1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/random.h> 24 #include <linux/iocontext.h> 25 #include <linux/capability.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <linux/raid/pq.h> 29 #include <linux/semaphore.h> 30 #include <asm/div64.h> 31 #include "ctree.h" 32 #include "extent_map.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "raid56.h" 38 #include "async-thread.h" 39 #include "check-integrity.h" 40 #include "rcu-string.h" 41 #include "math.h" 42 #include "dev-replace.h" 43 #include "sysfs.h" 44 45 static int init_first_rw_device(struct btrfs_trans_handle *trans, 46 struct btrfs_root *root, 47 struct btrfs_device *device); 48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 52 53 DEFINE_MUTEX(uuid_mutex); 54 static LIST_HEAD(fs_uuids); 55 56 static struct btrfs_fs_devices *__alloc_fs_devices(void) 57 { 58 struct btrfs_fs_devices *fs_devs; 59 60 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS); 61 if (!fs_devs) 62 return ERR_PTR(-ENOMEM); 63 64 mutex_init(&fs_devs->device_list_mutex); 65 66 INIT_LIST_HEAD(&fs_devs->devices); 67 INIT_LIST_HEAD(&fs_devs->resized_devices); 68 INIT_LIST_HEAD(&fs_devs->alloc_list); 69 INIT_LIST_HEAD(&fs_devs->list); 70 71 return fs_devs; 72 } 73 74 /** 75 * alloc_fs_devices - allocate struct btrfs_fs_devices 76 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is 77 * generated. 78 * 79 * Return: a pointer to a new &struct btrfs_fs_devices on success; 80 * ERR_PTR() on error. Returned struct is not linked onto any lists and 81 * can be destroyed with kfree() right away. 82 */ 83 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 84 { 85 struct btrfs_fs_devices *fs_devs; 86 87 fs_devs = __alloc_fs_devices(); 88 if (IS_ERR(fs_devs)) 89 return fs_devs; 90 91 if (fsid) 92 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 93 else 94 generate_random_uuid(fs_devs->fsid); 95 96 return fs_devs; 97 } 98 99 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 100 { 101 struct btrfs_device *device; 102 WARN_ON(fs_devices->opened); 103 while (!list_empty(&fs_devices->devices)) { 104 device = list_entry(fs_devices->devices.next, 105 struct btrfs_device, dev_list); 106 list_del(&device->dev_list); 107 rcu_string_free(device->name); 108 kfree(device); 109 } 110 kfree(fs_devices); 111 } 112 113 static void btrfs_kobject_uevent(struct block_device *bdev, 114 enum kobject_action action) 115 { 116 int ret; 117 118 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 119 if (ret) 120 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 121 action, 122 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 123 &disk_to_dev(bdev->bd_disk)->kobj); 124 } 125 126 void btrfs_cleanup_fs_uuids(void) 127 { 128 struct btrfs_fs_devices *fs_devices; 129 130 while (!list_empty(&fs_uuids)) { 131 fs_devices = list_entry(fs_uuids.next, 132 struct btrfs_fs_devices, list); 133 list_del(&fs_devices->list); 134 free_fs_devices(fs_devices); 135 } 136 } 137 138 static struct btrfs_device *__alloc_device(void) 139 { 140 struct btrfs_device *dev; 141 142 dev = kzalloc(sizeof(*dev), GFP_NOFS); 143 if (!dev) 144 return ERR_PTR(-ENOMEM); 145 146 INIT_LIST_HEAD(&dev->dev_list); 147 INIT_LIST_HEAD(&dev->dev_alloc_list); 148 INIT_LIST_HEAD(&dev->resized_list); 149 150 spin_lock_init(&dev->io_lock); 151 152 spin_lock_init(&dev->reada_lock); 153 atomic_set(&dev->reada_in_flight, 0); 154 atomic_set(&dev->dev_stats_ccnt, 0); 155 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT); 156 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT); 157 158 return dev; 159 } 160 161 static noinline struct btrfs_device *__find_device(struct list_head *head, 162 u64 devid, u8 *uuid) 163 { 164 struct btrfs_device *dev; 165 166 list_for_each_entry(dev, head, dev_list) { 167 if (dev->devid == devid && 168 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 169 return dev; 170 } 171 } 172 return NULL; 173 } 174 175 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 176 { 177 struct btrfs_fs_devices *fs_devices; 178 179 list_for_each_entry(fs_devices, &fs_uuids, list) { 180 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 181 return fs_devices; 182 } 183 return NULL; 184 } 185 186 static int 187 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 188 int flush, struct block_device **bdev, 189 struct buffer_head **bh) 190 { 191 int ret; 192 193 *bdev = blkdev_get_by_path(device_path, flags, holder); 194 195 if (IS_ERR(*bdev)) { 196 ret = PTR_ERR(*bdev); 197 printk(KERN_INFO "BTRFS: open %s failed\n", device_path); 198 goto error; 199 } 200 201 if (flush) 202 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 203 ret = set_blocksize(*bdev, 4096); 204 if (ret) { 205 blkdev_put(*bdev, flags); 206 goto error; 207 } 208 invalidate_bdev(*bdev); 209 *bh = btrfs_read_dev_super(*bdev); 210 if (!*bh) { 211 ret = -EINVAL; 212 blkdev_put(*bdev, flags); 213 goto error; 214 } 215 216 return 0; 217 218 error: 219 *bdev = NULL; 220 *bh = NULL; 221 return ret; 222 } 223 224 static void requeue_list(struct btrfs_pending_bios *pending_bios, 225 struct bio *head, struct bio *tail) 226 { 227 228 struct bio *old_head; 229 230 old_head = pending_bios->head; 231 pending_bios->head = head; 232 if (pending_bios->tail) 233 tail->bi_next = old_head; 234 else 235 pending_bios->tail = tail; 236 } 237 238 /* 239 * we try to collect pending bios for a device so we don't get a large 240 * number of procs sending bios down to the same device. This greatly 241 * improves the schedulers ability to collect and merge the bios. 242 * 243 * But, it also turns into a long list of bios to process and that is sure 244 * to eventually make the worker thread block. The solution here is to 245 * make some progress and then put this work struct back at the end of 246 * the list if the block device is congested. This way, multiple devices 247 * can make progress from a single worker thread. 248 */ 249 static noinline void run_scheduled_bios(struct btrfs_device *device) 250 { 251 struct bio *pending; 252 struct backing_dev_info *bdi; 253 struct btrfs_fs_info *fs_info; 254 struct btrfs_pending_bios *pending_bios; 255 struct bio *tail; 256 struct bio *cur; 257 int again = 0; 258 unsigned long num_run; 259 unsigned long batch_run = 0; 260 unsigned long limit; 261 unsigned long last_waited = 0; 262 int force_reg = 0; 263 int sync_pending = 0; 264 struct blk_plug plug; 265 266 /* 267 * this function runs all the bios we've collected for 268 * a particular device. We don't want to wander off to 269 * another device without first sending all of these down. 270 * So, setup a plug here and finish it off before we return 271 */ 272 blk_start_plug(&plug); 273 274 bdi = blk_get_backing_dev_info(device->bdev); 275 fs_info = device->dev_root->fs_info; 276 limit = btrfs_async_submit_limit(fs_info); 277 limit = limit * 2 / 3; 278 279 loop: 280 spin_lock(&device->io_lock); 281 282 loop_lock: 283 num_run = 0; 284 285 /* take all the bios off the list at once and process them 286 * later on (without the lock held). But, remember the 287 * tail and other pointers so the bios can be properly reinserted 288 * into the list if we hit congestion 289 */ 290 if (!force_reg && device->pending_sync_bios.head) { 291 pending_bios = &device->pending_sync_bios; 292 force_reg = 1; 293 } else { 294 pending_bios = &device->pending_bios; 295 force_reg = 0; 296 } 297 298 pending = pending_bios->head; 299 tail = pending_bios->tail; 300 WARN_ON(pending && !tail); 301 302 /* 303 * if pending was null this time around, no bios need processing 304 * at all and we can stop. Otherwise it'll loop back up again 305 * and do an additional check so no bios are missed. 306 * 307 * device->running_pending is used to synchronize with the 308 * schedule_bio code. 309 */ 310 if (device->pending_sync_bios.head == NULL && 311 device->pending_bios.head == NULL) { 312 again = 0; 313 device->running_pending = 0; 314 } else { 315 again = 1; 316 device->running_pending = 1; 317 } 318 319 pending_bios->head = NULL; 320 pending_bios->tail = NULL; 321 322 spin_unlock(&device->io_lock); 323 324 while (pending) { 325 326 rmb(); 327 /* we want to work on both lists, but do more bios on the 328 * sync list than the regular list 329 */ 330 if ((num_run > 32 && 331 pending_bios != &device->pending_sync_bios && 332 device->pending_sync_bios.head) || 333 (num_run > 64 && pending_bios == &device->pending_sync_bios && 334 device->pending_bios.head)) { 335 spin_lock(&device->io_lock); 336 requeue_list(pending_bios, pending, tail); 337 goto loop_lock; 338 } 339 340 cur = pending; 341 pending = pending->bi_next; 342 cur->bi_next = NULL; 343 344 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 345 waitqueue_active(&fs_info->async_submit_wait)) 346 wake_up(&fs_info->async_submit_wait); 347 348 BUG_ON(atomic_read(&cur->bi_cnt) == 0); 349 350 /* 351 * if we're doing the sync list, record that our 352 * plug has some sync requests on it 353 * 354 * If we're doing the regular list and there are 355 * sync requests sitting around, unplug before 356 * we add more 357 */ 358 if (pending_bios == &device->pending_sync_bios) { 359 sync_pending = 1; 360 } else if (sync_pending) { 361 blk_finish_plug(&plug); 362 blk_start_plug(&plug); 363 sync_pending = 0; 364 } 365 366 btrfsic_submit_bio(cur->bi_rw, cur); 367 num_run++; 368 batch_run++; 369 370 cond_resched(); 371 372 /* 373 * we made progress, there is more work to do and the bdi 374 * is now congested. Back off and let other work structs 375 * run instead 376 */ 377 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 378 fs_info->fs_devices->open_devices > 1) { 379 struct io_context *ioc; 380 381 ioc = current->io_context; 382 383 /* 384 * the main goal here is that we don't want to 385 * block if we're going to be able to submit 386 * more requests without blocking. 387 * 388 * This code does two great things, it pokes into 389 * the elevator code from a filesystem _and_ 390 * it makes assumptions about how batching works. 391 */ 392 if (ioc && ioc->nr_batch_requests > 0 && 393 time_before(jiffies, ioc->last_waited + HZ/50UL) && 394 (last_waited == 0 || 395 ioc->last_waited == last_waited)) { 396 /* 397 * we want to go through our batch of 398 * requests and stop. So, we copy out 399 * the ioc->last_waited time and test 400 * against it before looping 401 */ 402 last_waited = ioc->last_waited; 403 cond_resched(); 404 continue; 405 } 406 spin_lock(&device->io_lock); 407 requeue_list(pending_bios, pending, tail); 408 device->running_pending = 1; 409 410 spin_unlock(&device->io_lock); 411 btrfs_queue_work(fs_info->submit_workers, 412 &device->work); 413 goto done; 414 } 415 /* unplug every 64 requests just for good measure */ 416 if (batch_run % 64 == 0) { 417 blk_finish_plug(&plug); 418 blk_start_plug(&plug); 419 sync_pending = 0; 420 } 421 } 422 423 cond_resched(); 424 if (again) 425 goto loop; 426 427 spin_lock(&device->io_lock); 428 if (device->pending_bios.head || device->pending_sync_bios.head) 429 goto loop_lock; 430 spin_unlock(&device->io_lock); 431 432 done: 433 blk_finish_plug(&plug); 434 } 435 436 static void pending_bios_fn(struct btrfs_work *work) 437 { 438 struct btrfs_device *device; 439 440 device = container_of(work, struct btrfs_device, work); 441 run_scheduled_bios(device); 442 } 443 444 /* 445 * Add new device to list of registered devices 446 * 447 * Returns: 448 * 1 - first time device is seen 449 * 0 - device already known 450 * < 0 - error 451 */ 452 static noinline int device_list_add(const char *path, 453 struct btrfs_super_block *disk_super, 454 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 455 { 456 struct btrfs_device *device; 457 struct btrfs_fs_devices *fs_devices; 458 struct rcu_string *name; 459 int ret = 0; 460 u64 found_transid = btrfs_super_generation(disk_super); 461 462 fs_devices = find_fsid(disk_super->fsid); 463 if (!fs_devices) { 464 fs_devices = alloc_fs_devices(disk_super->fsid); 465 if (IS_ERR(fs_devices)) 466 return PTR_ERR(fs_devices); 467 468 list_add(&fs_devices->list, &fs_uuids); 469 470 device = NULL; 471 } else { 472 device = __find_device(&fs_devices->devices, devid, 473 disk_super->dev_item.uuid); 474 } 475 476 if (!device) { 477 if (fs_devices->opened) 478 return -EBUSY; 479 480 device = btrfs_alloc_device(NULL, &devid, 481 disk_super->dev_item.uuid); 482 if (IS_ERR(device)) { 483 /* we can safely leave the fs_devices entry around */ 484 return PTR_ERR(device); 485 } 486 487 name = rcu_string_strdup(path, GFP_NOFS); 488 if (!name) { 489 kfree(device); 490 return -ENOMEM; 491 } 492 rcu_assign_pointer(device->name, name); 493 494 mutex_lock(&fs_devices->device_list_mutex); 495 list_add_rcu(&device->dev_list, &fs_devices->devices); 496 fs_devices->num_devices++; 497 mutex_unlock(&fs_devices->device_list_mutex); 498 499 ret = 1; 500 device->fs_devices = fs_devices; 501 } else if (!device->name || strcmp(device->name->str, path)) { 502 /* 503 * When FS is already mounted. 504 * 1. If you are here and if the device->name is NULL that 505 * means this device was missing at time of FS mount. 506 * 2. If you are here and if the device->name is different 507 * from 'path' that means either 508 * a. The same device disappeared and reappeared with 509 * different name. or 510 * b. The missing-disk-which-was-replaced, has 511 * reappeared now. 512 * 513 * We must allow 1 and 2a above. But 2b would be a spurious 514 * and unintentional. 515 * 516 * Further in case of 1 and 2a above, the disk at 'path' 517 * would have missed some transaction when it was away and 518 * in case of 2a the stale bdev has to be updated as well. 519 * 2b must not be allowed at all time. 520 */ 521 522 /* 523 * For now, we do allow update to btrfs_fs_device through the 524 * btrfs dev scan cli after FS has been mounted. We're still 525 * tracking a problem where systems fail mount by subvolume id 526 * when we reject replacement on a mounted FS. 527 */ 528 if (!fs_devices->opened && found_transid < device->generation) { 529 /* 530 * That is if the FS is _not_ mounted and if you 531 * are here, that means there is more than one 532 * disk with same uuid and devid.We keep the one 533 * with larger generation number or the last-in if 534 * generation are equal. 535 */ 536 return -EEXIST; 537 } 538 539 name = rcu_string_strdup(path, GFP_NOFS); 540 if (!name) 541 return -ENOMEM; 542 rcu_string_free(device->name); 543 rcu_assign_pointer(device->name, name); 544 if (device->missing) { 545 fs_devices->missing_devices--; 546 device->missing = 0; 547 } 548 } 549 550 /* 551 * Unmount does not free the btrfs_device struct but would zero 552 * generation along with most of the other members. So just update 553 * it back. We need it to pick the disk with largest generation 554 * (as above). 555 */ 556 if (!fs_devices->opened) 557 device->generation = found_transid; 558 559 *fs_devices_ret = fs_devices; 560 561 return ret; 562 } 563 564 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 565 { 566 struct btrfs_fs_devices *fs_devices; 567 struct btrfs_device *device; 568 struct btrfs_device *orig_dev; 569 570 fs_devices = alloc_fs_devices(orig->fsid); 571 if (IS_ERR(fs_devices)) 572 return fs_devices; 573 574 mutex_lock(&orig->device_list_mutex); 575 fs_devices->total_devices = orig->total_devices; 576 577 /* We have held the volume lock, it is safe to get the devices. */ 578 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 579 struct rcu_string *name; 580 581 device = btrfs_alloc_device(NULL, &orig_dev->devid, 582 orig_dev->uuid); 583 if (IS_ERR(device)) 584 goto error; 585 586 /* 587 * This is ok to do without rcu read locked because we hold the 588 * uuid mutex so nothing we touch in here is going to disappear. 589 */ 590 if (orig_dev->name) { 591 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); 592 if (!name) { 593 kfree(device); 594 goto error; 595 } 596 rcu_assign_pointer(device->name, name); 597 } 598 599 list_add(&device->dev_list, &fs_devices->devices); 600 device->fs_devices = fs_devices; 601 fs_devices->num_devices++; 602 } 603 mutex_unlock(&orig->device_list_mutex); 604 return fs_devices; 605 error: 606 mutex_unlock(&orig->device_list_mutex); 607 free_fs_devices(fs_devices); 608 return ERR_PTR(-ENOMEM); 609 } 610 611 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step) 612 { 613 struct btrfs_device *device, *next; 614 struct btrfs_device *latest_dev = NULL; 615 616 mutex_lock(&uuid_mutex); 617 again: 618 /* This is the initialized path, it is safe to release the devices. */ 619 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 620 if (device->in_fs_metadata) { 621 if (!device->is_tgtdev_for_dev_replace && 622 (!latest_dev || 623 device->generation > latest_dev->generation)) { 624 latest_dev = device; 625 } 626 continue; 627 } 628 629 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 630 /* 631 * In the first step, keep the device which has 632 * the correct fsid and the devid that is used 633 * for the dev_replace procedure. 634 * In the second step, the dev_replace state is 635 * read from the device tree and it is known 636 * whether the procedure is really active or 637 * not, which means whether this device is 638 * used or whether it should be removed. 639 */ 640 if (step == 0 || device->is_tgtdev_for_dev_replace) { 641 continue; 642 } 643 } 644 if (device->bdev) { 645 blkdev_put(device->bdev, device->mode); 646 device->bdev = NULL; 647 fs_devices->open_devices--; 648 } 649 if (device->writeable) { 650 list_del_init(&device->dev_alloc_list); 651 device->writeable = 0; 652 if (!device->is_tgtdev_for_dev_replace) 653 fs_devices->rw_devices--; 654 } 655 list_del_init(&device->dev_list); 656 fs_devices->num_devices--; 657 rcu_string_free(device->name); 658 kfree(device); 659 } 660 661 if (fs_devices->seed) { 662 fs_devices = fs_devices->seed; 663 goto again; 664 } 665 666 fs_devices->latest_bdev = latest_dev->bdev; 667 668 mutex_unlock(&uuid_mutex); 669 } 670 671 static void __free_device(struct work_struct *work) 672 { 673 struct btrfs_device *device; 674 675 device = container_of(work, struct btrfs_device, rcu_work); 676 677 if (device->bdev) 678 blkdev_put(device->bdev, device->mode); 679 680 rcu_string_free(device->name); 681 kfree(device); 682 } 683 684 static void free_device(struct rcu_head *head) 685 { 686 struct btrfs_device *device; 687 688 device = container_of(head, struct btrfs_device, rcu); 689 690 INIT_WORK(&device->rcu_work, __free_device); 691 schedule_work(&device->rcu_work); 692 } 693 694 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 695 { 696 struct btrfs_device *device; 697 698 if (--fs_devices->opened > 0) 699 return 0; 700 701 mutex_lock(&fs_devices->device_list_mutex); 702 list_for_each_entry(device, &fs_devices->devices, dev_list) { 703 struct btrfs_device *new_device; 704 struct rcu_string *name; 705 706 if (device->bdev) 707 fs_devices->open_devices--; 708 709 if (device->writeable && 710 device->devid != BTRFS_DEV_REPLACE_DEVID) { 711 list_del_init(&device->dev_alloc_list); 712 fs_devices->rw_devices--; 713 } 714 715 if (device->missing) 716 fs_devices->missing_devices--; 717 718 new_device = btrfs_alloc_device(NULL, &device->devid, 719 device->uuid); 720 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 721 722 /* Safe because we are under uuid_mutex */ 723 if (device->name) { 724 name = rcu_string_strdup(device->name->str, GFP_NOFS); 725 BUG_ON(!name); /* -ENOMEM */ 726 rcu_assign_pointer(new_device->name, name); 727 } 728 729 list_replace_rcu(&device->dev_list, &new_device->dev_list); 730 new_device->fs_devices = device->fs_devices; 731 732 call_rcu(&device->rcu, free_device); 733 } 734 mutex_unlock(&fs_devices->device_list_mutex); 735 736 WARN_ON(fs_devices->open_devices); 737 WARN_ON(fs_devices->rw_devices); 738 fs_devices->opened = 0; 739 fs_devices->seeding = 0; 740 741 return 0; 742 } 743 744 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 745 { 746 struct btrfs_fs_devices *seed_devices = NULL; 747 int ret; 748 749 mutex_lock(&uuid_mutex); 750 ret = __btrfs_close_devices(fs_devices); 751 if (!fs_devices->opened) { 752 seed_devices = fs_devices->seed; 753 fs_devices->seed = NULL; 754 } 755 mutex_unlock(&uuid_mutex); 756 757 while (seed_devices) { 758 fs_devices = seed_devices; 759 seed_devices = fs_devices->seed; 760 __btrfs_close_devices(fs_devices); 761 free_fs_devices(fs_devices); 762 } 763 /* 764 * Wait for rcu kworkers under __btrfs_close_devices 765 * to finish all blkdev_puts so device is really 766 * free when umount is done. 767 */ 768 rcu_barrier(); 769 return ret; 770 } 771 772 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 773 fmode_t flags, void *holder) 774 { 775 struct request_queue *q; 776 struct block_device *bdev; 777 struct list_head *head = &fs_devices->devices; 778 struct btrfs_device *device; 779 struct btrfs_device *latest_dev = NULL; 780 struct buffer_head *bh; 781 struct btrfs_super_block *disk_super; 782 u64 devid; 783 int seeding = 1; 784 int ret = 0; 785 786 flags |= FMODE_EXCL; 787 788 list_for_each_entry(device, head, dev_list) { 789 if (device->bdev) 790 continue; 791 if (!device->name) 792 continue; 793 794 /* Just open everything we can; ignore failures here */ 795 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 796 &bdev, &bh)) 797 continue; 798 799 disk_super = (struct btrfs_super_block *)bh->b_data; 800 devid = btrfs_stack_device_id(&disk_super->dev_item); 801 if (devid != device->devid) 802 goto error_brelse; 803 804 if (memcmp(device->uuid, disk_super->dev_item.uuid, 805 BTRFS_UUID_SIZE)) 806 goto error_brelse; 807 808 device->generation = btrfs_super_generation(disk_super); 809 if (!latest_dev || 810 device->generation > latest_dev->generation) 811 latest_dev = device; 812 813 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 814 device->writeable = 0; 815 } else { 816 device->writeable = !bdev_read_only(bdev); 817 seeding = 0; 818 } 819 820 q = bdev_get_queue(bdev); 821 if (blk_queue_discard(q)) 822 device->can_discard = 1; 823 824 device->bdev = bdev; 825 device->in_fs_metadata = 0; 826 device->mode = flags; 827 828 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 829 fs_devices->rotating = 1; 830 831 fs_devices->open_devices++; 832 if (device->writeable && 833 device->devid != BTRFS_DEV_REPLACE_DEVID) { 834 fs_devices->rw_devices++; 835 list_add(&device->dev_alloc_list, 836 &fs_devices->alloc_list); 837 } 838 brelse(bh); 839 continue; 840 841 error_brelse: 842 brelse(bh); 843 blkdev_put(bdev, flags); 844 continue; 845 } 846 if (fs_devices->open_devices == 0) { 847 ret = -EINVAL; 848 goto out; 849 } 850 fs_devices->seeding = seeding; 851 fs_devices->opened = 1; 852 fs_devices->latest_bdev = latest_dev->bdev; 853 fs_devices->total_rw_bytes = 0; 854 out: 855 return ret; 856 } 857 858 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 859 fmode_t flags, void *holder) 860 { 861 int ret; 862 863 mutex_lock(&uuid_mutex); 864 if (fs_devices->opened) { 865 fs_devices->opened++; 866 ret = 0; 867 } else { 868 ret = __btrfs_open_devices(fs_devices, flags, holder); 869 } 870 mutex_unlock(&uuid_mutex); 871 return ret; 872 } 873 874 /* 875 * Look for a btrfs signature on a device. This may be called out of the mount path 876 * and we are not allowed to call set_blocksize during the scan. The superblock 877 * is read via pagecache 878 */ 879 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 880 struct btrfs_fs_devices **fs_devices_ret) 881 { 882 struct btrfs_super_block *disk_super; 883 struct block_device *bdev; 884 struct page *page; 885 void *p; 886 int ret = -EINVAL; 887 u64 devid; 888 u64 transid; 889 u64 total_devices; 890 u64 bytenr; 891 pgoff_t index; 892 893 /* 894 * we would like to check all the supers, but that would make 895 * a btrfs mount succeed after a mkfs from a different FS. 896 * So, we need to add a special mount option to scan for 897 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 898 */ 899 bytenr = btrfs_sb_offset(0); 900 flags |= FMODE_EXCL; 901 mutex_lock(&uuid_mutex); 902 903 bdev = blkdev_get_by_path(path, flags, holder); 904 905 if (IS_ERR(bdev)) { 906 ret = PTR_ERR(bdev); 907 goto error; 908 } 909 910 /* make sure our super fits in the device */ 911 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode)) 912 goto error_bdev_put; 913 914 /* make sure our super fits in the page */ 915 if (sizeof(*disk_super) > PAGE_CACHE_SIZE) 916 goto error_bdev_put; 917 918 /* make sure our super doesn't straddle pages on disk */ 919 index = bytenr >> PAGE_CACHE_SHIFT; 920 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index) 921 goto error_bdev_put; 922 923 /* pull in the page with our super */ 924 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 925 index, GFP_NOFS); 926 927 if (IS_ERR_OR_NULL(page)) 928 goto error_bdev_put; 929 930 p = kmap(page); 931 932 /* align our pointer to the offset of the super block */ 933 disk_super = p + (bytenr & ~PAGE_CACHE_MASK); 934 935 if (btrfs_super_bytenr(disk_super) != bytenr || 936 btrfs_super_magic(disk_super) != BTRFS_MAGIC) 937 goto error_unmap; 938 939 devid = btrfs_stack_device_id(&disk_super->dev_item); 940 transid = btrfs_super_generation(disk_super); 941 total_devices = btrfs_super_num_devices(disk_super); 942 943 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 944 if (ret > 0) { 945 if (disk_super->label[0]) { 946 if (disk_super->label[BTRFS_LABEL_SIZE - 1]) 947 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0'; 948 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label); 949 } else { 950 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid); 951 } 952 953 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path); 954 ret = 0; 955 } 956 if (!ret && fs_devices_ret) 957 (*fs_devices_ret)->total_devices = total_devices; 958 959 error_unmap: 960 kunmap(page); 961 page_cache_release(page); 962 963 error_bdev_put: 964 blkdev_put(bdev, flags); 965 error: 966 mutex_unlock(&uuid_mutex); 967 return ret; 968 } 969 970 /* helper to account the used device space in the range */ 971 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 972 u64 end, u64 *length) 973 { 974 struct btrfs_key key; 975 struct btrfs_root *root = device->dev_root; 976 struct btrfs_dev_extent *dev_extent; 977 struct btrfs_path *path; 978 u64 extent_end; 979 int ret; 980 int slot; 981 struct extent_buffer *l; 982 983 *length = 0; 984 985 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 986 return 0; 987 988 path = btrfs_alloc_path(); 989 if (!path) 990 return -ENOMEM; 991 path->reada = 2; 992 993 key.objectid = device->devid; 994 key.offset = start; 995 key.type = BTRFS_DEV_EXTENT_KEY; 996 997 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 998 if (ret < 0) 999 goto out; 1000 if (ret > 0) { 1001 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1002 if (ret < 0) 1003 goto out; 1004 } 1005 1006 while (1) { 1007 l = path->nodes[0]; 1008 slot = path->slots[0]; 1009 if (slot >= btrfs_header_nritems(l)) { 1010 ret = btrfs_next_leaf(root, path); 1011 if (ret == 0) 1012 continue; 1013 if (ret < 0) 1014 goto out; 1015 1016 break; 1017 } 1018 btrfs_item_key_to_cpu(l, &key, slot); 1019 1020 if (key.objectid < device->devid) 1021 goto next; 1022 1023 if (key.objectid > device->devid) 1024 break; 1025 1026 if (key.type != BTRFS_DEV_EXTENT_KEY) 1027 goto next; 1028 1029 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1030 extent_end = key.offset + btrfs_dev_extent_length(l, 1031 dev_extent); 1032 if (key.offset <= start && extent_end > end) { 1033 *length = end - start + 1; 1034 break; 1035 } else if (key.offset <= start && extent_end > start) 1036 *length += extent_end - start; 1037 else if (key.offset > start && extent_end <= end) 1038 *length += extent_end - key.offset; 1039 else if (key.offset > start && key.offset <= end) { 1040 *length += end - key.offset + 1; 1041 break; 1042 } else if (key.offset > end) 1043 break; 1044 1045 next: 1046 path->slots[0]++; 1047 } 1048 ret = 0; 1049 out: 1050 btrfs_free_path(path); 1051 return ret; 1052 } 1053 1054 static int contains_pending_extent(struct btrfs_trans_handle *trans, 1055 struct btrfs_device *device, 1056 u64 *start, u64 len) 1057 { 1058 struct extent_map *em; 1059 struct list_head *search_list = &trans->transaction->pending_chunks; 1060 int ret = 0; 1061 u64 physical_start = *start; 1062 1063 again: 1064 list_for_each_entry(em, search_list, list) { 1065 struct map_lookup *map; 1066 int i; 1067 1068 map = (struct map_lookup *)em->bdev; 1069 for (i = 0; i < map->num_stripes; i++) { 1070 if (map->stripes[i].dev != device) 1071 continue; 1072 if (map->stripes[i].physical >= physical_start + len || 1073 map->stripes[i].physical + em->orig_block_len <= 1074 physical_start) 1075 continue; 1076 *start = map->stripes[i].physical + 1077 em->orig_block_len; 1078 ret = 1; 1079 } 1080 } 1081 if (search_list == &trans->transaction->pending_chunks) { 1082 search_list = &trans->root->fs_info->pinned_chunks; 1083 goto again; 1084 } 1085 1086 return ret; 1087 } 1088 1089 1090 /* 1091 * find_free_dev_extent - find free space in the specified device 1092 * @device: the device which we search the free space in 1093 * @num_bytes: the size of the free space that we need 1094 * @start: store the start of the free space. 1095 * @len: the size of the free space. that we find, or the size of the max 1096 * free space if we don't find suitable free space 1097 * 1098 * this uses a pretty simple search, the expectation is that it is 1099 * called very infrequently and that a given device has a small number 1100 * of extents 1101 * 1102 * @start is used to store the start of the free space if we find. But if we 1103 * don't find suitable free space, it will be used to store the start position 1104 * of the max free space. 1105 * 1106 * @len is used to store the size of the free space that we find. 1107 * But if we don't find suitable free space, it is used to store the size of 1108 * the max free space. 1109 */ 1110 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1111 struct btrfs_device *device, u64 num_bytes, 1112 u64 *start, u64 *len) 1113 { 1114 struct btrfs_key key; 1115 struct btrfs_root *root = device->dev_root; 1116 struct btrfs_dev_extent *dev_extent; 1117 struct btrfs_path *path; 1118 u64 hole_size; 1119 u64 max_hole_start; 1120 u64 max_hole_size; 1121 u64 extent_end; 1122 u64 search_start; 1123 u64 search_end = device->total_bytes; 1124 int ret; 1125 int slot; 1126 struct extent_buffer *l; 1127 1128 /* FIXME use last free of some kind */ 1129 1130 /* we don't want to overwrite the superblock on the drive, 1131 * so we make sure to start at an offset of at least 1MB 1132 */ 1133 search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 1134 1135 path = btrfs_alloc_path(); 1136 if (!path) 1137 return -ENOMEM; 1138 1139 max_hole_start = search_start; 1140 max_hole_size = 0; 1141 1142 again: 1143 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1144 ret = -ENOSPC; 1145 goto out; 1146 } 1147 1148 path->reada = 2; 1149 path->search_commit_root = 1; 1150 path->skip_locking = 1; 1151 1152 key.objectid = device->devid; 1153 key.offset = search_start; 1154 key.type = BTRFS_DEV_EXTENT_KEY; 1155 1156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1157 if (ret < 0) 1158 goto out; 1159 if (ret > 0) { 1160 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1161 if (ret < 0) 1162 goto out; 1163 } 1164 1165 while (1) { 1166 l = path->nodes[0]; 1167 slot = path->slots[0]; 1168 if (slot >= btrfs_header_nritems(l)) { 1169 ret = btrfs_next_leaf(root, path); 1170 if (ret == 0) 1171 continue; 1172 if (ret < 0) 1173 goto out; 1174 1175 break; 1176 } 1177 btrfs_item_key_to_cpu(l, &key, slot); 1178 1179 if (key.objectid < device->devid) 1180 goto next; 1181 1182 if (key.objectid > device->devid) 1183 break; 1184 1185 if (key.type != BTRFS_DEV_EXTENT_KEY) 1186 goto next; 1187 1188 if (key.offset > search_start) { 1189 hole_size = key.offset - search_start; 1190 1191 /* 1192 * Have to check before we set max_hole_start, otherwise 1193 * we could end up sending back this offset anyway. 1194 */ 1195 if (contains_pending_extent(trans, device, 1196 &search_start, 1197 hole_size)) { 1198 if (key.offset >= search_start) { 1199 hole_size = key.offset - search_start; 1200 } else { 1201 WARN_ON_ONCE(1); 1202 hole_size = 0; 1203 } 1204 } 1205 1206 if (hole_size > max_hole_size) { 1207 max_hole_start = search_start; 1208 max_hole_size = hole_size; 1209 } 1210 1211 /* 1212 * If this free space is greater than which we need, 1213 * it must be the max free space that we have found 1214 * until now, so max_hole_start must point to the start 1215 * of this free space and the length of this free space 1216 * is stored in max_hole_size. Thus, we return 1217 * max_hole_start and max_hole_size and go back to the 1218 * caller. 1219 */ 1220 if (hole_size >= num_bytes) { 1221 ret = 0; 1222 goto out; 1223 } 1224 } 1225 1226 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1227 extent_end = key.offset + btrfs_dev_extent_length(l, 1228 dev_extent); 1229 if (extent_end > search_start) 1230 search_start = extent_end; 1231 next: 1232 path->slots[0]++; 1233 cond_resched(); 1234 } 1235 1236 /* 1237 * At this point, search_start should be the end of 1238 * allocated dev extents, and when shrinking the device, 1239 * search_end may be smaller than search_start. 1240 */ 1241 if (search_end > search_start) { 1242 hole_size = search_end - search_start; 1243 1244 if (contains_pending_extent(trans, device, &search_start, 1245 hole_size)) { 1246 btrfs_release_path(path); 1247 goto again; 1248 } 1249 1250 if (hole_size > max_hole_size) { 1251 max_hole_start = search_start; 1252 max_hole_size = hole_size; 1253 } 1254 } 1255 1256 /* See above. */ 1257 if (max_hole_size < num_bytes) 1258 ret = -ENOSPC; 1259 else 1260 ret = 0; 1261 1262 out: 1263 btrfs_free_path(path); 1264 *start = max_hole_start; 1265 if (len) 1266 *len = max_hole_size; 1267 return ret; 1268 } 1269 1270 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1271 struct btrfs_device *device, 1272 u64 start, u64 *dev_extent_len) 1273 { 1274 int ret; 1275 struct btrfs_path *path; 1276 struct btrfs_root *root = device->dev_root; 1277 struct btrfs_key key; 1278 struct btrfs_key found_key; 1279 struct extent_buffer *leaf = NULL; 1280 struct btrfs_dev_extent *extent = NULL; 1281 1282 path = btrfs_alloc_path(); 1283 if (!path) 1284 return -ENOMEM; 1285 1286 key.objectid = device->devid; 1287 key.offset = start; 1288 key.type = BTRFS_DEV_EXTENT_KEY; 1289 again: 1290 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1291 if (ret > 0) { 1292 ret = btrfs_previous_item(root, path, key.objectid, 1293 BTRFS_DEV_EXTENT_KEY); 1294 if (ret) 1295 goto out; 1296 leaf = path->nodes[0]; 1297 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1298 extent = btrfs_item_ptr(leaf, path->slots[0], 1299 struct btrfs_dev_extent); 1300 BUG_ON(found_key.offset > start || found_key.offset + 1301 btrfs_dev_extent_length(leaf, extent) < start); 1302 key = found_key; 1303 btrfs_release_path(path); 1304 goto again; 1305 } else if (ret == 0) { 1306 leaf = path->nodes[0]; 1307 extent = btrfs_item_ptr(leaf, path->slots[0], 1308 struct btrfs_dev_extent); 1309 } else { 1310 btrfs_error(root->fs_info, ret, "Slot search failed"); 1311 goto out; 1312 } 1313 1314 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1315 1316 ret = btrfs_del_item(trans, root, path); 1317 if (ret) { 1318 btrfs_error(root->fs_info, ret, 1319 "Failed to remove dev extent item"); 1320 } else { 1321 trans->transaction->have_free_bgs = 1; 1322 } 1323 out: 1324 btrfs_free_path(path); 1325 return ret; 1326 } 1327 1328 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1329 struct btrfs_device *device, 1330 u64 chunk_tree, u64 chunk_objectid, 1331 u64 chunk_offset, u64 start, u64 num_bytes) 1332 { 1333 int ret; 1334 struct btrfs_path *path; 1335 struct btrfs_root *root = device->dev_root; 1336 struct btrfs_dev_extent *extent; 1337 struct extent_buffer *leaf; 1338 struct btrfs_key key; 1339 1340 WARN_ON(!device->in_fs_metadata); 1341 WARN_ON(device->is_tgtdev_for_dev_replace); 1342 path = btrfs_alloc_path(); 1343 if (!path) 1344 return -ENOMEM; 1345 1346 key.objectid = device->devid; 1347 key.offset = start; 1348 key.type = BTRFS_DEV_EXTENT_KEY; 1349 ret = btrfs_insert_empty_item(trans, root, path, &key, 1350 sizeof(*extent)); 1351 if (ret) 1352 goto out; 1353 1354 leaf = path->nodes[0]; 1355 extent = btrfs_item_ptr(leaf, path->slots[0], 1356 struct btrfs_dev_extent); 1357 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1358 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1359 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1360 1361 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1362 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE); 1363 1364 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1365 btrfs_mark_buffer_dirty(leaf); 1366 out: 1367 btrfs_free_path(path); 1368 return ret; 1369 } 1370 1371 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1372 { 1373 struct extent_map_tree *em_tree; 1374 struct extent_map *em; 1375 struct rb_node *n; 1376 u64 ret = 0; 1377 1378 em_tree = &fs_info->mapping_tree.map_tree; 1379 read_lock(&em_tree->lock); 1380 n = rb_last(&em_tree->map); 1381 if (n) { 1382 em = rb_entry(n, struct extent_map, rb_node); 1383 ret = em->start + em->len; 1384 } 1385 read_unlock(&em_tree->lock); 1386 1387 return ret; 1388 } 1389 1390 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1391 u64 *devid_ret) 1392 { 1393 int ret; 1394 struct btrfs_key key; 1395 struct btrfs_key found_key; 1396 struct btrfs_path *path; 1397 1398 path = btrfs_alloc_path(); 1399 if (!path) 1400 return -ENOMEM; 1401 1402 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1403 key.type = BTRFS_DEV_ITEM_KEY; 1404 key.offset = (u64)-1; 1405 1406 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1407 if (ret < 0) 1408 goto error; 1409 1410 BUG_ON(ret == 0); /* Corruption */ 1411 1412 ret = btrfs_previous_item(fs_info->chunk_root, path, 1413 BTRFS_DEV_ITEMS_OBJECTID, 1414 BTRFS_DEV_ITEM_KEY); 1415 if (ret) { 1416 *devid_ret = 1; 1417 } else { 1418 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1419 path->slots[0]); 1420 *devid_ret = found_key.offset + 1; 1421 } 1422 ret = 0; 1423 error: 1424 btrfs_free_path(path); 1425 return ret; 1426 } 1427 1428 /* 1429 * the device information is stored in the chunk root 1430 * the btrfs_device struct should be fully filled in 1431 */ 1432 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1433 struct btrfs_root *root, 1434 struct btrfs_device *device) 1435 { 1436 int ret; 1437 struct btrfs_path *path; 1438 struct btrfs_dev_item *dev_item; 1439 struct extent_buffer *leaf; 1440 struct btrfs_key key; 1441 unsigned long ptr; 1442 1443 root = root->fs_info->chunk_root; 1444 1445 path = btrfs_alloc_path(); 1446 if (!path) 1447 return -ENOMEM; 1448 1449 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1450 key.type = BTRFS_DEV_ITEM_KEY; 1451 key.offset = device->devid; 1452 1453 ret = btrfs_insert_empty_item(trans, root, path, &key, 1454 sizeof(*dev_item)); 1455 if (ret) 1456 goto out; 1457 1458 leaf = path->nodes[0]; 1459 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1460 1461 btrfs_set_device_id(leaf, dev_item, device->devid); 1462 btrfs_set_device_generation(leaf, dev_item, 0); 1463 btrfs_set_device_type(leaf, dev_item, device->type); 1464 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1465 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1466 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1467 btrfs_set_device_total_bytes(leaf, dev_item, 1468 btrfs_device_get_disk_total_bytes(device)); 1469 btrfs_set_device_bytes_used(leaf, dev_item, 1470 btrfs_device_get_bytes_used(device)); 1471 btrfs_set_device_group(leaf, dev_item, 0); 1472 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1473 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1474 btrfs_set_device_start_offset(leaf, dev_item, 0); 1475 1476 ptr = btrfs_device_uuid(dev_item); 1477 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1478 ptr = btrfs_device_fsid(dev_item); 1479 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1480 btrfs_mark_buffer_dirty(leaf); 1481 1482 ret = 0; 1483 out: 1484 btrfs_free_path(path); 1485 return ret; 1486 } 1487 1488 /* 1489 * Function to update ctime/mtime for a given device path. 1490 * Mainly used for ctime/mtime based probe like libblkid. 1491 */ 1492 static void update_dev_time(char *path_name) 1493 { 1494 struct file *filp; 1495 1496 filp = filp_open(path_name, O_RDWR, 0); 1497 if (IS_ERR(filp)) 1498 return; 1499 file_update_time(filp); 1500 filp_close(filp, NULL); 1501 return; 1502 } 1503 1504 static int btrfs_rm_dev_item(struct btrfs_root *root, 1505 struct btrfs_device *device) 1506 { 1507 int ret; 1508 struct btrfs_path *path; 1509 struct btrfs_key key; 1510 struct btrfs_trans_handle *trans; 1511 1512 root = root->fs_info->chunk_root; 1513 1514 path = btrfs_alloc_path(); 1515 if (!path) 1516 return -ENOMEM; 1517 1518 trans = btrfs_start_transaction(root, 0); 1519 if (IS_ERR(trans)) { 1520 btrfs_free_path(path); 1521 return PTR_ERR(trans); 1522 } 1523 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1524 key.type = BTRFS_DEV_ITEM_KEY; 1525 key.offset = device->devid; 1526 1527 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1528 if (ret < 0) 1529 goto out; 1530 1531 if (ret > 0) { 1532 ret = -ENOENT; 1533 goto out; 1534 } 1535 1536 ret = btrfs_del_item(trans, root, path); 1537 if (ret) 1538 goto out; 1539 out: 1540 btrfs_free_path(path); 1541 btrfs_commit_transaction(trans, root); 1542 return ret; 1543 } 1544 1545 int btrfs_rm_device(struct btrfs_root *root, char *device_path) 1546 { 1547 struct btrfs_device *device; 1548 struct btrfs_device *next_device; 1549 struct block_device *bdev; 1550 struct buffer_head *bh = NULL; 1551 struct btrfs_super_block *disk_super; 1552 struct btrfs_fs_devices *cur_devices; 1553 u64 all_avail; 1554 u64 devid; 1555 u64 num_devices; 1556 u8 *dev_uuid; 1557 unsigned seq; 1558 int ret = 0; 1559 bool clear_super = false; 1560 1561 mutex_lock(&uuid_mutex); 1562 1563 do { 1564 seq = read_seqbegin(&root->fs_info->profiles_lock); 1565 1566 all_avail = root->fs_info->avail_data_alloc_bits | 1567 root->fs_info->avail_system_alloc_bits | 1568 root->fs_info->avail_metadata_alloc_bits; 1569 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 1570 1571 num_devices = root->fs_info->fs_devices->num_devices; 1572 btrfs_dev_replace_lock(&root->fs_info->dev_replace); 1573 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) { 1574 WARN_ON(num_devices < 1); 1575 num_devices--; 1576 } 1577 btrfs_dev_replace_unlock(&root->fs_info->dev_replace); 1578 1579 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) { 1580 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET; 1581 goto out; 1582 } 1583 1584 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) { 1585 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET; 1586 goto out; 1587 } 1588 1589 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) && 1590 root->fs_info->fs_devices->rw_devices <= 2) { 1591 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET; 1592 goto out; 1593 } 1594 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) && 1595 root->fs_info->fs_devices->rw_devices <= 3) { 1596 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET; 1597 goto out; 1598 } 1599 1600 if (strcmp(device_path, "missing") == 0) { 1601 struct list_head *devices; 1602 struct btrfs_device *tmp; 1603 1604 device = NULL; 1605 devices = &root->fs_info->fs_devices->devices; 1606 /* 1607 * It is safe to read the devices since the volume_mutex 1608 * is held. 1609 */ 1610 list_for_each_entry(tmp, devices, dev_list) { 1611 if (tmp->in_fs_metadata && 1612 !tmp->is_tgtdev_for_dev_replace && 1613 !tmp->bdev) { 1614 device = tmp; 1615 break; 1616 } 1617 } 1618 bdev = NULL; 1619 bh = NULL; 1620 disk_super = NULL; 1621 if (!device) { 1622 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 1623 goto out; 1624 } 1625 } else { 1626 ret = btrfs_get_bdev_and_sb(device_path, 1627 FMODE_WRITE | FMODE_EXCL, 1628 root->fs_info->bdev_holder, 0, 1629 &bdev, &bh); 1630 if (ret) 1631 goto out; 1632 disk_super = (struct btrfs_super_block *)bh->b_data; 1633 devid = btrfs_stack_device_id(&disk_super->dev_item); 1634 dev_uuid = disk_super->dev_item.uuid; 1635 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1636 disk_super->fsid); 1637 if (!device) { 1638 ret = -ENOENT; 1639 goto error_brelse; 1640 } 1641 } 1642 1643 if (device->is_tgtdev_for_dev_replace) { 1644 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1645 goto error_brelse; 1646 } 1647 1648 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1649 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1650 goto error_brelse; 1651 } 1652 1653 if (device->writeable) { 1654 lock_chunks(root); 1655 list_del_init(&device->dev_alloc_list); 1656 device->fs_devices->rw_devices--; 1657 unlock_chunks(root); 1658 clear_super = true; 1659 } 1660 1661 mutex_unlock(&uuid_mutex); 1662 ret = btrfs_shrink_device(device, 0); 1663 mutex_lock(&uuid_mutex); 1664 if (ret) 1665 goto error_undo; 1666 1667 /* 1668 * TODO: the superblock still includes this device in its num_devices 1669 * counter although write_all_supers() is not locked out. This 1670 * could give a filesystem state which requires a degraded mount. 1671 */ 1672 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1673 if (ret) 1674 goto error_undo; 1675 1676 device->in_fs_metadata = 0; 1677 btrfs_scrub_cancel_dev(root->fs_info, device); 1678 1679 /* 1680 * the device list mutex makes sure that we don't change 1681 * the device list while someone else is writing out all 1682 * the device supers. Whoever is writing all supers, should 1683 * lock the device list mutex before getting the number of 1684 * devices in the super block (super_copy). Conversely, 1685 * whoever updates the number of devices in the super block 1686 * (super_copy) should hold the device list mutex. 1687 */ 1688 1689 cur_devices = device->fs_devices; 1690 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1691 list_del_rcu(&device->dev_list); 1692 1693 device->fs_devices->num_devices--; 1694 device->fs_devices->total_devices--; 1695 1696 if (device->missing) 1697 device->fs_devices->missing_devices--; 1698 1699 next_device = list_entry(root->fs_info->fs_devices->devices.next, 1700 struct btrfs_device, dev_list); 1701 if (device->bdev == root->fs_info->sb->s_bdev) 1702 root->fs_info->sb->s_bdev = next_device->bdev; 1703 if (device->bdev == root->fs_info->fs_devices->latest_bdev) 1704 root->fs_info->fs_devices->latest_bdev = next_device->bdev; 1705 1706 if (device->bdev) { 1707 device->fs_devices->open_devices--; 1708 /* remove sysfs entry */ 1709 btrfs_kobj_rm_device(root->fs_info, device); 1710 } 1711 1712 call_rcu(&device->rcu, free_device); 1713 1714 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1715 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1716 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1717 1718 if (cur_devices->open_devices == 0) { 1719 struct btrfs_fs_devices *fs_devices; 1720 fs_devices = root->fs_info->fs_devices; 1721 while (fs_devices) { 1722 if (fs_devices->seed == cur_devices) { 1723 fs_devices->seed = cur_devices->seed; 1724 break; 1725 } 1726 fs_devices = fs_devices->seed; 1727 } 1728 cur_devices->seed = NULL; 1729 __btrfs_close_devices(cur_devices); 1730 free_fs_devices(cur_devices); 1731 } 1732 1733 root->fs_info->num_tolerated_disk_barrier_failures = 1734 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1735 1736 /* 1737 * at this point, the device is zero sized. We want to 1738 * remove it from the devices list and zero out the old super 1739 */ 1740 if (clear_super && disk_super) { 1741 u64 bytenr; 1742 int i; 1743 1744 /* make sure this device isn't detected as part of 1745 * the FS anymore 1746 */ 1747 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 1748 set_buffer_dirty(bh); 1749 sync_dirty_buffer(bh); 1750 1751 /* clear the mirror copies of super block on the disk 1752 * being removed, 0th copy is been taken care above and 1753 * the below would take of the rest 1754 */ 1755 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1756 bytenr = btrfs_sb_offset(i); 1757 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 1758 i_size_read(bdev->bd_inode)) 1759 break; 1760 1761 brelse(bh); 1762 bh = __bread(bdev, bytenr / 4096, 1763 BTRFS_SUPER_INFO_SIZE); 1764 if (!bh) 1765 continue; 1766 1767 disk_super = (struct btrfs_super_block *)bh->b_data; 1768 1769 if (btrfs_super_bytenr(disk_super) != bytenr || 1770 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1771 continue; 1772 } 1773 memset(&disk_super->magic, 0, 1774 sizeof(disk_super->magic)); 1775 set_buffer_dirty(bh); 1776 sync_dirty_buffer(bh); 1777 } 1778 } 1779 1780 ret = 0; 1781 1782 if (bdev) { 1783 /* Notify udev that device has changed */ 1784 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 1785 1786 /* Update ctime/mtime for device path for libblkid */ 1787 update_dev_time(device_path); 1788 } 1789 1790 error_brelse: 1791 brelse(bh); 1792 if (bdev) 1793 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1794 out: 1795 mutex_unlock(&uuid_mutex); 1796 return ret; 1797 error_undo: 1798 if (device->writeable) { 1799 lock_chunks(root); 1800 list_add(&device->dev_alloc_list, 1801 &root->fs_info->fs_devices->alloc_list); 1802 device->fs_devices->rw_devices++; 1803 unlock_chunks(root); 1804 } 1805 goto error_brelse; 1806 } 1807 1808 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info, 1809 struct btrfs_device *srcdev) 1810 { 1811 struct btrfs_fs_devices *fs_devices; 1812 1813 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 1814 1815 /* 1816 * in case of fs with no seed, srcdev->fs_devices will point 1817 * to fs_devices of fs_info. However when the dev being replaced is 1818 * a seed dev it will point to the seed's local fs_devices. In short 1819 * srcdev will have its correct fs_devices in both the cases. 1820 */ 1821 fs_devices = srcdev->fs_devices; 1822 1823 list_del_rcu(&srcdev->dev_list); 1824 list_del_rcu(&srcdev->dev_alloc_list); 1825 fs_devices->num_devices--; 1826 if (srcdev->missing) 1827 fs_devices->missing_devices--; 1828 1829 if (srcdev->writeable) { 1830 fs_devices->rw_devices--; 1831 /* zero out the old super if it is writable */ 1832 btrfs_scratch_superblock(srcdev); 1833 } 1834 1835 if (srcdev->bdev) 1836 fs_devices->open_devices--; 1837 } 1838 1839 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 1840 struct btrfs_device *srcdev) 1841 { 1842 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 1843 1844 call_rcu(&srcdev->rcu, free_device); 1845 1846 /* 1847 * unless fs_devices is seed fs, num_devices shouldn't go 1848 * zero 1849 */ 1850 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding); 1851 1852 /* if this is no devs we rather delete the fs_devices */ 1853 if (!fs_devices->num_devices) { 1854 struct btrfs_fs_devices *tmp_fs_devices; 1855 1856 tmp_fs_devices = fs_info->fs_devices; 1857 while (tmp_fs_devices) { 1858 if (tmp_fs_devices->seed == fs_devices) { 1859 tmp_fs_devices->seed = fs_devices->seed; 1860 break; 1861 } 1862 tmp_fs_devices = tmp_fs_devices->seed; 1863 } 1864 fs_devices->seed = NULL; 1865 __btrfs_close_devices(fs_devices); 1866 free_fs_devices(fs_devices); 1867 } 1868 } 1869 1870 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 1871 struct btrfs_device *tgtdev) 1872 { 1873 struct btrfs_device *next_device; 1874 1875 mutex_lock(&uuid_mutex); 1876 WARN_ON(!tgtdev); 1877 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1878 if (tgtdev->bdev) { 1879 btrfs_scratch_superblock(tgtdev); 1880 fs_info->fs_devices->open_devices--; 1881 } 1882 fs_info->fs_devices->num_devices--; 1883 1884 next_device = list_entry(fs_info->fs_devices->devices.next, 1885 struct btrfs_device, dev_list); 1886 if (tgtdev->bdev == fs_info->sb->s_bdev) 1887 fs_info->sb->s_bdev = next_device->bdev; 1888 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev) 1889 fs_info->fs_devices->latest_bdev = next_device->bdev; 1890 list_del_rcu(&tgtdev->dev_list); 1891 1892 call_rcu(&tgtdev->rcu, free_device); 1893 1894 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1895 mutex_unlock(&uuid_mutex); 1896 } 1897 1898 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path, 1899 struct btrfs_device **device) 1900 { 1901 int ret = 0; 1902 struct btrfs_super_block *disk_super; 1903 u64 devid; 1904 u8 *dev_uuid; 1905 struct block_device *bdev; 1906 struct buffer_head *bh; 1907 1908 *device = NULL; 1909 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 1910 root->fs_info->bdev_holder, 0, &bdev, &bh); 1911 if (ret) 1912 return ret; 1913 disk_super = (struct btrfs_super_block *)bh->b_data; 1914 devid = btrfs_stack_device_id(&disk_super->dev_item); 1915 dev_uuid = disk_super->dev_item.uuid; 1916 *device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1917 disk_super->fsid); 1918 brelse(bh); 1919 if (!*device) 1920 ret = -ENOENT; 1921 blkdev_put(bdev, FMODE_READ); 1922 return ret; 1923 } 1924 1925 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root, 1926 char *device_path, 1927 struct btrfs_device **device) 1928 { 1929 *device = NULL; 1930 if (strcmp(device_path, "missing") == 0) { 1931 struct list_head *devices; 1932 struct btrfs_device *tmp; 1933 1934 devices = &root->fs_info->fs_devices->devices; 1935 /* 1936 * It is safe to read the devices since the volume_mutex 1937 * is held by the caller. 1938 */ 1939 list_for_each_entry(tmp, devices, dev_list) { 1940 if (tmp->in_fs_metadata && !tmp->bdev) { 1941 *device = tmp; 1942 break; 1943 } 1944 } 1945 1946 if (!*device) { 1947 btrfs_err(root->fs_info, "no missing device found"); 1948 return -ENOENT; 1949 } 1950 1951 return 0; 1952 } else { 1953 return btrfs_find_device_by_path(root, device_path, device); 1954 } 1955 } 1956 1957 /* 1958 * does all the dirty work required for changing file system's UUID. 1959 */ 1960 static int btrfs_prepare_sprout(struct btrfs_root *root) 1961 { 1962 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 1963 struct btrfs_fs_devices *old_devices; 1964 struct btrfs_fs_devices *seed_devices; 1965 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 1966 struct btrfs_device *device; 1967 u64 super_flags; 1968 1969 BUG_ON(!mutex_is_locked(&uuid_mutex)); 1970 if (!fs_devices->seeding) 1971 return -EINVAL; 1972 1973 seed_devices = __alloc_fs_devices(); 1974 if (IS_ERR(seed_devices)) 1975 return PTR_ERR(seed_devices); 1976 1977 old_devices = clone_fs_devices(fs_devices); 1978 if (IS_ERR(old_devices)) { 1979 kfree(seed_devices); 1980 return PTR_ERR(old_devices); 1981 } 1982 1983 list_add(&old_devices->list, &fs_uuids); 1984 1985 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 1986 seed_devices->opened = 1; 1987 INIT_LIST_HEAD(&seed_devices->devices); 1988 INIT_LIST_HEAD(&seed_devices->alloc_list); 1989 mutex_init(&seed_devices->device_list_mutex); 1990 1991 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1992 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 1993 synchronize_rcu); 1994 list_for_each_entry(device, &seed_devices->devices, dev_list) 1995 device->fs_devices = seed_devices; 1996 1997 lock_chunks(root); 1998 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 1999 unlock_chunks(root); 2000 2001 fs_devices->seeding = 0; 2002 fs_devices->num_devices = 0; 2003 fs_devices->open_devices = 0; 2004 fs_devices->missing_devices = 0; 2005 fs_devices->rotating = 0; 2006 fs_devices->seed = seed_devices; 2007 2008 generate_random_uuid(fs_devices->fsid); 2009 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2010 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2011 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2012 2013 super_flags = btrfs_super_flags(disk_super) & 2014 ~BTRFS_SUPER_FLAG_SEEDING; 2015 btrfs_set_super_flags(disk_super, super_flags); 2016 2017 return 0; 2018 } 2019 2020 /* 2021 * strore the expected generation for seed devices in device items. 2022 */ 2023 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2024 struct btrfs_root *root) 2025 { 2026 struct btrfs_path *path; 2027 struct extent_buffer *leaf; 2028 struct btrfs_dev_item *dev_item; 2029 struct btrfs_device *device; 2030 struct btrfs_key key; 2031 u8 fs_uuid[BTRFS_UUID_SIZE]; 2032 u8 dev_uuid[BTRFS_UUID_SIZE]; 2033 u64 devid; 2034 int ret; 2035 2036 path = btrfs_alloc_path(); 2037 if (!path) 2038 return -ENOMEM; 2039 2040 root = root->fs_info->chunk_root; 2041 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2042 key.offset = 0; 2043 key.type = BTRFS_DEV_ITEM_KEY; 2044 2045 while (1) { 2046 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2047 if (ret < 0) 2048 goto error; 2049 2050 leaf = path->nodes[0]; 2051 next_slot: 2052 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2053 ret = btrfs_next_leaf(root, path); 2054 if (ret > 0) 2055 break; 2056 if (ret < 0) 2057 goto error; 2058 leaf = path->nodes[0]; 2059 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2060 btrfs_release_path(path); 2061 continue; 2062 } 2063 2064 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2065 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2066 key.type != BTRFS_DEV_ITEM_KEY) 2067 break; 2068 2069 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2070 struct btrfs_dev_item); 2071 devid = btrfs_device_id(leaf, dev_item); 2072 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2073 BTRFS_UUID_SIZE); 2074 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2075 BTRFS_UUID_SIZE); 2076 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2077 fs_uuid); 2078 BUG_ON(!device); /* Logic error */ 2079 2080 if (device->fs_devices->seeding) { 2081 btrfs_set_device_generation(leaf, dev_item, 2082 device->generation); 2083 btrfs_mark_buffer_dirty(leaf); 2084 } 2085 2086 path->slots[0]++; 2087 goto next_slot; 2088 } 2089 ret = 0; 2090 error: 2091 btrfs_free_path(path); 2092 return ret; 2093 } 2094 2095 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 2096 { 2097 struct request_queue *q; 2098 struct btrfs_trans_handle *trans; 2099 struct btrfs_device *device; 2100 struct block_device *bdev; 2101 struct list_head *devices; 2102 struct super_block *sb = root->fs_info->sb; 2103 struct rcu_string *name; 2104 u64 tmp; 2105 int seeding_dev = 0; 2106 int ret = 0; 2107 2108 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 2109 return -EROFS; 2110 2111 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2112 root->fs_info->bdev_holder); 2113 if (IS_ERR(bdev)) 2114 return PTR_ERR(bdev); 2115 2116 if (root->fs_info->fs_devices->seeding) { 2117 seeding_dev = 1; 2118 down_write(&sb->s_umount); 2119 mutex_lock(&uuid_mutex); 2120 } 2121 2122 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2123 2124 devices = &root->fs_info->fs_devices->devices; 2125 2126 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2127 list_for_each_entry(device, devices, dev_list) { 2128 if (device->bdev == bdev) { 2129 ret = -EEXIST; 2130 mutex_unlock( 2131 &root->fs_info->fs_devices->device_list_mutex); 2132 goto error; 2133 } 2134 } 2135 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2136 2137 device = btrfs_alloc_device(root->fs_info, NULL, NULL); 2138 if (IS_ERR(device)) { 2139 /* we can safely leave the fs_devices entry around */ 2140 ret = PTR_ERR(device); 2141 goto error; 2142 } 2143 2144 name = rcu_string_strdup(device_path, GFP_NOFS); 2145 if (!name) { 2146 kfree(device); 2147 ret = -ENOMEM; 2148 goto error; 2149 } 2150 rcu_assign_pointer(device->name, name); 2151 2152 trans = btrfs_start_transaction(root, 0); 2153 if (IS_ERR(trans)) { 2154 rcu_string_free(device->name); 2155 kfree(device); 2156 ret = PTR_ERR(trans); 2157 goto error; 2158 } 2159 2160 q = bdev_get_queue(bdev); 2161 if (blk_queue_discard(q)) 2162 device->can_discard = 1; 2163 device->writeable = 1; 2164 device->generation = trans->transid; 2165 device->io_width = root->sectorsize; 2166 device->io_align = root->sectorsize; 2167 device->sector_size = root->sectorsize; 2168 device->total_bytes = i_size_read(bdev->bd_inode); 2169 device->disk_total_bytes = device->total_bytes; 2170 device->commit_total_bytes = device->total_bytes; 2171 device->dev_root = root->fs_info->dev_root; 2172 device->bdev = bdev; 2173 device->in_fs_metadata = 1; 2174 device->is_tgtdev_for_dev_replace = 0; 2175 device->mode = FMODE_EXCL; 2176 device->dev_stats_valid = 1; 2177 set_blocksize(device->bdev, 4096); 2178 2179 if (seeding_dev) { 2180 sb->s_flags &= ~MS_RDONLY; 2181 ret = btrfs_prepare_sprout(root); 2182 BUG_ON(ret); /* -ENOMEM */ 2183 } 2184 2185 device->fs_devices = root->fs_info->fs_devices; 2186 2187 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2188 lock_chunks(root); 2189 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 2190 list_add(&device->dev_alloc_list, 2191 &root->fs_info->fs_devices->alloc_list); 2192 root->fs_info->fs_devices->num_devices++; 2193 root->fs_info->fs_devices->open_devices++; 2194 root->fs_info->fs_devices->rw_devices++; 2195 root->fs_info->fs_devices->total_devices++; 2196 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2197 2198 spin_lock(&root->fs_info->free_chunk_lock); 2199 root->fs_info->free_chunk_space += device->total_bytes; 2200 spin_unlock(&root->fs_info->free_chunk_lock); 2201 2202 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2203 root->fs_info->fs_devices->rotating = 1; 2204 2205 tmp = btrfs_super_total_bytes(root->fs_info->super_copy); 2206 btrfs_set_super_total_bytes(root->fs_info->super_copy, 2207 tmp + device->total_bytes); 2208 2209 tmp = btrfs_super_num_devices(root->fs_info->super_copy); 2210 btrfs_set_super_num_devices(root->fs_info->super_copy, 2211 tmp + 1); 2212 2213 /* add sysfs device entry */ 2214 btrfs_kobj_add_device(root->fs_info, device); 2215 2216 /* 2217 * we've got more storage, clear any full flags on the space 2218 * infos 2219 */ 2220 btrfs_clear_space_info_full(root->fs_info); 2221 2222 unlock_chunks(root); 2223 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2224 2225 if (seeding_dev) { 2226 lock_chunks(root); 2227 ret = init_first_rw_device(trans, root, device); 2228 unlock_chunks(root); 2229 if (ret) { 2230 btrfs_abort_transaction(trans, root, ret); 2231 goto error_trans; 2232 } 2233 } 2234 2235 ret = btrfs_add_device(trans, root, device); 2236 if (ret) { 2237 btrfs_abort_transaction(trans, root, ret); 2238 goto error_trans; 2239 } 2240 2241 if (seeding_dev) { 2242 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2243 2244 ret = btrfs_finish_sprout(trans, root); 2245 if (ret) { 2246 btrfs_abort_transaction(trans, root, ret); 2247 goto error_trans; 2248 } 2249 2250 /* Sprouting would change fsid of the mounted root, 2251 * so rename the fsid on the sysfs 2252 */ 2253 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2254 root->fs_info->fsid); 2255 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf)) 2256 goto error_trans; 2257 } 2258 2259 root->fs_info->num_tolerated_disk_barrier_failures = 2260 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 2261 ret = btrfs_commit_transaction(trans, root); 2262 2263 if (seeding_dev) { 2264 mutex_unlock(&uuid_mutex); 2265 up_write(&sb->s_umount); 2266 2267 if (ret) /* transaction commit */ 2268 return ret; 2269 2270 ret = btrfs_relocate_sys_chunks(root); 2271 if (ret < 0) 2272 btrfs_error(root->fs_info, ret, 2273 "Failed to relocate sys chunks after " 2274 "device initialization. This can be fixed " 2275 "using the \"btrfs balance\" command."); 2276 trans = btrfs_attach_transaction(root); 2277 if (IS_ERR(trans)) { 2278 if (PTR_ERR(trans) == -ENOENT) 2279 return 0; 2280 return PTR_ERR(trans); 2281 } 2282 ret = btrfs_commit_transaction(trans, root); 2283 } 2284 2285 /* Update ctime/mtime for libblkid */ 2286 update_dev_time(device_path); 2287 return ret; 2288 2289 error_trans: 2290 btrfs_end_transaction(trans, root); 2291 rcu_string_free(device->name); 2292 btrfs_kobj_rm_device(root->fs_info, device); 2293 kfree(device); 2294 error: 2295 blkdev_put(bdev, FMODE_EXCL); 2296 if (seeding_dev) { 2297 mutex_unlock(&uuid_mutex); 2298 up_write(&sb->s_umount); 2299 } 2300 return ret; 2301 } 2302 2303 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path, 2304 struct btrfs_device *srcdev, 2305 struct btrfs_device **device_out) 2306 { 2307 struct request_queue *q; 2308 struct btrfs_device *device; 2309 struct block_device *bdev; 2310 struct btrfs_fs_info *fs_info = root->fs_info; 2311 struct list_head *devices; 2312 struct rcu_string *name; 2313 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2314 int ret = 0; 2315 2316 *device_out = NULL; 2317 if (fs_info->fs_devices->seeding) { 2318 btrfs_err(fs_info, "the filesystem is a seed filesystem!"); 2319 return -EINVAL; 2320 } 2321 2322 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2323 fs_info->bdev_holder); 2324 if (IS_ERR(bdev)) { 2325 btrfs_err(fs_info, "target device %s is invalid!", device_path); 2326 return PTR_ERR(bdev); 2327 } 2328 2329 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2330 2331 devices = &fs_info->fs_devices->devices; 2332 list_for_each_entry(device, devices, dev_list) { 2333 if (device->bdev == bdev) { 2334 btrfs_err(fs_info, "target device is in the filesystem!"); 2335 ret = -EEXIST; 2336 goto error; 2337 } 2338 } 2339 2340 2341 if (i_size_read(bdev->bd_inode) < 2342 btrfs_device_get_total_bytes(srcdev)) { 2343 btrfs_err(fs_info, "target device is smaller than source device!"); 2344 ret = -EINVAL; 2345 goto error; 2346 } 2347 2348 2349 device = btrfs_alloc_device(NULL, &devid, NULL); 2350 if (IS_ERR(device)) { 2351 ret = PTR_ERR(device); 2352 goto error; 2353 } 2354 2355 name = rcu_string_strdup(device_path, GFP_NOFS); 2356 if (!name) { 2357 kfree(device); 2358 ret = -ENOMEM; 2359 goto error; 2360 } 2361 rcu_assign_pointer(device->name, name); 2362 2363 q = bdev_get_queue(bdev); 2364 if (blk_queue_discard(q)) 2365 device->can_discard = 1; 2366 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2367 device->writeable = 1; 2368 device->generation = 0; 2369 device->io_width = root->sectorsize; 2370 device->io_align = root->sectorsize; 2371 device->sector_size = root->sectorsize; 2372 device->total_bytes = btrfs_device_get_total_bytes(srcdev); 2373 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev); 2374 device->bytes_used = btrfs_device_get_bytes_used(srcdev); 2375 ASSERT(list_empty(&srcdev->resized_list)); 2376 device->commit_total_bytes = srcdev->commit_total_bytes; 2377 device->commit_bytes_used = device->bytes_used; 2378 device->dev_root = fs_info->dev_root; 2379 device->bdev = bdev; 2380 device->in_fs_metadata = 1; 2381 device->is_tgtdev_for_dev_replace = 1; 2382 device->mode = FMODE_EXCL; 2383 device->dev_stats_valid = 1; 2384 set_blocksize(device->bdev, 4096); 2385 device->fs_devices = fs_info->fs_devices; 2386 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2387 fs_info->fs_devices->num_devices++; 2388 fs_info->fs_devices->open_devices++; 2389 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2390 2391 *device_out = device; 2392 return ret; 2393 2394 error: 2395 blkdev_put(bdev, FMODE_EXCL); 2396 return ret; 2397 } 2398 2399 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2400 struct btrfs_device *tgtdev) 2401 { 2402 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2403 tgtdev->io_width = fs_info->dev_root->sectorsize; 2404 tgtdev->io_align = fs_info->dev_root->sectorsize; 2405 tgtdev->sector_size = fs_info->dev_root->sectorsize; 2406 tgtdev->dev_root = fs_info->dev_root; 2407 tgtdev->in_fs_metadata = 1; 2408 } 2409 2410 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2411 struct btrfs_device *device) 2412 { 2413 int ret; 2414 struct btrfs_path *path; 2415 struct btrfs_root *root; 2416 struct btrfs_dev_item *dev_item; 2417 struct extent_buffer *leaf; 2418 struct btrfs_key key; 2419 2420 root = device->dev_root->fs_info->chunk_root; 2421 2422 path = btrfs_alloc_path(); 2423 if (!path) 2424 return -ENOMEM; 2425 2426 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2427 key.type = BTRFS_DEV_ITEM_KEY; 2428 key.offset = device->devid; 2429 2430 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2431 if (ret < 0) 2432 goto out; 2433 2434 if (ret > 0) { 2435 ret = -ENOENT; 2436 goto out; 2437 } 2438 2439 leaf = path->nodes[0]; 2440 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2441 2442 btrfs_set_device_id(leaf, dev_item, device->devid); 2443 btrfs_set_device_type(leaf, dev_item, device->type); 2444 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2445 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2446 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2447 btrfs_set_device_total_bytes(leaf, dev_item, 2448 btrfs_device_get_disk_total_bytes(device)); 2449 btrfs_set_device_bytes_used(leaf, dev_item, 2450 btrfs_device_get_bytes_used(device)); 2451 btrfs_mark_buffer_dirty(leaf); 2452 2453 out: 2454 btrfs_free_path(path); 2455 return ret; 2456 } 2457 2458 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2459 struct btrfs_device *device, u64 new_size) 2460 { 2461 struct btrfs_super_block *super_copy = 2462 device->dev_root->fs_info->super_copy; 2463 struct btrfs_fs_devices *fs_devices; 2464 u64 old_total; 2465 u64 diff; 2466 2467 if (!device->writeable) 2468 return -EACCES; 2469 2470 lock_chunks(device->dev_root); 2471 old_total = btrfs_super_total_bytes(super_copy); 2472 diff = new_size - device->total_bytes; 2473 2474 if (new_size <= device->total_bytes || 2475 device->is_tgtdev_for_dev_replace) { 2476 unlock_chunks(device->dev_root); 2477 return -EINVAL; 2478 } 2479 2480 fs_devices = device->dev_root->fs_info->fs_devices; 2481 2482 btrfs_set_super_total_bytes(super_copy, old_total + diff); 2483 device->fs_devices->total_rw_bytes += diff; 2484 2485 btrfs_device_set_total_bytes(device, new_size); 2486 btrfs_device_set_disk_total_bytes(device, new_size); 2487 btrfs_clear_space_info_full(device->dev_root->fs_info); 2488 if (list_empty(&device->resized_list)) 2489 list_add_tail(&device->resized_list, 2490 &fs_devices->resized_devices); 2491 unlock_chunks(device->dev_root); 2492 2493 return btrfs_update_device(trans, device); 2494 } 2495 2496 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2497 struct btrfs_root *root, u64 chunk_objectid, 2498 u64 chunk_offset) 2499 { 2500 int ret; 2501 struct btrfs_path *path; 2502 struct btrfs_key key; 2503 2504 root = root->fs_info->chunk_root; 2505 path = btrfs_alloc_path(); 2506 if (!path) 2507 return -ENOMEM; 2508 2509 key.objectid = chunk_objectid; 2510 key.offset = chunk_offset; 2511 key.type = BTRFS_CHUNK_ITEM_KEY; 2512 2513 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2514 if (ret < 0) 2515 goto out; 2516 else if (ret > 0) { /* Logic error or corruption */ 2517 btrfs_error(root->fs_info, -ENOENT, 2518 "Failed lookup while freeing chunk."); 2519 ret = -ENOENT; 2520 goto out; 2521 } 2522 2523 ret = btrfs_del_item(trans, root, path); 2524 if (ret < 0) 2525 btrfs_error(root->fs_info, ret, 2526 "Failed to delete chunk item."); 2527 out: 2528 btrfs_free_path(path); 2529 return ret; 2530 } 2531 2532 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 2533 chunk_offset) 2534 { 2535 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 2536 struct btrfs_disk_key *disk_key; 2537 struct btrfs_chunk *chunk; 2538 u8 *ptr; 2539 int ret = 0; 2540 u32 num_stripes; 2541 u32 array_size; 2542 u32 len = 0; 2543 u32 cur; 2544 struct btrfs_key key; 2545 2546 lock_chunks(root); 2547 array_size = btrfs_super_sys_array_size(super_copy); 2548 2549 ptr = super_copy->sys_chunk_array; 2550 cur = 0; 2551 2552 while (cur < array_size) { 2553 disk_key = (struct btrfs_disk_key *)ptr; 2554 btrfs_disk_key_to_cpu(&key, disk_key); 2555 2556 len = sizeof(*disk_key); 2557 2558 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2559 chunk = (struct btrfs_chunk *)(ptr + len); 2560 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2561 len += btrfs_chunk_item_size(num_stripes); 2562 } else { 2563 ret = -EIO; 2564 break; 2565 } 2566 if (key.objectid == chunk_objectid && 2567 key.offset == chunk_offset) { 2568 memmove(ptr, ptr + len, array_size - (cur + len)); 2569 array_size -= len; 2570 btrfs_set_super_sys_array_size(super_copy, array_size); 2571 } else { 2572 ptr += len; 2573 cur += len; 2574 } 2575 } 2576 unlock_chunks(root); 2577 return ret; 2578 } 2579 2580 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, 2581 struct btrfs_root *root, u64 chunk_offset) 2582 { 2583 struct extent_map_tree *em_tree; 2584 struct extent_map *em; 2585 struct btrfs_root *extent_root = root->fs_info->extent_root; 2586 struct map_lookup *map; 2587 u64 dev_extent_len = 0; 2588 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2589 int i, ret = 0; 2590 2591 /* Just in case */ 2592 root = root->fs_info->chunk_root; 2593 em_tree = &root->fs_info->mapping_tree.map_tree; 2594 2595 read_lock(&em_tree->lock); 2596 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2597 read_unlock(&em_tree->lock); 2598 2599 if (!em || em->start > chunk_offset || 2600 em->start + em->len < chunk_offset) { 2601 /* 2602 * This is a logic error, but we don't want to just rely on the 2603 * user having built with ASSERT enabled, so if ASSERT doens't 2604 * do anything we still error out. 2605 */ 2606 ASSERT(0); 2607 if (em) 2608 free_extent_map(em); 2609 return -EINVAL; 2610 } 2611 map = (struct map_lookup *)em->bdev; 2612 2613 for (i = 0; i < map->num_stripes; i++) { 2614 struct btrfs_device *device = map->stripes[i].dev; 2615 ret = btrfs_free_dev_extent(trans, device, 2616 map->stripes[i].physical, 2617 &dev_extent_len); 2618 if (ret) { 2619 btrfs_abort_transaction(trans, root, ret); 2620 goto out; 2621 } 2622 2623 if (device->bytes_used > 0) { 2624 lock_chunks(root); 2625 btrfs_device_set_bytes_used(device, 2626 device->bytes_used - dev_extent_len); 2627 spin_lock(&root->fs_info->free_chunk_lock); 2628 root->fs_info->free_chunk_space += dev_extent_len; 2629 spin_unlock(&root->fs_info->free_chunk_lock); 2630 btrfs_clear_space_info_full(root->fs_info); 2631 unlock_chunks(root); 2632 } 2633 2634 if (map->stripes[i].dev) { 2635 ret = btrfs_update_device(trans, map->stripes[i].dev); 2636 if (ret) { 2637 btrfs_abort_transaction(trans, root, ret); 2638 goto out; 2639 } 2640 } 2641 } 2642 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset); 2643 if (ret) { 2644 btrfs_abort_transaction(trans, root, ret); 2645 goto out; 2646 } 2647 2648 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2649 2650 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2651 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2652 if (ret) { 2653 btrfs_abort_transaction(trans, root, ret); 2654 goto out; 2655 } 2656 } 2657 2658 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em); 2659 if (ret) { 2660 btrfs_abort_transaction(trans, extent_root, ret); 2661 goto out; 2662 } 2663 2664 out: 2665 /* once for us */ 2666 free_extent_map(em); 2667 return ret; 2668 } 2669 2670 static int btrfs_relocate_chunk(struct btrfs_root *root, 2671 u64 chunk_objectid, 2672 u64 chunk_offset) 2673 { 2674 struct btrfs_root *extent_root; 2675 struct btrfs_trans_handle *trans; 2676 int ret; 2677 2678 root = root->fs_info->chunk_root; 2679 extent_root = root->fs_info->extent_root; 2680 2681 ret = btrfs_can_relocate(extent_root, chunk_offset); 2682 if (ret) 2683 return -ENOSPC; 2684 2685 /* step one, relocate all the extents inside this chunk */ 2686 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2687 if (ret) 2688 return ret; 2689 2690 trans = btrfs_start_transaction(root, 0); 2691 if (IS_ERR(trans)) { 2692 ret = PTR_ERR(trans); 2693 btrfs_std_error(root->fs_info, ret); 2694 return ret; 2695 } 2696 2697 /* 2698 * step two, delete the device extents and the 2699 * chunk tree entries 2700 */ 2701 ret = btrfs_remove_chunk(trans, root, chunk_offset); 2702 btrfs_end_transaction(trans, root); 2703 return ret; 2704 } 2705 2706 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2707 { 2708 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2709 struct btrfs_path *path; 2710 struct extent_buffer *leaf; 2711 struct btrfs_chunk *chunk; 2712 struct btrfs_key key; 2713 struct btrfs_key found_key; 2714 u64 chunk_type; 2715 bool retried = false; 2716 int failed = 0; 2717 int ret; 2718 2719 path = btrfs_alloc_path(); 2720 if (!path) 2721 return -ENOMEM; 2722 2723 again: 2724 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2725 key.offset = (u64)-1; 2726 key.type = BTRFS_CHUNK_ITEM_KEY; 2727 2728 while (1) { 2729 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2730 if (ret < 0) 2731 goto error; 2732 BUG_ON(ret == 0); /* Corruption */ 2733 2734 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2735 key.type); 2736 if (ret < 0) 2737 goto error; 2738 if (ret > 0) 2739 break; 2740 2741 leaf = path->nodes[0]; 2742 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2743 2744 chunk = btrfs_item_ptr(leaf, path->slots[0], 2745 struct btrfs_chunk); 2746 chunk_type = btrfs_chunk_type(leaf, chunk); 2747 btrfs_release_path(path); 2748 2749 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2750 ret = btrfs_relocate_chunk(chunk_root, 2751 found_key.objectid, 2752 found_key.offset); 2753 if (ret == -ENOSPC) 2754 failed++; 2755 else 2756 BUG_ON(ret); 2757 } 2758 2759 if (found_key.offset == 0) 2760 break; 2761 key.offset = found_key.offset - 1; 2762 } 2763 ret = 0; 2764 if (failed && !retried) { 2765 failed = 0; 2766 retried = true; 2767 goto again; 2768 } else if (WARN_ON(failed && retried)) { 2769 ret = -ENOSPC; 2770 } 2771 error: 2772 btrfs_free_path(path); 2773 return ret; 2774 } 2775 2776 static int insert_balance_item(struct btrfs_root *root, 2777 struct btrfs_balance_control *bctl) 2778 { 2779 struct btrfs_trans_handle *trans; 2780 struct btrfs_balance_item *item; 2781 struct btrfs_disk_balance_args disk_bargs; 2782 struct btrfs_path *path; 2783 struct extent_buffer *leaf; 2784 struct btrfs_key key; 2785 int ret, err; 2786 2787 path = btrfs_alloc_path(); 2788 if (!path) 2789 return -ENOMEM; 2790 2791 trans = btrfs_start_transaction(root, 0); 2792 if (IS_ERR(trans)) { 2793 btrfs_free_path(path); 2794 return PTR_ERR(trans); 2795 } 2796 2797 key.objectid = BTRFS_BALANCE_OBJECTID; 2798 key.type = BTRFS_BALANCE_ITEM_KEY; 2799 key.offset = 0; 2800 2801 ret = btrfs_insert_empty_item(trans, root, path, &key, 2802 sizeof(*item)); 2803 if (ret) 2804 goto out; 2805 2806 leaf = path->nodes[0]; 2807 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2808 2809 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 2810 2811 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 2812 btrfs_set_balance_data(leaf, item, &disk_bargs); 2813 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 2814 btrfs_set_balance_meta(leaf, item, &disk_bargs); 2815 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 2816 btrfs_set_balance_sys(leaf, item, &disk_bargs); 2817 2818 btrfs_set_balance_flags(leaf, item, bctl->flags); 2819 2820 btrfs_mark_buffer_dirty(leaf); 2821 out: 2822 btrfs_free_path(path); 2823 err = btrfs_commit_transaction(trans, root); 2824 if (err && !ret) 2825 ret = err; 2826 return ret; 2827 } 2828 2829 static int del_balance_item(struct btrfs_root *root) 2830 { 2831 struct btrfs_trans_handle *trans; 2832 struct btrfs_path *path; 2833 struct btrfs_key key; 2834 int ret, err; 2835 2836 path = btrfs_alloc_path(); 2837 if (!path) 2838 return -ENOMEM; 2839 2840 trans = btrfs_start_transaction(root, 0); 2841 if (IS_ERR(trans)) { 2842 btrfs_free_path(path); 2843 return PTR_ERR(trans); 2844 } 2845 2846 key.objectid = BTRFS_BALANCE_OBJECTID; 2847 key.type = BTRFS_BALANCE_ITEM_KEY; 2848 key.offset = 0; 2849 2850 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2851 if (ret < 0) 2852 goto out; 2853 if (ret > 0) { 2854 ret = -ENOENT; 2855 goto out; 2856 } 2857 2858 ret = btrfs_del_item(trans, root, path); 2859 out: 2860 btrfs_free_path(path); 2861 err = btrfs_commit_transaction(trans, root); 2862 if (err && !ret) 2863 ret = err; 2864 return ret; 2865 } 2866 2867 /* 2868 * This is a heuristic used to reduce the number of chunks balanced on 2869 * resume after balance was interrupted. 2870 */ 2871 static void update_balance_args(struct btrfs_balance_control *bctl) 2872 { 2873 /* 2874 * Turn on soft mode for chunk types that were being converted. 2875 */ 2876 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 2877 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 2878 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 2879 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 2880 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 2881 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 2882 2883 /* 2884 * Turn on usage filter if is not already used. The idea is 2885 * that chunks that we have already balanced should be 2886 * reasonably full. Don't do it for chunks that are being 2887 * converted - that will keep us from relocating unconverted 2888 * (albeit full) chunks. 2889 */ 2890 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 2891 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2892 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 2893 bctl->data.usage = 90; 2894 } 2895 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 2896 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2897 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 2898 bctl->sys.usage = 90; 2899 } 2900 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 2901 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2902 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 2903 bctl->meta.usage = 90; 2904 } 2905 } 2906 2907 /* 2908 * Should be called with both balance and volume mutexes held to 2909 * serialize other volume operations (add_dev/rm_dev/resize) with 2910 * restriper. Same goes for unset_balance_control. 2911 */ 2912 static void set_balance_control(struct btrfs_balance_control *bctl) 2913 { 2914 struct btrfs_fs_info *fs_info = bctl->fs_info; 2915 2916 BUG_ON(fs_info->balance_ctl); 2917 2918 spin_lock(&fs_info->balance_lock); 2919 fs_info->balance_ctl = bctl; 2920 spin_unlock(&fs_info->balance_lock); 2921 } 2922 2923 static void unset_balance_control(struct btrfs_fs_info *fs_info) 2924 { 2925 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2926 2927 BUG_ON(!fs_info->balance_ctl); 2928 2929 spin_lock(&fs_info->balance_lock); 2930 fs_info->balance_ctl = NULL; 2931 spin_unlock(&fs_info->balance_lock); 2932 2933 kfree(bctl); 2934 } 2935 2936 /* 2937 * Balance filters. Return 1 if chunk should be filtered out 2938 * (should not be balanced). 2939 */ 2940 static int chunk_profiles_filter(u64 chunk_type, 2941 struct btrfs_balance_args *bargs) 2942 { 2943 chunk_type = chunk_to_extended(chunk_type) & 2944 BTRFS_EXTENDED_PROFILE_MASK; 2945 2946 if (bargs->profiles & chunk_type) 2947 return 0; 2948 2949 return 1; 2950 } 2951 2952 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 2953 struct btrfs_balance_args *bargs) 2954 { 2955 struct btrfs_block_group_cache *cache; 2956 u64 chunk_used, user_thresh; 2957 int ret = 1; 2958 2959 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2960 chunk_used = btrfs_block_group_used(&cache->item); 2961 2962 if (bargs->usage == 0) 2963 user_thresh = 1; 2964 else if (bargs->usage > 100) 2965 user_thresh = cache->key.offset; 2966 else 2967 user_thresh = div_factor_fine(cache->key.offset, 2968 bargs->usage); 2969 2970 if (chunk_used < user_thresh) 2971 ret = 0; 2972 2973 btrfs_put_block_group(cache); 2974 return ret; 2975 } 2976 2977 static int chunk_devid_filter(struct extent_buffer *leaf, 2978 struct btrfs_chunk *chunk, 2979 struct btrfs_balance_args *bargs) 2980 { 2981 struct btrfs_stripe *stripe; 2982 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2983 int i; 2984 2985 for (i = 0; i < num_stripes; i++) { 2986 stripe = btrfs_stripe_nr(chunk, i); 2987 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 2988 return 0; 2989 } 2990 2991 return 1; 2992 } 2993 2994 /* [pstart, pend) */ 2995 static int chunk_drange_filter(struct extent_buffer *leaf, 2996 struct btrfs_chunk *chunk, 2997 u64 chunk_offset, 2998 struct btrfs_balance_args *bargs) 2999 { 3000 struct btrfs_stripe *stripe; 3001 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3002 u64 stripe_offset; 3003 u64 stripe_length; 3004 int factor; 3005 int i; 3006 3007 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3008 return 0; 3009 3010 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3011 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3012 factor = num_stripes / 2; 3013 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3014 factor = num_stripes - 1; 3015 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3016 factor = num_stripes - 2; 3017 } else { 3018 factor = num_stripes; 3019 } 3020 3021 for (i = 0; i < num_stripes; i++) { 3022 stripe = btrfs_stripe_nr(chunk, i); 3023 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3024 continue; 3025 3026 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3027 stripe_length = btrfs_chunk_length(leaf, chunk); 3028 stripe_length = div_u64(stripe_length, factor); 3029 3030 if (stripe_offset < bargs->pend && 3031 stripe_offset + stripe_length > bargs->pstart) 3032 return 0; 3033 } 3034 3035 return 1; 3036 } 3037 3038 /* [vstart, vend) */ 3039 static int chunk_vrange_filter(struct extent_buffer *leaf, 3040 struct btrfs_chunk *chunk, 3041 u64 chunk_offset, 3042 struct btrfs_balance_args *bargs) 3043 { 3044 if (chunk_offset < bargs->vend && 3045 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3046 /* at least part of the chunk is inside this vrange */ 3047 return 0; 3048 3049 return 1; 3050 } 3051 3052 static int chunk_soft_convert_filter(u64 chunk_type, 3053 struct btrfs_balance_args *bargs) 3054 { 3055 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3056 return 0; 3057 3058 chunk_type = chunk_to_extended(chunk_type) & 3059 BTRFS_EXTENDED_PROFILE_MASK; 3060 3061 if (bargs->target == chunk_type) 3062 return 1; 3063 3064 return 0; 3065 } 3066 3067 static int should_balance_chunk(struct btrfs_root *root, 3068 struct extent_buffer *leaf, 3069 struct btrfs_chunk *chunk, u64 chunk_offset) 3070 { 3071 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 3072 struct btrfs_balance_args *bargs = NULL; 3073 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3074 3075 /* type filter */ 3076 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3077 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3078 return 0; 3079 } 3080 3081 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3082 bargs = &bctl->data; 3083 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3084 bargs = &bctl->sys; 3085 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3086 bargs = &bctl->meta; 3087 3088 /* profiles filter */ 3089 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3090 chunk_profiles_filter(chunk_type, bargs)) { 3091 return 0; 3092 } 3093 3094 /* usage filter */ 3095 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3096 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 3097 return 0; 3098 } 3099 3100 /* devid filter */ 3101 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3102 chunk_devid_filter(leaf, chunk, bargs)) { 3103 return 0; 3104 } 3105 3106 /* drange filter, makes sense only with devid filter */ 3107 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3108 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 3109 return 0; 3110 } 3111 3112 /* vrange filter */ 3113 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3114 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3115 return 0; 3116 } 3117 3118 /* soft profile changing mode */ 3119 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3120 chunk_soft_convert_filter(chunk_type, bargs)) { 3121 return 0; 3122 } 3123 3124 /* 3125 * limited by count, must be the last filter 3126 */ 3127 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3128 if (bargs->limit == 0) 3129 return 0; 3130 else 3131 bargs->limit--; 3132 } 3133 3134 return 1; 3135 } 3136 3137 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3138 { 3139 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3140 struct btrfs_root *chunk_root = fs_info->chunk_root; 3141 struct btrfs_root *dev_root = fs_info->dev_root; 3142 struct list_head *devices; 3143 struct btrfs_device *device; 3144 u64 old_size; 3145 u64 size_to_free; 3146 struct btrfs_chunk *chunk; 3147 struct btrfs_path *path; 3148 struct btrfs_key key; 3149 struct btrfs_key found_key; 3150 struct btrfs_trans_handle *trans; 3151 struct extent_buffer *leaf; 3152 int slot; 3153 int ret; 3154 int enospc_errors = 0; 3155 bool counting = true; 3156 u64 limit_data = bctl->data.limit; 3157 u64 limit_meta = bctl->meta.limit; 3158 u64 limit_sys = bctl->sys.limit; 3159 3160 /* step one make some room on all the devices */ 3161 devices = &fs_info->fs_devices->devices; 3162 list_for_each_entry(device, devices, dev_list) { 3163 old_size = btrfs_device_get_total_bytes(device); 3164 size_to_free = div_factor(old_size, 1); 3165 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); 3166 if (!device->writeable || 3167 btrfs_device_get_total_bytes(device) - 3168 btrfs_device_get_bytes_used(device) > size_to_free || 3169 device->is_tgtdev_for_dev_replace) 3170 continue; 3171 3172 ret = btrfs_shrink_device(device, old_size - size_to_free); 3173 if (ret == -ENOSPC) 3174 break; 3175 BUG_ON(ret); 3176 3177 trans = btrfs_start_transaction(dev_root, 0); 3178 BUG_ON(IS_ERR(trans)); 3179 3180 ret = btrfs_grow_device(trans, device, old_size); 3181 BUG_ON(ret); 3182 3183 btrfs_end_transaction(trans, dev_root); 3184 } 3185 3186 /* step two, relocate all the chunks */ 3187 path = btrfs_alloc_path(); 3188 if (!path) { 3189 ret = -ENOMEM; 3190 goto error; 3191 } 3192 3193 /* zero out stat counters */ 3194 spin_lock(&fs_info->balance_lock); 3195 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3196 spin_unlock(&fs_info->balance_lock); 3197 again: 3198 if (!counting) { 3199 bctl->data.limit = limit_data; 3200 bctl->meta.limit = limit_meta; 3201 bctl->sys.limit = limit_sys; 3202 } 3203 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3204 key.offset = (u64)-1; 3205 key.type = BTRFS_CHUNK_ITEM_KEY; 3206 3207 while (1) { 3208 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3209 atomic_read(&fs_info->balance_cancel_req)) { 3210 ret = -ECANCELED; 3211 goto error; 3212 } 3213 3214 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3215 if (ret < 0) 3216 goto error; 3217 3218 /* 3219 * this shouldn't happen, it means the last relocate 3220 * failed 3221 */ 3222 if (ret == 0) 3223 BUG(); /* FIXME break ? */ 3224 3225 ret = btrfs_previous_item(chunk_root, path, 0, 3226 BTRFS_CHUNK_ITEM_KEY); 3227 if (ret) { 3228 ret = 0; 3229 break; 3230 } 3231 3232 leaf = path->nodes[0]; 3233 slot = path->slots[0]; 3234 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3235 3236 if (found_key.objectid != key.objectid) 3237 break; 3238 3239 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3240 3241 if (!counting) { 3242 spin_lock(&fs_info->balance_lock); 3243 bctl->stat.considered++; 3244 spin_unlock(&fs_info->balance_lock); 3245 } 3246 3247 ret = should_balance_chunk(chunk_root, leaf, chunk, 3248 found_key.offset); 3249 btrfs_release_path(path); 3250 if (!ret) 3251 goto loop; 3252 3253 if (counting) { 3254 spin_lock(&fs_info->balance_lock); 3255 bctl->stat.expected++; 3256 spin_unlock(&fs_info->balance_lock); 3257 goto loop; 3258 } 3259 3260 ret = btrfs_relocate_chunk(chunk_root, 3261 found_key.objectid, 3262 found_key.offset); 3263 if (ret && ret != -ENOSPC) 3264 goto error; 3265 if (ret == -ENOSPC) { 3266 enospc_errors++; 3267 } else { 3268 spin_lock(&fs_info->balance_lock); 3269 bctl->stat.completed++; 3270 spin_unlock(&fs_info->balance_lock); 3271 } 3272 loop: 3273 if (found_key.offset == 0) 3274 break; 3275 key.offset = found_key.offset - 1; 3276 } 3277 3278 if (counting) { 3279 btrfs_release_path(path); 3280 counting = false; 3281 goto again; 3282 } 3283 error: 3284 btrfs_free_path(path); 3285 if (enospc_errors) { 3286 btrfs_info(fs_info, "%d enospc errors during balance", 3287 enospc_errors); 3288 if (!ret) 3289 ret = -ENOSPC; 3290 } 3291 3292 return ret; 3293 } 3294 3295 /** 3296 * alloc_profile_is_valid - see if a given profile is valid and reduced 3297 * @flags: profile to validate 3298 * @extended: if true @flags is treated as an extended profile 3299 */ 3300 static int alloc_profile_is_valid(u64 flags, int extended) 3301 { 3302 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3303 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3304 3305 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3306 3307 /* 1) check that all other bits are zeroed */ 3308 if (flags & ~mask) 3309 return 0; 3310 3311 /* 2) see if profile is reduced */ 3312 if (flags == 0) 3313 return !extended; /* "0" is valid for usual profiles */ 3314 3315 /* true if exactly one bit set */ 3316 return (flags & (flags - 1)) == 0; 3317 } 3318 3319 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3320 { 3321 /* cancel requested || normal exit path */ 3322 return atomic_read(&fs_info->balance_cancel_req) || 3323 (atomic_read(&fs_info->balance_pause_req) == 0 && 3324 atomic_read(&fs_info->balance_cancel_req) == 0); 3325 } 3326 3327 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3328 { 3329 int ret; 3330 3331 unset_balance_control(fs_info); 3332 ret = del_balance_item(fs_info->tree_root); 3333 if (ret) 3334 btrfs_std_error(fs_info, ret); 3335 3336 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3337 } 3338 3339 /* 3340 * Should be called with both balance and volume mutexes held 3341 */ 3342 int btrfs_balance(struct btrfs_balance_control *bctl, 3343 struct btrfs_ioctl_balance_args *bargs) 3344 { 3345 struct btrfs_fs_info *fs_info = bctl->fs_info; 3346 u64 allowed; 3347 int mixed = 0; 3348 int ret; 3349 u64 num_devices; 3350 unsigned seq; 3351 3352 if (btrfs_fs_closing(fs_info) || 3353 atomic_read(&fs_info->balance_pause_req) || 3354 atomic_read(&fs_info->balance_cancel_req)) { 3355 ret = -EINVAL; 3356 goto out; 3357 } 3358 3359 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3360 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3361 mixed = 1; 3362 3363 /* 3364 * In case of mixed groups both data and meta should be picked, 3365 * and identical options should be given for both of them. 3366 */ 3367 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3368 if (mixed && (bctl->flags & allowed)) { 3369 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3370 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3371 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3372 btrfs_err(fs_info, "with mixed groups data and " 3373 "metadata balance options must be the same"); 3374 ret = -EINVAL; 3375 goto out; 3376 } 3377 } 3378 3379 num_devices = fs_info->fs_devices->num_devices; 3380 btrfs_dev_replace_lock(&fs_info->dev_replace); 3381 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3382 BUG_ON(num_devices < 1); 3383 num_devices--; 3384 } 3385 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3386 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 3387 if (num_devices == 1) 3388 allowed |= BTRFS_BLOCK_GROUP_DUP; 3389 else if (num_devices > 1) 3390 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3391 if (num_devices > 2) 3392 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3393 if (num_devices > 3) 3394 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3395 BTRFS_BLOCK_GROUP_RAID6); 3396 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3397 (!alloc_profile_is_valid(bctl->data.target, 1) || 3398 (bctl->data.target & ~allowed))) { 3399 btrfs_err(fs_info, "unable to start balance with target " 3400 "data profile %llu", 3401 bctl->data.target); 3402 ret = -EINVAL; 3403 goto out; 3404 } 3405 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3406 (!alloc_profile_is_valid(bctl->meta.target, 1) || 3407 (bctl->meta.target & ~allowed))) { 3408 btrfs_err(fs_info, 3409 "unable to start balance with target metadata profile %llu", 3410 bctl->meta.target); 3411 ret = -EINVAL; 3412 goto out; 3413 } 3414 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3415 (!alloc_profile_is_valid(bctl->sys.target, 1) || 3416 (bctl->sys.target & ~allowed))) { 3417 btrfs_err(fs_info, 3418 "unable to start balance with target system profile %llu", 3419 bctl->sys.target); 3420 ret = -EINVAL; 3421 goto out; 3422 } 3423 3424 /* allow dup'ed data chunks only in mixed mode */ 3425 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3426 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) { 3427 btrfs_err(fs_info, "dup for data is not allowed"); 3428 ret = -EINVAL; 3429 goto out; 3430 } 3431 3432 /* allow to reduce meta or sys integrity only if force set */ 3433 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3434 BTRFS_BLOCK_GROUP_RAID10 | 3435 BTRFS_BLOCK_GROUP_RAID5 | 3436 BTRFS_BLOCK_GROUP_RAID6; 3437 do { 3438 seq = read_seqbegin(&fs_info->profiles_lock); 3439 3440 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3441 (fs_info->avail_system_alloc_bits & allowed) && 3442 !(bctl->sys.target & allowed)) || 3443 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3444 (fs_info->avail_metadata_alloc_bits & allowed) && 3445 !(bctl->meta.target & allowed))) { 3446 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3447 btrfs_info(fs_info, "force reducing metadata integrity"); 3448 } else { 3449 btrfs_err(fs_info, "balance will reduce metadata " 3450 "integrity, use force if you want this"); 3451 ret = -EINVAL; 3452 goto out; 3453 } 3454 } 3455 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3456 3457 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3458 int num_tolerated_disk_barrier_failures; 3459 u64 target = bctl->sys.target; 3460 3461 num_tolerated_disk_barrier_failures = 3462 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3463 if (num_tolerated_disk_barrier_failures > 0 && 3464 (target & 3465 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3466 BTRFS_AVAIL_ALLOC_BIT_SINGLE))) 3467 num_tolerated_disk_barrier_failures = 0; 3468 else if (num_tolerated_disk_barrier_failures > 1 && 3469 (target & 3470 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))) 3471 num_tolerated_disk_barrier_failures = 1; 3472 3473 fs_info->num_tolerated_disk_barrier_failures = 3474 num_tolerated_disk_barrier_failures; 3475 } 3476 3477 ret = insert_balance_item(fs_info->tree_root, bctl); 3478 if (ret && ret != -EEXIST) 3479 goto out; 3480 3481 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3482 BUG_ON(ret == -EEXIST); 3483 set_balance_control(bctl); 3484 } else { 3485 BUG_ON(ret != -EEXIST); 3486 spin_lock(&fs_info->balance_lock); 3487 update_balance_args(bctl); 3488 spin_unlock(&fs_info->balance_lock); 3489 } 3490 3491 atomic_inc(&fs_info->balance_running); 3492 mutex_unlock(&fs_info->balance_mutex); 3493 3494 ret = __btrfs_balance(fs_info); 3495 3496 mutex_lock(&fs_info->balance_mutex); 3497 atomic_dec(&fs_info->balance_running); 3498 3499 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3500 fs_info->num_tolerated_disk_barrier_failures = 3501 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3502 } 3503 3504 if (bargs) { 3505 memset(bargs, 0, sizeof(*bargs)); 3506 update_ioctl_balance_args(fs_info, 0, bargs); 3507 } 3508 3509 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3510 balance_need_close(fs_info)) { 3511 __cancel_balance(fs_info); 3512 } 3513 3514 wake_up(&fs_info->balance_wait_q); 3515 3516 return ret; 3517 out: 3518 if (bctl->flags & BTRFS_BALANCE_RESUME) 3519 __cancel_balance(fs_info); 3520 else { 3521 kfree(bctl); 3522 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3523 } 3524 return ret; 3525 } 3526 3527 static int balance_kthread(void *data) 3528 { 3529 struct btrfs_fs_info *fs_info = data; 3530 int ret = 0; 3531 3532 mutex_lock(&fs_info->volume_mutex); 3533 mutex_lock(&fs_info->balance_mutex); 3534 3535 if (fs_info->balance_ctl) { 3536 btrfs_info(fs_info, "continuing balance"); 3537 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3538 } 3539 3540 mutex_unlock(&fs_info->balance_mutex); 3541 mutex_unlock(&fs_info->volume_mutex); 3542 3543 return ret; 3544 } 3545 3546 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3547 { 3548 struct task_struct *tsk; 3549 3550 spin_lock(&fs_info->balance_lock); 3551 if (!fs_info->balance_ctl) { 3552 spin_unlock(&fs_info->balance_lock); 3553 return 0; 3554 } 3555 spin_unlock(&fs_info->balance_lock); 3556 3557 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 3558 btrfs_info(fs_info, "force skipping balance"); 3559 return 0; 3560 } 3561 3562 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3563 return PTR_ERR_OR_ZERO(tsk); 3564 } 3565 3566 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3567 { 3568 struct btrfs_balance_control *bctl; 3569 struct btrfs_balance_item *item; 3570 struct btrfs_disk_balance_args disk_bargs; 3571 struct btrfs_path *path; 3572 struct extent_buffer *leaf; 3573 struct btrfs_key key; 3574 int ret; 3575 3576 path = btrfs_alloc_path(); 3577 if (!path) 3578 return -ENOMEM; 3579 3580 key.objectid = BTRFS_BALANCE_OBJECTID; 3581 key.type = BTRFS_BALANCE_ITEM_KEY; 3582 key.offset = 0; 3583 3584 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3585 if (ret < 0) 3586 goto out; 3587 if (ret > 0) { /* ret = -ENOENT; */ 3588 ret = 0; 3589 goto out; 3590 } 3591 3592 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3593 if (!bctl) { 3594 ret = -ENOMEM; 3595 goto out; 3596 } 3597 3598 leaf = path->nodes[0]; 3599 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3600 3601 bctl->fs_info = fs_info; 3602 bctl->flags = btrfs_balance_flags(leaf, item); 3603 bctl->flags |= BTRFS_BALANCE_RESUME; 3604 3605 btrfs_balance_data(leaf, item, &disk_bargs); 3606 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 3607 btrfs_balance_meta(leaf, item, &disk_bargs); 3608 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 3609 btrfs_balance_sys(leaf, item, &disk_bargs); 3610 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 3611 3612 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); 3613 3614 mutex_lock(&fs_info->volume_mutex); 3615 mutex_lock(&fs_info->balance_mutex); 3616 3617 set_balance_control(bctl); 3618 3619 mutex_unlock(&fs_info->balance_mutex); 3620 mutex_unlock(&fs_info->volume_mutex); 3621 out: 3622 btrfs_free_path(path); 3623 return ret; 3624 } 3625 3626 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 3627 { 3628 int ret = 0; 3629 3630 mutex_lock(&fs_info->balance_mutex); 3631 if (!fs_info->balance_ctl) { 3632 mutex_unlock(&fs_info->balance_mutex); 3633 return -ENOTCONN; 3634 } 3635 3636 if (atomic_read(&fs_info->balance_running)) { 3637 atomic_inc(&fs_info->balance_pause_req); 3638 mutex_unlock(&fs_info->balance_mutex); 3639 3640 wait_event(fs_info->balance_wait_q, 3641 atomic_read(&fs_info->balance_running) == 0); 3642 3643 mutex_lock(&fs_info->balance_mutex); 3644 /* we are good with balance_ctl ripped off from under us */ 3645 BUG_ON(atomic_read(&fs_info->balance_running)); 3646 atomic_dec(&fs_info->balance_pause_req); 3647 } else { 3648 ret = -ENOTCONN; 3649 } 3650 3651 mutex_unlock(&fs_info->balance_mutex); 3652 return ret; 3653 } 3654 3655 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 3656 { 3657 if (fs_info->sb->s_flags & MS_RDONLY) 3658 return -EROFS; 3659 3660 mutex_lock(&fs_info->balance_mutex); 3661 if (!fs_info->balance_ctl) { 3662 mutex_unlock(&fs_info->balance_mutex); 3663 return -ENOTCONN; 3664 } 3665 3666 atomic_inc(&fs_info->balance_cancel_req); 3667 /* 3668 * if we are running just wait and return, balance item is 3669 * deleted in btrfs_balance in this case 3670 */ 3671 if (atomic_read(&fs_info->balance_running)) { 3672 mutex_unlock(&fs_info->balance_mutex); 3673 wait_event(fs_info->balance_wait_q, 3674 atomic_read(&fs_info->balance_running) == 0); 3675 mutex_lock(&fs_info->balance_mutex); 3676 } else { 3677 /* __cancel_balance needs volume_mutex */ 3678 mutex_unlock(&fs_info->balance_mutex); 3679 mutex_lock(&fs_info->volume_mutex); 3680 mutex_lock(&fs_info->balance_mutex); 3681 3682 if (fs_info->balance_ctl) 3683 __cancel_balance(fs_info); 3684 3685 mutex_unlock(&fs_info->volume_mutex); 3686 } 3687 3688 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 3689 atomic_dec(&fs_info->balance_cancel_req); 3690 mutex_unlock(&fs_info->balance_mutex); 3691 return 0; 3692 } 3693 3694 static int btrfs_uuid_scan_kthread(void *data) 3695 { 3696 struct btrfs_fs_info *fs_info = data; 3697 struct btrfs_root *root = fs_info->tree_root; 3698 struct btrfs_key key; 3699 struct btrfs_key max_key; 3700 struct btrfs_path *path = NULL; 3701 int ret = 0; 3702 struct extent_buffer *eb; 3703 int slot; 3704 struct btrfs_root_item root_item; 3705 u32 item_size; 3706 struct btrfs_trans_handle *trans = NULL; 3707 3708 path = btrfs_alloc_path(); 3709 if (!path) { 3710 ret = -ENOMEM; 3711 goto out; 3712 } 3713 3714 key.objectid = 0; 3715 key.type = BTRFS_ROOT_ITEM_KEY; 3716 key.offset = 0; 3717 3718 max_key.objectid = (u64)-1; 3719 max_key.type = BTRFS_ROOT_ITEM_KEY; 3720 max_key.offset = (u64)-1; 3721 3722 while (1) { 3723 ret = btrfs_search_forward(root, &key, path, 0); 3724 if (ret) { 3725 if (ret > 0) 3726 ret = 0; 3727 break; 3728 } 3729 3730 if (key.type != BTRFS_ROOT_ITEM_KEY || 3731 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 3732 key.objectid != BTRFS_FS_TREE_OBJECTID) || 3733 key.objectid > BTRFS_LAST_FREE_OBJECTID) 3734 goto skip; 3735 3736 eb = path->nodes[0]; 3737 slot = path->slots[0]; 3738 item_size = btrfs_item_size_nr(eb, slot); 3739 if (item_size < sizeof(root_item)) 3740 goto skip; 3741 3742 read_extent_buffer(eb, &root_item, 3743 btrfs_item_ptr_offset(eb, slot), 3744 (int)sizeof(root_item)); 3745 if (btrfs_root_refs(&root_item) == 0) 3746 goto skip; 3747 3748 if (!btrfs_is_empty_uuid(root_item.uuid) || 3749 !btrfs_is_empty_uuid(root_item.received_uuid)) { 3750 if (trans) 3751 goto update_tree; 3752 3753 btrfs_release_path(path); 3754 /* 3755 * 1 - subvol uuid item 3756 * 1 - received_subvol uuid item 3757 */ 3758 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 3759 if (IS_ERR(trans)) { 3760 ret = PTR_ERR(trans); 3761 break; 3762 } 3763 continue; 3764 } else { 3765 goto skip; 3766 } 3767 update_tree: 3768 if (!btrfs_is_empty_uuid(root_item.uuid)) { 3769 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3770 root_item.uuid, 3771 BTRFS_UUID_KEY_SUBVOL, 3772 key.objectid); 3773 if (ret < 0) { 3774 btrfs_warn(fs_info, "uuid_tree_add failed %d", 3775 ret); 3776 break; 3777 } 3778 } 3779 3780 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 3781 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3782 root_item.received_uuid, 3783 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3784 key.objectid); 3785 if (ret < 0) { 3786 btrfs_warn(fs_info, "uuid_tree_add failed %d", 3787 ret); 3788 break; 3789 } 3790 } 3791 3792 skip: 3793 if (trans) { 3794 ret = btrfs_end_transaction(trans, fs_info->uuid_root); 3795 trans = NULL; 3796 if (ret) 3797 break; 3798 } 3799 3800 btrfs_release_path(path); 3801 if (key.offset < (u64)-1) { 3802 key.offset++; 3803 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 3804 key.offset = 0; 3805 key.type = BTRFS_ROOT_ITEM_KEY; 3806 } else if (key.objectid < (u64)-1) { 3807 key.offset = 0; 3808 key.type = BTRFS_ROOT_ITEM_KEY; 3809 key.objectid++; 3810 } else { 3811 break; 3812 } 3813 cond_resched(); 3814 } 3815 3816 out: 3817 btrfs_free_path(path); 3818 if (trans && !IS_ERR(trans)) 3819 btrfs_end_transaction(trans, fs_info->uuid_root); 3820 if (ret) 3821 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 3822 else 3823 fs_info->update_uuid_tree_gen = 1; 3824 up(&fs_info->uuid_tree_rescan_sem); 3825 return 0; 3826 } 3827 3828 /* 3829 * Callback for btrfs_uuid_tree_iterate(). 3830 * returns: 3831 * 0 check succeeded, the entry is not outdated. 3832 * < 0 if an error occured. 3833 * > 0 if the check failed, which means the caller shall remove the entry. 3834 */ 3835 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 3836 u8 *uuid, u8 type, u64 subid) 3837 { 3838 struct btrfs_key key; 3839 int ret = 0; 3840 struct btrfs_root *subvol_root; 3841 3842 if (type != BTRFS_UUID_KEY_SUBVOL && 3843 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 3844 goto out; 3845 3846 key.objectid = subid; 3847 key.type = BTRFS_ROOT_ITEM_KEY; 3848 key.offset = (u64)-1; 3849 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 3850 if (IS_ERR(subvol_root)) { 3851 ret = PTR_ERR(subvol_root); 3852 if (ret == -ENOENT) 3853 ret = 1; 3854 goto out; 3855 } 3856 3857 switch (type) { 3858 case BTRFS_UUID_KEY_SUBVOL: 3859 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 3860 ret = 1; 3861 break; 3862 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 3863 if (memcmp(uuid, subvol_root->root_item.received_uuid, 3864 BTRFS_UUID_SIZE)) 3865 ret = 1; 3866 break; 3867 } 3868 3869 out: 3870 return ret; 3871 } 3872 3873 static int btrfs_uuid_rescan_kthread(void *data) 3874 { 3875 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 3876 int ret; 3877 3878 /* 3879 * 1st step is to iterate through the existing UUID tree and 3880 * to delete all entries that contain outdated data. 3881 * 2nd step is to add all missing entries to the UUID tree. 3882 */ 3883 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 3884 if (ret < 0) { 3885 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 3886 up(&fs_info->uuid_tree_rescan_sem); 3887 return ret; 3888 } 3889 return btrfs_uuid_scan_kthread(data); 3890 } 3891 3892 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 3893 { 3894 struct btrfs_trans_handle *trans; 3895 struct btrfs_root *tree_root = fs_info->tree_root; 3896 struct btrfs_root *uuid_root; 3897 struct task_struct *task; 3898 int ret; 3899 3900 /* 3901 * 1 - root node 3902 * 1 - root item 3903 */ 3904 trans = btrfs_start_transaction(tree_root, 2); 3905 if (IS_ERR(trans)) 3906 return PTR_ERR(trans); 3907 3908 uuid_root = btrfs_create_tree(trans, fs_info, 3909 BTRFS_UUID_TREE_OBJECTID); 3910 if (IS_ERR(uuid_root)) { 3911 btrfs_abort_transaction(trans, tree_root, 3912 PTR_ERR(uuid_root)); 3913 return PTR_ERR(uuid_root); 3914 } 3915 3916 fs_info->uuid_root = uuid_root; 3917 3918 ret = btrfs_commit_transaction(trans, tree_root); 3919 if (ret) 3920 return ret; 3921 3922 down(&fs_info->uuid_tree_rescan_sem); 3923 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 3924 if (IS_ERR(task)) { 3925 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3926 btrfs_warn(fs_info, "failed to start uuid_scan task"); 3927 up(&fs_info->uuid_tree_rescan_sem); 3928 return PTR_ERR(task); 3929 } 3930 3931 return 0; 3932 } 3933 3934 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3935 { 3936 struct task_struct *task; 3937 3938 down(&fs_info->uuid_tree_rescan_sem); 3939 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3940 if (IS_ERR(task)) { 3941 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3942 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3943 up(&fs_info->uuid_tree_rescan_sem); 3944 return PTR_ERR(task); 3945 } 3946 3947 return 0; 3948 } 3949 3950 /* 3951 * shrinking a device means finding all of the device extents past 3952 * the new size, and then following the back refs to the chunks. 3953 * The chunk relocation code actually frees the device extent 3954 */ 3955 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 3956 { 3957 struct btrfs_trans_handle *trans; 3958 struct btrfs_root *root = device->dev_root; 3959 struct btrfs_dev_extent *dev_extent = NULL; 3960 struct btrfs_path *path; 3961 u64 length; 3962 u64 chunk_objectid; 3963 u64 chunk_offset; 3964 int ret; 3965 int slot; 3966 int failed = 0; 3967 bool retried = false; 3968 struct extent_buffer *l; 3969 struct btrfs_key key; 3970 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3971 u64 old_total = btrfs_super_total_bytes(super_copy); 3972 u64 old_size = btrfs_device_get_total_bytes(device); 3973 u64 diff = old_size - new_size; 3974 3975 if (device->is_tgtdev_for_dev_replace) 3976 return -EINVAL; 3977 3978 path = btrfs_alloc_path(); 3979 if (!path) 3980 return -ENOMEM; 3981 3982 path->reada = 2; 3983 3984 lock_chunks(root); 3985 3986 btrfs_device_set_total_bytes(device, new_size); 3987 if (device->writeable) { 3988 device->fs_devices->total_rw_bytes -= diff; 3989 spin_lock(&root->fs_info->free_chunk_lock); 3990 root->fs_info->free_chunk_space -= diff; 3991 spin_unlock(&root->fs_info->free_chunk_lock); 3992 } 3993 unlock_chunks(root); 3994 3995 again: 3996 key.objectid = device->devid; 3997 key.offset = (u64)-1; 3998 key.type = BTRFS_DEV_EXTENT_KEY; 3999 4000 do { 4001 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4002 if (ret < 0) 4003 goto done; 4004 4005 ret = btrfs_previous_item(root, path, 0, key.type); 4006 if (ret < 0) 4007 goto done; 4008 if (ret) { 4009 ret = 0; 4010 btrfs_release_path(path); 4011 break; 4012 } 4013 4014 l = path->nodes[0]; 4015 slot = path->slots[0]; 4016 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4017 4018 if (key.objectid != device->devid) { 4019 btrfs_release_path(path); 4020 break; 4021 } 4022 4023 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4024 length = btrfs_dev_extent_length(l, dev_extent); 4025 4026 if (key.offset + length <= new_size) { 4027 btrfs_release_path(path); 4028 break; 4029 } 4030 4031 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 4032 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4033 btrfs_release_path(path); 4034 4035 ret = btrfs_relocate_chunk(root, chunk_objectid, chunk_offset); 4036 if (ret && ret != -ENOSPC) 4037 goto done; 4038 if (ret == -ENOSPC) 4039 failed++; 4040 } while (key.offset-- > 0); 4041 4042 if (failed && !retried) { 4043 failed = 0; 4044 retried = true; 4045 goto again; 4046 } else if (failed && retried) { 4047 ret = -ENOSPC; 4048 lock_chunks(root); 4049 4050 btrfs_device_set_total_bytes(device, old_size); 4051 if (device->writeable) 4052 device->fs_devices->total_rw_bytes += diff; 4053 spin_lock(&root->fs_info->free_chunk_lock); 4054 root->fs_info->free_chunk_space += diff; 4055 spin_unlock(&root->fs_info->free_chunk_lock); 4056 unlock_chunks(root); 4057 goto done; 4058 } 4059 4060 /* Shrinking succeeded, else we would be at "done". */ 4061 trans = btrfs_start_transaction(root, 0); 4062 if (IS_ERR(trans)) { 4063 ret = PTR_ERR(trans); 4064 goto done; 4065 } 4066 4067 lock_chunks(root); 4068 btrfs_device_set_disk_total_bytes(device, new_size); 4069 if (list_empty(&device->resized_list)) 4070 list_add_tail(&device->resized_list, 4071 &root->fs_info->fs_devices->resized_devices); 4072 4073 WARN_ON(diff > old_total); 4074 btrfs_set_super_total_bytes(super_copy, old_total - diff); 4075 unlock_chunks(root); 4076 4077 /* Now btrfs_update_device() will change the on-disk size. */ 4078 ret = btrfs_update_device(trans, device); 4079 btrfs_end_transaction(trans, root); 4080 done: 4081 btrfs_free_path(path); 4082 return ret; 4083 } 4084 4085 static int btrfs_add_system_chunk(struct btrfs_root *root, 4086 struct btrfs_key *key, 4087 struct btrfs_chunk *chunk, int item_size) 4088 { 4089 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4090 struct btrfs_disk_key disk_key; 4091 u32 array_size; 4092 u8 *ptr; 4093 4094 lock_chunks(root); 4095 array_size = btrfs_super_sys_array_size(super_copy); 4096 if (array_size + item_size + sizeof(disk_key) 4097 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4098 unlock_chunks(root); 4099 return -EFBIG; 4100 } 4101 4102 ptr = super_copy->sys_chunk_array + array_size; 4103 btrfs_cpu_key_to_disk(&disk_key, key); 4104 memcpy(ptr, &disk_key, sizeof(disk_key)); 4105 ptr += sizeof(disk_key); 4106 memcpy(ptr, chunk, item_size); 4107 item_size += sizeof(disk_key); 4108 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4109 unlock_chunks(root); 4110 4111 return 0; 4112 } 4113 4114 /* 4115 * sort the devices in descending order by max_avail, total_avail 4116 */ 4117 static int btrfs_cmp_device_info(const void *a, const void *b) 4118 { 4119 const struct btrfs_device_info *di_a = a; 4120 const struct btrfs_device_info *di_b = b; 4121 4122 if (di_a->max_avail > di_b->max_avail) 4123 return -1; 4124 if (di_a->max_avail < di_b->max_avail) 4125 return 1; 4126 if (di_a->total_avail > di_b->total_avail) 4127 return -1; 4128 if (di_a->total_avail < di_b->total_avail) 4129 return 1; 4130 return 0; 4131 } 4132 4133 static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 4134 [BTRFS_RAID_RAID10] = { 4135 .sub_stripes = 2, 4136 .dev_stripes = 1, 4137 .devs_max = 0, /* 0 == as many as possible */ 4138 .devs_min = 4, 4139 .devs_increment = 2, 4140 .ncopies = 2, 4141 }, 4142 [BTRFS_RAID_RAID1] = { 4143 .sub_stripes = 1, 4144 .dev_stripes = 1, 4145 .devs_max = 2, 4146 .devs_min = 2, 4147 .devs_increment = 2, 4148 .ncopies = 2, 4149 }, 4150 [BTRFS_RAID_DUP] = { 4151 .sub_stripes = 1, 4152 .dev_stripes = 2, 4153 .devs_max = 1, 4154 .devs_min = 1, 4155 .devs_increment = 1, 4156 .ncopies = 2, 4157 }, 4158 [BTRFS_RAID_RAID0] = { 4159 .sub_stripes = 1, 4160 .dev_stripes = 1, 4161 .devs_max = 0, 4162 .devs_min = 2, 4163 .devs_increment = 1, 4164 .ncopies = 1, 4165 }, 4166 [BTRFS_RAID_SINGLE] = { 4167 .sub_stripes = 1, 4168 .dev_stripes = 1, 4169 .devs_max = 1, 4170 .devs_min = 1, 4171 .devs_increment = 1, 4172 .ncopies = 1, 4173 }, 4174 [BTRFS_RAID_RAID5] = { 4175 .sub_stripes = 1, 4176 .dev_stripes = 1, 4177 .devs_max = 0, 4178 .devs_min = 2, 4179 .devs_increment = 1, 4180 .ncopies = 2, 4181 }, 4182 [BTRFS_RAID_RAID6] = { 4183 .sub_stripes = 1, 4184 .dev_stripes = 1, 4185 .devs_max = 0, 4186 .devs_min = 3, 4187 .devs_increment = 1, 4188 .ncopies = 3, 4189 }, 4190 }; 4191 4192 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) 4193 { 4194 /* TODO allow them to set a preferred stripe size */ 4195 return 64 * 1024; 4196 } 4197 4198 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4199 { 4200 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4201 return; 4202 4203 btrfs_set_fs_incompat(info, RAID56); 4204 } 4205 4206 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \ 4207 - sizeof(struct btrfs_item) \ 4208 - sizeof(struct btrfs_chunk)) \ 4209 / sizeof(struct btrfs_stripe) + 1) 4210 4211 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4212 - 2 * sizeof(struct btrfs_disk_key) \ 4213 - 2 * sizeof(struct btrfs_chunk)) \ 4214 / sizeof(struct btrfs_stripe) + 1) 4215 4216 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4217 struct btrfs_root *extent_root, u64 start, 4218 u64 type) 4219 { 4220 struct btrfs_fs_info *info = extent_root->fs_info; 4221 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4222 struct list_head *cur; 4223 struct map_lookup *map = NULL; 4224 struct extent_map_tree *em_tree; 4225 struct extent_map *em; 4226 struct btrfs_device_info *devices_info = NULL; 4227 u64 total_avail; 4228 int num_stripes; /* total number of stripes to allocate */ 4229 int data_stripes; /* number of stripes that count for 4230 block group size */ 4231 int sub_stripes; /* sub_stripes info for map */ 4232 int dev_stripes; /* stripes per dev */ 4233 int devs_max; /* max devs to use */ 4234 int devs_min; /* min devs needed */ 4235 int devs_increment; /* ndevs has to be a multiple of this */ 4236 int ncopies; /* how many copies to data has */ 4237 int ret; 4238 u64 max_stripe_size; 4239 u64 max_chunk_size; 4240 u64 stripe_size; 4241 u64 num_bytes; 4242 u64 raid_stripe_len = BTRFS_STRIPE_LEN; 4243 int ndevs; 4244 int i; 4245 int j; 4246 int index; 4247 4248 BUG_ON(!alloc_profile_is_valid(type, 0)); 4249 4250 if (list_empty(&fs_devices->alloc_list)) 4251 return -ENOSPC; 4252 4253 index = __get_raid_index(type); 4254 4255 sub_stripes = btrfs_raid_array[index].sub_stripes; 4256 dev_stripes = btrfs_raid_array[index].dev_stripes; 4257 devs_max = btrfs_raid_array[index].devs_max; 4258 devs_min = btrfs_raid_array[index].devs_min; 4259 devs_increment = btrfs_raid_array[index].devs_increment; 4260 ncopies = btrfs_raid_array[index].ncopies; 4261 4262 if (type & BTRFS_BLOCK_GROUP_DATA) { 4263 max_stripe_size = 1024 * 1024 * 1024; 4264 max_chunk_size = 10 * max_stripe_size; 4265 if (!devs_max) 4266 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4267 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4268 /* for larger filesystems, use larger metadata chunks */ 4269 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) 4270 max_stripe_size = 1024 * 1024 * 1024; 4271 else 4272 max_stripe_size = 256 * 1024 * 1024; 4273 max_chunk_size = max_stripe_size; 4274 if (!devs_max) 4275 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4276 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4277 max_stripe_size = 32 * 1024 * 1024; 4278 max_chunk_size = 2 * max_stripe_size; 4279 if (!devs_max) 4280 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4281 } else { 4282 btrfs_err(info, "invalid chunk type 0x%llx requested", 4283 type); 4284 BUG_ON(1); 4285 } 4286 4287 /* we don't want a chunk larger than 10% of writeable space */ 4288 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4289 max_chunk_size); 4290 4291 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4292 GFP_NOFS); 4293 if (!devices_info) 4294 return -ENOMEM; 4295 4296 cur = fs_devices->alloc_list.next; 4297 4298 /* 4299 * in the first pass through the devices list, we gather information 4300 * about the available holes on each device. 4301 */ 4302 ndevs = 0; 4303 while (cur != &fs_devices->alloc_list) { 4304 struct btrfs_device *device; 4305 u64 max_avail; 4306 u64 dev_offset; 4307 4308 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 4309 4310 cur = cur->next; 4311 4312 if (!device->writeable) { 4313 WARN(1, KERN_ERR 4314 "BTRFS: read-only device in alloc_list\n"); 4315 continue; 4316 } 4317 4318 if (!device->in_fs_metadata || 4319 device->is_tgtdev_for_dev_replace) 4320 continue; 4321 4322 if (device->total_bytes > device->bytes_used) 4323 total_avail = device->total_bytes - device->bytes_used; 4324 else 4325 total_avail = 0; 4326 4327 /* If there is no space on this device, skip it. */ 4328 if (total_avail == 0) 4329 continue; 4330 4331 ret = find_free_dev_extent(trans, device, 4332 max_stripe_size * dev_stripes, 4333 &dev_offset, &max_avail); 4334 if (ret && ret != -ENOSPC) 4335 goto error; 4336 4337 if (ret == 0) 4338 max_avail = max_stripe_size * dev_stripes; 4339 4340 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4341 continue; 4342 4343 if (ndevs == fs_devices->rw_devices) { 4344 WARN(1, "%s: found more than %llu devices\n", 4345 __func__, fs_devices->rw_devices); 4346 break; 4347 } 4348 devices_info[ndevs].dev_offset = dev_offset; 4349 devices_info[ndevs].max_avail = max_avail; 4350 devices_info[ndevs].total_avail = total_avail; 4351 devices_info[ndevs].dev = device; 4352 ++ndevs; 4353 } 4354 4355 /* 4356 * now sort the devices by hole size / available space 4357 */ 4358 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4359 btrfs_cmp_device_info, NULL); 4360 4361 /* round down to number of usable stripes */ 4362 ndevs -= ndevs % devs_increment; 4363 4364 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4365 ret = -ENOSPC; 4366 goto error; 4367 } 4368 4369 if (devs_max && ndevs > devs_max) 4370 ndevs = devs_max; 4371 /* 4372 * the primary goal is to maximize the number of stripes, so use as many 4373 * devices as possible, even if the stripes are not maximum sized. 4374 */ 4375 stripe_size = devices_info[ndevs-1].max_avail; 4376 num_stripes = ndevs * dev_stripes; 4377 4378 /* 4379 * this will have to be fixed for RAID1 and RAID10 over 4380 * more drives 4381 */ 4382 data_stripes = num_stripes / ncopies; 4383 4384 if (type & BTRFS_BLOCK_GROUP_RAID5) { 4385 raid_stripe_len = find_raid56_stripe_len(ndevs - 1, 4386 btrfs_super_stripesize(info->super_copy)); 4387 data_stripes = num_stripes - 1; 4388 } 4389 if (type & BTRFS_BLOCK_GROUP_RAID6) { 4390 raid_stripe_len = find_raid56_stripe_len(ndevs - 2, 4391 btrfs_super_stripesize(info->super_copy)); 4392 data_stripes = num_stripes - 2; 4393 } 4394 4395 /* 4396 * Use the number of data stripes to figure out how big this chunk 4397 * is really going to be in terms of logical address space, 4398 * and compare that answer with the max chunk size 4399 */ 4400 if (stripe_size * data_stripes > max_chunk_size) { 4401 u64 mask = (1ULL << 24) - 1; 4402 4403 stripe_size = div_u64(max_chunk_size, data_stripes); 4404 4405 /* bump the answer up to a 16MB boundary */ 4406 stripe_size = (stripe_size + mask) & ~mask; 4407 4408 /* but don't go higher than the limits we found 4409 * while searching for free extents 4410 */ 4411 if (stripe_size > devices_info[ndevs-1].max_avail) 4412 stripe_size = devices_info[ndevs-1].max_avail; 4413 } 4414 4415 stripe_size = div_u64(stripe_size, dev_stripes); 4416 4417 /* align to BTRFS_STRIPE_LEN */ 4418 stripe_size = div_u64(stripe_size, raid_stripe_len); 4419 stripe_size *= raid_stripe_len; 4420 4421 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4422 if (!map) { 4423 ret = -ENOMEM; 4424 goto error; 4425 } 4426 map->num_stripes = num_stripes; 4427 4428 for (i = 0; i < ndevs; ++i) { 4429 for (j = 0; j < dev_stripes; ++j) { 4430 int s = i * dev_stripes + j; 4431 map->stripes[s].dev = devices_info[i].dev; 4432 map->stripes[s].physical = devices_info[i].dev_offset + 4433 j * stripe_size; 4434 } 4435 } 4436 map->sector_size = extent_root->sectorsize; 4437 map->stripe_len = raid_stripe_len; 4438 map->io_align = raid_stripe_len; 4439 map->io_width = raid_stripe_len; 4440 map->type = type; 4441 map->sub_stripes = sub_stripes; 4442 4443 num_bytes = stripe_size * data_stripes; 4444 4445 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 4446 4447 em = alloc_extent_map(); 4448 if (!em) { 4449 kfree(map); 4450 ret = -ENOMEM; 4451 goto error; 4452 } 4453 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4454 em->bdev = (struct block_device *)map; 4455 em->start = start; 4456 em->len = num_bytes; 4457 em->block_start = 0; 4458 em->block_len = em->len; 4459 em->orig_block_len = stripe_size; 4460 4461 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4462 write_lock(&em_tree->lock); 4463 ret = add_extent_mapping(em_tree, em, 0); 4464 if (!ret) { 4465 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4466 atomic_inc(&em->refs); 4467 } 4468 write_unlock(&em_tree->lock); 4469 if (ret) { 4470 free_extent_map(em); 4471 goto error; 4472 } 4473 4474 ret = btrfs_make_block_group(trans, extent_root, 0, type, 4475 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4476 start, num_bytes); 4477 if (ret) 4478 goto error_del_extent; 4479 4480 for (i = 0; i < map->num_stripes; i++) { 4481 num_bytes = map->stripes[i].dev->bytes_used + stripe_size; 4482 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); 4483 } 4484 4485 spin_lock(&extent_root->fs_info->free_chunk_lock); 4486 extent_root->fs_info->free_chunk_space -= (stripe_size * 4487 map->num_stripes); 4488 spin_unlock(&extent_root->fs_info->free_chunk_lock); 4489 4490 free_extent_map(em); 4491 check_raid56_incompat_flag(extent_root->fs_info, type); 4492 4493 kfree(devices_info); 4494 return 0; 4495 4496 error_del_extent: 4497 write_lock(&em_tree->lock); 4498 remove_extent_mapping(em_tree, em); 4499 write_unlock(&em_tree->lock); 4500 4501 /* One for our allocation */ 4502 free_extent_map(em); 4503 /* One for the tree reference */ 4504 free_extent_map(em); 4505 /* One for the pending_chunks list reference */ 4506 free_extent_map(em); 4507 error: 4508 kfree(devices_info); 4509 return ret; 4510 } 4511 4512 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4513 struct btrfs_root *extent_root, 4514 u64 chunk_offset, u64 chunk_size) 4515 { 4516 struct btrfs_key key; 4517 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 4518 struct btrfs_device *device; 4519 struct btrfs_chunk *chunk; 4520 struct btrfs_stripe *stripe; 4521 struct extent_map_tree *em_tree; 4522 struct extent_map *em; 4523 struct map_lookup *map; 4524 size_t item_size; 4525 u64 dev_offset; 4526 u64 stripe_size; 4527 int i = 0; 4528 int ret; 4529 4530 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4531 read_lock(&em_tree->lock); 4532 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size); 4533 read_unlock(&em_tree->lock); 4534 4535 if (!em) { 4536 btrfs_crit(extent_root->fs_info, "unable to find logical " 4537 "%Lu len %Lu", chunk_offset, chunk_size); 4538 return -EINVAL; 4539 } 4540 4541 if (em->start != chunk_offset || em->len != chunk_size) { 4542 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted" 4543 " %Lu-%Lu, found %Lu-%Lu", chunk_offset, 4544 chunk_size, em->start, em->len); 4545 free_extent_map(em); 4546 return -EINVAL; 4547 } 4548 4549 map = (struct map_lookup *)em->bdev; 4550 item_size = btrfs_chunk_item_size(map->num_stripes); 4551 stripe_size = em->orig_block_len; 4552 4553 chunk = kzalloc(item_size, GFP_NOFS); 4554 if (!chunk) { 4555 ret = -ENOMEM; 4556 goto out; 4557 } 4558 4559 for (i = 0; i < map->num_stripes; i++) { 4560 device = map->stripes[i].dev; 4561 dev_offset = map->stripes[i].physical; 4562 4563 ret = btrfs_update_device(trans, device); 4564 if (ret) 4565 goto out; 4566 ret = btrfs_alloc_dev_extent(trans, device, 4567 chunk_root->root_key.objectid, 4568 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4569 chunk_offset, dev_offset, 4570 stripe_size); 4571 if (ret) 4572 goto out; 4573 } 4574 4575 stripe = &chunk->stripe; 4576 for (i = 0; i < map->num_stripes; i++) { 4577 device = map->stripes[i].dev; 4578 dev_offset = map->stripes[i].physical; 4579 4580 btrfs_set_stack_stripe_devid(stripe, device->devid); 4581 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4582 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4583 stripe++; 4584 } 4585 4586 btrfs_set_stack_chunk_length(chunk, chunk_size); 4587 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4588 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4589 btrfs_set_stack_chunk_type(chunk, map->type); 4590 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4591 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4592 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4593 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 4594 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4595 4596 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4597 key.type = BTRFS_CHUNK_ITEM_KEY; 4598 key.offset = chunk_offset; 4599 4600 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4601 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4602 /* 4603 * TODO: Cleanup of inserted chunk root in case of 4604 * failure. 4605 */ 4606 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 4607 item_size); 4608 } 4609 4610 out: 4611 kfree(chunk); 4612 free_extent_map(em); 4613 return ret; 4614 } 4615 4616 /* 4617 * Chunk allocation falls into two parts. The first part does works 4618 * that make the new allocated chunk useable, but not do any operation 4619 * that modifies the chunk tree. The second part does the works that 4620 * require modifying the chunk tree. This division is important for the 4621 * bootstrap process of adding storage to a seed btrfs. 4622 */ 4623 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4624 struct btrfs_root *extent_root, u64 type) 4625 { 4626 u64 chunk_offset; 4627 4628 chunk_offset = find_next_chunk(extent_root->fs_info); 4629 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type); 4630 } 4631 4632 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 4633 struct btrfs_root *root, 4634 struct btrfs_device *device) 4635 { 4636 u64 chunk_offset; 4637 u64 sys_chunk_offset; 4638 u64 alloc_profile; 4639 struct btrfs_fs_info *fs_info = root->fs_info; 4640 struct btrfs_root *extent_root = fs_info->extent_root; 4641 int ret; 4642 4643 chunk_offset = find_next_chunk(fs_info); 4644 alloc_profile = btrfs_get_alloc_profile(extent_root, 0); 4645 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset, 4646 alloc_profile); 4647 if (ret) 4648 return ret; 4649 4650 sys_chunk_offset = find_next_chunk(root->fs_info); 4651 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); 4652 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset, 4653 alloc_profile); 4654 return ret; 4655 } 4656 4657 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 4658 { 4659 int max_errors; 4660 4661 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 4662 BTRFS_BLOCK_GROUP_RAID10 | 4663 BTRFS_BLOCK_GROUP_RAID5 | 4664 BTRFS_BLOCK_GROUP_DUP)) { 4665 max_errors = 1; 4666 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 4667 max_errors = 2; 4668 } else { 4669 max_errors = 0; 4670 } 4671 4672 return max_errors; 4673 } 4674 4675 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 4676 { 4677 struct extent_map *em; 4678 struct map_lookup *map; 4679 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4680 int readonly = 0; 4681 int miss_ndevs = 0; 4682 int i; 4683 4684 read_lock(&map_tree->map_tree.lock); 4685 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 4686 read_unlock(&map_tree->map_tree.lock); 4687 if (!em) 4688 return 1; 4689 4690 map = (struct map_lookup *)em->bdev; 4691 for (i = 0; i < map->num_stripes; i++) { 4692 if (map->stripes[i].dev->missing) { 4693 miss_ndevs++; 4694 continue; 4695 } 4696 4697 if (!map->stripes[i].dev->writeable) { 4698 readonly = 1; 4699 goto end; 4700 } 4701 } 4702 4703 /* 4704 * If the number of missing devices is larger than max errors, 4705 * we can not write the data into that chunk successfully, so 4706 * set it readonly. 4707 */ 4708 if (miss_ndevs > btrfs_chunk_max_errors(map)) 4709 readonly = 1; 4710 end: 4711 free_extent_map(em); 4712 return readonly; 4713 } 4714 4715 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 4716 { 4717 extent_map_tree_init(&tree->map_tree); 4718 } 4719 4720 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 4721 { 4722 struct extent_map *em; 4723 4724 while (1) { 4725 write_lock(&tree->map_tree.lock); 4726 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 4727 if (em) 4728 remove_extent_mapping(&tree->map_tree, em); 4729 write_unlock(&tree->map_tree.lock); 4730 if (!em) 4731 break; 4732 /* once for us */ 4733 free_extent_map(em); 4734 /* once for the tree */ 4735 free_extent_map(em); 4736 } 4737 } 4738 4739 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 4740 { 4741 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 4742 struct extent_map *em; 4743 struct map_lookup *map; 4744 struct extent_map_tree *em_tree = &map_tree->map_tree; 4745 int ret; 4746 4747 read_lock(&em_tree->lock); 4748 em = lookup_extent_mapping(em_tree, logical, len); 4749 read_unlock(&em_tree->lock); 4750 4751 /* 4752 * We could return errors for these cases, but that could get ugly and 4753 * we'd probably do the same thing which is just not do anything else 4754 * and exit, so return 1 so the callers don't try to use other copies. 4755 */ 4756 if (!em) { 4757 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical, 4758 logical+len); 4759 return 1; 4760 } 4761 4762 if (em->start > logical || em->start + em->len < logical) { 4763 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got " 4764 "%Lu-%Lu", logical, logical+len, em->start, 4765 em->start + em->len); 4766 free_extent_map(em); 4767 return 1; 4768 } 4769 4770 map = (struct map_lookup *)em->bdev; 4771 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 4772 ret = map->num_stripes; 4773 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 4774 ret = map->sub_stripes; 4775 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 4776 ret = 2; 4777 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 4778 ret = 3; 4779 else 4780 ret = 1; 4781 free_extent_map(em); 4782 4783 btrfs_dev_replace_lock(&fs_info->dev_replace); 4784 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) 4785 ret++; 4786 btrfs_dev_replace_unlock(&fs_info->dev_replace); 4787 4788 return ret; 4789 } 4790 4791 unsigned long btrfs_full_stripe_len(struct btrfs_root *root, 4792 struct btrfs_mapping_tree *map_tree, 4793 u64 logical) 4794 { 4795 struct extent_map *em; 4796 struct map_lookup *map; 4797 struct extent_map_tree *em_tree = &map_tree->map_tree; 4798 unsigned long len = root->sectorsize; 4799 4800 read_lock(&em_tree->lock); 4801 em = lookup_extent_mapping(em_tree, logical, len); 4802 read_unlock(&em_tree->lock); 4803 BUG_ON(!em); 4804 4805 BUG_ON(em->start > logical || em->start + em->len < logical); 4806 map = (struct map_lookup *)em->bdev; 4807 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 4808 len = map->stripe_len * nr_data_stripes(map); 4809 free_extent_map(em); 4810 return len; 4811 } 4812 4813 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, 4814 u64 logical, u64 len, int mirror_num) 4815 { 4816 struct extent_map *em; 4817 struct map_lookup *map; 4818 struct extent_map_tree *em_tree = &map_tree->map_tree; 4819 int ret = 0; 4820 4821 read_lock(&em_tree->lock); 4822 em = lookup_extent_mapping(em_tree, logical, len); 4823 read_unlock(&em_tree->lock); 4824 BUG_ON(!em); 4825 4826 BUG_ON(em->start > logical || em->start + em->len < logical); 4827 map = (struct map_lookup *)em->bdev; 4828 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 4829 ret = 1; 4830 free_extent_map(em); 4831 return ret; 4832 } 4833 4834 static int find_live_mirror(struct btrfs_fs_info *fs_info, 4835 struct map_lookup *map, int first, int num, 4836 int optimal, int dev_replace_is_ongoing) 4837 { 4838 int i; 4839 int tolerance; 4840 struct btrfs_device *srcdev; 4841 4842 if (dev_replace_is_ongoing && 4843 fs_info->dev_replace.cont_reading_from_srcdev_mode == 4844 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 4845 srcdev = fs_info->dev_replace.srcdev; 4846 else 4847 srcdev = NULL; 4848 4849 /* 4850 * try to avoid the drive that is the source drive for a 4851 * dev-replace procedure, only choose it if no other non-missing 4852 * mirror is available 4853 */ 4854 for (tolerance = 0; tolerance < 2; tolerance++) { 4855 if (map->stripes[optimal].dev->bdev && 4856 (tolerance || map->stripes[optimal].dev != srcdev)) 4857 return optimal; 4858 for (i = first; i < first + num; i++) { 4859 if (map->stripes[i].dev->bdev && 4860 (tolerance || map->stripes[i].dev != srcdev)) 4861 return i; 4862 } 4863 } 4864 4865 /* we couldn't find one that doesn't fail. Just return something 4866 * and the io error handling code will clean up eventually 4867 */ 4868 return optimal; 4869 } 4870 4871 static inline int parity_smaller(u64 a, u64 b) 4872 { 4873 return a > b; 4874 } 4875 4876 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 4877 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 4878 { 4879 struct btrfs_bio_stripe s; 4880 int i; 4881 u64 l; 4882 int again = 1; 4883 4884 while (again) { 4885 again = 0; 4886 for (i = 0; i < num_stripes - 1; i++) { 4887 if (parity_smaller(bbio->raid_map[i], 4888 bbio->raid_map[i+1])) { 4889 s = bbio->stripes[i]; 4890 l = bbio->raid_map[i]; 4891 bbio->stripes[i] = bbio->stripes[i+1]; 4892 bbio->raid_map[i] = bbio->raid_map[i+1]; 4893 bbio->stripes[i+1] = s; 4894 bbio->raid_map[i+1] = l; 4895 4896 again = 1; 4897 } 4898 } 4899 } 4900 } 4901 4902 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 4903 { 4904 struct btrfs_bio *bbio = kzalloc( 4905 /* the size of the btrfs_bio */ 4906 sizeof(struct btrfs_bio) + 4907 /* plus the variable array for the stripes */ 4908 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 4909 /* plus the variable array for the tgt dev */ 4910 sizeof(int) * (real_stripes) + 4911 /* 4912 * plus the raid_map, which includes both the tgt dev 4913 * and the stripes 4914 */ 4915 sizeof(u64) * (total_stripes), 4916 GFP_NOFS); 4917 if (!bbio) 4918 return NULL; 4919 4920 atomic_set(&bbio->error, 0); 4921 atomic_set(&bbio->refs, 1); 4922 4923 return bbio; 4924 } 4925 4926 void btrfs_get_bbio(struct btrfs_bio *bbio) 4927 { 4928 WARN_ON(!atomic_read(&bbio->refs)); 4929 atomic_inc(&bbio->refs); 4930 } 4931 4932 void btrfs_put_bbio(struct btrfs_bio *bbio) 4933 { 4934 if (!bbio) 4935 return; 4936 if (atomic_dec_and_test(&bbio->refs)) 4937 kfree(bbio); 4938 } 4939 4940 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 4941 u64 logical, u64 *length, 4942 struct btrfs_bio **bbio_ret, 4943 int mirror_num, int need_raid_map) 4944 { 4945 struct extent_map *em; 4946 struct map_lookup *map; 4947 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 4948 struct extent_map_tree *em_tree = &map_tree->map_tree; 4949 u64 offset; 4950 u64 stripe_offset; 4951 u64 stripe_end_offset; 4952 u64 stripe_nr; 4953 u64 stripe_nr_orig; 4954 u64 stripe_nr_end; 4955 u64 stripe_len; 4956 u32 stripe_index; 4957 int i; 4958 int ret = 0; 4959 int num_stripes; 4960 int max_errors = 0; 4961 int tgtdev_indexes = 0; 4962 struct btrfs_bio *bbio = NULL; 4963 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 4964 int dev_replace_is_ongoing = 0; 4965 int num_alloc_stripes; 4966 int patch_the_first_stripe_for_dev_replace = 0; 4967 u64 physical_to_patch_in_first_stripe = 0; 4968 u64 raid56_full_stripe_start = (u64)-1; 4969 4970 read_lock(&em_tree->lock); 4971 em = lookup_extent_mapping(em_tree, logical, *length); 4972 read_unlock(&em_tree->lock); 4973 4974 if (!em) { 4975 btrfs_crit(fs_info, "unable to find logical %llu len %llu", 4976 logical, *length); 4977 return -EINVAL; 4978 } 4979 4980 if (em->start > logical || em->start + em->len < logical) { 4981 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, " 4982 "found %Lu-%Lu", logical, em->start, 4983 em->start + em->len); 4984 free_extent_map(em); 4985 return -EINVAL; 4986 } 4987 4988 map = (struct map_lookup *)em->bdev; 4989 offset = logical - em->start; 4990 4991 stripe_len = map->stripe_len; 4992 stripe_nr = offset; 4993 /* 4994 * stripe_nr counts the total number of stripes we have to stride 4995 * to get to this block 4996 */ 4997 stripe_nr = div64_u64(stripe_nr, stripe_len); 4998 4999 stripe_offset = stripe_nr * stripe_len; 5000 BUG_ON(offset < stripe_offset); 5001 5002 /* stripe_offset is the offset of this block in its stripe*/ 5003 stripe_offset = offset - stripe_offset; 5004 5005 /* if we're here for raid56, we need to know the stripe aligned start */ 5006 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5007 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 5008 raid56_full_stripe_start = offset; 5009 5010 /* allow a write of a full stripe, but make sure we don't 5011 * allow straddling of stripes 5012 */ 5013 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5014 full_stripe_len); 5015 raid56_full_stripe_start *= full_stripe_len; 5016 } 5017 5018 if (rw & REQ_DISCARD) { 5019 /* we don't discard raid56 yet */ 5020 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5021 ret = -EOPNOTSUPP; 5022 goto out; 5023 } 5024 *length = min_t(u64, em->len - offset, *length); 5025 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5026 u64 max_len; 5027 /* For writes to RAID[56], allow a full stripeset across all disks. 5028 For other RAID types and for RAID[56] reads, just allow a single 5029 stripe (on a single disk). */ 5030 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 5031 (rw & REQ_WRITE)) { 5032 max_len = stripe_len * nr_data_stripes(map) - 5033 (offset - raid56_full_stripe_start); 5034 } else { 5035 /* we limit the length of each bio to what fits in a stripe */ 5036 max_len = stripe_len - stripe_offset; 5037 } 5038 *length = min_t(u64, em->len - offset, max_len); 5039 } else { 5040 *length = em->len - offset; 5041 } 5042 5043 /* This is for when we're called from btrfs_merge_bio_hook() and all 5044 it cares about is the length */ 5045 if (!bbio_ret) 5046 goto out; 5047 5048 btrfs_dev_replace_lock(dev_replace); 5049 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5050 if (!dev_replace_is_ongoing) 5051 btrfs_dev_replace_unlock(dev_replace); 5052 5053 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5054 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) && 5055 dev_replace->tgtdev != NULL) { 5056 /* 5057 * in dev-replace case, for repair case (that's the only 5058 * case where the mirror is selected explicitly when 5059 * calling btrfs_map_block), blocks left of the left cursor 5060 * can also be read from the target drive. 5061 * For REQ_GET_READ_MIRRORS, the target drive is added as 5062 * the last one to the array of stripes. For READ, it also 5063 * needs to be supported using the same mirror number. 5064 * If the requested block is not left of the left cursor, 5065 * EIO is returned. This can happen because btrfs_num_copies() 5066 * returns one more in the dev-replace case. 5067 */ 5068 u64 tmp_length = *length; 5069 struct btrfs_bio *tmp_bbio = NULL; 5070 int tmp_num_stripes; 5071 u64 srcdev_devid = dev_replace->srcdev->devid; 5072 int index_srcdev = 0; 5073 int found = 0; 5074 u64 physical_of_found = 0; 5075 5076 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, 5077 logical, &tmp_length, &tmp_bbio, 0, 0); 5078 if (ret) { 5079 WARN_ON(tmp_bbio != NULL); 5080 goto out; 5081 } 5082 5083 tmp_num_stripes = tmp_bbio->num_stripes; 5084 if (mirror_num > tmp_num_stripes) { 5085 /* 5086 * REQ_GET_READ_MIRRORS does not contain this 5087 * mirror, that means that the requested area 5088 * is not left of the left cursor 5089 */ 5090 ret = -EIO; 5091 btrfs_put_bbio(tmp_bbio); 5092 goto out; 5093 } 5094 5095 /* 5096 * process the rest of the function using the mirror_num 5097 * of the source drive. Therefore look it up first. 5098 * At the end, patch the device pointer to the one of the 5099 * target drive. 5100 */ 5101 for (i = 0; i < tmp_num_stripes; i++) { 5102 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) { 5103 /* 5104 * In case of DUP, in order to keep it 5105 * simple, only add the mirror with the 5106 * lowest physical address 5107 */ 5108 if (found && 5109 physical_of_found <= 5110 tmp_bbio->stripes[i].physical) 5111 continue; 5112 index_srcdev = i; 5113 found = 1; 5114 physical_of_found = 5115 tmp_bbio->stripes[i].physical; 5116 } 5117 } 5118 5119 if (found) { 5120 mirror_num = index_srcdev + 1; 5121 patch_the_first_stripe_for_dev_replace = 1; 5122 physical_to_patch_in_first_stripe = physical_of_found; 5123 } else { 5124 WARN_ON(1); 5125 ret = -EIO; 5126 btrfs_put_bbio(tmp_bbio); 5127 goto out; 5128 } 5129 5130 btrfs_put_bbio(tmp_bbio); 5131 } else if (mirror_num > map->num_stripes) { 5132 mirror_num = 0; 5133 } 5134 5135 num_stripes = 1; 5136 stripe_index = 0; 5137 stripe_nr_orig = stripe_nr; 5138 stripe_nr_end = ALIGN(offset + *length, map->stripe_len); 5139 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len); 5140 stripe_end_offset = stripe_nr_end * map->stripe_len - 5141 (offset + *length); 5142 5143 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5144 if (rw & REQ_DISCARD) 5145 num_stripes = min_t(u64, map->num_stripes, 5146 stripe_nr_end - stripe_nr_orig); 5147 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5148 &stripe_index); 5149 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))) 5150 mirror_num = 1; 5151 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 5152 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) 5153 num_stripes = map->num_stripes; 5154 else if (mirror_num) 5155 stripe_index = mirror_num - 1; 5156 else { 5157 stripe_index = find_live_mirror(fs_info, map, 0, 5158 map->num_stripes, 5159 current->pid % map->num_stripes, 5160 dev_replace_is_ongoing); 5161 mirror_num = stripe_index + 1; 5162 } 5163 5164 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5165 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) { 5166 num_stripes = map->num_stripes; 5167 } else if (mirror_num) { 5168 stripe_index = mirror_num - 1; 5169 } else { 5170 mirror_num = 1; 5171 } 5172 5173 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5174 u32 factor = map->num_stripes / map->sub_stripes; 5175 5176 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5177 stripe_index *= map->sub_stripes; 5178 5179 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5180 num_stripes = map->sub_stripes; 5181 else if (rw & REQ_DISCARD) 5182 num_stripes = min_t(u64, map->sub_stripes * 5183 (stripe_nr_end - stripe_nr_orig), 5184 map->num_stripes); 5185 else if (mirror_num) 5186 stripe_index += mirror_num - 1; 5187 else { 5188 int old_stripe_index = stripe_index; 5189 stripe_index = find_live_mirror(fs_info, map, 5190 stripe_index, 5191 map->sub_stripes, stripe_index + 5192 current->pid % map->sub_stripes, 5193 dev_replace_is_ongoing); 5194 mirror_num = stripe_index - old_stripe_index + 1; 5195 } 5196 5197 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5198 if (need_raid_map && 5199 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) || 5200 mirror_num > 1)) { 5201 /* push stripe_nr back to the start of the full stripe */ 5202 stripe_nr = div_u64(raid56_full_stripe_start, 5203 stripe_len * nr_data_stripes(map)); 5204 5205 /* RAID[56] write or recovery. Return all stripes */ 5206 num_stripes = map->num_stripes; 5207 max_errors = nr_parity_stripes(map); 5208 5209 *length = map->stripe_len; 5210 stripe_index = 0; 5211 stripe_offset = 0; 5212 } else { 5213 /* 5214 * Mirror #0 or #1 means the original data block. 5215 * Mirror #2 is RAID5 parity block. 5216 * Mirror #3 is RAID6 Q block. 5217 */ 5218 stripe_nr = div_u64_rem(stripe_nr, 5219 nr_data_stripes(map), &stripe_index); 5220 if (mirror_num > 1) 5221 stripe_index = nr_data_stripes(map) + 5222 mirror_num - 2; 5223 5224 /* We distribute the parity blocks across stripes */ 5225 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 5226 &stripe_index); 5227 if (!(rw & (REQ_WRITE | REQ_DISCARD | 5228 REQ_GET_READ_MIRRORS)) && mirror_num <= 1) 5229 mirror_num = 1; 5230 } 5231 } else { 5232 /* 5233 * after this, stripe_nr is the number of stripes on this 5234 * device we have to walk to find the data, and stripe_index is 5235 * the number of our device in the stripe array 5236 */ 5237 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5238 &stripe_index); 5239 mirror_num = stripe_index + 1; 5240 } 5241 BUG_ON(stripe_index >= map->num_stripes); 5242 5243 num_alloc_stripes = num_stripes; 5244 if (dev_replace_is_ongoing) { 5245 if (rw & (REQ_WRITE | REQ_DISCARD)) 5246 num_alloc_stripes <<= 1; 5247 if (rw & REQ_GET_READ_MIRRORS) 5248 num_alloc_stripes++; 5249 tgtdev_indexes = num_stripes; 5250 } 5251 5252 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 5253 if (!bbio) { 5254 ret = -ENOMEM; 5255 goto out; 5256 } 5257 if (dev_replace_is_ongoing) 5258 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 5259 5260 /* build raid_map */ 5261 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 5262 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) || 5263 mirror_num > 1)) { 5264 u64 tmp; 5265 unsigned rot; 5266 5267 bbio->raid_map = (u64 *)((void *)bbio->stripes + 5268 sizeof(struct btrfs_bio_stripe) * 5269 num_alloc_stripes + 5270 sizeof(int) * tgtdev_indexes); 5271 5272 /* Work out the disk rotation on this stripe-set */ 5273 div_u64_rem(stripe_nr, num_stripes, &rot); 5274 5275 /* Fill in the logical address of each stripe */ 5276 tmp = stripe_nr * nr_data_stripes(map); 5277 for (i = 0; i < nr_data_stripes(map); i++) 5278 bbio->raid_map[(i+rot) % num_stripes] = 5279 em->start + (tmp + i) * map->stripe_len; 5280 5281 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 5282 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5283 bbio->raid_map[(i+rot+1) % num_stripes] = 5284 RAID6_Q_STRIPE; 5285 } 5286 5287 if (rw & REQ_DISCARD) { 5288 u32 factor = 0; 5289 u32 sub_stripes = 0; 5290 u64 stripes_per_dev = 0; 5291 u32 remaining_stripes = 0; 5292 u32 last_stripe = 0; 5293 5294 if (map->type & 5295 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 5296 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5297 sub_stripes = 1; 5298 else 5299 sub_stripes = map->sub_stripes; 5300 5301 factor = map->num_stripes / sub_stripes; 5302 stripes_per_dev = div_u64_rem(stripe_nr_end - 5303 stripe_nr_orig, 5304 factor, 5305 &remaining_stripes); 5306 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5307 last_stripe *= sub_stripes; 5308 } 5309 5310 for (i = 0; i < num_stripes; i++) { 5311 bbio->stripes[i].physical = 5312 map->stripes[stripe_index].physical + 5313 stripe_offset + stripe_nr * map->stripe_len; 5314 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5315 5316 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5317 BTRFS_BLOCK_GROUP_RAID10)) { 5318 bbio->stripes[i].length = stripes_per_dev * 5319 map->stripe_len; 5320 5321 if (i / sub_stripes < remaining_stripes) 5322 bbio->stripes[i].length += 5323 map->stripe_len; 5324 5325 /* 5326 * Special for the first stripe and 5327 * the last stripe: 5328 * 5329 * |-------|...|-------| 5330 * |----------| 5331 * off end_off 5332 */ 5333 if (i < sub_stripes) 5334 bbio->stripes[i].length -= 5335 stripe_offset; 5336 5337 if (stripe_index >= last_stripe && 5338 stripe_index <= (last_stripe + 5339 sub_stripes - 1)) 5340 bbio->stripes[i].length -= 5341 stripe_end_offset; 5342 5343 if (i == sub_stripes - 1) 5344 stripe_offset = 0; 5345 } else 5346 bbio->stripes[i].length = *length; 5347 5348 stripe_index++; 5349 if (stripe_index == map->num_stripes) { 5350 /* This could only happen for RAID0/10 */ 5351 stripe_index = 0; 5352 stripe_nr++; 5353 } 5354 } 5355 } else { 5356 for (i = 0; i < num_stripes; i++) { 5357 bbio->stripes[i].physical = 5358 map->stripes[stripe_index].physical + 5359 stripe_offset + 5360 stripe_nr * map->stripe_len; 5361 bbio->stripes[i].dev = 5362 map->stripes[stripe_index].dev; 5363 stripe_index++; 5364 } 5365 } 5366 5367 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5368 max_errors = btrfs_chunk_max_errors(map); 5369 5370 if (bbio->raid_map) 5371 sort_parity_stripes(bbio, num_stripes); 5372 5373 tgtdev_indexes = 0; 5374 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) && 5375 dev_replace->tgtdev != NULL) { 5376 int index_where_to_add; 5377 u64 srcdev_devid = dev_replace->srcdev->devid; 5378 5379 /* 5380 * duplicate the write operations while the dev replace 5381 * procedure is running. Since the copying of the old disk 5382 * to the new disk takes place at run time while the 5383 * filesystem is mounted writable, the regular write 5384 * operations to the old disk have to be duplicated to go 5385 * to the new disk as well. 5386 * Note that device->missing is handled by the caller, and 5387 * that the write to the old disk is already set up in the 5388 * stripes array. 5389 */ 5390 index_where_to_add = num_stripes; 5391 for (i = 0; i < num_stripes; i++) { 5392 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5393 /* write to new disk, too */ 5394 struct btrfs_bio_stripe *new = 5395 bbio->stripes + index_where_to_add; 5396 struct btrfs_bio_stripe *old = 5397 bbio->stripes + i; 5398 5399 new->physical = old->physical; 5400 new->length = old->length; 5401 new->dev = dev_replace->tgtdev; 5402 bbio->tgtdev_map[i] = index_where_to_add; 5403 index_where_to_add++; 5404 max_errors++; 5405 tgtdev_indexes++; 5406 } 5407 } 5408 num_stripes = index_where_to_add; 5409 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) && 5410 dev_replace->tgtdev != NULL) { 5411 u64 srcdev_devid = dev_replace->srcdev->devid; 5412 int index_srcdev = 0; 5413 int found = 0; 5414 u64 physical_of_found = 0; 5415 5416 /* 5417 * During the dev-replace procedure, the target drive can 5418 * also be used to read data in case it is needed to repair 5419 * a corrupt block elsewhere. This is possible if the 5420 * requested area is left of the left cursor. In this area, 5421 * the target drive is a full copy of the source drive. 5422 */ 5423 for (i = 0; i < num_stripes; i++) { 5424 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5425 /* 5426 * In case of DUP, in order to keep it 5427 * simple, only add the mirror with the 5428 * lowest physical address 5429 */ 5430 if (found && 5431 physical_of_found <= 5432 bbio->stripes[i].physical) 5433 continue; 5434 index_srcdev = i; 5435 found = 1; 5436 physical_of_found = bbio->stripes[i].physical; 5437 } 5438 } 5439 if (found) { 5440 if (physical_of_found + map->stripe_len <= 5441 dev_replace->cursor_left) { 5442 struct btrfs_bio_stripe *tgtdev_stripe = 5443 bbio->stripes + num_stripes; 5444 5445 tgtdev_stripe->physical = physical_of_found; 5446 tgtdev_stripe->length = 5447 bbio->stripes[index_srcdev].length; 5448 tgtdev_stripe->dev = dev_replace->tgtdev; 5449 bbio->tgtdev_map[index_srcdev] = num_stripes; 5450 5451 tgtdev_indexes++; 5452 num_stripes++; 5453 } 5454 } 5455 } 5456 5457 *bbio_ret = bbio; 5458 bbio->map_type = map->type; 5459 bbio->num_stripes = num_stripes; 5460 bbio->max_errors = max_errors; 5461 bbio->mirror_num = mirror_num; 5462 bbio->num_tgtdevs = tgtdev_indexes; 5463 5464 /* 5465 * this is the case that REQ_READ && dev_replace_is_ongoing && 5466 * mirror_num == num_stripes + 1 && dev_replace target drive is 5467 * available as a mirror 5468 */ 5469 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5470 WARN_ON(num_stripes > 1); 5471 bbio->stripes[0].dev = dev_replace->tgtdev; 5472 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5473 bbio->mirror_num = map->num_stripes + 1; 5474 } 5475 out: 5476 if (dev_replace_is_ongoing) 5477 btrfs_dev_replace_unlock(dev_replace); 5478 free_extent_map(em); 5479 return ret; 5480 } 5481 5482 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5483 u64 logical, u64 *length, 5484 struct btrfs_bio **bbio_ret, int mirror_num) 5485 { 5486 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5487 mirror_num, 0); 5488 } 5489 5490 /* For Scrub/replace */ 5491 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw, 5492 u64 logical, u64 *length, 5493 struct btrfs_bio **bbio_ret, int mirror_num, 5494 int need_raid_map) 5495 { 5496 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5497 mirror_num, need_raid_map); 5498 } 5499 5500 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 5501 u64 chunk_start, u64 physical, u64 devid, 5502 u64 **logical, int *naddrs, int *stripe_len) 5503 { 5504 struct extent_map_tree *em_tree = &map_tree->map_tree; 5505 struct extent_map *em; 5506 struct map_lookup *map; 5507 u64 *buf; 5508 u64 bytenr; 5509 u64 length; 5510 u64 stripe_nr; 5511 u64 rmap_len; 5512 int i, j, nr = 0; 5513 5514 read_lock(&em_tree->lock); 5515 em = lookup_extent_mapping(em_tree, chunk_start, 1); 5516 read_unlock(&em_tree->lock); 5517 5518 if (!em) { 5519 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n", 5520 chunk_start); 5521 return -EIO; 5522 } 5523 5524 if (em->start != chunk_start) { 5525 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n", 5526 em->start, chunk_start); 5527 free_extent_map(em); 5528 return -EIO; 5529 } 5530 map = (struct map_lookup *)em->bdev; 5531 5532 length = em->len; 5533 rmap_len = map->stripe_len; 5534 5535 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5536 length = div_u64(length, map->num_stripes / map->sub_stripes); 5537 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5538 length = div_u64(length, map->num_stripes); 5539 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5540 length = div_u64(length, nr_data_stripes(map)); 5541 rmap_len = map->stripe_len * nr_data_stripes(map); 5542 } 5543 5544 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 5545 BUG_ON(!buf); /* -ENOMEM */ 5546 5547 for (i = 0; i < map->num_stripes; i++) { 5548 if (devid && map->stripes[i].dev->devid != devid) 5549 continue; 5550 if (map->stripes[i].physical > physical || 5551 map->stripes[i].physical + length <= physical) 5552 continue; 5553 5554 stripe_nr = physical - map->stripes[i].physical; 5555 stripe_nr = div_u64(stripe_nr, map->stripe_len); 5556 5557 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5558 stripe_nr = stripe_nr * map->num_stripes + i; 5559 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 5560 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5561 stripe_nr = stripe_nr * map->num_stripes + i; 5562 } /* else if RAID[56], multiply by nr_data_stripes(). 5563 * Alternatively, just use rmap_len below instead of 5564 * map->stripe_len */ 5565 5566 bytenr = chunk_start + stripe_nr * rmap_len; 5567 WARN_ON(nr >= map->num_stripes); 5568 for (j = 0; j < nr; j++) { 5569 if (buf[j] == bytenr) 5570 break; 5571 } 5572 if (j == nr) { 5573 WARN_ON(nr >= map->num_stripes); 5574 buf[nr++] = bytenr; 5575 } 5576 } 5577 5578 *logical = buf; 5579 *naddrs = nr; 5580 *stripe_len = rmap_len; 5581 5582 free_extent_map(em); 5583 return 0; 5584 } 5585 5586 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err) 5587 { 5588 if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED)) 5589 bio_endio_nodec(bio, err); 5590 else 5591 bio_endio(bio, err); 5592 btrfs_put_bbio(bbio); 5593 } 5594 5595 static void btrfs_end_bio(struct bio *bio, int err) 5596 { 5597 struct btrfs_bio *bbio = bio->bi_private; 5598 struct btrfs_device *dev = bbio->stripes[0].dev; 5599 int is_orig_bio = 0; 5600 5601 if (err) { 5602 atomic_inc(&bbio->error); 5603 if (err == -EIO || err == -EREMOTEIO) { 5604 unsigned int stripe_index = 5605 btrfs_io_bio(bio)->stripe_index; 5606 5607 BUG_ON(stripe_index >= bbio->num_stripes); 5608 dev = bbio->stripes[stripe_index].dev; 5609 if (dev->bdev) { 5610 if (bio->bi_rw & WRITE) 5611 btrfs_dev_stat_inc(dev, 5612 BTRFS_DEV_STAT_WRITE_ERRS); 5613 else 5614 btrfs_dev_stat_inc(dev, 5615 BTRFS_DEV_STAT_READ_ERRS); 5616 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) 5617 btrfs_dev_stat_inc(dev, 5618 BTRFS_DEV_STAT_FLUSH_ERRS); 5619 btrfs_dev_stat_print_on_error(dev); 5620 } 5621 } 5622 } 5623 5624 if (bio == bbio->orig_bio) 5625 is_orig_bio = 1; 5626 5627 btrfs_bio_counter_dec(bbio->fs_info); 5628 5629 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5630 if (!is_orig_bio) { 5631 bio_put(bio); 5632 bio = bbio->orig_bio; 5633 } 5634 5635 bio->bi_private = bbio->private; 5636 bio->bi_end_io = bbio->end_io; 5637 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5638 /* only send an error to the higher layers if it is 5639 * beyond the tolerance of the btrfs bio 5640 */ 5641 if (atomic_read(&bbio->error) > bbio->max_errors) { 5642 err = -EIO; 5643 } else { 5644 /* 5645 * this bio is actually up to date, we didn't 5646 * go over the max number of errors 5647 */ 5648 set_bit(BIO_UPTODATE, &bio->bi_flags); 5649 err = 0; 5650 } 5651 5652 btrfs_end_bbio(bbio, bio, err); 5653 } else if (!is_orig_bio) { 5654 bio_put(bio); 5655 } 5656 } 5657 5658 /* 5659 * see run_scheduled_bios for a description of why bios are collected for 5660 * async submit. 5661 * 5662 * This will add one bio to the pending list for a device and make sure 5663 * the work struct is scheduled. 5664 */ 5665 static noinline void btrfs_schedule_bio(struct btrfs_root *root, 5666 struct btrfs_device *device, 5667 int rw, struct bio *bio) 5668 { 5669 int should_queue = 1; 5670 struct btrfs_pending_bios *pending_bios; 5671 5672 if (device->missing || !device->bdev) { 5673 bio_endio(bio, -EIO); 5674 return; 5675 } 5676 5677 /* don't bother with additional async steps for reads, right now */ 5678 if (!(rw & REQ_WRITE)) { 5679 bio_get(bio); 5680 btrfsic_submit_bio(rw, bio); 5681 bio_put(bio); 5682 return; 5683 } 5684 5685 /* 5686 * nr_async_bios allows us to reliably return congestion to the 5687 * higher layers. Otherwise, the async bio makes it appear we have 5688 * made progress against dirty pages when we've really just put it 5689 * on a queue for later 5690 */ 5691 atomic_inc(&root->fs_info->nr_async_bios); 5692 WARN_ON(bio->bi_next); 5693 bio->bi_next = NULL; 5694 bio->bi_rw |= rw; 5695 5696 spin_lock(&device->io_lock); 5697 if (bio->bi_rw & REQ_SYNC) 5698 pending_bios = &device->pending_sync_bios; 5699 else 5700 pending_bios = &device->pending_bios; 5701 5702 if (pending_bios->tail) 5703 pending_bios->tail->bi_next = bio; 5704 5705 pending_bios->tail = bio; 5706 if (!pending_bios->head) 5707 pending_bios->head = bio; 5708 if (device->running_pending) 5709 should_queue = 0; 5710 5711 spin_unlock(&device->io_lock); 5712 5713 if (should_queue) 5714 btrfs_queue_work(root->fs_info->submit_workers, 5715 &device->work); 5716 } 5717 5718 static int bio_size_ok(struct block_device *bdev, struct bio *bio, 5719 sector_t sector) 5720 { 5721 struct bio_vec *prev; 5722 struct request_queue *q = bdev_get_queue(bdev); 5723 unsigned int max_sectors = queue_max_sectors(q); 5724 struct bvec_merge_data bvm = { 5725 .bi_bdev = bdev, 5726 .bi_sector = sector, 5727 .bi_rw = bio->bi_rw, 5728 }; 5729 5730 if (WARN_ON(bio->bi_vcnt == 0)) 5731 return 1; 5732 5733 prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 5734 if (bio_sectors(bio) > max_sectors) 5735 return 0; 5736 5737 if (!q->merge_bvec_fn) 5738 return 1; 5739 5740 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len; 5741 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) 5742 return 0; 5743 return 1; 5744 } 5745 5746 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5747 struct bio *bio, u64 physical, int dev_nr, 5748 int rw, int async) 5749 { 5750 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 5751 5752 bio->bi_private = bbio; 5753 btrfs_io_bio(bio)->stripe_index = dev_nr; 5754 bio->bi_end_io = btrfs_end_bio; 5755 bio->bi_iter.bi_sector = physical >> 9; 5756 #ifdef DEBUG 5757 { 5758 struct rcu_string *name; 5759 5760 rcu_read_lock(); 5761 name = rcu_dereference(dev->name); 5762 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu " 5763 "(%s id %llu), size=%u\n", rw, 5764 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev, 5765 name->str, dev->devid, bio->bi_iter.bi_size); 5766 rcu_read_unlock(); 5767 } 5768 #endif 5769 bio->bi_bdev = dev->bdev; 5770 5771 btrfs_bio_counter_inc_noblocked(root->fs_info); 5772 5773 if (async) 5774 btrfs_schedule_bio(root, dev, rw, bio); 5775 else 5776 btrfsic_submit_bio(rw, bio); 5777 } 5778 5779 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5780 struct bio *first_bio, struct btrfs_device *dev, 5781 int dev_nr, int rw, int async) 5782 { 5783 struct bio_vec *bvec = first_bio->bi_io_vec; 5784 struct bio *bio; 5785 int nr_vecs = bio_get_nr_vecs(dev->bdev); 5786 u64 physical = bbio->stripes[dev_nr].physical; 5787 5788 again: 5789 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS); 5790 if (!bio) 5791 return -ENOMEM; 5792 5793 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) { 5794 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5795 bvec->bv_offset) < bvec->bv_len) { 5796 u64 len = bio->bi_iter.bi_size; 5797 5798 atomic_inc(&bbio->stripes_pending); 5799 submit_stripe_bio(root, bbio, bio, physical, dev_nr, 5800 rw, async); 5801 physical += len; 5802 goto again; 5803 } 5804 bvec++; 5805 } 5806 5807 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async); 5808 return 0; 5809 } 5810 5811 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 5812 { 5813 atomic_inc(&bbio->error); 5814 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5815 /* Shoud be the original bio. */ 5816 WARN_ON(bio != bbio->orig_bio); 5817 5818 bio->bi_private = bbio->private; 5819 bio->bi_end_io = bbio->end_io; 5820 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5821 bio->bi_iter.bi_sector = logical >> 9; 5822 5823 btrfs_end_bbio(bbio, bio, -EIO); 5824 } 5825 } 5826 5827 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 5828 int mirror_num, int async_submit) 5829 { 5830 struct btrfs_device *dev; 5831 struct bio *first_bio = bio; 5832 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 5833 u64 length = 0; 5834 u64 map_length; 5835 int ret; 5836 int dev_nr; 5837 int total_devs; 5838 struct btrfs_bio *bbio = NULL; 5839 5840 length = bio->bi_iter.bi_size; 5841 map_length = length; 5842 5843 btrfs_bio_counter_inc_blocked(root->fs_info); 5844 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio, 5845 mirror_num, 1); 5846 if (ret) { 5847 btrfs_bio_counter_dec(root->fs_info); 5848 return ret; 5849 } 5850 5851 total_devs = bbio->num_stripes; 5852 bbio->orig_bio = first_bio; 5853 bbio->private = first_bio->bi_private; 5854 bbio->end_io = first_bio->bi_end_io; 5855 bbio->fs_info = root->fs_info; 5856 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 5857 5858 if (bbio->raid_map) { 5859 /* In this case, map_length has been set to the length of 5860 a single stripe; not the whole write */ 5861 if (rw & WRITE) { 5862 ret = raid56_parity_write(root, bio, bbio, map_length); 5863 } else { 5864 ret = raid56_parity_recover(root, bio, bbio, map_length, 5865 mirror_num, 1); 5866 } 5867 5868 btrfs_bio_counter_dec(root->fs_info); 5869 return ret; 5870 } 5871 5872 if (map_length < length) { 5873 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu", 5874 logical, length, map_length); 5875 BUG(); 5876 } 5877 5878 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 5879 dev = bbio->stripes[dev_nr].dev; 5880 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) { 5881 bbio_error(bbio, first_bio, logical); 5882 continue; 5883 } 5884 5885 /* 5886 * Check and see if we're ok with this bio based on it's size 5887 * and offset with the given device. 5888 */ 5889 if (!bio_size_ok(dev->bdev, first_bio, 5890 bbio->stripes[dev_nr].physical >> 9)) { 5891 ret = breakup_stripe_bio(root, bbio, first_bio, dev, 5892 dev_nr, rw, async_submit); 5893 BUG_ON(ret); 5894 continue; 5895 } 5896 5897 if (dev_nr < total_devs - 1) { 5898 bio = btrfs_bio_clone(first_bio, GFP_NOFS); 5899 BUG_ON(!bio); /* -ENOMEM */ 5900 } else { 5901 bio = first_bio; 5902 bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED; 5903 } 5904 5905 submit_stripe_bio(root, bbio, bio, 5906 bbio->stripes[dev_nr].physical, dev_nr, rw, 5907 async_submit); 5908 } 5909 btrfs_bio_counter_dec(root->fs_info); 5910 return 0; 5911 } 5912 5913 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 5914 u8 *uuid, u8 *fsid) 5915 { 5916 struct btrfs_device *device; 5917 struct btrfs_fs_devices *cur_devices; 5918 5919 cur_devices = fs_info->fs_devices; 5920 while (cur_devices) { 5921 if (!fsid || 5922 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 5923 device = __find_device(&cur_devices->devices, 5924 devid, uuid); 5925 if (device) 5926 return device; 5927 } 5928 cur_devices = cur_devices->seed; 5929 } 5930 return NULL; 5931 } 5932 5933 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 5934 struct btrfs_fs_devices *fs_devices, 5935 u64 devid, u8 *dev_uuid) 5936 { 5937 struct btrfs_device *device; 5938 5939 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 5940 if (IS_ERR(device)) 5941 return NULL; 5942 5943 list_add(&device->dev_list, &fs_devices->devices); 5944 device->fs_devices = fs_devices; 5945 fs_devices->num_devices++; 5946 5947 device->missing = 1; 5948 fs_devices->missing_devices++; 5949 5950 return device; 5951 } 5952 5953 /** 5954 * btrfs_alloc_device - allocate struct btrfs_device 5955 * @fs_info: used only for generating a new devid, can be NULL if 5956 * devid is provided (i.e. @devid != NULL). 5957 * @devid: a pointer to devid for this device. If NULL a new devid 5958 * is generated. 5959 * @uuid: a pointer to UUID for this device. If NULL a new UUID 5960 * is generated. 5961 * 5962 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 5963 * on error. Returned struct is not linked onto any lists and can be 5964 * destroyed with kfree() right away. 5965 */ 5966 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 5967 const u64 *devid, 5968 const u8 *uuid) 5969 { 5970 struct btrfs_device *dev; 5971 u64 tmp; 5972 5973 if (WARN_ON(!devid && !fs_info)) 5974 return ERR_PTR(-EINVAL); 5975 5976 dev = __alloc_device(); 5977 if (IS_ERR(dev)) 5978 return dev; 5979 5980 if (devid) 5981 tmp = *devid; 5982 else { 5983 int ret; 5984 5985 ret = find_next_devid(fs_info, &tmp); 5986 if (ret) { 5987 kfree(dev); 5988 return ERR_PTR(ret); 5989 } 5990 } 5991 dev->devid = tmp; 5992 5993 if (uuid) 5994 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 5995 else 5996 generate_random_uuid(dev->uuid); 5997 5998 btrfs_init_work(&dev->work, btrfs_submit_helper, 5999 pending_bios_fn, NULL, NULL); 6000 6001 return dev; 6002 } 6003 6004 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 6005 struct extent_buffer *leaf, 6006 struct btrfs_chunk *chunk) 6007 { 6008 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 6009 struct map_lookup *map; 6010 struct extent_map *em; 6011 u64 logical; 6012 u64 length; 6013 u64 devid; 6014 u8 uuid[BTRFS_UUID_SIZE]; 6015 int num_stripes; 6016 int ret; 6017 int i; 6018 6019 logical = key->offset; 6020 length = btrfs_chunk_length(leaf, chunk); 6021 6022 read_lock(&map_tree->map_tree.lock); 6023 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 6024 read_unlock(&map_tree->map_tree.lock); 6025 6026 /* already mapped? */ 6027 if (em && em->start <= logical && em->start + em->len > logical) { 6028 free_extent_map(em); 6029 return 0; 6030 } else if (em) { 6031 free_extent_map(em); 6032 } 6033 6034 em = alloc_extent_map(); 6035 if (!em) 6036 return -ENOMEM; 6037 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6038 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6039 if (!map) { 6040 free_extent_map(em); 6041 return -ENOMEM; 6042 } 6043 6044 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6045 em->bdev = (struct block_device *)map; 6046 em->start = logical; 6047 em->len = length; 6048 em->orig_start = 0; 6049 em->block_start = 0; 6050 em->block_len = em->len; 6051 6052 map->num_stripes = num_stripes; 6053 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6054 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6055 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 6056 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6057 map->type = btrfs_chunk_type(leaf, chunk); 6058 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6059 for (i = 0; i < num_stripes; i++) { 6060 map->stripes[i].physical = 6061 btrfs_stripe_offset_nr(leaf, chunk, i); 6062 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6063 read_extent_buffer(leaf, uuid, (unsigned long) 6064 btrfs_stripe_dev_uuid_nr(chunk, i), 6065 BTRFS_UUID_SIZE); 6066 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid, 6067 uuid, NULL); 6068 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 6069 free_extent_map(em); 6070 return -EIO; 6071 } 6072 if (!map->stripes[i].dev) { 6073 map->stripes[i].dev = 6074 add_missing_dev(root, root->fs_info->fs_devices, 6075 devid, uuid); 6076 if (!map->stripes[i].dev) { 6077 free_extent_map(em); 6078 return -EIO; 6079 } 6080 } 6081 map->stripes[i].dev->in_fs_metadata = 1; 6082 } 6083 6084 write_lock(&map_tree->map_tree.lock); 6085 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6086 write_unlock(&map_tree->map_tree.lock); 6087 BUG_ON(ret); /* Tree corruption */ 6088 free_extent_map(em); 6089 6090 return 0; 6091 } 6092 6093 static void fill_device_from_item(struct extent_buffer *leaf, 6094 struct btrfs_dev_item *dev_item, 6095 struct btrfs_device *device) 6096 { 6097 unsigned long ptr; 6098 6099 device->devid = btrfs_device_id(leaf, dev_item); 6100 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6101 device->total_bytes = device->disk_total_bytes; 6102 device->commit_total_bytes = device->disk_total_bytes; 6103 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6104 device->commit_bytes_used = device->bytes_used; 6105 device->type = btrfs_device_type(leaf, dev_item); 6106 device->io_align = btrfs_device_io_align(leaf, dev_item); 6107 device->io_width = btrfs_device_io_width(leaf, dev_item); 6108 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6109 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6110 device->is_tgtdev_for_dev_replace = 0; 6111 6112 ptr = btrfs_device_uuid(dev_item); 6113 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6114 } 6115 6116 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root, 6117 u8 *fsid) 6118 { 6119 struct btrfs_fs_devices *fs_devices; 6120 int ret; 6121 6122 BUG_ON(!mutex_is_locked(&uuid_mutex)); 6123 6124 fs_devices = root->fs_info->fs_devices->seed; 6125 while (fs_devices) { 6126 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) 6127 return fs_devices; 6128 6129 fs_devices = fs_devices->seed; 6130 } 6131 6132 fs_devices = find_fsid(fsid); 6133 if (!fs_devices) { 6134 if (!btrfs_test_opt(root, DEGRADED)) 6135 return ERR_PTR(-ENOENT); 6136 6137 fs_devices = alloc_fs_devices(fsid); 6138 if (IS_ERR(fs_devices)) 6139 return fs_devices; 6140 6141 fs_devices->seeding = 1; 6142 fs_devices->opened = 1; 6143 return fs_devices; 6144 } 6145 6146 fs_devices = clone_fs_devices(fs_devices); 6147 if (IS_ERR(fs_devices)) 6148 return fs_devices; 6149 6150 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 6151 root->fs_info->bdev_holder); 6152 if (ret) { 6153 free_fs_devices(fs_devices); 6154 fs_devices = ERR_PTR(ret); 6155 goto out; 6156 } 6157 6158 if (!fs_devices->seeding) { 6159 __btrfs_close_devices(fs_devices); 6160 free_fs_devices(fs_devices); 6161 fs_devices = ERR_PTR(-EINVAL); 6162 goto out; 6163 } 6164 6165 fs_devices->seed = root->fs_info->fs_devices->seed; 6166 root->fs_info->fs_devices->seed = fs_devices; 6167 out: 6168 return fs_devices; 6169 } 6170 6171 static int read_one_dev(struct btrfs_root *root, 6172 struct extent_buffer *leaf, 6173 struct btrfs_dev_item *dev_item) 6174 { 6175 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6176 struct btrfs_device *device; 6177 u64 devid; 6178 int ret; 6179 u8 fs_uuid[BTRFS_UUID_SIZE]; 6180 u8 dev_uuid[BTRFS_UUID_SIZE]; 6181 6182 devid = btrfs_device_id(leaf, dev_item); 6183 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6184 BTRFS_UUID_SIZE); 6185 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6186 BTRFS_UUID_SIZE); 6187 6188 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 6189 fs_devices = open_seed_devices(root, fs_uuid); 6190 if (IS_ERR(fs_devices)) 6191 return PTR_ERR(fs_devices); 6192 } 6193 6194 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid); 6195 if (!device) { 6196 if (!btrfs_test_opt(root, DEGRADED)) 6197 return -EIO; 6198 6199 btrfs_warn(root->fs_info, "devid %llu missing", devid); 6200 device = add_missing_dev(root, fs_devices, devid, dev_uuid); 6201 if (!device) 6202 return -ENOMEM; 6203 } else { 6204 if (!device->bdev && !btrfs_test_opt(root, DEGRADED)) 6205 return -EIO; 6206 6207 if(!device->bdev && !device->missing) { 6208 /* 6209 * this happens when a device that was properly setup 6210 * in the device info lists suddenly goes bad. 6211 * device->bdev is NULL, and so we have to set 6212 * device->missing to one here 6213 */ 6214 device->fs_devices->missing_devices++; 6215 device->missing = 1; 6216 } 6217 6218 /* Move the device to its own fs_devices */ 6219 if (device->fs_devices != fs_devices) { 6220 ASSERT(device->missing); 6221 6222 list_move(&device->dev_list, &fs_devices->devices); 6223 device->fs_devices->num_devices--; 6224 fs_devices->num_devices++; 6225 6226 device->fs_devices->missing_devices--; 6227 fs_devices->missing_devices++; 6228 6229 device->fs_devices = fs_devices; 6230 } 6231 } 6232 6233 if (device->fs_devices != root->fs_info->fs_devices) { 6234 BUG_ON(device->writeable); 6235 if (device->generation != 6236 btrfs_device_generation(leaf, dev_item)) 6237 return -EINVAL; 6238 } 6239 6240 fill_device_from_item(leaf, dev_item, device); 6241 device->in_fs_metadata = 1; 6242 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 6243 device->fs_devices->total_rw_bytes += device->total_bytes; 6244 spin_lock(&root->fs_info->free_chunk_lock); 6245 root->fs_info->free_chunk_space += device->total_bytes - 6246 device->bytes_used; 6247 spin_unlock(&root->fs_info->free_chunk_lock); 6248 } 6249 ret = 0; 6250 return ret; 6251 } 6252 6253 int btrfs_read_sys_array(struct btrfs_root *root) 6254 { 6255 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 6256 struct extent_buffer *sb; 6257 struct btrfs_disk_key *disk_key; 6258 struct btrfs_chunk *chunk; 6259 u8 *array_ptr; 6260 unsigned long sb_array_offset; 6261 int ret = 0; 6262 u32 num_stripes; 6263 u32 array_size; 6264 u32 len = 0; 6265 u32 cur_offset; 6266 struct btrfs_key key; 6267 6268 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize); 6269 /* 6270 * This will create extent buffer of nodesize, superblock size is 6271 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6272 * overallocate but we can keep it as-is, only the first page is used. 6273 */ 6274 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET); 6275 if (!sb) 6276 return -ENOMEM; 6277 btrfs_set_buffer_uptodate(sb); 6278 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6279 /* 6280 * The sb extent buffer is artifical and just used to read the system array. 6281 * btrfs_set_buffer_uptodate() call does not properly mark all it's 6282 * pages up-to-date when the page is larger: extent does not cover the 6283 * whole page and consequently check_page_uptodate does not find all 6284 * the page's extents up-to-date (the hole beyond sb), 6285 * write_extent_buffer then triggers a WARN_ON. 6286 * 6287 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6288 * but sb spans only this function. Add an explicit SetPageUptodate call 6289 * to silence the warning eg. on PowerPC 64. 6290 */ 6291 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) 6292 SetPageUptodate(sb->pages[0]); 6293 6294 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6295 array_size = btrfs_super_sys_array_size(super_copy); 6296 6297 array_ptr = super_copy->sys_chunk_array; 6298 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6299 cur_offset = 0; 6300 6301 while (cur_offset < array_size) { 6302 disk_key = (struct btrfs_disk_key *)array_ptr; 6303 len = sizeof(*disk_key); 6304 if (cur_offset + len > array_size) 6305 goto out_short_read; 6306 6307 btrfs_disk_key_to_cpu(&key, disk_key); 6308 6309 array_ptr += len; 6310 sb_array_offset += len; 6311 cur_offset += len; 6312 6313 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 6314 chunk = (struct btrfs_chunk *)sb_array_offset; 6315 /* 6316 * At least one btrfs_chunk with one stripe must be 6317 * present, exact stripe count check comes afterwards 6318 */ 6319 len = btrfs_chunk_item_size(1); 6320 if (cur_offset + len > array_size) 6321 goto out_short_read; 6322 6323 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6324 len = btrfs_chunk_item_size(num_stripes); 6325 if (cur_offset + len > array_size) 6326 goto out_short_read; 6327 6328 ret = read_one_chunk(root, &key, sb, chunk); 6329 if (ret) 6330 break; 6331 } else { 6332 ret = -EIO; 6333 break; 6334 } 6335 array_ptr += len; 6336 sb_array_offset += len; 6337 cur_offset += len; 6338 } 6339 free_extent_buffer(sb); 6340 return ret; 6341 6342 out_short_read: 6343 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n", 6344 len, cur_offset); 6345 free_extent_buffer(sb); 6346 return -EIO; 6347 } 6348 6349 int btrfs_read_chunk_tree(struct btrfs_root *root) 6350 { 6351 struct btrfs_path *path; 6352 struct extent_buffer *leaf; 6353 struct btrfs_key key; 6354 struct btrfs_key found_key; 6355 int ret; 6356 int slot; 6357 6358 root = root->fs_info->chunk_root; 6359 6360 path = btrfs_alloc_path(); 6361 if (!path) 6362 return -ENOMEM; 6363 6364 mutex_lock(&uuid_mutex); 6365 lock_chunks(root); 6366 6367 /* 6368 * Read all device items, and then all the chunk items. All 6369 * device items are found before any chunk item (their object id 6370 * is smaller than the lowest possible object id for a chunk 6371 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6372 */ 6373 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6374 key.offset = 0; 6375 key.type = 0; 6376 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6377 if (ret < 0) 6378 goto error; 6379 while (1) { 6380 leaf = path->nodes[0]; 6381 slot = path->slots[0]; 6382 if (slot >= btrfs_header_nritems(leaf)) { 6383 ret = btrfs_next_leaf(root, path); 6384 if (ret == 0) 6385 continue; 6386 if (ret < 0) 6387 goto error; 6388 break; 6389 } 6390 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6391 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6392 struct btrfs_dev_item *dev_item; 6393 dev_item = btrfs_item_ptr(leaf, slot, 6394 struct btrfs_dev_item); 6395 ret = read_one_dev(root, leaf, dev_item); 6396 if (ret) 6397 goto error; 6398 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6399 struct btrfs_chunk *chunk; 6400 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6401 ret = read_one_chunk(root, &found_key, leaf, chunk); 6402 if (ret) 6403 goto error; 6404 } 6405 path->slots[0]++; 6406 } 6407 ret = 0; 6408 error: 6409 unlock_chunks(root); 6410 mutex_unlock(&uuid_mutex); 6411 6412 btrfs_free_path(path); 6413 return ret; 6414 } 6415 6416 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6417 { 6418 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6419 struct btrfs_device *device; 6420 6421 while (fs_devices) { 6422 mutex_lock(&fs_devices->device_list_mutex); 6423 list_for_each_entry(device, &fs_devices->devices, dev_list) 6424 device->dev_root = fs_info->dev_root; 6425 mutex_unlock(&fs_devices->device_list_mutex); 6426 6427 fs_devices = fs_devices->seed; 6428 } 6429 } 6430 6431 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6432 { 6433 int i; 6434 6435 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6436 btrfs_dev_stat_reset(dev, i); 6437 } 6438 6439 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6440 { 6441 struct btrfs_key key; 6442 struct btrfs_key found_key; 6443 struct btrfs_root *dev_root = fs_info->dev_root; 6444 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6445 struct extent_buffer *eb; 6446 int slot; 6447 int ret = 0; 6448 struct btrfs_device *device; 6449 struct btrfs_path *path = NULL; 6450 int i; 6451 6452 path = btrfs_alloc_path(); 6453 if (!path) { 6454 ret = -ENOMEM; 6455 goto out; 6456 } 6457 6458 mutex_lock(&fs_devices->device_list_mutex); 6459 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6460 int item_size; 6461 struct btrfs_dev_stats_item *ptr; 6462 6463 key.objectid = 0; 6464 key.type = BTRFS_DEV_STATS_KEY; 6465 key.offset = device->devid; 6466 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6467 if (ret) { 6468 __btrfs_reset_dev_stats(device); 6469 device->dev_stats_valid = 1; 6470 btrfs_release_path(path); 6471 continue; 6472 } 6473 slot = path->slots[0]; 6474 eb = path->nodes[0]; 6475 btrfs_item_key_to_cpu(eb, &found_key, slot); 6476 item_size = btrfs_item_size_nr(eb, slot); 6477 6478 ptr = btrfs_item_ptr(eb, slot, 6479 struct btrfs_dev_stats_item); 6480 6481 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6482 if (item_size >= (1 + i) * sizeof(__le64)) 6483 btrfs_dev_stat_set(device, i, 6484 btrfs_dev_stats_value(eb, ptr, i)); 6485 else 6486 btrfs_dev_stat_reset(device, i); 6487 } 6488 6489 device->dev_stats_valid = 1; 6490 btrfs_dev_stat_print_on_load(device); 6491 btrfs_release_path(path); 6492 } 6493 mutex_unlock(&fs_devices->device_list_mutex); 6494 6495 out: 6496 btrfs_free_path(path); 6497 return ret < 0 ? ret : 0; 6498 } 6499 6500 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 6501 struct btrfs_root *dev_root, 6502 struct btrfs_device *device) 6503 { 6504 struct btrfs_path *path; 6505 struct btrfs_key key; 6506 struct extent_buffer *eb; 6507 struct btrfs_dev_stats_item *ptr; 6508 int ret; 6509 int i; 6510 6511 key.objectid = 0; 6512 key.type = BTRFS_DEV_STATS_KEY; 6513 key.offset = device->devid; 6514 6515 path = btrfs_alloc_path(); 6516 BUG_ON(!path); 6517 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 6518 if (ret < 0) { 6519 printk_in_rcu(KERN_WARNING "BTRFS: " 6520 "error %d while searching for dev_stats item for device %s!\n", 6521 ret, rcu_str_deref(device->name)); 6522 goto out; 6523 } 6524 6525 if (ret == 0 && 6526 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 6527 /* need to delete old one and insert a new one */ 6528 ret = btrfs_del_item(trans, dev_root, path); 6529 if (ret != 0) { 6530 printk_in_rcu(KERN_WARNING "BTRFS: " 6531 "delete too small dev_stats item for device %s failed %d!\n", 6532 rcu_str_deref(device->name), ret); 6533 goto out; 6534 } 6535 ret = 1; 6536 } 6537 6538 if (ret == 1) { 6539 /* need to insert a new item */ 6540 btrfs_release_path(path); 6541 ret = btrfs_insert_empty_item(trans, dev_root, path, 6542 &key, sizeof(*ptr)); 6543 if (ret < 0) { 6544 printk_in_rcu(KERN_WARNING "BTRFS: " 6545 "insert dev_stats item for device %s failed %d!\n", 6546 rcu_str_deref(device->name), ret); 6547 goto out; 6548 } 6549 } 6550 6551 eb = path->nodes[0]; 6552 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 6553 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6554 btrfs_set_dev_stats_value(eb, ptr, i, 6555 btrfs_dev_stat_read(device, i)); 6556 btrfs_mark_buffer_dirty(eb); 6557 6558 out: 6559 btrfs_free_path(path); 6560 return ret; 6561 } 6562 6563 /* 6564 * called from commit_transaction. Writes all changed device stats to disk. 6565 */ 6566 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 6567 struct btrfs_fs_info *fs_info) 6568 { 6569 struct btrfs_root *dev_root = fs_info->dev_root; 6570 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6571 struct btrfs_device *device; 6572 int stats_cnt; 6573 int ret = 0; 6574 6575 mutex_lock(&fs_devices->device_list_mutex); 6576 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6577 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device)) 6578 continue; 6579 6580 stats_cnt = atomic_read(&device->dev_stats_ccnt); 6581 ret = update_dev_stat_item(trans, dev_root, device); 6582 if (!ret) 6583 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 6584 } 6585 mutex_unlock(&fs_devices->device_list_mutex); 6586 6587 return ret; 6588 } 6589 6590 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 6591 { 6592 btrfs_dev_stat_inc(dev, index); 6593 btrfs_dev_stat_print_on_error(dev); 6594 } 6595 6596 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 6597 { 6598 if (!dev->dev_stats_valid) 6599 return; 6600 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: " 6601 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6602 rcu_str_deref(dev->name), 6603 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6604 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6605 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6606 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6607 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6608 } 6609 6610 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 6611 { 6612 int i; 6613 6614 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6615 if (btrfs_dev_stat_read(dev, i) != 0) 6616 break; 6617 if (i == BTRFS_DEV_STAT_VALUES_MAX) 6618 return; /* all values == 0, suppress message */ 6619 6620 printk_in_rcu(KERN_INFO "BTRFS: " 6621 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6622 rcu_str_deref(dev->name), 6623 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6624 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6625 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6626 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6627 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6628 } 6629 6630 int btrfs_get_dev_stats(struct btrfs_root *root, 6631 struct btrfs_ioctl_get_dev_stats *stats) 6632 { 6633 struct btrfs_device *dev; 6634 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6635 int i; 6636 6637 mutex_lock(&fs_devices->device_list_mutex); 6638 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL); 6639 mutex_unlock(&fs_devices->device_list_mutex); 6640 6641 if (!dev) { 6642 btrfs_warn(root->fs_info, "get dev_stats failed, device not found"); 6643 return -ENODEV; 6644 } else if (!dev->dev_stats_valid) { 6645 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid"); 6646 return -ENODEV; 6647 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 6648 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6649 if (stats->nr_items > i) 6650 stats->values[i] = 6651 btrfs_dev_stat_read_and_reset(dev, i); 6652 else 6653 btrfs_dev_stat_reset(dev, i); 6654 } 6655 } else { 6656 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6657 if (stats->nr_items > i) 6658 stats->values[i] = btrfs_dev_stat_read(dev, i); 6659 } 6660 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 6661 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 6662 return 0; 6663 } 6664 6665 int btrfs_scratch_superblock(struct btrfs_device *device) 6666 { 6667 struct buffer_head *bh; 6668 struct btrfs_super_block *disk_super; 6669 6670 bh = btrfs_read_dev_super(device->bdev); 6671 if (!bh) 6672 return -EINVAL; 6673 disk_super = (struct btrfs_super_block *)bh->b_data; 6674 6675 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 6676 set_buffer_dirty(bh); 6677 sync_dirty_buffer(bh); 6678 brelse(bh); 6679 6680 return 0; 6681 } 6682 6683 /* 6684 * Update the size of all devices, which is used for writing out the 6685 * super blocks. 6686 */ 6687 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) 6688 { 6689 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6690 struct btrfs_device *curr, *next; 6691 6692 if (list_empty(&fs_devices->resized_devices)) 6693 return; 6694 6695 mutex_lock(&fs_devices->device_list_mutex); 6696 lock_chunks(fs_info->dev_root); 6697 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, 6698 resized_list) { 6699 list_del_init(&curr->resized_list); 6700 curr->commit_total_bytes = curr->disk_total_bytes; 6701 } 6702 unlock_chunks(fs_info->dev_root); 6703 mutex_unlock(&fs_devices->device_list_mutex); 6704 } 6705 6706 /* Must be invoked during the transaction commit */ 6707 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root, 6708 struct btrfs_transaction *transaction) 6709 { 6710 struct extent_map *em; 6711 struct map_lookup *map; 6712 struct btrfs_device *dev; 6713 int i; 6714 6715 if (list_empty(&transaction->pending_chunks)) 6716 return; 6717 6718 /* In order to kick the device replace finish process */ 6719 lock_chunks(root); 6720 list_for_each_entry(em, &transaction->pending_chunks, list) { 6721 map = (struct map_lookup *)em->bdev; 6722 6723 for (i = 0; i < map->num_stripes; i++) { 6724 dev = map->stripes[i].dev; 6725 dev->commit_bytes_used = dev->bytes_used; 6726 } 6727 } 6728 unlock_chunks(root); 6729 } 6730