xref: /openbmc/linux/fs/btrfs/volumes.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 	[BTRFS_RAID_RAID10] = {
47 		.sub_stripes	= 2,
48 		.dev_stripes	= 1,
49 		.devs_max	= 0,	/* 0 == as many as possible */
50 		.devs_min	= 4,
51 		.tolerated_failures = 1,
52 		.devs_increment	= 2,
53 		.ncopies	= 2,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 	},
64 	[BTRFS_RAID_DUP] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 2,
67 		.devs_max	= 1,
68 		.devs_min	= 1,
69 		.tolerated_failures = 0,
70 		.devs_increment	= 1,
71 		.ncopies	= 2,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 	},
82 	[BTRFS_RAID_SINGLE] = {
83 		.sub_stripes	= 1,
84 		.dev_stripes	= 1,
85 		.devs_max	= 1,
86 		.devs_min	= 1,
87 		.tolerated_failures = 0,
88 		.devs_increment	= 1,
89 		.ncopies	= 1,
90 	},
91 	[BTRFS_RAID_RAID5] = {
92 		.sub_stripes	= 1,
93 		.dev_stripes	= 1,
94 		.devs_max	= 0,
95 		.devs_min	= 2,
96 		.tolerated_failures = 1,
97 		.devs_increment	= 1,
98 		.ncopies	= 2,
99 	},
100 	[BTRFS_RAID_RAID6] = {
101 		.sub_stripes	= 1,
102 		.dev_stripes	= 1,
103 		.devs_max	= 0,
104 		.devs_min	= 3,
105 		.tolerated_failures = 2,
106 		.devs_increment	= 1,
107 		.ncopies	= 3,
108 	},
109 };
110 
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116 	[BTRFS_RAID_SINGLE] = 0,
117 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120 
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 	[BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 	[BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 	[BTRFS_RAID_DUP]    = 0,
130 	[BTRFS_RAID_RAID0]  = 0,
131 	[BTRFS_RAID_SINGLE] = 0,
132 	[BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 	[BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135 
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 				struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 			     enum btrfs_map_op op,
144 			     u64 logical, u64 *length,
145 			     struct btrfs_bio **bbio_ret,
146 			     int mirror_num, int need_raid_map);
147 
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
151 {
152 	return &fs_uuids;
153 }
154 
155 /*
156  * alloc_fs_devices - allocate struct btrfs_fs_devices
157  * @fsid:	if not NULL, copy the uuid to fs_devices::fsid
158  *
159  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160  * The returned struct is not linked onto any lists and can be destroyed with
161  * kfree() right away.
162  */
163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164 {
165 	struct btrfs_fs_devices *fs_devs;
166 
167 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
168 	if (!fs_devs)
169 		return ERR_PTR(-ENOMEM);
170 
171 	mutex_init(&fs_devs->device_list_mutex);
172 
173 	INIT_LIST_HEAD(&fs_devs->devices);
174 	INIT_LIST_HEAD(&fs_devs->resized_devices);
175 	INIT_LIST_HEAD(&fs_devs->alloc_list);
176 	INIT_LIST_HEAD(&fs_devs->list);
177 	if (fsid)
178 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
179 
180 	return fs_devs;
181 }
182 
183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
184 {
185 	struct btrfs_device *device;
186 	WARN_ON(fs_devices->opened);
187 	while (!list_empty(&fs_devices->devices)) {
188 		device = list_entry(fs_devices->devices.next,
189 				    struct btrfs_device, dev_list);
190 		list_del(&device->dev_list);
191 		rcu_string_free(device->name);
192 		kfree(device);
193 	}
194 	kfree(fs_devices);
195 }
196 
197 static void btrfs_kobject_uevent(struct block_device *bdev,
198 				 enum kobject_action action)
199 {
200 	int ret;
201 
202 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
203 	if (ret)
204 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
205 			action,
206 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
207 			&disk_to_dev(bdev->bd_disk)->kobj);
208 }
209 
210 void btrfs_cleanup_fs_uuids(void)
211 {
212 	struct btrfs_fs_devices *fs_devices;
213 
214 	while (!list_empty(&fs_uuids)) {
215 		fs_devices = list_entry(fs_uuids.next,
216 					struct btrfs_fs_devices, list);
217 		list_del(&fs_devices->list);
218 		free_fs_devices(fs_devices);
219 	}
220 }
221 
222 static struct btrfs_device *__alloc_device(void)
223 {
224 	struct btrfs_device *dev;
225 
226 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
227 	if (!dev)
228 		return ERR_PTR(-ENOMEM);
229 
230 	/*
231 	 * Preallocate a bio that's always going to be used for flushing device
232 	 * barriers and matches the device lifespan
233 	 */
234 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
235 	if (!dev->flush_bio) {
236 		kfree(dev);
237 		return ERR_PTR(-ENOMEM);
238 	}
239 	bio_get(dev->flush_bio);
240 
241 	INIT_LIST_HEAD(&dev->dev_list);
242 	INIT_LIST_HEAD(&dev->dev_alloc_list);
243 	INIT_LIST_HEAD(&dev->resized_list);
244 
245 	spin_lock_init(&dev->io_lock);
246 
247 	spin_lock_init(&dev->reada_lock);
248 	atomic_set(&dev->reada_in_flight, 0);
249 	atomic_set(&dev->dev_stats_ccnt, 0);
250 	btrfs_device_data_ordered_init(dev);
251 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253 
254 	return dev;
255 }
256 
257 /*
258  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
259  * return NULL.
260  *
261  * If devid and uuid are both specified, the match must be exact, otherwise
262  * only devid is used.
263  */
264 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
265 		u64 devid, const u8 *uuid)
266 {
267 	struct list_head *head = &fs_devices->devices;
268 	struct btrfs_device *dev;
269 
270 	list_for_each_entry(dev, head, dev_list) {
271 		if (dev->devid == devid &&
272 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
273 			return dev;
274 		}
275 	}
276 	return NULL;
277 }
278 
279 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
280 {
281 	struct btrfs_fs_devices *fs_devices;
282 
283 	list_for_each_entry(fs_devices, &fs_uuids, list) {
284 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
285 			return fs_devices;
286 	}
287 	return NULL;
288 }
289 
290 static int
291 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
292 		      int flush, struct block_device **bdev,
293 		      struct buffer_head **bh)
294 {
295 	int ret;
296 
297 	*bdev = blkdev_get_by_path(device_path, flags, holder);
298 
299 	if (IS_ERR(*bdev)) {
300 		ret = PTR_ERR(*bdev);
301 		goto error;
302 	}
303 
304 	if (flush)
305 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
306 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
307 	if (ret) {
308 		blkdev_put(*bdev, flags);
309 		goto error;
310 	}
311 	invalidate_bdev(*bdev);
312 	*bh = btrfs_read_dev_super(*bdev);
313 	if (IS_ERR(*bh)) {
314 		ret = PTR_ERR(*bh);
315 		blkdev_put(*bdev, flags);
316 		goto error;
317 	}
318 
319 	return 0;
320 
321 error:
322 	*bdev = NULL;
323 	*bh = NULL;
324 	return ret;
325 }
326 
327 static void requeue_list(struct btrfs_pending_bios *pending_bios,
328 			struct bio *head, struct bio *tail)
329 {
330 
331 	struct bio *old_head;
332 
333 	old_head = pending_bios->head;
334 	pending_bios->head = head;
335 	if (pending_bios->tail)
336 		tail->bi_next = old_head;
337 	else
338 		pending_bios->tail = tail;
339 }
340 
341 /*
342  * we try to collect pending bios for a device so we don't get a large
343  * number of procs sending bios down to the same device.  This greatly
344  * improves the schedulers ability to collect and merge the bios.
345  *
346  * But, it also turns into a long list of bios to process and that is sure
347  * to eventually make the worker thread block.  The solution here is to
348  * make some progress and then put this work struct back at the end of
349  * the list if the block device is congested.  This way, multiple devices
350  * can make progress from a single worker thread.
351  */
352 static noinline void run_scheduled_bios(struct btrfs_device *device)
353 {
354 	struct btrfs_fs_info *fs_info = device->fs_info;
355 	struct bio *pending;
356 	struct backing_dev_info *bdi;
357 	struct btrfs_pending_bios *pending_bios;
358 	struct bio *tail;
359 	struct bio *cur;
360 	int again = 0;
361 	unsigned long num_run;
362 	unsigned long batch_run = 0;
363 	unsigned long limit;
364 	unsigned long last_waited = 0;
365 	int force_reg = 0;
366 	int sync_pending = 0;
367 	struct blk_plug plug;
368 
369 	/*
370 	 * this function runs all the bios we've collected for
371 	 * a particular device.  We don't want to wander off to
372 	 * another device without first sending all of these down.
373 	 * So, setup a plug here and finish it off before we return
374 	 */
375 	blk_start_plug(&plug);
376 
377 	bdi = device->bdev->bd_bdi;
378 	limit = btrfs_async_submit_limit(fs_info);
379 	limit = limit * 2 / 3;
380 
381 loop:
382 	spin_lock(&device->io_lock);
383 
384 loop_lock:
385 	num_run = 0;
386 
387 	/* take all the bios off the list at once and process them
388 	 * later on (without the lock held).  But, remember the
389 	 * tail and other pointers so the bios can be properly reinserted
390 	 * into the list if we hit congestion
391 	 */
392 	if (!force_reg && device->pending_sync_bios.head) {
393 		pending_bios = &device->pending_sync_bios;
394 		force_reg = 1;
395 	} else {
396 		pending_bios = &device->pending_bios;
397 		force_reg = 0;
398 	}
399 
400 	pending = pending_bios->head;
401 	tail = pending_bios->tail;
402 	WARN_ON(pending && !tail);
403 
404 	/*
405 	 * if pending was null this time around, no bios need processing
406 	 * at all and we can stop.  Otherwise it'll loop back up again
407 	 * and do an additional check so no bios are missed.
408 	 *
409 	 * device->running_pending is used to synchronize with the
410 	 * schedule_bio code.
411 	 */
412 	if (device->pending_sync_bios.head == NULL &&
413 	    device->pending_bios.head == NULL) {
414 		again = 0;
415 		device->running_pending = 0;
416 	} else {
417 		again = 1;
418 		device->running_pending = 1;
419 	}
420 
421 	pending_bios->head = NULL;
422 	pending_bios->tail = NULL;
423 
424 	spin_unlock(&device->io_lock);
425 
426 	while (pending) {
427 
428 		rmb();
429 		/* we want to work on both lists, but do more bios on the
430 		 * sync list than the regular list
431 		 */
432 		if ((num_run > 32 &&
433 		    pending_bios != &device->pending_sync_bios &&
434 		    device->pending_sync_bios.head) ||
435 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
436 		    device->pending_bios.head)) {
437 			spin_lock(&device->io_lock);
438 			requeue_list(pending_bios, pending, tail);
439 			goto loop_lock;
440 		}
441 
442 		cur = pending;
443 		pending = pending->bi_next;
444 		cur->bi_next = NULL;
445 
446 		/*
447 		 * atomic_dec_return implies a barrier for waitqueue_active
448 		 */
449 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
450 		    waitqueue_active(&fs_info->async_submit_wait))
451 			wake_up(&fs_info->async_submit_wait);
452 
453 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
454 
455 		/*
456 		 * if we're doing the sync list, record that our
457 		 * plug has some sync requests on it
458 		 *
459 		 * If we're doing the regular list and there are
460 		 * sync requests sitting around, unplug before
461 		 * we add more
462 		 */
463 		if (pending_bios == &device->pending_sync_bios) {
464 			sync_pending = 1;
465 		} else if (sync_pending) {
466 			blk_finish_plug(&plug);
467 			blk_start_plug(&plug);
468 			sync_pending = 0;
469 		}
470 
471 		btrfsic_submit_bio(cur);
472 		num_run++;
473 		batch_run++;
474 
475 		cond_resched();
476 
477 		/*
478 		 * we made progress, there is more work to do and the bdi
479 		 * is now congested.  Back off and let other work structs
480 		 * run instead
481 		 */
482 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
483 		    fs_info->fs_devices->open_devices > 1) {
484 			struct io_context *ioc;
485 
486 			ioc = current->io_context;
487 
488 			/*
489 			 * the main goal here is that we don't want to
490 			 * block if we're going to be able to submit
491 			 * more requests without blocking.
492 			 *
493 			 * This code does two great things, it pokes into
494 			 * the elevator code from a filesystem _and_
495 			 * it makes assumptions about how batching works.
496 			 */
497 			if (ioc && ioc->nr_batch_requests > 0 &&
498 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
499 			    (last_waited == 0 ||
500 			     ioc->last_waited == last_waited)) {
501 				/*
502 				 * we want to go through our batch of
503 				 * requests and stop.  So, we copy out
504 				 * the ioc->last_waited time and test
505 				 * against it before looping
506 				 */
507 				last_waited = ioc->last_waited;
508 				cond_resched();
509 				continue;
510 			}
511 			spin_lock(&device->io_lock);
512 			requeue_list(pending_bios, pending, tail);
513 			device->running_pending = 1;
514 
515 			spin_unlock(&device->io_lock);
516 			btrfs_queue_work(fs_info->submit_workers,
517 					 &device->work);
518 			goto done;
519 		}
520 		/* unplug every 64 requests just for good measure */
521 		if (batch_run % 64 == 0) {
522 			blk_finish_plug(&plug);
523 			blk_start_plug(&plug);
524 			sync_pending = 0;
525 		}
526 	}
527 
528 	cond_resched();
529 	if (again)
530 		goto loop;
531 
532 	spin_lock(&device->io_lock);
533 	if (device->pending_bios.head || device->pending_sync_bios.head)
534 		goto loop_lock;
535 	spin_unlock(&device->io_lock);
536 
537 done:
538 	blk_finish_plug(&plug);
539 }
540 
541 static void pending_bios_fn(struct btrfs_work *work)
542 {
543 	struct btrfs_device *device;
544 
545 	device = container_of(work, struct btrfs_device, work);
546 	run_scheduled_bios(device);
547 }
548 
549 
550 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
551 {
552 	struct btrfs_fs_devices *fs_devs;
553 	struct btrfs_device *dev;
554 
555 	if (!cur_dev->name)
556 		return;
557 
558 	list_for_each_entry(fs_devs, &fs_uuids, list) {
559 		int del = 1;
560 
561 		if (fs_devs->opened)
562 			continue;
563 		if (fs_devs->seeding)
564 			continue;
565 
566 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
567 
568 			if (dev == cur_dev)
569 				continue;
570 			if (!dev->name)
571 				continue;
572 
573 			/*
574 			 * Todo: This won't be enough. What if the same device
575 			 * comes back (with new uuid and) with its mapper path?
576 			 * But for now, this does help as mostly an admin will
577 			 * either use mapper or non mapper path throughout.
578 			 */
579 			rcu_read_lock();
580 			del = strcmp(rcu_str_deref(dev->name),
581 						rcu_str_deref(cur_dev->name));
582 			rcu_read_unlock();
583 			if (!del)
584 				break;
585 		}
586 
587 		if (!del) {
588 			/* delete the stale device */
589 			if (fs_devs->num_devices == 1) {
590 				btrfs_sysfs_remove_fsid(fs_devs);
591 				list_del(&fs_devs->list);
592 				free_fs_devices(fs_devs);
593 			} else {
594 				fs_devs->num_devices--;
595 				list_del(&dev->dev_list);
596 				rcu_string_free(dev->name);
597 				kfree(dev);
598 			}
599 			break;
600 		}
601 	}
602 }
603 
604 /*
605  * Add new device to list of registered devices
606  *
607  * Returns:
608  * 1   - first time device is seen
609  * 0   - device already known
610  * < 0 - error
611  */
612 static noinline int device_list_add(const char *path,
613 			   struct btrfs_super_block *disk_super,
614 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
615 {
616 	struct btrfs_device *device;
617 	struct btrfs_fs_devices *fs_devices;
618 	struct rcu_string *name;
619 	int ret = 0;
620 	u64 found_transid = btrfs_super_generation(disk_super);
621 
622 	fs_devices = find_fsid(disk_super->fsid);
623 	if (!fs_devices) {
624 		fs_devices = alloc_fs_devices(disk_super->fsid);
625 		if (IS_ERR(fs_devices))
626 			return PTR_ERR(fs_devices);
627 
628 		list_add(&fs_devices->list, &fs_uuids);
629 
630 		device = NULL;
631 	} else {
632 		device = find_device(fs_devices, devid,
633 				disk_super->dev_item.uuid);
634 	}
635 
636 	if (!device) {
637 		if (fs_devices->opened)
638 			return -EBUSY;
639 
640 		device = btrfs_alloc_device(NULL, &devid,
641 					    disk_super->dev_item.uuid);
642 		if (IS_ERR(device)) {
643 			/* we can safely leave the fs_devices entry around */
644 			return PTR_ERR(device);
645 		}
646 
647 		name = rcu_string_strdup(path, GFP_NOFS);
648 		if (!name) {
649 			kfree(device);
650 			return -ENOMEM;
651 		}
652 		rcu_assign_pointer(device->name, name);
653 
654 		mutex_lock(&fs_devices->device_list_mutex);
655 		list_add_rcu(&device->dev_list, &fs_devices->devices);
656 		fs_devices->num_devices++;
657 		mutex_unlock(&fs_devices->device_list_mutex);
658 
659 		ret = 1;
660 		device->fs_devices = fs_devices;
661 	} else if (!device->name || strcmp(device->name->str, path)) {
662 		/*
663 		 * When FS is already mounted.
664 		 * 1. If you are here and if the device->name is NULL that
665 		 *    means this device was missing at time of FS mount.
666 		 * 2. If you are here and if the device->name is different
667 		 *    from 'path' that means either
668 		 *      a. The same device disappeared and reappeared with
669 		 *         different name. or
670 		 *      b. The missing-disk-which-was-replaced, has
671 		 *         reappeared now.
672 		 *
673 		 * We must allow 1 and 2a above. But 2b would be a spurious
674 		 * and unintentional.
675 		 *
676 		 * Further in case of 1 and 2a above, the disk at 'path'
677 		 * would have missed some transaction when it was away and
678 		 * in case of 2a the stale bdev has to be updated as well.
679 		 * 2b must not be allowed at all time.
680 		 */
681 
682 		/*
683 		 * For now, we do allow update to btrfs_fs_device through the
684 		 * btrfs dev scan cli after FS has been mounted.  We're still
685 		 * tracking a problem where systems fail mount by subvolume id
686 		 * when we reject replacement on a mounted FS.
687 		 */
688 		if (!fs_devices->opened && found_transid < device->generation) {
689 			/*
690 			 * That is if the FS is _not_ mounted and if you
691 			 * are here, that means there is more than one
692 			 * disk with same uuid and devid.We keep the one
693 			 * with larger generation number or the last-in if
694 			 * generation are equal.
695 			 */
696 			return -EEXIST;
697 		}
698 
699 		name = rcu_string_strdup(path, GFP_NOFS);
700 		if (!name)
701 			return -ENOMEM;
702 		rcu_string_free(device->name);
703 		rcu_assign_pointer(device->name, name);
704 		if (device->missing) {
705 			fs_devices->missing_devices--;
706 			device->missing = 0;
707 		}
708 	}
709 
710 	/*
711 	 * Unmount does not free the btrfs_device struct but would zero
712 	 * generation along with most of the other members. So just update
713 	 * it back. We need it to pick the disk with largest generation
714 	 * (as above).
715 	 */
716 	if (!fs_devices->opened)
717 		device->generation = found_transid;
718 
719 	/*
720 	 * if there is new btrfs on an already registered device,
721 	 * then remove the stale device entry.
722 	 */
723 	if (ret > 0)
724 		btrfs_free_stale_device(device);
725 
726 	*fs_devices_ret = fs_devices;
727 
728 	return ret;
729 }
730 
731 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
732 {
733 	struct btrfs_fs_devices *fs_devices;
734 	struct btrfs_device *device;
735 	struct btrfs_device *orig_dev;
736 
737 	fs_devices = alloc_fs_devices(orig->fsid);
738 	if (IS_ERR(fs_devices))
739 		return fs_devices;
740 
741 	mutex_lock(&orig->device_list_mutex);
742 	fs_devices->total_devices = orig->total_devices;
743 
744 	/* We have held the volume lock, it is safe to get the devices. */
745 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
746 		struct rcu_string *name;
747 
748 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
749 					    orig_dev->uuid);
750 		if (IS_ERR(device))
751 			goto error;
752 
753 		/*
754 		 * This is ok to do without rcu read locked because we hold the
755 		 * uuid mutex so nothing we touch in here is going to disappear.
756 		 */
757 		if (orig_dev->name) {
758 			name = rcu_string_strdup(orig_dev->name->str,
759 					GFP_KERNEL);
760 			if (!name) {
761 				kfree(device);
762 				goto error;
763 			}
764 			rcu_assign_pointer(device->name, name);
765 		}
766 
767 		list_add(&device->dev_list, &fs_devices->devices);
768 		device->fs_devices = fs_devices;
769 		fs_devices->num_devices++;
770 	}
771 	mutex_unlock(&orig->device_list_mutex);
772 	return fs_devices;
773 error:
774 	mutex_unlock(&orig->device_list_mutex);
775 	free_fs_devices(fs_devices);
776 	return ERR_PTR(-ENOMEM);
777 }
778 
779 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
780 {
781 	struct btrfs_device *device, *next;
782 	struct btrfs_device *latest_dev = NULL;
783 
784 	mutex_lock(&uuid_mutex);
785 again:
786 	/* This is the initialized path, it is safe to release the devices. */
787 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
788 		if (device->in_fs_metadata) {
789 			if (!device->is_tgtdev_for_dev_replace &&
790 			    (!latest_dev ||
791 			     device->generation > latest_dev->generation)) {
792 				latest_dev = device;
793 			}
794 			continue;
795 		}
796 
797 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
798 			/*
799 			 * In the first step, keep the device which has
800 			 * the correct fsid and the devid that is used
801 			 * for the dev_replace procedure.
802 			 * In the second step, the dev_replace state is
803 			 * read from the device tree and it is known
804 			 * whether the procedure is really active or
805 			 * not, which means whether this device is
806 			 * used or whether it should be removed.
807 			 */
808 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
809 				continue;
810 			}
811 		}
812 		if (device->bdev) {
813 			blkdev_put(device->bdev, device->mode);
814 			device->bdev = NULL;
815 			fs_devices->open_devices--;
816 		}
817 		if (device->writeable) {
818 			list_del_init(&device->dev_alloc_list);
819 			device->writeable = 0;
820 			if (!device->is_tgtdev_for_dev_replace)
821 				fs_devices->rw_devices--;
822 		}
823 		list_del_init(&device->dev_list);
824 		fs_devices->num_devices--;
825 		rcu_string_free(device->name);
826 		kfree(device);
827 	}
828 
829 	if (fs_devices->seed) {
830 		fs_devices = fs_devices->seed;
831 		goto again;
832 	}
833 
834 	fs_devices->latest_bdev = latest_dev->bdev;
835 
836 	mutex_unlock(&uuid_mutex);
837 }
838 
839 static void __free_device(struct work_struct *work)
840 {
841 	struct btrfs_device *device;
842 
843 	device = container_of(work, struct btrfs_device, rcu_work);
844 	rcu_string_free(device->name);
845 	bio_put(device->flush_bio);
846 	kfree(device);
847 }
848 
849 static void free_device(struct rcu_head *head)
850 {
851 	struct btrfs_device *device;
852 
853 	device = container_of(head, struct btrfs_device, rcu);
854 
855 	INIT_WORK(&device->rcu_work, __free_device);
856 	schedule_work(&device->rcu_work);
857 }
858 
859 static void btrfs_close_bdev(struct btrfs_device *device)
860 {
861 	if (device->bdev && device->writeable) {
862 		sync_blockdev(device->bdev);
863 		invalidate_bdev(device->bdev);
864 	}
865 
866 	if (device->bdev)
867 		blkdev_put(device->bdev, device->mode);
868 }
869 
870 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
871 {
872 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
873 	struct btrfs_device *new_device;
874 	struct rcu_string *name;
875 
876 	if (device->bdev)
877 		fs_devices->open_devices--;
878 
879 	if (device->writeable &&
880 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
881 		list_del_init(&device->dev_alloc_list);
882 		fs_devices->rw_devices--;
883 	}
884 
885 	if (device->missing)
886 		fs_devices->missing_devices--;
887 
888 	new_device = btrfs_alloc_device(NULL, &device->devid,
889 					device->uuid);
890 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
891 
892 	/* Safe because we are under uuid_mutex */
893 	if (device->name) {
894 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
895 		BUG_ON(!name); /* -ENOMEM */
896 		rcu_assign_pointer(new_device->name, name);
897 	}
898 
899 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
900 	new_device->fs_devices = device->fs_devices;
901 }
902 
903 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
904 {
905 	struct btrfs_device *device, *tmp;
906 	struct list_head pending_put;
907 
908 	INIT_LIST_HEAD(&pending_put);
909 
910 	if (--fs_devices->opened > 0)
911 		return 0;
912 
913 	mutex_lock(&fs_devices->device_list_mutex);
914 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
915 		btrfs_prepare_close_one_device(device);
916 		list_add(&device->dev_list, &pending_put);
917 	}
918 	mutex_unlock(&fs_devices->device_list_mutex);
919 
920 	/*
921 	 * btrfs_show_devname() is using the device_list_mutex,
922 	 * sometimes call to blkdev_put() leads vfs calling
923 	 * into this func. So do put outside of device_list_mutex,
924 	 * as of now.
925 	 */
926 	while (!list_empty(&pending_put)) {
927 		device = list_first_entry(&pending_put,
928 				struct btrfs_device, dev_list);
929 		list_del(&device->dev_list);
930 		btrfs_close_bdev(device);
931 		call_rcu(&device->rcu, free_device);
932 	}
933 
934 	WARN_ON(fs_devices->open_devices);
935 	WARN_ON(fs_devices->rw_devices);
936 	fs_devices->opened = 0;
937 	fs_devices->seeding = 0;
938 
939 	return 0;
940 }
941 
942 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
943 {
944 	struct btrfs_fs_devices *seed_devices = NULL;
945 	int ret;
946 
947 	mutex_lock(&uuid_mutex);
948 	ret = __btrfs_close_devices(fs_devices);
949 	if (!fs_devices->opened) {
950 		seed_devices = fs_devices->seed;
951 		fs_devices->seed = NULL;
952 	}
953 	mutex_unlock(&uuid_mutex);
954 
955 	while (seed_devices) {
956 		fs_devices = seed_devices;
957 		seed_devices = fs_devices->seed;
958 		__btrfs_close_devices(fs_devices);
959 		free_fs_devices(fs_devices);
960 	}
961 	/*
962 	 * Wait for rcu kworkers under __btrfs_close_devices
963 	 * to finish all blkdev_puts so device is really
964 	 * free when umount is done.
965 	 */
966 	rcu_barrier();
967 	return ret;
968 }
969 
970 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
971 				fmode_t flags, void *holder)
972 {
973 	struct request_queue *q;
974 	struct block_device *bdev;
975 	struct list_head *head = &fs_devices->devices;
976 	struct btrfs_device *device;
977 	struct btrfs_device *latest_dev = NULL;
978 	struct buffer_head *bh;
979 	struct btrfs_super_block *disk_super;
980 	u64 devid;
981 	int seeding = 1;
982 	int ret = 0;
983 
984 	flags |= FMODE_EXCL;
985 
986 	list_for_each_entry(device, head, dev_list) {
987 		if (device->bdev)
988 			continue;
989 		if (!device->name)
990 			continue;
991 
992 		/* Just open everything we can; ignore failures here */
993 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
994 					    &bdev, &bh))
995 			continue;
996 
997 		disk_super = (struct btrfs_super_block *)bh->b_data;
998 		devid = btrfs_stack_device_id(&disk_super->dev_item);
999 		if (devid != device->devid)
1000 			goto error_brelse;
1001 
1002 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
1003 			   BTRFS_UUID_SIZE))
1004 			goto error_brelse;
1005 
1006 		device->generation = btrfs_super_generation(disk_super);
1007 		if (!latest_dev ||
1008 		    device->generation > latest_dev->generation)
1009 			latest_dev = device;
1010 
1011 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1012 			device->writeable = 0;
1013 		} else {
1014 			device->writeable = !bdev_read_only(bdev);
1015 			seeding = 0;
1016 		}
1017 
1018 		q = bdev_get_queue(bdev);
1019 		if (blk_queue_discard(q))
1020 			device->can_discard = 1;
1021 		if (!blk_queue_nonrot(q))
1022 			fs_devices->rotating = 1;
1023 
1024 		device->bdev = bdev;
1025 		device->in_fs_metadata = 0;
1026 		device->mode = flags;
1027 
1028 		fs_devices->open_devices++;
1029 		if (device->writeable &&
1030 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1031 			fs_devices->rw_devices++;
1032 			list_add(&device->dev_alloc_list,
1033 				 &fs_devices->alloc_list);
1034 		}
1035 		brelse(bh);
1036 		continue;
1037 
1038 error_brelse:
1039 		brelse(bh);
1040 		blkdev_put(bdev, flags);
1041 		continue;
1042 	}
1043 	if (fs_devices->open_devices == 0) {
1044 		ret = -EINVAL;
1045 		goto out;
1046 	}
1047 	fs_devices->seeding = seeding;
1048 	fs_devices->opened = 1;
1049 	fs_devices->latest_bdev = latest_dev->bdev;
1050 	fs_devices->total_rw_bytes = 0;
1051 out:
1052 	return ret;
1053 }
1054 
1055 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1056 		       fmode_t flags, void *holder)
1057 {
1058 	int ret;
1059 
1060 	mutex_lock(&uuid_mutex);
1061 	if (fs_devices->opened) {
1062 		fs_devices->opened++;
1063 		ret = 0;
1064 	} else {
1065 		ret = __btrfs_open_devices(fs_devices, flags, holder);
1066 	}
1067 	mutex_unlock(&uuid_mutex);
1068 	return ret;
1069 }
1070 
1071 void btrfs_release_disk_super(struct page *page)
1072 {
1073 	kunmap(page);
1074 	put_page(page);
1075 }
1076 
1077 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1078 		struct page **page, struct btrfs_super_block **disk_super)
1079 {
1080 	void *p;
1081 	pgoff_t index;
1082 
1083 	/* make sure our super fits in the device */
1084 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1085 		return 1;
1086 
1087 	/* make sure our super fits in the page */
1088 	if (sizeof(**disk_super) > PAGE_SIZE)
1089 		return 1;
1090 
1091 	/* make sure our super doesn't straddle pages on disk */
1092 	index = bytenr >> PAGE_SHIFT;
1093 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1094 		return 1;
1095 
1096 	/* pull in the page with our super */
1097 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1098 				   index, GFP_KERNEL);
1099 
1100 	if (IS_ERR_OR_NULL(*page))
1101 		return 1;
1102 
1103 	p = kmap(*page);
1104 
1105 	/* align our pointer to the offset of the super block */
1106 	*disk_super = p + (bytenr & ~PAGE_MASK);
1107 
1108 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1109 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1110 		btrfs_release_disk_super(*page);
1111 		return 1;
1112 	}
1113 
1114 	if ((*disk_super)->label[0] &&
1115 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1116 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1117 
1118 	return 0;
1119 }
1120 
1121 /*
1122  * Look for a btrfs signature on a device. This may be called out of the mount path
1123  * and we are not allowed to call set_blocksize during the scan. The superblock
1124  * is read via pagecache
1125  */
1126 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1127 			  struct btrfs_fs_devices **fs_devices_ret)
1128 {
1129 	struct btrfs_super_block *disk_super;
1130 	struct block_device *bdev;
1131 	struct page *page;
1132 	int ret = -EINVAL;
1133 	u64 devid;
1134 	u64 transid;
1135 	u64 total_devices;
1136 	u64 bytenr;
1137 
1138 	/*
1139 	 * we would like to check all the supers, but that would make
1140 	 * a btrfs mount succeed after a mkfs from a different FS.
1141 	 * So, we need to add a special mount option to scan for
1142 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1143 	 */
1144 	bytenr = btrfs_sb_offset(0);
1145 	flags |= FMODE_EXCL;
1146 	mutex_lock(&uuid_mutex);
1147 
1148 	bdev = blkdev_get_by_path(path, flags, holder);
1149 	if (IS_ERR(bdev)) {
1150 		ret = PTR_ERR(bdev);
1151 		goto error;
1152 	}
1153 
1154 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1155 		goto error_bdev_put;
1156 
1157 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1158 	transid = btrfs_super_generation(disk_super);
1159 	total_devices = btrfs_super_num_devices(disk_super);
1160 
1161 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1162 	if (ret > 0) {
1163 		if (disk_super->label[0]) {
1164 			pr_info("BTRFS: device label %s ", disk_super->label);
1165 		} else {
1166 			pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1167 		}
1168 
1169 		pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1170 		ret = 0;
1171 	}
1172 	if (!ret && fs_devices_ret)
1173 		(*fs_devices_ret)->total_devices = total_devices;
1174 
1175 	btrfs_release_disk_super(page);
1176 
1177 error_bdev_put:
1178 	blkdev_put(bdev, flags);
1179 error:
1180 	mutex_unlock(&uuid_mutex);
1181 	return ret;
1182 }
1183 
1184 /* helper to account the used device space in the range */
1185 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1186 				   u64 end, u64 *length)
1187 {
1188 	struct btrfs_key key;
1189 	struct btrfs_root *root = device->fs_info->dev_root;
1190 	struct btrfs_dev_extent *dev_extent;
1191 	struct btrfs_path *path;
1192 	u64 extent_end;
1193 	int ret;
1194 	int slot;
1195 	struct extent_buffer *l;
1196 
1197 	*length = 0;
1198 
1199 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1200 		return 0;
1201 
1202 	path = btrfs_alloc_path();
1203 	if (!path)
1204 		return -ENOMEM;
1205 	path->reada = READA_FORWARD;
1206 
1207 	key.objectid = device->devid;
1208 	key.offset = start;
1209 	key.type = BTRFS_DEV_EXTENT_KEY;
1210 
1211 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1212 	if (ret < 0)
1213 		goto out;
1214 	if (ret > 0) {
1215 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1216 		if (ret < 0)
1217 			goto out;
1218 	}
1219 
1220 	while (1) {
1221 		l = path->nodes[0];
1222 		slot = path->slots[0];
1223 		if (slot >= btrfs_header_nritems(l)) {
1224 			ret = btrfs_next_leaf(root, path);
1225 			if (ret == 0)
1226 				continue;
1227 			if (ret < 0)
1228 				goto out;
1229 
1230 			break;
1231 		}
1232 		btrfs_item_key_to_cpu(l, &key, slot);
1233 
1234 		if (key.objectid < device->devid)
1235 			goto next;
1236 
1237 		if (key.objectid > device->devid)
1238 			break;
1239 
1240 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1241 			goto next;
1242 
1243 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1244 		extent_end = key.offset + btrfs_dev_extent_length(l,
1245 								  dev_extent);
1246 		if (key.offset <= start && extent_end > end) {
1247 			*length = end - start + 1;
1248 			break;
1249 		} else if (key.offset <= start && extent_end > start)
1250 			*length += extent_end - start;
1251 		else if (key.offset > start && extent_end <= end)
1252 			*length += extent_end - key.offset;
1253 		else if (key.offset > start && key.offset <= end) {
1254 			*length += end - key.offset + 1;
1255 			break;
1256 		} else if (key.offset > end)
1257 			break;
1258 
1259 next:
1260 		path->slots[0]++;
1261 	}
1262 	ret = 0;
1263 out:
1264 	btrfs_free_path(path);
1265 	return ret;
1266 }
1267 
1268 static int contains_pending_extent(struct btrfs_transaction *transaction,
1269 				   struct btrfs_device *device,
1270 				   u64 *start, u64 len)
1271 {
1272 	struct btrfs_fs_info *fs_info = device->fs_info;
1273 	struct extent_map *em;
1274 	struct list_head *search_list = &fs_info->pinned_chunks;
1275 	int ret = 0;
1276 	u64 physical_start = *start;
1277 
1278 	if (transaction)
1279 		search_list = &transaction->pending_chunks;
1280 again:
1281 	list_for_each_entry(em, search_list, list) {
1282 		struct map_lookup *map;
1283 		int i;
1284 
1285 		map = em->map_lookup;
1286 		for (i = 0; i < map->num_stripes; i++) {
1287 			u64 end;
1288 
1289 			if (map->stripes[i].dev != device)
1290 				continue;
1291 			if (map->stripes[i].physical >= physical_start + len ||
1292 			    map->stripes[i].physical + em->orig_block_len <=
1293 			    physical_start)
1294 				continue;
1295 			/*
1296 			 * Make sure that while processing the pinned list we do
1297 			 * not override our *start with a lower value, because
1298 			 * we can have pinned chunks that fall within this
1299 			 * device hole and that have lower physical addresses
1300 			 * than the pending chunks we processed before. If we
1301 			 * do not take this special care we can end up getting
1302 			 * 2 pending chunks that start at the same physical
1303 			 * device offsets because the end offset of a pinned
1304 			 * chunk can be equal to the start offset of some
1305 			 * pending chunk.
1306 			 */
1307 			end = map->stripes[i].physical + em->orig_block_len;
1308 			if (end > *start) {
1309 				*start = end;
1310 				ret = 1;
1311 			}
1312 		}
1313 	}
1314 	if (search_list != &fs_info->pinned_chunks) {
1315 		search_list = &fs_info->pinned_chunks;
1316 		goto again;
1317 	}
1318 
1319 	return ret;
1320 }
1321 
1322 
1323 /*
1324  * find_free_dev_extent_start - find free space in the specified device
1325  * @device:	  the device which we search the free space in
1326  * @num_bytes:	  the size of the free space that we need
1327  * @search_start: the position from which to begin the search
1328  * @start:	  store the start of the free space.
1329  * @len:	  the size of the free space. that we find, or the size
1330  *		  of the max free space if we don't find suitable free space
1331  *
1332  * this uses a pretty simple search, the expectation is that it is
1333  * called very infrequently and that a given device has a small number
1334  * of extents
1335  *
1336  * @start is used to store the start of the free space if we find. But if we
1337  * don't find suitable free space, it will be used to store the start position
1338  * of the max free space.
1339  *
1340  * @len is used to store the size of the free space that we find.
1341  * But if we don't find suitable free space, it is used to store the size of
1342  * the max free space.
1343  */
1344 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1345 			       struct btrfs_device *device, u64 num_bytes,
1346 			       u64 search_start, u64 *start, u64 *len)
1347 {
1348 	struct btrfs_fs_info *fs_info = device->fs_info;
1349 	struct btrfs_root *root = fs_info->dev_root;
1350 	struct btrfs_key key;
1351 	struct btrfs_dev_extent *dev_extent;
1352 	struct btrfs_path *path;
1353 	u64 hole_size;
1354 	u64 max_hole_start;
1355 	u64 max_hole_size;
1356 	u64 extent_end;
1357 	u64 search_end = device->total_bytes;
1358 	int ret;
1359 	int slot;
1360 	struct extent_buffer *l;
1361 
1362 	/*
1363 	 * We don't want to overwrite the superblock on the drive nor any area
1364 	 * used by the boot loader (grub for example), so we make sure to start
1365 	 * at an offset of at least 1MB.
1366 	 */
1367 	search_start = max_t(u64, search_start, SZ_1M);
1368 
1369 	path = btrfs_alloc_path();
1370 	if (!path)
1371 		return -ENOMEM;
1372 
1373 	max_hole_start = search_start;
1374 	max_hole_size = 0;
1375 
1376 again:
1377 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1378 		ret = -ENOSPC;
1379 		goto out;
1380 	}
1381 
1382 	path->reada = READA_FORWARD;
1383 	path->search_commit_root = 1;
1384 	path->skip_locking = 1;
1385 
1386 	key.objectid = device->devid;
1387 	key.offset = search_start;
1388 	key.type = BTRFS_DEV_EXTENT_KEY;
1389 
1390 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1391 	if (ret < 0)
1392 		goto out;
1393 	if (ret > 0) {
1394 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1395 		if (ret < 0)
1396 			goto out;
1397 	}
1398 
1399 	while (1) {
1400 		l = path->nodes[0];
1401 		slot = path->slots[0];
1402 		if (slot >= btrfs_header_nritems(l)) {
1403 			ret = btrfs_next_leaf(root, path);
1404 			if (ret == 0)
1405 				continue;
1406 			if (ret < 0)
1407 				goto out;
1408 
1409 			break;
1410 		}
1411 		btrfs_item_key_to_cpu(l, &key, slot);
1412 
1413 		if (key.objectid < device->devid)
1414 			goto next;
1415 
1416 		if (key.objectid > device->devid)
1417 			break;
1418 
1419 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1420 			goto next;
1421 
1422 		if (key.offset > search_start) {
1423 			hole_size = key.offset - search_start;
1424 
1425 			/*
1426 			 * Have to check before we set max_hole_start, otherwise
1427 			 * we could end up sending back this offset anyway.
1428 			 */
1429 			if (contains_pending_extent(transaction, device,
1430 						    &search_start,
1431 						    hole_size)) {
1432 				if (key.offset >= search_start) {
1433 					hole_size = key.offset - search_start;
1434 				} else {
1435 					WARN_ON_ONCE(1);
1436 					hole_size = 0;
1437 				}
1438 			}
1439 
1440 			if (hole_size > max_hole_size) {
1441 				max_hole_start = search_start;
1442 				max_hole_size = hole_size;
1443 			}
1444 
1445 			/*
1446 			 * If this free space is greater than which we need,
1447 			 * it must be the max free space that we have found
1448 			 * until now, so max_hole_start must point to the start
1449 			 * of this free space and the length of this free space
1450 			 * is stored in max_hole_size. Thus, we return
1451 			 * max_hole_start and max_hole_size and go back to the
1452 			 * caller.
1453 			 */
1454 			if (hole_size >= num_bytes) {
1455 				ret = 0;
1456 				goto out;
1457 			}
1458 		}
1459 
1460 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1461 		extent_end = key.offset + btrfs_dev_extent_length(l,
1462 								  dev_extent);
1463 		if (extent_end > search_start)
1464 			search_start = extent_end;
1465 next:
1466 		path->slots[0]++;
1467 		cond_resched();
1468 	}
1469 
1470 	/*
1471 	 * At this point, search_start should be the end of
1472 	 * allocated dev extents, and when shrinking the device,
1473 	 * search_end may be smaller than search_start.
1474 	 */
1475 	if (search_end > search_start) {
1476 		hole_size = search_end - search_start;
1477 
1478 		if (contains_pending_extent(transaction, device, &search_start,
1479 					    hole_size)) {
1480 			btrfs_release_path(path);
1481 			goto again;
1482 		}
1483 
1484 		if (hole_size > max_hole_size) {
1485 			max_hole_start = search_start;
1486 			max_hole_size = hole_size;
1487 		}
1488 	}
1489 
1490 	/* See above. */
1491 	if (max_hole_size < num_bytes)
1492 		ret = -ENOSPC;
1493 	else
1494 		ret = 0;
1495 
1496 out:
1497 	btrfs_free_path(path);
1498 	*start = max_hole_start;
1499 	if (len)
1500 		*len = max_hole_size;
1501 	return ret;
1502 }
1503 
1504 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1505 			 struct btrfs_device *device, u64 num_bytes,
1506 			 u64 *start, u64 *len)
1507 {
1508 	/* FIXME use last free of some kind */
1509 	return find_free_dev_extent_start(trans->transaction, device,
1510 					  num_bytes, 0, start, len);
1511 }
1512 
1513 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1514 			  struct btrfs_device *device,
1515 			  u64 start, u64 *dev_extent_len)
1516 {
1517 	struct btrfs_fs_info *fs_info = device->fs_info;
1518 	struct btrfs_root *root = fs_info->dev_root;
1519 	int ret;
1520 	struct btrfs_path *path;
1521 	struct btrfs_key key;
1522 	struct btrfs_key found_key;
1523 	struct extent_buffer *leaf = NULL;
1524 	struct btrfs_dev_extent *extent = NULL;
1525 
1526 	path = btrfs_alloc_path();
1527 	if (!path)
1528 		return -ENOMEM;
1529 
1530 	key.objectid = device->devid;
1531 	key.offset = start;
1532 	key.type = BTRFS_DEV_EXTENT_KEY;
1533 again:
1534 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1535 	if (ret > 0) {
1536 		ret = btrfs_previous_item(root, path, key.objectid,
1537 					  BTRFS_DEV_EXTENT_KEY);
1538 		if (ret)
1539 			goto out;
1540 		leaf = path->nodes[0];
1541 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1542 		extent = btrfs_item_ptr(leaf, path->slots[0],
1543 					struct btrfs_dev_extent);
1544 		BUG_ON(found_key.offset > start || found_key.offset +
1545 		       btrfs_dev_extent_length(leaf, extent) < start);
1546 		key = found_key;
1547 		btrfs_release_path(path);
1548 		goto again;
1549 	} else if (ret == 0) {
1550 		leaf = path->nodes[0];
1551 		extent = btrfs_item_ptr(leaf, path->slots[0],
1552 					struct btrfs_dev_extent);
1553 	} else {
1554 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1555 		goto out;
1556 	}
1557 
1558 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1559 
1560 	ret = btrfs_del_item(trans, root, path);
1561 	if (ret) {
1562 		btrfs_handle_fs_error(fs_info, ret,
1563 				      "Failed to remove dev extent item");
1564 	} else {
1565 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1566 	}
1567 out:
1568 	btrfs_free_path(path);
1569 	return ret;
1570 }
1571 
1572 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1573 				  struct btrfs_device *device,
1574 				  u64 chunk_offset, u64 start, u64 num_bytes)
1575 {
1576 	int ret;
1577 	struct btrfs_path *path;
1578 	struct btrfs_fs_info *fs_info = device->fs_info;
1579 	struct btrfs_root *root = fs_info->dev_root;
1580 	struct btrfs_dev_extent *extent;
1581 	struct extent_buffer *leaf;
1582 	struct btrfs_key key;
1583 
1584 	WARN_ON(!device->in_fs_metadata);
1585 	WARN_ON(device->is_tgtdev_for_dev_replace);
1586 	path = btrfs_alloc_path();
1587 	if (!path)
1588 		return -ENOMEM;
1589 
1590 	key.objectid = device->devid;
1591 	key.offset = start;
1592 	key.type = BTRFS_DEV_EXTENT_KEY;
1593 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1594 				      sizeof(*extent));
1595 	if (ret)
1596 		goto out;
1597 
1598 	leaf = path->nodes[0];
1599 	extent = btrfs_item_ptr(leaf, path->slots[0],
1600 				struct btrfs_dev_extent);
1601 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1602 					BTRFS_CHUNK_TREE_OBJECTID);
1603 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1604 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1605 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1606 
1607 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1608 	btrfs_mark_buffer_dirty(leaf);
1609 out:
1610 	btrfs_free_path(path);
1611 	return ret;
1612 }
1613 
1614 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1615 {
1616 	struct extent_map_tree *em_tree;
1617 	struct extent_map *em;
1618 	struct rb_node *n;
1619 	u64 ret = 0;
1620 
1621 	em_tree = &fs_info->mapping_tree.map_tree;
1622 	read_lock(&em_tree->lock);
1623 	n = rb_last(&em_tree->map);
1624 	if (n) {
1625 		em = rb_entry(n, struct extent_map, rb_node);
1626 		ret = em->start + em->len;
1627 	}
1628 	read_unlock(&em_tree->lock);
1629 
1630 	return ret;
1631 }
1632 
1633 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1634 				    u64 *devid_ret)
1635 {
1636 	int ret;
1637 	struct btrfs_key key;
1638 	struct btrfs_key found_key;
1639 	struct btrfs_path *path;
1640 
1641 	path = btrfs_alloc_path();
1642 	if (!path)
1643 		return -ENOMEM;
1644 
1645 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1646 	key.type = BTRFS_DEV_ITEM_KEY;
1647 	key.offset = (u64)-1;
1648 
1649 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1650 	if (ret < 0)
1651 		goto error;
1652 
1653 	BUG_ON(ret == 0); /* Corruption */
1654 
1655 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1656 				  BTRFS_DEV_ITEMS_OBJECTID,
1657 				  BTRFS_DEV_ITEM_KEY);
1658 	if (ret) {
1659 		*devid_ret = 1;
1660 	} else {
1661 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1662 				      path->slots[0]);
1663 		*devid_ret = found_key.offset + 1;
1664 	}
1665 	ret = 0;
1666 error:
1667 	btrfs_free_path(path);
1668 	return ret;
1669 }
1670 
1671 /*
1672  * the device information is stored in the chunk root
1673  * the btrfs_device struct should be fully filled in
1674  */
1675 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1676 			    struct btrfs_fs_info *fs_info,
1677 			    struct btrfs_device *device)
1678 {
1679 	struct btrfs_root *root = fs_info->chunk_root;
1680 	int ret;
1681 	struct btrfs_path *path;
1682 	struct btrfs_dev_item *dev_item;
1683 	struct extent_buffer *leaf;
1684 	struct btrfs_key key;
1685 	unsigned long ptr;
1686 
1687 	path = btrfs_alloc_path();
1688 	if (!path)
1689 		return -ENOMEM;
1690 
1691 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1692 	key.type = BTRFS_DEV_ITEM_KEY;
1693 	key.offset = device->devid;
1694 
1695 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1696 				      sizeof(*dev_item));
1697 	if (ret)
1698 		goto out;
1699 
1700 	leaf = path->nodes[0];
1701 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1702 
1703 	btrfs_set_device_id(leaf, dev_item, device->devid);
1704 	btrfs_set_device_generation(leaf, dev_item, 0);
1705 	btrfs_set_device_type(leaf, dev_item, device->type);
1706 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1707 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1708 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1709 	btrfs_set_device_total_bytes(leaf, dev_item,
1710 				     btrfs_device_get_disk_total_bytes(device));
1711 	btrfs_set_device_bytes_used(leaf, dev_item,
1712 				    btrfs_device_get_bytes_used(device));
1713 	btrfs_set_device_group(leaf, dev_item, 0);
1714 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1715 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1716 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1717 
1718 	ptr = btrfs_device_uuid(dev_item);
1719 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1720 	ptr = btrfs_device_fsid(dev_item);
1721 	write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1722 	btrfs_mark_buffer_dirty(leaf);
1723 
1724 	ret = 0;
1725 out:
1726 	btrfs_free_path(path);
1727 	return ret;
1728 }
1729 
1730 /*
1731  * Function to update ctime/mtime for a given device path.
1732  * Mainly used for ctime/mtime based probe like libblkid.
1733  */
1734 static void update_dev_time(const char *path_name)
1735 {
1736 	struct file *filp;
1737 
1738 	filp = filp_open(path_name, O_RDWR, 0);
1739 	if (IS_ERR(filp))
1740 		return;
1741 	file_update_time(filp);
1742 	filp_close(filp, NULL);
1743 }
1744 
1745 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1746 			     struct btrfs_device *device)
1747 {
1748 	struct btrfs_root *root = fs_info->chunk_root;
1749 	int ret;
1750 	struct btrfs_path *path;
1751 	struct btrfs_key key;
1752 	struct btrfs_trans_handle *trans;
1753 
1754 	path = btrfs_alloc_path();
1755 	if (!path)
1756 		return -ENOMEM;
1757 
1758 	trans = btrfs_start_transaction(root, 0);
1759 	if (IS_ERR(trans)) {
1760 		btrfs_free_path(path);
1761 		return PTR_ERR(trans);
1762 	}
1763 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1764 	key.type = BTRFS_DEV_ITEM_KEY;
1765 	key.offset = device->devid;
1766 
1767 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1768 	if (ret < 0)
1769 		goto out;
1770 
1771 	if (ret > 0) {
1772 		ret = -ENOENT;
1773 		goto out;
1774 	}
1775 
1776 	ret = btrfs_del_item(trans, root, path);
1777 	if (ret)
1778 		goto out;
1779 out:
1780 	btrfs_free_path(path);
1781 	btrfs_commit_transaction(trans);
1782 	return ret;
1783 }
1784 
1785 /*
1786  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1787  * filesystem. It's up to the caller to adjust that number regarding eg. device
1788  * replace.
1789  */
1790 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1791 		u64 num_devices)
1792 {
1793 	u64 all_avail;
1794 	unsigned seq;
1795 	int i;
1796 
1797 	do {
1798 		seq = read_seqbegin(&fs_info->profiles_lock);
1799 
1800 		all_avail = fs_info->avail_data_alloc_bits |
1801 			    fs_info->avail_system_alloc_bits |
1802 			    fs_info->avail_metadata_alloc_bits;
1803 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1804 
1805 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1806 		if (!(all_avail & btrfs_raid_group[i]))
1807 			continue;
1808 
1809 		if (num_devices < btrfs_raid_array[i].devs_min) {
1810 			int ret = btrfs_raid_mindev_error[i];
1811 
1812 			if (ret)
1813 				return ret;
1814 		}
1815 	}
1816 
1817 	return 0;
1818 }
1819 
1820 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1821 					struct btrfs_device *device)
1822 {
1823 	struct btrfs_device *next_device;
1824 
1825 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1826 		if (next_device != device &&
1827 			!next_device->missing && next_device->bdev)
1828 			return next_device;
1829 	}
1830 
1831 	return NULL;
1832 }
1833 
1834 /*
1835  * Helper function to check if the given device is part of s_bdev / latest_bdev
1836  * and replace it with the provided or the next active device, in the context
1837  * where this function called, there should be always be another device (or
1838  * this_dev) which is active.
1839  */
1840 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1841 		struct btrfs_device *device, struct btrfs_device *this_dev)
1842 {
1843 	struct btrfs_device *next_device;
1844 
1845 	if (this_dev)
1846 		next_device = this_dev;
1847 	else
1848 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1849 								device);
1850 	ASSERT(next_device);
1851 
1852 	if (fs_info->sb->s_bdev &&
1853 			(fs_info->sb->s_bdev == device->bdev))
1854 		fs_info->sb->s_bdev = next_device->bdev;
1855 
1856 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1857 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1858 }
1859 
1860 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1861 		u64 devid)
1862 {
1863 	struct btrfs_device *device;
1864 	struct btrfs_fs_devices *cur_devices;
1865 	u64 num_devices;
1866 	int ret = 0;
1867 
1868 	mutex_lock(&uuid_mutex);
1869 
1870 	num_devices = fs_info->fs_devices->num_devices;
1871 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1872 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1873 		WARN_ON(num_devices < 1);
1874 		num_devices--;
1875 	}
1876 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1877 
1878 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1879 	if (ret)
1880 		goto out;
1881 
1882 	ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1883 					   &device);
1884 	if (ret)
1885 		goto out;
1886 
1887 	if (device->is_tgtdev_for_dev_replace) {
1888 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1889 		goto out;
1890 	}
1891 
1892 	if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1893 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1894 		goto out;
1895 	}
1896 
1897 	if (device->writeable) {
1898 		mutex_lock(&fs_info->chunk_mutex);
1899 		list_del_init(&device->dev_alloc_list);
1900 		device->fs_devices->rw_devices--;
1901 		mutex_unlock(&fs_info->chunk_mutex);
1902 	}
1903 
1904 	mutex_unlock(&uuid_mutex);
1905 	ret = btrfs_shrink_device(device, 0);
1906 	mutex_lock(&uuid_mutex);
1907 	if (ret)
1908 		goto error_undo;
1909 
1910 	/*
1911 	 * TODO: the superblock still includes this device in its num_devices
1912 	 * counter although write_all_supers() is not locked out. This
1913 	 * could give a filesystem state which requires a degraded mount.
1914 	 */
1915 	ret = btrfs_rm_dev_item(fs_info, device);
1916 	if (ret)
1917 		goto error_undo;
1918 
1919 	device->in_fs_metadata = 0;
1920 	btrfs_scrub_cancel_dev(fs_info, device);
1921 
1922 	/*
1923 	 * the device list mutex makes sure that we don't change
1924 	 * the device list while someone else is writing out all
1925 	 * the device supers. Whoever is writing all supers, should
1926 	 * lock the device list mutex before getting the number of
1927 	 * devices in the super block (super_copy). Conversely,
1928 	 * whoever updates the number of devices in the super block
1929 	 * (super_copy) should hold the device list mutex.
1930 	 */
1931 
1932 	cur_devices = device->fs_devices;
1933 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1934 	list_del_rcu(&device->dev_list);
1935 
1936 	device->fs_devices->num_devices--;
1937 	device->fs_devices->total_devices--;
1938 
1939 	if (device->missing)
1940 		device->fs_devices->missing_devices--;
1941 
1942 	btrfs_assign_next_active_device(fs_info, device, NULL);
1943 
1944 	if (device->bdev) {
1945 		device->fs_devices->open_devices--;
1946 		/* remove sysfs entry */
1947 		btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1948 	}
1949 
1950 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1951 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1952 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1953 
1954 	/*
1955 	 * at this point, the device is zero sized and detached from
1956 	 * the devices list.  All that's left is to zero out the old
1957 	 * supers and free the device.
1958 	 */
1959 	if (device->writeable)
1960 		btrfs_scratch_superblocks(device->bdev, device->name->str);
1961 
1962 	btrfs_close_bdev(device);
1963 	call_rcu(&device->rcu, free_device);
1964 
1965 	if (cur_devices->open_devices == 0) {
1966 		struct btrfs_fs_devices *fs_devices;
1967 		fs_devices = fs_info->fs_devices;
1968 		while (fs_devices) {
1969 			if (fs_devices->seed == cur_devices) {
1970 				fs_devices->seed = cur_devices->seed;
1971 				break;
1972 			}
1973 			fs_devices = fs_devices->seed;
1974 		}
1975 		cur_devices->seed = NULL;
1976 		__btrfs_close_devices(cur_devices);
1977 		free_fs_devices(cur_devices);
1978 	}
1979 
1980 out:
1981 	mutex_unlock(&uuid_mutex);
1982 	return ret;
1983 
1984 error_undo:
1985 	if (device->writeable) {
1986 		mutex_lock(&fs_info->chunk_mutex);
1987 		list_add(&device->dev_alloc_list,
1988 			 &fs_info->fs_devices->alloc_list);
1989 		device->fs_devices->rw_devices++;
1990 		mutex_unlock(&fs_info->chunk_mutex);
1991 	}
1992 	goto out;
1993 }
1994 
1995 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1996 					struct btrfs_device *srcdev)
1997 {
1998 	struct btrfs_fs_devices *fs_devices;
1999 
2000 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2001 
2002 	/*
2003 	 * in case of fs with no seed, srcdev->fs_devices will point
2004 	 * to fs_devices of fs_info. However when the dev being replaced is
2005 	 * a seed dev it will point to the seed's local fs_devices. In short
2006 	 * srcdev will have its correct fs_devices in both the cases.
2007 	 */
2008 	fs_devices = srcdev->fs_devices;
2009 
2010 	list_del_rcu(&srcdev->dev_list);
2011 	list_del_rcu(&srcdev->dev_alloc_list);
2012 	fs_devices->num_devices--;
2013 	if (srcdev->missing)
2014 		fs_devices->missing_devices--;
2015 
2016 	if (srcdev->writeable)
2017 		fs_devices->rw_devices--;
2018 
2019 	if (srcdev->bdev)
2020 		fs_devices->open_devices--;
2021 }
2022 
2023 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2024 				      struct btrfs_device *srcdev)
2025 {
2026 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2027 
2028 	if (srcdev->writeable) {
2029 		/* zero out the old super if it is writable */
2030 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2031 	}
2032 
2033 	btrfs_close_bdev(srcdev);
2034 
2035 	call_rcu(&srcdev->rcu, free_device);
2036 
2037 	/*
2038 	 * unless fs_devices is seed fs, num_devices shouldn't go
2039 	 * zero
2040 	 */
2041 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2042 
2043 	/* if this is no devs we rather delete the fs_devices */
2044 	if (!fs_devices->num_devices) {
2045 		struct btrfs_fs_devices *tmp_fs_devices;
2046 
2047 		tmp_fs_devices = fs_info->fs_devices;
2048 		while (tmp_fs_devices) {
2049 			if (tmp_fs_devices->seed == fs_devices) {
2050 				tmp_fs_devices->seed = fs_devices->seed;
2051 				break;
2052 			}
2053 			tmp_fs_devices = tmp_fs_devices->seed;
2054 		}
2055 		fs_devices->seed = NULL;
2056 		__btrfs_close_devices(fs_devices);
2057 		free_fs_devices(fs_devices);
2058 	}
2059 }
2060 
2061 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2062 				      struct btrfs_device *tgtdev)
2063 {
2064 	mutex_lock(&uuid_mutex);
2065 	WARN_ON(!tgtdev);
2066 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2067 
2068 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2069 
2070 	if (tgtdev->bdev)
2071 		fs_info->fs_devices->open_devices--;
2072 
2073 	fs_info->fs_devices->num_devices--;
2074 
2075 	btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2076 
2077 	list_del_rcu(&tgtdev->dev_list);
2078 
2079 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2080 	mutex_unlock(&uuid_mutex);
2081 
2082 	/*
2083 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2084 	 * may lead to a call to btrfs_show_devname() which will try
2085 	 * to hold device_list_mutex. And here this device
2086 	 * is already out of device list, so we don't have to hold
2087 	 * the device_list_mutex lock.
2088 	 */
2089 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2090 
2091 	btrfs_close_bdev(tgtdev);
2092 	call_rcu(&tgtdev->rcu, free_device);
2093 }
2094 
2095 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2096 				     const char *device_path,
2097 				     struct btrfs_device **device)
2098 {
2099 	int ret = 0;
2100 	struct btrfs_super_block *disk_super;
2101 	u64 devid;
2102 	u8 *dev_uuid;
2103 	struct block_device *bdev;
2104 	struct buffer_head *bh;
2105 
2106 	*device = NULL;
2107 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2108 				    fs_info->bdev_holder, 0, &bdev, &bh);
2109 	if (ret)
2110 		return ret;
2111 	disk_super = (struct btrfs_super_block *)bh->b_data;
2112 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2113 	dev_uuid = disk_super->dev_item.uuid;
2114 	*device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2115 	brelse(bh);
2116 	if (!*device)
2117 		ret = -ENOENT;
2118 	blkdev_put(bdev, FMODE_READ);
2119 	return ret;
2120 }
2121 
2122 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2123 					 const char *device_path,
2124 					 struct btrfs_device **device)
2125 {
2126 	*device = NULL;
2127 	if (strcmp(device_path, "missing") == 0) {
2128 		struct list_head *devices;
2129 		struct btrfs_device *tmp;
2130 
2131 		devices = &fs_info->fs_devices->devices;
2132 		/*
2133 		 * It is safe to read the devices since the volume_mutex
2134 		 * is held by the caller.
2135 		 */
2136 		list_for_each_entry(tmp, devices, dev_list) {
2137 			if (tmp->in_fs_metadata && !tmp->bdev) {
2138 				*device = tmp;
2139 				break;
2140 			}
2141 		}
2142 
2143 		if (!*device)
2144 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2145 
2146 		return 0;
2147 	} else {
2148 		return btrfs_find_device_by_path(fs_info, device_path, device);
2149 	}
2150 }
2151 
2152 /*
2153  * Lookup a device given by device id, or the path if the id is 0.
2154  */
2155 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2156 				 const char *devpath,
2157 				 struct btrfs_device **device)
2158 {
2159 	int ret;
2160 
2161 	if (devid) {
2162 		ret = 0;
2163 		*device = btrfs_find_device(fs_info, devid, NULL, NULL);
2164 		if (!*device)
2165 			ret = -ENOENT;
2166 	} else {
2167 		if (!devpath || !devpath[0])
2168 			return -EINVAL;
2169 
2170 		ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2171 							   device);
2172 	}
2173 	return ret;
2174 }
2175 
2176 /*
2177  * does all the dirty work required for changing file system's UUID.
2178  */
2179 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2180 {
2181 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2182 	struct btrfs_fs_devices *old_devices;
2183 	struct btrfs_fs_devices *seed_devices;
2184 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2185 	struct btrfs_device *device;
2186 	u64 super_flags;
2187 
2188 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2189 	if (!fs_devices->seeding)
2190 		return -EINVAL;
2191 
2192 	seed_devices = alloc_fs_devices(NULL);
2193 	if (IS_ERR(seed_devices))
2194 		return PTR_ERR(seed_devices);
2195 
2196 	old_devices = clone_fs_devices(fs_devices);
2197 	if (IS_ERR(old_devices)) {
2198 		kfree(seed_devices);
2199 		return PTR_ERR(old_devices);
2200 	}
2201 
2202 	list_add(&old_devices->list, &fs_uuids);
2203 
2204 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2205 	seed_devices->opened = 1;
2206 	INIT_LIST_HEAD(&seed_devices->devices);
2207 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2208 	mutex_init(&seed_devices->device_list_mutex);
2209 
2210 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2211 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2212 			      synchronize_rcu);
2213 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2214 		device->fs_devices = seed_devices;
2215 
2216 	mutex_lock(&fs_info->chunk_mutex);
2217 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2218 	mutex_unlock(&fs_info->chunk_mutex);
2219 
2220 	fs_devices->seeding = 0;
2221 	fs_devices->num_devices = 0;
2222 	fs_devices->open_devices = 0;
2223 	fs_devices->missing_devices = 0;
2224 	fs_devices->rotating = 0;
2225 	fs_devices->seed = seed_devices;
2226 
2227 	generate_random_uuid(fs_devices->fsid);
2228 	memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2229 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2230 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2231 
2232 	super_flags = btrfs_super_flags(disk_super) &
2233 		      ~BTRFS_SUPER_FLAG_SEEDING;
2234 	btrfs_set_super_flags(disk_super, super_flags);
2235 
2236 	return 0;
2237 }
2238 
2239 /*
2240  * Store the expected generation for seed devices in device items.
2241  */
2242 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2243 			       struct btrfs_fs_info *fs_info)
2244 {
2245 	struct btrfs_root *root = fs_info->chunk_root;
2246 	struct btrfs_path *path;
2247 	struct extent_buffer *leaf;
2248 	struct btrfs_dev_item *dev_item;
2249 	struct btrfs_device *device;
2250 	struct btrfs_key key;
2251 	u8 fs_uuid[BTRFS_FSID_SIZE];
2252 	u8 dev_uuid[BTRFS_UUID_SIZE];
2253 	u64 devid;
2254 	int ret;
2255 
2256 	path = btrfs_alloc_path();
2257 	if (!path)
2258 		return -ENOMEM;
2259 
2260 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2261 	key.offset = 0;
2262 	key.type = BTRFS_DEV_ITEM_KEY;
2263 
2264 	while (1) {
2265 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2266 		if (ret < 0)
2267 			goto error;
2268 
2269 		leaf = path->nodes[0];
2270 next_slot:
2271 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2272 			ret = btrfs_next_leaf(root, path);
2273 			if (ret > 0)
2274 				break;
2275 			if (ret < 0)
2276 				goto error;
2277 			leaf = path->nodes[0];
2278 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2279 			btrfs_release_path(path);
2280 			continue;
2281 		}
2282 
2283 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2284 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2285 		    key.type != BTRFS_DEV_ITEM_KEY)
2286 			break;
2287 
2288 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2289 					  struct btrfs_dev_item);
2290 		devid = btrfs_device_id(leaf, dev_item);
2291 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2292 				   BTRFS_UUID_SIZE);
2293 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2294 				   BTRFS_FSID_SIZE);
2295 		device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2296 		BUG_ON(!device); /* Logic error */
2297 
2298 		if (device->fs_devices->seeding) {
2299 			btrfs_set_device_generation(leaf, dev_item,
2300 						    device->generation);
2301 			btrfs_mark_buffer_dirty(leaf);
2302 		}
2303 
2304 		path->slots[0]++;
2305 		goto next_slot;
2306 	}
2307 	ret = 0;
2308 error:
2309 	btrfs_free_path(path);
2310 	return ret;
2311 }
2312 
2313 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2314 {
2315 	struct btrfs_root *root = fs_info->dev_root;
2316 	struct request_queue *q;
2317 	struct btrfs_trans_handle *trans;
2318 	struct btrfs_device *device;
2319 	struct block_device *bdev;
2320 	struct list_head *devices;
2321 	struct super_block *sb = fs_info->sb;
2322 	struct rcu_string *name;
2323 	u64 tmp;
2324 	int seeding_dev = 0;
2325 	int ret = 0;
2326 
2327 	if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2328 		return -EROFS;
2329 
2330 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2331 				  fs_info->bdev_holder);
2332 	if (IS_ERR(bdev))
2333 		return PTR_ERR(bdev);
2334 
2335 	if (fs_info->fs_devices->seeding) {
2336 		seeding_dev = 1;
2337 		down_write(&sb->s_umount);
2338 		mutex_lock(&uuid_mutex);
2339 	}
2340 
2341 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2342 
2343 	devices = &fs_info->fs_devices->devices;
2344 
2345 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2346 	list_for_each_entry(device, devices, dev_list) {
2347 		if (device->bdev == bdev) {
2348 			ret = -EEXIST;
2349 			mutex_unlock(
2350 				&fs_info->fs_devices->device_list_mutex);
2351 			goto error;
2352 		}
2353 	}
2354 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2355 
2356 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2357 	if (IS_ERR(device)) {
2358 		/* we can safely leave the fs_devices entry around */
2359 		ret = PTR_ERR(device);
2360 		goto error;
2361 	}
2362 
2363 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2364 	if (!name) {
2365 		kfree(device);
2366 		ret = -ENOMEM;
2367 		goto error;
2368 	}
2369 	rcu_assign_pointer(device->name, name);
2370 
2371 	trans = btrfs_start_transaction(root, 0);
2372 	if (IS_ERR(trans)) {
2373 		rcu_string_free(device->name);
2374 		kfree(device);
2375 		ret = PTR_ERR(trans);
2376 		goto error;
2377 	}
2378 
2379 	q = bdev_get_queue(bdev);
2380 	if (blk_queue_discard(q))
2381 		device->can_discard = 1;
2382 	device->writeable = 1;
2383 	device->generation = trans->transid;
2384 	device->io_width = fs_info->sectorsize;
2385 	device->io_align = fs_info->sectorsize;
2386 	device->sector_size = fs_info->sectorsize;
2387 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2388 					 fs_info->sectorsize);
2389 	device->disk_total_bytes = device->total_bytes;
2390 	device->commit_total_bytes = device->total_bytes;
2391 	device->fs_info = fs_info;
2392 	device->bdev = bdev;
2393 	device->in_fs_metadata = 1;
2394 	device->is_tgtdev_for_dev_replace = 0;
2395 	device->mode = FMODE_EXCL;
2396 	device->dev_stats_valid = 1;
2397 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2398 
2399 	if (seeding_dev) {
2400 		sb->s_flags &= ~MS_RDONLY;
2401 		ret = btrfs_prepare_sprout(fs_info);
2402 		BUG_ON(ret); /* -ENOMEM */
2403 	}
2404 
2405 	device->fs_devices = fs_info->fs_devices;
2406 
2407 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2408 	mutex_lock(&fs_info->chunk_mutex);
2409 	list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2410 	list_add(&device->dev_alloc_list,
2411 		 &fs_info->fs_devices->alloc_list);
2412 	fs_info->fs_devices->num_devices++;
2413 	fs_info->fs_devices->open_devices++;
2414 	fs_info->fs_devices->rw_devices++;
2415 	fs_info->fs_devices->total_devices++;
2416 	fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2417 
2418 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2419 
2420 	if (!blk_queue_nonrot(q))
2421 		fs_info->fs_devices->rotating = 1;
2422 
2423 	tmp = btrfs_super_total_bytes(fs_info->super_copy);
2424 	btrfs_set_super_total_bytes(fs_info->super_copy,
2425 		round_down(tmp + device->total_bytes, fs_info->sectorsize));
2426 
2427 	tmp = btrfs_super_num_devices(fs_info->super_copy);
2428 	btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2429 
2430 	/* add sysfs device entry */
2431 	btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2432 
2433 	/*
2434 	 * we've got more storage, clear any full flags on the space
2435 	 * infos
2436 	 */
2437 	btrfs_clear_space_info_full(fs_info);
2438 
2439 	mutex_unlock(&fs_info->chunk_mutex);
2440 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2441 
2442 	if (seeding_dev) {
2443 		mutex_lock(&fs_info->chunk_mutex);
2444 		ret = init_first_rw_device(trans, fs_info);
2445 		mutex_unlock(&fs_info->chunk_mutex);
2446 		if (ret) {
2447 			btrfs_abort_transaction(trans, ret);
2448 			goto error_trans;
2449 		}
2450 	}
2451 
2452 	ret = btrfs_add_device(trans, fs_info, device);
2453 	if (ret) {
2454 		btrfs_abort_transaction(trans, ret);
2455 		goto error_trans;
2456 	}
2457 
2458 	if (seeding_dev) {
2459 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2460 
2461 		ret = btrfs_finish_sprout(trans, fs_info);
2462 		if (ret) {
2463 			btrfs_abort_transaction(trans, ret);
2464 			goto error_trans;
2465 		}
2466 
2467 		/* Sprouting would change fsid of the mounted root,
2468 		 * so rename the fsid on the sysfs
2469 		 */
2470 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2471 						fs_info->fsid);
2472 		if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2473 			btrfs_warn(fs_info,
2474 				   "sysfs: failed to create fsid for sprout");
2475 	}
2476 
2477 	ret = btrfs_commit_transaction(trans);
2478 
2479 	if (seeding_dev) {
2480 		mutex_unlock(&uuid_mutex);
2481 		up_write(&sb->s_umount);
2482 
2483 		if (ret) /* transaction commit */
2484 			return ret;
2485 
2486 		ret = btrfs_relocate_sys_chunks(fs_info);
2487 		if (ret < 0)
2488 			btrfs_handle_fs_error(fs_info, ret,
2489 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2490 		trans = btrfs_attach_transaction(root);
2491 		if (IS_ERR(trans)) {
2492 			if (PTR_ERR(trans) == -ENOENT)
2493 				return 0;
2494 			return PTR_ERR(trans);
2495 		}
2496 		ret = btrfs_commit_transaction(trans);
2497 	}
2498 
2499 	/* Update ctime/mtime for libblkid */
2500 	update_dev_time(device_path);
2501 	return ret;
2502 
2503 error_trans:
2504 	btrfs_end_transaction(trans);
2505 	rcu_string_free(device->name);
2506 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2507 	kfree(device);
2508 error:
2509 	blkdev_put(bdev, FMODE_EXCL);
2510 	if (seeding_dev) {
2511 		mutex_unlock(&uuid_mutex);
2512 		up_write(&sb->s_umount);
2513 	}
2514 	return ret;
2515 }
2516 
2517 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2518 				  const char *device_path,
2519 				  struct btrfs_device *srcdev,
2520 				  struct btrfs_device **device_out)
2521 {
2522 	struct request_queue *q;
2523 	struct btrfs_device *device;
2524 	struct block_device *bdev;
2525 	struct list_head *devices;
2526 	struct rcu_string *name;
2527 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2528 	int ret = 0;
2529 
2530 	*device_out = NULL;
2531 	if (fs_info->fs_devices->seeding) {
2532 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2533 		return -EINVAL;
2534 	}
2535 
2536 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2537 				  fs_info->bdev_holder);
2538 	if (IS_ERR(bdev)) {
2539 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2540 		return PTR_ERR(bdev);
2541 	}
2542 
2543 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2544 
2545 	devices = &fs_info->fs_devices->devices;
2546 	list_for_each_entry(device, devices, dev_list) {
2547 		if (device->bdev == bdev) {
2548 			btrfs_err(fs_info,
2549 				  "target device is in the filesystem!");
2550 			ret = -EEXIST;
2551 			goto error;
2552 		}
2553 	}
2554 
2555 
2556 	if (i_size_read(bdev->bd_inode) <
2557 	    btrfs_device_get_total_bytes(srcdev)) {
2558 		btrfs_err(fs_info,
2559 			  "target device is smaller than source device!");
2560 		ret = -EINVAL;
2561 		goto error;
2562 	}
2563 
2564 
2565 	device = btrfs_alloc_device(NULL, &devid, NULL);
2566 	if (IS_ERR(device)) {
2567 		ret = PTR_ERR(device);
2568 		goto error;
2569 	}
2570 
2571 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2572 	if (!name) {
2573 		kfree(device);
2574 		ret = -ENOMEM;
2575 		goto error;
2576 	}
2577 	rcu_assign_pointer(device->name, name);
2578 
2579 	q = bdev_get_queue(bdev);
2580 	if (blk_queue_discard(q))
2581 		device->can_discard = 1;
2582 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2583 	device->writeable = 1;
2584 	device->generation = 0;
2585 	device->io_width = fs_info->sectorsize;
2586 	device->io_align = fs_info->sectorsize;
2587 	device->sector_size = fs_info->sectorsize;
2588 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2589 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2590 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2591 	ASSERT(list_empty(&srcdev->resized_list));
2592 	device->commit_total_bytes = srcdev->commit_total_bytes;
2593 	device->commit_bytes_used = device->bytes_used;
2594 	device->fs_info = fs_info;
2595 	device->bdev = bdev;
2596 	device->in_fs_metadata = 1;
2597 	device->is_tgtdev_for_dev_replace = 1;
2598 	device->mode = FMODE_EXCL;
2599 	device->dev_stats_valid = 1;
2600 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2601 	device->fs_devices = fs_info->fs_devices;
2602 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2603 	fs_info->fs_devices->num_devices++;
2604 	fs_info->fs_devices->open_devices++;
2605 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2606 
2607 	*device_out = device;
2608 	return ret;
2609 
2610 error:
2611 	blkdev_put(bdev, FMODE_EXCL);
2612 	return ret;
2613 }
2614 
2615 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2616 					      struct btrfs_device *tgtdev)
2617 {
2618 	u32 sectorsize = fs_info->sectorsize;
2619 
2620 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2621 	tgtdev->io_width = sectorsize;
2622 	tgtdev->io_align = sectorsize;
2623 	tgtdev->sector_size = sectorsize;
2624 	tgtdev->fs_info = fs_info;
2625 	tgtdev->in_fs_metadata = 1;
2626 }
2627 
2628 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2629 					struct btrfs_device *device)
2630 {
2631 	int ret;
2632 	struct btrfs_path *path;
2633 	struct btrfs_root *root = device->fs_info->chunk_root;
2634 	struct btrfs_dev_item *dev_item;
2635 	struct extent_buffer *leaf;
2636 	struct btrfs_key key;
2637 
2638 	path = btrfs_alloc_path();
2639 	if (!path)
2640 		return -ENOMEM;
2641 
2642 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2643 	key.type = BTRFS_DEV_ITEM_KEY;
2644 	key.offset = device->devid;
2645 
2646 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2647 	if (ret < 0)
2648 		goto out;
2649 
2650 	if (ret > 0) {
2651 		ret = -ENOENT;
2652 		goto out;
2653 	}
2654 
2655 	leaf = path->nodes[0];
2656 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2657 
2658 	btrfs_set_device_id(leaf, dev_item, device->devid);
2659 	btrfs_set_device_type(leaf, dev_item, device->type);
2660 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2661 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2662 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2663 	btrfs_set_device_total_bytes(leaf, dev_item,
2664 				     btrfs_device_get_disk_total_bytes(device));
2665 	btrfs_set_device_bytes_used(leaf, dev_item,
2666 				    btrfs_device_get_bytes_used(device));
2667 	btrfs_mark_buffer_dirty(leaf);
2668 
2669 out:
2670 	btrfs_free_path(path);
2671 	return ret;
2672 }
2673 
2674 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2675 		      struct btrfs_device *device, u64 new_size)
2676 {
2677 	struct btrfs_fs_info *fs_info = device->fs_info;
2678 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2679 	struct btrfs_fs_devices *fs_devices;
2680 	u64 old_total;
2681 	u64 diff;
2682 
2683 	if (!device->writeable)
2684 		return -EACCES;
2685 
2686 	new_size = round_down(new_size, fs_info->sectorsize);
2687 
2688 	mutex_lock(&fs_info->chunk_mutex);
2689 	old_total = btrfs_super_total_bytes(super_copy);
2690 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2691 
2692 	if (new_size <= device->total_bytes ||
2693 	    device->is_tgtdev_for_dev_replace) {
2694 		mutex_unlock(&fs_info->chunk_mutex);
2695 		return -EINVAL;
2696 	}
2697 
2698 	fs_devices = fs_info->fs_devices;
2699 
2700 	btrfs_set_super_total_bytes(super_copy,
2701 			round_down(old_total + diff, fs_info->sectorsize));
2702 	device->fs_devices->total_rw_bytes += diff;
2703 
2704 	btrfs_device_set_total_bytes(device, new_size);
2705 	btrfs_device_set_disk_total_bytes(device, new_size);
2706 	btrfs_clear_space_info_full(device->fs_info);
2707 	if (list_empty(&device->resized_list))
2708 		list_add_tail(&device->resized_list,
2709 			      &fs_devices->resized_devices);
2710 	mutex_unlock(&fs_info->chunk_mutex);
2711 
2712 	return btrfs_update_device(trans, device);
2713 }
2714 
2715 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2716 			    struct btrfs_fs_info *fs_info, u64 chunk_offset)
2717 {
2718 	struct btrfs_root *root = fs_info->chunk_root;
2719 	int ret;
2720 	struct btrfs_path *path;
2721 	struct btrfs_key key;
2722 
2723 	path = btrfs_alloc_path();
2724 	if (!path)
2725 		return -ENOMEM;
2726 
2727 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2728 	key.offset = chunk_offset;
2729 	key.type = BTRFS_CHUNK_ITEM_KEY;
2730 
2731 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2732 	if (ret < 0)
2733 		goto out;
2734 	else if (ret > 0) { /* Logic error or corruption */
2735 		btrfs_handle_fs_error(fs_info, -ENOENT,
2736 				      "Failed lookup while freeing chunk.");
2737 		ret = -ENOENT;
2738 		goto out;
2739 	}
2740 
2741 	ret = btrfs_del_item(trans, root, path);
2742 	if (ret < 0)
2743 		btrfs_handle_fs_error(fs_info, ret,
2744 				      "Failed to delete chunk item.");
2745 out:
2746 	btrfs_free_path(path);
2747 	return ret;
2748 }
2749 
2750 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2751 {
2752 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2753 	struct btrfs_disk_key *disk_key;
2754 	struct btrfs_chunk *chunk;
2755 	u8 *ptr;
2756 	int ret = 0;
2757 	u32 num_stripes;
2758 	u32 array_size;
2759 	u32 len = 0;
2760 	u32 cur;
2761 	struct btrfs_key key;
2762 
2763 	mutex_lock(&fs_info->chunk_mutex);
2764 	array_size = btrfs_super_sys_array_size(super_copy);
2765 
2766 	ptr = super_copy->sys_chunk_array;
2767 	cur = 0;
2768 
2769 	while (cur < array_size) {
2770 		disk_key = (struct btrfs_disk_key *)ptr;
2771 		btrfs_disk_key_to_cpu(&key, disk_key);
2772 
2773 		len = sizeof(*disk_key);
2774 
2775 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2776 			chunk = (struct btrfs_chunk *)(ptr + len);
2777 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2778 			len += btrfs_chunk_item_size(num_stripes);
2779 		} else {
2780 			ret = -EIO;
2781 			break;
2782 		}
2783 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2784 		    key.offset == chunk_offset) {
2785 			memmove(ptr, ptr + len, array_size - (cur + len));
2786 			array_size -= len;
2787 			btrfs_set_super_sys_array_size(super_copy, array_size);
2788 		} else {
2789 			ptr += len;
2790 			cur += len;
2791 		}
2792 	}
2793 	mutex_unlock(&fs_info->chunk_mutex);
2794 	return ret;
2795 }
2796 
2797 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2798 					u64 logical, u64 length)
2799 {
2800 	struct extent_map_tree *em_tree;
2801 	struct extent_map *em;
2802 
2803 	em_tree = &fs_info->mapping_tree.map_tree;
2804 	read_lock(&em_tree->lock);
2805 	em = lookup_extent_mapping(em_tree, logical, length);
2806 	read_unlock(&em_tree->lock);
2807 
2808 	if (!em) {
2809 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2810 			   logical, length);
2811 		return ERR_PTR(-EINVAL);
2812 	}
2813 
2814 	if (em->start > logical || em->start + em->len < logical) {
2815 		btrfs_crit(fs_info,
2816 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2817 			   logical, length, em->start, em->start + em->len);
2818 		free_extent_map(em);
2819 		return ERR_PTR(-EINVAL);
2820 	}
2821 
2822 	/* callers are responsible for dropping em's ref. */
2823 	return em;
2824 }
2825 
2826 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2827 		       struct btrfs_fs_info *fs_info, u64 chunk_offset)
2828 {
2829 	struct extent_map *em;
2830 	struct map_lookup *map;
2831 	u64 dev_extent_len = 0;
2832 	int i, ret = 0;
2833 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2834 
2835 	em = get_chunk_map(fs_info, chunk_offset, 1);
2836 	if (IS_ERR(em)) {
2837 		/*
2838 		 * This is a logic error, but we don't want to just rely on the
2839 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2840 		 * do anything we still error out.
2841 		 */
2842 		ASSERT(0);
2843 		return PTR_ERR(em);
2844 	}
2845 	map = em->map_lookup;
2846 	mutex_lock(&fs_info->chunk_mutex);
2847 	check_system_chunk(trans, fs_info, map->type);
2848 	mutex_unlock(&fs_info->chunk_mutex);
2849 
2850 	/*
2851 	 * Take the device list mutex to prevent races with the final phase of
2852 	 * a device replace operation that replaces the device object associated
2853 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2854 	 */
2855 	mutex_lock(&fs_devices->device_list_mutex);
2856 	for (i = 0; i < map->num_stripes; i++) {
2857 		struct btrfs_device *device = map->stripes[i].dev;
2858 		ret = btrfs_free_dev_extent(trans, device,
2859 					    map->stripes[i].physical,
2860 					    &dev_extent_len);
2861 		if (ret) {
2862 			mutex_unlock(&fs_devices->device_list_mutex);
2863 			btrfs_abort_transaction(trans, ret);
2864 			goto out;
2865 		}
2866 
2867 		if (device->bytes_used > 0) {
2868 			mutex_lock(&fs_info->chunk_mutex);
2869 			btrfs_device_set_bytes_used(device,
2870 					device->bytes_used - dev_extent_len);
2871 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2872 			btrfs_clear_space_info_full(fs_info);
2873 			mutex_unlock(&fs_info->chunk_mutex);
2874 		}
2875 
2876 		if (map->stripes[i].dev) {
2877 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2878 			if (ret) {
2879 				mutex_unlock(&fs_devices->device_list_mutex);
2880 				btrfs_abort_transaction(trans, ret);
2881 				goto out;
2882 			}
2883 		}
2884 	}
2885 	mutex_unlock(&fs_devices->device_list_mutex);
2886 
2887 	ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2888 	if (ret) {
2889 		btrfs_abort_transaction(trans, ret);
2890 		goto out;
2891 	}
2892 
2893 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2894 
2895 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2896 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2897 		if (ret) {
2898 			btrfs_abort_transaction(trans, ret);
2899 			goto out;
2900 		}
2901 	}
2902 
2903 	ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2904 	if (ret) {
2905 		btrfs_abort_transaction(trans, ret);
2906 		goto out;
2907 	}
2908 
2909 out:
2910 	/* once for us */
2911 	free_extent_map(em);
2912 	return ret;
2913 }
2914 
2915 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2916 {
2917 	struct btrfs_root *root = fs_info->chunk_root;
2918 	struct btrfs_trans_handle *trans;
2919 	int ret;
2920 
2921 	/*
2922 	 * Prevent races with automatic removal of unused block groups.
2923 	 * After we relocate and before we remove the chunk with offset
2924 	 * chunk_offset, automatic removal of the block group can kick in,
2925 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2926 	 *
2927 	 * Make sure to acquire this mutex before doing a tree search (dev
2928 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2929 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2930 	 * we release the path used to search the chunk/dev tree and before
2931 	 * the current task acquires this mutex and calls us.
2932 	 */
2933 	ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2934 
2935 	ret = btrfs_can_relocate(fs_info, chunk_offset);
2936 	if (ret)
2937 		return -ENOSPC;
2938 
2939 	/* step one, relocate all the extents inside this chunk */
2940 	btrfs_scrub_pause(fs_info);
2941 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2942 	btrfs_scrub_continue(fs_info);
2943 	if (ret)
2944 		return ret;
2945 
2946 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2947 						     chunk_offset);
2948 	if (IS_ERR(trans)) {
2949 		ret = PTR_ERR(trans);
2950 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2951 		return ret;
2952 	}
2953 
2954 	/*
2955 	 * step two, delete the device extents and the
2956 	 * chunk tree entries
2957 	 */
2958 	ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2959 	btrfs_end_transaction(trans);
2960 	return ret;
2961 }
2962 
2963 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2964 {
2965 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2966 	struct btrfs_path *path;
2967 	struct extent_buffer *leaf;
2968 	struct btrfs_chunk *chunk;
2969 	struct btrfs_key key;
2970 	struct btrfs_key found_key;
2971 	u64 chunk_type;
2972 	bool retried = false;
2973 	int failed = 0;
2974 	int ret;
2975 
2976 	path = btrfs_alloc_path();
2977 	if (!path)
2978 		return -ENOMEM;
2979 
2980 again:
2981 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2982 	key.offset = (u64)-1;
2983 	key.type = BTRFS_CHUNK_ITEM_KEY;
2984 
2985 	while (1) {
2986 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
2987 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2988 		if (ret < 0) {
2989 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2990 			goto error;
2991 		}
2992 		BUG_ON(ret == 0); /* Corruption */
2993 
2994 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2995 					  key.type);
2996 		if (ret)
2997 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2998 		if (ret < 0)
2999 			goto error;
3000 		if (ret > 0)
3001 			break;
3002 
3003 		leaf = path->nodes[0];
3004 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3005 
3006 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3007 				       struct btrfs_chunk);
3008 		chunk_type = btrfs_chunk_type(leaf, chunk);
3009 		btrfs_release_path(path);
3010 
3011 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3012 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3013 			if (ret == -ENOSPC)
3014 				failed++;
3015 			else
3016 				BUG_ON(ret);
3017 		}
3018 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3019 
3020 		if (found_key.offset == 0)
3021 			break;
3022 		key.offset = found_key.offset - 1;
3023 	}
3024 	ret = 0;
3025 	if (failed && !retried) {
3026 		failed = 0;
3027 		retried = true;
3028 		goto again;
3029 	} else if (WARN_ON(failed && retried)) {
3030 		ret = -ENOSPC;
3031 	}
3032 error:
3033 	btrfs_free_path(path);
3034 	return ret;
3035 }
3036 
3037 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3038 			       struct btrfs_balance_control *bctl)
3039 {
3040 	struct btrfs_root *root = fs_info->tree_root;
3041 	struct btrfs_trans_handle *trans;
3042 	struct btrfs_balance_item *item;
3043 	struct btrfs_disk_balance_args disk_bargs;
3044 	struct btrfs_path *path;
3045 	struct extent_buffer *leaf;
3046 	struct btrfs_key key;
3047 	int ret, err;
3048 
3049 	path = btrfs_alloc_path();
3050 	if (!path)
3051 		return -ENOMEM;
3052 
3053 	trans = btrfs_start_transaction(root, 0);
3054 	if (IS_ERR(trans)) {
3055 		btrfs_free_path(path);
3056 		return PTR_ERR(trans);
3057 	}
3058 
3059 	key.objectid = BTRFS_BALANCE_OBJECTID;
3060 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3061 	key.offset = 0;
3062 
3063 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3064 				      sizeof(*item));
3065 	if (ret)
3066 		goto out;
3067 
3068 	leaf = path->nodes[0];
3069 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3070 
3071 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3072 
3073 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3074 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3075 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3076 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3077 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3078 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3079 
3080 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3081 
3082 	btrfs_mark_buffer_dirty(leaf);
3083 out:
3084 	btrfs_free_path(path);
3085 	err = btrfs_commit_transaction(trans);
3086 	if (err && !ret)
3087 		ret = err;
3088 	return ret;
3089 }
3090 
3091 static int del_balance_item(struct btrfs_fs_info *fs_info)
3092 {
3093 	struct btrfs_root *root = fs_info->tree_root;
3094 	struct btrfs_trans_handle *trans;
3095 	struct btrfs_path *path;
3096 	struct btrfs_key key;
3097 	int ret, err;
3098 
3099 	path = btrfs_alloc_path();
3100 	if (!path)
3101 		return -ENOMEM;
3102 
3103 	trans = btrfs_start_transaction(root, 0);
3104 	if (IS_ERR(trans)) {
3105 		btrfs_free_path(path);
3106 		return PTR_ERR(trans);
3107 	}
3108 
3109 	key.objectid = BTRFS_BALANCE_OBJECTID;
3110 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3111 	key.offset = 0;
3112 
3113 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3114 	if (ret < 0)
3115 		goto out;
3116 	if (ret > 0) {
3117 		ret = -ENOENT;
3118 		goto out;
3119 	}
3120 
3121 	ret = btrfs_del_item(trans, root, path);
3122 out:
3123 	btrfs_free_path(path);
3124 	err = btrfs_commit_transaction(trans);
3125 	if (err && !ret)
3126 		ret = err;
3127 	return ret;
3128 }
3129 
3130 /*
3131  * This is a heuristic used to reduce the number of chunks balanced on
3132  * resume after balance was interrupted.
3133  */
3134 static void update_balance_args(struct btrfs_balance_control *bctl)
3135 {
3136 	/*
3137 	 * Turn on soft mode for chunk types that were being converted.
3138 	 */
3139 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3140 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3141 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3142 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3143 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3144 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3145 
3146 	/*
3147 	 * Turn on usage filter if is not already used.  The idea is
3148 	 * that chunks that we have already balanced should be
3149 	 * reasonably full.  Don't do it for chunks that are being
3150 	 * converted - that will keep us from relocating unconverted
3151 	 * (albeit full) chunks.
3152 	 */
3153 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3154 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3155 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3156 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3157 		bctl->data.usage = 90;
3158 	}
3159 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3160 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3161 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3162 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3163 		bctl->sys.usage = 90;
3164 	}
3165 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3166 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3167 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3168 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3169 		bctl->meta.usage = 90;
3170 	}
3171 }
3172 
3173 /*
3174  * Should be called with both balance and volume mutexes held to
3175  * serialize other volume operations (add_dev/rm_dev/resize) with
3176  * restriper.  Same goes for unset_balance_control.
3177  */
3178 static void set_balance_control(struct btrfs_balance_control *bctl)
3179 {
3180 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3181 
3182 	BUG_ON(fs_info->balance_ctl);
3183 
3184 	spin_lock(&fs_info->balance_lock);
3185 	fs_info->balance_ctl = bctl;
3186 	spin_unlock(&fs_info->balance_lock);
3187 }
3188 
3189 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3190 {
3191 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3192 
3193 	BUG_ON(!fs_info->balance_ctl);
3194 
3195 	spin_lock(&fs_info->balance_lock);
3196 	fs_info->balance_ctl = NULL;
3197 	spin_unlock(&fs_info->balance_lock);
3198 
3199 	kfree(bctl);
3200 }
3201 
3202 /*
3203  * Balance filters.  Return 1 if chunk should be filtered out
3204  * (should not be balanced).
3205  */
3206 static int chunk_profiles_filter(u64 chunk_type,
3207 				 struct btrfs_balance_args *bargs)
3208 {
3209 	chunk_type = chunk_to_extended(chunk_type) &
3210 				BTRFS_EXTENDED_PROFILE_MASK;
3211 
3212 	if (bargs->profiles & chunk_type)
3213 		return 0;
3214 
3215 	return 1;
3216 }
3217 
3218 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3219 			      struct btrfs_balance_args *bargs)
3220 {
3221 	struct btrfs_block_group_cache *cache;
3222 	u64 chunk_used;
3223 	u64 user_thresh_min;
3224 	u64 user_thresh_max;
3225 	int ret = 1;
3226 
3227 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3228 	chunk_used = btrfs_block_group_used(&cache->item);
3229 
3230 	if (bargs->usage_min == 0)
3231 		user_thresh_min = 0;
3232 	else
3233 		user_thresh_min = div_factor_fine(cache->key.offset,
3234 					bargs->usage_min);
3235 
3236 	if (bargs->usage_max == 0)
3237 		user_thresh_max = 1;
3238 	else if (bargs->usage_max > 100)
3239 		user_thresh_max = cache->key.offset;
3240 	else
3241 		user_thresh_max = div_factor_fine(cache->key.offset,
3242 					bargs->usage_max);
3243 
3244 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3245 		ret = 0;
3246 
3247 	btrfs_put_block_group(cache);
3248 	return ret;
3249 }
3250 
3251 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3252 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3253 {
3254 	struct btrfs_block_group_cache *cache;
3255 	u64 chunk_used, user_thresh;
3256 	int ret = 1;
3257 
3258 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3259 	chunk_used = btrfs_block_group_used(&cache->item);
3260 
3261 	if (bargs->usage_min == 0)
3262 		user_thresh = 1;
3263 	else if (bargs->usage > 100)
3264 		user_thresh = cache->key.offset;
3265 	else
3266 		user_thresh = div_factor_fine(cache->key.offset,
3267 					      bargs->usage);
3268 
3269 	if (chunk_used < user_thresh)
3270 		ret = 0;
3271 
3272 	btrfs_put_block_group(cache);
3273 	return ret;
3274 }
3275 
3276 static int chunk_devid_filter(struct extent_buffer *leaf,
3277 			      struct btrfs_chunk *chunk,
3278 			      struct btrfs_balance_args *bargs)
3279 {
3280 	struct btrfs_stripe *stripe;
3281 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3282 	int i;
3283 
3284 	for (i = 0; i < num_stripes; i++) {
3285 		stripe = btrfs_stripe_nr(chunk, i);
3286 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3287 			return 0;
3288 	}
3289 
3290 	return 1;
3291 }
3292 
3293 /* [pstart, pend) */
3294 static int chunk_drange_filter(struct extent_buffer *leaf,
3295 			       struct btrfs_chunk *chunk,
3296 			       struct btrfs_balance_args *bargs)
3297 {
3298 	struct btrfs_stripe *stripe;
3299 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3300 	u64 stripe_offset;
3301 	u64 stripe_length;
3302 	int factor;
3303 	int i;
3304 
3305 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3306 		return 0;
3307 
3308 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3309 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3310 		factor = num_stripes / 2;
3311 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3312 		factor = num_stripes - 1;
3313 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3314 		factor = num_stripes - 2;
3315 	} else {
3316 		factor = num_stripes;
3317 	}
3318 
3319 	for (i = 0; i < num_stripes; i++) {
3320 		stripe = btrfs_stripe_nr(chunk, i);
3321 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3322 			continue;
3323 
3324 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3325 		stripe_length = btrfs_chunk_length(leaf, chunk);
3326 		stripe_length = div_u64(stripe_length, factor);
3327 
3328 		if (stripe_offset < bargs->pend &&
3329 		    stripe_offset + stripe_length > bargs->pstart)
3330 			return 0;
3331 	}
3332 
3333 	return 1;
3334 }
3335 
3336 /* [vstart, vend) */
3337 static int chunk_vrange_filter(struct extent_buffer *leaf,
3338 			       struct btrfs_chunk *chunk,
3339 			       u64 chunk_offset,
3340 			       struct btrfs_balance_args *bargs)
3341 {
3342 	if (chunk_offset < bargs->vend &&
3343 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3344 		/* at least part of the chunk is inside this vrange */
3345 		return 0;
3346 
3347 	return 1;
3348 }
3349 
3350 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3351 			       struct btrfs_chunk *chunk,
3352 			       struct btrfs_balance_args *bargs)
3353 {
3354 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3355 
3356 	if (bargs->stripes_min <= num_stripes
3357 			&& num_stripes <= bargs->stripes_max)
3358 		return 0;
3359 
3360 	return 1;
3361 }
3362 
3363 static int chunk_soft_convert_filter(u64 chunk_type,
3364 				     struct btrfs_balance_args *bargs)
3365 {
3366 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3367 		return 0;
3368 
3369 	chunk_type = chunk_to_extended(chunk_type) &
3370 				BTRFS_EXTENDED_PROFILE_MASK;
3371 
3372 	if (bargs->target == chunk_type)
3373 		return 1;
3374 
3375 	return 0;
3376 }
3377 
3378 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3379 				struct extent_buffer *leaf,
3380 				struct btrfs_chunk *chunk, u64 chunk_offset)
3381 {
3382 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3383 	struct btrfs_balance_args *bargs = NULL;
3384 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3385 
3386 	/* type filter */
3387 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3388 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3389 		return 0;
3390 	}
3391 
3392 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3393 		bargs = &bctl->data;
3394 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3395 		bargs = &bctl->sys;
3396 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3397 		bargs = &bctl->meta;
3398 
3399 	/* profiles filter */
3400 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3401 	    chunk_profiles_filter(chunk_type, bargs)) {
3402 		return 0;
3403 	}
3404 
3405 	/* usage filter */
3406 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3407 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3408 		return 0;
3409 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3410 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3411 		return 0;
3412 	}
3413 
3414 	/* devid filter */
3415 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3416 	    chunk_devid_filter(leaf, chunk, bargs)) {
3417 		return 0;
3418 	}
3419 
3420 	/* drange filter, makes sense only with devid filter */
3421 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3422 	    chunk_drange_filter(leaf, chunk, bargs)) {
3423 		return 0;
3424 	}
3425 
3426 	/* vrange filter */
3427 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3428 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3429 		return 0;
3430 	}
3431 
3432 	/* stripes filter */
3433 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3434 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3435 		return 0;
3436 	}
3437 
3438 	/* soft profile changing mode */
3439 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3440 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3441 		return 0;
3442 	}
3443 
3444 	/*
3445 	 * limited by count, must be the last filter
3446 	 */
3447 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3448 		if (bargs->limit == 0)
3449 			return 0;
3450 		else
3451 			bargs->limit--;
3452 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3453 		/*
3454 		 * Same logic as the 'limit' filter; the minimum cannot be
3455 		 * determined here because we do not have the global information
3456 		 * about the count of all chunks that satisfy the filters.
3457 		 */
3458 		if (bargs->limit_max == 0)
3459 			return 0;
3460 		else
3461 			bargs->limit_max--;
3462 	}
3463 
3464 	return 1;
3465 }
3466 
3467 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3468 {
3469 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3470 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3471 	struct btrfs_root *dev_root = fs_info->dev_root;
3472 	struct list_head *devices;
3473 	struct btrfs_device *device;
3474 	u64 old_size;
3475 	u64 size_to_free;
3476 	u64 chunk_type;
3477 	struct btrfs_chunk *chunk;
3478 	struct btrfs_path *path = NULL;
3479 	struct btrfs_key key;
3480 	struct btrfs_key found_key;
3481 	struct btrfs_trans_handle *trans;
3482 	struct extent_buffer *leaf;
3483 	int slot;
3484 	int ret;
3485 	int enospc_errors = 0;
3486 	bool counting = true;
3487 	/* The single value limit and min/max limits use the same bytes in the */
3488 	u64 limit_data = bctl->data.limit;
3489 	u64 limit_meta = bctl->meta.limit;
3490 	u64 limit_sys = bctl->sys.limit;
3491 	u32 count_data = 0;
3492 	u32 count_meta = 0;
3493 	u32 count_sys = 0;
3494 	int chunk_reserved = 0;
3495 	u64 bytes_used = 0;
3496 
3497 	/* step one make some room on all the devices */
3498 	devices = &fs_info->fs_devices->devices;
3499 	list_for_each_entry(device, devices, dev_list) {
3500 		old_size = btrfs_device_get_total_bytes(device);
3501 		size_to_free = div_factor(old_size, 1);
3502 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3503 		if (!device->writeable ||
3504 		    btrfs_device_get_total_bytes(device) -
3505 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3506 		    device->is_tgtdev_for_dev_replace)
3507 			continue;
3508 
3509 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3510 		if (ret == -ENOSPC)
3511 			break;
3512 		if (ret) {
3513 			/* btrfs_shrink_device never returns ret > 0 */
3514 			WARN_ON(ret > 0);
3515 			goto error;
3516 		}
3517 
3518 		trans = btrfs_start_transaction(dev_root, 0);
3519 		if (IS_ERR(trans)) {
3520 			ret = PTR_ERR(trans);
3521 			btrfs_info_in_rcu(fs_info,
3522 		 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3523 					  rcu_str_deref(device->name), ret,
3524 					  old_size, old_size - size_to_free);
3525 			goto error;
3526 		}
3527 
3528 		ret = btrfs_grow_device(trans, device, old_size);
3529 		if (ret) {
3530 			btrfs_end_transaction(trans);
3531 			/* btrfs_grow_device never returns ret > 0 */
3532 			WARN_ON(ret > 0);
3533 			btrfs_info_in_rcu(fs_info,
3534 		 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3535 					  rcu_str_deref(device->name), ret,
3536 					  old_size, old_size - size_to_free);
3537 			goto error;
3538 		}
3539 
3540 		btrfs_end_transaction(trans);
3541 	}
3542 
3543 	/* step two, relocate all the chunks */
3544 	path = btrfs_alloc_path();
3545 	if (!path) {
3546 		ret = -ENOMEM;
3547 		goto error;
3548 	}
3549 
3550 	/* zero out stat counters */
3551 	spin_lock(&fs_info->balance_lock);
3552 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3553 	spin_unlock(&fs_info->balance_lock);
3554 again:
3555 	if (!counting) {
3556 		/*
3557 		 * The single value limit and min/max limits use the same bytes
3558 		 * in the
3559 		 */
3560 		bctl->data.limit = limit_data;
3561 		bctl->meta.limit = limit_meta;
3562 		bctl->sys.limit = limit_sys;
3563 	}
3564 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3565 	key.offset = (u64)-1;
3566 	key.type = BTRFS_CHUNK_ITEM_KEY;
3567 
3568 	while (1) {
3569 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3570 		    atomic_read(&fs_info->balance_cancel_req)) {
3571 			ret = -ECANCELED;
3572 			goto error;
3573 		}
3574 
3575 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3576 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3577 		if (ret < 0) {
3578 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3579 			goto error;
3580 		}
3581 
3582 		/*
3583 		 * this shouldn't happen, it means the last relocate
3584 		 * failed
3585 		 */
3586 		if (ret == 0)
3587 			BUG(); /* FIXME break ? */
3588 
3589 		ret = btrfs_previous_item(chunk_root, path, 0,
3590 					  BTRFS_CHUNK_ITEM_KEY);
3591 		if (ret) {
3592 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3593 			ret = 0;
3594 			break;
3595 		}
3596 
3597 		leaf = path->nodes[0];
3598 		slot = path->slots[0];
3599 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3600 
3601 		if (found_key.objectid != key.objectid) {
3602 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3603 			break;
3604 		}
3605 
3606 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3607 		chunk_type = btrfs_chunk_type(leaf, chunk);
3608 
3609 		if (!counting) {
3610 			spin_lock(&fs_info->balance_lock);
3611 			bctl->stat.considered++;
3612 			spin_unlock(&fs_info->balance_lock);
3613 		}
3614 
3615 		ret = should_balance_chunk(fs_info, leaf, chunk,
3616 					   found_key.offset);
3617 
3618 		btrfs_release_path(path);
3619 		if (!ret) {
3620 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3621 			goto loop;
3622 		}
3623 
3624 		if (counting) {
3625 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3626 			spin_lock(&fs_info->balance_lock);
3627 			bctl->stat.expected++;
3628 			spin_unlock(&fs_info->balance_lock);
3629 
3630 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3631 				count_data++;
3632 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3633 				count_sys++;
3634 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3635 				count_meta++;
3636 
3637 			goto loop;
3638 		}
3639 
3640 		/*
3641 		 * Apply limit_min filter, no need to check if the LIMITS
3642 		 * filter is used, limit_min is 0 by default
3643 		 */
3644 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3645 					count_data < bctl->data.limit_min)
3646 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3647 					count_meta < bctl->meta.limit_min)
3648 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3649 					count_sys < bctl->sys.limit_min)) {
3650 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3651 			goto loop;
3652 		}
3653 
3654 		ASSERT(fs_info->data_sinfo);
3655 		spin_lock(&fs_info->data_sinfo->lock);
3656 		bytes_used = fs_info->data_sinfo->bytes_used;
3657 		spin_unlock(&fs_info->data_sinfo->lock);
3658 
3659 		if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3660 		    !chunk_reserved && !bytes_used) {
3661 			trans = btrfs_start_transaction(chunk_root, 0);
3662 			if (IS_ERR(trans)) {
3663 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3664 				ret = PTR_ERR(trans);
3665 				goto error;
3666 			}
3667 
3668 			ret = btrfs_force_chunk_alloc(trans, fs_info,
3669 						      BTRFS_BLOCK_GROUP_DATA);
3670 			btrfs_end_transaction(trans);
3671 			if (ret < 0) {
3672 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3673 				goto error;
3674 			}
3675 			chunk_reserved = 1;
3676 		}
3677 
3678 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3679 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3680 		if (ret && ret != -ENOSPC)
3681 			goto error;
3682 		if (ret == -ENOSPC) {
3683 			enospc_errors++;
3684 		} else {
3685 			spin_lock(&fs_info->balance_lock);
3686 			bctl->stat.completed++;
3687 			spin_unlock(&fs_info->balance_lock);
3688 		}
3689 loop:
3690 		if (found_key.offset == 0)
3691 			break;
3692 		key.offset = found_key.offset - 1;
3693 	}
3694 
3695 	if (counting) {
3696 		btrfs_release_path(path);
3697 		counting = false;
3698 		goto again;
3699 	}
3700 error:
3701 	btrfs_free_path(path);
3702 	if (enospc_errors) {
3703 		btrfs_info(fs_info, "%d enospc errors during balance",
3704 			   enospc_errors);
3705 		if (!ret)
3706 			ret = -ENOSPC;
3707 	}
3708 
3709 	return ret;
3710 }
3711 
3712 /**
3713  * alloc_profile_is_valid - see if a given profile is valid and reduced
3714  * @flags: profile to validate
3715  * @extended: if true @flags is treated as an extended profile
3716  */
3717 static int alloc_profile_is_valid(u64 flags, int extended)
3718 {
3719 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3720 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3721 
3722 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3723 
3724 	/* 1) check that all other bits are zeroed */
3725 	if (flags & ~mask)
3726 		return 0;
3727 
3728 	/* 2) see if profile is reduced */
3729 	if (flags == 0)
3730 		return !extended; /* "0" is valid for usual profiles */
3731 
3732 	/* true if exactly one bit set */
3733 	return (flags & (flags - 1)) == 0;
3734 }
3735 
3736 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3737 {
3738 	/* cancel requested || normal exit path */
3739 	return atomic_read(&fs_info->balance_cancel_req) ||
3740 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3741 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3742 }
3743 
3744 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3745 {
3746 	int ret;
3747 
3748 	unset_balance_control(fs_info);
3749 	ret = del_balance_item(fs_info);
3750 	if (ret)
3751 		btrfs_handle_fs_error(fs_info, ret, NULL);
3752 
3753 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3754 }
3755 
3756 /* Non-zero return value signifies invalidity */
3757 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3758 		u64 allowed)
3759 {
3760 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3761 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3762 		 (bctl_arg->target & ~allowed)));
3763 }
3764 
3765 /*
3766  * Should be called with both balance and volume mutexes held
3767  */
3768 int btrfs_balance(struct btrfs_balance_control *bctl,
3769 		  struct btrfs_ioctl_balance_args *bargs)
3770 {
3771 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3772 	u64 meta_target, data_target;
3773 	u64 allowed;
3774 	int mixed = 0;
3775 	int ret;
3776 	u64 num_devices;
3777 	unsigned seq;
3778 
3779 	if (btrfs_fs_closing(fs_info) ||
3780 	    atomic_read(&fs_info->balance_pause_req) ||
3781 	    atomic_read(&fs_info->balance_cancel_req)) {
3782 		ret = -EINVAL;
3783 		goto out;
3784 	}
3785 
3786 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3787 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3788 		mixed = 1;
3789 
3790 	/*
3791 	 * In case of mixed groups both data and meta should be picked,
3792 	 * and identical options should be given for both of them.
3793 	 */
3794 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3795 	if (mixed && (bctl->flags & allowed)) {
3796 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3797 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3798 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3799 			btrfs_err(fs_info,
3800 				  "with mixed groups data and metadata balance options must be the same");
3801 			ret = -EINVAL;
3802 			goto out;
3803 		}
3804 	}
3805 
3806 	num_devices = fs_info->fs_devices->num_devices;
3807 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3808 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3809 		BUG_ON(num_devices < 1);
3810 		num_devices--;
3811 	}
3812 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3813 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3814 	if (num_devices > 1)
3815 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3816 	if (num_devices > 2)
3817 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3818 	if (num_devices > 3)
3819 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3820 			    BTRFS_BLOCK_GROUP_RAID6);
3821 	if (validate_convert_profile(&bctl->data, allowed)) {
3822 		btrfs_err(fs_info,
3823 			  "unable to start balance with target data profile %llu",
3824 			  bctl->data.target);
3825 		ret = -EINVAL;
3826 		goto out;
3827 	}
3828 	if (validate_convert_profile(&bctl->meta, allowed)) {
3829 		btrfs_err(fs_info,
3830 			  "unable to start balance with target metadata profile %llu",
3831 			  bctl->meta.target);
3832 		ret = -EINVAL;
3833 		goto out;
3834 	}
3835 	if (validate_convert_profile(&bctl->sys, allowed)) {
3836 		btrfs_err(fs_info,
3837 			  "unable to start balance with target system profile %llu",
3838 			  bctl->sys.target);
3839 		ret = -EINVAL;
3840 		goto out;
3841 	}
3842 
3843 	/* allow to reduce meta or sys integrity only if force set */
3844 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3845 			BTRFS_BLOCK_GROUP_RAID10 |
3846 			BTRFS_BLOCK_GROUP_RAID5 |
3847 			BTRFS_BLOCK_GROUP_RAID6;
3848 	do {
3849 		seq = read_seqbegin(&fs_info->profiles_lock);
3850 
3851 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3852 		     (fs_info->avail_system_alloc_bits & allowed) &&
3853 		     !(bctl->sys.target & allowed)) ||
3854 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3855 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3856 		     !(bctl->meta.target & allowed))) {
3857 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3858 				btrfs_info(fs_info,
3859 					   "force reducing metadata integrity");
3860 			} else {
3861 				btrfs_err(fs_info,
3862 					  "balance will reduce metadata integrity, use force if you want this");
3863 				ret = -EINVAL;
3864 				goto out;
3865 			}
3866 		}
3867 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3868 
3869 	/* if we're not converting, the target field is uninitialized */
3870 	meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3871 		bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3872 	data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3873 		bctl->data.target : fs_info->avail_data_alloc_bits;
3874 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3875 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3876 		btrfs_warn(fs_info,
3877 			   "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3878 			   meta_target, data_target);
3879 	}
3880 
3881 	ret = insert_balance_item(fs_info, bctl);
3882 	if (ret && ret != -EEXIST)
3883 		goto out;
3884 
3885 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3886 		BUG_ON(ret == -EEXIST);
3887 		set_balance_control(bctl);
3888 	} else {
3889 		BUG_ON(ret != -EEXIST);
3890 		spin_lock(&fs_info->balance_lock);
3891 		update_balance_args(bctl);
3892 		spin_unlock(&fs_info->balance_lock);
3893 	}
3894 
3895 	atomic_inc(&fs_info->balance_running);
3896 	mutex_unlock(&fs_info->balance_mutex);
3897 
3898 	ret = __btrfs_balance(fs_info);
3899 
3900 	mutex_lock(&fs_info->balance_mutex);
3901 	atomic_dec(&fs_info->balance_running);
3902 
3903 	if (bargs) {
3904 		memset(bargs, 0, sizeof(*bargs));
3905 		update_ioctl_balance_args(fs_info, 0, bargs);
3906 	}
3907 
3908 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3909 	    balance_need_close(fs_info)) {
3910 		__cancel_balance(fs_info);
3911 	}
3912 
3913 	wake_up(&fs_info->balance_wait_q);
3914 
3915 	return ret;
3916 out:
3917 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3918 		__cancel_balance(fs_info);
3919 	else {
3920 		kfree(bctl);
3921 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3922 	}
3923 	return ret;
3924 }
3925 
3926 static int balance_kthread(void *data)
3927 {
3928 	struct btrfs_fs_info *fs_info = data;
3929 	int ret = 0;
3930 
3931 	mutex_lock(&fs_info->volume_mutex);
3932 	mutex_lock(&fs_info->balance_mutex);
3933 
3934 	if (fs_info->balance_ctl) {
3935 		btrfs_info(fs_info, "continuing balance");
3936 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3937 	}
3938 
3939 	mutex_unlock(&fs_info->balance_mutex);
3940 	mutex_unlock(&fs_info->volume_mutex);
3941 
3942 	return ret;
3943 }
3944 
3945 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3946 {
3947 	struct task_struct *tsk;
3948 
3949 	spin_lock(&fs_info->balance_lock);
3950 	if (!fs_info->balance_ctl) {
3951 		spin_unlock(&fs_info->balance_lock);
3952 		return 0;
3953 	}
3954 	spin_unlock(&fs_info->balance_lock);
3955 
3956 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3957 		btrfs_info(fs_info, "force skipping balance");
3958 		return 0;
3959 	}
3960 
3961 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3962 	return PTR_ERR_OR_ZERO(tsk);
3963 }
3964 
3965 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3966 {
3967 	struct btrfs_balance_control *bctl;
3968 	struct btrfs_balance_item *item;
3969 	struct btrfs_disk_balance_args disk_bargs;
3970 	struct btrfs_path *path;
3971 	struct extent_buffer *leaf;
3972 	struct btrfs_key key;
3973 	int ret;
3974 
3975 	path = btrfs_alloc_path();
3976 	if (!path)
3977 		return -ENOMEM;
3978 
3979 	key.objectid = BTRFS_BALANCE_OBJECTID;
3980 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3981 	key.offset = 0;
3982 
3983 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3984 	if (ret < 0)
3985 		goto out;
3986 	if (ret > 0) { /* ret = -ENOENT; */
3987 		ret = 0;
3988 		goto out;
3989 	}
3990 
3991 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3992 	if (!bctl) {
3993 		ret = -ENOMEM;
3994 		goto out;
3995 	}
3996 
3997 	leaf = path->nodes[0];
3998 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3999 
4000 	bctl->fs_info = fs_info;
4001 	bctl->flags = btrfs_balance_flags(leaf, item);
4002 	bctl->flags |= BTRFS_BALANCE_RESUME;
4003 
4004 	btrfs_balance_data(leaf, item, &disk_bargs);
4005 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4006 	btrfs_balance_meta(leaf, item, &disk_bargs);
4007 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4008 	btrfs_balance_sys(leaf, item, &disk_bargs);
4009 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4010 
4011 	WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4012 
4013 	mutex_lock(&fs_info->volume_mutex);
4014 	mutex_lock(&fs_info->balance_mutex);
4015 
4016 	set_balance_control(bctl);
4017 
4018 	mutex_unlock(&fs_info->balance_mutex);
4019 	mutex_unlock(&fs_info->volume_mutex);
4020 out:
4021 	btrfs_free_path(path);
4022 	return ret;
4023 }
4024 
4025 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4026 {
4027 	int ret = 0;
4028 
4029 	mutex_lock(&fs_info->balance_mutex);
4030 	if (!fs_info->balance_ctl) {
4031 		mutex_unlock(&fs_info->balance_mutex);
4032 		return -ENOTCONN;
4033 	}
4034 
4035 	if (atomic_read(&fs_info->balance_running)) {
4036 		atomic_inc(&fs_info->balance_pause_req);
4037 		mutex_unlock(&fs_info->balance_mutex);
4038 
4039 		wait_event(fs_info->balance_wait_q,
4040 			   atomic_read(&fs_info->balance_running) == 0);
4041 
4042 		mutex_lock(&fs_info->balance_mutex);
4043 		/* we are good with balance_ctl ripped off from under us */
4044 		BUG_ON(atomic_read(&fs_info->balance_running));
4045 		atomic_dec(&fs_info->balance_pause_req);
4046 	} else {
4047 		ret = -ENOTCONN;
4048 	}
4049 
4050 	mutex_unlock(&fs_info->balance_mutex);
4051 	return ret;
4052 }
4053 
4054 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4055 {
4056 	if (sb_rdonly(fs_info->sb))
4057 		return -EROFS;
4058 
4059 	mutex_lock(&fs_info->balance_mutex);
4060 	if (!fs_info->balance_ctl) {
4061 		mutex_unlock(&fs_info->balance_mutex);
4062 		return -ENOTCONN;
4063 	}
4064 
4065 	atomic_inc(&fs_info->balance_cancel_req);
4066 	/*
4067 	 * if we are running just wait and return, balance item is
4068 	 * deleted in btrfs_balance in this case
4069 	 */
4070 	if (atomic_read(&fs_info->balance_running)) {
4071 		mutex_unlock(&fs_info->balance_mutex);
4072 		wait_event(fs_info->balance_wait_q,
4073 			   atomic_read(&fs_info->balance_running) == 0);
4074 		mutex_lock(&fs_info->balance_mutex);
4075 	} else {
4076 		/* __cancel_balance needs volume_mutex */
4077 		mutex_unlock(&fs_info->balance_mutex);
4078 		mutex_lock(&fs_info->volume_mutex);
4079 		mutex_lock(&fs_info->balance_mutex);
4080 
4081 		if (fs_info->balance_ctl)
4082 			__cancel_balance(fs_info);
4083 
4084 		mutex_unlock(&fs_info->volume_mutex);
4085 	}
4086 
4087 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4088 	atomic_dec(&fs_info->balance_cancel_req);
4089 	mutex_unlock(&fs_info->balance_mutex);
4090 	return 0;
4091 }
4092 
4093 static int btrfs_uuid_scan_kthread(void *data)
4094 {
4095 	struct btrfs_fs_info *fs_info = data;
4096 	struct btrfs_root *root = fs_info->tree_root;
4097 	struct btrfs_key key;
4098 	struct btrfs_path *path = NULL;
4099 	int ret = 0;
4100 	struct extent_buffer *eb;
4101 	int slot;
4102 	struct btrfs_root_item root_item;
4103 	u32 item_size;
4104 	struct btrfs_trans_handle *trans = NULL;
4105 
4106 	path = btrfs_alloc_path();
4107 	if (!path) {
4108 		ret = -ENOMEM;
4109 		goto out;
4110 	}
4111 
4112 	key.objectid = 0;
4113 	key.type = BTRFS_ROOT_ITEM_KEY;
4114 	key.offset = 0;
4115 
4116 	while (1) {
4117 		ret = btrfs_search_forward(root, &key, path, 0);
4118 		if (ret) {
4119 			if (ret > 0)
4120 				ret = 0;
4121 			break;
4122 		}
4123 
4124 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4125 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4126 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4127 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4128 			goto skip;
4129 
4130 		eb = path->nodes[0];
4131 		slot = path->slots[0];
4132 		item_size = btrfs_item_size_nr(eb, slot);
4133 		if (item_size < sizeof(root_item))
4134 			goto skip;
4135 
4136 		read_extent_buffer(eb, &root_item,
4137 				   btrfs_item_ptr_offset(eb, slot),
4138 				   (int)sizeof(root_item));
4139 		if (btrfs_root_refs(&root_item) == 0)
4140 			goto skip;
4141 
4142 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4143 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4144 			if (trans)
4145 				goto update_tree;
4146 
4147 			btrfs_release_path(path);
4148 			/*
4149 			 * 1 - subvol uuid item
4150 			 * 1 - received_subvol uuid item
4151 			 */
4152 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4153 			if (IS_ERR(trans)) {
4154 				ret = PTR_ERR(trans);
4155 				break;
4156 			}
4157 			continue;
4158 		} else {
4159 			goto skip;
4160 		}
4161 update_tree:
4162 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4163 			ret = btrfs_uuid_tree_add(trans, fs_info,
4164 						  root_item.uuid,
4165 						  BTRFS_UUID_KEY_SUBVOL,
4166 						  key.objectid);
4167 			if (ret < 0) {
4168 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4169 					ret);
4170 				break;
4171 			}
4172 		}
4173 
4174 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4175 			ret = btrfs_uuid_tree_add(trans, fs_info,
4176 						  root_item.received_uuid,
4177 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4178 						  key.objectid);
4179 			if (ret < 0) {
4180 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4181 					ret);
4182 				break;
4183 			}
4184 		}
4185 
4186 skip:
4187 		if (trans) {
4188 			ret = btrfs_end_transaction(trans);
4189 			trans = NULL;
4190 			if (ret)
4191 				break;
4192 		}
4193 
4194 		btrfs_release_path(path);
4195 		if (key.offset < (u64)-1) {
4196 			key.offset++;
4197 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4198 			key.offset = 0;
4199 			key.type = BTRFS_ROOT_ITEM_KEY;
4200 		} else if (key.objectid < (u64)-1) {
4201 			key.offset = 0;
4202 			key.type = BTRFS_ROOT_ITEM_KEY;
4203 			key.objectid++;
4204 		} else {
4205 			break;
4206 		}
4207 		cond_resched();
4208 	}
4209 
4210 out:
4211 	btrfs_free_path(path);
4212 	if (trans && !IS_ERR(trans))
4213 		btrfs_end_transaction(trans);
4214 	if (ret)
4215 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4216 	else
4217 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4218 	up(&fs_info->uuid_tree_rescan_sem);
4219 	return 0;
4220 }
4221 
4222 /*
4223  * Callback for btrfs_uuid_tree_iterate().
4224  * returns:
4225  * 0	check succeeded, the entry is not outdated.
4226  * < 0	if an error occurred.
4227  * > 0	if the check failed, which means the caller shall remove the entry.
4228  */
4229 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4230 				       u8 *uuid, u8 type, u64 subid)
4231 {
4232 	struct btrfs_key key;
4233 	int ret = 0;
4234 	struct btrfs_root *subvol_root;
4235 
4236 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4237 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4238 		goto out;
4239 
4240 	key.objectid = subid;
4241 	key.type = BTRFS_ROOT_ITEM_KEY;
4242 	key.offset = (u64)-1;
4243 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4244 	if (IS_ERR(subvol_root)) {
4245 		ret = PTR_ERR(subvol_root);
4246 		if (ret == -ENOENT)
4247 			ret = 1;
4248 		goto out;
4249 	}
4250 
4251 	switch (type) {
4252 	case BTRFS_UUID_KEY_SUBVOL:
4253 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4254 			ret = 1;
4255 		break;
4256 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4257 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4258 			   BTRFS_UUID_SIZE))
4259 			ret = 1;
4260 		break;
4261 	}
4262 
4263 out:
4264 	return ret;
4265 }
4266 
4267 static int btrfs_uuid_rescan_kthread(void *data)
4268 {
4269 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4270 	int ret;
4271 
4272 	/*
4273 	 * 1st step is to iterate through the existing UUID tree and
4274 	 * to delete all entries that contain outdated data.
4275 	 * 2nd step is to add all missing entries to the UUID tree.
4276 	 */
4277 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4278 	if (ret < 0) {
4279 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4280 		up(&fs_info->uuid_tree_rescan_sem);
4281 		return ret;
4282 	}
4283 	return btrfs_uuid_scan_kthread(data);
4284 }
4285 
4286 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4287 {
4288 	struct btrfs_trans_handle *trans;
4289 	struct btrfs_root *tree_root = fs_info->tree_root;
4290 	struct btrfs_root *uuid_root;
4291 	struct task_struct *task;
4292 	int ret;
4293 
4294 	/*
4295 	 * 1 - root node
4296 	 * 1 - root item
4297 	 */
4298 	trans = btrfs_start_transaction(tree_root, 2);
4299 	if (IS_ERR(trans))
4300 		return PTR_ERR(trans);
4301 
4302 	uuid_root = btrfs_create_tree(trans, fs_info,
4303 				      BTRFS_UUID_TREE_OBJECTID);
4304 	if (IS_ERR(uuid_root)) {
4305 		ret = PTR_ERR(uuid_root);
4306 		btrfs_abort_transaction(trans, ret);
4307 		btrfs_end_transaction(trans);
4308 		return ret;
4309 	}
4310 
4311 	fs_info->uuid_root = uuid_root;
4312 
4313 	ret = btrfs_commit_transaction(trans);
4314 	if (ret)
4315 		return ret;
4316 
4317 	down(&fs_info->uuid_tree_rescan_sem);
4318 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4319 	if (IS_ERR(task)) {
4320 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4321 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4322 		up(&fs_info->uuid_tree_rescan_sem);
4323 		return PTR_ERR(task);
4324 	}
4325 
4326 	return 0;
4327 }
4328 
4329 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4330 {
4331 	struct task_struct *task;
4332 
4333 	down(&fs_info->uuid_tree_rescan_sem);
4334 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4335 	if (IS_ERR(task)) {
4336 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4337 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4338 		up(&fs_info->uuid_tree_rescan_sem);
4339 		return PTR_ERR(task);
4340 	}
4341 
4342 	return 0;
4343 }
4344 
4345 /*
4346  * shrinking a device means finding all of the device extents past
4347  * the new size, and then following the back refs to the chunks.
4348  * The chunk relocation code actually frees the device extent
4349  */
4350 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4351 {
4352 	struct btrfs_fs_info *fs_info = device->fs_info;
4353 	struct btrfs_root *root = fs_info->dev_root;
4354 	struct btrfs_trans_handle *trans;
4355 	struct btrfs_dev_extent *dev_extent = NULL;
4356 	struct btrfs_path *path;
4357 	u64 length;
4358 	u64 chunk_offset;
4359 	int ret;
4360 	int slot;
4361 	int failed = 0;
4362 	bool retried = false;
4363 	bool checked_pending_chunks = false;
4364 	struct extent_buffer *l;
4365 	struct btrfs_key key;
4366 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4367 	u64 old_total = btrfs_super_total_bytes(super_copy);
4368 	u64 old_size = btrfs_device_get_total_bytes(device);
4369 	u64 diff;
4370 
4371 	new_size = round_down(new_size, fs_info->sectorsize);
4372 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4373 
4374 	if (device->is_tgtdev_for_dev_replace)
4375 		return -EINVAL;
4376 
4377 	path = btrfs_alloc_path();
4378 	if (!path)
4379 		return -ENOMEM;
4380 
4381 	path->reada = READA_FORWARD;
4382 
4383 	mutex_lock(&fs_info->chunk_mutex);
4384 
4385 	btrfs_device_set_total_bytes(device, new_size);
4386 	if (device->writeable) {
4387 		device->fs_devices->total_rw_bytes -= diff;
4388 		atomic64_sub(diff, &fs_info->free_chunk_space);
4389 	}
4390 	mutex_unlock(&fs_info->chunk_mutex);
4391 
4392 again:
4393 	key.objectid = device->devid;
4394 	key.offset = (u64)-1;
4395 	key.type = BTRFS_DEV_EXTENT_KEY;
4396 
4397 	do {
4398 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4399 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4400 		if (ret < 0) {
4401 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4402 			goto done;
4403 		}
4404 
4405 		ret = btrfs_previous_item(root, path, 0, key.type);
4406 		if (ret)
4407 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4408 		if (ret < 0)
4409 			goto done;
4410 		if (ret) {
4411 			ret = 0;
4412 			btrfs_release_path(path);
4413 			break;
4414 		}
4415 
4416 		l = path->nodes[0];
4417 		slot = path->slots[0];
4418 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4419 
4420 		if (key.objectid != device->devid) {
4421 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4422 			btrfs_release_path(path);
4423 			break;
4424 		}
4425 
4426 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4427 		length = btrfs_dev_extent_length(l, dev_extent);
4428 
4429 		if (key.offset + length <= new_size) {
4430 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4431 			btrfs_release_path(path);
4432 			break;
4433 		}
4434 
4435 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4436 		btrfs_release_path(path);
4437 
4438 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4439 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4440 		if (ret && ret != -ENOSPC)
4441 			goto done;
4442 		if (ret == -ENOSPC)
4443 			failed++;
4444 	} while (key.offset-- > 0);
4445 
4446 	if (failed && !retried) {
4447 		failed = 0;
4448 		retried = true;
4449 		goto again;
4450 	} else if (failed && retried) {
4451 		ret = -ENOSPC;
4452 		goto done;
4453 	}
4454 
4455 	/* Shrinking succeeded, else we would be at "done". */
4456 	trans = btrfs_start_transaction(root, 0);
4457 	if (IS_ERR(trans)) {
4458 		ret = PTR_ERR(trans);
4459 		goto done;
4460 	}
4461 
4462 	mutex_lock(&fs_info->chunk_mutex);
4463 
4464 	/*
4465 	 * We checked in the above loop all device extents that were already in
4466 	 * the device tree. However before we have updated the device's
4467 	 * total_bytes to the new size, we might have had chunk allocations that
4468 	 * have not complete yet (new block groups attached to transaction
4469 	 * handles), and therefore their device extents were not yet in the
4470 	 * device tree and we missed them in the loop above. So if we have any
4471 	 * pending chunk using a device extent that overlaps the device range
4472 	 * that we can not use anymore, commit the current transaction and
4473 	 * repeat the search on the device tree - this way we guarantee we will
4474 	 * not have chunks using device extents that end beyond 'new_size'.
4475 	 */
4476 	if (!checked_pending_chunks) {
4477 		u64 start = new_size;
4478 		u64 len = old_size - new_size;
4479 
4480 		if (contains_pending_extent(trans->transaction, device,
4481 					    &start, len)) {
4482 			mutex_unlock(&fs_info->chunk_mutex);
4483 			checked_pending_chunks = true;
4484 			failed = 0;
4485 			retried = false;
4486 			ret = btrfs_commit_transaction(trans);
4487 			if (ret)
4488 				goto done;
4489 			goto again;
4490 		}
4491 	}
4492 
4493 	btrfs_device_set_disk_total_bytes(device, new_size);
4494 	if (list_empty(&device->resized_list))
4495 		list_add_tail(&device->resized_list,
4496 			      &fs_info->fs_devices->resized_devices);
4497 
4498 	WARN_ON(diff > old_total);
4499 	btrfs_set_super_total_bytes(super_copy,
4500 			round_down(old_total - diff, fs_info->sectorsize));
4501 	mutex_unlock(&fs_info->chunk_mutex);
4502 
4503 	/* Now btrfs_update_device() will change the on-disk size. */
4504 	ret = btrfs_update_device(trans, device);
4505 	btrfs_end_transaction(trans);
4506 done:
4507 	btrfs_free_path(path);
4508 	if (ret) {
4509 		mutex_lock(&fs_info->chunk_mutex);
4510 		btrfs_device_set_total_bytes(device, old_size);
4511 		if (device->writeable)
4512 			device->fs_devices->total_rw_bytes += diff;
4513 		atomic64_add(diff, &fs_info->free_chunk_space);
4514 		mutex_unlock(&fs_info->chunk_mutex);
4515 	}
4516 	return ret;
4517 }
4518 
4519 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4520 			   struct btrfs_key *key,
4521 			   struct btrfs_chunk *chunk, int item_size)
4522 {
4523 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4524 	struct btrfs_disk_key disk_key;
4525 	u32 array_size;
4526 	u8 *ptr;
4527 
4528 	mutex_lock(&fs_info->chunk_mutex);
4529 	array_size = btrfs_super_sys_array_size(super_copy);
4530 	if (array_size + item_size + sizeof(disk_key)
4531 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4532 		mutex_unlock(&fs_info->chunk_mutex);
4533 		return -EFBIG;
4534 	}
4535 
4536 	ptr = super_copy->sys_chunk_array + array_size;
4537 	btrfs_cpu_key_to_disk(&disk_key, key);
4538 	memcpy(ptr, &disk_key, sizeof(disk_key));
4539 	ptr += sizeof(disk_key);
4540 	memcpy(ptr, chunk, item_size);
4541 	item_size += sizeof(disk_key);
4542 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4543 	mutex_unlock(&fs_info->chunk_mutex);
4544 
4545 	return 0;
4546 }
4547 
4548 /*
4549  * sort the devices in descending order by max_avail, total_avail
4550  */
4551 static int btrfs_cmp_device_info(const void *a, const void *b)
4552 {
4553 	const struct btrfs_device_info *di_a = a;
4554 	const struct btrfs_device_info *di_b = b;
4555 
4556 	if (di_a->max_avail > di_b->max_avail)
4557 		return -1;
4558 	if (di_a->max_avail < di_b->max_avail)
4559 		return 1;
4560 	if (di_a->total_avail > di_b->total_avail)
4561 		return -1;
4562 	if (di_a->total_avail < di_b->total_avail)
4563 		return 1;
4564 	return 0;
4565 }
4566 
4567 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4568 {
4569 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4570 		return;
4571 
4572 	btrfs_set_fs_incompat(info, RAID56);
4573 }
4574 
4575 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info)		\
4576 			- sizeof(struct btrfs_chunk))		\
4577 			/ sizeof(struct btrfs_stripe) + 1)
4578 
4579 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4580 				- 2 * sizeof(struct btrfs_disk_key)	\
4581 				- 2 * sizeof(struct btrfs_chunk))	\
4582 				/ sizeof(struct btrfs_stripe) + 1)
4583 
4584 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4585 			       u64 start, u64 type)
4586 {
4587 	struct btrfs_fs_info *info = trans->fs_info;
4588 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4589 	struct btrfs_device *device;
4590 	struct map_lookup *map = NULL;
4591 	struct extent_map_tree *em_tree;
4592 	struct extent_map *em;
4593 	struct btrfs_device_info *devices_info = NULL;
4594 	u64 total_avail;
4595 	int num_stripes;	/* total number of stripes to allocate */
4596 	int data_stripes;	/* number of stripes that count for
4597 				   block group size */
4598 	int sub_stripes;	/* sub_stripes info for map */
4599 	int dev_stripes;	/* stripes per dev */
4600 	int devs_max;		/* max devs to use */
4601 	int devs_min;		/* min devs needed */
4602 	int devs_increment;	/* ndevs has to be a multiple of this */
4603 	int ncopies;		/* how many copies to data has */
4604 	int ret;
4605 	u64 max_stripe_size;
4606 	u64 max_chunk_size;
4607 	u64 stripe_size;
4608 	u64 num_bytes;
4609 	int ndevs;
4610 	int i;
4611 	int j;
4612 	int index;
4613 
4614 	BUG_ON(!alloc_profile_is_valid(type, 0));
4615 
4616 	if (list_empty(&fs_devices->alloc_list))
4617 		return -ENOSPC;
4618 
4619 	index = __get_raid_index(type);
4620 
4621 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4622 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4623 	devs_max = btrfs_raid_array[index].devs_max;
4624 	devs_min = btrfs_raid_array[index].devs_min;
4625 	devs_increment = btrfs_raid_array[index].devs_increment;
4626 	ncopies = btrfs_raid_array[index].ncopies;
4627 
4628 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4629 		max_stripe_size = SZ_1G;
4630 		max_chunk_size = 10 * max_stripe_size;
4631 		if (!devs_max)
4632 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4633 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4634 		/* for larger filesystems, use larger metadata chunks */
4635 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4636 			max_stripe_size = SZ_1G;
4637 		else
4638 			max_stripe_size = SZ_256M;
4639 		max_chunk_size = max_stripe_size;
4640 		if (!devs_max)
4641 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4642 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4643 		max_stripe_size = SZ_32M;
4644 		max_chunk_size = 2 * max_stripe_size;
4645 		if (!devs_max)
4646 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4647 	} else {
4648 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4649 		       type);
4650 		BUG_ON(1);
4651 	}
4652 
4653 	/* we don't want a chunk larger than 10% of writeable space */
4654 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4655 			     max_chunk_size);
4656 
4657 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4658 			       GFP_NOFS);
4659 	if (!devices_info)
4660 		return -ENOMEM;
4661 
4662 	/*
4663 	 * in the first pass through the devices list, we gather information
4664 	 * about the available holes on each device.
4665 	 */
4666 	ndevs = 0;
4667 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4668 		u64 max_avail;
4669 		u64 dev_offset;
4670 
4671 		if (!device->writeable) {
4672 			WARN(1, KERN_ERR
4673 			       "BTRFS: read-only device in alloc_list\n");
4674 			continue;
4675 		}
4676 
4677 		if (!device->in_fs_metadata ||
4678 		    device->is_tgtdev_for_dev_replace)
4679 			continue;
4680 
4681 		if (device->total_bytes > device->bytes_used)
4682 			total_avail = device->total_bytes - device->bytes_used;
4683 		else
4684 			total_avail = 0;
4685 
4686 		/* If there is no space on this device, skip it. */
4687 		if (total_avail == 0)
4688 			continue;
4689 
4690 		ret = find_free_dev_extent(trans, device,
4691 					   max_stripe_size * dev_stripes,
4692 					   &dev_offset, &max_avail);
4693 		if (ret && ret != -ENOSPC)
4694 			goto error;
4695 
4696 		if (ret == 0)
4697 			max_avail = max_stripe_size * dev_stripes;
4698 
4699 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4700 			continue;
4701 
4702 		if (ndevs == fs_devices->rw_devices) {
4703 			WARN(1, "%s: found more than %llu devices\n",
4704 			     __func__, fs_devices->rw_devices);
4705 			break;
4706 		}
4707 		devices_info[ndevs].dev_offset = dev_offset;
4708 		devices_info[ndevs].max_avail = max_avail;
4709 		devices_info[ndevs].total_avail = total_avail;
4710 		devices_info[ndevs].dev = device;
4711 		++ndevs;
4712 	}
4713 
4714 	/*
4715 	 * now sort the devices by hole size / available space
4716 	 */
4717 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4718 	     btrfs_cmp_device_info, NULL);
4719 
4720 	/* round down to number of usable stripes */
4721 	ndevs = round_down(ndevs, devs_increment);
4722 
4723 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4724 		ret = -ENOSPC;
4725 		goto error;
4726 	}
4727 
4728 	ndevs = min(ndevs, devs_max);
4729 
4730 	/*
4731 	 * the primary goal is to maximize the number of stripes, so use as many
4732 	 * devices as possible, even if the stripes are not maximum sized.
4733 	 */
4734 	stripe_size = devices_info[ndevs-1].max_avail;
4735 	num_stripes = ndevs * dev_stripes;
4736 
4737 	/*
4738 	 * this will have to be fixed for RAID1 and RAID10 over
4739 	 * more drives
4740 	 */
4741 	data_stripes = num_stripes / ncopies;
4742 
4743 	if (type & BTRFS_BLOCK_GROUP_RAID5)
4744 		data_stripes = num_stripes - 1;
4745 
4746 	if (type & BTRFS_BLOCK_GROUP_RAID6)
4747 		data_stripes = num_stripes - 2;
4748 
4749 	/*
4750 	 * Use the number of data stripes to figure out how big this chunk
4751 	 * is really going to be in terms of logical address space,
4752 	 * and compare that answer with the max chunk size
4753 	 */
4754 	if (stripe_size * data_stripes > max_chunk_size) {
4755 		u64 mask = (1ULL << 24) - 1;
4756 
4757 		stripe_size = div_u64(max_chunk_size, data_stripes);
4758 
4759 		/* bump the answer up to a 16MB boundary */
4760 		stripe_size = (stripe_size + mask) & ~mask;
4761 
4762 		/* but don't go higher than the limits we found
4763 		 * while searching for free extents
4764 		 */
4765 		if (stripe_size > devices_info[ndevs-1].max_avail)
4766 			stripe_size = devices_info[ndevs-1].max_avail;
4767 	}
4768 
4769 	stripe_size = div_u64(stripe_size, dev_stripes);
4770 
4771 	/* align to BTRFS_STRIPE_LEN */
4772 	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4773 
4774 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4775 	if (!map) {
4776 		ret = -ENOMEM;
4777 		goto error;
4778 	}
4779 	map->num_stripes = num_stripes;
4780 
4781 	for (i = 0; i < ndevs; ++i) {
4782 		for (j = 0; j < dev_stripes; ++j) {
4783 			int s = i * dev_stripes + j;
4784 			map->stripes[s].dev = devices_info[i].dev;
4785 			map->stripes[s].physical = devices_info[i].dev_offset +
4786 						   j * stripe_size;
4787 		}
4788 	}
4789 	map->stripe_len = BTRFS_STRIPE_LEN;
4790 	map->io_align = BTRFS_STRIPE_LEN;
4791 	map->io_width = BTRFS_STRIPE_LEN;
4792 	map->type = type;
4793 	map->sub_stripes = sub_stripes;
4794 
4795 	num_bytes = stripe_size * data_stripes;
4796 
4797 	trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4798 
4799 	em = alloc_extent_map();
4800 	if (!em) {
4801 		kfree(map);
4802 		ret = -ENOMEM;
4803 		goto error;
4804 	}
4805 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4806 	em->map_lookup = map;
4807 	em->start = start;
4808 	em->len = num_bytes;
4809 	em->block_start = 0;
4810 	em->block_len = em->len;
4811 	em->orig_block_len = stripe_size;
4812 
4813 	em_tree = &info->mapping_tree.map_tree;
4814 	write_lock(&em_tree->lock);
4815 	ret = add_extent_mapping(em_tree, em, 0);
4816 	if (!ret) {
4817 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4818 		refcount_inc(&em->refs);
4819 	}
4820 	write_unlock(&em_tree->lock);
4821 	if (ret) {
4822 		free_extent_map(em);
4823 		goto error;
4824 	}
4825 
4826 	ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4827 	if (ret)
4828 		goto error_del_extent;
4829 
4830 	for (i = 0; i < map->num_stripes; i++) {
4831 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4832 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4833 	}
4834 
4835 	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4836 
4837 	free_extent_map(em);
4838 	check_raid56_incompat_flag(info, type);
4839 
4840 	kfree(devices_info);
4841 	return 0;
4842 
4843 error_del_extent:
4844 	write_lock(&em_tree->lock);
4845 	remove_extent_mapping(em_tree, em);
4846 	write_unlock(&em_tree->lock);
4847 
4848 	/* One for our allocation */
4849 	free_extent_map(em);
4850 	/* One for the tree reference */
4851 	free_extent_map(em);
4852 	/* One for the pending_chunks list reference */
4853 	free_extent_map(em);
4854 error:
4855 	kfree(devices_info);
4856 	return ret;
4857 }
4858 
4859 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4860 				struct btrfs_fs_info *fs_info,
4861 				u64 chunk_offset, u64 chunk_size)
4862 {
4863 	struct btrfs_root *extent_root = fs_info->extent_root;
4864 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4865 	struct btrfs_key key;
4866 	struct btrfs_device *device;
4867 	struct btrfs_chunk *chunk;
4868 	struct btrfs_stripe *stripe;
4869 	struct extent_map *em;
4870 	struct map_lookup *map;
4871 	size_t item_size;
4872 	u64 dev_offset;
4873 	u64 stripe_size;
4874 	int i = 0;
4875 	int ret = 0;
4876 
4877 	em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4878 	if (IS_ERR(em))
4879 		return PTR_ERR(em);
4880 
4881 	map = em->map_lookup;
4882 	item_size = btrfs_chunk_item_size(map->num_stripes);
4883 	stripe_size = em->orig_block_len;
4884 
4885 	chunk = kzalloc(item_size, GFP_NOFS);
4886 	if (!chunk) {
4887 		ret = -ENOMEM;
4888 		goto out;
4889 	}
4890 
4891 	/*
4892 	 * Take the device list mutex to prevent races with the final phase of
4893 	 * a device replace operation that replaces the device object associated
4894 	 * with the map's stripes, because the device object's id can change
4895 	 * at any time during that final phase of the device replace operation
4896 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4897 	 */
4898 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4899 	for (i = 0; i < map->num_stripes; i++) {
4900 		device = map->stripes[i].dev;
4901 		dev_offset = map->stripes[i].physical;
4902 
4903 		ret = btrfs_update_device(trans, device);
4904 		if (ret)
4905 			break;
4906 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4907 					     dev_offset, stripe_size);
4908 		if (ret)
4909 			break;
4910 	}
4911 	if (ret) {
4912 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4913 		goto out;
4914 	}
4915 
4916 	stripe = &chunk->stripe;
4917 	for (i = 0; i < map->num_stripes; i++) {
4918 		device = map->stripes[i].dev;
4919 		dev_offset = map->stripes[i].physical;
4920 
4921 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4922 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4923 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4924 		stripe++;
4925 	}
4926 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4927 
4928 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4929 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4930 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4931 	btrfs_set_stack_chunk_type(chunk, map->type);
4932 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4933 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4934 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4935 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4936 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4937 
4938 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4939 	key.type = BTRFS_CHUNK_ITEM_KEY;
4940 	key.offset = chunk_offset;
4941 
4942 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4943 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4944 		/*
4945 		 * TODO: Cleanup of inserted chunk root in case of
4946 		 * failure.
4947 		 */
4948 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4949 	}
4950 
4951 out:
4952 	kfree(chunk);
4953 	free_extent_map(em);
4954 	return ret;
4955 }
4956 
4957 /*
4958  * Chunk allocation falls into two parts. The first part does works
4959  * that make the new allocated chunk useable, but not do any operation
4960  * that modifies the chunk tree. The second part does the works that
4961  * require modifying the chunk tree. This division is important for the
4962  * bootstrap process of adding storage to a seed btrfs.
4963  */
4964 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4965 		      struct btrfs_fs_info *fs_info, u64 type)
4966 {
4967 	u64 chunk_offset;
4968 
4969 	ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4970 	chunk_offset = find_next_chunk(fs_info);
4971 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
4972 }
4973 
4974 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4975 					 struct btrfs_fs_info *fs_info)
4976 {
4977 	u64 chunk_offset;
4978 	u64 sys_chunk_offset;
4979 	u64 alloc_profile;
4980 	int ret;
4981 
4982 	chunk_offset = find_next_chunk(fs_info);
4983 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4984 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
4985 	if (ret)
4986 		return ret;
4987 
4988 	sys_chunk_offset = find_next_chunk(fs_info);
4989 	alloc_profile = btrfs_system_alloc_profile(fs_info);
4990 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
4991 	return ret;
4992 }
4993 
4994 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4995 {
4996 	int max_errors;
4997 
4998 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4999 			 BTRFS_BLOCK_GROUP_RAID10 |
5000 			 BTRFS_BLOCK_GROUP_RAID5 |
5001 			 BTRFS_BLOCK_GROUP_DUP)) {
5002 		max_errors = 1;
5003 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5004 		max_errors = 2;
5005 	} else {
5006 		max_errors = 0;
5007 	}
5008 
5009 	return max_errors;
5010 }
5011 
5012 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5013 {
5014 	struct extent_map *em;
5015 	struct map_lookup *map;
5016 	int readonly = 0;
5017 	int miss_ndevs = 0;
5018 	int i;
5019 
5020 	em = get_chunk_map(fs_info, chunk_offset, 1);
5021 	if (IS_ERR(em))
5022 		return 1;
5023 
5024 	map = em->map_lookup;
5025 	for (i = 0; i < map->num_stripes; i++) {
5026 		if (map->stripes[i].dev->missing) {
5027 			miss_ndevs++;
5028 			continue;
5029 		}
5030 
5031 		if (!map->stripes[i].dev->writeable) {
5032 			readonly = 1;
5033 			goto end;
5034 		}
5035 	}
5036 
5037 	/*
5038 	 * If the number of missing devices is larger than max errors,
5039 	 * we can not write the data into that chunk successfully, so
5040 	 * set it readonly.
5041 	 */
5042 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5043 		readonly = 1;
5044 end:
5045 	free_extent_map(em);
5046 	return readonly;
5047 }
5048 
5049 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5050 {
5051 	extent_map_tree_init(&tree->map_tree);
5052 }
5053 
5054 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5055 {
5056 	struct extent_map *em;
5057 
5058 	while (1) {
5059 		write_lock(&tree->map_tree.lock);
5060 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5061 		if (em)
5062 			remove_extent_mapping(&tree->map_tree, em);
5063 		write_unlock(&tree->map_tree.lock);
5064 		if (!em)
5065 			break;
5066 		/* once for us */
5067 		free_extent_map(em);
5068 		/* once for the tree */
5069 		free_extent_map(em);
5070 	}
5071 }
5072 
5073 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5074 {
5075 	struct extent_map *em;
5076 	struct map_lookup *map;
5077 	int ret;
5078 
5079 	em = get_chunk_map(fs_info, logical, len);
5080 	if (IS_ERR(em))
5081 		/*
5082 		 * We could return errors for these cases, but that could get
5083 		 * ugly and we'd probably do the same thing which is just not do
5084 		 * anything else and exit, so return 1 so the callers don't try
5085 		 * to use other copies.
5086 		 */
5087 		return 1;
5088 
5089 	map = em->map_lookup;
5090 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5091 		ret = map->num_stripes;
5092 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5093 		ret = map->sub_stripes;
5094 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5095 		ret = 2;
5096 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5097 		ret = 3;
5098 	else
5099 		ret = 1;
5100 	free_extent_map(em);
5101 
5102 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5103 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5104 	    fs_info->dev_replace.tgtdev)
5105 		ret++;
5106 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5107 
5108 	return ret;
5109 }
5110 
5111 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5112 				    u64 logical)
5113 {
5114 	struct extent_map *em;
5115 	struct map_lookup *map;
5116 	unsigned long len = fs_info->sectorsize;
5117 
5118 	em = get_chunk_map(fs_info, logical, len);
5119 
5120 	if (!WARN_ON(IS_ERR(em))) {
5121 		map = em->map_lookup;
5122 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5123 			len = map->stripe_len * nr_data_stripes(map);
5124 		free_extent_map(em);
5125 	}
5126 	return len;
5127 }
5128 
5129 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5130 {
5131 	struct extent_map *em;
5132 	struct map_lookup *map;
5133 	int ret = 0;
5134 
5135 	em = get_chunk_map(fs_info, logical, len);
5136 
5137 	if(!WARN_ON(IS_ERR(em))) {
5138 		map = em->map_lookup;
5139 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5140 			ret = 1;
5141 		free_extent_map(em);
5142 	}
5143 	return ret;
5144 }
5145 
5146 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5147 			    struct map_lookup *map, int first, int num,
5148 			    int optimal, int dev_replace_is_ongoing)
5149 {
5150 	int i;
5151 	int tolerance;
5152 	struct btrfs_device *srcdev;
5153 
5154 	if (dev_replace_is_ongoing &&
5155 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5156 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5157 		srcdev = fs_info->dev_replace.srcdev;
5158 	else
5159 		srcdev = NULL;
5160 
5161 	/*
5162 	 * try to avoid the drive that is the source drive for a
5163 	 * dev-replace procedure, only choose it if no other non-missing
5164 	 * mirror is available
5165 	 */
5166 	for (tolerance = 0; tolerance < 2; tolerance++) {
5167 		if (map->stripes[optimal].dev->bdev &&
5168 		    (tolerance || map->stripes[optimal].dev != srcdev))
5169 			return optimal;
5170 		for (i = first; i < first + num; i++) {
5171 			if (map->stripes[i].dev->bdev &&
5172 			    (tolerance || map->stripes[i].dev != srcdev))
5173 				return i;
5174 		}
5175 	}
5176 
5177 	/* we couldn't find one that doesn't fail.  Just return something
5178 	 * and the io error handling code will clean up eventually
5179 	 */
5180 	return optimal;
5181 }
5182 
5183 static inline int parity_smaller(u64 a, u64 b)
5184 {
5185 	return a > b;
5186 }
5187 
5188 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5189 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5190 {
5191 	struct btrfs_bio_stripe s;
5192 	int i;
5193 	u64 l;
5194 	int again = 1;
5195 
5196 	while (again) {
5197 		again = 0;
5198 		for (i = 0; i < num_stripes - 1; i++) {
5199 			if (parity_smaller(bbio->raid_map[i],
5200 					   bbio->raid_map[i+1])) {
5201 				s = bbio->stripes[i];
5202 				l = bbio->raid_map[i];
5203 				bbio->stripes[i] = bbio->stripes[i+1];
5204 				bbio->raid_map[i] = bbio->raid_map[i+1];
5205 				bbio->stripes[i+1] = s;
5206 				bbio->raid_map[i+1] = l;
5207 
5208 				again = 1;
5209 			}
5210 		}
5211 	}
5212 }
5213 
5214 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5215 {
5216 	struct btrfs_bio *bbio = kzalloc(
5217 		 /* the size of the btrfs_bio */
5218 		sizeof(struct btrfs_bio) +
5219 		/* plus the variable array for the stripes */
5220 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5221 		/* plus the variable array for the tgt dev */
5222 		sizeof(int) * (real_stripes) +
5223 		/*
5224 		 * plus the raid_map, which includes both the tgt dev
5225 		 * and the stripes
5226 		 */
5227 		sizeof(u64) * (total_stripes),
5228 		GFP_NOFS|__GFP_NOFAIL);
5229 
5230 	atomic_set(&bbio->error, 0);
5231 	refcount_set(&bbio->refs, 1);
5232 
5233 	return bbio;
5234 }
5235 
5236 void btrfs_get_bbio(struct btrfs_bio *bbio)
5237 {
5238 	WARN_ON(!refcount_read(&bbio->refs));
5239 	refcount_inc(&bbio->refs);
5240 }
5241 
5242 void btrfs_put_bbio(struct btrfs_bio *bbio)
5243 {
5244 	if (!bbio)
5245 		return;
5246 	if (refcount_dec_and_test(&bbio->refs))
5247 		kfree(bbio);
5248 }
5249 
5250 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5251 /*
5252  * Please note that, discard won't be sent to target device of device
5253  * replace.
5254  */
5255 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5256 					 u64 logical, u64 length,
5257 					 struct btrfs_bio **bbio_ret)
5258 {
5259 	struct extent_map *em;
5260 	struct map_lookup *map;
5261 	struct btrfs_bio *bbio;
5262 	u64 offset;
5263 	u64 stripe_nr;
5264 	u64 stripe_nr_end;
5265 	u64 stripe_end_offset;
5266 	u64 stripe_cnt;
5267 	u64 stripe_len;
5268 	u64 stripe_offset;
5269 	u64 num_stripes;
5270 	u32 stripe_index;
5271 	u32 factor = 0;
5272 	u32 sub_stripes = 0;
5273 	u64 stripes_per_dev = 0;
5274 	u32 remaining_stripes = 0;
5275 	u32 last_stripe = 0;
5276 	int ret = 0;
5277 	int i;
5278 
5279 	/* discard always return a bbio */
5280 	ASSERT(bbio_ret);
5281 
5282 	em = get_chunk_map(fs_info, logical, length);
5283 	if (IS_ERR(em))
5284 		return PTR_ERR(em);
5285 
5286 	map = em->map_lookup;
5287 	/* we don't discard raid56 yet */
5288 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5289 		ret = -EOPNOTSUPP;
5290 		goto out;
5291 	}
5292 
5293 	offset = logical - em->start;
5294 	length = min_t(u64, em->len - offset, length);
5295 
5296 	stripe_len = map->stripe_len;
5297 	/*
5298 	 * stripe_nr counts the total number of stripes we have to stride
5299 	 * to get to this block
5300 	 */
5301 	stripe_nr = div64_u64(offset, stripe_len);
5302 
5303 	/* stripe_offset is the offset of this block in its stripe */
5304 	stripe_offset = offset - stripe_nr * stripe_len;
5305 
5306 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5307 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5308 	stripe_cnt = stripe_nr_end - stripe_nr;
5309 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5310 			    (offset + length);
5311 	/*
5312 	 * after this, stripe_nr is the number of stripes on this
5313 	 * device we have to walk to find the data, and stripe_index is
5314 	 * the number of our device in the stripe array
5315 	 */
5316 	num_stripes = 1;
5317 	stripe_index = 0;
5318 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5319 			 BTRFS_BLOCK_GROUP_RAID10)) {
5320 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5321 			sub_stripes = 1;
5322 		else
5323 			sub_stripes = map->sub_stripes;
5324 
5325 		factor = map->num_stripes / sub_stripes;
5326 		num_stripes = min_t(u64, map->num_stripes,
5327 				    sub_stripes * stripe_cnt);
5328 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5329 		stripe_index *= sub_stripes;
5330 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5331 					      &remaining_stripes);
5332 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5333 		last_stripe *= sub_stripes;
5334 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5335 				BTRFS_BLOCK_GROUP_DUP)) {
5336 		num_stripes = map->num_stripes;
5337 	} else {
5338 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5339 					&stripe_index);
5340 	}
5341 
5342 	bbio = alloc_btrfs_bio(num_stripes, 0);
5343 	if (!bbio) {
5344 		ret = -ENOMEM;
5345 		goto out;
5346 	}
5347 
5348 	for (i = 0; i < num_stripes; i++) {
5349 		bbio->stripes[i].physical =
5350 			map->stripes[stripe_index].physical +
5351 			stripe_offset + stripe_nr * map->stripe_len;
5352 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5353 
5354 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5355 				 BTRFS_BLOCK_GROUP_RAID10)) {
5356 			bbio->stripes[i].length = stripes_per_dev *
5357 				map->stripe_len;
5358 
5359 			if (i / sub_stripes < remaining_stripes)
5360 				bbio->stripes[i].length +=
5361 					map->stripe_len;
5362 
5363 			/*
5364 			 * Special for the first stripe and
5365 			 * the last stripe:
5366 			 *
5367 			 * |-------|...|-------|
5368 			 *     |----------|
5369 			 *    off     end_off
5370 			 */
5371 			if (i < sub_stripes)
5372 				bbio->stripes[i].length -=
5373 					stripe_offset;
5374 
5375 			if (stripe_index >= last_stripe &&
5376 			    stripe_index <= (last_stripe +
5377 					     sub_stripes - 1))
5378 				bbio->stripes[i].length -=
5379 					stripe_end_offset;
5380 
5381 			if (i == sub_stripes - 1)
5382 				stripe_offset = 0;
5383 		} else {
5384 			bbio->stripes[i].length = length;
5385 		}
5386 
5387 		stripe_index++;
5388 		if (stripe_index == map->num_stripes) {
5389 			stripe_index = 0;
5390 			stripe_nr++;
5391 		}
5392 	}
5393 
5394 	*bbio_ret = bbio;
5395 	bbio->map_type = map->type;
5396 	bbio->num_stripes = num_stripes;
5397 out:
5398 	free_extent_map(em);
5399 	return ret;
5400 }
5401 
5402 /*
5403  * In dev-replace case, for repair case (that's the only case where the mirror
5404  * is selected explicitly when calling btrfs_map_block), blocks left of the
5405  * left cursor can also be read from the target drive.
5406  *
5407  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5408  * array of stripes.
5409  * For READ, it also needs to be supported using the same mirror number.
5410  *
5411  * If the requested block is not left of the left cursor, EIO is returned. This
5412  * can happen because btrfs_num_copies() returns one more in the dev-replace
5413  * case.
5414  */
5415 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5416 					 u64 logical, u64 length,
5417 					 u64 srcdev_devid, int *mirror_num,
5418 					 u64 *physical)
5419 {
5420 	struct btrfs_bio *bbio = NULL;
5421 	int num_stripes;
5422 	int index_srcdev = 0;
5423 	int found = 0;
5424 	u64 physical_of_found = 0;
5425 	int i;
5426 	int ret = 0;
5427 
5428 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5429 				logical, &length, &bbio, 0, 0);
5430 	if (ret) {
5431 		ASSERT(bbio == NULL);
5432 		return ret;
5433 	}
5434 
5435 	num_stripes = bbio->num_stripes;
5436 	if (*mirror_num > num_stripes) {
5437 		/*
5438 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5439 		 * that means that the requested area is not left of the left
5440 		 * cursor
5441 		 */
5442 		btrfs_put_bbio(bbio);
5443 		return -EIO;
5444 	}
5445 
5446 	/*
5447 	 * process the rest of the function using the mirror_num of the source
5448 	 * drive. Therefore look it up first.  At the end, patch the device
5449 	 * pointer to the one of the target drive.
5450 	 */
5451 	for (i = 0; i < num_stripes; i++) {
5452 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5453 			continue;
5454 
5455 		/*
5456 		 * In case of DUP, in order to keep it simple, only add the
5457 		 * mirror with the lowest physical address
5458 		 */
5459 		if (found &&
5460 		    physical_of_found <= bbio->stripes[i].physical)
5461 			continue;
5462 
5463 		index_srcdev = i;
5464 		found = 1;
5465 		physical_of_found = bbio->stripes[i].physical;
5466 	}
5467 
5468 	btrfs_put_bbio(bbio);
5469 
5470 	ASSERT(found);
5471 	if (!found)
5472 		return -EIO;
5473 
5474 	*mirror_num = index_srcdev + 1;
5475 	*physical = physical_of_found;
5476 	return ret;
5477 }
5478 
5479 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5480 				      struct btrfs_bio **bbio_ret,
5481 				      struct btrfs_dev_replace *dev_replace,
5482 				      int *num_stripes_ret, int *max_errors_ret)
5483 {
5484 	struct btrfs_bio *bbio = *bbio_ret;
5485 	u64 srcdev_devid = dev_replace->srcdev->devid;
5486 	int tgtdev_indexes = 0;
5487 	int num_stripes = *num_stripes_ret;
5488 	int max_errors = *max_errors_ret;
5489 	int i;
5490 
5491 	if (op == BTRFS_MAP_WRITE) {
5492 		int index_where_to_add;
5493 
5494 		/*
5495 		 * duplicate the write operations while the dev replace
5496 		 * procedure is running. Since the copying of the old disk to
5497 		 * the new disk takes place at run time while the filesystem is
5498 		 * mounted writable, the regular write operations to the old
5499 		 * disk have to be duplicated to go to the new disk as well.
5500 		 *
5501 		 * Note that device->missing is handled by the caller, and that
5502 		 * the write to the old disk is already set up in the stripes
5503 		 * array.
5504 		 */
5505 		index_where_to_add = num_stripes;
5506 		for (i = 0; i < num_stripes; i++) {
5507 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5508 				/* write to new disk, too */
5509 				struct btrfs_bio_stripe *new =
5510 					bbio->stripes + index_where_to_add;
5511 				struct btrfs_bio_stripe *old =
5512 					bbio->stripes + i;
5513 
5514 				new->physical = old->physical;
5515 				new->length = old->length;
5516 				new->dev = dev_replace->tgtdev;
5517 				bbio->tgtdev_map[i] = index_where_to_add;
5518 				index_where_to_add++;
5519 				max_errors++;
5520 				tgtdev_indexes++;
5521 			}
5522 		}
5523 		num_stripes = index_where_to_add;
5524 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5525 		int index_srcdev = 0;
5526 		int found = 0;
5527 		u64 physical_of_found = 0;
5528 
5529 		/*
5530 		 * During the dev-replace procedure, the target drive can also
5531 		 * be used to read data in case it is needed to repair a corrupt
5532 		 * block elsewhere. This is possible if the requested area is
5533 		 * left of the left cursor. In this area, the target drive is a
5534 		 * full copy of the source drive.
5535 		 */
5536 		for (i = 0; i < num_stripes; i++) {
5537 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5538 				/*
5539 				 * In case of DUP, in order to keep it simple,
5540 				 * only add the mirror with the lowest physical
5541 				 * address
5542 				 */
5543 				if (found &&
5544 				    physical_of_found <=
5545 				     bbio->stripes[i].physical)
5546 					continue;
5547 				index_srcdev = i;
5548 				found = 1;
5549 				physical_of_found = bbio->stripes[i].physical;
5550 			}
5551 		}
5552 		if (found) {
5553 			struct btrfs_bio_stripe *tgtdev_stripe =
5554 				bbio->stripes + num_stripes;
5555 
5556 			tgtdev_stripe->physical = physical_of_found;
5557 			tgtdev_stripe->length =
5558 				bbio->stripes[index_srcdev].length;
5559 			tgtdev_stripe->dev = dev_replace->tgtdev;
5560 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5561 
5562 			tgtdev_indexes++;
5563 			num_stripes++;
5564 		}
5565 	}
5566 
5567 	*num_stripes_ret = num_stripes;
5568 	*max_errors_ret = max_errors;
5569 	bbio->num_tgtdevs = tgtdev_indexes;
5570 	*bbio_ret = bbio;
5571 }
5572 
5573 static bool need_full_stripe(enum btrfs_map_op op)
5574 {
5575 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5576 }
5577 
5578 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5579 			     enum btrfs_map_op op,
5580 			     u64 logical, u64 *length,
5581 			     struct btrfs_bio **bbio_ret,
5582 			     int mirror_num, int need_raid_map)
5583 {
5584 	struct extent_map *em;
5585 	struct map_lookup *map;
5586 	u64 offset;
5587 	u64 stripe_offset;
5588 	u64 stripe_nr;
5589 	u64 stripe_len;
5590 	u32 stripe_index;
5591 	int i;
5592 	int ret = 0;
5593 	int num_stripes;
5594 	int max_errors = 0;
5595 	int tgtdev_indexes = 0;
5596 	struct btrfs_bio *bbio = NULL;
5597 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5598 	int dev_replace_is_ongoing = 0;
5599 	int num_alloc_stripes;
5600 	int patch_the_first_stripe_for_dev_replace = 0;
5601 	u64 physical_to_patch_in_first_stripe = 0;
5602 	u64 raid56_full_stripe_start = (u64)-1;
5603 
5604 	if (op == BTRFS_MAP_DISCARD)
5605 		return __btrfs_map_block_for_discard(fs_info, logical,
5606 						     *length, bbio_ret);
5607 
5608 	em = get_chunk_map(fs_info, logical, *length);
5609 	if (IS_ERR(em))
5610 		return PTR_ERR(em);
5611 
5612 	map = em->map_lookup;
5613 	offset = logical - em->start;
5614 
5615 	stripe_len = map->stripe_len;
5616 	stripe_nr = offset;
5617 	/*
5618 	 * stripe_nr counts the total number of stripes we have to stride
5619 	 * to get to this block
5620 	 */
5621 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5622 
5623 	stripe_offset = stripe_nr * stripe_len;
5624 	if (offset < stripe_offset) {
5625 		btrfs_crit(fs_info,
5626 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5627 			   stripe_offset, offset, em->start, logical,
5628 			   stripe_len);
5629 		free_extent_map(em);
5630 		return -EINVAL;
5631 	}
5632 
5633 	/* stripe_offset is the offset of this block in its stripe*/
5634 	stripe_offset = offset - stripe_offset;
5635 
5636 	/* if we're here for raid56, we need to know the stripe aligned start */
5637 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5638 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5639 		raid56_full_stripe_start = offset;
5640 
5641 		/* allow a write of a full stripe, but make sure we don't
5642 		 * allow straddling of stripes
5643 		 */
5644 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5645 				full_stripe_len);
5646 		raid56_full_stripe_start *= full_stripe_len;
5647 	}
5648 
5649 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5650 		u64 max_len;
5651 		/* For writes to RAID[56], allow a full stripeset across all disks.
5652 		   For other RAID types and for RAID[56] reads, just allow a single
5653 		   stripe (on a single disk). */
5654 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5655 		    (op == BTRFS_MAP_WRITE)) {
5656 			max_len = stripe_len * nr_data_stripes(map) -
5657 				(offset - raid56_full_stripe_start);
5658 		} else {
5659 			/* we limit the length of each bio to what fits in a stripe */
5660 			max_len = stripe_len - stripe_offset;
5661 		}
5662 		*length = min_t(u64, em->len - offset, max_len);
5663 	} else {
5664 		*length = em->len - offset;
5665 	}
5666 
5667 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5668 	   it cares about is the length */
5669 	if (!bbio_ret)
5670 		goto out;
5671 
5672 	btrfs_dev_replace_lock(dev_replace, 0);
5673 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5674 	if (!dev_replace_is_ongoing)
5675 		btrfs_dev_replace_unlock(dev_replace, 0);
5676 	else
5677 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5678 
5679 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5680 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5681 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5682 						    dev_replace->srcdev->devid,
5683 						    &mirror_num,
5684 					    &physical_to_patch_in_first_stripe);
5685 		if (ret)
5686 			goto out;
5687 		else
5688 			patch_the_first_stripe_for_dev_replace = 1;
5689 	} else if (mirror_num > map->num_stripes) {
5690 		mirror_num = 0;
5691 	}
5692 
5693 	num_stripes = 1;
5694 	stripe_index = 0;
5695 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5696 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5697 				&stripe_index);
5698 		if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_GET_READ_MIRRORS)
5699 			mirror_num = 1;
5700 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5701 		if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5702 			num_stripes = map->num_stripes;
5703 		else if (mirror_num)
5704 			stripe_index = mirror_num - 1;
5705 		else {
5706 			stripe_index = find_live_mirror(fs_info, map, 0,
5707 					    map->num_stripes,
5708 					    current->pid % map->num_stripes,
5709 					    dev_replace_is_ongoing);
5710 			mirror_num = stripe_index + 1;
5711 		}
5712 
5713 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5714 		if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) {
5715 			num_stripes = map->num_stripes;
5716 		} else if (mirror_num) {
5717 			stripe_index = mirror_num - 1;
5718 		} else {
5719 			mirror_num = 1;
5720 		}
5721 
5722 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5723 		u32 factor = map->num_stripes / map->sub_stripes;
5724 
5725 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5726 		stripe_index *= map->sub_stripes;
5727 
5728 		if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5729 			num_stripes = map->sub_stripes;
5730 		else if (mirror_num)
5731 			stripe_index += mirror_num - 1;
5732 		else {
5733 			int old_stripe_index = stripe_index;
5734 			stripe_index = find_live_mirror(fs_info, map,
5735 					      stripe_index,
5736 					      map->sub_stripes, stripe_index +
5737 					      current->pid % map->sub_stripes,
5738 					      dev_replace_is_ongoing);
5739 			mirror_num = stripe_index - old_stripe_index + 1;
5740 		}
5741 
5742 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5743 		if (need_raid_map &&
5744 		    (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5745 		     mirror_num > 1)) {
5746 			/* push stripe_nr back to the start of the full stripe */
5747 			stripe_nr = div64_u64(raid56_full_stripe_start,
5748 					stripe_len * nr_data_stripes(map));
5749 
5750 			/* RAID[56] write or recovery. Return all stripes */
5751 			num_stripes = map->num_stripes;
5752 			max_errors = nr_parity_stripes(map);
5753 
5754 			*length = map->stripe_len;
5755 			stripe_index = 0;
5756 			stripe_offset = 0;
5757 		} else {
5758 			/*
5759 			 * Mirror #0 or #1 means the original data block.
5760 			 * Mirror #2 is RAID5 parity block.
5761 			 * Mirror #3 is RAID6 Q block.
5762 			 */
5763 			stripe_nr = div_u64_rem(stripe_nr,
5764 					nr_data_stripes(map), &stripe_index);
5765 			if (mirror_num > 1)
5766 				stripe_index = nr_data_stripes(map) +
5767 						mirror_num - 2;
5768 
5769 			/* We distribute the parity blocks across stripes */
5770 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5771 					&stripe_index);
5772 			if ((op != BTRFS_MAP_WRITE &&
5773 			     op != BTRFS_MAP_GET_READ_MIRRORS) &&
5774 			    mirror_num <= 1)
5775 				mirror_num = 1;
5776 		}
5777 	} else {
5778 		/*
5779 		 * after this, stripe_nr is the number of stripes on this
5780 		 * device we have to walk to find the data, and stripe_index is
5781 		 * the number of our device in the stripe array
5782 		 */
5783 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5784 				&stripe_index);
5785 		mirror_num = stripe_index + 1;
5786 	}
5787 	if (stripe_index >= map->num_stripes) {
5788 		btrfs_crit(fs_info,
5789 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5790 			   stripe_index, map->num_stripes);
5791 		ret = -EINVAL;
5792 		goto out;
5793 	}
5794 
5795 	num_alloc_stripes = num_stripes;
5796 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5797 		if (op == BTRFS_MAP_WRITE)
5798 			num_alloc_stripes <<= 1;
5799 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
5800 			num_alloc_stripes++;
5801 		tgtdev_indexes = num_stripes;
5802 	}
5803 
5804 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5805 	if (!bbio) {
5806 		ret = -ENOMEM;
5807 		goto out;
5808 	}
5809 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5810 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5811 
5812 	/* build raid_map */
5813 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5814 	    (need_full_stripe(op) || mirror_num > 1)) {
5815 		u64 tmp;
5816 		unsigned rot;
5817 
5818 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5819 				 sizeof(struct btrfs_bio_stripe) *
5820 				 num_alloc_stripes +
5821 				 sizeof(int) * tgtdev_indexes);
5822 
5823 		/* Work out the disk rotation on this stripe-set */
5824 		div_u64_rem(stripe_nr, num_stripes, &rot);
5825 
5826 		/* Fill in the logical address of each stripe */
5827 		tmp = stripe_nr * nr_data_stripes(map);
5828 		for (i = 0; i < nr_data_stripes(map); i++)
5829 			bbio->raid_map[(i+rot) % num_stripes] =
5830 				em->start + (tmp + i) * map->stripe_len;
5831 
5832 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5833 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5834 			bbio->raid_map[(i+rot+1) % num_stripes] =
5835 				RAID6_Q_STRIPE;
5836 	}
5837 
5838 
5839 	for (i = 0; i < num_stripes; i++) {
5840 		bbio->stripes[i].physical =
5841 			map->stripes[stripe_index].physical +
5842 			stripe_offset +
5843 			stripe_nr * map->stripe_len;
5844 		bbio->stripes[i].dev =
5845 			map->stripes[stripe_index].dev;
5846 		stripe_index++;
5847 	}
5848 
5849 	if (need_full_stripe(op))
5850 		max_errors = btrfs_chunk_max_errors(map);
5851 
5852 	if (bbio->raid_map)
5853 		sort_parity_stripes(bbio, num_stripes);
5854 
5855 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5856 	    need_full_stripe(op)) {
5857 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5858 					  &max_errors);
5859 	}
5860 
5861 	*bbio_ret = bbio;
5862 	bbio->map_type = map->type;
5863 	bbio->num_stripes = num_stripes;
5864 	bbio->max_errors = max_errors;
5865 	bbio->mirror_num = mirror_num;
5866 
5867 	/*
5868 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5869 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5870 	 * available as a mirror
5871 	 */
5872 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5873 		WARN_ON(num_stripes > 1);
5874 		bbio->stripes[0].dev = dev_replace->tgtdev;
5875 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5876 		bbio->mirror_num = map->num_stripes + 1;
5877 	}
5878 out:
5879 	if (dev_replace_is_ongoing) {
5880 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
5881 		btrfs_dev_replace_unlock(dev_replace, 0);
5882 	}
5883 	free_extent_map(em);
5884 	return ret;
5885 }
5886 
5887 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5888 		      u64 logical, u64 *length,
5889 		      struct btrfs_bio **bbio_ret, int mirror_num)
5890 {
5891 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5892 				 mirror_num, 0);
5893 }
5894 
5895 /* For Scrub/replace */
5896 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5897 		     u64 logical, u64 *length,
5898 		     struct btrfs_bio **bbio_ret)
5899 {
5900 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5901 }
5902 
5903 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5904 		     u64 chunk_start, u64 physical, u64 devid,
5905 		     u64 **logical, int *naddrs, int *stripe_len)
5906 {
5907 	struct extent_map *em;
5908 	struct map_lookup *map;
5909 	u64 *buf;
5910 	u64 bytenr;
5911 	u64 length;
5912 	u64 stripe_nr;
5913 	u64 rmap_len;
5914 	int i, j, nr = 0;
5915 
5916 	em = get_chunk_map(fs_info, chunk_start, 1);
5917 	if (IS_ERR(em))
5918 		return -EIO;
5919 
5920 	map = em->map_lookup;
5921 	length = em->len;
5922 	rmap_len = map->stripe_len;
5923 
5924 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5925 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5926 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5927 		length = div_u64(length, map->num_stripes);
5928 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5929 		length = div_u64(length, nr_data_stripes(map));
5930 		rmap_len = map->stripe_len * nr_data_stripes(map);
5931 	}
5932 
5933 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5934 	BUG_ON(!buf); /* -ENOMEM */
5935 
5936 	for (i = 0; i < map->num_stripes; i++) {
5937 		if (devid && map->stripes[i].dev->devid != devid)
5938 			continue;
5939 		if (map->stripes[i].physical > physical ||
5940 		    map->stripes[i].physical + length <= physical)
5941 			continue;
5942 
5943 		stripe_nr = physical - map->stripes[i].physical;
5944 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5945 
5946 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5947 			stripe_nr = stripe_nr * map->num_stripes + i;
5948 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5949 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5950 			stripe_nr = stripe_nr * map->num_stripes + i;
5951 		} /* else if RAID[56], multiply by nr_data_stripes().
5952 		   * Alternatively, just use rmap_len below instead of
5953 		   * map->stripe_len */
5954 
5955 		bytenr = chunk_start + stripe_nr * rmap_len;
5956 		WARN_ON(nr >= map->num_stripes);
5957 		for (j = 0; j < nr; j++) {
5958 			if (buf[j] == bytenr)
5959 				break;
5960 		}
5961 		if (j == nr) {
5962 			WARN_ON(nr >= map->num_stripes);
5963 			buf[nr++] = bytenr;
5964 		}
5965 	}
5966 
5967 	*logical = buf;
5968 	*naddrs = nr;
5969 	*stripe_len = rmap_len;
5970 
5971 	free_extent_map(em);
5972 	return 0;
5973 }
5974 
5975 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5976 {
5977 	bio->bi_private = bbio->private;
5978 	bio->bi_end_io = bbio->end_io;
5979 	bio_endio(bio);
5980 
5981 	btrfs_put_bbio(bbio);
5982 }
5983 
5984 static void btrfs_end_bio(struct bio *bio)
5985 {
5986 	struct btrfs_bio *bbio = bio->bi_private;
5987 	int is_orig_bio = 0;
5988 
5989 	if (bio->bi_status) {
5990 		atomic_inc(&bbio->error);
5991 		if (bio->bi_status == BLK_STS_IOERR ||
5992 		    bio->bi_status == BLK_STS_TARGET) {
5993 			unsigned int stripe_index =
5994 				btrfs_io_bio(bio)->stripe_index;
5995 			struct btrfs_device *dev;
5996 
5997 			BUG_ON(stripe_index >= bbio->num_stripes);
5998 			dev = bbio->stripes[stripe_index].dev;
5999 			if (dev->bdev) {
6000 				if (bio_op(bio) == REQ_OP_WRITE)
6001 					btrfs_dev_stat_inc(dev,
6002 						BTRFS_DEV_STAT_WRITE_ERRS);
6003 				else
6004 					btrfs_dev_stat_inc(dev,
6005 						BTRFS_DEV_STAT_READ_ERRS);
6006 				if (bio->bi_opf & REQ_PREFLUSH)
6007 					btrfs_dev_stat_inc(dev,
6008 						BTRFS_DEV_STAT_FLUSH_ERRS);
6009 				btrfs_dev_stat_print_on_error(dev);
6010 			}
6011 		}
6012 	}
6013 
6014 	if (bio == bbio->orig_bio)
6015 		is_orig_bio = 1;
6016 
6017 	btrfs_bio_counter_dec(bbio->fs_info);
6018 
6019 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6020 		if (!is_orig_bio) {
6021 			bio_put(bio);
6022 			bio = bbio->orig_bio;
6023 		}
6024 
6025 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6026 		/* only send an error to the higher layers if it is
6027 		 * beyond the tolerance of the btrfs bio
6028 		 */
6029 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6030 			bio->bi_status = BLK_STS_IOERR;
6031 		} else {
6032 			/*
6033 			 * this bio is actually up to date, we didn't
6034 			 * go over the max number of errors
6035 			 */
6036 			bio->bi_status = 0;
6037 		}
6038 
6039 		btrfs_end_bbio(bbio, bio);
6040 	} else if (!is_orig_bio) {
6041 		bio_put(bio);
6042 	}
6043 }
6044 
6045 /*
6046  * see run_scheduled_bios for a description of why bios are collected for
6047  * async submit.
6048  *
6049  * This will add one bio to the pending list for a device and make sure
6050  * the work struct is scheduled.
6051  */
6052 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6053 					struct bio *bio)
6054 {
6055 	struct btrfs_fs_info *fs_info = device->fs_info;
6056 	int should_queue = 1;
6057 	struct btrfs_pending_bios *pending_bios;
6058 
6059 	if (device->missing || !device->bdev) {
6060 		bio_io_error(bio);
6061 		return;
6062 	}
6063 
6064 	/* don't bother with additional async steps for reads, right now */
6065 	if (bio_op(bio) == REQ_OP_READ) {
6066 		bio_get(bio);
6067 		btrfsic_submit_bio(bio);
6068 		bio_put(bio);
6069 		return;
6070 	}
6071 
6072 	/*
6073 	 * nr_async_bios allows us to reliably return congestion to the
6074 	 * higher layers.  Otherwise, the async bio makes it appear we have
6075 	 * made progress against dirty pages when we've really just put it
6076 	 * on a queue for later
6077 	 */
6078 	atomic_inc(&fs_info->nr_async_bios);
6079 	WARN_ON(bio->bi_next);
6080 	bio->bi_next = NULL;
6081 
6082 	spin_lock(&device->io_lock);
6083 	if (op_is_sync(bio->bi_opf))
6084 		pending_bios = &device->pending_sync_bios;
6085 	else
6086 		pending_bios = &device->pending_bios;
6087 
6088 	if (pending_bios->tail)
6089 		pending_bios->tail->bi_next = bio;
6090 
6091 	pending_bios->tail = bio;
6092 	if (!pending_bios->head)
6093 		pending_bios->head = bio;
6094 	if (device->running_pending)
6095 		should_queue = 0;
6096 
6097 	spin_unlock(&device->io_lock);
6098 
6099 	if (should_queue)
6100 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6101 }
6102 
6103 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6104 			      u64 physical, int dev_nr, int async)
6105 {
6106 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6107 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6108 
6109 	bio->bi_private = bbio;
6110 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6111 	bio->bi_end_io = btrfs_end_bio;
6112 	bio->bi_iter.bi_sector = physical >> 9;
6113 #ifdef DEBUG
6114 	{
6115 		struct rcu_string *name;
6116 
6117 		rcu_read_lock();
6118 		name = rcu_dereference(dev->name);
6119 		btrfs_debug(fs_info,
6120 			"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6121 			bio_op(bio), bio->bi_opf,
6122 			(u64)bio->bi_iter.bi_sector,
6123 			(u_long)dev->bdev->bd_dev, name->str, dev->devid,
6124 			bio->bi_iter.bi_size);
6125 		rcu_read_unlock();
6126 	}
6127 #endif
6128 	bio_set_dev(bio, dev->bdev);
6129 
6130 	btrfs_bio_counter_inc_noblocked(fs_info);
6131 
6132 	if (async)
6133 		btrfs_schedule_bio(dev, bio);
6134 	else
6135 		btrfsic_submit_bio(bio);
6136 }
6137 
6138 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6139 {
6140 	atomic_inc(&bbio->error);
6141 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6142 		/* Should be the original bio. */
6143 		WARN_ON(bio != bbio->orig_bio);
6144 
6145 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6146 		bio->bi_iter.bi_sector = logical >> 9;
6147 		bio->bi_status = BLK_STS_IOERR;
6148 		btrfs_end_bbio(bbio, bio);
6149 	}
6150 }
6151 
6152 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6153 			   int mirror_num, int async_submit)
6154 {
6155 	struct btrfs_device *dev;
6156 	struct bio *first_bio = bio;
6157 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6158 	u64 length = 0;
6159 	u64 map_length;
6160 	int ret;
6161 	int dev_nr;
6162 	int total_devs;
6163 	struct btrfs_bio *bbio = NULL;
6164 
6165 	length = bio->bi_iter.bi_size;
6166 	map_length = length;
6167 
6168 	btrfs_bio_counter_inc_blocked(fs_info);
6169 	ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
6170 				&map_length, &bbio, mirror_num, 1);
6171 	if (ret) {
6172 		btrfs_bio_counter_dec(fs_info);
6173 		return errno_to_blk_status(ret);
6174 	}
6175 
6176 	total_devs = bbio->num_stripes;
6177 	bbio->orig_bio = first_bio;
6178 	bbio->private = first_bio->bi_private;
6179 	bbio->end_io = first_bio->bi_end_io;
6180 	bbio->fs_info = fs_info;
6181 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6182 
6183 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6184 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6185 		/* In this case, map_length has been set to the length of
6186 		   a single stripe; not the whole write */
6187 		if (bio_op(bio) == REQ_OP_WRITE) {
6188 			ret = raid56_parity_write(fs_info, bio, bbio,
6189 						  map_length);
6190 		} else {
6191 			ret = raid56_parity_recover(fs_info, bio, bbio,
6192 						    map_length, mirror_num, 1);
6193 		}
6194 
6195 		btrfs_bio_counter_dec(fs_info);
6196 		return errno_to_blk_status(ret);
6197 	}
6198 
6199 	if (map_length < length) {
6200 		btrfs_crit(fs_info,
6201 			   "mapping failed logical %llu bio len %llu len %llu",
6202 			   logical, length, map_length);
6203 		BUG();
6204 	}
6205 
6206 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6207 		dev = bbio->stripes[dev_nr].dev;
6208 		if (!dev || !dev->bdev ||
6209 		    (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6210 			bbio_error(bbio, first_bio, logical);
6211 			continue;
6212 		}
6213 
6214 		if (dev_nr < total_devs - 1)
6215 			bio = btrfs_bio_clone(first_bio);
6216 		else
6217 			bio = first_bio;
6218 
6219 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6220 				  dev_nr, async_submit);
6221 	}
6222 	btrfs_bio_counter_dec(fs_info);
6223 	return BLK_STS_OK;
6224 }
6225 
6226 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6227 				       u8 *uuid, u8 *fsid)
6228 {
6229 	struct btrfs_device *device;
6230 	struct btrfs_fs_devices *cur_devices;
6231 
6232 	cur_devices = fs_info->fs_devices;
6233 	while (cur_devices) {
6234 		if (!fsid ||
6235 		    !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6236 			device = find_device(cur_devices, devid, uuid);
6237 			if (device)
6238 				return device;
6239 		}
6240 		cur_devices = cur_devices->seed;
6241 	}
6242 	return NULL;
6243 }
6244 
6245 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6246 					    u64 devid, u8 *dev_uuid)
6247 {
6248 	struct btrfs_device *device;
6249 
6250 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6251 	if (IS_ERR(device))
6252 		return NULL;
6253 
6254 	list_add(&device->dev_list, &fs_devices->devices);
6255 	device->fs_devices = fs_devices;
6256 	fs_devices->num_devices++;
6257 
6258 	device->missing = 1;
6259 	fs_devices->missing_devices++;
6260 
6261 	return device;
6262 }
6263 
6264 /**
6265  * btrfs_alloc_device - allocate struct btrfs_device
6266  * @fs_info:	used only for generating a new devid, can be NULL if
6267  *		devid is provided (i.e. @devid != NULL).
6268  * @devid:	a pointer to devid for this device.  If NULL a new devid
6269  *		is generated.
6270  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6271  *		is generated.
6272  *
6273  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6274  * on error.  Returned struct is not linked onto any lists and can be
6275  * destroyed with kfree() right away.
6276  */
6277 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6278 					const u64 *devid,
6279 					const u8 *uuid)
6280 {
6281 	struct btrfs_device *dev;
6282 	u64 tmp;
6283 
6284 	if (WARN_ON(!devid && !fs_info))
6285 		return ERR_PTR(-EINVAL);
6286 
6287 	dev = __alloc_device();
6288 	if (IS_ERR(dev))
6289 		return dev;
6290 
6291 	if (devid)
6292 		tmp = *devid;
6293 	else {
6294 		int ret;
6295 
6296 		ret = find_next_devid(fs_info, &tmp);
6297 		if (ret) {
6298 			kfree(dev);
6299 			return ERR_PTR(ret);
6300 		}
6301 	}
6302 	dev->devid = tmp;
6303 
6304 	if (uuid)
6305 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6306 	else
6307 		generate_random_uuid(dev->uuid);
6308 
6309 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6310 			pending_bios_fn, NULL, NULL);
6311 
6312 	return dev;
6313 }
6314 
6315 /* Return -EIO if any error, otherwise return 0. */
6316 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6317 				   struct extent_buffer *leaf,
6318 				   struct btrfs_chunk *chunk, u64 logical)
6319 {
6320 	u64 length;
6321 	u64 stripe_len;
6322 	u16 num_stripes;
6323 	u16 sub_stripes;
6324 	u64 type;
6325 
6326 	length = btrfs_chunk_length(leaf, chunk);
6327 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6328 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6329 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6330 	type = btrfs_chunk_type(leaf, chunk);
6331 
6332 	if (!num_stripes) {
6333 		btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6334 			  num_stripes);
6335 		return -EIO;
6336 	}
6337 	if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6338 		btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6339 		return -EIO;
6340 	}
6341 	if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6342 		btrfs_err(fs_info, "invalid chunk sectorsize %u",
6343 			  btrfs_chunk_sector_size(leaf, chunk));
6344 		return -EIO;
6345 	}
6346 	if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6347 		btrfs_err(fs_info, "invalid chunk length %llu", length);
6348 		return -EIO;
6349 	}
6350 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6351 		btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6352 			  stripe_len);
6353 		return -EIO;
6354 	}
6355 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6356 	    type) {
6357 		btrfs_err(fs_info, "unrecognized chunk type: %llu",
6358 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6359 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6360 			  btrfs_chunk_type(leaf, chunk));
6361 		return -EIO;
6362 	}
6363 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6364 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6365 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6366 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6367 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6368 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6369 	     num_stripes != 1)) {
6370 		btrfs_err(fs_info,
6371 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6372 			num_stripes, sub_stripes,
6373 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6374 		return -EIO;
6375 	}
6376 
6377 	return 0;
6378 }
6379 
6380 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6381 			  struct extent_buffer *leaf,
6382 			  struct btrfs_chunk *chunk)
6383 {
6384 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6385 	struct map_lookup *map;
6386 	struct extent_map *em;
6387 	u64 logical;
6388 	u64 length;
6389 	u64 devid;
6390 	u8 uuid[BTRFS_UUID_SIZE];
6391 	int num_stripes;
6392 	int ret;
6393 	int i;
6394 
6395 	logical = key->offset;
6396 	length = btrfs_chunk_length(leaf, chunk);
6397 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6398 
6399 	ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6400 	if (ret)
6401 		return ret;
6402 
6403 	read_lock(&map_tree->map_tree.lock);
6404 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6405 	read_unlock(&map_tree->map_tree.lock);
6406 
6407 	/* already mapped? */
6408 	if (em && em->start <= logical && em->start + em->len > logical) {
6409 		free_extent_map(em);
6410 		return 0;
6411 	} else if (em) {
6412 		free_extent_map(em);
6413 	}
6414 
6415 	em = alloc_extent_map();
6416 	if (!em)
6417 		return -ENOMEM;
6418 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6419 	if (!map) {
6420 		free_extent_map(em);
6421 		return -ENOMEM;
6422 	}
6423 
6424 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6425 	em->map_lookup = map;
6426 	em->start = logical;
6427 	em->len = length;
6428 	em->orig_start = 0;
6429 	em->block_start = 0;
6430 	em->block_len = em->len;
6431 
6432 	map->num_stripes = num_stripes;
6433 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6434 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6435 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6436 	map->type = btrfs_chunk_type(leaf, chunk);
6437 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6438 	for (i = 0; i < num_stripes; i++) {
6439 		map->stripes[i].physical =
6440 			btrfs_stripe_offset_nr(leaf, chunk, i);
6441 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6442 		read_extent_buffer(leaf, uuid, (unsigned long)
6443 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6444 				   BTRFS_UUID_SIZE);
6445 		map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6446 							uuid, NULL);
6447 		if (!map->stripes[i].dev &&
6448 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6449 			free_extent_map(em);
6450 			btrfs_report_missing_device(fs_info, devid, uuid);
6451 			return -EIO;
6452 		}
6453 		if (!map->stripes[i].dev) {
6454 			map->stripes[i].dev =
6455 				add_missing_dev(fs_info->fs_devices, devid,
6456 						uuid);
6457 			if (!map->stripes[i].dev) {
6458 				free_extent_map(em);
6459 				return -EIO;
6460 			}
6461 			btrfs_report_missing_device(fs_info, devid, uuid);
6462 		}
6463 		map->stripes[i].dev->in_fs_metadata = 1;
6464 	}
6465 
6466 	write_lock(&map_tree->map_tree.lock);
6467 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6468 	write_unlock(&map_tree->map_tree.lock);
6469 	BUG_ON(ret); /* Tree corruption */
6470 	free_extent_map(em);
6471 
6472 	return 0;
6473 }
6474 
6475 static void fill_device_from_item(struct extent_buffer *leaf,
6476 				 struct btrfs_dev_item *dev_item,
6477 				 struct btrfs_device *device)
6478 {
6479 	unsigned long ptr;
6480 
6481 	device->devid = btrfs_device_id(leaf, dev_item);
6482 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6483 	device->total_bytes = device->disk_total_bytes;
6484 	device->commit_total_bytes = device->disk_total_bytes;
6485 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6486 	device->commit_bytes_used = device->bytes_used;
6487 	device->type = btrfs_device_type(leaf, dev_item);
6488 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6489 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6490 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6491 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6492 	device->is_tgtdev_for_dev_replace = 0;
6493 
6494 	ptr = btrfs_device_uuid(dev_item);
6495 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6496 }
6497 
6498 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6499 						  u8 *fsid)
6500 {
6501 	struct btrfs_fs_devices *fs_devices;
6502 	int ret;
6503 
6504 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6505 	ASSERT(fsid);
6506 
6507 	fs_devices = fs_info->fs_devices->seed;
6508 	while (fs_devices) {
6509 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6510 			return fs_devices;
6511 
6512 		fs_devices = fs_devices->seed;
6513 	}
6514 
6515 	fs_devices = find_fsid(fsid);
6516 	if (!fs_devices) {
6517 		if (!btrfs_test_opt(fs_info, DEGRADED))
6518 			return ERR_PTR(-ENOENT);
6519 
6520 		fs_devices = alloc_fs_devices(fsid);
6521 		if (IS_ERR(fs_devices))
6522 			return fs_devices;
6523 
6524 		fs_devices->seeding = 1;
6525 		fs_devices->opened = 1;
6526 		return fs_devices;
6527 	}
6528 
6529 	fs_devices = clone_fs_devices(fs_devices);
6530 	if (IS_ERR(fs_devices))
6531 		return fs_devices;
6532 
6533 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6534 				   fs_info->bdev_holder);
6535 	if (ret) {
6536 		free_fs_devices(fs_devices);
6537 		fs_devices = ERR_PTR(ret);
6538 		goto out;
6539 	}
6540 
6541 	if (!fs_devices->seeding) {
6542 		__btrfs_close_devices(fs_devices);
6543 		free_fs_devices(fs_devices);
6544 		fs_devices = ERR_PTR(-EINVAL);
6545 		goto out;
6546 	}
6547 
6548 	fs_devices->seed = fs_info->fs_devices->seed;
6549 	fs_info->fs_devices->seed = fs_devices;
6550 out:
6551 	return fs_devices;
6552 }
6553 
6554 static int read_one_dev(struct btrfs_fs_info *fs_info,
6555 			struct extent_buffer *leaf,
6556 			struct btrfs_dev_item *dev_item)
6557 {
6558 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6559 	struct btrfs_device *device;
6560 	u64 devid;
6561 	int ret;
6562 	u8 fs_uuid[BTRFS_FSID_SIZE];
6563 	u8 dev_uuid[BTRFS_UUID_SIZE];
6564 
6565 	devid = btrfs_device_id(leaf, dev_item);
6566 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6567 			   BTRFS_UUID_SIZE);
6568 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6569 			   BTRFS_FSID_SIZE);
6570 
6571 	if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6572 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6573 		if (IS_ERR(fs_devices))
6574 			return PTR_ERR(fs_devices);
6575 	}
6576 
6577 	device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6578 	if (!device) {
6579 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6580 			btrfs_report_missing_device(fs_info, devid, dev_uuid);
6581 			return -EIO;
6582 		}
6583 
6584 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6585 		if (!device)
6586 			return -ENOMEM;
6587 		btrfs_report_missing_device(fs_info, devid, dev_uuid);
6588 	} else {
6589 		if (!device->bdev) {
6590 			btrfs_report_missing_device(fs_info, devid, dev_uuid);
6591 			if (!btrfs_test_opt(fs_info, DEGRADED))
6592 				return -EIO;
6593 		}
6594 
6595 		if(!device->bdev && !device->missing) {
6596 			/*
6597 			 * this happens when a device that was properly setup
6598 			 * in the device info lists suddenly goes bad.
6599 			 * device->bdev is NULL, and so we have to set
6600 			 * device->missing to one here
6601 			 */
6602 			device->fs_devices->missing_devices++;
6603 			device->missing = 1;
6604 		}
6605 
6606 		/* Move the device to its own fs_devices */
6607 		if (device->fs_devices != fs_devices) {
6608 			ASSERT(device->missing);
6609 
6610 			list_move(&device->dev_list, &fs_devices->devices);
6611 			device->fs_devices->num_devices--;
6612 			fs_devices->num_devices++;
6613 
6614 			device->fs_devices->missing_devices--;
6615 			fs_devices->missing_devices++;
6616 
6617 			device->fs_devices = fs_devices;
6618 		}
6619 	}
6620 
6621 	if (device->fs_devices != fs_info->fs_devices) {
6622 		BUG_ON(device->writeable);
6623 		if (device->generation !=
6624 		    btrfs_device_generation(leaf, dev_item))
6625 			return -EINVAL;
6626 	}
6627 
6628 	fill_device_from_item(leaf, dev_item, device);
6629 	device->in_fs_metadata = 1;
6630 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6631 		device->fs_devices->total_rw_bytes += device->total_bytes;
6632 		atomic64_add(device->total_bytes - device->bytes_used,
6633 				&fs_info->free_chunk_space);
6634 	}
6635 	ret = 0;
6636 	return ret;
6637 }
6638 
6639 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6640 {
6641 	struct btrfs_root *root = fs_info->tree_root;
6642 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6643 	struct extent_buffer *sb;
6644 	struct btrfs_disk_key *disk_key;
6645 	struct btrfs_chunk *chunk;
6646 	u8 *array_ptr;
6647 	unsigned long sb_array_offset;
6648 	int ret = 0;
6649 	u32 num_stripes;
6650 	u32 array_size;
6651 	u32 len = 0;
6652 	u32 cur_offset;
6653 	u64 type;
6654 	struct btrfs_key key;
6655 
6656 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6657 	/*
6658 	 * This will create extent buffer of nodesize, superblock size is
6659 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6660 	 * overallocate but we can keep it as-is, only the first page is used.
6661 	 */
6662 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6663 	if (IS_ERR(sb))
6664 		return PTR_ERR(sb);
6665 	set_extent_buffer_uptodate(sb);
6666 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6667 	/*
6668 	 * The sb extent buffer is artificial and just used to read the system array.
6669 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6670 	 * pages up-to-date when the page is larger: extent does not cover the
6671 	 * whole page and consequently check_page_uptodate does not find all
6672 	 * the page's extents up-to-date (the hole beyond sb),
6673 	 * write_extent_buffer then triggers a WARN_ON.
6674 	 *
6675 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6676 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6677 	 * to silence the warning eg. on PowerPC 64.
6678 	 */
6679 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6680 		SetPageUptodate(sb->pages[0]);
6681 
6682 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6683 	array_size = btrfs_super_sys_array_size(super_copy);
6684 
6685 	array_ptr = super_copy->sys_chunk_array;
6686 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6687 	cur_offset = 0;
6688 
6689 	while (cur_offset < array_size) {
6690 		disk_key = (struct btrfs_disk_key *)array_ptr;
6691 		len = sizeof(*disk_key);
6692 		if (cur_offset + len > array_size)
6693 			goto out_short_read;
6694 
6695 		btrfs_disk_key_to_cpu(&key, disk_key);
6696 
6697 		array_ptr += len;
6698 		sb_array_offset += len;
6699 		cur_offset += len;
6700 
6701 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6702 			chunk = (struct btrfs_chunk *)sb_array_offset;
6703 			/*
6704 			 * At least one btrfs_chunk with one stripe must be
6705 			 * present, exact stripe count check comes afterwards
6706 			 */
6707 			len = btrfs_chunk_item_size(1);
6708 			if (cur_offset + len > array_size)
6709 				goto out_short_read;
6710 
6711 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6712 			if (!num_stripes) {
6713 				btrfs_err(fs_info,
6714 					"invalid number of stripes %u in sys_array at offset %u",
6715 					num_stripes, cur_offset);
6716 				ret = -EIO;
6717 				break;
6718 			}
6719 
6720 			type = btrfs_chunk_type(sb, chunk);
6721 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6722 				btrfs_err(fs_info,
6723 			    "invalid chunk type %llu in sys_array at offset %u",
6724 					type, cur_offset);
6725 				ret = -EIO;
6726 				break;
6727 			}
6728 
6729 			len = btrfs_chunk_item_size(num_stripes);
6730 			if (cur_offset + len > array_size)
6731 				goto out_short_read;
6732 
6733 			ret = read_one_chunk(fs_info, &key, sb, chunk);
6734 			if (ret)
6735 				break;
6736 		} else {
6737 			btrfs_err(fs_info,
6738 			    "unexpected item type %u in sys_array at offset %u",
6739 				  (u32)key.type, cur_offset);
6740 			ret = -EIO;
6741 			break;
6742 		}
6743 		array_ptr += len;
6744 		sb_array_offset += len;
6745 		cur_offset += len;
6746 	}
6747 	clear_extent_buffer_uptodate(sb);
6748 	free_extent_buffer_stale(sb);
6749 	return ret;
6750 
6751 out_short_read:
6752 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6753 			len, cur_offset);
6754 	clear_extent_buffer_uptodate(sb);
6755 	free_extent_buffer_stale(sb);
6756 	return -EIO;
6757 }
6758 
6759 void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, u64 devid,
6760 				 u8 *uuid)
6761 {
6762 	btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", devid, uuid);
6763 }
6764 
6765 /*
6766  * Check if all chunks in the fs are OK for read-write degraded mount
6767  *
6768  * Return true if all chunks meet the minimal RW mount requirements.
6769  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6770  */
6771 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6772 {
6773 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6774 	struct extent_map *em;
6775 	u64 next_start = 0;
6776 	bool ret = true;
6777 
6778 	read_lock(&map_tree->map_tree.lock);
6779 	em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6780 	read_unlock(&map_tree->map_tree.lock);
6781 	/* No chunk at all? Return false anyway */
6782 	if (!em) {
6783 		ret = false;
6784 		goto out;
6785 	}
6786 	while (em) {
6787 		struct map_lookup *map;
6788 		int missing = 0;
6789 		int max_tolerated;
6790 		int i;
6791 
6792 		map = em->map_lookup;
6793 		max_tolerated =
6794 			btrfs_get_num_tolerated_disk_barrier_failures(
6795 					map->type);
6796 		for (i = 0; i < map->num_stripes; i++) {
6797 			struct btrfs_device *dev = map->stripes[i].dev;
6798 
6799 			if (!dev || !dev->bdev || dev->missing ||
6800 			    dev->last_flush_error)
6801 				missing++;
6802 		}
6803 		if (missing > max_tolerated) {
6804 			btrfs_warn(fs_info,
6805 	"chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6806 				   em->start, missing, max_tolerated);
6807 			free_extent_map(em);
6808 			ret = false;
6809 			goto out;
6810 		}
6811 		next_start = extent_map_end(em);
6812 		free_extent_map(em);
6813 
6814 		read_lock(&map_tree->map_tree.lock);
6815 		em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6816 					   (u64)(-1) - next_start);
6817 		read_unlock(&map_tree->map_tree.lock);
6818 	}
6819 out:
6820 	return ret;
6821 }
6822 
6823 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6824 {
6825 	struct btrfs_root *root = fs_info->chunk_root;
6826 	struct btrfs_path *path;
6827 	struct extent_buffer *leaf;
6828 	struct btrfs_key key;
6829 	struct btrfs_key found_key;
6830 	int ret;
6831 	int slot;
6832 	u64 total_dev = 0;
6833 
6834 	path = btrfs_alloc_path();
6835 	if (!path)
6836 		return -ENOMEM;
6837 
6838 	mutex_lock(&uuid_mutex);
6839 	mutex_lock(&fs_info->chunk_mutex);
6840 
6841 	/*
6842 	 * Read all device items, and then all the chunk items. All
6843 	 * device items are found before any chunk item (their object id
6844 	 * is smaller than the lowest possible object id for a chunk
6845 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6846 	 */
6847 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6848 	key.offset = 0;
6849 	key.type = 0;
6850 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6851 	if (ret < 0)
6852 		goto error;
6853 	while (1) {
6854 		leaf = path->nodes[0];
6855 		slot = path->slots[0];
6856 		if (slot >= btrfs_header_nritems(leaf)) {
6857 			ret = btrfs_next_leaf(root, path);
6858 			if (ret == 0)
6859 				continue;
6860 			if (ret < 0)
6861 				goto error;
6862 			break;
6863 		}
6864 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6865 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6866 			struct btrfs_dev_item *dev_item;
6867 			dev_item = btrfs_item_ptr(leaf, slot,
6868 						  struct btrfs_dev_item);
6869 			ret = read_one_dev(fs_info, leaf, dev_item);
6870 			if (ret)
6871 				goto error;
6872 			total_dev++;
6873 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6874 			struct btrfs_chunk *chunk;
6875 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6876 			ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6877 			if (ret)
6878 				goto error;
6879 		}
6880 		path->slots[0]++;
6881 	}
6882 
6883 	/*
6884 	 * After loading chunk tree, we've got all device information,
6885 	 * do another round of validation checks.
6886 	 */
6887 	if (total_dev != fs_info->fs_devices->total_devices) {
6888 		btrfs_err(fs_info,
6889 	   "super_num_devices %llu mismatch with num_devices %llu found here",
6890 			  btrfs_super_num_devices(fs_info->super_copy),
6891 			  total_dev);
6892 		ret = -EINVAL;
6893 		goto error;
6894 	}
6895 	if (btrfs_super_total_bytes(fs_info->super_copy) <
6896 	    fs_info->fs_devices->total_rw_bytes) {
6897 		btrfs_err(fs_info,
6898 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6899 			  btrfs_super_total_bytes(fs_info->super_copy),
6900 			  fs_info->fs_devices->total_rw_bytes);
6901 		ret = -EINVAL;
6902 		goto error;
6903 	}
6904 	ret = 0;
6905 error:
6906 	mutex_unlock(&fs_info->chunk_mutex);
6907 	mutex_unlock(&uuid_mutex);
6908 
6909 	btrfs_free_path(path);
6910 	return ret;
6911 }
6912 
6913 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6914 {
6915 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6916 	struct btrfs_device *device;
6917 
6918 	while (fs_devices) {
6919 		mutex_lock(&fs_devices->device_list_mutex);
6920 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6921 			device->fs_info = fs_info;
6922 		mutex_unlock(&fs_devices->device_list_mutex);
6923 
6924 		fs_devices = fs_devices->seed;
6925 	}
6926 }
6927 
6928 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6929 {
6930 	int i;
6931 
6932 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6933 		btrfs_dev_stat_reset(dev, i);
6934 }
6935 
6936 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6937 {
6938 	struct btrfs_key key;
6939 	struct btrfs_key found_key;
6940 	struct btrfs_root *dev_root = fs_info->dev_root;
6941 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6942 	struct extent_buffer *eb;
6943 	int slot;
6944 	int ret = 0;
6945 	struct btrfs_device *device;
6946 	struct btrfs_path *path = NULL;
6947 	int i;
6948 
6949 	path = btrfs_alloc_path();
6950 	if (!path) {
6951 		ret = -ENOMEM;
6952 		goto out;
6953 	}
6954 
6955 	mutex_lock(&fs_devices->device_list_mutex);
6956 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6957 		int item_size;
6958 		struct btrfs_dev_stats_item *ptr;
6959 
6960 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
6961 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
6962 		key.offset = device->devid;
6963 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6964 		if (ret) {
6965 			__btrfs_reset_dev_stats(device);
6966 			device->dev_stats_valid = 1;
6967 			btrfs_release_path(path);
6968 			continue;
6969 		}
6970 		slot = path->slots[0];
6971 		eb = path->nodes[0];
6972 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6973 		item_size = btrfs_item_size_nr(eb, slot);
6974 
6975 		ptr = btrfs_item_ptr(eb, slot,
6976 				     struct btrfs_dev_stats_item);
6977 
6978 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6979 			if (item_size >= (1 + i) * sizeof(__le64))
6980 				btrfs_dev_stat_set(device, i,
6981 					btrfs_dev_stats_value(eb, ptr, i));
6982 			else
6983 				btrfs_dev_stat_reset(device, i);
6984 		}
6985 
6986 		device->dev_stats_valid = 1;
6987 		btrfs_dev_stat_print_on_load(device);
6988 		btrfs_release_path(path);
6989 	}
6990 	mutex_unlock(&fs_devices->device_list_mutex);
6991 
6992 out:
6993 	btrfs_free_path(path);
6994 	return ret < 0 ? ret : 0;
6995 }
6996 
6997 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6998 				struct btrfs_fs_info *fs_info,
6999 				struct btrfs_device *device)
7000 {
7001 	struct btrfs_root *dev_root = fs_info->dev_root;
7002 	struct btrfs_path *path;
7003 	struct btrfs_key key;
7004 	struct extent_buffer *eb;
7005 	struct btrfs_dev_stats_item *ptr;
7006 	int ret;
7007 	int i;
7008 
7009 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7010 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7011 	key.offset = device->devid;
7012 
7013 	path = btrfs_alloc_path();
7014 	if (!path)
7015 		return -ENOMEM;
7016 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7017 	if (ret < 0) {
7018 		btrfs_warn_in_rcu(fs_info,
7019 			"error %d while searching for dev_stats item for device %s",
7020 			      ret, rcu_str_deref(device->name));
7021 		goto out;
7022 	}
7023 
7024 	if (ret == 0 &&
7025 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7026 		/* need to delete old one and insert a new one */
7027 		ret = btrfs_del_item(trans, dev_root, path);
7028 		if (ret != 0) {
7029 			btrfs_warn_in_rcu(fs_info,
7030 				"delete too small dev_stats item for device %s failed %d",
7031 				      rcu_str_deref(device->name), ret);
7032 			goto out;
7033 		}
7034 		ret = 1;
7035 	}
7036 
7037 	if (ret == 1) {
7038 		/* need to insert a new item */
7039 		btrfs_release_path(path);
7040 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7041 					      &key, sizeof(*ptr));
7042 		if (ret < 0) {
7043 			btrfs_warn_in_rcu(fs_info,
7044 				"insert dev_stats item for device %s failed %d",
7045 				rcu_str_deref(device->name), ret);
7046 			goto out;
7047 		}
7048 	}
7049 
7050 	eb = path->nodes[0];
7051 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7052 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7053 		btrfs_set_dev_stats_value(eb, ptr, i,
7054 					  btrfs_dev_stat_read(device, i));
7055 	btrfs_mark_buffer_dirty(eb);
7056 
7057 out:
7058 	btrfs_free_path(path);
7059 	return ret;
7060 }
7061 
7062 /*
7063  * called from commit_transaction. Writes all changed device stats to disk.
7064  */
7065 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7066 			struct btrfs_fs_info *fs_info)
7067 {
7068 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7069 	struct btrfs_device *device;
7070 	int stats_cnt;
7071 	int ret = 0;
7072 
7073 	mutex_lock(&fs_devices->device_list_mutex);
7074 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7075 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7076 			continue;
7077 
7078 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7079 		ret = update_dev_stat_item(trans, fs_info, device);
7080 		if (!ret)
7081 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7082 	}
7083 	mutex_unlock(&fs_devices->device_list_mutex);
7084 
7085 	return ret;
7086 }
7087 
7088 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7089 {
7090 	btrfs_dev_stat_inc(dev, index);
7091 	btrfs_dev_stat_print_on_error(dev);
7092 }
7093 
7094 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7095 {
7096 	if (!dev->dev_stats_valid)
7097 		return;
7098 	btrfs_err_rl_in_rcu(dev->fs_info,
7099 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7100 			   rcu_str_deref(dev->name),
7101 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7102 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7103 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7104 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7105 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7106 }
7107 
7108 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7109 {
7110 	int i;
7111 
7112 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7113 		if (btrfs_dev_stat_read(dev, i) != 0)
7114 			break;
7115 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7116 		return; /* all values == 0, suppress message */
7117 
7118 	btrfs_info_in_rcu(dev->fs_info,
7119 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7120 	       rcu_str_deref(dev->name),
7121 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7122 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7123 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7124 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7125 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7126 }
7127 
7128 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7129 			struct btrfs_ioctl_get_dev_stats *stats)
7130 {
7131 	struct btrfs_device *dev;
7132 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7133 	int i;
7134 
7135 	mutex_lock(&fs_devices->device_list_mutex);
7136 	dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7137 	mutex_unlock(&fs_devices->device_list_mutex);
7138 
7139 	if (!dev) {
7140 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7141 		return -ENODEV;
7142 	} else if (!dev->dev_stats_valid) {
7143 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7144 		return -ENODEV;
7145 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7146 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7147 			if (stats->nr_items > i)
7148 				stats->values[i] =
7149 					btrfs_dev_stat_read_and_reset(dev, i);
7150 			else
7151 				btrfs_dev_stat_reset(dev, i);
7152 		}
7153 	} else {
7154 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7155 			if (stats->nr_items > i)
7156 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7157 	}
7158 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7159 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7160 	return 0;
7161 }
7162 
7163 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7164 {
7165 	struct buffer_head *bh;
7166 	struct btrfs_super_block *disk_super;
7167 	int copy_num;
7168 
7169 	if (!bdev)
7170 		return;
7171 
7172 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7173 		copy_num++) {
7174 
7175 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7176 			continue;
7177 
7178 		disk_super = (struct btrfs_super_block *)bh->b_data;
7179 
7180 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7181 		set_buffer_dirty(bh);
7182 		sync_dirty_buffer(bh);
7183 		brelse(bh);
7184 	}
7185 
7186 	/* Notify udev that device has changed */
7187 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7188 
7189 	/* Update ctime/mtime for device path for libblkid */
7190 	update_dev_time(device_path);
7191 }
7192 
7193 /*
7194  * Update the size of all devices, which is used for writing out the
7195  * super blocks.
7196  */
7197 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7198 {
7199 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7200 	struct btrfs_device *curr, *next;
7201 
7202 	if (list_empty(&fs_devices->resized_devices))
7203 		return;
7204 
7205 	mutex_lock(&fs_devices->device_list_mutex);
7206 	mutex_lock(&fs_info->chunk_mutex);
7207 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7208 				 resized_list) {
7209 		list_del_init(&curr->resized_list);
7210 		curr->commit_total_bytes = curr->disk_total_bytes;
7211 	}
7212 	mutex_unlock(&fs_info->chunk_mutex);
7213 	mutex_unlock(&fs_devices->device_list_mutex);
7214 }
7215 
7216 /* Must be invoked during the transaction commit */
7217 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7218 					struct btrfs_transaction *transaction)
7219 {
7220 	struct extent_map *em;
7221 	struct map_lookup *map;
7222 	struct btrfs_device *dev;
7223 	int i;
7224 
7225 	if (list_empty(&transaction->pending_chunks))
7226 		return;
7227 
7228 	/* In order to kick the device replace finish process */
7229 	mutex_lock(&fs_info->chunk_mutex);
7230 	list_for_each_entry(em, &transaction->pending_chunks, list) {
7231 		map = em->map_lookup;
7232 
7233 		for (i = 0; i < map->num_stripes; i++) {
7234 			dev = map->stripes[i].dev;
7235 			dev->commit_bytes_used = dev->bytes_used;
7236 		}
7237 	}
7238 	mutex_unlock(&fs_info->chunk_mutex);
7239 }
7240 
7241 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7242 {
7243 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7244 	while (fs_devices) {
7245 		fs_devices->fs_info = fs_info;
7246 		fs_devices = fs_devices->seed;
7247 	}
7248 }
7249 
7250 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7251 {
7252 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7253 	while (fs_devices) {
7254 		fs_devices->fs_info = NULL;
7255 		fs_devices = fs_devices->seed;
7256 	}
7257 }
7258