xref: /openbmc/linux/fs/btrfs/volumes.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 	[BTRFS_RAID_RAID10] = {
47 		.sub_stripes	= 2,
48 		.dev_stripes	= 1,
49 		.devs_max	= 0,	/* 0 == as many as possible */
50 		.devs_min	= 4,
51 		.tolerated_failures = 1,
52 		.devs_increment	= 2,
53 		.ncopies	= 2,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 	},
64 	[BTRFS_RAID_DUP] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 2,
67 		.devs_max	= 1,
68 		.devs_min	= 1,
69 		.tolerated_failures = 0,
70 		.devs_increment	= 1,
71 		.ncopies	= 2,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 	},
82 	[BTRFS_RAID_SINGLE] = {
83 		.sub_stripes	= 1,
84 		.dev_stripes	= 1,
85 		.devs_max	= 1,
86 		.devs_min	= 1,
87 		.tolerated_failures = 0,
88 		.devs_increment	= 1,
89 		.ncopies	= 1,
90 	},
91 	[BTRFS_RAID_RAID5] = {
92 		.sub_stripes	= 1,
93 		.dev_stripes	= 1,
94 		.devs_max	= 0,
95 		.devs_min	= 2,
96 		.tolerated_failures = 1,
97 		.devs_increment	= 1,
98 		.ncopies	= 2,
99 	},
100 	[BTRFS_RAID_RAID6] = {
101 		.sub_stripes	= 1,
102 		.dev_stripes	= 1,
103 		.devs_max	= 0,
104 		.devs_min	= 3,
105 		.tolerated_failures = 2,
106 		.devs_increment	= 1,
107 		.ncopies	= 3,
108 	},
109 };
110 
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116 	[BTRFS_RAID_SINGLE] = 0,
117 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120 
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 	[BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 	[BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 	[BTRFS_RAID_DUP]    = 0,
130 	[BTRFS_RAID_RAID0]  = 0,
131 	[BTRFS_RAID_SINGLE] = 0,
132 	[BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 	[BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135 
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 				struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 
143 DEFINE_MUTEX(uuid_mutex);
144 static LIST_HEAD(fs_uuids);
145 struct list_head *btrfs_get_fs_uuids(void)
146 {
147 	return &fs_uuids;
148 }
149 
150 static struct btrfs_fs_devices *__alloc_fs_devices(void)
151 {
152 	struct btrfs_fs_devices *fs_devs;
153 
154 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
155 	if (!fs_devs)
156 		return ERR_PTR(-ENOMEM);
157 
158 	mutex_init(&fs_devs->device_list_mutex);
159 
160 	INIT_LIST_HEAD(&fs_devs->devices);
161 	INIT_LIST_HEAD(&fs_devs->resized_devices);
162 	INIT_LIST_HEAD(&fs_devs->alloc_list);
163 	INIT_LIST_HEAD(&fs_devs->list);
164 
165 	return fs_devs;
166 }
167 
168 /**
169  * alloc_fs_devices - allocate struct btrfs_fs_devices
170  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
171  *		generated.
172  *
173  * Return: a pointer to a new &struct btrfs_fs_devices on success;
174  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
175  * can be destroyed with kfree() right away.
176  */
177 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
178 {
179 	struct btrfs_fs_devices *fs_devs;
180 
181 	fs_devs = __alloc_fs_devices();
182 	if (IS_ERR(fs_devs))
183 		return fs_devs;
184 
185 	if (fsid)
186 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
187 	else
188 		generate_random_uuid(fs_devs->fsid);
189 
190 	return fs_devs;
191 }
192 
193 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
194 {
195 	struct btrfs_device *device;
196 	WARN_ON(fs_devices->opened);
197 	while (!list_empty(&fs_devices->devices)) {
198 		device = list_entry(fs_devices->devices.next,
199 				    struct btrfs_device, dev_list);
200 		list_del(&device->dev_list);
201 		rcu_string_free(device->name);
202 		kfree(device);
203 	}
204 	kfree(fs_devices);
205 }
206 
207 static void btrfs_kobject_uevent(struct block_device *bdev,
208 				 enum kobject_action action)
209 {
210 	int ret;
211 
212 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
213 	if (ret)
214 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
215 			action,
216 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
217 			&disk_to_dev(bdev->bd_disk)->kobj);
218 }
219 
220 void btrfs_cleanup_fs_uuids(void)
221 {
222 	struct btrfs_fs_devices *fs_devices;
223 
224 	while (!list_empty(&fs_uuids)) {
225 		fs_devices = list_entry(fs_uuids.next,
226 					struct btrfs_fs_devices, list);
227 		list_del(&fs_devices->list);
228 		free_fs_devices(fs_devices);
229 	}
230 }
231 
232 static struct btrfs_device *__alloc_device(void)
233 {
234 	struct btrfs_device *dev;
235 
236 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
237 	if (!dev)
238 		return ERR_PTR(-ENOMEM);
239 
240 	INIT_LIST_HEAD(&dev->dev_list);
241 	INIT_LIST_HEAD(&dev->dev_alloc_list);
242 	INIT_LIST_HEAD(&dev->resized_list);
243 
244 	spin_lock_init(&dev->io_lock);
245 
246 	spin_lock_init(&dev->reada_lock);
247 	atomic_set(&dev->reada_in_flight, 0);
248 	atomic_set(&dev->dev_stats_ccnt, 0);
249 	btrfs_device_data_ordered_init(dev);
250 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
251 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 
253 	return dev;
254 }
255 
256 static noinline struct btrfs_device *__find_device(struct list_head *head,
257 						   u64 devid, u8 *uuid)
258 {
259 	struct btrfs_device *dev;
260 
261 	list_for_each_entry(dev, head, dev_list) {
262 		if (dev->devid == devid &&
263 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
264 			return dev;
265 		}
266 	}
267 	return NULL;
268 }
269 
270 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
271 {
272 	struct btrfs_fs_devices *fs_devices;
273 
274 	list_for_each_entry(fs_devices, &fs_uuids, list) {
275 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
276 			return fs_devices;
277 	}
278 	return NULL;
279 }
280 
281 static int
282 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
283 		      int flush, struct block_device **bdev,
284 		      struct buffer_head **bh)
285 {
286 	int ret;
287 
288 	*bdev = blkdev_get_by_path(device_path, flags, holder);
289 
290 	if (IS_ERR(*bdev)) {
291 		ret = PTR_ERR(*bdev);
292 		goto error;
293 	}
294 
295 	if (flush)
296 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
297 	ret = set_blocksize(*bdev, 4096);
298 	if (ret) {
299 		blkdev_put(*bdev, flags);
300 		goto error;
301 	}
302 	invalidate_bdev(*bdev);
303 	*bh = btrfs_read_dev_super(*bdev);
304 	if (IS_ERR(*bh)) {
305 		ret = PTR_ERR(*bh);
306 		blkdev_put(*bdev, flags);
307 		goto error;
308 	}
309 
310 	return 0;
311 
312 error:
313 	*bdev = NULL;
314 	*bh = NULL;
315 	return ret;
316 }
317 
318 static void requeue_list(struct btrfs_pending_bios *pending_bios,
319 			struct bio *head, struct bio *tail)
320 {
321 
322 	struct bio *old_head;
323 
324 	old_head = pending_bios->head;
325 	pending_bios->head = head;
326 	if (pending_bios->tail)
327 		tail->bi_next = old_head;
328 	else
329 		pending_bios->tail = tail;
330 }
331 
332 /*
333  * we try to collect pending bios for a device so we don't get a large
334  * number of procs sending bios down to the same device.  This greatly
335  * improves the schedulers ability to collect and merge the bios.
336  *
337  * But, it also turns into a long list of bios to process and that is sure
338  * to eventually make the worker thread block.  The solution here is to
339  * make some progress and then put this work struct back at the end of
340  * the list if the block device is congested.  This way, multiple devices
341  * can make progress from a single worker thread.
342  */
343 static noinline void run_scheduled_bios(struct btrfs_device *device)
344 {
345 	struct btrfs_fs_info *fs_info = device->fs_info;
346 	struct bio *pending;
347 	struct backing_dev_info *bdi;
348 	struct btrfs_pending_bios *pending_bios;
349 	struct bio *tail;
350 	struct bio *cur;
351 	int again = 0;
352 	unsigned long num_run;
353 	unsigned long batch_run = 0;
354 	unsigned long limit;
355 	unsigned long last_waited = 0;
356 	int force_reg = 0;
357 	int sync_pending = 0;
358 	struct blk_plug plug;
359 
360 	/*
361 	 * this function runs all the bios we've collected for
362 	 * a particular device.  We don't want to wander off to
363 	 * another device without first sending all of these down.
364 	 * So, setup a plug here and finish it off before we return
365 	 */
366 	blk_start_plug(&plug);
367 
368 	bdi = device->bdev->bd_bdi;
369 	limit = btrfs_async_submit_limit(fs_info);
370 	limit = limit * 2 / 3;
371 
372 loop:
373 	spin_lock(&device->io_lock);
374 
375 loop_lock:
376 	num_run = 0;
377 
378 	/* take all the bios off the list at once and process them
379 	 * later on (without the lock held).  But, remember the
380 	 * tail and other pointers so the bios can be properly reinserted
381 	 * into the list if we hit congestion
382 	 */
383 	if (!force_reg && device->pending_sync_bios.head) {
384 		pending_bios = &device->pending_sync_bios;
385 		force_reg = 1;
386 	} else {
387 		pending_bios = &device->pending_bios;
388 		force_reg = 0;
389 	}
390 
391 	pending = pending_bios->head;
392 	tail = pending_bios->tail;
393 	WARN_ON(pending && !tail);
394 
395 	/*
396 	 * if pending was null this time around, no bios need processing
397 	 * at all and we can stop.  Otherwise it'll loop back up again
398 	 * and do an additional check so no bios are missed.
399 	 *
400 	 * device->running_pending is used to synchronize with the
401 	 * schedule_bio code.
402 	 */
403 	if (device->pending_sync_bios.head == NULL &&
404 	    device->pending_bios.head == NULL) {
405 		again = 0;
406 		device->running_pending = 0;
407 	} else {
408 		again = 1;
409 		device->running_pending = 1;
410 	}
411 
412 	pending_bios->head = NULL;
413 	pending_bios->tail = NULL;
414 
415 	spin_unlock(&device->io_lock);
416 
417 	while (pending) {
418 
419 		rmb();
420 		/* we want to work on both lists, but do more bios on the
421 		 * sync list than the regular list
422 		 */
423 		if ((num_run > 32 &&
424 		    pending_bios != &device->pending_sync_bios &&
425 		    device->pending_sync_bios.head) ||
426 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
427 		    device->pending_bios.head)) {
428 			spin_lock(&device->io_lock);
429 			requeue_list(pending_bios, pending, tail);
430 			goto loop_lock;
431 		}
432 
433 		cur = pending;
434 		pending = pending->bi_next;
435 		cur->bi_next = NULL;
436 
437 		/*
438 		 * atomic_dec_return implies a barrier for waitqueue_active
439 		 */
440 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
441 		    waitqueue_active(&fs_info->async_submit_wait))
442 			wake_up(&fs_info->async_submit_wait);
443 
444 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
445 
446 		/*
447 		 * if we're doing the sync list, record that our
448 		 * plug has some sync requests on it
449 		 *
450 		 * If we're doing the regular list and there are
451 		 * sync requests sitting around, unplug before
452 		 * we add more
453 		 */
454 		if (pending_bios == &device->pending_sync_bios) {
455 			sync_pending = 1;
456 		} else if (sync_pending) {
457 			blk_finish_plug(&plug);
458 			blk_start_plug(&plug);
459 			sync_pending = 0;
460 		}
461 
462 		btrfsic_submit_bio(cur);
463 		num_run++;
464 		batch_run++;
465 
466 		cond_resched();
467 
468 		/*
469 		 * we made progress, there is more work to do and the bdi
470 		 * is now congested.  Back off and let other work structs
471 		 * run instead
472 		 */
473 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
474 		    fs_info->fs_devices->open_devices > 1) {
475 			struct io_context *ioc;
476 
477 			ioc = current->io_context;
478 
479 			/*
480 			 * the main goal here is that we don't want to
481 			 * block if we're going to be able to submit
482 			 * more requests without blocking.
483 			 *
484 			 * This code does two great things, it pokes into
485 			 * the elevator code from a filesystem _and_
486 			 * it makes assumptions about how batching works.
487 			 */
488 			if (ioc && ioc->nr_batch_requests > 0 &&
489 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
490 			    (last_waited == 0 ||
491 			     ioc->last_waited == last_waited)) {
492 				/*
493 				 * we want to go through our batch of
494 				 * requests and stop.  So, we copy out
495 				 * the ioc->last_waited time and test
496 				 * against it before looping
497 				 */
498 				last_waited = ioc->last_waited;
499 				cond_resched();
500 				continue;
501 			}
502 			spin_lock(&device->io_lock);
503 			requeue_list(pending_bios, pending, tail);
504 			device->running_pending = 1;
505 
506 			spin_unlock(&device->io_lock);
507 			btrfs_queue_work(fs_info->submit_workers,
508 					 &device->work);
509 			goto done;
510 		}
511 		/* unplug every 64 requests just for good measure */
512 		if (batch_run % 64 == 0) {
513 			blk_finish_plug(&plug);
514 			blk_start_plug(&plug);
515 			sync_pending = 0;
516 		}
517 	}
518 
519 	cond_resched();
520 	if (again)
521 		goto loop;
522 
523 	spin_lock(&device->io_lock);
524 	if (device->pending_bios.head || device->pending_sync_bios.head)
525 		goto loop_lock;
526 	spin_unlock(&device->io_lock);
527 
528 done:
529 	blk_finish_plug(&plug);
530 }
531 
532 static void pending_bios_fn(struct btrfs_work *work)
533 {
534 	struct btrfs_device *device;
535 
536 	device = container_of(work, struct btrfs_device, work);
537 	run_scheduled_bios(device);
538 }
539 
540 
541 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
542 {
543 	struct btrfs_fs_devices *fs_devs;
544 	struct btrfs_device *dev;
545 
546 	if (!cur_dev->name)
547 		return;
548 
549 	list_for_each_entry(fs_devs, &fs_uuids, list) {
550 		int del = 1;
551 
552 		if (fs_devs->opened)
553 			continue;
554 		if (fs_devs->seeding)
555 			continue;
556 
557 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
558 
559 			if (dev == cur_dev)
560 				continue;
561 			if (!dev->name)
562 				continue;
563 
564 			/*
565 			 * Todo: This won't be enough. What if the same device
566 			 * comes back (with new uuid and) with its mapper path?
567 			 * But for now, this does help as mostly an admin will
568 			 * either use mapper or non mapper path throughout.
569 			 */
570 			rcu_read_lock();
571 			del = strcmp(rcu_str_deref(dev->name),
572 						rcu_str_deref(cur_dev->name));
573 			rcu_read_unlock();
574 			if (!del)
575 				break;
576 		}
577 
578 		if (!del) {
579 			/* delete the stale device */
580 			if (fs_devs->num_devices == 1) {
581 				btrfs_sysfs_remove_fsid(fs_devs);
582 				list_del(&fs_devs->list);
583 				free_fs_devices(fs_devs);
584 			} else {
585 				fs_devs->num_devices--;
586 				list_del(&dev->dev_list);
587 				rcu_string_free(dev->name);
588 				kfree(dev);
589 			}
590 			break;
591 		}
592 	}
593 }
594 
595 /*
596  * Add new device to list of registered devices
597  *
598  * Returns:
599  * 1   - first time device is seen
600  * 0   - device already known
601  * < 0 - error
602  */
603 static noinline int device_list_add(const char *path,
604 			   struct btrfs_super_block *disk_super,
605 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
606 {
607 	struct btrfs_device *device;
608 	struct btrfs_fs_devices *fs_devices;
609 	struct rcu_string *name;
610 	int ret = 0;
611 	u64 found_transid = btrfs_super_generation(disk_super);
612 
613 	fs_devices = find_fsid(disk_super->fsid);
614 	if (!fs_devices) {
615 		fs_devices = alloc_fs_devices(disk_super->fsid);
616 		if (IS_ERR(fs_devices))
617 			return PTR_ERR(fs_devices);
618 
619 		list_add(&fs_devices->list, &fs_uuids);
620 
621 		device = NULL;
622 	} else {
623 		device = __find_device(&fs_devices->devices, devid,
624 				       disk_super->dev_item.uuid);
625 	}
626 
627 	if (!device) {
628 		if (fs_devices->opened)
629 			return -EBUSY;
630 
631 		device = btrfs_alloc_device(NULL, &devid,
632 					    disk_super->dev_item.uuid);
633 		if (IS_ERR(device)) {
634 			/* we can safely leave the fs_devices entry around */
635 			return PTR_ERR(device);
636 		}
637 
638 		name = rcu_string_strdup(path, GFP_NOFS);
639 		if (!name) {
640 			kfree(device);
641 			return -ENOMEM;
642 		}
643 		rcu_assign_pointer(device->name, name);
644 
645 		mutex_lock(&fs_devices->device_list_mutex);
646 		list_add_rcu(&device->dev_list, &fs_devices->devices);
647 		fs_devices->num_devices++;
648 		mutex_unlock(&fs_devices->device_list_mutex);
649 
650 		ret = 1;
651 		device->fs_devices = fs_devices;
652 	} else if (!device->name || strcmp(device->name->str, path)) {
653 		/*
654 		 * When FS is already mounted.
655 		 * 1. If you are here and if the device->name is NULL that
656 		 *    means this device was missing at time of FS mount.
657 		 * 2. If you are here and if the device->name is different
658 		 *    from 'path' that means either
659 		 *      a. The same device disappeared and reappeared with
660 		 *         different name. or
661 		 *      b. The missing-disk-which-was-replaced, has
662 		 *         reappeared now.
663 		 *
664 		 * We must allow 1 and 2a above. But 2b would be a spurious
665 		 * and unintentional.
666 		 *
667 		 * Further in case of 1 and 2a above, the disk at 'path'
668 		 * would have missed some transaction when it was away and
669 		 * in case of 2a the stale bdev has to be updated as well.
670 		 * 2b must not be allowed at all time.
671 		 */
672 
673 		/*
674 		 * For now, we do allow update to btrfs_fs_device through the
675 		 * btrfs dev scan cli after FS has been mounted.  We're still
676 		 * tracking a problem where systems fail mount by subvolume id
677 		 * when we reject replacement on a mounted FS.
678 		 */
679 		if (!fs_devices->opened && found_transid < device->generation) {
680 			/*
681 			 * That is if the FS is _not_ mounted and if you
682 			 * are here, that means there is more than one
683 			 * disk with same uuid and devid.We keep the one
684 			 * with larger generation number or the last-in if
685 			 * generation are equal.
686 			 */
687 			return -EEXIST;
688 		}
689 
690 		name = rcu_string_strdup(path, GFP_NOFS);
691 		if (!name)
692 			return -ENOMEM;
693 		rcu_string_free(device->name);
694 		rcu_assign_pointer(device->name, name);
695 		if (device->missing) {
696 			fs_devices->missing_devices--;
697 			device->missing = 0;
698 		}
699 	}
700 
701 	/*
702 	 * Unmount does not free the btrfs_device struct but would zero
703 	 * generation along with most of the other members. So just update
704 	 * it back. We need it to pick the disk with largest generation
705 	 * (as above).
706 	 */
707 	if (!fs_devices->opened)
708 		device->generation = found_transid;
709 
710 	/*
711 	 * if there is new btrfs on an already registered device,
712 	 * then remove the stale device entry.
713 	 */
714 	if (ret > 0)
715 		btrfs_free_stale_device(device);
716 
717 	*fs_devices_ret = fs_devices;
718 
719 	return ret;
720 }
721 
722 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
723 {
724 	struct btrfs_fs_devices *fs_devices;
725 	struct btrfs_device *device;
726 	struct btrfs_device *orig_dev;
727 
728 	fs_devices = alloc_fs_devices(orig->fsid);
729 	if (IS_ERR(fs_devices))
730 		return fs_devices;
731 
732 	mutex_lock(&orig->device_list_mutex);
733 	fs_devices->total_devices = orig->total_devices;
734 
735 	/* We have held the volume lock, it is safe to get the devices. */
736 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
737 		struct rcu_string *name;
738 
739 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
740 					    orig_dev->uuid);
741 		if (IS_ERR(device))
742 			goto error;
743 
744 		/*
745 		 * This is ok to do without rcu read locked because we hold the
746 		 * uuid mutex so nothing we touch in here is going to disappear.
747 		 */
748 		if (orig_dev->name) {
749 			name = rcu_string_strdup(orig_dev->name->str,
750 					GFP_KERNEL);
751 			if (!name) {
752 				kfree(device);
753 				goto error;
754 			}
755 			rcu_assign_pointer(device->name, name);
756 		}
757 
758 		list_add(&device->dev_list, &fs_devices->devices);
759 		device->fs_devices = fs_devices;
760 		fs_devices->num_devices++;
761 	}
762 	mutex_unlock(&orig->device_list_mutex);
763 	return fs_devices;
764 error:
765 	mutex_unlock(&orig->device_list_mutex);
766 	free_fs_devices(fs_devices);
767 	return ERR_PTR(-ENOMEM);
768 }
769 
770 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
771 {
772 	struct btrfs_device *device, *next;
773 	struct btrfs_device *latest_dev = NULL;
774 
775 	mutex_lock(&uuid_mutex);
776 again:
777 	/* This is the initialized path, it is safe to release the devices. */
778 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
779 		if (device->in_fs_metadata) {
780 			if (!device->is_tgtdev_for_dev_replace &&
781 			    (!latest_dev ||
782 			     device->generation > latest_dev->generation)) {
783 				latest_dev = device;
784 			}
785 			continue;
786 		}
787 
788 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
789 			/*
790 			 * In the first step, keep the device which has
791 			 * the correct fsid and the devid that is used
792 			 * for the dev_replace procedure.
793 			 * In the second step, the dev_replace state is
794 			 * read from the device tree and it is known
795 			 * whether the procedure is really active or
796 			 * not, which means whether this device is
797 			 * used or whether it should be removed.
798 			 */
799 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
800 				continue;
801 			}
802 		}
803 		if (device->bdev) {
804 			blkdev_put(device->bdev, device->mode);
805 			device->bdev = NULL;
806 			fs_devices->open_devices--;
807 		}
808 		if (device->writeable) {
809 			list_del_init(&device->dev_alloc_list);
810 			device->writeable = 0;
811 			if (!device->is_tgtdev_for_dev_replace)
812 				fs_devices->rw_devices--;
813 		}
814 		list_del_init(&device->dev_list);
815 		fs_devices->num_devices--;
816 		rcu_string_free(device->name);
817 		kfree(device);
818 	}
819 
820 	if (fs_devices->seed) {
821 		fs_devices = fs_devices->seed;
822 		goto again;
823 	}
824 
825 	fs_devices->latest_bdev = latest_dev->bdev;
826 
827 	mutex_unlock(&uuid_mutex);
828 }
829 
830 static void __free_device(struct work_struct *work)
831 {
832 	struct btrfs_device *device;
833 
834 	device = container_of(work, struct btrfs_device, rcu_work);
835 	rcu_string_free(device->name);
836 	kfree(device);
837 }
838 
839 static void free_device(struct rcu_head *head)
840 {
841 	struct btrfs_device *device;
842 
843 	device = container_of(head, struct btrfs_device, rcu);
844 
845 	INIT_WORK(&device->rcu_work, __free_device);
846 	schedule_work(&device->rcu_work);
847 }
848 
849 static void btrfs_close_bdev(struct btrfs_device *device)
850 {
851 	if (device->bdev && device->writeable) {
852 		sync_blockdev(device->bdev);
853 		invalidate_bdev(device->bdev);
854 	}
855 
856 	if (device->bdev)
857 		blkdev_put(device->bdev, device->mode);
858 }
859 
860 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
861 {
862 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
863 	struct btrfs_device *new_device;
864 	struct rcu_string *name;
865 
866 	if (device->bdev)
867 		fs_devices->open_devices--;
868 
869 	if (device->writeable &&
870 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
871 		list_del_init(&device->dev_alloc_list);
872 		fs_devices->rw_devices--;
873 	}
874 
875 	if (device->missing)
876 		fs_devices->missing_devices--;
877 
878 	new_device = btrfs_alloc_device(NULL, &device->devid,
879 					device->uuid);
880 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
881 
882 	/* Safe because we are under uuid_mutex */
883 	if (device->name) {
884 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
885 		BUG_ON(!name); /* -ENOMEM */
886 		rcu_assign_pointer(new_device->name, name);
887 	}
888 
889 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
890 	new_device->fs_devices = device->fs_devices;
891 }
892 
893 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
894 {
895 	struct btrfs_device *device, *tmp;
896 	struct list_head pending_put;
897 
898 	INIT_LIST_HEAD(&pending_put);
899 
900 	if (--fs_devices->opened > 0)
901 		return 0;
902 
903 	mutex_lock(&fs_devices->device_list_mutex);
904 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
905 		btrfs_prepare_close_one_device(device);
906 		list_add(&device->dev_list, &pending_put);
907 	}
908 	mutex_unlock(&fs_devices->device_list_mutex);
909 
910 	/*
911 	 * btrfs_show_devname() is using the device_list_mutex,
912 	 * sometimes call to blkdev_put() leads vfs calling
913 	 * into this func. So do put outside of device_list_mutex,
914 	 * as of now.
915 	 */
916 	while (!list_empty(&pending_put)) {
917 		device = list_first_entry(&pending_put,
918 				struct btrfs_device, dev_list);
919 		list_del(&device->dev_list);
920 		btrfs_close_bdev(device);
921 		call_rcu(&device->rcu, free_device);
922 	}
923 
924 	WARN_ON(fs_devices->open_devices);
925 	WARN_ON(fs_devices->rw_devices);
926 	fs_devices->opened = 0;
927 	fs_devices->seeding = 0;
928 
929 	return 0;
930 }
931 
932 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
933 {
934 	struct btrfs_fs_devices *seed_devices = NULL;
935 	int ret;
936 
937 	mutex_lock(&uuid_mutex);
938 	ret = __btrfs_close_devices(fs_devices);
939 	if (!fs_devices->opened) {
940 		seed_devices = fs_devices->seed;
941 		fs_devices->seed = NULL;
942 	}
943 	mutex_unlock(&uuid_mutex);
944 
945 	while (seed_devices) {
946 		fs_devices = seed_devices;
947 		seed_devices = fs_devices->seed;
948 		__btrfs_close_devices(fs_devices);
949 		free_fs_devices(fs_devices);
950 	}
951 	/*
952 	 * Wait for rcu kworkers under __btrfs_close_devices
953 	 * to finish all blkdev_puts so device is really
954 	 * free when umount is done.
955 	 */
956 	rcu_barrier();
957 	return ret;
958 }
959 
960 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
961 				fmode_t flags, void *holder)
962 {
963 	struct request_queue *q;
964 	struct block_device *bdev;
965 	struct list_head *head = &fs_devices->devices;
966 	struct btrfs_device *device;
967 	struct btrfs_device *latest_dev = NULL;
968 	struct buffer_head *bh;
969 	struct btrfs_super_block *disk_super;
970 	u64 devid;
971 	int seeding = 1;
972 	int ret = 0;
973 
974 	flags |= FMODE_EXCL;
975 
976 	list_for_each_entry(device, head, dev_list) {
977 		if (device->bdev)
978 			continue;
979 		if (!device->name)
980 			continue;
981 
982 		/* Just open everything we can; ignore failures here */
983 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
984 					    &bdev, &bh))
985 			continue;
986 
987 		disk_super = (struct btrfs_super_block *)bh->b_data;
988 		devid = btrfs_stack_device_id(&disk_super->dev_item);
989 		if (devid != device->devid)
990 			goto error_brelse;
991 
992 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
993 			   BTRFS_UUID_SIZE))
994 			goto error_brelse;
995 
996 		device->generation = btrfs_super_generation(disk_super);
997 		if (!latest_dev ||
998 		    device->generation > latest_dev->generation)
999 			latest_dev = device;
1000 
1001 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1002 			device->writeable = 0;
1003 		} else {
1004 			device->writeable = !bdev_read_only(bdev);
1005 			seeding = 0;
1006 		}
1007 
1008 		q = bdev_get_queue(bdev);
1009 		if (blk_queue_discard(q))
1010 			device->can_discard = 1;
1011 
1012 		device->bdev = bdev;
1013 		device->in_fs_metadata = 0;
1014 		device->mode = flags;
1015 
1016 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1017 			fs_devices->rotating = 1;
1018 
1019 		fs_devices->open_devices++;
1020 		if (device->writeable &&
1021 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1022 			fs_devices->rw_devices++;
1023 			list_add(&device->dev_alloc_list,
1024 				 &fs_devices->alloc_list);
1025 		}
1026 		brelse(bh);
1027 		continue;
1028 
1029 error_brelse:
1030 		brelse(bh);
1031 		blkdev_put(bdev, flags);
1032 		continue;
1033 	}
1034 	if (fs_devices->open_devices == 0) {
1035 		ret = -EINVAL;
1036 		goto out;
1037 	}
1038 	fs_devices->seeding = seeding;
1039 	fs_devices->opened = 1;
1040 	fs_devices->latest_bdev = latest_dev->bdev;
1041 	fs_devices->total_rw_bytes = 0;
1042 out:
1043 	return ret;
1044 }
1045 
1046 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1047 		       fmode_t flags, void *holder)
1048 {
1049 	int ret;
1050 
1051 	mutex_lock(&uuid_mutex);
1052 	if (fs_devices->opened) {
1053 		fs_devices->opened++;
1054 		ret = 0;
1055 	} else {
1056 		ret = __btrfs_open_devices(fs_devices, flags, holder);
1057 	}
1058 	mutex_unlock(&uuid_mutex);
1059 	return ret;
1060 }
1061 
1062 void btrfs_release_disk_super(struct page *page)
1063 {
1064 	kunmap(page);
1065 	put_page(page);
1066 }
1067 
1068 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1069 		struct page **page, struct btrfs_super_block **disk_super)
1070 {
1071 	void *p;
1072 	pgoff_t index;
1073 
1074 	/* make sure our super fits in the device */
1075 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1076 		return 1;
1077 
1078 	/* make sure our super fits in the page */
1079 	if (sizeof(**disk_super) > PAGE_SIZE)
1080 		return 1;
1081 
1082 	/* make sure our super doesn't straddle pages on disk */
1083 	index = bytenr >> PAGE_SHIFT;
1084 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1085 		return 1;
1086 
1087 	/* pull in the page with our super */
1088 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1089 				   index, GFP_KERNEL);
1090 
1091 	if (IS_ERR_OR_NULL(*page))
1092 		return 1;
1093 
1094 	p = kmap(*page);
1095 
1096 	/* align our pointer to the offset of the super block */
1097 	*disk_super = p + (bytenr & ~PAGE_MASK);
1098 
1099 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1100 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1101 		btrfs_release_disk_super(*page);
1102 		return 1;
1103 	}
1104 
1105 	if ((*disk_super)->label[0] &&
1106 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1107 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1108 
1109 	return 0;
1110 }
1111 
1112 /*
1113  * Look for a btrfs signature on a device. This may be called out of the mount path
1114  * and we are not allowed to call set_blocksize during the scan. The superblock
1115  * is read via pagecache
1116  */
1117 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1118 			  struct btrfs_fs_devices **fs_devices_ret)
1119 {
1120 	struct btrfs_super_block *disk_super;
1121 	struct block_device *bdev;
1122 	struct page *page;
1123 	int ret = -EINVAL;
1124 	u64 devid;
1125 	u64 transid;
1126 	u64 total_devices;
1127 	u64 bytenr;
1128 
1129 	/*
1130 	 * we would like to check all the supers, but that would make
1131 	 * a btrfs mount succeed after a mkfs from a different FS.
1132 	 * So, we need to add a special mount option to scan for
1133 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1134 	 */
1135 	bytenr = btrfs_sb_offset(0);
1136 	flags |= FMODE_EXCL;
1137 	mutex_lock(&uuid_mutex);
1138 
1139 	bdev = blkdev_get_by_path(path, flags, holder);
1140 	if (IS_ERR(bdev)) {
1141 		ret = PTR_ERR(bdev);
1142 		goto error;
1143 	}
1144 
1145 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1146 		goto error_bdev_put;
1147 
1148 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1149 	transid = btrfs_super_generation(disk_super);
1150 	total_devices = btrfs_super_num_devices(disk_super);
1151 
1152 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1153 	if (ret > 0) {
1154 		if (disk_super->label[0]) {
1155 			pr_info("BTRFS: device label %s ", disk_super->label);
1156 		} else {
1157 			pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1158 		}
1159 
1160 		pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1161 		ret = 0;
1162 	}
1163 	if (!ret && fs_devices_ret)
1164 		(*fs_devices_ret)->total_devices = total_devices;
1165 
1166 	btrfs_release_disk_super(page);
1167 
1168 error_bdev_put:
1169 	blkdev_put(bdev, flags);
1170 error:
1171 	mutex_unlock(&uuid_mutex);
1172 	return ret;
1173 }
1174 
1175 /* helper to account the used device space in the range */
1176 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1177 				   u64 end, u64 *length)
1178 {
1179 	struct btrfs_key key;
1180 	struct btrfs_root *root = device->fs_info->dev_root;
1181 	struct btrfs_dev_extent *dev_extent;
1182 	struct btrfs_path *path;
1183 	u64 extent_end;
1184 	int ret;
1185 	int slot;
1186 	struct extent_buffer *l;
1187 
1188 	*length = 0;
1189 
1190 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1191 		return 0;
1192 
1193 	path = btrfs_alloc_path();
1194 	if (!path)
1195 		return -ENOMEM;
1196 	path->reada = READA_FORWARD;
1197 
1198 	key.objectid = device->devid;
1199 	key.offset = start;
1200 	key.type = BTRFS_DEV_EXTENT_KEY;
1201 
1202 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1203 	if (ret < 0)
1204 		goto out;
1205 	if (ret > 0) {
1206 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1207 		if (ret < 0)
1208 			goto out;
1209 	}
1210 
1211 	while (1) {
1212 		l = path->nodes[0];
1213 		slot = path->slots[0];
1214 		if (slot >= btrfs_header_nritems(l)) {
1215 			ret = btrfs_next_leaf(root, path);
1216 			if (ret == 0)
1217 				continue;
1218 			if (ret < 0)
1219 				goto out;
1220 
1221 			break;
1222 		}
1223 		btrfs_item_key_to_cpu(l, &key, slot);
1224 
1225 		if (key.objectid < device->devid)
1226 			goto next;
1227 
1228 		if (key.objectid > device->devid)
1229 			break;
1230 
1231 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1232 			goto next;
1233 
1234 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1235 		extent_end = key.offset + btrfs_dev_extent_length(l,
1236 								  dev_extent);
1237 		if (key.offset <= start && extent_end > end) {
1238 			*length = end - start + 1;
1239 			break;
1240 		} else if (key.offset <= start && extent_end > start)
1241 			*length += extent_end - start;
1242 		else if (key.offset > start && extent_end <= end)
1243 			*length += extent_end - key.offset;
1244 		else if (key.offset > start && key.offset <= end) {
1245 			*length += end - key.offset + 1;
1246 			break;
1247 		} else if (key.offset > end)
1248 			break;
1249 
1250 next:
1251 		path->slots[0]++;
1252 	}
1253 	ret = 0;
1254 out:
1255 	btrfs_free_path(path);
1256 	return ret;
1257 }
1258 
1259 static int contains_pending_extent(struct btrfs_transaction *transaction,
1260 				   struct btrfs_device *device,
1261 				   u64 *start, u64 len)
1262 {
1263 	struct btrfs_fs_info *fs_info = device->fs_info;
1264 	struct extent_map *em;
1265 	struct list_head *search_list = &fs_info->pinned_chunks;
1266 	int ret = 0;
1267 	u64 physical_start = *start;
1268 
1269 	if (transaction)
1270 		search_list = &transaction->pending_chunks;
1271 again:
1272 	list_for_each_entry(em, search_list, list) {
1273 		struct map_lookup *map;
1274 		int i;
1275 
1276 		map = em->map_lookup;
1277 		for (i = 0; i < map->num_stripes; i++) {
1278 			u64 end;
1279 
1280 			if (map->stripes[i].dev != device)
1281 				continue;
1282 			if (map->stripes[i].physical >= physical_start + len ||
1283 			    map->stripes[i].physical + em->orig_block_len <=
1284 			    physical_start)
1285 				continue;
1286 			/*
1287 			 * Make sure that while processing the pinned list we do
1288 			 * not override our *start with a lower value, because
1289 			 * we can have pinned chunks that fall within this
1290 			 * device hole and that have lower physical addresses
1291 			 * than the pending chunks we processed before. If we
1292 			 * do not take this special care we can end up getting
1293 			 * 2 pending chunks that start at the same physical
1294 			 * device offsets because the end offset of a pinned
1295 			 * chunk can be equal to the start offset of some
1296 			 * pending chunk.
1297 			 */
1298 			end = map->stripes[i].physical + em->orig_block_len;
1299 			if (end > *start) {
1300 				*start = end;
1301 				ret = 1;
1302 			}
1303 		}
1304 	}
1305 	if (search_list != &fs_info->pinned_chunks) {
1306 		search_list = &fs_info->pinned_chunks;
1307 		goto again;
1308 	}
1309 
1310 	return ret;
1311 }
1312 
1313 
1314 /*
1315  * find_free_dev_extent_start - find free space in the specified device
1316  * @device:	  the device which we search the free space in
1317  * @num_bytes:	  the size of the free space that we need
1318  * @search_start: the position from which to begin the search
1319  * @start:	  store the start of the free space.
1320  * @len:	  the size of the free space. that we find, or the size
1321  *		  of the max free space if we don't find suitable free space
1322  *
1323  * this uses a pretty simple search, the expectation is that it is
1324  * called very infrequently and that a given device has a small number
1325  * of extents
1326  *
1327  * @start is used to store the start of the free space if we find. But if we
1328  * don't find suitable free space, it will be used to store the start position
1329  * of the max free space.
1330  *
1331  * @len is used to store the size of the free space that we find.
1332  * But if we don't find suitable free space, it is used to store the size of
1333  * the max free space.
1334  */
1335 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1336 			       struct btrfs_device *device, u64 num_bytes,
1337 			       u64 search_start, u64 *start, u64 *len)
1338 {
1339 	struct btrfs_fs_info *fs_info = device->fs_info;
1340 	struct btrfs_root *root = fs_info->dev_root;
1341 	struct btrfs_key key;
1342 	struct btrfs_dev_extent *dev_extent;
1343 	struct btrfs_path *path;
1344 	u64 hole_size;
1345 	u64 max_hole_start;
1346 	u64 max_hole_size;
1347 	u64 extent_end;
1348 	u64 search_end = device->total_bytes;
1349 	int ret;
1350 	int slot;
1351 	struct extent_buffer *l;
1352 	u64 min_search_start;
1353 
1354 	/*
1355 	 * We don't want to overwrite the superblock on the drive nor any area
1356 	 * used by the boot loader (grub for example), so we make sure to start
1357 	 * at an offset of at least 1MB.
1358 	 */
1359 	min_search_start = max(fs_info->alloc_start, 1024ull * 1024);
1360 	search_start = max(search_start, min_search_start);
1361 
1362 	path = btrfs_alloc_path();
1363 	if (!path)
1364 		return -ENOMEM;
1365 
1366 	max_hole_start = search_start;
1367 	max_hole_size = 0;
1368 
1369 again:
1370 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1371 		ret = -ENOSPC;
1372 		goto out;
1373 	}
1374 
1375 	path->reada = READA_FORWARD;
1376 	path->search_commit_root = 1;
1377 	path->skip_locking = 1;
1378 
1379 	key.objectid = device->devid;
1380 	key.offset = search_start;
1381 	key.type = BTRFS_DEV_EXTENT_KEY;
1382 
1383 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1384 	if (ret < 0)
1385 		goto out;
1386 	if (ret > 0) {
1387 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1388 		if (ret < 0)
1389 			goto out;
1390 	}
1391 
1392 	while (1) {
1393 		l = path->nodes[0];
1394 		slot = path->slots[0];
1395 		if (slot >= btrfs_header_nritems(l)) {
1396 			ret = btrfs_next_leaf(root, path);
1397 			if (ret == 0)
1398 				continue;
1399 			if (ret < 0)
1400 				goto out;
1401 
1402 			break;
1403 		}
1404 		btrfs_item_key_to_cpu(l, &key, slot);
1405 
1406 		if (key.objectid < device->devid)
1407 			goto next;
1408 
1409 		if (key.objectid > device->devid)
1410 			break;
1411 
1412 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1413 			goto next;
1414 
1415 		if (key.offset > search_start) {
1416 			hole_size = key.offset - search_start;
1417 
1418 			/*
1419 			 * Have to check before we set max_hole_start, otherwise
1420 			 * we could end up sending back this offset anyway.
1421 			 */
1422 			if (contains_pending_extent(transaction, device,
1423 						    &search_start,
1424 						    hole_size)) {
1425 				if (key.offset >= search_start) {
1426 					hole_size = key.offset - search_start;
1427 				} else {
1428 					WARN_ON_ONCE(1);
1429 					hole_size = 0;
1430 				}
1431 			}
1432 
1433 			if (hole_size > max_hole_size) {
1434 				max_hole_start = search_start;
1435 				max_hole_size = hole_size;
1436 			}
1437 
1438 			/*
1439 			 * If this free space is greater than which we need,
1440 			 * it must be the max free space that we have found
1441 			 * until now, so max_hole_start must point to the start
1442 			 * of this free space and the length of this free space
1443 			 * is stored in max_hole_size. Thus, we return
1444 			 * max_hole_start and max_hole_size and go back to the
1445 			 * caller.
1446 			 */
1447 			if (hole_size >= num_bytes) {
1448 				ret = 0;
1449 				goto out;
1450 			}
1451 		}
1452 
1453 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1454 		extent_end = key.offset + btrfs_dev_extent_length(l,
1455 								  dev_extent);
1456 		if (extent_end > search_start)
1457 			search_start = extent_end;
1458 next:
1459 		path->slots[0]++;
1460 		cond_resched();
1461 	}
1462 
1463 	/*
1464 	 * At this point, search_start should be the end of
1465 	 * allocated dev extents, and when shrinking the device,
1466 	 * search_end may be smaller than search_start.
1467 	 */
1468 	if (search_end > search_start) {
1469 		hole_size = search_end - search_start;
1470 
1471 		if (contains_pending_extent(transaction, device, &search_start,
1472 					    hole_size)) {
1473 			btrfs_release_path(path);
1474 			goto again;
1475 		}
1476 
1477 		if (hole_size > max_hole_size) {
1478 			max_hole_start = search_start;
1479 			max_hole_size = hole_size;
1480 		}
1481 	}
1482 
1483 	/* See above. */
1484 	if (max_hole_size < num_bytes)
1485 		ret = -ENOSPC;
1486 	else
1487 		ret = 0;
1488 
1489 out:
1490 	btrfs_free_path(path);
1491 	*start = max_hole_start;
1492 	if (len)
1493 		*len = max_hole_size;
1494 	return ret;
1495 }
1496 
1497 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1498 			 struct btrfs_device *device, u64 num_bytes,
1499 			 u64 *start, u64 *len)
1500 {
1501 	/* FIXME use last free of some kind */
1502 	return find_free_dev_extent_start(trans->transaction, device,
1503 					  num_bytes, 0, start, len);
1504 }
1505 
1506 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1507 			  struct btrfs_device *device,
1508 			  u64 start, u64 *dev_extent_len)
1509 {
1510 	struct btrfs_fs_info *fs_info = device->fs_info;
1511 	struct btrfs_root *root = fs_info->dev_root;
1512 	int ret;
1513 	struct btrfs_path *path;
1514 	struct btrfs_key key;
1515 	struct btrfs_key found_key;
1516 	struct extent_buffer *leaf = NULL;
1517 	struct btrfs_dev_extent *extent = NULL;
1518 
1519 	path = btrfs_alloc_path();
1520 	if (!path)
1521 		return -ENOMEM;
1522 
1523 	key.objectid = device->devid;
1524 	key.offset = start;
1525 	key.type = BTRFS_DEV_EXTENT_KEY;
1526 again:
1527 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528 	if (ret > 0) {
1529 		ret = btrfs_previous_item(root, path, key.objectid,
1530 					  BTRFS_DEV_EXTENT_KEY);
1531 		if (ret)
1532 			goto out;
1533 		leaf = path->nodes[0];
1534 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1535 		extent = btrfs_item_ptr(leaf, path->slots[0],
1536 					struct btrfs_dev_extent);
1537 		BUG_ON(found_key.offset > start || found_key.offset +
1538 		       btrfs_dev_extent_length(leaf, extent) < start);
1539 		key = found_key;
1540 		btrfs_release_path(path);
1541 		goto again;
1542 	} else if (ret == 0) {
1543 		leaf = path->nodes[0];
1544 		extent = btrfs_item_ptr(leaf, path->slots[0],
1545 					struct btrfs_dev_extent);
1546 	} else {
1547 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1548 		goto out;
1549 	}
1550 
1551 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1552 
1553 	ret = btrfs_del_item(trans, root, path);
1554 	if (ret) {
1555 		btrfs_handle_fs_error(fs_info, ret,
1556 				      "Failed to remove dev extent item");
1557 	} else {
1558 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1559 	}
1560 out:
1561 	btrfs_free_path(path);
1562 	return ret;
1563 }
1564 
1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1566 				  struct btrfs_device *device,
1567 				  u64 chunk_tree, u64 chunk_objectid,
1568 				  u64 chunk_offset, u64 start, u64 num_bytes)
1569 {
1570 	int ret;
1571 	struct btrfs_path *path;
1572 	struct btrfs_fs_info *fs_info = device->fs_info;
1573 	struct btrfs_root *root = fs_info->dev_root;
1574 	struct btrfs_dev_extent *extent;
1575 	struct extent_buffer *leaf;
1576 	struct btrfs_key key;
1577 
1578 	WARN_ON(!device->in_fs_metadata);
1579 	WARN_ON(device->is_tgtdev_for_dev_replace);
1580 	path = btrfs_alloc_path();
1581 	if (!path)
1582 		return -ENOMEM;
1583 
1584 	key.objectid = device->devid;
1585 	key.offset = start;
1586 	key.type = BTRFS_DEV_EXTENT_KEY;
1587 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1588 				      sizeof(*extent));
1589 	if (ret)
1590 		goto out;
1591 
1592 	leaf = path->nodes[0];
1593 	extent = btrfs_item_ptr(leaf, path->slots[0],
1594 				struct btrfs_dev_extent);
1595 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1596 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1597 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1598 
1599 	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1600 
1601 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1602 	btrfs_mark_buffer_dirty(leaf);
1603 out:
1604 	btrfs_free_path(path);
1605 	return ret;
1606 }
1607 
1608 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1609 {
1610 	struct extent_map_tree *em_tree;
1611 	struct extent_map *em;
1612 	struct rb_node *n;
1613 	u64 ret = 0;
1614 
1615 	em_tree = &fs_info->mapping_tree.map_tree;
1616 	read_lock(&em_tree->lock);
1617 	n = rb_last(&em_tree->map);
1618 	if (n) {
1619 		em = rb_entry(n, struct extent_map, rb_node);
1620 		ret = em->start + em->len;
1621 	}
1622 	read_unlock(&em_tree->lock);
1623 
1624 	return ret;
1625 }
1626 
1627 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1628 				    u64 *devid_ret)
1629 {
1630 	int ret;
1631 	struct btrfs_key key;
1632 	struct btrfs_key found_key;
1633 	struct btrfs_path *path;
1634 
1635 	path = btrfs_alloc_path();
1636 	if (!path)
1637 		return -ENOMEM;
1638 
1639 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1640 	key.type = BTRFS_DEV_ITEM_KEY;
1641 	key.offset = (u64)-1;
1642 
1643 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1644 	if (ret < 0)
1645 		goto error;
1646 
1647 	BUG_ON(ret == 0); /* Corruption */
1648 
1649 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1650 				  BTRFS_DEV_ITEMS_OBJECTID,
1651 				  BTRFS_DEV_ITEM_KEY);
1652 	if (ret) {
1653 		*devid_ret = 1;
1654 	} else {
1655 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1656 				      path->slots[0]);
1657 		*devid_ret = found_key.offset + 1;
1658 	}
1659 	ret = 0;
1660 error:
1661 	btrfs_free_path(path);
1662 	return ret;
1663 }
1664 
1665 /*
1666  * the device information is stored in the chunk root
1667  * the btrfs_device struct should be fully filled in
1668  */
1669 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1670 			    struct btrfs_fs_info *fs_info,
1671 			    struct btrfs_device *device)
1672 {
1673 	struct btrfs_root *root = fs_info->chunk_root;
1674 	int ret;
1675 	struct btrfs_path *path;
1676 	struct btrfs_dev_item *dev_item;
1677 	struct extent_buffer *leaf;
1678 	struct btrfs_key key;
1679 	unsigned long ptr;
1680 
1681 	path = btrfs_alloc_path();
1682 	if (!path)
1683 		return -ENOMEM;
1684 
1685 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1686 	key.type = BTRFS_DEV_ITEM_KEY;
1687 	key.offset = device->devid;
1688 
1689 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1690 				      sizeof(*dev_item));
1691 	if (ret)
1692 		goto out;
1693 
1694 	leaf = path->nodes[0];
1695 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1696 
1697 	btrfs_set_device_id(leaf, dev_item, device->devid);
1698 	btrfs_set_device_generation(leaf, dev_item, 0);
1699 	btrfs_set_device_type(leaf, dev_item, device->type);
1700 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1701 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1702 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1703 	btrfs_set_device_total_bytes(leaf, dev_item,
1704 				     btrfs_device_get_disk_total_bytes(device));
1705 	btrfs_set_device_bytes_used(leaf, dev_item,
1706 				    btrfs_device_get_bytes_used(device));
1707 	btrfs_set_device_group(leaf, dev_item, 0);
1708 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1709 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1710 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1711 
1712 	ptr = btrfs_device_uuid(dev_item);
1713 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1714 	ptr = btrfs_device_fsid(dev_item);
1715 	write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1716 	btrfs_mark_buffer_dirty(leaf);
1717 
1718 	ret = 0;
1719 out:
1720 	btrfs_free_path(path);
1721 	return ret;
1722 }
1723 
1724 /*
1725  * Function to update ctime/mtime for a given device path.
1726  * Mainly used for ctime/mtime based probe like libblkid.
1727  */
1728 static void update_dev_time(const char *path_name)
1729 {
1730 	struct file *filp;
1731 
1732 	filp = filp_open(path_name, O_RDWR, 0);
1733 	if (IS_ERR(filp))
1734 		return;
1735 	file_update_time(filp);
1736 	filp_close(filp, NULL);
1737 }
1738 
1739 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1740 			     struct btrfs_device *device)
1741 {
1742 	struct btrfs_root *root = fs_info->chunk_root;
1743 	int ret;
1744 	struct btrfs_path *path;
1745 	struct btrfs_key key;
1746 	struct btrfs_trans_handle *trans;
1747 
1748 	path = btrfs_alloc_path();
1749 	if (!path)
1750 		return -ENOMEM;
1751 
1752 	trans = btrfs_start_transaction(root, 0);
1753 	if (IS_ERR(trans)) {
1754 		btrfs_free_path(path);
1755 		return PTR_ERR(trans);
1756 	}
1757 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1758 	key.type = BTRFS_DEV_ITEM_KEY;
1759 	key.offset = device->devid;
1760 
1761 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1762 	if (ret < 0)
1763 		goto out;
1764 
1765 	if (ret > 0) {
1766 		ret = -ENOENT;
1767 		goto out;
1768 	}
1769 
1770 	ret = btrfs_del_item(trans, root, path);
1771 	if (ret)
1772 		goto out;
1773 out:
1774 	btrfs_free_path(path);
1775 	btrfs_commit_transaction(trans);
1776 	return ret;
1777 }
1778 
1779 /*
1780  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1781  * filesystem. It's up to the caller to adjust that number regarding eg. device
1782  * replace.
1783  */
1784 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1785 		u64 num_devices)
1786 {
1787 	u64 all_avail;
1788 	unsigned seq;
1789 	int i;
1790 
1791 	do {
1792 		seq = read_seqbegin(&fs_info->profiles_lock);
1793 
1794 		all_avail = fs_info->avail_data_alloc_bits |
1795 			    fs_info->avail_system_alloc_bits |
1796 			    fs_info->avail_metadata_alloc_bits;
1797 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1798 
1799 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1800 		if (!(all_avail & btrfs_raid_group[i]))
1801 			continue;
1802 
1803 		if (num_devices < btrfs_raid_array[i].devs_min) {
1804 			int ret = btrfs_raid_mindev_error[i];
1805 
1806 			if (ret)
1807 				return ret;
1808 		}
1809 	}
1810 
1811 	return 0;
1812 }
1813 
1814 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1815 					struct btrfs_device *device)
1816 {
1817 	struct btrfs_device *next_device;
1818 
1819 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1820 		if (next_device != device &&
1821 			!next_device->missing && next_device->bdev)
1822 			return next_device;
1823 	}
1824 
1825 	return NULL;
1826 }
1827 
1828 /*
1829  * Helper function to check if the given device is part of s_bdev / latest_bdev
1830  * and replace it with the provided or the next active device, in the context
1831  * where this function called, there should be always be another device (or
1832  * this_dev) which is active.
1833  */
1834 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1835 		struct btrfs_device *device, struct btrfs_device *this_dev)
1836 {
1837 	struct btrfs_device *next_device;
1838 
1839 	if (this_dev)
1840 		next_device = this_dev;
1841 	else
1842 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1843 								device);
1844 	ASSERT(next_device);
1845 
1846 	if (fs_info->sb->s_bdev &&
1847 			(fs_info->sb->s_bdev == device->bdev))
1848 		fs_info->sb->s_bdev = next_device->bdev;
1849 
1850 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1851 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1852 }
1853 
1854 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1855 		u64 devid)
1856 {
1857 	struct btrfs_device *device;
1858 	struct btrfs_fs_devices *cur_devices;
1859 	u64 num_devices;
1860 	int ret = 0;
1861 	bool clear_super = false;
1862 
1863 	mutex_lock(&uuid_mutex);
1864 
1865 	num_devices = fs_info->fs_devices->num_devices;
1866 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1867 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1868 		WARN_ON(num_devices < 1);
1869 		num_devices--;
1870 	}
1871 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1872 
1873 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1874 	if (ret)
1875 		goto out;
1876 
1877 	ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1878 					   &device);
1879 	if (ret)
1880 		goto out;
1881 
1882 	if (device->is_tgtdev_for_dev_replace) {
1883 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1884 		goto out;
1885 	}
1886 
1887 	if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1888 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1889 		goto out;
1890 	}
1891 
1892 	if (device->writeable) {
1893 		mutex_lock(&fs_info->chunk_mutex);
1894 		list_del_init(&device->dev_alloc_list);
1895 		device->fs_devices->rw_devices--;
1896 		mutex_unlock(&fs_info->chunk_mutex);
1897 		clear_super = true;
1898 	}
1899 
1900 	mutex_unlock(&uuid_mutex);
1901 	ret = btrfs_shrink_device(device, 0);
1902 	mutex_lock(&uuid_mutex);
1903 	if (ret)
1904 		goto error_undo;
1905 
1906 	/*
1907 	 * TODO: the superblock still includes this device in its num_devices
1908 	 * counter although write_all_supers() is not locked out. This
1909 	 * could give a filesystem state which requires a degraded mount.
1910 	 */
1911 	ret = btrfs_rm_dev_item(fs_info, device);
1912 	if (ret)
1913 		goto error_undo;
1914 
1915 	device->in_fs_metadata = 0;
1916 	btrfs_scrub_cancel_dev(fs_info, device);
1917 
1918 	/*
1919 	 * the device list mutex makes sure that we don't change
1920 	 * the device list while someone else is writing out all
1921 	 * the device supers. Whoever is writing all supers, should
1922 	 * lock the device list mutex before getting the number of
1923 	 * devices in the super block (super_copy). Conversely,
1924 	 * whoever updates the number of devices in the super block
1925 	 * (super_copy) should hold the device list mutex.
1926 	 */
1927 
1928 	cur_devices = device->fs_devices;
1929 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1930 	list_del_rcu(&device->dev_list);
1931 
1932 	device->fs_devices->num_devices--;
1933 	device->fs_devices->total_devices--;
1934 
1935 	if (device->missing)
1936 		device->fs_devices->missing_devices--;
1937 
1938 	btrfs_assign_next_active_device(fs_info, device, NULL);
1939 
1940 	if (device->bdev) {
1941 		device->fs_devices->open_devices--;
1942 		/* remove sysfs entry */
1943 		btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1944 	}
1945 
1946 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1947 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1948 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1949 
1950 	/*
1951 	 * at this point, the device is zero sized and detached from
1952 	 * the devices list.  All that's left is to zero out the old
1953 	 * supers and free the device.
1954 	 */
1955 	if (device->writeable)
1956 		btrfs_scratch_superblocks(device->bdev, device->name->str);
1957 
1958 	btrfs_close_bdev(device);
1959 	call_rcu(&device->rcu, free_device);
1960 
1961 	if (cur_devices->open_devices == 0) {
1962 		struct btrfs_fs_devices *fs_devices;
1963 		fs_devices = fs_info->fs_devices;
1964 		while (fs_devices) {
1965 			if (fs_devices->seed == cur_devices) {
1966 				fs_devices->seed = cur_devices->seed;
1967 				break;
1968 			}
1969 			fs_devices = fs_devices->seed;
1970 		}
1971 		cur_devices->seed = NULL;
1972 		__btrfs_close_devices(cur_devices);
1973 		free_fs_devices(cur_devices);
1974 	}
1975 
1976 	fs_info->num_tolerated_disk_barrier_failures =
1977 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
1978 
1979 out:
1980 	mutex_unlock(&uuid_mutex);
1981 	return ret;
1982 
1983 error_undo:
1984 	if (device->writeable) {
1985 		mutex_lock(&fs_info->chunk_mutex);
1986 		list_add(&device->dev_alloc_list,
1987 			 &fs_info->fs_devices->alloc_list);
1988 		device->fs_devices->rw_devices++;
1989 		mutex_unlock(&fs_info->chunk_mutex);
1990 	}
1991 	goto out;
1992 }
1993 
1994 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1995 					struct btrfs_device *srcdev)
1996 {
1997 	struct btrfs_fs_devices *fs_devices;
1998 
1999 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2000 
2001 	/*
2002 	 * in case of fs with no seed, srcdev->fs_devices will point
2003 	 * to fs_devices of fs_info. However when the dev being replaced is
2004 	 * a seed dev it will point to the seed's local fs_devices. In short
2005 	 * srcdev will have its correct fs_devices in both the cases.
2006 	 */
2007 	fs_devices = srcdev->fs_devices;
2008 
2009 	list_del_rcu(&srcdev->dev_list);
2010 	list_del_rcu(&srcdev->dev_alloc_list);
2011 	fs_devices->num_devices--;
2012 	if (srcdev->missing)
2013 		fs_devices->missing_devices--;
2014 
2015 	if (srcdev->writeable)
2016 		fs_devices->rw_devices--;
2017 
2018 	if (srcdev->bdev)
2019 		fs_devices->open_devices--;
2020 }
2021 
2022 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2023 				      struct btrfs_device *srcdev)
2024 {
2025 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2026 
2027 	if (srcdev->writeable) {
2028 		/* zero out the old super if it is writable */
2029 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2030 	}
2031 
2032 	btrfs_close_bdev(srcdev);
2033 
2034 	call_rcu(&srcdev->rcu, free_device);
2035 
2036 	/*
2037 	 * unless fs_devices is seed fs, num_devices shouldn't go
2038 	 * zero
2039 	 */
2040 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2041 
2042 	/* if this is no devs we rather delete the fs_devices */
2043 	if (!fs_devices->num_devices) {
2044 		struct btrfs_fs_devices *tmp_fs_devices;
2045 
2046 		tmp_fs_devices = fs_info->fs_devices;
2047 		while (tmp_fs_devices) {
2048 			if (tmp_fs_devices->seed == fs_devices) {
2049 				tmp_fs_devices->seed = fs_devices->seed;
2050 				break;
2051 			}
2052 			tmp_fs_devices = tmp_fs_devices->seed;
2053 		}
2054 		fs_devices->seed = NULL;
2055 		__btrfs_close_devices(fs_devices);
2056 		free_fs_devices(fs_devices);
2057 	}
2058 }
2059 
2060 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2061 				      struct btrfs_device *tgtdev)
2062 {
2063 	mutex_lock(&uuid_mutex);
2064 	WARN_ON(!tgtdev);
2065 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2066 
2067 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2068 
2069 	if (tgtdev->bdev)
2070 		fs_info->fs_devices->open_devices--;
2071 
2072 	fs_info->fs_devices->num_devices--;
2073 
2074 	btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2075 
2076 	list_del_rcu(&tgtdev->dev_list);
2077 
2078 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2079 	mutex_unlock(&uuid_mutex);
2080 
2081 	/*
2082 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2083 	 * may lead to a call to btrfs_show_devname() which will try
2084 	 * to hold device_list_mutex. And here this device
2085 	 * is already out of device list, so we don't have to hold
2086 	 * the device_list_mutex lock.
2087 	 */
2088 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2089 
2090 	btrfs_close_bdev(tgtdev);
2091 	call_rcu(&tgtdev->rcu, free_device);
2092 }
2093 
2094 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2095 				     const char *device_path,
2096 				     struct btrfs_device **device)
2097 {
2098 	int ret = 0;
2099 	struct btrfs_super_block *disk_super;
2100 	u64 devid;
2101 	u8 *dev_uuid;
2102 	struct block_device *bdev;
2103 	struct buffer_head *bh;
2104 
2105 	*device = NULL;
2106 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2107 				    fs_info->bdev_holder, 0, &bdev, &bh);
2108 	if (ret)
2109 		return ret;
2110 	disk_super = (struct btrfs_super_block *)bh->b_data;
2111 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2112 	dev_uuid = disk_super->dev_item.uuid;
2113 	*device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2114 	brelse(bh);
2115 	if (!*device)
2116 		ret = -ENOENT;
2117 	blkdev_put(bdev, FMODE_READ);
2118 	return ret;
2119 }
2120 
2121 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2122 					 const char *device_path,
2123 					 struct btrfs_device **device)
2124 {
2125 	*device = NULL;
2126 	if (strcmp(device_path, "missing") == 0) {
2127 		struct list_head *devices;
2128 		struct btrfs_device *tmp;
2129 
2130 		devices = &fs_info->fs_devices->devices;
2131 		/*
2132 		 * It is safe to read the devices since the volume_mutex
2133 		 * is held by the caller.
2134 		 */
2135 		list_for_each_entry(tmp, devices, dev_list) {
2136 			if (tmp->in_fs_metadata && !tmp->bdev) {
2137 				*device = tmp;
2138 				break;
2139 			}
2140 		}
2141 
2142 		if (!*device)
2143 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2144 
2145 		return 0;
2146 	} else {
2147 		return btrfs_find_device_by_path(fs_info, device_path, device);
2148 	}
2149 }
2150 
2151 /*
2152  * Lookup a device given by device id, or the path if the id is 0.
2153  */
2154 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2155 				 const char *devpath,
2156 				 struct btrfs_device **device)
2157 {
2158 	int ret;
2159 
2160 	if (devid) {
2161 		ret = 0;
2162 		*device = btrfs_find_device(fs_info, devid, NULL, NULL);
2163 		if (!*device)
2164 			ret = -ENOENT;
2165 	} else {
2166 		if (!devpath || !devpath[0])
2167 			return -EINVAL;
2168 
2169 		ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2170 							   device);
2171 	}
2172 	return ret;
2173 }
2174 
2175 /*
2176  * does all the dirty work required for changing file system's UUID.
2177  */
2178 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2179 {
2180 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2181 	struct btrfs_fs_devices *old_devices;
2182 	struct btrfs_fs_devices *seed_devices;
2183 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2184 	struct btrfs_device *device;
2185 	u64 super_flags;
2186 
2187 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2188 	if (!fs_devices->seeding)
2189 		return -EINVAL;
2190 
2191 	seed_devices = __alloc_fs_devices();
2192 	if (IS_ERR(seed_devices))
2193 		return PTR_ERR(seed_devices);
2194 
2195 	old_devices = clone_fs_devices(fs_devices);
2196 	if (IS_ERR(old_devices)) {
2197 		kfree(seed_devices);
2198 		return PTR_ERR(old_devices);
2199 	}
2200 
2201 	list_add(&old_devices->list, &fs_uuids);
2202 
2203 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2204 	seed_devices->opened = 1;
2205 	INIT_LIST_HEAD(&seed_devices->devices);
2206 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2207 	mutex_init(&seed_devices->device_list_mutex);
2208 
2209 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2210 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2211 			      synchronize_rcu);
2212 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2213 		device->fs_devices = seed_devices;
2214 
2215 	mutex_lock(&fs_info->chunk_mutex);
2216 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2217 	mutex_unlock(&fs_info->chunk_mutex);
2218 
2219 	fs_devices->seeding = 0;
2220 	fs_devices->num_devices = 0;
2221 	fs_devices->open_devices = 0;
2222 	fs_devices->missing_devices = 0;
2223 	fs_devices->rotating = 0;
2224 	fs_devices->seed = seed_devices;
2225 
2226 	generate_random_uuid(fs_devices->fsid);
2227 	memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2228 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2229 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2230 
2231 	super_flags = btrfs_super_flags(disk_super) &
2232 		      ~BTRFS_SUPER_FLAG_SEEDING;
2233 	btrfs_set_super_flags(disk_super, super_flags);
2234 
2235 	return 0;
2236 }
2237 
2238 /*
2239  * Store the expected generation for seed devices in device items.
2240  */
2241 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2242 			       struct btrfs_fs_info *fs_info)
2243 {
2244 	struct btrfs_root *root = fs_info->chunk_root;
2245 	struct btrfs_path *path;
2246 	struct extent_buffer *leaf;
2247 	struct btrfs_dev_item *dev_item;
2248 	struct btrfs_device *device;
2249 	struct btrfs_key key;
2250 	u8 fs_uuid[BTRFS_UUID_SIZE];
2251 	u8 dev_uuid[BTRFS_UUID_SIZE];
2252 	u64 devid;
2253 	int ret;
2254 
2255 	path = btrfs_alloc_path();
2256 	if (!path)
2257 		return -ENOMEM;
2258 
2259 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2260 	key.offset = 0;
2261 	key.type = BTRFS_DEV_ITEM_KEY;
2262 
2263 	while (1) {
2264 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2265 		if (ret < 0)
2266 			goto error;
2267 
2268 		leaf = path->nodes[0];
2269 next_slot:
2270 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2271 			ret = btrfs_next_leaf(root, path);
2272 			if (ret > 0)
2273 				break;
2274 			if (ret < 0)
2275 				goto error;
2276 			leaf = path->nodes[0];
2277 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2278 			btrfs_release_path(path);
2279 			continue;
2280 		}
2281 
2282 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2283 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2284 		    key.type != BTRFS_DEV_ITEM_KEY)
2285 			break;
2286 
2287 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2288 					  struct btrfs_dev_item);
2289 		devid = btrfs_device_id(leaf, dev_item);
2290 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2291 				   BTRFS_UUID_SIZE);
2292 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2293 				   BTRFS_UUID_SIZE);
2294 		device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2295 		BUG_ON(!device); /* Logic error */
2296 
2297 		if (device->fs_devices->seeding) {
2298 			btrfs_set_device_generation(leaf, dev_item,
2299 						    device->generation);
2300 			btrfs_mark_buffer_dirty(leaf);
2301 		}
2302 
2303 		path->slots[0]++;
2304 		goto next_slot;
2305 	}
2306 	ret = 0;
2307 error:
2308 	btrfs_free_path(path);
2309 	return ret;
2310 }
2311 
2312 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2313 {
2314 	struct btrfs_root *root = fs_info->dev_root;
2315 	struct request_queue *q;
2316 	struct btrfs_trans_handle *trans;
2317 	struct btrfs_device *device;
2318 	struct block_device *bdev;
2319 	struct list_head *devices;
2320 	struct super_block *sb = fs_info->sb;
2321 	struct rcu_string *name;
2322 	u64 tmp;
2323 	int seeding_dev = 0;
2324 	int ret = 0;
2325 
2326 	if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
2327 		return -EROFS;
2328 
2329 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2330 				  fs_info->bdev_holder);
2331 	if (IS_ERR(bdev))
2332 		return PTR_ERR(bdev);
2333 
2334 	if (fs_info->fs_devices->seeding) {
2335 		seeding_dev = 1;
2336 		down_write(&sb->s_umount);
2337 		mutex_lock(&uuid_mutex);
2338 	}
2339 
2340 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2341 
2342 	devices = &fs_info->fs_devices->devices;
2343 
2344 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2345 	list_for_each_entry(device, devices, dev_list) {
2346 		if (device->bdev == bdev) {
2347 			ret = -EEXIST;
2348 			mutex_unlock(
2349 				&fs_info->fs_devices->device_list_mutex);
2350 			goto error;
2351 		}
2352 	}
2353 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2354 
2355 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2356 	if (IS_ERR(device)) {
2357 		/* we can safely leave the fs_devices entry around */
2358 		ret = PTR_ERR(device);
2359 		goto error;
2360 	}
2361 
2362 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2363 	if (!name) {
2364 		kfree(device);
2365 		ret = -ENOMEM;
2366 		goto error;
2367 	}
2368 	rcu_assign_pointer(device->name, name);
2369 
2370 	trans = btrfs_start_transaction(root, 0);
2371 	if (IS_ERR(trans)) {
2372 		rcu_string_free(device->name);
2373 		kfree(device);
2374 		ret = PTR_ERR(trans);
2375 		goto error;
2376 	}
2377 
2378 	q = bdev_get_queue(bdev);
2379 	if (blk_queue_discard(q))
2380 		device->can_discard = 1;
2381 	device->writeable = 1;
2382 	device->generation = trans->transid;
2383 	device->io_width = fs_info->sectorsize;
2384 	device->io_align = fs_info->sectorsize;
2385 	device->sector_size = fs_info->sectorsize;
2386 	device->total_bytes = i_size_read(bdev->bd_inode);
2387 	device->disk_total_bytes = device->total_bytes;
2388 	device->commit_total_bytes = device->total_bytes;
2389 	device->fs_info = fs_info;
2390 	device->bdev = bdev;
2391 	device->in_fs_metadata = 1;
2392 	device->is_tgtdev_for_dev_replace = 0;
2393 	device->mode = FMODE_EXCL;
2394 	device->dev_stats_valid = 1;
2395 	set_blocksize(device->bdev, 4096);
2396 
2397 	if (seeding_dev) {
2398 		sb->s_flags &= ~MS_RDONLY;
2399 		ret = btrfs_prepare_sprout(fs_info);
2400 		BUG_ON(ret); /* -ENOMEM */
2401 	}
2402 
2403 	device->fs_devices = fs_info->fs_devices;
2404 
2405 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2406 	mutex_lock(&fs_info->chunk_mutex);
2407 	list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2408 	list_add(&device->dev_alloc_list,
2409 		 &fs_info->fs_devices->alloc_list);
2410 	fs_info->fs_devices->num_devices++;
2411 	fs_info->fs_devices->open_devices++;
2412 	fs_info->fs_devices->rw_devices++;
2413 	fs_info->fs_devices->total_devices++;
2414 	fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2415 
2416 	spin_lock(&fs_info->free_chunk_lock);
2417 	fs_info->free_chunk_space += device->total_bytes;
2418 	spin_unlock(&fs_info->free_chunk_lock);
2419 
2420 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2421 		fs_info->fs_devices->rotating = 1;
2422 
2423 	tmp = btrfs_super_total_bytes(fs_info->super_copy);
2424 	btrfs_set_super_total_bytes(fs_info->super_copy,
2425 				    tmp + device->total_bytes);
2426 
2427 	tmp = btrfs_super_num_devices(fs_info->super_copy);
2428 	btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2429 
2430 	/* add sysfs device entry */
2431 	btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2432 
2433 	/*
2434 	 * we've got more storage, clear any full flags on the space
2435 	 * infos
2436 	 */
2437 	btrfs_clear_space_info_full(fs_info);
2438 
2439 	mutex_unlock(&fs_info->chunk_mutex);
2440 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2441 
2442 	if (seeding_dev) {
2443 		mutex_lock(&fs_info->chunk_mutex);
2444 		ret = init_first_rw_device(trans, fs_info);
2445 		mutex_unlock(&fs_info->chunk_mutex);
2446 		if (ret) {
2447 			btrfs_abort_transaction(trans, ret);
2448 			goto error_trans;
2449 		}
2450 	}
2451 
2452 	ret = btrfs_add_device(trans, fs_info, device);
2453 	if (ret) {
2454 		btrfs_abort_transaction(trans, ret);
2455 		goto error_trans;
2456 	}
2457 
2458 	if (seeding_dev) {
2459 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2460 
2461 		ret = btrfs_finish_sprout(trans, fs_info);
2462 		if (ret) {
2463 			btrfs_abort_transaction(trans, ret);
2464 			goto error_trans;
2465 		}
2466 
2467 		/* Sprouting would change fsid of the mounted root,
2468 		 * so rename the fsid on the sysfs
2469 		 */
2470 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2471 						fs_info->fsid);
2472 		if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2473 			btrfs_warn(fs_info,
2474 				   "sysfs: failed to create fsid for sprout");
2475 	}
2476 
2477 	fs_info->num_tolerated_disk_barrier_failures =
2478 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2479 	ret = btrfs_commit_transaction(trans);
2480 
2481 	if (seeding_dev) {
2482 		mutex_unlock(&uuid_mutex);
2483 		up_write(&sb->s_umount);
2484 
2485 		if (ret) /* transaction commit */
2486 			return ret;
2487 
2488 		ret = btrfs_relocate_sys_chunks(fs_info);
2489 		if (ret < 0)
2490 			btrfs_handle_fs_error(fs_info, ret,
2491 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2492 		trans = btrfs_attach_transaction(root);
2493 		if (IS_ERR(trans)) {
2494 			if (PTR_ERR(trans) == -ENOENT)
2495 				return 0;
2496 			return PTR_ERR(trans);
2497 		}
2498 		ret = btrfs_commit_transaction(trans);
2499 	}
2500 
2501 	/* Update ctime/mtime for libblkid */
2502 	update_dev_time(device_path);
2503 	return ret;
2504 
2505 error_trans:
2506 	btrfs_end_transaction(trans);
2507 	rcu_string_free(device->name);
2508 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2509 	kfree(device);
2510 error:
2511 	blkdev_put(bdev, FMODE_EXCL);
2512 	if (seeding_dev) {
2513 		mutex_unlock(&uuid_mutex);
2514 		up_write(&sb->s_umount);
2515 	}
2516 	return ret;
2517 }
2518 
2519 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2520 				  const char *device_path,
2521 				  struct btrfs_device *srcdev,
2522 				  struct btrfs_device **device_out)
2523 {
2524 	struct request_queue *q;
2525 	struct btrfs_device *device;
2526 	struct block_device *bdev;
2527 	struct list_head *devices;
2528 	struct rcu_string *name;
2529 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2530 	int ret = 0;
2531 
2532 	*device_out = NULL;
2533 	if (fs_info->fs_devices->seeding) {
2534 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2535 		return -EINVAL;
2536 	}
2537 
2538 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2539 				  fs_info->bdev_holder);
2540 	if (IS_ERR(bdev)) {
2541 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2542 		return PTR_ERR(bdev);
2543 	}
2544 
2545 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2546 
2547 	devices = &fs_info->fs_devices->devices;
2548 	list_for_each_entry(device, devices, dev_list) {
2549 		if (device->bdev == bdev) {
2550 			btrfs_err(fs_info,
2551 				  "target device is in the filesystem!");
2552 			ret = -EEXIST;
2553 			goto error;
2554 		}
2555 	}
2556 
2557 
2558 	if (i_size_read(bdev->bd_inode) <
2559 	    btrfs_device_get_total_bytes(srcdev)) {
2560 		btrfs_err(fs_info,
2561 			  "target device is smaller than source device!");
2562 		ret = -EINVAL;
2563 		goto error;
2564 	}
2565 
2566 
2567 	device = btrfs_alloc_device(NULL, &devid, NULL);
2568 	if (IS_ERR(device)) {
2569 		ret = PTR_ERR(device);
2570 		goto error;
2571 	}
2572 
2573 	name = rcu_string_strdup(device_path, GFP_NOFS);
2574 	if (!name) {
2575 		kfree(device);
2576 		ret = -ENOMEM;
2577 		goto error;
2578 	}
2579 	rcu_assign_pointer(device->name, name);
2580 
2581 	q = bdev_get_queue(bdev);
2582 	if (blk_queue_discard(q))
2583 		device->can_discard = 1;
2584 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2585 	device->writeable = 1;
2586 	device->generation = 0;
2587 	device->io_width = fs_info->sectorsize;
2588 	device->io_align = fs_info->sectorsize;
2589 	device->sector_size = fs_info->sectorsize;
2590 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2591 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2592 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2593 	ASSERT(list_empty(&srcdev->resized_list));
2594 	device->commit_total_bytes = srcdev->commit_total_bytes;
2595 	device->commit_bytes_used = device->bytes_used;
2596 	device->fs_info = fs_info;
2597 	device->bdev = bdev;
2598 	device->in_fs_metadata = 1;
2599 	device->is_tgtdev_for_dev_replace = 1;
2600 	device->mode = FMODE_EXCL;
2601 	device->dev_stats_valid = 1;
2602 	set_blocksize(device->bdev, 4096);
2603 	device->fs_devices = fs_info->fs_devices;
2604 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2605 	fs_info->fs_devices->num_devices++;
2606 	fs_info->fs_devices->open_devices++;
2607 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2608 
2609 	*device_out = device;
2610 	return ret;
2611 
2612 error:
2613 	blkdev_put(bdev, FMODE_EXCL);
2614 	return ret;
2615 }
2616 
2617 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2618 					      struct btrfs_device *tgtdev)
2619 {
2620 	u32 sectorsize = fs_info->sectorsize;
2621 
2622 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2623 	tgtdev->io_width = sectorsize;
2624 	tgtdev->io_align = sectorsize;
2625 	tgtdev->sector_size = sectorsize;
2626 	tgtdev->fs_info = fs_info;
2627 	tgtdev->in_fs_metadata = 1;
2628 }
2629 
2630 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2631 					struct btrfs_device *device)
2632 {
2633 	int ret;
2634 	struct btrfs_path *path;
2635 	struct btrfs_root *root = device->fs_info->chunk_root;
2636 	struct btrfs_dev_item *dev_item;
2637 	struct extent_buffer *leaf;
2638 	struct btrfs_key key;
2639 
2640 	path = btrfs_alloc_path();
2641 	if (!path)
2642 		return -ENOMEM;
2643 
2644 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2645 	key.type = BTRFS_DEV_ITEM_KEY;
2646 	key.offset = device->devid;
2647 
2648 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2649 	if (ret < 0)
2650 		goto out;
2651 
2652 	if (ret > 0) {
2653 		ret = -ENOENT;
2654 		goto out;
2655 	}
2656 
2657 	leaf = path->nodes[0];
2658 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2659 
2660 	btrfs_set_device_id(leaf, dev_item, device->devid);
2661 	btrfs_set_device_type(leaf, dev_item, device->type);
2662 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2663 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2664 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2665 	btrfs_set_device_total_bytes(leaf, dev_item,
2666 				     btrfs_device_get_disk_total_bytes(device));
2667 	btrfs_set_device_bytes_used(leaf, dev_item,
2668 				    btrfs_device_get_bytes_used(device));
2669 	btrfs_mark_buffer_dirty(leaf);
2670 
2671 out:
2672 	btrfs_free_path(path);
2673 	return ret;
2674 }
2675 
2676 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2677 		      struct btrfs_device *device, u64 new_size)
2678 {
2679 	struct btrfs_fs_info *fs_info = device->fs_info;
2680 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2681 	struct btrfs_fs_devices *fs_devices;
2682 	u64 old_total;
2683 	u64 diff;
2684 
2685 	if (!device->writeable)
2686 		return -EACCES;
2687 
2688 	mutex_lock(&fs_info->chunk_mutex);
2689 	old_total = btrfs_super_total_bytes(super_copy);
2690 	diff = new_size - device->total_bytes;
2691 
2692 	if (new_size <= device->total_bytes ||
2693 	    device->is_tgtdev_for_dev_replace) {
2694 		mutex_unlock(&fs_info->chunk_mutex);
2695 		return -EINVAL;
2696 	}
2697 
2698 	fs_devices = fs_info->fs_devices;
2699 
2700 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2701 	device->fs_devices->total_rw_bytes += diff;
2702 
2703 	btrfs_device_set_total_bytes(device, new_size);
2704 	btrfs_device_set_disk_total_bytes(device, new_size);
2705 	btrfs_clear_space_info_full(device->fs_info);
2706 	if (list_empty(&device->resized_list))
2707 		list_add_tail(&device->resized_list,
2708 			      &fs_devices->resized_devices);
2709 	mutex_unlock(&fs_info->chunk_mutex);
2710 
2711 	return btrfs_update_device(trans, device);
2712 }
2713 
2714 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2715 			    struct btrfs_fs_info *fs_info, u64 chunk_objectid,
2716 			    u64 chunk_offset)
2717 {
2718 	struct btrfs_root *root = fs_info->chunk_root;
2719 	int ret;
2720 	struct btrfs_path *path;
2721 	struct btrfs_key key;
2722 
2723 	path = btrfs_alloc_path();
2724 	if (!path)
2725 		return -ENOMEM;
2726 
2727 	key.objectid = chunk_objectid;
2728 	key.offset = chunk_offset;
2729 	key.type = BTRFS_CHUNK_ITEM_KEY;
2730 
2731 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2732 	if (ret < 0)
2733 		goto out;
2734 	else if (ret > 0) { /* Logic error or corruption */
2735 		btrfs_handle_fs_error(fs_info, -ENOENT,
2736 				      "Failed lookup while freeing chunk.");
2737 		ret = -ENOENT;
2738 		goto out;
2739 	}
2740 
2741 	ret = btrfs_del_item(trans, root, path);
2742 	if (ret < 0)
2743 		btrfs_handle_fs_error(fs_info, ret,
2744 				      "Failed to delete chunk item.");
2745 out:
2746 	btrfs_free_path(path);
2747 	return ret;
2748 }
2749 
2750 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2751 			       u64 chunk_objectid, u64 chunk_offset)
2752 {
2753 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2754 	struct btrfs_disk_key *disk_key;
2755 	struct btrfs_chunk *chunk;
2756 	u8 *ptr;
2757 	int ret = 0;
2758 	u32 num_stripes;
2759 	u32 array_size;
2760 	u32 len = 0;
2761 	u32 cur;
2762 	struct btrfs_key key;
2763 
2764 	mutex_lock(&fs_info->chunk_mutex);
2765 	array_size = btrfs_super_sys_array_size(super_copy);
2766 
2767 	ptr = super_copy->sys_chunk_array;
2768 	cur = 0;
2769 
2770 	while (cur < array_size) {
2771 		disk_key = (struct btrfs_disk_key *)ptr;
2772 		btrfs_disk_key_to_cpu(&key, disk_key);
2773 
2774 		len = sizeof(*disk_key);
2775 
2776 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2777 			chunk = (struct btrfs_chunk *)(ptr + len);
2778 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2779 			len += btrfs_chunk_item_size(num_stripes);
2780 		} else {
2781 			ret = -EIO;
2782 			break;
2783 		}
2784 		if (key.objectid == chunk_objectid &&
2785 		    key.offset == chunk_offset) {
2786 			memmove(ptr, ptr + len, array_size - (cur + len));
2787 			array_size -= len;
2788 			btrfs_set_super_sys_array_size(super_copy, array_size);
2789 		} else {
2790 			ptr += len;
2791 			cur += len;
2792 		}
2793 	}
2794 	mutex_unlock(&fs_info->chunk_mutex);
2795 	return ret;
2796 }
2797 
2798 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2799 		       struct btrfs_fs_info *fs_info, u64 chunk_offset)
2800 {
2801 	struct extent_map_tree *em_tree;
2802 	struct extent_map *em;
2803 	struct map_lookup *map;
2804 	u64 dev_extent_len = 0;
2805 	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2806 	int i, ret = 0;
2807 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2808 
2809 	em_tree = &fs_info->mapping_tree.map_tree;
2810 
2811 	read_lock(&em_tree->lock);
2812 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2813 	read_unlock(&em_tree->lock);
2814 
2815 	if (!em || em->start > chunk_offset ||
2816 	    em->start + em->len < chunk_offset) {
2817 		/*
2818 		 * This is a logic error, but we don't want to just rely on the
2819 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2820 		 * do anything we still error out.
2821 		 */
2822 		ASSERT(0);
2823 		if (em)
2824 			free_extent_map(em);
2825 		return -EINVAL;
2826 	}
2827 	map = em->map_lookup;
2828 	mutex_lock(&fs_info->chunk_mutex);
2829 	check_system_chunk(trans, fs_info, map->type);
2830 	mutex_unlock(&fs_info->chunk_mutex);
2831 
2832 	/*
2833 	 * Take the device list mutex to prevent races with the final phase of
2834 	 * a device replace operation that replaces the device object associated
2835 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2836 	 */
2837 	mutex_lock(&fs_devices->device_list_mutex);
2838 	for (i = 0; i < map->num_stripes; i++) {
2839 		struct btrfs_device *device = map->stripes[i].dev;
2840 		ret = btrfs_free_dev_extent(trans, device,
2841 					    map->stripes[i].physical,
2842 					    &dev_extent_len);
2843 		if (ret) {
2844 			mutex_unlock(&fs_devices->device_list_mutex);
2845 			btrfs_abort_transaction(trans, ret);
2846 			goto out;
2847 		}
2848 
2849 		if (device->bytes_used > 0) {
2850 			mutex_lock(&fs_info->chunk_mutex);
2851 			btrfs_device_set_bytes_used(device,
2852 					device->bytes_used - dev_extent_len);
2853 			spin_lock(&fs_info->free_chunk_lock);
2854 			fs_info->free_chunk_space += dev_extent_len;
2855 			spin_unlock(&fs_info->free_chunk_lock);
2856 			btrfs_clear_space_info_full(fs_info);
2857 			mutex_unlock(&fs_info->chunk_mutex);
2858 		}
2859 
2860 		if (map->stripes[i].dev) {
2861 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2862 			if (ret) {
2863 				mutex_unlock(&fs_devices->device_list_mutex);
2864 				btrfs_abort_transaction(trans, ret);
2865 				goto out;
2866 			}
2867 		}
2868 	}
2869 	mutex_unlock(&fs_devices->device_list_mutex);
2870 
2871 	ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
2872 	if (ret) {
2873 		btrfs_abort_transaction(trans, ret);
2874 		goto out;
2875 	}
2876 
2877 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2878 
2879 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2880 		ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2881 					  chunk_offset);
2882 		if (ret) {
2883 			btrfs_abort_transaction(trans, ret);
2884 			goto out;
2885 		}
2886 	}
2887 
2888 	ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2889 	if (ret) {
2890 		btrfs_abort_transaction(trans, ret);
2891 		goto out;
2892 	}
2893 
2894 out:
2895 	/* once for us */
2896 	free_extent_map(em);
2897 	return ret;
2898 }
2899 
2900 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2901 {
2902 	struct btrfs_root *root = fs_info->chunk_root;
2903 	struct btrfs_trans_handle *trans;
2904 	int ret;
2905 
2906 	/*
2907 	 * Prevent races with automatic removal of unused block groups.
2908 	 * After we relocate and before we remove the chunk with offset
2909 	 * chunk_offset, automatic removal of the block group can kick in,
2910 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2911 	 *
2912 	 * Make sure to acquire this mutex before doing a tree search (dev
2913 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2914 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2915 	 * we release the path used to search the chunk/dev tree and before
2916 	 * the current task acquires this mutex and calls us.
2917 	 */
2918 	ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2919 
2920 	ret = btrfs_can_relocate(fs_info, chunk_offset);
2921 	if (ret)
2922 		return -ENOSPC;
2923 
2924 	/* step one, relocate all the extents inside this chunk */
2925 	btrfs_scrub_pause(fs_info);
2926 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2927 	btrfs_scrub_continue(fs_info);
2928 	if (ret)
2929 		return ret;
2930 
2931 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2932 						     chunk_offset);
2933 	if (IS_ERR(trans)) {
2934 		ret = PTR_ERR(trans);
2935 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2936 		return ret;
2937 	}
2938 
2939 	/*
2940 	 * step two, delete the device extents and the
2941 	 * chunk tree entries
2942 	 */
2943 	ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2944 	btrfs_end_transaction(trans);
2945 	return ret;
2946 }
2947 
2948 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2949 {
2950 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2951 	struct btrfs_path *path;
2952 	struct extent_buffer *leaf;
2953 	struct btrfs_chunk *chunk;
2954 	struct btrfs_key key;
2955 	struct btrfs_key found_key;
2956 	u64 chunk_type;
2957 	bool retried = false;
2958 	int failed = 0;
2959 	int ret;
2960 
2961 	path = btrfs_alloc_path();
2962 	if (!path)
2963 		return -ENOMEM;
2964 
2965 again:
2966 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2967 	key.offset = (u64)-1;
2968 	key.type = BTRFS_CHUNK_ITEM_KEY;
2969 
2970 	while (1) {
2971 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
2972 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2973 		if (ret < 0) {
2974 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2975 			goto error;
2976 		}
2977 		BUG_ON(ret == 0); /* Corruption */
2978 
2979 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2980 					  key.type);
2981 		if (ret)
2982 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2983 		if (ret < 0)
2984 			goto error;
2985 		if (ret > 0)
2986 			break;
2987 
2988 		leaf = path->nodes[0];
2989 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2990 
2991 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2992 				       struct btrfs_chunk);
2993 		chunk_type = btrfs_chunk_type(leaf, chunk);
2994 		btrfs_release_path(path);
2995 
2996 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2997 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2998 			if (ret == -ENOSPC)
2999 				failed++;
3000 			else
3001 				BUG_ON(ret);
3002 		}
3003 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3004 
3005 		if (found_key.offset == 0)
3006 			break;
3007 		key.offset = found_key.offset - 1;
3008 	}
3009 	ret = 0;
3010 	if (failed && !retried) {
3011 		failed = 0;
3012 		retried = true;
3013 		goto again;
3014 	} else if (WARN_ON(failed && retried)) {
3015 		ret = -ENOSPC;
3016 	}
3017 error:
3018 	btrfs_free_path(path);
3019 	return ret;
3020 }
3021 
3022 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3023 			       struct btrfs_balance_control *bctl)
3024 {
3025 	struct btrfs_root *root = fs_info->tree_root;
3026 	struct btrfs_trans_handle *trans;
3027 	struct btrfs_balance_item *item;
3028 	struct btrfs_disk_balance_args disk_bargs;
3029 	struct btrfs_path *path;
3030 	struct extent_buffer *leaf;
3031 	struct btrfs_key key;
3032 	int ret, err;
3033 
3034 	path = btrfs_alloc_path();
3035 	if (!path)
3036 		return -ENOMEM;
3037 
3038 	trans = btrfs_start_transaction(root, 0);
3039 	if (IS_ERR(trans)) {
3040 		btrfs_free_path(path);
3041 		return PTR_ERR(trans);
3042 	}
3043 
3044 	key.objectid = BTRFS_BALANCE_OBJECTID;
3045 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3046 	key.offset = 0;
3047 
3048 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3049 				      sizeof(*item));
3050 	if (ret)
3051 		goto out;
3052 
3053 	leaf = path->nodes[0];
3054 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3055 
3056 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3057 
3058 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3059 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3060 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3061 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3062 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3063 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3064 
3065 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3066 
3067 	btrfs_mark_buffer_dirty(leaf);
3068 out:
3069 	btrfs_free_path(path);
3070 	err = btrfs_commit_transaction(trans);
3071 	if (err && !ret)
3072 		ret = err;
3073 	return ret;
3074 }
3075 
3076 static int del_balance_item(struct btrfs_fs_info *fs_info)
3077 {
3078 	struct btrfs_root *root = fs_info->tree_root;
3079 	struct btrfs_trans_handle *trans;
3080 	struct btrfs_path *path;
3081 	struct btrfs_key key;
3082 	int ret, err;
3083 
3084 	path = btrfs_alloc_path();
3085 	if (!path)
3086 		return -ENOMEM;
3087 
3088 	trans = btrfs_start_transaction(root, 0);
3089 	if (IS_ERR(trans)) {
3090 		btrfs_free_path(path);
3091 		return PTR_ERR(trans);
3092 	}
3093 
3094 	key.objectid = BTRFS_BALANCE_OBJECTID;
3095 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3096 	key.offset = 0;
3097 
3098 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3099 	if (ret < 0)
3100 		goto out;
3101 	if (ret > 0) {
3102 		ret = -ENOENT;
3103 		goto out;
3104 	}
3105 
3106 	ret = btrfs_del_item(trans, root, path);
3107 out:
3108 	btrfs_free_path(path);
3109 	err = btrfs_commit_transaction(trans);
3110 	if (err && !ret)
3111 		ret = err;
3112 	return ret;
3113 }
3114 
3115 /*
3116  * This is a heuristic used to reduce the number of chunks balanced on
3117  * resume after balance was interrupted.
3118  */
3119 static void update_balance_args(struct btrfs_balance_control *bctl)
3120 {
3121 	/*
3122 	 * Turn on soft mode for chunk types that were being converted.
3123 	 */
3124 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3125 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3126 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3127 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3128 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3129 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3130 
3131 	/*
3132 	 * Turn on usage filter if is not already used.  The idea is
3133 	 * that chunks that we have already balanced should be
3134 	 * reasonably full.  Don't do it for chunks that are being
3135 	 * converted - that will keep us from relocating unconverted
3136 	 * (albeit full) chunks.
3137 	 */
3138 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3139 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3140 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3141 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3142 		bctl->data.usage = 90;
3143 	}
3144 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3145 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3146 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3147 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3148 		bctl->sys.usage = 90;
3149 	}
3150 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3151 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3152 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3153 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3154 		bctl->meta.usage = 90;
3155 	}
3156 }
3157 
3158 /*
3159  * Should be called with both balance and volume mutexes held to
3160  * serialize other volume operations (add_dev/rm_dev/resize) with
3161  * restriper.  Same goes for unset_balance_control.
3162  */
3163 static void set_balance_control(struct btrfs_balance_control *bctl)
3164 {
3165 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3166 
3167 	BUG_ON(fs_info->balance_ctl);
3168 
3169 	spin_lock(&fs_info->balance_lock);
3170 	fs_info->balance_ctl = bctl;
3171 	spin_unlock(&fs_info->balance_lock);
3172 }
3173 
3174 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3175 {
3176 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3177 
3178 	BUG_ON(!fs_info->balance_ctl);
3179 
3180 	spin_lock(&fs_info->balance_lock);
3181 	fs_info->balance_ctl = NULL;
3182 	spin_unlock(&fs_info->balance_lock);
3183 
3184 	kfree(bctl);
3185 }
3186 
3187 /*
3188  * Balance filters.  Return 1 if chunk should be filtered out
3189  * (should not be balanced).
3190  */
3191 static int chunk_profiles_filter(u64 chunk_type,
3192 				 struct btrfs_balance_args *bargs)
3193 {
3194 	chunk_type = chunk_to_extended(chunk_type) &
3195 				BTRFS_EXTENDED_PROFILE_MASK;
3196 
3197 	if (bargs->profiles & chunk_type)
3198 		return 0;
3199 
3200 	return 1;
3201 }
3202 
3203 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3204 			      struct btrfs_balance_args *bargs)
3205 {
3206 	struct btrfs_block_group_cache *cache;
3207 	u64 chunk_used;
3208 	u64 user_thresh_min;
3209 	u64 user_thresh_max;
3210 	int ret = 1;
3211 
3212 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3213 	chunk_used = btrfs_block_group_used(&cache->item);
3214 
3215 	if (bargs->usage_min == 0)
3216 		user_thresh_min = 0;
3217 	else
3218 		user_thresh_min = div_factor_fine(cache->key.offset,
3219 					bargs->usage_min);
3220 
3221 	if (bargs->usage_max == 0)
3222 		user_thresh_max = 1;
3223 	else if (bargs->usage_max > 100)
3224 		user_thresh_max = cache->key.offset;
3225 	else
3226 		user_thresh_max = div_factor_fine(cache->key.offset,
3227 					bargs->usage_max);
3228 
3229 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3230 		ret = 0;
3231 
3232 	btrfs_put_block_group(cache);
3233 	return ret;
3234 }
3235 
3236 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3237 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3238 {
3239 	struct btrfs_block_group_cache *cache;
3240 	u64 chunk_used, user_thresh;
3241 	int ret = 1;
3242 
3243 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3244 	chunk_used = btrfs_block_group_used(&cache->item);
3245 
3246 	if (bargs->usage_min == 0)
3247 		user_thresh = 1;
3248 	else if (bargs->usage > 100)
3249 		user_thresh = cache->key.offset;
3250 	else
3251 		user_thresh = div_factor_fine(cache->key.offset,
3252 					      bargs->usage);
3253 
3254 	if (chunk_used < user_thresh)
3255 		ret = 0;
3256 
3257 	btrfs_put_block_group(cache);
3258 	return ret;
3259 }
3260 
3261 static int chunk_devid_filter(struct extent_buffer *leaf,
3262 			      struct btrfs_chunk *chunk,
3263 			      struct btrfs_balance_args *bargs)
3264 {
3265 	struct btrfs_stripe *stripe;
3266 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3267 	int i;
3268 
3269 	for (i = 0; i < num_stripes; i++) {
3270 		stripe = btrfs_stripe_nr(chunk, i);
3271 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3272 			return 0;
3273 	}
3274 
3275 	return 1;
3276 }
3277 
3278 /* [pstart, pend) */
3279 static int chunk_drange_filter(struct extent_buffer *leaf,
3280 			       struct btrfs_chunk *chunk,
3281 			       u64 chunk_offset,
3282 			       struct btrfs_balance_args *bargs)
3283 {
3284 	struct btrfs_stripe *stripe;
3285 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3286 	u64 stripe_offset;
3287 	u64 stripe_length;
3288 	int factor;
3289 	int i;
3290 
3291 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3292 		return 0;
3293 
3294 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3295 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3296 		factor = num_stripes / 2;
3297 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3298 		factor = num_stripes - 1;
3299 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3300 		factor = num_stripes - 2;
3301 	} else {
3302 		factor = num_stripes;
3303 	}
3304 
3305 	for (i = 0; i < num_stripes; i++) {
3306 		stripe = btrfs_stripe_nr(chunk, i);
3307 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3308 			continue;
3309 
3310 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3311 		stripe_length = btrfs_chunk_length(leaf, chunk);
3312 		stripe_length = div_u64(stripe_length, factor);
3313 
3314 		if (stripe_offset < bargs->pend &&
3315 		    stripe_offset + stripe_length > bargs->pstart)
3316 			return 0;
3317 	}
3318 
3319 	return 1;
3320 }
3321 
3322 /* [vstart, vend) */
3323 static int chunk_vrange_filter(struct extent_buffer *leaf,
3324 			       struct btrfs_chunk *chunk,
3325 			       u64 chunk_offset,
3326 			       struct btrfs_balance_args *bargs)
3327 {
3328 	if (chunk_offset < bargs->vend &&
3329 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3330 		/* at least part of the chunk is inside this vrange */
3331 		return 0;
3332 
3333 	return 1;
3334 }
3335 
3336 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3337 			       struct btrfs_chunk *chunk,
3338 			       struct btrfs_balance_args *bargs)
3339 {
3340 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3341 
3342 	if (bargs->stripes_min <= num_stripes
3343 			&& num_stripes <= bargs->stripes_max)
3344 		return 0;
3345 
3346 	return 1;
3347 }
3348 
3349 static int chunk_soft_convert_filter(u64 chunk_type,
3350 				     struct btrfs_balance_args *bargs)
3351 {
3352 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3353 		return 0;
3354 
3355 	chunk_type = chunk_to_extended(chunk_type) &
3356 				BTRFS_EXTENDED_PROFILE_MASK;
3357 
3358 	if (bargs->target == chunk_type)
3359 		return 1;
3360 
3361 	return 0;
3362 }
3363 
3364 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3365 				struct extent_buffer *leaf,
3366 				struct btrfs_chunk *chunk, u64 chunk_offset)
3367 {
3368 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3369 	struct btrfs_balance_args *bargs = NULL;
3370 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3371 
3372 	/* type filter */
3373 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3374 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3375 		return 0;
3376 	}
3377 
3378 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3379 		bargs = &bctl->data;
3380 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3381 		bargs = &bctl->sys;
3382 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3383 		bargs = &bctl->meta;
3384 
3385 	/* profiles filter */
3386 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3387 	    chunk_profiles_filter(chunk_type, bargs)) {
3388 		return 0;
3389 	}
3390 
3391 	/* usage filter */
3392 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3393 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3394 		return 0;
3395 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3396 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3397 		return 0;
3398 	}
3399 
3400 	/* devid filter */
3401 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3402 	    chunk_devid_filter(leaf, chunk, bargs)) {
3403 		return 0;
3404 	}
3405 
3406 	/* drange filter, makes sense only with devid filter */
3407 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3408 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3409 		return 0;
3410 	}
3411 
3412 	/* vrange filter */
3413 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3414 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3415 		return 0;
3416 	}
3417 
3418 	/* stripes filter */
3419 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3420 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3421 		return 0;
3422 	}
3423 
3424 	/* soft profile changing mode */
3425 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3426 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3427 		return 0;
3428 	}
3429 
3430 	/*
3431 	 * limited by count, must be the last filter
3432 	 */
3433 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3434 		if (bargs->limit == 0)
3435 			return 0;
3436 		else
3437 			bargs->limit--;
3438 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3439 		/*
3440 		 * Same logic as the 'limit' filter; the minimum cannot be
3441 		 * determined here because we do not have the global information
3442 		 * about the count of all chunks that satisfy the filters.
3443 		 */
3444 		if (bargs->limit_max == 0)
3445 			return 0;
3446 		else
3447 			bargs->limit_max--;
3448 	}
3449 
3450 	return 1;
3451 }
3452 
3453 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3454 {
3455 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3456 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3457 	struct btrfs_root *dev_root = fs_info->dev_root;
3458 	struct list_head *devices;
3459 	struct btrfs_device *device;
3460 	u64 old_size;
3461 	u64 size_to_free;
3462 	u64 chunk_type;
3463 	struct btrfs_chunk *chunk;
3464 	struct btrfs_path *path = NULL;
3465 	struct btrfs_key key;
3466 	struct btrfs_key found_key;
3467 	struct btrfs_trans_handle *trans;
3468 	struct extent_buffer *leaf;
3469 	int slot;
3470 	int ret;
3471 	int enospc_errors = 0;
3472 	bool counting = true;
3473 	/* The single value limit and min/max limits use the same bytes in the */
3474 	u64 limit_data = bctl->data.limit;
3475 	u64 limit_meta = bctl->meta.limit;
3476 	u64 limit_sys = bctl->sys.limit;
3477 	u32 count_data = 0;
3478 	u32 count_meta = 0;
3479 	u32 count_sys = 0;
3480 	int chunk_reserved = 0;
3481 	u64 bytes_used = 0;
3482 
3483 	/* step one make some room on all the devices */
3484 	devices = &fs_info->fs_devices->devices;
3485 	list_for_each_entry(device, devices, dev_list) {
3486 		old_size = btrfs_device_get_total_bytes(device);
3487 		size_to_free = div_factor(old_size, 1);
3488 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3489 		if (!device->writeable ||
3490 		    btrfs_device_get_total_bytes(device) -
3491 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3492 		    device->is_tgtdev_for_dev_replace)
3493 			continue;
3494 
3495 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3496 		if (ret == -ENOSPC)
3497 			break;
3498 		if (ret) {
3499 			/* btrfs_shrink_device never returns ret > 0 */
3500 			WARN_ON(ret > 0);
3501 			goto error;
3502 		}
3503 
3504 		trans = btrfs_start_transaction(dev_root, 0);
3505 		if (IS_ERR(trans)) {
3506 			ret = PTR_ERR(trans);
3507 			btrfs_info_in_rcu(fs_info,
3508 		 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3509 					  rcu_str_deref(device->name), ret,
3510 					  old_size, old_size - size_to_free);
3511 			goto error;
3512 		}
3513 
3514 		ret = btrfs_grow_device(trans, device, old_size);
3515 		if (ret) {
3516 			btrfs_end_transaction(trans);
3517 			/* btrfs_grow_device never returns ret > 0 */
3518 			WARN_ON(ret > 0);
3519 			btrfs_info_in_rcu(fs_info,
3520 		 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3521 					  rcu_str_deref(device->name), ret,
3522 					  old_size, old_size - size_to_free);
3523 			goto error;
3524 		}
3525 
3526 		btrfs_end_transaction(trans);
3527 	}
3528 
3529 	/* step two, relocate all the chunks */
3530 	path = btrfs_alloc_path();
3531 	if (!path) {
3532 		ret = -ENOMEM;
3533 		goto error;
3534 	}
3535 
3536 	/* zero out stat counters */
3537 	spin_lock(&fs_info->balance_lock);
3538 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3539 	spin_unlock(&fs_info->balance_lock);
3540 again:
3541 	if (!counting) {
3542 		/*
3543 		 * The single value limit and min/max limits use the same bytes
3544 		 * in the
3545 		 */
3546 		bctl->data.limit = limit_data;
3547 		bctl->meta.limit = limit_meta;
3548 		bctl->sys.limit = limit_sys;
3549 	}
3550 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3551 	key.offset = (u64)-1;
3552 	key.type = BTRFS_CHUNK_ITEM_KEY;
3553 
3554 	while (1) {
3555 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3556 		    atomic_read(&fs_info->balance_cancel_req)) {
3557 			ret = -ECANCELED;
3558 			goto error;
3559 		}
3560 
3561 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3562 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3563 		if (ret < 0) {
3564 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3565 			goto error;
3566 		}
3567 
3568 		/*
3569 		 * this shouldn't happen, it means the last relocate
3570 		 * failed
3571 		 */
3572 		if (ret == 0)
3573 			BUG(); /* FIXME break ? */
3574 
3575 		ret = btrfs_previous_item(chunk_root, path, 0,
3576 					  BTRFS_CHUNK_ITEM_KEY);
3577 		if (ret) {
3578 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3579 			ret = 0;
3580 			break;
3581 		}
3582 
3583 		leaf = path->nodes[0];
3584 		slot = path->slots[0];
3585 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3586 
3587 		if (found_key.objectid != key.objectid) {
3588 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3589 			break;
3590 		}
3591 
3592 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3593 		chunk_type = btrfs_chunk_type(leaf, chunk);
3594 
3595 		if (!counting) {
3596 			spin_lock(&fs_info->balance_lock);
3597 			bctl->stat.considered++;
3598 			spin_unlock(&fs_info->balance_lock);
3599 		}
3600 
3601 		ret = should_balance_chunk(fs_info, leaf, chunk,
3602 					   found_key.offset);
3603 
3604 		btrfs_release_path(path);
3605 		if (!ret) {
3606 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3607 			goto loop;
3608 		}
3609 
3610 		if (counting) {
3611 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3612 			spin_lock(&fs_info->balance_lock);
3613 			bctl->stat.expected++;
3614 			spin_unlock(&fs_info->balance_lock);
3615 
3616 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3617 				count_data++;
3618 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3619 				count_sys++;
3620 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3621 				count_meta++;
3622 
3623 			goto loop;
3624 		}
3625 
3626 		/*
3627 		 * Apply limit_min filter, no need to check if the LIMITS
3628 		 * filter is used, limit_min is 0 by default
3629 		 */
3630 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3631 					count_data < bctl->data.limit_min)
3632 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3633 					count_meta < bctl->meta.limit_min)
3634 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3635 					count_sys < bctl->sys.limit_min)) {
3636 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3637 			goto loop;
3638 		}
3639 
3640 		ASSERT(fs_info->data_sinfo);
3641 		spin_lock(&fs_info->data_sinfo->lock);
3642 		bytes_used = fs_info->data_sinfo->bytes_used;
3643 		spin_unlock(&fs_info->data_sinfo->lock);
3644 
3645 		if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3646 		    !chunk_reserved && !bytes_used) {
3647 			trans = btrfs_start_transaction(chunk_root, 0);
3648 			if (IS_ERR(trans)) {
3649 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3650 				ret = PTR_ERR(trans);
3651 				goto error;
3652 			}
3653 
3654 			ret = btrfs_force_chunk_alloc(trans, fs_info,
3655 						      BTRFS_BLOCK_GROUP_DATA);
3656 			btrfs_end_transaction(trans);
3657 			if (ret < 0) {
3658 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3659 				goto error;
3660 			}
3661 			chunk_reserved = 1;
3662 		}
3663 
3664 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3665 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3666 		if (ret && ret != -ENOSPC)
3667 			goto error;
3668 		if (ret == -ENOSPC) {
3669 			enospc_errors++;
3670 		} else {
3671 			spin_lock(&fs_info->balance_lock);
3672 			bctl->stat.completed++;
3673 			spin_unlock(&fs_info->balance_lock);
3674 		}
3675 loop:
3676 		if (found_key.offset == 0)
3677 			break;
3678 		key.offset = found_key.offset - 1;
3679 	}
3680 
3681 	if (counting) {
3682 		btrfs_release_path(path);
3683 		counting = false;
3684 		goto again;
3685 	}
3686 error:
3687 	btrfs_free_path(path);
3688 	if (enospc_errors) {
3689 		btrfs_info(fs_info, "%d enospc errors during balance",
3690 			   enospc_errors);
3691 		if (!ret)
3692 			ret = -ENOSPC;
3693 	}
3694 
3695 	return ret;
3696 }
3697 
3698 /**
3699  * alloc_profile_is_valid - see if a given profile is valid and reduced
3700  * @flags: profile to validate
3701  * @extended: if true @flags is treated as an extended profile
3702  */
3703 static int alloc_profile_is_valid(u64 flags, int extended)
3704 {
3705 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3706 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3707 
3708 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3709 
3710 	/* 1) check that all other bits are zeroed */
3711 	if (flags & ~mask)
3712 		return 0;
3713 
3714 	/* 2) see if profile is reduced */
3715 	if (flags == 0)
3716 		return !extended; /* "0" is valid for usual profiles */
3717 
3718 	/* true if exactly one bit set */
3719 	return (flags & (flags - 1)) == 0;
3720 }
3721 
3722 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3723 {
3724 	/* cancel requested || normal exit path */
3725 	return atomic_read(&fs_info->balance_cancel_req) ||
3726 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3727 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3728 }
3729 
3730 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3731 {
3732 	int ret;
3733 
3734 	unset_balance_control(fs_info);
3735 	ret = del_balance_item(fs_info);
3736 	if (ret)
3737 		btrfs_handle_fs_error(fs_info, ret, NULL);
3738 
3739 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3740 }
3741 
3742 /* Non-zero return value signifies invalidity */
3743 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3744 		u64 allowed)
3745 {
3746 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3747 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3748 		 (bctl_arg->target & ~allowed)));
3749 }
3750 
3751 /*
3752  * Should be called with both balance and volume mutexes held
3753  */
3754 int btrfs_balance(struct btrfs_balance_control *bctl,
3755 		  struct btrfs_ioctl_balance_args *bargs)
3756 {
3757 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3758 	u64 allowed;
3759 	int mixed = 0;
3760 	int ret;
3761 	u64 num_devices;
3762 	unsigned seq;
3763 
3764 	if (btrfs_fs_closing(fs_info) ||
3765 	    atomic_read(&fs_info->balance_pause_req) ||
3766 	    atomic_read(&fs_info->balance_cancel_req)) {
3767 		ret = -EINVAL;
3768 		goto out;
3769 	}
3770 
3771 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3772 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3773 		mixed = 1;
3774 
3775 	/*
3776 	 * In case of mixed groups both data and meta should be picked,
3777 	 * and identical options should be given for both of them.
3778 	 */
3779 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3780 	if (mixed && (bctl->flags & allowed)) {
3781 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3782 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3783 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3784 			btrfs_err(fs_info,
3785 				  "with mixed groups data and metadata balance options must be the same");
3786 			ret = -EINVAL;
3787 			goto out;
3788 		}
3789 	}
3790 
3791 	num_devices = fs_info->fs_devices->num_devices;
3792 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3793 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3794 		BUG_ON(num_devices < 1);
3795 		num_devices--;
3796 	}
3797 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3798 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3799 	if (num_devices > 1)
3800 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3801 	if (num_devices > 2)
3802 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3803 	if (num_devices > 3)
3804 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3805 			    BTRFS_BLOCK_GROUP_RAID6);
3806 	if (validate_convert_profile(&bctl->data, allowed)) {
3807 		btrfs_err(fs_info,
3808 			  "unable to start balance with target data profile %llu",
3809 			  bctl->data.target);
3810 		ret = -EINVAL;
3811 		goto out;
3812 	}
3813 	if (validate_convert_profile(&bctl->meta, allowed)) {
3814 		btrfs_err(fs_info,
3815 			  "unable to start balance with target metadata profile %llu",
3816 			  bctl->meta.target);
3817 		ret = -EINVAL;
3818 		goto out;
3819 	}
3820 	if (validate_convert_profile(&bctl->sys, allowed)) {
3821 		btrfs_err(fs_info,
3822 			  "unable to start balance with target system profile %llu",
3823 			  bctl->sys.target);
3824 		ret = -EINVAL;
3825 		goto out;
3826 	}
3827 
3828 	/* allow to reduce meta or sys integrity only if force set */
3829 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3830 			BTRFS_BLOCK_GROUP_RAID10 |
3831 			BTRFS_BLOCK_GROUP_RAID5 |
3832 			BTRFS_BLOCK_GROUP_RAID6;
3833 	do {
3834 		seq = read_seqbegin(&fs_info->profiles_lock);
3835 
3836 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3837 		     (fs_info->avail_system_alloc_bits & allowed) &&
3838 		     !(bctl->sys.target & allowed)) ||
3839 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3840 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3841 		     !(bctl->meta.target & allowed))) {
3842 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3843 				btrfs_info(fs_info,
3844 					   "force reducing metadata integrity");
3845 			} else {
3846 				btrfs_err(fs_info,
3847 					  "balance will reduce metadata integrity, use force if you want this");
3848 				ret = -EINVAL;
3849 				goto out;
3850 			}
3851 		}
3852 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3853 
3854 	if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3855 		btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3856 		btrfs_warn(fs_info,
3857 			   "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3858 			   bctl->meta.target, bctl->data.target);
3859 	}
3860 
3861 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3862 		fs_info->num_tolerated_disk_barrier_failures = min(
3863 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3864 			btrfs_get_num_tolerated_disk_barrier_failures(
3865 				bctl->sys.target));
3866 	}
3867 
3868 	ret = insert_balance_item(fs_info, bctl);
3869 	if (ret && ret != -EEXIST)
3870 		goto out;
3871 
3872 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3873 		BUG_ON(ret == -EEXIST);
3874 		set_balance_control(bctl);
3875 	} else {
3876 		BUG_ON(ret != -EEXIST);
3877 		spin_lock(&fs_info->balance_lock);
3878 		update_balance_args(bctl);
3879 		spin_unlock(&fs_info->balance_lock);
3880 	}
3881 
3882 	atomic_inc(&fs_info->balance_running);
3883 	mutex_unlock(&fs_info->balance_mutex);
3884 
3885 	ret = __btrfs_balance(fs_info);
3886 
3887 	mutex_lock(&fs_info->balance_mutex);
3888 	atomic_dec(&fs_info->balance_running);
3889 
3890 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3891 		fs_info->num_tolerated_disk_barrier_failures =
3892 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3893 	}
3894 
3895 	if (bargs) {
3896 		memset(bargs, 0, sizeof(*bargs));
3897 		update_ioctl_balance_args(fs_info, 0, bargs);
3898 	}
3899 
3900 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3901 	    balance_need_close(fs_info)) {
3902 		__cancel_balance(fs_info);
3903 	}
3904 
3905 	wake_up(&fs_info->balance_wait_q);
3906 
3907 	return ret;
3908 out:
3909 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3910 		__cancel_balance(fs_info);
3911 	else {
3912 		kfree(bctl);
3913 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3914 	}
3915 	return ret;
3916 }
3917 
3918 static int balance_kthread(void *data)
3919 {
3920 	struct btrfs_fs_info *fs_info = data;
3921 	int ret = 0;
3922 
3923 	mutex_lock(&fs_info->volume_mutex);
3924 	mutex_lock(&fs_info->balance_mutex);
3925 
3926 	if (fs_info->balance_ctl) {
3927 		btrfs_info(fs_info, "continuing balance");
3928 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3929 	}
3930 
3931 	mutex_unlock(&fs_info->balance_mutex);
3932 	mutex_unlock(&fs_info->volume_mutex);
3933 
3934 	return ret;
3935 }
3936 
3937 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3938 {
3939 	struct task_struct *tsk;
3940 
3941 	spin_lock(&fs_info->balance_lock);
3942 	if (!fs_info->balance_ctl) {
3943 		spin_unlock(&fs_info->balance_lock);
3944 		return 0;
3945 	}
3946 	spin_unlock(&fs_info->balance_lock);
3947 
3948 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3949 		btrfs_info(fs_info, "force skipping balance");
3950 		return 0;
3951 	}
3952 
3953 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3954 	return PTR_ERR_OR_ZERO(tsk);
3955 }
3956 
3957 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3958 {
3959 	struct btrfs_balance_control *bctl;
3960 	struct btrfs_balance_item *item;
3961 	struct btrfs_disk_balance_args disk_bargs;
3962 	struct btrfs_path *path;
3963 	struct extent_buffer *leaf;
3964 	struct btrfs_key key;
3965 	int ret;
3966 
3967 	path = btrfs_alloc_path();
3968 	if (!path)
3969 		return -ENOMEM;
3970 
3971 	key.objectid = BTRFS_BALANCE_OBJECTID;
3972 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3973 	key.offset = 0;
3974 
3975 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3976 	if (ret < 0)
3977 		goto out;
3978 	if (ret > 0) { /* ret = -ENOENT; */
3979 		ret = 0;
3980 		goto out;
3981 	}
3982 
3983 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3984 	if (!bctl) {
3985 		ret = -ENOMEM;
3986 		goto out;
3987 	}
3988 
3989 	leaf = path->nodes[0];
3990 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3991 
3992 	bctl->fs_info = fs_info;
3993 	bctl->flags = btrfs_balance_flags(leaf, item);
3994 	bctl->flags |= BTRFS_BALANCE_RESUME;
3995 
3996 	btrfs_balance_data(leaf, item, &disk_bargs);
3997 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3998 	btrfs_balance_meta(leaf, item, &disk_bargs);
3999 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4000 	btrfs_balance_sys(leaf, item, &disk_bargs);
4001 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4002 
4003 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4004 
4005 	mutex_lock(&fs_info->volume_mutex);
4006 	mutex_lock(&fs_info->balance_mutex);
4007 
4008 	set_balance_control(bctl);
4009 
4010 	mutex_unlock(&fs_info->balance_mutex);
4011 	mutex_unlock(&fs_info->volume_mutex);
4012 out:
4013 	btrfs_free_path(path);
4014 	return ret;
4015 }
4016 
4017 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4018 {
4019 	int ret = 0;
4020 
4021 	mutex_lock(&fs_info->balance_mutex);
4022 	if (!fs_info->balance_ctl) {
4023 		mutex_unlock(&fs_info->balance_mutex);
4024 		return -ENOTCONN;
4025 	}
4026 
4027 	if (atomic_read(&fs_info->balance_running)) {
4028 		atomic_inc(&fs_info->balance_pause_req);
4029 		mutex_unlock(&fs_info->balance_mutex);
4030 
4031 		wait_event(fs_info->balance_wait_q,
4032 			   atomic_read(&fs_info->balance_running) == 0);
4033 
4034 		mutex_lock(&fs_info->balance_mutex);
4035 		/* we are good with balance_ctl ripped off from under us */
4036 		BUG_ON(atomic_read(&fs_info->balance_running));
4037 		atomic_dec(&fs_info->balance_pause_req);
4038 	} else {
4039 		ret = -ENOTCONN;
4040 	}
4041 
4042 	mutex_unlock(&fs_info->balance_mutex);
4043 	return ret;
4044 }
4045 
4046 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4047 {
4048 	if (fs_info->sb->s_flags & MS_RDONLY)
4049 		return -EROFS;
4050 
4051 	mutex_lock(&fs_info->balance_mutex);
4052 	if (!fs_info->balance_ctl) {
4053 		mutex_unlock(&fs_info->balance_mutex);
4054 		return -ENOTCONN;
4055 	}
4056 
4057 	atomic_inc(&fs_info->balance_cancel_req);
4058 	/*
4059 	 * if we are running just wait and return, balance item is
4060 	 * deleted in btrfs_balance in this case
4061 	 */
4062 	if (atomic_read(&fs_info->balance_running)) {
4063 		mutex_unlock(&fs_info->balance_mutex);
4064 		wait_event(fs_info->balance_wait_q,
4065 			   atomic_read(&fs_info->balance_running) == 0);
4066 		mutex_lock(&fs_info->balance_mutex);
4067 	} else {
4068 		/* __cancel_balance needs volume_mutex */
4069 		mutex_unlock(&fs_info->balance_mutex);
4070 		mutex_lock(&fs_info->volume_mutex);
4071 		mutex_lock(&fs_info->balance_mutex);
4072 
4073 		if (fs_info->balance_ctl)
4074 			__cancel_balance(fs_info);
4075 
4076 		mutex_unlock(&fs_info->volume_mutex);
4077 	}
4078 
4079 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4080 	atomic_dec(&fs_info->balance_cancel_req);
4081 	mutex_unlock(&fs_info->balance_mutex);
4082 	return 0;
4083 }
4084 
4085 static int btrfs_uuid_scan_kthread(void *data)
4086 {
4087 	struct btrfs_fs_info *fs_info = data;
4088 	struct btrfs_root *root = fs_info->tree_root;
4089 	struct btrfs_key key;
4090 	struct btrfs_key max_key;
4091 	struct btrfs_path *path = NULL;
4092 	int ret = 0;
4093 	struct extent_buffer *eb;
4094 	int slot;
4095 	struct btrfs_root_item root_item;
4096 	u32 item_size;
4097 	struct btrfs_trans_handle *trans = NULL;
4098 
4099 	path = btrfs_alloc_path();
4100 	if (!path) {
4101 		ret = -ENOMEM;
4102 		goto out;
4103 	}
4104 
4105 	key.objectid = 0;
4106 	key.type = BTRFS_ROOT_ITEM_KEY;
4107 	key.offset = 0;
4108 
4109 	max_key.objectid = (u64)-1;
4110 	max_key.type = BTRFS_ROOT_ITEM_KEY;
4111 	max_key.offset = (u64)-1;
4112 
4113 	while (1) {
4114 		ret = btrfs_search_forward(root, &key, path, 0);
4115 		if (ret) {
4116 			if (ret > 0)
4117 				ret = 0;
4118 			break;
4119 		}
4120 
4121 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4122 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4123 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4124 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4125 			goto skip;
4126 
4127 		eb = path->nodes[0];
4128 		slot = path->slots[0];
4129 		item_size = btrfs_item_size_nr(eb, slot);
4130 		if (item_size < sizeof(root_item))
4131 			goto skip;
4132 
4133 		read_extent_buffer(eb, &root_item,
4134 				   btrfs_item_ptr_offset(eb, slot),
4135 				   (int)sizeof(root_item));
4136 		if (btrfs_root_refs(&root_item) == 0)
4137 			goto skip;
4138 
4139 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4140 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4141 			if (trans)
4142 				goto update_tree;
4143 
4144 			btrfs_release_path(path);
4145 			/*
4146 			 * 1 - subvol uuid item
4147 			 * 1 - received_subvol uuid item
4148 			 */
4149 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4150 			if (IS_ERR(trans)) {
4151 				ret = PTR_ERR(trans);
4152 				break;
4153 			}
4154 			continue;
4155 		} else {
4156 			goto skip;
4157 		}
4158 update_tree:
4159 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4160 			ret = btrfs_uuid_tree_add(trans, fs_info,
4161 						  root_item.uuid,
4162 						  BTRFS_UUID_KEY_SUBVOL,
4163 						  key.objectid);
4164 			if (ret < 0) {
4165 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4166 					ret);
4167 				break;
4168 			}
4169 		}
4170 
4171 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4172 			ret = btrfs_uuid_tree_add(trans, fs_info,
4173 						  root_item.received_uuid,
4174 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4175 						  key.objectid);
4176 			if (ret < 0) {
4177 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4178 					ret);
4179 				break;
4180 			}
4181 		}
4182 
4183 skip:
4184 		if (trans) {
4185 			ret = btrfs_end_transaction(trans);
4186 			trans = NULL;
4187 			if (ret)
4188 				break;
4189 		}
4190 
4191 		btrfs_release_path(path);
4192 		if (key.offset < (u64)-1) {
4193 			key.offset++;
4194 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4195 			key.offset = 0;
4196 			key.type = BTRFS_ROOT_ITEM_KEY;
4197 		} else if (key.objectid < (u64)-1) {
4198 			key.offset = 0;
4199 			key.type = BTRFS_ROOT_ITEM_KEY;
4200 			key.objectid++;
4201 		} else {
4202 			break;
4203 		}
4204 		cond_resched();
4205 	}
4206 
4207 out:
4208 	btrfs_free_path(path);
4209 	if (trans && !IS_ERR(trans))
4210 		btrfs_end_transaction(trans);
4211 	if (ret)
4212 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4213 	else
4214 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4215 	up(&fs_info->uuid_tree_rescan_sem);
4216 	return 0;
4217 }
4218 
4219 /*
4220  * Callback for btrfs_uuid_tree_iterate().
4221  * returns:
4222  * 0	check succeeded, the entry is not outdated.
4223  * < 0	if an error occurred.
4224  * > 0	if the check failed, which means the caller shall remove the entry.
4225  */
4226 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4227 				       u8 *uuid, u8 type, u64 subid)
4228 {
4229 	struct btrfs_key key;
4230 	int ret = 0;
4231 	struct btrfs_root *subvol_root;
4232 
4233 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4234 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4235 		goto out;
4236 
4237 	key.objectid = subid;
4238 	key.type = BTRFS_ROOT_ITEM_KEY;
4239 	key.offset = (u64)-1;
4240 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4241 	if (IS_ERR(subvol_root)) {
4242 		ret = PTR_ERR(subvol_root);
4243 		if (ret == -ENOENT)
4244 			ret = 1;
4245 		goto out;
4246 	}
4247 
4248 	switch (type) {
4249 	case BTRFS_UUID_KEY_SUBVOL:
4250 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4251 			ret = 1;
4252 		break;
4253 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4254 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4255 			   BTRFS_UUID_SIZE))
4256 			ret = 1;
4257 		break;
4258 	}
4259 
4260 out:
4261 	return ret;
4262 }
4263 
4264 static int btrfs_uuid_rescan_kthread(void *data)
4265 {
4266 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4267 	int ret;
4268 
4269 	/*
4270 	 * 1st step is to iterate through the existing UUID tree and
4271 	 * to delete all entries that contain outdated data.
4272 	 * 2nd step is to add all missing entries to the UUID tree.
4273 	 */
4274 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4275 	if (ret < 0) {
4276 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4277 		up(&fs_info->uuid_tree_rescan_sem);
4278 		return ret;
4279 	}
4280 	return btrfs_uuid_scan_kthread(data);
4281 }
4282 
4283 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4284 {
4285 	struct btrfs_trans_handle *trans;
4286 	struct btrfs_root *tree_root = fs_info->tree_root;
4287 	struct btrfs_root *uuid_root;
4288 	struct task_struct *task;
4289 	int ret;
4290 
4291 	/*
4292 	 * 1 - root node
4293 	 * 1 - root item
4294 	 */
4295 	trans = btrfs_start_transaction(tree_root, 2);
4296 	if (IS_ERR(trans))
4297 		return PTR_ERR(trans);
4298 
4299 	uuid_root = btrfs_create_tree(trans, fs_info,
4300 				      BTRFS_UUID_TREE_OBJECTID);
4301 	if (IS_ERR(uuid_root)) {
4302 		ret = PTR_ERR(uuid_root);
4303 		btrfs_abort_transaction(trans, ret);
4304 		btrfs_end_transaction(trans);
4305 		return ret;
4306 	}
4307 
4308 	fs_info->uuid_root = uuid_root;
4309 
4310 	ret = btrfs_commit_transaction(trans);
4311 	if (ret)
4312 		return ret;
4313 
4314 	down(&fs_info->uuid_tree_rescan_sem);
4315 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4316 	if (IS_ERR(task)) {
4317 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4318 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4319 		up(&fs_info->uuid_tree_rescan_sem);
4320 		return PTR_ERR(task);
4321 	}
4322 
4323 	return 0;
4324 }
4325 
4326 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4327 {
4328 	struct task_struct *task;
4329 
4330 	down(&fs_info->uuid_tree_rescan_sem);
4331 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4332 	if (IS_ERR(task)) {
4333 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4334 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4335 		up(&fs_info->uuid_tree_rescan_sem);
4336 		return PTR_ERR(task);
4337 	}
4338 
4339 	return 0;
4340 }
4341 
4342 /*
4343  * shrinking a device means finding all of the device extents past
4344  * the new size, and then following the back refs to the chunks.
4345  * The chunk relocation code actually frees the device extent
4346  */
4347 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4348 {
4349 	struct btrfs_fs_info *fs_info = device->fs_info;
4350 	struct btrfs_root *root = fs_info->dev_root;
4351 	struct btrfs_trans_handle *trans;
4352 	struct btrfs_dev_extent *dev_extent = NULL;
4353 	struct btrfs_path *path;
4354 	u64 length;
4355 	u64 chunk_offset;
4356 	int ret;
4357 	int slot;
4358 	int failed = 0;
4359 	bool retried = false;
4360 	bool checked_pending_chunks = false;
4361 	struct extent_buffer *l;
4362 	struct btrfs_key key;
4363 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4364 	u64 old_total = btrfs_super_total_bytes(super_copy);
4365 	u64 old_size = btrfs_device_get_total_bytes(device);
4366 	u64 diff = old_size - new_size;
4367 
4368 	if (device->is_tgtdev_for_dev_replace)
4369 		return -EINVAL;
4370 
4371 	path = btrfs_alloc_path();
4372 	if (!path)
4373 		return -ENOMEM;
4374 
4375 	path->reada = READA_FORWARD;
4376 
4377 	mutex_lock(&fs_info->chunk_mutex);
4378 
4379 	btrfs_device_set_total_bytes(device, new_size);
4380 	if (device->writeable) {
4381 		device->fs_devices->total_rw_bytes -= diff;
4382 		spin_lock(&fs_info->free_chunk_lock);
4383 		fs_info->free_chunk_space -= diff;
4384 		spin_unlock(&fs_info->free_chunk_lock);
4385 	}
4386 	mutex_unlock(&fs_info->chunk_mutex);
4387 
4388 again:
4389 	key.objectid = device->devid;
4390 	key.offset = (u64)-1;
4391 	key.type = BTRFS_DEV_EXTENT_KEY;
4392 
4393 	do {
4394 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4395 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4396 		if (ret < 0) {
4397 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4398 			goto done;
4399 		}
4400 
4401 		ret = btrfs_previous_item(root, path, 0, key.type);
4402 		if (ret)
4403 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4404 		if (ret < 0)
4405 			goto done;
4406 		if (ret) {
4407 			ret = 0;
4408 			btrfs_release_path(path);
4409 			break;
4410 		}
4411 
4412 		l = path->nodes[0];
4413 		slot = path->slots[0];
4414 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4415 
4416 		if (key.objectid != device->devid) {
4417 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4418 			btrfs_release_path(path);
4419 			break;
4420 		}
4421 
4422 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4423 		length = btrfs_dev_extent_length(l, dev_extent);
4424 
4425 		if (key.offset + length <= new_size) {
4426 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4427 			btrfs_release_path(path);
4428 			break;
4429 		}
4430 
4431 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4432 		btrfs_release_path(path);
4433 
4434 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4435 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4436 		if (ret && ret != -ENOSPC)
4437 			goto done;
4438 		if (ret == -ENOSPC)
4439 			failed++;
4440 	} while (key.offset-- > 0);
4441 
4442 	if (failed && !retried) {
4443 		failed = 0;
4444 		retried = true;
4445 		goto again;
4446 	} else if (failed && retried) {
4447 		ret = -ENOSPC;
4448 		goto done;
4449 	}
4450 
4451 	/* Shrinking succeeded, else we would be at "done". */
4452 	trans = btrfs_start_transaction(root, 0);
4453 	if (IS_ERR(trans)) {
4454 		ret = PTR_ERR(trans);
4455 		goto done;
4456 	}
4457 
4458 	mutex_lock(&fs_info->chunk_mutex);
4459 
4460 	/*
4461 	 * We checked in the above loop all device extents that were already in
4462 	 * the device tree. However before we have updated the device's
4463 	 * total_bytes to the new size, we might have had chunk allocations that
4464 	 * have not complete yet (new block groups attached to transaction
4465 	 * handles), and therefore their device extents were not yet in the
4466 	 * device tree and we missed them in the loop above. So if we have any
4467 	 * pending chunk using a device extent that overlaps the device range
4468 	 * that we can not use anymore, commit the current transaction and
4469 	 * repeat the search on the device tree - this way we guarantee we will
4470 	 * not have chunks using device extents that end beyond 'new_size'.
4471 	 */
4472 	if (!checked_pending_chunks) {
4473 		u64 start = new_size;
4474 		u64 len = old_size - new_size;
4475 
4476 		if (contains_pending_extent(trans->transaction, device,
4477 					    &start, len)) {
4478 			mutex_unlock(&fs_info->chunk_mutex);
4479 			checked_pending_chunks = true;
4480 			failed = 0;
4481 			retried = false;
4482 			ret = btrfs_commit_transaction(trans);
4483 			if (ret)
4484 				goto done;
4485 			goto again;
4486 		}
4487 	}
4488 
4489 	btrfs_device_set_disk_total_bytes(device, new_size);
4490 	if (list_empty(&device->resized_list))
4491 		list_add_tail(&device->resized_list,
4492 			      &fs_info->fs_devices->resized_devices);
4493 
4494 	WARN_ON(diff > old_total);
4495 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
4496 	mutex_unlock(&fs_info->chunk_mutex);
4497 
4498 	/* Now btrfs_update_device() will change the on-disk size. */
4499 	ret = btrfs_update_device(trans, device);
4500 	btrfs_end_transaction(trans);
4501 done:
4502 	btrfs_free_path(path);
4503 	if (ret) {
4504 		mutex_lock(&fs_info->chunk_mutex);
4505 		btrfs_device_set_total_bytes(device, old_size);
4506 		if (device->writeable)
4507 			device->fs_devices->total_rw_bytes += diff;
4508 		spin_lock(&fs_info->free_chunk_lock);
4509 		fs_info->free_chunk_space += diff;
4510 		spin_unlock(&fs_info->free_chunk_lock);
4511 		mutex_unlock(&fs_info->chunk_mutex);
4512 	}
4513 	return ret;
4514 }
4515 
4516 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4517 			   struct btrfs_key *key,
4518 			   struct btrfs_chunk *chunk, int item_size)
4519 {
4520 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4521 	struct btrfs_disk_key disk_key;
4522 	u32 array_size;
4523 	u8 *ptr;
4524 
4525 	mutex_lock(&fs_info->chunk_mutex);
4526 	array_size = btrfs_super_sys_array_size(super_copy);
4527 	if (array_size + item_size + sizeof(disk_key)
4528 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4529 		mutex_unlock(&fs_info->chunk_mutex);
4530 		return -EFBIG;
4531 	}
4532 
4533 	ptr = super_copy->sys_chunk_array + array_size;
4534 	btrfs_cpu_key_to_disk(&disk_key, key);
4535 	memcpy(ptr, &disk_key, sizeof(disk_key));
4536 	ptr += sizeof(disk_key);
4537 	memcpy(ptr, chunk, item_size);
4538 	item_size += sizeof(disk_key);
4539 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4540 	mutex_unlock(&fs_info->chunk_mutex);
4541 
4542 	return 0;
4543 }
4544 
4545 /*
4546  * sort the devices in descending order by max_avail, total_avail
4547  */
4548 static int btrfs_cmp_device_info(const void *a, const void *b)
4549 {
4550 	const struct btrfs_device_info *di_a = a;
4551 	const struct btrfs_device_info *di_b = b;
4552 
4553 	if (di_a->max_avail > di_b->max_avail)
4554 		return -1;
4555 	if (di_a->max_avail < di_b->max_avail)
4556 		return 1;
4557 	if (di_a->total_avail > di_b->total_avail)
4558 		return -1;
4559 	if (di_a->total_avail < di_b->total_avail)
4560 		return 1;
4561 	return 0;
4562 }
4563 
4564 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4565 {
4566 	/* TODO allow them to set a preferred stripe size */
4567 	return SZ_64K;
4568 }
4569 
4570 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4571 {
4572 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4573 		return;
4574 
4575 	btrfs_set_fs_incompat(info, RAID56);
4576 }
4577 
4578 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info)		\
4579 			- sizeof(struct btrfs_chunk))		\
4580 			/ sizeof(struct btrfs_stripe) + 1)
4581 
4582 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4583 				- 2 * sizeof(struct btrfs_disk_key)	\
4584 				- 2 * sizeof(struct btrfs_chunk))	\
4585 				/ sizeof(struct btrfs_stripe) + 1)
4586 
4587 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4588 			       u64 start, u64 type)
4589 {
4590 	struct btrfs_fs_info *info = trans->fs_info;
4591 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4592 	struct list_head *cur;
4593 	struct map_lookup *map = NULL;
4594 	struct extent_map_tree *em_tree;
4595 	struct extent_map *em;
4596 	struct btrfs_device_info *devices_info = NULL;
4597 	u64 total_avail;
4598 	int num_stripes;	/* total number of stripes to allocate */
4599 	int data_stripes;	/* number of stripes that count for
4600 				   block group size */
4601 	int sub_stripes;	/* sub_stripes info for map */
4602 	int dev_stripes;	/* stripes per dev */
4603 	int devs_max;		/* max devs to use */
4604 	int devs_min;		/* min devs needed */
4605 	int devs_increment;	/* ndevs has to be a multiple of this */
4606 	int ncopies;		/* how many copies to data has */
4607 	int ret;
4608 	u64 max_stripe_size;
4609 	u64 max_chunk_size;
4610 	u64 stripe_size;
4611 	u64 num_bytes;
4612 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4613 	int ndevs;
4614 	int i;
4615 	int j;
4616 	int index;
4617 
4618 	BUG_ON(!alloc_profile_is_valid(type, 0));
4619 
4620 	if (list_empty(&fs_devices->alloc_list))
4621 		return -ENOSPC;
4622 
4623 	index = __get_raid_index(type);
4624 
4625 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4626 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4627 	devs_max = btrfs_raid_array[index].devs_max;
4628 	devs_min = btrfs_raid_array[index].devs_min;
4629 	devs_increment = btrfs_raid_array[index].devs_increment;
4630 	ncopies = btrfs_raid_array[index].ncopies;
4631 
4632 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4633 		max_stripe_size = SZ_1G;
4634 		max_chunk_size = 10 * max_stripe_size;
4635 		if (!devs_max)
4636 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4637 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4638 		/* for larger filesystems, use larger metadata chunks */
4639 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4640 			max_stripe_size = SZ_1G;
4641 		else
4642 			max_stripe_size = SZ_256M;
4643 		max_chunk_size = max_stripe_size;
4644 		if (!devs_max)
4645 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4646 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4647 		max_stripe_size = SZ_32M;
4648 		max_chunk_size = 2 * max_stripe_size;
4649 		if (!devs_max)
4650 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4651 	} else {
4652 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4653 		       type);
4654 		BUG_ON(1);
4655 	}
4656 
4657 	/* we don't want a chunk larger than 10% of writeable space */
4658 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4659 			     max_chunk_size);
4660 
4661 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4662 			       GFP_NOFS);
4663 	if (!devices_info)
4664 		return -ENOMEM;
4665 
4666 	cur = fs_devices->alloc_list.next;
4667 
4668 	/*
4669 	 * in the first pass through the devices list, we gather information
4670 	 * about the available holes on each device.
4671 	 */
4672 	ndevs = 0;
4673 	while (cur != &fs_devices->alloc_list) {
4674 		struct btrfs_device *device;
4675 		u64 max_avail;
4676 		u64 dev_offset;
4677 
4678 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4679 
4680 		cur = cur->next;
4681 
4682 		if (!device->writeable) {
4683 			WARN(1, KERN_ERR
4684 			       "BTRFS: read-only device in alloc_list\n");
4685 			continue;
4686 		}
4687 
4688 		if (!device->in_fs_metadata ||
4689 		    device->is_tgtdev_for_dev_replace)
4690 			continue;
4691 
4692 		if (device->total_bytes > device->bytes_used)
4693 			total_avail = device->total_bytes - device->bytes_used;
4694 		else
4695 			total_avail = 0;
4696 
4697 		/* If there is no space on this device, skip it. */
4698 		if (total_avail == 0)
4699 			continue;
4700 
4701 		ret = find_free_dev_extent(trans, device,
4702 					   max_stripe_size * dev_stripes,
4703 					   &dev_offset, &max_avail);
4704 		if (ret && ret != -ENOSPC)
4705 			goto error;
4706 
4707 		if (ret == 0)
4708 			max_avail = max_stripe_size * dev_stripes;
4709 
4710 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4711 			continue;
4712 
4713 		if (ndevs == fs_devices->rw_devices) {
4714 			WARN(1, "%s: found more than %llu devices\n",
4715 			     __func__, fs_devices->rw_devices);
4716 			break;
4717 		}
4718 		devices_info[ndevs].dev_offset = dev_offset;
4719 		devices_info[ndevs].max_avail = max_avail;
4720 		devices_info[ndevs].total_avail = total_avail;
4721 		devices_info[ndevs].dev = device;
4722 		++ndevs;
4723 	}
4724 
4725 	/*
4726 	 * now sort the devices by hole size / available space
4727 	 */
4728 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4729 	     btrfs_cmp_device_info, NULL);
4730 
4731 	/* round down to number of usable stripes */
4732 	ndevs -= ndevs % devs_increment;
4733 
4734 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4735 		ret = -ENOSPC;
4736 		goto error;
4737 	}
4738 
4739 	if (devs_max && ndevs > devs_max)
4740 		ndevs = devs_max;
4741 	/*
4742 	 * the primary goal is to maximize the number of stripes, so use as many
4743 	 * devices as possible, even if the stripes are not maximum sized.
4744 	 */
4745 	stripe_size = devices_info[ndevs-1].max_avail;
4746 	num_stripes = ndevs * dev_stripes;
4747 
4748 	/*
4749 	 * this will have to be fixed for RAID1 and RAID10 over
4750 	 * more drives
4751 	 */
4752 	data_stripes = num_stripes / ncopies;
4753 
4754 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4755 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4756 							 info->stripesize);
4757 		data_stripes = num_stripes - 1;
4758 	}
4759 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4760 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4761 							 info->stripesize);
4762 		data_stripes = num_stripes - 2;
4763 	}
4764 
4765 	/*
4766 	 * Use the number of data stripes to figure out how big this chunk
4767 	 * is really going to be in terms of logical address space,
4768 	 * and compare that answer with the max chunk size
4769 	 */
4770 	if (stripe_size * data_stripes > max_chunk_size) {
4771 		u64 mask = (1ULL << 24) - 1;
4772 
4773 		stripe_size = div_u64(max_chunk_size, data_stripes);
4774 
4775 		/* bump the answer up to a 16MB boundary */
4776 		stripe_size = (stripe_size + mask) & ~mask;
4777 
4778 		/* but don't go higher than the limits we found
4779 		 * while searching for free extents
4780 		 */
4781 		if (stripe_size > devices_info[ndevs-1].max_avail)
4782 			stripe_size = devices_info[ndevs-1].max_avail;
4783 	}
4784 
4785 	stripe_size = div_u64(stripe_size, dev_stripes);
4786 
4787 	/* align to BTRFS_STRIPE_LEN */
4788 	stripe_size = div_u64(stripe_size, raid_stripe_len);
4789 	stripe_size *= raid_stripe_len;
4790 
4791 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4792 	if (!map) {
4793 		ret = -ENOMEM;
4794 		goto error;
4795 	}
4796 	map->num_stripes = num_stripes;
4797 
4798 	for (i = 0; i < ndevs; ++i) {
4799 		for (j = 0; j < dev_stripes; ++j) {
4800 			int s = i * dev_stripes + j;
4801 			map->stripes[s].dev = devices_info[i].dev;
4802 			map->stripes[s].physical = devices_info[i].dev_offset +
4803 						   j * stripe_size;
4804 		}
4805 	}
4806 	map->sector_size = info->sectorsize;
4807 	map->stripe_len = raid_stripe_len;
4808 	map->io_align = raid_stripe_len;
4809 	map->io_width = raid_stripe_len;
4810 	map->type = type;
4811 	map->sub_stripes = sub_stripes;
4812 
4813 	num_bytes = stripe_size * data_stripes;
4814 
4815 	trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4816 
4817 	em = alloc_extent_map();
4818 	if (!em) {
4819 		kfree(map);
4820 		ret = -ENOMEM;
4821 		goto error;
4822 	}
4823 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4824 	em->map_lookup = map;
4825 	em->start = start;
4826 	em->len = num_bytes;
4827 	em->block_start = 0;
4828 	em->block_len = em->len;
4829 	em->orig_block_len = stripe_size;
4830 
4831 	em_tree = &info->mapping_tree.map_tree;
4832 	write_lock(&em_tree->lock);
4833 	ret = add_extent_mapping(em_tree, em, 0);
4834 	if (!ret) {
4835 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4836 		atomic_inc(&em->refs);
4837 	}
4838 	write_unlock(&em_tree->lock);
4839 	if (ret) {
4840 		free_extent_map(em);
4841 		goto error;
4842 	}
4843 
4844 	ret = btrfs_make_block_group(trans, info, 0, type,
4845 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4846 				     start, num_bytes);
4847 	if (ret)
4848 		goto error_del_extent;
4849 
4850 	for (i = 0; i < map->num_stripes; i++) {
4851 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4852 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4853 	}
4854 
4855 	spin_lock(&info->free_chunk_lock);
4856 	info->free_chunk_space -= (stripe_size * map->num_stripes);
4857 	spin_unlock(&info->free_chunk_lock);
4858 
4859 	free_extent_map(em);
4860 	check_raid56_incompat_flag(info, type);
4861 
4862 	kfree(devices_info);
4863 	return 0;
4864 
4865 error_del_extent:
4866 	write_lock(&em_tree->lock);
4867 	remove_extent_mapping(em_tree, em);
4868 	write_unlock(&em_tree->lock);
4869 
4870 	/* One for our allocation */
4871 	free_extent_map(em);
4872 	/* One for the tree reference */
4873 	free_extent_map(em);
4874 	/* One for the pending_chunks list reference */
4875 	free_extent_map(em);
4876 error:
4877 	kfree(devices_info);
4878 	return ret;
4879 }
4880 
4881 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4882 				struct btrfs_fs_info *fs_info,
4883 				u64 chunk_offset, u64 chunk_size)
4884 {
4885 	struct btrfs_root *extent_root = fs_info->extent_root;
4886 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4887 	struct btrfs_key key;
4888 	struct btrfs_device *device;
4889 	struct btrfs_chunk *chunk;
4890 	struct btrfs_stripe *stripe;
4891 	struct extent_map_tree *em_tree;
4892 	struct extent_map *em;
4893 	struct map_lookup *map;
4894 	size_t item_size;
4895 	u64 dev_offset;
4896 	u64 stripe_size;
4897 	int i = 0;
4898 	int ret = 0;
4899 
4900 	em_tree = &fs_info->mapping_tree.map_tree;
4901 	read_lock(&em_tree->lock);
4902 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4903 	read_unlock(&em_tree->lock);
4904 
4905 	if (!em) {
4906 		btrfs_crit(fs_info, "unable to find logical %Lu len %Lu",
4907 			   chunk_offset, chunk_size);
4908 		return -EINVAL;
4909 	}
4910 
4911 	if (em->start != chunk_offset || em->len != chunk_size) {
4912 		btrfs_crit(fs_info,
4913 			   "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4914 			    chunk_offset, chunk_size, em->start, em->len);
4915 		free_extent_map(em);
4916 		return -EINVAL;
4917 	}
4918 
4919 	map = em->map_lookup;
4920 	item_size = btrfs_chunk_item_size(map->num_stripes);
4921 	stripe_size = em->orig_block_len;
4922 
4923 	chunk = kzalloc(item_size, GFP_NOFS);
4924 	if (!chunk) {
4925 		ret = -ENOMEM;
4926 		goto out;
4927 	}
4928 
4929 	/*
4930 	 * Take the device list mutex to prevent races with the final phase of
4931 	 * a device replace operation that replaces the device object associated
4932 	 * with the map's stripes, because the device object's id can change
4933 	 * at any time during that final phase of the device replace operation
4934 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4935 	 */
4936 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4937 	for (i = 0; i < map->num_stripes; i++) {
4938 		device = map->stripes[i].dev;
4939 		dev_offset = map->stripes[i].physical;
4940 
4941 		ret = btrfs_update_device(trans, device);
4942 		if (ret)
4943 			break;
4944 		ret = btrfs_alloc_dev_extent(trans, device,
4945 					     chunk_root->root_key.objectid,
4946 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4947 					     chunk_offset, dev_offset,
4948 					     stripe_size);
4949 		if (ret)
4950 			break;
4951 	}
4952 	if (ret) {
4953 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4954 		goto out;
4955 	}
4956 
4957 	stripe = &chunk->stripe;
4958 	for (i = 0; i < map->num_stripes; i++) {
4959 		device = map->stripes[i].dev;
4960 		dev_offset = map->stripes[i].physical;
4961 
4962 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4963 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4964 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4965 		stripe++;
4966 	}
4967 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4968 
4969 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4970 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4971 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4972 	btrfs_set_stack_chunk_type(chunk, map->type);
4973 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4974 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4975 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4976 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4977 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4978 
4979 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4980 	key.type = BTRFS_CHUNK_ITEM_KEY;
4981 	key.offset = chunk_offset;
4982 
4983 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4984 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4985 		/*
4986 		 * TODO: Cleanup of inserted chunk root in case of
4987 		 * failure.
4988 		 */
4989 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4990 	}
4991 
4992 out:
4993 	kfree(chunk);
4994 	free_extent_map(em);
4995 	return ret;
4996 }
4997 
4998 /*
4999  * Chunk allocation falls into two parts. The first part does works
5000  * that make the new allocated chunk useable, but not do any operation
5001  * that modifies the chunk tree. The second part does the works that
5002  * require modifying the chunk tree. This division is important for the
5003  * bootstrap process of adding storage to a seed btrfs.
5004  */
5005 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5006 		      struct btrfs_fs_info *fs_info, u64 type)
5007 {
5008 	u64 chunk_offset;
5009 
5010 	ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5011 	chunk_offset = find_next_chunk(fs_info);
5012 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
5013 }
5014 
5015 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5016 					 struct btrfs_fs_info *fs_info)
5017 {
5018 	struct btrfs_root *extent_root = fs_info->extent_root;
5019 	u64 chunk_offset;
5020 	u64 sys_chunk_offset;
5021 	u64 alloc_profile;
5022 	int ret;
5023 
5024 	chunk_offset = find_next_chunk(fs_info);
5025 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5026 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5027 	if (ret)
5028 		return ret;
5029 
5030 	sys_chunk_offset = find_next_chunk(fs_info);
5031 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5032 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5033 	return ret;
5034 }
5035 
5036 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5037 {
5038 	int max_errors;
5039 
5040 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5041 			 BTRFS_BLOCK_GROUP_RAID10 |
5042 			 BTRFS_BLOCK_GROUP_RAID5 |
5043 			 BTRFS_BLOCK_GROUP_DUP)) {
5044 		max_errors = 1;
5045 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5046 		max_errors = 2;
5047 	} else {
5048 		max_errors = 0;
5049 	}
5050 
5051 	return max_errors;
5052 }
5053 
5054 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5055 {
5056 	struct extent_map *em;
5057 	struct map_lookup *map;
5058 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5059 	int readonly = 0;
5060 	int miss_ndevs = 0;
5061 	int i;
5062 
5063 	read_lock(&map_tree->map_tree.lock);
5064 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5065 	read_unlock(&map_tree->map_tree.lock);
5066 	if (!em)
5067 		return 1;
5068 
5069 	map = em->map_lookup;
5070 	for (i = 0; i < map->num_stripes; i++) {
5071 		if (map->stripes[i].dev->missing) {
5072 			miss_ndevs++;
5073 			continue;
5074 		}
5075 
5076 		if (!map->stripes[i].dev->writeable) {
5077 			readonly = 1;
5078 			goto end;
5079 		}
5080 	}
5081 
5082 	/*
5083 	 * If the number of missing devices is larger than max errors,
5084 	 * we can not write the data into that chunk successfully, so
5085 	 * set it readonly.
5086 	 */
5087 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5088 		readonly = 1;
5089 end:
5090 	free_extent_map(em);
5091 	return readonly;
5092 }
5093 
5094 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5095 {
5096 	extent_map_tree_init(&tree->map_tree);
5097 }
5098 
5099 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5100 {
5101 	struct extent_map *em;
5102 
5103 	while (1) {
5104 		write_lock(&tree->map_tree.lock);
5105 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5106 		if (em)
5107 			remove_extent_mapping(&tree->map_tree, em);
5108 		write_unlock(&tree->map_tree.lock);
5109 		if (!em)
5110 			break;
5111 		/* once for us */
5112 		free_extent_map(em);
5113 		/* once for the tree */
5114 		free_extent_map(em);
5115 	}
5116 }
5117 
5118 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5119 {
5120 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5121 	struct extent_map *em;
5122 	struct map_lookup *map;
5123 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5124 	int ret;
5125 
5126 	read_lock(&em_tree->lock);
5127 	em = lookup_extent_mapping(em_tree, logical, len);
5128 	read_unlock(&em_tree->lock);
5129 
5130 	/*
5131 	 * We could return errors for these cases, but that could get ugly and
5132 	 * we'd probably do the same thing which is just not do anything else
5133 	 * and exit, so return 1 so the callers don't try to use other copies.
5134 	 */
5135 	if (!em) {
5136 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5137 			    logical+len);
5138 		return 1;
5139 	}
5140 
5141 	if (em->start > logical || em->start + em->len < logical) {
5142 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5143 			   logical, logical+len, em->start,
5144 			   em->start + em->len);
5145 		free_extent_map(em);
5146 		return 1;
5147 	}
5148 
5149 	map = em->map_lookup;
5150 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5151 		ret = map->num_stripes;
5152 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5153 		ret = map->sub_stripes;
5154 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5155 		ret = 2;
5156 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5157 		ret = 3;
5158 	else
5159 		ret = 1;
5160 	free_extent_map(em);
5161 
5162 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5163 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5164 		ret++;
5165 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5166 
5167 	return ret;
5168 }
5169 
5170 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5171 				    struct btrfs_mapping_tree *map_tree,
5172 				    u64 logical)
5173 {
5174 	struct extent_map *em;
5175 	struct map_lookup *map;
5176 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5177 	unsigned long len = fs_info->sectorsize;
5178 
5179 	read_lock(&em_tree->lock);
5180 	em = lookup_extent_mapping(em_tree, logical, len);
5181 	read_unlock(&em_tree->lock);
5182 	BUG_ON(!em);
5183 
5184 	BUG_ON(em->start > logical || em->start + em->len < logical);
5185 	map = em->map_lookup;
5186 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5187 		len = map->stripe_len * nr_data_stripes(map);
5188 	free_extent_map(em);
5189 	return len;
5190 }
5191 
5192 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5193 			   u64 logical, u64 len, int mirror_num)
5194 {
5195 	struct extent_map *em;
5196 	struct map_lookup *map;
5197 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5198 	int ret = 0;
5199 
5200 	read_lock(&em_tree->lock);
5201 	em = lookup_extent_mapping(em_tree, logical, len);
5202 	read_unlock(&em_tree->lock);
5203 	BUG_ON(!em);
5204 
5205 	BUG_ON(em->start > logical || em->start + em->len < logical);
5206 	map = em->map_lookup;
5207 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5208 		ret = 1;
5209 	free_extent_map(em);
5210 	return ret;
5211 }
5212 
5213 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5214 			    struct map_lookup *map, int first, int num,
5215 			    int optimal, int dev_replace_is_ongoing)
5216 {
5217 	int i;
5218 	int tolerance;
5219 	struct btrfs_device *srcdev;
5220 
5221 	if (dev_replace_is_ongoing &&
5222 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5223 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5224 		srcdev = fs_info->dev_replace.srcdev;
5225 	else
5226 		srcdev = NULL;
5227 
5228 	/*
5229 	 * try to avoid the drive that is the source drive for a
5230 	 * dev-replace procedure, only choose it if no other non-missing
5231 	 * mirror is available
5232 	 */
5233 	for (tolerance = 0; tolerance < 2; tolerance++) {
5234 		if (map->stripes[optimal].dev->bdev &&
5235 		    (tolerance || map->stripes[optimal].dev != srcdev))
5236 			return optimal;
5237 		for (i = first; i < first + num; i++) {
5238 			if (map->stripes[i].dev->bdev &&
5239 			    (tolerance || map->stripes[i].dev != srcdev))
5240 				return i;
5241 		}
5242 	}
5243 
5244 	/* we couldn't find one that doesn't fail.  Just return something
5245 	 * and the io error handling code will clean up eventually
5246 	 */
5247 	return optimal;
5248 }
5249 
5250 static inline int parity_smaller(u64 a, u64 b)
5251 {
5252 	return a > b;
5253 }
5254 
5255 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5256 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5257 {
5258 	struct btrfs_bio_stripe s;
5259 	int i;
5260 	u64 l;
5261 	int again = 1;
5262 
5263 	while (again) {
5264 		again = 0;
5265 		for (i = 0; i < num_stripes - 1; i++) {
5266 			if (parity_smaller(bbio->raid_map[i],
5267 					   bbio->raid_map[i+1])) {
5268 				s = bbio->stripes[i];
5269 				l = bbio->raid_map[i];
5270 				bbio->stripes[i] = bbio->stripes[i+1];
5271 				bbio->raid_map[i] = bbio->raid_map[i+1];
5272 				bbio->stripes[i+1] = s;
5273 				bbio->raid_map[i+1] = l;
5274 
5275 				again = 1;
5276 			}
5277 		}
5278 	}
5279 }
5280 
5281 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5282 {
5283 	struct btrfs_bio *bbio = kzalloc(
5284 		 /* the size of the btrfs_bio */
5285 		sizeof(struct btrfs_bio) +
5286 		/* plus the variable array for the stripes */
5287 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5288 		/* plus the variable array for the tgt dev */
5289 		sizeof(int) * (real_stripes) +
5290 		/*
5291 		 * plus the raid_map, which includes both the tgt dev
5292 		 * and the stripes
5293 		 */
5294 		sizeof(u64) * (total_stripes),
5295 		GFP_NOFS|__GFP_NOFAIL);
5296 
5297 	atomic_set(&bbio->error, 0);
5298 	atomic_set(&bbio->refs, 1);
5299 
5300 	return bbio;
5301 }
5302 
5303 void btrfs_get_bbio(struct btrfs_bio *bbio)
5304 {
5305 	WARN_ON(!atomic_read(&bbio->refs));
5306 	atomic_inc(&bbio->refs);
5307 }
5308 
5309 void btrfs_put_bbio(struct btrfs_bio *bbio)
5310 {
5311 	if (!bbio)
5312 		return;
5313 	if (atomic_dec_and_test(&bbio->refs))
5314 		kfree(bbio);
5315 }
5316 
5317 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5318 			     enum btrfs_map_op op,
5319 			     u64 logical, u64 *length,
5320 			     struct btrfs_bio **bbio_ret,
5321 			     int mirror_num, int need_raid_map)
5322 {
5323 	struct extent_map *em;
5324 	struct map_lookup *map;
5325 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5326 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5327 	u64 offset;
5328 	u64 stripe_offset;
5329 	u64 stripe_end_offset;
5330 	u64 stripe_nr;
5331 	u64 stripe_nr_orig;
5332 	u64 stripe_nr_end;
5333 	u64 stripe_len;
5334 	u32 stripe_index;
5335 	int i;
5336 	int ret = 0;
5337 	int num_stripes;
5338 	int max_errors = 0;
5339 	int tgtdev_indexes = 0;
5340 	struct btrfs_bio *bbio = NULL;
5341 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5342 	int dev_replace_is_ongoing = 0;
5343 	int num_alloc_stripes;
5344 	int patch_the_first_stripe_for_dev_replace = 0;
5345 	u64 physical_to_patch_in_first_stripe = 0;
5346 	u64 raid56_full_stripe_start = (u64)-1;
5347 
5348 	read_lock(&em_tree->lock);
5349 	em = lookup_extent_mapping(em_tree, logical, *length);
5350 	read_unlock(&em_tree->lock);
5351 
5352 	if (!em) {
5353 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5354 			logical, *length);
5355 		return -EINVAL;
5356 	}
5357 
5358 	if (em->start > logical || em->start + em->len < logical) {
5359 		btrfs_crit(fs_info,
5360 			   "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5361 			   logical, em->start, em->start + em->len);
5362 		free_extent_map(em);
5363 		return -EINVAL;
5364 	}
5365 
5366 	map = em->map_lookup;
5367 	offset = logical - em->start;
5368 
5369 	stripe_len = map->stripe_len;
5370 	stripe_nr = offset;
5371 	/*
5372 	 * stripe_nr counts the total number of stripes we have to stride
5373 	 * to get to this block
5374 	 */
5375 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5376 
5377 	stripe_offset = stripe_nr * stripe_len;
5378 	if (offset < stripe_offset) {
5379 		btrfs_crit(fs_info,
5380 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5381 			   stripe_offset, offset, em->start, logical,
5382 			   stripe_len);
5383 		free_extent_map(em);
5384 		return -EINVAL;
5385 	}
5386 
5387 	/* stripe_offset is the offset of this block in its stripe*/
5388 	stripe_offset = offset - stripe_offset;
5389 
5390 	/* if we're here for raid56, we need to know the stripe aligned start */
5391 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5392 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5393 		raid56_full_stripe_start = offset;
5394 
5395 		/* allow a write of a full stripe, but make sure we don't
5396 		 * allow straddling of stripes
5397 		 */
5398 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5399 				full_stripe_len);
5400 		raid56_full_stripe_start *= full_stripe_len;
5401 	}
5402 
5403 	if (op == BTRFS_MAP_DISCARD) {
5404 		/* we don't discard raid56 yet */
5405 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5406 			ret = -EOPNOTSUPP;
5407 			goto out;
5408 		}
5409 		*length = min_t(u64, em->len - offset, *length);
5410 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5411 		u64 max_len;
5412 		/* For writes to RAID[56], allow a full stripeset across all disks.
5413 		   For other RAID types and for RAID[56] reads, just allow a single
5414 		   stripe (on a single disk). */
5415 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5416 		    (op == BTRFS_MAP_WRITE)) {
5417 			max_len = stripe_len * nr_data_stripes(map) -
5418 				(offset - raid56_full_stripe_start);
5419 		} else {
5420 			/* we limit the length of each bio to what fits in a stripe */
5421 			max_len = stripe_len - stripe_offset;
5422 		}
5423 		*length = min_t(u64, em->len - offset, max_len);
5424 	} else {
5425 		*length = em->len - offset;
5426 	}
5427 
5428 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5429 	   it cares about is the length */
5430 	if (!bbio_ret)
5431 		goto out;
5432 
5433 	btrfs_dev_replace_lock(dev_replace, 0);
5434 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5435 	if (!dev_replace_is_ongoing)
5436 		btrfs_dev_replace_unlock(dev_replace, 0);
5437 	else
5438 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5439 
5440 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5441 	    op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5442 	    op != BTRFS_MAP_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5443 		/*
5444 		 * in dev-replace case, for repair case (that's the only
5445 		 * case where the mirror is selected explicitly when
5446 		 * calling btrfs_map_block), blocks left of the left cursor
5447 		 * can also be read from the target drive.
5448 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
5449 		 * the last one to the array of stripes. For READ, it also
5450 		 * needs to be supported using the same mirror number.
5451 		 * If the requested block is not left of the left cursor,
5452 		 * EIO is returned. This can happen because btrfs_num_copies()
5453 		 * returns one more in the dev-replace case.
5454 		 */
5455 		u64 tmp_length = *length;
5456 		struct btrfs_bio *tmp_bbio = NULL;
5457 		int tmp_num_stripes;
5458 		u64 srcdev_devid = dev_replace->srcdev->devid;
5459 		int index_srcdev = 0;
5460 		int found = 0;
5461 		u64 physical_of_found = 0;
5462 
5463 		ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5464 			     logical, &tmp_length, &tmp_bbio, 0, 0);
5465 		if (ret) {
5466 			WARN_ON(tmp_bbio != NULL);
5467 			goto out;
5468 		}
5469 
5470 		tmp_num_stripes = tmp_bbio->num_stripes;
5471 		if (mirror_num > tmp_num_stripes) {
5472 			/*
5473 			 * BTRFS_MAP_GET_READ_MIRRORS does not contain this
5474 			 * mirror, that means that the requested area
5475 			 * is not left of the left cursor
5476 			 */
5477 			ret = -EIO;
5478 			btrfs_put_bbio(tmp_bbio);
5479 			goto out;
5480 		}
5481 
5482 		/*
5483 		 * process the rest of the function using the mirror_num
5484 		 * of the source drive. Therefore look it up first.
5485 		 * At the end, patch the device pointer to the one of the
5486 		 * target drive.
5487 		 */
5488 		for (i = 0; i < tmp_num_stripes; i++) {
5489 			if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5490 				continue;
5491 
5492 			/*
5493 			 * In case of DUP, in order to keep it simple, only add
5494 			 * the mirror with the lowest physical address
5495 			 */
5496 			if (found &&
5497 			    physical_of_found <= tmp_bbio->stripes[i].physical)
5498 				continue;
5499 
5500 			index_srcdev = i;
5501 			found = 1;
5502 			physical_of_found = tmp_bbio->stripes[i].physical;
5503 		}
5504 
5505 		btrfs_put_bbio(tmp_bbio);
5506 
5507 		if (!found) {
5508 			WARN_ON(1);
5509 			ret = -EIO;
5510 			goto out;
5511 		}
5512 
5513 		mirror_num = index_srcdev + 1;
5514 		patch_the_first_stripe_for_dev_replace = 1;
5515 		physical_to_patch_in_first_stripe = physical_of_found;
5516 	} else if (mirror_num > map->num_stripes) {
5517 		mirror_num = 0;
5518 	}
5519 
5520 	num_stripes = 1;
5521 	stripe_index = 0;
5522 	stripe_nr_orig = stripe_nr;
5523 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5524 	stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5525 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5526 			    (offset + *length);
5527 
5528 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5529 		if (op == BTRFS_MAP_DISCARD)
5530 			num_stripes = min_t(u64, map->num_stripes,
5531 					    stripe_nr_end - stripe_nr_orig);
5532 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5533 				&stripe_index);
5534 		if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5535 		    op != BTRFS_MAP_GET_READ_MIRRORS)
5536 			mirror_num = 1;
5537 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5538 		if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5539 		    op == BTRFS_MAP_GET_READ_MIRRORS)
5540 			num_stripes = map->num_stripes;
5541 		else if (mirror_num)
5542 			stripe_index = mirror_num - 1;
5543 		else {
5544 			stripe_index = find_live_mirror(fs_info, map, 0,
5545 					    map->num_stripes,
5546 					    current->pid % map->num_stripes,
5547 					    dev_replace_is_ongoing);
5548 			mirror_num = stripe_index + 1;
5549 		}
5550 
5551 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5552 		if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5553 		    op == BTRFS_MAP_GET_READ_MIRRORS) {
5554 			num_stripes = map->num_stripes;
5555 		} else if (mirror_num) {
5556 			stripe_index = mirror_num - 1;
5557 		} else {
5558 			mirror_num = 1;
5559 		}
5560 
5561 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5562 		u32 factor = map->num_stripes / map->sub_stripes;
5563 
5564 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5565 		stripe_index *= map->sub_stripes;
5566 
5567 		if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5568 			num_stripes = map->sub_stripes;
5569 		else if (op == BTRFS_MAP_DISCARD)
5570 			num_stripes = min_t(u64, map->sub_stripes *
5571 					    (stripe_nr_end - stripe_nr_orig),
5572 					    map->num_stripes);
5573 		else if (mirror_num)
5574 			stripe_index += mirror_num - 1;
5575 		else {
5576 			int old_stripe_index = stripe_index;
5577 			stripe_index = find_live_mirror(fs_info, map,
5578 					      stripe_index,
5579 					      map->sub_stripes, stripe_index +
5580 					      current->pid % map->sub_stripes,
5581 					      dev_replace_is_ongoing);
5582 			mirror_num = stripe_index - old_stripe_index + 1;
5583 		}
5584 
5585 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5586 		if (need_raid_map &&
5587 		    (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5588 		     mirror_num > 1)) {
5589 			/* push stripe_nr back to the start of the full stripe */
5590 			stripe_nr = div_u64(raid56_full_stripe_start,
5591 					stripe_len * nr_data_stripes(map));
5592 
5593 			/* RAID[56] write or recovery. Return all stripes */
5594 			num_stripes = map->num_stripes;
5595 			max_errors = nr_parity_stripes(map);
5596 
5597 			*length = map->stripe_len;
5598 			stripe_index = 0;
5599 			stripe_offset = 0;
5600 		} else {
5601 			/*
5602 			 * Mirror #0 or #1 means the original data block.
5603 			 * Mirror #2 is RAID5 parity block.
5604 			 * Mirror #3 is RAID6 Q block.
5605 			 */
5606 			stripe_nr = div_u64_rem(stripe_nr,
5607 					nr_data_stripes(map), &stripe_index);
5608 			if (mirror_num > 1)
5609 				stripe_index = nr_data_stripes(map) +
5610 						mirror_num - 2;
5611 
5612 			/* We distribute the parity blocks across stripes */
5613 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5614 					&stripe_index);
5615 			if ((op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5616 			    op != BTRFS_MAP_GET_READ_MIRRORS) && mirror_num <= 1)
5617 				mirror_num = 1;
5618 		}
5619 	} else {
5620 		/*
5621 		 * after this, stripe_nr is the number of stripes on this
5622 		 * device we have to walk to find the data, and stripe_index is
5623 		 * the number of our device in the stripe array
5624 		 */
5625 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5626 				&stripe_index);
5627 		mirror_num = stripe_index + 1;
5628 	}
5629 	if (stripe_index >= map->num_stripes) {
5630 		btrfs_crit(fs_info,
5631 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5632 			   stripe_index, map->num_stripes);
5633 		ret = -EINVAL;
5634 		goto out;
5635 	}
5636 
5637 	num_alloc_stripes = num_stripes;
5638 	if (dev_replace_is_ongoing) {
5639 		if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD)
5640 			num_alloc_stripes <<= 1;
5641 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
5642 			num_alloc_stripes++;
5643 		tgtdev_indexes = num_stripes;
5644 	}
5645 
5646 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5647 	if (!bbio) {
5648 		ret = -ENOMEM;
5649 		goto out;
5650 	}
5651 	if (dev_replace_is_ongoing)
5652 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5653 
5654 	/* build raid_map */
5655 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5656 	    need_raid_map &&
5657 	    ((op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) ||
5658 	    mirror_num > 1)) {
5659 		u64 tmp;
5660 		unsigned rot;
5661 
5662 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5663 				 sizeof(struct btrfs_bio_stripe) *
5664 				 num_alloc_stripes +
5665 				 sizeof(int) * tgtdev_indexes);
5666 
5667 		/* Work out the disk rotation on this stripe-set */
5668 		div_u64_rem(stripe_nr, num_stripes, &rot);
5669 
5670 		/* Fill in the logical address of each stripe */
5671 		tmp = stripe_nr * nr_data_stripes(map);
5672 		for (i = 0; i < nr_data_stripes(map); i++)
5673 			bbio->raid_map[(i+rot) % num_stripes] =
5674 				em->start + (tmp + i) * map->stripe_len;
5675 
5676 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5677 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5678 			bbio->raid_map[(i+rot+1) % num_stripes] =
5679 				RAID6_Q_STRIPE;
5680 	}
5681 
5682 	if (op == BTRFS_MAP_DISCARD) {
5683 		u32 factor = 0;
5684 		u32 sub_stripes = 0;
5685 		u64 stripes_per_dev = 0;
5686 		u32 remaining_stripes = 0;
5687 		u32 last_stripe = 0;
5688 
5689 		if (map->type &
5690 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5691 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5692 				sub_stripes = 1;
5693 			else
5694 				sub_stripes = map->sub_stripes;
5695 
5696 			factor = map->num_stripes / sub_stripes;
5697 			stripes_per_dev = div_u64_rem(stripe_nr_end -
5698 						      stripe_nr_orig,
5699 						      factor,
5700 						      &remaining_stripes);
5701 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5702 			last_stripe *= sub_stripes;
5703 		}
5704 
5705 		for (i = 0; i < num_stripes; i++) {
5706 			bbio->stripes[i].physical =
5707 				map->stripes[stripe_index].physical +
5708 				stripe_offset + stripe_nr * map->stripe_len;
5709 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5710 
5711 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5712 					 BTRFS_BLOCK_GROUP_RAID10)) {
5713 				bbio->stripes[i].length = stripes_per_dev *
5714 							  map->stripe_len;
5715 
5716 				if (i / sub_stripes < remaining_stripes)
5717 					bbio->stripes[i].length +=
5718 						map->stripe_len;
5719 
5720 				/*
5721 				 * Special for the first stripe and
5722 				 * the last stripe:
5723 				 *
5724 				 * |-------|...|-------|
5725 				 *     |----------|
5726 				 *    off     end_off
5727 				 */
5728 				if (i < sub_stripes)
5729 					bbio->stripes[i].length -=
5730 						stripe_offset;
5731 
5732 				if (stripe_index >= last_stripe &&
5733 				    stripe_index <= (last_stripe +
5734 						     sub_stripes - 1))
5735 					bbio->stripes[i].length -=
5736 						stripe_end_offset;
5737 
5738 				if (i == sub_stripes - 1)
5739 					stripe_offset = 0;
5740 			} else
5741 				bbio->stripes[i].length = *length;
5742 
5743 			stripe_index++;
5744 			if (stripe_index == map->num_stripes) {
5745 				/* This could only happen for RAID0/10 */
5746 				stripe_index = 0;
5747 				stripe_nr++;
5748 			}
5749 		}
5750 	} else {
5751 		for (i = 0; i < num_stripes; i++) {
5752 			bbio->stripes[i].physical =
5753 				map->stripes[stripe_index].physical +
5754 				stripe_offset +
5755 				stripe_nr * map->stripe_len;
5756 			bbio->stripes[i].dev =
5757 				map->stripes[stripe_index].dev;
5758 			stripe_index++;
5759 		}
5760 	}
5761 
5762 	if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5763 		max_errors = btrfs_chunk_max_errors(map);
5764 
5765 	if (bbio->raid_map)
5766 		sort_parity_stripes(bbio, num_stripes);
5767 
5768 	tgtdev_indexes = 0;
5769 	if (dev_replace_is_ongoing &&
5770 	   (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD) &&
5771 	    dev_replace->tgtdev != NULL) {
5772 		int index_where_to_add;
5773 		u64 srcdev_devid = dev_replace->srcdev->devid;
5774 
5775 		/*
5776 		 * duplicate the write operations while the dev replace
5777 		 * procedure is running. Since the copying of the old disk
5778 		 * to the new disk takes place at run time while the
5779 		 * filesystem is mounted writable, the regular write
5780 		 * operations to the old disk have to be duplicated to go
5781 		 * to the new disk as well.
5782 		 * Note that device->missing is handled by the caller, and
5783 		 * that the write to the old disk is already set up in the
5784 		 * stripes array.
5785 		 */
5786 		index_where_to_add = num_stripes;
5787 		for (i = 0; i < num_stripes; i++) {
5788 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5789 				/* write to new disk, too */
5790 				struct btrfs_bio_stripe *new =
5791 					bbio->stripes + index_where_to_add;
5792 				struct btrfs_bio_stripe *old =
5793 					bbio->stripes + i;
5794 
5795 				new->physical = old->physical;
5796 				new->length = old->length;
5797 				new->dev = dev_replace->tgtdev;
5798 				bbio->tgtdev_map[i] = index_where_to_add;
5799 				index_where_to_add++;
5800 				max_errors++;
5801 				tgtdev_indexes++;
5802 			}
5803 		}
5804 		num_stripes = index_where_to_add;
5805 	} else if (dev_replace_is_ongoing &&
5806 		   op == BTRFS_MAP_GET_READ_MIRRORS &&
5807 		   dev_replace->tgtdev != NULL) {
5808 		u64 srcdev_devid = dev_replace->srcdev->devid;
5809 		int index_srcdev = 0;
5810 		int found = 0;
5811 		u64 physical_of_found = 0;
5812 
5813 		/*
5814 		 * During the dev-replace procedure, the target drive can
5815 		 * also be used to read data in case it is needed to repair
5816 		 * a corrupt block elsewhere. This is possible if the
5817 		 * requested area is left of the left cursor. In this area,
5818 		 * the target drive is a full copy of the source drive.
5819 		 */
5820 		for (i = 0; i < num_stripes; i++) {
5821 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5822 				/*
5823 				 * In case of DUP, in order to keep it
5824 				 * simple, only add the mirror with the
5825 				 * lowest physical address
5826 				 */
5827 				if (found &&
5828 				    physical_of_found <=
5829 				     bbio->stripes[i].physical)
5830 					continue;
5831 				index_srcdev = i;
5832 				found = 1;
5833 				physical_of_found = bbio->stripes[i].physical;
5834 			}
5835 		}
5836 		if (found) {
5837 			struct btrfs_bio_stripe *tgtdev_stripe =
5838 				bbio->stripes + num_stripes;
5839 
5840 			tgtdev_stripe->physical = physical_of_found;
5841 			tgtdev_stripe->length =
5842 				bbio->stripes[index_srcdev].length;
5843 			tgtdev_stripe->dev = dev_replace->tgtdev;
5844 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5845 
5846 			tgtdev_indexes++;
5847 			num_stripes++;
5848 		}
5849 	}
5850 
5851 	*bbio_ret = bbio;
5852 	bbio->map_type = map->type;
5853 	bbio->num_stripes = num_stripes;
5854 	bbio->max_errors = max_errors;
5855 	bbio->mirror_num = mirror_num;
5856 	bbio->num_tgtdevs = tgtdev_indexes;
5857 
5858 	/*
5859 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5860 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5861 	 * available as a mirror
5862 	 */
5863 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5864 		WARN_ON(num_stripes > 1);
5865 		bbio->stripes[0].dev = dev_replace->tgtdev;
5866 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5867 		bbio->mirror_num = map->num_stripes + 1;
5868 	}
5869 out:
5870 	if (dev_replace_is_ongoing) {
5871 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
5872 		btrfs_dev_replace_unlock(dev_replace, 0);
5873 	}
5874 	free_extent_map(em);
5875 	return ret;
5876 }
5877 
5878 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5879 		      u64 logical, u64 *length,
5880 		      struct btrfs_bio **bbio_ret, int mirror_num)
5881 {
5882 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5883 				 mirror_num, 0);
5884 }
5885 
5886 /* For Scrub/replace */
5887 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5888 		     u64 logical, u64 *length,
5889 		     struct btrfs_bio **bbio_ret, int mirror_num,
5890 		     int need_raid_map)
5891 {
5892 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5893 				 mirror_num, need_raid_map);
5894 }
5895 
5896 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5897 		     u64 chunk_start, u64 physical, u64 devid,
5898 		     u64 **logical, int *naddrs, int *stripe_len)
5899 {
5900 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5901 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5902 	struct extent_map *em;
5903 	struct map_lookup *map;
5904 	u64 *buf;
5905 	u64 bytenr;
5906 	u64 length;
5907 	u64 stripe_nr;
5908 	u64 rmap_len;
5909 	int i, j, nr = 0;
5910 
5911 	read_lock(&em_tree->lock);
5912 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5913 	read_unlock(&em_tree->lock);
5914 
5915 	if (!em) {
5916 		btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5917 			chunk_start);
5918 		return -EIO;
5919 	}
5920 
5921 	if (em->start != chunk_start) {
5922 		btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
5923 		       em->start, chunk_start);
5924 		free_extent_map(em);
5925 		return -EIO;
5926 	}
5927 	map = em->map_lookup;
5928 
5929 	length = em->len;
5930 	rmap_len = map->stripe_len;
5931 
5932 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5933 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5934 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5935 		length = div_u64(length, map->num_stripes);
5936 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5937 		length = div_u64(length, nr_data_stripes(map));
5938 		rmap_len = map->stripe_len * nr_data_stripes(map);
5939 	}
5940 
5941 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5942 	BUG_ON(!buf); /* -ENOMEM */
5943 
5944 	for (i = 0; i < map->num_stripes; i++) {
5945 		if (devid && map->stripes[i].dev->devid != devid)
5946 			continue;
5947 		if (map->stripes[i].physical > physical ||
5948 		    map->stripes[i].physical + length <= physical)
5949 			continue;
5950 
5951 		stripe_nr = physical - map->stripes[i].physical;
5952 		stripe_nr = div_u64(stripe_nr, map->stripe_len);
5953 
5954 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5955 			stripe_nr = stripe_nr * map->num_stripes + i;
5956 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5957 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5958 			stripe_nr = stripe_nr * map->num_stripes + i;
5959 		} /* else if RAID[56], multiply by nr_data_stripes().
5960 		   * Alternatively, just use rmap_len below instead of
5961 		   * map->stripe_len */
5962 
5963 		bytenr = chunk_start + stripe_nr * rmap_len;
5964 		WARN_ON(nr >= map->num_stripes);
5965 		for (j = 0; j < nr; j++) {
5966 			if (buf[j] == bytenr)
5967 				break;
5968 		}
5969 		if (j == nr) {
5970 			WARN_ON(nr >= map->num_stripes);
5971 			buf[nr++] = bytenr;
5972 		}
5973 	}
5974 
5975 	*logical = buf;
5976 	*naddrs = nr;
5977 	*stripe_len = rmap_len;
5978 
5979 	free_extent_map(em);
5980 	return 0;
5981 }
5982 
5983 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5984 {
5985 	bio->bi_private = bbio->private;
5986 	bio->bi_end_io = bbio->end_io;
5987 	bio_endio(bio);
5988 
5989 	btrfs_put_bbio(bbio);
5990 }
5991 
5992 static void btrfs_end_bio(struct bio *bio)
5993 {
5994 	struct btrfs_bio *bbio = bio->bi_private;
5995 	int is_orig_bio = 0;
5996 
5997 	if (bio->bi_error) {
5998 		atomic_inc(&bbio->error);
5999 		if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
6000 			unsigned int stripe_index =
6001 				btrfs_io_bio(bio)->stripe_index;
6002 			struct btrfs_device *dev;
6003 
6004 			BUG_ON(stripe_index >= bbio->num_stripes);
6005 			dev = bbio->stripes[stripe_index].dev;
6006 			if (dev->bdev) {
6007 				if (bio_op(bio) == REQ_OP_WRITE)
6008 					btrfs_dev_stat_inc(dev,
6009 						BTRFS_DEV_STAT_WRITE_ERRS);
6010 				else
6011 					btrfs_dev_stat_inc(dev,
6012 						BTRFS_DEV_STAT_READ_ERRS);
6013 				if (bio->bi_opf & REQ_PREFLUSH)
6014 					btrfs_dev_stat_inc(dev,
6015 						BTRFS_DEV_STAT_FLUSH_ERRS);
6016 				btrfs_dev_stat_print_on_error(dev);
6017 			}
6018 		}
6019 	}
6020 
6021 	if (bio == bbio->orig_bio)
6022 		is_orig_bio = 1;
6023 
6024 	btrfs_bio_counter_dec(bbio->fs_info);
6025 
6026 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6027 		if (!is_orig_bio) {
6028 			bio_put(bio);
6029 			bio = bbio->orig_bio;
6030 		}
6031 
6032 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6033 		/* only send an error to the higher layers if it is
6034 		 * beyond the tolerance of the btrfs bio
6035 		 */
6036 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6037 			bio->bi_error = -EIO;
6038 		} else {
6039 			/*
6040 			 * this bio is actually up to date, we didn't
6041 			 * go over the max number of errors
6042 			 */
6043 			bio->bi_error = 0;
6044 		}
6045 
6046 		btrfs_end_bbio(bbio, bio);
6047 	} else if (!is_orig_bio) {
6048 		bio_put(bio);
6049 	}
6050 }
6051 
6052 /*
6053  * see run_scheduled_bios for a description of why bios are collected for
6054  * async submit.
6055  *
6056  * This will add one bio to the pending list for a device and make sure
6057  * the work struct is scheduled.
6058  */
6059 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6060 					struct bio *bio)
6061 {
6062 	struct btrfs_fs_info *fs_info = device->fs_info;
6063 	int should_queue = 1;
6064 	struct btrfs_pending_bios *pending_bios;
6065 
6066 	if (device->missing || !device->bdev) {
6067 		bio_io_error(bio);
6068 		return;
6069 	}
6070 
6071 	/* don't bother with additional async steps for reads, right now */
6072 	if (bio_op(bio) == REQ_OP_READ) {
6073 		bio_get(bio);
6074 		btrfsic_submit_bio(bio);
6075 		bio_put(bio);
6076 		return;
6077 	}
6078 
6079 	/*
6080 	 * nr_async_bios allows us to reliably return congestion to the
6081 	 * higher layers.  Otherwise, the async bio makes it appear we have
6082 	 * made progress against dirty pages when we've really just put it
6083 	 * on a queue for later
6084 	 */
6085 	atomic_inc(&fs_info->nr_async_bios);
6086 	WARN_ON(bio->bi_next);
6087 	bio->bi_next = NULL;
6088 
6089 	spin_lock(&device->io_lock);
6090 	if (op_is_sync(bio->bi_opf))
6091 		pending_bios = &device->pending_sync_bios;
6092 	else
6093 		pending_bios = &device->pending_bios;
6094 
6095 	if (pending_bios->tail)
6096 		pending_bios->tail->bi_next = bio;
6097 
6098 	pending_bios->tail = bio;
6099 	if (!pending_bios->head)
6100 		pending_bios->head = bio;
6101 	if (device->running_pending)
6102 		should_queue = 0;
6103 
6104 	spin_unlock(&device->io_lock);
6105 
6106 	if (should_queue)
6107 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6108 }
6109 
6110 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6111 			      u64 physical, int dev_nr, int async)
6112 {
6113 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6114 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6115 
6116 	bio->bi_private = bbio;
6117 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6118 	bio->bi_end_io = btrfs_end_bio;
6119 	bio->bi_iter.bi_sector = physical >> 9;
6120 #ifdef DEBUG
6121 	{
6122 		struct rcu_string *name;
6123 
6124 		rcu_read_lock();
6125 		name = rcu_dereference(dev->name);
6126 		btrfs_debug(fs_info,
6127 			"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6128 			bio_op(bio), bio->bi_opf,
6129 			(u64)bio->bi_iter.bi_sector,
6130 			(u_long)dev->bdev->bd_dev, name->str, dev->devid,
6131 			bio->bi_iter.bi_size);
6132 		rcu_read_unlock();
6133 	}
6134 #endif
6135 	bio->bi_bdev = dev->bdev;
6136 
6137 	btrfs_bio_counter_inc_noblocked(fs_info);
6138 
6139 	if (async)
6140 		btrfs_schedule_bio(dev, bio);
6141 	else
6142 		btrfsic_submit_bio(bio);
6143 }
6144 
6145 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6146 {
6147 	atomic_inc(&bbio->error);
6148 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6149 		/* Should be the original bio. */
6150 		WARN_ON(bio != bbio->orig_bio);
6151 
6152 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6153 		bio->bi_iter.bi_sector = logical >> 9;
6154 		bio->bi_error = -EIO;
6155 		btrfs_end_bbio(bbio, bio);
6156 	}
6157 }
6158 
6159 int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6160 		  int mirror_num, int async_submit)
6161 {
6162 	struct btrfs_device *dev;
6163 	struct bio *first_bio = bio;
6164 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6165 	u64 length = 0;
6166 	u64 map_length;
6167 	int ret;
6168 	int dev_nr;
6169 	int total_devs;
6170 	struct btrfs_bio *bbio = NULL;
6171 
6172 	length = bio->bi_iter.bi_size;
6173 	map_length = length;
6174 
6175 	btrfs_bio_counter_inc_blocked(fs_info);
6176 	ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
6177 				&map_length, &bbio, mirror_num, 1);
6178 	if (ret) {
6179 		btrfs_bio_counter_dec(fs_info);
6180 		return ret;
6181 	}
6182 
6183 	total_devs = bbio->num_stripes;
6184 	bbio->orig_bio = first_bio;
6185 	bbio->private = first_bio->bi_private;
6186 	bbio->end_io = first_bio->bi_end_io;
6187 	bbio->fs_info = fs_info;
6188 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6189 
6190 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6191 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6192 		/* In this case, map_length has been set to the length of
6193 		   a single stripe; not the whole write */
6194 		if (bio_op(bio) == REQ_OP_WRITE) {
6195 			ret = raid56_parity_write(fs_info, bio, bbio,
6196 						  map_length);
6197 		} else {
6198 			ret = raid56_parity_recover(fs_info, bio, bbio,
6199 						    map_length, mirror_num, 1);
6200 		}
6201 
6202 		btrfs_bio_counter_dec(fs_info);
6203 		return ret;
6204 	}
6205 
6206 	if (map_length < length) {
6207 		btrfs_crit(fs_info,
6208 			   "mapping failed logical %llu bio len %llu len %llu",
6209 			   logical, length, map_length);
6210 		BUG();
6211 	}
6212 
6213 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6214 		dev = bbio->stripes[dev_nr].dev;
6215 		if (!dev || !dev->bdev ||
6216 		    (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
6217 			bbio_error(bbio, first_bio, logical);
6218 			continue;
6219 		}
6220 
6221 		if (dev_nr < total_devs - 1) {
6222 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6223 			BUG_ON(!bio); /* -ENOMEM */
6224 		} else
6225 			bio = first_bio;
6226 
6227 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6228 				  dev_nr, async_submit);
6229 	}
6230 	btrfs_bio_counter_dec(fs_info);
6231 	return 0;
6232 }
6233 
6234 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6235 				       u8 *uuid, u8 *fsid)
6236 {
6237 	struct btrfs_device *device;
6238 	struct btrfs_fs_devices *cur_devices;
6239 
6240 	cur_devices = fs_info->fs_devices;
6241 	while (cur_devices) {
6242 		if (!fsid ||
6243 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6244 			device = __find_device(&cur_devices->devices,
6245 					       devid, uuid);
6246 			if (device)
6247 				return device;
6248 		}
6249 		cur_devices = cur_devices->seed;
6250 	}
6251 	return NULL;
6252 }
6253 
6254 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6255 					    u64 devid, u8 *dev_uuid)
6256 {
6257 	struct btrfs_device *device;
6258 
6259 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6260 	if (IS_ERR(device))
6261 		return NULL;
6262 
6263 	list_add(&device->dev_list, &fs_devices->devices);
6264 	device->fs_devices = fs_devices;
6265 	fs_devices->num_devices++;
6266 
6267 	device->missing = 1;
6268 	fs_devices->missing_devices++;
6269 
6270 	return device;
6271 }
6272 
6273 /**
6274  * btrfs_alloc_device - allocate struct btrfs_device
6275  * @fs_info:	used only for generating a new devid, can be NULL if
6276  *		devid is provided (i.e. @devid != NULL).
6277  * @devid:	a pointer to devid for this device.  If NULL a new devid
6278  *		is generated.
6279  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6280  *		is generated.
6281  *
6282  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6283  * on error.  Returned struct is not linked onto any lists and can be
6284  * destroyed with kfree() right away.
6285  */
6286 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6287 					const u64 *devid,
6288 					const u8 *uuid)
6289 {
6290 	struct btrfs_device *dev;
6291 	u64 tmp;
6292 
6293 	if (WARN_ON(!devid && !fs_info))
6294 		return ERR_PTR(-EINVAL);
6295 
6296 	dev = __alloc_device();
6297 	if (IS_ERR(dev))
6298 		return dev;
6299 
6300 	if (devid)
6301 		tmp = *devid;
6302 	else {
6303 		int ret;
6304 
6305 		ret = find_next_devid(fs_info, &tmp);
6306 		if (ret) {
6307 			kfree(dev);
6308 			return ERR_PTR(ret);
6309 		}
6310 	}
6311 	dev->devid = tmp;
6312 
6313 	if (uuid)
6314 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6315 	else
6316 		generate_random_uuid(dev->uuid);
6317 
6318 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6319 			pending_bios_fn, NULL, NULL);
6320 
6321 	return dev;
6322 }
6323 
6324 /* Return -EIO if any error, otherwise return 0. */
6325 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6326 				   struct extent_buffer *leaf,
6327 				   struct btrfs_chunk *chunk, u64 logical)
6328 {
6329 	u64 length;
6330 	u64 stripe_len;
6331 	u16 num_stripes;
6332 	u16 sub_stripes;
6333 	u64 type;
6334 
6335 	length = btrfs_chunk_length(leaf, chunk);
6336 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6337 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6338 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6339 	type = btrfs_chunk_type(leaf, chunk);
6340 
6341 	if (!num_stripes) {
6342 		btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6343 			  num_stripes);
6344 		return -EIO;
6345 	}
6346 	if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6347 		btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6348 		return -EIO;
6349 	}
6350 	if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6351 		btrfs_err(fs_info, "invalid chunk sectorsize %u",
6352 			  btrfs_chunk_sector_size(leaf, chunk));
6353 		return -EIO;
6354 	}
6355 	if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6356 		btrfs_err(fs_info, "invalid chunk length %llu", length);
6357 		return -EIO;
6358 	}
6359 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6360 		btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6361 			  stripe_len);
6362 		return -EIO;
6363 	}
6364 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6365 	    type) {
6366 		btrfs_err(fs_info, "unrecognized chunk type: %llu",
6367 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6368 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6369 			  btrfs_chunk_type(leaf, chunk));
6370 		return -EIO;
6371 	}
6372 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6373 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6374 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6375 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6376 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6377 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6378 	     num_stripes != 1)) {
6379 		btrfs_err(fs_info,
6380 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6381 			num_stripes, sub_stripes,
6382 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6383 		return -EIO;
6384 	}
6385 
6386 	return 0;
6387 }
6388 
6389 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6390 			  struct extent_buffer *leaf,
6391 			  struct btrfs_chunk *chunk)
6392 {
6393 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6394 	struct map_lookup *map;
6395 	struct extent_map *em;
6396 	u64 logical;
6397 	u64 length;
6398 	u64 stripe_len;
6399 	u64 devid;
6400 	u8 uuid[BTRFS_UUID_SIZE];
6401 	int num_stripes;
6402 	int ret;
6403 	int i;
6404 
6405 	logical = key->offset;
6406 	length = btrfs_chunk_length(leaf, chunk);
6407 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6408 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6409 
6410 	ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6411 	if (ret)
6412 		return ret;
6413 
6414 	read_lock(&map_tree->map_tree.lock);
6415 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6416 	read_unlock(&map_tree->map_tree.lock);
6417 
6418 	/* already mapped? */
6419 	if (em && em->start <= logical && em->start + em->len > logical) {
6420 		free_extent_map(em);
6421 		return 0;
6422 	} else if (em) {
6423 		free_extent_map(em);
6424 	}
6425 
6426 	em = alloc_extent_map();
6427 	if (!em)
6428 		return -ENOMEM;
6429 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6430 	if (!map) {
6431 		free_extent_map(em);
6432 		return -ENOMEM;
6433 	}
6434 
6435 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6436 	em->map_lookup = map;
6437 	em->start = logical;
6438 	em->len = length;
6439 	em->orig_start = 0;
6440 	em->block_start = 0;
6441 	em->block_len = em->len;
6442 
6443 	map->num_stripes = num_stripes;
6444 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6445 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6446 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6447 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6448 	map->type = btrfs_chunk_type(leaf, chunk);
6449 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6450 	for (i = 0; i < num_stripes; i++) {
6451 		map->stripes[i].physical =
6452 			btrfs_stripe_offset_nr(leaf, chunk, i);
6453 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6454 		read_extent_buffer(leaf, uuid, (unsigned long)
6455 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6456 				   BTRFS_UUID_SIZE);
6457 		map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6458 							uuid, NULL);
6459 		if (!map->stripes[i].dev &&
6460 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6461 			free_extent_map(em);
6462 			return -EIO;
6463 		}
6464 		if (!map->stripes[i].dev) {
6465 			map->stripes[i].dev =
6466 				add_missing_dev(fs_info->fs_devices, devid,
6467 						uuid);
6468 			if (!map->stripes[i].dev) {
6469 				free_extent_map(em);
6470 				return -EIO;
6471 			}
6472 			btrfs_warn(fs_info, "devid %llu uuid %pU is missing",
6473 				   devid, uuid);
6474 		}
6475 		map->stripes[i].dev->in_fs_metadata = 1;
6476 	}
6477 
6478 	write_lock(&map_tree->map_tree.lock);
6479 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6480 	write_unlock(&map_tree->map_tree.lock);
6481 	BUG_ON(ret); /* Tree corruption */
6482 	free_extent_map(em);
6483 
6484 	return 0;
6485 }
6486 
6487 static void fill_device_from_item(struct extent_buffer *leaf,
6488 				 struct btrfs_dev_item *dev_item,
6489 				 struct btrfs_device *device)
6490 {
6491 	unsigned long ptr;
6492 
6493 	device->devid = btrfs_device_id(leaf, dev_item);
6494 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6495 	device->total_bytes = device->disk_total_bytes;
6496 	device->commit_total_bytes = device->disk_total_bytes;
6497 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6498 	device->commit_bytes_used = device->bytes_used;
6499 	device->type = btrfs_device_type(leaf, dev_item);
6500 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6501 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6502 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6503 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6504 	device->is_tgtdev_for_dev_replace = 0;
6505 
6506 	ptr = btrfs_device_uuid(dev_item);
6507 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6508 }
6509 
6510 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6511 						  u8 *fsid)
6512 {
6513 	struct btrfs_fs_devices *fs_devices;
6514 	int ret;
6515 
6516 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6517 
6518 	fs_devices = fs_info->fs_devices->seed;
6519 	while (fs_devices) {
6520 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6521 			return fs_devices;
6522 
6523 		fs_devices = fs_devices->seed;
6524 	}
6525 
6526 	fs_devices = find_fsid(fsid);
6527 	if (!fs_devices) {
6528 		if (!btrfs_test_opt(fs_info, DEGRADED))
6529 			return ERR_PTR(-ENOENT);
6530 
6531 		fs_devices = alloc_fs_devices(fsid);
6532 		if (IS_ERR(fs_devices))
6533 			return fs_devices;
6534 
6535 		fs_devices->seeding = 1;
6536 		fs_devices->opened = 1;
6537 		return fs_devices;
6538 	}
6539 
6540 	fs_devices = clone_fs_devices(fs_devices);
6541 	if (IS_ERR(fs_devices))
6542 		return fs_devices;
6543 
6544 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6545 				   fs_info->bdev_holder);
6546 	if (ret) {
6547 		free_fs_devices(fs_devices);
6548 		fs_devices = ERR_PTR(ret);
6549 		goto out;
6550 	}
6551 
6552 	if (!fs_devices->seeding) {
6553 		__btrfs_close_devices(fs_devices);
6554 		free_fs_devices(fs_devices);
6555 		fs_devices = ERR_PTR(-EINVAL);
6556 		goto out;
6557 	}
6558 
6559 	fs_devices->seed = fs_info->fs_devices->seed;
6560 	fs_info->fs_devices->seed = fs_devices;
6561 out:
6562 	return fs_devices;
6563 }
6564 
6565 static int read_one_dev(struct btrfs_fs_info *fs_info,
6566 			struct extent_buffer *leaf,
6567 			struct btrfs_dev_item *dev_item)
6568 {
6569 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6570 	struct btrfs_device *device;
6571 	u64 devid;
6572 	int ret;
6573 	u8 fs_uuid[BTRFS_UUID_SIZE];
6574 	u8 dev_uuid[BTRFS_UUID_SIZE];
6575 
6576 	devid = btrfs_device_id(leaf, dev_item);
6577 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6578 			   BTRFS_UUID_SIZE);
6579 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6580 			   BTRFS_UUID_SIZE);
6581 
6582 	if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
6583 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6584 		if (IS_ERR(fs_devices))
6585 			return PTR_ERR(fs_devices);
6586 	}
6587 
6588 	device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6589 	if (!device) {
6590 		if (!btrfs_test_opt(fs_info, DEGRADED))
6591 			return -EIO;
6592 
6593 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6594 		if (!device)
6595 			return -ENOMEM;
6596 		btrfs_warn(fs_info, "devid %llu uuid %pU missing",
6597 				devid, dev_uuid);
6598 	} else {
6599 		if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED))
6600 			return -EIO;
6601 
6602 		if(!device->bdev && !device->missing) {
6603 			/*
6604 			 * this happens when a device that was properly setup
6605 			 * in the device info lists suddenly goes bad.
6606 			 * device->bdev is NULL, and so we have to set
6607 			 * device->missing to one here
6608 			 */
6609 			device->fs_devices->missing_devices++;
6610 			device->missing = 1;
6611 		}
6612 
6613 		/* Move the device to its own fs_devices */
6614 		if (device->fs_devices != fs_devices) {
6615 			ASSERT(device->missing);
6616 
6617 			list_move(&device->dev_list, &fs_devices->devices);
6618 			device->fs_devices->num_devices--;
6619 			fs_devices->num_devices++;
6620 
6621 			device->fs_devices->missing_devices--;
6622 			fs_devices->missing_devices++;
6623 
6624 			device->fs_devices = fs_devices;
6625 		}
6626 	}
6627 
6628 	if (device->fs_devices != fs_info->fs_devices) {
6629 		BUG_ON(device->writeable);
6630 		if (device->generation !=
6631 		    btrfs_device_generation(leaf, dev_item))
6632 			return -EINVAL;
6633 	}
6634 
6635 	fill_device_from_item(leaf, dev_item, device);
6636 	device->in_fs_metadata = 1;
6637 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6638 		device->fs_devices->total_rw_bytes += device->total_bytes;
6639 		spin_lock(&fs_info->free_chunk_lock);
6640 		fs_info->free_chunk_space += device->total_bytes -
6641 			device->bytes_used;
6642 		spin_unlock(&fs_info->free_chunk_lock);
6643 	}
6644 	ret = 0;
6645 	return ret;
6646 }
6647 
6648 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6649 {
6650 	struct btrfs_root *root = fs_info->tree_root;
6651 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6652 	struct extent_buffer *sb;
6653 	struct btrfs_disk_key *disk_key;
6654 	struct btrfs_chunk *chunk;
6655 	u8 *array_ptr;
6656 	unsigned long sb_array_offset;
6657 	int ret = 0;
6658 	u32 num_stripes;
6659 	u32 array_size;
6660 	u32 len = 0;
6661 	u32 cur_offset;
6662 	u64 type;
6663 	struct btrfs_key key;
6664 
6665 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6666 	/*
6667 	 * This will create extent buffer of nodesize, superblock size is
6668 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6669 	 * overallocate but we can keep it as-is, only the first page is used.
6670 	 */
6671 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6672 	if (IS_ERR(sb))
6673 		return PTR_ERR(sb);
6674 	set_extent_buffer_uptodate(sb);
6675 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6676 	/*
6677 	 * The sb extent buffer is artificial and just used to read the system array.
6678 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6679 	 * pages up-to-date when the page is larger: extent does not cover the
6680 	 * whole page and consequently check_page_uptodate does not find all
6681 	 * the page's extents up-to-date (the hole beyond sb),
6682 	 * write_extent_buffer then triggers a WARN_ON.
6683 	 *
6684 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6685 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6686 	 * to silence the warning eg. on PowerPC 64.
6687 	 */
6688 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6689 		SetPageUptodate(sb->pages[0]);
6690 
6691 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6692 	array_size = btrfs_super_sys_array_size(super_copy);
6693 
6694 	array_ptr = super_copy->sys_chunk_array;
6695 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6696 	cur_offset = 0;
6697 
6698 	while (cur_offset < array_size) {
6699 		disk_key = (struct btrfs_disk_key *)array_ptr;
6700 		len = sizeof(*disk_key);
6701 		if (cur_offset + len > array_size)
6702 			goto out_short_read;
6703 
6704 		btrfs_disk_key_to_cpu(&key, disk_key);
6705 
6706 		array_ptr += len;
6707 		sb_array_offset += len;
6708 		cur_offset += len;
6709 
6710 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6711 			chunk = (struct btrfs_chunk *)sb_array_offset;
6712 			/*
6713 			 * At least one btrfs_chunk with one stripe must be
6714 			 * present, exact stripe count check comes afterwards
6715 			 */
6716 			len = btrfs_chunk_item_size(1);
6717 			if (cur_offset + len > array_size)
6718 				goto out_short_read;
6719 
6720 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6721 			if (!num_stripes) {
6722 				btrfs_err(fs_info,
6723 					"invalid number of stripes %u in sys_array at offset %u",
6724 					num_stripes, cur_offset);
6725 				ret = -EIO;
6726 				break;
6727 			}
6728 
6729 			type = btrfs_chunk_type(sb, chunk);
6730 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6731 				btrfs_err(fs_info,
6732 			    "invalid chunk type %llu in sys_array at offset %u",
6733 					type, cur_offset);
6734 				ret = -EIO;
6735 				break;
6736 			}
6737 
6738 			len = btrfs_chunk_item_size(num_stripes);
6739 			if (cur_offset + len > array_size)
6740 				goto out_short_read;
6741 
6742 			ret = read_one_chunk(fs_info, &key, sb, chunk);
6743 			if (ret)
6744 				break;
6745 		} else {
6746 			btrfs_err(fs_info,
6747 			    "unexpected item type %u in sys_array at offset %u",
6748 				  (u32)key.type, cur_offset);
6749 			ret = -EIO;
6750 			break;
6751 		}
6752 		array_ptr += len;
6753 		sb_array_offset += len;
6754 		cur_offset += len;
6755 	}
6756 	clear_extent_buffer_uptodate(sb);
6757 	free_extent_buffer_stale(sb);
6758 	return ret;
6759 
6760 out_short_read:
6761 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6762 			len, cur_offset);
6763 	clear_extent_buffer_uptodate(sb);
6764 	free_extent_buffer_stale(sb);
6765 	return -EIO;
6766 }
6767 
6768 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6769 {
6770 	struct btrfs_root *root = fs_info->chunk_root;
6771 	struct btrfs_path *path;
6772 	struct extent_buffer *leaf;
6773 	struct btrfs_key key;
6774 	struct btrfs_key found_key;
6775 	int ret;
6776 	int slot;
6777 	u64 total_dev = 0;
6778 
6779 	path = btrfs_alloc_path();
6780 	if (!path)
6781 		return -ENOMEM;
6782 
6783 	mutex_lock(&uuid_mutex);
6784 	mutex_lock(&fs_info->chunk_mutex);
6785 
6786 	/*
6787 	 * Read all device items, and then all the chunk items. All
6788 	 * device items are found before any chunk item (their object id
6789 	 * is smaller than the lowest possible object id for a chunk
6790 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6791 	 */
6792 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6793 	key.offset = 0;
6794 	key.type = 0;
6795 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6796 	if (ret < 0)
6797 		goto error;
6798 	while (1) {
6799 		leaf = path->nodes[0];
6800 		slot = path->slots[0];
6801 		if (slot >= btrfs_header_nritems(leaf)) {
6802 			ret = btrfs_next_leaf(root, path);
6803 			if (ret == 0)
6804 				continue;
6805 			if (ret < 0)
6806 				goto error;
6807 			break;
6808 		}
6809 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6810 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6811 			struct btrfs_dev_item *dev_item;
6812 			dev_item = btrfs_item_ptr(leaf, slot,
6813 						  struct btrfs_dev_item);
6814 			ret = read_one_dev(fs_info, leaf, dev_item);
6815 			if (ret)
6816 				goto error;
6817 			total_dev++;
6818 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6819 			struct btrfs_chunk *chunk;
6820 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6821 			ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6822 			if (ret)
6823 				goto error;
6824 		}
6825 		path->slots[0]++;
6826 	}
6827 
6828 	/*
6829 	 * After loading chunk tree, we've got all device information,
6830 	 * do another round of validation checks.
6831 	 */
6832 	if (total_dev != fs_info->fs_devices->total_devices) {
6833 		btrfs_err(fs_info,
6834 	   "super_num_devices %llu mismatch with num_devices %llu found here",
6835 			  btrfs_super_num_devices(fs_info->super_copy),
6836 			  total_dev);
6837 		ret = -EINVAL;
6838 		goto error;
6839 	}
6840 	if (btrfs_super_total_bytes(fs_info->super_copy) <
6841 	    fs_info->fs_devices->total_rw_bytes) {
6842 		btrfs_err(fs_info,
6843 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6844 			  btrfs_super_total_bytes(fs_info->super_copy),
6845 			  fs_info->fs_devices->total_rw_bytes);
6846 		ret = -EINVAL;
6847 		goto error;
6848 	}
6849 	ret = 0;
6850 error:
6851 	mutex_unlock(&fs_info->chunk_mutex);
6852 	mutex_unlock(&uuid_mutex);
6853 
6854 	btrfs_free_path(path);
6855 	return ret;
6856 }
6857 
6858 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6859 {
6860 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6861 	struct btrfs_device *device;
6862 
6863 	while (fs_devices) {
6864 		mutex_lock(&fs_devices->device_list_mutex);
6865 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6866 			device->fs_info = fs_info;
6867 		mutex_unlock(&fs_devices->device_list_mutex);
6868 
6869 		fs_devices = fs_devices->seed;
6870 	}
6871 }
6872 
6873 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6874 {
6875 	int i;
6876 
6877 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6878 		btrfs_dev_stat_reset(dev, i);
6879 }
6880 
6881 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6882 {
6883 	struct btrfs_key key;
6884 	struct btrfs_key found_key;
6885 	struct btrfs_root *dev_root = fs_info->dev_root;
6886 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6887 	struct extent_buffer *eb;
6888 	int slot;
6889 	int ret = 0;
6890 	struct btrfs_device *device;
6891 	struct btrfs_path *path = NULL;
6892 	int i;
6893 
6894 	path = btrfs_alloc_path();
6895 	if (!path) {
6896 		ret = -ENOMEM;
6897 		goto out;
6898 	}
6899 
6900 	mutex_lock(&fs_devices->device_list_mutex);
6901 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6902 		int item_size;
6903 		struct btrfs_dev_stats_item *ptr;
6904 
6905 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
6906 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
6907 		key.offset = device->devid;
6908 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6909 		if (ret) {
6910 			__btrfs_reset_dev_stats(device);
6911 			device->dev_stats_valid = 1;
6912 			btrfs_release_path(path);
6913 			continue;
6914 		}
6915 		slot = path->slots[0];
6916 		eb = path->nodes[0];
6917 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6918 		item_size = btrfs_item_size_nr(eb, slot);
6919 
6920 		ptr = btrfs_item_ptr(eb, slot,
6921 				     struct btrfs_dev_stats_item);
6922 
6923 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6924 			if (item_size >= (1 + i) * sizeof(__le64))
6925 				btrfs_dev_stat_set(device, i,
6926 					btrfs_dev_stats_value(eb, ptr, i));
6927 			else
6928 				btrfs_dev_stat_reset(device, i);
6929 		}
6930 
6931 		device->dev_stats_valid = 1;
6932 		btrfs_dev_stat_print_on_load(device);
6933 		btrfs_release_path(path);
6934 	}
6935 	mutex_unlock(&fs_devices->device_list_mutex);
6936 
6937 out:
6938 	btrfs_free_path(path);
6939 	return ret < 0 ? ret : 0;
6940 }
6941 
6942 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6943 				struct btrfs_fs_info *fs_info,
6944 				struct btrfs_device *device)
6945 {
6946 	struct btrfs_root *dev_root = fs_info->dev_root;
6947 	struct btrfs_path *path;
6948 	struct btrfs_key key;
6949 	struct extent_buffer *eb;
6950 	struct btrfs_dev_stats_item *ptr;
6951 	int ret;
6952 	int i;
6953 
6954 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
6955 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
6956 	key.offset = device->devid;
6957 
6958 	path = btrfs_alloc_path();
6959 	if (!path)
6960 		return -ENOMEM;
6961 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6962 	if (ret < 0) {
6963 		btrfs_warn_in_rcu(fs_info,
6964 			"error %d while searching for dev_stats item for device %s",
6965 			      ret, rcu_str_deref(device->name));
6966 		goto out;
6967 	}
6968 
6969 	if (ret == 0 &&
6970 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6971 		/* need to delete old one and insert a new one */
6972 		ret = btrfs_del_item(trans, dev_root, path);
6973 		if (ret != 0) {
6974 			btrfs_warn_in_rcu(fs_info,
6975 				"delete too small dev_stats item for device %s failed %d",
6976 				      rcu_str_deref(device->name), ret);
6977 			goto out;
6978 		}
6979 		ret = 1;
6980 	}
6981 
6982 	if (ret == 1) {
6983 		/* need to insert a new item */
6984 		btrfs_release_path(path);
6985 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6986 					      &key, sizeof(*ptr));
6987 		if (ret < 0) {
6988 			btrfs_warn_in_rcu(fs_info,
6989 				"insert dev_stats item for device %s failed %d",
6990 				rcu_str_deref(device->name), ret);
6991 			goto out;
6992 		}
6993 	}
6994 
6995 	eb = path->nodes[0];
6996 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6997 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6998 		btrfs_set_dev_stats_value(eb, ptr, i,
6999 					  btrfs_dev_stat_read(device, i));
7000 	btrfs_mark_buffer_dirty(eb);
7001 
7002 out:
7003 	btrfs_free_path(path);
7004 	return ret;
7005 }
7006 
7007 /*
7008  * called from commit_transaction. Writes all changed device stats to disk.
7009  */
7010 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7011 			struct btrfs_fs_info *fs_info)
7012 {
7013 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7014 	struct btrfs_device *device;
7015 	int stats_cnt;
7016 	int ret = 0;
7017 
7018 	mutex_lock(&fs_devices->device_list_mutex);
7019 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7020 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7021 			continue;
7022 
7023 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7024 		ret = update_dev_stat_item(trans, fs_info, device);
7025 		if (!ret)
7026 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7027 	}
7028 	mutex_unlock(&fs_devices->device_list_mutex);
7029 
7030 	return ret;
7031 }
7032 
7033 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7034 {
7035 	btrfs_dev_stat_inc(dev, index);
7036 	btrfs_dev_stat_print_on_error(dev);
7037 }
7038 
7039 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7040 {
7041 	if (!dev->dev_stats_valid)
7042 		return;
7043 	btrfs_err_rl_in_rcu(dev->fs_info,
7044 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7045 			   rcu_str_deref(dev->name),
7046 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7047 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7048 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7049 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7050 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7051 }
7052 
7053 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7054 {
7055 	int i;
7056 
7057 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7058 		if (btrfs_dev_stat_read(dev, i) != 0)
7059 			break;
7060 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7061 		return; /* all values == 0, suppress message */
7062 
7063 	btrfs_info_in_rcu(dev->fs_info,
7064 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7065 	       rcu_str_deref(dev->name),
7066 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7067 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7068 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7069 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7070 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7071 }
7072 
7073 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7074 			struct btrfs_ioctl_get_dev_stats *stats)
7075 {
7076 	struct btrfs_device *dev;
7077 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7078 	int i;
7079 
7080 	mutex_lock(&fs_devices->device_list_mutex);
7081 	dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7082 	mutex_unlock(&fs_devices->device_list_mutex);
7083 
7084 	if (!dev) {
7085 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7086 		return -ENODEV;
7087 	} else if (!dev->dev_stats_valid) {
7088 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7089 		return -ENODEV;
7090 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7091 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7092 			if (stats->nr_items > i)
7093 				stats->values[i] =
7094 					btrfs_dev_stat_read_and_reset(dev, i);
7095 			else
7096 				btrfs_dev_stat_reset(dev, i);
7097 		}
7098 	} else {
7099 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7100 			if (stats->nr_items > i)
7101 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7102 	}
7103 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7104 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7105 	return 0;
7106 }
7107 
7108 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7109 {
7110 	struct buffer_head *bh;
7111 	struct btrfs_super_block *disk_super;
7112 	int copy_num;
7113 
7114 	if (!bdev)
7115 		return;
7116 
7117 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7118 		copy_num++) {
7119 
7120 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7121 			continue;
7122 
7123 		disk_super = (struct btrfs_super_block *)bh->b_data;
7124 
7125 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7126 		set_buffer_dirty(bh);
7127 		sync_dirty_buffer(bh);
7128 		brelse(bh);
7129 	}
7130 
7131 	/* Notify udev that device has changed */
7132 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7133 
7134 	/* Update ctime/mtime for device path for libblkid */
7135 	update_dev_time(device_path);
7136 }
7137 
7138 /*
7139  * Update the size of all devices, which is used for writing out the
7140  * super blocks.
7141  */
7142 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7143 {
7144 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7145 	struct btrfs_device *curr, *next;
7146 
7147 	if (list_empty(&fs_devices->resized_devices))
7148 		return;
7149 
7150 	mutex_lock(&fs_devices->device_list_mutex);
7151 	mutex_lock(&fs_info->chunk_mutex);
7152 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7153 				 resized_list) {
7154 		list_del_init(&curr->resized_list);
7155 		curr->commit_total_bytes = curr->disk_total_bytes;
7156 	}
7157 	mutex_unlock(&fs_info->chunk_mutex);
7158 	mutex_unlock(&fs_devices->device_list_mutex);
7159 }
7160 
7161 /* Must be invoked during the transaction commit */
7162 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7163 					struct btrfs_transaction *transaction)
7164 {
7165 	struct extent_map *em;
7166 	struct map_lookup *map;
7167 	struct btrfs_device *dev;
7168 	int i;
7169 
7170 	if (list_empty(&transaction->pending_chunks))
7171 		return;
7172 
7173 	/* In order to kick the device replace finish process */
7174 	mutex_lock(&fs_info->chunk_mutex);
7175 	list_for_each_entry(em, &transaction->pending_chunks, list) {
7176 		map = em->map_lookup;
7177 
7178 		for (i = 0; i < map->num_stripes; i++) {
7179 			dev = map->stripes[i].dev;
7180 			dev->commit_bytes_used = dev->bytes_used;
7181 		}
7182 	}
7183 	mutex_unlock(&fs_info->chunk_mutex);
7184 }
7185 
7186 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7187 {
7188 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7189 	while (fs_devices) {
7190 		fs_devices->fs_info = fs_info;
7191 		fs_devices = fs_devices->seed;
7192 	}
7193 }
7194 
7195 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7196 {
7197 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7198 	while (fs_devices) {
7199 		fs_devices->fs_info = NULL;
7200 		fs_devices = fs_devices->seed;
7201 	}
7202 }
7203