1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include "misc.h" 18 #include "ctree.h" 19 #include "extent_map.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "async-thread.h" 26 #include "check-integrity.h" 27 #include "rcu-string.h" 28 #include "dev-replace.h" 29 #include "sysfs.h" 30 #include "tree-checker.h" 31 #include "space-info.h" 32 #include "block-group.h" 33 #include "discard.h" 34 #include "zoned.h" 35 36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 37 [BTRFS_RAID_RAID10] = { 38 .sub_stripes = 2, 39 .dev_stripes = 1, 40 .devs_max = 0, /* 0 == as many as possible */ 41 .devs_min = 4, 42 .tolerated_failures = 1, 43 .devs_increment = 2, 44 .ncopies = 2, 45 .nparity = 0, 46 .raid_name = "raid10", 47 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 48 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 49 }, 50 [BTRFS_RAID_RAID1] = { 51 .sub_stripes = 1, 52 .dev_stripes = 1, 53 .devs_max = 2, 54 .devs_min = 2, 55 .tolerated_failures = 1, 56 .devs_increment = 2, 57 .ncopies = 2, 58 .nparity = 0, 59 .raid_name = "raid1", 60 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 61 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 62 }, 63 [BTRFS_RAID_RAID1C3] = { 64 .sub_stripes = 1, 65 .dev_stripes = 1, 66 .devs_max = 3, 67 .devs_min = 3, 68 .tolerated_failures = 2, 69 .devs_increment = 3, 70 .ncopies = 3, 71 .nparity = 0, 72 .raid_name = "raid1c3", 73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 74 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 75 }, 76 [BTRFS_RAID_RAID1C4] = { 77 .sub_stripes = 1, 78 .dev_stripes = 1, 79 .devs_max = 4, 80 .devs_min = 4, 81 .tolerated_failures = 3, 82 .devs_increment = 4, 83 .ncopies = 4, 84 .nparity = 0, 85 .raid_name = "raid1c4", 86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 87 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 88 }, 89 [BTRFS_RAID_DUP] = { 90 .sub_stripes = 1, 91 .dev_stripes = 2, 92 .devs_max = 1, 93 .devs_min = 1, 94 .tolerated_failures = 0, 95 .devs_increment = 1, 96 .ncopies = 2, 97 .nparity = 0, 98 .raid_name = "dup", 99 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 100 .mindev_error = 0, 101 }, 102 [BTRFS_RAID_RAID0] = { 103 .sub_stripes = 1, 104 .dev_stripes = 1, 105 .devs_max = 0, 106 .devs_min = 2, 107 .tolerated_failures = 0, 108 .devs_increment = 1, 109 .ncopies = 1, 110 .nparity = 0, 111 .raid_name = "raid0", 112 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 113 .mindev_error = 0, 114 }, 115 [BTRFS_RAID_SINGLE] = { 116 .sub_stripes = 1, 117 .dev_stripes = 1, 118 .devs_max = 1, 119 .devs_min = 1, 120 .tolerated_failures = 0, 121 .devs_increment = 1, 122 .ncopies = 1, 123 .nparity = 0, 124 .raid_name = "single", 125 .bg_flag = 0, 126 .mindev_error = 0, 127 }, 128 [BTRFS_RAID_RAID5] = { 129 .sub_stripes = 1, 130 .dev_stripes = 1, 131 .devs_max = 0, 132 .devs_min = 2, 133 .tolerated_failures = 1, 134 .devs_increment = 1, 135 .ncopies = 1, 136 .nparity = 1, 137 .raid_name = "raid5", 138 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 139 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 140 }, 141 [BTRFS_RAID_RAID6] = { 142 .sub_stripes = 1, 143 .dev_stripes = 1, 144 .devs_max = 0, 145 .devs_min = 3, 146 .tolerated_failures = 2, 147 .devs_increment = 1, 148 .ncopies = 1, 149 .nparity = 2, 150 .raid_name = "raid6", 151 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 152 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 153 }, 154 }; 155 156 const char *btrfs_bg_type_to_raid_name(u64 flags) 157 { 158 const int index = btrfs_bg_flags_to_raid_index(flags); 159 160 if (index >= BTRFS_NR_RAID_TYPES) 161 return NULL; 162 163 return btrfs_raid_array[index].raid_name; 164 } 165 166 /* 167 * Fill @buf with textual description of @bg_flags, no more than @size_buf 168 * bytes including terminating null byte. 169 */ 170 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 171 { 172 int i; 173 int ret; 174 char *bp = buf; 175 u64 flags = bg_flags; 176 u32 size_bp = size_buf; 177 178 if (!flags) { 179 strcpy(bp, "NONE"); 180 return; 181 } 182 183 #define DESCRIBE_FLAG(flag, desc) \ 184 do { \ 185 if (flags & (flag)) { \ 186 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 187 if (ret < 0 || ret >= size_bp) \ 188 goto out_overflow; \ 189 size_bp -= ret; \ 190 bp += ret; \ 191 flags &= ~(flag); \ 192 } \ 193 } while (0) 194 195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 197 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 198 199 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 201 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 202 btrfs_raid_array[i].raid_name); 203 #undef DESCRIBE_FLAG 204 205 if (flags) { 206 ret = snprintf(bp, size_bp, "0x%llx|", flags); 207 size_bp -= ret; 208 } 209 210 if (size_bp < size_buf) 211 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 212 213 /* 214 * The text is trimmed, it's up to the caller to provide sufficiently 215 * large buffer 216 */ 217 out_overflow:; 218 } 219 220 static int init_first_rw_device(struct btrfs_trans_handle *trans); 221 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 222 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 223 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 224 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 225 enum btrfs_map_op op, 226 u64 logical, u64 *length, 227 struct btrfs_bio **bbio_ret, 228 int mirror_num, int need_raid_map); 229 230 /* 231 * Device locking 232 * ============== 233 * 234 * There are several mutexes that protect manipulation of devices and low-level 235 * structures like chunks but not block groups, extents or files 236 * 237 * uuid_mutex (global lock) 238 * ------------------------ 239 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 240 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 241 * device) or requested by the device= mount option 242 * 243 * the mutex can be very coarse and can cover long-running operations 244 * 245 * protects: updates to fs_devices counters like missing devices, rw devices, 246 * seeding, structure cloning, opening/closing devices at mount/umount time 247 * 248 * global::fs_devs - add, remove, updates to the global list 249 * 250 * does not protect: manipulation of the fs_devices::devices list in general 251 * but in mount context it could be used to exclude list modifications by eg. 252 * scan ioctl 253 * 254 * btrfs_device::name - renames (write side), read is RCU 255 * 256 * fs_devices::device_list_mutex (per-fs, with RCU) 257 * ------------------------------------------------ 258 * protects updates to fs_devices::devices, ie. adding and deleting 259 * 260 * simple list traversal with read-only actions can be done with RCU protection 261 * 262 * may be used to exclude some operations from running concurrently without any 263 * modifications to the list (see write_all_supers) 264 * 265 * Is not required at mount and close times, because our device list is 266 * protected by the uuid_mutex at that point. 267 * 268 * balance_mutex 269 * ------------- 270 * protects balance structures (status, state) and context accessed from 271 * several places (internally, ioctl) 272 * 273 * chunk_mutex 274 * ----------- 275 * protects chunks, adding or removing during allocation, trim or when a new 276 * device is added/removed. Additionally it also protects post_commit_list of 277 * individual devices, since they can be added to the transaction's 278 * post_commit_list only with chunk_mutex held. 279 * 280 * cleaner_mutex 281 * ------------- 282 * a big lock that is held by the cleaner thread and prevents running subvolume 283 * cleaning together with relocation or delayed iputs 284 * 285 * 286 * Lock nesting 287 * ============ 288 * 289 * uuid_mutex 290 * device_list_mutex 291 * chunk_mutex 292 * balance_mutex 293 * 294 * 295 * Exclusive operations 296 * ==================== 297 * 298 * Maintains the exclusivity of the following operations that apply to the 299 * whole filesystem and cannot run in parallel. 300 * 301 * - Balance (*) 302 * - Device add 303 * - Device remove 304 * - Device replace (*) 305 * - Resize 306 * 307 * The device operations (as above) can be in one of the following states: 308 * 309 * - Running state 310 * - Paused state 311 * - Completed state 312 * 313 * Only device operations marked with (*) can go into the Paused state for the 314 * following reasons: 315 * 316 * - ioctl (only Balance can be Paused through ioctl) 317 * - filesystem remounted as read-only 318 * - filesystem unmounted and mounted as read-only 319 * - system power-cycle and filesystem mounted as read-only 320 * - filesystem or device errors leading to forced read-only 321 * 322 * The status of exclusive operation is set and cleared atomically. 323 * During the course of Paused state, fs_info::exclusive_operation remains set. 324 * A device operation in Paused or Running state can be canceled or resumed 325 * either by ioctl (Balance only) or when remounted as read-write. 326 * The exclusive status is cleared when the device operation is canceled or 327 * completed. 328 */ 329 330 DEFINE_MUTEX(uuid_mutex); 331 static LIST_HEAD(fs_uuids); 332 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 333 { 334 return &fs_uuids; 335 } 336 337 /* 338 * alloc_fs_devices - allocate struct btrfs_fs_devices 339 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 340 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 341 * 342 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 343 * The returned struct is not linked onto any lists and can be destroyed with 344 * kfree() right away. 345 */ 346 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 347 const u8 *metadata_fsid) 348 { 349 struct btrfs_fs_devices *fs_devs; 350 351 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 352 if (!fs_devs) 353 return ERR_PTR(-ENOMEM); 354 355 mutex_init(&fs_devs->device_list_mutex); 356 357 INIT_LIST_HEAD(&fs_devs->devices); 358 INIT_LIST_HEAD(&fs_devs->alloc_list); 359 INIT_LIST_HEAD(&fs_devs->fs_list); 360 INIT_LIST_HEAD(&fs_devs->seed_list); 361 if (fsid) 362 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 363 364 if (metadata_fsid) 365 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 366 else if (fsid) 367 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 368 369 return fs_devs; 370 } 371 372 void btrfs_free_device(struct btrfs_device *device) 373 { 374 WARN_ON(!list_empty(&device->post_commit_list)); 375 rcu_string_free(device->name); 376 extent_io_tree_release(&device->alloc_state); 377 bio_put(device->flush_bio); 378 btrfs_destroy_dev_zone_info(device); 379 kfree(device); 380 } 381 382 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 383 { 384 struct btrfs_device *device; 385 WARN_ON(fs_devices->opened); 386 while (!list_empty(&fs_devices->devices)) { 387 device = list_entry(fs_devices->devices.next, 388 struct btrfs_device, dev_list); 389 list_del(&device->dev_list); 390 btrfs_free_device(device); 391 } 392 kfree(fs_devices); 393 } 394 395 void __exit btrfs_cleanup_fs_uuids(void) 396 { 397 struct btrfs_fs_devices *fs_devices; 398 399 while (!list_empty(&fs_uuids)) { 400 fs_devices = list_entry(fs_uuids.next, 401 struct btrfs_fs_devices, fs_list); 402 list_del(&fs_devices->fs_list); 403 free_fs_devices(fs_devices); 404 } 405 } 406 407 /* 408 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 409 * Returned struct is not linked onto any lists and must be destroyed using 410 * btrfs_free_device. 411 */ 412 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info) 413 { 414 struct btrfs_device *dev; 415 416 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 417 if (!dev) 418 return ERR_PTR(-ENOMEM); 419 420 /* 421 * Preallocate a bio that's always going to be used for flushing device 422 * barriers and matches the device lifespan 423 */ 424 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0); 425 if (!dev->flush_bio) { 426 kfree(dev); 427 return ERR_PTR(-ENOMEM); 428 } 429 430 INIT_LIST_HEAD(&dev->dev_list); 431 INIT_LIST_HEAD(&dev->dev_alloc_list); 432 INIT_LIST_HEAD(&dev->post_commit_list); 433 434 atomic_set(&dev->reada_in_flight, 0); 435 atomic_set(&dev->dev_stats_ccnt, 0); 436 btrfs_device_data_ordered_init(dev); 437 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 438 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 439 extent_io_tree_init(fs_info, &dev->alloc_state, 440 IO_TREE_DEVICE_ALLOC_STATE, NULL); 441 442 return dev; 443 } 444 445 static noinline struct btrfs_fs_devices *find_fsid( 446 const u8 *fsid, const u8 *metadata_fsid) 447 { 448 struct btrfs_fs_devices *fs_devices; 449 450 ASSERT(fsid); 451 452 /* Handle non-split brain cases */ 453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 454 if (metadata_fsid) { 455 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 456 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 457 BTRFS_FSID_SIZE) == 0) 458 return fs_devices; 459 } else { 460 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 461 return fs_devices; 462 } 463 } 464 return NULL; 465 } 466 467 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 468 struct btrfs_super_block *disk_super) 469 { 470 471 struct btrfs_fs_devices *fs_devices; 472 473 /* 474 * Handle scanned device having completed its fsid change but 475 * belonging to a fs_devices that was created by first scanning 476 * a device which didn't have its fsid/metadata_uuid changed 477 * at all and the CHANGING_FSID_V2 flag set. 478 */ 479 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 480 if (fs_devices->fsid_change && 481 memcmp(disk_super->metadata_uuid, fs_devices->fsid, 482 BTRFS_FSID_SIZE) == 0 && 483 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 484 BTRFS_FSID_SIZE) == 0) { 485 return fs_devices; 486 } 487 } 488 /* 489 * Handle scanned device having completed its fsid change but 490 * belonging to a fs_devices that was created by a device that 491 * has an outdated pair of fsid/metadata_uuid and 492 * CHANGING_FSID_V2 flag set. 493 */ 494 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 495 if (fs_devices->fsid_change && 496 memcmp(fs_devices->metadata_uuid, 497 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 498 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, 499 BTRFS_FSID_SIZE) == 0) { 500 return fs_devices; 501 } 502 } 503 504 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 505 } 506 507 508 static int 509 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 510 int flush, struct block_device **bdev, 511 struct btrfs_super_block **disk_super) 512 { 513 int ret; 514 515 *bdev = blkdev_get_by_path(device_path, flags, holder); 516 517 if (IS_ERR(*bdev)) { 518 ret = PTR_ERR(*bdev); 519 goto error; 520 } 521 522 if (flush) 523 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 524 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 525 if (ret) { 526 blkdev_put(*bdev, flags); 527 goto error; 528 } 529 invalidate_bdev(*bdev); 530 *disk_super = btrfs_read_dev_super(*bdev); 531 if (IS_ERR(*disk_super)) { 532 ret = PTR_ERR(*disk_super); 533 blkdev_put(*bdev, flags); 534 goto error; 535 } 536 537 return 0; 538 539 error: 540 *bdev = NULL; 541 return ret; 542 } 543 544 static bool device_path_matched(const char *path, struct btrfs_device *device) 545 { 546 int found; 547 548 rcu_read_lock(); 549 found = strcmp(rcu_str_deref(device->name), path); 550 rcu_read_unlock(); 551 552 return found == 0; 553 } 554 555 /* 556 * Search and remove all stale (devices which are not mounted) devices. 557 * When both inputs are NULL, it will search and release all stale devices. 558 * path: Optional. When provided will it release all unmounted devices 559 * matching this path only. 560 * skip_dev: Optional. Will skip this device when searching for the stale 561 * devices. 562 * Return: 0 for success or if @path is NULL. 563 * -EBUSY if @path is a mounted device. 564 * -ENOENT if @path does not match any device in the list. 565 */ 566 static int btrfs_free_stale_devices(const char *path, 567 struct btrfs_device *skip_device) 568 { 569 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 570 struct btrfs_device *device, *tmp_device; 571 int ret = 0; 572 573 if (path) 574 ret = -ENOENT; 575 576 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 577 578 mutex_lock(&fs_devices->device_list_mutex); 579 list_for_each_entry_safe(device, tmp_device, 580 &fs_devices->devices, dev_list) { 581 if (skip_device && skip_device == device) 582 continue; 583 if (path && !device->name) 584 continue; 585 if (path && !device_path_matched(path, device)) 586 continue; 587 if (fs_devices->opened) { 588 /* for an already deleted device return 0 */ 589 if (path && ret != 0) 590 ret = -EBUSY; 591 break; 592 } 593 594 /* delete the stale device */ 595 fs_devices->num_devices--; 596 list_del(&device->dev_list); 597 btrfs_free_device(device); 598 599 ret = 0; 600 } 601 mutex_unlock(&fs_devices->device_list_mutex); 602 603 if (fs_devices->num_devices == 0) { 604 btrfs_sysfs_remove_fsid(fs_devices); 605 list_del(&fs_devices->fs_list); 606 free_fs_devices(fs_devices); 607 } 608 } 609 610 return ret; 611 } 612 613 /* 614 * This is only used on mount, and we are protected from competing things 615 * messing with our fs_devices by the uuid_mutex, thus we do not need the 616 * fs_devices->device_list_mutex here. 617 */ 618 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 619 struct btrfs_device *device, fmode_t flags, 620 void *holder) 621 { 622 struct request_queue *q; 623 struct block_device *bdev; 624 struct btrfs_super_block *disk_super; 625 u64 devid; 626 int ret; 627 628 if (device->bdev) 629 return -EINVAL; 630 if (!device->name) 631 return -EINVAL; 632 633 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 634 &bdev, &disk_super); 635 if (ret) 636 return ret; 637 638 devid = btrfs_stack_device_id(&disk_super->dev_item); 639 if (devid != device->devid) 640 goto error_free_page; 641 642 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 643 goto error_free_page; 644 645 device->generation = btrfs_super_generation(disk_super); 646 647 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 648 if (btrfs_super_incompat_flags(disk_super) & 649 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 650 pr_err( 651 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 652 goto error_free_page; 653 } 654 655 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 656 fs_devices->seeding = true; 657 } else { 658 if (bdev_read_only(bdev)) 659 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 660 else 661 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 662 } 663 664 q = bdev_get_queue(bdev); 665 if (!blk_queue_nonrot(q)) 666 fs_devices->rotating = true; 667 668 device->bdev = bdev; 669 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 670 device->mode = flags; 671 672 fs_devices->open_devices++; 673 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 674 device->devid != BTRFS_DEV_REPLACE_DEVID) { 675 fs_devices->rw_devices++; 676 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 677 } 678 btrfs_release_disk_super(disk_super); 679 680 return 0; 681 682 error_free_page: 683 btrfs_release_disk_super(disk_super); 684 blkdev_put(bdev, flags); 685 686 return -EINVAL; 687 } 688 689 /* 690 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 691 * being created with a disk that has already completed its fsid change. Such 692 * disk can belong to an fs which has its FSID changed or to one which doesn't. 693 * Handle both cases here. 694 */ 695 static struct btrfs_fs_devices *find_fsid_inprogress( 696 struct btrfs_super_block *disk_super) 697 { 698 struct btrfs_fs_devices *fs_devices; 699 700 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 701 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 702 BTRFS_FSID_SIZE) != 0 && 703 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 704 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 705 return fs_devices; 706 } 707 } 708 709 return find_fsid(disk_super->fsid, NULL); 710 } 711 712 713 static struct btrfs_fs_devices *find_fsid_changed( 714 struct btrfs_super_block *disk_super) 715 { 716 struct btrfs_fs_devices *fs_devices; 717 718 /* 719 * Handles the case where scanned device is part of an fs that had 720 * multiple successful changes of FSID but currently device didn't 721 * observe it. Meaning our fsid will be different than theirs. We need 722 * to handle two subcases : 723 * 1 - The fs still continues to have different METADATA/FSID uuids. 724 * 2 - The fs is switched back to its original FSID (METADATA/FSID 725 * are equal). 726 */ 727 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 728 /* Changed UUIDs */ 729 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 730 BTRFS_FSID_SIZE) != 0 && 731 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 732 BTRFS_FSID_SIZE) == 0 && 733 memcmp(fs_devices->fsid, disk_super->fsid, 734 BTRFS_FSID_SIZE) != 0) 735 return fs_devices; 736 737 /* Unchanged UUIDs */ 738 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 739 BTRFS_FSID_SIZE) == 0 && 740 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 741 BTRFS_FSID_SIZE) == 0) 742 return fs_devices; 743 } 744 745 return NULL; 746 } 747 748 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 749 struct btrfs_super_block *disk_super) 750 { 751 struct btrfs_fs_devices *fs_devices; 752 753 /* 754 * Handle the case where the scanned device is part of an fs whose last 755 * metadata UUID change reverted it to the original FSID. At the same 756 * time * fs_devices was first created by another constitutent device 757 * which didn't fully observe the operation. This results in an 758 * btrfs_fs_devices created with metadata/fsid different AND 759 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 760 * fs_devices equal to the FSID of the disk. 761 */ 762 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 763 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 764 BTRFS_FSID_SIZE) != 0 && 765 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 766 BTRFS_FSID_SIZE) == 0 && 767 fs_devices->fsid_change) 768 return fs_devices; 769 } 770 771 return NULL; 772 } 773 /* 774 * Add new device to list of registered devices 775 * 776 * Returns: 777 * device pointer which was just added or updated when successful 778 * error pointer when failed 779 */ 780 static noinline struct btrfs_device *device_list_add(const char *path, 781 struct btrfs_super_block *disk_super, 782 bool *new_device_added) 783 { 784 struct btrfs_device *device; 785 struct btrfs_fs_devices *fs_devices = NULL; 786 struct rcu_string *name; 787 u64 found_transid = btrfs_super_generation(disk_super); 788 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 789 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 790 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 791 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 792 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 793 794 if (fsid_change_in_progress) { 795 if (!has_metadata_uuid) 796 fs_devices = find_fsid_inprogress(disk_super); 797 else 798 fs_devices = find_fsid_changed(disk_super); 799 } else if (has_metadata_uuid) { 800 fs_devices = find_fsid_with_metadata_uuid(disk_super); 801 } else { 802 fs_devices = find_fsid_reverted_metadata(disk_super); 803 if (!fs_devices) 804 fs_devices = find_fsid(disk_super->fsid, NULL); 805 } 806 807 808 if (!fs_devices) { 809 if (has_metadata_uuid) 810 fs_devices = alloc_fs_devices(disk_super->fsid, 811 disk_super->metadata_uuid); 812 else 813 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 814 815 if (IS_ERR(fs_devices)) 816 return ERR_CAST(fs_devices); 817 818 fs_devices->fsid_change = fsid_change_in_progress; 819 820 mutex_lock(&fs_devices->device_list_mutex); 821 list_add(&fs_devices->fs_list, &fs_uuids); 822 823 device = NULL; 824 } else { 825 mutex_lock(&fs_devices->device_list_mutex); 826 device = btrfs_find_device(fs_devices, devid, 827 disk_super->dev_item.uuid, NULL); 828 829 /* 830 * If this disk has been pulled into an fs devices created by 831 * a device which had the CHANGING_FSID_V2 flag then replace the 832 * metadata_uuid/fsid values of the fs_devices. 833 */ 834 if (fs_devices->fsid_change && 835 found_transid > fs_devices->latest_generation) { 836 memcpy(fs_devices->fsid, disk_super->fsid, 837 BTRFS_FSID_SIZE); 838 839 if (has_metadata_uuid) 840 memcpy(fs_devices->metadata_uuid, 841 disk_super->metadata_uuid, 842 BTRFS_FSID_SIZE); 843 else 844 memcpy(fs_devices->metadata_uuid, 845 disk_super->fsid, BTRFS_FSID_SIZE); 846 847 fs_devices->fsid_change = false; 848 } 849 } 850 851 if (!device) { 852 if (fs_devices->opened) { 853 mutex_unlock(&fs_devices->device_list_mutex); 854 return ERR_PTR(-EBUSY); 855 } 856 857 device = btrfs_alloc_device(NULL, &devid, 858 disk_super->dev_item.uuid); 859 if (IS_ERR(device)) { 860 mutex_unlock(&fs_devices->device_list_mutex); 861 /* we can safely leave the fs_devices entry around */ 862 return device; 863 } 864 865 name = rcu_string_strdup(path, GFP_NOFS); 866 if (!name) { 867 btrfs_free_device(device); 868 mutex_unlock(&fs_devices->device_list_mutex); 869 return ERR_PTR(-ENOMEM); 870 } 871 rcu_assign_pointer(device->name, name); 872 873 list_add_rcu(&device->dev_list, &fs_devices->devices); 874 fs_devices->num_devices++; 875 876 device->fs_devices = fs_devices; 877 *new_device_added = true; 878 879 if (disk_super->label[0]) 880 pr_info( 881 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 882 disk_super->label, devid, found_transid, path, 883 current->comm, task_pid_nr(current)); 884 else 885 pr_info( 886 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 887 disk_super->fsid, devid, found_transid, path, 888 current->comm, task_pid_nr(current)); 889 890 } else if (!device->name || strcmp(device->name->str, path)) { 891 /* 892 * When FS is already mounted. 893 * 1. If you are here and if the device->name is NULL that 894 * means this device was missing at time of FS mount. 895 * 2. If you are here and if the device->name is different 896 * from 'path' that means either 897 * a. The same device disappeared and reappeared with 898 * different name. or 899 * b. The missing-disk-which-was-replaced, has 900 * reappeared now. 901 * 902 * We must allow 1 and 2a above. But 2b would be a spurious 903 * and unintentional. 904 * 905 * Further in case of 1 and 2a above, the disk at 'path' 906 * would have missed some transaction when it was away and 907 * in case of 2a the stale bdev has to be updated as well. 908 * 2b must not be allowed at all time. 909 */ 910 911 /* 912 * For now, we do allow update to btrfs_fs_device through the 913 * btrfs dev scan cli after FS has been mounted. We're still 914 * tracking a problem where systems fail mount by subvolume id 915 * when we reject replacement on a mounted FS. 916 */ 917 if (!fs_devices->opened && found_transid < device->generation) { 918 /* 919 * That is if the FS is _not_ mounted and if you 920 * are here, that means there is more than one 921 * disk with same uuid and devid.We keep the one 922 * with larger generation number or the last-in if 923 * generation are equal. 924 */ 925 mutex_unlock(&fs_devices->device_list_mutex); 926 return ERR_PTR(-EEXIST); 927 } 928 929 /* 930 * We are going to replace the device path for a given devid, 931 * make sure it's the same device if the device is mounted 932 */ 933 if (device->bdev) { 934 int error; 935 dev_t path_dev; 936 937 error = lookup_bdev(path, &path_dev); 938 if (error) { 939 mutex_unlock(&fs_devices->device_list_mutex); 940 return ERR_PTR(error); 941 } 942 943 if (device->bdev->bd_dev != path_dev) { 944 mutex_unlock(&fs_devices->device_list_mutex); 945 /* 946 * device->fs_info may not be reliable here, so 947 * pass in a NULL instead. This avoids a 948 * possible use-after-free when the fs_info and 949 * fs_info->sb are already torn down. 950 */ 951 btrfs_warn_in_rcu(NULL, 952 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 953 path, devid, found_transid, 954 current->comm, 955 task_pid_nr(current)); 956 return ERR_PTR(-EEXIST); 957 } 958 btrfs_info_in_rcu(device->fs_info, 959 "devid %llu device path %s changed to %s scanned by %s (%d)", 960 devid, rcu_str_deref(device->name), 961 path, current->comm, 962 task_pid_nr(current)); 963 } 964 965 name = rcu_string_strdup(path, GFP_NOFS); 966 if (!name) { 967 mutex_unlock(&fs_devices->device_list_mutex); 968 return ERR_PTR(-ENOMEM); 969 } 970 rcu_string_free(device->name); 971 rcu_assign_pointer(device->name, name); 972 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 973 fs_devices->missing_devices--; 974 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 975 } 976 } 977 978 /* 979 * Unmount does not free the btrfs_device struct but would zero 980 * generation along with most of the other members. So just update 981 * it back. We need it to pick the disk with largest generation 982 * (as above). 983 */ 984 if (!fs_devices->opened) { 985 device->generation = found_transid; 986 fs_devices->latest_generation = max_t(u64, found_transid, 987 fs_devices->latest_generation); 988 } 989 990 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 991 992 mutex_unlock(&fs_devices->device_list_mutex); 993 return device; 994 } 995 996 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 997 { 998 struct btrfs_fs_devices *fs_devices; 999 struct btrfs_device *device; 1000 struct btrfs_device *orig_dev; 1001 int ret = 0; 1002 1003 fs_devices = alloc_fs_devices(orig->fsid, NULL); 1004 if (IS_ERR(fs_devices)) 1005 return fs_devices; 1006 1007 mutex_lock(&orig->device_list_mutex); 1008 fs_devices->total_devices = orig->total_devices; 1009 1010 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1011 struct rcu_string *name; 1012 1013 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1014 orig_dev->uuid); 1015 if (IS_ERR(device)) { 1016 ret = PTR_ERR(device); 1017 goto error; 1018 } 1019 1020 /* 1021 * This is ok to do without rcu read locked because we hold the 1022 * uuid mutex so nothing we touch in here is going to disappear. 1023 */ 1024 if (orig_dev->name) { 1025 name = rcu_string_strdup(orig_dev->name->str, 1026 GFP_KERNEL); 1027 if (!name) { 1028 btrfs_free_device(device); 1029 ret = -ENOMEM; 1030 goto error; 1031 } 1032 rcu_assign_pointer(device->name, name); 1033 } 1034 1035 list_add(&device->dev_list, &fs_devices->devices); 1036 device->fs_devices = fs_devices; 1037 fs_devices->num_devices++; 1038 } 1039 mutex_unlock(&orig->device_list_mutex); 1040 return fs_devices; 1041 error: 1042 mutex_unlock(&orig->device_list_mutex); 1043 free_fs_devices(fs_devices); 1044 return ERR_PTR(ret); 1045 } 1046 1047 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1048 struct btrfs_device **latest_dev) 1049 { 1050 struct btrfs_device *device, *next; 1051 1052 /* This is the initialized path, it is safe to release the devices. */ 1053 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1054 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1055 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1056 &device->dev_state) && 1057 !test_bit(BTRFS_DEV_STATE_MISSING, 1058 &device->dev_state) && 1059 (!*latest_dev || 1060 device->generation > (*latest_dev)->generation)) { 1061 *latest_dev = device; 1062 } 1063 continue; 1064 } 1065 1066 /* 1067 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1068 * in btrfs_init_dev_replace() so just continue. 1069 */ 1070 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1071 continue; 1072 1073 if (device->bdev) { 1074 blkdev_put(device->bdev, device->mode); 1075 device->bdev = NULL; 1076 fs_devices->open_devices--; 1077 } 1078 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1079 list_del_init(&device->dev_alloc_list); 1080 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1081 } 1082 list_del_init(&device->dev_list); 1083 fs_devices->num_devices--; 1084 btrfs_free_device(device); 1085 } 1086 1087 } 1088 1089 /* 1090 * After we have read the system tree and know devids belonging to this 1091 * filesystem, remove the device which does not belong there. 1092 */ 1093 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1094 { 1095 struct btrfs_device *latest_dev = NULL; 1096 struct btrfs_fs_devices *seed_dev; 1097 1098 mutex_lock(&uuid_mutex); 1099 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1100 1101 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1102 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1103 1104 fs_devices->latest_bdev = latest_dev->bdev; 1105 1106 mutex_unlock(&uuid_mutex); 1107 } 1108 1109 static void btrfs_close_bdev(struct btrfs_device *device) 1110 { 1111 if (!device->bdev) 1112 return; 1113 1114 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1115 sync_blockdev(device->bdev); 1116 invalidate_bdev(device->bdev); 1117 } 1118 1119 blkdev_put(device->bdev, device->mode); 1120 } 1121 1122 static void btrfs_close_one_device(struct btrfs_device *device) 1123 { 1124 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1125 1126 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1127 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1128 list_del_init(&device->dev_alloc_list); 1129 fs_devices->rw_devices--; 1130 } 1131 1132 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 1133 fs_devices->missing_devices--; 1134 1135 btrfs_close_bdev(device); 1136 if (device->bdev) { 1137 fs_devices->open_devices--; 1138 device->bdev = NULL; 1139 } 1140 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1141 btrfs_destroy_dev_zone_info(device); 1142 1143 device->fs_info = NULL; 1144 atomic_set(&device->dev_stats_ccnt, 0); 1145 extent_io_tree_release(&device->alloc_state); 1146 1147 /* Verify the device is back in a pristine state */ 1148 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1149 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1150 ASSERT(list_empty(&device->dev_alloc_list)); 1151 ASSERT(list_empty(&device->post_commit_list)); 1152 ASSERT(atomic_read(&device->reada_in_flight) == 0); 1153 } 1154 1155 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1156 { 1157 struct btrfs_device *device, *tmp; 1158 1159 lockdep_assert_held(&uuid_mutex); 1160 1161 if (--fs_devices->opened > 0) 1162 return; 1163 1164 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1165 btrfs_close_one_device(device); 1166 1167 WARN_ON(fs_devices->open_devices); 1168 WARN_ON(fs_devices->rw_devices); 1169 fs_devices->opened = 0; 1170 fs_devices->seeding = false; 1171 fs_devices->fs_info = NULL; 1172 } 1173 1174 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1175 { 1176 LIST_HEAD(list); 1177 struct btrfs_fs_devices *tmp; 1178 1179 mutex_lock(&uuid_mutex); 1180 close_fs_devices(fs_devices); 1181 if (!fs_devices->opened) 1182 list_splice_init(&fs_devices->seed_list, &list); 1183 1184 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1185 close_fs_devices(fs_devices); 1186 list_del(&fs_devices->seed_list); 1187 free_fs_devices(fs_devices); 1188 } 1189 mutex_unlock(&uuid_mutex); 1190 } 1191 1192 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1193 fmode_t flags, void *holder) 1194 { 1195 struct btrfs_device *device; 1196 struct btrfs_device *latest_dev = NULL; 1197 struct btrfs_device *tmp_device; 1198 1199 flags |= FMODE_EXCL; 1200 1201 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1202 dev_list) { 1203 int ret; 1204 1205 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1206 if (ret == 0 && 1207 (!latest_dev || device->generation > latest_dev->generation)) { 1208 latest_dev = device; 1209 } else if (ret == -ENODATA) { 1210 fs_devices->num_devices--; 1211 list_del(&device->dev_list); 1212 btrfs_free_device(device); 1213 } 1214 } 1215 if (fs_devices->open_devices == 0) 1216 return -EINVAL; 1217 1218 fs_devices->opened = 1; 1219 fs_devices->latest_bdev = latest_dev->bdev; 1220 fs_devices->total_rw_bytes = 0; 1221 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1222 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1223 1224 return 0; 1225 } 1226 1227 static int devid_cmp(void *priv, const struct list_head *a, 1228 const struct list_head *b) 1229 { 1230 struct btrfs_device *dev1, *dev2; 1231 1232 dev1 = list_entry(a, struct btrfs_device, dev_list); 1233 dev2 = list_entry(b, struct btrfs_device, dev_list); 1234 1235 if (dev1->devid < dev2->devid) 1236 return -1; 1237 else if (dev1->devid > dev2->devid) 1238 return 1; 1239 return 0; 1240 } 1241 1242 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1243 fmode_t flags, void *holder) 1244 { 1245 int ret; 1246 1247 lockdep_assert_held(&uuid_mutex); 1248 /* 1249 * The device_list_mutex cannot be taken here in case opening the 1250 * underlying device takes further locks like open_mutex. 1251 * 1252 * We also don't need the lock here as this is called during mount and 1253 * exclusion is provided by uuid_mutex 1254 */ 1255 1256 if (fs_devices->opened) { 1257 fs_devices->opened++; 1258 ret = 0; 1259 } else { 1260 list_sort(NULL, &fs_devices->devices, devid_cmp); 1261 ret = open_fs_devices(fs_devices, flags, holder); 1262 } 1263 1264 return ret; 1265 } 1266 1267 void btrfs_release_disk_super(struct btrfs_super_block *super) 1268 { 1269 struct page *page = virt_to_page(super); 1270 1271 put_page(page); 1272 } 1273 1274 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1275 u64 bytenr, u64 bytenr_orig) 1276 { 1277 struct btrfs_super_block *disk_super; 1278 struct page *page; 1279 void *p; 1280 pgoff_t index; 1281 1282 /* make sure our super fits in the device */ 1283 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1284 return ERR_PTR(-EINVAL); 1285 1286 /* make sure our super fits in the page */ 1287 if (sizeof(*disk_super) > PAGE_SIZE) 1288 return ERR_PTR(-EINVAL); 1289 1290 /* make sure our super doesn't straddle pages on disk */ 1291 index = bytenr >> PAGE_SHIFT; 1292 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1293 return ERR_PTR(-EINVAL); 1294 1295 /* pull in the page with our super */ 1296 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1297 1298 if (IS_ERR(page)) 1299 return ERR_CAST(page); 1300 1301 p = page_address(page); 1302 1303 /* align our pointer to the offset of the super block */ 1304 disk_super = p + offset_in_page(bytenr); 1305 1306 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1307 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1308 btrfs_release_disk_super(p); 1309 return ERR_PTR(-EINVAL); 1310 } 1311 1312 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1313 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1314 1315 return disk_super; 1316 } 1317 1318 int btrfs_forget_devices(const char *path) 1319 { 1320 int ret; 1321 1322 mutex_lock(&uuid_mutex); 1323 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1324 mutex_unlock(&uuid_mutex); 1325 1326 return ret; 1327 } 1328 1329 /* 1330 * Look for a btrfs signature on a device. This may be called out of the mount path 1331 * and we are not allowed to call set_blocksize during the scan. The superblock 1332 * is read via pagecache 1333 */ 1334 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1335 void *holder) 1336 { 1337 struct btrfs_super_block *disk_super; 1338 bool new_device_added = false; 1339 struct btrfs_device *device = NULL; 1340 struct block_device *bdev; 1341 u64 bytenr, bytenr_orig; 1342 int ret; 1343 1344 lockdep_assert_held(&uuid_mutex); 1345 1346 /* 1347 * we would like to check all the supers, but that would make 1348 * a btrfs mount succeed after a mkfs from a different FS. 1349 * So, we need to add a special mount option to scan for 1350 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1351 */ 1352 flags |= FMODE_EXCL; 1353 1354 bdev = blkdev_get_by_path(path, flags, holder); 1355 if (IS_ERR(bdev)) 1356 return ERR_CAST(bdev); 1357 1358 bytenr_orig = btrfs_sb_offset(0); 1359 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr); 1360 if (ret) 1361 return ERR_PTR(ret); 1362 1363 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig); 1364 if (IS_ERR(disk_super)) { 1365 device = ERR_CAST(disk_super); 1366 goto error_bdev_put; 1367 } 1368 1369 device = device_list_add(path, disk_super, &new_device_added); 1370 if (!IS_ERR(device)) { 1371 if (new_device_added) 1372 btrfs_free_stale_devices(path, device); 1373 } 1374 1375 btrfs_release_disk_super(disk_super); 1376 1377 error_bdev_put: 1378 blkdev_put(bdev, flags); 1379 1380 return device; 1381 } 1382 1383 /* 1384 * Try to find a chunk that intersects [start, start + len] range and when one 1385 * such is found, record the end of it in *start 1386 */ 1387 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1388 u64 len) 1389 { 1390 u64 physical_start, physical_end; 1391 1392 lockdep_assert_held(&device->fs_info->chunk_mutex); 1393 1394 if (!find_first_extent_bit(&device->alloc_state, *start, 1395 &physical_start, &physical_end, 1396 CHUNK_ALLOCATED, NULL)) { 1397 1398 if (in_range(physical_start, *start, len) || 1399 in_range(*start, physical_start, 1400 physical_end - physical_start)) { 1401 *start = physical_end + 1; 1402 return true; 1403 } 1404 } 1405 return false; 1406 } 1407 1408 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1409 { 1410 switch (device->fs_devices->chunk_alloc_policy) { 1411 case BTRFS_CHUNK_ALLOC_REGULAR: 1412 /* 1413 * We don't want to overwrite the superblock on the drive nor 1414 * any area used by the boot loader (grub for example), so we 1415 * make sure to start at an offset of at least 1MB. 1416 */ 1417 return max_t(u64, start, SZ_1M); 1418 case BTRFS_CHUNK_ALLOC_ZONED: 1419 /* 1420 * We don't care about the starting region like regular 1421 * allocator, because we anyway use/reserve the first two zones 1422 * for superblock logging. 1423 */ 1424 return ALIGN(start, device->zone_info->zone_size); 1425 default: 1426 BUG(); 1427 } 1428 } 1429 1430 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1431 u64 *hole_start, u64 *hole_size, 1432 u64 num_bytes) 1433 { 1434 u64 zone_size = device->zone_info->zone_size; 1435 u64 pos; 1436 int ret; 1437 bool changed = false; 1438 1439 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1440 1441 while (*hole_size > 0) { 1442 pos = btrfs_find_allocatable_zones(device, *hole_start, 1443 *hole_start + *hole_size, 1444 num_bytes); 1445 if (pos != *hole_start) { 1446 *hole_size = *hole_start + *hole_size - pos; 1447 *hole_start = pos; 1448 changed = true; 1449 if (*hole_size < num_bytes) 1450 break; 1451 } 1452 1453 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1454 1455 /* Range is ensured to be empty */ 1456 if (!ret) 1457 return changed; 1458 1459 /* Given hole range was invalid (outside of device) */ 1460 if (ret == -ERANGE) { 1461 *hole_start += *hole_size; 1462 *hole_size = 0; 1463 return true; 1464 } 1465 1466 *hole_start += zone_size; 1467 *hole_size -= zone_size; 1468 changed = true; 1469 } 1470 1471 return changed; 1472 } 1473 1474 /** 1475 * dev_extent_hole_check - check if specified hole is suitable for allocation 1476 * @device: the device which we have the hole 1477 * @hole_start: starting position of the hole 1478 * @hole_size: the size of the hole 1479 * @num_bytes: the size of the free space that we need 1480 * 1481 * This function may modify @hole_start and @hole_size to reflect the suitable 1482 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1483 */ 1484 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1485 u64 *hole_size, u64 num_bytes) 1486 { 1487 bool changed = false; 1488 u64 hole_end = *hole_start + *hole_size; 1489 1490 for (;;) { 1491 /* 1492 * Check before we set max_hole_start, otherwise we could end up 1493 * sending back this offset anyway. 1494 */ 1495 if (contains_pending_extent(device, hole_start, *hole_size)) { 1496 if (hole_end >= *hole_start) 1497 *hole_size = hole_end - *hole_start; 1498 else 1499 *hole_size = 0; 1500 changed = true; 1501 } 1502 1503 switch (device->fs_devices->chunk_alloc_policy) { 1504 case BTRFS_CHUNK_ALLOC_REGULAR: 1505 /* No extra check */ 1506 break; 1507 case BTRFS_CHUNK_ALLOC_ZONED: 1508 if (dev_extent_hole_check_zoned(device, hole_start, 1509 hole_size, num_bytes)) { 1510 changed = true; 1511 /* 1512 * The changed hole can contain pending extent. 1513 * Loop again to check that. 1514 */ 1515 continue; 1516 } 1517 break; 1518 default: 1519 BUG(); 1520 } 1521 1522 break; 1523 } 1524 1525 return changed; 1526 } 1527 1528 /* 1529 * find_free_dev_extent_start - find free space in the specified device 1530 * @device: the device which we search the free space in 1531 * @num_bytes: the size of the free space that we need 1532 * @search_start: the position from which to begin the search 1533 * @start: store the start of the free space. 1534 * @len: the size of the free space. that we find, or the size 1535 * of the max free space if we don't find suitable free space 1536 * 1537 * this uses a pretty simple search, the expectation is that it is 1538 * called very infrequently and that a given device has a small number 1539 * of extents 1540 * 1541 * @start is used to store the start of the free space if we find. But if we 1542 * don't find suitable free space, it will be used to store the start position 1543 * of the max free space. 1544 * 1545 * @len is used to store the size of the free space that we find. 1546 * But if we don't find suitable free space, it is used to store the size of 1547 * the max free space. 1548 * 1549 * NOTE: This function will search *commit* root of device tree, and does extra 1550 * check to ensure dev extents are not double allocated. 1551 * This makes the function safe to allocate dev extents but may not report 1552 * correct usable device space, as device extent freed in current transaction 1553 * is not reported as available. 1554 */ 1555 static int find_free_dev_extent_start(struct btrfs_device *device, 1556 u64 num_bytes, u64 search_start, u64 *start, 1557 u64 *len) 1558 { 1559 struct btrfs_fs_info *fs_info = device->fs_info; 1560 struct btrfs_root *root = fs_info->dev_root; 1561 struct btrfs_key key; 1562 struct btrfs_dev_extent *dev_extent; 1563 struct btrfs_path *path; 1564 u64 hole_size; 1565 u64 max_hole_start; 1566 u64 max_hole_size; 1567 u64 extent_end; 1568 u64 search_end = device->total_bytes; 1569 int ret; 1570 int slot; 1571 struct extent_buffer *l; 1572 1573 search_start = dev_extent_search_start(device, search_start); 1574 1575 WARN_ON(device->zone_info && 1576 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1577 1578 path = btrfs_alloc_path(); 1579 if (!path) 1580 return -ENOMEM; 1581 1582 max_hole_start = search_start; 1583 max_hole_size = 0; 1584 1585 again: 1586 if (search_start >= search_end || 1587 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1588 ret = -ENOSPC; 1589 goto out; 1590 } 1591 1592 path->reada = READA_FORWARD; 1593 path->search_commit_root = 1; 1594 path->skip_locking = 1; 1595 1596 key.objectid = device->devid; 1597 key.offset = search_start; 1598 key.type = BTRFS_DEV_EXTENT_KEY; 1599 1600 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1601 if (ret < 0) 1602 goto out; 1603 if (ret > 0) { 1604 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1605 if (ret < 0) 1606 goto out; 1607 } 1608 1609 while (1) { 1610 l = path->nodes[0]; 1611 slot = path->slots[0]; 1612 if (slot >= btrfs_header_nritems(l)) { 1613 ret = btrfs_next_leaf(root, path); 1614 if (ret == 0) 1615 continue; 1616 if (ret < 0) 1617 goto out; 1618 1619 break; 1620 } 1621 btrfs_item_key_to_cpu(l, &key, slot); 1622 1623 if (key.objectid < device->devid) 1624 goto next; 1625 1626 if (key.objectid > device->devid) 1627 break; 1628 1629 if (key.type != BTRFS_DEV_EXTENT_KEY) 1630 goto next; 1631 1632 if (key.offset > search_start) { 1633 hole_size = key.offset - search_start; 1634 dev_extent_hole_check(device, &search_start, &hole_size, 1635 num_bytes); 1636 1637 if (hole_size > max_hole_size) { 1638 max_hole_start = search_start; 1639 max_hole_size = hole_size; 1640 } 1641 1642 /* 1643 * If this free space is greater than which we need, 1644 * it must be the max free space that we have found 1645 * until now, so max_hole_start must point to the start 1646 * of this free space and the length of this free space 1647 * is stored in max_hole_size. Thus, we return 1648 * max_hole_start and max_hole_size and go back to the 1649 * caller. 1650 */ 1651 if (hole_size >= num_bytes) { 1652 ret = 0; 1653 goto out; 1654 } 1655 } 1656 1657 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1658 extent_end = key.offset + btrfs_dev_extent_length(l, 1659 dev_extent); 1660 if (extent_end > search_start) 1661 search_start = extent_end; 1662 next: 1663 path->slots[0]++; 1664 cond_resched(); 1665 } 1666 1667 /* 1668 * At this point, search_start should be the end of 1669 * allocated dev extents, and when shrinking the device, 1670 * search_end may be smaller than search_start. 1671 */ 1672 if (search_end > search_start) { 1673 hole_size = search_end - search_start; 1674 if (dev_extent_hole_check(device, &search_start, &hole_size, 1675 num_bytes)) { 1676 btrfs_release_path(path); 1677 goto again; 1678 } 1679 1680 if (hole_size > max_hole_size) { 1681 max_hole_start = search_start; 1682 max_hole_size = hole_size; 1683 } 1684 } 1685 1686 /* See above. */ 1687 if (max_hole_size < num_bytes) 1688 ret = -ENOSPC; 1689 else 1690 ret = 0; 1691 1692 out: 1693 btrfs_free_path(path); 1694 *start = max_hole_start; 1695 if (len) 1696 *len = max_hole_size; 1697 return ret; 1698 } 1699 1700 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1701 u64 *start, u64 *len) 1702 { 1703 /* FIXME use last free of some kind */ 1704 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1705 } 1706 1707 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1708 struct btrfs_device *device, 1709 u64 start, u64 *dev_extent_len) 1710 { 1711 struct btrfs_fs_info *fs_info = device->fs_info; 1712 struct btrfs_root *root = fs_info->dev_root; 1713 int ret; 1714 struct btrfs_path *path; 1715 struct btrfs_key key; 1716 struct btrfs_key found_key; 1717 struct extent_buffer *leaf = NULL; 1718 struct btrfs_dev_extent *extent = NULL; 1719 1720 path = btrfs_alloc_path(); 1721 if (!path) 1722 return -ENOMEM; 1723 1724 key.objectid = device->devid; 1725 key.offset = start; 1726 key.type = BTRFS_DEV_EXTENT_KEY; 1727 again: 1728 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1729 if (ret > 0) { 1730 ret = btrfs_previous_item(root, path, key.objectid, 1731 BTRFS_DEV_EXTENT_KEY); 1732 if (ret) 1733 goto out; 1734 leaf = path->nodes[0]; 1735 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1736 extent = btrfs_item_ptr(leaf, path->slots[0], 1737 struct btrfs_dev_extent); 1738 BUG_ON(found_key.offset > start || found_key.offset + 1739 btrfs_dev_extent_length(leaf, extent) < start); 1740 key = found_key; 1741 btrfs_release_path(path); 1742 goto again; 1743 } else if (ret == 0) { 1744 leaf = path->nodes[0]; 1745 extent = btrfs_item_ptr(leaf, path->slots[0], 1746 struct btrfs_dev_extent); 1747 } else { 1748 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1749 goto out; 1750 } 1751 1752 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1753 1754 ret = btrfs_del_item(trans, root, path); 1755 if (ret) { 1756 btrfs_handle_fs_error(fs_info, ret, 1757 "Failed to remove dev extent item"); 1758 } else { 1759 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1760 } 1761 out: 1762 btrfs_free_path(path); 1763 return ret; 1764 } 1765 1766 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1767 struct btrfs_device *device, 1768 u64 chunk_offset, u64 start, u64 num_bytes) 1769 { 1770 int ret; 1771 struct btrfs_path *path; 1772 struct btrfs_fs_info *fs_info = device->fs_info; 1773 struct btrfs_root *root = fs_info->dev_root; 1774 struct btrfs_dev_extent *extent; 1775 struct extent_buffer *leaf; 1776 struct btrfs_key key; 1777 1778 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1779 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1780 path = btrfs_alloc_path(); 1781 if (!path) 1782 return -ENOMEM; 1783 1784 key.objectid = device->devid; 1785 key.offset = start; 1786 key.type = BTRFS_DEV_EXTENT_KEY; 1787 ret = btrfs_insert_empty_item(trans, root, path, &key, 1788 sizeof(*extent)); 1789 if (ret) 1790 goto out; 1791 1792 leaf = path->nodes[0]; 1793 extent = btrfs_item_ptr(leaf, path->slots[0], 1794 struct btrfs_dev_extent); 1795 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1796 BTRFS_CHUNK_TREE_OBJECTID); 1797 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1798 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1799 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1800 1801 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1802 btrfs_mark_buffer_dirty(leaf); 1803 out: 1804 btrfs_free_path(path); 1805 return ret; 1806 } 1807 1808 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1809 { 1810 struct extent_map_tree *em_tree; 1811 struct extent_map *em; 1812 struct rb_node *n; 1813 u64 ret = 0; 1814 1815 em_tree = &fs_info->mapping_tree; 1816 read_lock(&em_tree->lock); 1817 n = rb_last(&em_tree->map.rb_root); 1818 if (n) { 1819 em = rb_entry(n, struct extent_map, rb_node); 1820 ret = em->start + em->len; 1821 } 1822 read_unlock(&em_tree->lock); 1823 1824 return ret; 1825 } 1826 1827 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1828 u64 *devid_ret) 1829 { 1830 int ret; 1831 struct btrfs_key key; 1832 struct btrfs_key found_key; 1833 struct btrfs_path *path; 1834 1835 path = btrfs_alloc_path(); 1836 if (!path) 1837 return -ENOMEM; 1838 1839 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1840 key.type = BTRFS_DEV_ITEM_KEY; 1841 key.offset = (u64)-1; 1842 1843 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1844 if (ret < 0) 1845 goto error; 1846 1847 if (ret == 0) { 1848 /* Corruption */ 1849 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1850 ret = -EUCLEAN; 1851 goto error; 1852 } 1853 1854 ret = btrfs_previous_item(fs_info->chunk_root, path, 1855 BTRFS_DEV_ITEMS_OBJECTID, 1856 BTRFS_DEV_ITEM_KEY); 1857 if (ret) { 1858 *devid_ret = 1; 1859 } else { 1860 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1861 path->slots[0]); 1862 *devid_ret = found_key.offset + 1; 1863 } 1864 ret = 0; 1865 error: 1866 btrfs_free_path(path); 1867 return ret; 1868 } 1869 1870 /* 1871 * the device information is stored in the chunk root 1872 * the btrfs_device struct should be fully filled in 1873 */ 1874 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1875 struct btrfs_device *device) 1876 { 1877 int ret; 1878 struct btrfs_path *path; 1879 struct btrfs_dev_item *dev_item; 1880 struct extent_buffer *leaf; 1881 struct btrfs_key key; 1882 unsigned long ptr; 1883 1884 path = btrfs_alloc_path(); 1885 if (!path) 1886 return -ENOMEM; 1887 1888 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1889 key.type = BTRFS_DEV_ITEM_KEY; 1890 key.offset = device->devid; 1891 1892 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1893 &key, sizeof(*dev_item)); 1894 if (ret) 1895 goto out; 1896 1897 leaf = path->nodes[0]; 1898 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1899 1900 btrfs_set_device_id(leaf, dev_item, device->devid); 1901 btrfs_set_device_generation(leaf, dev_item, 0); 1902 btrfs_set_device_type(leaf, dev_item, device->type); 1903 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1904 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1905 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1906 btrfs_set_device_total_bytes(leaf, dev_item, 1907 btrfs_device_get_disk_total_bytes(device)); 1908 btrfs_set_device_bytes_used(leaf, dev_item, 1909 btrfs_device_get_bytes_used(device)); 1910 btrfs_set_device_group(leaf, dev_item, 0); 1911 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1912 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1913 btrfs_set_device_start_offset(leaf, dev_item, 0); 1914 1915 ptr = btrfs_device_uuid(dev_item); 1916 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1917 ptr = btrfs_device_fsid(dev_item); 1918 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1919 ptr, BTRFS_FSID_SIZE); 1920 btrfs_mark_buffer_dirty(leaf); 1921 1922 ret = 0; 1923 out: 1924 btrfs_free_path(path); 1925 return ret; 1926 } 1927 1928 /* 1929 * Function to update ctime/mtime for a given device path. 1930 * Mainly used for ctime/mtime based probe like libblkid. 1931 */ 1932 static void update_dev_time(const char *path_name) 1933 { 1934 struct file *filp; 1935 1936 filp = filp_open(path_name, O_RDWR, 0); 1937 if (IS_ERR(filp)) 1938 return; 1939 file_update_time(filp); 1940 filp_close(filp, NULL); 1941 } 1942 1943 static int btrfs_rm_dev_item(struct btrfs_device *device) 1944 { 1945 struct btrfs_root *root = device->fs_info->chunk_root; 1946 int ret; 1947 struct btrfs_path *path; 1948 struct btrfs_key key; 1949 struct btrfs_trans_handle *trans; 1950 1951 path = btrfs_alloc_path(); 1952 if (!path) 1953 return -ENOMEM; 1954 1955 trans = btrfs_start_transaction(root, 0); 1956 if (IS_ERR(trans)) { 1957 btrfs_free_path(path); 1958 return PTR_ERR(trans); 1959 } 1960 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1961 key.type = BTRFS_DEV_ITEM_KEY; 1962 key.offset = device->devid; 1963 1964 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1965 if (ret) { 1966 if (ret > 0) 1967 ret = -ENOENT; 1968 btrfs_abort_transaction(trans, ret); 1969 btrfs_end_transaction(trans); 1970 goto out; 1971 } 1972 1973 ret = btrfs_del_item(trans, root, path); 1974 if (ret) { 1975 btrfs_abort_transaction(trans, ret); 1976 btrfs_end_transaction(trans); 1977 } 1978 1979 out: 1980 btrfs_free_path(path); 1981 if (!ret) 1982 ret = btrfs_commit_transaction(trans); 1983 return ret; 1984 } 1985 1986 /* 1987 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1988 * filesystem. It's up to the caller to adjust that number regarding eg. device 1989 * replace. 1990 */ 1991 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1992 u64 num_devices) 1993 { 1994 u64 all_avail; 1995 unsigned seq; 1996 int i; 1997 1998 do { 1999 seq = read_seqbegin(&fs_info->profiles_lock); 2000 2001 all_avail = fs_info->avail_data_alloc_bits | 2002 fs_info->avail_system_alloc_bits | 2003 fs_info->avail_metadata_alloc_bits; 2004 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2005 2006 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2007 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2008 continue; 2009 2010 if (num_devices < btrfs_raid_array[i].devs_min) { 2011 int ret = btrfs_raid_array[i].mindev_error; 2012 2013 if (ret) 2014 return ret; 2015 } 2016 } 2017 2018 return 0; 2019 } 2020 2021 static struct btrfs_device * btrfs_find_next_active_device( 2022 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2023 { 2024 struct btrfs_device *next_device; 2025 2026 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2027 if (next_device != device && 2028 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2029 && next_device->bdev) 2030 return next_device; 2031 } 2032 2033 return NULL; 2034 } 2035 2036 /* 2037 * Helper function to check if the given device is part of s_bdev / latest_bdev 2038 * and replace it with the provided or the next active device, in the context 2039 * where this function called, there should be always be another device (or 2040 * this_dev) which is active. 2041 */ 2042 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2043 struct btrfs_device *next_device) 2044 { 2045 struct btrfs_fs_info *fs_info = device->fs_info; 2046 2047 if (!next_device) 2048 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2049 device); 2050 ASSERT(next_device); 2051 2052 if (fs_info->sb->s_bdev && 2053 (fs_info->sb->s_bdev == device->bdev)) 2054 fs_info->sb->s_bdev = next_device->bdev; 2055 2056 if (fs_info->fs_devices->latest_bdev == device->bdev) 2057 fs_info->fs_devices->latest_bdev = next_device->bdev; 2058 } 2059 2060 /* 2061 * Return btrfs_fs_devices::num_devices excluding the device that's being 2062 * currently replaced. 2063 */ 2064 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2065 { 2066 u64 num_devices = fs_info->fs_devices->num_devices; 2067 2068 down_read(&fs_info->dev_replace.rwsem); 2069 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2070 ASSERT(num_devices > 1); 2071 num_devices--; 2072 } 2073 up_read(&fs_info->dev_replace.rwsem); 2074 2075 return num_devices; 2076 } 2077 2078 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2079 struct block_device *bdev, 2080 const char *device_path) 2081 { 2082 struct btrfs_super_block *disk_super; 2083 int copy_num; 2084 2085 if (!bdev) 2086 return; 2087 2088 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2089 struct page *page; 2090 int ret; 2091 2092 disk_super = btrfs_read_dev_one_super(bdev, copy_num); 2093 if (IS_ERR(disk_super)) 2094 continue; 2095 2096 if (bdev_is_zoned(bdev)) { 2097 btrfs_reset_sb_log_zones(bdev, copy_num); 2098 continue; 2099 } 2100 2101 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 2102 2103 page = virt_to_page(disk_super); 2104 set_page_dirty(page); 2105 lock_page(page); 2106 /* write_on_page() unlocks the page */ 2107 ret = write_one_page(page); 2108 if (ret) 2109 btrfs_warn(fs_info, 2110 "error clearing superblock number %d (%d)", 2111 copy_num, ret); 2112 btrfs_release_disk_super(disk_super); 2113 2114 } 2115 2116 /* Notify udev that device has changed */ 2117 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2118 2119 /* Update ctime/mtime for device path for libblkid */ 2120 update_dev_time(device_path); 2121 } 2122 2123 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 2124 u64 devid) 2125 { 2126 struct btrfs_device *device; 2127 struct btrfs_fs_devices *cur_devices; 2128 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2129 u64 num_devices; 2130 int ret = 0; 2131 2132 mutex_lock(&uuid_mutex); 2133 2134 num_devices = btrfs_num_devices(fs_info); 2135 2136 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2137 if (ret) 2138 goto out; 2139 2140 device = btrfs_find_device_by_devspec(fs_info, devid, device_path); 2141 2142 if (IS_ERR(device)) { 2143 if (PTR_ERR(device) == -ENOENT && 2144 strcmp(device_path, "missing") == 0) 2145 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2146 else 2147 ret = PTR_ERR(device); 2148 goto out; 2149 } 2150 2151 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2152 btrfs_warn_in_rcu(fs_info, 2153 "cannot remove device %s (devid %llu) due to active swapfile", 2154 rcu_str_deref(device->name), device->devid); 2155 ret = -ETXTBSY; 2156 goto out; 2157 } 2158 2159 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2160 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 2161 goto out; 2162 } 2163 2164 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2165 fs_info->fs_devices->rw_devices == 1) { 2166 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 2167 goto out; 2168 } 2169 2170 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2171 mutex_lock(&fs_info->chunk_mutex); 2172 list_del_init(&device->dev_alloc_list); 2173 device->fs_devices->rw_devices--; 2174 mutex_unlock(&fs_info->chunk_mutex); 2175 } 2176 2177 mutex_unlock(&uuid_mutex); 2178 ret = btrfs_shrink_device(device, 0); 2179 if (!ret) 2180 btrfs_reada_remove_dev(device); 2181 mutex_lock(&uuid_mutex); 2182 if (ret) 2183 goto error_undo; 2184 2185 /* 2186 * TODO: the superblock still includes this device in its num_devices 2187 * counter although write_all_supers() is not locked out. This 2188 * could give a filesystem state which requires a degraded mount. 2189 */ 2190 ret = btrfs_rm_dev_item(device); 2191 if (ret) 2192 goto error_undo; 2193 2194 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2195 btrfs_scrub_cancel_dev(device); 2196 2197 /* 2198 * the device list mutex makes sure that we don't change 2199 * the device list while someone else is writing out all 2200 * the device supers. Whoever is writing all supers, should 2201 * lock the device list mutex before getting the number of 2202 * devices in the super block (super_copy). Conversely, 2203 * whoever updates the number of devices in the super block 2204 * (super_copy) should hold the device list mutex. 2205 */ 2206 2207 /* 2208 * In normal cases the cur_devices == fs_devices. But in case 2209 * of deleting a seed device, the cur_devices should point to 2210 * its own fs_devices listed under the fs_devices->seed. 2211 */ 2212 cur_devices = device->fs_devices; 2213 mutex_lock(&fs_devices->device_list_mutex); 2214 list_del_rcu(&device->dev_list); 2215 2216 cur_devices->num_devices--; 2217 cur_devices->total_devices--; 2218 /* Update total_devices of the parent fs_devices if it's seed */ 2219 if (cur_devices != fs_devices) 2220 fs_devices->total_devices--; 2221 2222 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2223 cur_devices->missing_devices--; 2224 2225 btrfs_assign_next_active_device(device, NULL); 2226 2227 if (device->bdev) { 2228 cur_devices->open_devices--; 2229 /* remove sysfs entry */ 2230 btrfs_sysfs_remove_device(device); 2231 } 2232 2233 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2234 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2235 mutex_unlock(&fs_devices->device_list_mutex); 2236 2237 /* 2238 * at this point, the device is zero sized and detached from 2239 * the devices list. All that's left is to zero out the old 2240 * supers and free the device. 2241 */ 2242 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2243 btrfs_scratch_superblocks(fs_info, device->bdev, 2244 device->name->str); 2245 2246 btrfs_close_bdev(device); 2247 synchronize_rcu(); 2248 btrfs_free_device(device); 2249 2250 if (cur_devices->open_devices == 0) { 2251 list_del_init(&cur_devices->seed_list); 2252 close_fs_devices(cur_devices); 2253 free_fs_devices(cur_devices); 2254 } 2255 2256 out: 2257 mutex_unlock(&uuid_mutex); 2258 return ret; 2259 2260 error_undo: 2261 btrfs_reada_undo_remove_dev(device); 2262 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2263 mutex_lock(&fs_info->chunk_mutex); 2264 list_add(&device->dev_alloc_list, 2265 &fs_devices->alloc_list); 2266 device->fs_devices->rw_devices++; 2267 mutex_unlock(&fs_info->chunk_mutex); 2268 } 2269 goto out; 2270 } 2271 2272 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2273 { 2274 struct btrfs_fs_devices *fs_devices; 2275 2276 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2277 2278 /* 2279 * in case of fs with no seed, srcdev->fs_devices will point 2280 * to fs_devices of fs_info. However when the dev being replaced is 2281 * a seed dev it will point to the seed's local fs_devices. In short 2282 * srcdev will have its correct fs_devices in both the cases. 2283 */ 2284 fs_devices = srcdev->fs_devices; 2285 2286 list_del_rcu(&srcdev->dev_list); 2287 list_del(&srcdev->dev_alloc_list); 2288 fs_devices->num_devices--; 2289 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2290 fs_devices->missing_devices--; 2291 2292 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2293 fs_devices->rw_devices--; 2294 2295 if (srcdev->bdev) 2296 fs_devices->open_devices--; 2297 } 2298 2299 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2300 { 2301 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2302 2303 mutex_lock(&uuid_mutex); 2304 2305 btrfs_close_bdev(srcdev); 2306 synchronize_rcu(); 2307 btrfs_free_device(srcdev); 2308 2309 /* if this is no devs we rather delete the fs_devices */ 2310 if (!fs_devices->num_devices) { 2311 /* 2312 * On a mounted FS, num_devices can't be zero unless it's a 2313 * seed. In case of a seed device being replaced, the replace 2314 * target added to the sprout FS, so there will be no more 2315 * device left under the seed FS. 2316 */ 2317 ASSERT(fs_devices->seeding); 2318 2319 list_del_init(&fs_devices->seed_list); 2320 close_fs_devices(fs_devices); 2321 free_fs_devices(fs_devices); 2322 } 2323 mutex_unlock(&uuid_mutex); 2324 } 2325 2326 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2327 { 2328 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2329 2330 mutex_lock(&fs_devices->device_list_mutex); 2331 2332 btrfs_sysfs_remove_device(tgtdev); 2333 2334 if (tgtdev->bdev) 2335 fs_devices->open_devices--; 2336 2337 fs_devices->num_devices--; 2338 2339 btrfs_assign_next_active_device(tgtdev, NULL); 2340 2341 list_del_rcu(&tgtdev->dev_list); 2342 2343 mutex_unlock(&fs_devices->device_list_mutex); 2344 2345 /* 2346 * The update_dev_time() with in btrfs_scratch_superblocks() 2347 * may lead to a call to btrfs_show_devname() which will try 2348 * to hold device_list_mutex. And here this device 2349 * is already out of device list, so we don't have to hold 2350 * the device_list_mutex lock. 2351 */ 2352 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2353 tgtdev->name->str); 2354 2355 btrfs_close_bdev(tgtdev); 2356 synchronize_rcu(); 2357 btrfs_free_device(tgtdev); 2358 } 2359 2360 static struct btrfs_device *btrfs_find_device_by_path( 2361 struct btrfs_fs_info *fs_info, const char *device_path) 2362 { 2363 int ret = 0; 2364 struct btrfs_super_block *disk_super; 2365 u64 devid; 2366 u8 *dev_uuid; 2367 struct block_device *bdev; 2368 struct btrfs_device *device; 2369 2370 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2371 fs_info->bdev_holder, 0, &bdev, &disk_super); 2372 if (ret) 2373 return ERR_PTR(ret); 2374 2375 devid = btrfs_stack_device_id(&disk_super->dev_item); 2376 dev_uuid = disk_super->dev_item.uuid; 2377 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2378 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2379 disk_super->metadata_uuid); 2380 else 2381 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2382 disk_super->fsid); 2383 2384 btrfs_release_disk_super(disk_super); 2385 if (!device) 2386 device = ERR_PTR(-ENOENT); 2387 blkdev_put(bdev, FMODE_READ); 2388 return device; 2389 } 2390 2391 /* 2392 * Lookup a device given by device id, or the path if the id is 0. 2393 */ 2394 struct btrfs_device *btrfs_find_device_by_devspec( 2395 struct btrfs_fs_info *fs_info, u64 devid, 2396 const char *device_path) 2397 { 2398 struct btrfs_device *device; 2399 2400 if (devid) { 2401 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, 2402 NULL); 2403 if (!device) 2404 return ERR_PTR(-ENOENT); 2405 return device; 2406 } 2407 2408 if (!device_path || !device_path[0]) 2409 return ERR_PTR(-EINVAL); 2410 2411 if (strcmp(device_path, "missing") == 0) { 2412 /* Find first missing device */ 2413 list_for_each_entry(device, &fs_info->fs_devices->devices, 2414 dev_list) { 2415 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2416 &device->dev_state) && !device->bdev) 2417 return device; 2418 } 2419 return ERR_PTR(-ENOENT); 2420 } 2421 2422 return btrfs_find_device_by_path(fs_info, device_path); 2423 } 2424 2425 /* 2426 * does all the dirty work required for changing file system's UUID. 2427 */ 2428 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2429 { 2430 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2431 struct btrfs_fs_devices *old_devices; 2432 struct btrfs_fs_devices *seed_devices; 2433 struct btrfs_super_block *disk_super = fs_info->super_copy; 2434 struct btrfs_device *device; 2435 u64 super_flags; 2436 2437 lockdep_assert_held(&uuid_mutex); 2438 if (!fs_devices->seeding) 2439 return -EINVAL; 2440 2441 /* 2442 * Private copy of the seed devices, anchored at 2443 * fs_info->fs_devices->seed_list 2444 */ 2445 seed_devices = alloc_fs_devices(NULL, NULL); 2446 if (IS_ERR(seed_devices)) 2447 return PTR_ERR(seed_devices); 2448 2449 /* 2450 * It's necessary to retain a copy of the original seed fs_devices in 2451 * fs_uuids so that filesystems which have been seeded can successfully 2452 * reference the seed device from open_seed_devices. This also supports 2453 * multiple fs seed. 2454 */ 2455 old_devices = clone_fs_devices(fs_devices); 2456 if (IS_ERR(old_devices)) { 2457 kfree(seed_devices); 2458 return PTR_ERR(old_devices); 2459 } 2460 2461 list_add(&old_devices->fs_list, &fs_uuids); 2462 2463 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2464 seed_devices->opened = 1; 2465 INIT_LIST_HEAD(&seed_devices->devices); 2466 INIT_LIST_HEAD(&seed_devices->alloc_list); 2467 mutex_init(&seed_devices->device_list_mutex); 2468 2469 mutex_lock(&fs_devices->device_list_mutex); 2470 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2471 synchronize_rcu); 2472 list_for_each_entry(device, &seed_devices->devices, dev_list) 2473 device->fs_devices = seed_devices; 2474 2475 fs_devices->seeding = false; 2476 fs_devices->num_devices = 0; 2477 fs_devices->open_devices = 0; 2478 fs_devices->missing_devices = 0; 2479 fs_devices->rotating = false; 2480 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2481 2482 generate_random_uuid(fs_devices->fsid); 2483 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2484 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2485 mutex_unlock(&fs_devices->device_list_mutex); 2486 2487 super_flags = btrfs_super_flags(disk_super) & 2488 ~BTRFS_SUPER_FLAG_SEEDING; 2489 btrfs_set_super_flags(disk_super, super_flags); 2490 2491 return 0; 2492 } 2493 2494 /* 2495 * Store the expected generation for seed devices in device items. 2496 */ 2497 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2498 { 2499 struct btrfs_fs_info *fs_info = trans->fs_info; 2500 struct btrfs_root *root = fs_info->chunk_root; 2501 struct btrfs_path *path; 2502 struct extent_buffer *leaf; 2503 struct btrfs_dev_item *dev_item; 2504 struct btrfs_device *device; 2505 struct btrfs_key key; 2506 u8 fs_uuid[BTRFS_FSID_SIZE]; 2507 u8 dev_uuid[BTRFS_UUID_SIZE]; 2508 u64 devid; 2509 int ret; 2510 2511 path = btrfs_alloc_path(); 2512 if (!path) 2513 return -ENOMEM; 2514 2515 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2516 key.offset = 0; 2517 key.type = BTRFS_DEV_ITEM_KEY; 2518 2519 while (1) { 2520 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2521 if (ret < 0) 2522 goto error; 2523 2524 leaf = path->nodes[0]; 2525 next_slot: 2526 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2527 ret = btrfs_next_leaf(root, path); 2528 if (ret > 0) 2529 break; 2530 if (ret < 0) 2531 goto error; 2532 leaf = path->nodes[0]; 2533 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2534 btrfs_release_path(path); 2535 continue; 2536 } 2537 2538 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2539 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2540 key.type != BTRFS_DEV_ITEM_KEY) 2541 break; 2542 2543 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2544 struct btrfs_dev_item); 2545 devid = btrfs_device_id(leaf, dev_item); 2546 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2547 BTRFS_UUID_SIZE); 2548 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2549 BTRFS_FSID_SIZE); 2550 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2551 fs_uuid); 2552 BUG_ON(!device); /* Logic error */ 2553 2554 if (device->fs_devices->seeding) { 2555 btrfs_set_device_generation(leaf, dev_item, 2556 device->generation); 2557 btrfs_mark_buffer_dirty(leaf); 2558 } 2559 2560 path->slots[0]++; 2561 goto next_slot; 2562 } 2563 ret = 0; 2564 error: 2565 btrfs_free_path(path); 2566 return ret; 2567 } 2568 2569 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2570 { 2571 struct btrfs_root *root = fs_info->dev_root; 2572 struct request_queue *q; 2573 struct btrfs_trans_handle *trans; 2574 struct btrfs_device *device; 2575 struct block_device *bdev; 2576 struct super_block *sb = fs_info->sb; 2577 struct rcu_string *name; 2578 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2579 u64 orig_super_total_bytes; 2580 u64 orig_super_num_devices; 2581 int seeding_dev = 0; 2582 int ret = 0; 2583 bool locked = false; 2584 2585 if (sb_rdonly(sb) && !fs_devices->seeding) 2586 return -EROFS; 2587 2588 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2589 fs_info->bdev_holder); 2590 if (IS_ERR(bdev)) 2591 return PTR_ERR(bdev); 2592 2593 if (!btrfs_check_device_zone_type(fs_info, bdev)) { 2594 ret = -EINVAL; 2595 goto error; 2596 } 2597 2598 if (fs_devices->seeding) { 2599 seeding_dev = 1; 2600 down_write(&sb->s_umount); 2601 mutex_lock(&uuid_mutex); 2602 locked = true; 2603 } 2604 2605 sync_blockdev(bdev); 2606 2607 rcu_read_lock(); 2608 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2609 if (device->bdev == bdev) { 2610 ret = -EEXIST; 2611 rcu_read_unlock(); 2612 goto error; 2613 } 2614 } 2615 rcu_read_unlock(); 2616 2617 device = btrfs_alloc_device(fs_info, NULL, NULL); 2618 if (IS_ERR(device)) { 2619 /* we can safely leave the fs_devices entry around */ 2620 ret = PTR_ERR(device); 2621 goto error; 2622 } 2623 2624 name = rcu_string_strdup(device_path, GFP_KERNEL); 2625 if (!name) { 2626 ret = -ENOMEM; 2627 goto error_free_device; 2628 } 2629 rcu_assign_pointer(device->name, name); 2630 2631 device->fs_info = fs_info; 2632 device->bdev = bdev; 2633 2634 ret = btrfs_get_dev_zone_info(device); 2635 if (ret) 2636 goto error_free_device; 2637 2638 trans = btrfs_start_transaction(root, 0); 2639 if (IS_ERR(trans)) { 2640 ret = PTR_ERR(trans); 2641 goto error_free_zone; 2642 } 2643 2644 q = bdev_get_queue(bdev); 2645 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2646 device->generation = trans->transid; 2647 device->io_width = fs_info->sectorsize; 2648 device->io_align = fs_info->sectorsize; 2649 device->sector_size = fs_info->sectorsize; 2650 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2651 fs_info->sectorsize); 2652 device->disk_total_bytes = device->total_bytes; 2653 device->commit_total_bytes = device->total_bytes; 2654 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2655 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2656 device->mode = FMODE_EXCL; 2657 device->dev_stats_valid = 1; 2658 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2659 2660 if (seeding_dev) { 2661 btrfs_clear_sb_rdonly(sb); 2662 ret = btrfs_prepare_sprout(fs_info); 2663 if (ret) { 2664 btrfs_abort_transaction(trans, ret); 2665 goto error_trans; 2666 } 2667 } 2668 2669 device->fs_devices = fs_devices; 2670 2671 mutex_lock(&fs_devices->device_list_mutex); 2672 mutex_lock(&fs_info->chunk_mutex); 2673 list_add_rcu(&device->dev_list, &fs_devices->devices); 2674 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2675 fs_devices->num_devices++; 2676 fs_devices->open_devices++; 2677 fs_devices->rw_devices++; 2678 fs_devices->total_devices++; 2679 fs_devices->total_rw_bytes += device->total_bytes; 2680 2681 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2682 2683 if (!blk_queue_nonrot(q)) 2684 fs_devices->rotating = true; 2685 2686 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2687 btrfs_set_super_total_bytes(fs_info->super_copy, 2688 round_down(orig_super_total_bytes + device->total_bytes, 2689 fs_info->sectorsize)); 2690 2691 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2692 btrfs_set_super_num_devices(fs_info->super_copy, 2693 orig_super_num_devices + 1); 2694 2695 /* 2696 * we've got more storage, clear any full flags on the space 2697 * infos 2698 */ 2699 btrfs_clear_space_info_full(fs_info); 2700 2701 mutex_unlock(&fs_info->chunk_mutex); 2702 2703 /* Add sysfs device entry */ 2704 btrfs_sysfs_add_device(device); 2705 2706 mutex_unlock(&fs_devices->device_list_mutex); 2707 2708 if (seeding_dev) { 2709 mutex_lock(&fs_info->chunk_mutex); 2710 ret = init_first_rw_device(trans); 2711 mutex_unlock(&fs_info->chunk_mutex); 2712 if (ret) { 2713 btrfs_abort_transaction(trans, ret); 2714 goto error_sysfs; 2715 } 2716 } 2717 2718 ret = btrfs_add_dev_item(trans, device); 2719 if (ret) { 2720 btrfs_abort_transaction(trans, ret); 2721 goto error_sysfs; 2722 } 2723 2724 if (seeding_dev) { 2725 ret = btrfs_finish_sprout(trans); 2726 if (ret) { 2727 btrfs_abort_transaction(trans, ret); 2728 goto error_sysfs; 2729 } 2730 2731 /* 2732 * fs_devices now represents the newly sprouted filesystem and 2733 * its fsid has been changed by btrfs_prepare_sprout 2734 */ 2735 btrfs_sysfs_update_sprout_fsid(fs_devices); 2736 } 2737 2738 ret = btrfs_commit_transaction(trans); 2739 2740 if (seeding_dev) { 2741 mutex_unlock(&uuid_mutex); 2742 up_write(&sb->s_umount); 2743 locked = false; 2744 2745 if (ret) /* transaction commit */ 2746 return ret; 2747 2748 ret = btrfs_relocate_sys_chunks(fs_info); 2749 if (ret < 0) 2750 btrfs_handle_fs_error(fs_info, ret, 2751 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2752 trans = btrfs_attach_transaction(root); 2753 if (IS_ERR(trans)) { 2754 if (PTR_ERR(trans) == -ENOENT) 2755 return 0; 2756 ret = PTR_ERR(trans); 2757 trans = NULL; 2758 goto error_sysfs; 2759 } 2760 ret = btrfs_commit_transaction(trans); 2761 } 2762 2763 /* 2764 * Now that we have written a new super block to this device, check all 2765 * other fs_devices list if device_path alienates any other scanned 2766 * device. 2767 * We can ignore the return value as it typically returns -EINVAL and 2768 * only succeeds if the device was an alien. 2769 */ 2770 btrfs_forget_devices(device_path); 2771 2772 /* Update ctime/mtime for blkid or udev */ 2773 update_dev_time(device_path); 2774 2775 return ret; 2776 2777 error_sysfs: 2778 btrfs_sysfs_remove_device(device); 2779 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2780 mutex_lock(&fs_info->chunk_mutex); 2781 list_del_rcu(&device->dev_list); 2782 list_del(&device->dev_alloc_list); 2783 fs_info->fs_devices->num_devices--; 2784 fs_info->fs_devices->open_devices--; 2785 fs_info->fs_devices->rw_devices--; 2786 fs_info->fs_devices->total_devices--; 2787 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2788 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2789 btrfs_set_super_total_bytes(fs_info->super_copy, 2790 orig_super_total_bytes); 2791 btrfs_set_super_num_devices(fs_info->super_copy, 2792 orig_super_num_devices); 2793 mutex_unlock(&fs_info->chunk_mutex); 2794 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2795 error_trans: 2796 if (seeding_dev) 2797 btrfs_set_sb_rdonly(sb); 2798 if (trans) 2799 btrfs_end_transaction(trans); 2800 error_free_zone: 2801 btrfs_destroy_dev_zone_info(device); 2802 error_free_device: 2803 btrfs_free_device(device); 2804 error: 2805 blkdev_put(bdev, FMODE_EXCL); 2806 if (locked) { 2807 mutex_unlock(&uuid_mutex); 2808 up_write(&sb->s_umount); 2809 } 2810 return ret; 2811 } 2812 2813 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2814 struct btrfs_device *device) 2815 { 2816 int ret; 2817 struct btrfs_path *path; 2818 struct btrfs_root *root = device->fs_info->chunk_root; 2819 struct btrfs_dev_item *dev_item; 2820 struct extent_buffer *leaf; 2821 struct btrfs_key key; 2822 2823 path = btrfs_alloc_path(); 2824 if (!path) 2825 return -ENOMEM; 2826 2827 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2828 key.type = BTRFS_DEV_ITEM_KEY; 2829 key.offset = device->devid; 2830 2831 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2832 if (ret < 0) 2833 goto out; 2834 2835 if (ret > 0) { 2836 ret = -ENOENT; 2837 goto out; 2838 } 2839 2840 leaf = path->nodes[0]; 2841 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2842 2843 btrfs_set_device_id(leaf, dev_item, device->devid); 2844 btrfs_set_device_type(leaf, dev_item, device->type); 2845 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2846 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2847 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2848 btrfs_set_device_total_bytes(leaf, dev_item, 2849 btrfs_device_get_disk_total_bytes(device)); 2850 btrfs_set_device_bytes_used(leaf, dev_item, 2851 btrfs_device_get_bytes_used(device)); 2852 btrfs_mark_buffer_dirty(leaf); 2853 2854 out: 2855 btrfs_free_path(path); 2856 return ret; 2857 } 2858 2859 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2860 struct btrfs_device *device, u64 new_size) 2861 { 2862 struct btrfs_fs_info *fs_info = device->fs_info; 2863 struct btrfs_super_block *super_copy = fs_info->super_copy; 2864 u64 old_total; 2865 u64 diff; 2866 2867 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2868 return -EACCES; 2869 2870 new_size = round_down(new_size, fs_info->sectorsize); 2871 2872 mutex_lock(&fs_info->chunk_mutex); 2873 old_total = btrfs_super_total_bytes(super_copy); 2874 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2875 2876 if (new_size <= device->total_bytes || 2877 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2878 mutex_unlock(&fs_info->chunk_mutex); 2879 return -EINVAL; 2880 } 2881 2882 btrfs_set_super_total_bytes(super_copy, 2883 round_down(old_total + diff, fs_info->sectorsize)); 2884 device->fs_devices->total_rw_bytes += diff; 2885 2886 btrfs_device_set_total_bytes(device, new_size); 2887 btrfs_device_set_disk_total_bytes(device, new_size); 2888 btrfs_clear_space_info_full(device->fs_info); 2889 if (list_empty(&device->post_commit_list)) 2890 list_add_tail(&device->post_commit_list, 2891 &trans->transaction->dev_update_list); 2892 mutex_unlock(&fs_info->chunk_mutex); 2893 2894 return btrfs_update_device(trans, device); 2895 } 2896 2897 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2898 { 2899 struct btrfs_fs_info *fs_info = trans->fs_info; 2900 struct btrfs_root *root = fs_info->chunk_root; 2901 int ret; 2902 struct btrfs_path *path; 2903 struct btrfs_key key; 2904 2905 path = btrfs_alloc_path(); 2906 if (!path) 2907 return -ENOMEM; 2908 2909 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2910 key.offset = chunk_offset; 2911 key.type = BTRFS_CHUNK_ITEM_KEY; 2912 2913 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2914 if (ret < 0) 2915 goto out; 2916 else if (ret > 0) { /* Logic error or corruption */ 2917 btrfs_handle_fs_error(fs_info, -ENOENT, 2918 "Failed lookup while freeing chunk."); 2919 ret = -ENOENT; 2920 goto out; 2921 } 2922 2923 ret = btrfs_del_item(trans, root, path); 2924 if (ret < 0) 2925 btrfs_handle_fs_error(fs_info, ret, 2926 "Failed to delete chunk item."); 2927 out: 2928 btrfs_free_path(path); 2929 return ret; 2930 } 2931 2932 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2933 { 2934 struct btrfs_super_block *super_copy = fs_info->super_copy; 2935 struct btrfs_disk_key *disk_key; 2936 struct btrfs_chunk *chunk; 2937 u8 *ptr; 2938 int ret = 0; 2939 u32 num_stripes; 2940 u32 array_size; 2941 u32 len = 0; 2942 u32 cur; 2943 struct btrfs_key key; 2944 2945 mutex_lock(&fs_info->chunk_mutex); 2946 array_size = btrfs_super_sys_array_size(super_copy); 2947 2948 ptr = super_copy->sys_chunk_array; 2949 cur = 0; 2950 2951 while (cur < array_size) { 2952 disk_key = (struct btrfs_disk_key *)ptr; 2953 btrfs_disk_key_to_cpu(&key, disk_key); 2954 2955 len = sizeof(*disk_key); 2956 2957 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2958 chunk = (struct btrfs_chunk *)(ptr + len); 2959 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2960 len += btrfs_chunk_item_size(num_stripes); 2961 } else { 2962 ret = -EIO; 2963 break; 2964 } 2965 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2966 key.offset == chunk_offset) { 2967 memmove(ptr, ptr + len, array_size - (cur + len)); 2968 array_size -= len; 2969 btrfs_set_super_sys_array_size(super_copy, array_size); 2970 } else { 2971 ptr += len; 2972 cur += len; 2973 } 2974 } 2975 mutex_unlock(&fs_info->chunk_mutex); 2976 return ret; 2977 } 2978 2979 /* 2980 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2981 * @logical: Logical block offset in bytes. 2982 * @length: Length of extent in bytes. 2983 * 2984 * Return: Chunk mapping or ERR_PTR. 2985 */ 2986 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2987 u64 logical, u64 length) 2988 { 2989 struct extent_map_tree *em_tree; 2990 struct extent_map *em; 2991 2992 em_tree = &fs_info->mapping_tree; 2993 read_lock(&em_tree->lock); 2994 em = lookup_extent_mapping(em_tree, logical, length); 2995 read_unlock(&em_tree->lock); 2996 2997 if (!em) { 2998 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2999 logical, length); 3000 return ERR_PTR(-EINVAL); 3001 } 3002 3003 if (em->start > logical || em->start + em->len < logical) { 3004 btrfs_crit(fs_info, 3005 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 3006 logical, length, em->start, em->start + em->len); 3007 free_extent_map(em); 3008 return ERR_PTR(-EINVAL); 3009 } 3010 3011 /* callers are responsible for dropping em's ref. */ 3012 return em; 3013 } 3014 3015 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3016 { 3017 struct btrfs_fs_info *fs_info = trans->fs_info; 3018 struct extent_map *em; 3019 struct map_lookup *map; 3020 u64 dev_extent_len = 0; 3021 int i, ret = 0; 3022 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3023 3024 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3025 if (IS_ERR(em)) { 3026 /* 3027 * This is a logic error, but we don't want to just rely on the 3028 * user having built with ASSERT enabled, so if ASSERT doesn't 3029 * do anything we still error out. 3030 */ 3031 ASSERT(0); 3032 return PTR_ERR(em); 3033 } 3034 map = em->map_lookup; 3035 mutex_lock(&fs_info->chunk_mutex); 3036 check_system_chunk(trans, map->type); 3037 mutex_unlock(&fs_info->chunk_mutex); 3038 3039 /* 3040 * Take the device list mutex to prevent races with the final phase of 3041 * a device replace operation that replaces the device object associated 3042 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 3043 */ 3044 mutex_lock(&fs_devices->device_list_mutex); 3045 for (i = 0; i < map->num_stripes; i++) { 3046 struct btrfs_device *device = map->stripes[i].dev; 3047 ret = btrfs_free_dev_extent(trans, device, 3048 map->stripes[i].physical, 3049 &dev_extent_len); 3050 if (ret) { 3051 mutex_unlock(&fs_devices->device_list_mutex); 3052 btrfs_abort_transaction(trans, ret); 3053 goto out; 3054 } 3055 3056 if (device->bytes_used > 0) { 3057 mutex_lock(&fs_info->chunk_mutex); 3058 btrfs_device_set_bytes_used(device, 3059 device->bytes_used - dev_extent_len); 3060 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3061 btrfs_clear_space_info_full(fs_info); 3062 mutex_unlock(&fs_info->chunk_mutex); 3063 } 3064 3065 ret = btrfs_update_device(trans, device); 3066 if (ret) { 3067 mutex_unlock(&fs_devices->device_list_mutex); 3068 btrfs_abort_transaction(trans, ret); 3069 goto out; 3070 } 3071 } 3072 mutex_unlock(&fs_devices->device_list_mutex); 3073 3074 ret = btrfs_free_chunk(trans, chunk_offset); 3075 if (ret) { 3076 btrfs_abort_transaction(trans, ret); 3077 goto out; 3078 } 3079 3080 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3081 3082 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3083 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3084 if (ret) { 3085 btrfs_abort_transaction(trans, ret); 3086 goto out; 3087 } 3088 } 3089 3090 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3091 if (ret) { 3092 btrfs_abort_transaction(trans, ret); 3093 goto out; 3094 } 3095 3096 out: 3097 /* once for us */ 3098 free_extent_map(em); 3099 return ret; 3100 } 3101 3102 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3103 { 3104 struct btrfs_root *root = fs_info->chunk_root; 3105 struct btrfs_trans_handle *trans; 3106 struct btrfs_block_group *block_group; 3107 u64 length; 3108 int ret; 3109 3110 /* 3111 * Prevent races with automatic removal of unused block groups. 3112 * After we relocate and before we remove the chunk with offset 3113 * chunk_offset, automatic removal of the block group can kick in, 3114 * resulting in a failure when calling btrfs_remove_chunk() below. 3115 * 3116 * Make sure to acquire this mutex before doing a tree search (dev 3117 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3118 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3119 * we release the path used to search the chunk/dev tree and before 3120 * the current task acquires this mutex and calls us. 3121 */ 3122 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3123 3124 /* step one, relocate all the extents inside this chunk */ 3125 btrfs_scrub_pause(fs_info); 3126 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3127 btrfs_scrub_continue(fs_info); 3128 if (ret) 3129 return ret; 3130 3131 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3132 if (!block_group) 3133 return -ENOENT; 3134 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3135 length = block_group->length; 3136 btrfs_put_block_group(block_group); 3137 3138 /* 3139 * On a zoned file system, discard the whole block group, this will 3140 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3141 * resetting the zone fails, don't treat it as a fatal problem from the 3142 * filesystem's point of view. 3143 */ 3144 if (btrfs_is_zoned(fs_info)) { 3145 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3146 if (ret) 3147 btrfs_info(fs_info, 3148 "failed to reset zone %llu after relocation", 3149 chunk_offset); 3150 } 3151 3152 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3153 chunk_offset); 3154 if (IS_ERR(trans)) { 3155 ret = PTR_ERR(trans); 3156 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3157 return ret; 3158 } 3159 3160 /* 3161 * step two, delete the device extents and the 3162 * chunk tree entries 3163 */ 3164 ret = btrfs_remove_chunk(trans, chunk_offset); 3165 btrfs_end_transaction(trans); 3166 return ret; 3167 } 3168 3169 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3170 { 3171 struct btrfs_root *chunk_root = fs_info->chunk_root; 3172 struct btrfs_path *path; 3173 struct extent_buffer *leaf; 3174 struct btrfs_chunk *chunk; 3175 struct btrfs_key key; 3176 struct btrfs_key found_key; 3177 u64 chunk_type; 3178 bool retried = false; 3179 int failed = 0; 3180 int ret; 3181 3182 path = btrfs_alloc_path(); 3183 if (!path) 3184 return -ENOMEM; 3185 3186 again: 3187 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3188 key.offset = (u64)-1; 3189 key.type = BTRFS_CHUNK_ITEM_KEY; 3190 3191 while (1) { 3192 mutex_lock(&fs_info->reclaim_bgs_lock); 3193 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3194 if (ret < 0) { 3195 mutex_unlock(&fs_info->reclaim_bgs_lock); 3196 goto error; 3197 } 3198 BUG_ON(ret == 0); /* Corruption */ 3199 3200 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3201 key.type); 3202 if (ret) 3203 mutex_unlock(&fs_info->reclaim_bgs_lock); 3204 if (ret < 0) 3205 goto error; 3206 if (ret > 0) 3207 break; 3208 3209 leaf = path->nodes[0]; 3210 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3211 3212 chunk = btrfs_item_ptr(leaf, path->slots[0], 3213 struct btrfs_chunk); 3214 chunk_type = btrfs_chunk_type(leaf, chunk); 3215 btrfs_release_path(path); 3216 3217 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3218 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3219 if (ret == -ENOSPC) 3220 failed++; 3221 else 3222 BUG_ON(ret); 3223 } 3224 mutex_unlock(&fs_info->reclaim_bgs_lock); 3225 3226 if (found_key.offset == 0) 3227 break; 3228 key.offset = found_key.offset - 1; 3229 } 3230 ret = 0; 3231 if (failed && !retried) { 3232 failed = 0; 3233 retried = true; 3234 goto again; 3235 } else if (WARN_ON(failed && retried)) { 3236 ret = -ENOSPC; 3237 } 3238 error: 3239 btrfs_free_path(path); 3240 return ret; 3241 } 3242 3243 /* 3244 * return 1 : allocate a data chunk successfully, 3245 * return <0: errors during allocating a data chunk, 3246 * return 0 : no need to allocate a data chunk. 3247 */ 3248 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3249 u64 chunk_offset) 3250 { 3251 struct btrfs_block_group *cache; 3252 u64 bytes_used; 3253 u64 chunk_type; 3254 3255 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3256 ASSERT(cache); 3257 chunk_type = cache->flags; 3258 btrfs_put_block_group(cache); 3259 3260 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3261 return 0; 3262 3263 spin_lock(&fs_info->data_sinfo->lock); 3264 bytes_used = fs_info->data_sinfo->bytes_used; 3265 spin_unlock(&fs_info->data_sinfo->lock); 3266 3267 if (!bytes_used) { 3268 struct btrfs_trans_handle *trans; 3269 int ret; 3270 3271 trans = btrfs_join_transaction(fs_info->tree_root); 3272 if (IS_ERR(trans)) 3273 return PTR_ERR(trans); 3274 3275 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3276 btrfs_end_transaction(trans); 3277 if (ret < 0) 3278 return ret; 3279 return 1; 3280 } 3281 3282 return 0; 3283 } 3284 3285 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3286 struct btrfs_balance_control *bctl) 3287 { 3288 struct btrfs_root *root = fs_info->tree_root; 3289 struct btrfs_trans_handle *trans; 3290 struct btrfs_balance_item *item; 3291 struct btrfs_disk_balance_args disk_bargs; 3292 struct btrfs_path *path; 3293 struct extent_buffer *leaf; 3294 struct btrfs_key key; 3295 int ret, err; 3296 3297 path = btrfs_alloc_path(); 3298 if (!path) 3299 return -ENOMEM; 3300 3301 trans = btrfs_start_transaction(root, 0); 3302 if (IS_ERR(trans)) { 3303 btrfs_free_path(path); 3304 return PTR_ERR(trans); 3305 } 3306 3307 key.objectid = BTRFS_BALANCE_OBJECTID; 3308 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3309 key.offset = 0; 3310 3311 ret = btrfs_insert_empty_item(trans, root, path, &key, 3312 sizeof(*item)); 3313 if (ret) 3314 goto out; 3315 3316 leaf = path->nodes[0]; 3317 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3318 3319 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3320 3321 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3322 btrfs_set_balance_data(leaf, item, &disk_bargs); 3323 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3324 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3325 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3326 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3327 3328 btrfs_set_balance_flags(leaf, item, bctl->flags); 3329 3330 btrfs_mark_buffer_dirty(leaf); 3331 out: 3332 btrfs_free_path(path); 3333 err = btrfs_commit_transaction(trans); 3334 if (err && !ret) 3335 ret = err; 3336 return ret; 3337 } 3338 3339 static int del_balance_item(struct btrfs_fs_info *fs_info) 3340 { 3341 struct btrfs_root *root = fs_info->tree_root; 3342 struct btrfs_trans_handle *trans; 3343 struct btrfs_path *path; 3344 struct btrfs_key key; 3345 int ret, err; 3346 3347 path = btrfs_alloc_path(); 3348 if (!path) 3349 return -ENOMEM; 3350 3351 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3352 if (IS_ERR(trans)) { 3353 btrfs_free_path(path); 3354 return PTR_ERR(trans); 3355 } 3356 3357 key.objectid = BTRFS_BALANCE_OBJECTID; 3358 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3359 key.offset = 0; 3360 3361 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3362 if (ret < 0) 3363 goto out; 3364 if (ret > 0) { 3365 ret = -ENOENT; 3366 goto out; 3367 } 3368 3369 ret = btrfs_del_item(trans, root, path); 3370 out: 3371 btrfs_free_path(path); 3372 err = btrfs_commit_transaction(trans); 3373 if (err && !ret) 3374 ret = err; 3375 return ret; 3376 } 3377 3378 /* 3379 * This is a heuristic used to reduce the number of chunks balanced on 3380 * resume after balance was interrupted. 3381 */ 3382 static void update_balance_args(struct btrfs_balance_control *bctl) 3383 { 3384 /* 3385 * Turn on soft mode for chunk types that were being converted. 3386 */ 3387 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3388 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3389 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3390 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3391 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3392 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3393 3394 /* 3395 * Turn on usage filter if is not already used. The idea is 3396 * that chunks that we have already balanced should be 3397 * reasonably full. Don't do it for chunks that are being 3398 * converted - that will keep us from relocating unconverted 3399 * (albeit full) chunks. 3400 */ 3401 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3402 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3403 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3404 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3405 bctl->data.usage = 90; 3406 } 3407 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3408 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3409 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3410 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3411 bctl->sys.usage = 90; 3412 } 3413 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3414 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3415 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3416 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3417 bctl->meta.usage = 90; 3418 } 3419 } 3420 3421 /* 3422 * Clear the balance status in fs_info and delete the balance item from disk. 3423 */ 3424 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3425 { 3426 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3427 int ret; 3428 3429 BUG_ON(!fs_info->balance_ctl); 3430 3431 spin_lock(&fs_info->balance_lock); 3432 fs_info->balance_ctl = NULL; 3433 spin_unlock(&fs_info->balance_lock); 3434 3435 kfree(bctl); 3436 ret = del_balance_item(fs_info); 3437 if (ret) 3438 btrfs_handle_fs_error(fs_info, ret, NULL); 3439 } 3440 3441 /* 3442 * Balance filters. Return 1 if chunk should be filtered out 3443 * (should not be balanced). 3444 */ 3445 static int chunk_profiles_filter(u64 chunk_type, 3446 struct btrfs_balance_args *bargs) 3447 { 3448 chunk_type = chunk_to_extended(chunk_type) & 3449 BTRFS_EXTENDED_PROFILE_MASK; 3450 3451 if (bargs->profiles & chunk_type) 3452 return 0; 3453 3454 return 1; 3455 } 3456 3457 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3458 struct btrfs_balance_args *bargs) 3459 { 3460 struct btrfs_block_group *cache; 3461 u64 chunk_used; 3462 u64 user_thresh_min; 3463 u64 user_thresh_max; 3464 int ret = 1; 3465 3466 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3467 chunk_used = cache->used; 3468 3469 if (bargs->usage_min == 0) 3470 user_thresh_min = 0; 3471 else 3472 user_thresh_min = div_factor_fine(cache->length, 3473 bargs->usage_min); 3474 3475 if (bargs->usage_max == 0) 3476 user_thresh_max = 1; 3477 else if (bargs->usage_max > 100) 3478 user_thresh_max = cache->length; 3479 else 3480 user_thresh_max = div_factor_fine(cache->length, 3481 bargs->usage_max); 3482 3483 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3484 ret = 0; 3485 3486 btrfs_put_block_group(cache); 3487 return ret; 3488 } 3489 3490 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3491 u64 chunk_offset, struct btrfs_balance_args *bargs) 3492 { 3493 struct btrfs_block_group *cache; 3494 u64 chunk_used, user_thresh; 3495 int ret = 1; 3496 3497 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3498 chunk_used = cache->used; 3499 3500 if (bargs->usage_min == 0) 3501 user_thresh = 1; 3502 else if (bargs->usage > 100) 3503 user_thresh = cache->length; 3504 else 3505 user_thresh = div_factor_fine(cache->length, bargs->usage); 3506 3507 if (chunk_used < user_thresh) 3508 ret = 0; 3509 3510 btrfs_put_block_group(cache); 3511 return ret; 3512 } 3513 3514 static int chunk_devid_filter(struct extent_buffer *leaf, 3515 struct btrfs_chunk *chunk, 3516 struct btrfs_balance_args *bargs) 3517 { 3518 struct btrfs_stripe *stripe; 3519 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3520 int i; 3521 3522 for (i = 0; i < num_stripes; i++) { 3523 stripe = btrfs_stripe_nr(chunk, i); 3524 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3525 return 0; 3526 } 3527 3528 return 1; 3529 } 3530 3531 static u64 calc_data_stripes(u64 type, int num_stripes) 3532 { 3533 const int index = btrfs_bg_flags_to_raid_index(type); 3534 const int ncopies = btrfs_raid_array[index].ncopies; 3535 const int nparity = btrfs_raid_array[index].nparity; 3536 3537 if (nparity) 3538 return num_stripes - nparity; 3539 else 3540 return num_stripes / ncopies; 3541 } 3542 3543 /* [pstart, pend) */ 3544 static int chunk_drange_filter(struct extent_buffer *leaf, 3545 struct btrfs_chunk *chunk, 3546 struct btrfs_balance_args *bargs) 3547 { 3548 struct btrfs_stripe *stripe; 3549 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3550 u64 stripe_offset; 3551 u64 stripe_length; 3552 u64 type; 3553 int factor; 3554 int i; 3555 3556 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3557 return 0; 3558 3559 type = btrfs_chunk_type(leaf, chunk); 3560 factor = calc_data_stripes(type, num_stripes); 3561 3562 for (i = 0; i < num_stripes; i++) { 3563 stripe = btrfs_stripe_nr(chunk, i); 3564 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3565 continue; 3566 3567 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3568 stripe_length = btrfs_chunk_length(leaf, chunk); 3569 stripe_length = div_u64(stripe_length, factor); 3570 3571 if (stripe_offset < bargs->pend && 3572 stripe_offset + stripe_length > bargs->pstart) 3573 return 0; 3574 } 3575 3576 return 1; 3577 } 3578 3579 /* [vstart, vend) */ 3580 static int chunk_vrange_filter(struct extent_buffer *leaf, 3581 struct btrfs_chunk *chunk, 3582 u64 chunk_offset, 3583 struct btrfs_balance_args *bargs) 3584 { 3585 if (chunk_offset < bargs->vend && 3586 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3587 /* at least part of the chunk is inside this vrange */ 3588 return 0; 3589 3590 return 1; 3591 } 3592 3593 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3594 struct btrfs_chunk *chunk, 3595 struct btrfs_balance_args *bargs) 3596 { 3597 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3598 3599 if (bargs->stripes_min <= num_stripes 3600 && num_stripes <= bargs->stripes_max) 3601 return 0; 3602 3603 return 1; 3604 } 3605 3606 static int chunk_soft_convert_filter(u64 chunk_type, 3607 struct btrfs_balance_args *bargs) 3608 { 3609 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3610 return 0; 3611 3612 chunk_type = chunk_to_extended(chunk_type) & 3613 BTRFS_EXTENDED_PROFILE_MASK; 3614 3615 if (bargs->target == chunk_type) 3616 return 1; 3617 3618 return 0; 3619 } 3620 3621 static int should_balance_chunk(struct extent_buffer *leaf, 3622 struct btrfs_chunk *chunk, u64 chunk_offset) 3623 { 3624 struct btrfs_fs_info *fs_info = leaf->fs_info; 3625 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3626 struct btrfs_balance_args *bargs = NULL; 3627 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3628 3629 /* type filter */ 3630 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3631 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3632 return 0; 3633 } 3634 3635 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3636 bargs = &bctl->data; 3637 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3638 bargs = &bctl->sys; 3639 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3640 bargs = &bctl->meta; 3641 3642 /* profiles filter */ 3643 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3644 chunk_profiles_filter(chunk_type, bargs)) { 3645 return 0; 3646 } 3647 3648 /* usage filter */ 3649 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3650 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3651 return 0; 3652 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3653 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3654 return 0; 3655 } 3656 3657 /* devid filter */ 3658 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3659 chunk_devid_filter(leaf, chunk, bargs)) { 3660 return 0; 3661 } 3662 3663 /* drange filter, makes sense only with devid filter */ 3664 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3665 chunk_drange_filter(leaf, chunk, bargs)) { 3666 return 0; 3667 } 3668 3669 /* vrange filter */ 3670 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3671 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3672 return 0; 3673 } 3674 3675 /* stripes filter */ 3676 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3677 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3678 return 0; 3679 } 3680 3681 /* soft profile changing mode */ 3682 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3683 chunk_soft_convert_filter(chunk_type, bargs)) { 3684 return 0; 3685 } 3686 3687 /* 3688 * limited by count, must be the last filter 3689 */ 3690 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3691 if (bargs->limit == 0) 3692 return 0; 3693 else 3694 bargs->limit--; 3695 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3696 /* 3697 * Same logic as the 'limit' filter; the minimum cannot be 3698 * determined here because we do not have the global information 3699 * about the count of all chunks that satisfy the filters. 3700 */ 3701 if (bargs->limit_max == 0) 3702 return 0; 3703 else 3704 bargs->limit_max--; 3705 } 3706 3707 return 1; 3708 } 3709 3710 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3711 { 3712 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3713 struct btrfs_root *chunk_root = fs_info->chunk_root; 3714 u64 chunk_type; 3715 struct btrfs_chunk *chunk; 3716 struct btrfs_path *path = NULL; 3717 struct btrfs_key key; 3718 struct btrfs_key found_key; 3719 struct extent_buffer *leaf; 3720 int slot; 3721 int ret; 3722 int enospc_errors = 0; 3723 bool counting = true; 3724 /* The single value limit and min/max limits use the same bytes in the */ 3725 u64 limit_data = bctl->data.limit; 3726 u64 limit_meta = bctl->meta.limit; 3727 u64 limit_sys = bctl->sys.limit; 3728 u32 count_data = 0; 3729 u32 count_meta = 0; 3730 u32 count_sys = 0; 3731 int chunk_reserved = 0; 3732 3733 path = btrfs_alloc_path(); 3734 if (!path) { 3735 ret = -ENOMEM; 3736 goto error; 3737 } 3738 3739 /* zero out stat counters */ 3740 spin_lock(&fs_info->balance_lock); 3741 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3742 spin_unlock(&fs_info->balance_lock); 3743 again: 3744 if (!counting) { 3745 /* 3746 * The single value limit and min/max limits use the same bytes 3747 * in the 3748 */ 3749 bctl->data.limit = limit_data; 3750 bctl->meta.limit = limit_meta; 3751 bctl->sys.limit = limit_sys; 3752 } 3753 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3754 key.offset = (u64)-1; 3755 key.type = BTRFS_CHUNK_ITEM_KEY; 3756 3757 while (1) { 3758 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3759 atomic_read(&fs_info->balance_cancel_req)) { 3760 ret = -ECANCELED; 3761 goto error; 3762 } 3763 3764 mutex_lock(&fs_info->reclaim_bgs_lock); 3765 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3766 if (ret < 0) { 3767 mutex_unlock(&fs_info->reclaim_bgs_lock); 3768 goto error; 3769 } 3770 3771 /* 3772 * this shouldn't happen, it means the last relocate 3773 * failed 3774 */ 3775 if (ret == 0) 3776 BUG(); /* FIXME break ? */ 3777 3778 ret = btrfs_previous_item(chunk_root, path, 0, 3779 BTRFS_CHUNK_ITEM_KEY); 3780 if (ret) { 3781 mutex_unlock(&fs_info->reclaim_bgs_lock); 3782 ret = 0; 3783 break; 3784 } 3785 3786 leaf = path->nodes[0]; 3787 slot = path->slots[0]; 3788 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3789 3790 if (found_key.objectid != key.objectid) { 3791 mutex_unlock(&fs_info->reclaim_bgs_lock); 3792 break; 3793 } 3794 3795 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3796 chunk_type = btrfs_chunk_type(leaf, chunk); 3797 3798 if (!counting) { 3799 spin_lock(&fs_info->balance_lock); 3800 bctl->stat.considered++; 3801 spin_unlock(&fs_info->balance_lock); 3802 } 3803 3804 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3805 3806 btrfs_release_path(path); 3807 if (!ret) { 3808 mutex_unlock(&fs_info->reclaim_bgs_lock); 3809 goto loop; 3810 } 3811 3812 if (counting) { 3813 mutex_unlock(&fs_info->reclaim_bgs_lock); 3814 spin_lock(&fs_info->balance_lock); 3815 bctl->stat.expected++; 3816 spin_unlock(&fs_info->balance_lock); 3817 3818 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3819 count_data++; 3820 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3821 count_sys++; 3822 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3823 count_meta++; 3824 3825 goto loop; 3826 } 3827 3828 /* 3829 * Apply limit_min filter, no need to check if the LIMITS 3830 * filter is used, limit_min is 0 by default 3831 */ 3832 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3833 count_data < bctl->data.limit_min) 3834 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3835 count_meta < bctl->meta.limit_min) 3836 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3837 count_sys < bctl->sys.limit_min)) { 3838 mutex_unlock(&fs_info->reclaim_bgs_lock); 3839 goto loop; 3840 } 3841 3842 if (!chunk_reserved) { 3843 /* 3844 * We may be relocating the only data chunk we have, 3845 * which could potentially end up with losing data's 3846 * raid profile, so lets allocate an empty one in 3847 * advance. 3848 */ 3849 ret = btrfs_may_alloc_data_chunk(fs_info, 3850 found_key.offset); 3851 if (ret < 0) { 3852 mutex_unlock(&fs_info->reclaim_bgs_lock); 3853 goto error; 3854 } else if (ret == 1) { 3855 chunk_reserved = 1; 3856 } 3857 } 3858 3859 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3860 mutex_unlock(&fs_info->reclaim_bgs_lock); 3861 if (ret == -ENOSPC) { 3862 enospc_errors++; 3863 } else if (ret == -ETXTBSY) { 3864 btrfs_info(fs_info, 3865 "skipping relocation of block group %llu due to active swapfile", 3866 found_key.offset); 3867 ret = 0; 3868 } else if (ret) { 3869 goto error; 3870 } else { 3871 spin_lock(&fs_info->balance_lock); 3872 bctl->stat.completed++; 3873 spin_unlock(&fs_info->balance_lock); 3874 } 3875 loop: 3876 if (found_key.offset == 0) 3877 break; 3878 key.offset = found_key.offset - 1; 3879 } 3880 3881 if (counting) { 3882 btrfs_release_path(path); 3883 counting = false; 3884 goto again; 3885 } 3886 error: 3887 btrfs_free_path(path); 3888 if (enospc_errors) { 3889 btrfs_info(fs_info, "%d enospc errors during balance", 3890 enospc_errors); 3891 if (!ret) 3892 ret = -ENOSPC; 3893 } 3894 3895 return ret; 3896 } 3897 3898 /** 3899 * alloc_profile_is_valid - see if a given profile is valid and reduced 3900 * @flags: profile to validate 3901 * @extended: if true @flags is treated as an extended profile 3902 */ 3903 static int alloc_profile_is_valid(u64 flags, int extended) 3904 { 3905 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3906 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3907 3908 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3909 3910 /* 1) check that all other bits are zeroed */ 3911 if (flags & ~mask) 3912 return 0; 3913 3914 /* 2) see if profile is reduced */ 3915 if (flags == 0) 3916 return !extended; /* "0" is valid for usual profiles */ 3917 3918 return has_single_bit_set(flags); 3919 } 3920 3921 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3922 { 3923 /* cancel requested || normal exit path */ 3924 return atomic_read(&fs_info->balance_cancel_req) || 3925 (atomic_read(&fs_info->balance_pause_req) == 0 && 3926 atomic_read(&fs_info->balance_cancel_req) == 0); 3927 } 3928 3929 /* 3930 * Validate target profile against allowed profiles and return true if it's OK. 3931 * Otherwise print the error message and return false. 3932 */ 3933 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 3934 const struct btrfs_balance_args *bargs, 3935 u64 allowed, const char *type) 3936 { 3937 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3938 return true; 3939 3940 /* Profile is valid and does not have bits outside of the allowed set */ 3941 if (alloc_profile_is_valid(bargs->target, 1) && 3942 (bargs->target & ~allowed) == 0) 3943 return true; 3944 3945 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 3946 type, btrfs_bg_type_to_raid_name(bargs->target)); 3947 return false; 3948 } 3949 3950 /* 3951 * Fill @buf with textual description of balance filter flags @bargs, up to 3952 * @size_buf including the terminating null. The output may be trimmed if it 3953 * does not fit into the provided buffer. 3954 */ 3955 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 3956 u32 size_buf) 3957 { 3958 int ret; 3959 u32 size_bp = size_buf; 3960 char *bp = buf; 3961 u64 flags = bargs->flags; 3962 char tmp_buf[128] = {'\0'}; 3963 3964 if (!flags) 3965 return; 3966 3967 #define CHECK_APPEND_NOARG(a) \ 3968 do { \ 3969 ret = snprintf(bp, size_bp, (a)); \ 3970 if (ret < 0 || ret >= size_bp) \ 3971 goto out_overflow; \ 3972 size_bp -= ret; \ 3973 bp += ret; \ 3974 } while (0) 3975 3976 #define CHECK_APPEND_1ARG(a, v1) \ 3977 do { \ 3978 ret = snprintf(bp, size_bp, (a), (v1)); \ 3979 if (ret < 0 || ret >= size_bp) \ 3980 goto out_overflow; \ 3981 size_bp -= ret; \ 3982 bp += ret; \ 3983 } while (0) 3984 3985 #define CHECK_APPEND_2ARG(a, v1, v2) \ 3986 do { \ 3987 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 3988 if (ret < 0 || ret >= size_bp) \ 3989 goto out_overflow; \ 3990 size_bp -= ret; \ 3991 bp += ret; \ 3992 } while (0) 3993 3994 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 3995 CHECK_APPEND_1ARG("convert=%s,", 3996 btrfs_bg_type_to_raid_name(bargs->target)); 3997 3998 if (flags & BTRFS_BALANCE_ARGS_SOFT) 3999 CHECK_APPEND_NOARG("soft,"); 4000 4001 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4002 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4003 sizeof(tmp_buf)); 4004 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4005 } 4006 4007 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4008 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4009 4010 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4011 CHECK_APPEND_2ARG("usage=%u..%u,", 4012 bargs->usage_min, bargs->usage_max); 4013 4014 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4015 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4016 4017 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4018 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4019 bargs->pstart, bargs->pend); 4020 4021 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4022 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4023 bargs->vstart, bargs->vend); 4024 4025 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4026 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4027 4028 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4029 CHECK_APPEND_2ARG("limit=%u..%u,", 4030 bargs->limit_min, bargs->limit_max); 4031 4032 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4033 CHECK_APPEND_2ARG("stripes=%u..%u,", 4034 bargs->stripes_min, bargs->stripes_max); 4035 4036 #undef CHECK_APPEND_2ARG 4037 #undef CHECK_APPEND_1ARG 4038 #undef CHECK_APPEND_NOARG 4039 4040 out_overflow: 4041 4042 if (size_bp < size_buf) 4043 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4044 else 4045 buf[0] = '\0'; 4046 } 4047 4048 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4049 { 4050 u32 size_buf = 1024; 4051 char tmp_buf[192] = {'\0'}; 4052 char *buf; 4053 char *bp; 4054 u32 size_bp = size_buf; 4055 int ret; 4056 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4057 4058 buf = kzalloc(size_buf, GFP_KERNEL); 4059 if (!buf) 4060 return; 4061 4062 bp = buf; 4063 4064 #define CHECK_APPEND_1ARG(a, v1) \ 4065 do { \ 4066 ret = snprintf(bp, size_bp, (a), (v1)); \ 4067 if (ret < 0 || ret >= size_bp) \ 4068 goto out_overflow; \ 4069 size_bp -= ret; \ 4070 bp += ret; \ 4071 } while (0) 4072 4073 if (bctl->flags & BTRFS_BALANCE_FORCE) 4074 CHECK_APPEND_1ARG("%s", "-f "); 4075 4076 if (bctl->flags & BTRFS_BALANCE_DATA) { 4077 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4078 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4079 } 4080 4081 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4082 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4083 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4084 } 4085 4086 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4087 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4088 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4089 } 4090 4091 #undef CHECK_APPEND_1ARG 4092 4093 out_overflow: 4094 4095 if (size_bp < size_buf) 4096 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4097 btrfs_info(fs_info, "balance: %s %s", 4098 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4099 "resume" : "start", buf); 4100 4101 kfree(buf); 4102 } 4103 4104 /* 4105 * Should be called with balance mutexe held 4106 */ 4107 int btrfs_balance(struct btrfs_fs_info *fs_info, 4108 struct btrfs_balance_control *bctl, 4109 struct btrfs_ioctl_balance_args *bargs) 4110 { 4111 u64 meta_target, data_target; 4112 u64 allowed; 4113 int mixed = 0; 4114 int ret; 4115 u64 num_devices; 4116 unsigned seq; 4117 bool reducing_redundancy; 4118 int i; 4119 4120 if (btrfs_fs_closing(fs_info) || 4121 atomic_read(&fs_info->balance_pause_req) || 4122 btrfs_should_cancel_balance(fs_info)) { 4123 ret = -EINVAL; 4124 goto out; 4125 } 4126 4127 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4128 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4129 mixed = 1; 4130 4131 /* 4132 * In case of mixed groups both data and meta should be picked, 4133 * and identical options should be given for both of them. 4134 */ 4135 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4136 if (mixed && (bctl->flags & allowed)) { 4137 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4138 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4139 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4140 btrfs_err(fs_info, 4141 "balance: mixed groups data and metadata options must be the same"); 4142 ret = -EINVAL; 4143 goto out; 4144 } 4145 } 4146 4147 /* 4148 * rw_devices will not change at the moment, device add/delete/replace 4149 * are exclusive 4150 */ 4151 num_devices = fs_info->fs_devices->rw_devices; 4152 4153 /* 4154 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4155 * special bit for it, to make it easier to distinguish. Thus we need 4156 * to set it manually, or balance would refuse the profile. 4157 */ 4158 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4159 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4160 if (num_devices >= btrfs_raid_array[i].devs_min) 4161 allowed |= btrfs_raid_array[i].bg_flag; 4162 4163 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4164 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4165 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4166 ret = -EINVAL; 4167 goto out; 4168 } 4169 4170 /* 4171 * Allow to reduce metadata or system integrity only if force set for 4172 * profiles with redundancy (copies, parity) 4173 */ 4174 allowed = 0; 4175 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4176 if (btrfs_raid_array[i].ncopies >= 2 || 4177 btrfs_raid_array[i].tolerated_failures >= 1) 4178 allowed |= btrfs_raid_array[i].bg_flag; 4179 } 4180 do { 4181 seq = read_seqbegin(&fs_info->profiles_lock); 4182 4183 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4184 (fs_info->avail_system_alloc_bits & allowed) && 4185 !(bctl->sys.target & allowed)) || 4186 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4187 (fs_info->avail_metadata_alloc_bits & allowed) && 4188 !(bctl->meta.target & allowed))) 4189 reducing_redundancy = true; 4190 else 4191 reducing_redundancy = false; 4192 4193 /* if we're not converting, the target field is uninitialized */ 4194 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4195 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4196 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4197 bctl->data.target : fs_info->avail_data_alloc_bits; 4198 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4199 4200 if (reducing_redundancy) { 4201 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4202 btrfs_info(fs_info, 4203 "balance: force reducing metadata redundancy"); 4204 } else { 4205 btrfs_err(fs_info, 4206 "balance: reduces metadata redundancy, use --force if you want this"); 4207 ret = -EINVAL; 4208 goto out; 4209 } 4210 } 4211 4212 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4213 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4214 btrfs_warn(fs_info, 4215 "balance: metadata profile %s has lower redundancy than data profile %s", 4216 btrfs_bg_type_to_raid_name(meta_target), 4217 btrfs_bg_type_to_raid_name(data_target)); 4218 } 4219 4220 ret = insert_balance_item(fs_info, bctl); 4221 if (ret && ret != -EEXIST) 4222 goto out; 4223 4224 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4225 BUG_ON(ret == -EEXIST); 4226 BUG_ON(fs_info->balance_ctl); 4227 spin_lock(&fs_info->balance_lock); 4228 fs_info->balance_ctl = bctl; 4229 spin_unlock(&fs_info->balance_lock); 4230 } else { 4231 BUG_ON(ret != -EEXIST); 4232 spin_lock(&fs_info->balance_lock); 4233 update_balance_args(bctl); 4234 spin_unlock(&fs_info->balance_lock); 4235 } 4236 4237 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4238 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4239 describe_balance_start_or_resume(fs_info); 4240 mutex_unlock(&fs_info->balance_mutex); 4241 4242 ret = __btrfs_balance(fs_info); 4243 4244 mutex_lock(&fs_info->balance_mutex); 4245 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4246 btrfs_info(fs_info, "balance: paused"); 4247 /* 4248 * Balance can be canceled by: 4249 * 4250 * - Regular cancel request 4251 * Then ret == -ECANCELED and balance_cancel_req > 0 4252 * 4253 * - Fatal signal to "btrfs" process 4254 * Either the signal caught by wait_reserve_ticket() and callers 4255 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4256 * got -ECANCELED. 4257 * Either way, in this case balance_cancel_req = 0, and 4258 * ret == -EINTR or ret == -ECANCELED. 4259 * 4260 * So here we only check the return value to catch canceled balance. 4261 */ 4262 else if (ret == -ECANCELED || ret == -EINTR) 4263 btrfs_info(fs_info, "balance: canceled"); 4264 else 4265 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4266 4267 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4268 4269 if (bargs) { 4270 memset(bargs, 0, sizeof(*bargs)); 4271 btrfs_update_ioctl_balance_args(fs_info, bargs); 4272 } 4273 4274 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4275 balance_need_close(fs_info)) { 4276 reset_balance_state(fs_info); 4277 btrfs_exclop_finish(fs_info); 4278 } 4279 4280 wake_up(&fs_info->balance_wait_q); 4281 4282 return ret; 4283 out: 4284 if (bctl->flags & BTRFS_BALANCE_RESUME) 4285 reset_balance_state(fs_info); 4286 else 4287 kfree(bctl); 4288 btrfs_exclop_finish(fs_info); 4289 4290 return ret; 4291 } 4292 4293 static int balance_kthread(void *data) 4294 { 4295 struct btrfs_fs_info *fs_info = data; 4296 int ret = 0; 4297 4298 mutex_lock(&fs_info->balance_mutex); 4299 if (fs_info->balance_ctl) 4300 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4301 mutex_unlock(&fs_info->balance_mutex); 4302 4303 return ret; 4304 } 4305 4306 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4307 { 4308 struct task_struct *tsk; 4309 4310 mutex_lock(&fs_info->balance_mutex); 4311 if (!fs_info->balance_ctl) { 4312 mutex_unlock(&fs_info->balance_mutex); 4313 return 0; 4314 } 4315 mutex_unlock(&fs_info->balance_mutex); 4316 4317 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4318 btrfs_info(fs_info, "balance: resume skipped"); 4319 return 0; 4320 } 4321 4322 /* 4323 * A ro->rw remount sequence should continue with the paused balance 4324 * regardless of who pauses it, system or the user as of now, so set 4325 * the resume flag. 4326 */ 4327 spin_lock(&fs_info->balance_lock); 4328 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4329 spin_unlock(&fs_info->balance_lock); 4330 4331 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4332 return PTR_ERR_OR_ZERO(tsk); 4333 } 4334 4335 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4336 { 4337 struct btrfs_balance_control *bctl; 4338 struct btrfs_balance_item *item; 4339 struct btrfs_disk_balance_args disk_bargs; 4340 struct btrfs_path *path; 4341 struct extent_buffer *leaf; 4342 struct btrfs_key key; 4343 int ret; 4344 4345 path = btrfs_alloc_path(); 4346 if (!path) 4347 return -ENOMEM; 4348 4349 key.objectid = BTRFS_BALANCE_OBJECTID; 4350 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4351 key.offset = 0; 4352 4353 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4354 if (ret < 0) 4355 goto out; 4356 if (ret > 0) { /* ret = -ENOENT; */ 4357 ret = 0; 4358 goto out; 4359 } 4360 4361 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4362 if (!bctl) { 4363 ret = -ENOMEM; 4364 goto out; 4365 } 4366 4367 leaf = path->nodes[0]; 4368 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4369 4370 bctl->flags = btrfs_balance_flags(leaf, item); 4371 bctl->flags |= BTRFS_BALANCE_RESUME; 4372 4373 btrfs_balance_data(leaf, item, &disk_bargs); 4374 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4375 btrfs_balance_meta(leaf, item, &disk_bargs); 4376 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4377 btrfs_balance_sys(leaf, item, &disk_bargs); 4378 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4379 4380 /* 4381 * This should never happen, as the paused balance state is recovered 4382 * during mount without any chance of other exclusive ops to collide. 4383 * 4384 * This gives the exclusive op status to balance and keeps in paused 4385 * state until user intervention (cancel or umount). If the ownership 4386 * cannot be assigned, show a message but do not fail. The balance 4387 * is in a paused state and must have fs_info::balance_ctl properly 4388 * set up. 4389 */ 4390 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) 4391 btrfs_warn(fs_info, 4392 "balance: cannot set exclusive op status, resume manually"); 4393 4394 btrfs_release_path(path); 4395 4396 mutex_lock(&fs_info->balance_mutex); 4397 BUG_ON(fs_info->balance_ctl); 4398 spin_lock(&fs_info->balance_lock); 4399 fs_info->balance_ctl = bctl; 4400 spin_unlock(&fs_info->balance_lock); 4401 mutex_unlock(&fs_info->balance_mutex); 4402 out: 4403 btrfs_free_path(path); 4404 return ret; 4405 } 4406 4407 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4408 { 4409 int ret = 0; 4410 4411 mutex_lock(&fs_info->balance_mutex); 4412 if (!fs_info->balance_ctl) { 4413 mutex_unlock(&fs_info->balance_mutex); 4414 return -ENOTCONN; 4415 } 4416 4417 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4418 atomic_inc(&fs_info->balance_pause_req); 4419 mutex_unlock(&fs_info->balance_mutex); 4420 4421 wait_event(fs_info->balance_wait_q, 4422 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4423 4424 mutex_lock(&fs_info->balance_mutex); 4425 /* we are good with balance_ctl ripped off from under us */ 4426 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4427 atomic_dec(&fs_info->balance_pause_req); 4428 } else { 4429 ret = -ENOTCONN; 4430 } 4431 4432 mutex_unlock(&fs_info->balance_mutex); 4433 return ret; 4434 } 4435 4436 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4437 { 4438 mutex_lock(&fs_info->balance_mutex); 4439 if (!fs_info->balance_ctl) { 4440 mutex_unlock(&fs_info->balance_mutex); 4441 return -ENOTCONN; 4442 } 4443 4444 /* 4445 * A paused balance with the item stored on disk can be resumed at 4446 * mount time if the mount is read-write. Otherwise it's still paused 4447 * and we must not allow cancelling as it deletes the item. 4448 */ 4449 if (sb_rdonly(fs_info->sb)) { 4450 mutex_unlock(&fs_info->balance_mutex); 4451 return -EROFS; 4452 } 4453 4454 atomic_inc(&fs_info->balance_cancel_req); 4455 /* 4456 * if we are running just wait and return, balance item is 4457 * deleted in btrfs_balance in this case 4458 */ 4459 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4460 mutex_unlock(&fs_info->balance_mutex); 4461 wait_event(fs_info->balance_wait_q, 4462 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4463 mutex_lock(&fs_info->balance_mutex); 4464 } else { 4465 mutex_unlock(&fs_info->balance_mutex); 4466 /* 4467 * Lock released to allow other waiters to continue, we'll 4468 * reexamine the status again. 4469 */ 4470 mutex_lock(&fs_info->balance_mutex); 4471 4472 if (fs_info->balance_ctl) { 4473 reset_balance_state(fs_info); 4474 btrfs_exclop_finish(fs_info); 4475 btrfs_info(fs_info, "balance: canceled"); 4476 } 4477 } 4478 4479 BUG_ON(fs_info->balance_ctl || 4480 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4481 atomic_dec(&fs_info->balance_cancel_req); 4482 mutex_unlock(&fs_info->balance_mutex); 4483 return 0; 4484 } 4485 4486 int btrfs_uuid_scan_kthread(void *data) 4487 { 4488 struct btrfs_fs_info *fs_info = data; 4489 struct btrfs_root *root = fs_info->tree_root; 4490 struct btrfs_key key; 4491 struct btrfs_path *path = NULL; 4492 int ret = 0; 4493 struct extent_buffer *eb; 4494 int slot; 4495 struct btrfs_root_item root_item; 4496 u32 item_size; 4497 struct btrfs_trans_handle *trans = NULL; 4498 bool closing = false; 4499 4500 path = btrfs_alloc_path(); 4501 if (!path) { 4502 ret = -ENOMEM; 4503 goto out; 4504 } 4505 4506 key.objectid = 0; 4507 key.type = BTRFS_ROOT_ITEM_KEY; 4508 key.offset = 0; 4509 4510 while (1) { 4511 if (btrfs_fs_closing(fs_info)) { 4512 closing = true; 4513 break; 4514 } 4515 ret = btrfs_search_forward(root, &key, path, 4516 BTRFS_OLDEST_GENERATION); 4517 if (ret) { 4518 if (ret > 0) 4519 ret = 0; 4520 break; 4521 } 4522 4523 if (key.type != BTRFS_ROOT_ITEM_KEY || 4524 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4525 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4526 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4527 goto skip; 4528 4529 eb = path->nodes[0]; 4530 slot = path->slots[0]; 4531 item_size = btrfs_item_size_nr(eb, slot); 4532 if (item_size < sizeof(root_item)) 4533 goto skip; 4534 4535 read_extent_buffer(eb, &root_item, 4536 btrfs_item_ptr_offset(eb, slot), 4537 (int)sizeof(root_item)); 4538 if (btrfs_root_refs(&root_item) == 0) 4539 goto skip; 4540 4541 if (!btrfs_is_empty_uuid(root_item.uuid) || 4542 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4543 if (trans) 4544 goto update_tree; 4545 4546 btrfs_release_path(path); 4547 /* 4548 * 1 - subvol uuid item 4549 * 1 - received_subvol uuid item 4550 */ 4551 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4552 if (IS_ERR(trans)) { 4553 ret = PTR_ERR(trans); 4554 break; 4555 } 4556 continue; 4557 } else { 4558 goto skip; 4559 } 4560 update_tree: 4561 btrfs_release_path(path); 4562 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4563 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4564 BTRFS_UUID_KEY_SUBVOL, 4565 key.objectid); 4566 if (ret < 0) { 4567 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4568 ret); 4569 break; 4570 } 4571 } 4572 4573 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4574 ret = btrfs_uuid_tree_add(trans, 4575 root_item.received_uuid, 4576 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4577 key.objectid); 4578 if (ret < 0) { 4579 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4580 ret); 4581 break; 4582 } 4583 } 4584 4585 skip: 4586 btrfs_release_path(path); 4587 if (trans) { 4588 ret = btrfs_end_transaction(trans); 4589 trans = NULL; 4590 if (ret) 4591 break; 4592 } 4593 4594 if (key.offset < (u64)-1) { 4595 key.offset++; 4596 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4597 key.offset = 0; 4598 key.type = BTRFS_ROOT_ITEM_KEY; 4599 } else if (key.objectid < (u64)-1) { 4600 key.offset = 0; 4601 key.type = BTRFS_ROOT_ITEM_KEY; 4602 key.objectid++; 4603 } else { 4604 break; 4605 } 4606 cond_resched(); 4607 } 4608 4609 out: 4610 btrfs_free_path(path); 4611 if (trans && !IS_ERR(trans)) 4612 btrfs_end_transaction(trans); 4613 if (ret) 4614 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4615 else if (!closing) 4616 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4617 up(&fs_info->uuid_tree_rescan_sem); 4618 return 0; 4619 } 4620 4621 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4622 { 4623 struct btrfs_trans_handle *trans; 4624 struct btrfs_root *tree_root = fs_info->tree_root; 4625 struct btrfs_root *uuid_root; 4626 struct task_struct *task; 4627 int ret; 4628 4629 /* 4630 * 1 - root node 4631 * 1 - root item 4632 */ 4633 trans = btrfs_start_transaction(tree_root, 2); 4634 if (IS_ERR(trans)) 4635 return PTR_ERR(trans); 4636 4637 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4638 if (IS_ERR(uuid_root)) { 4639 ret = PTR_ERR(uuid_root); 4640 btrfs_abort_transaction(trans, ret); 4641 btrfs_end_transaction(trans); 4642 return ret; 4643 } 4644 4645 fs_info->uuid_root = uuid_root; 4646 4647 ret = btrfs_commit_transaction(trans); 4648 if (ret) 4649 return ret; 4650 4651 down(&fs_info->uuid_tree_rescan_sem); 4652 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4653 if (IS_ERR(task)) { 4654 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4655 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4656 up(&fs_info->uuid_tree_rescan_sem); 4657 return PTR_ERR(task); 4658 } 4659 4660 return 0; 4661 } 4662 4663 /* 4664 * shrinking a device means finding all of the device extents past 4665 * the new size, and then following the back refs to the chunks. 4666 * The chunk relocation code actually frees the device extent 4667 */ 4668 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4669 { 4670 struct btrfs_fs_info *fs_info = device->fs_info; 4671 struct btrfs_root *root = fs_info->dev_root; 4672 struct btrfs_trans_handle *trans; 4673 struct btrfs_dev_extent *dev_extent = NULL; 4674 struct btrfs_path *path; 4675 u64 length; 4676 u64 chunk_offset; 4677 int ret; 4678 int slot; 4679 int failed = 0; 4680 bool retried = false; 4681 struct extent_buffer *l; 4682 struct btrfs_key key; 4683 struct btrfs_super_block *super_copy = fs_info->super_copy; 4684 u64 old_total = btrfs_super_total_bytes(super_copy); 4685 u64 old_size = btrfs_device_get_total_bytes(device); 4686 u64 diff; 4687 u64 start; 4688 4689 new_size = round_down(new_size, fs_info->sectorsize); 4690 start = new_size; 4691 diff = round_down(old_size - new_size, fs_info->sectorsize); 4692 4693 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4694 return -EINVAL; 4695 4696 path = btrfs_alloc_path(); 4697 if (!path) 4698 return -ENOMEM; 4699 4700 path->reada = READA_BACK; 4701 4702 trans = btrfs_start_transaction(root, 0); 4703 if (IS_ERR(trans)) { 4704 btrfs_free_path(path); 4705 return PTR_ERR(trans); 4706 } 4707 4708 mutex_lock(&fs_info->chunk_mutex); 4709 4710 btrfs_device_set_total_bytes(device, new_size); 4711 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4712 device->fs_devices->total_rw_bytes -= diff; 4713 atomic64_sub(diff, &fs_info->free_chunk_space); 4714 } 4715 4716 /* 4717 * Once the device's size has been set to the new size, ensure all 4718 * in-memory chunks are synced to disk so that the loop below sees them 4719 * and relocates them accordingly. 4720 */ 4721 if (contains_pending_extent(device, &start, diff)) { 4722 mutex_unlock(&fs_info->chunk_mutex); 4723 ret = btrfs_commit_transaction(trans); 4724 if (ret) 4725 goto done; 4726 } else { 4727 mutex_unlock(&fs_info->chunk_mutex); 4728 btrfs_end_transaction(trans); 4729 } 4730 4731 again: 4732 key.objectid = device->devid; 4733 key.offset = (u64)-1; 4734 key.type = BTRFS_DEV_EXTENT_KEY; 4735 4736 do { 4737 mutex_lock(&fs_info->reclaim_bgs_lock); 4738 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4739 if (ret < 0) { 4740 mutex_unlock(&fs_info->reclaim_bgs_lock); 4741 goto done; 4742 } 4743 4744 ret = btrfs_previous_item(root, path, 0, key.type); 4745 if (ret) { 4746 mutex_unlock(&fs_info->reclaim_bgs_lock); 4747 if (ret < 0) 4748 goto done; 4749 ret = 0; 4750 btrfs_release_path(path); 4751 break; 4752 } 4753 4754 l = path->nodes[0]; 4755 slot = path->slots[0]; 4756 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4757 4758 if (key.objectid != device->devid) { 4759 mutex_unlock(&fs_info->reclaim_bgs_lock); 4760 btrfs_release_path(path); 4761 break; 4762 } 4763 4764 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4765 length = btrfs_dev_extent_length(l, dev_extent); 4766 4767 if (key.offset + length <= new_size) { 4768 mutex_unlock(&fs_info->reclaim_bgs_lock); 4769 btrfs_release_path(path); 4770 break; 4771 } 4772 4773 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4774 btrfs_release_path(path); 4775 4776 /* 4777 * We may be relocating the only data chunk we have, 4778 * which could potentially end up with losing data's 4779 * raid profile, so lets allocate an empty one in 4780 * advance. 4781 */ 4782 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4783 if (ret < 0) { 4784 mutex_unlock(&fs_info->reclaim_bgs_lock); 4785 goto done; 4786 } 4787 4788 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4789 mutex_unlock(&fs_info->reclaim_bgs_lock); 4790 if (ret == -ENOSPC) { 4791 failed++; 4792 } else if (ret) { 4793 if (ret == -ETXTBSY) { 4794 btrfs_warn(fs_info, 4795 "could not shrink block group %llu due to active swapfile", 4796 chunk_offset); 4797 } 4798 goto done; 4799 } 4800 } while (key.offset-- > 0); 4801 4802 if (failed && !retried) { 4803 failed = 0; 4804 retried = true; 4805 goto again; 4806 } else if (failed && retried) { 4807 ret = -ENOSPC; 4808 goto done; 4809 } 4810 4811 /* Shrinking succeeded, else we would be at "done". */ 4812 trans = btrfs_start_transaction(root, 0); 4813 if (IS_ERR(trans)) { 4814 ret = PTR_ERR(trans); 4815 goto done; 4816 } 4817 4818 mutex_lock(&fs_info->chunk_mutex); 4819 /* Clear all state bits beyond the shrunk device size */ 4820 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4821 CHUNK_STATE_MASK); 4822 4823 btrfs_device_set_disk_total_bytes(device, new_size); 4824 if (list_empty(&device->post_commit_list)) 4825 list_add_tail(&device->post_commit_list, 4826 &trans->transaction->dev_update_list); 4827 4828 WARN_ON(diff > old_total); 4829 btrfs_set_super_total_bytes(super_copy, 4830 round_down(old_total - diff, fs_info->sectorsize)); 4831 mutex_unlock(&fs_info->chunk_mutex); 4832 4833 /* Now btrfs_update_device() will change the on-disk size. */ 4834 ret = btrfs_update_device(trans, device); 4835 if (ret < 0) { 4836 btrfs_abort_transaction(trans, ret); 4837 btrfs_end_transaction(trans); 4838 } else { 4839 ret = btrfs_commit_transaction(trans); 4840 } 4841 done: 4842 btrfs_free_path(path); 4843 if (ret) { 4844 mutex_lock(&fs_info->chunk_mutex); 4845 btrfs_device_set_total_bytes(device, old_size); 4846 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4847 device->fs_devices->total_rw_bytes += diff; 4848 atomic64_add(diff, &fs_info->free_chunk_space); 4849 mutex_unlock(&fs_info->chunk_mutex); 4850 } 4851 return ret; 4852 } 4853 4854 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4855 struct btrfs_key *key, 4856 struct btrfs_chunk *chunk, int item_size) 4857 { 4858 struct btrfs_super_block *super_copy = fs_info->super_copy; 4859 struct btrfs_disk_key disk_key; 4860 u32 array_size; 4861 u8 *ptr; 4862 4863 mutex_lock(&fs_info->chunk_mutex); 4864 array_size = btrfs_super_sys_array_size(super_copy); 4865 if (array_size + item_size + sizeof(disk_key) 4866 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4867 mutex_unlock(&fs_info->chunk_mutex); 4868 return -EFBIG; 4869 } 4870 4871 ptr = super_copy->sys_chunk_array + array_size; 4872 btrfs_cpu_key_to_disk(&disk_key, key); 4873 memcpy(ptr, &disk_key, sizeof(disk_key)); 4874 ptr += sizeof(disk_key); 4875 memcpy(ptr, chunk, item_size); 4876 item_size += sizeof(disk_key); 4877 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4878 mutex_unlock(&fs_info->chunk_mutex); 4879 4880 return 0; 4881 } 4882 4883 /* 4884 * sort the devices in descending order by max_avail, total_avail 4885 */ 4886 static int btrfs_cmp_device_info(const void *a, const void *b) 4887 { 4888 const struct btrfs_device_info *di_a = a; 4889 const struct btrfs_device_info *di_b = b; 4890 4891 if (di_a->max_avail > di_b->max_avail) 4892 return -1; 4893 if (di_a->max_avail < di_b->max_avail) 4894 return 1; 4895 if (di_a->total_avail > di_b->total_avail) 4896 return -1; 4897 if (di_a->total_avail < di_b->total_avail) 4898 return 1; 4899 return 0; 4900 } 4901 4902 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4903 { 4904 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4905 return; 4906 4907 btrfs_set_fs_incompat(info, RAID56); 4908 } 4909 4910 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 4911 { 4912 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 4913 return; 4914 4915 btrfs_set_fs_incompat(info, RAID1C34); 4916 } 4917 4918 /* 4919 * Structure used internally for __btrfs_alloc_chunk() function. 4920 * Wraps needed parameters. 4921 */ 4922 struct alloc_chunk_ctl { 4923 u64 start; 4924 u64 type; 4925 /* Total number of stripes to allocate */ 4926 int num_stripes; 4927 /* sub_stripes info for map */ 4928 int sub_stripes; 4929 /* Stripes per device */ 4930 int dev_stripes; 4931 /* Maximum number of devices to use */ 4932 int devs_max; 4933 /* Minimum number of devices to use */ 4934 int devs_min; 4935 /* ndevs has to be a multiple of this */ 4936 int devs_increment; 4937 /* Number of copies */ 4938 int ncopies; 4939 /* Number of stripes worth of bytes to store parity information */ 4940 int nparity; 4941 u64 max_stripe_size; 4942 u64 max_chunk_size; 4943 u64 dev_extent_min; 4944 u64 stripe_size; 4945 u64 chunk_size; 4946 int ndevs; 4947 }; 4948 4949 static void init_alloc_chunk_ctl_policy_regular( 4950 struct btrfs_fs_devices *fs_devices, 4951 struct alloc_chunk_ctl *ctl) 4952 { 4953 u64 type = ctl->type; 4954 4955 if (type & BTRFS_BLOCK_GROUP_DATA) { 4956 ctl->max_stripe_size = SZ_1G; 4957 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 4958 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4959 /* For larger filesystems, use larger metadata chunks */ 4960 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4961 ctl->max_stripe_size = SZ_1G; 4962 else 4963 ctl->max_stripe_size = SZ_256M; 4964 ctl->max_chunk_size = ctl->max_stripe_size; 4965 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4966 ctl->max_stripe_size = SZ_32M; 4967 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 4968 ctl->devs_max = min_t(int, ctl->devs_max, 4969 BTRFS_MAX_DEVS_SYS_CHUNK); 4970 } else { 4971 BUG(); 4972 } 4973 4974 /* We don't want a chunk larger than 10% of writable space */ 4975 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4976 ctl->max_chunk_size); 4977 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes; 4978 } 4979 4980 static void init_alloc_chunk_ctl_policy_zoned( 4981 struct btrfs_fs_devices *fs_devices, 4982 struct alloc_chunk_ctl *ctl) 4983 { 4984 u64 zone_size = fs_devices->fs_info->zone_size; 4985 u64 limit; 4986 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 4987 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 4988 u64 min_chunk_size = min_data_stripes * zone_size; 4989 u64 type = ctl->type; 4990 4991 ctl->max_stripe_size = zone_size; 4992 if (type & BTRFS_BLOCK_GROUP_DATA) { 4993 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 4994 zone_size); 4995 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4996 ctl->max_chunk_size = ctl->max_stripe_size; 4997 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4998 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 4999 ctl->devs_max = min_t(int, ctl->devs_max, 5000 BTRFS_MAX_DEVS_SYS_CHUNK); 5001 } else { 5002 BUG(); 5003 } 5004 5005 /* We don't want a chunk larger than 10% of writable space */ 5006 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1), 5007 zone_size), 5008 min_chunk_size); 5009 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5010 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5011 } 5012 5013 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5014 struct alloc_chunk_ctl *ctl) 5015 { 5016 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5017 5018 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5019 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5020 ctl->devs_max = btrfs_raid_array[index].devs_max; 5021 if (!ctl->devs_max) 5022 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5023 ctl->devs_min = btrfs_raid_array[index].devs_min; 5024 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5025 ctl->ncopies = btrfs_raid_array[index].ncopies; 5026 ctl->nparity = btrfs_raid_array[index].nparity; 5027 ctl->ndevs = 0; 5028 5029 switch (fs_devices->chunk_alloc_policy) { 5030 case BTRFS_CHUNK_ALLOC_REGULAR: 5031 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5032 break; 5033 case BTRFS_CHUNK_ALLOC_ZONED: 5034 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5035 break; 5036 default: 5037 BUG(); 5038 } 5039 } 5040 5041 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5042 struct alloc_chunk_ctl *ctl, 5043 struct btrfs_device_info *devices_info) 5044 { 5045 struct btrfs_fs_info *info = fs_devices->fs_info; 5046 struct btrfs_device *device; 5047 u64 total_avail; 5048 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5049 int ret; 5050 int ndevs = 0; 5051 u64 max_avail; 5052 u64 dev_offset; 5053 5054 /* 5055 * in the first pass through the devices list, we gather information 5056 * about the available holes on each device. 5057 */ 5058 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5059 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5060 WARN(1, KERN_ERR 5061 "BTRFS: read-only device in alloc_list\n"); 5062 continue; 5063 } 5064 5065 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5066 &device->dev_state) || 5067 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5068 continue; 5069 5070 if (device->total_bytes > device->bytes_used) 5071 total_avail = device->total_bytes - device->bytes_used; 5072 else 5073 total_avail = 0; 5074 5075 /* If there is no space on this device, skip it. */ 5076 if (total_avail < ctl->dev_extent_min) 5077 continue; 5078 5079 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5080 &max_avail); 5081 if (ret && ret != -ENOSPC) 5082 return ret; 5083 5084 if (ret == 0) 5085 max_avail = dev_extent_want; 5086 5087 if (max_avail < ctl->dev_extent_min) { 5088 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5089 btrfs_debug(info, 5090 "%s: devid %llu has no free space, have=%llu want=%llu", 5091 __func__, device->devid, max_avail, 5092 ctl->dev_extent_min); 5093 continue; 5094 } 5095 5096 if (ndevs == fs_devices->rw_devices) { 5097 WARN(1, "%s: found more than %llu devices\n", 5098 __func__, fs_devices->rw_devices); 5099 break; 5100 } 5101 devices_info[ndevs].dev_offset = dev_offset; 5102 devices_info[ndevs].max_avail = max_avail; 5103 devices_info[ndevs].total_avail = total_avail; 5104 devices_info[ndevs].dev = device; 5105 ++ndevs; 5106 } 5107 ctl->ndevs = ndevs; 5108 5109 /* 5110 * now sort the devices by hole size / available space 5111 */ 5112 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5113 btrfs_cmp_device_info, NULL); 5114 5115 return 0; 5116 } 5117 5118 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5119 struct btrfs_device_info *devices_info) 5120 { 5121 /* Number of stripes that count for block group size */ 5122 int data_stripes; 5123 5124 /* 5125 * The primary goal is to maximize the number of stripes, so use as 5126 * many devices as possible, even if the stripes are not maximum sized. 5127 * 5128 * The DUP profile stores more than one stripe per device, the 5129 * max_avail is the total size so we have to adjust. 5130 */ 5131 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5132 ctl->dev_stripes); 5133 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5134 5135 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5136 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5137 5138 /* 5139 * Use the number of data stripes to figure out how big this chunk is 5140 * really going to be in terms of logical address space, and compare 5141 * that answer with the max chunk size. If it's higher, we try to 5142 * reduce stripe_size. 5143 */ 5144 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5145 /* 5146 * Reduce stripe_size, round it up to a 16MB boundary again and 5147 * then use it, unless it ends up being even bigger than the 5148 * previous value we had already. 5149 */ 5150 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5151 data_stripes), SZ_16M), 5152 ctl->stripe_size); 5153 } 5154 5155 /* Align to BTRFS_STRIPE_LEN */ 5156 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5157 ctl->chunk_size = ctl->stripe_size * data_stripes; 5158 5159 return 0; 5160 } 5161 5162 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5163 struct btrfs_device_info *devices_info) 5164 { 5165 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5166 /* Number of stripes that count for block group size */ 5167 int data_stripes; 5168 5169 /* 5170 * It should hold because: 5171 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5172 */ 5173 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5174 5175 ctl->stripe_size = zone_size; 5176 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5177 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5178 5179 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5180 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5181 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5182 ctl->stripe_size) + ctl->nparity, 5183 ctl->dev_stripes); 5184 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5185 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5186 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5187 } 5188 5189 ctl->chunk_size = ctl->stripe_size * data_stripes; 5190 5191 return 0; 5192 } 5193 5194 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5195 struct alloc_chunk_ctl *ctl, 5196 struct btrfs_device_info *devices_info) 5197 { 5198 struct btrfs_fs_info *info = fs_devices->fs_info; 5199 5200 /* 5201 * Round down to number of usable stripes, devs_increment can be any 5202 * number so we can't use round_down() that requires power of 2, while 5203 * rounddown is safe. 5204 */ 5205 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5206 5207 if (ctl->ndevs < ctl->devs_min) { 5208 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5209 btrfs_debug(info, 5210 "%s: not enough devices with free space: have=%d minimum required=%d", 5211 __func__, ctl->ndevs, ctl->devs_min); 5212 } 5213 return -ENOSPC; 5214 } 5215 5216 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5217 5218 switch (fs_devices->chunk_alloc_policy) { 5219 case BTRFS_CHUNK_ALLOC_REGULAR: 5220 return decide_stripe_size_regular(ctl, devices_info); 5221 case BTRFS_CHUNK_ALLOC_ZONED: 5222 return decide_stripe_size_zoned(ctl, devices_info); 5223 default: 5224 BUG(); 5225 } 5226 } 5227 5228 static int create_chunk(struct btrfs_trans_handle *trans, 5229 struct alloc_chunk_ctl *ctl, 5230 struct btrfs_device_info *devices_info) 5231 { 5232 struct btrfs_fs_info *info = trans->fs_info; 5233 struct map_lookup *map = NULL; 5234 struct extent_map_tree *em_tree; 5235 struct extent_map *em; 5236 u64 start = ctl->start; 5237 u64 type = ctl->type; 5238 int ret; 5239 int i; 5240 int j; 5241 5242 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5243 if (!map) 5244 return -ENOMEM; 5245 map->num_stripes = ctl->num_stripes; 5246 5247 for (i = 0; i < ctl->ndevs; ++i) { 5248 for (j = 0; j < ctl->dev_stripes; ++j) { 5249 int s = i * ctl->dev_stripes + j; 5250 map->stripes[s].dev = devices_info[i].dev; 5251 map->stripes[s].physical = devices_info[i].dev_offset + 5252 j * ctl->stripe_size; 5253 } 5254 } 5255 map->stripe_len = BTRFS_STRIPE_LEN; 5256 map->io_align = BTRFS_STRIPE_LEN; 5257 map->io_width = BTRFS_STRIPE_LEN; 5258 map->type = type; 5259 map->sub_stripes = ctl->sub_stripes; 5260 5261 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5262 5263 em = alloc_extent_map(); 5264 if (!em) { 5265 kfree(map); 5266 return -ENOMEM; 5267 } 5268 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5269 em->map_lookup = map; 5270 em->start = start; 5271 em->len = ctl->chunk_size; 5272 em->block_start = 0; 5273 em->block_len = em->len; 5274 em->orig_block_len = ctl->stripe_size; 5275 5276 em_tree = &info->mapping_tree; 5277 write_lock(&em_tree->lock); 5278 ret = add_extent_mapping(em_tree, em, 0); 5279 if (ret) { 5280 write_unlock(&em_tree->lock); 5281 free_extent_map(em); 5282 return ret; 5283 } 5284 write_unlock(&em_tree->lock); 5285 5286 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size); 5287 if (ret) 5288 goto error_del_extent; 5289 5290 for (i = 0; i < map->num_stripes; i++) { 5291 struct btrfs_device *dev = map->stripes[i].dev; 5292 5293 btrfs_device_set_bytes_used(dev, 5294 dev->bytes_used + ctl->stripe_size); 5295 if (list_empty(&dev->post_commit_list)) 5296 list_add_tail(&dev->post_commit_list, 5297 &trans->transaction->dev_update_list); 5298 } 5299 5300 atomic64_sub(ctl->stripe_size * map->num_stripes, 5301 &info->free_chunk_space); 5302 5303 free_extent_map(em); 5304 check_raid56_incompat_flag(info, type); 5305 check_raid1c34_incompat_flag(info, type); 5306 5307 return 0; 5308 5309 error_del_extent: 5310 write_lock(&em_tree->lock); 5311 remove_extent_mapping(em_tree, em); 5312 write_unlock(&em_tree->lock); 5313 5314 /* One for our allocation */ 5315 free_extent_map(em); 5316 /* One for the tree reference */ 5317 free_extent_map(em); 5318 5319 return ret; 5320 } 5321 5322 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) 5323 { 5324 struct btrfs_fs_info *info = trans->fs_info; 5325 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5326 struct btrfs_device_info *devices_info = NULL; 5327 struct alloc_chunk_ctl ctl; 5328 int ret; 5329 5330 lockdep_assert_held(&info->chunk_mutex); 5331 5332 if (!alloc_profile_is_valid(type, 0)) { 5333 ASSERT(0); 5334 return -EINVAL; 5335 } 5336 5337 if (list_empty(&fs_devices->alloc_list)) { 5338 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5339 btrfs_debug(info, "%s: no writable device", __func__); 5340 return -ENOSPC; 5341 } 5342 5343 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5344 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5345 ASSERT(0); 5346 return -EINVAL; 5347 } 5348 5349 ctl.start = find_next_chunk(info); 5350 ctl.type = type; 5351 init_alloc_chunk_ctl(fs_devices, &ctl); 5352 5353 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5354 GFP_NOFS); 5355 if (!devices_info) 5356 return -ENOMEM; 5357 5358 ret = gather_device_info(fs_devices, &ctl, devices_info); 5359 if (ret < 0) 5360 goto out; 5361 5362 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5363 if (ret < 0) 5364 goto out; 5365 5366 ret = create_chunk(trans, &ctl, devices_info); 5367 5368 out: 5369 kfree(devices_info); 5370 return ret; 5371 } 5372 5373 /* 5374 * Chunk allocation falls into two parts. The first part does work 5375 * that makes the new allocated chunk usable, but does not do any operation 5376 * that modifies the chunk tree. The second part does the work that 5377 * requires modifying the chunk tree. This division is important for the 5378 * bootstrap process of adding storage to a seed btrfs. 5379 */ 5380 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 5381 u64 chunk_offset, u64 chunk_size) 5382 { 5383 struct btrfs_fs_info *fs_info = trans->fs_info; 5384 struct btrfs_root *extent_root = fs_info->extent_root; 5385 struct btrfs_root *chunk_root = fs_info->chunk_root; 5386 struct btrfs_key key; 5387 struct btrfs_device *device; 5388 struct btrfs_chunk *chunk; 5389 struct btrfs_stripe *stripe; 5390 struct extent_map *em; 5391 struct map_lookup *map; 5392 size_t item_size; 5393 u64 dev_offset; 5394 u64 stripe_size; 5395 int i = 0; 5396 int ret = 0; 5397 5398 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 5399 if (IS_ERR(em)) 5400 return PTR_ERR(em); 5401 5402 map = em->map_lookup; 5403 item_size = btrfs_chunk_item_size(map->num_stripes); 5404 stripe_size = em->orig_block_len; 5405 5406 chunk = kzalloc(item_size, GFP_NOFS); 5407 if (!chunk) { 5408 ret = -ENOMEM; 5409 goto out; 5410 } 5411 5412 /* 5413 * Take the device list mutex to prevent races with the final phase of 5414 * a device replace operation that replaces the device object associated 5415 * with the map's stripes, because the device object's id can change 5416 * at any time during that final phase of the device replace operation 5417 * (dev-replace.c:btrfs_dev_replace_finishing()). 5418 */ 5419 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5420 for (i = 0; i < map->num_stripes; i++) { 5421 device = map->stripes[i].dev; 5422 dev_offset = map->stripes[i].physical; 5423 5424 ret = btrfs_update_device(trans, device); 5425 if (ret) 5426 break; 5427 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5428 dev_offset, stripe_size); 5429 if (ret) 5430 break; 5431 } 5432 if (ret) { 5433 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5434 goto out; 5435 } 5436 5437 stripe = &chunk->stripe; 5438 for (i = 0; i < map->num_stripes; i++) { 5439 device = map->stripes[i].dev; 5440 dev_offset = map->stripes[i].physical; 5441 5442 btrfs_set_stack_stripe_devid(stripe, device->devid); 5443 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5444 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5445 stripe++; 5446 } 5447 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5448 5449 btrfs_set_stack_chunk_length(chunk, chunk_size); 5450 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5451 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5452 btrfs_set_stack_chunk_type(chunk, map->type); 5453 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5454 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5455 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5456 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5457 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5458 5459 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5460 key.type = BTRFS_CHUNK_ITEM_KEY; 5461 key.offset = chunk_offset; 5462 5463 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5464 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5465 /* 5466 * TODO: Cleanup of inserted chunk root in case of 5467 * failure. 5468 */ 5469 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5470 } 5471 5472 out: 5473 kfree(chunk); 5474 free_extent_map(em); 5475 return ret; 5476 } 5477 5478 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5479 { 5480 struct btrfs_fs_info *fs_info = trans->fs_info; 5481 u64 alloc_profile; 5482 int ret; 5483 5484 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5485 ret = btrfs_alloc_chunk(trans, alloc_profile); 5486 if (ret) 5487 return ret; 5488 5489 alloc_profile = btrfs_system_alloc_profile(fs_info); 5490 ret = btrfs_alloc_chunk(trans, alloc_profile); 5491 return ret; 5492 } 5493 5494 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5495 { 5496 const int index = btrfs_bg_flags_to_raid_index(map->type); 5497 5498 return btrfs_raid_array[index].tolerated_failures; 5499 } 5500 5501 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5502 { 5503 struct extent_map *em; 5504 struct map_lookup *map; 5505 int readonly = 0; 5506 int miss_ndevs = 0; 5507 int i; 5508 5509 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5510 if (IS_ERR(em)) 5511 return 1; 5512 5513 map = em->map_lookup; 5514 for (i = 0; i < map->num_stripes; i++) { 5515 if (test_bit(BTRFS_DEV_STATE_MISSING, 5516 &map->stripes[i].dev->dev_state)) { 5517 miss_ndevs++; 5518 continue; 5519 } 5520 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5521 &map->stripes[i].dev->dev_state)) { 5522 readonly = 1; 5523 goto end; 5524 } 5525 } 5526 5527 /* 5528 * If the number of missing devices is larger than max errors, 5529 * we can not write the data into that chunk successfully, so 5530 * set it readonly. 5531 */ 5532 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5533 readonly = 1; 5534 end: 5535 free_extent_map(em); 5536 return readonly; 5537 } 5538 5539 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5540 { 5541 struct extent_map *em; 5542 5543 while (1) { 5544 write_lock(&tree->lock); 5545 em = lookup_extent_mapping(tree, 0, (u64)-1); 5546 if (em) 5547 remove_extent_mapping(tree, em); 5548 write_unlock(&tree->lock); 5549 if (!em) 5550 break; 5551 /* once for us */ 5552 free_extent_map(em); 5553 /* once for the tree */ 5554 free_extent_map(em); 5555 } 5556 } 5557 5558 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5559 { 5560 struct extent_map *em; 5561 struct map_lookup *map; 5562 int ret; 5563 5564 em = btrfs_get_chunk_map(fs_info, logical, len); 5565 if (IS_ERR(em)) 5566 /* 5567 * We could return errors for these cases, but that could get 5568 * ugly and we'd probably do the same thing which is just not do 5569 * anything else and exit, so return 1 so the callers don't try 5570 * to use other copies. 5571 */ 5572 return 1; 5573 5574 map = em->map_lookup; 5575 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5576 ret = map->num_stripes; 5577 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5578 ret = map->sub_stripes; 5579 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5580 ret = 2; 5581 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5582 /* 5583 * There could be two corrupted data stripes, we need 5584 * to loop retry in order to rebuild the correct data. 5585 * 5586 * Fail a stripe at a time on every retry except the 5587 * stripe under reconstruction. 5588 */ 5589 ret = map->num_stripes; 5590 else 5591 ret = 1; 5592 free_extent_map(em); 5593 5594 down_read(&fs_info->dev_replace.rwsem); 5595 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5596 fs_info->dev_replace.tgtdev) 5597 ret++; 5598 up_read(&fs_info->dev_replace.rwsem); 5599 5600 return ret; 5601 } 5602 5603 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5604 u64 logical) 5605 { 5606 struct extent_map *em; 5607 struct map_lookup *map; 5608 unsigned long len = fs_info->sectorsize; 5609 5610 em = btrfs_get_chunk_map(fs_info, logical, len); 5611 5612 if (!WARN_ON(IS_ERR(em))) { 5613 map = em->map_lookup; 5614 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5615 len = map->stripe_len * nr_data_stripes(map); 5616 free_extent_map(em); 5617 } 5618 return len; 5619 } 5620 5621 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5622 { 5623 struct extent_map *em; 5624 struct map_lookup *map; 5625 int ret = 0; 5626 5627 em = btrfs_get_chunk_map(fs_info, logical, len); 5628 5629 if(!WARN_ON(IS_ERR(em))) { 5630 map = em->map_lookup; 5631 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5632 ret = 1; 5633 free_extent_map(em); 5634 } 5635 return ret; 5636 } 5637 5638 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5639 struct map_lookup *map, int first, 5640 int dev_replace_is_ongoing) 5641 { 5642 int i; 5643 int num_stripes; 5644 int preferred_mirror; 5645 int tolerance; 5646 struct btrfs_device *srcdev; 5647 5648 ASSERT((map->type & 5649 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5650 5651 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5652 num_stripes = map->sub_stripes; 5653 else 5654 num_stripes = map->num_stripes; 5655 5656 switch (fs_info->fs_devices->read_policy) { 5657 default: 5658 /* Shouldn't happen, just warn and use pid instead of failing */ 5659 btrfs_warn_rl(fs_info, 5660 "unknown read_policy type %u, reset to pid", 5661 fs_info->fs_devices->read_policy); 5662 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5663 fallthrough; 5664 case BTRFS_READ_POLICY_PID: 5665 preferred_mirror = first + (current->pid % num_stripes); 5666 break; 5667 } 5668 5669 if (dev_replace_is_ongoing && 5670 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5671 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5672 srcdev = fs_info->dev_replace.srcdev; 5673 else 5674 srcdev = NULL; 5675 5676 /* 5677 * try to avoid the drive that is the source drive for a 5678 * dev-replace procedure, only choose it if no other non-missing 5679 * mirror is available 5680 */ 5681 for (tolerance = 0; tolerance < 2; tolerance++) { 5682 if (map->stripes[preferred_mirror].dev->bdev && 5683 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5684 return preferred_mirror; 5685 for (i = first; i < first + num_stripes; i++) { 5686 if (map->stripes[i].dev->bdev && 5687 (tolerance || map->stripes[i].dev != srcdev)) 5688 return i; 5689 } 5690 } 5691 5692 /* we couldn't find one that doesn't fail. Just return something 5693 * and the io error handling code will clean up eventually 5694 */ 5695 return preferred_mirror; 5696 } 5697 5698 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5699 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5700 { 5701 int i; 5702 int again = 1; 5703 5704 while (again) { 5705 again = 0; 5706 for (i = 0; i < num_stripes - 1; i++) { 5707 /* Swap if parity is on a smaller index */ 5708 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) { 5709 swap(bbio->stripes[i], bbio->stripes[i + 1]); 5710 swap(bbio->raid_map[i], bbio->raid_map[i + 1]); 5711 again = 1; 5712 } 5713 } 5714 } 5715 } 5716 5717 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5718 { 5719 struct btrfs_bio *bbio = kzalloc( 5720 /* the size of the btrfs_bio */ 5721 sizeof(struct btrfs_bio) + 5722 /* plus the variable array for the stripes */ 5723 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5724 /* plus the variable array for the tgt dev */ 5725 sizeof(int) * (real_stripes) + 5726 /* 5727 * plus the raid_map, which includes both the tgt dev 5728 * and the stripes 5729 */ 5730 sizeof(u64) * (total_stripes), 5731 GFP_NOFS|__GFP_NOFAIL); 5732 5733 atomic_set(&bbio->error, 0); 5734 refcount_set(&bbio->refs, 1); 5735 5736 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes); 5737 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes); 5738 5739 return bbio; 5740 } 5741 5742 void btrfs_get_bbio(struct btrfs_bio *bbio) 5743 { 5744 WARN_ON(!refcount_read(&bbio->refs)); 5745 refcount_inc(&bbio->refs); 5746 } 5747 5748 void btrfs_put_bbio(struct btrfs_bio *bbio) 5749 { 5750 if (!bbio) 5751 return; 5752 if (refcount_dec_and_test(&bbio->refs)) 5753 kfree(bbio); 5754 } 5755 5756 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5757 /* 5758 * Please note that, discard won't be sent to target device of device 5759 * replace. 5760 */ 5761 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5762 u64 logical, u64 *length_ret, 5763 struct btrfs_bio **bbio_ret) 5764 { 5765 struct extent_map *em; 5766 struct map_lookup *map; 5767 struct btrfs_bio *bbio; 5768 u64 length = *length_ret; 5769 u64 offset; 5770 u64 stripe_nr; 5771 u64 stripe_nr_end; 5772 u64 stripe_end_offset; 5773 u64 stripe_cnt; 5774 u64 stripe_len; 5775 u64 stripe_offset; 5776 u64 num_stripes; 5777 u32 stripe_index; 5778 u32 factor = 0; 5779 u32 sub_stripes = 0; 5780 u64 stripes_per_dev = 0; 5781 u32 remaining_stripes = 0; 5782 u32 last_stripe = 0; 5783 int ret = 0; 5784 int i; 5785 5786 /* discard always return a bbio */ 5787 ASSERT(bbio_ret); 5788 5789 em = btrfs_get_chunk_map(fs_info, logical, length); 5790 if (IS_ERR(em)) 5791 return PTR_ERR(em); 5792 5793 map = em->map_lookup; 5794 /* we don't discard raid56 yet */ 5795 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5796 ret = -EOPNOTSUPP; 5797 goto out; 5798 } 5799 5800 offset = logical - em->start; 5801 length = min_t(u64, em->start + em->len - logical, length); 5802 *length_ret = length; 5803 5804 stripe_len = map->stripe_len; 5805 /* 5806 * stripe_nr counts the total number of stripes we have to stride 5807 * to get to this block 5808 */ 5809 stripe_nr = div64_u64(offset, stripe_len); 5810 5811 /* stripe_offset is the offset of this block in its stripe */ 5812 stripe_offset = offset - stripe_nr * stripe_len; 5813 5814 stripe_nr_end = round_up(offset + length, map->stripe_len); 5815 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5816 stripe_cnt = stripe_nr_end - stripe_nr; 5817 stripe_end_offset = stripe_nr_end * map->stripe_len - 5818 (offset + length); 5819 /* 5820 * after this, stripe_nr is the number of stripes on this 5821 * device we have to walk to find the data, and stripe_index is 5822 * the number of our device in the stripe array 5823 */ 5824 num_stripes = 1; 5825 stripe_index = 0; 5826 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5827 BTRFS_BLOCK_GROUP_RAID10)) { 5828 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5829 sub_stripes = 1; 5830 else 5831 sub_stripes = map->sub_stripes; 5832 5833 factor = map->num_stripes / sub_stripes; 5834 num_stripes = min_t(u64, map->num_stripes, 5835 sub_stripes * stripe_cnt); 5836 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5837 stripe_index *= sub_stripes; 5838 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5839 &remaining_stripes); 5840 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5841 last_stripe *= sub_stripes; 5842 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 5843 BTRFS_BLOCK_GROUP_DUP)) { 5844 num_stripes = map->num_stripes; 5845 } else { 5846 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5847 &stripe_index); 5848 } 5849 5850 bbio = alloc_btrfs_bio(num_stripes, 0); 5851 if (!bbio) { 5852 ret = -ENOMEM; 5853 goto out; 5854 } 5855 5856 for (i = 0; i < num_stripes; i++) { 5857 bbio->stripes[i].physical = 5858 map->stripes[stripe_index].physical + 5859 stripe_offset + stripe_nr * map->stripe_len; 5860 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5861 5862 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5863 BTRFS_BLOCK_GROUP_RAID10)) { 5864 bbio->stripes[i].length = stripes_per_dev * 5865 map->stripe_len; 5866 5867 if (i / sub_stripes < remaining_stripes) 5868 bbio->stripes[i].length += 5869 map->stripe_len; 5870 5871 /* 5872 * Special for the first stripe and 5873 * the last stripe: 5874 * 5875 * |-------|...|-------| 5876 * |----------| 5877 * off end_off 5878 */ 5879 if (i < sub_stripes) 5880 bbio->stripes[i].length -= 5881 stripe_offset; 5882 5883 if (stripe_index >= last_stripe && 5884 stripe_index <= (last_stripe + 5885 sub_stripes - 1)) 5886 bbio->stripes[i].length -= 5887 stripe_end_offset; 5888 5889 if (i == sub_stripes - 1) 5890 stripe_offset = 0; 5891 } else { 5892 bbio->stripes[i].length = length; 5893 } 5894 5895 stripe_index++; 5896 if (stripe_index == map->num_stripes) { 5897 stripe_index = 0; 5898 stripe_nr++; 5899 } 5900 } 5901 5902 *bbio_ret = bbio; 5903 bbio->map_type = map->type; 5904 bbio->num_stripes = num_stripes; 5905 out: 5906 free_extent_map(em); 5907 return ret; 5908 } 5909 5910 /* 5911 * In dev-replace case, for repair case (that's the only case where the mirror 5912 * is selected explicitly when calling btrfs_map_block), blocks left of the 5913 * left cursor can also be read from the target drive. 5914 * 5915 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5916 * array of stripes. 5917 * For READ, it also needs to be supported using the same mirror number. 5918 * 5919 * If the requested block is not left of the left cursor, EIO is returned. This 5920 * can happen because btrfs_num_copies() returns one more in the dev-replace 5921 * case. 5922 */ 5923 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5924 u64 logical, u64 length, 5925 u64 srcdev_devid, int *mirror_num, 5926 u64 *physical) 5927 { 5928 struct btrfs_bio *bbio = NULL; 5929 int num_stripes; 5930 int index_srcdev = 0; 5931 int found = 0; 5932 u64 physical_of_found = 0; 5933 int i; 5934 int ret = 0; 5935 5936 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5937 logical, &length, &bbio, 0, 0); 5938 if (ret) { 5939 ASSERT(bbio == NULL); 5940 return ret; 5941 } 5942 5943 num_stripes = bbio->num_stripes; 5944 if (*mirror_num > num_stripes) { 5945 /* 5946 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5947 * that means that the requested area is not left of the left 5948 * cursor 5949 */ 5950 btrfs_put_bbio(bbio); 5951 return -EIO; 5952 } 5953 5954 /* 5955 * process the rest of the function using the mirror_num of the source 5956 * drive. Therefore look it up first. At the end, patch the device 5957 * pointer to the one of the target drive. 5958 */ 5959 for (i = 0; i < num_stripes; i++) { 5960 if (bbio->stripes[i].dev->devid != srcdev_devid) 5961 continue; 5962 5963 /* 5964 * In case of DUP, in order to keep it simple, only add the 5965 * mirror with the lowest physical address 5966 */ 5967 if (found && 5968 physical_of_found <= bbio->stripes[i].physical) 5969 continue; 5970 5971 index_srcdev = i; 5972 found = 1; 5973 physical_of_found = bbio->stripes[i].physical; 5974 } 5975 5976 btrfs_put_bbio(bbio); 5977 5978 ASSERT(found); 5979 if (!found) 5980 return -EIO; 5981 5982 *mirror_num = index_srcdev + 1; 5983 *physical = physical_of_found; 5984 return ret; 5985 } 5986 5987 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 5988 { 5989 struct btrfs_block_group *cache; 5990 bool ret; 5991 5992 /* Non zoned filesystem does not use "to_copy" flag */ 5993 if (!btrfs_is_zoned(fs_info)) 5994 return false; 5995 5996 cache = btrfs_lookup_block_group(fs_info, logical); 5997 5998 spin_lock(&cache->lock); 5999 ret = cache->to_copy; 6000 spin_unlock(&cache->lock); 6001 6002 btrfs_put_block_group(cache); 6003 return ret; 6004 } 6005 6006 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6007 struct btrfs_bio **bbio_ret, 6008 struct btrfs_dev_replace *dev_replace, 6009 u64 logical, 6010 int *num_stripes_ret, int *max_errors_ret) 6011 { 6012 struct btrfs_bio *bbio = *bbio_ret; 6013 u64 srcdev_devid = dev_replace->srcdev->devid; 6014 int tgtdev_indexes = 0; 6015 int num_stripes = *num_stripes_ret; 6016 int max_errors = *max_errors_ret; 6017 int i; 6018 6019 if (op == BTRFS_MAP_WRITE) { 6020 int index_where_to_add; 6021 6022 /* 6023 * A block group which have "to_copy" set will eventually 6024 * copied by dev-replace process. We can avoid cloning IO here. 6025 */ 6026 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6027 return; 6028 6029 /* 6030 * duplicate the write operations while the dev replace 6031 * procedure is running. Since the copying of the old disk to 6032 * the new disk takes place at run time while the filesystem is 6033 * mounted writable, the regular write operations to the old 6034 * disk have to be duplicated to go to the new disk as well. 6035 * 6036 * Note that device->missing is handled by the caller, and that 6037 * the write to the old disk is already set up in the stripes 6038 * array. 6039 */ 6040 index_where_to_add = num_stripes; 6041 for (i = 0; i < num_stripes; i++) { 6042 if (bbio->stripes[i].dev->devid == srcdev_devid) { 6043 /* write to new disk, too */ 6044 struct btrfs_bio_stripe *new = 6045 bbio->stripes + index_where_to_add; 6046 struct btrfs_bio_stripe *old = 6047 bbio->stripes + i; 6048 6049 new->physical = old->physical; 6050 new->length = old->length; 6051 new->dev = dev_replace->tgtdev; 6052 bbio->tgtdev_map[i] = index_where_to_add; 6053 index_where_to_add++; 6054 max_errors++; 6055 tgtdev_indexes++; 6056 } 6057 } 6058 num_stripes = index_where_to_add; 6059 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 6060 int index_srcdev = 0; 6061 int found = 0; 6062 u64 physical_of_found = 0; 6063 6064 /* 6065 * During the dev-replace procedure, the target drive can also 6066 * be used to read data in case it is needed to repair a corrupt 6067 * block elsewhere. This is possible if the requested area is 6068 * left of the left cursor. In this area, the target drive is a 6069 * full copy of the source drive. 6070 */ 6071 for (i = 0; i < num_stripes; i++) { 6072 if (bbio->stripes[i].dev->devid == srcdev_devid) { 6073 /* 6074 * In case of DUP, in order to keep it simple, 6075 * only add the mirror with the lowest physical 6076 * address 6077 */ 6078 if (found && 6079 physical_of_found <= 6080 bbio->stripes[i].physical) 6081 continue; 6082 index_srcdev = i; 6083 found = 1; 6084 physical_of_found = bbio->stripes[i].physical; 6085 } 6086 } 6087 if (found) { 6088 struct btrfs_bio_stripe *tgtdev_stripe = 6089 bbio->stripes + num_stripes; 6090 6091 tgtdev_stripe->physical = physical_of_found; 6092 tgtdev_stripe->length = 6093 bbio->stripes[index_srcdev].length; 6094 tgtdev_stripe->dev = dev_replace->tgtdev; 6095 bbio->tgtdev_map[index_srcdev] = num_stripes; 6096 6097 tgtdev_indexes++; 6098 num_stripes++; 6099 } 6100 } 6101 6102 *num_stripes_ret = num_stripes; 6103 *max_errors_ret = max_errors; 6104 bbio->num_tgtdevs = tgtdev_indexes; 6105 *bbio_ret = bbio; 6106 } 6107 6108 static bool need_full_stripe(enum btrfs_map_op op) 6109 { 6110 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 6111 } 6112 6113 /* 6114 * Calculate the geometry of a particular (address, len) tuple. This 6115 * information is used to calculate how big a particular bio can get before it 6116 * straddles a stripe. 6117 * 6118 * @fs_info: the filesystem 6119 * @em: mapping containing the logical extent 6120 * @op: type of operation - write or read 6121 * @logical: address that we want to figure out the geometry of 6122 * @io_geom: pointer used to return values 6123 * 6124 * Returns < 0 in case a chunk for the given logical address cannot be found, 6125 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 6126 */ 6127 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em, 6128 enum btrfs_map_op op, u64 logical, 6129 struct btrfs_io_geometry *io_geom) 6130 { 6131 struct map_lookup *map; 6132 u64 len; 6133 u64 offset; 6134 u64 stripe_offset; 6135 u64 stripe_nr; 6136 u64 stripe_len; 6137 u64 raid56_full_stripe_start = (u64)-1; 6138 int data_stripes; 6139 6140 ASSERT(op != BTRFS_MAP_DISCARD); 6141 6142 map = em->map_lookup; 6143 /* Offset of this logical address in the chunk */ 6144 offset = logical - em->start; 6145 /* Len of a stripe in a chunk */ 6146 stripe_len = map->stripe_len; 6147 /* Stripe where this block falls in */ 6148 stripe_nr = div64_u64(offset, stripe_len); 6149 /* Offset of stripe in the chunk */ 6150 stripe_offset = stripe_nr * stripe_len; 6151 if (offset < stripe_offset) { 6152 btrfs_crit(fs_info, 6153 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 6154 stripe_offset, offset, em->start, logical, stripe_len); 6155 return -EINVAL; 6156 } 6157 6158 /* stripe_offset is the offset of this block in its stripe */ 6159 stripe_offset = offset - stripe_offset; 6160 data_stripes = nr_data_stripes(map); 6161 6162 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6163 u64 max_len = stripe_len - stripe_offset; 6164 6165 /* 6166 * In case of raid56, we need to know the stripe aligned start 6167 */ 6168 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6169 unsigned long full_stripe_len = stripe_len * data_stripes; 6170 raid56_full_stripe_start = offset; 6171 6172 /* 6173 * Allow a write of a full stripe, but make sure we 6174 * don't allow straddling of stripes 6175 */ 6176 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 6177 full_stripe_len); 6178 raid56_full_stripe_start *= full_stripe_len; 6179 6180 /* 6181 * For writes to RAID[56], allow a full stripeset across 6182 * all disks. For other RAID types and for RAID[56] 6183 * reads, just allow a single stripe (on a single disk). 6184 */ 6185 if (op == BTRFS_MAP_WRITE) { 6186 max_len = stripe_len * data_stripes - 6187 (offset - raid56_full_stripe_start); 6188 } 6189 } 6190 len = min_t(u64, em->len - offset, max_len); 6191 } else { 6192 len = em->len - offset; 6193 } 6194 6195 io_geom->len = len; 6196 io_geom->offset = offset; 6197 io_geom->stripe_len = stripe_len; 6198 io_geom->stripe_nr = stripe_nr; 6199 io_geom->stripe_offset = stripe_offset; 6200 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 6201 6202 return 0; 6203 } 6204 6205 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 6206 enum btrfs_map_op op, 6207 u64 logical, u64 *length, 6208 struct btrfs_bio **bbio_ret, 6209 int mirror_num, int need_raid_map) 6210 { 6211 struct extent_map *em; 6212 struct map_lookup *map; 6213 u64 stripe_offset; 6214 u64 stripe_nr; 6215 u64 stripe_len; 6216 u32 stripe_index; 6217 int data_stripes; 6218 int i; 6219 int ret = 0; 6220 int num_stripes; 6221 int max_errors = 0; 6222 int tgtdev_indexes = 0; 6223 struct btrfs_bio *bbio = NULL; 6224 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6225 int dev_replace_is_ongoing = 0; 6226 int num_alloc_stripes; 6227 int patch_the_first_stripe_for_dev_replace = 0; 6228 u64 physical_to_patch_in_first_stripe = 0; 6229 u64 raid56_full_stripe_start = (u64)-1; 6230 struct btrfs_io_geometry geom; 6231 6232 ASSERT(bbio_ret); 6233 ASSERT(op != BTRFS_MAP_DISCARD); 6234 6235 em = btrfs_get_chunk_map(fs_info, logical, *length); 6236 ASSERT(!IS_ERR(em)); 6237 6238 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom); 6239 if (ret < 0) 6240 return ret; 6241 6242 map = em->map_lookup; 6243 6244 *length = geom.len; 6245 stripe_len = geom.stripe_len; 6246 stripe_nr = geom.stripe_nr; 6247 stripe_offset = geom.stripe_offset; 6248 raid56_full_stripe_start = geom.raid56_stripe_offset; 6249 data_stripes = nr_data_stripes(map); 6250 6251 down_read(&dev_replace->rwsem); 6252 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6253 /* 6254 * Hold the semaphore for read during the whole operation, write is 6255 * requested at commit time but must wait. 6256 */ 6257 if (!dev_replace_is_ongoing) 6258 up_read(&dev_replace->rwsem); 6259 6260 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6261 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6262 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6263 dev_replace->srcdev->devid, 6264 &mirror_num, 6265 &physical_to_patch_in_first_stripe); 6266 if (ret) 6267 goto out; 6268 else 6269 patch_the_first_stripe_for_dev_replace = 1; 6270 } else if (mirror_num > map->num_stripes) { 6271 mirror_num = 0; 6272 } 6273 6274 num_stripes = 1; 6275 stripe_index = 0; 6276 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6277 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6278 &stripe_index); 6279 if (!need_full_stripe(op)) 6280 mirror_num = 1; 6281 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6282 if (need_full_stripe(op)) 6283 num_stripes = map->num_stripes; 6284 else if (mirror_num) 6285 stripe_index = mirror_num - 1; 6286 else { 6287 stripe_index = find_live_mirror(fs_info, map, 0, 6288 dev_replace_is_ongoing); 6289 mirror_num = stripe_index + 1; 6290 } 6291 6292 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6293 if (need_full_stripe(op)) { 6294 num_stripes = map->num_stripes; 6295 } else if (mirror_num) { 6296 stripe_index = mirror_num - 1; 6297 } else { 6298 mirror_num = 1; 6299 } 6300 6301 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6302 u32 factor = map->num_stripes / map->sub_stripes; 6303 6304 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6305 stripe_index *= map->sub_stripes; 6306 6307 if (need_full_stripe(op)) 6308 num_stripes = map->sub_stripes; 6309 else if (mirror_num) 6310 stripe_index += mirror_num - 1; 6311 else { 6312 int old_stripe_index = stripe_index; 6313 stripe_index = find_live_mirror(fs_info, map, 6314 stripe_index, 6315 dev_replace_is_ongoing); 6316 mirror_num = stripe_index - old_stripe_index + 1; 6317 } 6318 6319 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6320 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6321 /* push stripe_nr back to the start of the full stripe */ 6322 stripe_nr = div64_u64(raid56_full_stripe_start, 6323 stripe_len * data_stripes); 6324 6325 /* RAID[56] write or recovery. Return all stripes */ 6326 num_stripes = map->num_stripes; 6327 max_errors = nr_parity_stripes(map); 6328 6329 *length = map->stripe_len; 6330 stripe_index = 0; 6331 stripe_offset = 0; 6332 } else { 6333 /* 6334 * Mirror #0 or #1 means the original data block. 6335 * Mirror #2 is RAID5 parity block. 6336 * Mirror #3 is RAID6 Q block. 6337 */ 6338 stripe_nr = div_u64_rem(stripe_nr, 6339 data_stripes, &stripe_index); 6340 if (mirror_num > 1) 6341 stripe_index = data_stripes + mirror_num - 2; 6342 6343 /* We distribute the parity blocks across stripes */ 6344 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6345 &stripe_index); 6346 if (!need_full_stripe(op) && mirror_num <= 1) 6347 mirror_num = 1; 6348 } 6349 } else { 6350 /* 6351 * after this, stripe_nr is the number of stripes on this 6352 * device we have to walk to find the data, and stripe_index is 6353 * the number of our device in the stripe array 6354 */ 6355 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6356 &stripe_index); 6357 mirror_num = stripe_index + 1; 6358 } 6359 if (stripe_index >= map->num_stripes) { 6360 btrfs_crit(fs_info, 6361 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6362 stripe_index, map->num_stripes); 6363 ret = -EINVAL; 6364 goto out; 6365 } 6366 6367 num_alloc_stripes = num_stripes; 6368 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6369 if (op == BTRFS_MAP_WRITE) 6370 num_alloc_stripes <<= 1; 6371 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6372 num_alloc_stripes++; 6373 tgtdev_indexes = num_stripes; 6374 } 6375 6376 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 6377 if (!bbio) { 6378 ret = -ENOMEM; 6379 goto out; 6380 } 6381 6382 for (i = 0; i < num_stripes; i++) { 6383 bbio->stripes[i].physical = map->stripes[stripe_index].physical + 6384 stripe_offset + stripe_nr * map->stripe_len; 6385 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 6386 stripe_index++; 6387 } 6388 6389 /* build raid_map */ 6390 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6391 (need_full_stripe(op) || mirror_num > 1)) { 6392 u64 tmp; 6393 unsigned rot; 6394 6395 /* Work out the disk rotation on this stripe-set */ 6396 div_u64_rem(stripe_nr, num_stripes, &rot); 6397 6398 /* Fill in the logical address of each stripe */ 6399 tmp = stripe_nr * data_stripes; 6400 for (i = 0; i < data_stripes; i++) 6401 bbio->raid_map[(i+rot) % num_stripes] = 6402 em->start + (tmp + i) * map->stripe_len; 6403 6404 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 6405 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6406 bbio->raid_map[(i+rot+1) % num_stripes] = 6407 RAID6_Q_STRIPE; 6408 6409 sort_parity_stripes(bbio, num_stripes); 6410 } 6411 6412 if (need_full_stripe(op)) 6413 max_errors = btrfs_chunk_max_errors(map); 6414 6415 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6416 need_full_stripe(op)) { 6417 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical, 6418 &num_stripes, &max_errors); 6419 } 6420 6421 *bbio_ret = bbio; 6422 bbio->map_type = map->type; 6423 bbio->num_stripes = num_stripes; 6424 bbio->max_errors = max_errors; 6425 bbio->mirror_num = mirror_num; 6426 6427 /* 6428 * this is the case that REQ_READ && dev_replace_is_ongoing && 6429 * mirror_num == num_stripes + 1 && dev_replace target drive is 6430 * available as a mirror 6431 */ 6432 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6433 WARN_ON(num_stripes > 1); 6434 bbio->stripes[0].dev = dev_replace->tgtdev; 6435 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 6436 bbio->mirror_num = map->num_stripes + 1; 6437 } 6438 out: 6439 if (dev_replace_is_ongoing) { 6440 lockdep_assert_held(&dev_replace->rwsem); 6441 /* Unlock and let waiting writers proceed */ 6442 up_read(&dev_replace->rwsem); 6443 } 6444 free_extent_map(em); 6445 return ret; 6446 } 6447 6448 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6449 u64 logical, u64 *length, 6450 struct btrfs_bio **bbio_ret, int mirror_num) 6451 { 6452 if (op == BTRFS_MAP_DISCARD) 6453 return __btrfs_map_block_for_discard(fs_info, logical, 6454 length, bbio_ret); 6455 6456 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 6457 mirror_num, 0); 6458 } 6459 6460 /* For Scrub/replace */ 6461 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6462 u64 logical, u64 *length, 6463 struct btrfs_bio **bbio_ret) 6464 { 6465 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6466 } 6467 6468 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6469 { 6470 bio->bi_private = bbio->private; 6471 bio->bi_end_io = bbio->end_io; 6472 bio_endio(bio); 6473 6474 btrfs_put_bbio(bbio); 6475 } 6476 6477 static void btrfs_end_bio(struct bio *bio) 6478 { 6479 struct btrfs_bio *bbio = bio->bi_private; 6480 int is_orig_bio = 0; 6481 6482 if (bio->bi_status) { 6483 atomic_inc(&bbio->error); 6484 if (bio->bi_status == BLK_STS_IOERR || 6485 bio->bi_status == BLK_STS_TARGET) { 6486 struct btrfs_device *dev = btrfs_io_bio(bio)->device; 6487 6488 ASSERT(dev->bdev); 6489 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 6490 btrfs_dev_stat_inc_and_print(dev, 6491 BTRFS_DEV_STAT_WRITE_ERRS); 6492 else if (!(bio->bi_opf & REQ_RAHEAD)) 6493 btrfs_dev_stat_inc_and_print(dev, 6494 BTRFS_DEV_STAT_READ_ERRS); 6495 if (bio->bi_opf & REQ_PREFLUSH) 6496 btrfs_dev_stat_inc_and_print(dev, 6497 BTRFS_DEV_STAT_FLUSH_ERRS); 6498 } 6499 } 6500 6501 if (bio == bbio->orig_bio) 6502 is_orig_bio = 1; 6503 6504 btrfs_bio_counter_dec(bbio->fs_info); 6505 6506 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6507 if (!is_orig_bio) { 6508 bio_put(bio); 6509 bio = bbio->orig_bio; 6510 } 6511 6512 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6513 /* only send an error to the higher layers if it is 6514 * beyond the tolerance of the btrfs bio 6515 */ 6516 if (atomic_read(&bbio->error) > bbio->max_errors) { 6517 bio->bi_status = BLK_STS_IOERR; 6518 } else { 6519 /* 6520 * this bio is actually up to date, we didn't 6521 * go over the max number of errors 6522 */ 6523 bio->bi_status = BLK_STS_OK; 6524 } 6525 6526 btrfs_end_bbio(bbio, bio); 6527 } else if (!is_orig_bio) { 6528 bio_put(bio); 6529 } 6530 } 6531 6532 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6533 u64 physical, struct btrfs_device *dev) 6534 { 6535 struct btrfs_fs_info *fs_info = bbio->fs_info; 6536 6537 bio->bi_private = bbio; 6538 btrfs_io_bio(bio)->device = dev; 6539 bio->bi_end_io = btrfs_end_bio; 6540 bio->bi_iter.bi_sector = physical >> 9; 6541 /* 6542 * For zone append writing, bi_sector must point the beginning of the 6543 * zone 6544 */ 6545 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 6546 if (btrfs_dev_is_sequential(dev, physical)) { 6547 u64 zone_start = round_down(physical, fs_info->zone_size); 6548 6549 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 6550 } else { 6551 bio->bi_opf &= ~REQ_OP_ZONE_APPEND; 6552 bio->bi_opf |= REQ_OP_WRITE; 6553 } 6554 } 6555 btrfs_debug_in_rcu(fs_info, 6556 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6557 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 6558 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name), 6559 dev->devid, bio->bi_iter.bi_size); 6560 bio_set_dev(bio, dev->bdev); 6561 6562 btrfs_bio_counter_inc_noblocked(fs_info); 6563 6564 btrfsic_submit_bio(bio); 6565 } 6566 6567 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6568 { 6569 atomic_inc(&bbio->error); 6570 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6571 /* Should be the original bio. */ 6572 WARN_ON(bio != bbio->orig_bio); 6573 6574 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6575 bio->bi_iter.bi_sector = logical >> 9; 6576 if (atomic_read(&bbio->error) > bbio->max_errors) 6577 bio->bi_status = BLK_STS_IOERR; 6578 else 6579 bio->bi_status = BLK_STS_OK; 6580 btrfs_end_bbio(bbio, bio); 6581 } 6582 } 6583 6584 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6585 int mirror_num) 6586 { 6587 struct btrfs_device *dev; 6588 struct bio *first_bio = bio; 6589 u64 logical = bio->bi_iter.bi_sector << 9; 6590 u64 length = 0; 6591 u64 map_length; 6592 int ret; 6593 int dev_nr; 6594 int total_devs; 6595 struct btrfs_bio *bbio = NULL; 6596 6597 length = bio->bi_iter.bi_size; 6598 map_length = length; 6599 6600 btrfs_bio_counter_inc_blocked(fs_info); 6601 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6602 &map_length, &bbio, mirror_num, 1); 6603 if (ret) { 6604 btrfs_bio_counter_dec(fs_info); 6605 return errno_to_blk_status(ret); 6606 } 6607 6608 total_devs = bbio->num_stripes; 6609 bbio->orig_bio = first_bio; 6610 bbio->private = first_bio->bi_private; 6611 bbio->end_io = first_bio->bi_end_io; 6612 bbio->fs_info = fs_info; 6613 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6614 6615 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6616 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) { 6617 /* In this case, map_length has been set to the length of 6618 a single stripe; not the whole write */ 6619 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 6620 ret = raid56_parity_write(fs_info, bio, bbio, 6621 map_length); 6622 } else { 6623 ret = raid56_parity_recover(fs_info, bio, bbio, 6624 map_length, mirror_num, 1); 6625 } 6626 6627 btrfs_bio_counter_dec(fs_info); 6628 return errno_to_blk_status(ret); 6629 } 6630 6631 if (map_length < length) { 6632 btrfs_crit(fs_info, 6633 "mapping failed logical %llu bio len %llu len %llu", 6634 logical, length, map_length); 6635 BUG(); 6636 } 6637 6638 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6639 dev = bbio->stripes[dev_nr].dev; 6640 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6641 &dev->dev_state) || 6642 (btrfs_op(first_bio) == BTRFS_MAP_WRITE && 6643 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6644 bbio_error(bbio, first_bio, logical); 6645 continue; 6646 } 6647 6648 if (dev_nr < total_devs - 1) 6649 bio = btrfs_bio_clone(first_bio); 6650 else 6651 bio = first_bio; 6652 6653 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev); 6654 } 6655 btrfs_bio_counter_dec(fs_info); 6656 return BLK_STS_OK; 6657 } 6658 6659 /* 6660 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6661 * return NULL. 6662 * 6663 * If devid and uuid are both specified, the match must be exact, otherwise 6664 * only devid is used. 6665 */ 6666 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 6667 u64 devid, u8 *uuid, u8 *fsid) 6668 { 6669 struct btrfs_device *device; 6670 struct btrfs_fs_devices *seed_devs; 6671 6672 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6673 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6674 if (device->devid == devid && 6675 (!uuid || memcmp(device->uuid, uuid, 6676 BTRFS_UUID_SIZE) == 0)) 6677 return device; 6678 } 6679 } 6680 6681 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6682 if (!fsid || 6683 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6684 list_for_each_entry(device, &seed_devs->devices, 6685 dev_list) { 6686 if (device->devid == devid && 6687 (!uuid || memcmp(device->uuid, uuid, 6688 BTRFS_UUID_SIZE) == 0)) 6689 return device; 6690 } 6691 } 6692 } 6693 6694 return NULL; 6695 } 6696 6697 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6698 u64 devid, u8 *dev_uuid) 6699 { 6700 struct btrfs_device *device; 6701 unsigned int nofs_flag; 6702 6703 /* 6704 * We call this under the chunk_mutex, so we want to use NOFS for this 6705 * allocation, however we don't want to change btrfs_alloc_device() to 6706 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6707 * places. 6708 */ 6709 nofs_flag = memalloc_nofs_save(); 6710 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6711 memalloc_nofs_restore(nofs_flag); 6712 if (IS_ERR(device)) 6713 return device; 6714 6715 list_add(&device->dev_list, &fs_devices->devices); 6716 device->fs_devices = fs_devices; 6717 fs_devices->num_devices++; 6718 6719 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6720 fs_devices->missing_devices++; 6721 6722 return device; 6723 } 6724 6725 /** 6726 * btrfs_alloc_device - allocate struct btrfs_device 6727 * @fs_info: used only for generating a new devid, can be NULL if 6728 * devid is provided (i.e. @devid != NULL). 6729 * @devid: a pointer to devid for this device. If NULL a new devid 6730 * is generated. 6731 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6732 * is generated. 6733 * 6734 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6735 * on error. Returned struct is not linked onto any lists and must be 6736 * destroyed with btrfs_free_device. 6737 */ 6738 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6739 const u64 *devid, 6740 const u8 *uuid) 6741 { 6742 struct btrfs_device *dev; 6743 u64 tmp; 6744 6745 if (WARN_ON(!devid && !fs_info)) 6746 return ERR_PTR(-EINVAL); 6747 6748 dev = __alloc_device(fs_info); 6749 if (IS_ERR(dev)) 6750 return dev; 6751 6752 if (devid) 6753 tmp = *devid; 6754 else { 6755 int ret; 6756 6757 ret = find_next_devid(fs_info, &tmp); 6758 if (ret) { 6759 btrfs_free_device(dev); 6760 return ERR_PTR(ret); 6761 } 6762 } 6763 dev->devid = tmp; 6764 6765 if (uuid) 6766 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6767 else 6768 generate_random_uuid(dev->uuid); 6769 6770 return dev; 6771 } 6772 6773 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6774 u64 devid, u8 *uuid, bool error) 6775 { 6776 if (error) 6777 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6778 devid, uuid); 6779 else 6780 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6781 devid, uuid); 6782 } 6783 6784 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 6785 { 6786 int index = btrfs_bg_flags_to_raid_index(type); 6787 int ncopies = btrfs_raid_array[index].ncopies; 6788 const int nparity = btrfs_raid_array[index].nparity; 6789 int data_stripes; 6790 6791 if (nparity) 6792 data_stripes = num_stripes - nparity; 6793 else 6794 data_stripes = num_stripes / ncopies; 6795 6796 return div_u64(chunk_len, data_stripes); 6797 } 6798 6799 #if BITS_PER_LONG == 32 6800 /* 6801 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6802 * can't be accessed on 32bit systems. 6803 * 6804 * This function do mount time check to reject the fs if it already has 6805 * metadata chunk beyond that limit. 6806 */ 6807 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6808 u64 logical, u64 length, u64 type) 6809 { 6810 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6811 return 0; 6812 6813 if (logical + length < MAX_LFS_FILESIZE) 6814 return 0; 6815 6816 btrfs_err_32bit_limit(fs_info); 6817 return -EOVERFLOW; 6818 } 6819 6820 /* 6821 * This is to give early warning for any metadata chunk reaching 6822 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6823 * Although we can still access the metadata, it's not going to be possible 6824 * once the limit is reached. 6825 */ 6826 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6827 u64 logical, u64 length, u64 type) 6828 { 6829 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6830 return; 6831 6832 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6833 return; 6834 6835 btrfs_warn_32bit_limit(fs_info); 6836 } 6837 #endif 6838 6839 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6840 struct btrfs_chunk *chunk) 6841 { 6842 struct btrfs_fs_info *fs_info = leaf->fs_info; 6843 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6844 struct map_lookup *map; 6845 struct extent_map *em; 6846 u64 logical; 6847 u64 length; 6848 u64 devid; 6849 u64 type; 6850 u8 uuid[BTRFS_UUID_SIZE]; 6851 int num_stripes; 6852 int ret; 6853 int i; 6854 6855 logical = key->offset; 6856 length = btrfs_chunk_length(leaf, chunk); 6857 type = btrfs_chunk_type(leaf, chunk); 6858 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6859 6860 #if BITS_PER_LONG == 32 6861 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 6862 if (ret < 0) 6863 return ret; 6864 warn_32bit_meta_chunk(fs_info, logical, length, type); 6865 #endif 6866 6867 /* 6868 * Only need to verify chunk item if we're reading from sys chunk array, 6869 * as chunk item in tree block is already verified by tree-checker. 6870 */ 6871 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6872 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6873 if (ret) 6874 return ret; 6875 } 6876 6877 read_lock(&map_tree->lock); 6878 em = lookup_extent_mapping(map_tree, logical, 1); 6879 read_unlock(&map_tree->lock); 6880 6881 /* already mapped? */ 6882 if (em && em->start <= logical && em->start + em->len > logical) { 6883 free_extent_map(em); 6884 return 0; 6885 } else if (em) { 6886 free_extent_map(em); 6887 } 6888 6889 em = alloc_extent_map(); 6890 if (!em) 6891 return -ENOMEM; 6892 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6893 if (!map) { 6894 free_extent_map(em); 6895 return -ENOMEM; 6896 } 6897 6898 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6899 em->map_lookup = map; 6900 em->start = logical; 6901 em->len = length; 6902 em->orig_start = 0; 6903 em->block_start = 0; 6904 em->block_len = em->len; 6905 6906 map->num_stripes = num_stripes; 6907 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6908 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6909 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6910 map->type = type; 6911 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6912 map->verified_stripes = 0; 6913 em->orig_block_len = calc_stripe_length(type, em->len, 6914 map->num_stripes); 6915 for (i = 0; i < num_stripes; i++) { 6916 map->stripes[i].physical = 6917 btrfs_stripe_offset_nr(leaf, chunk, i); 6918 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6919 read_extent_buffer(leaf, uuid, (unsigned long) 6920 btrfs_stripe_dev_uuid_nr(chunk, i), 6921 BTRFS_UUID_SIZE); 6922 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, 6923 devid, uuid, NULL); 6924 if (!map->stripes[i].dev && 6925 !btrfs_test_opt(fs_info, DEGRADED)) { 6926 free_extent_map(em); 6927 btrfs_report_missing_device(fs_info, devid, uuid, true); 6928 return -ENOENT; 6929 } 6930 if (!map->stripes[i].dev) { 6931 map->stripes[i].dev = 6932 add_missing_dev(fs_info->fs_devices, devid, 6933 uuid); 6934 if (IS_ERR(map->stripes[i].dev)) { 6935 free_extent_map(em); 6936 btrfs_err(fs_info, 6937 "failed to init missing dev %llu: %ld", 6938 devid, PTR_ERR(map->stripes[i].dev)); 6939 return PTR_ERR(map->stripes[i].dev); 6940 } 6941 btrfs_report_missing_device(fs_info, devid, uuid, false); 6942 } 6943 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6944 &(map->stripes[i].dev->dev_state)); 6945 6946 } 6947 6948 write_lock(&map_tree->lock); 6949 ret = add_extent_mapping(map_tree, em, 0); 6950 write_unlock(&map_tree->lock); 6951 if (ret < 0) { 6952 btrfs_err(fs_info, 6953 "failed to add chunk map, start=%llu len=%llu: %d", 6954 em->start, em->len, ret); 6955 } 6956 free_extent_map(em); 6957 6958 return ret; 6959 } 6960 6961 static void fill_device_from_item(struct extent_buffer *leaf, 6962 struct btrfs_dev_item *dev_item, 6963 struct btrfs_device *device) 6964 { 6965 unsigned long ptr; 6966 6967 device->devid = btrfs_device_id(leaf, dev_item); 6968 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6969 device->total_bytes = device->disk_total_bytes; 6970 device->commit_total_bytes = device->disk_total_bytes; 6971 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6972 device->commit_bytes_used = device->bytes_used; 6973 device->type = btrfs_device_type(leaf, dev_item); 6974 device->io_align = btrfs_device_io_align(leaf, dev_item); 6975 device->io_width = btrfs_device_io_width(leaf, dev_item); 6976 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6977 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6978 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6979 6980 ptr = btrfs_device_uuid(dev_item); 6981 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6982 } 6983 6984 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6985 u8 *fsid) 6986 { 6987 struct btrfs_fs_devices *fs_devices; 6988 int ret; 6989 6990 lockdep_assert_held(&uuid_mutex); 6991 ASSERT(fsid); 6992 6993 /* This will match only for multi-device seed fs */ 6994 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 6995 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6996 return fs_devices; 6997 6998 6999 fs_devices = find_fsid(fsid, NULL); 7000 if (!fs_devices) { 7001 if (!btrfs_test_opt(fs_info, DEGRADED)) 7002 return ERR_PTR(-ENOENT); 7003 7004 fs_devices = alloc_fs_devices(fsid, NULL); 7005 if (IS_ERR(fs_devices)) 7006 return fs_devices; 7007 7008 fs_devices->seeding = true; 7009 fs_devices->opened = 1; 7010 return fs_devices; 7011 } 7012 7013 /* 7014 * Upon first call for a seed fs fsid, just create a private copy of the 7015 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7016 */ 7017 fs_devices = clone_fs_devices(fs_devices); 7018 if (IS_ERR(fs_devices)) 7019 return fs_devices; 7020 7021 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 7022 if (ret) { 7023 free_fs_devices(fs_devices); 7024 return ERR_PTR(ret); 7025 } 7026 7027 if (!fs_devices->seeding) { 7028 close_fs_devices(fs_devices); 7029 free_fs_devices(fs_devices); 7030 return ERR_PTR(-EINVAL); 7031 } 7032 7033 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7034 7035 return fs_devices; 7036 } 7037 7038 static int read_one_dev(struct extent_buffer *leaf, 7039 struct btrfs_dev_item *dev_item) 7040 { 7041 struct btrfs_fs_info *fs_info = leaf->fs_info; 7042 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7043 struct btrfs_device *device; 7044 u64 devid; 7045 int ret; 7046 u8 fs_uuid[BTRFS_FSID_SIZE]; 7047 u8 dev_uuid[BTRFS_UUID_SIZE]; 7048 7049 devid = btrfs_device_id(leaf, dev_item); 7050 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7051 BTRFS_UUID_SIZE); 7052 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7053 BTRFS_FSID_SIZE); 7054 7055 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7056 fs_devices = open_seed_devices(fs_info, fs_uuid); 7057 if (IS_ERR(fs_devices)) 7058 return PTR_ERR(fs_devices); 7059 } 7060 7061 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 7062 fs_uuid); 7063 if (!device) { 7064 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7065 btrfs_report_missing_device(fs_info, devid, 7066 dev_uuid, true); 7067 return -ENOENT; 7068 } 7069 7070 device = add_missing_dev(fs_devices, devid, dev_uuid); 7071 if (IS_ERR(device)) { 7072 btrfs_err(fs_info, 7073 "failed to add missing dev %llu: %ld", 7074 devid, PTR_ERR(device)); 7075 return PTR_ERR(device); 7076 } 7077 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7078 } else { 7079 if (!device->bdev) { 7080 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7081 btrfs_report_missing_device(fs_info, 7082 devid, dev_uuid, true); 7083 return -ENOENT; 7084 } 7085 btrfs_report_missing_device(fs_info, devid, 7086 dev_uuid, false); 7087 } 7088 7089 if (!device->bdev && 7090 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7091 /* 7092 * this happens when a device that was properly setup 7093 * in the device info lists suddenly goes bad. 7094 * device->bdev is NULL, and so we have to set 7095 * device->missing to one here 7096 */ 7097 device->fs_devices->missing_devices++; 7098 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7099 } 7100 7101 /* Move the device to its own fs_devices */ 7102 if (device->fs_devices != fs_devices) { 7103 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7104 &device->dev_state)); 7105 7106 list_move(&device->dev_list, &fs_devices->devices); 7107 device->fs_devices->num_devices--; 7108 fs_devices->num_devices++; 7109 7110 device->fs_devices->missing_devices--; 7111 fs_devices->missing_devices++; 7112 7113 device->fs_devices = fs_devices; 7114 } 7115 } 7116 7117 if (device->fs_devices != fs_info->fs_devices) { 7118 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7119 if (device->generation != 7120 btrfs_device_generation(leaf, dev_item)) 7121 return -EINVAL; 7122 } 7123 7124 fill_device_from_item(leaf, dev_item, device); 7125 if (device->bdev) { 7126 u64 max_total_bytes = i_size_read(device->bdev->bd_inode); 7127 7128 if (device->total_bytes > max_total_bytes) { 7129 btrfs_err(fs_info, 7130 "device total_bytes should be at most %llu but found %llu", 7131 max_total_bytes, device->total_bytes); 7132 return -EINVAL; 7133 } 7134 } 7135 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7136 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7137 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7138 device->fs_devices->total_rw_bytes += device->total_bytes; 7139 atomic64_add(device->total_bytes - device->bytes_used, 7140 &fs_info->free_chunk_space); 7141 } 7142 ret = 0; 7143 return ret; 7144 } 7145 7146 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7147 { 7148 struct btrfs_root *root = fs_info->tree_root; 7149 struct btrfs_super_block *super_copy = fs_info->super_copy; 7150 struct extent_buffer *sb; 7151 struct btrfs_disk_key *disk_key; 7152 struct btrfs_chunk *chunk; 7153 u8 *array_ptr; 7154 unsigned long sb_array_offset; 7155 int ret = 0; 7156 u32 num_stripes; 7157 u32 array_size; 7158 u32 len = 0; 7159 u32 cur_offset; 7160 u64 type; 7161 struct btrfs_key key; 7162 7163 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7164 /* 7165 * This will create extent buffer of nodesize, superblock size is 7166 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 7167 * overallocate but we can keep it as-is, only the first page is used. 7168 */ 7169 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET, 7170 root->root_key.objectid, 0); 7171 if (IS_ERR(sb)) 7172 return PTR_ERR(sb); 7173 set_extent_buffer_uptodate(sb); 7174 /* 7175 * The sb extent buffer is artificial and just used to read the system array. 7176 * set_extent_buffer_uptodate() call does not properly mark all it's 7177 * pages up-to-date when the page is larger: extent does not cover the 7178 * whole page and consequently check_page_uptodate does not find all 7179 * the page's extents up-to-date (the hole beyond sb), 7180 * write_extent_buffer then triggers a WARN_ON. 7181 * 7182 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 7183 * but sb spans only this function. Add an explicit SetPageUptodate call 7184 * to silence the warning eg. on PowerPC 64. 7185 */ 7186 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 7187 SetPageUptodate(sb->pages[0]); 7188 7189 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7190 array_size = btrfs_super_sys_array_size(super_copy); 7191 7192 array_ptr = super_copy->sys_chunk_array; 7193 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7194 cur_offset = 0; 7195 7196 while (cur_offset < array_size) { 7197 disk_key = (struct btrfs_disk_key *)array_ptr; 7198 len = sizeof(*disk_key); 7199 if (cur_offset + len > array_size) 7200 goto out_short_read; 7201 7202 btrfs_disk_key_to_cpu(&key, disk_key); 7203 7204 array_ptr += len; 7205 sb_array_offset += len; 7206 cur_offset += len; 7207 7208 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7209 btrfs_err(fs_info, 7210 "unexpected item type %u in sys_array at offset %u", 7211 (u32)key.type, cur_offset); 7212 ret = -EIO; 7213 break; 7214 } 7215 7216 chunk = (struct btrfs_chunk *)sb_array_offset; 7217 /* 7218 * At least one btrfs_chunk with one stripe must be present, 7219 * exact stripe count check comes afterwards 7220 */ 7221 len = btrfs_chunk_item_size(1); 7222 if (cur_offset + len > array_size) 7223 goto out_short_read; 7224 7225 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7226 if (!num_stripes) { 7227 btrfs_err(fs_info, 7228 "invalid number of stripes %u in sys_array at offset %u", 7229 num_stripes, cur_offset); 7230 ret = -EIO; 7231 break; 7232 } 7233 7234 type = btrfs_chunk_type(sb, chunk); 7235 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7236 btrfs_err(fs_info, 7237 "invalid chunk type %llu in sys_array at offset %u", 7238 type, cur_offset); 7239 ret = -EIO; 7240 break; 7241 } 7242 7243 len = btrfs_chunk_item_size(num_stripes); 7244 if (cur_offset + len > array_size) 7245 goto out_short_read; 7246 7247 ret = read_one_chunk(&key, sb, chunk); 7248 if (ret) 7249 break; 7250 7251 array_ptr += len; 7252 sb_array_offset += len; 7253 cur_offset += len; 7254 } 7255 clear_extent_buffer_uptodate(sb); 7256 free_extent_buffer_stale(sb); 7257 return ret; 7258 7259 out_short_read: 7260 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7261 len, cur_offset); 7262 clear_extent_buffer_uptodate(sb); 7263 free_extent_buffer_stale(sb); 7264 return -EIO; 7265 } 7266 7267 /* 7268 * Check if all chunks in the fs are OK for read-write degraded mount 7269 * 7270 * If the @failing_dev is specified, it's accounted as missing. 7271 * 7272 * Return true if all chunks meet the minimal RW mount requirements. 7273 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7274 */ 7275 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7276 struct btrfs_device *failing_dev) 7277 { 7278 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7279 struct extent_map *em; 7280 u64 next_start = 0; 7281 bool ret = true; 7282 7283 read_lock(&map_tree->lock); 7284 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7285 read_unlock(&map_tree->lock); 7286 /* No chunk at all? Return false anyway */ 7287 if (!em) { 7288 ret = false; 7289 goto out; 7290 } 7291 while (em) { 7292 struct map_lookup *map; 7293 int missing = 0; 7294 int max_tolerated; 7295 int i; 7296 7297 map = em->map_lookup; 7298 max_tolerated = 7299 btrfs_get_num_tolerated_disk_barrier_failures( 7300 map->type); 7301 for (i = 0; i < map->num_stripes; i++) { 7302 struct btrfs_device *dev = map->stripes[i].dev; 7303 7304 if (!dev || !dev->bdev || 7305 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7306 dev->last_flush_error) 7307 missing++; 7308 else if (failing_dev && failing_dev == dev) 7309 missing++; 7310 } 7311 if (missing > max_tolerated) { 7312 if (!failing_dev) 7313 btrfs_warn(fs_info, 7314 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7315 em->start, missing, max_tolerated); 7316 free_extent_map(em); 7317 ret = false; 7318 goto out; 7319 } 7320 next_start = extent_map_end(em); 7321 free_extent_map(em); 7322 7323 read_lock(&map_tree->lock); 7324 em = lookup_extent_mapping(map_tree, next_start, 7325 (u64)(-1) - next_start); 7326 read_unlock(&map_tree->lock); 7327 } 7328 out: 7329 return ret; 7330 } 7331 7332 static void readahead_tree_node_children(struct extent_buffer *node) 7333 { 7334 int i; 7335 const int nr_items = btrfs_header_nritems(node); 7336 7337 for (i = 0; i < nr_items; i++) 7338 btrfs_readahead_node_child(node, i); 7339 } 7340 7341 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7342 { 7343 struct btrfs_root *root = fs_info->chunk_root; 7344 struct btrfs_path *path; 7345 struct extent_buffer *leaf; 7346 struct btrfs_key key; 7347 struct btrfs_key found_key; 7348 int ret; 7349 int slot; 7350 u64 total_dev = 0; 7351 u64 last_ra_node = 0; 7352 7353 path = btrfs_alloc_path(); 7354 if (!path) 7355 return -ENOMEM; 7356 7357 /* 7358 * uuid_mutex is needed only if we are mounting a sprout FS 7359 * otherwise we don't need it. 7360 */ 7361 mutex_lock(&uuid_mutex); 7362 7363 /* 7364 * It is possible for mount and umount to race in such a way that 7365 * we execute this code path, but open_fs_devices failed to clear 7366 * total_rw_bytes. We certainly want it cleared before reading the 7367 * device items, so clear it here. 7368 */ 7369 fs_info->fs_devices->total_rw_bytes = 0; 7370 7371 /* 7372 * Read all device items, and then all the chunk items. All 7373 * device items are found before any chunk item (their object id 7374 * is smaller than the lowest possible object id for a chunk 7375 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7376 */ 7377 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7378 key.offset = 0; 7379 key.type = 0; 7380 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7381 if (ret < 0) 7382 goto error; 7383 while (1) { 7384 struct extent_buffer *node; 7385 7386 leaf = path->nodes[0]; 7387 slot = path->slots[0]; 7388 if (slot >= btrfs_header_nritems(leaf)) { 7389 ret = btrfs_next_leaf(root, path); 7390 if (ret == 0) 7391 continue; 7392 if (ret < 0) 7393 goto error; 7394 break; 7395 } 7396 /* 7397 * The nodes on level 1 are not locked but we don't need to do 7398 * that during mount time as nothing else can access the tree 7399 */ 7400 node = path->nodes[1]; 7401 if (node) { 7402 if (last_ra_node != node->start) { 7403 readahead_tree_node_children(node); 7404 last_ra_node = node->start; 7405 } 7406 } 7407 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7408 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7409 struct btrfs_dev_item *dev_item; 7410 dev_item = btrfs_item_ptr(leaf, slot, 7411 struct btrfs_dev_item); 7412 ret = read_one_dev(leaf, dev_item); 7413 if (ret) 7414 goto error; 7415 total_dev++; 7416 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7417 struct btrfs_chunk *chunk; 7418 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7419 mutex_lock(&fs_info->chunk_mutex); 7420 ret = read_one_chunk(&found_key, leaf, chunk); 7421 mutex_unlock(&fs_info->chunk_mutex); 7422 if (ret) 7423 goto error; 7424 } 7425 path->slots[0]++; 7426 } 7427 7428 /* 7429 * After loading chunk tree, we've got all device information, 7430 * do another round of validation checks. 7431 */ 7432 if (total_dev != fs_info->fs_devices->total_devices) { 7433 btrfs_err(fs_info, 7434 "super_num_devices %llu mismatch with num_devices %llu found here", 7435 btrfs_super_num_devices(fs_info->super_copy), 7436 total_dev); 7437 ret = -EINVAL; 7438 goto error; 7439 } 7440 if (btrfs_super_total_bytes(fs_info->super_copy) < 7441 fs_info->fs_devices->total_rw_bytes) { 7442 btrfs_err(fs_info, 7443 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7444 btrfs_super_total_bytes(fs_info->super_copy), 7445 fs_info->fs_devices->total_rw_bytes); 7446 ret = -EINVAL; 7447 goto error; 7448 } 7449 ret = 0; 7450 error: 7451 mutex_unlock(&uuid_mutex); 7452 7453 btrfs_free_path(path); 7454 return ret; 7455 } 7456 7457 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7458 { 7459 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7460 struct btrfs_device *device; 7461 7462 fs_devices->fs_info = fs_info; 7463 7464 mutex_lock(&fs_devices->device_list_mutex); 7465 list_for_each_entry(device, &fs_devices->devices, dev_list) 7466 device->fs_info = fs_info; 7467 7468 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7469 list_for_each_entry(device, &seed_devs->devices, dev_list) 7470 device->fs_info = fs_info; 7471 7472 seed_devs->fs_info = fs_info; 7473 } 7474 mutex_unlock(&fs_devices->device_list_mutex); 7475 } 7476 7477 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7478 const struct btrfs_dev_stats_item *ptr, 7479 int index) 7480 { 7481 u64 val; 7482 7483 read_extent_buffer(eb, &val, 7484 offsetof(struct btrfs_dev_stats_item, values) + 7485 ((unsigned long)ptr) + (index * sizeof(u64)), 7486 sizeof(val)); 7487 return val; 7488 } 7489 7490 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7491 struct btrfs_dev_stats_item *ptr, 7492 int index, u64 val) 7493 { 7494 write_extent_buffer(eb, &val, 7495 offsetof(struct btrfs_dev_stats_item, values) + 7496 ((unsigned long)ptr) + (index * sizeof(u64)), 7497 sizeof(val)); 7498 } 7499 7500 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7501 struct btrfs_path *path) 7502 { 7503 struct btrfs_dev_stats_item *ptr; 7504 struct extent_buffer *eb; 7505 struct btrfs_key key; 7506 int item_size; 7507 int i, ret, slot; 7508 7509 if (!device->fs_info->dev_root) 7510 return 0; 7511 7512 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7513 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7514 key.offset = device->devid; 7515 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7516 if (ret) { 7517 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7518 btrfs_dev_stat_set(device, i, 0); 7519 device->dev_stats_valid = 1; 7520 btrfs_release_path(path); 7521 return ret < 0 ? ret : 0; 7522 } 7523 slot = path->slots[0]; 7524 eb = path->nodes[0]; 7525 item_size = btrfs_item_size_nr(eb, slot); 7526 7527 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7528 7529 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7530 if (item_size >= (1 + i) * sizeof(__le64)) 7531 btrfs_dev_stat_set(device, i, 7532 btrfs_dev_stats_value(eb, ptr, i)); 7533 else 7534 btrfs_dev_stat_set(device, i, 0); 7535 } 7536 7537 device->dev_stats_valid = 1; 7538 btrfs_dev_stat_print_on_load(device); 7539 btrfs_release_path(path); 7540 7541 return 0; 7542 } 7543 7544 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7545 { 7546 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7547 struct btrfs_device *device; 7548 struct btrfs_path *path = NULL; 7549 int ret = 0; 7550 7551 path = btrfs_alloc_path(); 7552 if (!path) 7553 return -ENOMEM; 7554 7555 mutex_lock(&fs_devices->device_list_mutex); 7556 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7557 ret = btrfs_device_init_dev_stats(device, path); 7558 if (ret) 7559 goto out; 7560 } 7561 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7562 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7563 ret = btrfs_device_init_dev_stats(device, path); 7564 if (ret) 7565 goto out; 7566 } 7567 } 7568 out: 7569 mutex_unlock(&fs_devices->device_list_mutex); 7570 7571 btrfs_free_path(path); 7572 return ret; 7573 } 7574 7575 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7576 struct btrfs_device *device) 7577 { 7578 struct btrfs_fs_info *fs_info = trans->fs_info; 7579 struct btrfs_root *dev_root = fs_info->dev_root; 7580 struct btrfs_path *path; 7581 struct btrfs_key key; 7582 struct extent_buffer *eb; 7583 struct btrfs_dev_stats_item *ptr; 7584 int ret; 7585 int i; 7586 7587 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7588 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7589 key.offset = device->devid; 7590 7591 path = btrfs_alloc_path(); 7592 if (!path) 7593 return -ENOMEM; 7594 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7595 if (ret < 0) { 7596 btrfs_warn_in_rcu(fs_info, 7597 "error %d while searching for dev_stats item for device %s", 7598 ret, rcu_str_deref(device->name)); 7599 goto out; 7600 } 7601 7602 if (ret == 0 && 7603 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7604 /* need to delete old one and insert a new one */ 7605 ret = btrfs_del_item(trans, dev_root, path); 7606 if (ret != 0) { 7607 btrfs_warn_in_rcu(fs_info, 7608 "delete too small dev_stats item for device %s failed %d", 7609 rcu_str_deref(device->name), ret); 7610 goto out; 7611 } 7612 ret = 1; 7613 } 7614 7615 if (ret == 1) { 7616 /* need to insert a new item */ 7617 btrfs_release_path(path); 7618 ret = btrfs_insert_empty_item(trans, dev_root, path, 7619 &key, sizeof(*ptr)); 7620 if (ret < 0) { 7621 btrfs_warn_in_rcu(fs_info, 7622 "insert dev_stats item for device %s failed %d", 7623 rcu_str_deref(device->name), ret); 7624 goto out; 7625 } 7626 } 7627 7628 eb = path->nodes[0]; 7629 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7630 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7631 btrfs_set_dev_stats_value(eb, ptr, i, 7632 btrfs_dev_stat_read(device, i)); 7633 btrfs_mark_buffer_dirty(eb); 7634 7635 out: 7636 btrfs_free_path(path); 7637 return ret; 7638 } 7639 7640 /* 7641 * called from commit_transaction. Writes all changed device stats to disk. 7642 */ 7643 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7644 { 7645 struct btrfs_fs_info *fs_info = trans->fs_info; 7646 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7647 struct btrfs_device *device; 7648 int stats_cnt; 7649 int ret = 0; 7650 7651 mutex_lock(&fs_devices->device_list_mutex); 7652 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7653 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7654 if (!device->dev_stats_valid || stats_cnt == 0) 7655 continue; 7656 7657 7658 /* 7659 * There is a LOAD-LOAD control dependency between the value of 7660 * dev_stats_ccnt and updating the on-disk values which requires 7661 * reading the in-memory counters. Such control dependencies 7662 * require explicit read memory barriers. 7663 * 7664 * This memory barriers pairs with smp_mb__before_atomic in 7665 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7666 * barrier implied by atomic_xchg in 7667 * btrfs_dev_stats_read_and_reset 7668 */ 7669 smp_rmb(); 7670 7671 ret = update_dev_stat_item(trans, device); 7672 if (!ret) 7673 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7674 } 7675 mutex_unlock(&fs_devices->device_list_mutex); 7676 7677 return ret; 7678 } 7679 7680 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7681 { 7682 btrfs_dev_stat_inc(dev, index); 7683 btrfs_dev_stat_print_on_error(dev); 7684 } 7685 7686 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7687 { 7688 if (!dev->dev_stats_valid) 7689 return; 7690 btrfs_err_rl_in_rcu(dev->fs_info, 7691 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7692 rcu_str_deref(dev->name), 7693 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7694 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7695 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7696 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7697 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7698 } 7699 7700 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7701 { 7702 int i; 7703 7704 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7705 if (btrfs_dev_stat_read(dev, i) != 0) 7706 break; 7707 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7708 return; /* all values == 0, suppress message */ 7709 7710 btrfs_info_in_rcu(dev->fs_info, 7711 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7712 rcu_str_deref(dev->name), 7713 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7714 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7715 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7716 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7717 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7718 } 7719 7720 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7721 struct btrfs_ioctl_get_dev_stats *stats) 7722 { 7723 struct btrfs_device *dev; 7724 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7725 int i; 7726 7727 mutex_lock(&fs_devices->device_list_mutex); 7728 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL); 7729 mutex_unlock(&fs_devices->device_list_mutex); 7730 7731 if (!dev) { 7732 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7733 return -ENODEV; 7734 } else if (!dev->dev_stats_valid) { 7735 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7736 return -ENODEV; 7737 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7738 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7739 if (stats->nr_items > i) 7740 stats->values[i] = 7741 btrfs_dev_stat_read_and_reset(dev, i); 7742 else 7743 btrfs_dev_stat_set(dev, i, 0); 7744 } 7745 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7746 current->comm, task_pid_nr(current)); 7747 } else { 7748 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7749 if (stats->nr_items > i) 7750 stats->values[i] = btrfs_dev_stat_read(dev, i); 7751 } 7752 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7753 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7754 return 0; 7755 } 7756 7757 /* 7758 * Update the size and bytes used for each device where it changed. This is 7759 * delayed since we would otherwise get errors while writing out the 7760 * superblocks. 7761 * 7762 * Must be invoked during transaction commit. 7763 */ 7764 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7765 { 7766 struct btrfs_device *curr, *next; 7767 7768 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7769 7770 if (list_empty(&trans->dev_update_list)) 7771 return; 7772 7773 /* 7774 * We don't need the device_list_mutex here. This list is owned by the 7775 * transaction and the transaction must complete before the device is 7776 * released. 7777 */ 7778 mutex_lock(&trans->fs_info->chunk_mutex); 7779 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7780 post_commit_list) { 7781 list_del_init(&curr->post_commit_list); 7782 curr->commit_total_bytes = curr->disk_total_bytes; 7783 curr->commit_bytes_used = curr->bytes_used; 7784 } 7785 mutex_unlock(&trans->fs_info->chunk_mutex); 7786 } 7787 7788 /* 7789 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7790 */ 7791 int btrfs_bg_type_to_factor(u64 flags) 7792 { 7793 const int index = btrfs_bg_flags_to_raid_index(flags); 7794 7795 return btrfs_raid_array[index].ncopies; 7796 } 7797 7798 7799 7800 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7801 u64 chunk_offset, u64 devid, 7802 u64 physical_offset, u64 physical_len) 7803 { 7804 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7805 struct extent_map *em; 7806 struct map_lookup *map; 7807 struct btrfs_device *dev; 7808 u64 stripe_len; 7809 bool found = false; 7810 int ret = 0; 7811 int i; 7812 7813 read_lock(&em_tree->lock); 7814 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7815 read_unlock(&em_tree->lock); 7816 7817 if (!em) { 7818 btrfs_err(fs_info, 7819 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7820 physical_offset, devid); 7821 ret = -EUCLEAN; 7822 goto out; 7823 } 7824 7825 map = em->map_lookup; 7826 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 7827 if (physical_len != stripe_len) { 7828 btrfs_err(fs_info, 7829 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7830 physical_offset, devid, em->start, physical_len, 7831 stripe_len); 7832 ret = -EUCLEAN; 7833 goto out; 7834 } 7835 7836 for (i = 0; i < map->num_stripes; i++) { 7837 if (map->stripes[i].dev->devid == devid && 7838 map->stripes[i].physical == physical_offset) { 7839 found = true; 7840 if (map->verified_stripes >= map->num_stripes) { 7841 btrfs_err(fs_info, 7842 "too many dev extents for chunk %llu found", 7843 em->start); 7844 ret = -EUCLEAN; 7845 goto out; 7846 } 7847 map->verified_stripes++; 7848 break; 7849 } 7850 } 7851 if (!found) { 7852 btrfs_err(fs_info, 7853 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7854 physical_offset, devid); 7855 ret = -EUCLEAN; 7856 } 7857 7858 /* Make sure no dev extent is beyond device boundary */ 7859 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); 7860 if (!dev) { 7861 btrfs_err(fs_info, "failed to find devid %llu", devid); 7862 ret = -EUCLEAN; 7863 goto out; 7864 } 7865 7866 if (physical_offset + physical_len > dev->disk_total_bytes) { 7867 btrfs_err(fs_info, 7868 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7869 devid, physical_offset, physical_len, 7870 dev->disk_total_bytes); 7871 ret = -EUCLEAN; 7872 goto out; 7873 } 7874 7875 if (dev->zone_info) { 7876 u64 zone_size = dev->zone_info->zone_size; 7877 7878 if (!IS_ALIGNED(physical_offset, zone_size) || 7879 !IS_ALIGNED(physical_len, zone_size)) { 7880 btrfs_err(fs_info, 7881 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 7882 devid, physical_offset, physical_len); 7883 ret = -EUCLEAN; 7884 goto out; 7885 } 7886 } 7887 7888 out: 7889 free_extent_map(em); 7890 return ret; 7891 } 7892 7893 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7894 { 7895 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7896 struct extent_map *em; 7897 struct rb_node *node; 7898 int ret = 0; 7899 7900 read_lock(&em_tree->lock); 7901 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7902 em = rb_entry(node, struct extent_map, rb_node); 7903 if (em->map_lookup->num_stripes != 7904 em->map_lookup->verified_stripes) { 7905 btrfs_err(fs_info, 7906 "chunk %llu has missing dev extent, have %d expect %d", 7907 em->start, em->map_lookup->verified_stripes, 7908 em->map_lookup->num_stripes); 7909 ret = -EUCLEAN; 7910 goto out; 7911 } 7912 } 7913 out: 7914 read_unlock(&em_tree->lock); 7915 return ret; 7916 } 7917 7918 /* 7919 * Ensure that all dev extents are mapped to correct chunk, otherwise 7920 * later chunk allocation/free would cause unexpected behavior. 7921 * 7922 * NOTE: This will iterate through the whole device tree, which should be of 7923 * the same size level as the chunk tree. This slightly increases mount time. 7924 */ 7925 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7926 { 7927 struct btrfs_path *path; 7928 struct btrfs_root *root = fs_info->dev_root; 7929 struct btrfs_key key; 7930 u64 prev_devid = 0; 7931 u64 prev_dev_ext_end = 0; 7932 int ret = 0; 7933 7934 /* 7935 * We don't have a dev_root because we mounted with ignorebadroots and 7936 * failed to load the root, so we want to skip the verification in this 7937 * case for sure. 7938 * 7939 * However if the dev root is fine, but the tree itself is corrupted 7940 * we'd still fail to mount. This verification is only to make sure 7941 * writes can happen safely, so instead just bypass this check 7942 * completely in the case of IGNOREBADROOTS. 7943 */ 7944 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 7945 return 0; 7946 7947 key.objectid = 1; 7948 key.type = BTRFS_DEV_EXTENT_KEY; 7949 key.offset = 0; 7950 7951 path = btrfs_alloc_path(); 7952 if (!path) 7953 return -ENOMEM; 7954 7955 path->reada = READA_FORWARD; 7956 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7957 if (ret < 0) 7958 goto out; 7959 7960 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7961 ret = btrfs_next_item(root, path); 7962 if (ret < 0) 7963 goto out; 7964 /* No dev extents at all? Not good */ 7965 if (ret > 0) { 7966 ret = -EUCLEAN; 7967 goto out; 7968 } 7969 } 7970 while (1) { 7971 struct extent_buffer *leaf = path->nodes[0]; 7972 struct btrfs_dev_extent *dext; 7973 int slot = path->slots[0]; 7974 u64 chunk_offset; 7975 u64 physical_offset; 7976 u64 physical_len; 7977 u64 devid; 7978 7979 btrfs_item_key_to_cpu(leaf, &key, slot); 7980 if (key.type != BTRFS_DEV_EXTENT_KEY) 7981 break; 7982 devid = key.objectid; 7983 physical_offset = key.offset; 7984 7985 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7986 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7987 physical_len = btrfs_dev_extent_length(leaf, dext); 7988 7989 /* Check if this dev extent overlaps with the previous one */ 7990 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7991 btrfs_err(fs_info, 7992 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7993 devid, physical_offset, prev_dev_ext_end); 7994 ret = -EUCLEAN; 7995 goto out; 7996 } 7997 7998 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7999 physical_offset, physical_len); 8000 if (ret < 0) 8001 goto out; 8002 prev_devid = devid; 8003 prev_dev_ext_end = physical_offset + physical_len; 8004 8005 ret = btrfs_next_item(root, path); 8006 if (ret < 0) 8007 goto out; 8008 if (ret > 0) { 8009 ret = 0; 8010 break; 8011 } 8012 } 8013 8014 /* Ensure all chunks have corresponding dev extents */ 8015 ret = verify_chunk_dev_extent_mapping(fs_info); 8016 out: 8017 btrfs_free_path(path); 8018 return ret; 8019 } 8020 8021 /* 8022 * Check whether the given block group or device is pinned by any inode being 8023 * used as a swapfile. 8024 */ 8025 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8026 { 8027 struct btrfs_swapfile_pin *sp; 8028 struct rb_node *node; 8029 8030 spin_lock(&fs_info->swapfile_pins_lock); 8031 node = fs_info->swapfile_pins.rb_node; 8032 while (node) { 8033 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8034 if (ptr < sp->ptr) 8035 node = node->rb_left; 8036 else if (ptr > sp->ptr) 8037 node = node->rb_right; 8038 else 8039 break; 8040 } 8041 spin_unlock(&fs_info->swapfile_pins_lock); 8042 return node != NULL; 8043 } 8044 8045 static int relocating_repair_kthread(void *data) 8046 { 8047 struct btrfs_block_group *cache = (struct btrfs_block_group *)data; 8048 struct btrfs_fs_info *fs_info = cache->fs_info; 8049 u64 target; 8050 int ret = 0; 8051 8052 target = cache->start; 8053 btrfs_put_block_group(cache); 8054 8055 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8056 btrfs_info(fs_info, 8057 "zoned: skip relocating block group %llu to repair: EBUSY", 8058 target); 8059 return -EBUSY; 8060 } 8061 8062 mutex_lock(&fs_info->reclaim_bgs_lock); 8063 8064 /* Ensure block group still exists */ 8065 cache = btrfs_lookup_block_group(fs_info, target); 8066 if (!cache) 8067 goto out; 8068 8069 if (!cache->relocating_repair) 8070 goto out; 8071 8072 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8073 if (ret < 0) 8074 goto out; 8075 8076 btrfs_info(fs_info, 8077 "zoned: relocating block group %llu to repair IO failure", 8078 target); 8079 ret = btrfs_relocate_chunk(fs_info, target); 8080 8081 out: 8082 if (cache) 8083 btrfs_put_block_group(cache); 8084 mutex_unlock(&fs_info->reclaim_bgs_lock); 8085 btrfs_exclop_finish(fs_info); 8086 8087 return ret; 8088 } 8089 8090 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8091 { 8092 struct btrfs_block_group *cache; 8093 8094 /* Do not attempt to repair in degraded state */ 8095 if (btrfs_test_opt(fs_info, DEGRADED)) 8096 return 0; 8097 8098 cache = btrfs_lookup_block_group(fs_info, logical); 8099 if (!cache) 8100 return 0; 8101 8102 spin_lock(&cache->lock); 8103 if (cache->relocating_repair) { 8104 spin_unlock(&cache->lock); 8105 btrfs_put_block_group(cache); 8106 return 0; 8107 } 8108 cache->relocating_repair = 1; 8109 spin_unlock(&cache->lock); 8110 8111 kthread_run(relocating_repair_kthread, cache, 8112 "btrfs-relocating-repair"); 8113 8114 return 0; 8115 } 8116