1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/bio.h> 8 #include <linux/slab.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include "ctree.h" 18 #include "extent_map.h" 19 #include "disk-io.h" 20 #include "transaction.h" 21 #include "print-tree.h" 22 #include "volumes.h" 23 #include "raid56.h" 24 #include "async-thread.h" 25 #include "check-integrity.h" 26 #include "rcu-string.h" 27 #include "math.h" 28 #include "dev-replace.h" 29 #include "sysfs.h" 30 #include "tree-checker.h" 31 #include "space-info.h" 32 33 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 34 [BTRFS_RAID_RAID10] = { 35 .sub_stripes = 2, 36 .dev_stripes = 1, 37 .devs_max = 0, /* 0 == as many as possible */ 38 .devs_min = 4, 39 .tolerated_failures = 1, 40 .devs_increment = 2, 41 .ncopies = 2, 42 .nparity = 0, 43 .raid_name = "raid10", 44 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 45 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 46 }, 47 [BTRFS_RAID_RAID1] = { 48 .sub_stripes = 1, 49 .dev_stripes = 1, 50 .devs_max = 2, 51 .devs_min = 2, 52 .tolerated_failures = 1, 53 .devs_increment = 2, 54 .ncopies = 2, 55 .nparity = 0, 56 .raid_name = "raid1", 57 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 58 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 59 }, 60 [BTRFS_RAID_DUP] = { 61 .sub_stripes = 1, 62 .dev_stripes = 2, 63 .devs_max = 1, 64 .devs_min = 1, 65 .tolerated_failures = 0, 66 .devs_increment = 1, 67 .ncopies = 2, 68 .nparity = 0, 69 .raid_name = "dup", 70 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 71 .mindev_error = 0, 72 }, 73 [BTRFS_RAID_RAID0] = { 74 .sub_stripes = 1, 75 .dev_stripes = 1, 76 .devs_max = 0, 77 .devs_min = 2, 78 .tolerated_failures = 0, 79 .devs_increment = 1, 80 .ncopies = 1, 81 .nparity = 0, 82 .raid_name = "raid0", 83 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 84 .mindev_error = 0, 85 }, 86 [BTRFS_RAID_SINGLE] = { 87 .sub_stripes = 1, 88 .dev_stripes = 1, 89 .devs_max = 1, 90 .devs_min = 1, 91 .tolerated_failures = 0, 92 .devs_increment = 1, 93 .ncopies = 1, 94 .nparity = 0, 95 .raid_name = "single", 96 .bg_flag = 0, 97 .mindev_error = 0, 98 }, 99 [BTRFS_RAID_RAID5] = { 100 .sub_stripes = 1, 101 .dev_stripes = 1, 102 .devs_max = 0, 103 .devs_min = 2, 104 .tolerated_failures = 1, 105 .devs_increment = 1, 106 .ncopies = 1, 107 .nparity = 1, 108 .raid_name = "raid5", 109 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 110 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 111 }, 112 [BTRFS_RAID_RAID6] = { 113 .sub_stripes = 1, 114 .dev_stripes = 1, 115 .devs_max = 0, 116 .devs_min = 3, 117 .tolerated_failures = 2, 118 .devs_increment = 1, 119 .ncopies = 1, 120 .nparity = 2, 121 .raid_name = "raid6", 122 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 123 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 124 }, 125 }; 126 127 const char *btrfs_bg_type_to_raid_name(u64 flags) 128 { 129 const int index = btrfs_bg_flags_to_raid_index(flags); 130 131 if (index >= BTRFS_NR_RAID_TYPES) 132 return NULL; 133 134 return btrfs_raid_array[index].raid_name; 135 } 136 137 /* 138 * Fill @buf with textual description of @bg_flags, no more than @size_buf 139 * bytes including terminating null byte. 140 */ 141 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 142 { 143 int i; 144 int ret; 145 char *bp = buf; 146 u64 flags = bg_flags; 147 u32 size_bp = size_buf; 148 149 if (!flags) { 150 strcpy(bp, "NONE"); 151 return; 152 } 153 154 #define DESCRIBE_FLAG(flag, desc) \ 155 do { \ 156 if (flags & (flag)) { \ 157 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 158 if (ret < 0 || ret >= size_bp) \ 159 goto out_overflow; \ 160 size_bp -= ret; \ 161 bp += ret; \ 162 flags &= ~(flag); \ 163 } \ 164 } while (0) 165 166 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 167 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 168 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 169 170 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 171 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 172 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 173 btrfs_raid_array[i].raid_name); 174 #undef DESCRIBE_FLAG 175 176 if (flags) { 177 ret = snprintf(bp, size_bp, "0x%llx|", flags); 178 size_bp -= ret; 179 } 180 181 if (size_bp < size_buf) 182 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 183 184 /* 185 * The text is trimmed, it's up to the caller to provide sufficiently 186 * large buffer 187 */ 188 out_overflow:; 189 } 190 191 static int init_first_rw_device(struct btrfs_trans_handle *trans); 192 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 193 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 194 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 195 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 196 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 197 enum btrfs_map_op op, 198 u64 logical, u64 *length, 199 struct btrfs_bio **bbio_ret, 200 int mirror_num, int need_raid_map); 201 202 /* 203 * Device locking 204 * ============== 205 * 206 * There are several mutexes that protect manipulation of devices and low-level 207 * structures like chunks but not block groups, extents or files 208 * 209 * uuid_mutex (global lock) 210 * ------------------------ 211 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 212 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 213 * device) or requested by the device= mount option 214 * 215 * the mutex can be very coarse and can cover long-running operations 216 * 217 * protects: updates to fs_devices counters like missing devices, rw devices, 218 * seeding, structure cloning, opening/closing devices at mount/umount time 219 * 220 * global::fs_devs - add, remove, updates to the global list 221 * 222 * does not protect: manipulation of the fs_devices::devices list! 223 * 224 * btrfs_device::name - renames (write side), read is RCU 225 * 226 * fs_devices::device_list_mutex (per-fs, with RCU) 227 * ------------------------------------------------ 228 * protects updates to fs_devices::devices, ie. adding and deleting 229 * 230 * simple list traversal with read-only actions can be done with RCU protection 231 * 232 * may be used to exclude some operations from running concurrently without any 233 * modifications to the list (see write_all_supers) 234 * 235 * balance_mutex 236 * ------------- 237 * protects balance structures (status, state) and context accessed from 238 * several places (internally, ioctl) 239 * 240 * chunk_mutex 241 * ----------- 242 * protects chunks, adding or removing during allocation, trim or when a new 243 * device is added/removed. Additionally it also protects post_commit_list of 244 * individual devices, since they can be added to the transaction's 245 * post_commit_list only with chunk_mutex held. 246 * 247 * cleaner_mutex 248 * ------------- 249 * a big lock that is held by the cleaner thread and prevents running subvolume 250 * cleaning together with relocation or delayed iputs 251 * 252 * 253 * Lock nesting 254 * ============ 255 * 256 * uuid_mutex 257 * volume_mutex 258 * device_list_mutex 259 * chunk_mutex 260 * balance_mutex 261 * 262 * 263 * Exclusive operations, BTRFS_FS_EXCL_OP 264 * ====================================== 265 * 266 * Maintains the exclusivity of the following operations that apply to the 267 * whole filesystem and cannot run in parallel. 268 * 269 * - Balance (*) 270 * - Device add 271 * - Device remove 272 * - Device replace (*) 273 * - Resize 274 * 275 * The device operations (as above) can be in one of the following states: 276 * 277 * - Running state 278 * - Paused state 279 * - Completed state 280 * 281 * Only device operations marked with (*) can go into the Paused state for the 282 * following reasons: 283 * 284 * - ioctl (only Balance can be Paused through ioctl) 285 * - filesystem remounted as read-only 286 * - filesystem unmounted and mounted as read-only 287 * - system power-cycle and filesystem mounted as read-only 288 * - filesystem or device errors leading to forced read-only 289 * 290 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations. 291 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set. 292 * A device operation in Paused or Running state can be canceled or resumed 293 * either by ioctl (Balance only) or when remounted as read-write. 294 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or 295 * completed. 296 */ 297 298 DEFINE_MUTEX(uuid_mutex); 299 static LIST_HEAD(fs_uuids); 300 struct list_head *btrfs_get_fs_uuids(void) 301 { 302 return &fs_uuids; 303 } 304 305 /* 306 * alloc_fs_devices - allocate struct btrfs_fs_devices 307 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 308 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 309 * 310 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 311 * The returned struct is not linked onto any lists and can be destroyed with 312 * kfree() right away. 313 */ 314 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 315 const u8 *metadata_fsid) 316 { 317 struct btrfs_fs_devices *fs_devs; 318 319 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 320 if (!fs_devs) 321 return ERR_PTR(-ENOMEM); 322 323 mutex_init(&fs_devs->device_list_mutex); 324 325 INIT_LIST_HEAD(&fs_devs->devices); 326 INIT_LIST_HEAD(&fs_devs->alloc_list); 327 INIT_LIST_HEAD(&fs_devs->fs_list); 328 if (fsid) 329 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 330 331 if (metadata_fsid) 332 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 333 else if (fsid) 334 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 335 336 return fs_devs; 337 } 338 339 void btrfs_free_device(struct btrfs_device *device) 340 { 341 WARN_ON(!list_empty(&device->post_commit_list)); 342 rcu_string_free(device->name); 343 extent_io_tree_release(&device->alloc_state); 344 bio_put(device->flush_bio); 345 kfree(device); 346 } 347 348 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 349 { 350 struct btrfs_device *device; 351 WARN_ON(fs_devices->opened); 352 while (!list_empty(&fs_devices->devices)) { 353 device = list_entry(fs_devices->devices.next, 354 struct btrfs_device, dev_list); 355 list_del(&device->dev_list); 356 btrfs_free_device(device); 357 } 358 kfree(fs_devices); 359 } 360 361 static void btrfs_kobject_uevent(struct block_device *bdev, 362 enum kobject_action action) 363 { 364 int ret; 365 366 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 367 if (ret) 368 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 369 action, 370 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 371 &disk_to_dev(bdev->bd_disk)->kobj); 372 } 373 374 void __exit btrfs_cleanup_fs_uuids(void) 375 { 376 struct btrfs_fs_devices *fs_devices; 377 378 while (!list_empty(&fs_uuids)) { 379 fs_devices = list_entry(fs_uuids.next, 380 struct btrfs_fs_devices, fs_list); 381 list_del(&fs_devices->fs_list); 382 free_fs_devices(fs_devices); 383 } 384 } 385 386 /* 387 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 388 * Returned struct is not linked onto any lists and must be destroyed using 389 * btrfs_free_device. 390 */ 391 static struct btrfs_device *__alloc_device(void) 392 { 393 struct btrfs_device *dev; 394 395 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 396 if (!dev) 397 return ERR_PTR(-ENOMEM); 398 399 /* 400 * Preallocate a bio that's always going to be used for flushing device 401 * barriers and matches the device lifespan 402 */ 403 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 404 if (!dev->flush_bio) { 405 kfree(dev); 406 return ERR_PTR(-ENOMEM); 407 } 408 409 INIT_LIST_HEAD(&dev->dev_list); 410 INIT_LIST_HEAD(&dev->dev_alloc_list); 411 INIT_LIST_HEAD(&dev->post_commit_list); 412 413 spin_lock_init(&dev->io_lock); 414 415 atomic_set(&dev->reada_in_flight, 0); 416 atomic_set(&dev->dev_stats_ccnt, 0); 417 btrfs_device_data_ordered_init(dev); 418 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 419 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 420 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL); 421 422 return dev; 423 } 424 425 static noinline struct btrfs_fs_devices *find_fsid( 426 const u8 *fsid, const u8 *metadata_fsid) 427 { 428 struct btrfs_fs_devices *fs_devices; 429 430 ASSERT(fsid); 431 432 if (metadata_fsid) { 433 /* 434 * Handle scanned device having completed its fsid change but 435 * belonging to a fs_devices that was created by first scanning 436 * a device which didn't have its fsid/metadata_uuid changed 437 * at all and the CHANGING_FSID_V2 flag set. 438 */ 439 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 440 if (fs_devices->fsid_change && 441 memcmp(metadata_fsid, fs_devices->fsid, 442 BTRFS_FSID_SIZE) == 0 && 443 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 444 BTRFS_FSID_SIZE) == 0) { 445 return fs_devices; 446 } 447 } 448 /* 449 * Handle scanned device having completed its fsid change but 450 * belonging to a fs_devices that was created by a device that 451 * has an outdated pair of fsid/metadata_uuid and 452 * CHANGING_FSID_V2 flag set. 453 */ 454 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 455 if (fs_devices->fsid_change && 456 memcmp(fs_devices->metadata_uuid, 457 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 458 memcmp(metadata_fsid, fs_devices->metadata_uuid, 459 BTRFS_FSID_SIZE) == 0) { 460 return fs_devices; 461 } 462 } 463 } 464 465 /* Handle non-split brain cases */ 466 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 467 if (metadata_fsid) { 468 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 469 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 470 BTRFS_FSID_SIZE) == 0) 471 return fs_devices; 472 } else { 473 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 474 return fs_devices; 475 } 476 } 477 return NULL; 478 } 479 480 static int 481 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 482 int flush, struct block_device **bdev, 483 struct buffer_head **bh) 484 { 485 int ret; 486 487 *bdev = blkdev_get_by_path(device_path, flags, holder); 488 489 if (IS_ERR(*bdev)) { 490 ret = PTR_ERR(*bdev); 491 goto error; 492 } 493 494 if (flush) 495 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 496 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 497 if (ret) { 498 blkdev_put(*bdev, flags); 499 goto error; 500 } 501 invalidate_bdev(*bdev); 502 *bh = btrfs_read_dev_super(*bdev); 503 if (IS_ERR(*bh)) { 504 ret = PTR_ERR(*bh); 505 blkdev_put(*bdev, flags); 506 goto error; 507 } 508 509 return 0; 510 511 error: 512 *bdev = NULL; 513 *bh = NULL; 514 return ret; 515 } 516 517 static void requeue_list(struct btrfs_pending_bios *pending_bios, 518 struct bio *head, struct bio *tail) 519 { 520 521 struct bio *old_head; 522 523 old_head = pending_bios->head; 524 pending_bios->head = head; 525 if (pending_bios->tail) 526 tail->bi_next = old_head; 527 else 528 pending_bios->tail = tail; 529 } 530 531 /* 532 * we try to collect pending bios for a device so we don't get a large 533 * number of procs sending bios down to the same device. This greatly 534 * improves the schedulers ability to collect and merge the bios. 535 * 536 * But, it also turns into a long list of bios to process and that is sure 537 * to eventually make the worker thread block. The solution here is to 538 * make some progress and then put this work struct back at the end of 539 * the list if the block device is congested. This way, multiple devices 540 * can make progress from a single worker thread. 541 */ 542 static noinline void run_scheduled_bios(struct btrfs_device *device) 543 { 544 struct btrfs_fs_info *fs_info = device->fs_info; 545 struct bio *pending; 546 struct backing_dev_info *bdi; 547 struct btrfs_pending_bios *pending_bios; 548 struct bio *tail; 549 struct bio *cur; 550 int again = 0; 551 unsigned long num_run; 552 unsigned long batch_run = 0; 553 unsigned long last_waited = 0; 554 int force_reg = 0; 555 int sync_pending = 0; 556 struct blk_plug plug; 557 558 /* 559 * this function runs all the bios we've collected for 560 * a particular device. We don't want to wander off to 561 * another device without first sending all of these down. 562 * So, setup a plug here and finish it off before we return 563 */ 564 blk_start_plug(&plug); 565 566 bdi = device->bdev->bd_bdi; 567 568 loop: 569 spin_lock(&device->io_lock); 570 571 loop_lock: 572 num_run = 0; 573 574 /* take all the bios off the list at once and process them 575 * later on (without the lock held). But, remember the 576 * tail and other pointers so the bios can be properly reinserted 577 * into the list if we hit congestion 578 */ 579 if (!force_reg && device->pending_sync_bios.head) { 580 pending_bios = &device->pending_sync_bios; 581 force_reg = 1; 582 } else { 583 pending_bios = &device->pending_bios; 584 force_reg = 0; 585 } 586 587 pending = pending_bios->head; 588 tail = pending_bios->tail; 589 WARN_ON(pending && !tail); 590 591 /* 592 * if pending was null this time around, no bios need processing 593 * at all and we can stop. Otherwise it'll loop back up again 594 * and do an additional check so no bios are missed. 595 * 596 * device->running_pending is used to synchronize with the 597 * schedule_bio code. 598 */ 599 if (device->pending_sync_bios.head == NULL && 600 device->pending_bios.head == NULL) { 601 again = 0; 602 device->running_pending = 0; 603 } else { 604 again = 1; 605 device->running_pending = 1; 606 } 607 608 pending_bios->head = NULL; 609 pending_bios->tail = NULL; 610 611 spin_unlock(&device->io_lock); 612 613 while (pending) { 614 615 rmb(); 616 /* we want to work on both lists, but do more bios on the 617 * sync list than the regular list 618 */ 619 if ((num_run > 32 && 620 pending_bios != &device->pending_sync_bios && 621 device->pending_sync_bios.head) || 622 (num_run > 64 && pending_bios == &device->pending_sync_bios && 623 device->pending_bios.head)) { 624 spin_lock(&device->io_lock); 625 requeue_list(pending_bios, pending, tail); 626 goto loop_lock; 627 } 628 629 cur = pending; 630 pending = pending->bi_next; 631 cur->bi_next = NULL; 632 633 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 634 635 /* 636 * if we're doing the sync list, record that our 637 * plug has some sync requests on it 638 * 639 * If we're doing the regular list and there are 640 * sync requests sitting around, unplug before 641 * we add more 642 */ 643 if (pending_bios == &device->pending_sync_bios) { 644 sync_pending = 1; 645 } else if (sync_pending) { 646 blk_finish_plug(&plug); 647 blk_start_plug(&plug); 648 sync_pending = 0; 649 } 650 651 btrfsic_submit_bio(cur); 652 num_run++; 653 batch_run++; 654 655 cond_resched(); 656 657 /* 658 * we made progress, there is more work to do and the bdi 659 * is now congested. Back off and let other work structs 660 * run instead 661 */ 662 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 663 fs_info->fs_devices->open_devices > 1) { 664 struct io_context *ioc; 665 666 ioc = current->io_context; 667 668 /* 669 * the main goal here is that we don't want to 670 * block if we're going to be able to submit 671 * more requests without blocking. 672 * 673 * This code does two great things, it pokes into 674 * the elevator code from a filesystem _and_ 675 * it makes assumptions about how batching works. 676 */ 677 if (ioc && ioc->nr_batch_requests > 0 && 678 time_before(jiffies, ioc->last_waited + HZ/50UL) && 679 (last_waited == 0 || 680 ioc->last_waited == last_waited)) { 681 /* 682 * we want to go through our batch of 683 * requests and stop. So, we copy out 684 * the ioc->last_waited time and test 685 * against it before looping 686 */ 687 last_waited = ioc->last_waited; 688 cond_resched(); 689 continue; 690 } 691 spin_lock(&device->io_lock); 692 requeue_list(pending_bios, pending, tail); 693 device->running_pending = 1; 694 695 spin_unlock(&device->io_lock); 696 btrfs_queue_work(fs_info->submit_workers, 697 &device->work); 698 goto done; 699 } 700 } 701 702 cond_resched(); 703 if (again) 704 goto loop; 705 706 spin_lock(&device->io_lock); 707 if (device->pending_bios.head || device->pending_sync_bios.head) 708 goto loop_lock; 709 spin_unlock(&device->io_lock); 710 711 done: 712 blk_finish_plug(&plug); 713 } 714 715 static void pending_bios_fn(struct btrfs_work *work) 716 { 717 struct btrfs_device *device; 718 719 device = container_of(work, struct btrfs_device, work); 720 run_scheduled_bios(device); 721 } 722 723 static bool device_path_matched(const char *path, struct btrfs_device *device) 724 { 725 int found; 726 727 rcu_read_lock(); 728 found = strcmp(rcu_str_deref(device->name), path); 729 rcu_read_unlock(); 730 731 return found == 0; 732 } 733 734 /* 735 * Search and remove all stale (devices which are not mounted) devices. 736 * When both inputs are NULL, it will search and release all stale devices. 737 * path: Optional. When provided will it release all unmounted devices 738 * matching this path only. 739 * skip_dev: Optional. Will skip this device when searching for the stale 740 * devices. 741 * Return: 0 for success or if @path is NULL. 742 * -EBUSY if @path is a mounted device. 743 * -ENOENT if @path does not match any device in the list. 744 */ 745 static int btrfs_free_stale_devices(const char *path, 746 struct btrfs_device *skip_device) 747 { 748 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 749 struct btrfs_device *device, *tmp_device; 750 int ret = 0; 751 752 if (path) 753 ret = -ENOENT; 754 755 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 756 757 mutex_lock(&fs_devices->device_list_mutex); 758 list_for_each_entry_safe(device, tmp_device, 759 &fs_devices->devices, dev_list) { 760 if (skip_device && skip_device == device) 761 continue; 762 if (path && !device->name) 763 continue; 764 if (path && !device_path_matched(path, device)) 765 continue; 766 if (fs_devices->opened) { 767 /* for an already deleted device return 0 */ 768 if (path && ret != 0) 769 ret = -EBUSY; 770 break; 771 } 772 773 /* delete the stale device */ 774 fs_devices->num_devices--; 775 list_del(&device->dev_list); 776 btrfs_free_device(device); 777 778 ret = 0; 779 if (fs_devices->num_devices == 0) 780 break; 781 } 782 mutex_unlock(&fs_devices->device_list_mutex); 783 784 if (fs_devices->num_devices == 0) { 785 btrfs_sysfs_remove_fsid(fs_devices); 786 list_del(&fs_devices->fs_list); 787 free_fs_devices(fs_devices); 788 } 789 } 790 791 return ret; 792 } 793 794 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 795 struct btrfs_device *device, fmode_t flags, 796 void *holder) 797 { 798 struct request_queue *q; 799 struct block_device *bdev; 800 struct buffer_head *bh; 801 struct btrfs_super_block *disk_super; 802 u64 devid; 803 int ret; 804 805 if (device->bdev) 806 return -EINVAL; 807 if (!device->name) 808 return -EINVAL; 809 810 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 811 &bdev, &bh); 812 if (ret) 813 return ret; 814 815 disk_super = (struct btrfs_super_block *)bh->b_data; 816 devid = btrfs_stack_device_id(&disk_super->dev_item); 817 if (devid != device->devid) 818 goto error_brelse; 819 820 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 821 goto error_brelse; 822 823 device->generation = btrfs_super_generation(disk_super); 824 825 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 826 if (btrfs_super_incompat_flags(disk_super) & 827 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 828 pr_err( 829 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 830 goto error_brelse; 831 } 832 833 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 834 fs_devices->seeding = 1; 835 } else { 836 if (bdev_read_only(bdev)) 837 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 838 else 839 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 840 } 841 842 q = bdev_get_queue(bdev); 843 if (!blk_queue_nonrot(q)) 844 fs_devices->rotating = 1; 845 846 device->bdev = bdev; 847 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 848 device->mode = flags; 849 850 fs_devices->open_devices++; 851 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 852 device->devid != BTRFS_DEV_REPLACE_DEVID) { 853 fs_devices->rw_devices++; 854 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 855 } 856 brelse(bh); 857 858 return 0; 859 860 error_brelse: 861 brelse(bh); 862 blkdev_put(bdev, flags); 863 864 return -EINVAL; 865 } 866 867 /* 868 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 869 * being created with a disk that has already completed its fsid change. 870 */ 871 static struct btrfs_fs_devices *find_fsid_inprogress( 872 struct btrfs_super_block *disk_super) 873 { 874 struct btrfs_fs_devices *fs_devices; 875 876 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 877 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 878 BTRFS_FSID_SIZE) != 0 && 879 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 880 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 881 return fs_devices; 882 } 883 } 884 885 return NULL; 886 } 887 888 889 static struct btrfs_fs_devices *find_fsid_changed( 890 struct btrfs_super_block *disk_super) 891 { 892 struct btrfs_fs_devices *fs_devices; 893 894 /* 895 * Handles the case where scanned device is part of an fs that had 896 * multiple successful changes of FSID but curently device didn't 897 * observe it. Meaning our fsid will be different than theirs. 898 */ 899 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 900 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 901 BTRFS_FSID_SIZE) != 0 && 902 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 903 BTRFS_FSID_SIZE) == 0 && 904 memcmp(fs_devices->fsid, disk_super->fsid, 905 BTRFS_FSID_SIZE) != 0) { 906 return fs_devices; 907 } 908 } 909 910 return NULL; 911 } 912 /* 913 * Add new device to list of registered devices 914 * 915 * Returns: 916 * device pointer which was just added or updated when successful 917 * error pointer when failed 918 */ 919 static noinline struct btrfs_device *device_list_add(const char *path, 920 struct btrfs_super_block *disk_super, 921 bool *new_device_added) 922 { 923 struct btrfs_device *device; 924 struct btrfs_fs_devices *fs_devices = NULL; 925 struct rcu_string *name; 926 u64 found_transid = btrfs_super_generation(disk_super); 927 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 928 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 929 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 930 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 931 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 932 933 if (fsid_change_in_progress) { 934 if (!has_metadata_uuid) { 935 /* 936 * When we have an image which has CHANGING_FSID_V2 set 937 * it might belong to either a filesystem which has 938 * disks with completed fsid change or it might belong 939 * to fs with no UUID changes in effect, handle both. 940 */ 941 fs_devices = find_fsid_inprogress(disk_super); 942 if (!fs_devices) 943 fs_devices = find_fsid(disk_super->fsid, NULL); 944 } else { 945 fs_devices = find_fsid_changed(disk_super); 946 } 947 } else if (has_metadata_uuid) { 948 fs_devices = find_fsid(disk_super->fsid, 949 disk_super->metadata_uuid); 950 } else { 951 fs_devices = find_fsid(disk_super->fsid, NULL); 952 } 953 954 955 if (!fs_devices) { 956 if (has_metadata_uuid) 957 fs_devices = alloc_fs_devices(disk_super->fsid, 958 disk_super->metadata_uuid); 959 else 960 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 961 962 if (IS_ERR(fs_devices)) 963 return ERR_CAST(fs_devices); 964 965 fs_devices->fsid_change = fsid_change_in_progress; 966 967 mutex_lock(&fs_devices->device_list_mutex); 968 list_add(&fs_devices->fs_list, &fs_uuids); 969 970 device = NULL; 971 } else { 972 mutex_lock(&fs_devices->device_list_mutex); 973 device = btrfs_find_device(fs_devices, devid, 974 disk_super->dev_item.uuid, NULL, false); 975 976 /* 977 * If this disk has been pulled into an fs devices created by 978 * a device which had the CHANGING_FSID_V2 flag then replace the 979 * metadata_uuid/fsid values of the fs_devices. 980 */ 981 if (has_metadata_uuid && fs_devices->fsid_change && 982 found_transid > fs_devices->latest_generation) { 983 memcpy(fs_devices->fsid, disk_super->fsid, 984 BTRFS_FSID_SIZE); 985 memcpy(fs_devices->metadata_uuid, 986 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 987 988 fs_devices->fsid_change = false; 989 } 990 } 991 992 if (!device) { 993 if (fs_devices->opened) { 994 mutex_unlock(&fs_devices->device_list_mutex); 995 return ERR_PTR(-EBUSY); 996 } 997 998 device = btrfs_alloc_device(NULL, &devid, 999 disk_super->dev_item.uuid); 1000 if (IS_ERR(device)) { 1001 mutex_unlock(&fs_devices->device_list_mutex); 1002 /* we can safely leave the fs_devices entry around */ 1003 return device; 1004 } 1005 1006 name = rcu_string_strdup(path, GFP_NOFS); 1007 if (!name) { 1008 btrfs_free_device(device); 1009 mutex_unlock(&fs_devices->device_list_mutex); 1010 return ERR_PTR(-ENOMEM); 1011 } 1012 rcu_assign_pointer(device->name, name); 1013 1014 list_add_rcu(&device->dev_list, &fs_devices->devices); 1015 fs_devices->num_devices++; 1016 1017 device->fs_devices = fs_devices; 1018 *new_device_added = true; 1019 1020 if (disk_super->label[0]) 1021 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n", 1022 disk_super->label, devid, found_transid, path); 1023 else 1024 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n", 1025 disk_super->fsid, devid, found_transid, path); 1026 1027 } else if (!device->name || strcmp(device->name->str, path)) { 1028 /* 1029 * When FS is already mounted. 1030 * 1. If you are here and if the device->name is NULL that 1031 * means this device was missing at time of FS mount. 1032 * 2. If you are here and if the device->name is different 1033 * from 'path' that means either 1034 * a. The same device disappeared and reappeared with 1035 * different name. or 1036 * b. The missing-disk-which-was-replaced, has 1037 * reappeared now. 1038 * 1039 * We must allow 1 and 2a above. But 2b would be a spurious 1040 * and unintentional. 1041 * 1042 * Further in case of 1 and 2a above, the disk at 'path' 1043 * would have missed some transaction when it was away and 1044 * in case of 2a the stale bdev has to be updated as well. 1045 * 2b must not be allowed at all time. 1046 */ 1047 1048 /* 1049 * For now, we do allow update to btrfs_fs_device through the 1050 * btrfs dev scan cli after FS has been mounted. We're still 1051 * tracking a problem where systems fail mount by subvolume id 1052 * when we reject replacement on a mounted FS. 1053 */ 1054 if (!fs_devices->opened && found_transid < device->generation) { 1055 /* 1056 * That is if the FS is _not_ mounted and if you 1057 * are here, that means there is more than one 1058 * disk with same uuid and devid.We keep the one 1059 * with larger generation number or the last-in if 1060 * generation are equal. 1061 */ 1062 mutex_unlock(&fs_devices->device_list_mutex); 1063 return ERR_PTR(-EEXIST); 1064 } 1065 1066 /* 1067 * We are going to replace the device path for a given devid, 1068 * make sure it's the same device if the device is mounted 1069 */ 1070 if (device->bdev) { 1071 struct block_device *path_bdev; 1072 1073 path_bdev = lookup_bdev(path); 1074 if (IS_ERR(path_bdev)) { 1075 mutex_unlock(&fs_devices->device_list_mutex); 1076 return ERR_CAST(path_bdev); 1077 } 1078 1079 if (device->bdev != path_bdev) { 1080 bdput(path_bdev); 1081 mutex_unlock(&fs_devices->device_list_mutex); 1082 btrfs_warn_in_rcu(device->fs_info, 1083 "duplicate device fsid:devid for %pU:%llu old:%s new:%s", 1084 disk_super->fsid, devid, 1085 rcu_str_deref(device->name), path); 1086 return ERR_PTR(-EEXIST); 1087 } 1088 bdput(path_bdev); 1089 btrfs_info_in_rcu(device->fs_info, 1090 "device fsid %pU devid %llu moved old:%s new:%s", 1091 disk_super->fsid, devid, 1092 rcu_str_deref(device->name), path); 1093 } 1094 1095 name = rcu_string_strdup(path, GFP_NOFS); 1096 if (!name) { 1097 mutex_unlock(&fs_devices->device_list_mutex); 1098 return ERR_PTR(-ENOMEM); 1099 } 1100 rcu_string_free(device->name); 1101 rcu_assign_pointer(device->name, name); 1102 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1103 fs_devices->missing_devices--; 1104 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1105 } 1106 } 1107 1108 /* 1109 * Unmount does not free the btrfs_device struct but would zero 1110 * generation along with most of the other members. So just update 1111 * it back. We need it to pick the disk with largest generation 1112 * (as above). 1113 */ 1114 if (!fs_devices->opened) { 1115 device->generation = found_transid; 1116 fs_devices->latest_generation = max_t(u64, found_transid, 1117 fs_devices->latest_generation); 1118 } 1119 1120 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 1121 1122 mutex_unlock(&fs_devices->device_list_mutex); 1123 return device; 1124 } 1125 1126 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 1127 { 1128 struct btrfs_fs_devices *fs_devices; 1129 struct btrfs_device *device; 1130 struct btrfs_device *orig_dev; 1131 1132 fs_devices = alloc_fs_devices(orig->fsid, NULL); 1133 if (IS_ERR(fs_devices)) 1134 return fs_devices; 1135 1136 mutex_lock(&orig->device_list_mutex); 1137 fs_devices->total_devices = orig->total_devices; 1138 1139 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1140 struct rcu_string *name; 1141 1142 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1143 orig_dev->uuid); 1144 if (IS_ERR(device)) 1145 goto error; 1146 1147 /* 1148 * This is ok to do without rcu read locked because we hold the 1149 * uuid mutex so nothing we touch in here is going to disappear. 1150 */ 1151 if (orig_dev->name) { 1152 name = rcu_string_strdup(orig_dev->name->str, 1153 GFP_KERNEL); 1154 if (!name) { 1155 btrfs_free_device(device); 1156 goto error; 1157 } 1158 rcu_assign_pointer(device->name, name); 1159 } 1160 1161 list_add(&device->dev_list, &fs_devices->devices); 1162 device->fs_devices = fs_devices; 1163 fs_devices->num_devices++; 1164 } 1165 mutex_unlock(&orig->device_list_mutex); 1166 return fs_devices; 1167 error: 1168 mutex_unlock(&orig->device_list_mutex); 1169 free_fs_devices(fs_devices); 1170 return ERR_PTR(-ENOMEM); 1171 } 1172 1173 /* 1174 * After we have read the system tree and know devids belonging to 1175 * this filesystem, remove the device which does not belong there. 1176 */ 1177 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) 1178 { 1179 struct btrfs_device *device, *next; 1180 struct btrfs_device *latest_dev = NULL; 1181 1182 mutex_lock(&uuid_mutex); 1183 again: 1184 /* This is the initialized path, it is safe to release the devices. */ 1185 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1186 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1187 &device->dev_state)) { 1188 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1189 &device->dev_state) && 1190 (!latest_dev || 1191 device->generation > latest_dev->generation)) { 1192 latest_dev = device; 1193 } 1194 continue; 1195 } 1196 1197 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 1198 /* 1199 * In the first step, keep the device which has 1200 * the correct fsid and the devid that is used 1201 * for the dev_replace procedure. 1202 * In the second step, the dev_replace state is 1203 * read from the device tree and it is known 1204 * whether the procedure is really active or 1205 * not, which means whether this device is 1206 * used or whether it should be removed. 1207 */ 1208 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1209 &device->dev_state)) { 1210 continue; 1211 } 1212 } 1213 if (device->bdev) { 1214 blkdev_put(device->bdev, device->mode); 1215 device->bdev = NULL; 1216 fs_devices->open_devices--; 1217 } 1218 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1219 list_del_init(&device->dev_alloc_list); 1220 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1221 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1222 &device->dev_state)) 1223 fs_devices->rw_devices--; 1224 } 1225 list_del_init(&device->dev_list); 1226 fs_devices->num_devices--; 1227 btrfs_free_device(device); 1228 } 1229 1230 if (fs_devices->seed) { 1231 fs_devices = fs_devices->seed; 1232 goto again; 1233 } 1234 1235 fs_devices->latest_bdev = latest_dev->bdev; 1236 1237 mutex_unlock(&uuid_mutex); 1238 } 1239 1240 static void btrfs_close_bdev(struct btrfs_device *device) 1241 { 1242 if (!device->bdev) 1243 return; 1244 1245 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1246 sync_blockdev(device->bdev); 1247 invalidate_bdev(device->bdev); 1248 } 1249 1250 blkdev_put(device->bdev, device->mode); 1251 } 1252 1253 static void btrfs_close_one_device(struct btrfs_device *device) 1254 { 1255 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1256 struct btrfs_device *new_device; 1257 struct rcu_string *name; 1258 1259 if (device->bdev) 1260 fs_devices->open_devices--; 1261 1262 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1263 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1264 list_del_init(&device->dev_alloc_list); 1265 fs_devices->rw_devices--; 1266 } 1267 1268 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 1269 fs_devices->missing_devices--; 1270 1271 btrfs_close_bdev(device); 1272 1273 new_device = btrfs_alloc_device(NULL, &device->devid, 1274 device->uuid); 1275 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 1276 1277 /* Safe because we are under uuid_mutex */ 1278 if (device->name) { 1279 name = rcu_string_strdup(device->name->str, GFP_NOFS); 1280 BUG_ON(!name); /* -ENOMEM */ 1281 rcu_assign_pointer(new_device->name, name); 1282 } 1283 1284 list_replace_rcu(&device->dev_list, &new_device->dev_list); 1285 new_device->fs_devices = device->fs_devices; 1286 1287 synchronize_rcu(); 1288 btrfs_free_device(device); 1289 } 1290 1291 static int close_fs_devices(struct btrfs_fs_devices *fs_devices) 1292 { 1293 struct btrfs_device *device, *tmp; 1294 1295 if (--fs_devices->opened > 0) 1296 return 0; 1297 1298 mutex_lock(&fs_devices->device_list_mutex); 1299 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 1300 btrfs_close_one_device(device); 1301 } 1302 mutex_unlock(&fs_devices->device_list_mutex); 1303 1304 WARN_ON(fs_devices->open_devices); 1305 WARN_ON(fs_devices->rw_devices); 1306 fs_devices->opened = 0; 1307 fs_devices->seeding = 0; 1308 1309 return 0; 1310 } 1311 1312 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1313 { 1314 struct btrfs_fs_devices *seed_devices = NULL; 1315 int ret; 1316 1317 mutex_lock(&uuid_mutex); 1318 ret = close_fs_devices(fs_devices); 1319 if (!fs_devices->opened) { 1320 seed_devices = fs_devices->seed; 1321 fs_devices->seed = NULL; 1322 } 1323 mutex_unlock(&uuid_mutex); 1324 1325 while (seed_devices) { 1326 fs_devices = seed_devices; 1327 seed_devices = fs_devices->seed; 1328 close_fs_devices(fs_devices); 1329 free_fs_devices(fs_devices); 1330 } 1331 return ret; 1332 } 1333 1334 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1335 fmode_t flags, void *holder) 1336 { 1337 struct btrfs_device *device; 1338 struct btrfs_device *latest_dev = NULL; 1339 int ret = 0; 1340 1341 flags |= FMODE_EXCL; 1342 1343 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1344 /* Just open everything we can; ignore failures here */ 1345 if (btrfs_open_one_device(fs_devices, device, flags, holder)) 1346 continue; 1347 1348 if (!latest_dev || 1349 device->generation > latest_dev->generation) 1350 latest_dev = device; 1351 } 1352 if (fs_devices->open_devices == 0) { 1353 ret = -EINVAL; 1354 goto out; 1355 } 1356 fs_devices->opened = 1; 1357 fs_devices->latest_bdev = latest_dev->bdev; 1358 fs_devices->total_rw_bytes = 0; 1359 out: 1360 return ret; 1361 } 1362 1363 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b) 1364 { 1365 struct btrfs_device *dev1, *dev2; 1366 1367 dev1 = list_entry(a, struct btrfs_device, dev_list); 1368 dev2 = list_entry(b, struct btrfs_device, dev_list); 1369 1370 if (dev1->devid < dev2->devid) 1371 return -1; 1372 else if (dev1->devid > dev2->devid) 1373 return 1; 1374 return 0; 1375 } 1376 1377 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1378 fmode_t flags, void *holder) 1379 { 1380 int ret; 1381 1382 lockdep_assert_held(&uuid_mutex); 1383 1384 mutex_lock(&fs_devices->device_list_mutex); 1385 if (fs_devices->opened) { 1386 fs_devices->opened++; 1387 ret = 0; 1388 } else { 1389 list_sort(NULL, &fs_devices->devices, devid_cmp); 1390 ret = open_fs_devices(fs_devices, flags, holder); 1391 } 1392 mutex_unlock(&fs_devices->device_list_mutex); 1393 1394 return ret; 1395 } 1396 1397 static void btrfs_release_disk_super(struct page *page) 1398 { 1399 kunmap(page); 1400 put_page(page); 1401 } 1402 1403 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, 1404 struct page **page, 1405 struct btrfs_super_block **disk_super) 1406 { 1407 void *p; 1408 pgoff_t index; 1409 1410 /* make sure our super fits in the device */ 1411 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1412 return 1; 1413 1414 /* make sure our super fits in the page */ 1415 if (sizeof(**disk_super) > PAGE_SIZE) 1416 return 1; 1417 1418 /* make sure our super doesn't straddle pages on disk */ 1419 index = bytenr >> PAGE_SHIFT; 1420 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) 1421 return 1; 1422 1423 /* pull in the page with our super */ 1424 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1425 index, GFP_KERNEL); 1426 1427 if (IS_ERR_OR_NULL(*page)) 1428 return 1; 1429 1430 p = kmap(*page); 1431 1432 /* align our pointer to the offset of the super block */ 1433 *disk_super = p + offset_in_page(bytenr); 1434 1435 if (btrfs_super_bytenr(*disk_super) != bytenr || 1436 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { 1437 btrfs_release_disk_super(*page); 1438 return 1; 1439 } 1440 1441 if ((*disk_super)->label[0] && 1442 (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) 1443 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1444 1445 return 0; 1446 } 1447 1448 int btrfs_forget_devices(const char *path) 1449 { 1450 int ret; 1451 1452 mutex_lock(&uuid_mutex); 1453 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1454 mutex_unlock(&uuid_mutex); 1455 1456 return ret; 1457 } 1458 1459 /* 1460 * Look for a btrfs signature on a device. This may be called out of the mount path 1461 * and we are not allowed to call set_blocksize during the scan. The superblock 1462 * is read via pagecache 1463 */ 1464 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1465 void *holder) 1466 { 1467 struct btrfs_super_block *disk_super; 1468 bool new_device_added = false; 1469 struct btrfs_device *device = NULL; 1470 struct block_device *bdev; 1471 struct page *page; 1472 u64 bytenr; 1473 1474 lockdep_assert_held(&uuid_mutex); 1475 1476 /* 1477 * we would like to check all the supers, but that would make 1478 * a btrfs mount succeed after a mkfs from a different FS. 1479 * So, we need to add a special mount option to scan for 1480 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1481 */ 1482 bytenr = btrfs_sb_offset(0); 1483 flags |= FMODE_EXCL; 1484 1485 bdev = blkdev_get_by_path(path, flags, holder); 1486 if (IS_ERR(bdev)) 1487 return ERR_CAST(bdev); 1488 1489 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) { 1490 device = ERR_PTR(-EINVAL); 1491 goto error_bdev_put; 1492 } 1493 1494 device = device_list_add(path, disk_super, &new_device_added); 1495 if (!IS_ERR(device)) { 1496 if (new_device_added) 1497 btrfs_free_stale_devices(path, device); 1498 } 1499 1500 btrfs_release_disk_super(page); 1501 1502 error_bdev_put: 1503 blkdev_put(bdev, flags); 1504 1505 return device; 1506 } 1507 1508 /* 1509 * Try to find a chunk that intersects [start, start + len] range and when one 1510 * such is found, record the end of it in *start 1511 */ 1512 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1513 u64 len) 1514 { 1515 u64 physical_start, physical_end; 1516 1517 lockdep_assert_held(&device->fs_info->chunk_mutex); 1518 1519 if (!find_first_extent_bit(&device->alloc_state, *start, 1520 &physical_start, &physical_end, 1521 CHUNK_ALLOCATED, NULL)) { 1522 1523 if (in_range(physical_start, *start, len) || 1524 in_range(*start, physical_start, 1525 physical_end - physical_start)) { 1526 *start = physical_end + 1; 1527 return true; 1528 } 1529 } 1530 return false; 1531 } 1532 1533 1534 /* 1535 * find_free_dev_extent_start - find free space in the specified device 1536 * @device: the device which we search the free space in 1537 * @num_bytes: the size of the free space that we need 1538 * @search_start: the position from which to begin the search 1539 * @start: store the start of the free space. 1540 * @len: the size of the free space. that we find, or the size 1541 * of the max free space if we don't find suitable free space 1542 * 1543 * this uses a pretty simple search, the expectation is that it is 1544 * called very infrequently and that a given device has a small number 1545 * of extents 1546 * 1547 * @start is used to store the start of the free space if we find. But if we 1548 * don't find suitable free space, it will be used to store the start position 1549 * of the max free space. 1550 * 1551 * @len is used to store the size of the free space that we find. 1552 * But if we don't find suitable free space, it is used to store the size of 1553 * the max free space. 1554 */ 1555 int find_free_dev_extent_start(struct btrfs_device *device, u64 num_bytes, 1556 u64 search_start, u64 *start, u64 *len) 1557 { 1558 struct btrfs_fs_info *fs_info = device->fs_info; 1559 struct btrfs_root *root = fs_info->dev_root; 1560 struct btrfs_key key; 1561 struct btrfs_dev_extent *dev_extent; 1562 struct btrfs_path *path; 1563 u64 hole_size; 1564 u64 max_hole_start; 1565 u64 max_hole_size; 1566 u64 extent_end; 1567 u64 search_end = device->total_bytes; 1568 int ret; 1569 int slot; 1570 struct extent_buffer *l; 1571 1572 /* 1573 * We don't want to overwrite the superblock on the drive nor any area 1574 * used by the boot loader (grub for example), so we make sure to start 1575 * at an offset of at least 1MB. 1576 */ 1577 search_start = max_t(u64, search_start, SZ_1M); 1578 1579 path = btrfs_alloc_path(); 1580 if (!path) 1581 return -ENOMEM; 1582 1583 max_hole_start = search_start; 1584 max_hole_size = 0; 1585 1586 again: 1587 if (search_start >= search_end || 1588 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1589 ret = -ENOSPC; 1590 goto out; 1591 } 1592 1593 path->reada = READA_FORWARD; 1594 path->search_commit_root = 1; 1595 path->skip_locking = 1; 1596 1597 key.objectid = device->devid; 1598 key.offset = search_start; 1599 key.type = BTRFS_DEV_EXTENT_KEY; 1600 1601 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1602 if (ret < 0) 1603 goto out; 1604 if (ret > 0) { 1605 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1606 if (ret < 0) 1607 goto out; 1608 } 1609 1610 while (1) { 1611 l = path->nodes[0]; 1612 slot = path->slots[0]; 1613 if (slot >= btrfs_header_nritems(l)) { 1614 ret = btrfs_next_leaf(root, path); 1615 if (ret == 0) 1616 continue; 1617 if (ret < 0) 1618 goto out; 1619 1620 break; 1621 } 1622 btrfs_item_key_to_cpu(l, &key, slot); 1623 1624 if (key.objectid < device->devid) 1625 goto next; 1626 1627 if (key.objectid > device->devid) 1628 break; 1629 1630 if (key.type != BTRFS_DEV_EXTENT_KEY) 1631 goto next; 1632 1633 if (key.offset > search_start) { 1634 hole_size = key.offset - search_start; 1635 1636 /* 1637 * Have to check before we set max_hole_start, otherwise 1638 * we could end up sending back this offset anyway. 1639 */ 1640 if (contains_pending_extent(device, &search_start, 1641 hole_size)) { 1642 if (key.offset >= search_start) 1643 hole_size = key.offset - search_start; 1644 else 1645 hole_size = 0; 1646 } 1647 1648 if (hole_size > max_hole_size) { 1649 max_hole_start = search_start; 1650 max_hole_size = hole_size; 1651 } 1652 1653 /* 1654 * If this free space is greater than which we need, 1655 * it must be the max free space that we have found 1656 * until now, so max_hole_start must point to the start 1657 * of this free space and the length of this free space 1658 * is stored in max_hole_size. Thus, we return 1659 * max_hole_start and max_hole_size and go back to the 1660 * caller. 1661 */ 1662 if (hole_size >= num_bytes) { 1663 ret = 0; 1664 goto out; 1665 } 1666 } 1667 1668 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1669 extent_end = key.offset + btrfs_dev_extent_length(l, 1670 dev_extent); 1671 if (extent_end > search_start) 1672 search_start = extent_end; 1673 next: 1674 path->slots[0]++; 1675 cond_resched(); 1676 } 1677 1678 /* 1679 * At this point, search_start should be the end of 1680 * allocated dev extents, and when shrinking the device, 1681 * search_end may be smaller than search_start. 1682 */ 1683 if (search_end > search_start) { 1684 hole_size = search_end - search_start; 1685 1686 if (contains_pending_extent(device, &search_start, hole_size)) { 1687 btrfs_release_path(path); 1688 goto again; 1689 } 1690 1691 if (hole_size > max_hole_size) { 1692 max_hole_start = search_start; 1693 max_hole_size = hole_size; 1694 } 1695 } 1696 1697 /* See above. */ 1698 if (max_hole_size < num_bytes) 1699 ret = -ENOSPC; 1700 else 1701 ret = 0; 1702 1703 out: 1704 btrfs_free_path(path); 1705 *start = max_hole_start; 1706 if (len) 1707 *len = max_hole_size; 1708 return ret; 1709 } 1710 1711 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1712 u64 *start, u64 *len) 1713 { 1714 /* FIXME use last free of some kind */ 1715 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1716 } 1717 1718 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1719 struct btrfs_device *device, 1720 u64 start, u64 *dev_extent_len) 1721 { 1722 struct btrfs_fs_info *fs_info = device->fs_info; 1723 struct btrfs_root *root = fs_info->dev_root; 1724 int ret; 1725 struct btrfs_path *path; 1726 struct btrfs_key key; 1727 struct btrfs_key found_key; 1728 struct extent_buffer *leaf = NULL; 1729 struct btrfs_dev_extent *extent = NULL; 1730 1731 path = btrfs_alloc_path(); 1732 if (!path) 1733 return -ENOMEM; 1734 1735 key.objectid = device->devid; 1736 key.offset = start; 1737 key.type = BTRFS_DEV_EXTENT_KEY; 1738 again: 1739 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1740 if (ret > 0) { 1741 ret = btrfs_previous_item(root, path, key.objectid, 1742 BTRFS_DEV_EXTENT_KEY); 1743 if (ret) 1744 goto out; 1745 leaf = path->nodes[0]; 1746 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1747 extent = btrfs_item_ptr(leaf, path->slots[0], 1748 struct btrfs_dev_extent); 1749 BUG_ON(found_key.offset > start || found_key.offset + 1750 btrfs_dev_extent_length(leaf, extent) < start); 1751 key = found_key; 1752 btrfs_release_path(path); 1753 goto again; 1754 } else if (ret == 0) { 1755 leaf = path->nodes[0]; 1756 extent = btrfs_item_ptr(leaf, path->slots[0], 1757 struct btrfs_dev_extent); 1758 } else { 1759 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1760 goto out; 1761 } 1762 1763 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1764 1765 ret = btrfs_del_item(trans, root, path); 1766 if (ret) { 1767 btrfs_handle_fs_error(fs_info, ret, 1768 "Failed to remove dev extent item"); 1769 } else { 1770 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1771 } 1772 out: 1773 btrfs_free_path(path); 1774 return ret; 1775 } 1776 1777 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1778 struct btrfs_device *device, 1779 u64 chunk_offset, u64 start, u64 num_bytes) 1780 { 1781 int ret; 1782 struct btrfs_path *path; 1783 struct btrfs_fs_info *fs_info = device->fs_info; 1784 struct btrfs_root *root = fs_info->dev_root; 1785 struct btrfs_dev_extent *extent; 1786 struct extent_buffer *leaf; 1787 struct btrfs_key key; 1788 1789 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1790 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1791 path = btrfs_alloc_path(); 1792 if (!path) 1793 return -ENOMEM; 1794 1795 key.objectid = device->devid; 1796 key.offset = start; 1797 key.type = BTRFS_DEV_EXTENT_KEY; 1798 ret = btrfs_insert_empty_item(trans, root, path, &key, 1799 sizeof(*extent)); 1800 if (ret) 1801 goto out; 1802 1803 leaf = path->nodes[0]; 1804 extent = btrfs_item_ptr(leaf, path->slots[0], 1805 struct btrfs_dev_extent); 1806 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1807 BTRFS_CHUNK_TREE_OBJECTID); 1808 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1809 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1810 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1811 1812 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1813 btrfs_mark_buffer_dirty(leaf); 1814 out: 1815 btrfs_free_path(path); 1816 return ret; 1817 } 1818 1819 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1820 { 1821 struct extent_map_tree *em_tree; 1822 struct extent_map *em; 1823 struct rb_node *n; 1824 u64 ret = 0; 1825 1826 em_tree = &fs_info->mapping_tree; 1827 read_lock(&em_tree->lock); 1828 n = rb_last(&em_tree->map.rb_root); 1829 if (n) { 1830 em = rb_entry(n, struct extent_map, rb_node); 1831 ret = em->start + em->len; 1832 } 1833 read_unlock(&em_tree->lock); 1834 1835 return ret; 1836 } 1837 1838 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1839 u64 *devid_ret) 1840 { 1841 int ret; 1842 struct btrfs_key key; 1843 struct btrfs_key found_key; 1844 struct btrfs_path *path; 1845 1846 path = btrfs_alloc_path(); 1847 if (!path) 1848 return -ENOMEM; 1849 1850 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1851 key.type = BTRFS_DEV_ITEM_KEY; 1852 key.offset = (u64)-1; 1853 1854 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1855 if (ret < 0) 1856 goto error; 1857 1858 BUG_ON(ret == 0); /* Corruption */ 1859 1860 ret = btrfs_previous_item(fs_info->chunk_root, path, 1861 BTRFS_DEV_ITEMS_OBJECTID, 1862 BTRFS_DEV_ITEM_KEY); 1863 if (ret) { 1864 *devid_ret = 1; 1865 } else { 1866 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1867 path->slots[0]); 1868 *devid_ret = found_key.offset + 1; 1869 } 1870 ret = 0; 1871 error: 1872 btrfs_free_path(path); 1873 return ret; 1874 } 1875 1876 /* 1877 * the device information is stored in the chunk root 1878 * the btrfs_device struct should be fully filled in 1879 */ 1880 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1881 struct btrfs_device *device) 1882 { 1883 int ret; 1884 struct btrfs_path *path; 1885 struct btrfs_dev_item *dev_item; 1886 struct extent_buffer *leaf; 1887 struct btrfs_key key; 1888 unsigned long ptr; 1889 1890 path = btrfs_alloc_path(); 1891 if (!path) 1892 return -ENOMEM; 1893 1894 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1895 key.type = BTRFS_DEV_ITEM_KEY; 1896 key.offset = device->devid; 1897 1898 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1899 &key, sizeof(*dev_item)); 1900 if (ret) 1901 goto out; 1902 1903 leaf = path->nodes[0]; 1904 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1905 1906 btrfs_set_device_id(leaf, dev_item, device->devid); 1907 btrfs_set_device_generation(leaf, dev_item, 0); 1908 btrfs_set_device_type(leaf, dev_item, device->type); 1909 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1910 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1911 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1912 btrfs_set_device_total_bytes(leaf, dev_item, 1913 btrfs_device_get_disk_total_bytes(device)); 1914 btrfs_set_device_bytes_used(leaf, dev_item, 1915 btrfs_device_get_bytes_used(device)); 1916 btrfs_set_device_group(leaf, dev_item, 0); 1917 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1918 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1919 btrfs_set_device_start_offset(leaf, dev_item, 0); 1920 1921 ptr = btrfs_device_uuid(dev_item); 1922 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1923 ptr = btrfs_device_fsid(dev_item); 1924 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1925 ptr, BTRFS_FSID_SIZE); 1926 btrfs_mark_buffer_dirty(leaf); 1927 1928 ret = 0; 1929 out: 1930 btrfs_free_path(path); 1931 return ret; 1932 } 1933 1934 /* 1935 * Function to update ctime/mtime for a given device path. 1936 * Mainly used for ctime/mtime based probe like libblkid. 1937 */ 1938 static void update_dev_time(const char *path_name) 1939 { 1940 struct file *filp; 1941 1942 filp = filp_open(path_name, O_RDWR, 0); 1943 if (IS_ERR(filp)) 1944 return; 1945 file_update_time(filp); 1946 filp_close(filp, NULL); 1947 } 1948 1949 static int btrfs_rm_dev_item(struct btrfs_device *device) 1950 { 1951 struct btrfs_root *root = device->fs_info->chunk_root; 1952 int ret; 1953 struct btrfs_path *path; 1954 struct btrfs_key key; 1955 struct btrfs_trans_handle *trans; 1956 1957 path = btrfs_alloc_path(); 1958 if (!path) 1959 return -ENOMEM; 1960 1961 trans = btrfs_start_transaction(root, 0); 1962 if (IS_ERR(trans)) { 1963 btrfs_free_path(path); 1964 return PTR_ERR(trans); 1965 } 1966 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1967 key.type = BTRFS_DEV_ITEM_KEY; 1968 key.offset = device->devid; 1969 1970 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1971 if (ret) { 1972 if (ret > 0) 1973 ret = -ENOENT; 1974 btrfs_abort_transaction(trans, ret); 1975 btrfs_end_transaction(trans); 1976 goto out; 1977 } 1978 1979 ret = btrfs_del_item(trans, root, path); 1980 if (ret) { 1981 btrfs_abort_transaction(trans, ret); 1982 btrfs_end_transaction(trans); 1983 } 1984 1985 out: 1986 btrfs_free_path(path); 1987 if (!ret) 1988 ret = btrfs_commit_transaction(trans); 1989 return ret; 1990 } 1991 1992 /* 1993 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1994 * filesystem. It's up to the caller to adjust that number regarding eg. device 1995 * replace. 1996 */ 1997 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1998 u64 num_devices) 1999 { 2000 u64 all_avail; 2001 unsigned seq; 2002 int i; 2003 2004 do { 2005 seq = read_seqbegin(&fs_info->profiles_lock); 2006 2007 all_avail = fs_info->avail_data_alloc_bits | 2008 fs_info->avail_system_alloc_bits | 2009 fs_info->avail_metadata_alloc_bits; 2010 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2011 2012 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2013 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2014 continue; 2015 2016 if (num_devices < btrfs_raid_array[i].devs_min) { 2017 int ret = btrfs_raid_array[i].mindev_error; 2018 2019 if (ret) 2020 return ret; 2021 } 2022 } 2023 2024 return 0; 2025 } 2026 2027 static struct btrfs_device * btrfs_find_next_active_device( 2028 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2029 { 2030 struct btrfs_device *next_device; 2031 2032 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2033 if (next_device != device && 2034 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2035 && next_device->bdev) 2036 return next_device; 2037 } 2038 2039 return NULL; 2040 } 2041 2042 /* 2043 * Helper function to check if the given device is part of s_bdev / latest_bdev 2044 * and replace it with the provided or the next active device, in the context 2045 * where this function called, there should be always be another device (or 2046 * this_dev) which is active. 2047 */ 2048 void btrfs_assign_next_active_device(struct btrfs_device *device, 2049 struct btrfs_device *this_dev) 2050 { 2051 struct btrfs_fs_info *fs_info = device->fs_info; 2052 struct btrfs_device *next_device; 2053 2054 if (this_dev) 2055 next_device = this_dev; 2056 else 2057 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2058 device); 2059 ASSERT(next_device); 2060 2061 if (fs_info->sb->s_bdev && 2062 (fs_info->sb->s_bdev == device->bdev)) 2063 fs_info->sb->s_bdev = next_device->bdev; 2064 2065 if (fs_info->fs_devices->latest_bdev == device->bdev) 2066 fs_info->fs_devices->latest_bdev = next_device->bdev; 2067 } 2068 2069 /* 2070 * Return btrfs_fs_devices::num_devices excluding the device that's being 2071 * currently replaced. 2072 */ 2073 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2074 { 2075 u64 num_devices = fs_info->fs_devices->num_devices; 2076 2077 down_read(&fs_info->dev_replace.rwsem); 2078 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2079 ASSERT(num_devices > 1); 2080 num_devices--; 2081 } 2082 up_read(&fs_info->dev_replace.rwsem); 2083 2084 return num_devices; 2085 } 2086 2087 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 2088 u64 devid) 2089 { 2090 struct btrfs_device *device; 2091 struct btrfs_fs_devices *cur_devices; 2092 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2093 u64 num_devices; 2094 int ret = 0; 2095 2096 mutex_lock(&uuid_mutex); 2097 2098 num_devices = btrfs_num_devices(fs_info); 2099 2100 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2101 if (ret) 2102 goto out; 2103 2104 device = btrfs_find_device_by_devspec(fs_info, devid, device_path); 2105 2106 if (IS_ERR(device)) { 2107 if (PTR_ERR(device) == -ENOENT && 2108 strcmp(device_path, "missing") == 0) 2109 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2110 else 2111 ret = PTR_ERR(device); 2112 goto out; 2113 } 2114 2115 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2116 btrfs_warn_in_rcu(fs_info, 2117 "cannot remove device %s (devid %llu) due to active swapfile", 2118 rcu_str_deref(device->name), device->devid); 2119 ret = -ETXTBSY; 2120 goto out; 2121 } 2122 2123 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2124 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 2125 goto out; 2126 } 2127 2128 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2129 fs_info->fs_devices->rw_devices == 1) { 2130 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 2131 goto out; 2132 } 2133 2134 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2135 mutex_lock(&fs_info->chunk_mutex); 2136 list_del_init(&device->dev_alloc_list); 2137 device->fs_devices->rw_devices--; 2138 mutex_unlock(&fs_info->chunk_mutex); 2139 } 2140 2141 mutex_unlock(&uuid_mutex); 2142 ret = btrfs_shrink_device(device, 0); 2143 mutex_lock(&uuid_mutex); 2144 if (ret) 2145 goto error_undo; 2146 2147 /* 2148 * TODO: the superblock still includes this device in its num_devices 2149 * counter although write_all_supers() is not locked out. This 2150 * could give a filesystem state which requires a degraded mount. 2151 */ 2152 ret = btrfs_rm_dev_item(device); 2153 if (ret) 2154 goto error_undo; 2155 2156 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2157 btrfs_scrub_cancel_dev(device); 2158 2159 /* 2160 * the device list mutex makes sure that we don't change 2161 * the device list while someone else is writing out all 2162 * the device supers. Whoever is writing all supers, should 2163 * lock the device list mutex before getting the number of 2164 * devices in the super block (super_copy). Conversely, 2165 * whoever updates the number of devices in the super block 2166 * (super_copy) should hold the device list mutex. 2167 */ 2168 2169 /* 2170 * In normal cases the cur_devices == fs_devices. But in case 2171 * of deleting a seed device, the cur_devices should point to 2172 * its own fs_devices listed under the fs_devices->seed. 2173 */ 2174 cur_devices = device->fs_devices; 2175 mutex_lock(&fs_devices->device_list_mutex); 2176 list_del_rcu(&device->dev_list); 2177 2178 cur_devices->num_devices--; 2179 cur_devices->total_devices--; 2180 /* Update total_devices of the parent fs_devices if it's seed */ 2181 if (cur_devices != fs_devices) 2182 fs_devices->total_devices--; 2183 2184 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2185 cur_devices->missing_devices--; 2186 2187 btrfs_assign_next_active_device(device, NULL); 2188 2189 if (device->bdev) { 2190 cur_devices->open_devices--; 2191 /* remove sysfs entry */ 2192 btrfs_sysfs_rm_device_link(fs_devices, device); 2193 } 2194 2195 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2196 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2197 mutex_unlock(&fs_devices->device_list_mutex); 2198 2199 /* 2200 * at this point, the device is zero sized and detached from 2201 * the devices list. All that's left is to zero out the old 2202 * supers and free the device. 2203 */ 2204 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2205 btrfs_scratch_superblocks(device->bdev, device->name->str); 2206 2207 btrfs_close_bdev(device); 2208 synchronize_rcu(); 2209 btrfs_free_device(device); 2210 2211 if (cur_devices->open_devices == 0) { 2212 while (fs_devices) { 2213 if (fs_devices->seed == cur_devices) { 2214 fs_devices->seed = cur_devices->seed; 2215 break; 2216 } 2217 fs_devices = fs_devices->seed; 2218 } 2219 cur_devices->seed = NULL; 2220 close_fs_devices(cur_devices); 2221 free_fs_devices(cur_devices); 2222 } 2223 2224 out: 2225 mutex_unlock(&uuid_mutex); 2226 return ret; 2227 2228 error_undo: 2229 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2230 mutex_lock(&fs_info->chunk_mutex); 2231 list_add(&device->dev_alloc_list, 2232 &fs_devices->alloc_list); 2233 device->fs_devices->rw_devices++; 2234 mutex_unlock(&fs_info->chunk_mutex); 2235 } 2236 goto out; 2237 } 2238 2239 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2240 { 2241 struct btrfs_fs_devices *fs_devices; 2242 2243 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2244 2245 /* 2246 * in case of fs with no seed, srcdev->fs_devices will point 2247 * to fs_devices of fs_info. However when the dev being replaced is 2248 * a seed dev it will point to the seed's local fs_devices. In short 2249 * srcdev will have its correct fs_devices in both the cases. 2250 */ 2251 fs_devices = srcdev->fs_devices; 2252 2253 list_del_rcu(&srcdev->dev_list); 2254 list_del(&srcdev->dev_alloc_list); 2255 fs_devices->num_devices--; 2256 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2257 fs_devices->missing_devices--; 2258 2259 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2260 fs_devices->rw_devices--; 2261 2262 if (srcdev->bdev) 2263 fs_devices->open_devices--; 2264 } 2265 2266 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2267 { 2268 struct btrfs_fs_info *fs_info = srcdev->fs_info; 2269 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2270 2271 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) { 2272 /* zero out the old super if it is writable */ 2273 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); 2274 } 2275 2276 btrfs_close_bdev(srcdev); 2277 synchronize_rcu(); 2278 btrfs_free_device(srcdev); 2279 2280 /* if this is no devs we rather delete the fs_devices */ 2281 if (!fs_devices->num_devices) { 2282 struct btrfs_fs_devices *tmp_fs_devices; 2283 2284 /* 2285 * On a mounted FS, num_devices can't be zero unless it's a 2286 * seed. In case of a seed device being replaced, the replace 2287 * target added to the sprout FS, so there will be no more 2288 * device left under the seed FS. 2289 */ 2290 ASSERT(fs_devices->seeding); 2291 2292 tmp_fs_devices = fs_info->fs_devices; 2293 while (tmp_fs_devices) { 2294 if (tmp_fs_devices->seed == fs_devices) { 2295 tmp_fs_devices->seed = fs_devices->seed; 2296 break; 2297 } 2298 tmp_fs_devices = tmp_fs_devices->seed; 2299 } 2300 fs_devices->seed = NULL; 2301 close_fs_devices(fs_devices); 2302 free_fs_devices(fs_devices); 2303 } 2304 } 2305 2306 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2307 { 2308 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2309 2310 WARN_ON(!tgtdev); 2311 mutex_lock(&fs_devices->device_list_mutex); 2312 2313 btrfs_sysfs_rm_device_link(fs_devices, tgtdev); 2314 2315 if (tgtdev->bdev) 2316 fs_devices->open_devices--; 2317 2318 fs_devices->num_devices--; 2319 2320 btrfs_assign_next_active_device(tgtdev, NULL); 2321 2322 list_del_rcu(&tgtdev->dev_list); 2323 2324 mutex_unlock(&fs_devices->device_list_mutex); 2325 2326 /* 2327 * The update_dev_time() with in btrfs_scratch_superblocks() 2328 * may lead to a call to btrfs_show_devname() which will try 2329 * to hold device_list_mutex. And here this device 2330 * is already out of device list, so we don't have to hold 2331 * the device_list_mutex lock. 2332 */ 2333 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); 2334 2335 btrfs_close_bdev(tgtdev); 2336 synchronize_rcu(); 2337 btrfs_free_device(tgtdev); 2338 } 2339 2340 static struct btrfs_device *btrfs_find_device_by_path( 2341 struct btrfs_fs_info *fs_info, const char *device_path) 2342 { 2343 int ret = 0; 2344 struct btrfs_super_block *disk_super; 2345 u64 devid; 2346 u8 *dev_uuid; 2347 struct block_device *bdev; 2348 struct buffer_head *bh; 2349 struct btrfs_device *device; 2350 2351 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2352 fs_info->bdev_holder, 0, &bdev, &bh); 2353 if (ret) 2354 return ERR_PTR(ret); 2355 disk_super = (struct btrfs_super_block *)bh->b_data; 2356 devid = btrfs_stack_device_id(&disk_super->dev_item); 2357 dev_uuid = disk_super->dev_item.uuid; 2358 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2359 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2360 disk_super->metadata_uuid, true); 2361 else 2362 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2363 disk_super->fsid, true); 2364 2365 brelse(bh); 2366 if (!device) 2367 device = ERR_PTR(-ENOENT); 2368 blkdev_put(bdev, FMODE_READ); 2369 return device; 2370 } 2371 2372 /* 2373 * Lookup a device given by device id, or the path if the id is 0. 2374 */ 2375 struct btrfs_device *btrfs_find_device_by_devspec( 2376 struct btrfs_fs_info *fs_info, u64 devid, 2377 const char *device_path) 2378 { 2379 struct btrfs_device *device; 2380 2381 if (devid) { 2382 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, 2383 NULL, true); 2384 if (!device) 2385 return ERR_PTR(-ENOENT); 2386 return device; 2387 } 2388 2389 if (!device_path || !device_path[0]) 2390 return ERR_PTR(-EINVAL); 2391 2392 if (strcmp(device_path, "missing") == 0) { 2393 /* Find first missing device */ 2394 list_for_each_entry(device, &fs_info->fs_devices->devices, 2395 dev_list) { 2396 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2397 &device->dev_state) && !device->bdev) 2398 return device; 2399 } 2400 return ERR_PTR(-ENOENT); 2401 } 2402 2403 return btrfs_find_device_by_path(fs_info, device_path); 2404 } 2405 2406 /* 2407 * does all the dirty work required for changing file system's UUID. 2408 */ 2409 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2410 { 2411 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2412 struct btrfs_fs_devices *old_devices; 2413 struct btrfs_fs_devices *seed_devices; 2414 struct btrfs_super_block *disk_super = fs_info->super_copy; 2415 struct btrfs_device *device; 2416 u64 super_flags; 2417 2418 lockdep_assert_held(&uuid_mutex); 2419 if (!fs_devices->seeding) 2420 return -EINVAL; 2421 2422 seed_devices = alloc_fs_devices(NULL, NULL); 2423 if (IS_ERR(seed_devices)) 2424 return PTR_ERR(seed_devices); 2425 2426 old_devices = clone_fs_devices(fs_devices); 2427 if (IS_ERR(old_devices)) { 2428 kfree(seed_devices); 2429 return PTR_ERR(old_devices); 2430 } 2431 2432 list_add(&old_devices->fs_list, &fs_uuids); 2433 2434 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2435 seed_devices->opened = 1; 2436 INIT_LIST_HEAD(&seed_devices->devices); 2437 INIT_LIST_HEAD(&seed_devices->alloc_list); 2438 mutex_init(&seed_devices->device_list_mutex); 2439 2440 mutex_lock(&fs_devices->device_list_mutex); 2441 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2442 synchronize_rcu); 2443 list_for_each_entry(device, &seed_devices->devices, dev_list) 2444 device->fs_devices = seed_devices; 2445 2446 mutex_lock(&fs_info->chunk_mutex); 2447 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2448 mutex_unlock(&fs_info->chunk_mutex); 2449 2450 fs_devices->seeding = 0; 2451 fs_devices->num_devices = 0; 2452 fs_devices->open_devices = 0; 2453 fs_devices->missing_devices = 0; 2454 fs_devices->rotating = 0; 2455 fs_devices->seed = seed_devices; 2456 2457 generate_random_uuid(fs_devices->fsid); 2458 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2459 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2460 mutex_unlock(&fs_devices->device_list_mutex); 2461 2462 super_flags = btrfs_super_flags(disk_super) & 2463 ~BTRFS_SUPER_FLAG_SEEDING; 2464 btrfs_set_super_flags(disk_super, super_flags); 2465 2466 return 0; 2467 } 2468 2469 /* 2470 * Store the expected generation for seed devices in device items. 2471 */ 2472 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2473 { 2474 struct btrfs_fs_info *fs_info = trans->fs_info; 2475 struct btrfs_root *root = fs_info->chunk_root; 2476 struct btrfs_path *path; 2477 struct extent_buffer *leaf; 2478 struct btrfs_dev_item *dev_item; 2479 struct btrfs_device *device; 2480 struct btrfs_key key; 2481 u8 fs_uuid[BTRFS_FSID_SIZE]; 2482 u8 dev_uuid[BTRFS_UUID_SIZE]; 2483 u64 devid; 2484 int ret; 2485 2486 path = btrfs_alloc_path(); 2487 if (!path) 2488 return -ENOMEM; 2489 2490 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2491 key.offset = 0; 2492 key.type = BTRFS_DEV_ITEM_KEY; 2493 2494 while (1) { 2495 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2496 if (ret < 0) 2497 goto error; 2498 2499 leaf = path->nodes[0]; 2500 next_slot: 2501 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2502 ret = btrfs_next_leaf(root, path); 2503 if (ret > 0) 2504 break; 2505 if (ret < 0) 2506 goto error; 2507 leaf = path->nodes[0]; 2508 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2509 btrfs_release_path(path); 2510 continue; 2511 } 2512 2513 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2514 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2515 key.type != BTRFS_DEV_ITEM_KEY) 2516 break; 2517 2518 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2519 struct btrfs_dev_item); 2520 devid = btrfs_device_id(leaf, dev_item); 2521 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2522 BTRFS_UUID_SIZE); 2523 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2524 BTRFS_FSID_SIZE); 2525 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2526 fs_uuid, true); 2527 BUG_ON(!device); /* Logic error */ 2528 2529 if (device->fs_devices->seeding) { 2530 btrfs_set_device_generation(leaf, dev_item, 2531 device->generation); 2532 btrfs_mark_buffer_dirty(leaf); 2533 } 2534 2535 path->slots[0]++; 2536 goto next_slot; 2537 } 2538 ret = 0; 2539 error: 2540 btrfs_free_path(path); 2541 return ret; 2542 } 2543 2544 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2545 { 2546 struct btrfs_root *root = fs_info->dev_root; 2547 struct request_queue *q; 2548 struct btrfs_trans_handle *trans; 2549 struct btrfs_device *device; 2550 struct block_device *bdev; 2551 struct super_block *sb = fs_info->sb; 2552 struct rcu_string *name; 2553 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2554 u64 orig_super_total_bytes; 2555 u64 orig_super_num_devices; 2556 int seeding_dev = 0; 2557 int ret = 0; 2558 bool unlocked = false; 2559 2560 if (sb_rdonly(sb) && !fs_devices->seeding) 2561 return -EROFS; 2562 2563 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2564 fs_info->bdev_holder); 2565 if (IS_ERR(bdev)) 2566 return PTR_ERR(bdev); 2567 2568 if (fs_devices->seeding) { 2569 seeding_dev = 1; 2570 down_write(&sb->s_umount); 2571 mutex_lock(&uuid_mutex); 2572 } 2573 2574 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2575 2576 mutex_lock(&fs_devices->device_list_mutex); 2577 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2578 if (device->bdev == bdev) { 2579 ret = -EEXIST; 2580 mutex_unlock( 2581 &fs_devices->device_list_mutex); 2582 goto error; 2583 } 2584 } 2585 mutex_unlock(&fs_devices->device_list_mutex); 2586 2587 device = btrfs_alloc_device(fs_info, NULL, NULL); 2588 if (IS_ERR(device)) { 2589 /* we can safely leave the fs_devices entry around */ 2590 ret = PTR_ERR(device); 2591 goto error; 2592 } 2593 2594 name = rcu_string_strdup(device_path, GFP_KERNEL); 2595 if (!name) { 2596 ret = -ENOMEM; 2597 goto error_free_device; 2598 } 2599 rcu_assign_pointer(device->name, name); 2600 2601 trans = btrfs_start_transaction(root, 0); 2602 if (IS_ERR(trans)) { 2603 ret = PTR_ERR(trans); 2604 goto error_free_device; 2605 } 2606 2607 q = bdev_get_queue(bdev); 2608 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2609 device->generation = trans->transid; 2610 device->io_width = fs_info->sectorsize; 2611 device->io_align = fs_info->sectorsize; 2612 device->sector_size = fs_info->sectorsize; 2613 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2614 fs_info->sectorsize); 2615 device->disk_total_bytes = device->total_bytes; 2616 device->commit_total_bytes = device->total_bytes; 2617 device->fs_info = fs_info; 2618 device->bdev = bdev; 2619 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2620 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2621 device->mode = FMODE_EXCL; 2622 device->dev_stats_valid = 1; 2623 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2624 2625 if (seeding_dev) { 2626 sb->s_flags &= ~SB_RDONLY; 2627 ret = btrfs_prepare_sprout(fs_info); 2628 if (ret) { 2629 btrfs_abort_transaction(trans, ret); 2630 goto error_trans; 2631 } 2632 } 2633 2634 device->fs_devices = fs_devices; 2635 2636 mutex_lock(&fs_devices->device_list_mutex); 2637 mutex_lock(&fs_info->chunk_mutex); 2638 list_add_rcu(&device->dev_list, &fs_devices->devices); 2639 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2640 fs_devices->num_devices++; 2641 fs_devices->open_devices++; 2642 fs_devices->rw_devices++; 2643 fs_devices->total_devices++; 2644 fs_devices->total_rw_bytes += device->total_bytes; 2645 2646 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2647 2648 if (!blk_queue_nonrot(q)) 2649 fs_devices->rotating = 1; 2650 2651 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2652 btrfs_set_super_total_bytes(fs_info->super_copy, 2653 round_down(orig_super_total_bytes + device->total_bytes, 2654 fs_info->sectorsize)); 2655 2656 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2657 btrfs_set_super_num_devices(fs_info->super_copy, 2658 orig_super_num_devices + 1); 2659 2660 /* add sysfs device entry */ 2661 btrfs_sysfs_add_device_link(fs_devices, device); 2662 2663 /* 2664 * we've got more storage, clear any full flags on the space 2665 * infos 2666 */ 2667 btrfs_clear_space_info_full(fs_info); 2668 2669 mutex_unlock(&fs_info->chunk_mutex); 2670 mutex_unlock(&fs_devices->device_list_mutex); 2671 2672 if (seeding_dev) { 2673 mutex_lock(&fs_info->chunk_mutex); 2674 ret = init_first_rw_device(trans); 2675 mutex_unlock(&fs_info->chunk_mutex); 2676 if (ret) { 2677 btrfs_abort_transaction(trans, ret); 2678 goto error_sysfs; 2679 } 2680 } 2681 2682 ret = btrfs_add_dev_item(trans, device); 2683 if (ret) { 2684 btrfs_abort_transaction(trans, ret); 2685 goto error_sysfs; 2686 } 2687 2688 if (seeding_dev) { 2689 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2690 2691 ret = btrfs_finish_sprout(trans); 2692 if (ret) { 2693 btrfs_abort_transaction(trans, ret); 2694 goto error_sysfs; 2695 } 2696 2697 /* Sprouting would change fsid of the mounted root, 2698 * so rename the fsid on the sysfs 2699 */ 2700 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2701 fs_info->fs_devices->fsid); 2702 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf)) 2703 btrfs_warn(fs_info, 2704 "sysfs: failed to create fsid for sprout"); 2705 } 2706 2707 ret = btrfs_commit_transaction(trans); 2708 2709 if (seeding_dev) { 2710 mutex_unlock(&uuid_mutex); 2711 up_write(&sb->s_umount); 2712 unlocked = true; 2713 2714 if (ret) /* transaction commit */ 2715 return ret; 2716 2717 ret = btrfs_relocate_sys_chunks(fs_info); 2718 if (ret < 0) 2719 btrfs_handle_fs_error(fs_info, ret, 2720 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2721 trans = btrfs_attach_transaction(root); 2722 if (IS_ERR(trans)) { 2723 if (PTR_ERR(trans) == -ENOENT) 2724 return 0; 2725 ret = PTR_ERR(trans); 2726 trans = NULL; 2727 goto error_sysfs; 2728 } 2729 ret = btrfs_commit_transaction(trans); 2730 } 2731 2732 /* Update ctime/mtime for libblkid */ 2733 update_dev_time(device_path); 2734 return ret; 2735 2736 error_sysfs: 2737 btrfs_sysfs_rm_device_link(fs_devices, device); 2738 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2739 mutex_lock(&fs_info->chunk_mutex); 2740 list_del_rcu(&device->dev_list); 2741 list_del(&device->dev_alloc_list); 2742 fs_info->fs_devices->num_devices--; 2743 fs_info->fs_devices->open_devices--; 2744 fs_info->fs_devices->rw_devices--; 2745 fs_info->fs_devices->total_devices--; 2746 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2747 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2748 btrfs_set_super_total_bytes(fs_info->super_copy, 2749 orig_super_total_bytes); 2750 btrfs_set_super_num_devices(fs_info->super_copy, 2751 orig_super_num_devices); 2752 mutex_unlock(&fs_info->chunk_mutex); 2753 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2754 error_trans: 2755 if (seeding_dev) 2756 sb->s_flags |= SB_RDONLY; 2757 if (trans) 2758 btrfs_end_transaction(trans); 2759 error_free_device: 2760 btrfs_free_device(device); 2761 error: 2762 blkdev_put(bdev, FMODE_EXCL); 2763 if (seeding_dev && !unlocked) { 2764 mutex_unlock(&uuid_mutex); 2765 up_write(&sb->s_umount); 2766 } 2767 return ret; 2768 } 2769 2770 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2771 struct btrfs_device *device) 2772 { 2773 int ret; 2774 struct btrfs_path *path; 2775 struct btrfs_root *root = device->fs_info->chunk_root; 2776 struct btrfs_dev_item *dev_item; 2777 struct extent_buffer *leaf; 2778 struct btrfs_key key; 2779 2780 path = btrfs_alloc_path(); 2781 if (!path) 2782 return -ENOMEM; 2783 2784 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2785 key.type = BTRFS_DEV_ITEM_KEY; 2786 key.offset = device->devid; 2787 2788 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2789 if (ret < 0) 2790 goto out; 2791 2792 if (ret > 0) { 2793 ret = -ENOENT; 2794 goto out; 2795 } 2796 2797 leaf = path->nodes[0]; 2798 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2799 2800 btrfs_set_device_id(leaf, dev_item, device->devid); 2801 btrfs_set_device_type(leaf, dev_item, device->type); 2802 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2803 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2804 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2805 btrfs_set_device_total_bytes(leaf, dev_item, 2806 btrfs_device_get_disk_total_bytes(device)); 2807 btrfs_set_device_bytes_used(leaf, dev_item, 2808 btrfs_device_get_bytes_used(device)); 2809 btrfs_mark_buffer_dirty(leaf); 2810 2811 out: 2812 btrfs_free_path(path); 2813 return ret; 2814 } 2815 2816 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2817 struct btrfs_device *device, u64 new_size) 2818 { 2819 struct btrfs_fs_info *fs_info = device->fs_info; 2820 struct btrfs_super_block *super_copy = fs_info->super_copy; 2821 u64 old_total; 2822 u64 diff; 2823 2824 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2825 return -EACCES; 2826 2827 new_size = round_down(new_size, fs_info->sectorsize); 2828 2829 mutex_lock(&fs_info->chunk_mutex); 2830 old_total = btrfs_super_total_bytes(super_copy); 2831 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2832 2833 if (new_size <= device->total_bytes || 2834 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2835 mutex_unlock(&fs_info->chunk_mutex); 2836 return -EINVAL; 2837 } 2838 2839 btrfs_set_super_total_bytes(super_copy, 2840 round_down(old_total + diff, fs_info->sectorsize)); 2841 device->fs_devices->total_rw_bytes += diff; 2842 2843 btrfs_device_set_total_bytes(device, new_size); 2844 btrfs_device_set_disk_total_bytes(device, new_size); 2845 btrfs_clear_space_info_full(device->fs_info); 2846 if (list_empty(&device->post_commit_list)) 2847 list_add_tail(&device->post_commit_list, 2848 &trans->transaction->dev_update_list); 2849 mutex_unlock(&fs_info->chunk_mutex); 2850 2851 return btrfs_update_device(trans, device); 2852 } 2853 2854 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2855 { 2856 struct btrfs_fs_info *fs_info = trans->fs_info; 2857 struct btrfs_root *root = fs_info->chunk_root; 2858 int ret; 2859 struct btrfs_path *path; 2860 struct btrfs_key key; 2861 2862 path = btrfs_alloc_path(); 2863 if (!path) 2864 return -ENOMEM; 2865 2866 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2867 key.offset = chunk_offset; 2868 key.type = BTRFS_CHUNK_ITEM_KEY; 2869 2870 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2871 if (ret < 0) 2872 goto out; 2873 else if (ret > 0) { /* Logic error or corruption */ 2874 btrfs_handle_fs_error(fs_info, -ENOENT, 2875 "Failed lookup while freeing chunk."); 2876 ret = -ENOENT; 2877 goto out; 2878 } 2879 2880 ret = btrfs_del_item(trans, root, path); 2881 if (ret < 0) 2882 btrfs_handle_fs_error(fs_info, ret, 2883 "Failed to delete chunk item."); 2884 out: 2885 btrfs_free_path(path); 2886 return ret; 2887 } 2888 2889 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2890 { 2891 struct btrfs_super_block *super_copy = fs_info->super_copy; 2892 struct btrfs_disk_key *disk_key; 2893 struct btrfs_chunk *chunk; 2894 u8 *ptr; 2895 int ret = 0; 2896 u32 num_stripes; 2897 u32 array_size; 2898 u32 len = 0; 2899 u32 cur; 2900 struct btrfs_key key; 2901 2902 mutex_lock(&fs_info->chunk_mutex); 2903 array_size = btrfs_super_sys_array_size(super_copy); 2904 2905 ptr = super_copy->sys_chunk_array; 2906 cur = 0; 2907 2908 while (cur < array_size) { 2909 disk_key = (struct btrfs_disk_key *)ptr; 2910 btrfs_disk_key_to_cpu(&key, disk_key); 2911 2912 len = sizeof(*disk_key); 2913 2914 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2915 chunk = (struct btrfs_chunk *)(ptr + len); 2916 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2917 len += btrfs_chunk_item_size(num_stripes); 2918 } else { 2919 ret = -EIO; 2920 break; 2921 } 2922 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2923 key.offset == chunk_offset) { 2924 memmove(ptr, ptr + len, array_size - (cur + len)); 2925 array_size -= len; 2926 btrfs_set_super_sys_array_size(super_copy, array_size); 2927 } else { 2928 ptr += len; 2929 cur += len; 2930 } 2931 } 2932 mutex_unlock(&fs_info->chunk_mutex); 2933 return ret; 2934 } 2935 2936 /* 2937 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2938 * @logical: Logical block offset in bytes. 2939 * @length: Length of extent in bytes. 2940 * 2941 * Return: Chunk mapping or ERR_PTR. 2942 */ 2943 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2944 u64 logical, u64 length) 2945 { 2946 struct extent_map_tree *em_tree; 2947 struct extent_map *em; 2948 2949 em_tree = &fs_info->mapping_tree; 2950 read_lock(&em_tree->lock); 2951 em = lookup_extent_mapping(em_tree, logical, length); 2952 read_unlock(&em_tree->lock); 2953 2954 if (!em) { 2955 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2956 logical, length); 2957 return ERR_PTR(-EINVAL); 2958 } 2959 2960 if (em->start > logical || em->start + em->len < logical) { 2961 btrfs_crit(fs_info, 2962 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 2963 logical, length, em->start, em->start + em->len); 2964 free_extent_map(em); 2965 return ERR_PTR(-EINVAL); 2966 } 2967 2968 /* callers are responsible for dropping em's ref. */ 2969 return em; 2970 } 2971 2972 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2973 { 2974 struct btrfs_fs_info *fs_info = trans->fs_info; 2975 struct extent_map *em; 2976 struct map_lookup *map; 2977 u64 dev_extent_len = 0; 2978 int i, ret = 0; 2979 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2980 2981 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 2982 if (IS_ERR(em)) { 2983 /* 2984 * This is a logic error, but we don't want to just rely on the 2985 * user having built with ASSERT enabled, so if ASSERT doesn't 2986 * do anything we still error out. 2987 */ 2988 ASSERT(0); 2989 return PTR_ERR(em); 2990 } 2991 map = em->map_lookup; 2992 mutex_lock(&fs_info->chunk_mutex); 2993 check_system_chunk(trans, map->type); 2994 mutex_unlock(&fs_info->chunk_mutex); 2995 2996 /* 2997 * Take the device list mutex to prevent races with the final phase of 2998 * a device replace operation that replaces the device object associated 2999 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 3000 */ 3001 mutex_lock(&fs_devices->device_list_mutex); 3002 for (i = 0; i < map->num_stripes; i++) { 3003 struct btrfs_device *device = map->stripes[i].dev; 3004 ret = btrfs_free_dev_extent(trans, device, 3005 map->stripes[i].physical, 3006 &dev_extent_len); 3007 if (ret) { 3008 mutex_unlock(&fs_devices->device_list_mutex); 3009 btrfs_abort_transaction(trans, ret); 3010 goto out; 3011 } 3012 3013 if (device->bytes_used > 0) { 3014 mutex_lock(&fs_info->chunk_mutex); 3015 btrfs_device_set_bytes_used(device, 3016 device->bytes_used - dev_extent_len); 3017 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3018 btrfs_clear_space_info_full(fs_info); 3019 mutex_unlock(&fs_info->chunk_mutex); 3020 } 3021 3022 ret = btrfs_update_device(trans, device); 3023 if (ret) { 3024 mutex_unlock(&fs_devices->device_list_mutex); 3025 btrfs_abort_transaction(trans, ret); 3026 goto out; 3027 } 3028 } 3029 mutex_unlock(&fs_devices->device_list_mutex); 3030 3031 ret = btrfs_free_chunk(trans, chunk_offset); 3032 if (ret) { 3033 btrfs_abort_transaction(trans, ret); 3034 goto out; 3035 } 3036 3037 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3038 3039 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3040 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3041 if (ret) { 3042 btrfs_abort_transaction(trans, ret); 3043 goto out; 3044 } 3045 } 3046 3047 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3048 if (ret) { 3049 btrfs_abort_transaction(trans, ret); 3050 goto out; 3051 } 3052 3053 out: 3054 /* once for us */ 3055 free_extent_map(em); 3056 return ret; 3057 } 3058 3059 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3060 { 3061 struct btrfs_root *root = fs_info->chunk_root; 3062 struct btrfs_trans_handle *trans; 3063 int ret; 3064 3065 /* 3066 * Prevent races with automatic removal of unused block groups. 3067 * After we relocate and before we remove the chunk with offset 3068 * chunk_offset, automatic removal of the block group can kick in, 3069 * resulting in a failure when calling btrfs_remove_chunk() below. 3070 * 3071 * Make sure to acquire this mutex before doing a tree search (dev 3072 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3073 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3074 * we release the path used to search the chunk/dev tree and before 3075 * the current task acquires this mutex and calls us. 3076 */ 3077 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); 3078 3079 ret = btrfs_can_relocate(fs_info, chunk_offset); 3080 if (ret) 3081 return -ENOSPC; 3082 3083 /* step one, relocate all the extents inside this chunk */ 3084 btrfs_scrub_pause(fs_info); 3085 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3086 btrfs_scrub_continue(fs_info); 3087 if (ret) 3088 return ret; 3089 3090 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3091 chunk_offset); 3092 if (IS_ERR(trans)) { 3093 ret = PTR_ERR(trans); 3094 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3095 return ret; 3096 } 3097 3098 /* 3099 * step two, delete the device extents and the 3100 * chunk tree entries 3101 */ 3102 ret = btrfs_remove_chunk(trans, chunk_offset); 3103 btrfs_end_transaction(trans); 3104 return ret; 3105 } 3106 3107 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3108 { 3109 struct btrfs_root *chunk_root = fs_info->chunk_root; 3110 struct btrfs_path *path; 3111 struct extent_buffer *leaf; 3112 struct btrfs_chunk *chunk; 3113 struct btrfs_key key; 3114 struct btrfs_key found_key; 3115 u64 chunk_type; 3116 bool retried = false; 3117 int failed = 0; 3118 int ret; 3119 3120 path = btrfs_alloc_path(); 3121 if (!path) 3122 return -ENOMEM; 3123 3124 again: 3125 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3126 key.offset = (u64)-1; 3127 key.type = BTRFS_CHUNK_ITEM_KEY; 3128 3129 while (1) { 3130 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3131 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3132 if (ret < 0) { 3133 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3134 goto error; 3135 } 3136 BUG_ON(ret == 0); /* Corruption */ 3137 3138 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3139 key.type); 3140 if (ret) 3141 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3142 if (ret < 0) 3143 goto error; 3144 if (ret > 0) 3145 break; 3146 3147 leaf = path->nodes[0]; 3148 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3149 3150 chunk = btrfs_item_ptr(leaf, path->slots[0], 3151 struct btrfs_chunk); 3152 chunk_type = btrfs_chunk_type(leaf, chunk); 3153 btrfs_release_path(path); 3154 3155 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3156 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3157 if (ret == -ENOSPC) 3158 failed++; 3159 else 3160 BUG_ON(ret); 3161 } 3162 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3163 3164 if (found_key.offset == 0) 3165 break; 3166 key.offset = found_key.offset - 1; 3167 } 3168 ret = 0; 3169 if (failed && !retried) { 3170 failed = 0; 3171 retried = true; 3172 goto again; 3173 } else if (WARN_ON(failed && retried)) { 3174 ret = -ENOSPC; 3175 } 3176 error: 3177 btrfs_free_path(path); 3178 return ret; 3179 } 3180 3181 /* 3182 * return 1 : allocate a data chunk successfully, 3183 * return <0: errors during allocating a data chunk, 3184 * return 0 : no need to allocate a data chunk. 3185 */ 3186 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3187 u64 chunk_offset) 3188 { 3189 struct btrfs_block_group_cache *cache; 3190 u64 bytes_used; 3191 u64 chunk_type; 3192 3193 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3194 ASSERT(cache); 3195 chunk_type = cache->flags; 3196 btrfs_put_block_group(cache); 3197 3198 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) { 3199 spin_lock(&fs_info->data_sinfo->lock); 3200 bytes_used = fs_info->data_sinfo->bytes_used; 3201 spin_unlock(&fs_info->data_sinfo->lock); 3202 3203 if (!bytes_used) { 3204 struct btrfs_trans_handle *trans; 3205 int ret; 3206 3207 trans = btrfs_join_transaction(fs_info->tree_root); 3208 if (IS_ERR(trans)) 3209 return PTR_ERR(trans); 3210 3211 ret = btrfs_force_chunk_alloc(trans, 3212 BTRFS_BLOCK_GROUP_DATA); 3213 btrfs_end_transaction(trans); 3214 if (ret < 0) 3215 return ret; 3216 return 1; 3217 } 3218 } 3219 return 0; 3220 } 3221 3222 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3223 struct btrfs_balance_control *bctl) 3224 { 3225 struct btrfs_root *root = fs_info->tree_root; 3226 struct btrfs_trans_handle *trans; 3227 struct btrfs_balance_item *item; 3228 struct btrfs_disk_balance_args disk_bargs; 3229 struct btrfs_path *path; 3230 struct extent_buffer *leaf; 3231 struct btrfs_key key; 3232 int ret, err; 3233 3234 path = btrfs_alloc_path(); 3235 if (!path) 3236 return -ENOMEM; 3237 3238 trans = btrfs_start_transaction(root, 0); 3239 if (IS_ERR(trans)) { 3240 btrfs_free_path(path); 3241 return PTR_ERR(trans); 3242 } 3243 3244 key.objectid = BTRFS_BALANCE_OBJECTID; 3245 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3246 key.offset = 0; 3247 3248 ret = btrfs_insert_empty_item(trans, root, path, &key, 3249 sizeof(*item)); 3250 if (ret) 3251 goto out; 3252 3253 leaf = path->nodes[0]; 3254 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3255 3256 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3257 3258 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3259 btrfs_set_balance_data(leaf, item, &disk_bargs); 3260 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3261 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3262 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3263 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3264 3265 btrfs_set_balance_flags(leaf, item, bctl->flags); 3266 3267 btrfs_mark_buffer_dirty(leaf); 3268 out: 3269 btrfs_free_path(path); 3270 err = btrfs_commit_transaction(trans); 3271 if (err && !ret) 3272 ret = err; 3273 return ret; 3274 } 3275 3276 static int del_balance_item(struct btrfs_fs_info *fs_info) 3277 { 3278 struct btrfs_root *root = fs_info->tree_root; 3279 struct btrfs_trans_handle *trans; 3280 struct btrfs_path *path; 3281 struct btrfs_key key; 3282 int ret, err; 3283 3284 path = btrfs_alloc_path(); 3285 if (!path) 3286 return -ENOMEM; 3287 3288 trans = btrfs_start_transaction(root, 0); 3289 if (IS_ERR(trans)) { 3290 btrfs_free_path(path); 3291 return PTR_ERR(trans); 3292 } 3293 3294 key.objectid = BTRFS_BALANCE_OBJECTID; 3295 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3296 key.offset = 0; 3297 3298 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3299 if (ret < 0) 3300 goto out; 3301 if (ret > 0) { 3302 ret = -ENOENT; 3303 goto out; 3304 } 3305 3306 ret = btrfs_del_item(trans, root, path); 3307 out: 3308 btrfs_free_path(path); 3309 err = btrfs_commit_transaction(trans); 3310 if (err && !ret) 3311 ret = err; 3312 return ret; 3313 } 3314 3315 /* 3316 * This is a heuristic used to reduce the number of chunks balanced on 3317 * resume after balance was interrupted. 3318 */ 3319 static void update_balance_args(struct btrfs_balance_control *bctl) 3320 { 3321 /* 3322 * Turn on soft mode for chunk types that were being converted. 3323 */ 3324 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3325 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3326 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3327 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3328 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3329 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3330 3331 /* 3332 * Turn on usage filter if is not already used. The idea is 3333 * that chunks that we have already balanced should be 3334 * reasonably full. Don't do it for chunks that are being 3335 * converted - that will keep us from relocating unconverted 3336 * (albeit full) chunks. 3337 */ 3338 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3339 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3340 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3341 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3342 bctl->data.usage = 90; 3343 } 3344 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3345 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3346 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3347 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3348 bctl->sys.usage = 90; 3349 } 3350 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3351 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3352 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3353 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3354 bctl->meta.usage = 90; 3355 } 3356 } 3357 3358 /* 3359 * Clear the balance status in fs_info and delete the balance item from disk. 3360 */ 3361 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3362 { 3363 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3364 int ret; 3365 3366 BUG_ON(!fs_info->balance_ctl); 3367 3368 spin_lock(&fs_info->balance_lock); 3369 fs_info->balance_ctl = NULL; 3370 spin_unlock(&fs_info->balance_lock); 3371 3372 kfree(bctl); 3373 ret = del_balance_item(fs_info); 3374 if (ret) 3375 btrfs_handle_fs_error(fs_info, ret, NULL); 3376 } 3377 3378 /* 3379 * Balance filters. Return 1 if chunk should be filtered out 3380 * (should not be balanced). 3381 */ 3382 static int chunk_profiles_filter(u64 chunk_type, 3383 struct btrfs_balance_args *bargs) 3384 { 3385 chunk_type = chunk_to_extended(chunk_type) & 3386 BTRFS_EXTENDED_PROFILE_MASK; 3387 3388 if (bargs->profiles & chunk_type) 3389 return 0; 3390 3391 return 1; 3392 } 3393 3394 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3395 struct btrfs_balance_args *bargs) 3396 { 3397 struct btrfs_block_group_cache *cache; 3398 u64 chunk_used; 3399 u64 user_thresh_min; 3400 u64 user_thresh_max; 3401 int ret = 1; 3402 3403 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3404 chunk_used = btrfs_block_group_used(&cache->item); 3405 3406 if (bargs->usage_min == 0) 3407 user_thresh_min = 0; 3408 else 3409 user_thresh_min = div_factor_fine(cache->key.offset, 3410 bargs->usage_min); 3411 3412 if (bargs->usage_max == 0) 3413 user_thresh_max = 1; 3414 else if (bargs->usage_max > 100) 3415 user_thresh_max = cache->key.offset; 3416 else 3417 user_thresh_max = div_factor_fine(cache->key.offset, 3418 bargs->usage_max); 3419 3420 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3421 ret = 0; 3422 3423 btrfs_put_block_group(cache); 3424 return ret; 3425 } 3426 3427 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3428 u64 chunk_offset, struct btrfs_balance_args *bargs) 3429 { 3430 struct btrfs_block_group_cache *cache; 3431 u64 chunk_used, user_thresh; 3432 int ret = 1; 3433 3434 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3435 chunk_used = btrfs_block_group_used(&cache->item); 3436 3437 if (bargs->usage_min == 0) 3438 user_thresh = 1; 3439 else if (bargs->usage > 100) 3440 user_thresh = cache->key.offset; 3441 else 3442 user_thresh = div_factor_fine(cache->key.offset, 3443 bargs->usage); 3444 3445 if (chunk_used < user_thresh) 3446 ret = 0; 3447 3448 btrfs_put_block_group(cache); 3449 return ret; 3450 } 3451 3452 static int chunk_devid_filter(struct extent_buffer *leaf, 3453 struct btrfs_chunk *chunk, 3454 struct btrfs_balance_args *bargs) 3455 { 3456 struct btrfs_stripe *stripe; 3457 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3458 int i; 3459 3460 for (i = 0; i < num_stripes; i++) { 3461 stripe = btrfs_stripe_nr(chunk, i); 3462 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3463 return 0; 3464 } 3465 3466 return 1; 3467 } 3468 3469 static u64 calc_data_stripes(u64 type, int num_stripes) 3470 { 3471 const int index = btrfs_bg_flags_to_raid_index(type); 3472 const int ncopies = btrfs_raid_array[index].ncopies; 3473 const int nparity = btrfs_raid_array[index].nparity; 3474 3475 if (nparity) 3476 return num_stripes - nparity; 3477 else 3478 return num_stripes / ncopies; 3479 } 3480 3481 /* [pstart, pend) */ 3482 static int chunk_drange_filter(struct extent_buffer *leaf, 3483 struct btrfs_chunk *chunk, 3484 struct btrfs_balance_args *bargs) 3485 { 3486 struct btrfs_stripe *stripe; 3487 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3488 u64 stripe_offset; 3489 u64 stripe_length; 3490 u64 type; 3491 int factor; 3492 int i; 3493 3494 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3495 return 0; 3496 3497 type = btrfs_chunk_type(leaf, chunk); 3498 factor = calc_data_stripes(type, num_stripes); 3499 3500 for (i = 0; i < num_stripes; i++) { 3501 stripe = btrfs_stripe_nr(chunk, i); 3502 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3503 continue; 3504 3505 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3506 stripe_length = btrfs_chunk_length(leaf, chunk); 3507 stripe_length = div_u64(stripe_length, factor); 3508 3509 if (stripe_offset < bargs->pend && 3510 stripe_offset + stripe_length > bargs->pstart) 3511 return 0; 3512 } 3513 3514 return 1; 3515 } 3516 3517 /* [vstart, vend) */ 3518 static int chunk_vrange_filter(struct extent_buffer *leaf, 3519 struct btrfs_chunk *chunk, 3520 u64 chunk_offset, 3521 struct btrfs_balance_args *bargs) 3522 { 3523 if (chunk_offset < bargs->vend && 3524 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3525 /* at least part of the chunk is inside this vrange */ 3526 return 0; 3527 3528 return 1; 3529 } 3530 3531 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3532 struct btrfs_chunk *chunk, 3533 struct btrfs_balance_args *bargs) 3534 { 3535 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3536 3537 if (bargs->stripes_min <= num_stripes 3538 && num_stripes <= bargs->stripes_max) 3539 return 0; 3540 3541 return 1; 3542 } 3543 3544 static int chunk_soft_convert_filter(u64 chunk_type, 3545 struct btrfs_balance_args *bargs) 3546 { 3547 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3548 return 0; 3549 3550 chunk_type = chunk_to_extended(chunk_type) & 3551 BTRFS_EXTENDED_PROFILE_MASK; 3552 3553 if (bargs->target == chunk_type) 3554 return 1; 3555 3556 return 0; 3557 } 3558 3559 static int should_balance_chunk(struct extent_buffer *leaf, 3560 struct btrfs_chunk *chunk, u64 chunk_offset) 3561 { 3562 struct btrfs_fs_info *fs_info = leaf->fs_info; 3563 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3564 struct btrfs_balance_args *bargs = NULL; 3565 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3566 3567 /* type filter */ 3568 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3569 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3570 return 0; 3571 } 3572 3573 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3574 bargs = &bctl->data; 3575 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3576 bargs = &bctl->sys; 3577 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3578 bargs = &bctl->meta; 3579 3580 /* profiles filter */ 3581 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3582 chunk_profiles_filter(chunk_type, bargs)) { 3583 return 0; 3584 } 3585 3586 /* usage filter */ 3587 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3588 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3589 return 0; 3590 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3591 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3592 return 0; 3593 } 3594 3595 /* devid filter */ 3596 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3597 chunk_devid_filter(leaf, chunk, bargs)) { 3598 return 0; 3599 } 3600 3601 /* drange filter, makes sense only with devid filter */ 3602 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3603 chunk_drange_filter(leaf, chunk, bargs)) { 3604 return 0; 3605 } 3606 3607 /* vrange filter */ 3608 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3609 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3610 return 0; 3611 } 3612 3613 /* stripes filter */ 3614 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3615 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3616 return 0; 3617 } 3618 3619 /* soft profile changing mode */ 3620 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3621 chunk_soft_convert_filter(chunk_type, bargs)) { 3622 return 0; 3623 } 3624 3625 /* 3626 * limited by count, must be the last filter 3627 */ 3628 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3629 if (bargs->limit == 0) 3630 return 0; 3631 else 3632 bargs->limit--; 3633 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3634 /* 3635 * Same logic as the 'limit' filter; the minimum cannot be 3636 * determined here because we do not have the global information 3637 * about the count of all chunks that satisfy the filters. 3638 */ 3639 if (bargs->limit_max == 0) 3640 return 0; 3641 else 3642 bargs->limit_max--; 3643 } 3644 3645 return 1; 3646 } 3647 3648 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3649 { 3650 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3651 struct btrfs_root *chunk_root = fs_info->chunk_root; 3652 u64 chunk_type; 3653 struct btrfs_chunk *chunk; 3654 struct btrfs_path *path = NULL; 3655 struct btrfs_key key; 3656 struct btrfs_key found_key; 3657 struct extent_buffer *leaf; 3658 int slot; 3659 int ret; 3660 int enospc_errors = 0; 3661 bool counting = true; 3662 /* The single value limit and min/max limits use the same bytes in the */ 3663 u64 limit_data = bctl->data.limit; 3664 u64 limit_meta = bctl->meta.limit; 3665 u64 limit_sys = bctl->sys.limit; 3666 u32 count_data = 0; 3667 u32 count_meta = 0; 3668 u32 count_sys = 0; 3669 int chunk_reserved = 0; 3670 3671 path = btrfs_alloc_path(); 3672 if (!path) { 3673 ret = -ENOMEM; 3674 goto error; 3675 } 3676 3677 /* zero out stat counters */ 3678 spin_lock(&fs_info->balance_lock); 3679 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3680 spin_unlock(&fs_info->balance_lock); 3681 again: 3682 if (!counting) { 3683 /* 3684 * The single value limit and min/max limits use the same bytes 3685 * in the 3686 */ 3687 bctl->data.limit = limit_data; 3688 bctl->meta.limit = limit_meta; 3689 bctl->sys.limit = limit_sys; 3690 } 3691 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3692 key.offset = (u64)-1; 3693 key.type = BTRFS_CHUNK_ITEM_KEY; 3694 3695 while (1) { 3696 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3697 atomic_read(&fs_info->balance_cancel_req)) { 3698 ret = -ECANCELED; 3699 goto error; 3700 } 3701 3702 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3703 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3704 if (ret < 0) { 3705 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3706 goto error; 3707 } 3708 3709 /* 3710 * this shouldn't happen, it means the last relocate 3711 * failed 3712 */ 3713 if (ret == 0) 3714 BUG(); /* FIXME break ? */ 3715 3716 ret = btrfs_previous_item(chunk_root, path, 0, 3717 BTRFS_CHUNK_ITEM_KEY); 3718 if (ret) { 3719 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3720 ret = 0; 3721 break; 3722 } 3723 3724 leaf = path->nodes[0]; 3725 slot = path->slots[0]; 3726 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3727 3728 if (found_key.objectid != key.objectid) { 3729 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3730 break; 3731 } 3732 3733 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3734 chunk_type = btrfs_chunk_type(leaf, chunk); 3735 3736 if (!counting) { 3737 spin_lock(&fs_info->balance_lock); 3738 bctl->stat.considered++; 3739 spin_unlock(&fs_info->balance_lock); 3740 } 3741 3742 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3743 3744 btrfs_release_path(path); 3745 if (!ret) { 3746 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3747 goto loop; 3748 } 3749 3750 if (counting) { 3751 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3752 spin_lock(&fs_info->balance_lock); 3753 bctl->stat.expected++; 3754 spin_unlock(&fs_info->balance_lock); 3755 3756 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3757 count_data++; 3758 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3759 count_sys++; 3760 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3761 count_meta++; 3762 3763 goto loop; 3764 } 3765 3766 /* 3767 * Apply limit_min filter, no need to check if the LIMITS 3768 * filter is used, limit_min is 0 by default 3769 */ 3770 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3771 count_data < bctl->data.limit_min) 3772 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3773 count_meta < bctl->meta.limit_min) 3774 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3775 count_sys < bctl->sys.limit_min)) { 3776 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3777 goto loop; 3778 } 3779 3780 if (!chunk_reserved) { 3781 /* 3782 * We may be relocating the only data chunk we have, 3783 * which could potentially end up with losing data's 3784 * raid profile, so lets allocate an empty one in 3785 * advance. 3786 */ 3787 ret = btrfs_may_alloc_data_chunk(fs_info, 3788 found_key.offset); 3789 if (ret < 0) { 3790 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3791 goto error; 3792 } else if (ret == 1) { 3793 chunk_reserved = 1; 3794 } 3795 } 3796 3797 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3798 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3799 if (ret == -ENOSPC) { 3800 enospc_errors++; 3801 } else if (ret == -ETXTBSY) { 3802 btrfs_info(fs_info, 3803 "skipping relocation of block group %llu due to active swapfile", 3804 found_key.offset); 3805 ret = 0; 3806 } else if (ret) { 3807 goto error; 3808 } else { 3809 spin_lock(&fs_info->balance_lock); 3810 bctl->stat.completed++; 3811 spin_unlock(&fs_info->balance_lock); 3812 } 3813 loop: 3814 if (found_key.offset == 0) 3815 break; 3816 key.offset = found_key.offset - 1; 3817 } 3818 3819 if (counting) { 3820 btrfs_release_path(path); 3821 counting = false; 3822 goto again; 3823 } 3824 error: 3825 btrfs_free_path(path); 3826 if (enospc_errors) { 3827 btrfs_info(fs_info, "%d enospc errors during balance", 3828 enospc_errors); 3829 if (!ret) 3830 ret = -ENOSPC; 3831 } 3832 3833 return ret; 3834 } 3835 3836 /** 3837 * alloc_profile_is_valid - see if a given profile is valid and reduced 3838 * @flags: profile to validate 3839 * @extended: if true @flags is treated as an extended profile 3840 */ 3841 static int alloc_profile_is_valid(u64 flags, int extended) 3842 { 3843 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3844 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3845 3846 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3847 3848 /* 1) check that all other bits are zeroed */ 3849 if (flags & ~mask) 3850 return 0; 3851 3852 /* 2) see if profile is reduced */ 3853 if (flags == 0) 3854 return !extended; /* "0" is valid for usual profiles */ 3855 3856 /* true if exactly one bit set */ 3857 return is_power_of_2(flags); 3858 } 3859 3860 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3861 { 3862 /* cancel requested || normal exit path */ 3863 return atomic_read(&fs_info->balance_cancel_req) || 3864 (atomic_read(&fs_info->balance_pause_req) == 0 && 3865 atomic_read(&fs_info->balance_cancel_req) == 0); 3866 } 3867 3868 /* Non-zero return value signifies invalidity */ 3869 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3870 u64 allowed) 3871 { 3872 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3873 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3874 (bctl_arg->target & ~allowed))); 3875 } 3876 3877 /* 3878 * Fill @buf with textual description of balance filter flags @bargs, up to 3879 * @size_buf including the terminating null. The output may be trimmed if it 3880 * does not fit into the provided buffer. 3881 */ 3882 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 3883 u32 size_buf) 3884 { 3885 int ret; 3886 u32 size_bp = size_buf; 3887 char *bp = buf; 3888 u64 flags = bargs->flags; 3889 char tmp_buf[128] = {'\0'}; 3890 3891 if (!flags) 3892 return; 3893 3894 #define CHECK_APPEND_NOARG(a) \ 3895 do { \ 3896 ret = snprintf(bp, size_bp, (a)); \ 3897 if (ret < 0 || ret >= size_bp) \ 3898 goto out_overflow; \ 3899 size_bp -= ret; \ 3900 bp += ret; \ 3901 } while (0) 3902 3903 #define CHECK_APPEND_1ARG(a, v1) \ 3904 do { \ 3905 ret = snprintf(bp, size_bp, (a), (v1)); \ 3906 if (ret < 0 || ret >= size_bp) \ 3907 goto out_overflow; \ 3908 size_bp -= ret; \ 3909 bp += ret; \ 3910 } while (0) 3911 3912 #define CHECK_APPEND_2ARG(a, v1, v2) \ 3913 do { \ 3914 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 3915 if (ret < 0 || ret >= size_bp) \ 3916 goto out_overflow; \ 3917 size_bp -= ret; \ 3918 bp += ret; \ 3919 } while (0) 3920 3921 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 3922 CHECK_APPEND_1ARG("convert=%s,", 3923 btrfs_bg_type_to_raid_name(bargs->target)); 3924 3925 if (flags & BTRFS_BALANCE_ARGS_SOFT) 3926 CHECK_APPEND_NOARG("soft,"); 3927 3928 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 3929 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 3930 sizeof(tmp_buf)); 3931 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 3932 } 3933 3934 if (flags & BTRFS_BALANCE_ARGS_USAGE) 3935 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 3936 3937 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 3938 CHECK_APPEND_2ARG("usage=%u..%u,", 3939 bargs->usage_min, bargs->usage_max); 3940 3941 if (flags & BTRFS_BALANCE_ARGS_DEVID) 3942 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 3943 3944 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 3945 CHECK_APPEND_2ARG("drange=%llu..%llu,", 3946 bargs->pstart, bargs->pend); 3947 3948 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 3949 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 3950 bargs->vstart, bargs->vend); 3951 3952 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 3953 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 3954 3955 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 3956 CHECK_APPEND_2ARG("limit=%u..%u,", 3957 bargs->limit_min, bargs->limit_max); 3958 3959 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 3960 CHECK_APPEND_2ARG("stripes=%u..%u,", 3961 bargs->stripes_min, bargs->stripes_max); 3962 3963 #undef CHECK_APPEND_2ARG 3964 #undef CHECK_APPEND_1ARG 3965 #undef CHECK_APPEND_NOARG 3966 3967 out_overflow: 3968 3969 if (size_bp < size_buf) 3970 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 3971 else 3972 buf[0] = '\0'; 3973 } 3974 3975 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 3976 { 3977 u32 size_buf = 1024; 3978 char tmp_buf[192] = {'\0'}; 3979 char *buf; 3980 char *bp; 3981 u32 size_bp = size_buf; 3982 int ret; 3983 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3984 3985 buf = kzalloc(size_buf, GFP_KERNEL); 3986 if (!buf) 3987 return; 3988 3989 bp = buf; 3990 3991 #define CHECK_APPEND_1ARG(a, v1) \ 3992 do { \ 3993 ret = snprintf(bp, size_bp, (a), (v1)); \ 3994 if (ret < 0 || ret >= size_bp) \ 3995 goto out_overflow; \ 3996 size_bp -= ret; \ 3997 bp += ret; \ 3998 } while (0) 3999 4000 if (bctl->flags & BTRFS_BALANCE_FORCE) 4001 CHECK_APPEND_1ARG("%s", "-f "); 4002 4003 if (bctl->flags & BTRFS_BALANCE_DATA) { 4004 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4005 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4006 } 4007 4008 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4009 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4010 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4011 } 4012 4013 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4014 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4015 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4016 } 4017 4018 #undef CHECK_APPEND_1ARG 4019 4020 out_overflow: 4021 4022 if (size_bp < size_buf) 4023 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4024 btrfs_info(fs_info, "balance: %s %s", 4025 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4026 "resume" : "start", buf); 4027 4028 kfree(buf); 4029 } 4030 4031 /* 4032 * Should be called with balance mutexe held 4033 */ 4034 int btrfs_balance(struct btrfs_fs_info *fs_info, 4035 struct btrfs_balance_control *bctl, 4036 struct btrfs_ioctl_balance_args *bargs) 4037 { 4038 u64 meta_target, data_target; 4039 u64 allowed; 4040 int mixed = 0; 4041 int ret; 4042 u64 num_devices; 4043 unsigned seq; 4044 bool reducing_integrity; 4045 int i; 4046 4047 if (btrfs_fs_closing(fs_info) || 4048 atomic_read(&fs_info->balance_pause_req) || 4049 atomic_read(&fs_info->balance_cancel_req)) { 4050 ret = -EINVAL; 4051 goto out; 4052 } 4053 4054 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4055 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4056 mixed = 1; 4057 4058 /* 4059 * In case of mixed groups both data and meta should be picked, 4060 * and identical options should be given for both of them. 4061 */ 4062 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4063 if (mixed && (bctl->flags & allowed)) { 4064 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4065 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4066 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4067 btrfs_err(fs_info, 4068 "balance: mixed groups data and metadata options must be the same"); 4069 ret = -EINVAL; 4070 goto out; 4071 } 4072 } 4073 4074 num_devices = btrfs_num_devices(fs_info); 4075 allowed = 0; 4076 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4077 if (num_devices >= btrfs_raid_array[i].devs_min) 4078 allowed |= btrfs_raid_array[i].bg_flag; 4079 4080 if (validate_convert_profile(&bctl->data, allowed)) { 4081 btrfs_err(fs_info, 4082 "balance: invalid convert data profile %s", 4083 btrfs_bg_type_to_raid_name(bctl->data.target)); 4084 ret = -EINVAL; 4085 goto out; 4086 } 4087 if (validate_convert_profile(&bctl->meta, allowed)) { 4088 btrfs_err(fs_info, 4089 "balance: invalid convert metadata profile %s", 4090 btrfs_bg_type_to_raid_name(bctl->meta.target)); 4091 ret = -EINVAL; 4092 goto out; 4093 } 4094 if (validate_convert_profile(&bctl->sys, allowed)) { 4095 btrfs_err(fs_info, 4096 "balance: invalid convert system profile %s", 4097 btrfs_bg_type_to_raid_name(bctl->sys.target)); 4098 ret = -EINVAL; 4099 goto out; 4100 } 4101 4102 /* 4103 * Allow to reduce metadata or system integrity only if force set for 4104 * profiles with redundancy (copies, parity) 4105 */ 4106 allowed = 0; 4107 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4108 if (btrfs_raid_array[i].ncopies >= 2 || 4109 btrfs_raid_array[i].tolerated_failures >= 1) 4110 allowed |= btrfs_raid_array[i].bg_flag; 4111 } 4112 do { 4113 seq = read_seqbegin(&fs_info->profiles_lock); 4114 4115 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4116 (fs_info->avail_system_alloc_bits & allowed) && 4117 !(bctl->sys.target & allowed)) || 4118 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4119 (fs_info->avail_metadata_alloc_bits & allowed) && 4120 !(bctl->meta.target & allowed))) 4121 reducing_integrity = true; 4122 else 4123 reducing_integrity = false; 4124 4125 /* if we're not converting, the target field is uninitialized */ 4126 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4127 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4128 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4129 bctl->data.target : fs_info->avail_data_alloc_bits; 4130 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4131 4132 if (reducing_integrity) { 4133 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4134 btrfs_info(fs_info, 4135 "balance: force reducing metadata integrity"); 4136 } else { 4137 btrfs_err(fs_info, 4138 "balance: reduces metadata integrity, use --force if you want this"); 4139 ret = -EINVAL; 4140 goto out; 4141 } 4142 } 4143 4144 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4145 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4146 btrfs_warn(fs_info, 4147 "balance: metadata profile %s has lower redundancy than data profile %s", 4148 btrfs_bg_type_to_raid_name(meta_target), 4149 btrfs_bg_type_to_raid_name(data_target)); 4150 } 4151 4152 if (fs_info->send_in_progress) { 4153 btrfs_warn_rl(fs_info, 4154 "cannot run balance while send operations are in progress (%d in progress)", 4155 fs_info->send_in_progress); 4156 ret = -EAGAIN; 4157 goto out; 4158 } 4159 4160 ret = insert_balance_item(fs_info, bctl); 4161 if (ret && ret != -EEXIST) 4162 goto out; 4163 4164 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4165 BUG_ON(ret == -EEXIST); 4166 BUG_ON(fs_info->balance_ctl); 4167 spin_lock(&fs_info->balance_lock); 4168 fs_info->balance_ctl = bctl; 4169 spin_unlock(&fs_info->balance_lock); 4170 } else { 4171 BUG_ON(ret != -EEXIST); 4172 spin_lock(&fs_info->balance_lock); 4173 update_balance_args(bctl); 4174 spin_unlock(&fs_info->balance_lock); 4175 } 4176 4177 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4178 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4179 describe_balance_start_or_resume(fs_info); 4180 mutex_unlock(&fs_info->balance_mutex); 4181 4182 ret = __btrfs_balance(fs_info); 4183 4184 mutex_lock(&fs_info->balance_mutex); 4185 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4186 btrfs_info(fs_info, "balance: paused"); 4187 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req)) 4188 btrfs_info(fs_info, "balance: canceled"); 4189 else 4190 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4191 4192 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4193 4194 if (bargs) { 4195 memset(bargs, 0, sizeof(*bargs)); 4196 btrfs_update_ioctl_balance_args(fs_info, bargs); 4197 } 4198 4199 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4200 balance_need_close(fs_info)) { 4201 reset_balance_state(fs_info); 4202 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4203 } 4204 4205 wake_up(&fs_info->balance_wait_q); 4206 4207 return ret; 4208 out: 4209 if (bctl->flags & BTRFS_BALANCE_RESUME) 4210 reset_balance_state(fs_info); 4211 else 4212 kfree(bctl); 4213 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4214 4215 return ret; 4216 } 4217 4218 static int balance_kthread(void *data) 4219 { 4220 struct btrfs_fs_info *fs_info = data; 4221 int ret = 0; 4222 4223 mutex_lock(&fs_info->balance_mutex); 4224 if (fs_info->balance_ctl) 4225 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4226 mutex_unlock(&fs_info->balance_mutex); 4227 4228 return ret; 4229 } 4230 4231 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4232 { 4233 struct task_struct *tsk; 4234 4235 mutex_lock(&fs_info->balance_mutex); 4236 if (!fs_info->balance_ctl) { 4237 mutex_unlock(&fs_info->balance_mutex); 4238 return 0; 4239 } 4240 mutex_unlock(&fs_info->balance_mutex); 4241 4242 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4243 btrfs_info(fs_info, "balance: resume skipped"); 4244 return 0; 4245 } 4246 4247 /* 4248 * A ro->rw remount sequence should continue with the paused balance 4249 * regardless of who pauses it, system or the user as of now, so set 4250 * the resume flag. 4251 */ 4252 spin_lock(&fs_info->balance_lock); 4253 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4254 spin_unlock(&fs_info->balance_lock); 4255 4256 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4257 return PTR_ERR_OR_ZERO(tsk); 4258 } 4259 4260 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4261 { 4262 struct btrfs_balance_control *bctl; 4263 struct btrfs_balance_item *item; 4264 struct btrfs_disk_balance_args disk_bargs; 4265 struct btrfs_path *path; 4266 struct extent_buffer *leaf; 4267 struct btrfs_key key; 4268 int ret; 4269 4270 path = btrfs_alloc_path(); 4271 if (!path) 4272 return -ENOMEM; 4273 4274 key.objectid = BTRFS_BALANCE_OBJECTID; 4275 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4276 key.offset = 0; 4277 4278 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4279 if (ret < 0) 4280 goto out; 4281 if (ret > 0) { /* ret = -ENOENT; */ 4282 ret = 0; 4283 goto out; 4284 } 4285 4286 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4287 if (!bctl) { 4288 ret = -ENOMEM; 4289 goto out; 4290 } 4291 4292 leaf = path->nodes[0]; 4293 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4294 4295 bctl->flags = btrfs_balance_flags(leaf, item); 4296 bctl->flags |= BTRFS_BALANCE_RESUME; 4297 4298 btrfs_balance_data(leaf, item, &disk_bargs); 4299 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4300 btrfs_balance_meta(leaf, item, &disk_bargs); 4301 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4302 btrfs_balance_sys(leaf, item, &disk_bargs); 4303 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4304 4305 /* 4306 * This should never happen, as the paused balance state is recovered 4307 * during mount without any chance of other exclusive ops to collide. 4308 * 4309 * This gives the exclusive op status to balance and keeps in paused 4310 * state until user intervention (cancel or umount). If the ownership 4311 * cannot be assigned, show a message but do not fail. The balance 4312 * is in a paused state and must have fs_info::balance_ctl properly 4313 * set up. 4314 */ 4315 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 4316 btrfs_warn(fs_info, 4317 "balance: cannot set exclusive op status, resume manually"); 4318 4319 mutex_lock(&fs_info->balance_mutex); 4320 BUG_ON(fs_info->balance_ctl); 4321 spin_lock(&fs_info->balance_lock); 4322 fs_info->balance_ctl = bctl; 4323 spin_unlock(&fs_info->balance_lock); 4324 mutex_unlock(&fs_info->balance_mutex); 4325 out: 4326 btrfs_free_path(path); 4327 return ret; 4328 } 4329 4330 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4331 { 4332 int ret = 0; 4333 4334 mutex_lock(&fs_info->balance_mutex); 4335 if (!fs_info->balance_ctl) { 4336 mutex_unlock(&fs_info->balance_mutex); 4337 return -ENOTCONN; 4338 } 4339 4340 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4341 atomic_inc(&fs_info->balance_pause_req); 4342 mutex_unlock(&fs_info->balance_mutex); 4343 4344 wait_event(fs_info->balance_wait_q, 4345 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4346 4347 mutex_lock(&fs_info->balance_mutex); 4348 /* we are good with balance_ctl ripped off from under us */ 4349 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4350 atomic_dec(&fs_info->balance_pause_req); 4351 } else { 4352 ret = -ENOTCONN; 4353 } 4354 4355 mutex_unlock(&fs_info->balance_mutex); 4356 return ret; 4357 } 4358 4359 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4360 { 4361 mutex_lock(&fs_info->balance_mutex); 4362 if (!fs_info->balance_ctl) { 4363 mutex_unlock(&fs_info->balance_mutex); 4364 return -ENOTCONN; 4365 } 4366 4367 /* 4368 * A paused balance with the item stored on disk can be resumed at 4369 * mount time if the mount is read-write. Otherwise it's still paused 4370 * and we must not allow cancelling as it deletes the item. 4371 */ 4372 if (sb_rdonly(fs_info->sb)) { 4373 mutex_unlock(&fs_info->balance_mutex); 4374 return -EROFS; 4375 } 4376 4377 atomic_inc(&fs_info->balance_cancel_req); 4378 /* 4379 * if we are running just wait and return, balance item is 4380 * deleted in btrfs_balance in this case 4381 */ 4382 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4383 mutex_unlock(&fs_info->balance_mutex); 4384 wait_event(fs_info->balance_wait_q, 4385 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4386 mutex_lock(&fs_info->balance_mutex); 4387 } else { 4388 mutex_unlock(&fs_info->balance_mutex); 4389 /* 4390 * Lock released to allow other waiters to continue, we'll 4391 * reexamine the status again. 4392 */ 4393 mutex_lock(&fs_info->balance_mutex); 4394 4395 if (fs_info->balance_ctl) { 4396 reset_balance_state(fs_info); 4397 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4398 btrfs_info(fs_info, "balance: canceled"); 4399 } 4400 } 4401 4402 BUG_ON(fs_info->balance_ctl || 4403 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4404 atomic_dec(&fs_info->balance_cancel_req); 4405 mutex_unlock(&fs_info->balance_mutex); 4406 return 0; 4407 } 4408 4409 static int btrfs_uuid_scan_kthread(void *data) 4410 { 4411 struct btrfs_fs_info *fs_info = data; 4412 struct btrfs_root *root = fs_info->tree_root; 4413 struct btrfs_key key; 4414 struct btrfs_path *path = NULL; 4415 int ret = 0; 4416 struct extent_buffer *eb; 4417 int slot; 4418 struct btrfs_root_item root_item; 4419 u32 item_size; 4420 struct btrfs_trans_handle *trans = NULL; 4421 4422 path = btrfs_alloc_path(); 4423 if (!path) { 4424 ret = -ENOMEM; 4425 goto out; 4426 } 4427 4428 key.objectid = 0; 4429 key.type = BTRFS_ROOT_ITEM_KEY; 4430 key.offset = 0; 4431 4432 while (1) { 4433 ret = btrfs_search_forward(root, &key, path, 4434 BTRFS_OLDEST_GENERATION); 4435 if (ret) { 4436 if (ret > 0) 4437 ret = 0; 4438 break; 4439 } 4440 4441 if (key.type != BTRFS_ROOT_ITEM_KEY || 4442 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4443 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4444 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4445 goto skip; 4446 4447 eb = path->nodes[0]; 4448 slot = path->slots[0]; 4449 item_size = btrfs_item_size_nr(eb, slot); 4450 if (item_size < sizeof(root_item)) 4451 goto skip; 4452 4453 read_extent_buffer(eb, &root_item, 4454 btrfs_item_ptr_offset(eb, slot), 4455 (int)sizeof(root_item)); 4456 if (btrfs_root_refs(&root_item) == 0) 4457 goto skip; 4458 4459 if (!btrfs_is_empty_uuid(root_item.uuid) || 4460 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4461 if (trans) 4462 goto update_tree; 4463 4464 btrfs_release_path(path); 4465 /* 4466 * 1 - subvol uuid item 4467 * 1 - received_subvol uuid item 4468 */ 4469 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4470 if (IS_ERR(trans)) { 4471 ret = PTR_ERR(trans); 4472 break; 4473 } 4474 continue; 4475 } else { 4476 goto skip; 4477 } 4478 update_tree: 4479 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4480 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4481 BTRFS_UUID_KEY_SUBVOL, 4482 key.objectid); 4483 if (ret < 0) { 4484 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4485 ret); 4486 break; 4487 } 4488 } 4489 4490 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4491 ret = btrfs_uuid_tree_add(trans, 4492 root_item.received_uuid, 4493 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4494 key.objectid); 4495 if (ret < 0) { 4496 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4497 ret); 4498 break; 4499 } 4500 } 4501 4502 skip: 4503 if (trans) { 4504 ret = btrfs_end_transaction(trans); 4505 trans = NULL; 4506 if (ret) 4507 break; 4508 } 4509 4510 btrfs_release_path(path); 4511 if (key.offset < (u64)-1) { 4512 key.offset++; 4513 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4514 key.offset = 0; 4515 key.type = BTRFS_ROOT_ITEM_KEY; 4516 } else if (key.objectid < (u64)-1) { 4517 key.offset = 0; 4518 key.type = BTRFS_ROOT_ITEM_KEY; 4519 key.objectid++; 4520 } else { 4521 break; 4522 } 4523 cond_resched(); 4524 } 4525 4526 out: 4527 btrfs_free_path(path); 4528 if (trans && !IS_ERR(trans)) 4529 btrfs_end_transaction(trans); 4530 if (ret) 4531 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4532 else 4533 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4534 up(&fs_info->uuid_tree_rescan_sem); 4535 return 0; 4536 } 4537 4538 /* 4539 * Callback for btrfs_uuid_tree_iterate(). 4540 * returns: 4541 * 0 check succeeded, the entry is not outdated. 4542 * < 0 if an error occurred. 4543 * > 0 if the check failed, which means the caller shall remove the entry. 4544 */ 4545 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4546 u8 *uuid, u8 type, u64 subid) 4547 { 4548 struct btrfs_key key; 4549 int ret = 0; 4550 struct btrfs_root *subvol_root; 4551 4552 if (type != BTRFS_UUID_KEY_SUBVOL && 4553 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4554 goto out; 4555 4556 key.objectid = subid; 4557 key.type = BTRFS_ROOT_ITEM_KEY; 4558 key.offset = (u64)-1; 4559 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4560 if (IS_ERR(subvol_root)) { 4561 ret = PTR_ERR(subvol_root); 4562 if (ret == -ENOENT) 4563 ret = 1; 4564 goto out; 4565 } 4566 4567 switch (type) { 4568 case BTRFS_UUID_KEY_SUBVOL: 4569 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4570 ret = 1; 4571 break; 4572 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4573 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4574 BTRFS_UUID_SIZE)) 4575 ret = 1; 4576 break; 4577 } 4578 4579 out: 4580 return ret; 4581 } 4582 4583 static int btrfs_uuid_rescan_kthread(void *data) 4584 { 4585 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4586 int ret; 4587 4588 /* 4589 * 1st step is to iterate through the existing UUID tree and 4590 * to delete all entries that contain outdated data. 4591 * 2nd step is to add all missing entries to the UUID tree. 4592 */ 4593 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4594 if (ret < 0) { 4595 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4596 up(&fs_info->uuid_tree_rescan_sem); 4597 return ret; 4598 } 4599 return btrfs_uuid_scan_kthread(data); 4600 } 4601 4602 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4603 { 4604 struct btrfs_trans_handle *trans; 4605 struct btrfs_root *tree_root = fs_info->tree_root; 4606 struct btrfs_root *uuid_root; 4607 struct task_struct *task; 4608 int ret; 4609 4610 /* 4611 * 1 - root node 4612 * 1 - root item 4613 */ 4614 trans = btrfs_start_transaction(tree_root, 2); 4615 if (IS_ERR(trans)) 4616 return PTR_ERR(trans); 4617 4618 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4619 if (IS_ERR(uuid_root)) { 4620 ret = PTR_ERR(uuid_root); 4621 btrfs_abort_transaction(trans, ret); 4622 btrfs_end_transaction(trans); 4623 return ret; 4624 } 4625 4626 fs_info->uuid_root = uuid_root; 4627 4628 ret = btrfs_commit_transaction(trans); 4629 if (ret) 4630 return ret; 4631 4632 down(&fs_info->uuid_tree_rescan_sem); 4633 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4634 if (IS_ERR(task)) { 4635 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4636 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4637 up(&fs_info->uuid_tree_rescan_sem); 4638 return PTR_ERR(task); 4639 } 4640 4641 return 0; 4642 } 4643 4644 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4645 { 4646 struct task_struct *task; 4647 4648 down(&fs_info->uuid_tree_rescan_sem); 4649 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4650 if (IS_ERR(task)) { 4651 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4652 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4653 up(&fs_info->uuid_tree_rescan_sem); 4654 return PTR_ERR(task); 4655 } 4656 4657 return 0; 4658 } 4659 4660 /* 4661 * shrinking a device means finding all of the device extents past 4662 * the new size, and then following the back refs to the chunks. 4663 * The chunk relocation code actually frees the device extent 4664 */ 4665 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4666 { 4667 struct btrfs_fs_info *fs_info = device->fs_info; 4668 struct btrfs_root *root = fs_info->dev_root; 4669 struct btrfs_trans_handle *trans; 4670 struct btrfs_dev_extent *dev_extent = NULL; 4671 struct btrfs_path *path; 4672 u64 length; 4673 u64 chunk_offset; 4674 int ret; 4675 int slot; 4676 int failed = 0; 4677 bool retried = false; 4678 struct extent_buffer *l; 4679 struct btrfs_key key; 4680 struct btrfs_super_block *super_copy = fs_info->super_copy; 4681 u64 old_total = btrfs_super_total_bytes(super_copy); 4682 u64 old_size = btrfs_device_get_total_bytes(device); 4683 u64 diff; 4684 u64 start; 4685 4686 new_size = round_down(new_size, fs_info->sectorsize); 4687 start = new_size; 4688 diff = round_down(old_size - new_size, fs_info->sectorsize); 4689 4690 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4691 return -EINVAL; 4692 4693 path = btrfs_alloc_path(); 4694 if (!path) 4695 return -ENOMEM; 4696 4697 path->reada = READA_BACK; 4698 4699 trans = btrfs_start_transaction(root, 0); 4700 if (IS_ERR(trans)) { 4701 btrfs_free_path(path); 4702 return PTR_ERR(trans); 4703 } 4704 4705 mutex_lock(&fs_info->chunk_mutex); 4706 4707 btrfs_device_set_total_bytes(device, new_size); 4708 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4709 device->fs_devices->total_rw_bytes -= diff; 4710 atomic64_sub(diff, &fs_info->free_chunk_space); 4711 } 4712 4713 /* 4714 * Once the device's size has been set to the new size, ensure all 4715 * in-memory chunks are synced to disk so that the loop below sees them 4716 * and relocates them accordingly. 4717 */ 4718 if (contains_pending_extent(device, &start, diff)) { 4719 mutex_unlock(&fs_info->chunk_mutex); 4720 ret = btrfs_commit_transaction(trans); 4721 if (ret) 4722 goto done; 4723 } else { 4724 mutex_unlock(&fs_info->chunk_mutex); 4725 btrfs_end_transaction(trans); 4726 } 4727 4728 again: 4729 key.objectid = device->devid; 4730 key.offset = (u64)-1; 4731 key.type = BTRFS_DEV_EXTENT_KEY; 4732 4733 do { 4734 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4735 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4736 if (ret < 0) { 4737 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4738 goto done; 4739 } 4740 4741 ret = btrfs_previous_item(root, path, 0, key.type); 4742 if (ret) 4743 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4744 if (ret < 0) 4745 goto done; 4746 if (ret) { 4747 ret = 0; 4748 btrfs_release_path(path); 4749 break; 4750 } 4751 4752 l = path->nodes[0]; 4753 slot = path->slots[0]; 4754 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4755 4756 if (key.objectid != device->devid) { 4757 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4758 btrfs_release_path(path); 4759 break; 4760 } 4761 4762 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4763 length = btrfs_dev_extent_length(l, dev_extent); 4764 4765 if (key.offset + length <= new_size) { 4766 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4767 btrfs_release_path(path); 4768 break; 4769 } 4770 4771 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4772 btrfs_release_path(path); 4773 4774 /* 4775 * We may be relocating the only data chunk we have, 4776 * which could potentially end up with losing data's 4777 * raid profile, so lets allocate an empty one in 4778 * advance. 4779 */ 4780 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4781 if (ret < 0) { 4782 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4783 goto done; 4784 } 4785 4786 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4787 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4788 if (ret == -ENOSPC) { 4789 failed++; 4790 } else if (ret) { 4791 if (ret == -ETXTBSY) { 4792 btrfs_warn(fs_info, 4793 "could not shrink block group %llu due to active swapfile", 4794 chunk_offset); 4795 } 4796 goto done; 4797 } 4798 } while (key.offset-- > 0); 4799 4800 if (failed && !retried) { 4801 failed = 0; 4802 retried = true; 4803 goto again; 4804 } else if (failed && retried) { 4805 ret = -ENOSPC; 4806 goto done; 4807 } 4808 4809 /* Shrinking succeeded, else we would be at "done". */ 4810 trans = btrfs_start_transaction(root, 0); 4811 if (IS_ERR(trans)) { 4812 ret = PTR_ERR(trans); 4813 goto done; 4814 } 4815 4816 mutex_lock(&fs_info->chunk_mutex); 4817 btrfs_device_set_disk_total_bytes(device, new_size); 4818 if (list_empty(&device->post_commit_list)) 4819 list_add_tail(&device->post_commit_list, 4820 &trans->transaction->dev_update_list); 4821 4822 WARN_ON(diff > old_total); 4823 btrfs_set_super_total_bytes(super_copy, 4824 round_down(old_total - diff, fs_info->sectorsize)); 4825 mutex_unlock(&fs_info->chunk_mutex); 4826 4827 /* Now btrfs_update_device() will change the on-disk size. */ 4828 ret = btrfs_update_device(trans, device); 4829 if (ret < 0) { 4830 btrfs_abort_transaction(trans, ret); 4831 btrfs_end_transaction(trans); 4832 } else { 4833 ret = btrfs_commit_transaction(trans); 4834 } 4835 done: 4836 btrfs_free_path(path); 4837 if (ret) { 4838 mutex_lock(&fs_info->chunk_mutex); 4839 btrfs_device_set_total_bytes(device, old_size); 4840 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4841 device->fs_devices->total_rw_bytes += diff; 4842 atomic64_add(diff, &fs_info->free_chunk_space); 4843 mutex_unlock(&fs_info->chunk_mutex); 4844 } 4845 return ret; 4846 } 4847 4848 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4849 struct btrfs_key *key, 4850 struct btrfs_chunk *chunk, int item_size) 4851 { 4852 struct btrfs_super_block *super_copy = fs_info->super_copy; 4853 struct btrfs_disk_key disk_key; 4854 u32 array_size; 4855 u8 *ptr; 4856 4857 mutex_lock(&fs_info->chunk_mutex); 4858 array_size = btrfs_super_sys_array_size(super_copy); 4859 if (array_size + item_size + sizeof(disk_key) 4860 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4861 mutex_unlock(&fs_info->chunk_mutex); 4862 return -EFBIG; 4863 } 4864 4865 ptr = super_copy->sys_chunk_array + array_size; 4866 btrfs_cpu_key_to_disk(&disk_key, key); 4867 memcpy(ptr, &disk_key, sizeof(disk_key)); 4868 ptr += sizeof(disk_key); 4869 memcpy(ptr, chunk, item_size); 4870 item_size += sizeof(disk_key); 4871 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4872 mutex_unlock(&fs_info->chunk_mutex); 4873 4874 return 0; 4875 } 4876 4877 /* 4878 * sort the devices in descending order by max_avail, total_avail 4879 */ 4880 static int btrfs_cmp_device_info(const void *a, const void *b) 4881 { 4882 const struct btrfs_device_info *di_a = a; 4883 const struct btrfs_device_info *di_b = b; 4884 4885 if (di_a->max_avail > di_b->max_avail) 4886 return -1; 4887 if (di_a->max_avail < di_b->max_avail) 4888 return 1; 4889 if (di_a->total_avail > di_b->total_avail) 4890 return -1; 4891 if (di_a->total_avail < di_b->total_avail) 4892 return 1; 4893 return 0; 4894 } 4895 4896 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4897 { 4898 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4899 return; 4900 4901 btrfs_set_fs_incompat(info, RAID56); 4902 } 4903 4904 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4905 u64 start, u64 type) 4906 { 4907 struct btrfs_fs_info *info = trans->fs_info; 4908 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4909 struct btrfs_device *device; 4910 struct map_lookup *map = NULL; 4911 struct extent_map_tree *em_tree; 4912 struct extent_map *em; 4913 struct btrfs_device_info *devices_info = NULL; 4914 u64 total_avail; 4915 int num_stripes; /* total number of stripes to allocate */ 4916 int data_stripes; /* number of stripes that count for 4917 block group size */ 4918 int sub_stripes; /* sub_stripes info for map */ 4919 int dev_stripes; /* stripes per dev */ 4920 int devs_max; /* max devs to use */ 4921 int devs_min; /* min devs needed */ 4922 int devs_increment; /* ndevs has to be a multiple of this */ 4923 int ncopies; /* how many copies to data has */ 4924 int nparity; /* number of stripes worth of bytes to 4925 store parity information */ 4926 int ret; 4927 u64 max_stripe_size; 4928 u64 max_chunk_size; 4929 u64 stripe_size; 4930 u64 chunk_size; 4931 int ndevs; 4932 int i; 4933 int j; 4934 int index; 4935 4936 BUG_ON(!alloc_profile_is_valid(type, 0)); 4937 4938 if (list_empty(&fs_devices->alloc_list)) { 4939 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 4940 btrfs_debug(info, "%s: no writable device", __func__); 4941 return -ENOSPC; 4942 } 4943 4944 index = btrfs_bg_flags_to_raid_index(type); 4945 4946 sub_stripes = btrfs_raid_array[index].sub_stripes; 4947 dev_stripes = btrfs_raid_array[index].dev_stripes; 4948 devs_max = btrfs_raid_array[index].devs_max; 4949 if (!devs_max) 4950 devs_max = BTRFS_MAX_DEVS(info); 4951 devs_min = btrfs_raid_array[index].devs_min; 4952 devs_increment = btrfs_raid_array[index].devs_increment; 4953 ncopies = btrfs_raid_array[index].ncopies; 4954 nparity = btrfs_raid_array[index].nparity; 4955 4956 if (type & BTRFS_BLOCK_GROUP_DATA) { 4957 max_stripe_size = SZ_1G; 4958 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 4959 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4960 /* for larger filesystems, use larger metadata chunks */ 4961 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4962 max_stripe_size = SZ_1G; 4963 else 4964 max_stripe_size = SZ_256M; 4965 max_chunk_size = max_stripe_size; 4966 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4967 max_stripe_size = SZ_32M; 4968 max_chunk_size = 2 * max_stripe_size; 4969 } else { 4970 btrfs_err(info, "invalid chunk type 0x%llx requested", 4971 type); 4972 BUG(); 4973 } 4974 4975 /* We don't want a chunk larger than 10% of writable space */ 4976 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4977 max_chunk_size); 4978 4979 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4980 GFP_NOFS); 4981 if (!devices_info) 4982 return -ENOMEM; 4983 4984 /* 4985 * in the first pass through the devices list, we gather information 4986 * about the available holes on each device. 4987 */ 4988 ndevs = 0; 4989 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 4990 u64 max_avail; 4991 u64 dev_offset; 4992 4993 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4994 WARN(1, KERN_ERR 4995 "BTRFS: read-only device in alloc_list\n"); 4996 continue; 4997 } 4998 4999 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5000 &device->dev_state) || 5001 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5002 continue; 5003 5004 if (device->total_bytes > device->bytes_used) 5005 total_avail = device->total_bytes - device->bytes_used; 5006 else 5007 total_avail = 0; 5008 5009 /* If there is no space on this device, skip it. */ 5010 if (total_avail == 0) 5011 continue; 5012 5013 ret = find_free_dev_extent(device, 5014 max_stripe_size * dev_stripes, 5015 &dev_offset, &max_avail); 5016 if (ret && ret != -ENOSPC) 5017 goto error; 5018 5019 if (ret == 0) 5020 max_avail = max_stripe_size * dev_stripes; 5021 5022 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) { 5023 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5024 btrfs_debug(info, 5025 "%s: devid %llu has no free space, have=%llu want=%u", 5026 __func__, device->devid, max_avail, 5027 BTRFS_STRIPE_LEN * dev_stripes); 5028 continue; 5029 } 5030 5031 if (ndevs == fs_devices->rw_devices) { 5032 WARN(1, "%s: found more than %llu devices\n", 5033 __func__, fs_devices->rw_devices); 5034 break; 5035 } 5036 devices_info[ndevs].dev_offset = dev_offset; 5037 devices_info[ndevs].max_avail = max_avail; 5038 devices_info[ndevs].total_avail = total_avail; 5039 devices_info[ndevs].dev = device; 5040 ++ndevs; 5041 } 5042 5043 /* 5044 * now sort the devices by hole size / available space 5045 */ 5046 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5047 btrfs_cmp_device_info, NULL); 5048 5049 /* round down to number of usable stripes */ 5050 ndevs = round_down(ndevs, devs_increment); 5051 5052 if (ndevs < devs_min) { 5053 ret = -ENOSPC; 5054 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5055 btrfs_debug(info, 5056 "%s: not enough devices with free space: have=%d minimum required=%d", 5057 __func__, ndevs, devs_min); 5058 } 5059 goto error; 5060 } 5061 5062 ndevs = min(ndevs, devs_max); 5063 5064 /* 5065 * The primary goal is to maximize the number of stripes, so use as 5066 * many devices as possible, even if the stripes are not maximum sized. 5067 * 5068 * The DUP profile stores more than one stripe per device, the 5069 * max_avail is the total size so we have to adjust. 5070 */ 5071 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes); 5072 num_stripes = ndevs * dev_stripes; 5073 5074 /* 5075 * this will have to be fixed for RAID1 and RAID10 over 5076 * more drives 5077 */ 5078 data_stripes = (num_stripes - nparity) / ncopies; 5079 5080 /* 5081 * Use the number of data stripes to figure out how big this chunk 5082 * is really going to be in terms of logical address space, 5083 * and compare that answer with the max chunk size. If it's higher, 5084 * we try to reduce stripe_size. 5085 */ 5086 if (stripe_size * data_stripes > max_chunk_size) { 5087 /* 5088 * Reduce stripe_size, round it up to a 16MB boundary again and 5089 * then use it, unless it ends up being even bigger than the 5090 * previous value we had already. 5091 */ 5092 stripe_size = min(round_up(div_u64(max_chunk_size, 5093 data_stripes), SZ_16M), 5094 stripe_size); 5095 } 5096 5097 /* align to BTRFS_STRIPE_LEN */ 5098 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN); 5099 5100 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 5101 if (!map) { 5102 ret = -ENOMEM; 5103 goto error; 5104 } 5105 map->num_stripes = num_stripes; 5106 5107 for (i = 0; i < ndevs; ++i) { 5108 for (j = 0; j < dev_stripes; ++j) { 5109 int s = i * dev_stripes + j; 5110 map->stripes[s].dev = devices_info[i].dev; 5111 map->stripes[s].physical = devices_info[i].dev_offset + 5112 j * stripe_size; 5113 } 5114 } 5115 map->stripe_len = BTRFS_STRIPE_LEN; 5116 map->io_align = BTRFS_STRIPE_LEN; 5117 map->io_width = BTRFS_STRIPE_LEN; 5118 map->type = type; 5119 map->sub_stripes = sub_stripes; 5120 5121 chunk_size = stripe_size * data_stripes; 5122 5123 trace_btrfs_chunk_alloc(info, map, start, chunk_size); 5124 5125 em = alloc_extent_map(); 5126 if (!em) { 5127 kfree(map); 5128 ret = -ENOMEM; 5129 goto error; 5130 } 5131 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5132 em->map_lookup = map; 5133 em->start = start; 5134 em->len = chunk_size; 5135 em->block_start = 0; 5136 em->block_len = em->len; 5137 em->orig_block_len = stripe_size; 5138 5139 em_tree = &info->mapping_tree; 5140 write_lock(&em_tree->lock); 5141 ret = add_extent_mapping(em_tree, em, 0); 5142 if (ret) { 5143 write_unlock(&em_tree->lock); 5144 free_extent_map(em); 5145 goto error; 5146 } 5147 write_unlock(&em_tree->lock); 5148 5149 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size); 5150 if (ret) 5151 goto error_del_extent; 5152 5153 for (i = 0; i < map->num_stripes; i++) { 5154 struct btrfs_device *dev = map->stripes[i].dev; 5155 5156 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size); 5157 if (list_empty(&dev->post_commit_list)) 5158 list_add_tail(&dev->post_commit_list, 5159 &trans->transaction->dev_update_list); 5160 } 5161 5162 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space); 5163 5164 free_extent_map(em); 5165 check_raid56_incompat_flag(info, type); 5166 5167 kfree(devices_info); 5168 return 0; 5169 5170 error_del_extent: 5171 write_lock(&em_tree->lock); 5172 remove_extent_mapping(em_tree, em); 5173 write_unlock(&em_tree->lock); 5174 5175 /* One for our allocation */ 5176 free_extent_map(em); 5177 /* One for the tree reference */ 5178 free_extent_map(em); 5179 error: 5180 kfree(devices_info); 5181 return ret; 5182 } 5183 5184 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 5185 u64 chunk_offset, u64 chunk_size) 5186 { 5187 struct btrfs_fs_info *fs_info = trans->fs_info; 5188 struct btrfs_root *extent_root = fs_info->extent_root; 5189 struct btrfs_root *chunk_root = fs_info->chunk_root; 5190 struct btrfs_key key; 5191 struct btrfs_device *device; 5192 struct btrfs_chunk *chunk; 5193 struct btrfs_stripe *stripe; 5194 struct extent_map *em; 5195 struct map_lookup *map; 5196 size_t item_size; 5197 u64 dev_offset; 5198 u64 stripe_size; 5199 int i = 0; 5200 int ret = 0; 5201 5202 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 5203 if (IS_ERR(em)) 5204 return PTR_ERR(em); 5205 5206 map = em->map_lookup; 5207 item_size = btrfs_chunk_item_size(map->num_stripes); 5208 stripe_size = em->orig_block_len; 5209 5210 chunk = kzalloc(item_size, GFP_NOFS); 5211 if (!chunk) { 5212 ret = -ENOMEM; 5213 goto out; 5214 } 5215 5216 /* 5217 * Take the device list mutex to prevent races with the final phase of 5218 * a device replace operation that replaces the device object associated 5219 * with the map's stripes, because the device object's id can change 5220 * at any time during that final phase of the device replace operation 5221 * (dev-replace.c:btrfs_dev_replace_finishing()). 5222 */ 5223 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5224 for (i = 0; i < map->num_stripes; i++) { 5225 device = map->stripes[i].dev; 5226 dev_offset = map->stripes[i].physical; 5227 5228 ret = btrfs_update_device(trans, device); 5229 if (ret) 5230 break; 5231 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5232 dev_offset, stripe_size); 5233 if (ret) 5234 break; 5235 } 5236 if (ret) { 5237 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5238 goto out; 5239 } 5240 5241 stripe = &chunk->stripe; 5242 for (i = 0; i < map->num_stripes; i++) { 5243 device = map->stripes[i].dev; 5244 dev_offset = map->stripes[i].physical; 5245 5246 btrfs_set_stack_stripe_devid(stripe, device->devid); 5247 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5248 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5249 stripe++; 5250 } 5251 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5252 5253 btrfs_set_stack_chunk_length(chunk, chunk_size); 5254 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5255 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5256 btrfs_set_stack_chunk_type(chunk, map->type); 5257 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5258 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5259 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5260 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5261 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5262 5263 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5264 key.type = BTRFS_CHUNK_ITEM_KEY; 5265 key.offset = chunk_offset; 5266 5267 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5268 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5269 /* 5270 * TODO: Cleanup of inserted chunk root in case of 5271 * failure. 5272 */ 5273 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5274 } 5275 5276 out: 5277 kfree(chunk); 5278 free_extent_map(em); 5279 return ret; 5280 } 5281 5282 /* 5283 * Chunk allocation falls into two parts. The first part does work 5284 * that makes the new allocated chunk usable, but does not do any operation 5285 * that modifies the chunk tree. The second part does the work that 5286 * requires modifying the chunk tree. This division is important for the 5287 * bootstrap process of adding storage to a seed btrfs. 5288 */ 5289 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) 5290 { 5291 u64 chunk_offset; 5292 5293 lockdep_assert_held(&trans->fs_info->chunk_mutex); 5294 chunk_offset = find_next_chunk(trans->fs_info); 5295 return __btrfs_alloc_chunk(trans, chunk_offset, type); 5296 } 5297 5298 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5299 { 5300 struct btrfs_fs_info *fs_info = trans->fs_info; 5301 u64 chunk_offset; 5302 u64 sys_chunk_offset; 5303 u64 alloc_profile; 5304 int ret; 5305 5306 chunk_offset = find_next_chunk(fs_info); 5307 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5308 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile); 5309 if (ret) 5310 return ret; 5311 5312 sys_chunk_offset = find_next_chunk(fs_info); 5313 alloc_profile = btrfs_system_alloc_profile(fs_info); 5314 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile); 5315 return ret; 5316 } 5317 5318 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5319 { 5320 const int index = btrfs_bg_flags_to_raid_index(map->type); 5321 5322 return btrfs_raid_array[index].tolerated_failures; 5323 } 5324 5325 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5326 { 5327 struct extent_map *em; 5328 struct map_lookup *map; 5329 int readonly = 0; 5330 int miss_ndevs = 0; 5331 int i; 5332 5333 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5334 if (IS_ERR(em)) 5335 return 1; 5336 5337 map = em->map_lookup; 5338 for (i = 0; i < map->num_stripes; i++) { 5339 if (test_bit(BTRFS_DEV_STATE_MISSING, 5340 &map->stripes[i].dev->dev_state)) { 5341 miss_ndevs++; 5342 continue; 5343 } 5344 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5345 &map->stripes[i].dev->dev_state)) { 5346 readonly = 1; 5347 goto end; 5348 } 5349 } 5350 5351 /* 5352 * If the number of missing devices is larger than max errors, 5353 * we can not write the data into that chunk successfully, so 5354 * set it readonly. 5355 */ 5356 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5357 readonly = 1; 5358 end: 5359 free_extent_map(em); 5360 return readonly; 5361 } 5362 5363 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5364 { 5365 struct extent_map *em; 5366 5367 while (1) { 5368 write_lock(&tree->lock); 5369 em = lookup_extent_mapping(tree, 0, (u64)-1); 5370 if (em) 5371 remove_extent_mapping(tree, em); 5372 write_unlock(&tree->lock); 5373 if (!em) 5374 break; 5375 /* once for us */ 5376 free_extent_map(em); 5377 /* once for the tree */ 5378 free_extent_map(em); 5379 } 5380 } 5381 5382 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5383 { 5384 struct extent_map *em; 5385 struct map_lookup *map; 5386 int ret; 5387 5388 em = btrfs_get_chunk_map(fs_info, logical, len); 5389 if (IS_ERR(em)) 5390 /* 5391 * We could return errors for these cases, but that could get 5392 * ugly and we'd probably do the same thing which is just not do 5393 * anything else and exit, so return 1 so the callers don't try 5394 * to use other copies. 5395 */ 5396 return 1; 5397 5398 map = em->map_lookup; 5399 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5400 ret = map->num_stripes; 5401 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5402 ret = map->sub_stripes; 5403 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5404 ret = 2; 5405 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5406 /* 5407 * There could be two corrupted data stripes, we need 5408 * to loop retry in order to rebuild the correct data. 5409 * 5410 * Fail a stripe at a time on every retry except the 5411 * stripe under reconstruction. 5412 */ 5413 ret = map->num_stripes; 5414 else 5415 ret = 1; 5416 free_extent_map(em); 5417 5418 down_read(&fs_info->dev_replace.rwsem); 5419 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5420 fs_info->dev_replace.tgtdev) 5421 ret++; 5422 up_read(&fs_info->dev_replace.rwsem); 5423 5424 return ret; 5425 } 5426 5427 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5428 u64 logical) 5429 { 5430 struct extent_map *em; 5431 struct map_lookup *map; 5432 unsigned long len = fs_info->sectorsize; 5433 5434 em = btrfs_get_chunk_map(fs_info, logical, len); 5435 5436 if (!WARN_ON(IS_ERR(em))) { 5437 map = em->map_lookup; 5438 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5439 len = map->stripe_len * nr_data_stripes(map); 5440 free_extent_map(em); 5441 } 5442 return len; 5443 } 5444 5445 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5446 { 5447 struct extent_map *em; 5448 struct map_lookup *map; 5449 int ret = 0; 5450 5451 em = btrfs_get_chunk_map(fs_info, logical, len); 5452 5453 if(!WARN_ON(IS_ERR(em))) { 5454 map = em->map_lookup; 5455 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5456 ret = 1; 5457 free_extent_map(em); 5458 } 5459 return ret; 5460 } 5461 5462 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5463 struct map_lookup *map, int first, 5464 int dev_replace_is_ongoing) 5465 { 5466 int i; 5467 int num_stripes; 5468 int preferred_mirror; 5469 int tolerance; 5470 struct btrfs_device *srcdev; 5471 5472 ASSERT((map->type & 5473 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5474 5475 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5476 num_stripes = map->sub_stripes; 5477 else 5478 num_stripes = map->num_stripes; 5479 5480 preferred_mirror = first + current->pid % num_stripes; 5481 5482 if (dev_replace_is_ongoing && 5483 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5484 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5485 srcdev = fs_info->dev_replace.srcdev; 5486 else 5487 srcdev = NULL; 5488 5489 /* 5490 * try to avoid the drive that is the source drive for a 5491 * dev-replace procedure, only choose it if no other non-missing 5492 * mirror is available 5493 */ 5494 for (tolerance = 0; tolerance < 2; tolerance++) { 5495 if (map->stripes[preferred_mirror].dev->bdev && 5496 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5497 return preferred_mirror; 5498 for (i = first; i < first + num_stripes; i++) { 5499 if (map->stripes[i].dev->bdev && 5500 (tolerance || map->stripes[i].dev != srcdev)) 5501 return i; 5502 } 5503 } 5504 5505 /* we couldn't find one that doesn't fail. Just return something 5506 * and the io error handling code will clean up eventually 5507 */ 5508 return preferred_mirror; 5509 } 5510 5511 static inline int parity_smaller(u64 a, u64 b) 5512 { 5513 return a > b; 5514 } 5515 5516 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5517 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5518 { 5519 struct btrfs_bio_stripe s; 5520 int i; 5521 u64 l; 5522 int again = 1; 5523 5524 while (again) { 5525 again = 0; 5526 for (i = 0; i < num_stripes - 1; i++) { 5527 if (parity_smaller(bbio->raid_map[i], 5528 bbio->raid_map[i+1])) { 5529 s = bbio->stripes[i]; 5530 l = bbio->raid_map[i]; 5531 bbio->stripes[i] = bbio->stripes[i+1]; 5532 bbio->raid_map[i] = bbio->raid_map[i+1]; 5533 bbio->stripes[i+1] = s; 5534 bbio->raid_map[i+1] = l; 5535 5536 again = 1; 5537 } 5538 } 5539 } 5540 } 5541 5542 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5543 { 5544 struct btrfs_bio *bbio = kzalloc( 5545 /* the size of the btrfs_bio */ 5546 sizeof(struct btrfs_bio) + 5547 /* plus the variable array for the stripes */ 5548 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5549 /* plus the variable array for the tgt dev */ 5550 sizeof(int) * (real_stripes) + 5551 /* 5552 * plus the raid_map, which includes both the tgt dev 5553 * and the stripes 5554 */ 5555 sizeof(u64) * (total_stripes), 5556 GFP_NOFS|__GFP_NOFAIL); 5557 5558 atomic_set(&bbio->error, 0); 5559 refcount_set(&bbio->refs, 1); 5560 5561 return bbio; 5562 } 5563 5564 void btrfs_get_bbio(struct btrfs_bio *bbio) 5565 { 5566 WARN_ON(!refcount_read(&bbio->refs)); 5567 refcount_inc(&bbio->refs); 5568 } 5569 5570 void btrfs_put_bbio(struct btrfs_bio *bbio) 5571 { 5572 if (!bbio) 5573 return; 5574 if (refcount_dec_and_test(&bbio->refs)) 5575 kfree(bbio); 5576 } 5577 5578 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5579 /* 5580 * Please note that, discard won't be sent to target device of device 5581 * replace. 5582 */ 5583 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5584 u64 logical, u64 length, 5585 struct btrfs_bio **bbio_ret) 5586 { 5587 struct extent_map *em; 5588 struct map_lookup *map; 5589 struct btrfs_bio *bbio; 5590 u64 offset; 5591 u64 stripe_nr; 5592 u64 stripe_nr_end; 5593 u64 stripe_end_offset; 5594 u64 stripe_cnt; 5595 u64 stripe_len; 5596 u64 stripe_offset; 5597 u64 num_stripes; 5598 u32 stripe_index; 5599 u32 factor = 0; 5600 u32 sub_stripes = 0; 5601 u64 stripes_per_dev = 0; 5602 u32 remaining_stripes = 0; 5603 u32 last_stripe = 0; 5604 int ret = 0; 5605 int i; 5606 5607 /* discard always return a bbio */ 5608 ASSERT(bbio_ret); 5609 5610 em = btrfs_get_chunk_map(fs_info, logical, length); 5611 if (IS_ERR(em)) 5612 return PTR_ERR(em); 5613 5614 map = em->map_lookup; 5615 /* we don't discard raid56 yet */ 5616 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5617 ret = -EOPNOTSUPP; 5618 goto out; 5619 } 5620 5621 offset = logical - em->start; 5622 length = min_t(u64, em->len - offset, length); 5623 5624 stripe_len = map->stripe_len; 5625 /* 5626 * stripe_nr counts the total number of stripes we have to stride 5627 * to get to this block 5628 */ 5629 stripe_nr = div64_u64(offset, stripe_len); 5630 5631 /* stripe_offset is the offset of this block in its stripe */ 5632 stripe_offset = offset - stripe_nr * stripe_len; 5633 5634 stripe_nr_end = round_up(offset + length, map->stripe_len); 5635 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5636 stripe_cnt = stripe_nr_end - stripe_nr; 5637 stripe_end_offset = stripe_nr_end * map->stripe_len - 5638 (offset + length); 5639 /* 5640 * after this, stripe_nr is the number of stripes on this 5641 * device we have to walk to find the data, and stripe_index is 5642 * the number of our device in the stripe array 5643 */ 5644 num_stripes = 1; 5645 stripe_index = 0; 5646 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5647 BTRFS_BLOCK_GROUP_RAID10)) { 5648 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5649 sub_stripes = 1; 5650 else 5651 sub_stripes = map->sub_stripes; 5652 5653 factor = map->num_stripes / sub_stripes; 5654 num_stripes = min_t(u64, map->num_stripes, 5655 sub_stripes * stripe_cnt); 5656 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5657 stripe_index *= sub_stripes; 5658 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5659 &remaining_stripes); 5660 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5661 last_stripe *= sub_stripes; 5662 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 5663 BTRFS_BLOCK_GROUP_DUP)) { 5664 num_stripes = map->num_stripes; 5665 } else { 5666 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5667 &stripe_index); 5668 } 5669 5670 bbio = alloc_btrfs_bio(num_stripes, 0); 5671 if (!bbio) { 5672 ret = -ENOMEM; 5673 goto out; 5674 } 5675 5676 for (i = 0; i < num_stripes; i++) { 5677 bbio->stripes[i].physical = 5678 map->stripes[stripe_index].physical + 5679 stripe_offset + stripe_nr * map->stripe_len; 5680 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5681 5682 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5683 BTRFS_BLOCK_GROUP_RAID10)) { 5684 bbio->stripes[i].length = stripes_per_dev * 5685 map->stripe_len; 5686 5687 if (i / sub_stripes < remaining_stripes) 5688 bbio->stripes[i].length += 5689 map->stripe_len; 5690 5691 /* 5692 * Special for the first stripe and 5693 * the last stripe: 5694 * 5695 * |-------|...|-------| 5696 * |----------| 5697 * off end_off 5698 */ 5699 if (i < sub_stripes) 5700 bbio->stripes[i].length -= 5701 stripe_offset; 5702 5703 if (stripe_index >= last_stripe && 5704 stripe_index <= (last_stripe + 5705 sub_stripes - 1)) 5706 bbio->stripes[i].length -= 5707 stripe_end_offset; 5708 5709 if (i == sub_stripes - 1) 5710 stripe_offset = 0; 5711 } else { 5712 bbio->stripes[i].length = length; 5713 } 5714 5715 stripe_index++; 5716 if (stripe_index == map->num_stripes) { 5717 stripe_index = 0; 5718 stripe_nr++; 5719 } 5720 } 5721 5722 *bbio_ret = bbio; 5723 bbio->map_type = map->type; 5724 bbio->num_stripes = num_stripes; 5725 out: 5726 free_extent_map(em); 5727 return ret; 5728 } 5729 5730 /* 5731 * In dev-replace case, for repair case (that's the only case where the mirror 5732 * is selected explicitly when calling btrfs_map_block), blocks left of the 5733 * left cursor can also be read from the target drive. 5734 * 5735 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5736 * array of stripes. 5737 * For READ, it also needs to be supported using the same mirror number. 5738 * 5739 * If the requested block is not left of the left cursor, EIO is returned. This 5740 * can happen because btrfs_num_copies() returns one more in the dev-replace 5741 * case. 5742 */ 5743 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5744 u64 logical, u64 length, 5745 u64 srcdev_devid, int *mirror_num, 5746 u64 *physical) 5747 { 5748 struct btrfs_bio *bbio = NULL; 5749 int num_stripes; 5750 int index_srcdev = 0; 5751 int found = 0; 5752 u64 physical_of_found = 0; 5753 int i; 5754 int ret = 0; 5755 5756 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5757 logical, &length, &bbio, 0, 0); 5758 if (ret) { 5759 ASSERT(bbio == NULL); 5760 return ret; 5761 } 5762 5763 num_stripes = bbio->num_stripes; 5764 if (*mirror_num > num_stripes) { 5765 /* 5766 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5767 * that means that the requested area is not left of the left 5768 * cursor 5769 */ 5770 btrfs_put_bbio(bbio); 5771 return -EIO; 5772 } 5773 5774 /* 5775 * process the rest of the function using the mirror_num of the source 5776 * drive. Therefore look it up first. At the end, patch the device 5777 * pointer to the one of the target drive. 5778 */ 5779 for (i = 0; i < num_stripes; i++) { 5780 if (bbio->stripes[i].dev->devid != srcdev_devid) 5781 continue; 5782 5783 /* 5784 * In case of DUP, in order to keep it simple, only add the 5785 * mirror with the lowest physical address 5786 */ 5787 if (found && 5788 physical_of_found <= bbio->stripes[i].physical) 5789 continue; 5790 5791 index_srcdev = i; 5792 found = 1; 5793 physical_of_found = bbio->stripes[i].physical; 5794 } 5795 5796 btrfs_put_bbio(bbio); 5797 5798 ASSERT(found); 5799 if (!found) 5800 return -EIO; 5801 5802 *mirror_num = index_srcdev + 1; 5803 *physical = physical_of_found; 5804 return ret; 5805 } 5806 5807 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5808 struct btrfs_bio **bbio_ret, 5809 struct btrfs_dev_replace *dev_replace, 5810 int *num_stripes_ret, int *max_errors_ret) 5811 { 5812 struct btrfs_bio *bbio = *bbio_ret; 5813 u64 srcdev_devid = dev_replace->srcdev->devid; 5814 int tgtdev_indexes = 0; 5815 int num_stripes = *num_stripes_ret; 5816 int max_errors = *max_errors_ret; 5817 int i; 5818 5819 if (op == BTRFS_MAP_WRITE) { 5820 int index_where_to_add; 5821 5822 /* 5823 * duplicate the write operations while the dev replace 5824 * procedure is running. Since the copying of the old disk to 5825 * the new disk takes place at run time while the filesystem is 5826 * mounted writable, the regular write operations to the old 5827 * disk have to be duplicated to go to the new disk as well. 5828 * 5829 * Note that device->missing is handled by the caller, and that 5830 * the write to the old disk is already set up in the stripes 5831 * array. 5832 */ 5833 index_where_to_add = num_stripes; 5834 for (i = 0; i < num_stripes; i++) { 5835 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5836 /* write to new disk, too */ 5837 struct btrfs_bio_stripe *new = 5838 bbio->stripes + index_where_to_add; 5839 struct btrfs_bio_stripe *old = 5840 bbio->stripes + i; 5841 5842 new->physical = old->physical; 5843 new->length = old->length; 5844 new->dev = dev_replace->tgtdev; 5845 bbio->tgtdev_map[i] = index_where_to_add; 5846 index_where_to_add++; 5847 max_errors++; 5848 tgtdev_indexes++; 5849 } 5850 } 5851 num_stripes = index_where_to_add; 5852 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5853 int index_srcdev = 0; 5854 int found = 0; 5855 u64 physical_of_found = 0; 5856 5857 /* 5858 * During the dev-replace procedure, the target drive can also 5859 * be used to read data in case it is needed to repair a corrupt 5860 * block elsewhere. This is possible if the requested area is 5861 * left of the left cursor. In this area, the target drive is a 5862 * full copy of the source drive. 5863 */ 5864 for (i = 0; i < num_stripes; i++) { 5865 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5866 /* 5867 * In case of DUP, in order to keep it simple, 5868 * only add the mirror with the lowest physical 5869 * address 5870 */ 5871 if (found && 5872 physical_of_found <= 5873 bbio->stripes[i].physical) 5874 continue; 5875 index_srcdev = i; 5876 found = 1; 5877 physical_of_found = bbio->stripes[i].physical; 5878 } 5879 } 5880 if (found) { 5881 struct btrfs_bio_stripe *tgtdev_stripe = 5882 bbio->stripes + num_stripes; 5883 5884 tgtdev_stripe->physical = physical_of_found; 5885 tgtdev_stripe->length = 5886 bbio->stripes[index_srcdev].length; 5887 tgtdev_stripe->dev = dev_replace->tgtdev; 5888 bbio->tgtdev_map[index_srcdev] = num_stripes; 5889 5890 tgtdev_indexes++; 5891 num_stripes++; 5892 } 5893 } 5894 5895 *num_stripes_ret = num_stripes; 5896 *max_errors_ret = max_errors; 5897 bbio->num_tgtdevs = tgtdev_indexes; 5898 *bbio_ret = bbio; 5899 } 5900 5901 static bool need_full_stripe(enum btrfs_map_op op) 5902 { 5903 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5904 } 5905 5906 /* 5907 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len) 5908 * tuple. This information is used to calculate how big a 5909 * particular bio can get before it straddles a stripe. 5910 * 5911 * @fs_info - the filesystem 5912 * @logical - address that we want to figure out the geometry of 5913 * @len - the length of IO we are going to perform, starting at @logical 5914 * @op - type of operation - write or read 5915 * @io_geom - pointer used to return values 5916 * 5917 * Returns < 0 in case a chunk for the given logical address cannot be found, 5918 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 5919 */ 5920 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5921 u64 logical, u64 len, struct btrfs_io_geometry *io_geom) 5922 { 5923 struct extent_map *em; 5924 struct map_lookup *map; 5925 u64 offset; 5926 u64 stripe_offset; 5927 u64 stripe_nr; 5928 u64 stripe_len; 5929 u64 raid56_full_stripe_start = (u64)-1; 5930 int data_stripes; 5931 int ret = 0; 5932 5933 ASSERT(op != BTRFS_MAP_DISCARD); 5934 5935 em = btrfs_get_chunk_map(fs_info, logical, len); 5936 if (IS_ERR(em)) 5937 return PTR_ERR(em); 5938 5939 map = em->map_lookup; 5940 /* Offset of this logical address in the chunk */ 5941 offset = logical - em->start; 5942 /* Len of a stripe in a chunk */ 5943 stripe_len = map->stripe_len; 5944 /* Stripe wher this block falls in */ 5945 stripe_nr = div64_u64(offset, stripe_len); 5946 /* Offset of stripe in the chunk */ 5947 stripe_offset = stripe_nr * stripe_len; 5948 if (offset < stripe_offset) { 5949 btrfs_crit(fs_info, 5950 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 5951 stripe_offset, offset, em->start, logical, stripe_len); 5952 ret = -EINVAL; 5953 goto out; 5954 } 5955 5956 /* stripe_offset is the offset of this block in its stripe */ 5957 stripe_offset = offset - stripe_offset; 5958 data_stripes = nr_data_stripes(map); 5959 5960 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5961 u64 max_len = stripe_len - stripe_offset; 5962 5963 /* 5964 * In case of raid56, we need to know the stripe aligned start 5965 */ 5966 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5967 unsigned long full_stripe_len = stripe_len * data_stripes; 5968 raid56_full_stripe_start = offset; 5969 5970 /* 5971 * Allow a write of a full stripe, but make sure we 5972 * don't allow straddling of stripes 5973 */ 5974 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5975 full_stripe_len); 5976 raid56_full_stripe_start *= full_stripe_len; 5977 5978 /* 5979 * For writes to RAID[56], allow a full stripeset across 5980 * all disks. For other RAID types and for RAID[56] 5981 * reads, just allow a single stripe (on a single disk). 5982 */ 5983 if (op == BTRFS_MAP_WRITE) { 5984 max_len = stripe_len * data_stripes - 5985 (offset - raid56_full_stripe_start); 5986 } 5987 } 5988 len = min_t(u64, em->len - offset, max_len); 5989 } else { 5990 len = em->len - offset; 5991 } 5992 5993 io_geom->len = len; 5994 io_geom->offset = offset; 5995 io_geom->stripe_len = stripe_len; 5996 io_geom->stripe_nr = stripe_nr; 5997 io_geom->stripe_offset = stripe_offset; 5998 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 5999 6000 out: 6001 /* once for us */ 6002 free_extent_map(em); 6003 return ret; 6004 } 6005 6006 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 6007 enum btrfs_map_op op, 6008 u64 logical, u64 *length, 6009 struct btrfs_bio **bbio_ret, 6010 int mirror_num, int need_raid_map) 6011 { 6012 struct extent_map *em; 6013 struct map_lookup *map; 6014 u64 offset; 6015 u64 stripe_offset; 6016 u64 stripe_nr; 6017 u64 stripe_len; 6018 u32 stripe_index; 6019 int data_stripes; 6020 int i; 6021 int ret = 0; 6022 int num_stripes; 6023 int max_errors = 0; 6024 int tgtdev_indexes = 0; 6025 struct btrfs_bio *bbio = NULL; 6026 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6027 int dev_replace_is_ongoing = 0; 6028 int num_alloc_stripes; 6029 int patch_the_first_stripe_for_dev_replace = 0; 6030 u64 physical_to_patch_in_first_stripe = 0; 6031 u64 raid56_full_stripe_start = (u64)-1; 6032 struct btrfs_io_geometry geom; 6033 6034 ASSERT(bbio_ret); 6035 6036 if (op == BTRFS_MAP_DISCARD) 6037 return __btrfs_map_block_for_discard(fs_info, logical, 6038 *length, bbio_ret); 6039 6040 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom); 6041 if (ret < 0) 6042 return ret; 6043 6044 em = btrfs_get_chunk_map(fs_info, logical, *length); 6045 ASSERT(em); 6046 map = em->map_lookup; 6047 6048 *length = geom.len; 6049 offset = geom.offset; 6050 stripe_len = geom.stripe_len; 6051 stripe_nr = geom.stripe_nr; 6052 stripe_offset = geom.stripe_offset; 6053 raid56_full_stripe_start = geom.raid56_stripe_offset; 6054 data_stripes = nr_data_stripes(map); 6055 6056 down_read(&dev_replace->rwsem); 6057 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6058 /* 6059 * Hold the semaphore for read during the whole operation, write is 6060 * requested at commit time but must wait. 6061 */ 6062 if (!dev_replace_is_ongoing) 6063 up_read(&dev_replace->rwsem); 6064 6065 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6066 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6067 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6068 dev_replace->srcdev->devid, 6069 &mirror_num, 6070 &physical_to_patch_in_first_stripe); 6071 if (ret) 6072 goto out; 6073 else 6074 patch_the_first_stripe_for_dev_replace = 1; 6075 } else if (mirror_num > map->num_stripes) { 6076 mirror_num = 0; 6077 } 6078 6079 num_stripes = 1; 6080 stripe_index = 0; 6081 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6082 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6083 &stripe_index); 6084 if (!need_full_stripe(op)) 6085 mirror_num = 1; 6086 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6087 if (need_full_stripe(op)) 6088 num_stripes = map->num_stripes; 6089 else if (mirror_num) 6090 stripe_index = mirror_num - 1; 6091 else { 6092 stripe_index = find_live_mirror(fs_info, map, 0, 6093 dev_replace_is_ongoing); 6094 mirror_num = stripe_index + 1; 6095 } 6096 6097 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6098 if (need_full_stripe(op)) { 6099 num_stripes = map->num_stripes; 6100 } else if (mirror_num) { 6101 stripe_index = mirror_num - 1; 6102 } else { 6103 mirror_num = 1; 6104 } 6105 6106 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6107 u32 factor = map->num_stripes / map->sub_stripes; 6108 6109 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6110 stripe_index *= map->sub_stripes; 6111 6112 if (need_full_stripe(op)) 6113 num_stripes = map->sub_stripes; 6114 else if (mirror_num) 6115 stripe_index += mirror_num - 1; 6116 else { 6117 int old_stripe_index = stripe_index; 6118 stripe_index = find_live_mirror(fs_info, map, 6119 stripe_index, 6120 dev_replace_is_ongoing); 6121 mirror_num = stripe_index - old_stripe_index + 1; 6122 } 6123 6124 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6125 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6126 /* push stripe_nr back to the start of the full stripe */ 6127 stripe_nr = div64_u64(raid56_full_stripe_start, 6128 stripe_len * data_stripes); 6129 6130 /* RAID[56] write or recovery. Return all stripes */ 6131 num_stripes = map->num_stripes; 6132 max_errors = nr_parity_stripes(map); 6133 6134 *length = map->stripe_len; 6135 stripe_index = 0; 6136 stripe_offset = 0; 6137 } else { 6138 /* 6139 * Mirror #0 or #1 means the original data block. 6140 * Mirror #2 is RAID5 parity block. 6141 * Mirror #3 is RAID6 Q block. 6142 */ 6143 stripe_nr = div_u64_rem(stripe_nr, 6144 data_stripes, &stripe_index); 6145 if (mirror_num > 1) 6146 stripe_index = data_stripes + mirror_num - 2; 6147 6148 /* We distribute the parity blocks across stripes */ 6149 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6150 &stripe_index); 6151 if (!need_full_stripe(op) && mirror_num <= 1) 6152 mirror_num = 1; 6153 } 6154 } else { 6155 /* 6156 * after this, stripe_nr is the number of stripes on this 6157 * device we have to walk to find the data, and stripe_index is 6158 * the number of our device in the stripe array 6159 */ 6160 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6161 &stripe_index); 6162 mirror_num = stripe_index + 1; 6163 } 6164 if (stripe_index >= map->num_stripes) { 6165 btrfs_crit(fs_info, 6166 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6167 stripe_index, map->num_stripes); 6168 ret = -EINVAL; 6169 goto out; 6170 } 6171 6172 num_alloc_stripes = num_stripes; 6173 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6174 if (op == BTRFS_MAP_WRITE) 6175 num_alloc_stripes <<= 1; 6176 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6177 num_alloc_stripes++; 6178 tgtdev_indexes = num_stripes; 6179 } 6180 6181 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 6182 if (!bbio) { 6183 ret = -ENOMEM; 6184 goto out; 6185 } 6186 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 6187 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 6188 6189 /* build raid_map */ 6190 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6191 (need_full_stripe(op) || mirror_num > 1)) { 6192 u64 tmp; 6193 unsigned rot; 6194 6195 bbio->raid_map = (u64 *)((void *)bbio->stripes + 6196 sizeof(struct btrfs_bio_stripe) * 6197 num_alloc_stripes + 6198 sizeof(int) * tgtdev_indexes); 6199 6200 /* Work out the disk rotation on this stripe-set */ 6201 div_u64_rem(stripe_nr, num_stripes, &rot); 6202 6203 /* Fill in the logical address of each stripe */ 6204 tmp = stripe_nr * data_stripes; 6205 for (i = 0; i < data_stripes; i++) 6206 bbio->raid_map[(i+rot) % num_stripes] = 6207 em->start + (tmp + i) * map->stripe_len; 6208 6209 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 6210 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6211 bbio->raid_map[(i+rot+1) % num_stripes] = 6212 RAID6_Q_STRIPE; 6213 } 6214 6215 6216 for (i = 0; i < num_stripes; i++) { 6217 bbio->stripes[i].physical = 6218 map->stripes[stripe_index].physical + 6219 stripe_offset + 6220 stripe_nr * map->stripe_len; 6221 bbio->stripes[i].dev = 6222 map->stripes[stripe_index].dev; 6223 stripe_index++; 6224 } 6225 6226 if (need_full_stripe(op)) 6227 max_errors = btrfs_chunk_max_errors(map); 6228 6229 if (bbio->raid_map) 6230 sort_parity_stripes(bbio, num_stripes); 6231 6232 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6233 need_full_stripe(op)) { 6234 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 6235 &max_errors); 6236 } 6237 6238 *bbio_ret = bbio; 6239 bbio->map_type = map->type; 6240 bbio->num_stripes = num_stripes; 6241 bbio->max_errors = max_errors; 6242 bbio->mirror_num = mirror_num; 6243 6244 /* 6245 * this is the case that REQ_READ && dev_replace_is_ongoing && 6246 * mirror_num == num_stripes + 1 && dev_replace target drive is 6247 * available as a mirror 6248 */ 6249 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6250 WARN_ON(num_stripes > 1); 6251 bbio->stripes[0].dev = dev_replace->tgtdev; 6252 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 6253 bbio->mirror_num = map->num_stripes + 1; 6254 } 6255 out: 6256 if (dev_replace_is_ongoing) { 6257 lockdep_assert_held(&dev_replace->rwsem); 6258 /* Unlock and let waiting writers proceed */ 6259 up_read(&dev_replace->rwsem); 6260 } 6261 free_extent_map(em); 6262 return ret; 6263 } 6264 6265 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6266 u64 logical, u64 *length, 6267 struct btrfs_bio **bbio_ret, int mirror_num) 6268 { 6269 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 6270 mirror_num, 0); 6271 } 6272 6273 /* For Scrub/replace */ 6274 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6275 u64 logical, u64 *length, 6276 struct btrfs_bio **bbio_ret) 6277 { 6278 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6279 } 6280 6281 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 6282 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 6283 { 6284 struct extent_map *em; 6285 struct map_lookup *map; 6286 u64 *buf; 6287 u64 bytenr; 6288 u64 length; 6289 u64 stripe_nr; 6290 u64 rmap_len; 6291 int i, j, nr = 0; 6292 6293 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 6294 if (IS_ERR(em)) 6295 return -EIO; 6296 6297 map = em->map_lookup; 6298 length = em->len; 6299 rmap_len = map->stripe_len; 6300 6301 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 6302 length = div_u64(length, map->num_stripes / map->sub_stripes); 6303 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6304 length = div_u64(length, map->num_stripes); 6305 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6306 length = div_u64(length, nr_data_stripes(map)); 6307 rmap_len = map->stripe_len * nr_data_stripes(map); 6308 } 6309 6310 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 6311 BUG_ON(!buf); /* -ENOMEM */ 6312 6313 for (i = 0; i < map->num_stripes; i++) { 6314 if (map->stripes[i].physical > physical || 6315 map->stripes[i].physical + length <= physical) 6316 continue; 6317 6318 stripe_nr = physical - map->stripes[i].physical; 6319 stripe_nr = div64_u64(stripe_nr, map->stripe_len); 6320 6321 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6322 stripe_nr = stripe_nr * map->num_stripes + i; 6323 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 6324 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6325 stripe_nr = stripe_nr * map->num_stripes + i; 6326 } /* else if RAID[56], multiply by nr_data_stripes(). 6327 * Alternatively, just use rmap_len below instead of 6328 * map->stripe_len */ 6329 6330 bytenr = chunk_start + stripe_nr * rmap_len; 6331 WARN_ON(nr >= map->num_stripes); 6332 for (j = 0; j < nr; j++) { 6333 if (buf[j] == bytenr) 6334 break; 6335 } 6336 if (j == nr) { 6337 WARN_ON(nr >= map->num_stripes); 6338 buf[nr++] = bytenr; 6339 } 6340 } 6341 6342 *logical = buf; 6343 *naddrs = nr; 6344 *stripe_len = rmap_len; 6345 6346 free_extent_map(em); 6347 return 0; 6348 } 6349 6350 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6351 { 6352 bio->bi_private = bbio->private; 6353 bio->bi_end_io = bbio->end_io; 6354 bio_endio(bio); 6355 6356 btrfs_put_bbio(bbio); 6357 } 6358 6359 static void btrfs_end_bio(struct bio *bio) 6360 { 6361 struct btrfs_bio *bbio = bio->bi_private; 6362 int is_orig_bio = 0; 6363 6364 if (bio->bi_status) { 6365 atomic_inc(&bbio->error); 6366 if (bio->bi_status == BLK_STS_IOERR || 6367 bio->bi_status == BLK_STS_TARGET) { 6368 unsigned int stripe_index = 6369 btrfs_io_bio(bio)->stripe_index; 6370 struct btrfs_device *dev; 6371 6372 BUG_ON(stripe_index >= bbio->num_stripes); 6373 dev = bbio->stripes[stripe_index].dev; 6374 if (dev->bdev) { 6375 if (bio_op(bio) == REQ_OP_WRITE) 6376 btrfs_dev_stat_inc_and_print(dev, 6377 BTRFS_DEV_STAT_WRITE_ERRS); 6378 else if (!(bio->bi_opf & REQ_RAHEAD)) 6379 btrfs_dev_stat_inc_and_print(dev, 6380 BTRFS_DEV_STAT_READ_ERRS); 6381 if (bio->bi_opf & REQ_PREFLUSH) 6382 btrfs_dev_stat_inc_and_print(dev, 6383 BTRFS_DEV_STAT_FLUSH_ERRS); 6384 } 6385 } 6386 } 6387 6388 if (bio == bbio->orig_bio) 6389 is_orig_bio = 1; 6390 6391 btrfs_bio_counter_dec(bbio->fs_info); 6392 6393 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6394 if (!is_orig_bio) { 6395 bio_put(bio); 6396 bio = bbio->orig_bio; 6397 } 6398 6399 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6400 /* only send an error to the higher layers if it is 6401 * beyond the tolerance of the btrfs bio 6402 */ 6403 if (atomic_read(&bbio->error) > bbio->max_errors) { 6404 bio->bi_status = BLK_STS_IOERR; 6405 } else { 6406 /* 6407 * this bio is actually up to date, we didn't 6408 * go over the max number of errors 6409 */ 6410 bio->bi_status = BLK_STS_OK; 6411 } 6412 6413 btrfs_end_bbio(bbio, bio); 6414 } else if (!is_orig_bio) { 6415 bio_put(bio); 6416 } 6417 } 6418 6419 /* 6420 * see run_scheduled_bios for a description of why bios are collected for 6421 * async submit. 6422 * 6423 * This will add one bio to the pending list for a device and make sure 6424 * the work struct is scheduled. 6425 */ 6426 static noinline void btrfs_schedule_bio(struct btrfs_device *device, 6427 struct bio *bio) 6428 { 6429 struct btrfs_fs_info *fs_info = device->fs_info; 6430 int should_queue = 1; 6431 struct btrfs_pending_bios *pending_bios; 6432 6433 /* don't bother with additional async steps for reads, right now */ 6434 if (bio_op(bio) == REQ_OP_READ) { 6435 btrfsic_submit_bio(bio); 6436 return; 6437 } 6438 6439 WARN_ON(bio->bi_next); 6440 bio->bi_next = NULL; 6441 6442 spin_lock(&device->io_lock); 6443 if (op_is_sync(bio->bi_opf)) 6444 pending_bios = &device->pending_sync_bios; 6445 else 6446 pending_bios = &device->pending_bios; 6447 6448 if (pending_bios->tail) 6449 pending_bios->tail->bi_next = bio; 6450 6451 pending_bios->tail = bio; 6452 if (!pending_bios->head) 6453 pending_bios->head = bio; 6454 if (device->running_pending) 6455 should_queue = 0; 6456 6457 spin_unlock(&device->io_lock); 6458 6459 if (should_queue) 6460 btrfs_queue_work(fs_info->submit_workers, &device->work); 6461 } 6462 6463 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6464 u64 physical, int dev_nr, int async) 6465 { 6466 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 6467 struct btrfs_fs_info *fs_info = bbio->fs_info; 6468 6469 bio->bi_private = bbio; 6470 btrfs_io_bio(bio)->stripe_index = dev_nr; 6471 bio->bi_end_io = btrfs_end_bio; 6472 bio->bi_iter.bi_sector = physical >> 9; 6473 btrfs_debug_in_rcu(fs_info, 6474 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6475 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector, 6476 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid, 6477 bio->bi_iter.bi_size); 6478 bio_set_dev(bio, dev->bdev); 6479 6480 btrfs_bio_counter_inc_noblocked(fs_info); 6481 6482 if (async) 6483 btrfs_schedule_bio(dev, bio); 6484 else 6485 btrfsic_submit_bio(bio); 6486 } 6487 6488 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6489 { 6490 atomic_inc(&bbio->error); 6491 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6492 /* Should be the original bio. */ 6493 WARN_ON(bio != bbio->orig_bio); 6494 6495 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6496 bio->bi_iter.bi_sector = logical >> 9; 6497 if (atomic_read(&bbio->error) > bbio->max_errors) 6498 bio->bi_status = BLK_STS_IOERR; 6499 else 6500 bio->bi_status = BLK_STS_OK; 6501 btrfs_end_bbio(bbio, bio); 6502 } 6503 } 6504 6505 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6506 int mirror_num, int async_submit) 6507 { 6508 struct btrfs_device *dev; 6509 struct bio *first_bio = bio; 6510 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6511 u64 length = 0; 6512 u64 map_length; 6513 int ret; 6514 int dev_nr; 6515 int total_devs; 6516 struct btrfs_bio *bbio = NULL; 6517 6518 length = bio->bi_iter.bi_size; 6519 map_length = length; 6520 6521 btrfs_bio_counter_inc_blocked(fs_info); 6522 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6523 &map_length, &bbio, mirror_num, 1); 6524 if (ret) { 6525 btrfs_bio_counter_dec(fs_info); 6526 return errno_to_blk_status(ret); 6527 } 6528 6529 total_devs = bbio->num_stripes; 6530 bbio->orig_bio = first_bio; 6531 bbio->private = first_bio->bi_private; 6532 bbio->end_io = first_bio->bi_end_io; 6533 bbio->fs_info = fs_info; 6534 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6535 6536 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6537 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6538 /* In this case, map_length has been set to the length of 6539 a single stripe; not the whole write */ 6540 if (bio_op(bio) == REQ_OP_WRITE) { 6541 ret = raid56_parity_write(fs_info, bio, bbio, 6542 map_length); 6543 } else { 6544 ret = raid56_parity_recover(fs_info, bio, bbio, 6545 map_length, mirror_num, 1); 6546 } 6547 6548 btrfs_bio_counter_dec(fs_info); 6549 return errno_to_blk_status(ret); 6550 } 6551 6552 if (map_length < length) { 6553 btrfs_crit(fs_info, 6554 "mapping failed logical %llu bio len %llu len %llu", 6555 logical, length, map_length); 6556 BUG(); 6557 } 6558 6559 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6560 dev = bbio->stripes[dev_nr].dev; 6561 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6562 &dev->dev_state) || 6563 (bio_op(first_bio) == REQ_OP_WRITE && 6564 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6565 bbio_error(bbio, first_bio, logical); 6566 continue; 6567 } 6568 6569 if (dev_nr < total_devs - 1) 6570 bio = btrfs_bio_clone(first_bio); 6571 else 6572 bio = first_bio; 6573 6574 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, 6575 dev_nr, async_submit); 6576 } 6577 btrfs_bio_counter_dec(fs_info); 6578 return BLK_STS_OK; 6579 } 6580 6581 /* 6582 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6583 * return NULL. 6584 * 6585 * If devid and uuid are both specified, the match must be exact, otherwise 6586 * only devid is used. 6587 * 6588 * If @seed is true, traverse through the seed devices. 6589 */ 6590 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 6591 u64 devid, u8 *uuid, u8 *fsid, 6592 bool seed) 6593 { 6594 struct btrfs_device *device; 6595 6596 while (fs_devices) { 6597 if (!fsid || 6598 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6599 list_for_each_entry(device, &fs_devices->devices, 6600 dev_list) { 6601 if (device->devid == devid && 6602 (!uuid || memcmp(device->uuid, uuid, 6603 BTRFS_UUID_SIZE) == 0)) 6604 return device; 6605 } 6606 } 6607 if (seed) 6608 fs_devices = fs_devices->seed; 6609 else 6610 return NULL; 6611 } 6612 return NULL; 6613 } 6614 6615 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6616 u64 devid, u8 *dev_uuid) 6617 { 6618 struct btrfs_device *device; 6619 6620 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6621 if (IS_ERR(device)) 6622 return device; 6623 6624 list_add(&device->dev_list, &fs_devices->devices); 6625 device->fs_devices = fs_devices; 6626 fs_devices->num_devices++; 6627 6628 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6629 fs_devices->missing_devices++; 6630 6631 return device; 6632 } 6633 6634 /** 6635 * btrfs_alloc_device - allocate struct btrfs_device 6636 * @fs_info: used only for generating a new devid, can be NULL if 6637 * devid is provided (i.e. @devid != NULL). 6638 * @devid: a pointer to devid for this device. If NULL a new devid 6639 * is generated. 6640 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6641 * is generated. 6642 * 6643 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6644 * on error. Returned struct is not linked onto any lists and must be 6645 * destroyed with btrfs_free_device. 6646 */ 6647 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6648 const u64 *devid, 6649 const u8 *uuid) 6650 { 6651 struct btrfs_device *dev; 6652 u64 tmp; 6653 6654 if (WARN_ON(!devid && !fs_info)) 6655 return ERR_PTR(-EINVAL); 6656 6657 dev = __alloc_device(); 6658 if (IS_ERR(dev)) 6659 return dev; 6660 6661 if (devid) 6662 tmp = *devid; 6663 else { 6664 int ret; 6665 6666 ret = find_next_devid(fs_info, &tmp); 6667 if (ret) { 6668 btrfs_free_device(dev); 6669 return ERR_PTR(ret); 6670 } 6671 } 6672 dev->devid = tmp; 6673 6674 if (uuid) 6675 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6676 else 6677 generate_random_uuid(dev->uuid); 6678 6679 btrfs_init_work(&dev->work, btrfs_submit_helper, 6680 pending_bios_fn, NULL, NULL); 6681 6682 return dev; 6683 } 6684 6685 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6686 u64 devid, u8 *uuid, bool error) 6687 { 6688 if (error) 6689 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6690 devid, uuid); 6691 else 6692 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6693 devid, uuid); 6694 } 6695 6696 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 6697 { 6698 int index = btrfs_bg_flags_to_raid_index(type); 6699 int ncopies = btrfs_raid_array[index].ncopies; 6700 int data_stripes; 6701 6702 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6703 case BTRFS_BLOCK_GROUP_RAID5: 6704 data_stripes = num_stripes - 1; 6705 break; 6706 case BTRFS_BLOCK_GROUP_RAID6: 6707 data_stripes = num_stripes - 2; 6708 break; 6709 default: 6710 data_stripes = num_stripes / ncopies; 6711 break; 6712 } 6713 return div_u64(chunk_len, data_stripes); 6714 } 6715 6716 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6717 struct btrfs_chunk *chunk) 6718 { 6719 struct btrfs_fs_info *fs_info = leaf->fs_info; 6720 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6721 struct map_lookup *map; 6722 struct extent_map *em; 6723 u64 logical; 6724 u64 length; 6725 u64 devid; 6726 u8 uuid[BTRFS_UUID_SIZE]; 6727 int num_stripes; 6728 int ret; 6729 int i; 6730 6731 logical = key->offset; 6732 length = btrfs_chunk_length(leaf, chunk); 6733 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6734 6735 /* 6736 * Only need to verify chunk item if we're reading from sys chunk array, 6737 * as chunk item in tree block is already verified by tree-checker. 6738 */ 6739 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6740 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6741 if (ret) 6742 return ret; 6743 } 6744 6745 read_lock(&map_tree->lock); 6746 em = lookup_extent_mapping(map_tree, logical, 1); 6747 read_unlock(&map_tree->lock); 6748 6749 /* already mapped? */ 6750 if (em && em->start <= logical && em->start + em->len > logical) { 6751 free_extent_map(em); 6752 return 0; 6753 } else if (em) { 6754 free_extent_map(em); 6755 } 6756 6757 em = alloc_extent_map(); 6758 if (!em) 6759 return -ENOMEM; 6760 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6761 if (!map) { 6762 free_extent_map(em); 6763 return -ENOMEM; 6764 } 6765 6766 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6767 em->map_lookup = map; 6768 em->start = logical; 6769 em->len = length; 6770 em->orig_start = 0; 6771 em->block_start = 0; 6772 em->block_len = em->len; 6773 6774 map->num_stripes = num_stripes; 6775 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6776 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6777 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6778 map->type = btrfs_chunk_type(leaf, chunk); 6779 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6780 map->verified_stripes = 0; 6781 em->orig_block_len = calc_stripe_length(map->type, em->len, 6782 map->num_stripes); 6783 for (i = 0; i < num_stripes; i++) { 6784 map->stripes[i].physical = 6785 btrfs_stripe_offset_nr(leaf, chunk, i); 6786 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6787 read_extent_buffer(leaf, uuid, (unsigned long) 6788 btrfs_stripe_dev_uuid_nr(chunk, i), 6789 BTRFS_UUID_SIZE); 6790 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, 6791 devid, uuid, NULL, true); 6792 if (!map->stripes[i].dev && 6793 !btrfs_test_opt(fs_info, DEGRADED)) { 6794 free_extent_map(em); 6795 btrfs_report_missing_device(fs_info, devid, uuid, true); 6796 return -ENOENT; 6797 } 6798 if (!map->stripes[i].dev) { 6799 map->stripes[i].dev = 6800 add_missing_dev(fs_info->fs_devices, devid, 6801 uuid); 6802 if (IS_ERR(map->stripes[i].dev)) { 6803 free_extent_map(em); 6804 btrfs_err(fs_info, 6805 "failed to init missing dev %llu: %ld", 6806 devid, PTR_ERR(map->stripes[i].dev)); 6807 return PTR_ERR(map->stripes[i].dev); 6808 } 6809 btrfs_report_missing_device(fs_info, devid, uuid, false); 6810 } 6811 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6812 &(map->stripes[i].dev->dev_state)); 6813 6814 } 6815 6816 write_lock(&map_tree->lock); 6817 ret = add_extent_mapping(map_tree, em, 0); 6818 write_unlock(&map_tree->lock); 6819 if (ret < 0) { 6820 btrfs_err(fs_info, 6821 "failed to add chunk map, start=%llu len=%llu: %d", 6822 em->start, em->len, ret); 6823 } 6824 free_extent_map(em); 6825 6826 return ret; 6827 } 6828 6829 static void fill_device_from_item(struct extent_buffer *leaf, 6830 struct btrfs_dev_item *dev_item, 6831 struct btrfs_device *device) 6832 { 6833 unsigned long ptr; 6834 6835 device->devid = btrfs_device_id(leaf, dev_item); 6836 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6837 device->total_bytes = device->disk_total_bytes; 6838 device->commit_total_bytes = device->disk_total_bytes; 6839 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6840 device->commit_bytes_used = device->bytes_used; 6841 device->type = btrfs_device_type(leaf, dev_item); 6842 device->io_align = btrfs_device_io_align(leaf, dev_item); 6843 device->io_width = btrfs_device_io_width(leaf, dev_item); 6844 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6845 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6846 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6847 6848 ptr = btrfs_device_uuid(dev_item); 6849 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6850 } 6851 6852 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6853 u8 *fsid) 6854 { 6855 struct btrfs_fs_devices *fs_devices; 6856 int ret; 6857 6858 lockdep_assert_held(&uuid_mutex); 6859 ASSERT(fsid); 6860 6861 fs_devices = fs_info->fs_devices->seed; 6862 while (fs_devices) { 6863 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6864 return fs_devices; 6865 6866 fs_devices = fs_devices->seed; 6867 } 6868 6869 fs_devices = find_fsid(fsid, NULL); 6870 if (!fs_devices) { 6871 if (!btrfs_test_opt(fs_info, DEGRADED)) 6872 return ERR_PTR(-ENOENT); 6873 6874 fs_devices = alloc_fs_devices(fsid, NULL); 6875 if (IS_ERR(fs_devices)) 6876 return fs_devices; 6877 6878 fs_devices->seeding = 1; 6879 fs_devices->opened = 1; 6880 return fs_devices; 6881 } 6882 6883 fs_devices = clone_fs_devices(fs_devices); 6884 if (IS_ERR(fs_devices)) 6885 return fs_devices; 6886 6887 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 6888 if (ret) { 6889 free_fs_devices(fs_devices); 6890 fs_devices = ERR_PTR(ret); 6891 goto out; 6892 } 6893 6894 if (!fs_devices->seeding) { 6895 close_fs_devices(fs_devices); 6896 free_fs_devices(fs_devices); 6897 fs_devices = ERR_PTR(-EINVAL); 6898 goto out; 6899 } 6900 6901 fs_devices->seed = fs_info->fs_devices->seed; 6902 fs_info->fs_devices->seed = fs_devices; 6903 out: 6904 return fs_devices; 6905 } 6906 6907 static int read_one_dev(struct extent_buffer *leaf, 6908 struct btrfs_dev_item *dev_item) 6909 { 6910 struct btrfs_fs_info *fs_info = leaf->fs_info; 6911 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6912 struct btrfs_device *device; 6913 u64 devid; 6914 int ret; 6915 u8 fs_uuid[BTRFS_FSID_SIZE]; 6916 u8 dev_uuid[BTRFS_UUID_SIZE]; 6917 6918 devid = btrfs_device_id(leaf, dev_item); 6919 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6920 BTRFS_UUID_SIZE); 6921 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6922 BTRFS_FSID_SIZE); 6923 6924 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6925 fs_devices = open_seed_devices(fs_info, fs_uuid); 6926 if (IS_ERR(fs_devices)) 6927 return PTR_ERR(fs_devices); 6928 } 6929 6930 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 6931 fs_uuid, true); 6932 if (!device) { 6933 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6934 btrfs_report_missing_device(fs_info, devid, 6935 dev_uuid, true); 6936 return -ENOENT; 6937 } 6938 6939 device = add_missing_dev(fs_devices, devid, dev_uuid); 6940 if (IS_ERR(device)) { 6941 btrfs_err(fs_info, 6942 "failed to add missing dev %llu: %ld", 6943 devid, PTR_ERR(device)); 6944 return PTR_ERR(device); 6945 } 6946 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6947 } else { 6948 if (!device->bdev) { 6949 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6950 btrfs_report_missing_device(fs_info, 6951 devid, dev_uuid, true); 6952 return -ENOENT; 6953 } 6954 btrfs_report_missing_device(fs_info, devid, 6955 dev_uuid, false); 6956 } 6957 6958 if (!device->bdev && 6959 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6960 /* 6961 * this happens when a device that was properly setup 6962 * in the device info lists suddenly goes bad. 6963 * device->bdev is NULL, and so we have to set 6964 * device->missing to one here 6965 */ 6966 device->fs_devices->missing_devices++; 6967 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6968 } 6969 6970 /* Move the device to its own fs_devices */ 6971 if (device->fs_devices != fs_devices) { 6972 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 6973 &device->dev_state)); 6974 6975 list_move(&device->dev_list, &fs_devices->devices); 6976 device->fs_devices->num_devices--; 6977 fs_devices->num_devices++; 6978 6979 device->fs_devices->missing_devices--; 6980 fs_devices->missing_devices++; 6981 6982 device->fs_devices = fs_devices; 6983 } 6984 } 6985 6986 if (device->fs_devices != fs_info->fs_devices) { 6987 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 6988 if (device->generation != 6989 btrfs_device_generation(leaf, dev_item)) 6990 return -EINVAL; 6991 } 6992 6993 fill_device_from_item(leaf, dev_item, device); 6994 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 6995 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 6996 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 6997 device->fs_devices->total_rw_bytes += device->total_bytes; 6998 atomic64_add(device->total_bytes - device->bytes_used, 6999 &fs_info->free_chunk_space); 7000 } 7001 ret = 0; 7002 return ret; 7003 } 7004 7005 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7006 { 7007 struct btrfs_root *root = fs_info->tree_root; 7008 struct btrfs_super_block *super_copy = fs_info->super_copy; 7009 struct extent_buffer *sb; 7010 struct btrfs_disk_key *disk_key; 7011 struct btrfs_chunk *chunk; 7012 u8 *array_ptr; 7013 unsigned long sb_array_offset; 7014 int ret = 0; 7015 u32 num_stripes; 7016 u32 array_size; 7017 u32 len = 0; 7018 u32 cur_offset; 7019 u64 type; 7020 struct btrfs_key key; 7021 7022 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7023 /* 7024 * This will create extent buffer of nodesize, superblock size is 7025 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 7026 * overallocate but we can keep it as-is, only the first page is used. 7027 */ 7028 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 7029 if (IS_ERR(sb)) 7030 return PTR_ERR(sb); 7031 set_extent_buffer_uptodate(sb); 7032 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 7033 /* 7034 * The sb extent buffer is artificial and just used to read the system array. 7035 * set_extent_buffer_uptodate() call does not properly mark all it's 7036 * pages up-to-date when the page is larger: extent does not cover the 7037 * whole page and consequently check_page_uptodate does not find all 7038 * the page's extents up-to-date (the hole beyond sb), 7039 * write_extent_buffer then triggers a WARN_ON. 7040 * 7041 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 7042 * but sb spans only this function. Add an explicit SetPageUptodate call 7043 * to silence the warning eg. on PowerPC 64. 7044 */ 7045 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 7046 SetPageUptodate(sb->pages[0]); 7047 7048 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7049 array_size = btrfs_super_sys_array_size(super_copy); 7050 7051 array_ptr = super_copy->sys_chunk_array; 7052 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7053 cur_offset = 0; 7054 7055 while (cur_offset < array_size) { 7056 disk_key = (struct btrfs_disk_key *)array_ptr; 7057 len = sizeof(*disk_key); 7058 if (cur_offset + len > array_size) 7059 goto out_short_read; 7060 7061 btrfs_disk_key_to_cpu(&key, disk_key); 7062 7063 array_ptr += len; 7064 sb_array_offset += len; 7065 cur_offset += len; 7066 7067 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 7068 chunk = (struct btrfs_chunk *)sb_array_offset; 7069 /* 7070 * At least one btrfs_chunk with one stripe must be 7071 * present, exact stripe count check comes afterwards 7072 */ 7073 len = btrfs_chunk_item_size(1); 7074 if (cur_offset + len > array_size) 7075 goto out_short_read; 7076 7077 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7078 if (!num_stripes) { 7079 btrfs_err(fs_info, 7080 "invalid number of stripes %u in sys_array at offset %u", 7081 num_stripes, cur_offset); 7082 ret = -EIO; 7083 break; 7084 } 7085 7086 type = btrfs_chunk_type(sb, chunk); 7087 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7088 btrfs_err(fs_info, 7089 "invalid chunk type %llu in sys_array at offset %u", 7090 type, cur_offset); 7091 ret = -EIO; 7092 break; 7093 } 7094 7095 len = btrfs_chunk_item_size(num_stripes); 7096 if (cur_offset + len > array_size) 7097 goto out_short_read; 7098 7099 ret = read_one_chunk(&key, sb, chunk); 7100 if (ret) 7101 break; 7102 } else { 7103 btrfs_err(fs_info, 7104 "unexpected item type %u in sys_array at offset %u", 7105 (u32)key.type, cur_offset); 7106 ret = -EIO; 7107 break; 7108 } 7109 array_ptr += len; 7110 sb_array_offset += len; 7111 cur_offset += len; 7112 } 7113 clear_extent_buffer_uptodate(sb); 7114 free_extent_buffer_stale(sb); 7115 return ret; 7116 7117 out_short_read: 7118 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7119 len, cur_offset); 7120 clear_extent_buffer_uptodate(sb); 7121 free_extent_buffer_stale(sb); 7122 return -EIO; 7123 } 7124 7125 /* 7126 * Check if all chunks in the fs are OK for read-write degraded mount 7127 * 7128 * If the @failing_dev is specified, it's accounted as missing. 7129 * 7130 * Return true if all chunks meet the minimal RW mount requirements. 7131 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7132 */ 7133 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7134 struct btrfs_device *failing_dev) 7135 { 7136 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7137 struct extent_map *em; 7138 u64 next_start = 0; 7139 bool ret = true; 7140 7141 read_lock(&map_tree->lock); 7142 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7143 read_unlock(&map_tree->lock); 7144 /* No chunk at all? Return false anyway */ 7145 if (!em) { 7146 ret = false; 7147 goto out; 7148 } 7149 while (em) { 7150 struct map_lookup *map; 7151 int missing = 0; 7152 int max_tolerated; 7153 int i; 7154 7155 map = em->map_lookup; 7156 max_tolerated = 7157 btrfs_get_num_tolerated_disk_barrier_failures( 7158 map->type); 7159 for (i = 0; i < map->num_stripes; i++) { 7160 struct btrfs_device *dev = map->stripes[i].dev; 7161 7162 if (!dev || !dev->bdev || 7163 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7164 dev->last_flush_error) 7165 missing++; 7166 else if (failing_dev && failing_dev == dev) 7167 missing++; 7168 } 7169 if (missing > max_tolerated) { 7170 if (!failing_dev) 7171 btrfs_warn(fs_info, 7172 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7173 em->start, missing, max_tolerated); 7174 free_extent_map(em); 7175 ret = false; 7176 goto out; 7177 } 7178 next_start = extent_map_end(em); 7179 free_extent_map(em); 7180 7181 read_lock(&map_tree->lock); 7182 em = lookup_extent_mapping(map_tree, next_start, 7183 (u64)(-1) - next_start); 7184 read_unlock(&map_tree->lock); 7185 } 7186 out: 7187 return ret; 7188 } 7189 7190 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7191 { 7192 struct btrfs_root *root = fs_info->chunk_root; 7193 struct btrfs_path *path; 7194 struct extent_buffer *leaf; 7195 struct btrfs_key key; 7196 struct btrfs_key found_key; 7197 int ret; 7198 int slot; 7199 u64 total_dev = 0; 7200 7201 path = btrfs_alloc_path(); 7202 if (!path) 7203 return -ENOMEM; 7204 7205 /* 7206 * uuid_mutex is needed only if we are mounting a sprout FS 7207 * otherwise we don't need it. 7208 */ 7209 mutex_lock(&uuid_mutex); 7210 mutex_lock(&fs_info->chunk_mutex); 7211 7212 /* 7213 * Read all device items, and then all the chunk items. All 7214 * device items are found before any chunk item (their object id 7215 * is smaller than the lowest possible object id for a chunk 7216 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7217 */ 7218 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7219 key.offset = 0; 7220 key.type = 0; 7221 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7222 if (ret < 0) 7223 goto error; 7224 while (1) { 7225 leaf = path->nodes[0]; 7226 slot = path->slots[0]; 7227 if (slot >= btrfs_header_nritems(leaf)) { 7228 ret = btrfs_next_leaf(root, path); 7229 if (ret == 0) 7230 continue; 7231 if (ret < 0) 7232 goto error; 7233 break; 7234 } 7235 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7236 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7237 struct btrfs_dev_item *dev_item; 7238 dev_item = btrfs_item_ptr(leaf, slot, 7239 struct btrfs_dev_item); 7240 ret = read_one_dev(leaf, dev_item); 7241 if (ret) 7242 goto error; 7243 total_dev++; 7244 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7245 struct btrfs_chunk *chunk; 7246 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7247 ret = read_one_chunk(&found_key, leaf, chunk); 7248 if (ret) 7249 goto error; 7250 } 7251 path->slots[0]++; 7252 } 7253 7254 /* 7255 * After loading chunk tree, we've got all device information, 7256 * do another round of validation checks. 7257 */ 7258 if (total_dev != fs_info->fs_devices->total_devices) { 7259 btrfs_err(fs_info, 7260 "super_num_devices %llu mismatch with num_devices %llu found here", 7261 btrfs_super_num_devices(fs_info->super_copy), 7262 total_dev); 7263 ret = -EINVAL; 7264 goto error; 7265 } 7266 if (btrfs_super_total_bytes(fs_info->super_copy) < 7267 fs_info->fs_devices->total_rw_bytes) { 7268 btrfs_err(fs_info, 7269 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7270 btrfs_super_total_bytes(fs_info->super_copy), 7271 fs_info->fs_devices->total_rw_bytes); 7272 ret = -EINVAL; 7273 goto error; 7274 } 7275 ret = 0; 7276 error: 7277 mutex_unlock(&fs_info->chunk_mutex); 7278 mutex_unlock(&uuid_mutex); 7279 7280 btrfs_free_path(path); 7281 return ret; 7282 } 7283 7284 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7285 { 7286 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7287 struct btrfs_device *device; 7288 7289 while (fs_devices) { 7290 mutex_lock(&fs_devices->device_list_mutex); 7291 list_for_each_entry(device, &fs_devices->devices, dev_list) 7292 device->fs_info = fs_info; 7293 mutex_unlock(&fs_devices->device_list_mutex); 7294 7295 fs_devices = fs_devices->seed; 7296 } 7297 } 7298 7299 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 7300 { 7301 int i; 7302 7303 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7304 btrfs_dev_stat_reset(dev, i); 7305 } 7306 7307 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7308 { 7309 struct btrfs_key key; 7310 struct btrfs_key found_key; 7311 struct btrfs_root *dev_root = fs_info->dev_root; 7312 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7313 struct extent_buffer *eb; 7314 int slot; 7315 int ret = 0; 7316 struct btrfs_device *device; 7317 struct btrfs_path *path = NULL; 7318 int i; 7319 7320 path = btrfs_alloc_path(); 7321 if (!path) { 7322 ret = -ENOMEM; 7323 goto out; 7324 } 7325 7326 mutex_lock(&fs_devices->device_list_mutex); 7327 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7328 int item_size; 7329 struct btrfs_dev_stats_item *ptr; 7330 7331 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7332 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7333 key.offset = device->devid; 7334 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 7335 if (ret) { 7336 __btrfs_reset_dev_stats(device); 7337 device->dev_stats_valid = 1; 7338 btrfs_release_path(path); 7339 continue; 7340 } 7341 slot = path->slots[0]; 7342 eb = path->nodes[0]; 7343 btrfs_item_key_to_cpu(eb, &found_key, slot); 7344 item_size = btrfs_item_size_nr(eb, slot); 7345 7346 ptr = btrfs_item_ptr(eb, slot, 7347 struct btrfs_dev_stats_item); 7348 7349 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7350 if (item_size >= (1 + i) * sizeof(__le64)) 7351 btrfs_dev_stat_set(device, i, 7352 btrfs_dev_stats_value(eb, ptr, i)); 7353 else 7354 btrfs_dev_stat_reset(device, i); 7355 } 7356 7357 device->dev_stats_valid = 1; 7358 btrfs_dev_stat_print_on_load(device); 7359 btrfs_release_path(path); 7360 } 7361 mutex_unlock(&fs_devices->device_list_mutex); 7362 7363 out: 7364 btrfs_free_path(path); 7365 return ret < 0 ? ret : 0; 7366 } 7367 7368 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7369 struct btrfs_device *device) 7370 { 7371 struct btrfs_fs_info *fs_info = trans->fs_info; 7372 struct btrfs_root *dev_root = fs_info->dev_root; 7373 struct btrfs_path *path; 7374 struct btrfs_key key; 7375 struct extent_buffer *eb; 7376 struct btrfs_dev_stats_item *ptr; 7377 int ret; 7378 int i; 7379 7380 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7381 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7382 key.offset = device->devid; 7383 7384 path = btrfs_alloc_path(); 7385 if (!path) 7386 return -ENOMEM; 7387 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7388 if (ret < 0) { 7389 btrfs_warn_in_rcu(fs_info, 7390 "error %d while searching for dev_stats item for device %s", 7391 ret, rcu_str_deref(device->name)); 7392 goto out; 7393 } 7394 7395 if (ret == 0 && 7396 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7397 /* need to delete old one and insert a new one */ 7398 ret = btrfs_del_item(trans, dev_root, path); 7399 if (ret != 0) { 7400 btrfs_warn_in_rcu(fs_info, 7401 "delete too small dev_stats item for device %s failed %d", 7402 rcu_str_deref(device->name), ret); 7403 goto out; 7404 } 7405 ret = 1; 7406 } 7407 7408 if (ret == 1) { 7409 /* need to insert a new item */ 7410 btrfs_release_path(path); 7411 ret = btrfs_insert_empty_item(trans, dev_root, path, 7412 &key, sizeof(*ptr)); 7413 if (ret < 0) { 7414 btrfs_warn_in_rcu(fs_info, 7415 "insert dev_stats item for device %s failed %d", 7416 rcu_str_deref(device->name), ret); 7417 goto out; 7418 } 7419 } 7420 7421 eb = path->nodes[0]; 7422 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7423 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7424 btrfs_set_dev_stats_value(eb, ptr, i, 7425 btrfs_dev_stat_read(device, i)); 7426 btrfs_mark_buffer_dirty(eb); 7427 7428 out: 7429 btrfs_free_path(path); 7430 return ret; 7431 } 7432 7433 /* 7434 * called from commit_transaction. Writes all changed device stats to disk. 7435 */ 7436 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7437 { 7438 struct btrfs_fs_info *fs_info = trans->fs_info; 7439 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7440 struct btrfs_device *device; 7441 int stats_cnt; 7442 int ret = 0; 7443 7444 mutex_lock(&fs_devices->device_list_mutex); 7445 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7446 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7447 if (!device->dev_stats_valid || stats_cnt == 0) 7448 continue; 7449 7450 7451 /* 7452 * There is a LOAD-LOAD control dependency between the value of 7453 * dev_stats_ccnt and updating the on-disk values which requires 7454 * reading the in-memory counters. Such control dependencies 7455 * require explicit read memory barriers. 7456 * 7457 * This memory barriers pairs with smp_mb__before_atomic in 7458 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7459 * barrier implied by atomic_xchg in 7460 * btrfs_dev_stats_read_and_reset 7461 */ 7462 smp_rmb(); 7463 7464 ret = update_dev_stat_item(trans, device); 7465 if (!ret) 7466 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7467 } 7468 mutex_unlock(&fs_devices->device_list_mutex); 7469 7470 return ret; 7471 } 7472 7473 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7474 { 7475 btrfs_dev_stat_inc(dev, index); 7476 btrfs_dev_stat_print_on_error(dev); 7477 } 7478 7479 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7480 { 7481 if (!dev->dev_stats_valid) 7482 return; 7483 btrfs_err_rl_in_rcu(dev->fs_info, 7484 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7485 rcu_str_deref(dev->name), 7486 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7487 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7488 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7489 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7490 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7491 } 7492 7493 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7494 { 7495 int i; 7496 7497 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7498 if (btrfs_dev_stat_read(dev, i) != 0) 7499 break; 7500 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7501 return; /* all values == 0, suppress message */ 7502 7503 btrfs_info_in_rcu(dev->fs_info, 7504 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7505 rcu_str_deref(dev->name), 7506 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7507 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7508 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7509 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7510 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7511 } 7512 7513 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7514 struct btrfs_ioctl_get_dev_stats *stats) 7515 { 7516 struct btrfs_device *dev; 7517 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7518 int i; 7519 7520 mutex_lock(&fs_devices->device_list_mutex); 7521 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL, 7522 true); 7523 mutex_unlock(&fs_devices->device_list_mutex); 7524 7525 if (!dev) { 7526 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7527 return -ENODEV; 7528 } else if (!dev->dev_stats_valid) { 7529 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7530 return -ENODEV; 7531 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7532 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7533 if (stats->nr_items > i) 7534 stats->values[i] = 7535 btrfs_dev_stat_read_and_reset(dev, i); 7536 else 7537 btrfs_dev_stat_reset(dev, i); 7538 } 7539 } else { 7540 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7541 if (stats->nr_items > i) 7542 stats->values[i] = btrfs_dev_stat_read(dev, i); 7543 } 7544 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7545 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7546 return 0; 7547 } 7548 7549 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path) 7550 { 7551 struct buffer_head *bh; 7552 struct btrfs_super_block *disk_super; 7553 int copy_num; 7554 7555 if (!bdev) 7556 return; 7557 7558 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 7559 copy_num++) { 7560 7561 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 7562 continue; 7563 7564 disk_super = (struct btrfs_super_block *)bh->b_data; 7565 7566 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 7567 set_buffer_dirty(bh); 7568 sync_dirty_buffer(bh); 7569 brelse(bh); 7570 } 7571 7572 /* Notify udev that device has changed */ 7573 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 7574 7575 /* Update ctime/mtime for device path for libblkid */ 7576 update_dev_time(device_path); 7577 } 7578 7579 /* 7580 * Update the size and bytes used for each device where it changed. This is 7581 * delayed since we would otherwise get errors while writing out the 7582 * superblocks. 7583 * 7584 * Must be invoked during transaction commit. 7585 */ 7586 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7587 { 7588 struct btrfs_device *curr, *next; 7589 7590 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7591 7592 if (list_empty(&trans->dev_update_list)) 7593 return; 7594 7595 /* 7596 * We don't need the device_list_mutex here. This list is owned by the 7597 * transaction and the transaction must complete before the device is 7598 * released. 7599 */ 7600 mutex_lock(&trans->fs_info->chunk_mutex); 7601 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7602 post_commit_list) { 7603 list_del_init(&curr->post_commit_list); 7604 curr->commit_total_bytes = curr->disk_total_bytes; 7605 curr->commit_bytes_used = curr->bytes_used; 7606 } 7607 mutex_unlock(&trans->fs_info->chunk_mutex); 7608 } 7609 7610 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 7611 { 7612 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7613 while (fs_devices) { 7614 fs_devices->fs_info = fs_info; 7615 fs_devices = fs_devices->seed; 7616 } 7617 } 7618 7619 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 7620 { 7621 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7622 while (fs_devices) { 7623 fs_devices->fs_info = NULL; 7624 fs_devices = fs_devices->seed; 7625 } 7626 } 7627 7628 /* 7629 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7630 */ 7631 int btrfs_bg_type_to_factor(u64 flags) 7632 { 7633 const int index = btrfs_bg_flags_to_raid_index(flags); 7634 7635 return btrfs_raid_array[index].ncopies; 7636 } 7637 7638 7639 7640 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7641 u64 chunk_offset, u64 devid, 7642 u64 physical_offset, u64 physical_len) 7643 { 7644 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7645 struct extent_map *em; 7646 struct map_lookup *map; 7647 struct btrfs_device *dev; 7648 u64 stripe_len; 7649 bool found = false; 7650 int ret = 0; 7651 int i; 7652 7653 read_lock(&em_tree->lock); 7654 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7655 read_unlock(&em_tree->lock); 7656 7657 if (!em) { 7658 btrfs_err(fs_info, 7659 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7660 physical_offset, devid); 7661 ret = -EUCLEAN; 7662 goto out; 7663 } 7664 7665 map = em->map_lookup; 7666 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 7667 if (physical_len != stripe_len) { 7668 btrfs_err(fs_info, 7669 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7670 physical_offset, devid, em->start, physical_len, 7671 stripe_len); 7672 ret = -EUCLEAN; 7673 goto out; 7674 } 7675 7676 for (i = 0; i < map->num_stripes; i++) { 7677 if (map->stripes[i].dev->devid == devid && 7678 map->stripes[i].physical == physical_offset) { 7679 found = true; 7680 if (map->verified_stripes >= map->num_stripes) { 7681 btrfs_err(fs_info, 7682 "too many dev extents for chunk %llu found", 7683 em->start); 7684 ret = -EUCLEAN; 7685 goto out; 7686 } 7687 map->verified_stripes++; 7688 break; 7689 } 7690 } 7691 if (!found) { 7692 btrfs_err(fs_info, 7693 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7694 physical_offset, devid); 7695 ret = -EUCLEAN; 7696 } 7697 7698 /* Make sure no dev extent is beyond device bondary */ 7699 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 7700 if (!dev) { 7701 btrfs_err(fs_info, "failed to find devid %llu", devid); 7702 ret = -EUCLEAN; 7703 goto out; 7704 } 7705 7706 /* It's possible this device is a dummy for seed device */ 7707 if (dev->disk_total_bytes == 0) { 7708 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL, 7709 NULL, false); 7710 if (!dev) { 7711 btrfs_err(fs_info, "failed to find seed devid %llu", 7712 devid); 7713 ret = -EUCLEAN; 7714 goto out; 7715 } 7716 } 7717 7718 if (physical_offset + physical_len > dev->disk_total_bytes) { 7719 btrfs_err(fs_info, 7720 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7721 devid, physical_offset, physical_len, 7722 dev->disk_total_bytes); 7723 ret = -EUCLEAN; 7724 goto out; 7725 } 7726 out: 7727 free_extent_map(em); 7728 return ret; 7729 } 7730 7731 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7732 { 7733 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7734 struct extent_map *em; 7735 struct rb_node *node; 7736 int ret = 0; 7737 7738 read_lock(&em_tree->lock); 7739 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7740 em = rb_entry(node, struct extent_map, rb_node); 7741 if (em->map_lookup->num_stripes != 7742 em->map_lookup->verified_stripes) { 7743 btrfs_err(fs_info, 7744 "chunk %llu has missing dev extent, have %d expect %d", 7745 em->start, em->map_lookup->verified_stripes, 7746 em->map_lookup->num_stripes); 7747 ret = -EUCLEAN; 7748 goto out; 7749 } 7750 } 7751 out: 7752 read_unlock(&em_tree->lock); 7753 return ret; 7754 } 7755 7756 /* 7757 * Ensure that all dev extents are mapped to correct chunk, otherwise 7758 * later chunk allocation/free would cause unexpected behavior. 7759 * 7760 * NOTE: This will iterate through the whole device tree, which should be of 7761 * the same size level as the chunk tree. This slightly increases mount time. 7762 */ 7763 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7764 { 7765 struct btrfs_path *path; 7766 struct btrfs_root *root = fs_info->dev_root; 7767 struct btrfs_key key; 7768 u64 prev_devid = 0; 7769 u64 prev_dev_ext_end = 0; 7770 int ret = 0; 7771 7772 key.objectid = 1; 7773 key.type = BTRFS_DEV_EXTENT_KEY; 7774 key.offset = 0; 7775 7776 path = btrfs_alloc_path(); 7777 if (!path) 7778 return -ENOMEM; 7779 7780 path->reada = READA_FORWARD; 7781 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7782 if (ret < 0) 7783 goto out; 7784 7785 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7786 ret = btrfs_next_item(root, path); 7787 if (ret < 0) 7788 goto out; 7789 /* No dev extents at all? Not good */ 7790 if (ret > 0) { 7791 ret = -EUCLEAN; 7792 goto out; 7793 } 7794 } 7795 while (1) { 7796 struct extent_buffer *leaf = path->nodes[0]; 7797 struct btrfs_dev_extent *dext; 7798 int slot = path->slots[0]; 7799 u64 chunk_offset; 7800 u64 physical_offset; 7801 u64 physical_len; 7802 u64 devid; 7803 7804 btrfs_item_key_to_cpu(leaf, &key, slot); 7805 if (key.type != BTRFS_DEV_EXTENT_KEY) 7806 break; 7807 devid = key.objectid; 7808 physical_offset = key.offset; 7809 7810 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7811 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7812 physical_len = btrfs_dev_extent_length(leaf, dext); 7813 7814 /* Check if this dev extent overlaps with the previous one */ 7815 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7816 btrfs_err(fs_info, 7817 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7818 devid, physical_offset, prev_dev_ext_end); 7819 ret = -EUCLEAN; 7820 goto out; 7821 } 7822 7823 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7824 physical_offset, physical_len); 7825 if (ret < 0) 7826 goto out; 7827 prev_devid = devid; 7828 prev_dev_ext_end = physical_offset + physical_len; 7829 7830 ret = btrfs_next_item(root, path); 7831 if (ret < 0) 7832 goto out; 7833 if (ret > 0) { 7834 ret = 0; 7835 break; 7836 } 7837 } 7838 7839 /* Ensure all chunks have corresponding dev extents */ 7840 ret = verify_chunk_dev_extent_mapping(fs_info); 7841 out: 7842 btrfs_free_path(path); 7843 return ret; 7844 } 7845 7846 /* 7847 * Check whether the given block group or device is pinned by any inode being 7848 * used as a swapfile. 7849 */ 7850 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7851 { 7852 struct btrfs_swapfile_pin *sp; 7853 struct rb_node *node; 7854 7855 spin_lock(&fs_info->swapfile_pins_lock); 7856 node = fs_info->swapfile_pins.rb_node; 7857 while (node) { 7858 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7859 if (ptr < sp->ptr) 7860 node = node->rb_left; 7861 else if (ptr > sp->ptr) 7862 node = node->rb_right; 7863 else 7864 break; 7865 } 7866 spin_unlock(&fs_info->swapfile_pins_lock); 7867 return node != NULL; 7868 } 7869