xref: /openbmc/linux/fs/btrfs/volumes.c (revision 4989d4a0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34 #include "discard.h"
35 #include "zoned.h"
36 
37 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
38 	[BTRFS_RAID_RAID10] = {
39 		.sub_stripes	= 2,
40 		.dev_stripes	= 1,
41 		.devs_max	= 0,	/* 0 == as many as possible */
42 		.devs_min	= 2,
43 		.tolerated_failures = 1,
44 		.devs_increment	= 2,
45 		.ncopies	= 2,
46 		.nparity        = 0,
47 		.raid_name	= "raid10",
48 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
49 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
50 	},
51 	[BTRFS_RAID_RAID1] = {
52 		.sub_stripes	= 1,
53 		.dev_stripes	= 1,
54 		.devs_max	= 2,
55 		.devs_min	= 2,
56 		.tolerated_failures = 1,
57 		.devs_increment	= 2,
58 		.ncopies	= 2,
59 		.nparity        = 0,
60 		.raid_name	= "raid1",
61 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
62 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
63 	},
64 	[BTRFS_RAID_RAID1C3] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 1,
67 		.devs_max	= 3,
68 		.devs_min	= 3,
69 		.tolerated_failures = 2,
70 		.devs_increment	= 3,
71 		.ncopies	= 3,
72 		.nparity        = 0,
73 		.raid_name	= "raid1c3",
74 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
75 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
76 	},
77 	[BTRFS_RAID_RAID1C4] = {
78 		.sub_stripes	= 1,
79 		.dev_stripes	= 1,
80 		.devs_max	= 4,
81 		.devs_min	= 4,
82 		.tolerated_failures = 3,
83 		.devs_increment	= 4,
84 		.ncopies	= 4,
85 		.nparity        = 0,
86 		.raid_name	= "raid1c4",
87 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
88 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
89 	},
90 	[BTRFS_RAID_DUP] = {
91 		.sub_stripes	= 1,
92 		.dev_stripes	= 2,
93 		.devs_max	= 1,
94 		.devs_min	= 1,
95 		.tolerated_failures = 0,
96 		.devs_increment	= 1,
97 		.ncopies	= 2,
98 		.nparity        = 0,
99 		.raid_name	= "dup",
100 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
101 		.mindev_error	= 0,
102 	},
103 	[BTRFS_RAID_RAID0] = {
104 		.sub_stripes	= 1,
105 		.dev_stripes	= 1,
106 		.devs_max	= 0,
107 		.devs_min	= 1,
108 		.tolerated_failures = 0,
109 		.devs_increment	= 1,
110 		.ncopies	= 1,
111 		.nparity        = 0,
112 		.raid_name	= "raid0",
113 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
114 		.mindev_error	= 0,
115 	},
116 	[BTRFS_RAID_SINGLE] = {
117 		.sub_stripes	= 1,
118 		.dev_stripes	= 1,
119 		.devs_max	= 1,
120 		.devs_min	= 1,
121 		.tolerated_failures = 0,
122 		.devs_increment	= 1,
123 		.ncopies	= 1,
124 		.nparity        = 0,
125 		.raid_name	= "single",
126 		.bg_flag	= 0,
127 		.mindev_error	= 0,
128 	},
129 	[BTRFS_RAID_RAID5] = {
130 		.sub_stripes	= 1,
131 		.dev_stripes	= 1,
132 		.devs_max	= 0,
133 		.devs_min	= 2,
134 		.tolerated_failures = 1,
135 		.devs_increment	= 1,
136 		.ncopies	= 1,
137 		.nparity        = 1,
138 		.raid_name	= "raid5",
139 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
140 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
141 	},
142 	[BTRFS_RAID_RAID6] = {
143 		.sub_stripes	= 1,
144 		.dev_stripes	= 1,
145 		.devs_max	= 0,
146 		.devs_min	= 3,
147 		.tolerated_failures = 2,
148 		.devs_increment	= 1,
149 		.ncopies	= 1,
150 		.nparity        = 2,
151 		.raid_name	= "raid6",
152 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
153 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
154 	},
155 };
156 
157 /*
158  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
159  * can be used as index to access btrfs_raid_array[].
160  */
161 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
162 {
163 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
164 		return BTRFS_RAID_RAID10;
165 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
166 		return BTRFS_RAID_RAID1;
167 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
168 		return BTRFS_RAID_RAID1C3;
169 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
170 		return BTRFS_RAID_RAID1C4;
171 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
172 		return BTRFS_RAID_DUP;
173 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
174 		return BTRFS_RAID_RAID0;
175 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
176 		return BTRFS_RAID_RAID5;
177 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
178 		return BTRFS_RAID_RAID6;
179 
180 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
181 }
182 
183 const char *btrfs_bg_type_to_raid_name(u64 flags)
184 {
185 	const int index = btrfs_bg_flags_to_raid_index(flags);
186 
187 	if (index >= BTRFS_NR_RAID_TYPES)
188 		return NULL;
189 
190 	return btrfs_raid_array[index].raid_name;
191 }
192 
193 /*
194  * Fill @buf with textual description of @bg_flags, no more than @size_buf
195  * bytes including terminating null byte.
196  */
197 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
198 {
199 	int i;
200 	int ret;
201 	char *bp = buf;
202 	u64 flags = bg_flags;
203 	u32 size_bp = size_buf;
204 
205 	if (!flags) {
206 		strcpy(bp, "NONE");
207 		return;
208 	}
209 
210 #define DESCRIBE_FLAG(flag, desc)						\
211 	do {								\
212 		if (flags & (flag)) {					\
213 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
214 			if (ret < 0 || ret >= size_bp)			\
215 				goto out_overflow;			\
216 			size_bp -= ret;					\
217 			bp += ret;					\
218 			flags &= ~(flag);				\
219 		}							\
220 	} while (0)
221 
222 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
223 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
224 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
225 
226 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
227 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
228 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
229 			      btrfs_raid_array[i].raid_name);
230 #undef DESCRIBE_FLAG
231 
232 	if (flags) {
233 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
234 		size_bp -= ret;
235 	}
236 
237 	if (size_bp < size_buf)
238 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
239 
240 	/*
241 	 * The text is trimmed, it's up to the caller to provide sufficiently
242 	 * large buffer
243 	 */
244 out_overflow:;
245 }
246 
247 static int init_first_rw_device(struct btrfs_trans_handle *trans);
248 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
249 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
252 			     enum btrfs_map_op op,
253 			     u64 logical, u64 *length,
254 			     struct btrfs_io_context **bioc_ret,
255 			     int mirror_num, int need_raid_map);
256 
257 /*
258  * Device locking
259  * ==============
260  *
261  * There are several mutexes that protect manipulation of devices and low-level
262  * structures like chunks but not block groups, extents or files
263  *
264  * uuid_mutex (global lock)
265  * ------------------------
266  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
267  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
268  * device) or requested by the device= mount option
269  *
270  * the mutex can be very coarse and can cover long-running operations
271  *
272  * protects: updates to fs_devices counters like missing devices, rw devices,
273  * seeding, structure cloning, opening/closing devices at mount/umount time
274  *
275  * global::fs_devs - add, remove, updates to the global list
276  *
277  * does not protect: manipulation of the fs_devices::devices list in general
278  * but in mount context it could be used to exclude list modifications by eg.
279  * scan ioctl
280  *
281  * btrfs_device::name - renames (write side), read is RCU
282  *
283  * fs_devices::device_list_mutex (per-fs, with RCU)
284  * ------------------------------------------------
285  * protects updates to fs_devices::devices, ie. adding and deleting
286  *
287  * simple list traversal with read-only actions can be done with RCU protection
288  *
289  * may be used to exclude some operations from running concurrently without any
290  * modifications to the list (see write_all_supers)
291  *
292  * Is not required at mount and close times, because our device list is
293  * protected by the uuid_mutex at that point.
294  *
295  * balance_mutex
296  * -------------
297  * protects balance structures (status, state) and context accessed from
298  * several places (internally, ioctl)
299  *
300  * chunk_mutex
301  * -----------
302  * protects chunks, adding or removing during allocation, trim or when a new
303  * device is added/removed. Additionally it also protects post_commit_list of
304  * individual devices, since they can be added to the transaction's
305  * post_commit_list only with chunk_mutex held.
306  *
307  * cleaner_mutex
308  * -------------
309  * a big lock that is held by the cleaner thread and prevents running subvolume
310  * cleaning together with relocation or delayed iputs
311  *
312  *
313  * Lock nesting
314  * ============
315  *
316  * uuid_mutex
317  *   device_list_mutex
318  *     chunk_mutex
319  *   balance_mutex
320  *
321  *
322  * Exclusive operations
323  * ====================
324  *
325  * Maintains the exclusivity of the following operations that apply to the
326  * whole filesystem and cannot run in parallel.
327  *
328  * - Balance (*)
329  * - Device add
330  * - Device remove
331  * - Device replace (*)
332  * - Resize
333  *
334  * The device operations (as above) can be in one of the following states:
335  *
336  * - Running state
337  * - Paused state
338  * - Completed state
339  *
340  * Only device operations marked with (*) can go into the Paused state for the
341  * following reasons:
342  *
343  * - ioctl (only Balance can be Paused through ioctl)
344  * - filesystem remounted as read-only
345  * - filesystem unmounted and mounted as read-only
346  * - system power-cycle and filesystem mounted as read-only
347  * - filesystem or device errors leading to forced read-only
348  *
349  * The status of exclusive operation is set and cleared atomically.
350  * During the course of Paused state, fs_info::exclusive_operation remains set.
351  * A device operation in Paused or Running state can be canceled or resumed
352  * either by ioctl (Balance only) or when remounted as read-write.
353  * The exclusive status is cleared when the device operation is canceled or
354  * completed.
355  */
356 
357 DEFINE_MUTEX(uuid_mutex);
358 static LIST_HEAD(fs_uuids);
359 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
360 {
361 	return &fs_uuids;
362 }
363 
364 /*
365  * alloc_fs_devices - allocate struct btrfs_fs_devices
366  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
367  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
368  *
369  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
370  * The returned struct is not linked onto any lists and can be destroyed with
371  * kfree() right away.
372  */
373 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
374 						 const u8 *metadata_fsid)
375 {
376 	struct btrfs_fs_devices *fs_devs;
377 
378 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
379 	if (!fs_devs)
380 		return ERR_PTR(-ENOMEM);
381 
382 	mutex_init(&fs_devs->device_list_mutex);
383 
384 	INIT_LIST_HEAD(&fs_devs->devices);
385 	INIT_LIST_HEAD(&fs_devs->alloc_list);
386 	INIT_LIST_HEAD(&fs_devs->fs_list);
387 	INIT_LIST_HEAD(&fs_devs->seed_list);
388 	if (fsid)
389 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
390 
391 	if (metadata_fsid)
392 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
393 	else if (fsid)
394 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
395 
396 	return fs_devs;
397 }
398 
399 void btrfs_free_device(struct btrfs_device *device)
400 {
401 	WARN_ON(!list_empty(&device->post_commit_list));
402 	rcu_string_free(device->name);
403 	extent_io_tree_release(&device->alloc_state);
404 	bio_put(device->flush_bio);
405 	btrfs_destroy_dev_zone_info(device);
406 	kfree(device);
407 }
408 
409 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
410 {
411 	struct btrfs_device *device;
412 	WARN_ON(fs_devices->opened);
413 	while (!list_empty(&fs_devices->devices)) {
414 		device = list_entry(fs_devices->devices.next,
415 				    struct btrfs_device, dev_list);
416 		list_del(&device->dev_list);
417 		btrfs_free_device(device);
418 	}
419 	kfree(fs_devices);
420 }
421 
422 void __exit btrfs_cleanup_fs_uuids(void)
423 {
424 	struct btrfs_fs_devices *fs_devices;
425 
426 	while (!list_empty(&fs_uuids)) {
427 		fs_devices = list_entry(fs_uuids.next,
428 					struct btrfs_fs_devices, fs_list);
429 		list_del(&fs_devices->fs_list);
430 		free_fs_devices(fs_devices);
431 	}
432 }
433 
434 static noinline struct btrfs_fs_devices *find_fsid(
435 		const u8 *fsid, const u8 *metadata_fsid)
436 {
437 	struct btrfs_fs_devices *fs_devices;
438 
439 	ASSERT(fsid);
440 
441 	/* Handle non-split brain cases */
442 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
443 		if (metadata_fsid) {
444 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
445 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
446 				      BTRFS_FSID_SIZE) == 0)
447 				return fs_devices;
448 		} else {
449 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
450 				return fs_devices;
451 		}
452 	}
453 	return NULL;
454 }
455 
456 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
457 				struct btrfs_super_block *disk_super)
458 {
459 
460 	struct btrfs_fs_devices *fs_devices;
461 
462 	/*
463 	 * Handle scanned device having completed its fsid change but
464 	 * belonging to a fs_devices that was created by first scanning
465 	 * a device which didn't have its fsid/metadata_uuid changed
466 	 * at all and the CHANGING_FSID_V2 flag set.
467 	 */
468 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
469 		if (fs_devices->fsid_change &&
470 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
471 			   BTRFS_FSID_SIZE) == 0 &&
472 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
473 			   BTRFS_FSID_SIZE) == 0) {
474 			return fs_devices;
475 		}
476 	}
477 	/*
478 	 * Handle scanned device having completed its fsid change but
479 	 * belonging to a fs_devices that was created by a device that
480 	 * has an outdated pair of fsid/metadata_uuid and
481 	 * CHANGING_FSID_V2 flag set.
482 	 */
483 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
484 		if (fs_devices->fsid_change &&
485 		    memcmp(fs_devices->metadata_uuid,
486 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
487 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
488 			   BTRFS_FSID_SIZE) == 0) {
489 			return fs_devices;
490 		}
491 	}
492 
493 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
494 }
495 
496 
497 static int
498 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
499 		      int flush, struct block_device **bdev,
500 		      struct btrfs_super_block **disk_super)
501 {
502 	int ret;
503 
504 	*bdev = blkdev_get_by_path(device_path, flags, holder);
505 
506 	if (IS_ERR(*bdev)) {
507 		ret = PTR_ERR(*bdev);
508 		goto error;
509 	}
510 
511 	if (flush)
512 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
513 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
514 	if (ret) {
515 		blkdev_put(*bdev, flags);
516 		goto error;
517 	}
518 	invalidate_bdev(*bdev);
519 	*disk_super = btrfs_read_dev_super(*bdev);
520 	if (IS_ERR(*disk_super)) {
521 		ret = PTR_ERR(*disk_super);
522 		blkdev_put(*bdev, flags);
523 		goto error;
524 	}
525 
526 	return 0;
527 
528 error:
529 	*bdev = NULL;
530 	return ret;
531 }
532 
533 static bool device_path_matched(const char *path, struct btrfs_device *device)
534 {
535 	int found;
536 
537 	rcu_read_lock();
538 	found = strcmp(rcu_str_deref(device->name), path);
539 	rcu_read_unlock();
540 
541 	return found == 0;
542 }
543 
544 /*
545  *  Search and remove all stale (devices which are not mounted) devices.
546  *  When both inputs are NULL, it will search and release all stale devices.
547  *  path:	Optional. When provided will it release all unmounted devices
548  *		matching this path only.
549  *  skip_dev:	Optional. Will skip this device when searching for the stale
550  *		devices.
551  *  Return:	0 for success or if @path is NULL.
552  * 		-EBUSY if @path is a mounted device.
553  * 		-ENOENT if @path does not match any device in the list.
554  */
555 static int btrfs_free_stale_devices(const char *path,
556 				     struct btrfs_device *skip_device)
557 {
558 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
559 	struct btrfs_device *device, *tmp_device;
560 	int ret = 0;
561 
562 	lockdep_assert_held(&uuid_mutex);
563 
564 	if (path)
565 		ret = -ENOENT;
566 
567 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
568 
569 		mutex_lock(&fs_devices->device_list_mutex);
570 		list_for_each_entry_safe(device, tmp_device,
571 					 &fs_devices->devices, dev_list) {
572 			if (skip_device && skip_device == device)
573 				continue;
574 			if (path && !device->name)
575 				continue;
576 			if (path && !device_path_matched(path, device))
577 				continue;
578 			if (fs_devices->opened) {
579 				/* for an already deleted device return 0 */
580 				if (path && ret != 0)
581 					ret = -EBUSY;
582 				break;
583 			}
584 
585 			/* delete the stale device */
586 			fs_devices->num_devices--;
587 			list_del(&device->dev_list);
588 			btrfs_free_device(device);
589 
590 			ret = 0;
591 		}
592 		mutex_unlock(&fs_devices->device_list_mutex);
593 
594 		if (fs_devices->num_devices == 0) {
595 			btrfs_sysfs_remove_fsid(fs_devices);
596 			list_del(&fs_devices->fs_list);
597 			free_fs_devices(fs_devices);
598 		}
599 	}
600 
601 	return ret;
602 }
603 
604 /*
605  * This is only used on mount, and we are protected from competing things
606  * messing with our fs_devices by the uuid_mutex, thus we do not need the
607  * fs_devices->device_list_mutex here.
608  */
609 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
610 			struct btrfs_device *device, fmode_t flags,
611 			void *holder)
612 {
613 	struct request_queue *q;
614 	struct block_device *bdev;
615 	struct btrfs_super_block *disk_super;
616 	u64 devid;
617 	int ret;
618 
619 	if (device->bdev)
620 		return -EINVAL;
621 	if (!device->name)
622 		return -EINVAL;
623 
624 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
625 				    &bdev, &disk_super);
626 	if (ret)
627 		return ret;
628 
629 	devid = btrfs_stack_device_id(&disk_super->dev_item);
630 	if (devid != device->devid)
631 		goto error_free_page;
632 
633 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
634 		goto error_free_page;
635 
636 	device->generation = btrfs_super_generation(disk_super);
637 
638 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
639 		if (btrfs_super_incompat_flags(disk_super) &
640 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
641 			pr_err(
642 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
643 			goto error_free_page;
644 		}
645 
646 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
647 		fs_devices->seeding = true;
648 	} else {
649 		if (bdev_read_only(bdev))
650 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
651 		else
652 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653 	}
654 
655 	q = bdev_get_queue(bdev);
656 	if (!blk_queue_nonrot(q))
657 		fs_devices->rotating = true;
658 
659 	device->bdev = bdev;
660 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
661 	device->mode = flags;
662 
663 	fs_devices->open_devices++;
664 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
665 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
666 		fs_devices->rw_devices++;
667 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
668 	}
669 	btrfs_release_disk_super(disk_super);
670 
671 	return 0;
672 
673 error_free_page:
674 	btrfs_release_disk_super(disk_super);
675 	blkdev_put(bdev, flags);
676 
677 	return -EINVAL;
678 }
679 
680 /*
681  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
682  * being created with a disk that has already completed its fsid change. Such
683  * disk can belong to an fs which has its FSID changed or to one which doesn't.
684  * Handle both cases here.
685  */
686 static struct btrfs_fs_devices *find_fsid_inprogress(
687 					struct btrfs_super_block *disk_super)
688 {
689 	struct btrfs_fs_devices *fs_devices;
690 
691 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
692 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
693 			   BTRFS_FSID_SIZE) != 0 &&
694 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
695 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
696 			return fs_devices;
697 		}
698 	}
699 
700 	return find_fsid(disk_super->fsid, NULL);
701 }
702 
703 
704 static struct btrfs_fs_devices *find_fsid_changed(
705 					struct btrfs_super_block *disk_super)
706 {
707 	struct btrfs_fs_devices *fs_devices;
708 
709 	/*
710 	 * Handles the case where scanned device is part of an fs that had
711 	 * multiple successful changes of FSID but currently device didn't
712 	 * observe it. Meaning our fsid will be different than theirs. We need
713 	 * to handle two subcases :
714 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
715 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
716 	 *  are equal).
717 	 */
718 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
719 		/* Changed UUIDs */
720 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
721 			   BTRFS_FSID_SIZE) != 0 &&
722 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
723 			   BTRFS_FSID_SIZE) == 0 &&
724 		    memcmp(fs_devices->fsid, disk_super->fsid,
725 			   BTRFS_FSID_SIZE) != 0)
726 			return fs_devices;
727 
728 		/* Unchanged UUIDs */
729 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
730 			   BTRFS_FSID_SIZE) == 0 &&
731 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
732 			   BTRFS_FSID_SIZE) == 0)
733 			return fs_devices;
734 	}
735 
736 	return NULL;
737 }
738 
739 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
740 				struct btrfs_super_block *disk_super)
741 {
742 	struct btrfs_fs_devices *fs_devices;
743 
744 	/*
745 	 * Handle the case where the scanned device is part of an fs whose last
746 	 * metadata UUID change reverted it to the original FSID. At the same
747 	 * time * fs_devices was first created by another constitutent device
748 	 * which didn't fully observe the operation. This results in an
749 	 * btrfs_fs_devices created with metadata/fsid different AND
750 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
751 	 * fs_devices equal to the FSID of the disk.
752 	 */
753 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
754 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
755 			   BTRFS_FSID_SIZE) != 0 &&
756 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
757 			   BTRFS_FSID_SIZE) == 0 &&
758 		    fs_devices->fsid_change)
759 			return fs_devices;
760 	}
761 
762 	return NULL;
763 }
764 /*
765  * Add new device to list of registered devices
766  *
767  * Returns:
768  * device pointer which was just added or updated when successful
769  * error pointer when failed
770  */
771 static noinline struct btrfs_device *device_list_add(const char *path,
772 			   struct btrfs_super_block *disk_super,
773 			   bool *new_device_added)
774 {
775 	struct btrfs_device *device;
776 	struct btrfs_fs_devices *fs_devices = NULL;
777 	struct rcu_string *name;
778 	u64 found_transid = btrfs_super_generation(disk_super);
779 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
780 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
781 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
782 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
783 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
784 
785 	if (fsid_change_in_progress) {
786 		if (!has_metadata_uuid)
787 			fs_devices = find_fsid_inprogress(disk_super);
788 		else
789 			fs_devices = find_fsid_changed(disk_super);
790 	} else if (has_metadata_uuid) {
791 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
792 	} else {
793 		fs_devices = find_fsid_reverted_metadata(disk_super);
794 		if (!fs_devices)
795 			fs_devices = find_fsid(disk_super->fsid, NULL);
796 	}
797 
798 
799 	if (!fs_devices) {
800 		if (has_metadata_uuid)
801 			fs_devices = alloc_fs_devices(disk_super->fsid,
802 						      disk_super->metadata_uuid);
803 		else
804 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
805 
806 		if (IS_ERR(fs_devices))
807 			return ERR_CAST(fs_devices);
808 
809 		fs_devices->fsid_change = fsid_change_in_progress;
810 
811 		mutex_lock(&fs_devices->device_list_mutex);
812 		list_add(&fs_devices->fs_list, &fs_uuids);
813 
814 		device = NULL;
815 	} else {
816 		struct btrfs_dev_lookup_args args = {
817 			.devid = devid,
818 			.uuid = disk_super->dev_item.uuid,
819 		};
820 
821 		mutex_lock(&fs_devices->device_list_mutex);
822 		device = btrfs_find_device(fs_devices, &args);
823 
824 		/*
825 		 * If this disk has been pulled into an fs devices created by
826 		 * a device which had the CHANGING_FSID_V2 flag then replace the
827 		 * metadata_uuid/fsid values of the fs_devices.
828 		 */
829 		if (fs_devices->fsid_change &&
830 		    found_transid > fs_devices->latest_generation) {
831 			memcpy(fs_devices->fsid, disk_super->fsid,
832 					BTRFS_FSID_SIZE);
833 
834 			if (has_metadata_uuid)
835 				memcpy(fs_devices->metadata_uuid,
836 				       disk_super->metadata_uuid,
837 				       BTRFS_FSID_SIZE);
838 			else
839 				memcpy(fs_devices->metadata_uuid,
840 				       disk_super->fsid, BTRFS_FSID_SIZE);
841 
842 			fs_devices->fsid_change = false;
843 		}
844 	}
845 
846 	if (!device) {
847 		if (fs_devices->opened) {
848 			mutex_unlock(&fs_devices->device_list_mutex);
849 			return ERR_PTR(-EBUSY);
850 		}
851 
852 		device = btrfs_alloc_device(NULL, &devid,
853 					    disk_super->dev_item.uuid);
854 		if (IS_ERR(device)) {
855 			mutex_unlock(&fs_devices->device_list_mutex);
856 			/* we can safely leave the fs_devices entry around */
857 			return device;
858 		}
859 
860 		name = rcu_string_strdup(path, GFP_NOFS);
861 		if (!name) {
862 			btrfs_free_device(device);
863 			mutex_unlock(&fs_devices->device_list_mutex);
864 			return ERR_PTR(-ENOMEM);
865 		}
866 		rcu_assign_pointer(device->name, name);
867 
868 		list_add_rcu(&device->dev_list, &fs_devices->devices);
869 		fs_devices->num_devices++;
870 
871 		device->fs_devices = fs_devices;
872 		*new_device_added = true;
873 
874 		if (disk_super->label[0])
875 			pr_info(
876 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
877 				disk_super->label, devid, found_transid, path,
878 				current->comm, task_pid_nr(current));
879 		else
880 			pr_info(
881 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
882 				disk_super->fsid, devid, found_transid, path,
883 				current->comm, task_pid_nr(current));
884 
885 	} else if (!device->name || strcmp(device->name->str, path)) {
886 		/*
887 		 * When FS is already mounted.
888 		 * 1. If you are here and if the device->name is NULL that
889 		 *    means this device was missing at time of FS mount.
890 		 * 2. If you are here and if the device->name is different
891 		 *    from 'path' that means either
892 		 *      a. The same device disappeared and reappeared with
893 		 *         different name. or
894 		 *      b. The missing-disk-which-was-replaced, has
895 		 *         reappeared now.
896 		 *
897 		 * We must allow 1 and 2a above. But 2b would be a spurious
898 		 * and unintentional.
899 		 *
900 		 * Further in case of 1 and 2a above, the disk at 'path'
901 		 * would have missed some transaction when it was away and
902 		 * in case of 2a the stale bdev has to be updated as well.
903 		 * 2b must not be allowed at all time.
904 		 */
905 
906 		/*
907 		 * For now, we do allow update to btrfs_fs_device through the
908 		 * btrfs dev scan cli after FS has been mounted.  We're still
909 		 * tracking a problem where systems fail mount by subvolume id
910 		 * when we reject replacement on a mounted FS.
911 		 */
912 		if (!fs_devices->opened && found_transid < device->generation) {
913 			/*
914 			 * That is if the FS is _not_ mounted and if you
915 			 * are here, that means there is more than one
916 			 * disk with same uuid and devid.We keep the one
917 			 * with larger generation number or the last-in if
918 			 * generation are equal.
919 			 */
920 			mutex_unlock(&fs_devices->device_list_mutex);
921 			return ERR_PTR(-EEXIST);
922 		}
923 
924 		/*
925 		 * We are going to replace the device path for a given devid,
926 		 * make sure it's the same device if the device is mounted
927 		 */
928 		if (device->bdev) {
929 			int error;
930 			dev_t path_dev;
931 
932 			error = lookup_bdev(path, &path_dev);
933 			if (error) {
934 				mutex_unlock(&fs_devices->device_list_mutex);
935 				return ERR_PTR(error);
936 			}
937 
938 			if (device->bdev->bd_dev != path_dev) {
939 				mutex_unlock(&fs_devices->device_list_mutex);
940 				/*
941 				 * device->fs_info may not be reliable here, so
942 				 * pass in a NULL instead. This avoids a
943 				 * possible use-after-free when the fs_info and
944 				 * fs_info->sb are already torn down.
945 				 */
946 				btrfs_warn_in_rcu(NULL,
947 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
948 						  path, devid, found_transid,
949 						  current->comm,
950 						  task_pid_nr(current));
951 				return ERR_PTR(-EEXIST);
952 			}
953 			btrfs_info_in_rcu(device->fs_info,
954 	"devid %llu device path %s changed to %s scanned by %s (%d)",
955 					  devid, rcu_str_deref(device->name),
956 					  path, current->comm,
957 					  task_pid_nr(current));
958 		}
959 
960 		name = rcu_string_strdup(path, GFP_NOFS);
961 		if (!name) {
962 			mutex_unlock(&fs_devices->device_list_mutex);
963 			return ERR_PTR(-ENOMEM);
964 		}
965 		rcu_string_free(device->name);
966 		rcu_assign_pointer(device->name, name);
967 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
968 			fs_devices->missing_devices--;
969 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
970 		}
971 	}
972 
973 	/*
974 	 * Unmount does not free the btrfs_device struct but would zero
975 	 * generation along with most of the other members. So just update
976 	 * it back. We need it to pick the disk with largest generation
977 	 * (as above).
978 	 */
979 	if (!fs_devices->opened) {
980 		device->generation = found_transid;
981 		fs_devices->latest_generation = max_t(u64, found_transid,
982 						fs_devices->latest_generation);
983 	}
984 
985 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
986 
987 	mutex_unlock(&fs_devices->device_list_mutex);
988 	return device;
989 }
990 
991 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
992 {
993 	struct btrfs_fs_devices *fs_devices;
994 	struct btrfs_device *device;
995 	struct btrfs_device *orig_dev;
996 	int ret = 0;
997 
998 	lockdep_assert_held(&uuid_mutex);
999 
1000 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1001 	if (IS_ERR(fs_devices))
1002 		return fs_devices;
1003 
1004 	fs_devices->total_devices = orig->total_devices;
1005 
1006 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1007 		struct rcu_string *name;
1008 
1009 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1010 					    orig_dev->uuid);
1011 		if (IS_ERR(device)) {
1012 			ret = PTR_ERR(device);
1013 			goto error;
1014 		}
1015 
1016 		/*
1017 		 * This is ok to do without rcu read locked because we hold the
1018 		 * uuid mutex so nothing we touch in here is going to disappear.
1019 		 */
1020 		if (orig_dev->name) {
1021 			name = rcu_string_strdup(orig_dev->name->str,
1022 					GFP_KERNEL);
1023 			if (!name) {
1024 				btrfs_free_device(device);
1025 				ret = -ENOMEM;
1026 				goto error;
1027 			}
1028 			rcu_assign_pointer(device->name, name);
1029 		}
1030 
1031 		list_add(&device->dev_list, &fs_devices->devices);
1032 		device->fs_devices = fs_devices;
1033 		fs_devices->num_devices++;
1034 	}
1035 	return fs_devices;
1036 error:
1037 	free_fs_devices(fs_devices);
1038 	return ERR_PTR(ret);
1039 }
1040 
1041 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1042 				      struct btrfs_device **latest_dev)
1043 {
1044 	struct btrfs_device *device, *next;
1045 
1046 	/* This is the initialized path, it is safe to release the devices. */
1047 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1048 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1049 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1050 				      &device->dev_state) &&
1051 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1052 				      &device->dev_state) &&
1053 			    (!*latest_dev ||
1054 			     device->generation > (*latest_dev)->generation)) {
1055 				*latest_dev = device;
1056 			}
1057 			continue;
1058 		}
1059 
1060 		/*
1061 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1062 		 * in btrfs_init_dev_replace() so just continue.
1063 		 */
1064 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1065 			continue;
1066 
1067 		if (device->bdev) {
1068 			blkdev_put(device->bdev, device->mode);
1069 			device->bdev = NULL;
1070 			fs_devices->open_devices--;
1071 		}
1072 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1073 			list_del_init(&device->dev_alloc_list);
1074 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1075 			fs_devices->rw_devices--;
1076 		}
1077 		list_del_init(&device->dev_list);
1078 		fs_devices->num_devices--;
1079 		btrfs_free_device(device);
1080 	}
1081 
1082 }
1083 
1084 /*
1085  * After we have read the system tree and know devids belonging to this
1086  * filesystem, remove the device which does not belong there.
1087  */
1088 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1089 {
1090 	struct btrfs_device *latest_dev = NULL;
1091 	struct btrfs_fs_devices *seed_dev;
1092 
1093 	mutex_lock(&uuid_mutex);
1094 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1095 
1096 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1097 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1098 
1099 	fs_devices->latest_dev = latest_dev;
1100 
1101 	mutex_unlock(&uuid_mutex);
1102 }
1103 
1104 static void btrfs_close_bdev(struct btrfs_device *device)
1105 {
1106 	if (!device->bdev)
1107 		return;
1108 
1109 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1110 		sync_blockdev(device->bdev);
1111 		invalidate_bdev(device->bdev);
1112 	}
1113 
1114 	blkdev_put(device->bdev, device->mode);
1115 }
1116 
1117 static void btrfs_close_one_device(struct btrfs_device *device)
1118 {
1119 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1120 
1121 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1122 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1123 		list_del_init(&device->dev_alloc_list);
1124 		fs_devices->rw_devices--;
1125 	}
1126 
1127 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1128 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1129 
1130 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1131 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1132 		fs_devices->missing_devices--;
1133 	}
1134 
1135 	btrfs_close_bdev(device);
1136 	if (device->bdev) {
1137 		fs_devices->open_devices--;
1138 		device->bdev = NULL;
1139 	}
1140 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1141 	btrfs_destroy_dev_zone_info(device);
1142 
1143 	device->fs_info = NULL;
1144 	atomic_set(&device->dev_stats_ccnt, 0);
1145 	extent_io_tree_release(&device->alloc_state);
1146 
1147 	/*
1148 	 * Reset the flush error record. We might have a transient flush error
1149 	 * in this mount, and if so we aborted the current transaction and set
1150 	 * the fs to an error state, guaranteeing no super blocks can be further
1151 	 * committed. However that error might be transient and if we unmount the
1152 	 * filesystem and mount it again, we should allow the mount to succeed
1153 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1154 	 * filesystem again we still get flush errors, then we will again abort
1155 	 * any transaction and set the error state, guaranteeing no commits of
1156 	 * unsafe super blocks.
1157 	 */
1158 	device->last_flush_error = 0;
1159 
1160 	/* Verify the device is back in a pristine state  */
1161 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1162 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1163 	ASSERT(list_empty(&device->dev_alloc_list));
1164 	ASSERT(list_empty(&device->post_commit_list));
1165 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1166 }
1167 
1168 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1169 {
1170 	struct btrfs_device *device, *tmp;
1171 
1172 	lockdep_assert_held(&uuid_mutex);
1173 
1174 	if (--fs_devices->opened > 0)
1175 		return;
1176 
1177 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1178 		btrfs_close_one_device(device);
1179 
1180 	WARN_ON(fs_devices->open_devices);
1181 	WARN_ON(fs_devices->rw_devices);
1182 	fs_devices->opened = 0;
1183 	fs_devices->seeding = false;
1184 	fs_devices->fs_info = NULL;
1185 }
1186 
1187 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1188 {
1189 	LIST_HEAD(list);
1190 	struct btrfs_fs_devices *tmp;
1191 
1192 	mutex_lock(&uuid_mutex);
1193 	close_fs_devices(fs_devices);
1194 	if (!fs_devices->opened)
1195 		list_splice_init(&fs_devices->seed_list, &list);
1196 
1197 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1198 		close_fs_devices(fs_devices);
1199 		list_del(&fs_devices->seed_list);
1200 		free_fs_devices(fs_devices);
1201 	}
1202 	mutex_unlock(&uuid_mutex);
1203 }
1204 
1205 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1206 				fmode_t flags, void *holder)
1207 {
1208 	struct btrfs_device *device;
1209 	struct btrfs_device *latest_dev = NULL;
1210 	struct btrfs_device *tmp_device;
1211 
1212 	flags |= FMODE_EXCL;
1213 
1214 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1215 				 dev_list) {
1216 		int ret;
1217 
1218 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1219 		if (ret == 0 &&
1220 		    (!latest_dev || device->generation > latest_dev->generation)) {
1221 			latest_dev = device;
1222 		} else if (ret == -ENODATA) {
1223 			fs_devices->num_devices--;
1224 			list_del(&device->dev_list);
1225 			btrfs_free_device(device);
1226 		}
1227 	}
1228 	if (fs_devices->open_devices == 0)
1229 		return -EINVAL;
1230 
1231 	fs_devices->opened = 1;
1232 	fs_devices->latest_dev = latest_dev;
1233 	fs_devices->total_rw_bytes = 0;
1234 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1235 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1236 
1237 	return 0;
1238 }
1239 
1240 static int devid_cmp(void *priv, const struct list_head *a,
1241 		     const struct list_head *b)
1242 {
1243 	const struct btrfs_device *dev1, *dev2;
1244 
1245 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1246 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1247 
1248 	if (dev1->devid < dev2->devid)
1249 		return -1;
1250 	else if (dev1->devid > dev2->devid)
1251 		return 1;
1252 	return 0;
1253 }
1254 
1255 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1256 		       fmode_t flags, void *holder)
1257 {
1258 	int ret;
1259 
1260 	lockdep_assert_held(&uuid_mutex);
1261 	/*
1262 	 * The device_list_mutex cannot be taken here in case opening the
1263 	 * underlying device takes further locks like open_mutex.
1264 	 *
1265 	 * We also don't need the lock here as this is called during mount and
1266 	 * exclusion is provided by uuid_mutex
1267 	 */
1268 
1269 	if (fs_devices->opened) {
1270 		fs_devices->opened++;
1271 		ret = 0;
1272 	} else {
1273 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1274 		ret = open_fs_devices(fs_devices, flags, holder);
1275 	}
1276 
1277 	return ret;
1278 }
1279 
1280 void btrfs_release_disk_super(struct btrfs_super_block *super)
1281 {
1282 	struct page *page = virt_to_page(super);
1283 
1284 	put_page(page);
1285 }
1286 
1287 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1288 						       u64 bytenr, u64 bytenr_orig)
1289 {
1290 	struct btrfs_super_block *disk_super;
1291 	struct page *page;
1292 	void *p;
1293 	pgoff_t index;
1294 
1295 	/* make sure our super fits in the device */
1296 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1297 		return ERR_PTR(-EINVAL);
1298 
1299 	/* make sure our super fits in the page */
1300 	if (sizeof(*disk_super) > PAGE_SIZE)
1301 		return ERR_PTR(-EINVAL);
1302 
1303 	/* make sure our super doesn't straddle pages on disk */
1304 	index = bytenr >> PAGE_SHIFT;
1305 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1306 		return ERR_PTR(-EINVAL);
1307 
1308 	/* pull in the page with our super */
1309 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1310 
1311 	if (IS_ERR(page))
1312 		return ERR_CAST(page);
1313 
1314 	p = page_address(page);
1315 
1316 	/* align our pointer to the offset of the super block */
1317 	disk_super = p + offset_in_page(bytenr);
1318 
1319 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1320 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1321 		btrfs_release_disk_super(p);
1322 		return ERR_PTR(-EINVAL);
1323 	}
1324 
1325 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1326 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1327 
1328 	return disk_super;
1329 }
1330 
1331 int btrfs_forget_devices(const char *path)
1332 {
1333 	int ret;
1334 
1335 	mutex_lock(&uuid_mutex);
1336 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1337 	mutex_unlock(&uuid_mutex);
1338 
1339 	return ret;
1340 }
1341 
1342 /*
1343  * Look for a btrfs signature on a device. This may be called out of the mount path
1344  * and we are not allowed to call set_blocksize during the scan. The superblock
1345  * is read via pagecache
1346  */
1347 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1348 					   void *holder)
1349 {
1350 	struct btrfs_super_block *disk_super;
1351 	bool new_device_added = false;
1352 	struct btrfs_device *device = NULL;
1353 	struct block_device *bdev;
1354 	u64 bytenr, bytenr_orig;
1355 	int ret;
1356 
1357 	lockdep_assert_held(&uuid_mutex);
1358 
1359 	/*
1360 	 * we would like to check all the supers, but that would make
1361 	 * a btrfs mount succeed after a mkfs from a different FS.
1362 	 * So, we need to add a special mount option to scan for
1363 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1364 	 */
1365 	flags |= FMODE_EXCL;
1366 
1367 	bdev = blkdev_get_by_path(path, flags, holder);
1368 	if (IS_ERR(bdev))
1369 		return ERR_CAST(bdev);
1370 
1371 	bytenr_orig = btrfs_sb_offset(0);
1372 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1373 	if (ret) {
1374 		device = ERR_PTR(ret);
1375 		goto error_bdev_put;
1376 	}
1377 
1378 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1379 	if (IS_ERR(disk_super)) {
1380 		device = ERR_CAST(disk_super);
1381 		goto error_bdev_put;
1382 	}
1383 
1384 	device = device_list_add(path, disk_super, &new_device_added);
1385 	if (!IS_ERR(device)) {
1386 		if (new_device_added)
1387 			btrfs_free_stale_devices(path, device);
1388 	}
1389 
1390 	btrfs_release_disk_super(disk_super);
1391 
1392 error_bdev_put:
1393 	blkdev_put(bdev, flags);
1394 
1395 	return device;
1396 }
1397 
1398 /*
1399  * Try to find a chunk that intersects [start, start + len] range and when one
1400  * such is found, record the end of it in *start
1401  */
1402 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1403 				    u64 len)
1404 {
1405 	u64 physical_start, physical_end;
1406 
1407 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1408 
1409 	if (!find_first_extent_bit(&device->alloc_state, *start,
1410 				   &physical_start, &physical_end,
1411 				   CHUNK_ALLOCATED, NULL)) {
1412 
1413 		if (in_range(physical_start, *start, len) ||
1414 		    in_range(*start, physical_start,
1415 			     physical_end - physical_start)) {
1416 			*start = physical_end + 1;
1417 			return true;
1418 		}
1419 	}
1420 	return false;
1421 }
1422 
1423 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1424 {
1425 	switch (device->fs_devices->chunk_alloc_policy) {
1426 	case BTRFS_CHUNK_ALLOC_REGULAR:
1427 		/*
1428 		 * We don't want to overwrite the superblock on the drive nor
1429 		 * any area used by the boot loader (grub for example), so we
1430 		 * make sure to start at an offset of at least 1MB.
1431 		 */
1432 		return max_t(u64, start, SZ_1M);
1433 	case BTRFS_CHUNK_ALLOC_ZONED:
1434 		/*
1435 		 * We don't care about the starting region like regular
1436 		 * allocator, because we anyway use/reserve the first two zones
1437 		 * for superblock logging.
1438 		 */
1439 		return ALIGN(start, device->zone_info->zone_size);
1440 	default:
1441 		BUG();
1442 	}
1443 }
1444 
1445 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1446 					u64 *hole_start, u64 *hole_size,
1447 					u64 num_bytes)
1448 {
1449 	u64 zone_size = device->zone_info->zone_size;
1450 	u64 pos;
1451 	int ret;
1452 	bool changed = false;
1453 
1454 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1455 
1456 	while (*hole_size > 0) {
1457 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1458 						   *hole_start + *hole_size,
1459 						   num_bytes);
1460 		if (pos != *hole_start) {
1461 			*hole_size = *hole_start + *hole_size - pos;
1462 			*hole_start = pos;
1463 			changed = true;
1464 			if (*hole_size < num_bytes)
1465 				break;
1466 		}
1467 
1468 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1469 
1470 		/* Range is ensured to be empty */
1471 		if (!ret)
1472 			return changed;
1473 
1474 		/* Given hole range was invalid (outside of device) */
1475 		if (ret == -ERANGE) {
1476 			*hole_start += *hole_size;
1477 			*hole_size = 0;
1478 			return true;
1479 		}
1480 
1481 		*hole_start += zone_size;
1482 		*hole_size -= zone_size;
1483 		changed = true;
1484 	}
1485 
1486 	return changed;
1487 }
1488 
1489 /**
1490  * dev_extent_hole_check - check if specified hole is suitable for allocation
1491  * @device:	the device which we have the hole
1492  * @hole_start: starting position of the hole
1493  * @hole_size:	the size of the hole
1494  * @num_bytes:	the size of the free space that we need
1495  *
1496  * This function may modify @hole_start and @hole_size to reflect the suitable
1497  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1498  */
1499 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1500 				  u64 *hole_size, u64 num_bytes)
1501 {
1502 	bool changed = false;
1503 	u64 hole_end = *hole_start + *hole_size;
1504 
1505 	for (;;) {
1506 		/*
1507 		 * Check before we set max_hole_start, otherwise we could end up
1508 		 * sending back this offset anyway.
1509 		 */
1510 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1511 			if (hole_end >= *hole_start)
1512 				*hole_size = hole_end - *hole_start;
1513 			else
1514 				*hole_size = 0;
1515 			changed = true;
1516 		}
1517 
1518 		switch (device->fs_devices->chunk_alloc_policy) {
1519 		case BTRFS_CHUNK_ALLOC_REGULAR:
1520 			/* No extra check */
1521 			break;
1522 		case BTRFS_CHUNK_ALLOC_ZONED:
1523 			if (dev_extent_hole_check_zoned(device, hole_start,
1524 							hole_size, num_bytes)) {
1525 				changed = true;
1526 				/*
1527 				 * The changed hole can contain pending extent.
1528 				 * Loop again to check that.
1529 				 */
1530 				continue;
1531 			}
1532 			break;
1533 		default:
1534 			BUG();
1535 		}
1536 
1537 		break;
1538 	}
1539 
1540 	return changed;
1541 }
1542 
1543 /*
1544  * find_free_dev_extent_start - find free space in the specified device
1545  * @device:	  the device which we search the free space in
1546  * @num_bytes:	  the size of the free space that we need
1547  * @search_start: the position from which to begin the search
1548  * @start:	  store the start of the free space.
1549  * @len:	  the size of the free space. that we find, or the size
1550  *		  of the max free space if we don't find suitable free space
1551  *
1552  * this uses a pretty simple search, the expectation is that it is
1553  * called very infrequently and that a given device has a small number
1554  * of extents
1555  *
1556  * @start is used to store the start of the free space if we find. But if we
1557  * don't find suitable free space, it will be used to store the start position
1558  * of the max free space.
1559  *
1560  * @len is used to store the size of the free space that we find.
1561  * But if we don't find suitable free space, it is used to store the size of
1562  * the max free space.
1563  *
1564  * NOTE: This function will search *commit* root of device tree, and does extra
1565  * check to ensure dev extents are not double allocated.
1566  * This makes the function safe to allocate dev extents but may not report
1567  * correct usable device space, as device extent freed in current transaction
1568  * is not reported as available.
1569  */
1570 static int find_free_dev_extent_start(struct btrfs_device *device,
1571 				u64 num_bytes, u64 search_start, u64 *start,
1572 				u64 *len)
1573 {
1574 	struct btrfs_fs_info *fs_info = device->fs_info;
1575 	struct btrfs_root *root = fs_info->dev_root;
1576 	struct btrfs_key key;
1577 	struct btrfs_dev_extent *dev_extent;
1578 	struct btrfs_path *path;
1579 	u64 hole_size;
1580 	u64 max_hole_start;
1581 	u64 max_hole_size;
1582 	u64 extent_end;
1583 	u64 search_end = device->total_bytes;
1584 	int ret;
1585 	int slot;
1586 	struct extent_buffer *l;
1587 
1588 	search_start = dev_extent_search_start(device, search_start);
1589 
1590 	WARN_ON(device->zone_info &&
1591 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1592 
1593 	path = btrfs_alloc_path();
1594 	if (!path)
1595 		return -ENOMEM;
1596 
1597 	max_hole_start = search_start;
1598 	max_hole_size = 0;
1599 
1600 again:
1601 	if (search_start >= search_end ||
1602 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1603 		ret = -ENOSPC;
1604 		goto out;
1605 	}
1606 
1607 	path->reada = READA_FORWARD;
1608 	path->search_commit_root = 1;
1609 	path->skip_locking = 1;
1610 
1611 	key.objectid = device->devid;
1612 	key.offset = search_start;
1613 	key.type = BTRFS_DEV_EXTENT_KEY;
1614 
1615 	ret = btrfs_search_backwards(root, &key, path);
1616 	if (ret < 0)
1617 		goto out;
1618 
1619 	while (1) {
1620 		l = path->nodes[0];
1621 		slot = path->slots[0];
1622 		if (slot >= btrfs_header_nritems(l)) {
1623 			ret = btrfs_next_leaf(root, path);
1624 			if (ret == 0)
1625 				continue;
1626 			if (ret < 0)
1627 				goto out;
1628 
1629 			break;
1630 		}
1631 		btrfs_item_key_to_cpu(l, &key, slot);
1632 
1633 		if (key.objectid < device->devid)
1634 			goto next;
1635 
1636 		if (key.objectid > device->devid)
1637 			break;
1638 
1639 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1640 			goto next;
1641 
1642 		if (key.offset > search_start) {
1643 			hole_size = key.offset - search_start;
1644 			dev_extent_hole_check(device, &search_start, &hole_size,
1645 					      num_bytes);
1646 
1647 			if (hole_size > max_hole_size) {
1648 				max_hole_start = search_start;
1649 				max_hole_size = hole_size;
1650 			}
1651 
1652 			/*
1653 			 * If this free space is greater than which we need,
1654 			 * it must be the max free space that we have found
1655 			 * until now, so max_hole_start must point to the start
1656 			 * of this free space and the length of this free space
1657 			 * is stored in max_hole_size. Thus, we return
1658 			 * max_hole_start and max_hole_size and go back to the
1659 			 * caller.
1660 			 */
1661 			if (hole_size >= num_bytes) {
1662 				ret = 0;
1663 				goto out;
1664 			}
1665 		}
1666 
1667 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1668 		extent_end = key.offset + btrfs_dev_extent_length(l,
1669 								  dev_extent);
1670 		if (extent_end > search_start)
1671 			search_start = extent_end;
1672 next:
1673 		path->slots[0]++;
1674 		cond_resched();
1675 	}
1676 
1677 	/*
1678 	 * At this point, search_start should be the end of
1679 	 * allocated dev extents, and when shrinking the device,
1680 	 * search_end may be smaller than search_start.
1681 	 */
1682 	if (search_end > search_start) {
1683 		hole_size = search_end - search_start;
1684 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1685 					  num_bytes)) {
1686 			btrfs_release_path(path);
1687 			goto again;
1688 		}
1689 
1690 		if (hole_size > max_hole_size) {
1691 			max_hole_start = search_start;
1692 			max_hole_size = hole_size;
1693 		}
1694 	}
1695 
1696 	/* See above. */
1697 	if (max_hole_size < num_bytes)
1698 		ret = -ENOSPC;
1699 	else
1700 		ret = 0;
1701 
1702 out:
1703 	btrfs_free_path(path);
1704 	*start = max_hole_start;
1705 	if (len)
1706 		*len = max_hole_size;
1707 	return ret;
1708 }
1709 
1710 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1711 			 u64 *start, u64 *len)
1712 {
1713 	/* FIXME use last free of some kind */
1714 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1715 }
1716 
1717 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1718 			  struct btrfs_device *device,
1719 			  u64 start, u64 *dev_extent_len)
1720 {
1721 	struct btrfs_fs_info *fs_info = device->fs_info;
1722 	struct btrfs_root *root = fs_info->dev_root;
1723 	int ret;
1724 	struct btrfs_path *path;
1725 	struct btrfs_key key;
1726 	struct btrfs_key found_key;
1727 	struct extent_buffer *leaf = NULL;
1728 	struct btrfs_dev_extent *extent = NULL;
1729 
1730 	path = btrfs_alloc_path();
1731 	if (!path)
1732 		return -ENOMEM;
1733 
1734 	key.objectid = device->devid;
1735 	key.offset = start;
1736 	key.type = BTRFS_DEV_EXTENT_KEY;
1737 again:
1738 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1739 	if (ret > 0) {
1740 		ret = btrfs_previous_item(root, path, key.objectid,
1741 					  BTRFS_DEV_EXTENT_KEY);
1742 		if (ret)
1743 			goto out;
1744 		leaf = path->nodes[0];
1745 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1746 		extent = btrfs_item_ptr(leaf, path->slots[0],
1747 					struct btrfs_dev_extent);
1748 		BUG_ON(found_key.offset > start || found_key.offset +
1749 		       btrfs_dev_extent_length(leaf, extent) < start);
1750 		key = found_key;
1751 		btrfs_release_path(path);
1752 		goto again;
1753 	} else if (ret == 0) {
1754 		leaf = path->nodes[0];
1755 		extent = btrfs_item_ptr(leaf, path->slots[0],
1756 					struct btrfs_dev_extent);
1757 	} else {
1758 		goto out;
1759 	}
1760 
1761 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1762 
1763 	ret = btrfs_del_item(trans, root, path);
1764 	if (ret == 0)
1765 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1766 out:
1767 	btrfs_free_path(path);
1768 	return ret;
1769 }
1770 
1771 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1772 {
1773 	struct extent_map_tree *em_tree;
1774 	struct extent_map *em;
1775 	struct rb_node *n;
1776 	u64 ret = 0;
1777 
1778 	em_tree = &fs_info->mapping_tree;
1779 	read_lock(&em_tree->lock);
1780 	n = rb_last(&em_tree->map.rb_root);
1781 	if (n) {
1782 		em = rb_entry(n, struct extent_map, rb_node);
1783 		ret = em->start + em->len;
1784 	}
1785 	read_unlock(&em_tree->lock);
1786 
1787 	return ret;
1788 }
1789 
1790 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1791 				    u64 *devid_ret)
1792 {
1793 	int ret;
1794 	struct btrfs_key key;
1795 	struct btrfs_key found_key;
1796 	struct btrfs_path *path;
1797 
1798 	path = btrfs_alloc_path();
1799 	if (!path)
1800 		return -ENOMEM;
1801 
1802 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1803 	key.type = BTRFS_DEV_ITEM_KEY;
1804 	key.offset = (u64)-1;
1805 
1806 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1807 	if (ret < 0)
1808 		goto error;
1809 
1810 	if (ret == 0) {
1811 		/* Corruption */
1812 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1813 		ret = -EUCLEAN;
1814 		goto error;
1815 	}
1816 
1817 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1818 				  BTRFS_DEV_ITEMS_OBJECTID,
1819 				  BTRFS_DEV_ITEM_KEY);
1820 	if (ret) {
1821 		*devid_ret = 1;
1822 	} else {
1823 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1824 				      path->slots[0]);
1825 		*devid_ret = found_key.offset + 1;
1826 	}
1827 	ret = 0;
1828 error:
1829 	btrfs_free_path(path);
1830 	return ret;
1831 }
1832 
1833 /*
1834  * the device information is stored in the chunk root
1835  * the btrfs_device struct should be fully filled in
1836  */
1837 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1838 			    struct btrfs_device *device)
1839 {
1840 	int ret;
1841 	struct btrfs_path *path;
1842 	struct btrfs_dev_item *dev_item;
1843 	struct extent_buffer *leaf;
1844 	struct btrfs_key key;
1845 	unsigned long ptr;
1846 
1847 	path = btrfs_alloc_path();
1848 	if (!path)
1849 		return -ENOMEM;
1850 
1851 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1852 	key.type = BTRFS_DEV_ITEM_KEY;
1853 	key.offset = device->devid;
1854 
1855 	btrfs_reserve_chunk_metadata(trans, true);
1856 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1857 				      &key, sizeof(*dev_item));
1858 	btrfs_trans_release_chunk_metadata(trans);
1859 	if (ret)
1860 		goto out;
1861 
1862 	leaf = path->nodes[0];
1863 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1864 
1865 	btrfs_set_device_id(leaf, dev_item, device->devid);
1866 	btrfs_set_device_generation(leaf, dev_item, 0);
1867 	btrfs_set_device_type(leaf, dev_item, device->type);
1868 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1869 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1870 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1871 	btrfs_set_device_total_bytes(leaf, dev_item,
1872 				     btrfs_device_get_disk_total_bytes(device));
1873 	btrfs_set_device_bytes_used(leaf, dev_item,
1874 				    btrfs_device_get_bytes_used(device));
1875 	btrfs_set_device_group(leaf, dev_item, 0);
1876 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1877 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1878 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1879 
1880 	ptr = btrfs_device_uuid(dev_item);
1881 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1882 	ptr = btrfs_device_fsid(dev_item);
1883 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1884 			    ptr, BTRFS_FSID_SIZE);
1885 	btrfs_mark_buffer_dirty(leaf);
1886 
1887 	ret = 0;
1888 out:
1889 	btrfs_free_path(path);
1890 	return ret;
1891 }
1892 
1893 /*
1894  * Function to update ctime/mtime for a given device path.
1895  * Mainly used for ctime/mtime based probe like libblkid.
1896  *
1897  * We don't care about errors here, this is just to be kind to userspace.
1898  */
1899 static void update_dev_time(const char *device_path)
1900 {
1901 	struct path path;
1902 	struct timespec64 now;
1903 	int ret;
1904 
1905 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1906 	if (ret)
1907 		return;
1908 
1909 	now = current_time(d_inode(path.dentry));
1910 	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1911 	path_put(&path);
1912 }
1913 
1914 static int btrfs_rm_dev_item(struct btrfs_device *device)
1915 {
1916 	struct btrfs_root *root = device->fs_info->chunk_root;
1917 	int ret;
1918 	struct btrfs_path *path;
1919 	struct btrfs_key key;
1920 	struct btrfs_trans_handle *trans;
1921 
1922 	path = btrfs_alloc_path();
1923 	if (!path)
1924 		return -ENOMEM;
1925 
1926 	trans = btrfs_start_transaction(root, 0);
1927 	if (IS_ERR(trans)) {
1928 		btrfs_free_path(path);
1929 		return PTR_ERR(trans);
1930 	}
1931 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1932 	key.type = BTRFS_DEV_ITEM_KEY;
1933 	key.offset = device->devid;
1934 
1935 	btrfs_reserve_chunk_metadata(trans, false);
1936 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1937 	btrfs_trans_release_chunk_metadata(trans);
1938 	if (ret) {
1939 		if (ret > 0)
1940 			ret = -ENOENT;
1941 		btrfs_abort_transaction(trans, ret);
1942 		btrfs_end_transaction(trans);
1943 		goto out;
1944 	}
1945 
1946 	ret = btrfs_del_item(trans, root, path);
1947 	if (ret) {
1948 		btrfs_abort_transaction(trans, ret);
1949 		btrfs_end_transaction(trans);
1950 	}
1951 
1952 out:
1953 	btrfs_free_path(path);
1954 	if (!ret)
1955 		ret = btrfs_commit_transaction(trans);
1956 	return ret;
1957 }
1958 
1959 /*
1960  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1961  * filesystem. It's up to the caller to adjust that number regarding eg. device
1962  * replace.
1963  */
1964 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1965 		u64 num_devices)
1966 {
1967 	u64 all_avail;
1968 	unsigned seq;
1969 	int i;
1970 
1971 	do {
1972 		seq = read_seqbegin(&fs_info->profiles_lock);
1973 
1974 		all_avail = fs_info->avail_data_alloc_bits |
1975 			    fs_info->avail_system_alloc_bits |
1976 			    fs_info->avail_metadata_alloc_bits;
1977 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1978 
1979 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1980 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1981 			continue;
1982 
1983 		if (num_devices < btrfs_raid_array[i].devs_min)
1984 			return btrfs_raid_array[i].mindev_error;
1985 	}
1986 
1987 	return 0;
1988 }
1989 
1990 static struct btrfs_device * btrfs_find_next_active_device(
1991 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1992 {
1993 	struct btrfs_device *next_device;
1994 
1995 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1996 		if (next_device != device &&
1997 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1998 		    && next_device->bdev)
1999 			return next_device;
2000 	}
2001 
2002 	return NULL;
2003 }
2004 
2005 /*
2006  * Helper function to check if the given device is part of s_bdev / latest_dev
2007  * and replace it with the provided or the next active device, in the context
2008  * where this function called, there should be always be another device (or
2009  * this_dev) which is active.
2010  */
2011 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2012 					    struct btrfs_device *next_device)
2013 {
2014 	struct btrfs_fs_info *fs_info = device->fs_info;
2015 
2016 	if (!next_device)
2017 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2018 							    device);
2019 	ASSERT(next_device);
2020 
2021 	if (fs_info->sb->s_bdev &&
2022 			(fs_info->sb->s_bdev == device->bdev))
2023 		fs_info->sb->s_bdev = next_device->bdev;
2024 
2025 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2026 		fs_info->fs_devices->latest_dev = next_device;
2027 }
2028 
2029 /*
2030  * Return btrfs_fs_devices::num_devices excluding the device that's being
2031  * currently replaced.
2032  */
2033 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2034 {
2035 	u64 num_devices = fs_info->fs_devices->num_devices;
2036 
2037 	down_read(&fs_info->dev_replace.rwsem);
2038 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2039 		ASSERT(num_devices > 1);
2040 		num_devices--;
2041 	}
2042 	up_read(&fs_info->dev_replace.rwsem);
2043 
2044 	return num_devices;
2045 }
2046 
2047 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2048 			       struct block_device *bdev,
2049 			       const char *device_path)
2050 {
2051 	struct btrfs_super_block *disk_super;
2052 	int copy_num;
2053 
2054 	if (!bdev)
2055 		return;
2056 
2057 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2058 		struct page *page;
2059 		int ret;
2060 
2061 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2062 		if (IS_ERR(disk_super))
2063 			continue;
2064 
2065 		if (bdev_is_zoned(bdev)) {
2066 			btrfs_reset_sb_log_zones(bdev, copy_num);
2067 			continue;
2068 		}
2069 
2070 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2071 
2072 		page = virt_to_page(disk_super);
2073 		set_page_dirty(page);
2074 		lock_page(page);
2075 		/* write_on_page() unlocks the page */
2076 		ret = write_one_page(page);
2077 		if (ret)
2078 			btrfs_warn(fs_info,
2079 				"error clearing superblock number %d (%d)",
2080 				copy_num, ret);
2081 		btrfs_release_disk_super(disk_super);
2082 
2083 	}
2084 
2085 	/* Notify udev that device has changed */
2086 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2087 
2088 	/* Update ctime/mtime for device path for libblkid */
2089 	update_dev_time(device_path);
2090 }
2091 
2092 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2093 		    struct btrfs_dev_lookup_args *args,
2094 		    struct block_device **bdev, fmode_t *mode)
2095 {
2096 	struct btrfs_device *device;
2097 	struct btrfs_fs_devices *cur_devices;
2098 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2099 	u64 num_devices;
2100 	int ret = 0;
2101 
2102 	/*
2103 	 * The device list in fs_devices is accessed without locks (neither
2104 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2105 	 * filesystem and another device rm cannot run.
2106 	 */
2107 	num_devices = btrfs_num_devices(fs_info);
2108 
2109 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2110 	if (ret)
2111 		goto out;
2112 
2113 	device = btrfs_find_device(fs_info->fs_devices, args);
2114 	if (!device) {
2115 		if (args->missing)
2116 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2117 		else
2118 			ret = -ENOENT;
2119 		goto out;
2120 	}
2121 
2122 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2123 		btrfs_warn_in_rcu(fs_info,
2124 		  "cannot remove device %s (devid %llu) due to active swapfile",
2125 				  rcu_str_deref(device->name), device->devid);
2126 		ret = -ETXTBSY;
2127 		goto out;
2128 	}
2129 
2130 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2131 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2132 		goto out;
2133 	}
2134 
2135 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2136 	    fs_info->fs_devices->rw_devices == 1) {
2137 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2138 		goto out;
2139 	}
2140 
2141 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2142 		mutex_lock(&fs_info->chunk_mutex);
2143 		list_del_init(&device->dev_alloc_list);
2144 		device->fs_devices->rw_devices--;
2145 		mutex_unlock(&fs_info->chunk_mutex);
2146 	}
2147 
2148 	ret = btrfs_shrink_device(device, 0);
2149 	if (!ret)
2150 		btrfs_reada_remove_dev(device);
2151 	if (ret)
2152 		goto error_undo;
2153 
2154 	/*
2155 	 * TODO: the superblock still includes this device in its num_devices
2156 	 * counter although write_all_supers() is not locked out. This
2157 	 * could give a filesystem state which requires a degraded mount.
2158 	 */
2159 	ret = btrfs_rm_dev_item(device);
2160 	if (ret)
2161 		goto error_undo;
2162 
2163 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2164 	btrfs_scrub_cancel_dev(device);
2165 
2166 	/*
2167 	 * the device list mutex makes sure that we don't change
2168 	 * the device list while someone else is writing out all
2169 	 * the device supers. Whoever is writing all supers, should
2170 	 * lock the device list mutex before getting the number of
2171 	 * devices in the super block (super_copy). Conversely,
2172 	 * whoever updates the number of devices in the super block
2173 	 * (super_copy) should hold the device list mutex.
2174 	 */
2175 
2176 	/*
2177 	 * In normal cases the cur_devices == fs_devices. But in case
2178 	 * of deleting a seed device, the cur_devices should point to
2179 	 * its own fs_devices listed under the fs_devices->seed_list.
2180 	 */
2181 	cur_devices = device->fs_devices;
2182 	mutex_lock(&fs_devices->device_list_mutex);
2183 	list_del_rcu(&device->dev_list);
2184 
2185 	cur_devices->num_devices--;
2186 	cur_devices->total_devices--;
2187 	/* Update total_devices of the parent fs_devices if it's seed */
2188 	if (cur_devices != fs_devices)
2189 		fs_devices->total_devices--;
2190 
2191 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2192 		cur_devices->missing_devices--;
2193 
2194 	btrfs_assign_next_active_device(device, NULL);
2195 
2196 	if (device->bdev) {
2197 		cur_devices->open_devices--;
2198 		/* remove sysfs entry */
2199 		btrfs_sysfs_remove_device(device);
2200 	}
2201 
2202 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2203 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2204 	mutex_unlock(&fs_devices->device_list_mutex);
2205 
2206 	/*
2207 	 * At this point, the device is zero sized and detached from the
2208 	 * devices list.  All that's left is to zero out the old supers and
2209 	 * free the device.
2210 	 *
2211 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2212 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2213 	 * block device and it's dependencies.  Instead just flush the device
2214 	 * and let the caller do the final blkdev_put.
2215 	 */
2216 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2217 		btrfs_scratch_superblocks(fs_info, device->bdev,
2218 					  device->name->str);
2219 		if (device->bdev) {
2220 			sync_blockdev(device->bdev);
2221 			invalidate_bdev(device->bdev);
2222 		}
2223 	}
2224 
2225 	*bdev = device->bdev;
2226 	*mode = device->mode;
2227 	synchronize_rcu();
2228 	btrfs_free_device(device);
2229 
2230 	/*
2231 	 * This can happen if cur_devices is the private seed devices list.  We
2232 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2233 	 * to be held, but in fact we don't need that for the private
2234 	 * seed_devices, we can simply decrement cur_devices->opened and then
2235 	 * remove it from our list and free the fs_devices.
2236 	 */
2237 	if (cur_devices->num_devices == 0) {
2238 		list_del_init(&cur_devices->seed_list);
2239 		ASSERT(cur_devices->opened == 1);
2240 		cur_devices->opened--;
2241 		free_fs_devices(cur_devices);
2242 	}
2243 
2244 out:
2245 	return ret;
2246 
2247 error_undo:
2248 	btrfs_reada_undo_remove_dev(device);
2249 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2250 		mutex_lock(&fs_info->chunk_mutex);
2251 		list_add(&device->dev_alloc_list,
2252 			 &fs_devices->alloc_list);
2253 		device->fs_devices->rw_devices++;
2254 		mutex_unlock(&fs_info->chunk_mutex);
2255 	}
2256 	goto out;
2257 }
2258 
2259 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2260 {
2261 	struct btrfs_fs_devices *fs_devices;
2262 
2263 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2264 
2265 	/*
2266 	 * in case of fs with no seed, srcdev->fs_devices will point
2267 	 * to fs_devices of fs_info. However when the dev being replaced is
2268 	 * a seed dev it will point to the seed's local fs_devices. In short
2269 	 * srcdev will have its correct fs_devices in both the cases.
2270 	 */
2271 	fs_devices = srcdev->fs_devices;
2272 
2273 	list_del_rcu(&srcdev->dev_list);
2274 	list_del(&srcdev->dev_alloc_list);
2275 	fs_devices->num_devices--;
2276 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2277 		fs_devices->missing_devices--;
2278 
2279 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2280 		fs_devices->rw_devices--;
2281 
2282 	if (srcdev->bdev)
2283 		fs_devices->open_devices--;
2284 }
2285 
2286 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2287 {
2288 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2289 
2290 	mutex_lock(&uuid_mutex);
2291 
2292 	btrfs_close_bdev(srcdev);
2293 	synchronize_rcu();
2294 	btrfs_free_device(srcdev);
2295 
2296 	/* if this is no devs we rather delete the fs_devices */
2297 	if (!fs_devices->num_devices) {
2298 		/*
2299 		 * On a mounted FS, num_devices can't be zero unless it's a
2300 		 * seed. In case of a seed device being replaced, the replace
2301 		 * target added to the sprout FS, so there will be no more
2302 		 * device left under the seed FS.
2303 		 */
2304 		ASSERT(fs_devices->seeding);
2305 
2306 		list_del_init(&fs_devices->seed_list);
2307 		close_fs_devices(fs_devices);
2308 		free_fs_devices(fs_devices);
2309 	}
2310 	mutex_unlock(&uuid_mutex);
2311 }
2312 
2313 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2314 {
2315 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2316 
2317 	mutex_lock(&fs_devices->device_list_mutex);
2318 
2319 	btrfs_sysfs_remove_device(tgtdev);
2320 
2321 	if (tgtdev->bdev)
2322 		fs_devices->open_devices--;
2323 
2324 	fs_devices->num_devices--;
2325 
2326 	btrfs_assign_next_active_device(tgtdev, NULL);
2327 
2328 	list_del_rcu(&tgtdev->dev_list);
2329 
2330 	mutex_unlock(&fs_devices->device_list_mutex);
2331 
2332 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2333 				  tgtdev->name->str);
2334 
2335 	btrfs_close_bdev(tgtdev);
2336 	synchronize_rcu();
2337 	btrfs_free_device(tgtdev);
2338 }
2339 
2340 /**
2341  * Populate args from device at path
2342  *
2343  * @fs_info:	the filesystem
2344  * @args:	the args to populate
2345  * @path:	the path to the device
2346  *
2347  * This will read the super block of the device at @path and populate @args with
2348  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2349  * lookup a device to operate on, but need to do it before we take any locks.
2350  * This properly handles the special case of "missing" that a user may pass in,
2351  * and does some basic sanity checks.  The caller must make sure that @path is
2352  * properly NUL terminated before calling in, and must call
2353  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2354  * uuid buffers.
2355  *
2356  * Return: 0 for success, -errno for failure
2357  */
2358 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2359 				 struct btrfs_dev_lookup_args *args,
2360 				 const char *path)
2361 {
2362 	struct btrfs_super_block *disk_super;
2363 	struct block_device *bdev;
2364 	int ret;
2365 
2366 	if (!path || !path[0])
2367 		return -EINVAL;
2368 	if (!strcmp(path, "missing")) {
2369 		args->missing = true;
2370 		return 0;
2371 	}
2372 
2373 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2374 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2375 	if (!args->uuid || !args->fsid) {
2376 		btrfs_put_dev_args_from_path(args);
2377 		return -ENOMEM;
2378 	}
2379 
2380 	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2381 				    &bdev, &disk_super);
2382 	if (ret)
2383 		return ret;
2384 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2385 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2386 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2387 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2388 	else
2389 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2390 	btrfs_release_disk_super(disk_super);
2391 	blkdev_put(bdev, FMODE_READ);
2392 	return 0;
2393 }
2394 
2395 /*
2396  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2397  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2398  * that don't need to be freed.
2399  */
2400 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2401 {
2402 	kfree(args->uuid);
2403 	kfree(args->fsid);
2404 	args->uuid = NULL;
2405 	args->fsid = NULL;
2406 }
2407 
2408 struct btrfs_device *btrfs_find_device_by_devspec(
2409 		struct btrfs_fs_info *fs_info, u64 devid,
2410 		const char *device_path)
2411 {
2412 	BTRFS_DEV_LOOKUP_ARGS(args);
2413 	struct btrfs_device *device;
2414 	int ret;
2415 
2416 	if (devid) {
2417 		args.devid = devid;
2418 		device = btrfs_find_device(fs_info->fs_devices, &args);
2419 		if (!device)
2420 			return ERR_PTR(-ENOENT);
2421 		return device;
2422 	}
2423 
2424 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2425 	if (ret)
2426 		return ERR_PTR(ret);
2427 	device = btrfs_find_device(fs_info->fs_devices, &args);
2428 	btrfs_put_dev_args_from_path(&args);
2429 	if (!device)
2430 		return ERR_PTR(-ENOENT);
2431 	return device;
2432 }
2433 
2434 /*
2435  * does all the dirty work required for changing file system's UUID.
2436  */
2437 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2438 {
2439 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2440 	struct btrfs_fs_devices *old_devices;
2441 	struct btrfs_fs_devices *seed_devices;
2442 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2443 	struct btrfs_device *device;
2444 	u64 super_flags;
2445 
2446 	lockdep_assert_held(&uuid_mutex);
2447 	if (!fs_devices->seeding)
2448 		return -EINVAL;
2449 
2450 	/*
2451 	 * Private copy of the seed devices, anchored at
2452 	 * fs_info->fs_devices->seed_list
2453 	 */
2454 	seed_devices = alloc_fs_devices(NULL, NULL);
2455 	if (IS_ERR(seed_devices))
2456 		return PTR_ERR(seed_devices);
2457 
2458 	/*
2459 	 * It's necessary to retain a copy of the original seed fs_devices in
2460 	 * fs_uuids so that filesystems which have been seeded can successfully
2461 	 * reference the seed device from open_seed_devices. This also supports
2462 	 * multiple fs seed.
2463 	 */
2464 	old_devices = clone_fs_devices(fs_devices);
2465 	if (IS_ERR(old_devices)) {
2466 		kfree(seed_devices);
2467 		return PTR_ERR(old_devices);
2468 	}
2469 
2470 	list_add(&old_devices->fs_list, &fs_uuids);
2471 
2472 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2473 	seed_devices->opened = 1;
2474 	INIT_LIST_HEAD(&seed_devices->devices);
2475 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2476 	mutex_init(&seed_devices->device_list_mutex);
2477 
2478 	mutex_lock(&fs_devices->device_list_mutex);
2479 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2480 			      synchronize_rcu);
2481 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2482 		device->fs_devices = seed_devices;
2483 
2484 	fs_devices->seeding = false;
2485 	fs_devices->num_devices = 0;
2486 	fs_devices->open_devices = 0;
2487 	fs_devices->missing_devices = 0;
2488 	fs_devices->rotating = false;
2489 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2490 
2491 	generate_random_uuid(fs_devices->fsid);
2492 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2493 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2494 	mutex_unlock(&fs_devices->device_list_mutex);
2495 
2496 	super_flags = btrfs_super_flags(disk_super) &
2497 		      ~BTRFS_SUPER_FLAG_SEEDING;
2498 	btrfs_set_super_flags(disk_super, super_flags);
2499 
2500 	return 0;
2501 }
2502 
2503 /*
2504  * Store the expected generation for seed devices in device items.
2505  */
2506 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2507 {
2508 	BTRFS_DEV_LOOKUP_ARGS(args);
2509 	struct btrfs_fs_info *fs_info = trans->fs_info;
2510 	struct btrfs_root *root = fs_info->chunk_root;
2511 	struct btrfs_path *path;
2512 	struct extent_buffer *leaf;
2513 	struct btrfs_dev_item *dev_item;
2514 	struct btrfs_device *device;
2515 	struct btrfs_key key;
2516 	u8 fs_uuid[BTRFS_FSID_SIZE];
2517 	u8 dev_uuid[BTRFS_UUID_SIZE];
2518 	int ret;
2519 
2520 	path = btrfs_alloc_path();
2521 	if (!path)
2522 		return -ENOMEM;
2523 
2524 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2525 	key.offset = 0;
2526 	key.type = BTRFS_DEV_ITEM_KEY;
2527 
2528 	while (1) {
2529 		btrfs_reserve_chunk_metadata(trans, false);
2530 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2531 		btrfs_trans_release_chunk_metadata(trans);
2532 		if (ret < 0)
2533 			goto error;
2534 
2535 		leaf = path->nodes[0];
2536 next_slot:
2537 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2538 			ret = btrfs_next_leaf(root, path);
2539 			if (ret > 0)
2540 				break;
2541 			if (ret < 0)
2542 				goto error;
2543 			leaf = path->nodes[0];
2544 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2545 			btrfs_release_path(path);
2546 			continue;
2547 		}
2548 
2549 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2551 		    key.type != BTRFS_DEV_ITEM_KEY)
2552 			break;
2553 
2554 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2555 					  struct btrfs_dev_item);
2556 		args.devid = btrfs_device_id(leaf, dev_item);
2557 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2558 				   BTRFS_UUID_SIZE);
2559 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2560 				   BTRFS_FSID_SIZE);
2561 		args.uuid = dev_uuid;
2562 		args.fsid = fs_uuid;
2563 		device = btrfs_find_device(fs_info->fs_devices, &args);
2564 		BUG_ON(!device); /* Logic error */
2565 
2566 		if (device->fs_devices->seeding) {
2567 			btrfs_set_device_generation(leaf, dev_item,
2568 						    device->generation);
2569 			btrfs_mark_buffer_dirty(leaf);
2570 		}
2571 
2572 		path->slots[0]++;
2573 		goto next_slot;
2574 	}
2575 	ret = 0;
2576 error:
2577 	btrfs_free_path(path);
2578 	return ret;
2579 }
2580 
2581 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2582 {
2583 	struct btrfs_root *root = fs_info->dev_root;
2584 	struct request_queue *q;
2585 	struct btrfs_trans_handle *trans;
2586 	struct btrfs_device *device;
2587 	struct block_device *bdev;
2588 	struct super_block *sb = fs_info->sb;
2589 	struct rcu_string *name;
2590 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2591 	u64 orig_super_total_bytes;
2592 	u64 orig_super_num_devices;
2593 	int seeding_dev = 0;
2594 	int ret = 0;
2595 	bool locked = false;
2596 
2597 	if (sb_rdonly(sb) && !fs_devices->seeding)
2598 		return -EROFS;
2599 
2600 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2601 				  fs_info->bdev_holder);
2602 	if (IS_ERR(bdev))
2603 		return PTR_ERR(bdev);
2604 
2605 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2606 		ret = -EINVAL;
2607 		goto error;
2608 	}
2609 
2610 	if (fs_devices->seeding) {
2611 		seeding_dev = 1;
2612 		down_write(&sb->s_umount);
2613 		mutex_lock(&uuid_mutex);
2614 		locked = true;
2615 	}
2616 
2617 	sync_blockdev(bdev);
2618 
2619 	rcu_read_lock();
2620 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2621 		if (device->bdev == bdev) {
2622 			ret = -EEXIST;
2623 			rcu_read_unlock();
2624 			goto error;
2625 		}
2626 	}
2627 	rcu_read_unlock();
2628 
2629 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2630 	if (IS_ERR(device)) {
2631 		/* we can safely leave the fs_devices entry around */
2632 		ret = PTR_ERR(device);
2633 		goto error;
2634 	}
2635 
2636 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2637 	if (!name) {
2638 		ret = -ENOMEM;
2639 		goto error_free_device;
2640 	}
2641 	rcu_assign_pointer(device->name, name);
2642 
2643 	device->fs_info = fs_info;
2644 	device->bdev = bdev;
2645 
2646 	ret = btrfs_get_dev_zone_info(device);
2647 	if (ret)
2648 		goto error_free_device;
2649 
2650 	trans = btrfs_start_transaction(root, 0);
2651 	if (IS_ERR(trans)) {
2652 		ret = PTR_ERR(trans);
2653 		goto error_free_zone;
2654 	}
2655 
2656 	q = bdev_get_queue(bdev);
2657 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2658 	device->generation = trans->transid;
2659 	device->io_width = fs_info->sectorsize;
2660 	device->io_align = fs_info->sectorsize;
2661 	device->sector_size = fs_info->sectorsize;
2662 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2663 					 fs_info->sectorsize);
2664 	device->disk_total_bytes = device->total_bytes;
2665 	device->commit_total_bytes = device->total_bytes;
2666 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2667 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2668 	device->mode = FMODE_EXCL;
2669 	device->dev_stats_valid = 1;
2670 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2671 
2672 	if (seeding_dev) {
2673 		btrfs_clear_sb_rdonly(sb);
2674 		ret = btrfs_prepare_sprout(fs_info);
2675 		if (ret) {
2676 			btrfs_abort_transaction(trans, ret);
2677 			goto error_trans;
2678 		}
2679 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2680 						device);
2681 	}
2682 
2683 	device->fs_devices = fs_devices;
2684 
2685 	mutex_lock(&fs_devices->device_list_mutex);
2686 	mutex_lock(&fs_info->chunk_mutex);
2687 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2688 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2689 	fs_devices->num_devices++;
2690 	fs_devices->open_devices++;
2691 	fs_devices->rw_devices++;
2692 	fs_devices->total_devices++;
2693 	fs_devices->total_rw_bytes += device->total_bytes;
2694 
2695 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2696 
2697 	if (!blk_queue_nonrot(q))
2698 		fs_devices->rotating = true;
2699 
2700 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2701 	btrfs_set_super_total_bytes(fs_info->super_copy,
2702 		round_down(orig_super_total_bytes + device->total_bytes,
2703 			   fs_info->sectorsize));
2704 
2705 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2706 	btrfs_set_super_num_devices(fs_info->super_copy,
2707 				    orig_super_num_devices + 1);
2708 
2709 	/*
2710 	 * we've got more storage, clear any full flags on the space
2711 	 * infos
2712 	 */
2713 	btrfs_clear_space_info_full(fs_info);
2714 
2715 	mutex_unlock(&fs_info->chunk_mutex);
2716 
2717 	/* Add sysfs device entry */
2718 	btrfs_sysfs_add_device(device);
2719 
2720 	mutex_unlock(&fs_devices->device_list_mutex);
2721 
2722 	if (seeding_dev) {
2723 		mutex_lock(&fs_info->chunk_mutex);
2724 		ret = init_first_rw_device(trans);
2725 		mutex_unlock(&fs_info->chunk_mutex);
2726 		if (ret) {
2727 			btrfs_abort_transaction(trans, ret);
2728 			goto error_sysfs;
2729 		}
2730 	}
2731 
2732 	ret = btrfs_add_dev_item(trans, device);
2733 	if (ret) {
2734 		btrfs_abort_transaction(trans, ret);
2735 		goto error_sysfs;
2736 	}
2737 
2738 	if (seeding_dev) {
2739 		ret = btrfs_finish_sprout(trans);
2740 		if (ret) {
2741 			btrfs_abort_transaction(trans, ret);
2742 			goto error_sysfs;
2743 		}
2744 
2745 		/*
2746 		 * fs_devices now represents the newly sprouted filesystem and
2747 		 * its fsid has been changed by btrfs_prepare_sprout
2748 		 */
2749 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2750 	}
2751 
2752 	ret = btrfs_commit_transaction(trans);
2753 
2754 	if (seeding_dev) {
2755 		mutex_unlock(&uuid_mutex);
2756 		up_write(&sb->s_umount);
2757 		locked = false;
2758 
2759 		if (ret) /* transaction commit */
2760 			return ret;
2761 
2762 		ret = btrfs_relocate_sys_chunks(fs_info);
2763 		if (ret < 0)
2764 			btrfs_handle_fs_error(fs_info, ret,
2765 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2766 		trans = btrfs_attach_transaction(root);
2767 		if (IS_ERR(trans)) {
2768 			if (PTR_ERR(trans) == -ENOENT)
2769 				return 0;
2770 			ret = PTR_ERR(trans);
2771 			trans = NULL;
2772 			goto error_sysfs;
2773 		}
2774 		ret = btrfs_commit_transaction(trans);
2775 	}
2776 
2777 	/*
2778 	 * Now that we have written a new super block to this device, check all
2779 	 * other fs_devices list if device_path alienates any other scanned
2780 	 * device.
2781 	 * We can ignore the return value as it typically returns -EINVAL and
2782 	 * only succeeds if the device was an alien.
2783 	 */
2784 	btrfs_forget_devices(device_path);
2785 
2786 	/* Update ctime/mtime for blkid or udev */
2787 	update_dev_time(device_path);
2788 
2789 	return ret;
2790 
2791 error_sysfs:
2792 	btrfs_sysfs_remove_device(device);
2793 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2794 	mutex_lock(&fs_info->chunk_mutex);
2795 	list_del_rcu(&device->dev_list);
2796 	list_del(&device->dev_alloc_list);
2797 	fs_info->fs_devices->num_devices--;
2798 	fs_info->fs_devices->open_devices--;
2799 	fs_info->fs_devices->rw_devices--;
2800 	fs_info->fs_devices->total_devices--;
2801 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2802 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2803 	btrfs_set_super_total_bytes(fs_info->super_copy,
2804 				    orig_super_total_bytes);
2805 	btrfs_set_super_num_devices(fs_info->super_copy,
2806 				    orig_super_num_devices);
2807 	mutex_unlock(&fs_info->chunk_mutex);
2808 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2809 error_trans:
2810 	if (seeding_dev)
2811 		btrfs_set_sb_rdonly(sb);
2812 	if (trans)
2813 		btrfs_end_transaction(trans);
2814 error_free_zone:
2815 	btrfs_destroy_dev_zone_info(device);
2816 error_free_device:
2817 	btrfs_free_device(device);
2818 error:
2819 	blkdev_put(bdev, FMODE_EXCL);
2820 	if (locked) {
2821 		mutex_unlock(&uuid_mutex);
2822 		up_write(&sb->s_umount);
2823 	}
2824 	return ret;
2825 }
2826 
2827 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2828 					struct btrfs_device *device)
2829 {
2830 	int ret;
2831 	struct btrfs_path *path;
2832 	struct btrfs_root *root = device->fs_info->chunk_root;
2833 	struct btrfs_dev_item *dev_item;
2834 	struct extent_buffer *leaf;
2835 	struct btrfs_key key;
2836 
2837 	path = btrfs_alloc_path();
2838 	if (!path)
2839 		return -ENOMEM;
2840 
2841 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2842 	key.type = BTRFS_DEV_ITEM_KEY;
2843 	key.offset = device->devid;
2844 
2845 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2846 	if (ret < 0)
2847 		goto out;
2848 
2849 	if (ret > 0) {
2850 		ret = -ENOENT;
2851 		goto out;
2852 	}
2853 
2854 	leaf = path->nodes[0];
2855 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2856 
2857 	btrfs_set_device_id(leaf, dev_item, device->devid);
2858 	btrfs_set_device_type(leaf, dev_item, device->type);
2859 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2860 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2861 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2862 	btrfs_set_device_total_bytes(leaf, dev_item,
2863 				     btrfs_device_get_disk_total_bytes(device));
2864 	btrfs_set_device_bytes_used(leaf, dev_item,
2865 				    btrfs_device_get_bytes_used(device));
2866 	btrfs_mark_buffer_dirty(leaf);
2867 
2868 out:
2869 	btrfs_free_path(path);
2870 	return ret;
2871 }
2872 
2873 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2874 		      struct btrfs_device *device, u64 new_size)
2875 {
2876 	struct btrfs_fs_info *fs_info = device->fs_info;
2877 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2878 	u64 old_total;
2879 	u64 diff;
2880 	int ret;
2881 
2882 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2883 		return -EACCES;
2884 
2885 	new_size = round_down(new_size, fs_info->sectorsize);
2886 
2887 	mutex_lock(&fs_info->chunk_mutex);
2888 	old_total = btrfs_super_total_bytes(super_copy);
2889 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2890 
2891 	if (new_size <= device->total_bytes ||
2892 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2893 		mutex_unlock(&fs_info->chunk_mutex);
2894 		return -EINVAL;
2895 	}
2896 
2897 	btrfs_set_super_total_bytes(super_copy,
2898 			round_down(old_total + diff, fs_info->sectorsize));
2899 	device->fs_devices->total_rw_bytes += diff;
2900 
2901 	btrfs_device_set_total_bytes(device, new_size);
2902 	btrfs_device_set_disk_total_bytes(device, new_size);
2903 	btrfs_clear_space_info_full(device->fs_info);
2904 	if (list_empty(&device->post_commit_list))
2905 		list_add_tail(&device->post_commit_list,
2906 			      &trans->transaction->dev_update_list);
2907 	mutex_unlock(&fs_info->chunk_mutex);
2908 
2909 	btrfs_reserve_chunk_metadata(trans, false);
2910 	ret = btrfs_update_device(trans, device);
2911 	btrfs_trans_release_chunk_metadata(trans);
2912 
2913 	return ret;
2914 }
2915 
2916 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2917 {
2918 	struct btrfs_fs_info *fs_info = trans->fs_info;
2919 	struct btrfs_root *root = fs_info->chunk_root;
2920 	int ret;
2921 	struct btrfs_path *path;
2922 	struct btrfs_key key;
2923 
2924 	path = btrfs_alloc_path();
2925 	if (!path)
2926 		return -ENOMEM;
2927 
2928 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2929 	key.offset = chunk_offset;
2930 	key.type = BTRFS_CHUNK_ITEM_KEY;
2931 
2932 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2933 	if (ret < 0)
2934 		goto out;
2935 	else if (ret > 0) { /* Logic error or corruption */
2936 		btrfs_handle_fs_error(fs_info, -ENOENT,
2937 				      "Failed lookup while freeing chunk.");
2938 		ret = -ENOENT;
2939 		goto out;
2940 	}
2941 
2942 	ret = btrfs_del_item(trans, root, path);
2943 	if (ret < 0)
2944 		btrfs_handle_fs_error(fs_info, ret,
2945 				      "Failed to delete chunk item.");
2946 out:
2947 	btrfs_free_path(path);
2948 	return ret;
2949 }
2950 
2951 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2952 {
2953 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2954 	struct btrfs_disk_key *disk_key;
2955 	struct btrfs_chunk *chunk;
2956 	u8 *ptr;
2957 	int ret = 0;
2958 	u32 num_stripes;
2959 	u32 array_size;
2960 	u32 len = 0;
2961 	u32 cur;
2962 	struct btrfs_key key;
2963 
2964 	lockdep_assert_held(&fs_info->chunk_mutex);
2965 	array_size = btrfs_super_sys_array_size(super_copy);
2966 
2967 	ptr = super_copy->sys_chunk_array;
2968 	cur = 0;
2969 
2970 	while (cur < array_size) {
2971 		disk_key = (struct btrfs_disk_key *)ptr;
2972 		btrfs_disk_key_to_cpu(&key, disk_key);
2973 
2974 		len = sizeof(*disk_key);
2975 
2976 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2977 			chunk = (struct btrfs_chunk *)(ptr + len);
2978 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2979 			len += btrfs_chunk_item_size(num_stripes);
2980 		} else {
2981 			ret = -EIO;
2982 			break;
2983 		}
2984 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2985 		    key.offset == chunk_offset) {
2986 			memmove(ptr, ptr + len, array_size - (cur + len));
2987 			array_size -= len;
2988 			btrfs_set_super_sys_array_size(super_copy, array_size);
2989 		} else {
2990 			ptr += len;
2991 			cur += len;
2992 		}
2993 	}
2994 	return ret;
2995 }
2996 
2997 /*
2998  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2999  * @logical: Logical block offset in bytes.
3000  * @length: Length of extent in bytes.
3001  *
3002  * Return: Chunk mapping or ERR_PTR.
3003  */
3004 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3005 				       u64 logical, u64 length)
3006 {
3007 	struct extent_map_tree *em_tree;
3008 	struct extent_map *em;
3009 
3010 	em_tree = &fs_info->mapping_tree;
3011 	read_lock(&em_tree->lock);
3012 	em = lookup_extent_mapping(em_tree, logical, length);
3013 	read_unlock(&em_tree->lock);
3014 
3015 	if (!em) {
3016 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3017 			   logical, length);
3018 		return ERR_PTR(-EINVAL);
3019 	}
3020 
3021 	if (em->start > logical || em->start + em->len < logical) {
3022 		btrfs_crit(fs_info,
3023 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3024 			   logical, length, em->start, em->start + em->len);
3025 		free_extent_map(em);
3026 		return ERR_PTR(-EINVAL);
3027 	}
3028 
3029 	/* callers are responsible for dropping em's ref. */
3030 	return em;
3031 }
3032 
3033 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3034 			     struct map_lookup *map, u64 chunk_offset)
3035 {
3036 	int i;
3037 
3038 	/*
3039 	 * Removing chunk items and updating the device items in the chunks btree
3040 	 * requires holding the chunk_mutex.
3041 	 * See the comment at btrfs_chunk_alloc() for the details.
3042 	 */
3043 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3044 
3045 	for (i = 0; i < map->num_stripes; i++) {
3046 		int ret;
3047 
3048 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3049 		if (ret)
3050 			return ret;
3051 	}
3052 
3053 	return btrfs_free_chunk(trans, chunk_offset);
3054 }
3055 
3056 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3057 {
3058 	struct btrfs_fs_info *fs_info = trans->fs_info;
3059 	struct extent_map *em;
3060 	struct map_lookup *map;
3061 	u64 dev_extent_len = 0;
3062 	int i, ret = 0;
3063 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3064 
3065 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3066 	if (IS_ERR(em)) {
3067 		/*
3068 		 * This is a logic error, but we don't want to just rely on the
3069 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3070 		 * do anything we still error out.
3071 		 */
3072 		ASSERT(0);
3073 		return PTR_ERR(em);
3074 	}
3075 	map = em->map_lookup;
3076 
3077 	/*
3078 	 * First delete the device extent items from the devices btree.
3079 	 * We take the device_list_mutex to avoid racing with the finishing phase
3080 	 * of a device replace operation. See the comment below before acquiring
3081 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3082 	 * because that can result in a deadlock when deleting the device extent
3083 	 * items from the devices btree - COWing an extent buffer from the btree
3084 	 * may result in allocating a new metadata chunk, which would attempt to
3085 	 * lock again fs_info->chunk_mutex.
3086 	 */
3087 	mutex_lock(&fs_devices->device_list_mutex);
3088 	for (i = 0; i < map->num_stripes; i++) {
3089 		struct btrfs_device *device = map->stripes[i].dev;
3090 		ret = btrfs_free_dev_extent(trans, device,
3091 					    map->stripes[i].physical,
3092 					    &dev_extent_len);
3093 		if (ret) {
3094 			mutex_unlock(&fs_devices->device_list_mutex);
3095 			btrfs_abort_transaction(trans, ret);
3096 			goto out;
3097 		}
3098 
3099 		if (device->bytes_used > 0) {
3100 			mutex_lock(&fs_info->chunk_mutex);
3101 			btrfs_device_set_bytes_used(device,
3102 					device->bytes_used - dev_extent_len);
3103 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3104 			btrfs_clear_space_info_full(fs_info);
3105 			mutex_unlock(&fs_info->chunk_mutex);
3106 		}
3107 	}
3108 	mutex_unlock(&fs_devices->device_list_mutex);
3109 
3110 	/*
3111 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3112 	 *
3113 	 * 1) Just like with the first phase of the chunk allocation, we must
3114 	 *    reserve system space, do all chunk btree updates and deletions, and
3115 	 *    update the system chunk array in the superblock while holding this
3116 	 *    mutex. This is for similar reasons as explained on the comment at
3117 	 *    the top of btrfs_chunk_alloc();
3118 	 *
3119 	 * 2) Prevent races with the final phase of a device replace operation
3120 	 *    that replaces the device object associated with the map's stripes,
3121 	 *    because the device object's id can change at any time during that
3122 	 *    final phase of the device replace operation
3123 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3124 	 *    replaced device and then see it with an ID of
3125 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3126 	 *    the device item, which does not exists on the chunk btree.
3127 	 *    The finishing phase of device replace acquires both the
3128 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3129 	 *    safe by just acquiring the chunk_mutex.
3130 	 */
3131 	trans->removing_chunk = true;
3132 	mutex_lock(&fs_info->chunk_mutex);
3133 
3134 	check_system_chunk(trans, map->type);
3135 
3136 	ret = remove_chunk_item(trans, map, chunk_offset);
3137 	/*
3138 	 * Normally we should not get -ENOSPC since we reserved space before
3139 	 * through the call to check_system_chunk().
3140 	 *
3141 	 * Despite our system space_info having enough free space, we may not
3142 	 * be able to allocate extents from its block groups, because all have
3143 	 * an incompatible profile, which will force us to allocate a new system
3144 	 * block group with the right profile, or right after we called
3145 	 * check_system_space() above, a scrub turned the only system block group
3146 	 * with enough free space into RO mode.
3147 	 * This is explained with more detail at do_chunk_alloc().
3148 	 *
3149 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3150 	 */
3151 	if (ret == -ENOSPC) {
3152 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3153 		struct btrfs_block_group *sys_bg;
3154 
3155 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3156 		if (IS_ERR(sys_bg)) {
3157 			ret = PTR_ERR(sys_bg);
3158 			btrfs_abort_transaction(trans, ret);
3159 			goto out;
3160 		}
3161 
3162 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3163 		if (ret) {
3164 			btrfs_abort_transaction(trans, ret);
3165 			goto out;
3166 		}
3167 
3168 		ret = remove_chunk_item(trans, map, chunk_offset);
3169 		if (ret) {
3170 			btrfs_abort_transaction(trans, ret);
3171 			goto out;
3172 		}
3173 	} else if (ret) {
3174 		btrfs_abort_transaction(trans, ret);
3175 		goto out;
3176 	}
3177 
3178 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3179 
3180 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3181 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3182 		if (ret) {
3183 			btrfs_abort_transaction(trans, ret);
3184 			goto out;
3185 		}
3186 	}
3187 
3188 	mutex_unlock(&fs_info->chunk_mutex);
3189 	trans->removing_chunk = false;
3190 
3191 	/*
3192 	 * We are done with chunk btree updates and deletions, so release the
3193 	 * system space we previously reserved (with check_system_chunk()).
3194 	 */
3195 	btrfs_trans_release_chunk_metadata(trans);
3196 
3197 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3198 	if (ret) {
3199 		btrfs_abort_transaction(trans, ret);
3200 		goto out;
3201 	}
3202 
3203 out:
3204 	if (trans->removing_chunk) {
3205 		mutex_unlock(&fs_info->chunk_mutex);
3206 		trans->removing_chunk = false;
3207 	}
3208 	/* once for us */
3209 	free_extent_map(em);
3210 	return ret;
3211 }
3212 
3213 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3214 {
3215 	struct btrfs_root *root = fs_info->chunk_root;
3216 	struct btrfs_trans_handle *trans;
3217 	struct btrfs_block_group *block_group;
3218 	u64 length;
3219 	int ret;
3220 
3221 	/*
3222 	 * Prevent races with automatic removal of unused block groups.
3223 	 * After we relocate and before we remove the chunk with offset
3224 	 * chunk_offset, automatic removal of the block group can kick in,
3225 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3226 	 *
3227 	 * Make sure to acquire this mutex before doing a tree search (dev
3228 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3229 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3230 	 * we release the path used to search the chunk/dev tree and before
3231 	 * the current task acquires this mutex and calls us.
3232 	 */
3233 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3234 
3235 	/* step one, relocate all the extents inside this chunk */
3236 	btrfs_scrub_pause(fs_info);
3237 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3238 	btrfs_scrub_continue(fs_info);
3239 	if (ret)
3240 		return ret;
3241 
3242 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3243 	if (!block_group)
3244 		return -ENOENT;
3245 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3246 	length = block_group->length;
3247 	btrfs_put_block_group(block_group);
3248 
3249 	/*
3250 	 * On a zoned file system, discard the whole block group, this will
3251 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3252 	 * resetting the zone fails, don't treat it as a fatal problem from the
3253 	 * filesystem's point of view.
3254 	 */
3255 	if (btrfs_is_zoned(fs_info)) {
3256 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3257 		if (ret)
3258 			btrfs_info(fs_info,
3259 				"failed to reset zone %llu after relocation",
3260 				chunk_offset);
3261 	}
3262 
3263 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3264 						     chunk_offset);
3265 	if (IS_ERR(trans)) {
3266 		ret = PTR_ERR(trans);
3267 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3268 		return ret;
3269 	}
3270 
3271 	/*
3272 	 * step two, delete the device extents and the
3273 	 * chunk tree entries
3274 	 */
3275 	ret = btrfs_remove_chunk(trans, chunk_offset);
3276 	btrfs_end_transaction(trans);
3277 	return ret;
3278 }
3279 
3280 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3281 {
3282 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3283 	struct btrfs_path *path;
3284 	struct extent_buffer *leaf;
3285 	struct btrfs_chunk *chunk;
3286 	struct btrfs_key key;
3287 	struct btrfs_key found_key;
3288 	u64 chunk_type;
3289 	bool retried = false;
3290 	int failed = 0;
3291 	int ret;
3292 
3293 	path = btrfs_alloc_path();
3294 	if (!path)
3295 		return -ENOMEM;
3296 
3297 again:
3298 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3299 	key.offset = (u64)-1;
3300 	key.type = BTRFS_CHUNK_ITEM_KEY;
3301 
3302 	while (1) {
3303 		mutex_lock(&fs_info->reclaim_bgs_lock);
3304 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3305 		if (ret < 0) {
3306 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3307 			goto error;
3308 		}
3309 		BUG_ON(ret == 0); /* Corruption */
3310 
3311 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3312 					  key.type);
3313 		if (ret)
3314 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3315 		if (ret < 0)
3316 			goto error;
3317 		if (ret > 0)
3318 			break;
3319 
3320 		leaf = path->nodes[0];
3321 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3322 
3323 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3324 				       struct btrfs_chunk);
3325 		chunk_type = btrfs_chunk_type(leaf, chunk);
3326 		btrfs_release_path(path);
3327 
3328 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3329 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3330 			if (ret == -ENOSPC)
3331 				failed++;
3332 			else
3333 				BUG_ON(ret);
3334 		}
3335 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3336 
3337 		if (found_key.offset == 0)
3338 			break;
3339 		key.offset = found_key.offset - 1;
3340 	}
3341 	ret = 0;
3342 	if (failed && !retried) {
3343 		failed = 0;
3344 		retried = true;
3345 		goto again;
3346 	} else if (WARN_ON(failed && retried)) {
3347 		ret = -ENOSPC;
3348 	}
3349 error:
3350 	btrfs_free_path(path);
3351 	return ret;
3352 }
3353 
3354 /*
3355  * return 1 : allocate a data chunk successfully,
3356  * return <0: errors during allocating a data chunk,
3357  * return 0 : no need to allocate a data chunk.
3358  */
3359 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3360 				      u64 chunk_offset)
3361 {
3362 	struct btrfs_block_group *cache;
3363 	u64 bytes_used;
3364 	u64 chunk_type;
3365 
3366 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3367 	ASSERT(cache);
3368 	chunk_type = cache->flags;
3369 	btrfs_put_block_group(cache);
3370 
3371 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3372 		return 0;
3373 
3374 	spin_lock(&fs_info->data_sinfo->lock);
3375 	bytes_used = fs_info->data_sinfo->bytes_used;
3376 	spin_unlock(&fs_info->data_sinfo->lock);
3377 
3378 	if (!bytes_used) {
3379 		struct btrfs_trans_handle *trans;
3380 		int ret;
3381 
3382 		trans =	btrfs_join_transaction(fs_info->tree_root);
3383 		if (IS_ERR(trans))
3384 			return PTR_ERR(trans);
3385 
3386 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3387 		btrfs_end_transaction(trans);
3388 		if (ret < 0)
3389 			return ret;
3390 		return 1;
3391 	}
3392 
3393 	return 0;
3394 }
3395 
3396 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3397 			       struct btrfs_balance_control *bctl)
3398 {
3399 	struct btrfs_root *root = fs_info->tree_root;
3400 	struct btrfs_trans_handle *trans;
3401 	struct btrfs_balance_item *item;
3402 	struct btrfs_disk_balance_args disk_bargs;
3403 	struct btrfs_path *path;
3404 	struct extent_buffer *leaf;
3405 	struct btrfs_key key;
3406 	int ret, err;
3407 
3408 	path = btrfs_alloc_path();
3409 	if (!path)
3410 		return -ENOMEM;
3411 
3412 	trans = btrfs_start_transaction(root, 0);
3413 	if (IS_ERR(trans)) {
3414 		btrfs_free_path(path);
3415 		return PTR_ERR(trans);
3416 	}
3417 
3418 	key.objectid = BTRFS_BALANCE_OBJECTID;
3419 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3420 	key.offset = 0;
3421 
3422 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3423 				      sizeof(*item));
3424 	if (ret)
3425 		goto out;
3426 
3427 	leaf = path->nodes[0];
3428 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3429 
3430 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3431 
3432 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3433 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3434 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3435 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3436 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3437 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3438 
3439 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3440 
3441 	btrfs_mark_buffer_dirty(leaf);
3442 out:
3443 	btrfs_free_path(path);
3444 	err = btrfs_commit_transaction(trans);
3445 	if (err && !ret)
3446 		ret = err;
3447 	return ret;
3448 }
3449 
3450 static int del_balance_item(struct btrfs_fs_info *fs_info)
3451 {
3452 	struct btrfs_root *root = fs_info->tree_root;
3453 	struct btrfs_trans_handle *trans;
3454 	struct btrfs_path *path;
3455 	struct btrfs_key key;
3456 	int ret, err;
3457 
3458 	path = btrfs_alloc_path();
3459 	if (!path)
3460 		return -ENOMEM;
3461 
3462 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3463 	if (IS_ERR(trans)) {
3464 		btrfs_free_path(path);
3465 		return PTR_ERR(trans);
3466 	}
3467 
3468 	key.objectid = BTRFS_BALANCE_OBJECTID;
3469 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3470 	key.offset = 0;
3471 
3472 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3473 	if (ret < 0)
3474 		goto out;
3475 	if (ret > 0) {
3476 		ret = -ENOENT;
3477 		goto out;
3478 	}
3479 
3480 	ret = btrfs_del_item(trans, root, path);
3481 out:
3482 	btrfs_free_path(path);
3483 	err = btrfs_commit_transaction(trans);
3484 	if (err && !ret)
3485 		ret = err;
3486 	return ret;
3487 }
3488 
3489 /*
3490  * This is a heuristic used to reduce the number of chunks balanced on
3491  * resume after balance was interrupted.
3492  */
3493 static void update_balance_args(struct btrfs_balance_control *bctl)
3494 {
3495 	/*
3496 	 * Turn on soft mode for chunk types that were being converted.
3497 	 */
3498 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3499 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3500 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3501 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3502 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3503 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3504 
3505 	/*
3506 	 * Turn on usage filter if is not already used.  The idea is
3507 	 * that chunks that we have already balanced should be
3508 	 * reasonably full.  Don't do it for chunks that are being
3509 	 * converted - that will keep us from relocating unconverted
3510 	 * (albeit full) chunks.
3511 	 */
3512 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3513 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3514 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3515 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3516 		bctl->data.usage = 90;
3517 	}
3518 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3519 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3520 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3521 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3522 		bctl->sys.usage = 90;
3523 	}
3524 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3525 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3526 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3527 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3528 		bctl->meta.usage = 90;
3529 	}
3530 }
3531 
3532 /*
3533  * Clear the balance status in fs_info and delete the balance item from disk.
3534  */
3535 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3536 {
3537 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3538 	int ret;
3539 
3540 	BUG_ON(!fs_info->balance_ctl);
3541 
3542 	spin_lock(&fs_info->balance_lock);
3543 	fs_info->balance_ctl = NULL;
3544 	spin_unlock(&fs_info->balance_lock);
3545 
3546 	kfree(bctl);
3547 	ret = del_balance_item(fs_info);
3548 	if (ret)
3549 		btrfs_handle_fs_error(fs_info, ret, NULL);
3550 }
3551 
3552 /*
3553  * Balance filters.  Return 1 if chunk should be filtered out
3554  * (should not be balanced).
3555  */
3556 static int chunk_profiles_filter(u64 chunk_type,
3557 				 struct btrfs_balance_args *bargs)
3558 {
3559 	chunk_type = chunk_to_extended(chunk_type) &
3560 				BTRFS_EXTENDED_PROFILE_MASK;
3561 
3562 	if (bargs->profiles & chunk_type)
3563 		return 0;
3564 
3565 	return 1;
3566 }
3567 
3568 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3569 			      struct btrfs_balance_args *bargs)
3570 {
3571 	struct btrfs_block_group *cache;
3572 	u64 chunk_used;
3573 	u64 user_thresh_min;
3574 	u64 user_thresh_max;
3575 	int ret = 1;
3576 
3577 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3578 	chunk_used = cache->used;
3579 
3580 	if (bargs->usage_min == 0)
3581 		user_thresh_min = 0;
3582 	else
3583 		user_thresh_min = div_factor_fine(cache->length,
3584 						  bargs->usage_min);
3585 
3586 	if (bargs->usage_max == 0)
3587 		user_thresh_max = 1;
3588 	else if (bargs->usage_max > 100)
3589 		user_thresh_max = cache->length;
3590 	else
3591 		user_thresh_max = div_factor_fine(cache->length,
3592 						  bargs->usage_max);
3593 
3594 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3595 		ret = 0;
3596 
3597 	btrfs_put_block_group(cache);
3598 	return ret;
3599 }
3600 
3601 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3602 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3603 {
3604 	struct btrfs_block_group *cache;
3605 	u64 chunk_used, user_thresh;
3606 	int ret = 1;
3607 
3608 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3609 	chunk_used = cache->used;
3610 
3611 	if (bargs->usage_min == 0)
3612 		user_thresh = 1;
3613 	else if (bargs->usage > 100)
3614 		user_thresh = cache->length;
3615 	else
3616 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3617 
3618 	if (chunk_used < user_thresh)
3619 		ret = 0;
3620 
3621 	btrfs_put_block_group(cache);
3622 	return ret;
3623 }
3624 
3625 static int chunk_devid_filter(struct extent_buffer *leaf,
3626 			      struct btrfs_chunk *chunk,
3627 			      struct btrfs_balance_args *bargs)
3628 {
3629 	struct btrfs_stripe *stripe;
3630 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3631 	int i;
3632 
3633 	for (i = 0; i < num_stripes; i++) {
3634 		stripe = btrfs_stripe_nr(chunk, i);
3635 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3636 			return 0;
3637 	}
3638 
3639 	return 1;
3640 }
3641 
3642 static u64 calc_data_stripes(u64 type, int num_stripes)
3643 {
3644 	const int index = btrfs_bg_flags_to_raid_index(type);
3645 	const int ncopies = btrfs_raid_array[index].ncopies;
3646 	const int nparity = btrfs_raid_array[index].nparity;
3647 
3648 	return (num_stripes - nparity) / ncopies;
3649 }
3650 
3651 /* [pstart, pend) */
3652 static int chunk_drange_filter(struct extent_buffer *leaf,
3653 			       struct btrfs_chunk *chunk,
3654 			       struct btrfs_balance_args *bargs)
3655 {
3656 	struct btrfs_stripe *stripe;
3657 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3658 	u64 stripe_offset;
3659 	u64 stripe_length;
3660 	u64 type;
3661 	int factor;
3662 	int i;
3663 
3664 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3665 		return 0;
3666 
3667 	type = btrfs_chunk_type(leaf, chunk);
3668 	factor = calc_data_stripes(type, num_stripes);
3669 
3670 	for (i = 0; i < num_stripes; i++) {
3671 		stripe = btrfs_stripe_nr(chunk, i);
3672 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3673 			continue;
3674 
3675 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3676 		stripe_length = btrfs_chunk_length(leaf, chunk);
3677 		stripe_length = div_u64(stripe_length, factor);
3678 
3679 		if (stripe_offset < bargs->pend &&
3680 		    stripe_offset + stripe_length > bargs->pstart)
3681 			return 0;
3682 	}
3683 
3684 	return 1;
3685 }
3686 
3687 /* [vstart, vend) */
3688 static int chunk_vrange_filter(struct extent_buffer *leaf,
3689 			       struct btrfs_chunk *chunk,
3690 			       u64 chunk_offset,
3691 			       struct btrfs_balance_args *bargs)
3692 {
3693 	if (chunk_offset < bargs->vend &&
3694 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3695 		/* at least part of the chunk is inside this vrange */
3696 		return 0;
3697 
3698 	return 1;
3699 }
3700 
3701 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3702 			       struct btrfs_chunk *chunk,
3703 			       struct btrfs_balance_args *bargs)
3704 {
3705 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3706 
3707 	if (bargs->stripes_min <= num_stripes
3708 			&& num_stripes <= bargs->stripes_max)
3709 		return 0;
3710 
3711 	return 1;
3712 }
3713 
3714 static int chunk_soft_convert_filter(u64 chunk_type,
3715 				     struct btrfs_balance_args *bargs)
3716 {
3717 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3718 		return 0;
3719 
3720 	chunk_type = chunk_to_extended(chunk_type) &
3721 				BTRFS_EXTENDED_PROFILE_MASK;
3722 
3723 	if (bargs->target == chunk_type)
3724 		return 1;
3725 
3726 	return 0;
3727 }
3728 
3729 static int should_balance_chunk(struct extent_buffer *leaf,
3730 				struct btrfs_chunk *chunk, u64 chunk_offset)
3731 {
3732 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3733 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3734 	struct btrfs_balance_args *bargs = NULL;
3735 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3736 
3737 	/* type filter */
3738 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3739 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3740 		return 0;
3741 	}
3742 
3743 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3744 		bargs = &bctl->data;
3745 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3746 		bargs = &bctl->sys;
3747 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3748 		bargs = &bctl->meta;
3749 
3750 	/* profiles filter */
3751 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3752 	    chunk_profiles_filter(chunk_type, bargs)) {
3753 		return 0;
3754 	}
3755 
3756 	/* usage filter */
3757 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3758 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3759 		return 0;
3760 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3761 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3762 		return 0;
3763 	}
3764 
3765 	/* devid filter */
3766 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3767 	    chunk_devid_filter(leaf, chunk, bargs)) {
3768 		return 0;
3769 	}
3770 
3771 	/* drange filter, makes sense only with devid filter */
3772 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3773 	    chunk_drange_filter(leaf, chunk, bargs)) {
3774 		return 0;
3775 	}
3776 
3777 	/* vrange filter */
3778 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3779 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3780 		return 0;
3781 	}
3782 
3783 	/* stripes filter */
3784 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3785 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3786 		return 0;
3787 	}
3788 
3789 	/* soft profile changing mode */
3790 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3791 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3792 		return 0;
3793 	}
3794 
3795 	/*
3796 	 * limited by count, must be the last filter
3797 	 */
3798 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3799 		if (bargs->limit == 0)
3800 			return 0;
3801 		else
3802 			bargs->limit--;
3803 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3804 		/*
3805 		 * Same logic as the 'limit' filter; the minimum cannot be
3806 		 * determined here because we do not have the global information
3807 		 * about the count of all chunks that satisfy the filters.
3808 		 */
3809 		if (bargs->limit_max == 0)
3810 			return 0;
3811 		else
3812 			bargs->limit_max--;
3813 	}
3814 
3815 	return 1;
3816 }
3817 
3818 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3819 {
3820 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3821 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3822 	u64 chunk_type;
3823 	struct btrfs_chunk *chunk;
3824 	struct btrfs_path *path = NULL;
3825 	struct btrfs_key key;
3826 	struct btrfs_key found_key;
3827 	struct extent_buffer *leaf;
3828 	int slot;
3829 	int ret;
3830 	int enospc_errors = 0;
3831 	bool counting = true;
3832 	/* The single value limit and min/max limits use the same bytes in the */
3833 	u64 limit_data = bctl->data.limit;
3834 	u64 limit_meta = bctl->meta.limit;
3835 	u64 limit_sys = bctl->sys.limit;
3836 	u32 count_data = 0;
3837 	u32 count_meta = 0;
3838 	u32 count_sys = 0;
3839 	int chunk_reserved = 0;
3840 
3841 	path = btrfs_alloc_path();
3842 	if (!path) {
3843 		ret = -ENOMEM;
3844 		goto error;
3845 	}
3846 
3847 	/* zero out stat counters */
3848 	spin_lock(&fs_info->balance_lock);
3849 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3850 	spin_unlock(&fs_info->balance_lock);
3851 again:
3852 	if (!counting) {
3853 		/*
3854 		 * The single value limit and min/max limits use the same bytes
3855 		 * in the
3856 		 */
3857 		bctl->data.limit = limit_data;
3858 		bctl->meta.limit = limit_meta;
3859 		bctl->sys.limit = limit_sys;
3860 	}
3861 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3862 	key.offset = (u64)-1;
3863 	key.type = BTRFS_CHUNK_ITEM_KEY;
3864 
3865 	while (1) {
3866 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3867 		    atomic_read(&fs_info->balance_cancel_req)) {
3868 			ret = -ECANCELED;
3869 			goto error;
3870 		}
3871 
3872 		mutex_lock(&fs_info->reclaim_bgs_lock);
3873 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3874 		if (ret < 0) {
3875 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3876 			goto error;
3877 		}
3878 
3879 		/*
3880 		 * this shouldn't happen, it means the last relocate
3881 		 * failed
3882 		 */
3883 		if (ret == 0)
3884 			BUG(); /* FIXME break ? */
3885 
3886 		ret = btrfs_previous_item(chunk_root, path, 0,
3887 					  BTRFS_CHUNK_ITEM_KEY);
3888 		if (ret) {
3889 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3890 			ret = 0;
3891 			break;
3892 		}
3893 
3894 		leaf = path->nodes[0];
3895 		slot = path->slots[0];
3896 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3897 
3898 		if (found_key.objectid != key.objectid) {
3899 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3900 			break;
3901 		}
3902 
3903 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3904 		chunk_type = btrfs_chunk_type(leaf, chunk);
3905 
3906 		if (!counting) {
3907 			spin_lock(&fs_info->balance_lock);
3908 			bctl->stat.considered++;
3909 			spin_unlock(&fs_info->balance_lock);
3910 		}
3911 
3912 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3913 
3914 		btrfs_release_path(path);
3915 		if (!ret) {
3916 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3917 			goto loop;
3918 		}
3919 
3920 		if (counting) {
3921 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3922 			spin_lock(&fs_info->balance_lock);
3923 			bctl->stat.expected++;
3924 			spin_unlock(&fs_info->balance_lock);
3925 
3926 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3927 				count_data++;
3928 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3929 				count_sys++;
3930 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3931 				count_meta++;
3932 
3933 			goto loop;
3934 		}
3935 
3936 		/*
3937 		 * Apply limit_min filter, no need to check if the LIMITS
3938 		 * filter is used, limit_min is 0 by default
3939 		 */
3940 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3941 					count_data < bctl->data.limit_min)
3942 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3943 					count_meta < bctl->meta.limit_min)
3944 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3945 					count_sys < bctl->sys.limit_min)) {
3946 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3947 			goto loop;
3948 		}
3949 
3950 		if (!chunk_reserved) {
3951 			/*
3952 			 * We may be relocating the only data chunk we have,
3953 			 * which could potentially end up with losing data's
3954 			 * raid profile, so lets allocate an empty one in
3955 			 * advance.
3956 			 */
3957 			ret = btrfs_may_alloc_data_chunk(fs_info,
3958 							 found_key.offset);
3959 			if (ret < 0) {
3960 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3961 				goto error;
3962 			} else if (ret == 1) {
3963 				chunk_reserved = 1;
3964 			}
3965 		}
3966 
3967 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3968 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3969 		if (ret == -ENOSPC) {
3970 			enospc_errors++;
3971 		} else if (ret == -ETXTBSY) {
3972 			btrfs_info(fs_info,
3973 	   "skipping relocation of block group %llu due to active swapfile",
3974 				   found_key.offset);
3975 			ret = 0;
3976 		} else if (ret) {
3977 			goto error;
3978 		} else {
3979 			spin_lock(&fs_info->balance_lock);
3980 			bctl->stat.completed++;
3981 			spin_unlock(&fs_info->balance_lock);
3982 		}
3983 loop:
3984 		if (found_key.offset == 0)
3985 			break;
3986 		key.offset = found_key.offset - 1;
3987 	}
3988 
3989 	if (counting) {
3990 		btrfs_release_path(path);
3991 		counting = false;
3992 		goto again;
3993 	}
3994 error:
3995 	btrfs_free_path(path);
3996 	if (enospc_errors) {
3997 		btrfs_info(fs_info, "%d enospc errors during balance",
3998 			   enospc_errors);
3999 		if (!ret)
4000 			ret = -ENOSPC;
4001 	}
4002 
4003 	return ret;
4004 }
4005 
4006 /**
4007  * alloc_profile_is_valid - see if a given profile is valid and reduced
4008  * @flags: profile to validate
4009  * @extended: if true @flags is treated as an extended profile
4010  */
4011 static int alloc_profile_is_valid(u64 flags, int extended)
4012 {
4013 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4014 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4015 
4016 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4017 
4018 	/* 1) check that all other bits are zeroed */
4019 	if (flags & ~mask)
4020 		return 0;
4021 
4022 	/* 2) see if profile is reduced */
4023 	if (flags == 0)
4024 		return !extended; /* "0" is valid for usual profiles */
4025 
4026 	return has_single_bit_set(flags);
4027 }
4028 
4029 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4030 {
4031 	/* cancel requested || normal exit path */
4032 	return atomic_read(&fs_info->balance_cancel_req) ||
4033 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4034 		 atomic_read(&fs_info->balance_cancel_req) == 0);
4035 }
4036 
4037 /*
4038  * Validate target profile against allowed profiles and return true if it's OK.
4039  * Otherwise print the error message and return false.
4040  */
4041 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4042 		const struct btrfs_balance_args *bargs,
4043 		u64 allowed, const char *type)
4044 {
4045 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4046 		return true;
4047 
4048 	if (fs_info->sectorsize < PAGE_SIZE &&
4049 		bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
4050 		btrfs_err(fs_info,
4051 		"RAID56 is not yet supported for sectorsize %u with page size %lu",
4052 			  fs_info->sectorsize, PAGE_SIZE);
4053 		return false;
4054 	}
4055 	/* Profile is valid and does not have bits outside of the allowed set */
4056 	if (alloc_profile_is_valid(bargs->target, 1) &&
4057 	    (bargs->target & ~allowed) == 0)
4058 		return true;
4059 
4060 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4061 			type, btrfs_bg_type_to_raid_name(bargs->target));
4062 	return false;
4063 }
4064 
4065 /*
4066  * Fill @buf with textual description of balance filter flags @bargs, up to
4067  * @size_buf including the terminating null. The output may be trimmed if it
4068  * does not fit into the provided buffer.
4069  */
4070 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4071 				 u32 size_buf)
4072 {
4073 	int ret;
4074 	u32 size_bp = size_buf;
4075 	char *bp = buf;
4076 	u64 flags = bargs->flags;
4077 	char tmp_buf[128] = {'\0'};
4078 
4079 	if (!flags)
4080 		return;
4081 
4082 #define CHECK_APPEND_NOARG(a)						\
4083 	do {								\
4084 		ret = snprintf(bp, size_bp, (a));			\
4085 		if (ret < 0 || ret >= size_bp)				\
4086 			goto out_overflow;				\
4087 		size_bp -= ret;						\
4088 		bp += ret;						\
4089 	} while (0)
4090 
4091 #define CHECK_APPEND_1ARG(a, v1)					\
4092 	do {								\
4093 		ret = snprintf(bp, size_bp, (a), (v1));			\
4094 		if (ret < 0 || ret >= size_bp)				\
4095 			goto out_overflow;				\
4096 		size_bp -= ret;						\
4097 		bp += ret;						\
4098 	} while (0)
4099 
4100 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4101 	do {								\
4102 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4103 		if (ret < 0 || ret >= size_bp)				\
4104 			goto out_overflow;				\
4105 		size_bp -= ret;						\
4106 		bp += ret;						\
4107 	} while (0)
4108 
4109 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4110 		CHECK_APPEND_1ARG("convert=%s,",
4111 				  btrfs_bg_type_to_raid_name(bargs->target));
4112 
4113 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4114 		CHECK_APPEND_NOARG("soft,");
4115 
4116 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4117 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4118 					    sizeof(tmp_buf));
4119 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4120 	}
4121 
4122 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4123 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4124 
4125 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4126 		CHECK_APPEND_2ARG("usage=%u..%u,",
4127 				  bargs->usage_min, bargs->usage_max);
4128 
4129 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4130 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4131 
4132 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4133 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4134 				  bargs->pstart, bargs->pend);
4135 
4136 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4137 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4138 				  bargs->vstart, bargs->vend);
4139 
4140 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4141 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4142 
4143 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4144 		CHECK_APPEND_2ARG("limit=%u..%u,",
4145 				bargs->limit_min, bargs->limit_max);
4146 
4147 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4148 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4149 				  bargs->stripes_min, bargs->stripes_max);
4150 
4151 #undef CHECK_APPEND_2ARG
4152 #undef CHECK_APPEND_1ARG
4153 #undef CHECK_APPEND_NOARG
4154 
4155 out_overflow:
4156 
4157 	if (size_bp < size_buf)
4158 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4159 	else
4160 		buf[0] = '\0';
4161 }
4162 
4163 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4164 {
4165 	u32 size_buf = 1024;
4166 	char tmp_buf[192] = {'\0'};
4167 	char *buf;
4168 	char *bp;
4169 	u32 size_bp = size_buf;
4170 	int ret;
4171 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4172 
4173 	buf = kzalloc(size_buf, GFP_KERNEL);
4174 	if (!buf)
4175 		return;
4176 
4177 	bp = buf;
4178 
4179 #define CHECK_APPEND_1ARG(a, v1)					\
4180 	do {								\
4181 		ret = snprintf(bp, size_bp, (a), (v1));			\
4182 		if (ret < 0 || ret >= size_bp)				\
4183 			goto out_overflow;				\
4184 		size_bp -= ret;						\
4185 		bp += ret;						\
4186 	} while (0)
4187 
4188 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4189 		CHECK_APPEND_1ARG("%s", "-f ");
4190 
4191 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4192 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4193 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4194 	}
4195 
4196 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4197 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4198 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4199 	}
4200 
4201 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4202 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4203 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4204 	}
4205 
4206 #undef CHECK_APPEND_1ARG
4207 
4208 out_overflow:
4209 
4210 	if (size_bp < size_buf)
4211 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4212 	btrfs_info(fs_info, "balance: %s %s",
4213 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4214 		   "resume" : "start", buf);
4215 
4216 	kfree(buf);
4217 }
4218 
4219 /*
4220  * Should be called with balance mutexe held
4221  */
4222 int btrfs_balance(struct btrfs_fs_info *fs_info,
4223 		  struct btrfs_balance_control *bctl,
4224 		  struct btrfs_ioctl_balance_args *bargs)
4225 {
4226 	u64 meta_target, data_target;
4227 	u64 allowed;
4228 	int mixed = 0;
4229 	int ret;
4230 	u64 num_devices;
4231 	unsigned seq;
4232 	bool reducing_redundancy;
4233 	int i;
4234 
4235 	if (btrfs_fs_closing(fs_info) ||
4236 	    atomic_read(&fs_info->balance_pause_req) ||
4237 	    btrfs_should_cancel_balance(fs_info)) {
4238 		ret = -EINVAL;
4239 		goto out;
4240 	}
4241 
4242 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4243 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4244 		mixed = 1;
4245 
4246 	/*
4247 	 * In case of mixed groups both data and meta should be picked,
4248 	 * and identical options should be given for both of them.
4249 	 */
4250 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4251 	if (mixed && (bctl->flags & allowed)) {
4252 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4253 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4254 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4255 			btrfs_err(fs_info,
4256 	  "balance: mixed groups data and metadata options must be the same");
4257 			ret = -EINVAL;
4258 			goto out;
4259 		}
4260 	}
4261 
4262 	/*
4263 	 * rw_devices will not change at the moment, device add/delete/replace
4264 	 * are exclusive
4265 	 */
4266 	num_devices = fs_info->fs_devices->rw_devices;
4267 
4268 	/*
4269 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4270 	 * special bit for it, to make it easier to distinguish.  Thus we need
4271 	 * to set it manually, or balance would refuse the profile.
4272 	 */
4273 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4274 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4275 		if (num_devices >= btrfs_raid_array[i].devs_min)
4276 			allowed |= btrfs_raid_array[i].bg_flag;
4277 
4278 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4279 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4280 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4281 		ret = -EINVAL;
4282 		goto out;
4283 	}
4284 
4285 	/*
4286 	 * Allow to reduce metadata or system integrity only if force set for
4287 	 * profiles with redundancy (copies, parity)
4288 	 */
4289 	allowed = 0;
4290 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4291 		if (btrfs_raid_array[i].ncopies >= 2 ||
4292 		    btrfs_raid_array[i].tolerated_failures >= 1)
4293 			allowed |= btrfs_raid_array[i].bg_flag;
4294 	}
4295 	do {
4296 		seq = read_seqbegin(&fs_info->profiles_lock);
4297 
4298 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4299 		     (fs_info->avail_system_alloc_bits & allowed) &&
4300 		     !(bctl->sys.target & allowed)) ||
4301 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4302 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4303 		     !(bctl->meta.target & allowed)))
4304 			reducing_redundancy = true;
4305 		else
4306 			reducing_redundancy = false;
4307 
4308 		/* if we're not converting, the target field is uninitialized */
4309 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4310 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4311 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4312 			bctl->data.target : fs_info->avail_data_alloc_bits;
4313 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4314 
4315 	if (reducing_redundancy) {
4316 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4317 			btrfs_info(fs_info,
4318 			   "balance: force reducing metadata redundancy");
4319 		} else {
4320 			btrfs_err(fs_info,
4321 	"balance: reduces metadata redundancy, use --force if you want this");
4322 			ret = -EINVAL;
4323 			goto out;
4324 		}
4325 	}
4326 
4327 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4328 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4329 		btrfs_warn(fs_info,
4330 	"balance: metadata profile %s has lower redundancy than data profile %s",
4331 				btrfs_bg_type_to_raid_name(meta_target),
4332 				btrfs_bg_type_to_raid_name(data_target));
4333 	}
4334 
4335 	ret = insert_balance_item(fs_info, bctl);
4336 	if (ret && ret != -EEXIST)
4337 		goto out;
4338 
4339 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4340 		BUG_ON(ret == -EEXIST);
4341 		BUG_ON(fs_info->balance_ctl);
4342 		spin_lock(&fs_info->balance_lock);
4343 		fs_info->balance_ctl = bctl;
4344 		spin_unlock(&fs_info->balance_lock);
4345 	} else {
4346 		BUG_ON(ret != -EEXIST);
4347 		spin_lock(&fs_info->balance_lock);
4348 		update_balance_args(bctl);
4349 		spin_unlock(&fs_info->balance_lock);
4350 	}
4351 
4352 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4353 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4354 	describe_balance_start_or_resume(fs_info);
4355 	mutex_unlock(&fs_info->balance_mutex);
4356 
4357 	ret = __btrfs_balance(fs_info);
4358 
4359 	mutex_lock(&fs_info->balance_mutex);
4360 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4361 		btrfs_info(fs_info, "balance: paused");
4362 	/*
4363 	 * Balance can be canceled by:
4364 	 *
4365 	 * - Regular cancel request
4366 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4367 	 *
4368 	 * - Fatal signal to "btrfs" process
4369 	 *   Either the signal caught by wait_reserve_ticket() and callers
4370 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4371 	 *   got -ECANCELED.
4372 	 *   Either way, in this case balance_cancel_req = 0, and
4373 	 *   ret == -EINTR or ret == -ECANCELED.
4374 	 *
4375 	 * So here we only check the return value to catch canceled balance.
4376 	 */
4377 	else if (ret == -ECANCELED || ret == -EINTR)
4378 		btrfs_info(fs_info, "balance: canceled");
4379 	else
4380 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4381 
4382 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4383 
4384 	if (bargs) {
4385 		memset(bargs, 0, sizeof(*bargs));
4386 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4387 	}
4388 
4389 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4390 	    balance_need_close(fs_info)) {
4391 		reset_balance_state(fs_info);
4392 		btrfs_exclop_finish(fs_info);
4393 	}
4394 
4395 	wake_up(&fs_info->balance_wait_q);
4396 
4397 	return ret;
4398 out:
4399 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4400 		reset_balance_state(fs_info);
4401 	else
4402 		kfree(bctl);
4403 	btrfs_exclop_finish(fs_info);
4404 
4405 	return ret;
4406 }
4407 
4408 static int balance_kthread(void *data)
4409 {
4410 	struct btrfs_fs_info *fs_info = data;
4411 	int ret = 0;
4412 
4413 	mutex_lock(&fs_info->balance_mutex);
4414 	if (fs_info->balance_ctl)
4415 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4416 	mutex_unlock(&fs_info->balance_mutex);
4417 
4418 	return ret;
4419 }
4420 
4421 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4422 {
4423 	struct task_struct *tsk;
4424 
4425 	mutex_lock(&fs_info->balance_mutex);
4426 	if (!fs_info->balance_ctl) {
4427 		mutex_unlock(&fs_info->balance_mutex);
4428 		return 0;
4429 	}
4430 	mutex_unlock(&fs_info->balance_mutex);
4431 
4432 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4433 		btrfs_info(fs_info, "balance: resume skipped");
4434 		return 0;
4435 	}
4436 
4437 	/*
4438 	 * A ro->rw remount sequence should continue with the paused balance
4439 	 * regardless of who pauses it, system or the user as of now, so set
4440 	 * the resume flag.
4441 	 */
4442 	spin_lock(&fs_info->balance_lock);
4443 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4444 	spin_unlock(&fs_info->balance_lock);
4445 
4446 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4447 	return PTR_ERR_OR_ZERO(tsk);
4448 }
4449 
4450 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4451 {
4452 	struct btrfs_balance_control *bctl;
4453 	struct btrfs_balance_item *item;
4454 	struct btrfs_disk_balance_args disk_bargs;
4455 	struct btrfs_path *path;
4456 	struct extent_buffer *leaf;
4457 	struct btrfs_key key;
4458 	int ret;
4459 
4460 	path = btrfs_alloc_path();
4461 	if (!path)
4462 		return -ENOMEM;
4463 
4464 	key.objectid = BTRFS_BALANCE_OBJECTID;
4465 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4466 	key.offset = 0;
4467 
4468 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4469 	if (ret < 0)
4470 		goto out;
4471 	if (ret > 0) { /* ret = -ENOENT; */
4472 		ret = 0;
4473 		goto out;
4474 	}
4475 
4476 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4477 	if (!bctl) {
4478 		ret = -ENOMEM;
4479 		goto out;
4480 	}
4481 
4482 	leaf = path->nodes[0];
4483 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4484 
4485 	bctl->flags = btrfs_balance_flags(leaf, item);
4486 	bctl->flags |= BTRFS_BALANCE_RESUME;
4487 
4488 	btrfs_balance_data(leaf, item, &disk_bargs);
4489 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4490 	btrfs_balance_meta(leaf, item, &disk_bargs);
4491 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4492 	btrfs_balance_sys(leaf, item, &disk_bargs);
4493 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4494 
4495 	/*
4496 	 * This should never happen, as the paused balance state is recovered
4497 	 * during mount without any chance of other exclusive ops to collide.
4498 	 *
4499 	 * This gives the exclusive op status to balance and keeps in paused
4500 	 * state until user intervention (cancel or umount). If the ownership
4501 	 * cannot be assigned, show a message but do not fail. The balance
4502 	 * is in a paused state and must have fs_info::balance_ctl properly
4503 	 * set up.
4504 	 */
4505 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4506 		btrfs_warn(fs_info,
4507 	"balance: cannot set exclusive op status, resume manually");
4508 
4509 	btrfs_release_path(path);
4510 
4511 	mutex_lock(&fs_info->balance_mutex);
4512 	BUG_ON(fs_info->balance_ctl);
4513 	spin_lock(&fs_info->balance_lock);
4514 	fs_info->balance_ctl = bctl;
4515 	spin_unlock(&fs_info->balance_lock);
4516 	mutex_unlock(&fs_info->balance_mutex);
4517 out:
4518 	btrfs_free_path(path);
4519 	return ret;
4520 }
4521 
4522 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4523 {
4524 	int ret = 0;
4525 
4526 	mutex_lock(&fs_info->balance_mutex);
4527 	if (!fs_info->balance_ctl) {
4528 		mutex_unlock(&fs_info->balance_mutex);
4529 		return -ENOTCONN;
4530 	}
4531 
4532 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4533 		atomic_inc(&fs_info->balance_pause_req);
4534 		mutex_unlock(&fs_info->balance_mutex);
4535 
4536 		wait_event(fs_info->balance_wait_q,
4537 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4538 
4539 		mutex_lock(&fs_info->balance_mutex);
4540 		/* we are good with balance_ctl ripped off from under us */
4541 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4542 		atomic_dec(&fs_info->balance_pause_req);
4543 	} else {
4544 		ret = -ENOTCONN;
4545 	}
4546 
4547 	mutex_unlock(&fs_info->balance_mutex);
4548 	return ret;
4549 }
4550 
4551 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4552 {
4553 	mutex_lock(&fs_info->balance_mutex);
4554 	if (!fs_info->balance_ctl) {
4555 		mutex_unlock(&fs_info->balance_mutex);
4556 		return -ENOTCONN;
4557 	}
4558 
4559 	/*
4560 	 * A paused balance with the item stored on disk can be resumed at
4561 	 * mount time if the mount is read-write. Otherwise it's still paused
4562 	 * and we must not allow cancelling as it deletes the item.
4563 	 */
4564 	if (sb_rdonly(fs_info->sb)) {
4565 		mutex_unlock(&fs_info->balance_mutex);
4566 		return -EROFS;
4567 	}
4568 
4569 	atomic_inc(&fs_info->balance_cancel_req);
4570 	/*
4571 	 * if we are running just wait and return, balance item is
4572 	 * deleted in btrfs_balance in this case
4573 	 */
4574 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4575 		mutex_unlock(&fs_info->balance_mutex);
4576 		wait_event(fs_info->balance_wait_q,
4577 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4578 		mutex_lock(&fs_info->balance_mutex);
4579 	} else {
4580 		mutex_unlock(&fs_info->balance_mutex);
4581 		/*
4582 		 * Lock released to allow other waiters to continue, we'll
4583 		 * reexamine the status again.
4584 		 */
4585 		mutex_lock(&fs_info->balance_mutex);
4586 
4587 		if (fs_info->balance_ctl) {
4588 			reset_balance_state(fs_info);
4589 			btrfs_exclop_finish(fs_info);
4590 			btrfs_info(fs_info, "balance: canceled");
4591 		}
4592 	}
4593 
4594 	BUG_ON(fs_info->balance_ctl ||
4595 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4596 	atomic_dec(&fs_info->balance_cancel_req);
4597 	mutex_unlock(&fs_info->balance_mutex);
4598 	return 0;
4599 }
4600 
4601 int btrfs_uuid_scan_kthread(void *data)
4602 {
4603 	struct btrfs_fs_info *fs_info = data;
4604 	struct btrfs_root *root = fs_info->tree_root;
4605 	struct btrfs_key key;
4606 	struct btrfs_path *path = NULL;
4607 	int ret = 0;
4608 	struct extent_buffer *eb;
4609 	int slot;
4610 	struct btrfs_root_item root_item;
4611 	u32 item_size;
4612 	struct btrfs_trans_handle *trans = NULL;
4613 	bool closing = false;
4614 
4615 	path = btrfs_alloc_path();
4616 	if (!path) {
4617 		ret = -ENOMEM;
4618 		goto out;
4619 	}
4620 
4621 	key.objectid = 0;
4622 	key.type = BTRFS_ROOT_ITEM_KEY;
4623 	key.offset = 0;
4624 
4625 	while (1) {
4626 		if (btrfs_fs_closing(fs_info)) {
4627 			closing = true;
4628 			break;
4629 		}
4630 		ret = btrfs_search_forward(root, &key, path,
4631 				BTRFS_OLDEST_GENERATION);
4632 		if (ret) {
4633 			if (ret > 0)
4634 				ret = 0;
4635 			break;
4636 		}
4637 
4638 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4639 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4640 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4641 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4642 			goto skip;
4643 
4644 		eb = path->nodes[0];
4645 		slot = path->slots[0];
4646 		item_size = btrfs_item_size_nr(eb, slot);
4647 		if (item_size < sizeof(root_item))
4648 			goto skip;
4649 
4650 		read_extent_buffer(eb, &root_item,
4651 				   btrfs_item_ptr_offset(eb, slot),
4652 				   (int)sizeof(root_item));
4653 		if (btrfs_root_refs(&root_item) == 0)
4654 			goto skip;
4655 
4656 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4657 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4658 			if (trans)
4659 				goto update_tree;
4660 
4661 			btrfs_release_path(path);
4662 			/*
4663 			 * 1 - subvol uuid item
4664 			 * 1 - received_subvol uuid item
4665 			 */
4666 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4667 			if (IS_ERR(trans)) {
4668 				ret = PTR_ERR(trans);
4669 				break;
4670 			}
4671 			continue;
4672 		} else {
4673 			goto skip;
4674 		}
4675 update_tree:
4676 		btrfs_release_path(path);
4677 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4678 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4679 						  BTRFS_UUID_KEY_SUBVOL,
4680 						  key.objectid);
4681 			if (ret < 0) {
4682 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4683 					ret);
4684 				break;
4685 			}
4686 		}
4687 
4688 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4689 			ret = btrfs_uuid_tree_add(trans,
4690 						  root_item.received_uuid,
4691 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4692 						  key.objectid);
4693 			if (ret < 0) {
4694 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4695 					ret);
4696 				break;
4697 			}
4698 		}
4699 
4700 skip:
4701 		btrfs_release_path(path);
4702 		if (trans) {
4703 			ret = btrfs_end_transaction(trans);
4704 			trans = NULL;
4705 			if (ret)
4706 				break;
4707 		}
4708 
4709 		if (key.offset < (u64)-1) {
4710 			key.offset++;
4711 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4712 			key.offset = 0;
4713 			key.type = BTRFS_ROOT_ITEM_KEY;
4714 		} else if (key.objectid < (u64)-1) {
4715 			key.offset = 0;
4716 			key.type = BTRFS_ROOT_ITEM_KEY;
4717 			key.objectid++;
4718 		} else {
4719 			break;
4720 		}
4721 		cond_resched();
4722 	}
4723 
4724 out:
4725 	btrfs_free_path(path);
4726 	if (trans && !IS_ERR(trans))
4727 		btrfs_end_transaction(trans);
4728 	if (ret)
4729 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4730 	else if (!closing)
4731 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4732 	up(&fs_info->uuid_tree_rescan_sem);
4733 	return 0;
4734 }
4735 
4736 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4737 {
4738 	struct btrfs_trans_handle *trans;
4739 	struct btrfs_root *tree_root = fs_info->tree_root;
4740 	struct btrfs_root *uuid_root;
4741 	struct task_struct *task;
4742 	int ret;
4743 
4744 	/*
4745 	 * 1 - root node
4746 	 * 1 - root item
4747 	 */
4748 	trans = btrfs_start_transaction(tree_root, 2);
4749 	if (IS_ERR(trans))
4750 		return PTR_ERR(trans);
4751 
4752 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4753 	if (IS_ERR(uuid_root)) {
4754 		ret = PTR_ERR(uuid_root);
4755 		btrfs_abort_transaction(trans, ret);
4756 		btrfs_end_transaction(trans);
4757 		return ret;
4758 	}
4759 
4760 	fs_info->uuid_root = uuid_root;
4761 
4762 	ret = btrfs_commit_transaction(trans);
4763 	if (ret)
4764 		return ret;
4765 
4766 	down(&fs_info->uuid_tree_rescan_sem);
4767 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4768 	if (IS_ERR(task)) {
4769 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4770 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4771 		up(&fs_info->uuid_tree_rescan_sem);
4772 		return PTR_ERR(task);
4773 	}
4774 
4775 	return 0;
4776 }
4777 
4778 /*
4779  * shrinking a device means finding all of the device extents past
4780  * the new size, and then following the back refs to the chunks.
4781  * The chunk relocation code actually frees the device extent
4782  */
4783 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4784 {
4785 	struct btrfs_fs_info *fs_info = device->fs_info;
4786 	struct btrfs_root *root = fs_info->dev_root;
4787 	struct btrfs_trans_handle *trans;
4788 	struct btrfs_dev_extent *dev_extent = NULL;
4789 	struct btrfs_path *path;
4790 	u64 length;
4791 	u64 chunk_offset;
4792 	int ret;
4793 	int slot;
4794 	int failed = 0;
4795 	bool retried = false;
4796 	struct extent_buffer *l;
4797 	struct btrfs_key key;
4798 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4799 	u64 old_total = btrfs_super_total_bytes(super_copy);
4800 	u64 old_size = btrfs_device_get_total_bytes(device);
4801 	u64 diff;
4802 	u64 start;
4803 
4804 	new_size = round_down(new_size, fs_info->sectorsize);
4805 	start = new_size;
4806 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4807 
4808 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4809 		return -EINVAL;
4810 
4811 	path = btrfs_alloc_path();
4812 	if (!path)
4813 		return -ENOMEM;
4814 
4815 	path->reada = READA_BACK;
4816 
4817 	trans = btrfs_start_transaction(root, 0);
4818 	if (IS_ERR(trans)) {
4819 		btrfs_free_path(path);
4820 		return PTR_ERR(trans);
4821 	}
4822 
4823 	mutex_lock(&fs_info->chunk_mutex);
4824 
4825 	btrfs_device_set_total_bytes(device, new_size);
4826 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4827 		device->fs_devices->total_rw_bytes -= diff;
4828 		atomic64_sub(diff, &fs_info->free_chunk_space);
4829 	}
4830 
4831 	/*
4832 	 * Once the device's size has been set to the new size, ensure all
4833 	 * in-memory chunks are synced to disk so that the loop below sees them
4834 	 * and relocates them accordingly.
4835 	 */
4836 	if (contains_pending_extent(device, &start, diff)) {
4837 		mutex_unlock(&fs_info->chunk_mutex);
4838 		ret = btrfs_commit_transaction(trans);
4839 		if (ret)
4840 			goto done;
4841 	} else {
4842 		mutex_unlock(&fs_info->chunk_mutex);
4843 		btrfs_end_transaction(trans);
4844 	}
4845 
4846 again:
4847 	key.objectid = device->devid;
4848 	key.offset = (u64)-1;
4849 	key.type = BTRFS_DEV_EXTENT_KEY;
4850 
4851 	do {
4852 		mutex_lock(&fs_info->reclaim_bgs_lock);
4853 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4854 		if (ret < 0) {
4855 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4856 			goto done;
4857 		}
4858 
4859 		ret = btrfs_previous_item(root, path, 0, key.type);
4860 		if (ret) {
4861 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4862 			if (ret < 0)
4863 				goto done;
4864 			ret = 0;
4865 			btrfs_release_path(path);
4866 			break;
4867 		}
4868 
4869 		l = path->nodes[0];
4870 		slot = path->slots[0];
4871 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4872 
4873 		if (key.objectid != device->devid) {
4874 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4875 			btrfs_release_path(path);
4876 			break;
4877 		}
4878 
4879 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4880 		length = btrfs_dev_extent_length(l, dev_extent);
4881 
4882 		if (key.offset + length <= new_size) {
4883 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4884 			btrfs_release_path(path);
4885 			break;
4886 		}
4887 
4888 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4889 		btrfs_release_path(path);
4890 
4891 		/*
4892 		 * We may be relocating the only data chunk we have,
4893 		 * which could potentially end up with losing data's
4894 		 * raid profile, so lets allocate an empty one in
4895 		 * advance.
4896 		 */
4897 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4898 		if (ret < 0) {
4899 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4900 			goto done;
4901 		}
4902 
4903 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4904 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4905 		if (ret == -ENOSPC) {
4906 			failed++;
4907 		} else if (ret) {
4908 			if (ret == -ETXTBSY) {
4909 				btrfs_warn(fs_info,
4910 		   "could not shrink block group %llu due to active swapfile",
4911 					   chunk_offset);
4912 			}
4913 			goto done;
4914 		}
4915 	} while (key.offset-- > 0);
4916 
4917 	if (failed && !retried) {
4918 		failed = 0;
4919 		retried = true;
4920 		goto again;
4921 	} else if (failed && retried) {
4922 		ret = -ENOSPC;
4923 		goto done;
4924 	}
4925 
4926 	/* Shrinking succeeded, else we would be at "done". */
4927 	trans = btrfs_start_transaction(root, 0);
4928 	if (IS_ERR(trans)) {
4929 		ret = PTR_ERR(trans);
4930 		goto done;
4931 	}
4932 
4933 	mutex_lock(&fs_info->chunk_mutex);
4934 	/* Clear all state bits beyond the shrunk device size */
4935 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4936 			  CHUNK_STATE_MASK);
4937 
4938 	btrfs_device_set_disk_total_bytes(device, new_size);
4939 	if (list_empty(&device->post_commit_list))
4940 		list_add_tail(&device->post_commit_list,
4941 			      &trans->transaction->dev_update_list);
4942 
4943 	WARN_ON(diff > old_total);
4944 	btrfs_set_super_total_bytes(super_copy,
4945 			round_down(old_total - diff, fs_info->sectorsize));
4946 	mutex_unlock(&fs_info->chunk_mutex);
4947 
4948 	btrfs_reserve_chunk_metadata(trans, false);
4949 	/* Now btrfs_update_device() will change the on-disk size. */
4950 	ret = btrfs_update_device(trans, device);
4951 	btrfs_trans_release_chunk_metadata(trans);
4952 	if (ret < 0) {
4953 		btrfs_abort_transaction(trans, ret);
4954 		btrfs_end_transaction(trans);
4955 	} else {
4956 		ret = btrfs_commit_transaction(trans);
4957 	}
4958 done:
4959 	btrfs_free_path(path);
4960 	if (ret) {
4961 		mutex_lock(&fs_info->chunk_mutex);
4962 		btrfs_device_set_total_bytes(device, old_size);
4963 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4964 			device->fs_devices->total_rw_bytes += diff;
4965 		atomic64_add(diff, &fs_info->free_chunk_space);
4966 		mutex_unlock(&fs_info->chunk_mutex);
4967 	}
4968 	return ret;
4969 }
4970 
4971 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4972 			   struct btrfs_key *key,
4973 			   struct btrfs_chunk *chunk, int item_size)
4974 {
4975 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4976 	struct btrfs_disk_key disk_key;
4977 	u32 array_size;
4978 	u8 *ptr;
4979 
4980 	lockdep_assert_held(&fs_info->chunk_mutex);
4981 
4982 	array_size = btrfs_super_sys_array_size(super_copy);
4983 	if (array_size + item_size + sizeof(disk_key)
4984 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4985 		return -EFBIG;
4986 
4987 	ptr = super_copy->sys_chunk_array + array_size;
4988 	btrfs_cpu_key_to_disk(&disk_key, key);
4989 	memcpy(ptr, &disk_key, sizeof(disk_key));
4990 	ptr += sizeof(disk_key);
4991 	memcpy(ptr, chunk, item_size);
4992 	item_size += sizeof(disk_key);
4993 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4994 
4995 	return 0;
4996 }
4997 
4998 /*
4999  * sort the devices in descending order by max_avail, total_avail
5000  */
5001 static int btrfs_cmp_device_info(const void *a, const void *b)
5002 {
5003 	const struct btrfs_device_info *di_a = a;
5004 	const struct btrfs_device_info *di_b = b;
5005 
5006 	if (di_a->max_avail > di_b->max_avail)
5007 		return -1;
5008 	if (di_a->max_avail < di_b->max_avail)
5009 		return 1;
5010 	if (di_a->total_avail > di_b->total_avail)
5011 		return -1;
5012 	if (di_a->total_avail < di_b->total_avail)
5013 		return 1;
5014 	return 0;
5015 }
5016 
5017 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5018 {
5019 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5020 		return;
5021 
5022 	btrfs_set_fs_incompat(info, RAID56);
5023 }
5024 
5025 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5026 {
5027 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5028 		return;
5029 
5030 	btrfs_set_fs_incompat(info, RAID1C34);
5031 }
5032 
5033 /*
5034  * Structure used internally for btrfs_create_chunk() function.
5035  * Wraps needed parameters.
5036  */
5037 struct alloc_chunk_ctl {
5038 	u64 start;
5039 	u64 type;
5040 	/* Total number of stripes to allocate */
5041 	int num_stripes;
5042 	/* sub_stripes info for map */
5043 	int sub_stripes;
5044 	/* Stripes per device */
5045 	int dev_stripes;
5046 	/* Maximum number of devices to use */
5047 	int devs_max;
5048 	/* Minimum number of devices to use */
5049 	int devs_min;
5050 	/* ndevs has to be a multiple of this */
5051 	int devs_increment;
5052 	/* Number of copies */
5053 	int ncopies;
5054 	/* Number of stripes worth of bytes to store parity information */
5055 	int nparity;
5056 	u64 max_stripe_size;
5057 	u64 max_chunk_size;
5058 	u64 dev_extent_min;
5059 	u64 stripe_size;
5060 	u64 chunk_size;
5061 	int ndevs;
5062 };
5063 
5064 static void init_alloc_chunk_ctl_policy_regular(
5065 				struct btrfs_fs_devices *fs_devices,
5066 				struct alloc_chunk_ctl *ctl)
5067 {
5068 	u64 type = ctl->type;
5069 
5070 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5071 		ctl->max_stripe_size = SZ_1G;
5072 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5073 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5074 		/* For larger filesystems, use larger metadata chunks */
5075 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5076 			ctl->max_stripe_size = SZ_1G;
5077 		else
5078 			ctl->max_stripe_size = SZ_256M;
5079 		ctl->max_chunk_size = ctl->max_stripe_size;
5080 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5081 		ctl->max_stripe_size = SZ_32M;
5082 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5083 		ctl->devs_max = min_t(int, ctl->devs_max,
5084 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5085 	} else {
5086 		BUG();
5087 	}
5088 
5089 	/* We don't want a chunk larger than 10% of writable space */
5090 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5091 				  ctl->max_chunk_size);
5092 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5093 }
5094 
5095 static void init_alloc_chunk_ctl_policy_zoned(
5096 				      struct btrfs_fs_devices *fs_devices,
5097 				      struct alloc_chunk_ctl *ctl)
5098 {
5099 	u64 zone_size = fs_devices->fs_info->zone_size;
5100 	u64 limit;
5101 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5102 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5103 	u64 min_chunk_size = min_data_stripes * zone_size;
5104 	u64 type = ctl->type;
5105 
5106 	ctl->max_stripe_size = zone_size;
5107 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5108 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5109 						 zone_size);
5110 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5111 		ctl->max_chunk_size = ctl->max_stripe_size;
5112 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5113 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5114 		ctl->devs_max = min_t(int, ctl->devs_max,
5115 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5116 	} else {
5117 		BUG();
5118 	}
5119 
5120 	/* We don't want a chunk larger than 10% of writable space */
5121 	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5122 			       zone_size),
5123 		    min_chunk_size);
5124 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5125 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5126 }
5127 
5128 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5129 				 struct alloc_chunk_ctl *ctl)
5130 {
5131 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5132 
5133 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5134 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5135 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5136 	if (!ctl->devs_max)
5137 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5138 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5139 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5140 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5141 	ctl->nparity = btrfs_raid_array[index].nparity;
5142 	ctl->ndevs = 0;
5143 
5144 	switch (fs_devices->chunk_alloc_policy) {
5145 	case BTRFS_CHUNK_ALLOC_REGULAR:
5146 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5147 		break;
5148 	case BTRFS_CHUNK_ALLOC_ZONED:
5149 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5150 		break;
5151 	default:
5152 		BUG();
5153 	}
5154 }
5155 
5156 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5157 			      struct alloc_chunk_ctl *ctl,
5158 			      struct btrfs_device_info *devices_info)
5159 {
5160 	struct btrfs_fs_info *info = fs_devices->fs_info;
5161 	struct btrfs_device *device;
5162 	u64 total_avail;
5163 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5164 	int ret;
5165 	int ndevs = 0;
5166 	u64 max_avail;
5167 	u64 dev_offset;
5168 
5169 	/*
5170 	 * in the first pass through the devices list, we gather information
5171 	 * about the available holes on each device.
5172 	 */
5173 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5174 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5175 			WARN(1, KERN_ERR
5176 			       "BTRFS: read-only device in alloc_list\n");
5177 			continue;
5178 		}
5179 
5180 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5181 					&device->dev_state) ||
5182 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5183 			continue;
5184 
5185 		if (device->total_bytes > device->bytes_used)
5186 			total_avail = device->total_bytes - device->bytes_used;
5187 		else
5188 			total_avail = 0;
5189 
5190 		/* If there is no space on this device, skip it. */
5191 		if (total_avail < ctl->dev_extent_min)
5192 			continue;
5193 
5194 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5195 					   &max_avail);
5196 		if (ret && ret != -ENOSPC)
5197 			return ret;
5198 
5199 		if (ret == 0)
5200 			max_avail = dev_extent_want;
5201 
5202 		if (max_avail < ctl->dev_extent_min) {
5203 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5204 				btrfs_debug(info,
5205 			"%s: devid %llu has no free space, have=%llu want=%llu",
5206 					    __func__, device->devid, max_avail,
5207 					    ctl->dev_extent_min);
5208 			continue;
5209 		}
5210 
5211 		if (ndevs == fs_devices->rw_devices) {
5212 			WARN(1, "%s: found more than %llu devices\n",
5213 			     __func__, fs_devices->rw_devices);
5214 			break;
5215 		}
5216 		devices_info[ndevs].dev_offset = dev_offset;
5217 		devices_info[ndevs].max_avail = max_avail;
5218 		devices_info[ndevs].total_avail = total_avail;
5219 		devices_info[ndevs].dev = device;
5220 		++ndevs;
5221 	}
5222 	ctl->ndevs = ndevs;
5223 
5224 	/*
5225 	 * now sort the devices by hole size / available space
5226 	 */
5227 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5228 	     btrfs_cmp_device_info, NULL);
5229 
5230 	return 0;
5231 }
5232 
5233 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5234 				      struct btrfs_device_info *devices_info)
5235 {
5236 	/* Number of stripes that count for block group size */
5237 	int data_stripes;
5238 
5239 	/*
5240 	 * The primary goal is to maximize the number of stripes, so use as
5241 	 * many devices as possible, even if the stripes are not maximum sized.
5242 	 *
5243 	 * The DUP profile stores more than one stripe per device, the
5244 	 * max_avail is the total size so we have to adjust.
5245 	 */
5246 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5247 				   ctl->dev_stripes);
5248 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5249 
5250 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5251 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5252 
5253 	/*
5254 	 * Use the number of data stripes to figure out how big this chunk is
5255 	 * really going to be in terms of logical address space, and compare
5256 	 * that answer with the max chunk size. If it's higher, we try to
5257 	 * reduce stripe_size.
5258 	 */
5259 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5260 		/*
5261 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5262 		 * then use it, unless it ends up being even bigger than the
5263 		 * previous value we had already.
5264 		 */
5265 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5266 							data_stripes), SZ_16M),
5267 				       ctl->stripe_size);
5268 	}
5269 
5270 	/* Align to BTRFS_STRIPE_LEN */
5271 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5272 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5273 
5274 	return 0;
5275 }
5276 
5277 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5278 				    struct btrfs_device_info *devices_info)
5279 {
5280 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5281 	/* Number of stripes that count for block group size */
5282 	int data_stripes;
5283 
5284 	/*
5285 	 * It should hold because:
5286 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5287 	 */
5288 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5289 
5290 	ctl->stripe_size = zone_size;
5291 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5292 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5293 
5294 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5295 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5296 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5297 					     ctl->stripe_size) + ctl->nparity,
5298 				     ctl->dev_stripes);
5299 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5300 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5301 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5302 	}
5303 
5304 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5305 
5306 	return 0;
5307 }
5308 
5309 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5310 			      struct alloc_chunk_ctl *ctl,
5311 			      struct btrfs_device_info *devices_info)
5312 {
5313 	struct btrfs_fs_info *info = fs_devices->fs_info;
5314 
5315 	/*
5316 	 * Round down to number of usable stripes, devs_increment can be any
5317 	 * number so we can't use round_down() that requires power of 2, while
5318 	 * rounddown is safe.
5319 	 */
5320 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5321 
5322 	if (ctl->ndevs < ctl->devs_min) {
5323 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5324 			btrfs_debug(info,
5325 	"%s: not enough devices with free space: have=%d minimum required=%d",
5326 				    __func__, ctl->ndevs, ctl->devs_min);
5327 		}
5328 		return -ENOSPC;
5329 	}
5330 
5331 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5332 
5333 	switch (fs_devices->chunk_alloc_policy) {
5334 	case BTRFS_CHUNK_ALLOC_REGULAR:
5335 		return decide_stripe_size_regular(ctl, devices_info);
5336 	case BTRFS_CHUNK_ALLOC_ZONED:
5337 		return decide_stripe_size_zoned(ctl, devices_info);
5338 	default:
5339 		BUG();
5340 	}
5341 }
5342 
5343 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5344 			struct alloc_chunk_ctl *ctl,
5345 			struct btrfs_device_info *devices_info)
5346 {
5347 	struct btrfs_fs_info *info = trans->fs_info;
5348 	struct map_lookup *map = NULL;
5349 	struct extent_map_tree *em_tree;
5350 	struct btrfs_block_group *block_group;
5351 	struct extent_map *em;
5352 	u64 start = ctl->start;
5353 	u64 type = ctl->type;
5354 	int ret;
5355 	int i;
5356 	int j;
5357 
5358 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5359 	if (!map)
5360 		return ERR_PTR(-ENOMEM);
5361 	map->num_stripes = ctl->num_stripes;
5362 
5363 	for (i = 0; i < ctl->ndevs; ++i) {
5364 		for (j = 0; j < ctl->dev_stripes; ++j) {
5365 			int s = i * ctl->dev_stripes + j;
5366 			map->stripes[s].dev = devices_info[i].dev;
5367 			map->stripes[s].physical = devices_info[i].dev_offset +
5368 						   j * ctl->stripe_size;
5369 		}
5370 	}
5371 	map->stripe_len = BTRFS_STRIPE_LEN;
5372 	map->io_align = BTRFS_STRIPE_LEN;
5373 	map->io_width = BTRFS_STRIPE_LEN;
5374 	map->type = type;
5375 	map->sub_stripes = ctl->sub_stripes;
5376 
5377 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5378 
5379 	em = alloc_extent_map();
5380 	if (!em) {
5381 		kfree(map);
5382 		return ERR_PTR(-ENOMEM);
5383 	}
5384 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5385 	em->map_lookup = map;
5386 	em->start = start;
5387 	em->len = ctl->chunk_size;
5388 	em->block_start = 0;
5389 	em->block_len = em->len;
5390 	em->orig_block_len = ctl->stripe_size;
5391 
5392 	em_tree = &info->mapping_tree;
5393 	write_lock(&em_tree->lock);
5394 	ret = add_extent_mapping(em_tree, em, 0);
5395 	if (ret) {
5396 		write_unlock(&em_tree->lock);
5397 		free_extent_map(em);
5398 		return ERR_PTR(ret);
5399 	}
5400 	write_unlock(&em_tree->lock);
5401 
5402 	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5403 	if (IS_ERR(block_group))
5404 		goto error_del_extent;
5405 
5406 	for (i = 0; i < map->num_stripes; i++) {
5407 		struct btrfs_device *dev = map->stripes[i].dev;
5408 
5409 		btrfs_device_set_bytes_used(dev,
5410 					    dev->bytes_used + ctl->stripe_size);
5411 		if (list_empty(&dev->post_commit_list))
5412 			list_add_tail(&dev->post_commit_list,
5413 				      &trans->transaction->dev_update_list);
5414 	}
5415 
5416 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5417 		     &info->free_chunk_space);
5418 
5419 	free_extent_map(em);
5420 	check_raid56_incompat_flag(info, type);
5421 	check_raid1c34_incompat_flag(info, type);
5422 
5423 	return block_group;
5424 
5425 error_del_extent:
5426 	write_lock(&em_tree->lock);
5427 	remove_extent_mapping(em_tree, em);
5428 	write_unlock(&em_tree->lock);
5429 
5430 	/* One for our allocation */
5431 	free_extent_map(em);
5432 	/* One for the tree reference */
5433 	free_extent_map(em);
5434 
5435 	return block_group;
5436 }
5437 
5438 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5439 					    u64 type)
5440 {
5441 	struct btrfs_fs_info *info = trans->fs_info;
5442 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5443 	struct btrfs_device_info *devices_info = NULL;
5444 	struct alloc_chunk_ctl ctl;
5445 	struct btrfs_block_group *block_group;
5446 	int ret;
5447 
5448 	lockdep_assert_held(&info->chunk_mutex);
5449 
5450 	if (!alloc_profile_is_valid(type, 0)) {
5451 		ASSERT(0);
5452 		return ERR_PTR(-EINVAL);
5453 	}
5454 
5455 	if (list_empty(&fs_devices->alloc_list)) {
5456 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5457 			btrfs_debug(info, "%s: no writable device", __func__);
5458 		return ERR_PTR(-ENOSPC);
5459 	}
5460 
5461 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5462 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5463 		ASSERT(0);
5464 		return ERR_PTR(-EINVAL);
5465 	}
5466 
5467 	ctl.start = find_next_chunk(info);
5468 	ctl.type = type;
5469 	init_alloc_chunk_ctl(fs_devices, &ctl);
5470 
5471 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5472 			       GFP_NOFS);
5473 	if (!devices_info)
5474 		return ERR_PTR(-ENOMEM);
5475 
5476 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5477 	if (ret < 0) {
5478 		block_group = ERR_PTR(ret);
5479 		goto out;
5480 	}
5481 
5482 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5483 	if (ret < 0) {
5484 		block_group = ERR_PTR(ret);
5485 		goto out;
5486 	}
5487 
5488 	block_group = create_chunk(trans, &ctl, devices_info);
5489 
5490 out:
5491 	kfree(devices_info);
5492 	return block_group;
5493 }
5494 
5495 /*
5496  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5497  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5498  * chunks.
5499  *
5500  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5501  * phases.
5502  */
5503 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5504 				     struct btrfs_block_group *bg)
5505 {
5506 	struct btrfs_fs_info *fs_info = trans->fs_info;
5507 	struct btrfs_root *extent_root = fs_info->extent_root;
5508 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5509 	struct btrfs_key key;
5510 	struct btrfs_chunk *chunk;
5511 	struct btrfs_stripe *stripe;
5512 	struct extent_map *em;
5513 	struct map_lookup *map;
5514 	size_t item_size;
5515 	int i;
5516 	int ret;
5517 
5518 	/*
5519 	 * We take the chunk_mutex for 2 reasons:
5520 	 *
5521 	 * 1) Updates and insertions in the chunk btree must be done while holding
5522 	 *    the chunk_mutex, as well as updating the system chunk array in the
5523 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5524 	 *    details;
5525 	 *
5526 	 * 2) To prevent races with the final phase of a device replace operation
5527 	 *    that replaces the device object associated with the map's stripes,
5528 	 *    because the device object's id can change at any time during that
5529 	 *    final phase of the device replace operation
5530 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5531 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5532 	 *    which would cause a failure when updating the device item, which does
5533 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5534 	 *    Here we can't use the device_list_mutex because our caller already
5535 	 *    has locked the chunk_mutex, and the final phase of device replace
5536 	 *    acquires both mutexes - first the device_list_mutex and then the
5537 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5538 	 *    concurrent device replace.
5539 	 */
5540 	lockdep_assert_held(&fs_info->chunk_mutex);
5541 
5542 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5543 	if (IS_ERR(em)) {
5544 		ret = PTR_ERR(em);
5545 		btrfs_abort_transaction(trans, ret);
5546 		return ret;
5547 	}
5548 
5549 	map = em->map_lookup;
5550 	item_size = btrfs_chunk_item_size(map->num_stripes);
5551 
5552 	chunk = kzalloc(item_size, GFP_NOFS);
5553 	if (!chunk) {
5554 		ret = -ENOMEM;
5555 		btrfs_abort_transaction(trans, ret);
5556 		goto out;
5557 	}
5558 
5559 	for (i = 0; i < map->num_stripes; i++) {
5560 		struct btrfs_device *device = map->stripes[i].dev;
5561 
5562 		ret = btrfs_update_device(trans, device);
5563 		if (ret)
5564 			goto out;
5565 	}
5566 
5567 	stripe = &chunk->stripe;
5568 	for (i = 0; i < map->num_stripes; i++) {
5569 		struct btrfs_device *device = map->stripes[i].dev;
5570 		const u64 dev_offset = map->stripes[i].physical;
5571 
5572 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5573 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5574 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5575 		stripe++;
5576 	}
5577 
5578 	btrfs_set_stack_chunk_length(chunk, bg->length);
5579 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5580 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5581 	btrfs_set_stack_chunk_type(chunk, map->type);
5582 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5583 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5584 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5585 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5586 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5587 
5588 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5589 	key.type = BTRFS_CHUNK_ITEM_KEY;
5590 	key.offset = bg->start;
5591 
5592 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5593 	if (ret)
5594 		goto out;
5595 
5596 	bg->chunk_item_inserted = 1;
5597 
5598 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5599 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5600 		if (ret)
5601 			goto out;
5602 	}
5603 
5604 out:
5605 	kfree(chunk);
5606 	free_extent_map(em);
5607 	return ret;
5608 }
5609 
5610 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5611 {
5612 	struct btrfs_fs_info *fs_info = trans->fs_info;
5613 	u64 alloc_profile;
5614 	struct btrfs_block_group *meta_bg;
5615 	struct btrfs_block_group *sys_bg;
5616 
5617 	/*
5618 	 * When adding a new device for sprouting, the seed device is read-only
5619 	 * so we must first allocate a metadata and a system chunk. But before
5620 	 * adding the block group items to the extent, device and chunk btrees,
5621 	 * we must first:
5622 	 *
5623 	 * 1) Create both chunks without doing any changes to the btrees, as
5624 	 *    otherwise we would get -ENOSPC since the block groups from the
5625 	 *    seed device are read-only;
5626 	 *
5627 	 * 2) Add the device item for the new sprout device - finishing the setup
5628 	 *    of a new block group requires updating the device item in the chunk
5629 	 *    btree, so it must exist when we attempt to do it. The previous step
5630 	 *    ensures this does not fail with -ENOSPC.
5631 	 *
5632 	 * After that we can add the block group items to their btrees:
5633 	 * update existing device item in the chunk btree, add a new block group
5634 	 * item to the extent btree, add a new chunk item to the chunk btree and
5635 	 * finally add the new device extent items to the devices btree.
5636 	 */
5637 
5638 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5639 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5640 	if (IS_ERR(meta_bg))
5641 		return PTR_ERR(meta_bg);
5642 
5643 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5644 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5645 	if (IS_ERR(sys_bg))
5646 		return PTR_ERR(sys_bg);
5647 
5648 	return 0;
5649 }
5650 
5651 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5652 {
5653 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5654 
5655 	return btrfs_raid_array[index].tolerated_failures;
5656 }
5657 
5658 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5659 {
5660 	struct extent_map *em;
5661 	struct map_lookup *map;
5662 	int miss_ndevs = 0;
5663 	int i;
5664 	bool ret = true;
5665 
5666 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5667 	if (IS_ERR(em))
5668 		return false;
5669 
5670 	map = em->map_lookup;
5671 	for (i = 0; i < map->num_stripes; i++) {
5672 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5673 					&map->stripes[i].dev->dev_state)) {
5674 			miss_ndevs++;
5675 			continue;
5676 		}
5677 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5678 					&map->stripes[i].dev->dev_state)) {
5679 			ret = false;
5680 			goto end;
5681 		}
5682 	}
5683 
5684 	/*
5685 	 * If the number of missing devices is larger than max errors, we can
5686 	 * not write the data into that chunk successfully.
5687 	 */
5688 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5689 		ret = false;
5690 end:
5691 	free_extent_map(em);
5692 	return ret;
5693 }
5694 
5695 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5696 {
5697 	struct extent_map *em;
5698 
5699 	while (1) {
5700 		write_lock(&tree->lock);
5701 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5702 		if (em)
5703 			remove_extent_mapping(tree, em);
5704 		write_unlock(&tree->lock);
5705 		if (!em)
5706 			break;
5707 		/* once for us */
5708 		free_extent_map(em);
5709 		/* once for the tree */
5710 		free_extent_map(em);
5711 	}
5712 }
5713 
5714 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5715 {
5716 	struct extent_map *em;
5717 	struct map_lookup *map;
5718 	int ret;
5719 
5720 	em = btrfs_get_chunk_map(fs_info, logical, len);
5721 	if (IS_ERR(em))
5722 		/*
5723 		 * We could return errors for these cases, but that could get
5724 		 * ugly and we'd probably do the same thing which is just not do
5725 		 * anything else and exit, so return 1 so the callers don't try
5726 		 * to use other copies.
5727 		 */
5728 		return 1;
5729 
5730 	map = em->map_lookup;
5731 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5732 		ret = map->num_stripes;
5733 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5734 		ret = map->sub_stripes;
5735 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5736 		ret = 2;
5737 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5738 		/*
5739 		 * There could be two corrupted data stripes, we need
5740 		 * to loop retry in order to rebuild the correct data.
5741 		 *
5742 		 * Fail a stripe at a time on every retry except the
5743 		 * stripe under reconstruction.
5744 		 */
5745 		ret = map->num_stripes;
5746 	else
5747 		ret = 1;
5748 	free_extent_map(em);
5749 
5750 	down_read(&fs_info->dev_replace.rwsem);
5751 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5752 	    fs_info->dev_replace.tgtdev)
5753 		ret++;
5754 	up_read(&fs_info->dev_replace.rwsem);
5755 
5756 	return ret;
5757 }
5758 
5759 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5760 				    u64 logical)
5761 {
5762 	struct extent_map *em;
5763 	struct map_lookup *map;
5764 	unsigned long len = fs_info->sectorsize;
5765 
5766 	em = btrfs_get_chunk_map(fs_info, logical, len);
5767 
5768 	if (!WARN_ON(IS_ERR(em))) {
5769 		map = em->map_lookup;
5770 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5771 			len = map->stripe_len * nr_data_stripes(map);
5772 		free_extent_map(em);
5773 	}
5774 	return len;
5775 }
5776 
5777 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5778 {
5779 	struct extent_map *em;
5780 	struct map_lookup *map;
5781 	int ret = 0;
5782 
5783 	em = btrfs_get_chunk_map(fs_info, logical, len);
5784 
5785 	if(!WARN_ON(IS_ERR(em))) {
5786 		map = em->map_lookup;
5787 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5788 			ret = 1;
5789 		free_extent_map(em);
5790 	}
5791 	return ret;
5792 }
5793 
5794 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5795 			    struct map_lookup *map, int first,
5796 			    int dev_replace_is_ongoing)
5797 {
5798 	int i;
5799 	int num_stripes;
5800 	int preferred_mirror;
5801 	int tolerance;
5802 	struct btrfs_device *srcdev;
5803 
5804 	ASSERT((map->type &
5805 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5806 
5807 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5808 		num_stripes = map->sub_stripes;
5809 	else
5810 		num_stripes = map->num_stripes;
5811 
5812 	switch (fs_info->fs_devices->read_policy) {
5813 	default:
5814 		/* Shouldn't happen, just warn and use pid instead of failing */
5815 		btrfs_warn_rl(fs_info,
5816 			      "unknown read_policy type %u, reset to pid",
5817 			      fs_info->fs_devices->read_policy);
5818 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5819 		fallthrough;
5820 	case BTRFS_READ_POLICY_PID:
5821 		preferred_mirror = first + (current->pid % num_stripes);
5822 		break;
5823 	}
5824 
5825 	if (dev_replace_is_ongoing &&
5826 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5827 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5828 		srcdev = fs_info->dev_replace.srcdev;
5829 	else
5830 		srcdev = NULL;
5831 
5832 	/*
5833 	 * try to avoid the drive that is the source drive for a
5834 	 * dev-replace procedure, only choose it if no other non-missing
5835 	 * mirror is available
5836 	 */
5837 	for (tolerance = 0; tolerance < 2; tolerance++) {
5838 		if (map->stripes[preferred_mirror].dev->bdev &&
5839 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5840 			return preferred_mirror;
5841 		for (i = first; i < first + num_stripes; i++) {
5842 			if (map->stripes[i].dev->bdev &&
5843 			    (tolerance || map->stripes[i].dev != srcdev))
5844 				return i;
5845 		}
5846 	}
5847 
5848 	/* we couldn't find one that doesn't fail.  Just return something
5849 	 * and the io error handling code will clean up eventually
5850 	 */
5851 	return preferred_mirror;
5852 }
5853 
5854 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5855 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5856 {
5857 	int i;
5858 	int again = 1;
5859 
5860 	while (again) {
5861 		again = 0;
5862 		for (i = 0; i < num_stripes - 1; i++) {
5863 			/* Swap if parity is on a smaller index */
5864 			if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5865 				swap(bioc->stripes[i], bioc->stripes[i + 1]);
5866 				swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5867 				again = 1;
5868 			}
5869 		}
5870 	}
5871 }
5872 
5873 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5874 						       int total_stripes,
5875 						       int real_stripes)
5876 {
5877 	struct btrfs_io_context *bioc = kzalloc(
5878 		 /* The size of btrfs_io_context */
5879 		sizeof(struct btrfs_io_context) +
5880 		/* Plus the variable array for the stripes */
5881 		sizeof(struct btrfs_io_stripe) * (total_stripes) +
5882 		/* Plus the variable array for the tgt dev */
5883 		sizeof(int) * (real_stripes) +
5884 		/*
5885 		 * Plus the raid_map, which includes both the tgt dev
5886 		 * and the stripes.
5887 		 */
5888 		sizeof(u64) * (total_stripes),
5889 		GFP_NOFS|__GFP_NOFAIL);
5890 
5891 	atomic_set(&bioc->error, 0);
5892 	refcount_set(&bioc->refs, 1);
5893 
5894 	bioc->fs_info = fs_info;
5895 	bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5896 	bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5897 
5898 	return bioc;
5899 }
5900 
5901 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5902 {
5903 	WARN_ON(!refcount_read(&bioc->refs));
5904 	refcount_inc(&bioc->refs);
5905 }
5906 
5907 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5908 {
5909 	if (!bioc)
5910 		return;
5911 	if (refcount_dec_and_test(&bioc->refs))
5912 		kfree(bioc);
5913 }
5914 
5915 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5916 /*
5917  * Please note that, discard won't be sent to target device of device
5918  * replace.
5919  */
5920 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5921 					 u64 logical, u64 *length_ret,
5922 					 struct btrfs_io_context **bioc_ret)
5923 {
5924 	struct extent_map *em;
5925 	struct map_lookup *map;
5926 	struct btrfs_io_context *bioc;
5927 	u64 length = *length_ret;
5928 	u64 offset;
5929 	u64 stripe_nr;
5930 	u64 stripe_nr_end;
5931 	u64 stripe_end_offset;
5932 	u64 stripe_cnt;
5933 	u64 stripe_len;
5934 	u64 stripe_offset;
5935 	u64 num_stripes;
5936 	u32 stripe_index;
5937 	u32 factor = 0;
5938 	u32 sub_stripes = 0;
5939 	u64 stripes_per_dev = 0;
5940 	u32 remaining_stripes = 0;
5941 	u32 last_stripe = 0;
5942 	int ret = 0;
5943 	int i;
5944 
5945 	/* Discard always returns a bioc. */
5946 	ASSERT(bioc_ret);
5947 
5948 	em = btrfs_get_chunk_map(fs_info, logical, length);
5949 	if (IS_ERR(em))
5950 		return PTR_ERR(em);
5951 
5952 	map = em->map_lookup;
5953 	/* we don't discard raid56 yet */
5954 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5955 		ret = -EOPNOTSUPP;
5956 		goto out;
5957 	}
5958 
5959 	offset = logical - em->start;
5960 	length = min_t(u64, em->start + em->len - logical, length);
5961 	*length_ret = length;
5962 
5963 	stripe_len = map->stripe_len;
5964 	/*
5965 	 * stripe_nr counts the total number of stripes we have to stride
5966 	 * to get to this block
5967 	 */
5968 	stripe_nr = div64_u64(offset, stripe_len);
5969 
5970 	/* stripe_offset is the offset of this block in its stripe */
5971 	stripe_offset = offset - stripe_nr * stripe_len;
5972 
5973 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5974 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5975 	stripe_cnt = stripe_nr_end - stripe_nr;
5976 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5977 			    (offset + length);
5978 	/*
5979 	 * after this, stripe_nr is the number of stripes on this
5980 	 * device we have to walk to find the data, and stripe_index is
5981 	 * the number of our device in the stripe array
5982 	 */
5983 	num_stripes = 1;
5984 	stripe_index = 0;
5985 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5986 			 BTRFS_BLOCK_GROUP_RAID10)) {
5987 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5988 			sub_stripes = 1;
5989 		else
5990 			sub_stripes = map->sub_stripes;
5991 
5992 		factor = map->num_stripes / sub_stripes;
5993 		num_stripes = min_t(u64, map->num_stripes,
5994 				    sub_stripes * stripe_cnt);
5995 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5996 		stripe_index *= sub_stripes;
5997 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5998 					      &remaining_stripes);
5999 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6000 		last_stripe *= sub_stripes;
6001 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6002 				BTRFS_BLOCK_GROUP_DUP)) {
6003 		num_stripes = map->num_stripes;
6004 	} else {
6005 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6006 					&stripe_index);
6007 	}
6008 
6009 	bioc = alloc_btrfs_io_context(fs_info, num_stripes, 0);
6010 	if (!bioc) {
6011 		ret = -ENOMEM;
6012 		goto out;
6013 	}
6014 
6015 	for (i = 0; i < num_stripes; i++) {
6016 		bioc->stripes[i].physical =
6017 			map->stripes[stripe_index].physical +
6018 			stripe_offset + stripe_nr * map->stripe_len;
6019 		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6020 
6021 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6022 				 BTRFS_BLOCK_GROUP_RAID10)) {
6023 			bioc->stripes[i].length = stripes_per_dev *
6024 				map->stripe_len;
6025 
6026 			if (i / sub_stripes < remaining_stripes)
6027 				bioc->stripes[i].length += map->stripe_len;
6028 
6029 			/*
6030 			 * Special for the first stripe and
6031 			 * the last stripe:
6032 			 *
6033 			 * |-------|...|-------|
6034 			 *     |----------|
6035 			 *    off     end_off
6036 			 */
6037 			if (i < sub_stripes)
6038 				bioc->stripes[i].length -= stripe_offset;
6039 
6040 			if (stripe_index >= last_stripe &&
6041 			    stripe_index <= (last_stripe +
6042 					     sub_stripes - 1))
6043 				bioc->stripes[i].length -= stripe_end_offset;
6044 
6045 			if (i == sub_stripes - 1)
6046 				stripe_offset = 0;
6047 		} else {
6048 			bioc->stripes[i].length = length;
6049 		}
6050 
6051 		stripe_index++;
6052 		if (stripe_index == map->num_stripes) {
6053 			stripe_index = 0;
6054 			stripe_nr++;
6055 		}
6056 	}
6057 
6058 	*bioc_ret = bioc;
6059 	bioc->map_type = map->type;
6060 	bioc->num_stripes = num_stripes;
6061 out:
6062 	free_extent_map(em);
6063 	return ret;
6064 }
6065 
6066 /*
6067  * In dev-replace case, for repair case (that's the only case where the mirror
6068  * is selected explicitly when calling btrfs_map_block), blocks left of the
6069  * left cursor can also be read from the target drive.
6070  *
6071  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6072  * array of stripes.
6073  * For READ, it also needs to be supported using the same mirror number.
6074  *
6075  * If the requested block is not left of the left cursor, EIO is returned. This
6076  * can happen because btrfs_num_copies() returns one more in the dev-replace
6077  * case.
6078  */
6079 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6080 					 u64 logical, u64 length,
6081 					 u64 srcdev_devid, int *mirror_num,
6082 					 u64 *physical)
6083 {
6084 	struct btrfs_io_context *bioc = NULL;
6085 	int num_stripes;
6086 	int index_srcdev = 0;
6087 	int found = 0;
6088 	u64 physical_of_found = 0;
6089 	int i;
6090 	int ret = 0;
6091 
6092 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6093 				logical, &length, &bioc, 0, 0);
6094 	if (ret) {
6095 		ASSERT(bioc == NULL);
6096 		return ret;
6097 	}
6098 
6099 	num_stripes = bioc->num_stripes;
6100 	if (*mirror_num > num_stripes) {
6101 		/*
6102 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6103 		 * that means that the requested area is not left of the left
6104 		 * cursor
6105 		 */
6106 		btrfs_put_bioc(bioc);
6107 		return -EIO;
6108 	}
6109 
6110 	/*
6111 	 * process the rest of the function using the mirror_num of the source
6112 	 * drive. Therefore look it up first.  At the end, patch the device
6113 	 * pointer to the one of the target drive.
6114 	 */
6115 	for (i = 0; i < num_stripes; i++) {
6116 		if (bioc->stripes[i].dev->devid != srcdev_devid)
6117 			continue;
6118 
6119 		/*
6120 		 * In case of DUP, in order to keep it simple, only add the
6121 		 * mirror with the lowest physical address
6122 		 */
6123 		if (found &&
6124 		    physical_of_found <= bioc->stripes[i].physical)
6125 			continue;
6126 
6127 		index_srcdev = i;
6128 		found = 1;
6129 		physical_of_found = bioc->stripes[i].physical;
6130 	}
6131 
6132 	btrfs_put_bioc(bioc);
6133 
6134 	ASSERT(found);
6135 	if (!found)
6136 		return -EIO;
6137 
6138 	*mirror_num = index_srcdev + 1;
6139 	*physical = physical_of_found;
6140 	return ret;
6141 }
6142 
6143 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6144 {
6145 	struct btrfs_block_group *cache;
6146 	bool ret;
6147 
6148 	/* Non zoned filesystem does not use "to_copy" flag */
6149 	if (!btrfs_is_zoned(fs_info))
6150 		return false;
6151 
6152 	cache = btrfs_lookup_block_group(fs_info, logical);
6153 
6154 	spin_lock(&cache->lock);
6155 	ret = cache->to_copy;
6156 	spin_unlock(&cache->lock);
6157 
6158 	btrfs_put_block_group(cache);
6159 	return ret;
6160 }
6161 
6162 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6163 				      struct btrfs_io_context **bioc_ret,
6164 				      struct btrfs_dev_replace *dev_replace,
6165 				      u64 logical,
6166 				      int *num_stripes_ret, int *max_errors_ret)
6167 {
6168 	struct btrfs_io_context *bioc = *bioc_ret;
6169 	u64 srcdev_devid = dev_replace->srcdev->devid;
6170 	int tgtdev_indexes = 0;
6171 	int num_stripes = *num_stripes_ret;
6172 	int max_errors = *max_errors_ret;
6173 	int i;
6174 
6175 	if (op == BTRFS_MAP_WRITE) {
6176 		int index_where_to_add;
6177 
6178 		/*
6179 		 * A block group which have "to_copy" set will eventually
6180 		 * copied by dev-replace process. We can avoid cloning IO here.
6181 		 */
6182 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6183 			return;
6184 
6185 		/*
6186 		 * duplicate the write operations while the dev replace
6187 		 * procedure is running. Since the copying of the old disk to
6188 		 * the new disk takes place at run time while the filesystem is
6189 		 * mounted writable, the regular write operations to the old
6190 		 * disk have to be duplicated to go to the new disk as well.
6191 		 *
6192 		 * Note that device->missing is handled by the caller, and that
6193 		 * the write to the old disk is already set up in the stripes
6194 		 * array.
6195 		 */
6196 		index_where_to_add = num_stripes;
6197 		for (i = 0; i < num_stripes; i++) {
6198 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6199 				/* write to new disk, too */
6200 				struct btrfs_io_stripe *new =
6201 					bioc->stripes + index_where_to_add;
6202 				struct btrfs_io_stripe *old =
6203 					bioc->stripes + i;
6204 
6205 				new->physical = old->physical;
6206 				new->length = old->length;
6207 				new->dev = dev_replace->tgtdev;
6208 				bioc->tgtdev_map[i] = index_where_to_add;
6209 				index_where_to_add++;
6210 				max_errors++;
6211 				tgtdev_indexes++;
6212 			}
6213 		}
6214 		num_stripes = index_where_to_add;
6215 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6216 		int index_srcdev = 0;
6217 		int found = 0;
6218 		u64 physical_of_found = 0;
6219 
6220 		/*
6221 		 * During the dev-replace procedure, the target drive can also
6222 		 * be used to read data in case it is needed to repair a corrupt
6223 		 * block elsewhere. This is possible if the requested area is
6224 		 * left of the left cursor. In this area, the target drive is a
6225 		 * full copy of the source drive.
6226 		 */
6227 		for (i = 0; i < num_stripes; i++) {
6228 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6229 				/*
6230 				 * In case of DUP, in order to keep it simple,
6231 				 * only add the mirror with the lowest physical
6232 				 * address
6233 				 */
6234 				if (found &&
6235 				    physical_of_found <= bioc->stripes[i].physical)
6236 					continue;
6237 				index_srcdev = i;
6238 				found = 1;
6239 				physical_of_found = bioc->stripes[i].physical;
6240 			}
6241 		}
6242 		if (found) {
6243 			struct btrfs_io_stripe *tgtdev_stripe =
6244 				bioc->stripes + num_stripes;
6245 
6246 			tgtdev_stripe->physical = physical_of_found;
6247 			tgtdev_stripe->length =
6248 				bioc->stripes[index_srcdev].length;
6249 			tgtdev_stripe->dev = dev_replace->tgtdev;
6250 			bioc->tgtdev_map[index_srcdev] = num_stripes;
6251 
6252 			tgtdev_indexes++;
6253 			num_stripes++;
6254 		}
6255 	}
6256 
6257 	*num_stripes_ret = num_stripes;
6258 	*max_errors_ret = max_errors;
6259 	bioc->num_tgtdevs = tgtdev_indexes;
6260 	*bioc_ret = bioc;
6261 }
6262 
6263 static bool need_full_stripe(enum btrfs_map_op op)
6264 {
6265 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6266 }
6267 
6268 /*
6269  * Calculate the geometry of a particular (address, len) tuple. This
6270  * information is used to calculate how big a particular bio can get before it
6271  * straddles a stripe.
6272  *
6273  * @fs_info: the filesystem
6274  * @em:      mapping containing the logical extent
6275  * @op:      type of operation - write or read
6276  * @logical: address that we want to figure out the geometry of
6277  * @io_geom: pointer used to return values
6278  *
6279  * Returns < 0 in case a chunk for the given logical address cannot be found,
6280  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6281  */
6282 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6283 			  enum btrfs_map_op op, u64 logical,
6284 			  struct btrfs_io_geometry *io_geom)
6285 {
6286 	struct map_lookup *map;
6287 	u64 len;
6288 	u64 offset;
6289 	u64 stripe_offset;
6290 	u64 stripe_nr;
6291 	u64 stripe_len;
6292 	u64 raid56_full_stripe_start = (u64)-1;
6293 	int data_stripes;
6294 
6295 	ASSERT(op != BTRFS_MAP_DISCARD);
6296 
6297 	map = em->map_lookup;
6298 	/* Offset of this logical address in the chunk */
6299 	offset = logical - em->start;
6300 	/* Len of a stripe in a chunk */
6301 	stripe_len = map->stripe_len;
6302 	/* Stripe where this block falls in */
6303 	stripe_nr = div64_u64(offset, stripe_len);
6304 	/* Offset of stripe in the chunk */
6305 	stripe_offset = stripe_nr * stripe_len;
6306 	if (offset < stripe_offset) {
6307 		btrfs_crit(fs_info,
6308 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6309 			stripe_offset, offset, em->start, logical, stripe_len);
6310 		return -EINVAL;
6311 	}
6312 
6313 	/* stripe_offset is the offset of this block in its stripe */
6314 	stripe_offset = offset - stripe_offset;
6315 	data_stripes = nr_data_stripes(map);
6316 
6317 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6318 		u64 max_len = stripe_len - stripe_offset;
6319 
6320 		/*
6321 		 * In case of raid56, we need to know the stripe aligned start
6322 		 */
6323 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6324 			unsigned long full_stripe_len = stripe_len * data_stripes;
6325 			raid56_full_stripe_start = offset;
6326 
6327 			/*
6328 			 * Allow a write of a full stripe, but make sure we
6329 			 * don't allow straddling of stripes
6330 			 */
6331 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6332 					full_stripe_len);
6333 			raid56_full_stripe_start *= full_stripe_len;
6334 
6335 			/*
6336 			 * For writes to RAID[56], allow a full stripeset across
6337 			 * all disks. For other RAID types and for RAID[56]
6338 			 * reads, just allow a single stripe (on a single disk).
6339 			 */
6340 			if (op == BTRFS_MAP_WRITE) {
6341 				max_len = stripe_len * data_stripes -
6342 					  (offset - raid56_full_stripe_start);
6343 			}
6344 		}
6345 		len = min_t(u64, em->len - offset, max_len);
6346 	} else {
6347 		len = em->len - offset;
6348 	}
6349 
6350 	io_geom->len = len;
6351 	io_geom->offset = offset;
6352 	io_geom->stripe_len = stripe_len;
6353 	io_geom->stripe_nr = stripe_nr;
6354 	io_geom->stripe_offset = stripe_offset;
6355 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6356 
6357 	return 0;
6358 }
6359 
6360 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6361 			     enum btrfs_map_op op,
6362 			     u64 logical, u64 *length,
6363 			     struct btrfs_io_context **bioc_ret,
6364 			     int mirror_num, int need_raid_map)
6365 {
6366 	struct extent_map *em;
6367 	struct map_lookup *map;
6368 	u64 stripe_offset;
6369 	u64 stripe_nr;
6370 	u64 stripe_len;
6371 	u32 stripe_index;
6372 	int data_stripes;
6373 	int i;
6374 	int ret = 0;
6375 	int num_stripes;
6376 	int max_errors = 0;
6377 	int tgtdev_indexes = 0;
6378 	struct btrfs_io_context *bioc = NULL;
6379 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6380 	int dev_replace_is_ongoing = 0;
6381 	int num_alloc_stripes;
6382 	int patch_the_first_stripe_for_dev_replace = 0;
6383 	u64 physical_to_patch_in_first_stripe = 0;
6384 	u64 raid56_full_stripe_start = (u64)-1;
6385 	struct btrfs_io_geometry geom;
6386 
6387 	ASSERT(bioc_ret);
6388 	ASSERT(op != BTRFS_MAP_DISCARD);
6389 
6390 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6391 	ASSERT(!IS_ERR(em));
6392 
6393 	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6394 	if (ret < 0)
6395 		return ret;
6396 
6397 	map = em->map_lookup;
6398 
6399 	*length = geom.len;
6400 	stripe_len = geom.stripe_len;
6401 	stripe_nr = geom.stripe_nr;
6402 	stripe_offset = geom.stripe_offset;
6403 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6404 	data_stripes = nr_data_stripes(map);
6405 
6406 	down_read(&dev_replace->rwsem);
6407 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6408 	/*
6409 	 * Hold the semaphore for read during the whole operation, write is
6410 	 * requested at commit time but must wait.
6411 	 */
6412 	if (!dev_replace_is_ongoing)
6413 		up_read(&dev_replace->rwsem);
6414 
6415 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6416 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6417 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6418 						    dev_replace->srcdev->devid,
6419 						    &mirror_num,
6420 					    &physical_to_patch_in_first_stripe);
6421 		if (ret)
6422 			goto out;
6423 		else
6424 			patch_the_first_stripe_for_dev_replace = 1;
6425 	} else if (mirror_num > map->num_stripes) {
6426 		mirror_num = 0;
6427 	}
6428 
6429 	num_stripes = 1;
6430 	stripe_index = 0;
6431 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6432 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6433 				&stripe_index);
6434 		if (!need_full_stripe(op))
6435 			mirror_num = 1;
6436 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6437 		if (need_full_stripe(op))
6438 			num_stripes = map->num_stripes;
6439 		else if (mirror_num)
6440 			stripe_index = mirror_num - 1;
6441 		else {
6442 			stripe_index = find_live_mirror(fs_info, map, 0,
6443 					    dev_replace_is_ongoing);
6444 			mirror_num = stripe_index + 1;
6445 		}
6446 
6447 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6448 		if (need_full_stripe(op)) {
6449 			num_stripes = map->num_stripes;
6450 		} else if (mirror_num) {
6451 			stripe_index = mirror_num - 1;
6452 		} else {
6453 			mirror_num = 1;
6454 		}
6455 
6456 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6457 		u32 factor = map->num_stripes / map->sub_stripes;
6458 
6459 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6460 		stripe_index *= map->sub_stripes;
6461 
6462 		if (need_full_stripe(op))
6463 			num_stripes = map->sub_stripes;
6464 		else if (mirror_num)
6465 			stripe_index += mirror_num - 1;
6466 		else {
6467 			int old_stripe_index = stripe_index;
6468 			stripe_index = find_live_mirror(fs_info, map,
6469 					      stripe_index,
6470 					      dev_replace_is_ongoing);
6471 			mirror_num = stripe_index - old_stripe_index + 1;
6472 		}
6473 
6474 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6475 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6476 			/* push stripe_nr back to the start of the full stripe */
6477 			stripe_nr = div64_u64(raid56_full_stripe_start,
6478 					stripe_len * data_stripes);
6479 
6480 			/* RAID[56] write or recovery. Return all stripes */
6481 			num_stripes = map->num_stripes;
6482 			max_errors = nr_parity_stripes(map);
6483 
6484 			*length = map->stripe_len;
6485 			stripe_index = 0;
6486 			stripe_offset = 0;
6487 		} else {
6488 			/*
6489 			 * Mirror #0 or #1 means the original data block.
6490 			 * Mirror #2 is RAID5 parity block.
6491 			 * Mirror #3 is RAID6 Q block.
6492 			 */
6493 			stripe_nr = div_u64_rem(stripe_nr,
6494 					data_stripes, &stripe_index);
6495 			if (mirror_num > 1)
6496 				stripe_index = data_stripes + mirror_num - 2;
6497 
6498 			/* We distribute the parity blocks across stripes */
6499 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6500 					&stripe_index);
6501 			if (!need_full_stripe(op) && mirror_num <= 1)
6502 				mirror_num = 1;
6503 		}
6504 	} else {
6505 		/*
6506 		 * after this, stripe_nr is the number of stripes on this
6507 		 * device we have to walk to find the data, and stripe_index is
6508 		 * the number of our device in the stripe array
6509 		 */
6510 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6511 				&stripe_index);
6512 		mirror_num = stripe_index + 1;
6513 	}
6514 	if (stripe_index >= map->num_stripes) {
6515 		btrfs_crit(fs_info,
6516 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6517 			   stripe_index, map->num_stripes);
6518 		ret = -EINVAL;
6519 		goto out;
6520 	}
6521 
6522 	num_alloc_stripes = num_stripes;
6523 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6524 		if (op == BTRFS_MAP_WRITE)
6525 			num_alloc_stripes <<= 1;
6526 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6527 			num_alloc_stripes++;
6528 		tgtdev_indexes = num_stripes;
6529 	}
6530 
6531 	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6532 	if (!bioc) {
6533 		ret = -ENOMEM;
6534 		goto out;
6535 	}
6536 
6537 	for (i = 0; i < num_stripes; i++) {
6538 		bioc->stripes[i].physical = map->stripes[stripe_index].physical +
6539 			stripe_offset + stripe_nr * map->stripe_len;
6540 		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6541 		stripe_index++;
6542 	}
6543 
6544 	/* Build raid_map */
6545 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6546 	    (need_full_stripe(op) || mirror_num > 1)) {
6547 		u64 tmp;
6548 		unsigned rot;
6549 
6550 		/* Work out the disk rotation on this stripe-set */
6551 		div_u64_rem(stripe_nr, num_stripes, &rot);
6552 
6553 		/* Fill in the logical address of each stripe */
6554 		tmp = stripe_nr * data_stripes;
6555 		for (i = 0; i < data_stripes; i++)
6556 			bioc->raid_map[(i + rot) % num_stripes] =
6557 				em->start + (tmp + i) * map->stripe_len;
6558 
6559 		bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6560 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6561 			bioc->raid_map[(i + rot + 1) % num_stripes] =
6562 				RAID6_Q_STRIPE;
6563 
6564 		sort_parity_stripes(bioc, num_stripes);
6565 	}
6566 
6567 	if (need_full_stripe(op))
6568 		max_errors = btrfs_chunk_max_errors(map);
6569 
6570 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6571 	    need_full_stripe(op)) {
6572 		handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6573 					  &num_stripes, &max_errors);
6574 	}
6575 
6576 	*bioc_ret = bioc;
6577 	bioc->map_type = map->type;
6578 	bioc->num_stripes = num_stripes;
6579 	bioc->max_errors = max_errors;
6580 	bioc->mirror_num = mirror_num;
6581 
6582 	/*
6583 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6584 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6585 	 * available as a mirror
6586 	 */
6587 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6588 		WARN_ON(num_stripes > 1);
6589 		bioc->stripes[0].dev = dev_replace->tgtdev;
6590 		bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6591 		bioc->mirror_num = map->num_stripes + 1;
6592 	}
6593 out:
6594 	if (dev_replace_is_ongoing) {
6595 		lockdep_assert_held(&dev_replace->rwsem);
6596 		/* Unlock and let waiting writers proceed */
6597 		up_read(&dev_replace->rwsem);
6598 	}
6599 	free_extent_map(em);
6600 	return ret;
6601 }
6602 
6603 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6604 		      u64 logical, u64 *length,
6605 		      struct btrfs_io_context **bioc_ret, int mirror_num)
6606 {
6607 	if (op == BTRFS_MAP_DISCARD)
6608 		return __btrfs_map_block_for_discard(fs_info, logical,
6609 						     length, bioc_ret);
6610 
6611 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6612 				 mirror_num, 0);
6613 }
6614 
6615 /* For Scrub/replace */
6616 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6617 		     u64 logical, u64 *length,
6618 		     struct btrfs_io_context **bioc_ret)
6619 {
6620 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1);
6621 }
6622 
6623 static inline void btrfs_end_bioc(struct btrfs_io_context *bioc, struct bio *bio)
6624 {
6625 	bio->bi_private = bioc->private;
6626 	bio->bi_end_io = bioc->end_io;
6627 	bio_endio(bio);
6628 
6629 	btrfs_put_bioc(bioc);
6630 }
6631 
6632 static void btrfs_end_bio(struct bio *bio)
6633 {
6634 	struct btrfs_io_context *bioc = bio->bi_private;
6635 	int is_orig_bio = 0;
6636 
6637 	if (bio->bi_status) {
6638 		atomic_inc(&bioc->error);
6639 		if (bio->bi_status == BLK_STS_IOERR ||
6640 		    bio->bi_status == BLK_STS_TARGET) {
6641 			struct btrfs_device *dev = btrfs_bio(bio)->device;
6642 
6643 			ASSERT(dev->bdev);
6644 			if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6645 				btrfs_dev_stat_inc_and_print(dev,
6646 						BTRFS_DEV_STAT_WRITE_ERRS);
6647 			else if (!(bio->bi_opf & REQ_RAHEAD))
6648 				btrfs_dev_stat_inc_and_print(dev,
6649 						BTRFS_DEV_STAT_READ_ERRS);
6650 			if (bio->bi_opf & REQ_PREFLUSH)
6651 				btrfs_dev_stat_inc_and_print(dev,
6652 						BTRFS_DEV_STAT_FLUSH_ERRS);
6653 		}
6654 	}
6655 
6656 	if (bio == bioc->orig_bio)
6657 		is_orig_bio = 1;
6658 
6659 	btrfs_bio_counter_dec(bioc->fs_info);
6660 
6661 	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6662 		if (!is_orig_bio) {
6663 			bio_put(bio);
6664 			bio = bioc->orig_bio;
6665 		}
6666 
6667 		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6668 		/* only send an error to the higher layers if it is
6669 		 * beyond the tolerance of the btrfs bio
6670 		 */
6671 		if (atomic_read(&bioc->error) > bioc->max_errors) {
6672 			bio->bi_status = BLK_STS_IOERR;
6673 		} else {
6674 			/*
6675 			 * this bio is actually up to date, we didn't
6676 			 * go over the max number of errors
6677 			 */
6678 			bio->bi_status = BLK_STS_OK;
6679 		}
6680 
6681 		btrfs_end_bioc(bioc, bio);
6682 	} else if (!is_orig_bio) {
6683 		bio_put(bio);
6684 	}
6685 }
6686 
6687 static void submit_stripe_bio(struct btrfs_io_context *bioc, struct bio *bio,
6688 			      u64 physical, struct btrfs_device *dev)
6689 {
6690 	struct btrfs_fs_info *fs_info = bioc->fs_info;
6691 
6692 	bio->bi_private = bioc;
6693 	btrfs_bio(bio)->device = dev;
6694 	bio->bi_end_io = btrfs_end_bio;
6695 	bio->bi_iter.bi_sector = physical >> 9;
6696 	/*
6697 	 * For zone append writing, bi_sector must point the beginning of the
6698 	 * zone
6699 	 */
6700 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6701 		if (btrfs_dev_is_sequential(dev, physical)) {
6702 			u64 zone_start = round_down(physical, fs_info->zone_size);
6703 
6704 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6705 		} else {
6706 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6707 			bio->bi_opf |= REQ_OP_WRITE;
6708 		}
6709 	}
6710 	btrfs_debug_in_rcu(fs_info,
6711 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6712 		bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6713 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6714 		dev->devid, bio->bi_iter.bi_size);
6715 	bio_set_dev(bio, dev->bdev);
6716 
6717 	btrfs_bio_counter_inc_noblocked(fs_info);
6718 
6719 	btrfsic_submit_bio(bio);
6720 }
6721 
6722 static void bioc_error(struct btrfs_io_context *bioc, struct bio *bio, u64 logical)
6723 {
6724 	atomic_inc(&bioc->error);
6725 	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6726 		/* Should be the original bio. */
6727 		WARN_ON(bio != bioc->orig_bio);
6728 
6729 		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6730 		bio->bi_iter.bi_sector = logical >> 9;
6731 		if (atomic_read(&bioc->error) > bioc->max_errors)
6732 			bio->bi_status = BLK_STS_IOERR;
6733 		else
6734 			bio->bi_status = BLK_STS_OK;
6735 		btrfs_end_bioc(bioc, bio);
6736 	}
6737 }
6738 
6739 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6740 			   int mirror_num)
6741 {
6742 	struct btrfs_device *dev;
6743 	struct bio *first_bio = bio;
6744 	u64 logical = bio->bi_iter.bi_sector << 9;
6745 	u64 length = 0;
6746 	u64 map_length;
6747 	int ret;
6748 	int dev_nr;
6749 	int total_devs;
6750 	struct btrfs_io_context *bioc = NULL;
6751 
6752 	length = bio->bi_iter.bi_size;
6753 	map_length = length;
6754 
6755 	btrfs_bio_counter_inc_blocked(fs_info);
6756 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6757 				&map_length, &bioc, mirror_num, 1);
6758 	if (ret) {
6759 		btrfs_bio_counter_dec(fs_info);
6760 		return errno_to_blk_status(ret);
6761 	}
6762 
6763 	total_devs = bioc->num_stripes;
6764 	bioc->orig_bio = first_bio;
6765 	bioc->private = first_bio->bi_private;
6766 	bioc->end_io = first_bio->bi_end_io;
6767 	atomic_set(&bioc->stripes_pending, bioc->num_stripes);
6768 
6769 	if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6770 	    ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6771 		/* In this case, map_length has been set to the length of
6772 		   a single stripe; not the whole write */
6773 		if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6774 			ret = raid56_parity_write(bio, bioc, map_length);
6775 		} else {
6776 			ret = raid56_parity_recover(bio, bioc, map_length,
6777 						    mirror_num, 1);
6778 		}
6779 
6780 		btrfs_bio_counter_dec(fs_info);
6781 		return errno_to_blk_status(ret);
6782 	}
6783 
6784 	if (map_length < length) {
6785 		btrfs_crit(fs_info,
6786 			   "mapping failed logical %llu bio len %llu len %llu",
6787 			   logical, length, map_length);
6788 		BUG();
6789 	}
6790 
6791 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6792 		dev = bioc->stripes[dev_nr].dev;
6793 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6794 						   &dev->dev_state) ||
6795 		    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6796 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6797 			bioc_error(bioc, first_bio, logical);
6798 			continue;
6799 		}
6800 
6801 		if (dev_nr < total_devs - 1)
6802 			bio = btrfs_bio_clone(first_bio);
6803 		else
6804 			bio = first_bio;
6805 
6806 		submit_stripe_bio(bioc, bio, bioc->stripes[dev_nr].physical, dev);
6807 	}
6808 	btrfs_bio_counter_dec(fs_info);
6809 	return BLK_STS_OK;
6810 }
6811 
6812 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6813 				      const struct btrfs_fs_devices *fs_devices)
6814 {
6815 	if (args->fsid == NULL)
6816 		return true;
6817 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6818 		return true;
6819 	return false;
6820 }
6821 
6822 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6823 				  const struct btrfs_device *device)
6824 {
6825 	ASSERT((args->devid != (u64)-1) || args->missing);
6826 
6827 	if ((args->devid != (u64)-1) && device->devid != args->devid)
6828 		return false;
6829 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6830 		return false;
6831 	if (!args->missing)
6832 		return true;
6833 	if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6834 	    !device->bdev)
6835 		return true;
6836 	return false;
6837 }
6838 
6839 /*
6840  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6841  * return NULL.
6842  *
6843  * If devid and uuid are both specified, the match must be exact, otherwise
6844  * only devid is used.
6845  */
6846 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6847 				       const struct btrfs_dev_lookup_args *args)
6848 {
6849 	struct btrfs_device *device;
6850 	struct btrfs_fs_devices *seed_devs;
6851 
6852 	if (dev_args_match_fs_devices(args, fs_devices)) {
6853 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6854 			if (dev_args_match_device(args, device))
6855 				return device;
6856 		}
6857 	}
6858 
6859 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6860 		if (!dev_args_match_fs_devices(args, seed_devs))
6861 			continue;
6862 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6863 			if (dev_args_match_device(args, device))
6864 				return device;
6865 		}
6866 	}
6867 
6868 	return NULL;
6869 }
6870 
6871 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6872 					    u64 devid, u8 *dev_uuid)
6873 {
6874 	struct btrfs_device *device;
6875 	unsigned int nofs_flag;
6876 
6877 	/*
6878 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6879 	 * allocation, however we don't want to change btrfs_alloc_device() to
6880 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6881 	 * places.
6882 	 */
6883 	nofs_flag = memalloc_nofs_save();
6884 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6885 	memalloc_nofs_restore(nofs_flag);
6886 	if (IS_ERR(device))
6887 		return device;
6888 
6889 	list_add(&device->dev_list, &fs_devices->devices);
6890 	device->fs_devices = fs_devices;
6891 	fs_devices->num_devices++;
6892 
6893 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6894 	fs_devices->missing_devices++;
6895 
6896 	return device;
6897 }
6898 
6899 /**
6900  * btrfs_alloc_device - allocate struct btrfs_device
6901  * @fs_info:	used only for generating a new devid, can be NULL if
6902  *		devid is provided (i.e. @devid != NULL).
6903  * @devid:	a pointer to devid for this device.  If NULL a new devid
6904  *		is generated.
6905  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6906  *		is generated.
6907  *
6908  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6909  * on error.  Returned struct is not linked onto any lists and must be
6910  * destroyed with btrfs_free_device.
6911  */
6912 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6913 					const u64 *devid,
6914 					const u8 *uuid)
6915 {
6916 	struct btrfs_device *dev;
6917 	u64 tmp;
6918 
6919 	if (WARN_ON(!devid && !fs_info))
6920 		return ERR_PTR(-EINVAL);
6921 
6922 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6923 	if (!dev)
6924 		return ERR_PTR(-ENOMEM);
6925 
6926 	/*
6927 	 * Preallocate a bio that's always going to be used for flushing device
6928 	 * barriers and matches the device lifespan
6929 	 */
6930 	dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6931 	if (!dev->flush_bio) {
6932 		kfree(dev);
6933 		return ERR_PTR(-ENOMEM);
6934 	}
6935 
6936 	INIT_LIST_HEAD(&dev->dev_list);
6937 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6938 	INIT_LIST_HEAD(&dev->post_commit_list);
6939 
6940 	atomic_set(&dev->reada_in_flight, 0);
6941 	atomic_set(&dev->dev_stats_ccnt, 0);
6942 	btrfs_device_data_ordered_init(dev);
6943 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6944 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6945 	extent_io_tree_init(fs_info, &dev->alloc_state,
6946 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
6947 
6948 	if (devid)
6949 		tmp = *devid;
6950 	else {
6951 		int ret;
6952 
6953 		ret = find_next_devid(fs_info, &tmp);
6954 		if (ret) {
6955 			btrfs_free_device(dev);
6956 			return ERR_PTR(ret);
6957 		}
6958 	}
6959 	dev->devid = tmp;
6960 
6961 	if (uuid)
6962 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6963 	else
6964 		generate_random_uuid(dev->uuid);
6965 
6966 	return dev;
6967 }
6968 
6969 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6970 					u64 devid, u8 *uuid, bool error)
6971 {
6972 	if (error)
6973 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6974 			      devid, uuid);
6975 	else
6976 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6977 			      devid, uuid);
6978 }
6979 
6980 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6981 {
6982 	const int data_stripes = calc_data_stripes(type, num_stripes);
6983 
6984 	return div_u64(chunk_len, data_stripes);
6985 }
6986 
6987 #if BITS_PER_LONG == 32
6988 /*
6989  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6990  * can't be accessed on 32bit systems.
6991  *
6992  * This function do mount time check to reject the fs if it already has
6993  * metadata chunk beyond that limit.
6994  */
6995 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6996 				  u64 logical, u64 length, u64 type)
6997 {
6998 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6999 		return 0;
7000 
7001 	if (logical + length < MAX_LFS_FILESIZE)
7002 		return 0;
7003 
7004 	btrfs_err_32bit_limit(fs_info);
7005 	return -EOVERFLOW;
7006 }
7007 
7008 /*
7009  * This is to give early warning for any metadata chunk reaching
7010  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7011  * Although we can still access the metadata, it's not going to be possible
7012  * once the limit is reached.
7013  */
7014 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7015 				  u64 logical, u64 length, u64 type)
7016 {
7017 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7018 		return;
7019 
7020 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7021 		return;
7022 
7023 	btrfs_warn_32bit_limit(fs_info);
7024 }
7025 #endif
7026 
7027 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7028 			  struct btrfs_chunk *chunk)
7029 {
7030 	BTRFS_DEV_LOOKUP_ARGS(args);
7031 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7032 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7033 	struct map_lookup *map;
7034 	struct extent_map *em;
7035 	u64 logical;
7036 	u64 length;
7037 	u64 devid;
7038 	u64 type;
7039 	u8 uuid[BTRFS_UUID_SIZE];
7040 	int num_stripes;
7041 	int ret;
7042 	int i;
7043 
7044 	logical = key->offset;
7045 	length = btrfs_chunk_length(leaf, chunk);
7046 	type = btrfs_chunk_type(leaf, chunk);
7047 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7048 
7049 #if BITS_PER_LONG == 32
7050 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7051 	if (ret < 0)
7052 		return ret;
7053 	warn_32bit_meta_chunk(fs_info, logical, length, type);
7054 #endif
7055 
7056 	/*
7057 	 * Only need to verify chunk item if we're reading from sys chunk array,
7058 	 * as chunk item in tree block is already verified by tree-checker.
7059 	 */
7060 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7061 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7062 		if (ret)
7063 			return ret;
7064 	}
7065 
7066 	read_lock(&map_tree->lock);
7067 	em = lookup_extent_mapping(map_tree, logical, 1);
7068 	read_unlock(&map_tree->lock);
7069 
7070 	/* already mapped? */
7071 	if (em && em->start <= logical && em->start + em->len > logical) {
7072 		free_extent_map(em);
7073 		return 0;
7074 	} else if (em) {
7075 		free_extent_map(em);
7076 	}
7077 
7078 	em = alloc_extent_map();
7079 	if (!em)
7080 		return -ENOMEM;
7081 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7082 	if (!map) {
7083 		free_extent_map(em);
7084 		return -ENOMEM;
7085 	}
7086 
7087 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7088 	em->map_lookup = map;
7089 	em->start = logical;
7090 	em->len = length;
7091 	em->orig_start = 0;
7092 	em->block_start = 0;
7093 	em->block_len = em->len;
7094 
7095 	map->num_stripes = num_stripes;
7096 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7097 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7098 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7099 	map->type = type;
7100 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7101 	map->verified_stripes = 0;
7102 	em->orig_block_len = calc_stripe_length(type, em->len,
7103 						map->num_stripes);
7104 	for (i = 0; i < num_stripes; i++) {
7105 		map->stripes[i].physical =
7106 			btrfs_stripe_offset_nr(leaf, chunk, i);
7107 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7108 		args.devid = devid;
7109 		read_extent_buffer(leaf, uuid, (unsigned long)
7110 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7111 				   BTRFS_UUID_SIZE);
7112 		args.uuid = uuid;
7113 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7114 		if (!map->stripes[i].dev &&
7115 		    !btrfs_test_opt(fs_info, DEGRADED)) {
7116 			free_extent_map(em);
7117 			btrfs_report_missing_device(fs_info, devid, uuid, true);
7118 			return -ENOENT;
7119 		}
7120 		if (!map->stripes[i].dev) {
7121 			map->stripes[i].dev =
7122 				add_missing_dev(fs_info->fs_devices, devid,
7123 						uuid);
7124 			if (IS_ERR(map->stripes[i].dev)) {
7125 				free_extent_map(em);
7126 				btrfs_err(fs_info,
7127 					"failed to init missing dev %llu: %ld",
7128 					devid, PTR_ERR(map->stripes[i].dev));
7129 				return PTR_ERR(map->stripes[i].dev);
7130 			}
7131 			btrfs_report_missing_device(fs_info, devid, uuid, false);
7132 		}
7133 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7134 				&(map->stripes[i].dev->dev_state));
7135 
7136 	}
7137 
7138 	write_lock(&map_tree->lock);
7139 	ret = add_extent_mapping(map_tree, em, 0);
7140 	write_unlock(&map_tree->lock);
7141 	if (ret < 0) {
7142 		btrfs_err(fs_info,
7143 			  "failed to add chunk map, start=%llu len=%llu: %d",
7144 			  em->start, em->len, ret);
7145 	}
7146 	free_extent_map(em);
7147 
7148 	return ret;
7149 }
7150 
7151 static void fill_device_from_item(struct extent_buffer *leaf,
7152 				 struct btrfs_dev_item *dev_item,
7153 				 struct btrfs_device *device)
7154 {
7155 	unsigned long ptr;
7156 
7157 	device->devid = btrfs_device_id(leaf, dev_item);
7158 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7159 	device->total_bytes = device->disk_total_bytes;
7160 	device->commit_total_bytes = device->disk_total_bytes;
7161 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7162 	device->commit_bytes_used = device->bytes_used;
7163 	device->type = btrfs_device_type(leaf, dev_item);
7164 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7165 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7166 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7167 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7168 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7169 
7170 	ptr = btrfs_device_uuid(dev_item);
7171 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7172 }
7173 
7174 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7175 						  u8 *fsid)
7176 {
7177 	struct btrfs_fs_devices *fs_devices;
7178 	int ret;
7179 
7180 	lockdep_assert_held(&uuid_mutex);
7181 	ASSERT(fsid);
7182 
7183 	/* This will match only for multi-device seed fs */
7184 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7185 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7186 			return fs_devices;
7187 
7188 
7189 	fs_devices = find_fsid(fsid, NULL);
7190 	if (!fs_devices) {
7191 		if (!btrfs_test_opt(fs_info, DEGRADED))
7192 			return ERR_PTR(-ENOENT);
7193 
7194 		fs_devices = alloc_fs_devices(fsid, NULL);
7195 		if (IS_ERR(fs_devices))
7196 			return fs_devices;
7197 
7198 		fs_devices->seeding = true;
7199 		fs_devices->opened = 1;
7200 		return fs_devices;
7201 	}
7202 
7203 	/*
7204 	 * Upon first call for a seed fs fsid, just create a private copy of the
7205 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7206 	 */
7207 	fs_devices = clone_fs_devices(fs_devices);
7208 	if (IS_ERR(fs_devices))
7209 		return fs_devices;
7210 
7211 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7212 	if (ret) {
7213 		free_fs_devices(fs_devices);
7214 		return ERR_PTR(ret);
7215 	}
7216 
7217 	if (!fs_devices->seeding) {
7218 		close_fs_devices(fs_devices);
7219 		free_fs_devices(fs_devices);
7220 		return ERR_PTR(-EINVAL);
7221 	}
7222 
7223 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7224 
7225 	return fs_devices;
7226 }
7227 
7228 static int read_one_dev(struct extent_buffer *leaf,
7229 			struct btrfs_dev_item *dev_item)
7230 {
7231 	BTRFS_DEV_LOOKUP_ARGS(args);
7232 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7233 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7234 	struct btrfs_device *device;
7235 	u64 devid;
7236 	int ret;
7237 	u8 fs_uuid[BTRFS_FSID_SIZE];
7238 	u8 dev_uuid[BTRFS_UUID_SIZE];
7239 
7240 	devid = args.devid = btrfs_device_id(leaf, dev_item);
7241 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7242 			   BTRFS_UUID_SIZE);
7243 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7244 			   BTRFS_FSID_SIZE);
7245 	args.uuid = dev_uuid;
7246 	args.fsid = fs_uuid;
7247 
7248 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7249 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7250 		if (IS_ERR(fs_devices))
7251 			return PTR_ERR(fs_devices);
7252 	}
7253 
7254 	device = btrfs_find_device(fs_info->fs_devices, &args);
7255 	if (!device) {
7256 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7257 			btrfs_report_missing_device(fs_info, devid,
7258 							dev_uuid, true);
7259 			return -ENOENT;
7260 		}
7261 
7262 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7263 		if (IS_ERR(device)) {
7264 			btrfs_err(fs_info,
7265 				"failed to add missing dev %llu: %ld",
7266 				devid, PTR_ERR(device));
7267 			return PTR_ERR(device);
7268 		}
7269 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7270 	} else {
7271 		if (!device->bdev) {
7272 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7273 				btrfs_report_missing_device(fs_info,
7274 						devid, dev_uuid, true);
7275 				return -ENOENT;
7276 			}
7277 			btrfs_report_missing_device(fs_info, devid,
7278 							dev_uuid, false);
7279 		}
7280 
7281 		if (!device->bdev &&
7282 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7283 			/*
7284 			 * this happens when a device that was properly setup
7285 			 * in the device info lists suddenly goes bad.
7286 			 * device->bdev is NULL, and so we have to set
7287 			 * device->missing to one here
7288 			 */
7289 			device->fs_devices->missing_devices++;
7290 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7291 		}
7292 
7293 		/* Move the device to its own fs_devices */
7294 		if (device->fs_devices != fs_devices) {
7295 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7296 							&device->dev_state));
7297 
7298 			list_move(&device->dev_list, &fs_devices->devices);
7299 			device->fs_devices->num_devices--;
7300 			fs_devices->num_devices++;
7301 
7302 			device->fs_devices->missing_devices--;
7303 			fs_devices->missing_devices++;
7304 
7305 			device->fs_devices = fs_devices;
7306 		}
7307 	}
7308 
7309 	if (device->fs_devices != fs_info->fs_devices) {
7310 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7311 		if (device->generation !=
7312 		    btrfs_device_generation(leaf, dev_item))
7313 			return -EINVAL;
7314 	}
7315 
7316 	fill_device_from_item(leaf, dev_item, device);
7317 	if (device->bdev) {
7318 		u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7319 
7320 		if (device->total_bytes > max_total_bytes) {
7321 			btrfs_err(fs_info,
7322 			"device total_bytes should be at most %llu but found %llu",
7323 				  max_total_bytes, device->total_bytes);
7324 			return -EINVAL;
7325 		}
7326 	}
7327 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7328 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7329 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7330 		device->fs_devices->total_rw_bytes += device->total_bytes;
7331 		atomic64_add(device->total_bytes - device->bytes_used,
7332 				&fs_info->free_chunk_space);
7333 	}
7334 	ret = 0;
7335 	return ret;
7336 }
7337 
7338 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7339 {
7340 	struct btrfs_root *root = fs_info->tree_root;
7341 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7342 	struct extent_buffer *sb;
7343 	struct btrfs_disk_key *disk_key;
7344 	struct btrfs_chunk *chunk;
7345 	u8 *array_ptr;
7346 	unsigned long sb_array_offset;
7347 	int ret = 0;
7348 	u32 num_stripes;
7349 	u32 array_size;
7350 	u32 len = 0;
7351 	u32 cur_offset;
7352 	u64 type;
7353 	struct btrfs_key key;
7354 
7355 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7356 	/*
7357 	 * This will create extent buffer of nodesize, superblock size is
7358 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7359 	 * overallocate but we can keep it as-is, only the first page is used.
7360 	 */
7361 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7362 					  root->root_key.objectid, 0);
7363 	if (IS_ERR(sb))
7364 		return PTR_ERR(sb);
7365 	set_extent_buffer_uptodate(sb);
7366 	/*
7367 	 * The sb extent buffer is artificial and just used to read the system array.
7368 	 * set_extent_buffer_uptodate() call does not properly mark all it's
7369 	 * pages up-to-date when the page is larger: extent does not cover the
7370 	 * whole page and consequently check_page_uptodate does not find all
7371 	 * the page's extents up-to-date (the hole beyond sb),
7372 	 * write_extent_buffer then triggers a WARN_ON.
7373 	 *
7374 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7375 	 * but sb spans only this function. Add an explicit SetPageUptodate call
7376 	 * to silence the warning eg. on PowerPC 64.
7377 	 */
7378 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7379 		SetPageUptodate(sb->pages[0]);
7380 
7381 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7382 	array_size = btrfs_super_sys_array_size(super_copy);
7383 
7384 	array_ptr = super_copy->sys_chunk_array;
7385 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7386 	cur_offset = 0;
7387 
7388 	while (cur_offset < array_size) {
7389 		disk_key = (struct btrfs_disk_key *)array_ptr;
7390 		len = sizeof(*disk_key);
7391 		if (cur_offset + len > array_size)
7392 			goto out_short_read;
7393 
7394 		btrfs_disk_key_to_cpu(&key, disk_key);
7395 
7396 		array_ptr += len;
7397 		sb_array_offset += len;
7398 		cur_offset += len;
7399 
7400 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7401 			btrfs_err(fs_info,
7402 			    "unexpected item type %u in sys_array at offset %u",
7403 				  (u32)key.type, cur_offset);
7404 			ret = -EIO;
7405 			break;
7406 		}
7407 
7408 		chunk = (struct btrfs_chunk *)sb_array_offset;
7409 		/*
7410 		 * At least one btrfs_chunk with one stripe must be present,
7411 		 * exact stripe count check comes afterwards
7412 		 */
7413 		len = btrfs_chunk_item_size(1);
7414 		if (cur_offset + len > array_size)
7415 			goto out_short_read;
7416 
7417 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7418 		if (!num_stripes) {
7419 			btrfs_err(fs_info,
7420 			"invalid number of stripes %u in sys_array at offset %u",
7421 				  num_stripes, cur_offset);
7422 			ret = -EIO;
7423 			break;
7424 		}
7425 
7426 		type = btrfs_chunk_type(sb, chunk);
7427 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7428 			btrfs_err(fs_info,
7429 			"invalid chunk type %llu in sys_array at offset %u",
7430 				  type, cur_offset);
7431 			ret = -EIO;
7432 			break;
7433 		}
7434 
7435 		len = btrfs_chunk_item_size(num_stripes);
7436 		if (cur_offset + len > array_size)
7437 			goto out_short_read;
7438 
7439 		ret = read_one_chunk(&key, sb, chunk);
7440 		if (ret)
7441 			break;
7442 
7443 		array_ptr += len;
7444 		sb_array_offset += len;
7445 		cur_offset += len;
7446 	}
7447 	clear_extent_buffer_uptodate(sb);
7448 	free_extent_buffer_stale(sb);
7449 	return ret;
7450 
7451 out_short_read:
7452 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7453 			len, cur_offset);
7454 	clear_extent_buffer_uptodate(sb);
7455 	free_extent_buffer_stale(sb);
7456 	return -EIO;
7457 }
7458 
7459 /*
7460  * Check if all chunks in the fs are OK for read-write degraded mount
7461  *
7462  * If the @failing_dev is specified, it's accounted as missing.
7463  *
7464  * Return true if all chunks meet the minimal RW mount requirements.
7465  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7466  */
7467 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7468 					struct btrfs_device *failing_dev)
7469 {
7470 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7471 	struct extent_map *em;
7472 	u64 next_start = 0;
7473 	bool ret = true;
7474 
7475 	read_lock(&map_tree->lock);
7476 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7477 	read_unlock(&map_tree->lock);
7478 	/* No chunk at all? Return false anyway */
7479 	if (!em) {
7480 		ret = false;
7481 		goto out;
7482 	}
7483 	while (em) {
7484 		struct map_lookup *map;
7485 		int missing = 0;
7486 		int max_tolerated;
7487 		int i;
7488 
7489 		map = em->map_lookup;
7490 		max_tolerated =
7491 			btrfs_get_num_tolerated_disk_barrier_failures(
7492 					map->type);
7493 		for (i = 0; i < map->num_stripes; i++) {
7494 			struct btrfs_device *dev = map->stripes[i].dev;
7495 
7496 			if (!dev || !dev->bdev ||
7497 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7498 			    dev->last_flush_error)
7499 				missing++;
7500 			else if (failing_dev && failing_dev == dev)
7501 				missing++;
7502 		}
7503 		if (missing > max_tolerated) {
7504 			if (!failing_dev)
7505 				btrfs_warn(fs_info,
7506 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7507 				   em->start, missing, max_tolerated);
7508 			free_extent_map(em);
7509 			ret = false;
7510 			goto out;
7511 		}
7512 		next_start = extent_map_end(em);
7513 		free_extent_map(em);
7514 
7515 		read_lock(&map_tree->lock);
7516 		em = lookup_extent_mapping(map_tree, next_start,
7517 					   (u64)(-1) - next_start);
7518 		read_unlock(&map_tree->lock);
7519 	}
7520 out:
7521 	return ret;
7522 }
7523 
7524 static void readahead_tree_node_children(struct extent_buffer *node)
7525 {
7526 	int i;
7527 	const int nr_items = btrfs_header_nritems(node);
7528 
7529 	for (i = 0; i < nr_items; i++)
7530 		btrfs_readahead_node_child(node, i);
7531 }
7532 
7533 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7534 {
7535 	struct btrfs_root *root = fs_info->chunk_root;
7536 	struct btrfs_path *path;
7537 	struct extent_buffer *leaf;
7538 	struct btrfs_key key;
7539 	struct btrfs_key found_key;
7540 	int ret;
7541 	int slot;
7542 	u64 total_dev = 0;
7543 	u64 last_ra_node = 0;
7544 
7545 	path = btrfs_alloc_path();
7546 	if (!path)
7547 		return -ENOMEM;
7548 
7549 	/*
7550 	 * uuid_mutex is needed only if we are mounting a sprout FS
7551 	 * otherwise we don't need it.
7552 	 */
7553 	mutex_lock(&uuid_mutex);
7554 
7555 	/*
7556 	 * It is possible for mount and umount to race in such a way that
7557 	 * we execute this code path, but open_fs_devices failed to clear
7558 	 * total_rw_bytes. We certainly want it cleared before reading the
7559 	 * device items, so clear it here.
7560 	 */
7561 	fs_info->fs_devices->total_rw_bytes = 0;
7562 
7563 	/*
7564 	 * Lockdep complains about possible circular locking dependency between
7565 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7566 	 * used for freeze procection of a fs (struct super_block.s_writers),
7567 	 * which we take when starting a transaction, and extent buffers of the
7568 	 * chunk tree if we call read_one_dev() while holding a lock on an
7569 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7570 	 * and at this point there can't be any concurrent task modifying the
7571 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7572 	 */
7573 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7574 	path->skip_locking = 1;
7575 
7576 	/*
7577 	 * Read all device items, and then all the chunk items. All
7578 	 * device items are found before any chunk item (their object id
7579 	 * is smaller than the lowest possible object id for a chunk
7580 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7581 	 */
7582 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7583 	key.offset = 0;
7584 	key.type = 0;
7585 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7586 	if (ret < 0)
7587 		goto error;
7588 	while (1) {
7589 		struct extent_buffer *node;
7590 
7591 		leaf = path->nodes[0];
7592 		slot = path->slots[0];
7593 		if (slot >= btrfs_header_nritems(leaf)) {
7594 			ret = btrfs_next_leaf(root, path);
7595 			if (ret == 0)
7596 				continue;
7597 			if (ret < 0)
7598 				goto error;
7599 			break;
7600 		}
7601 		node = path->nodes[1];
7602 		if (node) {
7603 			if (last_ra_node != node->start) {
7604 				readahead_tree_node_children(node);
7605 				last_ra_node = node->start;
7606 			}
7607 		}
7608 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7609 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7610 			struct btrfs_dev_item *dev_item;
7611 			dev_item = btrfs_item_ptr(leaf, slot,
7612 						  struct btrfs_dev_item);
7613 			ret = read_one_dev(leaf, dev_item);
7614 			if (ret)
7615 				goto error;
7616 			total_dev++;
7617 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7618 			struct btrfs_chunk *chunk;
7619 
7620 			/*
7621 			 * We are only called at mount time, so no need to take
7622 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7623 			 * we always lock first fs_info->chunk_mutex before
7624 			 * acquiring any locks on the chunk tree. This is a
7625 			 * requirement for chunk allocation, see the comment on
7626 			 * top of btrfs_chunk_alloc() for details.
7627 			 */
7628 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7629 			ret = read_one_chunk(&found_key, leaf, chunk);
7630 			if (ret)
7631 				goto error;
7632 		}
7633 		path->slots[0]++;
7634 	}
7635 
7636 	/*
7637 	 * After loading chunk tree, we've got all device information,
7638 	 * do another round of validation checks.
7639 	 */
7640 	if (total_dev != fs_info->fs_devices->total_devices) {
7641 		btrfs_err(fs_info,
7642 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7643 			  btrfs_super_num_devices(fs_info->super_copy),
7644 			  total_dev);
7645 		ret = -EINVAL;
7646 		goto error;
7647 	}
7648 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7649 	    fs_info->fs_devices->total_rw_bytes) {
7650 		btrfs_err(fs_info,
7651 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7652 			  btrfs_super_total_bytes(fs_info->super_copy),
7653 			  fs_info->fs_devices->total_rw_bytes);
7654 		ret = -EINVAL;
7655 		goto error;
7656 	}
7657 	ret = 0;
7658 error:
7659 	mutex_unlock(&uuid_mutex);
7660 
7661 	btrfs_free_path(path);
7662 	return ret;
7663 }
7664 
7665 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7666 {
7667 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7668 	struct btrfs_device *device;
7669 
7670 	fs_devices->fs_info = fs_info;
7671 
7672 	mutex_lock(&fs_devices->device_list_mutex);
7673 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7674 		device->fs_info = fs_info;
7675 
7676 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7677 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7678 			device->fs_info = fs_info;
7679 
7680 		seed_devs->fs_info = fs_info;
7681 	}
7682 	mutex_unlock(&fs_devices->device_list_mutex);
7683 }
7684 
7685 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7686 				 const struct btrfs_dev_stats_item *ptr,
7687 				 int index)
7688 {
7689 	u64 val;
7690 
7691 	read_extent_buffer(eb, &val,
7692 			   offsetof(struct btrfs_dev_stats_item, values) +
7693 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7694 			   sizeof(val));
7695 	return val;
7696 }
7697 
7698 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7699 				      struct btrfs_dev_stats_item *ptr,
7700 				      int index, u64 val)
7701 {
7702 	write_extent_buffer(eb, &val,
7703 			    offsetof(struct btrfs_dev_stats_item, values) +
7704 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7705 			    sizeof(val));
7706 }
7707 
7708 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7709 				       struct btrfs_path *path)
7710 {
7711 	struct btrfs_dev_stats_item *ptr;
7712 	struct extent_buffer *eb;
7713 	struct btrfs_key key;
7714 	int item_size;
7715 	int i, ret, slot;
7716 
7717 	if (!device->fs_info->dev_root)
7718 		return 0;
7719 
7720 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7721 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7722 	key.offset = device->devid;
7723 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7724 	if (ret) {
7725 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7726 			btrfs_dev_stat_set(device, i, 0);
7727 		device->dev_stats_valid = 1;
7728 		btrfs_release_path(path);
7729 		return ret < 0 ? ret : 0;
7730 	}
7731 	slot = path->slots[0];
7732 	eb = path->nodes[0];
7733 	item_size = btrfs_item_size_nr(eb, slot);
7734 
7735 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7736 
7737 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7738 		if (item_size >= (1 + i) * sizeof(__le64))
7739 			btrfs_dev_stat_set(device, i,
7740 					   btrfs_dev_stats_value(eb, ptr, i));
7741 		else
7742 			btrfs_dev_stat_set(device, i, 0);
7743 	}
7744 
7745 	device->dev_stats_valid = 1;
7746 	btrfs_dev_stat_print_on_load(device);
7747 	btrfs_release_path(path);
7748 
7749 	return 0;
7750 }
7751 
7752 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7753 {
7754 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7755 	struct btrfs_device *device;
7756 	struct btrfs_path *path = NULL;
7757 	int ret = 0;
7758 
7759 	path = btrfs_alloc_path();
7760 	if (!path)
7761 		return -ENOMEM;
7762 
7763 	mutex_lock(&fs_devices->device_list_mutex);
7764 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7765 		ret = btrfs_device_init_dev_stats(device, path);
7766 		if (ret)
7767 			goto out;
7768 	}
7769 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7770 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7771 			ret = btrfs_device_init_dev_stats(device, path);
7772 			if (ret)
7773 				goto out;
7774 		}
7775 	}
7776 out:
7777 	mutex_unlock(&fs_devices->device_list_mutex);
7778 
7779 	btrfs_free_path(path);
7780 	return ret;
7781 }
7782 
7783 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7784 				struct btrfs_device *device)
7785 {
7786 	struct btrfs_fs_info *fs_info = trans->fs_info;
7787 	struct btrfs_root *dev_root = fs_info->dev_root;
7788 	struct btrfs_path *path;
7789 	struct btrfs_key key;
7790 	struct extent_buffer *eb;
7791 	struct btrfs_dev_stats_item *ptr;
7792 	int ret;
7793 	int i;
7794 
7795 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7796 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7797 	key.offset = device->devid;
7798 
7799 	path = btrfs_alloc_path();
7800 	if (!path)
7801 		return -ENOMEM;
7802 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7803 	if (ret < 0) {
7804 		btrfs_warn_in_rcu(fs_info,
7805 			"error %d while searching for dev_stats item for device %s",
7806 			      ret, rcu_str_deref(device->name));
7807 		goto out;
7808 	}
7809 
7810 	if (ret == 0 &&
7811 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7812 		/* need to delete old one and insert a new one */
7813 		ret = btrfs_del_item(trans, dev_root, path);
7814 		if (ret != 0) {
7815 			btrfs_warn_in_rcu(fs_info,
7816 				"delete too small dev_stats item for device %s failed %d",
7817 				      rcu_str_deref(device->name), ret);
7818 			goto out;
7819 		}
7820 		ret = 1;
7821 	}
7822 
7823 	if (ret == 1) {
7824 		/* need to insert a new item */
7825 		btrfs_release_path(path);
7826 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7827 					      &key, sizeof(*ptr));
7828 		if (ret < 0) {
7829 			btrfs_warn_in_rcu(fs_info,
7830 				"insert dev_stats item for device %s failed %d",
7831 				rcu_str_deref(device->name), ret);
7832 			goto out;
7833 		}
7834 	}
7835 
7836 	eb = path->nodes[0];
7837 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7838 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7839 		btrfs_set_dev_stats_value(eb, ptr, i,
7840 					  btrfs_dev_stat_read(device, i));
7841 	btrfs_mark_buffer_dirty(eb);
7842 
7843 out:
7844 	btrfs_free_path(path);
7845 	return ret;
7846 }
7847 
7848 /*
7849  * called from commit_transaction. Writes all changed device stats to disk.
7850  */
7851 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7852 {
7853 	struct btrfs_fs_info *fs_info = trans->fs_info;
7854 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7855 	struct btrfs_device *device;
7856 	int stats_cnt;
7857 	int ret = 0;
7858 
7859 	mutex_lock(&fs_devices->device_list_mutex);
7860 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7861 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7862 		if (!device->dev_stats_valid || stats_cnt == 0)
7863 			continue;
7864 
7865 
7866 		/*
7867 		 * There is a LOAD-LOAD control dependency between the value of
7868 		 * dev_stats_ccnt and updating the on-disk values which requires
7869 		 * reading the in-memory counters. Such control dependencies
7870 		 * require explicit read memory barriers.
7871 		 *
7872 		 * This memory barriers pairs with smp_mb__before_atomic in
7873 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7874 		 * barrier implied by atomic_xchg in
7875 		 * btrfs_dev_stats_read_and_reset
7876 		 */
7877 		smp_rmb();
7878 
7879 		ret = update_dev_stat_item(trans, device);
7880 		if (!ret)
7881 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7882 	}
7883 	mutex_unlock(&fs_devices->device_list_mutex);
7884 
7885 	return ret;
7886 }
7887 
7888 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7889 {
7890 	btrfs_dev_stat_inc(dev, index);
7891 	btrfs_dev_stat_print_on_error(dev);
7892 }
7893 
7894 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7895 {
7896 	if (!dev->dev_stats_valid)
7897 		return;
7898 	btrfs_err_rl_in_rcu(dev->fs_info,
7899 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7900 			   rcu_str_deref(dev->name),
7901 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7902 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7903 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7904 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7905 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7906 }
7907 
7908 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7909 {
7910 	int i;
7911 
7912 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7913 		if (btrfs_dev_stat_read(dev, i) != 0)
7914 			break;
7915 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7916 		return; /* all values == 0, suppress message */
7917 
7918 	btrfs_info_in_rcu(dev->fs_info,
7919 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7920 	       rcu_str_deref(dev->name),
7921 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7922 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7923 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7924 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7925 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7926 }
7927 
7928 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7929 			struct btrfs_ioctl_get_dev_stats *stats)
7930 {
7931 	BTRFS_DEV_LOOKUP_ARGS(args);
7932 	struct btrfs_device *dev;
7933 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7934 	int i;
7935 
7936 	mutex_lock(&fs_devices->device_list_mutex);
7937 	args.devid = stats->devid;
7938 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7939 	mutex_unlock(&fs_devices->device_list_mutex);
7940 
7941 	if (!dev) {
7942 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7943 		return -ENODEV;
7944 	} else if (!dev->dev_stats_valid) {
7945 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7946 		return -ENODEV;
7947 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7948 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7949 			if (stats->nr_items > i)
7950 				stats->values[i] =
7951 					btrfs_dev_stat_read_and_reset(dev, i);
7952 			else
7953 				btrfs_dev_stat_set(dev, i, 0);
7954 		}
7955 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7956 			   current->comm, task_pid_nr(current));
7957 	} else {
7958 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7959 			if (stats->nr_items > i)
7960 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7961 	}
7962 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7963 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7964 	return 0;
7965 }
7966 
7967 /*
7968  * Update the size and bytes used for each device where it changed.  This is
7969  * delayed since we would otherwise get errors while writing out the
7970  * superblocks.
7971  *
7972  * Must be invoked during transaction commit.
7973  */
7974 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7975 {
7976 	struct btrfs_device *curr, *next;
7977 
7978 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7979 
7980 	if (list_empty(&trans->dev_update_list))
7981 		return;
7982 
7983 	/*
7984 	 * We don't need the device_list_mutex here.  This list is owned by the
7985 	 * transaction and the transaction must complete before the device is
7986 	 * released.
7987 	 */
7988 	mutex_lock(&trans->fs_info->chunk_mutex);
7989 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7990 				 post_commit_list) {
7991 		list_del_init(&curr->post_commit_list);
7992 		curr->commit_total_bytes = curr->disk_total_bytes;
7993 		curr->commit_bytes_used = curr->bytes_used;
7994 	}
7995 	mutex_unlock(&trans->fs_info->chunk_mutex);
7996 }
7997 
7998 /*
7999  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
8000  */
8001 int btrfs_bg_type_to_factor(u64 flags)
8002 {
8003 	const int index = btrfs_bg_flags_to_raid_index(flags);
8004 
8005 	return btrfs_raid_array[index].ncopies;
8006 }
8007 
8008 
8009 
8010 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
8011 				 u64 chunk_offset, u64 devid,
8012 				 u64 physical_offset, u64 physical_len)
8013 {
8014 	struct btrfs_dev_lookup_args args = { .devid = devid };
8015 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8016 	struct extent_map *em;
8017 	struct map_lookup *map;
8018 	struct btrfs_device *dev;
8019 	u64 stripe_len;
8020 	bool found = false;
8021 	int ret = 0;
8022 	int i;
8023 
8024 	read_lock(&em_tree->lock);
8025 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8026 	read_unlock(&em_tree->lock);
8027 
8028 	if (!em) {
8029 		btrfs_err(fs_info,
8030 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8031 			  physical_offset, devid);
8032 		ret = -EUCLEAN;
8033 		goto out;
8034 	}
8035 
8036 	map = em->map_lookup;
8037 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
8038 	if (physical_len != stripe_len) {
8039 		btrfs_err(fs_info,
8040 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8041 			  physical_offset, devid, em->start, physical_len,
8042 			  stripe_len);
8043 		ret = -EUCLEAN;
8044 		goto out;
8045 	}
8046 
8047 	for (i = 0; i < map->num_stripes; i++) {
8048 		if (map->stripes[i].dev->devid == devid &&
8049 		    map->stripes[i].physical == physical_offset) {
8050 			found = true;
8051 			if (map->verified_stripes >= map->num_stripes) {
8052 				btrfs_err(fs_info,
8053 				"too many dev extents for chunk %llu found",
8054 					  em->start);
8055 				ret = -EUCLEAN;
8056 				goto out;
8057 			}
8058 			map->verified_stripes++;
8059 			break;
8060 		}
8061 	}
8062 	if (!found) {
8063 		btrfs_err(fs_info,
8064 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8065 			physical_offset, devid);
8066 		ret = -EUCLEAN;
8067 	}
8068 
8069 	/* Make sure no dev extent is beyond device boundary */
8070 	dev = btrfs_find_device(fs_info->fs_devices, &args);
8071 	if (!dev) {
8072 		btrfs_err(fs_info, "failed to find devid %llu", devid);
8073 		ret = -EUCLEAN;
8074 		goto out;
8075 	}
8076 
8077 	if (physical_offset + physical_len > dev->disk_total_bytes) {
8078 		btrfs_err(fs_info,
8079 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8080 			  devid, physical_offset, physical_len,
8081 			  dev->disk_total_bytes);
8082 		ret = -EUCLEAN;
8083 		goto out;
8084 	}
8085 
8086 	if (dev->zone_info) {
8087 		u64 zone_size = dev->zone_info->zone_size;
8088 
8089 		if (!IS_ALIGNED(physical_offset, zone_size) ||
8090 		    !IS_ALIGNED(physical_len, zone_size)) {
8091 			btrfs_err(fs_info,
8092 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8093 				  devid, physical_offset, physical_len);
8094 			ret = -EUCLEAN;
8095 			goto out;
8096 		}
8097 	}
8098 
8099 out:
8100 	free_extent_map(em);
8101 	return ret;
8102 }
8103 
8104 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8105 {
8106 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8107 	struct extent_map *em;
8108 	struct rb_node *node;
8109 	int ret = 0;
8110 
8111 	read_lock(&em_tree->lock);
8112 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8113 		em = rb_entry(node, struct extent_map, rb_node);
8114 		if (em->map_lookup->num_stripes !=
8115 		    em->map_lookup->verified_stripes) {
8116 			btrfs_err(fs_info,
8117 			"chunk %llu has missing dev extent, have %d expect %d",
8118 				  em->start, em->map_lookup->verified_stripes,
8119 				  em->map_lookup->num_stripes);
8120 			ret = -EUCLEAN;
8121 			goto out;
8122 		}
8123 	}
8124 out:
8125 	read_unlock(&em_tree->lock);
8126 	return ret;
8127 }
8128 
8129 /*
8130  * Ensure that all dev extents are mapped to correct chunk, otherwise
8131  * later chunk allocation/free would cause unexpected behavior.
8132  *
8133  * NOTE: This will iterate through the whole device tree, which should be of
8134  * the same size level as the chunk tree.  This slightly increases mount time.
8135  */
8136 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8137 {
8138 	struct btrfs_path *path;
8139 	struct btrfs_root *root = fs_info->dev_root;
8140 	struct btrfs_key key;
8141 	u64 prev_devid = 0;
8142 	u64 prev_dev_ext_end = 0;
8143 	int ret = 0;
8144 
8145 	/*
8146 	 * We don't have a dev_root because we mounted with ignorebadroots and
8147 	 * failed to load the root, so we want to skip the verification in this
8148 	 * case for sure.
8149 	 *
8150 	 * However if the dev root is fine, but the tree itself is corrupted
8151 	 * we'd still fail to mount.  This verification is only to make sure
8152 	 * writes can happen safely, so instead just bypass this check
8153 	 * completely in the case of IGNOREBADROOTS.
8154 	 */
8155 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8156 		return 0;
8157 
8158 	key.objectid = 1;
8159 	key.type = BTRFS_DEV_EXTENT_KEY;
8160 	key.offset = 0;
8161 
8162 	path = btrfs_alloc_path();
8163 	if (!path)
8164 		return -ENOMEM;
8165 
8166 	path->reada = READA_FORWARD;
8167 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8168 	if (ret < 0)
8169 		goto out;
8170 
8171 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8172 		ret = btrfs_next_leaf(root, path);
8173 		if (ret < 0)
8174 			goto out;
8175 		/* No dev extents at all? Not good */
8176 		if (ret > 0) {
8177 			ret = -EUCLEAN;
8178 			goto out;
8179 		}
8180 	}
8181 	while (1) {
8182 		struct extent_buffer *leaf = path->nodes[0];
8183 		struct btrfs_dev_extent *dext;
8184 		int slot = path->slots[0];
8185 		u64 chunk_offset;
8186 		u64 physical_offset;
8187 		u64 physical_len;
8188 		u64 devid;
8189 
8190 		btrfs_item_key_to_cpu(leaf, &key, slot);
8191 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8192 			break;
8193 		devid = key.objectid;
8194 		physical_offset = key.offset;
8195 
8196 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8197 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8198 		physical_len = btrfs_dev_extent_length(leaf, dext);
8199 
8200 		/* Check if this dev extent overlaps with the previous one */
8201 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8202 			btrfs_err(fs_info,
8203 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8204 				  devid, physical_offset, prev_dev_ext_end);
8205 			ret = -EUCLEAN;
8206 			goto out;
8207 		}
8208 
8209 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8210 					    physical_offset, physical_len);
8211 		if (ret < 0)
8212 			goto out;
8213 		prev_devid = devid;
8214 		prev_dev_ext_end = physical_offset + physical_len;
8215 
8216 		ret = btrfs_next_item(root, path);
8217 		if (ret < 0)
8218 			goto out;
8219 		if (ret > 0) {
8220 			ret = 0;
8221 			break;
8222 		}
8223 	}
8224 
8225 	/* Ensure all chunks have corresponding dev extents */
8226 	ret = verify_chunk_dev_extent_mapping(fs_info);
8227 out:
8228 	btrfs_free_path(path);
8229 	return ret;
8230 }
8231 
8232 /*
8233  * Check whether the given block group or device is pinned by any inode being
8234  * used as a swapfile.
8235  */
8236 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8237 {
8238 	struct btrfs_swapfile_pin *sp;
8239 	struct rb_node *node;
8240 
8241 	spin_lock(&fs_info->swapfile_pins_lock);
8242 	node = fs_info->swapfile_pins.rb_node;
8243 	while (node) {
8244 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8245 		if (ptr < sp->ptr)
8246 			node = node->rb_left;
8247 		else if (ptr > sp->ptr)
8248 			node = node->rb_right;
8249 		else
8250 			break;
8251 	}
8252 	spin_unlock(&fs_info->swapfile_pins_lock);
8253 	return node != NULL;
8254 }
8255 
8256 static int relocating_repair_kthread(void *data)
8257 {
8258 	struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8259 	struct btrfs_fs_info *fs_info = cache->fs_info;
8260 	u64 target;
8261 	int ret = 0;
8262 
8263 	target = cache->start;
8264 	btrfs_put_block_group(cache);
8265 
8266 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8267 		btrfs_info(fs_info,
8268 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8269 			   target);
8270 		return -EBUSY;
8271 	}
8272 
8273 	mutex_lock(&fs_info->reclaim_bgs_lock);
8274 
8275 	/* Ensure block group still exists */
8276 	cache = btrfs_lookup_block_group(fs_info, target);
8277 	if (!cache)
8278 		goto out;
8279 
8280 	if (!cache->relocating_repair)
8281 		goto out;
8282 
8283 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8284 	if (ret < 0)
8285 		goto out;
8286 
8287 	btrfs_info(fs_info,
8288 		   "zoned: relocating block group %llu to repair IO failure",
8289 		   target);
8290 	ret = btrfs_relocate_chunk(fs_info, target);
8291 
8292 out:
8293 	if (cache)
8294 		btrfs_put_block_group(cache);
8295 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8296 	btrfs_exclop_finish(fs_info);
8297 
8298 	return ret;
8299 }
8300 
8301 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8302 {
8303 	struct btrfs_block_group *cache;
8304 
8305 	/* Do not attempt to repair in degraded state */
8306 	if (btrfs_test_opt(fs_info, DEGRADED))
8307 		return 0;
8308 
8309 	cache = btrfs_lookup_block_group(fs_info, logical);
8310 	if (!cache)
8311 		return 0;
8312 
8313 	spin_lock(&cache->lock);
8314 	if (cache->relocating_repair) {
8315 		spin_unlock(&cache->lock);
8316 		btrfs_put_block_group(cache);
8317 		return 0;
8318 	}
8319 	cache->relocating_repair = 1;
8320 	spin_unlock(&cache->lock);
8321 
8322 	kthread_run(relocating_repair_kthread, cache,
8323 		    "btrfs-relocating-repair");
8324 
8325 	return 0;
8326 }
8327