1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/iocontext.h> 24 #include <linux/capability.h> 25 #include <linux/ratelimit.h> 26 #include <linux/kthread.h> 27 #include <linux/raid/pq.h> 28 #include <linux/semaphore.h> 29 #include <linux/uuid.h> 30 #include <asm/div64.h> 31 #include "ctree.h" 32 #include "extent_map.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "raid56.h" 38 #include "async-thread.h" 39 #include "check-integrity.h" 40 #include "rcu-string.h" 41 #include "math.h" 42 #include "dev-replace.h" 43 #include "sysfs.h" 44 45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 46 [BTRFS_RAID_RAID10] = { 47 .sub_stripes = 2, 48 .dev_stripes = 1, 49 .devs_max = 0, /* 0 == as many as possible */ 50 .devs_min = 4, 51 .tolerated_failures = 1, 52 .devs_increment = 2, 53 .ncopies = 2, 54 }, 55 [BTRFS_RAID_RAID1] = { 56 .sub_stripes = 1, 57 .dev_stripes = 1, 58 .devs_max = 2, 59 .devs_min = 2, 60 .tolerated_failures = 1, 61 .devs_increment = 2, 62 .ncopies = 2, 63 }, 64 [BTRFS_RAID_DUP] = { 65 .sub_stripes = 1, 66 .dev_stripes = 2, 67 .devs_max = 1, 68 .devs_min = 1, 69 .tolerated_failures = 0, 70 .devs_increment = 1, 71 .ncopies = 2, 72 }, 73 [BTRFS_RAID_RAID0] = { 74 .sub_stripes = 1, 75 .dev_stripes = 1, 76 .devs_max = 0, 77 .devs_min = 2, 78 .tolerated_failures = 0, 79 .devs_increment = 1, 80 .ncopies = 1, 81 }, 82 [BTRFS_RAID_SINGLE] = { 83 .sub_stripes = 1, 84 .dev_stripes = 1, 85 .devs_max = 1, 86 .devs_min = 1, 87 .tolerated_failures = 0, 88 .devs_increment = 1, 89 .ncopies = 1, 90 }, 91 [BTRFS_RAID_RAID5] = { 92 .sub_stripes = 1, 93 .dev_stripes = 1, 94 .devs_max = 0, 95 .devs_min = 2, 96 .tolerated_failures = 1, 97 .devs_increment = 1, 98 .ncopies = 2, 99 }, 100 [BTRFS_RAID_RAID6] = { 101 .sub_stripes = 1, 102 .dev_stripes = 1, 103 .devs_max = 0, 104 .devs_min = 3, 105 .tolerated_failures = 2, 106 .devs_increment = 1, 107 .ncopies = 3, 108 }, 109 }; 110 111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = { 112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10, 113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1, 114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP, 115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0, 116 [BTRFS_RAID_SINGLE] = 0, 117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5, 118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6, 119 }; 120 121 /* 122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices 123 * condition is not met. Zero means there's no corresponding 124 * BTRFS_ERROR_DEV_*_NOT_MET value. 125 */ 126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = { 127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 129 [BTRFS_RAID_DUP] = 0, 130 [BTRFS_RAID_RAID0] = 0, 131 [BTRFS_RAID_SINGLE] = 0, 132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 134 }; 135 136 static int init_first_rw_device(struct btrfs_trans_handle *trans, 137 struct btrfs_fs_info *fs_info); 138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 142 143 DEFINE_MUTEX(uuid_mutex); 144 static LIST_HEAD(fs_uuids); 145 struct list_head *btrfs_get_fs_uuids(void) 146 { 147 return &fs_uuids; 148 } 149 150 static struct btrfs_fs_devices *__alloc_fs_devices(void) 151 { 152 struct btrfs_fs_devices *fs_devs; 153 154 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 155 if (!fs_devs) 156 return ERR_PTR(-ENOMEM); 157 158 mutex_init(&fs_devs->device_list_mutex); 159 160 INIT_LIST_HEAD(&fs_devs->devices); 161 INIT_LIST_HEAD(&fs_devs->resized_devices); 162 INIT_LIST_HEAD(&fs_devs->alloc_list); 163 INIT_LIST_HEAD(&fs_devs->list); 164 165 return fs_devs; 166 } 167 168 /** 169 * alloc_fs_devices - allocate struct btrfs_fs_devices 170 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is 171 * generated. 172 * 173 * Return: a pointer to a new &struct btrfs_fs_devices on success; 174 * ERR_PTR() on error. Returned struct is not linked onto any lists and 175 * can be destroyed with kfree() right away. 176 */ 177 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 178 { 179 struct btrfs_fs_devices *fs_devs; 180 181 fs_devs = __alloc_fs_devices(); 182 if (IS_ERR(fs_devs)) 183 return fs_devs; 184 185 if (fsid) 186 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 187 else 188 generate_random_uuid(fs_devs->fsid); 189 190 return fs_devs; 191 } 192 193 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 194 { 195 struct btrfs_device *device; 196 WARN_ON(fs_devices->opened); 197 while (!list_empty(&fs_devices->devices)) { 198 device = list_entry(fs_devices->devices.next, 199 struct btrfs_device, dev_list); 200 list_del(&device->dev_list); 201 rcu_string_free(device->name); 202 kfree(device); 203 } 204 kfree(fs_devices); 205 } 206 207 static void btrfs_kobject_uevent(struct block_device *bdev, 208 enum kobject_action action) 209 { 210 int ret; 211 212 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 213 if (ret) 214 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 215 action, 216 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 217 &disk_to_dev(bdev->bd_disk)->kobj); 218 } 219 220 void btrfs_cleanup_fs_uuids(void) 221 { 222 struct btrfs_fs_devices *fs_devices; 223 224 while (!list_empty(&fs_uuids)) { 225 fs_devices = list_entry(fs_uuids.next, 226 struct btrfs_fs_devices, list); 227 list_del(&fs_devices->list); 228 free_fs_devices(fs_devices); 229 } 230 } 231 232 static struct btrfs_device *__alloc_device(void) 233 { 234 struct btrfs_device *dev; 235 236 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 237 if (!dev) 238 return ERR_PTR(-ENOMEM); 239 240 INIT_LIST_HEAD(&dev->dev_list); 241 INIT_LIST_HEAD(&dev->dev_alloc_list); 242 INIT_LIST_HEAD(&dev->resized_list); 243 244 spin_lock_init(&dev->io_lock); 245 246 spin_lock_init(&dev->reada_lock); 247 atomic_set(&dev->reada_in_flight, 0); 248 atomic_set(&dev->dev_stats_ccnt, 0); 249 btrfs_device_data_ordered_init(dev); 250 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 251 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 252 253 return dev; 254 } 255 256 static noinline struct btrfs_device *__find_device(struct list_head *head, 257 u64 devid, u8 *uuid) 258 { 259 struct btrfs_device *dev; 260 261 list_for_each_entry(dev, head, dev_list) { 262 if (dev->devid == devid && 263 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 264 return dev; 265 } 266 } 267 return NULL; 268 } 269 270 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 271 { 272 struct btrfs_fs_devices *fs_devices; 273 274 list_for_each_entry(fs_devices, &fs_uuids, list) { 275 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 276 return fs_devices; 277 } 278 return NULL; 279 } 280 281 static int 282 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 283 int flush, struct block_device **bdev, 284 struct buffer_head **bh) 285 { 286 int ret; 287 288 *bdev = blkdev_get_by_path(device_path, flags, holder); 289 290 if (IS_ERR(*bdev)) { 291 ret = PTR_ERR(*bdev); 292 goto error; 293 } 294 295 if (flush) 296 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 297 ret = set_blocksize(*bdev, 4096); 298 if (ret) { 299 blkdev_put(*bdev, flags); 300 goto error; 301 } 302 invalidate_bdev(*bdev); 303 *bh = btrfs_read_dev_super(*bdev); 304 if (IS_ERR(*bh)) { 305 ret = PTR_ERR(*bh); 306 blkdev_put(*bdev, flags); 307 goto error; 308 } 309 310 return 0; 311 312 error: 313 *bdev = NULL; 314 *bh = NULL; 315 return ret; 316 } 317 318 static void requeue_list(struct btrfs_pending_bios *pending_bios, 319 struct bio *head, struct bio *tail) 320 { 321 322 struct bio *old_head; 323 324 old_head = pending_bios->head; 325 pending_bios->head = head; 326 if (pending_bios->tail) 327 tail->bi_next = old_head; 328 else 329 pending_bios->tail = tail; 330 } 331 332 /* 333 * we try to collect pending bios for a device so we don't get a large 334 * number of procs sending bios down to the same device. This greatly 335 * improves the schedulers ability to collect and merge the bios. 336 * 337 * But, it also turns into a long list of bios to process and that is sure 338 * to eventually make the worker thread block. The solution here is to 339 * make some progress and then put this work struct back at the end of 340 * the list if the block device is congested. This way, multiple devices 341 * can make progress from a single worker thread. 342 */ 343 static noinline void run_scheduled_bios(struct btrfs_device *device) 344 { 345 struct btrfs_fs_info *fs_info = device->fs_info; 346 struct bio *pending; 347 struct backing_dev_info *bdi; 348 struct btrfs_pending_bios *pending_bios; 349 struct bio *tail; 350 struct bio *cur; 351 int again = 0; 352 unsigned long num_run; 353 unsigned long batch_run = 0; 354 unsigned long limit; 355 unsigned long last_waited = 0; 356 int force_reg = 0; 357 int sync_pending = 0; 358 struct blk_plug plug; 359 360 /* 361 * this function runs all the bios we've collected for 362 * a particular device. We don't want to wander off to 363 * another device without first sending all of these down. 364 * So, setup a plug here and finish it off before we return 365 */ 366 blk_start_plug(&plug); 367 368 bdi = device->bdev->bd_bdi; 369 limit = btrfs_async_submit_limit(fs_info); 370 limit = limit * 2 / 3; 371 372 loop: 373 spin_lock(&device->io_lock); 374 375 loop_lock: 376 num_run = 0; 377 378 /* take all the bios off the list at once and process them 379 * later on (without the lock held). But, remember the 380 * tail and other pointers so the bios can be properly reinserted 381 * into the list if we hit congestion 382 */ 383 if (!force_reg && device->pending_sync_bios.head) { 384 pending_bios = &device->pending_sync_bios; 385 force_reg = 1; 386 } else { 387 pending_bios = &device->pending_bios; 388 force_reg = 0; 389 } 390 391 pending = pending_bios->head; 392 tail = pending_bios->tail; 393 WARN_ON(pending && !tail); 394 395 /* 396 * if pending was null this time around, no bios need processing 397 * at all and we can stop. Otherwise it'll loop back up again 398 * and do an additional check so no bios are missed. 399 * 400 * device->running_pending is used to synchronize with the 401 * schedule_bio code. 402 */ 403 if (device->pending_sync_bios.head == NULL && 404 device->pending_bios.head == NULL) { 405 again = 0; 406 device->running_pending = 0; 407 } else { 408 again = 1; 409 device->running_pending = 1; 410 } 411 412 pending_bios->head = NULL; 413 pending_bios->tail = NULL; 414 415 spin_unlock(&device->io_lock); 416 417 while (pending) { 418 419 rmb(); 420 /* we want to work on both lists, but do more bios on the 421 * sync list than the regular list 422 */ 423 if ((num_run > 32 && 424 pending_bios != &device->pending_sync_bios && 425 device->pending_sync_bios.head) || 426 (num_run > 64 && pending_bios == &device->pending_sync_bios && 427 device->pending_bios.head)) { 428 spin_lock(&device->io_lock); 429 requeue_list(pending_bios, pending, tail); 430 goto loop_lock; 431 } 432 433 cur = pending; 434 pending = pending->bi_next; 435 cur->bi_next = NULL; 436 437 /* 438 * atomic_dec_return implies a barrier for waitqueue_active 439 */ 440 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 441 waitqueue_active(&fs_info->async_submit_wait)) 442 wake_up(&fs_info->async_submit_wait); 443 444 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 445 446 /* 447 * if we're doing the sync list, record that our 448 * plug has some sync requests on it 449 * 450 * If we're doing the regular list and there are 451 * sync requests sitting around, unplug before 452 * we add more 453 */ 454 if (pending_bios == &device->pending_sync_bios) { 455 sync_pending = 1; 456 } else if (sync_pending) { 457 blk_finish_plug(&plug); 458 blk_start_plug(&plug); 459 sync_pending = 0; 460 } 461 462 btrfsic_submit_bio(cur); 463 num_run++; 464 batch_run++; 465 466 cond_resched(); 467 468 /* 469 * we made progress, there is more work to do and the bdi 470 * is now congested. Back off and let other work structs 471 * run instead 472 */ 473 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 474 fs_info->fs_devices->open_devices > 1) { 475 struct io_context *ioc; 476 477 ioc = current->io_context; 478 479 /* 480 * the main goal here is that we don't want to 481 * block if we're going to be able to submit 482 * more requests without blocking. 483 * 484 * This code does two great things, it pokes into 485 * the elevator code from a filesystem _and_ 486 * it makes assumptions about how batching works. 487 */ 488 if (ioc && ioc->nr_batch_requests > 0 && 489 time_before(jiffies, ioc->last_waited + HZ/50UL) && 490 (last_waited == 0 || 491 ioc->last_waited == last_waited)) { 492 /* 493 * we want to go through our batch of 494 * requests and stop. So, we copy out 495 * the ioc->last_waited time and test 496 * against it before looping 497 */ 498 last_waited = ioc->last_waited; 499 cond_resched(); 500 continue; 501 } 502 spin_lock(&device->io_lock); 503 requeue_list(pending_bios, pending, tail); 504 device->running_pending = 1; 505 506 spin_unlock(&device->io_lock); 507 btrfs_queue_work(fs_info->submit_workers, 508 &device->work); 509 goto done; 510 } 511 /* unplug every 64 requests just for good measure */ 512 if (batch_run % 64 == 0) { 513 blk_finish_plug(&plug); 514 blk_start_plug(&plug); 515 sync_pending = 0; 516 } 517 } 518 519 cond_resched(); 520 if (again) 521 goto loop; 522 523 spin_lock(&device->io_lock); 524 if (device->pending_bios.head || device->pending_sync_bios.head) 525 goto loop_lock; 526 spin_unlock(&device->io_lock); 527 528 done: 529 blk_finish_plug(&plug); 530 } 531 532 static void pending_bios_fn(struct btrfs_work *work) 533 { 534 struct btrfs_device *device; 535 536 device = container_of(work, struct btrfs_device, work); 537 run_scheduled_bios(device); 538 } 539 540 541 void btrfs_free_stale_device(struct btrfs_device *cur_dev) 542 { 543 struct btrfs_fs_devices *fs_devs; 544 struct btrfs_device *dev; 545 546 if (!cur_dev->name) 547 return; 548 549 list_for_each_entry(fs_devs, &fs_uuids, list) { 550 int del = 1; 551 552 if (fs_devs->opened) 553 continue; 554 if (fs_devs->seeding) 555 continue; 556 557 list_for_each_entry(dev, &fs_devs->devices, dev_list) { 558 559 if (dev == cur_dev) 560 continue; 561 if (!dev->name) 562 continue; 563 564 /* 565 * Todo: This won't be enough. What if the same device 566 * comes back (with new uuid and) with its mapper path? 567 * But for now, this does help as mostly an admin will 568 * either use mapper or non mapper path throughout. 569 */ 570 rcu_read_lock(); 571 del = strcmp(rcu_str_deref(dev->name), 572 rcu_str_deref(cur_dev->name)); 573 rcu_read_unlock(); 574 if (!del) 575 break; 576 } 577 578 if (!del) { 579 /* delete the stale device */ 580 if (fs_devs->num_devices == 1) { 581 btrfs_sysfs_remove_fsid(fs_devs); 582 list_del(&fs_devs->list); 583 free_fs_devices(fs_devs); 584 } else { 585 fs_devs->num_devices--; 586 list_del(&dev->dev_list); 587 rcu_string_free(dev->name); 588 kfree(dev); 589 } 590 break; 591 } 592 } 593 } 594 595 /* 596 * Add new device to list of registered devices 597 * 598 * Returns: 599 * 1 - first time device is seen 600 * 0 - device already known 601 * < 0 - error 602 */ 603 static noinline int device_list_add(const char *path, 604 struct btrfs_super_block *disk_super, 605 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 606 { 607 struct btrfs_device *device; 608 struct btrfs_fs_devices *fs_devices; 609 struct rcu_string *name; 610 int ret = 0; 611 u64 found_transid = btrfs_super_generation(disk_super); 612 613 fs_devices = find_fsid(disk_super->fsid); 614 if (!fs_devices) { 615 fs_devices = alloc_fs_devices(disk_super->fsid); 616 if (IS_ERR(fs_devices)) 617 return PTR_ERR(fs_devices); 618 619 list_add(&fs_devices->list, &fs_uuids); 620 621 device = NULL; 622 } else { 623 device = __find_device(&fs_devices->devices, devid, 624 disk_super->dev_item.uuid); 625 } 626 627 if (!device) { 628 if (fs_devices->opened) 629 return -EBUSY; 630 631 device = btrfs_alloc_device(NULL, &devid, 632 disk_super->dev_item.uuid); 633 if (IS_ERR(device)) { 634 /* we can safely leave the fs_devices entry around */ 635 return PTR_ERR(device); 636 } 637 638 name = rcu_string_strdup(path, GFP_NOFS); 639 if (!name) { 640 kfree(device); 641 return -ENOMEM; 642 } 643 rcu_assign_pointer(device->name, name); 644 645 mutex_lock(&fs_devices->device_list_mutex); 646 list_add_rcu(&device->dev_list, &fs_devices->devices); 647 fs_devices->num_devices++; 648 mutex_unlock(&fs_devices->device_list_mutex); 649 650 ret = 1; 651 device->fs_devices = fs_devices; 652 } else if (!device->name || strcmp(device->name->str, path)) { 653 /* 654 * When FS is already mounted. 655 * 1. If you are here and if the device->name is NULL that 656 * means this device was missing at time of FS mount. 657 * 2. If you are here and if the device->name is different 658 * from 'path' that means either 659 * a. The same device disappeared and reappeared with 660 * different name. or 661 * b. The missing-disk-which-was-replaced, has 662 * reappeared now. 663 * 664 * We must allow 1 and 2a above. But 2b would be a spurious 665 * and unintentional. 666 * 667 * Further in case of 1 and 2a above, the disk at 'path' 668 * would have missed some transaction when it was away and 669 * in case of 2a the stale bdev has to be updated as well. 670 * 2b must not be allowed at all time. 671 */ 672 673 /* 674 * For now, we do allow update to btrfs_fs_device through the 675 * btrfs dev scan cli after FS has been mounted. We're still 676 * tracking a problem where systems fail mount by subvolume id 677 * when we reject replacement on a mounted FS. 678 */ 679 if (!fs_devices->opened && found_transid < device->generation) { 680 /* 681 * That is if the FS is _not_ mounted and if you 682 * are here, that means there is more than one 683 * disk with same uuid and devid.We keep the one 684 * with larger generation number or the last-in if 685 * generation are equal. 686 */ 687 return -EEXIST; 688 } 689 690 name = rcu_string_strdup(path, GFP_NOFS); 691 if (!name) 692 return -ENOMEM; 693 rcu_string_free(device->name); 694 rcu_assign_pointer(device->name, name); 695 if (device->missing) { 696 fs_devices->missing_devices--; 697 device->missing = 0; 698 } 699 } 700 701 /* 702 * Unmount does not free the btrfs_device struct but would zero 703 * generation along with most of the other members. So just update 704 * it back. We need it to pick the disk with largest generation 705 * (as above). 706 */ 707 if (!fs_devices->opened) 708 device->generation = found_transid; 709 710 /* 711 * if there is new btrfs on an already registered device, 712 * then remove the stale device entry. 713 */ 714 if (ret > 0) 715 btrfs_free_stale_device(device); 716 717 *fs_devices_ret = fs_devices; 718 719 return ret; 720 } 721 722 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 723 { 724 struct btrfs_fs_devices *fs_devices; 725 struct btrfs_device *device; 726 struct btrfs_device *orig_dev; 727 728 fs_devices = alloc_fs_devices(orig->fsid); 729 if (IS_ERR(fs_devices)) 730 return fs_devices; 731 732 mutex_lock(&orig->device_list_mutex); 733 fs_devices->total_devices = orig->total_devices; 734 735 /* We have held the volume lock, it is safe to get the devices. */ 736 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 737 struct rcu_string *name; 738 739 device = btrfs_alloc_device(NULL, &orig_dev->devid, 740 orig_dev->uuid); 741 if (IS_ERR(device)) 742 goto error; 743 744 /* 745 * This is ok to do without rcu read locked because we hold the 746 * uuid mutex so nothing we touch in here is going to disappear. 747 */ 748 if (orig_dev->name) { 749 name = rcu_string_strdup(orig_dev->name->str, 750 GFP_KERNEL); 751 if (!name) { 752 kfree(device); 753 goto error; 754 } 755 rcu_assign_pointer(device->name, name); 756 } 757 758 list_add(&device->dev_list, &fs_devices->devices); 759 device->fs_devices = fs_devices; 760 fs_devices->num_devices++; 761 } 762 mutex_unlock(&orig->device_list_mutex); 763 return fs_devices; 764 error: 765 mutex_unlock(&orig->device_list_mutex); 766 free_fs_devices(fs_devices); 767 return ERR_PTR(-ENOMEM); 768 } 769 770 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step) 771 { 772 struct btrfs_device *device, *next; 773 struct btrfs_device *latest_dev = NULL; 774 775 mutex_lock(&uuid_mutex); 776 again: 777 /* This is the initialized path, it is safe to release the devices. */ 778 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 779 if (device->in_fs_metadata) { 780 if (!device->is_tgtdev_for_dev_replace && 781 (!latest_dev || 782 device->generation > latest_dev->generation)) { 783 latest_dev = device; 784 } 785 continue; 786 } 787 788 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 789 /* 790 * In the first step, keep the device which has 791 * the correct fsid and the devid that is used 792 * for the dev_replace procedure. 793 * In the second step, the dev_replace state is 794 * read from the device tree and it is known 795 * whether the procedure is really active or 796 * not, which means whether this device is 797 * used or whether it should be removed. 798 */ 799 if (step == 0 || device->is_tgtdev_for_dev_replace) { 800 continue; 801 } 802 } 803 if (device->bdev) { 804 blkdev_put(device->bdev, device->mode); 805 device->bdev = NULL; 806 fs_devices->open_devices--; 807 } 808 if (device->writeable) { 809 list_del_init(&device->dev_alloc_list); 810 device->writeable = 0; 811 if (!device->is_tgtdev_for_dev_replace) 812 fs_devices->rw_devices--; 813 } 814 list_del_init(&device->dev_list); 815 fs_devices->num_devices--; 816 rcu_string_free(device->name); 817 kfree(device); 818 } 819 820 if (fs_devices->seed) { 821 fs_devices = fs_devices->seed; 822 goto again; 823 } 824 825 fs_devices->latest_bdev = latest_dev->bdev; 826 827 mutex_unlock(&uuid_mutex); 828 } 829 830 static void __free_device(struct work_struct *work) 831 { 832 struct btrfs_device *device; 833 834 device = container_of(work, struct btrfs_device, rcu_work); 835 rcu_string_free(device->name); 836 kfree(device); 837 } 838 839 static void free_device(struct rcu_head *head) 840 { 841 struct btrfs_device *device; 842 843 device = container_of(head, struct btrfs_device, rcu); 844 845 INIT_WORK(&device->rcu_work, __free_device); 846 schedule_work(&device->rcu_work); 847 } 848 849 static void btrfs_close_bdev(struct btrfs_device *device) 850 { 851 if (device->bdev && device->writeable) { 852 sync_blockdev(device->bdev); 853 invalidate_bdev(device->bdev); 854 } 855 856 if (device->bdev) 857 blkdev_put(device->bdev, device->mode); 858 } 859 860 static void btrfs_prepare_close_one_device(struct btrfs_device *device) 861 { 862 struct btrfs_fs_devices *fs_devices = device->fs_devices; 863 struct btrfs_device *new_device; 864 struct rcu_string *name; 865 866 if (device->bdev) 867 fs_devices->open_devices--; 868 869 if (device->writeable && 870 device->devid != BTRFS_DEV_REPLACE_DEVID) { 871 list_del_init(&device->dev_alloc_list); 872 fs_devices->rw_devices--; 873 } 874 875 if (device->missing) 876 fs_devices->missing_devices--; 877 878 new_device = btrfs_alloc_device(NULL, &device->devid, 879 device->uuid); 880 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 881 882 /* Safe because we are under uuid_mutex */ 883 if (device->name) { 884 name = rcu_string_strdup(device->name->str, GFP_NOFS); 885 BUG_ON(!name); /* -ENOMEM */ 886 rcu_assign_pointer(new_device->name, name); 887 } 888 889 list_replace_rcu(&device->dev_list, &new_device->dev_list); 890 new_device->fs_devices = device->fs_devices; 891 } 892 893 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 894 { 895 struct btrfs_device *device, *tmp; 896 struct list_head pending_put; 897 898 INIT_LIST_HEAD(&pending_put); 899 900 if (--fs_devices->opened > 0) 901 return 0; 902 903 mutex_lock(&fs_devices->device_list_mutex); 904 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 905 btrfs_prepare_close_one_device(device); 906 list_add(&device->dev_list, &pending_put); 907 } 908 mutex_unlock(&fs_devices->device_list_mutex); 909 910 /* 911 * btrfs_show_devname() is using the device_list_mutex, 912 * sometimes call to blkdev_put() leads vfs calling 913 * into this func. So do put outside of device_list_mutex, 914 * as of now. 915 */ 916 while (!list_empty(&pending_put)) { 917 device = list_first_entry(&pending_put, 918 struct btrfs_device, dev_list); 919 list_del(&device->dev_list); 920 btrfs_close_bdev(device); 921 call_rcu(&device->rcu, free_device); 922 } 923 924 WARN_ON(fs_devices->open_devices); 925 WARN_ON(fs_devices->rw_devices); 926 fs_devices->opened = 0; 927 fs_devices->seeding = 0; 928 929 return 0; 930 } 931 932 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 933 { 934 struct btrfs_fs_devices *seed_devices = NULL; 935 int ret; 936 937 mutex_lock(&uuid_mutex); 938 ret = __btrfs_close_devices(fs_devices); 939 if (!fs_devices->opened) { 940 seed_devices = fs_devices->seed; 941 fs_devices->seed = NULL; 942 } 943 mutex_unlock(&uuid_mutex); 944 945 while (seed_devices) { 946 fs_devices = seed_devices; 947 seed_devices = fs_devices->seed; 948 __btrfs_close_devices(fs_devices); 949 free_fs_devices(fs_devices); 950 } 951 /* 952 * Wait for rcu kworkers under __btrfs_close_devices 953 * to finish all blkdev_puts so device is really 954 * free when umount is done. 955 */ 956 rcu_barrier(); 957 return ret; 958 } 959 960 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 961 fmode_t flags, void *holder) 962 { 963 struct request_queue *q; 964 struct block_device *bdev; 965 struct list_head *head = &fs_devices->devices; 966 struct btrfs_device *device; 967 struct btrfs_device *latest_dev = NULL; 968 struct buffer_head *bh; 969 struct btrfs_super_block *disk_super; 970 u64 devid; 971 int seeding = 1; 972 int ret = 0; 973 974 flags |= FMODE_EXCL; 975 976 list_for_each_entry(device, head, dev_list) { 977 if (device->bdev) 978 continue; 979 if (!device->name) 980 continue; 981 982 /* Just open everything we can; ignore failures here */ 983 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 984 &bdev, &bh)) 985 continue; 986 987 disk_super = (struct btrfs_super_block *)bh->b_data; 988 devid = btrfs_stack_device_id(&disk_super->dev_item); 989 if (devid != device->devid) 990 goto error_brelse; 991 992 if (memcmp(device->uuid, disk_super->dev_item.uuid, 993 BTRFS_UUID_SIZE)) 994 goto error_brelse; 995 996 device->generation = btrfs_super_generation(disk_super); 997 if (!latest_dev || 998 device->generation > latest_dev->generation) 999 latest_dev = device; 1000 1001 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 1002 device->writeable = 0; 1003 } else { 1004 device->writeable = !bdev_read_only(bdev); 1005 seeding = 0; 1006 } 1007 1008 q = bdev_get_queue(bdev); 1009 if (blk_queue_discard(q)) 1010 device->can_discard = 1; 1011 1012 device->bdev = bdev; 1013 device->in_fs_metadata = 0; 1014 device->mode = flags; 1015 1016 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 1017 fs_devices->rotating = 1; 1018 1019 fs_devices->open_devices++; 1020 if (device->writeable && 1021 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1022 fs_devices->rw_devices++; 1023 list_add(&device->dev_alloc_list, 1024 &fs_devices->alloc_list); 1025 } 1026 brelse(bh); 1027 continue; 1028 1029 error_brelse: 1030 brelse(bh); 1031 blkdev_put(bdev, flags); 1032 continue; 1033 } 1034 if (fs_devices->open_devices == 0) { 1035 ret = -EINVAL; 1036 goto out; 1037 } 1038 fs_devices->seeding = seeding; 1039 fs_devices->opened = 1; 1040 fs_devices->latest_bdev = latest_dev->bdev; 1041 fs_devices->total_rw_bytes = 0; 1042 out: 1043 return ret; 1044 } 1045 1046 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1047 fmode_t flags, void *holder) 1048 { 1049 int ret; 1050 1051 mutex_lock(&uuid_mutex); 1052 if (fs_devices->opened) { 1053 fs_devices->opened++; 1054 ret = 0; 1055 } else { 1056 ret = __btrfs_open_devices(fs_devices, flags, holder); 1057 } 1058 mutex_unlock(&uuid_mutex); 1059 return ret; 1060 } 1061 1062 void btrfs_release_disk_super(struct page *page) 1063 { 1064 kunmap(page); 1065 put_page(page); 1066 } 1067 1068 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, 1069 struct page **page, struct btrfs_super_block **disk_super) 1070 { 1071 void *p; 1072 pgoff_t index; 1073 1074 /* make sure our super fits in the device */ 1075 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1076 return 1; 1077 1078 /* make sure our super fits in the page */ 1079 if (sizeof(**disk_super) > PAGE_SIZE) 1080 return 1; 1081 1082 /* make sure our super doesn't straddle pages on disk */ 1083 index = bytenr >> PAGE_SHIFT; 1084 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) 1085 return 1; 1086 1087 /* pull in the page with our super */ 1088 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1089 index, GFP_KERNEL); 1090 1091 if (IS_ERR_OR_NULL(*page)) 1092 return 1; 1093 1094 p = kmap(*page); 1095 1096 /* align our pointer to the offset of the super block */ 1097 *disk_super = p + (bytenr & ~PAGE_MASK); 1098 1099 if (btrfs_super_bytenr(*disk_super) != bytenr || 1100 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { 1101 btrfs_release_disk_super(*page); 1102 return 1; 1103 } 1104 1105 if ((*disk_super)->label[0] && 1106 (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) 1107 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1108 1109 return 0; 1110 } 1111 1112 /* 1113 * Look for a btrfs signature on a device. This may be called out of the mount path 1114 * and we are not allowed to call set_blocksize during the scan. The superblock 1115 * is read via pagecache 1116 */ 1117 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 1118 struct btrfs_fs_devices **fs_devices_ret) 1119 { 1120 struct btrfs_super_block *disk_super; 1121 struct block_device *bdev; 1122 struct page *page; 1123 int ret = -EINVAL; 1124 u64 devid; 1125 u64 transid; 1126 u64 total_devices; 1127 u64 bytenr; 1128 1129 /* 1130 * we would like to check all the supers, but that would make 1131 * a btrfs mount succeed after a mkfs from a different FS. 1132 * So, we need to add a special mount option to scan for 1133 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1134 */ 1135 bytenr = btrfs_sb_offset(0); 1136 flags |= FMODE_EXCL; 1137 mutex_lock(&uuid_mutex); 1138 1139 bdev = blkdev_get_by_path(path, flags, holder); 1140 if (IS_ERR(bdev)) { 1141 ret = PTR_ERR(bdev); 1142 goto error; 1143 } 1144 1145 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) 1146 goto error_bdev_put; 1147 1148 devid = btrfs_stack_device_id(&disk_super->dev_item); 1149 transid = btrfs_super_generation(disk_super); 1150 total_devices = btrfs_super_num_devices(disk_super); 1151 1152 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 1153 if (ret > 0) { 1154 if (disk_super->label[0]) { 1155 pr_info("BTRFS: device label %s ", disk_super->label); 1156 } else { 1157 pr_info("BTRFS: device fsid %pU ", disk_super->fsid); 1158 } 1159 1160 pr_cont("devid %llu transid %llu %s\n", devid, transid, path); 1161 ret = 0; 1162 } 1163 if (!ret && fs_devices_ret) 1164 (*fs_devices_ret)->total_devices = total_devices; 1165 1166 btrfs_release_disk_super(page); 1167 1168 error_bdev_put: 1169 blkdev_put(bdev, flags); 1170 error: 1171 mutex_unlock(&uuid_mutex); 1172 return ret; 1173 } 1174 1175 /* helper to account the used device space in the range */ 1176 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 1177 u64 end, u64 *length) 1178 { 1179 struct btrfs_key key; 1180 struct btrfs_root *root = device->fs_info->dev_root; 1181 struct btrfs_dev_extent *dev_extent; 1182 struct btrfs_path *path; 1183 u64 extent_end; 1184 int ret; 1185 int slot; 1186 struct extent_buffer *l; 1187 1188 *length = 0; 1189 1190 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 1191 return 0; 1192 1193 path = btrfs_alloc_path(); 1194 if (!path) 1195 return -ENOMEM; 1196 path->reada = READA_FORWARD; 1197 1198 key.objectid = device->devid; 1199 key.offset = start; 1200 key.type = BTRFS_DEV_EXTENT_KEY; 1201 1202 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1203 if (ret < 0) 1204 goto out; 1205 if (ret > 0) { 1206 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1207 if (ret < 0) 1208 goto out; 1209 } 1210 1211 while (1) { 1212 l = path->nodes[0]; 1213 slot = path->slots[0]; 1214 if (slot >= btrfs_header_nritems(l)) { 1215 ret = btrfs_next_leaf(root, path); 1216 if (ret == 0) 1217 continue; 1218 if (ret < 0) 1219 goto out; 1220 1221 break; 1222 } 1223 btrfs_item_key_to_cpu(l, &key, slot); 1224 1225 if (key.objectid < device->devid) 1226 goto next; 1227 1228 if (key.objectid > device->devid) 1229 break; 1230 1231 if (key.type != BTRFS_DEV_EXTENT_KEY) 1232 goto next; 1233 1234 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1235 extent_end = key.offset + btrfs_dev_extent_length(l, 1236 dev_extent); 1237 if (key.offset <= start && extent_end > end) { 1238 *length = end - start + 1; 1239 break; 1240 } else if (key.offset <= start && extent_end > start) 1241 *length += extent_end - start; 1242 else if (key.offset > start && extent_end <= end) 1243 *length += extent_end - key.offset; 1244 else if (key.offset > start && key.offset <= end) { 1245 *length += end - key.offset + 1; 1246 break; 1247 } else if (key.offset > end) 1248 break; 1249 1250 next: 1251 path->slots[0]++; 1252 } 1253 ret = 0; 1254 out: 1255 btrfs_free_path(path); 1256 return ret; 1257 } 1258 1259 static int contains_pending_extent(struct btrfs_transaction *transaction, 1260 struct btrfs_device *device, 1261 u64 *start, u64 len) 1262 { 1263 struct btrfs_fs_info *fs_info = device->fs_info; 1264 struct extent_map *em; 1265 struct list_head *search_list = &fs_info->pinned_chunks; 1266 int ret = 0; 1267 u64 physical_start = *start; 1268 1269 if (transaction) 1270 search_list = &transaction->pending_chunks; 1271 again: 1272 list_for_each_entry(em, search_list, list) { 1273 struct map_lookup *map; 1274 int i; 1275 1276 map = em->map_lookup; 1277 for (i = 0; i < map->num_stripes; i++) { 1278 u64 end; 1279 1280 if (map->stripes[i].dev != device) 1281 continue; 1282 if (map->stripes[i].physical >= physical_start + len || 1283 map->stripes[i].physical + em->orig_block_len <= 1284 physical_start) 1285 continue; 1286 /* 1287 * Make sure that while processing the pinned list we do 1288 * not override our *start with a lower value, because 1289 * we can have pinned chunks that fall within this 1290 * device hole and that have lower physical addresses 1291 * than the pending chunks we processed before. If we 1292 * do not take this special care we can end up getting 1293 * 2 pending chunks that start at the same physical 1294 * device offsets because the end offset of a pinned 1295 * chunk can be equal to the start offset of some 1296 * pending chunk. 1297 */ 1298 end = map->stripes[i].physical + em->orig_block_len; 1299 if (end > *start) { 1300 *start = end; 1301 ret = 1; 1302 } 1303 } 1304 } 1305 if (search_list != &fs_info->pinned_chunks) { 1306 search_list = &fs_info->pinned_chunks; 1307 goto again; 1308 } 1309 1310 return ret; 1311 } 1312 1313 1314 /* 1315 * find_free_dev_extent_start - find free space in the specified device 1316 * @device: the device which we search the free space in 1317 * @num_bytes: the size of the free space that we need 1318 * @search_start: the position from which to begin the search 1319 * @start: store the start of the free space. 1320 * @len: the size of the free space. that we find, or the size 1321 * of the max free space if we don't find suitable free space 1322 * 1323 * this uses a pretty simple search, the expectation is that it is 1324 * called very infrequently and that a given device has a small number 1325 * of extents 1326 * 1327 * @start is used to store the start of the free space if we find. But if we 1328 * don't find suitable free space, it will be used to store the start position 1329 * of the max free space. 1330 * 1331 * @len is used to store the size of the free space that we find. 1332 * But if we don't find suitable free space, it is used to store the size of 1333 * the max free space. 1334 */ 1335 int find_free_dev_extent_start(struct btrfs_transaction *transaction, 1336 struct btrfs_device *device, u64 num_bytes, 1337 u64 search_start, u64 *start, u64 *len) 1338 { 1339 struct btrfs_fs_info *fs_info = device->fs_info; 1340 struct btrfs_root *root = fs_info->dev_root; 1341 struct btrfs_key key; 1342 struct btrfs_dev_extent *dev_extent; 1343 struct btrfs_path *path; 1344 u64 hole_size; 1345 u64 max_hole_start; 1346 u64 max_hole_size; 1347 u64 extent_end; 1348 u64 search_end = device->total_bytes; 1349 int ret; 1350 int slot; 1351 struct extent_buffer *l; 1352 u64 min_search_start; 1353 1354 /* 1355 * We don't want to overwrite the superblock on the drive nor any area 1356 * used by the boot loader (grub for example), so we make sure to start 1357 * at an offset of at least 1MB. 1358 */ 1359 min_search_start = max(fs_info->alloc_start, 1024ull * 1024); 1360 search_start = max(search_start, min_search_start); 1361 1362 path = btrfs_alloc_path(); 1363 if (!path) 1364 return -ENOMEM; 1365 1366 max_hole_start = search_start; 1367 max_hole_size = 0; 1368 1369 again: 1370 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1371 ret = -ENOSPC; 1372 goto out; 1373 } 1374 1375 path->reada = READA_FORWARD; 1376 path->search_commit_root = 1; 1377 path->skip_locking = 1; 1378 1379 key.objectid = device->devid; 1380 key.offset = search_start; 1381 key.type = BTRFS_DEV_EXTENT_KEY; 1382 1383 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1384 if (ret < 0) 1385 goto out; 1386 if (ret > 0) { 1387 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1388 if (ret < 0) 1389 goto out; 1390 } 1391 1392 while (1) { 1393 l = path->nodes[0]; 1394 slot = path->slots[0]; 1395 if (slot >= btrfs_header_nritems(l)) { 1396 ret = btrfs_next_leaf(root, path); 1397 if (ret == 0) 1398 continue; 1399 if (ret < 0) 1400 goto out; 1401 1402 break; 1403 } 1404 btrfs_item_key_to_cpu(l, &key, slot); 1405 1406 if (key.objectid < device->devid) 1407 goto next; 1408 1409 if (key.objectid > device->devid) 1410 break; 1411 1412 if (key.type != BTRFS_DEV_EXTENT_KEY) 1413 goto next; 1414 1415 if (key.offset > search_start) { 1416 hole_size = key.offset - search_start; 1417 1418 /* 1419 * Have to check before we set max_hole_start, otherwise 1420 * we could end up sending back this offset anyway. 1421 */ 1422 if (contains_pending_extent(transaction, device, 1423 &search_start, 1424 hole_size)) { 1425 if (key.offset >= search_start) { 1426 hole_size = key.offset - search_start; 1427 } else { 1428 WARN_ON_ONCE(1); 1429 hole_size = 0; 1430 } 1431 } 1432 1433 if (hole_size > max_hole_size) { 1434 max_hole_start = search_start; 1435 max_hole_size = hole_size; 1436 } 1437 1438 /* 1439 * If this free space is greater than which we need, 1440 * it must be the max free space that we have found 1441 * until now, so max_hole_start must point to the start 1442 * of this free space and the length of this free space 1443 * is stored in max_hole_size. Thus, we return 1444 * max_hole_start and max_hole_size and go back to the 1445 * caller. 1446 */ 1447 if (hole_size >= num_bytes) { 1448 ret = 0; 1449 goto out; 1450 } 1451 } 1452 1453 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1454 extent_end = key.offset + btrfs_dev_extent_length(l, 1455 dev_extent); 1456 if (extent_end > search_start) 1457 search_start = extent_end; 1458 next: 1459 path->slots[0]++; 1460 cond_resched(); 1461 } 1462 1463 /* 1464 * At this point, search_start should be the end of 1465 * allocated dev extents, and when shrinking the device, 1466 * search_end may be smaller than search_start. 1467 */ 1468 if (search_end > search_start) { 1469 hole_size = search_end - search_start; 1470 1471 if (contains_pending_extent(transaction, device, &search_start, 1472 hole_size)) { 1473 btrfs_release_path(path); 1474 goto again; 1475 } 1476 1477 if (hole_size > max_hole_size) { 1478 max_hole_start = search_start; 1479 max_hole_size = hole_size; 1480 } 1481 } 1482 1483 /* See above. */ 1484 if (max_hole_size < num_bytes) 1485 ret = -ENOSPC; 1486 else 1487 ret = 0; 1488 1489 out: 1490 btrfs_free_path(path); 1491 *start = max_hole_start; 1492 if (len) 1493 *len = max_hole_size; 1494 return ret; 1495 } 1496 1497 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1498 struct btrfs_device *device, u64 num_bytes, 1499 u64 *start, u64 *len) 1500 { 1501 /* FIXME use last free of some kind */ 1502 return find_free_dev_extent_start(trans->transaction, device, 1503 num_bytes, 0, start, len); 1504 } 1505 1506 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1507 struct btrfs_device *device, 1508 u64 start, u64 *dev_extent_len) 1509 { 1510 struct btrfs_fs_info *fs_info = device->fs_info; 1511 struct btrfs_root *root = fs_info->dev_root; 1512 int ret; 1513 struct btrfs_path *path; 1514 struct btrfs_key key; 1515 struct btrfs_key found_key; 1516 struct extent_buffer *leaf = NULL; 1517 struct btrfs_dev_extent *extent = NULL; 1518 1519 path = btrfs_alloc_path(); 1520 if (!path) 1521 return -ENOMEM; 1522 1523 key.objectid = device->devid; 1524 key.offset = start; 1525 key.type = BTRFS_DEV_EXTENT_KEY; 1526 again: 1527 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1528 if (ret > 0) { 1529 ret = btrfs_previous_item(root, path, key.objectid, 1530 BTRFS_DEV_EXTENT_KEY); 1531 if (ret) 1532 goto out; 1533 leaf = path->nodes[0]; 1534 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1535 extent = btrfs_item_ptr(leaf, path->slots[0], 1536 struct btrfs_dev_extent); 1537 BUG_ON(found_key.offset > start || found_key.offset + 1538 btrfs_dev_extent_length(leaf, extent) < start); 1539 key = found_key; 1540 btrfs_release_path(path); 1541 goto again; 1542 } else if (ret == 0) { 1543 leaf = path->nodes[0]; 1544 extent = btrfs_item_ptr(leaf, path->slots[0], 1545 struct btrfs_dev_extent); 1546 } else { 1547 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1548 goto out; 1549 } 1550 1551 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1552 1553 ret = btrfs_del_item(trans, root, path); 1554 if (ret) { 1555 btrfs_handle_fs_error(fs_info, ret, 1556 "Failed to remove dev extent item"); 1557 } else { 1558 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1559 } 1560 out: 1561 btrfs_free_path(path); 1562 return ret; 1563 } 1564 1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1566 struct btrfs_device *device, 1567 u64 chunk_tree, u64 chunk_objectid, 1568 u64 chunk_offset, u64 start, u64 num_bytes) 1569 { 1570 int ret; 1571 struct btrfs_path *path; 1572 struct btrfs_fs_info *fs_info = device->fs_info; 1573 struct btrfs_root *root = fs_info->dev_root; 1574 struct btrfs_dev_extent *extent; 1575 struct extent_buffer *leaf; 1576 struct btrfs_key key; 1577 1578 WARN_ON(!device->in_fs_metadata); 1579 WARN_ON(device->is_tgtdev_for_dev_replace); 1580 path = btrfs_alloc_path(); 1581 if (!path) 1582 return -ENOMEM; 1583 1584 key.objectid = device->devid; 1585 key.offset = start; 1586 key.type = BTRFS_DEV_EXTENT_KEY; 1587 ret = btrfs_insert_empty_item(trans, root, path, &key, 1588 sizeof(*extent)); 1589 if (ret) 1590 goto out; 1591 1592 leaf = path->nodes[0]; 1593 extent = btrfs_item_ptr(leaf, path->slots[0], 1594 struct btrfs_dev_extent); 1595 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1596 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1597 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1598 1599 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 1600 1601 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1602 btrfs_mark_buffer_dirty(leaf); 1603 out: 1604 btrfs_free_path(path); 1605 return ret; 1606 } 1607 1608 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1609 { 1610 struct extent_map_tree *em_tree; 1611 struct extent_map *em; 1612 struct rb_node *n; 1613 u64 ret = 0; 1614 1615 em_tree = &fs_info->mapping_tree.map_tree; 1616 read_lock(&em_tree->lock); 1617 n = rb_last(&em_tree->map); 1618 if (n) { 1619 em = rb_entry(n, struct extent_map, rb_node); 1620 ret = em->start + em->len; 1621 } 1622 read_unlock(&em_tree->lock); 1623 1624 return ret; 1625 } 1626 1627 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1628 u64 *devid_ret) 1629 { 1630 int ret; 1631 struct btrfs_key key; 1632 struct btrfs_key found_key; 1633 struct btrfs_path *path; 1634 1635 path = btrfs_alloc_path(); 1636 if (!path) 1637 return -ENOMEM; 1638 1639 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1640 key.type = BTRFS_DEV_ITEM_KEY; 1641 key.offset = (u64)-1; 1642 1643 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1644 if (ret < 0) 1645 goto error; 1646 1647 BUG_ON(ret == 0); /* Corruption */ 1648 1649 ret = btrfs_previous_item(fs_info->chunk_root, path, 1650 BTRFS_DEV_ITEMS_OBJECTID, 1651 BTRFS_DEV_ITEM_KEY); 1652 if (ret) { 1653 *devid_ret = 1; 1654 } else { 1655 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1656 path->slots[0]); 1657 *devid_ret = found_key.offset + 1; 1658 } 1659 ret = 0; 1660 error: 1661 btrfs_free_path(path); 1662 return ret; 1663 } 1664 1665 /* 1666 * the device information is stored in the chunk root 1667 * the btrfs_device struct should be fully filled in 1668 */ 1669 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1670 struct btrfs_fs_info *fs_info, 1671 struct btrfs_device *device) 1672 { 1673 struct btrfs_root *root = fs_info->chunk_root; 1674 int ret; 1675 struct btrfs_path *path; 1676 struct btrfs_dev_item *dev_item; 1677 struct extent_buffer *leaf; 1678 struct btrfs_key key; 1679 unsigned long ptr; 1680 1681 path = btrfs_alloc_path(); 1682 if (!path) 1683 return -ENOMEM; 1684 1685 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1686 key.type = BTRFS_DEV_ITEM_KEY; 1687 key.offset = device->devid; 1688 1689 ret = btrfs_insert_empty_item(trans, root, path, &key, 1690 sizeof(*dev_item)); 1691 if (ret) 1692 goto out; 1693 1694 leaf = path->nodes[0]; 1695 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1696 1697 btrfs_set_device_id(leaf, dev_item, device->devid); 1698 btrfs_set_device_generation(leaf, dev_item, 0); 1699 btrfs_set_device_type(leaf, dev_item, device->type); 1700 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1701 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1702 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1703 btrfs_set_device_total_bytes(leaf, dev_item, 1704 btrfs_device_get_disk_total_bytes(device)); 1705 btrfs_set_device_bytes_used(leaf, dev_item, 1706 btrfs_device_get_bytes_used(device)); 1707 btrfs_set_device_group(leaf, dev_item, 0); 1708 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1709 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1710 btrfs_set_device_start_offset(leaf, dev_item, 0); 1711 1712 ptr = btrfs_device_uuid(dev_item); 1713 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1714 ptr = btrfs_device_fsid(dev_item); 1715 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1716 btrfs_mark_buffer_dirty(leaf); 1717 1718 ret = 0; 1719 out: 1720 btrfs_free_path(path); 1721 return ret; 1722 } 1723 1724 /* 1725 * Function to update ctime/mtime for a given device path. 1726 * Mainly used for ctime/mtime based probe like libblkid. 1727 */ 1728 static void update_dev_time(const char *path_name) 1729 { 1730 struct file *filp; 1731 1732 filp = filp_open(path_name, O_RDWR, 0); 1733 if (IS_ERR(filp)) 1734 return; 1735 file_update_time(filp); 1736 filp_close(filp, NULL); 1737 } 1738 1739 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info, 1740 struct btrfs_device *device) 1741 { 1742 struct btrfs_root *root = fs_info->chunk_root; 1743 int ret; 1744 struct btrfs_path *path; 1745 struct btrfs_key key; 1746 struct btrfs_trans_handle *trans; 1747 1748 path = btrfs_alloc_path(); 1749 if (!path) 1750 return -ENOMEM; 1751 1752 trans = btrfs_start_transaction(root, 0); 1753 if (IS_ERR(trans)) { 1754 btrfs_free_path(path); 1755 return PTR_ERR(trans); 1756 } 1757 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1758 key.type = BTRFS_DEV_ITEM_KEY; 1759 key.offset = device->devid; 1760 1761 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1762 if (ret < 0) 1763 goto out; 1764 1765 if (ret > 0) { 1766 ret = -ENOENT; 1767 goto out; 1768 } 1769 1770 ret = btrfs_del_item(trans, root, path); 1771 if (ret) 1772 goto out; 1773 out: 1774 btrfs_free_path(path); 1775 btrfs_commit_transaction(trans); 1776 return ret; 1777 } 1778 1779 /* 1780 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1781 * filesystem. It's up to the caller to adjust that number regarding eg. device 1782 * replace. 1783 */ 1784 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1785 u64 num_devices) 1786 { 1787 u64 all_avail; 1788 unsigned seq; 1789 int i; 1790 1791 do { 1792 seq = read_seqbegin(&fs_info->profiles_lock); 1793 1794 all_avail = fs_info->avail_data_alloc_bits | 1795 fs_info->avail_system_alloc_bits | 1796 fs_info->avail_metadata_alloc_bits; 1797 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1798 1799 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1800 if (!(all_avail & btrfs_raid_group[i])) 1801 continue; 1802 1803 if (num_devices < btrfs_raid_array[i].devs_min) { 1804 int ret = btrfs_raid_mindev_error[i]; 1805 1806 if (ret) 1807 return ret; 1808 } 1809 } 1810 1811 return 0; 1812 } 1813 1814 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs, 1815 struct btrfs_device *device) 1816 { 1817 struct btrfs_device *next_device; 1818 1819 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1820 if (next_device != device && 1821 !next_device->missing && next_device->bdev) 1822 return next_device; 1823 } 1824 1825 return NULL; 1826 } 1827 1828 /* 1829 * Helper function to check if the given device is part of s_bdev / latest_bdev 1830 * and replace it with the provided or the next active device, in the context 1831 * where this function called, there should be always be another device (or 1832 * this_dev) which is active. 1833 */ 1834 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info, 1835 struct btrfs_device *device, struct btrfs_device *this_dev) 1836 { 1837 struct btrfs_device *next_device; 1838 1839 if (this_dev) 1840 next_device = this_dev; 1841 else 1842 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1843 device); 1844 ASSERT(next_device); 1845 1846 if (fs_info->sb->s_bdev && 1847 (fs_info->sb->s_bdev == device->bdev)) 1848 fs_info->sb->s_bdev = next_device->bdev; 1849 1850 if (fs_info->fs_devices->latest_bdev == device->bdev) 1851 fs_info->fs_devices->latest_bdev = next_device->bdev; 1852 } 1853 1854 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 1855 u64 devid) 1856 { 1857 struct btrfs_device *device; 1858 struct btrfs_fs_devices *cur_devices; 1859 u64 num_devices; 1860 int ret = 0; 1861 bool clear_super = false; 1862 1863 mutex_lock(&uuid_mutex); 1864 1865 num_devices = fs_info->fs_devices->num_devices; 1866 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 1867 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 1868 WARN_ON(num_devices < 1); 1869 num_devices--; 1870 } 1871 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 1872 1873 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 1874 if (ret) 1875 goto out; 1876 1877 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path, 1878 &device); 1879 if (ret) 1880 goto out; 1881 1882 if (device->is_tgtdev_for_dev_replace) { 1883 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1884 goto out; 1885 } 1886 1887 if (device->writeable && fs_info->fs_devices->rw_devices == 1) { 1888 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1889 goto out; 1890 } 1891 1892 if (device->writeable) { 1893 mutex_lock(&fs_info->chunk_mutex); 1894 list_del_init(&device->dev_alloc_list); 1895 device->fs_devices->rw_devices--; 1896 mutex_unlock(&fs_info->chunk_mutex); 1897 clear_super = true; 1898 } 1899 1900 mutex_unlock(&uuid_mutex); 1901 ret = btrfs_shrink_device(device, 0); 1902 mutex_lock(&uuid_mutex); 1903 if (ret) 1904 goto error_undo; 1905 1906 /* 1907 * TODO: the superblock still includes this device in its num_devices 1908 * counter although write_all_supers() is not locked out. This 1909 * could give a filesystem state which requires a degraded mount. 1910 */ 1911 ret = btrfs_rm_dev_item(fs_info, device); 1912 if (ret) 1913 goto error_undo; 1914 1915 device->in_fs_metadata = 0; 1916 btrfs_scrub_cancel_dev(fs_info, device); 1917 1918 /* 1919 * the device list mutex makes sure that we don't change 1920 * the device list while someone else is writing out all 1921 * the device supers. Whoever is writing all supers, should 1922 * lock the device list mutex before getting the number of 1923 * devices in the super block (super_copy). Conversely, 1924 * whoever updates the number of devices in the super block 1925 * (super_copy) should hold the device list mutex. 1926 */ 1927 1928 cur_devices = device->fs_devices; 1929 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1930 list_del_rcu(&device->dev_list); 1931 1932 device->fs_devices->num_devices--; 1933 device->fs_devices->total_devices--; 1934 1935 if (device->missing) 1936 device->fs_devices->missing_devices--; 1937 1938 btrfs_assign_next_active_device(fs_info, device, NULL); 1939 1940 if (device->bdev) { 1941 device->fs_devices->open_devices--; 1942 /* remove sysfs entry */ 1943 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device); 1944 } 1945 1946 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 1947 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 1948 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1949 1950 /* 1951 * at this point, the device is zero sized and detached from 1952 * the devices list. All that's left is to zero out the old 1953 * supers and free the device. 1954 */ 1955 if (device->writeable) 1956 btrfs_scratch_superblocks(device->bdev, device->name->str); 1957 1958 btrfs_close_bdev(device); 1959 call_rcu(&device->rcu, free_device); 1960 1961 if (cur_devices->open_devices == 0) { 1962 struct btrfs_fs_devices *fs_devices; 1963 fs_devices = fs_info->fs_devices; 1964 while (fs_devices) { 1965 if (fs_devices->seed == cur_devices) { 1966 fs_devices->seed = cur_devices->seed; 1967 break; 1968 } 1969 fs_devices = fs_devices->seed; 1970 } 1971 cur_devices->seed = NULL; 1972 __btrfs_close_devices(cur_devices); 1973 free_fs_devices(cur_devices); 1974 } 1975 1976 fs_info->num_tolerated_disk_barrier_failures = 1977 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 1978 1979 out: 1980 mutex_unlock(&uuid_mutex); 1981 return ret; 1982 1983 error_undo: 1984 if (device->writeable) { 1985 mutex_lock(&fs_info->chunk_mutex); 1986 list_add(&device->dev_alloc_list, 1987 &fs_info->fs_devices->alloc_list); 1988 device->fs_devices->rw_devices++; 1989 mutex_unlock(&fs_info->chunk_mutex); 1990 } 1991 goto out; 1992 } 1993 1994 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info, 1995 struct btrfs_device *srcdev) 1996 { 1997 struct btrfs_fs_devices *fs_devices; 1998 1999 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 2000 2001 /* 2002 * in case of fs with no seed, srcdev->fs_devices will point 2003 * to fs_devices of fs_info. However when the dev being replaced is 2004 * a seed dev it will point to the seed's local fs_devices. In short 2005 * srcdev will have its correct fs_devices in both the cases. 2006 */ 2007 fs_devices = srcdev->fs_devices; 2008 2009 list_del_rcu(&srcdev->dev_list); 2010 list_del_rcu(&srcdev->dev_alloc_list); 2011 fs_devices->num_devices--; 2012 if (srcdev->missing) 2013 fs_devices->missing_devices--; 2014 2015 if (srcdev->writeable) 2016 fs_devices->rw_devices--; 2017 2018 if (srcdev->bdev) 2019 fs_devices->open_devices--; 2020 } 2021 2022 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 2023 struct btrfs_device *srcdev) 2024 { 2025 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2026 2027 if (srcdev->writeable) { 2028 /* zero out the old super if it is writable */ 2029 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); 2030 } 2031 2032 btrfs_close_bdev(srcdev); 2033 2034 call_rcu(&srcdev->rcu, free_device); 2035 2036 /* 2037 * unless fs_devices is seed fs, num_devices shouldn't go 2038 * zero 2039 */ 2040 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding); 2041 2042 /* if this is no devs we rather delete the fs_devices */ 2043 if (!fs_devices->num_devices) { 2044 struct btrfs_fs_devices *tmp_fs_devices; 2045 2046 tmp_fs_devices = fs_info->fs_devices; 2047 while (tmp_fs_devices) { 2048 if (tmp_fs_devices->seed == fs_devices) { 2049 tmp_fs_devices->seed = fs_devices->seed; 2050 break; 2051 } 2052 tmp_fs_devices = tmp_fs_devices->seed; 2053 } 2054 fs_devices->seed = NULL; 2055 __btrfs_close_devices(fs_devices); 2056 free_fs_devices(fs_devices); 2057 } 2058 } 2059 2060 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 2061 struct btrfs_device *tgtdev) 2062 { 2063 mutex_lock(&uuid_mutex); 2064 WARN_ON(!tgtdev); 2065 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2066 2067 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev); 2068 2069 if (tgtdev->bdev) 2070 fs_info->fs_devices->open_devices--; 2071 2072 fs_info->fs_devices->num_devices--; 2073 2074 btrfs_assign_next_active_device(fs_info, tgtdev, NULL); 2075 2076 list_del_rcu(&tgtdev->dev_list); 2077 2078 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2079 mutex_unlock(&uuid_mutex); 2080 2081 /* 2082 * The update_dev_time() with in btrfs_scratch_superblocks() 2083 * may lead to a call to btrfs_show_devname() which will try 2084 * to hold device_list_mutex. And here this device 2085 * is already out of device list, so we don't have to hold 2086 * the device_list_mutex lock. 2087 */ 2088 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); 2089 2090 btrfs_close_bdev(tgtdev); 2091 call_rcu(&tgtdev->rcu, free_device); 2092 } 2093 2094 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info, 2095 const char *device_path, 2096 struct btrfs_device **device) 2097 { 2098 int ret = 0; 2099 struct btrfs_super_block *disk_super; 2100 u64 devid; 2101 u8 *dev_uuid; 2102 struct block_device *bdev; 2103 struct buffer_head *bh; 2104 2105 *device = NULL; 2106 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2107 fs_info->bdev_holder, 0, &bdev, &bh); 2108 if (ret) 2109 return ret; 2110 disk_super = (struct btrfs_super_block *)bh->b_data; 2111 devid = btrfs_stack_device_id(&disk_super->dev_item); 2112 dev_uuid = disk_super->dev_item.uuid; 2113 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid); 2114 brelse(bh); 2115 if (!*device) 2116 ret = -ENOENT; 2117 blkdev_put(bdev, FMODE_READ); 2118 return ret; 2119 } 2120 2121 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info, 2122 const char *device_path, 2123 struct btrfs_device **device) 2124 { 2125 *device = NULL; 2126 if (strcmp(device_path, "missing") == 0) { 2127 struct list_head *devices; 2128 struct btrfs_device *tmp; 2129 2130 devices = &fs_info->fs_devices->devices; 2131 /* 2132 * It is safe to read the devices since the volume_mutex 2133 * is held by the caller. 2134 */ 2135 list_for_each_entry(tmp, devices, dev_list) { 2136 if (tmp->in_fs_metadata && !tmp->bdev) { 2137 *device = tmp; 2138 break; 2139 } 2140 } 2141 2142 if (!*device) 2143 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2144 2145 return 0; 2146 } else { 2147 return btrfs_find_device_by_path(fs_info, device_path, device); 2148 } 2149 } 2150 2151 /* 2152 * Lookup a device given by device id, or the path if the id is 0. 2153 */ 2154 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid, 2155 const char *devpath, 2156 struct btrfs_device **device) 2157 { 2158 int ret; 2159 2160 if (devid) { 2161 ret = 0; 2162 *device = btrfs_find_device(fs_info, devid, NULL, NULL); 2163 if (!*device) 2164 ret = -ENOENT; 2165 } else { 2166 if (!devpath || !devpath[0]) 2167 return -EINVAL; 2168 2169 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath, 2170 device); 2171 } 2172 return ret; 2173 } 2174 2175 /* 2176 * does all the dirty work required for changing file system's UUID. 2177 */ 2178 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2179 { 2180 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2181 struct btrfs_fs_devices *old_devices; 2182 struct btrfs_fs_devices *seed_devices; 2183 struct btrfs_super_block *disk_super = fs_info->super_copy; 2184 struct btrfs_device *device; 2185 u64 super_flags; 2186 2187 BUG_ON(!mutex_is_locked(&uuid_mutex)); 2188 if (!fs_devices->seeding) 2189 return -EINVAL; 2190 2191 seed_devices = __alloc_fs_devices(); 2192 if (IS_ERR(seed_devices)) 2193 return PTR_ERR(seed_devices); 2194 2195 old_devices = clone_fs_devices(fs_devices); 2196 if (IS_ERR(old_devices)) { 2197 kfree(seed_devices); 2198 return PTR_ERR(old_devices); 2199 } 2200 2201 list_add(&old_devices->list, &fs_uuids); 2202 2203 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2204 seed_devices->opened = 1; 2205 INIT_LIST_HEAD(&seed_devices->devices); 2206 INIT_LIST_HEAD(&seed_devices->alloc_list); 2207 mutex_init(&seed_devices->device_list_mutex); 2208 2209 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2210 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2211 synchronize_rcu); 2212 list_for_each_entry(device, &seed_devices->devices, dev_list) 2213 device->fs_devices = seed_devices; 2214 2215 mutex_lock(&fs_info->chunk_mutex); 2216 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2217 mutex_unlock(&fs_info->chunk_mutex); 2218 2219 fs_devices->seeding = 0; 2220 fs_devices->num_devices = 0; 2221 fs_devices->open_devices = 0; 2222 fs_devices->missing_devices = 0; 2223 fs_devices->rotating = 0; 2224 fs_devices->seed = seed_devices; 2225 2226 generate_random_uuid(fs_devices->fsid); 2227 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2228 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2229 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2230 2231 super_flags = btrfs_super_flags(disk_super) & 2232 ~BTRFS_SUPER_FLAG_SEEDING; 2233 btrfs_set_super_flags(disk_super, super_flags); 2234 2235 return 0; 2236 } 2237 2238 /* 2239 * Store the expected generation for seed devices in device items. 2240 */ 2241 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2242 struct btrfs_fs_info *fs_info) 2243 { 2244 struct btrfs_root *root = fs_info->chunk_root; 2245 struct btrfs_path *path; 2246 struct extent_buffer *leaf; 2247 struct btrfs_dev_item *dev_item; 2248 struct btrfs_device *device; 2249 struct btrfs_key key; 2250 u8 fs_uuid[BTRFS_UUID_SIZE]; 2251 u8 dev_uuid[BTRFS_UUID_SIZE]; 2252 u64 devid; 2253 int ret; 2254 2255 path = btrfs_alloc_path(); 2256 if (!path) 2257 return -ENOMEM; 2258 2259 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2260 key.offset = 0; 2261 key.type = BTRFS_DEV_ITEM_KEY; 2262 2263 while (1) { 2264 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2265 if (ret < 0) 2266 goto error; 2267 2268 leaf = path->nodes[0]; 2269 next_slot: 2270 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2271 ret = btrfs_next_leaf(root, path); 2272 if (ret > 0) 2273 break; 2274 if (ret < 0) 2275 goto error; 2276 leaf = path->nodes[0]; 2277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2278 btrfs_release_path(path); 2279 continue; 2280 } 2281 2282 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2283 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2284 key.type != BTRFS_DEV_ITEM_KEY) 2285 break; 2286 2287 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2288 struct btrfs_dev_item); 2289 devid = btrfs_device_id(leaf, dev_item); 2290 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2291 BTRFS_UUID_SIZE); 2292 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2293 BTRFS_UUID_SIZE); 2294 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid); 2295 BUG_ON(!device); /* Logic error */ 2296 2297 if (device->fs_devices->seeding) { 2298 btrfs_set_device_generation(leaf, dev_item, 2299 device->generation); 2300 btrfs_mark_buffer_dirty(leaf); 2301 } 2302 2303 path->slots[0]++; 2304 goto next_slot; 2305 } 2306 ret = 0; 2307 error: 2308 btrfs_free_path(path); 2309 return ret; 2310 } 2311 2312 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2313 { 2314 struct btrfs_root *root = fs_info->dev_root; 2315 struct request_queue *q; 2316 struct btrfs_trans_handle *trans; 2317 struct btrfs_device *device; 2318 struct block_device *bdev; 2319 struct list_head *devices; 2320 struct super_block *sb = fs_info->sb; 2321 struct rcu_string *name; 2322 u64 tmp; 2323 int seeding_dev = 0; 2324 int ret = 0; 2325 2326 if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding) 2327 return -EROFS; 2328 2329 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2330 fs_info->bdev_holder); 2331 if (IS_ERR(bdev)) 2332 return PTR_ERR(bdev); 2333 2334 if (fs_info->fs_devices->seeding) { 2335 seeding_dev = 1; 2336 down_write(&sb->s_umount); 2337 mutex_lock(&uuid_mutex); 2338 } 2339 2340 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2341 2342 devices = &fs_info->fs_devices->devices; 2343 2344 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2345 list_for_each_entry(device, devices, dev_list) { 2346 if (device->bdev == bdev) { 2347 ret = -EEXIST; 2348 mutex_unlock( 2349 &fs_info->fs_devices->device_list_mutex); 2350 goto error; 2351 } 2352 } 2353 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2354 2355 device = btrfs_alloc_device(fs_info, NULL, NULL); 2356 if (IS_ERR(device)) { 2357 /* we can safely leave the fs_devices entry around */ 2358 ret = PTR_ERR(device); 2359 goto error; 2360 } 2361 2362 name = rcu_string_strdup(device_path, GFP_KERNEL); 2363 if (!name) { 2364 kfree(device); 2365 ret = -ENOMEM; 2366 goto error; 2367 } 2368 rcu_assign_pointer(device->name, name); 2369 2370 trans = btrfs_start_transaction(root, 0); 2371 if (IS_ERR(trans)) { 2372 rcu_string_free(device->name); 2373 kfree(device); 2374 ret = PTR_ERR(trans); 2375 goto error; 2376 } 2377 2378 q = bdev_get_queue(bdev); 2379 if (blk_queue_discard(q)) 2380 device->can_discard = 1; 2381 device->writeable = 1; 2382 device->generation = trans->transid; 2383 device->io_width = fs_info->sectorsize; 2384 device->io_align = fs_info->sectorsize; 2385 device->sector_size = fs_info->sectorsize; 2386 device->total_bytes = i_size_read(bdev->bd_inode); 2387 device->disk_total_bytes = device->total_bytes; 2388 device->commit_total_bytes = device->total_bytes; 2389 device->fs_info = fs_info; 2390 device->bdev = bdev; 2391 device->in_fs_metadata = 1; 2392 device->is_tgtdev_for_dev_replace = 0; 2393 device->mode = FMODE_EXCL; 2394 device->dev_stats_valid = 1; 2395 set_blocksize(device->bdev, 4096); 2396 2397 if (seeding_dev) { 2398 sb->s_flags &= ~MS_RDONLY; 2399 ret = btrfs_prepare_sprout(fs_info); 2400 BUG_ON(ret); /* -ENOMEM */ 2401 } 2402 2403 device->fs_devices = fs_info->fs_devices; 2404 2405 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2406 mutex_lock(&fs_info->chunk_mutex); 2407 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices); 2408 list_add(&device->dev_alloc_list, 2409 &fs_info->fs_devices->alloc_list); 2410 fs_info->fs_devices->num_devices++; 2411 fs_info->fs_devices->open_devices++; 2412 fs_info->fs_devices->rw_devices++; 2413 fs_info->fs_devices->total_devices++; 2414 fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2415 2416 spin_lock(&fs_info->free_chunk_lock); 2417 fs_info->free_chunk_space += device->total_bytes; 2418 spin_unlock(&fs_info->free_chunk_lock); 2419 2420 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2421 fs_info->fs_devices->rotating = 1; 2422 2423 tmp = btrfs_super_total_bytes(fs_info->super_copy); 2424 btrfs_set_super_total_bytes(fs_info->super_copy, 2425 tmp + device->total_bytes); 2426 2427 tmp = btrfs_super_num_devices(fs_info->super_copy); 2428 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1); 2429 2430 /* add sysfs device entry */ 2431 btrfs_sysfs_add_device_link(fs_info->fs_devices, device); 2432 2433 /* 2434 * we've got more storage, clear any full flags on the space 2435 * infos 2436 */ 2437 btrfs_clear_space_info_full(fs_info); 2438 2439 mutex_unlock(&fs_info->chunk_mutex); 2440 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2441 2442 if (seeding_dev) { 2443 mutex_lock(&fs_info->chunk_mutex); 2444 ret = init_first_rw_device(trans, fs_info); 2445 mutex_unlock(&fs_info->chunk_mutex); 2446 if (ret) { 2447 btrfs_abort_transaction(trans, ret); 2448 goto error_trans; 2449 } 2450 } 2451 2452 ret = btrfs_add_device(trans, fs_info, device); 2453 if (ret) { 2454 btrfs_abort_transaction(trans, ret); 2455 goto error_trans; 2456 } 2457 2458 if (seeding_dev) { 2459 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2460 2461 ret = btrfs_finish_sprout(trans, fs_info); 2462 if (ret) { 2463 btrfs_abort_transaction(trans, ret); 2464 goto error_trans; 2465 } 2466 2467 /* Sprouting would change fsid of the mounted root, 2468 * so rename the fsid on the sysfs 2469 */ 2470 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2471 fs_info->fsid); 2472 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf)) 2473 btrfs_warn(fs_info, 2474 "sysfs: failed to create fsid for sprout"); 2475 } 2476 2477 fs_info->num_tolerated_disk_barrier_failures = 2478 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2479 ret = btrfs_commit_transaction(trans); 2480 2481 if (seeding_dev) { 2482 mutex_unlock(&uuid_mutex); 2483 up_write(&sb->s_umount); 2484 2485 if (ret) /* transaction commit */ 2486 return ret; 2487 2488 ret = btrfs_relocate_sys_chunks(fs_info); 2489 if (ret < 0) 2490 btrfs_handle_fs_error(fs_info, ret, 2491 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2492 trans = btrfs_attach_transaction(root); 2493 if (IS_ERR(trans)) { 2494 if (PTR_ERR(trans) == -ENOENT) 2495 return 0; 2496 return PTR_ERR(trans); 2497 } 2498 ret = btrfs_commit_transaction(trans); 2499 } 2500 2501 /* Update ctime/mtime for libblkid */ 2502 update_dev_time(device_path); 2503 return ret; 2504 2505 error_trans: 2506 btrfs_end_transaction(trans); 2507 rcu_string_free(device->name); 2508 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device); 2509 kfree(device); 2510 error: 2511 blkdev_put(bdev, FMODE_EXCL); 2512 if (seeding_dev) { 2513 mutex_unlock(&uuid_mutex); 2514 up_write(&sb->s_umount); 2515 } 2516 return ret; 2517 } 2518 2519 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 2520 const char *device_path, 2521 struct btrfs_device *srcdev, 2522 struct btrfs_device **device_out) 2523 { 2524 struct request_queue *q; 2525 struct btrfs_device *device; 2526 struct block_device *bdev; 2527 struct list_head *devices; 2528 struct rcu_string *name; 2529 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2530 int ret = 0; 2531 2532 *device_out = NULL; 2533 if (fs_info->fs_devices->seeding) { 2534 btrfs_err(fs_info, "the filesystem is a seed filesystem!"); 2535 return -EINVAL; 2536 } 2537 2538 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2539 fs_info->bdev_holder); 2540 if (IS_ERR(bdev)) { 2541 btrfs_err(fs_info, "target device %s is invalid!", device_path); 2542 return PTR_ERR(bdev); 2543 } 2544 2545 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2546 2547 devices = &fs_info->fs_devices->devices; 2548 list_for_each_entry(device, devices, dev_list) { 2549 if (device->bdev == bdev) { 2550 btrfs_err(fs_info, 2551 "target device is in the filesystem!"); 2552 ret = -EEXIST; 2553 goto error; 2554 } 2555 } 2556 2557 2558 if (i_size_read(bdev->bd_inode) < 2559 btrfs_device_get_total_bytes(srcdev)) { 2560 btrfs_err(fs_info, 2561 "target device is smaller than source device!"); 2562 ret = -EINVAL; 2563 goto error; 2564 } 2565 2566 2567 device = btrfs_alloc_device(NULL, &devid, NULL); 2568 if (IS_ERR(device)) { 2569 ret = PTR_ERR(device); 2570 goto error; 2571 } 2572 2573 name = rcu_string_strdup(device_path, GFP_NOFS); 2574 if (!name) { 2575 kfree(device); 2576 ret = -ENOMEM; 2577 goto error; 2578 } 2579 rcu_assign_pointer(device->name, name); 2580 2581 q = bdev_get_queue(bdev); 2582 if (blk_queue_discard(q)) 2583 device->can_discard = 1; 2584 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2585 device->writeable = 1; 2586 device->generation = 0; 2587 device->io_width = fs_info->sectorsize; 2588 device->io_align = fs_info->sectorsize; 2589 device->sector_size = fs_info->sectorsize; 2590 device->total_bytes = btrfs_device_get_total_bytes(srcdev); 2591 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev); 2592 device->bytes_used = btrfs_device_get_bytes_used(srcdev); 2593 ASSERT(list_empty(&srcdev->resized_list)); 2594 device->commit_total_bytes = srcdev->commit_total_bytes; 2595 device->commit_bytes_used = device->bytes_used; 2596 device->fs_info = fs_info; 2597 device->bdev = bdev; 2598 device->in_fs_metadata = 1; 2599 device->is_tgtdev_for_dev_replace = 1; 2600 device->mode = FMODE_EXCL; 2601 device->dev_stats_valid = 1; 2602 set_blocksize(device->bdev, 4096); 2603 device->fs_devices = fs_info->fs_devices; 2604 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2605 fs_info->fs_devices->num_devices++; 2606 fs_info->fs_devices->open_devices++; 2607 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2608 2609 *device_out = device; 2610 return ret; 2611 2612 error: 2613 blkdev_put(bdev, FMODE_EXCL); 2614 return ret; 2615 } 2616 2617 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2618 struct btrfs_device *tgtdev) 2619 { 2620 u32 sectorsize = fs_info->sectorsize; 2621 2622 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2623 tgtdev->io_width = sectorsize; 2624 tgtdev->io_align = sectorsize; 2625 tgtdev->sector_size = sectorsize; 2626 tgtdev->fs_info = fs_info; 2627 tgtdev->in_fs_metadata = 1; 2628 } 2629 2630 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2631 struct btrfs_device *device) 2632 { 2633 int ret; 2634 struct btrfs_path *path; 2635 struct btrfs_root *root = device->fs_info->chunk_root; 2636 struct btrfs_dev_item *dev_item; 2637 struct extent_buffer *leaf; 2638 struct btrfs_key key; 2639 2640 path = btrfs_alloc_path(); 2641 if (!path) 2642 return -ENOMEM; 2643 2644 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2645 key.type = BTRFS_DEV_ITEM_KEY; 2646 key.offset = device->devid; 2647 2648 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2649 if (ret < 0) 2650 goto out; 2651 2652 if (ret > 0) { 2653 ret = -ENOENT; 2654 goto out; 2655 } 2656 2657 leaf = path->nodes[0]; 2658 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2659 2660 btrfs_set_device_id(leaf, dev_item, device->devid); 2661 btrfs_set_device_type(leaf, dev_item, device->type); 2662 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2663 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2664 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2665 btrfs_set_device_total_bytes(leaf, dev_item, 2666 btrfs_device_get_disk_total_bytes(device)); 2667 btrfs_set_device_bytes_used(leaf, dev_item, 2668 btrfs_device_get_bytes_used(device)); 2669 btrfs_mark_buffer_dirty(leaf); 2670 2671 out: 2672 btrfs_free_path(path); 2673 return ret; 2674 } 2675 2676 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2677 struct btrfs_device *device, u64 new_size) 2678 { 2679 struct btrfs_fs_info *fs_info = device->fs_info; 2680 struct btrfs_super_block *super_copy = fs_info->super_copy; 2681 struct btrfs_fs_devices *fs_devices; 2682 u64 old_total; 2683 u64 diff; 2684 2685 if (!device->writeable) 2686 return -EACCES; 2687 2688 mutex_lock(&fs_info->chunk_mutex); 2689 old_total = btrfs_super_total_bytes(super_copy); 2690 diff = new_size - device->total_bytes; 2691 2692 if (new_size <= device->total_bytes || 2693 device->is_tgtdev_for_dev_replace) { 2694 mutex_unlock(&fs_info->chunk_mutex); 2695 return -EINVAL; 2696 } 2697 2698 fs_devices = fs_info->fs_devices; 2699 2700 btrfs_set_super_total_bytes(super_copy, old_total + diff); 2701 device->fs_devices->total_rw_bytes += diff; 2702 2703 btrfs_device_set_total_bytes(device, new_size); 2704 btrfs_device_set_disk_total_bytes(device, new_size); 2705 btrfs_clear_space_info_full(device->fs_info); 2706 if (list_empty(&device->resized_list)) 2707 list_add_tail(&device->resized_list, 2708 &fs_devices->resized_devices); 2709 mutex_unlock(&fs_info->chunk_mutex); 2710 2711 return btrfs_update_device(trans, device); 2712 } 2713 2714 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2715 struct btrfs_fs_info *fs_info, u64 chunk_objectid, 2716 u64 chunk_offset) 2717 { 2718 struct btrfs_root *root = fs_info->chunk_root; 2719 int ret; 2720 struct btrfs_path *path; 2721 struct btrfs_key key; 2722 2723 path = btrfs_alloc_path(); 2724 if (!path) 2725 return -ENOMEM; 2726 2727 key.objectid = chunk_objectid; 2728 key.offset = chunk_offset; 2729 key.type = BTRFS_CHUNK_ITEM_KEY; 2730 2731 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2732 if (ret < 0) 2733 goto out; 2734 else if (ret > 0) { /* Logic error or corruption */ 2735 btrfs_handle_fs_error(fs_info, -ENOENT, 2736 "Failed lookup while freeing chunk."); 2737 ret = -ENOENT; 2738 goto out; 2739 } 2740 2741 ret = btrfs_del_item(trans, root, path); 2742 if (ret < 0) 2743 btrfs_handle_fs_error(fs_info, ret, 2744 "Failed to delete chunk item."); 2745 out: 2746 btrfs_free_path(path); 2747 return ret; 2748 } 2749 2750 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, 2751 u64 chunk_objectid, u64 chunk_offset) 2752 { 2753 struct btrfs_super_block *super_copy = fs_info->super_copy; 2754 struct btrfs_disk_key *disk_key; 2755 struct btrfs_chunk *chunk; 2756 u8 *ptr; 2757 int ret = 0; 2758 u32 num_stripes; 2759 u32 array_size; 2760 u32 len = 0; 2761 u32 cur; 2762 struct btrfs_key key; 2763 2764 mutex_lock(&fs_info->chunk_mutex); 2765 array_size = btrfs_super_sys_array_size(super_copy); 2766 2767 ptr = super_copy->sys_chunk_array; 2768 cur = 0; 2769 2770 while (cur < array_size) { 2771 disk_key = (struct btrfs_disk_key *)ptr; 2772 btrfs_disk_key_to_cpu(&key, disk_key); 2773 2774 len = sizeof(*disk_key); 2775 2776 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2777 chunk = (struct btrfs_chunk *)(ptr + len); 2778 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2779 len += btrfs_chunk_item_size(num_stripes); 2780 } else { 2781 ret = -EIO; 2782 break; 2783 } 2784 if (key.objectid == chunk_objectid && 2785 key.offset == chunk_offset) { 2786 memmove(ptr, ptr + len, array_size - (cur + len)); 2787 array_size -= len; 2788 btrfs_set_super_sys_array_size(super_copy, array_size); 2789 } else { 2790 ptr += len; 2791 cur += len; 2792 } 2793 } 2794 mutex_unlock(&fs_info->chunk_mutex); 2795 return ret; 2796 } 2797 2798 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, 2799 struct btrfs_fs_info *fs_info, u64 chunk_offset) 2800 { 2801 struct extent_map_tree *em_tree; 2802 struct extent_map *em; 2803 struct map_lookup *map; 2804 u64 dev_extent_len = 0; 2805 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2806 int i, ret = 0; 2807 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2808 2809 em_tree = &fs_info->mapping_tree.map_tree; 2810 2811 read_lock(&em_tree->lock); 2812 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2813 read_unlock(&em_tree->lock); 2814 2815 if (!em || em->start > chunk_offset || 2816 em->start + em->len < chunk_offset) { 2817 /* 2818 * This is a logic error, but we don't want to just rely on the 2819 * user having built with ASSERT enabled, so if ASSERT doesn't 2820 * do anything we still error out. 2821 */ 2822 ASSERT(0); 2823 if (em) 2824 free_extent_map(em); 2825 return -EINVAL; 2826 } 2827 map = em->map_lookup; 2828 mutex_lock(&fs_info->chunk_mutex); 2829 check_system_chunk(trans, fs_info, map->type); 2830 mutex_unlock(&fs_info->chunk_mutex); 2831 2832 /* 2833 * Take the device list mutex to prevent races with the final phase of 2834 * a device replace operation that replaces the device object associated 2835 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2836 */ 2837 mutex_lock(&fs_devices->device_list_mutex); 2838 for (i = 0; i < map->num_stripes; i++) { 2839 struct btrfs_device *device = map->stripes[i].dev; 2840 ret = btrfs_free_dev_extent(trans, device, 2841 map->stripes[i].physical, 2842 &dev_extent_len); 2843 if (ret) { 2844 mutex_unlock(&fs_devices->device_list_mutex); 2845 btrfs_abort_transaction(trans, ret); 2846 goto out; 2847 } 2848 2849 if (device->bytes_used > 0) { 2850 mutex_lock(&fs_info->chunk_mutex); 2851 btrfs_device_set_bytes_used(device, 2852 device->bytes_used - dev_extent_len); 2853 spin_lock(&fs_info->free_chunk_lock); 2854 fs_info->free_chunk_space += dev_extent_len; 2855 spin_unlock(&fs_info->free_chunk_lock); 2856 btrfs_clear_space_info_full(fs_info); 2857 mutex_unlock(&fs_info->chunk_mutex); 2858 } 2859 2860 if (map->stripes[i].dev) { 2861 ret = btrfs_update_device(trans, map->stripes[i].dev); 2862 if (ret) { 2863 mutex_unlock(&fs_devices->device_list_mutex); 2864 btrfs_abort_transaction(trans, ret); 2865 goto out; 2866 } 2867 } 2868 } 2869 mutex_unlock(&fs_devices->device_list_mutex); 2870 2871 ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset); 2872 if (ret) { 2873 btrfs_abort_transaction(trans, ret); 2874 goto out; 2875 } 2876 2877 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 2878 2879 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2880 ret = btrfs_del_sys_chunk(fs_info, chunk_objectid, 2881 chunk_offset); 2882 if (ret) { 2883 btrfs_abort_transaction(trans, ret); 2884 goto out; 2885 } 2886 } 2887 2888 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em); 2889 if (ret) { 2890 btrfs_abort_transaction(trans, ret); 2891 goto out; 2892 } 2893 2894 out: 2895 /* once for us */ 2896 free_extent_map(em); 2897 return ret; 2898 } 2899 2900 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2901 { 2902 struct btrfs_root *root = fs_info->chunk_root; 2903 struct btrfs_trans_handle *trans; 2904 int ret; 2905 2906 /* 2907 * Prevent races with automatic removal of unused block groups. 2908 * After we relocate and before we remove the chunk with offset 2909 * chunk_offset, automatic removal of the block group can kick in, 2910 * resulting in a failure when calling btrfs_remove_chunk() below. 2911 * 2912 * Make sure to acquire this mutex before doing a tree search (dev 2913 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 2914 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 2915 * we release the path used to search the chunk/dev tree and before 2916 * the current task acquires this mutex and calls us. 2917 */ 2918 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex)); 2919 2920 ret = btrfs_can_relocate(fs_info, chunk_offset); 2921 if (ret) 2922 return -ENOSPC; 2923 2924 /* step one, relocate all the extents inside this chunk */ 2925 btrfs_scrub_pause(fs_info); 2926 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 2927 btrfs_scrub_continue(fs_info); 2928 if (ret) 2929 return ret; 2930 2931 trans = btrfs_start_trans_remove_block_group(root->fs_info, 2932 chunk_offset); 2933 if (IS_ERR(trans)) { 2934 ret = PTR_ERR(trans); 2935 btrfs_handle_fs_error(root->fs_info, ret, NULL); 2936 return ret; 2937 } 2938 2939 /* 2940 * step two, delete the device extents and the 2941 * chunk tree entries 2942 */ 2943 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset); 2944 btrfs_end_transaction(trans); 2945 return ret; 2946 } 2947 2948 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 2949 { 2950 struct btrfs_root *chunk_root = fs_info->chunk_root; 2951 struct btrfs_path *path; 2952 struct extent_buffer *leaf; 2953 struct btrfs_chunk *chunk; 2954 struct btrfs_key key; 2955 struct btrfs_key found_key; 2956 u64 chunk_type; 2957 bool retried = false; 2958 int failed = 0; 2959 int ret; 2960 2961 path = btrfs_alloc_path(); 2962 if (!path) 2963 return -ENOMEM; 2964 2965 again: 2966 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2967 key.offset = (u64)-1; 2968 key.type = BTRFS_CHUNK_ITEM_KEY; 2969 2970 while (1) { 2971 mutex_lock(&fs_info->delete_unused_bgs_mutex); 2972 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2973 if (ret < 0) { 2974 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 2975 goto error; 2976 } 2977 BUG_ON(ret == 0); /* Corruption */ 2978 2979 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2980 key.type); 2981 if (ret) 2982 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 2983 if (ret < 0) 2984 goto error; 2985 if (ret > 0) 2986 break; 2987 2988 leaf = path->nodes[0]; 2989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2990 2991 chunk = btrfs_item_ptr(leaf, path->slots[0], 2992 struct btrfs_chunk); 2993 chunk_type = btrfs_chunk_type(leaf, chunk); 2994 btrfs_release_path(path); 2995 2996 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2997 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 2998 if (ret == -ENOSPC) 2999 failed++; 3000 else 3001 BUG_ON(ret); 3002 } 3003 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3004 3005 if (found_key.offset == 0) 3006 break; 3007 key.offset = found_key.offset - 1; 3008 } 3009 ret = 0; 3010 if (failed && !retried) { 3011 failed = 0; 3012 retried = true; 3013 goto again; 3014 } else if (WARN_ON(failed && retried)) { 3015 ret = -ENOSPC; 3016 } 3017 error: 3018 btrfs_free_path(path); 3019 return ret; 3020 } 3021 3022 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3023 struct btrfs_balance_control *bctl) 3024 { 3025 struct btrfs_root *root = fs_info->tree_root; 3026 struct btrfs_trans_handle *trans; 3027 struct btrfs_balance_item *item; 3028 struct btrfs_disk_balance_args disk_bargs; 3029 struct btrfs_path *path; 3030 struct extent_buffer *leaf; 3031 struct btrfs_key key; 3032 int ret, err; 3033 3034 path = btrfs_alloc_path(); 3035 if (!path) 3036 return -ENOMEM; 3037 3038 trans = btrfs_start_transaction(root, 0); 3039 if (IS_ERR(trans)) { 3040 btrfs_free_path(path); 3041 return PTR_ERR(trans); 3042 } 3043 3044 key.objectid = BTRFS_BALANCE_OBJECTID; 3045 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3046 key.offset = 0; 3047 3048 ret = btrfs_insert_empty_item(trans, root, path, &key, 3049 sizeof(*item)); 3050 if (ret) 3051 goto out; 3052 3053 leaf = path->nodes[0]; 3054 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3055 3056 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3057 3058 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3059 btrfs_set_balance_data(leaf, item, &disk_bargs); 3060 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3061 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3062 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3063 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3064 3065 btrfs_set_balance_flags(leaf, item, bctl->flags); 3066 3067 btrfs_mark_buffer_dirty(leaf); 3068 out: 3069 btrfs_free_path(path); 3070 err = btrfs_commit_transaction(trans); 3071 if (err && !ret) 3072 ret = err; 3073 return ret; 3074 } 3075 3076 static int del_balance_item(struct btrfs_fs_info *fs_info) 3077 { 3078 struct btrfs_root *root = fs_info->tree_root; 3079 struct btrfs_trans_handle *trans; 3080 struct btrfs_path *path; 3081 struct btrfs_key key; 3082 int ret, err; 3083 3084 path = btrfs_alloc_path(); 3085 if (!path) 3086 return -ENOMEM; 3087 3088 trans = btrfs_start_transaction(root, 0); 3089 if (IS_ERR(trans)) { 3090 btrfs_free_path(path); 3091 return PTR_ERR(trans); 3092 } 3093 3094 key.objectid = BTRFS_BALANCE_OBJECTID; 3095 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3096 key.offset = 0; 3097 3098 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3099 if (ret < 0) 3100 goto out; 3101 if (ret > 0) { 3102 ret = -ENOENT; 3103 goto out; 3104 } 3105 3106 ret = btrfs_del_item(trans, root, path); 3107 out: 3108 btrfs_free_path(path); 3109 err = btrfs_commit_transaction(trans); 3110 if (err && !ret) 3111 ret = err; 3112 return ret; 3113 } 3114 3115 /* 3116 * This is a heuristic used to reduce the number of chunks balanced on 3117 * resume after balance was interrupted. 3118 */ 3119 static void update_balance_args(struct btrfs_balance_control *bctl) 3120 { 3121 /* 3122 * Turn on soft mode for chunk types that were being converted. 3123 */ 3124 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3125 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3126 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3127 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3128 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3129 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3130 3131 /* 3132 * Turn on usage filter if is not already used. The idea is 3133 * that chunks that we have already balanced should be 3134 * reasonably full. Don't do it for chunks that are being 3135 * converted - that will keep us from relocating unconverted 3136 * (albeit full) chunks. 3137 */ 3138 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3139 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3140 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3141 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3142 bctl->data.usage = 90; 3143 } 3144 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3145 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3146 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3147 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3148 bctl->sys.usage = 90; 3149 } 3150 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3151 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3152 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3153 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3154 bctl->meta.usage = 90; 3155 } 3156 } 3157 3158 /* 3159 * Should be called with both balance and volume mutexes held to 3160 * serialize other volume operations (add_dev/rm_dev/resize) with 3161 * restriper. Same goes for unset_balance_control. 3162 */ 3163 static void set_balance_control(struct btrfs_balance_control *bctl) 3164 { 3165 struct btrfs_fs_info *fs_info = bctl->fs_info; 3166 3167 BUG_ON(fs_info->balance_ctl); 3168 3169 spin_lock(&fs_info->balance_lock); 3170 fs_info->balance_ctl = bctl; 3171 spin_unlock(&fs_info->balance_lock); 3172 } 3173 3174 static void unset_balance_control(struct btrfs_fs_info *fs_info) 3175 { 3176 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3177 3178 BUG_ON(!fs_info->balance_ctl); 3179 3180 spin_lock(&fs_info->balance_lock); 3181 fs_info->balance_ctl = NULL; 3182 spin_unlock(&fs_info->balance_lock); 3183 3184 kfree(bctl); 3185 } 3186 3187 /* 3188 * Balance filters. Return 1 if chunk should be filtered out 3189 * (should not be balanced). 3190 */ 3191 static int chunk_profiles_filter(u64 chunk_type, 3192 struct btrfs_balance_args *bargs) 3193 { 3194 chunk_type = chunk_to_extended(chunk_type) & 3195 BTRFS_EXTENDED_PROFILE_MASK; 3196 3197 if (bargs->profiles & chunk_type) 3198 return 0; 3199 3200 return 1; 3201 } 3202 3203 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3204 struct btrfs_balance_args *bargs) 3205 { 3206 struct btrfs_block_group_cache *cache; 3207 u64 chunk_used; 3208 u64 user_thresh_min; 3209 u64 user_thresh_max; 3210 int ret = 1; 3211 3212 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3213 chunk_used = btrfs_block_group_used(&cache->item); 3214 3215 if (bargs->usage_min == 0) 3216 user_thresh_min = 0; 3217 else 3218 user_thresh_min = div_factor_fine(cache->key.offset, 3219 bargs->usage_min); 3220 3221 if (bargs->usage_max == 0) 3222 user_thresh_max = 1; 3223 else if (bargs->usage_max > 100) 3224 user_thresh_max = cache->key.offset; 3225 else 3226 user_thresh_max = div_factor_fine(cache->key.offset, 3227 bargs->usage_max); 3228 3229 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3230 ret = 0; 3231 3232 btrfs_put_block_group(cache); 3233 return ret; 3234 } 3235 3236 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3237 u64 chunk_offset, struct btrfs_balance_args *bargs) 3238 { 3239 struct btrfs_block_group_cache *cache; 3240 u64 chunk_used, user_thresh; 3241 int ret = 1; 3242 3243 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3244 chunk_used = btrfs_block_group_used(&cache->item); 3245 3246 if (bargs->usage_min == 0) 3247 user_thresh = 1; 3248 else if (bargs->usage > 100) 3249 user_thresh = cache->key.offset; 3250 else 3251 user_thresh = div_factor_fine(cache->key.offset, 3252 bargs->usage); 3253 3254 if (chunk_used < user_thresh) 3255 ret = 0; 3256 3257 btrfs_put_block_group(cache); 3258 return ret; 3259 } 3260 3261 static int chunk_devid_filter(struct extent_buffer *leaf, 3262 struct btrfs_chunk *chunk, 3263 struct btrfs_balance_args *bargs) 3264 { 3265 struct btrfs_stripe *stripe; 3266 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3267 int i; 3268 3269 for (i = 0; i < num_stripes; i++) { 3270 stripe = btrfs_stripe_nr(chunk, i); 3271 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3272 return 0; 3273 } 3274 3275 return 1; 3276 } 3277 3278 /* [pstart, pend) */ 3279 static int chunk_drange_filter(struct extent_buffer *leaf, 3280 struct btrfs_chunk *chunk, 3281 u64 chunk_offset, 3282 struct btrfs_balance_args *bargs) 3283 { 3284 struct btrfs_stripe *stripe; 3285 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3286 u64 stripe_offset; 3287 u64 stripe_length; 3288 int factor; 3289 int i; 3290 3291 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3292 return 0; 3293 3294 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3295 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3296 factor = num_stripes / 2; 3297 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3298 factor = num_stripes - 1; 3299 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3300 factor = num_stripes - 2; 3301 } else { 3302 factor = num_stripes; 3303 } 3304 3305 for (i = 0; i < num_stripes; i++) { 3306 stripe = btrfs_stripe_nr(chunk, i); 3307 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3308 continue; 3309 3310 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3311 stripe_length = btrfs_chunk_length(leaf, chunk); 3312 stripe_length = div_u64(stripe_length, factor); 3313 3314 if (stripe_offset < bargs->pend && 3315 stripe_offset + stripe_length > bargs->pstart) 3316 return 0; 3317 } 3318 3319 return 1; 3320 } 3321 3322 /* [vstart, vend) */ 3323 static int chunk_vrange_filter(struct extent_buffer *leaf, 3324 struct btrfs_chunk *chunk, 3325 u64 chunk_offset, 3326 struct btrfs_balance_args *bargs) 3327 { 3328 if (chunk_offset < bargs->vend && 3329 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3330 /* at least part of the chunk is inside this vrange */ 3331 return 0; 3332 3333 return 1; 3334 } 3335 3336 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3337 struct btrfs_chunk *chunk, 3338 struct btrfs_balance_args *bargs) 3339 { 3340 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3341 3342 if (bargs->stripes_min <= num_stripes 3343 && num_stripes <= bargs->stripes_max) 3344 return 0; 3345 3346 return 1; 3347 } 3348 3349 static int chunk_soft_convert_filter(u64 chunk_type, 3350 struct btrfs_balance_args *bargs) 3351 { 3352 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3353 return 0; 3354 3355 chunk_type = chunk_to_extended(chunk_type) & 3356 BTRFS_EXTENDED_PROFILE_MASK; 3357 3358 if (bargs->target == chunk_type) 3359 return 1; 3360 3361 return 0; 3362 } 3363 3364 static int should_balance_chunk(struct btrfs_fs_info *fs_info, 3365 struct extent_buffer *leaf, 3366 struct btrfs_chunk *chunk, u64 chunk_offset) 3367 { 3368 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3369 struct btrfs_balance_args *bargs = NULL; 3370 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3371 3372 /* type filter */ 3373 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3374 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3375 return 0; 3376 } 3377 3378 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3379 bargs = &bctl->data; 3380 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3381 bargs = &bctl->sys; 3382 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3383 bargs = &bctl->meta; 3384 3385 /* profiles filter */ 3386 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3387 chunk_profiles_filter(chunk_type, bargs)) { 3388 return 0; 3389 } 3390 3391 /* usage filter */ 3392 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3393 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3394 return 0; 3395 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3396 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3397 return 0; 3398 } 3399 3400 /* devid filter */ 3401 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3402 chunk_devid_filter(leaf, chunk, bargs)) { 3403 return 0; 3404 } 3405 3406 /* drange filter, makes sense only with devid filter */ 3407 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3408 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 3409 return 0; 3410 } 3411 3412 /* vrange filter */ 3413 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3414 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3415 return 0; 3416 } 3417 3418 /* stripes filter */ 3419 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3420 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3421 return 0; 3422 } 3423 3424 /* soft profile changing mode */ 3425 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3426 chunk_soft_convert_filter(chunk_type, bargs)) { 3427 return 0; 3428 } 3429 3430 /* 3431 * limited by count, must be the last filter 3432 */ 3433 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3434 if (bargs->limit == 0) 3435 return 0; 3436 else 3437 bargs->limit--; 3438 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3439 /* 3440 * Same logic as the 'limit' filter; the minimum cannot be 3441 * determined here because we do not have the global information 3442 * about the count of all chunks that satisfy the filters. 3443 */ 3444 if (bargs->limit_max == 0) 3445 return 0; 3446 else 3447 bargs->limit_max--; 3448 } 3449 3450 return 1; 3451 } 3452 3453 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3454 { 3455 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3456 struct btrfs_root *chunk_root = fs_info->chunk_root; 3457 struct btrfs_root *dev_root = fs_info->dev_root; 3458 struct list_head *devices; 3459 struct btrfs_device *device; 3460 u64 old_size; 3461 u64 size_to_free; 3462 u64 chunk_type; 3463 struct btrfs_chunk *chunk; 3464 struct btrfs_path *path = NULL; 3465 struct btrfs_key key; 3466 struct btrfs_key found_key; 3467 struct btrfs_trans_handle *trans; 3468 struct extent_buffer *leaf; 3469 int slot; 3470 int ret; 3471 int enospc_errors = 0; 3472 bool counting = true; 3473 /* The single value limit and min/max limits use the same bytes in the */ 3474 u64 limit_data = bctl->data.limit; 3475 u64 limit_meta = bctl->meta.limit; 3476 u64 limit_sys = bctl->sys.limit; 3477 u32 count_data = 0; 3478 u32 count_meta = 0; 3479 u32 count_sys = 0; 3480 int chunk_reserved = 0; 3481 u64 bytes_used = 0; 3482 3483 /* step one make some room on all the devices */ 3484 devices = &fs_info->fs_devices->devices; 3485 list_for_each_entry(device, devices, dev_list) { 3486 old_size = btrfs_device_get_total_bytes(device); 3487 size_to_free = div_factor(old_size, 1); 3488 size_to_free = min_t(u64, size_to_free, SZ_1M); 3489 if (!device->writeable || 3490 btrfs_device_get_total_bytes(device) - 3491 btrfs_device_get_bytes_used(device) > size_to_free || 3492 device->is_tgtdev_for_dev_replace) 3493 continue; 3494 3495 ret = btrfs_shrink_device(device, old_size - size_to_free); 3496 if (ret == -ENOSPC) 3497 break; 3498 if (ret) { 3499 /* btrfs_shrink_device never returns ret > 0 */ 3500 WARN_ON(ret > 0); 3501 goto error; 3502 } 3503 3504 trans = btrfs_start_transaction(dev_root, 0); 3505 if (IS_ERR(trans)) { 3506 ret = PTR_ERR(trans); 3507 btrfs_info_in_rcu(fs_info, 3508 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu", 3509 rcu_str_deref(device->name), ret, 3510 old_size, old_size - size_to_free); 3511 goto error; 3512 } 3513 3514 ret = btrfs_grow_device(trans, device, old_size); 3515 if (ret) { 3516 btrfs_end_transaction(trans); 3517 /* btrfs_grow_device never returns ret > 0 */ 3518 WARN_ON(ret > 0); 3519 btrfs_info_in_rcu(fs_info, 3520 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu", 3521 rcu_str_deref(device->name), ret, 3522 old_size, old_size - size_to_free); 3523 goto error; 3524 } 3525 3526 btrfs_end_transaction(trans); 3527 } 3528 3529 /* step two, relocate all the chunks */ 3530 path = btrfs_alloc_path(); 3531 if (!path) { 3532 ret = -ENOMEM; 3533 goto error; 3534 } 3535 3536 /* zero out stat counters */ 3537 spin_lock(&fs_info->balance_lock); 3538 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3539 spin_unlock(&fs_info->balance_lock); 3540 again: 3541 if (!counting) { 3542 /* 3543 * The single value limit and min/max limits use the same bytes 3544 * in the 3545 */ 3546 bctl->data.limit = limit_data; 3547 bctl->meta.limit = limit_meta; 3548 bctl->sys.limit = limit_sys; 3549 } 3550 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3551 key.offset = (u64)-1; 3552 key.type = BTRFS_CHUNK_ITEM_KEY; 3553 3554 while (1) { 3555 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3556 atomic_read(&fs_info->balance_cancel_req)) { 3557 ret = -ECANCELED; 3558 goto error; 3559 } 3560 3561 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3562 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3563 if (ret < 0) { 3564 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3565 goto error; 3566 } 3567 3568 /* 3569 * this shouldn't happen, it means the last relocate 3570 * failed 3571 */ 3572 if (ret == 0) 3573 BUG(); /* FIXME break ? */ 3574 3575 ret = btrfs_previous_item(chunk_root, path, 0, 3576 BTRFS_CHUNK_ITEM_KEY); 3577 if (ret) { 3578 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3579 ret = 0; 3580 break; 3581 } 3582 3583 leaf = path->nodes[0]; 3584 slot = path->slots[0]; 3585 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3586 3587 if (found_key.objectid != key.objectid) { 3588 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3589 break; 3590 } 3591 3592 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3593 chunk_type = btrfs_chunk_type(leaf, chunk); 3594 3595 if (!counting) { 3596 spin_lock(&fs_info->balance_lock); 3597 bctl->stat.considered++; 3598 spin_unlock(&fs_info->balance_lock); 3599 } 3600 3601 ret = should_balance_chunk(fs_info, leaf, chunk, 3602 found_key.offset); 3603 3604 btrfs_release_path(path); 3605 if (!ret) { 3606 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3607 goto loop; 3608 } 3609 3610 if (counting) { 3611 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3612 spin_lock(&fs_info->balance_lock); 3613 bctl->stat.expected++; 3614 spin_unlock(&fs_info->balance_lock); 3615 3616 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3617 count_data++; 3618 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3619 count_sys++; 3620 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3621 count_meta++; 3622 3623 goto loop; 3624 } 3625 3626 /* 3627 * Apply limit_min filter, no need to check if the LIMITS 3628 * filter is used, limit_min is 0 by default 3629 */ 3630 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3631 count_data < bctl->data.limit_min) 3632 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3633 count_meta < bctl->meta.limit_min) 3634 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3635 count_sys < bctl->sys.limit_min)) { 3636 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3637 goto loop; 3638 } 3639 3640 ASSERT(fs_info->data_sinfo); 3641 spin_lock(&fs_info->data_sinfo->lock); 3642 bytes_used = fs_info->data_sinfo->bytes_used; 3643 spin_unlock(&fs_info->data_sinfo->lock); 3644 3645 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3646 !chunk_reserved && !bytes_used) { 3647 trans = btrfs_start_transaction(chunk_root, 0); 3648 if (IS_ERR(trans)) { 3649 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3650 ret = PTR_ERR(trans); 3651 goto error; 3652 } 3653 3654 ret = btrfs_force_chunk_alloc(trans, fs_info, 3655 BTRFS_BLOCK_GROUP_DATA); 3656 btrfs_end_transaction(trans); 3657 if (ret < 0) { 3658 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3659 goto error; 3660 } 3661 chunk_reserved = 1; 3662 } 3663 3664 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3665 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3666 if (ret && ret != -ENOSPC) 3667 goto error; 3668 if (ret == -ENOSPC) { 3669 enospc_errors++; 3670 } else { 3671 spin_lock(&fs_info->balance_lock); 3672 bctl->stat.completed++; 3673 spin_unlock(&fs_info->balance_lock); 3674 } 3675 loop: 3676 if (found_key.offset == 0) 3677 break; 3678 key.offset = found_key.offset - 1; 3679 } 3680 3681 if (counting) { 3682 btrfs_release_path(path); 3683 counting = false; 3684 goto again; 3685 } 3686 error: 3687 btrfs_free_path(path); 3688 if (enospc_errors) { 3689 btrfs_info(fs_info, "%d enospc errors during balance", 3690 enospc_errors); 3691 if (!ret) 3692 ret = -ENOSPC; 3693 } 3694 3695 return ret; 3696 } 3697 3698 /** 3699 * alloc_profile_is_valid - see if a given profile is valid and reduced 3700 * @flags: profile to validate 3701 * @extended: if true @flags is treated as an extended profile 3702 */ 3703 static int alloc_profile_is_valid(u64 flags, int extended) 3704 { 3705 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3706 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3707 3708 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3709 3710 /* 1) check that all other bits are zeroed */ 3711 if (flags & ~mask) 3712 return 0; 3713 3714 /* 2) see if profile is reduced */ 3715 if (flags == 0) 3716 return !extended; /* "0" is valid for usual profiles */ 3717 3718 /* true if exactly one bit set */ 3719 return (flags & (flags - 1)) == 0; 3720 } 3721 3722 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3723 { 3724 /* cancel requested || normal exit path */ 3725 return atomic_read(&fs_info->balance_cancel_req) || 3726 (atomic_read(&fs_info->balance_pause_req) == 0 && 3727 atomic_read(&fs_info->balance_cancel_req) == 0); 3728 } 3729 3730 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3731 { 3732 int ret; 3733 3734 unset_balance_control(fs_info); 3735 ret = del_balance_item(fs_info); 3736 if (ret) 3737 btrfs_handle_fs_error(fs_info, ret, NULL); 3738 3739 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3740 } 3741 3742 /* Non-zero return value signifies invalidity */ 3743 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3744 u64 allowed) 3745 { 3746 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3747 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3748 (bctl_arg->target & ~allowed))); 3749 } 3750 3751 /* 3752 * Should be called with both balance and volume mutexes held 3753 */ 3754 int btrfs_balance(struct btrfs_balance_control *bctl, 3755 struct btrfs_ioctl_balance_args *bargs) 3756 { 3757 struct btrfs_fs_info *fs_info = bctl->fs_info; 3758 u64 allowed; 3759 int mixed = 0; 3760 int ret; 3761 u64 num_devices; 3762 unsigned seq; 3763 3764 if (btrfs_fs_closing(fs_info) || 3765 atomic_read(&fs_info->balance_pause_req) || 3766 atomic_read(&fs_info->balance_cancel_req)) { 3767 ret = -EINVAL; 3768 goto out; 3769 } 3770 3771 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3772 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3773 mixed = 1; 3774 3775 /* 3776 * In case of mixed groups both data and meta should be picked, 3777 * and identical options should be given for both of them. 3778 */ 3779 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3780 if (mixed && (bctl->flags & allowed)) { 3781 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3782 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3783 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3784 btrfs_err(fs_info, 3785 "with mixed groups data and metadata balance options must be the same"); 3786 ret = -EINVAL; 3787 goto out; 3788 } 3789 } 3790 3791 num_devices = fs_info->fs_devices->num_devices; 3792 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 3793 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3794 BUG_ON(num_devices < 1); 3795 num_devices--; 3796 } 3797 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 3798 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP; 3799 if (num_devices > 1) 3800 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3801 if (num_devices > 2) 3802 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3803 if (num_devices > 3) 3804 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3805 BTRFS_BLOCK_GROUP_RAID6); 3806 if (validate_convert_profile(&bctl->data, allowed)) { 3807 btrfs_err(fs_info, 3808 "unable to start balance with target data profile %llu", 3809 bctl->data.target); 3810 ret = -EINVAL; 3811 goto out; 3812 } 3813 if (validate_convert_profile(&bctl->meta, allowed)) { 3814 btrfs_err(fs_info, 3815 "unable to start balance with target metadata profile %llu", 3816 bctl->meta.target); 3817 ret = -EINVAL; 3818 goto out; 3819 } 3820 if (validate_convert_profile(&bctl->sys, allowed)) { 3821 btrfs_err(fs_info, 3822 "unable to start balance with target system profile %llu", 3823 bctl->sys.target); 3824 ret = -EINVAL; 3825 goto out; 3826 } 3827 3828 /* allow to reduce meta or sys integrity only if force set */ 3829 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3830 BTRFS_BLOCK_GROUP_RAID10 | 3831 BTRFS_BLOCK_GROUP_RAID5 | 3832 BTRFS_BLOCK_GROUP_RAID6; 3833 do { 3834 seq = read_seqbegin(&fs_info->profiles_lock); 3835 3836 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3837 (fs_info->avail_system_alloc_bits & allowed) && 3838 !(bctl->sys.target & allowed)) || 3839 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3840 (fs_info->avail_metadata_alloc_bits & allowed) && 3841 !(bctl->meta.target & allowed))) { 3842 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3843 btrfs_info(fs_info, 3844 "force reducing metadata integrity"); 3845 } else { 3846 btrfs_err(fs_info, 3847 "balance will reduce metadata integrity, use force if you want this"); 3848 ret = -EINVAL; 3849 goto out; 3850 } 3851 } 3852 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3853 3854 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) < 3855 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) { 3856 btrfs_warn(fs_info, 3857 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx", 3858 bctl->meta.target, bctl->data.target); 3859 } 3860 3861 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3862 fs_info->num_tolerated_disk_barrier_failures = min( 3863 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info), 3864 btrfs_get_num_tolerated_disk_barrier_failures( 3865 bctl->sys.target)); 3866 } 3867 3868 ret = insert_balance_item(fs_info, bctl); 3869 if (ret && ret != -EEXIST) 3870 goto out; 3871 3872 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3873 BUG_ON(ret == -EEXIST); 3874 set_balance_control(bctl); 3875 } else { 3876 BUG_ON(ret != -EEXIST); 3877 spin_lock(&fs_info->balance_lock); 3878 update_balance_args(bctl); 3879 spin_unlock(&fs_info->balance_lock); 3880 } 3881 3882 atomic_inc(&fs_info->balance_running); 3883 mutex_unlock(&fs_info->balance_mutex); 3884 3885 ret = __btrfs_balance(fs_info); 3886 3887 mutex_lock(&fs_info->balance_mutex); 3888 atomic_dec(&fs_info->balance_running); 3889 3890 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3891 fs_info->num_tolerated_disk_barrier_failures = 3892 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3893 } 3894 3895 if (bargs) { 3896 memset(bargs, 0, sizeof(*bargs)); 3897 update_ioctl_balance_args(fs_info, 0, bargs); 3898 } 3899 3900 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3901 balance_need_close(fs_info)) { 3902 __cancel_balance(fs_info); 3903 } 3904 3905 wake_up(&fs_info->balance_wait_q); 3906 3907 return ret; 3908 out: 3909 if (bctl->flags & BTRFS_BALANCE_RESUME) 3910 __cancel_balance(fs_info); 3911 else { 3912 kfree(bctl); 3913 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3914 } 3915 return ret; 3916 } 3917 3918 static int balance_kthread(void *data) 3919 { 3920 struct btrfs_fs_info *fs_info = data; 3921 int ret = 0; 3922 3923 mutex_lock(&fs_info->volume_mutex); 3924 mutex_lock(&fs_info->balance_mutex); 3925 3926 if (fs_info->balance_ctl) { 3927 btrfs_info(fs_info, "continuing balance"); 3928 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3929 } 3930 3931 mutex_unlock(&fs_info->balance_mutex); 3932 mutex_unlock(&fs_info->volume_mutex); 3933 3934 return ret; 3935 } 3936 3937 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3938 { 3939 struct task_struct *tsk; 3940 3941 spin_lock(&fs_info->balance_lock); 3942 if (!fs_info->balance_ctl) { 3943 spin_unlock(&fs_info->balance_lock); 3944 return 0; 3945 } 3946 spin_unlock(&fs_info->balance_lock); 3947 3948 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 3949 btrfs_info(fs_info, "force skipping balance"); 3950 return 0; 3951 } 3952 3953 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3954 return PTR_ERR_OR_ZERO(tsk); 3955 } 3956 3957 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3958 { 3959 struct btrfs_balance_control *bctl; 3960 struct btrfs_balance_item *item; 3961 struct btrfs_disk_balance_args disk_bargs; 3962 struct btrfs_path *path; 3963 struct extent_buffer *leaf; 3964 struct btrfs_key key; 3965 int ret; 3966 3967 path = btrfs_alloc_path(); 3968 if (!path) 3969 return -ENOMEM; 3970 3971 key.objectid = BTRFS_BALANCE_OBJECTID; 3972 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3973 key.offset = 0; 3974 3975 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3976 if (ret < 0) 3977 goto out; 3978 if (ret > 0) { /* ret = -ENOENT; */ 3979 ret = 0; 3980 goto out; 3981 } 3982 3983 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3984 if (!bctl) { 3985 ret = -ENOMEM; 3986 goto out; 3987 } 3988 3989 leaf = path->nodes[0]; 3990 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3991 3992 bctl->fs_info = fs_info; 3993 bctl->flags = btrfs_balance_flags(leaf, item); 3994 bctl->flags |= BTRFS_BALANCE_RESUME; 3995 3996 btrfs_balance_data(leaf, item, &disk_bargs); 3997 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 3998 btrfs_balance_meta(leaf, item, &disk_bargs); 3999 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4000 btrfs_balance_sys(leaf, item, &disk_bargs); 4001 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4002 4003 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); 4004 4005 mutex_lock(&fs_info->volume_mutex); 4006 mutex_lock(&fs_info->balance_mutex); 4007 4008 set_balance_control(bctl); 4009 4010 mutex_unlock(&fs_info->balance_mutex); 4011 mutex_unlock(&fs_info->volume_mutex); 4012 out: 4013 btrfs_free_path(path); 4014 return ret; 4015 } 4016 4017 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4018 { 4019 int ret = 0; 4020 4021 mutex_lock(&fs_info->balance_mutex); 4022 if (!fs_info->balance_ctl) { 4023 mutex_unlock(&fs_info->balance_mutex); 4024 return -ENOTCONN; 4025 } 4026 4027 if (atomic_read(&fs_info->balance_running)) { 4028 atomic_inc(&fs_info->balance_pause_req); 4029 mutex_unlock(&fs_info->balance_mutex); 4030 4031 wait_event(fs_info->balance_wait_q, 4032 atomic_read(&fs_info->balance_running) == 0); 4033 4034 mutex_lock(&fs_info->balance_mutex); 4035 /* we are good with balance_ctl ripped off from under us */ 4036 BUG_ON(atomic_read(&fs_info->balance_running)); 4037 atomic_dec(&fs_info->balance_pause_req); 4038 } else { 4039 ret = -ENOTCONN; 4040 } 4041 4042 mutex_unlock(&fs_info->balance_mutex); 4043 return ret; 4044 } 4045 4046 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4047 { 4048 if (fs_info->sb->s_flags & MS_RDONLY) 4049 return -EROFS; 4050 4051 mutex_lock(&fs_info->balance_mutex); 4052 if (!fs_info->balance_ctl) { 4053 mutex_unlock(&fs_info->balance_mutex); 4054 return -ENOTCONN; 4055 } 4056 4057 atomic_inc(&fs_info->balance_cancel_req); 4058 /* 4059 * if we are running just wait and return, balance item is 4060 * deleted in btrfs_balance in this case 4061 */ 4062 if (atomic_read(&fs_info->balance_running)) { 4063 mutex_unlock(&fs_info->balance_mutex); 4064 wait_event(fs_info->balance_wait_q, 4065 atomic_read(&fs_info->balance_running) == 0); 4066 mutex_lock(&fs_info->balance_mutex); 4067 } else { 4068 /* __cancel_balance needs volume_mutex */ 4069 mutex_unlock(&fs_info->balance_mutex); 4070 mutex_lock(&fs_info->volume_mutex); 4071 mutex_lock(&fs_info->balance_mutex); 4072 4073 if (fs_info->balance_ctl) 4074 __cancel_balance(fs_info); 4075 4076 mutex_unlock(&fs_info->volume_mutex); 4077 } 4078 4079 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 4080 atomic_dec(&fs_info->balance_cancel_req); 4081 mutex_unlock(&fs_info->balance_mutex); 4082 return 0; 4083 } 4084 4085 static int btrfs_uuid_scan_kthread(void *data) 4086 { 4087 struct btrfs_fs_info *fs_info = data; 4088 struct btrfs_root *root = fs_info->tree_root; 4089 struct btrfs_key key; 4090 struct btrfs_key max_key; 4091 struct btrfs_path *path = NULL; 4092 int ret = 0; 4093 struct extent_buffer *eb; 4094 int slot; 4095 struct btrfs_root_item root_item; 4096 u32 item_size; 4097 struct btrfs_trans_handle *trans = NULL; 4098 4099 path = btrfs_alloc_path(); 4100 if (!path) { 4101 ret = -ENOMEM; 4102 goto out; 4103 } 4104 4105 key.objectid = 0; 4106 key.type = BTRFS_ROOT_ITEM_KEY; 4107 key.offset = 0; 4108 4109 max_key.objectid = (u64)-1; 4110 max_key.type = BTRFS_ROOT_ITEM_KEY; 4111 max_key.offset = (u64)-1; 4112 4113 while (1) { 4114 ret = btrfs_search_forward(root, &key, path, 0); 4115 if (ret) { 4116 if (ret > 0) 4117 ret = 0; 4118 break; 4119 } 4120 4121 if (key.type != BTRFS_ROOT_ITEM_KEY || 4122 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4123 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4124 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4125 goto skip; 4126 4127 eb = path->nodes[0]; 4128 slot = path->slots[0]; 4129 item_size = btrfs_item_size_nr(eb, slot); 4130 if (item_size < sizeof(root_item)) 4131 goto skip; 4132 4133 read_extent_buffer(eb, &root_item, 4134 btrfs_item_ptr_offset(eb, slot), 4135 (int)sizeof(root_item)); 4136 if (btrfs_root_refs(&root_item) == 0) 4137 goto skip; 4138 4139 if (!btrfs_is_empty_uuid(root_item.uuid) || 4140 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4141 if (trans) 4142 goto update_tree; 4143 4144 btrfs_release_path(path); 4145 /* 4146 * 1 - subvol uuid item 4147 * 1 - received_subvol uuid item 4148 */ 4149 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4150 if (IS_ERR(trans)) { 4151 ret = PTR_ERR(trans); 4152 break; 4153 } 4154 continue; 4155 } else { 4156 goto skip; 4157 } 4158 update_tree: 4159 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4160 ret = btrfs_uuid_tree_add(trans, fs_info, 4161 root_item.uuid, 4162 BTRFS_UUID_KEY_SUBVOL, 4163 key.objectid); 4164 if (ret < 0) { 4165 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4166 ret); 4167 break; 4168 } 4169 } 4170 4171 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4172 ret = btrfs_uuid_tree_add(trans, fs_info, 4173 root_item.received_uuid, 4174 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4175 key.objectid); 4176 if (ret < 0) { 4177 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4178 ret); 4179 break; 4180 } 4181 } 4182 4183 skip: 4184 if (trans) { 4185 ret = btrfs_end_transaction(trans); 4186 trans = NULL; 4187 if (ret) 4188 break; 4189 } 4190 4191 btrfs_release_path(path); 4192 if (key.offset < (u64)-1) { 4193 key.offset++; 4194 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4195 key.offset = 0; 4196 key.type = BTRFS_ROOT_ITEM_KEY; 4197 } else if (key.objectid < (u64)-1) { 4198 key.offset = 0; 4199 key.type = BTRFS_ROOT_ITEM_KEY; 4200 key.objectid++; 4201 } else { 4202 break; 4203 } 4204 cond_resched(); 4205 } 4206 4207 out: 4208 btrfs_free_path(path); 4209 if (trans && !IS_ERR(trans)) 4210 btrfs_end_transaction(trans); 4211 if (ret) 4212 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4213 else 4214 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4215 up(&fs_info->uuid_tree_rescan_sem); 4216 return 0; 4217 } 4218 4219 /* 4220 * Callback for btrfs_uuid_tree_iterate(). 4221 * returns: 4222 * 0 check succeeded, the entry is not outdated. 4223 * < 0 if an error occurred. 4224 * > 0 if the check failed, which means the caller shall remove the entry. 4225 */ 4226 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4227 u8 *uuid, u8 type, u64 subid) 4228 { 4229 struct btrfs_key key; 4230 int ret = 0; 4231 struct btrfs_root *subvol_root; 4232 4233 if (type != BTRFS_UUID_KEY_SUBVOL && 4234 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4235 goto out; 4236 4237 key.objectid = subid; 4238 key.type = BTRFS_ROOT_ITEM_KEY; 4239 key.offset = (u64)-1; 4240 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4241 if (IS_ERR(subvol_root)) { 4242 ret = PTR_ERR(subvol_root); 4243 if (ret == -ENOENT) 4244 ret = 1; 4245 goto out; 4246 } 4247 4248 switch (type) { 4249 case BTRFS_UUID_KEY_SUBVOL: 4250 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4251 ret = 1; 4252 break; 4253 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4254 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4255 BTRFS_UUID_SIZE)) 4256 ret = 1; 4257 break; 4258 } 4259 4260 out: 4261 return ret; 4262 } 4263 4264 static int btrfs_uuid_rescan_kthread(void *data) 4265 { 4266 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4267 int ret; 4268 4269 /* 4270 * 1st step is to iterate through the existing UUID tree and 4271 * to delete all entries that contain outdated data. 4272 * 2nd step is to add all missing entries to the UUID tree. 4273 */ 4274 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4275 if (ret < 0) { 4276 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4277 up(&fs_info->uuid_tree_rescan_sem); 4278 return ret; 4279 } 4280 return btrfs_uuid_scan_kthread(data); 4281 } 4282 4283 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4284 { 4285 struct btrfs_trans_handle *trans; 4286 struct btrfs_root *tree_root = fs_info->tree_root; 4287 struct btrfs_root *uuid_root; 4288 struct task_struct *task; 4289 int ret; 4290 4291 /* 4292 * 1 - root node 4293 * 1 - root item 4294 */ 4295 trans = btrfs_start_transaction(tree_root, 2); 4296 if (IS_ERR(trans)) 4297 return PTR_ERR(trans); 4298 4299 uuid_root = btrfs_create_tree(trans, fs_info, 4300 BTRFS_UUID_TREE_OBJECTID); 4301 if (IS_ERR(uuid_root)) { 4302 ret = PTR_ERR(uuid_root); 4303 btrfs_abort_transaction(trans, ret); 4304 btrfs_end_transaction(trans); 4305 return ret; 4306 } 4307 4308 fs_info->uuid_root = uuid_root; 4309 4310 ret = btrfs_commit_transaction(trans); 4311 if (ret) 4312 return ret; 4313 4314 down(&fs_info->uuid_tree_rescan_sem); 4315 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4316 if (IS_ERR(task)) { 4317 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4318 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4319 up(&fs_info->uuid_tree_rescan_sem); 4320 return PTR_ERR(task); 4321 } 4322 4323 return 0; 4324 } 4325 4326 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4327 { 4328 struct task_struct *task; 4329 4330 down(&fs_info->uuid_tree_rescan_sem); 4331 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4332 if (IS_ERR(task)) { 4333 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4334 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4335 up(&fs_info->uuid_tree_rescan_sem); 4336 return PTR_ERR(task); 4337 } 4338 4339 return 0; 4340 } 4341 4342 /* 4343 * shrinking a device means finding all of the device extents past 4344 * the new size, and then following the back refs to the chunks. 4345 * The chunk relocation code actually frees the device extent 4346 */ 4347 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4348 { 4349 struct btrfs_fs_info *fs_info = device->fs_info; 4350 struct btrfs_root *root = fs_info->dev_root; 4351 struct btrfs_trans_handle *trans; 4352 struct btrfs_dev_extent *dev_extent = NULL; 4353 struct btrfs_path *path; 4354 u64 length; 4355 u64 chunk_offset; 4356 int ret; 4357 int slot; 4358 int failed = 0; 4359 bool retried = false; 4360 bool checked_pending_chunks = false; 4361 struct extent_buffer *l; 4362 struct btrfs_key key; 4363 struct btrfs_super_block *super_copy = fs_info->super_copy; 4364 u64 old_total = btrfs_super_total_bytes(super_copy); 4365 u64 old_size = btrfs_device_get_total_bytes(device); 4366 u64 diff = old_size - new_size; 4367 4368 if (device->is_tgtdev_for_dev_replace) 4369 return -EINVAL; 4370 4371 path = btrfs_alloc_path(); 4372 if (!path) 4373 return -ENOMEM; 4374 4375 path->reada = READA_FORWARD; 4376 4377 mutex_lock(&fs_info->chunk_mutex); 4378 4379 btrfs_device_set_total_bytes(device, new_size); 4380 if (device->writeable) { 4381 device->fs_devices->total_rw_bytes -= diff; 4382 spin_lock(&fs_info->free_chunk_lock); 4383 fs_info->free_chunk_space -= diff; 4384 spin_unlock(&fs_info->free_chunk_lock); 4385 } 4386 mutex_unlock(&fs_info->chunk_mutex); 4387 4388 again: 4389 key.objectid = device->devid; 4390 key.offset = (u64)-1; 4391 key.type = BTRFS_DEV_EXTENT_KEY; 4392 4393 do { 4394 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4395 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4396 if (ret < 0) { 4397 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4398 goto done; 4399 } 4400 4401 ret = btrfs_previous_item(root, path, 0, key.type); 4402 if (ret) 4403 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4404 if (ret < 0) 4405 goto done; 4406 if (ret) { 4407 ret = 0; 4408 btrfs_release_path(path); 4409 break; 4410 } 4411 4412 l = path->nodes[0]; 4413 slot = path->slots[0]; 4414 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4415 4416 if (key.objectid != device->devid) { 4417 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4418 btrfs_release_path(path); 4419 break; 4420 } 4421 4422 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4423 length = btrfs_dev_extent_length(l, dev_extent); 4424 4425 if (key.offset + length <= new_size) { 4426 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4427 btrfs_release_path(path); 4428 break; 4429 } 4430 4431 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4432 btrfs_release_path(path); 4433 4434 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4435 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4436 if (ret && ret != -ENOSPC) 4437 goto done; 4438 if (ret == -ENOSPC) 4439 failed++; 4440 } while (key.offset-- > 0); 4441 4442 if (failed && !retried) { 4443 failed = 0; 4444 retried = true; 4445 goto again; 4446 } else if (failed && retried) { 4447 ret = -ENOSPC; 4448 goto done; 4449 } 4450 4451 /* Shrinking succeeded, else we would be at "done". */ 4452 trans = btrfs_start_transaction(root, 0); 4453 if (IS_ERR(trans)) { 4454 ret = PTR_ERR(trans); 4455 goto done; 4456 } 4457 4458 mutex_lock(&fs_info->chunk_mutex); 4459 4460 /* 4461 * We checked in the above loop all device extents that were already in 4462 * the device tree. However before we have updated the device's 4463 * total_bytes to the new size, we might have had chunk allocations that 4464 * have not complete yet (new block groups attached to transaction 4465 * handles), and therefore their device extents were not yet in the 4466 * device tree and we missed them in the loop above. So if we have any 4467 * pending chunk using a device extent that overlaps the device range 4468 * that we can not use anymore, commit the current transaction and 4469 * repeat the search on the device tree - this way we guarantee we will 4470 * not have chunks using device extents that end beyond 'new_size'. 4471 */ 4472 if (!checked_pending_chunks) { 4473 u64 start = new_size; 4474 u64 len = old_size - new_size; 4475 4476 if (contains_pending_extent(trans->transaction, device, 4477 &start, len)) { 4478 mutex_unlock(&fs_info->chunk_mutex); 4479 checked_pending_chunks = true; 4480 failed = 0; 4481 retried = false; 4482 ret = btrfs_commit_transaction(trans); 4483 if (ret) 4484 goto done; 4485 goto again; 4486 } 4487 } 4488 4489 btrfs_device_set_disk_total_bytes(device, new_size); 4490 if (list_empty(&device->resized_list)) 4491 list_add_tail(&device->resized_list, 4492 &fs_info->fs_devices->resized_devices); 4493 4494 WARN_ON(diff > old_total); 4495 btrfs_set_super_total_bytes(super_copy, old_total - diff); 4496 mutex_unlock(&fs_info->chunk_mutex); 4497 4498 /* Now btrfs_update_device() will change the on-disk size. */ 4499 ret = btrfs_update_device(trans, device); 4500 btrfs_end_transaction(trans); 4501 done: 4502 btrfs_free_path(path); 4503 if (ret) { 4504 mutex_lock(&fs_info->chunk_mutex); 4505 btrfs_device_set_total_bytes(device, old_size); 4506 if (device->writeable) 4507 device->fs_devices->total_rw_bytes += diff; 4508 spin_lock(&fs_info->free_chunk_lock); 4509 fs_info->free_chunk_space += diff; 4510 spin_unlock(&fs_info->free_chunk_lock); 4511 mutex_unlock(&fs_info->chunk_mutex); 4512 } 4513 return ret; 4514 } 4515 4516 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4517 struct btrfs_key *key, 4518 struct btrfs_chunk *chunk, int item_size) 4519 { 4520 struct btrfs_super_block *super_copy = fs_info->super_copy; 4521 struct btrfs_disk_key disk_key; 4522 u32 array_size; 4523 u8 *ptr; 4524 4525 mutex_lock(&fs_info->chunk_mutex); 4526 array_size = btrfs_super_sys_array_size(super_copy); 4527 if (array_size + item_size + sizeof(disk_key) 4528 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4529 mutex_unlock(&fs_info->chunk_mutex); 4530 return -EFBIG; 4531 } 4532 4533 ptr = super_copy->sys_chunk_array + array_size; 4534 btrfs_cpu_key_to_disk(&disk_key, key); 4535 memcpy(ptr, &disk_key, sizeof(disk_key)); 4536 ptr += sizeof(disk_key); 4537 memcpy(ptr, chunk, item_size); 4538 item_size += sizeof(disk_key); 4539 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4540 mutex_unlock(&fs_info->chunk_mutex); 4541 4542 return 0; 4543 } 4544 4545 /* 4546 * sort the devices in descending order by max_avail, total_avail 4547 */ 4548 static int btrfs_cmp_device_info(const void *a, const void *b) 4549 { 4550 const struct btrfs_device_info *di_a = a; 4551 const struct btrfs_device_info *di_b = b; 4552 4553 if (di_a->max_avail > di_b->max_avail) 4554 return -1; 4555 if (di_a->max_avail < di_b->max_avail) 4556 return 1; 4557 if (di_a->total_avail > di_b->total_avail) 4558 return -1; 4559 if (di_a->total_avail < di_b->total_avail) 4560 return 1; 4561 return 0; 4562 } 4563 4564 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) 4565 { 4566 /* TODO allow them to set a preferred stripe size */ 4567 return SZ_64K; 4568 } 4569 4570 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4571 { 4572 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4573 return; 4574 4575 btrfs_set_fs_incompat(info, RAID56); 4576 } 4577 4578 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \ 4579 - sizeof(struct btrfs_chunk)) \ 4580 / sizeof(struct btrfs_stripe) + 1) 4581 4582 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4583 - 2 * sizeof(struct btrfs_disk_key) \ 4584 - 2 * sizeof(struct btrfs_chunk)) \ 4585 / sizeof(struct btrfs_stripe) + 1) 4586 4587 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4588 u64 start, u64 type) 4589 { 4590 struct btrfs_fs_info *info = trans->fs_info; 4591 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4592 struct list_head *cur; 4593 struct map_lookup *map = NULL; 4594 struct extent_map_tree *em_tree; 4595 struct extent_map *em; 4596 struct btrfs_device_info *devices_info = NULL; 4597 u64 total_avail; 4598 int num_stripes; /* total number of stripes to allocate */ 4599 int data_stripes; /* number of stripes that count for 4600 block group size */ 4601 int sub_stripes; /* sub_stripes info for map */ 4602 int dev_stripes; /* stripes per dev */ 4603 int devs_max; /* max devs to use */ 4604 int devs_min; /* min devs needed */ 4605 int devs_increment; /* ndevs has to be a multiple of this */ 4606 int ncopies; /* how many copies to data has */ 4607 int ret; 4608 u64 max_stripe_size; 4609 u64 max_chunk_size; 4610 u64 stripe_size; 4611 u64 num_bytes; 4612 u64 raid_stripe_len = BTRFS_STRIPE_LEN; 4613 int ndevs; 4614 int i; 4615 int j; 4616 int index; 4617 4618 BUG_ON(!alloc_profile_is_valid(type, 0)); 4619 4620 if (list_empty(&fs_devices->alloc_list)) 4621 return -ENOSPC; 4622 4623 index = __get_raid_index(type); 4624 4625 sub_stripes = btrfs_raid_array[index].sub_stripes; 4626 dev_stripes = btrfs_raid_array[index].dev_stripes; 4627 devs_max = btrfs_raid_array[index].devs_max; 4628 devs_min = btrfs_raid_array[index].devs_min; 4629 devs_increment = btrfs_raid_array[index].devs_increment; 4630 ncopies = btrfs_raid_array[index].ncopies; 4631 4632 if (type & BTRFS_BLOCK_GROUP_DATA) { 4633 max_stripe_size = SZ_1G; 4634 max_chunk_size = 10 * max_stripe_size; 4635 if (!devs_max) 4636 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4637 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4638 /* for larger filesystems, use larger metadata chunks */ 4639 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4640 max_stripe_size = SZ_1G; 4641 else 4642 max_stripe_size = SZ_256M; 4643 max_chunk_size = max_stripe_size; 4644 if (!devs_max) 4645 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4646 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4647 max_stripe_size = SZ_32M; 4648 max_chunk_size = 2 * max_stripe_size; 4649 if (!devs_max) 4650 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4651 } else { 4652 btrfs_err(info, "invalid chunk type 0x%llx requested", 4653 type); 4654 BUG_ON(1); 4655 } 4656 4657 /* we don't want a chunk larger than 10% of writeable space */ 4658 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4659 max_chunk_size); 4660 4661 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4662 GFP_NOFS); 4663 if (!devices_info) 4664 return -ENOMEM; 4665 4666 cur = fs_devices->alloc_list.next; 4667 4668 /* 4669 * in the first pass through the devices list, we gather information 4670 * about the available holes on each device. 4671 */ 4672 ndevs = 0; 4673 while (cur != &fs_devices->alloc_list) { 4674 struct btrfs_device *device; 4675 u64 max_avail; 4676 u64 dev_offset; 4677 4678 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 4679 4680 cur = cur->next; 4681 4682 if (!device->writeable) { 4683 WARN(1, KERN_ERR 4684 "BTRFS: read-only device in alloc_list\n"); 4685 continue; 4686 } 4687 4688 if (!device->in_fs_metadata || 4689 device->is_tgtdev_for_dev_replace) 4690 continue; 4691 4692 if (device->total_bytes > device->bytes_used) 4693 total_avail = device->total_bytes - device->bytes_used; 4694 else 4695 total_avail = 0; 4696 4697 /* If there is no space on this device, skip it. */ 4698 if (total_avail == 0) 4699 continue; 4700 4701 ret = find_free_dev_extent(trans, device, 4702 max_stripe_size * dev_stripes, 4703 &dev_offset, &max_avail); 4704 if (ret && ret != -ENOSPC) 4705 goto error; 4706 4707 if (ret == 0) 4708 max_avail = max_stripe_size * dev_stripes; 4709 4710 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4711 continue; 4712 4713 if (ndevs == fs_devices->rw_devices) { 4714 WARN(1, "%s: found more than %llu devices\n", 4715 __func__, fs_devices->rw_devices); 4716 break; 4717 } 4718 devices_info[ndevs].dev_offset = dev_offset; 4719 devices_info[ndevs].max_avail = max_avail; 4720 devices_info[ndevs].total_avail = total_avail; 4721 devices_info[ndevs].dev = device; 4722 ++ndevs; 4723 } 4724 4725 /* 4726 * now sort the devices by hole size / available space 4727 */ 4728 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4729 btrfs_cmp_device_info, NULL); 4730 4731 /* round down to number of usable stripes */ 4732 ndevs -= ndevs % devs_increment; 4733 4734 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4735 ret = -ENOSPC; 4736 goto error; 4737 } 4738 4739 if (devs_max && ndevs > devs_max) 4740 ndevs = devs_max; 4741 /* 4742 * the primary goal is to maximize the number of stripes, so use as many 4743 * devices as possible, even if the stripes are not maximum sized. 4744 */ 4745 stripe_size = devices_info[ndevs-1].max_avail; 4746 num_stripes = ndevs * dev_stripes; 4747 4748 /* 4749 * this will have to be fixed for RAID1 and RAID10 over 4750 * more drives 4751 */ 4752 data_stripes = num_stripes / ncopies; 4753 4754 if (type & BTRFS_BLOCK_GROUP_RAID5) { 4755 raid_stripe_len = find_raid56_stripe_len(ndevs - 1, 4756 info->stripesize); 4757 data_stripes = num_stripes - 1; 4758 } 4759 if (type & BTRFS_BLOCK_GROUP_RAID6) { 4760 raid_stripe_len = find_raid56_stripe_len(ndevs - 2, 4761 info->stripesize); 4762 data_stripes = num_stripes - 2; 4763 } 4764 4765 /* 4766 * Use the number of data stripes to figure out how big this chunk 4767 * is really going to be in terms of logical address space, 4768 * and compare that answer with the max chunk size 4769 */ 4770 if (stripe_size * data_stripes > max_chunk_size) { 4771 u64 mask = (1ULL << 24) - 1; 4772 4773 stripe_size = div_u64(max_chunk_size, data_stripes); 4774 4775 /* bump the answer up to a 16MB boundary */ 4776 stripe_size = (stripe_size + mask) & ~mask; 4777 4778 /* but don't go higher than the limits we found 4779 * while searching for free extents 4780 */ 4781 if (stripe_size > devices_info[ndevs-1].max_avail) 4782 stripe_size = devices_info[ndevs-1].max_avail; 4783 } 4784 4785 stripe_size = div_u64(stripe_size, dev_stripes); 4786 4787 /* align to BTRFS_STRIPE_LEN */ 4788 stripe_size = div_u64(stripe_size, raid_stripe_len); 4789 stripe_size *= raid_stripe_len; 4790 4791 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4792 if (!map) { 4793 ret = -ENOMEM; 4794 goto error; 4795 } 4796 map->num_stripes = num_stripes; 4797 4798 for (i = 0; i < ndevs; ++i) { 4799 for (j = 0; j < dev_stripes; ++j) { 4800 int s = i * dev_stripes + j; 4801 map->stripes[s].dev = devices_info[i].dev; 4802 map->stripes[s].physical = devices_info[i].dev_offset + 4803 j * stripe_size; 4804 } 4805 } 4806 map->sector_size = info->sectorsize; 4807 map->stripe_len = raid_stripe_len; 4808 map->io_align = raid_stripe_len; 4809 map->io_width = raid_stripe_len; 4810 map->type = type; 4811 map->sub_stripes = sub_stripes; 4812 4813 num_bytes = stripe_size * data_stripes; 4814 4815 trace_btrfs_chunk_alloc(info, map, start, num_bytes); 4816 4817 em = alloc_extent_map(); 4818 if (!em) { 4819 kfree(map); 4820 ret = -ENOMEM; 4821 goto error; 4822 } 4823 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4824 em->map_lookup = map; 4825 em->start = start; 4826 em->len = num_bytes; 4827 em->block_start = 0; 4828 em->block_len = em->len; 4829 em->orig_block_len = stripe_size; 4830 4831 em_tree = &info->mapping_tree.map_tree; 4832 write_lock(&em_tree->lock); 4833 ret = add_extent_mapping(em_tree, em, 0); 4834 if (!ret) { 4835 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4836 atomic_inc(&em->refs); 4837 } 4838 write_unlock(&em_tree->lock); 4839 if (ret) { 4840 free_extent_map(em); 4841 goto error; 4842 } 4843 4844 ret = btrfs_make_block_group(trans, info, 0, type, 4845 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4846 start, num_bytes); 4847 if (ret) 4848 goto error_del_extent; 4849 4850 for (i = 0; i < map->num_stripes; i++) { 4851 num_bytes = map->stripes[i].dev->bytes_used + stripe_size; 4852 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); 4853 } 4854 4855 spin_lock(&info->free_chunk_lock); 4856 info->free_chunk_space -= (stripe_size * map->num_stripes); 4857 spin_unlock(&info->free_chunk_lock); 4858 4859 free_extent_map(em); 4860 check_raid56_incompat_flag(info, type); 4861 4862 kfree(devices_info); 4863 return 0; 4864 4865 error_del_extent: 4866 write_lock(&em_tree->lock); 4867 remove_extent_mapping(em_tree, em); 4868 write_unlock(&em_tree->lock); 4869 4870 /* One for our allocation */ 4871 free_extent_map(em); 4872 /* One for the tree reference */ 4873 free_extent_map(em); 4874 /* One for the pending_chunks list reference */ 4875 free_extent_map(em); 4876 error: 4877 kfree(devices_info); 4878 return ret; 4879 } 4880 4881 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4882 struct btrfs_fs_info *fs_info, 4883 u64 chunk_offset, u64 chunk_size) 4884 { 4885 struct btrfs_root *extent_root = fs_info->extent_root; 4886 struct btrfs_root *chunk_root = fs_info->chunk_root; 4887 struct btrfs_key key; 4888 struct btrfs_device *device; 4889 struct btrfs_chunk *chunk; 4890 struct btrfs_stripe *stripe; 4891 struct extent_map_tree *em_tree; 4892 struct extent_map *em; 4893 struct map_lookup *map; 4894 size_t item_size; 4895 u64 dev_offset; 4896 u64 stripe_size; 4897 int i = 0; 4898 int ret = 0; 4899 4900 em_tree = &fs_info->mapping_tree.map_tree; 4901 read_lock(&em_tree->lock); 4902 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size); 4903 read_unlock(&em_tree->lock); 4904 4905 if (!em) { 4906 btrfs_crit(fs_info, "unable to find logical %Lu len %Lu", 4907 chunk_offset, chunk_size); 4908 return -EINVAL; 4909 } 4910 4911 if (em->start != chunk_offset || em->len != chunk_size) { 4912 btrfs_crit(fs_info, 4913 "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu", 4914 chunk_offset, chunk_size, em->start, em->len); 4915 free_extent_map(em); 4916 return -EINVAL; 4917 } 4918 4919 map = em->map_lookup; 4920 item_size = btrfs_chunk_item_size(map->num_stripes); 4921 stripe_size = em->orig_block_len; 4922 4923 chunk = kzalloc(item_size, GFP_NOFS); 4924 if (!chunk) { 4925 ret = -ENOMEM; 4926 goto out; 4927 } 4928 4929 /* 4930 * Take the device list mutex to prevent races with the final phase of 4931 * a device replace operation that replaces the device object associated 4932 * with the map's stripes, because the device object's id can change 4933 * at any time during that final phase of the device replace operation 4934 * (dev-replace.c:btrfs_dev_replace_finishing()). 4935 */ 4936 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4937 for (i = 0; i < map->num_stripes; i++) { 4938 device = map->stripes[i].dev; 4939 dev_offset = map->stripes[i].physical; 4940 4941 ret = btrfs_update_device(trans, device); 4942 if (ret) 4943 break; 4944 ret = btrfs_alloc_dev_extent(trans, device, 4945 chunk_root->root_key.objectid, 4946 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4947 chunk_offset, dev_offset, 4948 stripe_size); 4949 if (ret) 4950 break; 4951 } 4952 if (ret) { 4953 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4954 goto out; 4955 } 4956 4957 stripe = &chunk->stripe; 4958 for (i = 0; i < map->num_stripes; i++) { 4959 device = map->stripes[i].dev; 4960 dev_offset = map->stripes[i].physical; 4961 4962 btrfs_set_stack_stripe_devid(stripe, device->devid); 4963 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4964 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4965 stripe++; 4966 } 4967 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4968 4969 btrfs_set_stack_chunk_length(chunk, chunk_size); 4970 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4971 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4972 btrfs_set_stack_chunk_type(chunk, map->type); 4973 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4974 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4975 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4976 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 4977 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4978 4979 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4980 key.type = BTRFS_CHUNK_ITEM_KEY; 4981 key.offset = chunk_offset; 4982 4983 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4984 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4985 /* 4986 * TODO: Cleanup of inserted chunk root in case of 4987 * failure. 4988 */ 4989 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 4990 } 4991 4992 out: 4993 kfree(chunk); 4994 free_extent_map(em); 4995 return ret; 4996 } 4997 4998 /* 4999 * Chunk allocation falls into two parts. The first part does works 5000 * that make the new allocated chunk useable, but not do any operation 5001 * that modifies the chunk tree. The second part does the works that 5002 * require modifying the chunk tree. This division is important for the 5003 * bootstrap process of adding storage to a seed btrfs. 5004 */ 5005 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 5006 struct btrfs_fs_info *fs_info, u64 type) 5007 { 5008 u64 chunk_offset; 5009 5010 ASSERT(mutex_is_locked(&fs_info->chunk_mutex)); 5011 chunk_offset = find_next_chunk(fs_info); 5012 return __btrfs_alloc_chunk(trans, chunk_offset, type); 5013 } 5014 5015 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 5016 struct btrfs_fs_info *fs_info) 5017 { 5018 struct btrfs_root *extent_root = fs_info->extent_root; 5019 u64 chunk_offset; 5020 u64 sys_chunk_offset; 5021 u64 alloc_profile; 5022 int ret; 5023 5024 chunk_offset = find_next_chunk(fs_info); 5025 alloc_profile = btrfs_get_alloc_profile(extent_root, 0); 5026 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile); 5027 if (ret) 5028 return ret; 5029 5030 sys_chunk_offset = find_next_chunk(fs_info); 5031 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); 5032 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile); 5033 return ret; 5034 } 5035 5036 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5037 { 5038 int max_errors; 5039 5040 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 5041 BTRFS_BLOCK_GROUP_RAID10 | 5042 BTRFS_BLOCK_GROUP_RAID5 | 5043 BTRFS_BLOCK_GROUP_DUP)) { 5044 max_errors = 1; 5045 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 5046 max_errors = 2; 5047 } else { 5048 max_errors = 0; 5049 } 5050 5051 return max_errors; 5052 } 5053 5054 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5055 { 5056 struct extent_map *em; 5057 struct map_lookup *map; 5058 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5059 int readonly = 0; 5060 int miss_ndevs = 0; 5061 int i; 5062 5063 read_lock(&map_tree->map_tree.lock); 5064 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 5065 read_unlock(&map_tree->map_tree.lock); 5066 if (!em) 5067 return 1; 5068 5069 map = em->map_lookup; 5070 for (i = 0; i < map->num_stripes; i++) { 5071 if (map->stripes[i].dev->missing) { 5072 miss_ndevs++; 5073 continue; 5074 } 5075 5076 if (!map->stripes[i].dev->writeable) { 5077 readonly = 1; 5078 goto end; 5079 } 5080 } 5081 5082 /* 5083 * If the number of missing devices is larger than max errors, 5084 * we can not write the data into that chunk successfully, so 5085 * set it readonly. 5086 */ 5087 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5088 readonly = 1; 5089 end: 5090 free_extent_map(em); 5091 return readonly; 5092 } 5093 5094 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 5095 { 5096 extent_map_tree_init(&tree->map_tree); 5097 } 5098 5099 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 5100 { 5101 struct extent_map *em; 5102 5103 while (1) { 5104 write_lock(&tree->map_tree.lock); 5105 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 5106 if (em) 5107 remove_extent_mapping(&tree->map_tree, em); 5108 write_unlock(&tree->map_tree.lock); 5109 if (!em) 5110 break; 5111 /* once for us */ 5112 free_extent_map(em); 5113 /* once for the tree */ 5114 free_extent_map(em); 5115 } 5116 } 5117 5118 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5119 { 5120 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5121 struct extent_map *em; 5122 struct map_lookup *map; 5123 struct extent_map_tree *em_tree = &map_tree->map_tree; 5124 int ret; 5125 5126 read_lock(&em_tree->lock); 5127 em = lookup_extent_mapping(em_tree, logical, len); 5128 read_unlock(&em_tree->lock); 5129 5130 /* 5131 * We could return errors for these cases, but that could get ugly and 5132 * we'd probably do the same thing which is just not do anything else 5133 * and exit, so return 1 so the callers don't try to use other copies. 5134 */ 5135 if (!em) { 5136 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical, 5137 logical+len); 5138 return 1; 5139 } 5140 5141 if (em->start > logical || em->start + em->len < logical) { 5142 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu", 5143 logical, logical+len, em->start, 5144 em->start + em->len); 5145 free_extent_map(em); 5146 return 1; 5147 } 5148 5149 map = em->map_lookup; 5150 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 5151 ret = map->num_stripes; 5152 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5153 ret = map->sub_stripes; 5154 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5155 ret = 2; 5156 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5157 ret = 3; 5158 else 5159 ret = 1; 5160 free_extent_map(em); 5161 5162 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 5163 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) 5164 ret++; 5165 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 5166 5167 return ret; 5168 } 5169 5170 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5171 struct btrfs_mapping_tree *map_tree, 5172 u64 logical) 5173 { 5174 struct extent_map *em; 5175 struct map_lookup *map; 5176 struct extent_map_tree *em_tree = &map_tree->map_tree; 5177 unsigned long len = fs_info->sectorsize; 5178 5179 read_lock(&em_tree->lock); 5180 em = lookup_extent_mapping(em_tree, logical, len); 5181 read_unlock(&em_tree->lock); 5182 BUG_ON(!em); 5183 5184 BUG_ON(em->start > logical || em->start + em->len < logical); 5185 map = em->map_lookup; 5186 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5187 len = map->stripe_len * nr_data_stripes(map); 5188 free_extent_map(em); 5189 return len; 5190 } 5191 5192 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, 5193 u64 logical, u64 len, int mirror_num) 5194 { 5195 struct extent_map *em; 5196 struct map_lookup *map; 5197 struct extent_map_tree *em_tree = &map_tree->map_tree; 5198 int ret = 0; 5199 5200 read_lock(&em_tree->lock); 5201 em = lookup_extent_mapping(em_tree, logical, len); 5202 read_unlock(&em_tree->lock); 5203 BUG_ON(!em); 5204 5205 BUG_ON(em->start > logical || em->start + em->len < logical); 5206 map = em->map_lookup; 5207 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5208 ret = 1; 5209 free_extent_map(em); 5210 return ret; 5211 } 5212 5213 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5214 struct map_lookup *map, int first, int num, 5215 int optimal, int dev_replace_is_ongoing) 5216 { 5217 int i; 5218 int tolerance; 5219 struct btrfs_device *srcdev; 5220 5221 if (dev_replace_is_ongoing && 5222 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5223 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5224 srcdev = fs_info->dev_replace.srcdev; 5225 else 5226 srcdev = NULL; 5227 5228 /* 5229 * try to avoid the drive that is the source drive for a 5230 * dev-replace procedure, only choose it if no other non-missing 5231 * mirror is available 5232 */ 5233 for (tolerance = 0; tolerance < 2; tolerance++) { 5234 if (map->stripes[optimal].dev->bdev && 5235 (tolerance || map->stripes[optimal].dev != srcdev)) 5236 return optimal; 5237 for (i = first; i < first + num; i++) { 5238 if (map->stripes[i].dev->bdev && 5239 (tolerance || map->stripes[i].dev != srcdev)) 5240 return i; 5241 } 5242 } 5243 5244 /* we couldn't find one that doesn't fail. Just return something 5245 * and the io error handling code will clean up eventually 5246 */ 5247 return optimal; 5248 } 5249 5250 static inline int parity_smaller(u64 a, u64 b) 5251 { 5252 return a > b; 5253 } 5254 5255 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5256 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5257 { 5258 struct btrfs_bio_stripe s; 5259 int i; 5260 u64 l; 5261 int again = 1; 5262 5263 while (again) { 5264 again = 0; 5265 for (i = 0; i < num_stripes - 1; i++) { 5266 if (parity_smaller(bbio->raid_map[i], 5267 bbio->raid_map[i+1])) { 5268 s = bbio->stripes[i]; 5269 l = bbio->raid_map[i]; 5270 bbio->stripes[i] = bbio->stripes[i+1]; 5271 bbio->raid_map[i] = bbio->raid_map[i+1]; 5272 bbio->stripes[i+1] = s; 5273 bbio->raid_map[i+1] = l; 5274 5275 again = 1; 5276 } 5277 } 5278 } 5279 } 5280 5281 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5282 { 5283 struct btrfs_bio *bbio = kzalloc( 5284 /* the size of the btrfs_bio */ 5285 sizeof(struct btrfs_bio) + 5286 /* plus the variable array for the stripes */ 5287 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5288 /* plus the variable array for the tgt dev */ 5289 sizeof(int) * (real_stripes) + 5290 /* 5291 * plus the raid_map, which includes both the tgt dev 5292 * and the stripes 5293 */ 5294 sizeof(u64) * (total_stripes), 5295 GFP_NOFS|__GFP_NOFAIL); 5296 5297 atomic_set(&bbio->error, 0); 5298 atomic_set(&bbio->refs, 1); 5299 5300 return bbio; 5301 } 5302 5303 void btrfs_get_bbio(struct btrfs_bio *bbio) 5304 { 5305 WARN_ON(!atomic_read(&bbio->refs)); 5306 atomic_inc(&bbio->refs); 5307 } 5308 5309 void btrfs_put_bbio(struct btrfs_bio *bbio) 5310 { 5311 if (!bbio) 5312 return; 5313 if (atomic_dec_and_test(&bbio->refs)) 5314 kfree(bbio); 5315 } 5316 5317 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 5318 enum btrfs_map_op op, 5319 u64 logical, u64 *length, 5320 struct btrfs_bio **bbio_ret, 5321 int mirror_num, int need_raid_map) 5322 { 5323 struct extent_map *em; 5324 struct map_lookup *map; 5325 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5326 struct extent_map_tree *em_tree = &map_tree->map_tree; 5327 u64 offset; 5328 u64 stripe_offset; 5329 u64 stripe_end_offset; 5330 u64 stripe_nr; 5331 u64 stripe_nr_orig; 5332 u64 stripe_nr_end; 5333 u64 stripe_len; 5334 u32 stripe_index; 5335 int i; 5336 int ret = 0; 5337 int num_stripes; 5338 int max_errors = 0; 5339 int tgtdev_indexes = 0; 5340 struct btrfs_bio *bbio = NULL; 5341 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 5342 int dev_replace_is_ongoing = 0; 5343 int num_alloc_stripes; 5344 int patch_the_first_stripe_for_dev_replace = 0; 5345 u64 physical_to_patch_in_first_stripe = 0; 5346 u64 raid56_full_stripe_start = (u64)-1; 5347 5348 read_lock(&em_tree->lock); 5349 em = lookup_extent_mapping(em_tree, logical, *length); 5350 read_unlock(&em_tree->lock); 5351 5352 if (!em) { 5353 btrfs_crit(fs_info, "unable to find logical %llu len %llu", 5354 logical, *length); 5355 return -EINVAL; 5356 } 5357 5358 if (em->start > logical || em->start + em->len < logical) { 5359 btrfs_crit(fs_info, 5360 "found a bad mapping, wanted %Lu, found %Lu-%Lu", 5361 logical, em->start, em->start + em->len); 5362 free_extent_map(em); 5363 return -EINVAL; 5364 } 5365 5366 map = em->map_lookup; 5367 offset = logical - em->start; 5368 5369 stripe_len = map->stripe_len; 5370 stripe_nr = offset; 5371 /* 5372 * stripe_nr counts the total number of stripes we have to stride 5373 * to get to this block 5374 */ 5375 stripe_nr = div64_u64(stripe_nr, stripe_len); 5376 5377 stripe_offset = stripe_nr * stripe_len; 5378 if (offset < stripe_offset) { 5379 btrfs_crit(fs_info, 5380 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu", 5381 stripe_offset, offset, em->start, logical, 5382 stripe_len); 5383 free_extent_map(em); 5384 return -EINVAL; 5385 } 5386 5387 /* stripe_offset is the offset of this block in its stripe*/ 5388 stripe_offset = offset - stripe_offset; 5389 5390 /* if we're here for raid56, we need to know the stripe aligned start */ 5391 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5392 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 5393 raid56_full_stripe_start = offset; 5394 5395 /* allow a write of a full stripe, but make sure we don't 5396 * allow straddling of stripes 5397 */ 5398 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5399 full_stripe_len); 5400 raid56_full_stripe_start *= full_stripe_len; 5401 } 5402 5403 if (op == BTRFS_MAP_DISCARD) { 5404 /* we don't discard raid56 yet */ 5405 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5406 ret = -EOPNOTSUPP; 5407 goto out; 5408 } 5409 *length = min_t(u64, em->len - offset, *length); 5410 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5411 u64 max_len; 5412 /* For writes to RAID[56], allow a full stripeset across all disks. 5413 For other RAID types and for RAID[56] reads, just allow a single 5414 stripe (on a single disk). */ 5415 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 5416 (op == BTRFS_MAP_WRITE)) { 5417 max_len = stripe_len * nr_data_stripes(map) - 5418 (offset - raid56_full_stripe_start); 5419 } else { 5420 /* we limit the length of each bio to what fits in a stripe */ 5421 max_len = stripe_len - stripe_offset; 5422 } 5423 *length = min_t(u64, em->len - offset, max_len); 5424 } else { 5425 *length = em->len - offset; 5426 } 5427 5428 /* This is for when we're called from btrfs_merge_bio_hook() and all 5429 it cares about is the length */ 5430 if (!bbio_ret) 5431 goto out; 5432 5433 btrfs_dev_replace_lock(dev_replace, 0); 5434 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5435 if (!dev_replace_is_ongoing) 5436 btrfs_dev_replace_unlock(dev_replace, 0); 5437 else 5438 btrfs_dev_replace_set_lock_blocking(dev_replace); 5439 5440 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5441 op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD && 5442 op != BTRFS_MAP_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) { 5443 /* 5444 * in dev-replace case, for repair case (that's the only 5445 * case where the mirror is selected explicitly when 5446 * calling btrfs_map_block), blocks left of the left cursor 5447 * can also be read from the target drive. 5448 * For REQ_GET_READ_MIRRORS, the target drive is added as 5449 * the last one to the array of stripes. For READ, it also 5450 * needs to be supported using the same mirror number. 5451 * If the requested block is not left of the left cursor, 5452 * EIO is returned. This can happen because btrfs_num_copies() 5453 * returns one more in the dev-replace case. 5454 */ 5455 u64 tmp_length = *length; 5456 struct btrfs_bio *tmp_bbio = NULL; 5457 int tmp_num_stripes; 5458 u64 srcdev_devid = dev_replace->srcdev->devid; 5459 int index_srcdev = 0; 5460 int found = 0; 5461 u64 physical_of_found = 0; 5462 5463 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5464 logical, &tmp_length, &tmp_bbio, 0, 0); 5465 if (ret) { 5466 WARN_ON(tmp_bbio != NULL); 5467 goto out; 5468 } 5469 5470 tmp_num_stripes = tmp_bbio->num_stripes; 5471 if (mirror_num > tmp_num_stripes) { 5472 /* 5473 * BTRFS_MAP_GET_READ_MIRRORS does not contain this 5474 * mirror, that means that the requested area 5475 * is not left of the left cursor 5476 */ 5477 ret = -EIO; 5478 btrfs_put_bbio(tmp_bbio); 5479 goto out; 5480 } 5481 5482 /* 5483 * process the rest of the function using the mirror_num 5484 * of the source drive. Therefore look it up first. 5485 * At the end, patch the device pointer to the one of the 5486 * target drive. 5487 */ 5488 for (i = 0; i < tmp_num_stripes; i++) { 5489 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid) 5490 continue; 5491 5492 /* 5493 * In case of DUP, in order to keep it simple, only add 5494 * the mirror with the lowest physical address 5495 */ 5496 if (found && 5497 physical_of_found <= tmp_bbio->stripes[i].physical) 5498 continue; 5499 5500 index_srcdev = i; 5501 found = 1; 5502 physical_of_found = tmp_bbio->stripes[i].physical; 5503 } 5504 5505 btrfs_put_bbio(tmp_bbio); 5506 5507 if (!found) { 5508 WARN_ON(1); 5509 ret = -EIO; 5510 goto out; 5511 } 5512 5513 mirror_num = index_srcdev + 1; 5514 patch_the_first_stripe_for_dev_replace = 1; 5515 physical_to_patch_in_first_stripe = physical_of_found; 5516 } else if (mirror_num > map->num_stripes) { 5517 mirror_num = 0; 5518 } 5519 5520 num_stripes = 1; 5521 stripe_index = 0; 5522 stripe_nr_orig = stripe_nr; 5523 stripe_nr_end = ALIGN(offset + *length, map->stripe_len); 5524 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len); 5525 stripe_end_offset = stripe_nr_end * map->stripe_len - 5526 (offset + *length); 5527 5528 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5529 if (op == BTRFS_MAP_DISCARD) 5530 num_stripes = min_t(u64, map->num_stripes, 5531 stripe_nr_end - stripe_nr_orig); 5532 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5533 &stripe_index); 5534 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD && 5535 op != BTRFS_MAP_GET_READ_MIRRORS) 5536 mirror_num = 1; 5537 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 5538 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD || 5539 op == BTRFS_MAP_GET_READ_MIRRORS) 5540 num_stripes = map->num_stripes; 5541 else if (mirror_num) 5542 stripe_index = mirror_num - 1; 5543 else { 5544 stripe_index = find_live_mirror(fs_info, map, 0, 5545 map->num_stripes, 5546 current->pid % map->num_stripes, 5547 dev_replace_is_ongoing); 5548 mirror_num = stripe_index + 1; 5549 } 5550 5551 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5552 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD || 5553 op == BTRFS_MAP_GET_READ_MIRRORS) { 5554 num_stripes = map->num_stripes; 5555 } else if (mirror_num) { 5556 stripe_index = mirror_num - 1; 5557 } else { 5558 mirror_num = 1; 5559 } 5560 5561 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5562 u32 factor = map->num_stripes / map->sub_stripes; 5563 5564 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5565 stripe_index *= map->sub_stripes; 5566 5567 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) 5568 num_stripes = map->sub_stripes; 5569 else if (op == BTRFS_MAP_DISCARD) 5570 num_stripes = min_t(u64, map->sub_stripes * 5571 (stripe_nr_end - stripe_nr_orig), 5572 map->num_stripes); 5573 else if (mirror_num) 5574 stripe_index += mirror_num - 1; 5575 else { 5576 int old_stripe_index = stripe_index; 5577 stripe_index = find_live_mirror(fs_info, map, 5578 stripe_index, 5579 map->sub_stripes, stripe_index + 5580 current->pid % map->sub_stripes, 5581 dev_replace_is_ongoing); 5582 mirror_num = stripe_index - old_stripe_index + 1; 5583 } 5584 5585 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5586 if (need_raid_map && 5587 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS || 5588 mirror_num > 1)) { 5589 /* push stripe_nr back to the start of the full stripe */ 5590 stripe_nr = div_u64(raid56_full_stripe_start, 5591 stripe_len * nr_data_stripes(map)); 5592 5593 /* RAID[56] write or recovery. Return all stripes */ 5594 num_stripes = map->num_stripes; 5595 max_errors = nr_parity_stripes(map); 5596 5597 *length = map->stripe_len; 5598 stripe_index = 0; 5599 stripe_offset = 0; 5600 } else { 5601 /* 5602 * Mirror #0 or #1 means the original data block. 5603 * Mirror #2 is RAID5 parity block. 5604 * Mirror #3 is RAID6 Q block. 5605 */ 5606 stripe_nr = div_u64_rem(stripe_nr, 5607 nr_data_stripes(map), &stripe_index); 5608 if (mirror_num > 1) 5609 stripe_index = nr_data_stripes(map) + 5610 mirror_num - 2; 5611 5612 /* We distribute the parity blocks across stripes */ 5613 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 5614 &stripe_index); 5615 if ((op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD && 5616 op != BTRFS_MAP_GET_READ_MIRRORS) && mirror_num <= 1) 5617 mirror_num = 1; 5618 } 5619 } else { 5620 /* 5621 * after this, stripe_nr is the number of stripes on this 5622 * device we have to walk to find the data, and stripe_index is 5623 * the number of our device in the stripe array 5624 */ 5625 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5626 &stripe_index); 5627 mirror_num = stripe_index + 1; 5628 } 5629 if (stripe_index >= map->num_stripes) { 5630 btrfs_crit(fs_info, 5631 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 5632 stripe_index, map->num_stripes); 5633 ret = -EINVAL; 5634 goto out; 5635 } 5636 5637 num_alloc_stripes = num_stripes; 5638 if (dev_replace_is_ongoing) { 5639 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD) 5640 num_alloc_stripes <<= 1; 5641 if (op == BTRFS_MAP_GET_READ_MIRRORS) 5642 num_alloc_stripes++; 5643 tgtdev_indexes = num_stripes; 5644 } 5645 5646 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 5647 if (!bbio) { 5648 ret = -ENOMEM; 5649 goto out; 5650 } 5651 if (dev_replace_is_ongoing) 5652 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 5653 5654 /* build raid_map */ 5655 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 5656 need_raid_map && 5657 ((op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) || 5658 mirror_num > 1)) { 5659 u64 tmp; 5660 unsigned rot; 5661 5662 bbio->raid_map = (u64 *)((void *)bbio->stripes + 5663 sizeof(struct btrfs_bio_stripe) * 5664 num_alloc_stripes + 5665 sizeof(int) * tgtdev_indexes); 5666 5667 /* Work out the disk rotation on this stripe-set */ 5668 div_u64_rem(stripe_nr, num_stripes, &rot); 5669 5670 /* Fill in the logical address of each stripe */ 5671 tmp = stripe_nr * nr_data_stripes(map); 5672 for (i = 0; i < nr_data_stripes(map); i++) 5673 bbio->raid_map[(i+rot) % num_stripes] = 5674 em->start + (tmp + i) * map->stripe_len; 5675 5676 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 5677 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5678 bbio->raid_map[(i+rot+1) % num_stripes] = 5679 RAID6_Q_STRIPE; 5680 } 5681 5682 if (op == BTRFS_MAP_DISCARD) { 5683 u32 factor = 0; 5684 u32 sub_stripes = 0; 5685 u64 stripes_per_dev = 0; 5686 u32 remaining_stripes = 0; 5687 u32 last_stripe = 0; 5688 5689 if (map->type & 5690 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 5691 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5692 sub_stripes = 1; 5693 else 5694 sub_stripes = map->sub_stripes; 5695 5696 factor = map->num_stripes / sub_stripes; 5697 stripes_per_dev = div_u64_rem(stripe_nr_end - 5698 stripe_nr_orig, 5699 factor, 5700 &remaining_stripes); 5701 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5702 last_stripe *= sub_stripes; 5703 } 5704 5705 for (i = 0; i < num_stripes; i++) { 5706 bbio->stripes[i].physical = 5707 map->stripes[stripe_index].physical + 5708 stripe_offset + stripe_nr * map->stripe_len; 5709 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5710 5711 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5712 BTRFS_BLOCK_GROUP_RAID10)) { 5713 bbio->stripes[i].length = stripes_per_dev * 5714 map->stripe_len; 5715 5716 if (i / sub_stripes < remaining_stripes) 5717 bbio->stripes[i].length += 5718 map->stripe_len; 5719 5720 /* 5721 * Special for the first stripe and 5722 * the last stripe: 5723 * 5724 * |-------|...|-------| 5725 * |----------| 5726 * off end_off 5727 */ 5728 if (i < sub_stripes) 5729 bbio->stripes[i].length -= 5730 stripe_offset; 5731 5732 if (stripe_index >= last_stripe && 5733 stripe_index <= (last_stripe + 5734 sub_stripes - 1)) 5735 bbio->stripes[i].length -= 5736 stripe_end_offset; 5737 5738 if (i == sub_stripes - 1) 5739 stripe_offset = 0; 5740 } else 5741 bbio->stripes[i].length = *length; 5742 5743 stripe_index++; 5744 if (stripe_index == map->num_stripes) { 5745 /* This could only happen for RAID0/10 */ 5746 stripe_index = 0; 5747 stripe_nr++; 5748 } 5749 } 5750 } else { 5751 for (i = 0; i < num_stripes; i++) { 5752 bbio->stripes[i].physical = 5753 map->stripes[stripe_index].physical + 5754 stripe_offset + 5755 stripe_nr * map->stripe_len; 5756 bbio->stripes[i].dev = 5757 map->stripes[stripe_index].dev; 5758 stripe_index++; 5759 } 5760 } 5761 5762 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) 5763 max_errors = btrfs_chunk_max_errors(map); 5764 5765 if (bbio->raid_map) 5766 sort_parity_stripes(bbio, num_stripes); 5767 5768 tgtdev_indexes = 0; 5769 if (dev_replace_is_ongoing && 5770 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD) && 5771 dev_replace->tgtdev != NULL) { 5772 int index_where_to_add; 5773 u64 srcdev_devid = dev_replace->srcdev->devid; 5774 5775 /* 5776 * duplicate the write operations while the dev replace 5777 * procedure is running. Since the copying of the old disk 5778 * to the new disk takes place at run time while the 5779 * filesystem is mounted writable, the regular write 5780 * operations to the old disk have to be duplicated to go 5781 * to the new disk as well. 5782 * Note that device->missing is handled by the caller, and 5783 * that the write to the old disk is already set up in the 5784 * stripes array. 5785 */ 5786 index_where_to_add = num_stripes; 5787 for (i = 0; i < num_stripes; i++) { 5788 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5789 /* write to new disk, too */ 5790 struct btrfs_bio_stripe *new = 5791 bbio->stripes + index_where_to_add; 5792 struct btrfs_bio_stripe *old = 5793 bbio->stripes + i; 5794 5795 new->physical = old->physical; 5796 new->length = old->length; 5797 new->dev = dev_replace->tgtdev; 5798 bbio->tgtdev_map[i] = index_where_to_add; 5799 index_where_to_add++; 5800 max_errors++; 5801 tgtdev_indexes++; 5802 } 5803 } 5804 num_stripes = index_where_to_add; 5805 } else if (dev_replace_is_ongoing && 5806 op == BTRFS_MAP_GET_READ_MIRRORS && 5807 dev_replace->tgtdev != NULL) { 5808 u64 srcdev_devid = dev_replace->srcdev->devid; 5809 int index_srcdev = 0; 5810 int found = 0; 5811 u64 physical_of_found = 0; 5812 5813 /* 5814 * During the dev-replace procedure, the target drive can 5815 * also be used to read data in case it is needed to repair 5816 * a corrupt block elsewhere. This is possible if the 5817 * requested area is left of the left cursor. In this area, 5818 * the target drive is a full copy of the source drive. 5819 */ 5820 for (i = 0; i < num_stripes; i++) { 5821 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5822 /* 5823 * In case of DUP, in order to keep it 5824 * simple, only add the mirror with the 5825 * lowest physical address 5826 */ 5827 if (found && 5828 physical_of_found <= 5829 bbio->stripes[i].physical) 5830 continue; 5831 index_srcdev = i; 5832 found = 1; 5833 physical_of_found = bbio->stripes[i].physical; 5834 } 5835 } 5836 if (found) { 5837 struct btrfs_bio_stripe *tgtdev_stripe = 5838 bbio->stripes + num_stripes; 5839 5840 tgtdev_stripe->physical = physical_of_found; 5841 tgtdev_stripe->length = 5842 bbio->stripes[index_srcdev].length; 5843 tgtdev_stripe->dev = dev_replace->tgtdev; 5844 bbio->tgtdev_map[index_srcdev] = num_stripes; 5845 5846 tgtdev_indexes++; 5847 num_stripes++; 5848 } 5849 } 5850 5851 *bbio_ret = bbio; 5852 bbio->map_type = map->type; 5853 bbio->num_stripes = num_stripes; 5854 bbio->max_errors = max_errors; 5855 bbio->mirror_num = mirror_num; 5856 bbio->num_tgtdevs = tgtdev_indexes; 5857 5858 /* 5859 * this is the case that REQ_READ && dev_replace_is_ongoing && 5860 * mirror_num == num_stripes + 1 && dev_replace target drive is 5861 * available as a mirror 5862 */ 5863 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5864 WARN_ON(num_stripes > 1); 5865 bbio->stripes[0].dev = dev_replace->tgtdev; 5866 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5867 bbio->mirror_num = map->num_stripes + 1; 5868 } 5869 out: 5870 if (dev_replace_is_ongoing) { 5871 btrfs_dev_replace_clear_lock_blocking(dev_replace); 5872 btrfs_dev_replace_unlock(dev_replace, 0); 5873 } 5874 free_extent_map(em); 5875 return ret; 5876 } 5877 5878 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5879 u64 logical, u64 *length, 5880 struct btrfs_bio **bbio_ret, int mirror_num) 5881 { 5882 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 5883 mirror_num, 0); 5884 } 5885 5886 /* For Scrub/replace */ 5887 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5888 u64 logical, u64 *length, 5889 struct btrfs_bio **bbio_ret, int mirror_num, 5890 int need_raid_map) 5891 { 5892 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 5893 mirror_num, need_raid_map); 5894 } 5895 5896 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, 5897 u64 chunk_start, u64 physical, u64 devid, 5898 u64 **logical, int *naddrs, int *stripe_len) 5899 { 5900 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5901 struct extent_map_tree *em_tree = &map_tree->map_tree; 5902 struct extent_map *em; 5903 struct map_lookup *map; 5904 u64 *buf; 5905 u64 bytenr; 5906 u64 length; 5907 u64 stripe_nr; 5908 u64 rmap_len; 5909 int i, j, nr = 0; 5910 5911 read_lock(&em_tree->lock); 5912 em = lookup_extent_mapping(em_tree, chunk_start, 1); 5913 read_unlock(&em_tree->lock); 5914 5915 if (!em) { 5916 btrfs_err(fs_info, "couldn't find em for chunk %Lu", 5917 chunk_start); 5918 return -EIO; 5919 } 5920 5921 if (em->start != chunk_start) { 5922 btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu", 5923 em->start, chunk_start); 5924 free_extent_map(em); 5925 return -EIO; 5926 } 5927 map = em->map_lookup; 5928 5929 length = em->len; 5930 rmap_len = map->stripe_len; 5931 5932 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5933 length = div_u64(length, map->num_stripes / map->sub_stripes); 5934 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5935 length = div_u64(length, map->num_stripes); 5936 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5937 length = div_u64(length, nr_data_stripes(map)); 5938 rmap_len = map->stripe_len * nr_data_stripes(map); 5939 } 5940 5941 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 5942 BUG_ON(!buf); /* -ENOMEM */ 5943 5944 for (i = 0; i < map->num_stripes; i++) { 5945 if (devid && map->stripes[i].dev->devid != devid) 5946 continue; 5947 if (map->stripes[i].physical > physical || 5948 map->stripes[i].physical + length <= physical) 5949 continue; 5950 5951 stripe_nr = physical - map->stripes[i].physical; 5952 stripe_nr = div_u64(stripe_nr, map->stripe_len); 5953 5954 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5955 stripe_nr = stripe_nr * map->num_stripes + i; 5956 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 5957 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5958 stripe_nr = stripe_nr * map->num_stripes + i; 5959 } /* else if RAID[56], multiply by nr_data_stripes(). 5960 * Alternatively, just use rmap_len below instead of 5961 * map->stripe_len */ 5962 5963 bytenr = chunk_start + stripe_nr * rmap_len; 5964 WARN_ON(nr >= map->num_stripes); 5965 for (j = 0; j < nr; j++) { 5966 if (buf[j] == bytenr) 5967 break; 5968 } 5969 if (j == nr) { 5970 WARN_ON(nr >= map->num_stripes); 5971 buf[nr++] = bytenr; 5972 } 5973 } 5974 5975 *logical = buf; 5976 *naddrs = nr; 5977 *stripe_len = rmap_len; 5978 5979 free_extent_map(em); 5980 return 0; 5981 } 5982 5983 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 5984 { 5985 bio->bi_private = bbio->private; 5986 bio->bi_end_io = bbio->end_io; 5987 bio_endio(bio); 5988 5989 btrfs_put_bbio(bbio); 5990 } 5991 5992 static void btrfs_end_bio(struct bio *bio) 5993 { 5994 struct btrfs_bio *bbio = bio->bi_private; 5995 int is_orig_bio = 0; 5996 5997 if (bio->bi_error) { 5998 atomic_inc(&bbio->error); 5999 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) { 6000 unsigned int stripe_index = 6001 btrfs_io_bio(bio)->stripe_index; 6002 struct btrfs_device *dev; 6003 6004 BUG_ON(stripe_index >= bbio->num_stripes); 6005 dev = bbio->stripes[stripe_index].dev; 6006 if (dev->bdev) { 6007 if (bio_op(bio) == REQ_OP_WRITE) 6008 btrfs_dev_stat_inc(dev, 6009 BTRFS_DEV_STAT_WRITE_ERRS); 6010 else 6011 btrfs_dev_stat_inc(dev, 6012 BTRFS_DEV_STAT_READ_ERRS); 6013 if (bio->bi_opf & REQ_PREFLUSH) 6014 btrfs_dev_stat_inc(dev, 6015 BTRFS_DEV_STAT_FLUSH_ERRS); 6016 btrfs_dev_stat_print_on_error(dev); 6017 } 6018 } 6019 } 6020 6021 if (bio == bbio->orig_bio) 6022 is_orig_bio = 1; 6023 6024 btrfs_bio_counter_dec(bbio->fs_info); 6025 6026 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6027 if (!is_orig_bio) { 6028 bio_put(bio); 6029 bio = bbio->orig_bio; 6030 } 6031 6032 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6033 /* only send an error to the higher layers if it is 6034 * beyond the tolerance of the btrfs bio 6035 */ 6036 if (atomic_read(&bbio->error) > bbio->max_errors) { 6037 bio->bi_error = -EIO; 6038 } else { 6039 /* 6040 * this bio is actually up to date, we didn't 6041 * go over the max number of errors 6042 */ 6043 bio->bi_error = 0; 6044 } 6045 6046 btrfs_end_bbio(bbio, bio); 6047 } else if (!is_orig_bio) { 6048 bio_put(bio); 6049 } 6050 } 6051 6052 /* 6053 * see run_scheduled_bios for a description of why bios are collected for 6054 * async submit. 6055 * 6056 * This will add one bio to the pending list for a device and make sure 6057 * the work struct is scheduled. 6058 */ 6059 static noinline void btrfs_schedule_bio(struct btrfs_device *device, 6060 struct bio *bio) 6061 { 6062 struct btrfs_fs_info *fs_info = device->fs_info; 6063 int should_queue = 1; 6064 struct btrfs_pending_bios *pending_bios; 6065 6066 if (device->missing || !device->bdev) { 6067 bio_io_error(bio); 6068 return; 6069 } 6070 6071 /* don't bother with additional async steps for reads, right now */ 6072 if (bio_op(bio) == REQ_OP_READ) { 6073 bio_get(bio); 6074 btrfsic_submit_bio(bio); 6075 bio_put(bio); 6076 return; 6077 } 6078 6079 /* 6080 * nr_async_bios allows us to reliably return congestion to the 6081 * higher layers. Otherwise, the async bio makes it appear we have 6082 * made progress against dirty pages when we've really just put it 6083 * on a queue for later 6084 */ 6085 atomic_inc(&fs_info->nr_async_bios); 6086 WARN_ON(bio->bi_next); 6087 bio->bi_next = NULL; 6088 6089 spin_lock(&device->io_lock); 6090 if (op_is_sync(bio->bi_opf)) 6091 pending_bios = &device->pending_sync_bios; 6092 else 6093 pending_bios = &device->pending_bios; 6094 6095 if (pending_bios->tail) 6096 pending_bios->tail->bi_next = bio; 6097 6098 pending_bios->tail = bio; 6099 if (!pending_bios->head) 6100 pending_bios->head = bio; 6101 if (device->running_pending) 6102 should_queue = 0; 6103 6104 spin_unlock(&device->io_lock); 6105 6106 if (should_queue) 6107 btrfs_queue_work(fs_info->submit_workers, &device->work); 6108 } 6109 6110 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6111 u64 physical, int dev_nr, int async) 6112 { 6113 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 6114 struct btrfs_fs_info *fs_info = bbio->fs_info; 6115 6116 bio->bi_private = bbio; 6117 btrfs_io_bio(bio)->stripe_index = dev_nr; 6118 bio->bi_end_io = btrfs_end_bio; 6119 bio->bi_iter.bi_sector = physical >> 9; 6120 #ifdef DEBUG 6121 { 6122 struct rcu_string *name; 6123 6124 rcu_read_lock(); 6125 name = rcu_dereference(dev->name); 6126 btrfs_debug(fs_info, 6127 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6128 bio_op(bio), bio->bi_opf, 6129 (u64)bio->bi_iter.bi_sector, 6130 (u_long)dev->bdev->bd_dev, name->str, dev->devid, 6131 bio->bi_iter.bi_size); 6132 rcu_read_unlock(); 6133 } 6134 #endif 6135 bio->bi_bdev = dev->bdev; 6136 6137 btrfs_bio_counter_inc_noblocked(fs_info); 6138 6139 if (async) 6140 btrfs_schedule_bio(dev, bio); 6141 else 6142 btrfsic_submit_bio(bio); 6143 } 6144 6145 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6146 { 6147 atomic_inc(&bbio->error); 6148 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6149 /* Should be the original bio. */ 6150 WARN_ON(bio != bbio->orig_bio); 6151 6152 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6153 bio->bi_iter.bi_sector = logical >> 9; 6154 bio->bi_error = -EIO; 6155 btrfs_end_bbio(bbio, bio); 6156 } 6157 } 6158 6159 int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6160 int mirror_num, int async_submit) 6161 { 6162 struct btrfs_device *dev; 6163 struct bio *first_bio = bio; 6164 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6165 u64 length = 0; 6166 u64 map_length; 6167 int ret; 6168 int dev_nr; 6169 int total_devs; 6170 struct btrfs_bio *bbio = NULL; 6171 6172 length = bio->bi_iter.bi_size; 6173 map_length = length; 6174 6175 btrfs_bio_counter_inc_blocked(fs_info); 6176 ret = __btrfs_map_block(fs_info, bio_op(bio), logical, 6177 &map_length, &bbio, mirror_num, 1); 6178 if (ret) { 6179 btrfs_bio_counter_dec(fs_info); 6180 return ret; 6181 } 6182 6183 total_devs = bbio->num_stripes; 6184 bbio->orig_bio = first_bio; 6185 bbio->private = first_bio->bi_private; 6186 bbio->end_io = first_bio->bi_end_io; 6187 bbio->fs_info = fs_info; 6188 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6189 6190 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6191 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6192 /* In this case, map_length has been set to the length of 6193 a single stripe; not the whole write */ 6194 if (bio_op(bio) == REQ_OP_WRITE) { 6195 ret = raid56_parity_write(fs_info, bio, bbio, 6196 map_length); 6197 } else { 6198 ret = raid56_parity_recover(fs_info, bio, bbio, 6199 map_length, mirror_num, 1); 6200 } 6201 6202 btrfs_bio_counter_dec(fs_info); 6203 return ret; 6204 } 6205 6206 if (map_length < length) { 6207 btrfs_crit(fs_info, 6208 "mapping failed logical %llu bio len %llu len %llu", 6209 logical, length, map_length); 6210 BUG(); 6211 } 6212 6213 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6214 dev = bbio->stripes[dev_nr].dev; 6215 if (!dev || !dev->bdev || 6216 (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) { 6217 bbio_error(bbio, first_bio, logical); 6218 continue; 6219 } 6220 6221 if (dev_nr < total_devs - 1) { 6222 bio = btrfs_bio_clone(first_bio, GFP_NOFS); 6223 BUG_ON(!bio); /* -ENOMEM */ 6224 } else 6225 bio = first_bio; 6226 6227 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, 6228 dev_nr, async_submit); 6229 } 6230 btrfs_bio_counter_dec(fs_info); 6231 return 0; 6232 } 6233 6234 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 6235 u8 *uuid, u8 *fsid) 6236 { 6237 struct btrfs_device *device; 6238 struct btrfs_fs_devices *cur_devices; 6239 6240 cur_devices = fs_info->fs_devices; 6241 while (cur_devices) { 6242 if (!fsid || 6243 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 6244 device = __find_device(&cur_devices->devices, 6245 devid, uuid); 6246 if (device) 6247 return device; 6248 } 6249 cur_devices = cur_devices->seed; 6250 } 6251 return NULL; 6252 } 6253 6254 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6255 u64 devid, u8 *dev_uuid) 6256 { 6257 struct btrfs_device *device; 6258 6259 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6260 if (IS_ERR(device)) 6261 return NULL; 6262 6263 list_add(&device->dev_list, &fs_devices->devices); 6264 device->fs_devices = fs_devices; 6265 fs_devices->num_devices++; 6266 6267 device->missing = 1; 6268 fs_devices->missing_devices++; 6269 6270 return device; 6271 } 6272 6273 /** 6274 * btrfs_alloc_device - allocate struct btrfs_device 6275 * @fs_info: used only for generating a new devid, can be NULL if 6276 * devid is provided (i.e. @devid != NULL). 6277 * @devid: a pointer to devid for this device. If NULL a new devid 6278 * is generated. 6279 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6280 * is generated. 6281 * 6282 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6283 * on error. Returned struct is not linked onto any lists and can be 6284 * destroyed with kfree() right away. 6285 */ 6286 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6287 const u64 *devid, 6288 const u8 *uuid) 6289 { 6290 struct btrfs_device *dev; 6291 u64 tmp; 6292 6293 if (WARN_ON(!devid && !fs_info)) 6294 return ERR_PTR(-EINVAL); 6295 6296 dev = __alloc_device(); 6297 if (IS_ERR(dev)) 6298 return dev; 6299 6300 if (devid) 6301 tmp = *devid; 6302 else { 6303 int ret; 6304 6305 ret = find_next_devid(fs_info, &tmp); 6306 if (ret) { 6307 kfree(dev); 6308 return ERR_PTR(ret); 6309 } 6310 } 6311 dev->devid = tmp; 6312 6313 if (uuid) 6314 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6315 else 6316 generate_random_uuid(dev->uuid); 6317 6318 btrfs_init_work(&dev->work, btrfs_submit_helper, 6319 pending_bios_fn, NULL, NULL); 6320 6321 return dev; 6322 } 6323 6324 /* Return -EIO if any error, otherwise return 0. */ 6325 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info, 6326 struct extent_buffer *leaf, 6327 struct btrfs_chunk *chunk, u64 logical) 6328 { 6329 u64 length; 6330 u64 stripe_len; 6331 u16 num_stripes; 6332 u16 sub_stripes; 6333 u64 type; 6334 6335 length = btrfs_chunk_length(leaf, chunk); 6336 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6337 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6338 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6339 type = btrfs_chunk_type(leaf, chunk); 6340 6341 if (!num_stripes) { 6342 btrfs_err(fs_info, "invalid chunk num_stripes: %u", 6343 num_stripes); 6344 return -EIO; 6345 } 6346 if (!IS_ALIGNED(logical, fs_info->sectorsize)) { 6347 btrfs_err(fs_info, "invalid chunk logical %llu", logical); 6348 return -EIO; 6349 } 6350 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) { 6351 btrfs_err(fs_info, "invalid chunk sectorsize %u", 6352 btrfs_chunk_sector_size(leaf, chunk)); 6353 return -EIO; 6354 } 6355 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) { 6356 btrfs_err(fs_info, "invalid chunk length %llu", length); 6357 return -EIO; 6358 } 6359 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) { 6360 btrfs_err(fs_info, "invalid chunk stripe length: %llu", 6361 stripe_len); 6362 return -EIO; 6363 } 6364 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6365 type) { 6366 btrfs_err(fs_info, "unrecognized chunk type: %llu", 6367 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 6368 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6369 btrfs_chunk_type(leaf, chunk)); 6370 return -EIO; 6371 } 6372 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) || 6373 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) || 6374 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) || 6375 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) || 6376 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) || 6377 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 6378 num_stripes != 1)) { 6379 btrfs_err(fs_info, 6380 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 6381 num_stripes, sub_stripes, 6382 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 6383 return -EIO; 6384 } 6385 6386 return 0; 6387 } 6388 6389 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 6390 struct extent_buffer *leaf, 6391 struct btrfs_chunk *chunk) 6392 { 6393 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 6394 struct map_lookup *map; 6395 struct extent_map *em; 6396 u64 logical; 6397 u64 length; 6398 u64 stripe_len; 6399 u64 devid; 6400 u8 uuid[BTRFS_UUID_SIZE]; 6401 int num_stripes; 6402 int ret; 6403 int i; 6404 6405 logical = key->offset; 6406 length = btrfs_chunk_length(leaf, chunk); 6407 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6408 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6409 6410 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical); 6411 if (ret) 6412 return ret; 6413 6414 read_lock(&map_tree->map_tree.lock); 6415 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 6416 read_unlock(&map_tree->map_tree.lock); 6417 6418 /* already mapped? */ 6419 if (em && em->start <= logical && em->start + em->len > logical) { 6420 free_extent_map(em); 6421 return 0; 6422 } else if (em) { 6423 free_extent_map(em); 6424 } 6425 6426 em = alloc_extent_map(); 6427 if (!em) 6428 return -ENOMEM; 6429 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6430 if (!map) { 6431 free_extent_map(em); 6432 return -ENOMEM; 6433 } 6434 6435 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6436 em->map_lookup = map; 6437 em->start = logical; 6438 em->len = length; 6439 em->orig_start = 0; 6440 em->block_start = 0; 6441 em->block_len = em->len; 6442 6443 map->num_stripes = num_stripes; 6444 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6445 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6446 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 6447 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6448 map->type = btrfs_chunk_type(leaf, chunk); 6449 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6450 for (i = 0; i < num_stripes; i++) { 6451 map->stripes[i].physical = 6452 btrfs_stripe_offset_nr(leaf, chunk, i); 6453 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6454 read_extent_buffer(leaf, uuid, (unsigned long) 6455 btrfs_stripe_dev_uuid_nr(chunk, i), 6456 BTRFS_UUID_SIZE); 6457 map->stripes[i].dev = btrfs_find_device(fs_info, devid, 6458 uuid, NULL); 6459 if (!map->stripes[i].dev && 6460 !btrfs_test_opt(fs_info, DEGRADED)) { 6461 free_extent_map(em); 6462 return -EIO; 6463 } 6464 if (!map->stripes[i].dev) { 6465 map->stripes[i].dev = 6466 add_missing_dev(fs_info->fs_devices, devid, 6467 uuid); 6468 if (!map->stripes[i].dev) { 6469 free_extent_map(em); 6470 return -EIO; 6471 } 6472 btrfs_warn(fs_info, "devid %llu uuid %pU is missing", 6473 devid, uuid); 6474 } 6475 map->stripes[i].dev->in_fs_metadata = 1; 6476 } 6477 6478 write_lock(&map_tree->map_tree.lock); 6479 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6480 write_unlock(&map_tree->map_tree.lock); 6481 BUG_ON(ret); /* Tree corruption */ 6482 free_extent_map(em); 6483 6484 return 0; 6485 } 6486 6487 static void fill_device_from_item(struct extent_buffer *leaf, 6488 struct btrfs_dev_item *dev_item, 6489 struct btrfs_device *device) 6490 { 6491 unsigned long ptr; 6492 6493 device->devid = btrfs_device_id(leaf, dev_item); 6494 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6495 device->total_bytes = device->disk_total_bytes; 6496 device->commit_total_bytes = device->disk_total_bytes; 6497 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6498 device->commit_bytes_used = device->bytes_used; 6499 device->type = btrfs_device_type(leaf, dev_item); 6500 device->io_align = btrfs_device_io_align(leaf, dev_item); 6501 device->io_width = btrfs_device_io_width(leaf, dev_item); 6502 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6503 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6504 device->is_tgtdev_for_dev_replace = 0; 6505 6506 ptr = btrfs_device_uuid(dev_item); 6507 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6508 } 6509 6510 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6511 u8 *fsid) 6512 { 6513 struct btrfs_fs_devices *fs_devices; 6514 int ret; 6515 6516 BUG_ON(!mutex_is_locked(&uuid_mutex)); 6517 6518 fs_devices = fs_info->fs_devices->seed; 6519 while (fs_devices) { 6520 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) 6521 return fs_devices; 6522 6523 fs_devices = fs_devices->seed; 6524 } 6525 6526 fs_devices = find_fsid(fsid); 6527 if (!fs_devices) { 6528 if (!btrfs_test_opt(fs_info, DEGRADED)) 6529 return ERR_PTR(-ENOENT); 6530 6531 fs_devices = alloc_fs_devices(fsid); 6532 if (IS_ERR(fs_devices)) 6533 return fs_devices; 6534 6535 fs_devices->seeding = 1; 6536 fs_devices->opened = 1; 6537 return fs_devices; 6538 } 6539 6540 fs_devices = clone_fs_devices(fs_devices); 6541 if (IS_ERR(fs_devices)) 6542 return fs_devices; 6543 6544 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 6545 fs_info->bdev_holder); 6546 if (ret) { 6547 free_fs_devices(fs_devices); 6548 fs_devices = ERR_PTR(ret); 6549 goto out; 6550 } 6551 6552 if (!fs_devices->seeding) { 6553 __btrfs_close_devices(fs_devices); 6554 free_fs_devices(fs_devices); 6555 fs_devices = ERR_PTR(-EINVAL); 6556 goto out; 6557 } 6558 6559 fs_devices->seed = fs_info->fs_devices->seed; 6560 fs_info->fs_devices->seed = fs_devices; 6561 out: 6562 return fs_devices; 6563 } 6564 6565 static int read_one_dev(struct btrfs_fs_info *fs_info, 6566 struct extent_buffer *leaf, 6567 struct btrfs_dev_item *dev_item) 6568 { 6569 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6570 struct btrfs_device *device; 6571 u64 devid; 6572 int ret; 6573 u8 fs_uuid[BTRFS_UUID_SIZE]; 6574 u8 dev_uuid[BTRFS_UUID_SIZE]; 6575 6576 devid = btrfs_device_id(leaf, dev_item); 6577 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6578 BTRFS_UUID_SIZE); 6579 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6580 BTRFS_UUID_SIZE); 6581 6582 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) { 6583 fs_devices = open_seed_devices(fs_info, fs_uuid); 6584 if (IS_ERR(fs_devices)) 6585 return PTR_ERR(fs_devices); 6586 } 6587 6588 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid); 6589 if (!device) { 6590 if (!btrfs_test_opt(fs_info, DEGRADED)) 6591 return -EIO; 6592 6593 device = add_missing_dev(fs_devices, devid, dev_uuid); 6594 if (!device) 6595 return -ENOMEM; 6596 btrfs_warn(fs_info, "devid %llu uuid %pU missing", 6597 devid, dev_uuid); 6598 } else { 6599 if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED)) 6600 return -EIO; 6601 6602 if(!device->bdev && !device->missing) { 6603 /* 6604 * this happens when a device that was properly setup 6605 * in the device info lists suddenly goes bad. 6606 * device->bdev is NULL, and so we have to set 6607 * device->missing to one here 6608 */ 6609 device->fs_devices->missing_devices++; 6610 device->missing = 1; 6611 } 6612 6613 /* Move the device to its own fs_devices */ 6614 if (device->fs_devices != fs_devices) { 6615 ASSERT(device->missing); 6616 6617 list_move(&device->dev_list, &fs_devices->devices); 6618 device->fs_devices->num_devices--; 6619 fs_devices->num_devices++; 6620 6621 device->fs_devices->missing_devices--; 6622 fs_devices->missing_devices++; 6623 6624 device->fs_devices = fs_devices; 6625 } 6626 } 6627 6628 if (device->fs_devices != fs_info->fs_devices) { 6629 BUG_ON(device->writeable); 6630 if (device->generation != 6631 btrfs_device_generation(leaf, dev_item)) 6632 return -EINVAL; 6633 } 6634 6635 fill_device_from_item(leaf, dev_item, device); 6636 device->in_fs_metadata = 1; 6637 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 6638 device->fs_devices->total_rw_bytes += device->total_bytes; 6639 spin_lock(&fs_info->free_chunk_lock); 6640 fs_info->free_chunk_space += device->total_bytes - 6641 device->bytes_used; 6642 spin_unlock(&fs_info->free_chunk_lock); 6643 } 6644 ret = 0; 6645 return ret; 6646 } 6647 6648 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 6649 { 6650 struct btrfs_root *root = fs_info->tree_root; 6651 struct btrfs_super_block *super_copy = fs_info->super_copy; 6652 struct extent_buffer *sb; 6653 struct btrfs_disk_key *disk_key; 6654 struct btrfs_chunk *chunk; 6655 u8 *array_ptr; 6656 unsigned long sb_array_offset; 6657 int ret = 0; 6658 u32 num_stripes; 6659 u32 array_size; 6660 u32 len = 0; 6661 u32 cur_offset; 6662 u64 type; 6663 struct btrfs_key key; 6664 6665 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 6666 /* 6667 * This will create extent buffer of nodesize, superblock size is 6668 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6669 * overallocate but we can keep it as-is, only the first page is used. 6670 */ 6671 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 6672 if (IS_ERR(sb)) 6673 return PTR_ERR(sb); 6674 set_extent_buffer_uptodate(sb); 6675 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6676 /* 6677 * The sb extent buffer is artificial and just used to read the system array. 6678 * set_extent_buffer_uptodate() call does not properly mark all it's 6679 * pages up-to-date when the page is larger: extent does not cover the 6680 * whole page and consequently check_page_uptodate does not find all 6681 * the page's extents up-to-date (the hole beyond sb), 6682 * write_extent_buffer then triggers a WARN_ON. 6683 * 6684 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6685 * but sb spans only this function. Add an explicit SetPageUptodate call 6686 * to silence the warning eg. on PowerPC 64. 6687 */ 6688 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 6689 SetPageUptodate(sb->pages[0]); 6690 6691 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6692 array_size = btrfs_super_sys_array_size(super_copy); 6693 6694 array_ptr = super_copy->sys_chunk_array; 6695 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6696 cur_offset = 0; 6697 6698 while (cur_offset < array_size) { 6699 disk_key = (struct btrfs_disk_key *)array_ptr; 6700 len = sizeof(*disk_key); 6701 if (cur_offset + len > array_size) 6702 goto out_short_read; 6703 6704 btrfs_disk_key_to_cpu(&key, disk_key); 6705 6706 array_ptr += len; 6707 sb_array_offset += len; 6708 cur_offset += len; 6709 6710 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 6711 chunk = (struct btrfs_chunk *)sb_array_offset; 6712 /* 6713 * At least one btrfs_chunk with one stripe must be 6714 * present, exact stripe count check comes afterwards 6715 */ 6716 len = btrfs_chunk_item_size(1); 6717 if (cur_offset + len > array_size) 6718 goto out_short_read; 6719 6720 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6721 if (!num_stripes) { 6722 btrfs_err(fs_info, 6723 "invalid number of stripes %u in sys_array at offset %u", 6724 num_stripes, cur_offset); 6725 ret = -EIO; 6726 break; 6727 } 6728 6729 type = btrfs_chunk_type(sb, chunk); 6730 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 6731 btrfs_err(fs_info, 6732 "invalid chunk type %llu in sys_array at offset %u", 6733 type, cur_offset); 6734 ret = -EIO; 6735 break; 6736 } 6737 6738 len = btrfs_chunk_item_size(num_stripes); 6739 if (cur_offset + len > array_size) 6740 goto out_short_read; 6741 6742 ret = read_one_chunk(fs_info, &key, sb, chunk); 6743 if (ret) 6744 break; 6745 } else { 6746 btrfs_err(fs_info, 6747 "unexpected item type %u in sys_array at offset %u", 6748 (u32)key.type, cur_offset); 6749 ret = -EIO; 6750 break; 6751 } 6752 array_ptr += len; 6753 sb_array_offset += len; 6754 cur_offset += len; 6755 } 6756 clear_extent_buffer_uptodate(sb); 6757 free_extent_buffer_stale(sb); 6758 return ret; 6759 6760 out_short_read: 6761 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 6762 len, cur_offset); 6763 clear_extent_buffer_uptodate(sb); 6764 free_extent_buffer_stale(sb); 6765 return -EIO; 6766 } 6767 6768 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 6769 { 6770 struct btrfs_root *root = fs_info->chunk_root; 6771 struct btrfs_path *path; 6772 struct extent_buffer *leaf; 6773 struct btrfs_key key; 6774 struct btrfs_key found_key; 6775 int ret; 6776 int slot; 6777 u64 total_dev = 0; 6778 6779 path = btrfs_alloc_path(); 6780 if (!path) 6781 return -ENOMEM; 6782 6783 mutex_lock(&uuid_mutex); 6784 mutex_lock(&fs_info->chunk_mutex); 6785 6786 /* 6787 * Read all device items, and then all the chunk items. All 6788 * device items are found before any chunk item (their object id 6789 * is smaller than the lowest possible object id for a chunk 6790 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6791 */ 6792 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6793 key.offset = 0; 6794 key.type = 0; 6795 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6796 if (ret < 0) 6797 goto error; 6798 while (1) { 6799 leaf = path->nodes[0]; 6800 slot = path->slots[0]; 6801 if (slot >= btrfs_header_nritems(leaf)) { 6802 ret = btrfs_next_leaf(root, path); 6803 if (ret == 0) 6804 continue; 6805 if (ret < 0) 6806 goto error; 6807 break; 6808 } 6809 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6810 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6811 struct btrfs_dev_item *dev_item; 6812 dev_item = btrfs_item_ptr(leaf, slot, 6813 struct btrfs_dev_item); 6814 ret = read_one_dev(fs_info, leaf, dev_item); 6815 if (ret) 6816 goto error; 6817 total_dev++; 6818 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6819 struct btrfs_chunk *chunk; 6820 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6821 ret = read_one_chunk(fs_info, &found_key, leaf, chunk); 6822 if (ret) 6823 goto error; 6824 } 6825 path->slots[0]++; 6826 } 6827 6828 /* 6829 * After loading chunk tree, we've got all device information, 6830 * do another round of validation checks. 6831 */ 6832 if (total_dev != fs_info->fs_devices->total_devices) { 6833 btrfs_err(fs_info, 6834 "super_num_devices %llu mismatch with num_devices %llu found here", 6835 btrfs_super_num_devices(fs_info->super_copy), 6836 total_dev); 6837 ret = -EINVAL; 6838 goto error; 6839 } 6840 if (btrfs_super_total_bytes(fs_info->super_copy) < 6841 fs_info->fs_devices->total_rw_bytes) { 6842 btrfs_err(fs_info, 6843 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 6844 btrfs_super_total_bytes(fs_info->super_copy), 6845 fs_info->fs_devices->total_rw_bytes); 6846 ret = -EINVAL; 6847 goto error; 6848 } 6849 ret = 0; 6850 error: 6851 mutex_unlock(&fs_info->chunk_mutex); 6852 mutex_unlock(&uuid_mutex); 6853 6854 btrfs_free_path(path); 6855 return ret; 6856 } 6857 6858 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6859 { 6860 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6861 struct btrfs_device *device; 6862 6863 while (fs_devices) { 6864 mutex_lock(&fs_devices->device_list_mutex); 6865 list_for_each_entry(device, &fs_devices->devices, dev_list) 6866 device->fs_info = fs_info; 6867 mutex_unlock(&fs_devices->device_list_mutex); 6868 6869 fs_devices = fs_devices->seed; 6870 } 6871 } 6872 6873 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6874 { 6875 int i; 6876 6877 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6878 btrfs_dev_stat_reset(dev, i); 6879 } 6880 6881 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6882 { 6883 struct btrfs_key key; 6884 struct btrfs_key found_key; 6885 struct btrfs_root *dev_root = fs_info->dev_root; 6886 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6887 struct extent_buffer *eb; 6888 int slot; 6889 int ret = 0; 6890 struct btrfs_device *device; 6891 struct btrfs_path *path = NULL; 6892 int i; 6893 6894 path = btrfs_alloc_path(); 6895 if (!path) { 6896 ret = -ENOMEM; 6897 goto out; 6898 } 6899 6900 mutex_lock(&fs_devices->device_list_mutex); 6901 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6902 int item_size; 6903 struct btrfs_dev_stats_item *ptr; 6904 6905 key.objectid = BTRFS_DEV_STATS_OBJECTID; 6906 key.type = BTRFS_PERSISTENT_ITEM_KEY; 6907 key.offset = device->devid; 6908 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6909 if (ret) { 6910 __btrfs_reset_dev_stats(device); 6911 device->dev_stats_valid = 1; 6912 btrfs_release_path(path); 6913 continue; 6914 } 6915 slot = path->slots[0]; 6916 eb = path->nodes[0]; 6917 btrfs_item_key_to_cpu(eb, &found_key, slot); 6918 item_size = btrfs_item_size_nr(eb, slot); 6919 6920 ptr = btrfs_item_ptr(eb, slot, 6921 struct btrfs_dev_stats_item); 6922 6923 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6924 if (item_size >= (1 + i) * sizeof(__le64)) 6925 btrfs_dev_stat_set(device, i, 6926 btrfs_dev_stats_value(eb, ptr, i)); 6927 else 6928 btrfs_dev_stat_reset(device, i); 6929 } 6930 6931 device->dev_stats_valid = 1; 6932 btrfs_dev_stat_print_on_load(device); 6933 btrfs_release_path(path); 6934 } 6935 mutex_unlock(&fs_devices->device_list_mutex); 6936 6937 out: 6938 btrfs_free_path(path); 6939 return ret < 0 ? ret : 0; 6940 } 6941 6942 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 6943 struct btrfs_fs_info *fs_info, 6944 struct btrfs_device *device) 6945 { 6946 struct btrfs_root *dev_root = fs_info->dev_root; 6947 struct btrfs_path *path; 6948 struct btrfs_key key; 6949 struct extent_buffer *eb; 6950 struct btrfs_dev_stats_item *ptr; 6951 int ret; 6952 int i; 6953 6954 key.objectid = BTRFS_DEV_STATS_OBJECTID; 6955 key.type = BTRFS_PERSISTENT_ITEM_KEY; 6956 key.offset = device->devid; 6957 6958 path = btrfs_alloc_path(); 6959 if (!path) 6960 return -ENOMEM; 6961 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 6962 if (ret < 0) { 6963 btrfs_warn_in_rcu(fs_info, 6964 "error %d while searching for dev_stats item for device %s", 6965 ret, rcu_str_deref(device->name)); 6966 goto out; 6967 } 6968 6969 if (ret == 0 && 6970 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 6971 /* need to delete old one and insert a new one */ 6972 ret = btrfs_del_item(trans, dev_root, path); 6973 if (ret != 0) { 6974 btrfs_warn_in_rcu(fs_info, 6975 "delete too small dev_stats item for device %s failed %d", 6976 rcu_str_deref(device->name), ret); 6977 goto out; 6978 } 6979 ret = 1; 6980 } 6981 6982 if (ret == 1) { 6983 /* need to insert a new item */ 6984 btrfs_release_path(path); 6985 ret = btrfs_insert_empty_item(trans, dev_root, path, 6986 &key, sizeof(*ptr)); 6987 if (ret < 0) { 6988 btrfs_warn_in_rcu(fs_info, 6989 "insert dev_stats item for device %s failed %d", 6990 rcu_str_deref(device->name), ret); 6991 goto out; 6992 } 6993 } 6994 6995 eb = path->nodes[0]; 6996 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 6997 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6998 btrfs_set_dev_stats_value(eb, ptr, i, 6999 btrfs_dev_stat_read(device, i)); 7000 btrfs_mark_buffer_dirty(eb); 7001 7002 out: 7003 btrfs_free_path(path); 7004 return ret; 7005 } 7006 7007 /* 7008 * called from commit_transaction. Writes all changed device stats to disk. 7009 */ 7010 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 7011 struct btrfs_fs_info *fs_info) 7012 { 7013 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7014 struct btrfs_device *device; 7015 int stats_cnt; 7016 int ret = 0; 7017 7018 mutex_lock(&fs_devices->device_list_mutex); 7019 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7020 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device)) 7021 continue; 7022 7023 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7024 ret = update_dev_stat_item(trans, fs_info, device); 7025 if (!ret) 7026 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7027 } 7028 mutex_unlock(&fs_devices->device_list_mutex); 7029 7030 return ret; 7031 } 7032 7033 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7034 { 7035 btrfs_dev_stat_inc(dev, index); 7036 btrfs_dev_stat_print_on_error(dev); 7037 } 7038 7039 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7040 { 7041 if (!dev->dev_stats_valid) 7042 return; 7043 btrfs_err_rl_in_rcu(dev->fs_info, 7044 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7045 rcu_str_deref(dev->name), 7046 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7047 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7048 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7049 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7050 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7051 } 7052 7053 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7054 { 7055 int i; 7056 7057 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7058 if (btrfs_dev_stat_read(dev, i) != 0) 7059 break; 7060 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7061 return; /* all values == 0, suppress message */ 7062 7063 btrfs_info_in_rcu(dev->fs_info, 7064 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7065 rcu_str_deref(dev->name), 7066 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7067 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7068 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7069 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7070 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7071 } 7072 7073 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7074 struct btrfs_ioctl_get_dev_stats *stats) 7075 { 7076 struct btrfs_device *dev; 7077 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7078 int i; 7079 7080 mutex_lock(&fs_devices->device_list_mutex); 7081 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL); 7082 mutex_unlock(&fs_devices->device_list_mutex); 7083 7084 if (!dev) { 7085 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7086 return -ENODEV; 7087 } else if (!dev->dev_stats_valid) { 7088 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7089 return -ENODEV; 7090 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7091 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7092 if (stats->nr_items > i) 7093 stats->values[i] = 7094 btrfs_dev_stat_read_and_reset(dev, i); 7095 else 7096 btrfs_dev_stat_reset(dev, i); 7097 } 7098 } else { 7099 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7100 if (stats->nr_items > i) 7101 stats->values[i] = btrfs_dev_stat_read(dev, i); 7102 } 7103 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7104 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7105 return 0; 7106 } 7107 7108 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path) 7109 { 7110 struct buffer_head *bh; 7111 struct btrfs_super_block *disk_super; 7112 int copy_num; 7113 7114 if (!bdev) 7115 return; 7116 7117 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 7118 copy_num++) { 7119 7120 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 7121 continue; 7122 7123 disk_super = (struct btrfs_super_block *)bh->b_data; 7124 7125 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 7126 set_buffer_dirty(bh); 7127 sync_dirty_buffer(bh); 7128 brelse(bh); 7129 } 7130 7131 /* Notify udev that device has changed */ 7132 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 7133 7134 /* Update ctime/mtime for device path for libblkid */ 7135 update_dev_time(device_path); 7136 } 7137 7138 /* 7139 * Update the size of all devices, which is used for writing out the 7140 * super blocks. 7141 */ 7142 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) 7143 { 7144 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7145 struct btrfs_device *curr, *next; 7146 7147 if (list_empty(&fs_devices->resized_devices)) 7148 return; 7149 7150 mutex_lock(&fs_devices->device_list_mutex); 7151 mutex_lock(&fs_info->chunk_mutex); 7152 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, 7153 resized_list) { 7154 list_del_init(&curr->resized_list); 7155 curr->commit_total_bytes = curr->disk_total_bytes; 7156 } 7157 mutex_unlock(&fs_info->chunk_mutex); 7158 mutex_unlock(&fs_devices->device_list_mutex); 7159 } 7160 7161 /* Must be invoked during the transaction commit */ 7162 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info, 7163 struct btrfs_transaction *transaction) 7164 { 7165 struct extent_map *em; 7166 struct map_lookup *map; 7167 struct btrfs_device *dev; 7168 int i; 7169 7170 if (list_empty(&transaction->pending_chunks)) 7171 return; 7172 7173 /* In order to kick the device replace finish process */ 7174 mutex_lock(&fs_info->chunk_mutex); 7175 list_for_each_entry(em, &transaction->pending_chunks, list) { 7176 map = em->map_lookup; 7177 7178 for (i = 0; i < map->num_stripes; i++) { 7179 dev = map->stripes[i].dev; 7180 dev->commit_bytes_used = dev->bytes_used; 7181 } 7182 } 7183 mutex_unlock(&fs_info->chunk_mutex); 7184 } 7185 7186 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 7187 { 7188 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7189 while (fs_devices) { 7190 fs_devices->fs_info = fs_info; 7191 fs_devices = fs_devices->seed; 7192 } 7193 } 7194 7195 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 7196 { 7197 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7198 while (fs_devices) { 7199 fs_devices->fs_info = NULL; 7200 fs_devices = fs_devices->seed; 7201 } 7202 } 7203