xref: /openbmc/linux/fs/btrfs/volumes.c (revision 54618888)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "extent_map.h"
18 #include "disk-io.h"
19 #include "transaction.h"
20 #include "print-tree.h"
21 #include "volumes.h"
22 #include "raid56.h"
23 #include "rcu-string.h"
24 #include "dev-replace.h"
25 #include "sysfs.h"
26 #include "tree-checker.h"
27 #include "space-info.h"
28 #include "block-group.h"
29 #include "discard.h"
30 #include "zoned.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 #include "super.h"
38 
39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
40 					 BTRFS_BLOCK_GROUP_RAID10 | \
41 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
42 
43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 	[BTRFS_RAID_RAID10] = {
45 		.sub_stripes	= 2,
46 		.dev_stripes	= 1,
47 		.devs_max	= 0,	/* 0 == as many as possible */
48 		.devs_min	= 2,
49 		.tolerated_failures = 1,
50 		.devs_increment	= 2,
51 		.ncopies	= 2,
52 		.nparity        = 0,
53 		.raid_name	= "raid10",
54 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
55 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 	},
57 	[BTRFS_RAID_RAID1] = {
58 		.sub_stripes	= 1,
59 		.dev_stripes	= 1,
60 		.devs_max	= 2,
61 		.devs_min	= 2,
62 		.tolerated_failures = 1,
63 		.devs_increment	= 2,
64 		.ncopies	= 2,
65 		.nparity        = 0,
66 		.raid_name	= "raid1",
67 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
68 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 	},
70 	[BTRFS_RAID_RAID1C3] = {
71 		.sub_stripes	= 1,
72 		.dev_stripes	= 1,
73 		.devs_max	= 3,
74 		.devs_min	= 3,
75 		.tolerated_failures = 2,
76 		.devs_increment	= 3,
77 		.ncopies	= 3,
78 		.nparity        = 0,
79 		.raid_name	= "raid1c3",
80 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
81 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 	},
83 	[BTRFS_RAID_RAID1C4] = {
84 		.sub_stripes	= 1,
85 		.dev_stripes	= 1,
86 		.devs_max	= 4,
87 		.devs_min	= 4,
88 		.tolerated_failures = 3,
89 		.devs_increment	= 4,
90 		.ncopies	= 4,
91 		.nparity        = 0,
92 		.raid_name	= "raid1c4",
93 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
94 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 	},
96 	[BTRFS_RAID_DUP] = {
97 		.sub_stripes	= 1,
98 		.dev_stripes	= 2,
99 		.devs_max	= 1,
100 		.devs_min	= 1,
101 		.tolerated_failures = 0,
102 		.devs_increment	= 1,
103 		.ncopies	= 2,
104 		.nparity        = 0,
105 		.raid_name	= "dup",
106 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
107 		.mindev_error	= 0,
108 	},
109 	[BTRFS_RAID_RAID0] = {
110 		.sub_stripes	= 1,
111 		.dev_stripes	= 1,
112 		.devs_max	= 0,
113 		.devs_min	= 1,
114 		.tolerated_failures = 0,
115 		.devs_increment	= 1,
116 		.ncopies	= 1,
117 		.nparity        = 0,
118 		.raid_name	= "raid0",
119 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
120 		.mindev_error	= 0,
121 	},
122 	[BTRFS_RAID_SINGLE] = {
123 		.sub_stripes	= 1,
124 		.dev_stripes	= 1,
125 		.devs_max	= 1,
126 		.devs_min	= 1,
127 		.tolerated_failures = 0,
128 		.devs_increment	= 1,
129 		.ncopies	= 1,
130 		.nparity        = 0,
131 		.raid_name	= "single",
132 		.bg_flag	= 0,
133 		.mindev_error	= 0,
134 	},
135 	[BTRFS_RAID_RAID5] = {
136 		.sub_stripes	= 1,
137 		.dev_stripes	= 1,
138 		.devs_max	= 0,
139 		.devs_min	= 2,
140 		.tolerated_failures = 1,
141 		.devs_increment	= 1,
142 		.ncopies	= 1,
143 		.nparity        = 1,
144 		.raid_name	= "raid5",
145 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
146 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 	},
148 	[BTRFS_RAID_RAID6] = {
149 		.sub_stripes	= 1,
150 		.dev_stripes	= 1,
151 		.devs_max	= 0,
152 		.devs_min	= 3,
153 		.tolerated_failures = 2,
154 		.devs_increment	= 1,
155 		.ncopies	= 1,
156 		.nparity        = 2,
157 		.raid_name	= "raid6",
158 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
159 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 	},
161 };
162 
163 /*
164  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165  * can be used as index to access btrfs_raid_array[].
166  */
167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168 {
169 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170 
171 	if (!profile)
172 		return BTRFS_RAID_SINGLE;
173 
174 	return BTRFS_BG_FLAG_TO_INDEX(profile);
175 }
176 
177 const char *btrfs_bg_type_to_raid_name(u64 flags)
178 {
179 	const int index = btrfs_bg_flags_to_raid_index(flags);
180 
181 	if (index >= BTRFS_NR_RAID_TYPES)
182 		return NULL;
183 
184 	return btrfs_raid_array[index].raid_name;
185 }
186 
187 int btrfs_nr_parity_stripes(u64 type)
188 {
189 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190 
191 	return btrfs_raid_array[index].nparity;
192 }
193 
194 /*
195  * Fill @buf with textual description of @bg_flags, no more than @size_buf
196  * bytes including terminating null byte.
197  */
198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199 {
200 	int i;
201 	int ret;
202 	char *bp = buf;
203 	u64 flags = bg_flags;
204 	u32 size_bp = size_buf;
205 
206 	if (!flags) {
207 		strcpy(bp, "NONE");
208 		return;
209 	}
210 
211 #define DESCRIBE_FLAG(flag, desc)						\
212 	do {								\
213 		if (flags & (flag)) {					\
214 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
215 			if (ret < 0 || ret >= size_bp)			\
216 				goto out_overflow;			\
217 			size_bp -= ret;					\
218 			bp += ret;					\
219 			flags &= ~(flag);				\
220 		}							\
221 	} while (0)
222 
223 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226 
227 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 			      btrfs_raid_array[i].raid_name);
231 #undef DESCRIBE_FLAG
232 
233 	if (flags) {
234 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 		size_bp -= ret;
236 	}
237 
238 	if (size_bp < size_buf)
239 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240 
241 	/*
242 	 * The text is trimmed, it's up to the caller to provide sufficiently
243 	 * large buffer
244 	 */
245 out_overflow:;
246 }
247 
248 static int init_first_rw_device(struct btrfs_trans_handle *trans);
249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251 
252 /*
253  * Device locking
254  * ==============
255  *
256  * There are several mutexes that protect manipulation of devices and low-level
257  * structures like chunks but not block groups, extents or files
258  *
259  * uuid_mutex (global lock)
260  * ------------------------
261  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263  * device) or requested by the device= mount option
264  *
265  * the mutex can be very coarse and can cover long-running operations
266  *
267  * protects: updates to fs_devices counters like missing devices, rw devices,
268  * seeding, structure cloning, opening/closing devices at mount/umount time
269  *
270  * global::fs_devs - add, remove, updates to the global list
271  *
272  * does not protect: manipulation of the fs_devices::devices list in general
273  * but in mount context it could be used to exclude list modifications by eg.
274  * scan ioctl
275  *
276  * btrfs_device::name - renames (write side), read is RCU
277  *
278  * fs_devices::device_list_mutex (per-fs, with RCU)
279  * ------------------------------------------------
280  * protects updates to fs_devices::devices, ie. adding and deleting
281  *
282  * simple list traversal with read-only actions can be done with RCU protection
283  *
284  * may be used to exclude some operations from running concurrently without any
285  * modifications to the list (see write_all_supers)
286  *
287  * Is not required at mount and close times, because our device list is
288  * protected by the uuid_mutex at that point.
289  *
290  * balance_mutex
291  * -------------
292  * protects balance structures (status, state) and context accessed from
293  * several places (internally, ioctl)
294  *
295  * chunk_mutex
296  * -----------
297  * protects chunks, adding or removing during allocation, trim or when a new
298  * device is added/removed. Additionally it also protects post_commit_list of
299  * individual devices, since they can be added to the transaction's
300  * post_commit_list only with chunk_mutex held.
301  *
302  * cleaner_mutex
303  * -------------
304  * a big lock that is held by the cleaner thread and prevents running subvolume
305  * cleaning together with relocation or delayed iputs
306  *
307  *
308  * Lock nesting
309  * ============
310  *
311  * uuid_mutex
312  *   device_list_mutex
313  *     chunk_mutex
314  *   balance_mutex
315  *
316  *
317  * Exclusive operations
318  * ====================
319  *
320  * Maintains the exclusivity of the following operations that apply to the
321  * whole filesystem and cannot run in parallel.
322  *
323  * - Balance (*)
324  * - Device add
325  * - Device remove
326  * - Device replace (*)
327  * - Resize
328  *
329  * The device operations (as above) can be in one of the following states:
330  *
331  * - Running state
332  * - Paused state
333  * - Completed state
334  *
335  * Only device operations marked with (*) can go into the Paused state for the
336  * following reasons:
337  *
338  * - ioctl (only Balance can be Paused through ioctl)
339  * - filesystem remounted as read-only
340  * - filesystem unmounted and mounted as read-only
341  * - system power-cycle and filesystem mounted as read-only
342  * - filesystem or device errors leading to forced read-only
343  *
344  * The status of exclusive operation is set and cleared atomically.
345  * During the course of Paused state, fs_info::exclusive_operation remains set.
346  * A device operation in Paused or Running state can be canceled or resumed
347  * either by ioctl (Balance only) or when remounted as read-write.
348  * The exclusive status is cleared when the device operation is canceled or
349  * completed.
350  */
351 
352 DEFINE_MUTEX(uuid_mutex);
353 static LIST_HEAD(fs_uuids);
354 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
355 {
356 	return &fs_uuids;
357 }
358 
359 /*
360  * alloc_fs_devices - allocate struct btrfs_fs_devices
361  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
362  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
363  *
364  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365  * The returned struct is not linked onto any lists and can be destroyed with
366  * kfree() right away.
367  */
368 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 						 const u8 *metadata_fsid)
370 {
371 	struct btrfs_fs_devices *fs_devs;
372 
373 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
374 	if (!fs_devs)
375 		return ERR_PTR(-ENOMEM);
376 
377 	mutex_init(&fs_devs->device_list_mutex);
378 
379 	INIT_LIST_HEAD(&fs_devs->devices);
380 	INIT_LIST_HEAD(&fs_devs->alloc_list);
381 	INIT_LIST_HEAD(&fs_devs->fs_list);
382 	INIT_LIST_HEAD(&fs_devs->seed_list);
383 	if (fsid)
384 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
385 
386 	if (metadata_fsid)
387 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
388 	else if (fsid)
389 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
390 
391 	return fs_devs;
392 }
393 
394 void btrfs_free_device(struct btrfs_device *device)
395 {
396 	WARN_ON(!list_empty(&device->post_commit_list));
397 	rcu_string_free(device->name);
398 	extent_io_tree_release(&device->alloc_state);
399 	btrfs_destroy_dev_zone_info(device);
400 	kfree(device);
401 }
402 
403 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
404 {
405 	struct btrfs_device *device;
406 	WARN_ON(fs_devices->opened);
407 	while (!list_empty(&fs_devices->devices)) {
408 		device = list_entry(fs_devices->devices.next,
409 				    struct btrfs_device, dev_list);
410 		list_del(&device->dev_list);
411 		btrfs_free_device(device);
412 	}
413 	kfree(fs_devices);
414 }
415 
416 void __exit btrfs_cleanup_fs_uuids(void)
417 {
418 	struct btrfs_fs_devices *fs_devices;
419 
420 	while (!list_empty(&fs_uuids)) {
421 		fs_devices = list_entry(fs_uuids.next,
422 					struct btrfs_fs_devices, fs_list);
423 		list_del(&fs_devices->fs_list);
424 		free_fs_devices(fs_devices);
425 	}
426 }
427 
428 static noinline struct btrfs_fs_devices *find_fsid(
429 		const u8 *fsid, const u8 *metadata_fsid)
430 {
431 	struct btrfs_fs_devices *fs_devices;
432 
433 	ASSERT(fsid);
434 
435 	/* Handle non-split brain cases */
436 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
437 		if (metadata_fsid) {
438 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
439 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
440 				      BTRFS_FSID_SIZE) == 0)
441 				return fs_devices;
442 		} else {
443 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
444 				return fs_devices;
445 		}
446 	}
447 	return NULL;
448 }
449 
450 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
451 				struct btrfs_super_block *disk_super)
452 {
453 
454 	struct btrfs_fs_devices *fs_devices;
455 
456 	/*
457 	 * Handle scanned device having completed its fsid change but
458 	 * belonging to a fs_devices that was created by first scanning
459 	 * a device which didn't have its fsid/metadata_uuid changed
460 	 * at all and the CHANGING_FSID_V2 flag set.
461 	 */
462 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
463 		if (fs_devices->fsid_change &&
464 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
465 			   BTRFS_FSID_SIZE) == 0 &&
466 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
467 			   BTRFS_FSID_SIZE) == 0) {
468 			return fs_devices;
469 		}
470 	}
471 	/*
472 	 * Handle scanned device having completed its fsid change but
473 	 * belonging to a fs_devices that was created by a device that
474 	 * has an outdated pair of fsid/metadata_uuid and
475 	 * CHANGING_FSID_V2 flag set.
476 	 */
477 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
478 		if (fs_devices->fsid_change &&
479 		    memcmp(fs_devices->metadata_uuid,
480 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
481 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
482 			   BTRFS_FSID_SIZE) == 0) {
483 			return fs_devices;
484 		}
485 	}
486 
487 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
488 }
489 
490 
491 static int
492 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
493 		      int flush, struct block_device **bdev,
494 		      struct btrfs_super_block **disk_super)
495 {
496 	int ret;
497 
498 	*bdev = blkdev_get_by_path(device_path, flags, holder);
499 
500 	if (IS_ERR(*bdev)) {
501 		ret = PTR_ERR(*bdev);
502 		goto error;
503 	}
504 
505 	if (flush)
506 		sync_blockdev(*bdev);
507 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
508 	if (ret) {
509 		blkdev_put(*bdev, flags);
510 		goto error;
511 	}
512 	invalidate_bdev(*bdev);
513 	*disk_super = btrfs_read_dev_super(*bdev);
514 	if (IS_ERR(*disk_super)) {
515 		ret = PTR_ERR(*disk_super);
516 		blkdev_put(*bdev, flags);
517 		goto error;
518 	}
519 
520 	return 0;
521 
522 error:
523 	*bdev = NULL;
524 	return ret;
525 }
526 
527 /*
528  *  Search and remove all stale devices (which are not mounted).  When both
529  *  inputs are NULL, it will search and release all stale devices.
530  *
531  *  @devt:         Optional. When provided will it release all unmounted devices
532  *                 matching this devt only.
533  *  @skip_device:  Optional. Will skip this device when searching for the stale
534  *                 devices.
535  *
536  *  Return:	0 for success or if @devt is 0.
537  *		-EBUSY if @devt is a mounted device.
538  *		-ENOENT if @devt does not match any device in the list.
539  */
540 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
541 {
542 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
543 	struct btrfs_device *device, *tmp_device;
544 	int ret = 0;
545 
546 	lockdep_assert_held(&uuid_mutex);
547 
548 	if (devt)
549 		ret = -ENOENT;
550 
551 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
552 
553 		mutex_lock(&fs_devices->device_list_mutex);
554 		list_for_each_entry_safe(device, tmp_device,
555 					 &fs_devices->devices, dev_list) {
556 			if (skip_device && skip_device == device)
557 				continue;
558 			if (devt && devt != device->devt)
559 				continue;
560 			if (fs_devices->opened) {
561 				/* for an already deleted device return 0 */
562 				if (devt && ret != 0)
563 					ret = -EBUSY;
564 				break;
565 			}
566 
567 			/* delete the stale device */
568 			fs_devices->num_devices--;
569 			list_del(&device->dev_list);
570 			btrfs_free_device(device);
571 
572 			ret = 0;
573 		}
574 		mutex_unlock(&fs_devices->device_list_mutex);
575 
576 		if (fs_devices->num_devices == 0) {
577 			btrfs_sysfs_remove_fsid(fs_devices);
578 			list_del(&fs_devices->fs_list);
579 			free_fs_devices(fs_devices);
580 		}
581 	}
582 
583 	return ret;
584 }
585 
586 /*
587  * This is only used on mount, and we are protected from competing things
588  * messing with our fs_devices by the uuid_mutex, thus we do not need the
589  * fs_devices->device_list_mutex here.
590  */
591 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
592 			struct btrfs_device *device, fmode_t flags,
593 			void *holder)
594 {
595 	struct block_device *bdev;
596 	struct btrfs_super_block *disk_super;
597 	u64 devid;
598 	int ret;
599 
600 	if (device->bdev)
601 		return -EINVAL;
602 	if (!device->name)
603 		return -EINVAL;
604 
605 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
606 				    &bdev, &disk_super);
607 	if (ret)
608 		return ret;
609 
610 	devid = btrfs_stack_device_id(&disk_super->dev_item);
611 	if (devid != device->devid)
612 		goto error_free_page;
613 
614 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
615 		goto error_free_page;
616 
617 	device->generation = btrfs_super_generation(disk_super);
618 
619 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
620 		if (btrfs_super_incompat_flags(disk_super) &
621 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
622 			pr_err(
623 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
624 			goto error_free_page;
625 		}
626 
627 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
628 		fs_devices->seeding = true;
629 	} else {
630 		if (bdev_read_only(bdev))
631 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
632 		else
633 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
634 	}
635 
636 	if (!bdev_nonrot(bdev))
637 		fs_devices->rotating = true;
638 
639 	if (bdev_max_discard_sectors(bdev))
640 		fs_devices->discardable = true;
641 
642 	device->bdev = bdev;
643 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
644 	device->mode = flags;
645 
646 	fs_devices->open_devices++;
647 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
648 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
649 		fs_devices->rw_devices++;
650 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
651 	}
652 	btrfs_release_disk_super(disk_super);
653 
654 	return 0;
655 
656 error_free_page:
657 	btrfs_release_disk_super(disk_super);
658 	blkdev_put(bdev, flags);
659 
660 	return -EINVAL;
661 }
662 
663 /*
664  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
665  * being created with a disk that has already completed its fsid change. Such
666  * disk can belong to an fs which has its FSID changed or to one which doesn't.
667  * Handle both cases here.
668  */
669 static struct btrfs_fs_devices *find_fsid_inprogress(
670 					struct btrfs_super_block *disk_super)
671 {
672 	struct btrfs_fs_devices *fs_devices;
673 
674 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
675 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
676 			   BTRFS_FSID_SIZE) != 0 &&
677 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
678 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
679 			return fs_devices;
680 		}
681 	}
682 
683 	return find_fsid(disk_super->fsid, NULL);
684 }
685 
686 
687 static struct btrfs_fs_devices *find_fsid_changed(
688 					struct btrfs_super_block *disk_super)
689 {
690 	struct btrfs_fs_devices *fs_devices;
691 
692 	/*
693 	 * Handles the case where scanned device is part of an fs that had
694 	 * multiple successful changes of FSID but currently device didn't
695 	 * observe it. Meaning our fsid will be different than theirs. We need
696 	 * to handle two subcases :
697 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
698 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
699 	 *  are equal).
700 	 */
701 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
702 		/* Changed UUIDs */
703 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
704 			   BTRFS_FSID_SIZE) != 0 &&
705 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
706 			   BTRFS_FSID_SIZE) == 0 &&
707 		    memcmp(fs_devices->fsid, disk_super->fsid,
708 			   BTRFS_FSID_SIZE) != 0)
709 			return fs_devices;
710 
711 		/* Unchanged UUIDs */
712 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
713 			   BTRFS_FSID_SIZE) == 0 &&
714 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
715 			   BTRFS_FSID_SIZE) == 0)
716 			return fs_devices;
717 	}
718 
719 	return NULL;
720 }
721 
722 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
723 				struct btrfs_super_block *disk_super)
724 {
725 	struct btrfs_fs_devices *fs_devices;
726 
727 	/*
728 	 * Handle the case where the scanned device is part of an fs whose last
729 	 * metadata UUID change reverted it to the original FSID. At the same
730 	 * time * fs_devices was first created by another constitutent device
731 	 * which didn't fully observe the operation. This results in an
732 	 * btrfs_fs_devices created with metadata/fsid different AND
733 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
734 	 * fs_devices equal to the FSID of the disk.
735 	 */
736 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
737 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
738 			   BTRFS_FSID_SIZE) != 0 &&
739 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
740 			   BTRFS_FSID_SIZE) == 0 &&
741 		    fs_devices->fsid_change)
742 			return fs_devices;
743 	}
744 
745 	return NULL;
746 }
747 /*
748  * Add new device to list of registered devices
749  *
750  * Returns:
751  * device pointer which was just added or updated when successful
752  * error pointer when failed
753  */
754 static noinline struct btrfs_device *device_list_add(const char *path,
755 			   struct btrfs_super_block *disk_super,
756 			   bool *new_device_added)
757 {
758 	struct btrfs_device *device;
759 	struct btrfs_fs_devices *fs_devices = NULL;
760 	struct rcu_string *name;
761 	u64 found_transid = btrfs_super_generation(disk_super);
762 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
763 	dev_t path_devt;
764 	int error;
765 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
766 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
767 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
768 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
769 
770 	error = lookup_bdev(path, &path_devt);
771 	if (error) {
772 		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
773 			  path, error);
774 		return ERR_PTR(error);
775 	}
776 
777 	if (fsid_change_in_progress) {
778 		if (!has_metadata_uuid)
779 			fs_devices = find_fsid_inprogress(disk_super);
780 		else
781 			fs_devices = find_fsid_changed(disk_super);
782 	} else if (has_metadata_uuid) {
783 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
784 	} else {
785 		fs_devices = find_fsid_reverted_metadata(disk_super);
786 		if (!fs_devices)
787 			fs_devices = find_fsid(disk_super->fsid, NULL);
788 	}
789 
790 
791 	if (!fs_devices) {
792 		if (has_metadata_uuid)
793 			fs_devices = alloc_fs_devices(disk_super->fsid,
794 						      disk_super->metadata_uuid);
795 		else
796 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
797 
798 		if (IS_ERR(fs_devices))
799 			return ERR_CAST(fs_devices);
800 
801 		fs_devices->fsid_change = fsid_change_in_progress;
802 
803 		mutex_lock(&fs_devices->device_list_mutex);
804 		list_add(&fs_devices->fs_list, &fs_uuids);
805 
806 		device = NULL;
807 	} else {
808 		struct btrfs_dev_lookup_args args = {
809 			.devid = devid,
810 			.uuid = disk_super->dev_item.uuid,
811 		};
812 
813 		mutex_lock(&fs_devices->device_list_mutex);
814 		device = btrfs_find_device(fs_devices, &args);
815 
816 		/*
817 		 * If this disk has been pulled into an fs devices created by
818 		 * a device which had the CHANGING_FSID_V2 flag then replace the
819 		 * metadata_uuid/fsid values of the fs_devices.
820 		 */
821 		if (fs_devices->fsid_change &&
822 		    found_transid > fs_devices->latest_generation) {
823 			memcpy(fs_devices->fsid, disk_super->fsid,
824 					BTRFS_FSID_SIZE);
825 
826 			if (has_metadata_uuid)
827 				memcpy(fs_devices->metadata_uuid,
828 				       disk_super->metadata_uuid,
829 				       BTRFS_FSID_SIZE);
830 			else
831 				memcpy(fs_devices->metadata_uuid,
832 				       disk_super->fsid, BTRFS_FSID_SIZE);
833 
834 			fs_devices->fsid_change = false;
835 		}
836 	}
837 
838 	if (!device) {
839 		unsigned int nofs_flag;
840 
841 		if (fs_devices->opened) {
842 			btrfs_err(NULL,
843 		"device %s belongs to fsid %pU, and the fs is already mounted",
844 				  path, fs_devices->fsid);
845 			mutex_unlock(&fs_devices->device_list_mutex);
846 			return ERR_PTR(-EBUSY);
847 		}
848 
849 		nofs_flag = memalloc_nofs_save();
850 		device = btrfs_alloc_device(NULL, &devid,
851 					    disk_super->dev_item.uuid, path);
852 		memalloc_nofs_restore(nofs_flag);
853 		if (IS_ERR(device)) {
854 			mutex_unlock(&fs_devices->device_list_mutex);
855 			/* we can safely leave the fs_devices entry around */
856 			return device;
857 		}
858 
859 		device->devt = path_devt;
860 
861 		list_add_rcu(&device->dev_list, &fs_devices->devices);
862 		fs_devices->num_devices++;
863 
864 		device->fs_devices = fs_devices;
865 		*new_device_added = true;
866 
867 		if (disk_super->label[0])
868 			pr_info(
869 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
870 				disk_super->label, devid, found_transid, path,
871 				current->comm, task_pid_nr(current));
872 		else
873 			pr_info(
874 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
875 				disk_super->fsid, devid, found_transid, path,
876 				current->comm, task_pid_nr(current));
877 
878 	} else if (!device->name || strcmp(device->name->str, path)) {
879 		/*
880 		 * When FS is already mounted.
881 		 * 1. If you are here and if the device->name is NULL that
882 		 *    means this device was missing at time of FS mount.
883 		 * 2. If you are here and if the device->name is different
884 		 *    from 'path' that means either
885 		 *      a. The same device disappeared and reappeared with
886 		 *         different name. or
887 		 *      b. The missing-disk-which-was-replaced, has
888 		 *         reappeared now.
889 		 *
890 		 * We must allow 1 and 2a above. But 2b would be a spurious
891 		 * and unintentional.
892 		 *
893 		 * Further in case of 1 and 2a above, the disk at 'path'
894 		 * would have missed some transaction when it was away and
895 		 * in case of 2a the stale bdev has to be updated as well.
896 		 * 2b must not be allowed at all time.
897 		 */
898 
899 		/*
900 		 * For now, we do allow update to btrfs_fs_device through the
901 		 * btrfs dev scan cli after FS has been mounted.  We're still
902 		 * tracking a problem where systems fail mount by subvolume id
903 		 * when we reject replacement on a mounted FS.
904 		 */
905 		if (!fs_devices->opened && found_transid < device->generation) {
906 			/*
907 			 * That is if the FS is _not_ mounted and if you
908 			 * are here, that means there is more than one
909 			 * disk with same uuid and devid.We keep the one
910 			 * with larger generation number or the last-in if
911 			 * generation are equal.
912 			 */
913 			mutex_unlock(&fs_devices->device_list_mutex);
914 			btrfs_err(NULL,
915 "device %s already registered with a higher generation, found %llu expect %llu",
916 				  path, found_transid, device->generation);
917 			return ERR_PTR(-EEXIST);
918 		}
919 
920 		/*
921 		 * We are going to replace the device path for a given devid,
922 		 * make sure it's the same device if the device is mounted
923 		 *
924 		 * NOTE: the device->fs_info may not be reliable here so pass
925 		 * in a NULL to message helpers instead. This avoids a possible
926 		 * use-after-free when the fs_info and fs_info->sb are already
927 		 * torn down.
928 		 */
929 		if (device->bdev) {
930 			if (device->devt != path_devt) {
931 				mutex_unlock(&fs_devices->device_list_mutex);
932 				btrfs_warn_in_rcu(NULL,
933 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
934 						  path, devid, found_transid,
935 						  current->comm,
936 						  task_pid_nr(current));
937 				return ERR_PTR(-EEXIST);
938 			}
939 			btrfs_info_in_rcu(NULL,
940 	"devid %llu device path %s changed to %s scanned by %s (%d)",
941 					  devid, btrfs_dev_name(device),
942 					  path, current->comm,
943 					  task_pid_nr(current));
944 		}
945 
946 		name = rcu_string_strdup(path, GFP_NOFS);
947 		if (!name) {
948 			mutex_unlock(&fs_devices->device_list_mutex);
949 			return ERR_PTR(-ENOMEM);
950 		}
951 		rcu_string_free(device->name);
952 		rcu_assign_pointer(device->name, name);
953 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
954 			fs_devices->missing_devices--;
955 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
956 		}
957 		device->devt = path_devt;
958 	}
959 
960 	/*
961 	 * Unmount does not free the btrfs_device struct but would zero
962 	 * generation along with most of the other members. So just update
963 	 * it back. We need it to pick the disk with largest generation
964 	 * (as above).
965 	 */
966 	if (!fs_devices->opened) {
967 		device->generation = found_transid;
968 		fs_devices->latest_generation = max_t(u64, found_transid,
969 						fs_devices->latest_generation);
970 	}
971 
972 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
973 
974 	mutex_unlock(&fs_devices->device_list_mutex);
975 	return device;
976 }
977 
978 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
979 {
980 	struct btrfs_fs_devices *fs_devices;
981 	struct btrfs_device *device;
982 	struct btrfs_device *orig_dev;
983 	int ret = 0;
984 
985 	lockdep_assert_held(&uuid_mutex);
986 
987 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
988 	if (IS_ERR(fs_devices))
989 		return fs_devices;
990 
991 	fs_devices->total_devices = orig->total_devices;
992 
993 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
994 		const char *dev_path = NULL;
995 
996 		/*
997 		 * This is ok to do without RCU read locked because we hold the
998 		 * uuid mutex so nothing we touch in here is going to disappear.
999 		 */
1000 		if (orig_dev->name)
1001 			dev_path = orig_dev->name->str;
1002 
1003 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1004 					    orig_dev->uuid, dev_path);
1005 		if (IS_ERR(device)) {
1006 			ret = PTR_ERR(device);
1007 			goto error;
1008 		}
1009 
1010 		if (orig_dev->zone_info) {
1011 			struct btrfs_zoned_device_info *zone_info;
1012 
1013 			zone_info = btrfs_clone_dev_zone_info(orig_dev);
1014 			if (!zone_info) {
1015 				btrfs_free_device(device);
1016 				ret = -ENOMEM;
1017 				goto error;
1018 			}
1019 			device->zone_info = zone_info;
1020 		}
1021 
1022 		list_add(&device->dev_list, &fs_devices->devices);
1023 		device->fs_devices = fs_devices;
1024 		fs_devices->num_devices++;
1025 	}
1026 	return fs_devices;
1027 error:
1028 	free_fs_devices(fs_devices);
1029 	return ERR_PTR(ret);
1030 }
1031 
1032 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1033 				      struct btrfs_device **latest_dev)
1034 {
1035 	struct btrfs_device *device, *next;
1036 
1037 	/* This is the initialized path, it is safe to release the devices. */
1038 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1039 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1040 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1041 				      &device->dev_state) &&
1042 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1043 				      &device->dev_state) &&
1044 			    (!*latest_dev ||
1045 			     device->generation > (*latest_dev)->generation)) {
1046 				*latest_dev = device;
1047 			}
1048 			continue;
1049 		}
1050 
1051 		/*
1052 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1053 		 * in btrfs_init_dev_replace() so just continue.
1054 		 */
1055 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1056 			continue;
1057 
1058 		if (device->bdev) {
1059 			blkdev_put(device->bdev, device->mode);
1060 			device->bdev = NULL;
1061 			fs_devices->open_devices--;
1062 		}
1063 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1064 			list_del_init(&device->dev_alloc_list);
1065 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1066 			fs_devices->rw_devices--;
1067 		}
1068 		list_del_init(&device->dev_list);
1069 		fs_devices->num_devices--;
1070 		btrfs_free_device(device);
1071 	}
1072 
1073 }
1074 
1075 /*
1076  * After we have read the system tree and know devids belonging to this
1077  * filesystem, remove the device which does not belong there.
1078  */
1079 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1080 {
1081 	struct btrfs_device *latest_dev = NULL;
1082 	struct btrfs_fs_devices *seed_dev;
1083 
1084 	mutex_lock(&uuid_mutex);
1085 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1086 
1087 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1088 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1089 
1090 	fs_devices->latest_dev = latest_dev;
1091 
1092 	mutex_unlock(&uuid_mutex);
1093 }
1094 
1095 static void btrfs_close_bdev(struct btrfs_device *device)
1096 {
1097 	if (!device->bdev)
1098 		return;
1099 
1100 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1101 		sync_blockdev(device->bdev);
1102 		invalidate_bdev(device->bdev);
1103 	}
1104 
1105 	blkdev_put(device->bdev, device->mode);
1106 }
1107 
1108 static void btrfs_close_one_device(struct btrfs_device *device)
1109 {
1110 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1111 
1112 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1113 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1114 		list_del_init(&device->dev_alloc_list);
1115 		fs_devices->rw_devices--;
1116 	}
1117 
1118 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1119 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1120 
1121 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1122 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1123 		fs_devices->missing_devices--;
1124 	}
1125 
1126 	btrfs_close_bdev(device);
1127 	if (device->bdev) {
1128 		fs_devices->open_devices--;
1129 		device->bdev = NULL;
1130 	}
1131 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1132 	btrfs_destroy_dev_zone_info(device);
1133 
1134 	device->fs_info = NULL;
1135 	atomic_set(&device->dev_stats_ccnt, 0);
1136 	extent_io_tree_release(&device->alloc_state);
1137 
1138 	/*
1139 	 * Reset the flush error record. We might have a transient flush error
1140 	 * in this mount, and if so we aborted the current transaction and set
1141 	 * the fs to an error state, guaranteeing no super blocks can be further
1142 	 * committed. However that error might be transient and if we unmount the
1143 	 * filesystem and mount it again, we should allow the mount to succeed
1144 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1145 	 * filesystem again we still get flush errors, then we will again abort
1146 	 * any transaction and set the error state, guaranteeing no commits of
1147 	 * unsafe super blocks.
1148 	 */
1149 	device->last_flush_error = 0;
1150 
1151 	/* Verify the device is back in a pristine state  */
1152 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1153 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1154 	ASSERT(list_empty(&device->dev_alloc_list));
1155 	ASSERT(list_empty(&device->post_commit_list));
1156 }
1157 
1158 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1159 {
1160 	struct btrfs_device *device, *tmp;
1161 
1162 	lockdep_assert_held(&uuid_mutex);
1163 
1164 	if (--fs_devices->opened > 0)
1165 		return;
1166 
1167 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1168 		btrfs_close_one_device(device);
1169 
1170 	WARN_ON(fs_devices->open_devices);
1171 	WARN_ON(fs_devices->rw_devices);
1172 	fs_devices->opened = 0;
1173 	fs_devices->seeding = false;
1174 	fs_devices->fs_info = NULL;
1175 }
1176 
1177 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1178 {
1179 	LIST_HEAD(list);
1180 	struct btrfs_fs_devices *tmp;
1181 
1182 	mutex_lock(&uuid_mutex);
1183 	close_fs_devices(fs_devices);
1184 	if (!fs_devices->opened)
1185 		list_splice_init(&fs_devices->seed_list, &list);
1186 
1187 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1188 		close_fs_devices(fs_devices);
1189 		list_del(&fs_devices->seed_list);
1190 		free_fs_devices(fs_devices);
1191 	}
1192 	mutex_unlock(&uuid_mutex);
1193 }
1194 
1195 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1196 				fmode_t flags, void *holder)
1197 {
1198 	struct btrfs_device *device;
1199 	struct btrfs_device *latest_dev = NULL;
1200 	struct btrfs_device *tmp_device;
1201 
1202 	flags |= FMODE_EXCL;
1203 
1204 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1205 				 dev_list) {
1206 		int ret;
1207 
1208 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1209 		if (ret == 0 &&
1210 		    (!latest_dev || device->generation > latest_dev->generation)) {
1211 			latest_dev = device;
1212 		} else if (ret == -ENODATA) {
1213 			fs_devices->num_devices--;
1214 			list_del(&device->dev_list);
1215 			btrfs_free_device(device);
1216 		}
1217 	}
1218 	if (fs_devices->open_devices == 0)
1219 		return -EINVAL;
1220 
1221 	fs_devices->opened = 1;
1222 	fs_devices->latest_dev = latest_dev;
1223 	fs_devices->total_rw_bytes = 0;
1224 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1225 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1226 
1227 	return 0;
1228 }
1229 
1230 static int devid_cmp(void *priv, const struct list_head *a,
1231 		     const struct list_head *b)
1232 {
1233 	const struct btrfs_device *dev1, *dev2;
1234 
1235 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1236 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1237 
1238 	if (dev1->devid < dev2->devid)
1239 		return -1;
1240 	else if (dev1->devid > dev2->devid)
1241 		return 1;
1242 	return 0;
1243 }
1244 
1245 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1246 		       fmode_t flags, void *holder)
1247 {
1248 	int ret;
1249 
1250 	lockdep_assert_held(&uuid_mutex);
1251 	/*
1252 	 * The device_list_mutex cannot be taken here in case opening the
1253 	 * underlying device takes further locks like open_mutex.
1254 	 *
1255 	 * We also don't need the lock here as this is called during mount and
1256 	 * exclusion is provided by uuid_mutex
1257 	 */
1258 
1259 	if (fs_devices->opened) {
1260 		fs_devices->opened++;
1261 		ret = 0;
1262 	} else {
1263 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1264 		ret = open_fs_devices(fs_devices, flags, holder);
1265 	}
1266 
1267 	return ret;
1268 }
1269 
1270 void btrfs_release_disk_super(struct btrfs_super_block *super)
1271 {
1272 	struct page *page = virt_to_page(super);
1273 
1274 	put_page(page);
1275 }
1276 
1277 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1278 						       u64 bytenr, u64 bytenr_orig)
1279 {
1280 	struct btrfs_super_block *disk_super;
1281 	struct page *page;
1282 	void *p;
1283 	pgoff_t index;
1284 
1285 	/* make sure our super fits in the device */
1286 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1287 		return ERR_PTR(-EINVAL);
1288 
1289 	/* make sure our super fits in the page */
1290 	if (sizeof(*disk_super) > PAGE_SIZE)
1291 		return ERR_PTR(-EINVAL);
1292 
1293 	/* make sure our super doesn't straddle pages on disk */
1294 	index = bytenr >> PAGE_SHIFT;
1295 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1296 		return ERR_PTR(-EINVAL);
1297 
1298 	/* pull in the page with our super */
1299 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1300 
1301 	if (IS_ERR(page))
1302 		return ERR_CAST(page);
1303 
1304 	p = page_address(page);
1305 
1306 	/* align our pointer to the offset of the super block */
1307 	disk_super = p + offset_in_page(bytenr);
1308 
1309 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1310 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1311 		btrfs_release_disk_super(p);
1312 		return ERR_PTR(-EINVAL);
1313 	}
1314 
1315 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1316 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1317 
1318 	return disk_super;
1319 }
1320 
1321 int btrfs_forget_devices(dev_t devt)
1322 {
1323 	int ret;
1324 
1325 	mutex_lock(&uuid_mutex);
1326 	ret = btrfs_free_stale_devices(devt, NULL);
1327 	mutex_unlock(&uuid_mutex);
1328 
1329 	return ret;
1330 }
1331 
1332 /*
1333  * Look for a btrfs signature on a device. This may be called out of the mount path
1334  * and we are not allowed to call set_blocksize during the scan. The superblock
1335  * is read via pagecache
1336  */
1337 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1338 					   void *holder)
1339 {
1340 	struct btrfs_super_block *disk_super;
1341 	bool new_device_added = false;
1342 	struct btrfs_device *device = NULL;
1343 	struct block_device *bdev;
1344 	u64 bytenr, bytenr_orig;
1345 	int ret;
1346 
1347 	lockdep_assert_held(&uuid_mutex);
1348 
1349 	/*
1350 	 * we would like to check all the supers, but that would make
1351 	 * a btrfs mount succeed after a mkfs from a different FS.
1352 	 * So, we need to add a special mount option to scan for
1353 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1354 	 */
1355 	flags |= FMODE_EXCL;
1356 
1357 	bdev = blkdev_get_by_path(path, flags, holder);
1358 	if (IS_ERR(bdev))
1359 		return ERR_CAST(bdev);
1360 
1361 	bytenr_orig = btrfs_sb_offset(0);
1362 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1363 	if (ret) {
1364 		device = ERR_PTR(ret);
1365 		goto error_bdev_put;
1366 	}
1367 
1368 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1369 	if (IS_ERR(disk_super)) {
1370 		device = ERR_CAST(disk_super);
1371 		goto error_bdev_put;
1372 	}
1373 
1374 	device = device_list_add(path, disk_super, &new_device_added);
1375 	if (!IS_ERR(device) && new_device_added)
1376 		btrfs_free_stale_devices(device->devt, device);
1377 
1378 	btrfs_release_disk_super(disk_super);
1379 
1380 error_bdev_put:
1381 	blkdev_put(bdev, flags);
1382 
1383 	return device;
1384 }
1385 
1386 /*
1387  * Try to find a chunk that intersects [start, start + len] range and when one
1388  * such is found, record the end of it in *start
1389  */
1390 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1391 				    u64 len)
1392 {
1393 	u64 physical_start, physical_end;
1394 
1395 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1396 
1397 	if (!find_first_extent_bit(&device->alloc_state, *start,
1398 				   &physical_start, &physical_end,
1399 				   CHUNK_ALLOCATED, NULL)) {
1400 
1401 		if (in_range(physical_start, *start, len) ||
1402 		    in_range(*start, physical_start,
1403 			     physical_end - physical_start)) {
1404 			*start = physical_end + 1;
1405 			return true;
1406 		}
1407 	}
1408 	return false;
1409 }
1410 
1411 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1412 {
1413 	switch (device->fs_devices->chunk_alloc_policy) {
1414 	case BTRFS_CHUNK_ALLOC_REGULAR:
1415 		return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1416 	case BTRFS_CHUNK_ALLOC_ZONED:
1417 		/*
1418 		 * We don't care about the starting region like regular
1419 		 * allocator, because we anyway use/reserve the first two zones
1420 		 * for superblock logging.
1421 		 */
1422 		return ALIGN(start, device->zone_info->zone_size);
1423 	default:
1424 		BUG();
1425 	}
1426 }
1427 
1428 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1429 					u64 *hole_start, u64 *hole_size,
1430 					u64 num_bytes)
1431 {
1432 	u64 zone_size = device->zone_info->zone_size;
1433 	u64 pos;
1434 	int ret;
1435 	bool changed = false;
1436 
1437 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1438 
1439 	while (*hole_size > 0) {
1440 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1441 						   *hole_start + *hole_size,
1442 						   num_bytes);
1443 		if (pos != *hole_start) {
1444 			*hole_size = *hole_start + *hole_size - pos;
1445 			*hole_start = pos;
1446 			changed = true;
1447 			if (*hole_size < num_bytes)
1448 				break;
1449 		}
1450 
1451 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1452 
1453 		/* Range is ensured to be empty */
1454 		if (!ret)
1455 			return changed;
1456 
1457 		/* Given hole range was invalid (outside of device) */
1458 		if (ret == -ERANGE) {
1459 			*hole_start += *hole_size;
1460 			*hole_size = 0;
1461 			return true;
1462 		}
1463 
1464 		*hole_start += zone_size;
1465 		*hole_size -= zone_size;
1466 		changed = true;
1467 	}
1468 
1469 	return changed;
1470 }
1471 
1472 /*
1473  * Check if specified hole is suitable for allocation.
1474  *
1475  * @device:	the device which we have the hole
1476  * @hole_start: starting position of the hole
1477  * @hole_size:	the size of the hole
1478  * @num_bytes:	the size of the free space that we need
1479  *
1480  * This function may modify @hole_start and @hole_size to reflect the suitable
1481  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1482  */
1483 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1484 				  u64 *hole_size, u64 num_bytes)
1485 {
1486 	bool changed = false;
1487 	u64 hole_end = *hole_start + *hole_size;
1488 
1489 	for (;;) {
1490 		/*
1491 		 * Check before we set max_hole_start, otherwise we could end up
1492 		 * sending back this offset anyway.
1493 		 */
1494 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1495 			if (hole_end >= *hole_start)
1496 				*hole_size = hole_end - *hole_start;
1497 			else
1498 				*hole_size = 0;
1499 			changed = true;
1500 		}
1501 
1502 		switch (device->fs_devices->chunk_alloc_policy) {
1503 		case BTRFS_CHUNK_ALLOC_REGULAR:
1504 			/* No extra check */
1505 			break;
1506 		case BTRFS_CHUNK_ALLOC_ZONED:
1507 			if (dev_extent_hole_check_zoned(device, hole_start,
1508 							hole_size, num_bytes)) {
1509 				changed = true;
1510 				/*
1511 				 * The changed hole can contain pending extent.
1512 				 * Loop again to check that.
1513 				 */
1514 				continue;
1515 			}
1516 			break;
1517 		default:
1518 			BUG();
1519 		}
1520 
1521 		break;
1522 	}
1523 
1524 	return changed;
1525 }
1526 
1527 /*
1528  * Find free space in the specified device.
1529  *
1530  * @device:	  the device which we search the free space in
1531  * @num_bytes:	  the size of the free space that we need
1532  * @search_start: the position from which to begin the search
1533  * @start:	  store the start of the free space.
1534  * @len:	  the size of the free space. that we find, or the size
1535  *		  of the max free space if we don't find suitable free space
1536  *
1537  * This does a pretty simple search, the expectation is that it is called very
1538  * infrequently and that a given device has a small number of extents.
1539  *
1540  * @start is used to store the start of the free space if we find. But if we
1541  * don't find suitable free space, it will be used to store the start position
1542  * of the max free space.
1543  *
1544  * @len is used to store the size of the free space that we find.
1545  * But if we don't find suitable free space, it is used to store the size of
1546  * the max free space.
1547  *
1548  * NOTE: This function will search *commit* root of device tree, and does extra
1549  * check to ensure dev extents are not double allocated.
1550  * This makes the function safe to allocate dev extents but may not report
1551  * correct usable device space, as device extent freed in current transaction
1552  * is not reported as available.
1553  */
1554 static int find_free_dev_extent_start(struct btrfs_device *device,
1555 				u64 num_bytes, u64 search_start, u64 *start,
1556 				u64 *len)
1557 {
1558 	struct btrfs_fs_info *fs_info = device->fs_info;
1559 	struct btrfs_root *root = fs_info->dev_root;
1560 	struct btrfs_key key;
1561 	struct btrfs_dev_extent *dev_extent;
1562 	struct btrfs_path *path;
1563 	u64 hole_size;
1564 	u64 max_hole_start;
1565 	u64 max_hole_size;
1566 	u64 extent_end;
1567 	u64 search_end = device->total_bytes;
1568 	int ret;
1569 	int slot;
1570 	struct extent_buffer *l;
1571 
1572 	search_start = dev_extent_search_start(device, search_start);
1573 
1574 	WARN_ON(device->zone_info &&
1575 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1576 
1577 	path = btrfs_alloc_path();
1578 	if (!path)
1579 		return -ENOMEM;
1580 
1581 	max_hole_start = search_start;
1582 	max_hole_size = 0;
1583 
1584 again:
1585 	if (search_start >= search_end ||
1586 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1587 		ret = -ENOSPC;
1588 		goto out;
1589 	}
1590 
1591 	path->reada = READA_FORWARD;
1592 	path->search_commit_root = 1;
1593 	path->skip_locking = 1;
1594 
1595 	key.objectid = device->devid;
1596 	key.offset = search_start;
1597 	key.type = BTRFS_DEV_EXTENT_KEY;
1598 
1599 	ret = btrfs_search_backwards(root, &key, path);
1600 	if (ret < 0)
1601 		goto out;
1602 
1603 	while (1) {
1604 		l = path->nodes[0];
1605 		slot = path->slots[0];
1606 		if (slot >= btrfs_header_nritems(l)) {
1607 			ret = btrfs_next_leaf(root, path);
1608 			if (ret == 0)
1609 				continue;
1610 			if (ret < 0)
1611 				goto out;
1612 
1613 			break;
1614 		}
1615 		btrfs_item_key_to_cpu(l, &key, slot);
1616 
1617 		if (key.objectid < device->devid)
1618 			goto next;
1619 
1620 		if (key.objectid > device->devid)
1621 			break;
1622 
1623 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1624 			goto next;
1625 
1626 		if (key.offset > search_start) {
1627 			hole_size = key.offset - search_start;
1628 			dev_extent_hole_check(device, &search_start, &hole_size,
1629 					      num_bytes);
1630 
1631 			if (hole_size > max_hole_size) {
1632 				max_hole_start = search_start;
1633 				max_hole_size = hole_size;
1634 			}
1635 
1636 			/*
1637 			 * If this free space is greater than which we need,
1638 			 * it must be the max free space that we have found
1639 			 * until now, so max_hole_start must point to the start
1640 			 * of this free space and the length of this free space
1641 			 * is stored in max_hole_size. Thus, we return
1642 			 * max_hole_start and max_hole_size and go back to the
1643 			 * caller.
1644 			 */
1645 			if (hole_size >= num_bytes) {
1646 				ret = 0;
1647 				goto out;
1648 			}
1649 		}
1650 
1651 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1652 		extent_end = key.offset + btrfs_dev_extent_length(l,
1653 								  dev_extent);
1654 		if (extent_end > search_start)
1655 			search_start = extent_end;
1656 next:
1657 		path->slots[0]++;
1658 		cond_resched();
1659 	}
1660 
1661 	/*
1662 	 * At this point, search_start should be the end of
1663 	 * allocated dev extents, and when shrinking the device,
1664 	 * search_end may be smaller than search_start.
1665 	 */
1666 	if (search_end > search_start) {
1667 		hole_size = search_end - search_start;
1668 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1669 					  num_bytes)) {
1670 			btrfs_release_path(path);
1671 			goto again;
1672 		}
1673 
1674 		if (hole_size > max_hole_size) {
1675 			max_hole_start = search_start;
1676 			max_hole_size = hole_size;
1677 		}
1678 	}
1679 
1680 	/* See above. */
1681 	if (max_hole_size < num_bytes)
1682 		ret = -ENOSPC;
1683 	else
1684 		ret = 0;
1685 
1686 out:
1687 	btrfs_free_path(path);
1688 	*start = max_hole_start;
1689 	if (len)
1690 		*len = max_hole_size;
1691 	return ret;
1692 }
1693 
1694 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1695 			 u64 *start, u64 *len)
1696 {
1697 	/* FIXME use last free of some kind */
1698 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1699 }
1700 
1701 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1702 			  struct btrfs_device *device,
1703 			  u64 start, u64 *dev_extent_len)
1704 {
1705 	struct btrfs_fs_info *fs_info = device->fs_info;
1706 	struct btrfs_root *root = fs_info->dev_root;
1707 	int ret;
1708 	struct btrfs_path *path;
1709 	struct btrfs_key key;
1710 	struct btrfs_key found_key;
1711 	struct extent_buffer *leaf = NULL;
1712 	struct btrfs_dev_extent *extent = NULL;
1713 
1714 	path = btrfs_alloc_path();
1715 	if (!path)
1716 		return -ENOMEM;
1717 
1718 	key.objectid = device->devid;
1719 	key.offset = start;
1720 	key.type = BTRFS_DEV_EXTENT_KEY;
1721 again:
1722 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1723 	if (ret > 0) {
1724 		ret = btrfs_previous_item(root, path, key.objectid,
1725 					  BTRFS_DEV_EXTENT_KEY);
1726 		if (ret)
1727 			goto out;
1728 		leaf = path->nodes[0];
1729 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1730 		extent = btrfs_item_ptr(leaf, path->slots[0],
1731 					struct btrfs_dev_extent);
1732 		BUG_ON(found_key.offset > start || found_key.offset +
1733 		       btrfs_dev_extent_length(leaf, extent) < start);
1734 		key = found_key;
1735 		btrfs_release_path(path);
1736 		goto again;
1737 	} else if (ret == 0) {
1738 		leaf = path->nodes[0];
1739 		extent = btrfs_item_ptr(leaf, path->slots[0],
1740 					struct btrfs_dev_extent);
1741 	} else {
1742 		goto out;
1743 	}
1744 
1745 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1746 
1747 	ret = btrfs_del_item(trans, root, path);
1748 	if (ret == 0)
1749 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1750 out:
1751 	btrfs_free_path(path);
1752 	return ret;
1753 }
1754 
1755 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1756 {
1757 	struct extent_map_tree *em_tree;
1758 	struct extent_map *em;
1759 	struct rb_node *n;
1760 	u64 ret = 0;
1761 
1762 	em_tree = &fs_info->mapping_tree;
1763 	read_lock(&em_tree->lock);
1764 	n = rb_last(&em_tree->map.rb_root);
1765 	if (n) {
1766 		em = rb_entry(n, struct extent_map, rb_node);
1767 		ret = em->start + em->len;
1768 	}
1769 	read_unlock(&em_tree->lock);
1770 
1771 	return ret;
1772 }
1773 
1774 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1775 				    u64 *devid_ret)
1776 {
1777 	int ret;
1778 	struct btrfs_key key;
1779 	struct btrfs_key found_key;
1780 	struct btrfs_path *path;
1781 
1782 	path = btrfs_alloc_path();
1783 	if (!path)
1784 		return -ENOMEM;
1785 
1786 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1787 	key.type = BTRFS_DEV_ITEM_KEY;
1788 	key.offset = (u64)-1;
1789 
1790 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1791 	if (ret < 0)
1792 		goto error;
1793 
1794 	if (ret == 0) {
1795 		/* Corruption */
1796 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1797 		ret = -EUCLEAN;
1798 		goto error;
1799 	}
1800 
1801 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1802 				  BTRFS_DEV_ITEMS_OBJECTID,
1803 				  BTRFS_DEV_ITEM_KEY);
1804 	if (ret) {
1805 		*devid_ret = 1;
1806 	} else {
1807 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1808 				      path->slots[0]);
1809 		*devid_ret = found_key.offset + 1;
1810 	}
1811 	ret = 0;
1812 error:
1813 	btrfs_free_path(path);
1814 	return ret;
1815 }
1816 
1817 /*
1818  * the device information is stored in the chunk root
1819  * the btrfs_device struct should be fully filled in
1820  */
1821 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1822 			    struct btrfs_device *device)
1823 {
1824 	int ret;
1825 	struct btrfs_path *path;
1826 	struct btrfs_dev_item *dev_item;
1827 	struct extent_buffer *leaf;
1828 	struct btrfs_key key;
1829 	unsigned long ptr;
1830 
1831 	path = btrfs_alloc_path();
1832 	if (!path)
1833 		return -ENOMEM;
1834 
1835 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1836 	key.type = BTRFS_DEV_ITEM_KEY;
1837 	key.offset = device->devid;
1838 
1839 	btrfs_reserve_chunk_metadata(trans, true);
1840 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1841 				      &key, sizeof(*dev_item));
1842 	btrfs_trans_release_chunk_metadata(trans);
1843 	if (ret)
1844 		goto out;
1845 
1846 	leaf = path->nodes[0];
1847 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1848 
1849 	btrfs_set_device_id(leaf, dev_item, device->devid);
1850 	btrfs_set_device_generation(leaf, dev_item, 0);
1851 	btrfs_set_device_type(leaf, dev_item, device->type);
1852 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1853 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1854 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1855 	btrfs_set_device_total_bytes(leaf, dev_item,
1856 				     btrfs_device_get_disk_total_bytes(device));
1857 	btrfs_set_device_bytes_used(leaf, dev_item,
1858 				    btrfs_device_get_bytes_used(device));
1859 	btrfs_set_device_group(leaf, dev_item, 0);
1860 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1861 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1862 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1863 
1864 	ptr = btrfs_device_uuid(dev_item);
1865 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1866 	ptr = btrfs_device_fsid(dev_item);
1867 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1868 			    ptr, BTRFS_FSID_SIZE);
1869 	btrfs_mark_buffer_dirty(leaf);
1870 
1871 	ret = 0;
1872 out:
1873 	btrfs_free_path(path);
1874 	return ret;
1875 }
1876 
1877 /*
1878  * Function to update ctime/mtime for a given device path.
1879  * Mainly used for ctime/mtime based probe like libblkid.
1880  *
1881  * We don't care about errors here, this is just to be kind to userspace.
1882  */
1883 static void update_dev_time(const char *device_path)
1884 {
1885 	struct path path;
1886 	struct timespec64 now;
1887 	int ret;
1888 
1889 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1890 	if (ret)
1891 		return;
1892 
1893 	now = current_time(d_inode(path.dentry));
1894 	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1895 	path_put(&path);
1896 }
1897 
1898 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1899 			     struct btrfs_device *device)
1900 {
1901 	struct btrfs_root *root = device->fs_info->chunk_root;
1902 	int ret;
1903 	struct btrfs_path *path;
1904 	struct btrfs_key key;
1905 
1906 	path = btrfs_alloc_path();
1907 	if (!path)
1908 		return -ENOMEM;
1909 
1910 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1911 	key.type = BTRFS_DEV_ITEM_KEY;
1912 	key.offset = device->devid;
1913 
1914 	btrfs_reserve_chunk_metadata(trans, false);
1915 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1916 	btrfs_trans_release_chunk_metadata(trans);
1917 	if (ret) {
1918 		if (ret > 0)
1919 			ret = -ENOENT;
1920 		goto out;
1921 	}
1922 
1923 	ret = btrfs_del_item(trans, root, path);
1924 out:
1925 	btrfs_free_path(path);
1926 	return ret;
1927 }
1928 
1929 /*
1930  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1931  * filesystem. It's up to the caller to adjust that number regarding eg. device
1932  * replace.
1933  */
1934 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1935 		u64 num_devices)
1936 {
1937 	u64 all_avail;
1938 	unsigned seq;
1939 	int i;
1940 
1941 	do {
1942 		seq = read_seqbegin(&fs_info->profiles_lock);
1943 
1944 		all_avail = fs_info->avail_data_alloc_bits |
1945 			    fs_info->avail_system_alloc_bits |
1946 			    fs_info->avail_metadata_alloc_bits;
1947 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1948 
1949 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1950 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1951 			continue;
1952 
1953 		if (num_devices < btrfs_raid_array[i].devs_min)
1954 			return btrfs_raid_array[i].mindev_error;
1955 	}
1956 
1957 	return 0;
1958 }
1959 
1960 static struct btrfs_device * btrfs_find_next_active_device(
1961 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1962 {
1963 	struct btrfs_device *next_device;
1964 
1965 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1966 		if (next_device != device &&
1967 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1968 		    && next_device->bdev)
1969 			return next_device;
1970 	}
1971 
1972 	return NULL;
1973 }
1974 
1975 /*
1976  * Helper function to check if the given device is part of s_bdev / latest_dev
1977  * and replace it with the provided or the next active device, in the context
1978  * where this function called, there should be always be another device (or
1979  * this_dev) which is active.
1980  */
1981 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1982 					    struct btrfs_device *next_device)
1983 {
1984 	struct btrfs_fs_info *fs_info = device->fs_info;
1985 
1986 	if (!next_device)
1987 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1988 							    device);
1989 	ASSERT(next_device);
1990 
1991 	if (fs_info->sb->s_bdev &&
1992 			(fs_info->sb->s_bdev == device->bdev))
1993 		fs_info->sb->s_bdev = next_device->bdev;
1994 
1995 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1996 		fs_info->fs_devices->latest_dev = next_device;
1997 }
1998 
1999 /*
2000  * Return btrfs_fs_devices::num_devices excluding the device that's being
2001  * currently replaced.
2002  */
2003 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2004 {
2005 	u64 num_devices = fs_info->fs_devices->num_devices;
2006 
2007 	down_read(&fs_info->dev_replace.rwsem);
2008 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2009 		ASSERT(num_devices > 1);
2010 		num_devices--;
2011 	}
2012 	up_read(&fs_info->dev_replace.rwsem);
2013 
2014 	return num_devices;
2015 }
2016 
2017 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2018 				     struct block_device *bdev, int copy_num)
2019 {
2020 	struct btrfs_super_block *disk_super;
2021 	const size_t len = sizeof(disk_super->magic);
2022 	const u64 bytenr = btrfs_sb_offset(copy_num);
2023 	int ret;
2024 
2025 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2026 	if (IS_ERR(disk_super))
2027 		return;
2028 
2029 	memset(&disk_super->magic, 0, len);
2030 	folio_mark_dirty(virt_to_folio(disk_super));
2031 	btrfs_release_disk_super(disk_super);
2032 
2033 	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2034 	if (ret)
2035 		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2036 			copy_num, ret);
2037 }
2038 
2039 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2040 			       struct block_device *bdev,
2041 			       const char *device_path)
2042 {
2043 	int copy_num;
2044 
2045 	if (!bdev)
2046 		return;
2047 
2048 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2049 		if (bdev_is_zoned(bdev))
2050 			btrfs_reset_sb_log_zones(bdev, copy_num);
2051 		else
2052 			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2053 	}
2054 
2055 	/* Notify udev that device has changed */
2056 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2057 
2058 	/* Update ctime/mtime for device path for libblkid */
2059 	update_dev_time(device_path);
2060 }
2061 
2062 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2063 		    struct btrfs_dev_lookup_args *args,
2064 		    struct block_device **bdev, fmode_t *mode)
2065 {
2066 	struct btrfs_trans_handle *trans;
2067 	struct btrfs_device *device;
2068 	struct btrfs_fs_devices *cur_devices;
2069 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2070 	u64 num_devices;
2071 	int ret = 0;
2072 
2073 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2074 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2075 		return -EINVAL;
2076 	}
2077 
2078 	/*
2079 	 * The device list in fs_devices is accessed without locks (neither
2080 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2081 	 * filesystem and another device rm cannot run.
2082 	 */
2083 	num_devices = btrfs_num_devices(fs_info);
2084 
2085 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2086 	if (ret)
2087 		return ret;
2088 
2089 	device = btrfs_find_device(fs_info->fs_devices, args);
2090 	if (!device) {
2091 		if (args->missing)
2092 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2093 		else
2094 			ret = -ENOENT;
2095 		return ret;
2096 	}
2097 
2098 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2099 		btrfs_warn_in_rcu(fs_info,
2100 		  "cannot remove device %s (devid %llu) due to active swapfile",
2101 				  btrfs_dev_name(device), device->devid);
2102 		return -ETXTBSY;
2103 	}
2104 
2105 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2106 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2107 
2108 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2109 	    fs_info->fs_devices->rw_devices == 1)
2110 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2111 
2112 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2113 		mutex_lock(&fs_info->chunk_mutex);
2114 		list_del_init(&device->dev_alloc_list);
2115 		device->fs_devices->rw_devices--;
2116 		mutex_unlock(&fs_info->chunk_mutex);
2117 	}
2118 
2119 	ret = btrfs_shrink_device(device, 0);
2120 	if (ret)
2121 		goto error_undo;
2122 
2123 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2124 	if (IS_ERR(trans)) {
2125 		ret = PTR_ERR(trans);
2126 		goto error_undo;
2127 	}
2128 
2129 	ret = btrfs_rm_dev_item(trans, device);
2130 	if (ret) {
2131 		/* Any error in dev item removal is critical */
2132 		btrfs_crit(fs_info,
2133 			   "failed to remove device item for devid %llu: %d",
2134 			   device->devid, ret);
2135 		btrfs_abort_transaction(trans, ret);
2136 		btrfs_end_transaction(trans);
2137 		return ret;
2138 	}
2139 
2140 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2141 	btrfs_scrub_cancel_dev(device);
2142 
2143 	/*
2144 	 * the device list mutex makes sure that we don't change
2145 	 * the device list while someone else is writing out all
2146 	 * the device supers. Whoever is writing all supers, should
2147 	 * lock the device list mutex before getting the number of
2148 	 * devices in the super block (super_copy). Conversely,
2149 	 * whoever updates the number of devices in the super block
2150 	 * (super_copy) should hold the device list mutex.
2151 	 */
2152 
2153 	/*
2154 	 * In normal cases the cur_devices == fs_devices. But in case
2155 	 * of deleting a seed device, the cur_devices should point to
2156 	 * its own fs_devices listed under the fs_devices->seed_list.
2157 	 */
2158 	cur_devices = device->fs_devices;
2159 	mutex_lock(&fs_devices->device_list_mutex);
2160 	list_del_rcu(&device->dev_list);
2161 
2162 	cur_devices->num_devices--;
2163 	cur_devices->total_devices--;
2164 	/* Update total_devices of the parent fs_devices if it's seed */
2165 	if (cur_devices != fs_devices)
2166 		fs_devices->total_devices--;
2167 
2168 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2169 		cur_devices->missing_devices--;
2170 
2171 	btrfs_assign_next_active_device(device, NULL);
2172 
2173 	if (device->bdev) {
2174 		cur_devices->open_devices--;
2175 		/* remove sysfs entry */
2176 		btrfs_sysfs_remove_device(device);
2177 	}
2178 
2179 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2180 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2181 	mutex_unlock(&fs_devices->device_list_mutex);
2182 
2183 	/*
2184 	 * At this point, the device is zero sized and detached from the
2185 	 * devices list.  All that's left is to zero out the old supers and
2186 	 * free the device.
2187 	 *
2188 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2189 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2190 	 * block device and it's dependencies.  Instead just flush the device
2191 	 * and let the caller do the final blkdev_put.
2192 	 */
2193 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2194 		btrfs_scratch_superblocks(fs_info, device->bdev,
2195 					  device->name->str);
2196 		if (device->bdev) {
2197 			sync_blockdev(device->bdev);
2198 			invalidate_bdev(device->bdev);
2199 		}
2200 	}
2201 
2202 	*bdev = device->bdev;
2203 	*mode = device->mode;
2204 	synchronize_rcu();
2205 	btrfs_free_device(device);
2206 
2207 	/*
2208 	 * This can happen if cur_devices is the private seed devices list.  We
2209 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2210 	 * to be held, but in fact we don't need that for the private
2211 	 * seed_devices, we can simply decrement cur_devices->opened and then
2212 	 * remove it from our list and free the fs_devices.
2213 	 */
2214 	if (cur_devices->num_devices == 0) {
2215 		list_del_init(&cur_devices->seed_list);
2216 		ASSERT(cur_devices->opened == 1);
2217 		cur_devices->opened--;
2218 		free_fs_devices(cur_devices);
2219 	}
2220 
2221 	ret = btrfs_commit_transaction(trans);
2222 
2223 	return ret;
2224 
2225 error_undo:
2226 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2227 		mutex_lock(&fs_info->chunk_mutex);
2228 		list_add(&device->dev_alloc_list,
2229 			 &fs_devices->alloc_list);
2230 		device->fs_devices->rw_devices++;
2231 		mutex_unlock(&fs_info->chunk_mutex);
2232 	}
2233 	return ret;
2234 }
2235 
2236 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2237 {
2238 	struct btrfs_fs_devices *fs_devices;
2239 
2240 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2241 
2242 	/*
2243 	 * in case of fs with no seed, srcdev->fs_devices will point
2244 	 * to fs_devices of fs_info. However when the dev being replaced is
2245 	 * a seed dev it will point to the seed's local fs_devices. In short
2246 	 * srcdev will have its correct fs_devices in both the cases.
2247 	 */
2248 	fs_devices = srcdev->fs_devices;
2249 
2250 	list_del_rcu(&srcdev->dev_list);
2251 	list_del(&srcdev->dev_alloc_list);
2252 	fs_devices->num_devices--;
2253 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2254 		fs_devices->missing_devices--;
2255 
2256 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2257 		fs_devices->rw_devices--;
2258 
2259 	if (srcdev->bdev)
2260 		fs_devices->open_devices--;
2261 }
2262 
2263 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2264 {
2265 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2266 
2267 	mutex_lock(&uuid_mutex);
2268 
2269 	btrfs_close_bdev(srcdev);
2270 	synchronize_rcu();
2271 	btrfs_free_device(srcdev);
2272 
2273 	/* if this is no devs we rather delete the fs_devices */
2274 	if (!fs_devices->num_devices) {
2275 		/*
2276 		 * On a mounted FS, num_devices can't be zero unless it's a
2277 		 * seed. In case of a seed device being replaced, the replace
2278 		 * target added to the sprout FS, so there will be no more
2279 		 * device left under the seed FS.
2280 		 */
2281 		ASSERT(fs_devices->seeding);
2282 
2283 		list_del_init(&fs_devices->seed_list);
2284 		close_fs_devices(fs_devices);
2285 		free_fs_devices(fs_devices);
2286 	}
2287 	mutex_unlock(&uuid_mutex);
2288 }
2289 
2290 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2291 {
2292 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2293 
2294 	mutex_lock(&fs_devices->device_list_mutex);
2295 
2296 	btrfs_sysfs_remove_device(tgtdev);
2297 
2298 	if (tgtdev->bdev)
2299 		fs_devices->open_devices--;
2300 
2301 	fs_devices->num_devices--;
2302 
2303 	btrfs_assign_next_active_device(tgtdev, NULL);
2304 
2305 	list_del_rcu(&tgtdev->dev_list);
2306 
2307 	mutex_unlock(&fs_devices->device_list_mutex);
2308 
2309 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2310 				  tgtdev->name->str);
2311 
2312 	btrfs_close_bdev(tgtdev);
2313 	synchronize_rcu();
2314 	btrfs_free_device(tgtdev);
2315 }
2316 
2317 /*
2318  * Populate args from device at path.
2319  *
2320  * @fs_info:	the filesystem
2321  * @args:	the args to populate
2322  * @path:	the path to the device
2323  *
2324  * This will read the super block of the device at @path and populate @args with
2325  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2326  * lookup a device to operate on, but need to do it before we take any locks.
2327  * This properly handles the special case of "missing" that a user may pass in,
2328  * and does some basic sanity checks.  The caller must make sure that @path is
2329  * properly NUL terminated before calling in, and must call
2330  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2331  * uuid buffers.
2332  *
2333  * Return: 0 for success, -errno for failure
2334  */
2335 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2336 				 struct btrfs_dev_lookup_args *args,
2337 				 const char *path)
2338 {
2339 	struct btrfs_super_block *disk_super;
2340 	struct block_device *bdev;
2341 	int ret;
2342 
2343 	if (!path || !path[0])
2344 		return -EINVAL;
2345 	if (!strcmp(path, "missing")) {
2346 		args->missing = true;
2347 		return 0;
2348 	}
2349 
2350 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2351 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2352 	if (!args->uuid || !args->fsid) {
2353 		btrfs_put_dev_args_from_path(args);
2354 		return -ENOMEM;
2355 	}
2356 
2357 	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2358 				    &bdev, &disk_super);
2359 	if (ret) {
2360 		btrfs_put_dev_args_from_path(args);
2361 		return ret;
2362 	}
2363 
2364 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2365 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2366 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2367 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2368 	else
2369 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2370 	btrfs_release_disk_super(disk_super);
2371 	blkdev_put(bdev, FMODE_READ);
2372 	return 0;
2373 }
2374 
2375 /*
2376  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2377  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2378  * that don't need to be freed.
2379  */
2380 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2381 {
2382 	kfree(args->uuid);
2383 	kfree(args->fsid);
2384 	args->uuid = NULL;
2385 	args->fsid = NULL;
2386 }
2387 
2388 struct btrfs_device *btrfs_find_device_by_devspec(
2389 		struct btrfs_fs_info *fs_info, u64 devid,
2390 		const char *device_path)
2391 {
2392 	BTRFS_DEV_LOOKUP_ARGS(args);
2393 	struct btrfs_device *device;
2394 	int ret;
2395 
2396 	if (devid) {
2397 		args.devid = devid;
2398 		device = btrfs_find_device(fs_info->fs_devices, &args);
2399 		if (!device)
2400 			return ERR_PTR(-ENOENT);
2401 		return device;
2402 	}
2403 
2404 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2405 	if (ret)
2406 		return ERR_PTR(ret);
2407 	device = btrfs_find_device(fs_info->fs_devices, &args);
2408 	btrfs_put_dev_args_from_path(&args);
2409 	if (!device)
2410 		return ERR_PTR(-ENOENT);
2411 	return device;
2412 }
2413 
2414 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2415 {
2416 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2417 	struct btrfs_fs_devices *old_devices;
2418 	struct btrfs_fs_devices *seed_devices;
2419 
2420 	lockdep_assert_held(&uuid_mutex);
2421 	if (!fs_devices->seeding)
2422 		return ERR_PTR(-EINVAL);
2423 
2424 	/*
2425 	 * Private copy of the seed devices, anchored at
2426 	 * fs_info->fs_devices->seed_list
2427 	 */
2428 	seed_devices = alloc_fs_devices(NULL, NULL);
2429 	if (IS_ERR(seed_devices))
2430 		return seed_devices;
2431 
2432 	/*
2433 	 * It's necessary to retain a copy of the original seed fs_devices in
2434 	 * fs_uuids so that filesystems which have been seeded can successfully
2435 	 * reference the seed device from open_seed_devices. This also supports
2436 	 * multiple fs seed.
2437 	 */
2438 	old_devices = clone_fs_devices(fs_devices);
2439 	if (IS_ERR(old_devices)) {
2440 		kfree(seed_devices);
2441 		return old_devices;
2442 	}
2443 
2444 	list_add(&old_devices->fs_list, &fs_uuids);
2445 
2446 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2447 	seed_devices->opened = 1;
2448 	INIT_LIST_HEAD(&seed_devices->devices);
2449 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2450 	mutex_init(&seed_devices->device_list_mutex);
2451 
2452 	return seed_devices;
2453 }
2454 
2455 /*
2456  * Splice seed devices into the sprout fs_devices.
2457  * Generate a new fsid for the sprouted read-write filesystem.
2458  */
2459 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2460 			       struct btrfs_fs_devices *seed_devices)
2461 {
2462 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2463 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2464 	struct btrfs_device *device;
2465 	u64 super_flags;
2466 
2467 	/*
2468 	 * We are updating the fsid, the thread leading to device_list_add()
2469 	 * could race, so uuid_mutex is needed.
2470 	 */
2471 	lockdep_assert_held(&uuid_mutex);
2472 
2473 	/*
2474 	 * The threads listed below may traverse dev_list but can do that without
2475 	 * device_list_mutex:
2476 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2477 	 * - Various dev_list readers - are using RCU.
2478 	 * - btrfs_ioctl_fitrim() - is using RCU.
2479 	 *
2480 	 * For-read threads as below are using device_list_mutex:
2481 	 * - Readonly scrub btrfs_scrub_dev()
2482 	 * - Readonly scrub btrfs_scrub_progress()
2483 	 * - btrfs_get_dev_stats()
2484 	 */
2485 	lockdep_assert_held(&fs_devices->device_list_mutex);
2486 
2487 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2488 			      synchronize_rcu);
2489 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2490 		device->fs_devices = seed_devices;
2491 
2492 	fs_devices->seeding = false;
2493 	fs_devices->num_devices = 0;
2494 	fs_devices->open_devices = 0;
2495 	fs_devices->missing_devices = 0;
2496 	fs_devices->rotating = false;
2497 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2498 
2499 	generate_random_uuid(fs_devices->fsid);
2500 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2501 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2502 
2503 	super_flags = btrfs_super_flags(disk_super) &
2504 		      ~BTRFS_SUPER_FLAG_SEEDING;
2505 	btrfs_set_super_flags(disk_super, super_flags);
2506 }
2507 
2508 /*
2509  * Store the expected generation for seed devices in device items.
2510  */
2511 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2512 {
2513 	BTRFS_DEV_LOOKUP_ARGS(args);
2514 	struct btrfs_fs_info *fs_info = trans->fs_info;
2515 	struct btrfs_root *root = fs_info->chunk_root;
2516 	struct btrfs_path *path;
2517 	struct extent_buffer *leaf;
2518 	struct btrfs_dev_item *dev_item;
2519 	struct btrfs_device *device;
2520 	struct btrfs_key key;
2521 	u8 fs_uuid[BTRFS_FSID_SIZE];
2522 	u8 dev_uuid[BTRFS_UUID_SIZE];
2523 	int ret;
2524 
2525 	path = btrfs_alloc_path();
2526 	if (!path)
2527 		return -ENOMEM;
2528 
2529 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2530 	key.offset = 0;
2531 	key.type = BTRFS_DEV_ITEM_KEY;
2532 
2533 	while (1) {
2534 		btrfs_reserve_chunk_metadata(trans, false);
2535 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2536 		btrfs_trans_release_chunk_metadata(trans);
2537 		if (ret < 0)
2538 			goto error;
2539 
2540 		leaf = path->nodes[0];
2541 next_slot:
2542 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2543 			ret = btrfs_next_leaf(root, path);
2544 			if (ret > 0)
2545 				break;
2546 			if (ret < 0)
2547 				goto error;
2548 			leaf = path->nodes[0];
2549 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550 			btrfs_release_path(path);
2551 			continue;
2552 		}
2553 
2554 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2555 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2556 		    key.type != BTRFS_DEV_ITEM_KEY)
2557 			break;
2558 
2559 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2560 					  struct btrfs_dev_item);
2561 		args.devid = btrfs_device_id(leaf, dev_item);
2562 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2563 				   BTRFS_UUID_SIZE);
2564 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2565 				   BTRFS_FSID_SIZE);
2566 		args.uuid = dev_uuid;
2567 		args.fsid = fs_uuid;
2568 		device = btrfs_find_device(fs_info->fs_devices, &args);
2569 		BUG_ON(!device); /* Logic error */
2570 
2571 		if (device->fs_devices->seeding) {
2572 			btrfs_set_device_generation(leaf, dev_item,
2573 						    device->generation);
2574 			btrfs_mark_buffer_dirty(leaf);
2575 		}
2576 
2577 		path->slots[0]++;
2578 		goto next_slot;
2579 	}
2580 	ret = 0;
2581 error:
2582 	btrfs_free_path(path);
2583 	return ret;
2584 }
2585 
2586 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2587 {
2588 	struct btrfs_root *root = fs_info->dev_root;
2589 	struct btrfs_trans_handle *trans;
2590 	struct btrfs_device *device;
2591 	struct block_device *bdev;
2592 	struct super_block *sb = fs_info->sb;
2593 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2594 	struct btrfs_fs_devices *seed_devices;
2595 	u64 orig_super_total_bytes;
2596 	u64 orig_super_num_devices;
2597 	int ret = 0;
2598 	bool seeding_dev = false;
2599 	bool locked = false;
2600 
2601 	if (sb_rdonly(sb) && !fs_devices->seeding)
2602 		return -EROFS;
2603 
2604 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2605 				  fs_info->bdev_holder);
2606 	if (IS_ERR(bdev))
2607 		return PTR_ERR(bdev);
2608 
2609 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2610 		ret = -EINVAL;
2611 		goto error;
2612 	}
2613 
2614 	if (fs_devices->seeding) {
2615 		seeding_dev = true;
2616 		down_write(&sb->s_umount);
2617 		mutex_lock(&uuid_mutex);
2618 		locked = true;
2619 	}
2620 
2621 	sync_blockdev(bdev);
2622 
2623 	rcu_read_lock();
2624 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2625 		if (device->bdev == bdev) {
2626 			ret = -EEXIST;
2627 			rcu_read_unlock();
2628 			goto error;
2629 		}
2630 	}
2631 	rcu_read_unlock();
2632 
2633 	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2634 	if (IS_ERR(device)) {
2635 		/* we can safely leave the fs_devices entry around */
2636 		ret = PTR_ERR(device);
2637 		goto error;
2638 	}
2639 
2640 	device->fs_info = fs_info;
2641 	device->bdev = bdev;
2642 	ret = lookup_bdev(device_path, &device->devt);
2643 	if (ret)
2644 		goto error_free_device;
2645 
2646 	ret = btrfs_get_dev_zone_info(device, false);
2647 	if (ret)
2648 		goto error_free_device;
2649 
2650 	trans = btrfs_start_transaction(root, 0);
2651 	if (IS_ERR(trans)) {
2652 		ret = PTR_ERR(trans);
2653 		goto error_free_zone;
2654 	}
2655 
2656 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2657 	device->generation = trans->transid;
2658 	device->io_width = fs_info->sectorsize;
2659 	device->io_align = fs_info->sectorsize;
2660 	device->sector_size = fs_info->sectorsize;
2661 	device->total_bytes =
2662 		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2663 	device->disk_total_bytes = device->total_bytes;
2664 	device->commit_total_bytes = device->total_bytes;
2665 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2666 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2667 	device->mode = FMODE_EXCL;
2668 	device->dev_stats_valid = 1;
2669 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2670 
2671 	if (seeding_dev) {
2672 		btrfs_clear_sb_rdonly(sb);
2673 
2674 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2675 		seed_devices = btrfs_init_sprout(fs_info);
2676 		if (IS_ERR(seed_devices)) {
2677 			ret = PTR_ERR(seed_devices);
2678 			btrfs_abort_transaction(trans, ret);
2679 			goto error_trans;
2680 		}
2681 	}
2682 
2683 	mutex_lock(&fs_devices->device_list_mutex);
2684 	if (seeding_dev) {
2685 		btrfs_setup_sprout(fs_info, seed_devices);
2686 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2687 						device);
2688 	}
2689 
2690 	device->fs_devices = fs_devices;
2691 
2692 	mutex_lock(&fs_info->chunk_mutex);
2693 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2694 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2695 	fs_devices->num_devices++;
2696 	fs_devices->open_devices++;
2697 	fs_devices->rw_devices++;
2698 	fs_devices->total_devices++;
2699 	fs_devices->total_rw_bytes += device->total_bytes;
2700 
2701 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2702 
2703 	if (!bdev_nonrot(bdev))
2704 		fs_devices->rotating = true;
2705 
2706 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2707 	btrfs_set_super_total_bytes(fs_info->super_copy,
2708 		round_down(orig_super_total_bytes + device->total_bytes,
2709 			   fs_info->sectorsize));
2710 
2711 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2712 	btrfs_set_super_num_devices(fs_info->super_copy,
2713 				    orig_super_num_devices + 1);
2714 
2715 	/*
2716 	 * we've got more storage, clear any full flags on the space
2717 	 * infos
2718 	 */
2719 	btrfs_clear_space_info_full(fs_info);
2720 
2721 	mutex_unlock(&fs_info->chunk_mutex);
2722 
2723 	/* Add sysfs device entry */
2724 	btrfs_sysfs_add_device(device);
2725 
2726 	mutex_unlock(&fs_devices->device_list_mutex);
2727 
2728 	if (seeding_dev) {
2729 		mutex_lock(&fs_info->chunk_mutex);
2730 		ret = init_first_rw_device(trans);
2731 		mutex_unlock(&fs_info->chunk_mutex);
2732 		if (ret) {
2733 			btrfs_abort_transaction(trans, ret);
2734 			goto error_sysfs;
2735 		}
2736 	}
2737 
2738 	ret = btrfs_add_dev_item(trans, device);
2739 	if (ret) {
2740 		btrfs_abort_transaction(trans, ret);
2741 		goto error_sysfs;
2742 	}
2743 
2744 	if (seeding_dev) {
2745 		ret = btrfs_finish_sprout(trans);
2746 		if (ret) {
2747 			btrfs_abort_transaction(trans, ret);
2748 			goto error_sysfs;
2749 		}
2750 
2751 		/*
2752 		 * fs_devices now represents the newly sprouted filesystem and
2753 		 * its fsid has been changed by btrfs_sprout_splice().
2754 		 */
2755 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2756 	}
2757 
2758 	ret = btrfs_commit_transaction(trans);
2759 
2760 	if (seeding_dev) {
2761 		mutex_unlock(&uuid_mutex);
2762 		up_write(&sb->s_umount);
2763 		locked = false;
2764 
2765 		if (ret) /* transaction commit */
2766 			return ret;
2767 
2768 		ret = btrfs_relocate_sys_chunks(fs_info);
2769 		if (ret < 0)
2770 			btrfs_handle_fs_error(fs_info, ret,
2771 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2772 		trans = btrfs_attach_transaction(root);
2773 		if (IS_ERR(trans)) {
2774 			if (PTR_ERR(trans) == -ENOENT)
2775 				return 0;
2776 			ret = PTR_ERR(trans);
2777 			trans = NULL;
2778 			goto error_sysfs;
2779 		}
2780 		ret = btrfs_commit_transaction(trans);
2781 	}
2782 
2783 	/*
2784 	 * Now that we have written a new super block to this device, check all
2785 	 * other fs_devices list if device_path alienates any other scanned
2786 	 * device.
2787 	 * We can ignore the return value as it typically returns -EINVAL and
2788 	 * only succeeds if the device was an alien.
2789 	 */
2790 	btrfs_forget_devices(device->devt);
2791 
2792 	/* Update ctime/mtime for blkid or udev */
2793 	update_dev_time(device_path);
2794 
2795 	return ret;
2796 
2797 error_sysfs:
2798 	btrfs_sysfs_remove_device(device);
2799 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2800 	mutex_lock(&fs_info->chunk_mutex);
2801 	list_del_rcu(&device->dev_list);
2802 	list_del(&device->dev_alloc_list);
2803 	fs_info->fs_devices->num_devices--;
2804 	fs_info->fs_devices->open_devices--;
2805 	fs_info->fs_devices->rw_devices--;
2806 	fs_info->fs_devices->total_devices--;
2807 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2808 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2809 	btrfs_set_super_total_bytes(fs_info->super_copy,
2810 				    orig_super_total_bytes);
2811 	btrfs_set_super_num_devices(fs_info->super_copy,
2812 				    orig_super_num_devices);
2813 	mutex_unlock(&fs_info->chunk_mutex);
2814 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2815 error_trans:
2816 	if (seeding_dev)
2817 		btrfs_set_sb_rdonly(sb);
2818 	if (trans)
2819 		btrfs_end_transaction(trans);
2820 error_free_zone:
2821 	btrfs_destroy_dev_zone_info(device);
2822 error_free_device:
2823 	btrfs_free_device(device);
2824 error:
2825 	blkdev_put(bdev, FMODE_EXCL);
2826 	if (locked) {
2827 		mutex_unlock(&uuid_mutex);
2828 		up_write(&sb->s_umount);
2829 	}
2830 	return ret;
2831 }
2832 
2833 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2834 					struct btrfs_device *device)
2835 {
2836 	int ret;
2837 	struct btrfs_path *path;
2838 	struct btrfs_root *root = device->fs_info->chunk_root;
2839 	struct btrfs_dev_item *dev_item;
2840 	struct extent_buffer *leaf;
2841 	struct btrfs_key key;
2842 
2843 	path = btrfs_alloc_path();
2844 	if (!path)
2845 		return -ENOMEM;
2846 
2847 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2848 	key.type = BTRFS_DEV_ITEM_KEY;
2849 	key.offset = device->devid;
2850 
2851 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2852 	if (ret < 0)
2853 		goto out;
2854 
2855 	if (ret > 0) {
2856 		ret = -ENOENT;
2857 		goto out;
2858 	}
2859 
2860 	leaf = path->nodes[0];
2861 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2862 
2863 	btrfs_set_device_id(leaf, dev_item, device->devid);
2864 	btrfs_set_device_type(leaf, dev_item, device->type);
2865 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2866 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2867 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2868 	btrfs_set_device_total_bytes(leaf, dev_item,
2869 				     btrfs_device_get_disk_total_bytes(device));
2870 	btrfs_set_device_bytes_used(leaf, dev_item,
2871 				    btrfs_device_get_bytes_used(device));
2872 	btrfs_mark_buffer_dirty(leaf);
2873 
2874 out:
2875 	btrfs_free_path(path);
2876 	return ret;
2877 }
2878 
2879 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2880 		      struct btrfs_device *device, u64 new_size)
2881 {
2882 	struct btrfs_fs_info *fs_info = device->fs_info;
2883 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2884 	u64 old_total;
2885 	u64 diff;
2886 	int ret;
2887 
2888 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2889 		return -EACCES;
2890 
2891 	new_size = round_down(new_size, fs_info->sectorsize);
2892 
2893 	mutex_lock(&fs_info->chunk_mutex);
2894 	old_total = btrfs_super_total_bytes(super_copy);
2895 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2896 
2897 	if (new_size <= device->total_bytes ||
2898 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2899 		mutex_unlock(&fs_info->chunk_mutex);
2900 		return -EINVAL;
2901 	}
2902 
2903 	btrfs_set_super_total_bytes(super_copy,
2904 			round_down(old_total + diff, fs_info->sectorsize));
2905 	device->fs_devices->total_rw_bytes += diff;
2906 
2907 	btrfs_device_set_total_bytes(device, new_size);
2908 	btrfs_device_set_disk_total_bytes(device, new_size);
2909 	btrfs_clear_space_info_full(device->fs_info);
2910 	if (list_empty(&device->post_commit_list))
2911 		list_add_tail(&device->post_commit_list,
2912 			      &trans->transaction->dev_update_list);
2913 	mutex_unlock(&fs_info->chunk_mutex);
2914 
2915 	btrfs_reserve_chunk_metadata(trans, false);
2916 	ret = btrfs_update_device(trans, device);
2917 	btrfs_trans_release_chunk_metadata(trans);
2918 
2919 	return ret;
2920 }
2921 
2922 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2923 {
2924 	struct btrfs_fs_info *fs_info = trans->fs_info;
2925 	struct btrfs_root *root = fs_info->chunk_root;
2926 	int ret;
2927 	struct btrfs_path *path;
2928 	struct btrfs_key key;
2929 
2930 	path = btrfs_alloc_path();
2931 	if (!path)
2932 		return -ENOMEM;
2933 
2934 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2935 	key.offset = chunk_offset;
2936 	key.type = BTRFS_CHUNK_ITEM_KEY;
2937 
2938 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2939 	if (ret < 0)
2940 		goto out;
2941 	else if (ret > 0) { /* Logic error or corruption */
2942 		btrfs_handle_fs_error(fs_info, -ENOENT,
2943 				      "Failed lookup while freeing chunk.");
2944 		ret = -ENOENT;
2945 		goto out;
2946 	}
2947 
2948 	ret = btrfs_del_item(trans, root, path);
2949 	if (ret < 0)
2950 		btrfs_handle_fs_error(fs_info, ret,
2951 				      "Failed to delete chunk item.");
2952 out:
2953 	btrfs_free_path(path);
2954 	return ret;
2955 }
2956 
2957 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2958 {
2959 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2960 	struct btrfs_disk_key *disk_key;
2961 	struct btrfs_chunk *chunk;
2962 	u8 *ptr;
2963 	int ret = 0;
2964 	u32 num_stripes;
2965 	u32 array_size;
2966 	u32 len = 0;
2967 	u32 cur;
2968 	struct btrfs_key key;
2969 
2970 	lockdep_assert_held(&fs_info->chunk_mutex);
2971 	array_size = btrfs_super_sys_array_size(super_copy);
2972 
2973 	ptr = super_copy->sys_chunk_array;
2974 	cur = 0;
2975 
2976 	while (cur < array_size) {
2977 		disk_key = (struct btrfs_disk_key *)ptr;
2978 		btrfs_disk_key_to_cpu(&key, disk_key);
2979 
2980 		len = sizeof(*disk_key);
2981 
2982 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2983 			chunk = (struct btrfs_chunk *)(ptr + len);
2984 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2985 			len += btrfs_chunk_item_size(num_stripes);
2986 		} else {
2987 			ret = -EIO;
2988 			break;
2989 		}
2990 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2991 		    key.offset == chunk_offset) {
2992 			memmove(ptr, ptr + len, array_size - (cur + len));
2993 			array_size -= len;
2994 			btrfs_set_super_sys_array_size(super_copy, array_size);
2995 		} else {
2996 			ptr += len;
2997 			cur += len;
2998 		}
2999 	}
3000 	return ret;
3001 }
3002 
3003 /*
3004  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3005  * @logical: Logical block offset in bytes.
3006  * @length: Length of extent in bytes.
3007  *
3008  * Return: Chunk mapping or ERR_PTR.
3009  */
3010 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3011 				       u64 logical, u64 length)
3012 {
3013 	struct extent_map_tree *em_tree;
3014 	struct extent_map *em;
3015 
3016 	em_tree = &fs_info->mapping_tree;
3017 	read_lock(&em_tree->lock);
3018 	em = lookup_extent_mapping(em_tree, logical, length);
3019 	read_unlock(&em_tree->lock);
3020 
3021 	if (!em) {
3022 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3023 			   logical, length);
3024 		return ERR_PTR(-EINVAL);
3025 	}
3026 
3027 	if (em->start > logical || em->start + em->len < logical) {
3028 		btrfs_crit(fs_info,
3029 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3030 			   logical, length, em->start, em->start + em->len);
3031 		free_extent_map(em);
3032 		return ERR_PTR(-EINVAL);
3033 	}
3034 
3035 	/* callers are responsible for dropping em's ref. */
3036 	return em;
3037 }
3038 
3039 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3040 			     struct map_lookup *map, u64 chunk_offset)
3041 {
3042 	int i;
3043 
3044 	/*
3045 	 * Removing chunk items and updating the device items in the chunks btree
3046 	 * requires holding the chunk_mutex.
3047 	 * See the comment at btrfs_chunk_alloc() for the details.
3048 	 */
3049 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3050 
3051 	for (i = 0; i < map->num_stripes; i++) {
3052 		int ret;
3053 
3054 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3055 		if (ret)
3056 			return ret;
3057 	}
3058 
3059 	return btrfs_free_chunk(trans, chunk_offset);
3060 }
3061 
3062 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3063 {
3064 	struct btrfs_fs_info *fs_info = trans->fs_info;
3065 	struct extent_map *em;
3066 	struct map_lookup *map;
3067 	u64 dev_extent_len = 0;
3068 	int i, ret = 0;
3069 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3070 
3071 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3072 	if (IS_ERR(em)) {
3073 		/*
3074 		 * This is a logic error, but we don't want to just rely on the
3075 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3076 		 * do anything we still error out.
3077 		 */
3078 		ASSERT(0);
3079 		return PTR_ERR(em);
3080 	}
3081 	map = em->map_lookup;
3082 
3083 	/*
3084 	 * First delete the device extent items from the devices btree.
3085 	 * We take the device_list_mutex to avoid racing with the finishing phase
3086 	 * of a device replace operation. See the comment below before acquiring
3087 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3088 	 * because that can result in a deadlock when deleting the device extent
3089 	 * items from the devices btree - COWing an extent buffer from the btree
3090 	 * may result in allocating a new metadata chunk, which would attempt to
3091 	 * lock again fs_info->chunk_mutex.
3092 	 */
3093 	mutex_lock(&fs_devices->device_list_mutex);
3094 	for (i = 0; i < map->num_stripes; i++) {
3095 		struct btrfs_device *device = map->stripes[i].dev;
3096 		ret = btrfs_free_dev_extent(trans, device,
3097 					    map->stripes[i].physical,
3098 					    &dev_extent_len);
3099 		if (ret) {
3100 			mutex_unlock(&fs_devices->device_list_mutex);
3101 			btrfs_abort_transaction(trans, ret);
3102 			goto out;
3103 		}
3104 
3105 		if (device->bytes_used > 0) {
3106 			mutex_lock(&fs_info->chunk_mutex);
3107 			btrfs_device_set_bytes_used(device,
3108 					device->bytes_used - dev_extent_len);
3109 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3110 			btrfs_clear_space_info_full(fs_info);
3111 			mutex_unlock(&fs_info->chunk_mutex);
3112 		}
3113 	}
3114 	mutex_unlock(&fs_devices->device_list_mutex);
3115 
3116 	/*
3117 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3118 	 *
3119 	 * 1) Just like with the first phase of the chunk allocation, we must
3120 	 *    reserve system space, do all chunk btree updates and deletions, and
3121 	 *    update the system chunk array in the superblock while holding this
3122 	 *    mutex. This is for similar reasons as explained on the comment at
3123 	 *    the top of btrfs_chunk_alloc();
3124 	 *
3125 	 * 2) Prevent races with the final phase of a device replace operation
3126 	 *    that replaces the device object associated with the map's stripes,
3127 	 *    because the device object's id can change at any time during that
3128 	 *    final phase of the device replace operation
3129 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3130 	 *    replaced device and then see it with an ID of
3131 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3132 	 *    the device item, which does not exists on the chunk btree.
3133 	 *    The finishing phase of device replace acquires both the
3134 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3135 	 *    safe by just acquiring the chunk_mutex.
3136 	 */
3137 	trans->removing_chunk = true;
3138 	mutex_lock(&fs_info->chunk_mutex);
3139 
3140 	check_system_chunk(trans, map->type);
3141 
3142 	ret = remove_chunk_item(trans, map, chunk_offset);
3143 	/*
3144 	 * Normally we should not get -ENOSPC since we reserved space before
3145 	 * through the call to check_system_chunk().
3146 	 *
3147 	 * Despite our system space_info having enough free space, we may not
3148 	 * be able to allocate extents from its block groups, because all have
3149 	 * an incompatible profile, which will force us to allocate a new system
3150 	 * block group with the right profile, or right after we called
3151 	 * check_system_space() above, a scrub turned the only system block group
3152 	 * with enough free space into RO mode.
3153 	 * This is explained with more detail at do_chunk_alloc().
3154 	 *
3155 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3156 	 */
3157 	if (ret == -ENOSPC) {
3158 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3159 		struct btrfs_block_group *sys_bg;
3160 
3161 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3162 		if (IS_ERR(sys_bg)) {
3163 			ret = PTR_ERR(sys_bg);
3164 			btrfs_abort_transaction(trans, ret);
3165 			goto out;
3166 		}
3167 
3168 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3169 		if (ret) {
3170 			btrfs_abort_transaction(trans, ret);
3171 			goto out;
3172 		}
3173 
3174 		ret = remove_chunk_item(trans, map, chunk_offset);
3175 		if (ret) {
3176 			btrfs_abort_transaction(trans, ret);
3177 			goto out;
3178 		}
3179 	} else if (ret) {
3180 		btrfs_abort_transaction(trans, ret);
3181 		goto out;
3182 	}
3183 
3184 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3185 
3186 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3187 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3188 		if (ret) {
3189 			btrfs_abort_transaction(trans, ret);
3190 			goto out;
3191 		}
3192 	}
3193 
3194 	mutex_unlock(&fs_info->chunk_mutex);
3195 	trans->removing_chunk = false;
3196 
3197 	/*
3198 	 * We are done with chunk btree updates and deletions, so release the
3199 	 * system space we previously reserved (with check_system_chunk()).
3200 	 */
3201 	btrfs_trans_release_chunk_metadata(trans);
3202 
3203 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3204 	if (ret) {
3205 		btrfs_abort_transaction(trans, ret);
3206 		goto out;
3207 	}
3208 
3209 out:
3210 	if (trans->removing_chunk) {
3211 		mutex_unlock(&fs_info->chunk_mutex);
3212 		trans->removing_chunk = false;
3213 	}
3214 	/* once for us */
3215 	free_extent_map(em);
3216 	return ret;
3217 }
3218 
3219 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3220 {
3221 	struct btrfs_root *root = fs_info->chunk_root;
3222 	struct btrfs_trans_handle *trans;
3223 	struct btrfs_block_group *block_group;
3224 	u64 length;
3225 	int ret;
3226 
3227 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3228 		btrfs_err(fs_info,
3229 			  "relocate: not supported on extent tree v2 yet");
3230 		return -EINVAL;
3231 	}
3232 
3233 	/*
3234 	 * Prevent races with automatic removal of unused block groups.
3235 	 * After we relocate and before we remove the chunk with offset
3236 	 * chunk_offset, automatic removal of the block group can kick in,
3237 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3238 	 *
3239 	 * Make sure to acquire this mutex before doing a tree search (dev
3240 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3241 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3242 	 * we release the path used to search the chunk/dev tree and before
3243 	 * the current task acquires this mutex and calls us.
3244 	 */
3245 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3246 
3247 	/* step one, relocate all the extents inside this chunk */
3248 	btrfs_scrub_pause(fs_info);
3249 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3250 	btrfs_scrub_continue(fs_info);
3251 	if (ret)
3252 		return ret;
3253 
3254 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3255 	if (!block_group)
3256 		return -ENOENT;
3257 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3258 	length = block_group->length;
3259 	btrfs_put_block_group(block_group);
3260 
3261 	/*
3262 	 * On a zoned file system, discard the whole block group, this will
3263 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3264 	 * resetting the zone fails, don't treat it as a fatal problem from the
3265 	 * filesystem's point of view.
3266 	 */
3267 	if (btrfs_is_zoned(fs_info)) {
3268 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3269 		if (ret)
3270 			btrfs_info(fs_info,
3271 				"failed to reset zone %llu after relocation",
3272 				chunk_offset);
3273 	}
3274 
3275 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3276 						     chunk_offset);
3277 	if (IS_ERR(trans)) {
3278 		ret = PTR_ERR(trans);
3279 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3280 		return ret;
3281 	}
3282 
3283 	/*
3284 	 * step two, delete the device extents and the
3285 	 * chunk tree entries
3286 	 */
3287 	ret = btrfs_remove_chunk(trans, chunk_offset);
3288 	btrfs_end_transaction(trans);
3289 	return ret;
3290 }
3291 
3292 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3293 {
3294 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3295 	struct btrfs_path *path;
3296 	struct extent_buffer *leaf;
3297 	struct btrfs_chunk *chunk;
3298 	struct btrfs_key key;
3299 	struct btrfs_key found_key;
3300 	u64 chunk_type;
3301 	bool retried = false;
3302 	int failed = 0;
3303 	int ret;
3304 
3305 	path = btrfs_alloc_path();
3306 	if (!path)
3307 		return -ENOMEM;
3308 
3309 again:
3310 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3311 	key.offset = (u64)-1;
3312 	key.type = BTRFS_CHUNK_ITEM_KEY;
3313 
3314 	while (1) {
3315 		mutex_lock(&fs_info->reclaim_bgs_lock);
3316 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3317 		if (ret < 0) {
3318 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3319 			goto error;
3320 		}
3321 		BUG_ON(ret == 0); /* Corruption */
3322 
3323 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3324 					  key.type);
3325 		if (ret)
3326 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3327 		if (ret < 0)
3328 			goto error;
3329 		if (ret > 0)
3330 			break;
3331 
3332 		leaf = path->nodes[0];
3333 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3334 
3335 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3336 				       struct btrfs_chunk);
3337 		chunk_type = btrfs_chunk_type(leaf, chunk);
3338 		btrfs_release_path(path);
3339 
3340 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3341 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3342 			if (ret == -ENOSPC)
3343 				failed++;
3344 			else
3345 				BUG_ON(ret);
3346 		}
3347 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3348 
3349 		if (found_key.offset == 0)
3350 			break;
3351 		key.offset = found_key.offset - 1;
3352 	}
3353 	ret = 0;
3354 	if (failed && !retried) {
3355 		failed = 0;
3356 		retried = true;
3357 		goto again;
3358 	} else if (WARN_ON(failed && retried)) {
3359 		ret = -ENOSPC;
3360 	}
3361 error:
3362 	btrfs_free_path(path);
3363 	return ret;
3364 }
3365 
3366 /*
3367  * return 1 : allocate a data chunk successfully,
3368  * return <0: errors during allocating a data chunk,
3369  * return 0 : no need to allocate a data chunk.
3370  */
3371 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3372 				      u64 chunk_offset)
3373 {
3374 	struct btrfs_block_group *cache;
3375 	u64 bytes_used;
3376 	u64 chunk_type;
3377 
3378 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3379 	ASSERT(cache);
3380 	chunk_type = cache->flags;
3381 	btrfs_put_block_group(cache);
3382 
3383 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3384 		return 0;
3385 
3386 	spin_lock(&fs_info->data_sinfo->lock);
3387 	bytes_used = fs_info->data_sinfo->bytes_used;
3388 	spin_unlock(&fs_info->data_sinfo->lock);
3389 
3390 	if (!bytes_used) {
3391 		struct btrfs_trans_handle *trans;
3392 		int ret;
3393 
3394 		trans =	btrfs_join_transaction(fs_info->tree_root);
3395 		if (IS_ERR(trans))
3396 			return PTR_ERR(trans);
3397 
3398 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3399 		btrfs_end_transaction(trans);
3400 		if (ret < 0)
3401 			return ret;
3402 		return 1;
3403 	}
3404 
3405 	return 0;
3406 }
3407 
3408 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3409 			       struct btrfs_balance_control *bctl)
3410 {
3411 	struct btrfs_root *root = fs_info->tree_root;
3412 	struct btrfs_trans_handle *trans;
3413 	struct btrfs_balance_item *item;
3414 	struct btrfs_disk_balance_args disk_bargs;
3415 	struct btrfs_path *path;
3416 	struct extent_buffer *leaf;
3417 	struct btrfs_key key;
3418 	int ret, err;
3419 
3420 	path = btrfs_alloc_path();
3421 	if (!path)
3422 		return -ENOMEM;
3423 
3424 	trans = btrfs_start_transaction(root, 0);
3425 	if (IS_ERR(trans)) {
3426 		btrfs_free_path(path);
3427 		return PTR_ERR(trans);
3428 	}
3429 
3430 	key.objectid = BTRFS_BALANCE_OBJECTID;
3431 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3432 	key.offset = 0;
3433 
3434 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3435 				      sizeof(*item));
3436 	if (ret)
3437 		goto out;
3438 
3439 	leaf = path->nodes[0];
3440 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3441 
3442 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3443 
3444 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3445 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3446 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3447 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3448 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3449 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3450 
3451 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3452 
3453 	btrfs_mark_buffer_dirty(leaf);
3454 out:
3455 	btrfs_free_path(path);
3456 	err = btrfs_commit_transaction(trans);
3457 	if (err && !ret)
3458 		ret = err;
3459 	return ret;
3460 }
3461 
3462 static int del_balance_item(struct btrfs_fs_info *fs_info)
3463 {
3464 	struct btrfs_root *root = fs_info->tree_root;
3465 	struct btrfs_trans_handle *trans;
3466 	struct btrfs_path *path;
3467 	struct btrfs_key key;
3468 	int ret, err;
3469 
3470 	path = btrfs_alloc_path();
3471 	if (!path)
3472 		return -ENOMEM;
3473 
3474 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3475 	if (IS_ERR(trans)) {
3476 		btrfs_free_path(path);
3477 		return PTR_ERR(trans);
3478 	}
3479 
3480 	key.objectid = BTRFS_BALANCE_OBJECTID;
3481 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3482 	key.offset = 0;
3483 
3484 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3485 	if (ret < 0)
3486 		goto out;
3487 	if (ret > 0) {
3488 		ret = -ENOENT;
3489 		goto out;
3490 	}
3491 
3492 	ret = btrfs_del_item(trans, root, path);
3493 out:
3494 	btrfs_free_path(path);
3495 	err = btrfs_commit_transaction(trans);
3496 	if (err && !ret)
3497 		ret = err;
3498 	return ret;
3499 }
3500 
3501 /*
3502  * This is a heuristic used to reduce the number of chunks balanced on
3503  * resume after balance was interrupted.
3504  */
3505 static void update_balance_args(struct btrfs_balance_control *bctl)
3506 {
3507 	/*
3508 	 * Turn on soft mode for chunk types that were being converted.
3509 	 */
3510 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3511 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3512 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3513 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3514 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3515 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3516 
3517 	/*
3518 	 * Turn on usage filter if is not already used.  The idea is
3519 	 * that chunks that we have already balanced should be
3520 	 * reasonably full.  Don't do it for chunks that are being
3521 	 * converted - that will keep us from relocating unconverted
3522 	 * (albeit full) chunks.
3523 	 */
3524 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3525 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3526 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3527 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3528 		bctl->data.usage = 90;
3529 	}
3530 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3531 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3532 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3533 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3534 		bctl->sys.usage = 90;
3535 	}
3536 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3537 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3538 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3539 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3540 		bctl->meta.usage = 90;
3541 	}
3542 }
3543 
3544 /*
3545  * Clear the balance status in fs_info and delete the balance item from disk.
3546  */
3547 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3548 {
3549 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3550 	int ret;
3551 
3552 	BUG_ON(!fs_info->balance_ctl);
3553 
3554 	spin_lock(&fs_info->balance_lock);
3555 	fs_info->balance_ctl = NULL;
3556 	spin_unlock(&fs_info->balance_lock);
3557 
3558 	kfree(bctl);
3559 	ret = del_balance_item(fs_info);
3560 	if (ret)
3561 		btrfs_handle_fs_error(fs_info, ret, NULL);
3562 }
3563 
3564 /*
3565  * Balance filters.  Return 1 if chunk should be filtered out
3566  * (should not be balanced).
3567  */
3568 static int chunk_profiles_filter(u64 chunk_type,
3569 				 struct btrfs_balance_args *bargs)
3570 {
3571 	chunk_type = chunk_to_extended(chunk_type) &
3572 				BTRFS_EXTENDED_PROFILE_MASK;
3573 
3574 	if (bargs->profiles & chunk_type)
3575 		return 0;
3576 
3577 	return 1;
3578 }
3579 
3580 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3581 			      struct btrfs_balance_args *bargs)
3582 {
3583 	struct btrfs_block_group *cache;
3584 	u64 chunk_used;
3585 	u64 user_thresh_min;
3586 	u64 user_thresh_max;
3587 	int ret = 1;
3588 
3589 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3590 	chunk_used = cache->used;
3591 
3592 	if (bargs->usage_min == 0)
3593 		user_thresh_min = 0;
3594 	else
3595 		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3596 
3597 	if (bargs->usage_max == 0)
3598 		user_thresh_max = 1;
3599 	else if (bargs->usage_max > 100)
3600 		user_thresh_max = cache->length;
3601 	else
3602 		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3603 
3604 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3605 		ret = 0;
3606 
3607 	btrfs_put_block_group(cache);
3608 	return ret;
3609 }
3610 
3611 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3612 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3613 {
3614 	struct btrfs_block_group *cache;
3615 	u64 chunk_used, user_thresh;
3616 	int ret = 1;
3617 
3618 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3619 	chunk_used = cache->used;
3620 
3621 	if (bargs->usage_min == 0)
3622 		user_thresh = 1;
3623 	else if (bargs->usage > 100)
3624 		user_thresh = cache->length;
3625 	else
3626 		user_thresh = mult_perc(cache->length, bargs->usage);
3627 
3628 	if (chunk_used < user_thresh)
3629 		ret = 0;
3630 
3631 	btrfs_put_block_group(cache);
3632 	return ret;
3633 }
3634 
3635 static int chunk_devid_filter(struct extent_buffer *leaf,
3636 			      struct btrfs_chunk *chunk,
3637 			      struct btrfs_balance_args *bargs)
3638 {
3639 	struct btrfs_stripe *stripe;
3640 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3641 	int i;
3642 
3643 	for (i = 0; i < num_stripes; i++) {
3644 		stripe = btrfs_stripe_nr(chunk, i);
3645 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3646 			return 0;
3647 	}
3648 
3649 	return 1;
3650 }
3651 
3652 static u64 calc_data_stripes(u64 type, int num_stripes)
3653 {
3654 	const int index = btrfs_bg_flags_to_raid_index(type);
3655 	const int ncopies = btrfs_raid_array[index].ncopies;
3656 	const int nparity = btrfs_raid_array[index].nparity;
3657 
3658 	return (num_stripes - nparity) / ncopies;
3659 }
3660 
3661 /* [pstart, pend) */
3662 static int chunk_drange_filter(struct extent_buffer *leaf,
3663 			       struct btrfs_chunk *chunk,
3664 			       struct btrfs_balance_args *bargs)
3665 {
3666 	struct btrfs_stripe *stripe;
3667 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3668 	u64 stripe_offset;
3669 	u64 stripe_length;
3670 	u64 type;
3671 	int factor;
3672 	int i;
3673 
3674 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3675 		return 0;
3676 
3677 	type = btrfs_chunk_type(leaf, chunk);
3678 	factor = calc_data_stripes(type, num_stripes);
3679 
3680 	for (i = 0; i < num_stripes; i++) {
3681 		stripe = btrfs_stripe_nr(chunk, i);
3682 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3683 			continue;
3684 
3685 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3686 		stripe_length = btrfs_chunk_length(leaf, chunk);
3687 		stripe_length = div_u64(stripe_length, factor);
3688 
3689 		if (stripe_offset < bargs->pend &&
3690 		    stripe_offset + stripe_length > bargs->pstart)
3691 			return 0;
3692 	}
3693 
3694 	return 1;
3695 }
3696 
3697 /* [vstart, vend) */
3698 static int chunk_vrange_filter(struct extent_buffer *leaf,
3699 			       struct btrfs_chunk *chunk,
3700 			       u64 chunk_offset,
3701 			       struct btrfs_balance_args *bargs)
3702 {
3703 	if (chunk_offset < bargs->vend &&
3704 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3705 		/* at least part of the chunk is inside this vrange */
3706 		return 0;
3707 
3708 	return 1;
3709 }
3710 
3711 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3712 			       struct btrfs_chunk *chunk,
3713 			       struct btrfs_balance_args *bargs)
3714 {
3715 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3716 
3717 	if (bargs->stripes_min <= num_stripes
3718 			&& num_stripes <= bargs->stripes_max)
3719 		return 0;
3720 
3721 	return 1;
3722 }
3723 
3724 static int chunk_soft_convert_filter(u64 chunk_type,
3725 				     struct btrfs_balance_args *bargs)
3726 {
3727 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3728 		return 0;
3729 
3730 	chunk_type = chunk_to_extended(chunk_type) &
3731 				BTRFS_EXTENDED_PROFILE_MASK;
3732 
3733 	if (bargs->target == chunk_type)
3734 		return 1;
3735 
3736 	return 0;
3737 }
3738 
3739 static int should_balance_chunk(struct extent_buffer *leaf,
3740 				struct btrfs_chunk *chunk, u64 chunk_offset)
3741 {
3742 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3743 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3744 	struct btrfs_balance_args *bargs = NULL;
3745 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3746 
3747 	/* type filter */
3748 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3749 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3750 		return 0;
3751 	}
3752 
3753 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3754 		bargs = &bctl->data;
3755 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3756 		bargs = &bctl->sys;
3757 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3758 		bargs = &bctl->meta;
3759 
3760 	/* profiles filter */
3761 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3762 	    chunk_profiles_filter(chunk_type, bargs)) {
3763 		return 0;
3764 	}
3765 
3766 	/* usage filter */
3767 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3768 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3769 		return 0;
3770 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3771 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3772 		return 0;
3773 	}
3774 
3775 	/* devid filter */
3776 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3777 	    chunk_devid_filter(leaf, chunk, bargs)) {
3778 		return 0;
3779 	}
3780 
3781 	/* drange filter, makes sense only with devid filter */
3782 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3783 	    chunk_drange_filter(leaf, chunk, bargs)) {
3784 		return 0;
3785 	}
3786 
3787 	/* vrange filter */
3788 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3789 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3790 		return 0;
3791 	}
3792 
3793 	/* stripes filter */
3794 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3795 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3796 		return 0;
3797 	}
3798 
3799 	/* soft profile changing mode */
3800 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3801 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3802 		return 0;
3803 	}
3804 
3805 	/*
3806 	 * limited by count, must be the last filter
3807 	 */
3808 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3809 		if (bargs->limit == 0)
3810 			return 0;
3811 		else
3812 			bargs->limit--;
3813 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3814 		/*
3815 		 * Same logic as the 'limit' filter; the minimum cannot be
3816 		 * determined here because we do not have the global information
3817 		 * about the count of all chunks that satisfy the filters.
3818 		 */
3819 		if (bargs->limit_max == 0)
3820 			return 0;
3821 		else
3822 			bargs->limit_max--;
3823 	}
3824 
3825 	return 1;
3826 }
3827 
3828 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3829 {
3830 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3831 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3832 	u64 chunk_type;
3833 	struct btrfs_chunk *chunk;
3834 	struct btrfs_path *path = NULL;
3835 	struct btrfs_key key;
3836 	struct btrfs_key found_key;
3837 	struct extent_buffer *leaf;
3838 	int slot;
3839 	int ret;
3840 	int enospc_errors = 0;
3841 	bool counting = true;
3842 	/* The single value limit and min/max limits use the same bytes in the */
3843 	u64 limit_data = bctl->data.limit;
3844 	u64 limit_meta = bctl->meta.limit;
3845 	u64 limit_sys = bctl->sys.limit;
3846 	u32 count_data = 0;
3847 	u32 count_meta = 0;
3848 	u32 count_sys = 0;
3849 	int chunk_reserved = 0;
3850 
3851 	path = btrfs_alloc_path();
3852 	if (!path) {
3853 		ret = -ENOMEM;
3854 		goto error;
3855 	}
3856 
3857 	/* zero out stat counters */
3858 	spin_lock(&fs_info->balance_lock);
3859 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3860 	spin_unlock(&fs_info->balance_lock);
3861 again:
3862 	if (!counting) {
3863 		/*
3864 		 * The single value limit and min/max limits use the same bytes
3865 		 * in the
3866 		 */
3867 		bctl->data.limit = limit_data;
3868 		bctl->meta.limit = limit_meta;
3869 		bctl->sys.limit = limit_sys;
3870 	}
3871 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3872 	key.offset = (u64)-1;
3873 	key.type = BTRFS_CHUNK_ITEM_KEY;
3874 
3875 	while (1) {
3876 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3877 		    atomic_read(&fs_info->balance_cancel_req)) {
3878 			ret = -ECANCELED;
3879 			goto error;
3880 		}
3881 
3882 		mutex_lock(&fs_info->reclaim_bgs_lock);
3883 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3884 		if (ret < 0) {
3885 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3886 			goto error;
3887 		}
3888 
3889 		/*
3890 		 * this shouldn't happen, it means the last relocate
3891 		 * failed
3892 		 */
3893 		if (ret == 0)
3894 			BUG(); /* FIXME break ? */
3895 
3896 		ret = btrfs_previous_item(chunk_root, path, 0,
3897 					  BTRFS_CHUNK_ITEM_KEY);
3898 		if (ret) {
3899 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3900 			ret = 0;
3901 			break;
3902 		}
3903 
3904 		leaf = path->nodes[0];
3905 		slot = path->slots[0];
3906 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3907 
3908 		if (found_key.objectid != key.objectid) {
3909 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3910 			break;
3911 		}
3912 
3913 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3914 		chunk_type = btrfs_chunk_type(leaf, chunk);
3915 
3916 		if (!counting) {
3917 			spin_lock(&fs_info->balance_lock);
3918 			bctl->stat.considered++;
3919 			spin_unlock(&fs_info->balance_lock);
3920 		}
3921 
3922 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3923 
3924 		btrfs_release_path(path);
3925 		if (!ret) {
3926 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3927 			goto loop;
3928 		}
3929 
3930 		if (counting) {
3931 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3932 			spin_lock(&fs_info->balance_lock);
3933 			bctl->stat.expected++;
3934 			spin_unlock(&fs_info->balance_lock);
3935 
3936 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3937 				count_data++;
3938 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3939 				count_sys++;
3940 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3941 				count_meta++;
3942 
3943 			goto loop;
3944 		}
3945 
3946 		/*
3947 		 * Apply limit_min filter, no need to check if the LIMITS
3948 		 * filter is used, limit_min is 0 by default
3949 		 */
3950 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3951 					count_data < bctl->data.limit_min)
3952 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3953 					count_meta < bctl->meta.limit_min)
3954 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3955 					count_sys < bctl->sys.limit_min)) {
3956 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3957 			goto loop;
3958 		}
3959 
3960 		if (!chunk_reserved) {
3961 			/*
3962 			 * We may be relocating the only data chunk we have,
3963 			 * which could potentially end up with losing data's
3964 			 * raid profile, so lets allocate an empty one in
3965 			 * advance.
3966 			 */
3967 			ret = btrfs_may_alloc_data_chunk(fs_info,
3968 							 found_key.offset);
3969 			if (ret < 0) {
3970 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3971 				goto error;
3972 			} else if (ret == 1) {
3973 				chunk_reserved = 1;
3974 			}
3975 		}
3976 
3977 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3978 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3979 		if (ret == -ENOSPC) {
3980 			enospc_errors++;
3981 		} else if (ret == -ETXTBSY) {
3982 			btrfs_info(fs_info,
3983 	   "skipping relocation of block group %llu due to active swapfile",
3984 				   found_key.offset);
3985 			ret = 0;
3986 		} else if (ret) {
3987 			goto error;
3988 		} else {
3989 			spin_lock(&fs_info->balance_lock);
3990 			bctl->stat.completed++;
3991 			spin_unlock(&fs_info->balance_lock);
3992 		}
3993 loop:
3994 		if (found_key.offset == 0)
3995 			break;
3996 		key.offset = found_key.offset - 1;
3997 	}
3998 
3999 	if (counting) {
4000 		btrfs_release_path(path);
4001 		counting = false;
4002 		goto again;
4003 	}
4004 error:
4005 	btrfs_free_path(path);
4006 	if (enospc_errors) {
4007 		btrfs_info(fs_info, "%d enospc errors during balance",
4008 			   enospc_errors);
4009 		if (!ret)
4010 			ret = -ENOSPC;
4011 	}
4012 
4013 	return ret;
4014 }
4015 
4016 /*
4017  * See if a given profile is valid and reduced.
4018  *
4019  * @flags:     profile to validate
4020  * @extended:  if true @flags is treated as an extended profile
4021  */
4022 static int alloc_profile_is_valid(u64 flags, int extended)
4023 {
4024 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4025 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4026 
4027 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4028 
4029 	/* 1) check that all other bits are zeroed */
4030 	if (flags & ~mask)
4031 		return 0;
4032 
4033 	/* 2) see if profile is reduced */
4034 	if (flags == 0)
4035 		return !extended; /* "0" is valid for usual profiles */
4036 
4037 	return has_single_bit_set(flags);
4038 }
4039 
4040 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4041 {
4042 	/* cancel requested || normal exit path */
4043 	return atomic_read(&fs_info->balance_cancel_req) ||
4044 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4045 		 atomic_read(&fs_info->balance_cancel_req) == 0);
4046 }
4047 
4048 /*
4049  * Validate target profile against allowed profiles and return true if it's OK.
4050  * Otherwise print the error message and return false.
4051  */
4052 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4053 		const struct btrfs_balance_args *bargs,
4054 		u64 allowed, const char *type)
4055 {
4056 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4057 		return true;
4058 
4059 	/* Profile is valid and does not have bits outside of the allowed set */
4060 	if (alloc_profile_is_valid(bargs->target, 1) &&
4061 	    (bargs->target & ~allowed) == 0)
4062 		return true;
4063 
4064 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4065 			type, btrfs_bg_type_to_raid_name(bargs->target));
4066 	return false;
4067 }
4068 
4069 /*
4070  * Fill @buf with textual description of balance filter flags @bargs, up to
4071  * @size_buf including the terminating null. The output may be trimmed if it
4072  * does not fit into the provided buffer.
4073  */
4074 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4075 				 u32 size_buf)
4076 {
4077 	int ret;
4078 	u32 size_bp = size_buf;
4079 	char *bp = buf;
4080 	u64 flags = bargs->flags;
4081 	char tmp_buf[128] = {'\0'};
4082 
4083 	if (!flags)
4084 		return;
4085 
4086 #define CHECK_APPEND_NOARG(a)						\
4087 	do {								\
4088 		ret = snprintf(bp, size_bp, (a));			\
4089 		if (ret < 0 || ret >= size_bp)				\
4090 			goto out_overflow;				\
4091 		size_bp -= ret;						\
4092 		bp += ret;						\
4093 	} while (0)
4094 
4095 #define CHECK_APPEND_1ARG(a, v1)					\
4096 	do {								\
4097 		ret = snprintf(bp, size_bp, (a), (v1));			\
4098 		if (ret < 0 || ret >= size_bp)				\
4099 			goto out_overflow;				\
4100 		size_bp -= ret;						\
4101 		bp += ret;						\
4102 	} while (0)
4103 
4104 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4105 	do {								\
4106 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4107 		if (ret < 0 || ret >= size_bp)				\
4108 			goto out_overflow;				\
4109 		size_bp -= ret;						\
4110 		bp += ret;						\
4111 	} while (0)
4112 
4113 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4114 		CHECK_APPEND_1ARG("convert=%s,",
4115 				  btrfs_bg_type_to_raid_name(bargs->target));
4116 
4117 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4118 		CHECK_APPEND_NOARG("soft,");
4119 
4120 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4121 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4122 					    sizeof(tmp_buf));
4123 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4124 	}
4125 
4126 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4127 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4128 
4129 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4130 		CHECK_APPEND_2ARG("usage=%u..%u,",
4131 				  bargs->usage_min, bargs->usage_max);
4132 
4133 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4134 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4135 
4136 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4137 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4138 				  bargs->pstart, bargs->pend);
4139 
4140 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4141 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4142 				  bargs->vstart, bargs->vend);
4143 
4144 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4145 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4146 
4147 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4148 		CHECK_APPEND_2ARG("limit=%u..%u,",
4149 				bargs->limit_min, bargs->limit_max);
4150 
4151 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4152 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4153 				  bargs->stripes_min, bargs->stripes_max);
4154 
4155 #undef CHECK_APPEND_2ARG
4156 #undef CHECK_APPEND_1ARG
4157 #undef CHECK_APPEND_NOARG
4158 
4159 out_overflow:
4160 
4161 	if (size_bp < size_buf)
4162 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4163 	else
4164 		buf[0] = '\0';
4165 }
4166 
4167 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4168 {
4169 	u32 size_buf = 1024;
4170 	char tmp_buf[192] = {'\0'};
4171 	char *buf;
4172 	char *bp;
4173 	u32 size_bp = size_buf;
4174 	int ret;
4175 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4176 
4177 	buf = kzalloc(size_buf, GFP_KERNEL);
4178 	if (!buf)
4179 		return;
4180 
4181 	bp = buf;
4182 
4183 #define CHECK_APPEND_1ARG(a, v1)					\
4184 	do {								\
4185 		ret = snprintf(bp, size_bp, (a), (v1));			\
4186 		if (ret < 0 || ret >= size_bp)				\
4187 			goto out_overflow;				\
4188 		size_bp -= ret;						\
4189 		bp += ret;						\
4190 	} while (0)
4191 
4192 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4193 		CHECK_APPEND_1ARG("%s", "-f ");
4194 
4195 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4196 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4197 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4198 	}
4199 
4200 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4201 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4202 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4203 	}
4204 
4205 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4206 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4207 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4208 	}
4209 
4210 #undef CHECK_APPEND_1ARG
4211 
4212 out_overflow:
4213 
4214 	if (size_bp < size_buf)
4215 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4216 	btrfs_info(fs_info, "balance: %s %s",
4217 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4218 		   "resume" : "start", buf);
4219 
4220 	kfree(buf);
4221 }
4222 
4223 /*
4224  * Should be called with balance mutexe held
4225  */
4226 int btrfs_balance(struct btrfs_fs_info *fs_info,
4227 		  struct btrfs_balance_control *bctl,
4228 		  struct btrfs_ioctl_balance_args *bargs)
4229 {
4230 	u64 meta_target, data_target;
4231 	u64 allowed;
4232 	int mixed = 0;
4233 	int ret;
4234 	u64 num_devices;
4235 	unsigned seq;
4236 	bool reducing_redundancy;
4237 	int i;
4238 
4239 	if (btrfs_fs_closing(fs_info) ||
4240 	    atomic_read(&fs_info->balance_pause_req) ||
4241 	    btrfs_should_cancel_balance(fs_info)) {
4242 		ret = -EINVAL;
4243 		goto out;
4244 	}
4245 
4246 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4247 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4248 		mixed = 1;
4249 
4250 	/*
4251 	 * In case of mixed groups both data and meta should be picked,
4252 	 * and identical options should be given for both of them.
4253 	 */
4254 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4255 	if (mixed && (bctl->flags & allowed)) {
4256 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4257 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4258 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4259 			btrfs_err(fs_info,
4260 	  "balance: mixed groups data and metadata options must be the same");
4261 			ret = -EINVAL;
4262 			goto out;
4263 		}
4264 	}
4265 
4266 	/*
4267 	 * rw_devices will not change at the moment, device add/delete/replace
4268 	 * are exclusive
4269 	 */
4270 	num_devices = fs_info->fs_devices->rw_devices;
4271 
4272 	/*
4273 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4274 	 * special bit for it, to make it easier to distinguish.  Thus we need
4275 	 * to set it manually, or balance would refuse the profile.
4276 	 */
4277 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4278 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4279 		if (num_devices >= btrfs_raid_array[i].devs_min)
4280 			allowed |= btrfs_raid_array[i].bg_flag;
4281 
4282 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4283 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4284 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4285 		ret = -EINVAL;
4286 		goto out;
4287 	}
4288 
4289 	/*
4290 	 * Allow to reduce metadata or system integrity only if force set for
4291 	 * profiles with redundancy (copies, parity)
4292 	 */
4293 	allowed = 0;
4294 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4295 		if (btrfs_raid_array[i].ncopies >= 2 ||
4296 		    btrfs_raid_array[i].tolerated_failures >= 1)
4297 			allowed |= btrfs_raid_array[i].bg_flag;
4298 	}
4299 	do {
4300 		seq = read_seqbegin(&fs_info->profiles_lock);
4301 
4302 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4303 		     (fs_info->avail_system_alloc_bits & allowed) &&
4304 		     !(bctl->sys.target & allowed)) ||
4305 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4306 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4307 		     !(bctl->meta.target & allowed)))
4308 			reducing_redundancy = true;
4309 		else
4310 			reducing_redundancy = false;
4311 
4312 		/* if we're not converting, the target field is uninitialized */
4313 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4314 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4315 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4316 			bctl->data.target : fs_info->avail_data_alloc_bits;
4317 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4318 
4319 	if (reducing_redundancy) {
4320 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4321 			btrfs_info(fs_info,
4322 			   "balance: force reducing metadata redundancy");
4323 		} else {
4324 			btrfs_err(fs_info,
4325 	"balance: reduces metadata redundancy, use --force if you want this");
4326 			ret = -EINVAL;
4327 			goto out;
4328 		}
4329 	}
4330 
4331 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4332 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4333 		btrfs_warn(fs_info,
4334 	"balance: metadata profile %s has lower redundancy than data profile %s",
4335 				btrfs_bg_type_to_raid_name(meta_target),
4336 				btrfs_bg_type_to_raid_name(data_target));
4337 	}
4338 
4339 	ret = insert_balance_item(fs_info, bctl);
4340 	if (ret && ret != -EEXIST)
4341 		goto out;
4342 
4343 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4344 		BUG_ON(ret == -EEXIST);
4345 		BUG_ON(fs_info->balance_ctl);
4346 		spin_lock(&fs_info->balance_lock);
4347 		fs_info->balance_ctl = bctl;
4348 		spin_unlock(&fs_info->balance_lock);
4349 	} else {
4350 		BUG_ON(ret != -EEXIST);
4351 		spin_lock(&fs_info->balance_lock);
4352 		update_balance_args(bctl);
4353 		spin_unlock(&fs_info->balance_lock);
4354 	}
4355 
4356 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4357 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4358 	describe_balance_start_or_resume(fs_info);
4359 	mutex_unlock(&fs_info->balance_mutex);
4360 
4361 	ret = __btrfs_balance(fs_info);
4362 
4363 	mutex_lock(&fs_info->balance_mutex);
4364 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4365 		btrfs_info(fs_info, "balance: paused");
4366 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4367 	}
4368 	/*
4369 	 * Balance can be canceled by:
4370 	 *
4371 	 * - Regular cancel request
4372 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4373 	 *
4374 	 * - Fatal signal to "btrfs" process
4375 	 *   Either the signal caught by wait_reserve_ticket() and callers
4376 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4377 	 *   got -ECANCELED.
4378 	 *   Either way, in this case balance_cancel_req = 0, and
4379 	 *   ret == -EINTR or ret == -ECANCELED.
4380 	 *
4381 	 * So here we only check the return value to catch canceled balance.
4382 	 */
4383 	else if (ret == -ECANCELED || ret == -EINTR)
4384 		btrfs_info(fs_info, "balance: canceled");
4385 	else
4386 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4387 
4388 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4389 
4390 	if (bargs) {
4391 		memset(bargs, 0, sizeof(*bargs));
4392 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4393 	}
4394 
4395 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4396 	    balance_need_close(fs_info)) {
4397 		reset_balance_state(fs_info);
4398 		btrfs_exclop_finish(fs_info);
4399 	}
4400 
4401 	wake_up(&fs_info->balance_wait_q);
4402 
4403 	return ret;
4404 out:
4405 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4406 		reset_balance_state(fs_info);
4407 	else
4408 		kfree(bctl);
4409 	btrfs_exclop_finish(fs_info);
4410 
4411 	return ret;
4412 }
4413 
4414 static int balance_kthread(void *data)
4415 {
4416 	struct btrfs_fs_info *fs_info = data;
4417 	int ret = 0;
4418 
4419 	sb_start_write(fs_info->sb);
4420 	mutex_lock(&fs_info->balance_mutex);
4421 	if (fs_info->balance_ctl)
4422 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4423 	mutex_unlock(&fs_info->balance_mutex);
4424 	sb_end_write(fs_info->sb);
4425 
4426 	return ret;
4427 }
4428 
4429 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4430 {
4431 	struct task_struct *tsk;
4432 
4433 	mutex_lock(&fs_info->balance_mutex);
4434 	if (!fs_info->balance_ctl) {
4435 		mutex_unlock(&fs_info->balance_mutex);
4436 		return 0;
4437 	}
4438 	mutex_unlock(&fs_info->balance_mutex);
4439 
4440 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4441 		btrfs_info(fs_info, "balance: resume skipped");
4442 		return 0;
4443 	}
4444 
4445 	spin_lock(&fs_info->super_lock);
4446 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4447 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4448 	spin_unlock(&fs_info->super_lock);
4449 	/*
4450 	 * A ro->rw remount sequence should continue with the paused balance
4451 	 * regardless of who pauses it, system or the user as of now, so set
4452 	 * the resume flag.
4453 	 */
4454 	spin_lock(&fs_info->balance_lock);
4455 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4456 	spin_unlock(&fs_info->balance_lock);
4457 
4458 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4459 	return PTR_ERR_OR_ZERO(tsk);
4460 }
4461 
4462 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4463 {
4464 	struct btrfs_balance_control *bctl;
4465 	struct btrfs_balance_item *item;
4466 	struct btrfs_disk_balance_args disk_bargs;
4467 	struct btrfs_path *path;
4468 	struct extent_buffer *leaf;
4469 	struct btrfs_key key;
4470 	int ret;
4471 
4472 	path = btrfs_alloc_path();
4473 	if (!path)
4474 		return -ENOMEM;
4475 
4476 	key.objectid = BTRFS_BALANCE_OBJECTID;
4477 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4478 	key.offset = 0;
4479 
4480 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4481 	if (ret < 0)
4482 		goto out;
4483 	if (ret > 0) { /* ret = -ENOENT; */
4484 		ret = 0;
4485 		goto out;
4486 	}
4487 
4488 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4489 	if (!bctl) {
4490 		ret = -ENOMEM;
4491 		goto out;
4492 	}
4493 
4494 	leaf = path->nodes[0];
4495 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4496 
4497 	bctl->flags = btrfs_balance_flags(leaf, item);
4498 	bctl->flags |= BTRFS_BALANCE_RESUME;
4499 
4500 	btrfs_balance_data(leaf, item, &disk_bargs);
4501 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4502 	btrfs_balance_meta(leaf, item, &disk_bargs);
4503 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4504 	btrfs_balance_sys(leaf, item, &disk_bargs);
4505 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4506 
4507 	/*
4508 	 * This should never happen, as the paused balance state is recovered
4509 	 * during mount without any chance of other exclusive ops to collide.
4510 	 *
4511 	 * This gives the exclusive op status to balance and keeps in paused
4512 	 * state until user intervention (cancel or umount). If the ownership
4513 	 * cannot be assigned, show a message but do not fail. The balance
4514 	 * is in a paused state and must have fs_info::balance_ctl properly
4515 	 * set up.
4516 	 */
4517 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4518 		btrfs_warn(fs_info,
4519 	"balance: cannot set exclusive op status, resume manually");
4520 
4521 	btrfs_release_path(path);
4522 
4523 	mutex_lock(&fs_info->balance_mutex);
4524 	BUG_ON(fs_info->balance_ctl);
4525 	spin_lock(&fs_info->balance_lock);
4526 	fs_info->balance_ctl = bctl;
4527 	spin_unlock(&fs_info->balance_lock);
4528 	mutex_unlock(&fs_info->balance_mutex);
4529 out:
4530 	btrfs_free_path(path);
4531 	return ret;
4532 }
4533 
4534 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4535 {
4536 	int ret = 0;
4537 
4538 	mutex_lock(&fs_info->balance_mutex);
4539 	if (!fs_info->balance_ctl) {
4540 		mutex_unlock(&fs_info->balance_mutex);
4541 		return -ENOTCONN;
4542 	}
4543 
4544 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4545 		atomic_inc(&fs_info->balance_pause_req);
4546 		mutex_unlock(&fs_info->balance_mutex);
4547 
4548 		wait_event(fs_info->balance_wait_q,
4549 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4550 
4551 		mutex_lock(&fs_info->balance_mutex);
4552 		/* we are good with balance_ctl ripped off from under us */
4553 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4554 		atomic_dec(&fs_info->balance_pause_req);
4555 	} else {
4556 		ret = -ENOTCONN;
4557 	}
4558 
4559 	mutex_unlock(&fs_info->balance_mutex);
4560 	return ret;
4561 }
4562 
4563 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4564 {
4565 	mutex_lock(&fs_info->balance_mutex);
4566 	if (!fs_info->balance_ctl) {
4567 		mutex_unlock(&fs_info->balance_mutex);
4568 		return -ENOTCONN;
4569 	}
4570 
4571 	/*
4572 	 * A paused balance with the item stored on disk can be resumed at
4573 	 * mount time if the mount is read-write. Otherwise it's still paused
4574 	 * and we must not allow cancelling as it deletes the item.
4575 	 */
4576 	if (sb_rdonly(fs_info->sb)) {
4577 		mutex_unlock(&fs_info->balance_mutex);
4578 		return -EROFS;
4579 	}
4580 
4581 	atomic_inc(&fs_info->balance_cancel_req);
4582 	/*
4583 	 * if we are running just wait and return, balance item is
4584 	 * deleted in btrfs_balance in this case
4585 	 */
4586 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4587 		mutex_unlock(&fs_info->balance_mutex);
4588 		wait_event(fs_info->balance_wait_q,
4589 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4590 		mutex_lock(&fs_info->balance_mutex);
4591 	} else {
4592 		mutex_unlock(&fs_info->balance_mutex);
4593 		/*
4594 		 * Lock released to allow other waiters to continue, we'll
4595 		 * reexamine the status again.
4596 		 */
4597 		mutex_lock(&fs_info->balance_mutex);
4598 
4599 		if (fs_info->balance_ctl) {
4600 			reset_balance_state(fs_info);
4601 			btrfs_exclop_finish(fs_info);
4602 			btrfs_info(fs_info, "balance: canceled");
4603 		}
4604 	}
4605 
4606 	BUG_ON(fs_info->balance_ctl ||
4607 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4608 	atomic_dec(&fs_info->balance_cancel_req);
4609 	mutex_unlock(&fs_info->balance_mutex);
4610 	return 0;
4611 }
4612 
4613 int btrfs_uuid_scan_kthread(void *data)
4614 {
4615 	struct btrfs_fs_info *fs_info = data;
4616 	struct btrfs_root *root = fs_info->tree_root;
4617 	struct btrfs_key key;
4618 	struct btrfs_path *path = NULL;
4619 	int ret = 0;
4620 	struct extent_buffer *eb;
4621 	int slot;
4622 	struct btrfs_root_item root_item;
4623 	u32 item_size;
4624 	struct btrfs_trans_handle *trans = NULL;
4625 	bool closing = false;
4626 
4627 	path = btrfs_alloc_path();
4628 	if (!path) {
4629 		ret = -ENOMEM;
4630 		goto out;
4631 	}
4632 
4633 	key.objectid = 0;
4634 	key.type = BTRFS_ROOT_ITEM_KEY;
4635 	key.offset = 0;
4636 
4637 	while (1) {
4638 		if (btrfs_fs_closing(fs_info)) {
4639 			closing = true;
4640 			break;
4641 		}
4642 		ret = btrfs_search_forward(root, &key, path,
4643 				BTRFS_OLDEST_GENERATION);
4644 		if (ret) {
4645 			if (ret > 0)
4646 				ret = 0;
4647 			break;
4648 		}
4649 
4650 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4651 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4652 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4653 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4654 			goto skip;
4655 
4656 		eb = path->nodes[0];
4657 		slot = path->slots[0];
4658 		item_size = btrfs_item_size(eb, slot);
4659 		if (item_size < sizeof(root_item))
4660 			goto skip;
4661 
4662 		read_extent_buffer(eb, &root_item,
4663 				   btrfs_item_ptr_offset(eb, slot),
4664 				   (int)sizeof(root_item));
4665 		if (btrfs_root_refs(&root_item) == 0)
4666 			goto skip;
4667 
4668 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4669 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4670 			if (trans)
4671 				goto update_tree;
4672 
4673 			btrfs_release_path(path);
4674 			/*
4675 			 * 1 - subvol uuid item
4676 			 * 1 - received_subvol uuid item
4677 			 */
4678 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4679 			if (IS_ERR(trans)) {
4680 				ret = PTR_ERR(trans);
4681 				break;
4682 			}
4683 			continue;
4684 		} else {
4685 			goto skip;
4686 		}
4687 update_tree:
4688 		btrfs_release_path(path);
4689 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4690 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4691 						  BTRFS_UUID_KEY_SUBVOL,
4692 						  key.objectid);
4693 			if (ret < 0) {
4694 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4695 					ret);
4696 				break;
4697 			}
4698 		}
4699 
4700 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4701 			ret = btrfs_uuid_tree_add(trans,
4702 						  root_item.received_uuid,
4703 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4704 						  key.objectid);
4705 			if (ret < 0) {
4706 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4707 					ret);
4708 				break;
4709 			}
4710 		}
4711 
4712 skip:
4713 		btrfs_release_path(path);
4714 		if (trans) {
4715 			ret = btrfs_end_transaction(trans);
4716 			trans = NULL;
4717 			if (ret)
4718 				break;
4719 		}
4720 
4721 		if (key.offset < (u64)-1) {
4722 			key.offset++;
4723 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4724 			key.offset = 0;
4725 			key.type = BTRFS_ROOT_ITEM_KEY;
4726 		} else if (key.objectid < (u64)-1) {
4727 			key.offset = 0;
4728 			key.type = BTRFS_ROOT_ITEM_KEY;
4729 			key.objectid++;
4730 		} else {
4731 			break;
4732 		}
4733 		cond_resched();
4734 	}
4735 
4736 out:
4737 	btrfs_free_path(path);
4738 	if (trans && !IS_ERR(trans))
4739 		btrfs_end_transaction(trans);
4740 	if (ret)
4741 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4742 	else if (!closing)
4743 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4744 	up(&fs_info->uuid_tree_rescan_sem);
4745 	return 0;
4746 }
4747 
4748 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4749 {
4750 	struct btrfs_trans_handle *trans;
4751 	struct btrfs_root *tree_root = fs_info->tree_root;
4752 	struct btrfs_root *uuid_root;
4753 	struct task_struct *task;
4754 	int ret;
4755 
4756 	/*
4757 	 * 1 - root node
4758 	 * 1 - root item
4759 	 */
4760 	trans = btrfs_start_transaction(tree_root, 2);
4761 	if (IS_ERR(trans))
4762 		return PTR_ERR(trans);
4763 
4764 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4765 	if (IS_ERR(uuid_root)) {
4766 		ret = PTR_ERR(uuid_root);
4767 		btrfs_abort_transaction(trans, ret);
4768 		btrfs_end_transaction(trans);
4769 		return ret;
4770 	}
4771 
4772 	fs_info->uuid_root = uuid_root;
4773 
4774 	ret = btrfs_commit_transaction(trans);
4775 	if (ret)
4776 		return ret;
4777 
4778 	down(&fs_info->uuid_tree_rescan_sem);
4779 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4780 	if (IS_ERR(task)) {
4781 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4782 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4783 		up(&fs_info->uuid_tree_rescan_sem);
4784 		return PTR_ERR(task);
4785 	}
4786 
4787 	return 0;
4788 }
4789 
4790 /*
4791  * shrinking a device means finding all of the device extents past
4792  * the new size, and then following the back refs to the chunks.
4793  * The chunk relocation code actually frees the device extent
4794  */
4795 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4796 {
4797 	struct btrfs_fs_info *fs_info = device->fs_info;
4798 	struct btrfs_root *root = fs_info->dev_root;
4799 	struct btrfs_trans_handle *trans;
4800 	struct btrfs_dev_extent *dev_extent = NULL;
4801 	struct btrfs_path *path;
4802 	u64 length;
4803 	u64 chunk_offset;
4804 	int ret;
4805 	int slot;
4806 	int failed = 0;
4807 	bool retried = false;
4808 	struct extent_buffer *l;
4809 	struct btrfs_key key;
4810 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4811 	u64 old_total = btrfs_super_total_bytes(super_copy);
4812 	u64 old_size = btrfs_device_get_total_bytes(device);
4813 	u64 diff;
4814 	u64 start;
4815 
4816 	new_size = round_down(new_size, fs_info->sectorsize);
4817 	start = new_size;
4818 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4819 
4820 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4821 		return -EINVAL;
4822 
4823 	path = btrfs_alloc_path();
4824 	if (!path)
4825 		return -ENOMEM;
4826 
4827 	path->reada = READA_BACK;
4828 
4829 	trans = btrfs_start_transaction(root, 0);
4830 	if (IS_ERR(trans)) {
4831 		btrfs_free_path(path);
4832 		return PTR_ERR(trans);
4833 	}
4834 
4835 	mutex_lock(&fs_info->chunk_mutex);
4836 
4837 	btrfs_device_set_total_bytes(device, new_size);
4838 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4839 		device->fs_devices->total_rw_bytes -= diff;
4840 		atomic64_sub(diff, &fs_info->free_chunk_space);
4841 	}
4842 
4843 	/*
4844 	 * Once the device's size has been set to the new size, ensure all
4845 	 * in-memory chunks are synced to disk so that the loop below sees them
4846 	 * and relocates them accordingly.
4847 	 */
4848 	if (contains_pending_extent(device, &start, diff)) {
4849 		mutex_unlock(&fs_info->chunk_mutex);
4850 		ret = btrfs_commit_transaction(trans);
4851 		if (ret)
4852 			goto done;
4853 	} else {
4854 		mutex_unlock(&fs_info->chunk_mutex);
4855 		btrfs_end_transaction(trans);
4856 	}
4857 
4858 again:
4859 	key.objectid = device->devid;
4860 	key.offset = (u64)-1;
4861 	key.type = BTRFS_DEV_EXTENT_KEY;
4862 
4863 	do {
4864 		mutex_lock(&fs_info->reclaim_bgs_lock);
4865 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4866 		if (ret < 0) {
4867 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4868 			goto done;
4869 		}
4870 
4871 		ret = btrfs_previous_item(root, path, 0, key.type);
4872 		if (ret) {
4873 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4874 			if (ret < 0)
4875 				goto done;
4876 			ret = 0;
4877 			btrfs_release_path(path);
4878 			break;
4879 		}
4880 
4881 		l = path->nodes[0];
4882 		slot = path->slots[0];
4883 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4884 
4885 		if (key.objectid != device->devid) {
4886 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4887 			btrfs_release_path(path);
4888 			break;
4889 		}
4890 
4891 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4892 		length = btrfs_dev_extent_length(l, dev_extent);
4893 
4894 		if (key.offset + length <= new_size) {
4895 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4896 			btrfs_release_path(path);
4897 			break;
4898 		}
4899 
4900 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4901 		btrfs_release_path(path);
4902 
4903 		/*
4904 		 * We may be relocating the only data chunk we have,
4905 		 * which could potentially end up with losing data's
4906 		 * raid profile, so lets allocate an empty one in
4907 		 * advance.
4908 		 */
4909 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4910 		if (ret < 0) {
4911 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4912 			goto done;
4913 		}
4914 
4915 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4916 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4917 		if (ret == -ENOSPC) {
4918 			failed++;
4919 		} else if (ret) {
4920 			if (ret == -ETXTBSY) {
4921 				btrfs_warn(fs_info,
4922 		   "could not shrink block group %llu due to active swapfile",
4923 					   chunk_offset);
4924 			}
4925 			goto done;
4926 		}
4927 	} while (key.offset-- > 0);
4928 
4929 	if (failed && !retried) {
4930 		failed = 0;
4931 		retried = true;
4932 		goto again;
4933 	} else if (failed && retried) {
4934 		ret = -ENOSPC;
4935 		goto done;
4936 	}
4937 
4938 	/* Shrinking succeeded, else we would be at "done". */
4939 	trans = btrfs_start_transaction(root, 0);
4940 	if (IS_ERR(trans)) {
4941 		ret = PTR_ERR(trans);
4942 		goto done;
4943 	}
4944 
4945 	mutex_lock(&fs_info->chunk_mutex);
4946 	/* Clear all state bits beyond the shrunk device size */
4947 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4948 			  CHUNK_STATE_MASK);
4949 
4950 	btrfs_device_set_disk_total_bytes(device, new_size);
4951 	if (list_empty(&device->post_commit_list))
4952 		list_add_tail(&device->post_commit_list,
4953 			      &trans->transaction->dev_update_list);
4954 
4955 	WARN_ON(diff > old_total);
4956 	btrfs_set_super_total_bytes(super_copy,
4957 			round_down(old_total - diff, fs_info->sectorsize));
4958 	mutex_unlock(&fs_info->chunk_mutex);
4959 
4960 	btrfs_reserve_chunk_metadata(trans, false);
4961 	/* Now btrfs_update_device() will change the on-disk size. */
4962 	ret = btrfs_update_device(trans, device);
4963 	btrfs_trans_release_chunk_metadata(trans);
4964 	if (ret < 0) {
4965 		btrfs_abort_transaction(trans, ret);
4966 		btrfs_end_transaction(trans);
4967 	} else {
4968 		ret = btrfs_commit_transaction(trans);
4969 	}
4970 done:
4971 	btrfs_free_path(path);
4972 	if (ret) {
4973 		mutex_lock(&fs_info->chunk_mutex);
4974 		btrfs_device_set_total_bytes(device, old_size);
4975 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4976 			device->fs_devices->total_rw_bytes += diff;
4977 		atomic64_add(diff, &fs_info->free_chunk_space);
4978 		mutex_unlock(&fs_info->chunk_mutex);
4979 	}
4980 	return ret;
4981 }
4982 
4983 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4984 			   struct btrfs_key *key,
4985 			   struct btrfs_chunk *chunk, int item_size)
4986 {
4987 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4988 	struct btrfs_disk_key disk_key;
4989 	u32 array_size;
4990 	u8 *ptr;
4991 
4992 	lockdep_assert_held(&fs_info->chunk_mutex);
4993 
4994 	array_size = btrfs_super_sys_array_size(super_copy);
4995 	if (array_size + item_size + sizeof(disk_key)
4996 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4997 		return -EFBIG;
4998 
4999 	ptr = super_copy->sys_chunk_array + array_size;
5000 	btrfs_cpu_key_to_disk(&disk_key, key);
5001 	memcpy(ptr, &disk_key, sizeof(disk_key));
5002 	ptr += sizeof(disk_key);
5003 	memcpy(ptr, chunk, item_size);
5004 	item_size += sizeof(disk_key);
5005 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5006 
5007 	return 0;
5008 }
5009 
5010 /*
5011  * sort the devices in descending order by max_avail, total_avail
5012  */
5013 static int btrfs_cmp_device_info(const void *a, const void *b)
5014 {
5015 	const struct btrfs_device_info *di_a = a;
5016 	const struct btrfs_device_info *di_b = b;
5017 
5018 	if (di_a->max_avail > di_b->max_avail)
5019 		return -1;
5020 	if (di_a->max_avail < di_b->max_avail)
5021 		return 1;
5022 	if (di_a->total_avail > di_b->total_avail)
5023 		return -1;
5024 	if (di_a->total_avail < di_b->total_avail)
5025 		return 1;
5026 	return 0;
5027 }
5028 
5029 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5030 {
5031 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5032 		return;
5033 
5034 	btrfs_set_fs_incompat(info, RAID56);
5035 }
5036 
5037 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5038 {
5039 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5040 		return;
5041 
5042 	btrfs_set_fs_incompat(info, RAID1C34);
5043 }
5044 
5045 /*
5046  * Structure used internally for btrfs_create_chunk() function.
5047  * Wraps needed parameters.
5048  */
5049 struct alloc_chunk_ctl {
5050 	u64 start;
5051 	u64 type;
5052 	/* Total number of stripes to allocate */
5053 	int num_stripes;
5054 	/* sub_stripes info for map */
5055 	int sub_stripes;
5056 	/* Stripes per device */
5057 	int dev_stripes;
5058 	/* Maximum number of devices to use */
5059 	int devs_max;
5060 	/* Minimum number of devices to use */
5061 	int devs_min;
5062 	/* ndevs has to be a multiple of this */
5063 	int devs_increment;
5064 	/* Number of copies */
5065 	int ncopies;
5066 	/* Number of stripes worth of bytes to store parity information */
5067 	int nparity;
5068 	u64 max_stripe_size;
5069 	u64 max_chunk_size;
5070 	u64 dev_extent_min;
5071 	u64 stripe_size;
5072 	u64 chunk_size;
5073 	int ndevs;
5074 };
5075 
5076 static void init_alloc_chunk_ctl_policy_regular(
5077 				struct btrfs_fs_devices *fs_devices,
5078 				struct alloc_chunk_ctl *ctl)
5079 {
5080 	struct btrfs_space_info *space_info;
5081 
5082 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5083 	ASSERT(space_info);
5084 
5085 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5086 	ctl->max_stripe_size = ctl->max_chunk_size;
5087 
5088 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5089 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5090 
5091 	/* We don't want a chunk larger than 10% of writable space */
5092 	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5093 				  ctl->max_chunk_size);
5094 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5095 }
5096 
5097 static void init_alloc_chunk_ctl_policy_zoned(
5098 				      struct btrfs_fs_devices *fs_devices,
5099 				      struct alloc_chunk_ctl *ctl)
5100 {
5101 	u64 zone_size = fs_devices->fs_info->zone_size;
5102 	u64 limit;
5103 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5104 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5105 	u64 min_chunk_size = min_data_stripes * zone_size;
5106 	u64 type = ctl->type;
5107 
5108 	ctl->max_stripe_size = zone_size;
5109 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5110 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5111 						 zone_size);
5112 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5113 		ctl->max_chunk_size = ctl->max_stripe_size;
5114 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5115 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5116 		ctl->devs_max = min_t(int, ctl->devs_max,
5117 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5118 	} else {
5119 		BUG();
5120 	}
5121 
5122 	/* We don't want a chunk larger than 10% of writable space */
5123 	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5124 			       zone_size),
5125 		    min_chunk_size);
5126 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5127 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5128 }
5129 
5130 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5131 				 struct alloc_chunk_ctl *ctl)
5132 {
5133 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5134 
5135 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5136 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5137 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5138 	if (!ctl->devs_max)
5139 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5140 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5141 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5142 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5143 	ctl->nparity = btrfs_raid_array[index].nparity;
5144 	ctl->ndevs = 0;
5145 
5146 	switch (fs_devices->chunk_alloc_policy) {
5147 	case BTRFS_CHUNK_ALLOC_REGULAR:
5148 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5149 		break;
5150 	case BTRFS_CHUNK_ALLOC_ZONED:
5151 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5152 		break;
5153 	default:
5154 		BUG();
5155 	}
5156 }
5157 
5158 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5159 			      struct alloc_chunk_ctl *ctl,
5160 			      struct btrfs_device_info *devices_info)
5161 {
5162 	struct btrfs_fs_info *info = fs_devices->fs_info;
5163 	struct btrfs_device *device;
5164 	u64 total_avail;
5165 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5166 	int ret;
5167 	int ndevs = 0;
5168 	u64 max_avail;
5169 	u64 dev_offset;
5170 
5171 	/*
5172 	 * in the first pass through the devices list, we gather information
5173 	 * about the available holes on each device.
5174 	 */
5175 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5176 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5177 			WARN(1, KERN_ERR
5178 			       "BTRFS: read-only device in alloc_list\n");
5179 			continue;
5180 		}
5181 
5182 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5183 					&device->dev_state) ||
5184 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5185 			continue;
5186 
5187 		if (device->total_bytes > device->bytes_used)
5188 			total_avail = device->total_bytes - device->bytes_used;
5189 		else
5190 			total_avail = 0;
5191 
5192 		/* If there is no space on this device, skip it. */
5193 		if (total_avail < ctl->dev_extent_min)
5194 			continue;
5195 
5196 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5197 					   &max_avail);
5198 		if (ret && ret != -ENOSPC)
5199 			return ret;
5200 
5201 		if (ret == 0)
5202 			max_avail = dev_extent_want;
5203 
5204 		if (max_avail < ctl->dev_extent_min) {
5205 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5206 				btrfs_debug(info,
5207 			"%s: devid %llu has no free space, have=%llu want=%llu",
5208 					    __func__, device->devid, max_avail,
5209 					    ctl->dev_extent_min);
5210 			continue;
5211 		}
5212 
5213 		if (ndevs == fs_devices->rw_devices) {
5214 			WARN(1, "%s: found more than %llu devices\n",
5215 			     __func__, fs_devices->rw_devices);
5216 			break;
5217 		}
5218 		devices_info[ndevs].dev_offset = dev_offset;
5219 		devices_info[ndevs].max_avail = max_avail;
5220 		devices_info[ndevs].total_avail = total_avail;
5221 		devices_info[ndevs].dev = device;
5222 		++ndevs;
5223 	}
5224 	ctl->ndevs = ndevs;
5225 
5226 	/*
5227 	 * now sort the devices by hole size / available space
5228 	 */
5229 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5230 	     btrfs_cmp_device_info, NULL);
5231 
5232 	return 0;
5233 }
5234 
5235 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5236 				      struct btrfs_device_info *devices_info)
5237 {
5238 	/* Number of stripes that count for block group size */
5239 	int data_stripes;
5240 
5241 	/*
5242 	 * The primary goal is to maximize the number of stripes, so use as
5243 	 * many devices as possible, even if the stripes are not maximum sized.
5244 	 *
5245 	 * The DUP profile stores more than one stripe per device, the
5246 	 * max_avail is the total size so we have to adjust.
5247 	 */
5248 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5249 				   ctl->dev_stripes);
5250 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5251 
5252 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5253 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5254 
5255 	/*
5256 	 * Use the number of data stripes to figure out how big this chunk is
5257 	 * really going to be in terms of logical address space, and compare
5258 	 * that answer with the max chunk size. If it's higher, we try to
5259 	 * reduce stripe_size.
5260 	 */
5261 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5262 		/*
5263 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5264 		 * then use it, unless it ends up being even bigger than the
5265 		 * previous value we had already.
5266 		 */
5267 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5268 							data_stripes), SZ_16M),
5269 				       ctl->stripe_size);
5270 	}
5271 
5272 	/* Stripe size should not go beyond 1G. */
5273 	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5274 
5275 	/* Align to BTRFS_STRIPE_LEN */
5276 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5277 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5278 
5279 	return 0;
5280 }
5281 
5282 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5283 				    struct btrfs_device_info *devices_info)
5284 {
5285 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5286 	/* Number of stripes that count for block group size */
5287 	int data_stripes;
5288 
5289 	/*
5290 	 * It should hold because:
5291 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5292 	 */
5293 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5294 
5295 	ctl->stripe_size = zone_size;
5296 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5297 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5298 
5299 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5300 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5301 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5302 					     ctl->stripe_size) + ctl->nparity,
5303 				     ctl->dev_stripes);
5304 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5305 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5306 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5307 	}
5308 
5309 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5310 
5311 	return 0;
5312 }
5313 
5314 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5315 			      struct alloc_chunk_ctl *ctl,
5316 			      struct btrfs_device_info *devices_info)
5317 {
5318 	struct btrfs_fs_info *info = fs_devices->fs_info;
5319 
5320 	/*
5321 	 * Round down to number of usable stripes, devs_increment can be any
5322 	 * number so we can't use round_down() that requires power of 2, while
5323 	 * rounddown is safe.
5324 	 */
5325 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5326 
5327 	if (ctl->ndevs < ctl->devs_min) {
5328 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5329 			btrfs_debug(info,
5330 	"%s: not enough devices with free space: have=%d minimum required=%d",
5331 				    __func__, ctl->ndevs, ctl->devs_min);
5332 		}
5333 		return -ENOSPC;
5334 	}
5335 
5336 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5337 
5338 	switch (fs_devices->chunk_alloc_policy) {
5339 	case BTRFS_CHUNK_ALLOC_REGULAR:
5340 		return decide_stripe_size_regular(ctl, devices_info);
5341 	case BTRFS_CHUNK_ALLOC_ZONED:
5342 		return decide_stripe_size_zoned(ctl, devices_info);
5343 	default:
5344 		BUG();
5345 	}
5346 }
5347 
5348 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5349 			struct alloc_chunk_ctl *ctl,
5350 			struct btrfs_device_info *devices_info)
5351 {
5352 	struct btrfs_fs_info *info = trans->fs_info;
5353 	struct map_lookup *map = NULL;
5354 	struct extent_map_tree *em_tree;
5355 	struct btrfs_block_group *block_group;
5356 	struct extent_map *em;
5357 	u64 start = ctl->start;
5358 	u64 type = ctl->type;
5359 	int ret;
5360 	int i;
5361 	int j;
5362 
5363 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5364 	if (!map)
5365 		return ERR_PTR(-ENOMEM);
5366 	map->num_stripes = ctl->num_stripes;
5367 
5368 	for (i = 0; i < ctl->ndevs; ++i) {
5369 		for (j = 0; j < ctl->dev_stripes; ++j) {
5370 			int s = i * ctl->dev_stripes + j;
5371 			map->stripes[s].dev = devices_info[i].dev;
5372 			map->stripes[s].physical = devices_info[i].dev_offset +
5373 						   j * ctl->stripe_size;
5374 		}
5375 	}
5376 	map->stripe_len = BTRFS_STRIPE_LEN;
5377 	map->io_align = BTRFS_STRIPE_LEN;
5378 	map->io_width = BTRFS_STRIPE_LEN;
5379 	map->type = type;
5380 	map->sub_stripes = ctl->sub_stripes;
5381 
5382 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5383 
5384 	em = alloc_extent_map();
5385 	if (!em) {
5386 		kfree(map);
5387 		return ERR_PTR(-ENOMEM);
5388 	}
5389 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5390 	em->map_lookup = map;
5391 	em->start = start;
5392 	em->len = ctl->chunk_size;
5393 	em->block_start = 0;
5394 	em->block_len = em->len;
5395 	em->orig_block_len = ctl->stripe_size;
5396 
5397 	em_tree = &info->mapping_tree;
5398 	write_lock(&em_tree->lock);
5399 	ret = add_extent_mapping(em_tree, em, 0);
5400 	if (ret) {
5401 		write_unlock(&em_tree->lock);
5402 		free_extent_map(em);
5403 		return ERR_PTR(ret);
5404 	}
5405 	write_unlock(&em_tree->lock);
5406 
5407 	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5408 	if (IS_ERR(block_group))
5409 		goto error_del_extent;
5410 
5411 	for (i = 0; i < map->num_stripes; i++) {
5412 		struct btrfs_device *dev = map->stripes[i].dev;
5413 
5414 		btrfs_device_set_bytes_used(dev,
5415 					    dev->bytes_used + ctl->stripe_size);
5416 		if (list_empty(&dev->post_commit_list))
5417 			list_add_tail(&dev->post_commit_list,
5418 				      &trans->transaction->dev_update_list);
5419 	}
5420 
5421 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5422 		     &info->free_chunk_space);
5423 
5424 	free_extent_map(em);
5425 	check_raid56_incompat_flag(info, type);
5426 	check_raid1c34_incompat_flag(info, type);
5427 
5428 	return block_group;
5429 
5430 error_del_extent:
5431 	write_lock(&em_tree->lock);
5432 	remove_extent_mapping(em_tree, em);
5433 	write_unlock(&em_tree->lock);
5434 
5435 	/* One for our allocation */
5436 	free_extent_map(em);
5437 	/* One for the tree reference */
5438 	free_extent_map(em);
5439 
5440 	return block_group;
5441 }
5442 
5443 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5444 					    u64 type)
5445 {
5446 	struct btrfs_fs_info *info = trans->fs_info;
5447 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5448 	struct btrfs_device_info *devices_info = NULL;
5449 	struct alloc_chunk_ctl ctl;
5450 	struct btrfs_block_group *block_group;
5451 	int ret;
5452 
5453 	lockdep_assert_held(&info->chunk_mutex);
5454 
5455 	if (!alloc_profile_is_valid(type, 0)) {
5456 		ASSERT(0);
5457 		return ERR_PTR(-EINVAL);
5458 	}
5459 
5460 	if (list_empty(&fs_devices->alloc_list)) {
5461 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5462 			btrfs_debug(info, "%s: no writable device", __func__);
5463 		return ERR_PTR(-ENOSPC);
5464 	}
5465 
5466 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5467 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5468 		ASSERT(0);
5469 		return ERR_PTR(-EINVAL);
5470 	}
5471 
5472 	ctl.start = find_next_chunk(info);
5473 	ctl.type = type;
5474 	init_alloc_chunk_ctl(fs_devices, &ctl);
5475 
5476 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5477 			       GFP_NOFS);
5478 	if (!devices_info)
5479 		return ERR_PTR(-ENOMEM);
5480 
5481 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5482 	if (ret < 0) {
5483 		block_group = ERR_PTR(ret);
5484 		goto out;
5485 	}
5486 
5487 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5488 	if (ret < 0) {
5489 		block_group = ERR_PTR(ret);
5490 		goto out;
5491 	}
5492 
5493 	block_group = create_chunk(trans, &ctl, devices_info);
5494 
5495 out:
5496 	kfree(devices_info);
5497 	return block_group;
5498 }
5499 
5500 /*
5501  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5502  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5503  * chunks.
5504  *
5505  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5506  * phases.
5507  */
5508 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5509 				     struct btrfs_block_group *bg)
5510 {
5511 	struct btrfs_fs_info *fs_info = trans->fs_info;
5512 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5513 	struct btrfs_key key;
5514 	struct btrfs_chunk *chunk;
5515 	struct btrfs_stripe *stripe;
5516 	struct extent_map *em;
5517 	struct map_lookup *map;
5518 	size_t item_size;
5519 	int i;
5520 	int ret;
5521 
5522 	/*
5523 	 * We take the chunk_mutex for 2 reasons:
5524 	 *
5525 	 * 1) Updates and insertions in the chunk btree must be done while holding
5526 	 *    the chunk_mutex, as well as updating the system chunk array in the
5527 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5528 	 *    details;
5529 	 *
5530 	 * 2) To prevent races with the final phase of a device replace operation
5531 	 *    that replaces the device object associated with the map's stripes,
5532 	 *    because the device object's id can change at any time during that
5533 	 *    final phase of the device replace operation
5534 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5535 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5536 	 *    which would cause a failure when updating the device item, which does
5537 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5538 	 *    Here we can't use the device_list_mutex because our caller already
5539 	 *    has locked the chunk_mutex, and the final phase of device replace
5540 	 *    acquires both mutexes - first the device_list_mutex and then the
5541 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5542 	 *    concurrent device replace.
5543 	 */
5544 	lockdep_assert_held(&fs_info->chunk_mutex);
5545 
5546 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5547 	if (IS_ERR(em)) {
5548 		ret = PTR_ERR(em);
5549 		btrfs_abort_transaction(trans, ret);
5550 		return ret;
5551 	}
5552 
5553 	map = em->map_lookup;
5554 	item_size = btrfs_chunk_item_size(map->num_stripes);
5555 
5556 	chunk = kzalloc(item_size, GFP_NOFS);
5557 	if (!chunk) {
5558 		ret = -ENOMEM;
5559 		btrfs_abort_transaction(trans, ret);
5560 		goto out;
5561 	}
5562 
5563 	for (i = 0; i < map->num_stripes; i++) {
5564 		struct btrfs_device *device = map->stripes[i].dev;
5565 
5566 		ret = btrfs_update_device(trans, device);
5567 		if (ret)
5568 			goto out;
5569 	}
5570 
5571 	stripe = &chunk->stripe;
5572 	for (i = 0; i < map->num_stripes; i++) {
5573 		struct btrfs_device *device = map->stripes[i].dev;
5574 		const u64 dev_offset = map->stripes[i].physical;
5575 
5576 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5577 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5578 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5579 		stripe++;
5580 	}
5581 
5582 	btrfs_set_stack_chunk_length(chunk, bg->length);
5583 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5584 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5585 	btrfs_set_stack_chunk_type(chunk, map->type);
5586 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5587 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5588 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5589 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5590 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5591 
5592 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5593 	key.type = BTRFS_CHUNK_ITEM_KEY;
5594 	key.offset = bg->start;
5595 
5596 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5597 	if (ret)
5598 		goto out;
5599 
5600 	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5601 
5602 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5603 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5604 		if (ret)
5605 			goto out;
5606 	}
5607 
5608 out:
5609 	kfree(chunk);
5610 	free_extent_map(em);
5611 	return ret;
5612 }
5613 
5614 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5615 {
5616 	struct btrfs_fs_info *fs_info = trans->fs_info;
5617 	u64 alloc_profile;
5618 	struct btrfs_block_group *meta_bg;
5619 	struct btrfs_block_group *sys_bg;
5620 
5621 	/*
5622 	 * When adding a new device for sprouting, the seed device is read-only
5623 	 * so we must first allocate a metadata and a system chunk. But before
5624 	 * adding the block group items to the extent, device and chunk btrees,
5625 	 * we must first:
5626 	 *
5627 	 * 1) Create both chunks without doing any changes to the btrees, as
5628 	 *    otherwise we would get -ENOSPC since the block groups from the
5629 	 *    seed device are read-only;
5630 	 *
5631 	 * 2) Add the device item for the new sprout device - finishing the setup
5632 	 *    of a new block group requires updating the device item in the chunk
5633 	 *    btree, so it must exist when we attempt to do it. The previous step
5634 	 *    ensures this does not fail with -ENOSPC.
5635 	 *
5636 	 * After that we can add the block group items to their btrees:
5637 	 * update existing device item in the chunk btree, add a new block group
5638 	 * item to the extent btree, add a new chunk item to the chunk btree and
5639 	 * finally add the new device extent items to the devices btree.
5640 	 */
5641 
5642 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5643 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5644 	if (IS_ERR(meta_bg))
5645 		return PTR_ERR(meta_bg);
5646 
5647 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5648 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5649 	if (IS_ERR(sys_bg))
5650 		return PTR_ERR(sys_bg);
5651 
5652 	return 0;
5653 }
5654 
5655 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5656 {
5657 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5658 
5659 	return btrfs_raid_array[index].tolerated_failures;
5660 }
5661 
5662 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5663 {
5664 	struct extent_map *em;
5665 	struct map_lookup *map;
5666 	int miss_ndevs = 0;
5667 	int i;
5668 	bool ret = true;
5669 
5670 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5671 	if (IS_ERR(em))
5672 		return false;
5673 
5674 	map = em->map_lookup;
5675 	for (i = 0; i < map->num_stripes; i++) {
5676 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5677 					&map->stripes[i].dev->dev_state)) {
5678 			miss_ndevs++;
5679 			continue;
5680 		}
5681 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5682 					&map->stripes[i].dev->dev_state)) {
5683 			ret = false;
5684 			goto end;
5685 		}
5686 	}
5687 
5688 	/*
5689 	 * If the number of missing devices is larger than max errors, we can
5690 	 * not write the data into that chunk successfully.
5691 	 */
5692 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5693 		ret = false;
5694 end:
5695 	free_extent_map(em);
5696 	return ret;
5697 }
5698 
5699 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5700 {
5701 	struct extent_map *em;
5702 
5703 	while (1) {
5704 		write_lock(&tree->lock);
5705 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5706 		if (em)
5707 			remove_extent_mapping(tree, em);
5708 		write_unlock(&tree->lock);
5709 		if (!em)
5710 			break;
5711 		/* once for us */
5712 		free_extent_map(em);
5713 		/* once for the tree */
5714 		free_extent_map(em);
5715 	}
5716 }
5717 
5718 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5719 {
5720 	struct extent_map *em;
5721 	struct map_lookup *map;
5722 	enum btrfs_raid_types index;
5723 	int ret = 1;
5724 
5725 	em = btrfs_get_chunk_map(fs_info, logical, len);
5726 	if (IS_ERR(em))
5727 		/*
5728 		 * We could return errors for these cases, but that could get
5729 		 * ugly and we'd probably do the same thing which is just not do
5730 		 * anything else and exit, so return 1 so the callers don't try
5731 		 * to use other copies.
5732 		 */
5733 		return 1;
5734 
5735 	map = em->map_lookup;
5736 	index = btrfs_bg_flags_to_raid_index(map->type);
5737 
5738 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5739 	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5740 		ret = btrfs_raid_array[index].ncopies;
5741 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5742 		ret = 2;
5743 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5744 		/*
5745 		 * There could be two corrupted data stripes, we need
5746 		 * to loop retry in order to rebuild the correct data.
5747 		 *
5748 		 * Fail a stripe at a time on every retry except the
5749 		 * stripe under reconstruction.
5750 		 */
5751 		ret = map->num_stripes;
5752 	free_extent_map(em);
5753 
5754 	down_read(&fs_info->dev_replace.rwsem);
5755 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5756 	    fs_info->dev_replace.tgtdev)
5757 		ret++;
5758 	up_read(&fs_info->dev_replace.rwsem);
5759 
5760 	return ret;
5761 }
5762 
5763 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5764 				    u64 logical)
5765 {
5766 	struct extent_map *em;
5767 	struct map_lookup *map;
5768 	unsigned long len = fs_info->sectorsize;
5769 
5770 	if (!btrfs_fs_incompat(fs_info, RAID56))
5771 		return len;
5772 
5773 	em = btrfs_get_chunk_map(fs_info, logical, len);
5774 
5775 	if (!WARN_ON(IS_ERR(em))) {
5776 		map = em->map_lookup;
5777 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5778 			len = map->stripe_len * nr_data_stripes(map);
5779 		free_extent_map(em);
5780 	}
5781 	return len;
5782 }
5783 
5784 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5785 {
5786 	struct extent_map *em;
5787 	struct map_lookup *map;
5788 	int ret = 0;
5789 
5790 	if (!btrfs_fs_incompat(fs_info, RAID56))
5791 		return 0;
5792 
5793 	em = btrfs_get_chunk_map(fs_info, logical, len);
5794 
5795 	if(!WARN_ON(IS_ERR(em))) {
5796 		map = em->map_lookup;
5797 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5798 			ret = 1;
5799 		free_extent_map(em);
5800 	}
5801 	return ret;
5802 }
5803 
5804 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5805 			    struct map_lookup *map, int first,
5806 			    int dev_replace_is_ongoing)
5807 {
5808 	int i;
5809 	int num_stripes;
5810 	int preferred_mirror;
5811 	int tolerance;
5812 	struct btrfs_device *srcdev;
5813 
5814 	ASSERT((map->type &
5815 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5816 
5817 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5818 		num_stripes = map->sub_stripes;
5819 	else
5820 		num_stripes = map->num_stripes;
5821 
5822 	switch (fs_info->fs_devices->read_policy) {
5823 	default:
5824 		/* Shouldn't happen, just warn and use pid instead of failing */
5825 		btrfs_warn_rl(fs_info,
5826 			      "unknown read_policy type %u, reset to pid",
5827 			      fs_info->fs_devices->read_policy);
5828 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5829 		fallthrough;
5830 	case BTRFS_READ_POLICY_PID:
5831 		preferred_mirror = first + (current->pid % num_stripes);
5832 		break;
5833 	}
5834 
5835 	if (dev_replace_is_ongoing &&
5836 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5837 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5838 		srcdev = fs_info->dev_replace.srcdev;
5839 	else
5840 		srcdev = NULL;
5841 
5842 	/*
5843 	 * try to avoid the drive that is the source drive for a
5844 	 * dev-replace procedure, only choose it if no other non-missing
5845 	 * mirror is available
5846 	 */
5847 	for (tolerance = 0; tolerance < 2; tolerance++) {
5848 		if (map->stripes[preferred_mirror].dev->bdev &&
5849 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5850 			return preferred_mirror;
5851 		for (i = first; i < first + num_stripes; i++) {
5852 			if (map->stripes[i].dev->bdev &&
5853 			    (tolerance || map->stripes[i].dev != srcdev))
5854 				return i;
5855 		}
5856 	}
5857 
5858 	/* we couldn't find one that doesn't fail.  Just return something
5859 	 * and the io error handling code will clean up eventually
5860 	 */
5861 	return preferred_mirror;
5862 }
5863 
5864 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5865 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5866 {
5867 	int i;
5868 	int again = 1;
5869 
5870 	while (again) {
5871 		again = 0;
5872 		for (i = 0; i < num_stripes - 1; i++) {
5873 			/* Swap if parity is on a smaller index */
5874 			if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5875 				swap(bioc->stripes[i], bioc->stripes[i + 1]);
5876 				swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5877 				again = 1;
5878 			}
5879 		}
5880 	}
5881 }
5882 
5883 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5884 						       int total_stripes,
5885 						       int real_stripes)
5886 {
5887 	struct btrfs_io_context *bioc = kzalloc(
5888 		 /* The size of btrfs_io_context */
5889 		sizeof(struct btrfs_io_context) +
5890 		/* Plus the variable array for the stripes */
5891 		sizeof(struct btrfs_io_stripe) * (total_stripes) +
5892 		/* Plus the variable array for the tgt dev */
5893 		sizeof(int) * (real_stripes) +
5894 		/*
5895 		 * Plus the raid_map, which includes both the tgt dev
5896 		 * and the stripes.
5897 		 */
5898 		sizeof(u64) * (total_stripes),
5899 		GFP_NOFS);
5900 
5901 	if (!bioc)
5902 		return NULL;
5903 
5904 	refcount_set(&bioc->refs, 1);
5905 
5906 	bioc->fs_info = fs_info;
5907 	bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5908 	bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5909 
5910 	return bioc;
5911 }
5912 
5913 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5914 {
5915 	WARN_ON(!refcount_read(&bioc->refs));
5916 	refcount_inc(&bioc->refs);
5917 }
5918 
5919 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5920 {
5921 	if (!bioc)
5922 		return;
5923 	if (refcount_dec_and_test(&bioc->refs))
5924 		kfree(bioc);
5925 }
5926 
5927 /*
5928  * Please note that, discard won't be sent to target device of device
5929  * replace.
5930  */
5931 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5932 					       u64 logical, u64 *length_ret,
5933 					       u32 *num_stripes)
5934 {
5935 	struct extent_map *em;
5936 	struct map_lookup *map;
5937 	struct btrfs_discard_stripe *stripes;
5938 	u64 length = *length_ret;
5939 	u64 offset;
5940 	u64 stripe_nr;
5941 	u64 stripe_nr_end;
5942 	u64 stripe_end_offset;
5943 	u64 stripe_cnt;
5944 	u64 stripe_len;
5945 	u64 stripe_offset;
5946 	u32 stripe_index;
5947 	u32 factor = 0;
5948 	u32 sub_stripes = 0;
5949 	u64 stripes_per_dev = 0;
5950 	u32 remaining_stripes = 0;
5951 	u32 last_stripe = 0;
5952 	int ret;
5953 	int i;
5954 
5955 	em = btrfs_get_chunk_map(fs_info, logical, length);
5956 	if (IS_ERR(em))
5957 		return ERR_CAST(em);
5958 
5959 	map = em->map_lookup;
5960 
5961 	/* we don't discard raid56 yet */
5962 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5963 		ret = -EOPNOTSUPP;
5964 		goto out_free_map;
5965 }
5966 
5967 	offset = logical - em->start;
5968 	length = min_t(u64, em->start + em->len - logical, length);
5969 	*length_ret = length;
5970 
5971 	stripe_len = map->stripe_len;
5972 	/*
5973 	 * stripe_nr counts the total number of stripes we have to stride
5974 	 * to get to this block
5975 	 */
5976 	stripe_nr = div64_u64(offset, stripe_len);
5977 
5978 	/* stripe_offset is the offset of this block in its stripe */
5979 	stripe_offset = offset - stripe_nr * stripe_len;
5980 
5981 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5982 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5983 	stripe_cnt = stripe_nr_end - stripe_nr;
5984 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5985 			    (offset + length);
5986 	/*
5987 	 * after this, stripe_nr is the number of stripes on this
5988 	 * device we have to walk to find the data, and stripe_index is
5989 	 * the number of our device in the stripe array
5990 	 */
5991 	*num_stripes = 1;
5992 	stripe_index = 0;
5993 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5994 			 BTRFS_BLOCK_GROUP_RAID10)) {
5995 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5996 			sub_stripes = 1;
5997 		else
5998 			sub_stripes = map->sub_stripes;
5999 
6000 		factor = map->num_stripes / sub_stripes;
6001 		*num_stripes = min_t(u64, map->num_stripes,
6002 				    sub_stripes * stripe_cnt);
6003 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6004 		stripe_index *= sub_stripes;
6005 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6006 					      &remaining_stripes);
6007 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6008 		last_stripe *= sub_stripes;
6009 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6010 				BTRFS_BLOCK_GROUP_DUP)) {
6011 		*num_stripes = map->num_stripes;
6012 	} else {
6013 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6014 					&stripe_index);
6015 	}
6016 
6017 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6018 	if (!stripes) {
6019 		ret = -ENOMEM;
6020 		goto out_free_map;
6021 	}
6022 
6023 	for (i = 0; i < *num_stripes; i++) {
6024 		stripes[i].physical =
6025 			map->stripes[stripe_index].physical +
6026 			stripe_offset + stripe_nr * map->stripe_len;
6027 		stripes[i].dev = map->stripes[stripe_index].dev;
6028 
6029 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6030 				 BTRFS_BLOCK_GROUP_RAID10)) {
6031 			stripes[i].length = stripes_per_dev * map->stripe_len;
6032 
6033 			if (i / sub_stripes < remaining_stripes)
6034 				stripes[i].length += map->stripe_len;
6035 
6036 			/*
6037 			 * Special for the first stripe and
6038 			 * the last stripe:
6039 			 *
6040 			 * |-------|...|-------|
6041 			 *     |----------|
6042 			 *    off     end_off
6043 			 */
6044 			if (i < sub_stripes)
6045 				stripes[i].length -= stripe_offset;
6046 
6047 			if (stripe_index >= last_stripe &&
6048 			    stripe_index <= (last_stripe +
6049 					     sub_stripes - 1))
6050 				stripes[i].length -= stripe_end_offset;
6051 
6052 			if (i == sub_stripes - 1)
6053 				stripe_offset = 0;
6054 		} else {
6055 			stripes[i].length = length;
6056 		}
6057 
6058 		stripe_index++;
6059 		if (stripe_index == map->num_stripes) {
6060 			stripe_index = 0;
6061 			stripe_nr++;
6062 		}
6063 	}
6064 
6065 	free_extent_map(em);
6066 	return stripes;
6067 out_free_map:
6068 	free_extent_map(em);
6069 	return ERR_PTR(ret);
6070 }
6071 
6072 /*
6073  * In dev-replace case, for repair case (that's the only case where the mirror
6074  * is selected explicitly when calling btrfs_map_block), blocks left of the
6075  * left cursor can also be read from the target drive.
6076  *
6077  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6078  * array of stripes.
6079  * For READ, it also needs to be supported using the same mirror number.
6080  *
6081  * If the requested block is not left of the left cursor, EIO is returned. This
6082  * can happen because btrfs_num_copies() returns one more in the dev-replace
6083  * case.
6084  */
6085 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6086 					 u64 logical, u64 length,
6087 					 u64 srcdev_devid, int *mirror_num,
6088 					 u64 *physical)
6089 {
6090 	struct btrfs_io_context *bioc = NULL;
6091 	int num_stripes;
6092 	int index_srcdev = 0;
6093 	int found = 0;
6094 	u64 physical_of_found = 0;
6095 	int i;
6096 	int ret = 0;
6097 
6098 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6099 				logical, &length, &bioc, NULL, NULL, 0);
6100 	if (ret) {
6101 		ASSERT(bioc == NULL);
6102 		return ret;
6103 	}
6104 
6105 	num_stripes = bioc->num_stripes;
6106 	if (*mirror_num > num_stripes) {
6107 		/*
6108 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6109 		 * that means that the requested area is not left of the left
6110 		 * cursor
6111 		 */
6112 		btrfs_put_bioc(bioc);
6113 		return -EIO;
6114 	}
6115 
6116 	/*
6117 	 * process the rest of the function using the mirror_num of the source
6118 	 * drive. Therefore look it up first.  At the end, patch the device
6119 	 * pointer to the one of the target drive.
6120 	 */
6121 	for (i = 0; i < num_stripes; i++) {
6122 		if (bioc->stripes[i].dev->devid != srcdev_devid)
6123 			continue;
6124 
6125 		/*
6126 		 * In case of DUP, in order to keep it simple, only add the
6127 		 * mirror with the lowest physical address
6128 		 */
6129 		if (found &&
6130 		    physical_of_found <= bioc->stripes[i].physical)
6131 			continue;
6132 
6133 		index_srcdev = i;
6134 		found = 1;
6135 		physical_of_found = bioc->stripes[i].physical;
6136 	}
6137 
6138 	btrfs_put_bioc(bioc);
6139 
6140 	ASSERT(found);
6141 	if (!found)
6142 		return -EIO;
6143 
6144 	*mirror_num = index_srcdev + 1;
6145 	*physical = physical_of_found;
6146 	return ret;
6147 }
6148 
6149 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6150 {
6151 	struct btrfs_block_group *cache;
6152 	bool ret;
6153 
6154 	/* Non zoned filesystem does not use "to_copy" flag */
6155 	if (!btrfs_is_zoned(fs_info))
6156 		return false;
6157 
6158 	cache = btrfs_lookup_block_group(fs_info, logical);
6159 
6160 	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6161 
6162 	btrfs_put_block_group(cache);
6163 	return ret;
6164 }
6165 
6166 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6167 				      struct btrfs_io_context **bioc_ret,
6168 				      struct btrfs_dev_replace *dev_replace,
6169 				      u64 logical,
6170 				      int *num_stripes_ret, int *max_errors_ret)
6171 {
6172 	struct btrfs_io_context *bioc = *bioc_ret;
6173 	u64 srcdev_devid = dev_replace->srcdev->devid;
6174 	int tgtdev_indexes = 0;
6175 	int num_stripes = *num_stripes_ret;
6176 	int max_errors = *max_errors_ret;
6177 	int i;
6178 
6179 	if (op == BTRFS_MAP_WRITE) {
6180 		int index_where_to_add;
6181 
6182 		/*
6183 		 * A block group which have "to_copy" set will eventually
6184 		 * copied by dev-replace process. We can avoid cloning IO here.
6185 		 */
6186 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6187 			return;
6188 
6189 		/*
6190 		 * duplicate the write operations while the dev replace
6191 		 * procedure is running. Since the copying of the old disk to
6192 		 * the new disk takes place at run time while the filesystem is
6193 		 * mounted writable, the regular write operations to the old
6194 		 * disk have to be duplicated to go to the new disk as well.
6195 		 *
6196 		 * Note that device->missing is handled by the caller, and that
6197 		 * the write to the old disk is already set up in the stripes
6198 		 * array.
6199 		 */
6200 		index_where_to_add = num_stripes;
6201 		for (i = 0; i < num_stripes; i++) {
6202 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6203 				/* write to new disk, too */
6204 				struct btrfs_io_stripe *new =
6205 					bioc->stripes + index_where_to_add;
6206 				struct btrfs_io_stripe *old =
6207 					bioc->stripes + i;
6208 
6209 				new->physical = old->physical;
6210 				new->dev = dev_replace->tgtdev;
6211 				bioc->tgtdev_map[i] = index_where_to_add;
6212 				index_where_to_add++;
6213 				max_errors++;
6214 				tgtdev_indexes++;
6215 			}
6216 		}
6217 		num_stripes = index_where_to_add;
6218 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6219 		int index_srcdev = 0;
6220 		int found = 0;
6221 		u64 physical_of_found = 0;
6222 
6223 		/*
6224 		 * During the dev-replace procedure, the target drive can also
6225 		 * be used to read data in case it is needed to repair a corrupt
6226 		 * block elsewhere. This is possible if the requested area is
6227 		 * left of the left cursor. In this area, the target drive is a
6228 		 * full copy of the source drive.
6229 		 */
6230 		for (i = 0; i < num_stripes; i++) {
6231 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6232 				/*
6233 				 * In case of DUP, in order to keep it simple,
6234 				 * only add the mirror with the lowest physical
6235 				 * address
6236 				 */
6237 				if (found &&
6238 				    physical_of_found <= bioc->stripes[i].physical)
6239 					continue;
6240 				index_srcdev = i;
6241 				found = 1;
6242 				physical_of_found = bioc->stripes[i].physical;
6243 			}
6244 		}
6245 		if (found) {
6246 			struct btrfs_io_stripe *tgtdev_stripe =
6247 				bioc->stripes + num_stripes;
6248 
6249 			tgtdev_stripe->physical = physical_of_found;
6250 			tgtdev_stripe->dev = dev_replace->tgtdev;
6251 			bioc->tgtdev_map[index_srcdev] = num_stripes;
6252 
6253 			tgtdev_indexes++;
6254 			num_stripes++;
6255 		}
6256 	}
6257 
6258 	*num_stripes_ret = num_stripes;
6259 	*max_errors_ret = max_errors;
6260 	bioc->num_tgtdevs = tgtdev_indexes;
6261 	*bioc_ret = bioc;
6262 }
6263 
6264 static bool need_full_stripe(enum btrfs_map_op op)
6265 {
6266 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6267 }
6268 
6269 /*
6270  * Calculate the geometry of a particular (address, len) tuple. This
6271  * information is used to calculate how big a particular bio can get before it
6272  * straddles a stripe.
6273  *
6274  * @fs_info: the filesystem
6275  * @em:      mapping containing the logical extent
6276  * @op:      type of operation - write or read
6277  * @logical: address that we want to figure out the geometry of
6278  * @io_geom: pointer used to return values
6279  *
6280  * Returns < 0 in case a chunk for the given logical address cannot be found,
6281  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6282  */
6283 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6284 			  enum btrfs_map_op op, u64 logical,
6285 			  struct btrfs_io_geometry *io_geom)
6286 {
6287 	struct map_lookup *map;
6288 	u64 len;
6289 	u64 offset;
6290 	u64 stripe_offset;
6291 	u64 stripe_nr;
6292 	u32 stripe_len;
6293 	u64 raid56_full_stripe_start = (u64)-1;
6294 	int data_stripes;
6295 
6296 	ASSERT(op != BTRFS_MAP_DISCARD);
6297 
6298 	map = em->map_lookup;
6299 	/* Offset of this logical address in the chunk */
6300 	offset = logical - em->start;
6301 	/* Len of a stripe in a chunk */
6302 	stripe_len = map->stripe_len;
6303 	/*
6304 	 * Stripe_nr is where this block falls in
6305 	 * stripe_offset is the offset of this block in its stripe.
6306 	 */
6307 	stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6308 	ASSERT(stripe_offset < U32_MAX);
6309 
6310 	data_stripes = nr_data_stripes(map);
6311 
6312 	/* Only stripe based profiles needs to check against stripe length. */
6313 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6314 		u64 max_len = stripe_len - stripe_offset;
6315 
6316 		/*
6317 		 * In case of raid56, we need to know the stripe aligned start
6318 		 */
6319 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6320 			unsigned long full_stripe_len = stripe_len * data_stripes;
6321 			raid56_full_stripe_start = offset;
6322 
6323 			/*
6324 			 * Allow a write of a full stripe, but make sure we
6325 			 * don't allow straddling of stripes
6326 			 */
6327 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6328 					full_stripe_len);
6329 			raid56_full_stripe_start *= full_stripe_len;
6330 
6331 			/*
6332 			 * For writes to RAID[56], allow a full stripeset across
6333 			 * all disks. For other RAID types and for RAID[56]
6334 			 * reads, just allow a single stripe (on a single disk).
6335 			 */
6336 			if (op == BTRFS_MAP_WRITE) {
6337 				max_len = stripe_len * data_stripes -
6338 					  (offset - raid56_full_stripe_start);
6339 			}
6340 		}
6341 		len = min_t(u64, em->len - offset, max_len);
6342 	} else {
6343 		len = em->len - offset;
6344 	}
6345 
6346 	io_geom->len = len;
6347 	io_geom->offset = offset;
6348 	io_geom->stripe_len = stripe_len;
6349 	io_geom->stripe_nr = stripe_nr;
6350 	io_geom->stripe_offset = stripe_offset;
6351 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6352 
6353 	return 0;
6354 }
6355 
6356 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6357 		          u32 stripe_index, u64 stripe_offset, u64 stripe_nr)
6358 {
6359 	dst->dev = map->stripes[stripe_index].dev;
6360 	dst->physical = map->stripes[stripe_index].physical +
6361 			stripe_offset + stripe_nr * map->stripe_len;
6362 }
6363 
6364 int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6365 		      u64 logical, u64 *length,
6366 		      struct btrfs_io_context **bioc_ret,
6367 		      struct btrfs_io_stripe *smap, int *mirror_num_ret,
6368 		      int need_raid_map)
6369 {
6370 	struct extent_map *em;
6371 	struct map_lookup *map;
6372 	u64 stripe_offset;
6373 	u64 stripe_nr;
6374 	u64 stripe_len;
6375 	u32 stripe_index;
6376 	int data_stripes;
6377 	int i;
6378 	int ret = 0;
6379 	int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6380 	int num_stripes;
6381 	int max_errors = 0;
6382 	int tgtdev_indexes = 0;
6383 	struct btrfs_io_context *bioc = NULL;
6384 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6385 	int dev_replace_is_ongoing = 0;
6386 	int num_alloc_stripes;
6387 	int patch_the_first_stripe_for_dev_replace = 0;
6388 	u64 physical_to_patch_in_first_stripe = 0;
6389 	u64 raid56_full_stripe_start = (u64)-1;
6390 	struct btrfs_io_geometry geom;
6391 
6392 	ASSERT(bioc_ret);
6393 	ASSERT(op != BTRFS_MAP_DISCARD);
6394 
6395 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6396 	ASSERT(!IS_ERR(em));
6397 
6398 	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6399 	if (ret < 0)
6400 		return ret;
6401 
6402 	map = em->map_lookup;
6403 
6404 	*length = geom.len;
6405 	stripe_len = geom.stripe_len;
6406 	stripe_nr = geom.stripe_nr;
6407 	stripe_offset = geom.stripe_offset;
6408 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6409 	data_stripes = nr_data_stripes(map);
6410 
6411 	down_read(&dev_replace->rwsem);
6412 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6413 	/*
6414 	 * Hold the semaphore for read during the whole operation, write is
6415 	 * requested at commit time but must wait.
6416 	 */
6417 	if (!dev_replace_is_ongoing)
6418 		up_read(&dev_replace->rwsem);
6419 
6420 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6421 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6422 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6423 						    dev_replace->srcdev->devid,
6424 						    &mirror_num,
6425 					    &physical_to_patch_in_first_stripe);
6426 		if (ret)
6427 			goto out;
6428 		else
6429 			patch_the_first_stripe_for_dev_replace = 1;
6430 	} else if (mirror_num > map->num_stripes) {
6431 		mirror_num = 0;
6432 	}
6433 
6434 	num_stripes = 1;
6435 	stripe_index = 0;
6436 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6437 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6438 				&stripe_index);
6439 		if (!need_full_stripe(op))
6440 			mirror_num = 1;
6441 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6442 		if (need_full_stripe(op))
6443 			num_stripes = map->num_stripes;
6444 		else if (mirror_num)
6445 			stripe_index = mirror_num - 1;
6446 		else {
6447 			stripe_index = find_live_mirror(fs_info, map, 0,
6448 					    dev_replace_is_ongoing);
6449 			mirror_num = stripe_index + 1;
6450 		}
6451 
6452 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6453 		if (need_full_stripe(op)) {
6454 			num_stripes = map->num_stripes;
6455 		} else if (mirror_num) {
6456 			stripe_index = mirror_num - 1;
6457 		} else {
6458 			mirror_num = 1;
6459 		}
6460 
6461 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6462 		u32 factor = map->num_stripes / map->sub_stripes;
6463 
6464 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6465 		stripe_index *= map->sub_stripes;
6466 
6467 		if (need_full_stripe(op))
6468 			num_stripes = map->sub_stripes;
6469 		else if (mirror_num)
6470 			stripe_index += mirror_num - 1;
6471 		else {
6472 			int old_stripe_index = stripe_index;
6473 			stripe_index = find_live_mirror(fs_info, map,
6474 					      stripe_index,
6475 					      dev_replace_is_ongoing);
6476 			mirror_num = stripe_index - old_stripe_index + 1;
6477 		}
6478 
6479 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6480 		ASSERT(map->stripe_len == BTRFS_STRIPE_LEN);
6481 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6482 			/* push stripe_nr back to the start of the full stripe */
6483 			stripe_nr = div64_u64(raid56_full_stripe_start,
6484 					stripe_len * data_stripes);
6485 
6486 			/* RAID[56] write or recovery. Return all stripes */
6487 			num_stripes = map->num_stripes;
6488 			max_errors = btrfs_chunk_max_errors(map);
6489 
6490 			/* Return the length to the full stripe end */
6491 			*length = min(logical + *length,
6492 				      raid56_full_stripe_start + em->start +
6493 				      data_stripes * stripe_len) - logical;
6494 			stripe_index = 0;
6495 			stripe_offset = 0;
6496 		} else {
6497 			/*
6498 			 * Mirror #0 or #1 means the original data block.
6499 			 * Mirror #2 is RAID5 parity block.
6500 			 * Mirror #3 is RAID6 Q block.
6501 			 */
6502 			stripe_nr = div_u64_rem(stripe_nr,
6503 					data_stripes, &stripe_index);
6504 			if (mirror_num > 1)
6505 				stripe_index = data_stripes + mirror_num - 2;
6506 
6507 			/* We distribute the parity blocks across stripes */
6508 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6509 					&stripe_index);
6510 			if (!need_full_stripe(op) && mirror_num <= 1)
6511 				mirror_num = 1;
6512 		}
6513 	} else {
6514 		/*
6515 		 * after this, stripe_nr is the number of stripes on this
6516 		 * device we have to walk to find the data, and stripe_index is
6517 		 * the number of our device in the stripe array
6518 		 */
6519 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6520 				&stripe_index);
6521 		mirror_num = stripe_index + 1;
6522 	}
6523 	if (stripe_index >= map->num_stripes) {
6524 		btrfs_crit(fs_info,
6525 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6526 			   stripe_index, map->num_stripes);
6527 		ret = -EINVAL;
6528 		goto out;
6529 	}
6530 
6531 	num_alloc_stripes = num_stripes;
6532 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6533 		if (op == BTRFS_MAP_WRITE)
6534 			num_alloc_stripes <<= 1;
6535 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6536 			num_alloc_stripes++;
6537 		tgtdev_indexes = num_stripes;
6538 	}
6539 
6540 	/*
6541 	 * If this I/O maps to a single device, try to return the device and
6542 	 * physical block information on the stack instead of allocating an
6543 	 * I/O context structure.
6544 	 */
6545 	if (smap && num_alloc_stripes == 1 &&
6546 	    !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6547 	    (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6548 	     !dev_replace->tgtdev)) {
6549 		if (patch_the_first_stripe_for_dev_replace) {
6550 			smap->dev = dev_replace->tgtdev;
6551 			smap->physical = physical_to_patch_in_first_stripe;
6552 			*mirror_num_ret = map->num_stripes + 1;
6553 		} else {
6554 			set_io_stripe(smap, map, stripe_index, stripe_offset,
6555 				      stripe_nr);
6556 			*mirror_num_ret = mirror_num;
6557 		}
6558 		*bioc_ret = NULL;
6559 		ret = 0;
6560 		goto out;
6561 	}
6562 
6563 	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6564 	if (!bioc) {
6565 		ret = -ENOMEM;
6566 		goto out;
6567 	}
6568 
6569 	for (i = 0; i < num_stripes; i++) {
6570 		set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset,
6571 			      stripe_nr);
6572 		stripe_index++;
6573 	}
6574 
6575 	/* Build raid_map */
6576 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6577 	    (need_full_stripe(op) || mirror_num > 1)) {
6578 		u64 tmp;
6579 		unsigned rot;
6580 
6581 		/* Work out the disk rotation on this stripe-set */
6582 		div_u64_rem(stripe_nr, num_stripes, &rot);
6583 
6584 		/* Fill in the logical address of each stripe */
6585 		tmp = stripe_nr * data_stripes;
6586 		for (i = 0; i < data_stripes; i++)
6587 			bioc->raid_map[(i + rot) % num_stripes] =
6588 				em->start + (tmp + i) * map->stripe_len;
6589 
6590 		bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6591 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6592 			bioc->raid_map[(i + rot + 1) % num_stripes] =
6593 				RAID6_Q_STRIPE;
6594 
6595 		sort_parity_stripes(bioc, num_stripes);
6596 	}
6597 
6598 	if (need_full_stripe(op))
6599 		max_errors = btrfs_chunk_max_errors(map);
6600 
6601 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6602 	    need_full_stripe(op)) {
6603 		handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6604 					  &num_stripes, &max_errors);
6605 	}
6606 
6607 	*bioc_ret = bioc;
6608 	bioc->map_type = map->type;
6609 	bioc->num_stripes = num_stripes;
6610 	bioc->max_errors = max_errors;
6611 	bioc->mirror_num = mirror_num;
6612 
6613 	/*
6614 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6615 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6616 	 * available as a mirror
6617 	 */
6618 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6619 		WARN_ON(num_stripes > 1);
6620 		bioc->stripes[0].dev = dev_replace->tgtdev;
6621 		bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6622 		bioc->mirror_num = map->num_stripes + 1;
6623 	}
6624 out:
6625 	if (dev_replace_is_ongoing) {
6626 		lockdep_assert_held(&dev_replace->rwsem);
6627 		/* Unlock and let waiting writers proceed */
6628 		up_read(&dev_replace->rwsem);
6629 	}
6630 	free_extent_map(em);
6631 	return ret;
6632 }
6633 
6634 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6635 		      u64 logical, u64 *length,
6636 		      struct btrfs_io_context **bioc_ret, int mirror_num)
6637 {
6638 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6639 				 NULL, &mirror_num, 0);
6640 }
6641 
6642 /* For Scrub/replace */
6643 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6644 		     u64 logical, u64 *length,
6645 		     struct btrfs_io_context **bioc_ret)
6646 {
6647 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6648 				 NULL, NULL, 1);
6649 }
6650 
6651 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6652 				      const struct btrfs_fs_devices *fs_devices)
6653 {
6654 	if (args->fsid == NULL)
6655 		return true;
6656 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6657 		return true;
6658 	return false;
6659 }
6660 
6661 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6662 				  const struct btrfs_device *device)
6663 {
6664 	if (args->missing) {
6665 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6666 		    !device->bdev)
6667 			return true;
6668 		return false;
6669 	}
6670 
6671 	if (device->devid != args->devid)
6672 		return false;
6673 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6674 		return false;
6675 	return true;
6676 }
6677 
6678 /*
6679  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6680  * return NULL.
6681  *
6682  * If devid and uuid are both specified, the match must be exact, otherwise
6683  * only devid is used.
6684  */
6685 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6686 				       const struct btrfs_dev_lookup_args *args)
6687 {
6688 	struct btrfs_device *device;
6689 	struct btrfs_fs_devices *seed_devs;
6690 
6691 	if (dev_args_match_fs_devices(args, fs_devices)) {
6692 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6693 			if (dev_args_match_device(args, device))
6694 				return device;
6695 		}
6696 	}
6697 
6698 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6699 		if (!dev_args_match_fs_devices(args, seed_devs))
6700 			continue;
6701 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6702 			if (dev_args_match_device(args, device))
6703 				return device;
6704 		}
6705 	}
6706 
6707 	return NULL;
6708 }
6709 
6710 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6711 					    u64 devid, u8 *dev_uuid)
6712 {
6713 	struct btrfs_device *device;
6714 	unsigned int nofs_flag;
6715 
6716 	/*
6717 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6718 	 * allocation, however we don't want to change btrfs_alloc_device() to
6719 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6720 	 * places.
6721 	 */
6722 
6723 	nofs_flag = memalloc_nofs_save();
6724 	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6725 	memalloc_nofs_restore(nofs_flag);
6726 	if (IS_ERR(device))
6727 		return device;
6728 
6729 	list_add(&device->dev_list, &fs_devices->devices);
6730 	device->fs_devices = fs_devices;
6731 	fs_devices->num_devices++;
6732 
6733 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6734 	fs_devices->missing_devices++;
6735 
6736 	return device;
6737 }
6738 
6739 /*
6740  * Allocate new device struct, set up devid and UUID.
6741  *
6742  * @fs_info:	used only for generating a new devid, can be NULL if
6743  *		devid is provided (i.e. @devid != NULL).
6744  * @devid:	a pointer to devid for this device.  If NULL a new devid
6745  *		is generated.
6746  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6747  *		is generated.
6748  * @path:	a pointer to device path if available, NULL otherwise.
6749  *
6750  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6751  * on error.  Returned struct is not linked onto any lists and must be
6752  * destroyed with btrfs_free_device.
6753  */
6754 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6755 					const u64 *devid, const u8 *uuid,
6756 					const char *path)
6757 {
6758 	struct btrfs_device *dev;
6759 	u64 tmp;
6760 
6761 	if (WARN_ON(!devid && !fs_info))
6762 		return ERR_PTR(-EINVAL);
6763 
6764 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6765 	if (!dev)
6766 		return ERR_PTR(-ENOMEM);
6767 
6768 	INIT_LIST_HEAD(&dev->dev_list);
6769 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6770 	INIT_LIST_HEAD(&dev->post_commit_list);
6771 
6772 	atomic_set(&dev->dev_stats_ccnt, 0);
6773 	btrfs_device_data_ordered_init(dev);
6774 	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6775 
6776 	if (devid)
6777 		tmp = *devid;
6778 	else {
6779 		int ret;
6780 
6781 		ret = find_next_devid(fs_info, &tmp);
6782 		if (ret) {
6783 			btrfs_free_device(dev);
6784 			return ERR_PTR(ret);
6785 		}
6786 	}
6787 	dev->devid = tmp;
6788 
6789 	if (uuid)
6790 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6791 	else
6792 		generate_random_uuid(dev->uuid);
6793 
6794 	if (path) {
6795 		struct rcu_string *name;
6796 
6797 		name = rcu_string_strdup(path, GFP_KERNEL);
6798 		if (!name) {
6799 			btrfs_free_device(dev);
6800 			return ERR_PTR(-ENOMEM);
6801 		}
6802 		rcu_assign_pointer(dev->name, name);
6803 	}
6804 
6805 	return dev;
6806 }
6807 
6808 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6809 					u64 devid, u8 *uuid, bool error)
6810 {
6811 	if (error)
6812 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6813 			      devid, uuid);
6814 	else
6815 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6816 			      devid, uuid);
6817 }
6818 
6819 u64 btrfs_calc_stripe_length(const struct extent_map *em)
6820 {
6821 	const struct map_lookup *map = em->map_lookup;
6822 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6823 
6824 	return div_u64(em->len, data_stripes);
6825 }
6826 
6827 #if BITS_PER_LONG == 32
6828 /*
6829  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6830  * can't be accessed on 32bit systems.
6831  *
6832  * This function do mount time check to reject the fs if it already has
6833  * metadata chunk beyond that limit.
6834  */
6835 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6836 				  u64 logical, u64 length, u64 type)
6837 {
6838 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6839 		return 0;
6840 
6841 	if (logical + length < MAX_LFS_FILESIZE)
6842 		return 0;
6843 
6844 	btrfs_err_32bit_limit(fs_info);
6845 	return -EOVERFLOW;
6846 }
6847 
6848 /*
6849  * This is to give early warning for any metadata chunk reaching
6850  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6851  * Although we can still access the metadata, it's not going to be possible
6852  * once the limit is reached.
6853  */
6854 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6855 				  u64 logical, u64 length, u64 type)
6856 {
6857 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6858 		return;
6859 
6860 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6861 		return;
6862 
6863 	btrfs_warn_32bit_limit(fs_info);
6864 }
6865 #endif
6866 
6867 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6868 						  u64 devid, u8 *uuid)
6869 {
6870 	struct btrfs_device *dev;
6871 
6872 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6873 		btrfs_report_missing_device(fs_info, devid, uuid, true);
6874 		return ERR_PTR(-ENOENT);
6875 	}
6876 
6877 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6878 	if (IS_ERR(dev)) {
6879 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6880 			  devid, PTR_ERR(dev));
6881 		return dev;
6882 	}
6883 	btrfs_report_missing_device(fs_info, devid, uuid, false);
6884 
6885 	return dev;
6886 }
6887 
6888 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6889 			  struct btrfs_chunk *chunk)
6890 {
6891 	BTRFS_DEV_LOOKUP_ARGS(args);
6892 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6893 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6894 	struct map_lookup *map;
6895 	struct extent_map *em;
6896 	u64 logical;
6897 	u64 length;
6898 	u64 devid;
6899 	u64 type;
6900 	u8 uuid[BTRFS_UUID_SIZE];
6901 	int index;
6902 	int num_stripes;
6903 	int ret;
6904 	int i;
6905 
6906 	logical = key->offset;
6907 	length = btrfs_chunk_length(leaf, chunk);
6908 	type = btrfs_chunk_type(leaf, chunk);
6909 	index = btrfs_bg_flags_to_raid_index(type);
6910 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6911 
6912 #if BITS_PER_LONG == 32
6913 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6914 	if (ret < 0)
6915 		return ret;
6916 	warn_32bit_meta_chunk(fs_info, logical, length, type);
6917 #endif
6918 
6919 	/*
6920 	 * Only need to verify chunk item if we're reading from sys chunk array,
6921 	 * as chunk item in tree block is already verified by tree-checker.
6922 	 */
6923 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6924 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6925 		if (ret)
6926 			return ret;
6927 	}
6928 
6929 	read_lock(&map_tree->lock);
6930 	em = lookup_extent_mapping(map_tree, logical, 1);
6931 	read_unlock(&map_tree->lock);
6932 
6933 	/* already mapped? */
6934 	if (em && em->start <= logical && em->start + em->len > logical) {
6935 		free_extent_map(em);
6936 		return 0;
6937 	} else if (em) {
6938 		free_extent_map(em);
6939 	}
6940 
6941 	em = alloc_extent_map();
6942 	if (!em)
6943 		return -ENOMEM;
6944 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6945 	if (!map) {
6946 		free_extent_map(em);
6947 		return -ENOMEM;
6948 	}
6949 
6950 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6951 	em->map_lookup = map;
6952 	em->start = logical;
6953 	em->len = length;
6954 	em->orig_start = 0;
6955 	em->block_start = 0;
6956 	em->block_len = em->len;
6957 
6958 	map->num_stripes = num_stripes;
6959 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6960 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6961 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6962 	map->type = type;
6963 	/*
6964 	 * We can't use the sub_stripes value, as for profiles other than
6965 	 * RAID10, they may have 0 as sub_stripes for filesystems created by
6966 	 * older mkfs (<v5.4).
6967 	 * In that case, it can cause divide-by-zero errors later.
6968 	 * Since currently sub_stripes is fixed for each profile, let's
6969 	 * use the trusted value instead.
6970 	 */
6971 	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6972 	map->verified_stripes = 0;
6973 	em->orig_block_len = btrfs_calc_stripe_length(em);
6974 	for (i = 0; i < num_stripes; i++) {
6975 		map->stripes[i].physical =
6976 			btrfs_stripe_offset_nr(leaf, chunk, i);
6977 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6978 		args.devid = devid;
6979 		read_extent_buffer(leaf, uuid, (unsigned long)
6980 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6981 				   BTRFS_UUID_SIZE);
6982 		args.uuid = uuid;
6983 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6984 		if (!map->stripes[i].dev) {
6985 			map->stripes[i].dev = handle_missing_device(fs_info,
6986 								    devid, uuid);
6987 			if (IS_ERR(map->stripes[i].dev)) {
6988 				ret = PTR_ERR(map->stripes[i].dev);
6989 				free_extent_map(em);
6990 				return ret;
6991 			}
6992 		}
6993 
6994 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6995 				&(map->stripes[i].dev->dev_state));
6996 	}
6997 
6998 	write_lock(&map_tree->lock);
6999 	ret = add_extent_mapping(map_tree, em, 0);
7000 	write_unlock(&map_tree->lock);
7001 	if (ret < 0) {
7002 		btrfs_err(fs_info,
7003 			  "failed to add chunk map, start=%llu len=%llu: %d",
7004 			  em->start, em->len, ret);
7005 	}
7006 	free_extent_map(em);
7007 
7008 	return ret;
7009 }
7010 
7011 static void fill_device_from_item(struct extent_buffer *leaf,
7012 				 struct btrfs_dev_item *dev_item,
7013 				 struct btrfs_device *device)
7014 {
7015 	unsigned long ptr;
7016 
7017 	device->devid = btrfs_device_id(leaf, dev_item);
7018 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7019 	device->total_bytes = device->disk_total_bytes;
7020 	device->commit_total_bytes = device->disk_total_bytes;
7021 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7022 	device->commit_bytes_used = device->bytes_used;
7023 	device->type = btrfs_device_type(leaf, dev_item);
7024 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7025 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7026 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7027 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7028 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7029 
7030 	ptr = btrfs_device_uuid(dev_item);
7031 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7032 }
7033 
7034 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7035 						  u8 *fsid)
7036 {
7037 	struct btrfs_fs_devices *fs_devices;
7038 	int ret;
7039 
7040 	lockdep_assert_held(&uuid_mutex);
7041 	ASSERT(fsid);
7042 
7043 	/* This will match only for multi-device seed fs */
7044 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7045 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7046 			return fs_devices;
7047 
7048 
7049 	fs_devices = find_fsid(fsid, NULL);
7050 	if (!fs_devices) {
7051 		if (!btrfs_test_opt(fs_info, DEGRADED))
7052 			return ERR_PTR(-ENOENT);
7053 
7054 		fs_devices = alloc_fs_devices(fsid, NULL);
7055 		if (IS_ERR(fs_devices))
7056 			return fs_devices;
7057 
7058 		fs_devices->seeding = true;
7059 		fs_devices->opened = 1;
7060 		return fs_devices;
7061 	}
7062 
7063 	/*
7064 	 * Upon first call for a seed fs fsid, just create a private copy of the
7065 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7066 	 */
7067 	fs_devices = clone_fs_devices(fs_devices);
7068 	if (IS_ERR(fs_devices))
7069 		return fs_devices;
7070 
7071 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7072 	if (ret) {
7073 		free_fs_devices(fs_devices);
7074 		return ERR_PTR(ret);
7075 	}
7076 
7077 	if (!fs_devices->seeding) {
7078 		close_fs_devices(fs_devices);
7079 		free_fs_devices(fs_devices);
7080 		return ERR_PTR(-EINVAL);
7081 	}
7082 
7083 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7084 
7085 	return fs_devices;
7086 }
7087 
7088 static int read_one_dev(struct extent_buffer *leaf,
7089 			struct btrfs_dev_item *dev_item)
7090 {
7091 	BTRFS_DEV_LOOKUP_ARGS(args);
7092 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7093 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7094 	struct btrfs_device *device;
7095 	u64 devid;
7096 	int ret;
7097 	u8 fs_uuid[BTRFS_FSID_SIZE];
7098 	u8 dev_uuid[BTRFS_UUID_SIZE];
7099 
7100 	devid = btrfs_device_id(leaf, dev_item);
7101 	args.devid = devid;
7102 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7103 			   BTRFS_UUID_SIZE);
7104 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7105 			   BTRFS_FSID_SIZE);
7106 	args.uuid = dev_uuid;
7107 	args.fsid = fs_uuid;
7108 
7109 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7110 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7111 		if (IS_ERR(fs_devices))
7112 			return PTR_ERR(fs_devices);
7113 	}
7114 
7115 	device = btrfs_find_device(fs_info->fs_devices, &args);
7116 	if (!device) {
7117 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7118 			btrfs_report_missing_device(fs_info, devid,
7119 							dev_uuid, true);
7120 			return -ENOENT;
7121 		}
7122 
7123 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7124 		if (IS_ERR(device)) {
7125 			btrfs_err(fs_info,
7126 				"failed to add missing dev %llu: %ld",
7127 				devid, PTR_ERR(device));
7128 			return PTR_ERR(device);
7129 		}
7130 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7131 	} else {
7132 		if (!device->bdev) {
7133 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7134 				btrfs_report_missing_device(fs_info,
7135 						devid, dev_uuid, true);
7136 				return -ENOENT;
7137 			}
7138 			btrfs_report_missing_device(fs_info, devid,
7139 							dev_uuid, false);
7140 		}
7141 
7142 		if (!device->bdev &&
7143 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7144 			/*
7145 			 * this happens when a device that was properly setup
7146 			 * in the device info lists suddenly goes bad.
7147 			 * device->bdev is NULL, and so we have to set
7148 			 * device->missing to one here
7149 			 */
7150 			device->fs_devices->missing_devices++;
7151 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7152 		}
7153 
7154 		/* Move the device to its own fs_devices */
7155 		if (device->fs_devices != fs_devices) {
7156 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7157 							&device->dev_state));
7158 
7159 			list_move(&device->dev_list, &fs_devices->devices);
7160 			device->fs_devices->num_devices--;
7161 			fs_devices->num_devices++;
7162 
7163 			device->fs_devices->missing_devices--;
7164 			fs_devices->missing_devices++;
7165 
7166 			device->fs_devices = fs_devices;
7167 		}
7168 	}
7169 
7170 	if (device->fs_devices != fs_info->fs_devices) {
7171 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7172 		if (device->generation !=
7173 		    btrfs_device_generation(leaf, dev_item))
7174 			return -EINVAL;
7175 	}
7176 
7177 	fill_device_from_item(leaf, dev_item, device);
7178 	if (device->bdev) {
7179 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7180 
7181 		if (device->total_bytes > max_total_bytes) {
7182 			btrfs_err(fs_info,
7183 			"device total_bytes should be at most %llu but found %llu",
7184 				  max_total_bytes, device->total_bytes);
7185 			return -EINVAL;
7186 		}
7187 	}
7188 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7189 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7190 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7191 		device->fs_devices->total_rw_bytes += device->total_bytes;
7192 		atomic64_add(device->total_bytes - device->bytes_used,
7193 				&fs_info->free_chunk_space);
7194 	}
7195 	ret = 0;
7196 	return ret;
7197 }
7198 
7199 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7200 {
7201 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7202 	struct extent_buffer *sb;
7203 	struct btrfs_disk_key *disk_key;
7204 	struct btrfs_chunk *chunk;
7205 	u8 *array_ptr;
7206 	unsigned long sb_array_offset;
7207 	int ret = 0;
7208 	u32 num_stripes;
7209 	u32 array_size;
7210 	u32 len = 0;
7211 	u32 cur_offset;
7212 	u64 type;
7213 	struct btrfs_key key;
7214 
7215 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7216 
7217 	/*
7218 	 * We allocated a dummy extent, just to use extent buffer accessors.
7219 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7220 	 * that's fine, we will not go beyond system chunk array anyway.
7221 	 */
7222 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7223 	if (!sb)
7224 		return -ENOMEM;
7225 	set_extent_buffer_uptodate(sb);
7226 
7227 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7228 	array_size = btrfs_super_sys_array_size(super_copy);
7229 
7230 	array_ptr = super_copy->sys_chunk_array;
7231 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7232 	cur_offset = 0;
7233 
7234 	while (cur_offset < array_size) {
7235 		disk_key = (struct btrfs_disk_key *)array_ptr;
7236 		len = sizeof(*disk_key);
7237 		if (cur_offset + len > array_size)
7238 			goto out_short_read;
7239 
7240 		btrfs_disk_key_to_cpu(&key, disk_key);
7241 
7242 		array_ptr += len;
7243 		sb_array_offset += len;
7244 		cur_offset += len;
7245 
7246 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7247 			btrfs_err(fs_info,
7248 			    "unexpected item type %u in sys_array at offset %u",
7249 				  (u32)key.type, cur_offset);
7250 			ret = -EIO;
7251 			break;
7252 		}
7253 
7254 		chunk = (struct btrfs_chunk *)sb_array_offset;
7255 		/*
7256 		 * At least one btrfs_chunk with one stripe must be present,
7257 		 * exact stripe count check comes afterwards
7258 		 */
7259 		len = btrfs_chunk_item_size(1);
7260 		if (cur_offset + len > array_size)
7261 			goto out_short_read;
7262 
7263 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7264 		if (!num_stripes) {
7265 			btrfs_err(fs_info,
7266 			"invalid number of stripes %u in sys_array at offset %u",
7267 				  num_stripes, cur_offset);
7268 			ret = -EIO;
7269 			break;
7270 		}
7271 
7272 		type = btrfs_chunk_type(sb, chunk);
7273 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7274 			btrfs_err(fs_info,
7275 			"invalid chunk type %llu in sys_array at offset %u",
7276 				  type, cur_offset);
7277 			ret = -EIO;
7278 			break;
7279 		}
7280 
7281 		len = btrfs_chunk_item_size(num_stripes);
7282 		if (cur_offset + len > array_size)
7283 			goto out_short_read;
7284 
7285 		ret = read_one_chunk(&key, sb, chunk);
7286 		if (ret)
7287 			break;
7288 
7289 		array_ptr += len;
7290 		sb_array_offset += len;
7291 		cur_offset += len;
7292 	}
7293 	clear_extent_buffer_uptodate(sb);
7294 	free_extent_buffer_stale(sb);
7295 	return ret;
7296 
7297 out_short_read:
7298 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7299 			len, cur_offset);
7300 	clear_extent_buffer_uptodate(sb);
7301 	free_extent_buffer_stale(sb);
7302 	return -EIO;
7303 }
7304 
7305 /*
7306  * Check if all chunks in the fs are OK for read-write degraded mount
7307  *
7308  * If the @failing_dev is specified, it's accounted as missing.
7309  *
7310  * Return true if all chunks meet the minimal RW mount requirements.
7311  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7312  */
7313 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7314 					struct btrfs_device *failing_dev)
7315 {
7316 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7317 	struct extent_map *em;
7318 	u64 next_start = 0;
7319 	bool ret = true;
7320 
7321 	read_lock(&map_tree->lock);
7322 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7323 	read_unlock(&map_tree->lock);
7324 	/* No chunk at all? Return false anyway */
7325 	if (!em) {
7326 		ret = false;
7327 		goto out;
7328 	}
7329 	while (em) {
7330 		struct map_lookup *map;
7331 		int missing = 0;
7332 		int max_tolerated;
7333 		int i;
7334 
7335 		map = em->map_lookup;
7336 		max_tolerated =
7337 			btrfs_get_num_tolerated_disk_barrier_failures(
7338 					map->type);
7339 		for (i = 0; i < map->num_stripes; i++) {
7340 			struct btrfs_device *dev = map->stripes[i].dev;
7341 
7342 			if (!dev || !dev->bdev ||
7343 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7344 			    dev->last_flush_error)
7345 				missing++;
7346 			else if (failing_dev && failing_dev == dev)
7347 				missing++;
7348 		}
7349 		if (missing > max_tolerated) {
7350 			if (!failing_dev)
7351 				btrfs_warn(fs_info,
7352 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7353 				   em->start, missing, max_tolerated);
7354 			free_extent_map(em);
7355 			ret = false;
7356 			goto out;
7357 		}
7358 		next_start = extent_map_end(em);
7359 		free_extent_map(em);
7360 
7361 		read_lock(&map_tree->lock);
7362 		em = lookup_extent_mapping(map_tree, next_start,
7363 					   (u64)(-1) - next_start);
7364 		read_unlock(&map_tree->lock);
7365 	}
7366 out:
7367 	return ret;
7368 }
7369 
7370 static void readahead_tree_node_children(struct extent_buffer *node)
7371 {
7372 	int i;
7373 	const int nr_items = btrfs_header_nritems(node);
7374 
7375 	for (i = 0; i < nr_items; i++)
7376 		btrfs_readahead_node_child(node, i);
7377 }
7378 
7379 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7380 {
7381 	struct btrfs_root *root = fs_info->chunk_root;
7382 	struct btrfs_path *path;
7383 	struct extent_buffer *leaf;
7384 	struct btrfs_key key;
7385 	struct btrfs_key found_key;
7386 	int ret;
7387 	int slot;
7388 	int iter_ret = 0;
7389 	u64 total_dev = 0;
7390 	u64 last_ra_node = 0;
7391 
7392 	path = btrfs_alloc_path();
7393 	if (!path)
7394 		return -ENOMEM;
7395 
7396 	/*
7397 	 * uuid_mutex is needed only if we are mounting a sprout FS
7398 	 * otherwise we don't need it.
7399 	 */
7400 	mutex_lock(&uuid_mutex);
7401 
7402 	/*
7403 	 * It is possible for mount and umount to race in such a way that
7404 	 * we execute this code path, but open_fs_devices failed to clear
7405 	 * total_rw_bytes. We certainly want it cleared before reading the
7406 	 * device items, so clear it here.
7407 	 */
7408 	fs_info->fs_devices->total_rw_bytes = 0;
7409 
7410 	/*
7411 	 * Lockdep complains about possible circular locking dependency between
7412 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7413 	 * used for freeze procection of a fs (struct super_block.s_writers),
7414 	 * which we take when starting a transaction, and extent buffers of the
7415 	 * chunk tree if we call read_one_dev() while holding a lock on an
7416 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7417 	 * and at this point there can't be any concurrent task modifying the
7418 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7419 	 */
7420 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7421 	path->skip_locking = 1;
7422 
7423 	/*
7424 	 * Read all device items, and then all the chunk items. All
7425 	 * device items are found before any chunk item (their object id
7426 	 * is smaller than the lowest possible object id for a chunk
7427 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7428 	 */
7429 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7430 	key.offset = 0;
7431 	key.type = 0;
7432 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7433 		struct extent_buffer *node = path->nodes[1];
7434 
7435 		leaf = path->nodes[0];
7436 		slot = path->slots[0];
7437 
7438 		if (node) {
7439 			if (last_ra_node != node->start) {
7440 				readahead_tree_node_children(node);
7441 				last_ra_node = node->start;
7442 			}
7443 		}
7444 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7445 			struct btrfs_dev_item *dev_item;
7446 			dev_item = btrfs_item_ptr(leaf, slot,
7447 						  struct btrfs_dev_item);
7448 			ret = read_one_dev(leaf, dev_item);
7449 			if (ret)
7450 				goto error;
7451 			total_dev++;
7452 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7453 			struct btrfs_chunk *chunk;
7454 
7455 			/*
7456 			 * We are only called at mount time, so no need to take
7457 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7458 			 * we always lock first fs_info->chunk_mutex before
7459 			 * acquiring any locks on the chunk tree. This is a
7460 			 * requirement for chunk allocation, see the comment on
7461 			 * top of btrfs_chunk_alloc() for details.
7462 			 */
7463 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7464 			ret = read_one_chunk(&found_key, leaf, chunk);
7465 			if (ret)
7466 				goto error;
7467 		}
7468 	}
7469 	/* Catch error found during iteration */
7470 	if (iter_ret < 0) {
7471 		ret = iter_ret;
7472 		goto error;
7473 	}
7474 
7475 	/*
7476 	 * After loading chunk tree, we've got all device information,
7477 	 * do another round of validation checks.
7478 	 */
7479 	if (total_dev != fs_info->fs_devices->total_devices) {
7480 		btrfs_warn(fs_info,
7481 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7482 			  btrfs_super_num_devices(fs_info->super_copy),
7483 			  total_dev);
7484 		fs_info->fs_devices->total_devices = total_dev;
7485 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7486 	}
7487 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7488 	    fs_info->fs_devices->total_rw_bytes) {
7489 		btrfs_err(fs_info,
7490 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7491 			  btrfs_super_total_bytes(fs_info->super_copy),
7492 			  fs_info->fs_devices->total_rw_bytes);
7493 		ret = -EINVAL;
7494 		goto error;
7495 	}
7496 	ret = 0;
7497 error:
7498 	mutex_unlock(&uuid_mutex);
7499 
7500 	btrfs_free_path(path);
7501 	return ret;
7502 }
7503 
7504 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7505 {
7506 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7507 	struct btrfs_device *device;
7508 	int ret = 0;
7509 
7510 	fs_devices->fs_info = fs_info;
7511 
7512 	mutex_lock(&fs_devices->device_list_mutex);
7513 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7514 		device->fs_info = fs_info;
7515 
7516 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7517 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7518 			device->fs_info = fs_info;
7519 			ret = btrfs_get_dev_zone_info(device, false);
7520 			if (ret)
7521 				break;
7522 		}
7523 
7524 		seed_devs->fs_info = fs_info;
7525 	}
7526 	mutex_unlock(&fs_devices->device_list_mutex);
7527 
7528 	return ret;
7529 }
7530 
7531 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7532 				 const struct btrfs_dev_stats_item *ptr,
7533 				 int index)
7534 {
7535 	u64 val;
7536 
7537 	read_extent_buffer(eb, &val,
7538 			   offsetof(struct btrfs_dev_stats_item, values) +
7539 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7540 			   sizeof(val));
7541 	return val;
7542 }
7543 
7544 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7545 				      struct btrfs_dev_stats_item *ptr,
7546 				      int index, u64 val)
7547 {
7548 	write_extent_buffer(eb, &val,
7549 			    offsetof(struct btrfs_dev_stats_item, values) +
7550 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7551 			    sizeof(val));
7552 }
7553 
7554 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7555 				       struct btrfs_path *path)
7556 {
7557 	struct btrfs_dev_stats_item *ptr;
7558 	struct extent_buffer *eb;
7559 	struct btrfs_key key;
7560 	int item_size;
7561 	int i, ret, slot;
7562 
7563 	if (!device->fs_info->dev_root)
7564 		return 0;
7565 
7566 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7567 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7568 	key.offset = device->devid;
7569 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7570 	if (ret) {
7571 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7572 			btrfs_dev_stat_set(device, i, 0);
7573 		device->dev_stats_valid = 1;
7574 		btrfs_release_path(path);
7575 		return ret < 0 ? ret : 0;
7576 	}
7577 	slot = path->slots[0];
7578 	eb = path->nodes[0];
7579 	item_size = btrfs_item_size(eb, slot);
7580 
7581 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7582 
7583 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7584 		if (item_size >= (1 + i) * sizeof(__le64))
7585 			btrfs_dev_stat_set(device, i,
7586 					   btrfs_dev_stats_value(eb, ptr, i));
7587 		else
7588 			btrfs_dev_stat_set(device, i, 0);
7589 	}
7590 
7591 	device->dev_stats_valid = 1;
7592 	btrfs_dev_stat_print_on_load(device);
7593 	btrfs_release_path(path);
7594 
7595 	return 0;
7596 }
7597 
7598 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7599 {
7600 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7601 	struct btrfs_device *device;
7602 	struct btrfs_path *path = NULL;
7603 	int ret = 0;
7604 
7605 	path = btrfs_alloc_path();
7606 	if (!path)
7607 		return -ENOMEM;
7608 
7609 	mutex_lock(&fs_devices->device_list_mutex);
7610 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7611 		ret = btrfs_device_init_dev_stats(device, path);
7612 		if (ret)
7613 			goto out;
7614 	}
7615 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7616 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7617 			ret = btrfs_device_init_dev_stats(device, path);
7618 			if (ret)
7619 				goto out;
7620 		}
7621 	}
7622 out:
7623 	mutex_unlock(&fs_devices->device_list_mutex);
7624 
7625 	btrfs_free_path(path);
7626 	return ret;
7627 }
7628 
7629 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7630 				struct btrfs_device *device)
7631 {
7632 	struct btrfs_fs_info *fs_info = trans->fs_info;
7633 	struct btrfs_root *dev_root = fs_info->dev_root;
7634 	struct btrfs_path *path;
7635 	struct btrfs_key key;
7636 	struct extent_buffer *eb;
7637 	struct btrfs_dev_stats_item *ptr;
7638 	int ret;
7639 	int i;
7640 
7641 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7642 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7643 	key.offset = device->devid;
7644 
7645 	path = btrfs_alloc_path();
7646 	if (!path)
7647 		return -ENOMEM;
7648 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7649 	if (ret < 0) {
7650 		btrfs_warn_in_rcu(fs_info,
7651 			"error %d while searching for dev_stats item for device %s",
7652 				  ret, btrfs_dev_name(device));
7653 		goto out;
7654 	}
7655 
7656 	if (ret == 0 &&
7657 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7658 		/* need to delete old one and insert a new one */
7659 		ret = btrfs_del_item(trans, dev_root, path);
7660 		if (ret != 0) {
7661 			btrfs_warn_in_rcu(fs_info,
7662 				"delete too small dev_stats item for device %s failed %d",
7663 					  btrfs_dev_name(device), ret);
7664 			goto out;
7665 		}
7666 		ret = 1;
7667 	}
7668 
7669 	if (ret == 1) {
7670 		/* need to insert a new item */
7671 		btrfs_release_path(path);
7672 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7673 					      &key, sizeof(*ptr));
7674 		if (ret < 0) {
7675 			btrfs_warn_in_rcu(fs_info,
7676 				"insert dev_stats item for device %s failed %d",
7677 				btrfs_dev_name(device), ret);
7678 			goto out;
7679 		}
7680 	}
7681 
7682 	eb = path->nodes[0];
7683 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7684 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7685 		btrfs_set_dev_stats_value(eb, ptr, i,
7686 					  btrfs_dev_stat_read(device, i));
7687 	btrfs_mark_buffer_dirty(eb);
7688 
7689 out:
7690 	btrfs_free_path(path);
7691 	return ret;
7692 }
7693 
7694 /*
7695  * called from commit_transaction. Writes all changed device stats to disk.
7696  */
7697 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7698 {
7699 	struct btrfs_fs_info *fs_info = trans->fs_info;
7700 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7701 	struct btrfs_device *device;
7702 	int stats_cnt;
7703 	int ret = 0;
7704 
7705 	mutex_lock(&fs_devices->device_list_mutex);
7706 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7707 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7708 		if (!device->dev_stats_valid || stats_cnt == 0)
7709 			continue;
7710 
7711 
7712 		/*
7713 		 * There is a LOAD-LOAD control dependency between the value of
7714 		 * dev_stats_ccnt and updating the on-disk values which requires
7715 		 * reading the in-memory counters. Such control dependencies
7716 		 * require explicit read memory barriers.
7717 		 *
7718 		 * This memory barriers pairs with smp_mb__before_atomic in
7719 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7720 		 * barrier implied by atomic_xchg in
7721 		 * btrfs_dev_stats_read_and_reset
7722 		 */
7723 		smp_rmb();
7724 
7725 		ret = update_dev_stat_item(trans, device);
7726 		if (!ret)
7727 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7728 	}
7729 	mutex_unlock(&fs_devices->device_list_mutex);
7730 
7731 	return ret;
7732 }
7733 
7734 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7735 {
7736 	btrfs_dev_stat_inc(dev, index);
7737 
7738 	if (!dev->dev_stats_valid)
7739 		return;
7740 	btrfs_err_rl_in_rcu(dev->fs_info,
7741 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7742 			   btrfs_dev_name(dev),
7743 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7744 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7745 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7746 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7747 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7748 }
7749 
7750 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7751 {
7752 	int i;
7753 
7754 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7755 		if (btrfs_dev_stat_read(dev, i) != 0)
7756 			break;
7757 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7758 		return; /* all values == 0, suppress message */
7759 
7760 	btrfs_info_in_rcu(dev->fs_info,
7761 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7762 	       btrfs_dev_name(dev),
7763 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7764 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7765 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7766 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7767 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7768 }
7769 
7770 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7771 			struct btrfs_ioctl_get_dev_stats *stats)
7772 {
7773 	BTRFS_DEV_LOOKUP_ARGS(args);
7774 	struct btrfs_device *dev;
7775 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7776 	int i;
7777 
7778 	mutex_lock(&fs_devices->device_list_mutex);
7779 	args.devid = stats->devid;
7780 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7781 	mutex_unlock(&fs_devices->device_list_mutex);
7782 
7783 	if (!dev) {
7784 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7785 		return -ENODEV;
7786 	} else if (!dev->dev_stats_valid) {
7787 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7788 		return -ENODEV;
7789 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7790 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7791 			if (stats->nr_items > i)
7792 				stats->values[i] =
7793 					btrfs_dev_stat_read_and_reset(dev, i);
7794 			else
7795 				btrfs_dev_stat_set(dev, i, 0);
7796 		}
7797 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7798 			   current->comm, task_pid_nr(current));
7799 	} else {
7800 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7801 			if (stats->nr_items > i)
7802 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7803 	}
7804 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7805 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7806 	return 0;
7807 }
7808 
7809 /*
7810  * Update the size and bytes used for each device where it changed.  This is
7811  * delayed since we would otherwise get errors while writing out the
7812  * superblocks.
7813  *
7814  * Must be invoked during transaction commit.
7815  */
7816 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7817 {
7818 	struct btrfs_device *curr, *next;
7819 
7820 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7821 
7822 	if (list_empty(&trans->dev_update_list))
7823 		return;
7824 
7825 	/*
7826 	 * We don't need the device_list_mutex here.  This list is owned by the
7827 	 * transaction and the transaction must complete before the device is
7828 	 * released.
7829 	 */
7830 	mutex_lock(&trans->fs_info->chunk_mutex);
7831 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7832 				 post_commit_list) {
7833 		list_del_init(&curr->post_commit_list);
7834 		curr->commit_total_bytes = curr->disk_total_bytes;
7835 		curr->commit_bytes_used = curr->bytes_used;
7836 	}
7837 	mutex_unlock(&trans->fs_info->chunk_mutex);
7838 }
7839 
7840 /*
7841  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7842  */
7843 int btrfs_bg_type_to_factor(u64 flags)
7844 {
7845 	const int index = btrfs_bg_flags_to_raid_index(flags);
7846 
7847 	return btrfs_raid_array[index].ncopies;
7848 }
7849 
7850 
7851 
7852 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7853 				 u64 chunk_offset, u64 devid,
7854 				 u64 physical_offset, u64 physical_len)
7855 {
7856 	struct btrfs_dev_lookup_args args = { .devid = devid };
7857 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7858 	struct extent_map *em;
7859 	struct map_lookup *map;
7860 	struct btrfs_device *dev;
7861 	u64 stripe_len;
7862 	bool found = false;
7863 	int ret = 0;
7864 	int i;
7865 
7866 	read_lock(&em_tree->lock);
7867 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7868 	read_unlock(&em_tree->lock);
7869 
7870 	if (!em) {
7871 		btrfs_err(fs_info,
7872 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7873 			  physical_offset, devid);
7874 		ret = -EUCLEAN;
7875 		goto out;
7876 	}
7877 
7878 	map = em->map_lookup;
7879 	stripe_len = btrfs_calc_stripe_length(em);
7880 	if (physical_len != stripe_len) {
7881 		btrfs_err(fs_info,
7882 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7883 			  physical_offset, devid, em->start, physical_len,
7884 			  stripe_len);
7885 		ret = -EUCLEAN;
7886 		goto out;
7887 	}
7888 
7889 	/*
7890 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7891 	 * space. Although kernel can handle it without problem, better to warn
7892 	 * the users.
7893 	 */
7894 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7895 		btrfs_warn(fs_info,
7896 		"devid %llu physical %llu len %llu inside the reserved space",
7897 			   devid, physical_offset, physical_len);
7898 
7899 	for (i = 0; i < map->num_stripes; i++) {
7900 		if (map->stripes[i].dev->devid == devid &&
7901 		    map->stripes[i].physical == physical_offset) {
7902 			found = true;
7903 			if (map->verified_stripes >= map->num_stripes) {
7904 				btrfs_err(fs_info,
7905 				"too many dev extents for chunk %llu found",
7906 					  em->start);
7907 				ret = -EUCLEAN;
7908 				goto out;
7909 			}
7910 			map->verified_stripes++;
7911 			break;
7912 		}
7913 	}
7914 	if (!found) {
7915 		btrfs_err(fs_info,
7916 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7917 			physical_offset, devid);
7918 		ret = -EUCLEAN;
7919 	}
7920 
7921 	/* Make sure no dev extent is beyond device boundary */
7922 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7923 	if (!dev) {
7924 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7925 		ret = -EUCLEAN;
7926 		goto out;
7927 	}
7928 
7929 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7930 		btrfs_err(fs_info,
7931 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7932 			  devid, physical_offset, physical_len,
7933 			  dev->disk_total_bytes);
7934 		ret = -EUCLEAN;
7935 		goto out;
7936 	}
7937 
7938 	if (dev->zone_info) {
7939 		u64 zone_size = dev->zone_info->zone_size;
7940 
7941 		if (!IS_ALIGNED(physical_offset, zone_size) ||
7942 		    !IS_ALIGNED(physical_len, zone_size)) {
7943 			btrfs_err(fs_info,
7944 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7945 				  devid, physical_offset, physical_len);
7946 			ret = -EUCLEAN;
7947 			goto out;
7948 		}
7949 	}
7950 
7951 out:
7952 	free_extent_map(em);
7953 	return ret;
7954 }
7955 
7956 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7957 {
7958 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7959 	struct extent_map *em;
7960 	struct rb_node *node;
7961 	int ret = 0;
7962 
7963 	read_lock(&em_tree->lock);
7964 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7965 		em = rb_entry(node, struct extent_map, rb_node);
7966 		if (em->map_lookup->num_stripes !=
7967 		    em->map_lookup->verified_stripes) {
7968 			btrfs_err(fs_info,
7969 			"chunk %llu has missing dev extent, have %d expect %d",
7970 				  em->start, em->map_lookup->verified_stripes,
7971 				  em->map_lookup->num_stripes);
7972 			ret = -EUCLEAN;
7973 			goto out;
7974 		}
7975 	}
7976 out:
7977 	read_unlock(&em_tree->lock);
7978 	return ret;
7979 }
7980 
7981 /*
7982  * Ensure that all dev extents are mapped to correct chunk, otherwise
7983  * later chunk allocation/free would cause unexpected behavior.
7984  *
7985  * NOTE: This will iterate through the whole device tree, which should be of
7986  * the same size level as the chunk tree.  This slightly increases mount time.
7987  */
7988 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7989 {
7990 	struct btrfs_path *path;
7991 	struct btrfs_root *root = fs_info->dev_root;
7992 	struct btrfs_key key;
7993 	u64 prev_devid = 0;
7994 	u64 prev_dev_ext_end = 0;
7995 	int ret = 0;
7996 
7997 	/*
7998 	 * We don't have a dev_root because we mounted with ignorebadroots and
7999 	 * failed to load the root, so we want to skip the verification in this
8000 	 * case for sure.
8001 	 *
8002 	 * However if the dev root is fine, but the tree itself is corrupted
8003 	 * we'd still fail to mount.  This verification is only to make sure
8004 	 * writes can happen safely, so instead just bypass this check
8005 	 * completely in the case of IGNOREBADROOTS.
8006 	 */
8007 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8008 		return 0;
8009 
8010 	key.objectid = 1;
8011 	key.type = BTRFS_DEV_EXTENT_KEY;
8012 	key.offset = 0;
8013 
8014 	path = btrfs_alloc_path();
8015 	if (!path)
8016 		return -ENOMEM;
8017 
8018 	path->reada = READA_FORWARD;
8019 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8020 	if (ret < 0)
8021 		goto out;
8022 
8023 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8024 		ret = btrfs_next_leaf(root, path);
8025 		if (ret < 0)
8026 			goto out;
8027 		/* No dev extents at all? Not good */
8028 		if (ret > 0) {
8029 			ret = -EUCLEAN;
8030 			goto out;
8031 		}
8032 	}
8033 	while (1) {
8034 		struct extent_buffer *leaf = path->nodes[0];
8035 		struct btrfs_dev_extent *dext;
8036 		int slot = path->slots[0];
8037 		u64 chunk_offset;
8038 		u64 physical_offset;
8039 		u64 physical_len;
8040 		u64 devid;
8041 
8042 		btrfs_item_key_to_cpu(leaf, &key, slot);
8043 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8044 			break;
8045 		devid = key.objectid;
8046 		physical_offset = key.offset;
8047 
8048 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8049 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8050 		physical_len = btrfs_dev_extent_length(leaf, dext);
8051 
8052 		/* Check if this dev extent overlaps with the previous one */
8053 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8054 			btrfs_err(fs_info,
8055 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8056 				  devid, physical_offset, prev_dev_ext_end);
8057 			ret = -EUCLEAN;
8058 			goto out;
8059 		}
8060 
8061 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8062 					    physical_offset, physical_len);
8063 		if (ret < 0)
8064 			goto out;
8065 		prev_devid = devid;
8066 		prev_dev_ext_end = physical_offset + physical_len;
8067 
8068 		ret = btrfs_next_item(root, path);
8069 		if (ret < 0)
8070 			goto out;
8071 		if (ret > 0) {
8072 			ret = 0;
8073 			break;
8074 		}
8075 	}
8076 
8077 	/* Ensure all chunks have corresponding dev extents */
8078 	ret = verify_chunk_dev_extent_mapping(fs_info);
8079 out:
8080 	btrfs_free_path(path);
8081 	return ret;
8082 }
8083 
8084 /*
8085  * Check whether the given block group or device is pinned by any inode being
8086  * used as a swapfile.
8087  */
8088 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8089 {
8090 	struct btrfs_swapfile_pin *sp;
8091 	struct rb_node *node;
8092 
8093 	spin_lock(&fs_info->swapfile_pins_lock);
8094 	node = fs_info->swapfile_pins.rb_node;
8095 	while (node) {
8096 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8097 		if (ptr < sp->ptr)
8098 			node = node->rb_left;
8099 		else if (ptr > sp->ptr)
8100 			node = node->rb_right;
8101 		else
8102 			break;
8103 	}
8104 	spin_unlock(&fs_info->swapfile_pins_lock);
8105 	return node != NULL;
8106 }
8107 
8108 static int relocating_repair_kthread(void *data)
8109 {
8110 	struct btrfs_block_group *cache = data;
8111 	struct btrfs_fs_info *fs_info = cache->fs_info;
8112 	u64 target;
8113 	int ret = 0;
8114 
8115 	target = cache->start;
8116 	btrfs_put_block_group(cache);
8117 
8118 	sb_start_write(fs_info->sb);
8119 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8120 		btrfs_info(fs_info,
8121 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8122 			   target);
8123 		sb_end_write(fs_info->sb);
8124 		return -EBUSY;
8125 	}
8126 
8127 	mutex_lock(&fs_info->reclaim_bgs_lock);
8128 
8129 	/* Ensure block group still exists */
8130 	cache = btrfs_lookup_block_group(fs_info, target);
8131 	if (!cache)
8132 		goto out;
8133 
8134 	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8135 		goto out;
8136 
8137 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8138 	if (ret < 0)
8139 		goto out;
8140 
8141 	btrfs_info(fs_info,
8142 		   "zoned: relocating block group %llu to repair IO failure",
8143 		   target);
8144 	ret = btrfs_relocate_chunk(fs_info, target);
8145 
8146 out:
8147 	if (cache)
8148 		btrfs_put_block_group(cache);
8149 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8150 	btrfs_exclop_finish(fs_info);
8151 	sb_end_write(fs_info->sb);
8152 
8153 	return ret;
8154 }
8155 
8156 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8157 {
8158 	struct btrfs_block_group *cache;
8159 
8160 	if (!btrfs_is_zoned(fs_info))
8161 		return false;
8162 
8163 	/* Do not attempt to repair in degraded state */
8164 	if (btrfs_test_opt(fs_info, DEGRADED))
8165 		return true;
8166 
8167 	cache = btrfs_lookup_block_group(fs_info, logical);
8168 	if (!cache)
8169 		return true;
8170 
8171 	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8172 		btrfs_put_block_group(cache);
8173 		return true;
8174 	}
8175 
8176 	kthread_run(relocating_repair_kthread, cache,
8177 		    "btrfs-relocating-repair");
8178 
8179 	return true;
8180 }
8181