xref: /openbmc/linux/fs/btrfs/volumes.c (revision 56c6eed1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 
31 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
32 	[BTRFS_RAID_RAID10] = {
33 		.sub_stripes	= 2,
34 		.dev_stripes	= 1,
35 		.devs_max	= 0,	/* 0 == as many as possible */
36 		.devs_min	= 4,
37 		.tolerated_failures = 1,
38 		.devs_increment	= 2,
39 		.ncopies	= 2,
40 		.nparity        = 0,
41 		.raid_name	= "raid10",
42 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
43 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
44 	},
45 	[BTRFS_RAID_RAID1] = {
46 		.sub_stripes	= 1,
47 		.dev_stripes	= 1,
48 		.devs_max	= 2,
49 		.devs_min	= 2,
50 		.tolerated_failures = 1,
51 		.devs_increment	= 2,
52 		.ncopies	= 2,
53 		.nparity        = 0,
54 		.raid_name	= "raid1",
55 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
56 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
57 	},
58 	[BTRFS_RAID_DUP] = {
59 		.sub_stripes	= 1,
60 		.dev_stripes	= 2,
61 		.devs_max	= 1,
62 		.devs_min	= 1,
63 		.tolerated_failures = 0,
64 		.devs_increment	= 1,
65 		.ncopies	= 2,
66 		.nparity        = 0,
67 		.raid_name	= "dup",
68 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
69 		.mindev_error	= 0,
70 	},
71 	[BTRFS_RAID_RAID0] = {
72 		.sub_stripes	= 1,
73 		.dev_stripes	= 1,
74 		.devs_max	= 0,
75 		.devs_min	= 2,
76 		.tolerated_failures = 0,
77 		.devs_increment	= 1,
78 		.ncopies	= 1,
79 		.nparity        = 0,
80 		.raid_name	= "raid0",
81 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
82 		.mindev_error	= 0,
83 	},
84 	[BTRFS_RAID_SINGLE] = {
85 		.sub_stripes	= 1,
86 		.dev_stripes	= 1,
87 		.devs_max	= 1,
88 		.devs_min	= 1,
89 		.tolerated_failures = 0,
90 		.devs_increment	= 1,
91 		.ncopies	= 1,
92 		.nparity        = 0,
93 		.raid_name	= "single",
94 		.bg_flag	= 0,
95 		.mindev_error	= 0,
96 	},
97 	[BTRFS_RAID_RAID5] = {
98 		.sub_stripes	= 1,
99 		.dev_stripes	= 1,
100 		.devs_max	= 0,
101 		.devs_min	= 2,
102 		.tolerated_failures = 1,
103 		.devs_increment	= 1,
104 		.ncopies	= 1,
105 		.nparity        = 1,
106 		.raid_name	= "raid5",
107 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
108 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
109 	},
110 	[BTRFS_RAID_RAID6] = {
111 		.sub_stripes	= 1,
112 		.dev_stripes	= 1,
113 		.devs_max	= 0,
114 		.devs_min	= 3,
115 		.tolerated_failures = 2,
116 		.devs_increment	= 1,
117 		.ncopies	= 1,
118 		.nparity        = 2,
119 		.raid_name	= "raid6",
120 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
121 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
122 	},
123 };
124 
125 const char *get_raid_name(enum btrfs_raid_types type)
126 {
127 	if (type >= BTRFS_NR_RAID_TYPES)
128 		return NULL;
129 
130 	return btrfs_raid_array[type].raid_name;
131 }
132 
133 /*
134  * Fill @buf with textual description of @bg_flags, no more than @size_buf
135  * bytes including terminating null byte.
136  */
137 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
138 {
139 	int i;
140 	int ret;
141 	char *bp = buf;
142 	u64 flags = bg_flags;
143 	u32 size_bp = size_buf;
144 
145 	if (!flags) {
146 		strcpy(bp, "NONE");
147 		return;
148 	}
149 
150 #define DESCRIBE_FLAG(flag, desc)						\
151 	do {								\
152 		if (flags & (flag)) {					\
153 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
154 			if (ret < 0 || ret >= size_bp)			\
155 				goto out_overflow;			\
156 			size_bp -= ret;					\
157 			bp += ret;					\
158 			flags &= ~(flag);				\
159 		}							\
160 	} while (0)
161 
162 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
163 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
164 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
165 
166 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
167 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
168 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
169 			      btrfs_raid_array[i].raid_name);
170 #undef DESCRIBE_FLAG
171 
172 	if (flags) {
173 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
174 		size_bp -= ret;
175 	}
176 
177 	if (size_bp < size_buf)
178 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
179 
180 	/*
181 	 * The text is trimmed, it's up to the caller to provide sufficiently
182 	 * large buffer
183 	 */
184 out_overflow:;
185 }
186 
187 static int init_first_rw_device(struct btrfs_trans_handle *trans,
188 				struct btrfs_fs_info *fs_info);
189 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
190 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
191 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
192 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
193 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
194 			     enum btrfs_map_op op,
195 			     u64 logical, u64 *length,
196 			     struct btrfs_bio **bbio_ret,
197 			     int mirror_num, int need_raid_map);
198 
199 /*
200  * Device locking
201  * ==============
202  *
203  * There are several mutexes that protect manipulation of devices and low-level
204  * structures like chunks but not block groups, extents or files
205  *
206  * uuid_mutex (global lock)
207  * ------------------------
208  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
209  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
210  * device) or requested by the device= mount option
211  *
212  * the mutex can be very coarse and can cover long-running operations
213  *
214  * protects: updates to fs_devices counters like missing devices, rw devices,
215  * seeding, structure cloning, opening/closing devices at mount/umount time
216  *
217  * global::fs_devs - add, remove, updates to the global list
218  *
219  * does not protect: manipulation of the fs_devices::devices list!
220  *
221  * btrfs_device::name - renames (write side), read is RCU
222  *
223  * fs_devices::device_list_mutex (per-fs, with RCU)
224  * ------------------------------------------------
225  * protects updates to fs_devices::devices, ie. adding and deleting
226  *
227  * simple list traversal with read-only actions can be done with RCU protection
228  *
229  * may be used to exclude some operations from running concurrently without any
230  * modifications to the list (see write_all_supers)
231  *
232  * balance_mutex
233  * -------------
234  * protects balance structures (status, state) and context accessed from
235  * several places (internally, ioctl)
236  *
237  * chunk_mutex
238  * -----------
239  * protects chunks, adding or removing during allocation, trim or when a new
240  * device is added/removed
241  *
242  * cleaner_mutex
243  * -------------
244  * a big lock that is held by the cleaner thread and prevents running subvolume
245  * cleaning together with relocation or delayed iputs
246  *
247  *
248  * Lock nesting
249  * ============
250  *
251  * uuid_mutex
252  *   volume_mutex
253  *     device_list_mutex
254  *       chunk_mutex
255  *     balance_mutex
256  *
257  *
258  * Exclusive operations, BTRFS_FS_EXCL_OP
259  * ======================================
260  *
261  * Maintains the exclusivity of the following operations that apply to the
262  * whole filesystem and cannot run in parallel.
263  *
264  * - Balance (*)
265  * - Device add
266  * - Device remove
267  * - Device replace (*)
268  * - Resize
269  *
270  * The device operations (as above) can be in one of the following states:
271  *
272  * - Running state
273  * - Paused state
274  * - Completed state
275  *
276  * Only device operations marked with (*) can go into the Paused state for the
277  * following reasons:
278  *
279  * - ioctl (only Balance can be Paused through ioctl)
280  * - filesystem remounted as read-only
281  * - filesystem unmounted and mounted as read-only
282  * - system power-cycle and filesystem mounted as read-only
283  * - filesystem or device errors leading to forced read-only
284  *
285  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
286  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
287  * A device operation in Paused or Running state can be canceled or resumed
288  * either by ioctl (Balance only) or when remounted as read-write.
289  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
290  * completed.
291  */
292 
293 DEFINE_MUTEX(uuid_mutex);
294 static LIST_HEAD(fs_uuids);
295 struct list_head *btrfs_get_fs_uuids(void)
296 {
297 	return &fs_uuids;
298 }
299 
300 /*
301  * alloc_fs_devices - allocate struct btrfs_fs_devices
302  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
303  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
304  *
305  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
306  * The returned struct is not linked onto any lists and can be destroyed with
307  * kfree() right away.
308  */
309 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
310 						 const u8 *metadata_fsid)
311 {
312 	struct btrfs_fs_devices *fs_devs;
313 
314 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
315 	if (!fs_devs)
316 		return ERR_PTR(-ENOMEM);
317 
318 	mutex_init(&fs_devs->device_list_mutex);
319 
320 	INIT_LIST_HEAD(&fs_devs->devices);
321 	INIT_LIST_HEAD(&fs_devs->resized_devices);
322 	INIT_LIST_HEAD(&fs_devs->alloc_list);
323 	INIT_LIST_HEAD(&fs_devs->fs_list);
324 	if (fsid)
325 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
326 
327 	if (metadata_fsid)
328 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
329 	else if (fsid)
330 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
331 
332 	return fs_devs;
333 }
334 
335 void btrfs_free_device(struct btrfs_device *device)
336 {
337 	rcu_string_free(device->name);
338 	bio_put(device->flush_bio);
339 	kfree(device);
340 }
341 
342 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
343 {
344 	struct btrfs_device *device;
345 	WARN_ON(fs_devices->opened);
346 	while (!list_empty(&fs_devices->devices)) {
347 		device = list_entry(fs_devices->devices.next,
348 				    struct btrfs_device, dev_list);
349 		list_del(&device->dev_list);
350 		btrfs_free_device(device);
351 	}
352 	kfree(fs_devices);
353 }
354 
355 static void btrfs_kobject_uevent(struct block_device *bdev,
356 				 enum kobject_action action)
357 {
358 	int ret;
359 
360 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
361 	if (ret)
362 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
363 			action,
364 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
365 			&disk_to_dev(bdev->bd_disk)->kobj);
366 }
367 
368 void __exit btrfs_cleanup_fs_uuids(void)
369 {
370 	struct btrfs_fs_devices *fs_devices;
371 
372 	while (!list_empty(&fs_uuids)) {
373 		fs_devices = list_entry(fs_uuids.next,
374 					struct btrfs_fs_devices, fs_list);
375 		list_del(&fs_devices->fs_list);
376 		free_fs_devices(fs_devices);
377 	}
378 }
379 
380 /*
381  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
382  * Returned struct is not linked onto any lists and must be destroyed using
383  * btrfs_free_device.
384  */
385 static struct btrfs_device *__alloc_device(void)
386 {
387 	struct btrfs_device *dev;
388 
389 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
390 	if (!dev)
391 		return ERR_PTR(-ENOMEM);
392 
393 	/*
394 	 * Preallocate a bio that's always going to be used for flushing device
395 	 * barriers and matches the device lifespan
396 	 */
397 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
398 	if (!dev->flush_bio) {
399 		kfree(dev);
400 		return ERR_PTR(-ENOMEM);
401 	}
402 
403 	INIT_LIST_HEAD(&dev->dev_list);
404 	INIT_LIST_HEAD(&dev->dev_alloc_list);
405 	INIT_LIST_HEAD(&dev->resized_list);
406 
407 	spin_lock_init(&dev->io_lock);
408 
409 	atomic_set(&dev->reada_in_flight, 0);
410 	atomic_set(&dev->dev_stats_ccnt, 0);
411 	btrfs_device_data_ordered_init(dev);
412 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
413 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
414 
415 	return dev;
416 }
417 
418 static noinline struct btrfs_fs_devices *find_fsid(
419 		const u8 *fsid, const u8 *metadata_fsid)
420 {
421 	struct btrfs_fs_devices *fs_devices;
422 
423 	ASSERT(fsid);
424 
425 	if (metadata_fsid) {
426 		/*
427 		 * Handle scanned device having completed its fsid change but
428 		 * belonging to a fs_devices that was created by first scanning
429 		 * a device which didn't have its fsid/metadata_uuid changed
430 		 * at all and the CHANGING_FSID_V2 flag set.
431 		 */
432 		list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
433 			if (fs_devices->fsid_change &&
434 			    memcmp(metadata_fsid, fs_devices->fsid,
435 				   BTRFS_FSID_SIZE) == 0 &&
436 			    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
437 				   BTRFS_FSID_SIZE) == 0) {
438 				return fs_devices;
439 			}
440 		}
441 		/*
442 		 * Handle scanned device having completed its fsid change but
443 		 * belonging to a fs_devices that was created by a device that
444 		 * has an outdated pair of fsid/metadata_uuid and
445 		 * CHANGING_FSID_V2 flag set.
446 		 */
447 		list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
448 			if (fs_devices->fsid_change &&
449 			    memcmp(fs_devices->metadata_uuid,
450 				   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
451 			    memcmp(metadata_fsid, fs_devices->metadata_uuid,
452 				   BTRFS_FSID_SIZE) == 0) {
453 				return fs_devices;
454 			}
455 		}
456 	}
457 
458 	/* Handle non-split brain cases */
459 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
460 		if (metadata_fsid) {
461 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
462 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
463 				      BTRFS_FSID_SIZE) == 0)
464 				return fs_devices;
465 		} else {
466 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
467 				return fs_devices;
468 		}
469 	}
470 	return NULL;
471 }
472 
473 static int
474 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
475 		      int flush, struct block_device **bdev,
476 		      struct buffer_head **bh)
477 {
478 	int ret;
479 
480 	*bdev = blkdev_get_by_path(device_path, flags, holder);
481 
482 	if (IS_ERR(*bdev)) {
483 		ret = PTR_ERR(*bdev);
484 		goto error;
485 	}
486 
487 	if (flush)
488 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
489 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
490 	if (ret) {
491 		blkdev_put(*bdev, flags);
492 		goto error;
493 	}
494 	invalidate_bdev(*bdev);
495 	*bh = btrfs_read_dev_super(*bdev);
496 	if (IS_ERR(*bh)) {
497 		ret = PTR_ERR(*bh);
498 		blkdev_put(*bdev, flags);
499 		goto error;
500 	}
501 
502 	return 0;
503 
504 error:
505 	*bdev = NULL;
506 	*bh = NULL;
507 	return ret;
508 }
509 
510 static void requeue_list(struct btrfs_pending_bios *pending_bios,
511 			struct bio *head, struct bio *tail)
512 {
513 
514 	struct bio *old_head;
515 
516 	old_head = pending_bios->head;
517 	pending_bios->head = head;
518 	if (pending_bios->tail)
519 		tail->bi_next = old_head;
520 	else
521 		pending_bios->tail = tail;
522 }
523 
524 /*
525  * we try to collect pending bios for a device so we don't get a large
526  * number of procs sending bios down to the same device.  This greatly
527  * improves the schedulers ability to collect and merge the bios.
528  *
529  * But, it also turns into a long list of bios to process and that is sure
530  * to eventually make the worker thread block.  The solution here is to
531  * make some progress and then put this work struct back at the end of
532  * the list if the block device is congested.  This way, multiple devices
533  * can make progress from a single worker thread.
534  */
535 static noinline void run_scheduled_bios(struct btrfs_device *device)
536 {
537 	struct btrfs_fs_info *fs_info = device->fs_info;
538 	struct bio *pending;
539 	struct backing_dev_info *bdi;
540 	struct btrfs_pending_bios *pending_bios;
541 	struct bio *tail;
542 	struct bio *cur;
543 	int again = 0;
544 	unsigned long num_run;
545 	unsigned long batch_run = 0;
546 	unsigned long last_waited = 0;
547 	int force_reg = 0;
548 	int sync_pending = 0;
549 	struct blk_plug plug;
550 
551 	/*
552 	 * this function runs all the bios we've collected for
553 	 * a particular device.  We don't want to wander off to
554 	 * another device without first sending all of these down.
555 	 * So, setup a plug here and finish it off before we return
556 	 */
557 	blk_start_plug(&plug);
558 
559 	bdi = device->bdev->bd_bdi;
560 
561 loop:
562 	spin_lock(&device->io_lock);
563 
564 loop_lock:
565 	num_run = 0;
566 
567 	/* take all the bios off the list at once and process them
568 	 * later on (without the lock held).  But, remember the
569 	 * tail and other pointers so the bios can be properly reinserted
570 	 * into the list if we hit congestion
571 	 */
572 	if (!force_reg && device->pending_sync_bios.head) {
573 		pending_bios = &device->pending_sync_bios;
574 		force_reg = 1;
575 	} else {
576 		pending_bios = &device->pending_bios;
577 		force_reg = 0;
578 	}
579 
580 	pending = pending_bios->head;
581 	tail = pending_bios->tail;
582 	WARN_ON(pending && !tail);
583 
584 	/*
585 	 * if pending was null this time around, no bios need processing
586 	 * at all and we can stop.  Otherwise it'll loop back up again
587 	 * and do an additional check so no bios are missed.
588 	 *
589 	 * device->running_pending is used to synchronize with the
590 	 * schedule_bio code.
591 	 */
592 	if (device->pending_sync_bios.head == NULL &&
593 	    device->pending_bios.head == NULL) {
594 		again = 0;
595 		device->running_pending = 0;
596 	} else {
597 		again = 1;
598 		device->running_pending = 1;
599 	}
600 
601 	pending_bios->head = NULL;
602 	pending_bios->tail = NULL;
603 
604 	spin_unlock(&device->io_lock);
605 
606 	while (pending) {
607 
608 		rmb();
609 		/* we want to work on both lists, but do more bios on the
610 		 * sync list than the regular list
611 		 */
612 		if ((num_run > 32 &&
613 		    pending_bios != &device->pending_sync_bios &&
614 		    device->pending_sync_bios.head) ||
615 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
616 		    device->pending_bios.head)) {
617 			spin_lock(&device->io_lock);
618 			requeue_list(pending_bios, pending, tail);
619 			goto loop_lock;
620 		}
621 
622 		cur = pending;
623 		pending = pending->bi_next;
624 		cur->bi_next = NULL;
625 
626 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
627 
628 		/*
629 		 * if we're doing the sync list, record that our
630 		 * plug has some sync requests on it
631 		 *
632 		 * If we're doing the regular list and there are
633 		 * sync requests sitting around, unplug before
634 		 * we add more
635 		 */
636 		if (pending_bios == &device->pending_sync_bios) {
637 			sync_pending = 1;
638 		} else if (sync_pending) {
639 			blk_finish_plug(&plug);
640 			blk_start_plug(&plug);
641 			sync_pending = 0;
642 		}
643 
644 		btrfsic_submit_bio(cur);
645 		num_run++;
646 		batch_run++;
647 
648 		cond_resched();
649 
650 		/*
651 		 * we made progress, there is more work to do and the bdi
652 		 * is now congested.  Back off and let other work structs
653 		 * run instead
654 		 */
655 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
656 		    fs_info->fs_devices->open_devices > 1) {
657 			struct io_context *ioc;
658 
659 			ioc = current->io_context;
660 
661 			/*
662 			 * the main goal here is that we don't want to
663 			 * block if we're going to be able to submit
664 			 * more requests without blocking.
665 			 *
666 			 * This code does two great things, it pokes into
667 			 * the elevator code from a filesystem _and_
668 			 * it makes assumptions about how batching works.
669 			 */
670 			if (ioc && ioc->nr_batch_requests > 0 &&
671 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
672 			    (last_waited == 0 ||
673 			     ioc->last_waited == last_waited)) {
674 				/*
675 				 * we want to go through our batch of
676 				 * requests and stop.  So, we copy out
677 				 * the ioc->last_waited time and test
678 				 * against it before looping
679 				 */
680 				last_waited = ioc->last_waited;
681 				cond_resched();
682 				continue;
683 			}
684 			spin_lock(&device->io_lock);
685 			requeue_list(pending_bios, pending, tail);
686 			device->running_pending = 1;
687 
688 			spin_unlock(&device->io_lock);
689 			btrfs_queue_work(fs_info->submit_workers,
690 					 &device->work);
691 			goto done;
692 		}
693 	}
694 
695 	cond_resched();
696 	if (again)
697 		goto loop;
698 
699 	spin_lock(&device->io_lock);
700 	if (device->pending_bios.head || device->pending_sync_bios.head)
701 		goto loop_lock;
702 	spin_unlock(&device->io_lock);
703 
704 done:
705 	blk_finish_plug(&plug);
706 }
707 
708 static void pending_bios_fn(struct btrfs_work *work)
709 {
710 	struct btrfs_device *device;
711 
712 	device = container_of(work, struct btrfs_device, work);
713 	run_scheduled_bios(device);
714 }
715 
716 static bool device_path_matched(const char *path, struct btrfs_device *device)
717 {
718 	int found;
719 
720 	rcu_read_lock();
721 	found = strcmp(rcu_str_deref(device->name), path);
722 	rcu_read_unlock();
723 
724 	return found == 0;
725 }
726 
727 /*
728  *  Search and remove all stale (devices which are not mounted) devices.
729  *  When both inputs are NULL, it will search and release all stale devices.
730  *  path:	Optional. When provided will it release all unmounted devices
731  *		matching this path only.
732  *  skip_dev:	Optional. Will skip this device when searching for the stale
733  *		devices.
734  *  Return:	0 for success or if @path is NULL.
735  * 		-EBUSY if @path is a mounted device.
736  * 		-ENOENT if @path does not match any device in the list.
737  */
738 static int btrfs_free_stale_devices(const char *path,
739 				     struct btrfs_device *skip_device)
740 {
741 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
742 	struct btrfs_device *device, *tmp_device;
743 	int ret = 0;
744 
745 	if (path)
746 		ret = -ENOENT;
747 
748 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
749 
750 		mutex_lock(&fs_devices->device_list_mutex);
751 		list_for_each_entry_safe(device, tmp_device,
752 					 &fs_devices->devices, dev_list) {
753 			if (skip_device && skip_device == device)
754 				continue;
755 			if (path && !device->name)
756 				continue;
757 			if (path && !device_path_matched(path, device))
758 				continue;
759 			if (fs_devices->opened) {
760 				/* for an already deleted device return 0 */
761 				if (path && ret != 0)
762 					ret = -EBUSY;
763 				break;
764 			}
765 
766 			/* delete the stale device */
767 			fs_devices->num_devices--;
768 			list_del(&device->dev_list);
769 			btrfs_free_device(device);
770 
771 			ret = 0;
772 			if (fs_devices->num_devices == 0)
773 				break;
774 		}
775 		mutex_unlock(&fs_devices->device_list_mutex);
776 
777 		if (fs_devices->num_devices == 0) {
778 			btrfs_sysfs_remove_fsid(fs_devices);
779 			list_del(&fs_devices->fs_list);
780 			free_fs_devices(fs_devices);
781 		}
782 	}
783 
784 	return ret;
785 }
786 
787 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
788 			struct btrfs_device *device, fmode_t flags,
789 			void *holder)
790 {
791 	struct request_queue *q;
792 	struct block_device *bdev;
793 	struct buffer_head *bh;
794 	struct btrfs_super_block *disk_super;
795 	u64 devid;
796 	int ret;
797 
798 	if (device->bdev)
799 		return -EINVAL;
800 	if (!device->name)
801 		return -EINVAL;
802 
803 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
804 				    &bdev, &bh);
805 	if (ret)
806 		return ret;
807 
808 	disk_super = (struct btrfs_super_block *)bh->b_data;
809 	devid = btrfs_stack_device_id(&disk_super->dev_item);
810 	if (devid != device->devid)
811 		goto error_brelse;
812 
813 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
814 		goto error_brelse;
815 
816 	device->generation = btrfs_super_generation(disk_super);
817 
818 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
819 		if (btrfs_super_incompat_flags(disk_super) &
820 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
821 			pr_err(
822 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
823 			goto error_brelse;
824 		}
825 
826 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
827 		fs_devices->seeding = 1;
828 	} else {
829 		if (bdev_read_only(bdev))
830 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
831 		else
832 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
833 	}
834 
835 	q = bdev_get_queue(bdev);
836 	if (!blk_queue_nonrot(q))
837 		fs_devices->rotating = 1;
838 
839 	device->bdev = bdev;
840 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
841 	device->mode = flags;
842 
843 	fs_devices->open_devices++;
844 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
845 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
846 		fs_devices->rw_devices++;
847 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
848 	}
849 	brelse(bh);
850 
851 	return 0;
852 
853 error_brelse:
854 	brelse(bh);
855 	blkdev_put(bdev, flags);
856 
857 	return -EINVAL;
858 }
859 
860 /*
861  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
862  * being created with a disk that has already completed its fsid change.
863  */
864 static struct btrfs_fs_devices *find_fsid_inprogress(
865 					struct btrfs_super_block *disk_super)
866 {
867 	struct btrfs_fs_devices *fs_devices;
868 
869 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
870 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
871 			   BTRFS_FSID_SIZE) != 0 &&
872 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
873 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
874 			return fs_devices;
875 		}
876 	}
877 
878 	return NULL;
879 }
880 
881 
882 static struct btrfs_fs_devices *find_fsid_changed(
883 					struct btrfs_super_block *disk_super)
884 {
885 	struct btrfs_fs_devices *fs_devices;
886 
887 	/*
888 	 * Handles the case where scanned device is part of an fs that had
889 	 * multiple successful changes of FSID but curently device didn't
890 	 * observe it. Meaning our fsid will be different than theirs.
891 	 */
892 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
893 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
894 			   BTRFS_FSID_SIZE) != 0 &&
895 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
896 			   BTRFS_FSID_SIZE) == 0 &&
897 		    memcmp(fs_devices->fsid, disk_super->fsid,
898 			   BTRFS_FSID_SIZE) != 0) {
899 			return fs_devices;
900 		}
901 	}
902 
903 	return NULL;
904 }
905 /*
906  * Add new device to list of registered devices
907  *
908  * Returns:
909  * device pointer which was just added or updated when successful
910  * error pointer when failed
911  */
912 static noinline struct btrfs_device *device_list_add(const char *path,
913 			   struct btrfs_super_block *disk_super,
914 			   bool *new_device_added)
915 {
916 	struct btrfs_device *device;
917 	struct btrfs_fs_devices *fs_devices = NULL;
918 	struct rcu_string *name;
919 	u64 found_transid = btrfs_super_generation(disk_super);
920 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
921 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
922 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
923 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
924 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
925 
926 	if (fsid_change_in_progress) {
927 		if (!has_metadata_uuid) {
928 			/*
929 			 * When we have an image which has CHANGING_FSID_V2 set
930 			 * it might belong to either a filesystem which has
931 			 * disks with completed fsid change or it might belong
932 			 * to fs with no UUID changes in effect, handle both.
933 			 */
934 			fs_devices = find_fsid_inprogress(disk_super);
935 			if (!fs_devices)
936 				fs_devices = find_fsid(disk_super->fsid, NULL);
937 		} else {
938 			fs_devices = find_fsid_changed(disk_super);
939 		}
940 	} else if (has_metadata_uuid) {
941 		fs_devices = find_fsid(disk_super->fsid,
942 				       disk_super->metadata_uuid);
943 	} else {
944 		fs_devices = find_fsid(disk_super->fsid, NULL);
945 	}
946 
947 
948 	if (!fs_devices) {
949 		if (has_metadata_uuid)
950 			fs_devices = alloc_fs_devices(disk_super->fsid,
951 						      disk_super->metadata_uuid);
952 		else
953 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
954 
955 		if (IS_ERR(fs_devices))
956 			return ERR_CAST(fs_devices);
957 
958 		fs_devices->fsid_change = fsid_change_in_progress;
959 
960 		mutex_lock(&fs_devices->device_list_mutex);
961 		list_add(&fs_devices->fs_list, &fs_uuids);
962 
963 		device = NULL;
964 	} else {
965 		mutex_lock(&fs_devices->device_list_mutex);
966 		device = btrfs_find_device(fs_devices, devid,
967 				disk_super->dev_item.uuid, NULL, false);
968 
969 		/*
970 		 * If this disk has been pulled into an fs devices created by
971 		 * a device which had the CHANGING_FSID_V2 flag then replace the
972 		 * metadata_uuid/fsid values of the fs_devices.
973 		 */
974 		if (has_metadata_uuid && fs_devices->fsid_change &&
975 		    found_transid > fs_devices->latest_generation) {
976 			memcpy(fs_devices->fsid, disk_super->fsid,
977 					BTRFS_FSID_SIZE);
978 			memcpy(fs_devices->metadata_uuid,
979 					disk_super->metadata_uuid, BTRFS_FSID_SIZE);
980 
981 			fs_devices->fsid_change = false;
982 		}
983 	}
984 
985 	if (!device) {
986 		if (fs_devices->opened) {
987 			mutex_unlock(&fs_devices->device_list_mutex);
988 			return ERR_PTR(-EBUSY);
989 		}
990 
991 		device = btrfs_alloc_device(NULL, &devid,
992 					    disk_super->dev_item.uuid);
993 		if (IS_ERR(device)) {
994 			mutex_unlock(&fs_devices->device_list_mutex);
995 			/* we can safely leave the fs_devices entry around */
996 			return device;
997 		}
998 
999 		name = rcu_string_strdup(path, GFP_NOFS);
1000 		if (!name) {
1001 			btrfs_free_device(device);
1002 			mutex_unlock(&fs_devices->device_list_mutex);
1003 			return ERR_PTR(-ENOMEM);
1004 		}
1005 		rcu_assign_pointer(device->name, name);
1006 
1007 		list_add_rcu(&device->dev_list, &fs_devices->devices);
1008 		fs_devices->num_devices++;
1009 
1010 		device->fs_devices = fs_devices;
1011 		*new_device_added = true;
1012 
1013 		if (disk_super->label[0])
1014 			pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1015 				disk_super->label, devid, found_transid, path);
1016 		else
1017 			pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1018 				disk_super->fsid, devid, found_transid, path);
1019 
1020 	} else if (!device->name || strcmp(device->name->str, path)) {
1021 		/*
1022 		 * When FS is already mounted.
1023 		 * 1. If you are here and if the device->name is NULL that
1024 		 *    means this device was missing at time of FS mount.
1025 		 * 2. If you are here and if the device->name is different
1026 		 *    from 'path' that means either
1027 		 *      a. The same device disappeared and reappeared with
1028 		 *         different name. or
1029 		 *      b. The missing-disk-which-was-replaced, has
1030 		 *         reappeared now.
1031 		 *
1032 		 * We must allow 1 and 2a above. But 2b would be a spurious
1033 		 * and unintentional.
1034 		 *
1035 		 * Further in case of 1 and 2a above, the disk at 'path'
1036 		 * would have missed some transaction when it was away and
1037 		 * in case of 2a the stale bdev has to be updated as well.
1038 		 * 2b must not be allowed at all time.
1039 		 */
1040 
1041 		/*
1042 		 * For now, we do allow update to btrfs_fs_device through the
1043 		 * btrfs dev scan cli after FS has been mounted.  We're still
1044 		 * tracking a problem where systems fail mount by subvolume id
1045 		 * when we reject replacement on a mounted FS.
1046 		 */
1047 		if (!fs_devices->opened && found_transid < device->generation) {
1048 			/*
1049 			 * That is if the FS is _not_ mounted and if you
1050 			 * are here, that means there is more than one
1051 			 * disk with same uuid and devid.We keep the one
1052 			 * with larger generation number or the last-in if
1053 			 * generation are equal.
1054 			 */
1055 			mutex_unlock(&fs_devices->device_list_mutex);
1056 			return ERR_PTR(-EEXIST);
1057 		}
1058 
1059 		/*
1060 		 * We are going to replace the device path for a given devid,
1061 		 * make sure it's the same device if the device is mounted
1062 		 */
1063 		if (device->bdev) {
1064 			struct block_device *path_bdev;
1065 
1066 			path_bdev = lookup_bdev(path);
1067 			if (IS_ERR(path_bdev)) {
1068 				mutex_unlock(&fs_devices->device_list_mutex);
1069 				return ERR_CAST(path_bdev);
1070 			}
1071 
1072 			if (device->bdev != path_bdev) {
1073 				bdput(path_bdev);
1074 				mutex_unlock(&fs_devices->device_list_mutex);
1075 				btrfs_warn_in_rcu(device->fs_info,
1076 			"duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1077 					disk_super->fsid, devid,
1078 					rcu_str_deref(device->name), path);
1079 				return ERR_PTR(-EEXIST);
1080 			}
1081 			bdput(path_bdev);
1082 			btrfs_info_in_rcu(device->fs_info,
1083 				"device fsid %pU devid %llu moved old:%s new:%s",
1084 				disk_super->fsid, devid,
1085 				rcu_str_deref(device->name), path);
1086 		}
1087 
1088 		name = rcu_string_strdup(path, GFP_NOFS);
1089 		if (!name) {
1090 			mutex_unlock(&fs_devices->device_list_mutex);
1091 			return ERR_PTR(-ENOMEM);
1092 		}
1093 		rcu_string_free(device->name);
1094 		rcu_assign_pointer(device->name, name);
1095 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1096 			fs_devices->missing_devices--;
1097 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1098 		}
1099 	}
1100 
1101 	/*
1102 	 * Unmount does not free the btrfs_device struct but would zero
1103 	 * generation along with most of the other members. So just update
1104 	 * it back. We need it to pick the disk with largest generation
1105 	 * (as above).
1106 	 */
1107 	if (!fs_devices->opened) {
1108 		device->generation = found_transid;
1109 		fs_devices->latest_generation = max_t(u64, found_transid,
1110 						fs_devices->latest_generation);
1111 	}
1112 
1113 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1114 
1115 	mutex_unlock(&fs_devices->device_list_mutex);
1116 	return device;
1117 }
1118 
1119 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1120 {
1121 	struct btrfs_fs_devices *fs_devices;
1122 	struct btrfs_device *device;
1123 	struct btrfs_device *orig_dev;
1124 
1125 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1126 	if (IS_ERR(fs_devices))
1127 		return fs_devices;
1128 
1129 	mutex_lock(&orig->device_list_mutex);
1130 	fs_devices->total_devices = orig->total_devices;
1131 
1132 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1133 		struct rcu_string *name;
1134 
1135 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1136 					    orig_dev->uuid);
1137 		if (IS_ERR(device))
1138 			goto error;
1139 
1140 		/*
1141 		 * This is ok to do without rcu read locked because we hold the
1142 		 * uuid mutex so nothing we touch in here is going to disappear.
1143 		 */
1144 		if (orig_dev->name) {
1145 			name = rcu_string_strdup(orig_dev->name->str,
1146 					GFP_KERNEL);
1147 			if (!name) {
1148 				btrfs_free_device(device);
1149 				goto error;
1150 			}
1151 			rcu_assign_pointer(device->name, name);
1152 		}
1153 
1154 		list_add(&device->dev_list, &fs_devices->devices);
1155 		device->fs_devices = fs_devices;
1156 		fs_devices->num_devices++;
1157 	}
1158 	mutex_unlock(&orig->device_list_mutex);
1159 	return fs_devices;
1160 error:
1161 	mutex_unlock(&orig->device_list_mutex);
1162 	free_fs_devices(fs_devices);
1163 	return ERR_PTR(-ENOMEM);
1164 }
1165 
1166 /*
1167  * After we have read the system tree and know devids belonging to
1168  * this filesystem, remove the device which does not belong there.
1169  */
1170 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1171 {
1172 	struct btrfs_device *device, *next;
1173 	struct btrfs_device *latest_dev = NULL;
1174 
1175 	mutex_lock(&uuid_mutex);
1176 again:
1177 	/* This is the initialized path, it is safe to release the devices. */
1178 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1179 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1180 							&device->dev_state)) {
1181 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1182 			     &device->dev_state) &&
1183 			     (!latest_dev ||
1184 			      device->generation > latest_dev->generation)) {
1185 				latest_dev = device;
1186 			}
1187 			continue;
1188 		}
1189 
1190 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1191 			/*
1192 			 * In the first step, keep the device which has
1193 			 * the correct fsid and the devid that is used
1194 			 * for the dev_replace procedure.
1195 			 * In the second step, the dev_replace state is
1196 			 * read from the device tree and it is known
1197 			 * whether the procedure is really active or
1198 			 * not, which means whether this device is
1199 			 * used or whether it should be removed.
1200 			 */
1201 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1202 						  &device->dev_state)) {
1203 				continue;
1204 			}
1205 		}
1206 		if (device->bdev) {
1207 			blkdev_put(device->bdev, device->mode);
1208 			device->bdev = NULL;
1209 			fs_devices->open_devices--;
1210 		}
1211 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1212 			list_del_init(&device->dev_alloc_list);
1213 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1214 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1215 				      &device->dev_state))
1216 				fs_devices->rw_devices--;
1217 		}
1218 		list_del_init(&device->dev_list);
1219 		fs_devices->num_devices--;
1220 		btrfs_free_device(device);
1221 	}
1222 
1223 	if (fs_devices->seed) {
1224 		fs_devices = fs_devices->seed;
1225 		goto again;
1226 	}
1227 
1228 	fs_devices->latest_bdev = latest_dev->bdev;
1229 
1230 	mutex_unlock(&uuid_mutex);
1231 }
1232 
1233 static void free_device_rcu(struct rcu_head *head)
1234 {
1235 	struct btrfs_device *device;
1236 
1237 	device = container_of(head, struct btrfs_device, rcu);
1238 	btrfs_free_device(device);
1239 }
1240 
1241 static void btrfs_close_bdev(struct btrfs_device *device)
1242 {
1243 	if (!device->bdev)
1244 		return;
1245 
1246 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1247 		sync_blockdev(device->bdev);
1248 		invalidate_bdev(device->bdev);
1249 	}
1250 
1251 	blkdev_put(device->bdev, device->mode);
1252 }
1253 
1254 static void btrfs_close_one_device(struct btrfs_device *device)
1255 {
1256 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1257 	struct btrfs_device *new_device;
1258 	struct rcu_string *name;
1259 
1260 	if (device->bdev)
1261 		fs_devices->open_devices--;
1262 
1263 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1264 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1265 		list_del_init(&device->dev_alloc_list);
1266 		fs_devices->rw_devices--;
1267 	}
1268 
1269 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1270 		fs_devices->missing_devices--;
1271 
1272 	btrfs_close_bdev(device);
1273 
1274 	new_device = btrfs_alloc_device(NULL, &device->devid,
1275 					device->uuid);
1276 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1277 
1278 	/* Safe because we are under uuid_mutex */
1279 	if (device->name) {
1280 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
1281 		BUG_ON(!name); /* -ENOMEM */
1282 		rcu_assign_pointer(new_device->name, name);
1283 	}
1284 
1285 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
1286 	new_device->fs_devices = device->fs_devices;
1287 
1288 	call_rcu(&device->rcu, free_device_rcu);
1289 }
1290 
1291 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1292 {
1293 	struct btrfs_device *device, *tmp;
1294 
1295 	if (--fs_devices->opened > 0)
1296 		return 0;
1297 
1298 	mutex_lock(&fs_devices->device_list_mutex);
1299 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1300 		btrfs_close_one_device(device);
1301 	}
1302 	mutex_unlock(&fs_devices->device_list_mutex);
1303 
1304 	WARN_ON(fs_devices->open_devices);
1305 	WARN_ON(fs_devices->rw_devices);
1306 	fs_devices->opened = 0;
1307 	fs_devices->seeding = 0;
1308 
1309 	return 0;
1310 }
1311 
1312 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1313 {
1314 	struct btrfs_fs_devices *seed_devices = NULL;
1315 	int ret;
1316 
1317 	mutex_lock(&uuid_mutex);
1318 	ret = close_fs_devices(fs_devices);
1319 	if (!fs_devices->opened) {
1320 		seed_devices = fs_devices->seed;
1321 		fs_devices->seed = NULL;
1322 	}
1323 	mutex_unlock(&uuid_mutex);
1324 
1325 	while (seed_devices) {
1326 		fs_devices = seed_devices;
1327 		seed_devices = fs_devices->seed;
1328 		close_fs_devices(fs_devices);
1329 		free_fs_devices(fs_devices);
1330 	}
1331 	return ret;
1332 }
1333 
1334 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1335 				fmode_t flags, void *holder)
1336 {
1337 	struct btrfs_device *device;
1338 	struct btrfs_device *latest_dev = NULL;
1339 	int ret = 0;
1340 
1341 	flags |= FMODE_EXCL;
1342 
1343 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1344 		/* Just open everything we can; ignore failures here */
1345 		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1346 			continue;
1347 
1348 		if (!latest_dev ||
1349 		    device->generation > latest_dev->generation)
1350 			latest_dev = device;
1351 	}
1352 	if (fs_devices->open_devices == 0) {
1353 		ret = -EINVAL;
1354 		goto out;
1355 	}
1356 	fs_devices->opened = 1;
1357 	fs_devices->latest_bdev = latest_dev->bdev;
1358 	fs_devices->total_rw_bytes = 0;
1359 out:
1360 	return ret;
1361 }
1362 
1363 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1364 {
1365 	struct btrfs_device *dev1, *dev2;
1366 
1367 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1368 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1369 
1370 	if (dev1->devid < dev2->devid)
1371 		return -1;
1372 	else if (dev1->devid > dev2->devid)
1373 		return 1;
1374 	return 0;
1375 }
1376 
1377 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1378 		       fmode_t flags, void *holder)
1379 {
1380 	int ret;
1381 
1382 	lockdep_assert_held(&uuid_mutex);
1383 
1384 	mutex_lock(&fs_devices->device_list_mutex);
1385 	if (fs_devices->opened) {
1386 		fs_devices->opened++;
1387 		ret = 0;
1388 	} else {
1389 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1390 		ret = open_fs_devices(fs_devices, flags, holder);
1391 	}
1392 	mutex_unlock(&fs_devices->device_list_mutex);
1393 
1394 	return ret;
1395 }
1396 
1397 static void btrfs_release_disk_super(struct page *page)
1398 {
1399 	kunmap(page);
1400 	put_page(page);
1401 }
1402 
1403 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1404 				 struct page **page,
1405 				 struct btrfs_super_block **disk_super)
1406 {
1407 	void *p;
1408 	pgoff_t index;
1409 
1410 	/* make sure our super fits in the device */
1411 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1412 		return 1;
1413 
1414 	/* make sure our super fits in the page */
1415 	if (sizeof(**disk_super) > PAGE_SIZE)
1416 		return 1;
1417 
1418 	/* make sure our super doesn't straddle pages on disk */
1419 	index = bytenr >> PAGE_SHIFT;
1420 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1421 		return 1;
1422 
1423 	/* pull in the page with our super */
1424 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1425 				   index, GFP_KERNEL);
1426 
1427 	if (IS_ERR_OR_NULL(*page))
1428 		return 1;
1429 
1430 	p = kmap(*page);
1431 
1432 	/* align our pointer to the offset of the super block */
1433 	*disk_super = p + offset_in_page(bytenr);
1434 
1435 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1436 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1437 		btrfs_release_disk_super(*page);
1438 		return 1;
1439 	}
1440 
1441 	if ((*disk_super)->label[0] &&
1442 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1443 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1444 
1445 	return 0;
1446 }
1447 
1448 int btrfs_forget_devices(const char *path)
1449 {
1450 	int ret;
1451 
1452 	mutex_lock(&uuid_mutex);
1453 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1454 	mutex_unlock(&uuid_mutex);
1455 
1456 	return ret;
1457 }
1458 
1459 /*
1460  * Look for a btrfs signature on a device. This may be called out of the mount path
1461  * and we are not allowed to call set_blocksize during the scan. The superblock
1462  * is read via pagecache
1463  */
1464 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1465 					   void *holder)
1466 {
1467 	struct btrfs_super_block *disk_super;
1468 	bool new_device_added = false;
1469 	struct btrfs_device *device = NULL;
1470 	struct block_device *bdev;
1471 	struct page *page;
1472 	u64 bytenr;
1473 
1474 	lockdep_assert_held(&uuid_mutex);
1475 
1476 	/*
1477 	 * we would like to check all the supers, but that would make
1478 	 * a btrfs mount succeed after a mkfs from a different FS.
1479 	 * So, we need to add a special mount option to scan for
1480 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1481 	 */
1482 	bytenr = btrfs_sb_offset(0);
1483 	flags |= FMODE_EXCL;
1484 
1485 	bdev = blkdev_get_by_path(path, flags, holder);
1486 	if (IS_ERR(bdev))
1487 		return ERR_CAST(bdev);
1488 
1489 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1490 		device = ERR_PTR(-EINVAL);
1491 		goto error_bdev_put;
1492 	}
1493 
1494 	device = device_list_add(path, disk_super, &new_device_added);
1495 	if (!IS_ERR(device)) {
1496 		if (new_device_added)
1497 			btrfs_free_stale_devices(path, device);
1498 	}
1499 
1500 	btrfs_release_disk_super(page);
1501 
1502 error_bdev_put:
1503 	blkdev_put(bdev, flags);
1504 
1505 	return device;
1506 }
1507 
1508 static int contains_pending_extent(struct btrfs_transaction *transaction,
1509 				   struct btrfs_device *device,
1510 				   u64 *start, u64 len)
1511 {
1512 	struct btrfs_fs_info *fs_info = device->fs_info;
1513 	struct extent_map *em;
1514 	struct list_head *search_list = &fs_info->pinned_chunks;
1515 	int ret = 0;
1516 	u64 physical_start = *start;
1517 
1518 	if (transaction)
1519 		search_list = &transaction->pending_chunks;
1520 again:
1521 	list_for_each_entry(em, search_list, list) {
1522 		struct map_lookup *map;
1523 		int i;
1524 
1525 		map = em->map_lookup;
1526 		for (i = 0; i < map->num_stripes; i++) {
1527 			u64 end;
1528 
1529 			if (map->stripes[i].dev != device)
1530 				continue;
1531 			if (map->stripes[i].physical >= physical_start + len ||
1532 			    map->stripes[i].physical + em->orig_block_len <=
1533 			    physical_start)
1534 				continue;
1535 			/*
1536 			 * Make sure that while processing the pinned list we do
1537 			 * not override our *start with a lower value, because
1538 			 * we can have pinned chunks that fall within this
1539 			 * device hole and that have lower physical addresses
1540 			 * than the pending chunks we processed before. If we
1541 			 * do not take this special care we can end up getting
1542 			 * 2 pending chunks that start at the same physical
1543 			 * device offsets because the end offset of a pinned
1544 			 * chunk can be equal to the start offset of some
1545 			 * pending chunk.
1546 			 */
1547 			end = map->stripes[i].physical + em->orig_block_len;
1548 			if (end > *start) {
1549 				*start = end;
1550 				ret = 1;
1551 			}
1552 		}
1553 	}
1554 	if (search_list != &fs_info->pinned_chunks) {
1555 		search_list = &fs_info->pinned_chunks;
1556 		goto again;
1557 	}
1558 
1559 	return ret;
1560 }
1561 
1562 
1563 /*
1564  * find_free_dev_extent_start - find free space in the specified device
1565  * @device:	  the device which we search the free space in
1566  * @num_bytes:	  the size of the free space that we need
1567  * @search_start: the position from which to begin the search
1568  * @start:	  store the start of the free space.
1569  * @len:	  the size of the free space. that we find, or the size
1570  *		  of the max free space if we don't find suitable free space
1571  *
1572  * this uses a pretty simple search, the expectation is that it is
1573  * called very infrequently and that a given device has a small number
1574  * of extents
1575  *
1576  * @start is used to store the start of the free space if we find. But if we
1577  * don't find suitable free space, it will be used to store the start position
1578  * of the max free space.
1579  *
1580  * @len is used to store the size of the free space that we find.
1581  * But if we don't find suitable free space, it is used to store the size of
1582  * the max free space.
1583  */
1584 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1585 			       struct btrfs_device *device, u64 num_bytes,
1586 			       u64 search_start, u64 *start, u64 *len)
1587 {
1588 	struct btrfs_fs_info *fs_info = device->fs_info;
1589 	struct btrfs_root *root = fs_info->dev_root;
1590 	struct btrfs_key key;
1591 	struct btrfs_dev_extent *dev_extent;
1592 	struct btrfs_path *path;
1593 	u64 hole_size;
1594 	u64 max_hole_start;
1595 	u64 max_hole_size;
1596 	u64 extent_end;
1597 	u64 search_end = device->total_bytes;
1598 	int ret;
1599 	int slot;
1600 	struct extent_buffer *l;
1601 
1602 	/*
1603 	 * We don't want to overwrite the superblock on the drive nor any area
1604 	 * used by the boot loader (grub for example), so we make sure to start
1605 	 * at an offset of at least 1MB.
1606 	 */
1607 	search_start = max_t(u64, search_start, SZ_1M);
1608 
1609 	path = btrfs_alloc_path();
1610 	if (!path)
1611 		return -ENOMEM;
1612 
1613 	max_hole_start = search_start;
1614 	max_hole_size = 0;
1615 
1616 again:
1617 	if (search_start >= search_end ||
1618 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1619 		ret = -ENOSPC;
1620 		goto out;
1621 	}
1622 
1623 	path->reada = READA_FORWARD;
1624 	path->search_commit_root = 1;
1625 	path->skip_locking = 1;
1626 
1627 	key.objectid = device->devid;
1628 	key.offset = search_start;
1629 	key.type = BTRFS_DEV_EXTENT_KEY;
1630 
1631 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1632 	if (ret < 0)
1633 		goto out;
1634 	if (ret > 0) {
1635 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1636 		if (ret < 0)
1637 			goto out;
1638 	}
1639 
1640 	while (1) {
1641 		l = path->nodes[0];
1642 		slot = path->slots[0];
1643 		if (slot >= btrfs_header_nritems(l)) {
1644 			ret = btrfs_next_leaf(root, path);
1645 			if (ret == 0)
1646 				continue;
1647 			if (ret < 0)
1648 				goto out;
1649 
1650 			break;
1651 		}
1652 		btrfs_item_key_to_cpu(l, &key, slot);
1653 
1654 		if (key.objectid < device->devid)
1655 			goto next;
1656 
1657 		if (key.objectid > device->devid)
1658 			break;
1659 
1660 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1661 			goto next;
1662 
1663 		if (key.offset > search_start) {
1664 			hole_size = key.offset - search_start;
1665 
1666 			/*
1667 			 * Have to check before we set max_hole_start, otherwise
1668 			 * we could end up sending back this offset anyway.
1669 			 */
1670 			if (contains_pending_extent(transaction, device,
1671 						    &search_start,
1672 						    hole_size)) {
1673 				if (key.offset >= search_start) {
1674 					hole_size = key.offset - search_start;
1675 				} else {
1676 					WARN_ON_ONCE(1);
1677 					hole_size = 0;
1678 				}
1679 			}
1680 
1681 			if (hole_size > max_hole_size) {
1682 				max_hole_start = search_start;
1683 				max_hole_size = hole_size;
1684 			}
1685 
1686 			/*
1687 			 * If this free space is greater than which we need,
1688 			 * it must be the max free space that we have found
1689 			 * until now, so max_hole_start must point to the start
1690 			 * of this free space and the length of this free space
1691 			 * is stored in max_hole_size. Thus, we return
1692 			 * max_hole_start and max_hole_size and go back to the
1693 			 * caller.
1694 			 */
1695 			if (hole_size >= num_bytes) {
1696 				ret = 0;
1697 				goto out;
1698 			}
1699 		}
1700 
1701 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1702 		extent_end = key.offset + btrfs_dev_extent_length(l,
1703 								  dev_extent);
1704 		if (extent_end > search_start)
1705 			search_start = extent_end;
1706 next:
1707 		path->slots[0]++;
1708 		cond_resched();
1709 	}
1710 
1711 	/*
1712 	 * At this point, search_start should be the end of
1713 	 * allocated dev extents, and when shrinking the device,
1714 	 * search_end may be smaller than search_start.
1715 	 */
1716 	if (search_end > search_start) {
1717 		hole_size = search_end - search_start;
1718 
1719 		if (contains_pending_extent(transaction, device, &search_start,
1720 					    hole_size)) {
1721 			btrfs_release_path(path);
1722 			goto again;
1723 		}
1724 
1725 		if (hole_size > max_hole_size) {
1726 			max_hole_start = search_start;
1727 			max_hole_size = hole_size;
1728 		}
1729 	}
1730 
1731 	/* See above. */
1732 	if (max_hole_size < num_bytes)
1733 		ret = -ENOSPC;
1734 	else
1735 		ret = 0;
1736 
1737 out:
1738 	btrfs_free_path(path);
1739 	*start = max_hole_start;
1740 	if (len)
1741 		*len = max_hole_size;
1742 	return ret;
1743 }
1744 
1745 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1746 			 struct btrfs_device *device, u64 num_bytes,
1747 			 u64 *start, u64 *len)
1748 {
1749 	/* FIXME use last free of some kind */
1750 	return find_free_dev_extent_start(trans->transaction, device,
1751 					  num_bytes, 0, start, len);
1752 }
1753 
1754 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1755 			  struct btrfs_device *device,
1756 			  u64 start, u64 *dev_extent_len)
1757 {
1758 	struct btrfs_fs_info *fs_info = device->fs_info;
1759 	struct btrfs_root *root = fs_info->dev_root;
1760 	int ret;
1761 	struct btrfs_path *path;
1762 	struct btrfs_key key;
1763 	struct btrfs_key found_key;
1764 	struct extent_buffer *leaf = NULL;
1765 	struct btrfs_dev_extent *extent = NULL;
1766 
1767 	path = btrfs_alloc_path();
1768 	if (!path)
1769 		return -ENOMEM;
1770 
1771 	key.objectid = device->devid;
1772 	key.offset = start;
1773 	key.type = BTRFS_DEV_EXTENT_KEY;
1774 again:
1775 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1776 	if (ret > 0) {
1777 		ret = btrfs_previous_item(root, path, key.objectid,
1778 					  BTRFS_DEV_EXTENT_KEY);
1779 		if (ret)
1780 			goto out;
1781 		leaf = path->nodes[0];
1782 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1783 		extent = btrfs_item_ptr(leaf, path->slots[0],
1784 					struct btrfs_dev_extent);
1785 		BUG_ON(found_key.offset > start || found_key.offset +
1786 		       btrfs_dev_extent_length(leaf, extent) < start);
1787 		key = found_key;
1788 		btrfs_release_path(path);
1789 		goto again;
1790 	} else if (ret == 0) {
1791 		leaf = path->nodes[0];
1792 		extent = btrfs_item_ptr(leaf, path->slots[0],
1793 					struct btrfs_dev_extent);
1794 	} else {
1795 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1796 		goto out;
1797 	}
1798 
1799 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1800 
1801 	ret = btrfs_del_item(trans, root, path);
1802 	if (ret) {
1803 		btrfs_handle_fs_error(fs_info, ret,
1804 				      "Failed to remove dev extent item");
1805 	} else {
1806 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1807 	}
1808 out:
1809 	btrfs_free_path(path);
1810 	return ret;
1811 }
1812 
1813 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1814 				  struct btrfs_device *device,
1815 				  u64 chunk_offset, u64 start, u64 num_bytes)
1816 {
1817 	int ret;
1818 	struct btrfs_path *path;
1819 	struct btrfs_fs_info *fs_info = device->fs_info;
1820 	struct btrfs_root *root = fs_info->dev_root;
1821 	struct btrfs_dev_extent *extent;
1822 	struct extent_buffer *leaf;
1823 	struct btrfs_key key;
1824 
1825 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1826 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1827 	path = btrfs_alloc_path();
1828 	if (!path)
1829 		return -ENOMEM;
1830 
1831 	key.objectid = device->devid;
1832 	key.offset = start;
1833 	key.type = BTRFS_DEV_EXTENT_KEY;
1834 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1835 				      sizeof(*extent));
1836 	if (ret)
1837 		goto out;
1838 
1839 	leaf = path->nodes[0];
1840 	extent = btrfs_item_ptr(leaf, path->slots[0],
1841 				struct btrfs_dev_extent);
1842 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1843 					BTRFS_CHUNK_TREE_OBJECTID);
1844 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1845 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1846 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1847 
1848 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1849 	btrfs_mark_buffer_dirty(leaf);
1850 out:
1851 	btrfs_free_path(path);
1852 	return ret;
1853 }
1854 
1855 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1856 {
1857 	struct extent_map_tree *em_tree;
1858 	struct extent_map *em;
1859 	struct rb_node *n;
1860 	u64 ret = 0;
1861 
1862 	em_tree = &fs_info->mapping_tree.map_tree;
1863 	read_lock(&em_tree->lock);
1864 	n = rb_last(&em_tree->map.rb_root);
1865 	if (n) {
1866 		em = rb_entry(n, struct extent_map, rb_node);
1867 		ret = em->start + em->len;
1868 	}
1869 	read_unlock(&em_tree->lock);
1870 
1871 	return ret;
1872 }
1873 
1874 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1875 				    u64 *devid_ret)
1876 {
1877 	int ret;
1878 	struct btrfs_key key;
1879 	struct btrfs_key found_key;
1880 	struct btrfs_path *path;
1881 
1882 	path = btrfs_alloc_path();
1883 	if (!path)
1884 		return -ENOMEM;
1885 
1886 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1887 	key.type = BTRFS_DEV_ITEM_KEY;
1888 	key.offset = (u64)-1;
1889 
1890 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1891 	if (ret < 0)
1892 		goto error;
1893 
1894 	BUG_ON(ret == 0); /* Corruption */
1895 
1896 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1897 				  BTRFS_DEV_ITEMS_OBJECTID,
1898 				  BTRFS_DEV_ITEM_KEY);
1899 	if (ret) {
1900 		*devid_ret = 1;
1901 	} else {
1902 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1903 				      path->slots[0]);
1904 		*devid_ret = found_key.offset + 1;
1905 	}
1906 	ret = 0;
1907 error:
1908 	btrfs_free_path(path);
1909 	return ret;
1910 }
1911 
1912 /*
1913  * the device information is stored in the chunk root
1914  * the btrfs_device struct should be fully filled in
1915  */
1916 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1917 			    struct btrfs_device *device)
1918 {
1919 	int ret;
1920 	struct btrfs_path *path;
1921 	struct btrfs_dev_item *dev_item;
1922 	struct extent_buffer *leaf;
1923 	struct btrfs_key key;
1924 	unsigned long ptr;
1925 
1926 	path = btrfs_alloc_path();
1927 	if (!path)
1928 		return -ENOMEM;
1929 
1930 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1931 	key.type = BTRFS_DEV_ITEM_KEY;
1932 	key.offset = device->devid;
1933 
1934 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1935 				      &key, sizeof(*dev_item));
1936 	if (ret)
1937 		goto out;
1938 
1939 	leaf = path->nodes[0];
1940 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1941 
1942 	btrfs_set_device_id(leaf, dev_item, device->devid);
1943 	btrfs_set_device_generation(leaf, dev_item, 0);
1944 	btrfs_set_device_type(leaf, dev_item, device->type);
1945 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1946 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1947 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1948 	btrfs_set_device_total_bytes(leaf, dev_item,
1949 				     btrfs_device_get_disk_total_bytes(device));
1950 	btrfs_set_device_bytes_used(leaf, dev_item,
1951 				    btrfs_device_get_bytes_used(device));
1952 	btrfs_set_device_group(leaf, dev_item, 0);
1953 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1954 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1955 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1956 
1957 	ptr = btrfs_device_uuid(dev_item);
1958 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1959 	ptr = btrfs_device_fsid(dev_item);
1960 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1961 			    ptr, BTRFS_FSID_SIZE);
1962 	btrfs_mark_buffer_dirty(leaf);
1963 
1964 	ret = 0;
1965 out:
1966 	btrfs_free_path(path);
1967 	return ret;
1968 }
1969 
1970 /*
1971  * Function to update ctime/mtime for a given device path.
1972  * Mainly used for ctime/mtime based probe like libblkid.
1973  */
1974 static void update_dev_time(const char *path_name)
1975 {
1976 	struct file *filp;
1977 
1978 	filp = filp_open(path_name, O_RDWR, 0);
1979 	if (IS_ERR(filp))
1980 		return;
1981 	file_update_time(filp);
1982 	filp_close(filp, NULL);
1983 }
1984 
1985 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1986 			     struct btrfs_device *device)
1987 {
1988 	struct btrfs_root *root = fs_info->chunk_root;
1989 	int ret;
1990 	struct btrfs_path *path;
1991 	struct btrfs_key key;
1992 	struct btrfs_trans_handle *trans;
1993 
1994 	path = btrfs_alloc_path();
1995 	if (!path)
1996 		return -ENOMEM;
1997 
1998 	trans = btrfs_start_transaction(root, 0);
1999 	if (IS_ERR(trans)) {
2000 		btrfs_free_path(path);
2001 		return PTR_ERR(trans);
2002 	}
2003 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2004 	key.type = BTRFS_DEV_ITEM_KEY;
2005 	key.offset = device->devid;
2006 
2007 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2008 	if (ret) {
2009 		if (ret > 0)
2010 			ret = -ENOENT;
2011 		btrfs_abort_transaction(trans, ret);
2012 		btrfs_end_transaction(trans);
2013 		goto out;
2014 	}
2015 
2016 	ret = btrfs_del_item(trans, root, path);
2017 	if (ret) {
2018 		btrfs_abort_transaction(trans, ret);
2019 		btrfs_end_transaction(trans);
2020 	}
2021 
2022 out:
2023 	btrfs_free_path(path);
2024 	if (!ret)
2025 		ret = btrfs_commit_transaction(trans);
2026 	return ret;
2027 }
2028 
2029 /*
2030  * Verify that @num_devices satisfies the RAID profile constraints in the whole
2031  * filesystem. It's up to the caller to adjust that number regarding eg. device
2032  * replace.
2033  */
2034 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2035 		u64 num_devices)
2036 {
2037 	u64 all_avail;
2038 	unsigned seq;
2039 	int i;
2040 
2041 	do {
2042 		seq = read_seqbegin(&fs_info->profiles_lock);
2043 
2044 		all_avail = fs_info->avail_data_alloc_bits |
2045 			    fs_info->avail_system_alloc_bits |
2046 			    fs_info->avail_metadata_alloc_bits;
2047 	} while (read_seqretry(&fs_info->profiles_lock, seq));
2048 
2049 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2050 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2051 			continue;
2052 
2053 		if (num_devices < btrfs_raid_array[i].devs_min) {
2054 			int ret = btrfs_raid_array[i].mindev_error;
2055 
2056 			if (ret)
2057 				return ret;
2058 		}
2059 	}
2060 
2061 	return 0;
2062 }
2063 
2064 static struct btrfs_device * btrfs_find_next_active_device(
2065 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2066 {
2067 	struct btrfs_device *next_device;
2068 
2069 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2070 		if (next_device != device &&
2071 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2072 		    && next_device->bdev)
2073 			return next_device;
2074 	}
2075 
2076 	return NULL;
2077 }
2078 
2079 /*
2080  * Helper function to check if the given device is part of s_bdev / latest_bdev
2081  * and replace it with the provided or the next active device, in the context
2082  * where this function called, there should be always be another device (or
2083  * this_dev) which is active.
2084  */
2085 void btrfs_assign_next_active_device(struct btrfs_device *device,
2086 				     struct btrfs_device *this_dev)
2087 {
2088 	struct btrfs_fs_info *fs_info = device->fs_info;
2089 	struct btrfs_device *next_device;
2090 
2091 	if (this_dev)
2092 		next_device = this_dev;
2093 	else
2094 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2095 								device);
2096 	ASSERT(next_device);
2097 
2098 	if (fs_info->sb->s_bdev &&
2099 			(fs_info->sb->s_bdev == device->bdev))
2100 		fs_info->sb->s_bdev = next_device->bdev;
2101 
2102 	if (fs_info->fs_devices->latest_bdev == device->bdev)
2103 		fs_info->fs_devices->latest_bdev = next_device->bdev;
2104 }
2105 
2106 /*
2107  * Return btrfs_fs_devices::num_devices excluding the device that's being
2108  * currently replaced.
2109  */
2110 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2111 {
2112 	u64 num_devices = fs_info->fs_devices->num_devices;
2113 
2114 	down_read(&fs_info->dev_replace.rwsem);
2115 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2116 		ASSERT(num_devices > 1);
2117 		num_devices--;
2118 	}
2119 	up_read(&fs_info->dev_replace.rwsem);
2120 
2121 	return num_devices;
2122 }
2123 
2124 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2125 		u64 devid)
2126 {
2127 	struct btrfs_device *device;
2128 	struct btrfs_fs_devices *cur_devices;
2129 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2130 	u64 num_devices;
2131 	int ret = 0;
2132 
2133 	mutex_lock(&uuid_mutex);
2134 
2135 	num_devices = btrfs_num_devices(fs_info);
2136 
2137 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2138 	if (ret)
2139 		goto out;
2140 
2141 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2142 
2143 	if (IS_ERR(device)) {
2144 		if (PTR_ERR(device) == -ENOENT &&
2145 		    strcmp(device_path, "missing") == 0)
2146 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2147 		else
2148 			ret = PTR_ERR(device);
2149 		goto out;
2150 	}
2151 
2152 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2153 		btrfs_warn_in_rcu(fs_info,
2154 		  "cannot remove device %s (devid %llu) due to active swapfile",
2155 				  rcu_str_deref(device->name), device->devid);
2156 		ret = -ETXTBSY;
2157 		goto out;
2158 	}
2159 
2160 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2161 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2162 		goto out;
2163 	}
2164 
2165 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2166 	    fs_info->fs_devices->rw_devices == 1) {
2167 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2168 		goto out;
2169 	}
2170 
2171 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2172 		mutex_lock(&fs_info->chunk_mutex);
2173 		list_del_init(&device->dev_alloc_list);
2174 		device->fs_devices->rw_devices--;
2175 		mutex_unlock(&fs_info->chunk_mutex);
2176 	}
2177 
2178 	mutex_unlock(&uuid_mutex);
2179 	ret = btrfs_shrink_device(device, 0);
2180 	mutex_lock(&uuid_mutex);
2181 	if (ret)
2182 		goto error_undo;
2183 
2184 	/*
2185 	 * TODO: the superblock still includes this device in its num_devices
2186 	 * counter although write_all_supers() is not locked out. This
2187 	 * could give a filesystem state which requires a degraded mount.
2188 	 */
2189 	ret = btrfs_rm_dev_item(fs_info, device);
2190 	if (ret)
2191 		goto error_undo;
2192 
2193 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2194 	btrfs_scrub_cancel_dev(fs_info, device);
2195 
2196 	/*
2197 	 * the device list mutex makes sure that we don't change
2198 	 * the device list while someone else is writing out all
2199 	 * the device supers. Whoever is writing all supers, should
2200 	 * lock the device list mutex before getting the number of
2201 	 * devices in the super block (super_copy). Conversely,
2202 	 * whoever updates the number of devices in the super block
2203 	 * (super_copy) should hold the device list mutex.
2204 	 */
2205 
2206 	/*
2207 	 * In normal cases the cur_devices == fs_devices. But in case
2208 	 * of deleting a seed device, the cur_devices should point to
2209 	 * its own fs_devices listed under the fs_devices->seed.
2210 	 */
2211 	cur_devices = device->fs_devices;
2212 	mutex_lock(&fs_devices->device_list_mutex);
2213 	list_del_rcu(&device->dev_list);
2214 
2215 	cur_devices->num_devices--;
2216 	cur_devices->total_devices--;
2217 	/* Update total_devices of the parent fs_devices if it's seed */
2218 	if (cur_devices != fs_devices)
2219 		fs_devices->total_devices--;
2220 
2221 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2222 		cur_devices->missing_devices--;
2223 
2224 	btrfs_assign_next_active_device(device, NULL);
2225 
2226 	if (device->bdev) {
2227 		cur_devices->open_devices--;
2228 		/* remove sysfs entry */
2229 		btrfs_sysfs_rm_device_link(fs_devices, device);
2230 	}
2231 
2232 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2233 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2234 	mutex_unlock(&fs_devices->device_list_mutex);
2235 
2236 	/*
2237 	 * at this point, the device is zero sized and detached from
2238 	 * the devices list.  All that's left is to zero out the old
2239 	 * supers and free the device.
2240 	 */
2241 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2242 		btrfs_scratch_superblocks(device->bdev, device->name->str);
2243 
2244 	btrfs_close_bdev(device);
2245 	call_rcu(&device->rcu, free_device_rcu);
2246 
2247 	if (cur_devices->open_devices == 0) {
2248 		while (fs_devices) {
2249 			if (fs_devices->seed == cur_devices) {
2250 				fs_devices->seed = cur_devices->seed;
2251 				break;
2252 			}
2253 			fs_devices = fs_devices->seed;
2254 		}
2255 		cur_devices->seed = NULL;
2256 		close_fs_devices(cur_devices);
2257 		free_fs_devices(cur_devices);
2258 	}
2259 
2260 out:
2261 	mutex_unlock(&uuid_mutex);
2262 	return ret;
2263 
2264 error_undo:
2265 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2266 		mutex_lock(&fs_info->chunk_mutex);
2267 		list_add(&device->dev_alloc_list,
2268 			 &fs_devices->alloc_list);
2269 		device->fs_devices->rw_devices++;
2270 		mutex_unlock(&fs_info->chunk_mutex);
2271 	}
2272 	goto out;
2273 }
2274 
2275 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2276 {
2277 	struct btrfs_fs_devices *fs_devices;
2278 
2279 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2280 
2281 	/*
2282 	 * in case of fs with no seed, srcdev->fs_devices will point
2283 	 * to fs_devices of fs_info. However when the dev being replaced is
2284 	 * a seed dev it will point to the seed's local fs_devices. In short
2285 	 * srcdev will have its correct fs_devices in both the cases.
2286 	 */
2287 	fs_devices = srcdev->fs_devices;
2288 
2289 	list_del_rcu(&srcdev->dev_list);
2290 	list_del(&srcdev->dev_alloc_list);
2291 	fs_devices->num_devices--;
2292 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2293 		fs_devices->missing_devices--;
2294 
2295 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2296 		fs_devices->rw_devices--;
2297 
2298 	if (srcdev->bdev)
2299 		fs_devices->open_devices--;
2300 }
2301 
2302 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2303 				      struct btrfs_device *srcdev)
2304 {
2305 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2306 
2307 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2308 		/* zero out the old super if it is writable */
2309 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2310 	}
2311 
2312 	btrfs_close_bdev(srcdev);
2313 	call_rcu(&srcdev->rcu, free_device_rcu);
2314 
2315 	/* if this is no devs we rather delete the fs_devices */
2316 	if (!fs_devices->num_devices) {
2317 		struct btrfs_fs_devices *tmp_fs_devices;
2318 
2319 		/*
2320 		 * On a mounted FS, num_devices can't be zero unless it's a
2321 		 * seed. In case of a seed device being replaced, the replace
2322 		 * target added to the sprout FS, so there will be no more
2323 		 * device left under the seed FS.
2324 		 */
2325 		ASSERT(fs_devices->seeding);
2326 
2327 		tmp_fs_devices = fs_info->fs_devices;
2328 		while (tmp_fs_devices) {
2329 			if (tmp_fs_devices->seed == fs_devices) {
2330 				tmp_fs_devices->seed = fs_devices->seed;
2331 				break;
2332 			}
2333 			tmp_fs_devices = tmp_fs_devices->seed;
2334 		}
2335 		fs_devices->seed = NULL;
2336 		close_fs_devices(fs_devices);
2337 		free_fs_devices(fs_devices);
2338 	}
2339 }
2340 
2341 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2342 {
2343 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2344 
2345 	WARN_ON(!tgtdev);
2346 	mutex_lock(&fs_devices->device_list_mutex);
2347 
2348 	btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2349 
2350 	if (tgtdev->bdev)
2351 		fs_devices->open_devices--;
2352 
2353 	fs_devices->num_devices--;
2354 
2355 	btrfs_assign_next_active_device(tgtdev, NULL);
2356 
2357 	list_del_rcu(&tgtdev->dev_list);
2358 
2359 	mutex_unlock(&fs_devices->device_list_mutex);
2360 
2361 	/*
2362 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2363 	 * may lead to a call to btrfs_show_devname() which will try
2364 	 * to hold device_list_mutex. And here this device
2365 	 * is already out of device list, so we don't have to hold
2366 	 * the device_list_mutex lock.
2367 	 */
2368 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2369 
2370 	btrfs_close_bdev(tgtdev);
2371 	call_rcu(&tgtdev->rcu, free_device_rcu);
2372 }
2373 
2374 static struct btrfs_device *btrfs_find_device_by_path(
2375 		struct btrfs_fs_info *fs_info, const char *device_path)
2376 {
2377 	int ret = 0;
2378 	struct btrfs_super_block *disk_super;
2379 	u64 devid;
2380 	u8 *dev_uuid;
2381 	struct block_device *bdev;
2382 	struct buffer_head *bh;
2383 	struct btrfs_device *device;
2384 
2385 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2386 				    fs_info->bdev_holder, 0, &bdev, &bh);
2387 	if (ret)
2388 		return ERR_PTR(ret);
2389 	disk_super = (struct btrfs_super_block *)bh->b_data;
2390 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2391 	dev_uuid = disk_super->dev_item.uuid;
2392 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2393 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2394 					   disk_super->metadata_uuid, true);
2395 	else
2396 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2397 					   disk_super->fsid, true);
2398 
2399 	brelse(bh);
2400 	if (!device)
2401 		device = ERR_PTR(-ENOENT);
2402 	blkdev_put(bdev, FMODE_READ);
2403 	return device;
2404 }
2405 
2406 /*
2407  * Lookup a device given by device id, or the path if the id is 0.
2408  */
2409 struct btrfs_device *btrfs_find_device_by_devspec(
2410 		struct btrfs_fs_info *fs_info, u64 devid,
2411 		const char *device_path)
2412 {
2413 	struct btrfs_device *device;
2414 
2415 	if (devid) {
2416 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2417 					   NULL, true);
2418 		if (!device)
2419 			return ERR_PTR(-ENOENT);
2420 		return device;
2421 	}
2422 
2423 	if (!device_path || !device_path[0])
2424 		return ERR_PTR(-EINVAL);
2425 
2426 	if (strcmp(device_path, "missing") == 0) {
2427 		/* Find first missing device */
2428 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2429 				    dev_list) {
2430 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2431 				     &device->dev_state) && !device->bdev)
2432 				return device;
2433 		}
2434 		return ERR_PTR(-ENOENT);
2435 	}
2436 
2437 	return btrfs_find_device_by_path(fs_info, device_path);
2438 }
2439 
2440 /*
2441  * does all the dirty work required for changing file system's UUID.
2442  */
2443 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2444 {
2445 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2446 	struct btrfs_fs_devices *old_devices;
2447 	struct btrfs_fs_devices *seed_devices;
2448 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2449 	struct btrfs_device *device;
2450 	u64 super_flags;
2451 
2452 	lockdep_assert_held(&uuid_mutex);
2453 	if (!fs_devices->seeding)
2454 		return -EINVAL;
2455 
2456 	seed_devices = alloc_fs_devices(NULL, NULL);
2457 	if (IS_ERR(seed_devices))
2458 		return PTR_ERR(seed_devices);
2459 
2460 	old_devices = clone_fs_devices(fs_devices);
2461 	if (IS_ERR(old_devices)) {
2462 		kfree(seed_devices);
2463 		return PTR_ERR(old_devices);
2464 	}
2465 
2466 	list_add(&old_devices->fs_list, &fs_uuids);
2467 
2468 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2469 	seed_devices->opened = 1;
2470 	INIT_LIST_HEAD(&seed_devices->devices);
2471 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2472 	mutex_init(&seed_devices->device_list_mutex);
2473 
2474 	mutex_lock(&fs_devices->device_list_mutex);
2475 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2476 			      synchronize_rcu);
2477 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2478 		device->fs_devices = seed_devices;
2479 
2480 	mutex_lock(&fs_info->chunk_mutex);
2481 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2482 	mutex_unlock(&fs_info->chunk_mutex);
2483 
2484 	fs_devices->seeding = 0;
2485 	fs_devices->num_devices = 0;
2486 	fs_devices->open_devices = 0;
2487 	fs_devices->missing_devices = 0;
2488 	fs_devices->rotating = 0;
2489 	fs_devices->seed = seed_devices;
2490 
2491 	generate_random_uuid(fs_devices->fsid);
2492 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2493 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2494 	mutex_unlock(&fs_devices->device_list_mutex);
2495 
2496 	super_flags = btrfs_super_flags(disk_super) &
2497 		      ~BTRFS_SUPER_FLAG_SEEDING;
2498 	btrfs_set_super_flags(disk_super, super_flags);
2499 
2500 	return 0;
2501 }
2502 
2503 /*
2504  * Store the expected generation for seed devices in device items.
2505  */
2506 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2507 			       struct btrfs_fs_info *fs_info)
2508 {
2509 	struct btrfs_root *root = fs_info->chunk_root;
2510 	struct btrfs_path *path;
2511 	struct extent_buffer *leaf;
2512 	struct btrfs_dev_item *dev_item;
2513 	struct btrfs_device *device;
2514 	struct btrfs_key key;
2515 	u8 fs_uuid[BTRFS_FSID_SIZE];
2516 	u8 dev_uuid[BTRFS_UUID_SIZE];
2517 	u64 devid;
2518 	int ret;
2519 
2520 	path = btrfs_alloc_path();
2521 	if (!path)
2522 		return -ENOMEM;
2523 
2524 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2525 	key.offset = 0;
2526 	key.type = BTRFS_DEV_ITEM_KEY;
2527 
2528 	while (1) {
2529 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2530 		if (ret < 0)
2531 			goto error;
2532 
2533 		leaf = path->nodes[0];
2534 next_slot:
2535 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2536 			ret = btrfs_next_leaf(root, path);
2537 			if (ret > 0)
2538 				break;
2539 			if (ret < 0)
2540 				goto error;
2541 			leaf = path->nodes[0];
2542 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2543 			btrfs_release_path(path);
2544 			continue;
2545 		}
2546 
2547 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2548 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2549 		    key.type != BTRFS_DEV_ITEM_KEY)
2550 			break;
2551 
2552 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2553 					  struct btrfs_dev_item);
2554 		devid = btrfs_device_id(leaf, dev_item);
2555 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2556 				   BTRFS_UUID_SIZE);
2557 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2558 				   BTRFS_FSID_SIZE);
2559 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2560 					   fs_uuid, true);
2561 		BUG_ON(!device); /* Logic error */
2562 
2563 		if (device->fs_devices->seeding) {
2564 			btrfs_set_device_generation(leaf, dev_item,
2565 						    device->generation);
2566 			btrfs_mark_buffer_dirty(leaf);
2567 		}
2568 
2569 		path->slots[0]++;
2570 		goto next_slot;
2571 	}
2572 	ret = 0;
2573 error:
2574 	btrfs_free_path(path);
2575 	return ret;
2576 }
2577 
2578 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2579 {
2580 	struct btrfs_root *root = fs_info->dev_root;
2581 	struct request_queue *q;
2582 	struct btrfs_trans_handle *trans;
2583 	struct btrfs_device *device;
2584 	struct block_device *bdev;
2585 	struct super_block *sb = fs_info->sb;
2586 	struct rcu_string *name;
2587 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2588 	u64 orig_super_total_bytes;
2589 	u64 orig_super_num_devices;
2590 	int seeding_dev = 0;
2591 	int ret = 0;
2592 	bool unlocked = false;
2593 
2594 	if (sb_rdonly(sb) && !fs_devices->seeding)
2595 		return -EROFS;
2596 
2597 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2598 				  fs_info->bdev_holder);
2599 	if (IS_ERR(bdev))
2600 		return PTR_ERR(bdev);
2601 
2602 	if (fs_devices->seeding) {
2603 		seeding_dev = 1;
2604 		down_write(&sb->s_umount);
2605 		mutex_lock(&uuid_mutex);
2606 	}
2607 
2608 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2609 
2610 	mutex_lock(&fs_devices->device_list_mutex);
2611 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2612 		if (device->bdev == bdev) {
2613 			ret = -EEXIST;
2614 			mutex_unlock(
2615 				&fs_devices->device_list_mutex);
2616 			goto error;
2617 		}
2618 	}
2619 	mutex_unlock(&fs_devices->device_list_mutex);
2620 
2621 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2622 	if (IS_ERR(device)) {
2623 		/* we can safely leave the fs_devices entry around */
2624 		ret = PTR_ERR(device);
2625 		goto error;
2626 	}
2627 
2628 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2629 	if (!name) {
2630 		ret = -ENOMEM;
2631 		goto error_free_device;
2632 	}
2633 	rcu_assign_pointer(device->name, name);
2634 
2635 	trans = btrfs_start_transaction(root, 0);
2636 	if (IS_ERR(trans)) {
2637 		ret = PTR_ERR(trans);
2638 		goto error_free_device;
2639 	}
2640 
2641 	q = bdev_get_queue(bdev);
2642 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2643 	device->generation = trans->transid;
2644 	device->io_width = fs_info->sectorsize;
2645 	device->io_align = fs_info->sectorsize;
2646 	device->sector_size = fs_info->sectorsize;
2647 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2648 					 fs_info->sectorsize);
2649 	device->disk_total_bytes = device->total_bytes;
2650 	device->commit_total_bytes = device->total_bytes;
2651 	device->fs_info = fs_info;
2652 	device->bdev = bdev;
2653 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2654 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2655 	device->mode = FMODE_EXCL;
2656 	device->dev_stats_valid = 1;
2657 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2658 
2659 	if (seeding_dev) {
2660 		sb->s_flags &= ~SB_RDONLY;
2661 		ret = btrfs_prepare_sprout(fs_info);
2662 		if (ret) {
2663 			btrfs_abort_transaction(trans, ret);
2664 			goto error_trans;
2665 		}
2666 	}
2667 
2668 	device->fs_devices = fs_devices;
2669 
2670 	mutex_lock(&fs_devices->device_list_mutex);
2671 	mutex_lock(&fs_info->chunk_mutex);
2672 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2673 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2674 	fs_devices->num_devices++;
2675 	fs_devices->open_devices++;
2676 	fs_devices->rw_devices++;
2677 	fs_devices->total_devices++;
2678 	fs_devices->total_rw_bytes += device->total_bytes;
2679 
2680 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2681 
2682 	if (!blk_queue_nonrot(q))
2683 		fs_devices->rotating = 1;
2684 
2685 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2686 	btrfs_set_super_total_bytes(fs_info->super_copy,
2687 		round_down(orig_super_total_bytes + device->total_bytes,
2688 			   fs_info->sectorsize));
2689 
2690 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2691 	btrfs_set_super_num_devices(fs_info->super_copy,
2692 				    orig_super_num_devices + 1);
2693 
2694 	/* add sysfs device entry */
2695 	btrfs_sysfs_add_device_link(fs_devices, device);
2696 
2697 	/*
2698 	 * we've got more storage, clear any full flags on the space
2699 	 * infos
2700 	 */
2701 	btrfs_clear_space_info_full(fs_info);
2702 
2703 	mutex_unlock(&fs_info->chunk_mutex);
2704 	mutex_unlock(&fs_devices->device_list_mutex);
2705 
2706 	if (seeding_dev) {
2707 		mutex_lock(&fs_info->chunk_mutex);
2708 		ret = init_first_rw_device(trans, fs_info);
2709 		mutex_unlock(&fs_info->chunk_mutex);
2710 		if (ret) {
2711 			btrfs_abort_transaction(trans, ret);
2712 			goto error_sysfs;
2713 		}
2714 	}
2715 
2716 	ret = btrfs_add_dev_item(trans, device);
2717 	if (ret) {
2718 		btrfs_abort_transaction(trans, ret);
2719 		goto error_sysfs;
2720 	}
2721 
2722 	if (seeding_dev) {
2723 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2724 
2725 		ret = btrfs_finish_sprout(trans, fs_info);
2726 		if (ret) {
2727 			btrfs_abort_transaction(trans, ret);
2728 			goto error_sysfs;
2729 		}
2730 
2731 		/* Sprouting would change fsid of the mounted root,
2732 		 * so rename the fsid on the sysfs
2733 		 */
2734 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2735 						fs_info->fs_devices->fsid);
2736 		if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2737 			btrfs_warn(fs_info,
2738 				   "sysfs: failed to create fsid for sprout");
2739 	}
2740 
2741 	ret = btrfs_commit_transaction(trans);
2742 
2743 	if (seeding_dev) {
2744 		mutex_unlock(&uuid_mutex);
2745 		up_write(&sb->s_umount);
2746 		unlocked = true;
2747 
2748 		if (ret) /* transaction commit */
2749 			return ret;
2750 
2751 		ret = btrfs_relocate_sys_chunks(fs_info);
2752 		if (ret < 0)
2753 			btrfs_handle_fs_error(fs_info, ret,
2754 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2755 		trans = btrfs_attach_transaction(root);
2756 		if (IS_ERR(trans)) {
2757 			if (PTR_ERR(trans) == -ENOENT)
2758 				return 0;
2759 			ret = PTR_ERR(trans);
2760 			trans = NULL;
2761 			goto error_sysfs;
2762 		}
2763 		ret = btrfs_commit_transaction(trans);
2764 	}
2765 
2766 	/* Update ctime/mtime for libblkid */
2767 	update_dev_time(device_path);
2768 	return ret;
2769 
2770 error_sysfs:
2771 	btrfs_sysfs_rm_device_link(fs_devices, device);
2772 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2773 	mutex_lock(&fs_info->chunk_mutex);
2774 	list_del_rcu(&device->dev_list);
2775 	list_del(&device->dev_alloc_list);
2776 	fs_info->fs_devices->num_devices--;
2777 	fs_info->fs_devices->open_devices--;
2778 	fs_info->fs_devices->rw_devices--;
2779 	fs_info->fs_devices->total_devices--;
2780 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2781 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2782 	btrfs_set_super_total_bytes(fs_info->super_copy,
2783 				    orig_super_total_bytes);
2784 	btrfs_set_super_num_devices(fs_info->super_copy,
2785 				    orig_super_num_devices);
2786 	mutex_unlock(&fs_info->chunk_mutex);
2787 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2788 error_trans:
2789 	if (seeding_dev)
2790 		sb->s_flags |= SB_RDONLY;
2791 	if (trans)
2792 		btrfs_end_transaction(trans);
2793 error_free_device:
2794 	btrfs_free_device(device);
2795 error:
2796 	blkdev_put(bdev, FMODE_EXCL);
2797 	if (seeding_dev && !unlocked) {
2798 		mutex_unlock(&uuid_mutex);
2799 		up_write(&sb->s_umount);
2800 	}
2801 	return ret;
2802 }
2803 
2804 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2805 					struct btrfs_device *device)
2806 {
2807 	int ret;
2808 	struct btrfs_path *path;
2809 	struct btrfs_root *root = device->fs_info->chunk_root;
2810 	struct btrfs_dev_item *dev_item;
2811 	struct extent_buffer *leaf;
2812 	struct btrfs_key key;
2813 
2814 	path = btrfs_alloc_path();
2815 	if (!path)
2816 		return -ENOMEM;
2817 
2818 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2819 	key.type = BTRFS_DEV_ITEM_KEY;
2820 	key.offset = device->devid;
2821 
2822 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2823 	if (ret < 0)
2824 		goto out;
2825 
2826 	if (ret > 0) {
2827 		ret = -ENOENT;
2828 		goto out;
2829 	}
2830 
2831 	leaf = path->nodes[0];
2832 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2833 
2834 	btrfs_set_device_id(leaf, dev_item, device->devid);
2835 	btrfs_set_device_type(leaf, dev_item, device->type);
2836 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2837 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2838 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2839 	btrfs_set_device_total_bytes(leaf, dev_item,
2840 				     btrfs_device_get_disk_total_bytes(device));
2841 	btrfs_set_device_bytes_used(leaf, dev_item,
2842 				    btrfs_device_get_bytes_used(device));
2843 	btrfs_mark_buffer_dirty(leaf);
2844 
2845 out:
2846 	btrfs_free_path(path);
2847 	return ret;
2848 }
2849 
2850 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2851 		      struct btrfs_device *device, u64 new_size)
2852 {
2853 	struct btrfs_fs_info *fs_info = device->fs_info;
2854 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2855 	struct btrfs_fs_devices *fs_devices;
2856 	u64 old_total;
2857 	u64 diff;
2858 
2859 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2860 		return -EACCES;
2861 
2862 	new_size = round_down(new_size, fs_info->sectorsize);
2863 
2864 	mutex_lock(&fs_info->chunk_mutex);
2865 	old_total = btrfs_super_total_bytes(super_copy);
2866 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2867 
2868 	if (new_size <= device->total_bytes ||
2869 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2870 		mutex_unlock(&fs_info->chunk_mutex);
2871 		return -EINVAL;
2872 	}
2873 
2874 	fs_devices = fs_info->fs_devices;
2875 
2876 	btrfs_set_super_total_bytes(super_copy,
2877 			round_down(old_total + diff, fs_info->sectorsize));
2878 	device->fs_devices->total_rw_bytes += diff;
2879 
2880 	btrfs_device_set_total_bytes(device, new_size);
2881 	btrfs_device_set_disk_total_bytes(device, new_size);
2882 	btrfs_clear_space_info_full(device->fs_info);
2883 	if (list_empty(&device->resized_list))
2884 		list_add_tail(&device->resized_list,
2885 			      &fs_devices->resized_devices);
2886 	mutex_unlock(&fs_info->chunk_mutex);
2887 
2888 	return btrfs_update_device(trans, device);
2889 }
2890 
2891 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2892 {
2893 	struct btrfs_fs_info *fs_info = trans->fs_info;
2894 	struct btrfs_root *root = fs_info->chunk_root;
2895 	int ret;
2896 	struct btrfs_path *path;
2897 	struct btrfs_key key;
2898 
2899 	path = btrfs_alloc_path();
2900 	if (!path)
2901 		return -ENOMEM;
2902 
2903 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2904 	key.offset = chunk_offset;
2905 	key.type = BTRFS_CHUNK_ITEM_KEY;
2906 
2907 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2908 	if (ret < 0)
2909 		goto out;
2910 	else if (ret > 0) { /* Logic error or corruption */
2911 		btrfs_handle_fs_error(fs_info, -ENOENT,
2912 				      "Failed lookup while freeing chunk.");
2913 		ret = -ENOENT;
2914 		goto out;
2915 	}
2916 
2917 	ret = btrfs_del_item(trans, root, path);
2918 	if (ret < 0)
2919 		btrfs_handle_fs_error(fs_info, ret,
2920 				      "Failed to delete chunk item.");
2921 out:
2922 	btrfs_free_path(path);
2923 	return ret;
2924 }
2925 
2926 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2927 {
2928 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2929 	struct btrfs_disk_key *disk_key;
2930 	struct btrfs_chunk *chunk;
2931 	u8 *ptr;
2932 	int ret = 0;
2933 	u32 num_stripes;
2934 	u32 array_size;
2935 	u32 len = 0;
2936 	u32 cur;
2937 	struct btrfs_key key;
2938 
2939 	mutex_lock(&fs_info->chunk_mutex);
2940 	array_size = btrfs_super_sys_array_size(super_copy);
2941 
2942 	ptr = super_copy->sys_chunk_array;
2943 	cur = 0;
2944 
2945 	while (cur < array_size) {
2946 		disk_key = (struct btrfs_disk_key *)ptr;
2947 		btrfs_disk_key_to_cpu(&key, disk_key);
2948 
2949 		len = sizeof(*disk_key);
2950 
2951 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2952 			chunk = (struct btrfs_chunk *)(ptr + len);
2953 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2954 			len += btrfs_chunk_item_size(num_stripes);
2955 		} else {
2956 			ret = -EIO;
2957 			break;
2958 		}
2959 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2960 		    key.offset == chunk_offset) {
2961 			memmove(ptr, ptr + len, array_size - (cur + len));
2962 			array_size -= len;
2963 			btrfs_set_super_sys_array_size(super_copy, array_size);
2964 		} else {
2965 			ptr += len;
2966 			cur += len;
2967 		}
2968 	}
2969 	mutex_unlock(&fs_info->chunk_mutex);
2970 	return ret;
2971 }
2972 
2973 /*
2974  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2975  * @logical: Logical block offset in bytes.
2976  * @length: Length of extent in bytes.
2977  *
2978  * Return: Chunk mapping or ERR_PTR.
2979  */
2980 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2981 				       u64 logical, u64 length)
2982 {
2983 	struct extent_map_tree *em_tree;
2984 	struct extent_map *em;
2985 
2986 	em_tree = &fs_info->mapping_tree.map_tree;
2987 	read_lock(&em_tree->lock);
2988 	em = lookup_extent_mapping(em_tree, logical, length);
2989 	read_unlock(&em_tree->lock);
2990 
2991 	if (!em) {
2992 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2993 			   logical, length);
2994 		return ERR_PTR(-EINVAL);
2995 	}
2996 
2997 	if (em->start > logical || em->start + em->len < logical) {
2998 		btrfs_crit(fs_info,
2999 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3000 			   logical, length, em->start, em->start + em->len);
3001 		free_extent_map(em);
3002 		return ERR_PTR(-EINVAL);
3003 	}
3004 
3005 	/* callers are responsible for dropping em's ref. */
3006 	return em;
3007 }
3008 
3009 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3010 {
3011 	struct btrfs_fs_info *fs_info = trans->fs_info;
3012 	struct extent_map *em;
3013 	struct map_lookup *map;
3014 	u64 dev_extent_len = 0;
3015 	int i, ret = 0;
3016 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3017 
3018 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3019 	if (IS_ERR(em)) {
3020 		/*
3021 		 * This is a logic error, but we don't want to just rely on the
3022 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3023 		 * do anything we still error out.
3024 		 */
3025 		ASSERT(0);
3026 		return PTR_ERR(em);
3027 	}
3028 	map = em->map_lookup;
3029 	mutex_lock(&fs_info->chunk_mutex);
3030 	check_system_chunk(trans, map->type);
3031 	mutex_unlock(&fs_info->chunk_mutex);
3032 
3033 	/*
3034 	 * Take the device list mutex to prevent races with the final phase of
3035 	 * a device replace operation that replaces the device object associated
3036 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3037 	 */
3038 	mutex_lock(&fs_devices->device_list_mutex);
3039 	for (i = 0; i < map->num_stripes; i++) {
3040 		struct btrfs_device *device = map->stripes[i].dev;
3041 		ret = btrfs_free_dev_extent(trans, device,
3042 					    map->stripes[i].physical,
3043 					    &dev_extent_len);
3044 		if (ret) {
3045 			mutex_unlock(&fs_devices->device_list_mutex);
3046 			btrfs_abort_transaction(trans, ret);
3047 			goto out;
3048 		}
3049 
3050 		if (device->bytes_used > 0) {
3051 			mutex_lock(&fs_info->chunk_mutex);
3052 			btrfs_device_set_bytes_used(device,
3053 					device->bytes_used - dev_extent_len);
3054 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3055 			btrfs_clear_space_info_full(fs_info);
3056 			mutex_unlock(&fs_info->chunk_mutex);
3057 		}
3058 
3059 		ret = btrfs_update_device(trans, device);
3060 		if (ret) {
3061 			mutex_unlock(&fs_devices->device_list_mutex);
3062 			btrfs_abort_transaction(trans, ret);
3063 			goto out;
3064 		}
3065 	}
3066 	mutex_unlock(&fs_devices->device_list_mutex);
3067 
3068 	ret = btrfs_free_chunk(trans, chunk_offset);
3069 	if (ret) {
3070 		btrfs_abort_transaction(trans, ret);
3071 		goto out;
3072 	}
3073 
3074 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3075 
3076 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3077 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3078 		if (ret) {
3079 			btrfs_abort_transaction(trans, ret);
3080 			goto out;
3081 		}
3082 	}
3083 
3084 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3085 	if (ret) {
3086 		btrfs_abort_transaction(trans, ret);
3087 		goto out;
3088 	}
3089 
3090 out:
3091 	/* once for us */
3092 	free_extent_map(em);
3093 	return ret;
3094 }
3095 
3096 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3097 {
3098 	struct btrfs_root *root = fs_info->chunk_root;
3099 	struct btrfs_trans_handle *trans;
3100 	int ret;
3101 
3102 	/*
3103 	 * Prevent races with automatic removal of unused block groups.
3104 	 * After we relocate and before we remove the chunk with offset
3105 	 * chunk_offset, automatic removal of the block group can kick in,
3106 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3107 	 *
3108 	 * Make sure to acquire this mutex before doing a tree search (dev
3109 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3110 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3111 	 * we release the path used to search the chunk/dev tree and before
3112 	 * the current task acquires this mutex and calls us.
3113 	 */
3114 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3115 
3116 	ret = btrfs_can_relocate(fs_info, chunk_offset);
3117 	if (ret)
3118 		return -ENOSPC;
3119 
3120 	/* step one, relocate all the extents inside this chunk */
3121 	btrfs_scrub_pause(fs_info);
3122 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3123 	btrfs_scrub_continue(fs_info);
3124 	if (ret)
3125 		return ret;
3126 
3127 	/*
3128 	 * We add the kobjects here (and after forcing data chunk creation)
3129 	 * since relocation is the only place we'll create chunks of a new
3130 	 * type at runtime.  The only place where we'll remove the last
3131 	 * chunk of a type is the call immediately below this one.  Even
3132 	 * so, we're protected against races with the cleaner thread since
3133 	 * we're covered by the delete_unused_bgs_mutex.
3134 	 */
3135 	btrfs_add_raid_kobjects(fs_info);
3136 
3137 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3138 						     chunk_offset);
3139 	if (IS_ERR(trans)) {
3140 		ret = PTR_ERR(trans);
3141 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3142 		return ret;
3143 	}
3144 
3145 	/*
3146 	 * step two, delete the device extents and the
3147 	 * chunk tree entries
3148 	 */
3149 	ret = btrfs_remove_chunk(trans, chunk_offset);
3150 	btrfs_end_transaction(trans);
3151 	return ret;
3152 }
3153 
3154 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3155 {
3156 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3157 	struct btrfs_path *path;
3158 	struct extent_buffer *leaf;
3159 	struct btrfs_chunk *chunk;
3160 	struct btrfs_key key;
3161 	struct btrfs_key found_key;
3162 	u64 chunk_type;
3163 	bool retried = false;
3164 	int failed = 0;
3165 	int ret;
3166 
3167 	path = btrfs_alloc_path();
3168 	if (!path)
3169 		return -ENOMEM;
3170 
3171 again:
3172 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3173 	key.offset = (u64)-1;
3174 	key.type = BTRFS_CHUNK_ITEM_KEY;
3175 
3176 	while (1) {
3177 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3178 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3179 		if (ret < 0) {
3180 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3181 			goto error;
3182 		}
3183 		BUG_ON(ret == 0); /* Corruption */
3184 
3185 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3186 					  key.type);
3187 		if (ret)
3188 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3189 		if (ret < 0)
3190 			goto error;
3191 		if (ret > 0)
3192 			break;
3193 
3194 		leaf = path->nodes[0];
3195 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3196 
3197 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3198 				       struct btrfs_chunk);
3199 		chunk_type = btrfs_chunk_type(leaf, chunk);
3200 		btrfs_release_path(path);
3201 
3202 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3203 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3204 			if (ret == -ENOSPC)
3205 				failed++;
3206 			else
3207 				BUG_ON(ret);
3208 		}
3209 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3210 
3211 		if (found_key.offset == 0)
3212 			break;
3213 		key.offset = found_key.offset - 1;
3214 	}
3215 	ret = 0;
3216 	if (failed && !retried) {
3217 		failed = 0;
3218 		retried = true;
3219 		goto again;
3220 	} else if (WARN_ON(failed && retried)) {
3221 		ret = -ENOSPC;
3222 	}
3223 error:
3224 	btrfs_free_path(path);
3225 	return ret;
3226 }
3227 
3228 /*
3229  * return 1 : allocate a data chunk successfully,
3230  * return <0: errors during allocating a data chunk,
3231  * return 0 : no need to allocate a data chunk.
3232  */
3233 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3234 				      u64 chunk_offset)
3235 {
3236 	struct btrfs_block_group_cache *cache;
3237 	u64 bytes_used;
3238 	u64 chunk_type;
3239 
3240 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3241 	ASSERT(cache);
3242 	chunk_type = cache->flags;
3243 	btrfs_put_block_group(cache);
3244 
3245 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3246 		spin_lock(&fs_info->data_sinfo->lock);
3247 		bytes_used = fs_info->data_sinfo->bytes_used;
3248 		spin_unlock(&fs_info->data_sinfo->lock);
3249 
3250 		if (!bytes_used) {
3251 			struct btrfs_trans_handle *trans;
3252 			int ret;
3253 
3254 			trans =	btrfs_join_transaction(fs_info->tree_root);
3255 			if (IS_ERR(trans))
3256 				return PTR_ERR(trans);
3257 
3258 			ret = btrfs_force_chunk_alloc(trans,
3259 						      BTRFS_BLOCK_GROUP_DATA);
3260 			btrfs_end_transaction(trans);
3261 			if (ret < 0)
3262 				return ret;
3263 
3264 			btrfs_add_raid_kobjects(fs_info);
3265 
3266 			return 1;
3267 		}
3268 	}
3269 	return 0;
3270 }
3271 
3272 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3273 			       struct btrfs_balance_control *bctl)
3274 {
3275 	struct btrfs_root *root = fs_info->tree_root;
3276 	struct btrfs_trans_handle *trans;
3277 	struct btrfs_balance_item *item;
3278 	struct btrfs_disk_balance_args disk_bargs;
3279 	struct btrfs_path *path;
3280 	struct extent_buffer *leaf;
3281 	struct btrfs_key key;
3282 	int ret, err;
3283 
3284 	path = btrfs_alloc_path();
3285 	if (!path)
3286 		return -ENOMEM;
3287 
3288 	trans = btrfs_start_transaction(root, 0);
3289 	if (IS_ERR(trans)) {
3290 		btrfs_free_path(path);
3291 		return PTR_ERR(trans);
3292 	}
3293 
3294 	key.objectid = BTRFS_BALANCE_OBJECTID;
3295 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3296 	key.offset = 0;
3297 
3298 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3299 				      sizeof(*item));
3300 	if (ret)
3301 		goto out;
3302 
3303 	leaf = path->nodes[0];
3304 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3305 
3306 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3307 
3308 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3309 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3310 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3311 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3312 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3313 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3314 
3315 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3316 
3317 	btrfs_mark_buffer_dirty(leaf);
3318 out:
3319 	btrfs_free_path(path);
3320 	err = btrfs_commit_transaction(trans);
3321 	if (err && !ret)
3322 		ret = err;
3323 	return ret;
3324 }
3325 
3326 static int del_balance_item(struct btrfs_fs_info *fs_info)
3327 {
3328 	struct btrfs_root *root = fs_info->tree_root;
3329 	struct btrfs_trans_handle *trans;
3330 	struct btrfs_path *path;
3331 	struct btrfs_key key;
3332 	int ret, err;
3333 
3334 	path = btrfs_alloc_path();
3335 	if (!path)
3336 		return -ENOMEM;
3337 
3338 	trans = btrfs_start_transaction(root, 0);
3339 	if (IS_ERR(trans)) {
3340 		btrfs_free_path(path);
3341 		return PTR_ERR(trans);
3342 	}
3343 
3344 	key.objectid = BTRFS_BALANCE_OBJECTID;
3345 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3346 	key.offset = 0;
3347 
3348 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3349 	if (ret < 0)
3350 		goto out;
3351 	if (ret > 0) {
3352 		ret = -ENOENT;
3353 		goto out;
3354 	}
3355 
3356 	ret = btrfs_del_item(trans, root, path);
3357 out:
3358 	btrfs_free_path(path);
3359 	err = btrfs_commit_transaction(trans);
3360 	if (err && !ret)
3361 		ret = err;
3362 	return ret;
3363 }
3364 
3365 /*
3366  * This is a heuristic used to reduce the number of chunks balanced on
3367  * resume after balance was interrupted.
3368  */
3369 static void update_balance_args(struct btrfs_balance_control *bctl)
3370 {
3371 	/*
3372 	 * Turn on soft mode for chunk types that were being converted.
3373 	 */
3374 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3375 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3376 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3377 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3378 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3379 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3380 
3381 	/*
3382 	 * Turn on usage filter if is not already used.  The idea is
3383 	 * that chunks that we have already balanced should be
3384 	 * reasonably full.  Don't do it for chunks that are being
3385 	 * converted - that will keep us from relocating unconverted
3386 	 * (albeit full) chunks.
3387 	 */
3388 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3389 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3390 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3391 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3392 		bctl->data.usage = 90;
3393 	}
3394 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3395 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3396 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3397 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3398 		bctl->sys.usage = 90;
3399 	}
3400 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3401 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3402 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3403 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3404 		bctl->meta.usage = 90;
3405 	}
3406 }
3407 
3408 /*
3409  * Clear the balance status in fs_info and delete the balance item from disk.
3410  */
3411 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3412 {
3413 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3414 	int ret;
3415 
3416 	BUG_ON(!fs_info->balance_ctl);
3417 
3418 	spin_lock(&fs_info->balance_lock);
3419 	fs_info->balance_ctl = NULL;
3420 	spin_unlock(&fs_info->balance_lock);
3421 
3422 	kfree(bctl);
3423 	ret = del_balance_item(fs_info);
3424 	if (ret)
3425 		btrfs_handle_fs_error(fs_info, ret, NULL);
3426 }
3427 
3428 /*
3429  * Balance filters.  Return 1 if chunk should be filtered out
3430  * (should not be balanced).
3431  */
3432 static int chunk_profiles_filter(u64 chunk_type,
3433 				 struct btrfs_balance_args *bargs)
3434 {
3435 	chunk_type = chunk_to_extended(chunk_type) &
3436 				BTRFS_EXTENDED_PROFILE_MASK;
3437 
3438 	if (bargs->profiles & chunk_type)
3439 		return 0;
3440 
3441 	return 1;
3442 }
3443 
3444 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3445 			      struct btrfs_balance_args *bargs)
3446 {
3447 	struct btrfs_block_group_cache *cache;
3448 	u64 chunk_used;
3449 	u64 user_thresh_min;
3450 	u64 user_thresh_max;
3451 	int ret = 1;
3452 
3453 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3454 	chunk_used = btrfs_block_group_used(&cache->item);
3455 
3456 	if (bargs->usage_min == 0)
3457 		user_thresh_min = 0;
3458 	else
3459 		user_thresh_min = div_factor_fine(cache->key.offset,
3460 					bargs->usage_min);
3461 
3462 	if (bargs->usage_max == 0)
3463 		user_thresh_max = 1;
3464 	else if (bargs->usage_max > 100)
3465 		user_thresh_max = cache->key.offset;
3466 	else
3467 		user_thresh_max = div_factor_fine(cache->key.offset,
3468 					bargs->usage_max);
3469 
3470 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3471 		ret = 0;
3472 
3473 	btrfs_put_block_group(cache);
3474 	return ret;
3475 }
3476 
3477 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3478 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3479 {
3480 	struct btrfs_block_group_cache *cache;
3481 	u64 chunk_used, user_thresh;
3482 	int ret = 1;
3483 
3484 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3485 	chunk_used = btrfs_block_group_used(&cache->item);
3486 
3487 	if (bargs->usage_min == 0)
3488 		user_thresh = 1;
3489 	else if (bargs->usage > 100)
3490 		user_thresh = cache->key.offset;
3491 	else
3492 		user_thresh = div_factor_fine(cache->key.offset,
3493 					      bargs->usage);
3494 
3495 	if (chunk_used < user_thresh)
3496 		ret = 0;
3497 
3498 	btrfs_put_block_group(cache);
3499 	return ret;
3500 }
3501 
3502 static int chunk_devid_filter(struct extent_buffer *leaf,
3503 			      struct btrfs_chunk *chunk,
3504 			      struct btrfs_balance_args *bargs)
3505 {
3506 	struct btrfs_stripe *stripe;
3507 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3508 	int i;
3509 
3510 	for (i = 0; i < num_stripes; i++) {
3511 		stripe = btrfs_stripe_nr(chunk, i);
3512 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3513 			return 0;
3514 	}
3515 
3516 	return 1;
3517 }
3518 
3519 /* [pstart, pend) */
3520 static int chunk_drange_filter(struct extent_buffer *leaf,
3521 			       struct btrfs_chunk *chunk,
3522 			       struct btrfs_balance_args *bargs)
3523 {
3524 	struct btrfs_stripe *stripe;
3525 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3526 	u64 stripe_offset;
3527 	u64 stripe_length;
3528 	int factor;
3529 	int i;
3530 
3531 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3532 		return 0;
3533 
3534 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3535 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3536 		factor = num_stripes / 2;
3537 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3538 		factor = num_stripes - 1;
3539 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3540 		factor = num_stripes - 2;
3541 	} else {
3542 		factor = num_stripes;
3543 	}
3544 
3545 	for (i = 0; i < num_stripes; i++) {
3546 		stripe = btrfs_stripe_nr(chunk, i);
3547 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3548 			continue;
3549 
3550 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3551 		stripe_length = btrfs_chunk_length(leaf, chunk);
3552 		stripe_length = div_u64(stripe_length, factor);
3553 
3554 		if (stripe_offset < bargs->pend &&
3555 		    stripe_offset + stripe_length > bargs->pstart)
3556 			return 0;
3557 	}
3558 
3559 	return 1;
3560 }
3561 
3562 /* [vstart, vend) */
3563 static int chunk_vrange_filter(struct extent_buffer *leaf,
3564 			       struct btrfs_chunk *chunk,
3565 			       u64 chunk_offset,
3566 			       struct btrfs_balance_args *bargs)
3567 {
3568 	if (chunk_offset < bargs->vend &&
3569 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3570 		/* at least part of the chunk is inside this vrange */
3571 		return 0;
3572 
3573 	return 1;
3574 }
3575 
3576 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3577 			       struct btrfs_chunk *chunk,
3578 			       struct btrfs_balance_args *bargs)
3579 {
3580 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3581 
3582 	if (bargs->stripes_min <= num_stripes
3583 			&& num_stripes <= bargs->stripes_max)
3584 		return 0;
3585 
3586 	return 1;
3587 }
3588 
3589 static int chunk_soft_convert_filter(u64 chunk_type,
3590 				     struct btrfs_balance_args *bargs)
3591 {
3592 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3593 		return 0;
3594 
3595 	chunk_type = chunk_to_extended(chunk_type) &
3596 				BTRFS_EXTENDED_PROFILE_MASK;
3597 
3598 	if (bargs->target == chunk_type)
3599 		return 1;
3600 
3601 	return 0;
3602 }
3603 
3604 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3605 				struct extent_buffer *leaf,
3606 				struct btrfs_chunk *chunk, u64 chunk_offset)
3607 {
3608 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3609 	struct btrfs_balance_args *bargs = NULL;
3610 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3611 
3612 	/* type filter */
3613 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3614 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3615 		return 0;
3616 	}
3617 
3618 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3619 		bargs = &bctl->data;
3620 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3621 		bargs = &bctl->sys;
3622 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3623 		bargs = &bctl->meta;
3624 
3625 	/* profiles filter */
3626 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3627 	    chunk_profiles_filter(chunk_type, bargs)) {
3628 		return 0;
3629 	}
3630 
3631 	/* usage filter */
3632 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3633 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3634 		return 0;
3635 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3636 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3637 		return 0;
3638 	}
3639 
3640 	/* devid filter */
3641 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3642 	    chunk_devid_filter(leaf, chunk, bargs)) {
3643 		return 0;
3644 	}
3645 
3646 	/* drange filter, makes sense only with devid filter */
3647 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3648 	    chunk_drange_filter(leaf, chunk, bargs)) {
3649 		return 0;
3650 	}
3651 
3652 	/* vrange filter */
3653 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3654 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3655 		return 0;
3656 	}
3657 
3658 	/* stripes filter */
3659 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3660 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3661 		return 0;
3662 	}
3663 
3664 	/* soft profile changing mode */
3665 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3666 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3667 		return 0;
3668 	}
3669 
3670 	/*
3671 	 * limited by count, must be the last filter
3672 	 */
3673 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3674 		if (bargs->limit == 0)
3675 			return 0;
3676 		else
3677 			bargs->limit--;
3678 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3679 		/*
3680 		 * Same logic as the 'limit' filter; the minimum cannot be
3681 		 * determined here because we do not have the global information
3682 		 * about the count of all chunks that satisfy the filters.
3683 		 */
3684 		if (bargs->limit_max == 0)
3685 			return 0;
3686 		else
3687 			bargs->limit_max--;
3688 	}
3689 
3690 	return 1;
3691 }
3692 
3693 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3694 {
3695 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3696 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3697 	u64 chunk_type;
3698 	struct btrfs_chunk *chunk;
3699 	struct btrfs_path *path = NULL;
3700 	struct btrfs_key key;
3701 	struct btrfs_key found_key;
3702 	struct extent_buffer *leaf;
3703 	int slot;
3704 	int ret;
3705 	int enospc_errors = 0;
3706 	bool counting = true;
3707 	/* The single value limit and min/max limits use the same bytes in the */
3708 	u64 limit_data = bctl->data.limit;
3709 	u64 limit_meta = bctl->meta.limit;
3710 	u64 limit_sys = bctl->sys.limit;
3711 	u32 count_data = 0;
3712 	u32 count_meta = 0;
3713 	u32 count_sys = 0;
3714 	int chunk_reserved = 0;
3715 
3716 	path = btrfs_alloc_path();
3717 	if (!path) {
3718 		ret = -ENOMEM;
3719 		goto error;
3720 	}
3721 
3722 	/* zero out stat counters */
3723 	spin_lock(&fs_info->balance_lock);
3724 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3725 	spin_unlock(&fs_info->balance_lock);
3726 again:
3727 	if (!counting) {
3728 		/*
3729 		 * The single value limit and min/max limits use the same bytes
3730 		 * in the
3731 		 */
3732 		bctl->data.limit = limit_data;
3733 		bctl->meta.limit = limit_meta;
3734 		bctl->sys.limit = limit_sys;
3735 	}
3736 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3737 	key.offset = (u64)-1;
3738 	key.type = BTRFS_CHUNK_ITEM_KEY;
3739 
3740 	while (1) {
3741 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3742 		    atomic_read(&fs_info->balance_cancel_req)) {
3743 			ret = -ECANCELED;
3744 			goto error;
3745 		}
3746 
3747 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3748 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3749 		if (ret < 0) {
3750 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3751 			goto error;
3752 		}
3753 
3754 		/*
3755 		 * this shouldn't happen, it means the last relocate
3756 		 * failed
3757 		 */
3758 		if (ret == 0)
3759 			BUG(); /* FIXME break ? */
3760 
3761 		ret = btrfs_previous_item(chunk_root, path, 0,
3762 					  BTRFS_CHUNK_ITEM_KEY);
3763 		if (ret) {
3764 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3765 			ret = 0;
3766 			break;
3767 		}
3768 
3769 		leaf = path->nodes[0];
3770 		slot = path->slots[0];
3771 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3772 
3773 		if (found_key.objectid != key.objectid) {
3774 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3775 			break;
3776 		}
3777 
3778 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3779 		chunk_type = btrfs_chunk_type(leaf, chunk);
3780 
3781 		if (!counting) {
3782 			spin_lock(&fs_info->balance_lock);
3783 			bctl->stat.considered++;
3784 			spin_unlock(&fs_info->balance_lock);
3785 		}
3786 
3787 		ret = should_balance_chunk(fs_info, leaf, chunk,
3788 					   found_key.offset);
3789 
3790 		btrfs_release_path(path);
3791 		if (!ret) {
3792 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3793 			goto loop;
3794 		}
3795 
3796 		if (counting) {
3797 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3798 			spin_lock(&fs_info->balance_lock);
3799 			bctl->stat.expected++;
3800 			spin_unlock(&fs_info->balance_lock);
3801 
3802 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3803 				count_data++;
3804 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3805 				count_sys++;
3806 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3807 				count_meta++;
3808 
3809 			goto loop;
3810 		}
3811 
3812 		/*
3813 		 * Apply limit_min filter, no need to check if the LIMITS
3814 		 * filter is used, limit_min is 0 by default
3815 		 */
3816 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3817 					count_data < bctl->data.limit_min)
3818 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3819 					count_meta < bctl->meta.limit_min)
3820 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3821 					count_sys < bctl->sys.limit_min)) {
3822 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3823 			goto loop;
3824 		}
3825 
3826 		if (!chunk_reserved) {
3827 			/*
3828 			 * We may be relocating the only data chunk we have,
3829 			 * which could potentially end up with losing data's
3830 			 * raid profile, so lets allocate an empty one in
3831 			 * advance.
3832 			 */
3833 			ret = btrfs_may_alloc_data_chunk(fs_info,
3834 							 found_key.offset);
3835 			if (ret < 0) {
3836 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3837 				goto error;
3838 			} else if (ret == 1) {
3839 				chunk_reserved = 1;
3840 			}
3841 		}
3842 
3843 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3844 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3845 		if (ret == -ENOSPC) {
3846 			enospc_errors++;
3847 		} else if (ret == -ETXTBSY) {
3848 			btrfs_info(fs_info,
3849 	   "skipping relocation of block group %llu due to active swapfile",
3850 				   found_key.offset);
3851 			ret = 0;
3852 		} else if (ret) {
3853 			goto error;
3854 		} else {
3855 			spin_lock(&fs_info->balance_lock);
3856 			bctl->stat.completed++;
3857 			spin_unlock(&fs_info->balance_lock);
3858 		}
3859 loop:
3860 		if (found_key.offset == 0)
3861 			break;
3862 		key.offset = found_key.offset - 1;
3863 	}
3864 
3865 	if (counting) {
3866 		btrfs_release_path(path);
3867 		counting = false;
3868 		goto again;
3869 	}
3870 error:
3871 	btrfs_free_path(path);
3872 	if (enospc_errors) {
3873 		btrfs_info(fs_info, "%d enospc errors during balance",
3874 			   enospc_errors);
3875 		if (!ret)
3876 			ret = -ENOSPC;
3877 	}
3878 
3879 	return ret;
3880 }
3881 
3882 /**
3883  * alloc_profile_is_valid - see if a given profile is valid and reduced
3884  * @flags: profile to validate
3885  * @extended: if true @flags is treated as an extended profile
3886  */
3887 static int alloc_profile_is_valid(u64 flags, int extended)
3888 {
3889 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3890 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3891 
3892 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3893 
3894 	/* 1) check that all other bits are zeroed */
3895 	if (flags & ~mask)
3896 		return 0;
3897 
3898 	/* 2) see if profile is reduced */
3899 	if (flags == 0)
3900 		return !extended; /* "0" is valid for usual profiles */
3901 
3902 	/* true if exactly one bit set */
3903 	return is_power_of_2(flags);
3904 }
3905 
3906 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3907 {
3908 	/* cancel requested || normal exit path */
3909 	return atomic_read(&fs_info->balance_cancel_req) ||
3910 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3911 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3912 }
3913 
3914 /* Non-zero return value signifies invalidity */
3915 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3916 		u64 allowed)
3917 {
3918 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3919 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3920 		 (bctl_arg->target & ~allowed)));
3921 }
3922 
3923 /*
3924  * Fill @buf with textual description of balance filter flags @bargs, up to
3925  * @size_buf including the terminating null. The output may be trimmed if it
3926  * does not fit into the provided buffer.
3927  */
3928 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3929 				 u32 size_buf)
3930 {
3931 	int ret;
3932 	u32 size_bp = size_buf;
3933 	char *bp = buf;
3934 	u64 flags = bargs->flags;
3935 	char tmp_buf[128] = {'\0'};
3936 
3937 	if (!flags)
3938 		return;
3939 
3940 #define CHECK_APPEND_NOARG(a)						\
3941 	do {								\
3942 		ret = snprintf(bp, size_bp, (a));			\
3943 		if (ret < 0 || ret >= size_bp)				\
3944 			goto out_overflow;				\
3945 		size_bp -= ret;						\
3946 		bp += ret;						\
3947 	} while (0)
3948 
3949 #define CHECK_APPEND_1ARG(a, v1)					\
3950 	do {								\
3951 		ret = snprintf(bp, size_bp, (a), (v1));			\
3952 		if (ret < 0 || ret >= size_bp)				\
3953 			goto out_overflow;				\
3954 		size_bp -= ret;						\
3955 		bp += ret;						\
3956 	} while (0)
3957 
3958 #define CHECK_APPEND_2ARG(a, v1, v2)					\
3959 	do {								\
3960 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
3961 		if (ret < 0 || ret >= size_bp)				\
3962 			goto out_overflow;				\
3963 		size_bp -= ret;						\
3964 		bp += ret;						\
3965 	} while (0)
3966 
3967 	if (flags & BTRFS_BALANCE_ARGS_CONVERT) {
3968 		int index = btrfs_bg_flags_to_raid_index(bargs->target);
3969 
3970 		CHECK_APPEND_1ARG("convert=%s,", get_raid_name(index));
3971 	}
3972 
3973 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
3974 		CHECK_APPEND_NOARG("soft,");
3975 
3976 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3977 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3978 					    sizeof(tmp_buf));
3979 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3980 	}
3981 
3982 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
3983 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3984 
3985 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3986 		CHECK_APPEND_2ARG("usage=%u..%u,",
3987 				  bargs->usage_min, bargs->usage_max);
3988 
3989 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
3990 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3991 
3992 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3993 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
3994 				  bargs->pstart, bargs->pend);
3995 
3996 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3997 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3998 				  bargs->vstart, bargs->vend);
3999 
4000 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4001 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4002 
4003 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4004 		CHECK_APPEND_2ARG("limit=%u..%u,",
4005 				bargs->limit_min, bargs->limit_max);
4006 
4007 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4008 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4009 				  bargs->stripes_min, bargs->stripes_max);
4010 
4011 #undef CHECK_APPEND_2ARG
4012 #undef CHECK_APPEND_1ARG
4013 #undef CHECK_APPEND_NOARG
4014 
4015 out_overflow:
4016 
4017 	if (size_bp < size_buf)
4018 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4019 	else
4020 		buf[0] = '\0';
4021 }
4022 
4023 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4024 {
4025 	u32 size_buf = 1024;
4026 	char tmp_buf[192] = {'\0'};
4027 	char *buf;
4028 	char *bp;
4029 	u32 size_bp = size_buf;
4030 	int ret;
4031 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4032 
4033 	buf = kzalloc(size_buf, GFP_KERNEL);
4034 	if (!buf)
4035 		return;
4036 
4037 	bp = buf;
4038 
4039 #define CHECK_APPEND_1ARG(a, v1)					\
4040 	do {								\
4041 		ret = snprintf(bp, size_bp, (a), (v1));			\
4042 		if (ret < 0 || ret >= size_bp)				\
4043 			goto out_overflow;				\
4044 		size_bp -= ret;						\
4045 		bp += ret;						\
4046 	} while (0)
4047 
4048 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4049 		CHECK_APPEND_1ARG("%s", "-f ");
4050 
4051 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4052 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4053 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4054 	}
4055 
4056 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4057 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4058 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4059 	}
4060 
4061 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4062 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4063 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4064 	}
4065 
4066 #undef CHECK_APPEND_1ARG
4067 
4068 out_overflow:
4069 
4070 	if (size_bp < size_buf)
4071 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4072 	btrfs_info(fs_info, "balance: %s %s",
4073 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4074 		   "resume" : "start", buf);
4075 
4076 	kfree(buf);
4077 }
4078 
4079 /*
4080  * Should be called with balance mutexe held
4081  */
4082 int btrfs_balance(struct btrfs_fs_info *fs_info,
4083 		  struct btrfs_balance_control *bctl,
4084 		  struct btrfs_ioctl_balance_args *bargs)
4085 {
4086 	u64 meta_target, data_target;
4087 	u64 allowed;
4088 	int mixed = 0;
4089 	int ret;
4090 	u64 num_devices;
4091 	unsigned seq;
4092 	bool reducing_integrity;
4093 
4094 	if (btrfs_fs_closing(fs_info) ||
4095 	    atomic_read(&fs_info->balance_pause_req) ||
4096 	    atomic_read(&fs_info->balance_cancel_req)) {
4097 		ret = -EINVAL;
4098 		goto out;
4099 	}
4100 
4101 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4102 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4103 		mixed = 1;
4104 
4105 	/*
4106 	 * In case of mixed groups both data and meta should be picked,
4107 	 * and identical options should be given for both of them.
4108 	 */
4109 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4110 	if (mixed && (bctl->flags & allowed)) {
4111 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4112 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4113 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4114 			btrfs_err(fs_info,
4115 	  "balance: mixed groups data and metadata options must be the same");
4116 			ret = -EINVAL;
4117 			goto out;
4118 		}
4119 	}
4120 
4121 	num_devices = btrfs_num_devices(fs_info);
4122 
4123 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
4124 	if (num_devices > 1)
4125 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
4126 	if (num_devices > 2)
4127 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
4128 	if (num_devices > 3)
4129 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
4130 			    BTRFS_BLOCK_GROUP_RAID6);
4131 	if (validate_convert_profile(&bctl->data, allowed)) {
4132 		int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
4133 
4134 		btrfs_err(fs_info,
4135 			  "balance: invalid convert data profile %s",
4136 			  get_raid_name(index));
4137 		ret = -EINVAL;
4138 		goto out;
4139 	}
4140 	if (validate_convert_profile(&bctl->meta, allowed)) {
4141 		int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
4142 
4143 		btrfs_err(fs_info,
4144 			  "balance: invalid convert metadata profile %s",
4145 			  get_raid_name(index));
4146 		ret = -EINVAL;
4147 		goto out;
4148 	}
4149 	if (validate_convert_profile(&bctl->sys, allowed)) {
4150 		int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
4151 
4152 		btrfs_err(fs_info,
4153 			  "balance: invalid convert system profile %s",
4154 			  get_raid_name(index));
4155 		ret = -EINVAL;
4156 		goto out;
4157 	}
4158 
4159 	/* allow to reduce meta or sys integrity only if force set */
4160 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4161 			BTRFS_BLOCK_GROUP_RAID10 |
4162 			BTRFS_BLOCK_GROUP_RAID5 |
4163 			BTRFS_BLOCK_GROUP_RAID6;
4164 	do {
4165 		seq = read_seqbegin(&fs_info->profiles_lock);
4166 
4167 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4168 		     (fs_info->avail_system_alloc_bits & allowed) &&
4169 		     !(bctl->sys.target & allowed)) ||
4170 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4171 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4172 		     !(bctl->meta.target & allowed)))
4173 			reducing_integrity = true;
4174 		else
4175 			reducing_integrity = false;
4176 
4177 		/* if we're not converting, the target field is uninitialized */
4178 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4179 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4180 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4181 			bctl->data.target : fs_info->avail_data_alloc_bits;
4182 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4183 
4184 	if (reducing_integrity) {
4185 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4186 			btrfs_info(fs_info,
4187 				   "balance: force reducing metadata integrity");
4188 		} else {
4189 			btrfs_err(fs_info,
4190 	  "balance: reduces metadata integrity, use --force if you want this");
4191 			ret = -EINVAL;
4192 			goto out;
4193 		}
4194 	}
4195 
4196 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4197 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4198 		int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
4199 		int data_index = btrfs_bg_flags_to_raid_index(data_target);
4200 
4201 		btrfs_warn(fs_info,
4202 	"balance: metadata profile %s has lower redundancy than data profile %s",
4203 			   get_raid_name(meta_index), get_raid_name(data_index));
4204 	}
4205 
4206 	ret = insert_balance_item(fs_info, bctl);
4207 	if (ret && ret != -EEXIST)
4208 		goto out;
4209 
4210 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4211 		BUG_ON(ret == -EEXIST);
4212 		BUG_ON(fs_info->balance_ctl);
4213 		spin_lock(&fs_info->balance_lock);
4214 		fs_info->balance_ctl = bctl;
4215 		spin_unlock(&fs_info->balance_lock);
4216 	} else {
4217 		BUG_ON(ret != -EEXIST);
4218 		spin_lock(&fs_info->balance_lock);
4219 		update_balance_args(bctl);
4220 		spin_unlock(&fs_info->balance_lock);
4221 	}
4222 
4223 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4224 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4225 	describe_balance_start_or_resume(fs_info);
4226 	mutex_unlock(&fs_info->balance_mutex);
4227 
4228 	ret = __btrfs_balance(fs_info);
4229 
4230 	mutex_lock(&fs_info->balance_mutex);
4231 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4232 		btrfs_info(fs_info, "balance: paused");
4233 	else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4234 		btrfs_info(fs_info, "balance: canceled");
4235 	else
4236 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4237 
4238 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4239 
4240 	if (bargs) {
4241 		memset(bargs, 0, sizeof(*bargs));
4242 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4243 	}
4244 
4245 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4246 	    balance_need_close(fs_info)) {
4247 		reset_balance_state(fs_info);
4248 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4249 	}
4250 
4251 	wake_up(&fs_info->balance_wait_q);
4252 
4253 	return ret;
4254 out:
4255 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4256 		reset_balance_state(fs_info);
4257 	else
4258 		kfree(bctl);
4259 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4260 
4261 	return ret;
4262 }
4263 
4264 static int balance_kthread(void *data)
4265 {
4266 	struct btrfs_fs_info *fs_info = data;
4267 	int ret = 0;
4268 
4269 	mutex_lock(&fs_info->balance_mutex);
4270 	if (fs_info->balance_ctl)
4271 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4272 	mutex_unlock(&fs_info->balance_mutex);
4273 
4274 	return ret;
4275 }
4276 
4277 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4278 {
4279 	struct task_struct *tsk;
4280 
4281 	mutex_lock(&fs_info->balance_mutex);
4282 	if (!fs_info->balance_ctl) {
4283 		mutex_unlock(&fs_info->balance_mutex);
4284 		return 0;
4285 	}
4286 	mutex_unlock(&fs_info->balance_mutex);
4287 
4288 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4289 		btrfs_info(fs_info, "balance: resume skipped");
4290 		return 0;
4291 	}
4292 
4293 	/*
4294 	 * A ro->rw remount sequence should continue with the paused balance
4295 	 * regardless of who pauses it, system or the user as of now, so set
4296 	 * the resume flag.
4297 	 */
4298 	spin_lock(&fs_info->balance_lock);
4299 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4300 	spin_unlock(&fs_info->balance_lock);
4301 
4302 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4303 	return PTR_ERR_OR_ZERO(tsk);
4304 }
4305 
4306 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4307 {
4308 	struct btrfs_balance_control *bctl;
4309 	struct btrfs_balance_item *item;
4310 	struct btrfs_disk_balance_args disk_bargs;
4311 	struct btrfs_path *path;
4312 	struct extent_buffer *leaf;
4313 	struct btrfs_key key;
4314 	int ret;
4315 
4316 	path = btrfs_alloc_path();
4317 	if (!path)
4318 		return -ENOMEM;
4319 
4320 	key.objectid = BTRFS_BALANCE_OBJECTID;
4321 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4322 	key.offset = 0;
4323 
4324 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4325 	if (ret < 0)
4326 		goto out;
4327 	if (ret > 0) { /* ret = -ENOENT; */
4328 		ret = 0;
4329 		goto out;
4330 	}
4331 
4332 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4333 	if (!bctl) {
4334 		ret = -ENOMEM;
4335 		goto out;
4336 	}
4337 
4338 	leaf = path->nodes[0];
4339 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4340 
4341 	bctl->flags = btrfs_balance_flags(leaf, item);
4342 	bctl->flags |= BTRFS_BALANCE_RESUME;
4343 
4344 	btrfs_balance_data(leaf, item, &disk_bargs);
4345 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4346 	btrfs_balance_meta(leaf, item, &disk_bargs);
4347 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4348 	btrfs_balance_sys(leaf, item, &disk_bargs);
4349 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4350 
4351 	/*
4352 	 * This should never happen, as the paused balance state is recovered
4353 	 * during mount without any chance of other exclusive ops to collide.
4354 	 *
4355 	 * This gives the exclusive op status to balance and keeps in paused
4356 	 * state until user intervention (cancel or umount). If the ownership
4357 	 * cannot be assigned, show a message but do not fail. The balance
4358 	 * is in a paused state and must have fs_info::balance_ctl properly
4359 	 * set up.
4360 	 */
4361 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4362 		btrfs_warn(fs_info,
4363 	"balance: cannot set exclusive op status, resume manually");
4364 
4365 	mutex_lock(&fs_info->balance_mutex);
4366 	BUG_ON(fs_info->balance_ctl);
4367 	spin_lock(&fs_info->balance_lock);
4368 	fs_info->balance_ctl = bctl;
4369 	spin_unlock(&fs_info->balance_lock);
4370 	mutex_unlock(&fs_info->balance_mutex);
4371 out:
4372 	btrfs_free_path(path);
4373 	return ret;
4374 }
4375 
4376 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4377 {
4378 	int ret = 0;
4379 
4380 	mutex_lock(&fs_info->balance_mutex);
4381 	if (!fs_info->balance_ctl) {
4382 		mutex_unlock(&fs_info->balance_mutex);
4383 		return -ENOTCONN;
4384 	}
4385 
4386 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4387 		atomic_inc(&fs_info->balance_pause_req);
4388 		mutex_unlock(&fs_info->balance_mutex);
4389 
4390 		wait_event(fs_info->balance_wait_q,
4391 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4392 
4393 		mutex_lock(&fs_info->balance_mutex);
4394 		/* we are good with balance_ctl ripped off from under us */
4395 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4396 		atomic_dec(&fs_info->balance_pause_req);
4397 	} else {
4398 		ret = -ENOTCONN;
4399 	}
4400 
4401 	mutex_unlock(&fs_info->balance_mutex);
4402 	return ret;
4403 }
4404 
4405 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4406 {
4407 	mutex_lock(&fs_info->balance_mutex);
4408 	if (!fs_info->balance_ctl) {
4409 		mutex_unlock(&fs_info->balance_mutex);
4410 		return -ENOTCONN;
4411 	}
4412 
4413 	/*
4414 	 * A paused balance with the item stored on disk can be resumed at
4415 	 * mount time if the mount is read-write. Otherwise it's still paused
4416 	 * and we must not allow cancelling as it deletes the item.
4417 	 */
4418 	if (sb_rdonly(fs_info->sb)) {
4419 		mutex_unlock(&fs_info->balance_mutex);
4420 		return -EROFS;
4421 	}
4422 
4423 	atomic_inc(&fs_info->balance_cancel_req);
4424 	/*
4425 	 * if we are running just wait and return, balance item is
4426 	 * deleted in btrfs_balance in this case
4427 	 */
4428 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4429 		mutex_unlock(&fs_info->balance_mutex);
4430 		wait_event(fs_info->balance_wait_q,
4431 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4432 		mutex_lock(&fs_info->balance_mutex);
4433 	} else {
4434 		mutex_unlock(&fs_info->balance_mutex);
4435 		/*
4436 		 * Lock released to allow other waiters to continue, we'll
4437 		 * reexamine the status again.
4438 		 */
4439 		mutex_lock(&fs_info->balance_mutex);
4440 
4441 		if (fs_info->balance_ctl) {
4442 			reset_balance_state(fs_info);
4443 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4444 			btrfs_info(fs_info, "balance: canceled");
4445 		}
4446 	}
4447 
4448 	BUG_ON(fs_info->balance_ctl ||
4449 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4450 	atomic_dec(&fs_info->balance_cancel_req);
4451 	mutex_unlock(&fs_info->balance_mutex);
4452 	return 0;
4453 }
4454 
4455 static int btrfs_uuid_scan_kthread(void *data)
4456 {
4457 	struct btrfs_fs_info *fs_info = data;
4458 	struct btrfs_root *root = fs_info->tree_root;
4459 	struct btrfs_key key;
4460 	struct btrfs_path *path = NULL;
4461 	int ret = 0;
4462 	struct extent_buffer *eb;
4463 	int slot;
4464 	struct btrfs_root_item root_item;
4465 	u32 item_size;
4466 	struct btrfs_trans_handle *trans = NULL;
4467 
4468 	path = btrfs_alloc_path();
4469 	if (!path) {
4470 		ret = -ENOMEM;
4471 		goto out;
4472 	}
4473 
4474 	key.objectid = 0;
4475 	key.type = BTRFS_ROOT_ITEM_KEY;
4476 	key.offset = 0;
4477 
4478 	while (1) {
4479 		ret = btrfs_search_forward(root, &key, path,
4480 				BTRFS_OLDEST_GENERATION);
4481 		if (ret) {
4482 			if (ret > 0)
4483 				ret = 0;
4484 			break;
4485 		}
4486 
4487 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4488 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4489 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4490 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4491 			goto skip;
4492 
4493 		eb = path->nodes[0];
4494 		slot = path->slots[0];
4495 		item_size = btrfs_item_size_nr(eb, slot);
4496 		if (item_size < sizeof(root_item))
4497 			goto skip;
4498 
4499 		read_extent_buffer(eb, &root_item,
4500 				   btrfs_item_ptr_offset(eb, slot),
4501 				   (int)sizeof(root_item));
4502 		if (btrfs_root_refs(&root_item) == 0)
4503 			goto skip;
4504 
4505 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4506 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4507 			if (trans)
4508 				goto update_tree;
4509 
4510 			btrfs_release_path(path);
4511 			/*
4512 			 * 1 - subvol uuid item
4513 			 * 1 - received_subvol uuid item
4514 			 */
4515 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4516 			if (IS_ERR(trans)) {
4517 				ret = PTR_ERR(trans);
4518 				break;
4519 			}
4520 			continue;
4521 		} else {
4522 			goto skip;
4523 		}
4524 update_tree:
4525 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4526 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4527 						  BTRFS_UUID_KEY_SUBVOL,
4528 						  key.objectid);
4529 			if (ret < 0) {
4530 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4531 					ret);
4532 				break;
4533 			}
4534 		}
4535 
4536 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4537 			ret = btrfs_uuid_tree_add(trans,
4538 						  root_item.received_uuid,
4539 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4540 						  key.objectid);
4541 			if (ret < 0) {
4542 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4543 					ret);
4544 				break;
4545 			}
4546 		}
4547 
4548 skip:
4549 		if (trans) {
4550 			ret = btrfs_end_transaction(trans);
4551 			trans = NULL;
4552 			if (ret)
4553 				break;
4554 		}
4555 
4556 		btrfs_release_path(path);
4557 		if (key.offset < (u64)-1) {
4558 			key.offset++;
4559 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4560 			key.offset = 0;
4561 			key.type = BTRFS_ROOT_ITEM_KEY;
4562 		} else if (key.objectid < (u64)-1) {
4563 			key.offset = 0;
4564 			key.type = BTRFS_ROOT_ITEM_KEY;
4565 			key.objectid++;
4566 		} else {
4567 			break;
4568 		}
4569 		cond_resched();
4570 	}
4571 
4572 out:
4573 	btrfs_free_path(path);
4574 	if (trans && !IS_ERR(trans))
4575 		btrfs_end_transaction(trans);
4576 	if (ret)
4577 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4578 	else
4579 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4580 	up(&fs_info->uuid_tree_rescan_sem);
4581 	return 0;
4582 }
4583 
4584 /*
4585  * Callback for btrfs_uuid_tree_iterate().
4586  * returns:
4587  * 0	check succeeded, the entry is not outdated.
4588  * < 0	if an error occurred.
4589  * > 0	if the check failed, which means the caller shall remove the entry.
4590  */
4591 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4592 				       u8 *uuid, u8 type, u64 subid)
4593 {
4594 	struct btrfs_key key;
4595 	int ret = 0;
4596 	struct btrfs_root *subvol_root;
4597 
4598 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4599 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4600 		goto out;
4601 
4602 	key.objectid = subid;
4603 	key.type = BTRFS_ROOT_ITEM_KEY;
4604 	key.offset = (u64)-1;
4605 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4606 	if (IS_ERR(subvol_root)) {
4607 		ret = PTR_ERR(subvol_root);
4608 		if (ret == -ENOENT)
4609 			ret = 1;
4610 		goto out;
4611 	}
4612 
4613 	switch (type) {
4614 	case BTRFS_UUID_KEY_SUBVOL:
4615 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4616 			ret = 1;
4617 		break;
4618 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4619 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4620 			   BTRFS_UUID_SIZE))
4621 			ret = 1;
4622 		break;
4623 	}
4624 
4625 out:
4626 	return ret;
4627 }
4628 
4629 static int btrfs_uuid_rescan_kthread(void *data)
4630 {
4631 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4632 	int ret;
4633 
4634 	/*
4635 	 * 1st step is to iterate through the existing UUID tree and
4636 	 * to delete all entries that contain outdated data.
4637 	 * 2nd step is to add all missing entries to the UUID tree.
4638 	 */
4639 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4640 	if (ret < 0) {
4641 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4642 		up(&fs_info->uuid_tree_rescan_sem);
4643 		return ret;
4644 	}
4645 	return btrfs_uuid_scan_kthread(data);
4646 }
4647 
4648 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4649 {
4650 	struct btrfs_trans_handle *trans;
4651 	struct btrfs_root *tree_root = fs_info->tree_root;
4652 	struct btrfs_root *uuid_root;
4653 	struct task_struct *task;
4654 	int ret;
4655 
4656 	/*
4657 	 * 1 - root node
4658 	 * 1 - root item
4659 	 */
4660 	trans = btrfs_start_transaction(tree_root, 2);
4661 	if (IS_ERR(trans))
4662 		return PTR_ERR(trans);
4663 
4664 	uuid_root = btrfs_create_tree(trans, fs_info,
4665 				      BTRFS_UUID_TREE_OBJECTID);
4666 	if (IS_ERR(uuid_root)) {
4667 		ret = PTR_ERR(uuid_root);
4668 		btrfs_abort_transaction(trans, ret);
4669 		btrfs_end_transaction(trans);
4670 		return ret;
4671 	}
4672 
4673 	fs_info->uuid_root = uuid_root;
4674 
4675 	ret = btrfs_commit_transaction(trans);
4676 	if (ret)
4677 		return ret;
4678 
4679 	down(&fs_info->uuid_tree_rescan_sem);
4680 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4681 	if (IS_ERR(task)) {
4682 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4683 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4684 		up(&fs_info->uuid_tree_rescan_sem);
4685 		return PTR_ERR(task);
4686 	}
4687 
4688 	return 0;
4689 }
4690 
4691 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4692 {
4693 	struct task_struct *task;
4694 
4695 	down(&fs_info->uuid_tree_rescan_sem);
4696 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4697 	if (IS_ERR(task)) {
4698 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4699 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4700 		up(&fs_info->uuid_tree_rescan_sem);
4701 		return PTR_ERR(task);
4702 	}
4703 
4704 	return 0;
4705 }
4706 
4707 /*
4708  * shrinking a device means finding all of the device extents past
4709  * the new size, and then following the back refs to the chunks.
4710  * The chunk relocation code actually frees the device extent
4711  */
4712 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4713 {
4714 	struct btrfs_fs_info *fs_info = device->fs_info;
4715 	struct btrfs_root *root = fs_info->dev_root;
4716 	struct btrfs_trans_handle *trans;
4717 	struct btrfs_dev_extent *dev_extent = NULL;
4718 	struct btrfs_path *path;
4719 	u64 length;
4720 	u64 chunk_offset;
4721 	int ret;
4722 	int slot;
4723 	int failed = 0;
4724 	bool retried = false;
4725 	bool checked_pending_chunks = false;
4726 	struct extent_buffer *l;
4727 	struct btrfs_key key;
4728 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4729 	u64 old_total = btrfs_super_total_bytes(super_copy);
4730 	u64 old_size = btrfs_device_get_total_bytes(device);
4731 	u64 diff;
4732 
4733 	new_size = round_down(new_size, fs_info->sectorsize);
4734 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4735 
4736 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4737 		return -EINVAL;
4738 
4739 	path = btrfs_alloc_path();
4740 	if (!path)
4741 		return -ENOMEM;
4742 
4743 	path->reada = READA_BACK;
4744 
4745 	mutex_lock(&fs_info->chunk_mutex);
4746 
4747 	btrfs_device_set_total_bytes(device, new_size);
4748 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4749 		device->fs_devices->total_rw_bytes -= diff;
4750 		atomic64_sub(diff, &fs_info->free_chunk_space);
4751 	}
4752 	mutex_unlock(&fs_info->chunk_mutex);
4753 
4754 again:
4755 	key.objectid = device->devid;
4756 	key.offset = (u64)-1;
4757 	key.type = BTRFS_DEV_EXTENT_KEY;
4758 
4759 	do {
4760 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4761 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4762 		if (ret < 0) {
4763 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4764 			goto done;
4765 		}
4766 
4767 		ret = btrfs_previous_item(root, path, 0, key.type);
4768 		if (ret)
4769 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4770 		if (ret < 0)
4771 			goto done;
4772 		if (ret) {
4773 			ret = 0;
4774 			btrfs_release_path(path);
4775 			break;
4776 		}
4777 
4778 		l = path->nodes[0];
4779 		slot = path->slots[0];
4780 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4781 
4782 		if (key.objectid != device->devid) {
4783 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4784 			btrfs_release_path(path);
4785 			break;
4786 		}
4787 
4788 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4789 		length = btrfs_dev_extent_length(l, dev_extent);
4790 
4791 		if (key.offset + length <= new_size) {
4792 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4793 			btrfs_release_path(path);
4794 			break;
4795 		}
4796 
4797 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4798 		btrfs_release_path(path);
4799 
4800 		/*
4801 		 * We may be relocating the only data chunk we have,
4802 		 * which could potentially end up with losing data's
4803 		 * raid profile, so lets allocate an empty one in
4804 		 * advance.
4805 		 */
4806 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4807 		if (ret < 0) {
4808 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4809 			goto done;
4810 		}
4811 
4812 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4813 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4814 		if (ret == -ENOSPC) {
4815 			failed++;
4816 		} else if (ret) {
4817 			if (ret == -ETXTBSY) {
4818 				btrfs_warn(fs_info,
4819 		   "could not shrink block group %llu due to active swapfile",
4820 					   chunk_offset);
4821 			}
4822 			goto done;
4823 		}
4824 	} while (key.offset-- > 0);
4825 
4826 	if (failed && !retried) {
4827 		failed = 0;
4828 		retried = true;
4829 		goto again;
4830 	} else if (failed && retried) {
4831 		ret = -ENOSPC;
4832 		goto done;
4833 	}
4834 
4835 	/* Shrinking succeeded, else we would be at "done". */
4836 	trans = btrfs_start_transaction(root, 0);
4837 	if (IS_ERR(trans)) {
4838 		ret = PTR_ERR(trans);
4839 		goto done;
4840 	}
4841 
4842 	mutex_lock(&fs_info->chunk_mutex);
4843 
4844 	/*
4845 	 * We checked in the above loop all device extents that were already in
4846 	 * the device tree. However before we have updated the device's
4847 	 * total_bytes to the new size, we might have had chunk allocations that
4848 	 * have not complete yet (new block groups attached to transaction
4849 	 * handles), and therefore their device extents were not yet in the
4850 	 * device tree and we missed them in the loop above. So if we have any
4851 	 * pending chunk using a device extent that overlaps the device range
4852 	 * that we can not use anymore, commit the current transaction and
4853 	 * repeat the search on the device tree - this way we guarantee we will
4854 	 * not have chunks using device extents that end beyond 'new_size'.
4855 	 */
4856 	if (!checked_pending_chunks) {
4857 		u64 start = new_size;
4858 		u64 len = old_size - new_size;
4859 
4860 		if (contains_pending_extent(trans->transaction, device,
4861 					    &start, len)) {
4862 			mutex_unlock(&fs_info->chunk_mutex);
4863 			checked_pending_chunks = true;
4864 			failed = 0;
4865 			retried = false;
4866 			ret = btrfs_commit_transaction(trans);
4867 			if (ret)
4868 				goto done;
4869 			goto again;
4870 		}
4871 	}
4872 
4873 	btrfs_device_set_disk_total_bytes(device, new_size);
4874 	if (list_empty(&device->resized_list))
4875 		list_add_tail(&device->resized_list,
4876 			      &fs_info->fs_devices->resized_devices);
4877 
4878 	WARN_ON(diff > old_total);
4879 	btrfs_set_super_total_bytes(super_copy,
4880 			round_down(old_total - diff, fs_info->sectorsize));
4881 	mutex_unlock(&fs_info->chunk_mutex);
4882 
4883 	/* Now btrfs_update_device() will change the on-disk size. */
4884 	ret = btrfs_update_device(trans, device);
4885 	if (ret < 0) {
4886 		btrfs_abort_transaction(trans, ret);
4887 		btrfs_end_transaction(trans);
4888 	} else {
4889 		ret = btrfs_commit_transaction(trans);
4890 	}
4891 done:
4892 	btrfs_free_path(path);
4893 	if (ret) {
4894 		mutex_lock(&fs_info->chunk_mutex);
4895 		btrfs_device_set_total_bytes(device, old_size);
4896 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4897 			device->fs_devices->total_rw_bytes += diff;
4898 		atomic64_add(diff, &fs_info->free_chunk_space);
4899 		mutex_unlock(&fs_info->chunk_mutex);
4900 	}
4901 	return ret;
4902 }
4903 
4904 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4905 			   struct btrfs_key *key,
4906 			   struct btrfs_chunk *chunk, int item_size)
4907 {
4908 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4909 	struct btrfs_disk_key disk_key;
4910 	u32 array_size;
4911 	u8 *ptr;
4912 
4913 	mutex_lock(&fs_info->chunk_mutex);
4914 	array_size = btrfs_super_sys_array_size(super_copy);
4915 	if (array_size + item_size + sizeof(disk_key)
4916 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4917 		mutex_unlock(&fs_info->chunk_mutex);
4918 		return -EFBIG;
4919 	}
4920 
4921 	ptr = super_copy->sys_chunk_array + array_size;
4922 	btrfs_cpu_key_to_disk(&disk_key, key);
4923 	memcpy(ptr, &disk_key, sizeof(disk_key));
4924 	ptr += sizeof(disk_key);
4925 	memcpy(ptr, chunk, item_size);
4926 	item_size += sizeof(disk_key);
4927 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4928 	mutex_unlock(&fs_info->chunk_mutex);
4929 
4930 	return 0;
4931 }
4932 
4933 /*
4934  * sort the devices in descending order by max_avail, total_avail
4935  */
4936 static int btrfs_cmp_device_info(const void *a, const void *b)
4937 {
4938 	const struct btrfs_device_info *di_a = a;
4939 	const struct btrfs_device_info *di_b = b;
4940 
4941 	if (di_a->max_avail > di_b->max_avail)
4942 		return -1;
4943 	if (di_a->max_avail < di_b->max_avail)
4944 		return 1;
4945 	if (di_a->total_avail > di_b->total_avail)
4946 		return -1;
4947 	if (di_a->total_avail < di_b->total_avail)
4948 		return 1;
4949 	return 0;
4950 }
4951 
4952 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4953 {
4954 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4955 		return;
4956 
4957 	btrfs_set_fs_incompat(info, RAID56);
4958 }
4959 
4960 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)	\
4961 			- sizeof(struct btrfs_chunk))		\
4962 			/ sizeof(struct btrfs_stripe) + 1)
4963 
4964 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4965 				- 2 * sizeof(struct btrfs_disk_key)	\
4966 				- 2 * sizeof(struct btrfs_chunk))	\
4967 				/ sizeof(struct btrfs_stripe) + 1)
4968 
4969 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4970 			       u64 start, u64 type)
4971 {
4972 	struct btrfs_fs_info *info = trans->fs_info;
4973 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4974 	struct btrfs_device *device;
4975 	struct map_lookup *map = NULL;
4976 	struct extent_map_tree *em_tree;
4977 	struct extent_map *em;
4978 	struct btrfs_device_info *devices_info = NULL;
4979 	u64 total_avail;
4980 	int num_stripes;	/* total number of stripes to allocate */
4981 	int data_stripes;	/* number of stripes that count for
4982 				   block group size */
4983 	int sub_stripes;	/* sub_stripes info for map */
4984 	int dev_stripes;	/* stripes per dev */
4985 	int devs_max;		/* max devs to use */
4986 	int devs_min;		/* min devs needed */
4987 	int devs_increment;	/* ndevs has to be a multiple of this */
4988 	int ncopies;		/* how many copies to data has */
4989 	int nparity;		/* number of stripes worth of bytes to
4990 				   store parity information */
4991 	int ret;
4992 	u64 max_stripe_size;
4993 	u64 max_chunk_size;
4994 	u64 stripe_size;
4995 	u64 chunk_size;
4996 	int ndevs;
4997 	int i;
4998 	int j;
4999 	int index;
5000 
5001 	BUG_ON(!alloc_profile_is_valid(type, 0));
5002 
5003 	if (list_empty(&fs_devices->alloc_list)) {
5004 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5005 			btrfs_debug(info, "%s: no writable device", __func__);
5006 		return -ENOSPC;
5007 	}
5008 
5009 	index = btrfs_bg_flags_to_raid_index(type);
5010 
5011 	sub_stripes = btrfs_raid_array[index].sub_stripes;
5012 	dev_stripes = btrfs_raid_array[index].dev_stripes;
5013 	devs_max = btrfs_raid_array[index].devs_max;
5014 	devs_min = btrfs_raid_array[index].devs_min;
5015 	devs_increment = btrfs_raid_array[index].devs_increment;
5016 	ncopies = btrfs_raid_array[index].ncopies;
5017 	nparity = btrfs_raid_array[index].nparity;
5018 
5019 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5020 		max_stripe_size = SZ_1G;
5021 		max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5022 		if (!devs_max)
5023 			devs_max = BTRFS_MAX_DEVS(info);
5024 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5025 		/* for larger filesystems, use larger metadata chunks */
5026 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5027 			max_stripe_size = SZ_1G;
5028 		else
5029 			max_stripe_size = SZ_256M;
5030 		max_chunk_size = max_stripe_size;
5031 		if (!devs_max)
5032 			devs_max = BTRFS_MAX_DEVS(info);
5033 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5034 		max_stripe_size = SZ_32M;
5035 		max_chunk_size = 2 * max_stripe_size;
5036 		if (!devs_max)
5037 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
5038 	} else {
5039 		btrfs_err(info, "invalid chunk type 0x%llx requested",
5040 		       type);
5041 		BUG_ON(1);
5042 	}
5043 
5044 	/* We don't want a chunk larger than 10% of writable space */
5045 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5046 			     max_chunk_size);
5047 
5048 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5049 			       GFP_NOFS);
5050 	if (!devices_info)
5051 		return -ENOMEM;
5052 
5053 	/*
5054 	 * in the first pass through the devices list, we gather information
5055 	 * about the available holes on each device.
5056 	 */
5057 	ndevs = 0;
5058 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5059 		u64 max_avail;
5060 		u64 dev_offset;
5061 
5062 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5063 			WARN(1, KERN_ERR
5064 			       "BTRFS: read-only device in alloc_list\n");
5065 			continue;
5066 		}
5067 
5068 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5069 					&device->dev_state) ||
5070 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5071 			continue;
5072 
5073 		if (device->total_bytes > device->bytes_used)
5074 			total_avail = device->total_bytes - device->bytes_used;
5075 		else
5076 			total_avail = 0;
5077 
5078 		/* If there is no space on this device, skip it. */
5079 		if (total_avail == 0)
5080 			continue;
5081 
5082 		ret = find_free_dev_extent(trans, device,
5083 					   max_stripe_size * dev_stripes,
5084 					   &dev_offset, &max_avail);
5085 		if (ret && ret != -ENOSPC)
5086 			goto error;
5087 
5088 		if (ret == 0)
5089 			max_avail = max_stripe_size * dev_stripes;
5090 
5091 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5092 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5093 				btrfs_debug(info,
5094 			"%s: devid %llu has no free space, have=%llu want=%u",
5095 					    __func__, device->devid, max_avail,
5096 					    BTRFS_STRIPE_LEN * dev_stripes);
5097 			continue;
5098 		}
5099 
5100 		if (ndevs == fs_devices->rw_devices) {
5101 			WARN(1, "%s: found more than %llu devices\n",
5102 			     __func__, fs_devices->rw_devices);
5103 			break;
5104 		}
5105 		devices_info[ndevs].dev_offset = dev_offset;
5106 		devices_info[ndevs].max_avail = max_avail;
5107 		devices_info[ndevs].total_avail = total_avail;
5108 		devices_info[ndevs].dev = device;
5109 		++ndevs;
5110 	}
5111 
5112 	/*
5113 	 * now sort the devices by hole size / available space
5114 	 */
5115 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5116 	     btrfs_cmp_device_info, NULL);
5117 
5118 	/* round down to number of usable stripes */
5119 	ndevs = round_down(ndevs, devs_increment);
5120 
5121 	if (ndevs < devs_min) {
5122 		ret = -ENOSPC;
5123 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5124 			btrfs_debug(info,
5125 	"%s: not enough devices with free space: have=%d minimum required=%d",
5126 				    __func__, ndevs, devs_min);
5127 		}
5128 		goto error;
5129 	}
5130 
5131 	ndevs = min(ndevs, devs_max);
5132 
5133 	/*
5134 	 * The primary goal is to maximize the number of stripes, so use as
5135 	 * many devices as possible, even if the stripes are not maximum sized.
5136 	 *
5137 	 * The DUP profile stores more than one stripe per device, the
5138 	 * max_avail is the total size so we have to adjust.
5139 	 */
5140 	stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5141 	num_stripes = ndevs * dev_stripes;
5142 
5143 	/*
5144 	 * this will have to be fixed for RAID1 and RAID10 over
5145 	 * more drives
5146 	 */
5147 	data_stripes = (num_stripes - nparity) / ncopies;
5148 
5149 	/*
5150 	 * Use the number of data stripes to figure out how big this chunk
5151 	 * is really going to be in terms of logical address space,
5152 	 * and compare that answer with the max chunk size. If it's higher,
5153 	 * we try to reduce stripe_size.
5154 	 */
5155 	if (stripe_size * data_stripes > max_chunk_size) {
5156 		/*
5157 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5158 		 * then use it, unless it ends up being even bigger than the
5159 		 * previous value we had already.
5160 		 */
5161 		stripe_size = min(round_up(div_u64(max_chunk_size,
5162 						   data_stripes), SZ_16M),
5163 				  stripe_size);
5164 	}
5165 
5166 	/* align to BTRFS_STRIPE_LEN */
5167 	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5168 
5169 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5170 	if (!map) {
5171 		ret = -ENOMEM;
5172 		goto error;
5173 	}
5174 	map->num_stripes = num_stripes;
5175 
5176 	for (i = 0; i < ndevs; ++i) {
5177 		for (j = 0; j < dev_stripes; ++j) {
5178 			int s = i * dev_stripes + j;
5179 			map->stripes[s].dev = devices_info[i].dev;
5180 			map->stripes[s].physical = devices_info[i].dev_offset +
5181 						   j * stripe_size;
5182 		}
5183 	}
5184 	map->stripe_len = BTRFS_STRIPE_LEN;
5185 	map->io_align = BTRFS_STRIPE_LEN;
5186 	map->io_width = BTRFS_STRIPE_LEN;
5187 	map->type = type;
5188 	map->sub_stripes = sub_stripes;
5189 
5190 	chunk_size = stripe_size * data_stripes;
5191 
5192 	trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5193 
5194 	em = alloc_extent_map();
5195 	if (!em) {
5196 		kfree(map);
5197 		ret = -ENOMEM;
5198 		goto error;
5199 	}
5200 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5201 	em->map_lookup = map;
5202 	em->start = start;
5203 	em->len = chunk_size;
5204 	em->block_start = 0;
5205 	em->block_len = em->len;
5206 	em->orig_block_len = stripe_size;
5207 
5208 	em_tree = &info->mapping_tree.map_tree;
5209 	write_lock(&em_tree->lock);
5210 	ret = add_extent_mapping(em_tree, em, 0);
5211 	if (ret) {
5212 		write_unlock(&em_tree->lock);
5213 		free_extent_map(em);
5214 		goto error;
5215 	}
5216 
5217 	list_add_tail(&em->list, &trans->transaction->pending_chunks);
5218 	refcount_inc(&em->refs);
5219 	write_unlock(&em_tree->lock);
5220 
5221 	ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5222 	if (ret)
5223 		goto error_del_extent;
5224 
5225 	for (i = 0; i < map->num_stripes; i++)
5226 		btrfs_device_set_bytes_used(map->stripes[i].dev,
5227 				map->stripes[i].dev->bytes_used + stripe_size);
5228 
5229 	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5230 
5231 	free_extent_map(em);
5232 	check_raid56_incompat_flag(info, type);
5233 
5234 	kfree(devices_info);
5235 	return 0;
5236 
5237 error_del_extent:
5238 	write_lock(&em_tree->lock);
5239 	remove_extent_mapping(em_tree, em);
5240 	write_unlock(&em_tree->lock);
5241 
5242 	/* One for our allocation */
5243 	free_extent_map(em);
5244 	/* One for the tree reference */
5245 	free_extent_map(em);
5246 	/* One for the pending_chunks list reference */
5247 	free_extent_map(em);
5248 error:
5249 	kfree(devices_info);
5250 	return ret;
5251 }
5252 
5253 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5254 			     u64 chunk_offset, u64 chunk_size)
5255 {
5256 	struct btrfs_fs_info *fs_info = trans->fs_info;
5257 	struct btrfs_root *extent_root = fs_info->extent_root;
5258 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5259 	struct btrfs_key key;
5260 	struct btrfs_device *device;
5261 	struct btrfs_chunk *chunk;
5262 	struct btrfs_stripe *stripe;
5263 	struct extent_map *em;
5264 	struct map_lookup *map;
5265 	size_t item_size;
5266 	u64 dev_offset;
5267 	u64 stripe_size;
5268 	int i = 0;
5269 	int ret = 0;
5270 
5271 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5272 	if (IS_ERR(em))
5273 		return PTR_ERR(em);
5274 
5275 	map = em->map_lookup;
5276 	item_size = btrfs_chunk_item_size(map->num_stripes);
5277 	stripe_size = em->orig_block_len;
5278 
5279 	chunk = kzalloc(item_size, GFP_NOFS);
5280 	if (!chunk) {
5281 		ret = -ENOMEM;
5282 		goto out;
5283 	}
5284 
5285 	/*
5286 	 * Take the device list mutex to prevent races with the final phase of
5287 	 * a device replace operation that replaces the device object associated
5288 	 * with the map's stripes, because the device object's id can change
5289 	 * at any time during that final phase of the device replace operation
5290 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5291 	 */
5292 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5293 	for (i = 0; i < map->num_stripes; i++) {
5294 		device = map->stripes[i].dev;
5295 		dev_offset = map->stripes[i].physical;
5296 
5297 		ret = btrfs_update_device(trans, device);
5298 		if (ret)
5299 			break;
5300 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5301 					     dev_offset, stripe_size);
5302 		if (ret)
5303 			break;
5304 	}
5305 	if (ret) {
5306 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5307 		goto out;
5308 	}
5309 
5310 	stripe = &chunk->stripe;
5311 	for (i = 0; i < map->num_stripes; i++) {
5312 		device = map->stripes[i].dev;
5313 		dev_offset = map->stripes[i].physical;
5314 
5315 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5316 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5317 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5318 		stripe++;
5319 	}
5320 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5321 
5322 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5323 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5324 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5325 	btrfs_set_stack_chunk_type(chunk, map->type);
5326 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5327 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5328 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5329 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5330 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5331 
5332 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5333 	key.type = BTRFS_CHUNK_ITEM_KEY;
5334 	key.offset = chunk_offset;
5335 
5336 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5337 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5338 		/*
5339 		 * TODO: Cleanup of inserted chunk root in case of
5340 		 * failure.
5341 		 */
5342 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5343 	}
5344 
5345 out:
5346 	kfree(chunk);
5347 	free_extent_map(em);
5348 	return ret;
5349 }
5350 
5351 /*
5352  * Chunk allocation falls into two parts. The first part does work
5353  * that makes the new allocated chunk usable, but does not do any operation
5354  * that modifies the chunk tree. The second part does the work that
5355  * requires modifying the chunk tree. This division is important for the
5356  * bootstrap process of adding storage to a seed btrfs.
5357  */
5358 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5359 {
5360 	u64 chunk_offset;
5361 
5362 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
5363 	chunk_offset = find_next_chunk(trans->fs_info);
5364 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
5365 }
5366 
5367 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5368 					 struct btrfs_fs_info *fs_info)
5369 {
5370 	u64 chunk_offset;
5371 	u64 sys_chunk_offset;
5372 	u64 alloc_profile;
5373 	int ret;
5374 
5375 	chunk_offset = find_next_chunk(fs_info);
5376 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5377 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5378 	if (ret)
5379 		return ret;
5380 
5381 	sys_chunk_offset = find_next_chunk(fs_info);
5382 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5383 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5384 	return ret;
5385 }
5386 
5387 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5388 {
5389 	int max_errors;
5390 
5391 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5392 			 BTRFS_BLOCK_GROUP_RAID10 |
5393 			 BTRFS_BLOCK_GROUP_RAID5 |
5394 			 BTRFS_BLOCK_GROUP_DUP)) {
5395 		max_errors = 1;
5396 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5397 		max_errors = 2;
5398 	} else {
5399 		max_errors = 0;
5400 	}
5401 
5402 	return max_errors;
5403 }
5404 
5405 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5406 {
5407 	struct extent_map *em;
5408 	struct map_lookup *map;
5409 	int readonly = 0;
5410 	int miss_ndevs = 0;
5411 	int i;
5412 
5413 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5414 	if (IS_ERR(em))
5415 		return 1;
5416 
5417 	map = em->map_lookup;
5418 	for (i = 0; i < map->num_stripes; i++) {
5419 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5420 					&map->stripes[i].dev->dev_state)) {
5421 			miss_ndevs++;
5422 			continue;
5423 		}
5424 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5425 					&map->stripes[i].dev->dev_state)) {
5426 			readonly = 1;
5427 			goto end;
5428 		}
5429 	}
5430 
5431 	/*
5432 	 * If the number of missing devices is larger than max errors,
5433 	 * we can not write the data into that chunk successfully, so
5434 	 * set it readonly.
5435 	 */
5436 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5437 		readonly = 1;
5438 end:
5439 	free_extent_map(em);
5440 	return readonly;
5441 }
5442 
5443 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5444 {
5445 	extent_map_tree_init(&tree->map_tree);
5446 }
5447 
5448 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5449 {
5450 	struct extent_map *em;
5451 
5452 	while (1) {
5453 		write_lock(&tree->map_tree.lock);
5454 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5455 		if (em)
5456 			remove_extent_mapping(&tree->map_tree, em);
5457 		write_unlock(&tree->map_tree.lock);
5458 		if (!em)
5459 			break;
5460 		/* once for us */
5461 		free_extent_map(em);
5462 		/* once for the tree */
5463 		free_extent_map(em);
5464 	}
5465 }
5466 
5467 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5468 {
5469 	struct extent_map *em;
5470 	struct map_lookup *map;
5471 	int ret;
5472 
5473 	em = btrfs_get_chunk_map(fs_info, logical, len);
5474 	if (IS_ERR(em))
5475 		/*
5476 		 * We could return errors for these cases, but that could get
5477 		 * ugly and we'd probably do the same thing which is just not do
5478 		 * anything else and exit, so return 1 so the callers don't try
5479 		 * to use other copies.
5480 		 */
5481 		return 1;
5482 
5483 	map = em->map_lookup;
5484 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5485 		ret = map->num_stripes;
5486 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5487 		ret = map->sub_stripes;
5488 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5489 		ret = 2;
5490 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5491 		/*
5492 		 * There could be two corrupted data stripes, we need
5493 		 * to loop retry in order to rebuild the correct data.
5494 		 *
5495 		 * Fail a stripe at a time on every retry except the
5496 		 * stripe under reconstruction.
5497 		 */
5498 		ret = map->num_stripes;
5499 	else
5500 		ret = 1;
5501 	free_extent_map(em);
5502 
5503 	down_read(&fs_info->dev_replace.rwsem);
5504 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5505 	    fs_info->dev_replace.tgtdev)
5506 		ret++;
5507 	up_read(&fs_info->dev_replace.rwsem);
5508 
5509 	return ret;
5510 }
5511 
5512 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5513 				    u64 logical)
5514 {
5515 	struct extent_map *em;
5516 	struct map_lookup *map;
5517 	unsigned long len = fs_info->sectorsize;
5518 
5519 	em = btrfs_get_chunk_map(fs_info, logical, len);
5520 
5521 	if (!WARN_ON(IS_ERR(em))) {
5522 		map = em->map_lookup;
5523 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5524 			len = map->stripe_len * nr_data_stripes(map);
5525 		free_extent_map(em);
5526 	}
5527 	return len;
5528 }
5529 
5530 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5531 {
5532 	struct extent_map *em;
5533 	struct map_lookup *map;
5534 	int ret = 0;
5535 
5536 	em = btrfs_get_chunk_map(fs_info, logical, len);
5537 
5538 	if(!WARN_ON(IS_ERR(em))) {
5539 		map = em->map_lookup;
5540 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5541 			ret = 1;
5542 		free_extent_map(em);
5543 	}
5544 	return ret;
5545 }
5546 
5547 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5548 			    struct map_lookup *map, int first,
5549 			    int dev_replace_is_ongoing)
5550 {
5551 	int i;
5552 	int num_stripes;
5553 	int preferred_mirror;
5554 	int tolerance;
5555 	struct btrfs_device *srcdev;
5556 
5557 	ASSERT((map->type &
5558 		 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5559 
5560 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5561 		num_stripes = map->sub_stripes;
5562 	else
5563 		num_stripes = map->num_stripes;
5564 
5565 	preferred_mirror = first + current->pid % num_stripes;
5566 
5567 	if (dev_replace_is_ongoing &&
5568 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5569 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5570 		srcdev = fs_info->dev_replace.srcdev;
5571 	else
5572 		srcdev = NULL;
5573 
5574 	/*
5575 	 * try to avoid the drive that is the source drive for a
5576 	 * dev-replace procedure, only choose it if no other non-missing
5577 	 * mirror is available
5578 	 */
5579 	for (tolerance = 0; tolerance < 2; tolerance++) {
5580 		if (map->stripes[preferred_mirror].dev->bdev &&
5581 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5582 			return preferred_mirror;
5583 		for (i = first; i < first + num_stripes; i++) {
5584 			if (map->stripes[i].dev->bdev &&
5585 			    (tolerance || map->stripes[i].dev != srcdev))
5586 				return i;
5587 		}
5588 	}
5589 
5590 	/* we couldn't find one that doesn't fail.  Just return something
5591 	 * and the io error handling code will clean up eventually
5592 	 */
5593 	return preferred_mirror;
5594 }
5595 
5596 static inline int parity_smaller(u64 a, u64 b)
5597 {
5598 	return a > b;
5599 }
5600 
5601 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5602 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5603 {
5604 	struct btrfs_bio_stripe s;
5605 	int i;
5606 	u64 l;
5607 	int again = 1;
5608 
5609 	while (again) {
5610 		again = 0;
5611 		for (i = 0; i < num_stripes - 1; i++) {
5612 			if (parity_smaller(bbio->raid_map[i],
5613 					   bbio->raid_map[i+1])) {
5614 				s = bbio->stripes[i];
5615 				l = bbio->raid_map[i];
5616 				bbio->stripes[i] = bbio->stripes[i+1];
5617 				bbio->raid_map[i] = bbio->raid_map[i+1];
5618 				bbio->stripes[i+1] = s;
5619 				bbio->raid_map[i+1] = l;
5620 
5621 				again = 1;
5622 			}
5623 		}
5624 	}
5625 }
5626 
5627 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5628 {
5629 	struct btrfs_bio *bbio = kzalloc(
5630 		 /* the size of the btrfs_bio */
5631 		sizeof(struct btrfs_bio) +
5632 		/* plus the variable array for the stripes */
5633 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5634 		/* plus the variable array for the tgt dev */
5635 		sizeof(int) * (real_stripes) +
5636 		/*
5637 		 * plus the raid_map, which includes both the tgt dev
5638 		 * and the stripes
5639 		 */
5640 		sizeof(u64) * (total_stripes),
5641 		GFP_NOFS|__GFP_NOFAIL);
5642 
5643 	atomic_set(&bbio->error, 0);
5644 	refcount_set(&bbio->refs, 1);
5645 
5646 	return bbio;
5647 }
5648 
5649 void btrfs_get_bbio(struct btrfs_bio *bbio)
5650 {
5651 	WARN_ON(!refcount_read(&bbio->refs));
5652 	refcount_inc(&bbio->refs);
5653 }
5654 
5655 void btrfs_put_bbio(struct btrfs_bio *bbio)
5656 {
5657 	if (!bbio)
5658 		return;
5659 	if (refcount_dec_and_test(&bbio->refs))
5660 		kfree(bbio);
5661 }
5662 
5663 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5664 /*
5665  * Please note that, discard won't be sent to target device of device
5666  * replace.
5667  */
5668 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5669 					 u64 logical, u64 length,
5670 					 struct btrfs_bio **bbio_ret)
5671 {
5672 	struct extent_map *em;
5673 	struct map_lookup *map;
5674 	struct btrfs_bio *bbio;
5675 	u64 offset;
5676 	u64 stripe_nr;
5677 	u64 stripe_nr_end;
5678 	u64 stripe_end_offset;
5679 	u64 stripe_cnt;
5680 	u64 stripe_len;
5681 	u64 stripe_offset;
5682 	u64 num_stripes;
5683 	u32 stripe_index;
5684 	u32 factor = 0;
5685 	u32 sub_stripes = 0;
5686 	u64 stripes_per_dev = 0;
5687 	u32 remaining_stripes = 0;
5688 	u32 last_stripe = 0;
5689 	int ret = 0;
5690 	int i;
5691 
5692 	/* discard always return a bbio */
5693 	ASSERT(bbio_ret);
5694 
5695 	em = btrfs_get_chunk_map(fs_info, logical, length);
5696 	if (IS_ERR(em))
5697 		return PTR_ERR(em);
5698 
5699 	map = em->map_lookup;
5700 	/* we don't discard raid56 yet */
5701 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5702 		ret = -EOPNOTSUPP;
5703 		goto out;
5704 	}
5705 
5706 	offset = logical - em->start;
5707 	length = min_t(u64, em->len - offset, length);
5708 
5709 	stripe_len = map->stripe_len;
5710 	/*
5711 	 * stripe_nr counts the total number of stripes we have to stride
5712 	 * to get to this block
5713 	 */
5714 	stripe_nr = div64_u64(offset, stripe_len);
5715 
5716 	/* stripe_offset is the offset of this block in its stripe */
5717 	stripe_offset = offset - stripe_nr * stripe_len;
5718 
5719 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5720 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5721 	stripe_cnt = stripe_nr_end - stripe_nr;
5722 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5723 			    (offset + length);
5724 	/*
5725 	 * after this, stripe_nr is the number of stripes on this
5726 	 * device we have to walk to find the data, and stripe_index is
5727 	 * the number of our device in the stripe array
5728 	 */
5729 	num_stripes = 1;
5730 	stripe_index = 0;
5731 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5732 			 BTRFS_BLOCK_GROUP_RAID10)) {
5733 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5734 			sub_stripes = 1;
5735 		else
5736 			sub_stripes = map->sub_stripes;
5737 
5738 		factor = map->num_stripes / sub_stripes;
5739 		num_stripes = min_t(u64, map->num_stripes,
5740 				    sub_stripes * stripe_cnt);
5741 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5742 		stripe_index *= sub_stripes;
5743 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5744 					      &remaining_stripes);
5745 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5746 		last_stripe *= sub_stripes;
5747 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5748 				BTRFS_BLOCK_GROUP_DUP)) {
5749 		num_stripes = map->num_stripes;
5750 	} else {
5751 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5752 					&stripe_index);
5753 	}
5754 
5755 	bbio = alloc_btrfs_bio(num_stripes, 0);
5756 	if (!bbio) {
5757 		ret = -ENOMEM;
5758 		goto out;
5759 	}
5760 
5761 	for (i = 0; i < num_stripes; i++) {
5762 		bbio->stripes[i].physical =
5763 			map->stripes[stripe_index].physical +
5764 			stripe_offset + stripe_nr * map->stripe_len;
5765 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5766 
5767 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5768 				 BTRFS_BLOCK_GROUP_RAID10)) {
5769 			bbio->stripes[i].length = stripes_per_dev *
5770 				map->stripe_len;
5771 
5772 			if (i / sub_stripes < remaining_stripes)
5773 				bbio->stripes[i].length +=
5774 					map->stripe_len;
5775 
5776 			/*
5777 			 * Special for the first stripe and
5778 			 * the last stripe:
5779 			 *
5780 			 * |-------|...|-------|
5781 			 *     |----------|
5782 			 *    off     end_off
5783 			 */
5784 			if (i < sub_stripes)
5785 				bbio->stripes[i].length -=
5786 					stripe_offset;
5787 
5788 			if (stripe_index >= last_stripe &&
5789 			    stripe_index <= (last_stripe +
5790 					     sub_stripes - 1))
5791 				bbio->stripes[i].length -=
5792 					stripe_end_offset;
5793 
5794 			if (i == sub_stripes - 1)
5795 				stripe_offset = 0;
5796 		} else {
5797 			bbio->stripes[i].length = length;
5798 		}
5799 
5800 		stripe_index++;
5801 		if (stripe_index == map->num_stripes) {
5802 			stripe_index = 0;
5803 			stripe_nr++;
5804 		}
5805 	}
5806 
5807 	*bbio_ret = bbio;
5808 	bbio->map_type = map->type;
5809 	bbio->num_stripes = num_stripes;
5810 out:
5811 	free_extent_map(em);
5812 	return ret;
5813 }
5814 
5815 /*
5816  * In dev-replace case, for repair case (that's the only case where the mirror
5817  * is selected explicitly when calling btrfs_map_block), blocks left of the
5818  * left cursor can also be read from the target drive.
5819  *
5820  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5821  * array of stripes.
5822  * For READ, it also needs to be supported using the same mirror number.
5823  *
5824  * If the requested block is not left of the left cursor, EIO is returned. This
5825  * can happen because btrfs_num_copies() returns one more in the dev-replace
5826  * case.
5827  */
5828 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5829 					 u64 logical, u64 length,
5830 					 u64 srcdev_devid, int *mirror_num,
5831 					 u64 *physical)
5832 {
5833 	struct btrfs_bio *bbio = NULL;
5834 	int num_stripes;
5835 	int index_srcdev = 0;
5836 	int found = 0;
5837 	u64 physical_of_found = 0;
5838 	int i;
5839 	int ret = 0;
5840 
5841 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5842 				logical, &length, &bbio, 0, 0);
5843 	if (ret) {
5844 		ASSERT(bbio == NULL);
5845 		return ret;
5846 	}
5847 
5848 	num_stripes = bbio->num_stripes;
5849 	if (*mirror_num > num_stripes) {
5850 		/*
5851 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5852 		 * that means that the requested area is not left of the left
5853 		 * cursor
5854 		 */
5855 		btrfs_put_bbio(bbio);
5856 		return -EIO;
5857 	}
5858 
5859 	/*
5860 	 * process the rest of the function using the mirror_num of the source
5861 	 * drive. Therefore look it up first.  At the end, patch the device
5862 	 * pointer to the one of the target drive.
5863 	 */
5864 	for (i = 0; i < num_stripes; i++) {
5865 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5866 			continue;
5867 
5868 		/*
5869 		 * In case of DUP, in order to keep it simple, only add the
5870 		 * mirror with the lowest physical address
5871 		 */
5872 		if (found &&
5873 		    physical_of_found <= bbio->stripes[i].physical)
5874 			continue;
5875 
5876 		index_srcdev = i;
5877 		found = 1;
5878 		physical_of_found = bbio->stripes[i].physical;
5879 	}
5880 
5881 	btrfs_put_bbio(bbio);
5882 
5883 	ASSERT(found);
5884 	if (!found)
5885 		return -EIO;
5886 
5887 	*mirror_num = index_srcdev + 1;
5888 	*physical = physical_of_found;
5889 	return ret;
5890 }
5891 
5892 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5893 				      struct btrfs_bio **bbio_ret,
5894 				      struct btrfs_dev_replace *dev_replace,
5895 				      int *num_stripes_ret, int *max_errors_ret)
5896 {
5897 	struct btrfs_bio *bbio = *bbio_ret;
5898 	u64 srcdev_devid = dev_replace->srcdev->devid;
5899 	int tgtdev_indexes = 0;
5900 	int num_stripes = *num_stripes_ret;
5901 	int max_errors = *max_errors_ret;
5902 	int i;
5903 
5904 	if (op == BTRFS_MAP_WRITE) {
5905 		int index_where_to_add;
5906 
5907 		/*
5908 		 * duplicate the write operations while the dev replace
5909 		 * procedure is running. Since the copying of the old disk to
5910 		 * the new disk takes place at run time while the filesystem is
5911 		 * mounted writable, the regular write operations to the old
5912 		 * disk have to be duplicated to go to the new disk as well.
5913 		 *
5914 		 * Note that device->missing is handled by the caller, and that
5915 		 * the write to the old disk is already set up in the stripes
5916 		 * array.
5917 		 */
5918 		index_where_to_add = num_stripes;
5919 		for (i = 0; i < num_stripes; i++) {
5920 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5921 				/* write to new disk, too */
5922 				struct btrfs_bio_stripe *new =
5923 					bbio->stripes + index_where_to_add;
5924 				struct btrfs_bio_stripe *old =
5925 					bbio->stripes + i;
5926 
5927 				new->physical = old->physical;
5928 				new->length = old->length;
5929 				new->dev = dev_replace->tgtdev;
5930 				bbio->tgtdev_map[i] = index_where_to_add;
5931 				index_where_to_add++;
5932 				max_errors++;
5933 				tgtdev_indexes++;
5934 			}
5935 		}
5936 		num_stripes = index_where_to_add;
5937 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5938 		int index_srcdev = 0;
5939 		int found = 0;
5940 		u64 physical_of_found = 0;
5941 
5942 		/*
5943 		 * During the dev-replace procedure, the target drive can also
5944 		 * be used to read data in case it is needed to repair a corrupt
5945 		 * block elsewhere. This is possible if the requested area is
5946 		 * left of the left cursor. In this area, the target drive is a
5947 		 * full copy of the source drive.
5948 		 */
5949 		for (i = 0; i < num_stripes; i++) {
5950 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5951 				/*
5952 				 * In case of DUP, in order to keep it simple,
5953 				 * only add the mirror with the lowest physical
5954 				 * address
5955 				 */
5956 				if (found &&
5957 				    physical_of_found <=
5958 				     bbio->stripes[i].physical)
5959 					continue;
5960 				index_srcdev = i;
5961 				found = 1;
5962 				physical_of_found = bbio->stripes[i].physical;
5963 			}
5964 		}
5965 		if (found) {
5966 			struct btrfs_bio_stripe *tgtdev_stripe =
5967 				bbio->stripes + num_stripes;
5968 
5969 			tgtdev_stripe->physical = physical_of_found;
5970 			tgtdev_stripe->length =
5971 				bbio->stripes[index_srcdev].length;
5972 			tgtdev_stripe->dev = dev_replace->tgtdev;
5973 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5974 
5975 			tgtdev_indexes++;
5976 			num_stripes++;
5977 		}
5978 	}
5979 
5980 	*num_stripes_ret = num_stripes;
5981 	*max_errors_ret = max_errors;
5982 	bbio->num_tgtdevs = tgtdev_indexes;
5983 	*bbio_ret = bbio;
5984 }
5985 
5986 static bool need_full_stripe(enum btrfs_map_op op)
5987 {
5988 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5989 }
5990 
5991 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5992 			     enum btrfs_map_op op,
5993 			     u64 logical, u64 *length,
5994 			     struct btrfs_bio **bbio_ret,
5995 			     int mirror_num, int need_raid_map)
5996 {
5997 	struct extent_map *em;
5998 	struct map_lookup *map;
5999 	u64 offset;
6000 	u64 stripe_offset;
6001 	u64 stripe_nr;
6002 	u64 stripe_len;
6003 	u32 stripe_index;
6004 	int i;
6005 	int ret = 0;
6006 	int num_stripes;
6007 	int max_errors = 0;
6008 	int tgtdev_indexes = 0;
6009 	struct btrfs_bio *bbio = NULL;
6010 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6011 	int dev_replace_is_ongoing = 0;
6012 	int num_alloc_stripes;
6013 	int patch_the_first_stripe_for_dev_replace = 0;
6014 	u64 physical_to_patch_in_first_stripe = 0;
6015 	u64 raid56_full_stripe_start = (u64)-1;
6016 
6017 	if (op == BTRFS_MAP_DISCARD)
6018 		return __btrfs_map_block_for_discard(fs_info, logical,
6019 						     *length, bbio_ret);
6020 
6021 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6022 	if (IS_ERR(em))
6023 		return PTR_ERR(em);
6024 
6025 	map = em->map_lookup;
6026 	offset = logical - em->start;
6027 
6028 	stripe_len = map->stripe_len;
6029 	stripe_nr = offset;
6030 	/*
6031 	 * stripe_nr counts the total number of stripes we have to stride
6032 	 * to get to this block
6033 	 */
6034 	stripe_nr = div64_u64(stripe_nr, stripe_len);
6035 
6036 	stripe_offset = stripe_nr * stripe_len;
6037 	if (offset < stripe_offset) {
6038 		btrfs_crit(fs_info,
6039 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
6040 			   stripe_offset, offset, em->start, logical,
6041 			   stripe_len);
6042 		free_extent_map(em);
6043 		return -EINVAL;
6044 	}
6045 
6046 	/* stripe_offset is the offset of this block in its stripe*/
6047 	stripe_offset = offset - stripe_offset;
6048 
6049 	/* if we're here for raid56, we need to know the stripe aligned start */
6050 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6051 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
6052 		raid56_full_stripe_start = offset;
6053 
6054 		/* allow a write of a full stripe, but make sure we don't
6055 		 * allow straddling of stripes
6056 		 */
6057 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6058 				full_stripe_len);
6059 		raid56_full_stripe_start *= full_stripe_len;
6060 	}
6061 
6062 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6063 		u64 max_len;
6064 		/* For writes to RAID[56], allow a full stripeset across all disks.
6065 		   For other RAID types and for RAID[56] reads, just allow a single
6066 		   stripe (on a single disk). */
6067 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6068 		    (op == BTRFS_MAP_WRITE)) {
6069 			max_len = stripe_len * nr_data_stripes(map) -
6070 				(offset - raid56_full_stripe_start);
6071 		} else {
6072 			/* we limit the length of each bio to what fits in a stripe */
6073 			max_len = stripe_len - stripe_offset;
6074 		}
6075 		*length = min_t(u64, em->len - offset, max_len);
6076 	} else {
6077 		*length = em->len - offset;
6078 	}
6079 
6080 	/*
6081 	 * This is for when we're called from btrfs_bio_fits_in_stripe and all
6082 	 * it cares about is the length
6083 	 */
6084 	if (!bbio_ret)
6085 		goto out;
6086 
6087 	down_read(&dev_replace->rwsem);
6088 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6089 	/*
6090 	 * Hold the semaphore for read during the whole operation, write is
6091 	 * requested at commit time but must wait.
6092 	 */
6093 	if (!dev_replace_is_ongoing)
6094 		up_read(&dev_replace->rwsem);
6095 
6096 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6097 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6098 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6099 						    dev_replace->srcdev->devid,
6100 						    &mirror_num,
6101 					    &physical_to_patch_in_first_stripe);
6102 		if (ret)
6103 			goto out;
6104 		else
6105 			patch_the_first_stripe_for_dev_replace = 1;
6106 	} else if (mirror_num > map->num_stripes) {
6107 		mirror_num = 0;
6108 	}
6109 
6110 	num_stripes = 1;
6111 	stripe_index = 0;
6112 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6113 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6114 				&stripe_index);
6115 		if (!need_full_stripe(op))
6116 			mirror_num = 1;
6117 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
6118 		if (need_full_stripe(op))
6119 			num_stripes = map->num_stripes;
6120 		else if (mirror_num)
6121 			stripe_index = mirror_num - 1;
6122 		else {
6123 			stripe_index = find_live_mirror(fs_info, map, 0,
6124 					    dev_replace_is_ongoing);
6125 			mirror_num = stripe_index + 1;
6126 		}
6127 
6128 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6129 		if (need_full_stripe(op)) {
6130 			num_stripes = map->num_stripes;
6131 		} else if (mirror_num) {
6132 			stripe_index = mirror_num - 1;
6133 		} else {
6134 			mirror_num = 1;
6135 		}
6136 
6137 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6138 		u32 factor = map->num_stripes / map->sub_stripes;
6139 
6140 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6141 		stripe_index *= map->sub_stripes;
6142 
6143 		if (need_full_stripe(op))
6144 			num_stripes = map->sub_stripes;
6145 		else if (mirror_num)
6146 			stripe_index += mirror_num - 1;
6147 		else {
6148 			int old_stripe_index = stripe_index;
6149 			stripe_index = find_live_mirror(fs_info, map,
6150 					      stripe_index,
6151 					      dev_replace_is_ongoing);
6152 			mirror_num = stripe_index - old_stripe_index + 1;
6153 		}
6154 
6155 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6156 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6157 			/* push stripe_nr back to the start of the full stripe */
6158 			stripe_nr = div64_u64(raid56_full_stripe_start,
6159 					stripe_len * nr_data_stripes(map));
6160 
6161 			/* RAID[56] write or recovery. Return all stripes */
6162 			num_stripes = map->num_stripes;
6163 			max_errors = nr_parity_stripes(map);
6164 
6165 			*length = map->stripe_len;
6166 			stripe_index = 0;
6167 			stripe_offset = 0;
6168 		} else {
6169 			/*
6170 			 * Mirror #0 or #1 means the original data block.
6171 			 * Mirror #2 is RAID5 parity block.
6172 			 * Mirror #3 is RAID6 Q block.
6173 			 */
6174 			stripe_nr = div_u64_rem(stripe_nr,
6175 					nr_data_stripes(map), &stripe_index);
6176 			if (mirror_num > 1)
6177 				stripe_index = nr_data_stripes(map) +
6178 						mirror_num - 2;
6179 
6180 			/* We distribute the parity blocks across stripes */
6181 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6182 					&stripe_index);
6183 			if (!need_full_stripe(op) && mirror_num <= 1)
6184 				mirror_num = 1;
6185 		}
6186 	} else {
6187 		/*
6188 		 * after this, stripe_nr is the number of stripes on this
6189 		 * device we have to walk to find the data, and stripe_index is
6190 		 * the number of our device in the stripe array
6191 		 */
6192 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6193 				&stripe_index);
6194 		mirror_num = stripe_index + 1;
6195 	}
6196 	if (stripe_index >= map->num_stripes) {
6197 		btrfs_crit(fs_info,
6198 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6199 			   stripe_index, map->num_stripes);
6200 		ret = -EINVAL;
6201 		goto out;
6202 	}
6203 
6204 	num_alloc_stripes = num_stripes;
6205 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6206 		if (op == BTRFS_MAP_WRITE)
6207 			num_alloc_stripes <<= 1;
6208 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6209 			num_alloc_stripes++;
6210 		tgtdev_indexes = num_stripes;
6211 	}
6212 
6213 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6214 	if (!bbio) {
6215 		ret = -ENOMEM;
6216 		goto out;
6217 	}
6218 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6219 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6220 
6221 	/* build raid_map */
6222 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6223 	    (need_full_stripe(op) || mirror_num > 1)) {
6224 		u64 tmp;
6225 		unsigned rot;
6226 
6227 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
6228 				 sizeof(struct btrfs_bio_stripe) *
6229 				 num_alloc_stripes +
6230 				 sizeof(int) * tgtdev_indexes);
6231 
6232 		/* Work out the disk rotation on this stripe-set */
6233 		div_u64_rem(stripe_nr, num_stripes, &rot);
6234 
6235 		/* Fill in the logical address of each stripe */
6236 		tmp = stripe_nr * nr_data_stripes(map);
6237 		for (i = 0; i < nr_data_stripes(map); i++)
6238 			bbio->raid_map[(i+rot) % num_stripes] =
6239 				em->start + (tmp + i) * map->stripe_len;
6240 
6241 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6242 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6243 			bbio->raid_map[(i+rot+1) % num_stripes] =
6244 				RAID6_Q_STRIPE;
6245 	}
6246 
6247 
6248 	for (i = 0; i < num_stripes; i++) {
6249 		bbio->stripes[i].physical =
6250 			map->stripes[stripe_index].physical +
6251 			stripe_offset +
6252 			stripe_nr * map->stripe_len;
6253 		bbio->stripes[i].dev =
6254 			map->stripes[stripe_index].dev;
6255 		stripe_index++;
6256 	}
6257 
6258 	if (need_full_stripe(op))
6259 		max_errors = btrfs_chunk_max_errors(map);
6260 
6261 	if (bbio->raid_map)
6262 		sort_parity_stripes(bbio, num_stripes);
6263 
6264 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6265 	    need_full_stripe(op)) {
6266 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6267 					  &max_errors);
6268 	}
6269 
6270 	*bbio_ret = bbio;
6271 	bbio->map_type = map->type;
6272 	bbio->num_stripes = num_stripes;
6273 	bbio->max_errors = max_errors;
6274 	bbio->mirror_num = mirror_num;
6275 
6276 	/*
6277 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6278 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6279 	 * available as a mirror
6280 	 */
6281 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6282 		WARN_ON(num_stripes > 1);
6283 		bbio->stripes[0].dev = dev_replace->tgtdev;
6284 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6285 		bbio->mirror_num = map->num_stripes + 1;
6286 	}
6287 out:
6288 	if (dev_replace_is_ongoing) {
6289 		lockdep_assert_held(&dev_replace->rwsem);
6290 		/* Unlock and let waiting writers proceed */
6291 		up_read(&dev_replace->rwsem);
6292 	}
6293 	free_extent_map(em);
6294 	return ret;
6295 }
6296 
6297 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6298 		      u64 logical, u64 *length,
6299 		      struct btrfs_bio **bbio_ret, int mirror_num)
6300 {
6301 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6302 				 mirror_num, 0);
6303 }
6304 
6305 /* For Scrub/replace */
6306 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6307 		     u64 logical, u64 *length,
6308 		     struct btrfs_bio **bbio_ret)
6309 {
6310 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6311 }
6312 
6313 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6314 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6315 {
6316 	struct extent_map *em;
6317 	struct map_lookup *map;
6318 	u64 *buf;
6319 	u64 bytenr;
6320 	u64 length;
6321 	u64 stripe_nr;
6322 	u64 rmap_len;
6323 	int i, j, nr = 0;
6324 
6325 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6326 	if (IS_ERR(em))
6327 		return -EIO;
6328 
6329 	map = em->map_lookup;
6330 	length = em->len;
6331 	rmap_len = map->stripe_len;
6332 
6333 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6334 		length = div_u64(length, map->num_stripes / map->sub_stripes);
6335 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6336 		length = div_u64(length, map->num_stripes);
6337 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6338 		length = div_u64(length, nr_data_stripes(map));
6339 		rmap_len = map->stripe_len * nr_data_stripes(map);
6340 	}
6341 
6342 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6343 	BUG_ON(!buf); /* -ENOMEM */
6344 
6345 	for (i = 0; i < map->num_stripes; i++) {
6346 		if (map->stripes[i].physical > physical ||
6347 		    map->stripes[i].physical + length <= physical)
6348 			continue;
6349 
6350 		stripe_nr = physical - map->stripes[i].physical;
6351 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6352 
6353 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6354 			stripe_nr = stripe_nr * map->num_stripes + i;
6355 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6356 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6357 			stripe_nr = stripe_nr * map->num_stripes + i;
6358 		} /* else if RAID[56], multiply by nr_data_stripes().
6359 		   * Alternatively, just use rmap_len below instead of
6360 		   * map->stripe_len */
6361 
6362 		bytenr = chunk_start + stripe_nr * rmap_len;
6363 		WARN_ON(nr >= map->num_stripes);
6364 		for (j = 0; j < nr; j++) {
6365 			if (buf[j] == bytenr)
6366 				break;
6367 		}
6368 		if (j == nr) {
6369 			WARN_ON(nr >= map->num_stripes);
6370 			buf[nr++] = bytenr;
6371 		}
6372 	}
6373 
6374 	*logical = buf;
6375 	*naddrs = nr;
6376 	*stripe_len = rmap_len;
6377 
6378 	free_extent_map(em);
6379 	return 0;
6380 }
6381 
6382 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6383 {
6384 	bio->bi_private = bbio->private;
6385 	bio->bi_end_io = bbio->end_io;
6386 	bio_endio(bio);
6387 
6388 	btrfs_put_bbio(bbio);
6389 }
6390 
6391 static void btrfs_end_bio(struct bio *bio)
6392 {
6393 	struct btrfs_bio *bbio = bio->bi_private;
6394 	int is_orig_bio = 0;
6395 
6396 	if (bio->bi_status) {
6397 		atomic_inc(&bbio->error);
6398 		if (bio->bi_status == BLK_STS_IOERR ||
6399 		    bio->bi_status == BLK_STS_TARGET) {
6400 			unsigned int stripe_index =
6401 				btrfs_io_bio(bio)->stripe_index;
6402 			struct btrfs_device *dev;
6403 
6404 			BUG_ON(stripe_index >= bbio->num_stripes);
6405 			dev = bbio->stripes[stripe_index].dev;
6406 			if (dev->bdev) {
6407 				if (bio_op(bio) == REQ_OP_WRITE)
6408 					btrfs_dev_stat_inc_and_print(dev,
6409 						BTRFS_DEV_STAT_WRITE_ERRS);
6410 				else if (!(bio->bi_opf & REQ_RAHEAD))
6411 					btrfs_dev_stat_inc_and_print(dev,
6412 						BTRFS_DEV_STAT_READ_ERRS);
6413 				if (bio->bi_opf & REQ_PREFLUSH)
6414 					btrfs_dev_stat_inc_and_print(dev,
6415 						BTRFS_DEV_STAT_FLUSH_ERRS);
6416 			}
6417 		}
6418 	}
6419 
6420 	if (bio == bbio->orig_bio)
6421 		is_orig_bio = 1;
6422 
6423 	btrfs_bio_counter_dec(bbio->fs_info);
6424 
6425 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6426 		if (!is_orig_bio) {
6427 			bio_put(bio);
6428 			bio = bbio->orig_bio;
6429 		}
6430 
6431 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6432 		/* only send an error to the higher layers if it is
6433 		 * beyond the tolerance of the btrfs bio
6434 		 */
6435 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6436 			bio->bi_status = BLK_STS_IOERR;
6437 		} else {
6438 			/*
6439 			 * this bio is actually up to date, we didn't
6440 			 * go over the max number of errors
6441 			 */
6442 			bio->bi_status = BLK_STS_OK;
6443 		}
6444 
6445 		btrfs_end_bbio(bbio, bio);
6446 	} else if (!is_orig_bio) {
6447 		bio_put(bio);
6448 	}
6449 }
6450 
6451 /*
6452  * see run_scheduled_bios for a description of why bios are collected for
6453  * async submit.
6454  *
6455  * This will add one bio to the pending list for a device and make sure
6456  * the work struct is scheduled.
6457  */
6458 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6459 					struct bio *bio)
6460 {
6461 	struct btrfs_fs_info *fs_info = device->fs_info;
6462 	int should_queue = 1;
6463 	struct btrfs_pending_bios *pending_bios;
6464 
6465 	/* don't bother with additional async steps for reads, right now */
6466 	if (bio_op(bio) == REQ_OP_READ) {
6467 		btrfsic_submit_bio(bio);
6468 		return;
6469 	}
6470 
6471 	WARN_ON(bio->bi_next);
6472 	bio->bi_next = NULL;
6473 
6474 	spin_lock(&device->io_lock);
6475 	if (op_is_sync(bio->bi_opf))
6476 		pending_bios = &device->pending_sync_bios;
6477 	else
6478 		pending_bios = &device->pending_bios;
6479 
6480 	if (pending_bios->tail)
6481 		pending_bios->tail->bi_next = bio;
6482 
6483 	pending_bios->tail = bio;
6484 	if (!pending_bios->head)
6485 		pending_bios->head = bio;
6486 	if (device->running_pending)
6487 		should_queue = 0;
6488 
6489 	spin_unlock(&device->io_lock);
6490 
6491 	if (should_queue)
6492 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6493 }
6494 
6495 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6496 			      u64 physical, int dev_nr, int async)
6497 {
6498 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6499 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6500 
6501 	bio->bi_private = bbio;
6502 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6503 	bio->bi_end_io = btrfs_end_bio;
6504 	bio->bi_iter.bi_sector = physical >> 9;
6505 	btrfs_debug_in_rcu(fs_info,
6506 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6507 		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6508 		(u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6509 		bio->bi_iter.bi_size);
6510 	bio_set_dev(bio, dev->bdev);
6511 
6512 	btrfs_bio_counter_inc_noblocked(fs_info);
6513 
6514 	if (async)
6515 		btrfs_schedule_bio(dev, bio);
6516 	else
6517 		btrfsic_submit_bio(bio);
6518 }
6519 
6520 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6521 {
6522 	atomic_inc(&bbio->error);
6523 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6524 		/* Should be the original bio. */
6525 		WARN_ON(bio != bbio->orig_bio);
6526 
6527 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6528 		bio->bi_iter.bi_sector = logical >> 9;
6529 		if (atomic_read(&bbio->error) > bbio->max_errors)
6530 			bio->bi_status = BLK_STS_IOERR;
6531 		else
6532 			bio->bi_status = BLK_STS_OK;
6533 		btrfs_end_bbio(bbio, bio);
6534 	}
6535 }
6536 
6537 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6538 			   int mirror_num, int async_submit)
6539 {
6540 	struct btrfs_device *dev;
6541 	struct bio *first_bio = bio;
6542 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6543 	u64 length = 0;
6544 	u64 map_length;
6545 	int ret;
6546 	int dev_nr;
6547 	int total_devs;
6548 	struct btrfs_bio *bbio = NULL;
6549 
6550 	length = bio->bi_iter.bi_size;
6551 	map_length = length;
6552 
6553 	btrfs_bio_counter_inc_blocked(fs_info);
6554 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6555 				&map_length, &bbio, mirror_num, 1);
6556 	if (ret) {
6557 		btrfs_bio_counter_dec(fs_info);
6558 		return errno_to_blk_status(ret);
6559 	}
6560 
6561 	total_devs = bbio->num_stripes;
6562 	bbio->orig_bio = first_bio;
6563 	bbio->private = first_bio->bi_private;
6564 	bbio->end_io = first_bio->bi_end_io;
6565 	bbio->fs_info = fs_info;
6566 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6567 
6568 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6569 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6570 		/* In this case, map_length has been set to the length of
6571 		   a single stripe; not the whole write */
6572 		if (bio_op(bio) == REQ_OP_WRITE) {
6573 			ret = raid56_parity_write(fs_info, bio, bbio,
6574 						  map_length);
6575 		} else {
6576 			ret = raid56_parity_recover(fs_info, bio, bbio,
6577 						    map_length, mirror_num, 1);
6578 		}
6579 
6580 		btrfs_bio_counter_dec(fs_info);
6581 		return errno_to_blk_status(ret);
6582 	}
6583 
6584 	if (map_length < length) {
6585 		btrfs_crit(fs_info,
6586 			   "mapping failed logical %llu bio len %llu len %llu",
6587 			   logical, length, map_length);
6588 		BUG();
6589 	}
6590 
6591 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6592 		dev = bbio->stripes[dev_nr].dev;
6593 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6594 						   &dev->dev_state) ||
6595 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6596 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6597 			bbio_error(bbio, first_bio, logical);
6598 			continue;
6599 		}
6600 
6601 		if (dev_nr < total_devs - 1)
6602 			bio = btrfs_bio_clone(first_bio);
6603 		else
6604 			bio = first_bio;
6605 
6606 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6607 				  dev_nr, async_submit);
6608 	}
6609 	btrfs_bio_counter_dec(fs_info);
6610 	return BLK_STS_OK;
6611 }
6612 
6613 /*
6614  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6615  * return NULL.
6616  *
6617  * If devid and uuid are both specified, the match must be exact, otherwise
6618  * only devid is used.
6619  *
6620  * If @seed is true, traverse through the seed devices.
6621  */
6622 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6623 				       u64 devid, u8 *uuid, u8 *fsid,
6624 				       bool seed)
6625 {
6626 	struct btrfs_device *device;
6627 
6628 	while (fs_devices) {
6629 		if (!fsid ||
6630 		    !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6631 			list_for_each_entry(device, &fs_devices->devices,
6632 					    dev_list) {
6633 				if (device->devid == devid &&
6634 				    (!uuid || memcmp(device->uuid, uuid,
6635 						     BTRFS_UUID_SIZE) == 0))
6636 					return device;
6637 			}
6638 		}
6639 		if (seed)
6640 			fs_devices = fs_devices->seed;
6641 		else
6642 			return NULL;
6643 	}
6644 	return NULL;
6645 }
6646 
6647 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6648 					    u64 devid, u8 *dev_uuid)
6649 {
6650 	struct btrfs_device *device;
6651 
6652 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6653 	if (IS_ERR(device))
6654 		return device;
6655 
6656 	list_add(&device->dev_list, &fs_devices->devices);
6657 	device->fs_devices = fs_devices;
6658 	fs_devices->num_devices++;
6659 
6660 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6661 	fs_devices->missing_devices++;
6662 
6663 	return device;
6664 }
6665 
6666 /**
6667  * btrfs_alloc_device - allocate struct btrfs_device
6668  * @fs_info:	used only for generating a new devid, can be NULL if
6669  *		devid is provided (i.e. @devid != NULL).
6670  * @devid:	a pointer to devid for this device.  If NULL a new devid
6671  *		is generated.
6672  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6673  *		is generated.
6674  *
6675  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6676  * on error.  Returned struct is not linked onto any lists and must be
6677  * destroyed with btrfs_free_device.
6678  */
6679 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6680 					const u64 *devid,
6681 					const u8 *uuid)
6682 {
6683 	struct btrfs_device *dev;
6684 	u64 tmp;
6685 
6686 	if (WARN_ON(!devid && !fs_info))
6687 		return ERR_PTR(-EINVAL);
6688 
6689 	dev = __alloc_device();
6690 	if (IS_ERR(dev))
6691 		return dev;
6692 
6693 	if (devid)
6694 		tmp = *devid;
6695 	else {
6696 		int ret;
6697 
6698 		ret = find_next_devid(fs_info, &tmp);
6699 		if (ret) {
6700 			btrfs_free_device(dev);
6701 			return ERR_PTR(ret);
6702 		}
6703 	}
6704 	dev->devid = tmp;
6705 
6706 	if (uuid)
6707 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6708 	else
6709 		generate_random_uuid(dev->uuid);
6710 
6711 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6712 			pending_bios_fn, NULL, NULL);
6713 
6714 	return dev;
6715 }
6716 
6717 /* Return -EIO if any error, otherwise return 0. */
6718 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6719 				   struct extent_buffer *leaf,
6720 				   struct btrfs_chunk *chunk, u64 logical)
6721 {
6722 	u64 length;
6723 	u64 stripe_len;
6724 	u16 num_stripes;
6725 	u16 sub_stripes;
6726 	u64 type;
6727 	u64 features;
6728 	bool mixed = false;
6729 
6730 	length = btrfs_chunk_length(leaf, chunk);
6731 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6732 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6733 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6734 	type = btrfs_chunk_type(leaf, chunk);
6735 
6736 	if (!num_stripes) {
6737 		btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6738 			  num_stripes);
6739 		return -EIO;
6740 	}
6741 	if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6742 		btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6743 		return -EIO;
6744 	}
6745 	if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6746 		btrfs_err(fs_info, "invalid chunk sectorsize %u",
6747 			  btrfs_chunk_sector_size(leaf, chunk));
6748 		return -EIO;
6749 	}
6750 	if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6751 		btrfs_err(fs_info, "invalid chunk length %llu", length);
6752 		return -EIO;
6753 	}
6754 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6755 		btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6756 			  stripe_len);
6757 		return -EIO;
6758 	}
6759 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6760 	    type) {
6761 		btrfs_err(fs_info, "unrecognized chunk type: %llu",
6762 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6763 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6764 			  btrfs_chunk_type(leaf, chunk));
6765 		return -EIO;
6766 	}
6767 
6768 	if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6769 		btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type);
6770 		return -EIO;
6771 	}
6772 
6773 	if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6774 	    (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6775 		btrfs_err(fs_info,
6776 			"system chunk with data or metadata type: 0x%llx", type);
6777 		return -EIO;
6778 	}
6779 
6780 	features = btrfs_super_incompat_flags(fs_info->super_copy);
6781 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6782 		mixed = true;
6783 
6784 	if (!mixed) {
6785 		if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6786 		    (type & BTRFS_BLOCK_GROUP_DATA)) {
6787 			btrfs_err(fs_info,
6788 			"mixed chunk type in non-mixed mode: 0x%llx", type);
6789 			return -EIO;
6790 		}
6791 	}
6792 
6793 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6794 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes != 2) ||
6795 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6796 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6797 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes != 2) ||
6798 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6799 	     num_stripes != 1)) {
6800 		btrfs_err(fs_info,
6801 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6802 			num_stripes, sub_stripes,
6803 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6804 		return -EIO;
6805 	}
6806 
6807 	return 0;
6808 }
6809 
6810 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6811 					u64 devid, u8 *uuid, bool error)
6812 {
6813 	if (error)
6814 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6815 			      devid, uuid);
6816 	else
6817 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6818 			      devid, uuid);
6819 }
6820 
6821 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6822 			  struct extent_buffer *leaf,
6823 			  struct btrfs_chunk *chunk)
6824 {
6825 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6826 	struct map_lookup *map;
6827 	struct extent_map *em;
6828 	u64 logical;
6829 	u64 length;
6830 	u64 devid;
6831 	u8 uuid[BTRFS_UUID_SIZE];
6832 	int num_stripes;
6833 	int ret;
6834 	int i;
6835 
6836 	logical = key->offset;
6837 	length = btrfs_chunk_length(leaf, chunk);
6838 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6839 
6840 	ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6841 	if (ret)
6842 		return ret;
6843 
6844 	read_lock(&map_tree->map_tree.lock);
6845 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6846 	read_unlock(&map_tree->map_tree.lock);
6847 
6848 	/* already mapped? */
6849 	if (em && em->start <= logical && em->start + em->len > logical) {
6850 		free_extent_map(em);
6851 		return 0;
6852 	} else if (em) {
6853 		free_extent_map(em);
6854 	}
6855 
6856 	em = alloc_extent_map();
6857 	if (!em)
6858 		return -ENOMEM;
6859 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6860 	if (!map) {
6861 		free_extent_map(em);
6862 		return -ENOMEM;
6863 	}
6864 
6865 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6866 	em->map_lookup = map;
6867 	em->start = logical;
6868 	em->len = length;
6869 	em->orig_start = 0;
6870 	em->block_start = 0;
6871 	em->block_len = em->len;
6872 
6873 	map->num_stripes = num_stripes;
6874 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6875 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6876 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6877 	map->type = btrfs_chunk_type(leaf, chunk);
6878 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6879 	map->verified_stripes = 0;
6880 	for (i = 0; i < num_stripes; i++) {
6881 		map->stripes[i].physical =
6882 			btrfs_stripe_offset_nr(leaf, chunk, i);
6883 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6884 		read_extent_buffer(leaf, uuid, (unsigned long)
6885 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6886 				   BTRFS_UUID_SIZE);
6887 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6888 							devid, uuid, NULL, true);
6889 		if (!map->stripes[i].dev &&
6890 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6891 			free_extent_map(em);
6892 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6893 			return -ENOENT;
6894 		}
6895 		if (!map->stripes[i].dev) {
6896 			map->stripes[i].dev =
6897 				add_missing_dev(fs_info->fs_devices, devid,
6898 						uuid);
6899 			if (IS_ERR(map->stripes[i].dev)) {
6900 				free_extent_map(em);
6901 				btrfs_err(fs_info,
6902 					"failed to init missing dev %llu: %ld",
6903 					devid, PTR_ERR(map->stripes[i].dev));
6904 				return PTR_ERR(map->stripes[i].dev);
6905 			}
6906 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6907 		}
6908 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6909 				&(map->stripes[i].dev->dev_state));
6910 
6911 	}
6912 
6913 	write_lock(&map_tree->map_tree.lock);
6914 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6915 	write_unlock(&map_tree->map_tree.lock);
6916 	if (ret < 0) {
6917 		btrfs_err(fs_info,
6918 			  "failed to add chunk map, start=%llu len=%llu: %d",
6919 			  em->start, em->len, ret);
6920 	}
6921 	free_extent_map(em);
6922 
6923 	return ret;
6924 }
6925 
6926 static void fill_device_from_item(struct extent_buffer *leaf,
6927 				 struct btrfs_dev_item *dev_item,
6928 				 struct btrfs_device *device)
6929 {
6930 	unsigned long ptr;
6931 
6932 	device->devid = btrfs_device_id(leaf, dev_item);
6933 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6934 	device->total_bytes = device->disk_total_bytes;
6935 	device->commit_total_bytes = device->disk_total_bytes;
6936 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6937 	device->commit_bytes_used = device->bytes_used;
6938 	device->type = btrfs_device_type(leaf, dev_item);
6939 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6940 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6941 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6942 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6943 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6944 
6945 	ptr = btrfs_device_uuid(dev_item);
6946 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6947 }
6948 
6949 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6950 						  u8 *fsid)
6951 {
6952 	struct btrfs_fs_devices *fs_devices;
6953 	int ret;
6954 
6955 	lockdep_assert_held(&uuid_mutex);
6956 	ASSERT(fsid);
6957 
6958 	fs_devices = fs_info->fs_devices->seed;
6959 	while (fs_devices) {
6960 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6961 			return fs_devices;
6962 
6963 		fs_devices = fs_devices->seed;
6964 	}
6965 
6966 	fs_devices = find_fsid(fsid, NULL);
6967 	if (!fs_devices) {
6968 		if (!btrfs_test_opt(fs_info, DEGRADED))
6969 			return ERR_PTR(-ENOENT);
6970 
6971 		fs_devices = alloc_fs_devices(fsid, NULL);
6972 		if (IS_ERR(fs_devices))
6973 			return fs_devices;
6974 
6975 		fs_devices->seeding = 1;
6976 		fs_devices->opened = 1;
6977 		return fs_devices;
6978 	}
6979 
6980 	fs_devices = clone_fs_devices(fs_devices);
6981 	if (IS_ERR(fs_devices))
6982 		return fs_devices;
6983 
6984 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6985 	if (ret) {
6986 		free_fs_devices(fs_devices);
6987 		fs_devices = ERR_PTR(ret);
6988 		goto out;
6989 	}
6990 
6991 	if (!fs_devices->seeding) {
6992 		close_fs_devices(fs_devices);
6993 		free_fs_devices(fs_devices);
6994 		fs_devices = ERR_PTR(-EINVAL);
6995 		goto out;
6996 	}
6997 
6998 	fs_devices->seed = fs_info->fs_devices->seed;
6999 	fs_info->fs_devices->seed = fs_devices;
7000 out:
7001 	return fs_devices;
7002 }
7003 
7004 static int read_one_dev(struct btrfs_fs_info *fs_info,
7005 			struct extent_buffer *leaf,
7006 			struct btrfs_dev_item *dev_item)
7007 {
7008 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7009 	struct btrfs_device *device;
7010 	u64 devid;
7011 	int ret;
7012 	u8 fs_uuid[BTRFS_FSID_SIZE];
7013 	u8 dev_uuid[BTRFS_UUID_SIZE];
7014 
7015 	devid = btrfs_device_id(leaf, dev_item);
7016 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7017 			   BTRFS_UUID_SIZE);
7018 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7019 			   BTRFS_FSID_SIZE);
7020 
7021 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7022 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7023 		if (IS_ERR(fs_devices))
7024 			return PTR_ERR(fs_devices);
7025 	}
7026 
7027 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7028 				   fs_uuid, true);
7029 	if (!device) {
7030 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7031 			btrfs_report_missing_device(fs_info, devid,
7032 							dev_uuid, true);
7033 			return -ENOENT;
7034 		}
7035 
7036 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7037 		if (IS_ERR(device)) {
7038 			btrfs_err(fs_info,
7039 				"failed to add missing dev %llu: %ld",
7040 				devid, PTR_ERR(device));
7041 			return PTR_ERR(device);
7042 		}
7043 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7044 	} else {
7045 		if (!device->bdev) {
7046 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7047 				btrfs_report_missing_device(fs_info,
7048 						devid, dev_uuid, true);
7049 				return -ENOENT;
7050 			}
7051 			btrfs_report_missing_device(fs_info, devid,
7052 							dev_uuid, false);
7053 		}
7054 
7055 		if (!device->bdev &&
7056 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7057 			/*
7058 			 * this happens when a device that was properly setup
7059 			 * in the device info lists suddenly goes bad.
7060 			 * device->bdev is NULL, and so we have to set
7061 			 * device->missing to one here
7062 			 */
7063 			device->fs_devices->missing_devices++;
7064 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7065 		}
7066 
7067 		/* Move the device to its own fs_devices */
7068 		if (device->fs_devices != fs_devices) {
7069 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7070 							&device->dev_state));
7071 
7072 			list_move(&device->dev_list, &fs_devices->devices);
7073 			device->fs_devices->num_devices--;
7074 			fs_devices->num_devices++;
7075 
7076 			device->fs_devices->missing_devices--;
7077 			fs_devices->missing_devices++;
7078 
7079 			device->fs_devices = fs_devices;
7080 		}
7081 	}
7082 
7083 	if (device->fs_devices != fs_info->fs_devices) {
7084 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7085 		if (device->generation !=
7086 		    btrfs_device_generation(leaf, dev_item))
7087 			return -EINVAL;
7088 	}
7089 
7090 	fill_device_from_item(leaf, dev_item, device);
7091 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7092 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7093 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7094 		device->fs_devices->total_rw_bytes += device->total_bytes;
7095 		atomic64_add(device->total_bytes - device->bytes_used,
7096 				&fs_info->free_chunk_space);
7097 	}
7098 	ret = 0;
7099 	return ret;
7100 }
7101 
7102 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7103 {
7104 	struct btrfs_root *root = fs_info->tree_root;
7105 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7106 	struct extent_buffer *sb;
7107 	struct btrfs_disk_key *disk_key;
7108 	struct btrfs_chunk *chunk;
7109 	u8 *array_ptr;
7110 	unsigned long sb_array_offset;
7111 	int ret = 0;
7112 	u32 num_stripes;
7113 	u32 array_size;
7114 	u32 len = 0;
7115 	u32 cur_offset;
7116 	u64 type;
7117 	struct btrfs_key key;
7118 
7119 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7120 	/*
7121 	 * This will create extent buffer of nodesize, superblock size is
7122 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7123 	 * overallocate but we can keep it as-is, only the first page is used.
7124 	 */
7125 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
7126 	if (IS_ERR(sb))
7127 		return PTR_ERR(sb);
7128 	set_extent_buffer_uptodate(sb);
7129 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7130 	/*
7131 	 * The sb extent buffer is artificial and just used to read the system array.
7132 	 * set_extent_buffer_uptodate() call does not properly mark all it's
7133 	 * pages up-to-date when the page is larger: extent does not cover the
7134 	 * whole page and consequently check_page_uptodate does not find all
7135 	 * the page's extents up-to-date (the hole beyond sb),
7136 	 * write_extent_buffer then triggers a WARN_ON.
7137 	 *
7138 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7139 	 * but sb spans only this function. Add an explicit SetPageUptodate call
7140 	 * to silence the warning eg. on PowerPC 64.
7141 	 */
7142 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7143 		SetPageUptodate(sb->pages[0]);
7144 
7145 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7146 	array_size = btrfs_super_sys_array_size(super_copy);
7147 
7148 	array_ptr = super_copy->sys_chunk_array;
7149 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7150 	cur_offset = 0;
7151 
7152 	while (cur_offset < array_size) {
7153 		disk_key = (struct btrfs_disk_key *)array_ptr;
7154 		len = sizeof(*disk_key);
7155 		if (cur_offset + len > array_size)
7156 			goto out_short_read;
7157 
7158 		btrfs_disk_key_to_cpu(&key, disk_key);
7159 
7160 		array_ptr += len;
7161 		sb_array_offset += len;
7162 		cur_offset += len;
7163 
7164 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7165 			chunk = (struct btrfs_chunk *)sb_array_offset;
7166 			/*
7167 			 * At least one btrfs_chunk with one stripe must be
7168 			 * present, exact stripe count check comes afterwards
7169 			 */
7170 			len = btrfs_chunk_item_size(1);
7171 			if (cur_offset + len > array_size)
7172 				goto out_short_read;
7173 
7174 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7175 			if (!num_stripes) {
7176 				btrfs_err(fs_info,
7177 					"invalid number of stripes %u in sys_array at offset %u",
7178 					num_stripes, cur_offset);
7179 				ret = -EIO;
7180 				break;
7181 			}
7182 
7183 			type = btrfs_chunk_type(sb, chunk);
7184 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7185 				btrfs_err(fs_info,
7186 			    "invalid chunk type %llu in sys_array at offset %u",
7187 					type, cur_offset);
7188 				ret = -EIO;
7189 				break;
7190 			}
7191 
7192 			len = btrfs_chunk_item_size(num_stripes);
7193 			if (cur_offset + len > array_size)
7194 				goto out_short_read;
7195 
7196 			ret = read_one_chunk(fs_info, &key, sb, chunk);
7197 			if (ret)
7198 				break;
7199 		} else {
7200 			btrfs_err(fs_info,
7201 			    "unexpected item type %u in sys_array at offset %u",
7202 				  (u32)key.type, cur_offset);
7203 			ret = -EIO;
7204 			break;
7205 		}
7206 		array_ptr += len;
7207 		sb_array_offset += len;
7208 		cur_offset += len;
7209 	}
7210 	clear_extent_buffer_uptodate(sb);
7211 	free_extent_buffer_stale(sb);
7212 	return ret;
7213 
7214 out_short_read:
7215 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7216 			len, cur_offset);
7217 	clear_extent_buffer_uptodate(sb);
7218 	free_extent_buffer_stale(sb);
7219 	return -EIO;
7220 }
7221 
7222 /*
7223  * Check if all chunks in the fs are OK for read-write degraded mount
7224  *
7225  * If the @failing_dev is specified, it's accounted as missing.
7226  *
7227  * Return true if all chunks meet the minimal RW mount requirements.
7228  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7229  */
7230 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7231 					struct btrfs_device *failing_dev)
7232 {
7233 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
7234 	struct extent_map *em;
7235 	u64 next_start = 0;
7236 	bool ret = true;
7237 
7238 	read_lock(&map_tree->map_tree.lock);
7239 	em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
7240 	read_unlock(&map_tree->map_tree.lock);
7241 	/* No chunk at all? Return false anyway */
7242 	if (!em) {
7243 		ret = false;
7244 		goto out;
7245 	}
7246 	while (em) {
7247 		struct map_lookup *map;
7248 		int missing = 0;
7249 		int max_tolerated;
7250 		int i;
7251 
7252 		map = em->map_lookup;
7253 		max_tolerated =
7254 			btrfs_get_num_tolerated_disk_barrier_failures(
7255 					map->type);
7256 		for (i = 0; i < map->num_stripes; i++) {
7257 			struct btrfs_device *dev = map->stripes[i].dev;
7258 
7259 			if (!dev || !dev->bdev ||
7260 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7261 			    dev->last_flush_error)
7262 				missing++;
7263 			else if (failing_dev && failing_dev == dev)
7264 				missing++;
7265 		}
7266 		if (missing > max_tolerated) {
7267 			if (!failing_dev)
7268 				btrfs_warn(fs_info,
7269 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7270 				   em->start, missing, max_tolerated);
7271 			free_extent_map(em);
7272 			ret = false;
7273 			goto out;
7274 		}
7275 		next_start = extent_map_end(em);
7276 		free_extent_map(em);
7277 
7278 		read_lock(&map_tree->map_tree.lock);
7279 		em = lookup_extent_mapping(&map_tree->map_tree, next_start,
7280 					   (u64)(-1) - next_start);
7281 		read_unlock(&map_tree->map_tree.lock);
7282 	}
7283 out:
7284 	return ret;
7285 }
7286 
7287 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7288 {
7289 	struct btrfs_root *root = fs_info->chunk_root;
7290 	struct btrfs_path *path;
7291 	struct extent_buffer *leaf;
7292 	struct btrfs_key key;
7293 	struct btrfs_key found_key;
7294 	int ret;
7295 	int slot;
7296 	u64 total_dev = 0;
7297 
7298 	path = btrfs_alloc_path();
7299 	if (!path)
7300 		return -ENOMEM;
7301 
7302 	/*
7303 	 * uuid_mutex is needed only if we are mounting a sprout FS
7304 	 * otherwise we don't need it.
7305 	 */
7306 	mutex_lock(&uuid_mutex);
7307 	mutex_lock(&fs_info->chunk_mutex);
7308 
7309 	/*
7310 	 * Read all device items, and then all the chunk items. All
7311 	 * device items are found before any chunk item (their object id
7312 	 * is smaller than the lowest possible object id for a chunk
7313 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7314 	 */
7315 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7316 	key.offset = 0;
7317 	key.type = 0;
7318 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7319 	if (ret < 0)
7320 		goto error;
7321 	while (1) {
7322 		leaf = path->nodes[0];
7323 		slot = path->slots[0];
7324 		if (slot >= btrfs_header_nritems(leaf)) {
7325 			ret = btrfs_next_leaf(root, path);
7326 			if (ret == 0)
7327 				continue;
7328 			if (ret < 0)
7329 				goto error;
7330 			break;
7331 		}
7332 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7333 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7334 			struct btrfs_dev_item *dev_item;
7335 			dev_item = btrfs_item_ptr(leaf, slot,
7336 						  struct btrfs_dev_item);
7337 			ret = read_one_dev(fs_info, leaf, dev_item);
7338 			if (ret)
7339 				goto error;
7340 			total_dev++;
7341 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7342 			struct btrfs_chunk *chunk;
7343 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7344 			ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
7345 			if (ret)
7346 				goto error;
7347 		}
7348 		path->slots[0]++;
7349 	}
7350 
7351 	/*
7352 	 * After loading chunk tree, we've got all device information,
7353 	 * do another round of validation checks.
7354 	 */
7355 	if (total_dev != fs_info->fs_devices->total_devices) {
7356 		btrfs_err(fs_info,
7357 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7358 			  btrfs_super_num_devices(fs_info->super_copy),
7359 			  total_dev);
7360 		ret = -EINVAL;
7361 		goto error;
7362 	}
7363 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7364 	    fs_info->fs_devices->total_rw_bytes) {
7365 		btrfs_err(fs_info,
7366 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7367 			  btrfs_super_total_bytes(fs_info->super_copy),
7368 			  fs_info->fs_devices->total_rw_bytes);
7369 		ret = -EINVAL;
7370 		goto error;
7371 	}
7372 	ret = 0;
7373 error:
7374 	mutex_unlock(&fs_info->chunk_mutex);
7375 	mutex_unlock(&uuid_mutex);
7376 
7377 	btrfs_free_path(path);
7378 	return ret;
7379 }
7380 
7381 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7382 {
7383 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7384 	struct btrfs_device *device;
7385 
7386 	while (fs_devices) {
7387 		mutex_lock(&fs_devices->device_list_mutex);
7388 		list_for_each_entry(device, &fs_devices->devices, dev_list)
7389 			device->fs_info = fs_info;
7390 		mutex_unlock(&fs_devices->device_list_mutex);
7391 
7392 		fs_devices = fs_devices->seed;
7393 	}
7394 }
7395 
7396 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7397 {
7398 	int i;
7399 
7400 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7401 		btrfs_dev_stat_reset(dev, i);
7402 }
7403 
7404 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7405 {
7406 	struct btrfs_key key;
7407 	struct btrfs_key found_key;
7408 	struct btrfs_root *dev_root = fs_info->dev_root;
7409 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7410 	struct extent_buffer *eb;
7411 	int slot;
7412 	int ret = 0;
7413 	struct btrfs_device *device;
7414 	struct btrfs_path *path = NULL;
7415 	int i;
7416 
7417 	path = btrfs_alloc_path();
7418 	if (!path) {
7419 		ret = -ENOMEM;
7420 		goto out;
7421 	}
7422 
7423 	mutex_lock(&fs_devices->device_list_mutex);
7424 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7425 		int item_size;
7426 		struct btrfs_dev_stats_item *ptr;
7427 
7428 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
7429 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7430 		key.offset = device->devid;
7431 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7432 		if (ret) {
7433 			__btrfs_reset_dev_stats(device);
7434 			device->dev_stats_valid = 1;
7435 			btrfs_release_path(path);
7436 			continue;
7437 		}
7438 		slot = path->slots[0];
7439 		eb = path->nodes[0];
7440 		btrfs_item_key_to_cpu(eb, &found_key, slot);
7441 		item_size = btrfs_item_size_nr(eb, slot);
7442 
7443 		ptr = btrfs_item_ptr(eb, slot,
7444 				     struct btrfs_dev_stats_item);
7445 
7446 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7447 			if (item_size >= (1 + i) * sizeof(__le64))
7448 				btrfs_dev_stat_set(device, i,
7449 					btrfs_dev_stats_value(eb, ptr, i));
7450 			else
7451 				btrfs_dev_stat_reset(device, i);
7452 		}
7453 
7454 		device->dev_stats_valid = 1;
7455 		btrfs_dev_stat_print_on_load(device);
7456 		btrfs_release_path(path);
7457 	}
7458 	mutex_unlock(&fs_devices->device_list_mutex);
7459 
7460 out:
7461 	btrfs_free_path(path);
7462 	return ret < 0 ? ret : 0;
7463 }
7464 
7465 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7466 				struct btrfs_device *device)
7467 {
7468 	struct btrfs_fs_info *fs_info = trans->fs_info;
7469 	struct btrfs_root *dev_root = fs_info->dev_root;
7470 	struct btrfs_path *path;
7471 	struct btrfs_key key;
7472 	struct extent_buffer *eb;
7473 	struct btrfs_dev_stats_item *ptr;
7474 	int ret;
7475 	int i;
7476 
7477 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7478 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7479 	key.offset = device->devid;
7480 
7481 	path = btrfs_alloc_path();
7482 	if (!path)
7483 		return -ENOMEM;
7484 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7485 	if (ret < 0) {
7486 		btrfs_warn_in_rcu(fs_info,
7487 			"error %d while searching for dev_stats item for device %s",
7488 			      ret, rcu_str_deref(device->name));
7489 		goto out;
7490 	}
7491 
7492 	if (ret == 0 &&
7493 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7494 		/* need to delete old one and insert a new one */
7495 		ret = btrfs_del_item(trans, dev_root, path);
7496 		if (ret != 0) {
7497 			btrfs_warn_in_rcu(fs_info,
7498 				"delete too small dev_stats item for device %s failed %d",
7499 				      rcu_str_deref(device->name), ret);
7500 			goto out;
7501 		}
7502 		ret = 1;
7503 	}
7504 
7505 	if (ret == 1) {
7506 		/* need to insert a new item */
7507 		btrfs_release_path(path);
7508 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7509 					      &key, sizeof(*ptr));
7510 		if (ret < 0) {
7511 			btrfs_warn_in_rcu(fs_info,
7512 				"insert dev_stats item for device %s failed %d",
7513 				rcu_str_deref(device->name), ret);
7514 			goto out;
7515 		}
7516 	}
7517 
7518 	eb = path->nodes[0];
7519 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7520 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7521 		btrfs_set_dev_stats_value(eb, ptr, i,
7522 					  btrfs_dev_stat_read(device, i));
7523 	btrfs_mark_buffer_dirty(eb);
7524 
7525 out:
7526 	btrfs_free_path(path);
7527 	return ret;
7528 }
7529 
7530 /*
7531  * called from commit_transaction. Writes all changed device stats to disk.
7532  */
7533 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7534 			struct btrfs_fs_info *fs_info)
7535 {
7536 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7537 	struct btrfs_device *device;
7538 	int stats_cnt;
7539 	int ret = 0;
7540 
7541 	mutex_lock(&fs_devices->device_list_mutex);
7542 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7543 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7544 		if (!device->dev_stats_valid || stats_cnt == 0)
7545 			continue;
7546 
7547 
7548 		/*
7549 		 * There is a LOAD-LOAD control dependency between the value of
7550 		 * dev_stats_ccnt and updating the on-disk values which requires
7551 		 * reading the in-memory counters. Such control dependencies
7552 		 * require explicit read memory barriers.
7553 		 *
7554 		 * This memory barriers pairs with smp_mb__before_atomic in
7555 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7556 		 * barrier implied by atomic_xchg in
7557 		 * btrfs_dev_stats_read_and_reset
7558 		 */
7559 		smp_rmb();
7560 
7561 		ret = update_dev_stat_item(trans, device);
7562 		if (!ret)
7563 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7564 	}
7565 	mutex_unlock(&fs_devices->device_list_mutex);
7566 
7567 	return ret;
7568 }
7569 
7570 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7571 {
7572 	btrfs_dev_stat_inc(dev, index);
7573 	btrfs_dev_stat_print_on_error(dev);
7574 }
7575 
7576 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7577 {
7578 	if (!dev->dev_stats_valid)
7579 		return;
7580 	btrfs_err_rl_in_rcu(dev->fs_info,
7581 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7582 			   rcu_str_deref(dev->name),
7583 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7584 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7585 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7586 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7587 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7588 }
7589 
7590 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7591 {
7592 	int i;
7593 
7594 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7595 		if (btrfs_dev_stat_read(dev, i) != 0)
7596 			break;
7597 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7598 		return; /* all values == 0, suppress message */
7599 
7600 	btrfs_info_in_rcu(dev->fs_info,
7601 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7602 	       rcu_str_deref(dev->name),
7603 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7604 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7605 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7606 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7607 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7608 }
7609 
7610 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7611 			struct btrfs_ioctl_get_dev_stats *stats)
7612 {
7613 	struct btrfs_device *dev;
7614 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7615 	int i;
7616 
7617 	mutex_lock(&fs_devices->device_list_mutex);
7618 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7619 				true);
7620 	mutex_unlock(&fs_devices->device_list_mutex);
7621 
7622 	if (!dev) {
7623 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7624 		return -ENODEV;
7625 	} else if (!dev->dev_stats_valid) {
7626 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7627 		return -ENODEV;
7628 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7629 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7630 			if (stats->nr_items > i)
7631 				stats->values[i] =
7632 					btrfs_dev_stat_read_and_reset(dev, i);
7633 			else
7634 				btrfs_dev_stat_reset(dev, i);
7635 		}
7636 	} else {
7637 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7638 			if (stats->nr_items > i)
7639 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7640 	}
7641 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7642 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7643 	return 0;
7644 }
7645 
7646 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7647 {
7648 	struct buffer_head *bh;
7649 	struct btrfs_super_block *disk_super;
7650 	int copy_num;
7651 
7652 	if (!bdev)
7653 		return;
7654 
7655 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7656 		copy_num++) {
7657 
7658 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7659 			continue;
7660 
7661 		disk_super = (struct btrfs_super_block *)bh->b_data;
7662 
7663 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7664 		set_buffer_dirty(bh);
7665 		sync_dirty_buffer(bh);
7666 		brelse(bh);
7667 	}
7668 
7669 	/* Notify udev that device has changed */
7670 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7671 
7672 	/* Update ctime/mtime for device path for libblkid */
7673 	update_dev_time(device_path);
7674 }
7675 
7676 /*
7677  * Update the size of all devices, which is used for writing out the
7678  * super blocks.
7679  */
7680 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7681 {
7682 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7683 	struct btrfs_device *curr, *next;
7684 
7685 	if (list_empty(&fs_devices->resized_devices))
7686 		return;
7687 
7688 	mutex_lock(&fs_devices->device_list_mutex);
7689 	mutex_lock(&fs_info->chunk_mutex);
7690 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7691 				 resized_list) {
7692 		list_del_init(&curr->resized_list);
7693 		curr->commit_total_bytes = curr->disk_total_bytes;
7694 	}
7695 	mutex_unlock(&fs_info->chunk_mutex);
7696 	mutex_unlock(&fs_devices->device_list_mutex);
7697 }
7698 
7699 /* Must be invoked during the transaction commit */
7700 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7701 {
7702 	struct btrfs_fs_info *fs_info = trans->fs_info;
7703 	struct extent_map *em;
7704 	struct map_lookup *map;
7705 	struct btrfs_device *dev;
7706 	int i;
7707 
7708 	if (list_empty(&trans->pending_chunks))
7709 		return;
7710 
7711 	/* In order to kick the device replace finish process */
7712 	mutex_lock(&fs_info->chunk_mutex);
7713 	list_for_each_entry(em, &trans->pending_chunks, list) {
7714 		map = em->map_lookup;
7715 
7716 		for (i = 0; i < map->num_stripes; i++) {
7717 			dev = map->stripes[i].dev;
7718 			dev->commit_bytes_used = dev->bytes_used;
7719 		}
7720 	}
7721 	mutex_unlock(&fs_info->chunk_mutex);
7722 }
7723 
7724 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7725 {
7726 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7727 	while (fs_devices) {
7728 		fs_devices->fs_info = fs_info;
7729 		fs_devices = fs_devices->seed;
7730 	}
7731 }
7732 
7733 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7734 {
7735 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7736 	while (fs_devices) {
7737 		fs_devices->fs_info = NULL;
7738 		fs_devices = fs_devices->seed;
7739 	}
7740 }
7741 
7742 /*
7743  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7744  */
7745 int btrfs_bg_type_to_factor(u64 flags)
7746 {
7747 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
7748 		     BTRFS_BLOCK_GROUP_RAID10))
7749 		return 2;
7750 	return 1;
7751 }
7752 
7753 
7754 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7755 {
7756 	int index = btrfs_bg_flags_to_raid_index(type);
7757 	int ncopies = btrfs_raid_array[index].ncopies;
7758 	int data_stripes;
7759 
7760 	switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
7761 	case BTRFS_BLOCK_GROUP_RAID5:
7762 		data_stripes = num_stripes - 1;
7763 		break;
7764 	case BTRFS_BLOCK_GROUP_RAID6:
7765 		data_stripes = num_stripes - 2;
7766 		break;
7767 	default:
7768 		data_stripes = num_stripes / ncopies;
7769 		break;
7770 	}
7771 	return div_u64(chunk_len, data_stripes);
7772 }
7773 
7774 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7775 				 u64 chunk_offset, u64 devid,
7776 				 u64 physical_offset, u64 physical_len)
7777 {
7778 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7779 	struct extent_map *em;
7780 	struct map_lookup *map;
7781 	struct btrfs_device *dev;
7782 	u64 stripe_len;
7783 	bool found = false;
7784 	int ret = 0;
7785 	int i;
7786 
7787 	read_lock(&em_tree->lock);
7788 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7789 	read_unlock(&em_tree->lock);
7790 
7791 	if (!em) {
7792 		btrfs_err(fs_info,
7793 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7794 			  physical_offset, devid);
7795 		ret = -EUCLEAN;
7796 		goto out;
7797 	}
7798 
7799 	map = em->map_lookup;
7800 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7801 	if (physical_len != stripe_len) {
7802 		btrfs_err(fs_info,
7803 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7804 			  physical_offset, devid, em->start, physical_len,
7805 			  stripe_len);
7806 		ret = -EUCLEAN;
7807 		goto out;
7808 	}
7809 
7810 	for (i = 0; i < map->num_stripes; i++) {
7811 		if (map->stripes[i].dev->devid == devid &&
7812 		    map->stripes[i].physical == physical_offset) {
7813 			found = true;
7814 			if (map->verified_stripes >= map->num_stripes) {
7815 				btrfs_err(fs_info,
7816 				"too many dev extents for chunk %llu found",
7817 					  em->start);
7818 				ret = -EUCLEAN;
7819 				goto out;
7820 			}
7821 			map->verified_stripes++;
7822 			break;
7823 		}
7824 	}
7825 	if (!found) {
7826 		btrfs_err(fs_info,
7827 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7828 			physical_offset, devid);
7829 		ret = -EUCLEAN;
7830 	}
7831 
7832 	/* Make sure no dev extent is beyond device bondary */
7833 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7834 	if (!dev) {
7835 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7836 		ret = -EUCLEAN;
7837 		goto out;
7838 	}
7839 
7840 	/* It's possible this device is a dummy for seed device */
7841 	if (dev->disk_total_bytes == 0) {
7842 		dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7843 					NULL, false);
7844 		if (!dev) {
7845 			btrfs_err(fs_info, "failed to find seed devid %llu",
7846 				  devid);
7847 			ret = -EUCLEAN;
7848 			goto out;
7849 		}
7850 	}
7851 
7852 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7853 		btrfs_err(fs_info,
7854 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7855 			  devid, physical_offset, physical_len,
7856 			  dev->disk_total_bytes);
7857 		ret = -EUCLEAN;
7858 		goto out;
7859 	}
7860 out:
7861 	free_extent_map(em);
7862 	return ret;
7863 }
7864 
7865 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7866 {
7867 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7868 	struct extent_map *em;
7869 	struct rb_node *node;
7870 	int ret = 0;
7871 
7872 	read_lock(&em_tree->lock);
7873 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7874 		em = rb_entry(node, struct extent_map, rb_node);
7875 		if (em->map_lookup->num_stripes !=
7876 		    em->map_lookup->verified_stripes) {
7877 			btrfs_err(fs_info,
7878 			"chunk %llu has missing dev extent, have %d expect %d",
7879 				  em->start, em->map_lookup->verified_stripes,
7880 				  em->map_lookup->num_stripes);
7881 			ret = -EUCLEAN;
7882 			goto out;
7883 		}
7884 	}
7885 out:
7886 	read_unlock(&em_tree->lock);
7887 	return ret;
7888 }
7889 
7890 /*
7891  * Ensure that all dev extents are mapped to correct chunk, otherwise
7892  * later chunk allocation/free would cause unexpected behavior.
7893  *
7894  * NOTE: This will iterate through the whole device tree, which should be of
7895  * the same size level as the chunk tree.  This slightly increases mount time.
7896  */
7897 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7898 {
7899 	struct btrfs_path *path;
7900 	struct btrfs_root *root = fs_info->dev_root;
7901 	struct btrfs_key key;
7902 	u64 prev_devid = 0;
7903 	u64 prev_dev_ext_end = 0;
7904 	int ret = 0;
7905 
7906 	key.objectid = 1;
7907 	key.type = BTRFS_DEV_EXTENT_KEY;
7908 	key.offset = 0;
7909 
7910 	path = btrfs_alloc_path();
7911 	if (!path)
7912 		return -ENOMEM;
7913 
7914 	path->reada = READA_FORWARD;
7915 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7916 	if (ret < 0)
7917 		goto out;
7918 
7919 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7920 		ret = btrfs_next_item(root, path);
7921 		if (ret < 0)
7922 			goto out;
7923 		/* No dev extents at all? Not good */
7924 		if (ret > 0) {
7925 			ret = -EUCLEAN;
7926 			goto out;
7927 		}
7928 	}
7929 	while (1) {
7930 		struct extent_buffer *leaf = path->nodes[0];
7931 		struct btrfs_dev_extent *dext;
7932 		int slot = path->slots[0];
7933 		u64 chunk_offset;
7934 		u64 physical_offset;
7935 		u64 physical_len;
7936 		u64 devid;
7937 
7938 		btrfs_item_key_to_cpu(leaf, &key, slot);
7939 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7940 			break;
7941 		devid = key.objectid;
7942 		physical_offset = key.offset;
7943 
7944 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7945 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7946 		physical_len = btrfs_dev_extent_length(leaf, dext);
7947 
7948 		/* Check if this dev extent overlaps with the previous one */
7949 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7950 			btrfs_err(fs_info,
7951 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7952 				  devid, physical_offset, prev_dev_ext_end);
7953 			ret = -EUCLEAN;
7954 			goto out;
7955 		}
7956 
7957 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7958 					    physical_offset, physical_len);
7959 		if (ret < 0)
7960 			goto out;
7961 		prev_devid = devid;
7962 		prev_dev_ext_end = physical_offset + physical_len;
7963 
7964 		ret = btrfs_next_item(root, path);
7965 		if (ret < 0)
7966 			goto out;
7967 		if (ret > 0) {
7968 			ret = 0;
7969 			break;
7970 		}
7971 	}
7972 
7973 	/* Ensure all chunks have corresponding dev extents */
7974 	ret = verify_chunk_dev_extent_mapping(fs_info);
7975 out:
7976 	btrfs_free_path(path);
7977 	return ret;
7978 }
7979 
7980 /*
7981  * Check whether the given block group or device is pinned by any inode being
7982  * used as a swapfile.
7983  */
7984 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7985 {
7986 	struct btrfs_swapfile_pin *sp;
7987 	struct rb_node *node;
7988 
7989 	spin_lock(&fs_info->swapfile_pins_lock);
7990 	node = fs_info->swapfile_pins.rb_node;
7991 	while (node) {
7992 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7993 		if (ptr < sp->ptr)
7994 			node = node->rb_left;
7995 		else if (ptr > sp->ptr)
7996 			node = node->rb_right;
7997 		else
7998 			break;
7999 	}
8000 	spin_unlock(&fs_info->swapfile_pins_lock);
8001 	return node != NULL;
8002 }
8003