xref: /openbmc/linux/fs/btrfs/volumes.c (revision 239480ab)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 	[BTRFS_RAID_RAID10] = {
47 		.sub_stripes	= 2,
48 		.dev_stripes	= 1,
49 		.devs_max	= 0,	/* 0 == as many as possible */
50 		.devs_min	= 4,
51 		.tolerated_failures = 1,
52 		.devs_increment	= 2,
53 		.ncopies	= 2,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 	},
64 	[BTRFS_RAID_DUP] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 2,
67 		.devs_max	= 1,
68 		.devs_min	= 1,
69 		.tolerated_failures = 0,
70 		.devs_increment	= 1,
71 		.ncopies	= 2,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 	},
82 	[BTRFS_RAID_SINGLE] = {
83 		.sub_stripes	= 1,
84 		.dev_stripes	= 1,
85 		.devs_max	= 1,
86 		.devs_min	= 1,
87 		.tolerated_failures = 0,
88 		.devs_increment	= 1,
89 		.ncopies	= 1,
90 	},
91 	[BTRFS_RAID_RAID5] = {
92 		.sub_stripes	= 1,
93 		.dev_stripes	= 1,
94 		.devs_max	= 0,
95 		.devs_min	= 2,
96 		.tolerated_failures = 1,
97 		.devs_increment	= 1,
98 		.ncopies	= 2,
99 	},
100 	[BTRFS_RAID_RAID6] = {
101 		.sub_stripes	= 1,
102 		.dev_stripes	= 1,
103 		.devs_max	= 0,
104 		.devs_min	= 3,
105 		.tolerated_failures = 2,
106 		.devs_increment	= 1,
107 		.ncopies	= 3,
108 	},
109 };
110 
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116 	[BTRFS_RAID_SINGLE] = 0,
117 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120 
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 	[BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 	[BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 	[BTRFS_RAID_DUP]    = 0,
130 	[BTRFS_RAID_RAID0]  = 0,
131 	[BTRFS_RAID_SINGLE] = 0,
132 	[BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 	[BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135 
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 				struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 			     enum btrfs_map_op op,
144 			     u64 logical, u64 *length,
145 			     struct btrfs_bio **bbio_ret,
146 			     int mirror_num, int need_raid_map);
147 
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
151 {
152 	return &fs_uuids;
153 }
154 
155 static struct btrfs_fs_devices *__alloc_fs_devices(void)
156 {
157 	struct btrfs_fs_devices *fs_devs;
158 
159 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
160 	if (!fs_devs)
161 		return ERR_PTR(-ENOMEM);
162 
163 	mutex_init(&fs_devs->device_list_mutex);
164 
165 	INIT_LIST_HEAD(&fs_devs->devices);
166 	INIT_LIST_HEAD(&fs_devs->resized_devices);
167 	INIT_LIST_HEAD(&fs_devs->alloc_list);
168 	INIT_LIST_HEAD(&fs_devs->list);
169 
170 	return fs_devs;
171 }
172 
173 /**
174  * alloc_fs_devices - allocate struct btrfs_fs_devices
175  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
176  *		generated.
177  *
178  * Return: a pointer to a new &struct btrfs_fs_devices on success;
179  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
180  * can be destroyed with kfree() right away.
181  */
182 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
183 {
184 	struct btrfs_fs_devices *fs_devs;
185 
186 	fs_devs = __alloc_fs_devices();
187 	if (IS_ERR(fs_devs))
188 		return fs_devs;
189 
190 	if (fsid)
191 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
192 	else
193 		generate_random_uuid(fs_devs->fsid);
194 
195 	return fs_devs;
196 }
197 
198 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
199 {
200 	struct btrfs_device *device;
201 	WARN_ON(fs_devices->opened);
202 	while (!list_empty(&fs_devices->devices)) {
203 		device = list_entry(fs_devices->devices.next,
204 				    struct btrfs_device, dev_list);
205 		list_del(&device->dev_list);
206 		rcu_string_free(device->name);
207 		kfree(device);
208 	}
209 	kfree(fs_devices);
210 }
211 
212 static void btrfs_kobject_uevent(struct block_device *bdev,
213 				 enum kobject_action action)
214 {
215 	int ret;
216 
217 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
218 	if (ret)
219 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
220 			action,
221 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
222 			&disk_to_dev(bdev->bd_disk)->kobj);
223 }
224 
225 void btrfs_cleanup_fs_uuids(void)
226 {
227 	struct btrfs_fs_devices *fs_devices;
228 
229 	while (!list_empty(&fs_uuids)) {
230 		fs_devices = list_entry(fs_uuids.next,
231 					struct btrfs_fs_devices, list);
232 		list_del(&fs_devices->list);
233 		free_fs_devices(fs_devices);
234 	}
235 }
236 
237 static struct btrfs_device *__alloc_device(void)
238 {
239 	struct btrfs_device *dev;
240 
241 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
242 	if (!dev)
243 		return ERR_PTR(-ENOMEM);
244 
245 	INIT_LIST_HEAD(&dev->dev_list);
246 	INIT_LIST_HEAD(&dev->dev_alloc_list);
247 	INIT_LIST_HEAD(&dev->resized_list);
248 
249 	spin_lock_init(&dev->io_lock);
250 
251 	spin_lock_init(&dev->reada_lock);
252 	atomic_set(&dev->reada_in_flight, 0);
253 	atomic_set(&dev->dev_stats_ccnt, 0);
254 	btrfs_device_data_ordered_init(dev);
255 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
256 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
257 
258 	return dev;
259 }
260 
261 static noinline struct btrfs_device *__find_device(struct list_head *head,
262 						   u64 devid, u8 *uuid)
263 {
264 	struct btrfs_device *dev;
265 
266 	list_for_each_entry(dev, head, dev_list) {
267 		if (dev->devid == devid &&
268 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
269 			return dev;
270 		}
271 	}
272 	return NULL;
273 }
274 
275 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
276 {
277 	struct btrfs_fs_devices *fs_devices;
278 
279 	list_for_each_entry(fs_devices, &fs_uuids, list) {
280 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
281 			return fs_devices;
282 	}
283 	return NULL;
284 }
285 
286 static int
287 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
288 		      int flush, struct block_device **bdev,
289 		      struct buffer_head **bh)
290 {
291 	int ret;
292 
293 	*bdev = blkdev_get_by_path(device_path, flags, holder);
294 
295 	if (IS_ERR(*bdev)) {
296 		ret = PTR_ERR(*bdev);
297 		goto error;
298 	}
299 
300 	if (flush)
301 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
302 	ret = set_blocksize(*bdev, 4096);
303 	if (ret) {
304 		blkdev_put(*bdev, flags);
305 		goto error;
306 	}
307 	invalidate_bdev(*bdev);
308 	*bh = btrfs_read_dev_super(*bdev);
309 	if (IS_ERR(*bh)) {
310 		ret = PTR_ERR(*bh);
311 		blkdev_put(*bdev, flags);
312 		goto error;
313 	}
314 
315 	return 0;
316 
317 error:
318 	*bdev = NULL;
319 	*bh = NULL;
320 	return ret;
321 }
322 
323 static void requeue_list(struct btrfs_pending_bios *pending_bios,
324 			struct bio *head, struct bio *tail)
325 {
326 
327 	struct bio *old_head;
328 
329 	old_head = pending_bios->head;
330 	pending_bios->head = head;
331 	if (pending_bios->tail)
332 		tail->bi_next = old_head;
333 	else
334 		pending_bios->tail = tail;
335 }
336 
337 /*
338  * we try to collect pending bios for a device so we don't get a large
339  * number of procs sending bios down to the same device.  This greatly
340  * improves the schedulers ability to collect and merge the bios.
341  *
342  * But, it also turns into a long list of bios to process and that is sure
343  * to eventually make the worker thread block.  The solution here is to
344  * make some progress and then put this work struct back at the end of
345  * the list if the block device is congested.  This way, multiple devices
346  * can make progress from a single worker thread.
347  */
348 static noinline void run_scheduled_bios(struct btrfs_device *device)
349 {
350 	struct btrfs_fs_info *fs_info = device->fs_info;
351 	struct bio *pending;
352 	struct backing_dev_info *bdi;
353 	struct btrfs_pending_bios *pending_bios;
354 	struct bio *tail;
355 	struct bio *cur;
356 	int again = 0;
357 	unsigned long num_run;
358 	unsigned long batch_run = 0;
359 	unsigned long limit;
360 	unsigned long last_waited = 0;
361 	int force_reg = 0;
362 	int sync_pending = 0;
363 	struct blk_plug plug;
364 
365 	/*
366 	 * this function runs all the bios we've collected for
367 	 * a particular device.  We don't want to wander off to
368 	 * another device without first sending all of these down.
369 	 * So, setup a plug here and finish it off before we return
370 	 */
371 	blk_start_plug(&plug);
372 
373 	bdi = device->bdev->bd_bdi;
374 	limit = btrfs_async_submit_limit(fs_info);
375 	limit = limit * 2 / 3;
376 
377 loop:
378 	spin_lock(&device->io_lock);
379 
380 loop_lock:
381 	num_run = 0;
382 
383 	/* take all the bios off the list at once and process them
384 	 * later on (without the lock held).  But, remember the
385 	 * tail and other pointers so the bios can be properly reinserted
386 	 * into the list if we hit congestion
387 	 */
388 	if (!force_reg && device->pending_sync_bios.head) {
389 		pending_bios = &device->pending_sync_bios;
390 		force_reg = 1;
391 	} else {
392 		pending_bios = &device->pending_bios;
393 		force_reg = 0;
394 	}
395 
396 	pending = pending_bios->head;
397 	tail = pending_bios->tail;
398 	WARN_ON(pending && !tail);
399 
400 	/*
401 	 * if pending was null this time around, no bios need processing
402 	 * at all and we can stop.  Otherwise it'll loop back up again
403 	 * and do an additional check so no bios are missed.
404 	 *
405 	 * device->running_pending is used to synchronize with the
406 	 * schedule_bio code.
407 	 */
408 	if (device->pending_sync_bios.head == NULL &&
409 	    device->pending_bios.head == NULL) {
410 		again = 0;
411 		device->running_pending = 0;
412 	} else {
413 		again = 1;
414 		device->running_pending = 1;
415 	}
416 
417 	pending_bios->head = NULL;
418 	pending_bios->tail = NULL;
419 
420 	spin_unlock(&device->io_lock);
421 
422 	while (pending) {
423 
424 		rmb();
425 		/* we want to work on both lists, but do more bios on the
426 		 * sync list than the regular list
427 		 */
428 		if ((num_run > 32 &&
429 		    pending_bios != &device->pending_sync_bios &&
430 		    device->pending_sync_bios.head) ||
431 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
432 		    device->pending_bios.head)) {
433 			spin_lock(&device->io_lock);
434 			requeue_list(pending_bios, pending, tail);
435 			goto loop_lock;
436 		}
437 
438 		cur = pending;
439 		pending = pending->bi_next;
440 		cur->bi_next = NULL;
441 
442 		/*
443 		 * atomic_dec_return implies a barrier for waitqueue_active
444 		 */
445 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
446 		    waitqueue_active(&fs_info->async_submit_wait))
447 			wake_up(&fs_info->async_submit_wait);
448 
449 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
450 
451 		/*
452 		 * if we're doing the sync list, record that our
453 		 * plug has some sync requests on it
454 		 *
455 		 * If we're doing the regular list and there are
456 		 * sync requests sitting around, unplug before
457 		 * we add more
458 		 */
459 		if (pending_bios == &device->pending_sync_bios) {
460 			sync_pending = 1;
461 		} else if (sync_pending) {
462 			blk_finish_plug(&plug);
463 			blk_start_plug(&plug);
464 			sync_pending = 0;
465 		}
466 
467 		btrfsic_submit_bio(cur);
468 		num_run++;
469 		batch_run++;
470 
471 		cond_resched();
472 
473 		/*
474 		 * we made progress, there is more work to do and the bdi
475 		 * is now congested.  Back off and let other work structs
476 		 * run instead
477 		 */
478 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
479 		    fs_info->fs_devices->open_devices > 1) {
480 			struct io_context *ioc;
481 
482 			ioc = current->io_context;
483 
484 			/*
485 			 * the main goal here is that we don't want to
486 			 * block if we're going to be able to submit
487 			 * more requests without blocking.
488 			 *
489 			 * This code does two great things, it pokes into
490 			 * the elevator code from a filesystem _and_
491 			 * it makes assumptions about how batching works.
492 			 */
493 			if (ioc && ioc->nr_batch_requests > 0 &&
494 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
495 			    (last_waited == 0 ||
496 			     ioc->last_waited == last_waited)) {
497 				/*
498 				 * we want to go through our batch of
499 				 * requests and stop.  So, we copy out
500 				 * the ioc->last_waited time and test
501 				 * against it before looping
502 				 */
503 				last_waited = ioc->last_waited;
504 				cond_resched();
505 				continue;
506 			}
507 			spin_lock(&device->io_lock);
508 			requeue_list(pending_bios, pending, tail);
509 			device->running_pending = 1;
510 
511 			spin_unlock(&device->io_lock);
512 			btrfs_queue_work(fs_info->submit_workers,
513 					 &device->work);
514 			goto done;
515 		}
516 		/* unplug every 64 requests just for good measure */
517 		if (batch_run % 64 == 0) {
518 			blk_finish_plug(&plug);
519 			blk_start_plug(&plug);
520 			sync_pending = 0;
521 		}
522 	}
523 
524 	cond_resched();
525 	if (again)
526 		goto loop;
527 
528 	spin_lock(&device->io_lock);
529 	if (device->pending_bios.head || device->pending_sync_bios.head)
530 		goto loop_lock;
531 	spin_unlock(&device->io_lock);
532 
533 done:
534 	blk_finish_plug(&plug);
535 }
536 
537 static void pending_bios_fn(struct btrfs_work *work)
538 {
539 	struct btrfs_device *device;
540 
541 	device = container_of(work, struct btrfs_device, work);
542 	run_scheduled_bios(device);
543 }
544 
545 
546 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
547 {
548 	struct btrfs_fs_devices *fs_devs;
549 	struct btrfs_device *dev;
550 
551 	if (!cur_dev->name)
552 		return;
553 
554 	list_for_each_entry(fs_devs, &fs_uuids, list) {
555 		int del = 1;
556 
557 		if (fs_devs->opened)
558 			continue;
559 		if (fs_devs->seeding)
560 			continue;
561 
562 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
563 
564 			if (dev == cur_dev)
565 				continue;
566 			if (!dev->name)
567 				continue;
568 
569 			/*
570 			 * Todo: This won't be enough. What if the same device
571 			 * comes back (with new uuid and) with its mapper path?
572 			 * But for now, this does help as mostly an admin will
573 			 * either use mapper or non mapper path throughout.
574 			 */
575 			rcu_read_lock();
576 			del = strcmp(rcu_str_deref(dev->name),
577 						rcu_str_deref(cur_dev->name));
578 			rcu_read_unlock();
579 			if (!del)
580 				break;
581 		}
582 
583 		if (!del) {
584 			/* delete the stale device */
585 			if (fs_devs->num_devices == 1) {
586 				btrfs_sysfs_remove_fsid(fs_devs);
587 				list_del(&fs_devs->list);
588 				free_fs_devices(fs_devs);
589 			} else {
590 				fs_devs->num_devices--;
591 				list_del(&dev->dev_list);
592 				rcu_string_free(dev->name);
593 				kfree(dev);
594 			}
595 			break;
596 		}
597 	}
598 }
599 
600 /*
601  * Add new device to list of registered devices
602  *
603  * Returns:
604  * 1   - first time device is seen
605  * 0   - device already known
606  * < 0 - error
607  */
608 static noinline int device_list_add(const char *path,
609 			   struct btrfs_super_block *disk_super,
610 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
611 {
612 	struct btrfs_device *device;
613 	struct btrfs_fs_devices *fs_devices;
614 	struct rcu_string *name;
615 	int ret = 0;
616 	u64 found_transid = btrfs_super_generation(disk_super);
617 
618 	fs_devices = find_fsid(disk_super->fsid);
619 	if (!fs_devices) {
620 		fs_devices = alloc_fs_devices(disk_super->fsid);
621 		if (IS_ERR(fs_devices))
622 			return PTR_ERR(fs_devices);
623 
624 		list_add(&fs_devices->list, &fs_uuids);
625 
626 		device = NULL;
627 	} else {
628 		device = __find_device(&fs_devices->devices, devid,
629 				       disk_super->dev_item.uuid);
630 	}
631 
632 	if (!device) {
633 		if (fs_devices->opened)
634 			return -EBUSY;
635 
636 		device = btrfs_alloc_device(NULL, &devid,
637 					    disk_super->dev_item.uuid);
638 		if (IS_ERR(device)) {
639 			/* we can safely leave the fs_devices entry around */
640 			return PTR_ERR(device);
641 		}
642 
643 		name = rcu_string_strdup(path, GFP_NOFS);
644 		if (!name) {
645 			kfree(device);
646 			return -ENOMEM;
647 		}
648 		rcu_assign_pointer(device->name, name);
649 
650 		mutex_lock(&fs_devices->device_list_mutex);
651 		list_add_rcu(&device->dev_list, &fs_devices->devices);
652 		fs_devices->num_devices++;
653 		mutex_unlock(&fs_devices->device_list_mutex);
654 
655 		ret = 1;
656 		device->fs_devices = fs_devices;
657 	} else if (!device->name || strcmp(device->name->str, path)) {
658 		/*
659 		 * When FS is already mounted.
660 		 * 1. If you are here and if the device->name is NULL that
661 		 *    means this device was missing at time of FS mount.
662 		 * 2. If you are here and if the device->name is different
663 		 *    from 'path' that means either
664 		 *      a. The same device disappeared and reappeared with
665 		 *         different name. or
666 		 *      b. The missing-disk-which-was-replaced, has
667 		 *         reappeared now.
668 		 *
669 		 * We must allow 1 and 2a above. But 2b would be a spurious
670 		 * and unintentional.
671 		 *
672 		 * Further in case of 1 and 2a above, the disk at 'path'
673 		 * would have missed some transaction when it was away and
674 		 * in case of 2a the stale bdev has to be updated as well.
675 		 * 2b must not be allowed at all time.
676 		 */
677 
678 		/*
679 		 * For now, we do allow update to btrfs_fs_device through the
680 		 * btrfs dev scan cli after FS has been mounted.  We're still
681 		 * tracking a problem where systems fail mount by subvolume id
682 		 * when we reject replacement on a mounted FS.
683 		 */
684 		if (!fs_devices->opened && found_transid < device->generation) {
685 			/*
686 			 * That is if the FS is _not_ mounted and if you
687 			 * are here, that means there is more than one
688 			 * disk with same uuid and devid.We keep the one
689 			 * with larger generation number or the last-in if
690 			 * generation are equal.
691 			 */
692 			return -EEXIST;
693 		}
694 
695 		name = rcu_string_strdup(path, GFP_NOFS);
696 		if (!name)
697 			return -ENOMEM;
698 		rcu_string_free(device->name);
699 		rcu_assign_pointer(device->name, name);
700 		if (device->missing) {
701 			fs_devices->missing_devices--;
702 			device->missing = 0;
703 		}
704 	}
705 
706 	/*
707 	 * Unmount does not free the btrfs_device struct but would zero
708 	 * generation along with most of the other members. So just update
709 	 * it back. We need it to pick the disk with largest generation
710 	 * (as above).
711 	 */
712 	if (!fs_devices->opened)
713 		device->generation = found_transid;
714 
715 	/*
716 	 * if there is new btrfs on an already registered device,
717 	 * then remove the stale device entry.
718 	 */
719 	if (ret > 0)
720 		btrfs_free_stale_device(device);
721 
722 	*fs_devices_ret = fs_devices;
723 
724 	return ret;
725 }
726 
727 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
728 {
729 	struct btrfs_fs_devices *fs_devices;
730 	struct btrfs_device *device;
731 	struct btrfs_device *orig_dev;
732 
733 	fs_devices = alloc_fs_devices(orig->fsid);
734 	if (IS_ERR(fs_devices))
735 		return fs_devices;
736 
737 	mutex_lock(&orig->device_list_mutex);
738 	fs_devices->total_devices = orig->total_devices;
739 
740 	/* We have held the volume lock, it is safe to get the devices. */
741 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
742 		struct rcu_string *name;
743 
744 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
745 					    orig_dev->uuid);
746 		if (IS_ERR(device))
747 			goto error;
748 
749 		/*
750 		 * This is ok to do without rcu read locked because we hold the
751 		 * uuid mutex so nothing we touch in here is going to disappear.
752 		 */
753 		if (orig_dev->name) {
754 			name = rcu_string_strdup(orig_dev->name->str,
755 					GFP_KERNEL);
756 			if (!name) {
757 				kfree(device);
758 				goto error;
759 			}
760 			rcu_assign_pointer(device->name, name);
761 		}
762 
763 		list_add(&device->dev_list, &fs_devices->devices);
764 		device->fs_devices = fs_devices;
765 		fs_devices->num_devices++;
766 	}
767 	mutex_unlock(&orig->device_list_mutex);
768 	return fs_devices;
769 error:
770 	mutex_unlock(&orig->device_list_mutex);
771 	free_fs_devices(fs_devices);
772 	return ERR_PTR(-ENOMEM);
773 }
774 
775 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
776 {
777 	struct btrfs_device *device, *next;
778 	struct btrfs_device *latest_dev = NULL;
779 
780 	mutex_lock(&uuid_mutex);
781 again:
782 	/* This is the initialized path, it is safe to release the devices. */
783 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
784 		if (device->in_fs_metadata) {
785 			if (!device->is_tgtdev_for_dev_replace &&
786 			    (!latest_dev ||
787 			     device->generation > latest_dev->generation)) {
788 				latest_dev = device;
789 			}
790 			continue;
791 		}
792 
793 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
794 			/*
795 			 * In the first step, keep the device which has
796 			 * the correct fsid and the devid that is used
797 			 * for the dev_replace procedure.
798 			 * In the second step, the dev_replace state is
799 			 * read from the device tree and it is known
800 			 * whether the procedure is really active or
801 			 * not, which means whether this device is
802 			 * used or whether it should be removed.
803 			 */
804 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
805 				continue;
806 			}
807 		}
808 		if (device->bdev) {
809 			blkdev_put(device->bdev, device->mode);
810 			device->bdev = NULL;
811 			fs_devices->open_devices--;
812 		}
813 		if (device->writeable) {
814 			list_del_init(&device->dev_alloc_list);
815 			device->writeable = 0;
816 			if (!device->is_tgtdev_for_dev_replace)
817 				fs_devices->rw_devices--;
818 		}
819 		list_del_init(&device->dev_list);
820 		fs_devices->num_devices--;
821 		rcu_string_free(device->name);
822 		kfree(device);
823 	}
824 
825 	if (fs_devices->seed) {
826 		fs_devices = fs_devices->seed;
827 		goto again;
828 	}
829 
830 	fs_devices->latest_bdev = latest_dev->bdev;
831 
832 	mutex_unlock(&uuid_mutex);
833 }
834 
835 static void __free_device(struct work_struct *work)
836 {
837 	struct btrfs_device *device;
838 
839 	device = container_of(work, struct btrfs_device, rcu_work);
840 	rcu_string_free(device->name);
841 	kfree(device);
842 }
843 
844 static void free_device(struct rcu_head *head)
845 {
846 	struct btrfs_device *device;
847 
848 	device = container_of(head, struct btrfs_device, rcu);
849 
850 	INIT_WORK(&device->rcu_work, __free_device);
851 	schedule_work(&device->rcu_work);
852 }
853 
854 static void btrfs_close_bdev(struct btrfs_device *device)
855 {
856 	if (device->bdev && device->writeable) {
857 		sync_blockdev(device->bdev);
858 		invalidate_bdev(device->bdev);
859 	}
860 
861 	if (device->bdev)
862 		blkdev_put(device->bdev, device->mode);
863 }
864 
865 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
866 {
867 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
868 	struct btrfs_device *new_device;
869 	struct rcu_string *name;
870 
871 	if (device->bdev)
872 		fs_devices->open_devices--;
873 
874 	if (device->writeable &&
875 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
876 		list_del_init(&device->dev_alloc_list);
877 		fs_devices->rw_devices--;
878 	}
879 
880 	if (device->missing)
881 		fs_devices->missing_devices--;
882 
883 	new_device = btrfs_alloc_device(NULL, &device->devid,
884 					device->uuid);
885 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
886 
887 	/* Safe because we are under uuid_mutex */
888 	if (device->name) {
889 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
890 		BUG_ON(!name); /* -ENOMEM */
891 		rcu_assign_pointer(new_device->name, name);
892 	}
893 
894 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
895 	new_device->fs_devices = device->fs_devices;
896 }
897 
898 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
899 {
900 	struct btrfs_device *device, *tmp;
901 	struct list_head pending_put;
902 
903 	INIT_LIST_HEAD(&pending_put);
904 
905 	if (--fs_devices->opened > 0)
906 		return 0;
907 
908 	mutex_lock(&fs_devices->device_list_mutex);
909 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
910 		btrfs_prepare_close_one_device(device);
911 		list_add(&device->dev_list, &pending_put);
912 	}
913 	mutex_unlock(&fs_devices->device_list_mutex);
914 
915 	/*
916 	 * btrfs_show_devname() is using the device_list_mutex,
917 	 * sometimes call to blkdev_put() leads vfs calling
918 	 * into this func. So do put outside of device_list_mutex,
919 	 * as of now.
920 	 */
921 	while (!list_empty(&pending_put)) {
922 		device = list_first_entry(&pending_put,
923 				struct btrfs_device, dev_list);
924 		list_del(&device->dev_list);
925 		btrfs_close_bdev(device);
926 		call_rcu(&device->rcu, free_device);
927 	}
928 
929 	WARN_ON(fs_devices->open_devices);
930 	WARN_ON(fs_devices->rw_devices);
931 	fs_devices->opened = 0;
932 	fs_devices->seeding = 0;
933 
934 	return 0;
935 }
936 
937 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
938 {
939 	struct btrfs_fs_devices *seed_devices = NULL;
940 	int ret;
941 
942 	mutex_lock(&uuid_mutex);
943 	ret = __btrfs_close_devices(fs_devices);
944 	if (!fs_devices->opened) {
945 		seed_devices = fs_devices->seed;
946 		fs_devices->seed = NULL;
947 	}
948 	mutex_unlock(&uuid_mutex);
949 
950 	while (seed_devices) {
951 		fs_devices = seed_devices;
952 		seed_devices = fs_devices->seed;
953 		__btrfs_close_devices(fs_devices);
954 		free_fs_devices(fs_devices);
955 	}
956 	/*
957 	 * Wait for rcu kworkers under __btrfs_close_devices
958 	 * to finish all blkdev_puts so device is really
959 	 * free when umount is done.
960 	 */
961 	rcu_barrier();
962 	return ret;
963 }
964 
965 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
966 				fmode_t flags, void *holder)
967 {
968 	struct request_queue *q;
969 	struct block_device *bdev;
970 	struct list_head *head = &fs_devices->devices;
971 	struct btrfs_device *device;
972 	struct btrfs_device *latest_dev = NULL;
973 	struct buffer_head *bh;
974 	struct btrfs_super_block *disk_super;
975 	u64 devid;
976 	int seeding = 1;
977 	int ret = 0;
978 
979 	flags |= FMODE_EXCL;
980 
981 	list_for_each_entry(device, head, dev_list) {
982 		if (device->bdev)
983 			continue;
984 		if (!device->name)
985 			continue;
986 
987 		/* Just open everything we can; ignore failures here */
988 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
989 					    &bdev, &bh))
990 			continue;
991 
992 		disk_super = (struct btrfs_super_block *)bh->b_data;
993 		devid = btrfs_stack_device_id(&disk_super->dev_item);
994 		if (devid != device->devid)
995 			goto error_brelse;
996 
997 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
998 			   BTRFS_UUID_SIZE))
999 			goto error_brelse;
1000 
1001 		device->generation = btrfs_super_generation(disk_super);
1002 		if (!latest_dev ||
1003 		    device->generation > latest_dev->generation)
1004 			latest_dev = device;
1005 
1006 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1007 			device->writeable = 0;
1008 		} else {
1009 			device->writeable = !bdev_read_only(bdev);
1010 			seeding = 0;
1011 		}
1012 
1013 		q = bdev_get_queue(bdev);
1014 		if (blk_queue_discard(q))
1015 			device->can_discard = 1;
1016 		if (!blk_queue_nonrot(q))
1017 			fs_devices->rotating = 1;
1018 
1019 		device->bdev = bdev;
1020 		device->in_fs_metadata = 0;
1021 		device->mode = flags;
1022 
1023 		fs_devices->open_devices++;
1024 		if (device->writeable &&
1025 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1026 			fs_devices->rw_devices++;
1027 			list_add(&device->dev_alloc_list,
1028 				 &fs_devices->alloc_list);
1029 		}
1030 		brelse(bh);
1031 		continue;
1032 
1033 error_brelse:
1034 		brelse(bh);
1035 		blkdev_put(bdev, flags);
1036 		continue;
1037 	}
1038 	if (fs_devices->open_devices == 0) {
1039 		ret = -EINVAL;
1040 		goto out;
1041 	}
1042 	fs_devices->seeding = seeding;
1043 	fs_devices->opened = 1;
1044 	fs_devices->latest_bdev = latest_dev->bdev;
1045 	fs_devices->total_rw_bytes = 0;
1046 out:
1047 	return ret;
1048 }
1049 
1050 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1051 		       fmode_t flags, void *holder)
1052 {
1053 	int ret;
1054 
1055 	mutex_lock(&uuid_mutex);
1056 	if (fs_devices->opened) {
1057 		fs_devices->opened++;
1058 		ret = 0;
1059 	} else {
1060 		ret = __btrfs_open_devices(fs_devices, flags, holder);
1061 	}
1062 	mutex_unlock(&uuid_mutex);
1063 	return ret;
1064 }
1065 
1066 void btrfs_release_disk_super(struct page *page)
1067 {
1068 	kunmap(page);
1069 	put_page(page);
1070 }
1071 
1072 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1073 		struct page **page, struct btrfs_super_block **disk_super)
1074 {
1075 	void *p;
1076 	pgoff_t index;
1077 
1078 	/* make sure our super fits in the device */
1079 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1080 		return 1;
1081 
1082 	/* make sure our super fits in the page */
1083 	if (sizeof(**disk_super) > PAGE_SIZE)
1084 		return 1;
1085 
1086 	/* make sure our super doesn't straddle pages on disk */
1087 	index = bytenr >> PAGE_SHIFT;
1088 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1089 		return 1;
1090 
1091 	/* pull in the page with our super */
1092 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1093 				   index, GFP_KERNEL);
1094 
1095 	if (IS_ERR_OR_NULL(*page))
1096 		return 1;
1097 
1098 	p = kmap(*page);
1099 
1100 	/* align our pointer to the offset of the super block */
1101 	*disk_super = p + (bytenr & ~PAGE_MASK);
1102 
1103 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1104 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1105 		btrfs_release_disk_super(*page);
1106 		return 1;
1107 	}
1108 
1109 	if ((*disk_super)->label[0] &&
1110 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1111 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1112 
1113 	return 0;
1114 }
1115 
1116 /*
1117  * Look for a btrfs signature on a device. This may be called out of the mount path
1118  * and we are not allowed to call set_blocksize during the scan. The superblock
1119  * is read via pagecache
1120  */
1121 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1122 			  struct btrfs_fs_devices **fs_devices_ret)
1123 {
1124 	struct btrfs_super_block *disk_super;
1125 	struct block_device *bdev;
1126 	struct page *page;
1127 	int ret = -EINVAL;
1128 	u64 devid;
1129 	u64 transid;
1130 	u64 total_devices;
1131 	u64 bytenr;
1132 
1133 	/*
1134 	 * we would like to check all the supers, but that would make
1135 	 * a btrfs mount succeed after a mkfs from a different FS.
1136 	 * So, we need to add a special mount option to scan for
1137 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1138 	 */
1139 	bytenr = btrfs_sb_offset(0);
1140 	flags |= FMODE_EXCL;
1141 	mutex_lock(&uuid_mutex);
1142 
1143 	bdev = blkdev_get_by_path(path, flags, holder);
1144 	if (IS_ERR(bdev)) {
1145 		ret = PTR_ERR(bdev);
1146 		goto error;
1147 	}
1148 
1149 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1150 		goto error_bdev_put;
1151 
1152 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1153 	transid = btrfs_super_generation(disk_super);
1154 	total_devices = btrfs_super_num_devices(disk_super);
1155 
1156 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1157 	if (ret > 0) {
1158 		if (disk_super->label[0]) {
1159 			pr_info("BTRFS: device label %s ", disk_super->label);
1160 		} else {
1161 			pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1162 		}
1163 
1164 		pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1165 		ret = 0;
1166 	}
1167 	if (!ret && fs_devices_ret)
1168 		(*fs_devices_ret)->total_devices = total_devices;
1169 
1170 	btrfs_release_disk_super(page);
1171 
1172 error_bdev_put:
1173 	blkdev_put(bdev, flags);
1174 error:
1175 	mutex_unlock(&uuid_mutex);
1176 	return ret;
1177 }
1178 
1179 /* helper to account the used device space in the range */
1180 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1181 				   u64 end, u64 *length)
1182 {
1183 	struct btrfs_key key;
1184 	struct btrfs_root *root = device->fs_info->dev_root;
1185 	struct btrfs_dev_extent *dev_extent;
1186 	struct btrfs_path *path;
1187 	u64 extent_end;
1188 	int ret;
1189 	int slot;
1190 	struct extent_buffer *l;
1191 
1192 	*length = 0;
1193 
1194 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1195 		return 0;
1196 
1197 	path = btrfs_alloc_path();
1198 	if (!path)
1199 		return -ENOMEM;
1200 	path->reada = READA_FORWARD;
1201 
1202 	key.objectid = device->devid;
1203 	key.offset = start;
1204 	key.type = BTRFS_DEV_EXTENT_KEY;
1205 
1206 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1207 	if (ret < 0)
1208 		goto out;
1209 	if (ret > 0) {
1210 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1211 		if (ret < 0)
1212 			goto out;
1213 	}
1214 
1215 	while (1) {
1216 		l = path->nodes[0];
1217 		slot = path->slots[0];
1218 		if (slot >= btrfs_header_nritems(l)) {
1219 			ret = btrfs_next_leaf(root, path);
1220 			if (ret == 0)
1221 				continue;
1222 			if (ret < 0)
1223 				goto out;
1224 
1225 			break;
1226 		}
1227 		btrfs_item_key_to_cpu(l, &key, slot);
1228 
1229 		if (key.objectid < device->devid)
1230 			goto next;
1231 
1232 		if (key.objectid > device->devid)
1233 			break;
1234 
1235 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1236 			goto next;
1237 
1238 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1239 		extent_end = key.offset + btrfs_dev_extent_length(l,
1240 								  dev_extent);
1241 		if (key.offset <= start && extent_end > end) {
1242 			*length = end - start + 1;
1243 			break;
1244 		} else if (key.offset <= start && extent_end > start)
1245 			*length += extent_end - start;
1246 		else if (key.offset > start && extent_end <= end)
1247 			*length += extent_end - key.offset;
1248 		else if (key.offset > start && key.offset <= end) {
1249 			*length += end - key.offset + 1;
1250 			break;
1251 		} else if (key.offset > end)
1252 			break;
1253 
1254 next:
1255 		path->slots[0]++;
1256 	}
1257 	ret = 0;
1258 out:
1259 	btrfs_free_path(path);
1260 	return ret;
1261 }
1262 
1263 static int contains_pending_extent(struct btrfs_transaction *transaction,
1264 				   struct btrfs_device *device,
1265 				   u64 *start, u64 len)
1266 {
1267 	struct btrfs_fs_info *fs_info = device->fs_info;
1268 	struct extent_map *em;
1269 	struct list_head *search_list = &fs_info->pinned_chunks;
1270 	int ret = 0;
1271 	u64 physical_start = *start;
1272 
1273 	if (transaction)
1274 		search_list = &transaction->pending_chunks;
1275 again:
1276 	list_for_each_entry(em, search_list, list) {
1277 		struct map_lookup *map;
1278 		int i;
1279 
1280 		map = em->map_lookup;
1281 		for (i = 0; i < map->num_stripes; i++) {
1282 			u64 end;
1283 
1284 			if (map->stripes[i].dev != device)
1285 				continue;
1286 			if (map->stripes[i].physical >= physical_start + len ||
1287 			    map->stripes[i].physical + em->orig_block_len <=
1288 			    physical_start)
1289 				continue;
1290 			/*
1291 			 * Make sure that while processing the pinned list we do
1292 			 * not override our *start with a lower value, because
1293 			 * we can have pinned chunks that fall within this
1294 			 * device hole and that have lower physical addresses
1295 			 * than the pending chunks we processed before. If we
1296 			 * do not take this special care we can end up getting
1297 			 * 2 pending chunks that start at the same physical
1298 			 * device offsets because the end offset of a pinned
1299 			 * chunk can be equal to the start offset of some
1300 			 * pending chunk.
1301 			 */
1302 			end = map->stripes[i].physical + em->orig_block_len;
1303 			if (end > *start) {
1304 				*start = end;
1305 				ret = 1;
1306 			}
1307 		}
1308 	}
1309 	if (search_list != &fs_info->pinned_chunks) {
1310 		search_list = &fs_info->pinned_chunks;
1311 		goto again;
1312 	}
1313 
1314 	return ret;
1315 }
1316 
1317 
1318 /*
1319  * find_free_dev_extent_start - find free space in the specified device
1320  * @device:	  the device which we search the free space in
1321  * @num_bytes:	  the size of the free space that we need
1322  * @search_start: the position from which to begin the search
1323  * @start:	  store the start of the free space.
1324  * @len:	  the size of the free space. that we find, or the size
1325  *		  of the max free space if we don't find suitable free space
1326  *
1327  * this uses a pretty simple search, the expectation is that it is
1328  * called very infrequently and that a given device has a small number
1329  * of extents
1330  *
1331  * @start is used to store the start of the free space if we find. But if we
1332  * don't find suitable free space, it will be used to store the start position
1333  * of the max free space.
1334  *
1335  * @len is used to store the size of the free space that we find.
1336  * But if we don't find suitable free space, it is used to store the size of
1337  * the max free space.
1338  */
1339 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1340 			       struct btrfs_device *device, u64 num_bytes,
1341 			       u64 search_start, u64 *start, u64 *len)
1342 {
1343 	struct btrfs_fs_info *fs_info = device->fs_info;
1344 	struct btrfs_root *root = fs_info->dev_root;
1345 	struct btrfs_key key;
1346 	struct btrfs_dev_extent *dev_extent;
1347 	struct btrfs_path *path;
1348 	u64 hole_size;
1349 	u64 max_hole_start;
1350 	u64 max_hole_size;
1351 	u64 extent_end;
1352 	u64 search_end = device->total_bytes;
1353 	int ret;
1354 	int slot;
1355 	struct extent_buffer *l;
1356 	u64 min_search_start;
1357 
1358 	/*
1359 	 * We don't want to overwrite the superblock on the drive nor any area
1360 	 * used by the boot loader (grub for example), so we make sure to start
1361 	 * at an offset of at least 1MB.
1362 	 */
1363 	min_search_start = max(fs_info->alloc_start, 1024ull * 1024);
1364 	search_start = max(search_start, min_search_start);
1365 
1366 	path = btrfs_alloc_path();
1367 	if (!path)
1368 		return -ENOMEM;
1369 
1370 	max_hole_start = search_start;
1371 	max_hole_size = 0;
1372 
1373 again:
1374 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1375 		ret = -ENOSPC;
1376 		goto out;
1377 	}
1378 
1379 	path->reada = READA_FORWARD;
1380 	path->search_commit_root = 1;
1381 	path->skip_locking = 1;
1382 
1383 	key.objectid = device->devid;
1384 	key.offset = search_start;
1385 	key.type = BTRFS_DEV_EXTENT_KEY;
1386 
1387 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1388 	if (ret < 0)
1389 		goto out;
1390 	if (ret > 0) {
1391 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1392 		if (ret < 0)
1393 			goto out;
1394 	}
1395 
1396 	while (1) {
1397 		l = path->nodes[0];
1398 		slot = path->slots[0];
1399 		if (slot >= btrfs_header_nritems(l)) {
1400 			ret = btrfs_next_leaf(root, path);
1401 			if (ret == 0)
1402 				continue;
1403 			if (ret < 0)
1404 				goto out;
1405 
1406 			break;
1407 		}
1408 		btrfs_item_key_to_cpu(l, &key, slot);
1409 
1410 		if (key.objectid < device->devid)
1411 			goto next;
1412 
1413 		if (key.objectid > device->devid)
1414 			break;
1415 
1416 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1417 			goto next;
1418 
1419 		if (key.offset > search_start) {
1420 			hole_size = key.offset - search_start;
1421 
1422 			/*
1423 			 * Have to check before we set max_hole_start, otherwise
1424 			 * we could end up sending back this offset anyway.
1425 			 */
1426 			if (contains_pending_extent(transaction, device,
1427 						    &search_start,
1428 						    hole_size)) {
1429 				if (key.offset >= search_start) {
1430 					hole_size = key.offset - search_start;
1431 				} else {
1432 					WARN_ON_ONCE(1);
1433 					hole_size = 0;
1434 				}
1435 			}
1436 
1437 			if (hole_size > max_hole_size) {
1438 				max_hole_start = search_start;
1439 				max_hole_size = hole_size;
1440 			}
1441 
1442 			/*
1443 			 * If this free space is greater than which we need,
1444 			 * it must be the max free space that we have found
1445 			 * until now, so max_hole_start must point to the start
1446 			 * of this free space and the length of this free space
1447 			 * is stored in max_hole_size. Thus, we return
1448 			 * max_hole_start and max_hole_size and go back to the
1449 			 * caller.
1450 			 */
1451 			if (hole_size >= num_bytes) {
1452 				ret = 0;
1453 				goto out;
1454 			}
1455 		}
1456 
1457 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1458 		extent_end = key.offset + btrfs_dev_extent_length(l,
1459 								  dev_extent);
1460 		if (extent_end > search_start)
1461 			search_start = extent_end;
1462 next:
1463 		path->slots[0]++;
1464 		cond_resched();
1465 	}
1466 
1467 	/*
1468 	 * At this point, search_start should be the end of
1469 	 * allocated dev extents, and when shrinking the device,
1470 	 * search_end may be smaller than search_start.
1471 	 */
1472 	if (search_end > search_start) {
1473 		hole_size = search_end - search_start;
1474 
1475 		if (contains_pending_extent(transaction, device, &search_start,
1476 					    hole_size)) {
1477 			btrfs_release_path(path);
1478 			goto again;
1479 		}
1480 
1481 		if (hole_size > max_hole_size) {
1482 			max_hole_start = search_start;
1483 			max_hole_size = hole_size;
1484 		}
1485 	}
1486 
1487 	/* See above. */
1488 	if (max_hole_size < num_bytes)
1489 		ret = -ENOSPC;
1490 	else
1491 		ret = 0;
1492 
1493 out:
1494 	btrfs_free_path(path);
1495 	*start = max_hole_start;
1496 	if (len)
1497 		*len = max_hole_size;
1498 	return ret;
1499 }
1500 
1501 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1502 			 struct btrfs_device *device, u64 num_bytes,
1503 			 u64 *start, u64 *len)
1504 {
1505 	/* FIXME use last free of some kind */
1506 	return find_free_dev_extent_start(trans->transaction, device,
1507 					  num_bytes, 0, start, len);
1508 }
1509 
1510 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1511 			  struct btrfs_device *device,
1512 			  u64 start, u64 *dev_extent_len)
1513 {
1514 	struct btrfs_fs_info *fs_info = device->fs_info;
1515 	struct btrfs_root *root = fs_info->dev_root;
1516 	int ret;
1517 	struct btrfs_path *path;
1518 	struct btrfs_key key;
1519 	struct btrfs_key found_key;
1520 	struct extent_buffer *leaf = NULL;
1521 	struct btrfs_dev_extent *extent = NULL;
1522 
1523 	path = btrfs_alloc_path();
1524 	if (!path)
1525 		return -ENOMEM;
1526 
1527 	key.objectid = device->devid;
1528 	key.offset = start;
1529 	key.type = BTRFS_DEV_EXTENT_KEY;
1530 again:
1531 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1532 	if (ret > 0) {
1533 		ret = btrfs_previous_item(root, path, key.objectid,
1534 					  BTRFS_DEV_EXTENT_KEY);
1535 		if (ret)
1536 			goto out;
1537 		leaf = path->nodes[0];
1538 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1539 		extent = btrfs_item_ptr(leaf, path->slots[0],
1540 					struct btrfs_dev_extent);
1541 		BUG_ON(found_key.offset > start || found_key.offset +
1542 		       btrfs_dev_extent_length(leaf, extent) < start);
1543 		key = found_key;
1544 		btrfs_release_path(path);
1545 		goto again;
1546 	} else if (ret == 0) {
1547 		leaf = path->nodes[0];
1548 		extent = btrfs_item_ptr(leaf, path->slots[0],
1549 					struct btrfs_dev_extent);
1550 	} else {
1551 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1552 		goto out;
1553 	}
1554 
1555 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1556 
1557 	ret = btrfs_del_item(trans, root, path);
1558 	if (ret) {
1559 		btrfs_handle_fs_error(fs_info, ret,
1560 				      "Failed to remove dev extent item");
1561 	} else {
1562 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1563 	}
1564 out:
1565 	btrfs_free_path(path);
1566 	return ret;
1567 }
1568 
1569 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1570 				  struct btrfs_device *device,
1571 				  u64 chunk_tree, u64 chunk_objectid,
1572 				  u64 chunk_offset, u64 start, u64 num_bytes)
1573 {
1574 	int ret;
1575 	struct btrfs_path *path;
1576 	struct btrfs_fs_info *fs_info = device->fs_info;
1577 	struct btrfs_root *root = fs_info->dev_root;
1578 	struct btrfs_dev_extent *extent;
1579 	struct extent_buffer *leaf;
1580 	struct btrfs_key key;
1581 
1582 	WARN_ON(!device->in_fs_metadata);
1583 	WARN_ON(device->is_tgtdev_for_dev_replace);
1584 	path = btrfs_alloc_path();
1585 	if (!path)
1586 		return -ENOMEM;
1587 
1588 	key.objectid = device->devid;
1589 	key.offset = start;
1590 	key.type = BTRFS_DEV_EXTENT_KEY;
1591 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1592 				      sizeof(*extent));
1593 	if (ret)
1594 		goto out;
1595 
1596 	leaf = path->nodes[0];
1597 	extent = btrfs_item_ptr(leaf, path->slots[0],
1598 				struct btrfs_dev_extent);
1599 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1600 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1601 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1602 
1603 	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1604 
1605 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1606 	btrfs_mark_buffer_dirty(leaf);
1607 out:
1608 	btrfs_free_path(path);
1609 	return ret;
1610 }
1611 
1612 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1613 {
1614 	struct extent_map_tree *em_tree;
1615 	struct extent_map *em;
1616 	struct rb_node *n;
1617 	u64 ret = 0;
1618 
1619 	em_tree = &fs_info->mapping_tree.map_tree;
1620 	read_lock(&em_tree->lock);
1621 	n = rb_last(&em_tree->map);
1622 	if (n) {
1623 		em = rb_entry(n, struct extent_map, rb_node);
1624 		ret = em->start + em->len;
1625 	}
1626 	read_unlock(&em_tree->lock);
1627 
1628 	return ret;
1629 }
1630 
1631 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1632 				    u64 *devid_ret)
1633 {
1634 	int ret;
1635 	struct btrfs_key key;
1636 	struct btrfs_key found_key;
1637 	struct btrfs_path *path;
1638 
1639 	path = btrfs_alloc_path();
1640 	if (!path)
1641 		return -ENOMEM;
1642 
1643 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1644 	key.type = BTRFS_DEV_ITEM_KEY;
1645 	key.offset = (u64)-1;
1646 
1647 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1648 	if (ret < 0)
1649 		goto error;
1650 
1651 	BUG_ON(ret == 0); /* Corruption */
1652 
1653 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1654 				  BTRFS_DEV_ITEMS_OBJECTID,
1655 				  BTRFS_DEV_ITEM_KEY);
1656 	if (ret) {
1657 		*devid_ret = 1;
1658 	} else {
1659 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1660 				      path->slots[0]);
1661 		*devid_ret = found_key.offset + 1;
1662 	}
1663 	ret = 0;
1664 error:
1665 	btrfs_free_path(path);
1666 	return ret;
1667 }
1668 
1669 /*
1670  * the device information is stored in the chunk root
1671  * the btrfs_device struct should be fully filled in
1672  */
1673 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1674 			    struct btrfs_fs_info *fs_info,
1675 			    struct btrfs_device *device)
1676 {
1677 	struct btrfs_root *root = fs_info->chunk_root;
1678 	int ret;
1679 	struct btrfs_path *path;
1680 	struct btrfs_dev_item *dev_item;
1681 	struct extent_buffer *leaf;
1682 	struct btrfs_key key;
1683 	unsigned long ptr;
1684 
1685 	path = btrfs_alloc_path();
1686 	if (!path)
1687 		return -ENOMEM;
1688 
1689 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1690 	key.type = BTRFS_DEV_ITEM_KEY;
1691 	key.offset = device->devid;
1692 
1693 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1694 				      sizeof(*dev_item));
1695 	if (ret)
1696 		goto out;
1697 
1698 	leaf = path->nodes[0];
1699 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1700 
1701 	btrfs_set_device_id(leaf, dev_item, device->devid);
1702 	btrfs_set_device_generation(leaf, dev_item, 0);
1703 	btrfs_set_device_type(leaf, dev_item, device->type);
1704 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1705 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1706 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1707 	btrfs_set_device_total_bytes(leaf, dev_item,
1708 				     btrfs_device_get_disk_total_bytes(device));
1709 	btrfs_set_device_bytes_used(leaf, dev_item,
1710 				    btrfs_device_get_bytes_used(device));
1711 	btrfs_set_device_group(leaf, dev_item, 0);
1712 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1713 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1714 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1715 
1716 	ptr = btrfs_device_uuid(dev_item);
1717 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1718 	ptr = btrfs_device_fsid(dev_item);
1719 	write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1720 	btrfs_mark_buffer_dirty(leaf);
1721 
1722 	ret = 0;
1723 out:
1724 	btrfs_free_path(path);
1725 	return ret;
1726 }
1727 
1728 /*
1729  * Function to update ctime/mtime for a given device path.
1730  * Mainly used for ctime/mtime based probe like libblkid.
1731  */
1732 static void update_dev_time(const char *path_name)
1733 {
1734 	struct file *filp;
1735 
1736 	filp = filp_open(path_name, O_RDWR, 0);
1737 	if (IS_ERR(filp))
1738 		return;
1739 	file_update_time(filp);
1740 	filp_close(filp, NULL);
1741 }
1742 
1743 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1744 			     struct btrfs_device *device)
1745 {
1746 	struct btrfs_root *root = fs_info->chunk_root;
1747 	int ret;
1748 	struct btrfs_path *path;
1749 	struct btrfs_key key;
1750 	struct btrfs_trans_handle *trans;
1751 
1752 	path = btrfs_alloc_path();
1753 	if (!path)
1754 		return -ENOMEM;
1755 
1756 	trans = btrfs_start_transaction(root, 0);
1757 	if (IS_ERR(trans)) {
1758 		btrfs_free_path(path);
1759 		return PTR_ERR(trans);
1760 	}
1761 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1762 	key.type = BTRFS_DEV_ITEM_KEY;
1763 	key.offset = device->devid;
1764 
1765 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1766 	if (ret < 0)
1767 		goto out;
1768 
1769 	if (ret > 0) {
1770 		ret = -ENOENT;
1771 		goto out;
1772 	}
1773 
1774 	ret = btrfs_del_item(trans, root, path);
1775 	if (ret)
1776 		goto out;
1777 out:
1778 	btrfs_free_path(path);
1779 	btrfs_commit_transaction(trans);
1780 	return ret;
1781 }
1782 
1783 /*
1784  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1785  * filesystem. It's up to the caller to adjust that number regarding eg. device
1786  * replace.
1787  */
1788 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1789 		u64 num_devices)
1790 {
1791 	u64 all_avail;
1792 	unsigned seq;
1793 	int i;
1794 
1795 	do {
1796 		seq = read_seqbegin(&fs_info->profiles_lock);
1797 
1798 		all_avail = fs_info->avail_data_alloc_bits |
1799 			    fs_info->avail_system_alloc_bits |
1800 			    fs_info->avail_metadata_alloc_bits;
1801 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1802 
1803 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1804 		if (!(all_avail & btrfs_raid_group[i]))
1805 			continue;
1806 
1807 		if (num_devices < btrfs_raid_array[i].devs_min) {
1808 			int ret = btrfs_raid_mindev_error[i];
1809 
1810 			if (ret)
1811 				return ret;
1812 		}
1813 	}
1814 
1815 	return 0;
1816 }
1817 
1818 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1819 					struct btrfs_device *device)
1820 {
1821 	struct btrfs_device *next_device;
1822 
1823 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1824 		if (next_device != device &&
1825 			!next_device->missing && next_device->bdev)
1826 			return next_device;
1827 	}
1828 
1829 	return NULL;
1830 }
1831 
1832 /*
1833  * Helper function to check if the given device is part of s_bdev / latest_bdev
1834  * and replace it with the provided or the next active device, in the context
1835  * where this function called, there should be always be another device (or
1836  * this_dev) which is active.
1837  */
1838 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1839 		struct btrfs_device *device, struct btrfs_device *this_dev)
1840 {
1841 	struct btrfs_device *next_device;
1842 
1843 	if (this_dev)
1844 		next_device = this_dev;
1845 	else
1846 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1847 								device);
1848 	ASSERT(next_device);
1849 
1850 	if (fs_info->sb->s_bdev &&
1851 			(fs_info->sb->s_bdev == device->bdev))
1852 		fs_info->sb->s_bdev = next_device->bdev;
1853 
1854 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1855 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1856 }
1857 
1858 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1859 		u64 devid)
1860 {
1861 	struct btrfs_device *device;
1862 	struct btrfs_fs_devices *cur_devices;
1863 	u64 num_devices;
1864 	int ret = 0;
1865 	bool clear_super = false;
1866 
1867 	mutex_lock(&uuid_mutex);
1868 
1869 	num_devices = fs_info->fs_devices->num_devices;
1870 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1871 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1872 		WARN_ON(num_devices < 1);
1873 		num_devices--;
1874 	}
1875 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1876 
1877 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1878 	if (ret)
1879 		goto out;
1880 
1881 	ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1882 					   &device);
1883 	if (ret)
1884 		goto out;
1885 
1886 	if (device->is_tgtdev_for_dev_replace) {
1887 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1888 		goto out;
1889 	}
1890 
1891 	if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1892 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1893 		goto out;
1894 	}
1895 
1896 	if (device->writeable) {
1897 		mutex_lock(&fs_info->chunk_mutex);
1898 		list_del_init(&device->dev_alloc_list);
1899 		device->fs_devices->rw_devices--;
1900 		mutex_unlock(&fs_info->chunk_mutex);
1901 		clear_super = true;
1902 	}
1903 
1904 	mutex_unlock(&uuid_mutex);
1905 	ret = btrfs_shrink_device(device, 0);
1906 	mutex_lock(&uuid_mutex);
1907 	if (ret)
1908 		goto error_undo;
1909 
1910 	/*
1911 	 * TODO: the superblock still includes this device in its num_devices
1912 	 * counter although write_all_supers() is not locked out. This
1913 	 * could give a filesystem state which requires a degraded mount.
1914 	 */
1915 	ret = btrfs_rm_dev_item(fs_info, device);
1916 	if (ret)
1917 		goto error_undo;
1918 
1919 	device->in_fs_metadata = 0;
1920 	btrfs_scrub_cancel_dev(fs_info, device);
1921 
1922 	/*
1923 	 * the device list mutex makes sure that we don't change
1924 	 * the device list while someone else is writing out all
1925 	 * the device supers. Whoever is writing all supers, should
1926 	 * lock the device list mutex before getting the number of
1927 	 * devices in the super block (super_copy). Conversely,
1928 	 * whoever updates the number of devices in the super block
1929 	 * (super_copy) should hold the device list mutex.
1930 	 */
1931 
1932 	cur_devices = device->fs_devices;
1933 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1934 	list_del_rcu(&device->dev_list);
1935 
1936 	device->fs_devices->num_devices--;
1937 	device->fs_devices->total_devices--;
1938 
1939 	if (device->missing)
1940 		device->fs_devices->missing_devices--;
1941 
1942 	btrfs_assign_next_active_device(fs_info, device, NULL);
1943 
1944 	if (device->bdev) {
1945 		device->fs_devices->open_devices--;
1946 		/* remove sysfs entry */
1947 		btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1948 	}
1949 
1950 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1951 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1952 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1953 
1954 	/*
1955 	 * at this point, the device is zero sized and detached from
1956 	 * the devices list.  All that's left is to zero out the old
1957 	 * supers and free the device.
1958 	 */
1959 	if (device->writeable)
1960 		btrfs_scratch_superblocks(device->bdev, device->name->str);
1961 
1962 	btrfs_close_bdev(device);
1963 	call_rcu(&device->rcu, free_device);
1964 
1965 	if (cur_devices->open_devices == 0) {
1966 		struct btrfs_fs_devices *fs_devices;
1967 		fs_devices = fs_info->fs_devices;
1968 		while (fs_devices) {
1969 			if (fs_devices->seed == cur_devices) {
1970 				fs_devices->seed = cur_devices->seed;
1971 				break;
1972 			}
1973 			fs_devices = fs_devices->seed;
1974 		}
1975 		cur_devices->seed = NULL;
1976 		__btrfs_close_devices(cur_devices);
1977 		free_fs_devices(cur_devices);
1978 	}
1979 
1980 	fs_info->num_tolerated_disk_barrier_failures =
1981 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
1982 
1983 out:
1984 	mutex_unlock(&uuid_mutex);
1985 	return ret;
1986 
1987 error_undo:
1988 	if (device->writeable) {
1989 		mutex_lock(&fs_info->chunk_mutex);
1990 		list_add(&device->dev_alloc_list,
1991 			 &fs_info->fs_devices->alloc_list);
1992 		device->fs_devices->rw_devices++;
1993 		mutex_unlock(&fs_info->chunk_mutex);
1994 	}
1995 	goto out;
1996 }
1997 
1998 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1999 					struct btrfs_device *srcdev)
2000 {
2001 	struct btrfs_fs_devices *fs_devices;
2002 
2003 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2004 
2005 	/*
2006 	 * in case of fs with no seed, srcdev->fs_devices will point
2007 	 * to fs_devices of fs_info. However when the dev being replaced is
2008 	 * a seed dev it will point to the seed's local fs_devices. In short
2009 	 * srcdev will have its correct fs_devices in both the cases.
2010 	 */
2011 	fs_devices = srcdev->fs_devices;
2012 
2013 	list_del_rcu(&srcdev->dev_list);
2014 	list_del_rcu(&srcdev->dev_alloc_list);
2015 	fs_devices->num_devices--;
2016 	if (srcdev->missing)
2017 		fs_devices->missing_devices--;
2018 
2019 	if (srcdev->writeable)
2020 		fs_devices->rw_devices--;
2021 
2022 	if (srcdev->bdev)
2023 		fs_devices->open_devices--;
2024 }
2025 
2026 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2027 				      struct btrfs_device *srcdev)
2028 {
2029 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2030 
2031 	if (srcdev->writeable) {
2032 		/* zero out the old super if it is writable */
2033 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2034 	}
2035 
2036 	btrfs_close_bdev(srcdev);
2037 
2038 	call_rcu(&srcdev->rcu, free_device);
2039 
2040 	/*
2041 	 * unless fs_devices is seed fs, num_devices shouldn't go
2042 	 * zero
2043 	 */
2044 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2045 
2046 	/* if this is no devs we rather delete the fs_devices */
2047 	if (!fs_devices->num_devices) {
2048 		struct btrfs_fs_devices *tmp_fs_devices;
2049 
2050 		tmp_fs_devices = fs_info->fs_devices;
2051 		while (tmp_fs_devices) {
2052 			if (tmp_fs_devices->seed == fs_devices) {
2053 				tmp_fs_devices->seed = fs_devices->seed;
2054 				break;
2055 			}
2056 			tmp_fs_devices = tmp_fs_devices->seed;
2057 		}
2058 		fs_devices->seed = NULL;
2059 		__btrfs_close_devices(fs_devices);
2060 		free_fs_devices(fs_devices);
2061 	}
2062 }
2063 
2064 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2065 				      struct btrfs_device *tgtdev)
2066 {
2067 	mutex_lock(&uuid_mutex);
2068 	WARN_ON(!tgtdev);
2069 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2070 
2071 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2072 
2073 	if (tgtdev->bdev)
2074 		fs_info->fs_devices->open_devices--;
2075 
2076 	fs_info->fs_devices->num_devices--;
2077 
2078 	btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2079 
2080 	list_del_rcu(&tgtdev->dev_list);
2081 
2082 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2083 	mutex_unlock(&uuid_mutex);
2084 
2085 	/*
2086 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2087 	 * may lead to a call to btrfs_show_devname() which will try
2088 	 * to hold device_list_mutex. And here this device
2089 	 * is already out of device list, so we don't have to hold
2090 	 * the device_list_mutex lock.
2091 	 */
2092 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2093 
2094 	btrfs_close_bdev(tgtdev);
2095 	call_rcu(&tgtdev->rcu, free_device);
2096 }
2097 
2098 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2099 				     const char *device_path,
2100 				     struct btrfs_device **device)
2101 {
2102 	int ret = 0;
2103 	struct btrfs_super_block *disk_super;
2104 	u64 devid;
2105 	u8 *dev_uuid;
2106 	struct block_device *bdev;
2107 	struct buffer_head *bh;
2108 
2109 	*device = NULL;
2110 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2111 				    fs_info->bdev_holder, 0, &bdev, &bh);
2112 	if (ret)
2113 		return ret;
2114 	disk_super = (struct btrfs_super_block *)bh->b_data;
2115 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2116 	dev_uuid = disk_super->dev_item.uuid;
2117 	*device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2118 	brelse(bh);
2119 	if (!*device)
2120 		ret = -ENOENT;
2121 	blkdev_put(bdev, FMODE_READ);
2122 	return ret;
2123 }
2124 
2125 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2126 					 const char *device_path,
2127 					 struct btrfs_device **device)
2128 {
2129 	*device = NULL;
2130 	if (strcmp(device_path, "missing") == 0) {
2131 		struct list_head *devices;
2132 		struct btrfs_device *tmp;
2133 
2134 		devices = &fs_info->fs_devices->devices;
2135 		/*
2136 		 * It is safe to read the devices since the volume_mutex
2137 		 * is held by the caller.
2138 		 */
2139 		list_for_each_entry(tmp, devices, dev_list) {
2140 			if (tmp->in_fs_metadata && !tmp->bdev) {
2141 				*device = tmp;
2142 				break;
2143 			}
2144 		}
2145 
2146 		if (!*device)
2147 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2148 
2149 		return 0;
2150 	} else {
2151 		return btrfs_find_device_by_path(fs_info, device_path, device);
2152 	}
2153 }
2154 
2155 /*
2156  * Lookup a device given by device id, or the path if the id is 0.
2157  */
2158 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2159 				 const char *devpath,
2160 				 struct btrfs_device **device)
2161 {
2162 	int ret;
2163 
2164 	if (devid) {
2165 		ret = 0;
2166 		*device = btrfs_find_device(fs_info, devid, NULL, NULL);
2167 		if (!*device)
2168 			ret = -ENOENT;
2169 	} else {
2170 		if (!devpath || !devpath[0])
2171 			return -EINVAL;
2172 
2173 		ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2174 							   device);
2175 	}
2176 	return ret;
2177 }
2178 
2179 /*
2180  * does all the dirty work required for changing file system's UUID.
2181  */
2182 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2183 {
2184 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2185 	struct btrfs_fs_devices *old_devices;
2186 	struct btrfs_fs_devices *seed_devices;
2187 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2188 	struct btrfs_device *device;
2189 	u64 super_flags;
2190 
2191 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2192 	if (!fs_devices->seeding)
2193 		return -EINVAL;
2194 
2195 	seed_devices = __alloc_fs_devices();
2196 	if (IS_ERR(seed_devices))
2197 		return PTR_ERR(seed_devices);
2198 
2199 	old_devices = clone_fs_devices(fs_devices);
2200 	if (IS_ERR(old_devices)) {
2201 		kfree(seed_devices);
2202 		return PTR_ERR(old_devices);
2203 	}
2204 
2205 	list_add(&old_devices->list, &fs_uuids);
2206 
2207 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2208 	seed_devices->opened = 1;
2209 	INIT_LIST_HEAD(&seed_devices->devices);
2210 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2211 	mutex_init(&seed_devices->device_list_mutex);
2212 
2213 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2214 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2215 			      synchronize_rcu);
2216 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2217 		device->fs_devices = seed_devices;
2218 
2219 	mutex_lock(&fs_info->chunk_mutex);
2220 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2221 	mutex_unlock(&fs_info->chunk_mutex);
2222 
2223 	fs_devices->seeding = 0;
2224 	fs_devices->num_devices = 0;
2225 	fs_devices->open_devices = 0;
2226 	fs_devices->missing_devices = 0;
2227 	fs_devices->rotating = 0;
2228 	fs_devices->seed = seed_devices;
2229 
2230 	generate_random_uuid(fs_devices->fsid);
2231 	memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2232 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2233 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2234 
2235 	super_flags = btrfs_super_flags(disk_super) &
2236 		      ~BTRFS_SUPER_FLAG_SEEDING;
2237 	btrfs_set_super_flags(disk_super, super_flags);
2238 
2239 	return 0;
2240 }
2241 
2242 /*
2243  * Store the expected generation for seed devices in device items.
2244  */
2245 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2246 			       struct btrfs_fs_info *fs_info)
2247 {
2248 	struct btrfs_root *root = fs_info->chunk_root;
2249 	struct btrfs_path *path;
2250 	struct extent_buffer *leaf;
2251 	struct btrfs_dev_item *dev_item;
2252 	struct btrfs_device *device;
2253 	struct btrfs_key key;
2254 	u8 fs_uuid[BTRFS_UUID_SIZE];
2255 	u8 dev_uuid[BTRFS_UUID_SIZE];
2256 	u64 devid;
2257 	int ret;
2258 
2259 	path = btrfs_alloc_path();
2260 	if (!path)
2261 		return -ENOMEM;
2262 
2263 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2264 	key.offset = 0;
2265 	key.type = BTRFS_DEV_ITEM_KEY;
2266 
2267 	while (1) {
2268 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2269 		if (ret < 0)
2270 			goto error;
2271 
2272 		leaf = path->nodes[0];
2273 next_slot:
2274 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2275 			ret = btrfs_next_leaf(root, path);
2276 			if (ret > 0)
2277 				break;
2278 			if (ret < 0)
2279 				goto error;
2280 			leaf = path->nodes[0];
2281 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2282 			btrfs_release_path(path);
2283 			continue;
2284 		}
2285 
2286 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2287 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2288 		    key.type != BTRFS_DEV_ITEM_KEY)
2289 			break;
2290 
2291 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2292 					  struct btrfs_dev_item);
2293 		devid = btrfs_device_id(leaf, dev_item);
2294 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2295 				   BTRFS_UUID_SIZE);
2296 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2297 				   BTRFS_UUID_SIZE);
2298 		device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2299 		BUG_ON(!device); /* Logic error */
2300 
2301 		if (device->fs_devices->seeding) {
2302 			btrfs_set_device_generation(leaf, dev_item,
2303 						    device->generation);
2304 			btrfs_mark_buffer_dirty(leaf);
2305 		}
2306 
2307 		path->slots[0]++;
2308 		goto next_slot;
2309 	}
2310 	ret = 0;
2311 error:
2312 	btrfs_free_path(path);
2313 	return ret;
2314 }
2315 
2316 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2317 {
2318 	struct btrfs_root *root = fs_info->dev_root;
2319 	struct request_queue *q;
2320 	struct btrfs_trans_handle *trans;
2321 	struct btrfs_device *device;
2322 	struct block_device *bdev;
2323 	struct list_head *devices;
2324 	struct super_block *sb = fs_info->sb;
2325 	struct rcu_string *name;
2326 	u64 tmp;
2327 	int seeding_dev = 0;
2328 	int ret = 0;
2329 
2330 	if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
2331 		return -EROFS;
2332 
2333 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2334 				  fs_info->bdev_holder);
2335 	if (IS_ERR(bdev))
2336 		return PTR_ERR(bdev);
2337 
2338 	if (fs_info->fs_devices->seeding) {
2339 		seeding_dev = 1;
2340 		down_write(&sb->s_umount);
2341 		mutex_lock(&uuid_mutex);
2342 	}
2343 
2344 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2345 
2346 	devices = &fs_info->fs_devices->devices;
2347 
2348 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2349 	list_for_each_entry(device, devices, dev_list) {
2350 		if (device->bdev == bdev) {
2351 			ret = -EEXIST;
2352 			mutex_unlock(
2353 				&fs_info->fs_devices->device_list_mutex);
2354 			goto error;
2355 		}
2356 	}
2357 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2358 
2359 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2360 	if (IS_ERR(device)) {
2361 		/* we can safely leave the fs_devices entry around */
2362 		ret = PTR_ERR(device);
2363 		goto error;
2364 	}
2365 
2366 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2367 	if (!name) {
2368 		kfree(device);
2369 		ret = -ENOMEM;
2370 		goto error;
2371 	}
2372 	rcu_assign_pointer(device->name, name);
2373 
2374 	trans = btrfs_start_transaction(root, 0);
2375 	if (IS_ERR(trans)) {
2376 		rcu_string_free(device->name);
2377 		kfree(device);
2378 		ret = PTR_ERR(trans);
2379 		goto error;
2380 	}
2381 
2382 	q = bdev_get_queue(bdev);
2383 	if (blk_queue_discard(q))
2384 		device->can_discard = 1;
2385 	device->writeable = 1;
2386 	device->generation = trans->transid;
2387 	device->io_width = fs_info->sectorsize;
2388 	device->io_align = fs_info->sectorsize;
2389 	device->sector_size = fs_info->sectorsize;
2390 	device->total_bytes = i_size_read(bdev->bd_inode);
2391 	device->disk_total_bytes = device->total_bytes;
2392 	device->commit_total_bytes = device->total_bytes;
2393 	device->fs_info = fs_info;
2394 	device->bdev = bdev;
2395 	device->in_fs_metadata = 1;
2396 	device->is_tgtdev_for_dev_replace = 0;
2397 	device->mode = FMODE_EXCL;
2398 	device->dev_stats_valid = 1;
2399 	set_blocksize(device->bdev, 4096);
2400 
2401 	if (seeding_dev) {
2402 		sb->s_flags &= ~MS_RDONLY;
2403 		ret = btrfs_prepare_sprout(fs_info);
2404 		BUG_ON(ret); /* -ENOMEM */
2405 	}
2406 
2407 	device->fs_devices = fs_info->fs_devices;
2408 
2409 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2410 	mutex_lock(&fs_info->chunk_mutex);
2411 	list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2412 	list_add(&device->dev_alloc_list,
2413 		 &fs_info->fs_devices->alloc_list);
2414 	fs_info->fs_devices->num_devices++;
2415 	fs_info->fs_devices->open_devices++;
2416 	fs_info->fs_devices->rw_devices++;
2417 	fs_info->fs_devices->total_devices++;
2418 	fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2419 
2420 	spin_lock(&fs_info->free_chunk_lock);
2421 	fs_info->free_chunk_space += device->total_bytes;
2422 	spin_unlock(&fs_info->free_chunk_lock);
2423 
2424 	if (!blk_queue_nonrot(q))
2425 		fs_info->fs_devices->rotating = 1;
2426 
2427 	tmp = btrfs_super_total_bytes(fs_info->super_copy);
2428 	btrfs_set_super_total_bytes(fs_info->super_copy,
2429 				    tmp + device->total_bytes);
2430 
2431 	tmp = btrfs_super_num_devices(fs_info->super_copy);
2432 	btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2433 
2434 	/* add sysfs device entry */
2435 	btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2436 
2437 	/*
2438 	 * we've got more storage, clear any full flags on the space
2439 	 * infos
2440 	 */
2441 	btrfs_clear_space_info_full(fs_info);
2442 
2443 	mutex_unlock(&fs_info->chunk_mutex);
2444 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2445 
2446 	if (seeding_dev) {
2447 		mutex_lock(&fs_info->chunk_mutex);
2448 		ret = init_first_rw_device(trans, fs_info);
2449 		mutex_unlock(&fs_info->chunk_mutex);
2450 		if (ret) {
2451 			btrfs_abort_transaction(trans, ret);
2452 			goto error_trans;
2453 		}
2454 	}
2455 
2456 	ret = btrfs_add_device(trans, fs_info, device);
2457 	if (ret) {
2458 		btrfs_abort_transaction(trans, ret);
2459 		goto error_trans;
2460 	}
2461 
2462 	if (seeding_dev) {
2463 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2464 
2465 		ret = btrfs_finish_sprout(trans, fs_info);
2466 		if (ret) {
2467 			btrfs_abort_transaction(trans, ret);
2468 			goto error_trans;
2469 		}
2470 
2471 		/* Sprouting would change fsid of the mounted root,
2472 		 * so rename the fsid on the sysfs
2473 		 */
2474 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2475 						fs_info->fsid);
2476 		if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2477 			btrfs_warn(fs_info,
2478 				   "sysfs: failed to create fsid for sprout");
2479 	}
2480 
2481 	fs_info->num_tolerated_disk_barrier_failures =
2482 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2483 	ret = btrfs_commit_transaction(trans);
2484 
2485 	if (seeding_dev) {
2486 		mutex_unlock(&uuid_mutex);
2487 		up_write(&sb->s_umount);
2488 
2489 		if (ret) /* transaction commit */
2490 			return ret;
2491 
2492 		ret = btrfs_relocate_sys_chunks(fs_info);
2493 		if (ret < 0)
2494 			btrfs_handle_fs_error(fs_info, ret,
2495 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2496 		trans = btrfs_attach_transaction(root);
2497 		if (IS_ERR(trans)) {
2498 			if (PTR_ERR(trans) == -ENOENT)
2499 				return 0;
2500 			return PTR_ERR(trans);
2501 		}
2502 		ret = btrfs_commit_transaction(trans);
2503 	}
2504 
2505 	/* Update ctime/mtime for libblkid */
2506 	update_dev_time(device_path);
2507 	return ret;
2508 
2509 error_trans:
2510 	btrfs_end_transaction(trans);
2511 	rcu_string_free(device->name);
2512 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2513 	kfree(device);
2514 error:
2515 	blkdev_put(bdev, FMODE_EXCL);
2516 	if (seeding_dev) {
2517 		mutex_unlock(&uuid_mutex);
2518 		up_write(&sb->s_umount);
2519 	}
2520 	return ret;
2521 }
2522 
2523 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2524 				  const char *device_path,
2525 				  struct btrfs_device *srcdev,
2526 				  struct btrfs_device **device_out)
2527 {
2528 	struct request_queue *q;
2529 	struct btrfs_device *device;
2530 	struct block_device *bdev;
2531 	struct list_head *devices;
2532 	struct rcu_string *name;
2533 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2534 	int ret = 0;
2535 
2536 	*device_out = NULL;
2537 	if (fs_info->fs_devices->seeding) {
2538 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2539 		return -EINVAL;
2540 	}
2541 
2542 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2543 				  fs_info->bdev_holder);
2544 	if (IS_ERR(bdev)) {
2545 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2546 		return PTR_ERR(bdev);
2547 	}
2548 
2549 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2550 
2551 	devices = &fs_info->fs_devices->devices;
2552 	list_for_each_entry(device, devices, dev_list) {
2553 		if (device->bdev == bdev) {
2554 			btrfs_err(fs_info,
2555 				  "target device is in the filesystem!");
2556 			ret = -EEXIST;
2557 			goto error;
2558 		}
2559 	}
2560 
2561 
2562 	if (i_size_read(bdev->bd_inode) <
2563 	    btrfs_device_get_total_bytes(srcdev)) {
2564 		btrfs_err(fs_info,
2565 			  "target device is smaller than source device!");
2566 		ret = -EINVAL;
2567 		goto error;
2568 	}
2569 
2570 
2571 	device = btrfs_alloc_device(NULL, &devid, NULL);
2572 	if (IS_ERR(device)) {
2573 		ret = PTR_ERR(device);
2574 		goto error;
2575 	}
2576 
2577 	name = rcu_string_strdup(device_path, GFP_NOFS);
2578 	if (!name) {
2579 		kfree(device);
2580 		ret = -ENOMEM;
2581 		goto error;
2582 	}
2583 	rcu_assign_pointer(device->name, name);
2584 
2585 	q = bdev_get_queue(bdev);
2586 	if (blk_queue_discard(q))
2587 		device->can_discard = 1;
2588 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2589 	device->writeable = 1;
2590 	device->generation = 0;
2591 	device->io_width = fs_info->sectorsize;
2592 	device->io_align = fs_info->sectorsize;
2593 	device->sector_size = fs_info->sectorsize;
2594 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2595 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2596 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2597 	ASSERT(list_empty(&srcdev->resized_list));
2598 	device->commit_total_bytes = srcdev->commit_total_bytes;
2599 	device->commit_bytes_used = device->bytes_used;
2600 	device->fs_info = fs_info;
2601 	device->bdev = bdev;
2602 	device->in_fs_metadata = 1;
2603 	device->is_tgtdev_for_dev_replace = 1;
2604 	device->mode = FMODE_EXCL;
2605 	device->dev_stats_valid = 1;
2606 	set_blocksize(device->bdev, 4096);
2607 	device->fs_devices = fs_info->fs_devices;
2608 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2609 	fs_info->fs_devices->num_devices++;
2610 	fs_info->fs_devices->open_devices++;
2611 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2612 
2613 	*device_out = device;
2614 	return ret;
2615 
2616 error:
2617 	blkdev_put(bdev, FMODE_EXCL);
2618 	return ret;
2619 }
2620 
2621 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2622 					      struct btrfs_device *tgtdev)
2623 {
2624 	u32 sectorsize = fs_info->sectorsize;
2625 
2626 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2627 	tgtdev->io_width = sectorsize;
2628 	tgtdev->io_align = sectorsize;
2629 	tgtdev->sector_size = sectorsize;
2630 	tgtdev->fs_info = fs_info;
2631 	tgtdev->in_fs_metadata = 1;
2632 }
2633 
2634 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2635 					struct btrfs_device *device)
2636 {
2637 	int ret;
2638 	struct btrfs_path *path;
2639 	struct btrfs_root *root = device->fs_info->chunk_root;
2640 	struct btrfs_dev_item *dev_item;
2641 	struct extent_buffer *leaf;
2642 	struct btrfs_key key;
2643 
2644 	path = btrfs_alloc_path();
2645 	if (!path)
2646 		return -ENOMEM;
2647 
2648 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2649 	key.type = BTRFS_DEV_ITEM_KEY;
2650 	key.offset = device->devid;
2651 
2652 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2653 	if (ret < 0)
2654 		goto out;
2655 
2656 	if (ret > 0) {
2657 		ret = -ENOENT;
2658 		goto out;
2659 	}
2660 
2661 	leaf = path->nodes[0];
2662 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2663 
2664 	btrfs_set_device_id(leaf, dev_item, device->devid);
2665 	btrfs_set_device_type(leaf, dev_item, device->type);
2666 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2667 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2668 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2669 	btrfs_set_device_total_bytes(leaf, dev_item,
2670 				     btrfs_device_get_disk_total_bytes(device));
2671 	btrfs_set_device_bytes_used(leaf, dev_item,
2672 				    btrfs_device_get_bytes_used(device));
2673 	btrfs_mark_buffer_dirty(leaf);
2674 
2675 out:
2676 	btrfs_free_path(path);
2677 	return ret;
2678 }
2679 
2680 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2681 		      struct btrfs_device *device, u64 new_size)
2682 {
2683 	struct btrfs_fs_info *fs_info = device->fs_info;
2684 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2685 	struct btrfs_fs_devices *fs_devices;
2686 	u64 old_total;
2687 	u64 diff;
2688 
2689 	if (!device->writeable)
2690 		return -EACCES;
2691 
2692 	mutex_lock(&fs_info->chunk_mutex);
2693 	old_total = btrfs_super_total_bytes(super_copy);
2694 	diff = new_size - device->total_bytes;
2695 
2696 	if (new_size <= device->total_bytes ||
2697 	    device->is_tgtdev_for_dev_replace) {
2698 		mutex_unlock(&fs_info->chunk_mutex);
2699 		return -EINVAL;
2700 	}
2701 
2702 	fs_devices = fs_info->fs_devices;
2703 
2704 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2705 	device->fs_devices->total_rw_bytes += diff;
2706 
2707 	btrfs_device_set_total_bytes(device, new_size);
2708 	btrfs_device_set_disk_total_bytes(device, new_size);
2709 	btrfs_clear_space_info_full(device->fs_info);
2710 	if (list_empty(&device->resized_list))
2711 		list_add_tail(&device->resized_list,
2712 			      &fs_devices->resized_devices);
2713 	mutex_unlock(&fs_info->chunk_mutex);
2714 
2715 	return btrfs_update_device(trans, device);
2716 }
2717 
2718 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2719 			    struct btrfs_fs_info *fs_info, u64 chunk_objectid,
2720 			    u64 chunk_offset)
2721 {
2722 	struct btrfs_root *root = fs_info->chunk_root;
2723 	int ret;
2724 	struct btrfs_path *path;
2725 	struct btrfs_key key;
2726 
2727 	path = btrfs_alloc_path();
2728 	if (!path)
2729 		return -ENOMEM;
2730 
2731 	key.objectid = chunk_objectid;
2732 	key.offset = chunk_offset;
2733 	key.type = BTRFS_CHUNK_ITEM_KEY;
2734 
2735 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2736 	if (ret < 0)
2737 		goto out;
2738 	else if (ret > 0) { /* Logic error or corruption */
2739 		btrfs_handle_fs_error(fs_info, -ENOENT,
2740 				      "Failed lookup while freeing chunk.");
2741 		ret = -ENOENT;
2742 		goto out;
2743 	}
2744 
2745 	ret = btrfs_del_item(trans, root, path);
2746 	if (ret < 0)
2747 		btrfs_handle_fs_error(fs_info, ret,
2748 				      "Failed to delete chunk item.");
2749 out:
2750 	btrfs_free_path(path);
2751 	return ret;
2752 }
2753 
2754 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2755 			       u64 chunk_objectid, u64 chunk_offset)
2756 {
2757 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2758 	struct btrfs_disk_key *disk_key;
2759 	struct btrfs_chunk *chunk;
2760 	u8 *ptr;
2761 	int ret = 0;
2762 	u32 num_stripes;
2763 	u32 array_size;
2764 	u32 len = 0;
2765 	u32 cur;
2766 	struct btrfs_key key;
2767 
2768 	mutex_lock(&fs_info->chunk_mutex);
2769 	array_size = btrfs_super_sys_array_size(super_copy);
2770 
2771 	ptr = super_copy->sys_chunk_array;
2772 	cur = 0;
2773 
2774 	while (cur < array_size) {
2775 		disk_key = (struct btrfs_disk_key *)ptr;
2776 		btrfs_disk_key_to_cpu(&key, disk_key);
2777 
2778 		len = sizeof(*disk_key);
2779 
2780 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2781 			chunk = (struct btrfs_chunk *)(ptr + len);
2782 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2783 			len += btrfs_chunk_item_size(num_stripes);
2784 		} else {
2785 			ret = -EIO;
2786 			break;
2787 		}
2788 		if (key.objectid == chunk_objectid &&
2789 		    key.offset == chunk_offset) {
2790 			memmove(ptr, ptr + len, array_size - (cur + len));
2791 			array_size -= len;
2792 			btrfs_set_super_sys_array_size(super_copy, array_size);
2793 		} else {
2794 			ptr += len;
2795 			cur += len;
2796 		}
2797 	}
2798 	mutex_unlock(&fs_info->chunk_mutex);
2799 	return ret;
2800 }
2801 
2802 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2803 					u64 logical, u64 length)
2804 {
2805 	struct extent_map_tree *em_tree;
2806 	struct extent_map *em;
2807 
2808 	em_tree = &fs_info->mapping_tree.map_tree;
2809 	read_lock(&em_tree->lock);
2810 	em = lookup_extent_mapping(em_tree, logical, length);
2811 	read_unlock(&em_tree->lock);
2812 
2813 	if (!em) {
2814 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2815 			   logical, length);
2816 		return ERR_PTR(-EINVAL);
2817 	}
2818 
2819 	if (em->start > logical || em->start + em->len < logical) {
2820 		btrfs_crit(fs_info,
2821 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2822 			   logical, length, em->start, em->start + em->len);
2823 		free_extent_map(em);
2824 		return ERR_PTR(-EINVAL);
2825 	}
2826 
2827 	/* callers are responsible for dropping em's ref. */
2828 	return em;
2829 }
2830 
2831 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2832 		       struct btrfs_fs_info *fs_info, u64 chunk_offset)
2833 {
2834 	struct extent_map *em;
2835 	struct map_lookup *map;
2836 	u64 dev_extent_len = 0;
2837 	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2838 	int i, ret = 0;
2839 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2840 
2841 	em = get_chunk_map(fs_info, chunk_offset, 1);
2842 	if (IS_ERR(em)) {
2843 		/*
2844 		 * This is a logic error, but we don't want to just rely on the
2845 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2846 		 * do anything we still error out.
2847 		 */
2848 		ASSERT(0);
2849 		return PTR_ERR(em);
2850 	}
2851 	map = em->map_lookup;
2852 	mutex_lock(&fs_info->chunk_mutex);
2853 	check_system_chunk(trans, fs_info, map->type);
2854 	mutex_unlock(&fs_info->chunk_mutex);
2855 
2856 	/*
2857 	 * Take the device list mutex to prevent races with the final phase of
2858 	 * a device replace operation that replaces the device object associated
2859 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2860 	 */
2861 	mutex_lock(&fs_devices->device_list_mutex);
2862 	for (i = 0; i < map->num_stripes; i++) {
2863 		struct btrfs_device *device = map->stripes[i].dev;
2864 		ret = btrfs_free_dev_extent(trans, device,
2865 					    map->stripes[i].physical,
2866 					    &dev_extent_len);
2867 		if (ret) {
2868 			mutex_unlock(&fs_devices->device_list_mutex);
2869 			btrfs_abort_transaction(trans, ret);
2870 			goto out;
2871 		}
2872 
2873 		if (device->bytes_used > 0) {
2874 			mutex_lock(&fs_info->chunk_mutex);
2875 			btrfs_device_set_bytes_used(device,
2876 					device->bytes_used - dev_extent_len);
2877 			spin_lock(&fs_info->free_chunk_lock);
2878 			fs_info->free_chunk_space += dev_extent_len;
2879 			spin_unlock(&fs_info->free_chunk_lock);
2880 			btrfs_clear_space_info_full(fs_info);
2881 			mutex_unlock(&fs_info->chunk_mutex);
2882 		}
2883 
2884 		if (map->stripes[i].dev) {
2885 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2886 			if (ret) {
2887 				mutex_unlock(&fs_devices->device_list_mutex);
2888 				btrfs_abort_transaction(trans, ret);
2889 				goto out;
2890 			}
2891 		}
2892 	}
2893 	mutex_unlock(&fs_devices->device_list_mutex);
2894 
2895 	ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
2896 	if (ret) {
2897 		btrfs_abort_transaction(trans, ret);
2898 		goto out;
2899 	}
2900 
2901 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2902 
2903 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2904 		ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2905 					  chunk_offset);
2906 		if (ret) {
2907 			btrfs_abort_transaction(trans, ret);
2908 			goto out;
2909 		}
2910 	}
2911 
2912 	ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2913 	if (ret) {
2914 		btrfs_abort_transaction(trans, ret);
2915 		goto out;
2916 	}
2917 
2918 out:
2919 	/* once for us */
2920 	free_extent_map(em);
2921 	return ret;
2922 }
2923 
2924 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2925 {
2926 	struct btrfs_root *root = fs_info->chunk_root;
2927 	struct btrfs_trans_handle *trans;
2928 	int ret;
2929 
2930 	/*
2931 	 * Prevent races with automatic removal of unused block groups.
2932 	 * After we relocate and before we remove the chunk with offset
2933 	 * chunk_offset, automatic removal of the block group can kick in,
2934 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2935 	 *
2936 	 * Make sure to acquire this mutex before doing a tree search (dev
2937 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2938 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2939 	 * we release the path used to search the chunk/dev tree and before
2940 	 * the current task acquires this mutex and calls us.
2941 	 */
2942 	ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2943 
2944 	ret = btrfs_can_relocate(fs_info, chunk_offset);
2945 	if (ret)
2946 		return -ENOSPC;
2947 
2948 	/* step one, relocate all the extents inside this chunk */
2949 	btrfs_scrub_pause(fs_info);
2950 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2951 	btrfs_scrub_continue(fs_info);
2952 	if (ret)
2953 		return ret;
2954 
2955 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2956 						     chunk_offset);
2957 	if (IS_ERR(trans)) {
2958 		ret = PTR_ERR(trans);
2959 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2960 		return ret;
2961 	}
2962 
2963 	/*
2964 	 * step two, delete the device extents and the
2965 	 * chunk tree entries
2966 	 */
2967 	ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2968 	btrfs_end_transaction(trans);
2969 	return ret;
2970 }
2971 
2972 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2973 {
2974 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2975 	struct btrfs_path *path;
2976 	struct extent_buffer *leaf;
2977 	struct btrfs_chunk *chunk;
2978 	struct btrfs_key key;
2979 	struct btrfs_key found_key;
2980 	u64 chunk_type;
2981 	bool retried = false;
2982 	int failed = 0;
2983 	int ret;
2984 
2985 	path = btrfs_alloc_path();
2986 	if (!path)
2987 		return -ENOMEM;
2988 
2989 again:
2990 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2991 	key.offset = (u64)-1;
2992 	key.type = BTRFS_CHUNK_ITEM_KEY;
2993 
2994 	while (1) {
2995 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
2996 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2997 		if (ret < 0) {
2998 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2999 			goto error;
3000 		}
3001 		BUG_ON(ret == 0); /* Corruption */
3002 
3003 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3004 					  key.type);
3005 		if (ret)
3006 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3007 		if (ret < 0)
3008 			goto error;
3009 		if (ret > 0)
3010 			break;
3011 
3012 		leaf = path->nodes[0];
3013 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3014 
3015 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3016 				       struct btrfs_chunk);
3017 		chunk_type = btrfs_chunk_type(leaf, chunk);
3018 		btrfs_release_path(path);
3019 
3020 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3021 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3022 			if (ret == -ENOSPC)
3023 				failed++;
3024 			else
3025 				BUG_ON(ret);
3026 		}
3027 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3028 
3029 		if (found_key.offset == 0)
3030 			break;
3031 		key.offset = found_key.offset - 1;
3032 	}
3033 	ret = 0;
3034 	if (failed && !retried) {
3035 		failed = 0;
3036 		retried = true;
3037 		goto again;
3038 	} else if (WARN_ON(failed && retried)) {
3039 		ret = -ENOSPC;
3040 	}
3041 error:
3042 	btrfs_free_path(path);
3043 	return ret;
3044 }
3045 
3046 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3047 			       struct btrfs_balance_control *bctl)
3048 {
3049 	struct btrfs_root *root = fs_info->tree_root;
3050 	struct btrfs_trans_handle *trans;
3051 	struct btrfs_balance_item *item;
3052 	struct btrfs_disk_balance_args disk_bargs;
3053 	struct btrfs_path *path;
3054 	struct extent_buffer *leaf;
3055 	struct btrfs_key key;
3056 	int ret, err;
3057 
3058 	path = btrfs_alloc_path();
3059 	if (!path)
3060 		return -ENOMEM;
3061 
3062 	trans = btrfs_start_transaction(root, 0);
3063 	if (IS_ERR(trans)) {
3064 		btrfs_free_path(path);
3065 		return PTR_ERR(trans);
3066 	}
3067 
3068 	key.objectid = BTRFS_BALANCE_OBJECTID;
3069 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3070 	key.offset = 0;
3071 
3072 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3073 				      sizeof(*item));
3074 	if (ret)
3075 		goto out;
3076 
3077 	leaf = path->nodes[0];
3078 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3079 
3080 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3081 
3082 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3083 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3084 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3085 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3086 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3087 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3088 
3089 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3090 
3091 	btrfs_mark_buffer_dirty(leaf);
3092 out:
3093 	btrfs_free_path(path);
3094 	err = btrfs_commit_transaction(trans);
3095 	if (err && !ret)
3096 		ret = err;
3097 	return ret;
3098 }
3099 
3100 static int del_balance_item(struct btrfs_fs_info *fs_info)
3101 {
3102 	struct btrfs_root *root = fs_info->tree_root;
3103 	struct btrfs_trans_handle *trans;
3104 	struct btrfs_path *path;
3105 	struct btrfs_key key;
3106 	int ret, err;
3107 
3108 	path = btrfs_alloc_path();
3109 	if (!path)
3110 		return -ENOMEM;
3111 
3112 	trans = btrfs_start_transaction(root, 0);
3113 	if (IS_ERR(trans)) {
3114 		btrfs_free_path(path);
3115 		return PTR_ERR(trans);
3116 	}
3117 
3118 	key.objectid = BTRFS_BALANCE_OBJECTID;
3119 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3120 	key.offset = 0;
3121 
3122 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3123 	if (ret < 0)
3124 		goto out;
3125 	if (ret > 0) {
3126 		ret = -ENOENT;
3127 		goto out;
3128 	}
3129 
3130 	ret = btrfs_del_item(trans, root, path);
3131 out:
3132 	btrfs_free_path(path);
3133 	err = btrfs_commit_transaction(trans);
3134 	if (err && !ret)
3135 		ret = err;
3136 	return ret;
3137 }
3138 
3139 /*
3140  * This is a heuristic used to reduce the number of chunks balanced on
3141  * resume after balance was interrupted.
3142  */
3143 static void update_balance_args(struct btrfs_balance_control *bctl)
3144 {
3145 	/*
3146 	 * Turn on soft mode for chunk types that were being converted.
3147 	 */
3148 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3149 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3150 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3151 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3152 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3153 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3154 
3155 	/*
3156 	 * Turn on usage filter if is not already used.  The idea is
3157 	 * that chunks that we have already balanced should be
3158 	 * reasonably full.  Don't do it for chunks that are being
3159 	 * converted - that will keep us from relocating unconverted
3160 	 * (albeit full) chunks.
3161 	 */
3162 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3163 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3164 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3165 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3166 		bctl->data.usage = 90;
3167 	}
3168 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3169 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3170 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3171 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3172 		bctl->sys.usage = 90;
3173 	}
3174 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3175 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3176 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3177 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3178 		bctl->meta.usage = 90;
3179 	}
3180 }
3181 
3182 /*
3183  * Should be called with both balance and volume mutexes held to
3184  * serialize other volume operations (add_dev/rm_dev/resize) with
3185  * restriper.  Same goes for unset_balance_control.
3186  */
3187 static void set_balance_control(struct btrfs_balance_control *bctl)
3188 {
3189 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3190 
3191 	BUG_ON(fs_info->balance_ctl);
3192 
3193 	spin_lock(&fs_info->balance_lock);
3194 	fs_info->balance_ctl = bctl;
3195 	spin_unlock(&fs_info->balance_lock);
3196 }
3197 
3198 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3199 {
3200 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3201 
3202 	BUG_ON(!fs_info->balance_ctl);
3203 
3204 	spin_lock(&fs_info->balance_lock);
3205 	fs_info->balance_ctl = NULL;
3206 	spin_unlock(&fs_info->balance_lock);
3207 
3208 	kfree(bctl);
3209 }
3210 
3211 /*
3212  * Balance filters.  Return 1 if chunk should be filtered out
3213  * (should not be balanced).
3214  */
3215 static int chunk_profiles_filter(u64 chunk_type,
3216 				 struct btrfs_balance_args *bargs)
3217 {
3218 	chunk_type = chunk_to_extended(chunk_type) &
3219 				BTRFS_EXTENDED_PROFILE_MASK;
3220 
3221 	if (bargs->profiles & chunk_type)
3222 		return 0;
3223 
3224 	return 1;
3225 }
3226 
3227 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3228 			      struct btrfs_balance_args *bargs)
3229 {
3230 	struct btrfs_block_group_cache *cache;
3231 	u64 chunk_used;
3232 	u64 user_thresh_min;
3233 	u64 user_thresh_max;
3234 	int ret = 1;
3235 
3236 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3237 	chunk_used = btrfs_block_group_used(&cache->item);
3238 
3239 	if (bargs->usage_min == 0)
3240 		user_thresh_min = 0;
3241 	else
3242 		user_thresh_min = div_factor_fine(cache->key.offset,
3243 					bargs->usage_min);
3244 
3245 	if (bargs->usage_max == 0)
3246 		user_thresh_max = 1;
3247 	else if (bargs->usage_max > 100)
3248 		user_thresh_max = cache->key.offset;
3249 	else
3250 		user_thresh_max = div_factor_fine(cache->key.offset,
3251 					bargs->usage_max);
3252 
3253 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3254 		ret = 0;
3255 
3256 	btrfs_put_block_group(cache);
3257 	return ret;
3258 }
3259 
3260 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3261 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3262 {
3263 	struct btrfs_block_group_cache *cache;
3264 	u64 chunk_used, user_thresh;
3265 	int ret = 1;
3266 
3267 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3268 	chunk_used = btrfs_block_group_used(&cache->item);
3269 
3270 	if (bargs->usage_min == 0)
3271 		user_thresh = 1;
3272 	else if (bargs->usage > 100)
3273 		user_thresh = cache->key.offset;
3274 	else
3275 		user_thresh = div_factor_fine(cache->key.offset,
3276 					      bargs->usage);
3277 
3278 	if (chunk_used < user_thresh)
3279 		ret = 0;
3280 
3281 	btrfs_put_block_group(cache);
3282 	return ret;
3283 }
3284 
3285 static int chunk_devid_filter(struct extent_buffer *leaf,
3286 			      struct btrfs_chunk *chunk,
3287 			      struct btrfs_balance_args *bargs)
3288 {
3289 	struct btrfs_stripe *stripe;
3290 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3291 	int i;
3292 
3293 	for (i = 0; i < num_stripes; i++) {
3294 		stripe = btrfs_stripe_nr(chunk, i);
3295 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3296 			return 0;
3297 	}
3298 
3299 	return 1;
3300 }
3301 
3302 /* [pstart, pend) */
3303 static int chunk_drange_filter(struct extent_buffer *leaf,
3304 			       struct btrfs_chunk *chunk,
3305 			       u64 chunk_offset,
3306 			       struct btrfs_balance_args *bargs)
3307 {
3308 	struct btrfs_stripe *stripe;
3309 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3310 	u64 stripe_offset;
3311 	u64 stripe_length;
3312 	int factor;
3313 	int i;
3314 
3315 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3316 		return 0;
3317 
3318 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3319 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3320 		factor = num_stripes / 2;
3321 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3322 		factor = num_stripes - 1;
3323 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3324 		factor = num_stripes - 2;
3325 	} else {
3326 		factor = num_stripes;
3327 	}
3328 
3329 	for (i = 0; i < num_stripes; i++) {
3330 		stripe = btrfs_stripe_nr(chunk, i);
3331 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3332 			continue;
3333 
3334 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3335 		stripe_length = btrfs_chunk_length(leaf, chunk);
3336 		stripe_length = div_u64(stripe_length, factor);
3337 
3338 		if (stripe_offset < bargs->pend &&
3339 		    stripe_offset + stripe_length > bargs->pstart)
3340 			return 0;
3341 	}
3342 
3343 	return 1;
3344 }
3345 
3346 /* [vstart, vend) */
3347 static int chunk_vrange_filter(struct extent_buffer *leaf,
3348 			       struct btrfs_chunk *chunk,
3349 			       u64 chunk_offset,
3350 			       struct btrfs_balance_args *bargs)
3351 {
3352 	if (chunk_offset < bargs->vend &&
3353 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3354 		/* at least part of the chunk is inside this vrange */
3355 		return 0;
3356 
3357 	return 1;
3358 }
3359 
3360 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3361 			       struct btrfs_chunk *chunk,
3362 			       struct btrfs_balance_args *bargs)
3363 {
3364 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3365 
3366 	if (bargs->stripes_min <= num_stripes
3367 			&& num_stripes <= bargs->stripes_max)
3368 		return 0;
3369 
3370 	return 1;
3371 }
3372 
3373 static int chunk_soft_convert_filter(u64 chunk_type,
3374 				     struct btrfs_balance_args *bargs)
3375 {
3376 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3377 		return 0;
3378 
3379 	chunk_type = chunk_to_extended(chunk_type) &
3380 				BTRFS_EXTENDED_PROFILE_MASK;
3381 
3382 	if (bargs->target == chunk_type)
3383 		return 1;
3384 
3385 	return 0;
3386 }
3387 
3388 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3389 				struct extent_buffer *leaf,
3390 				struct btrfs_chunk *chunk, u64 chunk_offset)
3391 {
3392 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3393 	struct btrfs_balance_args *bargs = NULL;
3394 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3395 
3396 	/* type filter */
3397 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3398 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3399 		return 0;
3400 	}
3401 
3402 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3403 		bargs = &bctl->data;
3404 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3405 		bargs = &bctl->sys;
3406 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3407 		bargs = &bctl->meta;
3408 
3409 	/* profiles filter */
3410 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3411 	    chunk_profiles_filter(chunk_type, bargs)) {
3412 		return 0;
3413 	}
3414 
3415 	/* usage filter */
3416 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3417 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3418 		return 0;
3419 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3420 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3421 		return 0;
3422 	}
3423 
3424 	/* devid filter */
3425 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3426 	    chunk_devid_filter(leaf, chunk, bargs)) {
3427 		return 0;
3428 	}
3429 
3430 	/* drange filter, makes sense only with devid filter */
3431 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3432 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3433 		return 0;
3434 	}
3435 
3436 	/* vrange filter */
3437 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3438 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3439 		return 0;
3440 	}
3441 
3442 	/* stripes filter */
3443 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3444 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3445 		return 0;
3446 	}
3447 
3448 	/* soft profile changing mode */
3449 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3450 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3451 		return 0;
3452 	}
3453 
3454 	/*
3455 	 * limited by count, must be the last filter
3456 	 */
3457 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3458 		if (bargs->limit == 0)
3459 			return 0;
3460 		else
3461 			bargs->limit--;
3462 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3463 		/*
3464 		 * Same logic as the 'limit' filter; the minimum cannot be
3465 		 * determined here because we do not have the global information
3466 		 * about the count of all chunks that satisfy the filters.
3467 		 */
3468 		if (bargs->limit_max == 0)
3469 			return 0;
3470 		else
3471 			bargs->limit_max--;
3472 	}
3473 
3474 	return 1;
3475 }
3476 
3477 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3478 {
3479 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3480 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3481 	struct btrfs_root *dev_root = fs_info->dev_root;
3482 	struct list_head *devices;
3483 	struct btrfs_device *device;
3484 	u64 old_size;
3485 	u64 size_to_free;
3486 	u64 chunk_type;
3487 	struct btrfs_chunk *chunk;
3488 	struct btrfs_path *path = NULL;
3489 	struct btrfs_key key;
3490 	struct btrfs_key found_key;
3491 	struct btrfs_trans_handle *trans;
3492 	struct extent_buffer *leaf;
3493 	int slot;
3494 	int ret;
3495 	int enospc_errors = 0;
3496 	bool counting = true;
3497 	/* The single value limit and min/max limits use the same bytes in the */
3498 	u64 limit_data = bctl->data.limit;
3499 	u64 limit_meta = bctl->meta.limit;
3500 	u64 limit_sys = bctl->sys.limit;
3501 	u32 count_data = 0;
3502 	u32 count_meta = 0;
3503 	u32 count_sys = 0;
3504 	int chunk_reserved = 0;
3505 	u64 bytes_used = 0;
3506 
3507 	/* step one make some room on all the devices */
3508 	devices = &fs_info->fs_devices->devices;
3509 	list_for_each_entry(device, devices, dev_list) {
3510 		old_size = btrfs_device_get_total_bytes(device);
3511 		size_to_free = div_factor(old_size, 1);
3512 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3513 		if (!device->writeable ||
3514 		    btrfs_device_get_total_bytes(device) -
3515 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3516 		    device->is_tgtdev_for_dev_replace)
3517 			continue;
3518 
3519 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3520 		if (ret == -ENOSPC)
3521 			break;
3522 		if (ret) {
3523 			/* btrfs_shrink_device never returns ret > 0 */
3524 			WARN_ON(ret > 0);
3525 			goto error;
3526 		}
3527 
3528 		trans = btrfs_start_transaction(dev_root, 0);
3529 		if (IS_ERR(trans)) {
3530 			ret = PTR_ERR(trans);
3531 			btrfs_info_in_rcu(fs_info,
3532 		 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3533 					  rcu_str_deref(device->name), ret,
3534 					  old_size, old_size - size_to_free);
3535 			goto error;
3536 		}
3537 
3538 		ret = btrfs_grow_device(trans, device, old_size);
3539 		if (ret) {
3540 			btrfs_end_transaction(trans);
3541 			/* btrfs_grow_device never returns ret > 0 */
3542 			WARN_ON(ret > 0);
3543 			btrfs_info_in_rcu(fs_info,
3544 		 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3545 					  rcu_str_deref(device->name), ret,
3546 					  old_size, old_size - size_to_free);
3547 			goto error;
3548 		}
3549 
3550 		btrfs_end_transaction(trans);
3551 	}
3552 
3553 	/* step two, relocate all the chunks */
3554 	path = btrfs_alloc_path();
3555 	if (!path) {
3556 		ret = -ENOMEM;
3557 		goto error;
3558 	}
3559 
3560 	/* zero out stat counters */
3561 	spin_lock(&fs_info->balance_lock);
3562 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3563 	spin_unlock(&fs_info->balance_lock);
3564 again:
3565 	if (!counting) {
3566 		/*
3567 		 * The single value limit and min/max limits use the same bytes
3568 		 * in the
3569 		 */
3570 		bctl->data.limit = limit_data;
3571 		bctl->meta.limit = limit_meta;
3572 		bctl->sys.limit = limit_sys;
3573 	}
3574 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3575 	key.offset = (u64)-1;
3576 	key.type = BTRFS_CHUNK_ITEM_KEY;
3577 
3578 	while (1) {
3579 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3580 		    atomic_read(&fs_info->balance_cancel_req)) {
3581 			ret = -ECANCELED;
3582 			goto error;
3583 		}
3584 
3585 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3586 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3587 		if (ret < 0) {
3588 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3589 			goto error;
3590 		}
3591 
3592 		/*
3593 		 * this shouldn't happen, it means the last relocate
3594 		 * failed
3595 		 */
3596 		if (ret == 0)
3597 			BUG(); /* FIXME break ? */
3598 
3599 		ret = btrfs_previous_item(chunk_root, path, 0,
3600 					  BTRFS_CHUNK_ITEM_KEY);
3601 		if (ret) {
3602 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3603 			ret = 0;
3604 			break;
3605 		}
3606 
3607 		leaf = path->nodes[0];
3608 		slot = path->slots[0];
3609 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3610 
3611 		if (found_key.objectid != key.objectid) {
3612 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3613 			break;
3614 		}
3615 
3616 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3617 		chunk_type = btrfs_chunk_type(leaf, chunk);
3618 
3619 		if (!counting) {
3620 			spin_lock(&fs_info->balance_lock);
3621 			bctl->stat.considered++;
3622 			spin_unlock(&fs_info->balance_lock);
3623 		}
3624 
3625 		ret = should_balance_chunk(fs_info, leaf, chunk,
3626 					   found_key.offset);
3627 
3628 		btrfs_release_path(path);
3629 		if (!ret) {
3630 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3631 			goto loop;
3632 		}
3633 
3634 		if (counting) {
3635 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3636 			spin_lock(&fs_info->balance_lock);
3637 			bctl->stat.expected++;
3638 			spin_unlock(&fs_info->balance_lock);
3639 
3640 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3641 				count_data++;
3642 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3643 				count_sys++;
3644 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3645 				count_meta++;
3646 
3647 			goto loop;
3648 		}
3649 
3650 		/*
3651 		 * Apply limit_min filter, no need to check if the LIMITS
3652 		 * filter is used, limit_min is 0 by default
3653 		 */
3654 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3655 					count_data < bctl->data.limit_min)
3656 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3657 					count_meta < bctl->meta.limit_min)
3658 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3659 					count_sys < bctl->sys.limit_min)) {
3660 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3661 			goto loop;
3662 		}
3663 
3664 		ASSERT(fs_info->data_sinfo);
3665 		spin_lock(&fs_info->data_sinfo->lock);
3666 		bytes_used = fs_info->data_sinfo->bytes_used;
3667 		spin_unlock(&fs_info->data_sinfo->lock);
3668 
3669 		if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3670 		    !chunk_reserved && !bytes_used) {
3671 			trans = btrfs_start_transaction(chunk_root, 0);
3672 			if (IS_ERR(trans)) {
3673 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3674 				ret = PTR_ERR(trans);
3675 				goto error;
3676 			}
3677 
3678 			ret = btrfs_force_chunk_alloc(trans, fs_info,
3679 						      BTRFS_BLOCK_GROUP_DATA);
3680 			btrfs_end_transaction(trans);
3681 			if (ret < 0) {
3682 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3683 				goto error;
3684 			}
3685 			chunk_reserved = 1;
3686 		}
3687 
3688 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3689 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3690 		if (ret && ret != -ENOSPC)
3691 			goto error;
3692 		if (ret == -ENOSPC) {
3693 			enospc_errors++;
3694 		} else {
3695 			spin_lock(&fs_info->balance_lock);
3696 			bctl->stat.completed++;
3697 			spin_unlock(&fs_info->balance_lock);
3698 		}
3699 loop:
3700 		if (found_key.offset == 0)
3701 			break;
3702 		key.offset = found_key.offset - 1;
3703 	}
3704 
3705 	if (counting) {
3706 		btrfs_release_path(path);
3707 		counting = false;
3708 		goto again;
3709 	}
3710 error:
3711 	btrfs_free_path(path);
3712 	if (enospc_errors) {
3713 		btrfs_info(fs_info, "%d enospc errors during balance",
3714 			   enospc_errors);
3715 		if (!ret)
3716 			ret = -ENOSPC;
3717 	}
3718 
3719 	return ret;
3720 }
3721 
3722 /**
3723  * alloc_profile_is_valid - see if a given profile is valid and reduced
3724  * @flags: profile to validate
3725  * @extended: if true @flags is treated as an extended profile
3726  */
3727 static int alloc_profile_is_valid(u64 flags, int extended)
3728 {
3729 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3730 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3731 
3732 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3733 
3734 	/* 1) check that all other bits are zeroed */
3735 	if (flags & ~mask)
3736 		return 0;
3737 
3738 	/* 2) see if profile is reduced */
3739 	if (flags == 0)
3740 		return !extended; /* "0" is valid for usual profiles */
3741 
3742 	/* true if exactly one bit set */
3743 	return (flags & (flags - 1)) == 0;
3744 }
3745 
3746 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3747 {
3748 	/* cancel requested || normal exit path */
3749 	return atomic_read(&fs_info->balance_cancel_req) ||
3750 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3751 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3752 }
3753 
3754 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3755 {
3756 	int ret;
3757 
3758 	unset_balance_control(fs_info);
3759 	ret = del_balance_item(fs_info);
3760 	if (ret)
3761 		btrfs_handle_fs_error(fs_info, ret, NULL);
3762 
3763 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3764 }
3765 
3766 /* Non-zero return value signifies invalidity */
3767 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3768 		u64 allowed)
3769 {
3770 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3771 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3772 		 (bctl_arg->target & ~allowed)));
3773 }
3774 
3775 /*
3776  * Should be called with both balance and volume mutexes held
3777  */
3778 int btrfs_balance(struct btrfs_balance_control *bctl,
3779 		  struct btrfs_ioctl_balance_args *bargs)
3780 {
3781 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3782 	u64 meta_target, data_target;
3783 	u64 allowed;
3784 	int mixed = 0;
3785 	int ret;
3786 	u64 num_devices;
3787 	unsigned seq;
3788 
3789 	if (btrfs_fs_closing(fs_info) ||
3790 	    atomic_read(&fs_info->balance_pause_req) ||
3791 	    atomic_read(&fs_info->balance_cancel_req)) {
3792 		ret = -EINVAL;
3793 		goto out;
3794 	}
3795 
3796 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3797 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3798 		mixed = 1;
3799 
3800 	/*
3801 	 * In case of mixed groups both data and meta should be picked,
3802 	 * and identical options should be given for both of them.
3803 	 */
3804 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3805 	if (mixed && (bctl->flags & allowed)) {
3806 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3807 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3808 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3809 			btrfs_err(fs_info,
3810 				  "with mixed groups data and metadata balance options must be the same");
3811 			ret = -EINVAL;
3812 			goto out;
3813 		}
3814 	}
3815 
3816 	num_devices = fs_info->fs_devices->num_devices;
3817 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3818 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3819 		BUG_ON(num_devices < 1);
3820 		num_devices--;
3821 	}
3822 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3823 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3824 	if (num_devices > 1)
3825 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3826 	if (num_devices > 2)
3827 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3828 	if (num_devices > 3)
3829 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3830 			    BTRFS_BLOCK_GROUP_RAID6);
3831 	if (validate_convert_profile(&bctl->data, allowed)) {
3832 		btrfs_err(fs_info,
3833 			  "unable to start balance with target data profile %llu",
3834 			  bctl->data.target);
3835 		ret = -EINVAL;
3836 		goto out;
3837 	}
3838 	if (validate_convert_profile(&bctl->meta, allowed)) {
3839 		btrfs_err(fs_info,
3840 			  "unable to start balance with target metadata profile %llu",
3841 			  bctl->meta.target);
3842 		ret = -EINVAL;
3843 		goto out;
3844 	}
3845 	if (validate_convert_profile(&bctl->sys, allowed)) {
3846 		btrfs_err(fs_info,
3847 			  "unable to start balance with target system profile %llu",
3848 			  bctl->sys.target);
3849 		ret = -EINVAL;
3850 		goto out;
3851 	}
3852 
3853 	/* allow to reduce meta or sys integrity only if force set */
3854 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3855 			BTRFS_BLOCK_GROUP_RAID10 |
3856 			BTRFS_BLOCK_GROUP_RAID5 |
3857 			BTRFS_BLOCK_GROUP_RAID6;
3858 	do {
3859 		seq = read_seqbegin(&fs_info->profiles_lock);
3860 
3861 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3862 		     (fs_info->avail_system_alloc_bits & allowed) &&
3863 		     !(bctl->sys.target & allowed)) ||
3864 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3865 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3866 		     !(bctl->meta.target & allowed))) {
3867 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3868 				btrfs_info(fs_info,
3869 					   "force reducing metadata integrity");
3870 			} else {
3871 				btrfs_err(fs_info,
3872 					  "balance will reduce metadata integrity, use force if you want this");
3873 				ret = -EINVAL;
3874 				goto out;
3875 			}
3876 		}
3877 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3878 
3879 	/* if we're not converting, the target field is uninitialized */
3880 	meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3881 		bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3882 	data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3883 		bctl->data.target : fs_info->avail_data_alloc_bits;
3884 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3885 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3886 		btrfs_warn(fs_info,
3887 			   "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3888 			   meta_target, data_target);
3889 	}
3890 
3891 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3892 		fs_info->num_tolerated_disk_barrier_failures = min(
3893 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3894 			btrfs_get_num_tolerated_disk_barrier_failures(
3895 				bctl->sys.target));
3896 	}
3897 
3898 	ret = insert_balance_item(fs_info, bctl);
3899 	if (ret && ret != -EEXIST)
3900 		goto out;
3901 
3902 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3903 		BUG_ON(ret == -EEXIST);
3904 		set_balance_control(bctl);
3905 	} else {
3906 		BUG_ON(ret != -EEXIST);
3907 		spin_lock(&fs_info->balance_lock);
3908 		update_balance_args(bctl);
3909 		spin_unlock(&fs_info->balance_lock);
3910 	}
3911 
3912 	atomic_inc(&fs_info->balance_running);
3913 	mutex_unlock(&fs_info->balance_mutex);
3914 
3915 	ret = __btrfs_balance(fs_info);
3916 
3917 	mutex_lock(&fs_info->balance_mutex);
3918 	atomic_dec(&fs_info->balance_running);
3919 
3920 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3921 		fs_info->num_tolerated_disk_barrier_failures =
3922 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3923 	}
3924 
3925 	if (bargs) {
3926 		memset(bargs, 0, sizeof(*bargs));
3927 		update_ioctl_balance_args(fs_info, 0, bargs);
3928 	}
3929 
3930 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3931 	    balance_need_close(fs_info)) {
3932 		__cancel_balance(fs_info);
3933 	}
3934 
3935 	wake_up(&fs_info->balance_wait_q);
3936 
3937 	return ret;
3938 out:
3939 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3940 		__cancel_balance(fs_info);
3941 	else {
3942 		kfree(bctl);
3943 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3944 	}
3945 	return ret;
3946 }
3947 
3948 static int balance_kthread(void *data)
3949 {
3950 	struct btrfs_fs_info *fs_info = data;
3951 	int ret = 0;
3952 
3953 	mutex_lock(&fs_info->volume_mutex);
3954 	mutex_lock(&fs_info->balance_mutex);
3955 
3956 	if (fs_info->balance_ctl) {
3957 		btrfs_info(fs_info, "continuing balance");
3958 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3959 	}
3960 
3961 	mutex_unlock(&fs_info->balance_mutex);
3962 	mutex_unlock(&fs_info->volume_mutex);
3963 
3964 	return ret;
3965 }
3966 
3967 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3968 {
3969 	struct task_struct *tsk;
3970 
3971 	spin_lock(&fs_info->balance_lock);
3972 	if (!fs_info->balance_ctl) {
3973 		spin_unlock(&fs_info->balance_lock);
3974 		return 0;
3975 	}
3976 	spin_unlock(&fs_info->balance_lock);
3977 
3978 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3979 		btrfs_info(fs_info, "force skipping balance");
3980 		return 0;
3981 	}
3982 
3983 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3984 	return PTR_ERR_OR_ZERO(tsk);
3985 }
3986 
3987 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3988 {
3989 	struct btrfs_balance_control *bctl;
3990 	struct btrfs_balance_item *item;
3991 	struct btrfs_disk_balance_args disk_bargs;
3992 	struct btrfs_path *path;
3993 	struct extent_buffer *leaf;
3994 	struct btrfs_key key;
3995 	int ret;
3996 
3997 	path = btrfs_alloc_path();
3998 	if (!path)
3999 		return -ENOMEM;
4000 
4001 	key.objectid = BTRFS_BALANCE_OBJECTID;
4002 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4003 	key.offset = 0;
4004 
4005 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4006 	if (ret < 0)
4007 		goto out;
4008 	if (ret > 0) { /* ret = -ENOENT; */
4009 		ret = 0;
4010 		goto out;
4011 	}
4012 
4013 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4014 	if (!bctl) {
4015 		ret = -ENOMEM;
4016 		goto out;
4017 	}
4018 
4019 	leaf = path->nodes[0];
4020 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4021 
4022 	bctl->fs_info = fs_info;
4023 	bctl->flags = btrfs_balance_flags(leaf, item);
4024 	bctl->flags |= BTRFS_BALANCE_RESUME;
4025 
4026 	btrfs_balance_data(leaf, item, &disk_bargs);
4027 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4028 	btrfs_balance_meta(leaf, item, &disk_bargs);
4029 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4030 	btrfs_balance_sys(leaf, item, &disk_bargs);
4031 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4032 
4033 	WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4034 
4035 	mutex_lock(&fs_info->volume_mutex);
4036 	mutex_lock(&fs_info->balance_mutex);
4037 
4038 	set_balance_control(bctl);
4039 
4040 	mutex_unlock(&fs_info->balance_mutex);
4041 	mutex_unlock(&fs_info->volume_mutex);
4042 out:
4043 	btrfs_free_path(path);
4044 	return ret;
4045 }
4046 
4047 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4048 {
4049 	int ret = 0;
4050 
4051 	mutex_lock(&fs_info->balance_mutex);
4052 	if (!fs_info->balance_ctl) {
4053 		mutex_unlock(&fs_info->balance_mutex);
4054 		return -ENOTCONN;
4055 	}
4056 
4057 	if (atomic_read(&fs_info->balance_running)) {
4058 		atomic_inc(&fs_info->balance_pause_req);
4059 		mutex_unlock(&fs_info->balance_mutex);
4060 
4061 		wait_event(fs_info->balance_wait_q,
4062 			   atomic_read(&fs_info->balance_running) == 0);
4063 
4064 		mutex_lock(&fs_info->balance_mutex);
4065 		/* we are good with balance_ctl ripped off from under us */
4066 		BUG_ON(atomic_read(&fs_info->balance_running));
4067 		atomic_dec(&fs_info->balance_pause_req);
4068 	} else {
4069 		ret = -ENOTCONN;
4070 	}
4071 
4072 	mutex_unlock(&fs_info->balance_mutex);
4073 	return ret;
4074 }
4075 
4076 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4077 {
4078 	if (fs_info->sb->s_flags & MS_RDONLY)
4079 		return -EROFS;
4080 
4081 	mutex_lock(&fs_info->balance_mutex);
4082 	if (!fs_info->balance_ctl) {
4083 		mutex_unlock(&fs_info->balance_mutex);
4084 		return -ENOTCONN;
4085 	}
4086 
4087 	atomic_inc(&fs_info->balance_cancel_req);
4088 	/*
4089 	 * if we are running just wait and return, balance item is
4090 	 * deleted in btrfs_balance in this case
4091 	 */
4092 	if (atomic_read(&fs_info->balance_running)) {
4093 		mutex_unlock(&fs_info->balance_mutex);
4094 		wait_event(fs_info->balance_wait_q,
4095 			   atomic_read(&fs_info->balance_running) == 0);
4096 		mutex_lock(&fs_info->balance_mutex);
4097 	} else {
4098 		/* __cancel_balance needs volume_mutex */
4099 		mutex_unlock(&fs_info->balance_mutex);
4100 		mutex_lock(&fs_info->volume_mutex);
4101 		mutex_lock(&fs_info->balance_mutex);
4102 
4103 		if (fs_info->balance_ctl)
4104 			__cancel_balance(fs_info);
4105 
4106 		mutex_unlock(&fs_info->volume_mutex);
4107 	}
4108 
4109 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4110 	atomic_dec(&fs_info->balance_cancel_req);
4111 	mutex_unlock(&fs_info->balance_mutex);
4112 	return 0;
4113 }
4114 
4115 static int btrfs_uuid_scan_kthread(void *data)
4116 {
4117 	struct btrfs_fs_info *fs_info = data;
4118 	struct btrfs_root *root = fs_info->tree_root;
4119 	struct btrfs_key key;
4120 	struct btrfs_key max_key;
4121 	struct btrfs_path *path = NULL;
4122 	int ret = 0;
4123 	struct extent_buffer *eb;
4124 	int slot;
4125 	struct btrfs_root_item root_item;
4126 	u32 item_size;
4127 	struct btrfs_trans_handle *trans = NULL;
4128 
4129 	path = btrfs_alloc_path();
4130 	if (!path) {
4131 		ret = -ENOMEM;
4132 		goto out;
4133 	}
4134 
4135 	key.objectid = 0;
4136 	key.type = BTRFS_ROOT_ITEM_KEY;
4137 	key.offset = 0;
4138 
4139 	max_key.objectid = (u64)-1;
4140 	max_key.type = BTRFS_ROOT_ITEM_KEY;
4141 	max_key.offset = (u64)-1;
4142 
4143 	while (1) {
4144 		ret = btrfs_search_forward(root, &key, path, 0);
4145 		if (ret) {
4146 			if (ret > 0)
4147 				ret = 0;
4148 			break;
4149 		}
4150 
4151 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4152 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4153 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4154 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4155 			goto skip;
4156 
4157 		eb = path->nodes[0];
4158 		slot = path->slots[0];
4159 		item_size = btrfs_item_size_nr(eb, slot);
4160 		if (item_size < sizeof(root_item))
4161 			goto skip;
4162 
4163 		read_extent_buffer(eb, &root_item,
4164 				   btrfs_item_ptr_offset(eb, slot),
4165 				   (int)sizeof(root_item));
4166 		if (btrfs_root_refs(&root_item) == 0)
4167 			goto skip;
4168 
4169 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4170 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4171 			if (trans)
4172 				goto update_tree;
4173 
4174 			btrfs_release_path(path);
4175 			/*
4176 			 * 1 - subvol uuid item
4177 			 * 1 - received_subvol uuid item
4178 			 */
4179 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4180 			if (IS_ERR(trans)) {
4181 				ret = PTR_ERR(trans);
4182 				break;
4183 			}
4184 			continue;
4185 		} else {
4186 			goto skip;
4187 		}
4188 update_tree:
4189 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4190 			ret = btrfs_uuid_tree_add(trans, fs_info,
4191 						  root_item.uuid,
4192 						  BTRFS_UUID_KEY_SUBVOL,
4193 						  key.objectid);
4194 			if (ret < 0) {
4195 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4196 					ret);
4197 				break;
4198 			}
4199 		}
4200 
4201 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4202 			ret = btrfs_uuid_tree_add(trans, fs_info,
4203 						  root_item.received_uuid,
4204 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4205 						  key.objectid);
4206 			if (ret < 0) {
4207 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4208 					ret);
4209 				break;
4210 			}
4211 		}
4212 
4213 skip:
4214 		if (trans) {
4215 			ret = btrfs_end_transaction(trans);
4216 			trans = NULL;
4217 			if (ret)
4218 				break;
4219 		}
4220 
4221 		btrfs_release_path(path);
4222 		if (key.offset < (u64)-1) {
4223 			key.offset++;
4224 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4225 			key.offset = 0;
4226 			key.type = BTRFS_ROOT_ITEM_KEY;
4227 		} else if (key.objectid < (u64)-1) {
4228 			key.offset = 0;
4229 			key.type = BTRFS_ROOT_ITEM_KEY;
4230 			key.objectid++;
4231 		} else {
4232 			break;
4233 		}
4234 		cond_resched();
4235 	}
4236 
4237 out:
4238 	btrfs_free_path(path);
4239 	if (trans && !IS_ERR(trans))
4240 		btrfs_end_transaction(trans);
4241 	if (ret)
4242 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4243 	else
4244 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4245 	up(&fs_info->uuid_tree_rescan_sem);
4246 	return 0;
4247 }
4248 
4249 /*
4250  * Callback for btrfs_uuid_tree_iterate().
4251  * returns:
4252  * 0	check succeeded, the entry is not outdated.
4253  * < 0	if an error occurred.
4254  * > 0	if the check failed, which means the caller shall remove the entry.
4255  */
4256 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4257 				       u8 *uuid, u8 type, u64 subid)
4258 {
4259 	struct btrfs_key key;
4260 	int ret = 0;
4261 	struct btrfs_root *subvol_root;
4262 
4263 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4264 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4265 		goto out;
4266 
4267 	key.objectid = subid;
4268 	key.type = BTRFS_ROOT_ITEM_KEY;
4269 	key.offset = (u64)-1;
4270 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4271 	if (IS_ERR(subvol_root)) {
4272 		ret = PTR_ERR(subvol_root);
4273 		if (ret == -ENOENT)
4274 			ret = 1;
4275 		goto out;
4276 	}
4277 
4278 	switch (type) {
4279 	case BTRFS_UUID_KEY_SUBVOL:
4280 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4281 			ret = 1;
4282 		break;
4283 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4284 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4285 			   BTRFS_UUID_SIZE))
4286 			ret = 1;
4287 		break;
4288 	}
4289 
4290 out:
4291 	return ret;
4292 }
4293 
4294 static int btrfs_uuid_rescan_kthread(void *data)
4295 {
4296 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4297 	int ret;
4298 
4299 	/*
4300 	 * 1st step is to iterate through the existing UUID tree and
4301 	 * to delete all entries that contain outdated data.
4302 	 * 2nd step is to add all missing entries to the UUID tree.
4303 	 */
4304 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4305 	if (ret < 0) {
4306 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4307 		up(&fs_info->uuid_tree_rescan_sem);
4308 		return ret;
4309 	}
4310 	return btrfs_uuid_scan_kthread(data);
4311 }
4312 
4313 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4314 {
4315 	struct btrfs_trans_handle *trans;
4316 	struct btrfs_root *tree_root = fs_info->tree_root;
4317 	struct btrfs_root *uuid_root;
4318 	struct task_struct *task;
4319 	int ret;
4320 
4321 	/*
4322 	 * 1 - root node
4323 	 * 1 - root item
4324 	 */
4325 	trans = btrfs_start_transaction(tree_root, 2);
4326 	if (IS_ERR(trans))
4327 		return PTR_ERR(trans);
4328 
4329 	uuid_root = btrfs_create_tree(trans, fs_info,
4330 				      BTRFS_UUID_TREE_OBJECTID);
4331 	if (IS_ERR(uuid_root)) {
4332 		ret = PTR_ERR(uuid_root);
4333 		btrfs_abort_transaction(trans, ret);
4334 		btrfs_end_transaction(trans);
4335 		return ret;
4336 	}
4337 
4338 	fs_info->uuid_root = uuid_root;
4339 
4340 	ret = btrfs_commit_transaction(trans);
4341 	if (ret)
4342 		return ret;
4343 
4344 	down(&fs_info->uuid_tree_rescan_sem);
4345 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4346 	if (IS_ERR(task)) {
4347 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4348 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4349 		up(&fs_info->uuid_tree_rescan_sem);
4350 		return PTR_ERR(task);
4351 	}
4352 
4353 	return 0;
4354 }
4355 
4356 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4357 {
4358 	struct task_struct *task;
4359 
4360 	down(&fs_info->uuid_tree_rescan_sem);
4361 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4362 	if (IS_ERR(task)) {
4363 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4364 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4365 		up(&fs_info->uuid_tree_rescan_sem);
4366 		return PTR_ERR(task);
4367 	}
4368 
4369 	return 0;
4370 }
4371 
4372 /*
4373  * shrinking a device means finding all of the device extents past
4374  * the new size, and then following the back refs to the chunks.
4375  * The chunk relocation code actually frees the device extent
4376  */
4377 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4378 {
4379 	struct btrfs_fs_info *fs_info = device->fs_info;
4380 	struct btrfs_root *root = fs_info->dev_root;
4381 	struct btrfs_trans_handle *trans;
4382 	struct btrfs_dev_extent *dev_extent = NULL;
4383 	struct btrfs_path *path;
4384 	u64 length;
4385 	u64 chunk_offset;
4386 	int ret;
4387 	int slot;
4388 	int failed = 0;
4389 	bool retried = false;
4390 	bool checked_pending_chunks = false;
4391 	struct extent_buffer *l;
4392 	struct btrfs_key key;
4393 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4394 	u64 old_total = btrfs_super_total_bytes(super_copy);
4395 	u64 old_size = btrfs_device_get_total_bytes(device);
4396 	u64 diff = old_size - new_size;
4397 
4398 	if (device->is_tgtdev_for_dev_replace)
4399 		return -EINVAL;
4400 
4401 	path = btrfs_alloc_path();
4402 	if (!path)
4403 		return -ENOMEM;
4404 
4405 	path->reada = READA_FORWARD;
4406 
4407 	mutex_lock(&fs_info->chunk_mutex);
4408 
4409 	btrfs_device_set_total_bytes(device, new_size);
4410 	if (device->writeable) {
4411 		device->fs_devices->total_rw_bytes -= diff;
4412 		spin_lock(&fs_info->free_chunk_lock);
4413 		fs_info->free_chunk_space -= diff;
4414 		spin_unlock(&fs_info->free_chunk_lock);
4415 	}
4416 	mutex_unlock(&fs_info->chunk_mutex);
4417 
4418 again:
4419 	key.objectid = device->devid;
4420 	key.offset = (u64)-1;
4421 	key.type = BTRFS_DEV_EXTENT_KEY;
4422 
4423 	do {
4424 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4425 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4426 		if (ret < 0) {
4427 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4428 			goto done;
4429 		}
4430 
4431 		ret = btrfs_previous_item(root, path, 0, key.type);
4432 		if (ret)
4433 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4434 		if (ret < 0)
4435 			goto done;
4436 		if (ret) {
4437 			ret = 0;
4438 			btrfs_release_path(path);
4439 			break;
4440 		}
4441 
4442 		l = path->nodes[0];
4443 		slot = path->slots[0];
4444 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4445 
4446 		if (key.objectid != device->devid) {
4447 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4448 			btrfs_release_path(path);
4449 			break;
4450 		}
4451 
4452 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4453 		length = btrfs_dev_extent_length(l, dev_extent);
4454 
4455 		if (key.offset + length <= new_size) {
4456 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4457 			btrfs_release_path(path);
4458 			break;
4459 		}
4460 
4461 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4462 		btrfs_release_path(path);
4463 
4464 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4465 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4466 		if (ret && ret != -ENOSPC)
4467 			goto done;
4468 		if (ret == -ENOSPC)
4469 			failed++;
4470 	} while (key.offset-- > 0);
4471 
4472 	if (failed && !retried) {
4473 		failed = 0;
4474 		retried = true;
4475 		goto again;
4476 	} else if (failed && retried) {
4477 		ret = -ENOSPC;
4478 		goto done;
4479 	}
4480 
4481 	/* Shrinking succeeded, else we would be at "done". */
4482 	trans = btrfs_start_transaction(root, 0);
4483 	if (IS_ERR(trans)) {
4484 		ret = PTR_ERR(trans);
4485 		goto done;
4486 	}
4487 
4488 	mutex_lock(&fs_info->chunk_mutex);
4489 
4490 	/*
4491 	 * We checked in the above loop all device extents that were already in
4492 	 * the device tree. However before we have updated the device's
4493 	 * total_bytes to the new size, we might have had chunk allocations that
4494 	 * have not complete yet (new block groups attached to transaction
4495 	 * handles), and therefore their device extents were not yet in the
4496 	 * device tree and we missed them in the loop above. So if we have any
4497 	 * pending chunk using a device extent that overlaps the device range
4498 	 * that we can not use anymore, commit the current transaction and
4499 	 * repeat the search on the device tree - this way we guarantee we will
4500 	 * not have chunks using device extents that end beyond 'new_size'.
4501 	 */
4502 	if (!checked_pending_chunks) {
4503 		u64 start = new_size;
4504 		u64 len = old_size - new_size;
4505 
4506 		if (contains_pending_extent(trans->transaction, device,
4507 					    &start, len)) {
4508 			mutex_unlock(&fs_info->chunk_mutex);
4509 			checked_pending_chunks = true;
4510 			failed = 0;
4511 			retried = false;
4512 			ret = btrfs_commit_transaction(trans);
4513 			if (ret)
4514 				goto done;
4515 			goto again;
4516 		}
4517 	}
4518 
4519 	btrfs_device_set_disk_total_bytes(device, new_size);
4520 	if (list_empty(&device->resized_list))
4521 		list_add_tail(&device->resized_list,
4522 			      &fs_info->fs_devices->resized_devices);
4523 
4524 	WARN_ON(diff > old_total);
4525 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
4526 	mutex_unlock(&fs_info->chunk_mutex);
4527 
4528 	/* Now btrfs_update_device() will change the on-disk size. */
4529 	ret = btrfs_update_device(trans, device);
4530 	btrfs_end_transaction(trans);
4531 done:
4532 	btrfs_free_path(path);
4533 	if (ret) {
4534 		mutex_lock(&fs_info->chunk_mutex);
4535 		btrfs_device_set_total_bytes(device, old_size);
4536 		if (device->writeable)
4537 			device->fs_devices->total_rw_bytes += diff;
4538 		spin_lock(&fs_info->free_chunk_lock);
4539 		fs_info->free_chunk_space += diff;
4540 		spin_unlock(&fs_info->free_chunk_lock);
4541 		mutex_unlock(&fs_info->chunk_mutex);
4542 	}
4543 	return ret;
4544 }
4545 
4546 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4547 			   struct btrfs_key *key,
4548 			   struct btrfs_chunk *chunk, int item_size)
4549 {
4550 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4551 	struct btrfs_disk_key disk_key;
4552 	u32 array_size;
4553 	u8 *ptr;
4554 
4555 	mutex_lock(&fs_info->chunk_mutex);
4556 	array_size = btrfs_super_sys_array_size(super_copy);
4557 	if (array_size + item_size + sizeof(disk_key)
4558 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4559 		mutex_unlock(&fs_info->chunk_mutex);
4560 		return -EFBIG;
4561 	}
4562 
4563 	ptr = super_copy->sys_chunk_array + array_size;
4564 	btrfs_cpu_key_to_disk(&disk_key, key);
4565 	memcpy(ptr, &disk_key, sizeof(disk_key));
4566 	ptr += sizeof(disk_key);
4567 	memcpy(ptr, chunk, item_size);
4568 	item_size += sizeof(disk_key);
4569 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4570 	mutex_unlock(&fs_info->chunk_mutex);
4571 
4572 	return 0;
4573 }
4574 
4575 /*
4576  * sort the devices in descending order by max_avail, total_avail
4577  */
4578 static int btrfs_cmp_device_info(const void *a, const void *b)
4579 {
4580 	const struct btrfs_device_info *di_a = a;
4581 	const struct btrfs_device_info *di_b = b;
4582 
4583 	if (di_a->max_avail > di_b->max_avail)
4584 		return -1;
4585 	if (di_a->max_avail < di_b->max_avail)
4586 		return 1;
4587 	if (di_a->total_avail > di_b->total_avail)
4588 		return -1;
4589 	if (di_a->total_avail < di_b->total_avail)
4590 		return 1;
4591 	return 0;
4592 }
4593 
4594 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4595 {
4596 	/* TODO allow them to set a preferred stripe size */
4597 	return SZ_64K;
4598 }
4599 
4600 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4601 {
4602 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4603 		return;
4604 
4605 	btrfs_set_fs_incompat(info, RAID56);
4606 }
4607 
4608 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info)		\
4609 			- sizeof(struct btrfs_chunk))		\
4610 			/ sizeof(struct btrfs_stripe) + 1)
4611 
4612 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4613 				- 2 * sizeof(struct btrfs_disk_key)	\
4614 				- 2 * sizeof(struct btrfs_chunk))	\
4615 				/ sizeof(struct btrfs_stripe) + 1)
4616 
4617 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4618 			       u64 start, u64 type)
4619 {
4620 	struct btrfs_fs_info *info = trans->fs_info;
4621 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4622 	struct list_head *cur;
4623 	struct map_lookup *map = NULL;
4624 	struct extent_map_tree *em_tree;
4625 	struct extent_map *em;
4626 	struct btrfs_device_info *devices_info = NULL;
4627 	u64 total_avail;
4628 	int num_stripes;	/* total number of stripes to allocate */
4629 	int data_stripes;	/* number of stripes that count for
4630 				   block group size */
4631 	int sub_stripes;	/* sub_stripes info for map */
4632 	int dev_stripes;	/* stripes per dev */
4633 	int devs_max;		/* max devs to use */
4634 	int devs_min;		/* min devs needed */
4635 	int devs_increment;	/* ndevs has to be a multiple of this */
4636 	int ncopies;		/* how many copies to data has */
4637 	int ret;
4638 	u64 max_stripe_size;
4639 	u64 max_chunk_size;
4640 	u64 stripe_size;
4641 	u64 num_bytes;
4642 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4643 	int ndevs;
4644 	int i;
4645 	int j;
4646 	int index;
4647 
4648 	BUG_ON(!alloc_profile_is_valid(type, 0));
4649 
4650 	if (list_empty(&fs_devices->alloc_list))
4651 		return -ENOSPC;
4652 
4653 	index = __get_raid_index(type);
4654 
4655 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4656 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4657 	devs_max = btrfs_raid_array[index].devs_max;
4658 	devs_min = btrfs_raid_array[index].devs_min;
4659 	devs_increment = btrfs_raid_array[index].devs_increment;
4660 	ncopies = btrfs_raid_array[index].ncopies;
4661 
4662 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4663 		max_stripe_size = SZ_1G;
4664 		max_chunk_size = 10 * max_stripe_size;
4665 		if (!devs_max)
4666 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4667 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4668 		/* for larger filesystems, use larger metadata chunks */
4669 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4670 			max_stripe_size = SZ_1G;
4671 		else
4672 			max_stripe_size = SZ_256M;
4673 		max_chunk_size = max_stripe_size;
4674 		if (!devs_max)
4675 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4676 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4677 		max_stripe_size = SZ_32M;
4678 		max_chunk_size = 2 * max_stripe_size;
4679 		if (!devs_max)
4680 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4681 	} else {
4682 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4683 		       type);
4684 		BUG_ON(1);
4685 	}
4686 
4687 	/* we don't want a chunk larger than 10% of writeable space */
4688 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4689 			     max_chunk_size);
4690 
4691 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4692 			       GFP_NOFS);
4693 	if (!devices_info)
4694 		return -ENOMEM;
4695 
4696 	cur = fs_devices->alloc_list.next;
4697 
4698 	/*
4699 	 * in the first pass through the devices list, we gather information
4700 	 * about the available holes on each device.
4701 	 */
4702 	ndevs = 0;
4703 	while (cur != &fs_devices->alloc_list) {
4704 		struct btrfs_device *device;
4705 		u64 max_avail;
4706 		u64 dev_offset;
4707 
4708 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4709 
4710 		cur = cur->next;
4711 
4712 		if (!device->writeable) {
4713 			WARN(1, KERN_ERR
4714 			       "BTRFS: read-only device in alloc_list\n");
4715 			continue;
4716 		}
4717 
4718 		if (!device->in_fs_metadata ||
4719 		    device->is_tgtdev_for_dev_replace)
4720 			continue;
4721 
4722 		if (device->total_bytes > device->bytes_used)
4723 			total_avail = device->total_bytes - device->bytes_used;
4724 		else
4725 			total_avail = 0;
4726 
4727 		/* If there is no space on this device, skip it. */
4728 		if (total_avail == 0)
4729 			continue;
4730 
4731 		ret = find_free_dev_extent(trans, device,
4732 					   max_stripe_size * dev_stripes,
4733 					   &dev_offset, &max_avail);
4734 		if (ret && ret != -ENOSPC)
4735 			goto error;
4736 
4737 		if (ret == 0)
4738 			max_avail = max_stripe_size * dev_stripes;
4739 
4740 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4741 			continue;
4742 
4743 		if (ndevs == fs_devices->rw_devices) {
4744 			WARN(1, "%s: found more than %llu devices\n",
4745 			     __func__, fs_devices->rw_devices);
4746 			break;
4747 		}
4748 		devices_info[ndevs].dev_offset = dev_offset;
4749 		devices_info[ndevs].max_avail = max_avail;
4750 		devices_info[ndevs].total_avail = total_avail;
4751 		devices_info[ndevs].dev = device;
4752 		++ndevs;
4753 	}
4754 
4755 	/*
4756 	 * now sort the devices by hole size / available space
4757 	 */
4758 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4759 	     btrfs_cmp_device_info, NULL);
4760 
4761 	/* round down to number of usable stripes */
4762 	ndevs -= ndevs % devs_increment;
4763 
4764 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4765 		ret = -ENOSPC;
4766 		goto error;
4767 	}
4768 
4769 	if (devs_max && ndevs > devs_max)
4770 		ndevs = devs_max;
4771 	/*
4772 	 * the primary goal is to maximize the number of stripes, so use as many
4773 	 * devices as possible, even if the stripes are not maximum sized.
4774 	 */
4775 	stripe_size = devices_info[ndevs-1].max_avail;
4776 	num_stripes = ndevs * dev_stripes;
4777 
4778 	/*
4779 	 * this will have to be fixed for RAID1 and RAID10 over
4780 	 * more drives
4781 	 */
4782 	data_stripes = num_stripes / ncopies;
4783 
4784 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4785 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4786 							 info->stripesize);
4787 		data_stripes = num_stripes - 1;
4788 	}
4789 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4790 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4791 							 info->stripesize);
4792 		data_stripes = num_stripes - 2;
4793 	}
4794 
4795 	/*
4796 	 * Use the number of data stripes to figure out how big this chunk
4797 	 * is really going to be in terms of logical address space,
4798 	 * and compare that answer with the max chunk size
4799 	 */
4800 	if (stripe_size * data_stripes > max_chunk_size) {
4801 		u64 mask = (1ULL << 24) - 1;
4802 
4803 		stripe_size = div_u64(max_chunk_size, data_stripes);
4804 
4805 		/* bump the answer up to a 16MB boundary */
4806 		stripe_size = (stripe_size + mask) & ~mask;
4807 
4808 		/* but don't go higher than the limits we found
4809 		 * while searching for free extents
4810 		 */
4811 		if (stripe_size > devices_info[ndevs-1].max_avail)
4812 			stripe_size = devices_info[ndevs-1].max_avail;
4813 	}
4814 
4815 	stripe_size = div_u64(stripe_size, dev_stripes);
4816 
4817 	/* align to BTRFS_STRIPE_LEN */
4818 	stripe_size = div64_u64(stripe_size, raid_stripe_len);
4819 	stripe_size *= raid_stripe_len;
4820 
4821 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4822 	if (!map) {
4823 		ret = -ENOMEM;
4824 		goto error;
4825 	}
4826 	map->num_stripes = num_stripes;
4827 
4828 	for (i = 0; i < ndevs; ++i) {
4829 		for (j = 0; j < dev_stripes; ++j) {
4830 			int s = i * dev_stripes + j;
4831 			map->stripes[s].dev = devices_info[i].dev;
4832 			map->stripes[s].physical = devices_info[i].dev_offset +
4833 						   j * stripe_size;
4834 		}
4835 	}
4836 	map->sector_size = info->sectorsize;
4837 	map->stripe_len = raid_stripe_len;
4838 	map->io_align = raid_stripe_len;
4839 	map->io_width = raid_stripe_len;
4840 	map->type = type;
4841 	map->sub_stripes = sub_stripes;
4842 
4843 	num_bytes = stripe_size * data_stripes;
4844 
4845 	trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4846 
4847 	em = alloc_extent_map();
4848 	if (!em) {
4849 		kfree(map);
4850 		ret = -ENOMEM;
4851 		goto error;
4852 	}
4853 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4854 	em->map_lookup = map;
4855 	em->start = start;
4856 	em->len = num_bytes;
4857 	em->block_start = 0;
4858 	em->block_len = em->len;
4859 	em->orig_block_len = stripe_size;
4860 
4861 	em_tree = &info->mapping_tree.map_tree;
4862 	write_lock(&em_tree->lock);
4863 	ret = add_extent_mapping(em_tree, em, 0);
4864 	if (!ret) {
4865 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4866 		refcount_inc(&em->refs);
4867 	}
4868 	write_unlock(&em_tree->lock);
4869 	if (ret) {
4870 		free_extent_map(em);
4871 		goto error;
4872 	}
4873 
4874 	ret = btrfs_make_block_group(trans, info, 0, type,
4875 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4876 				     start, num_bytes);
4877 	if (ret)
4878 		goto error_del_extent;
4879 
4880 	for (i = 0; i < map->num_stripes; i++) {
4881 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4882 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4883 	}
4884 
4885 	spin_lock(&info->free_chunk_lock);
4886 	info->free_chunk_space -= (stripe_size * map->num_stripes);
4887 	spin_unlock(&info->free_chunk_lock);
4888 
4889 	free_extent_map(em);
4890 	check_raid56_incompat_flag(info, type);
4891 
4892 	kfree(devices_info);
4893 	return 0;
4894 
4895 error_del_extent:
4896 	write_lock(&em_tree->lock);
4897 	remove_extent_mapping(em_tree, em);
4898 	write_unlock(&em_tree->lock);
4899 
4900 	/* One for our allocation */
4901 	free_extent_map(em);
4902 	/* One for the tree reference */
4903 	free_extent_map(em);
4904 	/* One for the pending_chunks list reference */
4905 	free_extent_map(em);
4906 error:
4907 	kfree(devices_info);
4908 	return ret;
4909 }
4910 
4911 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4912 				struct btrfs_fs_info *fs_info,
4913 				u64 chunk_offset, u64 chunk_size)
4914 {
4915 	struct btrfs_root *extent_root = fs_info->extent_root;
4916 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4917 	struct btrfs_key key;
4918 	struct btrfs_device *device;
4919 	struct btrfs_chunk *chunk;
4920 	struct btrfs_stripe *stripe;
4921 	struct extent_map *em;
4922 	struct map_lookup *map;
4923 	size_t item_size;
4924 	u64 dev_offset;
4925 	u64 stripe_size;
4926 	int i = 0;
4927 	int ret = 0;
4928 
4929 	em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4930 	if (IS_ERR(em))
4931 		return PTR_ERR(em);
4932 
4933 	map = em->map_lookup;
4934 	item_size = btrfs_chunk_item_size(map->num_stripes);
4935 	stripe_size = em->orig_block_len;
4936 
4937 	chunk = kzalloc(item_size, GFP_NOFS);
4938 	if (!chunk) {
4939 		ret = -ENOMEM;
4940 		goto out;
4941 	}
4942 
4943 	/*
4944 	 * Take the device list mutex to prevent races with the final phase of
4945 	 * a device replace operation that replaces the device object associated
4946 	 * with the map's stripes, because the device object's id can change
4947 	 * at any time during that final phase of the device replace operation
4948 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4949 	 */
4950 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4951 	for (i = 0; i < map->num_stripes; i++) {
4952 		device = map->stripes[i].dev;
4953 		dev_offset = map->stripes[i].physical;
4954 
4955 		ret = btrfs_update_device(trans, device);
4956 		if (ret)
4957 			break;
4958 		ret = btrfs_alloc_dev_extent(trans, device,
4959 					     chunk_root->root_key.objectid,
4960 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4961 					     chunk_offset, dev_offset,
4962 					     stripe_size);
4963 		if (ret)
4964 			break;
4965 	}
4966 	if (ret) {
4967 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4968 		goto out;
4969 	}
4970 
4971 	stripe = &chunk->stripe;
4972 	for (i = 0; i < map->num_stripes; i++) {
4973 		device = map->stripes[i].dev;
4974 		dev_offset = map->stripes[i].physical;
4975 
4976 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4977 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4978 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4979 		stripe++;
4980 	}
4981 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4982 
4983 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4984 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4985 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4986 	btrfs_set_stack_chunk_type(chunk, map->type);
4987 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4988 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4989 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4990 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4991 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4992 
4993 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4994 	key.type = BTRFS_CHUNK_ITEM_KEY;
4995 	key.offset = chunk_offset;
4996 
4997 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4998 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4999 		/*
5000 		 * TODO: Cleanup of inserted chunk root in case of
5001 		 * failure.
5002 		 */
5003 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5004 	}
5005 
5006 out:
5007 	kfree(chunk);
5008 	free_extent_map(em);
5009 	return ret;
5010 }
5011 
5012 /*
5013  * Chunk allocation falls into two parts. The first part does works
5014  * that make the new allocated chunk useable, but not do any operation
5015  * that modifies the chunk tree. The second part does the works that
5016  * require modifying the chunk tree. This division is important for the
5017  * bootstrap process of adding storage to a seed btrfs.
5018  */
5019 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5020 		      struct btrfs_fs_info *fs_info, u64 type)
5021 {
5022 	u64 chunk_offset;
5023 
5024 	ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5025 	chunk_offset = find_next_chunk(fs_info);
5026 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
5027 }
5028 
5029 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5030 					 struct btrfs_fs_info *fs_info)
5031 {
5032 	struct btrfs_root *extent_root = fs_info->extent_root;
5033 	u64 chunk_offset;
5034 	u64 sys_chunk_offset;
5035 	u64 alloc_profile;
5036 	int ret;
5037 
5038 	chunk_offset = find_next_chunk(fs_info);
5039 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5040 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5041 	if (ret)
5042 		return ret;
5043 
5044 	sys_chunk_offset = find_next_chunk(fs_info);
5045 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5046 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5047 	return ret;
5048 }
5049 
5050 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5051 {
5052 	int max_errors;
5053 
5054 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5055 			 BTRFS_BLOCK_GROUP_RAID10 |
5056 			 BTRFS_BLOCK_GROUP_RAID5 |
5057 			 BTRFS_BLOCK_GROUP_DUP)) {
5058 		max_errors = 1;
5059 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5060 		max_errors = 2;
5061 	} else {
5062 		max_errors = 0;
5063 	}
5064 
5065 	return max_errors;
5066 }
5067 
5068 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5069 {
5070 	struct extent_map *em;
5071 	struct map_lookup *map;
5072 	int readonly = 0;
5073 	int miss_ndevs = 0;
5074 	int i;
5075 
5076 	em = get_chunk_map(fs_info, chunk_offset, 1);
5077 	if (IS_ERR(em))
5078 		return 1;
5079 
5080 	map = em->map_lookup;
5081 	for (i = 0; i < map->num_stripes; i++) {
5082 		if (map->stripes[i].dev->missing) {
5083 			miss_ndevs++;
5084 			continue;
5085 		}
5086 
5087 		if (!map->stripes[i].dev->writeable) {
5088 			readonly = 1;
5089 			goto end;
5090 		}
5091 	}
5092 
5093 	/*
5094 	 * If the number of missing devices is larger than max errors,
5095 	 * we can not write the data into that chunk successfully, so
5096 	 * set it readonly.
5097 	 */
5098 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5099 		readonly = 1;
5100 end:
5101 	free_extent_map(em);
5102 	return readonly;
5103 }
5104 
5105 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5106 {
5107 	extent_map_tree_init(&tree->map_tree);
5108 }
5109 
5110 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5111 {
5112 	struct extent_map *em;
5113 
5114 	while (1) {
5115 		write_lock(&tree->map_tree.lock);
5116 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5117 		if (em)
5118 			remove_extent_mapping(&tree->map_tree, em);
5119 		write_unlock(&tree->map_tree.lock);
5120 		if (!em)
5121 			break;
5122 		/* once for us */
5123 		free_extent_map(em);
5124 		/* once for the tree */
5125 		free_extent_map(em);
5126 	}
5127 }
5128 
5129 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5130 {
5131 	struct extent_map *em;
5132 	struct map_lookup *map;
5133 	int ret;
5134 
5135 	em = get_chunk_map(fs_info, logical, len);
5136 	if (IS_ERR(em))
5137 		/*
5138 		 * We could return errors for these cases, but that could get
5139 		 * ugly and we'd probably do the same thing which is just not do
5140 		 * anything else and exit, so return 1 so the callers don't try
5141 		 * to use other copies.
5142 		 */
5143 		return 1;
5144 
5145 	map = em->map_lookup;
5146 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5147 		ret = map->num_stripes;
5148 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5149 		ret = map->sub_stripes;
5150 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5151 		ret = 2;
5152 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5153 		ret = 3;
5154 	else
5155 		ret = 1;
5156 	free_extent_map(em);
5157 
5158 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5159 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5160 	    fs_info->dev_replace.tgtdev)
5161 		ret++;
5162 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5163 
5164 	return ret;
5165 }
5166 
5167 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5168 				    struct btrfs_mapping_tree *map_tree,
5169 				    u64 logical)
5170 {
5171 	struct extent_map *em;
5172 	struct map_lookup *map;
5173 	unsigned long len = fs_info->sectorsize;
5174 
5175 	em = get_chunk_map(fs_info, logical, len);
5176 	WARN_ON(IS_ERR(em));
5177 
5178 	map = em->map_lookup;
5179 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5180 		len = map->stripe_len * nr_data_stripes(map);
5181 	free_extent_map(em);
5182 	return len;
5183 }
5184 
5185 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
5186 			   u64 logical, u64 len, int mirror_num)
5187 {
5188 	struct extent_map *em;
5189 	struct map_lookup *map;
5190 	int ret = 0;
5191 
5192 	em = get_chunk_map(fs_info, logical, len);
5193 	WARN_ON(IS_ERR(em));
5194 
5195 	map = em->map_lookup;
5196 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5197 		ret = 1;
5198 	free_extent_map(em);
5199 	return ret;
5200 }
5201 
5202 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5203 			    struct map_lookup *map, int first, int num,
5204 			    int optimal, int dev_replace_is_ongoing)
5205 {
5206 	int i;
5207 	int tolerance;
5208 	struct btrfs_device *srcdev;
5209 
5210 	if (dev_replace_is_ongoing &&
5211 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5212 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5213 		srcdev = fs_info->dev_replace.srcdev;
5214 	else
5215 		srcdev = NULL;
5216 
5217 	/*
5218 	 * try to avoid the drive that is the source drive for a
5219 	 * dev-replace procedure, only choose it if no other non-missing
5220 	 * mirror is available
5221 	 */
5222 	for (tolerance = 0; tolerance < 2; tolerance++) {
5223 		if (map->stripes[optimal].dev->bdev &&
5224 		    (tolerance || map->stripes[optimal].dev != srcdev))
5225 			return optimal;
5226 		for (i = first; i < first + num; i++) {
5227 			if (map->stripes[i].dev->bdev &&
5228 			    (tolerance || map->stripes[i].dev != srcdev))
5229 				return i;
5230 		}
5231 	}
5232 
5233 	/* we couldn't find one that doesn't fail.  Just return something
5234 	 * and the io error handling code will clean up eventually
5235 	 */
5236 	return optimal;
5237 }
5238 
5239 static inline int parity_smaller(u64 a, u64 b)
5240 {
5241 	return a > b;
5242 }
5243 
5244 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5245 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5246 {
5247 	struct btrfs_bio_stripe s;
5248 	int i;
5249 	u64 l;
5250 	int again = 1;
5251 
5252 	while (again) {
5253 		again = 0;
5254 		for (i = 0; i < num_stripes - 1; i++) {
5255 			if (parity_smaller(bbio->raid_map[i],
5256 					   bbio->raid_map[i+1])) {
5257 				s = bbio->stripes[i];
5258 				l = bbio->raid_map[i];
5259 				bbio->stripes[i] = bbio->stripes[i+1];
5260 				bbio->raid_map[i] = bbio->raid_map[i+1];
5261 				bbio->stripes[i+1] = s;
5262 				bbio->raid_map[i+1] = l;
5263 
5264 				again = 1;
5265 			}
5266 		}
5267 	}
5268 }
5269 
5270 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5271 {
5272 	struct btrfs_bio *bbio = kzalloc(
5273 		 /* the size of the btrfs_bio */
5274 		sizeof(struct btrfs_bio) +
5275 		/* plus the variable array for the stripes */
5276 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5277 		/* plus the variable array for the tgt dev */
5278 		sizeof(int) * (real_stripes) +
5279 		/*
5280 		 * plus the raid_map, which includes both the tgt dev
5281 		 * and the stripes
5282 		 */
5283 		sizeof(u64) * (total_stripes),
5284 		GFP_NOFS|__GFP_NOFAIL);
5285 
5286 	atomic_set(&bbio->error, 0);
5287 	refcount_set(&bbio->refs, 1);
5288 
5289 	return bbio;
5290 }
5291 
5292 void btrfs_get_bbio(struct btrfs_bio *bbio)
5293 {
5294 	WARN_ON(!refcount_read(&bbio->refs));
5295 	refcount_inc(&bbio->refs);
5296 }
5297 
5298 void btrfs_put_bbio(struct btrfs_bio *bbio)
5299 {
5300 	if (!bbio)
5301 		return;
5302 	if (refcount_dec_and_test(&bbio->refs))
5303 		kfree(bbio);
5304 }
5305 
5306 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5307 /*
5308  * Please note that, discard won't be sent to target device of device
5309  * replace.
5310  */
5311 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5312 					 u64 logical, u64 length,
5313 					 struct btrfs_bio **bbio_ret)
5314 {
5315 	struct extent_map *em;
5316 	struct map_lookup *map;
5317 	struct btrfs_bio *bbio;
5318 	u64 offset;
5319 	u64 stripe_nr;
5320 	u64 stripe_nr_end;
5321 	u64 stripe_end_offset;
5322 	u64 stripe_cnt;
5323 	u64 stripe_len;
5324 	u64 stripe_offset;
5325 	u64 num_stripes;
5326 	u32 stripe_index;
5327 	u32 factor = 0;
5328 	u32 sub_stripes = 0;
5329 	u64 stripes_per_dev = 0;
5330 	u32 remaining_stripes = 0;
5331 	u32 last_stripe = 0;
5332 	int ret = 0;
5333 	int i;
5334 
5335 	/* discard always return a bbio */
5336 	ASSERT(bbio_ret);
5337 
5338 	em = get_chunk_map(fs_info, logical, length);
5339 	if (IS_ERR(em))
5340 		return PTR_ERR(em);
5341 
5342 	map = em->map_lookup;
5343 	/* we don't discard raid56 yet */
5344 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5345 		ret = -EOPNOTSUPP;
5346 		goto out;
5347 	}
5348 
5349 	offset = logical - em->start;
5350 	length = min_t(u64, em->len - offset, length);
5351 
5352 	stripe_len = map->stripe_len;
5353 	/*
5354 	 * stripe_nr counts the total number of stripes we have to stride
5355 	 * to get to this block
5356 	 */
5357 	stripe_nr = div64_u64(offset, stripe_len);
5358 
5359 	/* stripe_offset is the offset of this block in its stripe */
5360 	stripe_offset = offset - stripe_nr * stripe_len;
5361 
5362 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5363 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5364 	stripe_cnt = stripe_nr_end - stripe_nr;
5365 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5366 			    (offset + length);
5367 	/*
5368 	 * after this, stripe_nr is the number of stripes on this
5369 	 * device we have to walk to find the data, and stripe_index is
5370 	 * the number of our device in the stripe array
5371 	 */
5372 	num_stripes = 1;
5373 	stripe_index = 0;
5374 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5375 			 BTRFS_BLOCK_GROUP_RAID10)) {
5376 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5377 			sub_stripes = 1;
5378 		else
5379 			sub_stripes = map->sub_stripes;
5380 
5381 		factor = map->num_stripes / sub_stripes;
5382 		num_stripes = min_t(u64, map->num_stripes,
5383 				    sub_stripes * stripe_cnt);
5384 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5385 		stripe_index *= sub_stripes;
5386 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5387 					      &remaining_stripes);
5388 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5389 		last_stripe *= sub_stripes;
5390 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5391 				BTRFS_BLOCK_GROUP_DUP)) {
5392 		num_stripes = map->num_stripes;
5393 	} else {
5394 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5395 					&stripe_index);
5396 	}
5397 
5398 	bbio = alloc_btrfs_bio(num_stripes, 0);
5399 	if (!bbio) {
5400 		ret = -ENOMEM;
5401 		goto out;
5402 	}
5403 
5404 	for (i = 0; i < num_stripes; i++) {
5405 		bbio->stripes[i].physical =
5406 			map->stripes[stripe_index].physical +
5407 			stripe_offset + stripe_nr * map->stripe_len;
5408 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5409 
5410 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5411 				 BTRFS_BLOCK_GROUP_RAID10)) {
5412 			bbio->stripes[i].length = stripes_per_dev *
5413 				map->stripe_len;
5414 
5415 			if (i / sub_stripes < remaining_stripes)
5416 				bbio->stripes[i].length +=
5417 					map->stripe_len;
5418 
5419 			/*
5420 			 * Special for the first stripe and
5421 			 * the last stripe:
5422 			 *
5423 			 * |-------|...|-------|
5424 			 *     |----------|
5425 			 *    off     end_off
5426 			 */
5427 			if (i < sub_stripes)
5428 				bbio->stripes[i].length -=
5429 					stripe_offset;
5430 
5431 			if (stripe_index >= last_stripe &&
5432 			    stripe_index <= (last_stripe +
5433 					     sub_stripes - 1))
5434 				bbio->stripes[i].length -=
5435 					stripe_end_offset;
5436 
5437 			if (i == sub_stripes - 1)
5438 				stripe_offset = 0;
5439 		} else {
5440 			bbio->stripes[i].length = length;
5441 		}
5442 
5443 		stripe_index++;
5444 		if (stripe_index == map->num_stripes) {
5445 			stripe_index = 0;
5446 			stripe_nr++;
5447 		}
5448 	}
5449 
5450 	*bbio_ret = bbio;
5451 	bbio->map_type = map->type;
5452 	bbio->num_stripes = num_stripes;
5453 out:
5454 	free_extent_map(em);
5455 	return ret;
5456 }
5457 
5458 /*
5459  * In dev-replace case, for repair case (that's the only case where the mirror
5460  * is selected explicitly when calling btrfs_map_block), blocks left of the
5461  * left cursor can also be read from the target drive.
5462  *
5463  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5464  * array of stripes.
5465  * For READ, it also needs to be supported using the same mirror number.
5466  *
5467  * If the requested block is not left of the left cursor, EIO is returned. This
5468  * can happen because btrfs_num_copies() returns one more in the dev-replace
5469  * case.
5470  */
5471 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5472 					 u64 logical, u64 length,
5473 					 u64 srcdev_devid, int *mirror_num,
5474 					 u64 *physical)
5475 {
5476 	struct btrfs_bio *bbio = NULL;
5477 	int num_stripes;
5478 	int index_srcdev = 0;
5479 	int found = 0;
5480 	u64 physical_of_found = 0;
5481 	int i;
5482 	int ret = 0;
5483 
5484 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5485 				logical, &length, &bbio, 0, 0);
5486 	if (ret) {
5487 		ASSERT(bbio == NULL);
5488 		return ret;
5489 	}
5490 
5491 	num_stripes = bbio->num_stripes;
5492 	if (*mirror_num > num_stripes) {
5493 		/*
5494 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5495 		 * that means that the requested area is not left of the left
5496 		 * cursor
5497 		 */
5498 		btrfs_put_bbio(bbio);
5499 		return -EIO;
5500 	}
5501 
5502 	/*
5503 	 * process the rest of the function using the mirror_num of the source
5504 	 * drive. Therefore look it up first.  At the end, patch the device
5505 	 * pointer to the one of the target drive.
5506 	 */
5507 	for (i = 0; i < num_stripes; i++) {
5508 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5509 			continue;
5510 
5511 		/*
5512 		 * In case of DUP, in order to keep it simple, only add the
5513 		 * mirror with the lowest physical address
5514 		 */
5515 		if (found &&
5516 		    physical_of_found <= bbio->stripes[i].physical)
5517 			continue;
5518 
5519 		index_srcdev = i;
5520 		found = 1;
5521 		physical_of_found = bbio->stripes[i].physical;
5522 	}
5523 
5524 	btrfs_put_bbio(bbio);
5525 
5526 	ASSERT(found);
5527 	if (!found)
5528 		return -EIO;
5529 
5530 	*mirror_num = index_srcdev + 1;
5531 	*physical = physical_of_found;
5532 	return ret;
5533 }
5534 
5535 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5536 				      struct btrfs_bio **bbio_ret,
5537 				      struct btrfs_dev_replace *dev_replace,
5538 				      int *num_stripes_ret, int *max_errors_ret)
5539 {
5540 	struct btrfs_bio *bbio = *bbio_ret;
5541 	u64 srcdev_devid = dev_replace->srcdev->devid;
5542 	int tgtdev_indexes = 0;
5543 	int num_stripes = *num_stripes_ret;
5544 	int max_errors = *max_errors_ret;
5545 	int i;
5546 
5547 	if (op == BTRFS_MAP_WRITE) {
5548 		int index_where_to_add;
5549 
5550 		/*
5551 		 * duplicate the write operations while the dev replace
5552 		 * procedure is running. Since the copying of the old disk to
5553 		 * the new disk takes place at run time while the filesystem is
5554 		 * mounted writable, the regular write operations to the old
5555 		 * disk have to be duplicated to go to the new disk as well.
5556 		 *
5557 		 * Note that device->missing is handled by the caller, and that
5558 		 * the write to the old disk is already set up in the stripes
5559 		 * array.
5560 		 */
5561 		index_where_to_add = num_stripes;
5562 		for (i = 0; i < num_stripes; i++) {
5563 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5564 				/* write to new disk, too */
5565 				struct btrfs_bio_stripe *new =
5566 					bbio->stripes + index_where_to_add;
5567 				struct btrfs_bio_stripe *old =
5568 					bbio->stripes + i;
5569 
5570 				new->physical = old->physical;
5571 				new->length = old->length;
5572 				new->dev = dev_replace->tgtdev;
5573 				bbio->tgtdev_map[i] = index_where_to_add;
5574 				index_where_to_add++;
5575 				max_errors++;
5576 				tgtdev_indexes++;
5577 			}
5578 		}
5579 		num_stripes = index_where_to_add;
5580 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5581 		int index_srcdev = 0;
5582 		int found = 0;
5583 		u64 physical_of_found = 0;
5584 
5585 		/*
5586 		 * During the dev-replace procedure, the target drive can also
5587 		 * be used to read data in case it is needed to repair a corrupt
5588 		 * block elsewhere. This is possible if the requested area is
5589 		 * left of the left cursor. In this area, the target drive is a
5590 		 * full copy of the source drive.
5591 		 */
5592 		for (i = 0; i < num_stripes; i++) {
5593 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5594 				/*
5595 				 * In case of DUP, in order to keep it simple,
5596 				 * only add the mirror with the lowest physical
5597 				 * address
5598 				 */
5599 				if (found &&
5600 				    physical_of_found <=
5601 				     bbio->stripes[i].physical)
5602 					continue;
5603 				index_srcdev = i;
5604 				found = 1;
5605 				physical_of_found = bbio->stripes[i].physical;
5606 			}
5607 		}
5608 		if (found) {
5609 			struct btrfs_bio_stripe *tgtdev_stripe =
5610 				bbio->stripes + num_stripes;
5611 
5612 			tgtdev_stripe->physical = physical_of_found;
5613 			tgtdev_stripe->length =
5614 				bbio->stripes[index_srcdev].length;
5615 			tgtdev_stripe->dev = dev_replace->tgtdev;
5616 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5617 
5618 			tgtdev_indexes++;
5619 			num_stripes++;
5620 		}
5621 	}
5622 
5623 	*num_stripes_ret = num_stripes;
5624 	*max_errors_ret = max_errors;
5625 	bbio->num_tgtdevs = tgtdev_indexes;
5626 	*bbio_ret = bbio;
5627 }
5628 
5629 static bool need_full_stripe(enum btrfs_map_op op)
5630 {
5631 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5632 }
5633 
5634 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5635 			     enum btrfs_map_op op,
5636 			     u64 logical, u64 *length,
5637 			     struct btrfs_bio **bbio_ret,
5638 			     int mirror_num, int need_raid_map)
5639 {
5640 	struct extent_map *em;
5641 	struct map_lookup *map;
5642 	u64 offset;
5643 	u64 stripe_offset;
5644 	u64 stripe_nr;
5645 	u64 stripe_len;
5646 	u32 stripe_index;
5647 	int i;
5648 	int ret = 0;
5649 	int num_stripes;
5650 	int max_errors = 0;
5651 	int tgtdev_indexes = 0;
5652 	struct btrfs_bio *bbio = NULL;
5653 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5654 	int dev_replace_is_ongoing = 0;
5655 	int num_alloc_stripes;
5656 	int patch_the_first_stripe_for_dev_replace = 0;
5657 	u64 physical_to_patch_in_first_stripe = 0;
5658 	u64 raid56_full_stripe_start = (u64)-1;
5659 
5660 	if (op == BTRFS_MAP_DISCARD)
5661 		return __btrfs_map_block_for_discard(fs_info, logical,
5662 						     *length, bbio_ret);
5663 
5664 	em = get_chunk_map(fs_info, logical, *length);
5665 	if (IS_ERR(em))
5666 		return PTR_ERR(em);
5667 
5668 	map = em->map_lookup;
5669 	offset = logical - em->start;
5670 
5671 	stripe_len = map->stripe_len;
5672 	stripe_nr = offset;
5673 	/*
5674 	 * stripe_nr counts the total number of stripes we have to stride
5675 	 * to get to this block
5676 	 */
5677 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5678 
5679 	stripe_offset = stripe_nr * stripe_len;
5680 	if (offset < stripe_offset) {
5681 		btrfs_crit(fs_info,
5682 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5683 			   stripe_offset, offset, em->start, logical,
5684 			   stripe_len);
5685 		free_extent_map(em);
5686 		return -EINVAL;
5687 	}
5688 
5689 	/* stripe_offset is the offset of this block in its stripe*/
5690 	stripe_offset = offset - stripe_offset;
5691 
5692 	/* if we're here for raid56, we need to know the stripe aligned start */
5693 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5694 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5695 		raid56_full_stripe_start = offset;
5696 
5697 		/* allow a write of a full stripe, but make sure we don't
5698 		 * allow straddling of stripes
5699 		 */
5700 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5701 				full_stripe_len);
5702 		raid56_full_stripe_start *= full_stripe_len;
5703 	}
5704 
5705 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5706 		u64 max_len;
5707 		/* For writes to RAID[56], allow a full stripeset across all disks.
5708 		   For other RAID types and for RAID[56] reads, just allow a single
5709 		   stripe (on a single disk). */
5710 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5711 		    (op == BTRFS_MAP_WRITE)) {
5712 			max_len = stripe_len * nr_data_stripes(map) -
5713 				(offset - raid56_full_stripe_start);
5714 		} else {
5715 			/* we limit the length of each bio to what fits in a stripe */
5716 			max_len = stripe_len - stripe_offset;
5717 		}
5718 		*length = min_t(u64, em->len - offset, max_len);
5719 	} else {
5720 		*length = em->len - offset;
5721 	}
5722 
5723 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5724 	   it cares about is the length */
5725 	if (!bbio_ret)
5726 		goto out;
5727 
5728 	btrfs_dev_replace_lock(dev_replace, 0);
5729 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5730 	if (!dev_replace_is_ongoing)
5731 		btrfs_dev_replace_unlock(dev_replace, 0);
5732 	else
5733 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5734 
5735 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5736 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5737 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5738 						    dev_replace->srcdev->devid,
5739 						    &mirror_num,
5740 					    &physical_to_patch_in_first_stripe);
5741 		if (ret)
5742 			goto out;
5743 		else
5744 			patch_the_first_stripe_for_dev_replace = 1;
5745 	} else if (mirror_num > map->num_stripes) {
5746 		mirror_num = 0;
5747 	}
5748 
5749 	num_stripes = 1;
5750 	stripe_index = 0;
5751 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5752 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5753 				&stripe_index);
5754 		if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_GET_READ_MIRRORS)
5755 			mirror_num = 1;
5756 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5757 		if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5758 			num_stripes = map->num_stripes;
5759 		else if (mirror_num)
5760 			stripe_index = mirror_num - 1;
5761 		else {
5762 			stripe_index = find_live_mirror(fs_info, map, 0,
5763 					    map->num_stripes,
5764 					    current->pid % map->num_stripes,
5765 					    dev_replace_is_ongoing);
5766 			mirror_num = stripe_index + 1;
5767 		}
5768 
5769 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5770 		if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) {
5771 			num_stripes = map->num_stripes;
5772 		} else if (mirror_num) {
5773 			stripe_index = mirror_num - 1;
5774 		} else {
5775 			mirror_num = 1;
5776 		}
5777 
5778 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5779 		u32 factor = map->num_stripes / map->sub_stripes;
5780 
5781 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5782 		stripe_index *= map->sub_stripes;
5783 
5784 		if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5785 			num_stripes = map->sub_stripes;
5786 		else if (mirror_num)
5787 			stripe_index += mirror_num - 1;
5788 		else {
5789 			int old_stripe_index = stripe_index;
5790 			stripe_index = find_live_mirror(fs_info, map,
5791 					      stripe_index,
5792 					      map->sub_stripes, stripe_index +
5793 					      current->pid % map->sub_stripes,
5794 					      dev_replace_is_ongoing);
5795 			mirror_num = stripe_index - old_stripe_index + 1;
5796 		}
5797 
5798 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5799 		if (need_raid_map &&
5800 		    (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5801 		     mirror_num > 1)) {
5802 			/* push stripe_nr back to the start of the full stripe */
5803 			stripe_nr = div64_u64(raid56_full_stripe_start,
5804 					stripe_len * nr_data_stripes(map));
5805 
5806 			/* RAID[56] write or recovery. Return all stripes */
5807 			num_stripes = map->num_stripes;
5808 			max_errors = nr_parity_stripes(map);
5809 
5810 			*length = map->stripe_len;
5811 			stripe_index = 0;
5812 			stripe_offset = 0;
5813 		} else {
5814 			/*
5815 			 * Mirror #0 or #1 means the original data block.
5816 			 * Mirror #2 is RAID5 parity block.
5817 			 * Mirror #3 is RAID6 Q block.
5818 			 */
5819 			stripe_nr = div_u64_rem(stripe_nr,
5820 					nr_data_stripes(map), &stripe_index);
5821 			if (mirror_num > 1)
5822 				stripe_index = nr_data_stripes(map) +
5823 						mirror_num - 2;
5824 
5825 			/* We distribute the parity blocks across stripes */
5826 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5827 					&stripe_index);
5828 			if ((op != BTRFS_MAP_WRITE &&
5829 			     op != BTRFS_MAP_GET_READ_MIRRORS) &&
5830 			    mirror_num <= 1)
5831 				mirror_num = 1;
5832 		}
5833 	} else {
5834 		/*
5835 		 * after this, stripe_nr is the number of stripes on this
5836 		 * device we have to walk to find the data, and stripe_index is
5837 		 * the number of our device in the stripe array
5838 		 */
5839 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5840 				&stripe_index);
5841 		mirror_num = stripe_index + 1;
5842 	}
5843 	if (stripe_index >= map->num_stripes) {
5844 		btrfs_crit(fs_info,
5845 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5846 			   stripe_index, map->num_stripes);
5847 		ret = -EINVAL;
5848 		goto out;
5849 	}
5850 
5851 	num_alloc_stripes = num_stripes;
5852 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5853 		if (op == BTRFS_MAP_WRITE)
5854 			num_alloc_stripes <<= 1;
5855 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
5856 			num_alloc_stripes++;
5857 		tgtdev_indexes = num_stripes;
5858 	}
5859 
5860 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5861 	if (!bbio) {
5862 		ret = -ENOMEM;
5863 		goto out;
5864 	}
5865 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5866 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5867 
5868 	/* build raid_map */
5869 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5870 	    (need_full_stripe(op) || mirror_num > 1)) {
5871 		u64 tmp;
5872 		unsigned rot;
5873 
5874 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5875 				 sizeof(struct btrfs_bio_stripe) *
5876 				 num_alloc_stripes +
5877 				 sizeof(int) * tgtdev_indexes);
5878 
5879 		/* Work out the disk rotation on this stripe-set */
5880 		div_u64_rem(stripe_nr, num_stripes, &rot);
5881 
5882 		/* Fill in the logical address of each stripe */
5883 		tmp = stripe_nr * nr_data_stripes(map);
5884 		for (i = 0; i < nr_data_stripes(map); i++)
5885 			bbio->raid_map[(i+rot) % num_stripes] =
5886 				em->start + (tmp + i) * map->stripe_len;
5887 
5888 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5889 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5890 			bbio->raid_map[(i+rot+1) % num_stripes] =
5891 				RAID6_Q_STRIPE;
5892 	}
5893 
5894 
5895 	for (i = 0; i < num_stripes; i++) {
5896 		bbio->stripes[i].physical =
5897 			map->stripes[stripe_index].physical +
5898 			stripe_offset +
5899 			stripe_nr * map->stripe_len;
5900 		bbio->stripes[i].dev =
5901 			map->stripes[stripe_index].dev;
5902 		stripe_index++;
5903 	}
5904 
5905 	if (need_full_stripe(op))
5906 		max_errors = btrfs_chunk_max_errors(map);
5907 
5908 	if (bbio->raid_map)
5909 		sort_parity_stripes(bbio, num_stripes);
5910 
5911 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5912 	    need_full_stripe(op)) {
5913 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5914 					  &max_errors);
5915 	}
5916 
5917 	*bbio_ret = bbio;
5918 	bbio->map_type = map->type;
5919 	bbio->num_stripes = num_stripes;
5920 	bbio->max_errors = max_errors;
5921 	bbio->mirror_num = mirror_num;
5922 
5923 	/*
5924 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5925 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5926 	 * available as a mirror
5927 	 */
5928 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5929 		WARN_ON(num_stripes > 1);
5930 		bbio->stripes[0].dev = dev_replace->tgtdev;
5931 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5932 		bbio->mirror_num = map->num_stripes + 1;
5933 	}
5934 out:
5935 	if (dev_replace_is_ongoing) {
5936 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
5937 		btrfs_dev_replace_unlock(dev_replace, 0);
5938 	}
5939 	free_extent_map(em);
5940 	return ret;
5941 }
5942 
5943 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5944 		      u64 logical, u64 *length,
5945 		      struct btrfs_bio **bbio_ret, int mirror_num)
5946 {
5947 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5948 				 mirror_num, 0);
5949 }
5950 
5951 /* For Scrub/replace */
5952 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5953 		     u64 logical, u64 *length,
5954 		     struct btrfs_bio **bbio_ret)
5955 {
5956 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5957 }
5958 
5959 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5960 		     u64 chunk_start, u64 physical, u64 devid,
5961 		     u64 **logical, int *naddrs, int *stripe_len)
5962 {
5963 	struct extent_map *em;
5964 	struct map_lookup *map;
5965 	u64 *buf;
5966 	u64 bytenr;
5967 	u64 length;
5968 	u64 stripe_nr;
5969 	u64 rmap_len;
5970 	int i, j, nr = 0;
5971 
5972 	em = get_chunk_map(fs_info, chunk_start, 1);
5973 	if (IS_ERR(em))
5974 		return -EIO;
5975 
5976 	map = em->map_lookup;
5977 	length = em->len;
5978 	rmap_len = map->stripe_len;
5979 
5980 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5981 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5982 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5983 		length = div_u64(length, map->num_stripes);
5984 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5985 		length = div_u64(length, nr_data_stripes(map));
5986 		rmap_len = map->stripe_len * nr_data_stripes(map);
5987 	}
5988 
5989 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5990 	BUG_ON(!buf); /* -ENOMEM */
5991 
5992 	for (i = 0; i < map->num_stripes; i++) {
5993 		if (devid && map->stripes[i].dev->devid != devid)
5994 			continue;
5995 		if (map->stripes[i].physical > physical ||
5996 		    map->stripes[i].physical + length <= physical)
5997 			continue;
5998 
5999 		stripe_nr = physical - map->stripes[i].physical;
6000 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6001 
6002 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6003 			stripe_nr = stripe_nr * map->num_stripes + i;
6004 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6005 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6006 			stripe_nr = stripe_nr * map->num_stripes + i;
6007 		} /* else if RAID[56], multiply by nr_data_stripes().
6008 		   * Alternatively, just use rmap_len below instead of
6009 		   * map->stripe_len */
6010 
6011 		bytenr = chunk_start + stripe_nr * rmap_len;
6012 		WARN_ON(nr >= map->num_stripes);
6013 		for (j = 0; j < nr; j++) {
6014 			if (buf[j] == bytenr)
6015 				break;
6016 		}
6017 		if (j == nr) {
6018 			WARN_ON(nr >= map->num_stripes);
6019 			buf[nr++] = bytenr;
6020 		}
6021 	}
6022 
6023 	*logical = buf;
6024 	*naddrs = nr;
6025 	*stripe_len = rmap_len;
6026 
6027 	free_extent_map(em);
6028 	return 0;
6029 }
6030 
6031 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6032 {
6033 	bio->bi_private = bbio->private;
6034 	bio->bi_end_io = bbio->end_io;
6035 	bio_endio(bio);
6036 
6037 	btrfs_put_bbio(bbio);
6038 }
6039 
6040 static void btrfs_end_bio(struct bio *bio)
6041 {
6042 	struct btrfs_bio *bbio = bio->bi_private;
6043 	int is_orig_bio = 0;
6044 
6045 	if (bio->bi_error) {
6046 		atomic_inc(&bbio->error);
6047 		if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
6048 			unsigned int stripe_index =
6049 				btrfs_io_bio(bio)->stripe_index;
6050 			struct btrfs_device *dev;
6051 
6052 			BUG_ON(stripe_index >= bbio->num_stripes);
6053 			dev = bbio->stripes[stripe_index].dev;
6054 			if (dev->bdev) {
6055 				if (bio_op(bio) == REQ_OP_WRITE)
6056 					btrfs_dev_stat_inc(dev,
6057 						BTRFS_DEV_STAT_WRITE_ERRS);
6058 				else
6059 					btrfs_dev_stat_inc(dev,
6060 						BTRFS_DEV_STAT_READ_ERRS);
6061 				if (bio->bi_opf & REQ_PREFLUSH)
6062 					btrfs_dev_stat_inc(dev,
6063 						BTRFS_DEV_STAT_FLUSH_ERRS);
6064 				btrfs_dev_stat_print_on_error(dev);
6065 			}
6066 		}
6067 	}
6068 
6069 	if (bio == bbio->orig_bio)
6070 		is_orig_bio = 1;
6071 
6072 	btrfs_bio_counter_dec(bbio->fs_info);
6073 
6074 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6075 		if (!is_orig_bio) {
6076 			bio_put(bio);
6077 			bio = bbio->orig_bio;
6078 		}
6079 
6080 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6081 		/* only send an error to the higher layers if it is
6082 		 * beyond the tolerance of the btrfs bio
6083 		 */
6084 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6085 			bio->bi_error = -EIO;
6086 		} else {
6087 			/*
6088 			 * this bio is actually up to date, we didn't
6089 			 * go over the max number of errors
6090 			 */
6091 			bio->bi_error = 0;
6092 		}
6093 
6094 		btrfs_end_bbio(bbio, bio);
6095 	} else if (!is_orig_bio) {
6096 		bio_put(bio);
6097 	}
6098 }
6099 
6100 /*
6101  * see run_scheduled_bios for a description of why bios are collected for
6102  * async submit.
6103  *
6104  * This will add one bio to the pending list for a device and make sure
6105  * the work struct is scheduled.
6106  */
6107 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6108 					struct bio *bio)
6109 {
6110 	struct btrfs_fs_info *fs_info = device->fs_info;
6111 	int should_queue = 1;
6112 	struct btrfs_pending_bios *pending_bios;
6113 
6114 	if (device->missing || !device->bdev) {
6115 		bio_io_error(bio);
6116 		return;
6117 	}
6118 
6119 	/* don't bother with additional async steps for reads, right now */
6120 	if (bio_op(bio) == REQ_OP_READ) {
6121 		bio_get(bio);
6122 		btrfsic_submit_bio(bio);
6123 		bio_put(bio);
6124 		return;
6125 	}
6126 
6127 	/*
6128 	 * nr_async_bios allows us to reliably return congestion to the
6129 	 * higher layers.  Otherwise, the async bio makes it appear we have
6130 	 * made progress against dirty pages when we've really just put it
6131 	 * on a queue for later
6132 	 */
6133 	atomic_inc(&fs_info->nr_async_bios);
6134 	WARN_ON(bio->bi_next);
6135 	bio->bi_next = NULL;
6136 
6137 	spin_lock(&device->io_lock);
6138 	if (op_is_sync(bio->bi_opf))
6139 		pending_bios = &device->pending_sync_bios;
6140 	else
6141 		pending_bios = &device->pending_bios;
6142 
6143 	if (pending_bios->tail)
6144 		pending_bios->tail->bi_next = bio;
6145 
6146 	pending_bios->tail = bio;
6147 	if (!pending_bios->head)
6148 		pending_bios->head = bio;
6149 	if (device->running_pending)
6150 		should_queue = 0;
6151 
6152 	spin_unlock(&device->io_lock);
6153 
6154 	if (should_queue)
6155 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6156 }
6157 
6158 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6159 			      u64 physical, int dev_nr, int async)
6160 {
6161 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6162 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6163 
6164 	bio->bi_private = bbio;
6165 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6166 	bio->bi_end_io = btrfs_end_bio;
6167 	bio->bi_iter.bi_sector = physical >> 9;
6168 #ifdef DEBUG
6169 	{
6170 		struct rcu_string *name;
6171 
6172 		rcu_read_lock();
6173 		name = rcu_dereference(dev->name);
6174 		btrfs_debug(fs_info,
6175 			"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6176 			bio_op(bio), bio->bi_opf,
6177 			(u64)bio->bi_iter.bi_sector,
6178 			(u_long)dev->bdev->bd_dev, name->str, dev->devid,
6179 			bio->bi_iter.bi_size);
6180 		rcu_read_unlock();
6181 	}
6182 #endif
6183 	bio->bi_bdev = dev->bdev;
6184 
6185 	btrfs_bio_counter_inc_noblocked(fs_info);
6186 
6187 	if (async)
6188 		btrfs_schedule_bio(dev, bio);
6189 	else
6190 		btrfsic_submit_bio(bio);
6191 }
6192 
6193 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6194 {
6195 	atomic_inc(&bbio->error);
6196 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6197 		/* Should be the original bio. */
6198 		WARN_ON(bio != bbio->orig_bio);
6199 
6200 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6201 		bio->bi_iter.bi_sector = logical >> 9;
6202 		bio->bi_error = -EIO;
6203 		btrfs_end_bbio(bbio, bio);
6204 	}
6205 }
6206 
6207 int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6208 		  int mirror_num, int async_submit)
6209 {
6210 	struct btrfs_device *dev;
6211 	struct bio *first_bio = bio;
6212 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6213 	u64 length = 0;
6214 	u64 map_length;
6215 	int ret;
6216 	int dev_nr;
6217 	int total_devs;
6218 	struct btrfs_bio *bbio = NULL;
6219 
6220 	length = bio->bi_iter.bi_size;
6221 	map_length = length;
6222 
6223 	btrfs_bio_counter_inc_blocked(fs_info);
6224 	ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
6225 				&map_length, &bbio, mirror_num, 1);
6226 	if (ret) {
6227 		btrfs_bio_counter_dec(fs_info);
6228 		return ret;
6229 	}
6230 
6231 	total_devs = bbio->num_stripes;
6232 	bbio->orig_bio = first_bio;
6233 	bbio->private = first_bio->bi_private;
6234 	bbio->end_io = first_bio->bi_end_io;
6235 	bbio->fs_info = fs_info;
6236 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6237 
6238 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6239 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6240 		/* In this case, map_length has been set to the length of
6241 		   a single stripe; not the whole write */
6242 		if (bio_op(bio) == REQ_OP_WRITE) {
6243 			ret = raid56_parity_write(fs_info, bio, bbio,
6244 						  map_length);
6245 		} else {
6246 			ret = raid56_parity_recover(fs_info, bio, bbio,
6247 						    map_length, mirror_num, 1);
6248 		}
6249 
6250 		btrfs_bio_counter_dec(fs_info);
6251 		return ret;
6252 	}
6253 
6254 	if (map_length < length) {
6255 		btrfs_crit(fs_info,
6256 			   "mapping failed logical %llu bio len %llu len %llu",
6257 			   logical, length, map_length);
6258 		BUG();
6259 	}
6260 
6261 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6262 		dev = bbio->stripes[dev_nr].dev;
6263 		if (!dev || !dev->bdev ||
6264 		    (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6265 			bbio_error(bbio, first_bio, logical);
6266 			continue;
6267 		}
6268 
6269 		if (dev_nr < total_devs - 1) {
6270 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6271 			BUG_ON(!bio); /* -ENOMEM */
6272 		} else
6273 			bio = first_bio;
6274 
6275 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6276 				  dev_nr, async_submit);
6277 	}
6278 	btrfs_bio_counter_dec(fs_info);
6279 	return 0;
6280 }
6281 
6282 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6283 				       u8 *uuid, u8 *fsid)
6284 {
6285 	struct btrfs_device *device;
6286 	struct btrfs_fs_devices *cur_devices;
6287 
6288 	cur_devices = fs_info->fs_devices;
6289 	while (cur_devices) {
6290 		if (!fsid ||
6291 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6292 			device = __find_device(&cur_devices->devices,
6293 					       devid, uuid);
6294 			if (device)
6295 				return device;
6296 		}
6297 		cur_devices = cur_devices->seed;
6298 	}
6299 	return NULL;
6300 }
6301 
6302 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6303 					    u64 devid, u8 *dev_uuid)
6304 {
6305 	struct btrfs_device *device;
6306 
6307 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6308 	if (IS_ERR(device))
6309 		return NULL;
6310 
6311 	list_add(&device->dev_list, &fs_devices->devices);
6312 	device->fs_devices = fs_devices;
6313 	fs_devices->num_devices++;
6314 
6315 	device->missing = 1;
6316 	fs_devices->missing_devices++;
6317 
6318 	return device;
6319 }
6320 
6321 /**
6322  * btrfs_alloc_device - allocate struct btrfs_device
6323  * @fs_info:	used only for generating a new devid, can be NULL if
6324  *		devid is provided (i.e. @devid != NULL).
6325  * @devid:	a pointer to devid for this device.  If NULL a new devid
6326  *		is generated.
6327  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6328  *		is generated.
6329  *
6330  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6331  * on error.  Returned struct is not linked onto any lists and can be
6332  * destroyed with kfree() right away.
6333  */
6334 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6335 					const u64 *devid,
6336 					const u8 *uuid)
6337 {
6338 	struct btrfs_device *dev;
6339 	u64 tmp;
6340 
6341 	if (WARN_ON(!devid && !fs_info))
6342 		return ERR_PTR(-EINVAL);
6343 
6344 	dev = __alloc_device();
6345 	if (IS_ERR(dev))
6346 		return dev;
6347 
6348 	if (devid)
6349 		tmp = *devid;
6350 	else {
6351 		int ret;
6352 
6353 		ret = find_next_devid(fs_info, &tmp);
6354 		if (ret) {
6355 			kfree(dev);
6356 			return ERR_PTR(ret);
6357 		}
6358 	}
6359 	dev->devid = tmp;
6360 
6361 	if (uuid)
6362 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6363 	else
6364 		generate_random_uuid(dev->uuid);
6365 
6366 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6367 			pending_bios_fn, NULL, NULL);
6368 
6369 	return dev;
6370 }
6371 
6372 /* Return -EIO if any error, otherwise return 0. */
6373 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6374 				   struct extent_buffer *leaf,
6375 				   struct btrfs_chunk *chunk, u64 logical)
6376 {
6377 	u64 length;
6378 	u64 stripe_len;
6379 	u16 num_stripes;
6380 	u16 sub_stripes;
6381 	u64 type;
6382 
6383 	length = btrfs_chunk_length(leaf, chunk);
6384 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6385 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6386 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6387 	type = btrfs_chunk_type(leaf, chunk);
6388 
6389 	if (!num_stripes) {
6390 		btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6391 			  num_stripes);
6392 		return -EIO;
6393 	}
6394 	if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6395 		btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6396 		return -EIO;
6397 	}
6398 	if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6399 		btrfs_err(fs_info, "invalid chunk sectorsize %u",
6400 			  btrfs_chunk_sector_size(leaf, chunk));
6401 		return -EIO;
6402 	}
6403 	if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6404 		btrfs_err(fs_info, "invalid chunk length %llu", length);
6405 		return -EIO;
6406 	}
6407 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6408 		btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6409 			  stripe_len);
6410 		return -EIO;
6411 	}
6412 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6413 	    type) {
6414 		btrfs_err(fs_info, "unrecognized chunk type: %llu",
6415 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6416 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6417 			  btrfs_chunk_type(leaf, chunk));
6418 		return -EIO;
6419 	}
6420 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6421 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6422 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6423 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6424 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6425 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6426 	     num_stripes != 1)) {
6427 		btrfs_err(fs_info,
6428 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6429 			num_stripes, sub_stripes,
6430 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6431 		return -EIO;
6432 	}
6433 
6434 	return 0;
6435 }
6436 
6437 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6438 			  struct extent_buffer *leaf,
6439 			  struct btrfs_chunk *chunk)
6440 {
6441 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6442 	struct map_lookup *map;
6443 	struct extent_map *em;
6444 	u64 logical;
6445 	u64 length;
6446 	u64 stripe_len;
6447 	u64 devid;
6448 	u8 uuid[BTRFS_UUID_SIZE];
6449 	int num_stripes;
6450 	int ret;
6451 	int i;
6452 
6453 	logical = key->offset;
6454 	length = btrfs_chunk_length(leaf, chunk);
6455 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6456 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6457 
6458 	ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6459 	if (ret)
6460 		return ret;
6461 
6462 	read_lock(&map_tree->map_tree.lock);
6463 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6464 	read_unlock(&map_tree->map_tree.lock);
6465 
6466 	/* already mapped? */
6467 	if (em && em->start <= logical && em->start + em->len > logical) {
6468 		free_extent_map(em);
6469 		return 0;
6470 	} else if (em) {
6471 		free_extent_map(em);
6472 	}
6473 
6474 	em = alloc_extent_map();
6475 	if (!em)
6476 		return -ENOMEM;
6477 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6478 	if (!map) {
6479 		free_extent_map(em);
6480 		return -ENOMEM;
6481 	}
6482 
6483 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6484 	em->map_lookup = map;
6485 	em->start = logical;
6486 	em->len = length;
6487 	em->orig_start = 0;
6488 	em->block_start = 0;
6489 	em->block_len = em->len;
6490 
6491 	map->num_stripes = num_stripes;
6492 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6493 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6494 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6495 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6496 	map->type = btrfs_chunk_type(leaf, chunk);
6497 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6498 	for (i = 0; i < num_stripes; i++) {
6499 		map->stripes[i].physical =
6500 			btrfs_stripe_offset_nr(leaf, chunk, i);
6501 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6502 		read_extent_buffer(leaf, uuid, (unsigned long)
6503 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6504 				   BTRFS_UUID_SIZE);
6505 		map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6506 							uuid, NULL);
6507 		if (!map->stripes[i].dev &&
6508 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6509 			free_extent_map(em);
6510 			return -EIO;
6511 		}
6512 		if (!map->stripes[i].dev) {
6513 			map->stripes[i].dev =
6514 				add_missing_dev(fs_info->fs_devices, devid,
6515 						uuid);
6516 			if (!map->stripes[i].dev) {
6517 				free_extent_map(em);
6518 				return -EIO;
6519 			}
6520 			btrfs_warn(fs_info, "devid %llu uuid %pU is missing",
6521 				   devid, uuid);
6522 		}
6523 		map->stripes[i].dev->in_fs_metadata = 1;
6524 	}
6525 
6526 	write_lock(&map_tree->map_tree.lock);
6527 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6528 	write_unlock(&map_tree->map_tree.lock);
6529 	BUG_ON(ret); /* Tree corruption */
6530 	free_extent_map(em);
6531 
6532 	return 0;
6533 }
6534 
6535 static void fill_device_from_item(struct extent_buffer *leaf,
6536 				 struct btrfs_dev_item *dev_item,
6537 				 struct btrfs_device *device)
6538 {
6539 	unsigned long ptr;
6540 
6541 	device->devid = btrfs_device_id(leaf, dev_item);
6542 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6543 	device->total_bytes = device->disk_total_bytes;
6544 	device->commit_total_bytes = device->disk_total_bytes;
6545 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6546 	device->commit_bytes_used = device->bytes_used;
6547 	device->type = btrfs_device_type(leaf, dev_item);
6548 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6549 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6550 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6551 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6552 	device->is_tgtdev_for_dev_replace = 0;
6553 
6554 	ptr = btrfs_device_uuid(dev_item);
6555 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6556 }
6557 
6558 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6559 						  u8 *fsid)
6560 {
6561 	struct btrfs_fs_devices *fs_devices;
6562 	int ret;
6563 
6564 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6565 
6566 	fs_devices = fs_info->fs_devices->seed;
6567 	while (fs_devices) {
6568 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6569 			return fs_devices;
6570 
6571 		fs_devices = fs_devices->seed;
6572 	}
6573 
6574 	fs_devices = find_fsid(fsid);
6575 	if (!fs_devices) {
6576 		if (!btrfs_test_opt(fs_info, DEGRADED))
6577 			return ERR_PTR(-ENOENT);
6578 
6579 		fs_devices = alloc_fs_devices(fsid);
6580 		if (IS_ERR(fs_devices))
6581 			return fs_devices;
6582 
6583 		fs_devices->seeding = 1;
6584 		fs_devices->opened = 1;
6585 		return fs_devices;
6586 	}
6587 
6588 	fs_devices = clone_fs_devices(fs_devices);
6589 	if (IS_ERR(fs_devices))
6590 		return fs_devices;
6591 
6592 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6593 				   fs_info->bdev_holder);
6594 	if (ret) {
6595 		free_fs_devices(fs_devices);
6596 		fs_devices = ERR_PTR(ret);
6597 		goto out;
6598 	}
6599 
6600 	if (!fs_devices->seeding) {
6601 		__btrfs_close_devices(fs_devices);
6602 		free_fs_devices(fs_devices);
6603 		fs_devices = ERR_PTR(-EINVAL);
6604 		goto out;
6605 	}
6606 
6607 	fs_devices->seed = fs_info->fs_devices->seed;
6608 	fs_info->fs_devices->seed = fs_devices;
6609 out:
6610 	return fs_devices;
6611 }
6612 
6613 static int read_one_dev(struct btrfs_fs_info *fs_info,
6614 			struct extent_buffer *leaf,
6615 			struct btrfs_dev_item *dev_item)
6616 {
6617 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6618 	struct btrfs_device *device;
6619 	u64 devid;
6620 	int ret;
6621 	u8 fs_uuid[BTRFS_UUID_SIZE];
6622 	u8 dev_uuid[BTRFS_UUID_SIZE];
6623 
6624 	devid = btrfs_device_id(leaf, dev_item);
6625 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6626 			   BTRFS_UUID_SIZE);
6627 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6628 			   BTRFS_UUID_SIZE);
6629 
6630 	if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
6631 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6632 		if (IS_ERR(fs_devices))
6633 			return PTR_ERR(fs_devices);
6634 	}
6635 
6636 	device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6637 	if (!device) {
6638 		if (!btrfs_test_opt(fs_info, DEGRADED))
6639 			return -EIO;
6640 
6641 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6642 		if (!device)
6643 			return -ENOMEM;
6644 		btrfs_warn(fs_info, "devid %llu uuid %pU missing",
6645 				devid, dev_uuid);
6646 	} else {
6647 		if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED))
6648 			return -EIO;
6649 
6650 		if(!device->bdev && !device->missing) {
6651 			/*
6652 			 * this happens when a device that was properly setup
6653 			 * in the device info lists suddenly goes bad.
6654 			 * device->bdev is NULL, and so we have to set
6655 			 * device->missing to one here
6656 			 */
6657 			device->fs_devices->missing_devices++;
6658 			device->missing = 1;
6659 		}
6660 
6661 		/* Move the device to its own fs_devices */
6662 		if (device->fs_devices != fs_devices) {
6663 			ASSERT(device->missing);
6664 
6665 			list_move(&device->dev_list, &fs_devices->devices);
6666 			device->fs_devices->num_devices--;
6667 			fs_devices->num_devices++;
6668 
6669 			device->fs_devices->missing_devices--;
6670 			fs_devices->missing_devices++;
6671 
6672 			device->fs_devices = fs_devices;
6673 		}
6674 	}
6675 
6676 	if (device->fs_devices != fs_info->fs_devices) {
6677 		BUG_ON(device->writeable);
6678 		if (device->generation !=
6679 		    btrfs_device_generation(leaf, dev_item))
6680 			return -EINVAL;
6681 	}
6682 
6683 	fill_device_from_item(leaf, dev_item, device);
6684 	device->in_fs_metadata = 1;
6685 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6686 		device->fs_devices->total_rw_bytes += device->total_bytes;
6687 		spin_lock(&fs_info->free_chunk_lock);
6688 		fs_info->free_chunk_space += device->total_bytes -
6689 			device->bytes_used;
6690 		spin_unlock(&fs_info->free_chunk_lock);
6691 	}
6692 	ret = 0;
6693 	return ret;
6694 }
6695 
6696 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6697 {
6698 	struct btrfs_root *root = fs_info->tree_root;
6699 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6700 	struct extent_buffer *sb;
6701 	struct btrfs_disk_key *disk_key;
6702 	struct btrfs_chunk *chunk;
6703 	u8 *array_ptr;
6704 	unsigned long sb_array_offset;
6705 	int ret = 0;
6706 	u32 num_stripes;
6707 	u32 array_size;
6708 	u32 len = 0;
6709 	u32 cur_offset;
6710 	u64 type;
6711 	struct btrfs_key key;
6712 
6713 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6714 	/*
6715 	 * This will create extent buffer of nodesize, superblock size is
6716 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6717 	 * overallocate but we can keep it as-is, only the first page is used.
6718 	 */
6719 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6720 	if (IS_ERR(sb))
6721 		return PTR_ERR(sb);
6722 	set_extent_buffer_uptodate(sb);
6723 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6724 	/*
6725 	 * The sb extent buffer is artificial and just used to read the system array.
6726 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6727 	 * pages up-to-date when the page is larger: extent does not cover the
6728 	 * whole page and consequently check_page_uptodate does not find all
6729 	 * the page's extents up-to-date (the hole beyond sb),
6730 	 * write_extent_buffer then triggers a WARN_ON.
6731 	 *
6732 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6733 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6734 	 * to silence the warning eg. on PowerPC 64.
6735 	 */
6736 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6737 		SetPageUptodate(sb->pages[0]);
6738 
6739 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6740 	array_size = btrfs_super_sys_array_size(super_copy);
6741 
6742 	array_ptr = super_copy->sys_chunk_array;
6743 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6744 	cur_offset = 0;
6745 
6746 	while (cur_offset < array_size) {
6747 		disk_key = (struct btrfs_disk_key *)array_ptr;
6748 		len = sizeof(*disk_key);
6749 		if (cur_offset + len > array_size)
6750 			goto out_short_read;
6751 
6752 		btrfs_disk_key_to_cpu(&key, disk_key);
6753 
6754 		array_ptr += len;
6755 		sb_array_offset += len;
6756 		cur_offset += len;
6757 
6758 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6759 			chunk = (struct btrfs_chunk *)sb_array_offset;
6760 			/*
6761 			 * At least one btrfs_chunk with one stripe must be
6762 			 * present, exact stripe count check comes afterwards
6763 			 */
6764 			len = btrfs_chunk_item_size(1);
6765 			if (cur_offset + len > array_size)
6766 				goto out_short_read;
6767 
6768 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6769 			if (!num_stripes) {
6770 				btrfs_err(fs_info,
6771 					"invalid number of stripes %u in sys_array at offset %u",
6772 					num_stripes, cur_offset);
6773 				ret = -EIO;
6774 				break;
6775 			}
6776 
6777 			type = btrfs_chunk_type(sb, chunk);
6778 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6779 				btrfs_err(fs_info,
6780 			    "invalid chunk type %llu in sys_array at offset %u",
6781 					type, cur_offset);
6782 				ret = -EIO;
6783 				break;
6784 			}
6785 
6786 			len = btrfs_chunk_item_size(num_stripes);
6787 			if (cur_offset + len > array_size)
6788 				goto out_short_read;
6789 
6790 			ret = read_one_chunk(fs_info, &key, sb, chunk);
6791 			if (ret)
6792 				break;
6793 		} else {
6794 			btrfs_err(fs_info,
6795 			    "unexpected item type %u in sys_array at offset %u",
6796 				  (u32)key.type, cur_offset);
6797 			ret = -EIO;
6798 			break;
6799 		}
6800 		array_ptr += len;
6801 		sb_array_offset += len;
6802 		cur_offset += len;
6803 	}
6804 	clear_extent_buffer_uptodate(sb);
6805 	free_extent_buffer_stale(sb);
6806 	return ret;
6807 
6808 out_short_read:
6809 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6810 			len, cur_offset);
6811 	clear_extent_buffer_uptodate(sb);
6812 	free_extent_buffer_stale(sb);
6813 	return -EIO;
6814 }
6815 
6816 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6817 {
6818 	struct btrfs_root *root = fs_info->chunk_root;
6819 	struct btrfs_path *path;
6820 	struct extent_buffer *leaf;
6821 	struct btrfs_key key;
6822 	struct btrfs_key found_key;
6823 	int ret;
6824 	int slot;
6825 	u64 total_dev = 0;
6826 
6827 	path = btrfs_alloc_path();
6828 	if (!path)
6829 		return -ENOMEM;
6830 
6831 	mutex_lock(&uuid_mutex);
6832 	mutex_lock(&fs_info->chunk_mutex);
6833 
6834 	/*
6835 	 * Read all device items, and then all the chunk items. All
6836 	 * device items are found before any chunk item (their object id
6837 	 * is smaller than the lowest possible object id for a chunk
6838 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6839 	 */
6840 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6841 	key.offset = 0;
6842 	key.type = 0;
6843 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6844 	if (ret < 0)
6845 		goto error;
6846 	while (1) {
6847 		leaf = path->nodes[0];
6848 		slot = path->slots[0];
6849 		if (slot >= btrfs_header_nritems(leaf)) {
6850 			ret = btrfs_next_leaf(root, path);
6851 			if (ret == 0)
6852 				continue;
6853 			if (ret < 0)
6854 				goto error;
6855 			break;
6856 		}
6857 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6858 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6859 			struct btrfs_dev_item *dev_item;
6860 			dev_item = btrfs_item_ptr(leaf, slot,
6861 						  struct btrfs_dev_item);
6862 			ret = read_one_dev(fs_info, leaf, dev_item);
6863 			if (ret)
6864 				goto error;
6865 			total_dev++;
6866 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6867 			struct btrfs_chunk *chunk;
6868 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6869 			ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6870 			if (ret)
6871 				goto error;
6872 		}
6873 		path->slots[0]++;
6874 	}
6875 
6876 	/*
6877 	 * After loading chunk tree, we've got all device information,
6878 	 * do another round of validation checks.
6879 	 */
6880 	if (total_dev != fs_info->fs_devices->total_devices) {
6881 		btrfs_err(fs_info,
6882 	   "super_num_devices %llu mismatch with num_devices %llu found here",
6883 			  btrfs_super_num_devices(fs_info->super_copy),
6884 			  total_dev);
6885 		ret = -EINVAL;
6886 		goto error;
6887 	}
6888 	if (btrfs_super_total_bytes(fs_info->super_copy) <
6889 	    fs_info->fs_devices->total_rw_bytes) {
6890 		btrfs_err(fs_info,
6891 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6892 			  btrfs_super_total_bytes(fs_info->super_copy),
6893 			  fs_info->fs_devices->total_rw_bytes);
6894 		ret = -EINVAL;
6895 		goto error;
6896 	}
6897 	ret = 0;
6898 error:
6899 	mutex_unlock(&fs_info->chunk_mutex);
6900 	mutex_unlock(&uuid_mutex);
6901 
6902 	btrfs_free_path(path);
6903 	return ret;
6904 }
6905 
6906 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6907 {
6908 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6909 	struct btrfs_device *device;
6910 
6911 	while (fs_devices) {
6912 		mutex_lock(&fs_devices->device_list_mutex);
6913 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6914 			device->fs_info = fs_info;
6915 		mutex_unlock(&fs_devices->device_list_mutex);
6916 
6917 		fs_devices = fs_devices->seed;
6918 	}
6919 }
6920 
6921 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6922 {
6923 	int i;
6924 
6925 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6926 		btrfs_dev_stat_reset(dev, i);
6927 }
6928 
6929 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6930 {
6931 	struct btrfs_key key;
6932 	struct btrfs_key found_key;
6933 	struct btrfs_root *dev_root = fs_info->dev_root;
6934 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6935 	struct extent_buffer *eb;
6936 	int slot;
6937 	int ret = 0;
6938 	struct btrfs_device *device;
6939 	struct btrfs_path *path = NULL;
6940 	int i;
6941 
6942 	path = btrfs_alloc_path();
6943 	if (!path) {
6944 		ret = -ENOMEM;
6945 		goto out;
6946 	}
6947 
6948 	mutex_lock(&fs_devices->device_list_mutex);
6949 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6950 		int item_size;
6951 		struct btrfs_dev_stats_item *ptr;
6952 
6953 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
6954 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
6955 		key.offset = device->devid;
6956 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6957 		if (ret) {
6958 			__btrfs_reset_dev_stats(device);
6959 			device->dev_stats_valid = 1;
6960 			btrfs_release_path(path);
6961 			continue;
6962 		}
6963 		slot = path->slots[0];
6964 		eb = path->nodes[0];
6965 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6966 		item_size = btrfs_item_size_nr(eb, slot);
6967 
6968 		ptr = btrfs_item_ptr(eb, slot,
6969 				     struct btrfs_dev_stats_item);
6970 
6971 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6972 			if (item_size >= (1 + i) * sizeof(__le64))
6973 				btrfs_dev_stat_set(device, i,
6974 					btrfs_dev_stats_value(eb, ptr, i));
6975 			else
6976 				btrfs_dev_stat_reset(device, i);
6977 		}
6978 
6979 		device->dev_stats_valid = 1;
6980 		btrfs_dev_stat_print_on_load(device);
6981 		btrfs_release_path(path);
6982 	}
6983 	mutex_unlock(&fs_devices->device_list_mutex);
6984 
6985 out:
6986 	btrfs_free_path(path);
6987 	return ret < 0 ? ret : 0;
6988 }
6989 
6990 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6991 				struct btrfs_fs_info *fs_info,
6992 				struct btrfs_device *device)
6993 {
6994 	struct btrfs_root *dev_root = fs_info->dev_root;
6995 	struct btrfs_path *path;
6996 	struct btrfs_key key;
6997 	struct extent_buffer *eb;
6998 	struct btrfs_dev_stats_item *ptr;
6999 	int ret;
7000 	int i;
7001 
7002 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7003 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7004 	key.offset = device->devid;
7005 
7006 	path = btrfs_alloc_path();
7007 	if (!path)
7008 		return -ENOMEM;
7009 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7010 	if (ret < 0) {
7011 		btrfs_warn_in_rcu(fs_info,
7012 			"error %d while searching for dev_stats item for device %s",
7013 			      ret, rcu_str_deref(device->name));
7014 		goto out;
7015 	}
7016 
7017 	if (ret == 0 &&
7018 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7019 		/* need to delete old one and insert a new one */
7020 		ret = btrfs_del_item(trans, dev_root, path);
7021 		if (ret != 0) {
7022 			btrfs_warn_in_rcu(fs_info,
7023 				"delete too small dev_stats item for device %s failed %d",
7024 				      rcu_str_deref(device->name), ret);
7025 			goto out;
7026 		}
7027 		ret = 1;
7028 	}
7029 
7030 	if (ret == 1) {
7031 		/* need to insert a new item */
7032 		btrfs_release_path(path);
7033 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7034 					      &key, sizeof(*ptr));
7035 		if (ret < 0) {
7036 			btrfs_warn_in_rcu(fs_info,
7037 				"insert dev_stats item for device %s failed %d",
7038 				rcu_str_deref(device->name), ret);
7039 			goto out;
7040 		}
7041 	}
7042 
7043 	eb = path->nodes[0];
7044 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7045 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7046 		btrfs_set_dev_stats_value(eb, ptr, i,
7047 					  btrfs_dev_stat_read(device, i));
7048 	btrfs_mark_buffer_dirty(eb);
7049 
7050 out:
7051 	btrfs_free_path(path);
7052 	return ret;
7053 }
7054 
7055 /*
7056  * called from commit_transaction. Writes all changed device stats to disk.
7057  */
7058 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7059 			struct btrfs_fs_info *fs_info)
7060 {
7061 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7062 	struct btrfs_device *device;
7063 	int stats_cnt;
7064 	int ret = 0;
7065 
7066 	mutex_lock(&fs_devices->device_list_mutex);
7067 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7068 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7069 			continue;
7070 
7071 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7072 		ret = update_dev_stat_item(trans, fs_info, device);
7073 		if (!ret)
7074 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7075 	}
7076 	mutex_unlock(&fs_devices->device_list_mutex);
7077 
7078 	return ret;
7079 }
7080 
7081 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7082 {
7083 	btrfs_dev_stat_inc(dev, index);
7084 	btrfs_dev_stat_print_on_error(dev);
7085 }
7086 
7087 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7088 {
7089 	if (!dev->dev_stats_valid)
7090 		return;
7091 	btrfs_err_rl_in_rcu(dev->fs_info,
7092 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7093 			   rcu_str_deref(dev->name),
7094 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7095 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7096 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7097 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7098 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7099 }
7100 
7101 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7102 {
7103 	int i;
7104 
7105 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7106 		if (btrfs_dev_stat_read(dev, i) != 0)
7107 			break;
7108 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7109 		return; /* all values == 0, suppress message */
7110 
7111 	btrfs_info_in_rcu(dev->fs_info,
7112 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7113 	       rcu_str_deref(dev->name),
7114 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7115 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7116 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7117 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7118 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7119 }
7120 
7121 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7122 			struct btrfs_ioctl_get_dev_stats *stats)
7123 {
7124 	struct btrfs_device *dev;
7125 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7126 	int i;
7127 
7128 	mutex_lock(&fs_devices->device_list_mutex);
7129 	dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7130 	mutex_unlock(&fs_devices->device_list_mutex);
7131 
7132 	if (!dev) {
7133 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7134 		return -ENODEV;
7135 	} else if (!dev->dev_stats_valid) {
7136 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7137 		return -ENODEV;
7138 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7139 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7140 			if (stats->nr_items > i)
7141 				stats->values[i] =
7142 					btrfs_dev_stat_read_and_reset(dev, i);
7143 			else
7144 				btrfs_dev_stat_reset(dev, i);
7145 		}
7146 	} else {
7147 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7148 			if (stats->nr_items > i)
7149 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7150 	}
7151 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7152 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7153 	return 0;
7154 }
7155 
7156 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7157 {
7158 	struct buffer_head *bh;
7159 	struct btrfs_super_block *disk_super;
7160 	int copy_num;
7161 
7162 	if (!bdev)
7163 		return;
7164 
7165 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7166 		copy_num++) {
7167 
7168 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7169 			continue;
7170 
7171 		disk_super = (struct btrfs_super_block *)bh->b_data;
7172 
7173 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7174 		set_buffer_dirty(bh);
7175 		sync_dirty_buffer(bh);
7176 		brelse(bh);
7177 	}
7178 
7179 	/* Notify udev that device has changed */
7180 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7181 
7182 	/* Update ctime/mtime for device path for libblkid */
7183 	update_dev_time(device_path);
7184 }
7185 
7186 /*
7187  * Update the size of all devices, which is used for writing out the
7188  * super blocks.
7189  */
7190 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7191 {
7192 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7193 	struct btrfs_device *curr, *next;
7194 
7195 	if (list_empty(&fs_devices->resized_devices))
7196 		return;
7197 
7198 	mutex_lock(&fs_devices->device_list_mutex);
7199 	mutex_lock(&fs_info->chunk_mutex);
7200 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7201 				 resized_list) {
7202 		list_del_init(&curr->resized_list);
7203 		curr->commit_total_bytes = curr->disk_total_bytes;
7204 	}
7205 	mutex_unlock(&fs_info->chunk_mutex);
7206 	mutex_unlock(&fs_devices->device_list_mutex);
7207 }
7208 
7209 /* Must be invoked during the transaction commit */
7210 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7211 					struct btrfs_transaction *transaction)
7212 {
7213 	struct extent_map *em;
7214 	struct map_lookup *map;
7215 	struct btrfs_device *dev;
7216 	int i;
7217 
7218 	if (list_empty(&transaction->pending_chunks))
7219 		return;
7220 
7221 	/* In order to kick the device replace finish process */
7222 	mutex_lock(&fs_info->chunk_mutex);
7223 	list_for_each_entry(em, &transaction->pending_chunks, list) {
7224 		map = em->map_lookup;
7225 
7226 		for (i = 0; i < map->num_stripes; i++) {
7227 			dev = map->stripes[i].dev;
7228 			dev->commit_bytes_used = dev->bytes_used;
7229 		}
7230 	}
7231 	mutex_unlock(&fs_info->chunk_mutex);
7232 }
7233 
7234 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7235 {
7236 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7237 	while (fs_devices) {
7238 		fs_devices->fs_info = fs_info;
7239 		fs_devices = fs_devices->seed;
7240 	}
7241 }
7242 
7243 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7244 {
7245 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7246 	while (fs_devices) {
7247 		fs_devices->fs_info = NULL;
7248 		fs_devices = fs_devices->seed;
7249 	}
7250 }
7251