.offset,
3410 					bargs->usage_min);
3411 
3412 	if (bargs->usage_max == 0)
3413 		user_thresh_max = 1;
3414 	else if (bargs->usage_max > 100)
3415 		user_thresh_max = cache->key.offset;
3416 	else
3417 		user_thresh_max = div_factor_fine(cache->key.offset,
3418 					bargs->usage_max);
3419 
3420 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3421 		ret = 0;
3422 
3423 	btrfs_put_block_group(cache);
3424 	return ret;
3425 }
3426 
3427 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3428 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3429 {
3430 	struct btrfs_block_group_cache *cache;
3431 	u64 chunk_used, user_thresh;
3432 	int ret = 1;
3433 
3434 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3435 	chunk_used = btrfs_block_group_used(&cache->item);
3436 
3437 	if (bargs->usage_min == 0)
3438 		user_thresh = 1;
3439 	else if (bargs->usage > 100)
3440 		user_thresh = cache->key.offset;
3441 	else
3442 		user_thresh = div_factor_fine(cache->key.offset,
3443 					      bargs->usage);
3444 
3445 	if (chunk_used < user_thresh)
3446 		ret = 0;
3447 
3448 	btrfs_put_block_group(cache);
3449 	return ret;
3450 }
3451 
3452 static int chunk_devid_filter(struct extent_buffer *leaf,
3453 			      struct btrfs_chunk *chunk,
3454 			      struct btrfs_balance_args *bargs)
3455 {
3456 	struct btrfs_stripe *stripe;
3457 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3458 	int i;
3459 
3460 	for (i = 0; i < num_stripes; i++) {
3461 		stripe = btrfs_stripe_nr(chunk, i);
3462 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3463 			return 0;
3464 	}
3465 
3466 	return 1;
3467 }
3468 
3469 static u64 calc_data_stripes(u64 type, int num_stripes)
3470 {
3471 	const int index = btrfs_bg_flags_to_raid_index(type);
3472 	const int ncopies = btrfs_raid_array[index].ncopies;
3473 	const int nparity = btrfs_raid_array[index].nparity;
3474 
3475 	if (nparity)
3476 		return num_stripes - nparity;
3477 	else
3478 		return num_stripes / ncopies;
3479 }
3480 
3481 /* [pstart, pend) */
3482 static int chunk_drange_filter(struct extent_buffer *leaf,
3483 			       struct btrfs_chunk *chunk,
3484 			       struct btrfs_balance_args *bargs)
3485 {
3486 	struct btrfs_stripe *stripe;
3487 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3488 	u64 stripe_offset;
3489 	u64 stripe_length;
3490 	u64 type;
3491 	int factor;
3492 	int i;
3493 
3494 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3495 		return 0;
3496 
3497 	type = btrfs_chunk_type(leaf, chunk);
3498 	factor = calc_data_stripes(type, num_stripes);
3499 
3500 	for (i = 0; i < num_stripes; i++) {
3501 		stripe = btrfs_stripe_nr(chunk, i);
3502 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3503 			continue;
3504 
3505 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3506 		stripe_length = btrfs_chunk_length(leaf, chunk);
3507 		stripe_length = div_u64(stripe_length, factor);
3508 
3509 		if (stripe_offset < bargs->pend &&
3510 		    stripe_offset + stripe_length > bargs->pstart)
3511 			return 0;
3512 	}
3513 
3514 	return 1;
3515 }
3516 
3517 /* [vstart, vend) */
3518 static int chunk_vrange_filter(struct extent_buffer *leaf,
3519 			       struct btrfs_chunk *chunk,
3520 			       u64 chunk_offset,
3521 			       struct btrfs_balance_args *bargs)
3522 {
3523 	if (chunk_offset < bargs->vend &&
3524 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3525 		/* at least part of the chunk is inside this vrange */
3526 		return 0;
3527 
3528 	return 1;
3529 }
3530 
3531 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3532 			       struct btrfs_chunk *chunk,
3533 			       struct btrfs_balance_args *bargs)
3534 {
3535 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3536 
3537 	if (bargs->stripes_min <= num_stripes
3538 			&& num_stripes <= bargs->stripes_max)
3539 		return 0;
3540 
3541 	return 1;
3542 }
3543 
3544 static int chunk_soft_convert_filter(u64 chunk_type,
3545 				     struct btrfs_balance_args *bargs)
3546 {
3547 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3548 		return 0;
3549 
3550 	chunk_type = chunk_to_extended(chunk_type) &
3551 				BTRFS_EXTENDED_PROFILE_MASK;
3552 
3553 	if (bargs->target == chunk_type)
3554 		return 1;
3555 
3556 	return 0;
3557 }
3558 
3559 static int should_balance_chunk(struct extent_buffer *leaf,
3560 				struct btrfs_chunk *chunk, u64 chunk_offset)
3561 {
3562 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3563 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3564 	struct btrfs_balance_args *bargs = NULL;
3565 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3566 
3567 	/* type filter */
3568 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3569 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3570 		return 0;
3571 	}
3572 
3573 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3574 		bargs = &bctl->data;
3575 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3576 		bargs = &bctl->sys;
3577 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3578 		bargs = &bctl->meta;
3579 
3580 	/* profiles filter */
3581 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3582 	    chunk_profiles_filter(chunk_type, bargs)) {
3583 		return 0;
3584 	}
3585 
3586 	/* usage filter */
3587 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3588 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3589 		return 0;
3590 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3591 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3592 		return 0;
3593 	}
3594 
3595 	/* devid filter */
3596 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3597 	    chunk_devid_filter(leaf, chunk, bargs)) {
3598 		return 0;
3599 	}
3600 
3601 	/* drange filter, makes sense only with devid filter */
3602 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3603 	    chunk_drange_filter(leaf, chunk, bargs)) {
3604 		return 0;
3605 	}
3606 
3607 	/* vrange filter */
3608 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3609 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3610 		return 0;
3611 	}
3612 
3613 	/* stripes filter */
3614 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3615 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3616 		return 0;
3617 	}
3618 
3619 	/* soft profile changing mode */
3620 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3621 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3622 		return 0;
3623 	}
3624 
3625 	/*
3626 	 * limited by count, must be the last filter
3627 	 */
3628 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3629 		if (bargs->limit == 0)
3630 			return 0;
3631 		else
3632 			bargs->limit--;
3633 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3634 		/*
3635 		 * Same logic as the 'limit' filter; the minimum cannot be
3636 		 * determined here because we do not have the global information
3637 		 * about the count of all chunks that satisfy the filters.
3638 		 */
3639 		if (bargs->limit_max == 0)
3640 			return 0;
3641 		else
3642 			bargs->limit_max--;
3643 	}
3644 
3645 	return 1;
3646 }
3647 
3648 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3649 {
3650 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3651 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3652 	u64 chunk_type;
3653 	struct btrfs_chunk *chunk;
3654 	struct btrfs_path *path = NULL;
3655 	struct btrfs_key key;
3656 	struct btrfs_key found_key;
3657 	struct extent_buffer *leaf;
3658 	int slot;
3659 	int ret;
3660 	int enospc_errors = 0;
3661 	bool counting = true;
3662 	/* The single value limit and min/max limits use the same bytes in the */
3663 	u64 limit_data = bctl->data.limit;
3664 	u64 limit_meta = bctl->meta.limit;
3665 	u64 limit_sys = bctl->sys.limit;
3666 	u32 count_data = 0;
3667 	u32 count_meta = 0;
3668 	u32 count_sys = 0;
3669 	int chunk_reserved = 0;
3670 
3671 	path = btrfs_alloc_path();
3672 	if (!path) {
3673 		ret = -ENOMEM;
3674 		goto error;
3675 	}
3676 
3677 	/* zero out stat counters */
3678 	spin_lock(&fs_info->balance_lock);
3679 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3680 	spin_unlock(&fs_info->balance_lock);
3681 again:
3682 	if (!counting) {
3683 		/*
3684 		 * The single value limit and min/max limits use the same bytes
3685 		 * in the
3686 		 */
3687 		bctl->data.limit = limit_data;
3688 		bctl->meta.limit = limit_meta;
3689 		bctl->sys.limit = limit_sys;
3690 	}
3691 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3692 	key.offset = (u64)-1;
3693 	key.type = BTRFS_CHUNK_ITEM_KEY;
3694 
3695 	while (1) {
3696 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3697 		    atomic_read(&fs_info->balance_cancel_req)) {
3698 			ret = -ECANCELED;
3699 			goto error;
3700 		}
3701 
3702 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3703 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3704 		if (ret < 0) {
3705 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3706 			goto error;
3707 		}
3708 
3709 		/*
3710 		 * this shouldn't happen, it means the last relocate
3711 		 * failed
3712 		 */
3713 		if (ret == 0)
3714 			BUG(); /* FIXME break ? */
3715 
3716 		ret = btrfs_previous_item(chunk_root, path, 0,
3717 					  BTRFS_CHUNK_ITEM_KEY);
3718 		if (ret) {
3719 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3720 			ret = 0;
3721 			break;
3722 		}
3723 
3724 		leaf = path->nodes[0];
3725 		slot = path->slots[0];
3726 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3727 
3728 		if (found_key.objectid != key.objectid) {
3729 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3730 			break;
3731 		}
3732 
3733 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3734 		chunk_type = btrfs_chunk_type(leaf, chunk);
3735 
3736 		if (!counting) {
3737 			spin_lock(&fs_info->balance_lock);
3738 			bctl->stat.considered++;
3739 			spin_unlock(&fs_info->balance_lock);
3740 		}
3741 
3742 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3743 
3744 		btrfs_release_path(path);
3745 		if (!ret) {
3746 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3747 			goto loop;
3748 		}
3749 
3750 		if (counting) {
3751 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3752 			spin_lock(&fs_info->balance_lock);
3753 			bctl->stat.expected++;
3754 			spin_unlock(&fs_info->balance_lock);
3755 
3756 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3757 				count_data++;
3758 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3759 				count_sys++;
3760 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3761 				count_meta++;
3762 
3763 			goto loop;
3764 		}
3765 
3766 		/*
3767 		 * Apply limit_min filter, no need to check if the LIMITS
3768 		 * filter is used, limit_min is 0 by default
3769 		 */
3770 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3771 					count_data < bctl->data.limit_min)
3772 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3773 					count_meta < bctl->meta.limit_min)
3774 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3775 					count_sys < bctl->sys.limit_min)) {
3776 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3777 			goto loop;
3778 		}
3779 
3780 		if (!chunk_reserved) {
3781 			/*
3782 			 * We may be relocating the only data chunk we have,
3783 			 * which could potentially end up with losing data's
3784 			 * raid profile, so lets allocate an empty one in
3785 			 * advance.
3786 			 */
3787 			ret = btrfs_may_alloc_data_chunk(fs_info,
3788 							 found_key.offset);
3789 			if (ret < 0) {
3790 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3791 				goto error;
3792 			} else if (ret == 1) {
3793 				chunk_reserved = 1;
3794 			}
3795 		}
3796 
3797 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3798 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3799 		if (ret == -ENOSPC) {
3800 			enospc_errors++;
3801 		} else if (ret == -ETXTBSY) {
3802 			btrfs_info(fs_info,
3803 	   "skipping relocation of block group %llu due to active swapfile",
3804 				   found_key.offset);
3805 			ret = 0;
3806 		} else if (ret) {
3807 			goto error;
3808 		} else {
3809 			spin_lock(&fs_info->balance_lock);
3810 			bctl->stat.completed++;
3811 			spin_unlock(&fs_info->balance_lock);
3812 		}
3813 loop:
3814 		if (found_key.offset == 0)
3815 			break;
3816 		key.offset = found_key.offset - 1;
3817 	}
3818 
3819 	if (counting) {
3820 		btrfs_release_path(path);
3821 		counting = false;
3822 		goto again;
3823 	}
3824 error:
3825 	btrfs_free_path(path);
3826 	if (enospc_errors) {
3827 		btrfs_info(fs_info, "%d enospc errors during balance",
3828 			   enospc_errors);
3829 		if (!ret)
3830 			ret = -ENOSPC;
3831 	}
3832 
3833 	return ret;
3834 }
3835 
3836 /**
3837  * alloc_profile_is_valid - see if a given profile is valid and reduced
3838  * @flags: profile to validate
3839  * @extended: if true @flags is treated as an extended profile
3840  */
3841 static int alloc_profile_is_valid(u64 flags, int extended)
3842 {
3843 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3844 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3845 
3846 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3847 
3848 	/* 1) check that all other bits are zeroed */
3849 	if (flags & ~mask)
3850 		return 0;
3851 
3852 	/* 2) see if profile is reduced */
3853 	if (flags == 0)
3854 		return !extended; /* "0" is valid for usual profiles */
3855 
3856 	/* true if exactly one bit set */
3857 	return is_power_of_2(flags);
3858 }
3859 
3860 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3861 {
3862 	/* cancel requested || normal exit path */
3863 	return atomic_read(&fs_info->balance_cancel_req) ||
3864 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3865 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3866 }
3867 
3868 /* Non-zero return value signifies invalidity */
3869 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3870 		u64 allowed)
3871 {
3872 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3873 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3874 		 (bctl_arg->target & ~allowed)));
3875 }
3876 
3877 /*
3878  * Fill @buf with textual description of balance filter flags @bargs, up to
3879  * @size_buf including the terminating null. The output may be trimmed if it
3880  * does not fit into the provided buffer.
3881  */
3882 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3883 				 u32 size_buf)
3884 {
3885 	int ret;
3886 	u32 size_bp = size_buf;
3887 	char *bp = buf;
3888 	u64 flags = bargs->flags;
3889 	char tmp_buf[128] = {'\0'};
3890 
3891 	if (!flags)
3892 		return;
3893 
3894 #define CHECK_APPEND_NOARG(a)						\
3895 	do {								\
3896 		ret = snprintf(bp, size_bp, (a));			\
3897 		if (ret < 0 || ret >= size_bp)				\
3898 			goto out_overflow;				\
3899 		size_bp -= ret;						\
3900 		bp += ret;						\
3901 	} while (0)
3902 
3903 #define CHECK_APPEND_1ARG(a, v1)					\
3904 	do {								\
3905 		ret = snprintf(bp, size_bp, (a), (v1));			\
3906 		if (ret < 0 || ret >= size_bp)				\
3907 			goto out_overflow;				\
3908 		size_bp -= ret;						\
3909 		bp += ret;						\
3910 	} while (0)
3911 
3912 #define CHECK_APPEND_2ARG(a, v1, v2)					\
3913 	do {								\
3914 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
3915 		if (ret < 0 || ret >= size_bp)				\
3916 			goto out_overflow;				\
3917 		size_bp -= ret;						\
3918 		bp += ret;						\
3919 	} while (0)
3920 
3921 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3922 		CHECK_APPEND_1ARG("convert=%s,",
3923 				  btrfs_bg_type_to_raid_name(bargs->target));
3924 
3925 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
3926 		CHECK_APPEND_NOARG("soft,");
3927 
3928 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3929 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3930 					    sizeof(tmp_buf));
3931 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3932 	}
3933 
3934 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
3935 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3936 
3937 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3938 		CHECK_APPEND_2ARG("usage=%u..%u,",
3939 				  bargs->usage_min, bargs->usage_max);
3940 
3941 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
3942 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3943 
3944 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3945 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
3946 				  bargs->pstart, bargs->pend);
3947 
3948 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3949 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3950 				  bargs->vstart, bargs->vend);
3951 
3952 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3953 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3954 
3955 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3956 		CHECK_APPEND_2ARG("limit=%u..%u,",
3957 				bargs->limit_min, bargs->limit_max);
3958 
3959 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3960 		CHECK_APPEND_2ARG("stripes=%u..%u,",
3961 				  bargs->stripes_min, bargs->stripes_max);
3962 
3963 #undef CHECK_APPEND_2ARG
3964 #undef CHECK_APPEND_1ARG
3965 #undef CHECK_APPEND_NOARG
3966 
3967 out_overflow:
3968 
3969 	if (size_bp < size_buf)
3970 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3971 	else
3972 		buf[0] = '\0';
3973 }
3974 
3975 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3976 {
3977 	u32 size_buf = 1024;
3978 	char tmp_buf[192] = {'\0'};
3979 	char *buf;
3980 	char *bp;
3981 	u32 size_bp = size_buf;
3982 	int ret;
3983 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3984 
3985 	buf = kzalloc(size_buf, GFP_KERNEL);
3986 	if (!buf)
3987 		return;
3988 
3989 	bp = buf;
3990 
3991 #define CHECK_APPEND_1ARG(a, v1)					\
3992 	do {								\
3993 		ret = snprintf(bp, size_bp, (a), (v1));			\
3994 		if (ret < 0 || ret >= size_bp)				\
3995 			goto out_overflow;				\
3996 		size_bp -= ret;						\
3997 		bp += ret;						\
3998 	} while (0)
3999 
4000 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4001 		CHECK_APPEND_1ARG("%s", "-f ");
4002 
4003 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4004 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4005 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4006 	}
4007 
4008 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4009 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4010 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4011 	}
4012 
4013 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4014 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4015 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4016 	}
4017 
4018 #undef CHECK_APPEND_1ARG
4019 
4020 out_overflow:
4021 
4022 	if (size_bp < size_buf)
4023 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4024 	btrfs_info(fs_info, "balance: %s %s",
4025 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4026 		   "resume" : "start", buf);
4027 
4028 	kfree(buf);
4029 }
4030 
4031 /*
4032  * Should be called with balance mutexe held
4033  */
4034 int btrfs_balance(struct btrfs_fs_info *fs_info,
4035 		  struct btrfs_balance_control *bctl,
4036 		  struct btrfs_ioctl_balance_args *bargs)
4037 {
4038 	u64 meta_target, data_target;
4039 	u64 allowed;
4040 	int mixed = 0;
4041 	int ret;
4042 	u64 num_devices;
4043 	unsigned seq;
4044 	bool reducing_integrity;
4045 	int i;
4046 
4047 	if (btrfs_fs_closing(fs_info) ||
4048 	    atomic_read(&fs_info->balance_pause_req) ||
4049 	    atomic_read(&fs_info->balance_cancel_req)) {
4050 		ret = -EINVAL;
4051 		goto out;
4052 	}
4053 
4054 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4055 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4056 		mixed = 1;
4057 
4058 	/*
4059 	 * In case of mixed groups both data and meta should be picked,
4060 	 * and identical options should be given for both of them.
4061 	 */
4062 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4063 	if (mixed && (bctl->flags & allowed)) {
4064 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4065 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4066 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4067 			btrfs_err(fs_info,
4068 	  "balance: mixed groups data and metadata options must be the same");
4069 			ret = -EINVAL;
4070 			goto out;
4071 		}
4072 	}
4073 
4074 	num_devices = btrfs_num_devices(fs_info);
4075 	allowed = 0;
4076 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4077 		if (num_devices >= btrfs_raid_array[i].devs_min)
4078 			allowed |= btrfs_raid_array[i].bg_flag;
4079 
4080 	if (validate_convert_profile(&bctl->data, allowed)) {
4081 		btrfs_err(fs_info,
4082 			  "balance: invalid convert data profile %s",
4083 			  btrfs_bg_type_to_raid_name(bctl->data.target));
4084 		ret = -EINVAL;
4085 		goto out;
4086 	}
4087 	if (validate_convert_profile(&bctl->meta, allowed)) {
4088 		btrfs_err(fs_info,
4089 			  "balance: invalid convert metadata profile %s",
4090 			  btrfs_bg_type_to_raid_name(bctl->meta.target));
4091 		ret = -EINVAL;
4092 		goto out;
4093 	}
4094 	if (validate_convert_profile(&bctl->sys, allowed)) {
4095 		btrfs_err(fs_info,
4096 			  "balance: invalid convert system profile %s",
4097 			  btrfs_bg_type_to_raid_name(bctl->sys.target));
4098 		ret = -EINVAL;
4099 		goto out;
4100 	}
4101 
4102 	/*
4103 	 * Allow to reduce metadata or system integrity only if force set for
4104 	 * profiles with redundancy (copies, parity)
4105 	 */
4106 	allowed = 0;
4107 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4108 		if (btrfs_raid_array[i].ncopies >= 2 ||
4109 		    btrfs_raid_array[i].tolerated_failures >= 1)
4110 			allowed |= btrfs_raid_array[i].bg_flag;
4111 	}
4112 	do {
4113 		seq = read_seqbegin(&fs_info->profiles_lock);
4114 
4115 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4116 		     (fs_info->avail_system_alloc_bits & allowed) &&
4117 		     !(bctl->sys.target & allowed)) ||
4118 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4119 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4120 		     !(bctl->meta.target & allowed)))
4121 			reducing_integrity = true;
4122 		else
4123 			reducing_integrity = false;
4124 
4125 		/* if we're not converting, the target field is uninitialized */
4126 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4127 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4128 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4129 			bctl->data.target : fs_info->avail_data_alloc_bits;
4130 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4131 
4132 	if (reducing_integrity) {
4133 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4134 			btrfs_info(fs_info,
4135 				   "balance: force reducing metadata integrity");
4136 		} else {
4137 			btrfs_err(fs_info,
4138 	  "balance: reduces metadata integrity, use --force if you want this");
4139 			ret = -EINVAL;
4140 			goto out;
4141 		}
4142 	}
4143 
4144 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4145 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4146 		btrfs_warn(fs_info,
4147 	"balance: metadata profile %s has lower redundancy than data profile %s",
4148 				btrfs_bg_type_to_raid_name(meta_target),
4149 				btrfs_bg_type_to_raid_name(data_target));
4150 	}
4151 
4152 	if (fs_info->send_in_progress) {
4153 		btrfs_warn_rl(fs_info,
4154 "cannot run balance while send operations are in progress (%d in progress)",
4155 			      fs_info->send_in_progress);
4156 		ret = -EAGAIN;
4157 		goto out;
4158 	}
4159 
4160 	ret = insert_balance_item(fs_info, bctl);
4161 	if (ret && ret != -EEXIST)
4162 		goto out;
4163 
4164 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4165 		BUG_ON(ret == -EEXIST);
4166 		BUG_ON(fs_info->balance_ctl);
4167 		spin_lock(&fs_info->balance_lock);
4168 		fs_info->balance_ctl = bctl;
4169 		spin_unlock(&fs_info->balance_lock);
4170 	} else {
4171 		BUG_ON(ret != -EEXIST);
4172 		spin_lock(&fs_info->balance_lock);
4173 		update_balance_args(bctl);
4174 		spin_unlock(&fs_info->balance_lock);
4175 	}
4176 
4177 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4178 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4179 	describe_balance_start_or_resume(fs_info);
4180 	mutex_unlock(&fs_info->balance_mutex);
4181 
4182 	ret = __btrfs_balance(fs_info);
4183 
4184 	mutex_lock(&fs_info->balance_mutex);
4185 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4186 		btrfs_info(fs_info, "balance: paused");
4187 	else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4188 		btrfs_info(fs_info, "balance: canceled");
4189 	else
4190 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4191 
4192 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4193 
4194 	if (bargs) {
4195 		memset(bargs, 0, sizeof(*bargs));
4196 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4197 	}
4198 
4199 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4200 	    balance_need_close(fs_info)) {
4201 		reset_balance_state(fs_info);
4202 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4203 	}
4204 
4205 	wake_up(&fs_info->balance_wait_q);
4206 
4207 	return ret;
4208 out:
4209 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4210 		reset_balance_state(fs_info);
4211 	else
4212 		kfree(bctl);
4213 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4214 
4215 	return ret;
4216 }
4217 
4218 static int balance_kthread(void *data)
4219 {
4220 	struct btrfs_fs_info *fs_info = data;
4221 	int ret = 0;
4222 
4223 	mutex_lock(&fs_info->balance_mutex);
4224 	if (fs_info->balance_ctl)
4225 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4226 	mutex_unlock(&fs_info->balance_mutex);
4227 
4228 	return ret;
4229 }
4230 
4231 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4232 {
4233 	struct task_struct *tsk;
4234 
4235 	mutex_lock(&fs_info->balance_mutex);
4236 	if (!fs_info->balance_ctl) {
4237 		mutex_unlock(&fs_info->balance_mutex);
4238 		return 0;
4239 	}
4240 	mutex_unlock(&fs_info->balance_mutex);
4241 
4242 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4243 		btrfs_info(fs_info, "balance: resume skipped");
4244 		return 0;
4245 	}
4246 
4247 	/*
4248 	 * A ro->rw remount sequence should continue with the paused balance
4249 	 * regardless of who pauses it, system or the user as of now, so set
4250 	 * the resume flag.
4251 	 */
4252 	spin_lock(&fs_info->balance_lock);
4253 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4254 	spin_unlock(&fs_info->balance_lock);
4255 
4256 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4257 	return PTR_ERR_OR_ZERO(tsk);
4258 }
4259 
4260 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4261 {
4262 	struct btrfs_balance_control *bctl;
4263 	struct btrfs_balance_item *item;
4264 	struct btrfs_disk_balance_args disk_bargs;
4265 	struct btrfs_path *path;
4266 	struct extent_buffer *leaf;
4267 	struct btrfs_key key;
4268 	int ret;
4269 
4270 	path = btrfs_alloc_path();
4271 	if (!path)
4272 		return -ENOMEM;
4273 
4274 	key.objectid = BTRFS_BALANCE_OBJECTID;
4275 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4276 	key.offset = 0;
4277 
4278 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4279 	if (ret < 0)
4280 		goto out;
4281 	if (ret > 0) { /* ret = -ENOENT; */
4282 		ret = 0;
4283 		goto out;
4284 	}
4285 
4286 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4287 	if (!bctl) {
4288 		ret = -ENOMEM;
4289 		goto out;
4290 	}
4291 
4292 	leaf = path->nodes[0];
4293 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4294 
4295 	bctl->flags = btrfs_balance_flags(leaf, item);
4296 	bctl->flags |= BTRFS_BALANCE_RESUME;
4297 
4298 	btrfs_balance_data(leaf, item, &disk_bargs);
4299 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4300 	btrfs_balance_meta(leaf, item, &disk_bargs);
4301 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4302 	btrfs_balance_sys(leaf, item, &disk_bargs);
4303 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4304 
4305 	/*
4306 	 * This should never happen, as the paused balance state is recovered
4307 	 * during mount without any chance of other exclusive ops to collide.
4308 	 *
4309 	 * This gives the exclusive op status to balance and keeps in paused
4310 	 * state until user intervention (cancel or umount). If the ownership
4311 	 * cannot be assigned, show a message but do not fail. The balance
4312 	 * is in a paused state and must have fs_info::balance_ctl properly
4313 	 * set up.
4314 	 */
4315 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4316 		btrfs_warn(fs_info,
4317 	"balance: cannot set exclusive op status, resume manually");
4318 
4319 	mutex_lock(&fs_info->balance_mutex);
4320 	BUG_ON(fs_info->balance_ctl);
4321 	spin_lock(&fs_info->balance_lock);
4322 	fs_info->balance_ctl = bctl;
4323 	spin_unlock(&fs_info->balance_lock);
4324 	mutex_unlock(&fs_info->balance_mutex);
4325 out:
4326 	btrfs_free_path(path);
4327 	return ret;
4328 }
4329 
4330 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4331 {
4332 	int ret = 0;
4333 
4334 	mutex_lock(&fs_info->balance_mutex);
4335 	if (!fs_info->balance_ctl) {
4336 		mutex_unlock(&fs_info->balance_mutex);
4337 		return -ENOTCONN;
4338 	}
4339 
4340 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4341 		atomic_inc(&fs_info->balance_pause_req);
4342 		mutex_unlock(&fs_info->balance_mutex);
4343 
4344 		wait_event(fs_info->balance_wait_q,
4345 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4346 
4347 		mutex_lock(&fs_info->balance_mutex);
4348 		/* we are good with balance_ctl ripped off from under us */
4349 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4350 		atomic_dec(&fs_info->balance_pause_req);
4351 	} else {
4352 		ret = -ENOTCONN;
4353 	}
4354 
4355 	mutex_unlock(&fs_info->balance_mutex);
4356 	return ret;
4357 }
4358 
4359 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4360 {
4361 	mutex_lock(&fs_info->balance_mutex);
4362 	if (!fs_info->balance_ctl) {
4363 		mutex_unlock(&fs_info->balance_mutex);
4364 		return -ENOTCONN;
4365 	}
4366 
4367 	/*
4368 	 * A paused balance with the item stored on disk can be resumed at
4369 	 * mount time if the mount is read-write. Otherwise it's still paused
4370 	 * and we must not allow cancelling as it deletes the item.
4371 	 */
4372 	if (sb_rdonly(fs_info->sb)) {
4373 		mutex_unlock(&fs_info->balance_mutex);
4374 		return -EROFS;
4375 	}
4376 
4377 	atomic_inc(&fs_info->balance_cancel_req);
4378 	/*
4379 	 * if we are running just wait and return, balance item is
4380 	 * deleted in btrfs_balance in this case
4381 	 */
4382 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4383 		mutex_unlock(&fs_info->balance_mutex);
4384 		wait_event(fs_info->balance_wait_q,
4385 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4386 		mutex_lock(&fs_info->balance_mutex);
4387 	} else {
4388 		mutex_unlock(&fs_info->balance_mutex);
4389 		/*
4390 		 * Lock released to allow other waiters to continue, we'll
4391 		 * reexamine the status again.
4392 		 */
4393 		mutex_lock(&fs_info->balance_mutex);
4394 
4395 		if (fs_info->balance_ctl) {
4396 			reset_balance_state(fs_info);
4397 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4398 			btrfs_info(fs_info, "balance: canceled");
4399 		}
4400 	}
4401 
4402 	BUG_ON(fs_info->balance_ctl ||
4403 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4404 	atomic_dec(&fs_info->balance_cancel_req);
4405 	mutex_unlock(&fs_info->balance_mutex);
4406 	return 0;
4407 }
4408 
4409 static int btrfs_uuid_scan_kthread(void *data)
4410 {
4411 	struct btrfs_fs_info *fs_info = data;
4412 	struct btrfs_root *root = fs_info->tree_root;
4413 	struct btrfs_key key;
4414 	struct btrfs_path *path = NULL;
4415 	int ret = 0;
4416 	struct extent_buffer *eb;
4417 	int slot;
4418 	struct btrfs_root_item root_item;
4419 	u32 item_size;
4420 	struct btrfs_trans_handle *trans = NULL;
4421 
4422 	path = btrfs_alloc_path();
4423 	if (!path) {
4424 		ret = -ENOMEM;
4425 		goto out;
4426 	}
4427 
4428 	key.objectid = 0;
4429 	key.type = BTRFS_ROOT_ITEM_KEY;
4430 	key.offset = 0;
4431 
4432 	while (1) {
4433 		ret = btrfs_search_forward(root, &key, path,
4434 				BTRFS_OLDEST_GENERATION);
4435 		if (ret) {
4436 			if (ret > 0)
4437 				ret = 0;
4438 			break;
4439 		}
4440 
4441 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4442 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4443 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4444 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4445 			goto skip;
4446 
4447 		eb = path->nodes[0];
4448 		slot = path->slots[0];
4449 		item_size = btrfs_item_size_nr(eb, slot);
4450 		if (item_size < sizeof(root_item))
4451 			goto skip;
4452 
4453 		read_extent_buffer(eb, &root_item,
4454 				   btrfs_item_ptr_offset(eb, slot),
4455 				   (int)sizeof(root_item));
4456 		if (btrfs_root_refs(&root_item) == 0)
4457 			goto skip;
4458 
4459 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4460 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4461 			if (trans)
4462 				goto update_tree;
4463 
4464 			btrfs_release_path(path);
4465 			/*
4466 			 * 1 - subvol uuid item
4467 			 * 1 - received_subvol uuid item
4468 			 */
4469 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4470 			if (IS_ERR(trans)) {
4471 				ret = PTR_ERR(trans);
4472 				break;
4473 			}
4474 			continue;
4475 		} else {
4476 			goto skip;
4477 		}
4478 update_tree:
4479 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4480 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4481 						  BTRFS_UUID_KEY_SUBVOL,
4482 						  key.objectid);
4483 			if (ret < 0) {
4484 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4485 					ret);
4486 				break;
4487 			}
4488 		}
4489 
4490 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4491 			ret = btrfs_uuid_tree_add(trans,
4492 						  root_item.received_uuid,
4493 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4494 						  key.objectid);
4495 			if (ret < 0) {
4496 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4497 					ret);
4498 				break;
4499 			}
4500 		}
4501 
4502 skip:
4503 		if (trans) {
4504 			ret = btrfs_end_transaction(trans);
4505 			trans = NULL;
4506 			if (ret)
4507 				break;
4508 		}
4509 
4510 		btrfs_release_path(path);
4511 		if (key.offset < (u64)-1) {
4512 			key.offset++;
4513 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4514 			key.offset = 0;
4515 			key.type = BTRFS_ROOT_ITEM_KEY;
4516 		} else if (key.objectid < (u64)-1) {
4517 			key.offset = 0;
4518 			key.type = BTRFS_ROOT_ITEM_KEY;
4519 			key.objectid++;
4520 		} else {
4521 			break;
4522 		}
4523 		cond_resched();
4524 	}
4525 
4526 out:
4527 	btrfs_free_path(path);
4528 	if (trans && !IS_ERR(trans))
4529 		btrfs_end_transaction(trans);
4530 	if (ret)
4531 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4532 	else
4533 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4534 	up(&fs_info->uuid_tree_rescan_sem);
4535 	return 0;
4536 }
4537 
4538 /*
4539  * Callback for btrfs_uuid_tree_iterate().
4540  * returns:
4541  * 0	check succeeded, the entry is not outdated.
4542  * < 0	if an error occurred.
4543  * > 0	if the check failed, which means the caller shall remove the entry.
4544  */
4545 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4546 				       u8 *uuid, u8 type, u64 subid)
4547 {
4548 	struct btrfs_key key;
4549 	int ret = 0;
4550 	struct btrfs_root *subvol_root;
4551 
4552 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4553 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4554 		goto out;
4555 
4556 	key.objectid = subid;
4557 	key.type = BTRFS_ROOT_ITEM_KEY;
4558 	key.offset = (u64)-1;
4559 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4560 	if (IS_ERR(subvol_root)) {
4561 		ret = PTR_ERR(subvol_root);
4562 		if (ret == -ENOENT)
4563 			ret = 1;
4564 		goto out;
4565 	}
4566 
4567 	switch (type) {
4568 	case BTRFS_UUID_KEY_SUBVOL:
4569 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4570 			ret = 1;
4571 		break;
4572 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4573 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4574 			   BTRFS_UUID_SIZE))
4575 			ret = 1;
4576 		break;
4577 	}
4578 
4579 out:
4580 	return ret;
4581 }
4582 
4583 static int btrfs_uuid_rescan_kthread(void *data)
4584 {
4585 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4586 	int ret;
4587 
4588 	/*
4589 	 * 1st step is to iterate through the existing UUID tree and
4590 	 * to delete all entries that contain outdated data.
4591 	 * 2nd step is to add all missing entries to the UUID tree.
4592 	 */
4593 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4594 	if (ret < 0) {
4595 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4596 		up(&fs_info->uuid_tree_rescan_sem);
4597 		return ret;
4598 	}
4599 	return btrfs_uuid_scan_kthread(data);
4600 }
4601 
4602 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4603 {
4604 	struct btrfs_trans_handle *trans;
4605 	struct btrfs_root *tree_root = fs_info->tree_root;
4606 	struct btrfs_root *uuid_root;
4607 	struct task_struct *task;
4608 	int ret;
4609 
4610 	/*
4611 	 * 1 - root node
4612 	 * 1 - root item
4613 	 */
4614 	trans = btrfs_start_transaction(tree_root, 2);
4615 	if (IS_ERR(trans))
4616 		return PTR_ERR(trans);
4617 
4618 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4619 	if (IS_ERR(uuid_root)) {
4620 		ret = PTR_ERR(uuid_root);
4621 		btrfs_abort_transaction(trans, ret);
4622 		btrfs_end_transaction(trans);
4623 		return ret;
4624 	}
4625 
4626 	fs_info->uuid_root = uuid_root;
4627 
4628 	ret = btrfs_commit_transaction(trans);
4629 	if (ret)
4630 		return ret;
4631 
4632 	down(&fs_info->uuid_tree_rescan_sem);
4633 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4634 	if (IS_ERR(task)) {
4635 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4636 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4637 		up(&fs_info->uuid_tree_rescan_sem);
4638 		return PTR_ERR(task);
4639 	}
4640 
4641 	return 0;
4642 }
4643 
4644 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4645 {
4646 	struct task_struct *task;
4647 
4648 	down(&fs_info->uuid_tree_rescan_sem);
4649 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4650 	if (IS_ERR(task)) {
4651 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4652 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4653 		up(&fs_info->uuid_tree_rescan_sem);
4654 		return PTR_ERR(task);
4655 	}
4656 
4657 	return 0;
4658 }
4659 
4660 /*
4661  * shrinking a device means finding all of the device extents past
4662  * the new size, and then following the back refs to the chunks.
4663  * The chunk relocation code actually frees the device extent
4664  */
4665 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4666 {
4667 	struct btrfs_fs_info *fs_info = device->fs_info;
4668 	struct btrfs_root *root = fs_info->dev_root;
4669 	struct btrfs_trans_handle *trans;
4670 	struct btrfs_dev_extent *dev_extent = NULL;
4671 	struct btrfs_path *path;
4672 	u64 length;
4673 	u64 chunk_offset;
4674 	int ret;
4675 	int slot;
4676 	int failed = 0;
4677 	bool retried = false;
4678 	struct extent_buffer *l;
4679 	struct btrfs_key key;
4680 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4681 	u64 old_total = btrfs_super_total_bytes(super_copy);
4682 	u64 old_size = btrfs_device_get_total_bytes(device);
4683 	u64 diff;
4684 	u64 start;
4685 
4686 	new_size = round_down(new_size, fs_info->sectorsize);
4687 	start = new_size;
4688 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4689 
4690 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4691 		return -EINVAL;
4692 
4693 	path = btrfs_alloc_path();
4694 	if (!path)
4695 		return -ENOMEM;
4696 
4697 	path->reada = READA_BACK;
4698 
4699 	trans = btrfs_start_transaction(root, 0);
4700 	if (IS_ERR(trans)) {
4701 		btrfs_free_path(path);
4702 		return PTR_ERR(trans);
4703 	}
4704 
4705 	mutex_lock(&fs_info->chunk_mutex);
4706 
4707 	btrfs_device_set_total_bytes(device, new_size);
4708 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4709 		device->fs_devices->total_rw_bytes -= diff;
4710 		atomic64_sub(diff, &fs_info->free_chunk_space);
4711 	}
4712 
4713 	/*
4714 	 * Once the device's size has been set to the new size, ensure all
4715 	 * in-memory chunks are synced to disk so that the loop below sees them
4716 	 * and relocates them accordingly.
4717 	 */
4718 	if (contains_pending_extent(device, &start, diff)) {
4719 		mutex_unlock(&fs_info->chunk_mutex);
4720 		ret = btrfs_commit_transaction(trans);
4721 		if (ret)
4722 			goto done;
4723 	} else {
4724 		mutex_unlock(&fs_info->chunk_mutex);
4725 		btrfs_end_transaction(trans);
4726 	}
4727 
4728 again:
4729 	key.objectid = device->devid;
4730 	key.offset = (u64)-1;
4731 	key.type = BTRFS_DEV_EXTENT_KEY;
4732 
4733 	do {
4734 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4735 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4736 		if (ret < 0) {
4737 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4738 			goto done;
4739 		}
4740 
4741 		ret = btrfs_previous_item(root, path, 0, key.type);
4742 		if (ret)
4743 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4744 		if (ret < 0)
4745 			goto done;
4746 		if (ret) {
4747 			ret = 0;
4748 			btrfs_release_path(path);
4749 			break;
4750 		}
4751 
4752 		l = path->nodes[0];
4753 		slot = path->slots[0];
4754 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4755 
4756 		if (key.objectid != device->devid) {
4757 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4758 			btrfs_release_path(path);
4759 			break;
4760 		}
4761 
4762 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4763 		length = btrfs_dev_extent_length(l, dev_extent);
4764 
4765 		if (key.offset + length <= new_size) {
4766 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4767 			btrfs_release_path(path);
4768 			break;
4769 		}
4770 
4771 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4772 		btrfs_release_path(path);
4773 
4774 		/*
4775 		 * We may be relocating the only data chunk we have,
4776 		 * which could potentially end up with losing data's
4777 		 * raid profile, so lets allocate an empty one in
4778 		 * advance.
4779 		 */
4780 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4781 		if (ret < 0) {
4782 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4783 			goto done;
4784 		}
4785 
4786 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4787 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4788 		if (ret == -ENOSPC) {
4789 			failed++;
4790 		} else if (ret) {
4791 			if (ret == -ETXTBSY) {
4792 				btrfs_warn(fs_info,
4793 		   "could not shrink block group %llu due to active swapfile",
4794 					   chunk_offset);
4795 			}
4796 			goto done;
4797 		}
4798 	} while (key.offset-- > 0);
4799 
4800 	if (failed && !retried) {
4801 		failed = 0;
4802 		retried = true;
4803 		goto again;
4804 	} else if (failed && retried) {
4805 		ret = -ENOSPC;
4806 		goto done;
4807 	}
4808 
4809 	/* Shrinking succeeded, else we would be at "done". */
4810 	trans = btrfs_start_transaction(root, 0);
4811 	if (IS_ERR(trans)) {
4812 		ret = PTR_ERR(trans);
4813 		goto done;
4814 	}
4815 
4816 	mutex_lock(&fs_info->chunk_mutex);
4817 	btrfs_device_set_disk_total_bytes(device, new_size);
4818 	if (list_empty(&device->post_commit_list))
4819 		list_add_tail(&device->post_commit_list,
4820 			      &trans->transaction->dev_update_list);
4821 
4822 	WARN_ON(diff > old_total);
4823 	btrfs_set_super_total_bytes(super_copy,
4824 			round_down(old_total - diff, fs_info->sectorsize));
4825 	mutex_unlock(&fs_info->chunk_mutex);
4826 
4827 	/* Now btrfs_update_device() will change the on-disk size. */
4828 	ret = btrfs_update_device(trans, device);
4829 	if (ret < 0) {
4830 		btrfs_abort_transaction(trans, ret);
4831 		btrfs_end_transaction(trans);
4832 	} else {
4833 		ret = btrfs_commit_transaction(trans);
4834 	}
4835 done:
4836 	btrfs_free_path(path);
4837 	if (ret) {
4838 		mutex_lock(&fs_info->chunk_mutex);
4839 		btrfs_device_set_total_bytes(device, old_size);
4840 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4841 			device->fs_devices->total_rw_bytes += diff;
4842 		atomic64_add(diff, &fs_info->free_chunk_space);
4843 		mutex_unlock(&fs_info->chunk_mutex);
4844 	}
4845 	return ret;
4846 }
4847 
4848 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4849 			   struct btrfs_key *key,
4850 			   struct btrfs_chunk *chunk, int item_size)
4851 {
4852 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4853 	struct btrfs_disk_key disk_key;
4854 	u32 array_size;
4855 	u8 *ptr;
4856 
4857 	mutex_lock(&fs_info->chunk_mutex);
4858 	array_size = btrfs_super_sys_array_size(super_copy);
4859 	if (array_size + item_size + sizeof(disk_key)
4860 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4861 		mutex_unlock(&fs_info->chunk_mutex);
4862 		return -EFBIG;
4863 	}
4864 
4865 	ptr = super_copy->sys_chunk_array + array_size;
4866 	btrfs_cpu_key_to_disk(&disk_key, key);
4867 	memcpy(ptr, &disk_key, sizeof(disk_key));
4868 	ptr += sizeof(disk_key);
4869 	memcpy(ptr, chunk, item_size);
4870 	item_size += sizeof(disk_key);
4871 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4872 	mutex_unlock(&fs_info->chunk_mutex);
4873 
4874 	return 0;
4875 }
4876 
4877 /*
4878  * sort the devices in descending order by max_avail, total_avail
4879  */
4880 static int btrfs_cmp_device_info(const void *a, const void *b)
4881 {
4882 	const struct btrfs_device_info *di_a = a;
4883 	const struct btrfs_device_info *di_b = b;
4884 
4885 	if (di_a->max_avail > di_b->max_avail)
4886 		return -1;
4887 	if (di_a->max_avail < di_b->max_avail)
4888 		return 1;
4889 	if (di_a->total_avail > di_b->total_avail)
4890 		return -1;
4891 	if (di_a->total_avail < di_b->total_avail)
4892 		return 1;
4893 	return 0;
4894 }
4895 
4896 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4897 {
4898 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4899 		return;
4900 
4901 	btrfs_set_fs_incompat(info, RAID56);
4902 }
4903 
4904 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4905 			       u64 start, u64 type)
4906 {
4907 	struct btrfs_fs_info *info = trans->fs_info;
4908 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4909 	struct btrfs_device *device;
4910 	struct map_lookup *map = NULL;
4911 	struct extent_map_tree *em_tree;
4912 	struct extent_map *em;
4913 	struct btrfs_device_info *devices_info = NULL;
4914 	u64 total_avail;
4915 	int num_stripes;	/* total number of stripes to allocate */
4916 	int data_stripes;	/* number of stripes that count for
4917 				   block group size */
4918 	int sub_stripes;	/* sub_stripes info for map */
4919 	int dev_stripes;	/* stripes per dev */
4920 	int devs_max;		/* max devs to use */
4921 	int devs_min;		/* min devs needed */
4922 	int devs_increment;	/* ndevs has to be a multiple of this */
4923 	int ncopies;		/* how many copies to data has */
4924 	int nparity;		/* number of stripes worth of bytes to
4925 				   store parity information */
4926 	int ret;
4927 	u64 max_stripe_size;
4928 	u64 max_chunk_size;
4929 	u64 stripe_size;
4930 	u64 chunk_size;
4931 	int ndevs;
4932 	int i;
4933 	int j;
4934 	int index;
4935 
4936 	BUG_ON(!alloc_profile_is_valid(type, 0));
4937 
4938 	if (list_empty(&fs_devices->alloc_list)) {
4939 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
4940 			btrfs_debug(info, "%s: no writable device", __func__);
4941 		return -ENOSPC;
4942 	}
4943 
4944 	index = btrfs_bg_flags_to_raid_index(type);
4945 
4946 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4947 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4948 	devs_max = btrfs_raid_array[index].devs_max;
4949 	if (!devs_max)
4950 		devs_max = BTRFS_MAX_DEVS(info);
4951 	devs_min = btrfs_raid_array[index].devs_min;
4952 	devs_increment = btrfs_raid_array[index].devs_increment;
4953 	ncopies = btrfs_raid_array[index].ncopies;
4954 	nparity = btrfs_raid_array[index].nparity;
4955 
4956 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4957 		max_stripe_size = SZ_1G;
4958 		max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4959 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4960 		/* for larger filesystems, use larger metadata chunks */
4961 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4962 			max_stripe_size = SZ_1G;
4963 		else
4964 			max_stripe_size = SZ_256M;
4965 		max_chunk_size = max_stripe_size;
4966 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4967 		max_stripe_size = SZ_32M;
4968 		max_chunk_size = 2 * max_stripe_size;
4969 	} else {
4970 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4971 		       type);
4972 		BUG();
4973 	}
4974 
4975 	/* We don't want a chunk larger than 10% of writable space */
4976 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4977 			     max_chunk_size);
4978 
4979 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4980 			       GFP_NOFS);
4981 	if (!devices_info)
4982 		return -ENOMEM;
4983 
4984 	/*
4985 	 * in the first pass through the devices list, we gather information
4986 	 * about the available holes on each device.
4987 	 */
4988 	ndevs = 0;
4989 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4990 		u64 max_avail;
4991 		u64 dev_offset;
4992 
4993 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4994 			WARN(1, KERN_ERR
4995 			       "BTRFS: read-only device in alloc_list\n");
4996 			continue;
4997 		}
4998 
4999 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5000 					&device->dev_state) ||
5001 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5002 			continue;
5003 
5004 		if (device->total_bytes > device->bytes_used)
5005 			total_avail = device->total_bytes - device->bytes_used;
5006 		else
5007 			total_avail = 0;
5008 
5009 		/* If there is no space on this device, skip it. */
5010 		if (total_avail == 0)
5011 			continue;
5012 
5013 		ret = find_free_dev_extent(device,
5014 					   max_stripe_size * dev_stripes,
5015 					   &dev_offset, &max_avail);
5016 		if (ret && ret != -ENOSPC)
5017 			goto error;
5018 
5019 		if (ret == 0)
5020 			max_avail = max_stripe_size * dev_stripes;
5021 
5022 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5023 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5024 				btrfs_debug(info,
5025 			"%s: devid %llu has no free space, have=%llu want=%u",
5026 					    __func__, device->devid, max_avail,
5027 					    BTRFS_STRIPE_LEN * dev_stripes);
5028 			continue;
5029 		}
5030 
5031 		if (ndevs == fs_devices->rw_devices) {
5032 			WARN(1, "%s: found more than %llu devices\n",
5033 			     __func__, fs_devices->rw_devices);
5034 			break;
5035 		}
5036 		devices_info[ndevs].dev_offset = dev_offset;
5037 		devices_info[ndevs].max_avail = max_avail;
5038 		devices_info[ndevs].total_avail = total_avail;
5039 		devices_info[ndevs].dev = device;
5040 		++ndevs;
5041 	}
5042 
5043 	/*
5044 	 * now sort the devices by hole size / available space
5045 	 */
5046 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5047 	     btrfs_cmp_device_info, NULL);
5048 
5049 	/* round down to number of usable stripes */
5050 	ndevs = round_down(ndevs, devs_increment);
5051 
5052 	if (ndevs < devs_min) {
5053 		ret = -ENOSPC;
5054 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5055 			btrfs_debug(info,
5056 	"%s: not enough devices with free space: have=%d minimum required=%d",
5057 				    __func__, ndevs, devs_min);
5058 		}
5059 		goto error;
5060 	}
5061 
5062 	ndevs = min(ndevs, devs_max);
5063 
5064 	/*
5065 	 * The primary goal is to maximize the number of stripes, so use as
5066 	 * many devices as possible, even if the stripes are not maximum sized.
5067 	 *
5068 	 * The DUP profile stores more than one stripe per device, the
5069 	 * max_avail is the total size so we have to adjust.
5070 	 */
5071 	stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5072 	num_stripes = ndevs * dev_stripes;
5073 
5074 	/*
5075 	 * this will have to be fixed for RAID1 and RAID10 over
5076 	 * more drives
5077 	 */
5078 	data_stripes = (num_stripes - nparity) / ncopies;
5079 
5080 	/*
5081 	 * Use the number of data stripes to figure out how big this chunk
5082 	 * is really going to be in terms of logical address space,
5083 	 * and compare that answer with the max chunk size. If it's higher,
5084 	 * we try to reduce stripe_size.
5085 	 */
5086 	if (stripe_size * data_stripes > max_chunk_size) {
5087 		/*
5088 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5089 		 * then use it, unless it ends up being even bigger than the
5090 		 * previous value we had already.
5091 		 */
5092 		stripe_size = min(round_up(div_u64(max_chunk_size,
5093 						   data_stripes), SZ_16M),
5094 				  stripe_size);
5095 	}
5096 
5097 	/* align to BTRFS_STRIPE_LEN */
5098 	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5099 
5100 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5101 	if (!map) {
5102 		ret = -ENOMEM;
5103 		goto error;
5104 	}
5105 	map->num_stripes = num_stripes;
5106 
5107 	for (i = 0; i < ndevs; ++i) {
5108 		for (j = 0; j < dev_stripes; ++j) {
5109 			int s = i * dev_stripes + j;
5110 			map->stripes[s].dev = devices_info[i].dev;
5111 			map->stripes[s].physical = devices_info[i].dev_offset +
5112 						   j * stripe_size;
5113 		}
5114 	}
5115 	map->stripe_len = BTRFS_STRIPE_LEN;
5116 	map->io_align = BTRFS_STRIPE_LEN;
5117 	map->io_width = BTRFS_STRIPE_LEN;
5118 	map->type = type;
5119 	map->sub_stripes = sub_stripes;
5120 
5121 	chunk_size = stripe_size * data_stripes;
5122 
5123 	trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5124 
5125 	em = alloc_extent_map();
5126 	if (!em) {
5127 		kfree(map);
5128 		ret = -ENOMEM;
5129 		goto error;
5130 	}
5131 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5132 	em->map_lookup = map;
5133 	em->start = start;
5134 	em->len = chunk_size;
5135 	em->block_start = 0;
5136 	em->block_len = em->len;
5137 	em->orig_block_len = stripe_size;
5138 
5139 	em_tree = &info->mapping_tree;
5140 	write_lock(&em_tree->lock);
5141 	ret = add_extent_mapping(em_tree, em, 0);
5142 	if (ret) {
5143 		write_unlock(&em_tree->lock);
5144 		free_extent_map(em);
5145 		goto error;
5146 	}
5147 	write_unlock(&em_tree->lock);
5148 
5149 	ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5150 	if (ret)
5151 		goto error_del_extent;
5152 
5153 	for (i = 0; i < map->num_stripes; i++) {
5154 		struct btrfs_device *dev = map->stripes[i].dev;
5155 
5156 		btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5157 		if (list_empty(&dev->post_commit_list))
5158 			list_add_tail(&dev->post_commit_list,
5159 				      &trans->transaction->dev_update_list);
5160 	}
5161 
5162 	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5163 
5164 	free_extent_map(em);
5165 	check_raid56_incompat_flag(info, type);
5166 
5167 	kfree(devices_info);
5168 	return 0;
5169 
5170 error_del_extent:
5171 	write_lock(&em_tree->lock);
5172 	remove_extent_mapping(em_tree, em);
5173 	write_unlock(&em_tree->lock);
5174 
5175 	/* One for our allocation */
5176 	free_extent_map(em);
5177 	/* One for the tree reference */
5178 	free_extent_map(em);
5179 error:
5180 	kfree(devices_info);
5181 	return ret;
5182 }
5183 
5184 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5185 			     u64 chunk_offset, u64 chunk_size)
5186 {
5187 	struct btrfs_fs_info *fs_info = trans->fs_info;
5188 	struct btrfs_root *extent_root = fs_info->extent_root;
5189 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5190 	struct btrfs_key key;
5191 	struct btrfs_device *device;
5192 	struct btrfs_chunk *chunk;
5193 	struct btrfs_stripe *stripe;
5194 	struct extent_map *em;
5195 	struct map_lookup *map;
5196 	size_t item_size;
5197 	u64 dev_offset;
5198 	u64 stripe_size;
5199 	int i = 0;
5200 	int ret = 0;
5201 
5202 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5203 	if (IS_ERR(em))
5204 		return PTR_ERR(em);
5205 
5206 	map = em->map_lookup;
5207 	item_size = btrfs_chunk_item_size(map->num_stripes);
5208 	stripe_size = em->orig_block_len;
5209 
5210 	chunk = kzalloc(item_size, GFP_NOFS);
5211 	if (!chunk) {
5212 		ret = -ENOMEM;
5213 		goto out;
5214 	}
5215 
5216 	/*
5217 	 * Take the device list mutex to prevent races with the final phase of
5218 	 * a device replace operation that replaces the device object associated
5219 	 * with the map's stripes, because the device object's id can change
5220 	 * at any time during that final phase of the device replace operation
5221 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5222 	 */
5223 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5224 	for (i = 0; i < map->num_stripes; i++) {
5225 		device = map->stripes[i].dev;
5226 		dev_offset = map->stripes[i].physical;
5227 
5228 		ret = btrfs_update_device(trans, device);
5229 		if (ret)
5230 			break;
5231 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5232 					     dev_offset, stripe_size);
5233 		if (ret)
5234 			break;
5235 	}
5236 	if (ret) {
5237 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5238 		goto out;
5239 	}
5240 
5241 	stripe = &chunk->stripe;
5242 	for (i = 0; i < map->num_stripes; i++) {
5243 		device = map->stripes[i].dev;
5244 		dev_offset = map->stripes[i].physical;
5245 
5246 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5247 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5248 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5249 		stripe++;
5250 	}
5251 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5252 
5253 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5254 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5255 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5256 	btrfs_set_stack_chunk_type(chunk, map->type);
5257 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5258 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5259 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5260 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5261 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5262 
5263 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5264 	key.type = BTRFS_CHUNK_ITEM_KEY;
5265 	key.offset = chunk_offset;
5266 
5267 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5268 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5269 		/*
5270 		 * TODO: Cleanup of inserted chunk root in case of
5271 		 * failure.
5272 		 */
5273 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5274 	}
5275 
5276 out:
5277 	kfree(chunk);
5278 	free_extent_map(em);
5279 	return ret;
5280 }
5281 
5282 /*
5283  * Chunk allocation falls into two parts. The first part does work
5284  * that makes the new allocated chunk usable, but does not do any operation
5285  * that modifies the chunk tree. The second part does the work that
5286  * requires modifying the chunk tree. This division is important for the
5287  * bootstrap process of adding storage to a seed btrfs.
5288  */
5289 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5290 {
5291 	u64 chunk_offset;
5292 
5293 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
5294 	chunk_offset = find_next_chunk(trans->fs_info);
5295 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
5296 }
5297 
5298 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5299 {
5300 	struct btrfs_fs_info *fs_info = trans->fs_info;
5301 	u64 chunk_offset;
5302 	u64 sys_chunk_offset;
5303 	u64 alloc_profile;
5304 	int ret;
5305 
5306 	chunk_offset = find_next_chunk(fs_info);
5307 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5308 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5309 	if (ret)
5310 		return ret;
5311 
5312 	sys_chunk_offset = find_next_chunk(fs_info);
5313 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5314 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5315 	return ret;
5316 }
5317 
5318 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5319 {
5320 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5321 
5322 	return btrfs_raid_array[index].tolerated_failures;
5323 }
5324 
5325 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5326 {
5327 	struct extent_map *em;
5328 	struct map_lookup *map;
5329 	int readonly = 0;
5330 	int miss_ndevs = 0;
5331 	int i;
5332 
5333 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5334 	if (IS_ERR(em))
5335 		return 1;
5336 
5337 	map = em->map_lookup;
5338 	for (i = 0; i < map->num_stripes; i++) {
5339 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5340 					&map->stripes[i].dev->dev_state)) {
5341 			miss_ndevs++;
5342 			continue;
5343 		}
5344 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5345 					&map->stripes[i].dev->dev_state)) {
5346 			readonly = 1;
5347 			goto end;
5348 		}
5349 	}
5350 
5351 	/*
5352 	 * If the number of missing devices is larger than max errors,
5353 	 * we can not write the data into that chunk successfully, so
5354 	 * set it readonly.
5355 	 */
5356 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5357 		readonly = 1;
5358 end:
5359 	free_extent_map(em);
5360 	return readonly;
5361 }
5362 
5363 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5364 {
5365 	struct extent_map *em;
5366 
5367 	while (1) {
5368 		write_lock(&tree->lock);
5369 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5370 		if (em)
5371 			remove_extent_mapping(tree, em);
5372 		write_unlock(&tree->lock);
5373 		if (!em)
5374 			break;
5375 		/* once for us */
5376 		free_extent_map(em);
5377 		/* once for the tree */
5378 		free_extent_map(em);
5379 	}
5380 }
5381 
5382 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5383 {
5384 	struct extent_map *em;
5385 	struct map_lookup *map;
5386 	int ret;
5387 
5388 	em = btrfs_get_chunk_map(fs_info, logical, len);
5389 	if (IS_ERR(em))
5390 		/*
5391 		 * We could return errors for these cases, but that could get
5392 		 * ugly and we'd probably do the same thing which is just not do
5393 		 * anything else and exit, so return 1 so the callers don't try
5394 		 * to use other copies.
5395 		 */
5396 		return 1;
5397 
5398 	map = em->map_lookup;
5399 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5400 		ret = map->num_stripes;
5401 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5402 		ret = map->sub_stripes;
5403 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5404 		ret = 2;
5405 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5406 		/*
5407 		 * There could be two corrupted data stripes, we need
5408 		 * to loop retry in order to rebuild the correct data.
5409 		 *
5410 		 * Fail a stripe at a time on every retry except the
5411 		 * stripe under reconstruction.
5412 		 */
5413 		ret = map->num_stripes;
5414 	else
5415 		ret = 1;
5416 	free_extent_map(em);
5417 
5418 	down_read(&fs_info->dev_replace.rwsem);
5419 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5420 	    fs_info->dev_replace.tgtdev)
5421 		ret++;
5422 	up_read(&fs_info->dev_replace.rwsem);
5423 
5424 	return ret;
5425 }
5426 
5427 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5428 				    u64 logical)
5429 {
5430 	struct extent_map *em;
5431 	struct map_lookup *map;
5432 	unsigned long len = fs_info->sectorsize;
5433 
5434 	em = btrfs_get_chunk_map(fs_info, logical, len);
5435 
5436 	if (!WARN_ON(IS_ERR(em))) {
5437 		map = em->map_lookup;
5438 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5439 			len = map->stripe_len * nr_data_stripes(map);
5440 		free_extent_map(em);
5441 	}
5442 	return len;
5443 }
5444 
5445 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5446 {
5447 	struct extent_map *em;
5448 	struct map_lookup *map;
5449 	int ret = 0;
5450 
5451 	em = btrfs_get_chunk_map(fs_info, logical, len);
5452 
5453 	if(!WARN_ON(IS_ERR(em))) {
5454 		map = em->map_lookup;
5455 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5456 			ret = 1;
5457 		free_extent_map(em);
5458 	}
5459 	return ret;
5460 }
5461 
5462 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5463 			    struct map_lookup *map, int first,
5464 			    int dev_replace_is_ongoing)
5465 {
5466 	int i;
5467 	int num_stripes;
5468 	int preferred_mirror;
5469 	int tolerance;
5470 	struct btrfs_device *srcdev;
5471 
5472 	ASSERT((map->type &
5473 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5474 
5475 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5476 		num_stripes = map->sub_stripes;
5477 	else
5478 		num_stripes = map->num_stripes;
5479 
5480 	preferred_mirror = first + current->pid % num_stripes;
5481 
5482 	if (dev_replace_is_ongoing &&
5483 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5484 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5485 		srcdev = fs_info->dev_replace.srcdev;
5486 	else
5487 		srcdev = NULL;
5488 
5489 	/*
5490 	 * try to avoid the drive that is the source drive for a
5491 	 * dev-replace procedure, only choose it if no other non-missing
5492 	 * mirror is available
5493 	 */
5494 	for (tolerance = 0; tolerance < 2; tolerance++) {
5495 		if (map->stripes[preferred_mirror].dev->bdev &&
5496 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5497 			return preferred_mirror;
5498 		for (i = first; i < first + num_stripes; i++) {
5499 			if (map->stripes[i].dev->bdev &&
5500 			    (tolerance || map->stripes[i].dev != srcdev))
5501 				return i;
5502 		}
5503 	}
5504 
5505 	/* we couldn't find one that doesn't fail.  Just return something
5506 	 * and the io error handling code will clean up eventually
5507 	 */
5508 	return preferred_mirror;
5509 }
5510 
5511 static inline int parity_smaller(u64 a, u64 b)
5512 {
5513 	return a > b;
5514 }
5515 
5516 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5517 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5518 {
5519 	struct btrfs_bio_stripe s;
5520 	int i;
5521 	u64 l;
5522 	int again = 1;
5523 
5524 	while (again) {
5525 		again = 0;
5526 		for (i = 0; i < num_stripes - 1; i++) {
5527 			if (parity_smaller(bbio->raid_map[i],
5528 					   bbio->raid_map[i+1])) {
5529 				s = bbio->stripes[i];
5530 				l = bbio->raid_map[i];
5531 				bbio->stripes[i] = bbio->stripes[i+1];
5532 				bbio->raid_map[i] = bbio->raid_map[i+1];
5533 				bbio->stripes[i+1] = s;
5534 				bbio->raid_map[i+1] = l;
5535 
5536 				again = 1;
5537 			}
5538 		}
5539 	}
5540 }
5541 
5542 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5543 {
5544 	struct btrfs_bio *bbio = kzalloc(
5545 		 /* the size of the btrfs_bio */
5546 		sizeof(struct btrfs_bio) +
5547 		/* plus the variable array for the stripes */
5548 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5549 		/* plus the variable array for the tgt dev */
5550 		sizeof(int) * (real_stripes) +
5551 		/*
5552 		 * plus the raid_map, which includes both the tgt dev
5553 		 * and the stripes
5554 		 */
5555 		sizeof(u64) * (total_stripes),
5556 		GFP_NOFS|__GFP_NOFAIL);
5557 
5558 	atomic_set(&bbio->error, 0);
5559 	refcount_set(&bbio->refs, 1);
5560 
5561 	return bbio;
5562 }
5563 
5564 void btrfs_get_bbio(struct btrfs_bio *bbio)
5565 {
5566 	WARN_ON(!refcount_read(&bbio->refs));
5567 	refcount_inc(&bbio->refs);
5568 }
5569 
5570 void btrfs_put_bbio(struct btrfs_bio *bbio)
5571 {
5572 	if (!bbio)
5573 		return;
5574 	if (refcount_dec_and_test(&bbio->refs))
5575 		kfree(bbio);
5576 }
5577 
5578 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5579 /*
5580  * Please note that, discard won't be sent to target device of device
5581  * replace.
5582  */
5583 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5584 					 u64 logical, u64 length,
5585 					 struct btrfs_bio **bbio_ret)
5586 {
5587 	struct extent_map *em;
5588 	struct map_lookup *map;
5589 	struct btrfs_bio *bbio;
5590 	u64 offset;
5591 	u64 stripe_nr;
5592 	u64 stripe_nr_end;
5593 	u64 stripe_end_offset;
5594 	u64 stripe_cnt;
5595 	u64 stripe_len;
5596 	u64 stripe_offset;
5597 	u64 num_stripes;
5598 	u32 stripe_index;
5599 	u32 factor = 0;
5600 	u32 sub_stripes = 0;
5601 	u64 stripes_per_dev = 0;
5602 	u32 remaining_stripes = 0;
5603 	u32 last_stripe = 0;
5604 	int ret = 0;
5605 	int i;
5606 
5607 	/* discard always return a bbio */
5608 	ASSERT(bbio_ret);
5609 
5610 	em = btrfs_get_chunk_map(fs_info, logical, length);
5611 	if (IS_ERR(em))
5612 		return PTR_ERR(em);
5613 
5614 	map = em->map_lookup;
5615 	/* we don't discard raid56 yet */
5616 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5617 		ret = -EOPNOTSUPP;
5618 		goto out;
5619 	}
5620 
5621 	offset = logical - em->start;
5622 	length = min_t(u64, em->len - offset, length);
5623 
5624 	stripe_len = map->stripe_len;
5625 	/*
5626 	 * stripe_nr counts the total number of stripes we have to stride
5627 	 * to get to this block
5628 	 */
5629 	stripe_nr = div64_u64(offset, stripe_len);
5630 
5631 	/* stripe_offset is the offset of this block in its stripe */
5632 	stripe_offset = offset - stripe_nr * stripe_len;
5633 
5634 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5635 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5636 	stripe_cnt = stripe_nr_end - stripe_nr;
5637 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5638 			    (offset + length);
5639 	/*
5640 	 * after this, stripe_nr is the number of stripes on this
5641 	 * device we have to walk to find the data, and stripe_index is
5642 	 * the number of our device in the stripe array
5643 	 */
5644 	num_stripes = 1;
5645 	stripe_index = 0;
5646 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5647 			 BTRFS_BLOCK_GROUP_RAID10)) {
5648 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5649 			sub_stripes = 1;
5650 		else
5651 			sub_stripes = map->sub_stripes;
5652 
5653 		factor = map->num_stripes / sub_stripes;
5654 		num_stripes = min_t(u64, map->num_stripes,
5655 				    sub_stripes * stripe_cnt);
5656 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5657 		stripe_index *= sub_stripes;
5658 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5659 					      &remaining_stripes);
5660 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5661 		last_stripe *= sub_stripes;
5662 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5663 				BTRFS_BLOCK_GROUP_DUP)) {
5664 		num_stripes = map->num_stripes;
5665 	} else {
5666 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5667 					&stripe_index);
5668 	}
5669 
5670 	bbio = alloc_btrfs_bio(num_stripes, 0);
5671 	if (!bbio) {
5672 		ret = -ENOMEM;
5673 		goto out;
5674 	}
5675 
5676 	for (i = 0; i < num_stripes; i++) {
5677 		bbio->stripes[i].physical =
5678 			map->stripes[stripe_index].physical +
5679 			stripe_offset + stripe_nr * map->stripe_len;
5680 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5681 
5682 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5683 				 BTRFS_BLOCK_GROUP_RAID10)) {
5684 			bbio->stripes[i].length = stripes_per_dev *
5685 				map->stripe_len;
5686 
5687 			if (i / sub_stripes < remaining_stripes)
5688 				bbio->stripes[i].length +=
5689 					map->stripe_len;
5690 
5691 			/*
5692 			 * Special for the first stripe and
5693 			 * the last stripe:
5694 			 *
5695 			 * |-------|...|-------|
5696 			 *     |----------|
5697 			 *    off     end_off
5698 			 */
5699 			if (i < sub_stripes)
5700 				bbio->stripes[i].length -=
5701 					stripe_offset;
5702 
5703 			if (stripe_index >= last_stripe &&
5704 			    stripe_index <= (last_stripe +
5705 					     sub_stripes - 1))
5706 				bbio->stripes[i].length -=
5707 					stripe_end_offset;
5708 
5709 			if (i == sub_stripes - 1)
5710 				stripe_offset = 0;
5711 		} else {
5712 			bbio->stripes[i].length = length;
5713 		}
5714 
5715 		stripe_index++;
5716 		if (stripe_index == map->num_stripes) {
5717 			stripe_index = 0;
5718 			stripe_nr++;
5719 		}
5720 	}
5721 
5722 	*bbio_ret = bbio;
5723 	bbio->map_type = map->type;
5724 	bbio->num_stripes = num_stripes;
5725 out:
5726 	free_extent_map(em);
5727 	return ret;
5728 }
5729 
5730 /*
5731  * In dev-replace case, for repair case (that's the only case where the mirror
5732  * is selected explicitly when calling btrfs_map_block), blocks left of the
5733  * left cursor can also be read from the target drive.
5734  *
5735  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5736  * array of stripes.
5737  * For READ, it also needs to be supported using the same mirror number.
5738  *
5739  * If the requested block is not left of the left cursor, EIO is returned. This
5740  * can happen because btrfs_num_copies() returns one more in the dev-replace
5741  * case.
5742  */
5743 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5744 					 u64 logical, u64 length,
5745 					 u64 srcdev_devid, int *mirror_num,
5746 					 u64 *physical)
5747 {
5748 	struct btrfs_bio *bbio = NULL;
5749 	int num_stripes;
5750 	int index_srcdev = 0;
5751 	int found = 0;
5752 	u64 physical_of_found = 0;
5753 	int i;
5754 	int ret = 0;
5755 
5756 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5757 				logical, &length, &bbio, 0, 0);
5758 	if (ret) {
5759 		ASSERT(bbio == NULL);
5760 		return ret;
5761 	}
5762 
5763 	num_stripes = bbio->num_stripes;
5764 	if (*mirror_num > num_stripes) {
5765 		/*
5766 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5767 		 * that means that the requested area is not left of the left
5768 		 * cursor
5769 		 */
5770 		btrfs_put_bbio(bbio);
5771 		return -EIO;
5772 	}
5773 
5774 	/*
5775 	 * process the rest of the function using the mirror_num of the source
5776 	 * drive. Therefore look it up first.  At the end, patch the device
5777 	 * pointer to the one of the target drive.
5778 	 */
5779 	for (i = 0; i < num_stripes; i++) {
5780 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5781 			continue;
5782 
5783 		/*
5784 		 * In case of DUP, in order to keep it simple, only add the
5785 		 * mirror with the lowest physical address
5786 		 */
5787 		if (found &&
5788 		    physical_of_found <= bbio->stripes[i].physical)
5789 			continue;
5790 
5791 		index_srcdev = i;
5792 		found = 1;
5793 		physical_of_found = bbio->stripes[i].physical;
5794 	}
5795 
5796 	btrfs_put_bbio(bbio);
5797 
5798 	ASSERT(found);
5799 	if (!found)
5800 		return -EIO;
5801 
5802 	*mirror_num = index_srcdev + 1;
5803 	*physical = physical_of_found;
5804 	return ret;
5805 }
5806 
5807 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5808 				      struct btrfs_bio **bbio_ret,
5809 				      struct btrfs_dev_replace *dev_replace,
5810 				      int *num_stripes_ret, int *max_errors_ret)
5811 {
5812 	struct btrfs_bio *bbio = *bbio_ret;
5813 	u64 srcdev_devid = dev_replace->srcdev->devid;
5814 	int tgtdev_indexes = 0;
5815 	int num_stripes = *num_stripes_ret;
5816 	int max_errors = *max_errors_ret;
5817 	int i;
5818 
5819 	if (op == BTRFS_MAP_WRITE) {
5820 		int index_where_to_add;
5821 
5822 		/*
5823 		 * duplicate the write operations while the dev replace
5824 		 * procedure is running. Since the copying of the old disk to
5825 		 * the new disk takes place at run time while the filesystem is
5826 		 * mounted writable, the regular write operations to the old
5827 		 * disk have to be duplicated to go to the new disk as well.
5828 		 *
5829 		 * Note that device->missing is handled by the caller, and that
5830 		 * the write to the old disk is already set up in the stripes
5831 		 * array.
5832 		 */
5833 		index_where_to_add = num_stripes;
5834 		for (i = 0; i < num_stripes; i++) {
5835 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5836 				/* write to new disk, too */
5837 				struct btrfs_bio_stripe *new =
5838 					bbio->stripes + index_where_to_add;
5839 				struct btrfs_bio_stripe *old =
5840 					bbio->stripes + i;
5841 
5842 				new->physical = old->physical;
5843 				new->length = old->length;
5844 				new->dev = dev_replace->tgtdev;
5845 				bbio->tgtdev_map[i] = index_where_to_add;
5846 				index_where_to_add++;
5847 				max_errors++;
5848 				tgtdev_indexes++;
5849 			}
5850 		}
5851 		num_stripes = index_where_to_add;
5852 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5853 		int index_srcdev = 0;
5854 		int found = 0;
5855 		u64 physical_of_found = 0;
5856 
5857 		/*
5858 		 * During the dev-replace procedure, the target drive can also
5859 		 * be used to read data in case it is needed to repair a corrupt
5860 		 * block elsewhere. This is possible if the requested area is
5861 		 * left of the left cursor. In this area, the target drive is a
5862 		 * full copy of the source drive.
5863 		 */
5864 		for (i = 0; i < num_stripes; i++) {
5865 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5866 				/*
5867 				 * In case of DUP, in order to keep it simple,
5868 				 * only add the mirror with the lowest physical
5869 				 * address
5870 				 */
5871 				if (found &&
5872 				    physical_of_found <=
5873 				     bbio->stripes[i].physical)
5874 					continue;
5875 				index_srcdev = i;
5876 				found = 1;
5877 				physical_of_found = bbio->stripes[i].physical;
5878 			}
5879 		}
5880 		if (found) {
5881 			struct btrfs_bio_stripe *tgtdev_stripe =
5882 				bbio->stripes + num_stripes;
5883 
5884 			tgtdev_stripe->physical = physical_of_found;
5885 			tgtdev_stripe->length =
5886 				bbio->stripes[index_srcdev].length;
5887 			tgtdev_stripe->dev = dev_replace->tgtdev;
5888 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5889 
5890 			tgtdev_indexes++;
5891 			num_stripes++;
5892 		}
5893 	}
5894 
5895 	*num_stripes_ret = num_stripes;
5896 	*max_errors_ret = max_errors;
5897 	bbio->num_tgtdevs = tgtdev_indexes;
5898 	*bbio_ret = bbio;
5899 }
5900 
5901 static bool need_full_stripe(enum btrfs_map_op op)
5902 {
5903 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5904 }
5905 
5906 /*
5907  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5908  *		       tuple. This information is used to calculate how big a
5909  *		       particular bio can get before it straddles a stripe.
5910  *
5911  * @fs_info - the filesystem
5912  * @logical - address that we want to figure out the geometry of
5913  * @len	    - the length of IO we are going to perform, starting at @logical
5914  * @op      - type of operation - write or read
5915  * @io_geom - pointer used to return values
5916  *
5917  * Returns < 0 in case a chunk for the given logical address cannot be found,
5918  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5919  */
5920 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5921 			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5922 {
5923 	struct extent_map *em;
5924 	struct map_lookup *map;
5925 	u64 offset;
5926 	u64 stripe_offset;
5927 	u64 stripe_nr;
5928 	u64 stripe_len;
5929 	u64 raid56_full_stripe_start = (u64)-1;
5930 	int data_stripes;
5931 	int ret = 0;
5932 
5933 	ASSERT(op != BTRFS_MAP_DISCARD);
5934 
5935 	em = btrfs_get_chunk_map(fs_info, logical, len);
5936 	if (IS_ERR(em))
5937 		return PTR_ERR(em);
5938 
5939 	map = em->map_lookup;
5940 	/* Offset of this logical address in the chunk */
5941 	offset = logical - em->start;
5942 	/* Len of a stripe in a chunk */
5943 	stripe_len = map->stripe_len;
5944 	/* Stripe wher this block falls in */
5945 	stripe_nr = div64_u64(offset, stripe_len);
5946 	/* Offset of stripe in the chunk */
5947 	stripe_offset = stripe_nr * stripe_len;
5948 	if (offset < stripe_offset) {
5949 		btrfs_crit(fs_info,
5950 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5951 			stripe_offset, offset, em->start, logical, stripe_len);
5952 		ret = -EINVAL;
5953 		goto out;
5954 	}
5955 
5956 	/* stripe_offset is the offset of this block in its stripe */
5957 	stripe_offset = offset - stripe_offset;
5958 	data_stripes = nr_data_stripes(map);
5959 
5960 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5961 		u64 max_len = stripe_len - stripe_offset;
5962 
5963 		/*
5964 		 * In case of raid56, we need to know the stripe aligned start
5965 		 */
5966 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5967 			unsigned long full_stripe_len = stripe_len * data_stripes;
5968 			raid56_full_stripe_start = offset;
5969 
5970 			/*
5971 			 * Allow a write of a full stripe, but make sure we
5972 			 * don't allow straddling of stripes
5973 			 */
5974 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5975 					full_stripe_len);
5976 			raid56_full_stripe_start *= full_stripe_len;
5977 
5978 			/*
5979 			 * For writes to RAID[56], allow a full stripeset across
5980 			 * all disks. For other RAID types and for RAID[56]
5981 			 * reads, just allow a single stripe (on a single disk).
5982 			 */
5983 			if (op == BTRFS_MAP_WRITE) {
5984 				max_len = stripe_len * data_stripes -
5985 					  (offset - raid56_full_stripe_start);
5986 			}
5987 		}
5988 		len = min_t(u64, em->len - offset, max_len);
5989 	} else {
5990 		len = em->len - offset;
5991 	}
5992 
5993 	io_geom->len = len;
5994 	io_geom->offset = offset;
5995 	io_geom->stripe_len = stripe_len;
5996 	io_geom->stripe_nr = stripe_nr;
5997 	io_geom->stripe_offset = stripe_offset;
5998 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
5999 
6000 out:
6001 	/* once for us */
6002 	free_extent_map(em);
6003 	return ret;
6004 }
6005 
6006 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6007 			     enum btrfs_map_op op,
6008 			     u64 logical, u64 *length,
6009 			     struct btrfs_bio **bbio_ret,
6010 			     int mirror_num, int need_raid_map)
6011 {
6012 	struct extent_map *em;
6013 	struct map_lookup *map;
6014 	u64 offset;
6015 	u64 stripe_offset;
6016 	u64 stripe_nr;
6017 	u64 stripe_len;
6018 	u32 stripe_index;
6019 	int data_stripes;
6020 	int i;
6021 	int ret = 0;
6022 	int num_stripes;
6023 	int max_errors = 0;
6024 	int tgtdev_indexes = 0;
6025 	struct btrfs_bio *bbio = NULL;
6026 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6027 	int dev_replace_is_ongoing = 0;
6028 	int num_alloc_stripes;
6029 	int patch_the_first_stripe_for_dev_replace = 0;
6030 	u64 physical_to_patch_in_first_stripe = 0;
6031 	u64 raid56_full_stripe_start = (u64)-1;
6032 	struct btrfs_io_geometry geom;
6033 
6034 	ASSERT(bbio_ret);
6035 
6036 	if (op == BTRFS_MAP_DISCARD)
6037 		return __btrfs_map_block_for_discard(fs_info, logical,
6038 						     *length, bbio_ret);
6039 
6040 	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6041 	if (ret < 0)
6042 		return ret;
6043 
6044 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6045 	ASSERT(em);
6046 	map = em->map_lookup;
6047 
6048 	*length = geom.len;
6049 	offset = geom.offset;
6050 	stripe_len = geom.stripe_len;
6051 	stripe_nr = geom.stripe_nr;
6052 	stripe_offset = geom.stripe_offset;
6053 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6054 	data_stripes = nr_data_stripes(map);
6055 
6056 	down_read(&dev_replace->rwsem);
6057 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6058 	/*
6059 	 * Hold the semaphore for read during the whole operation, write is
6060 	 * requested at commit time but must wait.
6061 	 */
6062 	if (!dev_replace_is_ongoing)
6063 		up_read(&dev_replace->rwsem);
6064 
6065 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6066 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6067 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6068 						    dev_replace->srcdev->devid,
6069 						    &mirror_num,
6070 					    &physical_to_patch_in_first_stripe);
6071 		if (ret)
6072 			goto out;
6073 		else
6074 			patch_the_first_stripe_for_dev_replace = 1;
6075 	} else if (mirror_num > map->num_stripes) {
6076 		mirror_num = 0;
6077 	}
6078 
6079 	num_stripes = 1;
6080 	stripe_index = 0;
6081 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6082 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6083 				&stripe_index);
6084 		if (!need_full_stripe(op))
6085 			mirror_num = 1;
6086 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6087 		if (need_full_stripe(op))
6088 			num_stripes = map->num_stripes;
6089 		else if (mirror_num)
6090 			stripe_index = mirror_num - 1;
6091 		else {
6092 			stripe_index = find_live_mirror(fs_info, map, 0,
6093 					    dev_replace_is_ongoing);
6094 			mirror_num = stripe_index + 1;
6095 		}
6096 
6097 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6098 		if (need_full_stripe(op)) {
6099 			num_stripes = map->num_stripes;
6100 		} else if (mirror_num) {
6101 			stripe_index = mirror_num - 1;
6102 		} else {
6103 			mirror_num = 1;
6104 		}
6105 
6106 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6107 		u32 factor = map->num_stripes / map->sub_stripes;
6108 
6109 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6110 		stripe_index *= map->sub_stripes;
6111 
6112 		if (need_full_stripe(op))
6113 			num_stripes = map->sub_stripes;
6114 		else if (mirror_num)
6115 			stripe_index += mirror_num - 1;
6116 		else {
6117 			int old_stripe_index = stripe_index;
6118 			stripe_index = find_live_mirror(fs_info, map,
6119 					      stripe_index,
6120 					      dev_replace_is_ongoing);
6121 			mirror_num = stripe_index - old_stripe_index + 1;
6122 		}
6123 
6124 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6125 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6126 			/* push stripe_nr back to the start of the full stripe */
6127 			stripe_nr = div64_u64(raid56_full_stripe_start,
6128 					stripe_len * data_stripes);
6129 
6130 			/* RAID[56] write or recovery. Return all stripes */
6131 			num_stripes = map->num_stripes;
6132 			max_errors = nr_parity_stripes(map);
6133 
6134 			*length = map->stripe_len;
6135 			stripe_index = 0;
6136 			stripe_offset = 0;
6137 		} else {
6138 			/*
6139 			 * Mirror #0 or #1 means the original data block.
6140 			 * Mirror #2 is RAID5 parity block.
6141 			 * Mirror #3 is RAID6 Q block.
6142 			 */
6143 			stripe_nr = div_u64_rem(stripe_nr,
6144 					data_stripes, &stripe_index);
6145 			if (mirror_num > 1)
6146 				stripe_index = data_stripes + mirror_num - 2;
6147 
6148 			/* We distribute the parity blocks across stripes */
6149 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6150 					&stripe_index);
6151 			if (!need_full_stripe(op) && mirror_num <= 1)
6152 				mirror_num = 1;
6153 		}
6154 	} else {
6155 		/*
6156 		 * after this, stripe_nr is the number of stripes on this
6157 		 * device we have to walk to find the data, and stripe_index is
6158 		 * the number of our device in the stripe array
6159 		 */
6160 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6161 				&stripe_index);
6162 		mirror_num = stripe_index + 1;
6163 	}
6164 	if (stripe_index >= map->num_stripes) {
6165 		btrfs_crit(fs_info,
6166 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6167 			   stripe_index, map->num_stripes);
6168 		ret = -EINVAL;
6169 		goto out;
6170 	}
6171 
6172 	num_alloc_stripes = num_stripes;
6173 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6174 		if (op == BTRFS_MAP_WRITE)
6175 			num_alloc_stripes <<= 1;
6176 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6177 			num_alloc_stripes++;
6178 		tgtdev_indexes = num_stripes;
6179 	}
6180 
6181 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6182 	if (!bbio) {
6183 		ret = -ENOMEM;
6184 		goto out;
6185 	}
6186 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6187 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6188 
6189 	/* build raid_map */
6190 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6191 	    (need_full_stripe(op) || mirror_num > 1)) {
6192 		u64 tmp;
6193 		unsigned rot;
6194 
6195 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
6196 				 sizeof(struct btrfs_bio_stripe) *
6197 				 num_alloc_stripes +
6198 				 sizeof(int) * tgtdev_indexes);
6199 
6200 		/* Work out the disk rotation on this stripe-set */
6201 		div_u64_rem(stripe_nr, num_stripes, &rot);
6202 
6203 		/* Fill in the logical address of each stripe */
6204 		tmp = stripe_nr * data_stripes;
6205 		for (i = 0; i < data_stripes; i++)
6206 			bbio->raid_map[(i+rot) % num_stripes] =
6207 				em->start + (tmp + i) * map->stripe_len;
6208 
6209 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6210 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6211 			bbio->raid_map[(i+rot+1) % num_stripes] =
6212 				RAID6_Q_STRIPE;
6213 	}
6214 
6215 
6216 	for (i = 0; i < num_stripes; i++) {
6217 		bbio->stripes[i].physical =
6218 			map->stripes[stripe_index].physical +
6219 			stripe_offset +
6220 			stripe_nr * map->stripe_len;
6221 		bbio->stripes[i].dev =
6222 			map->stripes[stripe_index].dev;
6223 		stripe_index++;
6224 	}
6225 
6226 	if (need_full_stripe(op))
6227 		max_errors = btrfs_chunk_max_errors(map);
6228 
6229 	if (bbio->raid_map)
6230 		sort_parity_stripes(bbio, num_stripes);
6231 
6232 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6233 	    need_full_stripe(op)) {
6234 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6235 					  &max_errors);
6236 	}
6237 
6238 	*bbio_ret = bbio;
6239 	bbio->map_type = map->type;
6240 	bbio->num_stripes = num_stripes;
6241 	bbio->max_errors = max_errors;
6242 	bbio->mirror_num = mirror_num;
6243 
6244 	/*
6245 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6246 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6247 	 * available as a mirror
6248 	 */
6249 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6250 		WARN_ON(num_stripes > 1);
6251 		bbio->stripes[0].dev = dev_replace->tgtdev;
6252 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6253 		bbio->mirror_num = map->num_stripes + 1;
6254 	}
6255 out:
6256 	if (dev_replace_is_ongoing) {
6257 		lockdep_assert_held(&dev_replace->rwsem);
6258 		/* Unlock and let waiting writers proceed */
6259 		up_read(&dev_replace->rwsem);
6260 	}
6261 	free_extent_map(em);
6262 	return ret;
6263 }
6264 
6265 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6266 		      u64 logical, u64 *length,
6267 		      struct btrfs_bio **bbio_ret, int mirror_num)
6268 {
6269 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6270 				 mirror_num, 0);
6271 }
6272 
6273 /* For Scrub/replace */
6274 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6275 		     u64 logical, u64 *length,
6276 		     struct btrfs_bio **bbio_ret)
6277 {
6278 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6279 }
6280 
6281 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6282 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6283 {
6284 	struct extent_map *em;
6285 	struct map_lookup *map;
6286 	u64 *buf;
6287 	u64 bytenr;
6288 	u64 length;
6289 	u64 stripe_nr;
6290 	u64 rmap_len;
6291 	int i, j, nr = 0;
6292 
6293 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6294 	if (IS_ERR(em))
6295 		return -EIO;
6296 
6297 	map = em->map_lookup;
6298 	length = em->len;
6299 	rmap_len = map->stripe_len;
6300 
6301 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6302 		length = div_u64(length, map->num_stripes / map->sub_stripes);
6303 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6304 		length = div_u64(length, map->num_stripes);
6305 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6306 		length = div_u64(length, nr_data_stripes(map));
6307 		rmap_len = map->stripe_len * nr_data_stripes(map);
6308 	}
6309 
6310 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6311 	BUG_ON(!buf); /* -ENOMEM */
6312 
6313 	for (i = 0; i < map->num_stripes; i++) {
6314 		if (map->stripes[i].physical > physical ||
6315 		    map->stripes[i].physical + length <= physical)
6316 			continue;
6317 
6318 		stripe_nr = physical - map->stripes[i].physical;
6319 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6320 
6321 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6322 			stripe_nr = stripe_nr * map->num_stripes + i;
6323 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6324 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6325 			stripe_nr = stripe_nr * map->num_stripes + i;
6326 		} /* else if RAID[56], multiply by nr_data_stripes().
6327 		   * Alternatively, just use rmap_len below instead of
6328 		   * map->stripe_len */
6329 
6330 		bytenr = chunk_start + stripe_nr * rmap_len;
6331 		WARN_ON(nr >= map->num_stripes);
6332 		for (j = 0; j < nr; j++) {
6333 			if (buf[j] == bytenr)
6334 				break;
6335 		}
6336 		if (j == nr) {
6337 			WARN_ON(nr >= map->num_stripes);
6338 			buf[nr++] = bytenr;
6339 		}
6340 	}
6341 
6342 	*logical = buf;
6343 	*naddrs = nr;
6344 	*stripe_len = rmap_len;
6345 
6346 	free_extent_map(em);
6347 	return 0;
6348 }
6349 
6350 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6351 {
6352 	bio->bi_private = bbio->private;
6353 	bio->bi_end_io = bbio->end_io;
6354 	bio_endio(bio);
6355 
6356 	btrfs_put_bbio(bbio);
6357 }
6358 
6359 static void btrfs_end_bio(struct bio *bio)
6360 {
6361 	struct btrfs_bio *bbio = bio->bi_private;
6362 	int is_orig_bio = 0;
6363 
6364 	if (bio->bi_status) {
6365 		atomic_inc(&bbio->error);
6366 		if (bio->bi_status == BLK_STS_IOERR ||
6367 		    bio->bi_status == BLK_STS_TARGET) {
6368 			unsigned int stripe_index =
6369 				btrfs_io_bio(bio)->stripe_index;
6370 			struct btrfs_device *dev;
6371 
6372 			BUG_ON(stripe_index >= bbio->num_stripes);
6373 			dev = bbio->stripes[stripe_index].dev;
6374 			if (dev->bdev) {
6375 				if (bio_op(bio) == REQ_OP_WRITE)
6376 					btrfs_dev_stat_inc_and_print(dev,
6377 						BTRFS_DEV_STAT_WRITE_ERRS);
6378 				else if (!(bio->bi_opf & REQ_RAHEAD))
6379 					btrfs_dev_stat_inc_and_print(dev,
6380 						BTRFS_DEV_STAT_READ_ERRS);
6381 				if (bio->bi_opf & REQ_PREFLUSH)
6382 					btrfs_dev_stat_inc_and_print(dev,
6383 						BTRFS_DEV_STAT_FLUSH_ERRS);
6384 			}
6385 		}
6386 	}
6387 
6388 	if (bio == bbio->orig_bio)
6389 		is_orig_bio = 1;
6390 
6391 	btrfs_bio_counter_dec(bbio->fs_info);
6392 
6393 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6394 		if (!is_orig_bio) {
6395 			bio_put(bio);
6396 			bio = bbio->orig_bio;
6397 		}
6398 
6399 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6400 		/* only send an error to the higher layers if it is
6401 		 * beyond the tolerance of the btrfs bio
6402 		 */
6403 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6404 			bio->bi_status = BLK_STS_IOERR;
6405 		} else {
6406 			/*
6407 			 * this bio is actually up to date, we didn't
6408 			 * go over the max number of errors
6409 			 */
6410 			bio->bi_status = BLK_STS_OK;
6411 		}
6412 
6413 		btrfs_end_bbio(bbio, bio);
6414 	} else if (!is_orig_bio) {
6415 		bio_put(bio);
6416 	}
6417 }
6418 
6419 /*
6420  * see run_scheduled_bios for a description of why bios are collected for
6421  * async submit.
6422  *
6423  * This will add one bio to the pending list for a device and make sure
6424  * the work struct is scheduled.
6425  */
6426 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6427 					struct bio *bio)
6428 {
6429 	struct btrfs_fs_info *fs_info = device->fs_info;
6430 	int should_queue = 1;
6431 	struct btrfs_pending_bios *pending_bios;
6432 
6433 	/* don't bother with additional async steps for reads, right now */
6434 	if (bio_op(bio) == REQ_OP_READ) {
6435 		btrfsic_submit_bio(bio);
6436 		return;
6437 	}
6438 
6439 	WARN_ON(bio->bi_next);
6440 	bio->bi_next = NULL;
6441 
6442 	spin_lock(&device->io_lock);
6443 	if (op_is_sync(bio->bi_opf))
6444 		pending_bios = &device->pending_sync_bios;
6445 	else
6446 		pending_bios = &device->pending_bios;
6447 
6448 	if (pending_bios->tail)
6449 		pending_bios->tail->bi_next = bio;
6450 
6451 	pending_bios->tail = bio;
6452 	if (!pending_bios->head)
6453 		pending_bios->head = bio;
6454 	if (device->running_pending)
6455 		should_queue = 0;
6456 
6457 	spin_unlock(&device->io_lock);
6458 
6459 	if (should_queue)
6460 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6461 }
6462 
6463 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6464 			      u64 physical, int dev_nr, int async)
6465 {
6466 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6467 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6468 
6469 	bio->bi_private = bbio;
6470 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6471 	bio->bi_end_io = btrfs_end_bio;
6472 	bio->bi_iter.bi_sector = physical >> 9;
6473 	btrfs_debug_in_rcu(fs_info,
6474 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6475 		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6476 		(u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6477 		bio->bi_iter.bi_size);
6478 	bio_set_dev(bio, dev->bdev);
6479 
6480 	btrfs_bio_counter_inc_noblocked(fs_info);
6481 
6482 	if (async)
6483 		btrfs_schedule_bio(dev, bio);
6484 	else
6485 		btrfsic_submit_bio(bio);
6486 }
6487 
6488 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6489 {
6490 	atomic_inc(&bbio->error);
6491 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6492 		/* Should be the original bio. */
6493 		WARN_ON(bio != bbio->orig_bio);
6494 
6495 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6496 		bio->bi_iter.bi_sector = logical >> 9;
6497 		if (atomic_read(&bbio->error) > bbio->max_errors)
6498 			bio->bi_status = BLK_STS_IOERR;
6499 		else
6500 			bio->bi_status = BLK_STS_OK;
6501 		btrfs_end_bbio(bbio, bio);
6502 	}
6503 }
6504 
6505 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6506 			   int mirror_num, int async_submit)
6507 {
6508 	struct btrfs_device *dev;
6509 	struct bio *first_bio = bio;
6510 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6511 	u64 length = 0;
6512 	u64 map_length;
6513 	int ret;
6514 	int dev_nr;
6515 	int total_devs;
6516 	struct btrfs_bio *bbio = NULL;
6517 
6518 	length = bio->bi_iter.bi_size;
6519 	map_length = length;
6520 
6521 	btrfs_bio_counter_inc_blocked(fs_info);
6522 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6523 				&map_length, &bbio, mirror_num, 1);
6524 	if (ret) {
6525 		btrfs_bio_counter_dec(fs_info);
6526 		return errno_to_blk_status(ret);
6527 	}
6528 
6529 	total_devs = bbio->num_stripes;
6530 	bbio->orig_bio = first_bio;
6531 	bbio->private = first_bio->bi_private;
6532 	bbio->end_io = first_bio->bi_end_io;
6533 	bbio->fs_info = fs_info;
6534 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6535 
6536 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6537 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6538 		/* In this case, map_length has been set to the length of
6539 		   a single stripe; not the whole write */
6540 		if (bio_op(bio) == REQ_OP_WRITE) {
6541 			ret = raid56_parity_write(fs_info, bio, bbio,
6542 						  map_length);
6543 		} else {
6544 			ret = raid56_parity_recover(fs_info, bio, bbio,
6545 						    map_length, mirror_num, 1);
6546 		}
6547 
6548 		btrfs_bio_counter_dec(fs_info);
6549 		return errno_to_blk_status(ret);
6550 	}
6551 
6552 	if (map_length < length) {
6553 		btrfs_crit(fs_info,
6554 			   "mapping failed logical %llu bio len %llu len %llu",
6555 			   logical, length, map_length);
6556 		BUG();
6557 	}
6558 
6559 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6560 		dev = bbio->stripes[dev_nr].dev;
6561 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6562 						   &dev->dev_state) ||
6563 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6564 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6565 			bbio_error(bbio, first_bio, logical);
6566 			continue;
6567 		}
6568 
6569 		if (dev_nr < total_devs - 1)
6570 			bio = btrfs_bio_clone(first_bio);
6571 		else
6572 			bio = first_bio;
6573 
6574 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6575 				  dev_nr, async_submit);
6576 	}
6577 	btrfs_bio_counter_dec(fs_info);
6578 	return BLK_STS_OK;
6579 }
6580 
6581 /*
6582  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6583  * return NULL.
6584  *
6585  * If devid and uuid are both specified, the match must be exact, otherwise
6586  * only devid is used.
6587  *
6588  * If @seed is true, traverse through the seed devices.
6589  */
6590 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6591 				       u64 devid, u8 *uuid, u8 *fsid,
6592 				       bool seed)
6593 {
6594 	struct btrfs_device *device;
6595 
6596 	while (fs_devices) {
6597 		if (!fsid ||
6598 		    !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6599 			list_for_each_entry(device, &fs_devices->devices,
6600 					    dev_list) {
6601 				if (device->devid == devid &&
6602 				    (!uuid || memcmp(device->uuid, uuid,
6603 						     BTRFS_UUID_SIZE) == 0))
6604 					return device;
6605 			}
6606 		}
6607 		if (seed)
6608 			fs_devices = fs_devices->seed;
6609 		else
6610 			return NULL;
6611 	}
6612 	return NULL;
6613 }
6614 
6615 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6616 					    u64 devid, u8 *dev_uuid)
6617 {
6618 	struct btrfs_device *device;
6619 
6620 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6621 	if (IS_ERR(device))
6622 		return device;
6623 
6624 	list_add(&device->dev_list, &fs_devices->devices);
6625 	device->fs_devices = fs_devices;
6626 	fs_devices->num_devices++;
6627 
6628 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6629 	fs_devices->missing_devices++;
6630 
6631 	return device;
6632 }
6633 
6634 /**
6635  * btrfs_alloc_device - allocate struct btrfs_device
6636  * @fs_info:	used only for generating a new devid, can be NULL if
6637  *		devid is provided (i.e. @devid != NULL).
6638  * @devid:	a pointer to devid for this device.  If NULL a new devid
6639  *		is generated.
6640  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6641  *		is generated.
6642  *
6643  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6644  * on error.  Returned struct is not linked onto any lists and must be
6645  * destroyed with btrfs_free_device.
6646  */
6647 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6648 					const u64 *devid,
6649 					const u8 *uuid)
6650 {
6651 	struct btrfs_device *dev;
6652 	u64 tmp;
6653 
6654 	if (WARN_ON(!devid && !fs_info))
6655 		return ERR_PTR(-EINVAL);
6656 
6657 	dev = __alloc_device();
6658 	if (IS_ERR(dev))
6659 		return dev;
6660 
6661 	if (devid)
6662 		tmp = *devid;
6663 	else {
6664 		int ret;
6665 
6666 		ret = find_next_devid(fs_info, &tmp);
6667 		if (ret) {
6668 			btrfs_free_device(dev);
6669 			return ERR_PTR(ret);
6670 		}
6671 	}
6672 	dev->devid = tmp;
6673 
6674 	if (uuid)
6675 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6676 	else
6677 		generate_random_uuid(dev->uuid);
6678 
6679 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6680 			pending_bios_fn, NULL, NULL);
6681 
6682 	return dev;
6683 }
6684 
6685 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6686 					u64 devid, u8 *uuid, bool error)
6687 {
6688 	if (error)
6689 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6690 			      devid, uuid);
6691 	else
6692 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6693 			      devid, uuid);
6694 }
6695 
6696 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6697 {
6698 	int index = btrfs_bg_flags_to_raid_index(type);
6699 	int ncopies = btrfs_raid_array[index].ncopies;
6700 	int data_stripes;
6701 
6702 	switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6703 	case BTRFS_BLOCK_GROUP_RAID5:
6704 		data_stripes = num_stripes - 1;
6705 		break;
6706 	case BTRFS_BLOCK_GROUP_RAID6:
6707 		data_stripes = num_stripes - 2;
6708 		break;
6709 	default:
6710 		data_stripes = num_stripes / ncopies;
6711 		break;
6712 	}
6713 	return div_u64(chunk_len, data_stripes);
6714 }
6715 
6716 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6717 			  struct btrfs_chunk *chunk)
6718 {
6719 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6720 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6721 	struct map_lookup *map;
6722 	struct extent_map *em;
6723 	u64 logical;
6724 	u64 length;
6725 	u64 devid;
6726 	u8 uuid[BTRFS_UUID_SIZE];
6727 	int num_stripes;
6728 	int ret;
6729 	int i;
6730 
6731 	logical = key->offset;
6732 	length = btrfs_chunk_length(leaf, chunk);
6733 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6734 
6735 	/*
6736 	 * Only need to verify chunk item if we're reading from sys chunk array,
6737 	 * as chunk item in tree block is already verified by tree-checker.
6738 	 */
6739 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6740 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6741 		if (ret)
6742 			return ret;
6743 	}
6744 
6745 	read_lock(&map_tree->lock);
6746 	em = lookup_extent_mapping(map_tree, logical, 1);
6747 	read_unlock(&map_tree->lock);
6748 
6749 	/* already mapped? */
6750 	if (em && em->start <= logical && em->start + em->len > logical) {
6751 		free_extent_map(em);
6752 		return 0;
6753 	} else if (em) {
6754 		free_extent_map(em);
6755 	}
6756 
6757 	em = alloc_extent_map();
6758 	if (!em)
6759 		return -ENOMEM;
6760 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6761 	if (!map) {
6762 		free_extent_map(em);
6763 		return -ENOMEM;
6764 	}
6765 
6766 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6767 	em->map_lookup = map;
6768 	em->start = logical;
6769 	em->len = length;
6770 	em->orig_start = 0;
6771 	em->block_start = 0;
6772 	em->block_len = em->len;
6773 
6774 	map->num_stripes = num_stripes;
6775 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6776 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6777 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6778 	map->type = btrfs_chunk_type(leaf, chunk);
6779 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6780 	map->verified_stripes = 0;
6781 	em->orig_block_len = calc_stripe_length(map->type, em->len,
6782 						map->num_stripes);
6783 	for (i = 0; i < num_stripes; i++) {
6784 		map->stripes[i].physical =
6785 			btrfs_stripe_offset_nr(leaf, chunk, i);
6786 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6787 		read_extent_buffer(leaf, uuid, (unsigned long)
6788 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6789 				   BTRFS_UUID_SIZE);
6790 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6791 							devid, uuid, NULL, true);
6792 		if (!map->stripes[i].dev &&
6793 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6794 			free_extent_map(em);
6795 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6796 			return -ENOENT;
6797 		}
6798 		if (!map->stripes[i].dev) {
6799 			map->stripes[i].dev =
6800 				add_missing_dev(fs_info->fs_devices, devid,
6801 						uuid);
6802 			if (IS_ERR(map->stripes[i].dev)) {
6803 				free_extent_map(em);
6804 				btrfs_err(fs_info,
6805 					"failed to init missing dev %llu: %ld",
6806 					devid, PTR_ERR(map->stripes[i].dev));
6807 				return PTR_ERR(map->stripes[i].dev);
6808 			}
6809 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6810 		}
6811 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6812 				&(map->stripes[i].dev->dev_state));
6813 
6814 	}
6815 
6816 	write_lock(&map_tree->lock);
6817 	ret = add_extent_mapping(map_tree, em, 0);
6818 	write_unlock(&map_tree->lock);
6819 	if (ret < 0) {
6820 		btrfs_err(fs_info,
6821 			  "failed to add chunk map, start=%llu len=%llu: %d",
6822 			  em->start, em->len, ret);
6823 	}
6824 	free_extent_map(em);
6825 
6826 	return ret;
6827 }
6828 
6829 static void fill_device_from_item(struct extent_buffer *leaf,
6830 				 struct btrfs_dev_item *dev_item,
6831 				 struct btrfs_device *device)
6832 {
6833 	unsigned long ptr;
6834 
6835 	device->devid = btrfs_device_id(leaf, dev_item);
6836 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6837 	device->total_bytes = device->disk_total_bytes;
6838 	device->commit_total_bytes = device->disk_total_bytes;
6839 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6840 	device->commit_bytes_used = device->bytes_used;
6841 	device->type = btrfs_device_type(leaf, dev_item);
6842 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6843 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6844 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6845 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6846 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6847 
6848 	ptr = btrfs_device_uuid(dev_item);
6849 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6850 }
6851 
6852 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6853 						  u8 *fsid)
6854 {
6855 	struct btrfs_fs_devices *fs_devices;
6856 	int ret;
6857 
6858 	lockdep_assert_held(&uuid_mutex);
6859 	ASSERT(fsid);
6860 
6861 	fs_devices = fs_info->fs_devices->seed;
6862 	while (fs_devices) {
6863 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6864 			return fs_devices;
6865 
6866 		fs_devices = fs_devices->seed;
6867 	}
6868 
6869 	fs_devices = find_fsid(fsid, NULL);
6870 	if (!fs_devices) {
6871 		if (!btrfs_test_opt(fs_info, DEGRADED))
6872 			return ERR_PTR(-ENOENT);
6873 
6874 		fs_devices = alloc_fs_devices(fsid, NULL);
6875 		if (IS_ERR(fs_devices))
6876 			return fs_devices;
6877 
6878 		fs_devices->seeding = 1;
6879 		fs_devices->opened = 1;
6880 		return fs_devices;
6881 	}
6882 
6883 	fs_devices = clone_fs_devices(fs_devices);
6884 	if (IS_ERR(fs_devices))
6885 		return fs_devices;
6886 
6887 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6888 	if (ret) {
6889 		free_fs_devices(fs_devices);
6890 		fs_devices = ERR_PTR(ret);
6891 		goto out;
6892 	}
6893 
6894 	if (!fs_devices->seeding) {
6895 		close_fs_devices(fs_devices);
6896 		free_fs_devices(fs_devices);
6897 		fs_devices = ERR_PTR(-EINVAL);
6898 		goto out;
6899 	}
6900 
6901 	fs_devices->seed = fs_info->fs_devices->seed;
6902 	fs_info->fs_devices->seed = fs_devices;
6903 out:
6904 	return fs_devices;
6905 }
6906 
6907 static int read_one_dev(struct extent_buffer *leaf,
6908 			struct btrfs_dev_item *dev_item)
6909 {
6910 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6911 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6912 	struct btrfs_device *device;
6913 	u64 devid;
6914 	int ret;
6915 	u8 fs_uuid[BTRFS_FSID_SIZE];
6916 	u8 dev_uuid[BTRFS_UUID_SIZE];
6917 
6918 	devid = btrfs_device_id(leaf, dev_item);
6919 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6920 			   BTRFS_UUID_SIZE);
6921 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6922 			   BTRFS_FSID_SIZE);
6923 
6924 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6925 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6926 		if (IS_ERR(fs_devices))
6927 			return PTR_ERR(fs_devices);
6928 	}
6929 
6930 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6931 				   fs_uuid, true);
6932 	if (!device) {
6933 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6934 			btrfs_report_missing_device(fs_info, devid,
6935 							dev_uuid, true);
6936 			return -ENOENT;
6937 		}
6938 
6939 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6940 		if (IS_ERR(device)) {
6941 			btrfs_err(fs_info,
6942 				"failed to add missing dev %llu: %ld",
6943 				devid, PTR_ERR(device));
6944 			return PTR_ERR(device);
6945 		}
6946 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6947 	} else {
6948 		if (!device->bdev) {
6949 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6950 				btrfs_report_missing_device(fs_info,
6951 						devid, dev_uuid, true);
6952 				return -ENOENT;
6953 			}
6954 			btrfs_report_missing_device(fs_info, devid,
6955 							dev_uuid, false);
6956 		}
6957 
6958 		if (!device->bdev &&
6959 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6960 			/*
6961 			 * this happens when a device that was properly setup
6962 			 * in the device info lists suddenly goes bad.
6963 			 * device->bdev is NULL, and so we have to set
6964 			 * device->missing to one here
6965 			 */
6966 			device->fs_devices->missing_devices++;
6967 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6968 		}
6969 
6970 		/* Move the device to its own fs_devices */
6971 		if (device->fs_devices != fs_devices) {
6972 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6973 							&device->dev_state));
6974 
6975 			list_move(&device->dev_list, &fs_devices->devices);
6976 			device->fs_devices->num_devices--;
6977 			fs_devices->num_devices++;
6978 
6979 			device->fs_devices->missing_devices--;
6980 			fs_devices->missing_devices++;
6981 
6982 			device->fs_devices = fs_devices;
6983 		}
6984 	}
6985 
6986 	if (device->fs_devices != fs_info->fs_devices) {
6987 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6988 		if (device->generation !=
6989 		    btrfs_device_generation(leaf, dev_item))
6990 			return -EINVAL;
6991 	}
6992 
6993 	fill_device_from_item(leaf, dev_item, device);
6994 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6995 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6996 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6997 		device->fs_devices->total_rw_bytes += device->total_bytes;
6998 		atomic64_add(device->total_bytes - device->bytes_used,
6999 				&fs_info->free_chunk_space);
7000 	}
7001 	ret = 0;
7002 	return ret;
7003 }
7004 
7005 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7006 {
7007 	struct btrfs_root *root = fs_info->tree_root;
7008 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7009 	struct extent_buffer *sb;
7010 	struct btrfs_disk_key *disk_key;
7011 	struct btrfs_chunk *chunk;
7012 	u8 *array_ptr;
7013 	unsigned long sb_array_offset;
7014 	int ret = 0;
7015 	u32 num_stripes;
7016 	u32 array_size;
7017 	u32 len = 0;
7018 	u32 cur_offset;
7019 	u64 type;
7020 	struct btrfs_key key;
7021 
7022 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7023 	/*
7024 	 * This will create extent buffer of nodesize, superblock size is
7025 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7026 	 * overallocate but we can keep it as-is, only the first page is used.
7027 	 */
7028 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
7029 	if (IS_ERR(sb))
7030 		return PTR_ERR(sb);
7031 	set_extent_buffer_uptodate(sb);
7032 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7033 	/*
7034 	 * The sb extent buffer is artificial and just used to read the system array.
7035 	 * set_extent_buffer_uptodate() call does not properly mark all it's
7036 	 * pages up-to-date when the page is larger: extent does not cover the
7037 	 * whole page and consequently check_page_uptodate does not find all
7038 	 * the page's extents up-to-date (the hole beyond sb),
7039 	 * write_extent_buffer then triggers a WARN_ON.
7040 	 *
7041 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7042 	 * but sb spans only this function. Add an explicit SetPageUptodate call
7043 	 * to silence the warning eg. on PowerPC 64.
7044 	 */
7045 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7046 		SetPageUptodate(sb->pages[0]);
7047 
7048 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7049 	array_size = btrfs_super_sys_array_size(super_copy);
7050 
7051 	array_ptr = super_copy->sys_chunk_array;
7052 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7053 	cur_offset = 0;
7054 
7055 	while (cur_offset < array_size) {
7056 		disk_key = (struct btrfs_disk_key *)array_ptr;
7057 		len = sizeof(*disk_key);
7058 		if (cur_offset + len > array_size)
7059 			goto out_short_read;
7060 
7061 		btrfs_disk_key_to_cpu(&key, disk_key);
7062 
7063 		array_ptr += len;
7064 		sb_array_offset += len;
7065 		cur_offset += len;
7066 
7067 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7068 			chunk = (struct btrfs_chunk *)sb_array_offset;
7069 			/*
7070 			 * At least one btrfs_chunk with one stripe must be
7071 			 * present, exact stripe count check comes afterwards
7072 			 */
7073 			len = btrfs_chunk_item_size(1);
7074 			if (cur_offset + len > array_size)
7075 				goto out_short_read;
7076 
7077 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7078 			if (!num_stripes) {
7079 				btrfs_err(fs_info,
7080 					"invalid number of stripes %u in sys_array at offset %u",
7081 					num_stripes, cur_offset);
7082 				ret = -EIO;
7083 				break;
7084 			}
7085 
7086 			type = btrfs_chunk_type(sb, chunk);
7087 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7088 				btrfs_err(fs_info,
7089 			    "invalid chunk type %llu in sys_array at offset %u",
7090 					type, cur_offset);
7091 				ret = -EIO;
7092 				break;
7093 			}
7094 
7095 			len = btrfs_chunk_item_size(num_stripes);
7096 			if (cur_offset + len > array_size)
7097 				goto out_short_read;
7098 
7099 			ret = read_one_chunk(&key, sb, chunk);
7100 			if (ret)
7101 				break;
7102 		} else {
7103 			btrfs_err(fs_info,
7104 			    "unexpected item type %u in sys_array at offset %u",
7105 				  (u32)key.type, cur_offset);
7106 			ret = -EIO;
7107 			break;
7108 		}
7109 		array_ptr += len;
7110 		sb_array_offset += len;
7111 		cur_offset += len;
7112 	}
7113 	clear_extent_buffer_uptodate(sb);
7114 	free_extent_buffer_stale(sb);
7115 	return ret;
7116 
7117 out_short_read:
7118 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7119 			len, cur_offset);
7120 	clear_extent_buffer_uptodate(sb);
7121 	free_extent_buffer_stale(sb);
7122 	return -EIO;
7123 }
7124 
7125 /*
7126  * Check if all chunks in the fs are OK for read-write degraded mount
7127  *
7128  * If the @failing_dev is specified, it's accounted as missing.
7129  *
7130  * Return true if all chunks meet the minimal RW mount requirements.
7131  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7132  */
7133 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7134 					struct btrfs_device *failing_dev)
7135 {
7136 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7137 	struct extent_map *em;
7138 	u64 next_start = 0;
7139 	bool ret = true;
7140 
7141 	read_lock(&map_tree->lock);
7142 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7143 	read_unlock(&map_tree->lock);
7144 	/* No chunk at all? Return false anyway */
7145 	if (!em) {
7146 		ret = false;
7147 		goto out;
7148 	}
7149 	while (em) {
7150 		struct map_lookup *map;
7151 		int missing = 0;
7152 		int max_tolerated;
7153 		int i;
7154 
7155 		map = em->map_lookup;
7156 		max_tolerated =
7157 			btrfs_get_num_tolerated_disk_barrier_failures(
7158 					map->type);
7159 		for (i = 0; i < map->num_stripes; i++) {
7160 			struct btrfs_device *dev = map->stripes[i].dev;
7161 
7162 			if (!dev || !dev->bdev ||
7163 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7164 			    dev->last_flush_error)
7165 				missing++;
7166 			else if (failing_dev && failing_dev == dev)
7167 				missing++;
7168 		}
7169 		if (missing > max_tolerated) {
7170 			if (!failing_dev)
7171 				btrfs_warn(fs_info,
7172 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7173 				   em->start, missing, max_tolerated);
7174 			free_extent_map(em);
7175 			ret = false;
7176 			goto out;
7177 		}
7178 		next_start = extent_map_end(em);
7179 		free_extent_map(em);
7180 
7181 		read_lock(&map_tree->lock);
7182 		em = lookup_extent_mapping(map_tree, next_start,
7183 					   (u64)(-1) - next_start);
7184 		read_unlock(&map_tree->lock);
7185 	}
7186 out:
7187 	return ret;
7188 }
7189 
7190 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7191 {
7192 	struct btrfs_root *root = fs_info->chunk_root;
7193 	struct btrfs_path *path;
7194 	struct extent_buffer *leaf;
7195 	struct btrfs_key key;
7196 	struct btrfs_key found_key;
7197 	int ret;
7198 	int slot;
7199 	u64 total_dev = 0;
7200 
7201 	path = btrfs_alloc_path();
7202 	if (!path)
7203 		return -ENOMEM;
7204 
7205 	/*
7206 	 * uuid_mutex is needed only if we are mounting a sprout FS
7207 	 * otherwise we don't need it.
7208 	 */
7209 	mutex_lock(&uuid_mutex);
7210 	mutex_lock(&fs_info->chunk_mutex);
7211 
7212 	/*
7213 	 * Read all device items, and then all the chunk items. All
7214 	 * device items are found before any chunk item (their object id
7215 	 * is smaller than the lowest possible object id for a chunk
7216 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7217 	 */
7218 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7219 	key.offset = 0;
7220 	key.type = 0;
7221 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7222 	if (ret < 0)
7223 		goto error;
7224 	while (1) {
7225 		leaf = path->nodes[0];
7226 		slot = path->slots[0];
7227 		if (slot >= btrfs_header_nritems(leaf)) {
7228 			ret = btrfs_next_leaf(root, path);
7229 			if (ret == 0)
7230 				continue;
7231 			if (ret < 0)
7232 				goto error;
7233 			break;
7234 		}
7235 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7236 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7237 			struct btrfs_dev_item *dev_item;
7238 			dev_item = btrfs_item_ptr(leaf, slot,
7239 						  struct btrfs_dev_item);
7240 			ret = read_one_dev(leaf, dev_item);
7241 			if (ret)
7242 				goto error;
7243 			total_dev++;
7244 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7245 			struct btrfs_chunk *chunk;
7246 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7247 			ret = read_one_chunk(&found_key, leaf, chunk);
7248 			if (ret)
7249 				goto error;
7250 		}
7251 		path->slots[0]++;
7252 	}
7253 
7254 	/*
7255 	 * After loading chunk tree, we've got all device information,
7256 	 * do another round of validation checks.
7257 	 */
7258 	if (total_dev != fs_info->fs_devices->total_devices) {
7259 		btrfs_err(fs_info,
7260 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7261 			  btrfs_super_num_devices(fs_info->super_copy),
7262 			  total_dev);
7263 		ret = -EINVAL;
7264 		goto error;
7265 	}
7266 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7267 	    fs_info->fs_devices->total_rw_bytes) {
7268 		btrfs_err(fs_info,
7269 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7270 			  btrfs_super_total_bytes(fs_info->super_copy),
7271 			  fs_info->fs_devices->total_rw_bytes);
7272 		ret = -EINVAL;
7273 		goto error;
7274 	}
7275 	ret = 0;
7276 error:
7277 	mutex_unlock(&fs_info->chunk_mutex);
7278 	mutex_unlock(&uuid_mutex);
7279 
7280 	btrfs_free_path(path);
7281 	return ret;
7282 }
7283 
7284 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7285 {
7286 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7287 	struct btrfs_device *device;
7288 
7289 	while (fs_devices) {
7290 		mutex_lock(&fs_devices->device_list_mutex);
7291 		list_for_each_entry(device, &fs_devices->devices, dev_list)
7292 			device->fs_info = fs_info;
7293 		mutex_unlock(&fs_devices->device_list_mutex);
7294 
7295 		fs_devices = fs_devices->seed;
7296 	}
7297 }
7298 
7299 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7300 {
7301 	int i;
7302 
7303 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7304 		btrfs_dev_stat_reset(dev, i);
7305 }
7306 
7307 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7308 {
7309 	struct btrfs_key key;
7310 	struct btrfs_key found_key;
7311 	struct btrfs_root *dev_root = fs_info->dev_root;
7312 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7313 	struct extent_buffer *eb;
7314 	int slot;
7315 	int ret = 0;
7316 	struct btrfs_device *device;
7317 	struct btrfs_path *path = NULL;
7318 	int i;
7319 
7320 	path = btrfs_alloc_path();
7321 	if (!path) {
7322 		ret = -ENOMEM;
7323 		goto out;
7324 	}
7325 
7326 	mutex_lock(&fs_devices->device_list_mutex);
7327 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7328 		int item_size;
7329 		struct btrfs_dev_stats_item *ptr;
7330 
7331 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
7332 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7333 		key.offset = device->devid;
7334 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7335 		if (ret) {
7336 			__btrfs_reset_dev_stats(device);
7337 			device->dev_stats_valid = 1;
7338 			btrfs_release_path(path);
7339 			continue;
7340 		}
7341 		slot = path->slots[0];
7342 		eb = path->nodes[0];
7343 		btrfs_item_key_to_cpu(eb, &found_key, slot);
7344 		item_size = btrfs_item_size_nr(eb, slot);
7345 
7346 		ptr = btrfs_item_ptr(eb, slot,
7347 				     struct btrfs_dev_stats_item);
7348 
7349 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7350 			if (item_size >= (1 + i) * sizeof(__le64))
7351 				btrfs_dev_stat_set(device, i,
7352 					btrfs_dev_stats_value(eb, ptr, i));
7353 			else
7354 				btrfs_dev_stat_reset(device, i);
7355 		}
7356 
7357 		device->dev_stats_valid = 1;
7358 		btrfs_dev_stat_print_on_load(device);
7359 		btrfs_release_path(path);
7360 	}
7361 	mutex_unlock(&fs_devices->device_list_mutex);
7362 
7363 out:
7364 	btrfs_free_path(path);
7365 	return ret < 0 ? ret : 0;
7366 }
7367 
7368 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7369 				struct btrfs_device *device)
7370 {
7371 	struct btrfs_fs_info *fs_info = trans->fs_info;
7372 	struct btrfs_root *dev_root = fs_info->dev_root;
7373 	struct btrfs_path *path;
7374 	struct btrfs_key key;
7375 	struct extent_buffer *eb;
7376 	struct btrfs_dev_stats_item *ptr;
7377 	int ret;
7378 	int i;
7379 
7380 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7381 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7382 	key.offset = device->devid;
7383 
7384 	path = btrfs_alloc_path();
7385 	if (!path)
7386 		return -ENOMEM;
7387 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7388 	if (ret < 0) {
7389 		btrfs_warn_in_rcu(fs_info,
7390 			"error %d while searching for dev_stats item for device %s",
7391 			      ret, rcu_str_deref(device->name));
7392 		goto out;
7393 	}
7394 
7395 	if (ret == 0 &&
7396 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7397 		/* need to delete old one and insert a new one */
7398 		ret = btrfs_del_item(trans, dev_root, path);
7399 		if (ret != 0) {
7400 			btrfs_warn_in_rcu(fs_info,
7401 				"delete too small dev_stats item for device %s failed %d",
7402 				      rcu_str_deref(device->name), ret);
7403 			goto out;
7404 		}
7405 		ret = 1;
7406 	}
7407 
7408 	if (ret == 1) {
7409 		/* need to insert a new item */
7410 		btrfs_release_path(path);
7411 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7412 					      &key, sizeof(*ptr));
7413 		if (ret < 0) {
7414 			btrfs_warn_in_rcu(fs_info,
7415 				"insert dev_stats item for device %s failed %d",
7416 				rcu_str_deref(device->name), ret);
7417 			goto out;
7418 		}
7419 	}
7420 
7421 	eb = path->nodes[0];
7422 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7423 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7424 		btrfs_set_dev_stats_value(eb, ptr, i,
7425 					  btrfs_dev_stat_read(device, i));
7426 	btrfs_mark_buffer_dirty(eb);
7427 
7428 out:
7429 	btrfs_free_path(path);
7430 	return ret;
7431 }
7432 
7433 /*
7434  * called from commit_transaction. Writes all changed device stats to disk.
7435  */
7436 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7437 {
7438 	struct btrfs_fs_info *fs_info = trans->fs_info;
7439 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7440 	struct btrfs_device *device;
7441 	int stats_cnt;
7442 	int ret = 0;
7443 
7444 	mutex_lock(&fs_devices->device_list_mutex);
7445 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7446 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7447 		if (!device->dev_stats_valid || stats_cnt == 0)
7448 			continue;
7449 
7450 
7451 		/*
7452 		 * There is a LOAD-LOAD control dependency between the value of
7453 		 * dev_stats_ccnt and updating the on-disk values which requires
7454 		 * reading the in-memory counters. Such control dependencies
7455 		 * require explicit read memory barriers.
7456 		 *
7457 		 * This memory barriers pairs with smp_mb__before_atomic in
7458 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7459 		 * barrier implied by atomic_xchg in
7460 		 * btrfs_dev_stats_read_and_reset
7461 		 */
7462 		smp_rmb();
7463 
7464 		ret = update_dev_stat_item(trans, device);
7465 		if (!ret)
7466 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7467 	}
7468 	mutex_unlock(&fs_devices->device_list_mutex);
7469 
7470 	return ret;
7471 }
7472 
7473 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7474 {
7475 	btrfs_dev_stat_inc(dev, index);
7476 	btrfs_dev_stat_print_on_error(dev);
7477 }
7478 
7479 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7480 {
7481 	if (!dev->dev_stats_valid)
7482 		return;
7483 	btrfs_err_rl_in_rcu(dev->fs_info,
7484 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7485 			   rcu_str_deref(dev->name),
7486 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7487 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7488 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7489 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7490 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7491 }
7492 
7493 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7494 {
7495 	int i;
7496 
7497 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7498 		if (btrfs_dev_stat_read(dev, i) != 0)
7499 			break;
7500 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7501 		return; /* all values == 0, suppress message */
7502 
7503 	btrfs_info_in_rcu(dev->fs_info,
7504 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7505 	       rcu_str_deref(dev->name),
7506 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7507 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7508 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7509 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7510 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7511 }
7512 
7513 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7514 			struct btrfs_ioctl_get_dev_stats *stats)
7515 {
7516 	struct btrfs_device *dev;
7517 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7518 	int i;
7519 
7520 	mutex_lock(&fs_devices->device_list_mutex);
7521 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7522 				true);
7523 	mutex_unlock(&fs_devices->device_list_mutex);
7524 
7525 	if (!dev) {
7526 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7527 		return -ENODEV;
7528 	} else if (!dev->dev_stats_valid) {
7529 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7530 		return -ENODEV;
7531 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7532 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7533 			if (stats->nr_items > i)
7534 				stats->values[i] =
7535 					btrfs_dev_stat_read_and_reset(dev, i);
7536 			else
7537 				btrfs_dev_stat_reset(dev, i);
7538 		}
7539 	} else {
7540 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7541 			if (stats->nr_items > i)
7542 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7543 	}
7544 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7545 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7546 	return 0;
7547 }
7548 
7549 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7550 {
7551 	struct buffer_head *bh;
7552 	struct btrfs_super_block *disk_super;
7553 	int copy_num;
7554 
7555 	if (!bdev)
7556 		return;
7557 
7558 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7559 		copy_num++) {
7560 
7561 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7562 			continue;
7563 
7564 		disk_super = (struct btrfs_super_block *)bh->b_data;
7565 
7566 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7567 		set_buffer_dirty(bh);
7568 		sync_dirty_buffer(bh);
7569 		brelse(bh);
7570 	}
7571 
7572 	/* Notify udev that device has changed */
7573 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7574 
7575 	/* Update ctime/mtime for device path for libblkid */
7576 	update_dev_time(device_path);
7577 }
7578 
7579 /*
7580  * Update the size and bytes used for each device where it changed.  This is
7581  * delayed since we would otherwise get errors while writing out the
7582  * superblocks.
7583  *
7584  * Must be invoked during transaction commit.
7585  */
7586 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7587 {
7588 	struct btrfs_device *curr, *next;
7589 
7590 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7591 
7592 	if (list_empty(&trans->dev_update_list))
7593 		return;
7594 
7595 	/*
7596 	 * We don't need the device_list_mutex here.  This list is owned by the
7597 	 * transaction and the transaction must complete before the device is
7598 	 * released.
7599 	 */
7600 	mutex_lock(&trans->fs_info->chunk_mutex);
7601 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7602 				 post_commit_list) {
7603 		list_del_init(&curr->post_commit_list);
7604 		curr->commit_total_bytes = curr->disk_total_bytes;
7605 		curr->commit_bytes_used = curr->bytes_used;
7606 	}
7607 	mutex_unlock(&trans->fs_info->chunk_mutex);
7608 }
7609 
7610 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7611 {
7612 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7613 	while (fs_devices) {
7614 		fs_devices->fs_info = fs_info;
7615 		fs_devices = fs_devices->seed;
7616 	}
7617 }
7618 
7619 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7620 {
7621 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7622 	while (fs_devices) {
7623 		fs_devices->fs_info = NULL;
7624 		fs_devices = fs_devices->seed;
7625 	}
7626 }
7627 
7628 /*
7629  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7630  */
7631 int btrfs_bg_type_to_factor(u64 flags)
7632 {
7633 	const int index = btrfs_bg_flags_to_raid_index(flags);
7634 
7635 	return btrfs_raid_array[index].ncopies;
7636 }
7637 
7638 
7639 
7640 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7641 				 u64 chunk_offset, u64 devid,
7642 				 u64 physical_offset, u64 physical_len)
7643 {
7644 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7645 	struct extent_map *em;
7646 	struct map_lookup *map;
7647 	struct btrfs_device *dev;
7648 	u64 stripe_len;
7649 	bool found = false;
7650 	int ret = 0;
7651 	int i;
7652 
7653 	read_lock(&em_tree->lock);
7654 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7655 	read_unlock(&em_tree->lock);
7656 
7657 	if (!em) {
7658 		btrfs_err(fs_info,
7659 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7660 			  physical_offset, devid);
7661 		ret = -EUCLEAN;
7662 		goto out;
7663 	}
7664 
7665 	map = em->map_lookup;
7666 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7667 	if (physical_len != stripe_len) {
7668 		btrfs_err(fs_info,
7669 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7670 			  physical_offset, devid, em->start, physical_len,
7671 			  stripe_len);
7672 		ret = -EUCLEAN;
7673 		goto out;
7674 	}
7675 
7676 	for (i = 0; i < map->num_stripes; i++) {
7677 		if (map->stripes[i].dev->devid == devid &&
7678 		    map->stripes[i].physical == physical_offset) {
7679 			found = true;
7680 			if (map->verified_stripes >= map->num_stripes) {
7681 				btrfs_err(fs_info,
7682 				"too many dev extents for chunk %llu found",
7683 					  em->start);
7684 				ret = -EUCLEAN;
7685 				goto out;
7686 			}
7687 			map->verified_stripes++;
7688 			break;
7689 		}
7690 	}
7691 	if (!found) {
7692 		btrfs_err(fs_info,
7693 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7694 			physical_offset, devid);
7695 		ret = -EUCLEAN;
7696 	}
7697 
7698 	/* Make sure no dev extent is beyond device bondary */
7699 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7700 	if (!dev) {
7701 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7702 		ret = -EUCLEAN;
7703 		goto out;
7704 	}
7705 
7706 	/* It's possible this device is a dummy for seed device */
7707 	if (dev->disk_total_bytes == 0) {
7708 		dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7709 					NULL, false);
7710 		if (!dev) {
7711 			btrfs_err(fs_info, "failed to find seed devid %llu",
7712 				  devid);
7713 			ret = -EUCLEAN;
7714 			goto out;
7715 		}
7716 	}
7717 
7718 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7719 		btrfs_err(fs_info,
7720 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7721 			  devid, physical_offset, physical_len,
7722 			  dev->disk_total_bytes);
7723 		ret = -EUCLEAN;
7724 		goto out;
7725 	}
7726 out:
7727 	free_extent_map(em);
7728 	return ret;
7729 }
7730 
7731 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7732 {
7733 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7734 	struct extent_map *em;
7735 	struct rb_node *node;
7736 	int ret = 0;
7737 
7738 	read_lock(&em_tree->lock);
7739 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7740 		em = rb_entry(node, struct extent_map, rb_node);
7741 		if (em->map_lookup->num_stripes !=
7742 		    em->map_lookup->verified_stripes) {
7743 			btrfs_err(fs_info,
7744 			"chunk %llu has missing dev extent, have %d expect %d",
7745 				  em->start, em->map_lookup->verified_stripes,
7746 				  em->map_lookup->num_stripes);
7747 			ret = -EUCLEAN;
7748 			goto out;
7749 		}
7750 	}
7751 out:
7752 	read_unlock(&em_tree->lock);
7753 	return ret;
7754 }
7755 
7756 /*
7757  * Ensure that all dev extents are mapped to correct chunk, otherwise
7758  * later chunk allocation/free would cause unexpected behavior.
7759  *
7760  * NOTE: This will iterate through the whole device tree, which should be of
7761  * the same size level as the chunk tree.  This slightly increases mount time.
7762  */
7763 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7764 {
7765 	struct btrfs_path *path;
7766 	struct btrfs_root *root = fs_info->dev_root;
7767 	struct btrfs_key key;
7768 	u64 prev_devid = 0;
7769 	u64 prev_dev_ext_end = 0;
7770 	int ret = 0;
7771 
7772 	key.objectid = 1;
7773 	key.type = BTRFS_DEV_EXTENT_KEY;
7774 	key.offset = 0;
7775 
7776 	path = btrfs_alloc_path();
7777 	if (!path)
7778 		return -ENOMEM;
7779 
7780 	path->reada = READA_FORWARD;
7781 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7782 	if (ret < 0)
7783 		goto out;
7784 
7785 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7786 		ret = btrfs_next_item(root, path);
7787 		if (ret < 0)
7788 			goto out;
7789 		/* No dev extents at all? Not good */
7790 		if (ret > 0) {
7791 			ret = -EUCLEAN;
7792 			goto out;
7793 		}
7794 	}
7795 	while (1) {
7796 		struct extent_buffer *leaf = path->nodes[0];
7797 		struct btrfs_dev_extent *dext;
7798 		int slot = path->slots[0];
7799 		u64 chunk_offset;
7800 		u64 physical_offset;
7801 		u64 physical_len;
7802 		u64 devid;
7803 
7804 		btrfs_item_key_to_cpu(leaf, &key, slot);
7805 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7806 			break;
7807 		devid = key.objectid;
7808 		physical_offset = key.offset;
7809 
7810 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7811 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7812 		physical_len = btrfs_dev_extent_length(leaf, dext);
7813 
7814 		/* Check if this dev extent overlaps with the previous one */
7815 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7816 			btrfs_err(fs_info,
7817 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7818 				  devid, physical_offset, prev_dev_ext_end);
7819 			ret = -EUCLEAN;
7820 			goto out;
7821 		}
7822 
7823 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7824 					    physical_offset, physical_len);
7825 		if (ret < 0)
7826 			goto out;
7827 		prev_devid = devid;
7828 		prev_dev_ext_end = physical_offset + physical_len;
7829 
7830 		ret = btrfs_next_item(root, path);
7831 		if (ret < 0)
7832 			goto out;
7833 		if (ret > 0) {
7834 			ret = 0;
7835 			break;
7836 		}
7837 	}
7838 
7839 	/* Ensure all chunks have corresponding dev extents */
7840 	ret = verify_chunk_dev_extent_mapping(fs_info);
7841 out:
7842 	btrfs_free_path(path);
7843 	return ret;
7844 }
7845 
7846 /*
7847  * Check whether the given block group or device is pinned by any inode being
7848  * used as a swapfile.
7849  */
7850 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7851 {
7852 	struct btrfs_swapfile_pin *sp;
7853 	struct rb_node *node;
7854 
7855 	spin_lock(&fs_info->swapfile_pins_lock);
7856 	node = fs_info->swapfile_pins.rb_node;
7857 	while (node) {
7858 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7859 		if (ptr < sp->ptr)
7860 			node = node->rb_left;
7861 		else if (ptr > sp->ptr)
7862 			node = node->rb_right;
7863 		else
7864 			break;
7865 	}
7866 	spin_unlock(&fs_info->swapfile_pins_lock);
7867 	return node != NULL;
7868 }
7869