1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/random.h> 24 #include <linux/iocontext.h> 25 #include <linux/capability.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <linux/raid/pq.h> 29 #include <linux/semaphore.h> 30 #include <asm/div64.h> 31 #include "ctree.h" 32 #include "extent_map.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "raid56.h" 38 #include "async-thread.h" 39 #include "check-integrity.h" 40 #include "rcu-string.h" 41 #include "math.h" 42 #include "dev-replace.h" 43 44 static int init_first_rw_device(struct btrfs_trans_handle *trans, 45 struct btrfs_root *root, 46 struct btrfs_device *device); 47 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 48 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 49 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 50 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 51 52 static DEFINE_MUTEX(uuid_mutex); 53 static LIST_HEAD(fs_uuids); 54 55 static void lock_chunks(struct btrfs_root *root) 56 { 57 mutex_lock(&root->fs_info->chunk_mutex); 58 } 59 60 static void unlock_chunks(struct btrfs_root *root) 61 { 62 mutex_unlock(&root->fs_info->chunk_mutex); 63 } 64 65 static struct btrfs_fs_devices *__alloc_fs_devices(void) 66 { 67 struct btrfs_fs_devices *fs_devs; 68 69 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS); 70 if (!fs_devs) 71 return ERR_PTR(-ENOMEM); 72 73 mutex_init(&fs_devs->device_list_mutex); 74 75 INIT_LIST_HEAD(&fs_devs->devices); 76 INIT_LIST_HEAD(&fs_devs->alloc_list); 77 INIT_LIST_HEAD(&fs_devs->list); 78 79 return fs_devs; 80 } 81 82 /** 83 * alloc_fs_devices - allocate struct btrfs_fs_devices 84 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is 85 * generated. 86 * 87 * Return: a pointer to a new &struct btrfs_fs_devices on success; 88 * ERR_PTR() on error. Returned struct is not linked onto any lists and 89 * can be destroyed with kfree() right away. 90 */ 91 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 92 { 93 struct btrfs_fs_devices *fs_devs; 94 95 fs_devs = __alloc_fs_devices(); 96 if (IS_ERR(fs_devs)) 97 return fs_devs; 98 99 if (fsid) 100 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 101 else 102 generate_random_uuid(fs_devs->fsid); 103 104 return fs_devs; 105 } 106 107 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 108 { 109 struct btrfs_device *device; 110 WARN_ON(fs_devices->opened); 111 while (!list_empty(&fs_devices->devices)) { 112 device = list_entry(fs_devices->devices.next, 113 struct btrfs_device, dev_list); 114 list_del(&device->dev_list); 115 rcu_string_free(device->name); 116 kfree(device); 117 } 118 kfree(fs_devices); 119 } 120 121 static void btrfs_kobject_uevent(struct block_device *bdev, 122 enum kobject_action action) 123 { 124 int ret; 125 126 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 127 if (ret) 128 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 129 action, 130 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 131 &disk_to_dev(bdev->bd_disk)->kobj); 132 } 133 134 void btrfs_cleanup_fs_uuids(void) 135 { 136 struct btrfs_fs_devices *fs_devices; 137 138 while (!list_empty(&fs_uuids)) { 139 fs_devices = list_entry(fs_uuids.next, 140 struct btrfs_fs_devices, list); 141 list_del(&fs_devices->list); 142 free_fs_devices(fs_devices); 143 } 144 } 145 146 static struct btrfs_device *__alloc_device(void) 147 { 148 struct btrfs_device *dev; 149 150 dev = kzalloc(sizeof(*dev), GFP_NOFS); 151 if (!dev) 152 return ERR_PTR(-ENOMEM); 153 154 INIT_LIST_HEAD(&dev->dev_list); 155 INIT_LIST_HEAD(&dev->dev_alloc_list); 156 157 spin_lock_init(&dev->io_lock); 158 159 spin_lock_init(&dev->reada_lock); 160 atomic_set(&dev->reada_in_flight, 0); 161 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT); 162 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT); 163 164 return dev; 165 } 166 167 static noinline struct btrfs_device *__find_device(struct list_head *head, 168 u64 devid, u8 *uuid) 169 { 170 struct btrfs_device *dev; 171 172 list_for_each_entry(dev, head, dev_list) { 173 if (dev->devid == devid && 174 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 175 return dev; 176 } 177 } 178 return NULL; 179 } 180 181 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 182 { 183 struct btrfs_fs_devices *fs_devices; 184 185 list_for_each_entry(fs_devices, &fs_uuids, list) { 186 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 187 return fs_devices; 188 } 189 return NULL; 190 } 191 192 static int 193 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 194 int flush, struct block_device **bdev, 195 struct buffer_head **bh) 196 { 197 int ret; 198 199 *bdev = blkdev_get_by_path(device_path, flags, holder); 200 201 if (IS_ERR(*bdev)) { 202 ret = PTR_ERR(*bdev); 203 printk(KERN_INFO "BTRFS: open %s failed\n", device_path); 204 goto error; 205 } 206 207 if (flush) 208 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 209 ret = set_blocksize(*bdev, 4096); 210 if (ret) { 211 blkdev_put(*bdev, flags); 212 goto error; 213 } 214 invalidate_bdev(*bdev); 215 *bh = btrfs_read_dev_super(*bdev); 216 if (!*bh) { 217 ret = -EINVAL; 218 blkdev_put(*bdev, flags); 219 goto error; 220 } 221 222 return 0; 223 224 error: 225 *bdev = NULL; 226 *bh = NULL; 227 return ret; 228 } 229 230 static void requeue_list(struct btrfs_pending_bios *pending_bios, 231 struct bio *head, struct bio *tail) 232 { 233 234 struct bio *old_head; 235 236 old_head = pending_bios->head; 237 pending_bios->head = head; 238 if (pending_bios->tail) 239 tail->bi_next = old_head; 240 else 241 pending_bios->tail = tail; 242 } 243 244 /* 245 * we try to collect pending bios for a device so we don't get a large 246 * number of procs sending bios down to the same device. This greatly 247 * improves the schedulers ability to collect and merge the bios. 248 * 249 * But, it also turns into a long list of bios to process and that is sure 250 * to eventually make the worker thread block. The solution here is to 251 * make some progress and then put this work struct back at the end of 252 * the list if the block device is congested. This way, multiple devices 253 * can make progress from a single worker thread. 254 */ 255 static noinline void run_scheduled_bios(struct btrfs_device *device) 256 { 257 struct bio *pending; 258 struct backing_dev_info *bdi; 259 struct btrfs_fs_info *fs_info; 260 struct btrfs_pending_bios *pending_bios; 261 struct bio *tail; 262 struct bio *cur; 263 int again = 0; 264 unsigned long num_run; 265 unsigned long batch_run = 0; 266 unsigned long limit; 267 unsigned long last_waited = 0; 268 int force_reg = 0; 269 int sync_pending = 0; 270 struct blk_plug plug; 271 272 /* 273 * this function runs all the bios we've collected for 274 * a particular device. We don't want to wander off to 275 * another device without first sending all of these down. 276 * So, setup a plug here and finish it off before we return 277 */ 278 blk_start_plug(&plug); 279 280 bdi = blk_get_backing_dev_info(device->bdev); 281 fs_info = device->dev_root->fs_info; 282 limit = btrfs_async_submit_limit(fs_info); 283 limit = limit * 2 / 3; 284 285 loop: 286 spin_lock(&device->io_lock); 287 288 loop_lock: 289 num_run = 0; 290 291 /* take all the bios off the list at once and process them 292 * later on (without the lock held). But, remember the 293 * tail and other pointers so the bios can be properly reinserted 294 * into the list if we hit congestion 295 */ 296 if (!force_reg && device->pending_sync_bios.head) { 297 pending_bios = &device->pending_sync_bios; 298 force_reg = 1; 299 } else { 300 pending_bios = &device->pending_bios; 301 force_reg = 0; 302 } 303 304 pending = pending_bios->head; 305 tail = pending_bios->tail; 306 WARN_ON(pending && !tail); 307 308 /* 309 * if pending was null this time around, no bios need processing 310 * at all and we can stop. Otherwise it'll loop back up again 311 * and do an additional check so no bios are missed. 312 * 313 * device->running_pending is used to synchronize with the 314 * schedule_bio code. 315 */ 316 if (device->pending_sync_bios.head == NULL && 317 device->pending_bios.head == NULL) { 318 again = 0; 319 device->running_pending = 0; 320 } else { 321 again = 1; 322 device->running_pending = 1; 323 } 324 325 pending_bios->head = NULL; 326 pending_bios->tail = NULL; 327 328 spin_unlock(&device->io_lock); 329 330 while (pending) { 331 332 rmb(); 333 /* we want to work on both lists, but do more bios on the 334 * sync list than the regular list 335 */ 336 if ((num_run > 32 && 337 pending_bios != &device->pending_sync_bios && 338 device->pending_sync_bios.head) || 339 (num_run > 64 && pending_bios == &device->pending_sync_bios && 340 device->pending_bios.head)) { 341 spin_lock(&device->io_lock); 342 requeue_list(pending_bios, pending, tail); 343 goto loop_lock; 344 } 345 346 cur = pending; 347 pending = pending->bi_next; 348 cur->bi_next = NULL; 349 350 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 351 waitqueue_active(&fs_info->async_submit_wait)) 352 wake_up(&fs_info->async_submit_wait); 353 354 BUG_ON(atomic_read(&cur->bi_cnt) == 0); 355 356 /* 357 * if we're doing the sync list, record that our 358 * plug has some sync requests on it 359 * 360 * If we're doing the regular list and there are 361 * sync requests sitting around, unplug before 362 * we add more 363 */ 364 if (pending_bios == &device->pending_sync_bios) { 365 sync_pending = 1; 366 } else if (sync_pending) { 367 blk_finish_plug(&plug); 368 blk_start_plug(&plug); 369 sync_pending = 0; 370 } 371 372 btrfsic_submit_bio(cur->bi_rw, cur); 373 num_run++; 374 batch_run++; 375 if (need_resched()) 376 cond_resched(); 377 378 /* 379 * we made progress, there is more work to do and the bdi 380 * is now congested. Back off and let other work structs 381 * run instead 382 */ 383 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 384 fs_info->fs_devices->open_devices > 1) { 385 struct io_context *ioc; 386 387 ioc = current->io_context; 388 389 /* 390 * the main goal here is that we don't want to 391 * block if we're going to be able to submit 392 * more requests without blocking. 393 * 394 * This code does two great things, it pokes into 395 * the elevator code from a filesystem _and_ 396 * it makes assumptions about how batching works. 397 */ 398 if (ioc && ioc->nr_batch_requests > 0 && 399 time_before(jiffies, ioc->last_waited + HZ/50UL) && 400 (last_waited == 0 || 401 ioc->last_waited == last_waited)) { 402 /* 403 * we want to go through our batch of 404 * requests and stop. So, we copy out 405 * the ioc->last_waited time and test 406 * against it before looping 407 */ 408 last_waited = ioc->last_waited; 409 if (need_resched()) 410 cond_resched(); 411 continue; 412 } 413 spin_lock(&device->io_lock); 414 requeue_list(pending_bios, pending, tail); 415 device->running_pending = 1; 416 417 spin_unlock(&device->io_lock); 418 btrfs_requeue_work(&device->work); 419 goto done; 420 } 421 /* unplug every 64 requests just for good measure */ 422 if (batch_run % 64 == 0) { 423 blk_finish_plug(&plug); 424 blk_start_plug(&plug); 425 sync_pending = 0; 426 } 427 } 428 429 cond_resched(); 430 if (again) 431 goto loop; 432 433 spin_lock(&device->io_lock); 434 if (device->pending_bios.head || device->pending_sync_bios.head) 435 goto loop_lock; 436 spin_unlock(&device->io_lock); 437 438 done: 439 blk_finish_plug(&plug); 440 } 441 442 static void pending_bios_fn(struct btrfs_work *work) 443 { 444 struct btrfs_device *device; 445 446 device = container_of(work, struct btrfs_device, work); 447 run_scheduled_bios(device); 448 } 449 450 static noinline int device_list_add(const char *path, 451 struct btrfs_super_block *disk_super, 452 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 453 { 454 struct btrfs_device *device; 455 struct btrfs_fs_devices *fs_devices; 456 struct rcu_string *name; 457 u64 found_transid = btrfs_super_generation(disk_super); 458 459 fs_devices = find_fsid(disk_super->fsid); 460 if (!fs_devices) { 461 fs_devices = alloc_fs_devices(disk_super->fsid); 462 if (IS_ERR(fs_devices)) 463 return PTR_ERR(fs_devices); 464 465 list_add(&fs_devices->list, &fs_uuids); 466 fs_devices->latest_devid = devid; 467 fs_devices->latest_trans = found_transid; 468 469 device = NULL; 470 } else { 471 device = __find_device(&fs_devices->devices, devid, 472 disk_super->dev_item.uuid); 473 } 474 if (!device) { 475 if (fs_devices->opened) 476 return -EBUSY; 477 478 device = btrfs_alloc_device(NULL, &devid, 479 disk_super->dev_item.uuid); 480 if (IS_ERR(device)) { 481 /* we can safely leave the fs_devices entry around */ 482 return PTR_ERR(device); 483 } 484 485 name = rcu_string_strdup(path, GFP_NOFS); 486 if (!name) { 487 kfree(device); 488 return -ENOMEM; 489 } 490 rcu_assign_pointer(device->name, name); 491 492 mutex_lock(&fs_devices->device_list_mutex); 493 list_add_rcu(&device->dev_list, &fs_devices->devices); 494 fs_devices->num_devices++; 495 mutex_unlock(&fs_devices->device_list_mutex); 496 497 device->fs_devices = fs_devices; 498 } else if (!device->name || strcmp(device->name->str, path)) { 499 name = rcu_string_strdup(path, GFP_NOFS); 500 if (!name) 501 return -ENOMEM; 502 rcu_string_free(device->name); 503 rcu_assign_pointer(device->name, name); 504 if (device->missing) { 505 fs_devices->missing_devices--; 506 device->missing = 0; 507 } 508 } 509 510 if (found_transid > fs_devices->latest_trans) { 511 fs_devices->latest_devid = devid; 512 fs_devices->latest_trans = found_transid; 513 } 514 *fs_devices_ret = fs_devices; 515 return 0; 516 } 517 518 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 519 { 520 struct btrfs_fs_devices *fs_devices; 521 struct btrfs_device *device; 522 struct btrfs_device *orig_dev; 523 524 fs_devices = alloc_fs_devices(orig->fsid); 525 if (IS_ERR(fs_devices)) 526 return fs_devices; 527 528 fs_devices->latest_devid = orig->latest_devid; 529 fs_devices->latest_trans = orig->latest_trans; 530 fs_devices->total_devices = orig->total_devices; 531 532 /* We have held the volume lock, it is safe to get the devices. */ 533 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 534 struct rcu_string *name; 535 536 device = btrfs_alloc_device(NULL, &orig_dev->devid, 537 orig_dev->uuid); 538 if (IS_ERR(device)) 539 goto error; 540 541 /* 542 * This is ok to do without rcu read locked because we hold the 543 * uuid mutex so nothing we touch in here is going to disappear. 544 */ 545 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); 546 if (!name) { 547 kfree(device); 548 goto error; 549 } 550 rcu_assign_pointer(device->name, name); 551 552 list_add(&device->dev_list, &fs_devices->devices); 553 device->fs_devices = fs_devices; 554 fs_devices->num_devices++; 555 } 556 return fs_devices; 557 error: 558 free_fs_devices(fs_devices); 559 return ERR_PTR(-ENOMEM); 560 } 561 562 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info, 563 struct btrfs_fs_devices *fs_devices, int step) 564 { 565 struct btrfs_device *device, *next; 566 567 struct block_device *latest_bdev = NULL; 568 u64 latest_devid = 0; 569 u64 latest_transid = 0; 570 571 mutex_lock(&uuid_mutex); 572 again: 573 /* This is the initialized path, it is safe to release the devices. */ 574 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 575 if (device->in_fs_metadata) { 576 if (!device->is_tgtdev_for_dev_replace && 577 (!latest_transid || 578 device->generation > latest_transid)) { 579 latest_devid = device->devid; 580 latest_transid = device->generation; 581 latest_bdev = device->bdev; 582 } 583 continue; 584 } 585 586 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 587 /* 588 * In the first step, keep the device which has 589 * the correct fsid and the devid that is used 590 * for the dev_replace procedure. 591 * In the second step, the dev_replace state is 592 * read from the device tree and it is known 593 * whether the procedure is really active or 594 * not, which means whether this device is 595 * used or whether it should be removed. 596 */ 597 if (step == 0 || device->is_tgtdev_for_dev_replace) { 598 continue; 599 } 600 } 601 if (device->bdev) { 602 blkdev_put(device->bdev, device->mode); 603 device->bdev = NULL; 604 fs_devices->open_devices--; 605 } 606 if (device->writeable) { 607 list_del_init(&device->dev_alloc_list); 608 device->writeable = 0; 609 if (!device->is_tgtdev_for_dev_replace) 610 fs_devices->rw_devices--; 611 } 612 list_del_init(&device->dev_list); 613 fs_devices->num_devices--; 614 rcu_string_free(device->name); 615 kfree(device); 616 } 617 618 if (fs_devices->seed) { 619 fs_devices = fs_devices->seed; 620 goto again; 621 } 622 623 fs_devices->latest_bdev = latest_bdev; 624 fs_devices->latest_devid = latest_devid; 625 fs_devices->latest_trans = latest_transid; 626 627 mutex_unlock(&uuid_mutex); 628 } 629 630 static void __free_device(struct work_struct *work) 631 { 632 struct btrfs_device *device; 633 634 device = container_of(work, struct btrfs_device, rcu_work); 635 636 if (device->bdev) 637 blkdev_put(device->bdev, device->mode); 638 639 rcu_string_free(device->name); 640 kfree(device); 641 } 642 643 static void free_device(struct rcu_head *head) 644 { 645 struct btrfs_device *device; 646 647 device = container_of(head, struct btrfs_device, rcu); 648 649 INIT_WORK(&device->rcu_work, __free_device); 650 schedule_work(&device->rcu_work); 651 } 652 653 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 654 { 655 struct btrfs_device *device; 656 657 if (--fs_devices->opened > 0) 658 return 0; 659 660 mutex_lock(&fs_devices->device_list_mutex); 661 list_for_each_entry(device, &fs_devices->devices, dev_list) { 662 struct btrfs_device *new_device; 663 struct rcu_string *name; 664 665 if (device->bdev) 666 fs_devices->open_devices--; 667 668 if (device->writeable && 669 device->devid != BTRFS_DEV_REPLACE_DEVID) { 670 list_del_init(&device->dev_alloc_list); 671 fs_devices->rw_devices--; 672 } 673 674 if (device->can_discard) 675 fs_devices->num_can_discard--; 676 if (device->missing) 677 fs_devices->missing_devices--; 678 679 new_device = btrfs_alloc_device(NULL, &device->devid, 680 device->uuid); 681 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 682 683 /* Safe because we are under uuid_mutex */ 684 if (device->name) { 685 name = rcu_string_strdup(device->name->str, GFP_NOFS); 686 BUG_ON(!name); /* -ENOMEM */ 687 rcu_assign_pointer(new_device->name, name); 688 } 689 690 list_replace_rcu(&device->dev_list, &new_device->dev_list); 691 new_device->fs_devices = device->fs_devices; 692 693 call_rcu(&device->rcu, free_device); 694 } 695 mutex_unlock(&fs_devices->device_list_mutex); 696 697 WARN_ON(fs_devices->open_devices); 698 WARN_ON(fs_devices->rw_devices); 699 fs_devices->opened = 0; 700 fs_devices->seeding = 0; 701 702 return 0; 703 } 704 705 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 706 { 707 struct btrfs_fs_devices *seed_devices = NULL; 708 int ret; 709 710 mutex_lock(&uuid_mutex); 711 ret = __btrfs_close_devices(fs_devices); 712 if (!fs_devices->opened) { 713 seed_devices = fs_devices->seed; 714 fs_devices->seed = NULL; 715 } 716 mutex_unlock(&uuid_mutex); 717 718 while (seed_devices) { 719 fs_devices = seed_devices; 720 seed_devices = fs_devices->seed; 721 __btrfs_close_devices(fs_devices); 722 free_fs_devices(fs_devices); 723 } 724 /* 725 * Wait for rcu kworkers under __btrfs_close_devices 726 * to finish all blkdev_puts so device is really 727 * free when umount is done. 728 */ 729 rcu_barrier(); 730 return ret; 731 } 732 733 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 734 fmode_t flags, void *holder) 735 { 736 struct request_queue *q; 737 struct block_device *bdev; 738 struct list_head *head = &fs_devices->devices; 739 struct btrfs_device *device; 740 struct block_device *latest_bdev = NULL; 741 struct buffer_head *bh; 742 struct btrfs_super_block *disk_super; 743 u64 latest_devid = 0; 744 u64 latest_transid = 0; 745 u64 devid; 746 int seeding = 1; 747 int ret = 0; 748 749 flags |= FMODE_EXCL; 750 751 list_for_each_entry(device, head, dev_list) { 752 if (device->bdev) 753 continue; 754 if (!device->name) 755 continue; 756 757 /* Just open everything we can; ignore failures here */ 758 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 759 &bdev, &bh)) 760 continue; 761 762 disk_super = (struct btrfs_super_block *)bh->b_data; 763 devid = btrfs_stack_device_id(&disk_super->dev_item); 764 if (devid != device->devid) 765 goto error_brelse; 766 767 if (memcmp(device->uuid, disk_super->dev_item.uuid, 768 BTRFS_UUID_SIZE)) 769 goto error_brelse; 770 771 device->generation = btrfs_super_generation(disk_super); 772 if (!latest_transid || device->generation > latest_transid) { 773 latest_devid = devid; 774 latest_transid = device->generation; 775 latest_bdev = bdev; 776 } 777 778 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 779 device->writeable = 0; 780 } else { 781 device->writeable = !bdev_read_only(bdev); 782 seeding = 0; 783 } 784 785 q = bdev_get_queue(bdev); 786 if (blk_queue_discard(q)) { 787 device->can_discard = 1; 788 fs_devices->num_can_discard++; 789 } 790 791 device->bdev = bdev; 792 device->in_fs_metadata = 0; 793 device->mode = flags; 794 795 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 796 fs_devices->rotating = 1; 797 798 fs_devices->open_devices++; 799 if (device->writeable && 800 device->devid != BTRFS_DEV_REPLACE_DEVID) { 801 fs_devices->rw_devices++; 802 list_add(&device->dev_alloc_list, 803 &fs_devices->alloc_list); 804 } 805 brelse(bh); 806 continue; 807 808 error_brelse: 809 brelse(bh); 810 blkdev_put(bdev, flags); 811 continue; 812 } 813 if (fs_devices->open_devices == 0) { 814 ret = -EINVAL; 815 goto out; 816 } 817 fs_devices->seeding = seeding; 818 fs_devices->opened = 1; 819 fs_devices->latest_bdev = latest_bdev; 820 fs_devices->latest_devid = latest_devid; 821 fs_devices->latest_trans = latest_transid; 822 fs_devices->total_rw_bytes = 0; 823 out: 824 return ret; 825 } 826 827 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 828 fmode_t flags, void *holder) 829 { 830 int ret; 831 832 mutex_lock(&uuid_mutex); 833 if (fs_devices->opened) { 834 fs_devices->opened++; 835 ret = 0; 836 } else { 837 ret = __btrfs_open_devices(fs_devices, flags, holder); 838 } 839 mutex_unlock(&uuid_mutex); 840 return ret; 841 } 842 843 /* 844 * Look for a btrfs signature on a device. This may be called out of the mount path 845 * and we are not allowed to call set_blocksize during the scan. The superblock 846 * is read via pagecache 847 */ 848 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 849 struct btrfs_fs_devices **fs_devices_ret) 850 { 851 struct btrfs_super_block *disk_super; 852 struct block_device *bdev; 853 struct page *page; 854 void *p; 855 int ret = -EINVAL; 856 u64 devid; 857 u64 transid; 858 u64 total_devices; 859 u64 bytenr; 860 pgoff_t index; 861 862 /* 863 * we would like to check all the supers, but that would make 864 * a btrfs mount succeed after a mkfs from a different FS. 865 * So, we need to add a special mount option to scan for 866 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 867 */ 868 bytenr = btrfs_sb_offset(0); 869 flags |= FMODE_EXCL; 870 mutex_lock(&uuid_mutex); 871 872 bdev = blkdev_get_by_path(path, flags, holder); 873 874 if (IS_ERR(bdev)) { 875 ret = PTR_ERR(bdev); 876 goto error; 877 } 878 879 /* make sure our super fits in the device */ 880 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode)) 881 goto error_bdev_put; 882 883 /* make sure our super fits in the page */ 884 if (sizeof(*disk_super) > PAGE_CACHE_SIZE) 885 goto error_bdev_put; 886 887 /* make sure our super doesn't straddle pages on disk */ 888 index = bytenr >> PAGE_CACHE_SHIFT; 889 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index) 890 goto error_bdev_put; 891 892 /* pull in the page with our super */ 893 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 894 index, GFP_NOFS); 895 896 if (IS_ERR_OR_NULL(page)) 897 goto error_bdev_put; 898 899 p = kmap(page); 900 901 /* align our pointer to the offset of the super block */ 902 disk_super = p + (bytenr & ~PAGE_CACHE_MASK); 903 904 if (btrfs_super_bytenr(disk_super) != bytenr || 905 btrfs_super_magic(disk_super) != BTRFS_MAGIC) 906 goto error_unmap; 907 908 devid = btrfs_stack_device_id(&disk_super->dev_item); 909 transid = btrfs_super_generation(disk_super); 910 total_devices = btrfs_super_num_devices(disk_super); 911 912 if (disk_super->label[0]) { 913 if (disk_super->label[BTRFS_LABEL_SIZE - 1]) 914 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0'; 915 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label); 916 } else { 917 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid); 918 } 919 920 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path); 921 922 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 923 if (!ret && fs_devices_ret) 924 (*fs_devices_ret)->total_devices = total_devices; 925 926 error_unmap: 927 kunmap(page); 928 page_cache_release(page); 929 930 error_bdev_put: 931 blkdev_put(bdev, flags); 932 error: 933 mutex_unlock(&uuid_mutex); 934 return ret; 935 } 936 937 /* helper to account the used device space in the range */ 938 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 939 u64 end, u64 *length) 940 { 941 struct btrfs_key key; 942 struct btrfs_root *root = device->dev_root; 943 struct btrfs_dev_extent *dev_extent; 944 struct btrfs_path *path; 945 u64 extent_end; 946 int ret; 947 int slot; 948 struct extent_buffer *l; 949 950 *length = 0; 951 952 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 953 return 0; 954 955 path = btrfs_alloc_path(); 956 if (!path) 957 return -ENOMEM; 958 path->reada = 2; 959 960 key.objectid = device->devid; 961 key.offset = start; 962 key.type = BTRFS_DEV_EXTENT_KEY; 963 964 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 965 if (ret < 0) 966 goto out; 967 if (ret > 0) { 968 ret = btrfs_previous_item(root, path, key.objectid, key.type); 969 if (ret < 0) 970 goto out; 971 } 972 973 while (1) { 974 l = path->nodes[0]; 975 slot = path->slots[0]; 976 if (slot >= btrfs_header_nritems(l)) { 977 ret = btrfs_next_leaf(root, path); 978 if (ret == 0) 979 continue; 980 if (ret < 0) 981 goto out; 982 983 break; 984 } 985 btrfs_item_key_to_cpu(l, &key, slot); 986 987 if (key.objectid < device->devid) 988 goto next; 989 990 if (key.objectid > device->devid) 991 break; 992 993 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 994 goto next; 995 996 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 997 extent_end = key.offset + btrfs_dev_extent_length(l, 998 dev_extent); 999 if (key.offset <= start && extent_end > end) { 1000 *length = end - start + 1; 1001 break; 1002 } else if (key.offset <= start && extent_end > start) 1003 *length += extent_end - start; 1004 else if (key.offset > start && extent_end <= end) 1005 *length += extent_end - key.offset; 1006 else if (key.offset > start && key.offset <= end) { 1007 *length += end - key.offset + 1; 1008 break; 1009 } else if (key.offset > end) 1010 break; 1011 1012 next: 1013 path->slots[0]++; 1014 } 1015 ret = 0; 1016 out: 1017 btrfs_free_path(path); 1018 return ret; 1019 } 1020 1021 static int contains_pending_extent(struct btrfs_trans_handle *trans, 1022 struct btrfs_device *device, 1023 u64 *start, u64 len) 1024 { 1025 struct extent_map *em; 1026 int ret = 0; 1027 1028 list_for_each_entry(em, &trans->transaction->pending_chunks, list) { 1029 struct map_lookup *map; 1030 int i; 1031 1032 map = (struct map_lookup *)em->bdev; 1033 for (i = 0; i < map->num_stripes; i++) { 1034 if (map->stripes[i].dev != device) 1035 continue; 1036 if (map->stripes[i].physical >= *start + len || 1037 map->stripes[i].physical + em->orig_block_len <= 1038 *start) 1039 continue; 1040 *start = map->stripes[i].physical + 1041 em->orig_block_len; 1042 ret = 1; 1043 } 1044 } 1045 1046 return ret; 1047 } 1048 1049 1050 /* 1051 * find_free_dev_extent - find free space in the specified device 1052 * @device: the device which we search the free space in 1053 * @num_bytes: the size of the free space that we need 1054 * @start: store the start of the free space. 1055 * @len: the size of the free space. that we find, or the size of the max 1056 * free space if we don't find suitable free space 1057 * 1058 * this uses a pretty simple search, the expectation is that it is 1059 * called very infrequently and that a given device has a small number 1060 * of extents 1061 * 1062 * @start is used to store the start of the free space if we find. But if we 1063 * don't find suitable free space, it will be used to store the start position 1064 * of the max free space. 1065 * 1066 * @len is used to store the size of the free space that we find. 1067 * But if we don't find suitable free space, it is used to store the size of 1068 * the max free space. 1069 */ 1070 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1071 struct btrfs_device *device, u64 num_bytes, 1072 u64 *start, u64 *len) 1073 { 1074 struct btrfs_key key; 1075 struct btrfs_root *root = device->dev_root; 1076 struct btrfs_dev_extent *dev_extent; 1077 struct btrfs_path *path; 1078 u64 hole_size; 1079 u64 max_hole_start; 1080 u64 max_hole_size; 1081 u64 extent_end; 1082 u64 search_start; 1083 u64 search_end = device->total_bytes; 1084 int ret; 1085 int slot; 1086 struct extent_buffer *l; 1087 1088 /* FIXME use last free of some kind */ 1089 1090 /* we don't want to overwrite the superblock on the drive, 1091 * so we make sure to start at an offset of at least 1MB 1092 */ 1093 search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 1094 1095 path = btrfs_alloc_path(); 1096 if (!path) 1097 return -ENOMEM; 1098 again: 1099 max_hole_start = search_start; 1100 max_hole_size = 0; 1101 hole_size = 0; 1102 1103 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1104 ret = -ENOSPC; 1105 goto out; 1106 } 1107 1108 path->reada = 2; 1109 path->search_commit_root = 1; 1110 path->skip_locking = 1; 1111 1112 key.objectid = device->devid; 1113 key.offset = search_start; 1114 key.type = BTRFS_DEV_EXTENT_KEY; 1115 1116 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1117 if (ret < 0) 1118 goto out; 1119 if (ret > 0) { 1120 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1121 if (ret < 0) 1122 goto out; 1123 } 1124 1125 while (1) { 1126 l = path->nodes[0]; 1127 slot = path->slots[0]; 1128 if (slot >= btrfs_header_nritems(l)) { 1129 ret = btrfs_next_leaf(root, path); 1130 if (ret == 0) 1131 continue; 1132 if (ret < 0) 1133 goto out; 1134 1135 break; 1136 } 1137 btrfs_item_key_to_cpu(l, &key, slot); 1138 1139 if (key.objectid < device->devid) 1140 goto next; 1141 1142 if (key.objectid > device->devid) 1143 break; 1144 1145 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 1146 goto next; 1147 1148 if (key.offset > search_start) { 1149 hole_size = key.offset - search_start; 1150 1151 /* 1152 * Have to check before we set max_hole_start, otherwise 1153 * we could end up sending back this offset anyway. 1154 */ 1155 if (contains_pending_extent(trans, device, 1156 &search_start, 1157 hole_size)) 1158 hole_size = 0; 1159 1160 if (hole_size > max_hole_size) { 1161 max_hole_start = search_start; 1162 max_hole_size = hole_size; 1163 } 1164 1165 /* 1166 * If this free space is greater than which we need, 1167 * it must be the max free space that we have found 1168 * until now, so max_hole_start must point to the start 1169 * of this free space and the length of this free space 1170 * is stored in max_hole_size. Thus, we return 1171 * max_hole_start and max_hole_size and go back to the 1172 * caller. 1173 */ 1174 if (hole_size >= num_bytes) { 1175 ret = 0; 1176 goto out; 1177 } 1178 } 1179 1180 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1181 extent_end = key.offset + btrfs_dev_extent_length(l, 1182 dev_extent); 1183 if (extent_end > search_start) 1184 search_start = extent_end; 1185 next: 1186 path->slots[0]++; 1187 cond_resched(); 1188 } 1189 1190 /* 1191 * At this point, search_start should be the end of 1192 * allocated dev extents, and when shrinking the device, 1193 * search_end may be smaller than search_start. 1194 */ 1195 if (search_end > search_start) 1196 hole_size = search_end - search_start; 1197 1198 if (hole_size > max_hole_size) { 1199 max_hole_start = search_start; 1200 max_hole_size = hole_size; 1201 } 1202 1203 if (contains_pending_extent(trans, device, &search_start, hole_size)) { 1204 btrfs_release_path(path); 1205 goto again; 1206 } 1207 1208 /* See above. */ 1209 if (hole_size < num_bytes) 1210 ret = -ENOSPC; 1211 else 1212 ret = 0; 1213 1214 out: 1215 btrfs_free_path(path); 1216 *start = max_hole_start; 1217 if (len) 1218 *len = max_hole_size; 1219 return ret; 1220 } 1221 1222 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1223 struct btrfs_device *device, 1224 u64 start) 1225 { 1226 int ret; 1227 struct btrfs_path *path; 1228 struct btrfs_root *root = device->dev_root; 1229 struct btrfs_key key; 1230 struct btrfs_key found_key; 1231 struct extent_buffer *leaf = NULL; 1232 struct btrfs_dev_extent *extent = NULL; 1233 1234 path = btrfs_alloc_path(); 1235 if (!path) 1236 return -ENOMEM; 1237 1238 key.objectid = device->devid; 1239 key.offset = start; 1240 key.type = BTRFS_DEV_EXTENT_KEY; 1241 again: 1242 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1243 if (ret > 0) { 1244 ret = btrfs_previous_item(root, path, key.objectid, 1245 BTRFS_DEV_EXTENT_KEY); 1246 if (ret) 1247 goto out; 1248 leaf = path->nodes[0]; 1249 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1250 extent = btrfs_item_ptr(leaf, path->slots[0], 1251 struct btrfs_dev_extent); 1252 BUG_ON(found_key.offset > start || found_key.offset + 1253 btrfs_dev_extent_length(leaf, extent) < start); 1254 key = found_key; 1255 btrfs_release_path(path); 1256 goto again; 1257 } else if (ret == 0) { 1258 leaf = path->nodes[0]; 1259 extent = btrfs_item_ptr(leaf, path->slots[0], 1260 struct btrfs_dev_extent); 1261 } else { 1262 btrfs_error(root->fs_info, ret, "Slot search failed"); 1263 goto out; 1264 } 1265 1266 if (device->bytes_used > 0) { 1267 u64 len = btrfs_dev_extent_length(leaf, extent); 1268 device->bytes_used -= len; 1269 spin_lock(&root->fs_info->free_chunk_lock); 1270 root->fs_info->free_chunk_space += len; 1271 spin_unlock(&root->fs_info->free_chunk_lock); 1272 } 1273 ret = btrfs_del_item(trans, root, path); 1274 if (ret) { 1275 btrfs_error(root->fs_info, ret, 1276 "Failed to remove dev extent item"); 1277 } 1278 out: 1279 btrfs_free_path(path); 1280 return ret; 1281 } 1282 1283 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1284 struct btrfs_device *device, 1285 u64 chunk_tree, u64 chunk_objectid, 1286 u64 chunk_offset, u64 start, u64 num_bytes) 1287 { 1288 int ret; 1289 struct btrfs_path *path; 1290 struct btrfs_root *root = device->dev_root; 1291 struct btrfs_dev_extent *extent; 1292 struct extent_buffer *leaf; 1293 struct btrfs_key key; 1294 1295 WARN_ON(!device->in_fs_metadata); 1296 WARN_ON(device->is_tgtdev_for_dev_replace); 1297 path = btrfs_alloc_path(); 1298 if (!path) 1299 return -ENOMEM; 1300 1301 key.objectid = device->devid; 1302 key.offset = start; 1303 key.type = BTRFS_DEV_EXTENT_KEY; 1304 ret = btrfs_insert_empty_item(trans, root, path, &key, 1305 sizeof(*extent)); 1306 if (ret) 1307 goto out; 1308 1309 leaf = path->nodes[0]; 1310 extent = btrfs_item_ptr(leaf, path->slots[0], 1311 struct btrfs_dev_extent); 1312 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1313 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1314 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1315 1316 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1317 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE); 1318 1319 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1320 btrfs_mark_buffer_dirty(leaf); 1321 out: 1322 btrfs_free_path(path); 1323 return ret; 1324 } 1325 1326 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1327 { 1328 struct extent_map_tree *em_tree; 1329 struct extent_map *em; 1330 struct rb_node *n; 1331 u64 ret = 0; 1332 1333 em_tree = &fs_info->mapping_tree.map_tree; 1334 read_lock(&em_tree->lock); 1335 n = rb_last(&em_tree->map); 1336 if (n) { 1337 em = rb_entry(n, struct extent_map, rb_node); 1338 ret = em->start + em->len; 1339 } 1340 read_unlock(&em_tree->lock); 1341 1342 return ret; 1343 } 1344 1345 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1346 u64 *devid_ret) 1347 { 1348 int ret; 1349 struct btrfs_key key; 1350 struct btrfs_key found_key; 1351 struct btrfs_path *path; 1352 1353 path = btrfs_alloc_path(); 1354 if (!path) 1355 return -ENOMEM; 1356 1357 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1358 key.type = BTRFS_DEV_ITEM_KEY; 1359 key.offset = (u64)-1; 1360 1361 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1362 if (ret < 0) 1363 goto error; 1364 1365 BUG_ON(ret == 0); /* Corruption */ 1366 1367 ret = btrfs_previous_item(fs_info->chunk_root, path, 1368 BTRFS_DEV_ITEMS_OBJECTID, 1369 BTRFS_DEV_ITEM_KEY); 1370 if (ret) { 1371 *devid_ret = 1; 1372 } else { 1373 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1374 path->slots[0]); 1375 *devid_ret = found_key.offset + 1; 1376 } 1377 ret = 0; 1378 error: 1379 btrfs_free_path(path); 1380 return ret; 1381 } 1382 1383 /* 1384 * the device information is stored in the chunk root 1385 * the btrfs_device struct should be fully filled in 1386 */ 1387 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1388 struct btrfs_root *root, 1389 struct btrfs_device *device) 1390 { 1391 int ret; 1392 struct btrfs_path *path; 1393 struct btrfs_dev_item *dev_item; 1394 struct extent_buffer *leaf; 1395 struct btrfs_key key; 1396 unsigned long ptr; 1397 1398 root = root->fs_info->chunk_root; 1399 1400 path = btrfs_alloc_path(); 1401 if (!path) 1402 return -ENOMEM; 1403 1404 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1405 key.type = BTRFS_DEV_ITEM_KEY; 1406 key.offset = device->devid; 1407 1408 ret = btrfs_insert_empty_item(trans, root, path, &key, 1409 sizeof(*dev_item)); 1410 if (ret) 1411 goto out; 1412 1413 leaf = path->nodes[0]; 1414 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1415 1416 btrfs_set_device_id(leaf, dev_item, device->devid); 1417 btrfs_set_device_generation(leaf, dev_item, 0); 1418 btrfs_set_device_type(leaf, dev_item, device->type); 1419 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1420 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1421 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1422 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); 1423 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 1424 btrfs_set_device_group(leaf, dev_item, 0); 1425 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1426 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1427 btrfs_set_device_start_offset(leaf, dev_item, 0); 1428 1429 ptr = btrfs_device_uuid(dev_item); 1430 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1431 ptr = btrfs_device_fsid(dev_item); 1432 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1433 btrfs_mark_buffer_dirty(leaf); 1434 1435 ret = 0; 1436 out: 1437 btrfs_free_path(path); 1438 return ret; 1439 } 1440 1441 static int btrfs_rm_dev_item(struct btrfs_root *root, 1442 struct btrfs_device *device) 1443 { 1444 int ret; 1445 struct btrfs_path *path; 1446 struct btrfs_key key; 1447 struct btrfs_trans_handle *trans; 1448 1449 root = root->fs_info->chunk_root; 1450 1451 path = btrfs_alloc_path(); 1452 if (!path) 1453 return -ENOMEM; 1454 1455 trans = btrfs_start_transaction(root, 0); 1456 if (IS_ERR(trans)) { 1457 btrfs_free_path(path); 1458 return PTR_ERR(trans); 1459 } 1460 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1461 key.type = BTRFS_DEV_ITEM_KEY; 1462 key.offset = device->devid; 1463 lock_chunks(root); 1464 1465 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1466 if (ret < 0) 1467 goto out; 1468 1469 if (ret > 0) { 1470 ret = -ENOENT; 1471 goto out; 1472 } 1473 1474 ret = btrfs_del_item(trans, root, path); 1475 if (ret) 1476 goto out; 1477 out: 1478 btrfs_free_path(path); 1479 unlock_chunks(root); 1480 btrfs_commit_transaction(trans, root); 1481 return ret; 1482 } 1483 1484 int btrfs_rm_device(struct btrfs_root *root, char *device_path) 1485 { 1486 struct btrfs_device *device; 1487 struct btrfs_device *next_device; 1488 struct block_device *bdev; 1489 struct buffer_head *bh = NULL; 1490 struct btrfs_super_block *disk_super; 1491 struct btrfs_fs_devices *cur_devices; 1492 u64 all_avail; 1493 u64 devid; 1494 u64 num_devices; 1495 u8 *dev_uuid; 1496 unsigned seq; 1497 int ret = 0; 1498 bool clear_super = false; 1499 1500 mutex_lock(&uuid_mutex); 1501 1502 do { 1503 seq = read_seqbegin(&root->fs_info->profiles_lock); 1504 1505 all_avail = root->fs_info->avail_data_alloc_bits | 1506 root->fs_info->avail_system_alloc_bits | 1507 root->fs_info->avail_metadata_alloc_bits; 1508 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 1509 1510 num_devices = root->fs_info->fs_devices->num_devices; 1511 btrfs_dev_replace_lock(&root->fs_info->dev_replace); 1512 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) { 1513 WARN_ON(num_devices < 1); 1514 num_devices--; 1515 } 1516 btrfs_dev_replace_unlock(&root->fs_info->dev_replace); 1517 1518 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) { 1519 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET; 1520 goto out; 1521 } 1522 1523 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) { 1524 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET; 1525 goto out; 1526 } 1527 1528 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) && 1529 root->fs_info->fs_devices->rw_devices <= 2) { 1530 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET; 1531 goto out; 1532 } 1533 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) && 1534 root->fs_info->fs_devices->rw_devices <= 3) { 1535 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET; 1536 goto out; 1537 } 1538 1539 if (strcmp(device_path, "missing") == 0) { 1540 struct list_head *devices; 1541 struct btrfs_device *tmp; 1542 1543 device = NULL; 1544 devices = &root->fs_info->fs_devices->devices; 1545 /* 1546 * It is safe to read the devices since the volume_mutex 1547 * is held. 1548 */ 1549 list_for_each_entry(tmp, devices, dev_list) { 1550 if (tmp->in_fs_metadata && 1551 !tmp->is_tgtdev_for_dev_replace && 1552 !tmp->bdev) { 1553 device = tmp; 1554 break; 1555 } 1556 } 1557 bdev = NULL; 1558 bh = NULL; 1559 disk_super = NULL; 1560 if (!device) { 1561 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 1562 goto out; 1563 } 1564 } else { 1565 ret = btrfs_get_bdev_and_sb(device_path, 1566 FMODE_WRITE | FMODE_EXCL, 1567 root->fs_info->bdev_holder, 0, 1568 &bdev, &bh); 1569 if (ret) 1570 goto out; 1571 disk_super = (struct btrfs_super_block *)bh->b_data; 1572 devid = btrfs_stack_device_id(&disk_super->dev_item); 1573 dev_uuid = disk_super->dev_item.uuid; 1574 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1575 disk_super->fsid); 1576 if (!device) { 1577 ret = -ENOENT; 1578 goto error_brelse; 1579 } 1580 } 1581 1582 if (device->is_tgtdev_for_dev_replace) { 1583 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1584 goto error_brelse; 1585 } 1586 1587 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1588 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1589 goto error_brelse; 1590 } 1591 1592 if (device->writeable) { 1593 lock_chunks(root); 1594 list_del_init(&device->dev_alloc_list); 1595 unlock_chunks(root); 1596 root->fs_info->fs_devices->rw_devices--; 1597 clear_super = true; 1598 } 1599 1600 mutex_unlock(&uuid_mutex); 1601 ret = btrfs_shrink_device(device, 0); 1602 mutex_lock(&uuid_mutex); 1603 if (ret) 1604 goto error_undo; 1605 1606 /* 1607 * TODO: the superblock still includes this device in its num_devices 1608 * counter although write_all_supers() is not locked out. This 1609 * could give a filesystem state which requires a degraded mount. 1610 */ 1611 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1612 if (ret) 1613 goto error_undo; 1614 1615 spin_lock(&root->fs_info->free_chunk_lock); 1616 root->fs_info->free_chunk_space = device->total_bytes - 1617 device->bytes_used; 1618 spin_unlock(&root->fs_info->free_chunk_lock); 1619 1620 device->in_fs_metadata = 0; 1621 btrfs_scrub_cancel_dev(root->fs_info, device); 1622 1623 /* 1624 * the device list mutex makes sure that we don't change 1625 * the device list while someone else is writing out all 1626 * the device supers. Whoever is writing all supers, should 1627 * lock the device list mutex before getting the number of 1628 * devices in the super block (super_copy). Conversely, 1629 * whoever updates the number of devices in the super block 1630 * (super_copy) should hold the device list mutex. 1631 */ 1632 1633 cur_devices = device->fs_devices; 1634 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1635 list_del_rcu(&device->dev_list); 1636 1637 device->fs_devices->num_devices--; 1638 device->fs_devices->total_devices--; 1639 1640 if (device->missing) 1641 root->fs_info->fs_devices->missing_devices--; 1642 1643 next_device = list_entry(root->fs_info->fs_devices->devices.next, 1644 struct btrfs_device, dev_list); 1645 if (device->bdev == root->fs_info->sb->s_bdev) 1646 root->fs_info->sb->s_bdev = next_device->bdev; 1647 if (device->bdev == root->fs_info->fs_devices->latest_bdev) 1648 root->fs_info->fs_devices->latest_bdev = next_device->bdev; 1649 1650 if (device->bdev) 1651 device->fs_devices->open_devices--; 1652 1653 call_rcu(&device->rcu, free_device); 1654 1655 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1656 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1657 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1658 1659 if (cur_devices->open_devices == 0) { 1660 struct btrfs_fs_devices *fs_devices; 1661 fs_devices = root->fs_info->fs_devices; 1662 while (fs_devices) { 1663 if (fs_devices->seed == cur_devices) 1664 break; 1665 fs_devices = fs_devices->seed; 1666 } 1667 fs_devices->seed = cur_devices->seed; 1668 cur_devices->seed = NULL; 1669 lock_chunks(root); 1670 __btrfs_close_devices(cur_devices); 1671 unlock_chunks(root); 1672 free_fs_devices(cur_devices); 1673 } 1674 1675 root->fs_info->num_tolerated_disk_barrier_failures = 1676 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1677 1678 /* 1679 * at this point, the device is zero sized. We want to 1680 * remove it from the devices list and zero out the old super 1681 */ 1682 if (clear_super && disk_super) { 1683 /* make sure this device isn't detected as part of 1684 * the FS anymore 1685 */ 1686 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 1687 set_buffer_dirty(bh); 1688 sync_dirty_buffer(bh); 1689 } 1690 1691 ret = 0; 1692 1693 /* Notify udev that device has changed */ 1694 if (bdev) 1695 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 1696 1697 error_brelse: 1698 brelse(bh); 1699 if (bdev) 1700 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1701 out: 1702 mutex_unlock(&uuid_mutex); 1703 return ret; 1704 error_undo: 1705 if (device->writeable) { 1706 lock_chunks(root); 1707 list_add(&device->dev_alloc_list, 1708 &root->fs_info->fs_devices->alloc_list); 1709 unlock_chunks(root); 1710 root->fs_info->fs_devices->rw_devices++; 1711 } 1712 goto error_brelse; 1713 } 1714 1715 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info, 1716 struct btrfs_device *srcdev) 1717 { 1718 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 1719 1720 list_del_rcu(&srcdev->dev_list); 1721 list_del_rcu(&srcdev->dev_alloc_list); 1722 fs_info->fs_devices->num_devices--; 1723 if (srcdev->missing) { 1724 fs_info->fs_devices->missing_devices--; 1725 fs_info->fs_devices->rw_devices++; 1726 } 1727 if (srcdev->can_discard) 1728 fs_info->fs_devices->num_can_discard--; 1729 if (srcdev->bdev) { 1730 fs_info->fs_devices->open_devices--; 1731 1732 /* zero out the old super */ 1733 btrfs_scratch_superblock(srcdev); 1734 } 1735 1736 call_rcu(&srcdev->rcu, free_device); 1737 } 1738 1739 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 1740 struct btrfs_device *tgtdev) 1741 { 1742 struct btrfs_device *next_device; 1743 1744 WARN_ON(!tgtdev); 1745 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1746 if (tgtdev->bdev) { 1747 btrfs_scratch_superblock(tgtdev); 1748 fs_info->fs_devices->open_devices--; 1749 } 1750 fs_info->fs_devices->num_devices--; 1751 if (tgtdev->can_discard) 1752 fs_info->fs_devices->num_can_discard++; 1753 1754 next_device = list_entry(fs_info->fs_devices->devices.next, 1755 struct btrfs_device, dev_list); 1756 if (tgtdev->bdev == fs_info->sb->s_bdev) 1757 fs_info->sb->s_bdev = next_device->bdev; 1758 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev) 1759 fs_info->fs_devices->latest_bdev = next_device->bdev; 1760 list_del_rcu(&tgtdev->dev_list); 1761 1762 call_rcu(&tgtdev->rcu, free_device); 1763 1764 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1765 } 1766 1767 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path, 1768 struct btrfs_device **device) 1769 { 1770 int ret = 0; 1771 struct btrfs_super_block *disk_super; 1772 u64 devid; 1773 u8 *dev_uuid; 1774 struct block_device *bdev; 1775 struct buffer_head *bh; 1776 1777 *device = NULL; 1778 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 1779 root->fs_info->bdev_holder, 0, &bdev, &bh); 1780 if (ret) 1781 return ret; 1782 disk_super = (struct btrfs_super_block *)bh->b_data; 1783 devid = btrfs_stack_device_id(&disk_super->dev_item); 1784 dev_uuid = disk_super->dev_item.uuid; 1785 *device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1786 disk_super->fsid); 1787 brelse(bh); 1788 if (!*device) 1789 ret = -ENOENT; 1790 blkdev_put(bdev, FMODE_READ); 1791 return ret; 1792 } 1793 1794 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root, 1795 char *device_path, 1796 struct btrfs_device **device) 1797 { 1798 *device = NULL; 1799 if (strcmp(device_path, "missing") == 0) { 1800 struct list_head *devices; 1801 struct btrfs_device *tmp; 1802 1803 devices = &root->fs_info->fs_devices->devices; 1804 /* 1805 * It is safe to read the devices since the volume_mutex 1806 * is held by the caller. 1807 */ 1808 list_for_each_entry(tmp, devices, dev_list) { 1809 if (tmp->in_fs_metadata && !tmp->bdev) { 1810 *device = tmp; 1811 break; 1812 } 1813 } 1814 1815 if (!*device) { 1816 btrfs_err(root->fs_info, "no missing device found"); 1817 return -ENOENT; 1818 } 1819 1820 return 0; 1821 } else { 1822 return btrfs_find_device_by_path(root, device_path, device); 1823 } 1824 } 1825 1826 /* 1827 * does all the dirty work required for changing file system's UUID. 1828 */ 1829 static int btrfs_prepare_sprout(struct btrfs_root *root) 1830 { 1831 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 1832 struct btrfs_fs_devices *old_devices; 1833 struct btrfs_fs_devices *seed_devices; 1834 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 1835 struct btrfs_device *device; 1836 u64 super_flags; 1837 1838 BUG_ON(!mutex_is_locked(&uuid_mutex)); 1839 if (!fs_devices->seeding) 1840 return -EINVAL; 1841 1842 seed_devices = __alloc_fs_devices(); 1843 if (IS_ERR(seed_devices)) 1844 return PTR_ERR(seed_devices); 1845 1846 old_devices = clone_fs_devices(fs_devices); 1847 if (IS_ERR(old_devices)) { 1848 kfree(seed_devices); 1849 return PTR_ERR(old_devices); 1850 } 1851 1852 list_add(&old_devices->list, &fs_uuids); 1853 1854 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 1855 seed_devices->opened = 1; 1856 INIT_LIST_HEAD(&seed_devices->devices); 1857 INIT_LIST_HEAD(&seed_devices->alloc_list); 1858 mutex_init(&seed_devices->device_list_mutex); 1859 1860 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1861 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 1862 synchronize_rcu); 1863 1864 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 1865 list_for_each_entry(device, &seed_devices->devices, dev_list) { 1866 device->fs_devices = seed_devices; 1867 } 1868 1869 fs_devices->seeding = 0; 1870 fs_devices->num_devices = 0; 1871 fs_devices->open_devices = 0; 1872 fs_devices->total_devices = 0; 1873 fs_devices->seed = seed_devices; 1874 1875 generate_random_uuid(fs_devices->fsid); 1876 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1877 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1878 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1879 1880 super_flags = btrfs_super_flags(disk_super) & 1881 ~BTRFS_SUPER_FLAG_SEEDING; 1882 btrfs_set_super_flags(disk_super, super_flags); 1883 1884 return 0; 1885 } 1886 1887 /* 1888 * strore the expected generation for seed devices in device items. 1889 */ 1890 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 1891 struct btrfs_root *root) 1892 { 1893 struct btrfs_path *path; 1894 struct extent_buffer *leaf; 1895 struct btrfs_dev_item *dev_item; 1896 struct btrfs_device *device; 1897 struct btrfs_key key; 1898 u8 fs_uuid[BTRFS_UUID_SIZE]; 1899 u8 dev_uuid[BTRFS_UUID_SIZE]; 1900 u64 devid; 1901 int ret; 1902 1903 path = btrfs_alloc_path(); 1904 if (!path) 1905 return -ENOMEM; 1906 1907 root = root->fs_info->chunk_root; 1908 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1909 key.offset = 0; 1910 key.type = BTRFS_DEV_ITEM_KEY; 1911 1912 while (1) { 1913 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1914 if (ret < 0) 1915 goto error; 1916 1917 leaf = path->nodes[0]; 1918 next_slot: 1919 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1920 ret = btrfs_next_leaf(root, path); 1921 if (ret > 0) 1922 break; 1923 if (ret < 0) 1924 goto error; 1925 leaf = path->nodes[0]; 1926 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1927 btrfs_release_path(path); 1928 continue; 1929 } 1930 1931 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1932 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 1933 key.type != BTRFS_DEV_ITEM_KEY) 1934 break; 1935 1936 dev_item = btrfs_item_ptr(leaf, path->slots[0], 1937 struct btrfs_dev_item); 1938 devid = btrfs_device_id(leaf, dev_item); 1939 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 1940 BTRFS_UUID_SIZE); 1941 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 1942 BTRFS_UUID_SIZE); 1943 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1944 fs_uuid); 1945 BUG_ON(!device); /* Logic error */ 1946 1947 if (device->fs_devices->seeding) { 1948 btrfs_set_device_generation(leaf, dev_item, 1949 device->generation); 1950 btrfs_mark_buffer_dirty(leaf); 1951 } 1952 1953 path->slots[0]++; 1954 goto next_slot; 1955 } 1956 ret = 0; 1957 error: 1958 btrfs_free_path(path); 1959 return ret; 1960 } 1961 1962 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 1963 { 1964 struct request_queue *q; 1965 struct btrfs_trans_handle *trans; 1966 struct btrfs_device *device; 1967 struct block_device *bdev; 1968 struct list_head *devices; 1969 struct super_block *sb = root->fs_info->sb; 1970 struct rcu_string *name; 1971 u64 total_bytes; 1972 int seeding_dev = 0; 1973 int ret = 0; 1974 1975 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 1976 return -EROFS; 1977 1978 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 1979 root->fs_info->bdev_holder); 1980 if (IS_ERR(bdev)) 1981 return PTR_ERR(bdev); 1982 1983 if (root->fs_info->fs_devices->seeding) { 1984 seeding_dev = 1; 1985 down_write(&sb->s_umount); 1986 mutex_lock(&uuid_mutex); 1987 } 1988 1989 filemap_write_and_wait(bdev->bd_inode->i_mapping); 1990 1991 devices = &root->fs_info->fs_devices->devices; 1992 1993 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1994 list_for_each_entry(device, devices, dev_list) { 1995 if (device->bdev == bdev) { 1996 ret = -EEXIST; 1997 mutex_unlock( 1998 &root->fs_info->fs_devices->device_list_mutex); 1999 goto error; 2000 } 2001 } 2002 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2003 2004 device = btrfs_alloc_device(root->fs_info, NULL, NULL); 2005 if (IS_ERR(device)) { 2006 /* we can safely leave the fs_devices entry around */ 2007 ret = PTR_ERR(device); 2008 goto error; 2009 } 2010 2011 name = rcu_string_strdup(device_path, GFP_NOFS); 2012 if (!name) { 2013 kfree(device); 2014 ret = -ENOMEM; 2015 goto error; 2016 } 2017 rcu_assign_pointer(device->name, name); 2018 2019 trans = btrfs_start_transaction(root, 0); 2020 if (IS_ERR(trans)) { 2021 rcu_string_free(device->name); 2022 kfree(device); 2023 ret = PTR_ERR(trans); 2024 goto error; 2025 } 2026 2027 lock_chunks(root); 2028 2029 q = bdev_get_queue(bdev); 2030 if (blk_queue_discard(q)) 2031 device->can_discard = 1; 2032 device->writeable = 1; 2033 device->generation = trans->transid; 2034 device->io_width = root->sectorsize; 2035 device->io_align = root->sectorsize; 2036 device->sector_size = root->sectorsize; 2037 device->total_bytes = i_size_read(bdev->bd_inode); 2038 device->disk_total_bytes = device->total_bytes; 2039 device->dev_root = root->fs_info->dev_root; 2040 device->bdev = bdev; 2041 device->in_fs_metadata = 1; 2042 device->is_tgtdev_for_dev_replace = 0; 2043 device->mode = FMODE_EXCL; 2044 device->dev_stats_valid = 1; 2045 set_blocksize(device->bdev, 4096); 2046 2047 if (seeding_dev) { 2048 sb->s_flags &= ~MS_RDONLY; 2049 ret = btrfs_prepare_sprout(root); 2050 BUG_ON(ret); /* -ENOMEM */ 2051 } 2052 2053 device->fs_devices = root->fs_info->fs_devices; 2054 2055 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2056 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 2057 list_add(&device->dev_alloc_list, 2058 &root->fs_info->fs_devices->alloc_list); 2059 root->fs_info->fs_devices->num_devices++; 2060 root->fs_info->fs_devices->open_devices++; 2061 root->fs_info->fs_devices->rw_devices++; 2062 root->fs_info->fs_devices->total_devices++; 2063 if (device->can_discard) 2064 root->fs_info->fs_devices->num_can_discard++; 2065 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2066 2067 spin_lock(&root->fs_info->free_chunk_lock); 2068 root->fs_info->free_chunk_space += device->total_bytes; 2069 spin_unlock(&root->fs_info->free_chunk_lock); 2070 2071 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2072 root->fs_info->fs_devices->rotating = 1; 2073 2074 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy); 2075 btrfs_set_super_total_bytes(root->fs_info->super_copy, 2076 total_bytes + device->total_bytes); 2077 2078 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy); 2079 btrfs_set_super_num_devices(root->fs_info->super_copy, 2080 total_bytes + 1); 2081 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2082 2083 if (seeding_dev) { 2084 ret = init_first_rw_device(trans, root, device); 2085 if (ret) { 2086 btrfs_abort_transaction(trans, root, ret); 2087 goto error_trans; 2088 } 2089 ret = btrfs_finish_sprout(trans, root); 2090 if (ret) { 2091 btrfs_abort_transaction(trans, root, ret); 2092 goto error_trans; 2093 } 2094 } else { 2095 ret = btrfs_add_device(trans, root, device); 2096 if (ret) { 2097 btrfs_abort_transaction(trans, root, ret); 2098 goto error_trans; 2099 } 2100 } 2101 2102 /* 2103 * we've got more storage, clear any full flags on the space 2104 * infos 2105 */ 2106 btrfs_clear_space_info_full(root->fs_info); 2107 2108 unlock_chunks(root); 2109 root->fs_info->num_tolerated_disk_barrier_failures = 2110 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 2111 ret = btrfs_commit_transaction(trans, root); 2112 2113 if (seeding_dev) { 2114 mutex_unlock(&uuid_mutex); 2115 up_write(&sb->s_umount); 2116 2117 if (ret) /* transaction commit */ 2118 return ret; 2119 2120 ret = btrfs_relocate_sys_chunks(root); 2121 if (ret < 0) 2122 btrfs_error(root->fs_info, ret, 2123 "Failed to relocate sys chunks after " 2124 "device initialization. This can be fixed " 2125 "using the \"btrfs balance\" command."); 2126 trans = btrfs_attach_transaction(root); 2127 if (IS_ERR(trans)) { 2128 if (PTR_ERR(trans) == -ENOENT) 2129 return 0; 2130 return PTR_ERR(trans); 2131 } 2132 ret = btrfs_commit_transaction(trans, root); 2133 } 2134 2135 return ret; 2136 2137 error_trans: 2138 unlock_chunks(root); 2139 btrfs_end_transaction(trans, root); 2140 rcu_string_free(device->name); 2141 kfree(device); 2142 error: 2143 blkdev_put(bdev, FMODE_EXCL); 2144 if (seeding_dev) { 2145 mutex_unlock(&uuid_mutex); 2146 up_write(&sb->s_umount); 2147 } 2148 return ret; 2149 } 2150 2151 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path, 2152 struct btrfs_device **device_out) 2153 { 2154 struct request_queue *q; 2155 struct btrfs_device *device; 2156 struct block_device *bdev; 2157 struct btrfs_fs_info *fs_info = root->fs_info; 2158 struct list_head *devices; 2159 struct rcu_string *name; 2160 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2161 int ret = 0; 2162 2163 *device_out = NULL; 2164 if (fs_info->fs_devices->seeding) 2165 return -EINVAL; 2166 2167 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2168 fs_info->bdev_holder); 2169 if (IS_ERR(bdev)) 2170 return PTR_ERR(bdev); 2171 2172 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2173 2174 devices = &fs_info->fs_devices->devices; 2175 list_for_each_entry(device, devices, dev_list) { 2176 if (device->bdev == bdev) { 2177 ret = -EEXIST; 2178 goto error; 2179 } 2180 } 2181 2182 device = btrfs_alloc_device(NULL, &devid, NULL); 2183 if (IS_ERR(device)) { 2184 ret = PTR_ERR(device); 2185 goto error; 2186 } 2187 2188 name = rcu_string_strdup(device_path, GFP_NOFS); 2189 if (!name) { 2190 kfree(device); 2191 ret = -ENOMEM; 2192 goto error; 2193 } 2194 rcu_assign_pointer(device->name, name); 2195 2196 q = bdev_get_queue(bdev); 2197 if (blk_queue_discard(q)) 2198 device->can_discard = 1; 2199 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2200 device->writeable = 1; 2201 device->generation = 0; 2202 device->io_width = root->sectorsize; 2203 device->io_align = root->sectorsize; 2204 device->sector_size = root->sectorsize; 2205 device->total_bytes = i_size_read(bdev->bd_inode); 2206 device->disk_total_bytes = device->total_bytes; 2207 device->dev_root = fs_info->dev_root; 2208 device->bdev = bdev; 2209 device->in_fs_metadata = 1; 2210 device->is_tgtdev_for_dev_replace = 1; 2211 device->mode = FMODE_EXCL; 2212 device->dev_stats_valid = 1; 2213 set_blocksize(device->bdev, 4096); 2214 device->fs_devices = fs_info->fs_devices; 2215 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2216 fs_info->fs_devices->num_devices++; 2217 fs_info->fs_devices->open_devices++; 2218 if (device->can_discard) 2219 fs_info->fs_devices->num_can_discard++; 2220 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2221 2222 *device_out = device; 2223 return ret; 2224 2225 error: 2226 blkdev_put(bdev, FMODE_EXCL); 2227 return ret; 2228 } 2229 2230 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2231 struct btrfs_device *tgtdev) 2232 { 2233 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2234 tgtdev->io_width = fs_info->dev_root->sectorsize; 2235 tgtdev->io_align = fs_info->dev_root->sectorsize; 2236 tgtdev->sector_size = fs_info->dev_root->sectorsize; 2237 tgtdev->dev_root = fs_info->dev_root; 2238 tgtdev->in_fs_metadata = 1; 2239 } 2240 2241 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2242 struct btrfs_device *device) 2243 { 2244 int ret; 2245 struct btrfs_path *path; 2246 struct btrfs_root *root; 2247 struct btrfs_dev_item *dev_item; 2248 struct extent_buffer *leaf; 2249 struct btrfs_key key; 2250 2251 root = device->dev_root->fs_info->chunk_root; 2252 2253 path = btrfs_alloc_path(); 2254 if (!path) 2255 return -ENOMEM; 2256 2257 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2258 key.type = BTRFS_DEV_ITEM_KEY; 2259 key.offset = device->devid; 2260 2261 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2262 if (ret < 0) 2263 goto out; 2264 2265 if (ret > 0) { 2266 ret = -ENOENT; 2267 goto out; 2268 } 2269 2270 leaf = path->nodes[0]; 2271 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2272 2273 btrfs_set_device_id(leaf, dev_item, device->devid); 2274 btrfs_set_device_type(leaf, dev_item, device->type); 2275 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2276 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2277 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2278 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes); 2279 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 2280 btrfs_mark_buffer_dirty(leaf); 2281 2282 out: 2283 btrfs_free_path(path); 2284 return ret; 2285 } 2286 2287 static int __btrfs_grow_device(struct btrfs_trans_handle *trans, 2288 struct btrfs_device *device, u64 new_size) 2289 { 2290 struct btrfs_super_block *super_copy = 2291 device->dev_root->fs_info->super_copy; 2292 u64 old_total = btrfs_super_total_bytes(super_copy); 2293 u64 diff = new_size - device->total_bytes; 2294 2295 if (!device->writeable) 2296 return -EACCES; 2297 if (new_size <= device->total_bytes || 2298 device->is_tgtdev_for_dev_replace) 2299 return -EINVAL; 2300 2301 btrfs_set_super_total_bytes(super_copy, old_total + diff); 2302 device->fs_devices->total_rw_bytes += diff; 2303 2304 device->total_bytes = new_size; 2305 device->disk_total_bytes = new_size; 2306 btrfs_clear_space_info_full(device->dev_root->fs_info); 2307 2308 return btrfs_update_device(trans, device); 2309 } 2310 2311 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2312 struct btrfs_device *device, u64 new_size) 2313 { 2314 int ret; 2315 lock_chunks(device->dev_root); 2316 ret = __btrfs_grow_device(trans, device, new_size); 2317 unlock_chunks(device->dev_root); 2318 return ret; 2319 } 2320 2321 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2322 struct btrfs_root *root, 2323 u64 chunk_tree, u64 chunk_objectid, 2324 u64 chunk_offset) 2325 { 2326 int ret; 2327 struct btrfs_path *path; 2328 struct btrfs_key key; 2329 2330 root = root->fs_info->chunk_root; 2331 path = btrfs_alloc_path(); 2332 if (!path) 2333 return -ENOMEM; 2334 2335 key.objectid = chunk_objectid; 2336 key.offset = chunk_offset; 2337 key.type = BTRFS_CHUNK_ITEM_KEY; 2338 2339 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2340 if (ret < 0) 2341 goto out; 2342 else if (ret > 0) { /* Logic error or corruption */ 2343 btrfs_error(root->fs_info, -ENOENT, 2344 "Failed lookup while freeing chunk."); 2345 ret = -ENOENT; 2346 goto out; 2347 } 2348 2349 ret = btrfs_del_item(trans, root, path); 2350 if (ret < 0) 2351 btrfs_error(root->fs_info, ret, 2352 "Failed to delete chunk item."); 2353 out: 2354 btrfs_free_path(path); 2355 return ret; 2356 } 2357 2358 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 2359 chunk_offset) 2360 { 2361 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 2362 struct btrfs_disk_key *disk_key; 2363 struct btrfs_chunk *chunk; 2364 u8 *ptr; 2365 int ret = 0; 2366 u32 num_stripes; 2367 u32 array_size; 2368 u32 len = 0; 2369 u32 cur; 2370 struct btrfs_key key; 2371 2372 array_size = btrfs_super_sys_array_size(super_copy); 2373 2374 ptr = super_copy->sys_chunk_array; 2375 cur = 0; 2376 2377 while (cur < array_size) { 2378 disk_key = (struct btrfs_disk_key *)ptr; 2379 btrfs_disk_key_to_cpu(&key, disk_key); 2380 2381 len = sizeof(*disk_key); 2382 2383 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2384 chunk = (struct btrfs_chunk *)(ptr + len); 2385 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2386 len += btrfs_chunk_item_size(num_stripes); 2387 } else { 2388 ret = -EIO; 2389 break; 2390 } 2391 if (key.objectid == chunk_objectid && 2392 key.offset == chunk_offset) { 2393 memmove(ptr, ptr + len, array_size - (cur + len)); 2394 array_size -= len; 2395 btrfs_set_super_sys_array_size(super_copy, array_size); 2396 } else { 2397 ptr += len; 2398 cur += len; 2399 } 2400 } 2401 return ret; 2402 } 2403 2404 static int btrfs_relocate_chunk(struct btrfs_root *root, 2405 u64 chunk_tree, u64 chunk_objectid, 2406 u64 chunk_offset) 2407 { 2408 struct extent_map_tree *em_tree; 2409 struct btrfs_root *extent_root; 2410 struct btrfs_trans_handle *trans; 2411 struct extent_map *em; 2412 struct map_lookup *map; 2413 int ret; 2414 int i; 2415 2416 root = root->fs_info->chunk_root; 2417 extent_root = root->fs_info->extent_root; 2418 em_tree = &root->fs_info->mapping_tree.map_tree; 2419 2420 ret = btrfs_can_relocate(extent_root, chunk_offset); 2421 if (ret) 2422 return -ENOSPC; 2423 2424 /* step one, relocate all the extents inside this chunk */ 2425 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2426 if (ret) 2427 return ret; 2428 2429 trans = btrfs_start_transaction(root, 0); 2430 if (IS_ERR(trans)) { 2431 ret = PTR_ERR(trans); 2432 btrfs_std_error(root->fs_info, ret); 2433 return ret; 2434 } 2435 2436 lock_chunks(root); 2437 2438 /* 2439 * step two, delete the device extents and the 2440 * chunk tree entries 2441 */ 2442 read_lock(&em_tree->lock); 2443 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2444 read_unlock(&em_tree->lock); 2445 2446 BUG_ON(!em || em->start > chunk_offset || 2447 em->start + em->len < chunk_offset); 2448 map = (struct map_lookup *)em->bdev; 2449 2450 for (i = 0; i < map->num_stripes; i++) { 2451 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, 2452 map->stripes[i].physical); 2453 BUG_ON(ret); 2454 2455 if (map->stripes[i].dev) { 2456 ret = btrfs_update_device(trans, map->stripes[i].dev); 2457 BUG_ON(ret); 2458 } 2459 } 2460 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, 2461 chunk_offset); 2462 2463 BUG_ON(ret); 2464 2465 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2466 2467 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2468 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2469 BUG_ON(ret); 2470 } 2471 2472 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); 2473 BUG_ON(ret); 2474 2475 write_lock(&em_tree->lock); 2476 remove_extent_mapping(em_tree, em); 2477 write_unlock(&em_tree->lock); 2478 2479 kfree(map); 2480 em->bdev = NULL; 2481 2482 /* once for the tree */ 2483 free_extent_map(em); 2484 /* once for us */ 2485 free_extent_map(em); 2486 2487 unlock_chunks(root); 2488 btrfs_end_transaction(trans, root); 2489 return 0; 2490 } 2491 2492 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2493 { 2494 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2495 struct btrfs_path *path; 2496 struct extent_buffer *leaf; 2497 struct btrfs_chunk *chunk; 2498 struct btrfs_key key; 2499 struct btrfs_key found_key; 2500 u64 chunk_tree = chunk_root->root_key.objectid; 2501 u64 chunk_type; 2502 bool retried = false; 2503 int failed = 0; 2504 int ret; 2505 2506 path = btrfs_alloc_path(); 2507 if (!path) 2508 return -ENOMEM; 2509 2510 again: 2511 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2512 key.offset = (u64)-1; 2513 key.type = BTRFS_CHUNK_ITEM_KEY; 2514 2515 while (1) { 2516 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2517 if (ret < 0) 2518 goto error; 2519 BUG_ON(ret == 0); /* Corruption */ 2520 2521 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2522 key.type); 2523 if (ret < 0) 2524 goto error; 2525 if (ret > 0) 2526 break; 2527 2528 leaf = path->nodes[0]; 2529 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2530 2531 chunk = btrfs_item_ptr(leaf, path->slots[0], 2532 struct btrfs_chunk); 2533 chunk_type = btrfs_chunk_type(leaf, chunk); 2534 btrfs_release_path(path); 2535 2536 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2537 ret = btrfs_relocate_chunk(chunk_root, chunk_tree, 2538 found_key.objectid, 2539 found_key.offset); 2540 if (ret == -ENOSPC) 2541 failed++; 2542 else if (ret) 2543 BUG(); 2544 } 2545 2546 if (found_key.offset == 0) 2547 break; 2548 key.offset = found_key.offset - 1; 2549 } 2550 ret = 0; 2551 if (failed && !retried) { 2552 failed = 0; 2553 retried = true; 2554 goto again; 2555 } else if (WARN_ON(failed && retried)) { 2556 ret = -ENOSPC; 2557 } 2558 error: 2559 btrfs_free_path(path); 2560 return ret; 2561 } 2562 2563 static int insert_balance_item(struct btrfs_root *root, 2564 struct btrfs_balance_control *bctl) 2565 { 2566 struct btrfs_trans_handle *trans; 2567 struct btrfs_balance_item *item; 2568 struct btrfs_disk_balance_args disk_bargs; 2569 struct btrfs_path *path; 2570 struct extent_buffer *leaf; 2571 struct btrfs_key key; 2572 int ret, err; 2573 2574 path = btrfs_alloc_path(); 2575 if (!path) 2576 return -ENOMEM; 2577 2578 trans = btrfs_start_transaction(root, 0); 2579 if (IS_ERR(trans)) { 2580 btrfs_free_path(path); 2581 return PTR_ERR(trans); 2582 } 2583 2584 key.objectid = BTRFS_BALANCE_OBJECTID; 2585 key.type = BTRFS_BALANCE_ITEM_KEY; 2586 key.offset = 0; 2587 2588 ret = btrfs_insert_empty_item(trans, root, path, &key, 2589 sizeof(*item)); 2590 if (ret) 2591 goto out; 2592 2593 leaf = path->nodes[0]; 2594 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2595 2596 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 2597 2598 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 2599 btrfs_set_balance_data(leaf, item, &disk_bargs); 2600 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 2601 btrfs_set_balance_meta(leaf, item, &disk_bargs); 2602 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 2603 btrfs_set_balance_sys(leaf, item, &disk_bargs); 2604 2605 btrfs_set_balance_flags(leaf, item, bctl->flags); 2606 2607 btrfs_mark_buffer_dirty(leaf); 2608 out: 2609 btrfs_free_path(path); 2610 err = btrfs_commit_transaction(trans, root); 2611 if (err && !ret) 2612 ret = err; 2613 return ret; 2614 } 2615 2616 static int del_balance_item(struct btrfs_root *root) 2617 { 2618 struct btrfs_trans_handle *trans; 2619 struct btrfs_path *path; 2620 struct btrfs_key key; 2621 int ret, err; 2622 2623 path = btrfs_alloc_path(); 2624 if (!path) 2625 return -ENOMEM; 2626 2627 trans = btrfs_start_transaction(root, 0); 2628 if (IS_ERR(trans)) { 2629 btrfs_free_path(path); 2630 return PTR_ERR(trans); 2631 } 2632 2633 key.objectid = BTRFS_BALANCE_OBJECTID; 2634 key.type = BTRFS_BALANCE_ITEM_KEY; 2635 key.offset = 0; 2636 2637 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2638 if (ret < 0) 2639 goto out; 2640 if (ret > 0) { 2641 ret = -ENOENT; 2642 goto out; 2643 } 2644 2645 ret = btrfs_del_item(trans, root, path); 2646 out: 2647 btrfs_free_path(path); 2648 err = btrfs_commit_transaction(trans, root); 2649 if (err && !ret) 2650 ret = err; 2651 return ret; 2652 } 2653 2654 /* 2655 * This is a heuristic used to reduce the number of chunks balanced on 2656 * resume after balance was interrupted. 2657 */ 2658 static void update_balance_args(struct btrfs_balance_control *bctl) 2659 { 2660 /* 2661 * Turn on soft mode for chunk types that were being converted. 2662 */ 2663 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 2664 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 2665 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 2666 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 2667 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 2668 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 2669 2670 /* 2671 * Turn on usage filter if is not already used. The idea is 2672 * that chunks that we have already balanced should be 2673 * reasonably full. Don't do it for chunks that are being 2674 * converted - that will keep us from relocating unconverted 2675 * (albeit full) chunks. 2676 */ 2677 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 2678 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2679 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 2680 bctl->data.usage = 90; 2681 } 2682 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 2683 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2684 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 2685 bctl->sys.usage = 90; 2686 } 2687 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 2688 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2689 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 2690 bctl->meta.usage = 90; 2691 } 2692 } 2693 2694 /* 2695 * Should be called with both balance and volume mutexes held to 2696 * serialize other volume operations (add_dev/rm_dev/resize) with 2697 * restriper. Same goes for unset_balance_control. 2698 */ 2699 static void set_balance_control(struct btrfs_balance_control *bctl) 2700 { 2701 struct btrfs_fs_info *fs_info = bctl->fs_info; 2702 2703 BUG_ON(fs_info->balance_ctl); 2704 2705 spin_lock(&fs_info->balance_lock); 2706 fs_info->balance_ctl = bctl; 2707 spin_unlock(&fs_info->balance_lock); 2708 } 2709 2710 static void unset_balance_control(struct btrfs_fs_info *fs_info) 2711 { 2712 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2713 2714 BUG_ON(!fs_info->balance_ctl); 2715 2716 spin_lock(&fs_info->balance_lock); 2717 fs_info->balance_ctl = NULL; 2718 spin_unlock(&fs_info->balance_lock); 2719 2720 kfree(bctl); 2721 } 2722 2723 /* 2724 * Balance filters. Return 1 if chunk should be filtered out 2725 * (should not be balanced). 2726 */ 2727 static int chunk_profiles_filter(u64 chunk_type, 2728 struct btrfs_balance_args *bargs) 2729 { 2730 chunk_type = chunk_to_extended(chunk_type) & 2731 BTRFS_EXTENDED_PROFILE_MASK; 2732 2733 if (bargs->profiles & chunk_type) 2734 return 0; 2735 2736 return 1; 2737 } 2738 2739 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 2740 struct btrfs_balance_args *bargs) 2741 { 2742 struct btrfs_block_group_cache *cache; 2743 u64 chunk_used, user_thresh; 2744 int ret = 1; 2745 2746 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2747 chunk_used = btrfs_block_group_used(&cache->item); 2748 2749 if (bargs->usage == 0) 2750 user_thresh = 1; 2751 else if (bargs->usage > 100) 2752 user_thresh = cache->key.offset; 2753 else 2754 user_thresh = div_factor_fine(cache->key.offset, 2755 bargs->usage); 2756 2757 if (chunk_used < user_thresh) 2758 ret = 0; 2759 2760 btrfs_put_block_group(cache); 2761 return ret; 2762 } 2763 2764 static int chunk_devid_filter(struct extent_buffer *leaf, 2765 struct btrfs_chunk *chunk, 2766 struct btrfs_balance_args *bargs) 2767 { 2768 struct btrfs_stripe *stripe; 2769 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2770 int i; 2771 2772 for (i = 0; i < num_stripes; i++) { 2773 stripe = btrfs_stripe_nr(chunk, i); 2774 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 2775 return 0; 2776 } 2777 2778 return 1; 2779 } 2780 2781 /* [pstart, pend) */ 2782 static int chunk_drange_filter(struct extent_buffer *leaf, 2783 struct btrfs_chunk *chunk, 2784 u64 chunk_offset, 2785 struct btrfs_balance_args *bargs) 2786 { 2787 struct btrfs_stripe *stripe; 2788 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2789 u64 stripe_offset; 2790 u64 stripe_length; 2791 int factor; 2792 int i; 2793 2794 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 2795 return 0; 2796 2797 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 2798 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 2799 factor = num_stripes / 2; 2800 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 2801 factor = num_stripes - 1; 2802 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 2803 factor = num_stripes - 2; 2804 } else { 2805 factor = num_stripes; 2806 } 2807 2808 for (i = 0; i < num_stripes; i++) { 2809 stripe = btrfs_stripe_nr(chunk, i); 2810 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 2811 continue; 2812 2813 stripe_offset = btrfs_stripe_offset(leaf, stripe); 2814 stripe_length = btrfs_chunk_length(leaf, chunk); 2815 do_div(stripe_length, factor); 2816 2817 if (stripe_offset < bargs->pend && 2818 stripe_offset + stripe_length > bargs->pstart) 2819 return 0; 2820 } 2821 2822 return 1; 2823 } 2824 2825 /* [vstart, vend) */ 2826 static int chunk_vrange_filter(struct extent_buffer *leaf, 2827 struct btrfs_chunk *chunk, 2828 u64 chunk_offset, 2829 struct btrfs_balance_args *bargs) 2830 { 2831 if (chunk_offset < bargs->vend && 2832 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 2833 /* at least part of the chunk is inside this vrange */ 2834 return 0; 2835 2836 return 1; 2837 } 2838 2839 static int chunk_soft_convert_filter(u64 chunk_type, 2840 struct btrfs_balance_args *bargs) 2841 { 2842 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 2843 return 0; 2844 2845 chunk_type = chunk_to_extended(chunk_type) & 2846 BTRFS_EXTENDED_PROFILE_MASK; 2847 2848 if (bargs->target == chunk_type) 2849 return 1; 2850 2851 return 0; 2852 } 2853 2854 static int should_balance_chunk(struct btrfs_root *root, 2855 struct extent_buffer *leaf, 2856 struct btrfs_chunk *chunk, u64 chunk_offset) 2857 { 2858 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 2859 struct btrfs_balance_args *bargs = NULL; 2860 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 2861 2862 /* type filter */ 2863 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 2864 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 2865 return 0; 2866 } 2867 2868 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 2869 bargs = &bctl->data; 2870 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 2871 bargs = &bctl->sys; 2872 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 2873 bargs = &bctl->meta; 2874 2875 /* profiles filter */ 2876 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 2877 chunk_profiles_filter(chunk_type, bargs)) { 2878 return 0; 2879 } 2880 2881 /* usage filter */ 2882 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 2883 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 2884 return 0; 2885 } 2886 2887 /* devid filter */ 2888 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 2889 chunk_devid_filter(leaf, chunk, bargs)) { 2890 return 0; 2891 } 2892 2893 /* drange filter, makes sense only with devid filter */ 2894 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 2895 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 2896 return 0; 2897 } 2898 2899 /* vrange filter */ 2900 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 2901 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 2902 return 0; 2903 } 2904 2905 /* soft profile changing mode */ 2906 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 2907 chunk_soft_convert_filter(chunk_type, bargs)) { 2908 return 0; 2909 } 2910 2911 return 1; 2912 } 2913 2914 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 2915 { 2916 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2917 struct btrfs_root *chunk_root = fs_info->chunk_root; 2918 struct btrfs_root *dev_root = fs_info->dev_root; 2919 struct list_head *devices; 2920 struct btrfs_device *device; 2921 u64 old_size; 2922 u64 size_to_free; 2923 struct btrfs_chunk *chunk; 2924 struct btrfs_path *path; 2925 struct btrfs_key key; 2926 struct btrfs_key found_key; 2927 struct btrfs_trans_handle *trans; 2928 struct extent_buffer *leaf; 2929 int slot; 2930 int ret; 2931 int enospc_errors = 0; 2932 bool counting = true; 2933 2934 /* step one make some room on all the devices */ 2935 devices = &fs_info->fs_devices->devices; 2936 list_for_each_entry(device, devices, dev_list) { 2937 old_size = device->total_bytes; 2938 size_to_free = div_factor(old_size, 1); 2939 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); 2940 if (!device->writeable || 2941 device->total_bytes - device->bytes_used > size_to_free || 2942 device->is_tgtdev_for_dev_replace) 2943 continue; 2944 2945 ret = btrfs_shrink_device(device, old_size - size_to_free); 2946 if (ret == -ENOSPC) 2947 break; 2948 BUG_ON(ret); 2949 2950 trans = btrfs_start_transaction(dev_root, 0); 2951 BUG_ON(IS_ERR(trans)); 2952 2953 ret = btrfs_grow_device(trans, device, old_size); 2954 BUG_ON(ret); 2955 2956 btrfs_end_transaction(trans, dev_root); 2957 } 2958 2959 /* step two, relocate all the chunks */ 2960 path = btrfs_alloc_path(); 2961 if (!path) { 2962 ret = -ENOMEM; 2963 goto error; 2964 } 2965 2966 /* zero out stat counters */ 2967 spin_lock(&fs_info->balance_lock); 2968 memset(&bctl->stat, 0, sizeof(bctl->stat)); 2969 spin_unlock(&fs_info->balance_lock); 2970 again: 2971 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2972 key.offset = (u64)-1; 2973 key.type = BTRFS_CHUNK_ITEM_KEY; 2974 2975 while (1) { 2976 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 2977 atomic_read(&fs_info->balance_cancel_req)) { 2978 ret = -ECANCELED; 2979 goto error; 2980 } 2981 2982 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2983 if (ret < 0) 2984 goto error; 2985 2986 /* 2987 * this shouldn't happen, it means the last relocate 2988 * failed 2989 */ 2990 if (ret == 0) 2991 BUG(); /* FIXME break ? */ 2992 2993 ret = btrfs_previous_item(chunk_root, path, 0, 2994 BTRFS_CHUNK_ITEM_KEY); 2995 if (ret) { 2996 ret = 0; 2997 break; 2998 } 2999 3000 leaf = path->nodes[0]; 3001 slot = path->slots[0]; 3002 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3003 3004 if (found_key.objectid != key.objectid) 3005 break; 3006 3007 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3008 3009 if (!counting) { 3010 spin_lock(&fs_info->balance_lock); 3011 bctl->stat.considered++; 3012 spin_unlock(&fs_info->balance_lock); 3013 } 3014 3015 ret = should_balance_chunk(chunk_root, leaf, chunk, 3016 found_key.offset); 3017 btrfs_release_path(path); 3018 if (!ret) 3019 goto loop; 3020 3021 if (counting) { 3022 spin_lock(&fs_info->balance_lock); 3023 bctl->stat.expected++; 3024 spin_unlock(&fs_info->balance_lock); 3025 goto loop; 3026 } 3027 3028 ret = btrfs_relocate_chunk(chunk_root, 3029 chunk_root->root_key.objectid, 3030 found_key.objectid, 3031 found_key.offset); 3032 if (ret && ret != -ENOSPC) 3033 goto error; 3034 if (ret == -ENOSPC) { 3035 enospc_errors++; 3036 } else { 3037 spin_lock(&fs_info->balance_lock); 3038 bctl->stat.completed++; 3039 spin_unlock(&fs_info->balance_lock); 3040 } 3041 loop: 3042 if (found_key.offset == 0) 3043 break; 3044 key.offset = found_key.offset - 1; 3045 } 3046 3047 if (counting) { 3048 btrfs_release_path(path); 3049 counting = false; 3050 goto again; 3051 } 3052 error: 3053 btrfs_free_path(path); 3054 if (enospc_errors) { 3055 btrfs_info(fs_info, "%d enospc errors during balance", 3056 enospc_errors); 3057 if (!ret) 3058 ret = -ENOSPC; 3059 } 3060 3061 return ret; 3062 } 3063 3064 /** 3065 * alloc_profile_is_valid - see if a given profile is valid and reduced 3066 * @flags: profile to validate 3067 * @extended: if true @flags is treated as an extended profile 3068 */ 3069 static int alloc_profile_is_valid(u64 flags, int extended) 3070 { 3071 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3072 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3073 3074 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3075 3076 /* 1) check that all other bits are zeroed */ 3077 if (flags & ~mask) 3078 return 0; 3079 3080 /* 2) see if profile is reduced */ 3081 if (flags == 0) 3082 return !extended; /* "0" is valid for usual profiles */ 3083 3084 /* true if exactly one bit set */ 3085 return (flags & (flags - 1)) == 0; 3086 } 3087 3088 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3089 { 3090 /* cancel requested || normal exit path */ 3091 return atomic_read(&fs_info->balance_cancel_req) || 3092 (atomic_read(&fs_info->balance_pause_req) == 0 && 3093 atomic_read(&fs_info->balance_cancel_req) == 0); 3094 } 3095 3096 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3097 { 3098 int ret; 3099 3100 unset_balance_control(fs_info); 3101 ret = del_balance_item(fs_info->tree_root); 3102 if (ret) 3103 btrfs_std_error(fs_info, ret); 3104 3105 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3106 } 3107 3108 /* 3109 * Should be called with both balance and volume mutexes held 3110 */ 3111 int btrfs_balance(struct btrfs_balance_control *bctl, 3112 struct btrfs_ioctl_balance_args *bargs) 3113 { 3114 struct btrfs_fs_info *fs_info = bctl->fs_info; 3115 u64 allowed; 3116 int mixed = 0; 3117 int ret; 3118 u64 num_devices; 3119 unsigned seq; 3120 3121 if (btrfs_fs_closing(fs_info) || 3122 atomic_read(&fs_info->balance_pause_req) || 3123 atomic_read(&fs_info->balance_cancel_req)) { 3124 ret = -EINVAL; 3125 goto out; 3126 } 3127 3128 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3129 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3130 mixed = 1; 3131 3132 /* 3133 * In case of mixed groups both data and meta should be picked, 3134 * and identical options should be given for both of them. 3135 */ 3136 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3137 if (mixed && (bctl->flags & allowed)) { 3138 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3139 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3140 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3141 btrfs_err(fs_info, "with mixed groups data and " 3142 "metadata balance options must be the same"); 3143 ret = -EINVAL; 3144 goto out; 3145 } 3146 } 3147 3148 num_devices = fs_info->fs_devices->num_devices; 3149 btrfs_dev_replace_lock(&fs_info->dev_replace); 3150 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3151 BUG_ON(num_devices < 1); 3152 num_devices--; 3153 } 3154 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3155 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 3156 if (num_devices == 1) 3157 allowed |= BTRFS_BLOCK_GROUP_DUP; 3158 else if (num_devices > 1) 3159 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3160 if (num_devices > 2) 3161 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3162 if (num_devices > 3) 3163 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3164 BTRFS_BLOCK_GROUP_RAID6); 3165 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3166 (!alloc_profile_is_valid(bctl->data.target, 1) || 3167 (bctl->data.target & ~allowed))) { 3168 btrfs_err(fs_info, "unable to start balance with target " 3169 "data profile %llu", 3170 bctl->data.target); 3171 ret = -EINVAL; 3172 goto out; 3173 } 3174 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3175 (!alloc_profile_is_valid(bctl->meta.target, 1) || 3176 (bctl->meta.target & ~allowed))) { 3177 btrfs_err(fs_info, 3178 "unable to start balance with target metadata profile %llu", 3179 bctl->meta.target); 3180 ret = -EINVAL; 3181 goto out; 3182 } 3183 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3184 (!alloc_profile_is_valid(bctl->sys.target, 1) || 3185 (bctl->sys.target & ~allowed))) { 3186 btrfs_err(fs_info, 3187 "unable to start balance with target system profile %llu", 3188 bctl->sys.target); 3189 ret = -EINVAL; 3190 goto out; 3191 } 3192 3193 /* allow dup'ed data chunks only in mixed mode */ 3194 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3195 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) { 3196 btrfs_err(fs_info, "dup for data is not allowed"); 3197 ret = -EINVAL; 3198 goto out; 3199 } 3200 3201 /* allow to reduce meta or sys integrity only if force set */ 3202 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3203 BTRFS_BLOCK_GROUP_RAID10 | 3204 BTRFS_BLOCK_GROUP_RAID5 | 3205 BTRFS_BLOCK_GROUP_RAID6; 3206 do { 3207 seq = read_seqbegin(&fs_info->profiles_lock); 3208 3209 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3210 (fs_info->avail_system_alloc_bits & allowed) && 3211 !(bctl->sys.target & allowed)) || 3212 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3213 (fs_info->avail_metadata_alloc_bits & allowed) && 3214 !(bctl->meta.target & allowed))) { 3215 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3216 btrfs_info(fs_info, "force reducing metadata integrity"); 3217 } else { 3218 btrfs_err(fs_info, "balance will reduce metadata " 3219 "integrity, use force if you want this"); 3220 ret = -EINVAL; 3221 goto out; 3222 } 3223 } 3224 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3225 3226 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3227 int num_tolerated_disk_barrier_failures; 3228 u64 target = bctl->sys.target; 3229 3230 num_tolerated_disk_barrier_failures = 3231 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3232 if (num_tolerated_disk_barrier_failures > 0 && 3233 (target & 3234 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3235 BTRFS_AVAIL_ALLOC_BIT_SINGLE))) 3236 num_tolerated_disk_barrier_failures = 0; 3237 else if (num_tolerated_disk_barrier_failures > 1 && 3238 (target & 3239 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))) 3240 num_tolerated_disk_barrier_failures = 1; 3241 3242 fs_info->num_tolerated_disk_barrier_failures = 3243 num_tolerated_disk_barrier_failures; 3244 } 3245 3246 ret = insert_balance_item(fs_info->tree_root, bctl); 3247 if (ret && ret != -EEXIST) 3248 goto out; 3249 3250 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3251 BUG_ON(ret == -EEXIST); 3252 set_balance_control(bctl); 3253 } else { 3254 BUG_ON(ret != -EEXIST); 3255 spin_lock(&fs_info->balance_lock); 3256 update_balance_args(bctl); 3257 spin_unlock(&fs_info->balance_lock); 3258 } 3259 3260 atomic_inc(&fs_info->balance_running); 3261 mutex_unlock(&fs_info->balance_mutex); 3262 3263 ret = __btrfs_balance(fs_info); 3264 3265 mutex_lock(&fs_info->balance_mutex); 3266 atomic_dec(&fs_info->balance_running); 3267 3268 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3269 fs_info->num_tolerated_disk_barrier_failures = 3270 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3271 } 3272 3273 if (bargs) { 3274 memset(bargs, 0, sizeof(*bargs)); 3275 update_ioctl_balance_args(fs_info, 0, bargs); 3276 } 3277 3278 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3279 balance_need_close(fs_info)) { 3280 __cancel_balance(fs_info); 3281 } 3282 3283 wake_up(&fs_info->balance_wait_q); 3284 3285 return ret; 3286 out: 3287 if (bctl->flags & BTRFS_BALANCE_RESUME) 3288 __cancel_balance(fs_info); 3289 else { 3290 kfree(bctl); 3291 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3292 } 3293 return ret; 3294 } 3295 3296 static int balance_kthread(void *data) 3297 { 3298 struct btrfs_fs_info *fs_info = data; 3299 int ret = 0; 3300 3301 mutex_lock(&fs_info->volume_mutex); 3302 mutex_lock(&fs_info->balance_mutex); 3303 3304 if (fs_info->balance_ctl) { 3305 btrfs_info(fs_info, "continuing balance"); 3306 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3307 } 3308 3309 mutex_unlock(&fs_info->balance_mutex); 3310 mutex_unlock(&fs_info->volume_mutex); 3311 3312 return ret; 3313 } 3314 3315 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3316 { 3317 struct task_struct *tsk; 3318 3319 spin_lock(&fs_info->balance_lock); 3320 if (!fs_info->balance_ctl) { 3321 spin_unlock(&fs_info->balance_lock); 3322 return 0; 3323 } 3324 spin_unlock(&fs_info->balance_lock); 3325 3326 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 3327 btrfs_info(fs_info, "force skipping balance"); 3328 return 0; 3329 } 3330 3331 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3332 return PTR_ERR_OR_ZERO(tsk); 3333 } 3334 3335 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3336 { 3337 struct btrfs_balance_control *bctl; 3338 struct btrfs_balance_item *item; 3339 struct btrfs_disk_balance_args disk_bargs; 3340 struct btrfs_path *path; 3341 struct extent_buffer *leaf; 3342 struct btrfs_key key; 3343 int ret; 3344 3345 path = btrfs_alloc_path(); 3346 if (!path) 3347 return -ENOMEM; 3348 3349 key.objectid = BTRFS_BALANCE_OBJECTID; 3350 key.type = BTRFS_BALANCE_ITEM_KEY; 3351 key.offset = 0; 3352 3353 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3354 if (ret < 0) 3355 goto out; 3356 if (ret > 0) { /* ret = -ENOENT; */ 3357 ret = 0; 3358 goto out; 3359 } 3360 3361 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3362 if (!bctl) { 3363 ret = -ENOMEM; 3364 goto out; 3365 } 3366 3367 leaf = path->nodes[0]; 3368 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3369 3370 bctl->fs_info = fs_info; 3371 bctl->flags = btrfs_balance_flags(leaf, item); 3372 bctl->flags |= BTRFS_BALANCE_RESUME; 3373 3374 btrfs_balance_data(leaf, item, &disk_bargs); 3375 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 3376 btrfs_balance_meta(leaf, item, &disk_bargs); 3377 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 3378 btrfs_balance_sys(leaf, item, &disk_bargs); 3379 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 3380 3381 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); 3382 3383 mutex_lock(&fs_info->volume_mutex); 3384 mutex_lock(&fs_info->balance_mutex); 3385 3386 set_balance_control(bctl); 3387 3388 mutex_unlock(&fs_info->balance_mutex); 3389 mutex_unlock(&fs_info->volume_mutex); 3390 out: 3391 btrfs_free_path(path); 3392 return ret; 3393 } 3394 3395 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 3396 { 3397 int ret = 0; 3398 3399 mutex_lock(&fs_info->balance_mutex); 3400 if (!fs_info->balance_ctl) { 3401 mutex_unlock(&fs_info->balance_mutex); 3402 return -ENOTCONN; 3403 } 3404 3405 if (atomic_read(&fs_info->balance_running)) { 3406 atomic_inc(&fs_info->balance_pause_req); 3407 mutex_unlock(&fs_info->balance_mutex); 3408 3409 wait_event(fs_info->balance_wait_q, 3410 atomic_read(&fs_info->balance_running) == 0); 3411 3412 mutex_lock(&fs_info->balance_mutex); 3413 /* we are good with balance_ctl ripped off from under us */ 3414 BUG_ON(atomic_read(&fs_info->balance_running)); 3415 atomic_dec(&fs_info->balance_pause_req); 3416 } else { 3417 ret = -ENOTCONN; 3418 } 3419 3420 mutex_unlock(&fs_info->balance_mutex); 3421 return ret; 3422 } 3423 3424 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 3425 { 3426 if (fs_info->sb->s_flags & MS_RDONLY) 3427 return -EROFS; 3428 3429 mutex_lock(&fs_info->balance_mutex); 3430 if (!fs_info->balance_ctl) { 3431 mutex_unlock(&fs_info->balance_mutex); 3432 return -ENOTCONN; 3433 } 3434 3435 atomic_inc(&fs_info->balance_cancel_req); 3436 /* 3437 * if we are running just wait and return, balance item is 3438 * deleted in btrfs_balance in this case 3439 */ 3440 if (atomic_read(&fs_info->balance_running)) { 3441 mutex_unlock(&fs_info->balance_mutex); 3442 wait_event(fs_info->balance_wait_q, 3443 atomic_read(&fs_info->balance_running) == 0); 3444 mutex_lock(&fs_info->balance_mutex); 3445 } else { 3446 /* __cancel_balance needs volume_mutex */ 3447 mutex_unlock(&fs_info->balance_mutex); 3448 mutex_lock(&fs_info->volume_mutex); 3449 mutex_lock(&fs_info->balance_mutex); 3450 3451 if (fs_info->balance_ctl) 3452 __cancel_balance(fs_info); 3453 3454 mutex_unlock(&fs_info->volume_mutex); 3455 } 3456 3457 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 3458 atomic_dec(&fs_info->balance_cancel_req); 3459 mutex_unlock(&fs_info->balance_mutex); 3460 return 0; 3461 } 3462 3463 static int btrfs_uuid_scan_kthread(void *data) 3464 { 3465 struct btrfs_fs_info *fs_info = data; 3466 struct btrfs_root *root = fs_info->tree_root; 3467 struct btrfs_key key; 3468 struct btrfs_key max_key; 3469 struct btrfs_path *path = NULL; 3470 int ret = 0; 3471 struct extent_buffer *eb; 3472 int slot; 3473 struct btrfs_root_item root_item; 3474 u32 item_size; 3475 struct btrfs_trans_handle *trans = NULL; 3476 3477 path = btrfs_alloc_path(); 3478 if (!path) { 3479 ret = -ENOMEM; 3480 goto out; 3481 } 3482 3483 key.objectid = 0; 3484 key.type = BTRFS_ROOT_ITEM_KEY; 3485 key.offset = 0; 3486 3487 max_key.objectid = (u64)-1; 3488 max_key.type = BTRFS_ROOT_ITEM_KEY; 3489 max_key.offset = (u64)-1; 3490 3491 path->keep_locks = 1; 3492 3493 while (1) { 3494 ret = btrfs_search_forward(root, &key, path, 0); 3495 if (ret) { 3496 if (ret > 0) 3497 ret = 0; 3498 break; 3499 } 3500 3501 if (key.type != BTRFS_ROOT_ITEM_KEY || 3502 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 3503 key.objectid != BTRFS_FS_TREE_OBJECTID) || 3504 key.objectid > BTRFS_LAST_FREE_OBJECTID) 3505 goto skip; 3506 3507 eb = path->nodes[0]; 3508 slot = path->slots[0]; 3509 item_size = btrfs_item_size_nr(eb, slot); 3510 if (item_size < sizeof(root_item)) 3511 goto skip; 3512 3513 read_extent_buffer(eb, &root_item, 3514 btrfs_item_ptr_offset(eb, slot), 3515 (int)sizeof(root_item)); 3516 if (btrfs_root_refs(&root_item) == 0) 3517 goto skip; 3518 3519 if (!btrfs_is_empty_uuid(root_item.uuid) || 3520 !btrfs_is_empty_uuid(root_item.received_uuid)) { 3521 if (trans) 3522 goto update_tree; 3523 3524 btrfs_release_path(path); 3525 /* 3526 * 1 - subvol uuid item 3527 * 1 - received_subvol uuid item 3528 */ 3529 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 3530 if (IS_ERR(trans)) { 3531 ret = PTR_ERR(trans); 3532 break; 3533 } 3534 continue; 3535 } else { 3536 goto skip; 3537 } 3538 update_tree: 3539 if (!btrfs_is_empty_uuid(root_item.uuid)) { 3540 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3541 root_item.uuid, 3542 BTRFS_UUID_KEY_SUBVOL, 3543 key.objectid); 3544 if (ret < 0) { 3545 btrfs_warn(fs_info, "uuid_tree_add failed %d", 3546 ret); 3547 break; 3548 } 3549 } 3550 3551 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 3552 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3553 root_item.received_uuid, 3554 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3555 key.objectid); 3556 if (ret < 0) { 3557 btrfs_warn(fs_info, "uuid_tree_add failed %d", 3558 ret); 3559 break; 3560 } 3561 } 3562 3563 skip: 3564 if (trans) { 3565 ret = btrfs_end_transaction(trans, fs_info->uuid_root); 3566 trans = NULL; 3567 if (ret) 3568 break; 3569 } 3570 3571 btrfs_release_path(path); 3572 if (key.offset < (u64)-1) { 3573 key.offset++; 3574 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 3575 key.offset = 0; 3576 key.type = BTRFS_ROOT_ITEM_KEY; 3577 } else if (key.objectid < (u64)-1) { 3578 key.offset = 0; 3579 key.type = BTRFS_ROOT_ITEM_KEY; 3580 key.objectid++; 3581 } else { 3582 break; 3583 } 3584 cond_resched(); 3585 } 3586 3587 out: 3588 btrfs_free_path(path); 3589 if (trans && !IS_ERR(trans)) 3590 btrfs_end_transaction(trans, fs_info->uuid_root); 3591 if (ret) 3592 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 3593 else 3594 fs_info->update_uuid_tree_gen = 1; 3595 up(&fs_info->uuid_tree_rescan_sem); 3596 return 0; 3597 } 3598 3599 /* 3600 * Callback for btrfs_uuid_tree_iterate(). 3601 * returns: 3602 * 0 check succeeded, the entry is not outdated. 3603 * < 0 if an error occured. 3604 * > 0 if the check failed, which means the caller shall remove the entry. 3605 */ 3606 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 3607 u8 *uuid, u8 type, u64 subid) 3608 { 3609 struct btrfs_key key; 3610 int ret = 0; 3611 struct btrfs_root *subvol_root; 3612 3613 if (type != BTRFS_UUID_KEY_SUBVOL && 3614 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 3615 goto out; 3616 3617 key.objectid = subid; 3618 key.type = BTRFS_ROOT_ITEM_KEY; 3619 key.offset = (u64)-1; 3620 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 3621 if (IS_ERR(subvol_root)) { 3622 ret = PTR_ERR(subvol_root); 3623 if (ret == -ENOENT) 3624 ret = 1; 3625 goto out; 3626 } 3627 3628 switch (type) { 3629 case BTRFS_UUID_KEY_SUBVOL: 3630 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 3631 ret = 1; 3632 break; 3633 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 3634 if (memcmp(uuid, subvol_root->root_item.received_uuid, 3635 BTRFS_UUID_SIZE)) 3636 ret = 1; 3637 break; 3638 } 3639 3640 out: 3641 return ret; 3642 } 3643 3644 static int btrfs_uuid_rescan_kthread(void *data) 3645 { 3646 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 3647 int ret; 3648 3649 /* 3650 * 1st step is to iterate through the existing UUID tree and 3651 * to delete all entries that contain outdated data. 3652 * 2nd step is to add all missing entries to the UUID tree. 3653 */ 3654 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 3655 if (ret < 0) { 3656 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 3657 up(&fs_info->uuid_tree_rescan_sem); 3658 return ret; 3659 } 3660 return btrfs_uuid_scan_kthread(data); 3661 } 3662 3663 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 3664 { 3665 struct btrfs_trans_handle *trans; 3666 struct btrfs_root *tree_root = fs_info->tree_root; 3667 struct btrfs_root *uuid_root; 3668 struct task_struct *task; 3669 int ret; 3670 3671 /* 3672 * 1 - root node 3673 * 1 - root item 3674 */ 3675 trans = btrfs_start_transaction(tree_root, 2); 3676 if (IS_ERR(trans)) 3677 return PTR_ERR(trans); 3678 3679 uuid_root = btrfs_create_tree(trans, fs_info, 3680 BTRFS_UUID_TREE_OBJECTID); 3681 if (IS_ERR(uuid_root)) { 3682 btrfs_abort_transaction(trans, tree_root, 3683 PTR_ERR(uuid_root)); 3684 return PTR_ERR(uuid_root); 3685 } 3686 3687 fs_info->uuid_root = uuid_root; 3688 3689 ret = btrfs_commit_transaction(trans, tree_root); 3690 if (ret) 3691 return ret; 3692 3693 down(&fs_info->uuid_tree_rescan_sem); 3694 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 3695 if (IS_ERR(task)) { 3696 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3697 btrfs_warn(fs_info, "failed to start uuid_scan task"); 3698 up(&fs_info->uuid_tree_rescan_sem); 3699 return PTR_ERR(task); 3700 } 3701 3702 return 0; 3703 } 3704 3705 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3706 { 3707 struct task_struct *task; 3708 3709 down(&fs_info->uuid_tree_rescan_sem); 3710 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3711 if (IS_ERR(task)) { 3712 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3713 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3714 up(&fs_info->uuid_tree_rescan_sem); 3715 return PTR_ERR(task); 3716 } 3717 3718 return 0; 3719 } 3720 3721 /* 3722 * shrinking a device means finding all of the device extents past 3723 * the new size, and then following the back refs to the chunks. 3724 * The chunk relocation code actually frees the device extent 3725 */ 3726 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 3727 { 3728 struct btrfs_trans_handle *trans; 3729 struct btrfs_root *root = device->dev_root; 3730 struct btrfs_dev_extent *dev_extent = NULL; 3731 struct btrfs_path *path; 3732 u64 length; 3733 u64 chunk_tree; 3734 u64 chunk_objectid; 3735 u64 chunk_offset; 3736 int ret; 3737 int slot; 3738 int failed = 0; 3739 bool retried = false; 3740 struct extent_buffer *l; 3741 struct btrfs_key key; 3742 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3743 u64 old_total = btrfs_super_total_bytes(super_copy); 3744 u64 old_size = device->total_bytes; 3745 u64 diff = device->total_bytes - new_size; 3746 3747 if (device->is_tgtdev_for_dev_replace) 3748 return -EINVAL; 3749 3750 path = btrfs_alloc_path(); 3751 if (!path) 3752 return -ENOMEM; 3753 3754 path->reada = 2; 3755 3756 lock_chunks(root); 3757 3758 device->total_bytes = new_size; 3759 if (device->writeable) { 3760 device->fs_devices->total_rw_bytes -= diff; 3761 spin_lock(&root->fs_info->free_chunk_lock); 3762 root->fs_info->free_chunk_space -= diff; 3763 spin_unlock(&root->fs_info->free_chunk_lock); 3764 } 3765 unlock_chunks(root); 3766 3767 again: 3768 key.objectid = device->devid; 3769 key.offset = (u64)-1; 3770 key.type = BTRFS_DEV_EXTENT_KEY; 3771 3772 do { 3773 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3774 if (ret < 0) 3775 goto done; 3776 3777 ret = btrfs_previous_item(root, path, 0, key.type); 3778 if (ret < 0) 3779 goto done; 3780 if (ret) { 3781 ret = 0; 3782 btrfs_release_path(path); 3783 break; 3784 } 3785 3786 l = path->nodes[0]; 3787 slot = path->slots[0]; 3788 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 3789 3790 if (key.objectid != device->devid) { 3791 btrfs_release_path(path); 3792 break; 3793 } 3794 3795 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3796 length = btrfs_dev_extent_length(l, dev_extent); 3797 3798 if (key.offset + length <= new_size) { 3799 btrfs_release_path(path); 3800 break; 3801 } 3802 3803 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 3804 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 3805 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3806 btrfs_release_path(path); 3807 3808 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, 3809 chunk_offset); 3810 if (ret && ret != -ENOSPC) 3811 goto done; 3812 if (ret == -ENOSPC) 3813 failed++; 3814 } while (key.offset-- > 0); 3815 3816 if (failed && !retried) { 3817 failed = 0; 3818 retried = true; 3819 goto again; 3820 } else if (failed && retried) { 3821 ret = -ENOSPC; 3822 lock_chunks(root); 3823 3824 device->total_bytes = old_size; 3825 if (device->writeable) 3826 device->fs_devices->total_rw_bytes += diff; 3827 spin_lock(&root->fs_info->free_chunk_lock); 3828 root->fs_info->free_chunk_space += diff; 3829 spin_unlock(&root->fs_info->free_chunk_lock); 3830 unlock_chunks(root); 3831 goto done; 3832 } 3833 3834 /* Shrinking succeeded, else we would be at "done". */ 3835 trans = btrfs_start_transaction(root, 0); 3836 if (IS_ERR(trans)) { 3837 ret = PTR_ERR(trans); 3838 goto done; 3839 } 3840 3841 lock_chunks(root); 3842 3843 device->disk_total_bytes = new_size; 3844 /* Now btrfs_update_device() will change the on-disk size. */ 3845 ret = btrfs_update_device(trans, device); 3846 if (ret) { 3847 unlock_chunks(root); 3848 btrfs_end_transaction(trans, root); 3849 goto done; 3850 } 3851 WARN_ON(diff > old_total); 3852 btrfs_set_super_total_bytes(super_copy, old_total - diff); 3853 unlock_chunks(root); 3854 btrfs_end_transaction(trans, root); 3855 done: 3856 btrfs_free_path(path); 3857 return ret; 3858 } 3859 3860 static int btrfs_add_system_chunk(struct btrfs_root *root, 3861 struct btrfs_key *key, 3862 struct btrfs_chunk *chunk, int item_size) 3863 { 3864 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3865 struct btrfs_disk_key disk_key; 3866 u32 array_size; 3867 u8 *ptr; 3868 3869 array_size = btrfs_super_sys_array_size(super_copy); 3870 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 3871 return -EFBIG; 3872 3873 ptr = super_copy->sys_chunk_array + array_size; 3874 btrfs_cpu_key_to_disk(&disk_key, key); 3875 memcpy(ptr, &disk_key, sizeof(disk_key)); 3876 ptr += sizeof(disk_key); 3877 memcpy(ptr, chunk, item_size); 3878 item_size += sizeof(disk_key); 3879 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 3880 return 0; 3881 } 3882 3883 /* 3884 * sort the devices in descending order by max_avail, total_avail 3885 */ 3886 static int btrfs_cmp_device_info(const void *a, const void *b) 3887 { 3888 const struct btrfs_device_info *di_a = a; 3889 const struct btrfs_device_info *di_b = b; 3890 3891 if (di_a->max_avail > di_b->max_avail) 3892 return -1; 3893 if (di_a->max_avail < di_b->max_avail) 3894 return 1; 3895 if (di_a->total_avail > di_b->total_avail) 3896 return -1; 3897 if (di_a->total_avail < di_b->total_avail) 3898 return 1; 3899 return 0; 3900 } 3901 3902 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 3903 [BTRFS_RAID_RAID10] = { 3904 .sub_stripes = 2, 3905 .dev_stripes = 1, 3906 .devs_max = 0, /* 0 == as many as possible */ 3907 .devs_min = 4, 3908 .devs_increment = 2, 3909 .ncopies = 2, 3910 }, 3911 [BTRFS_RAID_RAID1] = { 3912 .sub_stripes = 1, 3913 .dev_stripes = 1, 3914 .devs_max = 2, 3915 .devs_min = 2, 3916 .devs_increment = 2, 3917 .ncopies = 2, 3918 }, 3919 [BTRFS_RAID_DUP] = { 3920 .sub_stripes = 1, 3921 .dev_stripes = 2, 3922 .devs_max = 1, 3923 .devs_min = 1, 3924 .devs_increment = 1, 3925 .ncopies = 2, 3926 }, 3927 [BTRFS_RAID_RAID0] = { 3928 .sub_stripes = 1, 3929 .dev_stripes = 1, 3930 .devs_max = 0, 3931 .devs_min = 2, 3932 .devs_increment = 1, 3933 .ncopies = 1, 3934 }, 3935 [BTRFS_RAID_SINGLE] = { 3936 .sub_stripes = 1, 3937 .dev_stripes = 1, 3938 .devs_max = 1, 3939 .devs_min = 1, 3940 .devs_increment = 1, 3941 .ncopies = 1, 3942 }, 3943 [BTRFS_RAID_RAID5] = { 3944 .sub_stripes = 1, 3945 .dev_stripes = 1, 3946 .devs_max = 0, 3947 .devs_min = 2, 3948 .devs_increment = 1, 3949 .ncopies = 2, 3950 }, 3951 [BTRFS_RAID_RAID6] = { 3952 .sub_stripes = 1, 3953 .dev_stripes = 1, 3954 .devs_max = 0, 3955 .devs_min = 3, 3956 .devs_increment = 1, 3957 .ncopies = 3, 3958 }, 3959 }; 3960 3961 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) 3962 { 3963 /* TODO allow them to set a preferred stripe size */ 3964 return 64 * 1024; 3965 } 3966 3967 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 3968 { 3969 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))) 3970 return; 3971 3972 btrfs_set_fs_incompat(info, RAID56); 3973 } 3974 3975 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 3976 struct btrfs_root *extent_root, u64 start, 3977 u64 type) 3978 { 3979 struct btrfs_fs_info *info = extent_root->fs_info; 3980 struct btrfs_fs_devices *fs_devices = info->fs_devices; 3981 struct list_head *cur; 3982 struct map_lookup *map = NULL; 3983 struct extent_map_tree *em_tree; 3984 struct extent_map *em; 3985 struct btrfs_device_info *devices_info = NULL; 3986 u64 total_avail; 3987 int num_stripes; /* total number of stripes to allocate */ 3988 int data_stripes; /* number of stripes that count for 3989 block group size */ 3990 int sub_stripes; /* sub_stripes info for map */ 3991 int dev_stripes; /* stripes per dev */ 3992 int devs_max; /* max devs to use */ 3993 int devs_min; /* min devs needed */ 3994 int devs_increment; /* ndevs has to be a multiple of this */ 3995 int ncopies; /* how many copies to data has */ 3996 int ret; 3997 u64 max_stripe_size; 3998 u64 max_chunk_size; 3999 u64 stripe_size; 4000 u64 num_bytes; 4001 u64 raid_stripe_len = BTRFS_STRIPE_LEN; 4002 int ndevs; 4003 int i; 4004 int j; 4005 int index; 4006 4007 BUG_ON(!alloc_profile_is_valid(type, 0)); 4008 4009 if (list_empty(&fs_devices->alloc_list)) 4010 return -ENOSPC; 4011 4012 index = __get_raid_index(type); 4013 4014 sub_stripes = btrfs_raid_array[index].sub_stripes; 4015 dev_stripes = btrfs_raid_array[index].dev_stripes; 4016 devs_max = btrfs_raid_array[index].devs_max; 4017 devs_min = btrfs_raid_array[index].devs_min; 4018 devs_increment = btrfs_raid_array[index].devs_increment; 4019 ncopies = btrfs_raid_array[index].ncopies; 4020 4021 if (type & BTRFS_BLOCK_GROUP_DATA) { 4022 max_stripe_size = 1024 * 1024 * 1024; 4023 max_chunk_size = 10 * max_stripe_size; 4024 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4025 /* for larger filesystems, use larger metadata chunks */ 4026 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) 4027 max_stripe_size = 1024 * 1024 * 1024; 4028 else 4029 max_stripe_size = 256 * 1024 * 1024; 4030 max_chunk_size = max_stripe_size; 4031 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4032 max_stripe_size = 32 * 1024 * 1024; 4033 max_chunk_size = 2 * max_stripe_size; 4034 } else { 4035 btrfs_err(info, "invalid chunk type 0x%llx requested\n", 4036 type); 4037 BUG_ON(1); 4038 } 4039 4040 /* we don't want a chunk larger than 10% of writeable space */ 4041 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4042 max_chunk_size); 4043 4044 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices, 4045 GFP_NOFS); 4046 if (!devices_info) 4047 return -ENOMEM; 4048 4049 cur = fs_devices->alloc_list.next; 4050 4051 /* 4052 * in the first pass through the devices list, we gather information 4053 * about the available holes on each device. 4054 */ 4055 ndevs = 0; 4056 while (cur != &fs_devices->alloc_list) { 4057 struct btrfs_device *device; 4058 u64 max_avail; 4059 u64 dev_offset; 4060 4061 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 4062 4063 cur = cur->next; 4064 4065 if (!device->writeable) { 4066 WARN(1, KERN_ERR 4067 "BTRFS: read-only device in alloc_list\n"); 4068 continue; 4069 } 4070 4071 if (!device->in_fs_metadata || 4072 device->is_tgtdev_for_dev_replace) 4073 continue; 4074 4075 if (device->total_bytes > device->bytes_used) 4076 total_avail = device->total_bytes - device->bytes_used; 4077 else 4078 total_avail = 0; 4079 4080 /* If there is no space on this device, skip it. */ 4081 if (total_avail == 0) 4082 continue; 4083 4084 ret = find_free_dev_extent(trans, device, 4085 max_stripe_size * dev_stripes, 4086 &dev_offset, &max_avail); 4087 if (ret && ret != -ENOSPC) 4088 goto error; 4089 4090 if (ret == 0) 4091 max_avail = max_stripe_size * dev_stripes; 4092 4093 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4094 continue; 4095 4096 if (ndevs == fs_devices->rw_devices) { 4097 WARN(1, "%s: found more than %llu devices\n", 4098 __func__, fs_devices->rw_devices); 4099 break; 4100 } 4101 devices_info[ndevs].dev_offset = dev_offset; 4102 devices_info[ndevs].max_avail = max_avail; 4103 devices_info[ndevs].total_avail = total_avail; 4104 devices_info[ndevs].dev = device; 4105 ++ndevs; 4106 } 4107 4108 /* 4109 * now sort the devices by hole size / available space 4110 */ 4111 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4112 btrfs_cmp_device_info, NULL); 4113 4114 /* round down to number of usable stripes */ 4115 ndevs -= ndevs % devs_increment; 4116 4117 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4118 ret = -ENOSPC; 4119 goto error; 4120 } 4121 4122 if (devs_max && ndevs > devs_max) 4123 ndevs = devs_max; 4124 /* 4125 * the primary goal is to maximize the number of stripes, so use as many 4126 * devices as possible, even if the stripes are not maximum sized. 4127 */ 4128 stripe_size = devices_info[ndevs-1].max_avail; 4129 num_stripes = ndevs * dev_stripes; 4130 4131 /* 4132 * this will have to be fixed for RAID1 and RAID10 over 4133 * more drives 4134 */ 4135 data_stripes = num_stripes / ncopies; 4136 4137 if (type & BTRFS_BLOCK_GROUP_RAID5) { 4138 raid_stripe_len = find_raid56_stripe_len(ndevs - 1, 4139 btrfs_super_stripesize(info->super_copy)); 4140 data_stripes = num_stripes - 1; 4141 } 4142 if (type & BTRFS_BLOCK_GROUP_RAID6) { 4143 raid_stripe_len = find_raid56_stripe_len(ndevs - 2, 4144 btrfs_super_stripesize(info->super_copy)); 4145 data_stripes = num_stripes - 2; 4146 } 4147 4148 /* 4149 * Use the number of data stripes to figure out how big this chunk 4150 * is really going to be in terms of logical address space, 4151 * and compare that answer with the max chunk size 4152 */ 4153 if (stripe_size * data_stripes > max_chunk_size) { 4154 u64 mask = (1ULL << 24) - 1; 4155 stripe_size = max_chunk_size; 4156 do_div(stripe_size, data_stripes); 4157 4158 /* bump the answer up to a 16MB boundary */ 4159 stripe_size = (stripe_size + mask) & ~mask; 4160 4161 /* but don't go higher than the limits we found 4162 * while searching for free extents 4163 */ 4164 if (stripe_size > devices_info[ndevs-1].max_avail) 4165 stripe_size = devices_info[ndevs-1].max_avail; 4166 } 4167 4168 do_div(stripe_size, dev_stripes); 4169 4170 /* align to BTRFS_STRIPE_LEN */ 4171 do_div(stripe_size, raid_stripe_len); 4172 stripe_size *= raid_stripe_len; 4173 4174 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4175 if (!map) { 4176 ret = -ENOMEM; 4177 goto error; 4178 } 4179 map->num_stripes = num_stripes; 4180 4181 for (i = 0; i < ndevs; ++i) { 4182 for (j = 0; j < dev_stripes; ++j) { 4183 int s = i * dev_stripes + j; 4184 map->stripes[s].dev = devices_info[i].dev; 4185 map->stripes[s].physical = devices_info[i].dev_offset + 4186 j * stripe_size; 4187 } 4188 } 4189 map->sector_size = extent_root->sectorsize; 4190 map->stripe_len = raid_stripe_len; 4191 map->io_align = raid_stripe_len; 4192 map->io_width = raid_stripe_len; 4193 map->type = type; 4194 map->sub_stripes = sub_stripes; 4195 4196 num_bytes = stripe_size * data_stripes; 4197 4198 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 4199 4200 em = alloc_extent_map(); 4201 if (!em) { 4202 ret = -ENOMEM; 4203 goto error; 4204 } 4205 em->bdev = (struct block_device *)map; 4206 em->start = start; 4207 em->len = num_bytes; 4208 em->block_start = 0; 4209 em->block_len = em->len; 4210 em->orig_block_len = stripe_size; 4211 4212 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4213 write_lock(&em_tree->lock); 4214 ret = add_extent_mapping(em_tree, em, 0); 4215 if (!ret) { 4216 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4217 atomic_inc(&em->refs); 4218 } 4219 write_unlock(&em_tree->lock); 4220 if (ret) { 4221 free_extent_map(em); 4222 goto error; 4223 } 4224 4225 ret = btrfs_make_block_group(trans, extent_root, 0, type, 4226 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4227 start, num_bytes); 4228 if (ret) 4229 goto error_del_extent; 4230 4231 free_extent_map(em); 4232 check_raid56_incompat_flag(extent_root->fs_info, type); 4233 4234 kfree(devices_info); 4235 return 0; 4236 4237 error_del_extent: 4238 write_lock(&em_tree->lock); 4239 remove_extent_mapping(em_tree, em); 4240 write_unlock(&em_tree->lock); 4241 4242 /* One for our allocation */ 4243 free_extent_map(em); 4244 /* One for the tree reference */ 4245 free_extent_map(em); 4246 error: 4247 kfree(map); 4248 kfree(devices_info); 4249 return ret; 4250 } 4251 4252 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4253 struct btrfs_root *extent_root, 4254 u64 chunk_offset, u64 chunk_size) 4255 { 4256 struct btrfs_key key; 4257 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 4258 struct btrfs_device *device; 4259 struct btrfs_chunk *chunk; 4260 struct btrfs_stripe *stripe; 4261 struct extent_map_tree *em_tree; 4262 struct extent_map *em; 4263 struct map_lookup *map; 4264 size_t item_size; 4265 u64 dev_offset; 4266 u64 stripe_size; 4267 int i = 0; 4268 int ret; 4269 4270 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4271 read_lock(&em_tree->lock); 4272 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size); 4273 read_unlock(&em_tree->lock); 4274 4275 if (!em) { 4276 btrfs_crit(extent_root->fs_info, "unable to find logical " 4277 "%Lu len %Lu", chunk_offset, chunk_size); 4278 return -EINVAL; 4279 } 4280 4281 if (em->start != chunk_offset || em->len != chunk_size) { 4282 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted" 4283 " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset, 4284 chunk_size, em->start, em->len); 4285 free_extent_map(em); 4286 return -EINVAL; 4287 } 4288 4289 map = (struct map_lookup *)em->bdev; 4290 item_size = btrfs_chunk_item_size(map->num_stripes); 4291 stripe_size = em->orig_block_len; 4292 4293 chunk = kzalloc(item_size, GFP_NOFS); 4294 if (!chunk) { 4295 ret = -ENOMEM; 4296 goto out; 4297 } 4298 4299 for (i = 0; i < map->num_stripes; i++) { 4300 device = map->stripes[i].dev; 4301 dev_offset = map->stripes[i].physical; 4302 4303 device->bytes_used += stripe_size; 4304 ret = btrfs_update_device(trans, device); 4305 if (ret) 4306 goto out; 4307 ret = btrfs_alloc_dev_extent(trans, device, 4308 chunk_root->root_key.objectid, 4309 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4310 chunk_offset, dev_offset, 4311 stripe_size); 4312 if (ret) 4313 goto out; 4314 } 4315 4316 spin_lock(&extent_root->fs_info->free_chunk_lock); 4317 extent_root->fs_info->free_chunk_space -= (stripe_size * 4318 map->num_stripes); 4319 spin_unlock(&extent_root->fs_info->free_chunk_lock); 4320 4321 stripe = &chunk->stripe; 4322 for (i = 0; i < map->num_stripes; i++) { 4323 device = map->stripes[i].dev; 4324 dev_offset = map->stripes[i].physical; 4325 4326 btrfs_set_stack_stripe_devid(stripe, device->devid); 4327 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4328 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4329 stripe++; 4330 } 4331 4332 btrfs_set_stack_chunk_length(chunk, chunk_size); 4333 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4334 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4335 btrfs_set_stack_chunk_type(chunk, map->type); 4336 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4337 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4338 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4339 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 4340 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4341 4342 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4343 key.type = BTRFS_CHUNK_ITEM_KEY; 4344 key.offset = chunk_offset; 4345 4346 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4347 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4348 /* 4349 * TODO: Cleanup of inserted chunk root in case of 4350 * failure. 4351 */ 4352 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 4353 item_size); 4354 } 4355 4356 out: 4357 kfree(chunk); 4358 free_extent_map(em); 4359 return ret; 4360 } 4361 4362 /* 4363 * Chunk allocation falls into two parts. The first part does works 4364 * that make the new allocated chunk useable, but not do any operation 4365 * that modifies the chunk tree. The second part does the works that 4366 * require modifying the chunk tree. This division is important for the 4367 * bootstrap process of adding storage to a seed btrfs. 4368 */ 4369 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4370 struct btrfs_root *extent_root, u64 type) 4371 { 4372 u64 chunk_offset; 4373 4374 chunk_offset = find_next_chunk(extent_root->fs_info); 4375 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type); 4376 } 4377 4378 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 4379 struct btrfs_root *root, 4380 struct btrfs_device *device) 4381 { 4382 u64 chunk_offset; 4383 u64 sys_chunk_offset; 4384 u64 alloc_profile; 4385 struct btrfs_fs_info *fs_info = root->fs_info; 4386 struct btrfs_root *extent_root = fs_info->extent_root; 4387 int ret; 4388 4389 chunk_offset = find_next_chunk(fs_info); 4390 alloc_profile = btrfs_get_alloc_profile(extent_root, 0); 4391 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset, 4392 alloc_profile); 4393 if (ret) 4394 return ret; 4395 4396 sys_chunk_offset = find_next_chunk(root->fs_info); 4397 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); 4398 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset, 4399 alloc_profile); 4400 if (ret) { 4401 btrfs_abort_transaction(trans, root, ret); 4402 goto out; 4403 } 4404 4405 ret = btrfs_add_device(trans, fs_info->chunk_root, device); 4406 if (ret) 4407 btrfs_abort_transaction(trans, root, ret); 4408 out: 4409 return ret; 4410 } 4411 4412 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 4413 { 4414 struct extent_map *em; 4415 struct map_lookup *map; 4416 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4417 int readonly = 0; 4418 int i; 4419 4420 read_lock(&map_tree->map_tree.lock); 4421 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 4422 read_unlock(&map_tree->map_tree.lock); 4423 if (!em) 4424 return 1; 4425 4426 if (btrfs_test_opt(root, DEGRADED)) { 4427 free_extent_map(em); 4428 return 0; 4429 } 4430 4431 map = (struct map_lookup *)em->bdev; 4432 for (i = 0; i < map->num_stripes; i++) { 4433 if (!map->stripes[i].dev->writeable) { 4434 readonly = 1; 4435 break; 4436 } 4437 } 4438 free_extent_map(em); 4439 return readonly; 4440 } 4441 4442 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 4443 { 4444 extent_map_tree_init(&tree->map_tree); 4445 } 4446 4447 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 4448 { 4449 struct extent_map *em; 4450 4451 while (1) { 4452 write_lock(&tree->map_tree.lock); 4453 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 4454 if (em) 4455 remove_extent_mapping(&tree->map_tree, em); 4456 write_unlock(&tree->map_tree.lock); 4457 if (!em) 4458 break; 4459 kfree(em->bdev); 4460 /* once for us */ 4461 free_extent_map(em); 4462 /* once for the tree */ 4463 free_extent_map(em); 4464 } 4465 } 4466 4467 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 4468 { 4469 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 4470 struct extent_map *em; 4471 struct map_lookup *map; 4472 struct extent_map_tree *em_tree = &map_tree->map_tree; 4473 int ret; 4474 4475 read_lock(&em_tree->lock); 4476 em = lookup_extent_mapping(em_tree, logical, len); 4477 read_unlock(&em_tree->lock); 4478 4479 /* 4480 * We could return errors for these cases, but that could get ugly and 4481 * we'd probably do the same thing which is just not do anything else 4482 * and exit, so return 1 so the callers don't try to use other copies. 4483 */ 4484 if (!em) { 4485 btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical, 4486 logical+len); 4487 return 1; 4488 } 4489 4490 if (em->start > logical || em->start + em->len < logical) { 4491 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got " 4492 "%Lu-%Lu\n", logical, logical+len, em->start, 4493 em->start + em->len); 4494 free_extent_map(em); 4495 return 1; 4496 } 4497 4498 map = (struct map_lookup *)em->bdev; 4499 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 4500 ret = map->num_stripes; 4501 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 4502 ret = map->sub_stripes; 4503 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 4504 ret = 2; 4505 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 4506 ret = 3; 4507 else 4508 ret = 1; 4509 free_extent_map(em); 4510 4511 btrfs_dev_replace_lock(&fs_info->dev_replace); 4512 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) 4513 ret++; 4514 btrfs_dev_replace_unlock(&fs_info->dev_replace); 4515 4516 return ret; 4517 } 4518 4519 unsigned long btrfs_full_stripe_len(struct btrfs_root *root, 4520 struct btrfs_mapping_tree *map_tree, 4521 u64 logical) 4522 { 4523 struct extent_map *em; 4524 struct map_lookup *map; 4525 struct extent_map_tree *em_tree = &map_tree->map_tree; 4526 unsigned long len = root->sectorsize; 4527 4528 read_lock(&em_tree->lock); 4529 em = lookup_extent_mapping(em_tree, logical, len); 4530 read_unlock(&em_tree->lock); 4531 BUG_ON(!em); 4532 4533 BUG_ON(em->start > logical || em->start + em->len < logical); 4534 map = (struct map_lookup *)em->bdev; 4535 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 4536 BTRFS_BLOCK_GROUP_RAID6)) { 4537 len = map->stripe_len * nr_data_stripes(map); 4538 } 4539 free_extent_map(em); 4540 return len; 4541 } 4542 4543 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, 4544 u64 logical, u64 len, int mirror_num) 4545 { 4546 struct extent_map *em; 4547 struct map_lookup *map; 4548 struct extent_map_tree *em_tree = &map_tree->map_tree; 4549 int ret = 0; 4550 4551 read_lock(&em_tree->lock); 4552 em = lookup_extent_mapping(em_tree, logical, len); 4553 read_unlock(&em_tree->lock); 4554 BUG_ON(!em); 4555 4556 BUG_ON(em->start > logical || em->start + em->len < logical); 4557 map = (struct map_lookup *)em->bdev; 4558 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 4559 BTRFS_BLOCK_GROUP_RAID6)) 4560 ret = 1; 4561 free_extent_map(em); 4562 return ret; 4563 } 4564 4565 static int find_live_mirror(struct btrfs_fs_info *fs_info, 4566 struct map_lookup *map, int first, int num, 4567 int optimal, int dev_replace_is_ongoing) 4568 { 4569 int i; 4570 int tolerance; 4571 struct btrfs_device *srcdev; 4572 4573 if (dev_replace_is_ongoing && 4574 fs_info->dev_replace.cont_reading_from_srcdev_mode == 4575 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 4576 srcdev = fs_info->dev_replace.srcdev; 4577 else 4578 srcdev = NULL; 4579 4580 /* 4581 * try to avoid the drive that is the source drive for a 4582 * dev-replace procedure, only choose it if no other non-missing 4583 * mirror is available 4584 */ 4585 for (tolerance = 0; tolerance < 2; tolerance++) { 4586 if (map->stripes[optimal].dev->bdev && 4587 (tolerance || map->stripes[optimal].dev != srcdev)) 4588 return optimal; 4589 for (i = first; i < first + num; i++) { 4590 if (map->stripes[i].dev->bdev && 4591 (tolerance || map->stripes[i].dev != srcdev)) 4592 return i; 4593 } 4594 } 4595 4596 /* we couldn't find one that doesn't fail. Just return something 4597 * and the io error handling code will clean up eventually 4598 */ 4599 return optimal; 4600 } 4601 4602 static inline int parity_smaller(u64 a, u64 b) 4603 { 4604 return a > b; 4605 } 4606 4607 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 4608 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map) 4609 { 4610 struct btrfs_bio_stripe s; 4611 int i; 4612 u64 l; 4613 int again = 1; 4614 4615 while (again) { 4616 again = 0; 4617 for (i = 0; i < bbio->num_stripes - 1; i++) { 4618 if (parity_smaller(raid_map[i], raid_map[i+1])) { 4619 s = bbio->stripes[i]; 4620 l = raid_map[i]; 4621 bbio->stripes[i] = bbio->stripes[i+1]; 4622 raid_map[i] = raid_map[i+1]; 4623 bbio->stripes[i+1] = s; 4624 raid_map[i+1] = l; 4625 again = 1; 4626 } 4627 } 4628 } 4629 } 4630 4631 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 4632 u64 logical, u64 *length, 4633 struct btrfs_bio **bbio_ret, 4634 int mirror_num, u64 **raid_map_ret) 4635 { 4636 struct extent_map *em; 4637 struct map_lookup *map; 4638 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 4639 struct extent_map_tree *em_tree = &map_tree->map_tree; 4640 u64 offset; 4641 u64 stripe_offset; 4642 u64 stripe_end_offset; 4643 u64 stripe_nr; 4644 u64 stripe_nr_orig; 4645 u64 stripe_nr_end; 4646 u64 stripe_len; 4647 u64 *raid_map = NULL; 4648 int stripe_index; 4649 int i; 4650 int ret = 0; 4651 int num_stripes; 4652 int max_errors = 0; 4653 struct btrfs_bio *bbio = NULL; 4654 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 4655 int dev_replace_is_ongoing = 0; 4656 int num_alloc_stripes; 4657 int patch_the_first_stripe_for_dev_replace = 0; 4658 u64 physical_to_patch_in_first_stripe = 0; 4659 u64 raid56_full_stripe_start = (u64)-1; 4660 4661 read_lock(&em_tree->lock); 4662 em = lookup_extent_mapping(em_tree, logical, *length); 4663 read_unlock(&em_tree->lock); 4664 4665 if (!em) { 4666 btrfs_crit(fs_info, "unable to find logical %llu len %llu", 4667 logical, *length); 4668 return -EINVAL; 4669 } 4670 4671 if (em->start > logical || em->start + em->len < logical) { 4672 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, " 4673 "found %Lu-%Lu\n", logical, em->start, 4674 em->start + em->len); 4675 free_extent_map(em); 4676 return -EINVAL; 4677 } 4678 4679 map = (struct map_lookup *)em->bdev; 4680 offset = logical - em->start; 4681 4682 stripe_len = map->stripe_len; 4683 stripe_nr = offset; 4684 /* 4685 * stripe_nr counts the total number of stripes we have to stride 4686 * to get to this block 4687 */ 4688 do_div(stripe_nr, stripe_len); 4689 4690 stripe_offset = stripe_nr * stripe_len; 4691 BUG_ON(offset < stripe_offset); 4692 4693 /* stripe_offset is the offset of this block in its stripe*/ 4694 stripe_offset = offset - stripe_offset; 4695 4696 /* if we're here for raid56, we need to know the stripe aligned start */ 4697 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { 4698 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 4699 raid56_full_stripe_start = offset; 4700 4701 /* allow a write of a full stripe, but make sure we don't 4702 * allow straddling of stripes 4703 */ 4704 do_div(raid56_full_stripe_start, full_stripe_len); 4705 raid56_full_stripe_start *= full_stripe_len; 4706 } 4707 4708 if (rw & REQ_DISCARD) { 4709 /* we don't discard raid56 yet */ 4710 if (map->type & 4711 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { 4712 ret = -EOPNOTSUPP; 4713 goto out; 4714 } 4715 *length = min_t(u64, em->len - offset, *length); 4716 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 4717 u64 max_len; 4718 /* For writes to RAID[56], allow a full stripeset across all disks. 4719 For other RAID types and for RAID[56] reads, just allow a single 4720 stripe (on a single disk). */ 4721 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) && 4722 (rw & REQ_WRITE)) { 4723 max_len = stripe_len * nr_data_stripes(map) - 4724 (offset - raid56_full_stripe_start); 4725 } else { 4726 /* we limit the length of each bio to what fits in a stripe */ 4727 max_len = stripe_len - stripe_offset; 4728 } 4729 *length = min_t(u64, em->len - offset, max_len); 4730 } else { 4731 *length = em->len - offset; 4732 } 4733 4734 /* This is for when we're called from btrfs_merge_bio_hook() and all 4735 it cares about is the length */ 4736 if (!bbio_ret) 4737 goto out; 4738 4739 btrfs_dev_replace_lock(dev_replace); 4740 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 4741 if (!dev_replace_is_ongoing) 4742 btrfs_dev_replace_unlock(dev_replace); 4743 4744 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 4745 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) && 4746 dev_replace->tgtdev != NULL) { 4747 /* 4748 * in dev-replace case, for repair case (that's the only 4749 * case where the mirror is selected explicitly when 4750 * calling btrfs_map_block), blocks left of the left cursor 4751 * can also be read from the target drive. 4752 * For REQ_GET_READ_MIRRORS, the target drive is added as 4753 * the last one to the array of stripes. For READ, it also 4754 * needs to be supported using the same mirror number. 4755 * If the requested block is not left of the left cursor, 4756 * EIO is returned. This can happen because btrfs_num_copies() 4757 * returns one more in the dev-replace case. 4758 */ 4759 u64 tmp_length = *length; 4760 struct btrfs_bio *tmp_bbio = NULL; 4761 int tmp_num_stripes; 4762 u64 srcdev_devid = dev_replace->srcdev->devid; 4763 int index_srcdev = 0; 4764 int found = 0; 4765 u64 physical_of_found = 0; 4766 4767 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, 4768 logical, &tmp_length, &tmp_bbio, 0, NULL); 4769 if (ret) { 4770 WARN_ON(tmp_bbio != NULL); 4771 goto out; 4772 } 4773 4774 tmp_num_stripes = tmp_bbio->num_stripes; 4775 if (mirror_num > tmp_num_stripes) { 4776 /* 4777 * REQ_GET_READ_MIRRORS does not contain this 4778 * mirror, that means that the requested area 4779 * is not left of the left cursor 4780 */ 4781 ret = -EIO; 4782 kfree(tmp_bbio); 4783 goto out; 4784 } 4785 4786 /* 4787 * process the rest of the function using the mirror_num 4788 * of the source drive. Therefore look it up first. 4789 * At the end, patch the device pointer to the one of the 4790 * target drive. 4791 */ 4792 for (i = 0; i < tmp_num_stripes; i++) { 4793 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) { 4794 /* 4795 * In case of DUP, in order to keep it 4796 * simple, only add the mirror with the 4797 * lowest physical address 4798 */ 4799 if (found && 4800 physical_of_found <= 4801 tmp_bbio->stripes[i].physical) 4802 continue; 4803 index_srcdev = i; 4804 found = 1; 4805 physical_of_found = 4806 tmp_bbio->stripes[i].physical; 4807 } 4808 } 4809 4810 if (found) { 4811 mirror_num = index_srcdev + 1; 4812 patch_the_first_stripe_for_dev_replace = 1; 4813 physical_to_patch_in_first_stripe = physical_of_found; 4814 } else { 4815 WARN_ON(1); 4816 ret = -EIO; 4817 kfree(tmp_bbio); 4818 goto out; 4819 } 4820 4821 kfree(tmp_bbio); 4822 } else if (mirror_num > map->num_stripes) { 4823 mirror_num = 0; 4824 } 4825 4826 num_stripes = 1; 4827 stripe_index = 0; 4828 stripe_nr_orig = stripe_nr; 4829 stripe_nr_end = ALIGN(offset + *length, map->stripe_len); 4830 do_div(stripe_nr_end, map->stripe_len); 4831 stripe_end_offset = stripe_nr_end * map->stripe_len - 4832 (offset + *length); 4833 4834 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 4835 if (rw & REQ_DISCARD) 4836 num_stripes = min_t(u64, map->num_stripes, 4837 stripe_nr_end - stripe_nr_orig); 4838 stripe_index = do_div(stripe_nr, map->num_stripes); 4839 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 4840 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) 4841 num_stripes = map->num_stripes; 4842 else if (mirror_num) 4843 stripe_index = mirror_num - 1; 4844 else { 4845 stripe_index = find_live_mirror(fs_info, map, 0, 4846 map->num_stripes, 4847 current->pid % map->num_stripes, 4848 dev_replace_is_ongoing); 4849 mirror_num = stripe_index + 1; 4850 } 4851 4852 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 4853 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) { 4854 num_stripes = map->num_stripes; 4855 } else if (mirror_num) { 4856 stripe_index = mirror_num - 1; 4857 } else { 4858 mirror_num = 1; 4859 } 4860 4861 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 4862 int factor = map->num_stripes / map->sub_stripes; 4863 4864 stripe_index = do_div(stripe_nr, factor); 4865 stripe_index *= map->sub_stripes; 4866 4867 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 4868 num_stripes = map->sub_stripes; 4869 else if (rw & REQ_DISCARD) 4870 num_stripes = min_t(u64, map->sub_stripes * 4871 (stripe_nr_end - stripe_nr_orig), 4872 map->num_stripes); 4873 else if (mirror_num) 4874 stripe_index += mirror_num - 1; 4875 else { 4876 int old_stripe_index = stripe_index; 4877 stripe_index = find_live_mirror(fs_info, map, 4878 stripe_index, 4879 map->sub_stripes, stripe_index + 4880 current->pid % map->sub_stripes, 4881 dev_replace_is_ongoing); 4882 mirror_num = stripe_index - old_stripe_index + 1; 4883 } 4884 4885 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 4886 BTRFS_BLOCK_GROUP_RAID6)) { 4887 u64 tmp; 4888 4889 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1) 4890 && raid_map_ret) { 4891 int i, rot; 4892 4893 /* push stripe_nr back to the start of the full stripe */ 4894 stripe_nr = raid56_full_stripe_start; 4895 do_div(stripe_nr, stripe_len); 4896 4897 stripe_index = do_div(stripe_nr, nr_data_stripes(map)); 4898 4899 /* RAID[56] write or recovery. Return all stripes */ 4900 num_stripes = map->num_stripes; 4901 max_errors = nr_parity_stripes(map); 4902 4903 raid_map = kmalloc_array(num_stripes, sizeof(u64), 4904 GFP_NOFS); 4905 if (!raid_map) { 4906 ret = -ENOMEM; 4907 goto out; 4908 } 4909 4910 /* Work out the disk rotation on this stripe-set */ 4911 tmp = stripe_nr; 4912 rot = do_div(tmp, num_stripes); 4913 4914 /* Fill in the logical address of each stripe */ 4915 tmp = stripe_nr * nr_data_stripes(map); 4916 for (i = 0; i < nr_data_stripes(map); i++) 4917 raid_map[(i+rot) % num_stripes] = 4918 em->start + (tmp + i) * map->stripe_len; 4919 4920 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 4921 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 4922 raid_map[(i+rot+1) % num_stripes] = 4923 RAID6_Q_STRIPE; 4924 4925 *length = map->stripe_len; 4926 stripe_index = 0; 4927 stripe_offset = 0; 4928 } else { 4929 /* 4930 * Mirror #0 or #1 means the original data block. 4931 * Mirror #2 is RAID5 parity block. 4932 * Mirror #3 is RAID6 Q block. 4933 */ 4934 stripe_index = do_div(stripe_nr, nr_data_stripes(map)); 4935 if (mirror_num > 1) 4936 stripe_index = nr_data_stripes(map) + 4937 mirror_num - 2; 4938 4939 /* We distribute the parity blocks across stripes */ 4940 tmp = stripe_nr + stripe_index; 4941 stripe_index = do_div(tmp, map->num_stripes); 4942 } 4943 } else { 4944 /* 4945 * after this do_div call, stripe_nr is the number of stripes 4946 * on this device we have to walk to find the data, and 4947 * stripe_index is the number of our device in the stripe array 4948 */ 4949 stripe_index = do_div(stripe_nr, map->num_stripes); 4950 mirror_num = stripe_index + 1; 4951 } 4952 BUG_ON(stripe_index >= map->num_stripes); 4953 4954 num_alloc_stripes = num_stripes; 4955 if (dev_replace_is_ongoing) { 4956 if (rw & (REQ_WRITE | REQ_DISCARD)) 4957 num_alloc_stripes <<= 1; 4958 if (rw & REQ_GET_READ_MIRRORS) 4959 num_alloc_stripes++; 4960 } 4961 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS); 4962 if (!bbio) { 4963 kfree(raid_map); 4964 ret = -ENOMEM; 4965 goto out; 4966 } 4967 atomic_set(&bbio->error, 0); 4968 4969 if (rw & REQ_DISCARD) { 4970 int factor = 0; 4971 int sub_stripes = 0; 4972 u64 stripes_per_dev = 0; 4973 u32 remaining_stripes = 0; 4974 u32 last_stripe = 0; 4975 4976 if (map->type & 4977 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 4978 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 4979 sub_stripes = 1; 4980 else 4981 sub_stripes = map->sub_stripes; 4982 4983 factor = map->num_stripes / sub_stripes; 4984 stripes_per_dev = div_u64_rem(stripe_nr_end - 4985 stripe_nr_orig, 4986 factor, 4987 &remaining_stripes); 4988 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 4989 last_stripe *= sub_stripes; 4990 } 4991 4992 for (i = 0; i < num_stripes; i++) { 4993 bbio->stripes[i].physical = 4994 map->stripes[stripe_index].physical + 4995 stripe_offset + stripe_nr * map->stripe_len; 4996 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 4997 4998 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 4999 BTRFS_BLOCK_GROUP_RAID10)) { 5000 bbio->stripes[i].length = stripes_per_dev * 5001 map->stripe_len; 5002 5003 if (i / sub_stripes < remaining_stripes) 5004 bbio->stripes[i].length += 5005 map->stripe_len; 5006 5007 /* 5008 * Special for the first stripe and 5009 * the last stripe: 5010 * 5011 * |-------|...|-------| 5012 * |----------| 5013 * off end_off 5014 */ 5015 if (i < sub_stripes) 5016 bbio->stripes[i].length -= 5017 stripe_offset; 5018 5019 if (stripe_index >= last_stripe && 5020 stripe_index <= (last_stripe + 5021 sub_stripes - 1)) 5022 bbio->stripes[i].length -= 5023 stripe_end_offset; 5024 5025 if (i == sub_stripes - 1) 5026 stripe_offset = 0; 5027 } else 5028 bbio->stripes[i].length = *length; 5029 5030 stripe_index++; 5031 if (stripe_index == map->num_stripes) { 5032 /* This could only happen for RAID0/10 */ 5033 stripe_index = 0; 5034 stripe_nr++; 5035 } 5036 } 5037 } else { 5038 for (i = 0; i < num_stripes; i++) { 5039 bbio->stripes[i].physical = 5040 map->stripes[stripe_index].physical + 5041 stripe_offset + 5042 stripe_nr * map->stripe_len; 5043 bbio->stripes[i].dev = 5044 map->stripes[stripe_index].dev; 5045 stripe_index++; 5046 } 5047 } 5048 5049 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) { 5050 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 5051 BTRFS_BLOCK_GROUP_RAID10 | 5052 BTRFS_BLOCK_GROUP_RAID5 | 5053 BTRFS_BLOCK_GROUP_DUP)) { 5054 max_errors = 1; 5055 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 5056 max_errors = 2; 5057 } 5058 } 5059 5060 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) && 5061 dev_replace->tgtdev != NULL) { 5062 int index_where_to_add; 5063 u64 srcdev_devid = dev_replace->srcdev->devid; 5064 5065 /* 5066 * duplicate the write operations while the dev replace 5067 * procedure is running. Since the copying of the old disk 5068 * to the new disk takes place at run time while the 5069 * filesystem is mounted writable, the regular write 5070 * operations to the old disk have to be duplicated to go 5071 * to the new disk as well. 5072 * Note that device->missing is handled by the caller, and 5073 * that the write to the old disk is already set up in the 5074 * stripes array. 5075 */ 5076 index_where_to_add = num_stripes; 5077 for (i = 0; i < num_stripes; i++) { 5078 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5079 /* write to new disk, too */ 5080 struct btrfs_bio_stripe *new = 5081 bbio->stripes + index_where_to_add; 5082 struct btrfs_bio_stripe *old = 5083 bbio->stripes + i; 5084 5085 new->physical = old->physical; 5086 new->length = old->length; 5087 new->dev = dev_replace->tgtdev; 5088 index_where_to_add++; 5089 max_errors++; 5090 } 5091 } 5092 num_stripes = index_where_to_add; 5093 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) && 5094 dev_replace->tgtdev != NULL) { 5095 u64 srcdev_devid = dev_replace->srcdev->devid; 5096 int index_srcdev = 0; 5097 int found = 0; 5098 u64 physical_of_found = 0; 5099 5100 /* 5101 * During the dev-replace procedure, the target drive can 5102 * also be used to read data in case it is needed to repair 5103 * a corrupt block elsewhere. This is possible if the 5104 * requested area is left of the left cursor. In this area, 5105 * the target drive is a full copy of the source drive. 5106 */ 5107 for (i = 0; i < num_stripes; i++) { 5108 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5109 /* 5110 * In case of DUP, in order to keep it 5111 * simple, only add the mirror with the 5112 * lowest physical address 5113 */ 5114 if (found && 5115 physical_of_found <= 5116 bbio->stripes[i].physical) 5117 continue; 5118 index_srcdev = i; 5119 found = 1; 5120 physical_of_found = bbio->stripes[i].physical; 5121 } 5122 } 5123 if (found) { 5124 u64 length = map->stripe_len; 5125 5126 if (physical_of_found + length <= 5127 dev_replace->cursor_left) { 5128 struct btrfs_bio_stripe *tgtdev_stripe = 5129 bbio->stripes + num_stripes; 5130 5131 tgtdev_stripe->physical = physical_of_found; 5132 tgtdev_stripe->length = 5133 bbio->stripes[index_srcdev].length; 5134 tgtdev_stripe->dev = dev_replace->tgtdev; 5135 5136 num_stripes++; 5137 } 5138 } 5139 } 5140 5141 *bbio_ret = bbio; 5142 bbio->num_stripes = num_stripes; 5143 bbio->max_errors = max_errors; 5144 bbio->mirror_num = mirror_num; 5145 5146 /* 5147 * this is the case that REQ_READ && dev_replace_is_ongoing && 5148 * mirror_num == num_stripes + 1 && dev_replace target drive is 5149 * available as a mirror 5150 */ 5151 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5152 WARN_ON(num_stripes > 1); 5153 bbio->stripes[0].dev = dev_replace->tgtdev; 5154 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5155 bbio->mirror_num = map->num_stripes + 1; 5156 } 5157 if (raid_map) { 5158 sort_parity_stripes(bbio, raid_map); 5159 *raid_map_ret = raid_map; 5160 } 5161 out: 5162 if (dev_replace_is_ongoing) 5163 btrfs_dev_replace_unlock(dev_replace); 5164 free_extent_map(em); 5165 return ret; 5166 } 5167 5168 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5169 u64 logical, u64 *length, 5170 struct btrfs_bio **bbio_ret, int mirror_num) 5171 { 5172 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5173 mirror_num, NULL); 5174 } 5175 5176 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 5177 u64 chunk_start, u64 physical, u64 devid, 5178 u64 **logical, int *naddrs, int *stripe_len) 5179 { 5180 struct extent_map_tree *em_tree = &map_tree->map_tree; 5181 struct extent_map *em; 5182 struct map_lookup *map; 5183 u64 *buf; 5184 u64 bytenr; 5185 u64 length; 5186 u64 stripe_nr; 5187 u64 rmap_len; 5188 int i, j, nr = 0; 5189 5190 read_lock(&em_tree->lock); 5191 em = lookup_extent_mapping(em_tree, chunk_start, 1); 5192 read_unlock(&em_tree->lock); 5193 5194 if (!em) { 5195 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n", 5196 chunk_start); 5197 return -EIO; 5198 } 5199 5200 if (em->start != chunk_start) { 5201 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n", 5202 em->start, chunk_start); 5203 free_extent_map(em); 5204 return -EIO; 5205 } 5206 map = (struct map_lookup *)em->bdev; 5207 5208 length = em->len; 5209 rmap_len = map->stripe_len; 5210 5211 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5212 do_div(length, map->num_stripes / map->sub_stripes); 5213 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5214 do_div(length, map->num_stripes); 5215 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 5216 BTRFS_BLOCK_GROUP_RAID6)) { 5217 do_div(length, nr_data_stripes(map)); 5218 rmap_len = map->stripe_len * nr_data_stripes(map); 5219 } 5220 5221 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); 5222 BUG_ON(!buf); /* -ENOMEM */ 5223 5224 for (i = 0; i < map->num_stripes; i++) { 5225 if (devid && map->stripes[i].dev->devid != devid) 5226 continue; 5227 if (map->stripes[i].physical > physical || 5228 map->stripes[i].physical + length <= physical) 5229 continue; 5230 5231 stripe_nr = physical - map->stripes[i].physical; 5232 do_div(stripe_nr, map->stripe_len); 5233 5234 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5235 stripe_nr = stripe_nr * map->num_stripes + i; 5236 do_div(stripe_nr, map->sub_stripes); 5237 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5238 stripe_nr = stripe_nr * map->num_stripes + i; 5239 } /* else if RAID[56], multiply by nr_data_stripes(). 5240 * Alternatively, just use rmap_len below instead of 5241 * map->stripe_len */ 5242 5243 bytenr = chunk_start + stripe_nr * rmap_len; 5244 WARN_ON(nr >= map->num_stripes); 5245 for (j = 0; j < nr; j++) { 5246 if (buf[j] == bytenr) 5247 break; 5248 } 5249 if (j == nr) { 5250 WARN_ON(nr >= map->num_stripes); 5251 buf[nr++] = bytenr; 5252 } 5253 } 5254 5255 *logical = buf; 5256 *naddrs = nr; 5257 *stripe_len = rmap_len; 5258 5259 free_extent_map(em); 5260 return 0; 5261 } 5262 5263 static void btrfs_end_bio(struct bio *bio, int err) 5264 { 5265 struct btrfs_bio *bbio = bio->bi_private; 5266 int is_orig_bio = 0; 5267 5268 if (err) { 5269 atomic_inc(&bbio->error); 5270 if (err == -EIO || err == -EREMOTEIO) { 5271 unsigned int stripe_index = 5272 btrfs_io_bio(bio)->stripe_index; 5273 struct btrfs_device *dev; 5274 5275 BUG_ON(stripe_index >= bbio->num_stripes); 5276 dev = bbio->stripes[stripe_index].dev; 5277 if (dev->bdev) { 5278 if (bio->bi_rw & WRITE) 5279 btrfs_dev_stat_inc(dev, 5280 BTRFS_DEV_STAT_WRITE_ERRS); 5281 else 5282 btrfs_dev_stat_inc(dev, 5283 BTRFS_DEV_STAT_READ_ERRS); 5284 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) 5285 btrfs_dev_stat_inc(dev, 5286 BTRFS_DEV_STAT_FLUSH_ERRS); 5287 btrfs_dev_stat_print_on_error(dev); 5288 } 5289 } 5290 } 5291 5292 if (bio == bbio->orig_bio) 5293 is_orig_bio = 1; 5294 5295 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5296 if (!is_orig_bio) { 5297 bio_put(bio); 5298 bio = bbio->orig_bio; 5299 } 5300 5301 /* 5302 * We have original bio now. So increment bi_remaining to 5303 * account for it in endio 5304 */ 5305 atomic_inc(&bio->bi_remaining); 5306 5307 bio->bi_private = bbio->private; 5308 bio->bi_end_io = bbio->end_io; 5309 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5310 /* only send an error to the higher layers if it is 5311 * beyond the tolerance of the btrfs bio 5312 */ 5313 if (atomic_read(&bbio->error) > bbio->max_errors) { 5314 err = -EIO; 5315 } else { 5316 /* 5317 * this bio is actually up to date, we didn't 5318 * go over the max number of errors 5319 */ 5320 set_bit(BIO_UPTODATE, &bio->bi_flags); 5321 err = 0; 5322 } 5323 kfree(bbio); 5324 5325 bio_endio(bio, err); 5326 } else if (!is_orig_bio) { 5327 bio_put(bio); 5328 } 5329 } 5330 5331 struct async_sched { 5332 struct bio *bio; 5333 int rw; 5334 struct btrfs_fs_info *info; 5335 struct btrfs_work work; 5336 }; 5337 5338 /* 5339 * see run_scheduled_bios for a description of why bios are collected for 5340 * async submit. 5341 * 5342 * This will add one bio to the pending list for a device and make sure 5343 * the work struct is scheduled. 5344 */ 5345 static noinline void btrfs_schedule_bio(struct btrfs_root *root, 5346 struct btrfs_device *device, 5347 int rw, struct bio *bio) 5348 { 5349 int should_queue = 1; 5350 struct btrfs_pending_bios *pending_bios; 5351 5352 if (device->missing || !device->bdev) { 5353 bio_endio(bio, -EIO); 5354 return; 5355 } 5356 5357 /* don't bother with additional async steps for reads, right now */ 5358 if (!(rw & REQ_WRITE)) { 5359 bio_get(bio); 5360 btrfsic_submit_bio(rw, bio); 5361 bio_put(bio); 5362 return; 5363 } 5364 5365 /* 5366 * nr_async_bios allows us to reliably return congestion to the 5367 * higher layers. Otherwise, the async bio makes it appear we have 5368 * made progress against dirty pages when we've really just put it 5369 * on a queue for later 5370 */ 5371 atomic_inc(&root->fs_info->nr_async_bios); 5372 WARN_ON(bio->bi_next); 5373 bio->bi_next = NULL; 5374 bio->bi_rw |= rw; 5375 5376 spin_lock(&device->io_lock); 5377 if (bio->bi_rw & REQ_SYNC) 5378 pending_bios = &device->pending_sync_bios; 5379 else 5380 pending_bios = &device->pending_bios; 5381 5382 if (pending_bios->tail) 5383 pending_bios->tail->bi_next = bio; 5384 5385 pending_bios->tail = bio; 5386 if (!pending_bios->head) 5387 pending_bios->head = bio; 5388 if (device->running_pending) 5389 should_queue = 0; 5390 5391 spin_unlock(&device->io_lock); 5392 5393 if (should_queue) 5394 btrfs_queue_worker(&root->fs_info->submit_workers, 5395 &device->work); 5396 } 5397 5398 static int bio_size_ok(struct block_device *bdev, struct bio *bio, 5399 sector_t sector) 5400 { 5401 struct bio_vec *prev; 5402 struct request_queue *q = bdev_get_queue(bdev); 5403 unsigned int max_sectors = queue_max_sectors(q); 5404 struct bvec_merge_data bvm = { 5405 .bi_bdev = bdev, 5406 .bi_sector = sector, 5407 .bi_rw = bio->bi_rw, 5408 }; 5409 5410 if (WARN_ON(bio->bi_vcnt == 0)) 5411 return 1; 5412 5413 prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 5414 if (bio_sectors(bio) > max_sectors) 5415 return 0; 5416 5417 if (!q->merge_bvec_fn) 5418 return 1; 5419 5420 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len; 5421 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) 5422 return 0; 5423 return 1; 5424 } 5425 5426 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5427 struct bio *bio, u64 physical, int dev_nr, 5428 int rw, int async) 5429 { 5430 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 5431 5432 bio->bi_private = bbio; 5433 btrfs_io_bio(bio)->stripe_index = dev_nr; 5434 bio->bi_end_io = btrfs_end_bio; 5435 bio->bi_iter.bi_sector = physical >> 9; 5436 #ifdef DEBUG 5437 { 5438 struct rcu_string *name; 5439 5440 rcu_read_lock(); 5441 name = rcu_dereference(dev->name); 5442 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu " 5443 "(%s id %llu), size=%u\n", rw, 5444 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev, 5445 name->str, dev->devid, bio->bi_size); 5446 rcu_read_unlock(); 5447 } 5448 #endif 5449 bio->bi_bdev = dev->bdev; 5450 if (async) 5451 btrfs_schedule_bio(root, dev, rw, bio); 5452 else 5453 btrfsic_submit_bio(rw, bio); 5454 } 5455 5456 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5457 struct bio *first_bio, struct btrfs_device *dev, 5458 int dev_nr, int rw, int async) 5459 { 5460 struct bio_vec *bvec = first_bio->bi_io_vec; 5461 struct bio *bio; 5462 int nr_vecs = bio_get_nr_vecs(dev->bdev); 5463 u64 physical = bbio->stripes[dev_nr].physical; 5464 5465 again: 5466 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS); 5467 if (!bio) 5468 return -ENOMEM; 5469 5470 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) { 5471 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5472 bvec->bv_offset) < bvec->bv_len) { 5473 u64 len = bio->bi_iter.bi_size; 5474 5475 atomic_inc(&bbio->stripes_pending); 5476 submit_stripe_bio(root, bbio, bio, physical, dev_nr, 5477 rw, async); 5478 physical += len; 5479 goto again; 5480 } 5481 bvec++; 5482 } 5483 5484 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async); 5485 return 0; 5486 } 5487 5488 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 5489 { 5490 atomic_inc(&bbio->error); 5491 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5492 bio->bi_private = bbio->private; 5493 bio->bi_end_io = bbio->end_io; 5494 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5495 bio->bi_iter.bi_sector = logical >> 9; 5496 kfree(bbio); 5497 bio_endio(bio, -EIO); 5498 } 5499 } 5500 5501 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 5502 int mirror_num, int async_submit) 5503 { 5504 struct btrfs_device *dev; 5505 struct bio *first_bio = bio; 5506 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 5507 u64 length = 0; 5508 u64 map_length; 5509 u64 *raid_map = NULL; 5510 int ret; 5511 int dev_nr = 0; 5512 int total_devs = 1; 5513 struct btrfs_bio *bbio = NULL; 5514 5515 length = bio->bi_iter.bi_size; 5516 map_length = length; 5517 5518 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio, 5519 mirror_num, &raid_map); 5520 if (ret) /* -ENOMEM */ 5521 return ret; 5522 5523 total_devs = bbio->num_stripes; 5524 bbio->orig_bio = first_bio; 5525 bbio->private = first_bio->bi_private; 5526 bbio->end_io = first_bio->bi_end_io; 5527 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 5528 5529 if (raid_map) { 5530 /* In this case, map_length has been set to the length of 5531 a single stripe; not the whole write */ 5532 if (rw & WRITE) { 5533 return raid56_parity_write(root, bio, bbio, 5534 raid_map, map_length); 5535 } else { 5536 return raid56_parity_recover(root, bio, bbio, 5537 raid_map, map_length, 5538 mirror_num); 5539 } 5540 } 5541 5542 if (map_length < length) { 5543 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu", 5544 logical, length, map_length); 5545 BUG(); 5546 } 5547 5548 while (dev_nr < total_devs) { 5549 dev = bbio->stripes[dev_nr].dev; 5550 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) { 5551 bbio_error(bbio, first_bio, logical); 5552 dev_nr++; 5553 continue; 5554 } 5555 5556 /* 5557 * Check and see if we're ok with this bio based on it's size 5558 * and offset with the given device. 5559 */ 5560 if (!bio_size_ok(dev->bdev, first_bio, 5561 bbio->stripes[dev_nr].physical >> 9)) { 5562 ret = breakup_stripe_bio(root, bbio, first_bio, dev, 5563 dev_nr, rw, async_submit); 5564 BUG_ON(ret); 5565 dev_nr++; 5566 continue; 5567 } 5568 5569 if (dev_nr < total_devs - 1) { 5570 bio = btrfs_bio_clone(first_bio, GFP_NOFS); 5571 BUG_ON(!bio); /* -ENOMEM */ 5572 } else { 5573 bio = first_bio; 5574 } 5575 5576 submit_stripe_bio(root, bbio, bio, 5577 bbio->stripes[dev_nr].physical, dev_nr, rw, 5578 async_submit); 5579 dev_nr++; 5580 } 5581 return 0; 5582 } 5583 5584 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 5585 u8 *uuid, u8 *fsid) 5586 { 5587 struct btrfs_device *device; 5588 struct btrfs_fs_devices *cur_devices; 5589 5590 cur_devices = fs_info->fs_devices; 5591 while (cur_devices) { 5592 if (!fsid || 5593 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 5594 device = __find_device(&cur_devices->devices, 5595 devid, uuid); 5596 if (device) 5597 return device; 5598 } 5599 cur_devices = cur_devices->seed; 5600 } 5601 return NULL; 5602 } 5603 5604 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 5605 u64 devid, u8 *dev_uuid) 5606 { 5607 struct btrfs_device *device; 5608 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 5609 5610 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 5611 if (IS_ERR(device)) 5612 return NULL; 5613 5614 list_add(&device->dev_list, &fs_devices->devices); 5615 device->fs_devices = fs_devices; 5616 fs_devices->num_devices++; 5617 5618 device->missing = 1; 5619 fs_devices->missing_devices++; 5620 5621 return device; 5622 } 5623 5624 /** 5625 * btrfs_alloc_device - allocate struct btrfs_device 5626 * @fs_info: used only for generating a new devid, can be NULL if 5627 * devid is provided (i.e. @devid != NULL). 5628 * @devid: a pointer to devid for this device. If NULL a new devid 5629 * is generated. 5630 * @uuid: a pointer to UUID for this device. If NULL a new UUID 5631 * is generated. 5632 * 5633 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 5634 * on error. Returned struct is not linked onto any lists and can be 5635 * destroyed with kfree() right away. 5636 */ 5637 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 5638 const u64 *devid, 5639 const u8 *uuid) 5640 { 5641 struct btrfs_device *dev; 5642 u64 tmp; 5643 5644 if (WARN_ON(!devid && !fs_info)) 5645 return ERR_PTR(-EINVAL); 5646 5647 dev = __alloc_device(); 5648 if (IS_ERR(dev)) 5649 return dev; 5650 5651 if (devid) 5652 tmp = *devid; 5653 else { 5654 int ret; 5655 5656 ret = find_next_devid(fs_info, &tmp); 5657 if (ret) { 5658 kfree(dev); 5659 return ERR_PTR(ret); 5660 } 5661 } 5662 dev->devid = tmp; 5663 5664 if (uuid) 5665 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 5666 else 5667 generate_random_uuid(dev->uuid); 5668 5669 dev->work.func = pending_bios_fn; 5670 5671 return dev; 5672 } 5673 5674 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 5675 struct extent_buffer *leaf, 5676 struct btrfs_chunk *chunk) 5677 { 5678 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5679 struct map_lookup *map; 5680 struct extent_map *em; 5681 u64 logical; 5682 u64 length; 5683 u64 devid; 5684 u8 uuid[BTRFS_UUID_SIZE]; 5685 int num_stripes; 5686 int ret; 5687 int i; 5688 5689 logical = key->offset; 5690 length = btrfs_chunk_length(leaf, chunk); 5691 5692 read_lock(&map_tree->map_tree.lock); 5693 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 5694 read_unlock(&map_tree->map_tree.lock); 5695 5696 /* already mapped? */ 5697 if (em && em->start <= logical && em->start + em->len > logical) { 5698 free_extent_map(em); 5699 return 0; 5700 } else if (em) { 5701 free_extent_map(em); 5702 } 5703 5704 em = alloc_extent_map(); 5705 if (!em) 5706 return -ENOMEM; 5707 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 5708 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 5709 if (!map) { 5710 free_extent_map(em); 5711 return -ENOMEM; 5712 } 5713 5714 em->bdev = (struct block_device *)map; 5715 em->start = logical; 5716 em->len = length; 5717 em->orig_start = 0; 5718 em->block_start = 0; 5719 em->block_len = em->len; 5720 5721 map->num_stripes = num_stripes; 5722 map->io_width = btrfs_chunk_io_width(leaf, chunk); 5723 map->io_align = btrfs_chunk_io_align(leaf, chunk); 5724 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 5725 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 5726 map->type = btrfs_chunk_type(leaf, chunk); 5727 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 5728 for (i = 0; i < num_stripes; i++) { 5729 map->stripes[i].physical = 5730 btrfs_stripe_offset_nr(leaf, chunk, i); 5731 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 5732 read_extent_buffer(leaf, uuid, (unsigned long) 5733 btrfs_stripe_dev_uuid_nr(chunk, i), 5734 BTRFS_UUID_SIZE); 5735 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid, 5736 uuid, NULL); 5737 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 5738 kfree(map); 5739 free_extent_map(em); 5740 return -EIO; 5741 } 5742 if (!map->stripes[i].dev) { 5743 map->stripes[i].dev = 5744 add_missing_dev(root, devid, uuid); 5745 if (!map->stripes[i].dev) { 5746 kfree(map); 5747 free_extent_map(em); 5748 return -EIO; 5749 } 5750 } 5751 map->stripes[i].dev->in_fs_metadata = 1; 5752 } 5753 5754 write_lock(&map_tree->map_tree.lock); 5755 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 5756 write_unlock(&map_tree->map_tree.lock); 5757 BUG_ON(ret); /* Tree corruption */ 5758 free_extent_map(em); 5759 5760 return 0; 5761 } 5762 5763 static void fill_device_from_item(struct extent_buffer *leaf, 5764 struct btrfs_dev_item *dev_item, 5765 struct btrfs_device *device) 5766 { 5767 unsigned long ptr; 5768 5769 device->devid = btrfs_device_id(leaf, dev_item); 5770 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 5771 device->total_bytes = device->disk_total_bytes; 5772 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 5773 device->type = btrfs_device_type(leaf, dev_item); 5774 device->io_align = btrfs_device_io_align(leaf, dev_item); 5775 device->io_width = btrfs_device_io_width(leaf, dev_item); 5776 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 5777 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 5778 device->is_tgtdev_for_dev_replace = 0; 5779 5780 ptr = btrfs_device_uuid(dev_item); 5781 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 5782 } 5783 5784 static int open_seed_devices(struct btrfs_root *root, u8 *fsid) 5785 { 5786 struct btrfs_fs_devices *fs_devices; 5787 int ret; 5788 5789 BUG_ON(!mutex_is_locked(&uuid_mutex)); 5790 5791 fs_devices = root->fs_info->fs_devices->seed; 5792 while (fs_devices) { 5793 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 5794 ret = 0; 5795 goto out; 5796 } 5797 fs_devices = fs_devices->seed; 5798 } 5799 5800 fs_devices = find_fsid(fsid); 5801 if (!fs_devices) { 5802 ret = -ENOENT; 5803 goto out; 5804 } 5805 5806 fs_devices = clone_fs_devices(fs_devices); 5807 if (IS_ERR(fs_devices)) { 5808 ret = PTR_ERR(fs_devices); 5809 goto out; 5810 } 5811 5812 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 5813 root->fs_info->bdev_holder); 5814 if (ret) { 5815 free_fs_devices(fs_devices); 5816 goto out; 5817 } 5818 5819 if (!fs_devices->seeding) { 5820 __btrfs_close_devices(fs_devices); 5821 free_fs_devices(fs_devices); 5822 ret = -EINVAL; 5823 goto out; 5824 } 5825 5826 fs_devices->seed = root->fs_info->fs_devices->seed; 5827 root->fs_info->fs_devices->seed = fs_devices; 5828 out: 5829 return ret; 5830 } 5831 5832 static int read_one_dev(struct btrfs_root *root, 5833 struct extent_buffer *leaf, 5834 struct btrfs_dev_item *dev_item) 5835 { 5836 struct btrfs_device *device; 5837 u64 devid; 5838 int ret; 5839 u8 fs_uuid[BTRFS_UUID_SIZE]; 5840 u8 dev_uuid[BTRFS_UUID_SIZE]; 5841 5842 devid = btrfs_device_id(leaf, dev_item); 5843 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 5844 BTRFS_UUID_SIZE); 5845 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 5846 BTRFS_UUID_SIZE); 5847 5848 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 5849 ret = open_seed_devices(root, fs_uuid); 5850 if (ret && !btrfs_test_opt(root, DEGRADED)) 5851 return ret; 5852 } 5853 5854 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid); 5855 if (!device || !device->bdev) { 5856 if (!btrfs_test_opt(root, DEGRADED)) 5857 return -EIO; 5858 5859 if (!device) { 5860 btrfs_warn(root->fs_info, "devid %llu missing", devid); 5861 device = add_missing_dev(root, devid, dev_uuid); 5862 if (!device) 5863 return -ENOMEM; 5864 } else if (!device->missing) { 5865 /* 5866 * this happens when a device that was properly setup 5867 * in the device info lists suddenly goes bad. 5868 * device->bdev is NULL, and so we have to set 5869 * device->missing to one here 5870 */ 5871 root->fs_info->fs_devices->missing_devices++; 5872 device->missing = 1; 5873 } 5874 } 5875 5876 if (device->fs_devices != root->fs_info->fs_devices) { 5877 BUG_ON(device->writeable); 5878 if (device->generation != 5879 btrfs_device_generation(leaf, dev_item)) 5880 return -EINVAL; 5881 } 5882 5883 fill_device_from_item(leaf, dev_item, device); 5884 device->in_fs_metadata = 1; 5885 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 5886 device->fs_devices->total_rw_bytes += device->total_bytes; 5887 spin_lock(&root->fs_info->free_chunk_lock); 5888 root->fs_info->free_chunk_space += device->total_bytes - 5889 device->bytes_used; 5890 spin_unlock(&root->fs_info->free_chunk_lock); 5891 } 5892 ret = 0; 5893 return ret; 5894 } 5895 5896 int btrfs_read_sys_array(struct btrfs_root *root) 5897 { 5898 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 5899 struct extent_buffer *sb; 5900 struct btrfs_disk_key *disk_key; 5901 struct btrfs_chunk *chunk; 5902 u8 *ptr; 5903 unsigned long sb_ptr; 5904 int ret = 0; 5905 u32 num_stripes; 5906 u32 array_size; 5907 u32 len = 0; 5908 u32 cur; 5909 struct btrfs_key key; 5910 5911 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, 5912 BTRFS_SUPER_INFO_SIZE); 5913 if (!sb) 5914 return -ENOMEM; 5915 btrfs_set_buffer_uptodate(sb); 5916 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 5917 /* 5918 * The sb extent buffer is artifical and just used to read the system array. 5919 * btrfs_set_buffer_uptodate() call does not properly mark all it's 5920 * pages up-to-date when the page is larger: extent does not cover the 5921 * whole page and consequently check_page_uptodate does not find all 5922 * the page's extents up-to-date (the hole beyond sb), 5923 * write_extent_buffer then triggers a WARN_ON. 5924 * 5925 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 5926 * but sb spans only this function. Add an explicit SetPageUptodate call 5927 * to silence the warning eg. on PowerPC 64. 5928 */ 5929 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) 5930 SetPageUptodate(sb->pages[0]); 5931 5932 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 5933 array_size = btrfs_super_sys_array_size(super_copy); 5934 5935 ptr = super_copy->sys_chunk_array; 5936 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); 5937 cur = 0; 5938 5939 while (cur < array_size) { 5940 disk_key = (struct btrfs_disk_key *)ptr; 5941 btrfs_disk_key_to_cpu(&key, disk_key); 5942 5943 len = sizeof(*disk_key); ptr += len; 5944 sb_ptr += len; 5945 cur += len; 5946 5947 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 5948 chunk = (struct btrfs_chunk *)sb_ptr; 5949 ret = read_one_chunk(root, &key, sb, chunk); 5950 if (ret) 5951 break; 5952 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 5953 len = btrfs_chunk_item_size(num_stripes); 5954 } else { 5955 ret = -EIO; 5956 break; 5957 } 5958 ptr += len; 5959 sb_ptr += len; 5960 cur += len; 5961 } 5962 free_extent_buffer(sb); 5963 return ret; 5964 } 5965 5966 int btrfs_read_chunk_tree(struct btrfs_root *root) 5967 { 5968 struct btrfs_path *path; 5969 struct extent_buffer *leaf; 5970 struct btrfs_key key; 5971 struct btrfs_key found_key; 5972 int ret; 5973 int slot; 5974 5975 root = root->fs_info->chunk_root; 5976 5977 path = btrfs_alloc_path(); 5978 if (!path) 5979 return -ENOMEM; 5980 5981 mutex_lock(&uuid_mutex); 5982 lock_chunks(root); 5983 5984 /* 5985 * Read all device items, and then all the chunk items. All 5986 * device items are found before any chunk item (their object id 5987 * is smaller than the lowest possible object id for a chunk 5988 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 5989 */ 5990 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 5991 key.offset = 0; 5992 key.type = 0; 5993 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5994 if (ret < 0) 5995 goto error; 5996 while (1) { 5997 leaf = path->nodes[0]; 5998 slot = path->slots[0]; 5999 if (slot >= btrfs_header_nritems(leaf)) { 6000 ret = btrfs_next_leaf(root, path); 6001 if (ret == 0) 6002 continue; 6003 if (ret < 0) 6004 goto error; 6005 break; 6006 } 6007 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6008 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6009 struct btrfs_dev_item *dev_item; 6010 dev_item = btrfs_item_ptr(leaf, slot, 6011 struct btrfs_dev_item); 6012 ret = read_one_dev(root, leaf, dev_item); 6013 if (ret) 6014 goto error; 6015 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6016 struct btrfs_chunk *chunk; 6017 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6018 ret = read_one_chunk(root, &found_key, leaf, chunk); 6019 if (ret) 6020 goto error; 6021 } 6022 path->slots[0]++; 6023 } 6024 ret = 0; 6025 error: 6026 unlock_chunks(root); 6027 mutex_unlock(&uuid_mutex); 6028 6029 btrfs_free_path(path); 6030 return ret; 6031 } 6032 6033 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6034 { 6035 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6036 struct btrfs_device *device; 6037 6038 mutex_lock(&fs_devices->device_list_mutex); 6039 list_for_each_entry(device, &fs_devices->devices, dev_list) 6040 device->dev_root = fs_info->dev_root; 6041 mutex_unlock(&fs_devices->device_list_mutex); 6042 } 6043 6044 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6045 { 6046 int i; 6047 6048 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6049 btrfs_dev_stat_reset(dev, i); 6050 } 6051 6052 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6053 { 6054 struct btrfs_key key; 6055 struct btrfs_key found_key; 6056 struct btrfs_root *dev_root = fs_info->dev_root; 6057 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6058 struct extent_buffer *eb; 6059 int slot; 6060 int ret = 0; 6061 struct btrfs_device *device; 6062 struct btrfs_path *path = NULL; 6063 int i; 6064 6065 path = btrfs_alloc_path(); 6066 if (!path) { 6067 ret = -ENOMEM; 6068 goto out; 6069 } 6070 6071 mutex_lock(&fs_devices->device_list_mutex); 6072 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6073 int item_size; 6074 struct btrfs_dev_stats_item *ptr; 6075 6076 key.objectid = 0; 6077 key.type = BTRFS_DEV_STATS_KEY; 6078 key.offset = device->devid; 6079 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6080 if (ret) { 6081 __btrfs_reset_dev_stats(device); 6082 device->dev_stats_valid = 1; 6083 btrfs_release_path(path); 6084 continue; 6085 } 6086 slot = path->slots[0]; 6087 eb = path->nodes[0]; 6088 btrfs_item_key_to_cpu(eb, &found_key, slot); 6089 item_size = btrfs_item_size_nr(eb, slot); 6090 6091 ptr = btrfs_item_ptr(eb, slot, 6092 struct btrfs_dev_stats_item); 6093 6094 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6095 if (item_size >= (1 + i) * sizeof(__le64)) 6096 btrfs_dev_stat_set(device, i, 6097 btrfs_dev_stats_value(eb, ptr, i)); 6098 else 6099 btrfs_dev_stat_reset(device, i); 6100 } 6101 6102 device->dev_stats_valid = 1; 6103 btrfs_dev_stat_print_on_load(device); 6104 btrfs_release_path(path); 6105 } 6106 mutex_unlock(&fs_devices->device_list_mutex); 6107 6108 out: 6109 btrfs_free_path(path); 6110 return ret < 0 ? ret : 0; 6111 } 6112 6113 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 6114 struct btrfs_root *dev_root, 6115 struct btrfs_device *device) 6116 { 6117 struct btrfs_path *path; 6118 struct btrfs_key key; 6119 struct extent_buffer *eb; 6120 struct btrfs_dev_stats_item *ptr; 6121 int ret; 6122 int i; 6123 6124 key.objectid = 0; 6125 key.type = BTRFS_DEV_STATS_KEY; 6126 key.offset = device->devid; 6127 6128 path = btrfs_alloc_path(); 6129 BUG_ON(!path); 6130 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 6131 if (ret < 0) { 6132 printk_in_rcu(KERN_WARNING "BTRFS: " 6133 "error %d while searching for dev_stats item for device %s!\n", 6134 ret, rcu_str_deref(device->name)); 6135 goto out; 6136 } 6137 6138 if (ret == 0 && 6139 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 6140 /* need to delete old one and insert a new one */ 6141 ret = btrfs_del_item(trans, dev_root, path); 6142 if (ret != 0) { 6143 printk_in_rcu(KERN_WARNING "BTRFS: " 6144 "delete too small dev_stats item for device %s failed %d!\n", 6145 rcu_str_deref(device->name), ret); 6146 goto out; 6147 } 6148 ret = 1; 6149 } 6150 6151 if (ret == 1) { 6152 /* need to insert a new item */ 6153 btrfs_release_path(path); 6154 ret = btrfs_insert_empty_item(trans, dev_root, path, 6155 &key, sizeof(*ptr)); 6156 if (ret < 0) { 6157 printk_in_rcu(KERN_WARNING "BTRFS: " 6158 "insert dev_stats item for device %s failed %d!\n", 6159 rcu_str_deref(device->name), ret); 6160 goto out; 6161 } 6162 } 6163 6164 eb = path->nodes[0]; 6165 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 6166 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6167 btrfs_set_dev_stats_value(eb, ptr, i, 6168 btrfs_dev_stat_read(device, i)); 6169 btrfs_mark_buffer_dirty(eb); 6170 6171 out: 6172 btrfs_free_path(path); 6173 return ret; 6174 } 6175 6176 /* 6177 * called from commit_transaction. Writes all changed device stats to disk. 6178 */ 6179 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 6180 struct btrfs_fs_info *fs_info) 6181 { 6182 struct btrfs_root *dev_root = fs_info->dev_root; 6183 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6184 struct btrfs_device *device; 6185 int ret = 0; 6186 6187 mutex_lock(&fs_devices->device_list_mutex); 6188 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6189 if (!device->dev_stats_valid || !device->dev_stats_dirty) 6190 continue; 6191 6192 ret = update_dev_stat_item(trans, dev_root, device); 6193 if (!ret) 6194 device->dev_stats_dirty = 0; 6195 } 6196 mutex_unlock(&fs_devices->device_list_mutex); 6197 6198 return ret; 6199 } 6200 6201 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 6202 { 6203 btrfs_dev_stat_inc(dev, index); 6204 btrfs_dev_stat_print_on_error(dev); 6205 } 6206 6207 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 6208 { 6209 if (!dev->dev_stats_valid) 6210 return; 6211 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: " 6212 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6213 rcu_str_deref(dev->name), 6214 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6215 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6216 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6217 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6218 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6219 } 6220 6221 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 6222 { 6223 int i; 6224 6225 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6226 if (btrfs_dev_stat_read(dev, i) != 0) 6227 break; 6228 if (i == BTRFS_DEV_STAT_VALUES_MAX) 6229 return; /* all values == 0, suppress message */ 6230 6231 printk_in_rcu(KERN_INFO "BTRFS: " 6232 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6233 rcu_str_deref(dev->name), 6234 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6235 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6236 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6237 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6238 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6239 } 6240 6241 int btrfs_get_dev_stats(struct btrfs_root *root, 6242 struct btrfs_ioctl_get_dev_stats *stats) 6243 { 6244 struct btrfs_device *dev; 6245 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6246 int i; 6247 6248 mutex_lock(&fs_devices->device_list_mutex); 6249 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL); 6250 mutex_unlock(&fs_devices->device_list_mutex); 6251 6252 if (!dev) { 6253 btrfs_warn(root->fs_info, "get dev_stats failed, device not found"); 6254 return -ENODEV; 6255 } else if (!dev->dev_stats_valid) { 6256 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid"); 6257 return -ENODEV; 6258 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 6259 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6260 if (stats->nr_items > i) 6261 stats->values[i] = 6262 btrfs_dev_stat_read_and_reset(dev, i); 6263 else 6264 btrfs_dev_stat_reset(dev, i); 6265 } 6266 } else { 6267 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6268 if (stats->nr_items > i) 6269 stats->values[i] = btrfs_dev_stat_read(dev, i); 6270 } 6271 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 6272 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 6273 return 0; 6274 } 6275 6276 int btrfs_scratch_superblock(struct btrfs_device *device) 6277 { 6278 struct buffer_head *bh; 6279 struct btrfs_super_block *disk_super; 6280 6281 bh = btrfs_read_dev_super(device->bdev); 6282 if (!bh) 6283 return -EINVAL; 6284 disk_super = (struct btrfs_super_block *)bh->b_data; 6285 6286 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 6287 set_buffer_dirty(bh); 6288 sync_dirty_buffer(bh); 6289 brelse(bh); 6290 6291 return 0; 6292 } 6293