xref: /openbmc/linux/fs/btrfs/volumes.c (revision 22fd411a)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <asm/div64.h>
27 #include "compat.h"
28 #include "ctree.h"
29 #include "extent_map.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "async-thread.h"
35 
36 struct map_lookup {
37 	u64 type;
38 	int io_align;
39 	int io_width;
40 	int stripe_len;
41 	int sector_size;
42 	int num_stripes;
43 	int sub_stripes;
44 	struct btrfs_bio_stripe stripes[];
45 };
46 
47 static int init_first_rw_device(struct btrfs_trans_handle *trans,
48 				struct btrfs_root *root,
49 				struct btrfs_device *device);
50 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
51 
52 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
53 			    (sizeof(struct btrfs_bio_stripe) * (n)))
54 
55 static DEFINE_MUTEX(uuid_mutex);
56 static LIST_HEAD(fs_uuids);
57 
58 void btrfs_lock_volumes(void)
59 {
60 	mutex_lock(&uuid_mutex);
61 }
62 
63 void btrfs_unlock_volumes(void)
64 {
65 	mutex_unlock(&uuid_mutex);
66 }
67 
68 static void lock_chunks(struct btrfs_root *root)
69 {
70 	mutex_lock(&root->fs_info->chunk_mutex);
71 }
72 
73 static void unlock_chunks(struct btrfs_root *root)
74 {
75 	mutex_unlock(&root->fs_info->chunk_mutex);
76 }
77 
78 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
79 {
80 	struct btrfs_device *device;
81 	WARN_ON(fs_devices->opened);
82 	while (!list_empty(&fs_devices->devices)) {
83 		device = list_entry(fs_devices->devices.next,
84 				    struct btrfs_device, dev_list);
85 		list_del(&device->dev_list);
86 		kfree(device->name);
87 		kfree(device);
88 	}
89 	kfree(fs_devices);
90 }
91 
92 int btrfs_cleanup_fs_uuids(void)
93 {
94 	struct btrfs_fs_devices *fs_devices;
95 
96 	while (!list_empty(&fs_uuids)) {
97 		fs_devices = list_entry(fs_uuids.next,
98 					struct btrfs_fs_devices, list);
99 		list_del(&fs_devices->list);
100 		free_fs_devices(fs_devices);
101 	}
102 	return 0;
103 }
104 
105 static noinline struct btrfs_device *__find_device(struct list_head *head,
106 						   u64 devid, u8 *uuid)
107 {
108 	struct btrfs_device *dev;
109 
110 	list_for_each_entry(dev, head, dev_list) {
111 		if (dev->devid == devid &&
112 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
113 			return dev;
114 		}
115 	}
116 	return NULL;
117 }
118 
119 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
120 {
121 	struct btrfs_fs_devices *fs_devices;
122 
123 	list_for_each_entry(fs_devices, &fs_uuids, list) {
124 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
125 			return fs_devices;
126 	}
127 	return NULL;
128 }
129 
130 static void requeue_list(struct btrfs_pending_bios *pending_bios,
131 			struct bio *head, struct bio *tail)
132 {
133 
134 	struct bio *old_head;
135 
136 	old_head = pending_bios->head;
137 	pending_bios->head = head;
138 	if (pending_bios->tail)
139 		tail->bi_next = old_head;
140 	else
141 		pending_bios->tail = tail;
142 }
143 
144 /*
145  * we try to collect pending bios for a device so we don't get a large
146  * number of procs sending bios down to the same device.  This greatly
147  * improves the schedulers ability to collect and merge the bios.
148  *
149  * But, it also turns into a long list of bios to process and that is sure
150  * to eventually make the worker thread block.  The solution here is to
151  * make some progress and then put this work struct back at the end of
152  * the list if the block device is congested.  This way, multiple devices
153  * can make progress from a single worker thread.
154  */
155 static noinline int run_scheduled_bios(struct btrfs_device *device)
156 {
157 	struct bio *pending;
158 	struct backing_dev_info *bdi;
159 	struct btrfs_fs_info *fs_info;
160 	struct btrfs_pending_bios *pending_bios;
161 	struct bio *tail;
162 	struct bio *cur;
163 	int again = 0;
164 	unsigned long num_run;
165 	unsigned long num_sync_run;
166 	unsigned long batch_run = 0;
167 	unsigned long limit;
168 	unsigned long last_waited = 0;
169 	int force_reg = 0;
170 
171 	bdi = blk_get_backing_dev_info(device->bdev);
172 	fs_info = device->dev_root->fs_info;
173 	limit = btrfs_async_submit_limit(fs_info);
174 	limit = limit * 2 / 3;
175 
176 	/* we want to make sure that every time we switch from the sync
177 	 * list to the normal list, we unplug
178 	 */
179 	num_sync_run = 0;
180 
181 loop:
182 	spin_lock(&device->io_lock);
183 
184 loop_lock:
185 	num_run = 0;
186 
187 	/* take all the bios off the list at once and process them
188 	 * later on (without the lock held).  But, remember the
189 	 * tail and other pointers so the bios can be properly reinserted
190 	 * into the list if we hit congestion
191 	 */
192 	if (!force_reg && device->pending_sync_bios.head) {
193 		pending_bios = &device->pending_sync_bios;
194 		force_reg = 1;
195 	} else {
196 		pending_bios = &device->pending_bios;
197 		force_reg = 0;
198 	}
199 
200 	pending = pending_bios->head;
201 	tail = pending_bios->tail;
202 	WARN_ON(pending && !tail);
203 
204 	/*
205 	 * if pending was null this time around, no bios need processing
206 	 * at all and we can stop.  Otherwise it'll loop back up again
207 	 * and do an additional check so no bios are missed.
208 	 *
209 	 * device->running_pending is used to synchronize with the
210 	 * schedule_bio code.
211 	 */
212 	if (device->pending_sync_bios.head == NULL &&
213 	    device->pending_bios.head == NULL) {
214 		again = 0;
215 		device->running_pending = 0;
216 	} else {
217 		again = 1;
218 		device->running_pending = 1;
219 	}
220 
221 	pending_bios->head = NULL;
222 	pending_bios->tail = NULL;
223 
224 	spin_unlock(&device->io_lock);
225 
226 	/*
227 	 * if we're doing the regular priority list, make sure we unplug
228 	 * for any high prio bios we've sent down
229 	 */
230 	if (pending_bios == &device->pending_bios && num_sync_run > 0) {
231 		num_sync_run = 0;
232 		blk_run_backing_dev(bdi, NULL);
233 	}
234 
235 	while (pending) {
236 
237 		rmb();
238 		/* we want to work on both lists, but do more bios on the
239 		 * sync list than the regular list
240 		 */
241 		if ((num_run > 32 &&
242 		    pending_bios != &device->pending_sync_bios &&
243 		    device->pending_sync_bios.head) ||
244 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
245 		    device->pending_bios.head)) {
246 			spin_lock(&device->io_lock);
247 			requeue_list(pending_bios, pending, tail);
248 			goto loop_lock;
249 		}
250 
251 		cur = pending;
252 		pending = pending->bi_next;
253 		cur->bi_next = NULL;
254 		atomic_dec(&fs_info->nr_async_bios);
255 
256 		if (atomic_read(&fs_info->nr_async_bios) < limit &&
257 		    waitqueue_active(&fs_info->async_submit_wait))
258 			wake_up(&fs_info->async_submit_wait);
259 
260 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
261 
262 		if (cur->bi_rw & REQ_SYNC)
263 			num_sync_run++;
264 
265 		submit_bio(cur->bi_rw, cur);
266 		num_run++;
267 		batch_run++;
268 		if (need_resched()) {
269 			if (num_sync_run) {
270 				blk_run_backing_dev(bdi, NULL);
271 				num_sync_run = 0;
272 			}
273 			cond_resched();
274 		}
275 
276 		/*
277 		 * we made progress, there is more work to do and the bdi
278 		 * is now congested.  Back off and let other work structs
279 		 * run instead
280 		 */
281 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
282 		    fs_info->fs_devices->open_devices > 1) {
283 			struct io_context *ioc;
284 
285 			ioc = current->io_context;
286 
287 			/*
288 			 * the main goal here is that we don't want to
289 			 * block if we're going to be able to submit
290 			 * more requests without blocking.
291 			 *
292 			 * This code does two great things, it pokes into
293 			 * the elevator code from a filesystem _and_
294 			 * it makes assumptions about how batching works.
295 			 */
296 			if (ioc && ioc->nr_batch_requests > 0 &&
297 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
298 			    (last_waited == 0 ||
299 			     ioc->last_waited == last_waited)) {
300 				/*
301 				 * we want to go through our batch of
302 				 * requests and stop.  So, we copy out
303 				 * the ioc->last_waited time and test
304 				 * against it before looping
305 				 */
306 				last_waited = ioc->last_waited;
307 				if (need_resched()) {
308 					if (num_sync_run) {
309 						blk_run_backing_dev(bdi, NULL);
310 						num_sync_run = 0;
311 					}
312 					cond_resched();
313 				}
314 				continue;
315 			}
316 			spin_lock(&device->io_lock);
317 			requeue_list(pending_bios, pending, tail);
318 			device->running_pending = 1;
319 
320 			spin_unlock(&device->io_lock);
321 			btrfs_requeue_work(&device->work);
322 			goto done;
323 		}
324 	}
325 
326 	if (num_sync_run) {
327 		num_sync_run = 0;
328 		blk_run_backing_dev(bdi, NULL);
329 	}
330 	/*
331 	 * IO has already been through a long path to get here.  Checksumming,
332 	 * async helper threads, perhaps compression.  We've done a pretty
333 	 * good job of collecting a batch of IO and should just unplug
334 	 * the device right away.
335 	 *
336 	 * This will help anyone who is waiting on the IO, they might have
337 	 * already unplugged, but managed to do so before the bio they
338 	 * cared about found its way down here.
339 	 */
340 	blk_run_backing_dev(bdi, NULL);
341 
342 	cond_resched();
343 	if (again)
344 		goto loop;
345 
346 	spin_lock(&device->io_lock);
347 	if (device->pending_bios.head || device->pending_sync_bios.head)
348 		goto loop_lock;
349 	spin_unlock(&device->io_lock);
350 
351 done:
352 	return 0;
353 }
354 
355 static void pending_bios_fn(struct btrfs_work *work)
356 {
357 	struct btrfs_device *device;
358 
359 	device = container_of(work, struct btrfs_device, work);
360 	run_scheduled_bios(device);
361 }
362 
363 static noinline int device_list_add(const char *path,
364 			   struct btrfs_super_block *disk_super,
365 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
366 {
367 	struct btrfs_device *device;
368 	struct btrfs_fs_devices *fs_devices;
369 	u64 found_transid = btrfs_super_generation(disk_super);
370 	char *name;
371 
372 	fs_devices = find_fsid(disk_super->fsid);
373 	if (!fs_devices) {
374 		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
375 		if (!fs_devices)
376 			return -ENOMEM;
377 		INIT_LIST_HEAD(&fs_devices->devices);
378 		INIT_LIST_HEAD(&fs_devices->alloc_list);
379 		list_add(&fs_devices->list, &fs_uuids);
380 		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
381 		fs_devices->latest_devid = devid;
382 		fs_devices->latest_trans = found_transid;
383 		mutex_init(&fs_devices->device_list_mutex);
384 		device = NULL;
385 	} else {
386 		device = __find_device(&fs_devices->devices, devid,
387 				       disk_super->dev_item.uuid);
388 	}
389 	if (!device) {
390 		if (fs_devices->opened)
391 			return -EBUSY;
392 
393 		device = kzalloc(sizeof(*device), GFP_NOFS);
394 		if (!device) {
395 			/* we can safely leave the fs_devices entry around */
396 			return -ENOMEM;
397 		}
398 		device->devid = devid;
399 		device->work.func = pending_bios_fn;
400 		memcpy(device->uuid, disk_super->dev_item.uuid,
401 		       BTRFS_UUID_SIZE);
402 		spin_lock_init(&device->io_lock);
403 		device->name = kstrdup(path, GFP_NOFS);
404 		if (!device->name) {
405 			kfree(device);
406 			return -ENOMEM;
407 		}
408 		INIT_LIST_HEAD(&device->dev_alloc_list);
409 
410 		mutex_lock(&fs_devices->device_list_mutex);
411 		list_add(&device->dev_list, &fs_devices->devices);
412 		mutex_unlock(&fs_devices->device_list_mutex);
413 
414 		device->fs_devices = fs_devices;
415 		fs_devices->num_devices++;
416 	} else if (!device->name || strcmp(device->name, path)) {
417 		name = kstrdup(path, GFP_NOFS);
418 		if (!name)
419 			return -ENOMEM;
420 		kfree(device->name);
421 		device->name = name;
422 		if (device->missing) {
423 			fs_devices->missing_devices--;
424 			device->missing = 0;
425 		}
426 	}
427 
428 	if (found_transid > fs_devices->latest_trans) {
429 		fs_devices->latest_devid = devid;
430 		fs_devices->latest_trans = found_transid;
431 	}
432 	*fs_devices_ret = fs_devices;
433 	return 0;
434 }
435 
436 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
437 {
438 	struct btrfs_fs_devices *fs_devices;
439 	struct btrfs_device *device;
440 	struct btrfs_device *orig_dev;
441 
442 	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
443 	if (!fs_devices)
444 		return ERR_PTR(-ENOMEM);
445 
446 	INIT_LIST_HEAD(&fs_devices->devices);
447 	INIT_LIST_HEAD(&fs_devices->alloc_list);
448 	INIT_LIST_HEAD(&fs_devices->list);
449 	mutex_init(&fs_devices->device_list_mutex);
450 	fs_devices->latest_devid = orig->latest_devid;
451 	fs_devices->latest_trans = orig->latest_trans;
452 	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
453 
454 	mutex_lock(&orig->device_list_mutex);
455 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
456 		device = kzalloc(sizeof(*device), GFP_NOFS);
457 		if (!device)
458 			goto error;
459 
460 		device->name = kstrdup(orig_dev->name, GFP_NOFS);
461 		if (!device->name) {
462 			kfree(device);
463 			goto error;
464 		}
465 
466 		device->devid = orig_dev->devid;
467 		device->work.func = pending_bios_fn;
468 		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
469 		spin_lock_init(&device->io_lock);
470 		INIT_LIST_HEAD(&device->dev_list);
471 		INIT_LIST_HEAD(&device->dev_alloc_list);
472 
473 		list_add(&device->dev_list, &fs_devices->devices);
474 		device->fs_devices = fs_devices;
475 		fs_devices->num_devices++;
476 	}
477 	mutex_unlock(&orig->device_list_mutex);
478 	return fs_devices;
479 error:
480 	mutex_unlock(&orig->device_list_mutex);
481 	free_fs_devices(fs_devices);
482 	return ERR_PTR(-ENOMEM);
483 }
484 
485 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
486 {
487 	struct btrfs_device *device, *next;
488 
489 	mutex_lock(&uuid_mutex);
490 again:
491 	mutex_lock(&fs_devices->device_list_mutex);
492 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
493 		if (device->in_fs_metadata)
494 			continue;
495 
496 		if (device->bdev) {
497 			blkdev_put(device->bdev, device->mode);
498 			device->bdev = NULL;
499 			fs_devices->open_devices--;
500 		}
501 		if (device->writeable) {
502 			list_del_init(&device->dev_alloc_list);
503 			device->writeable = 0;
504 			fs_devices->rw_devices--;
505 		}
506 		list_del_init(&device->dev_list);
507 		fs_devices->num_devices--;
508 		kfree(device->name);
509 		kfree(device);
510 	}
511 	mutex_unlock(&fs_devices->device_list_mutex);
512 
513 	if (fs_devices->seed) {
514 		fs_devices = fs_devices->seed;
515 		goto again;
516 	}
517 
518 	mutex_unlock(&uuid_mutex);
519 	return 0;
520 }
521 
522 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
523 {
524 	struct btrfs_device *device;
525 
526 	if (--fs_devices->opened > 0)
527 		return 0;
528 
529 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
530 		if (device->bdev) {
531 			blkdev_put(device->bdev, device->mode);
532 			fs_devices->open_devices--;
533 		}
534 		if (device->writeable) {
535 			list_del_init(&device->dev_alloc_list);
536 			fs_devices->rw_devices--;
537 		}
538 
539 		device->bdev = NULL;
540 		device->writeable = 0;
541 		device->in_fs_metadata = 0;
542 	}
543 	WARN_ON(fs_devices->open_devices);
544 	WARN_ON(fs_devices->rw_devices);
545 	fs_devices->opened = 0;
546 	fs_devices->seeding = 0;
547 
548 	return 0;
549 }
550 
551 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
552 {
553 	struct btrfs_fs_devices *seed_devices = NULL;
554 	int ret;
555 
556 	mutex_lock(&uuid_mutex);
557 	ret = __btrfs_close_devices(fs_devices);
558 	if (!fs_devices->opened) {
559 		seed_devices = fs_devices->seed;
560 		fs_devices->seed = NULL;
561 	}
562 	mutex_unlock(&uuid_mutex);
563 
564 	while (seed_devices) {
565 		fs_devices = seed_devices;
566 		seed_devices = fs_devices->seed;
567 		__btrfs_close_devices(fs_devices);
568 		free_fs_devices(fs_devices);
569 	}
570 	return ret;
571 }
572 
573 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
574 				fmode_t flags, void *holder)
575 {
576 	struct block_device *bdev;
577 	struct list_head *head = &fs_devices->devices;
578 	struct btrfs_device *device;
579 	struct block_device *latest_bdev = NULL;
580 	struct buffer_head *bh;
581 	struct btrfs_super_block *disk_super;
582 	u64 latest_devid = 0;
583 	u64 latest_transid = 0;
584 	u64 devid;
585 	int seeding = 1;
586 	int ret = 0;
587 
588 	flags |= FMODE_EXCL;
589 
590 	list_for_each_entry(device, head, dev_list) {
591 		if (device->bdev)
592 			continue;
593 		if (!device->name)
594 			continue;
595 
596 		bdev = blkdev_get_by_path(device->name, flags, holder);
597 		if (IS_ERR(bdev)) {
598 			printk(KERN_INFO "open %s failed\n", device->name);
599 			goto error;
600 		}
601 		set_blocksize(bdev, 4096);
602 
603 		bh = btrfs_read_dev_super(bdev);
604 		if (!bh) {
605 			ret = -EINVAL;
606 			goto error_close;
607 		}
608 
609 		disk_super = (struct btrfs_super_block *)bh->b_data;
610 		devid = btrfs_stack_device_id(&disk_super->dev_item);
611 		if (devid != device->devid)
612 			goto error_brelse;
613 
614 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
615 			   BTRFS_UUID_SIZE))
616 			goto error_brelse;
617 
618 		device->generation = btrfs_super_generation(disk_super);
619 		if (!latest_transid || device->generation > latest_transid) {
620 			latest_devid = devid;
621 			latest_transid = device->generation;
622 			latest_bdev = bdev;
623 		}
624 
625 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
626 			device->writeable = 0;
627 		} else {
628 			device->writeable = !bdev_read_only(bdev);
629 			seeding = 0;
630 		}
631 
632 		device->bdev = bdev;
633 		device->in_fs_metadata = 0;
634 		device->mode = flags;
635 
636 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
637 			fs_devices->rotating = 1;
638 
639 		fs_devices->open_devices++;
640 		if (device->writeable) {
641 			fs_devices->rw_devices++;
642 			list_add(&device->dev_alloc_list,
643 				 &fs_devices->alloc_list);
644 		}
645 		continue;
646 
647 error_brelse:
648 		brelse(bh);
649 error_close:
650 		blkdev_put(bdev, flags);
651 error:
652 		continue;
653 	}
654 	if (fs_devices->open_devices == 0) {
655 		ret = -EIO;
656 		goto out;
657 	}
658 	fs_devices->seeding = seeding;
659 	fs_devices->opened = 1;
660 	fs_devices->latest_bdev = latest_bdev;
661 	fs_devices->latest_devid = latest_devid;
662 	fs_devices->latest_trans = latest_transid;
663 	fs_devices->total_rw_bytes = 0;
664 out:
665 	return ret;
666 }
667 
668 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
669 		       fmode_t flags, void *holder)
670 {
671 	int ret;
672 
673 	mutex_lock(&uuid_mutex);
674 	if (fs_devices->opened) {
675 		fs_devices->opened++;
676 		ret = 0;
677 	} else {
678 		ret = __btrfs_open_devices(fs_devices, flags, holder);
679 	}
680 	mutex_unlock(&uuid_mutex);
681 	return ret;
682 }
683 
684 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
685 			  struct btrfs_fs_devices **fs_devices_ret)
686 {
687 	struct btrfs_super_block *disk_super;
688 	struct block_device *bdev;
689 	struct buffer_head *bh;
690 	int ret;
691 	u64 devid;
692 	u64 transid;
693 
694 	mutex_lock(&uuid_mutex);
695 
696 	flags |= FMODE_EXCL;
697 	bdev = blkdev_get_by_path(path, flags, holder);
698 
699 	if (IS_ERR(bdev)) {
700 		ret = PTR_ERR(bdev);
701 		goto error;
702 	}
703 
704 	ret = set_blocksize(bdev, 4096);
705 	if (ret)
706 		goto error_close;
707 	bh = btrfs_read_dev_super(bdev);
708 	if (!bh) {
709 		ret = -EINVAL;
710 		goto error_close;
711 	}
712 	disk_super = (struct btrfs_super_block *)bh->b_data;
713 	devid = btrfs_stack_device_id(&disk_super->dev_item);
714 	transid = btrfs_super_generation(disk_super);
715 	if (disk_super->label[0])
716 		printk(KERN_INFO "device label %s ", disk_super->label);
717 	else {
718 		/* FIXME, make a readl uuid parser */
719 		printk(KERN_INFO "device fsid %llx-%llx ",
720 		       *(unsigned long long *)disk_super->fsid,
721 		       *(unsigned long long *)(disk_super->fsid + 8));
722 	}
723 	printk(KERN_CONT "devid %llu transid %llu %s\n",
724 	       (unsigned long long)devid, (unsigned long long)transid, path);
725 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
726 
727 	brelse(bh);
728 error_close:
729 	blkdev_put(bdev, flags);
730 error:
731 	mutex_unlock(&uuid_mutex);
732 	return ret;
733 }
734 
735 /* helper to account the used device space in the range */
736 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
737 				   u64 end, u64 *length)
738 {
739 	struct btrfs_key key;
740 	struct btrfs_root *root = device->dev_root;
741 	struct btrfs_dev_extent *dev_extent;
742 	struct btrfs_path *path;
743 	u64 extent_end;
744 	int ret;
745 	int slot;
746 	struct extent_buffer *l;
747 
748 	*length = 0;
749 
750 	if (start >= device->total_bytes)
751 		return 0;
752 
753 	path = btrfs_alloc_path();
754 	if (!path)
755 		return -ENOMEM;
756 	path->reada = 2;
757 
758 	key.objectid = device->devid;
759 	key.offset = start;
760 	key.type = BTRFS_DEV_EXTENT_KEY;
761 
762 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
763 	if (ret < 0)
764 		goto out;
765 	if (ret > 0) {
766 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
767 		if (ret < 0)
768 			goto out;
769 	}
770 
771 	while (1) {
772 		l = path->nodes[0];
773 		slot = path->slots[0];
774 		if (slot >= btrfs_header_nritems(l)) {
775 			ret = btrfs_next_leaf(root, path);
776 			if (ret == 0)
777 				continue;
778 			if (ret < 0)
779 				goto out;
780 
781 			break;
782 		}
783 		btrfs_item_key_to_cpu(l, &key, slot);
784 
785 		if (key.objectid < device->devid)
786 			goto next;
787 
788 		if (key.objectid > device->devid)
789 			break;
790 
791 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
792 			goto next;
793 
794 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
795 		extent_end = key.offset + btrfs_dev_extent_length(l,
796 								  dev_extent);
797 		if (key.offset <= start && extent_end > end) {
798 			*length = end - start + 1;
799 			break;
800 		} else if (key.offset <= start && extent_end > start)
801 			*length += extent_end - start;
802 		else if (key.offset > start && extent_end <= end)
803 			*length += extent_end - key.offset;
804 		else if (key.offset > start && key.offset <= end) {
805 			*length += end - key.offset + 1;
806 			break;
807 		} else if (key.offset > end)
808 			break;
809 
810 next:
811 		path->slots[0]++;
812 	}
813 	ret = 0;
814 out:
815 	btrfs_free_path(path);
816 	return ret;
817 }
818 
819 /*
820  * find_free_dev_extent - find free space in the specified device
821  * @trans:	transaction handler
822  * @device:	the device which we search the free space in
823  * @num_bytes:	the size of the free space that we need
824  * @start:	store the start of the free space.
825  * @len:	the size of the free space. that we find, or the size of the max
826  * 		free space if we don't find suitable free space
827  *
828  * this uses a pretty simple search, the expectation is that it is
829  * called very infrequently and that a given device has a small number
830  * of extents
831  *
832  * @start is used to store the start of the free space if we find. But if we
833  * don't find suitable free space, it will be used to store the start position
834  * of the max free space.
835  *
836  * @len is used to store the size of the free space that we find.
837  * But if we don't find suitable free space, it is used to store the size of
838  * the max free space.
839  */
840 int find_free_dev_extent(struct btrfs_trans_handle *trans,
841 			 struct btrfs_device *device, u64 num_bytes,
842 			 u64 *start, u64 *len)
843 {
844 	struct btrfs_key key;
845 	struct btrfs_root *root = device->dev_root;
846 	struct btrfs_dev_extent *dev_extent;
847 	struct btrfs_path *path;
848 	u64 hole_size;
849 	u64 max_hole_start;
850 	u64 max_hole_size;
851 	u64 extent_end;
852 	u64 search_start;
853 	u64 search_end = device->total_bytes;
854 	int ret;
855 	int slot;
856 	struct extent_buffer *l;
857 
858 	/* FIXME use last free of some kind */
859 
860 	/* we don't want to overwrite the superblock on the drive,
861 	 * so we make sure to start at an offset of at least 1MB
862 	 */
863 	search_start = 1024 * 1024;
864 
865 	if (root->fs_info->alloc_start + num_bytes <= search_end)
866 		search_start = max(root->fs_info->alloc_start, search_start);
867 
868 	max_hole_start = search_start;
869 	max_hole_size = 0;
870 
871 	if (search_start >= search_end) {
872 		ret = -ENOSPC;
873 		goto error;
874 	}
875 
876 	path = btrfs_alloc_path();
877 	if (!path) {
878 		ret = -ENOMEM;
879 		goto error;
880 	}
881 	path->reada = 2;
882 
883 	key.objectid = device->devid;
884 	key.offset = search_start;
885 	key.type = BTRFS_DEV_EXTENT_KEY;
886 
887 	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
888 	if (ret < 0)
889 		goto out;
890 	if (ret > 0) {
891 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
892 		if (ret < 0)
893 			goto out;
894 	}
895 
896 	while (1) {
897 		l = path->nodes[0];
898 		slot = path->slots[0];
899 		if (slot >= btrfs_header_nritems(l)) {
900 			ret = btrfs_next_leaf(root, path);
901 			if (ret == 0)
902 				continue;
903 			if (ret < 0)
904 				goto out;
905 
906 			break;
907 		}
908 		btrfs_item_key_to_cpu(l, &key, slot);
909 
910 		if (key.objectid < device->devid)
911 			goto next;
912 
913 		if (key.objectid > device->devid)
914 			break;
915 
916 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
917 			goto next;
918 
919 		if (key.offset > search_start) {
920 			hole_size = key.offset - search_start;
921 
922 			if (hole_size > max_hole_size) {
923 				max_hole_start = search_start;
924 				max_hole_size = hole_size;
925 			}
926 
927 			/*
928 			 * If this free space is greater than which we need,
929 			 * it must be the max free space that we have found
930 			 * until now, so max_hole_start must point to the start
931 			 * of this free space and the length of this free space
932 			 * is stored in max_hole_size. Thus, we return
933 			 * max_hole_start and max_hole_size and go back to the
934 			 * caller.
935 			 */
936 			if (hole_size >= num_bytes) {
937 				ret = 0;
938 				goto out;
939 			}
940 		}
941 
942 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
943 		extent_end = key.offset + btrfs_dev_extent_length(l,
944 								  dev_extent);
945 		if (extent_end > search_start)
946 			search_start = extent_end;
947 next:
948 		path->slots[0]++;
949 		cond_resched();
950 	}
951 
952 	hole_size = search_end- search_start;
953 	if (hole_size > max_hole_size) {
954 		max_hole_start = search_start;
955 		max_hole_size = hole_size;
956 	}
957 
958 	/* See above. */
959 	if (hole_size < num_bytes)
960 		ret = -ENOSPC;
961 	else
962 		ret = 0;
963 
964 out:
965 	btrfs_free_path(path);
966 error:
967 	*start = max_hole_start;
968 	if (len)
969 		*len = max_hole_size;
970 	return ret;
971 }
972 
973 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
974 			  struct btrfs_device *device,
975 			  u64 start)
976 {
977 	int ret;
978 	struct btrfs_path *path;
979 	struct btrfs_root *root = device->dev_root;
980 	struct btrfs_key key;
981 	struct btrfs_key found_key;
982 	struct extent_buffer *leaf = NULL;
983 	struct btrfs_dev_extent *extent = NULL;
984 
985 	path = btrfs_alloc_path();
986 	if (!path)
987 		return -ENOMEM;
988 
989 	key.objectid = device->devid;
990 	key.offset = start;
991 	key.type = BTRFS_DEV_EXTENT_KEY;
992 
993 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
994 	if (ret > 0) {
995 		ret = btrfs_previous_item(root, path, key.objectid,
996 					  BTRFS_DEV_EXTENT_KEY);
997 		BUG_ON(ret);
998 		leaf = path->nodes[0];
999 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1000 		extent = btrfs_item_ptr(leaf, path->slots[0],
1001 					struct btrfs_dev_extent);
1002 		BUG_ON(found_key.offset > start || found_key.offset +
1003 		       btrfs_dev_extent_length(leaf, extent) < start);
1004 		ret = 0;
1005 	} else if (ret == 0) {
1006 		leaf = path->nodes[0];
1007 		extent = btrfs_item_ptr(leaf, path->slots[0],
1008 					struct btrfs_dev_extent);
1009 	}
1010 	BUG_ON(ret);
1011 
1012 	if (device->bytes_used > 0)
1013 		device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
1014 	ret = btrfs_del_item(trans, root, path);
1015 	BUG_ON(ret);
1016 
1017 	btrfs_free_path(path);
1018 	return ret;
1019 }
1020 
1021 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1022 			   struct btrfs_device *device,
1023 			   u64 chunk_tree, u64 chunk_objectid,
1024 			   u64 chunk_offset, u64 start, u64 num_bytes)
1025 {
1026 	int ret;
1027 	struct btrfs_path *path;
1028 	struct btrfs_root *root = device->dev_root;
1029 	struct btrfs_dev_extent *extent;
1030 	struct extent_buffer *leaf;
1031 	struct btrfs_key key;
1032 
1033 	WARN_ON(!device->in_fs_metadata);
1034 	path = btrfs_alloc_path();
1035 	if (!path)
1036 		return -ENOMEM;
1037 
1038 	key.objectid = device->devid;
1039 	key.offset = start;
1040 	key.type = BTRFS_DEV_EXTENT_KEY;
1041 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1042 				      sizeof(*extent));
1043 	BUG_ON(ret);
1044 
1045 	leaf = path->nodes[0];
1046 	extent = btrfs_item_ptr(leaf, path->slots[0],
1047 				struct btrfs_dev_extent);
1048 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1049 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1050 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1051 
1052 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1053 		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1054 		    BTRFS_UUID_SIZE);
1055 
1056 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1057 	btrfs_mark_buffer_dirty(leaf);
1058 	btrfs_free_path(path);
1059 	return ret;
1060 }
1061 
1062 static noinline int find_next_chunk(struct btrfs_root *root,
1063 				    u64 objectid, u64 *offset)
1064 {
1065 	struct btrfs_path *path;
1066 	int ret;
1067 	struct btrfs_key key;
1068 	struct btrfs_chunk *chunk;
1069 	struct btrfs_key found_key;
1070 
1071 	path = btrfs_alloc_path();
1072 	BUG_ON(!path);
1073 
1074 	key.objectid = objectid;
1075 	key.offset = (u64)-1;
1076 	key.type = BTRFS_CHUNK_ITEM_KEY;
1077 
1078 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1079 	if (ret < 0)
1080 		goto error;
1081 
1082 	BUG_ON(ret == 0);
1083 
1084 	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1085 	if (ret) {
1086 		*offset = 0;
1087 	} else {
1088 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1089 				      path->slots[0]);
1090 		if (found_key.objectid != objectid)
1091 			*offset = 0;
1092 		else {
1093 			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1094 					       struct btrfs_chunk);
1095 			*offset = found_key.offset +
1096 				btrfs_chunk_length(path->nodes[0], chunk);
1097 		}
1098 	}
1099 	ret = 0;
1100 error:
1101 	btrfs_free_path(path);
1102 	return ret;
1103 }
1104 
1105 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1106 {
1107 	int ret;
1108 	struct btrfs_key key;
1109 	struct btrfs_key found_key;
1110 	struct btrfs_path *path;
1111 
1112 	root = root->fs_info->chunk_root;
1113 
1114 	path = btrfs_alloc_path();
1115 	if (!path)
1116 		return -ENOMEM;
1117 
1118 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1119 	key.type = BTRFS_DEV_ITEM_KEY;
1120 	key.offset = (u64)-1;
1121 
1122 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1123 	if (ret < 0)
1124 		goto error;
1125 
1126 	BUG_ON(ret == 0);
1127 
1128 	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1129 				  BTRFS_DEV_ITEM_KEY);
1130 	if (ret) {
1131 		*objectid = 1;
1132 	} else {
1133 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1134 				      path->slots[0]);
1135 		*objectid = found_key.offset + 1;
1136 	}
1137 	ret = 0;
1138 error:
1139 	btrfs_free_path(path);
1140 	return ret;
1141 }
1142 
1143 /*
1144  * the device information is stored in the chunk root
1145  * the btrfs_device struct should be fully filled in
1146  */
1147 int btrfs_add_device(struct btrfs_trans_handle *trans,
1148 		     struct btrfs_root *root,
1149 		     struct btrfs_device *device)
1150 {
1151 	int ret;
1152 	struct btrfs_path *path;
1153 	struct btrfs_dev_item *dev_item;
1154 	struct extent_buffer *leaf;
1155 	struct btrfs_key key;
1156 	unsigned long ptr;
1157 
1158 	root = root->fs_info->chunk_root;
1159 
1160 	path = btrfs_alloc_path();
1161 	if (!path)
1162 		return -ENOMEM;
1163 
1164 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1165 	key.type = BTRFS_DEV_ITEM_KEY;
1166 	key.offset = device->devid;
1167 
1168 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1169 				      sizeof(*dev_item));
1170 	if (ret)
1171 		goto out;
1172 
1173 	leaf = path->nodes[0];
1174 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1175 
1176 	btrfs_set_device_id(leaf, dev_item, device->devid);
1177 	btrfs_set_device_generation(leaf, dev_item, 0);
1178 	btrfs_set_device_type(leaf, dev_item, device->type);
1179 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1180 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1181 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1182 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1183 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1184 	btrfs_set_device_group(leaf, dev_item, 0);
1185 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1186 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1187 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1188 
1189 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1190 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1191 	ptr = (unsigned long)btrfs_device_fsid(dev_item);
1192 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1193 	btrfs_mark_buffer_dirty(leaf);
1194 
1195 	ret = 0;
1196 out:
1197 	btrfs_free_path(path);
1198 	return ret;
1199 }
1200 
1201 static int btrfs_rm_dev_item(struct btrfs_root *root,
1202 			     struct btrfs_device *device)
1203 {
1204 	int ret;
1205 	struct btrfs_path *path;
1206 	struct btrfs_key key;
1207 	struct btrfs_trans_handle *trans;
1208 
1209 	root = root->fs_info->chunk_root;
1210 
1211 	path = btrfs_alloc_path();
1212 	if (!path)
1213 		return -ENOMEM;
1214 
1215 	trans = btrfs_start_transaction(root, 0);
1216 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1217 	key.type = BTRFS_DEV_ITEM_KEY;
1218 	key.offset = device->devid;
1219 	lock_chunks(root);
1220 
1221 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1222 	if (ret < 0)
1223 		goto out;
1224 
1225 	if (ret > 0) {
1226 		ret = -ENOENT;
1227 		goto out;
1228 	}
1229 
1230 	ret = btrfs_del_item(trans, root, path);
1231 	if (ret)
1232 		goto out;
1233 out:
1234 	btrfs_free_path(path);
1235 	unlock_chunks(root);
1236 	btrfs_commit_transaction(trans, root);
1237 	return ret;
1238 }
1239 
1240 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1241 {
1242 	struct btrfs_device *device;
1243 	struct btrfs_device *next_device;
1244 	struct block_device *bdev;
1245 	struct buffer_head *bh = NULL;
1246 	struct btrfs_super_block *disk_super;
1247 	u64 all_avail;
1248 	u64 devid;
1249 	u64 num_devices;
1250 	u8 *dev_uuid;
1251 	int ret = 0;
1252 
1253 	mutex_lock(&uuid_mutex);
1254 	mutex_lock(&root->fs_info->volume_mutex);
1255 
1256 	all_avail = root->fs_info->avail_data_alloc_bits |
1257 		root->fs_info->avail_system_alloc_bits |
1258 		root->fs_info->avail_metadata_alloc_bits;
1259 
1260 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1261 	    root->fs_info->fs_devices->num_devices <= 4) {
1262 		printk(KERN_ERR "btrfs: unable to go below four devices "
1263 		       "on raid10\n");
1264 		ret = -EINVAL;
1265 		goto out;
1266 	}
1267 
1268 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1269 	    root->fs_info->fs_devices->num_devices <= 2) {
1270 		printk(KERN_ERR "btrfs: unable to go below two "
1271 		       "devices on raid1\n");
1272 		ret = -EINVAL;
1273 		goto out;
1274 	}
1275 
1276 	if (strcmp(device_path, "missing") == 0) {
1277 		struct list_head *devices;
1278 		struct btrfs_device *tmp;
1279 
1280 		device = NULL;
1281 		devices = &root->fs_info->fs_devices->devices;
1282 		mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1283 		list_for_each_entry(tmp, devices, dev_list) {
1284 			if (tmp->in_fs_metadata && !tmp->bdev) {
1285 				device = tmp;
1286 				break;
1287 			}
1288 		}
1289 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1290 		bdev = NULL;
1291 		bh = NULL;
1292 		disk_super = NULL;
1293 		if (!device) {
1294 			printk(KERN_ERR "btrfs: no missing devices found to "
1295 			       "remove\n");
1296 			goto out;
1297 		}
1298 	} else {
1299 		bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1300 					  root->fs_info->bdev_holder);
1301 		if (IS_ERR(bdev)) {
1302 			ret = PTR_ERR(bdev);
1303 			goto out;
1304 		}
1305 
1306 		set_blocksize(bdev, 4096);
1307 		bh = btrfs_read_dev_super(bdev);
1308 		if (!bh) {
1309 			ret = -EINVAL;
1310 			goto error_close;
1311 		}
1312 		disk_super = (struct btrfs_super_block *)bh->b_data;
1313 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1314 		dev_uuid = disk_super->dev_item.uuid;
1315 		device = btrfs_find_device(root, devid, dev_uuid,
1316 					   disk_super->fsid);
1317 		if (!device) {
1318 			ret = -ENOENT;
1319 			goto error_brelse;
1320 		}
1321 	}
1322 
1323 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1324 		printk(KERN_ERR "btrfs: unable to remove the only writeable "
1325 		       "device\n");
1326 		ret = -EINVAL;
1327 		goto error_brelse;
1328 	}
1329 
1330 	if (device->writeable) {
1331 		list_del_init(&device->dev_alloc_list);
1332 		root->fs_info->fs_devices->rw_devices--;
1333 	}
1334 
1335 	ret = btrfs_shrink_device(device, 0);
1336 	if (ret)
1337 		goto error_brelse;
1338 
1339 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1340 	if (ret)
1341 		goto error_brelse;
1342 
1343 	device->in_fs_metadata = 0;
1344 
1345 	/*
1346 	 * the device list mutex makes sure that we don't change
1347 	 * the device list while someone else is writing out all
1348 	 * the device supers.
1349 	 */
1350 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1351 	list_del_init(&device->dev_list);
1352 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1353 
1354 	device->fs_devices->num_devices--;
1355 
1356 	if (device->missing)
1357 		root->fs_info->fs_devices->missing_devices--;
1358 
1359 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1360 				 struct btrfs_device, dev_list);
1361 	if (device->bdev == root->fs_info->sb->s_bdev)
1362 		root->fs_info->sb->s_bdev = next_device->bdev;
1363 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1364 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1365 
1366 	if (device->bdev) {
1367 		blkdev_put(device->bdev, device->mode);
1368 		device->bdev = NULL;
1369 		device->fs_devices->open_devices--;
1370 	}
1371 
1372 	num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1373 	btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1374 
1375 	if (device->fs_devices->open_devices == 0) {
1376 		struct btrfs_fs_devices *fs_devices;
1377 		fs_devices = root->fs_info->fs_devices;
1378 		while (fs_devices) {
1379 			if (fs_devices->seed == device->fs_devices)
1380 				break;
1381 			fs_devices = fs_devices->seed;
1382 		}
1383 		fs_devices->seed = device->fs_devices->seed;
1384 		device->fs_devices->seed = NULL;
1385 		__btrfs_close_devices(device->fs_devices);
1386 		free_fs_devices(device->fs_devices);
1387 	}
1388 
1389 	/*
1390 	 * at this point, the device is zero sized.  We want to
1391 	 * remove it from the devices list and zero out the old super
1392 	 */
1393 	if (device->writeable) {
1394 		/* make sure this device isn't detected as part of
1395 		 * the FS anymore
1396 		 */
1397 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1398 		set_buffer_dirty(bh);
1399 		sync_dirty_buffer(bh);
1400 	}
1401 
1402 	kfree(device->name);
1403 	kfree(device);
1404 	ret = 0;
1405 
1406 error_brelse:
1407 	brelse(bh);
1408 error_close:
1409 	if (bdev)
1410 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1411 out:
1412 	mutex_unlock(&root->fs_info->volume_mutex);
1413 	mutex_unlock(&uuid_mutex);
1414 	return ret;
1415 }
1416 
1417 /*
1418  * does all the dirty work required for changing file system's UUID.
1419  */
1420 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1421 				struct btrfs_root *root)
1422 {
1423 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1424 	struct btrfs_fs_devices *old_devices;
1425 	struct btrfs_fs_devices *seed_devices;
1426 	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1427 	struct btrfs_device *device;
1428 	u64 super_flags;
1429 
1430 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1431 	if (!fs_devices->seeding)
1432 		return -EINVAL;
1433 
1434 	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1435 	if (!seed_devices)
1436 		return -ENOMEM;
1437 
1438 	old_devices = clone_fs_devices(fs_devices);
1439 	if (IS_ERR(old_devices)) {
1440 		kfree(seed_devices);
1441 		return PTR_ERR(old_devices);
1442 	}
1443 
1444 	list_add(&old_devices->list, &fs_uuids);
1445 
1446 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1447 	seed_devices->opened = 1;
1448 	INIT_LIST_HEAD(&seed_devices->devices);
1449 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1450 	mutex_init(&seed_devices->device_list_mutex);
1451 	list_splice_init(&fs_devices->devices, &seed_devices->devices);
1452 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1453 	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1454 		device->fs_devices = seed_devices;
1455 	}
1456 
1457 	fs_devices->seeding = 0;
1458 	fs_devices->num_devices = 0;
1459 	fs_devices->open_devices = 0;
1460 	fs_devices->seed = seed_devices;
1461 
1462 	generate_random_uuid(fs_devices->fsid);
1463 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1464 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1465 	super_flags = btrfs_super_flags(disk_super) &
1466 		      ~BTRFS_SUPER_FLAG_SEEDING;
1467 	btrfs_set_super_flags(disk_super, super_flags);
1468 
1469 	return 0;
1470 }
1471 
1472 /*
1473  * strore the expected generation for seed devices in device items.
1474  */
1475 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1476 			       struct btrfs_root *root)
1477 {
1478 	struct btrfs_path *path;
1479 	struct extent_buffer *leaf;
1480 	struct btrfs_dev_item *dev_item;
1481 	struct btrfs_device *device;
1482 	struct btrfs_key key;
1483 	u8 fs_uuid[BTRFS_UUID_SIZE];
1484 	u8 dev_uuid[BTRFS_UUID_SIZE];
1485 	u64 devid;
1486 	int ret;
1487 
1488 	path = btrfs_alloc_path();
1489 	if (!path)
1490 		return -ENOMEM;
1491 
1492 	root = root->fs_info->chunk_root;
1493 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1494 	key.offset = 0;
1495 	key.type = BTRFS_DEV_ITEM_KEY;
1496 
1497 	while (1) {
1498 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1499 		if (ret < 0)
1500 			goto error;
1501 
1502 		leaf = path->nodes[0];
1503 next_slot:
1504 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1505 			ret = btrfs_next_leaf(root, path);
1506 			if (ret > 0)
1507 				break;
1508 			if (ret < 0)
1509 				goto error;
1510 			leaf = path->nodes[0];
1511 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1512 			btrfs_release_path(root, path);
1513 			continue;
1514 		}
1515 
1516 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1517 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1518 		    key.type != BTRFS_DEV_ITEM_KEY)
1519 			break;
1520 
1521 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
1522 					  struct btrfs_dev_item);
1523 		devid = btrfs_device_id(leaf, dev_item);
1524 		read_extent_buffer(leaf, dev_uuid,
1525 				   (unsigned long)btrfs_device_uuid(dev_item),
1526 				   BTRFS_UUID_SIZE);
1527 		read_extent_buffer(leaf, fs_uuid,
1528 				   (unsigned long)btrfs_device_fsid(dev_item),
1529 				   BTRFS_UUID_SIZE);
1530 		device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1531 		BUG_ON(!device);
1532 
1533 		if (device->fs_devices->seeding) {
1534 			btrfs_set_device_generation(leaf, dev_item,
1535 						    device->generation);
1536 			btrfs_mark_buffer_dirty(leaf);
1537 		}
1538 
1539 		path->slots[0]++;
1540 		goto next_slot;
1541 	}
1542 	ret = 0;
1543 error:
1544 	btrfs_free_path(path);
1545 	return ret;
1546 }
1547 
1548 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1549 {
1550 	struct btrfs_trans_handle *trans;
1551 	struct btrfs_device *device;
1552 	struct block_device *bdev;
1553 	struct list_head *devices;
1554 	struct super_block *sb = root->fs_info->sb;
1555 	u64 total_bytes;
1556 	int seeding_dev = 0;
1557 	int ret = 0;
1558 
1559 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1560 		return -EINVAL;
1561 
1562 	bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
1563 				  root->fs_info->bdev_holder);
1564 	if (IS_ERR(bdev))
1565 		return PTR_ERR(bdev);
1566 
1567 	if (root->fs_info->fs_devices->seeding) {
1568 		seeding_dev = 1;
1569 		down_write(&sb->s_umount);
1570 		mutex_lock(&uuid_mutex);
1571 	}
1572 
1573 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
1574 	mutex_lock(&root->fs_info->volume_mutex);
1575 
1576 	devices = &root->fs_info->fs_devices->devices;
1577 	/*
1578 	 * we have the volume lock, so we don't need the extra
1579 	 * device list mutex while reading the list here.
1580 	 */
1581 	list_for_each_entry(device, devices, dev_list) {
1582 		if (device->bdev == bdev) {
1583 			ret = -EEXIST;
1584 			goto error;
1585 		}
1586 	}
1587 
1588 	device = kzalloc(sizeof(*device), GFP_NOFS);
1589 	if (!device) {
1590 		/* we can safely leave the fs_devices entry around */
1591 		ret = -ENOMEM;
1592 		goto error;
1593 	}
1594 
1595 	device->name = kstrdup(device_path, GFP_NOFS);
1596 	if (!device->name) {
1597 		kfree(device);
1598 		ret = -ENOMEM;
1599 		goto error;
1600 	}
1601 
1602 	ret = find_next_devid(root, &device->devid);
1603 	if (ret) {
1604 		kfree(device);
1605 		goto error;
1606 	}
1607 
1608 	trans = btrfs_start_transaction(root, 0);
1609 	lock_chunks(root);
1610 
1611 	device->writeable = 1;
1612 	device->work.func = pending_bios_fn;
1613 	generate_random_uuid(device->uuid);
1614 	spin_lock_init(&device->io_lock);
1615 	device->generation = trans->transid;
1616 	device->io_width = root->sectorsize;
1617 	device->io_align = root->sectorsize;
1618 	device->sector_size = root->sectorsize;
1619 	device->total_bytes = i_size_read(bdev->bd_inode);
1620 	device->disk_total_bytes = device->total_bytes;
1621 	device->dev_root = root->fs_info->dev_root;
1622 	device->bdev = bdev;
1623 	device->in_fs_metadata = 1;
1624 	device->mode = 0;
1625 	set_blocksize(device->bdev, 4096);
1626 
1627 	if (seeding_dev) {
1628 		sb->s_flags &= ~MS_RDONLY;
1629 		ret = btrfs_prepare_sprout(trans, root);
1630 		BUG_ON(ret);
1631 	}
1632 
1633 	device->fs_devices = root->fs_info->fs_devices;
1634 
1635 	/*
1636 	 * we don't want write_supers to jump in here with our device
1637 	 * half setup
1638 	 */
1639 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1640 	list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1641 	list_add(&device->dev_alloc_list,
1642 		 &root->fs_info->fs_devices->alloc_list);
1643 	root->fs_info->fs_devices->num_devices++;
1644 	root->fs_info->fs_devices->open_devices++;
1645 	root->fs_info->fs_devices->rw_devices++;
1646 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1647 
1648 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1649 		root->fs_info->fs_devices->rotating = 1;
1650 
1651 	total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1652 	btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1653 				    total_bytes + device->total_bytes);
1654 
1655 	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1656 	btrfs_set_super_num_devices(&root->fs_info->super_copy,
1657 				    total_bytes + 1);
1658 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1659 
1660 	if (seeding_dev) {
1661 		ret = init_first_rw_device(trans, root, device);
1662 		BUG_ON(ret);
1663 		ret = btrfs_finish_sprout(trans, root);
1664 		BUG_ON(ret);
1665 	} else {
1666 		ret = btrfs_add_device(trans, root, device);
1667 	}
1668 
1669 	/*
1670 	 * we've got more storage, clear any full flags on the space
1671 	 * infos
1672 	 */
1673 	btrfs_clear_space_info_full(root->fs_info);
1674 
1675 	unlock_chunks(root);
1676 	btrfs_commit_transaction(trans, root);
1677 
1678 	if (seeding_dev) {
1679 		mutex_unlock(&uuid_mutex);
1680 		up_write(&sb->s_umount);
1681 
1682 		ret = btrfs_relocate_sys_chunks(root);
1683 		BUG_ON(ret);
1684 	}
1685 out:
1686 	mutex_unlock(&root->fs_info->volume_mutex);
1687 	return ret;
1688 error:
1689 	blkdev_put(bdev, FMODE_EXCL);
1690 	if (seeding_dev) {
1691 		mutex_unlock(&uuid_mutex);
1692 		up_write(&sb->s_umount);
1693 	}
1694 	goto out;
1695 }
1696 
1697 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1698 					struct btrfs_device *device)
1699 {
1700 	int ret;
1701 	struct btrfs_path *path;
1702 	struct btrfs_root *root;
1703 	struct btrfs_dev_item *dev_item;
1704 	struct extent_buffer *leaf;
1705 	struct btrfs_key key;
1706 
1707 	root = device->dev_root->fs_info->chunk_root;
1708 
1709 	path = btrfs_alloc_path();
1710 	if (!path)
1711 		return -ENOMEM;
1712 
1713 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1714 	key.type = BTRFS_DEV_ITEM_KEY;
1715 	key.offset = device->devid;
1716 
1717 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1718 	if (ret < 0)
1719 		goto out;
1720 
1721 	if (ret > 0) {
1722 		ret = -ENOENT;
1723 		goto out;
1724 	}
1725 
1726 	leaf = path->nodes[0];
1727 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1728 
1729 	btrfs_set_device_id(leaf, dev_item, device->devid);
1730 	btrfs_set_device_type(leaf, dev_item, device->type);
1731 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1732 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1733 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1734 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1735 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1736 	btrfs_mark_buffer_dirty(leaf);
1737 
1738 out:
1739 	btrfs_free_path(path);
1740 	return ret;
1741 }
1742 
1743 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1744 		      struct btrfs_device *device, u64 new_size)
1745 {
1746 	struct btrfs_super_block *super_copy =
1747 		&device->dev_root->fs_info->super_copy;
1748 	u64 old_total = btrfs_super_total_bytes(super_copy);
1749 	u64 diff = new_size - device->total_bytes;
1750 
1751 	if (!device->writeable)
1752 		return -EACCES;
1753 	if (new_size <= device->total_bytes)
1754 		return -EINVAL;
1755 
1756 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
1757 	device->fs_devices->total_rw_bytes += diff;
1758 
1759 	device->total_bytes = new_size;
1760 	device->disk_total_bytes = new_size;
1761 	btrfs_clear_space_info_full(device->dev_root->fs_info);
1762 
1763 	return btrfs_update_device(trans, device);
1764 }
1765 
1766 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1767 		      struct btrfs_device *device, u64 new_size)
1768 {
1769 	int ret;
1770 	lock_chunks(device->dev_root);
1771 	ret = __btrfs_grow_device(trans, device, new_size);
1772 	unlock_chunks(device->dev_root);
1773 	return ret;
1774 }
1775 
1776 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1777 			    struct btrfs_root *root,
1778 			    u64 chunk_tree, u64 chunk_objectid,
1779 			    u64 chunk_offset)
1780 {
1781 	int ret;
1782 	struct btrfs_path *path;
1783 	struct btrfs_key key;
1784 
1785 	root = root->fs_info->chunk_root;
1786 	path = btrfs_alloc_path();
1787 	if (!path)
1788 		return -ENOMEM;
1789 
1790 	key.objectid = chunk_objectid;
1791 	key.offset = chunk_offset;
1792 	key.type = BTRFS_CHUNK_ITEM_KEY;
1793 
1794 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1795 	BUG_ON(ret);
1796 
1797 	ret = btrfs_del_item(trans, root, path);
1798 	BUG_ON(ret);
1799 
1800 	btrfs_free_path(path);
1801 	return 0;
1802 }
1803 
1804 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1805 			chunk_offset)
1806 {
1807 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1808 	struct btrfs_disk_key *disk_key;
1809 	struct btrfs_chunk *chunk;
1810 	u8 *ptr;
1811 	int ret = 0;
1812 	u32 num_stripes;
1813 	u32 array_size;
1814 	u32 len = 0;
1815 	u32 cur;
1816 	struct btrfs_key key;
1817 
1818 	array_size = btrfs_super_sys_array_size(super_copy);
1819 
1820 	ptr = super_copy->sys_chunk_array;
1821 	cur = 0;
1822 
1823 	while (cur < array_size) {
1824 		disk_key = (struct btrfs_disk_key *)ptr;
1825 		btrfs_disk_key_to_cpu(&key, disk_key);
1826 
1827 		len = sizeof(*disk_key);
1828 
1829 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1830 			chunk = (struct btrfs_chunk *)(ptr + len);
1831 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1832 			len += btrfs_chunk_item_size(num_stripes);
1833 		} else {
1834 			ret = -EIO;
1835 			break;
1836 		}
1837 		if (key.objectid == chunk_objectid &&
1838 		    key.offset == chunk_offset) {
1839 			memmove(ptr, ptr + len, array_size - (cur + len));
1840 			array_size -= len;
1841 			btrfs_set_super_sys_array_size(super_copy, array_size);
1842 		} else {
1843 			ptr += len;
1844 			cur += len;
1845 		}
1846 	}
1847 	return ret;
1848 }
1849 
1850 static int btrfs_relocate_chunk(struct btrfs_root *root,
1851 			 u64 chunk_tree, u64 chunk_objectid,
1852 			 u64 chunk_offset)
1853 {
1854 	struct extent_map_tree *em_tree;
1855 	struct btrfs_root *extent_root;
1856 	struct btrfs_trans_handle *trans;
1857 	struct extent_map *em;
1858 	struct map_lookup *map;
1859 	int ret;
1860 	int i;
1861 
1862 	root = root->fs_info->chunk_root;
1863 	extent_root = root->fs_info->extent_root;
1864 	em_tree = &root->fs_info->mapping_tree.map_tree;
1865 
1866 	ret = btrfs_can_relocate(extent_root, chunk_offset);
1867 	if (ret)
1868 		return -ENOSPC;
1869 
1870 	/* step one, relocate all the extents inside this chunk */
1871 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1872 	if (ret)
1873 		return ret;
1874 
1875 	trans = btrfs_start_transaction(root, 0);
1876 	BUG_ON(!trans);
1877 
1878 	lock_chunks(root);
1879 
1880 	/*
1881 	 * step two, delete the device extents and the
1882 	 * chunk tree entries
1883 	 */
1884 	read_lock(&em_tree->lock);
1885 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1886 	read_unlock(&em_tree->lock);
1887 
1888 	BUG_ON(em->start > chunk_offset ||
1889 	       em->start + em->len < chunk_offset);
1890 	map = (struct map_lookup *)em->bdev;
1891 
1892 	for (i = 0; i < map->num_stripes; i++) {
1893 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1894 					    map->stripes[i].physical);
1895 		BUG_ON(ret);
1896 
1897 		if (map->stripes[i].dev) {
1898 			ret = btrfs_update_device(trans, map->stripes[i].dev);
1899 			BUG_ON(ret);
1900 		}
1901 	}
1902 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1903 			       chunk_offset);
1904 
1905 	BUG_ON(ret);
1906 
1907 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1908 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1909 		BUG_ON(ret);
1910 	}
1911 
1912 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1913 	BUG_ON(ret);
1914 
1915 	write_lock(&em_tree->lock);
1916 	remove_extent_mapping(em_tree, em);
1917 	write_unlock(&em_tree->lock);
1918 
1919 	kfree(map);
1920 	em->bdev = NULL;
1921 
1922 	/* once for the tree */
1923 	free_extent_map(em);
1924 	/* once for us */
1925 	free_extent_map(em);
1926 
1927 	unlock_chunks(root);
1928 	btrfs_end_transaction(trans, root);
1929 	return 0;
1930 }
1931 
1932 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1933 {
1934 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1935 	struct btrfs_path *path;
1936 	struct extent_buffer *leaf;
1937 	struct btrfs_chunk *chunk;
1938 	struct btrfs_key key;
1939 	struct btrfs_key found_key;
1940 	u64 chunk_tree = chunk_root->root_key.objectid;
1941 	u64 chunk_type;
1942 	bool retried = false;
1943 	int failed = 0;
1944 	int ret;
1945 
1946 	path = btrfs_alloc_path();
1947 	if (!path)
1948 		return -ENOMEM;
1949 
1950 again:
1951 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1952 	key.offset = (u64)-1;
1953 	key.type = BTRFS_CHUNK_ITEM_KEY;
1954 
1955 	while (1) {
1956 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1957 		if (ret < 0)
1958 			goto error;
1959 		BUG_ON(ret == 0);
1960 
1961 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
1962 					  key.type);
1963 		if (ret < 0)
1964 			goto error;
1965 		if (ret > 0)
1966 			break;
1967 
1968 		leaf = path->nodes[0];
1969 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1970 
1971 		chunk = btrfs_item_ptr(leaf, path->slots[0],
1972 				       struct btrfs_chunk);
1973 		chunk_type = btrfs_chunk_type(leaf, chunk);
1974 		btrfs_release_path(chunk_root, path);
1975 
1976 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1977 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1978 						   found_key.objectid,
1979 						   found_key.offset);
1980 			if (ret == -ENOSPC)
1981 				failed++;
1982 			else if (ret)
1983 				BUG();
1984 		}
1985 
1986 		if (found_key.offset == 0)
1987 			break;
1988 		key.offset = found_key.offset - 1;
1989 	}
1990 	ret = 0;
1991 	if (failed && !retried) {
1992 		failed = 0;
1993 		retried = true;
1994 		goto again;
1995 	} else if (failed && retried) {
1996 		WARN_ON(1);
1997 		ret = -ENOSPC;
1998 	}
1999 error:
2000 	btrfs_free_path(path);
2001 	return ret;
2002 }
2003 
2004 static u64 div_factor(u64 num, int factor)
2005 {
2006 	if (factor == 10)
2007 		return num;
2008 	num *= factor;
2009 	do_div(num, 10);
2010 	return num;
2011 }
2012 
2013 int btrfs_balance(struct btrfs_root *dev_root)
2014 {
2015 	int ret;
2016 	struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2017 	struct btrfs_device *device;
2018 	u64 old_size;
2019 	u64 size_to_free;
2020 	struct btrfs_path *path;
2021 	struct btrfs_key key;
2022 	struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2023 	struct btrfs_trans_handle *trans;
2024 	struct btrfs_key found_key;
2025 
2026 	if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2027 		return -EROFS;
2028 
2029 	if (!capable(CAP_SYS_ADMIN))
2030 		return -EPERM;
2031 
2032 	mutex_lock(&dev_root->fs_info->volume_mutex);
2033 	dev_root = dev_root->fs_info->dev_root;
2034 
2035 	/* step one make some room on all the devices */
2036 	list_for_each_entry(device, devices, dev_list) {
2037 		old_size = device->total_bytes;
2038 		size_to_free = div_factor(old_size, 1);
2039 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2040 		if (!device->writeable ||
2041 		    device->total_bytes - device->bytes_used > size_to_free)
2042 			continue;
2043 
2044 		ret = btrfs_shrink_device(device, old_size - size_to_free);
2045 		if (ret == -ENOSPC)
2046 			break;
2047 		BUG_ON(ret);
2048 
2049 		trans = btrfs_start_transaction(dev_root, 0);
2050 		BUG_ON(!trans);
2051 
2052 		ret = btrfs_grow_device(trans, device, old_size);
2053 		BUG_ON(ret);
2054 
2055 		btrfs_end_transaction(trans, dev_root);
2056 	}
2057 
2058 	/* step two, relocate all the chunks */
2059 	path = btrfs_alloc_path();
2060 	BUG_ON(!path);
2061 
2062 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2063 	key.offset = (u64)-1;
2064 	key.type = BTRFS_CHUNK_ITEM_KEY;
2065 
2066 	while (1) {
2067 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2068 		if (ret < 0)
2069 			goto error;
2070 
2071 		/*
2072 		 * this shouldn't happen, it means the last relocate
2073 		 * failed
2074 		 */
2075 		if (ret == 0)
2076 			break;
2077 
2078 		ret = btrfs_previous_item(chunk_root, path, 0,
2079 					  BTRFS_CHUNK_ITEM_KEY);
2080 		if (ret)
2081 			break;
2082 
2083 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2084 				      path->slots[0]);
2085 		if (found_key.objectid != key.objectid)
2086 			break;
2087 
2088 		/* chunk zero is special */
2089 		if (found_key.offset == 0)
2090 			break;
2091 
2092 		btrfs_release_path(chunk_root, path);
2093 		ret = btrfs_relocate_chunk(chunk_root,
2094 					   chunk_root->root_key.objectid,
2095 					   found_key.objectid,
2096 					   found_key.offset);
2097 		BUG_ON(ret && ret != -ENOSPC);
2098 		key.offset = found_key.offset - 1;
2099 	}
2100 	ret = 0;
2101 error:
2102 	btrfs_free_path(path);
2103 	mutex_unlock(&dev_root->fs_info->volume_mutex);
2104 	return ret;
2105 }
2106 
2107 /*
2108  * shrinking a device means finding all of the device extents past
2109  * the new size, and then following the back refs to the chunks.
2110  * The chunk relocation code actually frees the device extent
2111  */
2112 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2113 {
2114 	struct btrfs_trans_handle *trans;
2115 	struct btrfs_root *root = device->dev_root;
2116 	struct btrfs_dev_extent *dev_extent = NULL;
2117 	struct btrfs_path *path;
2118 	u64 length;
2119 	u64 chunk_tree;
2120 	u64 chunk_objectid;
2121 	u64 chunk_offset;
2122 	int ret;
2123 	int slot;
2124 	int failed = 0;
2125 	bool retried = false;
2126 	struct extent_buffer *l;
2127 	struct btrfs_key key;
2128 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2129 	u64 old_total = btrfs_super_total_bytes(super_copy);
2130 	u64 old_size = device->total_bytes;
2131 	u64 diff = device->total_bytes - new_size;
2132 
2133 	if (new_size >= device->total_bytes)
2134 		return -EINVAL;
2135 
2136 	path = btrfs_alloc_path();
2137 	if (!path)
2138 		return -ENOMEM;
2139 
2140 	path->reada = 2;
2141 
2142 	lock_chunks(root);
2143 
2144 	device->total_bytes = new_size;
2145 	if (device->writeable)
2146 		device->fs_devices->total_rw_bytes -= diff;
2147 	unlock_chunks(root);
2148 
2149 again:
2150 	key.objectid = device->devid;
2151 	key.offset = (u64)-1;
2152 	key.type = BTRFS_DEV_EXTENT_KEY;
2153 
2154 	while (1) {
2155 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2156 		if (ret < 0)
2157 			goto done;
2158 
2159 		ret = btrfs_previous_item(root, path, 0, key.type);
2160 		if (ret < 0)
2161 			goto done;
2162 		if (ret) {
2163 			ret = 0;
2164 			btrfs_release_path(root, path);
2165 			break;
2166 		}
2167 
2168 		l = path->nodes[0];
2169 		slot = path->slots[0];
2170 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2171 
2172 		if (key.objectid != device->devid) {
2173 			btrfs_release_path(root, path);
2174 			break;
2175 		}
2176 
2177 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2178 		length = btrfs_dev_extent_length(l, dev_extent);
2179 
2180 		if (key.offset + length <= new_size) {
2181 			btrfs_release_path(root, path);
2182 			break;
2183 		}
2184 
2185 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2186 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2187 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2188 		btrfs_release_path(root, path);
2189 
2190 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2191 					   chunk_offset);
2192 		if (ret && ret != -ENOSPC)
2193 			goto done;
2194 		if (ret == -ENOSPC)
2195 			failed++;
2196 		key.offset -= 1;
2197 	}
2198 
2199 	if (failed && !retried) {
2200 		failed = 0;
2201 		retried = true;
2202 		goto again;
2203 	} else if (failed && retried) {
2204 		ret = -ENOSPC;
2205 		lock_chunks(root);
2206 
2207 		device->total_bytes = old_size;
2208 		if (device->writeable)
2209 			device->fs_devices->total_rw_bytes += diff;
2210 		unlock_chunks(root);
2211 		goto done;
2212 	}
2213 
2214 	/* Shrinking succeeded, else we would be at "done". */
2215 	trans = btrfs_start_transaction(root, 0);
2216 	lock_chunks(root);
2217 
2218 	device->disk_total_bytes = new_size;
2219 	/* Now btrfs_update_device() will change the on-disk size. */
2220 	ret = btrfs_update_device(trans, device);
2221 	if (ret) {
2222 		unlock_chunks(root);
2223 		btrfs_end_transaction(trans, root);
2224 		goto done;
2225 	}
2226 	WARN_ON(diff > old_total);
2227 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
2228 	unlock_chunks(root);
2229 	btrfs_end_transaction(trans, root);
2230 done:
2231 	btrfs_free_path(path);
2232 	return ret;
2233 }
2234 
2235 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2236 			   struct btrfs_root *root,
2237 			   struct btrfs_key *key,
2238 			   struct btrfs_chunk *chunk, int item_size)
2239 {
2240 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2241 	struct btrfs_disk_key disk_key;
2242 	u32 array_size;
2243 	u8 *ptr;
2244 
2245 	array_size = btrfs_super_sys_array_size(super_copy);
2246 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2247 		return -EFBIG;
2248 
2249 	ptr = super_copy->sys_chunk_array + array_size;
2250 	btrfs_cpu_key_to_disk(&disk_key, key);
2251 	memcpy(ptr, &disk_key, sizeof(disk_key));
2252 	ptr += sizeof(disk_key);
2253 	memcpy(ptr, chunk, item_size);
2254 	item_size += sizeof(disk_key);
2255 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2256 	return 0;
2257 }
2258 
2259 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2260 					int num_stripes, int sub_stripes)
2261 {
2262 	if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2263 		return calc_size;
2264 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2265 		return calc_size * (num_stripes / sub_stripes);
2266 	else
2267 		return calc_size * num_stripes;
2268 }
2269 
2270 /* Used to sort the devices by max_avail(descending sort) */
2271 int btrfs_cmp_device_free_bytes(const void *dev_info1, const void *dev_info2)
2272 {
2273 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
2274 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
2275 		return -1;
2276 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2277 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
2278 		return 1;
2279 	else
2280 		return 0;
2281 }
2282 
2283 static int __btrfs_calc_nstripes(struct btrfs_fs_devices *fs_devices, u64 type,
2284 				 int *num_stripes, int *min_stripes,
2285 				 int *sub_stripes)
2286 {
2287 	*num_stripes = 1;
2288 	*min_stripes = 1;
2289 	*sub_stripes = 0;
2290 
2291 	if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2292 		*num_stripes = fs_devices->rw_devices;
2293 		*min_stripes = 2;
2294 	}
2295 	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2296 		*num_stripes = 2;
2297 		*min_stripes = 2;
2298 	}
2299 	if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2300 		if (fs_devices->rw_devices < 2)
2301 			return -ENOSPC;
2302 		*num_stripes = 2;
2303 		*min_stripes = 2;
2304 	}
2305 	if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2306 		*num_stripes = fs_devices->rw_devices;
2307 		if (*num_stripes < 4)
2308 			return -ENOSPC;
2309 		*num_stripes &= ~(u32)1;
2310 		*sub_stripes = 2;
2311 		*min_stripes = 4;
2312 	}
2313 
2314 	return 0;
2315 }
2316 
2317 static u64 __btrfs_calc_stripe_size(struct btrfs_fs_devices *fs_devices,
2318 				    u64 proposed_size, u64 type,
2319 				    int num_stripes, int small_stripe)
2320 {
2321 	int min_stripe_size = 1 * 1024 * 1024;
2322 	u64 calc_size = proposed_size;
2323 	u64 max_chunk_size = calc_size;
2324 	int ncopies = 1;
2325 
2326 	if (type & (BTRFS_BLOCK_GROUP_RAID1 |
2327 		    BTRFS_BLOCK_GROUP_DUP |
2328 		    BTRFS_BLOCK_GROUP_RAID10))
2329 		ncopies = 2;
2330 
2331 	if (type & BTRFS_BLOCK_GROUP_DATA) {
2332 		max_chunk_size = 10 * calc_size;
2333 		min_stripe_size = 64 * 1024 * 1024;
2334 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2335 		max_chunk_size = 256 * 1024 * 1024;
2336 		min_stripe_size = 32 * 1024 * 1024;
2337 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2338 		calc_size = 8 * 1024 * 1024;
2339 		max_chunk_size = calc_size * 2;
2340 		min_stripe_size = 1 * 1024 * 1024;
2341 	}
2342 
2343 	/* we don't want a chunk larger than 10% of writeable space */
2344 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2345 			     max_chunk_size);
2346 
2347 	if (calc_size * num_stripes > max_chunk_size * ncopies) {
2348 		calc_size = max_chunk_size * ncopies;
2349 		do_div(calc_size, num_stripes);
2350 		do_div(calc_size, BTRFS_STRIPE_LEN);
2351 		calc_size *= BTRFS_STRIPE_LEN;
2352 	}
2353 
2354 	/* we don't want tiny stripes */
2355 	if (!small_stripe)
2356 		calc_size = max_t(u64, min_stripe_size, calc_size);
2357 
2358 	/*
2359 	 * we're about to do_div by the BTRFS_STRIPE_LEN so lets make sure
2360 	 * we end up with something bigger than a stripe
2361 	 */
2362 	calc_size = max_t(u64, calc_size, BTRFS_STRIPE_LEN);
2363 
2364 	do_div(calc_size, BTRFS_STRIPE_LEN);
2365 	calc_size *= BTRFS_STRIPE_LEN;
2366 
2367 	return calc_size;
2368 }
2369 
2370 static struct map_lookup *__shrink_map_lookup_stripes(struct map_lookup *map,
2371 						      int num_stripes)
2372 {
2373 	struct map_lookup *new;
2374 	size_t len = map_lookup_size(num_stripes);
2375 
2376 	BUG_ON(map->num_stripes < num_stripes);
2377 
2378 	if (map->num_stripes == num_stripes)
2379 		return map;
2380 
2381 	new = kmalloc(len, GFP_NOFS);
2382 	if (!new) {
2383 		/* just change map->num_stripes */
2384 		map->num_stripes = num_stripes;
2385 		return map;
2386 	}
2387 
2388 	memcpy(new, map, len);
2389 	new->num_stripes = num_stripes;
2390 	kfree(map);
2391 	return new;
2392 }
2393 
2394 /*
2395  * helper to allocate device space from btrfs_device_info, in which we stored
2396  * max free space information of every device. It is used when we can not
2397  * allocate chunks by default size.
2398  *
2399  * By this helper, we can allocate a new chunk as larger as possible.
2400  */
2401 static int __btrfs_alloc_tiny_space(struct btrfs_trans_handle *trans,
2402 				    struct btrfs_fs_devices *fs_devices,
2403 				    struct btrfs_device_info *devices,
2404 				    int nr_device, u64 type,
2405 				    struct map_lookup **map_lookup,
2406 				    int min_stripes, u64 *stripe_size)
2407 {
2408 	int i, index, sort_again = 0;
2409 	int min_devices = min_stripes;
2410 	u64 max_avail, min_free;
2411 	struct map_lookup *map = *map_lookup;
2412 	int ret;
2413 
2414 	if (nr_device < min_stripes)
2415 		return -ENOSPC;
2416 
2417 	btrfs_descending_sort_devices(devices, nr_device);
2418 
2419 	max_avail = devices[0].max_avail;
2420 	if (!max_avail)
2421 		return -ENOSPC;
2422 
2423 	for (i = 0; i < nr_device; i++) {
2424 		/*
2425 		 * if dev_offset = 0, it means the free space of this device
2426 		 * is less than what we need, and we didn't search max avail
2427 		 * extent on this device, so do it now.
2428 		 */
2429 		if (!devices[i].dev_offset) {
2430 			ret = find_free_dev_extent(trans, devices[i].dev,
2431 						   max_avail,
2432 						   &devices[i].dev_offset,
2433 						   &devices[i].max_avail);
2434 			if (ret != 0 && ret != -ENOSPC)
2435 				return ret;
2436 			sort_again = 1;
2437 		}
2438 	}
2439 
2440 	/* we update the max avail free extent of each devices, sort again */
2441 	if (sort_again)
2442 		btrfs_descending_sort_devices(devices, nr_device);
2443 
2444 	if (type & BTRFS_BLOCK_GROUP_DUP)
2445 		min_devices = 1;
2446 
2447 	if (!devices[min_devices - 1].max_avail)
2448 		return -ENOSPC;
2449 
2450 	max_avail = devices[min_devices - 1].max_avail;
2451 	if (type & BTRFS_BLOCK_GROUP_DUP)
2452 		do_div(max_avail, 2);
2453 
2454 	max_avail = __btrfs_calc_stripe_size(fs_devices, max_avail, type,
2455 					     min_stripes, 1);
2456 	if (type & BTRFS_BLOCK_GROUP_DUP)
2457 		min_free = max_avail * 2;
2458 	else
2459 		min_free = max_avail;
2460 
2461 	if (min_free > devices[min_devices - 1].max_avail)
2462 		return -ENOSPC;
2463 
2464 	map = __shrink_map_lookup_stripes(map, min_stripes);
2465 	*stripe_size = max_avail;
2466 
2467 	index = 0;
2468 	for (i = 0; i < min_stripes; i++) {
2469 		map->stripes[i].dev = devices[index].dev;
2470 		map->stripes[i].physical = devices[index].dev_offset;
2471 		if (type & BTRFS_BLOCK_GROUP_DUP) {
2472 			i++;
2473 			map->stripes[i].dev = devices[index].dev;
2474 			map->stripes[i].physical = devices[index].dev_offset +
2475 						   max_avail;
2476 		}
2477 		index++;
2478 	}
2479 	*map_lookup = map;
2480 
2481 	return 0;
2482 }
2483 
2484 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2485 			       struct btrfs_root *extent_root,
2486 			       struct map_lookup **map_ret,
2487 			       u64 *num_bytes, u64 *stripe_size,
2488 			       u64 start, u64 type)
2489 {
2490 	struct btrfs_fs_info *info = extent_root->fs_info;
2491 	struct btrfs_device *device = NULL;
2492 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
2493 	struct list_head *cur;
2494 	struct map_lookup *map;
2495 	struct extent_map_tree *em_tree;
2496 	struct extent_map *em;
2497 	struct btrfs_device_info *devices_info;
2498 	struct list_head private_devs;
2499 	u64 calc_size = 1024 * 1024 * 1024;
2500 	u64 min_free;
2501 	u64 avail;
2502 	u64 dev_offset;
2503 	int num_stripes;
2504 	int min_stripes;
2505 	int sub_stripes;
2506 	int min_devices;	/* the min number of devices we need */
2507 	int i;
2508 	int ret;
2509 	int index;
2510 
2511 	if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2512 	    (type & BTRFS_BLOCK_GROUP_DUP)) {
2513 		WARN_ON(1);
2514 		type &= ~BTRFS_BLOCK_GROUP_DUP;
2515 	}
2516 	if (list_empty(&fs_devices->alloc_list))
2517 		return -ENOSPC;
2518 
2519 	ret = __btrfs_calc_nstripes(fs_devices, type, &num_stripes,
2520 				    &min_stripes, &sub_stripes);
2521 	if (ret)
2522 		return ret;
2523 
2524 	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2525 			       GFP_NOFS);
2526 	if (!devices_info)
2527 		return -ENOMEM;
2528 
2529 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2530 	if (!map) {
2531 		ret = -ENOMEM;
2532 		goto error;
2533 	}
2534 	map->num_stripes = num_stripes;
2535 
2536 	cur = fs_devices->alloc_list.next;
2537 	index = 0;
2538 	i = 0;
2539 
2540 	calc_size = __btrfs_calc_stripe_size(fs_devices, calc_size, type,
2541 					     num_stripes, 0);
2542 
2543 	if (type & BTRFS_BLOCK_GROUP_DUP) {
2544 		min_free = calc_size * 2;
2545 		min_devices = 1;
2546 	} else {
2547 		min_free = calc_size;
2548 		min_devices = min_stripes;
2549 	}
2550 
2551 	INIT_LIST_HEAD(&private_devs);
2552 	while (index < num_stripes) {
2553 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2554 		BUG_ON(!device->writeable);
2555 		if (device->total_bytes > device->bytes_used)
2556 			avail = device->total_bytes - device->bytes_used;
2557 		else
2558 			avail = 0;
2559 		cur = cur->next;
2560 
2561 		if (device->in_fs_metadata && avail >= min_free) {
2562 			ret = find_free_dev_extent(trans, device, min_free,
2563 						   &devices_info[i].dev_offset,
2564 						   &devices_info[i].max_avail);
2565 			if (ret == 0) {
2566 				list_move_tail(&device->dev_alloc_list,
2567 					       &private_devs);
2568 				map->stripes[index].dev = device;
2569 				map->stripes[index].physical =
2570 						devices_info[i].dev_offset;
2571 				index++;
2572 				if (type & BTRFS_BLOCK_GROUP_DUP) {
2573 					map->stripes[index].dev = device;
2574 					map->stripes[index].physical =
2575 						devices_info[i].dev_offset +
2576 						calc_size;
2577 					index++;
2578 				}
2579 			} else if (ret != -ENOSPC)
2580 				goto error;
2581 
2582 			devices_info[i].dev = device;
2583 			i++;
2584 		} else if (device->in_fs_metadata &&
2585 			   avail >= BTRFS_STRIPE_LEN) {
2586 			devices_info[i].dev = device;
2587 			devices_info[i].max_avail = avail;
2588 			i++;
2589 		}
2590 
2591 		if (cur == &fs_devices->alloc_list)
2592 			break;
2593 	}
2594 
2595 	list_splice(&private_devs, &fs_devices->alloc_list);
2596 	if (index < num_stripes) {
2597 		if (index >= min_stripes) {
2598 			num_stripes = index;
2599 			if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2600 				num_stripes /= sub_stripes;
2601 				num_stripes *= sub_stripes;
2602 			}
2603 
2604 			map = __shrink_map_lookup_stripes(map, num_stripes);
2605 		} else if (i >= min_devices) {
2606 			ret = __btrfs_alloc_tiny_space(trans, fs_devices,
2607 						       devices_info, i, type,
2608 						       &map, min_stripes,
2609 						       &calc_size);
2610 			if (ret)
2611 				goto error;
2612 		} else {
2613 			ret = -ENOSPC;
2614 			goto error;
2615 		}
2616 	}
2617 	map->sector_size = extent_root->sectorsize;
2618 	map->stripe_len = BTRFS_STRIPE_LEN;
2619 	map->io_align = BTRFS_STRIPE_LEN;
2620 	map->io_width = BTRFS_STRIPE_LEN;
2621 	map->type = type;
2622 	map->sub_stripes = sub_stripes;
2623 
2624 	*map_ret = map;
2625 	*stripe_size = calc_size;
2626 	*num_bytes = chunk_bytes_by_type(type, calc_size,
2627 					 map->num_stripes, sub_stripes);
2628 
2629 	em = alloc_extent_map(GFP_NOFS);
2630 	if (!em) {
2631 		ret = -ENOMEM;
2632 		goto error;
2633 	}
2634 	em->bdev = (struct block_device *)map;
2635 	em->start = start;
2636 	em->len = *num_bytes;
2637 	em->block_start = 0;
2638 	em->block_len = em->len;
2639 
2640 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2641 	write_lock(&em_tree->lock);
2642 	ret = add_extent_mapping(em_tree, em);
2643 	write_unlock(&em_tree->lock);
2644 	BUG_ON(ret);
2645 	free_extent_map(em);
2646 
2647 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
2648 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2649 				     start, *num_bytes);
2650 	BUG_ON(ret);
2651 
2652 	index = 0;
2653 	while (index < map->num_stripes) {
2654 		device = map->stripes[index].dev;
2655 		dev_offset = map->stripes[index].physical;
2656 
2657 		ret = btrfs_alloc_dev_extent(trans, device,
2658 				info->chunk_root->root_key.objectid,
2659 				BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2660 				start, dev_offset, calc_size);
2661 		BUG_ON(ret);
2662 		index++;
2663 	}
2664 
2665 	kfree(devices_info);
2666 	return 0;
2667 
2668 error:
2669 	kfree(map);
2670 	kfree(devices_info);
2671 	return ret;
2672 }
2673 
2674 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2675 				struct btrfs_root *extent_root,
2676 				struct map_lookup *map, u64 chunk_offset,
2677 				u64 chunk_size, u64 stripe_size)
2678 {
2679 	u64 dev_offset;
2680 	struct btrfs_key key;
2681 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2682 	struct btrfs_device *device;
2683 	struct btrfs_chunk *chunk;
2684 	struct btrfs_stripe *stripe;
2685 	size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2686 	int index = 0;
2687 	int ret;
2688 
2689 	chunk = kzalloc(item_size, GFP_NOFS);
2690 	if (!chunk)
2691 		return -ENOMEM;
2692 
2693 	index = 0;
2694 	while (index < map->num_stripes) {
2695 		device = map->stripes[index].dev;
2696 		device->bytes_used += stripe_size;
2697 		ret = btrfs_update_device(trans, device);
2698 		BUG_ON(ret);
2699 		index++;
2700 	}
2701 
2702 	index = 0;
2703 	stripe = &chunk->stripe;
2704 	while (index < map->num_stripes) {
2705 		device = map->stripes[index].dev;
2706 		dev_offset = map->stripes[index].physical;
2707 
2708 		btrfs_set_stack_stripe_devid(stripe, device->devid);
2709 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
2710 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2711 		stripe++;
2712 		index++;
2713 	}
2714 
2715 	btrfs_set_stack_chunk_length(chunk, chunk_size);
2716 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2717 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2718 	btrfs_set_stack_chunk_type(chunk, map->type);
2719 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2720 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2721 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2722 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2723 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2724 
2725 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2726 	key.type = BTRFS_CHUNK_ITEM_KEY;
2727 	key.offset = chunk_offset;
2728 
2729 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2730 	BUG_ON(ret);
2731 
2732 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2733 		ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2734 					     item_size);
2735 		BUG_ON(ret);
2736 	}
2737 	kfree(chunk);
2738 	return 0;
2739 }
2740 
2741 /*
2742  * Chunk allocation falls into two parts. The first part does works
2743  * that make the new allocated chunk useable, but not do any operation
2744  * that modifies the chunk tree. The second part does the works that
2745  * require modifying the chunk tree. This division is important for the
2746  * bootstrap process of adding storage to a seed btrfs.
2747  */
2748 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2749 		      struct btrfs_root *extent_root, u64 type)
2750 {
2751 	u64 chunk_offset;
2752 	u64 chunk_size;
2753 	u64 stripe_size;
2754 	struct map_lookup *map;
2755 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2756 	int ret;
2757 
2758 	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2759 			      &chunk_offset);
2760 	if (ret)
2761 		return ret;
2762 
2763 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2764 				  &stripe_size, chunk_offset, type);
2765 	if (ret)
2766 		return ret;
2767 
2768 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2769 				   chunk_size, stripe_size);
2770 	BUG_ON(ret);
2771 	return 0;
2772 }
2773 
2774 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2775 					 struct btrfs_root *root,
2776 					 struct btrfs_device *device)
2777 {
2778 	u64 chunk_offset;
2779 	u64 sys_chunk_offset;
2780 	u64 chunk_size;
2781 	u64 sys_chunk_size;
2782 	u64 stripe_size;
2783 	u64 sys_stripe_size;
2784 	u64 alloc_profile;
2785 	struct map_lookup *map;
2786 	struct map_lookup *sys_map;
2787 	struct btrfs_fs_info *fs_info = root->fs_info;
2788 	struct btrfs_root *extent_root = fs_info->extent_root;
2789 	int ret;
2790 
2791 	ret = find_next_chunk(fs_info->chunk_root,
2792 			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2793 	BUG_ON(ret);
2794 
2795 	alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2796 			(fs_info->metadata_alloc_profile &
2797 			 fs_info->avail_metadata_alloc_bits);
2798 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2799 
2800 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2801 				  &stripe_size, chunk_offset, alloc_profile);
2802 	BUG_ON(ret);
2803 
2804 	sys_chunk_offset = chunk_offset + chunk_size;
2805 
2806 	alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2807 			(fs_info->system_alloc_profile &
2808 			 fs_info->avail_system_alloc_bits);
2809 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2810 
2811 	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2812 				  &sys_chunk_size, &sys_stripe_size,
2813 				  sys_chunk_offset, alloc_profile);
2814 	BUG_ON(ret);
2815 
2816 	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2817 	BUG_ON(ret);
2818 
2819 	/*
2820 	 * Modifying chunk tree needs allocating new blocks from both
2821 	 * system block group and metadata block group. So we only can
2822 	 * do operations require modifying the chunk tree after both
2823 	 * block groups were created.
2824 	 */
2825 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2826 				   chunk_size, stripe_size);
2827 	BUG_ON(ret);
2828 
2829 	ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2830 				   sys_chunk_offset, sys_chunk_size,
2831 				   sys_stripe_size);
2832 	BUG_ON(ret);
2833 	return 0;
2834 }
2835 
2836 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2837 {
2838 	struct extent_map *em;
2839 	struct map_lookup *map;
2840 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2841 	int readonly = 0;
2842 	int i;
2843 
2844 	read_lock(&map_tree->map_tree.lock);
2845 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2846 	read_unlock(&map_tree->map_tree.lock);
2847 	if (!em)
2848 		return 1;
2849 
2850 	if (btrfs_test_opt(root, DEGRADED)) {
2851 		free_extent_map(em);
2852 		return 0;
2853 	}
2854 
2855 	map = (struct map_lookup *)em->bdev;
2856 	for (i = 0; i < map->num_stripes; i++) {
2857 		if (!map->stripes[i].dev->writeable) {
2858 			readonly = 1;
2859 			break;
2860 		}
2861 	}
2862 	free_extent_map(em);
2863 	return readonly;
2864 }
2865 
2866 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2867 {
2868 	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2869 }
2870 
2871 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2872 {
2873 	struct extent_map *em;
2874 
2875 	while (1) {
2876 		write_lock(&tree->map_tree.lock);
2877 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2878 		if (em)
2879 			remove_extent_mapping(&tree->map_tree, em);
2880 		write_unlock(&tree->map_tree.lock);
2881 		if (!em)
2882 			break;
2883 		kfree(em->bdev);
2884 		/* once for us */
2885 		free_extent_map(em);
2886 		/* once for the tree */
2887 		free_extent_map(em);
2888 	}
2889 }
2890 
2891 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2892 {
2893 	struct extent_map *em;
2894 	struct map_lookup *map;
2895 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2896 	int ret;
2897 
2898 	read_lock(&em_tree->lock);
2899 	em = lookup_extent_mapping(em_tree, logical, len);
2900 	read_unlock(&em_tree->lock);
2901 	BUG_ON(!em);
2902 
2903 	BUG_ON(em->start > logical || em->start + em->len < logical);
2904 	map = (struct map_lookup *)em->bdev;
2905 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2906 		ret = map->num_stripes;
2907 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2908 		ret = map->sub_stripes;
2909 	else
2910 		ret = 1;
2911 	free_extent_map(em);
2912 	return ret;
2913 }
2914 
2915 static int find_live_mirror(struct map_lookup *map, int first, int num,
2916 			    int optimal)
2917 {
2918 	int i;
2919 	if (map->stripes[optimal].dev->bdev)
2920 		return optimal;
2921 	for (i = first; i < first + num; i++) {
2922 		if (map->stripes[i].dev->bdev)
2923 			return i;
2924 	}
2925 	/* we couldn't find one that doesn't fail.  Just return something
2926 	 * and the io error handling code will clean up eventually
2927 	 */
2928 	return optimal;
2929 }
2930 
2931 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2932 			     u64 logical, u64 *length,
2933 			     struct btrfs_multi_bio **multi_ret,
2934 			     int mirror_num, struct page *unplug_page)
2935 {
2936 	struct extent_map *em;
2937 	struct map_lookup *map;
2938 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2939 	u64 offset;
2940 	u64 stripe_offset;
2941 	u64 stripe_nr;
2942 	int stripes_allocated = 8;
2943 	int stripes_required = 1;
2944 	int stripe_index;
2945 	int i;
2946 	int num_stripes;
2947 	int max_errors = 0;
2948 	struct btrfs_multi_bio *multi = NULL;
2949 
2950 	if (multi_ret && !(rw & REQ_WRITE))
2951 		stripes_allocated = 1;
2952 again:
2953 	if (multi_ret) {
2954 		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2955 				GFP_NOFS);
2956 		if (!multi)
2957 			return -ENOMEM;
2958 
2959 		atomic_set(&multi->error, 0);
2960 	}
2961 
2962 	read_lock(&em_tree->lock);
2963 	em = lookup_extent_mapping(em_tree, logical, *length);
2964 	read_unlock(&em_tree->lock);
2965 
2966 	if (!em && unplug_page) {
2967 		kfree(multi);
2968 		return 0;
2969 	}
2970 
2971 	if (!em) {
2972 		printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2973 		       (unsigned long long)logical,
2974 		       (unsigned long long)*length);
2975 		BUG();
2976 	}
2977 
2978 	BUG_ON(em->start > logical || em->start + em->len < logical);
2979 	map = (struct map_lookup *)em->bdev;
2980 	offset = logical - em->start;
2981 
2982 	if (mirror_num > map->num_stripes)
2983 		mirror_num = 0;
2984 
2985 	/* if our multi bio struct is too small, back off and try again */
2986 	if (rw & REQ_WRITE) {
2987 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2988 				 BTRFS_BLOCK_GROUP_DUP)) {
2989 			stripes_required = map->num_stripes;
2990 			max_errors = 1;
2991 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2992 			stripes_required = map->sub_stripes;
2993 			max_errors = 1;
2994 		}
2995 	}
2996 	if (multi_ret && (rw & REQ_WRITE) &&
2997 	    stripes_allocated < stripes_required) {
2998 		stripes_allocated = map->num_stripes;
2999 		free_extent_map(em);
3000 		kfree(multi);
3001 		goto again;
3002 	}
3003 	stripe_nr = offset;
3004 	/*
3005 	 * stripe_nr counts the total number of stripes we have to stride
3006 	 * to get to this block
3007 	 */
3008 	do_div(stripe_nr, map->stripe_len);
3009 
3010 	stripe_offset = stripe_nr * map->stripe_len;
3011 	BUG_ON(offset < stripe_offset);
3012 
3013 	/* stripe_offset is the offset of this block in its stripe*/
3014 	stripe_offset = offset - stripe_offset;
3015 
3016 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
3017 			 BTRFS_BLOCK_GROUP_RAID10 |
3018 			 BTRFS_BLOCK_GROUP_DUP)) {
3019 		/* we limit the length of each bio to what fits in a stripe */
3020 		*length = min_t(u64, em->len - offset,
3021 			      map->stripe_len - stripe_offset);
3022 	} else {
3023 		*length = em->len - offset;
3024 	}
3025 
3026 	if (!multi_ret && !unplug_page)
3027 		goto out;
3028 
3029 	num_stripes = 1;
3030 	stripe_index = 0;
3031 	if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3032 		if (unplug_page || (rw & REQ_WRITE))
3033 			num_stripes = map->num_stripes;
3034 		else if (mirror_num)
3035 			stripe_index = mirror_num - 1;
3036 		else {
3037 			stripe_index = find_live_mirror(map, 0,
3038 					    map->num_stripes,
3039 					    current->pid % map->num_stripes);
3040 		}
3041 
3042 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3043 		if (rw & REQ_WRITE)
3044 			num_stripes = map->num_stripes;
3045 		else if (mirror_num)
3046 			stripe_index = mirror_num - 1;
3047 
3048 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3049 		int factor = map->num_stripes / map->sub_stripes;
3050 
3051 		stripe_index = do_div(stripe_nr, factor);
3052 		stripe_index *= map->sub_stripes;
3053 
3054 		if (unplug_page || (rw & REQ_WRITE))
3055 			num_stripes = map->sub_stripes;
3056 		else if (mirror_num)
3057 			stripe_index += mirror_num - 1;
3058 		else {
3059 			stripe_index = find_live_mirror(map, stripe_index,
3060 					      map->sub_stripes, stripe_index +
3061 					      current->pid % map->sub_stripes);
3062 		}
3063 	} else {
3064 		/*
3065 		 * after this do_div call, stripe_nr is the number of stripes
3066 		 * on this device we have to walk to find the data, and
3067 		 * stripe_index is the number of our device in the stripe array
3068 		 */
3069 		stripe_index = do_div(stripe_nr, map->num_stripes);
3070 	}
3071 	BUG_ON(stripe_index >= map->num_stripes);
3072 
3073 	for (i = 0; i < num_stripes; i++) {
3074 		if (unplug_page) {
3075 			struct btrfs_device *device;
3076 			struct backing_dev_info *bdi;
3077 
3078 			device = map->stripes[stripe_index].dev;
3079 			if (device->bdev) {
3080 				bdi = blk_get_backing_dev_info(device->bdev);
3081 				if (bdi->unplug_io_fn)
3082 					bdi->unplug_io_fn(bdi, unplug_page);
3083 			}
3084 		} else {
3085 			multi->stripes[i].physical =
3086 				map->stripes[stripe_index].physical +
3087 				stripe_offset + stripe_nr * map->stripe_len;
3088 			multi->stripes[i].dev = map->stripes[stripe_index].dev;
3089 		}
3090 		stripe_index++;
3091 	}
3092 	if (multi_ret) {
3093 		*multi_ret = multi;
3094 		multi->num_stripes = num_stripes;
3095 		multi->max_errors = max_errors;
3096 	}
3097 out:
3098 	free_extent_map(em);
3099 	return 0;
3100 }
3101 
3102 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3103 		      u64 logical, u64 *length,
3104 		      struct btrfs_multi_bio **multi_ret, int mirror_num)
3105 {
3106 	return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3107 				 mirror_num, NULL);
3108 }
3109 
3110 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3111 		     u64 chunk_start, u64 physical, u64 devid,
3112 		     u64 **logical, int *naddrs, int *stripe_len)
3113 {
3114 	struct extent_map_tree *em_tree = &map_tree->map_tree;
3115 	struct extent_map *em;
3116 	struct map_lookup *map;
3117 	u64 *buf;
3118 	u64 bytenr;
3119 	u64 length;
3120 	u64 stripe_nr;
3121 	int i, j, nr = 0;
3122 
3123 	read_lock(&em_tree->lock);
3124 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
3125 	read_unlock(&em_tree->lock);
3126 
3127 	BUG_ON(!em || em->start != chunk_start);
3128 	map = (struct map_lookup *)em->bdev;
3129 
3130 	length = em->len;
3131 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3132 		do_div(length, map->num_stripes / map->sub_stripes);
3133 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3134 		do_div(length, map->num_stripes);
3135 
3136 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3137 	BUG_ON(!buf);
3138 
3139 	for (i = 0; i < map->num_stripes; i++) {
3140 		if (devid && map->stripes[i].dev->devid != devid)
3141 			continue;
3142 		if (map->stripes[i].physical > physical ||
3143 		    map->stripes[i].physical + length <= physical)
3144 			continue;
3145 
3146 		stripe_nr = physical - map->stripes[i].physical;
3147 		do_div(stripe_nr, map->stripe_len);
3148 
3149 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3150 			stripe_nr = stripe_nr * map->num_stripes + i;
3151 			do_div(stripe_nr, map->sub_stripes);
3152 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3153 			stripe_nr = stripe_nr * map->num_stripes + i;
3154 		}
3155 		bytenr = chunk_start + stripe_nr * map->stripe_len;
3156 		WARN_ON(nr >= map->num_stripes);
3157 		for (j = 0; j < nr; j++) {
3158 			if (buf[j] == bytenr)
3159 				break;
3160 		}
3161 		if (j == nr) {
3162 			WARN_ON(nr >= map->num_stripes);
3163 			buf[nr++] = bytenr;
3164 		}
3165 	}
3166 
3167 	*logical = buf;
3168 	*naddrs = nr;
3169 	*stripe_len = map->stripe_len;
3170 
3171 	free_extent_map(em);
3172 	return 0;
3173 }
3174 
3175 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
3176 		      u64 logical, struct page *page)
3177 {
3178 	u64 length = PAGE_CACHE_SIZE;
3179 	return __btrfs_map_block(map_tree, READ, logical, &length,
3180 				 NULL, 0, page);
3181 }
3182 
3183 static void end_bio_multi_stripe(struct bio *bio, int err)
3184 {
3185 	struct btrfs_multi_bio *multi = bio->bi_private;
3186 	int is_orig_bio = 0;
3187 
3188 	if (err)
3189 		atomic_inc(&multi->error);
3190 
3191 	if (bio == multi->orig_bio)
3192 		is_orig_bio = 1;
3193 
3194 	if (atomic_dec_and_test(&multi->stripes_pending)) {
3195 		if (!is_orig_bio) {
3196 			bio_put(bio);
3197 			bio = multi->orig_bio;
3198 		}
3199 		bio->bi_private = multi->private;
3200 		bio->bi_end_io = multi->end_io;
3201 		/* only send an error to the higher layers if it is
3202 		 * beyond the tolerance of the multi-bio
3203 		 */
3204 		if (atomic_read(&multi->error) > multi->max_errors) {
3205 			err = -EIO;
3206 		} else if (err) {
3207 			/*
3208 			 * this bio is actually up to date, we didn't
3209 			 * go over the max number of errors
3210 			 */
3211 			set_bit(BIO_UPTODATE, &bio->bi_flags);
3212 			err = 0;
3213 		}
3214 		kfree(multi);
3215 
3216 		bio_endio(bio, err);
3217 	} else if (!is_orig_bio) {
3218 		bio_put(bio);
3219 	}
3220 }
3221 
3222 struct async_sched {
3223 	struct bio *bio;
3224 	int rw;
3225 	struct btrfs_fs_info *info;
3226 	struct btrfs_work work;
3227 };
3228 
3229 /*
3230  * see run_scheduled_bios for a description of why bios are collected for
3231  * async submit.
3232  *
3233  * This will add one bio to the pending list for a device and make sure
3234  * the work struct is scheduled.
3235  */
3236 static noinline int schedule_bio(struct btrfs_root *root,
3237 				 struct btrfs_device *device,
3238 				 int rw, struct bio *bio)
3239 {
3240 	int should_queue = 1;
3241 	struct btrfs_pending_bios *pending_bios;
3242 
3243 	/* don't bother with additional async steps for reads, right now */
3244 	if (!(rw & REQ_WRITE)) {
3245 		bio_get(bio);
3246 		submit_bio(rw, bio);
3247 		bio_put(bio);
3248 		return 0;
3249 	}
3250 
3251 	/*
3252 	 * nr_async_bios allows us to reliably return congestion to the
3253 	 * higher layers.  Otherwise, the async bio makes it appear we have
3254 	 * made progress against dirty pages when we've really just put it
3255 	 * on a queue for later
3256 	 */
3257 	atomic_inc(&root->fs_info->nr_async_bios);
3258 	WARN_ON(bio->bi_next);
3259 	bio->bi_next = NULL;
3260 	bio->bi_rw |= rw;
3261 
3262 	spin_lock(&device->io_lock);
3263 	if (bio->bi_rw & REQ_SYNC)
3264 		pending_bios = &device->pending_sync_bios;
3265 	else
3266 		pending_bios = &device->pending_bios;
3267 
3268 	if (pending_bios->tail)
3269 		pending_bios->tail->bi_next = bio;
3270 
3271 	pending_bios->tail = bio;
3272 	if (!pending_bios->head)
3273 		pending_bios->head = bio;
3274 	if (device->running_pending)
3275 		should_queue = 0;
3276 
3277 	spin_unlock(&device->io_lock);
3278 
3279 	if (should_queue)
3280 		btrfs_queue_worker(&root->fs_info->submit_workers,
3281 				   &device->work);
3282 	return 0;
3283 }
3284 
3285 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
3286 		  int mirror_num, int async_submit)
3287 {
3288 	struct btrfs_mapping_tree *map_tree;
3289 	struct btrfs_device *dev;
3290 	struct bio *first_bio = bio;
3291 	u64 logical = (u64)bio->bi_sector << 9;
3292 	u64 length = 0;
3293 	u64 map_length;
3294 	struct btrfs_multi_bio *multi = NULL;
3295 	int ret;
3296 	int dev_nr = 0;
3297 	int total_devs = 1;
3298 
3299 	length = bio->bi_size;
3300 	map_tree = &root->fs_info->mapping_tree;
3301 	map_length = length;
3302 
3303 	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3304 			      mirror_num);
3305 	BUG_ON(ret);
3306 
3307 	total_devs = multi->num_stripes;
3308 	if (map_length < length) {
3309 		printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3310 		       "len %llu\n", (unsigned long long)logical,
3311 		       (unsigned long long)length,
3312 		       (unsigned long long)map_length);
3313 		BUG();
3314 	}
3315 	multi->end_io = first_bio->bi_end_io;
3316 	multi->private = first_bio->bi_private;
3317 	multi->orig_bio = first_bio;
3318 	atomic_set(&multi->stripes_pending, multi->num_stripes);
3319 
3320 	while (dev_nr < total_devs) {
3321 		if (total_devs > 1) {
3322 			if (dev_nr < total_devs - 1) {
3323 				bio = bio_clone(first_bio, GFP_NOFS);
3324 				BUG_ON(!bio);
3325 			} else {
3326 				bio = first_bio;
3327 			}
3328 			bio->bi_private = multi;
3329 			bio->bi_end_io = end_bio_multi_stripe;
3330 		}
3331 		bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3332 		dev = multi->stripes[dev_nr].dev;
3333 		if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
3334 			bio->bi_bdev = dev->bdev;
3335 			if (async_submit)
3336 				schedule_bio(root, dev, rw, bio);
3337 			else
3338 				submit_bio(rw, bio);
3339 		} else {
3340 			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3341 			bio->bi_sector = logical >> 9;
3342 			bio_endio(bio, -EIO);
3343 		}
3344 		dev_nr++;
3345 	}
3346 	if (total_devs == 1)
3347 		kfree(multi);
3348 	return 0;
3349 }
3350 
3351 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3352 				       u8 *uuid, u8 *fsid)
3353 {
3354 	struct btrfs_device *device;
3355 	struct btrfs_fs_devices *cur_devices;
3356 
3357 	cur_devices = root->fs_info->fs_devices;
3358 	while (cur_devices) {
3359 		if (!fsid ||
3360 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3361 			device = __find_device(&cur_devices->devices,
3362 					       devid, uuid);
3363 			if (device)
3364 				return device;
3365 		}
3366 		cur_devices = cur_devices->seed;
3367 	}
3368 	return NULL;
3369 }
3370 
3371 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3372 					    u64 devid, u8 *dev_uuid)
3373 {
3374 	struct btrfs_device *device;
3375 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3376 
3377 	device = kzalloc(sizeof(*device), GFP_NOFS);
3378 	if (!device)
3379 		return NULL;
3380 	list_add(&device->dev_list,
3381 		 &fs_devices->devices);
3382 	device->dev_root = root->fs_info->dev_root;
3383 	device->devid = devid;
3384 	device->work.func = pending_bios_fn;
3385 	device->fs_devices = fs_devices;
3386 	device->missing = 1;
3387 	fs_devices->num_devices++;
3388 	fs_devices->missing_devices++;
3389 	spin_lock_init(&device->io_lock);
3390 	INIT_LIST_HEAD(&device->dev_alloc_list);
3391 	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3392 	return device;
3393 }
3394 
3395 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3396 			  struct extent_buffer *leaf,
3397 			  struct btrfs_chunk *chunk)
3398 {
3399 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3400 	struct map_lookup *map;
3401 	struct extent_map *em;
3402 	u64 logical;
3403 	u64 length;
3404 	u64 devid;
3405 	u8 uuid[BTRFS_UUID_SIZE];
3406 	int num_stripes;
3407 	int ret;
3408 	int i;
3409 
3410 	logical = key->offset;
3411 	length = btrfs_chunk_length(leaf, chunk);
3412 
3413 	read_lock(&map_tree->map_tree.lock);
3414 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3415 	read_unlock(&map_tree->map_tree.lock);
3416 
3417 	/* already mapped? */
3418 	if (em && em->start <= logical && em->start + em->len > logical) {
3419 		free_extent_map(em);
3420 		return 0;
3421 	} else if (em) {
3422 		free_extent_map(em);
3423 	}
3424 
3425 	em = alloc_extent_map(GFP_NOFS);
3426 	if (!em)
3427 		return -ENOMEM;
3428 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3429 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3430 	if (!map) {
3431 		free_extent_map(em);
3432 		return -ENOMEM;
3433 	}
3434 
3435 	em->bdev = (struct block_device *)map;
3436 	em->start = logical;
3437 	em->len = length;
3438 	em->block_start = 0;
3439 	em->block_len = em->len;
3440 
3441 	map->num_stripes = num_stripes;
3442 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
3443 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
3444 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3445 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3446 	map->type = btrfs_chunk_type(leaf, chunk);
3447 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3448 	for (i = 0; i < num_stripes; i++) {
3449 		map->stripes[i].physical =
3450 			btrfs_stripe_offset_nr(leaf, chunk, i);
3451 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3452 		read_extent_buffer(leaf, uuid, (unsigned long)
3453 				   btrfs_stripe_dev_uuid_nr(chunk, i),
3454 				   BTRFS_UUID_SIZE);
3455 		map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3456 							NULL);
3457 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3458 			kfree(map);
3459 			free_extent_map(em);
3460 			return -EIO;
3461 		}
3462 		if (!map->stripes[i].dev) {
3463 			map->stripes[i].dev =
3464 				add_missing_dev(root, devid, uuid);
3465 			if (!map->stripes[i].dev) {
3466 				kfree(map);
3467 				free_extent_map(em);
3468 				return -EIO;
3469 			}
3470 		}
3471 		map->stripes[i].dev->in_fs_metadata = 1;
3472 	}
3473 
3474 	write_lock(&map_tree->map_tree.lock);
3475 	ret = add_extent_mapping(&map_tree->map_tree, em);
3476 	write_unlock(&map_tree->map_tree.lock);
3477 	BUG_ON(ret);
3478 	free_extent_map(em);
3479 
3480 	return 0;
3481 }
3482 
3483 static int fill_device_from_item(struct extent_buffer *leaf,
3484 				 struct btrfs_dev_item *dev_item,
3485 				 struct btrfs_device *device)
3486 {
3487 	unsigned long ptr;
3488 
3489 	device->devid = btrfs_device_id(leaf, dev_item);
3490 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3491 	device->total_bytes = device->disk_total_bytes;
3492 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3493 	device->type = btrfs_device_type(leaf, dev_item);
3494 	device->io_align = btrfs_device_io_align(leaf, dev_item);
3495 	device->io_width = btrfs_device_io_width(leaf, dev_item);
3496 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3497 
3498 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
3499 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3500 
3501 	return 0;
3502 }
3503 
3504 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3505 {
3506 	struct btrfs_fs_devices *fs_devices;
3507 	int ret;
3508 
3509 	mutex_lock(&uuid_mutex);
3510 
3511 	fs_devices = root->fs_info->fs_devices->seed;
3512 	while (fs_devices) {
3513 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3514 			ret = 0;
3515 			goto out;
3516 		}
3517 		fs_devices = fs_devices->seed;
3518 	}
3519 
3520 	fs_devices = find_fsid(fsid);
3521 	if (!fs_devices) {
3522 		ret = -ENOENT;
3523 		goto out;
3524 	}
3525 
3526 	fs_devices = clone_fs_devices(fs_devices);
3527 	if (IS_ERR(fs_devices)) {
3528 		ret = PTR_ERR(fs_devices);
3529 		goto out;
3530 	}
3531 
3532 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3533 				   root->fs_info->bdev_holder);
3534 	if (ret)
3535 		goto out;
3536 
3537 	if (!fs_devices->seeding) {
3538 		__btrfs_close_devices(fs_devices);
3539 		free_fs_devices(fs_devices);
3540 		ret = -EINVAL;
3541 		goto out;
3542 	}
3543 
3544 	fs_devices->seed = root->fs_info->fs_devices->seed;
3545 	root->fs_info->fs_devices->seed = fs_devices;
3546 out:
3547 	mutex_unlock(&uuid_mutex);
3548 	return ret;
3549 }
3550 
3551 static int read_one_dev(struct btrfs_root *root,
3552 			struct extent_buffer *leaf,
3553 			struct btrfs_dev_item *dev_item)
3554 {
3555 	struct btrfs_device *device;
3556 	u64 devid;
3557 	int ret;
3558 	u8 fs_uuid[BTRFS_UUID_SIZE];
3559 	u8 dev_uuid[BTRFS_UUID_SIZE];
3560 
3561 	devid = btrfs_device_id(leaf, dev_item);
3562 	read_extent_buffer(leaf, dev_uuid,
3563 			   (unsigned long)btrfs_device_uuid(dev_item),
3564 			   BTRFS_UUID_SIZE);
3565 	read_extent_buffer(leaf, fs_uuid,
3566 			   (unsigned long)btrfs_device_fsid(dev_item),
3567 			   BTRFS_UUID_SIZE);
3568 
3569 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3570 		ret = open_seed_devices(root, fs_uuid);
3571 		if (ret && !btrfs_test_opt(root, DEGRADED))
3572 			return ret;
3573 	}
3574 
3575 	device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3576 	if (!device || !device->bdev) {
3577 		if (!btrfs_test_opt(root, DEGRADED))
3578 			return -EIO;
3579 
3580 		if (!device) {
3581 			printk(KERN_WARNING "warning devid %llu missing\n",
3582 			       (unsigned long long)devid);
3583 			device = add_missing_dev(root, devid, dev_uuid);
3584 			if (!device)
3585 				return -ENOMEM;
3586 		} else if (!device->missing) {
3587 			/*
3588 			 * this happens when a device that was properly setup
3589 			 * in the device info lists suddenly goes bad.
3590 			 * device->bdev is NULL, and so we have to set
3591 			 * device->missing to one here
3592 			 */
3593 			root->fs_info->fs_devices->missing_devices++;
3594 			device->missing = 1;
3595 		}
3596 	}
3597 
3598 	if (device->fs_devices != root->fs_info->fs_devices) {
3599 		BUG_ON(device->writeable);
3600 		if (device->generation !=
3601 		    btrfs_device_generation(leaf, dev_item))
3602 			return -EINVAL;
3603 	}
3604 
3605 	fill_device_from_item(leaf, dev_item, device);
3606 	device->dev_root = root->fs_info->dev_root;
3607 	device->in_fs_metadata = 1;
3608 	if (device->writeable)
3609 		device->fs_devices->total_rw_bytes += device->total_bytes;
3610 	ret = 0;
3611 	return ret;
3612 }
3613 
3614 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3615 {
3616 	struct btrfs_dev_item *dev_item;
3617 
3618 	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3619 						     dev_item);
3620 	return read_one_dev(root, buf, dev_item);
3621 }
3622 
3623 int btrfs_read_sys_array(struct btrfs_root *root)
3624 {
3625 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3626 	struct extent_buffer *sb;
3627 	struct btrfs_disk_key *disk_key;
3628 	struct btrfs_chunk *chunk;
3629 	u8 *ptr;
3630 	unsigned long sb_ptr;
3631 	int ret = 0;
3632 	u32 num_stripes;
3633 	u32 array_size;
3634 	u32 len = 0;
3635 	u32 cur;
3636 	struct btrfs_key key;
3637 
3638 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3639 					  BTRFS_SUPER_INFO_SIZE);
3640 	if (!sb)
3641 		return -ENOMEM;
3642 	btrfs_set_buffer_uptodate(sb);
3643 	btrfs_set_buffer_lockdep_class(sb, 0);
3644 
3645 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3646 	array_size = btrfs_super_sys_array_size(super_copy);
3647 
3648 	ptr = super_copy->sys_chunk_array;
3649 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3650 	cur = 0;
3651 
3652 	while (cur < array_size) {
3653 		disk_key = (struct btrfs_disk_key *)ptr;
3654 		btrfs_disk_key_to_cpu(&key, disk_key);
3655 
3656 		len = sizeof(*disk_key); ptr += len;
3657 		sb_ptr += len;
3658 		cur += len;
3659 
3660 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3661 			chunk = (struct btrfs_chunk *)sb_ptr;
3662 			ret = read_one_chunk(root, &key, sb, chunk);
3663 			if (ret)
3664 				break;
3665 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3666 			len = btrfs_chunk_item_size(num_stripes);
3667 		} else {
3668 			ret = -EIO;
3669 			break;
3670 		}
3671 		ptr += len;
3672 		sb_ptr += len;
3673 		cur += len;
3674 	}
3675 	free_extent_buffer(sb);
3676 	return ret;
3677 }
3678 
3679 int btrfs_read_chunk_tree(struct btrfs_root *root)
3680 {
3681 	struct btrfs_path *path;
3682 	struct extent_buffer *leaf;
3683 	struct btrfs_key key;
3684 	struct btrfs_key found_key;
3685 	int ret;
3686 	int slot;
3687 
3688 	root = root->fs_info->chunk_root;
3689 
3690 	path = btrfs_alloc_path();
3691 	if (!path)
3692 		return -ENOMEM;
3693 
3694 	/* first we search for all of the device items, and then we
3695 	 * read in all of the chunk items.  This way we can create chunk
3696 	 * mappings that reference all of the devices that are afound
3697 	 */
3698 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3699 	key.offset = 0;
3700 	key.type = 0;
3701 again:
3702 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3703 	if (ret < 0)
3704 		goto error;
3705 	while (1) {
3706 		leaf = path->nodes[0];
3707 		slot = path->slots[0];
3708 		if (slot >= btrfs_header_nritems(leaf)) {
3709 			ret = btrfs_next_leaf(root, path);
3710 			if (ret == 0)
3711 				continue;
3712 			if (ret < 0)
3713 				goto error;
3714 			break;
3715 		}
3716 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3717 		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3718 			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3719 				break;
3720 			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3721 				struct btrfs_dev_item *dev_item;
3722 				dev_item = btrfs_item_ptr(leaf, slot,
3723 						  struct btrfs_dev_item);
3724 				ret = read_one_dev(root, leaf, dev_item);
3725 				if (ret)
3726 					goto error;
3727 			}
3728 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3729 			struct btrfs_chunk *chunk;
3730 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3731 			ret = read_one_chunk(root, &found_key, leaf, chunk);
3732 			if (ret)
3733 				goto error;
3734 		}
3735 		path->slots[0]++;
3736 	}
3737 	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3738 		key.objectid = 0;
3739 		btrfs_release_path(root, path);
3740 		goto again;
3741 	}
3742 	ret = 0;
3743 error:
3744 	btrfs_free_path(path);
3745 	return ret;
3746 }
3747