1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/iocontext.h> 24 #include <linux/capability.h> 25 #include <linux/ratelimit.h> 26 #include <linux/kthread.h> 27 #include <linux/raid/pq.h> 28 #include <linux/semaphore.h> 29 #include <linux/uuid.h> 30 #include <asm/div64.h> 31 #include "ctree.h" 32 #include "extent_map.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "raid56.h" 38 #include "async-thread.h" 39 #include "check-integrity.h" 40 #include "rcu-string.h" 41 #include "math.h" 42 #include "dev-replace.h" 43 #include "sysfs.h" 44 45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 46 [BTRFS_RAID_RAID10] = { 47 .sub_stripes = 2, 48 .dev_stripes = 1, 49 .devs_max = 0, /* 0 == as many as possible */ 50 .devs_min = 4, 51 .tolerated_failures = 1, 52 .devs_increment = 2, 53 .ncopies = 2, 54 }, 55 [BTRFS_RAID_RAID1] = { 56 .sub_stripes = 1, 57 .dev_stripes = 1, 58 .devs_max = 2, 59 .devs_min = 2, 60 .tolerated_failures = 1, 61 .devs_increment = 2, 62 .ncopies = 2, 63 }, 64 [BTRFS_RAID_DUP] = { 65 .sub_stripes = 1, 66 .dev_stripes = 2, 67 .devs_max = 1, 68 .devs_min = 1, 69 .tolerated_failures = 0, 70 .devs_increment = 1, 71 .ncopies = 2, 72 }, 73 [BTRFS_RAID_RAID0] = { 74 .sub_stripes = 1, 75 .dev_stripes = 1, 76 .devs_max = 0, 77 .devs_min = 2, 78 .tolerated_failures = 0, 79 .devs_increment = 1, 80 .ncopies = 1, 81 }, 82 [BTRFS_RAID_SINGLE] = { 83 .sub_stripes = 1, 84 .dev_stripes = 1, 85 .devs_max = 1, 86 .devs_min = 1, 87 .tolerated_failures = 0, 88 .devs_increment = 1, 89 .ncopies = 1, 90 }, 91 [BTRFS_RAID_RAID5] = { 92 .sub_stripes = 1, 93 .dev_stripes = 1, 94 .devs_max = 0, 95 .devs_min = 2, 96 .tolerated_failures = 1, 97 .devs_increment = 1, 98 .ncopies = 2, 99 }, 100 [BTRFS_RAID_RAID6] = { 101 .sub_stripes = 1, 102 .dev_stripes = 1, 103 .devs_max = 0, 104 .devs_min = 3, 105 .tolerated_failures = 2, 106 .devs_increment = 1, 107 .ncopies = 3, 108 }, 109 }; 110 111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = { 112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10, 113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1, 114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP, 115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0, 116 [BTRFS_RAID_SINGLE] = 0, 117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5, 118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6, 119 }; 120 121 /* 122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices 123 * condition is not met. Zero means there's no corresponding 124 * BTRFS_ERROR_DEV_*_NOT_MET value. 125 */ 126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = { 127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 129 [BTRFS_RAID_DUP] = 0, 130 [BTRFS_RAID_RAID0] = 0, 131 [BTRFS_RAID_SINGLE] = 0, 132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 134 }; 135 136 static int init_first_rw_device(struct btrfs_trans_handle *trans, 137 struct btrfs_fs_info *fs_info); 138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 143 enum btrfs_map_op op, 144 u64 logical, u64 *length, 145 struct btrfs_bio **bbio_ret, 146 int mirror_num, int need_raid_map); 147 148 /* 149 * Device locking 150 * ============== 151 * 152 * There are several mutexes that protect manipulation of devices and low-level 153 * structures like chunks but not block groups, extents or files 154 * 155 * uuid_mutex (global lock) 156 * ------------------------ 157 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 158 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 159 * device) or requested by the device= mount option 160 * 161 * the mutex can be very coarse and can cover long-running operations 162 * 163 * protects: updates to fs_devices counters like missing devices, rw devices, 164 * seeding, structure cloning, openning/closing devices at mount/umount time 165 * 166 * global::fs_devs - add, remove, updates to the global list 167 * 168 * does not protect: manipulation of the fs_devices::devices list! 169 * 170 * btrfs_device::name - renames (write side), read is RCU 171 * 172 * fs_devices::device_list_mutex (per-fs, with RCU) 173 * ------------------------------------------------ 174 * protects updates to fs_devices::devices, ie. adding and deleting 175 * 176 * simple list traversal with read-only actions can be done with RCU protection 177 * 178 * may be used to exclude some operations from running concurrently without any 179 * modifications to the list (see write_all_supers) 180 * 181 * volume_mutex 182 * ------------ 183 * coarse lock owned by a mounted filesystem; used to exclude some operations 184 * that cannot run in parallel and affect the higher-level properties of the 185 * filesystem like: device add/deleting/resize/replace, or balance 186 * 187 * balance_mutex 188 * ------------- 189 * protects balance structures (status, state) and context accessed from 190 * several places (internally, ioctl) 191 * 192 * chunk_mutex 193 * ----------- 194 * protects chunks, adding or removing during allocation, trim or when a new 195 * device is added/removed 196 * 197 * cleaner_mutex 198 * ------------- 199 * a big lock that is held by the cleaner thread and prevents running subvolume 200 * cleaning together with relocation or delayed iputs 201 * 202 * 203 * Lock nesting 204 * ============ 205 * 206 * uuid_mutex 207 * volume_mutex 208 * device_list_mutex 209 * chunk_mutex 210 * balance_mutex 211 */ 212 213 DEFINE_MUTEX(uuid_mutex); 214 static LIST_HEAD(fs_uuids); 215 struct list_head *btrfs_get_fs_uuids(void) 216 { 217 return &fs_uuids; 218 } 219 220 /* 221 * alloc_fs_devices - allocate struct btrfs_fs_devices 222 * @fsid: if not NULL, copy the uuid to fs_devices::fsid 223 * 224 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 225 * The returned struct is not linked onto any lists and can be destroyed with 226 * kfree() right away. 227 */ 228 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 229 { 230 struct btrfs_fs_devices *fs_devs; 231 232 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 233 if (!fs_devs) 234 return ERR_PTR(-ENOMEM); 235 236 mutex_init(&fs_devs->device_list_mutex); 237 238 INIT_LIST_HEAD(&fs_devs->devices); 239 INIT_LIST_HEAD(&fs_devs->resized_devices); 240 INIT_LIST_HEAD(&fs_devs->alloc_list); 241 INIT_LIST_HEAD(&fs_devs->list); 242 if (fsid) 243 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 244 245 return fs_devs; 246 } 247 248 static void free_device(struct btrfs_device *device) 249 { 250 rcu_string_free(device->name); 251 bio_put(device->flush_bio); 252 kfree(device); 253 } 254 255 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 256 { 257 struct btrfs_device *device; 258 WARN_ON(fs_devices->opened); 259 while (!list_empty(&fs_devices->devices)) { 260 device = list_entry(fs_devices->devices.next, 261 struct btrfs_device, dev_list); 262 list_del(&device->dev_list); 263 free_device(device); 264 } 265 kfree(fs_devices); 266 } 267 268 static void btrfs_kobject_uevent(struct block_device *bdev, 269 enum kobject_action action) 270 { 271 int ret; 272 273 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 274 if (ret) 275 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 276 action, 277 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 278 &disk_to_dev(bdev->bd_disk)->kobj); 279 } 280 281 void btrfs_cleanup_fs_uuids(void) 282 { 283 struct btrfs_fs_devices *fs_devices; 284 285 while (!list_empty(&fs_uuids)) { 286 fs_devices = list_entry(fs_uuids.next, 287 struct btrfs_fs_devices, list); 288 list_del(&fs_devices->list); 289 free_fs_devices(fs_devices); 290 } 291 } 292 293 /* 294 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 295 * Returned struct is not linked onto any lists and must be destroyed using 296 * free_device. 297 */ 298 static struct btrfs_device *__alloc_device(void) 299 { 300 struct btrfs_device *dev; 301 302 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 303 if (!dev) 304 return ERR_PTR(-ENOMEM); 305 306 /* 307 * Preallocate a bio that's always going to be used for flushing device 308 * barriers and matches the device lifespan 309 */ 310 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 311 if (!dev->flush_bio) { 312 kfree(dev); 313 return ERR_PTR(-ENOMEM); 314 } 315 316 INIT_LIST_HEAD(&dev->dev_list); 317 INIT_LIST_HEAD(&dev->dev_alloc_list); 318 INIT_LIST_HEAD(&dev->resized_list); 319 320 spin_lock_init(&dev->io_lock); 321 322 atomic_set(&dev->reada_in_flight, 0); 323 atomic_set(&dev->dev_stats_ccnt, 0); 324 btrfs_device_data_ordered_init(dev); 325 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 326 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 327 328 return dev; 329 } 330 331 /* 332 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 333 * return NULL. 334 * 335 * If devid and uuid are both specified, the match must be exact, otherwise 336 * only devid is used. 337 */ 338 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices, 339 u64 devid, const u8 *uuid) 340 { 341 struct list_head *head = &fs_devices->devices; 342 struct btrfs_device *dev; 343 344 list_for_each_entry(dev, head, dev_list) { 345 if (dev->devid == devid && 346 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 347 return dev; 348 } 349 } 350 return NULL; 351 } 352 353 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 354 { 355 struct btrfs_fs_devices *fs_devices; 356 357 list_for_each_entry(fs_devices, &fs_uuids, list) { 358 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 359 return fs_devices; 360 } 361 return NULL; 362 } 363 364 static int 365 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 366 int flush, struct block_device **bdev, 367 struct buffer_head **bh) 368 { 369 int ret; 370 371 *bdev = blkdev_get_by_path(device_path, flags, holder); 372 373 if (IS_ERR(*bdev)) { 374 ret = PTR_ERR(*bdev); 375 goto error; 376 } 377 378 if (flush) 379 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 380 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 381 if (ret) { 382 blkdev_put(*bdev, flags); 383 goto error; 384 } 385 invalidate_bdev(*bdev); 386 *bh = btrfs_read_dev_super(*bdev); 387 if (IS_ERR(*bh)) { 388 ret = PTR_ERR(*bh); 389 blkdev_put(*bdev, flags); 390 goto error; 391 } 392 393 return 0; 394 395 error: 396 *bdev = NULL; 397 *bh = NULL; 398 return ret; 399 } 400 401 static void requeue_list(struct btrfs_pending_bios *pending_bios, 402 struct bio *head, struct bio *tail) 403 { 404 405 struct bio *old_head; 406 407 old_head = pending_bios->head; 408 pending_bios->head = head; 409 if (pending_bios->tail) 410 tail->bi_next = old_head; 411 else 412 pending_bios->tail = tail; 413 } 414 415 /* 416 * we try to collect pending bios for a device so we don't get a large 417 * number of procs sending bios down to the same device. This greatly 418 * improves the schedulers ability to collect and merge the bios. 419 * 420 * But, it also turns into a long list of bios to process and that is sure 421 * to eventually make the worker thread block. The solution here is to 422 * make some progress and then put this work struct back at the end of 423 * the list if the block device is congested. This way, multiple devices 424 * can make progress from a single worker thread. 425 */ 426 static noinline void run_scheduled_bios(struct btrfs_device *device) 427 { 428 struct btrfs_fs_info *fs_info = device->fs_info; 429 struct bio *pending; 430 struct backing_dev_info *bdi; 431 struct btrfs_pending_bios *pending_bios; 432 struct bio *tail; 433 struct bio *cur; 434 int again = 0; 435 unsigned long num_run; 436 unsigned long batch_run = 0; 437 unsigned long last_waited = 0; 438 int force_reg = 0; 439 int sync_pending = 0; 440 struct blk_plug plug; 441 442 /* 443 * this function runs all the bios we've collected for 444 * a particular device. We don't want to wander off to 445 * another device without first sending all of these down. 446 * So, setup a plug here and finish it off before we return 447 */ 448 blk_start_plug(&plug); 449 450 bdi = device->bdev->bd_bdi; 451 452 loop: 453 spin_lock(&device->io_lock); 454 455 loop_lock: 456 num_run = 0; 457 458 /* take all the bios off the list at once and process them 459 * later on (without the lock held). But, remember the 460 * tail and other pointers so the bios can be properly reinserted 461 * into the list if we hit congestion 462 */ 463 if (!force_reg && device->pending_sync_bios.head) { 464 pending_bios = &device->pending_sync_bios; 465 force_reg = 1; 466 } else { 467 pending_bios = &device->pending_bios; 468 force_reg = 0; 469 } 470 471 pending = pending_bios->head; 472 tail = pending_bios->tail; 473 WARN_ON(pending && !tail); 474 475 /* 476 * if pending was null this time around, no bios need processing 477 * at all and we can stop. Otherwise it'll loop back up again 478 * and do an additional check so no bios are missed. 479 * 480 * device->running_pending is used to synchronize with the 481 * schedule_bio code. 482 */ 483 if (device->pending_sync_bios.head == NULL && 484 device->pending_bios.head == NULL) { 485 again = 0; 486 device->running_pending = 0; 487 } else { 488 again = 1; 489 device->running_pending = 1; 490 } 491 492 pending_bios->head = NULL; 493 pending_bios->tail = NULL; 494 495 spin_unlock(&device->io_lock); 496 497 while (pending) { 498 499 rmb(); 500 /* we want to work on both lists, but do more bios on the 501 * sync list than the regular list 502 */ 503 if ((num_run > 32 && 504 pending_bios != &device->pending_sync_bios && 505 device->pending_sync_bios.head) || 506 (num_run > 64 && pending_bios == &device->pending_sync_bios && 507 device->pending_bios.head)) { 508 spin_lock(&device->io_lock); 509 requeue_list(pending_bios, pending, tail); 510 goto loop_lock; 511 } 512 513 cur = pending; 514 pending = pending->bi_next; 515 cur->bi_next = NULL; 516 517 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 518 519 /* 520 * if we're doing the sync list, record that our 521 * plug has some sync requests on it 522 * 523 * If we're doing the regular list and there are 524 * sync requests sitting around, unplug before 525 * we add more 526 */ 527 if (pending_bios == &device->pending_sync_bios) { 528 sync_pending = 1; 529 } else if (sync_pending) { 530 blk_finish_plug(&plug); 531 blk_start_plug(&plug); 532 sync_pending = 0; 533 } 534 535 btrfsic_submit_bio(cur); 536 num_run++; 537 batch_run++; 538 539 cond_resched(); 540 541 /* 542 * we made progress, there is more work to do and the bdi 543 * is now congested. Back off and let other work structs 544 * run instead 545 */ 546 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 547 fs_info->fs_devices->open_devices > 1) { 548 struct io_context *ioc; 549 550 ioc = current->io_context; 551 552 /* 553 * the main goal here is that we don't want to 554 * block if we're going to be able to submit 555 * more requests without blocking. 556 * 557 * This code does two great things, it pokes into 558 * the elevator code from a filesystem _and_ 559 * it makes assumptions about how batching works. 560 */ 561 if (ioc && ioc->nr_batch_requests > 0 && 562 time_before(jiffies, ioc->last_waited + HZ/50UL) && 563 (last_waited == 0 || 564 ioc->last_waited == last_waited)) { 565 /* 566 * we want to go through our batch of 567 * requests and stop. So, we copy out 568 * the ioc->last_waited time and test 569 * against it before looping 570 */ 571 last_waited = ioc->last_waited; 572 cond_resched(); 573 continue; 574 } 575 spin_lock(&device->io_lock); 576 requeue_list(pending_bios, pending, tail); 577 device->running_pending = 1; 578 579 spin_unlock(&device->io_lock); 580 btrfs_queue_work(fs_info->submit_workers, 581 &device->work); 582 goto done; 583 } 584 } 585 586 cond_resched(); 587 if (again) 588 goto loop; 589 590 spin_lock(&device->io_lock); 591 if (device->pending_bios.head || device->pending_sync_bios.head) 592 goto loop_lock; 593 spin_unlock(&device->io_lock); 594 595 done: 596 blk_finish_plug(&plug); 597 } 598 599 static void pending_bios_fn(struct btrfs_work *work) 600 { 601 struct btrfs_device *device; 602 603 device = container_of(work, struct btrfs_device, work); 604 run_scheduled_bios(device); 605 } 606 607 /* 608 * Search and remove all stale (devices which are not mounted) devices. 609 * When both inputs are NULL, it will search and release all stale devices. 610 * path: Optional. When provided will it release all unmounted devices 611 * matching this path only. 612 * skip_dev: Optional. Will skip this device when searching for the stale 613 * devices. 614 */ 615 static void btrfs_free_stale_devices(const char *path, 616 struct btrfs_device *skip_dev) 617 { 618 struct btrfs_fs_devices *fs_devs, *tmp_fs_devs; 619 struct btrfs_device *dev, *tmp_dev; 620 621 list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, list) { 622 623 if (fs_devs->opened) 624 continue; 625 626 list_for_each_entry_safe(dev, tmp_dev, 627 &fs_devs->devices, dev_list) { 628 int not_found = 0; 629 630 if (skip_dev && skip_dev == dev) 631 continue; 632 if (path && !dev->name) 633 continue; 634 635 rcu_read_lock(); 636 if (path) 637 not_found = strcmp(rcu_str_deref(dev->name), 638 path); 639 rcu_read_unlock(); 640 if (not_found) 641 continue; 642 643 /* delete the stale device */ 644 if (fs_devs->num_devices == 1) { 645 btrfs_sysfs_remove_fsid(fs_devs); 646 list_del(&fs_devs->list); 647 free_fs_devices(fs_devs); 648 } else { 649 fs_devs->num_devices--; 650 list_del(&dev->dev_list); 651 free_device(dev); 652 } 653 } 654 } 655 } 656 657 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 658 struct btrfs_device *device, fmode_t flags, 659 void *holder) 660 { 661 struct request_queue *q; 662 struct block_device *bdev; 663 struct buffer_head *bh; 664 struct btrfs_super_block *disk_super; 665 u64 devid; 666 int ret; 667 668 if (device->bdev) 669 return -EINVAL; 670 if (!device->name) 671 return -EINVAL; 672 673 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 674 &bdev, &bh); 675 if (ret) 676 return ret; 677 678 disk_super = (struct btrfs_super_block *)bh->b_data; 679 devid = btrfs_stack_device_id(&disk_super->dev_item); 680 if (devid != device->devid) 681 goto error_brelse; 682 683 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 684 goto error_brelse; 685 686 device->generation = btrfs_super_generation(disk_super); 687 688 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 689 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 690 fs_devices->seeding = 1; 691 } else { 692 if (bdev_read_only(bdev)) 693 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 694 else 695 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 696 } 697 698 q = bdev_get_queue(bdev); 699 if (!blk_queue_nonrot(q)) 700 fs_devices->rotating = 1; 701 702 device->bdev = bdev; 703 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 704 device->mode = flags; 705 706 fs_devices->open_devices++; 707 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 708 device->devid != BTRFS_DEV_REPLACE_DEVID) { 709 fs_devices->rw_devices++; 710 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 711 } 712 brelse(bh); 713 714 return 0; 715 716 error_brelse: 717 brelse(bh); 718 blkdev_put(bdev, flags); 719 720 return -EINVAL; 721 } 722 723 /* 724 * Add new device to list of registered devices 725 * 726 * Returns: 727 * device pointer which was just added or updated when successful 728 * error pointer when failed 729 */ 730 static noinline struct btrfs_device *device_list_add(const char *path, 731 struct btrfs_super_block *disk_super) 732 { 733 struct btrfs_device *device; 734 struct btrfs_fs_devices *fs_devices; 735 struct rcu_string *name; 736 u64 found_transid = btrfs_super_generation(disk_super); 737 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 738 739 fs_devices = find_fsid(disk_super->fsid); 740 if (!fs_devices) { 741 fs_devices = alloc_fs_devices(disk_super->fsid); 742 if (IS_ERR(fs_devices)) 743 return ERR_CAST(fs_devices); 744 745 list_add(&fs_devices->list, &fs_uuids); 746 747 device = NULL; 748 } else { 749 device = find_device(fs_devices, devid, 750 disk_super->dev_item.uuid); 751 } 752 753 if (!device) { 754 if (fs_devices->opened) 755 return ERR_PTR(-EBUSY); 756 757 device = btrfs_alloc_device(NULL, &devid, 758 disk_super->dev_item.uuid); 759 if (IS_ERR(device)) { 760 /* we can safely leave the fs_devices entry around */ 761 return device; 762 } 763 764 name = rcu_string_strdup(path, GFP_NOFS); 765 if (!name) { 766 free_device(device); 767 return ERR_PTR(-ENOMEM); 768 } 769 rcu_assign_pointer(device->name, name); 770 771 mutex_lock(&fs_devices->device_list_mutex); 772 list_add_rcu(&device->dev_list, &fs_devices->devices); 773 fs_devices->num_devices++; 774 mutex_unlock(&fs_devices->device_list_mutex); 775 776 device->fs_devices = fs_devices; 777 btrfs_free_stale_devices(path, device); 778 779 if (disk_super->label[0]) 780 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n", 781 disk_super->label, devid, found_transid, path); 782 else 783 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n", 784 disk_super->fsid, devid, found_transid, path); 785 786 } else if (!device->name || strcmp(device->name->str, path)) { 787 /* 788 * When FS is already mounted. 789 * 1. If you are here and if the device->name is NULL that 790 * means this device was missing at time of FS mount. 791 * 2. If you are here and if the device->name is different 792 * from 'path' that means either 793 * a. The same device disappeared and reappeared with 794 * different name. or 795 * b. The missing-disk-which-was-replaced, has 796 * reappeared now. 797 * 798 * We must allow 1 and 2a above. But 2b would be a spurious 799 * and unintentional. 800 * 801 * Further in case of 1 and 2a above, the disk at 'path' 802 * would have missed some transaction when it was away and 803 * in case of 2a the stale bdev has to be updated as well. 804 * 2b must not be allowed at all time. 805 */ 806 807 /* 808 * For now, we do allow update to btrfs_fs_device through the 809 * btrfs dev scan cli after FS has been mounted. We're still 810 * tracking a problem where systems fail mount by subvolume id 811 * when we reject replacement on a mounted FS. 812 */ 813 if (!fs_devices->opened && found_transid < device->generation) { 814 /* 815 * That is if the FS is _not_ mounted and if you 816 * are here, that means there is more than one 817 * disk with same uuid and devid.We keep the one 818 * with larger generation number or the last-in if 819 * generation are equal. 820 */ 821 return ERR_PTR(-EEXIST); 822 } 823 824 name = rcu_string_strdup(path, GFP_NOFS); 825 if (!name) 826 return ERR_PTR(-ENOMEM); 827 rcu_string_free(device->name); 828 rcu_assign_pointer(device->name, name); 829 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 830 fs_devices->missing_devices--; 831 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 832 } 833 } 834 835 /* 836 * Unmount does not free the btrfs_device struct but would zero 837 * generation along with most of the other members. So just update 838 * it back. We need it to pick the disk with largest generation 839 * (as above). 840 */ 841 if (!fs_devices->opened) 842 device->generation = found_transid; 843 844 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 845 846 return device; 847 } 848 849 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 850 { 851 struct btrfs_fs_devices *fs_devices; 852 struct btrfs_device *device; 853 struct btrfs_device *orig_dev; 854 855 fs_devices = alloc_fs_devices(orig->fsid); 856 if (IS_ERR(fs_devices)) 857 return fs_devices; 858 859 mutex_lock(&orig->device_list_mutex); 860 fs_devices->total_devices = orig->total_devices; 861 862 /* We have held the volume lock, it is safe to get the devices. */ 863 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 864 struct rcu_string *name; 865 866 device = btrfs_alloc_device(NULL, &orig_dev->devid, 867 orig_dev->uuid); 868 if (IS_ERR(device)) 869 goto error; 870 871 /* 872 * This is ok to do without rcu read locked because we hold the 873 * uuid mutex so nothing we touch in here is going to disappear. 874 */ 875 if (orig_dev->name) { 876 name = rcu_string_strdup(orig_dev->name->str, 877 GFP_KERNEL); 878 if (!name) { 879 free_device(device); 880 goto error; 881 } 882 rcu_assign_pointer(device->name, name); 883 } 884 885 list_add(&device->dev_list, &fs_devices->devices); 886 device->fs_devices = fs_devices; 887 fs_devices->num_devices++; 888 } 889 mutex_unlock(&orig->device_list_mutex); 890 return fs_devices; 891 error: 892 mutex_unlock(&orig->device_list_mutex); 893 free_fs_devices(fs_devices); 894 return ERR_PTR(-ENOMEM); 895 } 896 897 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step) 898 { 899 struct btrfs_device *device, *next; 900 struct btrfs_device *latest_dev = NULL; 901 902 mutex_lock(&uuid_mutex); 903 again: 904 /* This is the initialized path, it is safe to release the devices. */ 905 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 906 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 907 &device->dev_state)) { 908 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 909 &device->dev_state) && 910 (!latest_dev || 911 device->generation > latest_dev->generation)) { 912 latest_dev = device; 913 } 914 continue; 915 } 916 917 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 918 /* 919 * In the first step, keep the device which has 920 * the correct fsid and the devid that is used 921 * for the dev_replace procedure. 922 * In the second step, the dev_replace state is 923 * read from the device tree and it is known 924 * whether the procedure is really active or 925 * not, which means whether this device is 926 * used or whether it should be removed. 927 */ 928 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 929 &device->dev_state)) { 930 continue; 931 } 932 } 933 if (device->bdev) { 934 blkdev_put(device->bdev, device->mode); 935 device->bdev = NULL; 936 fs_devices->open_devices--; 937 } 938 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 939 list_del_init(&device->dev_alloc_list); 940 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 941 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 942 &device->dev_state)) 943 fs_devices->rw_devices--; 944 } 945 list_del_init(&device->dev_list); 946 fs_devices->num_devices--; 947 free_device(device); 948 } 949 950 if (fs_devices->seed) { 951 fs_devices = fs_devices->seed; 952 goto again; 953 } 954 955 fs_devices->latest_bdev = latest_dev->bdev; 956 957 mutex_unlock(&uuid_mutex); 958 } 959 960 static void free_device_rcu(struct rcu_head *head) 961 { 962 struct btrfs_device *device; 963 964 device = container_of(head, struct btrfs_device, rcu); 965 free_device(device); 966 } 967 968 static void btrfs_close_bdev(struct btrfs_device *device) 969 { 970 if (!device->bdev) 971 return; 972 973 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 974 sync_blockdev(device->bdev); 975 invalidate_bdev(device->bdev); 976 } 977 978 blkdev_put(device->bdev, device->mode); 979 } 980 981 static void btrfs_prepare_close_one_device(struct btrfs_device *device) 982 { 983 struct btrfs_fs_devices *fs_devices = device->fs_devices; 984 struct btrfs_device *new_device; 985 struct rcu_string *name; 986 987 if (device->bdev) 988 fs_devices->open_devices--; 989 990 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 991 device->devid != BTRFS_DEV_REPLACE_DEVID) { 992 list_del_init(&device->dev_alloc_list); 993 fs_devices->rw_devices--; 994 } 995 996 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 997 fs_devices->missing_devices--; 998 999 new_device = btrfs_alloc_device(NULL, &device->devid, 1000 device->uuid); 1001 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 1002 1003 /* Safe because we are under uuid_mutex */ 1004 if (device->name) { 1005 name = rcu_string_strdup(device->name->str, GFP_NOFS); 1006 BUG_ON(!name); /* -ENOMEM */ 1007 rcu_assign_pointer(new_device->name, name); 1008 } 1009 1010 list_replace_rcu(&device->dev_list, &new_device->dev_list); 1011 new_device->fs_devices = device->fs_devices; 1012 } 1013 1014 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1015 { 1016 struct btrfs_device *device, *tmp; 1017 struct list_head pending_put; 1018 1019 INIT_LIST_HEAD(&pending_put); 1020 1021 if (--fs_devices->opened > 0) 1022 return 0; 1023 1024 mutex_lock(&fs_devices->device_list_mutex); 1025 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 1026 btrfs_prepare_close_one_device(device); 1027 list_add(&device->dev_list, &pending_put); 1028 } 1029 mutex_unlock(&fs_devices->device_list_mutex); 1030 1031 /* 1032 * btrfs_show_devname() is using the device_list_mutex, 1033 * sometimes call to blkdev_put() leads vfs calling 1034 * into this func. So do put outside of device_list_mutex, 1035 * as of now. 1036 */ 1037 while (!list_empty(&pending_put)) { 1038 device = list_first_entry(&pending_put, 1039 struct btrfs_device, dev_list); 1040 list_del(&device->dev_list); 1041 btrfs_close_bdev(device); 1042 call_rcu(&device->rcu, free_device_rcu); 1043 } 1044 1045 WARN_ON(fs_devices->open_devices); 1046 WARN_ON(fs_devices->rw_devices); 1047 fs_devices->opened = 0; 1048 fs_devices->seeding = 0; 1049 1050 return 0; 1051 } 1052 1053 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1054 { 1055 struct btrfs_fs_devices *seed_devices = NULL; 1056 int ret; 1057 1058 mutex_lock(&uuid_mutex); 1059 ret = __btrfs_close_devices(fs_devices); 1060 if (!fs_devices->opened) { 1061 seed_devices = fs_devices->seed; 1062 fs_devices->seed = NULL; 1063 } 1064 mutex_unlock(&uuid_mutex); 1065 1066 while (seed_devices) { 1067 fs_devices = seed_devices; 1068 seed_devices = fs_devices->seed; 1069 __btrfs_close_devices(fs_devices); 1070 free_fs_devices(fs_devices); 1071 } 1072 return ret; 1073 } 1074 1075 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1076 fmode_t flags, void *holder) 1077 { 1078 struct list_head *head = &fs_devices->devices; 1079 struct btrfs_device *device; 1080 struct btrfs_device *latest_dev = NULL; 1081 int ret = 0; 1082 1083 flags |= FMODE_EXCL; 1084 1085 list_for_each_entry(device, head, dev_list) { 1086 /* Just open everything we can; ignore failures here */ 1087 if (btrfs_open_one_device(fs_devices, device, flags, holder)) 1088 continue; 1089 1090 if (!latest_dev || 1091 device->generation > latest_dev->generation) 1092 latest_dev = device; 1093 } 1094 if (fs_devices->open_devices == 0) { 1095 ret = -EINVAL; 1096 goto out; 1097 } 1098 fs_devices->opened = 1; 1099 fs_devices->latest_bdev = latest_dev->bdev; 1100 fs_devices->total_rw_bytes = 0; 1101 out: 1102 return ret; 1103 } 1104 1105 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1106 fmode_t flags, void *holder) 1107 { 1108 int ret; 1109 1110 mutex_lock(&uuid_mutex); 1111 if (fs_devices->opened) { 1112 fs_devices->opened++; 1113 ret = 0; 1114 } else { 1115 ret = __btrfs_open_devices(fs_devices, flags, holder); 1116 } 1117 mutex_unlock(&uuid_mutex); 1118 return ret; 1119 } 1120 1121 static void btrfs_release_disk_super(struct page *page) 1122 { 1123 kunmap(page); 1124 put_page(page); 1125 } 1126 1127 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, 1128 struct page **page, 1129 struct btrfs_super_block **disk_super) 1130 { 1131 void *p; 1132 pgoff_t index; 1133 1134 /* make sure our super fits in the device */ 1135 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1136 return 1; 1137 1138 /* make sure our super fits in the page */ 1139 if (sizeof(**disk_super) > PAGE_SIZE) 1140 return 1; 1141 1142 /* make sure our super doesn't straddle pages on disk */ 1143 index = bytenr >> PAGE_SHIFT; 1144 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) 1145 return 1; 1146 1147 /* pull in the page with our super */ 1148 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1149 index, GFP_KERNEL); 1150 1151 if (IS_ERR_OR_NULL(*page)) 1152 return 1; 1153 1154 p = kmap(*page); 1155 1156 /* align our pointer to the offset of the super block */ 1157 *disk_super = p + (bytenr & ~PAGE_MASK); 1158 1159 if (btrfs_super_bytenr(*disk_super) != bytenr || 1160 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { 1161 btrfs_release_disk_super(*page); 1162 return 1; 1163 } 1164 1165 if ((*disk_super)->label[0] && 1166 (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) 1167 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1168 1169 return 0; 1170 } 1171 1172 /* 1173 * Look for a btrfs signature on a device. This may be called out of the mount path 1174 * and we are not allowed to call set_blocksize during the scan. The superblock 1175 * is read via pagecache 1176 */ 1177 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 1178 struct btrfs_fs_devices **fs_devices_ret) 1179 { 1180 struct btrfs_super_block *disk_super; 1181 struct btrfs_device *device; 1182 struct block_device *bdev; 1183 struct page *page; 1184 int ret = 0; 1185 u64 bytenr; 1186 1187 /* 1188 * we would like to check all the supers, but that would make 1189 * a btrfs mount succeed after a mkfs from a different FS. 1190 * So, we need to add a special mount option to scan for 1191 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1192 */ 1193 bytenr = btrfs_sb_offset(0); 1194 flags |= FMODE_EXCL; 1195 mutex_lock(&uuid_mutex); 1196 1197 bdev = blkdev_get_by_path(path, flags, holder); 1198 if (IS_ERR(bdev)) { 1199 ret = PTR_ERR(bdev); 1200 goto error; 1201 } 1202 1203 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) { 1204 ret = -EINVAL; 1205 goto error_bdev_put; 1206 } 1207 1208 device = device_list_add(path, disk_super); 1209 if (IS_ERR(device)) 1210 ret = PTR_ERR(device); 1211 else 1212 *fs_devices_ret = device->fs_devices; 1213 1214 btrfs_release_disk_super(page); 1215 1216 error_bdev_put: 1217 blkdev_put(bdev, flags); 1218 error: 1219 mutex_unlock(&uuid_mutex); 1220 return ret; 1221 } 1222 1223 /* helper to account the used device space in the range */ 1224 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 1225 u64 end, u64 *length) 1226 { 1227 struct btrfs_key key; 1228 struct btrfs_root *root = device->fs_info->dev_root; 1229 struct btrfs_dev_extent *dev_extent; 1230 struct btrfs_path *path; 1231 u64 extent_end; 1232 int ret; 1233 int slot; 1234 struct extent_buffer *l; 1235 1236 *length = 0; 1237 1238 if (start >= device->total_bytes || 1239 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1240 return 0; 1241 1242 path = btrfs_alloc_path(); 1243 if (!path) 1244 return -ENOMEM; 1245 path->reada = READA_FORWARD; 1246 1247 key.objectid = device->devid; 1248 key.offset = start; 1249 key.type = BTRFS_DEV_EXTENT_KEY; 1250 1251 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1252 if (ret < 0) 1253 goto out; 1254 if (ret > 0) { 1255 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1256 if (ret < 0) 1257 goto out; 1258 } 1259 1260 while (1) { 1261 l = path->nodes[0]; 1262 slot = path->slots[0]; 1263 if (slot >= btrfs_header_nritems(l)) { 1264 ret = btrfs_next_leaf(root, path); 1265 if (ret == 0) 1266 continue; 1267 if (ret < 0) 1268 goto out; 1269 1270 break; 1271 } 1272 btrfs_item_key_to_cpu(l, &key, slot); 1273 1274 if (key.objectid < device->devid) 1275 goto next; 1276 1277 if (key.objectid > device->devid) 1278 break; 1279 1280 if (key.type != BTRFS_DEV_EXTENT_KEY) 1281 goto next; 1282 1283 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1284 extent_end = key.offset + btrfs_dev_extent_length(l, 1285 dev_extent); 1286 if (key.offset <= start && extent_end > end) { 1287 *length = end - start + 1; 1288 break; 1289 } else if (key.offset <= start && extent_end > start) 1290 *length += extent_end - start; 1291 else if (key.offset > start && extent_end <= end) 1292 *length += extent_end - key.offset; 1293 else if (key.offset > start && key.offset <= end) { 1294 *length += end - key.offset + 1; 1295 break; 1296 } else if (key.offset > end) 1297 break; 1298 1299 next: 1300 path->slots[0]++; 1301 } 1302 ret = 0; 1303 out: 1304 btrfs_free_path(path); 1305 return ret; 1306 } 1307 1308 static int contains_pending_extent(struct btrfs_transaction *transaction, 1309 struct btrfs_device *device, 1310 u64 *start, u64 len) 1311 { 1312 struct btrfs_fs_info *fs_info = device->fs_info; 1313 struct extent_map *em; 1314 struct list_head *search_list = &fs_info->pinned_chunks; 1315 int ret = 0; 1316 u64 physical_start = *start; 1317 1318 if (transaction) 1319 search_list = &transaction->pending_chunks; 1320 again: 1321 list_for_each_entry(em, search_list, list) { 1322 struct map_lookup *map; 1323 int i; 1324 1325 map = em->map_lookup; 1326 for (i = 0; i < map->num_stripes; i++) { 1327 u64 end; 1328 1329 if (map->stripes[i].dev != device) 1330 continue; 1331 if (map->stripes[i].physical >= physical_start + len || 1332 map->stripes[i].physical + em->orig_block_len <= 1333 physical_start) 1334 continue; 1335 /* 1336 * Make sure that while processing the pinned list we do 1337 * not override our *start with a lower value, because 1338 * we can have pinned chunks that fall within this 1339 * device hole and that have lower physical addresses 1340 * than the pending chunks we processed before. If we 1341 * do not take this special care we can end up getting 1342 * 2 pending chunks that start at the same physical 1343 * device offsets because the end offset of a pinned 1344 * chunk can be equal to the start offset of some 1345 * pending chunk. 1346 */ 1347 end = map->stripes[i].physical + em->orig_block_len; 1348 if (end > *start) { 1349 *start = end; 1350 ret = 1; 1351 } 1352 } 1353 } 1354 if (search_list != &fs_info->pinned_chunks) { 1355 search_list = &fs_info->pinned_chunks; 1356 goto again; 1357 } 1358 1359 return ret; 1360 } 1361 1362 1363 /* 1364 * find_free_dev_extent_start - find free space in the specified device 1365 * @device: the device which we search the free space in 1366 * @num_bytes: the size of the free space that we need 1367 * @search_start: the position from which to begin the search 1368 * @start: store the start of the free space. 1369 * @len: the size of the free space. that we find, or the size 1370 * of the max free space if we don't find suitable free space 1371 * 1372 * this uses a pretty simple search, the expectation is that it is 1373 * called very infrequently and that a given device has a small number 1374 * of extents 1375 * 1376 * @start is used to store the start of the free space if we find. But if we 1377 * don't find suitable free space, it will be used to store the start position 1378 * of the max free space. 1379 * 1380 * @len is used to store the size of the free space that we find. 1381 * But if we don't find suitable free space, it is used to store the size of 1382 * the max free space. 1383 */ 1384 int find_free_dev_extent_start(struct btrfs_transaction *transaction, 1385 struct btrfs_device *device, u64 num_bytes, 1386 u64 search_start, u64 *start, u64 *len) 1387 { 1388 struct btrfs_fs_info *fs_info = device->fs_info; 1389 struct btrfs_root *root = fs_info->dev_root; 1390 struct btrfs_key key; 1391 struct btrfs_dev_extent *dev_extent; 1392 struct btrfs_path *path; 1393 u64 hole_size; 1394 u64 max_hole_start; 1395 u64 max_hole_size; 1396 u64 extent_end; 1397 u64 search_end = device->total_bytes; 1398 int ret; 1399 int slot; 1400 struct extent_buffer *l; 1401 1402 /* 1403 * We don't want to overwrite the superblock on the drive nor any area 1404 * used by the boot loader (grub for example), so we make sure to start 1405 * at an offset of at least 1MB. 1406 */ 1407 search_start = max_t(u64, search_start, SZ_1M); 1408 1409 path = btrfs_alloc_path(); 1410 if (!path) 1411 return -ENOMEM; 1412 1413 max_hole_start = search_start; 1414 max_hole_size = 0; 1415 1416 again: 1417 if (search_start >= search_end || 1418 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1419 ret = -ENOSPC; 1420 goto out; 1421 } 1422 1423 path->reada = READA_FORWARD; 1424 path->search_commit_root = 1; 1425 path->skip_locking = 1; 1426 1427 key.objectid = device->devid; 1428 key.offset = search_start; 1429 key.type = BTRFS_DEV_EXTENT_KEY; 1430 1431 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1432 if (ret < 0) 1433 goto out; 1434 if (ret > 0) { 1435 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1436 if (ret < 0) 1437 goto out; 1438 } 1439 1440 while (1) { 1441 l = path->nodes[0]; 1442 slot = path->slots[0]; 1443 if (slot >= btrfs_header_nritems(l)) { 1444 ret = btrfs_next_leaf(root, path); 1445 if (ret == 0) 1446 continue; 1447 if (ret < 0) 1448 goto out; 1449 1450 break; 1451 } 1452 btrfs_item_key_to_cpu(l, &key, slot); 1453 1454 if (key.objectid < device->devid) 1455 goto next; 1456 1457 if (key.objectid > device->devid) 1458 break; 1459 1460 if (key.type != BTRFS_DEV_EXTENT_KEY) 1461 goto next; 1462 1463 if (key.offset > search_start) { 1464 hole_size = key.offset - search_start; 1465 1466 /* 1467 * Have to check before we set max_hole_start, otherwise 1468 * we could end up sending back this offset anyway. 1469 */ 1470 if (contains_pending_extent(transaction, device, 1471 &search_start, 1472 hole_size)) { 1473 if (key.offset >= search_start) { 1474 hole_size = key.offset - search_start; 1475 } else { 1476 WARN_ON_ONCE(1); 1477 hole_size = 0; 1478 } 1479 } 1480 1481 if (hole_size > max_hole_size) { 1482 max_hole_start = search_start; 1483 max_hole_size = hole_size; 1484 } 1485 1486 /* 1487 * If this free space is greater than which we need, 1488 * it must be the max free space that we have found 1489 * until now, so max_hole_start must point to the start 1490 * of this free space and the length of this free space 1491 * is stored in max_hole_size. Thus, we return 1492 * max_hole_start and max_hole_size and go back to the 1493 * caller. 1494 */ 1495 if (hole_size >= num_bytes) { 1496 ret = 0; 1497 goto out; 1498 } 1499 } 1500 1501 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1502 extent_end = key.offset + btrfs_dev_extent_length(l, 1503 dev_extent); 1504 if (extent_end > search_start) 1505 search_start = extent_end; 1506 next: 1507 path->slots[0]++; 1508 cond_resched(); 1509 } 1510 1511 /* 1512 * At this point, search_start should be the end of 1513 * allocated dev extents, and when shrinking the device, 1514 * search_end may be smaller than search_start. 1515 */ 1516 if (search_end > search_start) { 1517 hole_size = search_end - search_start; 1518 1519 if (contains_pending_extent(transaction, device, &search_start, 1520 hole_size)) { 1521 btrfs_release_path(path); 1522 goto again; 1523 } 1524 1525 if (hole_size > max_hole_size) { 1526 max_hole_start = search_start; 1527 max_hole_size = hole_size; 1528 } 1529 } 1530 1531 /* See above. */ 1532 if (max_hole_size < num_bytes) 1533 ret = -ENOSPC; 1534 else 1535 ret = 0; 1536 1537 out: 1538 btrfs_free_path(path); 1539 *start = max_hole_start; 1540 if (len) 1541 *len = max_hole_size; 1542 return ret; 1543 } 1544 1545 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1546 struct btrfs_device *device, u64 num_bytes, 1547 u64 *start, u64 *len) 1548 { 1549 /* FIXME use last free of some kind */ 1550 return find_free_dev_extent_start(trans->transaction, device, 1551 num_bytes, 0, start, len); 1552 } 1553 1554 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1555 struct btrfs_device *device, 1556 u64 start, u64 *dev_extent_len) 1557 { 1558 struct btrfs_fs_info *fs_info = device->fs_info; 1559 struct btrfs_root *root = fs_info->dev_root; 1560 int ret; 1561 struct btrfs_path *path; 1562 struct btrfs_key key; 1563 struct btrfs_key found_key; 1564 struct extent_buffer *leaf = NULL; 1565 struct btrfs_dev_extent *extent = NULL; 1566 1567 path = btrfs_alloc_path(); 1568 if (!path) 1569 return -ENOMEM; 1570 1571 key.objectid = device->devid; 1572 key.offset = start; 1573 key.type = BTRFS_DEV_EXTENT_KEY; 1574 again: 1575 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1576 if (ret > 0) { 1577 ret = btrfs_previous_item(root, path, key.objectid, 1578 BTRFS_DEV_EXTENT_KEY); 1579 if (ret) 1580 goto out; 1581 leaf = path->nodes[0]; 1582 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1583 extent = btrfs_item_ptr(leaf, path->slots[0], 1584 struct btrfs_dev_extent); 1585 BUG_ON(found_key.offset > start || found_key.offset + 1586 btrfs_dev_extent_length(leaf, extent) < start); 1587 key = found_key; 1588 btrfs_release_path(path); 1589 goto again; 1590 } else if (ret == 0) { 1591 leaf = path->nodes[0]; 1592 extent = btrfs_item_ptr(leaf, path->slots[0], 1593 struct btrfs_dev_extent); 1594 } else { 1595 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1596 goto out; 1597 } 1598 1599 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1600 1601 ret = btrfs_del_item(trans, root, path); 1602 if (ret) { 1603 btrfs_handle_fs_error(fs_info, ret, 1604 "Failed to remove dev extent item"); 1605 } else { 1606 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1607 } 1608 out: 1609 btrfs_free_path(path); 1610 return ret; 1611 } 1612 1613 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1614 struct btrfs_device *device, 1615 u64 chunk_offset, u64 start, u64 num_bytes) 1616 { 1617 int ret; 1618 struct btrfs_path *path; 1619 struct btrfs_fs_info *fs_info = device->fs_info; 1620 struct btrfs_root *root = fs_info->dev_root; 1621 struct btrfs_dev_extent *extent; 1622 struct extent_buffer *leaf; 1623 struct btrfs_key key; 1624 1625 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1626 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1627 path = btrfs_alloc_path(); 1628 if (!path) 1629 return -ENOMEM; 1630 1631 key.objectid = device->devid; 1632 key.offset = start; 1633 key.type = BTRFS_DEV_EXTENT_KEY; 1634 ret = btrfs_insert_empty_item(trans, root, path, &key, 1635 sizeof(*extent)); 1636 if (ret) 1637 goto out; 1638 1639 leaf = path->nodes[0]; 1640 extent = btrfs_item_ptr(leaf, path->slots[0], 1641 struct btrfs_dev_extent); 1642 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1643 BTRFS_CHUNK_TREE_OBJECTID); 1644 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1645 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1646 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1647 1648 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1649 btrfs_mark_buffer_dirty(leaf); 1650 out: 1651 btrfs_free_path(path); 1652 return ret; 1653 } 1654 1655 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1656 { 1657 struct extent_map_tree *em_tree; 1658 struct extent_map *em; 1659 struct rb_node *n; 1660 u64 ret = 0; 1661 1662 em_tree = &fs_info->mapping_tree.map_tree; 1663 read_lock(&em_tree->lock); 1664 n = rb_last(&em_tree->map); 1665 if (n) { 1666 em = rb_entry(n, struct extent_map, rb_node); 1667 ret = em->start + em->len; 1668 } 1669 read_unlock(&em_tree->lock); 1670 1671 return ret; 1672 } 1673 1674 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1675 u64 *devid_ret) 1676 { 1677 int ret; 1678 struct btrfs_key key; 1679 struct btrfs_key found_key; 1680 struct btrfs_path *path; 1681 1682 path = btrfs_alloc_path(); 1683 if (!path) 1684 return -ENOMEM; 1685 1686 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1687 key.type = BTRFS_DEV_ITEM_KEY; 1688 key.offset = (u64)-1; 1689 1690 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1691 if (ret < 0) 1692 goto error; 1693 1694 BUG_ON(ret == 0); /* Corruption */ 1695 1696 ret = btrfs_previous_item(fs_info->chunk_root, path, 1697 BTRFS_DEV_ITEMS_OBJECTID, 1698 BTRFS_DEV_ITEM_KEY); 1699 if (ret) { 1700 *devid_ret = 1; 1701 } else { 1702 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1703 path->slots[0]); 1704 *devid_ret = found_key.offset + 1; 1705 } 1706 ret = 0; 1707 error: 1708 btrfs_free_path(path); 1709 return ret; 1710 } 1711 1712 /* 1713 * the device information is stored in the chunk root 1714 * the btrfs_device struct should be fully filled in 1715 */ 1716 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1717 struct btrfs_fs_info *fs_info, 1718 struct btrfs_device *device) 1719 { 1720 struct btrfs_root *root = fs_info->chunk_root; 1721 int ret; 1722 struct btrfs_path *path; 1723 struct btrfs_dev_item *dev_item; 1724 struct extent_buffer *leaf; 1725 struct btrfs_key key; 1726 unsigned long ptr; 1727 1728 path = btrfs_alloc_path(); 1729 if (!path) 1730 return -ENOMEM; 1731 1732 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1733 key.type = BTRFS_DEV_ITEM_KEY; 1734 key.offset = device->devid; 1735 1736 ret = btrfs_insert_empty_item(trans, root, path, &key, 1737 sizeof(*dev_item)); 1738 if (ret) 1739 goto out; 1740 1741 leaf = path->nodes[0]; 1742 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1743 1744 btrfs_set_device_id(leaf, dev_item, device->devid); 1745 btrfs_set_device_generation(leaf, dev_item, 0); 1746 btrfs_set_device_type(leaf, dev_item, device->type); 1747 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1748 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1749 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1750 btrfs_set_device_total_bytes(leaf, dev_item, 1751 btrfs_device_get_disk_total_bytes(device)); 1752 btrfs_set_device_bytes_used(leaf, dev_item, 1753 btrfs_device_get_bytes_used(device)); 1754 btrfs_set_device_group(leaf, dev_item, 0); 1755 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1756 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1757 btrfs_set_device_start_offset(leaf, dev_item, 0); 1758 1759 ptr = btrfs_device_uuid(dev_item); 1760 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1761 ptr = btrfs_device_fsid(dev_item); 1762 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE); 1763 btrfs_mark_buffer_dirty(leaf); 1764 1765 ret = 0; 1766 out: 1767 btrfs_free_path(path); 1768 return ret; 1769 } 1770 1771 /* 1772 * Function to update ctime/mtime for a given device path. 1773 * Mainly used for ctime/mtime based probe like libblkid. 1774 */ 1775 static void update_dev_time(const char *path_name) 1776 { 1777 struct file *filp; 1778 1779 filp = filp_open(path_name, O_RDWR, 0); 1780 if (IS_ERR(filp)) 1781 return; 1782 file_update_time(filp); 1783 filp_close(filp, NULL); 1784 } 1785 1786 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info, 1787 struct btrfs_device *device) 1788 { 1789 struct btrfs_root *root = fs_info->chunk_root; 1790 int ret; 1791 struct btrfs_path *path; 1792 struct btrfs_key key; 1793 struct btrfs_trans_handle *trans; 1794 1795 path = btrfs_alloc_path(); 1796 if (!path) 1797 return -ENOMEM; 1798 1799 trans = btrfs_start_transaction(root, 0); 1800 if (IS_ERR(trans)) { 1801 btrfs_free_path(path); 1802 return PTR_ERR(trans); 1803 } 1804 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1805 key.type = BTRFS_DEV_ITEM_KEY; 1806 key.offset = device->devid; 1807 1808 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1809 if (ret) { 1810 if (ret > 0) 1811 ret = -ENOENT; 1812 btrfs_abort_transaction(trans, ret); 1813 btrfs_end_transaction(trans); 1814 goto out; 1815 } 1816 1817 ret = btrfs_del_item(trans, root, path); 1818 if (ret) { 1819 btrfs_abort_transaction(trans, ret); 1820 btrfs_end_transaction(trans); 1821 } 1822 1823 out: 1824 btrfs_free_path(path); 1825 if (!ret) 1826 ret = btrfs_commit_transaction(trans); 1827 return ret; 1828 } 1829 1830 /* 1831 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1832 * filesystem. It's up to the caller to adjust that number regarding eg. device 1833 * replace. 1834 */ 1835 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1836 u64 num_devices) 1837 { 1838 u64 all_avail; 1839 unsigned seq; 1840 int i; 1841 1842 do { 1843 seq = read_seqbegin(&fs_info->profiles_lock); 1844 1845 all_avail = fs_info->avail_data_alloc_bits | 1846 fs_info->avail_system_alloc_bits | 1847 fs_info->avail_metadata_alloc_bits; 1848 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1849 1850 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1851 if (!(all_avail & btrfs_raid_group[i])) 1852 continue; 1853 1854 if (num_devices < btrfs_raid_array[i].devs_min) { 1855 int ret = btrfs_raid_mindev_error[i]; 1856 1857 if (ret) 1858 return ret; 1859 } 1860 } 1861 1862 return 0; 1863 } 1864 1865 static struct btrfs_device * btrfs_find_next_active_device( 1866 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1867 { 1868 struct btrfs_device *next_device; 1869 1870 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1871 if (next_device != device && 1872 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1873 && next_device->bdev) 1874 return next_device; 1875 } 1876 1877 return NULL; 1878 } 1879 1880 /* 1881 * Helper function to check if the given device is part of s_bdev / latest_bdev 1882 * and replace it with the provided or the next active device, in the context 1883 * where this function called, there should be always be another device (or 1884 * this_dev) which is active. 1885 */ 1886 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info, 1887 struct btrfs_device *device, struct btrfs_device *this_dev) 1888 { 1889 struct btrfs_device *next_device; 1890 1891 if (this_dev) 1892 next_device = this_dev; 1893 else 1894 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1895 device); 1896 ASSERT(next_device); 1897 1898 if (fs_info->sb->s_bdev && 1899 (fs_info->sb->s_bdev == device->bdev)) 1900 fs_info->sb->s_bdev = next_device->bdev; 1901 1902 if (fs_info->fs_devices->latest_bdev == device->bdev) 1903 fs_info->fs_devices->latest_bdev = next_device->bdev; 1904 } 1905 1906 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 1907 u64 devid) 1908 { 1909 struct btrfs_device *device; 1910 struct btrfs_fs_devices *cur_devices; 1911 u64 num_devices; 1912 int ret = 0; 1913 1914 mutex_lock(&fs_info->volume_mutex); 1915 mutex_lock(&uuid_mutex); 1916 1917 num_devices = fs_info->fs_devices->num_devices; 1918 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 1919 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 1920 WARN_ON(num_devices < 1); 1921 num_devices--; 1922 } 1923 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 1924 1925 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 1926 if (ret) 1927 goto out; 1928 1929 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path, 1930 &device); 1931 if (ret) 1932 goto out; 1933 1934 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1935 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1936 goto out; 1937 } 1938 1939 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1940 fs_info->fs_devices->rw_devices == 1) { 1941 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1942 goto out; 1943 } 1944 1945 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1946 mutex_lock(&fs_info->chunk_mutex); 1947 list_del_init(&device->dev_alloc_list); 1948 device->fs_devices->rw_devices--; 1949 mutex_unlock(&fs_info->chunk_mutex); 1950 } 1951 1952 mutex_unlock(&uuid_mutex); 1953 ret = btrfs_shrink_device(device, 0); 1954 mutex_lock(&uuid_mutex); 1955 if (ret) 1956 goto error_undo; 1957 1958 /* 1959 * TODO: the superblock still includes this device in its num_devices 1960 * counter although write_all_supers() is not locked out. This 1961 * could give a filesystem state which requires a degraded mount. 1962 */ 1963 ret = btrfs_rm_dev_item(fs_info, device); 1964 if (ret) 1965 goto error_undo; 1966 1967 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 1968 btrfs_scrub_cancel_dev(fs_info, device); 1969 1970 /* 1971 * the device list mutex makes sure that we don't change 1972 * the device list while someone else is writing out all 1973 * the device supers. Whoever is writing all supers, should 1974 * lock the device list mutex before getting the number of 1975 * devices in the super block (super_copy). Conversely, 1976 * whoever updates the number of devices in the super block 1977 * (super_copy) should hold the device list mutex. 1978 */ 1979 1980 cur_devices = device->fs_devices; 1981 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1982 list_del_rcu(&device->dev_list); 1983 1984 device->fs_devices->num_devices--; 1985 device->fs_devices->total_devices--; 1986 1987 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 1988 device->fs_devices->missing_devices--; 1989 1990 btrfs_assign_next_active_device(fs_info, device, NULL); 1991 1992 if (device->bdev) { 1993 device->fs_devices->open_devices--; 1994 /* remove sysfs entry */ 1995 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device); 1996 } 1997 1998 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 1999 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2000 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2001 2002 /* 2003 * at this point, the device is zero sized and detached from 2004 * the devices list. All that's left is to zero out the old 2005 * supers and free the device. 2006 */ 2007 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2008 btrfs_scratch_superblocks(device->bdev, device->name->str); 2009 2010 btrfs_close_bdev(device); 2011 call_rcu(&device->rcu, free_device_rcu); 2012 2013 if (cur_devices->open_devices == 0) { 2014 struct btrfs_fs_devices *fs_devices; 2015 fs_devices = fs_info->fs_devices; 2016 while (fs_devices) { 2017 if (fs_devices->seed == cur_devices) { 2018 fs_devices->seed = cur_devices->seed; 2019 break; 2020 } 2021 fs_devices = fs_devices->seed; 2022 } 2023 cur_devices->seed = NULL; 2024 __btrfs_close_devices(cur_devices); 2025 free_fs_devices(cur_devices); 2026 } 2027 2028 out: 2029 mutex_unlock(&uuid_mutex); 2030 mutex_unlock(&fs_info->volume_mutex); 2031 return ret; 2032 2033 error_undo: 2034 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2035 mutex_lock(&fs_info->chunk_mutex); 2036 list_add(&device->dev_alloc_list, 2037 &fs_info->fs_devices->alloc_list); 2038 device->fs_devices->rw_devices++; 2039 mutex_unlock(&fs_info->chunk_mutex); 2040 } 2041 goto out; 2042 } 2043 2044 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info, 2045 struct btrfs_device *srcdev) 2046 { 2047 struct btrfs_fs_devices *fs_devices; 2048 2049 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 2050 2051 /* 2052 * in case of fs with no seed, srcdev->fs_devices will point 2053 * to fs_devices of fs_info. However when the dev being replaced is 2054 * a seed dev it will point to the seed's local fs_devices. In short 2055 * srcdev will have its correct fs_devices in both the cases. 2056 */ 2057 fs_devices = srcdev->fs_devices; 2058 2059 list_del_rcu(&srcdev->dev_list); 2060 list_del(&srcdev->dev_alloc_list); 2061 fs_devices->num_devices--; 2062 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2063 fs_devices->missing_devices--; 2064 2065 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2066 fs_devices->rw_devices--; 2067 2068 if (srcdev->bdev) 2069 fs_devices->open_devices--; 2070 } 2071 2072 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 2073 struct btrfs_device *srcdev) 2074 { 2075 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2076 2077 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) { 2078 /* zero out the old super if it is writable */ 2079 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); 2080 } 2081 2082 btrfs_close_bdev(srcdev); 2083 call_rcu(&srcdev->rcu, free_device_rcu); 2084 2085 /* if this is no devs we rather delete the fs_devices */ 2086 if (!fs_devices->num_devices) { 2087 struct btrfs_fs_devices *tmp_fs_devices; 2088 2089 /* 2090 * On a mounted FS, num_devices can't be zero unless it's a 2091 * seed. In case of a seed device being replaced, the replace 2092 * target added to the sprout FS, so there will be no more 2093 * device left under the seed FS. 2094 */ 2095 ASSERT(fs_devices->seeding); 2096 2097 tmp_fs_devices = fs_info->fs_devices; 2098 while (tmp_fs_devices) { 2099 if (tmp_fs_devices->seed == fs_devices) { 2100 tmp_fs_devices->seed = fs_devices->seed; 2101 break; 2102 } 2103 tmp_fs_devices = tmp_fs_devices->seed; 2104 } 2105 fs_devices->seed = NULL; 2106 __btrfs_close_devices(fs_devices); 2107 free_fs_devices(fs_devices); 2108 } 2109 } 2110 2111 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 2112 struct btrfs_device *tgtdev) 2113 { 2114 mutex_lock(&uuid_mutex); 2115 WARN_ON(!tgtdev); 2116 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2117 2118 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev); 2119 2120 if (tgtdev->bdev) 2121 fs_info->fs_devices->open_devices--; 2122 2123 fs_info->fs_devices->num_devices--; 2124 2125 btrfs_assign_next_active_device(fs_info, tgtdev, NULL); 2126 2127 list_del_rcu(&tgtdev->dev_list); 2128 2129 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2130 mutex_unlock(&uuid_mutex); 2131 2132 /* 2133 * The update_dev_time() with in btrfs_scratch_superblocks() 2134 * may lead to a call to btrfs_show_devname() which will try 2135 * to hold device_list_mutex. And here this device 2136 * is already out of device list, so we don't have to hold 2137 * the device_list_mutex lock. 2138 */ 2139 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); 2140 2141 btrfs_close_bdev(tgtdev); 2142 call_rcu(&tgtdev->rcu, free_device_rcu); 2143 } 2144 2145 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info, 2146 const char *device_path, 2147 struct btrfs_device **device) 2148 { 2149 int ret = 0; 2150 struct btrfs_super_block *disk_super; 2151 u64 devid; 2152 u8 *dev_uuid; 2153 struct block_device *bdev; 2154 struct buffer_head *bh; 2155 2156 *device = NULL; 2157 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2158 fs_info->bdev_holder, 0, &bdev, &bh); 2159 if (ret) 2160 return ret; 2161 disk_super = (struct btrfs_super_block *)bh->b_data; 2162 devid = btrfs_stack_device_id(&disk_super->dev_item); 2163 dev_uuid = disk_super->dev_item.uuid; 2164 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid); 2165 brelse(bh); 2166 if (!*device) 2167 ret = -ENOENT; 2168 blkdev_put(bdev, FMODE_READ); 2169 return ret; 2170 } 2171 2172 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info, 2173 const char *device_path, 2174 struct btrfs_device **device) 2175 { 2176 *device = NULL; 2177 if (strcmp(device_path, "missing") == 0) { 2178 struct list_head *devices; 2179 struct btrfs_device *tmp; 2180 2181 devices = &fs_info->fs_devices->devices; 2182 /* 2183 * It is safe to read the devices since the volume_mutex 2184 * is held by the caller. 2185 */ 2186 list_for_each_entry(tmp, devices, dev_list) { 2187 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2188 &tmp->dev_state) && !tmp->bdev) { 2189 *device = tmp; 2190 break; 2191 } 2192 } 2193 2194 if (!*device) 2195 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2196 2197 return 0; 2198 } else { 2199 return btrfs_find_device_by_path(fs_info, device_path, device); 2200 } 2201 } 2202 2203 /* 2204 * Lookup a device given by device id, or the path if the id is 0. 2205 */ 2206 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid, 2207 const char *devpath, 2208 struct btrfs_device **device) 2209 { 2210 int ret; 2211 2212 if (devid) { 2213 ret = 0; 2214 *device = btrfs_find_device(fs_info, devid, NULL, NULL); 2215 if (!*device) 2216 ret = -ENOENT; 2217 } else { 2218 if (!devpath || !devpath[0]) 2219 return -EINVAL; 2220 2221 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath, 2222 device); 2223 } 2224 return ret; 2225 } 2226 2227 /* 2228 * does all the dirty work required for changing file system's UUID. 2229 */ 2230 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2231 { 2232 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2233 struct btrfs_fs_devices *old_devices; 2234 struct btrfs_fs_devices *seed_devices; 2235 struct btrfs_super_block *disk_super = fs_info->super_copy; 2236 struct btrfs_device *device; 2237 u64 super_flags; 2238 2239 BUG_ON(!mutex_is_locked(&uuid_mutex)); 2240 if (!fs_devices->seeding) 2241 return -EINVAL; 2242 2243 seed_devices = alloc_fs_devices(NULL); 2244 if (IS_ERR(seed_devices)) 2245 return PTR_ERR(seed_devices); 2246 2247 old_devices = clone_fs_devices(fs_devices); 2248 if (IS_ERR(old_devices)) { 2249 kfree(seed_devices); 2250 return PTR_ERR(old_devices); 2251 } 2252 2253 list_add(&old_devices->list, &fs_uuids); 2254 2255 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2256 seed_devices->opened = 1; 2257 INIT_LIST_HEAD(&seed_devices->devices); 2258 INIT_LIST_HEAD(&seed_devices->alloc_list); 2259 mutex_init(&seed_devices->device_list_mutex); 2260 2261 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2262 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2263 synchronize_rcu); 2264 list_for_each_entry(device, &seed_devices->devices, dev_list) 2265 device->fs_devices = seed_devices; 2266 2267 mutex_lock(&fs_info->chunk_mutex); 2268 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2269 mutex_unlock(&fs_info->chunk_mutex); 2270 2271 fs_devices->seeding = 0; 2272 fs_devices->num_devices = 0; 2273 fs_devices->open_devices = 0; 2274 fs_devices->missing_devices = 0; 2275 fs_devices->rotating = 0; 2276 fs_devices->seed = seed_devices; 2277 2278 generate_random_uuid(fs_devices->fsid); 2279 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2280 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2281 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2282 2283 super_flags = btrfs_super_flags(disk_super) & 2284 ~BTRFS_SUPER_FLAG_SEEDING; 2285 btrfs_set_super_flags(disk_super, super_flags); 2286 2287 return 0; 2288 } 2289 2290 /* 2291 * Store the expected generation for seed devices in device items. 2292 */ 2293 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2294 struct btrfs_fs_info *fs_info) 2295 { 2296 struct btrfs_root *root = fs_info->chunk_root; 2297 struct btrfs_path *path; 2298 struct extent_buffer *leaf; 2299 struct btrfs_dev_item *dev_item; 2300 struct btrfs_device *device; 2301 struct btrfs_key key; 2302 u8 fs_uuid[BTRFS_FSID_SIZE]; 2303 u8 dev_uuid[BTRFS_UUID_SIZE]; 2304 u64 devid; 2305 int ret; 2306 2307 path = btrfs_alloc_path(); 2308 if (!path) 2309 return -ENOMEM; 2310 2311 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2312 key.offset = 0; 2313 key.type = BTRFS_DEV_ITEM_KEY; 2314 2315 while (1) { 2316 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2317 if (ret < 0) 2318 goto error; 2319 2320 leaf = path->nodes[0]; 2321 next_slot: 2322 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2323 ret = btrfs_next_leaf(root, path); 2324 if (ret > 0) 2325 break; 2326 if (ret < 0) 2327 goto error; 2328 leaf = path->nodes[0]; 2329 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2330 btrfs_release_path(path); 2331 continue; 2332 } 2333 2334 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2335 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2336 key.type != BTRFS_DEV_ITEM_KEY) 2337 break; 2338 2339 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2340 struct btrfs_dev_item); 2341 devid = btrfs_device_id(leaf, dev_item); 2342 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2343 BTRFS_UUID_SIZE); 2344 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2345 BTRFS_FSID_SIZE); 2346 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid); 2347 BUG_ON(!device); /* Logic error */ 2348 2349 if (device->fs_devices->seeding) { 2350 btrfs_set_device_generation(leaf, dev_item, 2351 device->generation); 2352 btrfs_mark_buffer_dirty(leaf); 2353 } 2354 2355 path->slots[0]++; 2356 goto next_slot; 2357 } 2358 ret = 0; 2359 error: 2360 btrfs_free_path(path); 2361 return ret; 2362 } 2363 2364 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2365 { 2366 struct btrfs_root *root = fs_info->dev_root; 2367 struct request_queue *q; 2368 struct btrfs_trans_handle *trans; 2369 struct btrfs_device *device; 2370 struct block_device *bdev; 2371 struct list_head *devices; 2372 struct super_block *sb = fs_info->sb; 2373 struct rcu_string *name; 2374 u64 tmp; 2375 int seeding_dev = 0; 2376 int ret = 0; 2377 bool unlocked = false; 2378 2379 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding) 2380 return -EROFS; 2381 2382 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2383 fs_info->bdev_holder); 2384 if (IS_ERR(bdev)) 2385 return PTR_ERR(bdev); 2386 2387 if (fs_info->fs_devices->seeding) { 2388 seeding_dev = 1; 2389 down_write(&sb->s_umount); 2390 mutex_lock(&uuid_mutex); 2391 } 2392 2393 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2394 2395 devices = &fs_info->fs_devices->devices; 2396 2397 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2398 list_for_each_entry(device, devices, dev_list) { 2399 if (device->bdev == bdev) { 2400 ret = -EEXIST; 2401 mutex_unlock( 2402 &fs_info->fs_devices->device_list_mutex); 2403 goto error; 2404 } 2405 } 2406 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2407 2408 device = btrfs_alloc_device(fs_info, NULL, NULL); 2409 if (IS_ERR(device)) { 2410 /* we can safely leave the fs_devices entry around */ 2411 ret = PTR_ERR(device); 2412 goto error; 2413 } 2414 2415 name = rcu_string_strdup(device_path, GFP_KERNEL); 2416 if (!name) { 2417 ret = -ENOMEM; 2418 goto error_free_device; 2419 } 2420 rcu_assign_pointer(device->name, name); 2421 2422 trans = btrfs_start_transaction(root, 0); 2423 if (IS_ERR(trans)) { 2424 ret = PTR_ERR(trans); 2425 goto error_free_device; 2426 } 2427 2428 q = bdev_get_queue(bdev); 2429 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2430 device->generation = trans->transid; 2431 device->io_width = fs_info->sectorsize; 2432 device->io_align = fs_info->sectorsize; 2433 device->sector_size = fs_info->sectorsize; 2434 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2435 fs_info->sectorsize); 2436 device->disk_total_bytes = device->total_bytes; 2437 device->commit_total_bytes = device->total_bytes; 2438 device->fs_info = fs_info; 2439 device->bdev = bdev; 2440 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2441 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2442 device->mode = FMODE_EXCL; 2443 device->dev_stats_valid = 1; 2444 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2445 2446 if (seeding_dev) { 2447 sb->s_flags &= ~SB_RDONLY; 2448 ret = btrfs_prepare_sprout(fs_info); 2449 if (ret) { 2450 btrfs_abort_transaction(trans, ret); 2451 goto error_trans; 2452 } 2453 } 2454 2455 device->fs_devices = fs_info->fs_devices; 2456 2457 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2458 mutex_lock(&fs_info->chunk_mutex); 2459 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices); 2460 list_add(&device->dev_alloc_list, 2461 &fs_info->fs_devices->alloc_list); 2462 fs_info->fs_devices->num_devices++; 2463 fs_info->fs_devices->open_devices++; 2464 fs_info->fs_devices->rw_devices++; 2465 fs_info->fs_devices->total_devices++; 2466 fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2467 2468 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2469 2470 if (!blk_queue_nonrot(q)) 2471 fs_info->fs_devices->rotating = 1; 2472 2473 tmp = btrfs_super_total_bytes(fs_info->super_copy); 2474 btrfs_set_super_total_bytes(fs_info->super_copy, 2475 round_down(tmp + device->total_bytes, fs_info->sectorsize)); 2476 2477 tmp = btrfs_super_num_devices(fs_info->super_copy); 2478 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1); 2479 2480 /* add sysfs device entry */ 2481 btrfs_sysfs_add_device_link(fs_info->fs_devices, device); 2482 2483 /* 2484 * we've got more storage, clear any full flags on the space 2485 * infos 2486 */ 2487 btrfs_clear_space_info_full(fs_info); 2488 2489 mutex_unlock(&fs_info->chunk_mutex); 2490 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2491 2492 if (seeding_dev) { 2493 mutex_lock(&fs_info->chunk_mutex); 2494 ret = init_first_rw_device(trans, fs_info); 2495 mutex_unlock(&fs_info->chunk_mutex); 2496 if (ret) { 2497 btrfs_abort_transaction(trans, ret); 2498 goto error_sysfs; 2499 } 2500 } 2501 2502 ret = btrfs_add_dev_item(trans, fs_info, device); 2503 if (ret) { 2504 btrfs_abort_transaction(trans, ret); 2505 goto error_sysfs; 2506 } 2507 2508 if (seeding_dev) { 2509 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2510 2511 ret = btrfs_finish_sprout(trans, fs_info); 2512 if (ret) { 2513 btrfs_abort_transaction(trans, ret); 2514 goto error_sysfs; 2515 } 2516 2517 /* Sprouting would change fsid of the mounted root, 2518 * so rename the fsid on the sysfs 2519 */ 2520 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2521 fs_info->fsid); 2522 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf)) 2523 btrfs_warn(fs_info, 2524 "sysfs: failed to create fsid for sprout"); 2525 } 2526 2527 ret = btrfs_commit_transaction(trans); 2528 2529 if (seeding_dev) { 2530 mutex_unlock(&uuid_mutex); 2531 up_write(&sb->s_umount); 2532 unlocked = true; 2533 2534 if (ret) /* transaction commit */ 2535 return ret; 2536 2537 ret = btrfs_relocate_sys_chunks(fs_info); 2538 if (ret < 0) 2539 btrfs_handle_fs_error(fs_info, ret, 2540 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2541 trans = btrfs_attach_transaction(root); 2542 if (IS_ERR(trans)) { 2543 if (PTR_ERR(trans) == -ENOENT) 2544 return 0; 2545 ret = PTR_ERR(trans); 2546 trans = NULL; 2547 goto error_sysfs; 2548 } 2549 ret = btrfs_commit_transaction(trans); 2550 } 2551 2552 /* Update ctime/mtime for libblkid */ 2553 update_dev_time(device_path); 2554 return ret; 2555 2556 error_sysfs: 2557 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device); 2558 error_trans: 2559 if (seeding_dev) 2560 sb->s_flags |= SB_RDONLY; 2561 if (trans) 2562 btrfs_end_transaction(trans); 2563 error_free_device: 2564 free_device(device); 2565 error: 2566 blkdev_put(bdev, FMODE_EXCL); 2567 if (seeding_dev && !unlocked) { 2568 mutex_unlock(&uuid_mutex); 2569 up_write(&sb->s_umount); 2570 } 2571 return ret; 2572 } 2573 2574 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 2575 const char *device_path, 2576 struct btrfs_device *srcdev, 2577 struct btrfs_device **device_out) 2578 { 2579 struct btrfs_device *device; 2580 struct block_device *bdev; 2581 struct list_head *devices; 2582 struct rcu_string *name; 2583 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2584 int ret = 0; 2585 2586 *device_out = NULL; 2587 if (fs_info->fs_devices->seeding) { 2588 btrfs_err(fs_info, "the filesystem is a seed filesystem!"); 2589 return -EINVAL; 2590 } 2591 2592 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2593 fs_info->bdev_holder); 2594 if (IS_ERR(bdev)) { 2595 btrfs_err(fs_info, "target device %s is invalid!", device_path); 2596 return PTR_ERR(bdev); 2597 } 2598 2599 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2600 2601 devices = &fs_info->fs_devices->devices; 2602 list_for_each_entry(device, devices, dev_list) { 2603 if (device->bdev == bdev) { 2604 btrfs_err(fs_info, 2605 "target device is in the filesystem!"); 2606 ret = -EEXIST; 2607 goto error; 2608 } 2609 } 2610 2611 2612 if (i_size_read(bdev->bd_inode) < 2613 btrfs_device_get_total_bytes(srcdev)) { 2614 btrfs_err(fs_info, 2615 "target device is smaller than source device!"); 2616 ret = -EINVAL; 2617 goto error; 2618 } 2619 2620 2621 device = btrfs_alloc_device(NULL, &devid, NULL); 2622 if (IS_ERR(device)) { 2623 ret = PTR_ERR(device); 2624 goto error; 2625 } 2626 2627 name = rcu_string_strdup(device_path, GFP_KERNEL); 2628 if (!name) { 2629 free_device(device); 2630 ret = -ENOMEM; 2631 goto error; 2632 } 2633 rcu_assign_pointer(device->name, name); 2634 2635 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2636 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2637 device->generation = 0; 2638 device->io_width = fs_info->sectorsize; 2639 device->io_align = fs_info->sectorsize; 2640 device->sector_size = fs_info->sectorsize; 2641 device->total_bytes = btrfs_device_get_total_bytes(srcdev); 2642 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev); 2643 device->bytes_used = btrfs_device_get_bytes_used(srcdev); 2644 ASSERT(list_empty(&srcdev->resized_list)); 2645 device->commit_total_bytes = srcdev->commit_total_bytes; 2646 device->commit_bytes_used = device->bytes_used; 2647 device->fs_info = fs_info; 2648 device->bdev = bdev; 2649 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2650 set_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2651 device->mode = FMODE_EXCL; 2652 device->dev_stats_valid = 1; 2653 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2654 device->fs_devices = fs_info->fs_devices; 2655 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2656 fs_info->fs_devices->num_devices++; 2657 fs_info->fs_devices->open_devices++; 2658 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2659 2660 *device_out = device; 2661 return ret; 2662 2663 error: 2664 blkdev_put(bdev, FMODE_EXCL); 2665 return ret; 2666 } 2667 2668 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2669 struct btrfs_device *tgtdev) 2670 { 2671 u32 sectorsize = fs_info->sectorsize; 2672 2673 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2674 tgtdev->io_width = sectorsize; 2675 tgtdev->io_align = sectorsize; 2676 tgtdev->sector_size = sectorsize; 2677 tgtdev->fs_info = fs_info; 2678 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &tgtdev->dev_state); 2679 } 2680 2681 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2682 struct btrfs_device *device) 2683 { 2684 int ret; 2685 struct btrfs_path *path; 2686 struct btrfs_root *root = device->fs_info->chunk_root; 2687 struct btrfs_dev_item *dev_item; 2688 struct extent_buffer *leaf; 2689 struct btrfs_key key; 2690 2691 path = btrfs_alloc_path(); 2692 if (!path) 2693 return -ENOMEM; 2694 2695 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2696 key.type = BTRFS_DEV_ITEM_KEY; 2697 key.offset = device->devid; 2698 2699 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2700 if (ret < 0) 2701 goto out; 2702 2703 if (ret > 0) { 2704 ret = -ENOENT; 2705 goto out; 2706 } 2707 2708 leaf = path->nodes[0]; 2709 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2710 2711 btrfs_set_device_id(leaf, dev_item, device->devid); 2712 btrfs_set_device_type(leaf, dev_item, device->type); 2713 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2714 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2715 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2716 btrfs_set_device_total_bytes(leaf, dev_item, 2717 btrfs_device_get_disk_total_bytes(device)); 2718 btrfs_set_device_bytes_used(leaf, dev_item, 2719 btrfs_device_get_bytes_used(device)); 2720 btrfs_mark_buffer_dirty(leaf); 2721 2722 out: 2723 btrfs_free_path(path); 2724 return ret; 2725 } 2726 2727 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2728 struct btrfs_device *device, u64 new_size) 2729 { 2730 struct btrfs_fs_info *fs_info = device->fs_info; 2731 struct btrfs_super_block *super_copy = fs_info->super_copy; 2732 struct btrfs_fs_devices *fs_devices; 2733 u64 old_total; 2734 u64 diff; 2735 2736 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2737 return -EACCES; 2738 2739 new_size = round_down(new_size, fs_info->sectorsize); 2740 2741 mutex_lock(&fs_info->chunk_mutex); 2742 old_total = btrfs_super_total_bytes(super_copy); 2743 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2744 2745 if (new_size <= device->total_bytes || 2746 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2747 mutex_unlock(&fs_info->chunk_mutex); 2748 return -EINVAL; 2749 } 2750 2751 fs_devices = fs_info->fs_devices; 2752 2753 btrfs_set_super_total_bytes(super_copy, 2754 round_down(old_total + diff, fs_info->sectorsize)); 2755 device->fs_devices->total_rw_bytes += diff; 2756 2757 btrfs_device_set_total_bytes(device, new_size); 2758 btrfs_device_set_disk_total_bytes(device, new_size); 2759 btrfs_clear_space_info_full(device->fs_info); 2760 if (list_empty(&device->resized_list)) 2761 list_add_tail(&device->resized_list, 2762 &fs_devices->resized_devices); 2763 mutex_unlock(&fs_info->chunk_mutex); 2764 2765 return btrfs_update_device(trans, device); 2766 } 2767 2768 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2769 struct btrfs_fs_info *fs_info, u64 chunk_offset) 2770 { 2771 struct btrfs_root *root = fs_info->chunk_root; 2772 int ret; 2773 struct btrfs_path *path; 2774 struct btrfs_key key; 2775 2776 path = btrfs_alloc_path(); 2777 if (!path) 2778 return -ENOMEM; 2779 2780 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2781 key.offset = chunk_offset; 2782 key.type = BTRFS_CHUNK_ITEM_KEY; 2783 2784 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2785 if (ret < 0) 2786 goto out; 2787 else if (ret > 0) { /* Logic error or corruption */ 2788 btrfs_handle_fs_error(fs_info, -ENOENT, 2789 "Failed lookup while freeing chunk."); 2790 ret = -ENOENT; 2791 goto out; 2792 } 2793 2794 ret = btrfs_del_item(trans, root, path); 2795 if (ret < 0) 2796 btrfs_handle_fs_error(fs_info, ret, 2797 "Failed to delete chunk item."); 2798 out: 2799 btrfs_free_path(path); 2800 return ret; 2801 } 2802 2803 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2804 { 2805 struct btrfs_super_block *super_copy = fs_info->super_copy; 2806 struct btrfs_disk_key *disk_key; 2807 struct btrfs_chunk *chunk; 2808 u8 *ptr; 2809 int ret = 0; 2810 u32 num_stripes; 2811 u32 array_size; 2812 u32 len = 0; 2813 u32 cur; 2814 struct btrfs_key key; 2815 2816 mutex_lock(&fs_info->chunk_mutex); 2817 array_size = btrfs_super_sys_array_size(super_copy); 2818 2819 ptr = super_copy->sys_chunk_array; 2820 cur = 0; 2821 2822 while (cur < array_size) { 2823 disk_key = (struct btrfs_disk_key *)ptr; 2824 btrfs_disk_key_to_cpu(&key, disk_key); 2825 2826 len = sizeof(*disk_key); 2827 2828 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2829 chunk = (struct btrfs_chunk *)(ptr + len); 2830 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2831 len += btrfs_chunk_item_size(num_stripes); 2832 } else { 2833 ret = -EIO; 2834 break; 2835 } 2836 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2837 key.offset == chunk_offset) { 2838 memmove(ptr, ptr + len, array_size - (cur + len)); 2839 array_size -= len; 2840 btrfs_set_super_sys_array_size(super_copy, array_size); 2841 } else { 2842 ptr += len; 2843 cur += len; 2844 } 2845 } 2846 mutex_unlock(&fs_info->chunk_mutex); 2847 return ret; 2848 } 2849 2850 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info, 2851 u64 logical, u64 length) 2852 { 2853 struct extent_map_tree *em_tree; 2854 struct extent_map *em; 2855 2856 em_tree = &fs_info->mapping_tree.map_tree; 2857 read_lock(&em_tree->lock); 2858 em = lookup_extent_mapping(em_tree, logical, length); 2859 read_unlock(&em_tree->lock); 2860 2861 if (!em) { 2862 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2863 logical, length); 2864 return ERR_PTR(-EINVAL); 2865 } 2866 2867 if (em->start > logical || em->start + em->len < logical) { 2868 btrfs_crit(fs_info, 2869 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 2870 logical, length, em->start, em->start + em->len); 2871 free_extent_map(em); 2872 return ERR_PTR(-EINVAL); 2873 } 2874 2875 /* callers are responsible for dropping em's ref. */ 2876 return em; 2877 } 2878 2879 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, 2880 struct btrfs_fs_info *fs_info, u64 chunk_offset) 2881 { 2882 struct extent_map *em; 2883 struct map_lookup *map; 2884 u64 dev_extent_len = 0; 2885 int i, ret = 0; 2886 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2887 2888 em = get_chunk_map(fs_info, chunk_offset, 1); 2889 if (IS_ERR(em)) { 2890 /* 2891 * This is a logic error, but we don't want to just rely on the 2892 * user having built with ASSERT enabled, so if ASSERT doesn't 2893 * do anything we still error out. 2894 */ 2895 ASSERT(0); 2896 return PTR_ERR(em); 2897 } 2898 map = em->map_lookup; 2899 mutex_lock(&fs_info->chunk_mutex); 2900 check_system_chunk(trans, fs_info, map->type); 2901 mutex_unlock(&fs_info->chunk_mutex); 2902 2903 /* 2904 * Take the device list mutex to prevent races with the final phase of 2905 * a device replace operation that replaces the device object associated 2906 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2907 */ 2908 mutex_lock(&fs_devices->device_list_mutex); 2909 for (i = 0; i < map->num_stripes; i++) { 2910 struct btrfs_device *device = map->stripes[i].dev; 2911 ret = btrfs_free_dev_extent(trans, device, 2912 map->stripes[i].physical, 2913 &dev_extent_len); 2914 if (ret) { 2915 mutex_unlock(&fs_devices->device_list_mutex); 2916 btrfs_abort_transaction(trans, ret); 2917 goto out; 2918 } 2919 2920 if (device->bytes_used > 0) { 2921 mutex_lock(&fs_info->chunk_mutex); 2922 btrfs_device_set_bytes_used(device, 2923 device->bytes_used - dev_extent_len); 2924 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 2925 btrfs_clear_space_info_full(fs_info); 2926 mutex_unlock(&fs_info->chunk_mutex); 2927 } 2928 2929 if (map->stripes[i].dev) { 2930 ret = btrfs_update_device(trans, map->stripes[i].dev); 2931 if (ret) { 2932 mutex_unlock(&fs_devices->device_list_mutex); 2933 btrfs_abort_transaction(trans, ret); 2934 goto out; 2935 } 2936 } 2937 } 2938 mutex_unlock(&fs_devices->device_list_mutex); 2939 2940 ret = btrfs_free_chunk(trans, fs_info, chunk_offset); 2941 if (ret) { 2942 btrfs_abort_transaction(trans, ret); 2943 goto out; 2944 } 2945 2946 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 2947 2948 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2949 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 2950 if (ret) { 2951 btrfs_abort_transaction(trans, ret); 2952 goto out; 2953 } 2954 } 2955 2956 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em); 2957 if (ret) { 2958 btrfs_abort_transaction(trans, ret); 2959 goto out; 2960 } 2961 2962 out: 2963 /* once for us */ 2964 free_extent_map(em); 2965 return ret; 2966 } 2967 2968 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2969 { 2970 struct btrfs_root *root = fs_info->chunk_root; 2971 struct btrfs_trans_handle *trans; 2972 int ret; 2973 2974 /* 2975 * Prevent races with automatic removal of unused block groups. 2976 * After we relocate and before we remove the chunk with offset 2977 * chunk_offset, automatic removal of the block group can kick in, 2978 * resulting in a failure when calling btrfs_remove_chunk() below. 2979 * 2980 * Make sure to acquire this mutex before doing a tree search (dev 2981 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 2982 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 2983 * we release the path used to search the chunk/dev tree and before 2984 * the current task acquires this mutex and calls us. 2985 */ 2986 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex)); 2987 2988 ret = btrfs_can_relocate(fs_info, chunk_offset); 2989 if (ret) 2990 return -ENOSPC; 2991 2992 /* step one, relocate all the extents inside this chunk */ 2993 btrfs_scrub_pause(fs_info); 2994 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 2995 btrfs_scrub_continue(fs_info); 2996 if (ret) 2997 return ret; 2998 2999 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3000 chunk_offset); 3001 if (IS_ERR(trans)) { 3002 ret = PTR_ERR(trans); 3003 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3004 return ret; 3005 } 3006 3007 /* 3008 * step two, delete the device extents and the 3009 * chunk tree entries 3010 */ 3011 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset); 3012 btrfs_end_transaction(trans); 3013 return ret; 3014 } 3015 3016 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3017 { 3018 struct btrfs_root *chunk_root = fs_info->chunk_root; 3019 struct btrfs_path *path; 3020 struct extent_buffer *leaf; 3021 struct btrfs_chunk *chunk; 3022 struct btrfs_key key; 3023 struct btrfs_key found_key; 3024 u64 chunk_type; 3025 bool retried = false; 3026 int failed = 0; 3027 int ret; 3028 3029 path = btrfs_alloc_path(); 3030 if (!path) 3031 return -ENOMEM; 3032 3033 again: 3034 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3035 key.offset = (u64)-1; 3036 key.type = BTRFS_CHUNK_ITEM_KEY; 3037 3038 while (1) { 3039 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3040 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3041 if (ret < 0) { 3042 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3043 goto error; 3044 } 3045 BUG_ON(ret == 0); /* Corruption */ 3046 3047 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3048 key.type); 3049 if (ret) 3050 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3051 if (ret < 0) 3052 goto error; 3053 if (ret > 0) 3054 break; 3055 3056 leaf = path->nodes[0]; 3057 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3058 3059 chunk = btrfs_item_ptr(leaf, path->slots[0], 3060 struct btrfs_chunk); 3061 chunk_type = btrfs_chunk_type(leaf, chunk); 3062 btrfs_release_path(path); 3063 3064 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3065 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3066 if (ret == -ENOSPC) 3067 failed++; 3068 else 3069 BUG_ON(ret); 3070 } 3071 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3072 3073 if (found_key.offset == 0) 3074 break; 3075 key.offset = found_key.offset - 1; 3076 } 3077 ret = 0; 3078 if (failed && !retried) { 3079 failed = 0; 3080 retried = true; 3081 goto again; 3082 } else if (WARN_ON(failed && retried)) { 3083 ret = -ENOSPC; 3084 } 3085 error: 3086 btrfs_free_path(path); 3087 return ret; 3088 } 3089 3090 /* 3091 * return 1 : allocate a data chunk successfully, 3092 * return <0: errors during allocating a data chunk, 3093 * return 0 : no need to allocate a data chunk. 3094 */ 3095 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3096 u64 chunk_offset) 3097 { 3098 struct btrfs_block_group_cache *cache; 3099 u64 bytes_used; 3100 u64 chunk_type; 3101 3102 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3103 ASSERT(cache); 3104 chunk_type = cache->flags; 3105 btrfs_put_block_group(cache); 3106 3107 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) { 3108 spin_lock(&fs_info->data_sinfo->lock); 3109 bytes_used = fs_info->data_sinfo->bytes_used; 3110 spin_unlock(&fs_info->data_sinfo->lock); 3111 3112 if (!bytes_used) { 3113 struct btrfs_trans_handle *trans; 3114 int ret; 3115 3116 trans = btrfs_join_transaction(fs_info->tree_root); 3117 if (IS_ERR(trans)) 3118 return PTR_ERR(trans); 3119 3120 ret = btrfs_force_chunk_alloc(trans, fs_info, 3121 BTRFS_BLOCK_GROUP_DATA); 3122 btrfs_end_transaction(trans); 3123 if (ret < 0) 3124 return ret; 3125 3126 return 1; 3127 } 3128 } 3129 return 0; 3130 } 3131 3132 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3133 struct btrfs_balance_control *bctl) 3134 { 3135 struct btrfs_root *root = fs_info->tree_root; 3136 struct btrfs_trans_handle *trans; 3137 struct btrfs_balance_item *item; 3138 struct btrfs_disk_balance_args disk_bargs; 3139 struct btrfs_path *path; 3140 struct extent_buffer *leaf; 3141 struct btrfs_key key; 3142 int ret, err; 3143 3144 path = btrfs_alloc_path(); 3145 if (!path) 3146 return -ENOMEM; 3147 3148 trans = btrfs_start_transaction(root, 0); 3149 if (IS_ERR(trans)) { 3150 btrfs_free_path(path); 3151 return PTR_ERR(trans); 3152 } 3153 3154 key.objectid = BTRFS_BALANCE_OBJECTID; 3155 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3156 key.offset = 0; 3157 3158 ret = btrfs_insert_empty_item(trans, root, path, &key, 3159 sizeof(*item)); 3160 if (ret) 3161 goto out; 3162 3163 leaf = path->nodes[0]; 3164 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3165 3166 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3167 3168 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3169 btrfs_set_balance_data(leaf, item, &disk_bargs); 3170 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3171 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3172 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3173 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3174 3175 btrfs_set_balance_flags(leaf, item, bctl->flags); 3176 3177 btrfs_mark_buffer_dirty(leaf); 3178 out: 3179 btrfs_free_path(path); 3180 err = btrfs_commit_transaction(trans); 3181 if (err && !ret) 3182 ret = err; 3183 return ret; 3184 } 3185 3186 static int del_balance_item(struct btrfs_fs_info *fs_info) 3187 { 3188 struct btrfs_root *root = fs_info->tree_root; 3189 struct btrfs_trans_handle *trans; 3190 struct btrfs_path *path; 3191 struct btrfs_key key; 3192 int ret, err; 3193 3194 path = btrfs_alloc_path(); 3195 if (!path) 3196 return -ENOMEM; 3197 3198 trans = btrfs_start_transaction(root, 0); 3199 if (IS_ERR(trans)) { 3200 btrfs_free_path(path); 3201 return PTR_ERR(trans); 3202 } 3203 3204 key.objectid = BTRFS_BALANCE_OBJECTID; 3205 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3206 key.offset = 0; 3207 3208 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3209 if (ret < 0) 3210 goto out; 3211 if (ret > 0) { 3212 ret = -ENOENT; 3213 goto out; 3214 } 3215 3216 ret = btrfs_del_item(trans, root, path); 3217 out: 3218 btrfs_free_path(path); 3219 err = btrfs_commit_transaction(trans); 3220 if (err && !ret) 3221 ret = err; 3222 return ret; 3223 } 3224 3225 /* 3226 * This is a heuristic used to reduce the number of chunks balanced on 3227 * resume after balance was interrupted. 3228 */ 3229 static void update_balance_args(struct btrfs_balance_control *bctl) 3230 { 3231 /* 3232 * Turn on soft mode for chunk types that were being converted. 3233 */ 3234 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3235 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3236 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3237 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3238 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3239 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3240 3241 /* 3242 * Turn on usage filter if is not already used. The idea is 3243 * that chunks that we have already balanced should be 3244 * reasonably full. Don't do it for chunks that are being 3245 * converted - that will keep us from relocating unconverted 3246 * (albeit full) chunks. 3247 */ 3248 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3249 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3250 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3251 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3252 bctl->data.usage = 90; 3253 } 3254 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3255 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3256 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3257 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3258 bctl->sys.usage = 90; 3259 } 3260 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3261 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3262 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3263 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3264 bctl->meta.usage = 90; 3265 } 3266 } 3267 3268 /* 3269 * Should be called with both balance and volume mutexes held to 3270 * serialize other volume operations (add_dev/rm_dev/resize) with 3271 * restriper. Same goes for unset_balance_control. 3272 */ 3273 static void set_balance_control(struct btrfs_balance_control *bctl) 3274 { 3275 struct btrfs_fs_info *fs_info = bctl->fs_info; 3276 3277 BUG_ON(fs_info->balance_ctl); 3278 3279 spin_lock(&fs_info->balance_lock); 3280 fs_info->balance_ctl = bctl; 3281 spin_unlock(&fs_info->balance_lock); 3282 } 3283 3284 static void unset_balance_control(struct btrfs_fs_info *fs_info) 3285 { 3286 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3287 3288 BUG_ON(!fs_info->balance_ctl); 3289 3290 spin_lock(&fs_info->balance_lock); 3291 fs_info->balance_ctl = NULL; 3292 spin_unlock(&fs_info->balance_lock); 3293 3294 kfree(bctl); 3295 } 3296 3297 /* 3298 * Balance filters. Return 1 if chunk should be filtered out 3299 * (should not be balanced). 3300 */ 3301 static int chunk_profiles_filter(u64 chunk_type, 3302 struct btrfs_balance_args *bargs) 3303 { 3304 chunk_type = chunk_to_extended(chunk_type) & 3305 BTRFS_EXTENDED_PROFILE_MASK; 3306 3307 if (bargs->profiles & chunk_type) 3308 return 0; 3309 3310 return 1; 3311 } 3312 3313 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3314 struct btrfs_balance_args *bargs) 3315 { 3316 struct btrfs_block_group_cache *cache; 3317 u64 chunk_used; 3318 u64 user_thresh_min; 3319 u64 user_thresh_max; 3320 int ret = 1; 3321 3322 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3323 chunk_used = btrfs_block_group_used(&cache->item); 3324 3325 if (bargs->usage_min == 0) 3326 user_thresh_min = 0; 3327 else 3328 user_thresh_min = div_factor_fine(cache->key.offset, 3329 bargs->usage_min); 3330 3331 if (bargs->usage_max == 0) 3332 user_thresh_max = 1; 3333 else if (bargs->usage_max > 100) 3334 user_thresh_max = cache->key.offset; 3335 else 3336 user_thresh_max = div_factor_fine(cache->key.offset, 3337 bargs->usage_max); 3338 3339 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3340 ret = 0; 3341 3342 btrfs_put_block_group(cache); 3343 return ret; 3344 } 3345 3346 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3347 u64 chunk_offset, struct btrfs_balance_args *bargs) 3348 { 3349 struct btrfs_block_group_cache *cache; 3350 u64 chunk_used, user_thresh; 3351 int ret = 1; 3352 3353 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3354 chunk_used = btrfs_block_group_used(&cache->item); 3355 3356 if (bargs->usage_min == 0) 3357 user_thresh = 1; 3358 else if (bargs->usage > 100) 3359 user_thresh = cache->key.offset; 3360 else 3361 user_thresh = div_factor_fine(cache->key.offset, 3362 bargs->usage); 3363 3364 if (chunk_used < user_thresh) 3365 ret = 0; 3366 3367 btrfs_put_block_group(cache); 3368 return ret; 3369 } 3370 3371 static int chunk_devid_filter(struct extent_buffer *leaf, 3372 struct btrfs_chunk *chunk, 3373 struct btrfs_balance_args *bargs) 3374 { 3375 struct btrfs_stripe *stripe; 3376 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3377 int i; 3378 3379 for (i = 0; i < num_stripes; i++) { 3380 stripe = btrfs_stripe_nr(chunk, i); 3381 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3382 return 0; 3383 } 3384 3385 return 1; 3386 } 3387 3388 /* [pstart, pend) */ 3389 static int chunk_drange_filter(struct extent_buffer *leaf, 3390 struct btrfs_chunk *chunk, 3391 struct btrfs_balance_args *bargs) 3392 { 3393 struct btrfs_stripe *stripe; 3394 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3395 u64 stripe_offset; 3396 u64 stripe_length; 3397 int factor; 3398 int i; 3399 3400 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3401 return 0; 3402 3403 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3404 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3405 factor = num_stripes / 2; 3406 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3407 factor = num_stripes - 1; 3408 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3409 factor = num_stripes - 2; 3410 } else { 3411 factor = num_stripes; 3412 } 3413 3414 for (i = 0; i < num_stripes; i++) { 3415 stripe = btrfs_stripe_nr(chunk, i); 3416 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3417 continue; 3418 3419 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3420 stripe_length = btrfs_chunk_length(leaf, chunk); 3421 stripe_length = div_u64(stripe_length, factor); 3422 3423 if (stripe_offset < bargs->pend && 3424 stripe_offset + stripe_length > bargs->pstart) 3425 return 0; 3426 } 3427 3428 return 1; 3429 } 3430 3431 /* [vstart, vend) */ 3432 static int chunk_vrange_filter(struct extent_buffer *leaf, 3433 struct btrfs_chunk *chunk, 3434 u64 chunk_offset, 3435 struct btrfs_balance_args *bargs) 3436 { 3437 if (chunk_offset < bargs->vend && 3438 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3439 /* at least part of the chunk is inside this vrange */ 3440 return 0; 3441 3442 return 1; 3443 } 3444 3445 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3446 struct btrfs_chunk *chunk, 3447 struct btrfs_balance_args *bargs) 3448 { 3449 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3450 3451 if (bargs->stripes_min <= num_stripes 3452 && num_stripes <= bargs->stripes_max) 3453 return 0; 3454 3455 return 1; 3456 } 3457 3458 static int chunk_soft_convert_filter(u64 chunk_type, 3459 struct btrfs_balance_args *bargs) 3460 { 3461 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3462 return 0; 3463 3464 chunk_type = chunk_to_extended(chunk_type) & 3465 BTRFS_EXTENDED_PROFILE_MASK; 3466 3467 if (bargs->target == chunk_type) 3468 return 1; 3469 3470 return 0; 3471 } 3472 3473 static int should_balance_chunk(struct btrfs_fs_info *fs_info, 3474 struct extent_buffer *leaf, 3475 struct btrfs_chunk *chunk, u64 chunk_offset) 3476 { 3477 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3478 struct btrfs_balance_args *bargs = NULL; 3479 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3480 3481 /* type filter */ 3482 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3483 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3484 return 0; 3485 } 3486 3487 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3488 bargs = &bctl->data; 3489 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3490 bargs = &bctl->sys; 3491 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3492 bargs = &bctl->meta; 3493 3494 /* profiles filter */ 3495 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3496 chunk_profiles_filter(chunk_type, bargs)) { 3497 return 0; 3498 } 3499 3500 /* usage filter */ 3501 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3502 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3503 return 0; 3504 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3505 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3506 return 0; 3507 } 3508 3509 /* devid filter */ 3510 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3511 chunk_devid_filter(leaf, chunk, bargs)) { 3512 return 0; 3513 } 3514 3515 /* drange filter, makes sense only with devid filter */ 3516 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3517 chunk_drange_filter(leaf, chunk, bargs)) { 3518 return 0; 3519 } 3520 3521 /* vrange filter */ 3522 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3523 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3524 return 0; 3525 } 3526 3527 /* stripes filter */ 3528 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3529 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3530 return 0; 3531 } 3532 3533 /* soft profile changing mode */ 3534 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3535 chunk_soft_convert_filter(chunk_type, bargs)) { 3536 return 0; 3537 } 3538 3539 /* 3540 * limited by count, must be the last filter 3541 */ 3542 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3543 if (bargs->limit == 0) 3544 return 0; 3545 else 3546 bargs->limit--; 3547 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3548 /* 3549 * Same logic as the 'limit' filter; the minimum cannot be 3550 * determined here because we do not have the global information 3551 * about the count of all chunks that satisfy the filters. 3552 */ 3553 if (bargs->limit_max == 0) 3554 return 0; 3555 else 3556 bargs->limit_max--; 3557 } 3558 3559 return 1; 3560 } 3561 3562 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3563 { 3564 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3565 struct btrfs_root *chunk_root = fs_info->chunk_root; 3566 struct btrfs_root *dev_root = fs_info->dev_root; 3567 struct list_head *devices; 3568 struct btrfs_device *device; 3569 u64 old_size; 3570 u64 size_to_free; 3571 u64 chunk_type; 3572 struct btrfs_chunk *chunk; 3573 struct btrfs_path *path = NULL; 3574 struct btrfs_key key; 3575 struct btrfs_key found_key; 3576 struct btrfs_trans_handle *trans; 3577 struct extent_buffer *leaf; 3578 int slot; 3579 int ret; 3580 int enospc_errors = 0; 3581 bool counting = true; 3582 /* The single value limit and min/max limits use the same bytes in the */ 3583 u64 limit_data = bctl->data.limit; 3584 u64 limit_meta = bctl->meta.limit; 3585 u64 limit_sys = bctl->sys.limit; 3586 u32 count_data = 0; 3587 u32 count_meta = 0; 3588 u32 count_sys = 0; 3589 int chunk_reserved = 0; 3590 3591 /* step one make some room on all the devices */ 3592 devices = &fs_info->fs_devices->devices; 3593 list_for_each_entry(device, devices, dev_list) { 3594 old_size = btrfs_device_get_total_bytes(device); 3595 size_to_free = div_factor(old_size, 1); 3596 size_to_free = min_t(u64, size_to_free, SZ_1M); 3597 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) || 3598 btrfs_device_get_total_bytes(device) - 3599 btrfs_device_get_bytes_used(device) > size_to_free || 3600 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 3601 continue; 3602 3603 ret = btrfs_shrink_device(device, old_size - size_to_free); 3604 if (ret == -ENOSPC) 3605 break; 3606 if (ret) { 3607 /* btrfs_shrink_device never returns ret > 0 */ 3608 WARN_ON(ret > 0); 3609 goto error; 3610 } 3611 3612 trans = btrfs_start_transaction(dev_root, 0); 3613 if (IS_ERR(trans)) { 3614 ret = PTR_ERR(trans); 3615 btrfs_info_in_rcu(fs_info, 3616 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu", 3617 rcu_str_deref(device->name), ret, 3618 old_size, old_size - size_to_free); 3619 goto error; 3620 } 3621 3622 ret = btrfs_grow_device(trans, device, old_size); 3623 if (ret) { 3624 btrfs_end_transaction(trans); 3625 /* btrfs_grow_device never returns ret > 0 */ 3626 WARN_ON(ret > 0); 3627 btrfs_info_in_rcu(fs_info, 3628 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu", 3629 rcu_str_deref(device->name), ret, 3630 old_size, old_size - size_to_free); 3631 goto error; 3632 } 3633 3634 btrfs_end_transaction(trans); 3635 } 3636 3637 /* step two, relocate all the chunks */ 3638 path = btrfs_alloc_path(); 3639 if (!path) { 3640 ret = -ENOMEM; 3641 goto error; 3642 } 3643 3644 /* zero out stat counters */ 3645 spin_lock(&fs_info->balance_lock); 3646 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3647 spin_unlock(&fs_info->balance_lock); 3648 again: 3649 if (!counting) { 3650 /* 3651 * The single value limit and min/max limits use the same bytes 3652 * in the 3653 */ 3654 bctl->data.limit = limit_data; 3655 bctl->meta.limit = limit_meta; 3656 bctl->sys.limit = limit_sys; 3657 } 3658 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3659 key.offset = (u64)-1; 3660 key.type = BTRFS_CHUNK_ITEM_KEY; 3661 3662 while (1) { 3663 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3664 atomic_read(&fs_info->balance_cancel_req)) { 3665 ret = -ECANCELED; 3666 goto error; 3667 } 3668 3669 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3670 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3671 if (ret < 0) { 3672 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3673 goto error; 3674 } 3675 3676 /* 3677 * this shouldn't happen, it means the last relocate 3678 * failed 3679 */ 3680 if (ret == 0) 3681 BUG(); /* FIXME break ? */ 3682 3683 ret = btrfs_previous_item(chunk_root, path, 0, 3684 BTRFS_CHUNK_ITEM_KEY); 3685 if (ret) { 3686 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3687 ret = 0; 3688 break; 3689 } 3690 3691 leaf = path->nodes[0]; 3692 slot = path->slots[0]; 3693 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3694 3695 if (found_key.objectid != key.objectid) { 3696 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3697 break; 3698 } 3699 3700 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3701 chunk_type = btrfs_chunk_type(leaf, chunk); 3702 3703 if (!counting) { 3704 spin_lock(&fs_info->balance_lock); 3705 bctl->stat.considered++; 3706 spin_unlock(&fs_info->balance_lock); 3707 } 3708 3709 ret = should_balance_chunk(fs_info, leaf, chunk, 3710 found_key.offset); 3711 3712 btrfs_release_path(path); 3713 if (!ret) { 3714 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3715 goto loop; 3716 } 3717 3718 if (counting) { 3719 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3720 spin_lock(&fs_info->balance_lock); 3721 bctl->stat.expected++; 3722 spin_unlock(&fs_info->balance_lock); 3723 3724 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3725 count_data++; 3726 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3727 count_sys++; 3728 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3729 count_meta++; 3730 3731 goto loop; 3732 } 3733 3734 /* 3735 * Apply limit_min filter, no need to check if the LIMITS 3736 * filter is used, limit_min is 0 by default 3737 */ 3738 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3739 count_data < bctl->data.limit_min) 3740 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3741 count_meta < bctl->meta.limit_min) 3742 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3743 count_sys < bctl->sys.limit_min)) { 3744 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3745 goto loop; 3746 } 3747 3748 if (!chunk_reserved) { 3749 /* 3750 * We may be relocating the only data chunk we have, 3751 * which could potentially end up with losing data's 3752 * raid profile, so lets allocate an empty one in 3753 * advance. 3754 */ 3755 ret = btrfs_may_alloc_data_chunk(fs_info, 3756 found_key.offset); 3757 if (ret < 0) { 3758 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3759 goto error; 3760 } else if (ret == 1) { 3761 chunk_reserved = 1; 3762 } 3763 } 3764 3765 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3766 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3767 if (ret && ret != -ENOSPC) 3768 goto error; 3769 if (ret == -ENOSPC) { 3770 enospc_errors++; 3771 } else { 3772 spin_lock(&fs_info->balance_lock); 3773 bctl->stat.completed++; 3774 spin_unlock(&fs_info->balance_lock); 3775 } 3776 loop: 3777 if (found_key.offset == 0) 3778 break; 3779 key.offset = found_key.offset - 1; 3780 } 3781 3782 if (counting) { 3783 btrfs_release_path(path); 3784 counting = false; 3785 goto again; 3786 } 3787 error: 3788 btrfs_free_path(path); 3789 if (enospc_errors) { 3790 btrfs_info(fs_info, "%d enospc errors during balance", 3791 enospc_errors); 3792 if (!ret) 3793 ret = -ENOSPC; 3794 } 3795 3796 return ret; 3797 } 3798 3799 /** 3800 * alloc_profile_is_valid - see if a given profile is valid and reduced 3801 * @flags: profile to validate 3802 * @extended: if true @flags is treated as an extended profile 3803 */ 3804 static int alloc_profile_is_valid(u64 flags, int extended) 3805 { 3806 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3807 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3808 3809 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3810 3811 /* 1) check that all other bits are zeroed */ 3812 if (flags & ~mask) 3813 return 0; 3814 3815 /* 2) see if profile is reduced */ 3816 if (flags == 0) 3817 return !extended; /* "0" is valid for usual profiles */ 3818 3819 /* true if exactly one bit set */ 3820 return (flags & (flags - 1)) == 0; 3821 } 3822 3823 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3824 { 3825 /* cancel requested || normal exit path */ 3826 return atomic_read(&fs_info->balance_cancel_req) || 3827 (atomic_read(&fs_info->balance_pause_req) == 0 && 3828 atomic_read(&fs_info->balance_cancel_req) == 0); 3829 } 3830 3831 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3832 { 3833 int ret; 3834 3835 unset_balance_control(fs_info); 3836 ret = del_balance_item(fs_info); 3837 if (ret) 3838 btrfs_handle_fs_error(fs_info, ret, NULL); 3839 3840 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3841 } 3842 3843 /* Non-zero return value signifies invalidity */ 3844 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3845 u64 allowed) 3846 { 3847 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3848 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3849 (bctl_arg->target & ~allowed))); 3850 } 3851 3852 /* 3853 * Should be called with both balance and volume mutexes held 3854 */ 3855 int btrfs_balance(struct btrfs_balance_control *bctl, 3856 struct btrfs_ioctl_balance_args *bargs) 3857 { 3858 struct btrfs_fs_info *fs_info = bctl->fs_info; 3859 u64 meta_target, data_target; 3860 u64 allowed; 3861 int mixed = 0; 3862 int ret; 3863 u64 num_devices; 3864 unsigned seq; 3865 3866 if (btrfs_fs_closing(fs_info) || 3867 atomic_read(&fs_info->balance_pause_req) || 3868 atomic_read(&fs_info->balance_cancel_req)) { 3869 ret = -EINVAL; 3870 goto out; 3871 } 3872 3873 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3874 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3875 mixed = 1; 3876 3877 /* 3878 * In case of mixed groups both data and meta should be picked, 3879 * and identical options should be given for both of them. 3880 */ 3881 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3882 if (mixed && (bctl->flags & allowed)) { 3883 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3884 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3885 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3886 btrfs_err(fs_info, 3887 "with mixed groups data and metadata balance options must be the same"); 3888 ret = -EINVAL; 3889 goto out; 3890 } 3891 } 3892 3893 num_devices = fs_info->fs_devices->num_devices; 3894 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 3895 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3896 BUG_ON(num_devices < 1); 3897 num_devices--; 3898 } 3899 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 3900 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP; 3901 if (num_devices > 1) 3902 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3903 if (num_devices > 2) 3904 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3905 if (num_devices > 3) 3906 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3907 BTRFS_BLOCK_GROUP_RAID6); 3908 if (validate_convert_profile(&bctl->data, allowed)) { 3909 btrfs_err(fs_info, 3910 "unable to start balance with target data profile %llu", 3911 bctl->data.target); 3912 ret = -EINVAL; 3913 goto out; 3914 } 3915 if (validate_convert_profile(&bctl->meta, allowed)) { 3916 btrfs_err(fs_info, 3917 "unable to start balance with target metadata profile %llu", 3918 bctl->meta.target); 3919 ret = -EINVAL; 3920 goto out; 3921 } 3922 if (validate_convert_profile(&bctl->sys, allowed)) { 3923 btrfs_err(fs_info, 3924 "unable to start balance with target system profile %llu", 3925 bctl->sys.target); 3926 ret = -EINVAL; 3927 goto out; 3928 } 3929 3930 /* allow to reduce meta or sys integrity only if force set */ 3931 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3932 BTRFS_BLOCK_GROUP_RAID10 | 3933 BTRFS_BLOCK_GROUP_RAID5 | 3934 BTRFS_BLOCK_GROUP_RAID6; 3935 do { 3936 seq = read_seqbegin(&fs_info->profiles_lock); 3937 3938 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3939 (fs_info->avail_system_alloc_bits & allowed) && 3940 !(bctl->sys.target & allowed)) || 3941 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3942 (fs_info->avail_metadata_alloc_bits & allowed) && 3943 !(bctl->meta.target & allowed))) { 3944 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3945 btrfs_info(fs_info, 3946 "force reducing metadata integrity"); 3947 } else { 3948 btrfs_err(fs_info, 3949 "balance will reduce metadata integrity, use force if you want this"); 3950 ret = -EINVAL; 3951 goto out; 3952 } 3953 } 3954 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3955 3956 /* if we're not converting, the target field is uninitialized */ 3957 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 3958 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 3959 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 3960 bctl->data.target : fs_info->avail_data_alloc_bits; 3961 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 3962 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 3963 btrfs_warn(fs_info, 3964 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx", 3965 meta_target, data_target); 3966 } 3967 3968 ret = insert_balance_item(fs_info, bctl); 3969 if (ret && ret != -EEXIST) 3970 goto out; 3971 3972 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3973 BUG_ON(ret == -EEXIST); 3974 set_balance_control(bctl); 3975 } else { 3976 BUG_ON(ret != -EEXIST); 3977 spin_lock(&fs_info->balance_lock); 3978 update_balance_args(bctl); 3979 spin_unlock(&fs_info->balance_lock); 3980 } 3981 3982 atomic_inc(&fs_info->balance_running); 3983 mutex_unlock(&fs_info->balance_mutex); 3984 3985 ret = __btrfs_balance(fs_info); 3986 3987 mutex_lock(&fs_info->balance_mutex); 3988 atomic_dec(&fs_info->balance_running); 3989 3990 if (bargs) { 3991 memset(bargs, 0, sizeof(*bargs)); 3992 update_ioctl_balance_args(fs_info, 0, bargs); 3993 } 3994 3995 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3996 balance_need_close(fs_info)) { 3997 __cancel_balance(fs_info); 3998 } 3999 4000 wake_up(&fs_info->balance_wait_q); 4001 4002 return ret; 4003 out: 4004 if (bctl->flags & BTRFS_BALANCE_RESUME) 4005 __cancel_balance(fs_info); 4006 else { 4007 kfree(bctl); 4008 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4009 } 4010 return ret; 4011 } 4012 4013 static int balance_kthread(void *data) 4014 { 4015 struct btrfs_fs_info *fs_info = data; 4016 int ret = 0; 4017 4018 mutex_lock(&fs_info->volume_mutex); 4019 mutex_lock(&fs_info->balance_mutex); 4020 4021 if (fs_info->balance_ctl) { 4022 btrfs_info(fs_info, "continuing balance"); 4023 ret = btrfs_balance(fs_info->balance_ctl, NULL); 4024 } 4025 4026 mutex_unlock(&fs_info->balance_mutex); 4027 mutex_unlock(&fs_info->volume_mutex); 4028 4029 return ret; 4030 } 4031 4032 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4033 { 4034 struct task_struct *tsk; 4035 4036 spin_lock(&fs_info->balance_lock); 4037 if (!fs_info->balance_ctl) { 4038 spin_unlock(&fs_info->balance_lock); 4039 return 0; 4040 } 4041 spin_unlock(&fs_info->balance_lock); 4042 4043 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4044 btrfs_info(fs_info, "force skipping balance"); 4045 return 0; 4046 } 4047 4048 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4049 return PTR_ERR_OR_ZERO(tsk); 4050 } 4051 4052 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4053 { 4054 struct btrfs_balance_control *bctl; 4055 struct btrfs_balance_item *item; 4056 struct btrfs_disk_balance_args disk_bargs; 4057 struct btrfs_path *path; 4058 struct extent_buffer *leaf; 4059 struct btrfs_key key; 4060 int ret; 4061 4062 path = btrfs_alloc_path(); 4063 if (!path) 4064 return -ENOMEM; 4065 4066 key.objectid = BTRFS_BALANCE_OBJECTID; 4067 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4068 key.offset = 0; 4069 4070 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4071 if (ret < 0) 4072 goto out; 4073 if (ret > 0) { /* ret = -ENOENT; */ 4074 ret = 0; 4075 goto out; 4076 } 4077 4078 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4079 if (!bctl) { 4080 ret = -ENOMEM; 4081 goto out; 4082 } 4083 4084 leaf = path->nodes[0]; 4085 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4086 4087 bctl->fs_info = fs_info; 4088 bctl->flags = btrfs_balance_flags(leaf, item); 4089 bctl->flags |= BTRFS_BALANCE_RESUME; 4090 4091 btrfs_balance_data(leaf, item, &disk_bargs); 4092 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4093 btrfs_balance_meta(leaf, item, &disk_bargs); 4094 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4095 btrfs_balance_sys(leaf, item, &disk_bargs); 4096 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4097 4098 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4099 4100 mutex_lock(&fs_info->volume_mutex); 4101 mutex_lock(&fs_info->balance_mutex); 4102 4103 set_balance_control(bctl); 4104 4105 mutex_unlock(&fs_info->balance_mutex); 4106 mutex_unlock(&fs_info->volume_mutex); 4107 out: 4108 btrfs_free_path(path); 4109 return ret; 4110 } 4111 4112 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4113 { 4114 int ret = 0; 4115 4116 mutex_lock(&fs_info->balance_mutex); 4117 if (!fs_info->balance_ctl) { 4118 mutex_unlock(&fs_info->balance_mutex); 4119 return -ENOTCONN; 4120 } 4121 4122 if (atomic_read(&fs_info->balance_running)) { 4123 atomic_inc(&fs_info->balance_pause_req); 4124 mutex_unlock(&fs_info->balance_mutex); 4125 4126 wait_event(fs_info->balance_wait_q, 4127 atomic_read(&fs_info->balance_running) == 0); 4128 4129 mutex_lock(&fs_info->balance_mutex); 4130 /* we are good with balance_ctl ripped off from under us */ 4131 BUG_ON(atomic_read(&fs_info->balance_running)); 4132 atomic_dec(&fs_info->balance_pause_req); 4133 } else { 4134 ret = -ENOTCONN; 4135 } 4136 4137 mutex_unlock(&fs_info->balance_mutex); 4138 return ret; 4139 } 4140 4141 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4142 { 4143 if (sb_rdonly(fs_info->sb)) 4144 return -EROFS; 4145 4146 mutex_lock(&fs_info->balance_mutex); 4147 if (!fs_info->balance_ctl) { 4148 mutex_unlock(&fs_info->balance_mutex); 4149 return -ENOTCONN; 4150 } 4151 4152 atomic_inc(&fs_info->balance_cancel_req); 4153 /* 4154 * if we are running just wait and return, balance item is 4155 * deleted in btrfs_balance in this case 4156 */ 4157 if (atomic_read(&fs_info->balance_running)) { 4158 mutex_unlock(&fs_info->balance_mutex); 4159 wait_event(fs_info->balance_wait_q, 4160 atomic_read(&fs_info->balance_running) == 0); 4161 mutex_lock(&fs_info->balance_mutex); 4162 } else { 4163 /* __cancel_balance needs volume_mutex */ 4164 mutex_unlock(&fs_info->balance_mutex); 4165 mutex_lock(&fs_info->volume_mutex); 4166 mutex_lock(&fs_info->balance_mutex); 4167 4168 if (fs_info->balance_ctl) 4169 __cancel_balance(fs_info); 4170 4171 mutex_unlock(&fs_info->volume_mutex); 4172 } 4173 4174 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 4175 atomic_dec(&fs_info->balance_cancel_req); 4176 mutex_unlock(&fs_info->balance_mutex); 4177 return 0; 4178 } 4179 4180 static int btrfs_uuid_scan_kthread(void *data) 4181 { 4182 struct btrfs_fs_info *fs_info = data; 4183 struct btrfs_root *root = fs_info->tree_root; 4184 struct btrfs_key key; 4185 struct btrfs_path *path = NULL; 4186 int ret = 0; 4187 struct extent_buffer *eb; 4188 int slot; 4189 struct btrfs_root_item root_item; 4190 u32 item_size; 4191 struct btrfs_trans_handle *trans = NULL; 4192 4193 path = btrfs_alloc_path(); 4194 if (!path) { 4195 ret = -ENOMEM; 4196 goto out; 4197 } 4198 4199 key.objectid = 0; 4200 key.type = BTRFS_ROOT_ITEM_KEY; 4201 key.offset = 0; 4202 4203 while (1) { 4204 ret = btrfs_search_forward(root, &key, path, 0); 4205 if (ret) { 4206 if (ret > 0) 4207 ret = 0; 4208 break; 4209 } 4210 4211 if (key.type != BTRFS_ROOT_ITEM_KEY || 4212 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4213 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4214 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4215 goto skip; 4216 4217 eb = path->nodes[0]; 4218 slot = path->slots[0]; 4219 item_size = btrfs_item_size_nr(eb, slot); 4220 if (item_size < sizeof(root_item)) 4221 goto skip; 4222 4223 read_extent_buffer(eb, &root_item, 4224 btrfs_item_ptr_offset(eb, slot), 4225 (int)sizeof(root_item)); 4226 if (btrfs_root_refs(&root_item) == 0) 4227 goto skip; 4228 4229 if (!btrfs_is_empty_uuid(root_item.uuid) || 4230 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4231 if (trans) 4232 goto update_tree; 4233 4234 btrfs_release_path(path); 4235 /* 4236 * 1 - subvol uuid item 4237 * 1 - received_subvol uuid item 4238 */ 4239 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4240 if (IS_ERR(trans)) { 4241 ret = PTR_ERR(trans); 4242 break; 4243 } 4244 continue; 4245 } else { 4246 goto skip; 4247 } 4248 update_tree: 4249 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4250 ret = btrfs_uuid_tree_add(trans, fs_info, 4251 root_item.uuid, 4252 BTRFS_UUID_KEY_SUBVOL, 4253 key.objectid); 4254 if (ret < 0) { 4255 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4256 ret); 4257 break; 4258 } 4259 } 4260 4261 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4262 ret = btrfs_uuid_tree_add(trans, fs_info, 4263 root_item.received_uuid, 4264 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4265 key.objectid); 4266 if (ret < 0) { 4267 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4268 ret); 4269 break; 4270 } 4271 } 4272 4273 skip: 4274 if (trans) { 4275 ret = btrfs_end_transaction(trans); 4276 trans = NULL; 4277 if (ret) 4278 break; 4279 } 4280 4281 btrfs_release_path(path); 4282 if (key.offset < (u64)-1) { 4283 key.offset++; 4284 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4285 key.offset = 0; 4286 key.type = BTRFS_ROOT_ITEM_KEY; 4287 } else if (key.objectid < (u64)-1) { 4288 key.offset = 0; 4289 key.type = BTRFS_ROOT_ITEM_KEY; 4290 key.objectid++; 4291 } else { 4292 break; 4293 } 4294 cond_resched(); 4295 } 4296 4297 out: 4298 btrfs_free_path(path); 4299 if (trans && !IS_ERR(trans)) 4300 btrfs_end_transaction(trans); 4301 if (ret) 4302 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4303 else 4304 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4305 up(&fs_info->uuid_tree_rescan_sem); 4306 return 0; 4307 } 4308 4309 /* 4310 * Callback for btrfs_uuid_tree_iterate(). 4311 * returns: 4312 * 0 check succeeded, the entry is not outdated. 4313 * < 0 if an error occurred. 4314 * > 0 if the check failed, which means the caller shall remove the entry. 4315 */ 4316 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4317 u8 *uuid, u8 type, u64 subid) 4318 { 4319 struct btrfs_key key; 4320 int ret = 0; 4321 struct btrfs_root *subvol_root; 4322 4323 if (type != BTRFS_UUID_KEY_SUBVOL && 4324 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4325 goto out; 4326 4327 key.objectid = subid; 4328 key.type = BTRFS_ROOT_ITEM_KEY; 4329 key.offset = (u64)-1; 4330 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4331 if (IS_ERR(subvol_root)) { 4332 ret = PTR_ERR(subvol_root); 4333 if (ret == -ENOENT) 4334 ret = 1; 4335 goto out; 4336 } 4337 4338 switch (type) { 4339 case BTRFS_UUID_KEY_SUBVOL: 4340 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4341 ret = 1; 4342 break; 4343 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4344 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4345 BTRFS_UUID_SIZE)) 4346 ret = 1; 4347 break; 4348 } 4349 4350 out: 4351 return ret; 4352 } 4353 4354 static int btrfs_uuid_rescan_kthread(void *data) 4355 { 4356 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4357 int ret; 4358 4359 /* 4360 * 1st step is to iterate through the existing UUID tree and 4361 * to delete all entries that contain outdated data. 4362 * 2nd step is to add all missing entries to the UUID tree. 4363 */ 4364 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4365 if (ret < 0) { 4366 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4367 up(&fs_info->uuid_tree_rescan_sem); 4368 return ret; 4369 } 4370 return btrfs_uuid_scan_kthread(data); 4371 } 4372 4373 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4374 { 4375 struct btrfs_trans_handle *trans; 4376 struct btrfs_root *tree_root = fs_info->tree_root; 4377 struct btrfs_root *uuid_root; 4378 struct task_struct *task; 4379 int ret; 4380 4381 /* 4382 * 1 - root node 4383 * 1 - root item 4384 */ 4385 trans = btrfs_start_transaction(tree_root, 2); 4386 if (IS_ERR(trans)) 4387 return PTR_ERR(trans); 4388 4389 uuid_root = btrfs_create_tree(trans, fs_info, 4390 BTRFS_UUID_TREE_OBJECTID); 4391 if (IS_ERR(uuid_root)) { 4392 ret = PTR_ERR(uuid_root); 4393 btrfs_abort_transaction(trans, ret); 4394 btrfs_end_transaction(trans); 4395 return ret; 4396 } 4397 4398 fs_info->uuid_root = uuid_root; 4399 4400 ret = btrfs_commit_transaction(trans); 4401 if (ret) 4402 return ret; 4403 4404 down(&fs_info->uuid_tree_rescan_sem); 4405 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4406 if (IS_ERR(task)) { 4407 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4408 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4409 up(&fs_info->uuid_tree_rescan_sem); 4410 return PTR_ERR(task); 4411 } 4412 4413 return 0; 4414 } 4415 4416 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4417 { 4418 struct task_struct *task; 4419 4420 down(&fs_info->uuid_tree_rescan_sem); 4421 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4422 if (IS_ERR(task)) { 4423 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4424 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4425 up(&fs_info->uuid_tree_rescan_sem); 4426 return PTR_ERR(task); 4427 } 4428 4429 return 0; 4430 } 4431 4432 /* 4433 * shrinking a device means finding all of the device extents past 4434 * the new size, and then following the back refs to the chunks. 4435 * The chunk relocation code actually frees the device extent 4436 */ 4437 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4438 { 4439 struct btrfs_fs_info *fs_info = device->fs_info; 4440 struct btrfs_root *root = fs_info->dev_root; 4441 struct btrfs_trans_handle *trans; 4442 struct btrfs_dev_extent *dev_extent = NULL; 4443 struct btrfs_path *path; 4444 u64 length; 4445 u64 chunk_offset; 4446 int ret; 4447 int slot; 4448 int failed = 0; 4449 bool retried = false; 4450 bool checked_pending_chunks = false; 4451 struct extent_buffer *l; 4452 struct btrfs_key key; 4453 struct btrfs_super_block *super_copy = fs_info->super_copy; 4454 u64 old_total = btrfs_super_total_bytes(super_copy); 4455 u64 old_size = btrfs_device_get_total_bytes(device); 4456 u64 diff; 4457 4458 new_size = round_down(new_size, fs_info->sectorsize); 4459 diff = round_down(old_size - new_size, fs_info->sectorsize); 4460 4461 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4462 return -EINVAL; 4463 4464 path = btrfs_alloc_path(); 4465 if (!path) 4466 return -ENOMEM; 4467 4468 path->reada = READA_FORWARD; 4469 4470 mutex_lock(&fs_info->chunk_mutex); 4471 4472 btrfs_device_set_total_bytes(device, new_size); 4473 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4474 device->fs_devices->total_rw_bytes -= diff; 4475 atomic64_sub(diff, &fs_info->free_chunk_space); 4476 } 4477 mutex_unlock(&fs_info->chunk_mutex); 4478 4479 again: 4480 key.objectid = device->devid; 4481 key.offset = (u64)-1; 4482 key.type = BTRFS_DEV_EXTENT_KEY; 4483 4484 do { 4485 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4486 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4487 if (ret < 0) { 4488 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4489 goto done; 4490 } 4491 4492 ret = btrfs_previous_item(root, path, 0, key.type); 4493 if (ret) 4494 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4495 if (ret < 0) 4496 goto done; 4497 if (ret) { 4498 ret = 0; 4499 btrfs_release_path(path); 4500 break; 4501 } 4502 4503 l = path->nodes[0]; 4504 slot = path->slots[0]; 4505 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4506 4507 if (key.objectid != device->devid) { 4508 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4509 btrfs_release_path(path); 4510 break; 4511 } 4512 4513 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4514 length = btrfs_dev_extent_length(l, dev_extent); 4515 4516 if (key.offset + length <= new_size) { 4517 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4518 btrfs_release_path(path); 4519 break; 4520 } 4521 4522 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4523 btrfs_release_path(path); 4524 4525 /* 4526 * We may be relocating the only data chunk we have, 4527 * which could potentially end up with losing data's 4528 * raid profile, so lets allocate an empty one in 4529 * advance. 4530 */ 4531 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4532 if (ret < 0) { 4533 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4534 goto done; 4535 } 4536 4537 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4538 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4539 if (ret && ret != -ENOSPC) 4540 goto done; 4541 if (ret == -ENOSPC) 4542 failed++; 4543 } while (key.offset-- > 0); 4544 4545 if (failed && !retried) { 4546 failed = 0; 4547 retried = true; 4548 goto again; 4549 } else if (failed && retried) { 4550 ret = -ENOSPC; 4551 goto done; 4552 } 4553 4554 /* Shrinking succeeded, else we would be at "done". */ 4555 trans = btrfs_start_transaction(root, 0); 4556 if (IS_ERR(trans)) { 4557 ret = PTR_ERR(trans); 4558 goto done; 4559 } 4560 4561 mutex_lock(&fs_info->chunk_mutex); 4562 4563 /* 4564 * We checked in the above loop all device extents that were already in 4565 * the device tree. However before we have updated the device's 4566 * total_bytes to the new size, we might have had chunk allocations that 4567 * have not complete yet (new block groups attached to transaction 4568 * handles), and therefore their device extents were not yet in the 4569 * device tree and we missed them in the loop above. So if we have any 4570 * pending chunk using a device extent that overlaps the device range 4571 * that we can not use anymore, commit the current transaction and 4572 * repeat the search on the device tree - this way we guarantee we will 4573 * not have chunks using device extents that end beyond 'new_size'. 4574 */ 4575 if (!checked_pending_chunks) { 4576 u64 start = new_size; 4577 u64 len = old_size - new_size; 4578 4579 if (contains_pending_extent(trans->transaction, device, 4580 &start, len)) { 4581 mutex_unlock(&fs_info->chunk_mutex); 4582 checked_pending_chunks = true; 4583 failed = 0; 4584 retried = false; 4585 ret = btrfs_commit_transaction(trans); 4586 if (ret) 4587 goto done; 4588 goto again; 4589 } 4590 } 4591 4592 btrfs_device_set_disk_total_bytes(device, new_size); 4593 if (list_empty(&device->resized_list)) 4594 list_add_tail(&device->resized_list, 4595 &fs_info->fs_devices->resized_devices); 4596 4597 WARN_ON(diff > old_total); 4598 btrfs_set_super_total_bytes(super_copy, 4599 round_down(old_total - diff, fs_info->sectorsize)); 4600 mutex_unlock(&fs_info->chunk_mutex); 4601 4602 /* Now btrfs_update_device() will change the on-disk size. */ 4603 ret = btrfs_update_device(trans, device); 4604 btrfs_end_transaction(trans); 4605 done: 4606 btrfs_free_path(path); 4607 if (ret) { 4608 mutex_lock(&fs_info->chunk_mutex); 4609 btrfs_device_set_total_bytes(device, old_size); 4610 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4611 device->fs_devices->total_rw_bytes += diff; 4612 atomic64_add(diff, &fs_info->free_chunk_space); 4613 mutex_unlock(&fs_info->chunk_mutex); 4614 } 4615 return ret; 4616 } 4617 4618 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4619 struct btrfs_key *key, 4620 struct btrfs_chunk *chunk, int item_size) 4621 { 4622 struct btrfs_super_block *super_copy = fs_info->super_copy; 4623 struct btrfs_disk_key disk_key; 4624 u32 array_size; 4625 u8 *ptr; 4626 4627 mutex_lock(&fs_info->chunk_mutex); 4628 array_size = btrfs_super_sys_array_size(super_copy); 4629 if (array_size + item_size + sizeof(disk_key) 4630 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4631 mutex_unlock(&fs_info->chunk_mutex); 4632 return -EFBIG; 4633 } 4634 4635 ptr = super_copy->sys_chunk_array + array_size; 4636 btrfs_cpu_key_to_disk(&disk_key, key); 4637 memcpy(ptr, &disk_key, sizeof(disk_key)); 4638 ptr += sizeof(disk_key); 4639 memcpy(ptr, chunk, item_size); 4640 item_size += sizeof(disk_key); 4641 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4642 mutex_unlock(&fs_info->chunk_mutex); 4643 4644 return 0; 4645 } 4646 4647 /* 4648 * sort the devices in descending order by max_avail, total_avail 4649 */ 4650 static int btrfs_cmp_device_info(const void *a, const void *b) 4651 { 4652 const struct btrfs_device_info *di_a = a; 4653 const struct btrfs_device_info *di_b = b; 4654 4655 if (di_a->max_avail > di_b->max_avail) 4656 return -1; 4657 if (di_a->max_avail < di_b->max_avail) 4658 return 1; 4659 if (di_a->total_avail > di_b->total_avail) 4660 return -1; 4661 if (di_a->total_avail < di_b->total_avail) 4662 return 1; 4663 return 0; 4664 } 4665 4666 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4667 { 4668 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4669 return; 4670 4671 btrfs_set_fs_incompat(info, RAID56); 4672 } 4673 4674 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \ 4675 - sizeof(struct btrfs_chunk)) \ 4676 / sizeof(struct btrfs_stripe) + 1) 4677 4678 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4679 - 2 * sizeof(struct btrfs_disk_key) \ 4680 - 2 * sizeof(struct btrfs_chunk)) \ 4681 / sizeof(struct btrfs_stripe) + 1) 4682 4683 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4684 u64 start, u64 type) 4685 { 4686 struct btrfs_fs_info *info = trans->fs_info; 4687 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4688 struct btrfs_device *device; 4689 struct map_lookup *map = NULL; 4690 struct extent_map_tree *em_tree; 4691 struct extent_map *em; 4692 struct btrfs_device_info *devices_info = NULL; 4693 u64 total_avail; 4694 int num_stripes; /* total number of stripes to allocate */ 4695 int data_stripes; /* number of stripes that count for 4696 block group size */ 4697 int sub_stripes; /* sub_stripes info for map */ 4698 int dev_stripes; /* stripes per dev */ 4699 int devs_max; /* max devs to use */ 4700 int devs_min; /* min devs needed */ 4701 int devs_increment; /* ndevs has to be a multiple of this */ 4702 int ncopies; /* how many copies to data has */ 4703 int ret; 4704 u64 max_stripe_size; 4705 u64 max_chunk_size; 4706 u64 stripe_size; 4707 u64 num_bytes; 4708 int ndevs; 4709 int i; 4710 int j; 4711 int index; 4712 4713 BUG_ON(!alloc_profile_is_valid(type, 0)); 4714 4715 if (list_empty(&fs_devices->alloc_list)) 4716 return -ENOSPC; 4717 4718 index = __get_raid_index(type); 4719 4720 sub_stripes = btrfs_raid_array[index].sub_stripes; 4721 dev_stripes = btrfs_raid_array[index].dev_stripes; 4722 devs_max = btrfs_raid_array[index].devs_max; 4723 devs_min = btrfs_raid_array[index].devs_min; 4724 devs_increment = btrfs_raid_array[index].devs_increment; 4725 ncopies = btrfs_raid_array[index].ncopies; 4726 4727 if (type & BTRFS_BLOCK_GROUP_DATA) { 4728 max_stripe_size = SZ_1G; 4729 max_chunk_size = 10 * max_stripe_size; 4730 if (!devs_max) 4731 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4732 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4733 /* for larger filesystems, use larger metadata chunks */ 4734 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4735 max_stripe_size = SZ_1G; 4736 else 4737 max_stripe_size = SZ_256M; 4738 max_chunk_size = max_stripe_size; 4739 if (!devs_max) 4740 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4741 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4742 max_stripe_size = SZ_32M; 4743 max_chunk_size = 2 * max_stripe_size; 4744 if (!devs_max) 4745 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4746 } else { 4747 btrfs_err(info, "invalid chunk type 0x%llx requested", 4748 type); 4749 BUG_ON(1); 4750 } 4751 4752 /* we don't want a chunk larger than 10% of writeable space */ 4753 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4754 max_chunk_size); 4755 4756 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4757 GFP_NOFS); 4758 if (!devices_info) 4759 return -ENOMEM; 4760 4761 /* 4762 * in the first pass through the devices list, we gather information 4763 * about the available holes on each device. 4764 */ 4765 ndevs = 0; 4766 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 4767 u64 max_avail; 4768 u64 dev_offset; 4769 4770 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4771 WARN(1, KERN_ERR 4772 "BTRFS: read-only device in alloc_list\n"); 4773 continue; 4774 } 4775 4776 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 4777 &device->dev_state) || 4778 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4779 continue; 4780 4781 if (device->total_bytes > device->bytes_used) 4782 total_avail = device->total_bytes - device->bytes_used; 4783 else 4784 total_avail = 0; 4785 4786 /* If there is no space on this device, skip it. */ 4787 if (total_avail == 0) 4788 continue; 4789 4790 ret = find_free_dev_extent(trans, device, 4791 max_stripe_size * dev_stripes, 4792 &dev_offset, &max_avail); 4793 if (ret && ret != -ENOSPC) 4794 goto error; 4795 4796 if (ret == 0) 4797 max_avail = max_stripe_size * dev_stripes; 4798 4799 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4800 continue; 4801 4802 if (ndevs == fs_devices->rw_devices) { 4803 WARN(1, "%s: found more than %llu devices\n", 4804 __func__, fs_devices->rw_devices); 4805 break; 4806 } 4807 devices_info[ndevs].dev_offset = dev_offset; 4808 devices_info[ndevs].max_avail = max_avail; 4809 devices_info[ndevs].total_avail = total_avail; 4810 devices_info[ndevs].dev = device; 4811 ++ndevs; 4812 } 4813 4814 /* 4815 * now sort the devices by hole size / available space 4816 */ 4817 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4818 btrfs_cmp_device_info, NULL); 4819 4820 /* round down to number of usable stripes */ 4821 ndevs = round_down(ndevs, devs_increment); 4822 4823 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4824 ret = -ENOSPC; 4825 goto error; 4826 } 4827 4828 ndevs = min(ndevs, devs_max); 4829 4830 /* 4831 * the primary goal is to maximize the number of stripes, so use as many 4832 * devices as possible, even if the stripes are not maximum sized. 4833 */ 4834 stripe_size = devices_info[ndevs-1].max_avail; 4835 num_stripes = ndevs * dev_stripes; 4836 4837 /* 4838 * this will have to be fixed for RAID1 and RAID10 over 4839 * more drives 4840 */ 4841 data_stripes = num_stripes / ncopies; 4842 4843 if (type & BTRFS_BLOCK_GROUP_RAID5) 4844 data_stripes = num_stripes - 1; 4845 4846 if (type & BTRFS_BLOCK_GROUP_RAID6) 4847 data_stripes = num_stripes - 2; 4848 4849 /* 4850 * Use the number of data stripes to figure out how big this chunk 4851 * is really going to be in terms of logical address space, 4852 * and compare that answer with the max chunk size 4853 */ 4854 if (stripe_size * data_stripes > max_chunk_size) { 4855 u64 mask = (1ULL << 24) - 1; 4856 4857 stripe_size = div_u64(max_chunk_size, data_stripes); 4858 4859 /* bump the answer up to a 16MB boundary */ 4860 stripe_size = (stripe_size + mask) & ~mask; 4861 4862 /* but don't go higher than the limits we found 4863 * while searching for free extents 4864 */ 4865 if (stripe_size > devices_info[ndevs-1].max_avail) 4866 stripe_size = devices_info[ndevs-1].max_avail; 4867 } 4868 4869 stripe_size = div_u64(stripe_size, dev_stripes); 4870 4871 /* align to BTRFS_STRIPE_LEN */ 4872 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN); 4873 4874 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4875 if (!map) { 4876 ret = -ENOMEM; 4877 goto error; 4878 } 4879 map->num_stripes = num_stripes; 4880 4881 for (i = 0; i < ndevs; ++i) { 4882 for (j = 0; j < dev_stripes; ++j) { 4883 int s = i * dev_stripes + j; 4884 map->stripes[s].dev = devices_info[i].dev; 4885 map->stripes[s].physical = devices_info[i].dev_offset + 4886 j * stripe_size; 4887 } 4888 } 4889 map->stripe_len = BTRFS_STRIPE_LEN; 4890 map->io_align = BTRFS_STRIPE_LEN; 4891 map->io_width = BTRFS_STRIPE_LEN; 4892 map->type = type; 4893 map->sub_stripes = sub_stripes; 4894 4895 num_bytes = stripe_size * data_stripes; 4896 4897 trace_btrfs_chunk_alloc(info, map, start, num_bytes); 4898 4899 em = alloc_extent_map(); 4900 if (!em) { 4901 kfree(map); 4902 ret = -ENOMEM; 4903 goto error; 4904 } 4905 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4906 em->map_lookup = map; 4907 em->start = start; 4908 em->len = num_bytes; 4909 em->block_start = 0; 4910 em->block_len = em->len; 4911 em->orig_block_len = stripe_size; 4912 4913 em_tree = &info->mapping_tree.map_tree; 4914 write_lock(&em_tree->lock); 4915 ret = add_extent_mapping(em_tree, em, 0); 4916 if (ret) { 4917 write_unlock(&em_tree->lock); 4918 free_extent_map(em); 4919 goto error; 4920 } 4921 4922 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4923 refcount_inc(&em->refs); 4924 write_unlock(&em_tree->lock); 4925 4926 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes); 4927 if (ret) 4928 goto error_del_extent; 4929 4930 for (i = 0; i < map->num_stripes; i++) { 4931 num_bytes = map->stripes[i].dev->bytes_used + stripe_size; 4932 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); 4933 } 4934 4935 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space); 4936 4937 free_extent_map(em); 4938 check_raid56_incompat_flag(info, type); 4939 4940 kfree(devices_info); 4941 return 0; 4942 4943 error_del_extent: 4944 write_lock(&em_tree->lock); 4945 remove_extent_mapping(em_tree, em); 4946 write_unlock(&em_tree->lock); 4947 4948 /* One for our allocation */ 4949 free_extent_map(em); 4950 /* One for the tree reference */ 4951 free_extent_map(em); 4952 /* One for the pending_chunks list reference */ 4953 free_extent_map(em); 4954 error: 4955 kfree(devices_info); 4956 return ret; 4957 } 4958 4959 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4960 struct btrfs_fs_info *fs_info, 4961 u64 chunk_offset, u64 chunk_size) 4962 { 4963 struct btrfs_root *extent_root = fs_info->extent_root; 4964 struct btrfs_root *chunk_root = fs_info->chunk_root; 4965 struct btrfs_key key; 4966 struct btrfs_device *device; 4967 struct btrfs_chunk *chunk; 4968 struct btrfs_stripe *stripe; 4969 struct extent_map *em; 4970 struct map_lookup *map; 4971 size_t item_size; 4972 u64 dev_offset; 4973 u64 stripe_size; 4974 int i = 0; 4975 int ret = 0; 4976 4977 em = get_chunk_map(fs_info, chunk_offset, chunk_size); 4978 if (IS_ERR(em)) 4979 return PTR_ERR(em); 4980 4981 map = em->map_lookup; 4982 item_size = btrfs_chunk_item_size(map->num_stripes); 4983 stripe_size = em->orig_block_len; 4984 4985 chunk = kzalloc(item_size, GFP_NOFS); 4986 if (!chunk) { 4987 ret = -ENOMEM; 4988 goto out; 4989 } 4990 4991 /* 4992 * Take the device list mutex to prevent races with the final phase of 4993 * a device replace operation that replaces the device object associated 4994 * with the map's stripes, because the device object's id can change 4995 * at any time during that final phase of the device replace operation 4996 * (dev-replace.c:btrfs_dev_replace_finishing()). 4997 */ 4998 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4999 for (i = 0; i < map->num_stripes; i++) { 5000 device = map->stripes[i].dev; 5001 dev_offset = map->stripes[i].physical; 5002 5003 ret = btrfs_update_device(trans, device); 5004 if (ret) 5005 break; 5006 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5007 dev_offset, stripe_size); 5008 if (ret) 5009 break; 5010 } 5011 if (ret) { 5012 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5013 goto out; 5014 } 5015 5016 stripe = &chunk->stripe; 5017 for (i = 0; i < map->num_stripes; i++) { 5018 device = map->stripes[i].dev; 5019 dev_offset = map->stripes[i].physical; 5020 5021 btrfs_set_stack_stripe_devid(stripe, device->devid); 5022 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5023 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5024 stripe++; 5025 } 5026 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5027 5028 btrfs_set_stack_chunk_length(chunk, chunk_size); 5029 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5030 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5031 btrfs_set_stack_chunk_type(chunk, map->type); 5032 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5033 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5034 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5035 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5036 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5037 5038 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5039 key.type = BTRFS_CHUNK_ITEM_KEY; 5040 key.offset = chunk_offset; 5041 5042 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5043 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5044 /* 5045 * TODO: Cleanup of inserted chunk root in case of 5046 * failure. 5047 */ 5048 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5049 } 5050 5051 out: 5052 kfree(chunk); 5053 free_extent_map(em); 5054 return ret; 5055 } 5056 5057 /* 5058 * Chunk allocation falls into two parts. The first part does works 5059 * that make the new allocated chunk useable, but not do any operation 5060 * that modifies the chunk tree. The second part does the works that 5061 * require modifying the chunk tree. This division is important for the 5062 * bootstrap process of adding storage to a seed btrfs. 5063 */ 5064 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 5065 struct btrfs_fs_info *fs_info, u64 type) 5066 { 5067 u64 chunk_offset; 5068 5069 ASSERT(mutex_is_locked(&fs_info->chunk_mutex)); 5070 chunk_offset = find_next_chunk(fs_info); 5071 return __btrfs_alloc_chunk(trans, chunk_offset, type); 5072 } 5073 5074 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 5075 struct btrfs_fs_info *fs_info) 5076 { 5077 u64 chunk_offset; 5078 u64 sys_chunk_offset; 5079 u64 alloc_profile; 5080 int ret; 5081 5082 chunk_offset = find_next_chunk(fs_info); 5083 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5084 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile); 5085 if (ret) 5086 return ret; 5087 5088 sys_chunk_offset = find_next_chunk(fs_info); 5089 alloc_profile = btrfs_system_alloc_profile(fs_info); 5090 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile); 5091 return ret; 5092 } 5093 5094 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5095 { 5096 int max_errors; 5097 5098 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 5099 BTRFS_BLOCK_GROUP_RAID10 | 5100 BTRFS_BLOCK_GROUP_RAID5 | 5101 BTRFS_BLOCK_GROUP_DUP)) { 5102 max_errors = 1; 5103 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 5104 max_errors = 2; 5105 } else { 5106 max_errors = 0; 5107 } 5108 5109 return max_errors; 5110 } 5111 5112 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5113 { 5114 struct extent_map *em; 5115 struct map_lookup *map; 5116 int readonly = 0; 5117 int miss_ndevs = 0; 5118 int i; 5119 5120 em = get_chunk_map(fs_info, chunk_offset, 1); 5121 if (IS_ERR(em)) 5122 return 1; 5123 5124 map = em->map_lookup; 5125 for (i = 0; i < map->num_stripes; i++) { 5126 if (test_bit(BTRFS_DEV_STATE_MISSING, 5127 &map->stripes[i].dev->dev_state)) { 5128 miss_ndevs++; 5129 continue; 5130 } 5131 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5132 &map->stripes[i].dev->dev_state)) { 5133 readonly = 1; 5134 goto end; 5135 } 5136 } 5137 5138 /* 5139 * If the number of missing devices is larger than max errors, 5140 * we can not write the data into that chunk successfully, so 5141 * set it readonly. 5142 */ 5143 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5144 readonly = 1; 5145 end: 5146 free_extent_map(em); 5147 return readonly; 5148 } 5149 5150 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 5151 { 5152 extent_map_tree_init(&tree->map_tree); 5153 } 5154 5155 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 5156 { 5157 struct extent_map *em; 5158 5159 while (1) { 5160 write_lock(&tree->map_tree.lock); 5161 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 5162 if (em) 5163 remove_extent_mapping(&tree->map_tree, em); 5164 write_unlock(&tree->map_tree.lock); 5165 if (!em) 5166 break; 5167 /* once for us */ 5168 free_extent_map(em); 5169 /* once for the tree */ 5170 free_extent_map(em); 5171 } 5172 } 5173 5174 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5175 { 5176 struct extent_map *em; 5177 struct map_lookup *map; 5178 int ret; 5179 5180 em = get_chunk_map(fs_info, logical, len); 5181 if (IS_ERR(em)) 5182 /* 5183 * We could return errors for these cases, but that could get 5184 * ugly and we'd probably do the same thing which is just not do 5185 * anything else and exit, so return 1 so the callers don't try 5186 * to use other copies. 5187 */ 5188 return 1; 5189 5190 map = em->map_lookup; 5191 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 5192 ret = map->num_stripes; 5193 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5194 ret = map->sub_stripes; 5195 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5196 ret = 2; 5197 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5198 /* 5199 * There could be two corrupted data stripes, we need 5200 * to loop retry in order to rebuild the correct data. 5201 * 5202 * Fail a stripe at a time on every retry except the 5203 * stripe under reconstruction. 5204 */ 5205 ret = map->num_stripes; 5206 else 5207 ret = 1; 5208 free_extent_map(em); 5209 5210 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 5211 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5212 fs_info->dev_replace.tgtdev) 5213 ret++; 5214 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 5215 5216 return ret; 5217 } 5218 5219 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5220 u64 logical) 5221 { 5222 struct extent_map *em; 5223 struct map_lookup *map; 5224 unsigned long len = fs_info->sectorsize; 5225 5226 em = get_chunk_map(fs_info, logical, len); 5227 5228 if (!WARN_ON(IS_ERR(em))) { 5229 map = em->map_lookup; 5230 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5231 len = map->stripe_len * nr_data_stripes(map); 5232 free_extent_map(em); 5233 } 5234 return len; 5235 } 5236 5237 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5238 { 5239 struct extent_map *em; 5240 struct map_lookup *map; 5241 int ret = 0; 5242 5243 em = get_chunk_map(fs_info, logical, len); 5244 5245 if(!WARN_ON(IS_ERR(em))) { 5246 map = em->map_lookup; 5247 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5248 ret = 1; 5249 free_extent_map(em); 5250 } 5251 return ret; 5252 } 5253 5254 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5255 struct map_lookup *map, int first, int num, 5256 int optimal, int dev_replace_is_ongoing) 5257 { 5258 int i; 5259 int tolerance; 5260 struct btrfs_device *srcdev; 5261 5262 if (dev_replace_is_ongoing && 5263 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5264 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5265 srcdev = fs_info->dev_replace.srcdev; 5266 else 5267 srcdev = NULL; 5268 5269 /* 5270 * try to avoid the drive that is the source drive for a 5271 * dev-replace procedure, only choose it if no other non-missing 5272 * mirror is available 5273 */ 5274 for (tolerance = 0; tolerance < 2; tolerance++) { 5275 if (map->stripes[optimal].dev->bdev && 5276 (tolerance || map->stripes[optimal].dev != srcdev)) 5277 return optimal; 5278 for (i = first; i < first + num; i++) { 5279 if (map->stripes[i].dev->bdev && 5280 (tolerance || map->stripes[i].dev != srcdev)) 5281 return i; 5282 } 5283 } 5284 5285 /* we couldn't find one that doesn't fail. Just return something 5286 * and the io error handling code will clean up eventually 5287 */ 5288 return optimal; 5289 } 5290 5291 static inline int parity_smaller(u64 a, u64 b) 5292 { 5293 return a > b; 5294 } 5295 5296 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5297 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5298 { 5299 struct btrfs_bio_stripe s; 5300 int i; 5301 u64 l; 5302 int again = 1; 5303 5304 while (again) { 5305 again = 0; 5306 for (i = 0; i < num_stripes - 1; i++) { 5307 if (parity_smaller(bbio->raid_map[i], 5308 bbio->raid_map[i+1])) { 5309 s = bbio->stripes[i]; 5310 l = bbio->raid_map[i]; 5311 bbio->stripes[i] = bbio->stripes[i+1]; 5312 bbio->raid_map[i] = bbio->raid_map[i+1]; 5313 bbio->stripes[i+1] = s; 5314 bbio->raid_map[i+1] = l; 5315 5316 again = 1; 5317 } 5318 } 5319 } 5320 } 5321 5322 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5323 { 5324 struct btrfs_bio *bbio = kzalloc( 5325 /* the size of the btrfs_bio */ 5326 sizeof(struct btrfs_bio) + 5327 /* plus the variable array for the stripes */ 5328 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5329 /* plus the variable array for the tgt dev */ 5330 sizeof(int) * (real_stripes) + 5331 /* 5332 * plus the raid_map, which includes both the tgt dev 5333 * and the stripes 5334 */ 5335 sizeof(u64) * (total_stripes), 5336 GFP_NOFS|__GFP_NOFAIL); 5337 5338 atomic_set(&bbio->error, 0); 5339 refcount_set(&bbio->refs, 1); 5340 5341 return bbio; 5342 } 5343 5344 void btrfs_get_bbio(struct btrfs_bio *bbio) 5345 { 5346 WARN_ON(!refcount_read(&bbio->refs)); 5347 refcount_inc(&bbio->refs); 5348 } 5349 5350 void btrfs_put_bbio(struct btrfs_bio *bbio) 5351 { 5352 if (!bbio) 5353 return; 5354 if (refcount_dec_and_test(&bbio->refs)) 5355 kfree(bbio); 5356 } 5357 5358 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5359 /* 5360 * Please note that, discard won't be sent to target device of device 5361 * replace. 5362 */ 5363 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5364 u64 logical, u64 length, 5365 struct btrfs_bio **bbio_ret) 5366 { 5367 struct extent_map *em; 5368 struct map_lookup *map; 5369 struct btrfs_bio *bbio; 5370 u64 offset; 5371 u64 stripe_nr; 5372 u64 stripe_nr_end; 5373 u64 stripe_end_offset; 5374 u64 stripe_cnt; 5375 u64 stripe_len; 5376 u64 stripe_offset; 5377 u64 num_stripes; 5378 u32 stripe_index; 5379 u32 factor = 0; 5380 u32 sub_stripes = 0; 5381 u64 stripes_per_dev = 0; 5382 u32 remaining_stripes = 0; 5383 u32 last_stripe = 0; 5384 int ret = 0; 5385 int i; 5386 5387 /* discard always return a bbio */ 5388 ASSERT(bbio_ret); 5389 5390 em = get_chunk_map(fs_info, logical, length); 5391 if (IS_ERR(em)) 5392 return PTR_ERR(em); 5393 5394 map = em->map_lookup; 5395 /* we don't discard raid56 yet */ 5396 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5397 ret = -EOPNOTSUPP; 5398 goto out; 5399 } 5400 5401 offset = logical - em->start; 5402 length = min_t(u64, em->len - offset, length); 5403 5404 stripe_len = map->stripe_len; 5405 /* 5406 * stripe_nr counts the total number of stripes we have to stride 5407 * to get to this block 5408 */ 5409 stripe_nr = div64_u64(offset, stripe_len); 5410 5411 /* stripe_offset is the offset of this block in its stripe */ 5412 stripe_offset = offset - stripe_nr * stripe_len; 5413 5414 stripe_nr_end = round_up(offset + length, map->stripe_len); 5415 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5416 stripe_cnt = stripe_nr_end - stripe_nr; 5417 stripe_end_offset = stripe_nr_end * map->stripe_len - 5418 (offset + length); 5419 /* 5420 * after this, stripe_nr is the number of stripes on this 5421 * device we have to walk to find the data, and stripe_index is 5422 * the number of our device in the stripe array 5423 */ 5424 num_stripes = 1; 5425 stripe_index = 0; 5426 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5427 BTRFS_BLOCK_GROUP_RAID10)) { 5428 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5429 sub_stripes = 1; 5430 else 5431 sub_stripes = map->sub_stripes; 5432 5433 factor = map->num_stripes / sub_stripes; 5434 num_stripes = min_t(u64, map->num_stripes, 5435 sub_stripes * stripe_cnt); 5436 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5437 stripe_index *= sub_stripes; 5438 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5439 &remaining_stripes); 5440 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5441 last_stripe *= sub_stripes; 5442 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 5443 BTRFS_BLOCK_GROUP_DUP)) { 5444 num_stripes = map->num_stripes; 5445 } else { 5446 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5447 &stripe_index); 5448 } 5449 5450 bbio = alloc_btrfs_bio(num_stripes, 0); 5451 if (!bbio) { 5452 ret = -ENOMEM; 5453 goto out; 5454 } 5455 5456 for (i = 0; i < num_stripes; i++) { 5457 bbio->stripes[i].physical = 5458 map->stripes[stripe_index].physical + 5459 stripe_offset + stripe_nr * map->stripe_len; 5460 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5461 5462 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5463 BTRFS_BLOCK_GROUP_RAID10)) { 5464 bbio->stripes[i].length = stripes_per_dev * 5465 map->stripe_len; 5466 5467 if (i / sub_stripes < remaining_stripes) 5468 bbio->stripes[i].length += 5469 map->stripe_len; 5470 5471 /* 5472 * Special for the first stripe and 5473 * the last stripe: 5474 * 5475 * |-------|...|-------| 5476 * |----------| 5477 * off end_off 5478 */ 5479 if (i < sub_stripes) 5480 bbio->stripes[i].length -= 5481 stripe_offset; 5482 5483 if (stripe_index >= last_stripe && 5484 stripe_index <= (last_stripe + 5485 sub_stripes - 1)) 5486 bbio->stripes[i].length -= 5487 stripe_end_offset; 5488 5489 if (i == sub_stripes - 1) 5490 stripe_offset = 0; 5491 } else { 5492 bbio->stripes[i].length = length; 5493 } 5494 5495 stripe_index++; 5496 if (stripe_index == map->num_stripes) { 5497 stripe_index = 0; 5498 stripe_nr++; 5499 } 5500 } 5501 5502 *bbio_ret = bbio; 5503 bbio->map_type = map->type; 5504 bbio->num_stripes = num_stripes; 5505 out: 5506 free_extent_map(em); 5507 return ret; 5508 } 5509 5510 /* 5511 * In dev-replace case, for repair case (that's the only case where the mirror 5512 * is selected explicitly when calling btrfs_map_block), blocks left of the 5513 * left cursor can also be read from the target drive. 5514 * 5515 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5516 * array of stripes. 5517 * For READ, it also needs to be supported using the same mirror number. 5518 * 5519 * If the requested block is not left of the left cursor, EIO is returned. This 5520 * can happen because btrfs_num_copies() returns one more in the dev-replace 5521 * case. 5522 */ 5523 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5524 u64 logical, u64 length, 5525 u64 srcdev_devid, int *mirror_num, 5526 u64 *physical) 5527 { 5528 struct btrfs_bio *bbio = NULL; 5529 int num_stripes; 5530 int index_srcdev = 0; 5531 int found = 0; 5532 u64 physical_of_found = 0; 5533 int i; 5534 int ret = 0; 5535 5536 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5537 logical, &length, &bbio, 0, 0); 5538 if (ret) { 5539 ASSERT(bbio == NULL); 5540 return ret; 5541 } 5542 5543 num_stripes = bbio->num_stripes; 5544 if (*mirror_num > num_stripes) { 5545 /* 5546 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5547 * that means that the requested area is not left of the left 5548 * cursor 5549 */ 5550 btrfs_put_bbio(bbio); 5551 return -EIO; 5552 } 5553 5554 /* 5555 * process the rest of the function using the mirror_num of the source 5556 * drive. Therefore look it up first. At the end, patch the device 5557 * pointer to the one of the target drive. 5558 */ 5559 for (i = 0; i < num_stripes; i++) { 5560 if (bbio->stripes[i].dev->devid != srcdev_devid) 5561 continue; 5562 5563 /* 5564 * In case of DUP, in order to keep it simple, only add the 5565 * mirror with the lowest physical address 5566 */ 5567 if (found && 5568 physical_of_found <= bbio->stripes[i].physical) 5569 continue; 5570 5571 index_srcdev = i; 5572 found = 1; 5573 physical_of_found = bbio->stripes[i].physical; 5574 } 5575 5576 btrfs_put_bbio(bbio); 5577 5578 ASSERT(found); 5579 if (!found) 5580 return -EIO; 5581 5582 *mirror_num = index_srcdev + 1; 5583 *physical = physical_of_found; 5584 return ret; 5585 } 5586 5587 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5588 struct btrfs_bio **bbio_ret, 5589 struct btrfs_dev_replace *dev_replace, 5590 int *num_stripes_ret, int *max_errors_ret) 5591 { 5592 struct btrfs_bio *bbio = *bbio_ret; 5593 u64 srcdev_devid = dev_replace->srcdev->devid; 5594 int tgtdev_indexes = 0; 5595 int num_stripes = *num_stripes_ret; 5596 int max_errors = *max_errors_ret; 5597 int i; 5598 5599 if (op == BTRFS_MAP_WRITE) { 5600 int index_where_to_add; 5601 5602 /* 5603 * duplicate the write operations while the dev replace 5604 * procedure is running. Since the copying of the old disk to 5605 * the new disk takes place at run time while the filesystem is 5606 * mounted writable, the regular write operations to the old 5607 * disk have to be duplicated to go to the new disk as well. 5608 * 5609 * Note that device->missing is handled by the caller, and that 5610 * the write to the old disk is already set up in the stripes 5611 * array. 5612 */ 5613 index_where_to_add = num_stripes; 5614 for (i = 0; i < num_stripes; i++) { 5615 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5616 /* write to new disk, too */ 5617 struct btrfs_bio_stripe *new = 5618 bbio->stripes + index_where_to_add; 5619 struct btrfs_bio_stripe *old = 5620 bbio->stripes + i; 5621 5622 new->physical = old->physical; 5623 new->length = old->length; 5624 new->dev = dev_replace->tgtdev; 5625 bbio->tgtdev_map[i] = index_where_to_add; 5626 index_where_to_add++; 5627 max_errors++; 5628 tgtdev_indexes++; 5629 } 5630 } 5631 num_stripes = index_where_to_add; 5632 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5633 int index_srcdev = 0; 5634 int found = 0; 5635 u64 physical_of_found = 0; 5636 5637 /* 5638 * During the dev-replace procedure, the target drive can also 5639 * be used to read data in case it is needed to repair a corrupt 5640 * block elsewhere. This is possible if the requested area is 5641 * left of the left cursor. In this area, the target drive is a 5642 * full copy of the source drive. 5643 */ 5644 for (i = 0; i < num_stripes; i++) { 5645 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5646 /* 5647 * In case of DUP, in order to keep it simple, 5648 * only add the mirror with the lowest physical 5649 * address 5650 */ 5651 if (found && 5652 physical_of_found <= 5653 bbio->stripes[i].physical) 5654 continue; 5655 index_srcdev = i; 5656 found = 1; 5657 physical_of_found = bbio->stripes[i].physical; 5658 } 5659 } 5660 if (found) { 5661 struct btrfs_bio_stripe *tgtdev_stripe = 5662 bbio->stripes + num_stripes; 5663 5664 tgtdev_stripe->physical = physical_of_found; 5665 tgtdev_stripe->length = 5666 bbio->stripes[index_srcdev].length; 5667 tgtdev_stripe->dev = dev_replace->tgtdev; 5668 bbio->tgtdev_map[index_srcdev] = num_stripes; 5669 5670 tgtdev_indexes++; 5671 num_stripes++; 5672 } 5673 } 5674 5675 *num_stripes_ret = num_stripes; 5676 *max_errors_ret = max_errors; 5677 bbio->num_tgtdevs = tgtdev_indexes; 5678 *bbio_ret = bbio; 5679 } 5680 5681 static bool need_full_stripe(enum btrfs_map_op op) 5682 { 5683 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5684 } 5685 5686 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 5687 enum btrfs_map_op op, 5688 u64 logical, u64 *length, 5689 struct btrfs_bio **bbio_ret, 5690 int mirror_num, int need_raid_map) 5691 { 5692 struct extent_map *em; 5693 struct map_lookup *map; 5694 u64 offset; 5695 u64 stripe_offset; 5696 u64 stripe_nr; 5697 u64 stripe_len; 5698 u32 stripe_index; 5699 int i; 5700 int ret = 0; 5701 int num_stripes; 5702 int max_errors = 0; 5703 int tgtdev_indexes = 0; 5704 struct btrfs_bio *bbio = NULL; 5705 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 5706 int dev_replace_is_ongoing = 0; 5707 int num_alloc_stripes; 5708 int patch_the_first_stripe_for_dev_replace = 0; 5709 u64 physical_to_patch_in_first_stripe = 0; 5710 u64 raid56_full_stripe_start = (u64)-1; 5711 5712 if (op == BTRFS_MAP_DISCARD) 5713 return __btrfs_map_block_for_discard(fs_info, logical, 5714 *length, bbio_ret); 5715 5716 em = get_chunk_map(fs_info, logical, *length); 5717 if (IS_ERR(em)) 5718 return PTR_ERR(em); 5719 5720 map = em->map_lookup; 5721 offset = logical - em->start; 5722 5723 stripe_len = map->stripe_len; 5724 stripe_nr = offset; 5725 /* 5726 * stripe_nr counts the total number of stripes we have to stride 5727 * to get to this block 5728 */ 5729 stripe_nr = div64_u64(stripe_nr, stripe_len); 5730 5731 stripe_offset = stripe_nr * stripe_len; 5732 if (offset < stripe_offset) { 5733 btrfs_crit(fs_info, 5734 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu", 5735 stripe_offset, offset, em->start, logical, 5736 stripe_len); 5737 free_extent_map(em); 5738 return -EINVAL; 5739 } 5740 5741 /* stripe_offset is the offset of this block in its stripe*/ 5742 stripe_offset = offset - stripe_offset; 5743 5744 /* if we're here for raid56, we need to know the stripe aligned start */ 5745 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5746 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 5747 raid56_full_stripe_start = offset; 5748 5749 /* allow a write of a full stripe, but make sure we don't 5750 * allow straddling of stripes 5751 */ 5752 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5753 full_stripe_len); 5754 raid56_full_stripe_start *= full_stripe_len; 5755 } 5756 5757 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5758 u64 max_len; 5759 /* For writes to RAID[56], allow a full stripeset across all disks. 5760 For other RAID types and for RAID[56] reads, just allow a single 5761 stripe (on a single disk). */ 5762 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 5763 (op == BTRFS_MAP_WRITE)) { 5764 max_len = stripe_len * nr_data_stripes(map) - 5765 (offset - raid56_full_stripe_start); 5766 } else { 5767 /* we limit the length of each bio to what fits in a stripe */ 5768 max_len = stripe_len - stripe_offset; 5769 } 5770 *length = min_t(u64, em->len - offset, max_len); 5771 } else { 5772 *length = em->len - offset; 5773 } 5774 5775 /* This is for when we're called from btrfs_merge_bio_hook() and all 5776 it cares about is the length */ 5777 if (!bbio_ret) 5778 goto out; 5779 5780 btrfs_dev_replace_lock(dev_replace, 0); 5781 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5782 if (!dev_replace_is_ongoing) 5783 btrfs_dev_replace_unlock(dev_replace, 0); 5784 else 5785 btrfs_dev_replace_set_lock_blocking(dev_replace); 5786 5787 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5788 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 5789 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 5790 dev_replace->srcdev->devid, 5791 &mirror_num, 5792 &physical_to_patch_in_first_stripe); 5793 if (ret) 5794 goto out; 5795 else 5796 patch_the_first_stripe_for_dev_replace = 1; 5797 } else if (mirror_num > map->num_stripes) { 5798 mirror_num = 0; 5799 } 5800 5801 num_stripes = 1; 5802 stripe_index = 0; 5803 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5804 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5805 &stripe_index); 5806 if (!need_full_stripe(op)) 5807 mirror_num = 1; 5808 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 5809 if (need_full_stripe(op)) 5810 num_stripes = map->num_stripes; 5811 else if (mirror_num) 5812 stripe_index = mirror_num - 1; 5813 else { 5814 stripe_index = find_live_mirror(fs_info, map, 0, 5815 map->num_stripes, 5816 current->pid % map->num_stripes, 5817 dev_replace_is_ongoing); 5818 mirror_num = stripe_index + 1; 5819 } 5820 5821 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5822 if (need_full_stripe(op)) { 5823 num_stripes = map->num_stripes; 5824 } else if (mirror_num) { 5825 stripe_index = mirror_num - 1; 5826 } else { 5827 mirror_num = 1; 5828 } 5829 5830 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5831 u32 factor = map->num_stripes / map->sub_stripes; 5832 5833 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5834 stripe_index *= map->sub_stripes; 5835 5836 if (need_full_stripe(op)) 5837 num_stripes = map->sub_stripes; 5838 else if (mirror_num) 5839 stripe_index += mirror_num - 1; 5840 else { 5841 int old_stripe_index = stripe_index; 5842 stripe_index = find_live_mirror(fs_info, map, 5843 stripe_index, 5844 map->sub_stripes, stripe_index + 5845 current->pid % map->sub_stripes, 5846 dev_replace_is_ongoing); 5847 mirror_num = stripe_index - old_stripe_index + 1; 5848 } 5849 5850 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5851 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 5852 /* push stripe_nr back to the start of the full stripe */ 5853 stripe_nr = div64_u64(raid56_full_stripe_start, 5854 stripe_len * nr_data_stripes(map)); 5855 5856 /* RAID[56] write or recovery. Return all stripes */ 5857 num_stripes = map->num_stripes; 5858 max_errors = nr_parity_stripes(map); 5859 5860 *length = map->stripe_len; 5861 stripe_index = 0; 5862 stripe_offset = 0; 5863 } else { 5864 /* 5865 * Mirror #0 or #1 means the original data block. 5866 * Mirror #2 is RAID5 parity block. 5867 * Mirror #3 is RAID6 Q block. 5868 */ 5869 stripe_nr = div_u64_rem(stripe_nr, 5870 nr_data_stripes(map), &stripe_index); 5871 if (mirror_num > 1) 5872 stripe_index = nr_data_stripes(map) + 5873 mirror_num - 2; 5874 5875 /* We distribute the parity blocks across stripes */ 5876 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 5877 &stripe_index); 5878 if (!need_full_stripe(op) && mirror_num <= 1) 5879 mirror_num = 1; 5880 } 5881 } else { 5882 /* 5883 * after this, stripe_nr is the number of stripes on this 5884 * device we have to walk to find the data, and stripe_index is 5885 * the number of our device in the stripe array 5886 */ 5887 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5888 &stripe_index); 5889 mirror_num = stripe_index + 1; 5890 } 5891 if (stripe_index >= map->num_stripes) { 5892 btrfs_crit(fs_info, 5893 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 5894 stripe_index, map->num_stripes); 5895 ret = -EINVAL; 5896 goto out; 5897 } 5898 5899 num_alloc_stripes = num_stripes; 5900 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 5901 if (op == BTRFS_MAP_WRITE) 5902 num_alloc_stripes <<= 1; 5903 if (op == BTRFS_MAP_GET_READ_MIRRORS) 5904 num_alloc_stripes++; 5905 tgtdev_indexes = num_stripes; 5906 } 5907 5908 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 5909 if (!bbio) { 5910 ret = -ENOMEM; 5911 goto out; 5912 } 5913 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 5914 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 5915 5916 /* build raid_map */ 5917 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 5918 (need_full_stripe(op) || mirror_num > 1)) { 5919 u64 tmp; 5920 unsigned rot; 5921 5922 bbio->raid_map = (u64 *)((void *)bbio->stripes + 5923 sizeof(struct btrfs_bio_stripe) * 5924 num_alloc_stripes + 5925 sizeof(int) * tgtdev_indexes); 5926 5927 /* Work out the disk rotation on this stripe-set */ 5928 div_u64_rem(stripe_nr, num_stripes, &rot); 5929 5930 /* Fill in the logical address of each stripe */ 5931 tmp = stripe_nr * nr_data_stripes(map); 5932 for (i = 0; i < nr_data_stripes(map); i++) 5933 bbio->raid_map[(i+rot) % num_stripes] = 5934 em->start + (tmp + i) * map->stripe_len; 5935 5936 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 5937 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5938 bbio->raid_map[(i+rot+1) % num_stripes] = 5939 RAID6_Q_STRIPE; 5940 } 5941 5942 5943 for (i = 0; i < num_stripes; i++) { 5944 bbio->stripes[i].physical = 5945 map->stripes[stripe_index].physical + 5946 stripe_offset + 5947 stripe_nr * map->stripe_len; 5948 bbio->stripes[i].dev = 5949 map->stripes[stripe_index].dev; 5950 stripe_index++; 5951 } 5952 5953 if (need_full_stripe(op)) 5954 max_errors = btrfs_chunk_max_errors(map); 5955 5956 if (bbio->raid_map) 5957 sort_parity_stripes(bbio, num_stripes); 5958 5959 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 5960 need_full_stripe(op)) { 5961 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 5962 &max_errors); 5963 } 5964 5965 *bbio_ret = bbio; 5966 bbio->map_type = map->type; 5967 bbio->num_stripes = num_stripes; 5968 bbio->max_errors = max_errors; 5969 bbio->mirror_num = mirror_num; 5970 5971 /* 5972 * this is the case that REQ_READ && dev_replace_is_ongoing && 5973 * mirror_num == num_stripes + 1 && dev_replace target drive is 5974 * available as a mirror 5975 */ 5976 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5977 WARN_ON(num_stripes > 1); 5978 bbio->stripes[0].dev = dev_replace->tgtdev; 5979 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5980 bbio->mirror_num = map->num_stripes + 1; 5981 } 5982 out: 5983 if (dev_replace_is_ongoing) { 5984 btrfs_dev_replace_clear_lock_blocking(dev_replace); 5985 btrfs_dev_replace_unlock(dev_replace, 0); 5986 } 5987 free_extent_map(em); 5988 return ret; 5989 } 5990 5991 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5992 u64 logical, u64 *length, 5993 struct btrfs_bio **bbio_ret, int mirror_num) 5994 { 5995 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 5996 mirror_num, 0); 5997 } 5998 5999 /* For Scrub/replace */ 6000 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6001 u64 logical, u64 *length, 6002 struct btrfs_bio **bbio_ret) 6003 { 6004 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6005 } 6006 6007 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, 6008 u64 chunk_start, u64 physical, u64 devid, 6009 u64 **logical, int *naddrs, int *stripe_len) 6010 { 6011 struct extent_map *em; 6012 struct map_lookup *map; 6013 u64 *buf; 6014 u64 bytenr; 6015 u64 length; 6016 u64 stripe_nr; 6017 u64 rmap_len; 6018 int i, j, nr = 0; 6019 6020 em = get_chunk_map(fs_info, chunk_start, 1); 6021 if (IS_ERR(em)) 6022 return -EIO; 6023 6024 map = em->map_lookup; 6025 length = em->len; 6026 rmap_len = map->stripe_len; 6027 6028 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 6029 length = div_u64(length, map->num_stripes / map->sub_stripes); 6030 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6031 length = div_u64(length, map->num_stripes); 6032 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6033 length = div_u64(length, nr_data_stripes(map)); 6034 rmap_len = map->stripe_len * nr_data_stripes(map); 6035 } 6036 6037 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 6038 BUG_ON(!buf); /* -ENOMEM */ 6039 6040 for (i = 0; i < map->num_stripes; i++) { 6041 if (devid && map->stripes[i].dev->devid != devid) 6042 continue; 6043 if (map->stripes[i].physical > physical || 6044 map->stripes[i].physical + length <= physical) 6045 continue; 6046 6047 stripe_nr = physical - map->stripes[i].physical; 6048 stripe_nr = div64_u64(stripe_nr, map->stripe_len); 6049 6050 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6051 stripe_nr = stripe_nr * map->num_stripes + i; 6052 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 6053 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6054 stripe_nr = stripe_nr * map->num_stripes + i; 6055 } /* else if RAID[56], multiply by nr_data_stripes(). 6056 * Alternatively, just use rmap_len below instead of 6057 * map->stripe_len */ 6058 6059 bytenr = chunk_start + stripe_nr * rmap_len; 6060 WARN_ON(nr >= map->num_stripes); 6061 for (j = 0; j < nr; j++) { 6062 if (buf[j] == bytenr) 6063 break; 6064 } 6065 if (j == nr) { 6066 WARN_ON(nr >= map->num_stripes); 6067 buf[nr++] = bytenr; 6068 } 6069 } 6070 6071 *logical = buf; 6072 *naddrs = nr; 6073 *stripe_len = rmap_len; 6074 6075 free_extent_map(em); 6076 return 0; 6077 } 6078 6079 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6080 { 6081 bio->bi_private = bbio->private; 6082 bio->bi_end_io = bbio->end_io; 6083 bio_endio(bio); 6084 6085 btrfs_put_bbio(bbio); 6086 } 6087 6088 static void btrfs_end_bio(struct bio *bio) 6089 { 6090 struct btrfs_bio *bbio = bio->bi_private; 6091 int is_orig_bio = 0; 6092 6093 if (bio->bi_status) { 6094 atomic_inc(&bbio->error); 6095 if (bio->bi_status == BLK_STS_IOERR || 6096 bio->bi_status == BLK_STS_TARGET) { 6097 unsigned int stripe_index = 6098 btrfs_io_bio(bio)->stripe_index; 6099 struct btrfs_device *dev; 6100 6101 BUG_ON(stripe_index >= bbio->num_stripes); 6102 dev = bbio->stripes[stripe_index].dev; 6103 if (dev->bdev) { 6104 if (bio_op(bio) == REQ_OP_WRITE) 6105 btrfs_dev_stat_inc_and_print(dev, 6106 BTRFS_DEV_STAT_WRITE_ERRS); 6107 else 6108 btrfs_dev_stat_inc_and_print(dev, 6109 BTRFS_DEV_STAT_READ_ERRS); 6110 if (bio->bi_opf & REQ_PREFLUSH) 6111 btrfs_dev_stat_inc_and_print(dev, 6112 BTRFS_DEV_STAT_FLUSH_ERRS); 6113 } 6114 } 6115 } 6116 6117 if (bio == bbio->orig_bio) 6118 is_orig_bio = 1; 6119 6120 btrfs_bio_counter_dec(bbio->fs_info); 6121 6122 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6123 if (!is_orig_bio) { 6124 bio_put(bio); 6125 bio = bbio->orig_bio; 6126 } 6127 6128 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6129 /* only send an error to the higher layers if it is 6130 * beyond the tolerance of the btrfs bio 6131 */ 6132 if (atomic_read(&bbio->error) > bbio->max_errors) { 6133 bio->bi_status = BLK_STS_IOERR; 6134 } else { 6135 /* 6136 * this bio is actually up to date, we didn't 6137 * go over the max number of errors 6138 */ 6139 bio->bi_status = BLK_STS_OK; 6140 } 6141 6142 btrfs_end_bbio(bbio, bio); 6143 } else if (!is_orig_bio) { 6144 bio_put(bio); 6145 } 6146 } 6147 6148 /* 6149 * see run_scheduled_bios for a description of why bios are collected for 6150 * async submit. 6151 * 6152 * This will add one bio to the pending list for a device and make sure 6153 * the work struct is scheduled. 6154 */ 6155 static noinline void btrfs_schedule_bio(struct btrfs_device *device, 6156 struct bio *bio) 6157 { 6158 struct btrfs_fs_info *fs_info = device->fs_info; 6159 int should_queue = 1; 6160 struct btrfs_pending_bios *pending_bios; 6161 6162 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) || 6163 !device->bdev) { 6164 bio_io_error(bio); 6165 return; 6166 } 6167 6168 /* don't bother with additional async steps for reads, right now */ 6169 if (bio_op(bio) == REQ_OP_READ) { 6170 btrfsic_submit_bio(bio); 6171 return; 6172 } 6173 6174 WARN_ON(bio->bi_next); 6175 bio->bi_next = NULL; 6176 6177 spin_lock(&device->io_lock); 6178 if (op_is_sync(bio->bi_opf)) 6179 pending_bios = &device->pending_sync_bios; 6180 else 6181 pending_bios = &device->pending_bios; 6182 6183 if (pending_bios->tail) 6184 pending_bios->tail->bi_next = bio; 6185 6186 pending_bios->tail = bio; 6187 if (!pending_bios->head) 6188 pending_bios->head = bio; 6189 if (device->running_pending) 6190 should_queue = 0; 6191 6192 spin_unlock(&device->io_lock); 6193 6194 if (should_queue) 6195 btrfs_queue_work(fs_info->submit_workers, &device->work); 6196 } 6197 6198 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6199 u64 physical, int dev_nr, int async) 6200 { 6201 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 6202 struct btrfs_fs_info *fs_info = bbio->fs_info; 6203 6204 bio->bi_private = bbio; 6205 btrfs_io_bio(bio)->stripe_index = dev_nr; 6206 bio->bi_end_io = btrfs_end_bio; 6207 bio->bi_iter.bi_sector = physical >> 9; 6208 #ifdef DEBUG 6209 { 6210 struct rcu_string *name; 6211 6212 rcu_read_lock(); 6213 name = rcu_dereference(dev->name); 6214 btrfs_debug(fs_info, 6215 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6216 bio_op(bio), bio->bi_opf, 6217 (u64)bio->bi_iter.bi_sector, 6218 (u_long)dev->bdev->bd_dev, name->str, dev->devid, 6219 bio->bi_iter.bi_size); 6220 rcu_read_unlock(); 6221 } 6222 #endif 6223 bio_set_dev(bio, dev->bdev); 6224 6225 btrfs_bio_counter_inc_noblocked(fs_info); 6226 6227 if (async) 6228 btrfs_schedule_bio(dev, bio); 6229 else 6230 btrfsic_submit_bio(bio); 6231 } 6232 6233 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6234 { 6235 atomic_inc(&bbio->error); 6236 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6237 /* Should be the original bio. */ 6238 WARN_ON(bio != bbio->orig_bio); 6239 6240 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6241 bio->bi_iter.bi_sector = logical >> 9; 6242 if (atomic_read(&bbio->error) > bbio->max_errors) 6243 bio->bi_status = BLK_STS_IOERR; 6244 else 6245 bio->bi_status = BLK_STS_OK; 6246 btrfs_end_bbio(bbio, bio); 6247 } 6248 } 6249 6250 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6251 int mirror_num, int async_submit) 6252 { 6253 struct btrfs_device *dev; 6254 struct bio *first_bio = bio; 6255 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6256 u64 length = 0; 6257 u64 map_length; 6258 int ret; 6259 int dev_nr; 6260 int total_devs; 6261 struct btrfs_bio *bbio = NULL; 6262 6263 length = bio->bi_iter.bi_size; 6264 map_length = length; 6265 6266 btrfs_bio_counter_inc_blocked(fs_info); 6267 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6268 &map_length, &bbio, mirror_num, 1); 6269 if (ret) { 6270 btrfs_bio_counter_dec(fs_info); 6271 return errno_to_blk_status(ret); 6272 } 6273 6274 total_devs = bbio->num_stripes; 6275 bbio->orig_bio = first_bio; 6276 bbio->private = first_bio->bi_private; 6277 bbio->end_io = first_bio->bi_end_io; 6278 bbio->fs_info = fs_info; 6279 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6280 6281 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6282 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6283 /* In this case, map_length has been set to the length of 6284 a single stripe; not the whole write */ 6285 if (bio_op(bio) == REQ_OP_WRITE) { 6286 ret = raid56_parity_write(fs_info, bio, bbio, 6287 map_length); 6288 } else { 6289 ret = raid56_parity_recover(fs_info, bio, bbio, 6290 map_length, mirror_num, 1); 6291 } 6292 6293 btrfs_bio_counter_dec(fs_info); 6294 return errno_to_blk_status(ret); 6295 } 6296 6297 if (map_length < length) { 6298 btrfs_crit(fs_info, 6299 "mapping failed logical %llu bio len %llu len %llu", 6300 logical, length, map_length); 6301 BUG(); 6302 } 6303 6304 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6305 dev = bbio->stripes[dev_nr].dev; 6306 if (!dev || !dev->bdev || 6307 (bio_op(first_bio) == REQ_OP_WRITE && 6308 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6309 bbio_error(bbio, first_bio, logical); 6310 continue; 6311 } 6312 6313 if (dev_nr < total_devs - 1) 6314 bio = btrfs_bio_clone(first_bio); 6315 else 6316 bio = first_bio; 6317 6318 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, 6319 dev_nr, async_submit); 6320 } 6321 btrfs_bio_counter_dec(fs_info); 6322 return BLK_STS_OK; 6323 } 6324 6325 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 6326 u8 *uuid, u8 *fsid) 6327 { 6328 struct btrfs_device *device; 6329 struct btrfs_fs_devices *cur_devices; 6330 6331 cur_devices = fs_info->fs_devices; 6332 while (cur_devices) { 6333 if (!fsid || 6334 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) { 6335 device = find_device(cur_devices, devid, uuid); 6336 if (device) 6337 return device; 6338 } 6339 cur_devices = cur_devices->seed; 6340 } 6341 return NULL; 6342 } 6343 6344 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6345 u64 devid, u8 *dev_uuid) 6346 { 6347 struct btrfs_device *device; 6348 6349 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6350 if (IS_ERR(device)) 6351 return device; 6352 6353 list_add(&device->dev_list, &fs_devices->devices); 6354 device->fs_devices = fs_devices; 6355 fs_devices->num_devices++; 6356 6357 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6358 fs_devices->missing_devices++; 6359 6360 return device; 6361 } 6362 6363 /** 6364 * btrfs_alloc_device - allocate struct btrfs_device 6365 * @fs_info: used only for generating a new devid, can be NULL if 6366 * devid is provided (i.e. @devid != NULL). 6367 * @devid: a pointer to devid for this device. If NULL a new devid 6368 * is generated. 6369 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6370 * is generated. 6371 * 6372 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6373 * on error. Returned struct is not linked onto any lists and must be 6374 * destroyed with free_device. 6375 */ 6376 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6377 const u64 *devid, 6378 const u8 *uuid) 6379 { 6380 struct btrfs_device *dev; 6381 u64 tmp; 6382 6383 if (WARN_ON(!devid && !fs_info)) 6384 return ERR_PTR(-EINVAL); 6385 6386 dev = __alloc_device(); 6387 if (IS_ERR(dev)) 6388 return dev; 6389 6390 if (devid) 6391 tmp = *devid; 6392 else { 6393 int ret; 6394 6395 ret = find_next_devid(fs_info, &tmp); 6396 if (ret) { 6397 free_device(dev); 6398 return ERR_PTR(ret); 6399 } 6400 } 6401 dev->devid = tmp; 6402 6403 if (uuid) 6404 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6405 else 6406 generate_random_uuid(dev->uuid); 6407 6408 btrfs_init_work(&dev->work, btrfs_submit_helper, 6409 pending_bios_fn, NULL, NULL); 6410 6411 return dev; 6412 } 6413 6414 /* Return -EIO if any error, otherwise return 0. */ 6415 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info, 6416 struct extent_buffer *leaf, 6417 struct btrfs_chunk *chunk, u64 logical) 6418 { 6419 u64 length; 6420 u64 stripe_len; 6421 u16 num_stripes; 6422 u16 sub_stripes; 6423 u64 type; 6424 6425 length = btrfs_chunk_length(leaf, chunk); 6426 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6427 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6428 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6429 type = btrfs_chunk_type(leaf, chunk); 6430 6431 if (!num_stripes) { 6432 btrfs_err(fs_info, "invalid chunk num_stripes: %u", 6433 num_stripes); 6434 return -EIO; 6435 } 6436 if (!IS_ALIGNED(logical, fs_info->sectorsize)) { 6437 btrfs_err(fs_info, "invalid chunk logical %llu", logical); 6438 return -EIO; 6439 } 6440 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) { 6441 btrfs_err(fs_info, "invalid chunk sectorsize %u", 6442 btrfs_chunk_sector_size(leaf, chunk)); 6443 return -EIO; 6444 } 6445 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) { 6446 btrfs_err(fs_info, "invalid chunk length %llu", length); 6447 return -EIO; 6448 } 6449 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) { 6450 btrfs_err(fs_info, "invalid chunk stripe length: %llu", 6451 stripe_len); 6452 return -EIO; 6453 } 6454 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6455 type) { 6456 btrfs_err(fs_info, "unrecognized chunk type: %llu", 6457 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 6458 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6459 btrfs_chunk_type(leaf, chunk)); 6460 return -EIO; 6461 } 6462 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) || 6463 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) || 6464 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) || 6465 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) || 6466 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) || 6467 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 6468 num_stripes != 1)) { 6469 btrfs_err(fs_info, 6470 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 6471 num_stripes, sub_stripes, 6472 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 6473 return -EIO; 6474 } 6475 6476 return 0; 6477 } 6478 6479 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6480 u64 devid, u8 *uuid, bool error) 6481 { 6482 if (error) 6483 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6484 devid, uuid); 6485 else 6486 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6487 devid, uuid); 6488 } 6489 6490 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 6491 struct extent_buffer *leaf, 6492 struct btrfs_chunk *chunk) 6493 { 6494 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 6495 struct map_lookup *map; 6496 struct extent_map *em; 6497 u64 logical; 6498 u64 length; 6499 u64 devid; 6500 u8 uuid[BTRFS_UUID_SIZE]; 6501 int num_stripes; 6502 int ret; 6503 int i; 6504 6505 logical = key->offset; 6506 length = btrfs_chunk_length(leaf, chunk); 6507 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6508 6509 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical); 6510 if (ret) 6511 return ret; 6512 6513 read_lock(&map_tree->map_tree.lock); 6514 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 6515 read_unlock(&map_tree->map_tree.lock); 6516 6517 /* already mapped? */ 6518 if (em && em->start <= logical && em->start + em->len > logical) { 6519 free_extent_map(em); 6520 return 0; 6521 } else if (em) { 6522 free_extent_map(em); 6523 } 6524 6525 em = alloc_extent_map(); 6526 if (!em) 6527 return -ENOMEM; 6528 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6529 if (!map) { 6530 free_extent_map(em); 6531 return -ENOMEM; 6532 } 6533 6534 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6535 em->map_lookup = map; 6536 em->start = logical; 6537 em->len = length; 6538 em->orig_start = 0; 6539 em->block_start = 0; 6540 em->block_len = em->len; 6541 6542 map->num_stripes = num_stripes; 6543 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6544 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6545 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6546 map->type = btrfs_chunk_type(leaf, chunk); 6547 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6548 for (i = 0; i < num_stripes; i++) { 6549 map->stripes[i].physical = 6550 btrfs_stripe_offset_nr(leaf, chunk, i); 6551 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6552 read_extent_buffer(leaf, uuid, (unsigned long) 6553 btrfs_stripe_dev_uuid_nr(chunk, i), 6554 BTRFS_UUID_SIZE); 6555 map->stripes[i].dev = btrfs_find_device(fs_info, devid, 6556 uuid, NULL); 6557 if (!map->stripes[i].dev && 6558 !btrfs_test_opt(fs_info, DEGRADED)) { 6559 free_extent_map(em); 6560 btrfs_report_missing_device(fs_info, devid, uuid, true); 6561 return -ENOENT; 6562 } 6563 if (!map->stripes[i].dev) { 6564 map->stripes[i].dev = 6565 add_missing_dev(fs_info->fs_devices, devid, 6566 uuid); 6567 if (IS_ERR(map->stripes[i].dev)) { 6568 free_extent_map(em); 6569 btrfs_err(fs_info, 6570 "failed to init missing dev %llu: %ld", 6571 devid, PTR_ERR(map->stripes[i].dev)); 6572 return PTR_ERR(map->stripes[i].dev); 6573 } 6574 btrfs_report_missing_device(fs_info, devid, uuid, false); 6575 } 6576 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6577 &(map->stripes[i].dev->dev_state)); 6578 6579 } 6580 6581 write_lock(&map_tree->map_tree.lock); 6582 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6583 write_unlock(&map_tree->map_tree.lock); 6584 BUG_ON(ret); /* Tree corruption */ 6585 free_extent_map(em); 6586 6587 return 0; 6588 } 6589 6590 static void fill_device_from_item(struct extent_buffer *leaf, 6591 struct btrfs_dev_item *dev_item, 6592 struct btrfs_device *device) 6593 { 6594 unsigned long ptr; 6595 6596 device->devid = btrfs_device_id(leaf, dev_item); 6597 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6598 device->total_bytes = device->disk_total_bytes; 6599 device->commit_total_bytes = device->disk_total_bytes; 6600 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6601 device->commit_bytes_used = device->bytes_used; 6602 device->type = btrfs_device_type(leaf, dev_item); 6603 device->io_align = btrfs_device_io_align(leaf, dev_item); 6604 device->io_width = btrfs_device_io_width(leaf, dev_item); 6605 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6606 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6607 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6608 6609 ptr = btrfs_device_uuid(dev_item); 6610 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6611 } 6612 6613 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6614 u8 *fsid) 6615 { 6616 struct btrfs_fs_devices *fs_devices; 6617 int ret; 6618 6619 BUG_ON(!mutex_is_locked(&uuid_mutex)); 6620 ASSERT(fsid); 6621 6622 fs_devices = fs_info->fs_devices->seed; 6623 while (fs_devices) { 6624 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6625 return fs_devices; 6626 6627 fs_devices = fs_devices->seed; 6628 } 6629 6630 fs_devices = find_fsid(fsid); 6631 if (!fs_devices) { 6632 if (!btrfs_test_opt(fs_info, DEGRADED)) 6633 return ERR_PTR(-ENOENT); 6634 6635 fs_devices = alloc_fs_devices(fsid); 6636 if (IS_ERR(fs_devices)) 6637 return fs_devices; 6638 6639 fs_devices->seeding = 1; 6640 fs_devices->opened = 1; 6641 return fs_devices; 6642 } 6643 6644 fs_devices = clone_fs_devices(fs_devices); 6645 if (IS_ERR(fs_devices)) 6646 return fs_devices; 6647 6648 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 6649 fs_info->bdev_holder); 6650 if (ret) { 6651 free_fs_devices(fs_devices); 6652 fs_devices = ERR_PTR(ret); 6653 goto out; 6654 } 6655 6656 if (!fs_devices->seeding) { 6657 __btrfs_close_devices(fs_devices); 6658 free_fs_devices(fs_devices); 6659 fs_devices = ERR_PTR(-EINVAL); 6660 goto out; 6661 } 6662 6663 fs_devices->seed = fs_info->fs_devices->seed; 6664 fs_info->fs_devices->seed = fs_devices; 6665 out: 6666 return fs_devices; 6667 } 6668 6669 static int read_one_dev(struct btrfs_fs_info *fs_info, 6670 struct extent_buffer *leaf, 6671 struct btrfs_dev_item *dev_item) 6672 { 6673 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6674 struct btrfs_device *device; 6675 u64 devid; 6676 int ret; 6677 u8 fs_uuid[BTRFS_FSID_SIZE]; 6678 u8 dev_uuid[BTRFS_UUID_SIZE]; 6679 6680 devid = btrfs_device_id(leaf, dev_item); 6681 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6682 BTRFS_UUID_SIZE); 6683 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6684 BTRFS_FSID_SIZE); 6685 6686 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) { 6687 fs_devices = open_seed_devices(fs_info, fs_uuid); 6688 if (IS_ERR(fs_devices)) 6689 return PTR_ERR(fs_devices); 6690 } 6691 6692 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid); 6693 if (!device) { 6694 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6695 btrfs_report_missing_device(fs_info, devid, 6696 dev_uuid, true); 6697 return -ENOENT; 6698 } 6699 6700 device = add_missing_dev(fs_devices, devid, dev_uuid); 6701 if (IS_ERR(device)) { 6702 btrfs_err(fs_info, 6703 "failed to add missing dev %llu: %ld", 6704 devid, PTR_ERR(device)); 6705 return PTR_ERR(device); 6706 } 6707 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6708 } else { 6709 if (!device->bdev) { 6710 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6711 btrfs_report_missing_device(fs_info, 6712 devid, dev_uuid, true); 6713 return -ENOENT; 6714 } 6715 btrfs_report_missing_device(fs_info, devid, 6716 dev_uuid, false); 6717 } 6718 6719 if (!device->bdev && 6720 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6721 /* 6722 * this happens when a device that was properly setup 6723 * in the device info lists suddenly goes bad. 6724 * device->bdev is NULL, and so we have to set 6725 * device->missing to one here 6726 */ 6727 device->fs_devices->missing_devices++; 6728 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6729 } 6730 6731 /* Move the device to its own fs_devices */ 6732 if (device->fs_devices != fs_devices) { 6733 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 6734 &device->dev_state)); 6735 6736 list_move(&device->dev_list, &fs_devices->devices); 6737 device->fs_devices->num_devices--; 6738 fs_devices->num_devices++; 6739 6740 device->fs_devices->missing_devices--; 6741 fs_devices->missing_devices++; 6742 6743 device->fs_devices = fs_devices; 6744 } 6745 } 6746 6747 if (device->fs_devices != fs_info->fs_devices) { 6748 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 6749 if (device->generation != 6750 btrfs_device_generation(leaf, dev_item)) 6751 return -EINVAL; 6752 } 6753 6754 fill_device_from_item(leaf, dev_item, device); 6755 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 6756 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 6757 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 6758 device->fs_devices->total_rw_bytes += device->total_bytes; 6759 atomic64_add(device->total_bytes - device->bytes_used, 6760 &fs_info->free_chunk_space); 6761 } 6762 ret = 0; 6763 return ret; 6764 } 6765 6766 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 6767 { 6768 struct btrfs_root *root = fs_info->tree_root; 6769 struct btrfs_super_block *super_copy = fs_info->super_copy; 6770 struct extent_buffer *sb; 6771 struct btrfs_disk_key *disk_key; 6772 struct btrfs_chunk *chunk; 6773 u8 *array_ptr; 6774 unsigned long sb_array_offset; 6775 int ret = 0; 6776 u32 num_stripes; 6777 u32 array_size; 6778 u32 len = 0; 6779 u32 cur_offset; 6780 u64 type; 6781 struct btrfs_key key; 6782 6783 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 6784 /* 6785 * This will create extent buffer of nodesize, superblock size is 6786 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6787 * overallocate but we can keep it as-is, only the first page is used. 6788 */ 6789 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 6790 if (IS_ERR(sb)) 6791 return PTR_ERR(sb); 6792 set_extent_buffer_uptodate(sb); 6793 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6794 /* 6795 * The sb extent buffer is artificial and just used to read the system array. 6796 * set_extent_buffer_uptodate() call does not properly mark all it's 6797 * pages up-to-date when the page is larger: extent does not cover the 6798 * whole page and consequently check_page_uptodate does not find all 6799 * the page's extents up-to-date (the hole beyond sb), 6800 * write_extent_buffer then triggers a WARN_ON. 6801 * 6802 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6803 * but sb spans only this function. Add an explicit SetPageUptodate call 6804 * to silence the warning eg. on PowerPC 64. 6805 */ 6806 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 6807 SetPageUptodate(sb->pages[0]); 6808 6809 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6810 array_size = btrfs_super_sys_array_size(super_copy); 6811 6812 array_ptr = super_copy->sys_chunk_array; 6813 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6814 cur_offset = 0; 6815 6816 while (cur_offset < array_size) { 6817 disk_key = (struct btrfs_disk_key *)array_ptr; 6818 len = sizeof(*disk_key); 6819 if (cur_offset + len > array_size) 6820 goto out_short_read; 6821 6822 btrfs_disk_key_to_cpu(&key, disk_key); 6823 6824 array_ptr += len; 6825 sb_array_offset += len; 6826 cur_offset += len; 6827 6828 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 6829 chunk = (struct btrfs_chunk *)sb_array_offset; 6830 /* 6831 * At least one btrfs_chunk with one stripe must be 6832 * present, exact stripe count check comes afterwards 6833 */ 6834 len = btrfs_chunk_item_size(1); 6835 if (cur_offset + len > array_size) 6836 goto out_short_read; 6837 6838 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6839 if (!num_stripes) { 6840 btrfs_err(fs_info, 6841 "invalid number of stripes %u in sys_array at offset %u", 6842 num_stripes, cur_offset); 6843 ret = -EIO; 6844 break; 6845 } 6846 6847 type = btrfs_chunk_type(sb, chunk); 6848 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 6849 btrfs_err(fs_info, 6850 "invalid chunk type %llu in sys_array at offset %u", 6851 type, cur_offset); 6852 ret = -EIO; 6853 break; 6854 } 6855 6856 len = btrfs_chunk_item_size(num_stripes); 6857 if (cur_offset + len > array_size) 6858 goto out_short_read; 6859 6860 ret = read_one_chunk(fs_info, &key, sb, chunk); 6861 if (ret) 6862 break; 6863 } else { 6864 btrfs_err(fs_info, 6865 "unexpected item type %u in sys_array at offset %u", 6866 (u32)key.type, cur_offset); 6867 ret = -EIO; 6868 break; 6869 } 6870 array_ptr += len; 6871 sb_array_offset += len; 6872 cur_offset += len; 6873 } 6874 clear_extent_buffer_uptodate(sb); 6875 free_extent_buffer_stale(sb); 6876 return ret; 6877 6878 out_short_read: 6879 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 6880 len, cur_offset); 6881 clear_extent_buffer_uptodate(sb); 6882 free_extent_buffer_stale(sb); 6883 return -EIO; 6884 } 6885 6886 /* 6887 * Check if all chunks in the fs are OK for read-write degraded mount 6888 * 6889 * If the @failing_dev is specified, it's accounted as missing. 6890 * 6891 * Return true if all chunks meet the minimal RW mount requirements. 6892 * Return false if any chunk doesn't meet the minimal RW mount requirements. 6893 */ 6894 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 6895 struct btrfs_device *failing_dev) 6896 { 6897 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 6898 struct extent_map *em; 6899 u64 next_start = 0; 6900 bool ret = true; 6901 6902 read_lock(&map_tree->map_tree.lock); 6903 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1); 6904 read_unlock(&map_tree->map_tree.lock); 6905 /* No chunk at all? Return false anyway */ 6906 if (!em) { 6907 ret = false; 6908 goto out; 6909 } 6910 while (em) { 6911 struct map_lookup *map; 6912 int missing = 0; 6913 int max_tolerated; 6914 int i; 6915 6916 map = em->map_lookup; 6917 max_tolerated = 6918 btrfs_get_num_tolerated_disk_barrier_failures( 6919 map->type); 6920 for (i = 0; i < map->num_stripes; i++) { 6921 struct btrfs_device *dev = map->stripes[i].dev; 6922 6923 if (!dev || !dev->bdev || 6924 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 6925 dev->last_flush_error) 6926 missing++; 6927 else if (failing_dev && failing_dev == dev) 6928 missing++; 6929 } 6930 if (missing > max_tolerated) { 6931 if (!failing_dev) 6932 btrfs_warn(fs_info, 6933 "chunk %llu missing %d devices, max tolerance is %d for writeable mount", 6934 em->start, missing, max_tolerated); 6935 free_extent_map(em); 6936 ret = false; 6937 goto out; 6938 } 6939 next_start = extent_map_end(em); 6940 free_extent_map(em); 6941 6942 read_lock(&map_tree->map_tree.lock); 6943 em = lookup_extent_mapping(&map_tree->map_tree, next_start, 6944 (u64)(-1) - next_start); 6945 read_unlock(&map_tree->map_tree.lock); 6946 } 6947 out: 6948 return ret; 6949 } 6950 6951 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 6952 { 6953 struct btrfs_root *root = fs_info->chunk_root; 6954 struct btrfs_path *path; 6955 struct extent_buffer *leaf; 6956 struct btrfs_key key; 6957 struct btrfs_key found_key; 6958 int ret; 6959 int slot; 6960 u64 total_dev = 0; 6961 6962 path = btrfs_alloc_path(); 6963 if (!path) 6964 return -ENOMEM; 6965 6966 mutex_lock(&uuid_mutex); 6967 mutex_lock(&fs_info->chunk_mutex); 6968 6969 /* 6970 * Read all device items, and then all the chunk items. All 6971 * device items are found before any chunk item (their object id 6972 * is smaller than the lowest possible object id for a chunk 6973 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6974 */ 6975 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6976 key.offset = 0; 6977 key.type = 0; 6978 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6979 if (ret < 0) 6980 goto error; 6981 while (1) { 6982 leaf = path->nodes[0]; 6983 slot = path->slots[0]; 6984 if (slot >= btrfs_header_nritems(leaf)) { 6985 ret = btrfs_next_leaf(root, path); 6986 if (ret == 0) 6987 continue; 6988 if (ret < 0) 6989 goto error; 6990 break; 6991 } 6992 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6993 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6994 struct btrfs_dev_item *dev_item; 6995 dev_item = btrfs_item_ptr(leaf, slot, 6996 struct btrfs_dev_item); 6997 ret = read_one_dev(fs_info, leaf, dev_item); 6998 if (ret) 6999 goto error; 7000 total_dev++; 7001 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7002 struct btrfs_chunk *chunk; 7003 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7004 ret = read_one_chunk(fs_info, &found_key, leaf, chunk); 7005 if (ret) 7006 goto error; 7007 } 7008 path->slots[0]++; 7009 } 7010 7011 /* 7012 * After loading chunk tree, we've got all device information, 7013 * do another round of validation checks. 7014 */ 7015 if (total_dev != fs_info->fs_devices->total_devices) { 7016 btrfs_err(fs_info, 7017 "super_num_devices %llu mismatch with num_devices %llu found here", 7018 btrfs_super_num_devices(fs_info->super_copy), 7019 total_dev); 7020 ret = -EINVAL; 7021 goto error; 7022 } 7023 if (btrfs_super_total_bytes(fs_info->super_copy) < 7024 fs_info->fs_devices->total_rw_bytes) { 7025 btrfs_err(fs_info, 7026 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7027 btrfs_super_total_bytes(fs_info->super_copy), 7028 fs_info->fs_devices->total_rw_bytes); 7029 ret = -EINVAL; 7030 goto error; 7031 } 7032 ret = 0; 7033 error: 7034 mutex_unlock(&fs_info->chunk_mutex); 7035 mutex_unlock(&uuid_mutex); 7036 7037 btrfs_free_path(path); 7038 return ret; 7039 } 7040 7041 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7042 { 7043 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7044 struct btrfs_device *device; 7045 7046 while (fs_devices) { 7047 mutex_lock(&fs_devices->device_list_mutex); 7048 list_for_each_entry(device, &fs_devices->devices, dev_list) 7049 device->fs_info = fs_info; 7050 mutex_unlock(&fs_devices->device_list_mutex); 7051 7052 fs_devices = fs_devices->seed; 7053 } 7054 } 7055 7056 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 7057 { 7058 int i; 7059 7060 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7061 btrfs_dev_stat_reset(dev, i); 7062 } 7063 7064 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7065 { 7066 struct btrfs_key key; 7067 struct btrfs_key found_key; 7068 struct btrfs_root *dev_root = fs_info->dev_root; 7069 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7070 struct extent_buffer *eb; 7071 int slot; 7072 int ret = 0; 7073 struct btrfs_device *device; 7074 struct btrfs_path *path = NULL; 7075 int i; 7076 7077 path = btrfs_alloc_path(); 7078 if (!path) { 7079 ret = -ENOMEM; 7080 goto out; 7081 } 7082 7083 mutex_lock(&fs_devices->device_list_mutex); 7084 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7085 int item_size; 7086 struct btrfs_dev_stats_item *ptr; 7087 7088 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7089 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7090 key.offset = device->devid; 7091 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 7092 if (ret) { 7093 __btrfs_reset_dev_stats(device); 7094 device->dev_stats_valid = 1; 7095 btrfs_release_path(path); 7096 continue; 7097 } 7098 slot = path->slots[0]; 7099 eb = path->nodes[0]; 7100 btrfs_item_key_to_cpu(eb, &found_key, slot); 7101 item_size = btrfs_item_size_nr(eb, slot); 7102 7103 ptr = btrfs_item_ptr(eb, slot, 7104 struct btrfs_dev_stats_item); 7105 7106 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7107 if (item_size >= (1 + i) * sizeof(__le64)) 7108 btrfs_dev_stat_set(device, i, 7109 btrfs_dev_stats_value(eb, ptr, i)); 7110 else 7111 btrfs_dev_stat_reset(device, i); 7112 } 7113 7114 device->dev_stats_valid = 1; 7115 btrfs_dev_stat_print_on_load(device); 7116 btrfs_release_path(path); 7117 } 7118 mutex_unlock(&fs_devices->device_list_mutex); 7119 7120 out: 7121 btrfs_free_path(path); 7122 return ret < 0 ? ret : 0; 7123 } 7124 7125 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7126 struct btrfs_fs_info *fs_info, 7127 struct btrfs_device *device) 7128 { 7129 struct btrfs_root *dev_root = fs_info->dev_root; 7130 struct btrfs_path *path; 7131 struct btrfs_key key; 7132 struct extent_buffer *eb; 7133 struct btrfs_dev_stats_item *ptr; 7134 int ret; 7135 int i; 7136 7137 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7138 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7139 key.offset = device->devid; 7140 7141 path = btrfs_alloc_path(); 7142 if (!path) 7143 return -ENOMEM; 7144 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7145 if (ret < 0) { 7146 btrfs_warn_in_rcu(fs_info, 7147 "error %d while searching for dev_stats item for device %s", 7148 ret, rcu_str_deref(device->name)); 7149 goto out; 7150 } 7151 7152 if (ret == 0 && 7153 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7154 /* need to delete old one and insert a new one */ 7155 ret = btrfs_del_item(trans, dev_root, path); 7156 if (ret != 0) { 7157 btrfs_warn_in_rcu(fs_info, 7158 "delete too small dev_stats item for device %s failed %d", 7159 rcu_str_deref(device->name), ret); 7160 goto out; 7161 } 7162 ret = 1; 7163 } 7164 7165 if (ret == 1) { 7166 /* need to insert a new item */ 7167 btrfs_release_path(path); 7168 ret = btrfs_insert_empty_item(trans, dev_root, path, 7169 &key, sizeof(*ptr)); 7170 if (ret < 0) { 7171 btrfs_warn_in_rcu(fs_info, 7172 "insert dev_stats item for device %s failed %d", 7173 rcu_str_deref(device->name), ret); 7174 goto out; 7175 } 7176 } 7177 7178 eb = path->nodes[0]; 7179 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7180 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7181 btrfs_set_dev_stats_value(eb, ptr, i, 7182 btrfs_dev_stat_read(device, i)); 7183 btrfs_mark_buffer_dirty(eb); 7184 7185 out: 7186 btrfs_free_path(path); 7187 return ret; 7188 } 7189 7190 /* 7191 * called from commit_transaction. Writes all changed device stats to disk. 7192 */ 7193 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 7194 struct btrfs_fs_info *fs_info) 7195 { 7196 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7197 struct btrfs_device *device; 7198 int stats_cnt; 7199 int ret = 0; 7200 7201 mutex_lock(&fs_devices->device_list_mutex); 7202 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7203 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7204 if (!device->dev_stats_valid || stats_cnt == 0) 7205 continue; 7206 7207 7208 /* 7209 * There is a LOAD-LOAD control dependency between the value of 7210 * dev_stats_ccnt and updating the on-disk values which requires 7211 * reading the in-memory counters. Such control dependencies 7212 * require explicit read memory barriers. 7213 * 7214 * This memory barriers pairs with smp_mb__before_atomic in 7215 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7216 * barrier implied by atomic_xchg in 7217 * btrfs_dev_stats_read_and_reset 7218 */ 7219 smp_rmb(); 7220 7221 ret = update_dev_stat_item(trans, fs_info, device); 7222 if (!ret) 7223 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7224 } 7225 mutex_unlock(&fs_devices->device_list_mutex); 7226 7227 return ret; 7228 } 7229 7230 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7231 { 7232 btrfs_dev_stat_inc(dev, index); 7233 btrfs_dev_stat_print_on_error(dev); 7234 } 7235 7236 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7237 { 7238 if (!dev->dev_stats_valid) 7239 return; 7240 btrfs_err_rl_in_rcu(dev->fs_info, 7241 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7242 rcu_str_deref(dev->name), 7243 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7244 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7245 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7246 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7247 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7248 } 7249 7250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7251 { 7252 int i; 7253 7254 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7255 if (btrfs_dev_stat_read(dev, i) != 0) 7256 break; 7257 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7258 return; /* all values == 0, suppress message */ 7259 7260 btrfs_info_in_rcu(dev->fs_info, 7261 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7262 rcu_str_deref(dev->name), 7263 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7264 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7265 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7266 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7267 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7268 } 7269 7270 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7271 struct btrfs_ioctl_get_dev_stats *stats) 7272 { 7273 struct btrfs_device *dev; 7274 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7275 int i; 7276 7277 mutex_lock(&fs_devices->device_list_mutex); 7278 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL); 7279 mutex_unlock(&fs_devices->device_list_mutex); 7280 7281 if (!dev) { 7282 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7283 return -ENODEV; 7284 } else if (!dev->dev_stats_valid) { 7285 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7286 return -ENODEV; 7287 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7288 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7289 if (stats->nr_items > i) 7290 stats->values[i] = 7291 btrfs_dev_stat_read_and_reset(dev, i); 7292 else 7293 btrfs_dev_stat_reset(dev, i); 7294 } 7295 } else { 7296 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7297 if (stats->nr_items > i) 7298 stats->values[i] = btrfs_dev_stat_read(dev, i); 7299 } 7300 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7301 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7302 return 0; 7303 } 7304 7305 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path) 7306 { 7307 struct buffer_head *bh; 7308 struct btrfs_super_block *disk_super; 7309 int copy_num; 7310 7311 if (!bdev) 7312 return; 7313 7314 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 7315 copy_num++) { 7316 7317 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 7318 continue; 7319 7320 disk_super = (struct btrfs_super_block *)bh->b_data; 7321 7322 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 7323 set_buffer_dirty(bh); 7324 sync_dirty_buffer(bh); 7325 brelse(bh); 7326 } 7327 7328 /* Notify udev that device has changed */ 7329 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 7330 7331 /* Update ctime/mtime for device path for libblkid */ 7332 update_dev_time(device_path); 7333 } 7334 7335 /* 7336 * Update the size of all devices, which is used for writing out the 7337 * super blocks. 7338 */ 7339 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) 7340 { 7341 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7342 struct btrfs_device *curr, *next; 7343 7344 if (list_empty(&fs_devices->resized_devices)) 7345 return; 7346 7347 mutex_lock(&fs_devices->device_list_mutex); 7348 mutex_lock(&fs_info->chunk_mutex); 7349 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, 7350 resized_list) { 7351 list_del_init(&curr->resized_list); 7352 curr->commit_total_bytes = curr->disk_total_bytes; 7353 } 7354 mutex_unlock(&fs_info->chunk_mutex); 7355 mutex_unlock(&fs_devices->device_list_mutex); 7356 } 7357 7358 /* Must be invoked during the transaction commit */ 7359 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info, 7360 struct btrfs_transaction *transaction) 7361 { 7362 struct extent_map *em; 7363 struct map_lookup *map; 7364 struct btrfs_device *dev; 7365 int i; 7366 7367 if (list_empty(&transaction->pending_chunks)) 7368 return; 7369 7370 /* In order to kick the device replace finish process */ 7371 mutex_lock(&fs_info->chunk_mutex); 7372 list_for_each_entry(em, &transaction->pending_chunks, list) { 7373 map = em->map_lookup; 7374 7375 for (i = 0; i < map->num_stripes; i++) { 7376 dev = map->stripes[i].dev; 7377 dev->commit_bytes_used = dev->bytes_used; 7378 } 7379 } 7380 mutex_unlock(&fs_info->chunk_mutex); 7381 } 7382 7383 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 7384 { 7385 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7386 while (fs_devices) { 7387 fs_devices->fs_info = fs_info; 7388 fs_devices = fs_devices->seed; 7389 } 7390 } 7391 7392 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 7393 { 7394 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7395 while (fs_devices) { 7396 fs_devices->fs_info = NULL; 7397 fs_devices = fs_devices->seed; 7398 } 7399 } 7400