xref: /openbmc/linux/fs/btrfs/volumes.c (revision 4ce94eab)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 #include "zoned.h"
35 
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 	[BTRFS_RAID_RAID10] = {
38 		.sub_stripes	= 2,
39 		.dev_stripes	= 1,
40 		.devs_max	= 0,	/* 0 == as many as possible */
41 		.devs_min	= 4,
42 		.tolerated_failures = 1,
43 		.devs_increment	= 2,
44 		.ncopies	= 2,
45 		.nparity        = 0,
46 		.raid_name	= "raid10",
47 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
48 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49 	},
50 	[BTRFS_RAID_RAID1] = {
51 		.sub_stripes	= 1,
52 		.dev_stripes	= 1,
53 		.devs_max	= 2,
54 		.devs_min	= 2,
55 		.tolerated_failures = 1,
56 		.devs_increment	= 2,
57 		.ncopies	= 2,
58 		.nparity        = 0,
59 		.raid_name	= "raid1",
60 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
61 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62 	},
63 	[BTRFS_RAID_RAID1C3] = {
64 		.sub_stripes	= 1,
65 		.dev_stripes	= 1,
66 		.devs_max	= 3,
67 		.devs_min	= 3,
68 		.tolerated_failures = 2,
69 		.devs_increment	= 3,
70 		.ncopies	= 3,
71 		.nparity        = 0,
72 		.raid_name	= "raid1c3",
73 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
74 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75 	},
76 	[BTRFS_RAID_RAID1C4] = {
77 		.sub_stripes	= 1,
78 		.dev_stripes	= 1,
79 		.devs_max	= 4,
80 		.devs_min	= 4,
81 		.tolerated_failures = 3,
82 		.devs_increment	= 4,
83 		.ncopies	= 4,
84 		.nparity        = 0,
85 		.raid_name	= "raid1c4",
86 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
87 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88 	},
89 	[BTRFS_RAID_DUP] = {
90 		.sub_stripes	= 1,
91 		.dev_stripes	= 2,
92 		.devs_max	= 1,
93 		.devs_min	= 1,
94 		.tolerated_failures = 0,
95 		.devs_increment	= 1,
96 		.ncopies	= 2,
97 		.nparity        = 0,
98 		.raid_name	= "dup",
99 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
100 		.mindev_error	= 0,
101 	},
102 	[BTRFS_RAID_RAID0] = {
103 		.sub_stripes	= 1,
104 		.dev_stripes	= 1,
105 		.devs_max	= 0,
106 		.devs_min	= 2,
107 		.tolerated_failures = 0,
108 		.devs_increment	= 1,
109 		.ncopies	= 1,
110 		.nparity        = 0,
111 		.raid_name	= "raid0",
112 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
113 		.mindev_error	= 0,
114 	},
115 	[BTRFS_RAID_SINGLE] = {
116 		.sub_stripes	= 1,
117 		.dev_stripes	= 1,
118 		.devs_max	= 1,
119 		.devs_min	= 1,
120 		.tolerated_failures = 0,
121 		.devs_increment	= 1,
122 		.ncopies	= 1,
123 		.nparity        = 0,
124 		.raid_name	= "single",
125 		.bg_flag	= 0,
126 		.mindev_error	= 0,
127 	},
128 	[BTRFS_RAID_RAID5] = {
129 		.sub_stripes	= 1,
130 		.dev_stripes	= 1,
131 		.devs_max	= 0,
132 		.devs_min	= 2,
133 		.tolerated_failures = 1,
134 		.devs_increment	= 1,
135 		.ncopies	= 1,
136 		.nparity        = 1,
137 		.raid_name	= "raid5",
138 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
139 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140 	},
141 	[BTRFS_RAID_RAID6] = {
142 		.sub_stripes	= 1,
143 		.dev_stripes	= 1,
144 		.devs_max	= 0,
145 		.devs_min	= 3,
146 		.tolerated_failures = 2,
147 		.devs_increment	= 1,
148 		.ncopies	= 1,
149 		.nparity        = 2,
150 		.raid_name	= "raid6",
151 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
152 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153 	},
154 };
155 
156 const char *btrfs_bg_type_to_raid_name(u64 flags)
157 {
158 	const int index = btrfs_bg_flags_to_raid_index(flags);
159 
160 	if (index >= BTRFS_NR_RAID_TYPES)
161 		return NULL;
162 
163 	return btrfs_raid_array[index].raid_name;
164 }
165 
166 /*
167  * Fill @buf with textual description of @bg_flags, no more than @size_buf
168  * bytes including terminating null byte.
169  */
170 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
171 {
172 	int i;
173 	int ret;
174 	char *bp = buf;
175 	u64 flags = bg_flags;
176 	u32 size_bp = size_buf;
177 
178 	if (!flags) {
179 		strcpy(bp, "NONE");
180 		return;
181 	}
182 
183 #define DESCRIBE_FLAG(flag, desc)						\
184 	do {								\
185 		if (flags & (flag)) {					\
186 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
187 			if (ret < 0 || ret >= size_bp)			\
188 				goto out_overflow;			\
189 			size_bp -= ret;					\
190 			bp += ret;					\
191 			flags &= ~(flag);				\
192 		}							\
193 	} while (0)
194 
195 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
196 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
197 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
198 
199 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
200 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
202 			      btrfs_raid_array[i].raid_name);
203 #undef DESCRIBE_FLAG
204 
205 	if (flags) {
206 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
207 		size_bp -= ret;
208 	}
209 
210 	if (size_bp < size_buf)
211 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
212 
213 	/*
214 	 * The text is trimmed, it's up to the caller to provide sufficiently
215 	 * large buffer
216 	 */
217 out_overflow:;
218 }
219 
220 static int init_first_rw_device(struct btrfs_trans_handle *trans);
221 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
222 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
223 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
224 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
225 			     enum btrfs_map_op op,
226 			     u64 logical, u64 *length,
227 			     struct btrfs_bio **bbio_ret,
228 			     int mirror_num, int need_raid_map);
229 
230 /*
231  * Device locking
232  * ==============
233  *
234  * There are several mutexes that protect manipulation of devices and low-level
235  * structures like chunks but not block groups, extents or files
236  *
237  * uuid_mutex (global lock)
238  * ------------------------
239  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
240  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
241  * device) or requested by the device= mount option
242  *
243  * the mutex can be very coarse and can cover long-running operations
244  *
245  * protects: updates to fs_devices counters like missing devices, rw devices,
246  * seeding, structure cloning, opening/closing devices at mount/umount time
247  *
248  * global::fs_devs - add, remove, updates to the global list
249  *
250  * does not protect: manipulation of the fs_devices::devices list in general
251  * but in mount context it could be used to exclude list modifications by eg.
252  * scan ioctl
253  *
254  * btrfs_device::name - renames (write side), read is RCU
255  *
256  * fs_devices::device_list_mutex (per-fs, with RCU)
257  * ------------------------------------------------
258  * protects updates to fs_devices::devices, ie. adding and deleting
259  *
260  * simple list traversal with read-only actions can be done with RCU protection
261  *
262  * may be used to exclude some operations from running concurrently without any
263  * modifications to the list (see write_all_supers)
264  *
265  * Is not required at mount and close times, because our device list is
266  * protected by the uuid_mutex at that point.
267  *
268  * balance_mutex
269  * -------------
270  * protects balance structures (status, state) and context accessed from
271  * several places (internally, ioctl)
272  *
273  * chunk_mutex
274  * -----------
275  * protects chunks, adding or removing during allocation, trim or when a new
276  * device is added/removed. Additionally it also protects post_commit_list of
277  * individual devices, since they can be added to the transaction's
278  * post_commit_list only with chunk_mutex held.
279  *
280  * cleaner_mutex
281  * -------------
282  * a big lock that is held by the cleaner thread and prevents running subvolume
283  * cleaning together with relocation or delayed iputs
284  *
285  *
286  * Lock nesting
287  * ============
288  *
289  * uuid_mutex
290  *   device_list_mutex
291  *     chunk_mutex
292  *   balance_mutex
293  *
294  *
295  * Exclusive operations
296  * ====================
297  *
298  * Maintains the exclusivity of the following operations that apply to the
299  * whole filesystem and cannot run in parallel.
300  *
301  * - Balance (*)
302  * - Device add
303  * - Device remove
304  * - Device replace (*)
305  * - Resize
306  *
307  * The device operations (as above) can be in one of the following states:
308  *
309  * - Running state
310  * - Paused state
311  * - Completed state
312  *
313  * Only device operations marked with (*) can go into the Paused state for the
314  * following reasons:
315  *
316  * - ioctl (only Balance can be Paused through ioctl)
317  * - filesystem remounted as read-only
318  * - filesystem unmounted and mounted as read-only
319  * - system power-cycle and filesystem mounted as read-only
320  * - filesystem or device errors leading to forced read-only
321  *
322  * The status of exclusive operation is set and cleared atomically.
323  * During the course of Paused state, fs_info::exclusive_operation remains set.
324  * A device operation in Paused or Running state can be canceled or resumed
325  * either by ioctl (Balance only) or when remounted as read-write.
326  * The exclusive status is cleared when the device operation is canceled or
327  * completed.
328  */
329 
330 DEFINE_MUTEX(uuid_mutex);
331 static LIST_HEAD(fs_uuids);
332 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
333 {
334 	return &fs_uuids;
335 }
336 
337 /*
338  * alloc_fs_devices - allocate struct btrfs_fs_devices
339  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
340  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
341  *
342  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
343  * The returned struct is not linked onto any lists and can be destroyed with
344  * kfree() right away.
345  */
346 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
347 						 const u8 *metadata_fsid)
348 {
349 	struct btrfs_fs_devices *fs_devs;
350 
351 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
352 	if (!fs_devs)
353 		return ERR_PTR(-ENOMEM);
354 
355 	mutex_init(&fs_devs->device_list_mutex);
356 
357 	INIT_LIST_HEAD(&fs_devs->devices);
358 	INIT_LIST_HEAD(&fs_devs->alloc_list);
359 	INIT_LIST_HEAD(&fs_devs->fs_list);
360 	INIT_LIST_HEAD(&fs_devs->seed_list);
361 	if (fsid)
362 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
363 
364 	if (metadata_fsid)
365 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
366 	else if (fsid)
367 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
368 
369 	return fs_devs;
370 }
371 
372 void btrfs_free_device(struct btrfs_device *device)
373 {
374 	WARN_ON(!list_empty(&device->post_commit_list));
375 	rcu_string_free(device->name);
376 	extent_io_tree_release(&device->alloc_state);
377 	bio_put(device->flush_bio);
378 	btrfs_destroy_dev_zone_info(device);
379 	kfree(device);
380 }
381 
382 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
383 {
384 	struct btrfs_device *device;
385 	WARN_ON(fs_devices->opened);
386 	while (!list_empty(&fs_devices->devices)) {
387 		device = list_entry(fs_devices->devices.next,
388 				    struct btrfs_device, dev_list);
389 		list_del(&device->dev_list);
390 		btrfs_free_device(device);
391 	}
392 	kfree(fs_devices);
393 }
394 
395 void __exit btrfs_cleanup_fs_uuids(void)
396 {
397 	struct btrfs_fs_devices *fs_devices;
398 
399 	while (!list_empty(&fs_uuids)) {
400 		fs_devices = list_entry(fs_uuids.next,
401 					struct btrfs_fs_devices, fs_list);
402 		list_del(&fs_devices->fs_list);
403 		free_fs_devices(fs_devices);
404 	}
405 }
406 
407 /*
408  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
409  * Returned struct is not linked onto any lists and must be destroyed using
410  * btrfs_free_device.
411  */
412 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
413 {
414 	struct btrfs_device *dev;
415 
416 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
417 	if (!dev)
418 		return ERR_PTR(-ENOMEM);
419 
420 	/*
421 	 * Preallocate a bio that's always going to be used for flushing device
422 	 * barriers and matches the device lifespan
423 	 */
424 	dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
425 	if (!dev->flush_bio) {
426 		kfree(dev);
427 		return ERR_PTR(-ENOMEM);
428 	}
429 
430 	INIT_LIST_HEAD(&dev->dev_list);
431 	INIT_LIST_HEAD(&dev->dev_alloc_list);
432 	INIT_LIST_HEAD(&dev->post_commit_list);
433 
434 	atomic_set(&dev->reada_in_flight, 0);
435 	atomic_set(&dev->dev_stats_ccnt, 0);
436 	btrfs_device_data_ordered_init(dev);
437 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
438 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
439 	extent_io_tree_init(fs_info, &dev->alloc_state,
440 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
441 
442 	return dev;
443 }
444 
445 static noinline struct btrfs_fs_devices *find_fsid(
446 		const u8 *fsid, const u8 *metadata_fsid)
447 {
448 	struct btrfs_fs_devices *fs_devices;
449 
450 	ASSERT(fsid);
451 
452 	/* Handle non-split brain cases */
453 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 		if (metadata_fsid) {
455 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457 				      BTRFS_FSID_SIZE) == 0)
458 				return fs_devices;
459 		} else {
460 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
461 				return fs_devices;
462 		}
463 	}
464 	return NULL;
465 }
466 
467 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
468 				struct btrfs_super_block *disk_super)
469 {
470 
471 	struct btrfs_fs_devices *fs_devices;
472 
473 	/*
474 	 * Handle scanned device having completed its fsid change but
475 	 * belonging to a fs_devices that was created by first scanning
476 	 * a device which didn't have its fsid/metadata_uuid changed
477 	 * at all and the CHANGING_FSID_V2 flag set.
478 	 */
479 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
480 		if (fs_devices->fsid_change &&
481 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
482 			   BTRFS_FSID_SIZE) == 0 &&
483 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
484 			   BTRFS_FSID_SIZE) == 0) {
485 			return fs_devices;
486 		}
487 	}
488 	/*
489 	 * Handle scanned device having completed its fsid change but
490 	 * belonging to a fs_devices that was created by a device that
491 	 * has an outdated pair of fsid/metadata_uuid and
492 	 * CHANGING_FSID_V2 flag set.
493 	 */
494 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
495 		if (fs_devices->fsid_change &&
496 		    memcmp(fs_devices->metadata_uuid,
497 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
498 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
499 			   BTRFS_FSID_SIZE) == 0) {
500 			return fs_devices;
501 		}
502 	}
503 
504 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
505 }
506 
507 
508 static int
509 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
510 		      int flush, struct block_device **bdev,
511 		      struct btrfs_super_block **disk_super)
512 {
513 	int ret;
514 
515 	*bdev = blkdev_get_by_path(device_path, flags, holder);
516 
517 	if (IS_ERR(*bdev)) {
518 		ret = PTR_ERR(*bdev);
519 		goto error;
520 	}
521 
522 	if (flush)
523 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
524 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
525 	if (ret) {
526 		blkdev_put(*bdev, flags);
527 		goto error;
528 	}
529 	invalidate_bdev(*bdev);
530 	*disk_super = btrfs_read_dev_super(*bdev);
531 	if (IS_ERR(*disk_super)) {
532 		ret = PTR_ERR(*disk_super);
533 		blkdev_put(*bdev, flags);
534 		goto error;
535 	}
536 
537 	return 0;
538 
539 error:
540 	*bdev = NULL;
541 	return ret;
542 }
543 
544 static bool device_path_matched(const char *path, struct btrfs_device *device)
545 {
546 	int found;
547 
548 	rcu_read_lock();
549 	found = strcmp(rcu_str_deref(device->name), path);
550 	rcu_read_unlock();
551 
552 	return found == 0;
553 }
554 
555 /*
556  *  Search and remove all stale (devices which are not mounted) devices.
557  *  When both inputs are NULL, it will search and release all stale devices.
558  *  path:	Optional. When provided will it release all unmounted devices
559  *		matching this path only.
560  *  skip_dev:	Optional. Will skip this device when searching for the stale
561  *		devices.
562  *  Return:	0 for success or if @path is NULL.
563  * 		-EBUSY if @path is a mounted device.
564  * 		-ENOENT if @path does not match any device in the list.
565  */
566 static int btrfs_free_stale_devices(const char *path,
567 				     struct btrfs_device *skip_device)
568 {
569 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
570 	struct btrfs_device *device, *tmp_device;
571 	int ret = 0;
572 
573 	if (path)
574 		ret = -ENOENT;
575 
576 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
577 
578 		mutex_lock(&fs_devices->device_list_mutex);
579 		list_for_each_entry_safe(device, tmp_device,
580 					 &fs_devices->devices, dev_list) {
581 			if (skip_device && skip_device == device)
582 				continue;
583 			if (path && !device->name)
584 				continue;
585 			if (path && !device_path_matched(path, device))
586 				continue;
587 			if (fs_devices->opened) {
588 				/* for an already deleted device return 0 */
589 				if (path && ret != 0)
590 					ret = -EBUSY;
591 				break;
592 			}
593 
594 			/* delete the stale device */
595 			fs_devices->num_devices--;
596 			list_del(&device->dev_list);
597 			btrfs_free_device(device);
598 
599 			ret = 0;
600 		}
601 		mutex_unlock(&fs_devices->device_list_mutex);
602 
603 		if (fs_devices->num_devices == 0) {
604 			btrfs_sysfs_remove_fsid(fs_devices);
605 			list_del(&fs_devices->fs_list);
606 			free_fs_devices(fs_devices);
607 		}
608 	}
609 
610 	return ret;
611 }
612 
613 /*
614  * This is only used on mount, and we are protected from competing things
615  * messing with our fs_devices by the uuid_mutex, thus we do not need the
616  * fs_devices->device_list_mutex here.
617  */
618 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
619 			struct btrfs_device *device, fmode_t flags,
620 			void *holder)
621 {
622 	struct request_queue *q;
623 	struct block_device *bdev;
624 	struct btrfs_super_block *disk_super;
625 	u64 devid;
626 	int ret;
627 
628 	if (device->bdev)
629 		return -EINVAL;
630 	if (!device->name)
631 		return -EINVAL;
632 
633 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
634 				    &bdev, &disk_super);
635 	if (ret)
636 		return ret;
637 
638 	devid = btrfs_stack_device_id(&disk_super->dev_item);
639 	if (devid != device->devid)
640 		goto error_free_page;
641 
642 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
643 		goto error_free_page;
644 
645 	device->generation = btrfs_super_generation(disk_super);
646 
647 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
648 		if (btrfs_super_incompat_flags(disk_super) &
649 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
650 			pr_err(
651 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
652 			goto error_free_page;
653 		}
654 
655 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
656 		fs_devices->seeding = true;
657 	} else {
658 		if (bdev_read_only(bdev))
659 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 		else
661 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
662 	}
663 
664 	q = bdev_get_queue(bdev);
665 	if (!blk_queue_nonrot(q))
666 		fs_devices->rotating = true;
667 
668 	device->bdev = bdev;
669 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
670 	device->mode = flags;
671 
672 	fs_devices->open_devices++;
673 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
674 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
675 		fs_devices->rw_devices++;
676 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
677 	}
678 	btrfs_release_disk_super(disk_super);
679 
680 	return 0;
681 
682 error_free_page:
683 	btrfs_release_disk_super(disk_super);
684 	blkdev_put(bdev, flags);
685 
686 	return -EINVAL;
687 }
688 
689 /*
690  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
691  * being created with a disk that has already completed its fsid change. Such
692  * disk can belong to an fs which has its FSID changed or to one which doesn't.
693  * Handle both cases here.
694  */
695 static struct btrfs_fs_devices *find_fsid_inprogress(
696 					struct btrfs_super_block *disk_super)
697 {
698 	struct btrfs_fs_devices *fs_devices;
699 
700 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
701 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
702 			   BTRFS_FSID_SIZE) != 0 &&
703 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
704 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
705 			return fs_devices;
706 		}
707 	}
708 
709 	return find_fsid(disk_super->fsid, NULL);
710 }
711 
712 
713 static struct btrfs_fs_devices *find_fsid_changed(
714 					struct btrfs_super_block *disk_super)
715 {
716 	struct btrfs_fs_devices *fs_devices;
717 
718 	/*
719 	 * Handles the case where scanned device is part of an fs that had
720 	 * multiple successful changes of FSID but curently device didn't
721 	 * observe it. Meaning our fsid will be different than theirs. We need
722 	 * to handle two subcases :
723 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
724 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
725 	 *  are equal).
726 	 */
727 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
728 		/* Changed UUIDs */
729 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
730 			   BTRFS_FSID_SIZE) != 0 &&
731 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
732 			   BTRFS_FSID_SIZE) == 0 &&
733 		    memcmp(fs_devices->fsid, disk_super->fsid,
734 			   BTRFS_FSID_SIZE) != 0)
735 			return fs_devices;
736 
737 		/* Unchanged UUIDs */
738 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
739 			   BTRFS_FSID_SIZE) == 0 &&
740 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
741 			   BTRFS_FSID_SIZE) == 0)
742 			return fs_devices;
743 	}
744 
745 	return NULL;
746 }
747 
748 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
749 				struct btrfs_super_block *disk_super)
750 {
751 	struct btrfs_fs_devices *fs_devices;
752 
753 	/*
754 	 * Handle the case where the scanned device is part of an fs whose last
755 	 * metadata UUID change reverted it to the original FSID. At the same
756 	 * time * fs_devices was first created by another constitutent device
757 	 * which didn't fully observe the operation. This results in an
758 	 * btrfs_fs_devices created with metadata/fsid different AND
759 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
760 	 * fs_devices equal to the FSID of the disk.
761 	 */
762 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
763 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
764 			   BTRFS_FSID_SIZE) != 0 &&
765 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
766 			   BTRFS_FSID_SIZE) == 0 &&
767 		    fs_devices->fsid_change)
768 			return fs_devices;
769 	}
770 
771 	return NULL;
772 }
773 /*
774  * Add new device to list of registered devices
775  *
776  * Returns:
777  * device pointer which was just added or updated when successful
778  * error pointer when failed
779  */
780 static noinline struct btrfs_device *device_list_add(const char *path,
781 			   struct btrfs_super_block *disk_super,
782 			   bool *new_device_added)
783 {
784 	struct btrfs_device *device;
785 	struct btrfs_fs_devices *fs_devices = NULL;
786 	struct rcu_string *name;
787 	u64 found_transid = btrfs_super_generation(disk_super);
788 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
789 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
790 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
791 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
792 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
793 
794 	if (fsid_change_in_progress) {
795 		if (!has_metadata_uuid)
796 			fs_devices = find_fsid_inprogress(disk_super);
797 		else
798 			fs_devices = find_fsid_changed(disk_super);
799 	} else if (has_metadata_uuid) {
800 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
801 	} else {
802 		fs_devices = find_fsid_reverted_metadata(disk_super);
803 		if (!fs_devices)
804 			fs_devices = find_fsid(disk_super->fsid, NULL);
805 	}
806 
807 
808 	if (!fs_devices) {
809 		if (has_metadata_uuid)
810 			fs_devices = alloc_fs_devices(disk_super->fsid,
811 						      disk_super->metadata_uuid);
812 		else
813 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
814 
815 		if (IS_ERR(fs_devices))
816 			return ERR_CAST(fs_devices);
817 
818 		fs_devices->fsid_change = fsid_change_in_progress;
819 
820 		mutex_lock(&fs_devices->device_list_mutex);
821 		list_add(&fs_devices->fs_list, &fs_uuids);
822 
823 		device = NULL;
824 	} else {
825 		mutex_lock(&fs_devices->device_list_mutex);
826 		device = btrfs_find_device(fs_devices, devid,
827 				disk_super->dev_item.uuid, NULL);
828 
829 		/*
830 		 * If this disk has been pulled into an fs devices created by
831 		 * a device which had the CHANGING_FSID_V2 flag then replace the
832 		 * metadata_uuid/fsid values of the fs_devices.
833 		 */
834 		if (fs_devices->fsid_change &&
835 		    found_transid > fs_devices->latest_generation) {
836 			memcpy(fs_devices->fsid, disk_super->fsid,
837 					BTRFS_FSID_SIZE);
838 
839 			if (has_metadata_uuid)
840 				memcpy(fs_devices->metadata_uuid,
841 				       disk_super->metadata_uuid,
842 				       BTRFS_FSID_SIZE);
843 			else
844 				memcpy(fs_devices->metadata_uuid,
845 				       disk_super->fsid, BTRFS_FSID_SIZE);
846 
847 			fs_devices->fsid_change = false;
848 		}
849 	}
850 
851 	if (!device) {
852 		if (fs_devices->opened) {
853 			mutex_unlock(&fs_devices->device_list_mutex);
854 			return ERR_PTR(-EBUSY);
855 		}
856 
857 		device = btrfs_alloc_device(NULL, &devid,
858 					    disk_super->dev_item.uuid);
859 		if (IS_ERR(device)) {
860 			mutex_unlock(&fs_devices->device_list_mutex);
861 			/* we can safely leave the fs_devices entry around */
862 			return device;
863 		}
864 
865 		name = rcu_string_strdup(path, GFP_NOFS);
866 		if (!name) {
867 			btrfs_free_device(device);
868 			mutex_unlock(&fs_devices->device_list_mutex);
869 			return ERR_PTR(-ENOMEM);
870 		}
871 		rcu_assign_pointer(device->name, name);
872 
873 		list_add_rcu(&device->dev_list, &fs_devices->devices);
874 		fs_devices->num_devices++;
875 
876 		device->fs_devices = fs_devices;
877 		*new_device_added = true;
878 
879 		if (disk_super->label[0])
880 			pr_info(
881 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
882 				disk_super->label, devid, found_transid, path,
883 				current->comm, task_pid_nr(current));
884 		else
885 			pr_info(
886 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
887 				disk_super->fsid, devid, found_transid, path,
888 				current->comm, task_pid_nr(current));
889 
890 	} else if (!device->name || strcmp(device->name->str, path)) {
891 		/*
892 		 * When FS is already mounted.
893 		 * 1. If you are here and if the device->name is NULL that
894 		 *    means this device was missing at time of FS mount.
895 		 * 2. If you are here and if the device->name is different
896 		 *    from 'path' that means either
897 		 *      a. The same device disappeared and reappeared with
898 		 *         different name. or
899 		 *      b. The missing-disk-which-was-replaced, has
900 		 *         reappeared now.
901 		 *
902 		 * We must allow 1 and 2a above. But 2b would be a spurious
903 		 * and unintentional.
904 		 *
905 		 * Further in case of 1 and 2a above, the disk at 'path'
906 		 * would have missed some transaction when it was away and
907 		 * in case of 2a the stale bdev has to be updated as well.
908 		 * 2b must not be allowed at all time.
909 		 */
910 
911 		/*
912 		 * For now, we do allow update to btrfs_fs_device through the
913 		 * btrfs dev scan cli after FS has been mounted.  We're still
914 		 * tracking a problem where systems fail mount by subvolume id
915 		 * when we reject replacement on a mounted FS.
916 		 */
917 		if (!fs_devices->opened && found_transid < device->generation) {
918 			/*
919 			 * That is if the FS is _not_ mounted and if you
920 			 * are here, that means there is more than one
921 			 * disk with same uuid and devid.We keep the one
922 			 * with larger generation number or the last-in if
923 			 * generation are equal.
924 			 */
925 			mutex_unlock(&fs_devices->device_list_mutex);
926 			return ERR_PTR(-EEXIST);
927 		}
928 
929 		/*
930 		 * We are going to replace the device path for a given devid,
931 		 * make sure it's the same device if the device is mounted
932 		 */
933 		if (device->bdev) {
934 			int error;
935 			dev_t path_dev;
936 
937 			error = lookup_bdev(path, &path_dev);
938 			if (error) {
939 				mutex_unlock(&fs_devices->device_list_mutex);
940 				return ERR_PTR(error);
941 			}
942 
943 			if (device->bdev->bd_dev != path_dev) {
944 				mutex_unlock(&fs_devices->device_list_mutex);
945 				/*
946 				 * device->fs_info may not be reliable here, so
947 				 * pass in a NULL instead. This avoids a
948 				 * possible use-after-free when the fs_info and
949 				 * fs_info->sb are already torn down.
950 				 */
951 				btrfs_warn_in_rcu(NULL,
952 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
953 						  path, devid, found_transid,
954 						  current->comm,
955 						  task_pid_nr(current));
956 				return ERR_PTR(-EEXIST);
957 			}
958 			btrfs_info_in_rcu(device->fs_info,
959 	"devid %llu device path %s changed to %s scanned by %s (%d)",
960 					  devid, rcu_str_deref(device->name),
961 					  path, current->comm,
962 					  task_pid_nr(current));
963 		}
964 
965 		name = rcu_string_strdup(path, GFP_NOFS);
966 		if (!name) {
967 			mutex_unlock(&fs_devices->device_list_mutex);
968 			return ERR_PTR(-ENOMEM);
969 		}
970 		rcu_string_free(device->name);
971 		rcu_assign_pointer(device->name, name);
972 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
973 			fs_devices->missing_devices--;
974 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
975 		}
976 	}
977 
978 	/*
979 	 * Unmount does not free the btrfs_device struct but would zero
980 	 * generation along with most of the other members. So just update
981 	 * it back. We need it to pick the disk with largest generation
982 	 * (as above).
983 	 */
984 	if (!fs_devices->opened) {
985 		device->generation = found_transid;
986 		fs_devices->latest_generation = max_t(u64, found_transid,
987 						fs_devices->latest_generation);
988 	}
989 
990 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
991 
992 	mutex_unlock(&fs_devices->device_list_mutex);
993 	return device;
994 }
995 
996 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
997 {
998 	struct btrfs_fs_devices *fs_devices;
999 	struct btrfs_device *device;
1000 	struct btrfs_device *orig_dev;
1001 	int ret = 0;
1002 
1003 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1004 	if (IS_ERR(fs_devices))
1005 		return fs_devices;
1006 
1007 	mutex_lock(&orig->device_list_mutex);
1008 	fs_devices->total_devices = orig->total_devices;
1009 
1010 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1011 		struct rcu_string *name;
1012 
1013 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1014 					    orig_dev->uuid);
1015 		if (IS_ERR(device)) {
1016 			ret = PTR_ERR(device);
1017 			goto error;
1018 		}
1019 
1020 		/*
1021 		 * This is ok to do without rcu read locked because we hold the
1022 		 * uuid mutex so nothing we touch in here is going to disappear.
1023 		 */
1024 		if (orig_dev->name) {
1025 			name = rcu_string_strdup(orig_dev->name->str,
1026 					GFP_KERNEL);
1027 			if (!name) {
1028 				btrfs_free_device(device);
1029 				ret = -ENOMEM;
1030 				goto error;
1031 			}
1032 			rcu_assign_pointer(device->name, name);
1033 		}
1034 
1035 		list_add(&device->dev_list, &fs_devices->devices);
1036 		device->fs_devices = fs_devices;
1037 		fs_devices->num_devices++;
1038 	}
1039 	mutex_unlock(&orig->device_list_mutex);
1040 	return fs_devices;
1041 error:
1042 	mutex_unlock(&orig->device_list_mutex);
1043 	free_fs_devices(fs_devices);
1044 	return ERR_PTR(ret);
1045 }
1046 
1047 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1048 				      struct btrfs_device **latest_dev)
1049 {
1050 	struct btrfs_device *device, *next;
1051 
1052 	/* This is the initialized path, it is safe to release the devices. */
1053 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1054 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1055 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1056 				      &device->dev_state) &&
1057 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1058 				      &device->dev_state) &&
1059 			    (!*latest_dev ||
1060 			     device->generation > (*latest_dev)->generation)) {
1061 				*latest_dev = device;
1062 			}
1063 			continue;
1064 		}
1065 
1066 		/*
1067 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1068 		 * in btrfs_init_dev_replace() so just continue.
1069 		 */
1070 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1071 			continue;
1072 
1073 		if (device->bdev) {
1074 			blkdev_put(device->bdev, device->mode);
1075 			device->bdev = NULL;
1076 			fs_devices->open_devices--;
1077 		}
1078 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1079 			list_del_init(&device->dev_alloc_list);
1080 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1081 		}
1082 		list_del_init(&device->dev_list);
1083 		fs_devices->num_devices--;
1084 		btrfs_free_device(device);
1085 	}
1086 
1087 }
1088 
1089 /*
1090  * After we have read the system tree and know devids belonging to this
1091  * filesystem, remove the device which does not belong there.
1092  */
1093 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1094 {
1095 	struct btrfs_device *latest_dev = NULL;
1096 	struct btrfs_fs_devices *seed_dev;
1097 
1098 	mutex_lock(&uuid_mutex);
1099 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1100 
1101 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1102 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1103 
1104 	fs_devices->latest_bdev = latest_dev->bdev;
1105 
1106 	mutex_unlock(&uuid_mutex);
1107 }
1108 
1109 static void btrfs_close_bdev(struct btrfs_device *device)
1110 {
1111 	if (!device->bdev)
1112 		return;
1113 
1114 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1115 		sync_blockdev(device->bdev);
1116 		invalidate_bdev(device->bdev);
1117 	}
1118 
1119 	blkdev_put(device->bdev, device->mode);
1120 }
1121 
1122 static void btrfs_close_one_device(struct btrfs_device *device)
1123 {
1124 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1125 
1126 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1127 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1128 		list_del_init(&device->dev_alloc_list);
1129 		fs_devices->rw_devices--;
1130 	}
1131 
1132 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1133 		fs_devices->missing_devices--;
1134 
1135 	btrfs_close_bdev(device);
1136 	if (device->bdev) {
1137 		fs_devices->open_devices--;
1138 		device->bdev = NULL;
1139 	}
1140 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1141 	btrfs_destroy_dev_zone_info(device);
1142 
1143 	device->fs_info = NULL;
1144 	atomic_set(&device->dev_stats_ccnt, 0);
1145 	extent_io_tree_release(&device->alloc_state);
1146 
1147 	/* Verify the device is back in a pristine state  */
1148 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1149 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1150 	ASSERT(list_empty(&device->dev_alloc_list));
1151 	ASSERT(list_empty(&device->post_commit_list));
1152 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1153 }
1154 
1155 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1156 {
1157 	struct btrfs_device *device, *tmp;
1158 
1159 	lockdep_assert_held(&uuid_mutex);
1160 
1161 	if (--fs_devices->opened > 0)
1162 		return;
1163 
1164 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1165 		btrfs_close_one_device(device);
1166 
1167 	WARN_ON(fs_devices->open_devices);
1168 	WARN_ON(fs_devices->rw_devices);
1169 	fs_devices->opened = 0;
1170 	fs_devices->seeding = false;
1171 	fs_devices->fs_info = NULL;
1172 }
1173 
1174 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1175 {
1176 	LIST_HEAD(list);
1177 	struct btrfs_fs_devices *tmp;
1178 
1179 	mutex_lock(&uuid_mutex);
1180 	close_fs_devices(fs_devices);
1181 	if (!fs_devices->opened)
1182 		list_splice_init(&fs_devices->seed_list, &list);
1183 
1184 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1185 		close_fs_devices(fs_devices);
1186 		list_del(&fs_devices->seed_list);
1187 		free_fs_devices(fs_devices);
1188 	}
1189 	mutex_unlock(&uuid_mutex);
1190 }
1191 
1192 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1193 				fmode_t flags, void *holder)
1194 {
1195 	struct btrfs_device *device;
1196 	struct btrfs_device *latest_dev = NULL;
1197 	struct btrfs_device *tmp_device;
1198 
1199 	flags |= FMODE_EXCL;
1200 
1201 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1202 				 dev_list) {
1203 		int ret;
1204 
1205 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1206 		if (ret == 0 &&
1207 		    (!latest_dev || device->generation > latest_dev->generation)) {
1208 			latest_dev = device;
1209 		} else if (ret == -ENODATA) {
1210 			fs_devices->num_devices--;
1211 			list_del(&device->dev_list);
1212 			btrfs_free_device(device);
1213 		}
1214 	}
1215 	if (fs_devices->open_devices == 0)
1216 		return -EINVAL;
1217 
1218 	fs_devices->opened = 1;
1219 	fs_devices->latest_bdev = latest_dev->bdev;
1220 	fs_devices->total_rw_bytes = 0;
1221 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1222 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1223 
1224 	return 0;
1225 }
1226 
1227 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1228 {
1229 	struct btrfs_device *dev1, *dev2;
1230 
1231 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1232 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1233 
1234 	if (dev1->devid < dev2->devid)
1235 		return -1;
1236 	else if (dev1->devid > dev2->devid)
1237 		return 1;
1238 	return 0;
1239 }
1240 
1241 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1242 		       fmode_t flags, void *holder)
1243 {
1244 	int ret;
1245 
1246 	lockdep_assert_held(&uuid_mutex);
1247 	/*
1248 	 * The device_list_mutex cannot be taken here in case opening the
1249 	 * underlying device takes further locks like bd_mutex.
1250 	 *
1251 	 * We also don't need the lock here as this is called during mount and
1252 	 * exclusion is provided by uuid_mutex
1253 	 */
1254 
1255 	if (fs_devices->opened) {
1256 		fs_devices->opened++;
1257 		ret = 0;
1258 	} else {
1259 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1260 		ret = open_fs_devices(fs_devices, flags, holder);
1261 	}
1262 
1263 	return ret;
1264 }
1265 
1266 void btrfs_release_disk_super(struct btrfs_super_block *super)
1267 {
1268 	struct page *page = virt_to_page(super);
1269 
1270 	put_page(page);
1271 }
1272 
1273 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1274 						       u64 bytenr, u64 bytenr_orig)
1275 {
1276 	struct btrfs_super_block *disk_super;
1277 	struct page *page;
1278 	void *p;
1279 	pgoff_t index;
1280 
1281 	/* make sure our super fits in the device */
1282 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1283 		return ERR_PTR(-EINVAL);
1284 
1285 	/* make sure our super fits in the page */
1286 	if (sizeof(*disk_super) > PAGE_SIZE)
1287 		return ERR_PTR(-EINVAL);
1288 
1289 	/* make sure our super doesn't straddle pages on disk */
1290 	index = bytenr >> PAGE_SHIFT;
1291 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1292 		return ERR_PTR(-EINVAL);
1293 
1294 	/* pull in the page with our super */
1295 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1296 
1297 	if (IS_ERR(page))
1298 		return ERR_CAST(page);
1299 
1300 	p = page_address(page);
1301 
1302 	/* align our pointer to the offset of the super block */
1303 	disk_super = p + offset_in_page(bytenr);
1304 
1305 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1306 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1307 		btrfs_release_disk_super(p);
1308 		return ERR_PTR(-EINVAL);
1309 	}
1310 
1311 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1312 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1313 
1314 	return disk_super;
1315 }
1316 
1317 int btrfs_forget_devices(const char *path)
1318 {
1319 	int ret;
1320 
1321 	mutex_lock(&uuid_mutex);
1322 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1323 	mutex_unlock(&uuid_mutex);
1324 
1325 	return ret;
1326 }
1327 
1328 /*
1329  * Look for a btrfs signature on a device. This may be called out of the mount path
1330  * and we are not allowed to call set_blocksize during the scan. The superblock
1331  * is read via pagecache
1332  */
1333 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1334 					   void *holder)
1335 {
1336 	struct btrfs_super_block *disk_super;
1337 	bool new_device_added = false;
1338 	struct btrfs_device *device = NULL;
1339 	struct block_device *bdev;
1340 	u64 bytenr, bytenr_orig;
1341 	int ret;
1342 
1343 	lockdep_assert_held(&uuid_mutex);
1344 
1345 	/*
1346 	 * we would like to check all the supers, but that would make
1347 	 * a btrfs mount succeed after a mkfs from a different FS.
1348 	 * So, we need to add a special mount option to scan for
1349 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1350 	 */
1351 	flags |= FMODE_EXCL;
1352 
1353 	bdev = blkdev_get_by_path(path, flags, holder);
1354 	if (IS_ERR(bdev))
1355 		return ERR_CAST(bdev);
1356 
1357 	bytenr_orig = btrfs_sb_offset(0);
1358 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1359 	if (ret)
1360 		return ERR_PTR(ret);
1361 
1362 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1363 	if (IS_ERR(disk_super)) {
1364 		device = ERR_CAST(disk_super);
1365 		goto error_bdev_put;
1366 	}
1367 
1368 	device = device_list_add(path, disk_super, &new_device_added);
1369 	if (!IS_ERR(device)) {
1370 		if (new_device_added)
1371 			btrfs_free_stale_devices(path, device);
1372 	}
1373 
1374 	btrfs_release_disk_super(disk_super);
1375 
1376 error_bdev_put:
1377 	blkdev_put(bdev, flags);
1378 
1379 	return device;
1380 }
1381 
1382 /*
1383  * Try to find a chunk that intersects [start, start + len] range and when one
1384  * such is found, record the end of it in *start
1385  */
1386 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1387 				    u64 len)
1388 {
1389 	u64 physical_start, physical_end;
1390 
1391 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1392 
1393 	if (!find_first_extent_bit(&device->alloc_state, *start,
1394 				   &physical_start, &physical_end,
1395 				   CHUNK_ALLOCATED, NULL)) {
1396 
1397 		if (in_range(physical_start, *start, len) ||
1398 		    in_range(*start, physical_start,
1399 			     physical_end - physical_start)) {
1400 			*start = physical_end + 1;
1401 			return true;
1402 		}
1403 	}
1404 	return false;
1405 }
1406 
1407 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1408 {
1409 	switch (device->fs_devices->chunk_alloc_policy) {
1410 	case BTRFS_CHUNK_ALLOC_REGULAR:
1411 		/*
1412 		 * We don't want to overwrite the superblock on the drive nor
1413 		 * any area used by the boot loader (grub for example), so we
1414 		 * make sure to start at an offset of at least 1MB.
1415 		 */
1416 		return max_t(u64, start, SZ_1M);
1417 	case BTRFS_CHUNK_ALLOC_ZONED:
1418 		/*
1419 		 * We don't care about the starting region like regular
1420 		 * allocator, because we anyway use/reserve the first two zones
1421 		 * for superblock logging.
1422 		 */
1423 		return ALIGN(start, device->zone_info->zone_size);
1424 	default:
1425 		BUG();
1426 	}
1427 }
1428 
1429 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1430 					u64 *hole_start, u64 *hole_size,
1431 					u64 num_bytes)
1432 {
1433 	u64 zone_size = device->zone_info->zone_size;
1434 	u64 pos;
1435 	int ret;
1436 	bool changed = false;
1437 
1438 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1439 
1440 	while (*hole_size > 0) {
1441 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1442 						   *hole_start + *hole_size,
1443 						   num_bytes);
1444 		if (pos != *hole_start) {
1445 			*hole_size = *hole_start + *hole_size - pos;
1446 			*hole_start = pos;
1447 			changed = true;
1448 			if (*hole_size < num_bytes)
1449 				break;
1450 		}
1451 
1452 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1453 
1454 		/* Range is ensured to be empty */
1455 		if (!ret)
1456 			return changed;
1457 
1458 		/* Given hole range was invalid (outside of device) */
1459 		if (ret == -ERANGE) {
1460 			*hole_start += *hole_size;
1461 			*hole_size = 0;
1462 			return 1;
1463 		}
1464 
1465 		*hole_start += zone_size;
1466 		*hole_size -= zone_size;
1467 		changed = true;
1468 	}
1469 
1470 	return changed;
1471 }
1472 
1473 /**
1474  * dev_extent_hole_check - check if specified hole is suitable for allocation
1475  * @device:	the device which we have the hole
1476  * @hole_start: starting position of the hole
1477  * @hole_size:	the size of the hole
1478  * @num_bytes:	the size of the free space that we need
1479  *
1480  * This function may modify @hole_start and @hole_size to reflect the suitable
1481  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1482  */
1483 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1484 				  u64 *hole_size, u64 num_bytes)
1485 {
1486 	bool changed = false;
1487 	u64 hole_end = *hole_start + *hole_size;
1488 
1489 	for (;;) {
1490 		/*
1491 		 * Check before we set max_hole_start, otherwise we could end up
1492 		 * sending back this offset anyway.
1493 		 */
1494 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1495 			if (hole_end >= *hole_start)
1496 				*hole_size = hole_end - *hole_start;
1497 			else
1498 				*hole_size = 0;
1499 			changed = true;
1500 		}
1501 
1502 		switch (device->fs_devices->chunk_alloc_policy) {
1503 		case BTRFS_CHUNK_ALLOC_REGULAR:
1504 			/* No extra check */
1505 			break;
1506 		case BTRFS_CHUNK_ALLOC_ZONED:
1507 			if (dev_extent_hole_check_zoned(device, hole_start,
1508 							hole_size, num_bytes)) {
1509 				changed = true;
1510 				/*
1511 				 * The changed hole can contain pending extent.
1512 				 * Loop again to check that.
1513 				 */
1514 				continue;
1515 			}
1516 			break;
1517 		default:
1518 			BUG();
1519 		}
1520 
1521 		break;
1522 	}
1523 
1524 	return changed;
1525 }
1526 
1527 /*
1528  * find_free_dev_extent_start - find free space in the specified device
1529  * @device:	  the device which we search the free space in
1530  * @num_bytes:	  the size of the free space that we need
1531  * @search_start: the position from which to begin the search
1532  * @start:	  store the start of the free space.
1533  * @len:	  the size of the free space. that we find, or the size
1534  *		  of the max free space if we don't find suitable free space
1535  *
1536  * this uses a pretty simple search, the expectation is that it is
1537  * called very infrequently and that a given device has a small number
1538  * of extents
1539  *
1540  * @start is used to store the start of the free space if we find. But if we
1541  * don't find suitable free space, it will be used to store the start position
1542  * of the max free space.
1543  *
1544  * @len is used to store the size of the free space that we find.
1545  * But if we don't find suitable free space, it is used to store the size of
1546  * the max free space.
1547  *
1548  * NOTE: This function will search *commit* root of device tree, and does extra
1549  * check to ensure dev extents are not double allocated.
1550  * This makes the function safe to allocate dev extents but may not report
1551  * correct usable device space, as device extent freed in current transaction
1552  * is not reported as avaiable.
1553  */
1554 static int find_free_dev_extent_start(struct btrfs_device *device,
1555 				u64 num_bytes, u64 search_start, u64 *start,
1556 				u64 *len)
1557 {
1558 	struct btrfs_fs_info *fs_info = device->fs_info;
1559 	struct btrfs_root *root = fs_info->dev_root;
1560 	struct btrfs_key key;
1561 	struct btrfs_dev_extent *dev_extent;
1562 	struct btrfs_path *path;
1563 	u64 hole_size;
1564 	u64 max_hole_start;
1565 	u64 max_hole_size;
1566 	u64 extent_end;
1567 	u64 search_end = device->total_bytes;
1568 	int ret;
1569 	int slot;
1570 	struct extent_buffer *l;
1571 
1572 	search_start = dev_extent_search_start(device, search_start);
1573 
1574 	WARN_ON(device->zone_info &&
1575 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1576 
1577 	path = btrfs_alloc_path();
1578 	if (!path)
1579 		return -ENOMEM;
1580 
1581 	max_hole_start = search_start;
1582 	max_hole_size = 0;
1583 
1584 again:
1585 	if (search_start >= search_end ||
1586 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1587 		ret = -ENOSPC;
1588 		goto out;
1589 	}
1590 
1591 	path->reada = READA_FORWARD;
1592 	path->search_commit_root = 1;
1593 	path->skip_locking = 1;
1594 
1595 	key.objectid = device->devid;
1596 	key.offset = search_start;
1597 	key.type = BTRFS_DEV_EXTENT_KEY;
1598 
1599 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1600 	if (ret < 0)
1601 		goto out;
1602 	if (ret > 0) {
1603 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1604 		if (ret < 0)
1605 			goto out;
1606 	}
1607 
1608 	while (1) {
1609 		l = path->nodes[0];
1610 		slot = path->slots[0];
1611 		if (slot >= btrfs_header_nritems(l)) {
1612 			ret = btrfs_next_leaf(root, path);
1613 			if (ret == 0)
1614 				continue;
1615 			if (ret < 0)
1616 				goto out;
1617 
1618 			break;
1619 		}
1620 		btrfs_item_key_to_cpu(l, &key, slot);
1621 
1622 		if (key.objectid < device->devid)
1623 			goto next;
1624 
1625 		if (key.objectid > device->devid)
1626 			break;
1627 
1628 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1629 			goto next;
1630 
1631 		if (key.offset > search_start) {
1632 			hole_size = key.offset - search_start;
1633 			dev_extent_hole_check(device, &search_start, &hole_size,
1634 					      num_bytes);
1635 
1636 			if (hole_size > max_hole_size) {
1637 				max_hole_start = search_start;
1638 				max_hole_size = hole_size;
1639 			}
1640 
1641 			/*
1642 			 * If this free space is greater than which we need,
1643 			 * it must be the max free space that we have found
1644 			 * until now, so max_hole_start must point to the start
1645 			 * of this free space and the length of this free space
1646 			 * is stored in max_hole_size. Thus, we return
1647 			 * max_hole_start and max_hole_size and go back to the
1648 			 * caller.
1649 			 */
1650 			if (hole_size >= num_bytes) {
1651 				ret = 0;
1652 				goto out;
1653 			}
1654 		}
1655 
1656 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1657 		extent_end = key.offset + btrfs_dev_extent_length(l,
1658 								  dev_extent);
1659 		if (extent_end > search_start)
1660 			search_start = extent_end;
1661 next:
1662 		path->slots[0]++;
1663 		cond_resched();
1664 	}
1665 
1666 	/*
1667 	 * At this point, search_start should be the end of
1668 	 * allocated dev extents, and when shrinking the device,
1669 	 * search_end may be smaller than search_start.
1670 	 */
1671 	if (search_end > search_start) {
1672 		hole_size = search_end - search_start;
1673 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1674 					  num_bytes)) {
1675 			btrfs_release_path(path);
1676 			goto again;
1677 		}
1678 
1679 		if (hole_size > max_hole_size) {
1680 			max_hole_start = search_start;
1681 			max_hole_size = hole_size;
1682 		}
1683 	}
1684 
1685 	/* See above. */
1686 	if (max_hole_size < num_bytes)
1687 		ret = -ENOSPC;
1688 	else
1689 		ret = 0;
1690 
1691 out:
1692 	btrfs_free_path(path);
1693 	*start = max_hole_start;
1694 	if (len)
1695 		*len = max_hole_size;
1696 	return ret;
1697 }
1698 
1699 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1700 			 u64 *start, u64 *len)
1701 {
1702 	/* FIXME use last free of some kind */
1703 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1704 }
1705 
1706 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1707 			  struct btrfs_device *device,
1708 			  u64 start, u64 *dev_extent_len)
1709 {
1710 	struct btrfs_fs_info *fs_info = device->fs_info;
1711 	struct btrfs_root *root = fs_info->dev_root;
1712 	int ret;
1713 	struct btrfs_path *path;
1714 	struct btrfs_key key;
1715 	struct btrfs_key found_key;
1716 	struct extent_buffer *leaf = NULL;
1717 	struct btrfs_dev_extent *extent = NULL;
1718 
1719 	path = btrfs_alloc_path();
1720 	if (!path)
1721 		return -ENOMEM;
1722 
1723 	key.objectid = device->devid;
1724 	key.offset = start;
1725 	key.type = BTRFS_DEV_EXTENT_KEY;
1726 again:
1727 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1728 	if (ret > 0) {
1729 		ret = btrfs_previous_item(root, path, key.objectid,
1730 					  BTRFS_DEV_EXTENT_KEY);
1731 		if (ret)
1732 			goto out;
1733 		leaf = path->nodes[0];
1734 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1735 		extent = btrfs_item_ptr(leaf, path->slots[0],
1736 					struct btrfs_dev_extent);
1737 		BUG_ON(found_key.offset > start || found_key.offset +
1738 		       btrfs_dev_extent_length(leaf, extent) < start);
1739 		key = found_key;
1740 		btrfs_release_path(path);
1741 		goto again;
1742 	} else if (ret == 0) {
1743 		leaf = path->nodes[0];
1744 		extent = btrfs_item_ptr(leaf, path->slots[0],
1745 					struct btrfs_dev_extent);
1746 	} else {
1747 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1748 		goto out;
1749 	}
1750 
1751 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1752 
1753 	ret = btrfs_del_item(trans, root, path);
1754 	if (ret) {
1755 		btrfs_handle_fs_error(fs_info, ret,
1756 				      "Failed to remove dev extent item");
1757 	} else {
1758 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1759 	}
1760 out:
1761 	btrfs_free_path(path);
1762 	return ret;
1763 }
1764 
1765 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1766 				  struct btrfs_device *device,
1767 				  u64 chunk_offset, u64 start, u64 num_bytes)
1768 {
1769 	int ret;
1770 	struct btrfs_path *path;
1771 	struct btrfs_fs_info *fs_info = device->fs_info;
1772 	struct btrfs_root *root = fs_info->dev_root;
1773 	struct btrfs_dev_extent *extent;
1774 	struct extent_buffer *leaf;
1775 	struct btrfs_key key;
1776 
1777 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1778 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1779 	path = btrfs_alloc_path();
1780 	if (!path)
1781 		return -ENOMEM;
1782 
1783 	key.objectid = device->devid;
1784 	key.offset = start;
1785 	key.type = BTRFS_DEV_EXTENT_KEY;
1786 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1787 				      sizeof(*extent));
1788 	if (ret)
1789 		goto out;
1790 
1791 	leaf = path->nodes[0];
1792 	extent = btrfs_item_ptr(leaf, path->slots[0],
1793 				struct btrfs_dev_extent);
1794 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1795 					BTRFS_CHUNK_TREE_OBJECTID);
1796 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1797 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1798 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1799 
1800 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1801 	btrfs_mark_buffer_dirty(leaf);
1802 out:
1803 	btrfs_free_path(path);
1804 	return ret;
1805 }
1806 
1807 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1808 {
1809 	struct extent_map_tree *em_tree;
1810 	struct extent_map *em;
1811 	struct rb_node *n;
1812 	u64 ret = 0;
1813 
1814 	em_tree = &fs_info->mapping_tree;
1815 	read_lock(&em_tree->lock);
1816 	n = rb_last(&em_tree->map.rb_root);
1817 	if (n) {
1818 		em = rb_entry(n, struct extent_map, rb_node);
1819 		ret = em->start + em->len;
1820 	}
1821 	read_unlock(&em_tree->lock);
1822 
1823 	return ret;
1824 }
1825 
1826 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1827 				    u64 *devid_ret)
1828 {
1829 	int ret;
1830 	struct btrfs_key key;
1831 	struct btrfs_key found_key;
1832 	struct btrfs_path *path;
1833 
1834 	path = btrfs_alloc_path();
1835 	if (!path)
1836 		return -ENOMEM;
1837 
1838 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1839 	key.type = BTRFS_DEV_ITEM_KEY;
1840 	key.offset = (u64)-1;
1841 
1842 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1843 	if (ret < 0)
1844 		goto error;
1845 
1846 	if (ret == 0) {
1847 		/* Corruption */
1848 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1849 		ret = -EUCLEAN;
1850 		goto error;
1851 	}
1852 
1853 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1854 				  BTRFS_DEV_ITEMS_OBJECTID,
1855 				  BTRFS_DEV_ITEM_KEY);
1856 	if (ret) {
1857 		*devid_ret = 1;
1858 	} else {
1859 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1860 				      path->slots[0]);
1861 		*devid_ret = found_key.offset + 1;
1862 	}
1863 	ret = 0;
1864 error:
1865 	btrfs_free_path(path);
1866 	return ret;
1867 }
1868 
1869 /*
1870  * the device information is stored in the chunk root
1871  * the btrfs_device struct should be fully filled in
1872  */
1873 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1874 			    struct btrfs_device *device)
1875 {
1876 	int ret;
1877 	struct btrfs_path *path;
1878 	struct btrfs_dev_item *dev_item;
1879 	struct extent_buffer *leaf;
1880 	struct btrfs_key key;
1881 	unsigned long ptr;
1882 
1883 	path = btrfs_alloc_path();
1884 	if (!path)
1885 		return -ENOMEM;
1886 
1887 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1888 	key.type = BTRFS_DEV_ITEM_KEY;
1889 	key.offset = device->devid;
1890 
1891 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1892 				      &key, sizeof(*dev_item));
1893 	if (ret)
1894 		goto out;
1895 
1896 	leaf = path->nodes[0];
1897 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1898 
1899 	btrfs_set_device_id(leaf, dev_item, device->devid);
1900 	btrfs_set_device_generation(leaf, dev_item, 0);
1901 	btrfs_set_device_type(leaf, dev_item, device->type);
1902 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1903 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1904 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1905 	btrfs_set_device_total_bytes(leaf, dev_item,
1906 				     btrfs_device_get_disk_total_bytes(device));
1907 	btrfs_set_device_bytes_used(leaf, dev_item,
1908 				    btrfs_device_get_bytes_used(device));
1909 	btrfs_set_device_group(leaf, dev_item, 0);
1910 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1911 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1912 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1913 
1914 	ptr = btrfs_device_uuid(dev_item);
1915 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1916 	ptr = btrfs_device_fsid(dev_item);
1917 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1918 			    ptr, BTRFS_FSID_SIZE);
1919 	btrfs_mark_buffer_dirty(leaf);
1920 
1921 	ret = 0;
1922 out:
1923 	btrfs_free_path(path);
1924 	return ret;
1925 }
1926 
1927 /*
1928  * Function to update ctime/mtime for a given device path.
1929  * Mainly used for ctime/mtime based probe like libblkid.
1930  */
1931 static void update_dev_time(const char *path_name)
1932 {
1933 	struct file *filp;
1934 
1935 	filp = filp_open(path_name, O_RDWR, 0);
1936 	if (IS_ERR(filp))
1937 		return;
1938 	file_update_time(filp);
1939 	filp_close(filp, NULL);
1940 }
1941 
1942 static int btrfs_rm_dev_item(struct btrfs_device *device)
1943 {
1944 	struct btrfs_root *root = device->fs_info->chunk_root;
1945 	int ret;
1946 	struct btrfs_path *path;
1947 	struct btrfs_key key;
1948 	struct btrfs_trans_handle *trans;
1949 
1950 	path = btrfs_alloc_path();
1951 	if (!path)
1952 		return -ENOMEM;
1953 
1954 	trans = btrfs_start_transaction(root, 0);
1955 	if (IS_ERR(trans)) {
1956 		btrfs_free_path(path);
1957 		return PTR_ERR(trans);
1958 	}
1959 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1960 	key.type = BTRFS_DEV_ITEM_KEY;
1961 	key.offset = device->devid;
1962 
1963 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1964 	if (ret) {
1965 		if (ret > 0)
1966 			ret = -ENOENT;
1967 		btrfs_abort_transaction(trans, ret);
1968 		btrfs_end_transaction(trans);
1969 		goto out;
1970 	}
1971 
1972 	ret = btrfs_del_item(trans, root, path);
1973 	if (ret) {
1974 		btrfs_abort_transaction(trans, ret);
1975 		btrfs_end_transaction(trans);
1976 	}
1977 
1978 out:
1979 	btrfs_free_path(path);
1980 	if (!ret)
1981 		ret = btrfs_commit_transaction(trans);
1982 	return ret;
1983 }
1984 
1985 /*
1986  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1987  * filesystem. It's up to the caller to adjust that number regarding eg. device
1988  * replace.
1989  */
1990 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1991 		u64 num_devices)
1992 {
1993 	u64 all_avail;
1994 	unsigned seq;
1995 	int i;
1996 
1997 	do {
1998 		seq = read_seqbegin(&fs_info->profiles_lock);
1999 
2000 		all_avail = fs_info->avail_data_alloc_bits |
2001 			    fs_info->avail_system_alloc_bits |
2002 			    fs_info->avail_metadata_alloc_bits;
2003 	} while (read_seqretry(&fs_info->profiles_lock, seq));
2004 
2005 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2006 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2007 			continue;
2008 
2009 		if (num_devices < btrfs_raid_array[i].devs_min) {
2010 			int ret = btrfs_raid_array[i].mindev_error;
2011 
2012 			if (ret)
2013 				return ret;
2014 		}
2015 	}
2016 
2017 	return 0;
2018 }
2019 
2020 static struct btrfs_device * btrfs_find_next_active_device(
2021 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2022 {
2023 	struct btrfs_device *next_device;
2024 
2025 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2026 		if (next_device != device &&
2027 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2028 		    && next_device->bdev)
2029 			return next_device;
2030 	}
2031 
2032 	return NULL;
2033 }
2034 
2035 /*
2036  * Helper function to check if the given device is part of s_bdev / latest_bdev
2037  * and replace it with the provided or the next active device, in the context
2038  * where this function called, there should be always be another device (or
2039  * this_dev) which is active.
2040  */
2041 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2042 					    struct btrfs_device *next_device)
2043 {
2044 	struct btrfs_fs_info *fs_info = device->fs_info;
2045 
2046 	if (!next_device)
2047 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2048 							    device);
2049 	ASSERT(next_device);
2050 
2051 	if (fs_info->sb->s_bdev &&
2052 			(fs_info->sb->s_bdev == device->bdev))
2053 		fs_info->sb->s_bdev = next_device->bdev;
2054 
2055 	if (fs_info->fs_devices->latest_bdev == device->bdev)
2056 		fs_info->fs_devices->latest_bdev = next_device->bdev;
2057 }
2058 
2059 /*
2060  * Return btrfs_fs_devices::num_devices excluding the device that's being
2061  * currently replaced.
2062  */
2063 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2064 {
2065 	u64 num_devices = fs_info->fs_devices->num_devices;
2066 
2067 	down_read(&fs_info->dev_replace.rwsem);
2068 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2069 		ASSERT(num_devices > 1);
2070 		num_devices--;
2071 	}
2072 	up_read(&fs_info->dev_replace.rwsem);
2073 
2074 	return num_devices;
2075 }
2076 
2077 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2078 			       struct block_device *bdev,
2079 			       const char *device_path)
2080 {
2081 	struct btrfs_super_block *disk_super;
2082 	int copy_num;
2083 
2084 	if (!bdev)
2085 		return;
2086 
2087 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2088 		struct page *page;
2089 		int ret;
2090 
2091 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2092 		if (IS_ERR(disk_super))
2093 			continue;
2094 
2095 		if (bdev_is_zoned(bdev)) {
2096 			btrfs_reset_sb_log_zones(bdev, copy_num);
2097 			continue;
2098 		}
2099 
2100 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2101 
2102 		page = virt_to_page(disk_super);
2103 		set_page_dirty(page);
2104 		lock_page(page);
2105 		/* write_on_page() unlocks the page */
2106 		ret = write_one_page(page);
2107 		if (ret)
2108 			btrfs_warn(fs_info,
2109 				"error clearing superblock number %d (%d)",
2110 				copy_num, ret);
2111 		btrfs_release_disk_super(disk_super);
2112 
2113 	}
2114 
2115 	/* Notify udev that device has changed */
2116 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2117 
2118 	/* Update ctime/mtime for device path for libblkid */
2119 	update_dev_time(device_path);
2120 }
2121 
2122 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2123 		    u64 devid)
2124 {
2125 	struct btrfs_device *device;
2126 	struct btrfs_fs_devices *cur_devices;
2127 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2128 	u64 num_devices;
2129 	int ret = 0;
2130 
2131 	mutex_lock(&uuid_mutex);
2132 
2133 	num_devices = btrfs_num_devices(fs_info);
2134 
2135 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2136 	if (ret)
2137 		goto out;
2138 
2139 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2140 
2141 	if (IS_ERR(device)) {
2142 		if (PTR_ERR(device) == -ENOENT &&
2143 		    strcmp(device_path, "missing") == 0)
2144 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2145 		else
2146 			ret = PTR_ERR(device);
2147 		goto out;
2148 	}
2149 
2150 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2151 		btrfs_warn_in_rcu(fs_info,
2152 		  "cannot remove device %s (devid %llu) due to active swapfile",
2153 				  rcu_str_deref(device->name), device->devid);
2154 		ret = -ETXTBSY;
2155 		goto out;
2156 	}
2157 
2158 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2159 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2160 		goto out;
2161 	}
2162 
2163 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2164 	    fs_info->fs_devices->rw_devices == 1) {
2165 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2166 		goto out;
2167 	}
2168 
2169 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2170 		mutex_lock(&fs_info->chunk_mutex);
2171 		list_del_init(&device->dev_alloc_list);
2172 		device->fs_devices->rw_devices--;
2173 		mutex_unlock(&fs_info->chunk_mutex);
2174 	}
2175 
2176 	mutex_unlock(&uuid_mutex);
2177 	ret = btrfs_shrink_device(device, 0);
2178 	if (!ret)
2179 		btrfs_reada_remove_dev(device);
2180 	mutex_lock(&uuid_mutex);
2181 	if (ret)
2182 		goto error_undo;
2183 
2184 	/*
2185 	 * TODO: the superblock still includes this device in its num_devices
2186 	 * counter although write_all_supers() is not locked out. This
2187 	 * could give a filesystem state which requires a degraded mount.
2188 	 */
2189 	ret = btrfs_rm_dev_item(device);
2190 	if (ret)
2191 		goto error_undo;
2192 
2193 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2194 	btrfs_scrub_cancel_dev(device);
2195 
2196 	/*
2197 	 * the device list mutex makes sure that we don't change
2198 	 * the device list while someone else is writing out all
2199 	 * the device supers. Whoever is writing all supers, should
2200 	 * lock the device list mutex before getting the number of
2201 	 * devices in the super block (super_copy). Conversely,
2202 	 * whoever updates the number of devices in the super block
2203 	 * (super_copy) should hold the device list mutex.
2204 	 */
2205 
2206 	/*
2207 	 * In normal cases the cur_devices == fs_devices. But in case
2208 	 * of deleting a seed device, the cur_devices should point to
2209 	 * its own fs_devices listed under the fs_devices->seed.
2210 	 */
2211 	cur_devices = device->fs_devices;
2212 	mutex_lock(&fs_devices->device_list_mutex);
2213 	list_del_rcu(&device->dev_list);
2214 
2215 	cur_devices->num_devices--;
2216 	cur_devices->total_devices--;
2217 	/* Update total_devices of the parent fs_devices if it's seed */
2218 	if (cur_devices != fs_devices)
2219 		fs_devices->total_devices--;
2220 
2221 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2222 		cur_devices->missing_devices--;
2223 
2224 	btrfs_assign_next_active_device(device, NULL);
2225 
2226 	if (device->bdev) {
2227 		cur_devices->open_devices--;
2228 		/* remove sysfs entry */
2229 		btrfs_sysfs_remove_device(device);
2230 	}
2231 
2232 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2233 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2234 	mutex_unlock(&fs_devices->device_list_mutex);
2235 
2236 	/*
2237 	 * at this point, the device is zero sized and detached from
2238 	 * the devices list.  All that's left is to zero out the old
2239 	 * supers and free the device.
2240 	 */
2241 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2242 		btrfs_scratch_superblocks(fs_info, device->bdev,
2243 					  device->name->str);
2244 
2245 	btrfs_close_bdev(device);
2246 	synchronize_rcu();
2247 	btrfs_free_device(device);
2248 
2249 	if (cur_devices->open_devices == 0) {
2250 		list_del_init(&cur_devices->seed_list);
2251 		close_fs_devices(cur_devices);
2252 		free_fs_devices(cur_devices);
2253 	}
2254 
2255 out:
2256 	mutex_unlock(&uuid_mutex);
2257 	return ret;
2258 
2259 error_undo:
2260 	btrfs_reada_undo_remove_dev(device);
2261 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2262 		mutex_lock(&fs_info->chunk_mutex);
2263 		list_add(&device->dev_alloc_list,
2264 			 &fs_devices->alloc_list);
2265 		device->fs_devices->rw_devices++;
2266 		mutex_unlock(&fs_info->chunk_mutex);
2267 	}
2268 	goto out;
2269 }
2270 
2271 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2272 {
2273 	struct btrfs_fs_devices *fs_devices;
2274 
2275 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2276 
2277 	/*
2278 	 * in case of fs with no seed, srcdev->fs_devices will point
2279 	 * to fs_devices of fs_info. However when the dev being replaced is
2280 	 * a seed dev it will point to the seed's local fs_devices. In short
2281 	 * srcdev will have its correct fs_devices in both the cases.
2282 	 */
2283 	fs_devices = srcdev->fs_devices;
2284 
2285 	list_del_rcu(&srcdev->dev_list);
2286 	list_del(&srcdev->dev_alloc_list);
2287 	fs_devices->num_devices--;
2288 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2289 		fs_devices->missing_devices--;
2290 
2291 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2292 		fs_devices->rw_devices--;
2293 
2294 	if (srcdev->bdev)
2295 		fs_devices->open_devices--;
2296 }
2297 
2298 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2299 {
2300 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2301 
2302 	mutex_lock(&uuid_mutex);
2303 
2304 	btrfs_close_bdev(srcdev);
2305 	synchronize_rcu();
2306 	btrfs_free_device(srcdev);
2307 
2308 	/* if this is no devs we rather delete the fs_devices */
2309 	if (!fs_devices->num_devices) {
2310 		/*
2311 		 * On a mounted FS, num_devices can't be zero unless it's a
2312 		 * seed. In case of a seed device being replaced, the replace
2313 		 * target added to the sprout FS, so there will be no more
2314 		 * device left under the seed FS.
2315 		 */
2316 		ASSERT(fs_devices->seeding);
2317 
2318 		list_del_init(&fs_devices->seed_list);
2319 		close_fs_devices(fs_devices);
2320 		free_fs_devices(fs_devices);
2321 	}
2322 	mutex_unlock(&uuid_mutex);
2323 }
2324 
2325 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2326 {
2327 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2328 
2329 	mutex_lock(&fs_devices->device_list_mutex);
2330 
2331 	btrfs_sysfs_remove_device(tgtdev);
2332 
2333 	if (tgtdev->bdev)
2334 		fs_devices->open_devices--;
2335 
2336 	fs_devices->num_devices--;
2337 
2338 	btrfs_assign_next_active_device(tgtdev, NULL);
2339 
2340 	list_del_rcu(&tgtdev->dev_list);
2341 
2342 	mutex_unlock(&fs_devices->device_list_mutex);
2343 
2344 	/*
2345 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2346 	 * may lead to a call to btrfs_show_devname() which will try
2347 	 * to hold device_list_mutex. And here this device
2348 	 * is already out of device list, so we don't have to hold
2349 	 * the device_list_mutex lock.
2350 	 */
2351 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2352 				  tgtdev->name->str);
2353 
2354 	btrfs_close_bdev(tgtdev);
2355 	synchronize_rcu();
2356 	btrfs_free_device(tgtdev);
2357 }
2358 
2359 static struct btrfs_device *btrfs_find_device_by_path(
2360 		struct btrfs_fs_info *fs_info, const char *device_path)
2361 {
2362 	int ret = 0;
2363 	struct btrfs_super_block *disk_super;
2364 	u64 devid;
2365 	u8 *dev_uuid;
2366 	struct block_device *bdev;
2367 	struct btrfs_device *device;
2368 
2369 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2370 				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2371 	if (ret)
2372 		return ERR_PTR(ret);
2373 
2374 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2375 	dev_uuid = disk_super->dev_item.uuid;
2376 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2377 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2378 					   disk_super->metadata_uuid);
2379 	else
2380 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2381 					   disk_super->fsid);
2382 
2383 	btrfs_release_disk_super(disk_super);
2384 	if (!device)
2385 		device = ERR_PTR(-ENOENT);
2386 	blkdev_put(bdev, FMODE_READ);
2387 	return device;
2388 }
2389 
2390 /*
2391  * Lookup a device given by device id, or the path if the id is 0.
2392  */
2393 struct btrfs_device *btrfs_find_device_by_devspec(
2394 		struct btrfs_fs_info *fs_info, u64 devid,
2395 		const char *device_path)
2396 {
2397 	struct btrfs_device *device;
2398 
2399 	if (devid) {
2400 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2401 					   NULL);
2402 		if (!device)
2403 			return ERR_PTR(-ENOENT);
2404 		return device;
2405 	}
2406 
2407 	if (!device_path || !device_path[0])
2408 		return ERR_PTR(-EINVAL);
2409 
2410 	if (strcmp(device_path, "missing") == 0) {
2411 		/* Find first missing device */
2412 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2413 				    dev_list) {
2414 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2415 				     &device->dev_state) && !device->bdev)
2416 				return device;
2417 		}
2418 		return ERR_PTR(-ENOENT);
2419 	}
2420 
2421 	return btrfs_find_device_by_path(fs_info, device_path);
2422 }
2423 
2424 /*
2425  * does all the dirty work required for changing file system's UUID.
2426  */
2427 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2428 {
2429 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2430 	struct btrfs_fs_devices *old_devices;
2431 	struct btrfs_fs_devices *seed_devices;
2432 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2433 	struct btrfs_device *device;
2434 	u64 super_flags;
2435 
2436 	lockdep_assert_held(&uuid_mutex);
2437 	if (!fs_devices->seeding)
2438 		return -EINVAL;
2439 
2440 	/*
2441 	 * Private copy of the seed devices, anchored at
2442 	 * fs_info->fs_devices->seed_list
2443 	 */
2444 	seed_devices = alloc_fs_devices(NULL, NULL);
2445 	if (IS_ERR(seed_devices))
2446 		return PTR_ERR(seed_devices);
2447 
2448 	/*
2449 	 * It's necessary to retain a copy of the original seed fs_devices in
2450 	 * fs_uuids so that filesystems which have been seeded can successfully
2451 	 * reference the seed device from open_seed_devices. This also supports
2452 	 * multiple fs seed.
2453 	 */
2454 	old_devices = clone_fs_devices(fs_devices);
2455 	if (IS_ERR(old_devices)) {
2456 		kfree(seed_devices);
2457 		return PTR_ERR(old_devices);
2458 	}
2459 
2460 	list_add(&old_devices->fs_list, &fs_uuids);
2461 
2462 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2463 	seed_devices->opened = 1;
2464 	INIT_LIST_HEAD(&seed_devices->devices);
2465 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2466 	mutex_init(&seed_devices->device_list_mutex);
2467 
2468 	mutex_lock(&fs_devices->device_list_mutex);
2469 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2470 			      synchronize_rcu);
2471 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2472 		device->fs_devices = seed_devices;
2473 
2474 	fs_devices->seeding = false;
2475 	fs_devices->num_devices = 0;
2476 	fs_devices->open_devices = 0;
2477 	fs_devices->missing_devices = 0;
2478 	fs_devices->rotating = false;
2479 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2480 
2481 	generate_random_uuid(fs_devices->fsid);
2482 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2483 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2484 	mutex_unlock(&fs_devices->device_list_mutex);
2485 
2486 	super_flags = btrfs_super_flags(disk_super) &
2487 		      ~BTRFS_SUPER_FLAG_SEEDING;
2488 	btrfs_set_super_flags(disk_super, super_flags);
2489 
2490 	return 0;
2491 }
2492 
2493 /*
2494  * Store the expected generation for seed devices in device items.
2495  */
2496 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2497 {
2498 	struct btrfs_fs_info *fs_info = trans->fs_info;
2499 	struct btrfs_root *root = fs_info->chunk_root;
2500 	struct btrfs_path *path;
2501 	struct extent_buffer *leaf;
2502 	struct btrfs_dev_item *dev_item;
2503 	struct btrfs_device *device;
2504 	struct btrfs_key key;
2505 	u8 fs_uuid[BTRFS_FSID_SIZE];
2506 	u8 dev_uuid[BTRFS_UUID_SIZE];
2507 	u64 devid;
2508 	int ret;
2509 
2510 	path = btrfs_alloc_path();
2511 	if (!path)
2512 		return -ENOMEM;
2513 
2514 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2515 	key.offset = 0;
2516 	key.type = BTRFS_DEV_ITEM_KEY;
2517 
2518 	while (1) {
2519 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2520 		if (ret < 0)
2521 			goto error;
2522 
2523 		leaf = path->nodes[0];
2524 next_slot:
2525 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2526 			ret = btrfs_next_leaf(root, path);
2527 			if (ret > 0)
2528 				break;
2529 			if (ret < 0)
2530 				goto error;
2531 			leaf = path->nodes[0];
2532 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2533 			btrfs_release_path(path);
2534 			continue;
2535 		}
2536 
2537 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2538 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2539 		    key.type != BTRFS_DEV_ITEM_KEY)
2540 			break;
2541 
2542 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2543 					  struct btrfs_dev_item);
2544 		devid = btrfs_device_id(leaf, dev_item);
2545 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2546 				   BTRFS_UUID_SIZE);
2547 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2548 				   BTRFS_FSID_SIZE);
2549 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2550 					   fs_uuid);
2551 		BUG_ON(!device); /* Logic error */
2552 
2553 		if (device->fs_devices->seeding) {
2554 			btrfs_set_device_generation(leaf, dev_item,
2555 						    device->generation);
2556 			btrfs_mark_buffer_dirty(leaf);
2557 		}
2558 
2559 		path->slots[0]++;
2560 		goto next_slot;
2561 	}
2562 	ret = 0;
2563 error:
2564 	btrfs_free_path(path);
2565 	return ret;
2566 }
2567 
2568 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2569 {
2570 	struct btrfs_root *root = fs_info->dev_root;
2571 	struct request_queue *q;
2572 	struct btrfs_trans_handle *trans;
2573 	struct btrfs_device *device;
2574 	struct block_device *bdev;
2575 	struct super_block *sb = fs_info->sb;
2576 	struct rcu_string *name;
2577 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2578 	u64 orig_super_total_bytes;
2579 	u64 orig_super_num_devices;
2580 	int seeding_dev = 0;
2581 	int ret = 0;
2582 	bool locked = false;
2583 
2584 	if (sb_rdonly(sb) && !fs_devices->seeding)
2585 		return -EROFS;
2586 
2587 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2588 				  fs_info->bdev_holder);
2589 	if (IS_ERR(bdev))
2590 		return PTR_ERR(bdev);
2591 
2592 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2593 		ret = -EINVAL;
2594 		goto error;
2595 	}
2596 
2597 	if (fs_devices->seeding) {
2598 		seeding_dev = 1;
2599 		down_write(&sb->s_umount);
2600 		mutex_lock(&uuid_mutex);
2601 		locked = true;
2602 	}
2603 
2604 	sync_blockdev(bdev);
2605 
2606 	rcu_read_lock();
2607 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2608 		if (device->bdev == bdev) {
2609 			ret = -EEXIST;
2610 			rcu_read_unlock();
2611 			goto error;
2612 		}
2613 	}
2614 	rcu_read_unlock();
2615 
2616 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2617 	if (IS_ERR(device)) {
2618 		/* we can safely leave the fs_devices entry around */
2619 		ret = PTR_ERR(device);
2620 		goto error;
2621 	}
2622 
2623 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2624 	if (!name) {
2625 		ret = -ENOMEM;
2626 		goto error_free_device;
2627 	}
2628 	rcu_assign_pointer(device->name, name);
2629 
2630 	device->fs_info = fs_info;
2631 	device->bdev = bdev;
2632 
2633 	ret = btrfs_get_dev_zone_info(device);
2634 	if (ret)
2635 		goto error_free_device;
2636 
2637 	trans = btrfs_start_transaction(root, 0);
2638 	if (IS_ERR(trans)) {
2639 		ret = PTR_ERR(trans);
2640 		goto error_free_zone;
2641 	}
2642 
2643 	q = bdev_get_queue(bdev);
2644 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2645 	device->generation = trans->transid;
2646 	device->io_width = fs_info->sectorsize;
2647 	device->io_align = fs_info->sectorsize;
2648 	device->sector_size = fs_info->sectorsize;
2649 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2650 					 fs_info->sectorsize);
2651 	device->disk_total_bytes = device->total_bytes;
2652 	device->commit_total_bytes = device->total_bytes;
2653 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2654 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2655 	device->mode = FMODE_EXCL;
2656 	device->dev_stats_valid = 1;
2657 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2658 
2659 	if (seeding_dev) {
2660 		btrfs_clear_sb_rdonly(sb);
2661 		ret = btrfs_prepare_sprout(fs_info);
2662 		if (ret) {
2663 			btrfs_abort_transaction(trans, ret);
2664 			goto error_trans;
2665 		}
2666 	}
2667 
2668 	device->fs_devices = fs_devices;
2669 
2670 	mutex_lock(&fs_devices->device_list_mutex);
2671 	mutex_lock(&fs_info->chunk_mutex);
2672 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2673 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2674 	fs_devices->num_devices++;
2675 	fs_devices->open_devices++;
2676 	fs_devices->rw_devices++;
2677 	fs_devices->total_devices++;
2678 	fs_devices->total_rw_bytes += device->total_bytes;
2679 
2680 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2681 
2682 	if (!blk_queue_nonrot(q))
2683 		fs_devices->rotating = true;
2684 
2685 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2686 	btrfs_set_super_total_bytes(fs_info->super_copy,
2687 		round_down(orig_super_total_bytes + device->total_bytes,
2688 			   fs_info->sectorsize));
2689 
2690 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2691 	btrfs_set_super_num_devices(fs_info->super_copy,
2692 				    orig_super_num_devices + 1);
2693 
2694 	/*
2695 	 * we've got more storage, clear any full flags on the space
2696 	 * infos
2697 	 */
2698 	btrfs_clear_space_info_full(fs_info);
2699 
2700 	mutex_unlock(&fs_info->chunk_mutex);
2701 
2702 	/* Add sysfs device entry */
2703 	btrfs_sysfs_add_device(device);
2704 
2705 	mutex_unlock(&fs_devices->device_list_mutex);
2706 
2707 	if (seeding_dev) {
2708 		mutex_lock(&fs_info->chunk_mutex);
2709 		ret = init_first_rw_device(trans);
2710 		mutex_unlock(&fs_info->chunk_mutex);
2711 		if (ret) {
2712 			btrfs_abort_transaction(trans, ret);
2713 			goto error_sysfs;
2714 		}
2715 	}
2716 
2717 	ret = btrfs_add_dev_item(trans, device);
2718 	if (ret) {
2719 		btrfs_abort_transaction(trans, ret);
2720 		goto error_sysfs;
2721 	}
2722 
2723 	if (seeding_dev) {
2724 		ret = btrfs_finish_sprout(trans);
2725 		if (ret) {
2726 			btrfs_abort_transaction(trans, ret);
2727 			goto error_sysfs;
2728 		}
2729 
2730 		/*
2731 		 * fs_devices now represents the newly sprouted filesystem and
2732 		 * its fsid has been changed by btrfs_prepare_sprout
2733 		 */
2734 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2735 	}
2736 
2737 	ret = btrfs_commit_transaction(trans);
2738 
2739 	if (seeding_dev) {
2740 		mutex_unlock(&uuid_mutex);
2741 		up_write(&sb->s_umount);
2742 		locked = false;
2743 
2744 		if (ret) /* transaction commit */
2745 			return ret;
2746 
2747 		ret = btrfs_relocate_sys_chunks(fs_info);
2748 		if (ret < 0)
2749 			btrfs_handle_fs_error(fs_info, ret,
2750 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2751 		trans = btrfs_attach_transaction(root);
2752 		if (IS_ERR(trans)) {
2753 			if (PTR_ERR(trans) == -ENOENT)
2754 				return 0;
2755 			ret = PTR_ERR(trans);
2756 			trans = NULL;
2757 			goto error_sysfs;
2758 		}
2759 		ret = btrfs_commit_transaction(trans);
2760 	}
2761 
2762 	/*
2763 	 * Now that we have written a new super block to this device, check all
2764 	 * other fs_devices list if device_path alienates any other scanned
2765 	 * device.
2766 	 * We can ignore the return value as it typically returns -EINVAL and
2767 	 * only succeeds if the device was an alien.
2768 	 */
2769 	btrfs_forget_devices(device_path);
2770 
2771 	/* Update ctime/mtime for blkid or udev */
2772 	update_dev_time(device_path);
2773 
2774 	return ret;
2775 
2776 error_sysfs:
2777 	btrfs_sysfs_remove_device(device);
2778 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2779 	mutex_lock(&fs_info->chunk_mutex);
2780 	list_del_rcu(&device->dev_list);
2781 	list_del(&device->dev_alloc_list);
2782 	fs_info->fs_devices->num_devices--;
2783 	fs_info->fs_devices->open_devices--;
2784 	fs_info->fs_devices->rw_devices--;
2785 	fs_info->fs_devices->total_devices--;
2786 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2787 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2788 	btrfs_set_super_total_bytes(fs_info->super_copy,
2789 				    orig_super_total_bytes);
2790 	btrfs_set_super_num_devices(fs_info->super_copy,
2791 				    orig_super_num_devices);
2792 	mutex_unlock(&fs_info->chunk_mutex);
2793 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2794 error_trans:
2795 	if (seeding_dev)
2796 		btrfs_set_sb_rdonly(sb);
2797 	if (trans)
2798 		btrfs_end_transaction(trans);
2799 error_free_zone:
2800 	btrfs_destroy_dev_zone_info(device);
2801 error_free_device:
2802 	btrfs_free_device(device);
2803 error:
2804 	blkdev_put(bdev, FMODE_EXCL);
2805 	if (locked) {
2806 		mutex_unlock(&uuid_mutex);
2807 		up_write(&sb->s_umount);
2808 	}
2809 	return ret;
2810 }
2811 
2812 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2813 					struct btrfs_device *device)
2814 {
2815 	int ret;
2816 	struct btrfs_path *path;
2817 	struct btrfs_root *root = device->fs_info->chunk_root;
2818 	struct btrfs_dev_item *dev_item;
2819 	struct extent_buffer *leaf;
2820 	struct btrfs_key key;
2821 
2822 	path = btrfs_alloc_path();
2823 	if (!path)
2824 		return -ENOMEM;
2825 
2826 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2827 	key.type = BTRFS_DEV_ITEM_KEY;
2828 	key.offset = device->devid;
2829 
2830 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2831 	if (ret < 0)
2832 		goto out;
2833 
2834 	if (ret > 0) {
2835 		ret = -ENOENT;
2836 		goto out;
2837 	}
2838 
2839 	leaf = path->nodes[0];
2840 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2841 
2842 	btrfs_set_device_id(leaf, dev_item, device->devid);
2843 	btrfs_set_device_type(leaf, dev_item, device->type);
2844 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2845 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2846 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2847 	btrfs_set_device_total_bytes(leaf, dev_item,
2848 				     btrfs_device_get_disk_total_bytes(device));
2849 	btrfs_set_device_bytes_used(leaf, dev_item,
2850 				    btrfs_device_get_bytes_used(device));
2851 	btrfs_mark_buffer_dirty(leaf);
2852 
2853 out:
2854 	btrfs_free_path(path);
2855 	return ret;
2856 }
2857 
2858 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2859 		      struct btrfs_device *device, u64 new_size)
2860 {
2861 	struct btrfs_fs_info *fs_info = device->fs_info;
2862 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2863 	u64 old_total;
2864 	u64 diff;
2865 
2866 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2867 		return -EACCES;
2868 
2869 	new_size = round_down(new_size, fs_info->sectorsize);
2870 
2871 	mutex_lock(&fs_info->chunk_mutex);
2872 	old_total = btrfs_super_total_bytes(super_copy);
2873 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2874 
2875 	if (new_size <= device->total_bytes ||
2876 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2877 		mutex_unlock(&fs_info->chunk_mutex);
2878 		return -EINVAL;
2879 	}
2880 
2881 	btrfs_set_super_total_bytes(super_copy,
2882 			round_down(old_total + diff, fs_info->sectorsize));
2883 	device->fs_devices->total_rw_bytes += diff;
2884 
2885 	btrfs_device_set_total_bytes(device, new_size);
2886 	btrfs_device_set_disk_total_bytes(device, new_size);
2887 	btrfs_clear_space_info_full(device->fs_info);
2888 	if (list_empty(&device->post_commit_list))
2889 		list_add_tail(&device->post_commit_list,
2890 			      &trans->transaction->dev_update_list);
2891 	mutex_unlock(&fs_info->chunk_mutex);
2892 
2893 	return btrfs_update_device(trans, device);
2894 }
2895 
2896 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2897 {
2898 	struct btrfs_fs_info *fs_info = trans->fs_info;
2899 	struct btrfs_root *root = fs_info->chunk_root;
2900 	int ret;
2901 	struct btrfs_path *path;
2902 	struct btrfs_key key;
2903 
2904 	path = btrfs_alloc_path();
2905 	if (!path)
2906 		return -ENOMEM;
2907 
2908 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2909 	key.offset = chunk_offset;
2910 	key.type = BTRFS_CHUNK_ITEM_KEY;
2911 
2912 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2913 	if (ret < 0)
2914 		goto out;
2915 	else if (ret > 0) { /* Logic error or corruption */
2916 		btrfs_handle_fs_error(fs_info, -ENOENT,
2917 				      "Failed lookup while freeing chunk.");
2918 		ret = -ENOENT;
2919 		goto out;
2920 	}
2921 
2922 	ret = btrfs_del_item(trans, root, path);
2923 	if (ret < 0)
2924 		btrfs_handle_fs_error(fs_info, ret,
2925 				      "Failed to delete chunk item.");
2926 out:
2927 	btrfs_free_path(path);
2928 	return ret;
2929 }
2930 
2931 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2932 {
2933 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2934 	struct btrfs_disk_key *disk_key;
2935 	struct btrfs_chunk *chunk;
2936 	u8 *ptr;
2937 	int ret = 0;
2938 	u32 num_stripes;
2939 	u32 array_size;
2940 	u32 len = 0;
2941 	u32 cur;
2942 	struct btrfs_key key;
2943 
2944 	mutex_lock(&fs_info->chunk_mutex);
2945 	array_size = btrfs_super_sys_array_size(super_copy);
2946 
2947 	ptr = super_copy->sys_chunk_array;
2948 	cur = 0;
2949 
2950 	while (cur < array_size) {
2951 		disk_key = (struct btrfs_disk_key *)ptr;
2952 		btrfs_disk_key_to_cpu(&key, disk_key);
2953 
2954 		len = sizeof(*disk_key);
2955 
2956 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2957 			chunk = (struct btrfs_chunk *)(ptr + len);
2958 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2959 			len += btrfs_chunk_item_size(num_stripes);
2960 		} else {
2961 			ret = -EIO;
2962 			break;
2963 		}
2964 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2965 		    key.offset == chunk_offset) {
2966 			memmove(ptr, ptr + len, array_size - (cur + len));
2967 			array_size -= len;
2968 			btrfs_set_super_sys_array_size(super_copy, array_size);
2969 		} else {
2970 			ptr += len;
2971 			cur += len;
2972 		}
2973 	}
2974 	mutex_unlock(&fs_info->chunk_mutex);
2975 	return ret;
2976 }
2977 
2978 /*
2979  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2980  * @logical: Logical block offset in bytes.
2981  * @length: Length of extent in bytes.
2982  *
2983  * Return: Chunk mapping or ERR_PTR.
2984  */
2985 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2986 				       u64 logical, u64 length)
2987 {
2988 	struct extent_map_tree *em_tree;
2989 	struct extent_map *em;
2990 
2991 	em_tree = &fs_info->mapping_tree;
2992 	read_lock(&em_tree->lock);
2993 	em = lookup_extent_mapping(em_tree, logical, length);
2994 	read_unlock(&em_tree->lock);
2995 
2996 	if (!em) {
2997 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2998 			   logical, length);
2999 		return ERR_PTR(-EINVAL);
3000 	}
3001 
3002 	if (em->start > logical || em->start + em->len < logical) {
3003 		btrfs_crit(fs_info,
3004 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3005 			   logical, length, em->start, em->start + em->len);
3006 		free_extent_map(em);
3007 		return ERR_PTR(-EINVAL);
3008 	}
3009 
3010 	/* callers are responsible for dropping em's ref. */
3011 	return em;
3012 }
3013 
3014 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3015 {
3016 	struct btrfs_fs_info *fs_info = trans->fs_info;
3017 	struct extent_map *em;
3018 	struct map_lookup *map;
3019 	u64 dev_extent_len = 0;
3020 	int i, ret = 0;
3021 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3022 
3023 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3024 	if (IS_ERR(em)) {
3025 		/*
3026 		 * This is a logic error, but we don't want to just rely on the
3027 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3028 		 * do anything we still error out.
3029 		 */
3030 		ASSERT(0);
3031 		return PTR_ERR(em);
3032 	}
3033 	map = em->map_lookup;
3034 	mutex_lock(&fs_info->chunk_mutex);
3035 	check_system_chunk(trans, map->type);
3036 	mutex_unlock(&fs_info->chunk_mutex);
3037 
3038 	/*
3039 	 * Take the device list mutex to prevent races with the final phase of
3040 	 * a device replace operation that replaces the device object associated
3041 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3042 	 */
3043 	mutex_lock(&fs_devices->device_list_mutex);
3044 	for (i = 0; i < map->num_stripes; i++) {
3045 		struct btrfs_device *device = map->stripes[i].dev;
3046 		ret = btrfs_free_dev_extent(trans, device,
3047 					    map->stripes[i].physical,
3048 					    &dev_extent_len);
3049 		if (ret) {
3050 			mutex_unlock(&fs_devices->device_list_mutex);
3051 			btrfs_abort_transaction(trans, ret);
3052 			goto out;
3053 		}
3054 
3055 		if (device->bytes_used > 0) {
3056 			mutex_lock(&fs_info->chunk_mutex);
3057 			btrfs_device_set_bytes_used(device,
3058 					device->bytes_used - dev_extent_len);
3059 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3060 			btrfs_clear_space_info_full(fs_info);
3061 			mutex_unlock(&fs_info->chunk_mutex);
3062 		}
3063 
3064 		ret = btrfs_update_device(trans, device);
3065 		if (ret) {
3066 			mutex_unlock(&fs_devices->device_list_mutex);
3067 			btrfs_abort_transaction(trans, ret);
3068 			goto out;
3069 		}
3070 	}
3071 	mutex_unlock(&fs_devices->device_list_mutex);
3072 
3073 	ret = btrfs_free_chunk(trans, chunk_offset);
3074 	if (ret) {
3075 		btrfs_abort_transaction(trans, ret);
3076 		goto out;
3077 	}
3078 
3079 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3080 
3081 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3082 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3083 		if (ret) {
3084 			btrfs_abort_transaction(trans, ret);
3085 			goto out;
3086 		}
3087 	}
3088 
3089 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3090 	if (ret) {
3091 		btrfs_abort_transaction(trans, ret);
3092 		goto out;
3093 	}
3094 
3095 out:
3096 	/* once for us */
3097 	free_extent_map(em);
3098 	return ret;
3099 }
3100 
3101 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3102 {
3103 	struct btrfs_root *root = fs_info->chunk_root;
3104 	struct btrfs_trans_handle *trans;
3105 	struct btrfs_block_group *block_group;
3106 	int ret;
3107 
3108 	/*
3109 	 * Prevent races with automatic removal of unused block groups.
3110 	 * After we relocate and before we remove the chunk with offset
3111 	 * chunk_offset, automatic removal of the block group can kick in,
3112 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3113 	 *
3114 	 * Make sure to acquire this mutex before doing a tree search (dev
3115 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3116 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3117 	 * we release the path used to search the chunk/dev tree and before
3118 	 * the current task acquires this mutex and calls us.
3119 	 */
3120 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3121 
3122 	/* step one, relocate all the extents inside this chunk */
3123 	btrfs_scrub_pause(fs_info);
3124 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3125 	btrfs_scrub_continue(fs_info);
3126 	if (ret)
3127 		return ret;
3128 
3129 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3130 	if (!block_group)
3131 		return -ENOENT;
3132 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3133 	btrfs_put_block_group(block_group);
3134 
3135 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3136 						     chunk_offset);
3137 	if (IS_ERR(trans)) {
3138 		ret = PTR_ERR(trans);
3139 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3140 		return ret;
3141 	}
3142 
3143 	/*
3144 	 * step two, delete the device extents and the
3145 	 * chunk tree entries
3146 	 */
3147 	ret = btrfs_remove_chunk(trans, chunk_offset);
3148 	btrfs_end_transaction(trans);
3149 	return ret;
3150 }
3151 
3152 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3153 {
3154 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3155 	struct btrfs_path *path;
3156 	struct extent_buffer *leaf;
3157 	struct btrfs_chunk *chunk;
3158 	struct btrfs_key key;
3159 	struct btrfs_key found_key;
3160 	u64 chunk_type;
3161 	bool retried = false;
3162 	int failed = 0;
3163 	int ret;
3164 
3165 	path = btrfs_alloc_path();
3166 	if (!path)
3167 		return -ENOMEM;
3168 
3169 again:
3170 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3171 	key.offset = (u64)-1;
3172 	key.type = BTRFS_CHUNK_ITEM_KEY;
3173 
3174 	while (1) {
3175 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3176 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3177 		if (ret < 0) {
3178 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3179 			goto error;
3180 		}
3181 		BUG_ON(ret == 0); /* Corruption */
3182 
3183 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3184 					  key.type);
3185 		if (ret)
3186 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3187 		if (ret < 0)
3188 			goto error;
3189 		if (ret > 0)
3190 			break;
3191 
3192 		leaf = path->nodes[0];
3193 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3194 
3195 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3196 				       struct btrfs_chunk);
3197 		chunk_type = btrfs_chunk_type(leaf, chunk);
3198 		btrfs_release_path(path);
3199 
3200 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3201 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3202 			if (ret == -ENOSPC)
3203 				failed++;
3204 			else
3205 				BUG_ON(ret);
3206 		}
3207 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3208 
3209 		if (found_key.offset == 0)
3210 			break;
3211 		key.offset = found_key.offset - 1;
3212 	}
3213 	ret = 0;
3214 	if (failed && !retried) {
3215 		failed = 0;
3216 		retried = true;
3217 		goto again;
3218 	} else if (WARN_ON(failed && retried)) {
3219 		ret = -ENOSPC;
3220 	}
3221 error:
3222 	btrfs_free_path(path);
3223 	return ret;
3224 }
3225 
3226 /*
3227  * return 1 : allocate a data chunk successfully,
3228  * return <0: errors during allocating a data chunk,
3229  * return 0 : no need to allocate a data chunk.
3230  */
3231 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3232 				      u64 chunk_offset)
3233 {
3234 	struct btrfs_block_group *cache;
3235 	u64 bytes_used;
3236 	u64 chunk_type;
3237 
3238 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3239 	ASSERT(cache);
3240 	chunk_type = cache->flags;
3241 	btrfs_put_block_group(cache);
3242 
3243 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3244 		return 0;
3245 
3246 	spin_lock(&fs_info->data_sinfo->lock);
3247 	bytes_used = fs_info->data_sinfo->bytes_used;
3248 	spin_unlock(&fs_info->data_sinfo->lock);
3249 
3250 	if (!bytes_used) {
3251 		struct btrfs_trans_handle *trans;
3252 		int ret;
3253 
3254 		trans =	btrfs_join_transaction(fs_info->tree_root);
3255 		if (IS_ERR(trans))
3256 			return PTR_ERR(trans);
3257 
3258 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3259 		btrfs_end_transaction(trans);
3260 		if (ret < 0)
3261 			return ret;
3262 		return 1;
3263 	}
3264 
3265 	return 0;
3266 }
3267 
3268 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3269 			       struct btrfs_balance_control *bctl)
3270 {
3271 	struct btrfs_root *root = fs_info->tree_root;
3272 	struct btrfs_trans_handle *trans;
3273 	struct btrfs_balance_item *item;
3274 	struct btrfs_disk_balance_args disk_bargs;
3275 	struct btrfs_path *path;
3276 	struct extent_buffer *leaf;
3277 	struct btrfs_key key;
3278 	int ret, err;
3279 
3280 	path = btrfs_alloc_path();
3281 	if (!path)
3282 		return -ENOMEM;
3283 
3284 	trans = btrfs_start_transaction(root, 0);
3285 	if (IS_ERR(trans)) {
3286 		btrfs_free_path(path);
3287 		return PTR_ERR(trans);
3288 	}
3289 
3290 	key.objectid = BTRFS_BALANCE_OBJECTID;
3291 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3292 	key.offset = 0;
3293 
3294 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3295 				      sizeof(*item));
3296 	if (ret)
3297 		goto out;
3298 
3299 	leaf = path->nodes[0];
3300 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3301 
3302 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3303 
3304 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3305 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3306 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3307 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3308 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3309 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3310 
3311 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3312 
3313 	btrfs_mark_buffer_dirty(leaf);
3314 out:
3315 	btrfs_free_path(path);
3316 	err = btrfs_commit_transaction(trans);
3317 	if (err && !ret)
3318 		ret = err;
3319 	return ret;
3320 }
3321 
3322 static int del_balance_item(struct btrfs_fs_info *fs_info)
3323 {
3324 	struct btrfs_root *root = fs_info->tree_root;
3325 	struct btrfs_trans_handle *trans;
3326 	struct btrfs_path *path;
3327 	struct btrfs_key key;
3328 	int ret, err;
3329 
3330 	path = btrfs_alloc_path();
3331 	if (!path)
3332 		return -ENOMEM;
3333 
3334 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3335 	if (IS_ERR(trans)) {
3336 		btrfs_free_path(path);
3337 		return PTR_ERR(trans);
3338 	}
3339 
3340 	key.objectid = BTRFS_BALANCE_OBJECTID;
3341 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3342 	key.offset = 0;
3343 
3344 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3345 	if (ret < 0)
3346 		goto out;
3347 	if (ret > 0) {
3348 		ret = -ENOENT;
3349 		goto out;
3350 	}
3351 
3352 	ret = btrfs_del_item(trans, root, path);
3353 out:
3354 	btrfs_free_path(path);
3355 	err = btrfs_commit_transaction(trans);
3356 	if (err && !ret)
3357 		ret = err;
3358 	return ret;
3359 }
3360 
3361 /*
3362  * This is a heuristic used to reduce the number of chunks balanced on
3363  * resume after balance was interrupted.
3364  */
3365 static void update_balance_args(struct btrfs_balance_control *bctl)
3366 {
3367 	/*
3368 	 * Turn on soft mode for chunk types that were being converted.
3369 	 */
3370 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3371 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3372 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3373 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3374 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3375 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3376 
3377 	/*
3378 	 * Turn on usage filter if is not already used.  The idea is
3379 	 * that chunks that we have already balanced should be
3380 	 * reasonably full.  Don't do it for chunks that are being
3381 	 * converted - that will keep us from relocating unconverted
3382 	 * (albeit full) chunks.
3383 	 */
3384 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3385 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3386 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3387 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3388 		bctl->data.usage = 90;
3389 	}
3390 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3391 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3392 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3393 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3394 		bctl->sys.usage = 90;
3395 	}
3396 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3397 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3398 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3399 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3400 		bctl->meta.usage = 90;
3401 	}
3402 }
3403 
3404 /*
3405  * Clear the balance status in fs_info and delete the balance item from disk.
3406  */
3407 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3408 {
3409 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3410 	int ret;
3411 
3412 	BUG_ON(!fs_info->balance_ctl);
3413 
3414 	spin_lock(&fs_info->balance_lock);
3415 	fs_info->balance_ctl = NULL;
3416 	spin_unlock(&fs_info->balance_lock);
3417 
3418 	kfree(bctl);
3419 	ret = del_balance_item(fs_info);
3420 	if (ret)
3421 		btrfs_handle_fs_error(fs_info, ret, NULL);
3422 }
3423 
3424 /*
3425  * Balance filters.  Return 1 if chunk should be filtered out
3426  * (should not be balanced).
3427  */
3428 static int chunk_profiles_filter(u64 chunk_type,
3429 				 struct btrfs_balance_args *bargs)
3430 {
3431 	chunk_type = chunk_to_extended(chunk_type) &
3432 				BTRFS_EXTENDED_PROFILE_MASK;
3433 
3434 	if (bargs->profiles & chunk_type)
3435 		return 0;
3436 
3437 	return 1;
3438 }
3439 
3440 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3441 			      struct btrfs_balance_args *bargs)
3442 {
3443 	struct btrfs_block_group *cache;
3444 	u64 chunk_used;
3445 	u64 user_thresh_min;
3446 	u64 user_thresh_max;
3447 	int ret = 1;
3448 
3449 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3450 	chunk_used = cache->used;
3451 
3452 	if (bargs->usage_min == 0)
3453 		user_thresh_min = 0;
3454 	else
3455 		user_thresh_min = div_factor_fine(cache->length,
3456 						  bargs->usage_min);
3457 
3458 	if (bargs->usage_max == 0)
3459 		user_thresh_max = 1;
3460 	else if (bargs->usage_max > 100)
3461 		user_thresh_max = cache->length;
3462 	else
3463 		user_thresh_max = div_factor_fine(cache->length,
3464 						  bargs->usage_max);
3465 
3466 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3467 		ret = 0;
3468 
3469 	btrfs_put_block_group(cache);
3470 	return ret;
3471 }
3472 
3473 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3474 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3475 {
3476 	struct btrfs_block_group *cache;
3477 	u64 chunk_used, user_thresh;
3478 	int ret = 1;
3479 
3480 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3481 	chunk_used = cache->used;
3482 
3483 	if (bargs->usage_min == 0)
3484 		user_thresh = 1;
3485 	else if (bargs->usage > 100)
3486 		user_thresh = cache->length;
3487 	else
3488 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3489 
3490 	if (chunk_used < user_thresh)
3491 		ret = 0;
3492 
3493 	btrfs_put_block_group(cache);
3494 	return ret;
3495 }
3496 
3497 static int chunk_devid_filter(struct extent_buffer *leaf,
3498 			      struct btrfs_chunk *chunk,
3499 			      struct btrfs_balance_args *bargs)
3500 {
3501 	struct btrfs_stripe *stripe;
3502 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3503 	int i;
3504 
3505 	for (i = 0; i < num_stripes; i++) {
3506 		stripe = btrfs_stripe_nr(chunk, i);
3507 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3508 			return 0;
3509 	}
3510 
3511 	return 1;
3512 }
3513 
3514 static u64 calc_data_stripes(u64 type, int num_stripes)
3515 {
3516 	const int index = btrfs_bg_flags_to_raid_index(type);
3517 	const int ncopies = btrfs_raid_array[index].ncopies;
3518 	const int nparity = btrfs_raid_array[index].nparity;
3519 
3520 	if (nparity)
3521 		return num_stripes - nparity;
3522 	else
3523 		return num_stripes / ncopies;
3524 }
3525 
3526 /* [pstart, pend) */
3527 static int chunk_drange_filter(struct extent_buffer *leaf,
3528 			       struct btrfs_chunk *chunk,
3529 			       struct btrfs_balance_args *bargs)
3530 {
3531 	struct btrfs_stripe *stripe;
3532 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3533 	u64 stripe_offset;
3534 	u64 stripe_length;
3535 	u64 type;
3536 	int factor;
3537 	int i;
3538 
3539 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3540 		return 0;
3541 
3542 	type = btrfs_chunk_type(leaf, chunk);
3543 	factor = calc_data_stripes(type, num_stripes);
3544 
3545 	for (i = 0; i < num_stripes; i++) {
3546 		stripe = btrfs_stripe_nr(chunk, i);
3547 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3548 			continue;
3549 
3550 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3551 		stripe_length = btrfs_chunk_length(leaf, chunk);
3552 		stripe_length = div_u64(stripe_length, factor);
3553 
3554 		if (stripe_offset < bargs->pend &&
3555 		    stripe_offset + stripe_length > bargs->pstart)
3556 			return 0;
3557 	}
3558 
3559 	return 1;
3560 }
3561 
3562 /* [vstart, vend) */
3563 static int chunk_vrange_filter(struct extent_buffer *leaf,
3564 			       struct btrfs_chunk *chunk,
3565 			       u64 chunk_offset,
3566 			       struct btrfs_balance_args *bargs)
3567 {
3568 	if (chunk_offset < bargs->vend &&
3569 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3570 		/* at least part of the chunk is inside this vrange */
3571 		return 0;
3572 
3573 	return 1;
3574 }
3575 
3576 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3577 			       struct btrfs_chunk *chunk,
3578 			       struct btrfs_balance_args *bargs)
3579 {
3580 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3581 
3582 	if (bargs->stripes_min <= num_stripes
3583 			&& num_stripes <= bargs->stripes_max)
3584 		return 0;
3585 
3586 	return 1;
3587 }
3588 
3589 static int chunk_soft_convert_filter(u64 chunk_type,
3590 				     struct btrfs_balance_args *bargs)
3591 {
3592 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3593 		return 0;
3594 
3595 	chunk_type = chunk_to_extended(chunk_type) &
3596 				BTRFS_EXTENDED_PROFILE_MASK;
3597 
3598 	if (bargs->target == chunk_type)
3599 		return 1;
3600 
3601 	return 0;
3602 }
3603 
3604 static int should_balance_chunk(struct extent_buffer *leaf,
3605 				struct btrfs_chunk *chunk, u64 chunk_offset)
3606 {
3607 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3608 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3609 	struct btrfs_balance_args *bargs = NULL;
3610 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3611 
3612 	/* type filter */
3613 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3614 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3615 		return 0;
3616 	}
3617 
3618 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3619 		bargs = &bctl->data;
3620 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3621 		bargs = &bctl->sys;
3622 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3623 		bargs = &bctl->meta;
3624 
3625 	/* profiles filter */
3626 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3627 	    chunk_profiles_filter(chunk_type, bargs)) {
3628 		return 0;
3629 	}
3630 
3631 	/* usage filter */
3632 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3633 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3634 		return 0;
3635 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3636 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3637 		return 0;
3638 	}
3639 
3640 	/* devid filter */
3641 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3642 	    chunk_devid_filter(leaf, chunk, bargs)) {
3643 		return 0;
3644 	}
3645 
3646 	/* drange filter, makes sense only with devid filter */
3647 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3648 	    chunk_drange_filter(leaf, chunk, bargs)) {
3649 		return 0;
3650 	}
3651 
3652 	/* vrange filter */
3653 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3654 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3655 		return 0;
3656 	}
3657 
3658 	/* stripes filter */
3659 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3660 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3661 		return 0;
3662 	}
3663 
3664 	/* soft profile changing mode */
3665 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3666 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3667 		return 0;
3668 	}
3669 
3670 	/*
3671 	 * limited by count, must be the last filter
3672 	 */
3673 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3674 		if (bargs->limit == 0)
3675 			return 0;
3676 		else
3677 			bargs->limit--;
3678 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3679 		/*
3680 		 * Same logic as the 'limit' filter; the minimum cannot be
3681 		 * determined here because we do not have the global information
3682 		 * about the count of all chunks that satisfy the filters.
3683 		 */
3684 		if (bargs->limit_max == 0)
3685 			return 0;
3686 		else
3687 			bargs->limit_max--;
3688 	}
3689 
3690 	return 1;
3691 }
3692 
3693 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3694 {
3695 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3696 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3697 	u64 chunk_type;
3698 	struct btrfs_chunk *chunk;
3699 	struct btrfs_path *path = NULL;
3700 	struct btrfs_key key;
3701 	struct btrfs_key found_key;
3702 	struct extent_buffer *leaf;
3703 	int slot;
3704 	int ret;
3705 	int enospc_errors = 0;
3706 	bool counting = true;
3707 	/* The single value limit and min/max limits use the same bytes in the */
3708 	u64 limit_data = bctl->data.limit;
3709 	u64 limit_meta = bctl->meta.limit;
3710 	u64 limit_sys = bctl->sys.limit;
3711 	u32 count_data = 0;
3712 	u32 count_meta = 0;
3713 	u32 count_sys = 0;
3714 	int chunk_reserved = 0;
3715 
3716 	path = btrfs_alloc_path();
3717 	if (!path) {
3718 		ret = -ENOMEM;
3719 		goto error;
3720 	}
3721 
3722 	/* zero out stat counters */
3723 	spin_lock(&fs_info->balance_lock);
3724 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3725 	spin_unlock(&fs_info->balance_lock);
3726 again:
3727 	if (!counting) {
3728 		/*
3729 		 * The single value limit and min/max limits use the same bytes
3730 		 * in the
3731 		 */
3732 		bctl->data.limit = limit_data;
3733 		bctl->meta.limit = limit_meta;
3734 		bctl->sys.limit = limit_sys;
3735 	}
3736 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3737 	key.offset = (u64)-1;
3738 	key.type = BTRFS_CHUNK_ITEM_KEY;
3739 
3740 	while (1) {
3741 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3742 		    atomic_read(&fs_info->balance_cancel_req)) {
3743 			ret = -ECANCELED;
3744 			goto error;
3745 		}
3746 
3747 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3748 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3749 		if (ret < 0) {
3750 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3751 			goto error;
3752 		}
3753 
3754 		/*
3755 		 * this shouldn't happen, it means the last relocate
3756 		 * failed
3757 		 */
3758 		if (ret == 0)
3759 			BUG(); /* FIXME break ? */
3760 
3761 		ret = btrfs_previous_item(chunk_root, path, 0,
3762 					  BTRFS_CHUNK_ITEM_KEY);
3763 		if (ret) {
3764 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3765 			ret = 0;
3766 			break;
3767 		}
3768 
3769 		leaf = path->nodes[0];
3770 		slot = path->slots[0];
3771 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3772 
3773 		if (found_key.objectid != key.objectid) {
3774 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3775 			break;
3776 		}
3777 
3778 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3779 		chunk_type = btrfs_chunk_type(leaf, chunk);
3780 
3781 		if (!counting) {
3782 			spin_lock(&fs_info->balance_lock);
3783 			bctl->stat.considered++;
3784 			spin_unlock(&fs_info->balance_lock);
3785 		}
3786 
3787 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3788 
3789 		btrfs_release_path(path);
3790 		if (!ret) {
3791 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3792 			goto loop;
3793 		}
3794 
3795 		if (counting) {
3796 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3797 			spin_lock(&fs_info->balance_lock);
3798 			bctl->stat.expected++;
3799 			spin_unlock(&fs_info->balance_lock);
3800 
3801 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3802 				count_data++;
3803 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3804 				count_sys++;
3805 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3806 				count_meta++;
3807 
3808 			goto loop;
3809 		}
3810 
3811 		/*
3812 		 * Apply limit_min filter, no need to check if the LIMITS
3813 		 * filter is used, limit_min is 0 by default
3814 		 */
3815 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3816 					count_data < bctl->data.limit_min)
3817 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3818 					count_meta < bctl->meta.limit_min)
3819 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3820 					count_sys < bctl->sys.limit_min)) {
3821 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3822 			goto loop;
3823 		}
3824 
3825 		if (!chunk_reserved) {
3826 			/*
3827 			 * We may be relocating the only data chunk we have,
3828 			 * which could potentially end up with losing data's
3829 			 * raid profile, so lets allocate an empty one in
3830 			 * advance.
3831 			 */
3832 			ret = btrfs_may_alloc_data_chunk(fs_info,
3833 							 found_key.offset);
3834 			if (ret < 0) {
3835 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3836 				goto error;
3837 			} else if (ret == 1) {
3838 				chunk_reserved = 1;
3839 			}
3840 		}
3841 
3842 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3843 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3844 		if (ret == -ENOSPC) {
3845 			enospc_errors++;
3846 		} else if (ret == -ETXTBSY) {
3847 			btrfs_info(fs_info,
3848 	   "skipping relocation of block group %llu due to active swapfile",
3849 				   found_key.offset);
3850 			ret = 0;
3851 		} else if (ret) {
3852 			goto error;
3853 		} else {
3854 			spin_lock(&fs_info->balance_lock);
3855 			bctl->stat.completed++;
3856 			spin_unlock(&fs_info->balance_lock);
3857 		}
3858 loop:
3859 		if (found_key.offset == 0)
3860 			break;
3861 		key.offset = found_key.offset - 1;
3862 	}
3863 
3864 	if (counting) {
3865 		btrfs_release_path(path);
3866 		counting = false;
3867 		goto again;
3868 	}
3869 error:
3870 	btrfs_free_path(path);
3871 	if (enospc_errors) {
3872 		btrfs_info(fs_info, "%d enospc errors during balance",
3873 			   enospc_errors);
3874 		if (!ret)
3875 			ret = -ENOSPC;
3876 	}
3877 
3878 	return ret;
3879 }
3880 
3881 /**
3882  * alloc_profile_is_valid - see if a given profile is valid and reduced
3883  * @flags: profile to validate
3884  * @extended: if true @flags is treated as an extended profile
3885  */
3886 static int alloc_profile_is_valid(u64 flags, int extended)
3887 {
3888 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3889 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3890 
3891 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3892 
3893 	/* 1) check that all other bits are zeroed */
3894 	if (flags & ~mask)
3895 		return 0;
3896 
3897 	/* 2) see if profile is reduced */
3898 	if (flags == 0)
3899 		return !extended; /* "0" is valid for usual profiles */
3900 
3901 	return has_single_bit_set(flags);
3902 }
3903 
3904 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3905 {
3906 	/* cancel requested || normal exit path */
3907 	return atomic_read(&fs_info->balance_cancel_req) ||
3908 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3909 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3910 }
3911 
3912 /*
3913  * Validate target profile against allowed profiles and return true if it's OK.
3914  * Otherwise print the error message and return false.
3915  */
3916 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3917 		const struct btrfs_balance_args *bargs,
3918 		u64 allowed, const char *type)
3919 {
3920 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3921 		return true;
3922 
3923 	/* Profile is valid and does not have bits outside of the allowed set */
3924 	if (alloc_profile_is_valid(bargs->target, 1) &&
3925 	    (bargs->target & ~allowed) == 0)
3926 		return true;
3927 
3928 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3929 			type, btrfs_bg_type_to_raid_name(bargs->target));
3930 	return false;
3931 }
3932 
3933 /*
3934  * Fill @buf with textual description of balance filter flags @bargs, up to
3935  * @size_buf including the terminating null. The output may be trimmed if it
3936  * does not fit into the provided buffer.
3937  */
3938 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3939 				 u32 size_buf)
3940 {
3941 	int ret;
3942 	u32 size_bp = size_buf;
3943 	char *bp = buf;
3944 	u64 flags = bargs->flags;
3945 	char tmp_buf[128] = {'\0'};
3946 
3947 	if (!flags)
3948 		return;
3949 
3950 #define CHECK_APPEND_NOARG(a)						\
3951 	do {								\
3952 		ret = snprintf(bp, size_bp, (a));			\
3953 		if (ret < 0 || ret >= size_bp)				\
3954 			goto out_overflow;				\
3955 		size_bp -= ret;						\
3956 		bp += ret;						\
3957 	} while (0)
3958 
3959 #define CHECK_APPEND_1ARG(a, v1)					\
3960 	do {								\
3961 		ret = snprintf(bp, size_bp, (a), (v1));			\
3962 		if (ret < 0 || ret >= size_bp)				\
3963 			goto out_overflow;				\
3964 		size_bp -= ret;						\
3965 		bp += ret;						\
3966 	} while (0)
3967 
3968 #define CHECK_APPEND_2ARG(a, v1, v2)					\
3969 	do {								\
3970 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
3971 		if (ret < 0 || ret >= size_bp)				\
3972 			goto out_overflow;				\
3973 		size_bp -= ret;						\
3974 		bp += ret;						\
3975 	} while (0)
3976 
3977 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3978 		CHECK_APPEND_1ARG("convert=%s,",
3979 				  btrfs_bg_type_to_raid_name(bargs->target));
3980 
3981 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
3982 		CHECK_APPEND_NOARG("soft,");
3983 
3984 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3985 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3986 					    sizeof(tmp_buf));
3987 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3988 	}
3989 
3990 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
3991 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3992 
3993 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3994 		CHECK_APPEND_2ARG("usage=%u..%u,",
3995 				  bargs->usage_min, bargs->usage_max);
3996 
3997 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
3998 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3999 
4000 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4001 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4002 				  bargs->pstart, bargs->pend);
4003 
4004 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4005 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4006 				  bargs->vstart, bargs->vend);
4007 
4008 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4009 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4010 
4011 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4012 		CHECK_APPEND_2ARG("limit=%u..%u,",
4013 				bargs->limit_min, bargs->limit_max);
4014 
4015 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4016 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4017 				  bargs->stripes_min, bargs->stripes_max);
4018 
4019 #undef CHECK_APPEND_2ARG
4020 #undef CHECK_APPEND_1ARG
4021 #undef CHECK_APPEND_NOARG
4022 
4023 out_overflow:
4024 
4025 	if (size_bp < size_buf)
4026 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4027 	else
4028 		buf[0] = '\0';
4029 }
4030 
4031 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4032 {
4033 	u32 size_buf = 1024;
4034 	char tmp_buf[192] = {'\0'};
4035 	char *buf;
4036 	char *bp;
4037 	u32 size_bp = size_buf;
4038 	int ret;
4039 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4040 
4041 	buf = kzalloc(size_buf, GFP_KERNEL);
4042 	if (!buf)
4043 		return;
4044 
4045 	bp = buf;
4046 
4047 #define CHECK_APPEND_1ARG(a, v1)					\
4048 	do {								\
4049 		ret = snprintf(bp, size_bp, (a), (v1));			\
4050 		if (ret < 0 || ret >= size_bp)				\
4051 			goto out_overflow;				\
4052 		size_bp -= ret;						\
4053 		bp += ret;						\
4054 	} while (0)
4055 
4056 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4057 		CHECK_APPEND_1ARG("%s", "-f ");
4058 
4059 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4060 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4061 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4062 	}
4063 
4064 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4065 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4066 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4067 	}
4068 
4069 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4070 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4071 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4072 	}
4073 
4074 #undef CHECK_APPEND_1ARG
4075 
4076 out_overflow:
4077 
4078 	if (size_bp < size_buf)
4079 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4080 	btrfs_info(fs_info, "balance: %s %s",
4081 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4082 		   "resume" : "start", buf);
4083 
4084 	kfree(buf);
4085 }
4086 
4087 /*
4088  * Should be called with balance mutexe held
4089  */
4090 int btrfs_balance(struct btrfs_fs_info *fs_info,
4091 		  struct btrfs_balance_control *bctl,
4092 		  struct btrfs_ioctl_balance_args *bargs)
4093 {
4094 	u64 meta_target, data_target;
4095 	u64 allowed;
4096 	int mixed = 0;
4097 	int ret;
4098 	u64 num_devices;
4099 	unsigned seq;
4100 	bool reducing_redundancy;
4101 	int i;
4102 
4103 	if (btrfs_fs_closing(fs_info) ||
4104 	    atomic_read(&fs_info->balance_pause_req) ||
4105 	    btrfs_should_cancel_balance(fs_info)) {
4106 		ret = -EINVAL;
4107 		goto out;
4108 	}
4109 
4110 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4111 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4112 		mixed = 1;
4113 
4114 	/*
4115 	 * In case of mixed groups both data and meta should be picked,
4116 	 * and identical options should be given for both of them.
4117 	 */
4118 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4119 	if (mixed && (bctl->flags & allowed)) {
4120 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4121 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4122 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4123 			btrfs_err(fs_info,
4124 	  "balance: mixed groups data and metadata options must be the same");
4125 			ret = -EINVAL;
4126 			goto out;
4127 		}
4128 	}
4129 
4130 	/*
4131 	 * rw_devices will not change at the moment, device add/delete/replace
4132 	 * are exclusive
4133 	 */
4134 	num_devices = fs_info->fs_devices->rw_devices;
4135 
4136 	/*
4137 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4138 	 * special bit for it, to make it easier to distinguish.  Thus we need
4139 	 * to set it manually, or balance would refuse the profile.
4140 	 */
4141 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4142 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4143 		if (num_devices >= btrfs_raid_array[i].devs_min)
4144 			allowed |= btrfs_raid_array[i].bg_flag;
4145 
4146 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4147 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4148 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4149 		ret = -EINVAL;
4150 		goto out;
4151 	}
4152 
4153 	/*
4154 	 * Allow to reduce metadata or system integrity only if force set for
4155 	 * profiles with redundancy (copies, parity)
4156 	 */
4157 	allowed = 0;
4158 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4159 		if (btrfs_raid_array[i].ncopies >= 2 ||
4160 		    btrfs_raid_array[i].tolerated_failures >= 1)
4161 			allowed |= btrfs_raid_array[i].bg_flag;
4162 	}
4163 	do {
4164 		seq = read_seqbegin(&fs_info->profiles_lock);
4165 
4166 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4167 		     (fs_info->avail_system_alloc_bits & allowed) &&
4168 		     !(bctl->sys.target & allowed)) ||
4169 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4170 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4171 		     !(bctl->meta.target & allowed)))
4172 			reducing_redundancy = true;
4173 		else
4174 			reducing_redundancy = false;
4175 
4176 		/* if we're not converting, the target field is uninitialized */
4177 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4178 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4179 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4180 			bctl->data.target : fs_info->avail_data_alloc_bits;
4181 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4182 
4183 	if (reducing_redundancy) {
4184 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4185 			btrfs_info(fs_info,
4186 			   "balance: force reducing metadata redundancy");
4187 		} else {
4188 			btrfs_err(fs_info,
4189 	"balance: reduces metadata redundancy, use --force if you want this");
4190 			ret = -EINVAL;
4191 			goto out;
4192 		}
4193 	}
4194 
4195 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4196 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4197 		btrfs_warn(fs_info,
4198 	"balance: metadata profile %s has lower redundancy than data profile %s",
4199 				btrfs_bg_type_to_raid_name(meta_target),
4200 				btrfs_bg_type_to_raid_name(data_target));
4201 	}
4202 
4203 	if (fs_info->send_in_progress) {
4204 		btrfs_warn_rl(fs_info,
4205 "cannot run balance while send operations are in progress (%d in progress)",
4206 			      fs_info->send_in_progress);
4207 		ret = -EAGAIN;
4208 		goto out;
4209 	}
4210 
4211 	ret = insert_balance_item(fs_info, bctl);
4212 	if (ret && ret != -EEXIST)
4213 		goto out;
4214 
4215 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4216 		BUG_ON(ret == -EEXIST);
4217 		BUG_ON(fs_info->balance_ctl);
4218 		spin_lock(&fs_info->balance_lock);
4219 		fs_info->balance_ctl = bctl;
4220 		spin_unlock(&fs_info->balance_lock);
4221 	} else {
4222 		BUG_ON(ret != -EEXIST);
4223 		spin_lock(&fs_info->balance_lock);
4224 		update_balance_args(bctl);
4225 		spin_unlock(&fs_info->balance_lock);
4226 	}
4227 
4228 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4229 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4230 	describe_balance_start_or_resume(fs_info);
4231 	mutex_unlock(&fs_info->balance_mutex);
4232 
4233 	ret = __btrfs_balance(fs_info);
4234 
4235 	mutex_lock(&fs_info->balance_mutex);
4236 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4237 		btrfs_info(fs_info, "balance: paused");
4238 	/*
4239 	 * Balance can be canceled by:
4240 	 *
4241 	 * - Regular cancel request
4242 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4243 	 *
4244 	 * - Fatal signal to "btrfs" process
4245 	 *   Either the signal caught by wait_reserve_ticket() and callers
4246 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4247 	 *   got -ECANCELED.
4248 	 *   Either way, in this case balance_cancel_req = 0, and
4249 	 *   ret == -EINTR or ret == -ECANCELED.
4250 	 *
4251 	 * So here we only check the return value to catch canceled balance.
4252 	 */
4253 	else if (ret == -ECANCELED || ret == -EINTR)
4254 		btrfs_info(fs_info, "balance: canceled");
4255 	else
4256 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4257 
4258 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4259 
4260 	if (bargs) {
4261 		memset(bargs, 0, sizeof(*bargs));
4262 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4263 	}
4264 
4265 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4266 	    balance_need_close(fs_info)) {
4267 		reset_balance_state(fs_info);
4268 		btrfs_exclop_finish(fs_info);
4269 	}
4270 
4271 	wake_up(&fs_info->balance_wait_q);
4272 
4273 	return ret;
4274 out:
4275 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4276 		reset_balance_state(fs_info);
4277 	else
4278 		kfree(bctl);
4279 	btrfs_exclop_finish(fs_info);
4280 
4281 	return ret;
4282 }
4283 
4284 static int balance_kthread(void *data)
4285 {
4286 	struct btrfs_fs_info *fs_info = data;
4287 	int ret = 0;
4288 
4289 	mutex_lock(&fs_info->balance_mutex);
4290 	if (fs_info->balance_ctl)
4291 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4292 	mutex_unlock(&fs_info->balance_mutex);
4293 
4294 	return ret;
4295 }
4296 
4297 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4298 {
4299 	struct task_struct *tsk;
4300 
4301 	mutex_lock(&fs_info->balance_mutex);
4302 	if (!fs_info->balance_ctl) {
4303 		mutex_unlock(&fs_info->balance_mutex);
4304 		return 0;
4305 	}
4306 	mutex_unlock(&fs_info->balance_mutex);
4307 
4308 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4309 		btrfs_info(fs_info, "balance: resume skipped");
4310 		return 0;
4311 	}
4312 
4313 	/*
4314 	 * A ro->rw remount sequence should continue with the paused balance
4315 	 * regardless of who pauses it, system or the user as of now, so set
4316 	 * the resume flag.
4317 	 */
4318 	spin_lock(&fs_info->balance_lock);
4319 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4320 	spin_unlock(&fs_info->balance_lock);
4321 
4322 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4323 	return PTR_ERR_OR_ZERO(tsk);
4324 }
4325 
4326 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4327 {
4328 	struct btrfs_balance_control *bctl;
4329 	struct btrfs_balance_item *item;
4330 	struct btrfs_disk_balance_args disk_bargs;
4331 	struct btrfs_path *path;
4332 	struct extent_buffer *leaf;
4333 	struct btrfs_key key;
4334 	int ret;
4335 
4336 	path = btrfs_alloc_path();
4337 	if (!path)
4338 		return -ENOMEM;
4339 
4340 	key.objectid = BTRFS_BALANCE_OBJECTID;
4341 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4342 	key.offset = 0;
4343 
4344 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4345 	if (ret < 0)
4346 		goto out;
4347 	if (ret > 0) { /* ret = -ENOENT; */
4348 		ret = 0;
4349 		goto out;
4350 	}
4351 
4352 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4353 	if (!bctl) {
4354 		ret = -ENOMEM;
4355 		goto out;
4356 	}
4357 
4358 	leaf = path->nodes[0];
4359 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4360 
4361 	bctl->flags = btrfs_balance_flags(leaf, item);
4362 	bctl->flags |= BTRFS_BALANCE_RESUME;
4363 
4364 	btrfs_balance_data(leaf, item, &disk_bargs);
4365 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4366 	btrfs_balance_meta(leaf, item, &disk_bargs);
4367 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4368 	btrfs_balance_sys(leaf, item, &disk_bargs);
4369 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4370 
4371 	/*
4372 	 * This should never happen, as the paused balance state is recovered
4373 	 * during mount without any chance of other exclusive ops to collide.
4374 	 *
4375 	 * This gives the exclusive op status to balance and keeps in paused
4376 	 * state until user intervention (cancel or umount). If the ownership
4377 	 * cannot be assigned, show a message but do not fail. The balance
4378 	 * is in a paused state and must have fs_info::balance_ctl properly
4379 	 * set up.
4380 	 */
4381 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4382 		btrfs_warn(fs_info,
4383 	"balance: cannot set exclusive op status, resume manually");
4384 
4385 	btrfs_release_path(path);
4386 
4387 	mutex_lock(&fs_info->balance_mutex);
4388 	BUG_ON(fs_info->balance_ctl);
4389 	spin_lock(&fs_info->balance_lock);
4390 	fs_info->balance_ctl = bctl;
4391 	spin_unlock(&fs_info->balance_lock);
4392 	mutex_unlock(&fs_info->balance_mutex);
4393 out:
4394 	btrfs_free_path(path);
4395 	return ret;
4396 }
4397 
4398 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4399 {
4400 	int ret = 0;
4401 
4402 	mutex_lock(&fs_info->balance_mutex);
4403 	if (!fs_info->balance_ctl) {
4404 		mutex_unlock(&fs_info->balance_mutex);
4405 		return -ENOTCONN;
4406 	}
4407 
4408 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4409 		atomic_inc(&fs_info->balance_pause_req);
4410 		mutex_unlock(&fs_info->balance_mutex);
4411 
4412 		wait_event(fs_info->balance_wait_q,
4413 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4414 
4415 		mutex_lock(&fs_info->balance_mutex);
4416 		/* we are good with balance_ctl ripped off from under us */
4417 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4418 		atomic_dec(&fs_info->balance_pause_req);
4419 	} else {
4420 		ret = -ENOTCONN;
4421 	}
4422 
4423 	mutex_unlock(&fs_info->balance_mutex);
4424 	return ret;
4425 }
4426 
4427 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4428 {
4429 	mutex_lock(&fs_info->balance_mutex);
4430 	if (!fs_info->balance_ctl) {
4431 		mutex_unlock(&fs_info->balance_mutex);
4432 		return -ENOTCONN;
4433 	}
4434 
4435 	/*
4436 	 * A paused balance with the item stored on disk can be resumed at
4437 	 * mount time if the mount is read-write. Otherwise it's still paused
4438 	 * and we must not allow cancelling as it deletes the item.
4439 	 */
4440 	if (sb_rdonly(fs_info->sb)) {
4441 		mutex_unlock(&fs_info->balance_mutex);
4442 		return -EROFS;
4443 	}
4444 
4445 	atomic_inc(&fs_info->balance_cancel_req);
4446 	/*
4447 	 * if we are running just wait and return, balance item is
4448 	 * deleted in btrfs_balance in this case
4449 	 */
4450 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4451 		mutex_unlock(&fs_info->balance_mutex);
4452 		wait_event(fs_info->balance_wait_q,
4453 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4454 		mutex_lock(&fs_info->balance_mutex);
4455 	} else {
4456 		mutex_unlock(&fs_info->balance_mutex);
4457 		/*
4458 		 * Lock released to allow other waiters to continue, we'll
4459 		 * reexamine the status again.
4460 		 */
4461 		mutex_lock(&fs_info->balance_mutex);
4462 
4463 		if (fs_info->balance_ctl) {
4464 			reset_balance_state(fs_info);
4465 			btrfs_exclop_finish(fs_info);
4466 			btrfs_info(fs_info, "balance: canceled");
4467 		}
4468 	}
4469 
4470 	BUG_ON(fs_info->balance_ctl ||
4471 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4472 	atomic_dec(&fs_info->balance_cancel_req);
4473 	mutex_unlock(&fs_info->balance_mutex);
4474 	return 0;
4475 }
4476 
4477 int btrfs_uuid_scan_kthread(void *data)
4478 {
4479 	struct btrfs_fs_info *fs_info = data;
4480 	struct btrfs_root *root = fs_info->tree_root;
4481 	struct btrfs_key key;
4482 	struct btrfs_path *path = NULL;
4483 	int ret = 0;
4484 	struct extent_buffer *eb;
4485 	int slot;
4486 	struct btrfs_root_item root_item;
4487 	u32 item_size;
4488 	struct btrfs_trans_handle *trans = NULL;
4489 	bool closing = false;
4490 
4491 	path = btrfs_alloc_path();
4492 	if (!path) {
4493 		ret = -ENOMEM;
4494 		goto out;
4495 	}
4496 
4497 	key.objectid = 0;
4498 	key.type = BTRFS_ROOT_ITEM_KEY;
4499 	key.offset = 0;
4500 
4501 	while (1) {
4502 		if (btrfs_fs_closing(fs_info)) {
4503 			closing = true;
4504 			break;
4505 		}
4506 		ret = btrfs_search_forward(root, &key, path,
4507 				BTRFS_OLDEST_GENERATION);
4508 		if (ret) {
4509 			if (ret > 0)
4510 				ret = 0;
4511 			break;
4512 		}
4513 
4514 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4515 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4516 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4517 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4518 			goto skip;
4519 
4520 		eb = path->nodes[0];
4521 		slot = path->slots[0];
4522 		item_size = btrfs_item_size_nr(eb, slot);
4523 		if (item_size < sizeof(root_item))
4524 			goto skip;
4525 
4526 		read_extent_buffer(eb, &root_item,
4527 				   btrfs_item_ptr_offset(eb, slot),
4528 				   (int)sizeof(root_item));
4529 		if (btrfs_root_refs(&root_item) == 0)
4530 			goto skip;
4531 
4532 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4533 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4534 			if (trans)
4535 				goto update_tree;
4536 
4537 			btrfs_release_path(path);
4538 			/*
4539 			 * 1 - subvol uuid item
4540 			 * 1 - received_subvol uuid item
4541 			 */
4542 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4543 			if (IS_ERR(trans)) {
4544 				ret = PTR_ERR(trans);
4545 				break;
4546 			}
4547 			continue;
4548 		} else {
4549 			goto skip;
4550 		}
4551 update_tree:
4552 		btrfs_release_path(path);
4553 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4554 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4555 						  BTRFS_UUID_KEY_SUBVOL,
4556 						  key.objectid);
4557 			if (ret < 0) {
4558 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4559 					ret);
4560 				break;
4561 			}
4562 		}
4563 
4564 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4565 			ret = btrfs_uuid_tree_add(trans,
4566 						  root_item.received_uuid,
4567 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4568 						  key.objectid);
4569 			if (ret < 0) {
4570 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4571 					ret);
4572 				break;
4573 			}
4574 		}
4575 
4576 skip:
4577 		btrfs_release_path(path);
4578 		if (trans) {
4579 			ret = btrfs_end_transaction(trans);
4580 			trans = NULL;
4581 			if (ret)
4582 				break;
4583 		}
4584 
4585 		if (key.offset < (u64)-1) {
4586 			key.offset++;
4587 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4588 			key.offset = 0;
4589 			key.type = BTRFS_ROOT_ITEM_KEY;
4590 		} else if (key.objectid < (u64)-1) {
4591 			key.offset = 0;
4592 			key.type = BTRFS_ROOT_ITEM_KEY;
4593 			key.objectid++;
4594 		} else {
4595 			break;
4596 		}
4597 		cond_resched();
4598 	}
4599 
4600 out:
4601 	btrfs_free_path(path);
4602 	if (trans && !IS_ERR(trans))
4603 		btrfs_end_transaction(trans);
4604 	if (ret)
4605 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4606 	else if (!closing)
4607 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4608 	up(&fs_info->uuid_tree_rescan_sem);
4609 	return 0;
4610 }
4611 
4612 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4613 {
4614 	struct btrfs_trans_handle *trans;
4615 	struct btrfs_root *tree_root = fs_info->tree_root;
4616 	struct btrfs_root *uuid_root;
4617 	struct task_struct *task;
4618 	int ret;
4619 
4620 	/*
4621 	 * 1 - root node
4622 	 * 1 - root item
4623 	 */
4624 	trans = btrfs_start_transaction(tree_root, 2);
4625 	if (IS_ERR(trans))
4626 		return PTR_ERR(trans);
4627 
4628 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4629 	if (IS_ERR(uuid_root)) {
4630 		ret = PTR_ERR(uuid_root);
4631 		btrfs_abort_transaction(trans, ret);
4632 		btrfs_end_transaction(trans);
4633 		return ret;
4634 	}
4635 
4636 	fs_info->uuid_root = uuid_root;
4637 
4638 	ret = btrfs_commit_transaction(trans);
4639 	if (ret)
4640 		return ret;
4641 
4642 	down(&fs_info->uuid_tree_rescan_sem);
4643 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4644 	if (IS_ERR(task)) {
4645 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4646 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4647 		up(&fs_info->uuid_tree_rescan_sem);
4648 		return PTR_ERR(task);
4649 	}
4650 
4651 	return 0;
4652 }
4653 
4654 /*
4655  * shrinking a device means finding all of the device extents past
4656  * the new size, and then following the back refs to the chunks.
4657  * The chunk relocation code actually frees the device extent
4658  */
4659 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4660 {
4661 	struct btrfs_fs_info *fs_info = device->fs_info;
4662 	struct btrfs_root *root = fs_info->dev_root;
4663 	struct btrfs_trans_handle *trans;
4664 	struct btrfs_dev_extent *dev_extent = NULL;
4665 	struct btrfs_path *path;
4666 	u64 length;
4667 	u64 chunk_offset;
4668 	int ret;
4669 	int slot;
4670 	int failed = 0;
4671 	bool retried = false;
4672 	struct extent_buffer *l;
4673 	struct btrfs_key key;
4674 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4675 	u64 old_total = btrfs_super_total_bytes(super_copy);
4676 	u64 old_size = btrfs_device_get_total_bytes(device);
4677 	u64 diff;
4678 	u64 start;
4679 
4680 	new_size = round_down(new_size, fs_info->sectorsize);
4681 	start = new_size;
4682 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4683 
4684 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4685 		return -EINVAL;
4686 
4687 	path = btrfs_alloc_path();
4688 	if (!path)
4689 		return -ENOMEM;
4690 
4691 	path->reada = READA_BACK;
4692 
4693 	trans = btrfs_start_transaction(root, 0);
4694 	if (IS_ERR(trans)) {
4695 		btrfs_free_path(path);
4696 		return PTR_ERR(trans);
4697 	}
4698 
4699 	mutex_lock(&fs_info->chunk_mutex);
4700 
4701 	btrfs_device_set_total_bytes(device, new_size);
4702 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4703 		device->fs_devices->total_rw_bytes -= diff;
4704 		atomic64_sub(diff, &fs_info->free_chunk_space);
4705 	}
4706 
4707 	/*
4708 	 * Once the device's size has been set to the new size, ensure all
4709 	 * in-memory chunks are synced to disk so that the loop below sees them
4710 	 * and relocates them accordingly.
4711 	 */
4712 	if (contains_pending_extent(device, &start, diff)) {
4713 		mutex_unlock(&fs_info->chunk_mutex);
4714 		ret = btrfs_commit_transaction(trans);
4715 		if (ret)
4716 			goto done;
4717 	} else {
4718 		mutex_unlock(&fs_info->chunk_mutex);
4719 		btrfs_end_transaction(trans);
4720 	}
4721 
4722 again:
4723 	key.objectid = device->devid;
4724 	key.offset = (u64)-1;
4725 	key.type = BTRFS_DEV_EXTENT_KEY;
4726 
4727 	do {
4728 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4729 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4730 		if (ret < 0) {
4731 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4732 			goto done;
4733 		}
4734 
4735 		ret = btrfs_previous_item(root, path, 0, key.type);
4736 		if (ret) {
4737 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4738 			if (ret < 0)
4739 				goto done;
4740 			ret = 0;
4741 			btrfs_release_path(path);
4742 			break;
4743 		}
4744 
4745 		l = path->nodes[0];
4746 		slot = path->slots[0];
4747 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4748 
4749 		if (key.objectid != device->devid) {
4750 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4751 			btrfs_release_path(path);
4752 			break;
4753 		}
4754 
4755 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4756 		length = btrfs_dev_extent_length(l, dev_extent);
4757 
4758 		if (key.offset + length <= new_size) {
4759 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4760 			btrfs_release_path(path);
4761 			break;
4762 		}
4763 
4764 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4765 		btrfs_release_path(path);
4766 
4767 		/*
4768 		 * We may be relocating the only data chunk we have,
4769 		 * which could potentially end up with losing data's
4770 		 * raid profile, so lets allocate an empty one in
4771 		 * advance.
4772 		 */
4773 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4774 		if (ret < 0) {
4775 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4776 			goto done;
4777 		}
4778 
4779 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4780 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4781 		if (ret == -ENOSPC) {
4782 			failed++;
4783 		} else if (ret) {
4784 			if (ret == -ETXTBSY) {
4785 				btrfs_warn(fs_info,
4786 		   "could not shrink block group %llu due to active swapfile",
4787 					   chunk_offset);
4788 			}
4789 			goto done;
4790 		}
4791 	} while (key.offset-- > 0);
4792 
4793 	if (failed && !retried) {
4794 		failed = 0;
4795 		retried = true;
4796 		goto again;
4797 	} else if (failed && retried) {
4798 		ret = -ENOSPC;
4799 		goto done;
4800 	}
4801 
4802 	/* Shrinking succeeded, else we would be at "done". */
4803 	trans = btrfs_start_transaction(root, 0);
4804 	if (IS_ERR(trans)) {
4805 		ret = PTR_ERR(trans);
4806 		goto done;
4807 	}
4808 
4809 	mutex_lock(&fs_info->chunk_mutex);
4810 	/* Clear all state bits beyond the shrunk device size */
4811 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4812 			  CHUNK_STATE_MASK);
4813 
4814 	btrfs_device_set_disk_total_bytes(device, new_size);
4815 	if (list_empty(&device->post_commit_list))
4816 		list_add_tail(&device->post_commit_list,
4817 			      &trans->transaction->dev_update_list);
4818 
4819 	WARN_ON(diff > old_total);
4820 	btrfs_set_super_total_bytes(super_copy,
4821 			round_down(old_total - diff, fs_info->sectorsize));
4822 	mutex_unlock(&fs_info->chunk_mutex);
4823 
4824 	/* Now btrfs_update_device() will change the on-disk size. */
4825 	ret = btrfs_update_device(trans, device);
4826 	if (ret < 0) {
4827 		btrfs_abort_transaction(trans, ret);
4828 		btrfs_end_transaction(trans);
4829 	} else {
4830 		ret = btrfs_commit_transaction(trans);
4831 	}
4832 done:
4833 	btrfs_free_path(path);
4834 	if (ret) {
4835 		mutex_lock(&fs_info->chunk_mutex);
4836 		btrfs_device_set_total_bytes(device, old_size);
4837 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4838 			device->fs_devices->total_rw_bytes += diff;
4839 		atomic64_add(diff, &fs_info->free_chunk_space);
4840 		mutex_unlock(&fs_info->chunk_mutex);
4841 	}
4842 	return ret;
4843 }
4844 
4845 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4846 			   struct btrfs_key *key,
4847 			   struct btrfs_chunk *chunk, int item_size)
4848 {
4849 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4850 	struct btrfs_disk_key disk_key;
4851 	u32 array_size;
4852 	u8 *ptr;
4853 
4854 	mutex_lock(&fs_info->chunk_mutex);
4855 	array_size = btrfs_super_sys_array_size(super_copy);
4856 	if (array_size + item_size + sizeof(disk_key)
4857 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4858 		mutex_unlock(&fs_info->chunk_mutex);
4859 		return -EFBIG;
4860 	}
4861 
4862 	ptr = super_copy->sys_chunk_array + array_size;
4863 	btrfs_cpu_key_to_disk(&disk_key, key);
4864 	memcpy(ptr, &disk_key, sizeof(disk_key));
4865 	ptr += sizeof(disk_key);
4866 	memcpy(ptr, chunk, item_size);
4867 	item_size += sizeof(disk_key);
4868 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4869 	mutex_unlock(&fs_info->chunk_mutex);
4870 
4871 	return 0;
4872 }
4873 
4874 /*
4875  * sort the devices in descending order by max_avail, total_avail
4876  */
4877 static int btrfs_cmp_device_info(const void *a, const void *b)
4878 {
4879 	const struct btrfs_device_info *di_a = a;
4880 	const struct btrfs_device_info *di_b = b;
4881 
4882 	if (di_a->max_avail > di_b->max_avail)
4883 		return -1;
4884 	if (di_a->max_avail < di_b->max_avail)
4885 		return 1;
4886 	if (di_a->total_avail > di_b->total_avail)
4887 		return -1;
4888 	if (di_a->total_avail < di_b->total_avail)
4889 		return 1;
4890 	return 0;
4891 }
4892 
4893 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4894 {
4895 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4896 		return;
4897 
4898 	btrfs_set_fs_incompat(info, RAID56);
4899 }
4900 
4901 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4902 {
4903 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4904 		return;
4905 
4906 	btrfs_set_fs_incompat(info, RAID1C34);
4907 }
4908 
4909 /*
4910  * Structure used internally for __btrfs_alloc_chunk() function.
4911  * Wraps needed parameters.
4912  */
4913 struct alloc_chunk_ctl {
4914 	u64 start;
4915 	u64 type;
4916 	/* Total number of stripes to allocate */
4917 	int num_stripes;
4918 	/* sub_stripes info for map */
4919 	int sub_stripes;
4920 	/* Stripes per device */
4921 	int dev_stripes;
4922 	/* Maximum number of devices to use */
4923 	int devs_max;
4924 	/* Minimum number of devices to use */
4925 	int devs_min;
4926 	/* ndevs has to be a multiple of this */
4927 	int devs_increment;
4928 	/* Number of copies */
4929 	int ncopies;
4930 	/* Number of stripes worth of bytes to store parity information */
4931 	int nparity;
4932 	u64 max_stripe_size;
4933 	u64 max_chunk_size;
4934 	u64 dev_extent_min;
4935 	u64 stripe_size;
4936 	u64 chunk_size;
4937 	int ndevs;
4938 };
4939 
4940 static void init_alloc_chunk_ctl_policy_regular(
4941 				struct btrfs_fs_devices *fs_devices,
4942 				struct alloc_chunk_ctl *ctl)
4943 {
4944 	u64 type = ctl->type;
4945 
4946 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4947 		ctl->max_stripe_size = SZ_1G;
4948 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4949 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4950 		/* For larger filesystems, use larger metadata chunks */
4951 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4952 			ctl->max_stripe_size = SZ_1G;
4953 		else
4954 			ctl->max_stripe_size = SZ_256M;
4955 		ctl->max_chunk_size = ctl->max_stripe_size;
4956 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4957 		ctl->max_stripe_size = SZ_32M;
4958 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4959 		ctl->devs_max = min_t(int, ctl->devs_max,
4960 				      BTRFS_MAX_DEVS_SYS_CHUNK);
4961 	} else {
4962 		BUG();
4963 	}
4964 
4965 	/* We don't want a chunk larger than 10% of writable space */
4966 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4967 				  ctl->max_chunk_size);
4968 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4969 }
4970 
4971 static void init_alloc_chunk_ctl_policy_zoned(
4972 				      struct btrfs_fs_devices *fs_devices,
4973 				      struct alloc_chunk_ctl *ctl)
4974 {
4975 	u64 zone_size = fs_devices->fs_info->zone_size;
4976 	u64 limit;
4977 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
4978 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
4979 	u64 min_chunk_size = min_data_stripes * zone_size;
4980 	u64 type = ctl->type;
4981 
4982 	ctl->max_stripe_size = zone_size;
4983 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4984 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
4985 						 zone_size);
4986 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4987 		ctl->max_chunk_size = ctl->max_stripe_size;
4988 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4989 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4990 		ctl->devs_max = min_t(int, ctl->devs_max,
4991 				      BTRFS_MAX_DEVS_SYS_CHUNK);
4992 	}
4993 
4994 	/* We don't want a chunk larger than 10% of writable space */
4995 	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
4996 			       zone_size),
4997 		    min_chunk_size);
4998 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
4999 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5000 }
5001 
5002 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5003 				 struct alloc_chunk_ctl *ctl)
5004 {
5005 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5006 
5007 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5008 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5009 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5010 	if (!ctl->devs_max)
5011 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5012 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5013 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5014 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5015 	ctl->nparity = btrfs_raid_array[index].nparity;
5016 	ctl->ndevs = 0;
5017 
5018 	switch (fs_devices->chunk_alloc_policy) {
5019 	case BTRFS_CHUNK_ALLOC_REGULAR:
5020 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5021 		break;
5022 	case BTRFS_CHUNK_ALLOC_ZONED:
5023 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5024 		break;
5025 	default:
5026 		BUG();
5027 	}
5028 }
5029 
5030 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5031 			      struct alloc_chunk_ctl *ctl,
5032 			      struct btrfs_device_info *devices_info)
5033 {
5034 	struct btrfs_fs_info *info = fs_devices->fs_info;
5035 	struct btrfs_device *device;
5036 	u64 total_avail;
5037 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5038 	int ret;
5039 	int ndevs = 0;
5040 	u64 max_avail;
5041 	u64 dev_offset;
5042 
5043 	/*
5044 	 * in the first pass through the devices list, we gather information
5045 	 * about the available holes on each device.
5046 	 */
5047 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5048 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5049 			WARN(1, KERN_ERR
5050 			       "BTRFS: read-only device in alloc_list\n");
5051 			continue;
5052 		}
5053 
5054 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5055 					&device->dev_state) ||
5056 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5057 			continue;
5058 
5059 		if (device->total_bytes > device->bytes_used)
5060 			total_avail = device->total_bytes - device->bytes_used;
5061 		else
5062 			total_avail = 0;
5063 
5064 		/* If there is no space on this device, skip it. */
5065 		if (total_avail < ctl->dev_extent_min)
5066 			continue;
5067 
5068 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5069 					   &max_avail);
5070 		if (ret && ret != -ENOSPC)
5071 			return ret;
5072 
5073 		if (ret == 0)
5074 			max_avail = dev_extent_want;
5075 
5076 		if (max_avail < ctl->dev_extent_min) {
5077 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5078 				btrfs_debug(info,
5079 			"%s: devid %llu has no free space, have=%llu want=%llu",
5080 					    __func__, device->devid, max_avail,
5081 					    ctl->dev_extent_min);
5082 			continue;
5083 		}
5084 
5085 		if (ndevs == fs_devices->rw_devices) {
5086 			WARN(1, "%s: found more than %llu devices\n",
5087 			     __func__, fs_devices->rw_devices);
5088 			break;
5089 		}
5090 		devices_info[ndevs].dev_offset = dev_offset;
5091 		devices_info[ndevs].max_avail = max_avail;
5092 		devices_info[ndevs].total_avail = total_avail;
5093 		devices_info[ndevs].dev = device;
5094 		++ndevs;
5095 	}
5096 	ctl->ndevs = ndevs;
5097 
5098 	/*
5099 	 * now sort the devices by hole size / available space
5100 	 */
5101 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5102 	     btrfs_cmp_device_info, NULL);
5103 
5104 	return 0;
5105 }
5106 
5107 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5108 				      struct btrfs_device_info *devices_info)
5109 {
5110 	/* Number of stripes that count for block group size */
5111 	int data_stripes;
5112 
5113 	/*
5114 	 * The primary goal is to maximize the number of stripes, so use as
5115 	 * many devices as possible, even if the stripes are not maximum sized.
5116 	 *
5117 	 * The DUP profile stores more than one stripe per device, the
5118 	 * max_avail is the total size so we have to adjust.
5119 	 */
5120 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5121 				   ctl->dev_stripes);
5122 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5123 
5124 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5125 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5126 
5127 	/*
5128 	 * Use the number of data stripes to figure out how big this chunk is
5129 	 * really going to be in terms of logical address space, and compare
5130 	 * that answer with the max chunk size. If it's higher, we try to
5131 	 * reduce stripe_size.
5132 	 */
5133 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5134 		/*
5135 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5136 		 * then use it, unless it ends up being even bigger than the
5137 		 * previous value we had already.
5138 		 */
5139 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5140 							data_stripes), SZ_16M),
5141 				       ctl->stripe_size);
5142 	}
5143 
5144 	/* Align to BTRFS_STRIPE_LEN */
5145 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5146 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5147 
5148 	return 0;
5149 }
5150 
5151 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5152 				    struct btrfs_device_info *devices_info)
5153 {
5154 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5155 	/* Number of stripes that count for block group size */
5156 	int data_stripes;
5157 
5158 	/*
5159 	 * It should hold because:
5160 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5161 	 */
5162 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5163 
5164 	ctl->stripe_size = zone_size;
5165 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5166 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5167 
5168 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5169 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5170 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5171 					     ctl->stripe_size) + ctl->nparity,
5172 				     ctl->dev_stripes);
5173 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5174 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5175 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5176 	}
5177 
5178 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5179 
5180 	return 0;
5181 }
5182 
5183 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5184 			      struct alloc_chunk_ctl *ctl,
5185 			      struct btrfs_device_info *devices_info)
5186 {
5187 	struct btrfs_fs_info *info = fs_devices->fs_info;
5188 
5189 	/*
5190 	 * Round down to number of usable stripes, devs_increment can be any
5191 	 * number so we can't use round_down() that requires power of 2, while
5192 	 * rounddown is safe.
5193 	 */
5194 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5195 
5196 	if (ctl->ndevs < ctl->devs_min) {
5197 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5198 			btrfs_debug(info,
5199 	"%s: not enough devices with free space: have=%d minimum required=%d",
5200 				    __func__, ctl->ndevs, ctl->devs_min);
5201 		}
5202 		return -ENOSPC;
5203 	}
5204 
5205 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5206 
5207 	switch (fs_devices->chunk_alloc_policy) {
5208 	case BTRFS_CHUNK_ALLOC_REGULAR:
5209 		return decide_stripe_size_regular(ctl, devices_info);
5210 	case BTRFS_CHUNK_ALLOC_ZONED:
5211 		return decide_stripe_size_zoned(ctl, devices_info);
5212 	default:
5213 		BUG();
5214 	}
5215 }
5216 
5217 static int create_chunk(struct btrfs_trans_handle *trans,
5218 			struct alloc_chunk_ctl *ctl,
5219 			struct btrfs_device_info *devices_info)
5220 {
5221 	struct btrfs_fs_info *info = trans->fs_info;
5222 	struct map_lookup *map = NULL;
5223 	struct extent_map_tree *em_tree;
5224 	struct extent_map *em;
5225 	u64 start = ctl->start;
5226 	u64 type = ctl->type;
5227 	int ret;
5228 	int i;
5229 	int j;
5230 
5231 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5232 	if (!map)
5233 		return -ENOMEM;
5234 	map->num_stripes = ctl->num_stripes;
5235 
5236 	for (i = 0; i < ctl->ndevs; ++i) {
5237 		for (j = 0; j < ctl->dev_stripes; ++j) {
5238 			int s = i * ctl->dev_stripes + j;
5239 			map->stripes[s].dev = devices_info[i].dev;
5240 			map->stripes[s].physical = devices_info[i].dev_offset +
5241 						   j * ctl->stripe_size;
5242 		}
5243 	}
5244 	map->stripe_len = BTRFS_STRIPE_LEN;
5245 	map->io_align = BTRFS_STRIPE_LEN;
5246 	map->io_width = BTRFS_STRIPE_LEN;
5247 	map->type = type;
5248 	map->sub_stripes = ctl->sub_stripes;
5249 
5250 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5251 
5252 	em = alloc_extent_map();
5253 	if (!em) {
5254 		kfree(map);
5255 		return -ENOMEM;
5256 	}
5257 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5258 	em->map_lookup = map;
5259 	em->start = start;
5260 	em->len = ctl->chunk_size;
5261 	em->block_start = 0;
5262 	em->block_len = em->len;
5263 	em->orig_block_len = ctl->stripe_size;
5264 
5265 	em_tree = &info->mapping_tree;
5266 	write_lock(&em_tree->lock);
5267 	ret = add_extent_mapping(em_tree, em, 0);
5268 	if (ret) {
5269 		write_unlock(&em_tree->lock);
5270 		free_extent_map(em);
5271 		return ret;
5272 	}
5273 	write_unlock(&em_tree->lock);
5274 
5275 	ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5276 	if (ret)
5277 		goto error_del_extent;
5278 
5279 	for (i = 0; i < map->num_stripes; i++) {
5280 		struct btrfs_device *dev = map->stripes[i].dev;
5281 
5282 		btrfs_device_set_bytes_used(dev,
5283 					    dev->bytes_used + ctl->stripe_size);
5284 		if (list_empty(&dev->post_commit_list))
5285 			list_add_tail(&dev->post_commit_list,
5286 				      &trans->transaction->dev_update_list);
5287 	}
5288 
5289 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5290 		     &info->free_chunk_space);
5291 
5292 	free_extent_map(em);
5293 	check_raid56_incompat_flag(info, type);
5294 	check_raid1c34_incompat_flag(info, type);
5295 
5296 	return 0;
5297 
5298 error_del_extent:
5299 	write_lock(&em_tree->lock);
5300 	remove_extent_mapping(em_tree, em);
5301 	write_unlock(&em_tree->lock);
5302 
5303 	/* One for our allocation */
5304 	free_extent_map(em);
5305 	/* One for the tree reference */
5306 	free_extent_map(em);
5307 
5308 	return ret;
5309 }
5310 
5311 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5312 {
5313 	struct btrfs_fs_info *info = trans->fs_info;
5314 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5315 	struct btrfs_device_info *devices_info = NULL;
5316 	struct alloc_chunk_ctl ctl;
5317 	int ret;
5318 
5319 	lockdep_assert_held(&info->chunk_mutex);
5320 
5321 	if (!alloc_profile_is_valid(type, 0)) {
5322 		ASSERT(0);
5323 		return -EINVAL;
5324 	}
5325 
5326 	if (list_empty(&fs_devices->alloc_list)) {
5327 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5328 			btrfs_debug(info, "%s: no writable device", __func__);
5329 		return -ENOSPC;
5330 	}
5331 
5332 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5333 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5334 		ASSERT(0);
5335 		return -EINVAL;
5336 	}
5337 
5338 	ctl.start = find_next_chunk(info);
5339 	ctl.type = type;
5340 	init_alloc_chunk_ctl(fs_devices, &ctl);
5341 
5342 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5343 			       GFP_NOFS);
5344 	if (!devices_info)
5345 		return -ENOMEM;
5346 
5347 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5348 	if (ret < 0)
5349 		goto out;
5350 
5351 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5352 	if (ret < 0)
5353 		goto out;
5354 
5355 	ret = create_chunk(trans, &ctl, devices_info);
5356 
5357 out:
5358 	kfree(devices_info);
5359 	return ret;
5360 }
5361 
5362 /*
5363  * Chunk allocation falls into two parts. The first part does work
5364  * that makes the new allocated chunk usable, but does not do any operation
5365  * that modifies the chunk tree. The second part does the work that
5366  * requires modifying the chunk tree. This division is important for the
5367  * bootstrap process of adding storage to a seed btrfs.
5368  */
5369 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5370 			     u64 chunk_offset, u64 chunk_size)
5371 {
5372 	struct btrfs_fs_info *fs_info = trans->fs_info;
5373 	struct btrfs_root *extent_root = fs_info->extent_root;
5374 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5375 	struct btrfs_key key;
5376 	struct btrfs_device *device;
5377 	struct btrfs_chunk *chunk;
5378 	struct btrfs_stripe *stripe;
5379 	struct extent_map *em;
5380 	struct map_lookup *map;
5381 	size_t item_size;
5382 	u64 dev_offset;
5383 	u64 stripe_size;
5384 	int i = 0;
5385 	int ret = 0;
5386 
5387 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5388 	if (IS_ERR(em))
5389 		return PTR_ERR(em);
5390 
5391 	map = em->map_lookup;
5392 	item_size = btrfs_chunk_item_size(map->num_stripes);
5393 	stripe_size = em->orig_block_len;
5394 
5395 	chunk = kzalloc(item_size, GFP_NOFS);
5396 	if (!chunk) {
5397 		ret = -ENOMEM;
5398 		goto out;
5399 	}
5400 
5401 	/*
5402 	 * Take the device list mutex to prevent races with the final phase of
5403 	 * a device replace operation that replaces the device object associated
5404 	 * with the map's stripes, because the device object's id can change
5405 	 * at any time during that final phase of the device replace operation
5406 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5407 	 */
5408 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5409 	for (i = 0; i < map->num_stripes; i++) {
5410 		device = map->stripes[i].dev;
5411 		dev_offset = map->stripes[i].physical;
5412 
5413 		ret = btrfs_update_device(trans, device);
5414 		if (ret)
5415 			break;
5416 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5417 					     dev_offset, stripe_size);
5418 		if (ret)
5419 			break;
5420 	}
5421 	if (ret) {
5422 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5423 		goto out;
5424 	}
5425 
5426 	stripe = &chunk->stripe;
5427 	for (i = 0; i < map->num_stripes; i++) {
5428 		device = map->stripes[i].dev;
5429 		dev_offset = map->stripes[i].physical;
5430 
5431 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5432 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5433 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5434 		stripe++;
5435 	}
5436 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5437 
5438 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5439 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5440 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5441 	btrfs_set_stack_chunk_type(chunk, map->type);
5442 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5443 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5444 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5445 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5446 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5447 
5448 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5449 	key.type = BTRFS_CHUNK_ITEM_KEY;
5450 	key.offset = chunk_offset;
5451 
5452 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5453 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5454 		/*
5455 		 * TODO: Cleanup of inserted chunk root in case of
5456 		 * failure.
5457 		 */
5458 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5459 	}
5460 
5461 out:
5462 	kfree(chunk);
5463 	free_extent_map(em);
5464 	return ret;
5465 }
5466 
5467 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5468 {
5469 	struct btrfs_fs_info *fs_info = trans->fs_info;
5470 	u64 alloc_profile;
5471 	int ret;
5472 
5473 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5474 	ret = btrfs_alloc_chunk(trans, alloc_profile);
5475 	if (ret)
5476 		return ret;
5477 
5478 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5479 	ret = btrfs_alloc_chunk(trans, alloc_profile);
5480 	return ret;
5481 }
5482 
5483 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5484 {
5485 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5486 
5487 	return btrfs_raid_array[index].tolerated_failures;
5488 }
5489 
5490 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5491 {
5492 	struct extent_map *em;
5493 	struct map_lookup *map;
5494 	int readonly = 0;
5495 	int miss_ndevs = 0;
5496 	int i;
5497 
5498 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5499 	if (IS_ERR(em))
5500 		return 1;
5501 
5502 	map = em->map_lookup;
5503 	for (i = 0; i < map->num_stripes; i++) {
5504 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5505 					&map->stripes[i].dev->dev_state)) {
5506 			miss_ndevs++;
5507 			continue;
5508 		}
5509 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5510 					&map->stripes[i].dev->dev_state)) {
5511 			readonly = 1;
5512 			goto end;
5513 		}
5514 	}
5515 
5516 	/*
5517 	 * If the number of missing devices is larger than max errors,
5518 	 * we can not write the data into that chunk successfully, so
5519 	 * set it readonly.
5520 	 */
5521 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5522 		readonly = 1;
5523 end:
5524 	free_extent_map(em);
5525 	return readonly;
5526 }
5527 
5528 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5529 {
5530 	struct extent_map *em;
5531 
5532 	while (1) {
5533 		write_lock(&tree->lock);
5534 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5535 		if (em)
5536 			remove_extent_mapping(tree, em);
5537 		write_unlock(&tree->lock);
5538 		if (!em)
5539 			break;
5540 		/* once for us */
5541 		free_extent_map(em);
5542 		/* once for the tree */
5543 		free_extent_map(em);
5544 	}
5545 }
5546 
5547 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5548 {
5549 	struct extent_map *em;
5550 	struct map_lookup *map;
5551 	int ret;
5552 
5553 	em = btrfs_get_chunk_map(fs_info, logical, len);
5554 	if (IS_ERR(em))
5555 		/*
5556 		 * We could return errors for these cases, but that could get
5557 		 * ugly and we'd probably do the same thing which is just not do
5558 		 * anything else and exit, so return 1 so the callers don't try
5559 		 * to use other copies.
5560 		 */
5561 		return 1;
5562 
5563 	map = em->map_lookup;
5564 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5565 		ret = map->num_stripes;
5566 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5567 		ret = map->sub_stripes;
5568 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5569 		ret = 2;
5570 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5571 		/*
5572 		 * There could be two corrupted data stripes, we need
5573 		 * to loop retry in order to rebuild the correct data.
5574 		 *
5575 		 * Fail a stripe at a time on every retry except the
5576 		 * stripe under reconstruction.
5577 		 */
5578 		ret = map->num_stripes;
5579 	else
5580 		ret = 1;
5581 	free_extent_map(em);
5582 
5583 	down_read(&fs_info->dev_replace.rwsem);
5584 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5585 	    fs_info->dev_replace.tgtdev)
5586 		ret++;
5587 	up_read(&fs_info->dev_replace.rwsem);
5588 
5589 	return ret;
5590 }
5591 
5592 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5593 				    u64 logical)
5594 {
5595 	struct extent_map *em;
5596 	struct map_lookup *map;
5597 	unsigned long len = fs_info->sectorsize;
5598 
5599 	em = btrfs_get_chunk_map(fs_info, logical, len);
5600 
5601 	if (!WARN_ON(IS_ERR(em))) {
5602 		map = em->map_lookup;
5603 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5604 			len = map->stripe_len * nr_data_stripes(map);
5605 		free_extent_map(em);
5606 	}
5607 	return len;
5608 }
5609 
5610 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5611 {
5612 	struct extent_map *em;
5613 	struct map_lookup *map;
5614 	int ret = 0;
5615 
5616 	em = btrfs_get_chunk_map(fs_info, logical, len);
5617 
5618 	if(!WARN_ON(IS_ERR(em))) {
5619 		map = em->map_lookup;
5620 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5621 			ret = 1;
5622 		free_extent_map(em);
5623 	}
5624 	return ret;
5625 }
5626 
5627 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5628 			    struct map_lookup *map, int first,
5629 			    int dev_replace_is_ongoing)
5630 {
5631 	int i;
5632 	int num_stripes;
5633 	int preferred_mirror;
5634 	int tolerance;
5635 	struct btrfs_device *srcdev;
5636 
5637 	ASSERT((map->type &
5638 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5639 
5640 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5641 		num_stripes = map->sub_stripes;
5642 	else
5643 		num_stripes = map->num_stripes;
5644 
5645 	switch (fs_info->fs_devices->read_policy) {
5646 	default:
5647 		/* Shouldn't happen, just warn and use pid instead of failing */
5648 		btrfs_warn_rl(fs_info,
5649 			      "unknown read_policy type %u, reset to pid",
5650 			      fs_info->fs_devices->read_policy);
5651 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5652 		fallthrough;
5653 	case BTRFS_READ_POLICY_PID:
5654 		preferred_mirror = first + (current->pid % num_stripes);
5655 		break;
5656 	}
5657 
5658 	if (dev_replace_is_ongoing &&
5659 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5660 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5661 		srcdev = fs_info->dev_replace.srcdev;
5662 	else
5663 		srcdev = NULL;
5664 
5665 	/*
5666 	 * try to avoid the drive that is the source drive for a
5667 	 * dev-replace procedure, only choose it if no other non-missing
5668 	 * mirror is available
5669 	 */
5670 	for (tolerance = 0; tolerance < 2; tolerance++) {
5671 		if (map->stripes[preferred_mirror].dev->bdev &&
5672 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5673 			return preferred_mirror;
5674 		for (i = first; i < first + num_stripes; i++) {
5675 			if (map->stripes[i].dev->bdev &&
5676 			    (tolerance || map->stripes[i].dev != srcdev))
5677 				return i;
5678 		}
5679 	}
5680 
5681 	/* we couldn't find one that doesn't fail.  Just return something
5682 	 * and the io error handling code will clean up eventually
5683 	 */
5684 	return preferred_mirror;
5685 }
5686 
5687 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5688 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5689 {
5690 	int i;
5691 	int again = 1;
5692 
5693 	while (again) {
5694 		again = 0;
5695 		for (i = 0; i < num_stripes - 1; i++) {
5696 			/* Swap if parity is on a smaller index */
5697 			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5698 				swap(bbio->stripes[i], bbio->stripes[i + 1]);
5699 				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5700 				again = 1;
5701 			}
5702 		}
5703 	}
5704 }
5705 
5706 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5707 {
5708 	struct btrfs_bio *bbio = kzalloc(
5709 		 /* the size of the btrfs_bio */
5710 		sizeof(struct btrfs_bio) +
5711 		/* plus the variable array for the stripes */
5712 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5713 		/* plus the variable array for the tgt dev */
5714 		sizeof(int) * (real_stripes) +
5715 		/*
5716 		 * plus the raid_map, which includes both the tgt dev
5717 		 * and the stripes
5718 		 */
5719 		sizeof(u64) * (total_stripes),
5720 		GFP_NOFS|__GFP_NOFAIL);
5721 
5722 	atomic_set(&bbio->error, 0);
5723 	refcount_set(&bbio->refs, 1);
5724 
5725 	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5726 	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5727 
5728 	return bbio;
5729 }
5730 
5731 void btrfs_get_bbio(struct btrfs_bio *bbio)
5732 {
5733 	WARN_ON(!refcount_read(&bbio->refs));
5734 	refcount_inc(&bbio->refs);
5735 }
5736 
5737 void btrfs_put_bbio(struct btrfs_bio *bbio)
5738 {
5739 	if (!bbio)
5740 		return;
5741 	if (refcount_dec_and_test(&bbio->refs))
5742 		kfree(bbio);
5743 }
5744 
5745 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5746 /*
5747  * Please note that, discard won't be sent to target device of device
5748  * replace.
5749  */
5750 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5751 					 u64 logical, u64 *length_ret,
5752 					 struct btrfs_bio **bbio_ret)
5753 {
5754 	struct extent_map *em;
5755 	struct map_lookup *map;
5756 	struct btrfs_bio *bbio;
5757 	u64 length = *length_ret;
5758 	u64 offset;
5759 	u64 stripe_nr;
5760 	u64 stripe_nr_end;
5761 	u64 stripe_end_offset;
5762 	u64 stripe_cnt;
5763 	u64 stripe_len;
5764 	u64 stripe_offset;
5765 	u64 num_stripes;
5766 	u32 stripe_index;
5767 	u32 factor = 0;
5768 	u32 sub_stripes = 0;
5769 	u64 stripes_per_dev = 0;
5770 	u32 remaining_stripes = 0;
5771 	u32 last_stripe = 0;
5772 	int ret = 0;
5773 	int i;
5774 
5775 	/* discard always return a bbio */
5776 	ASSERT(bbio_ret);
5777 
5778 	em = btrfs_get_chunk_map(fs_info, logical, length);
5779 	if (IS_ERR(em))
5780 		return PTR_ERR(em);
5781 
5782 	map = em->map_lookup;
5783 	/* we don't discard raid56 yet */
5784 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5785 		ret = -EOPNOTSUPP;
5786 		goto out;
5787 	}
5788 
5789 	offset = logical - em->start;
5790 	length = min_t(u64, em->start + em->len - logical, length);
5791 	*length_ret = length;
5792 
5793 	stripe_len = map->stripe_len;
5794 	/*
5795 	 * stripe_nr counts the total number of stripes we have to stride
5796 	 * to get to this block
5797 	 */
5798 	stripe_nr = div64_u64(offset, stripe_len);
5799 
5800 	/* stripe_offset is the offset of this block in its stripe */
5801 	stripe_offset = offset - stripe_nr * stripe_len;
5802 
5803 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5804 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5805 	stripe_cnt = stripe_nr_end - stripe_nr;
5806 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5807 			    (offset + length);
5808 	/*
5809 	 * after this, stripe_nr is the number of stripes on this
5810 	 * device we have to walk to find the data, and stripe_index is
5811 	 * the number of our device in the stripe array
5812 	 */
5813 	num_stripes = 1;
5814 	stripe_index = 0;
5815 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5816 			 BTRFS_BLOCK_GROUP_RAID10)) {
5817 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5818 			sub_stripes = 1;
5819 		else
5820 			sub_stripes = map->sub_stripes;
5821 
5822 		factor = map->num_stripes / sub_stripes;
5823 		num_stripes = min_t(u64, map->num_stripes,
5824 				    sub_stripes * stripe_cnt);
5825 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5826 		stripe_index *= sub_stripes;
5827 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5828 					      &remaining_stripes);
5829 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5830 		last_stripe *= sub_stripes;
5831 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5832 				BTRFS_BLOCK_GROUP_DUP)) {
5833 		num_stripes = map->num_stripes;
5834 	} else {
5835 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5836 					&stripe_index);
5837 	}
5838 
5839 	bbio = alloc_btrfs_bio(num_stripes, 0);
5840 	if (!bbio) {
5841 		ret = -ENOMEM;
5842 		goto out;
5843 	}
5844 
5845 	for (i = 0; i < num_stripes; i++) {
5846 		bbio->stripes[i].physical =
5847 			map->stripes[stripe_index].physical +
5848 			stripe_offset + stripe_nr * map->stripe_len;
5849 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5850 
5851 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5852 				 BTRFS_BLOCK_GROUP_RAID10)) {
5853 			bbio->stripes[i].length = stripes_per_dev *
5854 				map->stripe_len;
5855 
5856 			if (i / sub_stripes < remaining_stripes)
5857 				bbio->stripes[i].length +=
5858 					map->stripe_len;
5859 
5860 			/*
5861 			 * Special for the first stripe and
5862 			 * the last stripe:
5863 			 *
5864 			 * |-------|...|-------|
5865 			 *     |----------|
5866 			 *    off     end_off
5867 			 */
5868 			if (i < sub_stripes)
5869 				bbio->stripes[i].length -=
5870 					stripe_offset;
5871 
5872 			if (stripe_index >= last_stripe &&
5873 			    stripe_index <= (last_stripe +
5874 					     sub_stripes - 1))
5875 				bbio->stripes[i].length -=
5876 					stripe_end_offset;
5877 
5878 			if (i == sub_stripes - 1)
5879 				stripe_offset = 0;
5880 		} else {
5881 			bbio->stripes[i].length = length;
5882 		}
5883 
5884 		stripe_index++;
5885 		if (stripe_index == map->num_stripes) {
5886 			stripe_index = 0;
5887 			stripe_nr++;
5888 		}
5889 	}
5890 
5891 	*bbio_ret = bbio;
5892 	bbio->map_type = map->type;
5893 	bbio->num_stripes = num_stripes;
5894 out:
5895 	free_extent_map(em);
5896 	return ret;
5897 }
5898 
5899 /*
5900  * In dev-replace case, for repair case (that's the only case where the mirror
5901  * is selected explicitly when calling btrfs_map_block), blocks left of the
5902  * left cursor can also be read from the target drive.
5903  *
5904  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5905  * array of stripes.
5906  * For READ, it also needs to be supported using the same mirror number.
5907  *
5908  * If the requested block is not left of the left cursor, EIO is returned. This
5909  * can happen because btrfs_num_copies() returns one more in the dev-replace
5910  * case.
5911  */
5912 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5913 					 u64 logical, u64 length,
5914 					 u64 srcdev_devid, int *mirror_num,
5915 					 u64 *physical)
5916 {
5917 	struct btrfs_bio *bbio = NULL;
5918 	int num_stripes;
5919 	int index_srcdev = 0;
5920 	int found = 0;
5921 	u64 physical_of_found = 0;
5922 	int i;
5923 	int ret = 0;
5924 
5925 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5926 				logical, &length, &bbio, 0, 0);
5927 	if (ret) {
5928 		ASSERT(bbio == NULL);
5929 		return ret;
5930 	}
5931 
5932 	num_stripes = bbio->num_stripes;
5933 	if (*mirror_num > num_stripes) {
5934 		/*
5935 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5936 		 * that means that the requested area is not left of the left
5937 		 * cursor
5938 		 */
5939 		btrfs_put_bbio(bbio);
5940 		return -EIO;
5941 	}
5942 
5943 	/*
5944 	 * process the rest of the function using the mirror_num of the source
5945 	 * drive. Therefore look it up first.  At the end, patch the device
5946 	 * pointer to the one of the target drive.
5947 	 */
5948 	for (i = 0; i < num_stripes; i++) {
5949 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5950 			continue;
5951 
5952 		/*
5953 		 * In case of DUP, in order to keep it simple, only add the
5954 		 * mirror with the lowest physical address
5955 		 */
5956 		if (found &&
5957 		    physical_of_found <= bbio->stripes[i].physical)
5958 			continue;
5959 
5960 		index_srcdev = i;
5961 		found = 1;
5962 		physical_of_found = bbio->stripes[i].physical;
5963 	}
5964 
5965 	btrfs_put_bbio(bbio);
5966 
5967 	ASSERT(found);
5968 	if (!found)
5969 		return -EIO;
5970 
5971 	*mirror_num = index_srcdev + 1;
5972 	*physical = physical_of_found;
5973 	return ret;
5974 }
5975 
5976 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
5977 {
5978 	struct btrfs_block_group *cache;
5979 	bool ret;
5980 
5981 	/* Non zoned filesystem does not use "to_copy" flag */
5982 	if (!btrfs_is_zoned(fs_info))
5983 		return false;
5984 
5985 	cache = btrfs_lookup_block_group(fs_info, logical);
5986 
5987 	spin_lock(&cache->lock);
5988 	ret = cache->to_copy;
5989 	spin_unlock(&cache->lock);
5990 
5991 	btrfs_put_block_group(cache);
5992 	return ret;
5993 }
5994 
5995 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5996 				      struct btrfs_bio **bbio_ret,
5997 				      struct btrfs_dev_replace *dev_replace,
5998 				      u64 logical,
5999 				      int *num_stripes_ret, int *max_errors_ret)
6000 {
6001 	struct btrfs_bio *bbio = *bbio_ret;
6002 	u64 srcdev_devid = dev_replace->srcdev->devid;
6003 	int tgtdev_indexes = 0;
6004 	int num_stripes = *num_stripes_ret;
6005 	int max_errors = *max_errors_ret;
6006 	int i;
6007 
6008 	if (op == BTRFS_MAP_WRITE) {
6009 		int index_where_to_add;
6010 
6011 		/*
6012 		 * A block group which have "to_copy" set will eventually
6013 		 * copied by dev-replace process. We can avoid cloning IO here.
6014 		 */
6015 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6016 			return;
6017 
6018 		/*
6019 		 * duplicate the write operations while the dev replace
6020 		 * procedure is running. Since the copying of the old disk to
6021 		 * the new disk takes place at run time while the filesystem is
6022 		 * mounted writable, the regular write operations to the old
6023 		 * disk have to be duplicated to go to the new disk as well.
6024 		 *
6025 		 * Note that device->missing is handled by the caller, and that
6026 		 * the write to the old disk is already set up in the stripes
6027 		 * array.
6028 		 */
6029 		index_where_to_add = num_stripes;
6030 		for (i = 0; i < num_stripes; i++) {
6031 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
6032 				/* write to new disk, too */
6033 				struct btrfs_bio_stripe *new =
6034 					bbio->stripes + index_where_to_add;
6035 				struct btrfs_bio_stripe *old =
6036 					bbio->stripes + i;
6037 
6038 				new->physical = old->physical;
6039 				new->length = old->length;
6040 				new->dev = dev_replace->tgtdev;
6041 				bbio->tgtdev_map[i] = index_where_to_add;
6042 				index_where_to_add++;
6043 				max_errors++;
6044 				tgtdev_indexes++;
6045 			}
6046 		}
6047 		num_stripes = index_where_to_add;
6048 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6049 		int index_srcdev = 0;
6050 		int found = 0;
6051 		u64 physical_of_found = 0;
6052 
6053 		/*
6054 		 * During the dev-replace procedure, the target drive can also
6055 		 * be used to read data in case it is needed to repair a corrupt
6056 		 * block elsewhere. This is possible if the requested area is
6057 		 * left of the left cursor. In this area, the target drive is a
6058 		 * full copy of the source drive.
6059 		 */
6060 		for (i = 0; i < num_stripes; i++) {
6061 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
6062 				/*
6063 				 * In case of DUP, in order to keep it simple,
6064 				 * only add the mirror with the lowest physical
6065 				 * address
6066 				 */
6067 				if (found &&
6068 				    physical_of_found <=
6069 				     bbio->stripes[i].physical)
6070 					continue;
6071 				index_srcdev = i;
6072 				found = 1;
6073 				physical_of_found = bbio->stripes[i].physical;
6074 			}
6075 		}
6076 		if (found) {
6077 			struct btrfs_bio_stripe *tgtdev_stripe =
6078 				bbio->stripes + num_stripes;
6079 
6080 			tgtdev_stripe->physical = physical_of_found;
6081 			tgtdev_stripe->length =
6082 				bbio->stripes[index_srcdev].length;
6083 			tgtdev_stripe->dev = dev_replace->tgtdev;
6084 			bbio->tgtdev_map[index_srcdev] = num_stripes;
6085 
6086 			tgtdev_indexes++;
6087 			num_stripes++;
6088 		}
6089 	}
6090 
6091 	*num_stripes_ret = num_stripes;
6092 	*max_errors_ret = max_errors;
6093 	bbio->num_tgtdevs = tgtdev_indexes;
6094 	*bbio_ret = bbio;
6095 }
6096 
6097 static bool need_full_stripe(enum btrfs_map_op op)
6098 {
6099 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6100 }
6101 
6102 /*
6103  * Calculate the geometry of a particular (address, len) tuple. This
6104  * information is used to calculate how big a particular bio can get before it
6105  * straddles a stripe.
6106  *
6107  * @fs_info: the filesystem
6108  * @em:      mapping containing the logical extent
6109  * @op:      type of operation - write or read
6110  * @logical: address that we want to figure out the geometry of
6111  * @len:     the length of IO we are going to perform, starting at @logical
6112  * @io_geom: pointer used to return values
6113  *
6114  * Returns < 0 in case a chunk for the given logical address cannot be found,
6115  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6116  */
6117 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6118 			  enum btrfs_map_op op, u64 logical, u64 len,
6119 			  struct btrfs_io_geometry *io_geom)
6120 {
6121 	struct map_lookup *map;
6122 	u64 offset;
6123 	u64 stripe_offset;
6124 	u64 stripe_nr;
6125 	u64 stripe_len;
6126 	u64 raid56_full_stripe_start = (u64)-1;
6127 	int data_stripes;
6128 
6129 	ASSERT(op != BTRFS_MAP_DISCARD);
6130 
6131 	map = em->map_lookup;
6132 	/* Offset of this logical address in the chunk */
6133 	offset = logical - em->start;
6134 	/* Len of a stripe in a chunk */
6135 	stripe_len = map->stripe_len;
6136 	/* Stripe wher this block falls in */
6137 	stripe_nr = div64_u64(offset, stripe_len);
6138 	/* Offset of stripe in the chunk */
6139 	stripe_offset = stripe_nr * stripe_len;
6140 	if (offset < stripe_offset) {
6141 		btrfs_crit(fs_info,
6142 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6143 			stripe_offset, offset, em->start, logical, stripe_len);
6144 		return -EINVAL;
6145 	}
6146 
6147 	/* stripe_offset is the offset of this block in its stripe */
6148 	stripe_offset = offset - stripe_offset;
6149 	data_stripes = nr_data_stripes(map);
6150 
6151 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6152 		u64 max_len = stripe_len - stripe_offset;
6153 
6154 		/*
6155 		 * In case of raid56, we need to know the stripe aligned start
6156 		 */
6157 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6158 			unsigned long full_stripe_len = stripe_len * data_stripes;
6159 			raid56_full_stripe_start = offset;
6160 
6161 			/*
6162 			 * Allow a write of a full stripe, but make sure we
6163 			 * don't allow straddling of stripes
6164 			 */
6165 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6166 					full_stripe_len);
6167 			raid56_full_stripe_start *= full_stripe_len;
6168 
6169 			/*
6170 			 * For writes to RAID[56], allow a full stripeset across
6171 			 * all disks. For other RAID types and for RAID[56]
6172 			 * reads, just allow a single stripe (on a single disk).
6173 			 */
6174 			if (op == BTRFS_MAP_WRITE) {
6175 				max_len = stripe_len * data_stripes -
6176 					  (offset - raid56_full_stripe_start);
6177 			}
6178 		}
6179 		len = min_t(u64, em->len - offset, max_len);
6180 	} else {
6181 		len = em->len - offset;
6182 	}
6183 
6184 	io_geom->len = len;
6185 	io_geom->offset = offset;
6186 	io_geom->stripe_len = stripe_len;
6187 	io_geom->stripe_nr = stripe_nr;
6188 	io_geom->stripe_offset = stripe_offset;
6189 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6190 
6191 	return 0;
6192 }
6193 
6194 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6195 			     enum btrfs_map_op op,
6196 			     u64 logical, u64 *length,
6197 			     struct btrfs_bio **bbio_ret,
6198 			     int mirror_num, int need_raid_map)
6199 {
6200 	struct extent_map *em;
6201 	struct map_lookup *map;
6202 	u64 stripe_offset;
6203 	u64 stripe_nr;
6204 	u64 stripe_len;
6205 	u32 stripe_index;
6206 	int data_stripes;
6207 	int i;
6208 	int ret = 0;
6209 	int num_stripes;
6210 	int max_errors = 0;
6211 	int tgtdev_indexes = 0;
6212 	struct btrfs_bio *bbio = NULL;
6213 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6214 	int dev_replace_is_ongoing = 0;
6215 	int num_alloc_stripes;
6216 	int patch_the_first_stripe_for_dev_replace = 0;
6217 	u64 physical_to_patch_in_first_stripe = 0;
6218 	u64 raid56_full_stripe_start = (u64)-1;
6219 	struct btrfs_io_geometry geom;
6220 
6221 	ASSERT(bbio_ret);
6222 	ASSERT(op != BTRFS_MAP_DISCARD);
6223 
6224 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6225 	ASSERT(!IS_ERR(em));
6226 
6227 	ret = btrfs_get_io_geometry(fs_info, em, op, logical, *length, &geom);
6228 	if (ret < 0)
6229 		return ret;
6230 
6231 	map = em->map_lookup;
6232 
6233 	*length = geom.len;
6234 	stripe_len = geom.stripe_len;
6235 	stripe_nr = geom.stripe_nr;
6236 	stripe_offset = geom.stripe_offset;
6237 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6238 	data_stripes = nr_data_stripes(map);
6239 
6240 	down_read(&dev_replace->rwsem);
6241 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6242 	/*
6243 	 * Hold the semaphore for read during the whole operation, write is
6244 	 * requested at commit time but must wait.
6245 	 */
6246 	if (!dev_replace_is_ongoing)
6247 		up_read(&dev_replace->rwsem);
6248 
6249 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6250 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6251 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6252 						    dev_replace->srcdev->devid,
6253 						    &mirror_num,
6254 					    &physical_to_patch_in_first_stripe);
6255 		if (ret)
6256 			goto out;
6257 		else
6258 			patch_the_first_stripe_for_dev_replace = 1;
6259 	} else if (mirror_num > map->num_stripes) {
6260 		mirror_num = 0;
6261 	}
6262 
6263 	num_stripes = 1;
6264 	stripe_index = 0;
6265 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6266 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6267 				&stripe_index);
6268 		if (!need_full_stripe(op))
6269 			mirror_num = 1;
6270 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6271 		if (need_full_stripe(op))
6272 			num_stripes = map->num_stripes;
6273 		else if (mirror_num)
6274 			stripe_index = mirror_num - 1;
6275 		else {
6276 			stripe_index = find_live_mirror(fs_info, map, 0,
6277 					    dev_replace_is_ongoing);
6278 			mirror_num = stripe_index + 1;
6279 		}
6280 
6281 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6282 		if (need_full_stripe(op)) {
6283 			num_stripes = map->num_stripes;
6284 		} else if (mirror_num) {
6285 			stripe_index = mirror_num - 1;
6286 		} else {
6287 			mirror_num = 1;
6288 		}
6289 
6290 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6291 		u32 factor = map->num_stripes / map->sub_stripes;
6292 
6293 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6294 		stripe_index *= map->sub_stripes;
6295 
6296 		if (need_full_stripe(op))
6297 			num_stripes = map->sub_stripes;
6298 		else if (mirror_num)
6299 			stripe_index += mirror_num - 1;
6300 		else {
6301 			int old_stripe_index = stripe_index;
6302 			stripe_index = find_live_mirror(fs_info, map,
6303 					      stripe_index,
6304 					      dev_replace_is_ongoing);
6305 			mirror_num = stripe_index - old_stripe_index + 1;
6306 		}
6307 
6308 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6309 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6310 			/* push stripe_nr back to the start of the full stripe */
6311 			stripe_nr = div64_u64(raid56_full_stripe_start,
6312 					stripe_len * data_stripes);
6313 
6314 			/* RAID[56] write or recovery. Return all stripes */
6315 			num_stripes = map->num_stripes;
6316 			max_errors = nr_parity_stripes(map);
6317 
6318 			*length = map->stripe_len;
6319 			stripe_index = 0;
6320 			stripe_offset = 0;
6321 		} else {
6322 			/*
6323 			 * Mirror #0 or #1 means the original data block.
6324 			 * Mirror #2 is RAID5 parity block.
6325 			 * Mirror #3 is RAID6 Q block.
6326 			 */
6327 			stripe_nr = div_u64_rem(stripe_nr,
6328 					data_stripes, &stripe_index);
6329 			if (mirror_num > 1)
6330 				stripe_index = data_stripes + mirror_num - 2;
6331 
6332 			/* We distribute the parity blocks across stripes */
6333 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6334 					&stripe_index);
6335 			if (!need_full_stripe(op) && mirror_num <= 1)
6336 				mirror_num = 1;
6337 		}
6338 	} else {
6339 		/*
6340 		 * after this, stripe_nr is the number of stripes on this
6341 		 * device we have to walk to find the data, and stripe_index is
6342 		 * the number of our device in the stripe array
6343 		 */
6344 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6345 				&stripe_index);
6346 		mirror_num = stripe_index + 1;
6347 	}
6348 	if (stripe_index >= map->num_stripes) {
6349 		btrfs_crit(fs_info,
6350 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6351 			   stripe_index, map->num_stripes);
6352 		ret = -EINVAL;
6353 		goto out;
6354 	}
6355 
6356 	num_alloc_stripes = num_stripes;
6357 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6358 		if (op == BTRFS_MAP_WRITE)
6359 			num_alloc_stripes <<= 1;
6360 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6361 			num_alloc_stripes++;
6362 		tgtdev_indexes = num_stripes;
6363 	}
6364 
6365 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6366 	if (!bbio) {
6367 		ret = -ENOMEM;
6368 		goto out;
6369 	}
6370 
6371 	for (i = 0; i < num_stripes; i++) {
6372 		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6373 			stripe_offset + stripe_nr * map->stripe_len;
6374 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6375 		stripe_index++;
6376 	}
6377 
6378 	/* build raid_map */
6379 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6380 	    (need_full_stripe(op) || mirror_num > 1)) {
6381 		u64 tmp;
6382 		unsigned rot;
6383 
6384 		/* Work out the disk rotation on this stripe-set */
6385 		div_u64_rem(stripe_nr, num_stripes, &rot);
6386 
6387 		/* Fill in the logical address of each stripe */
6388 		tmp = stripe_nr * data_stripes;
6389 		for (i = 0; i < data_stripes; i++)
6390 			bbio->raid_map[(i+rot) % num_stripes] =
6391 				em->start + (tmp + i) * map->stripe_len;
6392 
6393 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6394 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6395 			bbio->raid_map[(i+rot+1) % num_stripes] =
6396 				RAID6_Q_STRIPE;
6397 
6398 		sort_parity_stripes(bbio, num_stripes);
6399 	}
6400 
6401 	if (need_full_stripe(op))
6402 		max_errors = btrfs_chunk_max_errors(map);
6403 
6404 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6405 	    need_full_stripe(op)) {
6406 		handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6407 					  &num_stripes, &max_errors);
6408 	}
6409 
6410 	*bbio_ret = bbio;
6411 	bbio->map_type = map->type;
6412 	bbio->num_stripes = num_stripes;
6413 	bbio->max_errors = max_errors;
6414 	bbio->mirror_num = mirror_num;
6415 
6416 	/*
6417 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6418 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6419 	 * available as a mirror
6420 	 */
6421 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6422 		WARN_ON(num_stripes > 1);
6423 		bbio->stripes[0].dev = dev_replace->tgtdev;
6424 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6425 		bbio->mirror_num = map->num_stripes + 1;
6426 	}
6427 out:
6428 	if (dev_replace_is_ongoing) {
6429 		lockdep_assert_held(&dev_replace->rwsem);
6430 		/* Unlock and let waiting writers proceed */
6431 		up_read(&dev_replace->rwsem);
6432 	}
6433 	free_extent_map(em);
6434 	return ret;
6435 }
6436 
6437 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6438 		      u64 logical, u64 *length,
6439 		      struct btrfs_bio **bbio_ret, int mirror_num)
6440 {
6441 	if (op == BTRFS_MAP_DISCARD)
6442 		return __btrfs_map_block_for_discard(fs_info, logical,
6443 						     length, bbio_ret);
6444 
6445 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6446 				 mirror_num, 0);
6447 }
6448 
6449 /* For Scrub/replace */
6450 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6451 		     u64 logical, u64 *length,
6452 		     struct btrfs_bio **bbio_ret)
6453 {
6454 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6455 }
6456 
6457 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6458 {
6459 	bio->bi_private = bbio->private;
6460 	bio->bi_end_io = bbio->end_io;
6461 	bio_endio(bio);
6462 
6463 	btrfs_put_bbio(bbio);
6464 }
6465 
6466 static void btrfs_end_bio(struct bio *bio)
6467 {
6468 	struct btrfs_bio *bbio = bio->bi_private;
6469 	int is_orig_bio = 0;
6470 
6471 	if (bio->bi_status) {
6472 		atomic_inc(&bbio->error);
6473 		if (bio->bi_status == BLK_STS_IOERR ||
6474 		    bio->bi_status == BLK_STS_TARGET) {
6475 			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6476 
6477 			ASSERT(dev->bdev);
6478 			if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6479 				btrfs_dev_stat_inc_and_print(dev,
6480 						BTRFS_DEV_STAT_WRITE_ERRS);
6481 			else if (!(bio->bi_opf & REQ_RAHEAD))
6482 				btrfs_dev_stat_inc_and_print(dev,
6483 						BTRFS_DEV_STAT_READ_ERRS);
6484 			if (bio->bi_opf & REQ_PREFLUSH)
6485 				btrfs_dev_stat_inc_and_print(dev,
6486 						BTRFS_DEV_STAT_FLUSH_ERRS);
6487 		}
6488 	}
6489 
6490 	if (bio == bbio->orig_bio)
6491 		is_orig_bio = 1;
6492 
6493 	btrfs_bio_counter_dec(bbio->fs_info);
6494 
6495 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6496 		if (!is_orig_bio) {
6497 			bio_put(bio);
6498 			bio = bbio->orig_bio;
6499 		}
6500 
6501 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6502 		/* only send an error to the higher layers if it is
6503 		 * beyond the tolerance of the btrfs bio
6504 		 */
6505 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6506 			bio->bi_status = BLK_STS_IOERR;
6507 		} else {
6508 			/*
6509 			 * this bio is actually up to date, we didn't
6510 			 * go over the max number of errors
6511 			 */
6512 			bio->bi_status = BLK_STS_OK;
6513 		}
6514 
6515 		btrfs_end_bbio(bbio, bio);
6516 	} else if (!is_orig_bio) {
6517 		bio_put(bio);
6518 	}
6519 }
6520 
6521 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6522 			      u64 physical, struct btrfs_device *dev)
6523 {
6524 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6525 
6526 	bio->bi_private = bbio;
6527 	btrfs_io_bio(bio)->device = dev;
6528 	bio->bi_end_io = btrfs_end_bio;
6529 	bio->bi_iter.bi_sector = physical >> 9;
6530 	/*
6531 	 * For zone append writing, bi_sector must point the beginning of the
6532 	 * zone
6533 	 */
6534 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6535 		if (btrfs_dev_is_sequential(dev, physical)) {
6536 			u64 zone_start = round_down(physical, fs_info->zone_size);
6537 
6538 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6539 		} else {
6540 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6541 			bio->bi_opf |= REQ_OP_WRITE;
6542 		}
6543 	}
6544 	btrfs_debug_in_rcu(fs_info,
6545 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6546 		bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6547 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6548 		dev->devid, bio->bi_iter.bi_size);
6549 	bio_set_dev(bio, dev->bdev);
6550 
6551 	btrfs_bio_counter_inc_noblocked(fs_info);
6552 
6553 	btrfsic_submit_bio(bio);
6554 }
6555 
6556 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6557 {
6558 	atomic_inc(&bbio->error);
6559 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6560 		/* Should be the original bio. */
6561 		WARN_ON(bio != bbio->orig_bio);
6562 
6563 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6564 		bio->bi_iter.bi_sector = logical >> 9;
6565 		if (atomic_read(&bbio->error) > bbio->max_errors)
6566 			bio->bi_status = BLK_STS_IOERR;
6567 		else
6568 			bio->bi_status = BLK_STS_OK;
6569 		btrfs_end_bbio(bbio, bio);
6570 	}
6571 }
6572 
6573 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6574 			   int mirror_num)
6575 {
6576 	struct btrfs_device *dev;
6577 	struct bio *first_bio = bio;
6578 	u64 logical = bio->bi_iter.bi_sector << 9;
6579 	u64 length = 0;
6580 	u64 map_length;
6581 	int ret;
6582 	int dev_nr;
6583 	int total_devs;
6584 	struct btrfs_bio *bbio = NULL;
6585 
6586 	length = bio->bi_iter.bi_size;
6587 	map_length = length;
6588 
6589 	btrfs_bio_counter_inc_blocked(fs_info);
6590 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6591 				&map_length, &bbio, mirror_num, 1);
6592 	if (ret) {
6593 		btrfs_bio_counter_dec(fs_info);
6594 		return errno_to_blk_status(ret);
6595 	}
6596 
6597 	total_devs = bbio->num_stripes;
6598 	bbio->orig_bio = first_bio;
6599 	bbio->private = first_bio->bi_private;
6600 	bbio->end_io = first_bio->bi_end_io;
6601 	bbio->fs_info = fs_info;
6602 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6603 
6604 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6605 	    ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6606 		/* In this case, map_length has been set to the length of
6607 		   a single stripe; not the whole write */
6608 		if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6609 			ret = raid56_parity_write(fs_info, bio, bbio,
6610 						  map_length);
6611 		} else {
6612 			ret = raid56_parity_recover(fs_info, bio, bbio,
6613 						    map_length, mirror_num, 1);
6614 		}
6615 
6616 		btrfs_bio_counter_dec(fs_info);
6617 		return errno_to_blk_status(ret);
6618 	}
6619 
6620 	if (map_length < length) {
6621 		btrfs_crit(fs_info,
6622 			   "mapping failed logical %llu bio len %llu len %llu",
6623 			   logical, length, map_length);
6624 		BUG();
6625 	}
6626 
6627 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6628 		dev = bbio->stripes[dev_nr].dev;
6629 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6630 						   &dev->dev_state) ||
6631 		    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6632 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6633 			bbio_error(bbio, first_bio, logical);
6634 			continue;
6635 		}
6636 
6637 		if (dev_nr < total_devs - 1)
6638 			bio = btrfs_bio_clone(first_bio);
6639 		else
6640 			bio = first_bio;
6641 
6642 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6643 	}
6644 	btrfs_bio_counter_dec(fs_info);
6645 	return BLK_STS_OK;
6646 }
6647 
6648 /*
6649  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6650  * return NULL.
6651  *
6652  * If devid and uuid are both specified, the match must be exact, otherwise
6653  * only devid is used.
6654  *
6655  * If @seed is true, traverse through the seed devices.
6656  */
6657 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6658 				       u64 devid, u8 *uuid, u8 *fsid)
6659 {
6660 	struct btrfs_device *device;
6661 	struct btrfs_fs_devices *seed_devs;
6662 
6663 	if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6664 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6665 			if (device->devid == devid &&
6666 			    (!uuid || memcmp(device->uuid, uuid,
6667 					     BTRFS_UUID_SIZE) == 0))
6668 				return device;
6669 		}
6670 	}
6671 
6672 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6673 		if (!fsid ||
6674 		    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6675 			list_for_each_entry(device, &seed_devs->devices,
6676 					    dev_list) {
6677 				if (device->devid == devid &&
6678 				    (!uuid || memcmp(device->uuid, uuid,
6679 						     BTRFS_UUID_SIZE) == 0))
6680 					return device;
6681 			}
6682 		}
6683 	}
6684 
6685 	return NULL;
6686 }
6687 
6688 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6689 					    u64 devid, u8 *dev_uuid)
6690 {
6691 	struct btrfs_device *device;
6692 	unsigned int nofs_flag;
6693 
6694 	/*
6695 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6696 	 * allocation, however we don't want to change btrfs_alloc_device() to
6697 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6698 	 * places.
6699 	 */
6700 	nofs_flag = memalloc_nofs_save();
6701 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6702 	memalloc_nofs_restore(nofs_flag);
6703 	if (IS_ERR(device))
6704 		return device;
6705 
6706 	list_add(&device->dev_list, &fs_devices->devices);
6707 	device->fs_devices = fs_devices;
6708 	fs_devices->num_devices++;
6709 
6710 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6711 	fs_devices->missing_devices++;
6712 
6713 	return device;
6714 }
6715 
6716 /**
6717  * btrfs_alloc_device - allocate struct btrfs_device
6718  * @fs_info:	used only for generating a new devid, can be NULL if
6719  *		devid is provided (i.e. @devid != NULL).
6720  * @devid:	a pointer to devid for this device.  If NULL a new devid
6721  *		is generated.
6722  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6723  *		is generated.
6724  *
6725  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6726  * on error.  Returned struct is not linked onto any lists and must be
6727  * destroyed with btrfs_free_device.
6728  */
6729 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6730 					const u64 *devid,
6731 					const u8 *uuid)
6732 {
6733 	struct btrfs_device *dev;
6734 	u64 tmp;
6735 
6736 	if (WARN_ON(!devid && !fs_info))
6737 		return ERR_PTR(-EINVAL);
6738 
6739 	dev = __alloc_device(fs_info);
6740 	if (IS_ERR(dev))
6741 		return dev;
6742 
6743 	if (devid)
6744 		tmp = *devid;
6745 	else {
6746 		int ret;
6747 
6748 		ret = find_next_devid(fs_info, &tmp);
6749 		if (ret) {
6750 			btrfs_free_device(dev);
6751 			return ERR_PTR(ret);
6752 		}
6753 	}
6754 	dev->devid = tmp;
6755 
6756 	if (uuid)
6757 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6758 	else
6759 		generate_random_uuid(dev->uuid);
6760 
6761 	return dev;
6762 }
6763 
6764 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6765 					u64 devid, u8 *uuid, bool error)
6766 {
6767 	if (error)
6768 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6769 			      devid, uuid);
6770 	else
6771 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6772 			      devid, uuid);
6773 }
6774 
6775 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6776 {
6777 	int index = btrfs_bg_flags_to_raid_index(type);
6778 	int ncopies = btrfs_raid_array[index].ncopies;
6779 	const int nparity = btrfs_raid_array[index].nparity;
6780 	int data_stripes;
6781 
6782 	if (nparity)
6783 		data_stripes = num_stripes - nparity;
6784 	else
6785 		data_stripes = num_stripes / ncopies;
6786 
6787 	return div_u64(chunk_len, data_stripes);
6788 }
6789 
6790 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6791 			  struct btrfs_chunk *chunk)
6792 {
6793 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6794 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6795 	struct map_lookup *map;
6796 	struct extent_map *em;
6797 	u64 logical;
6798 	u64 length;
6799 	u64 devid;
6800 	u8 uuid[BTRFS_UUID_SIZE];
6801 	int num_stripes;
6802 	int ret;
6803 	int i;
6804 
6805 	logical = key->offset;
6806 	length = btrfs_chunk_length(leaf, chunk);
6807 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6808 
6809 	/*
6810 	 * Only need to verify chunk item if we're reading from sys chunk array,
6811 	 * as chunk item in tree block is already verified by tree-checker.
6812 	 */
6813 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6814 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6815 		if (ret)
6816 			return ret;
6817 	}
6818 
6819 	read_lock(&map_tree->lock);
6820 	em = lookup_extent_mapping(map_tree, logical, 1);
6821 	read_unlock(&map_tree->lock);
6822 
6823 	/* already mapped? */
6824 	if (em && em->start <= logical && em->start + em->len > logical) {
6825 		free_extent_map(em);
6826 		return 0;
6827 	} else if (em) {
6828 		free_extent_map(em);
6829 	}
6830 
6831 	em = alloc_extent_map();
6832 	if (!em)
6833 		return -ENOMEM;
6834 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6835 	if (!map) {
6836 		free_extent_map(em);
6837 		return -ENOMEM;
6838 	}
6839 
6840 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6841 	em->map_lookup = map;
6842 	em->start = logical;
6843 	em->len = length;
6844 	em->orig_start = 0;
6845 	em->block_start = 0;
6846 	em->block_len = em->len;
6847 
6848 	map->num_stripes = num_stripes;
6849 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6850 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6851 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6852 	map->type = btrfs_chunk_type(leaf, chunk);
6853 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6854 	map->verified_stripes = 0;
6855 	em->orig_block_len = calc_stripe_length(map->type, em->len,
6856 						map->num_stripes);
6857 	for (i = 0; i < num_stripes; i++) {
6858 		map->stripes[i].physical =
6859 			btrfs_stripe_offset_nr(leaf, chunk, i);
6860 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6861 		read_extent_buffer(leaf, uuid, (unsigned long)
6862 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6863 				   BTRFS_UUID_SIZE);
6864 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6865 							devid, uuid, NULL);
6866 		if (!map->stripes[i].dev &&
6867 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6868 			free_extent_map(em);
6869 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6870 			return -ENOENT;
6871 		}
6872 		if (!map->stripes[i].dev) {
6873 			map->stripes[i].dev =
6874 				add_missing_dev(fs_info->fs_devices, devid,
6875 						uuid);
6876 			if (IS_ERR(map->stripes[i].dev)) {
6877 				free_extent_map(em);
6878 				btrfs_err(fs_info,
6879 					"failed to init missing dev %llu: %ld",
6880 					devid, PTR_ERR(map->stripes[i].dev));
6881 				return PTR_ERR(map->stripes[i].dev);
6882 			}
6883 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6884 		}
6885 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6886 				&(map->stripes[i].dev->dev_state));
6887 
6888 	}
6889 
6890 	write_lock(&map_tree->lock);
6891 	ret = add_extent_mapping(map_tree, em, 0);
6892 	write_unlock(&map_tree->lock);
6893 	if (ret < 0) {
6894 		btrfs_err(fs_info,
6895 			  "failed to add chunk map, start=%llu len=%llu: %d",
6896 			  em->start, em->len, ret);
6897 	}
6898 	free_extent_map(em);
6899 
6900 	return ret;
6901 }
6902 
6903 static void fill_device_from_item(struct extent_buffer *leaf,
6904 				 struct btrfs_dev_item *dev_item,
6905 				 struct btrfs_device *device)
6906 {
6907 	unsigned long ptr;
6908 
6909 	device->devid = btrfs_device_id(leaf, dev_item);
6910 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6911 	device->total_bytes = device->disk_total_bytes;
6912 	device->commit_total_bytes = device->disk_total_bytes;
6913 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6914 	device->commit_bytes_used = device->bytes_used;
6915 	device->type = btrfs_device_type(leaf, dev_item);
6916 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6917 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6918 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6919 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6920 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6921 
6922 	ptr = btrfs_device_uuid(dev_item);
6923 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6924 }
6925 
6926 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6927 						  u8 *fsid)
6928 {
6929 	struct btrfs_fs_devices *fs_devices;
6930 	int ret;
6931 
6932 	lockdep_assert_held(&uuid_mutex);
6933 	ASSERT(fsid);
6934 
6935 	/* This will match only for multi-device seed fs */
6936 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6937 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6938 			return fs_devices;
6939 
6940 
6941 	fs_devices = find_fsid(fsid, NULL);
6942 	if (!fs_devices) {
6943 		if (!btrfs_test_opt(fs_info, DEGRADED))
6944 			return ERR_PTR(-ENOENT);
6945 
6946 		fs_devices = alloc_fs_devices(fsid, NULL);
6947 		if (IS_ERR(fs_devices))
6948 			return fs_devices;
6949 
6950 		fs_devices->seeding = true;
6951 		fs_devices->opened = 1;
6952 		return fs_devices;
6953 	}
6954 
6955 	/*
6956 	 * Upon first call for a seed fs fsid, just create a private copy of the
6957 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6958 	 */
6959 	fs_devices = clone_fs_devices(fs_devices);
6960 	if (IS_ERR(fs_devices))
6961 		return fs_devices;
6962 
6963 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6964 	if (ret) {
6965 		free_fs_devices(fs_devices);
6966 		return ERR_PTR(ret);
6967 	}
6968 
6969 	if (!fs_devices->seeding) {
6970 		close_fs_devices(fs_devices);
6971 		free_fs_devices(fs_devices);
6972 		return ERR_PTR(-EINVAL);
6973 	}
6974 
6975 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6976 
6977 	return fs_devices;
6978 }
6979 
6980 static int read_one_dev(struct extent_buffer *leaf,
6981 			struct btrfs_dev_item *dev_item)
6982 {
6983 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6984 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6985 	struct btrfs_device *device;
6986 	u64 devid;
6987 	int ret;
6988 	u8 fs_uuid[BTRFS_FSID_SIZE];
6989 	u8 dev_uuid[BTRFS_UUID_SIZE];
6990 
6991 	devid = btrfs_device_id(leaf, dev_item);
6992 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6993 			   BTRFS_UUID_SIZE);
6994 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6995 			   BTRFS_FSID_SIZE);
6996 
6997 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6998 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6999 		if (IS_ERR(fs_devices))
7000 			return PTR_ERR(fs_devices);
7001 	}
7002 
7003 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7004 				   fs_uuid);
7005 	if (!device) {
7006 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7007 			btrfs_report_missing_device(fs_info, devid,
7008 							dev_uuid, true);
7009 			return -ENOENT;
7010 		}
7011 
7012 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7013 		if (IS_ERR(device)) {
7014 			btrfs_err(fs_info,
7015 				"failed to add missing dev %llu: %ld",
7016 				devid, PTR_ERR(device));
7017 			return PTR_ERR(device);
7018 		}
7019 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7020 	} else {
7021 		if (!device->bdev) {
7022 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7023 				btrfs_report_missing_device(fs_info,
7024 						devid, dev_uuid, true);
7025 				return -ENOENT;
7026 			}
7027 			btrfs_report_missing_device(fs_info, devid,
7028 							dev_uuid, false);
7029 		}
7030 
7031 		if (!device->bdev &&
7032 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7033 			/*
7034 			 * this happens when a device that was properly setup
7035 			 * in the device info lists suddenly goes bad.
7036 			 * device->bdev is NULL, and so we have to set
7037 			 * device->missing to one here
7038 			 */
7039 			device->fs_devices->missing_devices++;
7040 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7041 		}
7042 
7043 		/* Move the device to its own fs_devices */
7044 		if (device->fs_devices != fs_devices) {
7045 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7046 							&device->dev_state));
7047 
7048 			list_move(&device->dev_list, &fs_devices->devices);
7049 			device->fs_devices->num_devices--;
7050 			fs_devices->num_devices++;
7051 
7052 			device->fs_devices->missing_devices--;
7053 			fs_devices->missing_devices++;
7054 
7055 			device->fs_devices = fs_devices;
7056 		}
7057 	}
7058 
7059 	if (device->fs_devices != fs_info->fs_devices) {
7060 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7061 		if (device->generation !=
7062 		    btrfs_device_generation(leaf, dev_item))
7063 			return -EINVAL;
7064 	}
7065 
7066 	fill_device_from_item(leaf, dev_item, device);
7067 	if (device->bdev) {
7068 		u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7069 
7070 		if (device->total_bytes > max_total_bytes) {
7071 			btrfs_err(fs_info,
7072 			"device total_bytes should be at most %llu but found %llu",
7073 				  max_total_bytes, device->total_bytes);
7074 			return -EINVAL;
7075 		}
7076 	}
7077 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7078 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7079 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7080 		device->fs_devices->total_rw_bytes += device->total_bytes;
7081 		atomic64_add(device->total_bytes - device->bytes_used,
7082 				&fs_info->free_chunk_space);
7083 	}
7084 	ret = 0;
7085 	return ret;
7086 }
7087 
7088 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7089 {
7090 	struct btrfs_root *root = fs_info->tree_root;
7091 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7092 	struct extent_buffer *sb;
7093 	struct btrfs_disk_key *disk_key;
7094 	struct btrfs_chunk *chunk;
7095 	u8 *array_ptr;
7096 	unsigned long sb_array_offset;
7097 	int ret = 0;
7098 	u32 num_stripes;
7099 	u32 array_size;
7100 	u32 len = 0;
7101 	u32 cur_offset;
7102 	u64 type;
7103 	struct btrfs_key key;
7104 
7105 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7106 	/*
7107 	 * This will create extent buffer of nodesize, superblock size is
7108 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7109 	 * overallocate but we can keep it as-is, only the first page is used.
7110 	 */
7111 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7112 					  root->root_key.objectid, 0);
7113 	if (IS_ERR(sb))
7114 		return PTR_ERR(sb);
7115 	set_extent_buffer_uptodate(sb);
7116 	/*
7117 	 * The sb extent buffer is artificial and just used to read the system array.
7118 	 * set_extent_buffer_uptodate() call does not properly mark all it's
7119 	 * pages up-to-date when the page is larger: extent does not cover the
7120 	 * whole page and consequently check_page_uptodate does not find all
7121 	 * the page's extents up-to-date (the hole beyond sb),
7122 	 * write_extent_buffer then triggers a WARN_ON.
7123 	 *
7124 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7125 	 * but sb spans only this function. Add an explicit SetPageUptodate call
7126 	 * to silence the warning eg. on PowerPC 64.
7127 	 */
7128 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7129 		SetPageUptodate(sb->pages[0]);
7130 
7131 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7132 	array_size = btrfs_super_sys_array_size(super_copy);
7133 
7134 	array_ptr = super_copy->sys_chunk_array;
7135 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7136 	cur_offset = 0;
7137 
7138 	while (cur_offset < array_size) {
7139 		disk_key = (struct btrfs_disk_key *)array_ptr;
7140 		len = sizeof(*disk_key);
7141 		if (cur_offset + len > array_size)
7142 			goto out_short_read;
7143 
7144 		btrfs_disk_key_to_cpu(&key, disk_key);
7145 
7146 		array_ptr += len;
7147 		sb_array_offset += len;
7148 		cur_offset += len;
7149 
7150 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7151 			btrfs_err(fs_info,
7152 			    "unexpected item type %u in sys_array at offset %u",
7153 				  (u32)key.type, cur_offset);
7154 			ret = -EIO;
7155 			break;
7156 		}
7157 
7158 		chunk = (struct btrfs_chunk *)sb_array_offset;
7159 		/*
7160 		 * At least one btrfs_chunk with one stripe must be present,
7161 		 * exact stripe count check comes afterwards
7162 		 */
7163 		len = btrfs_chunk_item_size(1);
7164 		if (cur_offset + len > array_size)
7165 			goto out_short_read;
7166 
7167 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7168 		if (!num_stripes) {
7169 			btrfs_err(fs_info,
7170 			"invalid number of stripes %u in sys_array at offset %u",
7171 				  num_stripes, cur_offset);
7172 			ret = -EIO;
7173 			break;
7174 		}
7175 
7176 		type = btrfs_chunk_type(sb, chunk);
7177 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7178 			btrfs_err(fs_info,
7179 			"invalid chunk type %llu in sys_array at offset %u",
7180 				  type, cur_offset);
7181 			ret = -EIO;
7182 			break;
7183 		}
7184 
7185 		len = btrfs_chunk_item_size(num_stripes);
7186 		if (cur_offset + len > array_size)
7187 			goto out_short_read;
7188 
7189 		ret = read_one_chunk(&key, sb, chunk);
7190 		if (ret)
7191 			break;
7192 
7193 		array_ptr += len;
7194 		sb_array_offset += len;
7195 		cur_offset += len;
7196 	}
7197 	clear_extent_buffer_uptodate(sb);
7198 	free_extent_buffer_stale(sb);
7199 	return ret;
7200 
7201 out_short_read:
7202 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7203 			len, cur_offset);
7204 	clear_extent_buffer_uptodate(sb);
7205 	free_extent_buffer_stale(sb);
7206 	return -EIO;
7207 }
7208 
7209 /*
7210  * Check if all chunks in the fs are OK for read-write degraded mount
7211  *
7212  * If the @failing_dev is specified, it's accounted as missing.
7213  *
7214  * Return true if all chunks meet the minimal RW mount requirements.
7215  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7216  */
7217 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7218 					struct btrfs_device *failing_dev)
7219 {
7220 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7221 	struct extent_map *em;
7222 	u64 next_start = 0;
7223 	bool ret = true;
7224 
7225 	read_lock(&map_tree->lock);
7226 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7227 	read_unlock(&map_tree->lock);
7228 	/* No chunk at all? Return false anyway */
7229 	if (!em) {
7230 		ret = false;
7231 		goto out;
7232 	}
7233 	while (em) {
7234 		struct map_lookup *map;
7235 		int missing = 0;
7236 		int max_tolerated;
7237 		int i;
7238 
7239 		map = em->map_lookup;
7240 		max_tolerated =
7241 			btrfs_get_num_tolerated_disk_barrier_failures(
7242 					map->type);
7243 		for (i = 0; i < map->num_stripes; i++) {
7244 			struct btrfs_device *dev = map->stripes[i].dev;
7245 
7246 			if (!dev || !dev->bdev ||
7247 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7248 			    dev->last_flush_error)
7249 				missing++;
7250 			else if (failing_dev && failing_dev == dev)
7251 				missing++;
7252 		}
7253 		if (missing > max_tolerated) {
7254 			if (!failing_dev)
7255 				btrfs_warn(fs_info,
7256 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7257 				   em->start, missing, max_tolerated);
7258 			free_extent_map(em);
7259 			ret = false;
7260 			goto out;
7261 		}
7262 		next_start = extent_map_end(em);
7263 		free_extent_map(em);
7264 
7265 		read_lock(&map_tree->lock);
7266 		em = lookup_extent_mapping(map_tree, next_start,
7267 					   (u64)(-1) - next_start);
7268 		read_unlock(&map_tree->lock);
7269 	}
7270 out:
7271 	return ret;
7272 }
7273 
7274 static void readahead_tree_node_children(struct extent_buffer *node)
7275 {
7276 	int i;
7277 	const int nr_items = btrfs_header_nritems(node);
7278 
7279 	for (i = 0; i < nr_items; i++)
7280 		btrfs_readahead_node_child(node, i);
7281 }
7282 
7283 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7284 {
7285 	struct btrfs_root *root = fs_info->chunk_root;
7286 	struct btrfs_path *path;
7287 	struct extent_buffer *leaf;
7288 	struct btrfs_key key;
7289 	struct btrfs_key found_key;
7290 	int ret;
7291 	int slot;
7292 	u64 total_dev = 0;
7293 	u64 last_ra_node = 0;
7294 
7295 	path = btrfs_alloc_path();
7296 	if (!path)
7297 		return -ENOMEM;
7298 
7299 	/*
7300 	 * uuid_mutex is needed only if we are mounting a sprout FS
7301 	 * otherwise we don't need it.
7302 	 */
7303 	mutex_lock(&uuid_mutex);
7304 
7305 	/*
7306 	 * It is possible for mount and umount to race in such a way that
7307 	 * we execute this code path, but open_fs_devices failed to clear
7308 	 * total_rw_bytes. We certainly want it cleared before reading the
7309 	 * device items, so clear it here.
7310 	 */
7311 	fs_info->fs_devices->total_rw_bytes = 0;
7312 
7313 	/*
7314 	 * Read all device items, and then all the chunk items. All
7315 	 * device items are found before any chunk item (their object id
7316 	 * is smaller than the lowest possible object id for a chunk
7317 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7318 	 */
7319 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7320 	key.offset = 0;
7321 	key.type = 0;
7322 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7323 	if (ret < 0)
7324 		goto error;
7325 	while (1) {
7326 		struct extent_buffer *node;
7327 
7328 		leaf = path->nodes[0];
7329 		slot = path->slots[0];
7330 		if (slot >= btrfs_header_nritems(leaf)) {
7331 			ret = btrfs_next_leaf(root, path);
7332 			if (ret == 0)
7333 				continue;
7334 			if (ret < 0)
7335 				goto error;
7336 			break;
7337 		}
7338 		/*
7339 		 * The nodes on level 1 are not locked but we don't need to do
7340 		 * that during mount time as nothing else can access the tree
7341 		 */
7342 		node = path->nodes[1];
7343 		if (node) {
7344 			if (last_ra_node != node->start) {
7345 				readahead_tree_node_children(node);
7346 				last_ra_node = node->start;
7347 			}
7348 		}
7349 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7350 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7351 			struct btrfs_dev_item *dev_item;
7352 			dev_item = btrfs_item_ptr(leaf, slot,
7353 						  struct btrfs_dev_item);
7354 			ret = read_one_dev(leaf, dev_item);
7355 			if (ret)
7356 				goto error;
7357 			total_dev++;
7358 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7359 			struct btrfs_chunk *chunk;
7360 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7361 			mutex_lock(&fs_info->chunk_mutex);
7362 			ret = read_one_chunk(&found_key, leaf, chunk);
7363 			mutex_unlock(&fs_info->chunk_mutex);
7364 			if (ret)
7365 				goto error;
7366 		}
7367 		path->slots[0]++;
7368 	}
7369 
7370 	/*
7371 	 * After loading chunk tree, we've got all device information,
7372 	 * do another round of validation checks.
7373 	 */
7374 	if (total_dev != fs_info->fs_devices->total_devices) {
7375 		btrfs_err(fs_info,
7376 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7377 			  btrfs_super_num_devices(fs_info->super_copy),
7378 			  total_dev);
7379 		ret = -EINVAL;
7380 		goto error;
7381 	}
7382 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7383 	    fs_info->fs_devices->total_rw_bytes) {
7384 		btrfs_err(fs_info,
7385 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7386 			  btrfs_super_total_bytes(fs_info->super_copy),
7387 			  fs_info->fs_devices->total_rw_bytes);
7388 		ret = -EINVAL;
7389 		goto error;
7390 	}
7391 	ret = 0;
7392 error:
7393 	mutex_unlock(&uuid_mutex);
7394 
7395 	btrfs_free_path(path);
7396 	return ret;
7397 }
7398 
7399 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7400 {
7401 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7402 	struct btrfs_device *device;
7403 
7404 	fs_devices->fs_info = fs_info;
7405 
7406 	mutex_lock(&fs_devices->device_list_mutex);
7407 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7408 		device->fs_info = fs_info;
7409 
7410 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7411 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7412 			device->fs_info = fs_info;
7413 
7414 		seed_devs->fs_info = fs_info;
7415 	}
7416 	mutex_unlock(&fs_devices->device_list_mutex);
7417 }
7418 
7419 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7420 				 const struct btrfs_dev_stats_item *ptr,
7421 				 int index)
7422 {
7423 	u64 val;
7424 
7425 	read_extent_buffer(eb, &val,
7426 			   offsetof(struct btrfs_dev_stats_item, values) +
7427 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7428 			   sizeof(val));
7429 	return val;
7430 }
7431 
7432 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7433 				      struct btrfs_dev_stats_item *ptr,
7434 				      int index, u64 val)
7435 {
7436 	write_extent_buffer(eb, &val,
7437 			    offsetof(struct btrfs_dev_stats_item, values) +
7438 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7439 			    sizeof(val));
7440 }
7441 
7442 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7443 				       struct btrfs_path *path)
7444 {
7445 	struct btrfs_dev_stats_item *ptr;
7446 	struct extent_buffer *eb;
7447 	struct btrfs_key key;
7448 	int item_size;
7449 	int i, ret, slot;
7450 
7451 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7452 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7453 	key.offset = device->devid;
7454 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7455 	if (ret) {
7456 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7457 			btrfs_dev_stat_set(device, i, 0);
7458 		device->dev_stats_valid = 1;
7459 		btrfs_release_path(path);
7460 		return ret < 0 ? ret : 0;
7461 	}
7462 	slot = path->slots[0];
7463 	eb = path->nodes[0];
7464 	item_size = btrfs_item_size_nr(eb, slot);
7465 
7466 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7467 
7468 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7469 		if (item_size >= (1 + i) * sizeof(__le64))
7470 			btrfs_dev_stat_set(device, i,
7471 					   btrfs_dev_stats_value(eb, ptr, i));
7472 		else
7473 			btrfs_dev_stat_set(device, i, 0);
7474 	}
7475 
7476 	device->dev_stats_valid = 1;
7477 	btrfs_dev_stat_print_on_load(device);
7478 	btrfs_release_path(path);
7479 
7480 	return 0;
7481 }
7482 
7483 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7484 {
7485 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7486 	struct btrfs_device *device;
7487 	struct btrfs_path *path = NULL;
7488 	int ret = 0;
7489 
7490 	path = btrfs_alloc_path();
7491 	if (!path)
7492 		return -ENOMEM;
7493 
7494 	mutex_lock(&fs_devices->device_list_mutex);
7495 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7496 		ret = btrfs_device_init_dev_stats(device, path);
7497 		if (ret)
7498 			goto out;
7499 	}
7500 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7501 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7502 			ret = btrfs_device_init_dev_stats(device, path);
7503 			if (ret)
7504 				goto out;
7505 		}
7506 	}
7507 out:
7508 	mutex_unlock(&fs_devices->device_list_mutex);
7509 
7510 	btrfs_free_path(path);
7511 	return ret;
7512 }
7513 
7514 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7515 				struct btrfs_device *device)
7516 {
7517 	struct btrfs_fs_info *fs_info = trans->fs_info;
7518 	struct btrfs_root *dev_root = fs_info->dev_root;
7519 	struct btrfs_path *path;
7520 	struct btrfs_key key;
7521 	struct extent_buffer *eb;
7522 	struct btrfs_dev_stats_item *ptr;
7523 	int ret;
7524 	int i;
7525 
7526 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7527 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7528 	key.offset = device->devid;
7529 
7530 	path = btrfs_alloc_path();
7531 	if (!path)
7532 		return -ENOMEM;
7533 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7534 	if (ret < 0) {
7535 		btrfs_warn_in_rcu(fs_info,
7536 			"error %d while searching for dev_stats item for device %s",
7537 			      ret, rcu_str_deref(device->name));
7538 		goto out;
7539 	}
7540 
7541 	if (ret == 0 &&
7542 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7543 		/* need to delete old one and insert a new one */
7544 		ret = btrfs_del_item(trans, dev_root, path);
7545 		if (ret != 0) {
7546 			btrfs_warn_in_rcu(fs_info,
7547 				"delete too small dev_stats item for device %s failed %d",
7548 				      rcu_str_deref(device->name), ret);
7549 			goto out;
7550 		}
7551 		ret = 1;
7552 	}
7553 
7554 	if (ret == 1) {
7555 		/* need to insert a new item */
7556 		btrfs_release_path(path);
7557 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7558 					      &key, sizeof(*ptr));
7559 		if (ret < 0) {
7560 			btrfs_warn_in_rcu(fs_info,
7561 				"insert dev_stats item for device %s failed %d",
7562 				rcu_str_deref(device->name), ret);
7563 			goto out;
7564 		}
7565 	}
7566 
7567 	eb = path->nodes[0];
7568 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7569 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7570 		btrfs_set_dev_stats_value(eb, ptr, i,
7571 					  btrfs_dev_stat_read(device, i));
7572 	btrfs_mark_buffer_dirty(eb);
7573 
7574 out:
7575 	btrfs_free_path(path);
7576 	return ret;
7577 }
7578 
7579 /*
7580  * called from commit_transaction. Writes all changed device stats to disk.
7581  */
7582 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7583 {
7584 	struct btrfs_fs_info *fs_info = trans->fs_info;
7585 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7586 	struct btrfs_device *device;
7587 	int stats_cnt;
7588 	int ret = 0;
7589 
7590 	mutex_lock(&fs_devices->device_list_mutex);
7591 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7592 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7593 		if (!device->dev_stats_valid || stats_cnt == 0)
7594 			continue;
7595 
7596 
7597 		/*
7598 		 * There is a LOAD-LOAD control dependency between the value of
7599 		 * dev_stats_ccnt and updating the on-disk values which requires
7600 		 * reading the in-memory counters. Such control dependencies
7601 		 * require explicit read memory barriers.
7602 		 *
7603 		 * This memory barriers pairs with smp_mb__before_atomic in
7604 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7605 		 * barrier implied by atomic_xchg in
7606 		 * btrfs_dev_stats_read_and_reset
7607 		 */
7608 		smp_rmb();
7609 
7610 		ret = update_dev_stat_item(trans, device);
7611 		if (!ret)
7612 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7613 	}
7614 	mutex_unlock(&fs_devices->device_list_mutex);
7615 
7616 	return ret;
7617 }
7618 
7619 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7620 {
7621 	btrfs_dev_stat_inc(dev, index);
7622 	btrfs_dev_stat_print_on_error(dev);
7623 }
7624 
7625 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7626 {
7627 	if (!dev->dev_stats_valid)
7628 		return;
7629 	btrfs_err_rl_in_rcu(dev->fs_info,
7630 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7631 			   rcu_str_deref(dev->name),
7632 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7633 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7634 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7635 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7636 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7637 }
7638 
7639 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7640 {
7641 	int i;
7642 
7643 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7644 		if (btrfs_dev_stat_read(dev, i) != 0)
7645 			break;
7646 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7647 		return; /* all values == 0, suppress message */
7648 
7649 	btrfs_info_in_rcu(dev->fs_info,
7650 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7651 	       rcu_str_deref(dev->name),
7652 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7653 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7654 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7655 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7656 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7657 }
7658 
7659 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7660 			struct btrfs_ioctl_get_dev_stats *stats)
7661 {
7662 	struct btrfs_device *dev;
7663 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7664 	int i;
7665 
7666 	mutex_lock(&fs_devices->device_list_mutex);
7667 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7668 	mutex_unlock(&fs_devices->device_list_mutex);
7669 
7670 	if (!dev) {
7671 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7672 		return -ENODEV;
7673 	} else if (!dev->dev_stats_valid) {
7674 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7675 		return -ENODEV;
7676 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7677 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7678 			if (stats->nr_items > i)
7679 				stats->values[i] =
7680 					btrfs_dev_stat_read_and_reset(dev, i);
7681 			else
7682 				btrfs_dev_stat_set(dev, i, 0);
7683 		}
7684 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7685 			   current->comm, task_pid_nr(current));
7686 	} else {
7687 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7688 			if (stats->nr_items > i)
7689 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7690 	}
7691 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7692 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7693 	return 0;
7694 }
7695 
7696 /*
7697  * Update the size and bytes used for each device where it changed.  This is
7698  * delayed since we would otherwise get errors while writing out the
7699  * superblocks.
7700  *
7701  * Must be invoked during transaction commit.
7702  */
7703 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7704 {
7705 	struct btrfs_device *curr, *next;
7706 
7707 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7708 
7709 	if (list_empty(&trans->dev_update_list))
7710 		return;
7711 
7712 	/*
7713 	 * We don't need the device_list_mutex here.  This list is owned by the
7714 	 * transaction and the transaction must complete before the device is
7715 	 * released.
7716 	 */
7717 	mutex_lock(&trans->fs_info->chunk_mutex);
7718 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7719 				 post_commit_list) {
7720 		list_del_init(&curr->post_commit_list);
7721 		curr->commit_total_bytes = curr->disk_total_bytes;
7722 		curr->commit_bytes_used = curr->bytes_used;
7723 	}
7724 	mutex_unlock(&trans->fs_info->chunk_mutex);
7725 }
7726 
7727 /*
7728  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7729  */
7730 int btrfs_bg_type_to_factor(u64 flags)
7731 {
7732 	const int index = btrfs_bg_flags_to_raid_index(flags);
7733 
7734 	return btrfs_raid_array[index].ncopies;
7735 }
7736 
7737 
7738 
7739 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7740 				 u64 chunk_offset, u64 devid,
7741 				 u64 physical_offset, u64 physical_len)
7742 {
7743 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7744 	struct extent_map *em;
7745 	struct map_lookup *map;
7746 	struct btrfs_device *dev;
7747 	u64 stripe_len;
7748 	bool found = false;
7749 	int ret = 0;
7750 	int i;
7751 
7752 	read_lock(&em_tree->lock);
7753 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7754 	read_unlock(&em_tree->lock);
7755 
7756 	if (!em) {
7757 		btrfs_err(fs_info,
7758 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7759 			  physical_offset, devid);
7760 		ret = -EUCLEAN;
7761 		goto out;
7762 	}
7763 
7764 	map = em->map_lookup;
7765 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7766 	if (physical_len != stripe_len) {
7767 		btrfs_err(fs_info,
7768 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7769 			  physical_offset, devid, em->start, physical_len,
7770 			  stripe_len);
7771 		ret = -EUCLEAN;
7772 		goto out;
7773 	}
7774 
7775 	for (i = 0; i < map->num_stripes; i++) {
7776 		if (map->stripes[i].dev->devid == devid &&
7777 		    map->stripes[i].physical == physical_offset) {
7778 			found = true;
7779 			if (map->verified_stripes >= map->num_stripes) {
7780 				btrfs_err(fs_info,
7781 				"too many dev extents for chunk %llu found",
7782 					  em->start);
7783 				ret = -EUCLEAN;
7784 				goto out;
7785 			}
7786 			map->verified_stripes++;
7787 			break;
7788 		}
7789 	}
7790 	if (!found) {
7791 		btrfs_err(fs_info,
7792 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7793 			physical_offset, devid);
7794 		ret = -EUCLEAN;
7795 	}
7796 
7797 	/* Make sure no dev extent is beyond device bondary */
7798 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7799 	if (!dev) {
7800 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7801 		ret = -EUCLEAN;
7802 		goto out;
7803 	}
7804 
7805 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7806 		btrfs_err(fs_info,
7807 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7808 			  devid, physical_offset, physical_len,
7809 			  dev->disk_total_bytes);
7810 		ret = -EUCLEAN;
7811 		goto out;
7812 	}
7813 
7814 	if (dev->zone_info) {
7815 		u64 zone_size = dev->zone_info->zone_size;
7816 
7817 		if (!IS_ALIGNED(physical_offset, zone_size) ||
7818 		    !IS_ALIGNED(physical_len, zone_size)) {
7819 			btrfs_err(fs_info,
7820 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7821 				  devid, physical_offset, physical_len);
7822 			ret = -EUCLEAN;
7823 			goto out;
7824 		}
7825 	}
7826 
7827 out:
7828 	free_extent_map(em);
7829 	return ret;
7830 }
7831 
7832 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7833 {
7834 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7835 	struct extent_map *em;
7836 	struct rb_node *node;
7837 	int ret = 0;
7838 
7839 	read_lock(&em_tree->lock);
7840 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7841 		em = rb_entry(node, struct extent_map, rb_node);
7842 		if (em->map_lookup->num_stripes !=
7843 		    em->map_lookup->verified_stripes) {
7844 			btrfs_err(fs_info,
7845 			"chunk %llu has missing dev extent, have %d expect %d",
7846 				  em->start, em->map_lookup->verified_stripes,
7847 				  em->map_lookup->num_stripes);
7848 			ret = -EUCLEAN;
7849 			goto out;
7850 		}
7851 	}
7852 out:
7853 	read_unlock(&em_tree->lock);
7854 	return ret;
7855 }
7856 
7857 /*
7858  * Ensure that all dev extents are mapped to correct chunk, otherwise
7859  * later chunk allocation/free would cause unexpected behavior.
7860  *
7861  * NOTE: This will iterate through the whole device tree, which should be of
7862  * the same size level as the chunk tree.  This slightly increases mount time.
7863  */
7864 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7865 {
7866 	struct btrfs_path *path;
7867 	struct btrfs_root *root = fs_info->dev_root;
7868 	struct btrfs_key key;
7869 	u64 prev_devid = 0;
7870 	u64 prev_dev_ext_end = 0;
7871 	int ret = 0;
7872 
7873 	/*
7874 	 * We don't have a dev_root because we mounted with ignorebadroots and
7875 	 * failed to load the root, so we want to skip the verification in this
7876 	 * case for sure.
7877 	 *
7878 	 * However if the dev root is fine, but the tree itself is corrupted
7879 	 * we'd still fail to mount.  This verification is only to make sure
7880 	 * writes can happen safely, so instead just bypass this check
7881 	 * completely in the case of IGNOREBADROOTS.
7882 	 */
7883 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7884 		return 0;
7885 
7886 	key.objectid = 1;
7887 	key.type = BTRFS_DEV_EXTENT_KEY;
7888 	key.offset = 0;
7889 
7890 	path = btrfs_alloc_path();
7891 	if (!path)
7892 		return -ENOMEM;
7893 
7894 	path->reada = READA_FORWARD;
7895 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7896 	if (ret < 0)
7897 		goto out;
7898 
7899 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7900 		ret = btrfs_next_item(root, path);
7901 		if (ret < 0)
7902 			goto out;
7903 		/* No dev extents at all? Not good */
7904 		if (ret > 0) {
7905 			ret = -EUCLEAN;
7906 			goto out;
7907 		}
7908 	}
7909 	while (1) {
7910 		struct extent_buffer *leaf = path->nodes[0];
7911 		struct btrfs_dev_extent *dext;
7912 		int slot = path->slots[0];
7913 		u64 chunk_offset;
7914 		u64 physical_offset;
7915 		u64 physical_len;
7916 		u64 devid;
7917 
7918 		btrfs_item_key_to_cpu(leaf, &key, slot);
7919 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7920 			break;
7921 		devid = key.objectid;
7922 		physical_offset = key.offset;
7923 
7924 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7925 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7926 		physical_len = btrfs_dev_extent_length(leaf, dext);
7927 
7928 		/* Check if this dev extent overlaps with the previous one */
7929 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7930 			btrfs_err(fs_info,
7931 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7932 				  devid, physical_offset, prev_dev_ext_end);
7933 			ret = -EUCLEAN;
7934 			goto out;
7935 		}
7936 
7937 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7938 					    physical_offset, physical_len);
7939 		if (ret < 0)
7940 			goto out;
7941 		prev_devid = devid;
7942 		prev_dev_ext_end = physical_offset + physical_len;
7943 
7944 		ret = btrfs_next_item(root, path);
7945 		if (ret < 0)
7946 			goto out;
7947 		if (ret > 0) {
7948 			ret = 0;
7949 			break;
7950 		}
7951 	}
7952 
7953 	/* Ensure all chunks have corresponding dev extents */
7954 	ret = verify_chunk_dev_extent_mapping(fs_info);
7955 out:
7956 	btrfs_free_path(path);
7957 	return ret;
7958 }
7959 
7960 /*
7961  * Check whether the given block group or device is pinned by any inode being
7962  * used as a swapfile.
7963  */
7964 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7965 {
7966 	struct btrfs_swapfile_pin *sp;
7967 	struct rb_node *node;
7968 
7969 	spin_lock(&fs_info->swapfile_pins_lock);
7970 	node = fs_info->swapfile_pins.rb_node;
7971 	while (node) {
7972 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7973 		if (ptr < sp->ptr)
7974 			node = node->rb_left;
7975 		else if (ptr > sp->ptr)
7976 			node = node->rb_right;
7977 		else
7978 			break;
7979 	}
7980 	spin_unlock(&fs_info->swapfile_pins_lock);
7981 	return node != NULL;
7982 }
7983 
7984 static int relocating_repair_kthread(void *data)
7985 {
7986 	struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
7987 	struct btrfs_fs_info *fs_info = cache->fs_info;
7988 	u64 target;
7989 	int ret = 0;
7990 
7991 	target = cache->start;
7992 	btrfs_put_block_group(cache);
7993 
7994 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
7995 		btrfs_info(fs_info,
7996 			   "zoned: skip relocating block group %llu to repair: EBUSY",
7997 			   target);
7998 		return -EBUSY;
7999 	}
8000 
8001 	mutex_lock(&fs_info->delete_unused_bgs_mutex);
8002 
8003 	/* Ensure block group still exists */
8004 	cache = btrfs_lookup_block_group(fs_info, target);
8005 	if (!cache)
8006 		goto out;
8007 
8008 	if (!cache->relocating_repair)
8009 		goto out;
8010 
8011 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8012 	if (ret < 0)
8013 		goto out;
8014 
8015 	btrfs_info(fs_info,
8016 		   "zoned: relocating block group %llu to repair IO failure",
8017 		   target);
8018 	ret = btrfs_relocate_chunk(fs_info, target);
8019 
8020 out:
8021 	if (cache)
8022 		btrfs_put_block_group(cache);
8023 	mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8024 	btrfs_exclop_finish(fs_info);
8025 
8026 	return ret;
8027 }
8028 
8029 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8030 {
8031 	struct btrfs_block_group *cache;
8032 
8033 	/* Do not attempt to repair in degraded state */
8034 	if (btrfs_test_opt(fs_info, DEGRADED))
8035 		return 0;
8036 
8037 	cache = btrfs_lookup_block_group(fs_info, logical);
8038 	if (!cache)
8039 		return 0;
8040 
8041 	spin_lock(&cache->lock);
8042 	if (cache->relocating_repair) {
8043 		spin_unlock(&cache->lock);
8044 		btrfs_put_block_group(cache);
8045 		return 0;
8046 	}
8047 	cache->relocating_repair = 1;
8048 	spin_unlock(&cache->lock);
8049 
8050 	kthread_run(relocating_repair_kthread, cache,
8051 		    "btrfs-relocating-repair");
8052 
8053 	return 0;
8054 }
8055