xref: /openbmc/linux/fs/btrfs/volumes.c (revision 1fa6ac37)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <asm/div64.h>
26 #include "compat.h"
27 #include "ctree.h"
28 #include "extent_map.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "async-thread.h"
34 
35 struct map_lookup {
36 	u64 type;
37 	int io_align;
38 	int io_width;
39 	int stripe_len;
40 	int sector_size;
41 	int num_stripes;
42 	int sub_stripes;
43 	struct btrfs_bio_stripe stripes[];
44 };
45 
46 static int init_first_rw_device(struct btrfs_trans_handle *trans,
47 				struct btrfs_root *root,
48 				struct btrfs_device *device);
49 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
50 
51 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
52 			    (sizeof(struct btrfs_bio_stripe) * (n)))
53 
54 static DEFINE_MUTEX(uuid_mutex);
55 static LIST_HEAD(fs_uuids);
56 
57 void btrfs_lock_volumes(void)
58 {
59 	mutex_lock(&uuid_mutex);
60 }
61 
62 void btrfs_unlock_volumes(void)
63 {
64 	mutex_unlock(&uuid_mutex);
65 }
66 
67 static void lock_chunks(struct btrfs_root *root)
68 {
69 	mutex_lock(&root->fs_info->chunk_mutex);
70 }
71 
72 static void unlock_chunks(struct btrfs_root *root)
73 {
74 	mutex_unlock(&root->fs_info->chunk_mutex);
75 }
76 
77 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
78 {
79 	struct btrfs_device *device;
80 	WARN_ON(fs_devices->opened);
81 	while (!list_empty(&fs_devices->devices)) {
82 		device = list_entry(fs_devices->devices.next,
83 				    struct btrfs_device, dev_list);
84 		list_del(&device->dev_list);
85 		kfree(device->name);
86 		kfree(device);
87 	}
88 	kfree(fs_devices);
89 }
90 
91 int btrfs_cleanup_fs_uuids(void)
92 {
93 	struct btrfs_fs_devices *fs_devices;
94 
95 	while (!list_empty(&fs_uuids)) {
96 		fs_devices = list_entry(fs_uuids.next,
97 					struct btrfs_fs_devices, list);
98 		list_del(&fs_devices->list);
99 		free_fs_devices(fs_devices);
100 	}
101 	return 0;
102 }
103 
104 static noinline struct btrfs_device *__find_device(struct list_head *head,
105 						   u64 devid, u8 *uuid)
106 {
107 	struct btrfs_device *dev;
108 
109 	list_for_each_entry(dev, head, dev_list) {
110 		if (dev->devid == devid &&
111 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
112 			return dev;
113 		}
114 	}
115 	return NULL;
116 }
117 
118 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
119 {
120 	struct btrfs_fs_devices *fs_devices;
121 
122 	list_for_each_entry(fs_devices, &fs_uuids, list) {
123 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
124 			return fs_devices;
125 	}
126 	return NULL;
127 }
128 
129 static void requeue_list(struct btrfs_pending_bios *pending_bios,
130 			struct bio *head, struct bio *tail)
131 {
132 
133 	struct bio *old_head;
134 
135 	old_head = pending_bios->head;
136 	pending_bios->head = head;
137 	if (pending_bios->tail)
138 		tail->bi_next = old_head;
139 	else
140 		pending_bios->tail = tail;
141 }
142 
143 /*
144  * we try to collect pending bios for a device so we don't get a large
145  * number of procs sending bios down to the same device.  This greatly
146  * improves the schedulers ability to collect and merge the bios.
147  *
148  * But, it also turns into a long list of bios to process and that is sure
149  * to eventually make the worker thread block.  The solution here is to
150  * make some progress and then put this work struct back at the end of
151  * the list if the block device is congested.  This way, multiple devices
152  * can make progress from a single worker thread.
153  */
154 static noinline int run_scheduled_bios(struct btrfs_device *device)
155 {
156 	struct bio *pending;
157 	struct backing_dev_info *bdi;
158 	struct btrfs_fs_info *fs_info;
159 	struct btrfs_pending_bios *pending_bios;
160 	struct bio *tail;
161 	struct bio *cur;
162 	int again = 0;
163 	unsigned long num_run;
164 	unsigned long num_sync_run;
165 	unsigned long batch_run = 0;
166 	unsigned long limit;
167 	unsigned long last_waited = 0;
168 	int force_reg = 0;
169 
170 	bdi = blk_get_backing_dev_info(device->bdev);
171 	fs_info = device->dev_root->fs_info;
172 	limit = btrfs_async_submit_limit(fs_info);
173 	limit = limit * 2 / 3;
174 
175 	/* we want to make sure that every time we switch from the sync
176 	 * list to the normal list, we unplug
177 	 */
178 	num_sync_run = 0;
179 
180 loop:
181 	spin_lock(&device->io_lock);
182 
183 loop_lock:
184 	num_run = 0;
185 
186 	/* take all the bios off the list at once and process them
187 	 * later on (without the lock held).  But, remember the
188 	 * tail and other pointers so the bios can be properly reinserted
189 	 * into the list if we hit congestion
190 	 */
191 	if (!force_reg && device->pending_sync_bios.head) {
192 		pending_bios = &device->pending_sync_bios;
193 		force_reg = 1;
194 	} else {
195 		pending_bios = &device->pending_bios;
196 		force_reg = 0;
197 	}
198 
199 	pending = pending_bios->head;
200 	tail = pending_bios->tail;
201 	WARN_ON(pending && !tail);
202 
203 	/*
204 	 * if pending was null this time around, no bios need processing
205 	 * at all and we can stop.  Otherwise it'll loop back up again
206 	 * and do an additional check so no bios are missed.
207 	 *
208 	 * device->running_pending is used to synchronize with the
209 	 * schedule_bio code.
210 	 */
211 	if (device->pending_sync_bios.head == NULL &&
212 	    device->pending_bios.head == NULL) {
213 		again = 0;
214 		device->running_pending = 0;
215 	} else {
216 		again = 1;
217 		device->running_pending = 1;
218 	}
219 
220 	pending_bios->head = NULL;
221 	pending_bios->tail = NULL;
222 
223 	spin_unlock(&device->io_lock);
224 
225 	/*
226 	 * if we're doing the regular priority list, make sure we unplug
227 	 * for any high prio bios we've sent down
228 	 */
229 	if (pending_bios == &device->pending_bios && num_sync_run > 0) {
230 		num_sync_run = 0;
231 		blk_run_backing_dev(bdi, NULL);
232 	}
233 
234 	while (pending) {
235 
236 		rmb();
237 		/* we want to work on both lists, but do more bios on the
238 		 * sync list than the regular list
239 		 */
240 		if ((num_run > 32 &&
241 		    pending_bios != &device->pending_sync_bios &&
242 		    device->pending_sync_bios.head) ||
243 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
244 		    device->pending_bios.head)) {
245 			spin_lock(&device->io_lock);
246 			requeue_list(pending_bios, pending, tail);
247 			goto loop_lock;
248 		}
249 
250 		cur = pending;
251 		pending = pending->bi_next;
252 		cur->bi_next = NULL;
253 		atomic_dec(&fs_info->nr_async_bios);
254 
255 		if (atomic_read(&fs_info->nr_async_bios) < limit &&
256 		    waitqueue_active(&fs_info->async_submit_wait))
257 			wake_up(&fs_info->async_submit_wait);
258 
259 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
260 
261 		if (bio_rw_flagged(cur, BIO_RW_SYNCIO))
262 			num_sync_run++;
263 
264 		submit_bio(cur->bi_rw, cur);
265 		num_run++;
266 		batch_run++;
267 		if (need_resched()) {
268 			if (num_sync_run) {
269 				blk_run_backing_dev(bdi, NULL);
270 				num_sync_run = 0;
271 			}
272 			cond_resched();
273 		}
274 
275 		/*
276 		 * we made progress, there is more work to do and the bdi
277 		 * is now congested.  Back off and let other work structs
278 		 * run instead
279 		 */
280 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
281 		    fs_info->fs_devices->open_devices > 1) {
282 			struct io_context *ioc;
283 
284 			ioc = current->io_context;
285 
286 			/*
287 			 * the main goal here is that we don't want to
288 			 * block if we're going to be able to submit
289 			 * more requests without blocking.
290 			 *
291 			 * This code does two great things, it pokes into
292 			 * the elevator code from a filesystem _and_
293 			 * it makes assumptions about how batching works.
294 			 */
295 			if (ioc && ioc->nr_batch_requests > 0 &&
296 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
297 			    (last_waited == 0 ||
298 			     ioc->last_waited == last_waited)) {
299 				/*
300 				 * we want to go through our batch of
301 				 * requests and stop.  So, we copy out
302 				 * the ioc->last_waited time and test
303 				 * against it before looping
304 				 */
305 				last_waited = ioc->last_waited;
306 				if (need_resched()) {
307 					if (num_sync_run) {
308 						blk_run_backing_dev(bdi, NULL);
309 						num_sync_run = 0;
310 					}
311 					cond_resched();
312 				}
313 				continue;
314 			}
315 			spin_lock(&device->io_lock);
316 			requeue_list(pending_bios, pending, tail);
317 			device->running_pending = 1;
318 
319 			spin_unlock(&device->io_lock);
320 			btrfs_requeue_work(&device->work);
321 			goto done;
322 		}
323 	}
324 
325 	if (num_sync_run) {
326 		num_sync_run = 0;
327 		blk_run_backing_dev(bdi, NULL);
328 	}
329 	/*
330 	 * IO has already been through a long path to get here.  Checksumming,
331 	 * async helper threads, perhaps compression.  We've done a pretty
332 	 * good job of collecting a batch of IO and should just unplug
333 	 * the device right away.
334 	 *
335 	 * This will help anyone who is waiting on the IO, they might have
336 	 * already unplugged, but managed to do so before the bio they
337 	 * cared about found its way down here.
338 	 */
339 	blk_run_backing_dev(bdi, NULL);
340 
341 	cond_resched();
342 	if (again)
343 		goto loop;
344 
345 	spin_lock(&device->io_lock);
346 	if (device->pending_bios.head || device->pending_sync_bios.head)
347 		goto loop_lock;
348 	spin_unlock(&device->io_lock);
349 
350 done:
351 	return 0;
352 }
353 
354 static void pending_bios_fn(struct btrfs_work *work)
355 {
356 	struct btrfs_device *device;
357 
358 	device = container_of(work, struct btrfs_device, work);
359 	run_scheduled_bios(device);
360 }
361 
362 static noinline int device_list_add(const char *path,
363 			   struct btrfs_super_block *disk_super,
364 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
365 {
366 	struct btrfs_device *device;
367 	struct btrfs_fs_devices *fs_devices;
368 	u64 found_transid = btrfs_super_generation(disk_super);
369 	char *name;
370 
371 	fs_devices = find_fsid(disk_super->fsid);
372 	if (!fs_devices) {
373 		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
374 		if (!fs_devices)
375 			return -ENOMEM;
376 		INIT_LIST_HEAD(&fs_devices->devices);
377 		INIT_LIST_HEAD(&fs_devices->alloc_list);
378 		list_add(&fs_devices->list, &fs_uuids);
379 		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
380 		fs_devices->latest_devid = devid;
381 		fs_devices->latest_trans = found_transid;
382 		mutex_init(&fs_devices->device_list_mutex);
383 		device = NULL;
384 	} else {
385 		device = __find_device(&fs_devices->devices, devid,
386 				       disk_super->dev_item.uuid);
387 	}
388 	if (!device) {
389 		if (fs_devices->opened)
390 			return -EBUSY;
391 
392 		device = kzalloc(sizeof(*device), GFP_NOFS);
393 		if (!device) {
394 			/* we can safely leave the fs_devices entry around */
395 			return -ENOMEM;
396 		}
397 		device->devid = devid;
398 		device->work.func = pending_bios_fn;
399 		memcpy(device->uuid, disk_super->dev_item.uuid,
400 		       BTRFS_UUID_SIZE);
401 		device->barriers = 1;
402 		spin_lock_init(&device->io_lock);
403 		device->name = kstrdup(path, GFP_NOFS);
404 		if (!device->name) {
405 			kfree(device);
406 			return -ENOMEM;
407 		}
408 		INIT_LIST_HEAD(&device->dev_alloc_list);
409 
410 		mutex_lock(&fs_devices->device_list_mutex);
411 		list_add(&device->dev_list, &fs_devices->devices);
412 		mutex_unlock(&fs_devices->device_list_mutex);
413 
414 		device->fs_devices = fs_devices;
415 		fs_devices->num_devices++;
416 	} else if (strcmp(device->name, path)) {
417 		name = kstrdup(path, GFP_NOFS);
418 		if (!name)
419 			return -ENOMEM;
420 		kfree(device->name);
421 		device->name = name;
422 	}
423 
424 	if (found_transid > fs_devices->latest_trans) {
425 		fs_devices->latest_devid = devid;
426 		fs_devices->latest_trans = found_transid;
427 	}
428 	*fs_devices_ret = fs_devices;
429 	return 0;
430 }
431 
432 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
433 {
434 	struct btrfs_fs_devices *fs_devices;
435 	struct btrfs_device *device;
436 	struct btrfs_device *orig_dev;
437 
438 	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
439 	if (!fs_devices)
440 		return ERR_PTR(-ENOMEM);
441 
442 	INIT_LIST_HEAD(&fs_devices->devices);
443 	INIT_LIST_HEAD(&fs_devices->alloc_list);
444 	INIT_LIST_HEAD(&fs_devices->list);
445 	mutex_init(&fs_devices->device_list_mutex);
446 	fs_devices->latest_devid = orig->latest_devid;
447 	fs_devices->latest_trans = orig->latest_trans;
448 	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
449 
450 	mutex_lock(&orig->device_list_mutex);
451 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
452 		device = kzalloc(sizeof(*device), GFP_NOFS);
453 		if (!device)
454 			goto error;
455 
456 		device->name = kstrdup(orig_dev->name, GFP_NOFS);
457 		if (!device->name) {
458 			kfree(device);
459 			goto error;
460 		}
461 
462 		device->devid = orig_dev->devid;
463 		device->work.func = pending_bios_fn;
464 		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
465 		device->barriers = 1;
466 		spin_lock_init(&device->io_lock);
467 		INIT_LIST_HEAD(&device->dev_list);
468 		INIT_LIST_HEAD(&device->dev_alloc_list);
469 
470 		list_add(&device->dev_list, &fs_devices->devices);
471 		device->fs_devices = fs_devices;
472 		fs_devices->num_devices++;
473 	}
474 	mutex_unlock(&orig->device_list_mutex);
475 	return fs_devices;
476 error:
477 	mutex_unlock(&orig->device_list_mutex);
478 	free_fs_devices(fs_devices);
479 	return ERR_PTR(-ENOMEM);
480 }
481 
482 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
483 {
484 	struct btrfs_device *device, *next;
485 
486 	mutex_lock(&uuid_mutex);
487 again:
488 	mutex_lock(&fs_devices->device_list_mutex);
489 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
490 		if (device->in_fs_metadata)
491 			continue;
492 
493 		if (device->bdev) {
494 			close_bdev_exclusive(device->bdev, device->mode);
495 			device->bdev = NULL;
496 			fs_devices->open_devices--;
497 		}
498 		if (device->writeable) {
499 			list_del_init(&device->dev_alloc_list);
500 			device->writeable = 0;
501 			fs_devices->rw_devices--;
502 		}
503 		list_del_init(&device->dev_list);
504 		fs_devices->num_devices--;
505 		kfree(device->name);
506 		kfree(device);
507 	}
508 	mutex_unlock(&fs_devices->device_list_mutex);
509 
510 	if (fs_devices->seed) {
511 		fs_devices = fs_devices->seed;
512 		goto again;
513 	}
514 
515 	mutex_unlock(&uuid_mutex);
516 	return 0;
517 }
518 
519 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
520 {
521 	struct btrfs_device *device;
522 
523 	if (--fs_devices->opened > 0)
524 		return 0;
525 
526 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
527 		if (device->bdev) {
528 			close_bdev_exclusive(device->bdev, device->mode);
529 			fs_devices->open_devices--;
530 		}
531 		if (device->writeable) {
532 			list_del_init(&device->dev_alloc_list);
533 			fs_devices->rw_devices--;
534 		}
535 
536 		device->bdev = NULL;
537 		device->writeable = 0;
538 		device->in_fs_metadata = 0;
539 	}
540 	WARN_ON(fs_devices->open_devices);
541 	WARN_ON(fs_devices->rw_devices);
542 	fs_devices->opened = 0;
543 	fs_devices->seeding = 0;
544 
545 	return 0;
546 }
547 
548 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
549 {
550 	struct btrfs_fs_devices *seed_devices = NULL;
551 	int ret;
552 
553 	mutex_lock(&uuid_mutex);
554 	ret = __btrfs_close_devices(fs_devices);
555 	if (!fs_devices->opened) {
556 		seed_devices = fs_devices->seed;
557 		fs_devices->seed = NULL;
558 	}
559 	mutex_unlock(&uuid_mutex);
560 
561 	while (seed_devices) {
562 		fs_devices = seed_devices;
563 		seed_devices = fs_devices->seed;
564 		__btrfs_close_devices(fs_devices);
565 		free_fs_devices(fs_devices);
566 	}
567 	return ret;
568 }
569 
570 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
571 				fmode_t flags, void *holder)
572 {
573 	struct block_device *bdev;
574 	struct list_head *head = &fs_devices->devices;
575 	struct btrfs_device *device;
576 	struct block_device *latest_bdev = NULL;
577 	struct buffer_head *bh;
578 	struct btrfs_super_block *disk_super;
579 	u64 latest_devid = 0;
580 	u64 latest_transid = 0;
581 	u64 devid;
582 	int seeding = 1;
583 	int ret = 0;
584 
585 	list_for_each_entry(device, head, dev_list) {
586 		if (device->bdev)
587 			continue;
588 		if (!device->name)
589 			continue;
590 
591 		bdev = open_bdev_exclusive(device->name, flags, holder);
592 		if (IS_ERR(bdev)) {
593 			printk(KERN_INFO "open %s failed\n", device->name);
594 			goto error;
595 		}
596 		set_blocksize(bdev, 4096);
597 
598 		bh = btrfs_read_dev_super(bdev);
599 		if (!bh)
600 			goto error_close;
601 
602 		disk_super = (struct btrfs_super_block *)bh->b_data;
603 		devid = btrfs_stack_device_id(&disk_super->dev_item);
604 		if (devid != device->devid)
605 			goto error_brelse;
606 
607 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
608 			   BTRFS_UUID_SIZE))
609 			goto error_brelse;
610 
611 		device->generation = btrfs_super_generation(disk_super);
612 		if (!latest_transid || device->generation > latest_transid) {
613 			latest_devid = devid;
614 			latest_transid = device->generation;
615 			latest_bdev = bdev;
616 		}
617 
618 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
619 			device->writeable = 0;
620 		} else {
621 			device->writeable = !bdev_read_only(bdev);
622 			seeding = 0;
623 		}
624 
625 		device->bdev = bdev;
626 		device->in_fs_metadata = 0;
627 		device->mode = flags;
628 
629 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
630 			fs_devices->rotating = 1;
631 
632 		fs_devices->open_devices++;
633 		if (device->writeable) {
634 			fs_devices->rw_devices++;
635 			list_add(&device->dev_alloc_list,
636 				 &fs_devices->alloc_list);
637 		}
638 		continue;
639 
640 error_brelse:
641 		brelse(bh);
642 error_close:
643 		close_bdev_exclusive(bdev, FMODE_READ);
644 error:
645 		continue;
646 	}
647 	if (fs_devices->open_devices == 0) {
648 		ret = -EIO;
649 		goto out;
650 	}
651 	fs_devices->seeding = seeding;
652 	fs_devices->opened = 1;
653 	fs_devices->latest_bdev = latest_bdev;
654 	fs_devices->latest_devid = latest_devid;
655 	fs_devices->latest_trans = latest_transid;
656 	fs_devices->total_rw_bytes = 0;
657 out:
658 	return ret;
659 }
660 
661 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
662 		       fmode_t flags, void *holder)
663 {
664 	int ret;
665 
666 	mutex_lock(&uuid_mutex);
667 	if (fs_devices->opened) {
668 		fs_devices->opened++;
669 		ret = 0;
670 	} else {
671 		ret = __btrfs_open_devices(fs_devices, flags, holder);
672 	}
673 	mutex_unlock(&uuid_mutex);
674 	return ret;
675 }
676 
677 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
678 			  struct btrfs_fs_devices **fs_devices_ret)
679 {
680 	struct btrfs_super_block *disk_super;
681 	struct block_device *bdev;
682 	struct buffer_head *bh;
683 	int ret;
684 	u64 devid;
685 	u64 transid;
686 
687 	mutex_lock(&uuid_mutex);
688 
689 	bdev = open_bdev_exclusive(path, flags, holder);
690 
691 	if (IS_ERR(bdev)) {
692 		ret = PTR_ERR(bdev);
693 		goto error;
694 	}
695 
696 	ret = set_blocksize(bdev, 4096);
697 	if (ret)
698 		goto error_close;
699 	bh = btrfs_read_dev_super(bdev);
700 	if (!bh) {
701 		ret = -EIO;
702 		goto error_close;
703 	}
704 	disk_super = (struct btrfs_super_block *)bh->b_data;
705 	devid = btrfs_stack_device_id(&disk_super->dev_item);
706 	transid = btrfs_super_generation(disk_super);
707 	if (disk_super->label[0])
708 		printk(KERN_INFO "device label %s ", disk_super->label);
709 	else {
710 		/* FIXME, make a readl uuid parser */
711 		printk(KERN_INFO "device fsid %llx-%llx ",
712 		       *(unsigned long long *)disk_super->fsid,
713 		       *(unsigned long long *)(disk_super->fsid + 8));
714 	}
715 	printk(KERN_CONT "devid %llu transid %llu %s\n",
716 	       (unsigned long long)devid, (unsigned long long)transid, path);
717 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
718 
719 	brelse(bh);
720 error_close:
721 	close_bdev_exclusive(bdev, flags);
722 error:
723 	mutex_unlock(&uuid_mutex);
724 	return ret;
725 }
726 
727 /*
728  * this uses a pretty simple search, the expectation is that it is
729  * called very infrequently and that a given device has a small number
730  * of extents
731  */
732 int find_free_dev_extent(struct btrfs_trans_handle *trans,
733 			 struct btrfs_device *device, u64 num_bytes,
734 			 u64 *start, u64 *max_avail)
735 {
736 	struct btrfs_key key;
737 	struct btrfs_root *root = device->dev_root;
738 	struct btrfs_dev_extent *dev_extent = NULL;
739 	struct btrfs_path *path;
740 	u64 hole_size = 0;
741 	u64 last_byte = 0;
742 	u64 search_start = 0;
743 	u64 search_end = device->total_bytes;
744 	int ret;
745 	int slot = 0;
746 	int start_found;
747 	struct extent_buffer *l;
748 
749 	path = btrfs_alloc_path();
750 	if (!path)
751 		return -ENOMEM;
752 	path->reada = 2;
753 	start_found = 0;
754 
755 	/* FIXME use last free of some kind */
756 
757 	/* we don't want to overwrite the superblock on the drive,
758 	 * so we make sure to start at an offset of at least 1MB
759 	 */
760 	search_start = max((u64)1024 * 1024, search_start);
761 
762 	if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
763 		search_start = max(root->fs_info->alloc_start, search_start);
764 
765 	key.objectid = device->devid;
766 	key.offset = search_start;
767 	key.type = BTRFS_DEV_EXTENT_KEY;
768 	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
769 	if (ret < 0)
770 		goto error;
771 	if (ret > 0) {
772 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
773 		if (ret < 0)
774 			goto error;
775 		if (ret > 0)
776 			start_found = 1;
777 	}
778 	l = path->nodes[0];
779 	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
780 	while (1) {
781 		l = path->nodes[0];
782 		slot = path->slots[0];
783 		if (slot >= btrfs_header_nritems(l)) {
784 			ret = btrfs_next_leaf(root, path);
785 			if (ret == 0)
786 				continue;
787 			if (ret < 0)
788 				goto error;
789 no_more_items:
790 			if (!start_found) {
791 				if (search_start >= search_end) {
792 					ret = -ENOSPC;
793 					goto error;
794 				}
795 				*start = search_start;
796 				start_found = 1;
797 				goto check_pending;
798 			}
799 			*start = last_byte > search_start ?
800 				last_byte : search_start;
801 			if (search_end <= *start) {
802 				ret = -ENOSPC;
803 				goto error;
804 			}
805 			goto check_pending;
806 		}
807 		btrfs_item_key_to_cpu(l, &key, slot);
808 
809 		if (key.objectid < device->devid)
810 			goto next;
811 
812 		if (key.objectid > device->devid)
813 			goto no_more_items;
814 
815 		if (key.offset >= search_start && key.offset > last_byte &&
816 		    start_found) {
817 			if (last_byte < search_start)
818 				last_byte = search_start;
819 			hole_size = key.offset - last_byte;
820 
821 			if (hole_size > *max_avail)
822 				*max_avail = hole_size;
823 
824 			if (key.offset > last_byte &&
825 			    hole_size >= num_bytes) {
826 				*start = last_byte;
827 				goto check_pending;
828 			}
829 		}
830 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
831 			goto next;
832 
833 		start_found = 1;
834 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
835 		last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
836 next:
837 		path->slots[0]++;
838 		cond_resched();
839 	}
840 check_pending:
841 	/* we have to make sure we didn't find an extent that has already
842 	 * been allocated by the map tree or the original allocation
843 	 */
844 	BUG_ON(*start < search_start);
845 
846 	if (*start + num_bytes > search_end) {
847 		ret = -ENOSPC;
848 		goto error;
849 	}
850 	/* check for pending inserts here */
851 	ret = 0;
852 
853 error:
854 	btrfs_free_path(path);
855 	return ret;
856 }
857 
858 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
859 			  struct btrfs_device *device,
860 			  u64 start)
861 {
862 	int ret;
863 	struct btrfs_path *path;
864 	struct btrfs_root *root = device->dev_root;
865 	struct btrfs_key key;
866 	struct btrfs_key found_key;
867 	struct extent_buffer *leaf = NULL;
868 	struct btrfs_dev_extent *extent = NULL;
869 
870 	path = btrfs_alloc_path();
871 	if (!path)
872 		return -ENOMEM;
873 
874 	key.objectid = device->devid;
875 	key.offset = start;
876 	key.type = BTRFS_DEV_EXTENT_KEY;
877 
878 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
879 	if (ret > 0) {
880 		ret = btrfs_previous_item(root, path, key.objectid,
881 					  BTRFS_DEV_EXTENT_KEY);
882 		BUG_ON(ret);
883 		leaf = path->nodes[0];
884 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
885 		extent = btrfs_item_ptr(leaf, path->slots[0],
886 					struct btrfs_dev_extent);
887 		BUG_ON(found_key.offset > start || found_key.offset +
888 		       btrfs_dev_extent_length(leaf, extent) < start);
889 		ret = 0;
890 	} else if (ret == 0) {
891 		leaf = path->nodes[0];
892 		extent = btrfs_item_ptr(leaf, path->slots[0],
893 					struct btrfs_dev_extent);
894 	}
895 	BUG_ON(ret);
896 
897 	if (device->bytes_used > 0)
898 		device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
899 	ret = btrfs_del_item(trans, root, path);
900 	BUG_ON(ret);
901 
902 	btrfs_free_path(path);
903 	return ret;
904 }
905 
906 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
907 			   struct btrfs_device *device,
908 			   u64 chunk_tree, u64 chunk_objectid,
909 			   u64 chunk_offset, u64 start, u64 num_bytes)
910 {
911 	int ret;
912 	struct btrfs_path *path;
913 	struct btrfs_root *root = device->dev_root;
914 	struct btrfs_dev_extent *extent;
915 	struct extent_buffer *leaf;
916 	struct btrfs_key key;
917 
918 	WARN_ON(!device->in_fs_metadata);
919 	path = btrfs_alloc_path();
920 	if (!path)
921 		return -ENOMEM;
922 
923 	key.objectid = device->devid;
924 	key.offset = start;
925 	key.type = BTRFS_DEV_EXTENT_KEY;
926 	ret = btrfs_insert_empty_item(trans, root, path, &key,
927 				      sizeof(*extent));
928 	BUG_ON(ret);
929 
930 	leaf = path->nodes[0];
931 	extent = btrfs_item_ptr(leaf, path->slots[0],
932 				struct btrfs_dev_extent);
933 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
934 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
935 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
936 
937 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
938 		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
939 		    BTRFS_UUID_SIZE);
940 
941 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
942 	btrfs_mark_buffer_dirty(leaf);
943 	btrfs_free_path(path);
944 	return ret;
945 }
946 
947 static noinline int find_next_chunk(struct btrfs_root *root,
948 				    u64 objectid, u64 *offset)
949 {
950 	struct btrfs_path *path;
951 	int ret;
952 	struct btrfs_key key;
953 	struct btrfs_chunk *chunk;
954 	struct btrfs_key found_key;
955 
956 	path = btrfs_alloc_path();
957 	BUG_ON(!path);
958 
959 	key.objectid = objectid;
960 	key.offset = (u64)-1;
961 	key.type = BTRFS_CHUNK_ITEM_KEY;
962 
963 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
964 	if (ret < 0)
965 		goto error;
966 
967 	BUG_ON(ret == 0);
968 
969 	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
970 	if (ret) {
971 		*offset = 0;
972 	} else {
973 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
974 				      path->slots[0]);
975 		if (found_key.objectid != objectid)
976 			*offset = 0;
977 		else {
978 			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
979 					       struct btrfs_chunk);
980 			*offset = found_key.offset +
981 				btrfs_chunk_length(path->nodes[0], chunk);
982 		}
983 	}
984 	ret = 0;
985 error:
986 	btrfs_free_path(path);
987 	return ret;
988 }
989 
990 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
991 {
992 	int ret;
993 	struct btrfs_key key;
994 	struct btrfs_key found_key;
995 	struct btrfs_path *path;
996 
997 	root = root->fs_info->chunk_root;
998 
999 	path = btrfs_alloc_path();
1000 	if (!path)
1001 		return -ENOMEM;
1002 
1003 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1004 	key.type = BTRFS_DEV_ITEM_KEY;
1005 	key.offset = (u64)-1;
1006 
1007 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1008 	if (ret < 0)
1009 		goto error;
1010 
1011 	BUG_ON(ret == 0);
1012 
1013 	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1014 				  BTRFS_DEV_ITEM_KEY);
1015 	if (ret) {
1016 		*objectid = 1;
1017 	} else {
1018 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1019 				      path->slots[0]);
1020 		*objectid = found_key.offset + 1;
1021 	}
1022 	ret = 0;
1023 error:
1024 	btrfs_free_path(path);
1025 	return ret;
1026 }
1027 
1028 /*
1029  * the device information is stored in the chunk root
1030  * the btrfs_device struct should be fully filled in
1031  */
1032 int btrfs_add_device(struct btrfs_trans_handle *trans,
1033 		     struct btrfs_root *root,
1034 		     struct btrfs_device *device)
1035 {
1036 	int ret;
1037 	struct btrfs_path *path;
1038 	struct btrfs_dev_item *dev_item;
1039 	struct extent_buffer *leaf;
1040 	struct btrfs_key key;
1041 	unsigned long ptr;
1042 
1043 	root = root->fs_info->chunk_root;
1044 
1045 	path = btrfs_alloc_path();
1046 	if (!path)
1047 		return -ENOMEM;
1048 
1049 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1050 	key.type = BTRFS_DEV_ITEM_KEY;
1051 	key.offset = device->devid;
1052 
1053 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1054 				      sizeof(*dev_item));
1055 	if (ret)
1056 		goto out;
1057 
1058 	leaf = path->nodes[0];
1059 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1060 
1061 	btrfs_set_device_id(leaf, dev_item, device->devid);
1062 	btrfs_set_device_generation(leaf, dev_item, 0);
1063 	btrfs_set_device_type(leaf, dev_item, device->type);
1064 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1065 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1066 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1067 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1068 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1069 	btrfs_set_device_group(leaf, dev_item, 0);
1070 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1071 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1072 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1073 
1074 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1075 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1076 	ptr = (unsigned long)btrfs_device_fsid(dev_item);
1077 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1078 	btrfs_mark_buffer_dirty(leaf);
1079 
1080 	ret = 0;
1081 out:
1082 	btrfs_free_path(path);
1083 	return ret;
1084 }
1085 
1086 static int btrfs_rm_dev_item(struct btrfs_root *root,
1087 			     struct btrfs_device *device)
1088 {
1089 	int ret;
1090 	struct btrfs_path *path;
1091 	struct btrfs_key key;
1092 	struct btrfs_trans_handle *trans;
1093 
1094 	root = root->fs_info->chunk_root;
1095 
1096 	path = btrfs_alloc_path();
1097 	if (!path)
1098 		return -ENOMEM;
1099 
1100 	trans = btrfs_start_transaction(root, 0);
1101 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1102 	key.type = BTRFS_DEV_ITEM_KEY;
1103 	key.offset = device->devid;
1104 	lock_chunks(root);
1105 
1106 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1107 	if (ret < 0)
1108 		goto out;
1109 
1110 	if (ret > 0) {
1111 		ret = -ENOENT;
1112 		goto out;
1113 	}
1114 
1115 	ret = btrfs_del_item(trans, root, path);
1116 	if (ret)
1117 		goto out;
1118 out:
1119 	btrfs_free_path(path);
1120 	unlock_chunks(root);
1121 	btrfs_commit_transaction(trans, root);
1122 	return ret;
1123 }
1124 
1125 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1126 {
1127 	struct btrfs_device *device;
1128 	struct btrfs_device *next_device;
1129 	struct block_device *bdev;
1130 	struct buffer_head *bh = NULL;
1131 	struct btrfs_super_block *disk_super;
1132 	u64 all_avail;
1133 	u64 devid;
1134 	u64 num_devices;
1135 	u8 *dev_uuid;
1136 	int ret = 0;
1137 
1138 	mutex_lock(&uuid_mutex);
1139 	mutex_lock(&root->fs_info->volume_mutex);
1140 
1141 	all_avail = root->fs_info->avail_data_alloc_bits |
1142 		root->fs_info->avail_system_alloc_bits |
1143 		root->fs_info->avail_metadata_alloc_bits;
1144 
1145 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1146 	    root->fs_info->fs_devices->num_devices <= 4) {
1147 		printk(KERN_ERR "btrfs: unable to go below four devices "
1148 		       "on raid10\n");
1149 		ret = -EINVAL;
1150 		goto out;
1151 	}
1152 
1153 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1154 	    root->fs_info->fs_devices->num_devices <= 2) {
1155 		printk(KERN_ERR "btrfs: unable to go below two "
1156 		       "devices on raid1\n");
1157 		ret = -EINVAL;
1158 		goto out;
1159 	}
1160 
1161 	if (strcmp(device_path, "missing") == 0) {
1162 		struct list_head *devices;
1163 		struct btrfs_device *tmp;
1164 
1165 		device = NULL;
1166 		devices = &root->fs_info->fs_devices->devices;
1167 		mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1168 		list_for_each_entry(tmp, devices, dev_list) {
1169 			if (tmp->in_fs_metadata && !tmp->bdev) {
1170 				device = tmp;
1171 				break;
1172 			}
1173 		}
1174 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1175 		bdev = NULL;
1176 		bh = NULL;
1177 		disk_super = NULL;
1178 		if (!device) {
1179 			printk(KERN_ERR "btrfs: no missing devices found to "
1180 			       "remove\n");
1181 			goto out;
1182 		}
1183 	} else {
1184 		bdev = open_bdev_exclusive(device_path, FMODE_READ,
1185 				      root->fs_info->bdev_holder);
1186 		if (IS_ERR(bdev)) {
1187 			ret = PTR_ERR(bdev);
1188 			goto out;
1189 		}
1190 
1191 		set_blocksize(bdev, 4096);
1192 		bh = btrfs_read_dev_super(bdev);
1193 		if (!bh) {
1194 			ret = -EIO;
1195 			goto error_close;
1196 		}
1197 		disk_super = (struct btrfs_super_block *)bh->b_data;
1198 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1199 		dev_uuid = disk_super->dev_item.uuid;
1200 		device = btrfs_find_device(root, devid, dev_uuid,
1201 					   disk_super->fsid);
1202 		if (!device) {
1203 			ret = -ENOENT;
1204 			goto error_brelse;
1205 		}
1206 	}
1207 
1208 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1209 		printk(KERN_ERR "btrfs: unable to remove the only writeable "
1210 		       "device\n");
1211 		ret = -EINVAL;
1212 		goto error_brelse;
1213 	}
1214 
1215 	if (device->writeable) {
1216 		list_del_init(&device->dev_alloc_list);
1217 		root->fs_info->fs_devices->rw_devices--;
1218 	}
1219 
1220 	ret = btrfs_shrink_device(device, 0);
1221 	if (ret)
1222 		goto error_brelse;
1223 
1224 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1225 	if (ret)
1226 		goto error_brelse;
1227 
1228 	device->in_fs_metadata = 0;
1229 
1230 	/*
1231 	 * the device list mutex makes sure that we don't change
1232 	 * the device list while someone else is writing out all
1233 	 * the device supers.
1234 	 */
1235 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1236 	list_del_init(&device->dev_list);
1237 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1238 
1239 	device->fs_devices->num_devices--;
1240 
1241 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1242 				 struct btrfs_device, dev_list);
1243 	if (device->bdev == root->fs_info->sb->s_bdev)
1244 		root->fs_info->sb->s_bdev = next_device->bdev;
1245 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1246 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1247 
1248 	if (device->bdev) {
1249 		close_bdev_exclusive(device->bdev, device->mode);
1250 		device->bdev = NULL;
1251 		device->fs_devices->open_devices--;
1252 	}
1253 
1254 	num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1255 	btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1256 
1257 	if (device->fs_devices->open_devices == 0) {
1258 		struct btrfs_fs_devices *fs_devices;
1259 		fs_devices = root->fs_info->fs_devices;
1260 		while (fs_devices) {
1261 			if (fs_devices->seed == device->fs_devices)
1262 				break;
1263 			fs_devices = fs_devices->seed;
1264 		}
1265 		fs_devices->seed = device->fs_devices->seed;
1266 		device->fs_devices->seed = NULL;
1267 		__btrfs_close_devices(device->fs_devices);
1268 		free_fs_devices(device->fs_devices);
1269 	}
1270 
1271 	/*
1272 	 * at this point, the device is zero sized.  We want to
1273 	 * remove it from the devices list and zero out the old super
1274 	 */
1275 	if (device->writeable) {
1276 		/* make sure this device isn't detected as part of
1277 		 * the FS anymore
1278 		 */
1279 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1280 		set_buffer_dirty(bh);
1281 		sync_dirty_buffer(bh);
1282 	}
1283 
1284 	kfree(device->name);
1285 	kfree(device);
1286 	ret = 0;
1287 
1288 error_brelse:
1289 	brelse(bh);
1290 error_close:
1291 	if (bdev)
1292 		close_bdev_exclusive(bdev, FMODE_READ);
1293 out:
1294 	mutex_unlock(&root->fs_info->volume_mutex);
1295 	mutex_unlock(&uuid_mutex);
1296 	return ret;
1297 }
1298 
1299 /*
1300  * does all the dirty work required for changing file system's UUID.
1301  */
1302 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1303 				struct btrfs_root *root)
1304 {
1305 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1306 	struct btrfs_fs_devices *old_devices;
1307 	struct btrfs_fs_devices *seed_devices;
1308 	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1309 	struct btrfs_device *device;
1310 	u64 super_flags;
1311 
1312 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1313 	if (!fs_devices->seeding)
1314 		return -EINVAL;
1315 
1316 	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1317 	if (!seed_devices)
1318 		return -ENOMEM;
1319 
1320 	old_devices = clone_fs_devices(fs_devices);
1321 	if (IS_ERR(old_devices)) {
1322 		kfree(seed_devices);
1323 		return PTR_ERR(old_devices);
1324 	}
1325 
1326 	list_add(&old_devices->list, &fs_uuids);
1327 
1328 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1329 	seed_devices->opened = 1;
1330 	INIT_LIST_HEAD(&seed_devices->devices);
1331 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1332 	mutex_init(&seed_devices->device_list_mutex);
1333 	list_splice_init(&fs_devices->devices, &seed_devices->devices);
1334 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1335 	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1336 		device->fs_devices = seed_devices;
1337 	}
1338 
1339 	fs_devices->seeding = 0;
1340 	fs_devices->num_devices = 0;
1341 	fs_devices->open_devices = 0;
1342 	fs_devices->seed = seed_devices;
1343 
1344 	generate_random_uuid(fs_devices->fsid);
1345 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1346 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1347 	super_flags = btrfs_super_flags(disk_super) &
1348 		      ~BTRFS_SUPER_FLAG_SEEDING;
1349 	btrfs_set_super_flags(disk_super, super_flags);
1350 
1351 	return 0;
1352 }
1353 
1354 /*
1355  * strore the expected generation for seed devices in device items.
1356  */
1357 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1358 			       struct btrfs_root *root)
1359 {
1360 	struct btrfs_path *path;
1361 	struct extent_buffer *leaf;
1362 	struct btrfs_dev_item *dev_item;
1363 	struct btrfs_device *device;
1364 	struct btrfs_key key;
1365 	u8 fs_uuid[BTRFS_UUID_SIZE];
1366 	u8 dev_uuid[BTRFS_UUID_SIZE];
1367 	u64 devid;
1368 	int ret;
1369 
1370 	path = btrfs_alloc_path();
1371 	if (!path)
1372 		return -ENOMEM;
1373 
1374 	root = root->fs_info->chunk_root;
1375 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1376 	key.offset = 0;
1377 	key.type = BTRFS_DEV_ITEM_KEY;
1378 
1379 	while (1) {
1380 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1381 		if (ret < 0)
1382 			goto error;
1383 
1384 		leaf = path->nodes[0];
1385 next_slot:
1386 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1387 			ret = btrfs_next_leaf(root, path);
1388 			if (ret > 0)
1389 				break;
1390 			if (ret < 0)
1391 				goto error;
1392 			leaf = path->nodes[0];
1393 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1394 			btrfs_release_path(root, path);
1395 			continue;
1396 		}
1397 
1398 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1399 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1400 		    key.type != BTRFS_DEV_ITEM_KEY)
1401 			break;
1402 
1403 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
1404 					  struct btrfs_dev_item);
1405 		devid = btrfs_device_id(leaf, dev_item);
1406 		read_extent_buffer(leaf, dev_uuid,
1407 				   (unsigned long)btrfs_device_uuid(dev_item),
1408 				   BTRFS_UUID_SIZE);
1409 		read_extent_buffer(leaf, fs_uuid,
1410 				   (unsigned long)btrfs_device_fsid(dev_item),
1411 				   BTRFS_UUID_SIZE);
1412 		device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1413 		BUG_ON(!device);
1414 
1415 		if (device->fs_devices->seeding) {
1416 			btrfs_set_device_generation(leaf, dev_item,
1417 						    device->generation);
1418 			btrfs_mark_buffer_dirty(leaf);
1419 		}
1420 
1421 		path->slots[0]++;
1422 		goto next_slot;
1423 	}
1424 	ret = 0;
1425 error:
1426 	btrfs_free_path(path);
1427 	return ret;
1428 }
1429 
1430 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1431 {
1432 	struct btrfs_trans_handle *trans;
1433 	struct btrfs_device *device;
1434 	struct block_device *bdev;
1435 	struct list_head *devices;
1436 	struct super_block *sb = root->fs_info->sb;
1437 	u64 total_bytes;
1438 	int seeding_dev = 0;
1439 	int ret = 0;
1440 
1441 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1442 		return -EINVAL;
1443 
1444 	bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
1445 	if (IS_ERR(bdev))
1446 		return PTR_ERR(bdev);
1447 
1448 	if (root->fs_info->fs_devices->seeding) {
1449 		seeding_dev = 1;
1450 		down_write(&sb->s_umount);
1451 		mutex_lock(&uuid_mutex);
1452 	}
1453 
1454 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
1455 	mutex_lock(&root->fs_info->volume_mutex);
1456 
1457 	devices = &root->fs_info->fs_devices->devices;
1458 	/*
1459 	 * we have the volume lock, so we don't need the extra
1460 	 * device list mutex while reading the list here.
1461 	 */
1462 	list_for_each_entry(device, devices, dev_list) {
1463 		if (device->bdev == bdev) {
1464 			ret = -EEXIST;
1465 			goto error;
1466 		}
1467 	}
1468 
1469 	device = kzalloc(sizeof(*device), GFP_NOFS);
1470 	if (!device) {
1471 		/* we can safely leave the fs_devices entry around */
1472 		ret = -ENOMEM;
1473 		goto error;
1474 	}
1475 
1476 	device->name = kstrdup(device_path, GFP_NOFS);
1477 	if (!device->name) {
1478 		kfree(device);
1479 		ret = -ENOMEM;
1480 		goto error;
1481 	}
1482 
1483 	ret = find_next_devid(root, &device->devid);
1484 	if (ret) {
1485 		kfree(device);
1486 		goto error;
1487 	}
1488 
1489 	trans = btrfs_start_transaction(root, 0);
1490 	lock_chunks(root);
1491 
1492 	device->barriers = 1;
1493 	device->writeable = 1;
1494 	device->work.func = pending_bios_fn;
1495 	generate_random_uuid(device->uuid);
1496 	spin_lock_init(&device->io_lock);
1497 	device->generation = trans->transid;
1498 	device->io_width = root->sectorsize;
1499 	device->io_align = root->sectorsize;
1500 	device->sector_size = root->sectorsize;
1501 	device->total_bytes = i_size_read(bdev->bd_inode);
1502 	device->disk_total_bytes = device->total_bytes;
1503 	device->dev_root = root->fs_info->dev_root;
1504 	device->bdev = bdev;
1505 	device->in_fs_metadata = 1;
1506 	device->mode = 0;
1507 	set_blocksize(device->bdev, 4096);
1508 
1509 	if (seeding_dev) {
1510 		sb->s_flags &= ~MS_RDONLY;
1511 		ret = btrfs_prepare_sprout(trans, root);
1512 		BUG_ON(ret);
1513 	}
1514 
1515 	device->fs_devices = root->fs_info->fs_devices;
1516 
1517 	/*
1518 	 * we don't want write_supers to jump in here with our device
1519 	 * half setup
1520 	 */
1521 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1522 	list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1523 	list_add(&device->dev_alloc_list,
1524 		 &root->fs_info->fs_devices->alloc_list);
1525 	root->fs_info->fs_devices->num_devices++;
1526 	root->fs_info->fs_devices->open_devices++;
1527 	root->fs_info->fs_devices->rw_devices++;
1528 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1529 
1530 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1531 		root->fs_info->fs_devices->rotating = 1;
1532 
1533 	total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1534 	btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1535 				    total_bytes + device->total_bytes);
1536 
1537 	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1538 	btrfs_set_super_num_devices(&root->fs_info->super_copy,
1539 				    total_bytes + 1);
1540 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1541 
1542 	if (seeding_dev) {
1543 		ret = init_first_rw_device(trans, root, device);
1544 		BUG_ON(ret);
1545 		ret = btrfs_finish_sprout(trans, root);
1546 		BUG_ON(ret);
1547 	} else {
1548 		ret = btrfs_add_device(trans, root, device);
1549 	}
1550 
1551 	/*
1552 	 * we've got more storage, clear any full flags on the space
1553 	 * infos
1554 	 */
1555 	btrfs_clear_space_info_full(root->fs_info);
1556 
1557 	unlock_chunks(root);
1558 	btrfs_commit_transaction(trans, root);
1559 
1560 	if (seeding_dev) {
1561 		mutex_unlock(&uuid_mutex);
1562 		up_write(&sb->s_umount);
1563 
1564 		ret = btrfs_relocate_sys_chunks(root);
1565 		BUG_ON(ret);
1566 	}
1567 out:
1568 	mutex_unlock(&root->fs_info->volume_mutex);
1569 	return ret;
1570 error:
1571 	close_bdev_exclusive(bdev, 0);
1572 	if (seeding_dev) {
1573 		mutex_unlock(&uuid_mutex);
1574 		up_write(&sb->s_umount);
1575 	}
1576 	goto out;
1577 }
1578 
1579 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1580 					struct btrfs_device *device)
1581 {
1582 	int ret;
1583 	struct btrfs_path *path;
1584 	struct btrfs_root *root;
1585 	struct btrfs_dev_item *dev_item;
1586 	struct extent_buffer *leaf;
1587 	struct btrfs_key key;
1588 
1589 	root = device->dev_root->fs_info->chunk_root;
1590 
1591 	path = btrfs_alloc_path();
1592 	if (!path)
1593 		return -ENOMEM;
1594 
1595 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1596 	key.type = BTRFS_DEV_ITEM_KEY;
1597 	key.offset = device->devid;
1598 
1599 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1600 	if (ret < 0)
1601 		goto out;
1602 
1603 	if (ret > 0) {
1604 		ret = -ENOENT;
1605 		goto out;
1606 	}
1607 
1608 	leaf = path->nodes[0];
1609 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1610 
1611 	btrfs_set_device_id(leaf, dev_item, device->devid);
1612 	btrfs_set_device_type(leaf, dev_item, device->type);
1613 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1614 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1615 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1616 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1617 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1618 	btrfs_mark_buffer_dirty(leaf);
1619 
1620 out:
1621 	btrfs_free_path(path);
1622 	return ret;
1623 }
1624 
1625 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1626 		      struct btrfs_device *device, u64 new_size)
1627 {
1628 	struct btrfs_super_block *super_copy =
1629 		&device->dev_root->fs_info->super_copy;
1630 	u64 old_total = btrfs_super_total_bytes(super_copy);
1631 	u64 diff = new_size - device->total_bytes;
1632 
1633 	if (!device->writeable)
1634 		return -EACCES;
1635 	if (new_size <= device->total_bytes)
1636 		return -EINVAL;
1637 
1638 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
1639 	device->fs_devices->total_rw_bytes += diff;
1640 
1641 	device->total_bytes = new_size;
1642 	device->disk_total_bytes = new_size;
1643 	btrfs_clear_space_info_full(device->dev_root->fs_info);
1644 
1645 	return btrfs_update_device(trans, device);
1646 }
1647 
1648 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1649 		      struct btrfs_device *device, u64 new_size)
1650 {
1651 	int ret;
1652 	lock_chunks(device->dev_root);
1653 	ret = __btrfs_grow_device(trans, device, new_size);
1654 	unlock_chunks(device->dev_root);
1655 	return ret;
1656 }
1657 
1658 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1659 			    struct btrfs_root *root,
1660 			    u64 chunk_tree, u64 chunk_objectid,
1661 			    u64 chunk_offset)
1662 {
1663 	int ret;
1664 	struct btrfs_path *path;
1665 	struct btrfs_key key;
1666 
1667 	root = root->fs_info->chunk_root;
1668 	path = btrfs_alloc_path();
1669 	if (!path)
1670 		return -ENOMEM;
1671 
1672 	key.objectid = chunk_objectid;
1673 	key.offset = chunk_offset;
1674 	key.type = BTRFS_CHUNK_ITEM_KEY;
1675 
1676 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1677 	BUG_ON(ret);
1678 
1679 	ret = btrfs_del_item(trans, root, path);
1680 	BUG_ON(ret);
1681 
1682 	btrfs_free_path(path);
1683 	return 0;
1684 }
1685 
1686 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1687 			chunk_offset)
1688 {
1689 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1690 	struct btrfs_disk_key *disk_key;
1691 	struct btrfs_chunk *chunk;
1692 	u8 *ptr;
1693 	int ret = 0;
1694 	u32 num_stripes;
1695 	u32 array_size;
1696 	u32 len = 0;
1697 	u32 cur;
1698 	struct btrfs_key key;
1699 
1700 	array_size = btrfs_super_sys_array_size(super_copy);
1701 
1702 	ptr = super_copy->sys_chunk_array;
1703 	cur = 0;
1704 
1705 	while (cur < array_size) {
1706 		disk_key = (struct btrfs_disk_key *)ptr;
1707 		btrfs_disk_key_to_cpu(&key, disk_key);
1708 
1709 		len = sizeof(*disk_key);
1710 
1711 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1712 			chunk = (struct btrfs_chunk *)(ptr + len);
1713 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1714 			len += btrfs_chunk_item_size(num_stripes);
1715 		} else {
1716 			ret = -EIO;
1717 			break;
1718 		}
1719 		if (key.objectid == chunk_objectid &&
1720 		    key.offset == chunk_offset) {
1721 			memmove(ptr, ptr + len, array_size - (cur + len));
1722 			array_size -= len;
1723 			btrfs_set_super_sys_array_size(super_copy, array_size);
1724 		} else {
1725 			ptr += len;
1726 			cur += len;
1727 		}
1728 	}
1729 	return ret;
1730 }
1731 
1732 static int btrfs_relocate_chunk(struct btrfs_root *root,
1733 			 u64 chunk_tree, u64 chunk_objectid,
1734 			 u64 chunk_offset)
1735 {
1736 	struct extent_map_tree *em_tree;
1737 	struct btrfs_root *extent_root;
1738 	struct btrfs_trans_handle *trans;
1739 	struct extent_map *em;
1740 	struct map_lookup *map;
1741 	int ret;
1742 	int i;
1743 
1744 	root = root->fs_info->chunk_root;
1745 	extent_root = root->fs_info->extent_root;
1746 	em_tree = &root->fs_info->mapping_tree.map_tree;
1747 
1748 	ret = btrfs_can_relocate(extent_root, chunk_offset);
1749 	if (ret)
1750 		return -ENOSPC;
1751 
1752 	/* step one, relocate all the extents inside this chunk */
1753 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1754 	if (ret)
1755 		return ret;
1756 
1757 	trans = btrfs_start_transaction(root, 0);
1758 	BUG_ON(!trans);
1759 
1760 	lock_chunks(root);
1761 
1762 	/*
1763 	 * step two, delete the device extents and the
1764 	 * chunk tree entries
1765 	 */
1766 	read_lock(&em_tree->lock);
1767 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1768 	read_unlock(&em_tree->lock);
1769 
1770 	BUG_ON(em->start > chunk_offset ||
1771 	       em->start + em->len < chunk_offset);
1772 	map = (struct map_lookup *)em->bdev;
1773 
1774 	for (i = 0; i < map->num_stripes; i++) {
1775 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1776 					    map->stripes[i].physical);
1777 		BUG_ON(ret);
1778 
1779 		if (map->stripes[i].dev) {
1780 			ret = btrfs_update_device(trans, map->stripes[i].dev);
1781 			BUG_ON(ret);
1782 		}
1783 	}
1784 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1785 			       chunk_offset);
1786 
1787 	BUG_ON(ret);
1788 
1789 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1790 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1791 		BUG_ON(ret);
1792 	}
1793 
1794 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1795 	BUG_ON(ret);
1796 
1797 	write_lock(&em_tree->lock);
1798 	remove_extent_mapping(em_tree, em);
1799 	write_unlock(&em_tree->lock);
1800 
1801 	kfree(map);
1802 	em->bdev = NULL;
1803 
1804 	/* once for the tree */
1805 	free_extent_map(em);
1806 	/* once for us */
1807 	free_extent_map(em);
1808 
1809 	unlock_chunks(root);
1810 	btrfs_end_transaction(trans, root);
1811 	return 0;
1812 }
1813 
1814 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1815 {
1816 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1817 	struct btrfs_path *path;
1818 	struct extent_buffer *leaf;
1819 	struct btrfs_chunk *chunk;
1820 	struct btrfs_key key;
1821 	struct btrfs_key found_key;
1822 	u64 chunk_tree = chunk_root->root_key.objectid;
1823 	u64 chunk_type;
1824 	bool retried = false;
1825 	int failed = 0;
1826 	int ret;
1827 
1828 	path = btrfs_alloc_path();
1829 	if (!path)
1830 		return -ENOMEM;
1831 
1832 again:
1833 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1834 	key.offset = (u64)-1;
1835 	key.type = BTRFS_CHUNK_ITEM_KEY;
1836 
1837 	while (1) {
1838 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1839 		if (ret < 0)
1840 			goto error;
1841 		BUG_ON(ret == 0);
1842 
1843 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
1844 					  key.type);
1845 		if (ret < 0)
1846 			goto error;
1847 		if (ret > 0)
1848 			break;
1849 
1850 		leaf = path->nodes[0];
1851 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1852 
1853 		chunk = btrfs_item_ptr(leaf, path->slots[0],
1854 				       struct btrfs_chunk);
1855 		chunk_type = btrfs_chunk_type(leaf, chunk);
1856 		btrfs_release_path(chunk_root, path);
1857 
1858 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1859 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1860 						   found_key.objectid,
1861 						   found_key.offset);
1862 			if (ret == -ENOSPC)
1863 				failed++;
1864 			else if (ret)
1865 				BUG();
1866 		}
1867 
1868 		if (found_key.offset == 0)
1869 			break;
1870 		key.offset = found_key.offset - 1;
1871 	}
1872 	ret = 0;
1873 	if (failed && !retried) {
1874 		failed = 0;
1875 		retried = true;
1876 		goto again;
1877 	} else if (failed && retried) {
1878 		WARN_ON(1);
1879 		ret = -ENOSPC;
1880 	}
1881 error:
1882 	btrfs_free_path(path);
1883 	return ret;
1884 }
1885 
1886 static u64 div_factor(u64 num, int factor)
1887 {
1888 	if (factor == 10)
1889 		return num;
1890 	num *= factor;
1891 	do_div(num, 10);
1892 	return num;
1893 }
1894 
1895 int btrfs_balance(struct btrfs_root *dev_root)
1896 {
1897 	int ret;
1898 	struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1899 	struct btrfs_device *device;
1900 	u64 old_size;
1901 	u64 size_to_free;
1902 	struct btrfs_path *path;
1903 	struct btrfs_key key;
1904 	struct btrfs_chunk *chunk;
1905 	struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1906 	struct btrfs_trans_handle *trans;
1907 	struct btrfs_key found_key;
1908 
1909 	if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1910 		return -EROFS;
1911 
1912 	mutex_lock(&dev_root->fs_info->volume_mutex);
1913 	dev_root = dev_root->fs_info->dev_root;
1914 
1915 	/* step one make some room on all the devices */
1916 	list_for_each_entry(device, devices, dev_list) {
1917 		old_size = device->total_bytes;
1918 		size_to_free = div_factor(old_size, 1);
1919 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1920 		if (!device->writeable ||
1921 		    device->total_bytes - device->bytes_used > size_to_free)
1922 			continue;
1923 
1924 		ret = btrfs_shrink_device(device, old_size - size_to_free);
1925 		if (ret == -ENOSPC)
1926 			break;
1927 		BUG_ON(ret);
1928 
1929 		trans = btrfs_start_transaction(dev_root, 0);
1930 		BUG_ON(!trans);
1931 
1932 		ret = btrfs_grow_device(trans, device, old_size);
1933 		BUG_ON(ret);
1934 
1935 		btrfs_end_transaction(trans, dev_root);
1936 	}
1937 
1938 	/* step two, relocate all the chunks */
1939 	path = btrfs_alloc_path();
1940 	BUG_ON(!path);
1941 
1942 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1943 	key.offset = (u64)-1;
1944 	key.type = BTRFS_CHUNK_ITEM_KEY;
1945 
1946 	while (1) {
1947 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1948 		if (ret < 0)
1949 			goto error;
1950 
1951 		/*
1952 		 * this shouldn't happen, it means the last relocate
1953 		 * failed
1954 		 */
1955 		if (ret == 0)
1956 			break;
1957 
1958 		ret = btrfs_previous_item(chunk_root, path, 0,
1959 					  BTRFS_CHUNK_ITEM_KEY);
1960 		if (ret)
1961 			break;
1962 
1963 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1964 				      path->slots[0]);
1965 		if (found_key.objectid != key.objectid)
1966 			break;
1967 
1968 		chunk = btrfs_item_ptr(path->nodes[0],
1969 				       path->slots[0],
1970 				       struct btrfs_chunk);
1971 		/* chunk zero is special */
1972 		if (found_key.offset == 0)
1973 			break;
1974 
1975 		btrfs_release_path(chunk_root, path);
1976 		ret = btrfs_relocate_chunk(chunk_root,
1977 					   chunk_root->root_key.objectid,
1978 					   found_key.objectid,
1979 					   found_key.offset);
1980 		BUG_ON(ret && ret != -ENOSPC);
1981 		key.offset = found_key.offset - 1;
1982 	}
1983 	ret = 0;
1984 error:
1985 	btrfs_free_path(path);
1986 	mutex_unlock(&dev_root->fs_info->volume_mutex);
1987 	return ret;
1988 }
1989 
1990 /*
1991  * shrinking a device means finding all of the device extents past
1992  * the new size, and then following the back refs to the chunks.
1993  * The chunk relocation code actually frees the device extent
1994  */
1995 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1996 {
1997 	struct btrfs_trans_handle *trans;
1998 	struct btrfs_root *root = device->dev_root;
1999 	struct btrfs_dev_extent *dev_extent = NULL;
2000 	struct btrfs_path *path;
2001 	u64 length;
2002 	u64 chunk_tree;
2003 	u64 chunk_objectid;
2004 	u64 chunk_offset;
2005 	int ret;
2006 	int slot;
2007 	int failed = 0;
2008 	bool retried = false;
2009 	struct extent_buffer *l;
2010 	struct btrfs_key key;
2011 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2012 	u64 old_total = btrfs_super_total_bytes(super_copy);
2013 	u64 old_size = device->total_bytes;
2014 	u64 diff = device->total_bytes - new_size;
2015 
2016 	if (new_size >= device->total_bytes)
2017 		return -EINVAL;
2018 
2019 	path = btrfs_alloc_path();
2020 	if (!path)
2021 		return -ENOMEM;
2022 
2023 	path->reada = 2;
2024 
2025 	lock_chunks(root);
2026 
2027 	device->total_bytes = new_size;
2028 	if (device->writeable)
2029 		device->fs_devices->total_rw_bytes -= diff;
2030 	unlock_chunks(root);
2031 
2032 again:
2033 	key.objectid = device->devid;
2034 	key.offset = (u64)-1;
2035 	key.type = BTRFS_DEV_EXTENT_KEY;
2036 
2037 	while (1) {
2038 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2039 		if (ret < 0)
2040 			goto done;
2041 
2042 		ret = btrfs_previous_item(root, path, 0, key.type);
2043 		if (ret < 0)
2044 			goto done;
2045 		if (ret) {
2046 			ret = 0;
2047 			btrfs_release_path(root, path);
2048 			break;
2049 		}
2050 
2051 		l = path->nodes[0];
2052 		slot = path->slots[0];
2053 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2054 
2055 		if (key.objectid != device->devid) {
2056 			btrfs_release_path(root, path);
2057 			break;
2058 		}
2059 
2060 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2061 		length = btrfs_dev_extent_length(l, dev_extent);
2062 
2063 		if (key.offset + length <= new_size) {
2064 			btrfs_release_path(root, path);
2065 			break;
2066 		}
2067 
2068 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2069 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2070 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2071 		btrfs_release_path(root, path);
2072 
2073 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2074 					   chunk_offset);
2075 		if (ret && ret != -ENOSPC)
2076 			goto done;
2077 		if (ret == -ENOSPC)
2078 			failed++;
2079 		key.offset -= 1;
2080 	}
2081 
2082 	if (failed && !retried) {
2083 		failed = 0;
2084 		retried = true;
2085 		goto again;
2086 	} else if (failed && retried) {
2087 		ret = -ENOSPC;
2088 		lock_chunks(root);
2089 
2090 		device->total_bytes = old_size;
2091 		if (device->writeable)
2092 			device->fs_devices->total_rw_bytes += diff;
2093 		unlock_chunks(root);
2094 		goto done;
2095 	}
2096 
2097 	/* Shrinking succeeded, else we would be at "done". */
2098 	trans = btrfs_start_transaction(root, 0);
2099 	lock_chunks(root);
2100 
2101 	device->disk_total_bytes = new_size;
2102 	/* Now btrfs_update_device() will change the on-disk size. */
2103 	ret = btrfs_update_device(trans, device);
2104 	if (ret) {
2105 		unlock_chunks(root);
2106 		btrfs_end_transaction(trans, root);
2107 		goto done;
2108 	}
2109 	WARN_ON(diff > old_total);
2110 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
2111 	unlock_chunks(root);
2112 	btrfs_end_transaction(trans, root);
2113 done:
2114 	btrfs_free_path(path);
2115 	return ret;
2116 }
2117 
2118 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2119 			   struct btrfs_root *root,
2120 			   struct btrfs_key *key,
2121 			   struct btrfs_chunk *chunk, int item_size)
2122 {
2123 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2124 	struct btrfs_disk_key disk_key;
2125 	u32 array_size;
2126 	u8 *ptr;
2127 
2128 	array_size = btrfs_super_sys_array_size(super_copy);
2129 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2130 		return -EFBIG;
2131 
2132 	ptr = super_copy->sys_chunk_array + array_size;
2133 	btrfs_cpu_key_to_disk(&disk_key, key);
2134 	memcpy(ptr, &disk_key, sizeof(disk_key));
2135 	ptr += sizeof(disk_key);
2136 	memcpy(ptr, chunk, item_size);
2137 	item_size += sizeof(disk_key);
2138 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2139 	return 0;
2140 }
2141 
2142 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2143 					int num_stripes, int sub_stripes)
2144 {
2145 	if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2146 		return calc_size;
2147 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2148 		return calc_size * (num_stripes / sub_stripes);
2149 	else
2150 		return calc_size * num_stripes;
2151 }
2152 
2153 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2154 			       struct btrfs_root *extent_root,
2155 			       struct map_lookup **map_ret,
2156 			       u64 *num_bytes, u64 *stripe_size,
2157 			       u64 start, u64 type)
2158 {
2159 	struct btrfs_fs_info *info = extent_root->fs_info;
2160 	struct btrfs_device *device = NULL;
2161 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
2162 	struct list_head *cur;
2163 	struct map_lookup *map = NULL;
2164 	struct extent_map_tree *em_tree;
2165 	struct extent_map *em;
2166 	struct list_head private_devs;
2167 	int min_stripe_size = 1 * 1024 * 1024;
2168 	u64 calc_size = 1024 * 1024 * 1024;
2169 	u64 max_chunk_size = calc_size;
2170 	u64 min_free;
2171 	u64 avail;
2172 	u64 max_avail = 0;
2173 	u64 dev_offset;
2174 	int num_stripes = 1;
2175 	int min_stripes = 1;
2176 	int sub_stripes = 0;
2177 	int looped = 0;
2178 	int ret;
2179 	int index;
2180 	int stripe_len = 64 * 1024;
2181 
2182 	if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2183 	    (type & BTRFS_BLOCK_GROUP_DUP)) {
2184 		WARN_ON(1);
2185 		type &= ~BTRFS_BLOCK_GROUP_DUP;
2186 	}
2187 	if (list_empty(&fs_devices->alloc_list))
2188 		return -ENOSPC;
2189 
2190 	if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2191 		num_stripes = fs_devices->rw_devices;
2192 		min_stripes = 2;
2193 	}
2194 	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2195 		num_stripes = 2;
2196 		min_stripes = 2;
2197 	}
2198 	if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2199 		if (fs_devices->rw_devices < 2)
2200 			return -ENOSPC;
2201 		num_stripes = 2;
2202 		min_stripes = 2;
2203 	}
2204 	if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2205 		num_stripes = fs_devices->rw_devices;
2206 		if (num_stripes < 4)
2207 			return -ENOSPC;
2208 		num_stripes &= ~(u32)1;
2209 		sub_stripes = 2;
2210 		min_stripes = 4;
2211 	}
2212 
2213 	if (type & BTRFS_BLOCK_GROUP_DATA) {
2214 		max_chunk_size = 10 * calc_size;
2215 		min_stripe_size = 64 * 1024 * 1024;
2216 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2217 		max_chunk_size = 256 * 1024 * 1024;
2218 		min_stripe_size = 32 * 1024 * 1024;
2219 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2220 		calc_size = 8 * 1024 * 1024;
2221 		max_chunk_size = calc_size * 2;
2222 		min_stripe_size = 1 * 1024 * 1024;
2223 	}
2224 
2225 	/* we don't want a chunk larger than 10% of writeable space */
2226 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2227 			     max_chunk_size);
2228 
2229 again:
2230 	max_avail = 0;
2231 	if (!map || map->num_stripes != num_stripes) {
2232 		kfree(map);
2233 		map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2234 		if (!map)
2235 			return -ENOMEM;
2236 		map->num_stripes = num_stripes;
2237 	}
2238 
2239 	if (calc_size * num_stripes > max_chunk_size) {
2240 		calc_size = max_chunk_size;
2241 		do_div(calc_size, num_stripes);
2242 		do_div(calc_size, stripe_len);
2243 		calc_size *= stripe_len;
2244 	}
2245 
2246 	/* we don't want tiny stripes */
2247 	if (!looped)
2248 		calc_size = max_t(u64, min_stripe_size, calc_size);
2249 
2250 	/*
2251 	 * we're about to do_div by the stripe_len so lets make sure
2252 	 * we end up with something bigger than a stripe
2253 	 */
2254 	calc_size = max_t(u64, calc_size, stripe_len * 4);
2255 
2256 	do_div(calc_size, stripe_len);
2257 	calc_size *= stripe_len;
2258 
2259 	cur = fs_devices->alloc_list.next;
2260 	index = 0;
2261 
2262 	if (type & BTRFS_BLOCK_GROUP_DUP)
2263 		min_free = calc_size * 2;
2264 	else
2265 		min_free = calc_size;
2266 
2267 	/*
2268 	 * we add 1MB because we never use the first 1MB of the device, unless
2269 	 * we've looped, then we are likely allocating the maximum amount of
2270 	 * space left already
2271 	 */
2272 	if (!looped)
2273 		min_free += 1024 * 1024;
2274 
2275 	INIT_LIST_HEAD(&private_devs);
2276 	while (index < num_stripes) {
2277 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2278 		BUG_ON(!device->writeable);
2279 		if (device->total_bytes > device->bytes_used)
2280 			avail = device->total_bytes - device->bytes_used;
2281 		else
2282 			avail = 0;
2283 		cur = cur->next;
2284 
2285 		if (device->in_fs_metadata && avail >= min_free) {
2286 			ret = find_free_dev_extent(trans, device,
2287 						   min_free, &dev_offset,
2288 						   &max_avail);
2289 			if (ret == 0) {
2290 				list_move_tail(&device->dev_alloc_list,
2291 					       &private_devs);
2292 				map->stripes[index].dev = device;
2293 				map->stripes[index].physical = dev_offset;
2294 				index++;
2295 				if (type & BTRFS_BLOCK_GROUP_DUP) {
2296 					map->stripes[index].dev = device;
2297 					map->stripes[index].physical =
2298 						dev_offset + calc_size;
2299 					index++;
2300 				}
2301 			}
2302 		} else if (device->in_fs_metadata && avail > max_avail)
2303 			max_avail = avail;
2304 		if (cur == &fs_devices->alloc_list)
2305 			break;
2306 	}
2307 	list_splice(&private_devs, &fs_devices->alloc_list);
2308 	if (index < num_stripes) {
2309 		if (index >= min_stripes) {
2310 			num_stripes = index;
2311 			if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2312 				num_stripes /= sub_stripes;
2313 				num_stripes *= sub_stripes;
2314 			}
2315 			looped = 1;
2316 			goto again;
2317 		}
2318 		if (!looped && max_avail > 0) {
2319 			looped = 1;
2320 			calc_size = max_avail;
2321 			goto again;
2322 		}
2323 		kfree(map);
2324 		return -ENOSPC;
2325 	}
2326 	map->sector_size = extent_root->sectorsize;
2327 	map->stripe_len = stripe_len;
2328 	map->io_align = stripe_len;
2329 	map->io_width = stripe_len;
2330 	map->type = type;
2331 	map->num_stripes = num_stripes;
2332 	map->sub_stripes = sub_stripes;
2333 
2334 	*map_ret = map;
2335 	*stripe_size = calc_size;
2336 	*num_bytes = chunk_bytes_by_type(type, calc_size,
2337 					 num_stripes, sub_stripes);
2338 
2339 	em = alloc_extent_map(GFP_NOFS);
2340 	if (!em) {
2341 		kfree(map);
2342 		return -ENOMEM;
2343 	}
2344 	em->bdev = (struct block_device *)map;
2345 	em->start = start;
2346 	em->len = *num_bytes;
2347 	em->block_start = 0;
2348 	em->block_len = em->len;
2349 
2350 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2351 	write_lock(&em_tree->lock);
2352 	ret = add_extent_mapping(em_tree, em);
2353 	write_unlock(&em_tree->lock);
2354 	BUG_ON(ret);
2355 	free_extent_map(em);
2356 
2357 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
2358 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2359 				     start, *num_bytes);
2360 	BUG_ON(ret);
2361 
2362 	index = 0;
2363 	while (index < map->num_stripes) {
2364 		device = map->stripes[index].dev;
2365 		dev_offset = map->stripes[index].physical;
2366 
2367 		ret = btrfs_alloc_dev_extent(trans, device,
2368 				info->chunk_root->root_key.objectid,
2369 				BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2370 				start, dev_offset, calc_size);
2371 		BUG_ON(ret);
2372 		index++;
2373 	}
2374 
2375 	return 0;
2376 }
2377 
2378 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2379 				struct btrfs_root *extent_root,
2380 				struct map_lookup *map, u64 chunk_offset,
2381 				u64 chunk_size, u64 stripe_size)
2382 {
2383 	u64 dev_offset;
2384 	struct btrfs_key key;
2385 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2386 	struct btrfs_device *device;
2387 	struct btrfs_chunk *chunk;
2388 	struct btrfs_stripe *stripe;
2389 	size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2390 	int index = 0;
2391 	int ret;
2392 
2393 	chunk = kzalloc(item_size, GFP_NOFS);
2394 	if (!chunk)
2395 		return -ENOMEM;
2396 
2397 	index = 0;
2398 	while (index < map->num_stripes) {
2399 		device = map->stripes[index].dev;
2400 		device->bytes_used += stripe_size;
2401 		ret = btrfs_update_device(trans, device);
2402 		BUG_ON(ret);
2403 		index++;
2404 	}
2405 
2406 	index = 0;
2407 	stripe = &chunk->stripe;
2408 	while (index < map->num_stripes) {
2409 		device = map->stripes[index].dev;
2410 		dev_offset = map->stripes[index].physical;
2411 
2412 		btrfs_set_stack_stripe_devid(stripe, device->devid);
2413 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
2414 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2415 		stripe++;
2416 		index++;
2417 	}
2418 
2419 	btrfs_set_stack_chunk_length(chunk, chunk_size);
2420 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2421 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2422 	btrfs_set_stack_chunk_type(chunk, map->type);
2423 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2424 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2425 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2426 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2427 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2428 
2429 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2430 	key.type = BTRFS_CHUNK_ITEM_KEY;
2431 	key.offset = chunk_offset;
2432 
2433 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2434 	BUG_ON(ret);
2435 
2436 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2437 		ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2438 					     item_size);
2439 		BUG_ON(ret);
2440 	}
2441 	kfree(chunk);
2442 	return 0;
2443 }
2444 
2445 /*
2446  * Chunk allocation falls into two parts. The first part does works
2447  * that make the new allocated chunk useable, but not do any operation
2448  * that modifies the chunk tree. The second part does the works that
2449  * require modifying the chunk tree. This division is important for the
2450  * bootstrap process of adding storage to a seed btrfs.
2451  */
2452 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2453 		      struct btrfs_root *extent_root, u64 type)
2454 {
2455 	u64 chunk_offset;
2456 	u64 chunk_size;
2457 	u64 stripe_size;
2458 	struct map_lookup *map;
2459 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2460 	int ret;
2461 
2462 	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2463 			      &chunk_offset);
2464 	if (ret)
2465 		return ret;
2466 
2467 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2468 				  &stripe_size, chunk_offset, type);
2469 	if (ret)
2470 		return ret;
2471 
2472 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2473 				   chunk_size, stripe_size);
2474 	BUG_ON(ret);
2475 	return 0;
2476 }
2477 
2478 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2479 					 struct btrfs_root *root,
2480 					 struct btrfs_device *device)
2481 {
2482 	u64 chunk_offset;
2483 	u64 sys_chunk_offset;
2484 	u64 chunk_size;
2485 	u64 sys_chunk_size;
2486 	u64 stripe_size;
2487 	u64 sys_stripe_size;
2488 	u64 alloc_profile;
2489 	struct map_lookup *map;
2490 	struct map_lookup *sys_map;
2491 	struct btrfs_fs_info *fs_info = root->fs_info;
2492 	struct btrfs_root *extent_root = fs_info->extent_root;
2493 	int ret;
2494 
2495 	ret = find_next_chunk(fs_info->chunk_root,
2496 			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2497 	BUG_ON(ret);
2498 
2499 	alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2500 			(fs_info->metadata_alloc_profile &
2501 			 fs_info->avail_metadata_alloc_bits);
2502 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2503 
2504 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2505 				  &stripe_size, chunk_offset, alloc_profile);
2506 	BUG_ON(ret);
2507 
2508 	sys_chunk_offset = chunk_offset + chunk_size;
2509 
2510 	alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2511 			(fs_info->system_alloc_profile &
2512 			 fs_info->avail_system_alloc_bits);
2513 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2514 
2515 	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2516 				  &sys_chunk_size, &sys_stripe_size,
2517 				  sys_chunk_offset, alloc_profile);
2518 	BUG_ON(ret);
2519 
2520 	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2521 	BUG_ON(ret);
2522 
2523 	/*
2524 	 * Modifying chunk tree needs allocating new blocks from both
2525 	 * system block group and metadata block group. So we only can
2526 	 * do operations require modifying the chunk tree after both
2527 	 * block groups were created.
2528 	 */
2529 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2530 				   chunk_size, stripe_size);
2531 	BUG_ON(ret);
2532 
2533 	ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2534 				   sys_chunk_offset, sys_chunk_size,
2535 				   sys_stripe_size);
2536 	BUG_ON(ret);
2537 	return 0;
2538 }
2539 
2540 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2541 {
2542 	struct extent_map *em;
2543 	struct map_lookup *map;
2544 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2545 	int readonly = 0;
2546 	int i;
2547 
2548 	read_lock(&map_tree->map_tree.lock);
2549 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2550 	read_unlock(&map_tree->map_tree.lock);
2551 	if (!em)
2552 		return 1;
2553 
2554 	if (btrfs_test_opt(root, DEGRADED)) {
2555 		free_extent_map(em);
2556 		return 0;
2557 	}
2558 
2559 	map = (struct map_lookup *)em->bdev;
2560 	for (i = 0; i < map->num_stripes; i++) {
2561 		if (!map->stripes[i].dev->writeable) {
2562 			readonly = 1;
2563 			break;
2564 		}
2565 	}
2566 	free_extent_map(em);
2567 	return readonly;
2568 }
2569 
2570 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2571 {
2572 	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2573 }
2574 
2575 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2576 {
2577 	struct extent_map *em;
2578 
2579 	while (1) {
2580 		write_lock(&tree->map_tree.lock);
2581 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2582 		if (em)
2583 			remove_extent_mapping(&tree->map_tree, em);
2584 		write_unlock(&tree->map_tree.lock);
2585 		if (!em)
2586 			break;
2587 		kfree(em->bdev);
2588 		/* once for us */
2589 		free_extent_map(em);
2590 		/* once for the tree */
2591 		free_extent_map(em);
2592 	}
2593 }
2594 
2595 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2596 {
2597 	struct extent_map *em;
2598 	struct map_lookup *map;
2599 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2600 	int ret;
2601 
2602 	read_lock(&em_tree->lock);
2603 	em = lookup_extent_mapping(em_tree, logical, len);
2604 	read_unlock(&em_tree->lock);
2605 	BUG_ON(!em);
2606 
2607 	BUG_ON(em->start > logical || em->start + em->len < logical);
2608 	map = (struct map_lookup *)em->bdev;
2609 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2610 		ret = map->num_stripes;
2611 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2612 		ret = map->sub_stripes;
2613 	else
2614 		ret = 1;
2615 	free_extent_map(em);
2616 	return ret;
2617 }
2618 
2619 static int find_live_mirror(struct map_lookup *map, int first, int num,
2620 			    int optimal)
2621 {
2622 	int i;
2623 	if (map->stripes[optimal].dev->bdev)
2624 		return optimal;
2625 	for (i = first; i < first + num; i++) {
2626 		if (map->stripes[i].dev->bdev)
2627 			return i;
2628 	}
2629 	/* we couldn't find one that doesn't fail.  Just return something
2630 	 * and the io error handling code will clean up eventually
2631 	 */
2632 	return optimal;
2633 }
2634 
2635 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2636 			     u64 logical, u64 *length,
2637 			     struct btrfs_multi_bio **multi_ret,
2638 			     int mirror_num, struct page *unplug_page)
2639 {
2640 	struct extent_map *em;
2641 	struct map_lookup *map;
2642 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2643 	u64 offset;
2644 	u64 stripe_offset;
2645 	u64 stripe_nr;
2646 	int stripes_allocated = 8;
2647 	int stripes_required = 1;
2648 	int stripe_index;
2649 	int i;
2650 	int num_stripes;
2651 	int max_errors = 0;
2652 	struct btrfs_multi_bio *multi = NULL;
2653 
2654 	if (multi_ret && !(rw & (1 << BIO_RW)))
2655 		stripes_allocated = 1;
2656 again:
2657 	if (multi_ret) {
2658 		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2659 				GFP_NOFS);
2660 		if (!multi)
2661 			return -ENOMEM;
2662 
2663 		atomic_set(&multi->error, 0);
2664 	}
2665 
2666 	read_lock(&em_tree->lock);
2667 	em = lookup_extent_mapping(em_tree, logical, *length);
2668 	read_unlock(&em_tree->lock);
2669 
2670 	if (!em && unplug_page) {
2671 		kfree(multi);
2672 		return 0;
2673 	}
2674 
2675 	if (!em) {
2676 		printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2677 		       (unsigned long long)logical,
2678 		       (unsigned long long)*length);
2679 		BUG();
2680 	}
2681 
2682 	BUG_ON(em->start > logical || em->start + em->len < logical);
2683 	map = (struct map_lookup *)em->bdev;
2684 	offset = logical - em->start;
2685 
2686 	if (mirror_num > map->num_stripes)
2687 		mirror_num = 0;
2688 
2689 	/* if our multi bio struct is too small, back off and try again */
2690 	if (rw & (1 << BIO_RW)) {
2691 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2692 				 BTRFS_BLOCK_GROUP_DUP)) {
2693 			stripes_required = map->num_stripes;
2694 			max_errors = 1;
2695 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2696 			stripes_required = map->sub_stripes;
2697 			max_errors = 1;
2698 		}
2699 	}
2700 	if (multi_ret && (rw & (1 << BIO_RW)) &&
2701 	    stripes_allocated < stripes_required) {
2702 		stripes_allocated = map->num_stripes;
2703 		free_extent_map(em);
2704 		kfree(multi);
2705 		goto again;
2706 	}
2707 	stripe_nr = offset;
2708 	/*
2709 	 * stripe_nr counts the total number of stripes we have to stride
2710 	 * to get to this block
2711 	 */
2712 	do_div(stripe_nr, map->stripe_len);
2713 
2714 	stripe_offset = stripe_nr * map->stripe_len;
2715 	BUG_ON(offset < stripe_offset);
2716 
2717 	/* stripe_offset is the offset of this block in its stripe*/
2718 	stripe_offset = offset - stripe_offset;
2719 
2720 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2721 			 BTRFS_BLOCK_GROUP_RAID10 |
2722 			 BTRFS_BLOCK_GROUP_DUP)) {
2723 		/* we limit the length of each bio to what fits in a stripe */
2724 		*length = min_t(u64, em->len - offset,
2725 			      map->stripe_len - stripe_offset);
2726 	} else {
2727 		*length = em->len - offset;
2728 	}
2729 
2730 	if (!multi_ret && !unplug_page)
2731 		goto out;
2732 
2733 	num_stripes = 1;
2734 	stripe_index = 0;
2735 	if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2736 		if (unplug_page || (rw & (1 << BIO_RW)))
2737 			num_stripes = map->num_stripes;
2738 		else if (mirror_num)
2739 			stripe_index = mirror_num - 1;
2740 		else {
2741 			stripe_index = find_live_mirror(map, 0,
2742 					    map->num_stripes,
2743 					    current->pid % map->num_stripes);
2744 		}
2745 
2746 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2747 		if (rw & (1 << BIO_RW))
2748 			num_stripes = map->num_stripes;
2749 		else if (mirror_num)
2750 			stripe_index = mirror_num - 1;
2751 
2752 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2753 		int factor = map->num_stripes / map->sub_stripes;
2754 
2755 		stripe_index = do_div(stripe_nr, factor);
2756 		stripe_index *= map->sub_stripes;
2757 
2758 		if (unplug_page || (rw & (1 << BIO_RW)))
2759 			num_stripes = map->sub_stripes;
2760 		else if (mirror_num)
2761 			stripe_index += mirror_num - 1;
2762 		else {
2763 			stripe_index = find_live_mirror(map, stripe_index,
2764 					      map->sub_stripes, stripe_index +
2765 					      current->pid % map->sub_stripes);
2766 		}
2767 	} else {
2768 		/*
2769 		 * after this do_div call, stripe_nr is the number of stripes
2770 		 * on this device we have to walk to find the data, and
2771 		 * stripe_index is the number of our device in the stripe array
2772 		 */
2773 		stripe_index = do_div(stripe_nr, map->num_stripes);
2774 	}
2775 	BUG_ON(stripe_index >= map->num_stripes);
2776 
2777 	for (i = 0; i < num_stripes; i++) {
2778 		if (unplug_page) {
2779 			struct btrfs_device *device;
2780 			struct backing_dev_info *bdi;
2781 
2782 			device = map->stripes[stripe_index].dev;
2783 			if (device->bdev) {
2784 				bdi = blk_get_backing_dev_info(device->bdev);
2785 				if (bdi->unplug_io_fn)
2786 					bdi->unplug_io_fn(bdi, unplug_page);
2787 			}
2788 		} else {
2789 			multi->stripes[i].physical =
2790 				map->stripes[stripe_index].physical +
2791 				stripe_offset + stripe_nr * map->stripe_len;
2792 			multi->stripes[i].dev = map->stripes[stripe_index].dev;
2793 		}
2794 		stripe_index++;
2795 	}
2796 	if (multi_ret) {
2797 		*multi_ret = multi;
2798 		multi->num_stripes = num_stripes;
2799 		multi->max_errors = max_errors;
2800 	}
2801 out:
2802 	free_extent_map(em);
2803 	return 0;
2804 }
2805 
2806 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2807 		      u64 logical, u64 *length,
2808 		      struct btrfs_multi_bio **multi_ret, int mirror_num)
2809 {
2810 	return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2811 				 mirror_num, NULL);
2812 }
2813 
2814 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
2815 		     u64 chunk_start, u64 physical, u64 devid,
2816 		     u64 **logical, int *naddrs, int *stripe_len)
2817 {
2818 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2819 	struct extent_map *em;
2820 	struct map_lookup *map;
2821 	u64 *buf;
2822 	u64 bytenr;
2823 	u64 length;
2824 	u64 stripe_nr;
2825 	int i, j, nr = 0;
2826 
2827 	read_lock(&em_tree->lock);
2828 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
2829 	read_unlock(&em_tree->lock);
2830 
2831 	BUG_ON(!em || em->start != chunk_start);
2832 	map = (struct map_lookup *)em->bdev;
2833 
2834 	length = em->len;
2835 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2836 		do_div(length, map->num_stripes / map->sub_stripes);
2837 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
2838 		do_div(length, map->num_stripes);
2839 
2840 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
2841 	BUG_ON(!buf);
2842 
2843 	for (i = 0; i < map->num_stripes; i++) {
2844 		if (devid && map->stripes[i].dev->devid != devid)
2845 			continue;
2846 		if (map->stripes[i].physical > physical ||
2847 		    map->stripes[i].physical + length <= physical)
2848 			continue;
2849 
2850 		stripe_nr = physical - map->stripes[i].physical;
2851 		do_div(stripe_nr, map->stripe_len);
2852 
2853 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2854 			stripe_nr = stripe_nr * map->num_stripes + i;
2855 			do_div(stripe_nr, map->sub_stripes);
2856 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2857 			stripe_nr = stripe_nr * map->num_stripes + i;
2858 		}
2859 		bytenr = chunk_start + stripe_nr * map->stripe_len;
2860 		WARN_ON(nr >= map->num_stripes);
2861 		for (j = 0; j < nr; j++) {
2862 			if (buf[j] == bytenr)
2863 				break;
2864 		}
2865 		if (j == nr) {
2866 			WARN_ON(nr >= map->num_stripes);
2867 			buf[nr++] = bytenr;
2868 		}
2869 	}
2870 
2871 	*logical = buf;
2872 	*naddrs = nr;
2873 	*stripe_len = map->stripe_len;
2874 
2875 	free_extent_map(em);
2876 	return 0;
2877 }
2878 
2879 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2880 		      u64 logical, struct page *page)
2881 {
2882 	u64 length = PAGE_CACHE_SIZE;
2883 	return __btrfs_map_block(map_tree, READ, logical, &length,
2884 				 NULL, 0, page);
2885 }
2886 
2887 static void end_bio_multi_stripe(struct bio *bio, int err)
2888 {
2889 	struct btrfs_multi_bio *multi = bio->bi_private;
2890 	int is_orig_bio = 0;
2891 
2892 	if (err)
2893 		atomic_inc(&multi->error);
2894 
2895 	if (bio == multi->orig_bio)
2896 		is_orig_bio = 1;
2897 
2898 	if (atomic_dec_and_test(&multi->stripes_pending)) {
2899 		if (!is_orig_bio) {
2900 			bio_put(bio);
2901 			bio = multi->orig_bio;
2902 		}
2903 		bio->bi_private = multi->private;
2904 		bio->bi_end_io = multi->end_io;
2905 		/* only send an error to the higher layers if it is
2906 		 * beyond the tolerance of the multi-bio
2907 		 */
2908 		if (atomic_read(&multi->error) > multi->max_errors) {
2909 			err = -EIO;
2910 		} else if (err) {
2911 			/*
2912 			 * this bio is actually up to date, we didn't
2913 			 * go over the max number of errors
2914 			 */
2915 			set_bit(BIO_UPTODATE, &bio->bi_flags);
2916 			err = 0;
2917 		}
2918 		kfree(multi);
2919 
2920 		bio_endio(bio, err);
2921 	} else if (!is_orig_bio) {
2922 		bio_put(bio);
2923 	}
2924 }
2925 
2926 struct async_sched {
2927 	struct bio *bio;
2928 	int rw;
2929 	struct btrfs_fs_info *info;
2930 	struct btrfs_work work;
2931 };
2932 
2933 /*
2934  * see run_scheduled_bios for a description of why bios are collected for
2935  * async submit.
2936  *
2937  * This will add one bio to the pending list for a device and make sure
2938  * the work struct is scheduled.
2939  */
2940 static noinline int schedule_bio(struct btrfs_root *root,
2941 				 struct btrfs_device *device,
2942 				 int rw, struct bio *bio)
2943 {
2944 	int should_queue = 1;
2945 	struct btrfs_pending_bios *pending_bios;
2946 
2947 	/* don't bother with additional async steps for reads, right now */
2948 	if (!(rw & (1 << BIO_RW))) {
2949 		bio_get(bio);
2950 		submit_bio(rw, bio);
2951 		bio_put(bio);
2952 		return 0;
2953 	}
2954 
2955 	/*
2956 	 * nr_async_bios allows us to reliably return congestion to the
2957 	 * higher layers.  Otherwise, the async bio makes it appear we have
2958 	 * made progress against dirty pages when we've really just put it
2959 	 * on a queue for later
2960 	 */
2961 	atomic_inc(&root->fs_info->nr_async_bios);
2962 	WARN_ON(bio->bi_next);
2963 	bio->bi_next = NULL;
2964 	bio->bi_rw |= rw;
2965 
2966 	spin_lock(&device->io_lock);
2967 	if (bio_rw_flagged(bio, BIO_RW_SYNCIO))
2968 		pending_bios = &device->pending_sync_bios;
2969 	else
2970 		pending_bios = &device->pending_bios;
2971 
2972 	if (pending_bios->tail)
2973 		pending_bios->tail->bi_next = bio;
2974 
2975 	pending_bios->tail = bio;
2976 	if (!pending_bios->head)
2977 		pending_bios->head = bio;
2978 	if (device->running_pending)
2979 		should_queue = 0;
2980 
2981 	spin_unlock(&device->io_lock);
2982 
2983 	if (should_queue)
2984 		btrfs_queue_worker(&root->fs_info->submit_workers,
2985 				   &device->work);
2986 	return 0;
2987 }
2988 
2989 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
2990 		  int mirror_num, int async_submit)
2991 {
2992 	struct btrfs_mapping_tree *map_tree;
2993 	struct btrfs_device *dev;
2994 	struct bio *first_bio = bio;
2995 	u64 logical = (u64)bio->bi_sector << 9;
2996 	u64 length = 0;
2997 	u64 map_length;
2998 	struct btrfs_multi_bio *multi = NULL;
2999 	int ret;
3000 	int dev_nr = 0;
3001 	int total_devs = 1;
3002 
3003 	length = bio->bi_size;
3004 	map_tree = &root->fs_info->mapping_tree;
3005 	map_length = length;
3006 
3007 	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3008 			      mirror_num);
3009 	BUG_ON(ret);
3010 
3011 	total_devs = multi->num_stripes;
3012 	if (map_length < length) {
3013 		printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3014 		       "len %llu\n", (unsigned long long)logical,
3015 		       (unsigned long long)length,
3016 		       (unsigned long long)map_length);
3017 		BUG();
3018 	}
3019 	multi->end_io = first_bio->bi_end_io;
3020 	multi->private = first_bio->bi_private;
3021 	multi->orig_bio = first_bio;
3022 	atomic_set(&multi->stripes_pending, multi->num_stripes);
3023 
3024 	while (dev_nr < total_devs) {
3025 		if (total_devs > 1) {
3026 			if (dev_nr < total_devs - 1) {
3027 				bio = bio_clone(first_bio, GFP_NOFS);
3028 				BUG_ON(!bio);
3029 			} else {
3030 				bio = first_bio;
3031 			}
3032 			bio->bi_private = multi;
3033 			bio->bi_end_io = end_bio_multi_stripe;
3034 		}
3035 		bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3036 		dev = multi->stripes[dev_nr].dev;
3037 		BUG_ON(rw == WRITE && !dev->writeable);
3038 		if (dev && dev->bdev) {
3039 			bio->bi_bdev = dev->bdev;
3040 			if (async_submit)
3041 				schedule_bio(root, dev, rw, bio);
3042 			else
3043 				submit_bio(rw, bio);
3044 		} else {
3045 			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3046 			bio->bi_sector = logical >> 9;
3047 			bio_endio(bio, -EIO);
3048 		}
3049 		dev_nr++;
3050 	}
3051 	if (total_devs == 1)
3052 		kfree(multi);
3053 	return 0;
3054 }
3055 
3056 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3057 				       u8 *uuid, u8 *fsid)
3058 {
3059 	struct btrfs_device *device;
3060 	struct btrfs_fs_devices *cur_devices;
3061 
3062 	cur_devices = root->fs_info->fs_devices;
3063 	while (cur_devices) {
3064 		if (!fsid ||
3065 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3066 			device = __find_device(&cur_devices->devices,
3067 					       devid, uuid);
3068 			if (device)
3069 				return device;
3070 		}
3071 		cur_devices = cur_devices->seed;
3072 	}
3073 	return NULL;
3074 }
3075 
3076 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3077 					    u64 devid, u8 *dev_uuid)
3078 {
3079 	struct btrfs_device *device;
3080 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3081 
3082 	device = kzalloc(sizeof(*device), GFP_NOFS);
3083 	if (!device)
3084 		return NULL;
3085 	list_add(&device->dev_list,
3086 		 &fs_devices->devices);
3087 	device->barriers = 1;
3088 	device->dev_root = root->fs_info->dev_root;
3089 	device->devid = devid;
3090 	device->work.func = pending_bios_fn;
3091 	device->fs_devices = fs_devices;
3092 	fs_devices->num_devices++;
3093 	spin_lock_init(&device->io_lock);
3094 	INIT_LIST_HEAD(&device->dev_alloc_list);
3095 	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3096 	return device;
3097 }
3098 
3099 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3100 			  struct extent_buffer *leaf,
3101 			  struct btrfs_chunk *chunk)
3102 {
3103 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3104 	struct map_lookup *map;
3105 	struct extent_map *em;
3106 	u64 logical;
3107 	u64 length;
3108 	u64 devid;
3109 	u8 uuid[BTRFS_UUID_SIZE];
3110 	int num_stripes;
3111 	int ret;
3112 	int i;
3113 
3114 	logical = key->offset;
3115 	length = btrfs_chunk_length(leaf, chunk);
3116 
3117 	read_lock(&map_tree->map_tree.lock);
3118 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3119 	read_unlock(&map_tree->map_tree.lock);
3120 
3121 	/* already mapped? */
3122 	if (em && em->start <= logical && em->start + em->len > logical) {
3123 		free_extent_map(em);
3124 		return 0;
3125 	} else if (em) {
3126 		free_extent_map(em);
3127 	}
3128 
3129 	em = alloc_extent_map(GFP_NOFS);
3130 	if (!em)
3131 		return -ENOMEM;
3132 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3133 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3134 	if (!map) {
3135 		free_extent_map(em);
3136 		return -ENOMEM;
3137 	}
3138 
3139 	em->bdev = (struct block_device *)map;
3140 	em->start = logical;
3141 	em->len = length;
3142 	em->block_start = 0;
3143 	em->block_len = em->len;
3144 
3145 	map->num_stripes = num_stripes;
3146 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
3147 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
3148 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3149 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3150 	map->type = btrfs_chunk_type(leaf, chunk);
3151 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3152 	for (i = 0; i < num_stripes; i++) {
3153 		map->stripes[i].physical =
3154 			btrfs_stripe_offset_nr(leaf, chunk, i);
3155 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3156 		read_extent_buffer(leaf, uuid, (unsigned long)
3157 				   btrfs_stripe_dev_uuid_nr(chunk, i),
3158 				   BTRFS_UUID_SIZE);
3159 		map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3160 							NULL);
3161 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3162 			kfree(map);
3163 			free_extent_map(em);
3164 			return -EIO;
3165 		}
3166 		if (!map->stripes[i].dev) {
3167 			map->stripes[i].dev =
3168 				add_missing_dev(root, devid, uuid);
3169 			if (!map->stripes[i].dev) {
3170 				kfree(map);
3171 				free_extent_map(em);
3172 				return -EIO;
3173 			}
3174 		}
3175 		map->stripes[i].dev->in_fs_metadata = 1;
3176 	}
3177 
3178 	write_lock(&map_tree->map_tree.lock);
3179 	ret = add_extent_mapping(&map_tree->map_tree, em);
3180 	write_unlock(&map_tree->map_tree.lock);
3181 	BUG_ON(ret);
3182 	free_extent_map(em);
3183 
3184 	return 0;
3185 }
3186 
3187 static int fill_device_from_item(struct extent_buffer *leaf,
3188 				 struct btrfs_dev_item *dev_item,
3189 				 struct btrfs_device *device)
3190 {
3191 	unsigned long ptr;
3192 
3193 	device->devid = btrfs_device_id(leaf, dev_item);
3194 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3195 	device->total_bytes = device->disk_total_bytes;
3196 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3197 	device->type = btrfs_device_type(leaf, dev_item);
3198 	device->io_align = btrfs_device_io_align(leaf, dev_item);
3199 	device->io_width = btrfs_device_io_width(leaf, dev_item);
3200 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3201 
3202 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
3203 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3204 
3205 	return 0;
3206 }
3207 
3208 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3209 {
3210 	struct btrfs_fs_devices *fs_devices;
3211 	int ret;
3212 
3213 	mutex_lock(&uuid_mutex);
3214 
3215 	fs_devices = root->fs_info->fs_devices->seed;
3216 	while (fs_devices) {
3217 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3218 			ret = 0;
3219 			goto out;
3220 		}
3221 		fs_devices = fs_devices->seed;
3222 	}
3223 
3224 	fs_devices = find_fsid(fsid);
3225 	if (!fs_devices) {
3226 		ret = -ENOENT;
3227 		goto out;
3228 	}
3229 
3230 	fs_devices = clone_fs_devices(fs_devices);
3231 	if (IS_ERR(fs_devices)) {
3232 		ret = PTR_ERR(fs_devices);
3233 		goto out;
3234 	}
3235 
3236 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3237 				   root->fs_info->bdev_holder);
3238 	if (ret)
3239 		goto out;
3240 
3241 	if (!fs_devices->seeding) {
3242 		__btrfs_close_devices(fs_devices);
3243 		free_fs_devices(fs_devices);
3244 		ret = -EINVAL;
3245 		goto out;
3246 	}
3247 
3248 	fs_devices->seed = root->fs_info->fs_devices->seed;
3249 	root->fs_info->fs_devices->seed = fs_devices;
3250 out:
3251 	mutex_unlock(&uuid_mutex);
3252 	return ret;
3253 }
3254 
3255 static int read_one_dev(struct btrfs_root *root,
3256 			struct extent_buffer *leaf,
3257 			struct btrfs_dev_item *dev_item)
3258 {
3259 	struct btrfs_device *device;
3260 	u64 devid;
3261 	int ret;
3262 	u8 fs_uuid[BTRFS_UUID_SIZE];
3263 	u8 dev_uuid[BTRFS_UUID_SIZE];
3264 
3265 	devid = btrfs_device_id(leaf, dev_item);
3266 	read_extent_buffer(leaf, dev_uuid,
3267 			   (unsigned long)btrfs_device_uuid(dev_item),
3268 			   BTRFS_UUID_SIZE);
3269 	read_extent_buffer(leaf, fs_uuid,
3270 			   (unsigned long)btrfs_device_fsid(dev_item),
3271 			   BTRFS_UUID_SIZE);
3272 
3273 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3274 		ret = open_seed_devices(root, fs_uuid);
3275 		if (ret && !btrfs_test_opt(root, DEGRADED))
3276 			return ret;
3277 	}
3278 
3279 	device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3280 	if (!device || !device->bdev) {
3281 		if (!btrfs_test_opt(root, DEGRADED))
3282 			return -EIO;
3283 
3284 		if (!device) {
3285 			printk(KERN_WARNING "warning devid %llu missing\n",
3286 			       (unsigned long long)devid);
3287 			device = add_missing_dev(root, devid, dev_uuid);
3288 			if (!device)
3289 				return -ENOMEM;
3290 		}
3291 	}
3292 
3293 	if (device->fs_devices != root->fs_info->fs_devices) {
3294 		BUG_ON(device->writeable);
3295 		if (device->generation !=
3296 		    btrfs_device_generation(leaf, dev_item))
3297 			return -EINVAL;
3298 	}
3299 
3300 	fill_device_from_item(leaf, dev_item, device);
3301 	device->dev_root = root->fs_info->dev_root;
3302 	device->in_fs_metadata = 1;
3303 	if (device->writeable)
3304 		device->fs_devices->total_rw_bytes += device->total_bytes;
3305 	ret = 0;
3306 	return ret;
3307 }
3308 
3309 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3310 {
3311 	struct btrfs_dev_item *dev_item;
3312 
3313 	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3314 						     dev_item);
3315 	return read_one_dev(root, buf, dev_item);
3316 }
3317 
3318 int btrfs_read_sys_array(struct btrfs_root *root)
3319 {
3320 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3321 	struct extent_buffer *sb;
3322 	struct btrfs_disk_key *disk_key;
3323 	struct btrfs_chunk *chunk;
3324 	u8 *ptr;
3325 	unsigned long sb_ptr;
3326 	int ret = 0;
3327 	u32 num_stripes;
3328 	u32 array_size;
3329 	u32 len = 0;
3330 	u32 cur;
3331 	struct btrfs_key key;
3332 
3333 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3334 					  BTRFS_SUPER_INFO_SIZE);
3335 	if (!sb)
3336 		return -ENOMEM;
3337 	btrfs_set_buffer_uptodate(sb);
3338 	btrfs_set_buffer_lockdep_class(sb, 0);
3339 
3340 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3341 	array_size = btrfs_super_sys_array_size(super_copy);
3342 
3343 	ptr = super_copy->sys_chunk_array;
3344 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3345 	cur = 0;
3346 
3347 	while (cur < array_size) {
3348 		disk_key = (struct btrfs_disk_key *)ptr;
3349 		btrfs_disk_key_to_cpu(&key, disk_key);
3350 
3351 		len = sizeof(*disk_key); ptr += len;
3352 		sb_ptr += len;
3353 		cur += len;
3354 
3355 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3356 			chunk = (struct btrfs_chunk *)sb_ptr;
3357 			ret = read_one_chunk(root, &key, sb, chunk);
3358 			if (ret)
3359 				break;
3360 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3361 			len = btrfs_chunk_item_size(num_stripes);
3362 		} else {
3363 			ret = -EIO;
3364 			break;
3365 		}
3366 		ptr += len;
3367 		sb_ptr += len;
3368 		cur += len;
3369 	}
3370 	free_extent_buffer(sb);
3371 	return ret;
3372 }
3373 
3374 int btrfs_read_chunk_tree(struct btrfs_root *root)
3375 {
3376 	struct btrfs_path *path;
3377 	struct extent_buffer *leaf;
3378 	struct btrfs_key key;
3379 	struct btrfs_key found_key;
3380 	int ret;
3381 	int slot;
3382 
3383 	root = root->fs_info->chunk_root;
3384 
3385 	path = btrfs_alloc_path();
3386 	if (!path)
3387 		return -ENOMEM;
3388 
3389 	/* first we search for all of the device items, and then we
3390 	 * read in all of the chunk items.  This way we can create chunk
3391 	 * mappings that reference all of the devices that are afound
3392 	 */
3393 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3394 	key.offset = 0;
3395 	key.type = 0;
3396 again:
3397 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3398 	if (ret < 0)
3399 		goto error;
3400 	while (1) {
3401 		leaf = path->nodes[0];
3402 		slot = path->slots[0];
3403 		if (slot >= btrfs_header_nritems(leaf)) {
3404 			ret = btrfs_next_leaf(root, path);
3405 			if (ret == 0)
3406 				continue;
3407 			if (ret < 0)
3408 				goto error;
3409 			break;
3410 		}
3411 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3412 		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3413 			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3414 				break;
3415 			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3416 				struct btrfs_dev_item *dev_item;
3417 				dev_item = btrfs_item_ptr(leaf, slot,
3418 						  struct btrfs_dev_item);
3419 				ret = read_one_dev(root, leaf, dev_item);
3420 				if (ret)
3421 					goto error;
3422 			}
3423 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3424 			struct btrfs_chunk *chunk;
3425 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3426 			ret = read_one_chunk(root, &found_key, leaf, chunk);
3427 			if (ret)
3428 				goto error;
3429 		}
3430 		path->slots[0]++;
3431 	}
3432 	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3433 		key.objectid = 0;
3434 		btrfs_release_path(root, path);
3435 		goto again;
3436 	}
3437 	ret = 0;
3438 error:
3439 	btrfs_free_path(path);
3440 	return ret;
3441 }
3442