1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/iocontext.h> 24 #include <linux/capability.h> 25 #include <linux/ratelimit.h> 26 #include <linux/kthread.h> 27 #include <linux/raid/pq.h> 28 #include <linux/semaphore.h> 29 #include <linux/uuid.h> 30 #include <asm/div64.h> 31 #include "ctree.h" 32 #include "extent_map.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "raid56.h" 38 #include "async-thread.h" 39 #include "check-integrity.h" 40 #include "rcu-string.h" 41 #include "math.h" 42 #include "dev-replace.h" 43 #include "sysfs.h" 44 45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 46 [BTRFS_RAID_RAID10] = { 47 .sub_stripes = 2, 48 .dev_stripes = 1, 49 .devs_max = 0, /* 0 == as many as possible */ 50 .devs_min = 4, 51 .tolerated_failures = 1, 52 .devs_increment = 2, 53 .ncopies = 2, 54 }, 55 [BTRFS_RAID_RAID1] = { 56 .sub_stripes = 1, 57 .dev_stripes = 1, 58 .devs_max = 2, 59 .devs_min = 2, 60 .tolerated_failures = 1, 61 .devs_increment = 2, 62 .ncopies = 2, 63 }, 64 [BTRFS_RAID_DUP] = { 65 .sub_stripes = 1, 66 .dev_stripes = 2, 67 .devs_max = 1, 68 .devs_min = 1, 69 .tolerated_failures = 0, 70 .devs_increment = 1, 71 .ncopies = 2, 72 }, 73 [BTRFS_RAID_RAID0] = { 74 .sub_stripes = 1, 75 .dev_stripes = 1, 76 .devs_max = 0, 77 .devs_min = 2, 78 .tolerated_failures = 0, 79 .devs_increment = 1, 80 .ncopies = 1, 81 }, 82 [BTRFS_RAID_SINGLE] = { 83 .sub_stripes = 1, 84 .dev_stripes = 1, 85 .devs_max = 1, 86 .devs_min = 1, 87 .tolerated_failures = 0, 88 .devs_increment = 1, 89 .ncopies = 1, 90 }, 91 [BTRFS_RAID_RAID5] = { 92 .sub_stripes = 1, 93 .dev_stripes = 1, 94 .devs_max = 0, 95 .devs_min = 2, 96 .tolerated_failures = 1, 97 .devs_increment = 1, 98 .ncopies = 2, 99 }, 100 [BTRFS_RAID_RAID6] = { 101 .sub_stripes = 1, 102 .dev_stripes = 1, 103 .devs_max = 0, 104 .devs_min = 3, 105 .tolerated_failures = 2, 106 .devs_increment = 1, 107 .ncopies = 3, 108 }, 109 }; 110 111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = { 112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10, 113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1, 114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP, 115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0, 116 [BTRFS_RAID_SINGLE] = 0, 117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5, 118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6, 119 }; 120 121 /* 122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices 123 * condition is not met. Zero means there's no corresponding 124 * BTRFS_ERROR_DEV_*_NOT_MET value. 125 */ 126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = { 127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 129 [BTRFS_RAID_DUP] = 0, 130 [BTRFS_RAID_RAID0] = 0, 131 [BTRFS_RAID_SINGLE] = 0, 132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 134 }; 135 136 static int init_first_rw_device(struct btrfs_trans_handle *trans, 137 struct btrfs_fs_info *fs_info); 138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 143 enum btrfs_map_op op, 144 u64 logical, u64 *length, 145 struct btrfs_bio **bbio_ret, 146 int mirror_num, int need_raid_map); 147 148 DEFINE_MUTEX(uuid_mutex); 149 static LIST_HEAD(fs_uuids); 150 struct list_head *btrfs_get_fs_uuids(void) 151 { 152 return &fs_uuids; 153 } 154 155 /* 156 * alloc_fs_devices - allocate struct btrfs_fs_devices 157 * @fsid: if not NULL, copy the uuid to fs_devices::fsid 158 * 159 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 160 * The returned struct is not linked onto any lists and can be destroyed with 161 * kfree() right away. 162 */ 163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 164 { 165 struct btrfs_fs_devices *fs_devs; 166 167 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 168 if (!fs_devs) 169 return ERR_PTR(-ENOMEM); 170 171 mutex_init(&fs_devs->device_list_mutex); 172 173 INIT_LIST_HEAD(&fs_devs->devices); 174 INIT_LIST_HEAD(&fs_devs->resized_devices); 175 INIT_LIST_HEAD(&fs_devs->alloc_list); 176 INIT_LIST_HEAD(&fs_devs->list); 177 if (fsid) 178 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 179 180 return fs_devs; 181 } 182 183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 184 { 185 struct btrfs_device *device; 186 WARN_ON(fs_devices->opened); 187 while (!list_empty(&fs_devices->devices)) { 188 device = list_entry(fs_devices->devices.next, 189 struct btrfs_device, dev_list); 190 list_del(&device->dev_list); 191 rcu_string_free(device->name); 192 kfree(device); 193 } 194 kfree(fs_devices); 195 } 196 197 static void btrfs_kobject_uevent(struct block_device *bdev, 198 enum kobject_action action) 199 { 200 int ret; 201 202 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 203 if (ret) 204 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 205 action, 206 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 207 &disk_to_dev(bdev->bd_disk)->kobj); 208 } 209 210 void btrfs_cleanup_fs_uuids(void) 211 { 212 struct btrfs_fs_devices *fs_devices; 213 214 while (!list_empty(&fs_uuids)) { 215 fs_devices = list_entry(fs_uuids.next, 216 struct btrfs_fs_devices, list); 217 list_del(&fs_devices->list); 218 free_fs_devices(fs_devices); 219 } 220 } 221 222 static struct btrfs_device *__alloc_device(void) 223 { 224 struct btrfs_device *dev; 225 226 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 227 if (!dev) 228 return ERR_PTR(-ENOMEM); 229 230 /* 231 * Preallocate a bio that's always going to be used for flushing device 232 * barriers and matches the device lifespan 233 */ 234 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 235 if (!dev->flush_bio) { 236 kfree(dev); 237 return ERR_PTR(-ENOMEM); 238 } 239 bio_get(dev->flush_bio); 240 241 INIT_LIST_HEAD(&dev->dev_list); 242 INIT_LIST_HEAD(&dev->dev_alloc_list); 243 INIT_LIST_HEAD(&dev->resized_list); 244 245 spin_lock_init(&dev->io_lock); 246 247 spin_lock_init(&dev->reada_lock); 248 atomic_set(&dev->reada_in_flight, 0); 249 atomic_set(&dev->dev_stats_ccnt, 0); 250 btrfs_device_data_ordered_init(dev); 251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 253 254 return dev; 255 } 256 257 /* 258 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 259 * return NULL. 260 * 261 * If devid and uuid are both specified, the match must be exact, otherwise 262 * only devid is used. 263 */ 264 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices, 265 u64 devid, const u8 *uuid) 266 { 267 struct list_head *head = &fs_devices->devices; 268 struct btrfs_device *dev; 269 270 list_for_each_entry(dev, head, dev_list) { 271 if (dev->devid == devid && 272 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 273 return dev; 274 } 275 } 276 return NULL; 277 } 278 279 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 280 { 281 struct btrfs_fs_devices *fs_devices; 282 283 list_for_each_entry(fs_devices, &fs_uuids, list) { 284 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 285 return fs_devices; 286 } 287 return NULL; 288 } 289 290 static int 291 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 292 int flush, struct block_device **bdev, 293 struct buffer_head **bh) 294 { 295 int ret; 296 297 *bdev = blkdev_get_by_path(device_path, flags, holder); 298 299 if (IS_ERR(*bdev)) { 300 ret = PTR_ERR(*bdev); 301 goto error; 302 } 303 304 if (flush) 305 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 306 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 307 if (ret) { 308 blkdev_put(*bdev, flags); 309 goto error; 310 } 311 invalidate_bdev(*bdev); 312 *bh = btrfs_read_dev_super(*bdev); 313 if (IS_ERR(*bh)) { 314 ret = PTR_ERR(*bh); 315 blkdev_put(*bdev, flags); 316 goto error; 317 } 318 319 return 0; 320 321 error: 322 *bdev = NULL; 323 *bh = NULL; 324 return ret; 325 } 326 327 static void requeue_list(struct btrfs_pending_bios *pending_bios, 328 struct bio *head, struct bio *tail) 329 { 330 331 struct bio *old_head; 332 333 old_head = pending_bios->head; 334 pending_bios->head = head; 335 if (pending_bios->tail) 336 tail->bi_next = old_head; 337 else 338 pending_bios->tail = tail; 339 } 340 341 /* 342 * we try to collect pending bios for a device so we don't get a large 343 * number of procs sending bios down to the same device. This greatly 344 * improves the schedulers ability to collect and merge the bios. 345 * 346 * But, it also turns into a long list of bios to process and that is sure 347 * to eventually make the worker thread block. The solution here is to 348 * make some progress and then put this work struct back at the end of 349 * the list if the block device is congested. This way, multiple devices 350 * can make progress from a single worker thread. 351 */ 352 static noinline void run_scheduled_bios(struct btrfs_device *device) 353 { 354 struct btrfs_fs_info *fs_info = device->fs_info; 355 struct bio *pending; 356 struct backing_dev_info *bdi; 357 struct btrfs_pending_bios *pending_bios; 358 struct bio *tail; 359 struct bio *cur; 360 int again = 0; 361 unsigned long num_run; 362 unsigned long batch_run = 0; 363 unsigned long limit; 364 unsigned long last_waited = 0; 365 int force_reg = 0; 366 int sync_pending = 0; 367 struct blk_plug plug; 368 369 /* 370 * this function runs all the bios we've collected for 371 * a particular device. We don't want to wander off to 372 * another device without first sending all of these down. 373 * So, setup a plug here and finish it off before we return 374 */ 375 blk_start_plug(&plug); 376 377 bdi = device->bdev->bd_bdi; 378 limit = btrfs_async_submit_limit(fs_info); 379 limit = limit * 2 / 3; 380 381 loop: 382 spin_lock(&device->io_lock); 383 384 loop_lock: 385 num_run = 0; 386 387 /* take all the bios off the list at once and process them 388 * later on (without the lock held). But, remember the 389 * tail and other pointers so the bios can be properly reinserted 390 * into the list if we hit congestion 391 */ 392 if (!force_reg && device->pending_sync_bios.head) { 393 pending_bios = &device->pending_sync_bios; 394 force_reg = 1; 395 } else { 396 pending_bios = &device->pending_bios; 397 force_reg = 0; 398 } 399 400 pending = pending_bios->head; 401 tail = pending_bios->tail; 402 WARN_ON(pending && !tail); 403 404 /* 405 * if pending was null this time around, no bios need processing 406 * at all and we can stop. Otherwise it'll loop back up again 407 * and do an additional check so no bios are missed. 408 * 409 * device->running_pending is used to synchronize with the 410 * schedule_bio code. 411 */ 412 if (device->pending_sync_bios.head == NULL && 413 device->pending_bios.head == NULL) { 414 again = 0; 415 device->running_pending = 0; 416 } else { 417 again = 1; 418 device->running_pending = 1; 419 } 420 421 pending_bios->head = NULL; 422 pending_bios->tail = NULL; 423 424 spin_unlock(&device->io_lock); 425 426 while (pending) { 427 428 rmb(); 429 /* we want to work on both lists, but do more bios on the 430 * sync list than the regular list 431 */ 432 if ((num_run > 32 && 433 pending_bios != &device->pending_sync_bios && 434 device->pending_sync_bios.head) || 435 (num_run > 64 && pending_bios == &device->pending_sync_bios && 436 device->pending_bios.head)) { 437 spin_lock(&device->io_lock); 438 requeue_list(pending_bios, pending, tail); 439 goto loop_lock; 440 } 441 442 cur = pending; 443 pending = pending->bi_next; 444 cur->bi_next = NULL; 445 446 /* 447 * atomic_dec_return implies a barrier for waitqueue_active 448 */ 449 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 450 waitqueue_active(&fs_info->async_submit_wait)) 451 wake_up(&fs_info->async_submit_wait); 452 453 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 454 455 /* 456 * if we're doing the sync list, record that our 457 * plug has some sync requests on it 458 * 459 * If we're doing the regular list and there are 460 * sync requests sitting around, unplug before 461 * we add more 462 */ 463 if (pending_bios == &device->pending_sync_bios) { 464 sync_pending = 1; 465 } else if (sync_pending) { 466 blk_finish_plug(&plug); 467 blk_start_plug(&plug); 468 sync_pending = 0; 469 } 470 471 btrfsic_submit_bio(cur); 472 num_run++; 473 batch_run++; 474 475 cond_resched(); 476 477 /* 478 * we made progress, there is more work to do and the bdi 479 * is now congested. Back off and let other work structs 480 * run instead 481 */ 482 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 483 fs_info->fs_devices->open_devices > 1) { 484 struct io_context *ioc; 485 486 ioc = current->io_context; 487 488 /* 489 * the main goal here is that we don't want to 490 * block if we're going to be able to submit 491 * more requests without blocking. 492 * 493 * This code does two great things, it pokes into 494 * the elevator code from a filesystem _and_ 495 * it makes assumptions about how batching works. 496 */ 497 if (ioc && ioc->nr_batch_requests > 0 && 498 time_before(jiffies, ioc->last_waited + HZ/50UL) && 499 (last_waited == 0 || 500 ioc->last_waited == last_waited)) { 501 /* 502 * we want to go through our batch of 503 * requests and stop. So, we copy out 504 * the ioc->last_waited time and test 505 * against it before looping 506 */ 507 last_waited = ioc->last_waited; 508 cond_resched(); 509 continue; 510 } 511 spin_lock(&device->io_lock); 512 requeue_list(pending_bios, pending, tail); 513 device->running_pending = 1; 514 515 spin_unlock(&device->io_lock); 516 btrfs_queue_work(fs_info->submit_workers, 517 &device->work); 518 goto done; 519 } 520 /* unplug every 64 requests just for good measure */ 521 if (batch_run % 64 == 0) { 522 blk_finish_plug(&plug); 523 blk_start_plug(&plug); 524 sync_pending = 0; 525 } 526 } 527 528 cond_resched(); 529 if (again) 530 goto loop; 531 532 spin_lock(&device->io_lock); 533 if (device->pending_bios.head || device->pending_sync_bios.head) 534 goto loop_lock; 535 spin_unlock(&device->io_lock); 536 537 done: 538 blk_finish_plug(&plug); 539 } 540 541 static void pending_bios_fn(struct btrfs_work *work) 542 { 543 struct btrfs_device *device; 544 545 device = container_of(work, struct btrfs_device, work); 546 run_scheduled_bios(device); 547 } 548 549 550 void btrfs_free_stale_device(struct btrfs_device *cur_dev) 551 { 552 struct btrfs_fs_devices *fs_devs; 553 struct btrfs_device *dev; 554 555 if (!cur_dev->name) 556 return; 557 558 list_for_each_entry(fs_devs, &fs_uuids, list) { 559 int del = 1; 560 561 if (fs_devs->opened) 562 continue; 563 if (fs_devs->seeding) 564 continue; 565 566 list_for_each_entry(dev, &fs_devs->devices, dev_list) { 567 568 if (dev == cur_dev) 569 continue; 570 if (!dev->name) 571 continue; 572 573 /* 574 * Todo: This won't be enough. What if the same device 575 * comes back (with new uuid and) with its mapper path? 576 * But for now, this does help as mostly an admin will 577 * either use mapper or non mapper path throughout. 578 */ 579 rcu_read_lock(); 580 del = strcmp(rcu_str_deref(dev->name), 581 rcu_str_deref(cur_dev->name)); 582 rcu_read_unlock(); 583 if (!del) 584 break; 585 } 586 587 if (!del) { 588 /* delete the stale device */ 589 if (fs_devs->num_devices == 1) { 590 btrfs_sysfs_remove_fsid(fs_devs); 591 list_del(&fs_devs->list); 592 free_fs_devices(fs_devs); 593 } else { 594 fs_devs->num_devices--; 595 list_del(&dev->dev_list); 596 rcu_string_free(dev->name); 597 kfree(dev); 598 } 599 break; 600 } 601 } 602 } 603 604 /* 605 * Add new device to list of registered devices 606 * 607 * Returns: 608 * 1 - first time device is seen 609 * 0 - device already known 610 * < 0 - error 611 */ 612 static noinline int device_list_add(const char *path, 613 struct btrfs_super_block *disk_super, 614 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 615 { 616 struct btrfs_device *device; 617 struct btrfs_fs_devices *fs_devices; 618 struct rcu_string *name; 619 int ret = 0; 620 u64 found_transid = btrfs_super_generation(disk_super); 621 622 fs_devices = find_fsid(disk_super->fsid); 623 if (!fs_devices) { 624 fs_devices = alloc_fs_devices(disk_super->fsid); 625 if (IS_ERR(fs_devices)) 626 return PTR_ERR(fs_devices); 627 628 list_add(&fs_devices->list, &fs_uuids); 629 630 device = NULL; 631 } else { 632 device = find_device(fs_devices, devid, 633 disk_super->dev_item.uuid); 634 } 635 636 if (!device) { 637 if (fs_devices->opened) 638 return -EBUSY; 639 640 device = btrfs_alloc_device(NULL, &devid, 641 disk_super->dev_item.uuid); 642 if (IS_ERR(device)) { 643 /* we can safely leave the fs_devices entry around */ 644 return PTR_ERR(device); 645 } 646 647 name = rcu_string_strdup(path, GFP_NOFS); 648 if (!name) { 649 kfree(device); 650 return -ENOMEM; 651 } 652 rcu_assign_pointer(device->name, name); 653 654 mutex_lock(&fs_devices->device_list_mutex); 655 list_add_rcu(&device->dev_list, &fs_devices->devices); 656 fs_devices->num_devices++; 657 mutex_unlock(&fs_devices->device_list_mutex); 658 659 ret = 1; 660 device->fs_devices = fs_devices; 661 } else if (!device->name || strcmp(device->name->str, path)) { 662 /* 663 * When FS is already mounted. 664 * 1. If you are here and if the device->name is NULL that 665 * means this device was missing at time of FS mount. 666 * 2. If you are here and if the device->name is different 667 * from 'path' that means either 668 * a. The same device disappeared and reappeared with 669 * different name. or 670 * b. The missing-disk-which-was-replaced, has 671 * reappeared now. 672 * 673 * We must allow 1 and 2a above. But 2b would be a spurious 674 * and unintentional. 675 * 676 * Further in case of 1 and 2a above, the disk at 'path' 677 * would have missed some transaction when it was away and 678 * in case of 2a the stale bdev has to be updated as well. 679 * 2b must not be allowed at all time. 680 */ 681 682 /* 683 * For now, we do allow update to btrfs_fs_device through the 684 * btrfs dev scan cli after FS has been mounted. We're still 685 * tracking a problem where systems fail mount by subvolume id 686 * when we reject replacement on a mounted FS. 687 */ 688 if (!fs_devices->opened && found_transid < device->generation) { 689 /* 690 * That is if the FS is _not_ mounted and if you 691 * are here, that means there is more than one 692 * disk with same uuid and devid.We keep the one 693 * with larger generation number or the last-in if 694 * generation are equal. 695 */ 696 return -EEXIST; 697 } 698 699 name = rcu_string_strdup(path, GFP_NOFS); 700 if (!name) 701 return -ENOMEM; 702 rcu_string_free(device->name); 703 rcu_assign_pointer(device->name, name); 704 if (device->missing) { 705 fs_devices->missing_devices--; 706 device->missing = 0; 707 } 708 } 709 710 /* 711 * Unmount does not free the btrfs_device struct but would zero 712 * generation along with most of the other members. So just update 713 * it back. We need it to pick the disk with largest generation 714 * (as above). 715 */ 716 if (!fs_devices->opened) 717 device->generation = found_transid; 718 719 /* 720 * if there is new btrfs on an already registered device, 721 * then remove the stale device entry. 722 */ 723 if (ret > 0) 724 btrfs_free_stale_device(device); 725 726 *fs_devices_ret = fs_devices; 727 728 return ret; 729 } 730 731 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 732 { 733 struct btrfs_fs_devices *fs_devices; 734 struct btrfs_device *device; 735 struct btrfs_device *orig_dev; 736 737 fs_devices = alloc_fs_devices(orig->fsid); 738 if (IS_ERR(fs_devices)) 739 return fs_devices; 740 741 mutex_lock(&orig->device_list_mutex); 742 fs_devices->total_devices = orig->total_devices; 743 744 /* We have held the volume lock, it is safe to get the devices. */ 745 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 746 struct rcu_string *name; 747 748 device = btrfs_alloc_device(NULL, &orig_dev->devid, 749 orig_dev->uuid); 750 if (IS_ERR(device)) 751 goto error; 752 753 /* 754 * This is ok to do without rcu read locked because we hold the 755 * uuid mutex so nothing we touch in here is going to disappear. 756 */ 757 if (orig_dev->name) { 758 name = rcu_string_strdup(orig_dev->name->str, 759 GFP_KERNEL); 760 if (!name) { 761 kfree(device); 762 goto error; 763 } 764 rcu_assign_pointer(device->name, name); 765 } 766 767 list_add(&device->dev_list, &fs_devices->devices); 768 device->fs_devices = fs_devices; 769 fs_devices->num_devices++; 770 } 771 mutex_unlock(&orig->device_list_mutex); 772 return fs_devices; 773 error: 774 mutex_unlock(&orig->device_list_mutex); 775 free_fs_devices(fs_devices); 776 return ERR_PTR(-ENOMEM); 777 } 778 779 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step) 780 { 781 struct btrfs_device *device, *next; 782 struct btrfs_device *latest_dev = NULL; 783 784 mutex_lock(&uuid_mutex); 785 again: 786 /* This is the initialized path, it is safe to release the devices. */ 787 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 788 if (device->in_fs_metadata) { 789 if (!device->is_tgtdev_for_dev_replace && 790 (!latest_dev || 791 device->generation > latest_dev->generation)) { 792 latest_dev = device; 793 } 794 continue; 795 } 796 797 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 798 /* 799 * In the first step, keep the device which has 800 * the correct fsid and the devid that is used 801 * for the dev_replace procedure. 802 * In the second step, the dev_replace state is 803 * read from the device tree and it is known 804 * whether the procedure is really active or 805 * not, which means whether this device is 806 * used or whether it should be removed. 807 */ 808 if (step == 0 || device->is_tgtdev_for_dev_replace) { 809 continue; 810 } 811 } 812 if (device->bdev) { 813 blkdev_put(device->bdev, device->mode); 814 device->bdev = NULL; 815 fs_devices->open_devices--; 816 } 817 if (device->writeable) { 818 list_del_init(&device->dev_alloc_list); 819 device->writeable = 0; 820 if (!device->is_tgtdev_for_dev_replace) 821 fs_devices->rw_devices--; 822 } 823 list_del_init(&device->dev_list); 824 fs_devices->num_devices--; 825 rcu_string_free(device->name); 826 kfree(device); 827 } 828 829 if (fs_devices->seed) { 830 fs_devices = fs_devices->seed; 831 goto again; 832 } 833 834 fs_devices->latest_bdev = latest_dev->bdev; 835 836 mutex_unlock(&uuid_mutex); 837 } 838 839 static void __free_device(struct work_struct *work) 840 { 841 struct btrfs_device *device; 842 843 device = container_of(work, struct btrfs_device, rcu_work); 844 rcu_string_free(device->name); 845 bio_put(device->flush_bio); 846 kfree(device); 847 } 848 849 static void free_device(struct rcu_head *head) 850 { 851 struct btrfs_device *device; 852 853 device = container_of(head, struct btrfs_device, rcu); 854 855 INIT_WORK(&device->rcu_work, __free_device); 856 schedule_work(&device->rcu_work); 857 } 858 859 static void btrfs_close_bdev(struct btrfs_device *device) 860 { 861 if (device->bdev && device->writeable) { 862 sync_blockdev(device->bdev); 863 invalidate_bdev(device->bdev); 864 } 865 866 if (device->bdev) 867 blkdev_put(device->bdev, device->mode); 868 } 869 870 static void btrfs_prepare_close_one_device(struct btrfs_device *device) 871 { 872 struct btrfs_fs_devices *fs_devices = device->fs_devices; 873 struct btrfs_device *new_device; 874 struct rcu_string *name; 875 876 if (device->bdev) 877 fs_devices->open_devices--; 878 879 if (device->writeable && 880 device->devid != BTRFS_DEV_REPLACE_DEVID) { 881 list_del_init(&device->dev_alloc_list); 882 fs_devices->rw_devices--; 883 } 884 885 if (device->missing) 886 fs_devices->missing_devices--; 887 888 new_device = btrfs_alloc_device(NULL, &device->devid, 889 device->uuid); 890 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 891 892 /* Safe because we are under uuid_mutex */ 893 if (device->name) { 894 name = rcu_string_strdup(device->name->str, GFP_NOFS); 895 BUG_ON(!name); /* -ENOMEM */ 896 rcu_assign_pointer(new_device->name, name); 897 } 898 899 list_replace_rcu(&device->dev_list, &new_device->dev_list); 900 new_device->fs_devices = device->fs_devices; 901 } 902 903 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 904 { 905 struct btrfs_device *device, *tmp; 906 struct list_head pending_put; 907 908 INIT_LIST_HEAD(&pending_put); 909 910 if (--fs_devices->opened > 0) 911 return 0; 912 913 mutex_lock(&fs_devices->device_list_mutex); 914 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 915 btrfs_prepare_close_one_device(device); 916 list_add(&device->dev_list, &pending_put); 917 } 918 mutex_unlock(&fs_devices->device_list_mutex); 919 920 /* 921 * btrfs_show_devname() is using the device_list_mutex, 922 * sometimes call to blkdev_put() leads vfs calling 923 * into this func. So do put outside of device_list_mutex, 924 * as of now. 925 */ 926 while (!list_empty(&pending_put)) { 927 device = list_first_entry(&pending_put, 928 struct btrfs_device, dev_list); 929 list_del(&device->dev_list); 930 btrfs_close_bdev(device); 931 call_rcu(&device->rcu, free_device); 932 } 933 934 WARN_ON(fs_devices->open_devices); 935 WARN_ON(fs_devices->rw_devices); 936 fs_devices->opened = 0; 937 fs_devices->seeding = 0; 938 939 return 0; 940 } 941 942 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 943 { 944 struct btrfs_fs_devices *seed_devices = NULL; 945 int ret; 946 947 mutex_lock(&uuid_mutex); 948 ret = __btrfs_close_devices(fs_devices); 949 if (!fs_devices->opened) { 950 seed_devices = fs_devices->seed; 951 fs_devices->seed = NULL; 952 } 953 mutex_unlock(&uuid_mutex); 954 955 while (seed_devices) { 956 fs_devices = seed_devices; 957 seed_devices = fs_devices->seed; 958 __btrfs_close_devices(fs_devices); 959 free_fs_devices(fs_devices); 960 } 961 /* 962 * Wait for rcu kworkers under __btrfs_close_devices 963 * to finish all blkdev_puts so device is really 964 * free when umount is done. 965 */ 966 rcu_barrier(); 967 return ret; 968 } 969 970 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 971 fmode_t flags, void *holder) 972 { 973 struct request_queue *q; 974 struct block_device *bdev; 975 struct list_head *head = &fs_devices->devices; 976 struct btrfs_device *device; 977 struct btrfs_device *latest_dev = NULL; 978 struct buffer_head *bh; 979 struct btrfs_super_block *disk_super; 980 u64 devid; 981 int seeding = 1; 982 int ret = 0; 983 984 flags |= FMODE_EXCL; 985 986 list_for_each_entry(device, head, dev_list) { 987 if (device->bdev) 988 continue; 989 if (!device->name) 990 continue; 991 992 /* Just open everything we can; ignore failures here */ 993 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 994 &bdev, &bh)) 995 continue; 996 997 disk_super = (struct btrfs_super_block *)bh->b_data; 998 devid = btrfs_stack_device_id(&disk_super->dev_item); 999 if (devid != device->devid) 1000 goto error_brelse; 1001 1002 if (memcmp(device->uuid, disk_super->dev_item.uuid, 1003 BTRFS_UUID_SIZE)) 1004 goto error_brelse; 1005 1006 device->generation = btrfs_super_generation(disk_super); 1007 if (!latest_dev || 1008 device->generation > latest_dev->generation) 1009 latest_dev = device; 1010 1011 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 1012 device->writeable = 0; 1013 } else { 1014 device->writeable = !bdev_read_only(bdev); 1015 seeding = 0; 1016 } 1017 1018 q = bdev_get_queue(bdev); 1019 if (blk_queue_discard(q)) 1020 device->can_discard = 1; 1021 if (!blk_queue_nonrot(q)) 1022 fs_devices->rotating = 1; 1023 1024 device->bdev = bdev; 1025 device->in_fs_metadata = 0; 1026 device->mode = flags; 1027 1028 fs_devices->open_devices++; 1029 if (device->writeable && 1030 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1031 fs_devices->rw_devices++; 1032 list_add(&device->dev_alloc_list, 1033 &fs_devices->alloc_list); 1034 } 1035 brelse(bh); 1036 continue; 1037 1038 error_brelse: 1039 brelse(bh); 1040 blkdev_put(bdev, flags); 1041 continue; 1042 } 1043 if (fs_devices->open_devices == 0) { 1044 ret = -EINVAL; 1045 goto out; 1046 } 1047 fs_devices->seeding = seeding; 1048 fs_devices->opened = 1; 1049 fs_devices->latest_bdev = latest_dev->bdev; 1050 fs_devices->total_rw_bytes = 0; 1051 out: 1052 return ret; 1053 } 1054 1055 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1056 fmode_t flags, void *holder) 1057 { 1058 int ret; 1059 1060 mutex_lock(&uuid_mutex); 1061 if (fs_devices->opened) { 1062 fs_devices->opened++; 1063 ret = 0; 1064 } else { 1065 ret = __btrfs_open_devices(fs_devices, flags, holder); 1066 } 1067 mutex_unlock(&uuid_mutex); 1068 return ret; 1069 } 1070 1071 void btrfs_release_disk_super(struct page *page) 1072 { 1073 kunmap(page); 1074 put_page(page); 1075 } 1076 1077 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, 1078 struct page **page, struct btrfs_super_block **disk_super) 1079 { 1080 void *p; 1081 pgoff_t index; 1082 1083 /* make sure our super fits in the device */ 1084 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1085 return 1; 1086 1087 /* make sure our super fits in the page */ 1088 if (sizeof(**disk_super) > PAGE_SIZE) 1089 return 1; 1090 1091 /* make sure our super doesn't straddle pages on disk */ 1092 index = bytenr >> PAGE_SHIFT; 1093 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) 1094 return 1; 1095 1096 /* pull in the page with our super */ 1097 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1098 index, GFP_KERNEL); 1099 1100 if (IS_ERR_OR_NULL(*page)) 1101 return 1; 1102 1103 p = kmap(*page); 1104 1105 /* align our pointer to the offset of the super block */ 1106 *disk_super = p + (bytenr & ~PAGE_MASK); 1107 1108 if (btrfs_super_bytenr(*disk_super) != bytenr || 1109 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { 1110 btrfs_release_disk_super(*page); 1111 return 1; 1112 } 1113 1114 if ((*disk_super)->label[0] && 1115 (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) 1116 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1117 1118 return 0; 1119 } 1120 1121 /* 1122 * Look for a btrfs signature on a device. This may be called out of the mount path 1123 * and we are not allowed to call set_blocksize during the scan. The superblock 1124 * is read via pagecache 1125 */ 1126 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 1127 struct btrfs_fs_devices **fs_devices_ret) 1128 { 1129 struct btrfs_super_block *disk_super; 1130 struct block_device *bdev; 1131 struct page *page; 1132 int ret = -EINVAL; 1133 u64 devid; 1134 u64 transid; 1135 u64 total_devices; 1136 u64 bytenr; 1137 1138 /* 1139 * we would like to check all the supers, but that would make 1140 * a btrfs mount succeed after a mkfs from a different FS. 1141 * So, we need to add a special mount option to scan for 1142 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1143 */ 1144 bytenr = btrfs_sb_offset(0); 1145 flags |= FMODE_EXCL; 1146 mutex_lock(&uuid_mutex); 1147 1148 bdev = blkdev_get_by_path(path, flags, holder); 1149 if (IS_ERR(bdev)) { 1150 ret = PTR_ERR(bdev); 1151 goto error; 1152 } 1153 1154 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) 1155 goto error_bdev_put; 1156 1157 devid = btrfs_stack_device_id(&disk_super->dev_item); 1158 transid = btrfs_super_generation(disk_super); 1159 total_devices = btrfs_super_num_devices(disk_super); 1160 1161 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 1162 if (ret > 0) { 1163 if (disk_super->label[0]) { 1164 pr_info("BTRFS: device label %s ", disk_super->label); 1165 } else { 1166 pr_info("BTRFS: device fsid %pU ", disk_super->fsid); 1167 } 1168 1169 pr_cont("devid %llu transid %llu %s\n", devid, transid, path); 1170 ret = 0; 1171 } 1172 if (!ret && fs_devices_ret) 1173 (*fs_devices_ret)->total_devices = total_devices; 1174 1175 btrfs_release_disk_super(page); 1176 1177 error_bdev_put: 1178 blkdev_put(bdev, flags); 1179 error: 1180 mutex_unlock(&uuid_mutex); 1181 return ret; 1182 } 1183 1184 /* helper to account the used device space in the range */ 1185 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 1186 u64 end, u64 *length) 1187 { 1188 struct btrfs_key key; 1189 struct btrfs_root *root = device->fs_info->dev_root; 1190 struct btrfs_dev_extent *dev_extent; 1191 struct btrfs_path *path; 1192 u64 extent_end; 1193 int ret; 1194 int slot; 1195 struct extent_buffer *l; 1196 1197 *length = 0; 1198 1199 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 1200 return 0; 1201 1202 path = btrfs_alloc_path(); 1203 if (!path) 1204 return -ENOMEM; 1205 path->reada = READA_FORWARD; 1206 1207 key.objectid = device->devid; 1208 key.offset = start; 1209 key.type = BTRFS_DEV_EXTENT_KEY; 1210 1211 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1212 if (ret < 0) 1213 goto out; 1214 if (ret > 0) { 1215 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1216 if (ret < 0) 1217 goto out; 1218 } 1219 1220 while (1) { 1221 l = path->nodes[0]; 1222 slot = path->slots[0]; 1223 if (slot >= btrfs_header_nritems(l)) { 1224 ret = btrfs_next_leaf(root, path); 1225 if (ret == 0) 1226 continue; 1227 if (ret < 0) 1228 goto out; 1229 1230 break; 1231 } 1232 btrfs_item_key_to_cpu(l, &key, slot); 1233 1234 if (key.objectid < device->devid) 1235 goto next; 1236 1237 if (key.objectid > device->devid) 1238 break; 1239 1240 if (key.type != BTRFS_DEV_EXTENT_KEY) 1241 goto next; 1242 1243 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1244 extent_end = key.offset + btrfs_dev_extent_length(l, 1245 dev_extent); 1246 if (key.offset <= start && extent_end > end) { 1247 *length = end - start + 1; 1248 break; 1249 } else if (key.offset <= start && extent_end > start) 1250 *length += extent_end - start; 1251 else if (key.offset > start && extent_end <= end) 1252 *length += extent_end - key.offset; 1253 else if (key.offset > start && key.offset <= end) { 1254 *length += end - key.offset + 1; 1255 break; 1256 } else if (key.offset > end) 1257 break; 1258 1259 next: 1260 path->slots[0]++; 1261 } 1262 ret = 0; 1263 out: 1264 btrfs_free_path(path); 1265 return ret; 1266 } 1267 1268 static int contains_pending_extent(struct btrfs_transaction *transaction, 1269 struct btrfs_device *device, 1270 u64 *start, u64 len) 1271 { 1272 struct btrfs_fs_info *fs_info = device->fs_info; 1273 struct extent_map *em; 1274 struct list_head *search_list = &fs_info->pinned_chunks; 1275 int ret = 0; 1276 u64 physical_start = *start; 1277 1278 if (transaction) 1279 search_list = &transaction->pending_chunks; 1280 again: 1281 list_for_each_entry(em, search_list, list) { 1282 struct map_lookup *map; 1283 int i; 1284 1285 map = em->map_lookup; 1286 for (i = 0; i < map->num_stripes; i++) { 1287 u64 end; 1288 1289 if (map->stripes[i].dev != device) 1290 continue; 1291 if (map->stripes[i].physical >= physical_start + len || 1292 map->stripes[i].physical + em->orig_block_len <= 1293 physical_start) 1294 continue; 1295 /* 1296 * Make sure that while processing the pinned list we do 1297 * not override our *start with a lower value, because 1298 * we can have pinned chunks that fall within this 1299 * device hole and that have lower physical addresses 1300 * than the pending chunks we processed before. If we 1301 * do not take this special care we can end up getting 1302 * 2 pending chunks that start at the same physical 1303 * device offsets because the end offset of a pinned 1304 * chunk can be equal to the start offset of some 1305 * pending chunk. 1306 */ 1307 end = map->stripes[i].physical + em->orig_block_len; 1308 if (end > *start) { 1309 *start = end; 1310 ret = 1; 1311 } 1312 } 1313 } 1314 if (search_list != &fs_info->pinned_chunks) { 1315 search_list = &fs_info->pinned_chunks; 1316 goto again; 1317 } 1318 1319 return ret; 1320 } 1321 1322 1323 /* 1324 * find_free_dev_extent_start - find free space in the specified device 1325 * @device: the device which we search the free space in 1326 * @num_bytes: the size of the free space that we need 1327 * @search_start: the position from which to begin the search 1328 * @start: store the start of the free space. 1329 * @len: the size of the free space. that we find, or the size 1330 * of the max free space if we don't find suitable free space 1331 * 1332 * this uses a pretty simple search, the expectation is that it is 1333 * called very infrequently and that a given device has a small number 1334 * of extents 1335 * 1336 * @start is used to store the start of the free space if we find. But if we 1337 * don't find suitable free space, it will be used to store the start position 1338 * of the max free space. 1339 * 1340 * @len is used to store the size of the free space that we find. 1341 * But if we don't find suitable free space, it is used to store the size of 1342 * the max free space. 1343 */ 1344 int find_free_dev_extent_start(struct btrfs_transaction *transaction, 1345 struct btrfs_device *device, u64 num_bytes, 1346 u64 search_start, u64 *start, u64 *len) 1347 { 1348 struct btrfs_fs_info *fs_info = device->fs_info; 1349 struct btrfs_root *root = fs_info->dev_root; 1350 struct btrfs_key key; 1351 struct btrfs_dev_extent *dev_extent; 1352 struct btrfs_path *path; 1353 u64 hole_size; 1354 u64 max_hole_start; 1355 u64 max_hole_size; 1356 u64 extent_end; 1357 u64 search_end = device->total_bytes; 1358 int ret; 1359 int slot; 1360 struct extent_buffer *l; 1361 1362 /* 1363 * We don't want to overwrite the superblock on the drive nor any area 1364 * used by the boot loader (grub for example), so we make sure to start 1365 * at an offset of at least 1MB. 1366 */ 1367 search_start = max_t(u64, search_start, SZ_1M); 1368 1369 path = btrfs_alloc_path(); 1370 if (!path) 1371 return -ENOMEM; 1372 1373 max_hole_start = search_start; 1374 max_hole_size = 0; 1375 1376 again: 1377 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1378 ret = -ENOSPC; 1379 goto out; 1380 } 1381 1382 path->reada = READA_FORWARD; 1383 path->search_commit_root = 1; 1384 path->skip_locking = 1; 1385 1386 key.objectid = device->devid; 1387 key.offset = search_start; 1388 key.type = BTRFS_DEV_EXTENT_KEY; 1389 1390 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1391 if (ret < 0) 1392 goto out; 1393 if (ret > 0) { 1394 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1395 if (ret < 0) 1396 goto out; 1397 } 1398 1399 while (1) { 1400 l = path->nodes[0]; 1401 slot = path->slots[0]; 1402 if (slot >= btrfs_header_nritems(l)) { 1403 ret = btrfs_next_leaf(root, path); 1404 if (ret == 0) 1405 continue; 1406 if (ret < 0) 1407 goto out; 1408 1409 break; 1410 } 1411 btrfs_item_key_to_cpu(l, &key, slot); 1412 1413 if (key.objectid < device->devid) 1414 goto next; 1415 1416 if (key.objectid > device->devid) 1417 break; 1418 1419 if (key.type != BTRFS_DEV_EXTENT_KEY) 1420 goto next; 1421 1422 if (key.offset > search_start) { 1423 hole_size = key.offset - search_start; 1424 1425 /* 1426 * Have to check before we set max_hole_start, otherwise 1427 * we could end up sending back this offset anyway. 1428 */ 1429 if (contains_pending_extent(transaction, device, 1430 &search_start, 1431 hole_size)) { 1432 if (key.offset >= search_start) { 1433 hole_size = key.offset - search_start; 1434 } else { 1435 WARN_ON_ONCE(1); 1436 hole_size = 0; 1437 } 1438 } 1439 1440 if (hole_size > max_hole_size) { 1441 max_hole_start = search_start; 1442 max_hole_size = hole_size; 1443 } 1444 1445 /* 1446 * If this free space is greater than which we need, 1447 * it must be the max free space that we have found 1448 * until now, so max_hole_start must point to the start 1449 * of this free space and the length of this free space 1450 * is stored in max_hole_size. Thus, we return 1451 * max_hole_start and max_hole_size and go back to the 1452 * caller. 1453 */ 1454 if (hole_size >= num_bytes) { 1455 ret = 0; 1456 goto out; 1457 } 1458 } 1459 1460 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1461 extent_end = key.offset + btrfs_dev_extent_length(l, 1462 dev_extent); 1463 if (extent_end > search_start) 1464 search_start = extent_end; 1465 next: 1466 path->slots[0]++; 1467 cond_resched(); 1468 } 1469 1470 /* 1471 * At this point, search_start should be the end of 1472 * allocated dev extents, and when shrinking the device, 1473 * search_end may be smaller than search_start. 1474 */ 1475 if (search_end > search_start) { 1476 hole_size = search_end - search_start; 1477 1478 if (contains_pending_extent(transaction, device, &search_start, 1479 hole_size)) { 1480 btrfs_release_path(path); 1481 goto again; 1482 } 1483 1484 if (hole_size > max_hole_size) { 1485 max_hole_start = search_start; 1486 max_hole_size = hole_size; 1487 } 1488 } 1489 1490 /* See above. */ 1491 if (max_hole_size < num_bytes) 1492 ret = -ENOSPC; 1493 else 1494 ret = 0; 1495 1496 out: 1497 btrfs_free_path(path); 1498 *start = max_hole_start; 1499 if (len) 1500 *len = max_hole_size; 1501 return ret; 1502 } 1503 1504 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1505 struct btrfs_device *device, u64 num_bytes, 1506 u64 *start, u64 *len) 1507 { 1508 /* FIXME use last free of some kind */ 1509 return find_free_dev_extent_start(trans->transaction, device, 1510 num_bytes, 0, start, len); 1511 } 1512 1513 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1514 struct btrfs_device *device, 1515 u64 start, u64 *dev_extent_len) 1516 { 1517 struct btrfs_fs_info *fs_info = device->fs_info; 1518 struct btrfs_root *root = fs_info->dev_root; 1519 int ret; 1520 struct btrfs_path *path; 1521 struct btrfs_key key; 1522 struct btrfs_key found_key; 1523 struct extent_buffer *leaf = NULL; 1524 struct btrfs_dev_extent *extent = NULL; 1525 1526 path = btrfs_alloc_path(); 1527 if (!path) 1528 return -ENOMEM; 1529 1530 key.objectid = device->devid; 1531 key.offset = start; 1532 key.type = BTRFS_DEV_EXTENT_KEY; 1533 again: 1534 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1535 if (ret > 0) { 1536 ret = btrfs_previous_item(root, path, key.objectid, 1537 BTRFS_DEV_EXTENT_KEY); 1538 if (ret) 1539 goto out; 1540 leaf = path->nodes[0]; 1541 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1542 extent = btrfs_item_ptr(leaf, path->slots[0], 1543 struct btrfs_dev_extent); 1544 BUG_ON(found_key.offset > start || found_key.offset + 1545 btrfs_dev_extent_length(leaf, extent) < start); 1546 key = found_key; 1547 btrfs_release_path(path); 1548 goto again; 1549 } else if (ret == 0) { 1550 leaf = path->nodes[0]; 1551 extent = btrfs_item_ptr(leaf, path->slots[0], 1552 struct btrfs_dev_extent); 1553 } else { 1554 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1555 goto out; 1556 } 1557 1558 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1559 1560 ret = btrfs_del_item(trans, root, path); 1561 if (ret) { 1562 btrfs_handle_fs_error(fs_info, ret, 1563 "Failed to remove dev extent item"); 1564 } else { 1565 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1566 } 1567 out: 1568 btrfs_free_path(path); 1569 return ret; 1570 } 1571 1572 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1573 struct btrfs_device *device, 1574 u64 chunk_offset, u64 start, u64 num_bytes) 1575 { 1576 int ret; 1577 struct btrfs_path *path; 1578 struct btrfs_fs_info *fs_info = device->fs_info; 1579 struct btrfs_root *root = fs_info->dev_root; 1580 struct btrfs_dev_extent *extent; 1581 struct extent_buffer *leaf; 1582 struct btrfs_key key; 1583 1584 WARN_ON(!device->in_fs_metadata); 1585 WARN_ON(device->is_tgtdev_for_dev_replace); 1586 path = btrfs_alloc_path(); 1587 if (!path) 1588 return -ENOMEM; 1589 1590 key.objectid = device->devid; 1591 key.offset = start; 1592 key.type = BTRFS_DEV_EXTENT_KEY; 1593 ret = btrfs_insert_empty_item(trans, root, path, &key, 1594 sizeof(*extent)); 1595 if (ret) 1596 goto out; 1597 1598 leaf = path->nodes[0]; 1599 extent = btrfs_item_ptr(leaf, path->slots[0], 1600 struct btrfs_dev_extent); 1601 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1602 BTRFS_CHUNK_TREE_OBJECTID); 1603 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1604 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1605 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1606 1607 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1608 btrfs_mark_buffer_dirty(leaf); 1609 out: 1610 btrfs_free_path(path); 1611 return ret; 1612 } 1613 1614 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1615 { 1616 struct extent_map_tree *em_tree; 1617 struct extent_map *em; 1618 struct rb_node *n; 1619 u64 ret = 0; 1620 1621 em_tree = &fs_info->mapping_tree.map_tree; 1622 read_lock(&em_tree->lock); 1623 n = rb_last(&em_tree->map); 1624 if (n) { 1625 em = rb_entry(n, struct extent_map, rb_node); 1626 ret = em->start + em->len; 1627 } 1628 read_unlock(&em_tree->lock); 1629 1630 return ret; 1631 } 1632 1633 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1634 u64 *devid_ret) 1635 { 1636 int ret; 1637 struct btrfs_key key; 1638 struct btrfs_key found_key; 1639 struct btrfs_path *path; 1640 1641 path = btrfs_alloc_path(); 1642 if (!path) 1643 return -ENOMEM; 1644 1645 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1646 key.type = BTRFS_DEV_ITEM_KEY; 1647 key.offset = (u64)-1; 1648 1649 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1650 if (ret < 0) 1651 goto error; 1652 1653 BUG_ON(ret == 0); /* Corruption */ 1654 1655 ret = btrfs_previous_item(fs_info->chunk_root, path, 1656 BTRFS_DEV_ITEMS_OBJECTID, 1657 BTRFS_DEV_ITEM_KEY); 1658 if (ret) { 1659 *devid_ret = 1; 1660 } else { 1661 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1662 path->slots[0]); 1663 *devid_ret = found_key.offset + 1; 1664 } 1665 ret = 0; 1666 error: 1667 btrfs_free_path(path); 1668 return ret; 1669 } 1670 1671 /* 1672 * the device information is stored in the chunk root 1673 * the btrfs_device struct should be fully filled in 1674 */ 1675 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1676 struct btrfs_fs_info *fs_info, 1677 struct btrfs_device *device) 1678 { 1679 struct btrfs_root *root = fs_info->chunk_root; 1680 int ret; 1681 struct btrfs_path *path; 1682 struct btrfs_dev_item *dev_item; 1683 struct extent_buffer *leaf; 1684 struct btrfs_key key; 1685 unsigned long ptr; 1686 1687 path = btrfs_alloc_path(); 1688 if (!path) 1689 return -ENOMEM; 1690 1691 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1692 key.type = BTRFS_DEV_ITEM_KEY; 1693 key.offset = device->devid; 1694 1695 ret = btrfs_insert_empty_item(trans, root, path, &key, 1696 sizeof(*dev_item)); 1697 if (ret) 1698 goto out; 1699 1700 leaf = path->nodes[0]; 1701 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1702 1703 btrfs_set_device_id(leaf, dev_item, device->devid); 1704 btrfs_set_device_generation(leaf, dev_item, 0); 1705 btrfs_set_device_type(leaf, dev_item, device->type); 1706 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1707 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1708 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1709 btrfs_set_device_total_bytes(leaf, dev_item, 1710 btrfs_device_get_disk_total_bytes(device)); 1711 btrfs_set_device_bytes_used(leaf, dev_item, 1712 btrfs_device_get_bytes_used(device)); 1713 btrfs_set_device_group(leaf, dev_item, 0); 1714 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1715 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1716 btrfs_set_device_start_offset(leaf, dev_item, 0); 1717 1718 ptr = btrfs_device_uuid(dev_item); 1719 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1720 ptr = btrfs_device_fsid(dev_item); 1721 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE); 1722 btrfs_mark_buffer_dirty(leaf); 1723 1724 ret = 0; 1725 out: 1726 btrfs_free_path(path); 1727 return ret; 1728 } 1729 1730 /* 1731 * Function to update ctime/mtime for a given device path. 1732 * Mainly used for ctime/mtime based probe like libblkid. 1733 */ 1734 static void update_dev_time(const char *path_name) 1735 { 1736 struct file *filp; 1737 1738 filp = filp_open(path_name, O_RDWR, 0); 1739 if (IS_ERR(filp)) 1740 return; 1741 file_update_time(filp); 1742 filp_close(filp, NULL); 1743 } 1744 1745 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info, 1746 struct btrfs_device *device) 1747 { 1748 struct btrfs_root *root = fs_info->chunk_root; 1749 int ret; 1750 struct btrfs_path *path; 1751 struct btrfs_key key; 1752 struct btrfs_trans_handle *trans; 1753 1754 path = btrfs_alloc_path(); 1755 if (!path) 1756 return -ENOMEM; 1757 1758 trans = btrfs_start_transaction(root, 0); 1759 if (IS_ERR(trans)) { 1760 btrfs_free_path(path); 1761 return PTR_ERR(trans); 1762 } 1763 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1764 key.type = BTRFS_DEV_ITEM_KEY; 1765 key.offset = device->devid; 1766 1767 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1768 if (ret < 0) 1769 goto out; 1770 1771 if (ret > 0) { 1772 ret = -ENOENT; 1773 goto out; 1774 } 1775 1776 ret = btrfs_del_item(trans, root, path); 1777 if (ret) 1778 goto out; 1779 out: 1780 btrfs_free_path(path); 1781 btrfs_commit_transaction(trans); 1782 return ret; 1783 } 1784 1785 /* 1786 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1787 * filesystem. It's up to the caller to adjust that number regarding eg. device 1788 * replace. 1789 */ 1790 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1791 u64 num_devices) 1792 { 1793 u64 all_avail; 1794 unsigned seq; 1795 int i; 1796 1797 do { 1798 seq = read_seqbegin(&fs_info->profiles_lock); 1799 1800 all_avail = fs_info->avail_data_alloc_bits | 1801 fs_info->avail_system_alloc_bits | 1802 fs_info->avail_metadata_alloc_bits; 1803 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1804 1805 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1806 if (!(all_avail & btrfs_raid_group[i])) 1807 continue; 1808 1809 if (num_devices < btrfs_raid_array[i].devs_min) { 1810 int ret = btrfs_raid_mindev_error[i]; 1811 1812 if (ret) 1813 return ret; 1814 } 1815 } 1816 1817 return 0; 1818 } 1819 1820 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs, 1821 struct btrfs_device *device) 1822 { 1823 struct btrfs_device *next_device; 1824 1825 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1826 if (next_device != device && 1827 !next_device->missing && next_device->bdev) 1828 return next_device; 1829 } 1830 1831 return NULL; 1832 } 1833 1834 /* 1835 * Helper function to check if the given device is part of s_bdev / latest_bdev 1836 * and replace it with the provided or the next active device, in the context 1837 * where this function called, there should be always be another device (or 1838 * this_dev) which is active. 1839 */ 1840 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info, 1841 struct btrfs_device *device, struct btrfs_device *this_dev) 1842 { 1843 struct btrfs_device *next_device; 1844 1845 if (this_dev) 1846 next_device = this_dev; 1847 else 1848 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1849 device); 1850 ASSERT(next_device); 1851 1852 if (fs_info->sb->s_bdev && 1853 (fs_info->sb->s_bdev == device->bdev)) 1854 fs_info->sb->s_bdev = next_device->bdev; 1855 1856 if (fs_info->fs_devices->latest_bdev == device->bdev) 1857 fs_info->fs_devices->latest_bdev = next_device->bdev; 1858 } 1859 1860 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 1861 u64 devid) 1862 { 1863 struct btrfs_device *device; 1864 struct btrfs_fs_devices *cur_devices; 1865 u64 num_devices; 1866 int ret = 0; 1867 1868 mutex_lock(&uuid_mutex); 1869 1870 num_devices = fs_info->fs_devices->num_devices; 1871 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 1872 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 1873 WARN_ON(num_devices < 1); 1874 num_devices--; 1875 } 1876 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 1877 1878 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 1879 if (ret) 1880 goto out; 1881 1882 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path, 1883 &device); 1884 if (ret) 1885 goto out; 1886 1887 if (device->is_tgtdev_for_dev_replace) { 1888 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1889 goto out; 1890 } 1891 1892 if (device->writeable && fs_info->fs_devices->rw_devices == 1) { 1893 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1894 goto out; 1895 } 1896 1897 if (device->writeable) { 1898 mutex_lock(&fs_info->chunk_mutex); 1899 list_del_init(&device->dev_alloc_list); 1900 device->fs_devices->rw_devices--; 1901 mutex_unlock(&fs_info->chunk_mutex); 1902 } 1903 1904 mutex_unlock(&uuid_mutex); 1905 ret = btrfs_shrink_device(device, 0); 1906 mutex_lock(&uuid_mutex); 1907 if (ret) 1908 goto error_undo; 1909 1910 /* 1911 * TODO: the superblock still includes this device in its num_devices 1912 * counter although write_all_supers() is not locked out. This 1913 * could give a filesystem state which requires a degraded mount. 1914 */ 1915 ret = btrfs_rm_dev_item(fs_info, device); 1916 if (ret) 1917 goto error_undo; 1918 1919 device->in_fs_metadata = 0; 1920 btrfs_scrub_cancel_dev(fs_info, device); 1921 1922 /* 1923 * the device list mutex makes sure that we don't change 1924 * the device list while someone else is writing out all 1925 * the device supers. Whoever is writing all supers, should 1926 * lock the device list mutex before getting the number of 1927 * devices in the super block (super_copy). Conversely, 1928 * whoever updates the number of devices in the super block 1929 * (super_copy) should hold the device list mutex. 1930 */ 1931 1932 cur_devices = device->fs_devices; 1933 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1934 list_del_rcu(&device->dev_list); 1935 1936 device->fs_devices->num_devices--; 1937 device->fs_devices->total_devices--; 1938 1939 if (device->missing) 1940 device->fs_devices->missing_devices--; 1941 1942 btrfs_assign_next_active_device(fs_info, device, NULL); 1943 1944 if (device->bdev) { 1945 device->fs_devices->open_devices--; 1946 /* remove sysfs entry */ 1947 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device); 1948 } 1949 1950 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 1951 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 1952 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1953 1954 /* 1955 * at this point, the device is zero sized and detached from 1956 * the devices list. All that's left is to zero out the old 1957 * supers and free the device. 1958 */ 1959 if (device->writeable) 1960 btrfs_scratch_superblocks(device->bdev, device->name->str); 1961 1962 btrfs_close_bdev(device); 1963 call_rcu(&device->rcu, free_device); 1964 1965 if (cur_devices->open_devices == 0) { 1966 struct btrfs_fs_devices *fs_devices; 1967 fs_devices = fs_info->fs_devices; 1968 while (fs_devices) { 1969 if (fs_devices->seed == cur_devices) { 1970 fs_devices->seed = cur_devices->seed; 1971 break; 1972 } 1973 fs_devices = fs_devices->seed; 1974 } 1975 cur_devices->seed = NULL; 1976 __btrfs_close_devices(cur_devices); 1977 free_fs_devices(cur_devices); 1978 } 1979 1980 out: 1981 mutex_unlock(&uuid_mutex); 1982 return ret; 1983 1984 error_undo: 1985 if (device->writeable) { 1986 mutex_lock(&fs_info->chunk_mutex); 1987 list_add(&device->dev_alloc_list, 1988 &fs_info->fs_devices->alloc_list); 1989 device->fs_devices->rw_devices++; 1990 mutex_unlock(&fs_info->chunk_mutex); 1991 } 1992 goto out; 1993 } 1994 1995 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info, 1996 struct btrfs_device *srcdev) 1997 { 1998 struct btrfs_fs_devices *fs_devices; 1999 2000 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 2001 2002 /* 2003 * in case of fs with no seed, srcdev->fs_devices will point 2004 * to fs_devices of fs_info. However when the dev being replaced is 2005 * a seed dev it will point to the seed's local fs_devices. In short 2006 * srcdev will have its correct fs_devices in both the cases. 2007 */ 2008 fs_devices = srcdev->fs_devices; 2009 2010 list_del_rcu(&srcdev->dev_list); 2011 list_del_rcu(&srcdev->dev_alloc_list); 2012 fs_devices->num_devices--; 2013 if (srcdev->missing) 2014 fs_devices->missing_devices--; 2015 2016 if (srcdev->writeable) 2017 fs_devices->rw_devices--; 2018 2019 if (srcdev->bdev) 2020 fs_devices->open_devices--; 2021 } 2022 2023 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 2024 struct btrfs_device *srcdev) 2025 { 2026 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2027 2028 if (srcdev->writeable) { 2029 /* zero out the old super if it is writable */ 2030 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); 2031 } 2032 2033 btrfs_close_bdev(srcdev); 2034 2035 call_rcu(&srcdev->rcu, free_device); 2036 2037 /* 2038 * unless fs_devices is seed fs, num_devices shouldn't go 2039 * zero 2040 */ 2041 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding); 2042 2043 /* if this is no devs we rather delete the fs_devices */ 2044 if (!fs_devices->num_devices) { 2045 struct btrfs_fs_devices *tmp_fs_devices; 2046 2047 tmp_fs_devices = fs_info->fs_devices; 2048 while (tmp_fs_devices) { 2049 if (tmp_fs_devices->seed == fs_devices) { 2050 tmp_fs_devices->seed = fs_devices->seed; 2051 break; 2052 } 2053 tmp_fs_devices = tmp_fs_devices->seed; 2054 } 2055 fs_devices->seed = NULL; 2056 __btrfs_close_devices(fs_devices); 2057 free_fs_devices(fs_devices); 2058 } 2059 } 2060 2061 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 2062 struct btrfs_device *tgtdev) 2063 { 2064 mutex_lock(&uuid_mutex); 2065 WARN_ON(!tgtdev); 2066 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2067 2068 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev); 2069 2070 if (tgtdev->bdev) 2071 fs_info->fs_devices->open_devices--; 2072 2073 fs_info->fs_devices->num_devices--; 2074 2075 btrfs_assign_next_active_device(fs_info, tgtdev, NULL); 2076 2077 list_del_rcu(&tgtdev->dev_list); 2078 2079 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2080 mutex_unlock(&uuid_mutex); 2081 2082 /* 2083 * The update_dev_time() with in btrfs_scratch_superblocks() 2084 * may lead to a call to btrfs_show_devname() which will try 2085 * to hold device_list_mutex. And here this device 2086 * is already out of device list, so we don't have to hold 2087 * the device_list_mutex lock. 2088 */ 2089 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); 2090 2091 btrfs_close_bdev(tgtdev); 2092 call_rcu(&tgtdev->rcu, free_device); 2093 } 2094 2095 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info, 2096 const char *device_path, 2097 struct btrfs_device **device) 2098 { 2099 int ret = 0; 2100 struct btrfs_super_block *disk_super; 2101 u64 devid; 2102 u8 *dev_uuid; 2103 struct block_device *bdev; 2104 struct buffer_head *bh; 2105 2106 *device = NULL; 2107 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2108 fs_info->bdev_holder, 0, &bdev, &bh); 2109 if (ret) 2110 return ret; 2111 disk_super = (struct btrfs_super_block *)bh->b_data; 2112 devid = btrfs_stack_device_id(&disk_super->dev_item); 2113 dev_uuid = disk_super->dev_item.uuid; 2114 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid); 2115 brelse(bh); 2116 if (!*device) 2117 ret = -ENOENT; 2118 blkdev_put(bdev, FMODE_READ); 2119 return ret; 2120 } 2121 2122 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info, 2123 const char *device_path, 2124 struct btrfs_device **device) 2125 { 2126 *device = NULL; 2127 if (strcmp(device_path, "missing") == 0) { 2128 struct list_head *devices; 2129 struct btrfs_device *tmp; 2130 2131 devices = &fs_info->fs_devices->devices; 2132 /* 2133 * It is safe to read the devices since the volume_mutex 2134 * is held by the caller. 2135 */ 2136 list_for_each_entry(tmp, devices, dev_list) { 2137 if (tmp->in_fs_metadata && !tmp->bdev) { 2138 *device = tmp; 2139 break; 2140 } 2141 } 2142 2143 if (!*device) 2144 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2145 2146 return 0; 2147 } else { 2148 return btrfs_find_device_by_path(fs_info, device_path, device); 2149 } 2150 } 2151 2152 /* 2153 * Lookup a device given by device id, or the path if the id is 0. 2154 */ 2155 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid, 2156 const char *devpath, 2157 struct btrfs_device **device) 2158 { 2159 int ret; 2160 2161 if (devid) { 2162 ret = 0; 2163 *device = btrfs_find_device(fs_info, devid, NULL, NULL); 2164 if (!*device) 2165 ret = -ENOENT; 2166 } else { 2167 if (!devpath || !devpath[0]) 2168 return -EINVAL; 2169 2170 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath, 2171 device); 2172 } 2173 return ret; 2174 } 2175 2176 /* 2177 * does all the dirty work required for changing file system's UUID. 2178 */ 2179 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2180 { 2181 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2182 struct btrfs_fs_devices *old_devices; 2183 struct btrfs_fs_devices *seed_devices; 2184 struct btrfs_super_block *disk_super = fs_info->super_copy; 2185 struct btrfs_device *device; 2186 u64 super_flags; 2187 2188 BUG_ON(!mutex_is_locked(&uuid_mutex)); 2189 if (!fs_devices->seeding) 2190 return -EINVAL; 2191 2192 seed_devices = alloc_fs_devices(NULL); 2193 if (IS_ERR(seed_devices)) 2194 return PTR_ERR(seed_devices); 2195 2196 old_devices = clone_fs_devices(fs_devices); 2197 if (IS_ERR(old_devices)) { 2198 kfree(seed_devices); 2199 return PTR_ERR(old_devices); 2200 } 2201 2202 list_add(&old_devices->list, &fs_uuids); 2203 2204 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2205 seed_devices->opened = 1; 2206 INIT_LIST_HEAD(&seed_devices->devices); 2207 INIT_LIST_HEAD(&seed_devices->alloc_list); 2208 mutex_init(&seed_devices->device_list_mutex); 2209 2210 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2211 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2212 synchronize_rcu); 2213 list_for_each_entry(device, &seed_devices->devices, dev_list) 2214 device->fs_devices = seed_devices; 2215 2216 mutex_lock(&fs_info->chunk_mutex); 2217 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2218 mutex_unlock(&fs_info->chunk_mutex); 2219 2220 fs_devices->seeding = 0; 2221 fs_devices->num_devices = 0; 2222 fs_devices->open_devices = 0; 2223 fs_devices->missing_devices = 0; 2224 fs_devices->rotating = 0; 2225 fs_devices->seed = seed_devices; 2226 2227 generate_random_uuid(fs_devices->fsid); 2228 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2229 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2230 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2231 2232 super_flags = btrfs_super_flags(disk_super) & 2233 ~BTRFS_SUPER_FLAG_SEEDING; 2234 btrfs_set_super_flags(disk_super, super_flags); 2235 2236 return 0; 2237 } 2238 2239 /* 2240 * Store the expected generation for seed devices in device items. 2241 */ 2242 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2243 struct btrfs_fs_info *fs_info) 2244 { 2245 struct btrfs_root *root = fs_info->chunk_root; 2246 struct btrfs_path *path; 2247 struct extent_buffer *leaf; 2248 struct btrfs_dev_item *dev_item; 2249 struct btrfs_device *device; 2250 struct btrfs_key key; 2251 u8 fs_uuid[BTRFS_FSID_SIZE]; 2252 u8 dev_uuid[BTRFS_UUID_SIZE]; 2253 u64 devid; 2254 int ret; 2255 2256 path = btrfs_alloc_path(); 2257 if (!path) 2258 return -ENOMEM; 2259 2260 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2261 key.offset = 0; 2262 key.type = BTRFS_DEV_ITEM_KEY; 2263 2264 while (1) { 2265 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2266 if (ret < 0) 2267 goto error; 2268 2269 leaf = path->nodes[0]; 2270 next_slot: 2271 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2272 ret = btrfs_next_leaf(root, path); 2273 if (ret > 0) 2274 break; 2275 if (ret < 0) 2276 goto error; 2277 leaf = path->nodes[0]; 2278 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2279 btrfs_release_path(path); 2280 continue; 2281 } 2282 2283 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2284 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2285 key.type != BTRFS_DEV_ITEM_KEY) 2286 break; 2287 2288 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2289 struct btrfs_dev_item); 2290 devid = btrfs_device_id(leaf, dev_item); 2291 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2292 BTRFS_UUID_SIZE); 2293 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2294 BTRFS_FSID_SIZE); 2295 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid); 2296 BUG_ON(!device); /* Logic error */ 2297 2298 if (device->fs_devices->seeding) { 2299 btrfs_set_device_generation(leaf, dev_item, 2300 device->generation); 2301 btrfs_mark_buffer_dirty(leaf); 2302 } 2303 2304 path->slots[0]++; 2305 goto next_slot; 2306 } 2307 ret = 0; 2308 error: 2309 btrfs_free_path(path); 2310 return ret; 2311 } 2312 2313 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2314 { 2315 struct btrfs_root *root = fs_info->dev_root; 2316 struct request_queue *q; 2317 struct btrfs_trans_handle *trans; 2318 struct btrfs_device *device; 2319 struct block_device *bdev; 2320 struct list_head *devices; 2321 struct super_block *sb = fs_info->sb; 2322 struct rcu_string *name; 2323 u64 tmp; 2324 int seeding_dev = 0; 2325 int ret = 0; 2326 2327 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding) 2328 return -EROFS; 2329 2330 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2331 fs_info->bdev_holder); 2332 if (IS_ERR(bdev)) 2333 return PTR_ERR(bdev); 2334 2335 if (fs_info->fs_devices->seeding) { 2336 seeding_dev = 1; 2337 down_write(&sb->s_umount); 2338 mutex_lock(&uuid_mutex); 2339 } 2340 2341 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2342 2343 devices = &fs_info->fs_devices->devices; 2344 2345 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2346 list_for_each_entry(device, devices, dev_list) { 2347 if (device->bdev == bdev) { 2348 ret = -EEXIST; 2349 mutex_unlock( 2350 &fs_info->fs_devices->device_list_mutex); 2351 goto error; 2352 } 2353 } 2354 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2355 2356 device = btrfs_alloc_device(fs_info, NULL, NULL); 2357 if (IS_ERR(device)) { 2358 /* we can safely leave the fs_devices entry around */ 2359 ret = PTR_ERR(device); 2360 goto error; 2361 } 2362 2363 name = rcu_string_strdup(device_path, GFP_KERNEL); 2364 if (!name) { 2365 kfree(device); 2366 ret = -ENOMEM; 2367 goto error; 2368 } 2369 rcu_assign_pointer(device->name, name); 2370 2371 trans = btrfs_start_transaction(root, 0); 2372 if (IS_ERR(trans)) { 2373 rcu_string_free(device->name); 2374 kfree(device); 2375 ret = PTR_ERR(trans); 2376 goto error; 2377 } 2378 2379 q = bdev_get_queue(bdev); 2380 if (blk_queue_discard(q)) 2381 device->can_discard = 1; 2382 device->writeable = 1; 2383 device->generation = trans->transid; 2384 device->io_width = fs_info->sectorsize; 2385 device->io_align = fs_info->sectorsize; 2386 device->sector_size = fs_info->sectorsize; 2387 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2388 fs_info->sectorsize); 2389 device->disk_total_bytes = device->total_bytes; 2390 device->commit_total_bytes = device->total_bytes; 2391 device->fs_info = fs_info; 2392 device->bdev = bdev; 2393 device->in_fs_metadata = 1; 2394 device->is_tgtdev_for_dev_replace = 0; 2395 device->mode = FMODE_EXCL; 2396 device->dev_stats_valid = 1; 2397 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2398 2399 if (seeding_dev) { 2400 sb->s_flags &= ~MS_RDONLY; 2401 ret = btrfs_prepare_sprout(fs_info); 2402 BUG_ON(ret); /* -ENOMEM */ 2403 } 2404 2405 device->fs_devices = fs_info->fs_devices; 2406 2407 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2408 mutex_lock(&fs_info->chunk_mutex); 2409 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices); 2410 list_add(&device->dev_alloc_list, 2411 &fs_info->fs_devices->alloc_list); 2412 fs_info->fs_devices->num_devices++; 2413 fs_info->fs_devices->open_devices++; 2414 fs_info->fs_devices->rw_devices++; 2415 fs_info->fs_devices->total_devices++; 2416 fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2417 2418 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2419 2420 if (!blk_queue_nonrot(q)) 2421 fs_info->fs_devices->rotating = 1; 2422 2423 tmp = btrfs_super_total_bytes(fs_info->super_copy); 2424 btrfs_set_super_total_bytes(fs_info->super_copy, 2425 round_down(tmp + device->total_bytes, fs_info->sectorsize)); 2426 2427 tmp = btrfs_super_num_devices(fs_info->super_copy); 2428 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1); 2429 2430 /* add sysfs device entry */ 2431 btrfs_sysfs_add_device_link(fs_info->fs_devices, device); 2432 2433 /* 2434 * we've got more storage, clear any full flags on the space 2435 * infos 2436 */ 2437 btrfs_clear_space_info_full(fs_info); 2438 2439 mutex_unlock(&fs_info->chunk_mutex); 2440 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2441 2442 if (seeding_dev) { 2443 mutex_lock(&fs_info->chunk_mutex); 2444 ret = init_first_rw_device(trans, fs_info); 2445 mutex_unlock(&fs_info->chunk_mutex); 2446 if (ret) { 2447 btrfs_abort_transaction(trans, ret); 2448 goto error_trans; 2449 } 2450 } 2451 2452 ret = btrfs_add_device(trans, fs_info, device); 2453 if (ret) { 2454 btrfs_abort_transaction(trans, ret); 2455 goto error_trans; 2456 } 2457 2458 if (seeding_dev) { 2459 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2460 2461 ret = btrfs_finish_sprout(trans, fs_info); 2462 if (ret) { 2463 btrfs_abort_transaction(trans, ret); 2464 goto error_trans; 2465 } 2466 2467 /* Sprouting would change fsid of the mounted root, 2468 * so rename the fsid on the sysfs 2469 */ 2470 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2471 fs_info->fsid); 2472 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf)) 2473 btrfs_warn(fs_info, 2474 "sysfs: failed to create fsid for sprout"); 2475 } 2476 2477 ret = btrfs_commit_transaction(trans); 2478 2479 if (seeding_dev) { 2480 mutex_unlock(&uuid_mutex); 2481 up_write(&sb->s_umount); 2482 2483 if (ret) /* transaction commit */ 2484 return ret; 2485 2486 ret = btrfs_relocate_sys_chunks(fs_info); 2487 if (ret < 0) 2488 btrfs_handle_fs_error(fs_info, ret, 2489 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2490 trans = btrfs_attach_transaction(root); 2491 if (IS_ERR(trans)) { 2492 if (PTR_ERR(trans) == -ENOENT) 2493 return 0; 2494 return PTR_ERR(trans); 2495 } 2496 ret = btrfs_commit_transaction(trans); 2497 } 2498 2499 /* Update ctime/mtime for libblkid */ 2500 update_dev_time(device_path); 2501 return ret; 2502 2503 error_trans: 2504 btrfs_end_transaction(trans); 2505 rcu_string_free(device->name); 2506 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device); 2507 kfree(device); 2508 error: 2509 blkdev_put(bdev, FMODE_EXCL); 2510 if (seeding_dev) { 2511 mutex_unlock(&uuid_mutex); 2512 up_write(&sb->s_umount); 2513 } 2514 return ret; 2515 } 2516 2517 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 2518 const char *device_path, 2519 struct btrfs_device *srcdev, 2520 struct btrfs_device **device_out) 2521 { 2522 struct request_queue *q; 2523 struct btrfs_device *device; 2524 struct block_device *bdev; 2525 struct list_head *devices; 2526 struct rcu_string *name; 2527 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2528 int ret = 0; 2529 2530 *device_out = NULL; 2531 if (fs_info->fs_devices->seeding) { 2532 btrfs_err(fs_info, "the filesystem is a seed filesystem!"); 2533 return -EINVAL; 2534 } 2535 2536 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2537 fs_info->bdev_holder); 2538 if (IS_ERR(bdev)) { 2539 btrfs_err(fs_info, "target device %s is invalid!", device_path); 2540 return PTR_ERR(bdev); 2541 } 2542 2543 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2544 2545 devices = &fs_info->fs_devices->devices; 2546 list_for_each_entry(device, devices, dev_list) { 2547 if (device->bdev == bdev) { 2548 btrfs_err(fs_info, 2549 "target device is in the filesystem!"); 2550 ret = -EEXIST; 2551 goto error; 2552 } 2553 } 2554 2555 2556 if (i_size_read(bdev->bd_inode) < 2557 btrfs_device_get_total_bytes(srcdev)) { 2558 btrfs_err(fs_info, 2559 "target device is smaller than source device!"); 2560 ret = -EINVAL; 2561 goto error; 2562 } 2563 2564 2565 device = btrfs_alloc_device(NULL, &devid, NULL); 2566 if (IS_ERR(device)) { 2567 ret = PTR_ERR(device); 2568 goto error; 2569 } 2570 2571 name = rcu_string_strdup(device_path, GFP_KERNEL); 2572 if (!name) { 2573 kfree(device); 2574 ret = -ENOMEM; 2575 goto error; 2576 } 2577 rcu_assign_pointer(device->name, name); 2578 2579 q = bdev_get_queue(bdev); 2580 if (blk_queue_discard(q)) 2581 device->can_discard = 1; 2582 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2583 device->writeable = 1; 2584 device->generation = 0; 2585 device->io_width = fs_info->sectorsize; 2586 device->io_align = fs_info->sectorsize; 2587 device->sector_size = fs_info->sectorsize; 2588 device->total_bytes = btrfs_device_get_total_bytes(srcdev); 2589 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev); 2590 device->bytes_used = btrfs_device_get_bytes_used(srcdev); 2591 ASSERT(list_empty(&srcdev->resized_list)); 2592 device->commit_total_bytes = srcdev->commit_total_bytes; 2593 device->commit_bytes_used = device->bytes_used; 2594 device->fs_info = fs_info; 2595 device->bdev = bdev; 2596 device->in_fs_metadata = 1; 2597 device->is_tgtdev_for_dev_replace = 1; 2598 device->mode = FMODE_EXCL; 2599 device->dev_stats_valid = 1; 2600 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2601 device->fs_devices = fs_info->fs_devices; 2602 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2603 fs_info->fs_devices->num_devices++; 2604 fs_info->fs_devices->open_devices++; 2605 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2606 2607 *device_out = device; 2608 return ret; 2609 2610 error: 2611 blkdev_put(bdev, FMODE_EXCL); 2612 return ret; 2613 } 2614 2615 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2616 struct btrfs_device *tgtdev) 2617 { 2618 u32 sectorsize = fs_info->sectorsize; 2619 2620 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2621 tgtdev->io_width = sectorsize; 2622 tgtdev->io_align = sectorsize; 2623 tgtdev->sector_size = sectorsize; 2624 tgtdev->fs_info = fs_info; 2625 tgtdev->in_fs_metadata = 1; 2626 } 2627 2628 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2629 struct btrfs_device *device) 2630 { 2631 int ret; 2632 struct btrfs_path *path; 2633 struct btrfs_root *root = device->fs_info->chunk_root; 2634 struct btrfs_dev_item *dev_item; 2635 struct extent_buffer *leaf; 2636 struct btrfs_key key; 2637 2638 path = btrfs_alloc_path(); 2639 if (!path) 2640 return -ENOMEM; 2641 2642 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2643 key.type = BTRFS_DEV_ITEM_KEY; 2644 key.offset = device->devid; 2645 2646 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2647 if (ret < 0) 2648 goto out; 2649 2650 if (ret > 0) { 2651 ret = -ENOENT; 2652 goto out; 2653 } 2654 2655 leaf = path->nodes[0]; 2656 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2657 2658 btrfs_set_device_id(leaf, dev_item, device->devid); 2659 btrfs_set_device_type(leaf, dev_item, device->type); 2660 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2661 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2662 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2663 btrfs_set_device_total_bytes(leaf, dev_item, 2664 btrfs_device_get_disk_total_bytes(device)); 2665 btrfs_set_device_bytes_used(leaf, dev_item, 2666 btrfs_device_get_bytes_used(device)); 2667 btrfs_mark_buffer_dirty(leaf); 2668 2669 out: 2670 btrfs_free_path(path); 2671 return ret; 2672 } 2673 2674 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2675 struct btrfs_device *device, u64 new_size) 2676 { 2677 struct btrfs_fs_info *fs_info = device->fs_info; 2678 struct btrfs_super_block *super_copy = fs_info->super_copy; 2679 struct btrfs_fs_devices *fs_devices; 2680 u64 old_total; 2681 u64 diff; 2682 2683 if (!device->writeable) 2684 return -EACCES; 2685 2686 new_size = round_down(new_size, fs_info->sectorsize); 2687 2688 mutex_lock(&fs_info->chunk_mutex); 2689 old_total = btrfs_super_total_bytes(super_copy); 2690 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2691 2692 if (new_size <= device->total_bytes || 2693 device->is_tgtdev_for_dev_replace) { 2694 mutex_unlock(&fs_info->chunk_mutex); 2695 return -EINVAL; 2696 } 2697 2698 fs_devices = fs_info->fs_devices; 2699 2700 btrfs_set_super_total_bytes(super_copy, 2701 round_down(old_total + diff, fs_info->sectorsize)); 2702 device->fs_devices->total_rw_bytes += diff; 2703 2704 btrfs_device_set_total_bytes(device, new_size); 2705 btrfs_device_set_disk_total_bytes(device, new_size); 2706 btrfs_clear_space_info_full(device->fs_info); 2707 if (list_empty(&device->resized_list)) 2708 list_add_tail(&device->resized_list, 2709 &fs_devices->resized_devices); 2710 mutex_unlock(&fs_info->chunk_mutex); 2711 2712 return btrfs_update_device(trans, device); 2713 } 2714 2715 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2716 struct btrfs_fs_info *fs_info, u64 chunk_offset) 2717 { 2718 struct btrfs_root *root = fs_info->chunk_root; 2719 int ret; 2720 struct btrfs_path *path; 2721 struct btrfs_key key; 2722 2723 path = btrfs_alloc_path(); 2724 if (!path) 2725 return -ENOMEM; 2726 2727 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2728 key.offset = chunk_offset; 2729 key.type = BTRFS_CHUNK_ITEM_KEY; 2730 2731 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2732 if (ret < 0) 2733 goto out; 2734 else if (ret > 0) { /* Logic error or corruption */ 2735 btrfs_handle_fs_error(fs_info, -ENOENT, 2736 "Failed lookup while freeing chunk."); 2737 ret = -ENOENT; 2738 goto out; 2739 } 2740 2741 ret = btrfs_del_item(trans, root, path); 2742 if (ret < 0) 2743 btrfs_handle_fs_error(fs_info, ret, 2744 "Failed to delete chunk item."); 2745 out: 2746 btrfs_free_path(path); 2747 return ret; 2748 } 2749 2750 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2751 { 2752 struct btrfs_super_block *super_copy = fs_info->super_copy; 2753 struct btrfs_disk_key *disk_key; 2754 struct btrfs_chunk *chunk; 2755 u8 *ptr; 2756 int ret = 0; 2757 u32 num_stripes; 2758 u32 array_size; 2759 u32 len = 0; 2760 u32 cur; 2761 struct btrfs_key key; 2762 2763 mutex_lock(&fs_info->chunk_mutex); 2764 array_size = btrfs_super_sys_array_size(super_copy); 2765 2766 ptr = super_copy->sys_chunk_array; 2767 cur = 0; 2768 2769 while (cur < array_size) { 2770 disk_key = (struct btrfs_disk_key *)ptr; 2771 btrfs_disk_key_to_cpu(&key, disk_key); 2772 2773 len = sizeof(*disk_key); 2774 2775 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2776 chunk = (struct btrfs_chunk *)(ptr + len); 2777 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2778 len += btrfs_chunk_item_size(num_stripes); 2779 } else { 2780 ret = -EIO; 2781 break; 2782 } 2783 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2784 key.offset == chunk_offset) { 2785 memmove(ptr, ptr + len, array_size - (cur + len)); 2786 array_size -= len; 2787 btrfs_set_super_sys_array_size(super_copy, array_size); 2788 } else { 2789 ptr += len; 2790 cur += len; 2791 } 2792 } 2793 mutex_unlock(&fs_info->chunk_mutex); 2794 return ret; 2795 } 2796 2797 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info, 2798 u64 logical, u64 length) 2799 { 2800 struct extent_map_tree *em_tree; 2801 struct extent_map *em; 2802 2803 em_tree = &fs_info->mapping_tree.map_tree; 2804 read_lock(&em_tree->lock); 2805 em = lookup_extent_mapping(em_tree, logical, length); 2806 read_unlock(&em_tree->lock); 2807 2808 if (!em) { 2809 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2810 logical, length); 2811 return ERR_PTR(-EINVAL); 2812 } 2813 2814 if (em->start > logical || em->start + em->len < logical) { 2815 btrfs_crit(fs_info, 2816 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 2817 logical, length, em->start, em->start + em->len); 2818 free_extent_map(em); 2819 return ERR_PTR(-EINVAL); 2820 } 2821 2822 /* callers are responsible for dropping em's ref. */ 2823 return em; 2824 } 2825 2826 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, 2827 struct btrfs_fs_info *fs_info, u64 chunk_offset) 2828 { 2829 struct extent_map *em; 2830 struct map_lookup *map; 2831 u64 dev_extent_len = 0; 2832 int i, ret = 0; 2833 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2834 2835 em = get_chunk_map(fs_info, chunk_offset, 1); 2836 if (IS_ERR(em)) { 2837 /* 2838 * This is a logic error, but we don't want to just rely on the 2839 * user having built with ASSERT enabled, so if ASSERT doesn't 2840 * do anything we still error out. 2841 */ 2842 ASSERT(0); 2843 return PTR_ERR(em); 2844 } 2845 map = em->map_lookup; 2846 mutex_lock(&fs_info->chunk_mutex); 2847 check_system_chunk(trans, fs_info, map->type); 2848 mutex_unlock(&fs_info->chunk_mutex); 2849 2850 /* 2851 * Take the device list mutex to prevent races with the final phase of 2852 * a device replace operation that replaces the device object associated 2853 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2854 */ 2855 mutex_lock(&fs_devices->device_list_mutex); 2856 for (i = 0; i < map->num_stripes; i++) { 2857 struct btrfs_device *device = map->stripes[i].dev; 2858 ret = btrfs_free_dev_extent(trans, device, 2859 map->stripes[i].physical, 2860 &dev_extent_len); 2861 if (ret) { 2862 mutex_unlock(&fs_devices->device_list_mutex); 2863 btrfs_abort_transaction(trans, ret); 2864 goto out; 2865 } 2866 2867 if (device->bytes_used > 0) { 2868 mutex_lock(&fs_info->chunk_mutex); 2869 btrfs_device_set_bytes_used(device, 2870 device->bytes_used - dev_extent_len); 2871 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 2872 btrfs_clear_space_info_full(fs_info); 2873 mutex_unlock(&fs_info->chunk_mutex); 2874 } 2875 2876 if (map->stripes[i].dev) { 2877 ret = btrfs_update_device(trans, map->stripes[i].dev); 2878 if (ret) { 2879 mutex_unlock(&fs_devices->device_list_mutex); 2880 btrfs_abort_transaction(trans, ret); 2881 goto out; 2882 } 2883 } 2884 } 2885 mutex_unlock(&fs_devices->device_list_mutex); 2886 2887 ret = btrfs_free_chunk(trans, fs_info, chunk_offset); 2888 if (ret) { 2889 btrfs_abort_transaction(trans, ret); 2890 goto out; 2891 } 2892 2893 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 2894 2895 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2896 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 2897 if (ret) { 2898 btrfs_abort_transaction(trans, ret); 2899 goto out; 2900 } 2901 } 2902 2903 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em); 2904 if (ret) { 2905 btrfs_abort_transaction(trans, ret); 2906 goto out; 2907 } 2908 2909 out: 2910 /* once for us */ 2911 free_extent_map(em); 2912 return ret; 2913 } 2914 2915 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2916 { 2917 struct btrfs_root *root = fs_info->chunk_root; 2918 struct btrfs_trans_handle *trans; 2919 int ret; 2920 2921 /* 2922 * Prevent races with automatic removal of unused block groups. 2923 * After we relocate and before we remove the chunk with offset 2924 * chunk_offset, automatic removal of the block group can kick in, 2925 * resulting in a failure when calling btrfs_remove_chunk() below. 2926 * 2927 * Make sure to acquire this mutex before doing a tree search (dev 2928 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 2929 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 2930 * we release the path used to search the chunk/dev tree and before 2931 * the current task acquires this mutex and calls us. 2932 */ 2933 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex)); 2934 2935 ret = btrfs_can_relocate(fs_info, chunk_offset); 2936 if (ret) 2937 return -ENOSPC; 2938 2939 /* step one, relocate all the extents inside this chunk */ 2940 btrfs_scrub_pause(fs_info); 2941 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 2942 btrfs_scrub_continue(fs_info); 2943 if (ret) 2944 return ret; 2945 2946 trans = btrfs_start_trans_remove_block_group(root->fs_info, 2947 chunk_offset); 2948 if (IS_ERR(trans)) { 2949 ret = PTR_ERR(trans); 2950 btrfs_handle_fs_error(root->fs_info, ret, NULL); 2951 return ret; 2952 } 2953 2954 /* 2955 * step two, delete the device extents and the 2956 * chunk tree entries 2957 */ 2958 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset); 2959 btrfs_end_transaction(trans); 2960 return ret; 2961 } 2962 2963 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 2964 { 2965 struct btrfs_root *chunk_root = fs_info->chunk_root; 2966 struct btrfs_path *path; 2967 struct extent_buffer *leaf; 2968 struct btrfs_chunk *chunk; 2969 struct btrfs_key key; 2970 struct btrfs_key found_key; 2971 u64 chunk_type; 2972 bool retried = false; 2973 int failed = 0; 2974 int ret; 2975 2976 path = btrfs_alloc_path(); 2977 if (!path) 2978 return -ENOMEM; 2979 2980 again: 2981 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2982 key.offset = (u64)-1; 2983 key.type = BTRFS_CHUNK_ITEM_KEY; 2984 2985 while (1) { 2986 mutex_lock(&fs_info->delete_unused_bgs_mutex); 2987 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2988 if (ret < 0) { 2989 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 2990 goto error; 2991 } 2992 BUG_ON(ret == 0); /* Corruption */ 2993 2994 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2995 key.type); 2996 if (ret) 2997 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 2998 if (ret < 0) 2999 goto error; 3000 if (ret > 0) 3001 break; 3002 3003 leaf = path->nodes[0]; 3004 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3005 3006 chunk = btrfs_item_ptr(leaf, path->slots[0], 3007 struct btrfs_chunk); 3008 chunk_type = btrfs_chunk_type(leaf, chunk); 3009 btrfs_release_path(path); 3010 3011 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3012 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3013 if (ret == -ENOSPC) 3014 failed++; 3015 else 3016 BUG_ON(ret); 3017 } 3018 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3019 3020 if (found_key.offset == 0) 3021 break; 3022 key.offset = found_key.offset - 1; 3023 } 3024 ret = 0; 3025 if (failed && !retried) { 3026 failed = 0; 3027 retried = true; 3028 goto again; 3029 } else if (WARN_ON(failed && retried)) { 3030 ret = -ENOSPC; 3031 } 3032 error: 3033 btrfs_free_path(path); 3034 return ret; 3035 } 3036 3037 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3038 struct btrfs_balance_control *bctl) 3039 { 3040 struct btrfs_root *root = fs_info->tree_root; 3041 struct btrfs_trans_handle *trans; 3042 struct btrfs_balance_item *item; 3043 struct btrfs_disk_balance_args disk_bargs; 3044 struct btrfs_path *path; 3045 struct extent_buffer *leaf; 3046 struct btrfs_key key; 3047 int ret, err; 3048 3049 path = btrfs_alloc_path(); 3050 if (!path) 3051 return -ENOMEM; 3052 3053 trans = btrfs_start_transaction(root, 0); 3054 if (IS_ERR(trans)) { 3055 btrfs_free_path(path); 3056 return PTR_ERR(trans); 3057 } 3058 3059 key.objectid = BTRFS_BALANCE_OBJECTID; 3060 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3061 key.offset = 0; 3062 3063 ret = btrfs_insert_empty_item(trans, root, path, &key, 3064 sizeof(*item)); 3065 if (ret) 3066 goto out; 3067 3068 leaf = path->nodes[0]; 3069 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3070 3071 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3072 3073 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3074 btrfs_set_balance_data(leaf, item, &disk_bargs); 3075 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3076 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3077 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3078 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3079 3080 btrfs_set_balance_flags(leaf, item, bctl->flags); 3081 3082 btrfs_mark_buffer_dirty(leaf); 3083 out: 3084 btrfs_free_path(path); 3085 err = btrfs_commit_transaction(trans); 3086 if (err && !ret) 3087 ret = err; 3088 return ret; 3089 } 3090 3091 static int del_balance_item(struct btrfs_fs_info *fs_info) 3092 { 3093 struct btrfs_root *root = fs_info->tree_root; 3094 struct btrfs_trans_handle *trans; 3095 struct btrfs_path *path; 3096 struct btrfs_key key; 3097 int ret, err; 3098 3099 path = btrfs_alloc_path(); 3100 if (!path) 3101 return -ENOMEM; 3102 3103 trans = btrfs_start_transaction(root, 0); 3104 if (IS_ERR(trans)) { 3105 btrfs_free_path(path); 3106 return PTR_ERR(trans); 3107 } 3108 3109 key.objectid = BTRFS_BALANCE_OBJECTID; 3110 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3111 key.offset = 0; 3112 3113 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3114 if (ret < 0) 3115 goto out; 3116 if (ret > 0) { 3117 ret = -ENOENT; 3118 goto out; 3119 } 3120 3121 ret = btrfs_del_item(trans, root, path); 3122 out: 3123 btrfs_free_path(path); 3124 err = btrfs_commit_transaction(trans); 3125 if (err && !ret) 3126 ret = err; 3127 return ret; 3128 } 3129 3130 /* 3131 * This is a heuristic used to reduce the number of chunks balanced on 3132 * resume after balance was interrupted. 3133 */ 3134 static void update_balance_args(struct btrfs_balance_control *bctl) 3135 { 3136 /* 3137 * Turn on soft mode for chunk types that were being converted. 3138 */ 3139 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3140 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3141 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3142 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3143 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3144 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3145 3146 /* 3147 * Turn on usage filter if is not already used. The idea is 3148 * that chunks that we have already balanced should be 3149 * reasonably full. Don't do it for chunks that are being 3150 * converted - that will keep us from relocating unconverted 3151 * (albeit full) chunks. 3152 */ 3153 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3154 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3155 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3156 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3157 bctl->data.usage = 90; 3158 } 3159 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3160 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3161 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3162 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3163 bctl->sys.usage = 90; 3164 } 3165 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3166 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3167 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3168 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3169 bctl->meta.usage = 90; 3170 } 3171 } 3172 3173 /* 3174 * Should be called with both balance and volume mutexes held to 3175 * serialize other volume operations (add_dev/rm_dev/resize) with 3176 * restriper. Same goes for unset_balance_control. 3177 */ 3178 static void set_balance_control(struct btrfs_balance_control *bctl) 3179 { 3180 struct btrfs_fs_info *fs_info = bctl->fs_info; 3181 3182 BUG_ON(fs_info->balance_ctl); 3183 3184 spin_lock(&fs_info->balance_lock); 3185 fs_info->balance_ctl = bctl; 3186 spin_unlock(&fs_info->balance_lock); 3187 } 3188 3189 static void unset_balance_control(struct btrfs_fs_info *fs_info) 3190 { 3191 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3192 3193 BUG_ON(!fs_info->balance_ctl); 3194 3195 spin_lock(&fs_info->balance_lock); 3196 fs_info->balance_ctl = NULL; 3197 spin_unlock(&fs_info->balance_lock); 3198 3199 kfree(bctl); 3200 } 3201 3202 /* 3203 * Balance filters. Return 1 if chunk should be filtered out 3204 * (should not be balanced). 3205 */ 3206 static int chunk_profiles_filter(u64 chunk_type, 3207 struct btrfs_balance_args *bargs) 3208 { 3209 chunk_type = chunk_to_extended(chunk_type) & 3210 BTRFS_EXTENDED_PROFILE_MASK; 3211 3212 if (bargs->profiles & chunk_type) 3213 return 0; 3214 3215 return 1; 3216 } 3217 3218 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3219 struct btrfs_balance_args *bargs) 3220 { 3221 struct btrfs_block_group_cache *cache; 3222 u64 chunk_used; 3223 u64 user_thresh_min; 3224 u64 user_thresh_max; 3225 int ret = 1; 3226 3227 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3228 chunk_used = btrfs_block_group_used(&cache->item); 3229 3230 if (bargs->usage_min == 0) 3231 user_thresh_min = 0; 3232 else 3233 user_thresh_min = div_factor_fine(cache->key.offset, 3234 bargs->usage_min); 3235 3236 if (bargs->usage_max == 0) 3237 user_thresh_max = 1; 3238 else if (bargs->usage_max > 100) 3239 user_thresh_max = cache->key.offset; 3240 else 3241 user_thresh_max = div_factor_fine(cache->key.offset, 3242 bargs->usage_max); 3243 3244 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3245 ret = 0; 3246 3247 btrfs_put_block_group(cache); 3248 return ret; 3249 } 3250 3251 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3252 u64 chunk_offset, struct btrfs_balance_args *bargs) 3253 { 3254 struct btrfs_block_group_cache *cache; 3255 u64 chunk_used, user_thresh; 3256 int ret = 1; 3257 3258 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3259 chunk_used = btrfs_block_group_used(&cache->item); 3260 3261 if (bargs->usage_min == 0) 3262 user_thresh = 1; 3263 else if (bargs->usage > 100) 3264 user_thresh = cache->key.offset; 3265 else 3266 user_thresh = div_factor_fine(cache->key.offset, 3267 bargs->usage); 3268 3269 if (chunk_used < user_thresh) 3270 ret = 0; 3271 3272 btrfs_put_block_group(cache); 3273 return ret; 3274 } 3275 3276 static int chunk_devid_filter(struct extent_buffer *leaf, 3277 struct btrfs_chunk *chunk, 3278 struct btrfs_balance_args *bargs) 3279 { 3280 struct btrfs_stripe *stripe; 3281 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3282 int i; 3283 3284 for (i = 0; i < num_stripes; i++) { 3285 stripe = btrfs_stripe_nr(chunk, i); 3286 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3287 return 0; 3288 } 3289 3290 return 1; 3291 } 3292 3293 /* [pstart, pend) */ 3294 static int chunk_drange_filter(struct extent_buffer *leaf, 3295 struct btrfs_chunk *chunk, 3296 struct btrfs_balance_args *bargs) 3297 { 3298 struct btrfs_stripe *stripe; 3299 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3300 u64 stripe_offset; 3301 u64 stripe_length; 3302 int factor; 3303 int i; 3304 3305 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3306 return 0; 3307 3308 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3309 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3310 factor = num_stripes / 2; 3311 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3312 factor = num_stripes - 1; 3313 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3314 factor = num_stripes - 2; 3315 } else { 3316 factor = num_stripes; 3317 } 3318 3319 for (i = 0; i < num_stripes; i++) { 3320 stripe = btrfs_stripe_nr(chunk, i); 3321 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3322 continue; 3323 3324 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3325 stripe_length = btrfs_chunk_length(leaf, chunk); 3326 stripe_length = div_u64(stripe_length, factor); 3327 3328 if (stripe_offset < bargs->pend && 3329 stripe_offset + stripe_length > bargs->pstart) 3330 return 0; 3331 } 3332 3333 return 1; 3334 } 3335 3336 /* [vstart, vend) */ 3337 static int chunk_vrange_filter(struct extent_buffer *leaf, 3338 struct btrfs_chunk *chunk, 3339 u64 chunk_offset, 3340 struct btrfs_balance_args *bargs) 3341 { 3342 if (chunk_offset < bargs->vend && 3343 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3344 /* at least part of the chunk is inside this vrange */ 3345 return 0; 3346 3347 return 1; 3348 } 3349 3350 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3351 struct btrfs_chunk *chunk, 3352 struct btrfs_balance_args *bargs) 3353 { 3354 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3355 3356 if (bargs->stripes_min <= num_stripes 3357 && num_stripes <= bargs->stripes_max) 3358 return 0; 3359 3360 return 1; 3361 } 3362 3363 static int chunk_soft_convert_filter(u64 chunk_type, 3364 struct btrfs_balance_args *bargs) 3365 { 3366 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3367 return 0; 3368 3369 chunk_type = chunk_to_extended(chunk_type) & 3370 BTRFS_EXTENDED_PROFILE_MASK; 3371 3372 if (bargs->target == chunk_type) 3373 return 1; 3374 3375 return 0; 3376 } 3377 3378 static int should_balance_chunk(struct btrfs_fs_info *fs_info, 3379 struct extent_buffer *leaf, 3380 struct btrfs_chunk *chunk, u64 chunk_offset) 3381 { 3382 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3383 struct btrfs_balance_args *bargs = NULL; 3384 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3385 3386 /* type filter */ 3387 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3388 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3389 return 0; 3390 } 3391 3392 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3393 bargs = &bctl->data; 3394 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3395 bargs = &bctl->sys; 3396 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3397 bargs = &bctl->meta; 3398 3399 /* profiles filter */ 3400 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3401 chunk_profiles_filter(chunk_type, bargs)) { 3402 return 0; 3403 } 3404 3405 /* usage filter */ 3406 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3407 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3408 return 0; 3409 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3410 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3411 return 0; 3412 } 3413 3414 /* devid filter */ 3415 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3416 chunk_devid_filter(leaf, chunk, bargs)) { 3417 return 0; 3418 } 3419 3420 /* drange filter, makes sense only with devid filter */ 3421 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3422 chunk_drange_filter(leaf, chunk, bargs)) { 3423 return 0; 3424 } 3425 3426 /* vrange filter */ 3427 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3428 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3429 return 0; 3430 } 3431 3432 /* stripes filter */ 3433 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3434 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3435 return 0; 3436 } 3437 3438 /* soft profile changing mode */ 3439 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3440 chunk_soft_convert_filter(chunk_type, bargs)) { 3441 return 0; 3442 } 3443 3444 /* 3445 * limited by count, must be the last filter 3446 */ 3447 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3448 if (bargs->limit == 0) 3449 return 0; 3450 else 3451 bargs->limit--; 3452 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3453 /* 3454 * Same logic as the 'limit' filter; the minimum cannot be 3455 * determined here because we do not have the global information 3456 * about the count of all chunks that satisfy the filters. 3457 */ 3458 if (bargs->limit_max == 0) 3459 return 0; 3460 else 3461 bargs->limit_max--; 3462 } 3463 3464 return 1; 3465 } 3466 3467 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3468 { 3469 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3470 struct btrfs_root *chunk_root = fs_info->chunk_root; 3471 struct btrfs_root *dev_root = fs_info->dev_root; 3472 struct list_head *devices; 3473 struct btrfs_device *device; 3474 u64 old_size; 3475 u64 size_to_free; 3476 u64 chunk_type; 3477 struct btrfs_chunk *chunk; 3478 struct btrfs_path *path = NULL; 3479 struct btrfs_key key; 3480 struct btrfs_key found_key; 3481 struct btrfs_trans_handle *trans; 3482 struct extent_buffer *leaf; 3483 int slot; 3484 int ret; 3485 int enospc_errors = 0; 3486 bool counting = true; 3487 /* The single value limit and min/max limits use the same bytes in the */ 3488 u64 limit_data = bctl->data.limit; 3489 u64 limit_meta = bctl->meta.limit; 3490 u64 limit_sys = bctl->sys.limit; 3491 u32 count_data = 0; 3492 u32 count_meta = 0; 3493 u32 count_sys = 0; 3494 int chunk_reserved = 0; 3495 u64 bytes_used = 0; 3496 3497 /* step one make some room on all the devices */ 3498 devices = &fs_info->fs_devices->devices; 3499 list_for_each_entry(device, devices, dev_list) { 3500 old_size = btrfs_device_get_total_bytes(device); 3501 size_to_free = div_factor(old_size, 1); 3502 size_to_free = min_t(u64, size_to_free, SZ_1M); 3503 if (!device->writeable || 3504 btrfs_device_get_total_bytes(device) - 3505 btrfs_device_get_bytes_used(device) > size_to_free || 3506 device->is_tgtdev_for_dev_replace) 3507 continue; 3508 3509 ret = btrfs_shrink_device(device, old_size - size_to_free); 3510 if (ret == -ENOSPC) 3511 break; 3512 if (ret) { 3513 /* btrfs_shrink_device never returns ret > 0 */ 3514 WARN_ON(ret > 0); 3515 goto error; 3516 } 3517 3518 trans = btrfs_start_transaction(dev_root, 0); 3519 if (IS_ERR(trans)) { 3520 ret = PTR_ERR(trans); 3521 btrfs_info_in_rcu(fs_info, 3522 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu", 3523 rcu_str_deref(device->name), ret, 3524 old_size, old_size - size_to_free); 3525 goto error; 3526 } 3527 3528 ret = btrfs_grow_device(trans, device, old_size); 3529 if (ret) { 3530 btrfs_end_transaction(trans); 3531 /* btrfs_grow_device never returns ret > 0 */ 3532 WARN_ON(ret > 0); 3533 btrfs_info_in_rcu(fs_info, 3534 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu", 3535 rcu_str_deref(device->name), ret, 3536 old_size, old_size - size_to_free); 3537 goto error; 3538 } 3539 3540 btrfs_end_transaction(trans); 3541 } 3542 3543 /* step two, relocate all the chunks */ 3544 path = btrfs_alloc_path(); 3545 if (!path) { 3546 ret = -ENOMEM; 3547 goto error; 3548 } 3549 3550 /* zero out stat counters */ 3551 spin_lock(&fs_info->balance_lock); 3552 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3553 spin_unlock(&fs_info->balance_lock); 3554 again: 3555 if (!counting) { 3556 /* 3557 * The single value limit and min/max limits use the same bytes 3558 * in the 3559 */ 3560 bctl->data.limit = limit_data; 3561 bctl->meta.limit = limit_meta; 3562 bctl->sys.limit = limit_sys; 3563 } 3564 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3565 key.offset = (u64)-1; 3566 key.type = BTRFS_CHUNK_ITEM_KEY; 3567 3568 while (1) { 3569 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3570 atomic_read(&fs_info->balance_cancel_req)) { 3571 ret = -ECANCELED; 3572 goto error; 3573 } 3574 3575 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3576 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3577 if (ret < 0) { 3578 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3579 goto error; 3580 } 3581 3582 /* 3583 * this shouldn't happen, it means the last relocate 3584 * failed 3585 */ 3586 if (ret == 0) 3587 BUG(); /* FIXME break ? */ 3588 3589 ret = btrfs_previous_item(chunk_root, path, 0, 3590 BTRFS_CHUNK_ITEM_KEY); 3591 if (ret) { 3592 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3593 ret = 0; 3594 break; 3595 } 3596 3597 leaf = path->nodes[0]; 3598 slot = path->slots[0]; 3599 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3600 3601 if (found_key.objectid != key.objectid) { 3602 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3603 break; 3604 } 3605 3606 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3607 chunk_type = btrfs_chunk_type(leaf, chunk); 3608 3609 if (!counting) { 3610 spin_lock(&fs_info->balance_lock); 3611 bctl->stat.considered++; 3612 spin_unlock(&fs_info->balance_lock); 3613 } 3614 3615 ret = should_balance_chunk(fs_info, leaf, chunk, 3616 found_key.offset); 3617 3618 btrfs_release_path(path); 3619 if (!ret) { 3620 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3621 goto loop; 3622 } 3623 3624 if (counting) { 3625 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3626 spin_lock(&fs_info->balance_lock); 3627 bctl->stat.expected++; 3628 spin_unlock(&fs_info->balance_lock); 3629 3630 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3631 count_data++; 3632 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3633 count_sys++; 3634 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3635 count_meta++; 3636 3637 goto loop; 3638 } 3639 3640 /* 3641 * Apply limit_min filter, no need to check if the LIMITS 3642 * filter is used, limit_min is 0 by default 3643 */ 3644 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3645 count_data < bctl->data.limit_min) 3646 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3647 count_meta < bctl->meta.limit_min) 3648 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3649 count_sys < bctl->sys.limit_min)) { 3650 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3651 goto loop; 3652 } 3653 3654 ASSERT(fs_info->data_sinfo); 3655 spin_lock(&fs_info->data_sinfo->lock); 3656 bytes_used = fs_info->data_sinfo->bytes_used; 3657 spin_unlock(&fs_info->data_sinfo->lock); 3658 3659 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3660 !chunk_reserved && !bytes_used) { 3661 trans = btrfs_start_transaction(chunk_root, 0); 3662 if (IS_ERR(trans)) { 3663 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3664 ret = PTR_ERR(trans); 3665 goto error; 3666 } 3667 3668 ret = btrfs_force_chunk_alloc(trans, fs_info, 3669 BTRFS_BLOCK_GROUP_DATA); 3670 btrfs_end_transaction(trans); 3671 if (ret < 0) { 3672 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3673 goto error; 3674 } 3675 chunk_reserved = 1; 3676 } 3677 3678 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3679 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3680 if (ret && ret != -ENOSPC) 3681 goto error; 3682 if (ret == -ENOSPC) { 3683 enospc_errors++; 3684 } else { 3685 spin_lock(&fs_info->balance_lock); 3686 bctl->stat.completed++; 3687 spin_unlock(&fs_info->balance_lock); 3688 } 3689 loop: 3690 if (found_key.offset == 0) 3691 break; 3692 key.offset = found_key.offset - 1; 3693 } 3694 3695 if (counting) { 3696 btrfs_release_path(path); 3697 counting = false; 3698 goto again; 3699 } 3700 error: 3701 btrfs_free_path(path); 3702 if (enospc_errors) { 3703 btrfs_info(fs_info, "%d enospc errors during balance", 3704 enospc_errors); 3705 if (!ret) 3706 ret = -ENOSPC; 3707 } 3708 3709 return ret; 3710 } 3711 3712 /** 3713 * alloc_profile_is_valid - see if a given profile is valid and reduced 3714 * @flags: profile to validate 3715 * @extended: if true @flags is treated as an extended profile 3716 */ 3717 static int alloc_profile_is_valid(u64 flags, int extended) 3718 { 3719 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3720 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3721 3722 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3723 3724 /* 1) check that all other bits are zeroed */ 3725 if (flags & ~mask) 3726 return 0; 3727 3728 /* 2) see if profile is reduced */ 3729 if (flags == 0) 3730 return !extended; /* "0" is valid for usual profiles */ 3731 3732 /* true if exactly one bit set */ 3733 return (flags & (flags - 1)) == 0; 3734 } 3735 3736 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3737 { 3738 /* cancel requested || normal exit path */ 3739 return atomic_read(&fs_info->balance_cancel_req) || 3740 (atomic_read(&fs_info->balance_pause_req) == 0 && 3741 atomic_read(&fs_info->balance_cancel_req) == 0); 3742 } 3743 3744 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3745 { 3746 int ret; 3747 3748 unset_balance_control(fs_info); 3749 ret = del_balance_item(fs_info); 3750 if (ret) 3751 btrfs_handle_fs_error(fs_info, ret, NULL); 3752 3753 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3754 } 3755 3756 /* Non-zero return value signifies invalidity */ 3757 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3758 u64 allowed) 3759 { 3760 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3761 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3762 (bctl_arg->target & ~allowed))); 3763 } 3764 3765 /* 3766 * Should be called with both balance and volume mutexes held 3767 */ 3768 int btrfs_balance(struct btrfs_balance_control *bctl, 3769 struct btrfs_ioctl_balance_args *bargs) 3770 { 3771 struct btrfs_fs_info *fs_info = bctl->fs_info; 3772 u64 meta_target, data_target; 3773 u64 allowed; 3774 int mixed = 0; 3775 int ret; 3776 u64 num_devices; 3777 unsigned seq; 3778 3779 if (btrfs_fs_closing(fs_info) || 3780 atomic_read(&fs_info->balance_pause_req) || 3781 atomic_read(&fs_info->balance_cancel_req)) { 3782 ret = -EINVAL; 3783 goto out; 3784 } 3785 3786 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3787 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3788 mixed = 1; 3789 3790 /* 3791 * In case of mixed groups both data and meta should be picked, 3792 * and identical options should be given for both of them. 3793 */ 3794 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3795 if (mixed && (bctl->flags & allowed)) { 3796 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3797 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3798 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3799 btrfs_err(fs_info, 3800 "with mixed groups data and metadata balance options must be the same"); 3801 ret = -EINVAL; 3802 goto out; 3803 } 3804 } 3805 3806 num_devices = fs_info->fs_devices->num_devices; 3807 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 3808 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3809 BUG_ON(num_devices < 1); 3810 num_devices--; 3811 } 3812 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 3813 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP; 3814 if (num_devices > 1) 3815 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3816 if (num_devices > 2) 3817 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3818 if (num_devices > 3) 3819 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3820 BTRFS_BLOCK_GROUP_RAID6); 3821 if (validate_convert_profile(&bctl->data, allowed)) { 3822 btrfs_err(fs_info, 3823 "unable to start balance with target data profile %llu", 3824 bctl->data.target); 3825 ret = -EINVAL; 3826 goto out; 3827 } 3828 if (validate_convert_profile(&bctl->meta, allowed)) { 3829 btrfs_err(fs_info, 3830 "unable to start balance with target metadata profile %llu", 3831 bctl->meta.target); 3832 ret = -EINVAL; 3833 goto out; 3834 } 3835 if (validate_convert_profile(&bctl->sys, allowed)) { 3836 btrfs_err(fs_info, 3837 "unable to start balance with target system profile %llu", 3838 bctl->sys.target); 3839 ret = -EINVAL; 3840 goto out; 3841 } 3842 3843 /* allow to reduce meta or sys integrity only if force set */ 3844 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3845 BTRFS_BLOCK_GROUP_RAID10 | 3846 BTRFS_BLOCK_GROUP_RAID5 | 3847 BTRFS_BLOCK_GROUP_RAID6; 3848 do { 3849 seq = read_seqbegin(&fs_info->profiles_lock); 3850 3851 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3852 (fs_info->avail_system_alloc_bits & allowed) && 3853 !(bctl->sys.target & allowed)) || 3854 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3855 (fs_info->avail_metadata_alloc_bits & allowed) && 3856 !(bctl->meta.target & allowed))) { 3857 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3858 btrfs_info(fs_info, 3859 "force reducing metadata integrity"); 3860 } else { 3861 btrfs_err(fs_info, 3862 "balance will reduce metadata integrity, use force if you want this"); 3863 ret = -EINVAL; 3864 goto out; 3865 } 3866 } 3867 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3868 3869 /* if we're not converting, the target field is uninitialized */ 3870 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 3871 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 3872 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 3873 bctl->data.target : fs_info->avail_data_alloc_bits; 3874 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 3875 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 3876 btrfs_warn(fs_info, 3877 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx", 3878 meta_target, data_target); 3879 } 3880 3881 ret = insert_balance_item(fs_info, bctl); 3882 if (ret && ret != -EEXIST) 3883 goto out; 3884 3885 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3886 BUG_ON(ret == -EEXIST); 3887 set_balance_control(bctl); 3888 } else { 3889 BUG_ON(ret != -EEXIST); 3890 spin_lock(&fs_info->balance_lock); 3891 update_balance_args(bctl); 3892 spin_unlock(&fs_info->balance_lock); 3893 } 3894 3895 atomic_inc(&fs_info->balance_running); 3896 mutex_unlock(&fs_info->balance_mutex); 3897 3898 ret = __btrfs_balance(fs_info); 3899 3900 mutex_lock(&fs_info->balance_mutex); 3901 atomic_dec(&fs_info->balance_running); 3902 3903 if (bargs) { 3904 memset(bargs, 0, sizeof(*bargs)); 3905 update_ioctl_balance_args(fs_info, 0, bargs); 3906 } 3907 3908 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3909 balance_need_close(fs_info)) { 3910 __cancel_balance(fs_info); 3911 } 3912 3913 wake_up(&fs_info->balance_wait_q); 3914 3915 return ret; 3916 out: 3917 if (bctl->flags & BTRFS_BALANCE_RESUME) 3918 __cancel_balance(fs_info); 3919 else { 3920 kfree(bctl); 3921 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3922 } 3923 return ret; 3924 } 3925 3926 static int balance_kthread(void *data) 3927 { 3928 struct btrfs_fs_info *fs_info = data; 3929 int ret = 0; 3930 3931 mutex_lock(&fs_info->volume_mutex); 3932 mutex_lock(&fs_info->balance_mutex); 3933 3934 if (fs_info->balance_ctl) { 3935 btrfs_info(fs_info, "continuing balance"); 3936 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3937 } 3938 3939 mutex_unlock(&fs_info->balance_mutex); 3940 mutex_unlock(&fs_info->volume_mutex); 3941 3942 return ret; 3943 } 3944 3945 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3946 { 3947 struct task_struct *tsk; 3948 3949 spin_lock(&fs_info->balance_lock); 3950 if (!fs_info->balance_ctl) { 3951 spin_unlock(&fs_info->balance_lock); 3952 return 0; 3953 } 3954 spin_unlock(&fs_info->balance_lock); 3955 3956 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 3957 btrfs_info(fs_info, "force skipping balance"); 3958 return 0; 3959 } 3960 3961 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3962 return PTR_ERR_OR_ZERO(tsk); 3963 } 3964 3965 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3966 { 3967 struct btrfs_balance_control *bctl; 3968 struct btrfs_balance_item *item; 3969 struct btrfs_disk_balance_args disk_bargs; 3970 struct btrfs_path *path; 3971 struct extent_buffer *leaf; 3972 struct btrfs_key key; 3973 int ret; 3974 3975 path = btrfs_alloc_path(); 3976 if (!path) 3977 return -ENOMEM; 3978 3979 key.objectid = BTRFS_BALANCE_OBJECTID; 3980 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3981 key.offset = 0; 3982 3983 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3984 if (ret < 0) 3985 goto out; 3986 if (ret > 0) { /* ret = -ENOENT; */ 3987 ret = 0; 3988 goto out; 3989 } 3990 3991 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3992 if (!bctl) { 3993 ret = -ENOMEM; 3994 goto out; 3995 } 3996 3997 leaf = path->nodes[0]; 3998 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3999 4000 bctl->fs_info = fs_info; 4001 bctl->flags = btrfs_balance_flags(leaf, item); 4002 bctl->flags |= BTRFS_BALANCE_RESUME; 4003 4004 btrfs_balance_data(leaf, item, &disk_bargs); 4005 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4006 btrfs_balance_meta(leaf, item, &disk_bargs); 4007 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4008 btrfs_balance_sys(leaf, item, &disk_bargs); 4009 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4010 4011 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4012 4013 mutex_lock(&fs_info->volume_mutex); 4014 mutex_lock(&fs_info->balance_mutex); 4015 4016 set_balance_control(bctl); 4017 4018 mutex_unlock(&fs_info->balance_mutex); 4019 mutex_unlock(&fs_info->volume_mutex); 4020 out: 4021 btrfs_free_path(path); 4022 return ret; 4023 } 4024 4025 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4026 { 4027 int ret = 0; 4028 4029 mutex_lock(&fs_info->balance_mutex); 4030 if (!fs_info->balance_ctl) { 4031 mutex_unlock(&fs_info->balance_mutex); 4032 return -ENOTCONN; 4033 } 4034 4035 if (atomic_read(&fs_info->balance_running)) { 4036 atomic_inc(&fs_info->balance_pause_req); 4037 mutex_unlock(&fs_info->balance_mutex); 4038 4039 wait_event(fs_info->balance_wait_q, 4040 atomic_read(&fs_info->balance_running) == 0); 4041 4042 mutex_lock(&fs_info->balance_mutex); 4043 /* we are good with balance_ctl ripped off from under us */ 4044 BUG_ON(atomic_read(&fs_info->balance_running)); 4045 atomic_dec(&fs_info->balance_pause_req); 4046 } else { 4047 ret = -ENOTCONN; 4048 } 4049 4050 mutex_unlock(&fs_info->balance_mutex); 4051 return ret; 4052 } 4053 4054 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4055 { 4056 if (sb_rdonly(fs_info->sb)) 4057 return -EROFS; 4058 4059 mutex_lock(&fs_info->balance_mutex); 4060 if (!fs_info->balance_ctl) { 4061 mutex_unlock(&fs_info->balance_mutex); 4062 return -ENOTCONN; 4063 } 4064 4065 atomic_inc(&fs_info->balance_cancel_req); 4066 /* 4067 * if we are running just wait and return, balance item is 4068 * deleted in btrfs_balance in this case 4069 */ 4070 if (atomic_read(&fs_info->balance_running)) { 4071 mutex_unlock(&fs_info->balance_mutex); 4072 wait_event(fs_info->balance_wait_q, 4073 atomic_read(&fs_info->balance_running) == 0); 4074 mutex_lock(&fs_info->balance_mutex); 4075 } else { 4076 /* __cancel_balance needs volume_mutex */ 4077 mutex_unlock(&fs_info->balance_mutex); 4078 mutex_lock(&fs_info->volume_mutex); 4079 mutex_lock(&fs_info->balance_mutex); 4080 4081 if (fs_info->balance_ctl) 4082 __cancel_balance(fs_info); 4083 4084 mutex_unlock(&fs_info->volume_mutex); 4085 } 4086 4087 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 4088 atomic_dec(&fs_info->balance_cancel_req); 4089 mutex_unlock(&fs_info->balance_mutex); 4090 return 0; 4091 } 4092 4093 static int btrfs_uuid_scan_kthread(void *data) 4094 { 4095 struct btrfs_fs_info *fs_info = data; 4096 struct btrfs_root *root = fs_info->tree_root; 4097 struct btrfs_key key; 4098 struct btrfs_path *path = NULL; 4099 int ret = 0; 4100 struct extent_buffer *eb; 4101 int slot; 4102 struct btrfs_root_item root_item; 4103 u32 item_size; 4104 struct btrfs_trans_handle *trans = NULL; 4105 4106 path = btrfs_alloc_path(); 4107 if (!path) { 4108 ret = -ENOMEM; 4109 goto out; 4110 } 4111 4112 key.objectid = 0; 4113 key.type = BTRFS_ROOT_ITEM_KEY; 4114 key.offset = 0; 4115 4116 while (1) { 4117 ret = btrfs_search_forward(root, &key, path, 0); 4118 if (ret) { 4119 if (ret > 0) 4120 ret = 0; 4121 break; 4122 } 4123 4124 if (key.type != BTRFS_ROOT_ITEM_KEY || 4125 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4126 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4127 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4128 goto skip; 4129 4130 eb = path->nodes[0]; 4131 slot = path->slots[0]; 4132 item_size = btrfs_item_size_nr(eb, slot); 4133 if (item_size < sizeof(root_item)) 4134 goto skip; 4135 4136 read_extent_buffer(eb, &root_item, 4137 btrfs_item_ptr_offset(eb, slot), 4138 (int)sizeof(root_item)); 4139 if (btrfs_root_refs(&root_item) == 0) 4140 goto skip; 4141 4142 if (!btrfs_is_empty_uuid(root_item.uuid) || 4143 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4144 if (trans) 4145 goto update_tree; 4146 4147 btrfs_release_path(path); 4148 /* 4149 * 1 - subvol uuid item 4150 * 1 - received_subvol uuid item 4151 */ 4152 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4153 if (IS_ERR(trans)) { 4154 ret = PTR_ERR(trans); 4155 break; 4156 } 4157 continue; 4158 } else { 4159 goto skip; 4160 } 4161 update_tree: 4162 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4163 ret = btrfs_uuid_tree_add(trans, fs_info, 4164 root_item.uuid, 4165 BTRFS_UUID_KEY_SUBVOL, 4166 key.objectid); 4167 if (ret < 0) { 4168 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4169 ret); 4170 break; 4171 } 4172 } 4173 4174 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4175 ret = btrfs_uuid_tree_add(trans, fs_info, 4176 root_item.received_uuid, 4177 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4178 key.objectid); 4179 if (ret < 0) { 4180 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4181 ret); 4182 break; 4183 } 4184 } 4185 4186 skip: 4187 if (trans) { 4188 ret = btrfs_end_transaction(trans); 4189 trans = NULL; 4190 if (ret) 4191 break; 4192 } 4193 4194 btrfs_release_path(path); 4195 if (key.offset < (u64)-1) { 4196 key.offset++; 4197 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4198 key.offset = 0; 4199 key.type = BTRFS_ROOT_ITEM_KEY; 4200 } else if (key.objectid < (u64)-1) { 4201 key.offset = 0; 4202 key.type = BTRFS_ROOT_ITEM_KEY; 4203 key.objectid++; 4204 } else { 4205 break; 4206 } 4207 cond_resched(); 4208 } 4209 4210 out: 4211 btrfs_free_path(path); 4212 if (trans && !IS_ERR(trans)) 4213 btrfs_end_transaction(trans); 4214 if (ret) 4215 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4216 else 4217 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4218 up(&fs_info->uuid_tree_rescan_sem); 4219 return 0; 4220 } 4221 4222 /* 4223 * Callback for btrfs_uuid_tree_iterate(). 4224 * returns: 4225 * 0 check succeeded, the entry is not outdated. 4226 * < 0 if an error occurred. 4227 * > 0 if the check failed, which means the caller shall remove the entry. 4228 */ 4229 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4230 u8 *uuid, u8 type, u64 subid) 4231 { 4232 struct btrfs_key key; 4233 int ret = 0; 4234 struct btrfs_root *subvol_root; 4235 4236 if (type != BTRFS_UUID_KEY_SUBVOL && 4237 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4238 goto out; 4239 4240 key.objectid = subid; 4241 key.type = BTRFS_ROOT_ITEM_KEY; 4242 key.offset = (u64)-1; 4243 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4244 if (IS_ERR(subvol_root)) { 4245 ret = PTR_ERR(subvol_root); 4246 if (ret == -ENOENT) 4247 ret = 1; 4248 goto out; 4249 } 4250 4251 switch (type) { 4252 case BTRFS_UUID_KEY_SUBVOL: 4253 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4254 ret = 1; 4255 break; 4256 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4257 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4258 BTRFS_UUID_SIZE)) 4259 ret = 1; 4260 break; 4261 } 4262 4263 out: 4264 return ret; 4265 } 4266 4267 static int btrfs_uuid_rescan_kthread(void *data) 4268 { 4269 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4270 int ret; 4271 4272 /* 4273 * 1st step is to iterate through the existing UUID tree and 4274 * to delete all entries that contain outdated data. 4275 * 2nd step is to add all missing entries to the UUID tree. 4276 */ 4277 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4278 if (ret < 0) { 4279 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4280 up(&fs_info->uuid_tree_rescan_sem); 4281 return ret; 4282 } 4283 return btrfs_uuid_scan_kthread(data); 4284 } 4285 4286 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4287 { 4288 struct btrfs_trans_handle *trans; 4289 struct btrfs_root *tree_root = fs_info->tree_root; 4290 struct btrfs_root *uuid_root; 4291 struct task_struct *task; 4292 int ret; 4293 4294 /* 4295 * 1 - root node 4296 * 1 - root item 4297 */ 4298 trans = btrfs_start_transaction(tree_root, 2); 4299 if (IS_ERR(trans)) 4300 return PTR_ERR(trans); 4301 4302 uuid_root = btrfs_create_tree(trans, fs_info, 4303 BTRFS_UUID_TREE_OBJECTID); 4304 if (IS_ERR(uuid_root)) { 4305 ret = PTR_ERR(uuid_root); 4306 btrfs_abort_transaction(trans, ret); 4307 btrfs_end_transaction(trans); 4308 return ret; 4309 } 4310 4311 fs_info->uuid_root = uuid_root; 4312 4313 ret = btrfs_commit_transaction(trans); 4314 if (ret) 4315 return ret; 4316 4317 down(&fs_info->uuid_tree_rescan_sem); 4318 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4319 if (IS_ERR(task)) { 4320 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4321 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4322 up(&fs_info->uuid_tree_rescan_sem); 4323 return PTR_ERR(task); 4324 } 4325 4326 return 0; 4327 } 4328 4329 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4330 { 4331 struct task_struct *task; 4332 4333 down(&fs_info->uuid_tree_rescan_sem); 4334 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4335 if (IS_ERR(task)) { 4336 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4337 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4338 up(&fs_info->uuid_tree_rescan_sem); 4339 return PTR_ERR(task); 4340 } 4341 4342 return 0; 4343 } 4344 4345 /* 4346 * shrinking a device means finding all of the device extents past 4347 * the new size, and then following the back refs to the chunks. 4348 * The chunk relocation code actually frees the device extent 4349 */ 4350 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4351 { 4352 struct btrfs_fs_info *fs_info = device->fs_info; 4353 struct btrfs_root *root = fs_info->dev_root; 4354 struct btrfs_trans_handle *trans; 4355 struct btrfs_dev_extent *dev_extent = NULL; 4356 struct btrfs_path *path; 4357 u64 length; 4358 u64 chunk_offset; 4359 int ret; 4360 int slot; 4361 int failed = 0; 4362 bool retried = false; 4363 bool checked_pending_chunks = false; 4364 struct extent_buffer *l; 4365 struct btrfs_key key; 4366 struct btrfs_super_block *super_copy = fs_info->super_copy; 4367 u64 old_total = btrfs_super_total_bytes(super_copy); 4368 u64 old_size = btrfs_device_get_total_bytes(device); 4369 u64 diff; 4370 4371 new_size = round_down(new_size, fs_info->sectorsize); 4372 diff = round_down(old_size - new_size, fs_info->sectorsize); 4373 4374 if (device->is_tgtdev_for_dev_replace) 4375 return -EINVAL; 4376 4377 path = btrfs_alloc_path(); 4378 if (!path) 4379 return -ENOMEM; 4380 4381 path->reada = READA_FORWARD; 4382 4383 mutex_lock(&fs_info->chunk_mutex); 4384 4385 btrfs_device_set_total_bytes(device, new_size); 4386 if (device->writeable) { 4387 device->fs_devices->total_rw_bytes -= diff; 4388 atomic64_sub(diff, &fs_info->free_chunk_space); 4389 } 4390 mutex_unlock(&fs_info->chunk_mutex); 4391 4392 again: 4393 key.objectid = device->devid; 4394 key.offset = (u64)-1; 4395 key.type = BTRFS_DEV_EXTENT_KEY; 4396 4397 do { 4398 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4399 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4400 if (ret < 0) { 4401 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4402 goto done; 4403 } 4404 4405 ret = btrfs_previous_item(root, path, 0, key.type); 4406 if (ret) 4407 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4408 if (ret < 0) 4409 goto done; 4410 if (ret) { 4411 ret = 0; 4412 btrfs_release_path(path); 4413 break; 4414 } 4415 4416 l = path->nodes[0]; 4417 slot = path->slots[0]; 4418 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4419 4420 if (key.objectid != device->devid) { 4421 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4422 btrfs_release_path(path); 4423 break; 4424 } 4425 4426 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4427 length = btrfs_dev_extent_length(l, dev_extent); 4428 4429 if (key.offset + length <= new_size) { 4430 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4431 btrfs_release_path(path); 4432 break; 4433 } 4434 4435 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4436 btrfs_release_path(path); 4437 4438 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4439 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4440 if (ret && ret != -ENOSPC) 4441 goto done; 4442 if (ret == -ENOSPC) 4443 failed++; 4444 } while (key.offset-- > 0); 4445 4446 if (failed && !retried) { 4447 failed = 0; 4448 retried = true; 4449 goto again; 4450 } else if (failed && retried) { 4451 ret = -ENOSPC; 4452 goto done; 4453 } 4454 4455 /* Shrinking succeeded, else we would be at "done". */ 4456 trans = btrfs_start_transaction(root, 0); 4457 if (IS_ERR(trans)) { 4458 ret = PTR_ERR(trans); 4459 goto done; 4460 } 4461 4462 mutex_lock(&fs_info->chunk_mutex); 4463 4464 /* 4465 * We checked in the above loop all device extents that were already in 4466 * the device tree. However before we have updated the device's 4467 * total_bytes to the new size, we might have had chunk allocations that 4468 * have not complete yet (new block groups attached to transaction 4469 * handles), and therefore their device extents were not yet in the 4470 * device tree and we missed them in the loop above. So if we have any 4471 * pending chunk using a device extent that overlaps the device range 4472 * that we can not use anymore, commit the current transaction and 4473 * repeat the search on the device tree - this way we guarantee we will 4474 * not have chunks using device extents that end beyond 'new_size'. 4475 */ 4476 if (!checked_pending_chunks) { 4477 u64 start = new_size; 4478 u64 len = old_size - new_size; 4479 4480 if (contains_pending_extent(trans->transaction, device, 4481 &start, len)) { 4482 mutex_unlock(&fs_info->chunk_mutex); 4483 checked_pending_chunks = true; 4484 failed = 0; 4485 retried = false; 4486 ret = btrfs_commit_transaction(trans); 4487 if (ret) 4488 goto done; 4489 goto again; 4490 } 4491 } 4492 4493 btrfs_device_set_disk_total_bytes(device, new_size); 4494 if (list_empty(&device->resized_list)) 4495 list_add_tail(&device->resized_list, 4496 &fs_info->fs_devices->resized_devices); 4497 4498 WARN_ON(diff > old_total); 4499 btrfs_set_super_total_bytes(super_copy, 4500 round_down(old_total - diff, fs_info->sectorsize)); 4501 mutex_unlock(&fs_info->chunk_mutex); 4502 4503 /* Now btrfs_update_device() will change the on-disk size. */ 4504 ret = btrfs_update_device(trans, device); 4505 btrfs_end_transaction(trans); 4506 done: 4507 btrfs_free_path(path); 4508 if (ret) { 4509 mutex_lock(&fs_info->chunk_mutex); 4510 btrfs_device_set_total_bytes(device, old_size); 4511 if (device->writeable) 4512 device->fs_devices->total_rw_bytes += diff; 4513 atomic64_add(diff, &fs_info->free_chunk_space); 4514 mutex_unlock(&fs_info->chunk_mutex); 4515 } 4516 return ret; 4517 } 4518 4519 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4520 struct btrfs_key *key, 4521 struct btrfs_chunk *chunk, int item_size) 4522 { 4523 struct btrfs_super_block *super_copy = fs_info->super_copy; 4524 struct btrfs_disk_key disk_key; 4525 u32 array_size; 4526 u8 *ptr; 4527 4528 mutex_lock(&fs_info->chunk_mutex); 4529 array_size = btrfs_super_sys_array_size(super_copy); 4530 if (array_size + item_size + sizeof(disk_key) 4531 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4532 mutex_unlock(&fs_info->chunk_mutex); 4533 return -EFBIG; 4534 } 4535 4536 ptr = super_copy->sys_chunk_array + array_size; 4537 btrfs_cpu_key_to_disk(&disk_key, key); 4538 memcpy(ptr, &disk_key, sizeof(disk_key)); 4539 ptr += sizeof(disk_key); 4540 memcpy(ptr, chunk, item_size); 4541 item_size += sizeof(disk_key); 4542 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4543 mutex_unlock(&fs_info->chunk_mutex); 4544 4545 return 0; 4546 } 4547 4548 /* 4549 * sort the devices in descending order by max_avail, total_avail 4550 */ 4551 static int btrfs_cmp_device_info(const void *a, const void *b) 4552 { 4553 const struct btrfs_device_info *di_a = a; 4554 const struct btrfs_device_info *di_b = b; 4555 4556 if (di_a->max_avail > di_b->max_avail) 4557 return -1; 4558 if (di_a->max_avail < di_b->max_avail) 4559 return 1; 4560 if (di_a->total_avail > di_b->total_avail) 4561 return -1; 4562 if (di_a->total_avail < di_b->total_avail) 4563 return 1; 4564 return 0; 4565 } 4566 4567 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4568 { 4569 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4570 return; 4571 4572 btrfs_set_fs_incompat(info, RAID56); 4573 } 4574 4575 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \ 4576 - sizeof(struct btrfs_chunk)) \ 4577 / sizeof(struct btrfs_stripe) + 1) 4578 4579 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4580 - 2 * sizeof(struct btrfs_disk_key) \ 4581 - 2 * sizeof(struct btrfs_chunk)) \ 4582 / sizeof(struct btrfs_stripe) + 1) 4583 4584 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4585 u64 start, u64 type) 4586 { 4587 struct btrfs_fs_info *info = trans->fs_info; 4588 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4589 struct btrfs_device *device; 4590 struct map_lookup *map = NULL; 4591 struct extent_map_tree *em_tree; 4592 struct extent_map *em; 4593 struct btrfs_device_info *devices_info = NULL; 4594 u64 total_avail; 4595 int num_stripes; /* total number of stripes to allocate */ 4596 int data_stripes; /* number of stripes that count for 4597 block group size */ 4598 int sub_stripes; /* sub_stripes info for map */ 4599 int dev_stripes; /* stripes per dev */ 4600 int devs_max; /* max devs to use */ 4601 int devs_min; /* min devs needed */ 4602 int devs_increment; /* ndevs has to be a multiple of this */ 4603 int ncopies; /* how many copies to data has */ 4604 int ret; 4605 u64 max_stripe_size; 4606 u64 max_chunk_size; 4607 u64 stripe_size; 4608 u64 num_bytes; 4609 int ndevs; 4610 int i; 4611 int j; 4612 int index; 4613 4614 BUG_ON(!alloc_profile_is_valid(type, 0)); 4615 4616 if (list_empty(&fs_devices->alloc_list)) 4617 return -ENOSPC; 4618 4619 index = __get_raid_index(type); 4620 4621 sub_stripes = btrfs_raid_array[index].sub_stripes; 4622 dev_stripes = btrfs_raid_array[index].dev_stripes; 4623 devs_max = btrfs_raid_array[index].devs_max; 4624 devs_min = btrfs_raid_array[index].devs_min; 4625 devs_increment = btrfs_raid_array[index].devs_increment; 4626 ncopies = btrfs_raid_array[index].ncopies; 4627 4628 if (type & BTRFS_BLOCK_GROUP_DATA) { 4629 max_stripe_size = SZ_1G; 4630 max_chunk_size = 10 * max_stripe_size; 4631 if (!devs_max) 4632 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4633 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4634 /* for larger filesystems, use larger metadata chunks */ 4635 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4636 max_stripe_size = SZ_1G; 4637 else 4638 max_stripe_size = SZ_256M; 4639 max_chunk_size = max_stripe_size; 4640 if (!devs_max) 4641 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4642 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4643 max_stripe_size = SZ_32M; 4644 max_chunk_size = 2 * max_stripe_size; 4645 if (!devs_max) 4646 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4647 } else { 4648 btrfs_err(info, "invalid chunk type 0x%llx requested", 4649 type); 4650 BUG_ON(1); 4651 } 4652 4653 /* we don't want a chunk larger than 10% of writeable space */ 4654 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4655 max_chunk_size); 4656 4657 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4658 GFP_NOFS); 4659 if (!devices_info) 4660 return -ENOMEM; 4661 4662 /* 4663 * in the first pass through the devices list, we gather information 4664 * about the available holes on each device. 4665 */ 4666 ndevs = 0; 4667 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 4668 u64 max_avail; 4669 u64 dev_offset; 4670 4671 if (!device->writeable) { 4672 WARN(1, KERN_ERR 4673 "BTRFS: read-only device in alloc_list\n"); 4674 continue; 4675 } 4676 4677 if (!device->in_fs_metadata || 4678 device->is_tgtdev_for_dev_replace) 4679 continue; 4680 4681 if (device->total_bytes > device->bytes_used) 4682 total_avail = device->total_bytes - device->bytes_used; 4683 else 4684 total_avail = 0; 4685 4686 /* If there is no space on this device, skip it. */ 4687 if (total_avail == 0) 4688 continue; 4689 4690 ret = find_free_dev_extent(trans, device, 4691 max_stripe_size * dev_stripes, 4692 &dev_offset, &max_avail); 4693 if (ret && ret != -ENOSPC) 4694 goto error; 4695 4696 if (ret == 0) 4697 max_avail = max_stripe_size * dev_stripes; 4698 4699 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4700 continue; 4701 4702 if (ndevs == fs_devices->rw_devices) { 4703 WARN(1, "%s: found more than %llu devices\n", 4704 __func__, fs_devices->rw_devices); 4705 break; 4706 } 4707 devices_info[ndevs].dev_offset = dev_offset; 4708 devices_info[ndevs].max_avail = max_avail; 4709 devices_info[ndevs].total_avail = total_avail; 4710 devices_info[ndevs].dev = device; 4711 ++ndevs; 4712 } 4713 4714 /* 4715 * now sort the devices by hole size / available space 4716 */ 4717 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4718 btrfs_cmp_device_info, NULL); 4719 4720 /* round down to number of usable stripes */ 4721 ndevs = round_down(ndevs, devs_increment); 4722 4723 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4724 ret = -ENOSPC; 4725 goto error; 4726 } 4727 4728 ndevs = min(ndevs, devs_max); 4729 4730 /* 4731 * the primary goal is to maximize the number of stripes, so use as many 4732 * devices as possible, even if the stripes are not maximum sized. 4733 */ 4734 stripe_size = devices_info[ndevs-1].max_avail; 4735 num_stripes = ndevs * dev_stripes; 4736 4737 /* 4738 * this will have to be fixed for RAID1 and RAID10 over 4739 * more drives 4740 */ 4741 data_stripes = num_stripes / ncopies; 4742 4743 if (type & BTRFS_BLOCK_GROUP_RAID5) 4744 data_stripes = num_stripes - 1; 4745 4746 if (type & BTRFS_BLOCK_GROUP_RAID6) 4747 data_stripes = num_stripes - 2; 4748 4749 /* 4750 * Use the number of data stripes to figure out how big this chunk 4751 * is really going to be in terms of logical address space, 4752 * and compare that answer with the max chunk size 4753 */ 4754 if (stripe_size * data_stripes > max_chunk_size) { 4755 u64 mask = (1ULL << 24) - 1; 4756 4757 stripe_size = div_u64(max_chunk_size, data_stripes); 4758 4759 /* bump the answer up to a 16MB boundary */ 4760 stripe_size = (stripe_size + mask) & ~mask; 4761 4762 /* but don't go higher than the limits we found 4763 * while searching for free extents 4764 */ 4765 if (stripe_size > devices_info[ndevs-1].max_avail) 4766 stripe_size = devices_info[ndevs-1].max_avail; 4767 } 4768 4769 stripe_size = div_u64(stripe_size, dev_stripes); 4770 4771 /* align to BTRFS_STRIPE_LEN */ 4772 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN); 4773 4774 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4775 if (!map) { 4776 ret = -ENOMEM; 4777 goto error; 4778 } 4779 map->num_stripes = num_stripes; 4780 4781 for (i = 0; i < ndevs; ++i) { 4782 for (j = 0; j < dev_stripes; ++j) { 4783 int s = i * dev_stripes + j; 4784 map->stripes[s].dev = devices_info[i].dev; 4785 map->stripes[s].physical = devices_info[i].dev_offset + 4786 j * stripe_size; 4787 } 4788 } 4789 map->stripe_len = BTRFS_STRIPE_LEN; 4790 map->io_align = BTRFS_STRIPE_LEN; 4791 map->io_width = BTRFS_STRIPE_LEN; 4792 map->type = type; 4793 map->sub_stripes = sub_stripes; 4794 4795 num_bytes = stripe_size * data_stripes; 4796 4797 trace_btrfs_chunk_alloc(info, map, start, num_bytes); 4798 4799 em = alloc_extent_map(); 4800 if (!em) { 4801 kfree(map); 4802 ret = -ENOMEM; 4803 goto error; 4804 } 4805 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4806 em->map_lookup = map; 4807 em->start = start; 4808 em->len = num_bytes; 4809 em->block_start = 0; 4810 em->block_len = em->len; 4811 em->orig_block_len = stripe_size; 4812 4813 em_tree = &info->mapping_tree.map_tree; 4814 write_lock(&em_tree->lock); 4815 ret = add_extent_mapping(em_tree, em, 0); 4816 if (!ret) { 4817 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4818 refcount_inc(&em->refs); 4819 } 4820 write_unlock(&em_tree->lock); 4821 if (ret) { 4822 free_extent_map(em); 4823 goto error; 4824 } 4825 4826 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes); 4827 if (ret) 4828 goto error_del_extent; 4829 4830 for (i = 0; i < map->num_stripes; i++) { 4831 num_bytes = map->stripes[i].dev->bytes_used + stripe_size; 4832 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); 4833 } 4834 4835 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space); 4836 4837 free_extent_map(em); 4838 check_raid56_incompat_flag(info, type); 4839 4840 kfree(devices_info); 4841 return 0; 4842 4843 error_del_extent: 4844 write_lock(&em_tree->lock); 4845 remove_extent_mapping(em_tree, em); 4846 write_unlock(&em_tree->lock); 4847 4848 /* One for our allocation */ 4849 free_extent_map(em); 4850 /* One for the tree reference */ 4851 free_extent_map(em); 4852 /* One for the pending_chunks list reference */ 4853 free_extent_map(em); 4854 error: 4855 kfree(devices_info); 4856 return ret; 4857 } 4858 4859 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4860 struct btrfs_fs_info *fs_info, 4861 u64 chunk_offset, u64 chunk_size) 4862 { 4863 struct btrfs_root *extent_root = fs_info->extent_root; 4864 struct btrfs_root *chunk_root = fs_info->chunk_root; 4865 struct btrfs_key key; 4866 struct btrfs_device *device; 4867 struct btrfs_chunk *chunk; 4868 struct btrfs_stripe *stripe; 4869 struct extent_map *em; 4870 struct map_lookup *map; 4871 size_t item_size; 4872 u64 dev_offset; 4873 u64 stripe_size; 4874 int i = 0; 4875 int ret = 0; 4876 4877 em = get_chunk_map(fs_info, chunk_offset, chunk_size); 4878 if (IS_ERR(em)) 4879 return PTR_ERR(em); 4880 4881 map = em->map_lookup; 4882 item_size = btrfs_chunk_item_size(map->num_stripes); 4883 stripe_size = em->orig_block_len; 4884 4885 chunk = kzalloc(item_size, GFP_NOFS); 4886 if (!chunk) { 4887 ret = -ENOMEM; 4888 goto out; 4889 } 4890 4891 /* 4892 * Take the device list mutex to prevent races with the final phase of 4893 * a device replace operation that replaces the device object associated 4894 * with the map's stripes, because the device object's id can change 4895 * at any time during that final phase of the device replace operation 4896 * (dev-replace.c:btrfs_dev_replace_finishing()). 4897 */ 4898 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4899 for (i = 0; i < map->num_stripes; i++) { 4900 device = map->stripes[i].dev; 4901 dev_offset = map->stripes[i].physical; 4902 4903 ret = btrfs_update_device(trans, device); 4904 if (ret) 4905 break; 4906 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 4907 dev_offset, stripe_size); 4908 if (ret) 4909 break; 4910 } 4911 if (ret) { 4912 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4913 goto out; 4914 } 4915 4916 stripe = &chunk->stripe; 4917 for (i = 0; i < map->num_stripes; i++) { 4918 device = map->stripes[i].dev; 4919 dev_offset = map->stripes[i].physical; 4920 4921 btrfs_set_stack_stripe_devid(stripe, device->devid); 4922 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4923 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4924 stripe++; 4925 } 4926 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4927 4928 btrfs_set_stack_chunk_length(chunk, chunk_size); 4929 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4930 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4931 btrfs_set_stack_chunk_type(chunk, map->type); 4932 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4933 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4934 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4935 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 4936 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4937 4938 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4939 key.type = BTRFS_CHUNK_ITEM_KEY; 4940 key.offset = chunk_offset; 4941 4942 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4943 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4944 /* 4945 * TODO: Cleanup of inserted chunk root in case of 4946 * failure. 4947 */ 4948 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 4949 } 4950 4951 out: 4952 kfree(chunk); 4953 free_extent_map(em); 4954 return ret; 4955 } 4956 4957 /* 4958 * Chunk allocation falls into two parts. The first part does works 4959 * that make the new allocated chunk useable, but not do any operation 4960 * that modifies the chunk tree. The second part does the works that 4961 * require modifying the chunk tree. This division is important for the 4962 * bootstrap process of adding storage to a seed btrfs. 4963 */ 4964 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4965 struct btrfs_fs_info *fs_info, u64 type) 4966 { 4967 u64 chunk_offset; 4968 4969 ASSERT(mutex_is_locked(&fs_info->chunk_mutex)); 4970 chunk_offset = find_next_chunk(fs_info); 4971 return __btrfs_alloc_chunk(trans, chunk_offset, type); 4972 } 4973 4974 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 4975 struct btrfs_fs_info *fs_info) 4976 { 4977 u64 chunk_offset; 4978 u64 sys_chunk_offset; 4979 u64 alloc_profile; 4980 int ret; 4981 4982 chunk_offset = find_next_chunk(fs_info); 4983 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 4984 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile); 4985 if (ret) 4986 return ret; 4987 4988 sys_chunk_offset = find_next_chunk(fs_info); 4989 alloc_profile = btrfs_system_alloc_profile(fs_info); 4990 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile); 4991 return ret; 4992 } 4993 4994 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 4995 { 4996 int max_errors; 4997 4998 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 4999 BTRFS_BLOCK_GROUP_RAID10 | 5000 BTRFS_BLOCK_GROUP_RAID5 | 5001 BTRFS_BLOCK_GROUP_DUP)) { 5002 max_errors = 1; 5003 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 5004 max_errors = 2; 5005 } else { 5006 max_errors = 0; 5007 } 5008 5009 return max_errors; 5010 } 5011 5012 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5013 { 5014 struct extent_map *em; 5015 struct map_lookup *map; 5016 int readonly = 0; 5017 int miss_ndevs = 0; 5018 int i; 5019 5020 em = get_chunk_map(fs_info, chunk_offset, 1); 5021 if (IS_ERR(em)) 5022 return 1; 5023 5024 map = em->map_lookup; 5025 for (i = 0; i < map->num_stripes; i++) { 5026 if (map->stripes[i].dev->missing) { 5027 miss_ndevs++; 5028 continue; 5029 } 5030 5031 if (!map->stripes[i].dev->writeable) { 5032 readonly = 1; 5033 goto end; 5034 } 5035 } 5036 5037 /* 5038 * If the number of missing devices is larger than max errors, 5039 * we can not write the data into that chunk successfully, so 5040 * set it readonly. 5041 */ 5042 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5043 readonly = 1; 5044 end: 5045 free_extent_map(em); 5046 return readonly; 5047 } 5048 5049 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 5050 { 5051 extent_map_tree_init(&tree->map_tree); 5052 } 5053 5054 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 5055 { 5056 struct extent_map *em; 5057 5058 while (1) { 5059 write_lock(&tree->map_tree.lock); 5060 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 5061 if (em) 5062 remove_extent_mapping(&tree->map_tree, em); 5063 write_unlock(&tree->map_tree.lock); 5064 if (!em) 5065 break; 5066 /* once for us */ 5067 free_extent_map(em); 5068 /* once for the tree */ 5069 free_extent_map(em); 5070 } 5071 } 5072 5073 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5074 { 5075 struct extent_map *em; 5076 struct map_lookup *map; 5077 int ret; 5078 5079 em = get_chunk_map(fs_info, logical, len); 5080 if (IS_ERR(em)) 5081 /* 5082 * We could return errors for these cases, but that could get 5083 * ugly and we'd probably do the same thing which is just not do 5084 * anything else and exit, so return 1 so the callers don't try 5085 * to use other copies. 5086 */ 5087 return 1; 5088 5089 map = em->map_lookup; 5090 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 5091 ret = map->num_stripes; 5092 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5093 ret = map->sub_stripes; 5094 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5095 ret = 2; 5096 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5097 ret = 3; 5098 else 5099 ret = 1; 5100 free_extent_map(em); 5101 5102 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 5103 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5104 fs_info->dev_replace.tgtdev) 5105 ret++; 5106 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 5107 5108 return ret; 5109 } 5110 5111 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5112 u64 logical) 5113 { 5114 struct extent_map *em; 5115 struct map_lookup *map; 5116 unsigned long len = fs_info->sectorsize; 5117 5118 em = get_chunk_map(fs_info, logical, len); 5119 5120 if (!WARN_ON(IS_ERR(em))) { 5121 map = em->map_lookup; 5122 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5123 len = map->stripe_len * nr_data_stripes(map); 5124 free_extent_map(em); 5125 } 5126 return len; 5127 } 5128 5129 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5130 { 5131 struct extent_map *em; 5132 struct map_lookup *map; 5133 int ret = 0; 5134 5135 em = get_chunk_map(fs_info, logical, len); 5136 5137 if(!WARN_ON(IS_ERR(em))) { 5138 map = em->map_lookup; 5139 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5140 ret = 1; 5141 free_extent_map(em); 5142 } 5143 return ret; 5144 } 5145 5146 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5147 struct map_lookup *map, int first, int num, 5148 int optimal, int dev_replace_is_ongoing) 5149 { 5150 int i; 5151 int tolerance; 5152 struct btrfs_device *srcdev; 5153 5154 if (dev_replace_is_ongoing && 5155 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5156 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5157 srcdev = fs_info->dev_replace.srcdev; 5158 else 5159 srcdev = NULL; 5160 5161 /* 5162 * try to avoid the drive that is the source drive for a 5163 * dev-replace procedure, only choose it if no other non-missing 5164 * mirror is available 5165 */ 5166 for (tolerance = 0; tolerance < 2; tolerance++) { 5167 if (map->stripes[optimal].dev->bdev && 5168 (tolerance || map->stripes[optimal].dev != srcdev)) 5169 return optimal; 5170 for (i = first; i < first + num; i++) { 5171 if (map->stripes[i].dev->bdev && 5172 (tolerance || map->stripes[i].dev != srcdev)) 5173 return i; 5174 } 5175 } 5176 5177 /* we couldn't find one that doesn't fail. Just return something 5178 * and the io error handling code will clean up eventually 5179 */ 5180 return optimal; 5181 } 5182 5183 static inline int parity_smaller(u64 a, u64 b) 5184 { 5185 return a > b; 5186 } 5187 5188 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5189 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5190 { 5191 struct btrfs_bio_stripe s; 5192 int i; 5193 u64 l; 5194 int again = 1; 5195 5196 while (again) { 5197 again = 0; 5198 for (i = 0; i < num_stripes - 1; i++) { 5199 if (parity_smaller(bbio->raid_map[i], 5200 bbio->raid_map[i+1])) { 5201 s = bbio->stripes[i]; 5202 l = bbio->raid_map[i]; 5203 bbio->stripes[i] = bbio->stripes[i+1]; 5204 bbio->raid_map[i] = bbio->raid_map[i+1]; 5205 bbio->stripes[i+1] = s; 5206 bbio->raid_map[i+1] = l; 5207 5208 again = 1; 5209 } 5210 } 5211 } 5212 } 5213 5214 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5215 { 5216 struct btrfs_bio *bbio = kzalloc( 5217 /* the size of the btrfs_bio */ 5218 sizeof(struct btrfs_bio) + 5219 /* plus the variable array for the stripes */ 5220 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5221 /* plus the variable array for the tgt dev */ 5222 sizeof(int) * (real_stripes) + 5223 /* 5224 * plus the raid_map, which includes both the tgt dev 5225 * and the stripes 5226 */ 5227 sizeof(u64) * (total_stripes), 5228 GFP_NOFS|__GFP_NOFAIL); 5229 5230 atomic_set(&bbio->error, 0); 5231 refcount_set(&bbio->refs, 1); 5232 5233 return bbio; 5234 } 5235 5236 void btrfs_get_bbio(struct btrfs_bio *bbio) 5237 { 5238 WARN_ON(!refcount_read(&bbio->refs)); 5239 refcount_inc(&bbio->refs); 5240 } 5241 5242 void btrfs_put_bbio(struct btrfs_bio *bbio) 5243 { 5244 if (!bbio) 5245 return; 5246 if (refcount_dec_and_test(&bbio->refs)) 5247 kfree(bbio); 5248 } 5249 5250 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5251 /* 5252 * Please note that, discard won't be sent to target device of device 5253 * replace. 5254 */ 5255 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5256 u64 logical, u64 length, 5257 struct btrfs_bio **bbio_ret) 5258 { 5259 struct extent_map *em; 5260 struct map_lookup *map; 5261 struct btrfs_bio *bbio; 5262 u64 offset; 5263 u64 stripe_nr; 5264 u64 stripe_nr_end; 5265 u64 stripe_end_offset; 5266 u64 stripe_cnt; 5267 u64 stripe_len; 5268 u64 stripe_offset; 5269 u64 num_stripes; 5270 u32 stripe_index; 5271 u32 factor = 0; 5272 u32 sub_stripes = 0; 5273 u64 stripes_per_dev = 0; 5274 u32 remaining_stripes = 0; 5275 u32 last_stripe = 0; 5276 int ret = 0; 5277 int i; 5278 5279 /* discard always return a bbio */ 5280 ASSERT(bbio_ret); 5281 5282 em = get_chunk_map(fs_info, logical, length); 5283 if (IS_ERR(em)) 5284 return PTR_ERR(em); 5285 5286 map = em->map_lookup; 5287 /* we don't discard raid56 yet */ 5288 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5289 ret = -EOPNOTSUPP; 5290 goto out; 5291 } 5292 5293 offset = logical - em->start; 5294 length = min_t(u64, em->len - offset, length); 5295 5296 stripe_len = map->stripe_len; 5297 /* 5298 * stripe_nr counts the total number of stripes we have to stride 5299 * to get to this block 5300 */ 5301 stripe_nr = div64_u64(offset, stripe_len); 5302 5303 /* stripe_offset is the offset of this block in its stripe */ 5304 stripe_offset = offset - stripe_nr * stripe_len; 5305 5306 stripe_nr_end = round_up(offset + length, map->stripe_len); 5307 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5308 stripe_cnt = stripe_nr_end - stripe_nr; 5309 stripe_end_offset = stripe_nr_end * map->stripe_len - 5310 (offset + length); 5311 /* 5312 * after this, stripe_nr is the number of stripes on this 5313 * device we have to walk to find the data, and stripe_index is 5314 * the number of our device in the stripe array 5315 */ 5316 num_stripes = 1; 5317 stripe_index = 0; 5318 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5319 BTRFS_BLOCK_GROUP_RAID10)) { 5320 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5321 sub_stripes = 1; 5322 else 5323 sub_stripes = map->sub_stripes; 5324 5325 factor = map->num_stripes / sub_stripes; 5326 num_stripes = min_t(u64, map->num_stripes, 5327 sub_stripes * stripe_cnt); 5328 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5329 stripe_index *= sub_stripes; 5330 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5331 &remaining_stripes); 5332 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5333 last_stripe *= sub_stripes; 5334 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 5335 BTRFS_BLOCK_GROUP_DUP)) { 5336 num_stripes = map->num_stripes; 5337 } else { 5338 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5339 &stripe_index); 5340 } 5341 5342 bbio = alloc_btrfs_bio(num_stripes, 0); 5343 if (!bbio) { 5344 ret = -ENOMEM; 5345 goto out; 5346 } 5347 5348 for (i = 0; i < num_stripes; i++) { 5349 bbio->stripes[i].physical = 5350 map->stripes[stripe_index].physical + 5351 stripe_offset + stripe_nr * map->stripe_len; 5352 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5353 5354 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5355 BTRFS_BLOCK_GROUP_RAID10)) { 5356 bbio->stripes[i].length = stripes_per_dev * 5357 map->stripe_len; 5358 5359 if (i / sub_stripes < remaining_stripes) 5360 bbio->stripes[i].length += 5361 map->stripe_len; 5362 5363 /* 5364 * Special for the first stripe and 5365 * the last stripe: 5366 * 5367 * |-------|...|-------| 5368 * |----------| 5369 * off end_off 5370 */ 5371 if (i < sub_stripes) 5372 bbio->stripes[i].length -= 5373 stripe_offset; 5374 5375 if (stripe_index >= last_stripe && 5376 stripe_index <= (last_stripe + 5377 sub_stripes - 1)) 5378 bbio->stripes[i].length -= 5379 stripe_end_offset; 5380 5381 if (i == sub_stripes - 1) 5382 stripe_offset = 0; 5383 } else { 5384 bbio->stripes[i].length = length; 5385 } 5386 5387 stripe_index++; 5388 if (stripe_index == map->num_stripes) { 5389 stripe_index = 0; 5390 stripe_nr++; 5391 } 5392 } 5393 5394 *bbio_ret = bbio; 5395 bbio->map_type = map->type; 5396 bbio->num_stripes = num_stripes; 5397 out: 5398 free_extent_map(em); 5399 return ret; 5400 } 5401 5402 /* 5403 * In dev-replace case, for repair case (that's the only case where the mirror 5404 * is selected explicitly when calling btrfs_map_block), blocks left of the 5405 * left cursor can also be read from the target drive. 5406 * 5407 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5408 * array of stripes. 5409 * For READ, it also needs to be supported using the same mirror number. 5410 * 5411 * If the requested block is not left of the left cursor, EIO is returned. This 5412 * can happen because btrfs_num_copies() returns one more in the dev-replace 5413 * case. 5414 */ 5415 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5416 u64 logical, u64 length, 5417 u64 srcdev_devid, int *mirror_num, 5418 u64 *physical) 5419 { 5420 struct btrfs_bio *bbio = NULL; 5421 int num_stripes; 5422 int index_srcdev = 0; 5423 int found = 0; 5424 u64 physical_of_found = 0; 5425 int i; 5426 int ret = 0; 5427 5428 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5429 logical, &length, &bbio, 0, 0); 5430 if (ret) { 5431 ASSERT(bbio == NULL); 5432 return ret; 5433 } 5434 5435 num_stripes = bbio->num_stripes; 5436 if (*mirror_num > num_stripes) { 5437 /* 5438 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5439 * that means that the requested area is not left of the left 5440 * cursor 5441 */ 5442 btrfs_put_bbio(bbio); 5443 return -EIO; 5444 } 5445 5446 /* 5447 * process the rest of the function using the mirror_num of the source 5448 * drive. Therefore look it up first. At the end, patch the device 5449 * pointer to the one of the target drive. 5450 */ 5451 for (i = 0; i < num_stripes; i++) { 5452 if (bbio->stripes[i].dev->devid != srcdev_devid) 5453 continue; 5454 5455 /* 5456 * In case of DUP, in order to keep it simple, only add the 5457 * mirror with the lowest physical address 5458 */ 5459 if (found && 5460 physical_of_found <= bbio->stripes[i].physical) 5461 continue; 5462 5463 index_srcdev = i; 5464 found = 1; 5465 physical_of_found = bbio->stripes[i].physical; 5466 } 5467 5468 btrfs_put_bbio(bbio); 5469 5470 ASSERT(found); 5471 if (!found) 5472 return -EIO; 5473 5474 *mirror_num = index_srcdev + 1; 5475 *physical = physical_of_found; 5476 return ret; 5477 } 5478 5479 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5480 struct btrfs_bio **bbio_ret, 5481 struct btrfs_dev_replace *dev_replace, 5482 int *num_stripes_ret, int *max_errors_ret) 5483 { 5484 struct btrfs_bio *bbio = *bbio_ret; 5485 u64 srcdev_devid = dev_replace->srcdev->devid; 5486 int tgtdev_indexes = 0; 5487 int num_stripes = *num_stripes_ret; 5488 int max_errors = *max_errors_ret; 5489 int i; 5490 5491 if (op == BTRFS_MAP_WRITE) { 5492 int index_where_to_add; 5493 5494 /* 5495 * duplicate the write operations while the dev replace 5496 * procedure is running. Since the copying of the old disk to 5497 * the new disk takes place at run time while the filesystem is 5498 * mounted writable, the regular write operations to the old 5499 * disk have to be duplicated to go to the new disk as well. 5500 * 5501 * Note that device->missing is handled by the caller, and that 5502 * the write to the old disk is already set up in the stripes 5503 * array. 5504 */ 5505 index_where_to_add = num_stripes; 5506 for (i = 0; i < num_stripes; i++) { 5507 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5508 /* write to new disk, too */ 5509 struct btrfs_bio_stripe *new = 5510 bbio->stripes + index_where_to_add; 5511 struct btrfs_bio_stripe *old = 5512 bbio->stripes + i; 5513 5514 new->physical = old->physical; 5515 new->length = old->length; 5516 new->dev = dev_replace->tgtdev; 5517 bbio->tgtdev_map[i] = index_where_to_add; 5518 index_where_to_add++; 5519 max_errors++; 5520 tgtdev_indexes++; 5521 } 5522 } 5523 num_stripes = index_where_to_add; 5524 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5525 int index_srcdev = 0; 5526 int found = 0; 5527 u64 physical_of_found = 0; 5528 5529 /* 5530 * During the dev-replace procedure, the target drive can also 5531 * be used to read data in case it is needed to repair a corrupt 5532 * block elsewhere. This is possible if the requested area is 5533 * left of the left cursor. In this area, the target drive is a 5534 * full copy of the source drive. 5535 */ 5536 for (i = 0; i < num_stripes; i++) { 5537 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5538 /* 5539 * In case of DUP, in order to keep it simple, 5540 * only add the mirror with the lowest physical 5541 * address 5542 */ 5543 if (found && 5544 physical_of_found <= 5545 bbio->stripes[i].physical) 5546 continue; 5547 index_srcdev = i; 5548 found = 1; 5549 physical_of_found = bbio->stripes[i].physical; 5550 } 5551 } 5552 if (found) { 5553 struct btrfs_bio_stripe *tgtdev_stripe = 5554 bbio->stripes + num_stripes; 5555 5556 tgtdev_stripe->physical = physical_of_found; 5557 tgtdev_stripe->length = 5558 bbio->stripes[index_srcdev].length; 5559 tgtdev_stripe->dev = dev_replace->tgtdev; 5560 bbio->tgtdev_map[index_srcdev] = num_stripes; 5561 5562 tgtdev_indexes++; 5563 num_stripes++; 5564 } 5565 } 5566 5567 *num_stripes_ret = num_stripes; 5568 *max_errors_ret = max_errors; 5569 bbio->num_tgtdevs = tgtdev_indexes; 5570 *bbio_ret = bbio; 5571 } 5572 5573 static bool need_full_stripe(enum btrfs_map_op op) 5574 { 5575 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5576 } 5577 5578 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 5579 enum btrfs_map_op op, 5580 u64 logical, u64 *length, 5581 struct btrfs_bio **bbio_ret, 5582 int mirror_num, int need_raid_map) 5583 { 5584 struct extent_map *em; 5585 struct map_lookup *map; 5586 u64 offset; 5587 u64 stripe_offset; 5588 u64 stripe_nr; 5589 u64 stripe_len; 5590 u32 stripe_index; 5591 int i; 5592 int ret = 0; 5593 int num_stripes; 5594 int max_errors = 0; 5595 int tgtdev_indexes = 0; 5596 struct btrfs_bio *bbio = NULL; 5597 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 5598 int dev_replace_is_ongoing = 0; 5599 int num_alloc_stripes; 5600 int patch_the_first_stripe_for_dev_replace = 0; 5601 u64 physical_to_patch_in_first_stripe = 0; 5602 u64 raid56_full_stripe_start = (u64)-1; 5603 5604 if (op == BTRFS_MAP_DISCARD) 5605 return __btrfs_map_block_for_discard(fs_info, logical, 5606 *length, bbio_ret); 5607 5608 em = get_chunk_map(fs_info, logical, *length); 5609 if (IS_ERR(em)) 5610 return PTR_ERR(em); 5611 5612 map = em->map_lookup; 5613 offset = logical - em->start; 5614 5615 stripe_len = map->stripe_len; 5616 stripe_nr = offset; 5617 /* 5618 * stripe_nr counts the total number of stripes we have to stride 5619 * to get to this block 5620 */ 5621 stripe_nr = div64_u64(stripe_nr, stripe_len); 5622 5623 stripe_offset = stripe_nr * stripe_len; 5624 if (offset < stripe_offset) { 5625 btrfs_crit(fs_info, 5626 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu", 5627 stripe_offset, offset, em->start, logical, 5628 stripe_len); 5629 free_extent_map(em); 5630 return -EINVAL; 5631 } 5632 5633 /* stripe_offset is the offset of this block in its stripe*/ 5634 stripe_offset = offset - stripe_offset; 5635 5636 /* if we're here for raid56, we need to know the stripe aligned start */ 5637 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5638 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 5639 raid56_full_stripe_start = offset; 5640 5641 /* allow a write of a full stripe, but make sure we don't 5642 * allow straddling of stripes 5643 */ 5644 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5645 full_stripe_len); 5646 raid56_full_stripe_start *= full_stripe_len; 5647 } 5648 5649 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5650 u64 max_len; 5651 /* For writes to RAID[56], allow a full stripeset across all disks. 5652 For other RAID types and for RAID[56] reads, just allow a single 5653 stripe (on a single disk). */ 5654 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 5655 (op == BTRFS_MAP_WRITE)) { 5656 max_len = stripe_len * nr_data_stripes(map) - 5657 (offset - raid56_full_stripe_start); 5658 } else { 5659 /* we limit the length of each bio to what fits in a stripe */ 5660 max_len = stripe_len - stripe_offset; 5661 } 5662 *length = min_t(u64, em->len - offset, max_len); 5663 } else { 5664 *length = em->len - offset; 5665 } 5666 5667 /* This is for when we're called from btrfs_merge_bio_hook() and all 5668 it cares about is the length */ 5669 if (!bbio_ret) 5670 goto out; 5671 5672 btrfs_dev_replace_lock(dev_replace, 0); 5673 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5674 if (!dev_replace_is_ongoing) 5675 btrfs_dev_replace_unlock(dev_replace, 0); 5676 else 5677 btrfs_dev_replace_set_lock_blocking(dev_replace); 5678 5679 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5680 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 5681 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 5682 dev_replace->srcdev->devid, 5683 &mirror_num, 5684 &physical_to_patch_in_first_stripe); 5685 if (ret) 5686 goto out; 5687 else 5688 patch_the_first_stripe_for_dev_replace = 1; 5689 } else if (mirror_num > map->num_stripes) { 5690 mirror_num = 0; 5691 } 5692 5693 num_stripes = 1; 5694 stripe_index = 0; 5695 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5696 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5697 &stripe_index); 5698 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_GET_READ_MIRRORS) 5699 mirror_num = 1; 5700 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 5701 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) 5702 num_stripes = map->num_stripes; 5703 else if (mirror_num) 5704 stripe_index = mirror_num - 1; 5705 else { 5706 stripe_index = find_live_mirror(fs_info, map, 0, 5707 map->num_stripes, 5708 current->pid % map->num_stripes, 5709 dev_replace_is_ongoing); 5710 mirror_num = stripe_index + 1; 5711 } 5712 5713 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5714 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) { 5715 num_stripes = map->num_stripes; 5716 } else if (mirror_num) { 5717 stripe_index = mirror_num - 1; 5718 } else { 5719 mirror_num = 1; 5720 } 5721 5722 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5723 u32 factor = map->num_stripes / map->sub_stripes; 5724 5725 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5726 stripe_index *= map->sub_stripes; 5727 5728 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) 5729 num_stripes = map->sub_stripes; 5730 else if (mirror_num) 5731 stripe_index += mirror_num - 1; 5732 else { 5733 int old_stripe_index = stripe_index; 5734 stripe_index = find_live_mirror(fs_info, map, 5735 stripe_index, 5736 map->sub_stripes, stripe_index + 5737 current->pid % map->sub_stripes, 5738 dev_replace_is_ongoing); 5739 mirror_num = stripe_index - old_stripe_index + 1; 5740 } 5741 5742 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5743 if (need_raid_map && 5744 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS || 5745 mirror_num > 1)) { 5746 /* push stripe_nr back to the start of the full stripe */ 5747 stripe_nr = div64_u64(raid56_full_stripe_start, 5748 stripe_len * nr_data_stripes(map)); 5749 5750 /* RAID[56] write or recovery. Return all stripes */ 5751 num_stripes = map->num_stripes; 5752 max_errors = nr_parity_stripes(map); 5753 5754 *length = map->stripe_len; 5755 stripe_index = 0; 5756 stripe_offset = 0; 5757 } else { 5758 /* 5759 * Mirror #0 or #1 means the original data block. 5760 * Mirror #2 is RAID5 parity block. 5761 * Mirror #3 is RAID6 Q block. 5762 */ 5763 stripe_nr = div_u64_rem(stripe_nr, 5764 nr_data_stripes(map), &stripe_index); 5765 if (mirror_num > 1) 5766 stripe_index = nr_data_stripes(map) + 5767 mirror_num - 2; 5768 5769 /* We distribute the parity blocks across stripes */ 5770 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 5771 &stripe_index); 5772 if ((op != BTRFS_MAP_WRITE && 5773 op != BTRFS_MAP_GET_READ_MIRRORS) && 5774 mirror_num <= 1) 5775 mirror_num = 1; 5776 } 5777 } else { 5778 /* 5779 * after this, stripe_nr is the number of stripes on this 5780 * device we have to walk to find the data, and stripe_index is 5781 * the number of our device in the stripe array 5782 */ 5783 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5784 &stripe_index); 5785 mirror_num = stripe_index + 1; 5786 } 5787 if (stripe_index >= map->num_stripes) { 5788 btrfs_crit(fs_info, 5789 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 5790 stripe_index, map->num_stripes); 5791 ret = -EINVAL; 5792 goto out; 5793 } 5794 5795 num_alloc_stripes = num_stripes; 5796 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 5797 if (op == BTRFS_MAP_WRITE) 5798 num_alloc_stripes <<= 1; 5799 if (op == BTRFS_MAP_GET_READ_MIRRORS) 5800 num_alloc_stripes++; 5801 tgtdev_indexes = num_stripes; 5802 } 5803 5804 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 5805 if (!bbio) { 5806 ret = -ENOMEM; 5807 goto out; 5808 } 5809 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 5810 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 5811 5812 /* build raid_map */ 5813 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 5814 (need_full_stripe(op) || mirror_num > 1)) { 5815 u64 tmp; 5816 unsigned rot; 5817 5818 bbio->raid_map = (u64 *)((void *)bbio->stripes + 5819 sizeof(struct btrfs_bio_stripe) * 5820 num_alloc_stripes + 5821 sizeof(int) * tgtdev_indexes); 5822 5823 /* Work out the disk rotation on this stripe-set */ 5824 div_u64_rem(stripe_nr, num_stripes, &rot); 5825 5826 /* Fill in the logical address of each stripe */ 5827 tmp = stripe_nr * nr_data_stripes(map); 5828 for (i = 0; i < nr_data_stripes(map); i++) 5829 bbio->raid_map[(i+rot) % num_stripes] = 5830 em->start + (tmp + i) * map->stripe_len; 5831 5832 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 5833 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5834 bbio->raid_map[(i+rot+1) % num_stripes] = 5835 RAID6_Q_STRIPE; 5836 } 5837 5838 5839 for (i = 0; i < num_stripes; i++) { 5840 bbio->stripes[i].physical = 5841 map->stripes[stripe_index].physical + 5842 stripe_offset + 5843 stripe_nr * map->stripe_len; 5844 bbio->stripes[i].dev = 5845 map->stripes[stripe_index].dev; 5846 stripe_index++; 5847 } 5848 5849 if (need_full_stripe(op)) 5850 max_errors = btrfs_chunk_max_errors(map); 5851 5852 if (bbio->raid_map) 5853 sort_parity_stripes(bbio, num_stripes); 5854 5855 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 5856 need_full_stripe(op)) { 5857 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 5858 &max_errors); 5859 } 5860 5861 *bbio_ret = bbio; 5862 bbio->map_type = map->type; 5863 bbio->num_stripes = num_stripes; 5864 bbio->max_errors = max_errors; 5865 bbio->mirror_num = mirror_num; 5866 5867 /* 5868 * this is the case that REQ_READ && dev_replace_is_ongoing && 5869 * mirror_num == num_stripes + 1 && dev_replace target drive is 5870 * available as a mirror 5871 */ 5872 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5873 WARN_ON(num_stripes > 1); 5874 bbio->stripes[0].dev = dev_replace->tgtdev; 5875 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5876 bbio->mirror_num = map->num_stripes + 1; 5877 } 5878 out: 5879 if (dev_replace_is_ongoing) { 5880 btrfs_dev_replace_clear_lock_blocking(dev_replace); 5881 btrfs_dev_replace_unlock(dev_replace, 0); 5882 } 5883 free_extent_map(em); 5884 return ret; 5885 } 5886 5887 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5888 u64 logical, u64 *length, 5889 struct btrfs_bio **bbio_ret, int mirror_num) 5890 { 5891 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 5892 mirror_num, 0); 5893 } 5894 5895 /* For Scrub/replace */ 5896 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5897 u64 logical, u64 *length, 5898 struct btrfs_bio **bbio_ret) 5899 { 5900 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 5901 } 5902 5903 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, 5904 u64 chunk_start, u64 physical, u64 devid, 5905 u64 **logical, int *naddrs, int *stripe_len) 5906 { 5907 struct extent_map *em; 5908 struct map_lookup *map; 5909 u64 *buf; 5910 u64 bytenr; 5911 u64 length; 5912 u64 stripe_nr; 5913 u64 rmap_len; 5914 int i, j, nr = 0; 5915 5916 em = get_chunk_map(fs_info, chunk_start, 1); 5917 if (IS_ERR(em)) 5918 return -EIO; 5919 5920 map = em->map_lookup; 5921 length = em->len; 5922 rmap_len = map->stripe_len; 5923 5924 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5925 length = div_u64(length, map->num_stripes / map->sub_stripes); 5926 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5927 length = div_u64(length, map->num_stripes); 5928 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5929 length = div_u64(length, nr_data_stripes(map)); 5930 rmap_len = map->stripe_len * nr_data_stripes(map); 5931 } 5932 5933 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 5934 BUG_ON(!buf); /* -ENOMEM */ 5935 5936 for (i = 0; i < map->num_stripes; i++) { 5937 if (devid && map->stripes[i].dev->devid != devid) 5938 continue; 5939 if (map->stripes[i].physical > physical || 5940 map->stripes[i].physical + length <= physical) 5941 continue; 5942 5943 stripe_nr = physical - map->stripes[i].physical; 5944 stripe_nr = div64_u64(stripe_nr, map->stripe_len); 5945 5946 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5947 stripe_nr = stripe_nr * map->num_stripes + i; 5948 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 5949 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5950 stripe_nr = stripe_nr * map->num_stripes + i; 5951 } /* else if RAID[56], multiply by nr_data_stripes(). 5952 * Alternatively, just use rmap_len below instead of 5953 * map->stripe_len */ 5954 5955 bytenr = chunk_start + stripe_nr * rmap_len; 5956 WARN_ON(nr >= map->num_stripes); 5957 for (j = 0; j < nr; j++) { 5958 if (buf[j] == bytenr) 5959 break; 5960 } 5961 if (j == nr) { 5962 WARN_ON(nr >= map->num_stripes); 5963 buf[nr++] = bytenr; 5964 } 5965 } 5966 5967 *logical = buf; 5968 *naddrs = nr; 5969 *stripe_len = rmap_len; 5970 5971 free_extent_map(em); 5972 return 0; 5973 } 5974 5975 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 5976 { 5977 bio->bi_private = bbio->private; 5978 bio->bi_end_io = bbio->end_io; 5979 bio_endio(bio); 5980 5981 btrfs_put_bbio(bbio); 5982 } 5983 5984 static void btrfs_end_bio(struct bio *bio) 5985 { 5986 struct btrfs_bio *bbio = bio->bi_private; 5987 int is_orig_bio = 0; 5988 5989 if (bio->bi_status) { 5990 atomic_inc(&bbio->error); 5991 if (bio->bi_status == BLK_STS_IOERR || 5992 bio->bi_status == BLK_STS_TARGET) { 5993 unsigned int stripe_index = 5994 btrfs_io_bio(bio)->stripe_index; 5995 struct btrfs_device *dev; 5996 5997 BUG_ON(stripe_index >= bbio->num_stripes); 5998 dev = bbio->stripes[stripe_index].dev; 5999 if (dev->bdev) { 6000 if (bio_op(bio) == REQ_OP_WRITE) 6001 btrfs_dev_stat_inc(dev, 6002 BTRFS_DEV_STAT_WRITE_ERRS); 6003 else 6004 btrfs_dev_stat_inc(dev, 6005 BTRFS_DEV_STAT_READ_ERRS); 6006 if (bio->bi_opf & REQ_PREFLUSH) 6007 btrfs_dev_stat_inc(dev, 6008 BTRFS_DEV_STAT_FLUSH_ERRS); 6009 btrfs_dev_stat_print_on_error(dev); 6010 } 6011 } 6012 } 6013 6014 if (bio == bbio->orig_bio) 6015 is_orig_bio = 1; 6016 6017 btrfs_bio_counter_dec(bbio->fs_info); 6018 6019 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6020 if (!is_orig_bio) { 6021 bio_put(bio); 6022 bio = bbio->orig_bio; 6023 } 6024 6025 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6026 /* only send an error to the higher layers if it is 6027 * beyond the tolerance of the btrfs bio 6028 */ 6029 if (atomic_read(&bbio->error) > bbio->max_errors) { 6030 bio->bi_status = BLK_STS_IOERR; 6031 } else { 6032 /* 6033 * this bio is actually up to date, we didn't 6034 * go over the max number of errors 6035 */ 6036 bio->bi_status = 0; 6037 } 6038 6039 btrfs_end_bbio(bbio, bio); 6040 } else if (!is_orig_bio) { 6041 bio_put(bio); 6042 } 6043 } 6044 6045 /* 6046 * see run_scheduled_bios for a description of why bios are collected for 6047 * async submit. 6048 * 6049 * This will add one bio to the pending list for a device and make sure 6050 * the work struct is scheduled. 6051 */ 6052 static noinline void btrfs_schedule_bio(struct btrfs_device *device, 6053 struct bio *bio) 6054 { 6055 struct btrfs_fs_info *fs_info = device->fs_info; 6056 int should_queue = 1; 6057 struct btrfs_pending_bios *pending_bios; 6058 6059 if (device->missing || !device->bdev) { 6060 bio_io_error(bio); 6061 return; 6062 } 6063 6064 /* don't bother with additional async steps for reads, right now */ 6065 if (bio_op(bio) == REQ_OP_READ) { 6066 bio_get(bio); 6067 btrfsic_submit_bio(bio); 6068 bio_put(bio); 6069 return; 6070 } 6071 6072 /* 6073 * nr_async_bios allows us to reliably return congestion to the 6074 * higher layers. Otherwise, the async bio makes it appear we have 6075 * made progress against dirty pages when we've really just put it 6076 * on a queue for later 6077 */ 6078 atomic_inc(&fs_info->nr_async_bios); 6079 WARN_ON(bio->bi_next); 6080 bio->bi_next = NULL; 6081 6082 spin_lock(&device->io_lock); 6083 if (op_is_sync(bio->bi_opf)) 6084 pending_bios = &device->pending_sync_bios; 6085 else 6086 pending_bios = &device->pending_bios; 6087 6088 if (pending_bios->tail) 6089 pending_bios->tail->bi_next = bio; 6090 6091 pending_bios->tail = bio; 6092 if (!pending_bios->head) 6093 pending_bios->head = bio; 6094 if (device->running_pending) 6095 should_queue = 0; 6096 6097 spin_unlock(&device->io_lock); 6098 6099 if (should_queue) 6100 btrfs_queue_work(fs_info->submit_workers, &device->work); 6101 } 6102 6103 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6104 u64 physical, int dev_nr, int async) 6105 { 6106 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 6107 struct btrfs_fs_info *fs_info = bbio->fs_info; 6108 6109 bio->bi_private = bbio; 6110 btrfs_io_bio(bio)->stripe_index = dev_nr; 6111 bio->bi_end_io = btrfs_end_bio; 6112 bio->bi_iter.bi_sector = physical >> 9; 6113 #ifdef DEBUG 6114 { 6115 struct rcu_string *name; 6116 6117 rcu_read_lock(); 6118 name = rcu_dereference(dev->name); 6119 btrfs_debug(fs_info, 6120 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6121 bio_op(bio), bio->bi_opf, 6122 (u64)bio->bi_iter.bi_sector, 6123 (u_long)dev->bdev->bd_dev, name->str, dev->devid, 6124 bio->bi_iter.bi_size); 6125 rcu_read_unlock(); 6126 } 6127 #endif 6128 bio_set_dev(bio, dev->bdev); 6129 6130 btrfs_bio_counter_inc_noblocked(fs_info); 6131 6132 if (async) 6133 btrfs_schedule_bio(dev, bio); 6134 else 6135 btrfsic_submit_bio(bio); 6136 } 6137 6138 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6139 { 6140 atomic_inc(&bbio->error); 6141 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6142 /* Should be the original bio. */ 6143 WARN_ON(bio != bbio->orig_bio); 6144 6145 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6146 bio->bi_iter.bi_sector = logical >> 9; 6147 bio->bi_status = BLK_STS_IOERR; 6148 btrfs_end_bbio(bbio, bio); 6149 } 6150 } 6151 6152 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6153 int mirror_num, int async_submit) 6154 { 6155 struct btrfs_device *dev; 6156 struct bio *first_bio = bio; 6157 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6158 u64 length = 0; 6159 u64 map_length; 6160 int ret; 6161 int dev_nr; 6162 int total_devs; 6163 struct btrfs_bio *bbio = NULL; 6164 6165 length = bio->bi_iter.bi_size; 6166 map_length = length; 6167 6168 btrfs_bio_counter_inc_blocked(fs_info); 6169 ret = __btrfs_map_block(fs_info, bio_op(bio), logical, 6170 &map_length, &bbio, mirror_num, 1); 6171 if (ret) { 6172 btrfs_bio_counter_dec(fs_info); 6173 return errno_to_blk_status(ret); 6174 } 6175 6176 total_devs = bbio->num_stripes; 6177 bbio->orig_bio = first_bio; 6178 bbio->private = first_bio->bi_private; 6179 bbio->end_io = first_bio->bi_end_io; 6180 bbio->fs_info = fs_info; 6181 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6182 6183 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6184 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6185 /* In this case, map_length has been set to the length of 6186 a single stripe; not the whole write */ 6187 if (bio_op(bio) == REQ_OP_WRITE) { 6188 ret = raid56_parity_write(fs_info, bio, bbio, 6189 map_length); 6190 } else { 6191 ret = raid56_parity_recover(fs_info, bio, bbio, 6192 map_length, mirror_num, 1); 6193 } 6194 6195 btrfs_bio_counter_dec(fs_info); 6196 return errno_to_blk_status(ret); 6197 } 6198 6199 if (map_length < length) { 6200 btrfs_crit(fs_info, 6201 "mapping failed logical %llu bio len %llu len %llu", 6202 logical, length, map_length); 6203 BUG(); 6204 } 6205 6206 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6207 dev = bbio->stripes[dev_nr].dev; 6208 if (!dev || !dev->bdev || 6209 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) { 6210 bbio_error(bbio, first_bio, logical); 6211 continue; 6212 } 6213 6214 if (dev_nr < total_devs - 1) 6215 bio = btrfs_bio_clone(first_bio); 6216 else 6217 bio = first_bio; 6218 6219 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, 6220 dev_nr, async_submit); 6221 } 6222 btrfs_bio_counter_dec(fs_info); 6223 return BLK_STS_OK; 6224 } 6225 6226 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 6227 u8 *uuid, u8 *fsid) 6228 { 6229 struct btrfs_device *device; 6230 struct btrfs_fs_devices *cur_devices; 6231 6232 cur_devices = fs_info->fs_devices; 6233 while (cur_devices) { 6234 if (!fsid || 6235 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) { 6236 device = find_device(cur_devices, devid, uuid); 6237 if (device) 6238 return device; 6239 } 6240 cur_devices = cur_devices->seed; 6241 } 6242 return NULL; 6243 } 6244 6245 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6246 u64 devid, u8 *dev_uuid) 6247 { 6248 struct btrfs_device *device; 6249 6250 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6251 if (IS_ERR(device)) 6252 return NULL; 6253 6254 list_add(&device->dev_list, &fs_devices->devices); 6255 device->fs_devices = fs_devices; 6256 fs_devices->num_devices++; 6257 6258 device->missing = 1; 6259 fs_devices->missing_devices++; 6260 6261 return device; 6262 } 6263 6264 /** 6265 * btrfs_alloc_device - allocate struct btrfs_device 6266 * @fs_info: used only for generating a new devid, can be NULL if 6267 * devid is provided (i.e. @devid != NULL). 6268 * @devid: a pointer to devid for this device. If NULL a new devid 6269 * is generated. 6270 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6271 * is generated. 6272 * 6273 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6274 * on error. Returned struct is not linked onto any lists and can be 6275 * destroyed with kfree() right away. 6276 */ 6277 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6278 const u64 *devid, 6279 const u8 *uuid) 6280 { 6281 struct btrfs_device *dev; 6282 u64 tmp; 6283 6284 if (WARN_ON(!devid && !fs_info)) 6285 return ERR_PTR(-EINVAL); 6286 6287 dev = __alloc_device(); 6288 if (IS_ERR(dev)) 6289 return dev; 6290 6291 if (devid) 6292 tmp = *devid; 6293 else { 6294 int ret; 6295 6296 ret = find_next_devid(fs_info, &tmp); 6297 if (ret) { 6298 kfree(dev); 6299 return ERR_PTR(ret); 6300 } 6301 } 6302 dev->devid = tmp; 6303 6304 if (uuid) 6305 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6306 else 6307 generate_random_uuid(dev->uuid); 6308 6309 btrfs_init_work(&dev->work, btrfs_submit_helper, 6310 pending_bios_fn, NULL, NULL); 6311 6312 return dev; 6313 } 6314 6315 /* Return -EIO if any error, otherwise return 0. */ 6316 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info, 6317 struct extent_buffer *leaf, 6318 struct btrfs_chunk *chunk, u64 logical) 6319 { 6320 u64 length; 6321 u64 stripe_len; 6322 u16 num_stripes; 6323 u16 sub_stripes; 6324 u64 type; 6325 6326 length = btrfs_chunk_length(leaf, chunk); 6327 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6328 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6329 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6330 type = btrfs_chunk_type(leaf, chunk); 6331 6332 if (!num_stripes) { 6333 btrfs_err(fs_info, "invalid chunk num_stripes: %u", 6334 num_stripes); 6335 return -EIO; 6336 } 6337 if (!IS_ALIGNED(logical, fs_info->sectorsize)) { 6338 btrfs_err(fs_info, "invalid chunk logical %llu", logical); 6339 return -EIO; 6340 } 6341 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) { 6342 btrfs_err(fs_info, "invalid chunk sectorsize %u", 6343 btrfs_chunk_sector_size(leaf, chunk)); 6344 return -EIO; 6345 } 6346 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) { 6347 btrfs_err(fs_info, "invalid chunk length %llu", length); 6348 return -EIO; 6349 } 6350 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) { 6351 btrfs_err(fs_info, "invalid chunk stripe length: %llu", 6352 stripe_len); 6353 return -EIO; 6354 } 6355 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6356 type) { 6357 btrfs_err(fs_info, "unrecognized chunk type: %llu", 6358 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 6359 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6360 btrfs_chunk_type(leaf, chunk)); 6361 return -EIO; 6362 } 6363 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) || 6364 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) || 6365 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) || 6366 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) || 6367 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) || 6368 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 6369 num_stripes != 1)) { 6370 btrfs_err(fs_info, 6371 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 6372 num_stripes, sub_stripes, 6373 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 6374 return -EIO; 6375 } 6376 6377 return 0; 6378 } 6379 6380 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 6381 struct extent_buffer *leaf, 6382 struct btrfs_chunk *chunk) 6383 { 6384 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 6385 struct map_lookup *map; 6386 struct extent_map *em; 6387 u64 logical; 6388 u64 length; 6389 u64 devid; 6390 u8 uuid[BTRFS_UUID_SIZE]; 6391 int num_stripes; 6392 int ret; 6393 int i; 6394 6395 logical = key->offset; 6396 length = btrfs_chunk_length(leaf, chunk); 6397 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6398 6399 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical); 6400 if (ret) 6401 return ret; 6402 6403 read_lock(&map_tree->map_tree.lock); 6404 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 6405 read_unlock(&map_tree->map_tree.lock); 6406 6407 /* already mapped? */ 6408 if (em && em->start <= logical && em->start + em->len > logical) { 6409 free_extent_map(em); 6410 return 0; 6411 } else if (em) { 6412 free_extent_map(em); 6413 } 6414 6415 em = alloc_extent_map(); 6416 if (!em) 6417 return -ENOMEM; 6418 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6419 if (!map) { 6420 free_extent_map(em); 6421 return -ENOMEM; 6422 } 6423 6424 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6425 em->map_lookup = map; 6426 em->start = logical; 6427 em->len = length; 6428 em->orig_start = 0; 6429 em->block_start = 0; 6430 em->block_len = em->len; 6431 6432 map->num_stripes = num_stripes; 6433 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6434 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6435 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6436 map->type = btrfs_chunk_type(leaf, chunk); 6437 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6438 for (i = 0; i < num_stripes; i++) { 6439 map->stripes[i].physical = 6440 btrfs_stripe_offset_nr(leaf, chunk, i); 6441 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6442 read_extent_buffer(leaf, uuid, (unsigned long) 6443 btrfs_stripe_dev_uuid_nr(chunk, i), 6444 BTRFS_UUID_SIZE); 6445 map->stripes[i].dev = btrfs_find_device(fs_info, devid, 6446 uuid, NULL); 6447 if (!map->stripes[i].dev && 6448 !btrfs_test_opt(fs_info, DEGRADED)) { 6449 free_extent_map(em); 6450 btrfs_report_missing_device(fs_info, devid, uuid); 6451 return -EIO; 6452 } 6453 if (!map->stripes[i].dev) { 6454 map->stripes[i].dev = 6455 add_missing_dev(fs_info->fs_devices, devid, 6456 uuid); 6457 if (!map->stripes[i].dev) { 6458 free_extent_map(em); 6459 return -EIO; 6460 } 6461 btrfs_report_missing_device(fs_info, devid, uuid); 6462 } 6463 map->stripes[i].dev->in_fs_metadata = 1; 6464 } 6465 6466 write_lock(&map_tree->map_tree.lock); 6467 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6468 write_unlock(&map_tree->map_tree.lock); 6469 BUG_ON(ret); /* Tree corruption */ 6470 free_extent_map(em); 6471 6472 return 0; 6473 } 6474 6475 static void fill_device_from_item(struct extent_buffer *leaf, 6476 struct btrfs_dev_item *dev_item, 6477 struct btrfs_device *device) 6478 { 6479 unsigned long ptr; 6480 6481 device->devid = btrfs_device_id(leaf, dev_item); 6482 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6483 device->total_bytes = device->disk_total_bytes; 6484 device->commit_total_bytes = device->disk_total_bytes; 6485 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6486 device->commit_bytes_used = device->bytes_used; 6487 device->type = btrfs_device_type(leaf, dev_item); 6488 device->io_align = btrfs_device_io_align(leaf, dev_item); 6489 device->io_width = btrfs_device_io_width(leaf, dev_item); 6490 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6491 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6492 device->is_tgtdev_for_dev_replace = 0; 6493 6494 ptr = btrfs_device_uuid(dev_item); 6495 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6496 } 6497 6498 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6499 u8 *fsid) 6500 { 6501 struct btrfs_fs_devices *fs_devices; 6502 int ret; 6503 6504 BUG_ON(!mutex_is_locked(&uuid_mutex)); 6505 ASSERT(fsid); 6506 6507 fs_devices = fs_info->fs_devices->seed; 6508 while (fs_devices) { 6509 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6510 return fs_devices; 6511 6512 fs_devices = fs_devices->seed; 6513 } 6514 6515 fs_devices = find_fsid(fsid); 6516 if (!fs_devices) { 6517 if (!btrfs_test_opt(fs_info, DEGRADED)) 6518 return ERR_PTR(-ENOENT); 6519 6520 fs_devices = alloc_fs_devices(fsid); 6521 if (IS_ERR(fs_devices)) 6522 return fs_devices; 6523 6524 fs_devices->seeding = 1; 6525 fs_devices->opened = 1; 6526 return fs_devices; 6527 } 6528 6529 fs_devices = clone_fs_devices(fs_devices); 6530 if (IS_ERR(fs_devices)) 6531 return fs_devices; 6532 6533 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 6534 fs_info->bdev_holder); 6535 if (ret) { 6536 free_fs_devices(fs_devices); 6537 fs_devices = ERR_PTR(ret); 6538 goto out; 6539 } 6540 6541 if (!fs_devices->seeding) { 6542 __btrfs_close_devices(fs_devices); 6543 free_fs_devices(fs_devices); 6544 fs_devices = ERR_PTR(-EINVAL); 6545 goto out; 6546 } 6547 6548 fs_devices->seed = fs_info->fs_devices->seed; 6549 fs_info->fs_devices->seed = fs_devices; 6550 out: 6551 return fs_devices; 6552 } 6553 6554 static int read_one_dev(struct btrfs_fs_info *fs_info, 6555 struct extent_buffer *leaf, 6556 struct btrfs_dev_item *dev_item) 6557 { 6558 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6559 struct btrfs_device *device; 6560 u64 devid; 6561 int ret; 6562 u8 fs_uuid[BTRFS_FSID_SIZE]; 6563 u8 dev_uuid[BTRFS_UUID_SIZE]; 6564 6565 devid = btrfs_device_id(leaf, dev_item); 6566 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6567 BTRFS_UUID_SIZE); 6568 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6569 BTRFS_FSID_SIZE); 6570 6571 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) { 6572 fs_devices = open_seed_devices(fs_info, fs_uuid); 6573 if (IS_ERR(fs_devices)) 6574 return PTR_ERR(fs_devices); 6575 } 6576 6577 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid); 6578 if (!device) { 6579 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6580 btrfs_report_missing_device(fs_info, devid, dev_uuid); 6581 return -EIO; 6582 } 6583 6584 device = add_missing_dev(fs_devices, devid, dev_uuid); 6585 if (!device) 6586 return -ENOMEM; 6587 btrfs_report_missing_device(fs_info, devid, dev_uuid); 6588 } else { 6589 if (!device->bdev) { 6590 btrfs_report_missing_device(fs_info, devid, dev_uuid); 6591 if (!btrfs_test_opt(fs_info, DEGRADED)) 6592 return -EIO; 6593 } 6594 6595 if(!device->bdev && !device->missing) { 6596 /* 6597 * this happens when a device that was properly setup 6598 * in the device info lists suddenly goes bad. 6599 * device->bdev is NULL, and so we have to set 6600 * device->missing to one here 6601 */ 6602 device->fs_devices->missing_devices++; 6603 device->missing = 1; 6604 } 6605 6606 /* Move the device to its own fs_devices */ 6607 if (device->fs_devices != fs_devices) { 6608 ASSERT(device->missing); 6609 6610 list_move(&device->dev_list, &fs_devices->devices); 6611 device->fs_devices->num_devices--; 6612 fs_devices->num_devices++; 6613 6614 device->fs_devices->missing_devices--; 6615 fs_devices->missing_devices++; 6616 6617 device->fs_devices = fs_devices; 6618 } 6619 } 6620 6621 if (device->fs_devices != fs_info->fs_devices) { 6622 BUG_ON(device->writeable); 6623 if (device->generation != 6624 btrfs_device_generation(leaf, dev_item)) 6625 return -EINVAL; 6626 } 6627 6628 fill_device_from_item(leaf, dev_item, device); 6629 device->in_fs_metadata = 1; 6630 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 6631 device->fs_devices->total_rw_bytes += device->total_bytes; 6632 atomic64_add(device->total_bytes - device->bytes_used, 6633 &fs_info->free_chunk_space); 6634 } 6635 ret = 0; 6636 return ret; 6637 } 6638 6639 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 6640 { 6641 struct btrfs_root *root = fs_info->tree_root; 6642 struct btrfs_super_block *super_copy = fs_info->super_copy; 6643 struct extent_buffer *sb; 6644 struct btrfs_disk_key *disk_key; 6645 struct btrfs_chunk *chunk; 6646 u8 *array_ptr; 6647 unsigned long sb_array_offset; 6648 int ret = 0; 6649 u32 num_stripes; 6650 u32 array_size; 6651 u32 len = 0; 6652 u32 cur_offset; 6653 u64 type; 6654 struct btrfs_key key; 6655 6656 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 6657 /* 6658 * This will create extent buffer of nodesize, superblock size is 6659 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6660 * overallocate but we can keep it as-is, only the first page is used. 6661 */ 6662 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 6663 if (IS_ERR(sb)) 6664 return PTR_ERR(sb); 6665 set_extent_buffer_uptodate(sb); 6666 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6667 /* 6668 * The sb extent buffer is artificial and just used to read the system array. 6669 * set_extent_buffer_uptodate() call does not properly mark all it's 6670 * pages up-to-date when the page is larger: extent does not cover the 6671 * whole page and consequently check_page_uptodate does not find all 6672 * the page's extents up-to-date (the hole beyond sb), 6673 * write_extent_buffer then triggers a WARN_ON. 6674 * 6675 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6676 * but sb spans only this function. Add an explicit SetPageUptodate call 6677 * to silence the warning eg. on PowerPC 64. 6678 */ 6679 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 6680 SetPageUptodate(sb->pages[0]); 6681 6682 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6683 array_size = btrfs_super_sys_array_size(super_copy); 6684 6685 array_ptr = super_copy->sys_chunk_array; 6686 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6687 cur_offset = 0; 6688 6689 while (cur_offset < array_size) { 6690 disk_key = (struct btrfs_disk_key *)array_ptr; 6691 len = sizeof(*disk_key); 6692 if (cur_offset + len > array_size) 6693 goto out_short_read; 6694 6695 btrfs_disk_key_to_cpu(&key, disk_key); 6696 6697 array_ptr += len; 6698 sb_array_offset += len; 6699 cur_offset += len; 6700 6701 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 6702 chunk = (struct btrfs_chunk *)sb_array_offset; 6703 /* 6704 * At least one btrfs_chunk with one stripe must be 6705 * present, exact stripe count check comes afterwards 6706 */ 6707 len = btrfs_chunk_item_size(1); 6708 if (cur_offset + len > array_size) 6709 goto out_short_read; 6710 6711 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6712 if (!num_stripes) { 6713 btrfs_err(fs_info, 6714 "invalid number of stripes %u in sys_array at offset %u", 6715 num_stripes, cur_offset); 6716 ret = -EIO; 6717 break; 6718 } 6719 6720 type = btrfs_chunk_type(sb, chunk); 6721 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 6722 btrfs_err(fs_info, 6723 "invalid chunk type %llu in sys_array at offset %u", 6724 type, cur_offset); 6725 ret = -EIO; 6726 break; 6727 } 6728 6729 len = btrfs_chunk_item_size(num_stripes); 6730 if (cur_offset + len > array_size) 6731 goto out_short_read; 6732 6733 ret = read_one_chunk(fs_info, &key, sb, chunk); 6734 if (ret) 6735 break; 6736 } else { 6737 btrfs_err(fs_info, 6738 "unexpected item type %u in sys_array at offset %u", 6739 (u32)key.type, cur_offset); 6740 ret = -EIO; 6741 break; 6742 } 6743 array_ptr += len; 6744 sb_array_offset += len; 6745 cur_offset += len; 6746 } 6747 clear_extent_buffer_uptodate(sb); 6748 free_extent_buffer_stale(sb); 6749 return ret; 6750 6751 out_short_read: 6752 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 6753 len, cur_offset); 6754 clear_extent_buffer_uptodate(sb); 6755 free_extent_buffer_stale(sb); 6756 return -EIO; 6757 } 6758 6759 void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, u64 devid, 6760 u8 *uuid) 6761 { 6762 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", devid, uuid); 6763 } 6764 6765 /* 6766 * Check if all chunks in the fs are OK for read-write degraded mount 6767 * 6768 * Return true if all chunks meet the minimal RW mount requirements. 6769 * Return false if any chunk doesn't meet the minimal RW mount requirements. 6770 */ 6771 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info) 6772 { 6773 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 6774 struct extent_map *em; 6775 u64 next_start = 0; 6776 bool ret = true; 6777 6778 read_lock(&map_tree->map_tree.lock); 6779 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1); 6780 read_unlock(&map_tree->map_tree.lock); 6781 /* No chunk at all? Return false anyway */ 6782 if (!em) { 6783 ret = false; 6784 goto out; 6785 } 6786 while (em) { 6787 struct map_lookup *map; 6788 int missing = 0; 6789 int max_tolerated; 6790 int i; 6791 6792 map = em->map_lookup; 6793 max_tolerated = 6794 btrfs_get_num_tolerated_disk_barrier_failures( 6795 map->type); 6796 for (i = 0; i < map->num_stripes; i++) { 6797 struct btrfs_device *dev = map->stripes[i].dev; 6798 6799 if (!dev || !dev->bdev || dev->missing || 6800 dev->last_flush_error) 6801 missing++; 6802 } 6803 if (missing > max_tolerated) { 6804 btrfs_warn(fs_info, 6805 "chunk %llu missing %d devices, max tolerance is %d for writeable mount", 6806 em->start, missing, max_tolerated); 6807 free_extent_map(em); 6808 ret = false; 6809 goto out; 6810 } 6811 next_start = extent_map_end(em); 6812 free_extent_map(em); 6813 6814 read_lock(&map_tree->map_tree.lock); 6815 em = lookup_extent_mapping(&map_tree->map_tree, next_start, 6816 (u64)(-1) - next_start); 6817 read_unlock(&map_tree->map_tree.lock); 6818 } 6819 out: 6820 return ret; 6821 } 6822 6823 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 6824 { 6825 struct btrfs_root *root = fs_info->chunk_root; 6826 struct btrfs_path *path; 6827 struct extent_buffer *leaf; 6828 struct btrfs_key key; 6829 struct btrfs_key found_key; 6830 int ret; 6831 int slot; 6832 u64 total_dev = 0; 6833 6834 path = btrfs_alloc_path(); 6835 if (!path) 6836 return -ENOMEM; 6837 6838 mutex_lock(&uuid_mutex); 6839 mutex_lock(&fs_info->chunk_mutex); 6840 6841 /* 6842 * Read all device items, and then all the chunk items. All 6843 * device items are found before any chunk item (their object id 6844 * is smaller than the lowest possible object id for a chunk 6845 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6846 */ 6847 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6848 key.offset = 0; 6849 key.type = 0; 6850 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6851 if (ret < 0) 6852 goto error; 6853 while (1) { 6854 leaf = path->nodes[0]; 6855 slot = path->slots[0]; 6856 if (slot >= btrfs_header_nritems(leaf)) { 6857 ret = btrfs_next_leaf(root, path); 6858 if (ret == 0) 6859 continue; 6860 if (ret < 0) 6861 goto error; 6862 break; 6863 } 6864 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6865 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6866 struct btrfs_dev_item *dev_item; 6867 dev_item = btrfs_item_ptr(leaf, slot, 6868 struct btrfs_dev_item); 6869 ret = read_one_dev(fs_info, leaf, dev_item); 6870 if (ret) 6871 goto error; 6872 total_dev++; 6873 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6874 struct btrfs_chunk *chunk; 6875 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6876 ret = read_one_chunk(fs_info, &found_key, leaf, chunk); 6877 if (ret) 6878 goto error; 6879 } 6880 path->slots[0]++; 6881 } 6882 6883 /* 6884 * After loading chunk tree, we've got all device information, 6885 * do another round of validation checks. 6886 */ 6887 if (total_dev != fs_info->fs_devices->total_devices) { 6888 btrfs_err(fs_info, 6889 "super_num_devices %llu mismatch with num_devices %llu found here", 6890 btrfs_super_num_devices(fs_info->super_copy), 6891 total_dev); 6892 ret = -EINVAL; 6893 goto error; 6894 } 6895 if (btrfs_super_total_bytes(fs_info->super_copy) < 6896 fs_info->fs_devices->total_rw_bytes) { 6897 btrfs_err(fs_info, 6898 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 6899 btrfs_super_total_bytes(fs_info->super_copy), 6900 fs_info->fs_devices->total_rw_bytes); 6901 ret = -EINVAL; 6902 goto error; 6903 } 6904 ret = 0; 6905 error: 6906 mutex_unlock(&fs_info->chunk_mutex); 6907 mutex_unlock(&uuid_mutex); 6908 6909 btrfs_free_path(path); 6910 return ret; 6911 } 6912 6913 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6914 { 6915 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6916 struct btrfs_device *device; 6917 6918 while (fs_devices) { 6919 mutex_lock(&fs_devices->device_list_mutex); 6920 list_for_each_entry(device, &fs_devices->devices, dev_list) 6921 device->fs_info = fs_info; 6922 mutex_unlock(&fs_devices->device_list_mutex); 6923 6924 fs_devices = fs_devices->seed; 6925 } 6926 } 6927 6928 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6929 { 6930 int i; 6931 6932 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6933 btrfs_dev_stat_reset(dev, i); 6934 } 6935 6936 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6937 { 6938 struct btrfs_key key; 6939 struct btrfs_key found_key; 6940 struct btrfs_root *dev_root = fs_info->dev_root; 6941 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6942 struct extent_buffer *eb; 6943 int slot; 6944 int ret = 0; 6945 struct btrfs_device *device; 6946 struct btrfs_path *path = NULL; 6947 int i; 6948 6949 path = btrfs_alloc_path(); 6950 if (!path) { 6951 ret = -ENOMEM; 6952 goto out; 6953 } 6954 6955 mutex_lock(&fs_devices->device_list_mutex); 6956 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6957 int item_size; 6958 struct btrfs_dev_stats_item *ptr; 6959 6960 key.objectid = BTRFS_DEV_STATS_OBJECTID; 6961 key.type = BTRFS_PERSISTENT_ITEM_KEY; 6962 key.offset = device->devid; 6963 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6964 if (ret) { 6965 __btrfs_reset_dev_stats(device); 6966 device->dev_stats_valid = 1; 6967 btrfs_release_path(path); 6968 continue; 6969 } 6970 slot = path->slots[0]; 6971 eb = path->nodes[0]; 6972 btrfs_item_key_to_cpu(eb, &found_key, slot); 6973 item_size = btrfs_item_size_nr(eb, slot); 6974 6975 ptr = btrfs_item_ptr(eb, slot, 6976 struct btrfs_dev_stats_item); 6977 6978 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6979 if (item_size >= (1 + i) * sizeof(__le64)) 6980 btrfs_dev_stat_set(device, i, 6981 btrfs_dev_stats_value(eb, ptr, i)); 6982 else 6983 btrfs_dev_stat_reset(device, i); 6984 } 6985 6986 device->dev_stats_valid = 1; 6987 btrfs_dev_stat_print_on_load(device); 6988 btrfs_release_path(path); 6989 } 6990 mutex_unlock(&fs_devices->device_list_mutex); 6991 6992 out: 6993 btrfs_free_path(path); 6994 return ret < 0 ? ret : 0; 6995 } 6996 6997 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 6998 struct btrfs_fs_info *fs_info, 6999 struct btrfs_device *device) 7000 { 7001 struct btrfs_root *dev_root = fs_info->dev_root; 7002 struct btrfs_path *path; 7003 struct btrfs_key key; 7004 struct extent_buffer *eb; 7005 struct btrfs_dev_stats_item *ptr; 7006 int ret; 7007 int i; 7008 7009 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7010 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7011 key.offset = device->devid; 7012 7013 path = btrfs_alloc_path(); 7014 if (!path) 7015 return -ENOMEM; 7016 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7017 if (ret < 0) { 7018 btrfs_warn_in_rcu(fs_info, 7019 "error %d while searching for dev_stats item for device %s", 7020 ret, rcu_str_deref(device->name)); 7021 goto out; 7022 } 7023 7024 if (ret == 0 && 7025 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7026 /* need to delete old one and insert a new one */ 7027 ret = btrfs_del_item(trans, dev_root, path); 7028 if (ret != 0) { 7029 btrfs_warn_in_rcu(fs_info, 7030 "delete too small dev_stats item for device %s failed %d", 7031 rcu_str_deref(device->name), ret); 7032 goto out; 7033 } 7034 ret = 1; 7035 } 7036 7037 if (ret == 1) { 7038 /* need to insert a new item */ 7039 btrfs_release_path(path); 7040 ret = btrfs_insert_empty_item(trans, dev_root, path, 7041 &key, sizeof(*ptr)); 7042 if (ret < 0) { 7043 btrfs_warn_in_rcu(fs_info, 7044 "insert dev_stats item for device %s failed %d", 7045 rcu_str_deref(device->name), ret); 7046 goto out; 7047 } 7048 } 7049 7050 eb = path->nodes[0]; 7051 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7052 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7053 btrfs_set_dev_stats_value(eb, ptr, i, 7054 btrfs_dev_stat_read(device, i)); 7055 btrfs_mark_buffer_dirty(eb); 7056 7057 out: 7058 btrfs_free_path(path); 7059 return ret; 7060 } 7061 7062 /* 7063 * called from commit_transaction. Writes all changed device stats to disk. 7064 */ 7065 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 7066 struct btrfs_fs_info *fs_info) 7067 { 7068 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7069 struct btrfs_device *device; 7070 int stats_cnt; 7071 int ret = 0; 7072 7073 mutex_lock(&fs_devices->device_list_mutex); 7074 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7075 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device)) 7076 continue; 7077 7078 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7079 ret = update_dev_stat_item(trans, fs_info, device); 7080 if (!ret) 7081 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7082 } 7083 mutex_unlock(&fs_devices->device_list_mutex); 7084 7085 return ret; 7086 } 7087 7088 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7089 { 7090 btrfs_dev_stat_inc(dev, index); 7091 btrfs_dev_stat_print_on_error(dev); 7092 } 7093 7094 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7095 { 7096 if (!dev->dev_stats_valid) 7097 return; 7098 btrfs_err_rl_in_rcu(dev->fs_info, 7099 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7100 rcu_str_deref(dev->name), 7101 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7102 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7103 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7104 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7105 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7106 } 7107 7108 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7109 { 7110 int i; 7111 7112 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7113 if (btrfs_dev_stat_read(dev, i) != 0) 7114 break; 7115 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7116 return; /* all values == 0, suppress message */ 7117 7118 btrfs_info_in_rcu(dev->fs_info, 7119 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7120 rcu_str_deref(dev->name), 7121 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7122 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7123 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7124 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7125 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7126 } 7127 7128 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7129 struct btrfs_ioctl_get_dev_stats *stats) 7130 { 7131 struct btrfs_device *dev; 7132 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7133 int i; 7134 7135 mutex_lock(&fs_devices->device_list_mutex); 7136 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL); 7137 mutex_unlock(&fs_devices->device_list_mutex); 7138 7139 if (!dev) { 7140 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7141 return -ENODEV; 7142 } else if (!dev->dev_stats_valid) { 7143 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7144 return -ENODEV; 7145 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7146 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7147 if (stats->nr_items > i) 7148 stats->values[i] = 7149 btrfs_dev_stat_read_and_reset(dev, i); 7150 else 7151 btrfs_dev_stat_reset(dev, i); 7152 } 7153 } else { 7154 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7155 if (stats->nr_items > i) 7156 stats->values[i] = btrfs_dev_stat_read(dev, i); 7157 } 7158 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7159 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7160 return 0; 7161 } 7162 7163 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path) 7164 { 7165 struct buffer_head *bh; 7166 struct btrfs_super_block *disk_super; 7167 int copy_num; 7168 7169 if (!bdev) 7170 return; 7171 7172 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 7173 copy_num++) { 7174 7175 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 7176 continue; 7177 7178 disk_super = (struct btrfs_super_block *)bh->b_data; 7179 7180 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 7181 set_buffer_dirty(bh); 7182 sync_dirty_buffer(bh); 7183 brelse(bh); 7184 } 7185 7186 /* Notify udev that device has changed */ 7187 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 7188 7189 /* Update ctime/mtime for device path for libblkid */ 7190 update_dev_time(device_path); 7191 } 7192 7193 /* 7194 * Update the size of all devices, which is used for writing out the 7195 * super blocks. 7196 */ 7197 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) 7198 { 7199 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7200 struct btrfs_device *curr, *next; 7201 7202 if (list_empty(&fs_devices->resized_devices)) 7203 return; 7204 7205 mutex_lock(&fs_devices->device_list_mutex); 7206 mutex_lock(&fs_info->chunk_mutex); 7207 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, 7208 resized_list) { 7209 list_del_init(&curr->resized_list); 7210 curr->commit_total_bytes = curr->disk_total_bytes; 7211 } 7212 mutex_unlock(&fs_info->chunk_mutex); 7213 mutex_unlock(&fs_devices->device_list_mutex); 7214 } 7215 7216 /* Must be invoked during the transaction commit */ 7217 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info, 7218 struct btrfs_transaction *transaction) 7219 { 7220 struct extent_map *em; 7221 struct map_lookup *map; 7222 struct btrfs_device *dev; 7223 int i; 7224 7225 if (list_empty(&transaction->pending_chunks)) 7226 return; 7227 7228 /* In order to kick the device replace finish process */ 7229 mutex_lock(&fs_info->chunk_mutex); 7230 list_for_each_entry(em, &transaction->pending_chunks, list) { 7231 map = em->map_lookup; 7232 7233 for (i = 0; i < map->num_stripes; i++) { 7234 dev = map->stripes[i].dev; 7235 dev->commit_bytes_used = dev->bytes_used; 7236 } 7237 } 7238 mutex_unlock(&fs_info->chunk_mutex); 7239 } 7240 7241 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 7242 { 7243 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7244 while (fs_devices) { 7245 fs_devices->fs_info = fs_info; 7246 fs_devices = fs_devices->seed; 7247 } 7248 } 7249 7250 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 7251 { 7252 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7253 while (fs_devices) { 7254 fs_devices->fs_info = NULL; 7255 fs_devices = fs_devices->seed; 7256 } 7257 } 7258