xref: /openbmc/linux/fs/btrfs/volumes.c (revision 1ea068f5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "extent_map.h"
18 #include "disk-io.h"
19 #include "transaction.h"
20 #include "print-tree.h"
21 #include "volumes.h"
22 #include "raid56.h"
23 #include "rcu-string.h"
24 #include "dev-replace.h"
25 #include "sysfs.h"
26 #include "tree-checker.h"
27 #include "space-info.h"
28 #include "block-group.h"
29 #include "discard.h"
30 #include "zoned.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 #include "super.h"
38 
39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
40 					 BTRFS_BLOCK_GROUP_RAID10 | \
41 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
42 
43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 	[BTRFS_RAID_RAID10] = {
45 		.sub_stripes	= 2,
46 		.dev_stripes	= 1,
47 		.devs_max	= 0,	/* 0 == as many as possible */
48 		.devs_min	= 2,
49 		.tolerated_failures = 1,
50 		.devs_increment	= 2,
51 		.ncopies	= 2,
52 		.nparity        = 0,
53 		.raid_name	= "raid10",
54 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
55 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 	},
57 	[BTRFS_RAID_RAID1] = {
58 		.sub_stripes	= 1,
59 		.dev_stripes	= 1,
60 		.devs_max	= 2,
61 		.devs_min	= 2,
62 		.tolerated_failures = 1,
63 		.devs_increment	= 2,
64 		.ncopies	= 2,
65 		.nparity        = 0,
66 		.raid_name	= "raid1",
67 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
68 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 	},
70 	[BTRFS_RAID_RAID1C3] = {
71 		.sub_stripes	= 1,
72 		.dev_stripes	= 1,
73 		.devs_max	= 3,
74 		.devs_min	= 3,
75 		.tolerated_failures = 2,
76 		.devs_increment	= 3,
77 		.ncopies	= 3,
78 		.nparity        = 0,
79 		.raid_name	= "raid1c3",
80 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
81 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 	},
83 	[BTRFS_RAID_RAID1C4] = {
84 		.sub_stripes	= 1,
85 		.dev_stripes	= 1,
86 		.devs_max	= 4,
87 		.devs_min	= 4,
88 		.tolerated_failures = 3,
89 		.devs_increment	= 4,
90 		.ncopies	= 4,
91 		.nparity        = 0,
92 		.raid_name	= "raid1c4",
93 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
94 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 	},
96 	[BTRFS_RAID_DUP] = {
97 		.sub_stripes	= 1,
98 		.dev_stripes	= 2,
99 		.devs_max	= 1,
100 		.devs_min	= 1,
101 		.tolerated_failures = 0,
102 		.devs_increment	= 1,
103 		.ncopies	= 2,
104 		.nparity        = 0,
105 		.raid_name	= "dup",
106 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
107 		.mindev_error	= 0,
108 	},
109 	[BTRFS_RAID_RAID0] = {
110 		.sub_stripes	= 1,
111 		.dev_stripes	= 1,
112 		.devs_max	= 0,
113 		.devs_min	= 1,
114 		.tolerated_failures = 0,
115 		.devs_increment	= 1,
116 		.ncopies	= 1,
117 		.nparity        = 0,
118 		.raid_name	= "raid0",
119 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
120 		.mindev_error	= 0,
121 	},
122 	[BTRFS_RAID_SINGLE] = {
123 		.sub_stripes	= 1,
124 		.dev_stripes	= 1,
125 		.devs_max	= 1,
126 		.devs_min	= 1,
127 		.tolerated_failures = 0,
128 		.devs_increment	= 1,
129 		.ncopies	= 1,
130 		.nparity        = 0,
131 		.raid_name	= "single",
132 		.bg_flag	= 0,
133 		.mindev_error	= 0,
134 	},
135 	[BTRFS_RAID_RAID5] = {
136 		.sub_stripes	= 1,
137 		.dev_stripes	= 1,
138 		.devs_max	= 0,
139 		.devs_min	= 2,
140 		.tolerated_failures = 1,
141 		.devs_increment	= 1,
142 		.ncopies	= 1,
143 		.nparity        = 1,
144 		.raid_name	= "raid5",
145 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
146 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 	},
148 	[BTRFS_RAID_RAID6] = {
149 		.sub_stripes	= 1,
150 		.dev_stripes	= 1,
151 		.devs_max	= 0,
152 		.devs_min	= 3,
153 		.tolerated_failures = 2,
154 		.devs_increment	= 1,
155 		.ncopies	= 1,
156 		.nparity        = 2,
157 		.raid_name	= "raid6",
158 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
159 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 	},
161 };
162 
163 /*
164  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165  * can be used as index to access btrfs_raid_array[].
166  */
167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168 {
169 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170 
171 	if (!profile)
172 		return BTRFS_RAID_SINGLE;
173 
174 	return BTRFS_BG_FLAG_TO_INDEX(profile);
175 }
176 
177 const char *btrfs_bg_type_to_raid_name(u64 flags)
178 {
179 	const int index = btrfs_bg_flags_to_raid_index(flags);
180 
181 	if (index >= BTRFS_NR_RAID_TYPES)
182 		return NULL;
183 
184 	return btrfs_raid_array[index].raid_name;
185 }
186 
187 int btrfs_nr_parity_stripes(u64 type)
188 {
189 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190 
191 	return btrfs_raid_array[index].nparity;
192 }
193 
194 /*
195  * Fill @buf with textual description of @bg_flags, no more than @size_buf
196  * bytes including terminating null byte.
197  */
198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199 {
200 	int i;
201 	int ret;
202 	char *bp = buf;
203 	u64 flags = bg_flags;
204 	u32 size_bp = size_buf;
205 
206 	if (!flags) {
207 		strcpy(bp, "NONE");
208 		return;
209 	}
210 
211 #define DESCRIBE_FLAG(flag, desc)						\
212 	do {								\
213 		if (flags & (flag)) {					\
214 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
215 			if (ret < 0 || ret >= size_bp)			\
216 				goto out_overflow;			\
217 			size_bp -= ret;					\
218 			bp += ret;					\
219 			flags &= ~(flag);				\
220 		}							\
221 	} while (0)
222 
223 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226 
227 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 			      btrfs_raid_array[i].raid_name);
231 #undef DESCRIBE_FLAG
232 
233 	if (flags) {
234 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 		size_bp -= ret;
236 	}
237 
238 	if (size_bp < size_buf)
239 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240 
241 	/*
242 	 * The text is trimmed, it's up to the caller to provide sufficiently
243 	 * large buffer
244 	 */
245 out_overflow:;
246 }
247 
248 static int init_first_rw_device(struct btrfs_trans_handle *trans);
249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251 
252 /*
253  * Device locking
254  * ==============
255  *
256  * There are several mutexes that protect manipulation of devices and low-level
257  * structures like chunks but not block groups, extents or files
258  *
259  * uuid_mutex (global lock)
260  * ------------------------
261  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263  * device) or requested by the device= mount option
264  *
265  * the mutex can be very coarse and can cover long-running operations
266  *
267  * protects: updates to fs_devices counters like missing devices, rw devices,
268  * seeding, structure cloning, opening/closing devices at mount/umount time
269  *
270  * global::fs_devs - add, remove, updates to the global list
271  *
272  * does not protect: manipulation of the fs_devices::devices list in general
273  * but in mount context it could be used to exclude list modifications by eg.
274  * scan ioctl
275  *
276  * btrfs_device::name - renames (write side), read is RCU
277  *
278  * fs_devices::device_list_mutex (per-fs, with RCU)
279  * ------------------------------------------------
280  * protects updates to fs_devices::devices, ie. adding and deleting
281  *
282  * simple list traversal with read-only actions can be done with RCU protection
283  *
284  * may be used to exclude some operations from running concurrently without any
285  * modifications to the list (see write_all_supers)
286  *
287  * Is not required at mount and close times, because our device list is
288  * protected by the uuid_mutex at that point.
289  *
290  * balance_mutex
291  * -------------
292  * protects balance structures (status, state) and context accessed from
293  * several places (internally, ioctl)
294  *
295  * chunk_mutex
296  * -----------
297  * protects chunks, adding or removing during allocation, trim or when a new
298  * device is added/removed. Additionally it also protects post_commit_list of
299  * individual devices, since they can be added to the transaction's
300  * post_commit_list only with chunk_mutex held.
301  *
302  * cleaner_mutex
303  * -------------
304  * a big lock that is held by the cleaner thread and prevents running subvolume
305  * cleaning together with relocation or delayed iputs
306  *
307  *
308  * Lock nesting
309  * ============
310  *
311  * uuid_mutex
312  *   device_list_mutex
313  *     chunk_mutex
314  *   balance_mutex
315  *
316  *
317  * Exclusive operations
318  * ====================
319  *
320  * Maintains the exclusivity of the following operations that apply to the
321  * whole filesystem and cannot run in parallel.
322  *
323  * - Balance (*)
324  * - Device add
325  * - Device remove
326  * - Device replace (*)
327  * - Resize
328  *
329  * The device operations (as above) can be in one of the following states:
330  *
331  * - Running state
332  * - Paused state
333  * - Completed state
334  *
335  * Only device operations marked with (*) can go into the Paused state for the
336  * following reasons:
337  *
338  * - ioctl (only Balance can be Paused through ioctl)
339  * - filesystem remounted as read-only
340  * - filesystem unmounted and mounted as read-only
341  * - system power-cycle and filesystem mounted as read-only
342  * - filesystem or device errors leading to forced read-only
343  *
344  * The status of exclusive operation is set and cleared atomically.
345  * During the course of Paused state, fs_info::exclusive_operation remains set.
346  * A device operation in Paused or Running state can be canceled or resumed
347  * either by ioctl (Balance only) or when remounted as read-write.
348  * The exclusive status is cleared when the device operation is canceled or
349  * completed.
350  */
351 
352 DEFINE_MUTEX(uuid_mutex);
353 static LIST_HEAD(fs_uuids);
354 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
355 {
356 	return &fs_uuids;
357 }
358 
359 /*
360  * alloc_fs_devices - allocate struct btrfs_fs_devices
361  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
362  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
363  *
364  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365  * The returned struct is not linked onto any lists and can be destroyed with
366  * kfree() right away.
367  */
368 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 						 const u8 *metadata_fsid)
370 {
371 	struct btrfs_fs_devices *fs_devs;
372 
373 	ASSERT(fsid || !metadata_fsid);
374 
375 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
376 	if (!fs_devs)
377 		return ERR_PTR(-ENOMEM);
378 
379 	mutex_init(&fs_devs->device_list_mutex);
380 
381 	INIT_LIST_HEAD(&fs_devs->devices);
382 	INIT_LIST_HEAD(&fs_devs->alloc_list);
383 	INIT_LIST_HEAD(&fs_devs->fs_list);
384 	INIT_LIST_HEAD(&fs_devs->seed_list);
385 
386 	if (fsid) {
387 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
388 		memcpy(fs_devs->metadata_uuid,
389 		       metadata_fsid ?: fsid, BTRFS_FSID_SIZE);
390 	}
391 
392 	return fs_devs;
393 }
394 
395 static void btrfs_free_device(struct btrfs_device *device)
396 {
397 	WARN_ON(!list_empty(&device->post_commit_list));
398 	rcu_string_free(device->name);
399 	extent_io_tree_release(&device->alloc_state);
400 	btrfs_destroy_dev_zone_info(device);
401 	kfree(device);
402 }
403 
404 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
405 {
406 	struct btrfs_device *device;
407 
408 	WARN_ON(fs_devices->opened);
409 	while (!list_empty(&fs_devices->devices)) {
410 		device = list_entry(fs_devices->devices.next,
411 				    struct btrfs_device, dev_list);
412 		list_del(&device->dev_list);
413 		btrfs_free_device(device);
414 	}
415 	kfree(fs_devices);
416 }
417 
418 void __exit btrfs_cleanup_fs_uuids(void)
419 {
420 	struct btrfs_fs_devices *fs_devices;
421 
422 	while (!list_empty(&fs_uuids)) {
423 		fs_devices = list_entry(fs_uuids.next,
424 					struct btrfs_fs_devices, fs_list);
425 		list_del(&fs_devices->fs_list);
426 		free_fs_devices(fs_devices);
427 	}
428 }
429 
430 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
431 				  const u8 *fsid, const u8 *metadata_fsid)
432 {
433 	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
434 		return false;
435 
436 	if (!metadata_fsid)
437 		return true;
438 
439 	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
440 		return false;
441 
442 	return true;
443 }
444 
445 static noinline struct btrfs_fs_devices *find_fsid(
446 		const u8 *fsid, const u8 *metadata_fsid)
447 {
448 	struct btrfs_fs_devices *fs_devices;
449 
450 	ASSERT(fsid);
451 
452 	/* Handle non-split brain cases */
453 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
455 			return fs_devices;
456 	}
457 	return NULL;
458 }
459 
460 /*
461  * First check if the metadata_uuid is different from the fsid in the given
462  * fs_devices. Then check if the given fsid is the same as the metadata_uuid
463  * in the fs_devices. If it is, return true; otherwise, return false.
464  */
465 static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices,
466 				      const u8 *fsid)
467 {
468 	return memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
469 		      BTRFS_FSID_SIZE) != 0 &&
470 	       memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0;
471 }
472 
473 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
474 				struct btrfs_super_block *disk_super)
475 {
476 
477 	struct btrfs_fs_devices *fs_devices;
478 
479 	/*
480 	 * Handle scanned device having completed its fsid change but
481 	 * belonging to a fs_devices that was created by first scanning
482 	 * a device which didn't have its fsid/metadata_uuid changed
483 	 * at all and the CHANGING_FSID_V2 flag set.
484 	 */
485 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
486 		if (!fs_devices->fsid_change)
487 			continue;
488 
489 		if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid,
490 					  fs_devices->fsid))
491 			return fs_devices;
492 	}
493 
494 	/*
495 	 * Handle scanned device having completed its fsid change but
496 	 * belonging to a fs_devices that was created by a device that
497 	 * has an outdated pair of fsid/metadata_uuid and
498 	 * CHANGING_FSID_V2 flag set.
499 	 */
500 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
501 		if (!fs_devices->fsid_change)
502 			continue;
503 
504 		if (check_fsid_changed(fs_devices, disk_super->metadata_uuid))
505 			return fs_devices;
506 	}
507 
508 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
509 }
510 
511 
512 static int
513 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
514 		      int flush, struct block_device **bdev,
515 		      struct btrfs_super_block **disk_super)
516 {
517 	int ret;
518 
519 	*bdev = blkdev_get_by_path(device_path, flags, holder, NULL);
520 
521 	if (IS_ERR(*bdev)) {
522 		ret = PTR_ERR(*bdev);
523 		goto error;
524 	}
525 
526 	if (flush)
527 		sync_blockdev(*bdev);
528 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
529 	if (ret) {
530 		blkdev_put(*bdev, holder);
531 		goto error;
532 	}
533 	invalidate_bdev(*bdev);
534 	*disk_super = btrfs_read_dev_super(*bdev);
535 	if (IS_ERR(*disk_super)) {
536 		ret = PTR_ERR(*disk_super);
537 		blkdev_put(*bdev, holder);
538 		goto error;
539 	}
540 
541 	return 0;
542 
543 error:
544 	*bdev = NULL;
545 	return ret;
546 }
547 
548 /*
549  *  Search and remove all stale devices (which are not mounted).  When both
550  *  inputs are NULL, it will search and release all stale devices.
551  *
552  *  @devt:         Optional. When provided will it release all unmounted devices
553  *                 matching this devt only.
554  *  @skip_device:  Optional. Will skip this device when searching for the stale
555  *                 devices.
556  *
557  *  Return:	0 for success or if @devt is 0.
558  *		-EBUSY if @devt is a mounted device.
559  *		-ENOENT if @devt does not match any device in the list.
560  */
561 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
562 {
563 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
564 	struct btrfs_device *device, *tmp_device;
565 	int ret = 0;
566 
567 	lockdep_assert_held(&uuid_mutex);
568 
569 	if (devt)
570 		ret = -ENOENT;
571 
572 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
573 
574 		mutex_lock(&fs_devices->device_list_mutex);
575 		list_for_each_entry_safe(device, tmp_device,
576 					 &fs_devices->devices, dev_list) {
577 			if (skip_device && skip_device == device)
578 				continue;
579 			if (devt && devt != device->devt)
580 				continue;
581 			if (fs_devices->opened) {
582 				/* for an already deleted device return 0 */
583 				if (devt && ret != 0)
584 					ret = -EBUSY;
585 				break;
586 			}
587 
588 			/* delete the stale device */
589 			fs_devices->num_devices--;
590 			list_del(&device->dev_list);
591 			btrfs_free_device(device);
592 
593 			ret = 0;
594 		}
595 		mutex_unlock(&fs_devices->device_list_mutex);
596 
597 		if (fs_devices->num_devices == 0) {
598 			btrfs_sysfs_remove_fsid(fs_devices);
599 			list_del(&fs_devices->fs_list);
600 			free_fs_devices(fs_devices);
601 		}
602 	}
603 
604 	return ret;
605 }
606 
607 /*
608  * This is only used on mount, and we are protected from competing things
609  * messing with our fs_devices by the uuid_mutex, thus we do not need the
610  * fs_devices->device_list_mutex here.
611  */
612 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
613 			struct btrfs_device *device, blk_mode_t flags,
614 			void *holder)
615 {
616 	struct block_device *bdev;
617 	struct btrfs_super_block *disk_super;
618 	u64 devid;
619 	int ret;
620 
621 	if (device->bdev)
622 		return -EINVAL;
623 	if (!device->name)
624 		return -EINVAL;
625 
626 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
627 				    &bdev, &disk_super);
628 	if (ret)
629 		return ret;
630 
631 	devid = btrfs_stack_device_id(&disk_super->dev_item);
632 	if (devid != device->devid)
633 		goto error_free_page;
634 
635 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
636 		goto error_free_page;
637 
638 	device->generation = btrfs_super_generation(disk_super);
639 
640 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
641 		if (btrfs_super_incompat_flags(disk_super) &
642 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
643 			pr_err(
644 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
645 			goto error_free_page;
646 		}
647 
648 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
649 		fs_devices->seeding = true;
650 	} else {
651 		if (bdev_read_only(bdev))
652 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653 		else
654 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
655 	}
656 
657 	if (!bdev_nonrot(bdev))
658 		fs_devices->rotating = true;
659 
660 	if (bdev_max_discard_sectors(bdev))
661 		fs_devices->discardable = true;
662 
663 	device->bdev = bdev;
664 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
665 	device->holder = holder;
666 
667 	fs_devices->open_devices++;
668 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
669 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
670 		fs_devices->rw_devices++;
671 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
672 	}
673 	btrfs_release_disk_super(disk_super);
674 
675 	return 0;
676 
677 error_free_page:
678 	btrfs_release_disk_super(disk_super);
679 	blkdev_put(bdev, holder);
680 
681 	return -EINVAL;
682 }
683 
684 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
685 {
686 	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
687 				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
688 
689 	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
690 }
691 
692 /*
693  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
694  * being created with a disk that has already completed its fsid change. Such
695  * disk can belong to an fs which has its FSID changed or to one which doesn't.
696  * Handle both cases here.
697  */
698 static struct btrfs_fs_devices *find_fsid_inprogress(
699 					struct btrfs_super_block *disk_super)
700 {
701 	struct btrfs_fs_devices *fs_devices;
702 
703 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
704 		if (fs_devices->fsid_change)
705 			continue;
706 
707 		if (check_fsid_changed(fs_devices,  disk_super->fsid))
708 			return fs_devices;
709 	}
710 
711 	return find_fsid(disk_super->fsid, NULL);
712 }
713 
714 static struct btrfs_fs_devices *find_fsid_changed(
715 					struct btrfs_super_block *disk_super)
716 {
717 	struct btrfs_fs_devices *fs_devices;
718 
719 	/*
720 	 * Handles the case where scanned device is part of an fs that had
721 	 * multiple successful changes of FSID but currently device didn't
722 	 * observe it. Meaning our fsid will be different than theirs. We need
723 	 * to handle two subcases :
724 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
725 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
726 	 *  are equal).
727 	 */
728 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
729 		/* Changed UUIDs */
730 		if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) &&
731 		    memcmp(fs_devices->fsid, disk_super->fsid,
732 			   BTRFS_FSID_SIZE) != 0)
733 			return fs_devices;
734 
735 		/* Unchanged UUIDs */
736 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737 			   BTRFS_FSID_SIZE) == 0 &&
738 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739 			   BTRFS_FSID_SIZE) == 0)
740 			return fs_devices;
741 	}
742 
743 	return NULL;
744 }
745 
746 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747 				struct btrfs_super_block *disk_super)
748 {
749 	struct btrfs_fs_devices *fs_devices;
750 
751 	/*
752 	 * Handle the case where the scanned device is part of an fs whose last
753 	 * metadata UUID change reverted it to the original FSID. At the same
754 	 * time fs_devices was first created by another constituent device
755 	 * which didn't fully observe the operation. This results in an
756 	 * btrfs_fs_devices created with metadata/fsid different AND
757 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758 	 * fs_devices equal to the FSID of the disk.
759 	 */
760 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
761 		if (!fs_devices->fsid_change)
762 			continue;
763 
764 		if (check_fsid_changed(fs_devices, disk_super->fsid))
765 			return fs_devices;
766 	}
767 
768 	return NULL;
769 }
770 /*
771  * Add new device to list of registered devices
772  *
773  * Returns:
774  * device pointer which was just added or updated when successful
775  * error pointer when failed
776  */
777 static noinline struct btrfs_device *device_list_add(const char *path,
778 			   struct btrfs_super_block *disk_super,
779 			   bool *new_device_added)
780 {
781 	struct btrfs_device *device;
782 	struct btrfs_fs_devices *fs_devices = NULL;
783 	struct rcu_string *name;
784 	u64 found_transid = btrfs_super_generation(disk_super);
785 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
786 	dev_t path_devt;
787 	int error;
788 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
789 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
790 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
791 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
792 
793 	error = lookup_bdev(path, &path_devt);
794 	if (error) {
795 		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
796 			  path, error);
797 		return ERR_PTR(error);
798 	}
799 
800 	if (fsid_change_in_progress) {
801 		if (!has_metadata_uuid)
802 			fs_devices = find_fsid_inprogress(disk_super);
803 		else
804 			fs_devices = find_fsid_changed(disk_super);
805 	} else if (has_metadata_uuid) {
806 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
807 	} else {
808 		fs_devices = find_fsid_reverted_metadata(disk_super);
809 		if (!fs_devices)
810 			fs_devices = find_fsid(disk_super->fsid, NULL);
811 	}
812 
813 
814 	if (!fs_devices) {
815 		fs_devices = alloc_fs_devices(disk_super->fsid,
816 				has_metadata_uuid ? disk_super->metadata_uuid : NULL);
817 		if (IS_ERR(fs_devices))
818 			return ERR_CAST(fs_devices);
819 
820 		fs_devices->fsid_change = fsid_change_in_progress;
821 
822 		mutex_lock(&fs_devices->device_list_mutex);
823 		list_add(&fs_devices->fs_list, &fs_uuids);
824 
825 		device = NULL;
826 	} else {
827 		struct btrfs_dev_lookup_args args = {
828 			.devid = devid,
829 			.uuid = disk_super->dev_item.uuid,
830 		};
831 
832 		mutex_lock(&fs_devices->device_list_mutex);
833 		device = btrfs_find_device(fs_devices, &args);
834 
835 		/*
836 		 * If this disk has been pulled into an fs devices created by
837 		 * a device which had the CHANGING_FSID_V2 flag then replace the
838 		 * metadata_uuid/fsid values of the fs_devices.
839 		 */
840 		if (fs_devices->fsid_change &&
841 		    found_transid > fs_devices->latest_generation) {
842 			memcpy(fs_devices->fsid, disk_super->fsid,
843 					BTRFS_FSID_SIZE);
844 			memcpy(fs_devices->metadata_uuid,
845 			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
846 			fs_devices->fsid_change = false;
847 		}
848 	}
849 
850 	if (!device) {
851 		unsigned int nofs_flag;
852 
853 		if (fs_devices->opened) {
854 			btrfs_err(NULL,
855 "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
856 				  path, fs_devices->fsid, current->comm,
857 				  task_pid_nr(current));
858 			mutex_unlock(&fs_devices->device_list_mutex);
859 			return ERR_PTR(-EBUSY);
860 		}
861 
862 		nofs_flag = memalloc_nofs_save();
863 		device = btrfs_alloc_device(NULL, &devid,
864 					    disk_super->dev_item.uuid, path);
865 		memalloc_nofs_restore(nofs_flag);
866 		if (IS_ERR(device)) {
867 			mutex_unlock(&fs_devices->device_list_mutex);
868 			/* we can safely leave the fs_devices entry around */
869 			return device;
870 		}
871 
872 		device->devt = path_devt;
873 
874 		list_add_rcu(&device->dev_list, &fs_devices->devices);
875 		fs_devices->num_devices++;
876 
877 		device->fs_devices = fs_devices;
878 		*new_device_added = true;
879 
880 		if (disk_super->label[0])
881 			pr_info(
882 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
883 				disk_super->label, devid, found_transid, path,
884 				current->comm, task_pid_nr(current));
885 		else
886 			pr_info(
887 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
888 				disk_super->fsid, devid, found_transid, path,
889 				current->comm, task_pid_nr(current));
890 
891 	} else if (!device->name || strcmp(device->name->str, path)) {
892 		/*
893 		 * When FS is already mounted.
894 		 * 1. If you are here and if the device->name is NULL that
895 		 *    means this device was missing at time of FS mount.
896 		 * 2. If you are here and if the device->name is different
897 		 *    from 'path' that means either
898 		 *      a. The same device disappeared and reappeared with
899 		 *         different name. or
900 		 *      b. The missing-disk-which-was-replaced, has
901 		 *         reappeared now.
902 		 *
903 		 * We must allow 1 and 2a above. But 2b would be a spurious
904 		 * and unintentional.
905 		 *
906 		 * Further in case of 1 and 2a above, the disk at 'path'
907 		 * would have missed some transaction when it was away and
908 		 * in case of 2a the stale bdev has to be updated as well.
909 		 * 2b must not be allowed at all time.
910 		 */
911 
912 		/*
913 		 * For now, we do allow update to btrfs_fs_device through the
914 		 * btrfs dev scan cli after FS has been mounted.  We're still
915 		 * tracking a problem where systems fail mount by subvolume id
916 		 * when we reject replacement on a mounted FS.
917 		 */
918 		if (!fs_devices->opened && found_transid < device->generation) {
919 			/*
920 			 * That is if the FS is _not_ mounted and if you
921 			 * are here, that means there is more than one
922 			 * disk with same uuid and devid.We keep the one
923 			 * with larger generation number or the last-in if
924 			 * generation are equal.
925 			 */
926 			mutex_unlock(&fs_devices->device_list_mutex);
927 			btrfs_err(NULL,
928 "device %s already registered with a higher generation, found %llu expect %llu",
929 				  path, found_transid, device->generation);
930 			return ERR_PTR(-EEXIST);
931 		}
932 
933 		/*
934 		 * We are going to replace the device path for a given devid,
935 		 * make sure it's the same device if the device is mounted
936 		 *
937 		 * NOTE: the device->fs_info may not be reliable here so pass
938 		 * in a NULL to message helpers instead. This avoids a possible
939 		 * use-after-free when the fs_info and fs_info->sb are already
940 		 * torn down.
941 		 */
942 		if (device->bdev) {
943 			if (device->devt != path_devt) {
944 				mutex_unlock(&fs_devices->device_list_mutex);
945 				btrfs_warn_in_rcu(NULL,
946 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
947 						  path, devid, found_transid,
948 						  current->comm,
949 						  task_pid_nr(current));
950 				return ERR_PTR(-EEXIST);
951 			}
952 			btrfs_info_in_rcu(NULL,
953 	"devid %llu device path %s changed to %s scanned by %s (%d)",
954 					  devid, btrfs_dev_name(device),
955 					  path, current->comm,
956 					  task_pid_nr(current));
957 		}
958 
959 		name = rcu_string_strdup(path, GFP_NOFS);
960 		if (!name) {
961 			mutex_unlock(&fs_devices->device_list_mutex);
962 			return ERR_PTR(-ENOMEM);
963 		}
964 		rcu_string_free(device->name);
965 		rcu_assign_pointer(device->name, name);
966 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
967 			fs_devices->missing_devices--;
968 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
969 		}
970 		device->devt = path_devt;
971 	}
972 
973 	/*
974 	 * Unmount does not free the btrfs_device struct but would zero
975 	 * generation along with most of the other members. So just update
976 	 * it back. We need it to pick the disk with largest generation
977 	 * (as above).
978 	 */
979 	if (!fs_devices->opened) {
980 		device->generation = found_transid;
981 		fs_devices->latest_generation = max_t(u64, found_transid,
982 						fs_devices->latest_generation);
983 	}
984 
985 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
986 
987 	mutex_unlock(&fs_devices->device_list_mutex);
988 	return device;
989 }
990 
991 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
992 {
993 	struct btrfs_fs_devices *fs_devices;
994 	struct btrfs_device *device;
995 	struct btrfs_device *orig_dev;
996 	int ret = 0;
997 
998 	lockdep_assert_held(&uuid_mutex);
999 
1000 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1001 	if (IS_ERR(fs_devices))
1002 		return fs_devices;
1003 
1004 	fs_devices->total_devices = orig->total_devices;
1005 
1006 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1007 		const char *dev_path = NULL;
1008 
1009 		/*
1010 		 * This is ok to do without RCU read locked because we hold the
1011 		 * uuid mutex so nothing we touch in here is going to disappear.
1012 		 */
1013 		if (orig_dev->name)
1014 			dev_path = orig_dev->name->str;
1015 
1016 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1017 					    orig_dev->uuid, dev_path);
1018 		if (IS_ERR(device)) {
1019 			ret = PTR_ERR(device);
1020 			goto error;
1021 		}
1022 
1023 		if (orig_dev->zone_info) {
1024 			struct btrfs_zoned_device_info *zone_info;
1025 
1026 			zone_info = btrfs_clone_dev_zone_info(orig_dev);
1027 			if (!zone_info) {
1028 				btrfs_free_device(device);
1029 				ret = -ENOMEM;
1030 				goto error;
1031 			}
1032 			device->zone_info = zone_info;
1033 		}
1034 
1035 		list_add(&device->dev_list, &fs_devices->devices);
1036 		device->fs_devices = fs_devices;
1037 		fs_devices->num_devices++;
1038 	}
1039 	return fs_devices;
1040 error:
1041 	free_fs_devices(fs_devices);
1042 	return ERR_PTR(ret);
1043 }
1044 
1045 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1046 				      struct btrfs_device **latest_dev)
1047 {
1048 	struct btrfs_device *device, *next;
1049 
1050 	/* This is the initialized path, it is safe to release the devices. */
1051 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1052 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1053 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1054 				      &device->dev_state) &&
1055 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1056 				      &device->dev_state) &&
1057 			    (!*latest_dev ||
1058 			     device->generation > (*latest_dev)->generation)) {
1059 				*latest_dev = device;
1060 			}
1061 			continue;
1062 		}
1063 
1064 		/*
1065 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1066 		 * in btrfs_init_dev_replace() so just continue.
1067 		 */
1068 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1069 			continue;
1070 
1071 		if (device->bdev) {
1072 			blkdev_put(device->bdev, device->holder);
1073 			device->bdev = NULL;
1074 			fs_devices->open_devices--;
1075 		}
1076 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1077 			list_del_init(&device->dev_alloc_list);
1078 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1079 			fs_devices->rw_devices--;
1080 		}
1081 		list_del_init(&device->dev_list);
1082 		fs_devices->num_devices--;
1083 		btrfs_free_device(device);
1084 	}
1085 
1086 }
1087 
1088 /*
1089  * After we have read the system tree and know devids belonging to this
1090  * filesystem, remove the device which does not belong there.
1091  */
1092 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1093 {
1094 	struct btrfs_device *latest_dev = NULL;
1095 	struct btrfs_fs_devices *seed_dev;
1096 
1097 	mutex_lock(&uuid_mutex);
1098 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1099 
1100 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1101 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1102 
1103 	fs_devices->latest_dev = latest_dev;
1104 
1105 	mutex_unlock(&uuid_mutex);
1106 }
1107 
1108 static void btrfs_close_bdev(struct btrfs_device *device)
1109 {
1110 	if (!device->bdev)
1111 		return;
1112 
1113 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1114 		sync_blockdev(device->bdev);
1115 		invalidate_bdev(device->bdev);
1116 	}
1117 
1118 	blkdev_put(device->bdev, device->holder);
1119 }
1120 
1121 static void btrfs_close_one_device(struct btrfs_device *device)
1122 {
1123 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1124 
1125 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1126 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1127 		list_del_init(&device->dev_alloc_list);
1128 		fs_devices->rw_devices--;
1129 	}
1130 
1131 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1132 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1133 
1134 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1135 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1136 		fs_devices->missing_devices--;
1137 	}
1138 
1139 	btrfs_close_bdev(device);
1140 	if (device->bdev) {
1141 		fs_devices->open_devices--;
1142 		device->bdev = NULL;
1143 	}
1144 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1145 	btrfs_destroy_dev_zone_info(device);
1146 
1147 	device->fs_info = NULL;
1148 	atomic_set(&device->dev_stats_ccnt, 0);
1149 	extent_io_tree_release(&device->alloc_state);
1150 
1151 	/*
1152 	 * Reset the flush error record. We might have a transient flush error
1153 	 * in this mount, and if so we aborted the current transaction and set
1154 	 * the fs to an error state, guaranteeing no super blocks can be further
1155 	 * committed. However that error might be transient and if we unmount the
1156 	 * filesystem and mount it again, we should allow the mount to succeed
1157 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1158 	 * filesystem again we still get flush errors, then we will again abort
1159 	 * any transaction and set the error state, guaranteeing no commits of
1160 	 * unsafe super blocks.
1161 	 */
1162 	device->last_flush_error = 0;
1163 
1164 	/* Verify the device is back in a pristine state  */
1165 	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1166 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1167 	WARN_ON(!list_empty(&device->dev_alloc_list));
1168 	WARN_ON(!list_empty(&device->post_commit_list));
1169 }
1170 
1171 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1172 {
1173 	struct btrfs_device *device, *tmp;
1174 
1175 	lockdep_assert_held(&uuid_mutex);
1176 
1177 	if (--fs_devices->opened > 0)
1178 		return;
1179 
1180 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1181 		btrfs_close_one_device(device);
1182 
1183 	WARN_ON(fs_devices->open_devices);
1184 	WARN_ON(fs_devices->rw_devices);
1185 	fs_devices->opened = 0;
1186 	fs_devices->seeding = false;
1187 	fs_devices->fs_info = NULL;
1188 }
1189 
1190 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1191 {
1192 	LIST_HEAD(list);
1193 	struct btrfs_fs_devices *tmp;
1194 
1195 	mutex_lock(&uuid_mutex);
1196 	close_fs_devices(fs_devices);
1197 	if (!fs_devices->opened) {
1198 		list_splice_init(&fs_devices->seed_list, &list);
1199 
1200 		/*
1201 		 * If the struct btrfs_fs_devices is not assembled with any
1202 		 * other device, it can be re-initialized during the next mount
1203 		 * without the needing device-scan step. Therefore, it can be
1204 		 * fully freed.
1205 		 */
1206 		if (fs_devices->num_devices == 1) {
1207 			list_del(&fs_devices->fs_list);
1208 			free_fs_devices(fs_devices);
1209 		}
1210 	}
1211 
1212 
1213 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1214 		close_fs_devices(fs_devices);
1215 		list_del(&fs_devices->seed_list);
1216 		free_fs_devices(fs_devices);
1217 	}
1218 	mutex_unlock(&uuid_mutex);
1219 }
1220 
1221 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1222 				blk_mode_t flags, void *holder)
1223 {
1224 	struct btrfs_device *device;
1225 	struct btrfs_device *latest_dev = NULL;
1226 	struct btrfs_device *tmp_device;
1227 	int ret = 0;
1228 
1229 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1230 				 dev_list) {
1231 		int ret2;
1232 
1233 		ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1234 		if (ret2 == 0 &&
1235 		    (!latest_dev || device->generation > latest_dev->generation)) {
1236 			latest_dev = device;
1237 		} else if (ret2 == -ENODATA) {
1238 			fs_devices->num_devices--;
1239 			list_del(&device->dev_list);
1240 			btrfs_free_device(device);
1241 		}
1242 		if (ret == 0 && ret2 != 0)
1243 			ret = ret2;
1244 	}
1245 
1246 	if (fs_devices->open_devices == 0) {
1247 		if (ret)
1248 			return ret;
1249 		return -EINVAL;
1250 	}
1251 
1252 	fs_devices->opened = 1;
1253 	fs_devices->latest_dev = latest_dev;
1254 	fs_devices->total_rw_bytes = 0;
1255 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1256 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1257 
1258 	return 0;
1259 }
1260 
1261 static int devid_cmp(void *priv, const struct list_head *a,
1262 		     const struct list_head *b)
1263 {
1264 	const struct btrfs_device *dev1, *dev2;
1265 
1266 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1267 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1268 
1269 	if (dev1->devid < dev2->devid)
1270 		return -1;
1271 	else if (dev1->devid > dev2->devid)
1272 		return 1;
1273 	return 0;
1274 }
1275 
1276 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1277 		       blk_mode_t flags, void *holder)
1278 {
1279 	int ret;
1280 
1281 	lockdep_assert_held(&uuid_mutex);
1282 	/*
1283 	 * The device_list_mutex cannot be taken here in case opening the
1284 	 * underlying device takes further locks like open_mutex.
1285 	 *
1286 	 * We also don't need the lock here as this is called during mount and
1287 	 * exclusion is provided by uuid_mutex
1288 	 */
1289 
1290 	if (fs_devices->opened) {
1291 		fs_devices->opened++;
1292 		ret = 0;
1293 	} else {
1294 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1295 		ret = open_fs_devices(fs_devices, flags, holder);
1296 	}
1297 
1298 	return ret;
1299 }
1300 
1301 void btrfs_release_disk_super(struct btrfs_super_block *super)
1302 {
1303 	struct page *page = virt_to_page(super);
1304 
1305 	put_page(page);
1306 }
1307 
1308 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1309 						       u64 bytenr, u64 bytenr_orig)
1310 {
1311 	struct btrfs_super_block *disk_super;
1312 	struct page *page;
1313 	void *p;
1314 	pgoff_t index;
1315 
1316 	/* make sure our super fits in the device */
1317 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1318 		return ERR_PTR(-EINVAL);
1319 
1320 	/* make sure our super fits in the page */
1321 	if (sizeof(*disk_super) > PAGE_SIZE)
1322 		return ERR_PTR(-EINVAL);
1323 
1324 	/* make sure our super doesn't straddle pages on disk */
1325 	index = bytenr >> PAGE_SHIFT;
1326 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1327 		return ERR_PTR(-EINVAL);
1328 
1329 	/* pull in the page with our super */
1330 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1331 
1332 	if (IS_ERR(page))
1333 		return ERR_CAST(page);
1334 
1335 	p = page_address(page);
1336 
1337 	/* align our pointer to the offset of the super block */
1338 	disk_super = p + offset_in_page(bytenr);
1339 
1340 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1341 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1342 		btrfs_release_disk_super(p);
1343 		return ERR_PTR(-EINVAL);
1344 	}
1345 
1346 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1347 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1348 
1349 	return disk_super;
1350 }
1351 
1352 int btrfs_forget_devices(dev_t devt)
1353 {
1354 	int ret;
1355 
1356 	mutex_lock(&uuid_mutex);
1357 	ret = btrfs_free_stale_devices(devt, NULL);
1358 	mutex_unlock(&uuid_mutex);
1359 
1360 	return ret;
1361 }
1362 
1363 /*
1364  * Look for a btrfs signature on a device. This may be called out of the mount path
1365  * and we are not allowed to call set_blocksize during the scan. The superblock
1366  * is read via pagecache
1367  */
1368 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags)
1369 {
1370 	struct btrfs_super_block *disk_super;
1371 	bool new_device_added = false;
1372 	struct btrfs_device *device = NULL;
1373 	struct block_device *bdev;
1374 	u64 bytenr, bytenr_orig;
1375 	int ret;
1376 
1377 	lockdep_assert_held(&uuid_mutex);
1378 
1379 	/*
1380 	 * we would like to check all the supers, but that would make
1381 	 * a btrfs mount succeed after a mkfs from a different FS.
1382 	 * So, we need to add a special mount option to scan for
1383 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1384 	 */
1385 
1386 	/*
1387 	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1388 	 * device scan which may race with the user's mount or mkfs command,
1389 	 * resulting in failure.
1390 	 * Since the device scan is solely for reading purposes, there is no
1391 	 * need for an exclusive open. Additionally, the devices are read again
1392 	 * during the mount process. It is ok to get some inconsistent
1393 	 * values temporarily, as the device paths of the fsid are the only
1394 	 * required information for assembling the volume.
1395 	 */
1396 	bdev = blkdev_get_by_path(path, flags, NULL, NULL);
1397 	if (IS_ERR(bdev))
1398 		return ERR_CAST(bdev);
1399 
1400 	bytenr_orig = btrfs_sb_offset(0);
1401 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1402 	if (ret) {
1403 		device = ERR_PTR(ret);
1404 		goto error_bdev_put;
1405 	}
1406 
1407 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1408 	if (IS_ERR(disk_super)) {
1409 		device = ERR_CAST(disk_super);
1410 		goto error_bdev_put;
1411 	}
1412 
1413 	device = device_list_add(path, disk_super, &new_device_added);
1414 	if (!IS_ERR(device) && new_device_added)
1415 		btrfs_free_stale_devices(device->devt, device);
1416 
1417 	btrfs_release_disk_super(disk_super);
1418 
1419 error_bdev_put:
1420 	blkdev_put(bdev, NULL);
1421 
1422 	return device;
1423 }
1424 
1425 /*
1426  * Try to find a chunk that intersects [start, start + len] range and when one
1427  * such is found, record the end of it in *start
1428  */
1429 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1430 				    u64 len)
1431 {
1432 	u64 physical_start, physical_end;
1433 
1434 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1435 
1436 	if (find_first_extent_bit(&device->alloc_state, *start,
1437 				  &physical_start, &physical_end,
1438 				  CHUNK_ALLOCATED, NULL)) {
1439 
1440 		if (in_range(physical_start, *start, len) ||
1441 		    in_range(*start, physical_start,
1442 			     physical_end + 1 - physical_start)) {
1443 			*start = physical_end + 1;
1444 			return true;
1445 		}
1446 	}
1447 	return false;
1448 }
1449 
1450 static u64 dev_extent_search_start(struct btrfs_device *device)
1451 {
1452 	switch (device->fs_devices->chunk_alloc_policy) {
1453 	case BTRFS_CHUNK_ALLOC_REGULAR:
1454 		return BTRFS_DEVICE_RANGE_RESERVED;
1455 	case BTRFS_CHUNK_ALLOC_ZONED:
1456 		/*
1457 		 * We don't care about the starting region like regular
1458 		 * allocator, because we anyway use/reserve the first two zones
1459 		 * for superblock logging.
1460 		 */
1461 		return 0;
1462 	default:
1463 		BUG();
1464 	}
1465 }
1466 
1467 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1468 					u64 *hole_start, u64 *hole_size,
1469 					u64 num_bytes)
1470 {
1471 	u64 zone_size = device->zone_info->zone_size;
1472 	u64 pos;
1473 	int ret;
1474 	bool changed = false;
1475 
1476 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1477 
1478 	while (*hole_size > 0) {
1479 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1480 						   *hole_start + *hole_size,
1481 						   num_bytes);
1482 		if (pos != *hole_start) {
1483 			*hole_size = *hole_start + *hole_size - pos;
1484 			*hole_start = pos;
1485 			changed = true;
1486 			if (*hole_size < num_bytes)
1487 				break;
1488 		}
1489 
1490 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1491 
1492 		/* Range is ensured to be empty */
1493 		if (!ret)
1494 			return changed;
1495 
1496 		/* Given hole range was invalid (outside of device) */
1497 		if (ret == -ERANGE) {
1498 			*hole_start += *hole_size;
1499 			*hole_size = 0;
1500 			return true;
1501 		}
1502 
1503 		*hole_start += zone_size;
1504 		*hole_size -= zone_size;
1505 		changed = true;
1506 	}
1507 
1508 	return changed;
1509 }
1510 
1511 /*
1512  * Check if specified hole is suitable for allocation.
1513  *
1514  * @device:	the device which we have the hole
1515  * @hole_start: starting position of the hole
1516  * @hole_size:	the size of the hole
1517  * @num_bytes:	the size of the free space that we need
1518  *
1519  * This function may modify @hole_start and @hole_size to reflect the suitable
1520  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1521  */
1522 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1523 				  u64 *hole_size, u64 num_bytes)
1524 {
1525 	bool changed = false;
1526 	u64 hole_end = *hole_start + *hole_size;
1527 
1528 	for (;;) {
1529 		/*
1530 		 * Check before we set max_hole_start, otherwise we could end up
1531 		 * sending back this offset anyway.
1532 		 */
1533 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1534 			if (hole_end >= *hole_start)
1535 				*hole_size = hole_end - *hole_start;
1536 			else
1537 				*hole_size = 0;
1538 			changed = true;
1539 		}
1540 
1541 		switch (device->fs_devices->chunk_alloc_policy) {
1542 		case BTRFS_CHUNK_ALLOC_REGULAR:
1543 			/* No extra check */
1544 			break;
1545 		case BTRFS_CHUNK_ALLOC_ZONED:
1546 			if (dev_extent_hole_check_zoned(device, hole_start,
1547 							hole_size, num_bytes)) {
1548 				changed = true;
1549 				/*
1550 				 * The changed hole can contain pending extent.
1551 				 * Loop again to check that.
1552 				 */
1553 				continue;
1554 			}
1555 			break;
1556 		default:
1557 			BUG();
1558 		}
1559 
1560 		break;
1561 	}
1562 
1563 	return changed;
1564 }
1565 
1566 /*
1567  * Find free space in the specified device.
1568  *
1569  * @device:	  the device which we search the free space in
1570  * @num_bytes:	  the size of the free space that we need
1571  * @search_start: the position from which to begin the search
1572  * @start:	  store the start of the free space.
1573  * @len:	  the size of the free space. that we find, or the size
1574  *		  of the max free space if we don't find suitable free space
1575  *
1576  * This does a pretty simple search, the expectation is that it is called very
1577  * infrequently and that a given device has a small number of extents.
1578  *
1579  * @start is used to store the start of the free space if we find. But if we
1580  * don't find suitable free space, it will be used to store the start position
1581  * of the max free space.
1582  *
1583  * @len is used to store the size of the free space that we find.
1584  * But if we don't find suitable free space, it is used to store the size of
1585  * the max free space.
1586  *
1587  * NOTE: This function will search *commit* root of device tree, and does extra
1588  * check to ensure dev extents are not double allocated.
1589  * This makes the function safe to allocate dev extents but may not report
1590  * correct usable device space, as device extent freed in current transaction
1591  * is not reported as available.
1592  */
1593 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1594 				u64 *start, u64 *len)
1595 {
1596 	struct btrfs_fs_info *fs_info = device->fs_info;
1597 	struct btrfs_root *root = fs_info->dev_root;
1598 	struct btrfs_key key;
1599 	struct btrfs_dev_extent *dev_extent;
1600 	struct btrfs_path *path;
1601 	u64 search_start;
1602 	u64 hole_size;
1603 	u64 max_hole_start;
1604 	u64 max_hole_size = 0;
1605 	u64 extent_end;
1606 	u64 search_end = device->total_bytes;
1607 	int ret;
1608 	int slot;
1609 	struct extent_buffer *l;
1610 
1611 	search_start = dev_extent_search_start(device);
1612 	max_hole_start = search_start;
1613 
1614 	WARN_ON(device->zone_info &&
1615 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1616 
1617 	path = btrfs_alloc_path();
1618 	if (!path) {
1619 		ret = -ENOMEM;
1620 		goto out;
1621 	}
1622 again:
1623 	if (search_start >= search_end ||
1624 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1625 		ret = -ENOSPC;
1626 		goto out;
1627 	}
1628 
1629 	path->reada = READA_FORWARD;
1630 	path->search_commit_root = 1;
1631 	path->skip_locking = 1;
1632 
1633 	key.objectid = device->devid;
1634 	key.offset = search_start;
1635 	key.type = BTRFS_DEV_EXTENT_KEY;
1636 
1637 	ret = btrfs_search_backwards(root, &key, path);
1638 	if (ret < 0)
1639 		goto out;
1640 
1641 	while (search_start < search_end) {
1642 		l = path->nodes[0];
1643 		slot = path->slots[0];
1644 		if (slot >= btrfs_header_nritems(l)) {
1645 			ret = btrfs_next_leaf(root, path);
1646 			if (ret == 0)
1647 				continue;
1648 			if (ret < 0)
1649 				goto out;
1650 
1651 			break;
1652 		}
1653 		btrfs_item_key_to_cpu(l, &key, slot);
1654 
1655 		if (key.objectid < device->devid)
1656 			goto next;
1657 
1658 		if (key.objectid > device->devid)
1659 			break;
1660 
1661 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1662 			goto next;
1663 
1664 		if (key.offset > search_end)
1665 			break;
1666 
1667 		if (key.offset > search_start) {
1668 			hole_size = key.offset - search_start;
1669 			dev_extent_hole_check(device, &search_start, &hole_size,
1670 					      num_bytes);
1671 
1672 			if (hole_size > max_hole_size) {
1673 				max_hole_start = search_start;
1674 				max_hole_size = hole_size;
1675 			}
1676 
1677 			/*
1678 			 * If this free space is greater than which we need,
1679 			 * it must be the max free space that we have found
1680 			 * until now, so max_hole_start must point to the start
1681 			 * of this free space and the length of this free space
1682 			 * is stored in max_hole_size. Thus, we return
1683 			 * max_hole_start and max_hole_size and go back to the
1684 			 * caller.
1685 			 */
1686 			if (hole_size >= num_bytes) {
1687 				ret = 0;
1688 				goto out;
1689 			}
1690 		}
1691 
1692 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1693 		extent_end = key.offset + btrfs_dev_extent_length(l,
1694 								  dev_extent);
1695 		if (extent_end > search_start)
1696 			search_start = extent_end;
1697 next:
1698 		path->slots[0]++;
1699 		cond_resched();
1700 	}
1701 
1702 	/*
1703 	 * At this point, search_start should be the end of
1704 	 * allocated dev extents, and when shrinking the device,
1705 	 * search_end may be smaller than search_start.
1706 	 */
1707 	if (search_end > search_start) {
1708 		hole_size = search_end - search_start;
1709 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1710 					  num_bytes)) {
1711 			btrfs_release_path(path);
1712 			goto again;
1713 		}
1714 
1715 		if (hole_size > max_hole_size) {
1716 			max_hole_start = search_start;
1717 			max_hole_size = hole_size;
1718 		}
1719 	}
1720 
1721 	/* See above. */
1722 	if (max_hole_size < num_bytes)
1723 		ret = -ENOSPC;
1724 	else
1725 		ret = 0;
1726 
1727 	ASSERT(max_hole_start + max_hole_size <= search_end);
1728 out:
1729 	btrfs_free_path(path);
1730 	*start = max_hole_start;
1731 	if (len)
1732 		*len = max_hole_size;
1733 	return ret;
1734 }
1735 
1736 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1737 			  struct btrfs_device *device,
1738 			  u64 start, u64 *dev_extent_len)
1739 {
1740 	struct btrfs_fs_info *fs_info = device->fs_info;
1741 	struct btrfs_root *root = fs_info->dev_root;
1742 	int ret;
1743 	struct btrfs_path *path;
1744 	struct btrfs_key key;
1745 	struct btrfs_key found_key;
1746 	struct extent_buffer *leaf = NULL;
1747 	struct btrfs_dev_extent *extent = NULL;
1748 
1749 	path = btrfs_alloc_path();
1750 	if (!path)
1751 		return -ENOMEM;
1752 
1753 	key.objectid = device->devid;
1754 	key.offset = start;
1755 	key.type = BTRFS_DEV_EXTENT_KEY;
1756 again:
1757 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1758 	if (ret > 0) {
1759 		ret = btrfs_previous_item(root, path, key.objectid,
1760 					  BTRFS_DEV_EXTENT_KEY);
1761 		if (ret)
1762 			goto out;
1763 		leaf = path->nodes[0];
1764 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1765 		extent = btrfs_item_ptr(leaf, path->slots[0],
1766 					struct btrfs_dev_extent);
1767 		BUG_ON(found_key.offset > start || found_key.offset +
1768 		       btrfs_dev_extent_length(leaf, extent) < start);
1769 		key = found_key;
1770 		btrfs_release_path(path);
1771 		goto again;
1772 	} else if (ret == 0) {
1773 		leaf = path->nodes[0];
1774 		extent = btrfs_item_ptr(leaf, path->slots[0],
1775 					struct btrfs_dev_extent);
1776 	} else {
1777 		goto out;
1778 	}
1779 
1780 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1781 
1782 	ret = btrfs_del_item(trans, root, path);
1783 	if (ret == 0)
1784 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1785 out:
1786 	btrfs_free_path(path);
1787 	return ret;
1788 }
1789 
1790 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1791 {
1792 	struct extent_map_tree *em_tree;
1793 	struct extent_map *em;
1794 	struct rb_node *n;
1795 	u64 ret = 0;
1796 
1797 	em_tree = &fs_info->mapping_tree;
1798 	read_lock(&em_tree->lock);
1799 	n = rb_last(&em_tree->map.rb_root);
1800 	if (n) {
1801 		em = rb_entry(n, struct extent_map, rb_node);
1802 		ret = em->start + em->len;
1803 	}
1804 	read_unlock(&em_tree->lock);
1805 
1806 	return ret;
1807 }
1808 
1809 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1810 				    u64 *devid_ret)
1811 {
1812 	int ret;
1813 	struct btrfs_key key;
1814 	struct btrfs_key found_key;
1815 	struct btrfs_path *path;
1816 
1817 	path = btrfs_alloc_path();
1818 	if (!path)
1819 		return -ENOMEM;
1820 
1821 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1822 	key.type = BTRFS_DEV_ITEM_KEY;
1823 	key.offset = (u64)-1;
1824 
1825 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1826 	if (ret < 0)
1827 		goto error;
1828 
1829 	if (ret == 0) {
1830 		/* Corruption */
1831 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1832 		ret = -EUCLEAN;
1833 		goto error;
1834 	}
1835 
1836 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1837 				  BTRFS_DEV_ITEMS_OBJECTID,
1838 				  BTRFS_DEV_ITEM_KEY);
1839 	if (ret) {
1840 		*devid_ret = 1;
1841 	} else {
1842 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1843 				      path->slots[0]);
1844 		*devid_ret = found_key.offset + 1;
1845 	}
1846 	ret = 0;
1847 error:
1848 	btrfs_free_path(path);
1849 	return ret;
1850 }
1851 
1852 /*
1853  * the device information is stored in the chunk root
1854  * the btrfs_device struct should be fully filled in
1855  */
1856 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1857 			    struct btrfs_device *device)
1858 {
1859 	int ret;
1860 	struct btrfs_path *path;
1861 	struct btrfs_dev_item *dev_item;
1862 	struct extent_buffer *leaf;
1863 	struct btrfs_key key;
1864 	unsigned long ptr;
1865 
1866 	path = btrfs_alloc_path();
1867 	if (!path)
1868 		return -ENOMEM;
1869 
1870 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1871 	key.type = BTRFS_DEV_ITEM_KEY;
1872 	key.offset = device->devid;
1873 
1874 	btrfs_reserve_chunk_metadata(trans, true);
1875 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1876 				      &key, sizeof(*dev_item));
1877 	btrfs_trans_release_chunk_metadata(trans);
1878 	if (ret)
1879 		goto out;
1880 
1881 	leaf = path->nodes[0];
1882 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1883 
1884 	btrfs_set_device_id(leaf, dev_item, device->devid);
1885 	btrfs_set_device_generation(leaf, dev_item, 0);
1886 	btrfs_set_device_type(leaf, dev_item, device->type);
1887 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1888 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1889 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1890 	btrfs_set_device_total_bytes(leaf, dev_item,
1891 				     btrfs_device_get_disk_total_bytes(device));
1892 	btrfs_set_device_bytes_used(leaf, dev_item,
1893 				    btrfs_device_get_bytes_used(device));
1894 	btrfs_set_device_group(leaf, dev_item, 0);
1895 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1896 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1897 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1898 
1899 	ptr = btrfs_device_uuid(dev_item);
1900 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1901 	ptr = btrfs_device_fsid(dev_item);
1902 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1903 			    ptr, BTRFS_FSID_SIZE);
1904 	btrfs_mark_buffer_dirty(trans, leaf);
1905 
1906 	ret = 0;
1907 out:
1908 	btrfs_free_path(path);
1909 	return ret;
1910 }
1911 
1912 /*
1913  * Function to update ctime/mtime for a given device path.
1914  * Mainly used for ctime/mtime based probe like libblkid.
1915  *
1916  * We don't care about errors here, this is just to be kind to userspace.
1917  */
1918 static void update_dev_time(const char *device_path)
1919 {
1920 	struct path path;
1921 	int ret;
1922 
1923 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1924 	if (ret)
1925 		return;
1926 
1927 	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1928 	path_put(&path);
1929 }
1930 
1931 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1932 			     struct btrfs_device *device)
1933 {
1934 	struct btrfs_root *root = device->fs_info->chunk_root;
1935 	int ret;
1936 	struct btrfs_path *path;
1937 	struct btrfs_key key;
1938 
1939 	path = btrfs_alloc_path();
1940 	if (!path)
1941 		return -ENOMEM;
1942 
1943 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1944 	key.type = BTRFS_DEV_ITEM_KEY;
1945 	key.offset = device->devid;
1946 
1947 	btrfs_reserve_chunk_metadata(trans, false);
1948 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1949 	btrfs_trans_release_chunk_metadata(trans);
1950 	if (ret) {
1951 		if (ret > 0)
1952 			ret = -ENOENT;
1953 		goto out;
1954 	}
1955 
1956 	ret = btrfs_del_item(trans, root, path);
1957 out:
1958 	btrfs_free_path(path);
1959 	return ret;
1960 }
1961 
1962 /*
1963  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1964  * filesystem. It's up to the caller to adjust that number regarding eg. device
1965  * replace.
1966  */
1967 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1968 		u64 num_devices)
1969 {
1970 	u64 all_avail;
1971 	unsigned seq;
1972 	int i;
1973 
1974 	do {
1975 		seq = read_seqbegin(&fs_info->profiles_lock);
1976 
1977 		all_avail = fs_info->avail_data_alloc_bits |
1978 			    fs_info->avail_system_alloc_bits |
1979 			    fs_info->avail_metadata_alloc_bits;
1980 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1981 
1982 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1983 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1984 			continue;
1985 
1986 		if (num_devices < btrfs_raid_array[i].devs_min)
1987 			return btrfs_raid_array[i].mindev_error;
1988 	}
1989 
1990 	return 0;
1991 }
1992 
1993 static struct btrfs_device * btrfs_find_next_active_device(
1994 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1995 {
1996 	struct btrfs_device *next_device;
1997 
1998 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1999 		if (next_device != device &&
2000 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2001 		    && next_device->bdev)
2002 			return next_device;
2003 	}
2004 
2005 	return NULL;
2006 }
2007 
2008 /*
2009  * Helper function to check if the given device is part of s_bdev / latest_dev
2010  * and replace it with the provided or the next active device, in the context
2011  * where this function called, there should be always be another device (or
2012  * this_dev) which is active.
2013  */
2014 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2015 					    struct btrfs_device *next_device)
2016 {
2017 	struct btrfs_fs_info *fs_info = device->fs_info;
2018 
2019 	if (!next_device)
2020 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2021 							    device);
2022 	ASSERT(next_device);
2023 
2024 	if (fs_info->sb->s_bdev &&
2025 			(fs_info->sb->s_bdev == device->bdev))
2026 		fs_info->sb->s_bdev = next_device->bdev;
2027 
2028 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2029 		fs_info->fs_devices->latest_dev = next_device;
2030 }
2031 
2032 /*
2033  * Return btrfs_fs_devices::num_devices excluding the device that's being
2034  * currently replaced.
2035  */
2036 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2037 {
2038 	u64 num_devices = fs_info->fs_devices->num_devices;
2039 
2040 	down_read(&fs_info->dev_replace.rwsem);
2041 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2042 		ASSERT(num_devices > 1);
2043 		num_devices--;
2044 	}
2045 	up_read(&fs_info->dev_replace.rwsem);
2046 
2047 	return num_devices;
2048 }
2049 
2050 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2051 				     struct block_device *bdev, int copy_num)
2052 {
2053 	struct btrfs_super_block *disk_super;
2054 	const size_t len = sizeof(disk_super->magic);
2055 	const u64 bytenr = btrfs_sb_offset(copy_num);
2056 	int ret;
2057 
2058 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2059 	if (IS_ERR(disk_super))
2060 		return;
2061 
2062 	memset(&disk_super->magic, 0, len);
2063 	folio_mark_dirty(virt_to_folio(disk_super));
2064 	btrfs_release_disk_super(disk_super);
2065 
2066 	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2067 	if (ret)
2068 		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2069 			copy_num, ret);
2070 }
2071 
2072 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2073 			       struct block_device *bdev,
2074 			       const char *device_path)
2075 {
2076 	int copy_num;
2077 
2078 	if (!bdev)
2079 		return;
2080 
2081 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2082 		if (bdev_is_zoned(bdev))
2083 			btrfs_reset_sb_log_zones(bdev, copy_num);
2084 		else
2085 			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2086 	}
2087 
2088 	/* Notify udev that device has changed */
2089 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2090 
2091 	/* Update ctime/mtime for device path for libblkid */
2092 	update_dev_time(device_path);
2093 }
2094 
2095 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2096 		    struct btrfs_dev_lookup_args *args,
2097 		    struct block_device **bdev, void **holder)
2098 {
2099 	struct btrfs_trans_handle *trans;
2100 	struct btrfs_device *device;
2101 	struct btrfs_fs_devices *cur_devices;
2102 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2103 	u64 num_devices;
2104 	int ret = 0;
2105 
2106 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2107 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2108 		return -EINVAL;
2109 	}
2110 
2111 	/*
2112 	 * The device list in fs_devices is accessed without locks (neither
2113 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2114 	 * filesystem and another device rm cannot run.
2115 	 */
2116 	num_devices = btrfs_num_devices(fs_info);
2117 
2118 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2119 	if (ret)
2120 		return ret;
2121 
2122 	device = btrfs_find_device(fs_info->fs_devices, args);
2123 	if (!device) {
2124 		if (args->missing)
2125 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2126 		else
2127 			ret = -ENOENT;
2128 		return ret;
2129 	}
2130 
2131 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2132 		btrfs_warn_in_rcu(fs_info,
2133 		  "cannot remove device %s (devid %llu) due to active swapfile",
2134 				  btrfs_dev_name(device), device->devid);
2135 		return -ETXTBSY;
2136 	}
2137 
2138 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2139 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2140 
2141 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2142 	    fs_info->fs_devices->rw_devices == 1)
2143 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2144 
2145 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2146 		mutex_lock(&fs_info->chunk_mutex);
2147 		list_del_init(&device->dev_alloc_list);
2148 		device->fs_devices->rw_devices--;
2149 		mutex_unlock(&fs_info->chunk_mutex);
2150 	}
2151 
2152 	ret = btrfs_shrink_device(device, 0);
2153 	if (ret)
2154 		goto error_undo;
2155 
2156 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2157 	if (IS_ERR(trans)) {
2158 		ret = PTR_ERR(trans);
2159 		goto error_undo;
2160 	}
2161 
2162 	ret = btrfs_rm_dev_item(trans, device);
2163 	if (ret) {
2164 		/* Any error in dev item removal is critical */
2165 		btrfs_crit(fs_info,
2166 			   "failed to remove device item for devid %llu: %d",
2167 			   device->devid, ret);
2168 		btrfs_abort_transaction(trans, ret);
2169 		btrfs_end_transaction(trans);
2170 		return ret;
2171 	}
2172 
2173 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2174 	btrfs_scrub_cancel_dev(device);
2175 
2176 	/*
2177 	 * the device list mutex makes sure that we don't change
2178 	 * the device list while someone else is writing out all
2179 	 * the device supers. Whoever is writing all supers, should
2180 	 * lock the device list mutex before getting the number of
2181 	 * devices in the super block (super_copy). Conversely,
2182 	 * whoever updates the number of devices in the super block
2183 	 * (super_copy) should hold the device list mutex.
2184 	 */
2185 
2186 	/*
2187 	 * In normal cases the cur_devices == fs_devices. But in case
2188 	 * of deleting a seed device, the cur_devices should point to
2189 	 * its own fs_devices listed under the fs_devices->seed_list.
2190 	 */
2191 	cur_devices = device->fs_devices;
2192 	mutex_lock(&fs_devices->device_list_mutex);
2193 	list_del_rcu(&device->dev_list);
2194 
2195 	cur_devices->num_devices--;
2196 	cur_devices->total_devices--;
2197 	/* Update total_devices of the parent fs_devices if it's seed */
2198 	if (cur_devices != fs_devices)
2199 		fs_devices->total_devices--;
2200 
2201 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2202 		cur_devices->missing_devices--;
2203 
2204 	btrfs_assign_next_active_device(device, NULL);
2205 
2206 	if (device->bdev) {
2207 		cur_devices->open_devices--;
2208 		/* remove sysfs entry */
2209 		btrfs_sysfs_remove_device(device);
2210 	}
2211 
2212 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2213 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2214 	mutex_unlock(&fs_devices->device_list_mutex);
2215 
2216 	/*
2217 	 * At this point, the device is zero sized and detached from the
2218 	 * devices list.  All that's left is to zero out the old supers and
2219 	 * free the device.
2220 	 *
2221 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2222 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2223 	 * block device and it's dependencies.  Instead just flush the device
2224 	 * and let the caller do the final blkdev_put.
2225 	 */
2226 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2227 		btrfs_scratch_superblocks(fs_info, device->bdev,
2228 					  device->name->str);
2229 		if (device->bdev) {
2230 			sync_blockdev(device->bdev);
2231 			invalidate_bdev(device->bdev);
2232 		}
2233 	}
2234 
2235 	*bdev = device->bdev;
2236 	*holder = device->holder;
2237 	synchronize_rcu();
2238 	btrfs_free_device(device);
2239 
2240 	/*
2241 	 * This can happen if cur_devices is the private seed devices list.  We
2242 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2243 	 * to be held, but in fact we don't need that for the private
2244 	 * seed_devices, we can simply decrement cur_devices->opened and then
2245 	 * remove it from our list and free the fs_devices.
2246 	 */
2247 	if (cur_devices->num_devices == 0) {
2248 		list_del_init(&cur_devices->seed_list);
2249 		ASSERT(cur_devices->opened == 1);
2250 		cur_devices->opened--;
2251 		free_fs_devices(cur_devices);
2252 	}
2253 
2254 	ret = btrfs_commit_transaction(trans);
2255 
2256 	return ret;
2257 
2258 error_undo:
2259 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2260 		mutex_lock(&fs_info->chunk_mutex);
2261 		list_add(&device->dev_alloc_list,
2262 			 &fs_devices->alloc_list);
2263 		device->fs_devices->rw_devices++;
2264 		mutex_unlock(&fs_info->chunk_mutex);
2265 	}
2266 	return ret;
2267 }
2268 
2269 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2270 {
2271 	struct btrfs_fs_devices *fs_devices;
2272 
2273 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2274 
2275 	/*
2276 	 * in case of fs with no seed, srcdev->fs_devices will point
2277 	 * to fs_devices of fs_info. However when the dev being replaced is
2278 	 * a seed dev it will point to the seed's local fs_devices. In short
2279 	 * srcdev will have its correct fs_devices in both the cases.
2280 	 */
2281 	fs_devices = srcdev->fs_devices;
2282 
2283 	list_del_rcu(&srcdev->dev_list);
2284 	list_del(&srcdev->dev_alloc_list);
2285 	fs_devices->num_devices--;
2286 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2287 		fs_devices->missing_devices--;
2288 
2289 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2290 		fs_devices->rw_devices--;
2291 
2292 	if (srcdev->bdev)
2293 		fs_devices->open_devices--;
2294 }
2295 
2296 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2297 {
2298 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2299 
2300 	mutex_lock(&uuid_mutex);
2301 
2302 	btrfs_close_bdev(srcdev);
2303 	synchronize_rcu();
2304 	btrfs_free_device(srcdev);
2305 
2306 	/* if this is no devs we rather delete the fs_devices */
2307 	if (!fs_devices->num_devices) {
2308 		/*
2309 		 * On a mounted FS, num_devices can't be zero unless it's a
2310 		 * seed. In case of a seed device being replaced, the replace
2311 		 * target added to the sprout FS, so there will be no more
2312 		 * device left under the seed FS.
2313 		 */
2314 		ASSERT(fs_devices->seeding);
2315 
2316 		list_del_init(&fs_devices->seed_list);
2317 		close_fs_devices(fs_devices);
2318 		free_fs_devices(fs_devices);
2319 	}
2320 	mutex_unlock(&uuid_mutex);
2321 }
2322 
2323 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2324 {
2325 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2326 
2327 	mutex_lock(&fs_devices->device_list_mutex);
2328 
2329 	btrfs_sysfs_remove_device(tgtdev);
2330 
2331 	if (tgtdev->bdev)
2332 		fs_devices->open_devices--;
2333 
2334 	fs_devices->num_devices--;
2335 
2336 	btrfs_assign_next_active_device(tgtdev, NULL);
2337 
2338 	list_del_rcu(&tgtdev->dev_list);
2339 
2340 	mutex_unlock(&fs_devices->device_list_mutex);
2341 
2342 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2343 				  tgtdev->name->str);
2344 
2345 	btrfs_close_bdev(tgtdev);
2346 	synchronize_rcu();
2347 	btrfs_free_device(tgtdev);
2348 }
2349 
2350 /*
2351  * Populate args from device at path.
2352  *
2353  * @fs_info:	the filesystem
2354  * @args:	the args to populate
2355  * @path:	the path to the device
2356  *
2357  * This will read the super block of the device at @path and populate @args with
2358  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2359  * lookup a device to operate on, but need to do it before we take any locks.
2360  * This properly handles the special case of "missing" that a user may pass in,
2361  * and does some basic sanity checks.  The caller must make sure that @path is
2362  * properly NUL terminated before calling in, and must call
2363  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2364  * uuid buffers.
2365  *
2366  * Return: 0 for success, -errno for failure
2367  */
2368 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2369 				 struct btrfs_dev_lookup_args *args,
2370 				 const char *path)
2371 {
2372 	struct btrfs_super_block *disk_super;
2373 	struct block_device *bdev;
2374 	int ret;
2375 
2376 	if (!path || !path[0])
2377 		return -EINVAL;
2378 	if (!strcmp(path, "missing")) {
2379 		args->missing = true;
2380 		return 0;
2381 	}
2382 
2383 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2384 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2385 	if (!args->uuid || !args->fsid) {
2386 		btrfs_put_dev_args_from_path(args);
2387 		return -ENOMEM;
2388 	}
2389 
2390 	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2391 				    &bdev, &disk_super);
2392 	if (ret) {
2393 		btrfs_put_dev_args_from_path(args);
2394 		return ret;
2395 	}
2396 
2397 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2398 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2399 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2400 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2401 	else
2402 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2403 	btrfs_release_disk_super(disk_super);
2404 	blkdev_put(bdev, NULL);
2405 	return 0;
2406 }
2407 
2408 /*
2409  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2410  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2411  * that don't need to be freed.
2412  */
2413 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2414 {
2415 	kfree(args->uuid);
2416 	kfree(args->fsid);
2417 	args->uuid = NULL;
2418 	args->fsid = NULL;
2419 }
2420 
2421 struct btrfs_device *btrfs_find_device_by_devspec(
2422 		struct btrfs_fs_info *fs_info, u64 devid,
2423 		const char *device_path)
2424 {
2425 	BTRFS_DEV_LOOKUP_ARGS(args);
2426 	struct btrfs_device *device;
2427 	int ret;
2428 
2429 	if (devid) {
2430 		args.devid = devid;
2431 		device = btrfs_find_device(fs_info->fs_devices, &args);
2432 		if (!device)
2433 			return ERR_PTR(-ENOENT);
2434 		return device;
2435 	}
2436 
2437 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2438 	if (ret)
2439 		return ERR_PTR(ret);
2440 	device = btrfs_find_device(fs_info->fs_devices, &args);
2441 	btrfs_put_dev_args_from_path(&args);
2442 	if (!device)
2443 		return ERR_PTR(-ENOENT);
2444 	return device;
2445 }
2446 
2447 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2448 {
2449 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2450 	struct btrfs_fs_devices *old_devices;
2451 	struct btrfs_fs_devices *seed_devices;
2452 
2453 	lockdep_assert_held(&uuid_mutex);
2454 	if (!fs_devices->seeding)
2455 		return ERR_PTR(-EINVAL);
2456 
2457 	/*
2458 	 * Private copy of the seed devices, anchored at
2459 	 * fs_info->fs_devices->seed_list
2460 	 */
2461 	seed_devices = alloc_fs_devices(NULL, NULL);
2462 	if (IS_ERR(seed_devices))
2463 		return seed_devices;
2464 
2465 	/*
2466 	 * It's necessary to retain a copy of the original seed fs_devices in
2467 	 * fs_uuids so that filesystems which have been seeded can successfully
2468 	 * reference the seed device from open_seed_devices. This also supports
2469 	 * multiple fs seed.
2470 	 */
2471 	old_devices = clone_fs_devices(fs_devices);
2472 	if (IS_ERR(old_devices)) {
2473 		kfree(seed_devices);
2474 		return old_devices;
2475 	}
2476 
2477 	list_add(&old_devices->fs_list, &fs_uuids);
2478 
2479 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2480 	seed_devices->opened = 1;
2481 	INIT_LIST_HEAD(&seed_devices->devices);
2482 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2483 	mutex_init(&seed_devices->device_list_mutex);
2484 
2485 	return seed_devices;
2486 }
2487 
2488 /*
2489  * Splice seed devices into the sprout fs_devices.
2490  * Generate a new fsid for the sprouted read-write filesystem.
2491  */
2492 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2493 			       struct btrfs_fs_devices *seed_devices)
2494 {
2495 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2496 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2497 	struct btrfs_device *device;
2498 	u64 super_flags;
2499 
2500 	/*
2501 	 * We are updating the fsid, the thread leading to device_list_add()
2502 	 * could race, so uuid_mutex is needed.
2503 	 */
2504 	lockdep_assert_held(&uuid_mutex);
2505 
2506 	/*
2507 	 * The threads listed below may traverse dev_list but can do that without
2508 	 * device_list_mutex:
2509 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2510 	 * - Various dev_list readers - are using RCU.
2511 	 * - btrfs_ioctl_fitrim() - is using RCU.
2512 	 *
2513 	 * For-read threads as below are using device_list_mutex:
2514 	 * - Readonly scrub btrfs_scrub_dev()
2515 	 * - Readonly scrub btrfs_scrub_progress()
2516 	 * - btrfs_get_dev_stats()
2517 	 */
2518 	lockdep_assert_held(&fs_devices->device_list_mutex);
2519 
2520 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2521 			      synchronize_rcu);
2522 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2523 		device->fs_devices = seed_devices;
2524 
2525 	fs_devices->seeding = false;
2526 	fs_devices->num_devices = 0;
2527 	fs_devices->open_devices = 0;
2528 	fs_devices->missing_devices = 0;
2529 	fs_devices->rotating = false;
2530 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2531 
2532 	generate_random_uuid(fs_devices->fsid);
2533 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2534 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2535 
2536 	super_flags = btrfs_super_flags(disk_super) &
2537 		      ~BTRFS_SUPER_FLAG_SEEDING;
2538 	btrfs_set_super_flags(disk_super, super_flags);
2539 }
2540 
2541 /*
2542  * Store the expected generation for seed devices in device items.
2543  */
2544 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2545 {
2546 	BTRFS_DEV_LOOKUP_ARGS(args);
2547 	struct btrfs_fs_info *fs_info = trans->fs_info;
2548 	struct btrfs_root *root = fs_info->chunk_root;
2549 	struct btrfs_path *path;
2550 	struct extent_buffer *leaf;
2551 	struct btrfs_dev_item *dev_item;
2552 	struct btrfs_device *device;
2553 	struct btrfs_key key;
2554 	u8 fs_uuid[BTRFS_FSID_SIZE];
2555 	u8 dev_uuid[BTRFS_UUID_SIZE];
2556 	int ret;
2557 
2558 	path = btrfs_alloc_path();
2559 	if (!path)
2560 		return -ENOMEM;
2561 
2562 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2563 	key.offset = 0;
2564 	key.type = BTRFS_DEV_ITEM_KEY;
2565 
2566 	while (1) {
2567 		btrfs_reserve_chunk_metadata(trans, false);
2568 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2569 		btrfs_trans_release_chunk_metadata(trans);
2570 		if (ret < 0)
2571 			goto error;
2572 
2573 		leaf = path->nodes[0];
2574 next_slot:
2575 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2576 			ret = btrfs_next_leaf(root, path);
2577 			if (ret > 0)
2578 				break;
2579 			if (ret < 0)
2580 				goto error;
2581 			leaf = path->nodes[0];
2582 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2583 			btrfs_release_path(path);
2584 			continue;
2585 		}
2586 
2587 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2588 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2589 		    key.type != BTRFS_DEV_ITEM_KEY)
2590 			break;
2591 
2592 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2593 					  struct btrfs_dev_item);
2594 		args.devid = btrfs_device_id(leaf, dev_item);
2595 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2596 				   BTRFS_UUID_SIZE);
2597 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2598 				   BTRFS_FSID_SIZE);
2599 		args.uuid = dev_uuid;
2600 		args.fsid = fs_uuid;
2601 		device = btrfs_find_device(fs_info->fs_devices, &args);
2602 		BUG_ON(!device); /* Logic error */
2603 
2604 		if (device->fs_devices->seeding) {
2605 			btrfs_set_device_generation(leaf, dev_item,
2606 						    device->generation);
2607 			btrfs_mark_buffer_dirty(trans, leaf);
2608 		}
2609 
2610 		path->slots[0]++;
2611 		goto next_slot;
2612 	}
2613 	ret = 0;
2614 error:
2615 	btrfs_free_path(path);
2616 	return ret;
2617 }
2618 
2619 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2620 {
2621 	struct btrfs_root *root = fs_info->dev_root;
2622 	struct btrfs_trans_handle *trans;
2623 	struct btrfs_device *device;
2624 	struct block_device *bdev;
2625 	struct super_block *sb = fs_info->sb;
2626 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2627 	struct btrfs_fs_devices *seed_devices = NULL;
2628 	u64 orig_super_total_bytes;
2629 	u64 orig_super_num_devices;
2630 	int ret = 0;
2631 	bool seeding_dev = false;
2632 	bool locked = false;
2633 
2634 	if (sb_rdonly(sb) && !fs_devices->seeding)
2635 		return -EROFS;
2636 
2637 	bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE,
2638 				  fs_info->bdev_holder, NULL);
2639 	if (IS_ERR(bdev))
2640 		return PTR_ERR(bdev);
2641 
2642 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2643 		ret = -EINVAL;
2644 		goto error;
2645 	}
2646 
2647 	if (fs_devices->seeding) {
2648 		seeding_dev = true;
2649 		down_write(&sb->s_umount);
2650 		mutex_lock(&uuid_mutex);
2651 		locked = true;
2652 	}
2653 
2654 	sync_blockdev(bdev);
2655 
2656 	rcu_read_lock();
2657 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2658 		if (device->bdev == bdev) {
2659 			ret = -EEXIST;
2660 			rcu_read_unlock();
2661 			goto error;
2662 		}
2663 	}
2664 	rcu_read_unlock();
2665 
2666 	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2667 	if (IS_ERR(device)) {
2668 		/* we can safely leave the fs_devices entry around */
2669 		ret = PTR_ERR(device);
2670 		goto error;
2671 	}
2672 
2673 	device->fs_info = fs_info;
2674 	device->bdev = bdev;
2675 	ret = lookup_bdev(device_path, &device->devt);
2676 	if (ret)
2677 		goto error_free_device;
2678 
2679 	ret = btrfs_get_dev_zone_info(device, false);
2680 	if (ret)
2681 		goto error_free_device;
2682 
2683 	trans = btrfs_start_transaction(root, 0);
2684 	if (IS_ERR(trans)) {
2685 		ret = PTR_ERR(trans);
2686 		goto error_free_zone;
2687 	}
2688 
2689 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2690 	device->generation = trans->transid;
2691 	device->io_width = fs_info->sectorsize;
2692 	device->io_align = fs_info->sectorsize;
2693 	device->sector_size = fs_info->sectorsize;
2694 	device->total_bytes =
2695 		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2696 	device->disk_total_bytes = device->total_bytes;
2697 	device->commit_total_bytes = device->total_bytes;
2698 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2699 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2700 	device->holder = fs_info->bdev_holder;
2701 	device->dev_stats_valid = 1;
2702 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2703 
2704 	if (seeding_dev) {
2705 		btrfs_clear_sb_rdonly(sb);
2706 
2707 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2708 		seed_devices = btrfs_init_sprout(fs_info);
2709 		if (IS_ERR(seed_devices)) {
2710 			ret = PTR_ERR(seed_devices);
2711 			btrfs_abort_transaction(trans, ret);
2712 			goto error_trans;
2713 		}
2714 	}
2715 
2716 	mutex_lock(&fs_devices->device_list_mutex);
2717 	if (seeding_dev) {
2718 		btrfs_setup_sprout(fs_info, seed_devices);
2719 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2720 						device);
2721 	}
2722 
2723 	device->fs_devices = fs_devices;
2724 
2725 	mutex_lock(&fs_info->chunk_mutex);
2726 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2727 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2728 	fs_devices->num_devices++;
2729 	fs_devices->open_devices++;
2730 	fs_devices->rw_devices++;
2731 	fs_devices->total_devices++;
2732 	fs_devices->total_rw_bytes += device->total_bytes;
2733 
2734 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2735 
2736 	if (!bdev_nonrot(bdev))
2737 		fs_devices->rotating = true;
2738 
2739 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2740 	btrfs_set_super_total_bytes(fs_info->super_copy,
2741 		round_down(orig_super_total_bytes + device->total_bytes,
2742 			   fs_info->sectorsize));
2743 
2744 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2745 	btrfs_set_super_num_devices(fs_info->super_copy,
2746 				    orig_super_num_devices + 1);
2747 
2748 	/*
2749 	 * we've got more storage, clear any full flags on the space
2750 	 * infos
2751 	 */
2752 	btrfs_clear_space_info_full(fs_info);
2753 
2754 	mutex_unlock(&fs_info->chunk_mutex);
2755 
2756 	/* Add sysfs device entry */
2757 	btrfs_sysfs_add_device(device);
2758 
2759 	mutex_unlock(&fs_devices->device_list_mutex);
2760 
2761 	if (seeding_dev) {
2762 		mutex_lock(&fs_info->chunk_mutex);
2763 		ret = init_first_rw_device(trans);
2764 		mutex_unlock(&fs_info->chunk_mutex);
2765 		if (ret) {
2766 			btrfs_abort_transaction(trans, ret);
2767 			goto error_sysfs;
2768 		}
2769 	}
2770 
2771 	ret = btrfs_add_dev_item(trans, device);
2772 	if (ret) {
2773 		btrfs_abort_transaction(trans, ret);
2774 		goto error_sysfs;
2775 	}
2776 
2777 	if (seeding_dev) {
2778 		ret = btrfs_finish_sprout(trans);
2779 		if (ret) {
2780 			btrfs_abort_transaction(trans, ret);
2781 			goto error_sysfs;
2782 		}
2783 
2784 		/*
2785 		 * fs_devices now represents the newly sprouted filesystem and
2786 		 * its fsid has been changed by btrfs_sprout_splice().
2787 		 */
2788 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2789 	}
2790 
2791 	ret = btrfs_commit_transaction(trans);
2792 
2793 	if (seeding_dev) {
2794 		mutex_unlock(&uuid_mutex);
2795 		up_write(&sb->s_umount);
2796 		locked = false;
2797 
2798 		if (ret) /* transaction commit */
2799 			return ret;
2800 
2801 		ret = btrfs_relocate_sys_chunks(fs_info);
2802 		if (ret < 0)
2803 			btrfs_handle_fs_error(fs_info, ret,
2804 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2805 		trans = btrfs_attach_transaction(root);
2806 		if (IS_ERR(trans)) {
2807 			if (PTR_ERR(trans) == -ENOENT)
2808 				return 0;
2809 			ret = PTR_ERR(trans);
2810 			trans = NULL;
2811 			goto error_sysfs;
2812 		}
2813 		ret = btrfs_commit_transaction(trans);
2814 	}
2815 
2816 	/*
2817 	 * Now that we have written a new super block to this device, check all
2818 	 * other fs_devices list if device_path alienates any other scanned
2819 	 * device.
2820 	 * We can ignore the return value as it typically returns -EINVAL and
2821 	 * only succeeds if the device was an alien.
2822 	 */
2823 	btrfs_forget_devices(device->devt);
2824 
2825 	/* Update ctime/mtime for blkid or udev */
2826 	update_dev_time(device_path);
2827 
2828 	return ret;
2829 
2830 error_sysfs:
2831 	btrfs_sysfs_remove_device(device);
2832 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2833 	mutex_lock(&fs_info->chunk_mutex);
2834 	list_del_rcu(&device->dev_list);
2835 	list_del(&device->dev_alloc_list);
2836 	fs_info->fs_devices->num_devices--;
2837 	fs_info->fs_devices->open_devices--;
2838 	fs_info->fs_devices->rw_devices--;
2839 	fs_info->fs_devices->total_devices--;
2840 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2841 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2842 	btrfs_set_super_total_bytes(fs_info->super_copy,
2843 				    orig_super_total_bytes);
2844 	btrfs_set_super_num_devices(fs_info->super_copy,
2845 				    orig_super_num_devices);
2846 	mutex_unlock(&fs_info->chunk_mutex);
2847 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2848 error_trans:
2849 	if (seeding_dev)
2850 		btrfs_set_sb_rdonly(sb);
2851 	if (trans)
2852 		btrfs_end_transaction(trans);
2853 error_free_zone:
2854 	btrfs_destroy_dev_zone_info(device);
2855 error_free_device:
2856 	btrfs_free_device(device);
2857 error:
2858 	blkdev_put(bdev, fs_info->bdev_holder);
2859 	if (locked) {
2860 		mutex_unlock(&uuid_mutex);
2861 		up_write(&sb->s_umount);
2862 	}
2863 	return ret;
2864 }
2865 
2866 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2867 					struct btrfs_device *device)
2868 {
2869 	int ret;
2870 	struct btrfs_path *path;
2871 	struct btrfs_root *root = device->fs_info->chunk_root;
2872 	struct btrfs_dev_item *dev_item;
2873 	struct extent_buffer *leaf;
2874 	struct btrfs_key key;
2875 
2876 	path = btrfs_alloc_path();
2877 	if (!path)
2878 		return -ENOMEM;
2879 
2880 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2881 	key.type = BTRFS_DEV_ITEM_KEY;
2882 	key.offset = device->devid;
2883 
2884 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2885 	if (ret < 0)
2886 		goto out;
2887 
2888 	if (ret > 0) {
2889 		ret = -ENOENT;
2890 		goto out;
2891 	}
2892 
2893 	leaf = path->nodes[0];
2894 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2895 
2896 	btrfs_set_device_id(leaf, dev_item, device->devid);
2897 	btrfs_set_device_type(leaf, dev_item, device->type);
2898 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2899 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2900 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2901 	btrfs_set_device_total_bytes(leaf, dev_item,
2902 				     btrfs_device_get_disk_total_bytes(device));
2903 	btrfs_set_device_bytes_used(leaf, dev_item,
2904 				    btrfs_device_get_bytes_used(device));
2905 	btrfs_mark_buffer_dirty(trans, leaf);
2906 
2907 out:
2908 	btrfs_free_path(path);
2909 	return ret;
2910 }
2911 
2912 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2913 		      struct btrfs_device *device, u64 new_size)
2914 {
2915 	struct btrfs_fs_info *fs_info = device->fs_info;
2916 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2917 	u64 old_total;
2918 	u64 diff;
2919 	int ret;
2920 
2921 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2922 		return -EACCES;
2923 
2924 	new_size = round_down(new_size, fs_info->sectorsize);
2925 
2926 	mutex_lock(&fs_info->chunk_mutex);
2927 	old_total = btrfs_super_total_bytes(super_copy);
2928 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2929 
2930 	if (new_size <= device->total_bytes ||
2931 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2932 		mutex_unlock(&fs_info->chunk_mutex);
2933 		return -EINVAL;
2934 	}
2935 
2936 	btrfs_set_super_total_bytes(super_copy,
2937 			round_down(old_total + diff, fs_info->sectorsize));
2938 	device->fs_devices->total_rw_bytes += diff;
2939 
2940 	btrfs_device_set_total_bytes(device, new_size);
2941 	btrfs_device_set_disk_total_bytes(device, new_size);
2942 	btrfs_clear_space_info_full(device->fs_info);
2943 	if (list_empty(&device->post_commit_list))
2944 		list_add_tail(&device->post_commit_list,
2945 			      &trans->transaction->dev_update_list);
2946 	mutex_unlock(&fs_info->chunk_mutex);
2947 
2948 	btrfs_reserve_chunk_metadata(trans, false);
2949 	ret = btrfs_update_device(trans, device);
2950 	btrfs_trans_release_chunk_metadata(trans);
2951 
2952 	return ret;
2953 }
2954 
2955 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2956 {
2957 	struct btrfs_fs_info *fs_info = trans->fs_info;
2958 	struct btrfs_root *root = fs_info->chunk_root;
2959 	int ret;
2960 	struct btrfs_path *path;
2961 	struct btrfs_key key;
2962 
2963 	path = btrfs_alloc_path();
2964 	if (!path)
2965 		return -ENOMEM;
2966 
2967 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2968 	key.offset = chunk_offset;
2969 	key.type = BTRFS_CHUNK_ITEM_KEY;
2970 
2971 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2972 	if (ret < 0)
2973 		goto out;
2974 	else if (ret > 0) { /* Logic error or corruption */
2975 		btrfs_handle_fs_error(fs_info, -ENOENT,
2976 				      "Failed lookup while freeing chunk.");
2977 		ret = -ENOENT;
2978 		goto out;
2979 	}
2980 
2981 	ret = btrfs_del_item(trans, root, path);
2982 	if (ret < 0)
2983 		btrfs_handle_fs_error(fs_info, ret,
2984 				      "Failed to delete chunk item.");
2985 out:
2986 	btrfs_free_path(path);
2987 	return ret;
2988 }
2989 
2990 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2991 {
2992 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2993 	struct btrfs_disk_key *disk_key;
2994 	struct btrfs_chunk *chunk;
2995 	u8 *ptr;
2996 	int ret = 0;
2997 	u32 num_stripes;
2998 	u32 array_size;
2999 	u32 len = 0;
3000 	u32 cur;
3001 	struct btrfs_key key;
3002 
3003 	lockdep_assert_held(&fs_info->chunk_mutex);
3004 	array_size = btrfs_super_sys_array_size(super_copy);
3005 
3006 	ptr = super_copy->sys_chunk_array;
3007 	cur = 0;
3008 
3009 	while (cur < array_size) {
3010 		disk_key = (struct btrfs_disk_key *)ptr;
3011 		btrfs_disk_key_to_cpu(&key, disk_key);
3012 
3013 		len = sizeof(*disk_key);
3014 
3015 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3016 			chunk = (struct btrfs_chunk *)(ptr + len);
3017 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3018 			len += btrfs_chunk_item_size(num_stripes);
3019 		} else {
3020 			ret = -EIO;
3021 			break;
3022 		}
3023 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3024 		    key.offset == chunk_offset) {
3025 			memmove(ptr, ptr + len, array_size - (cur + len));
3026 			array_size -= len;
3027 			btrfs_set_super_sys_array_size(super_copy, array_size);
3028 		} else {
3029 			ptr += len;
3030 			cur += len;
3031 		}
3032 	}
3033 	return ret;
3034 }
3035 
3036 /*
3037  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3038  * @logical: Logical block offset in bytes.
3039  * @length: Length of extent in bytes.
3040  *
3041  * Return: Chunk mapping or ERR_PTR.
3042  */
3043 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3044 				       u64 logical, u64 length)
3045 {
3046 	struct extent_map_tree *em_tree;
3047 	struct extent_map *em;
3048 
3049 	em_tree = &fs_info->mapping_tree;
3050 	read_lock(&em_tree->lock);
3051 	em = lookup_extent_mapping(em_tree, logical, length);
3052 	read_unlock(&em_tree->lock);
3053 
3054 	if (!em) {
3055 		btrfs_crit(fs_info,
3056 			   "unable to find chunk map for logical %llu length %llu",
3057 			   logical, length);
3058 		return ERR_PTR(-EINVAL);
3059 	}
3060 
3061 	if (em->start > logical || em->start + em->len <= logical) {
3062 		btrfs_crit(fs_info,
3063 			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3064 			   logical, logical + length, em->start, em->start + em->len);
3065 		free_extent_map(em);
3066 		return ERR_PTR(-EINVAL);
3067 	}
3068 
3069 	/* callers are responsible for dropping em's ref. */
3070 	return em;
3071 }
3072 
3073 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3074 			     struct map_lookup *map, u64 chunk_offset)
3075 {
3076 	int i;
3077 
3078 	/*
3079 	 * Removing chunk items and updating the device items in the chunks btree
3080 	 * requires holding the chunk_mutex.
3081 	 * See the comment at btrfs_chunk_alloc() for the details.
3082 	 */
3083 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3084 
3085 	for (i = 0; i < map->num_stripes; i++) {
3086 		int ret;
3087 
3088 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3089 		if (ret)
3090 			return ret;
3091 	}
3092 
3093 	return btrfs_free_chunk(trans, chunk_offset);
3094 }
3095 
3096 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3097 {
3098 	struct btrfs_fs_info *fs_info = trans->fs_info;
3099 	struct extent_map *em;
3100 	struct map_lookup *map;
3101 	u64 dev_extent_len = 0;
3102 	int i, ret = 0;
3103 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3104 
3105 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3106 	if (IS_ERR(em)) {
3107 		/*
3108 		 * This is a logic error, but we don't want to just rely on the
3109 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3110 		 * do anything we still error out.
3111 		 */
3112 		ASSERT(0);
3113 		return PTR_ERR(em);
3114 	}
3115 	map = em->map_lookup;
3116 
3117 	/*
3118 	 * First delete the device extent items from the devices btree.
3119 	 * We take the device_list_mutex to avoid racing with the finishing phase
3120 	 * of a device replace operation. See the comment below before acquiring
3121 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3122 	 * because that can result in a deadlock when deleting the device extent
3123 	 * items from the devices btree - COWing an extent buffer from the btree
3124 	 * may result in allocating a new metadata chunk, which would attempt to
3125 	 * lock again fs_info->chunk_mutex.
3126 	 */
3127 	mutex_lock(&fs_devices->device_list_mutex);
3128 	for (i = 0; i < map->num_stripes; i++) {
3129 		struct btrfs_device *device = map->stripes[i].dev;
3130 		ret = btrfs_free_dev_extent(trans, device,
3131 					    map->stripes[i].physical,
3132 					    &dev_extent_len);
3133 		if (ret) {
3134 			mutex_unlock(&fs_devices->device_list_mutex);
3135 			btrfs_abort_transaction(trans, ret);
3136 			goto out;
3137 		}
3138 
3139 		if (device->bytes_used > 0) {
3140 			mutex_lock(&fs_info->chunk_mutex);
3141 			btrfs_device_set_bytes_used(device,
3142 					device->bytes_used - dev_extent_len);
3143 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3144 			btrfs_clear_space_info_full(fs_info);
3145 			mutex_unlock(&fs_info->chunk_mutex);
3146 		}
3147 	}
3148 	mutex_unlock(&fs_devices->device_list_mutex);
3149 
3150 	/*
3151 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3152 	 *
3153 	 * 1) Just like with the first phase of the chunk allocation, we must
3154 	 *    reserve system space, do all chunk btree updates and deletions, and
3155 	 *    update the system chunk array in the superblock while holding this
3156 	 *    mutex. This is for similar reasons as explained on the comment at
3157 	 *    the top of btrfs_chunk_alloc();
3158 	 *
3159 	 * 2) Prevent races with the final phase of a device replace operation
3160 	 *    that replaces the device object associated with the map's stripes,
3161 	 *    because the device object's id can change at any time during that
3162 	 *    final phase of the device replace operation
3163 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3164 	 *    replaced device and then see it with an ID of
3165 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3166 	 *    the device item, which does not exists on the chunk btree.
3167 	 *    The finishing phase of device replace acquires both the
3168 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3169 	 *    safe by just acquiring the chunk_mutex.
3170 	 */
3171 	trans->removing_chunk = true;
3172 	mutex_lock(&fs_info->chunk_mutex);
3173 
3174 	check_system_chunk(trans, map->type);
3175 
3176 	ret = remove_chunk_item(trans, map, chunk_offset);
3177 	/*
3178 	 * Normally we should not get -ENOSPC since we reserved space before
3179 	 * through the call to check_system_chunk().
3180 	 *
3181 	 * Despite our system space_info having enough free space, we may not
3182 	 * be able to allocate extents from its block groups, because all have
3183 	 * an incompatible profile, which will force us to allocate a new system
3184 	 * block group with the right profile, or right after we called
3185 	 * check_system_space() above, a scrub turned the only system block group
3186 	 * with enough free space into RO mode.
3187 	 * This is explained with more detail at do_chunk_alloc().
3188 	 *
3189 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3190 	 */
3191 	if (ret == -ENOSPC) {
3192 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3193 		struct btrfs_block_group *sys_bg;
3194 
3195 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3196 		if (IS_ERR(sys_bg)) {
3197 			ret = PTR_ERR(sys_bg);
3198 			btrfs_abort_transaction(trans, ret);
3199 			goto out;
3200 		}
3201 
3202 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3203 		if (ret) {
3204 			btrfs_abort_transaction(trans, ret);
3205 			goto out;
3206 		}
3207 
3208 		ret = remove_chunk_item(trans, map, chunk_offset);
3209 		if (ret) {
3210 			btrfs_abort_transaction(trans, ret);
3211 			goto out;
3212 		}
3213 	} else if (ret) {
3214 		btrfs_abort_transaction(trans, ret);
3215 		goto out;
3216 	}
3217 
3218 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3219 
3220 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3221 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3222 		if (ret) {
3223 			btrfs_abort_transaction(trans, ret);
3224 			goto out;
3225 		}
3226 	}
3227 
3228 	mutex_unlock(&fs_info->chunk_mutex);
3229 	trans->removing_chunk = false;
3230 
3231 	/*
3232 	 * We are done with chunk btree updates and deletions, so release the
3233 	 * system space we previously reserved (with check_system_chunk()).
3234 	 */
3235 	btrfs_trans_release_chunk_metadata(trans);
3236 
3237 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3238 	if (ret) {
3239 		btrfs_abort_transaction(trans, ret);
3240 		goto out;
3241 	}
3242 
3243 out:
3244 	if (trans->removing_chunk) {
3245 		mutex_unlock(&fs_info->chunk_mutex);
3246 		trans->removing_chunk = false;
3247 	}
3248 	/* once for us */
3249 	free_extent_map(em);
3250 	return ret;
3251 }
3252 
3253 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3254 {
3255 	struct btrfs_root *root = fs_info->chunk_root;
3256 	struct btrfs_trans_handle *trans;
3257 	struct btrfs_block_group *block_group;
3258 	u64 length;
3259 	int ret;
3260 
3261 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3262 		btrfs_err(fs_info,
3263 			  "relocate: not supported on extent tree v2 yet");
3264 		return -EINVAL;
3265 	}
3266 
3267 	/*
3268 	 * Prevent races with automatic removal of unused block groups.
3269 	 * After we relocate and before we remove the chunk with offset
3270 	 * chunk_offset, automatic removal of the block group can kick in,
3271 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3272 	 *
3273 	 * Make sure to acquire this mutex before doing a tree search (dev
3274 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3275 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3276 	 * we release the path used to search the chunk/dev tree and before
3277 	 * the current task acquires this mutex and calls us.
3278 	 */
3279 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3280 
3281 	/* step one, relocate all the extents inside this chunk */
3282 	btrfs_scrub_pause(fs_info);
3283 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3284 	btrfs_scrub_continue(fs_info);
3285 	if (ret) {
3286 		/*
3287 		 * If we had a transaction abort, stop all running scrubs.
3288 		 * See transaction.c:cleanup_transaction() why we do it here.
3289 		 */
3290 		if (BTRFS_FS_ERROR(fs_info))
3291 			btrfs_scrub_cancel(fs_info);
3292 		return ret;
3293 	}
3294 
3295 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3296 	if (!block_group)
3297 		return -ENOENT;
3298 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3299 	length = block_group->length;
3300 	btrfs_put_block_group(block_group);
3301 
3302 	/*
3303 	 * On a zoned file system, discard the whole block group, this will
3304 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3305 	 * resetting the zone fails, don't treat it as a fatal problem from the
3306 	 * filesystem's point of view.
3307 	 */
3308 	if (btrfs_is_zoned(fs_info)) {
3309 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3310 		if (ret)
3311 			btrfs_info(fs_info,
3312 				"failed to reset zone %llu after relocation",
3313 				chunk_offset);
3314 	}
3315 
3316 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3317 						     chunk_offset);
3318 	if (IS_ERR(trans)) {
3319 		ret = PTR_ERR(trans);
3320 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3321 		return ret;
3322 	}
3323 
3324 	/*
3325 	 * step two, delete the device extents and the
3326 	 * chunk tree entries
3327 	 */
3328 	ret = btrfs_remove_chunk(trans, chunk_offset);
3329 	btrfs_end_transaction(trans);
3330 	return ret;
3331 }
3332 
3333 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3334 {
3335 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3336 	struct btrfs_path *path;
3337 	struct extent_buffer *leaf;
3338 	struct btrfs_chunk *chunk;
3339 	struct btrfs_key key;
3340 	struct btrfs_key found_key;
3341 	u64 chunk_type;
3342 	bool retried = false;
3343 	int failed = 0;
3344 	int ret;
3345 
3346 	path = btrfs_alloc_path();
3347 	if (!path)
3348 		return -ENOMEM;
3349 
3350 again:
3351 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3352 	key.offset = (u64)-1;
3353 	key.type = BTRFS_CHUNK_ITEM_KEY;
3354 
3355 	while (1) {
3356 		mutex_lock(&fs_info->reclaim_bgs_lock);
3357 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3358 		if (ret < 0) {
3359 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3360 			goto error;
3361 		}
3362 		if (ret == 0) {
3363 			/*
3364 			 * On the first search we would find chunk tree with
3365 			 * offset -1, which is not possible. On subsequent
3366 			 * loops this would find an existing item on an invalid
3367 			 * offset (one less than the previous one, wrong
3368 			 * alignment and size).
3369 			 */
3370 			ret = -EUCLEAN;
3371 			goto error;
3372 		}
3373 
3374 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3375 					  key.type);
3376 		if (ret)
3377 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3378 		if (ret < 0)
3379 			goto error;
3380 		if (ret > 0)
3381 			break;
3382 
3383 		leaf = path->nodes[0];
3384 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3385 
3386 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3387 				       struct btrfs_chunk);
3388 		chunk_type = btrfs_chunk_type(leaf, chunk);
3389 		btrfs_release_path(path);
3390 
3391 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3392 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3393 			if (ret == -ENOSPC)
3394 				failed++;
3395 			else
3396 				BUG_ON(ret);
3397 		}
3398 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3399 
3400 		if (found_key.offset == 0)
3401 			break;
3402 		key.offset = found_key.offset - 1;
3403 	}
3404 	ret = 0;
3405 	if (failed && !retried) {
3406 		failed = 0;
3407 		retried = true;
3408 		goto again;
3409 	} else if (WARN_ON(failed && retried)) {
3410 		ret = -ENOSPC;
3411 	}
3412 error:
3413 	btrfs_free_path(path);
3414 	return ret;
3415 }
3416 
3417 /*
3418  * return 1 : allocate a data chunk successfully,
3419  * return <0: errors during allocating a data chunk,
3420  * return 0 : no need to allocate a data chunk.
3421  */
3422 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3423 				      u64 chunk_offset)
3424 {
3425 	struct btrfs_block_group *cache;
3426 	u64 bytes_used;
3427 	u64 chunk_type;
3428 
3429 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3430 	ASSERT(cache);
3431 	chunk_type = cache->flags;
3432 	btrfs_put_block_group(cache);
3433 
3434 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3435 		return 0;
3436 
3437 	spin_lock(&fs_info->data_sinfo->lock);
3438 	bytes_used = fs_info->data_sinfo->bytes_used;
3439 	spin_unlock(&fs_info->data_sinfo->lock);
3440 
3441 	if (!bytes_used) {
3442 		struct btrfs_trans_handle *trans;
3443 		int ret;
3444 
3445 		trans =	btrfs_join_transaction(fs_info->tree_root);
3446 		if (IS_ERR(trans))
3447 			return PTR_ERR(trans);
3448 
3449 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3450 		btrfs_end_transaction(trans);
3451 		if (ret < 0)
3452 			return ret;
3453 		return 1;
3454 	}
3455 
3456 	return 0;
3457 }
3458 
3459 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3460 			       struct btrfs_balance_control *bctl)
3461 {
3462 	struct btrfs_root *root = fs_info->tree_root;
3463 	struct btrfs_trans_handle *trans;
3464 	struct btrfs_balance_item *item;
3465 	struct btrfs_disk_balance_args disk_bargs;
3466 	struct btrfs_path *path;
3467 	struct extent_buffer *leaf;
3468 	struct btrfs_key key;
3469 	int ret, err;
3470 
3471 	path = btrfs_alloc_path();
3472 	if (!path)
3473 		return -ENOMEM;
3474 
3475 	trans = btrfs_start_transaction(root, 0);
3476 	if (IS_ERR(trans)) {
3477 		btrfs_free_path(path);
3478 		return PTR_ERR(trans);
3479 	}
3480 
3481 	key.objectid = BTRFS_BALANCE_OBJECTID;
3482 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3483 	key.offset = 0;
3484 
3485 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3486 				      sizeof(*item));
3487 	if (ret)
3488 		goto out;
3489 
3490 	leaf = path->nodes[0];
3491 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3492 
3493 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3494 
3495 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3496 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3497 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3498 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3499 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3500 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3501 
3502 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3503 
3504 	btrfs_mark_buffer_dirty(trans, leaf);
3505 out:
3506 	btrfs_free_path(path);
3507 	err = btrfs_commit_transaction(trans);
3508 	if (err && !ret)
3509 		ret = err;
3510 	return ret;
3511 }
3512 
3513 static int del_balance_item(struct btrfs_fs_info *fs_info)
3514 {
3515 	struct btrfs_root *root = fs_info->tree_root;
3516 	struct btrfs_trans_handle *trans;
3517 	struct btrfs_path *path;
3518 	struct btrfs_key key;
3519 	int ret, err;
3520 
3521 	path = btrfs_alloc_path();
3522 	if (!path)
3523 		return -ENOMEM;
3524 
3525 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3526 	if (IS_ERR(trans)) {
3527 		btrfs_free_path(path);
3528 		return PTR_ERR(trans);
3529 	}
3530 
3531 	key.objectid = BTRFS_BALANCE_OBJECTID;
3532 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3533 	key.offset = 0;
3534 
3535 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3536 	if (ret < 0)
3537 		goto out;
3538 	if (ret > 0) {
3539 		ret = -ENOENT;
3540 		goto out;
3541 	}
3542 
3543 	ret = btrfs_del_item(trans, root, path);
3544 out:
3545 	btrfs_free_path(path);
3546 	err = btrfs_commit_transaction(trans);
3547 	if (err && !ret)
3548 		ret = err;
3549 	return ret;
3550 }
3551 
3552 /*
3553  * This is a heuristic used to reduce the number of chunks balanced on
3554  * resume after balance was interrupted.
3555  */
3556 static void update_balance_args(struct btrfs_balance_control *bctl)
3557 {
3558 	/*
3559 	 * Turn on soft mode for chunk types that were being converted.
3560 	 */
3561 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3562 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3563 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3564 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3565 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3566 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3567 
3568 	/*
3569 	 * Turn on usage filter if is not already used.  The idea is
3570 	 * that chunks that we have already balanced should be
3571 	 * reasonably full.  Don't do it for chunks that are being
3572 	 * converted - that will keep us from relocating unconverted
3573 	 * (albeit full) chunks.
3574 	 */
3575 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3576 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3577 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3578 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3579 		bctl->data.usage = 90;
3580 	}
3581 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3582 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3583 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3584 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3585 		bctl->sys.usage = 90;
3586 	}
3587 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3588 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3589 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3590 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3591 		bctl->meta.usage = 90;
3592 	}
3593 }
3594 
3595 /*
3596  * Clear the balance status in fs_info and delete the balance item from disk.
3597  */
3598 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3599 {
3600 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3601 	int ret;
3602 
3603 	BUG_ON(!fs_info->balance_ctl);
3604 
3605 	spin_lock(&fs_info->balance_lock);
3606 	fs_info->balance_ctl = NULL;
3607 	spin_unlock(&fs_info->balance_lock);
3608 
3609 	kfree(bctl);
3610 	ret = del_balance_item(fs_info);
3611 	if (ret)
3612 		btrfs_handle_fs_error(fs_info, ret, NULL);
3613 }
3614 
3615 /*
3616  * Balance filters.  Return 1 if chunk should be filtered out
3617  * (should not be balanced).
3618  */
3619 static int chunk_profiles_filter(u64 chunk_type,
3620 				 struct btrfs_balance_args *bargs)
3621 {
3622 	chunk_type = chunk_to_extended(chunk_type) &
3623 				BTRFS_EXTENDED_PROFILE_MASK;
3624 
3625 	if (bargs->profiles & chunk_type)
3626 		return 0;
3627 
3628 	return 1;
3629 }
3630 
3631 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3632 			      struct btrfs_balance_args *bargs)
3633 {
3634 	struct btrfs_block_group *cache;
3635 	u64 chunk_used;
3636 	u64 user_thresh_min;
3637 	u64 user_thresh_max;
3638 	int ret = 1;
3639 
3640 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3641 	chunk_used = cache->used;
3642 
3643 	if (bargs->usage_min == 0)
3644 		user_thresh_min = 0;
3645 	else
3646 		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3647 
3648 	if (bargs->usage_max == 0)
3649 		user_thresh_max = 1;
3650 	else if (bargs->usage_max > 100)
3651 		user_thresh_max = cache->length;
3652 	else
3653 		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3654 
3655 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3656 		ret = 0;
3657 
3658 	btrfs_put_block_group(cache);
3659 	return ret;
3660 }
3661 
3662 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3663 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3664 {
3665 	struct btrfs_block_group *cache;
3666 	u64 chunk_used, user_thresh;
3667 	int ret = 1;
3668 
3669 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3670 	chunk_used = cache->used;
3671 
3672 	if (bargs->usage_min == 0)
3673 		user_thresh = 1;
3674 	else if (bargs->usage > 100)
3675 		user_thresh = cache->length;
3676 	else
3677 		user_thresh = mult_perc(cache->length, bargs->usage);
3678 
3679 	if (chunk_used < user_thresh)
3680 		ret = 0;
3681 
3682 	btrfs_put_block_group(cache);
3683 	return ret;
3684 }
3685 
3686 static int chunk_devid_filter(struct extent_buffer *leaf,
3687 			      struct btrfs_chunk *chunk,
3688 			      struct btrfs_balance_args *bargs)
3689 {
3690 	struct btrfs_stripe *stripe;
3691 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3692 	int i;
3693 
3694 	for (i = 0; i < num_stripes; i++) {
3695 		stripe = btrfs_stripe_nr(chunk, i);
3696 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3697 			return 0;
3698 	}
3699 
3700 	return 1;
3701 }
3702 
3703 static u64 calc_data_stripes(u64 type, int num_stripes)
3704 {
3705 	const int index = btrfs_bg_flags_to_raid_index(type);
3706 	const int ncopies = btrfs_raid_array[index].ncopies;
3707 	const int nparity = btrfs_raid_array[index].nparity;
3708 
3709 	return (num_stripes - nparity) / ncopies;
3710 }
3711 
3712 /* [pstart, pend) */
3713 static int chunk_drange_filter(struct extent_buffer *leaf,
3714 			       struct btrfs_chunk *chunk,
3715 			       struct btrfs_balance_args *bargs)
3716 {
3717 	struct btrfs_stripe *stripe;
3718 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3719 	u64 stripe_offset;
3720 	u64 stripe_length;
3721 	u64 type;
3722 	int factor;
3723 	int i;
3724 
3725 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3726 		return 0;
3727 
3728 	type = btrfs_chunk_type(leaf, chunk);
3729 	factor = calc_data_stripes(type, num_stripes);
3730 
3731 	for (i = 0; i < num_stripes; i++) {
3732 		stripe = btrfs_stripe_nr(chunk, i);
3733 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3734 			continue;
3735 
3736 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3737 		stripe_length = btrfs_chunk_length(leaf, chunk);
3738 		stripe_length = div_u64(stripe_length, factor);
3739 
3740 		if (stripe_offset < bargs->pend &&
3741 		    stripe_offset + stripe_length > bargs->pstart)
3742 			return 0;
3743 	}
3744 
3745 	return 1;
3746 }
3747 
3748 /* [vstart, vend) */
3749 static int chunk_vrange_filter(struct extent_buffer *leaf,
3750 			       struct btrfs_chunk *chunk,
3751 			       u64 chunk_offset,
3752 			       struct btrfs_balance_args *bargs)
3753 {
3754 	if (chunk_offset < bargs->vend &&
3755 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3756 		/* at least part of the chunk is inside this vrange */
3757 		return 0;
3758 
3759 	return 1;
3760 }
3761 
3762 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3763 			       struct btrfs_chunk *chunk,
3764 			       struct btrfs_balance_args *bargs)
3765 {
3766 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3767 
3768 	if (bargs->stripes_min <= num_stripes
3769 			&& num_stripes <= bargs->stripes_max)
3770 		return 0;
3771 
3772 	return 1;
3773 }
3774 
3775 static int chunk_soft_convert_filter(u64 chunk_type,
3776 				     struct btrfs_balance_args *bargs)
3777 {
3778 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3779 		return 0;
3780 
3781 	chunk_type = chunk_to_extended(chunk_type) &
3782 				BTRFS_EXTENDED_PROFILE_MASK;
3783 
3784 	if (bargs->target == chunk_type)
3785 		return 1;
3786 
3787 	return 0;
3788 }
3789 
3790 static int should_balance_chunk(struct extent_buffer *leaf,
3791 				struct btrfs_chunk *chunk, u64 chunk_offset)
3792 {
3793 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3794 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3795 	struct btrfs_balance_args *bargs = NULL;
3796 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3797 
3798 	/* type filter */
3799 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3800 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3801 		return 0;
3802 	}
3803 
3804 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3805 		bargs = &bctl->data;
3806 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3807 		bargs = &bctl->sys;
3808 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3809 		bargs = &bctl->meta;
3810 
3811 	/* profiles filter */
3812 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3813 	    chunk_profiles_filter(chunk_type, bargs)) {
3814 		return 0;
3815 	}
3816 
3817 	/* usage filter */
3818 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3819 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3820 		return 0;
3821 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3822 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3823 		return 0;
3824 	}
3825 
3826 	/* devid filter */
3827 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3828 	    chunk_devid_filter(leaf, chunk, bargs)) {
3829 		return 0;
3830 	}
3831 
3832 	/* drange filter, makes sense only with devid filter */
3833 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3834 	    chunk_drange_filter(leaf, chunk, bargs)) {
3835 		return 0;
3836 	}
3837 
3838 	/* vrange filter */
3839 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3840 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3841 		return 0;
3842 	}
3843 
3844 	/* stripes filter */
3845 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3846 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3847 		return 0;
3848 	}
3849 
3850 	/* soft profile changing mode */
3851 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3852 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3853 		return 0;
3854 	}
3855 
3856 	/*
3857 	 * limited by count, must be the last filter
3858 	 */
3859 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3860 		if (bargs->limit == 0)
3861 			return 0;
3862 		else
3863 			bargs->limit--;
3864 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3865 		/*
3866 		 * Same logic as the 'limit' filter; the minimum cannot be
3867 		 * determined here because we do not have the global information
3868 		 * about the count of all chunks that satisfy the filters.
3869 		 */
3870 		if (bargs->limit_max == 0)
3871 			return 0;
3872 		else
3873 			bargs->limit_max--;
3874 	}
3875 
3876 	return 1;
3877 }
3878 
3879 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3880 {
3881 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3882 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3883 	u64 chunk_type;
3884 	struct btrfs_chunk *chunk;
3885 	struct btrfs_path *path = NULL;
3886 	struct btrfs_key key;
3887 	struct btrfs_key found_key;
3888 	struct extent_buffer *leaf;
3889 	int slot;
3890 	int ret;
3891 	int enospc_errors = 0;
3892 	bool counting = true;
3893 	/* The single value limit and min/max limits use the same bytes in the */
3894 	u64 limit_data = bctl->data.limit;
3895 	u64 limit_meta = bctl->meta.limit;
3896 	u64 limit_sys = bctl->sys.limit;
3897 	u32 count_data = 0;
3898 	u32 count_meta = 0;
3899 	u32 count_sys = 0;
3900 	int chunk_reserved = 0;
3901 
3902 	path = btrfs_alloc_path();
3903 	if (!path) {
3904 		ret = -ENOMEM;
3905 		goto error;
3906 	}
3907 
3908 	/* zero out stat counters */
3909 	spin_lock(&fs_info->balance_lock);
3910 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3911 	spin_unlock(&fs_info->balance_lock);
3912 again:
3913 	if (!counting) {
3914 		/*
3915 		 * The single value limit and min/max limits use the same bytes
3916 		 * in the
3917 		 */
3918 		bctl->data.limit = limit_data;
3919 		bctl->meta.limit = limit_meta;
3920 		bctl->sys.limit = limit_sys;
3921 	}
3922 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3923 	key.offset = (u64)-1;
3924 	key.type = BTRFS_CHUNK_ITEM_KEY;
3925 
3926 	while (1) {
3927 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3928 		    atomic_read(&fs_info->balance_cancel_req)) {
3929 			ret = -ECANCELED;
3930 			goto error;
3931 		}
3932 
3933 		mutex_lock(&fs_info->reclaim_bgs_lock);
3934 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3935 		if (ret < 0) {
3936 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3937 			goto error;
3938 		}
3939 
3940 		/*
3941 		 * this shouldn't happen, it means the last relocate
3942 		 * failed
3943 		 */
3944 		if (ret == 0)
3945 			BUG(); /* FIXME break ? */
3946 
3947 		ret = btrfs_previous_item(chunk_root, path, 0,
3948 					  BTRFS_CHUNK_ITEM_KEY);
3949 		if (ret) {
3950 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3951 			ret = 0;
3952 			break;
3953 		}
3954 
3955 		leaf = path->nodes[0];
3956 		slot = path->slots[0];
3957 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3958 
3959 		if (found_key.objectid != key.objectid) {
3960 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3961 			break;
3962 		}
3963 
3964 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3965 		chunk_type = btrfs_chunk_type(leaf, chunk);
3966 
3967 		if (!counting) {
3968 			spin_lock(&fs_info->balance_lock);
3969 			bctl->stat.considered++;
3970 			spin_unlock(&fs_info->balance_lock);
3971 		}
3972 
3973 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3974 
3975 		btrfs_release_path(path);
3976 		if (!ret) {
3977 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3978 			goto loop;
3979 		}
3980 
3981 		if (counting) {
3982 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3983 			spin_lock(&fs_info->balance_lock);
3984 			bctl->stat.expected++;
3985 			spin_unlock(&fs_info->balance_lock);
3986 
3987 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3988 				count_data++;
3989 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3990 				count_sys++;
3991 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3992 				count_meta++;
3993 
3994 			goto loop;
3995 		}
3996 
3997 		/*
3998 		 * Apply limit_min filter, no need to check if the LIMITS
3999 		 * filter is used, limit_min is 0 by default
4000 		 */
4001 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4002 					count_data < bctl->data.limit_min)
4003 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4004 					count_meta < bctl->meta.limit_min)
4005 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4006 					count_sys < bctl->sys.limit_min)) {
4007 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4008 			goto loop;
4009 		}
4010 
4011 		if (!chunk_reserved) {
4012 			/*
4013 			 * We may be relocating the only data chunk we have,
4014 			 * which could potentially end up with losing data's
4015 			 * raid profile, so lets allocate an empty one in
4016 			 * advance.
4017 			 */
4018 			ret = btrfs_may_alloc_data_chunk(fs_info,
4019 							 found_key.offset);
4020 			if (ret < 0) {
4021 				mutex_unlock(&fs_info->reclaim_bgs_lock);
4022 				goto error;
4023 			} else if (ret == 1) {
4024 				chunk_reserved = 1;
4025 			}
4026 		}
4027 
4028 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4029 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4030 		if (ret == -ENOSPC) {
4031 			enospc_errors++;
4032 		} else if (ret == -ETXTBSY) {
4033 			btrfs_info(fs_info,
4034 	   "skipping relocation of block group %llu due to active swapfile",
4035 				   found_key.offset);
4036 			ret = 0;
4037 		} else if (ret) {
4038 			goto error;
4039 		} else {
4040 			spin_lock(&fs_info->balance_lock);
4041 			bctl->stat.completed++;
4042 			spin_unlock(&fs_info->balance_lock);
4043 		}
4044 loop:
4045 		if (found_key.offset == 0)
4046 			break;
4047 		key.offset = found_key.offset - 1;
4048 	}
4049 
4050 	if (counting) {
4051 		btrfs_release_path(path);
4052 		counting = false;
4053 		goto again;
4054 	}
4055 error:
4056 	btrfs_free_path(path);
4057 	if (enospc_errors) {
4058 		btrfs_info(fs_info, "%d enospc errors during balance",
4059 			   enospc_errors);
4060 		if (!ret)
4061 			ret = -ENOSPC;
4062 	}
4063 
4064 	return ret;
4065 }
4066 
4067 /*
4068  * See if a given profile is valid and reduced.
4069  *
4070  * @flags:     profile to validate
4071  * @extended:  if true @flags is treated as an extended profile
4072  */
4073 static int alloc_profile_is_valid(u64 flags, int extended)
4074 {
4075 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4076 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4077 
4078 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4079 
4080 	/* 1) check that all other bits are zeroed */
4081 	if (flags & ~mask)
4082 		return 0;
4083 
4084 	/* 2) see if profile is reduced */
4085 	if (flags == 0)
4086 		return !extended; /* "0" is valid for usual profiles */
4087 
4088 	return has_single_bit_set(flags);
4089 }
4090 
4091 /*
4092  * Validate target profile against allowed profiles and return true if it's OK.
4093  * Otherwise print the error message and return false.
4094  */
4095 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4096 		const struct btrfs_balance_args *bargs,
4097 		u64 allowed, const char *type)
4098 {
4099 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4100 		return true;
4101 
4102 	/* Profile is valid and does not have bits outside of the allowed set */
4103 	if (alloc_profile_is_valid(bargs->target, 1) &&
4104 	    (bargs->target & ~allowed) == 0)
4105 		return true;
4106 
4107 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4108 			type, btrfs_bg_type_to_raid_name(bargs->target));
4109 	return false;
4110 }
4111 
4112 /*
4113  * Fill @buf with textual description of balance filter flags @bargs, up to
4114  * @size_buf including the terminating null. The output may be trimmed if it
4115  * does not fit into the provided buffer.
4116  */
4117 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4118 				 u32 size_buf)
4119 {
4120 	int ret;
4121 	u32 size_bp = size_buf;
4122 	char *bp = buf;
4123 	u64 flags = bargs->flags;
4124 	char tmp_buf[128] = {'\0'};
4125 
4126 	if (!flags)
4127 		return;
4128 
4129 #define CHECK_APPEND_NOARG(a)						\
4130 	do {								\
4131 		ret = snprintf(bp, size_bp, (a));			\
4132 		if (ret < 0 || ret >= size_bp)				\
4133 			goto out_overflow;				\
4134 		size_bp -= ret;						\
4135 		bp += ret;						\
4136 	} while (0)
4137 
4138 #define CHECK_APPEND_1ARG(a, v1)					\
4139 	do {								\
4140 		ret = snprintf(bp, size_bp, (a), (v1));			\
4141 		if (ret < 0 || ret >= size_bp)				\
4142 			goto out_overflow;				\
4143 		size_bp -= ret;						\
4144 		bp += ret;						\
4145 	} while (0)
4146 
4147 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4148 	do {								\
4149 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4150 		if (ret < 0 || ret >= size_bp)				\
4151 			goto out_overflow;				\
4152 		size_bp -= ret;						\
4153 		bp += ret;						\
4154 	} while (0)
4155 
4156 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4157 		CHECK_APPEND_1ARG("convert=%s,",
4158 				  btrfs_bg_type_to_raid_name(bargs->target));
4159 
4160 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4161 		CHECK_APPEND_NOARG("soft,");
4162 
4163 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4164 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4165 					    sizeof(tmp_buf));
4166 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4167 	}
4168 
4169 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4170 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4171 
4172 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4173 		CHECK_APPEND_2ARG("usage=%u..%u,",
4174 				  bargs->usage_min, bargs->usage_max);
4175 
4176 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4177 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4178 
4179 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4180 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4181 				  bargs->pstart, bargs->pend);
4182 
4183 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4184 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4185 				  bargs->vstart, bargs->vend);
4186 
4187 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4188 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4189 
4190 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4191 		CHECK_APPEND_2ARG("limit=%u..%u,",
4192 				bargs->limit_min, bargs->limit_max);
4193 
4194 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4195 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4196 				  bargs->stripes_min, bargs->stripes_max);
4197 
4198 #undef CHECK_APPEND_2ARG
4199 #undef CHECK_APPEND_1ARG
4200 #undef CHECK_APPEND_NOARG
4201 
4202 out_overflow:
4203 
4204 	if (size_bp < size_buf)
4205 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4206 	else
4207 		buf[0] = '\0';
4208 }
4209 
4210 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4211 {
4212 	u32 size_buf = 1024;
4213 	char tmp_buf[192] = {'\0'};
4214 	char *buf;
4215 	char *bp;
4216 	u32 size_bp = size_buf;
4217 	int ret;
4218 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4219 
4220 	buf = kzalloc(size_buf, GFP_KERNEL);
4221 	if (!buf)
4222 		return;
4223 
4224 	bp = buf;
4225 
4226 #define CHECK_APPEND_1ARG(a, v1)					\
4227 	do {								\
4228 		ret = snprintf(bp, size_bp, (a), (v1));			\
4229 		if (ret < 0 || ret >= size_bp)				\
4230 			goto out_overflow;				\
4231 		size_bp -= ret;						\
4232 		bp += ret;						\
4233 	} while (0)
4234 
4235 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4236 		CHECK_APPEND_1ARG("%s", "-f ");
4237 
4238 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4239 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4240 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4241 	}
4242 
4243 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4244 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4245 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4246 	}
4247 
4248 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4249 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4250 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4251 	}
4252 
4253 #undef CHECK_APPEND_1ARG
4254 
4255 out_overflow:
4256 
4257 	if (size_bp < size_buf)
4258 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4259 	btrfs_info(fs_info, "balance: %s %s",
4260 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4261 		   "resume" : "start", buf);
4262 
4263 	kfree(buf);
4264 }
4265 
4266 /*
4267  * Should be called with balance mutexe held
4268  */
4269 int btrfs_balance(struct btrfs_fs_info *fs_info,
4270 		  struct btrfs_balance_control *bctl,
4271 		  struct btrfs_ioctl_balance_args *bargs)
4272 {
4273 	u64 meta_target, data_target;
4274 	u64 allowed;
4275 	int mixed = 0;
4276 	int ret;
4277 	u64 num_devices;
4278 	unsigned seq;
4279 	bool reducing_redundancy;
4280 	bool paused = false;
4281 	int i;
4282 
4283 	if (btrfs_fs_closing(fs_info) ||
4284 	    atomic_read(&fs_info->balance_pause_req) ||
4285 	    btrfs_should_cancel_balance(fs_info)) {
4286 		ret = -EINVAL;
4287 		goto out;
4288 	}
4289 
4290 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4291 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4292 		mixed = 1;
4293 
4294 	/*
4295 	 * In case of mixed groups both data and meta should be picked,
4296 	 * and identical options should be given for both of them.
4297 	 */
4298 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4299 	if (mixed && (bctl->flags & allowed)) {
4300 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4301 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4302 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4303 			btrfs_err(fs_info,
4304 	  "balance: mixed groups data and metadata options must be the same");
4305 			ret = -EINVAL;
4306 			goto out;
4307 		}
4308 	}
4309 
4310 	/*
4311 	 * rw_devices will not change at the moment, device add/delete/replace
4312 	 * are exclusive
4313 	 */
4314 	num_devices = fs_info->fs_devices->rw_devices;
4315 
4316 	/*
4317 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4318 	 * special bit for it, to make it easier to distinguish.  Thus we need
4319 	 * to set it manually, or balance would refuse the profile.
4320 	 */
4321 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4322 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4323 		if (num_devices >= btrfs_raid_array[i].devs_min)
4324 			allowed |= btrfs_raid_array[i].bg_flag;
4325 
4326 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4327 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4328 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4329 		ret = -EINVAL;
4330 		goto out;
4331 	}
4332 
4333 	/*
4334 	 * Allow to reduce metadata or system integrity only if force set for
4335 	 * profiles with redundancy (copies, parity)
4336 	 */
4337 	allowed = 0;
4338 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4339 		if (btrfs_raid_array[i].ncopies >= 2 ||
4340 		    btrfs_raid_array[i].tolerated_failures >= 1)
4341 			allowed |= btrfs_raid_array[i].bg_flag;
4342 	}
4343 	do {
4344 		seq = read_seqbegin(&fs_info->profiles_lock);
4345 
4346 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4347 		     (fs_info->avail_system_alloc_bits & allowed) &&
4348 		     !(bctl->sys.target & allowed)) ||
4349 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4350 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4351 		     !(bctl->meta.target & allowed)))
4352 			reducing_redundancy = true;
4353 		else
4354 			reducing_redundancy = false;
4355 
4356 		/* if we're not converting, the target field is uninitialized */
4357 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4358 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4359 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4360 			bctl->data.target : fs_info->avail_data_alloc_bits;
4361 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4362 
4363 	if (reducing_redundancy) {
4364 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4365 			btrfs_info(fs_info,
4366 			   "balance: force reducing metadata redundancy");
4367 		} else {
4368 			btrfs_err(fs_info,
4369 	"balance: reduces metadata redundancy, use --force if you want this");
4370 			ret = -EINVAL;
4371 			goto out;
4372 		}
4373 	}
4374 
4375 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4376 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4377 		btrfs_warn(fs_info,
4378 	"balance: metadata profile %s has lower redundancy than data profile %s",
4379 				btrfs_bg_type_to_raid_name(meta_target),
4380 				btrfs_bg_type_to_raid_name(data_target));
4381 	}
4382 
4383 	ret = insert_balance_item(fs_info, bctl);
4384 	if (ret && ret != -EEXIST)
4385 		goto out;
4386 
4387 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4388 		BUG_ON(ret == -EEXIST);
4389 		BUG_ON(fs_info->balance_ctl);
4390 		spin_lock(&fs_info->balance_lock);
4391 		fs_info->balance_ctl = bctl;
4392 		spin_unlock(&fs_info->balance_lock);
4393 	} else {
4394 		BUG_ON(ret != -EEXIST);
4395 		spin_lock(&fs_info->balance_lock);
4396 		update_balance_args(bctl);
4397 		spin_unlock(&fs_info->balance_lock);
4398 	}
4399 
4400 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4401 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4402 	describe_balance_start_or_resume(fs_info);
4403 	mutex_unlock(&fs_info->balance_mutex);
4404 
4405 	ret = __btrfs_balance(fs_info);
4406 
4407 	mutex_lock(&fs_info->balance_mutex);
4408 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4409 		btrfs_info(fs_info, "balance: paused");
4410 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4411 		paused = true;
4412 	}
4413 	/*
4414 	 * Balance can be canceled by:
4415 	 *
4416 	 * - Regular cancel request
4417 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4418 	 *
4419 	 * - Fatal signal to "btrfs" process
4420 	 *   Either the signal caught by wait_reserve_ticket() and callers
4421 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4422 	 *   got -ECANCELED.
4423 	 *   Either way, in this case balance_cancel_req = 0, and
4424 	 *   ret == -EINTR or ret == -ECANCELED.
4425 	 *
4426 	 * So here we only check the return value to catch canceled balance.
4427 	 */
4428 	else if (ret == -ECANCELED || ret == -EINTR)
4429 		btrfs_info(fs_info, "balance: canceled");
4430 	else
4431 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4432 
4433 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4434 
4435 	if (bargs) {
4436 		memset(bargs, 0, sizeof(*bargs));
4437 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4438 	}
4439 
4440 	/* We didn't pause, we can clean everything up. */
4441 	if (!paused) {
4442 		reset_balance_state(fs_info);
4443 		btrfs_exclop_finish(fs_info);
4444 	}
4445 
4446 	wake_up(&fs_info->balance_wait_q);
4447 
4448 	return ret;
4449 out:
4450 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4451 		reset_balance_state(fs_info);
4452 	else
4453 		kfree(bctl);
4454 	btrfs_exclop_finish(fs_info);
4455 
4456 	return ret;
4457 }
4458 
4459 static int balance_kthread(void *data)
4460 {
4461 	struct btrfs_fs_info *fs_info = data;
4462 	int ret = 0;
4463 
4464 	sb_start_write(fs_info->sb);
4465 	mutex_lock(&fs_info->balance_mutex);
4466 	if (fs_info->balance_ctl)
4467 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4468 	mutex_unlock(&fs_info->balance_mutex);
4469 	sb_end_write(fs_info->sb);
4470 
4471 	return ret;
4472 }
4473 
4474 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4475 {
4476 	struct task_struct *tsk;
4477 
4478 	mutex_lock(&fs_info->balance_mutex);
4479 	if (!fs_info->balance_ctl) {
4480 		mutex_unlock(&fs_info->balance_mutex);
4481 		return 0;
4482 	}
4483 	mutex_unlock(&fs_info->balance_mutex);
4484 
4485 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4486 		btrfs_info(fs_info, "balance: resume skipped");
4487 		return 0;
4488 	}
4489 
4490 	spin_lock(&fs_info->super_lock);
4491 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4492 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4493 	spin_unlock(&fs_info->super_lock);
4494 	/*
4495 	 * A ro->rw remount sequence should continue with the paused balance
4496 	 * regardless of who pauses it, system or the user as of now, so set
4497 	 * the resume flag.
4498 	 */
4499 	spin_lock(&fs_info->balance_lock);
4500 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4501 	spin_unlock(&fs_info->balance_lock);
4502 
4503 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4504 	return PTR_ERR_OR_ZERO(tsk);
4505 }
4506 
4507 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4508 {
4509 	struct btrfs_balance_control *bctl;
4510 	struct btrfs_balance_item *item;
4511 	struct btrfs_disk_balance_args disk_bargs;
4512 	struct btrfs_path *path;
4513 	struct extent_buffer *leaf;
4514 	struct btrfs_key key;
4515 	int ret;
4516 
4517 	path = btrfs_alloc_path();
4518 	if (!path)
4519 		return -ENOMEM;
4520 
4521 	key.objectid = BTRFS_BALANCE_OBJECTID;
4522 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4523 	key.offset = 0;
4524 
4525 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4526 	if (ret < 0)
4527 		goto out;
4528 	if (ret > 0) { /* ret = -ENOENT; */
4529 		ret = 0;
4530 		goto out;
4531 	}
4532 
4533 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4534 	if (!bctl) {
4535 		ret = -ENOMEM;
4536 		goto out;
4537 	}
4538 
4539 	leaf = path->nodes[0];
4540 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4541 
4542 	bctl->flags = btrfs_balance_flags(leaf, item);
4543 	bctl->flags |= BTRFS_BALANCE_RESUME;
4544 
4545 	btrfs_balance_data(leaf, item, &disk_bargs);
4546 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4547 	btrfs_balance_meta(leaf, item, &disk_bargs);
4548 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4549 	btrfs_balance_sys(leaf, item, &disk_bargs);
4550 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4551 
4552 	/*
4553 	 * This should never happen, as the paused balance state is recovered
4554 	 * during mount without any chance of other exclusive ops to collide.
4555 	 *
4556 	 * This gives the exclusive op status to balance and keeps in paused
4557 	 * state until user intervention (cancel or umount). If the ownership
4558 	 * cannot be assigned, show a message but do not fail. The balance
4559 	 * is in a paused state and must have fs_info::balance_ctl properly
4560 	 * set up.
4561 	 */
4562 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4563 		btrfs_warn(fs_info,
4564 	"balance: cannot set exclusive op status, resume manually");
4565 
4566 	btrfs_release_path(path);
4567 
4568 	mutex_lock(&fs_info->balance_mutex);
4569 	BUG_ON(fs_info->balance_ctl);
4570 	spin_lock(&fs_info->balance_lock);
4571 	fs_info->balance_ctl = bctl;
4572 	spin_unlock(&fs_info->balance_lock);
4573 	mutex_unlock(&fs_info->balance_mutex);
4574 out:
4575 	btrfs_free_path(path);
4576 	return ret;
4577 }
4578 
4579 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4580 {
4581 	int ret = 0;
4582 
4583 	mutex_lock(&fs_info->balance_mutex);
4584 	if (!fs_info->balance_ctl) {
4585 		mutex_unlock(&fs_info->balance_mutex);
4586 		return -ENOTCONN;
4587 	}
4588 
4589 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4590 		atomic_inc(&fs_info->balance_pause_req);
4591 		mutex_unlock(&fs_info->balance_mutex);
4592 
4593 		wait_event(fs_info->balance_wait_q,
4594 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4595 
4596 		mutex_lock(&fs_info->balance_mutex);
4597 		/* we are good with balance_ctl ripped off from under us */
4598 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4599 		atomic_dec(&fs_info->balance_pause_req);
4600 	} else {
4601 		ret = -ENOTCONN;
4602 	}
4603 
4604 	mutex_unlock(&fs_info->balance_mutex);
4605 	return ret;
4606 }
4607 
4608 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4609 {
4610 	mutex_lock(&fs_info->balance_mutex);
4611 	if (!fs_info->balance_ctl) {
4612 		mutex_unlock(&fs_info->balance_mutex);
4613 		return -ENOTCONN;
4614 	}
4615 
4616 	/*
4617 	 * A paused balance with the item stored on disk can be resumed at
4618 	 * mount time if the mount is read-write. Otherwise it's still paused
4619 	 * and we must not allow cancelling as it deletes the item.
4620 	 */
4621 	if (sb_rdonly(fs_info->sb)) {
4622 		mutex_unlock(&fs_info->balance_mutex);
4623 		return -EROFS;
4624 	}
4625 
4626 	atomic_inc(&fs_info->balance_cancel_req);
4627 	/*
4628 	 * if we are running just wait and return, balance item is
4629 	 * deleted in btrfs_balance in this case
4630 	 */
4631 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4632 		mutex_unlock(&fs_info->balance_mutex);
4633 		wait_event(fs_info->balance_wait_q,
4634 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4635 		mutex_lock(&fs_info->balance_mutex);
4636 	} else {
4637 		mutex_unlock(&fs_info->balance_mutex);
4638 		/*
4639 		 * Lock released to allow other waiters to continue, we'll
4640 		 * reexamine the status again.
4641 		 */
4642 		mutex_lock(&fs_info->balance_mutex);
4643 
4644 		if (fs_info->balance_ctl) {
4645 			reset_balance_state(fs_info);
4646 			btrfs_exclop_finish(fs_info);
4647 			btrfs_info(fs_info, "balance: canceled");
4648 		}
4649 	}
4650 
4651 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4652 	atomic_dec(&fs_info->balance_cancel_req);
4653 	mutex_unlock(&fs_info->balance_mutex);
4654 	return 0;
4655 }
4656 
4657 int btrfs_uuid_scan_kthread(void *data)
4658 {
4659 	struct btrfs_fs_info *fs_info = data;
4660 	struct btrfs_root *root = fs_info->tree_root;
4661 	struct btrfs_key key;
4662 	struct btrfs_path *path = NULL;
4663 	int ret = 0;
4664 	struct extent_buffer *eb;
4665 	int slot;
4666 	struct btrfs_root_item root_item;
4667 	u32 item_size;
4668 	struct btrfs_trans_handle *trans = NULL;
4669 	bool closing = false;
4670 
4671 	path = btrfs_alloc_path();
4672 	if (!path) {
4673 		ret = -ENOMEM;
4674 		goto out;
4675 	}
4676 
4677 	key.objectid = 0;
4678 	key.type = BTRFS_ROOT_ITEM_KEY;
4679 	key.offset = 0;
4680 
4681 	while (1) {
4682 		if (btrfs_fs_closing(fs_info)) {
4683 			closing = true;
4684 			break;
4685 		}
4686 		ret = btrfs_search_forward(root, &key, path,
4687 				BTRFS_OLDEST_GENERATION);
4688 		if (ret) {
4689 			if (ret > 0)
4690 				ret = 0;
4691 			break;
4692 		}
4693 
4694 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4695 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4696 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4697 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4698 			goto skip;
4699 
4700 		eb = path->nodes[0];
4701 		slot = path->slots[0];
4702 		item_size = btrfs_item_size(eb, slot);
4703 		if (item_size < sizeof(root_item))
4704 			goto skip;
4705 
4706 		read_extent_buffer(eb, &root_item,
4707 				   btrfs_item_ptr_offset(eb, slot),
4708 				   (int)sizeof(root_item));
4709 		if (btrfs_root_refs(&root_item) == 0)
4710 			goto skip;
4711 
4712 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4713 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4714 			if (trans)
4715 				goto update_tree;
4716 
4717 			btrfs_release_path(path);
4718 			/*
4719 			 * 1 - subvol uuid item
4720 			 * 1 - received_subvol uuid item
4721 			 */
4722 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4723 			if (IS_ERR(trans)) {
4724 				ret = PTR_ERR(trans);
4725 				break;
4726 			}
4727 			continue;
4728 		} else {
4729 			goto skip;
4730 		}
4731 update_tree:
4732 		btrfs_release_path(path);
4733 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4734 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4735 						  BTRFS_UUID_KEY_SUBVOL,
4736 						  key.objectid);
4737 			if (ret < 0) {
4738 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4739 					ret);
4740 				break;
4741 			}
4742 		}
4743 
4744 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4745 			ret = btrfs_uuid_tree_add(trans,
4746 						  root_item.received_uuid,
4747 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4748 						  key.objectid);
4749 			if (ret < 0) {
4750 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4751 					ret);
4752 				break;
4753 			}
4754 		}
4755 
4756 skip:
4757 		btrfs_release_path(path);
4758 		if (trans) {
4759 			ret = btrfs_end_transaction(trans);
4760 			trans = NULL;
4761 			if (ret)
4762 				break;
4763 		}
4764 
4765 		if (key.offset < (u64)-1) {
4766 			key.offset++;
4767 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4768 			key.offset = 0;
4769 			key.type = BTRFS_ROOT_ITEM_KEY;
4770 		} else if (key.objectid < (u64)-1) {
4771 			key.offset = 0;
4772 			key.type = BTRFS_ROOT_ITEM_KEY;
4773 			key.objectid++;
4774 		} else {
4775 			break;
4776 		}
4777 		cond_resched();
4778 	}
4779 
4780 out:
4781 	btrfs_free_path(path);
4782 	if (trans && !IS_ERR(trans))
4783 		btrfs_end_transaction(trans);
4784 	if (ret)
4785 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4786 	else if (!closing)
4787 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4788 	up(&fs_info->uuid_tree_rescan_sem);
4789 	return 0;
4790 }
4791 
4792 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4793 {
4794 	struct btrfs_trans_handle *trans;
4795 	struct btrfs_root *tree_root = fs_info->tree_root;
4796 	struct btrfs_root *uuid_root;
4797 	struct task_struct *task;
4798 	int ret;
4799 
4800 	/*
4801 	 * 1 - root node
4802 	 * 1 - root item
4803 	 */
4804 	trans = btrfs_start_transaction(tree_root, 2);
4805 	if (IS_ERR(trans))
4806 		return PTR_ERR(trans);
4807 
4808 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4809 	if (IS_ERR(uuid_root)) {
4810 		ret = PTR_ERR(uuid_root);
4811 		btrfs_abort_transaction(trans, ret);
4812 		btrfs_end_transaction(trans);
4813 		return ret;
4814 	}
4815 
4816 	fs_info->uuid_root = uuid_root;
4817 
4818 	ret = btrfs_commit_transaction(trans);
4819 	if (ret)
4820 		return ret;
4821 
4822 	down(&fs_info->uuid_tree_rescan_sem);
4823 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4824 	if (IS_ERR(task)) {
4825 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4826 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4827 		up(&fs_info->uuid_tree_rescan_sem);
4828 		return PTR_ERR(task);
4829 	}
4830 
4831 	return 0;
4832 }
4833 
4834 /*
4835  * shrinking a device means finding all of the device extents past
4836  * the new size, and then following the back refs to the chunks.
4837  * The chunk relocation code actually frees the device extent
4838  */
4839 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4840 {
4841 	struct btrfs_fs_info *fs_info = device->fs_info;
4842 	struct btrfs_root *root = fs_info->dev_root;
4843 	struct btrfs_trans_handle *trans;
4844 	struct btrfs_dev_extent *dev_extent = NULL;
4845 	struct btrfs_path *path;
4846 	u64 length;
4847 	u64 chunk_offset;
4848 	int ret;
4849 	int slot;
4850 	int failed = 0;
4851 	bool retried = false;
4852 	struct extent_buffer *l;
4853 	struct btrfs_key key;
4854 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4855 	u64 old_total = btrfs_super_total_bytes(super_copy);
4856 	u64 old_size = btrfs_device_get_total_bytes(device);
4857 	u64 diff;
4858 	u64 start;
4859 
4860 	new_size = round_down(new_size, fs_info->sectorsize);
4861 	start = new_size;
4862 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4863 
4864 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4865 		return -EINVAL;
4866 
4867 	path = btrfs_alloc_path();
4868 	if (!path)
4869 		return -ENOMEM;
4870 
4871 	path->reada = READA_BACK;
4872 
4873 	trans = btrfs_start_transaction(root, 0);
4874 	if (IS_ERR(trans)) {
4875 		btrfs_free_path(path);
4876 		return PTR_ERR(trans);
4877 	}
4878 
4879 	mutex_lock(&fs_info->chunk_mutex);
4880 
4881 	btrfs_device_set_total_bytes(device, new_size);
4882 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4883 		device->fs_devices->total_rw_bytes -= diff;
4884 		atomic64_sub(diff, &fs_info->free_chunk_space);
4885 	}
4886 
4887 	/*
4888 	 * Once the device's size has been set to the new size, ensure all
4889 	 * in-memory chunks are synced to disk so that the loop below sees them
4890 	 * and relocates them accordingly.
4891 	 */
4892 	if (contains_pending_extent(device, &start, diff)) {
4893 		mutex_unlock(&fs_info->chunk_mutex);
4894 		ret = btrfs_commit_transaction(trans);
4895 		if (ret)
4896 			goto done;
4897 	} else {
4898 		mutex_unlock(&fs_info->chunk_mutex);
4899 		btrfs_end_transaction(trans);
4900 	}
4901 
4902 again:
4903 	key.objectid = device->devid;
4904 	key.offset = (u64)-1;
4905 	key.type = BTRFS_DEV_EXTENT_KEY;
4906 
4907 	do {
4908 		mutex_lock(&fs_info->reclaim_bgs_lock);
4909 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4910 		if (ret < 0) {
4911 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4912 			goto done;
4913 		}
4914 
4915 		ret = btrfs_previous_item(root, path, 0, key.type);
4916 		if (ret) {
4917 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4918 			if (ret < 0)
4919 				goto done;
4920 			ret = 0;
4921 			btrfs_release_path(path);
4922 			break;
4923 		}
4924 
4925 		l = path->nodes[0];
4926 		slot = path->slots[0];
4927 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4928 
4929 		if (key.objectid != device->devid) {
4930 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4931 			btrfs_release_path(path);
4932 			break;
4933 		}
4934 
4935 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4936 		length = btrfs_dev_extent_length(l, dev_extent);
4937 
4938 		if (key.offset + length <= new_size) {
4939 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4940 			btrfs_release_path(path);
4941 			break;
4942 		}
4943 
4944 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4945 		btrfs_release_path(path);
4946 
4947 		/*
4948 		 * We may be relocating the only data chunk we have,
4949 		 * which could potentially end up with losing data's
4950 		 * raid profile, so lets allocate an empty one in
4951 		 * advance.
4952 		 */
4953 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4954 		if (ret < 0) {
4955 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4956 			goto done;
4957 		}
4958 
4959 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4960 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4961 		if (ret == -ENOSPC) {
4962 			failed++;
4963 		} else if (ret) {
4964 			if (ret == -ETXTBSY) {
4965 				btrfs_warn(fs_info,
4966 		   "could not shrink block group %llu due to active swapfile",
4967 					   chunk_offset);
4968 			}
4969 			goto done;
4970 		}
4971 	} while (key.offset-- > 0);
4972 
4973 	if (failed && !retried) {
4974 		failed = 0;
4975 		retried = true;
4976 		goto again;
4977 	} else if (failed && retried) {
4978 		ret = -ENOSPC;
4979 		goto done;
4980 	}
4981 
4982 	/* Shrinking succeeded, else we would be at "done". */
4983 	trans = btrfs_start_transaction(root, 0);
4984 	if (IS_ERR(trans)) {
4985 		ret = PTR_ERR(trans);
4986 		goto done;
4987 	}
4988 
4989 	mutex_lock(&fs_info->chunk_mutex);
4990 	/* Clear all state bits beyond the shrunk device size */
4991 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4992 			  CHUNK_STATE_MASK);
4993 
4994 	btrfs_device_set_disk_total_bytes(device, new_size);
4995 	if (list_empty(&device->post_commit_list))
4996 		list_add_tail(&device->post_commit_list,
4997 			      &trans->transaction->dev_update_list);
4998 
4999 	WARN_ON(diff > old_total);
5000 	btrfs_set_super_total_bytes(super_copy,
5001 			round_down(old_total - diff, fs_info->sectorsize));
5002 	mutex_unlock(&fs_info->chunk_mutex);
5003 
5004 	btrfs_reserve_chunk_metadata(trans, false);
5005 	/* Now btrfs_update_device() will change the on-disk size. */
5006 	ret = btrfs_update_device(trans, device);
5007 	btrfs_trans_release_chunk_metadata(trans);
5008 	if (ret < 0) {
5009 		btrfs_abort_transaction(trans, ret);
5010 		btrfs_end_transaction(trans);
5011 	} else {
5012 		ret = btrfs_commit_transaction(trans);
5013 	}
5014 done:
5015 	btrfs_free_path(path);
5016 	if (ret) {
5017 		mutex_lock(&fs_info->chunk_mutex);
5018 		btrfs_device_set_total_bytes(device, old_size);
5019 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5020 			device->fs_devices->total_rw_bytes += diff;
5021 		atomic64_add(diff, &fs_info->free_chunk_space);
5022 		mutex_unlock(&fs_info->chunk_mutex);
5023 	}
5024 	return ret;
5025 }
5026 
5027 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5028 			   struct btrfs_key *key,
5029 			   struct btrfs_chunk *chunk, int item_size)
5030 {
5031 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5032 	struct btrfs_disk_key disk_key;
5033 	u32 array_size;
5034 	u8 *ptr;
5035 
5036 	lockdep_assert_held(&fs_info->chunk_mutex);
5037 
5038 	array_size = btrfs_super_sys_array_size(super_copy);
5039 	if (array_size + item_size + sizeof(disk_key)
5040 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5041 		return -EFBIG;
5042 
5043 	ptr = super_copy->sys_chunk_array + array_size;
5044 	btrfs_cpu_key_to_disk(&disk_key, key);
5045 	memcpy(ptr, &disk_key, sizeof(disk_key));
5046 	ptr += sizeof(disk_key);
5047 	memcpy(ptr, chunk, item_size);
5048 	item_size += sizeof(disk_key);
5049 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5050 
5051 	return 0;
5052 }
5053 
5054 /*
5055  * sort the devices in descending order by max_avail, total_avail
5056  */
5057 static int btrfs_cmp_device_info(const void *a, const void *b)
5058 {
5059 	const struct btrfs_device_info *di_a = a;
5060 	const struct btrfs_device_info *di_b = b;
5061 
5062 	if (di_a->max_avail > di_b->max_avail)
5063 		return -1;
5064 	if (di_a->max_avail < di_b->max_avail)
5065 		return 1;
5066 	if (di_a->total_avail > di_b->total_avail)
5067 		return -1;
5068 	if (di_a->total_avail < di_b->total_avail)
5069 		return 1;
5070 	return 0;
5071 }
5072 
5073 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5074 {
5075 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5076 		return;
5077 
5078 	btrfs_set_fs_incompat(info, RAID56);
5079 }
5080 
5081 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5082 {
5083 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5084 		return;
5085 
5086 	btrfs_set_fs_incompat(info, RAID1C34);
5087 }
5088 
5089 /*
5090  * Structure used internally for btrfs_create_chunk() function.
5091  * Wraps needed parameters.
5092  */
5093 struct alloc_chunk_ctl {
5094 	u64 start;
5095 	u64 type;
5096 	/* Total number of stripes to allocate */
5097 	int num_stripes;
5098 	/* sub_stripes info for map */
5099 	int sub_stripes;
5100 	/* Stripes per device */
5101 	int dev_stripes;
5102 	/* Maximum number of devices to use */
5103 	int devs_max;
5104 	/* Minimum number of devices to use */
5105 	int devs_min;
5106 	/* ndevs has to be a multiple of this */
5107 	int devs_increment;
5108 	/* Number of copies */
5109 	int ncopies;
5110 	/* Number of stripes worth of bytes to store parity information */
5111 	int nparity;
5112 	u64 max_stripe_size;
5113 	u64 max_chunk_size;
5114 	u64 dev_extent_min;
5115 	u64 stripe_size;
5116 	u64 chunk_size;
5117 	int ndevs;
5118 };
5119 
5120 static void init_alloc_chunk_ctl_policy_regular(
5121 				struct btrfs_fs_devices *fs_devices,
5122 				struct alloc_chunk_ctl *ctl)
5123 {
5124 	struct btrfs_space_info *space_info;
5125 
5126 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5127 	ASSERT(space_info);
5128 
5129 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5130 	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5131 
5132 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5133 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5134 
5135 	/* We don't want a chunk larger than 10% of writable space */
5136 	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5137 				  ctl->max_chunk_size);
5138 	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5139 }
5140 
5141 static void init_alloc_chunk_ctl_policy_zoned(
5142 				      struct btrfs_fs_devices *fs_devices,
5143 				      struct alloc_chunk_ctl *ctl)
5144 {
5145 	u64 zone_size = fs_devices->fs_info->zone_size;
5146 	u64 limit;
5147 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5148 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5149 	u64 min_chunk_size = min_data_stripes * zone_size;
5150 	u64 type = ctl->type;
5151 
5152 	ctl->max_stripe_size = zone_size;
5153 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5154 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5155 						 zone_size);
5156 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5157 		ctl->max_chunk_size = ctl->max_stripe_size;
5158 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5159 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5160 		ctl->devs_max = min_t(int, ctl->devs_max,
5161 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5162 	} else {
5163 		BUG();
5164 	}
5165 
5166 	/* We don't want a chunk larger than 10% of writable space */
5167 	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5168 			       zone_size),
5169 		    min_chunk_size);
5170 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5171 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5172 }
5173 
5174 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5175 				 struct alloc_chunk_ctl *ctl)
5176 {
5177 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5178 
5179 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5180 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5181 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5182 	if (!ctl->devs_max)
5183 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5184 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5185 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5186 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5187 	ctl->nparity = btrfs_raid_array[index].nparity;
5188 	ctl->ndevs = 0;
5189 
5190 	switch (fs_devices->chunk_alloc_policy) {
5191 	case BTRFS_CHUNK_ALLOC_REGULAR:
5192 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5193 		break;
5194 	case BTRFS_CHUNK_ALLOC_ZONED:
5195 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5196 		break;
5197 	default:
5198 		BUG();
5199 	}
5200 }
5201 
5202 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5203 			      struct alloc_chunk_ctl *ctl,
5204 			      struct btrfs_device_info *devices_info)
5205 {
5206 	struct btrfs_fs_info *info = fs_devices->fs_info;
5207 	struct btrfs_device *device;
5208 	u64 total_avail;
5209 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5210 	int ret;
5211 	int ndevs = 0;
5212 	u64 max_avail;
5213 	u64 dev_offset;
5214 
5215 	/*
5216 	 * in the first pass through the devices list, we gather information
5217 	 * about the available holes on each device.
5218 	 */
5219 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5220 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5221 			WARN(1, KERN_ERR
5222 			       "BTRFS: read-only device in alloc_list\n");
5223 			continue;
5224 		}
5225 
5226 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5227 					&device->dev_state) ||
5228 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5229 			continue;
5230 
5231 		if (device->total_bytes > device->bytes_used)
5232 			total_avail = device->total_bytes - device->bytes_used;
5233 		else
5234 			total_avail = 0;
5235 
5236 		/* If there is no space on this device, skip it. */
5237 		if (total_avail < ctl->dev_extent_min)
5238 			continue;
5239 
5240 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5241 					   &max_avail);
5242 		if (ret && ret != -ENOSPC)
5243 			return ret;
5244 
5245 		if (ret == 0)
5246 			max_avail = dev_extent_want;
5247 
5248 		if (max_avail < ctl->dev_extent_min) {
5249 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5250 				btrfs_debug(info,
5251 			"%s: devid %llu has no free space, have=%llu want=%llu",
5252 					    __func__, device->devid, max_avail,
5253 					    ctl->dev_extent_min);
5254 			continue;
5255 		}
5256 
5257 		if (ndevs == fs_devices->rw_devices) {
5258 			WARN(1, "%s: found more than %llu devices\n",
5259 			     __func__, fs_devices->rw_devices);
5260 			break;
5261 		}
5262 		devices_info[ndevs].dev_offset = dev_offset;
5263 		devices_info[ndevs].max_avail = max_avail;
5264 		devices_info[ndevs].total_avail = total_avail;
5265 		devices_info[ndevs].dev = device;
5266 		++ndevs;
5267 	}
5268 	ctl->ndevs = ndevs;
5269 
5270 	/*
5271 	 * now sort the devices by hole size / available space
5272 	 */
5273 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5274 	     btrfs_cmp_device_info, NULL);
5275 
5276 	return 0;
5277 }
5278 
5279 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5280 				      struct btrfs_device_info *devices_info)
5281 {
5282 	/* Number of stripes that count for block group size */
5283 	int data_stripes;
5284 
5285 	/*
5286 	 * The primary goal is to maximize the number of stripes, so use as
5287 	 * many devices as possible, even if the stripes are not maximum sized.
5288 	 *
5289 	 * The DUP profile stores more than one stripe per device, the
5290 	 * max_avail is the total size so we have to adjust.
5291 	 */
5292 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5293 				   ctl->dev_stripes);
5294 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5295 
5296 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5297 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5298 
5299 	/*
5300 	 * Use the number of data stripes to figure out how big this chunk is
5301 	 * really going to be in terms of logical address space, and compare
5302 	 * that answer with the max chunk size. If it's higher, we try to
5303 	 * reduce stripe_size.
5304 	 */
5305 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5306 		/*
5307 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5308 		 * then use it, unless it ends up being even bigger than the
5309 		 * previous value we had already.
5310 		 */
5311 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5312 							data_stripes), SZ_16M),
5313 				       ctl->stripe_size);
5314 	}
5315 
5316 	/* Stripe size should not go beyond 1G. */
5317 	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5318 
5319 	/* Align to BTRFS_STRIPE_LEN */
5320 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5321 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5322 
5323 	return 0;
5324 }
5325 
5326 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5327 				    struct btrfs_device_info *devices_info)
5328 {
5329 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5330 	/* Number of stripes that count for block group size */
5331 	int data_stripes;
5332 
5333 	/*
5334 	 * It should hold because:
5335 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5336 	 */
5337 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5338 
5339 	ctl->stripe_size = zone_size;
5340 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5341 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5342 
5343 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5344 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5345 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5346 					     ctl->stripe_size) + ctl->nparity,
5347 				     ctl->dev_stripes);
5348 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5349 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5350 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5351 	}
5352 
5353 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5354 
5355 	return 0;
5356 }
5357 
5358 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5359 			      struct alloc_chunk_ctl *ctl,
5360 			      struct btrfs_device_info *devices_info)
5361 {
5362 	struct btrfs_fs_info *info = fs_devices->fs_info;
5363 
5364 	/*
5365 	 * Round down to number of usable stripes, devs_increment can be any
5366 	 * number so we can't use round_down() that requires power of 2, while
5367 	 * rounddown is safe.
5368 	 */
5369 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5370 
5371 	if (ctl->ndevs < ctl->devs_min) {
5372 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5373 			btrfs_debug(info,
5374 	"%s: not enough devices with free space: have=%d minimum required=%d",
5375 				    __func__, ctl->ndevs, ctl->devs_min);
5376 		}
5377 		return -ENOSPC;
5378 	}
5379 
5380 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5381 
5382 	switch (fs_devices->chunk_alloc_policy) {
5383 	case BTRFS_CHUNK_ALLOC_REGULAR:
5384 		return decide_stripe_size_regular(ctl, devices_info);
5385 	case BTRFS_CHUNK_ALLOC_ZONED:
5386 		return decide_stripe_size_zoned(ctl, devices_info);
5387 	default:
5388 		BUG();
5389 	}
5390 }
5391 
5392 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5393 			struct alloc_chunk_ctl *ctl,
5394 			struct btrfs_device_info *devices_info)
5395 {
5396 	struct btrfs_fs_info *info = trans->fs_info;
5397 	struct map_lookup *map = NULL;
5398 	struct extent_map_tree *em_tree;
5399 	struct btrfs_block_group *block_group;
5400 	struct extent_map *em;
5401 	u64 start = ctl->start;
5402 	u64 type = ctl->type;
5403 	int ret;
5404 	int i;
5405 	int j;
5406 
5407 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5408 	if (!map)
5409 		return ERR_PTR(-ENOMEM);
5410 	map->num_stripes = ctl->num_stripes;
5411 
5412 	for (i = 0; i < ctl->ndevs; ++i) {
5413 		for (j = 0; j < ctl->dev_stripes; ++j) {
5414 			int s = i * ctl->dev_stripes + j;
5415 			map->stripes[s].dev = devices_info[i].dev;
5416 			map->stripes[s].physical = devices_info[i].dev_offset +
5417 						   j * ctl->stripe_size;
5418 		}
5419 	}
5420 	map->io_align = BTRFS_STRIPE_LEN;
5421 	map->io_width = BTRFS_STRIPE_LEN;
5422 	map->type = type;
5423 	map->sub_stripes = ctl->sub_stripes;
5424 
5425 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5426 
5427 	em = alloc_extent_map();
5428 	if (!em) {
5429 		kfree(map);
5430 		return ERR_PTR(-ENOMEM);
5431 	}
5432 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5433 	em->map_lookup = map;
5434 	em->start = start;
5435 	em->len = ctl->chunk_size;
5436 	em->block_start = 0;
5437 	em->block_len = em->len;
5438 	em->orig_block_len = ctl->stripe_size;
5439 
5440 	em_tree = &info->mapping_tree;
5441 	write_lock(&em_tree->lock);
5442 	ret = add_extent_mapping(em_tree, em, 0);
5443 	if (ret) {
5444 		write_unlock(&em_tree->lock);
5445 		free_extent_map(em);
5446 		return ERR_PTR(ret);
5447 	}
5448 	write_unlock(&em_tree->lock);
5449 
5450 	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5451 	if (IS_ERR(block_group))
5452 		goto error_del_extent;
5453 
5454 	for (i = 0; i < map->num_stripes; i++) {
5455 		struct btrfs_device *dev = map->stripes[i].dev;
5456 
5457 		btrfs_device_set_bytes_used(dev,
5458 					    dev->bytes_used + ctl->stripe_size);
5459 		if (list_empty(&dev->post_commit_list))
5460 			list_add_tail(&dev->post_commit_list,
5461 				      &trans->transaction->dev_update_list);
5462 	}
5463 
5464 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5465 		     &info->free_chunk_space);
5466 
5467 	free_extent_map(em);
5468 	check_raid56_incompat_flag(info, type);
5469 	check_raid1c34_incompat_flag(info, type);
5470 
5471 	return block_group;
5472 
5473 error_del_extent:
5474 	write_lock(&em_tree->lock);
5475 	remove_extent_mapping(em_tree, em);
5476 	write_unlock(&em_tree->lock);
5477 
5478 	/* One for our allocation */
5479 	free_extent_map(em);
5480 	/* One for the tree reference */
5481 	free_extent_map(em);
5482 
5483 	return block_group;
5484 }
5485 
5486 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5487 					    u64 type)
5488 {
5489 	struct btrfs_fs_info *info = trans->fs_info;
5490 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5491 	struct btrfs_device_info *devices_info = NULL;
5492 	struct alloc_chunk_ctl ctl;
5493 	struct btrfs_block_group *block_group;
5494 	int ret;
5495 
5496 	lockdep_assert_held(&info->chunk_mutex);
5497 
5498 	if (!alloc_profile_is_valid(type, 0)) {
5499 		ASSERT(0);
5500 		return ERR_PTR(-EINVAL);
5501 	}
5502 
5503 	if (list_empty(&fs_devices->alloc_list)) {
5504 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5505 			btrfs_debug(info, "%s: no writable device", __func__);
5506 		return ERR_PTR(-ENOSPC);
5507 	}
5508 
5509 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5510 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5511 		ASSERT(0);
5512 		return ERR_PTR(-EINVAL);
5513 	}
5514 
5515 	ctl.start = find_next_chunk(info);
5516 	ctl.type = type;
5517 	init_alloc_chunk_ctl(fs_devices, &ctl);
5518 
5519 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5520 			       GFP_NOFS);
5521 	if (!devices_info)
5522 		return ERR_PTR(-ENOMEM);
5523 
5524 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5525 	if (ret < 0) {
5526 		block_group = ERR_PTR(ret);
5527 		goto out;
5528 	}
5529 
5530 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5531 	if (ret < 0) {
5532 		block_group = ERR_PTR(ret);
5533 		goto out;
5534 	}
5535 
5536 	block_group = create_chunk(trans, &ctl, devices_info);
5537 
5538 out:
5539 	kfree(devices_info);
5540 	return block_group;
5541 }
5542 
5543 /*
5544  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5545  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5546  * chunks.
5547  *
5548  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5549  * phases.
5550  */
5551 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5552 				     struct btrfs_block_group *bg)
5553 {
5554 	struct btrfs_fs_info *fs_info = trans->fs_info;
5555 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5556 	struct btrfs_key key;
5557 	struct btrfs_chunk *chunk;
5558 	struct btrfs_stripe *stripe;
5559 	struct extent_map *em;
5560 	struct map_lookup *map;
5561 	size_t item_size;
5562 	int i;
5563 	int ret;
5564 
5565 	/*
5566 	 * We take the chunk_mutex for 2 reasons:
5567 	 *
5568 	 * 1) Updates and insertions in the chunk btree must be done while holding
5569 	 *    the chunk_mutex, as well as updating the system chunk array in the
5570 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5571 	 *    details;
5572 	 *
5573 	 * 2) To prevent races with the final phase of a device replace operation
5574 	 *    that replaces the device object associated with the map's stripes,
5575 	 *    because the device object's id can change at any time during that
5576 	 *    final phase of the device replace operation
5577 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5578 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5579 	 *    which would cause a failure when updating the device item, which does
5580 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5581 	 *    Here we can't use the device_list_mutex because our caller already
5582 	 *    has locked the chunk_mutex, and the final phase of device replace
5583 	 *    acquires both mutexes - first the device_list_mutex and then the
5584 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5585 	 *    concurrent device replace.
5586 	 */
5587 	lockdep_assert_held(&fs_info->chunk_mutex);
5588 
5589 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5590 	if (IS_ERR(em)) {
5591 		ret = PTR_ERR(em);
5592 		btrfs_abort_transaction(trans, ret);
5593 		return ret;
5594 	}
5595 
5596 	map = em->map_lookup;
5597 	item_size = btrfs_chunk_item_size(map->num_stripes);
5598 
5599 	chunk = kzalloc(item_size, GFP_NOFS);
5600 	if (!chunk) {
5601 		ret = -ENOMEM;
5602 		btrfs_abort_transaction(trans, ret);
5603 		goto out;
5604 	}
5605 
5606 	for (i = 0; i < map->num_stripes; i++) {
5607 		struct btrfs_device *device = map->stripes[i].dev;
5608 
5609 		ret = btrfs_update_device(trans, device);
5610 		if (ret)
5611 			goto out;
5612 	}
5613 
5614 	stripe = &chunk->stripe;
5615 	for (i = 0; i < map->num_stripes; i++) {
5616 		struct btrfs_device *device = map->stripes[i].dev;
5617 		const u64 dev_offset = map->stripes[i].physical;
5618 
5619 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5620 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5621 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5622 		stripe++;
5623 	}
5624 
5625 	btrfs_set_stack_chunk_length(chunk, bg->length);
5626 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5627 	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5628 	btrfs_set_stack_chunk_type(chunk, map->type);
5629 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5630 	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5631 	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5632 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5633 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5634 
5635 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5636 	key.type = BTRFS_CHUNK_ITEM_KEY;
5637 	key.offset = bg->start;
5638 
5639 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5640 	if (ret)
5641 		goto out;
5642 
5643 	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5644 
5645 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5646 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5647 		if (ret)
5648 			goto out;
5649 	}
5650 
5651 out:
5652 	kfree(chunk);
5653 	free_extent_map(em);
5654 	return ret;
5655 }
5656 
5657 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5658 {
5659 	struct btrfs_fs_info *fs_info = trans->fs_info;
5660 	u64 alloc_profile;
5661 	struct btrfs_block_group *meta_bg;
5662 	struct btrfs_block_group *sys_bg;
5663 
5664 	/*
5665 	 * When adding a new device for sprouting, the seed device is read-only
5666 	 * so we must first allocate a metadata and a system chunk. But before
5667 	 * adding the block group items to the extent, device and chunk btrees,
5668 	 * we must first:
5669 	 *
5670 	 * 1) Create both chunks without doing any changes to the btrees, as
5671 	 *    otherwise we would get -ENOSPC since the block groups from the
5672 	 *    seed device are read-only;
5673 	 *
5674 	 * 2) Add the device item for the new sprout device - finishing the setup
5675 	 *    of a new block group requires updating the device item in the chunk
5676 	 *    btree, so it must exist when we attempt to do it. The previous step
5677 	 *    ensures this does not fail with -ENOSPC.
5678 	 *
5679 	 * After that we can add the block group items to their btrees:
5680 	 * update existing device item in the chunk btree, add a new block group
5681 	 * item to the extent btree, add a new chunk item to the chunk btree and
5682 	 * finally add the new device extent items to the devices btree.
5683 	 */
5684 
5685 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5686 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5687 	if (IS_ERR(meta_bg))
5688 		return PTR_ERR(meta_bg);
5689 
5690 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5691 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5692 	if (IS_ERR(sys_bg))
5693 		return PTR_ERR(sys_bg);
5694 
5695 	return 0;
5696 }
5697 
5698 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5699 {
5700 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5701 
5702 	return btrfs_raid_array[index].tolerated_failures;
5703 }
5704 
5705 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5706 {
5707 	struct extent_map *em;
5708 	struct map_lookup *map;
5709 	int miss_ndevs = 0;
5710 	int i;
5711 	bool ret = true;
5712 
5713 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5714 	if (IS_ERR(em))
5715 		return false;
5716 
5717 	map = em->map_lookup;
5718 	for (i = 0; i < map->num_stripes; i++) {
5719 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5720 					&map->stripes[i].dev->dev_state)) {
5721 			miss_ndevs++;
5722 			continue;
5723 		}
5724 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5725 					&map->stripes[i].dev->dev_state)) {
5726 			ret = false;
5727 			goto end;
5728 		}
5729 	}
5730 
5731 	/*
5732 	 * If the number of missing devices is larger than max errors, we can
5733 	 * not write the data into that chunk successfully.
5734 	 */
5735 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5736 		ret = false;
5737 end:
5738 	free_extent_map(em);
5739 	return ret;
5740 }
5741 
5742 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5743 {
5744 	struct extent_map *em;
5745 
5746 	while (1) {
5747 		write_lock(&tree->lock);
5748 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5749 		if (em)
5750 			remove_extent_mapping(tree, em);
5751 		write_unlock(&tree->lock);
5752 		if (!em)
5753 			break;
5754 		/* once for us */
5755 		free_extent_map(em);
5756 		/* once for the tree */
5757 		free_extent_map(em);
5758 	}
5759 }
5760 
5761 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5762 {
5763 	struct extent_map *em;
5764 	struct map_lookup *map;
5765 	enum btrfs_raid_types index;
5766 	int ret = 1;
5767 
5768 	em = btrfs_get_chunk_map(fs_info, logical, len);
5769 	if (IS_ERR(em))
5770 		/*
5771 		 * We could return errors for these cases, but that could get
5772 		 * ugly and we'd probably do the same thing which is just not do
5773 		 * anything else and exit, so return 1 so the callers don't try
5774 		 * to use other copies.
5775 		 */
5776 		return 1;
5777 
5778 	map = em->map_lookup;
5779 	index = btrfs_bg_flags_to_raid_index(map->type);
5780 
5781 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5782 	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5783 		ret = btrfs_raid_array[index].ncopies;
5784 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5785 		ret = 2;
5786 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5787 		/*
5788 		 * There could be two corrupted data stripes, we need
5789 		 * to loop retry in order to rebuild the correct data.
5790 		 *
5791 		 * Fail a stripe at a time on every retry except the
5792 		 * stripe under reconstruction.
5793 		 */
5794 		ret = map->num_stripes;
5795 	free_extent_map(em);
5796 	return ret;
5797 }
5798 
5799 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5800 				    u64 logical)
5801 {
5802 	struct extent_map *em;
5803 	struct map_lookup *map;
5804 	unsigned long len = fs_info->sectorsize;
5805 
5806 	if (!btrfs_fs_incompat(fs_info, RAID56))
5807 		return len;
5808 
5809 	em = btrfs_get_chunk_map(fs_info, logical, len);
5810 
5811 	if (!WARN_ON(IS_ERR(em))) {
5812 		map = em->map_lookup;
5813 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5814 			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5815 		free_extent_map(em);
5816 	}
5817 	return len;
5818 }
5819 
5820 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5821 {
5822 	struct extent_map *em;
5823 	struct map_lookup *map;
5824 	int ret = 0;
5825 
5826 	if (!btrfs_fs_incompat(fs_info, RAID56))
5827 		return 0;
5828 
5829 	em = btrfs_get_chunk_map(fs_info, logical, len);
5830 
5831 	if(!WARN_ON(IS_ERR(em))) {
5832 		map = em->map_lookup;
5833 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5834 			ret = 1;
5835 		free_extent_map(em);
5836 	}
5837 	return ret;
5838 }
5839 
5840 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5841 			    struct map_lookup *map, int first,
5842 			    int dev_replace_is_ongoing)
5843 {
5844 	int i;
5845 	int num_stripes;
5846 	int preferred_mirror;
5847 	int tolerance;
5848 	struct btrfs_device *srcdev;
5849 
5850 	ASSERT((map->type &
5851 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5852 
5853 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5854 		num_stripes = map->sub_stripes;
5855 	else
5856 		num_stripes = map->num_stripes;
5857 
5858 	switch (fs_info->fs_devices->read_policy) {
5859 	default:
5860 		/* Shouldn't happen, just warn and use pid instead of failing */
5861 		btrfs_warn_rl(fs_info,
5862 			      "unknown read_policy type %u, reset to pid",
5863 			      fs_info->fs_devices->read_policy);
5864 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5865 		fallthrough;
5866 	case BTRFS_READ_POLICY_PID:
5867 		preferred_mirror = first + (current->pid % num_stripes);
5868 		break;
5869 	}
5870 
5871 	if (dev_replace_is_ongoing &&
5872 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5873 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5874 		srcdev = fs_info->dev_replace.srcdev;
5875 	else
5876 		srcdev = NULL;
5877 
5878 	/*
5879 	 * try to avoid the drive that is the source drive for a
5880 	 * dev-replace procedure, only choose it if no other non-missing
5881 	 * mirror is available
5882 	 */
5883 	for (tolerance = 0; tolerance < 2; tolerance++) {
5884 		if (map->stripes[preferred_mirror].dev->bdev &&
5885 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5886 			return preferred_mirror;
5887 		for (i = first; i < first + num_stripes; i++) {
5888 			if (map->stripes[i].dev->bdev &&
5889 			    (tolerance || map->stripes[i].dev != srcdev))
5890 				return i;
5891 		}
5892 	}
5893 
5894 	/* we couldn't find one that doesn't fail.  Just return something
5895 	 * and the io error handling code will clean up eventually
5896 	 */
5897 	return preferred_mirror;
5898 }
5899 
5900 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5901 						       u16 total_stripes)
5902 {
5903 	struct btrfs_io_context *bioc;
5904 
5905 	bioc = kzalloc(
5906 		 /* The size of btrfs_io_context */
5907 		sizeof(struct btrfs_io_context) +
5908 		/* Plus the variable array for the stripes */
5909 		sizeof(struct btrfs_io_stripe) * (total_stripes),
5910 		GFP_NOFS);
5911 
5912 	if (!bioc)
5913 		return NULL;
5914 
5915 	refcount_set(&bioc->refs, 1);
5916 
5917 	bioc->fs_info = fs_info;
5918 	bioc->replace_stripe_src = -1;
5919 	bioc->full_stripe_logical = (u64)-1;
5920 
5921 	return bioc;
5922 }
5923 
5924 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5925 {
5926 	WARN_ON(!refcount_read(&bioc->refs));
5927 	refcount_inc(&bioc->refs);
5928 }
5929 
5930 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5931 {
5932 	if (!bioc)
5933 		return;
5934 	if (refcount_dec_and_test(&bioc->refs))
5935 		kfree(bioc);
5936 }
5937 
5938 /*
5939  * Please note that, discard won't be sent to target device of device
5940  * replace.
5941  */
5942 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5943 					       u64 logical, u64 *length_ret,
5944 					       u32 *num_stripes)
5945 {
5946 	struct extent_map *em;
5947 	struct map_lookup *map;
5948 	struct btrfs_discard_stripe *stripes;
5949 	u64 length = *length_ret;
5950 	u64 offset;
5951 	u32 stripe_nr;
5952 	u32 stripe_nr_end;
5953 	u32 stripe_cnt;
5954 	u64 stripe_end_offset;
5955 	u64 stripe_offset;
5956 	u32 stripe_index;
5957 	u32 factor = 0;
5958 	u32 sub_stripes = 0;
5959 	u32 stripes_per_dev = 0;
5960 	u32 remaining_stripes = 0;
5961 	u32 last_stripe = 0;
5962 	int ret;
5963 	int i;
5964 
5965 	em = btrfs_get_chunk_map(fs_info, logical, length);
5966 	if (IS_ERR(em))
5967 		return ERR_CAST(em);
5968 
5969 	map = em->map_lookup;
5970 
5971 	/* we don't discard raid56 yet */
5972 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5973 		ret = -EOPNOTSUPP;
5974 		goto out_free_map;
5975 	}
5976 
5977 	offset = logical - em->start;
5978 	length = min_t(u64, em->start + em->len - logical, length);
5979 	*length_ret = length;
5980 
5981 	/*
5982 	 * stripe_nr counts the total number of stripes we have to stride
5983 	 * to get to this block
5984 	 */
5985 	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
5986 
5987 	/* stripe_offset is the offset of this block in its stripe */
5988 	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
5989 
5990 	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
5991 			BTRFS_STRIPE_LEN_SHIFT;
5992 	stripe_cnt = stripe_nr_end - stripe_nr;
5993 	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
5994 			    (offset + length);
5995 	/*
5996 	 * after this, stripe_nr is the number of stripes on this
5997 	 * device we have to walk to find the data, and stripe_index is
5998 	 * the number of our device in the stripe array
5999 	 */
6000 	*num_stripes = 1;
6001 	stripe_index = 0;
6002 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6003 			 BTRFS_BLOCK_GROUP_RAID10)) {
6004 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6005 			sub_stripes = 1;
6006 		else
6007 			sub_stripes = map->sub_stripes;
6008 
6009 		factor = map->num_stripes / sub_stripes;
6010 		*num_stripes = min_t(u64, map->num_stripes,
6011 				    sub_stripes * stripe_cnt);
6012 		stripe_index = stripe_nr % factor;
6013 		stripe_nr /= factor;
6014 		stripe_index *= sub_stripes;
6015 
6016 		remaining_stripes = stripe_cnt % factor;
6017 		stripes_per_dev = stripe_cnt / factor;
6018 		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6019 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6020 				BTRFS_BLOCK_GROUP_DUP)) {
6021 		*num_stripes = map->num_stripes;
6022 	} else {
6023 		stripe_index = stripe_nr % map->num_stripes;
6024 		stripe_nr /= map->num_stripes;
6025 	}
6026 
6027 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6028 	if (!stripes) {
6029 		ret = -ENOMEM;
6030 		goto out_free_map;
6031 	}
6032 
6033 	for (i = 0; i < *num_stripes; i++) {
6034 		stripes[i].physical =
6035 			map->stripes[stripe_index].physical +
6036 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6037 		stripes[i].dev = map->stripes[stripe_index].dev;
6038 
6039 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6040 				 BTRFS_BLOCK_GROUP_RAID10)) {
6041 			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6042 
6043 			if (i / sub_stripes < remaining_stripes)
6044 				stripes[i].length += BTRFS_STRIPE_LEN;
6045 
6046 			/*
6047 			 * Special for the first stripe and
6048 			 * the last stripe:
6049 			 *
6050 			 * |-------|...|-------|
6051 			 *     |----------|
6052 			 *    off     end_off
6053 			 */
6054 			if (i < sub_stripes)
6055 				stripes[i].length -= stripe_offset;
6056 
6057 			if (stripe_index >= last_stripe &&
6058 			    stripe_index <= (last_stripe +
6059 					     sub_stripes - 1))
6060 				stripes[i].length -= stripe_end_offset;
6061 
6062 			if (i == sub_stripes - 1)
6063 				stripe_offset = 0;
6064 		} else {
6065 			stripes[i].length = length;
6066 		}
6067 
6068 		stripe_index++;
6069 		if (stripe_index == map->num_stripes) {
6070 			stripe_index = 0;
6071 			stripe_nr++;
6072 		}
6073 	}
6074 
6075 	free_extent_map(em);
6076 	return stripes;
6077 out_free_map:
6078 	free_extent_map(em);
6079 	return ERR_PTR(ret);
6080 }
6081 
6082 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6083 {
6084 	struct btrfs_block_group *cache;
6085 	bool ret;
6086 
6087 	/* Non zoned filesystem does not use "to_copy" flag */
6088 	if (!btrfs_is_zoned(fs_info))
6089 		return false;
6090 
6091 	cache = btrfs_lookup_block_group(fs_info, logical);
6092 
6093 	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6094 
6095 	btrfs_put_block_group(cache);
6096 	return ret;
6097 }
6098 
6099 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6100 				      struct btrfs_io_context *bioc,
6101 				      struct btrfs_dev_replace *dev_replace,
6102 				      u64 logical,
6103 				      int *num_stripes_ret, int *max_errors_ret)
6104 {
6105 	u64 srcdev_devid = dev_replace->srcdev->devid;
6106 	/*
6107 	 * At this stage, num_stripes is still the real number of stripes,
6108 	 * excluding the duplicated stripes.
6109 	 */
6110 	int num_stripes = *num_stripes_ret;
6111 	int nr_extra_stripes = 0;
6112 	int max_errors = *max_errors_ret;
6113 	int i;
6114 
6115 	/*
6116 	 * A block group which has "to_copy" set will eventually be copied by
6117 	 * the dev-replace process. We can avoid cloning IO here.
6118 	 */
6119 	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6120 		return;
6121 
6122 	/*
6123 	 * Duplicate the write operations while the dev-replace procedure is
6124 	 * running. Since the copying of the old disk to the new disk takes
6125 	 * place at run time while the filesystem is mounted writable, the
6126 	 * regular write operations to the old disk have to be duplicated to go
6127 	 * to the new disk as well.
6128 	 *
6129 	 * Note that device->missing is handled by the caller, and that the
6130 	 * write to the old disk is already set up in the stripes array.
6131 	 */
6132 	for (i = 0; i < num_stripes; i++) {
6133 		struct btrfs_io_stripe *old = &bioc->stripes[i];
6134 		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6135 
6136 		if (old->dev->devid != srcdev_devid)
6137 			continue;
6138 
6139 		new->physical = old->physical;
6140 		new->dev = dev_replace->tgtdev;
6141 		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6142 			bioc->replace_stripe_src = i;
6143 		nr_extra_stripes++;
6144 	}
6145 
6146 	/* We can only have at most 2 extra nr_stripes (for DUP). */
6147 	ASSERT(nr_extra_stripes <= 2);
6148 	/*
6149 	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6150 	 * replace.
6151 	 * If we have 2 extra stripes, only choose the one with smaller physical.
6152 	 */
6153 	if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6154 		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6155 		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6156 
6157 		/* Only DUP can have two extra stripes. */
6158 		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6159 
6160 		/*
6161 		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6162 		 * The extra stripe would still be there, but won't be accessed.
6163 		 */
6164 		if (first->physical > second->physical) {
6165 			swap(second->physical, first->physical);
6166 			swap(second->dev, first->dev);
6167 			nr_extra_stripes--;
6168 		}
6169 	}
6170 
6171 	*num_stripes_ret = num_stripes + nr_extra_stripes;
6172 	*max_errors_ret = max_errors + nr_extra_stripes;
6173 	bioc->replace_nr_stripes = nr_extra_stripes;
6174 }
6175 
6176 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
6177 			    u64 offset, u32 *stripe_nr, u64 *stripe_offset,
6178 			    u64 *full_stripe_start)
6179 {
6180 	/*
6181 	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6182 	 * the offset of this block in its stripe.
6183 	 */
6184 	*stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6185 	*stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6186 	ASSERT(*stripe_offset < U32_MAX);
6187 
6188 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6189 		unsigned long full_stripe_len =
6190 			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6191 
6192 		/*
6193 		 * For full stripe start, we use previously calculated
6194 		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6195 		 * STRIPE_LEN.
6196 		 *
6197 		 * By this we can avoid u64 division completely.  And we have
6198 		 * to go rounddown(), not round_down(), as nr_data_stripes is
6199 		 * not ensured to be power of 2.
6200 		 */
6201 		*full_stripe_start =
6202 			btrfs_stripe_nr_to_offset(
6203 				rounddown(*stripe_nr, nr_data_stripes(map)));
6204 
6205 		ASSERT(*full_stripe_start + full_stripe_len > offset);
6206 		ASSERT(*full_stripe_start <= offset);
6207 		/*
6208 		 * For writes to RAID56, allow to write a full stripe set, but
6209 		 * no straddling of stripe sets.
6210 		 */
6211 		if (op == BTRFS_MAP_WRITE)
6212 			return full_stripe_len - (offset - *full_stripe_start);
6213 	}
6214 
6215 	/*
6216 	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6217 	 * a single disk).
6218 	 */
6219 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6220 		return BTRFS_STRIPE_LEN - *stripe_offset;
6221 	return U64_MAX;
6222 }
6223 
6224 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6225 			  u32 stripe_index, u64 stripe_offset, u32 stripe_nr)
6226 {
6227 	dst->dev = map->stripes[stripe_index].dev;
6228 	dst->physical = map->stripes[stripe_index].physical +
6229 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6230 }
6231 
6232 /*
6233  * Map one logical range to one or more physical ranges.
6234  *
6235  * @length:		(Mandatory) mapped length of this run.
6236  *			One logical range can be split into different segments
6237  *			due to factors like zones and RAID0/5/6/10 stripe
6238  *			boundaries.
6239  *
6240  * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6241  *			which has one or more physical ranges (btrfs_io_stripe)
6242  *			recorded inside.
6243  *			Caller should call btrfs_put_bioc() to free it after use.
6244  *
6245  * @smap:		(Optional) single physical range optimization.
6246  *			If the map request can be fulfilled by one single
6247  *			physical range, and this is parameter is not NULL,
6248  *			then @bioc_ret would be NULL, and @smap would be
6249  *			updated.
6250  *
6251  * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6252  *			value is 0.
6253  *
6254  *			Mirror number 0 means to choose any live mirrors.
6255  *
6256  *			For non-RAID56 profiles, non-zero mirror_num means
6257  *			the Nth mirror. (e.g. mirror_num 1 means the first
6258  *			copy).
6259  *
6260  *			For RAID56 profile, mirror 1 means rebuild from P and
6261  *			the remaining data stripes.
6262  *
6263  *			For RAID6 profile, mirror > 2 means mark another
6264  *			data/P stripe error and rebuild from the remaining
6265  *			stripes..
6266  *
6267  * @need_raid_map:	(Used only for integrity checker) whether the map wants
6268  *                      a full stripe map (including all data and P/Q stripes)
6269  *                      for RAID56. Should always be 1 except integrity checker.
6270  */
6271 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6272 		    u64 logical, u64 *length,
6273 		    struct btrfs_io_context **bioc_ret,
6274 		    struct btrfs_io_stripe *smap, int *mirror_num_ret,
6275 		    int need_raid_map)
6276 {
6277 	struct extent_map *em;
6278 	struct map_lookup *map;
6279 	u64 map_offset;
6280 	u64 stripe_offset;
6281 	u32 stripe_nr;
6282 	u32 stripe_index;
6283 	int data_stripes;
6284 	int i;
6285 	int ret = 0;
6286 	int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6287 	int num_stripes;
6288 	int num_copies;
6289 	int max_errors = 0;
6290 	struct btrfs_io_context *bioc = NULL;
6291 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6292 	int dev_replace_is_ongoing = 0;
6293 	u16 num_alloc_stripes;
6294 	u64 raid56_full_stripe_start = (u64)-1;
6295 	u64 max_len;
6296 
6297 	ASSERT(bioc_ret);
6298 
6299 	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6300 	if (mirror_num > num_copies)
6301 		return -EINVAL;
6302 
6303 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6304 	if (IS_ERR(em))
6305 		return PTR_ERR(em);
6306 
6307 	map = em->map_lookup;
6308 	data_stripes = nr_data_stripes(map);
6309 
6310 	map_offset = logical - em->start;
6311 	max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
6312 				   &stripe_offset, &raid56_full_stripe_start);
6313 	*length = min_t(u64, em->len - map_offset, max_len);
6314 
6315 	down_read(&dev_replace->rwsem);
6316 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6317 	/*
6318 	 * Hold the semaphore for read during the whole operation, write is
6319 	 * requested at commit time but must wait.
6320 	 */
6321 	if (!dev_replace_is_ongoing)
6322 		up_read(&dev_replace->rwsem);
6323 
6324 	num_stripes = 1;
6325 	stripe_index = 0;
6326 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6327 		stripe_index = stripe_nr % map->num_stripes;
6328 		stripe_nr /= map->num_stripes;
6329 		if (op == BTRFS_MAP_READ)
6330 			mirror_num = 1;
6331 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6332 		if (op != BTRFS_MAP_READ) {
6333 			num_stripes = map->num_stripes;
6334 		} else if (mirror_num) {
6335 			stripe_index = mirror_num - 1;
6336 		} else {
6337 			stripe_index = find_live_mirror(fs_info, map, 0,
6338 					    dev_replace_is_ongoing);
6339 			mirror_num = stripe_index + 1;
6340 		}
6341 
6342 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6343 		if (op != BTRFS_MAP_READ) {
6344 			num_stripes = map->num_stripes;
6345 		} else if (mirror_num) {
6346 			stripe_index = mirror_num - 1;
6347 		} else {
6348 			mirror_num = 1;
6349 		}
6350 
6351 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6352 		u32 factor = map->num_stripes / map->sub_stripes;
6353 
6354 		stripe_index = (stripe_nr % factor) * map->sub_stripes;
6355 		stripe_nr /= factor;
6356 
6357 		if (op != BTRFS_MAP_READ)
6358 			num_stripes = map->sub_stripes;
6359 		else if (mirror_num)
6360 			stripe_index += mirror_num - 1;
6361 		else {
6362 			int old_stripe_index = stripe_index;
6363 			stripe_index = find_live_mirror(fs_info, map,
6364 					      stripe_index,
6365 					      dev_replace_is_ongoing);
6366 			mirror_num = stripe_index - old_stripe_index + 1;
6367 		}
6368 
6369 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6370 		if (need_raid_map && (op != BTRFS_MAP_READ || mirror_num > 1)) {
6371 			/*
6372 			 * Push stripe_nr back to the start of the full stripe
6373 			 * For those cases needing a full stripe, @stripe_nr
6374 			 * is the full stripe number.
6375 			 *
6376 			 * Originally we go raid56_full_stripe_start / full_stripe_len,
6377 			 * but that can be expensive.  Here we just divide
6378 			 * @stripe_nr with @data_stripes.
6379 			 */
6380 			stripe_nr /= data_stripes;
6381 
6382 			/* RAID[56] write or recovery. Return all stripes */
6383 			num_stripes = map->num_stripes;
6384 			max_errors = btrfs_chunk_max_errors(map);
6385 
6386 			/* Return the length to the full stripe end */
6387 			*length = min(logical + *length,
6388 				      raid56_full_stripe_start + em->start +
6389 				      btrfs_stripe_nr_to_offset(data_stripes)) -
6390 				  logical;
6391 			stripe_index = 0;
6392 			stripe_offset = 0;
6393 		} else {
6394 			/*
6395 			 * Mirror #0 or #1 means the original data block.
6396 			 * Mirror #2 is RAID5 parity block.
6397 			 * Mirror #3 is RAID6 Q block.
6398 			 */
6399 			stripe_index = stripe_nr % data_stripes;
6400 			stripe_nr /= data_stripes;
6401 			if (mirror_num > 1)
6402 				stripe_index = data_stripes + mirror_num - 2;
6403 
6404 			/* We distribute the parity blocks across stripes */
6405 			stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
6406 			if (op == BTRFS_MAP_READ && mirror_num <= 1)
6407 				mirror_num = 1;
6408 		}
6409 	} else {
6410 		/*
6411 		 * After this, stripe_nr is the number of stripes on this
6412 		 * device we have to walk to find the data, and stripe_index is
6413 		 * the number of our device in the stripe array
6414 		 */
6415 		stripe_index = stripe_nr % map->num_stripes;
6416 		stripe_nr /= map->num_stripes;
6417 		mirror_num = stripe_index + 1;
6418 	}
6419 	if (stripe_index >= map->num_stripes) {
6420 		btrfs_crit(fs_info,
6421 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6422 			   stripe_index, map->num_stripes);
6423 		ret = -EINVAL;
6424 		goto out;
6425 	}
6426 
6427 	num_alloc_stripes = num_stripes;
6428 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6429 	    op != BTRFS_MAP_READ)
6430 		/*
6431 		 * For replace case, we need to add extra stripes for extra
6432 		 * duplicated stripes.
6433 		 *
6434 		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6435 		 * 2 more stripes (DUP types, otherwise 1).
6436 		 */
6437 		num_alloc_stripes += 2;
6438 
6439 	/*
6440 	 * If this I/O maps to a single device, try to return the device and
6441 	 * physical block information on the stack instead of allocating an
6442 	 * I/O context structure.
6443 	 */
6444 	if (smap && num_alloc_stripes == 1 &&
6445 	    !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) {
6446 		set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr);
6447 		if (mirror_num_ret)
6448 			*mirror_num_ret = mirror_num;
6449 		*bioc_ret = NULL;
6450 		ret = 0;
6451 		goto out;
6452 	}
6453 
6454 	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes);
6455 	if (!bioc) {
6456 		ret = -ENOMEM;
6457 		goto out;
6458 	}
6459 	bioc->map_type = map->type;
6460 
6461 	/*
6462 	 * For RAID56 full map, we need to make sure the stripes[] follows the
6463 	 * rule that data stripes are all ordered, then followed with P and Q
6464 	 * (if we have).
6465 	 *
6466 	 * It's still mostly the same as other profiles, just with extra rotation.
6467 	 */
6468 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6469 	    (op != BTRFS_MAP_READ || mirror_num > 1)) {
6470 		/*
6471 		 * For RAID56 @stripe_nr is already the number of full stripes
6472 		 * before us, which is also the rotation value (needs to modulo
6473 		 * with num_stripes).
6474 		 *
6475 		 * In this case, we just add @stripe_nr with @i, then do the
6476 		 * modulo, to reduce one modulo call.
6477 		 */
6478 		bioc->full_stripe_logical = em->start +
6479 			btrfs_stripe_nr_to_offset(stripe_nr * data_stripes);
6480 		for (i = 0; i < num_stripes; i++)
6481 			set_io_stripe(&bioc->stripes[i], map,
6482 				      (i + stripe_nr) % num_stripes,
6483 				      stripe_offset, stripe_nr);
6484 	} else {
6485 		/*
6486 		 * For all other non-RAID56 profiles, just copy the target
6487 		 * stripe into the bioc.
6488 		 */
6489 		for (i = 0; i < num_stripes; i++) {
6490 			set_io_stripe(&bioc->stripes[i], map, stripe_index,
6491 				      stripe_offset, stripe_nr);
6492 			stripe_index++;
6493 		}
6494 	}
6495 
6496 	if (op != BTRFS_MAP_READ)
6497 		max_errors = btrfs_chunk_max_errors(map);
6498 
6499 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6500 	    op != BTRFS_MAP_READ) {
6501 		handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6502 					  &num_stripes, &max_errors);
6503 	}
6504 
6505 	*bioc_ret = bioc;
6506 	bioc->num_stripes = num_stripes;
6507 	bioc->max_errors = max_errors;
6508 	bioc->mirror_num = mirror_num;
6509 
6510 out:
6511 	if (dev_replace_is_ongoing) {
6512 		lockdep_assert_held(&dev_replace->rwsem);
6513 		/* Unlock and let waiting writers proceed */
6514 		up_read(&dev_replace->rwsem);
6515 	}
6516 	free_extent_map(em);
6517 	return ret;
6518 }
6519 
6520 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6521 				      const struct btrfs_fs_devices *fs_devices)
6522 {
6523 	if (args->fsid == NULL)
6524 		return true;
6525 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6526 		return true;
6527 	return false;
6528 }
6529 
6530 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6531 				  const struct btrfs_device *device)
6532 {
6533 	if (args->missing) {
6534 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6535 		    !device->bdev)
6536 			return true;
6537 		return false;
6538 	}
6539 
6540 	if (device->devid != args->devid)
6541 		return false;
6542 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6543 		return false;
6544 	return true;
6545 }
6546 
6547 /*
6548  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6549  * return NULL.
6550  *
6551  * If devid and uuid are both specified, the match must be exact, otherwise
6552  * only devid is used.
6553  */
6554 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6555 				       const struct btrfs_dev_lookup_args *args)
6556 {
6557 	struct btrfs_device *device;
6558 	struct btrfs_fs_devices *seed_devs;
6559 
6560 	if (dev_args_match_fs_devices(args, fs_devices)) {
6561 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6562 			if (dev_args_match_device(args, device))
6563 				return device;
6564 		}
6565 	}
6566 
6567 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6568 		if (!dev_args_match_fs_devices(args, seed_devs))
6569 			continue;
6570 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6571 			if (dev_args_match_device(args, device))
6572 				return device;
6573 		}
6574 	}
6575 
6576 	return NULL;
6577 }
6578 
6579 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6580 					    u64 devid, u8 *dev_uuid)
6581 {
6582 	struct btrfs_device *device;
6583 	unsigned int nofs_flag;
6584 
6585 	/*
6586 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6587 	 * allocation, however we don't want to change btrfs_alloc_device() to
6588 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6589 	 * places.
6590 	 */
6591 
6592 	nofs_flag = memalloc_nofs_save();
6593 	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6594 	memalloc_nofs_restore(nofs_flag);
6595 	if (IS_ERR(device))
6596 		return device;
6597 
6598 	list_add(&device->dev_list, &fs_devices->devices);
6599 	device->fs_devices = fs_devices;
6600 	fs_devices->num_devices++;
6601 
6602 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6603 	fs_devices->missing_devices++;
6604 
6605 	return device;
6606 }
6607 
6608 /*
6609  * Allocate new device struct, set up devid and UUID.
6610  *
6611  * @fs_info:	used only for generating a new devid, can be NULL if
6612  *		devid is provided (i.e. @devid != NULL).
6613  * @devid:	a pointer to devid for this device.  If NULL a new devid
6614  *		is generated.
6615  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6616  *		is generated.
6617  * @path:	a pointer to device path if available, NULL otherwise.
6618  *
6619  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6620  * on error.  Returned struct is not linked onto any lists and must be
6621  * destroyed with btrfs_free_device.
6622  */
6623 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6624 					const u64 *devid, const u8 *uuid,
6625 					const char *path)
6626 {
6627 	struct btrfs_device *dev;
6628 	u64 tmp;
6629 
6630 	if (WARN_ON(!devid && !fs_info))
6631 		return ERR_PTR(-EINVAL);
6632 
6633 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6634 	if (!dev)
6635 		return ERR_PTR(-ENOMEM);
6636 
6637 	INIT_LIST_HEAD(&dev->dev_list);
6638 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6639 	INIT_LIST_HEAD(&dev->post_commit_list);
6640 
6641 	atomic_set(&dev->dev_stats_ccnt, 0);
6642 	btrfs_device_data_ordered_init(dev);
6643 	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6644 
6645 	if (devid)
6646 		tmp = *devid;
6647 	else {
6648 		int ret;
6649 
6650 		ret = find_next_devid(fs_info, &tmp);
6651 		if (ret) {
6652 			btrfs_free_device(dev);
6653 			return ERR_PTR(ret);
6654 		}
6655 	}
6656 	dev->devid = tmp;
6657 
6658 	if (uuid)
6659 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6660 	else
6661 		generate_random_uuid(dev->uuid);
6662 
6663 	if (path) {
6664 		struct rcu_string *name;
6665 
6666 		name = rcu_string_strdup(path, GFP_KERNEL);
6667 		if (!name) {
6668 			btrfs_free_device(dev);
6669 			return ERR_PTR(-ENOMEM);
6670 		}
6671 		rcu_assign_pointer(dev->name, name);
6672 	}
6673 
6674 	return dev;
6675 }
6676 
6677 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6678 					u64 devid, u8 *uuid, bool error)
6679 {
6680 	if (error)
6681 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6682 			      devid, uuid);
6683 	else
6684 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6685 			      devid, uuid);
6686 }
6687 
6688 u64 btrfs_calc_stripe_length(const struct extent_map *em)
6689 {
6690 	const struct map_lookup *map = em->map_lookup;
6691 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6692 
6693 	return div_u64(em->len, data_stripes);
6694 }
6695 
6696 #if BITS_PER_LONG == 32
6697 /*
6698  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6699  * can't be accessed on 32bit systems.
6700  *
6701  * This function do mount time check to reject the fs if it already has
6702  * metadata chunk beyond that limit.
6703  */
6704 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6705 				  u64 logical, u64 length, u64 type)
6706 {
6707 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6708 		return 0;
6709 
6710 	if (logical + length < MAX_LFS_FILESIZE)
6711 		return 0;
6712 
6713 	btrfs_err_32bit_limit(fs_info);
6714 	return -EOVERFLOW;
6715 }
6716 
6717 /*
6718  * This is to give early warning for any metadata chunk reaching
6719  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6720  * Although we can still access the metadata, it's not going to be possible
6721  * once the limit is reached.
6722  */
6723 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6724 				  u64 logical, u64 length, u64 type)
6725 {
6726 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6727 		return;
6728 
6729 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6730 		return;
6731 
6732 	btrfs_warn_32bit_limit(fs_info);
6733 }
6734 #endif
6735 
6736 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6737 						  u64 devid, u8 *uuid)
6738 {
6739 	struct btrfs_device *dev;
6740 
6741 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6742 		btrfs_report_missing_device(fs_info, devid, uuid, true);
6743 		return ERR_PTR(-ENOENT);
6744 	}
6745 
6746 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6747 	if (IS_ERR(dev)) {
6748 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6749 			  devid, PTR_ERR(dev));
6750 		return dev;
6751 	}
6752 	btrfs_report_missing_device(fs_info, devid, uuid, false);
6753 
6754 	return dev;
6755 }
6756 
6757 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6758 			  struct btrfs_chunk *chunk)
6759 {
6760 	BTRFS_DEV_LOOKUP_ARGS(args);
6761 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6762 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6763 	struct map_lookup *map;
6764 	struct extent_map *em;
6765 	u64 logical;
6766 	u64 length;
6767 	u64 devid;
6768 	u64 type;
6769 	u8 uuid[BTRFS_UUID_SIZE];
6770 	int index;
6771 	int num_stripes;
6772 	int ret;
6773 	int i;
6774 
6775 	logical = key->offset;
6776 	length = btrfs_chunk_length(leaf, chunk);
6777 	type = btrfs_chunk_type(leaf, chunk);
6778 	index = btrfs_bg_flags_to_raid_index(type);
6779 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6780 
6781 #if BITS_PER_LONG == 32
6782 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6783 	if (ret < 0)
6784 		return ret;
6785 	warn_32bit_meta_chunk(fs_info, logical, length, type);
6786 #endif
6787 
6788 	/*
6789 	 * Only need to verify chunk item if we're reading from sys chunk array,
6790 	 * as chunk item in tree block is already verified by tree-checker.
6791 	 */
6792 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6793 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6794 		if (ret)
6795 			return ret;
6796 	}
6797 
6798 	read_lock(&map_tree->lock);
6799 	em = lookup_extent_mapping(map_tree, logical, 1);
6800 	read_unlock(&map_tree->lock);
6801 
6802 	/* already mapped? */
6803 	if (em && em->start <= logical && em->start + em->len > logical) {
6804 		free_extent_map(em);
6805 		return 0;
6806 	} else if (em) {
6807 		free_extent_map(em);
6808 	}
6809 
6810 	em = alloc_extent_map();
6811 	if (!em)
6812 		return -ENOMEM;
6813 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6814 	if (!map) {
6815 		free_extent_map(em);
6816 		return -ENOMEM;
6817 	}
6818 
6819 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6820 	em->map_lookup = map;
6821 	em->start = logical;
6822 	em->len = length;
6823 	em->orig_start = 0;
6824 	em->block_start = 0;
6825 	em->block_len = em->len;
6826 
6827 	map->num_stripes = num_stripes;
6828 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6829 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6830 	map->type = type;
6831 	/*
6832 	 * We can't use the sub_stripes value, as for profiles other than
6833 	 * RAID10, they may have 0 as sub_stripes for filesystems created by
6834 	 * older mkfs (<v5.4).
6835 	 * In that case, it can cause divide-by-zero errors later.
6836 	 * Since currently sub_stripes is fixed for each profile, let's
6837 	 * use the trusted value instead.
6838 	 */
6839 	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6840 	map->verified_stripes = 0;
6841 	em->orig_block_len = btrfs_calc_stripe_length(em);
6842 	for (i = 0; i < num_stripes; i++) {
6843 		map->stripes[i].physical =
6844 			btrfs_stripe_offset_nr(leaf, chunk, i);
6845 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6846 		args.devid = devid;
6847 		read_extent_buffer(leaf, uuid, (unsigned long)
6848 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6849 				   BTRFS_UUID_SIZE);
6850 		args.uuid = uuid;
6851 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6852 		if (!map->stripes[i].dev) {
6853 			map->stripes[i].dev = handle_missing_device(fs_info,
6854 								    devid, uuid);
6855 			if (IS_ERR(map->stripes[i].dev)) {
6856 				ret = PTR_ERR(map->stripes[i].dev);
6857 				free_extent_map(em);
6858 				return ret;
6859 			}
6860 		}
6861 
6862 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6863 				&(map->stripes[i].dev->dev_state));
6864 	}
6865 
6866 	write_lock(&map_tree->lock);
6867 	ret = add_extent_mapping(map_tree, em, 0);
6868 	write_unlock(&map_tree->lock);
6869 	if (ret < 0) {
6870 		btrfs_err(fs_info,
6871 			  "failed to add chunk map, start=%llu len=%llu: %d",
6872 			  em->start, em->len, ret);
6873 	}
6874 	free_extent_map(em);
6875 
6876 	return ret;
6877 }
6878 
6879 static void fill_device_from_item(struct extent_buffer *leaf,
6880 				 struct btrfs_dev_item *dev_item,
6881 				 struct btrfs_device *device)
6882 {
6883 	unsigned long ptr;
6884 
6885 	device->devid = btrfs_device_id(leaf, dev_item);
6886 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6887 	device->total_bytes = device->disk_total_bytes;
6888 	device->commit_total_bytes = device->disk_total_bytes;
6889 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6890 	device->commit_bytes_used = device->bytes_used;
6891 	device->type = btrfs_device_type(leaf, dev_item);
6892 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6893 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6894 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6895 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6896 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6897 
6898 	ptr = btrfs_device_uuid(dev_item);
6899 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6900 }
6901 
6902 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6903 						  u8 *fsid)
6904 {
6905 	struct btrfs_fs_devices *fs_devices;
6906 	int ret;
6907 
6908 	lockdep_assert_held(&uuid_mutex);
6909 	ASSERT(fsid);
6910 
6911 	/* This will match only for multi-device seed fs */
6912 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6913 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6914 			return fs_devices;
6915 
6916 
6917 	fs_devices = find_fsid(fsid, NULL);
6918 	if (!fs_devices) {
6919 		if (!btrfs_test_opt(fs_info, DEGRADED))
6920 			return ERR_PTR(-ENOENT);
6921 
6922 		fs_devices = alloc_fs_devices(fsid, NULL);
6923 		if (IS_ERR(fs_devices))
6924 			return fs_devices;
6925 
6926 		fs_devices->seeding = true;
6927 		fs_devices->opened = 1;
6928 		return fs_devices;
6929 	}
6930 
6931 	/*
6932 	 * Upon first call for a seed fs fsid, just create a private copy of the
6933 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6934 	 */
6935 	fs_devices = clone_fs_devices(fs_devices);
6936 	if (IS_ERR(fs_devices))
6937 		return fs_devices;
6938 
6939 	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
6940 	if (ret) {
6941 		free_fs_devices(fs_devices);
6942 		return ERR_PTR(ret);
6943 	}
6944 
6945 	if (!fs_devices->seeding) {
6946 		close_fs_devices(fs_devices);
6947 		free_fs_devices(fs_devices);
6948 		return ERR_PTR(-EINVAL);
6949 	}
6950 
6951 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6952 
6953 	return fs_devices;
6954 }
6955 
6956 static int read_one_dev(struct extent_buffer *leaf,
6957 			struct btrfs_dev_item *dev_item)
6958 {
6959 	BTRFS_DEV_LOOKUP_ARGS(args);
6960 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6961 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6962 	struct btrfs_device *device;
6963 	u64 devid;
6964 	int ret;
6965 	u8 fs_uuid[BTRFS_FSID_SIZE];
6966 	u8 dev_uuid[BTRFS_UUID_SIZE];
6967 
6968 	devid = btrfs_device_id(leaf, dev_item);
6969 	args.devid = devid;
6970 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6971 			   BTRFS_UUID_SIZE);
6972 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6973 			   BTRFS_FSID_SIZE);
6974 	args.uuid = dev_uuid;
6975 	args.fsid = fs_uuid;
6976 
6977 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6978 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6979 		if (IS_ERR(fs_devices))
6980 			return PTR_ERR(fs_devices);
6981 	}
6982 
6983 	device = btrfs_find_device(fs_info->fs_devices, &args);
6984 	if (!device) {
6985 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6986 			btrfs_report_missing_device(fs_info, devid,
6987 							dev_uuid, true);
6988 			return -ENOENT;
6989 		}
6990 
6991 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6992 		if (IS_ERR(device)) {
6993 			btrfs_err(fs_info,
6994 				"failed to add missing dev %llu: %ld",
6995 				devid, PTR_ERR(device));
6996 			return PTR_ERR(device);
6997 		}
6998 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6999 	} else {
7000 		if (!device->bdev) {
7001 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7002 				btrfs_report_missing_device(fs_info,
7003 						devid, dev_uuid, true);
7004 				return -ENOENT;
7005 			}
7006 			btrfs_report_missing_device(fs_info, devid,
7007 							dev_uuid, false);
7008 		}
7009 
7010 		if (!device->bdev &&
7011 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7012 			/*
7013 			 * this happens when a device that was properly setup
7014 			 * in the device info lists suddenly goes bad.
7015 			 * device->bdev is NULL, and so we have to set
7016 			 * device->missing to one here
7017 			 */
7018 			device->fs_devices->missing_devices++;
7019 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7020 		}
7021 
7022 		/* Move the device to its own fs_devices */
7023 		if (device->fs_devices != fs_devices) {
7024 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7025 							&device->dev_state));
7026 
7027 			list_move(&device->dev_list, &fs_devices->devices);
7028 			device->fs_devices->num_devices--;
7029 			fs_devices->num_devices++;
7030 
7031 			device->fs_devices->missing_devices--;
7032 			fs_devices->missing_devices++;
7033 
7034 			device->fs_devices = fs_devices;
7035 		}
7036 	}
7037 
7038 	if (device->fs_devices != fs_info->fs_devices) {
7039 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7040 		if (device->generation !=
7041 		    btrfs_device_generation(leaf, dev_item))
7042 			return -EINVAL;
7043 	}
7044 
7045 	fill_device_from_item(leaf, dev_item, device);
7046 	if (device->bdev) {
7047 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7048 
7049 		if (device->total_bytes > max_total_bytes) {
7050 			btrfs_err(fs_info,
7051 			"device total_bytes should be at most %llu but found %llu",
7052 				  max_total_bytes, device->total_bytes);
7053 			return -EINVAL;
7054 		}
7055 	}
7056 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7057 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7058 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7059 		device->fs_devices->total_rw_bytes += device->total_bytes;
7060 		atomic64_add(device->total_bytes - device->bytes_used,
7061 				&fs_info->free_chunk_space);
7062 	}
7063 	ret = 0;
7064 	return ret;
7065 }
7066 
7067 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7068 {
7069 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7070 	struct extent_buffer *sb;
7071 	struct btrfs_disk_key *disk_key;
7072 	struct btrfs_chunk *chunk;
7073 	u8 *array_ptr;
7074 	unsigned long sb_array_offset;
7075 	int ret = 0;
7076 	u32 num_stripes;
7077 	u32 array_size;
7078 	u32 len = 0;
7079 	u32 cur_offset;
7080 	u64 type;
7081 	struct btrfs_key key;
7082 
7083 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7084 
7085 	/*
7086 	 * We allocated a dummy extent, just to use extent buffer accessors.
7087 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7088 	 * that's fine, we will not go beyond system chunk array anyway.
7089 	 */
7090 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7091 	if (!sb)
7092 		return -ENOMEM;
7093 	set_extent_buffer_uptodate(sb);
7094 
7095 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7096 	array_size = btrfs_super_sys_array_size(super_copy);
7097 
7098 	array_ptr = super_copy->sys_chunk_array;
7099 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7100 	cur_offset = 0;
7101 
7102 	while (cur_offset < array_size) {
7103 		disk_key = (struct btrfs_disk_key *)array_ptr;
7104 		len = sizeof(*disk_key);
7105 		if (cur_offset + len > array_size)
7106 			goto out_short_read;
7107 
7108 		btrfs_disk_key_to_cpu(&key, disk_key);
7109 
7110 		array_ptr += len;
7111 		sb_array_offset += len;
7112 		cur_offset += len;
7113 
7114 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7115 			btrfs_err(fs_info,
7116 			    "unexpected item type %u in sys_array at offset %u",
7117 				  (u32)key.type, cur_offset);
7118 			ret = -EIO;
7119 			break;
7120 		}
7121 
7122 		chunk = (struct btrfs_chunk *)sb_array_offset;
7123 		/*
7124 		 * At least one btrfs_chunk with one stripe must be present,
7125 		 * exact stripe count check comes afterwards
7126 		 */
7127 		len = btrfs_chunk_item_size(1);
7128 		if (cur_offset + len > array_size)
7129 			goto out_short_read;
7130 
7131 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7132 		if (!num_stripes) {
7133 			btrfs_err(fs_info,
7134 			"invalid number of stripes %u in sys_array at offset %u",
7135 				  num_stripes, cur_offset);
7136 			ret = -EIO;
7137 			break;
7138 		}
7139 
7140 		type = btrfs_chunk_type(sb, chunk);
7141 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7142 			btrfs_err(fs_info,
7143 			"invalid chunk type %llu in sys_array at offset %u",
7144 				  type, cur_offset);
7145 			ret = -EIO;
7146 			break;
7147 		}
7148 
7149 		len = btrfs_chunk_item_size(num_stripes);
7150 		if (cur_offset + len > array_size)
7151 			goto out_short_read;
7152 
7153 		ret = read_one_chunk(&key, sb, chunk);
7154 		if (ret)
7155 			break;
7156 
7157 		array_ptr += len;
7158 		sb_array_offset += len;
7159 		cur_offset += len;
7160 	}
7161 	clear_extent_buffer_uptodate(sb);
7162 	free_extent_buffer_stale(sb);
7163 	return ret;
7164 
7165 out_short_read:
7166 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7167 			len, cur_offset);
7168 	clear_extent_buffer_uptodate(sb);
7169 	free_extent_buffer_stale(sb);
7170 	return -EIO;
7171 }
7172 
7173 /*
7174  * Check if all chunks in the fs are OK for read-write degraded mount
7175  *
7176  * If the @failing_dev is specified, it's accounted as missing.
7177  *
7178  * Return true if all chunks meet the minimal RW mount requirements.
7179  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7180  */
7181 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7182 					struct btrfs_device *failing_dev)
7183 {
7184 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7185 	struct extent_map *em;
7186 	u64 next_start = 0;
7187 	bool ret = true;
7188 
7189 	read_lock(&map_tree->lock);
7190 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7191 	read_unlock(&map_tree->lock);
7192 	/* No chunk at all? Return false anyway */
7193 	if (!em) {
7194 		ret = false;
7195 		goto out;
7196 	}
7197 	while (em) {
7198 		struct map_lookup *map;
7199 		int missing = 0;
7200 		int max_tolerated;
7201 		int i;
7202 
7203 		map = em->map_lookup;
7204 		max_tolerated =
7205 			btrfs_get_num_tolerated_disk_barrier_failures(
7206 					map->type);
7207 		for (i = 0; i < map->num_stripes; i++) {
7208 			struct btrfs_device *dev = map->stripes[i].dev;
7209 
7210 			if (!dev || !dev->bdev ||
7211 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7212 			    dev->last_flush_error)
7213 				missing++;
7214 			else if (failing_dev && failing_dev == dev)
7215 				missing++;
7216 		}
7217 		if (missing > max_tolerated) {
7218 			if (!failing_dev)
7219 				btrfs_warn(fs_info,
7220 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7221 				   em->start, missing, max_tolerated);
7222 			free_extent_map(em);
7223 			ret = false;
7224 			goto out;
7225 		}
7226 		next_start = extent_map_end(em);
7227 		free_extent_map(em);
7228 
7229 		read_lock(&map_tree->lock);
7230 		em = lookup_extent_mapping(map_tree, next_start,
7231 					   (u64)(-1) - next_start);
7232 		read_unlock(&map_tree->lock);
7233 	}
7234 out:
7235 	return ret;
7236 }
7237 
7238 static void readahead_tree_node_children(struct extent_buffer *node)
7239 {
7240 	int i;
7241 	const int nr_items = btrfs_header_nritems(node);
7242 
7243 	for (i = 0; i < nr_items; i++)
7244 		btrfs_readahead_node_child(node, i);
7245 }
7246 
7247 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7248 {
7249 	struct btrfs_root *root = fs_info->chunk_root;
7250 	struct btrfs_path *path;
7251 	struct extent_buffer *leaf;
7252 	struct btrfs_key key;
7253 	struct btrfs_key found_key;
7254 	int ret;
7255 	int slot;
7256 	int iter_ret = 0;
7257 	u64 total_dev = 0;
7258 	u64 last_ra_node = 0;
7259 
7260 	path = btrfs_alloc_path();
7261 	if (!path)
7262 		return -ENOMEM;
7263 
7264 	/*
7265 	 * uuid_mutex is needed only if we are mounting a sprout FS
7266 	 * otherwise we don't need it.
7267 	 */
7268 	mutex_lock(&uuid_mutex);
7269 
7270 	/*
7271 	 * It is possible for mount and umount to race in such a way that
7272 	 * we execute this code path, but open_fs_devices failed to clear
7273 	 * total_rw_bytes. We certainly want it cleared before reading the
7274 	 * device items, so clear it here.
7275 	 */
7276 	fs_info->fs_devices->total_rw_bytes = 0;
7277 
7278 	/*
7279 	 * Lockdep complains about possible circular locking dependency between
7280 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7281 	 * used for freeze procection of a fs (struct super_block.s_writers),
7282 	 * which we take when starting a transaction, and extent buffers of the
7283 	 * chunk tree if we call read_one_dev() while holding a lock on an
7284 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7285 	 * and at this point there can't be any concurrent task modifying the
7286 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7287 	 */
7288 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7289 	path->skip_locking = 1;
7290 
7291 	/*
7292 	 * Read all device items, and then all the chunk items. All
7293 	 * device items are found before any chunk item (their object id
7294 	 * is smaller than the lowest possible object id for a chunk
7295 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7296 	 */
7297 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7298 	key.offset = 0;
7299 	key.type = 0;
7300 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7301 		struct extent_buffer *node = path->nodes[1];
7302 
7303 		leaf = path->nodes[0];
7304 		slot = path->slots[0];
7305 
7306 		if (node) {
7307 			if (last_ra_node != node->start) {
7308 				readahead_tree_node_children(node);
7309 				last_ra_node = node->start;
7310 			}
7311 		}
7312 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7313 			struct btrfs_dev_item *dev_item;
7314 			dev_item = btrfs_item_ptr(leaf, slot,
7315 						  struct btrfs_dev_item);
7316 			ret = read_one_dev(leaf, dev_item);
7317 			if (ret)
7318 				goto error;
7319 			total_dev++;
7320 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7321 			struct btrfs_chunk *chunk;
7322 
7323 			/*
7324 			 * We are only called at mount time, so no need to take
7325 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7326 			 * we always lock first fs_info->chunk_mutex before
7327 			 * acquiring any locks on the chunk tree. This is a
7328 			 * requirement for chunk allocation, see the comment on
7329 			 * top of btrfs_chunk_alloc() for details.
7330 			 */
7331 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7332 			ret = read_one_chunk(&found_key, leaf, chunk);
7333 			if (ret)
7334 				goto error;
7335 		}
7336 	}
7337 	/* Catch error found during iteration */
7338 	if (iter_ret < 0) {
7339 		ret = iter_ret;
7340 		goto error;
7341 	}
7342 
7343 	/*
7344 	 * After loading chunk tree, we've got all device information,
7345 	 * do another round of validation checks.
7346 	 */
7347 	if (total_dev != fs_info->fs_devices->total_devices) {
7348 		btrfs_warn(fs_info,
7349 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7350 			  btrfs_super_num_devices(fs_info->super_copy),
7351 			  total_dev);
7352 		fs_info->fs_devices->total_devices = total_dev;
7353 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7354 	}
7355 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7356 	    fs_info->fs_devices->total_rw_bytes) {
7357 		btrfs_err(fs_info,
7358 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7359 			  btrfs_super_total_bytes(fs_info->super_copy),
7360 			  fs_info->fs_devices->total_rw_bytes);
7361 		ret = -EINVAL;
7362 		goto error;
7363 	}
7364 	ret = 0;
7365 error:
7366 	mutex_unlock(&uuid_mutex);
7367 
7368 	btrfs_free_path(path);
7369 	return ret;
7370 }
7371 
7372 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7373 {
7374 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7375 	struct btrfs_device *device;
7376 	int ret = 0;
7377 
7378 	fs_devices->fs_info = fs_info;
7379 
7380 	mutex_lock(&fs_devices->device_list_mutex);
7381 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7382 		device->fs_info = fs_info;
7383 
7384 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7385 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7386 			device->fs_info = fs_info;
7387 			ret = btrfs_get_dev_zone_info(device, false);
7388 			if (ret)
7389 				break;
7390 		}
7391 
7392 		seed_devs->fs_info = fs_info;
7393 	}
7394 	mutex_unlock(&fs_devices->device_list_mutex);
7395 
7396 	return ret;
7397 }
7398 
7399 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7400 				 const struct btrfs_dev_stats_item *ptr,
7401 				 int index)
7402 {
7403 	u64 val;
7404 
7405 	read_extent_buffer(eb, &val,
7406 			   offsetof(struct btrfs_dev_stats_item, values) +
7407 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7408 			   sizeof(val));
7409 	return val;
7410 }
7411 
7412 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7413 				      struct btrfs_dev_stats_item *ptr,
7414 				      int index, u64 val)
7415 {
7416 	write_extent_buffer(eb, &val,
7417 			    offsetof(struct btrfs_dev_stats_item, values) +
7418 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7419 			    sizeof(val));
7420 }
7421 
7422 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7423 				       struct btrfs_path *path)
7424 {
7425 	struct btrfs_dev_stats_item *ptr;
7426 	struct extent_buffer *eb;
7427 	struct btrfs_key key;
7428 	int item_size;
7429 	int i, ret, slot;
7430 
7431 	if (!device->fs_info->dev_root)
7432 		return 0;
7433 
7434 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7435 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7436 	key.offset = device->devid;
7437 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7438 	if (ret) {
7439 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7440 			btrfs_dev_stat_set(device, i, 0);
7441 		device->dev_stats_valid = 1;
7442 		btrfs_release_path(path);
7443 		return ret < 0 ? ret : 0;
7444 	}
7445 	slot = path->slots[0];
7446 	eb = path->nodes[0];
7447 	item_size = btrfs_item_size(eb, slot);
7448 
7449 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7450 
7451 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7452 		if (item_size >= (1 + i) * sizeof(__le64))
7453 			btrfs_dev_stat_set(device, i,
7454 					   btrfs_dev_stats_value(eb, ptr, i));
7455 		else
7456 			btrfs_dev_stat_set(device, i, 0);
7457 	}
7458 
7459 	device->dev_stats_valid = 1;
7460 	btrfs_dev_stat_print_on_load(device);
7461 	btrfs_release_path(path);
7462 
7463 	return 0;
7464 }
7465 
7466 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7467 {
7468 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7469 	struct btrfs_device *device;
7470 	struct btrfs_path *path = NULL;
7471 	int ret = 0;
7472 
7473 	path = btrfs_alloc_path();
7474 	if (!path)
7475 		return -ENOMEM;
7476 
7477 	mutex_lock(&fs_devices->device_list_mutex);
7478 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7479 		ret = btrfs_device_init_dev_stats(device, path);
7480 		if (ret)
7481 			goto out;
7482 	}
7483 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7484 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7485 			ret = btrfs_device_init_dev_stats(device, path);
7486 			if (ret)
7487 				goto out;
7488 		}
7489 	}
7490 out:
7491 	mutex_unlock(&fs_devices->device_list_mutex);
7492 
7493 	btrfs_free_path(path);
7494 	return ret;
7495 }
7496 
7497 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7498 				struct btrfs_device *device)
7499 {
7500 	struct btrfs_fs_info *fs_info = trans->fs_info;
7501 	struct btrfs_root *dev_root = fs_info->dev_root;
7502 	struct btrfs_path *path;
7503 	struct btrfs_key key;
7504 	struct extent_buffer *eb;
7505 	struct btrfs_dev_stats_item *ptr;
7506 	int ret;
7507 	int i;
7508 
7509 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7510 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7511 	key.offset = device->devid;
7512 
7513 	path = btrfs_alloc_path();
7514 	if (!path)
7515 		return -ENOMEM;
7516 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7517 	if (ret < 0) {
7518 		btrfs_warn_in_rcu(fs_info,
7519 			"error %d while searching for dev_stats item for device %s",
7520 				  ret, btrfs_dev_name(device));
7521 		goto out;
7522 	}
7523 
7524 	if (ret == 0 &&
7525 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7526 		/* need to delete old one and insert a new one */
7527 		ret = btrfs_del_item(trans, dev_root, path);
7528 		if (ret != 0) {
7529 			btrfs_warn_in_rcu(fs_info,
7530 				"delete too small dev_stats item for device %s failed %d",
7531 					  btrfs_dev_name(device), ret);
7532 			goto out;
7533 		}
7534 		ret = 1;
7535 	}
7536 
7537 	if (ret == 1) {
7538 		/* need to insert a new item */
7539 		btrfs_release_path(path);
7540 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7541 					      &key, sizeof(*ptr));
7542 		if (ret < 0) {
7543 			btrfs_warn_in_rcu(fs_info,
7544 				"insert dev_stats item for device %s failed %d",
7545 				btrfs_dev_name(device), ret);
7546 			goto out;
7547 		}
7548 	}
7549 
7550 	eb = path->nodes[0];
7551 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7552 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7553 		btrfs_set_dev_stats_value(eb, ptr, i,
7554 					  btrfs_dev_stat_read(device, i));
7555 	btrfs_mark_buffer_dirty(trans, eb);
7556 
7557 out:
7558 	btrfs_free_path(path);
7559 	return ret;
7560 }
7561 
7562 /*
7563  * called from commit_transaction. Writes all changed device stats to disk.
7564  */
7565 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7566 {
7567 	struct btrfs_fs_info *fs_info = trans->fs_info;
7568 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7569 	struct btrfs_device *device;
7570 	int stats_cnt;
7571 	int ret = 0;
7572 
7573 	mutex_lock(&fs_devices->device_list_mutex);
7574 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7575 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7576 		if (!device->dev_stats_valid || stats_cnt == 0)
7577 			continue;
7578 
7579 
7580 		/*
7581 		 * There is a LOAD-LOAD control dependency between the value of
7582 		 * dev_stats_ccnt and updating the on-disk values which requires
7583 		 * reading the in-memory counters. Such control dependencies
7584 		 * require explicit read memory barriers.
7585 		 *
7586 		 * This memory barriers pairs with smp_mb__before_atomic in
7587 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7588 		 * barrier implied by atomic_xchg in
7589 		 * btrfs_dev_stats_read_and_reset
7590 		 */
7591 		smp_rmb();
7592 
7593 		ret = update_dev_stat_item(trans, device);
7594 		if (!ret)
7595 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7596 	}
7597 	mutex_unlock(&fs_devices->device_list_mutex);
7598 
7599 	return ret;
7600 }
7601 
7602 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7603 {
7604 	btrfs_dev_stat_inc(dev, index);
7605 
7606 	if (!dev->dev_stats_valid)
7607 		return;
7608 	btrfs_err_rl_in_rcu(dev->fs_info,
7609 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7610 			   btrfs_dev_name(dev),
7611 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7612 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7613 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7614 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7615 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7616 }
7617 
7618 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7619 {
7620 	int i;
7621 
7622 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7623 		if (btrfs_dev_stat_read(dev, i) != 0)
7624 			break;
7625 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7626 		return; /* all values == 0, suppress message */
7627 
7628 	btrfs_info_in_rcu(dev->fs_info,
7629 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7630 	       btrfs_dev_name(dev),
7631 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7632 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7633 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7634 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7635 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7636 }
7637 
7638 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7639 			struct btrfs_ioctl_get_dev_stats *stats)
7640 {
7641 	BTRFS_DEV_LOOKUP_ARGS(args);
7642 	struct btrfs_device *dev;
7643 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7644 	int i;
7645 
7646 	mutex_lock(&fs_devices->device_list_mutex);
7647 	args.devid = stats->devid;
7648 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7649 	mutex_unlock(&fs_devices->device_list_mutex);
7650 
7651 	if (!dev) {
7652 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7653 		return -ENODEV;
7654 	} else if (!dev->dev_stats_valid) {
7655 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7656 		return -ENODEV;
7657 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7658 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7659 			if (stats->nr_items > i)
7660 				stats->values[i] =
7661 					btrfs_dev_stat_read_and_reset(dev, i);
7662 			else
7663 				btrfs_dev_stat_set(dev, i, 0);
7664 		}
7665 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7666 			   current->comm, task_pid_nr(current));
7667 	} else {
7668 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7669 			if (stats->nr_items > i)
7670 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7671 	}
7672 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7673 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7674 	return 0;
7675 }
7676 
7677 /*
7678  * Update the size and bytes used for each device where it changed.  This is
7679  * delayed since we would otherwise get errors while writing out the
7680  * superblocks.
7681  *
7682  * Must be invoked during transaction commit.
7683  */
7684 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7685 {
7686 	struct btrfs_device *curr, *next;
7687 
7688 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7689 
7690 	if (list_empty(&trans->dev_update_list))
7691 		return;
7692 
7693 	/*
7694 	 * We don't need the device_list_mutex here.  This list is owned by the
7695 	 * transaction and the transaction must complete before the device is
7696 	 * released.
7697 	 */
7698 	mutex_lock(&trans->fs_info->chunk_mutex);
7699 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7700 				 post_commit_list) {
7701 		list_del_init(&curr->post_commit_list);
7702 		curr->commit_total_bytes = curr->disk_total_bytes;
7703 		curr->commit_bytes_used = curr->bytes_used;
7704 	}
7705 	mutex_unlock(&trans->fs_info->chunk_mutex);
7706 }
7707 
7708 /*
7709  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7710  */
7711 int btrfs_bg_type_to_factor(u64 flags)
7712 {
7713 	const int index = btrfs_bg_flags_to_raid_index(flags);
7714 
7715 	return btrfs_raid_array[index].ncopies;
7716 }
7717 
7718 
7719 
7720 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7721 				 u64 chunk_offset, u64 devid,
7722 				 u64 physical_offset, u64 physical_len)
7723 {
7724 	struct btrfs_dev_lookup_args args = { .devid = devid };
7725 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7726 	struct extent_map *em;
7727 	struct map_lookup *map;
7728 	struct btrfs_device *dev;
7729 	u64 stripe_len;
7730 	bool found = false;
7731 	int ret = 0;
7732 	int i;
7733 
7734 	read_lock(&em_tree->lock);
7735 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7736 	read_unlock(&em_tree->lock);
7737 
7738 	if (!em) {
7739 		btrfs_err(fs_info,
7740 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7741 			  physical_offset, devid);
7742 		ret = -EUCLEAN;
7743 		goto out;
7744 	}
7745 
7746 	map = em->map_lookup;
7747 	stripe_len = btrfs_calc_stripe_length(em);
7748 	if (physical_len != stripe_len) {
7749 		btrfs_err(fs_info,
7750 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7751 			  physical_offset, devid, em->start, physical_len,
7752 			  stripe_len);
7753 		ret = -EUCLEAN;
7754 		goto out;
7755 	}
7756 
7757 	/*
7758 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7759 	 * space. Although kernel can handle it without problem, better to warn
7760 	 * the users.
7761 	 */
7762 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7763 		btrfs_warn(fs_info,
7764 		"devid %llu physical %llu len %llu inside the reserved space",
7765 			   devid, physical_offset, physical_len);
7766 
7767 	for (i = 0; i < map->num_stripes; i++) {
7768 		if (map->stripes[i].dev->devid == devid &&
7769 		    map->stripes[i].physical == physical_offset) {
7770 			found = true;
7771 			if (map->verified_stripes >= map->num_stripes) {
7772 				btrfs_err(fs_info,
7773 				"too many dev extents for chunk %llu found",
7774 					  em->start);
7775 				ret = -EUCLEAN;
7776 				goto out;
7777 			}
7778 			map->verified_stripes++;
7779 			break;
7780 		}
7781 	}
7782 	if (!found) {
7783 		btrfs_err(fs_info,
7784 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7785 			physical_offset, devid);
7786 		ret = -EUCLEAN;
7787 	}
7788 
7789 	/* Make sure no dev extent is beyond device boundary */
7790 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7791 	if (!dev) {
7792 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7793 		ret = -EUCLEAN;
7794 		goto out;
7795 	}
7796 
7797 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7798 		btrfs_err(fs_info,
7799 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7800 			  devid, physical_offset, physical_len,
7801 			  dev->disk_total_bytes);
7802 		ret = -EUCLEAN;
7803 		goto out;
7804 	}
7805 
7806 	if (dev->zone_info) {
7807 		u64 zone_size = dev->zone_info->zone_size;
7808 
7809 		if (!IS_ALIGNED(physical_offset, zone_size) ||
7810 		    !IS_ALIGNED(physical_len, zone_size)) {
7811 			btrfs_err(fs_info,
7812 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7813 				  devid, physical_offset, physical_len);
7814 			ret = -EUCLEAN;
7815 			goto out;
7816 		}
7817 	}
7818 
7819 out:
7820 	free_extent_map(em);
7821 	return ret;
7822 }
7823 
7824 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7825 {
7826 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7827 	struct extent_map *em;
7828 	struct rb_node *node;
7829 	int ret = 0;
7830 
7831 	read_lock(&em_tree->lock);
7832 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7833 		em = rb_entry(node, struct extent_map, rb_node);
7834 		if (em->map_lookup->num_stripes !=
7835 		    em->map_lookup->verified_stripes) {
7836 			btrfs_err(fs_info,
7837 			"chunk %llu has missing dev extent, have %d expect %d",
7838 				  em->start, em->map_lookup->verified_stripes,
7839 				  em->map_lookup->num_stripes);
7840 			ret = -EUCLEAN;
7841 			goto out;
7842 		}
7843 	}
7844 out:
7845 	read_unlock(&em_tree->lock);
7846 	return ret;
7847 }
7848 
7849 /*
7850  * Ensure that all dev extents are mapped to correct chunk, otherwise
7851  * later chunk allocation/free would cause unexpected behavior.
7852  *
7853  * NOTE: This will iterate through the whole device tree, which should be of
7854  * the same size level as the chunk tree.  This slightly increases mount time.
7855  */
7856 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7857 {
7858 	struct btrfs_path *path;
7859 	struct btrfs_root *root = fs_info->dev_root;
7860 	struct btrfs_key key;
7861 	u64 prev_devid = 0;
7862 	u64 prev_dev_ext_end = 0;
7863 	int ret = 0;
7864 
7865 	/*
7866 	 * We don't have a dev_root because we mounted with ignorebadroots and
7867 	 * failed to load the root, so we want to skip the verification in this
7868 	 * case for sure.
7869 	 *
7870 	 * However if the dev root is fine, but the tree itself is corrupted
7871 	 * we'd still fail to mount.  This verification is only to make sure
7872 	 * writes can happen safely, so instead just bypass this check
7873 	 * completely in the case of IGNOREBADROOTS.
7874 	 */
7875 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7876 		return 0;
7877 
7878 	key.objectid = 1;
7879 	key.type = BTRFS_DEV_EXTENT_KEY;
7880 	key.offset = 0;
7881 
7882 	path = btrfs_alloc_path();
7883 	if (!path)
7884 		return -ENOMEM;
7885 
7886 	path->reada = READA_FORWARD;
7887 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7888 	if (ret < 0)
7889 		goto out;
7890 
7891 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7892 		ret = btrfs_next_leaf(root, path);
7893 		if (ret < 0)
7894 			goto out;
7895 		/* No dev extents at all? Not good */
7896 		if (ret > 0) {
7897 			ret = -EUCLEAN;
7898 			goto out;
7899 		}
7900 	}
7901 	while (1) {
7902 		struct extent_buffer *leaf = path->nodes[0];
7903 		struct btrfs_dev_extent *dext;
7904 		int slot = path->slots[0];
7905 		u64 chunk_offset;
7906 		u64 physical_offset;
7907 		u64 physical_len;
7908 		u64 devid;
7909 
7910 		btrfs_item_key_to_cpu(leaf, &key, slot);
7911 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7912 			break;
7913 		devid = key.objectid;
7914 		physical_offset = key.offset;
7915 
7916 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7917 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7918 		physical_len = btrfs_dev_extent_length(leaf, dext);
7919 
7920 		/* Check if this dev extent overlaps with the previous one */
7921 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7922 			btrfs_err(fs_info,
7923 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7924 				  devid, physical_offset, prev_dev_ext_end);
7925 			ret = -EUCLEAN;
7926 			goto out;
7927 		}
7928 
7929 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7930 					    physical_offset, physical_len);
7931 		if (ret < 0)
7932 			goto out;
7933 		prev_devid = devid;
7934 		prev_dev_ext_end = physical_offset + physical_len;
7935 
7936 		ret = btrfs_next_item(root, path);
7937 		if (ret < 0)
7938 			goto out;
7939 		if (ret > 0) {
7940 			ret = 0;
7941 			break;
7942 		}
7943 	}
7944 
7945 	/* Ensure all chunks have corresponding dev extents */
7946 	ret = verify_chunk_dev_extent_mapping(fs_info);
7947 out:
7948 	btrfs_free_path(path);
7949 	return ret;
7950 }
7951 
7952 /*
7953  * Check whether the given block group or device is pinned by any inode being
7954  * used as a swapfile.
7955  */
7956 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7957 {
7958 	struct btrfs_swapfile_pin *sp;
7959 	struct rb_node *node;
7960 
7961 	spin_lock(&fs_info->swapfile_pins_lock);
7962 	node = fs_info->swapfile_pins.rb_node;
7963 	while (node) {
7964 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7965 		if (ptr < sp->ptr)
7966 			node = node->rb_left;
7967 		else if (ptr > sp->ptr)
7968 			node = node->rb_right;
7969 		else
7970 			break;
7971 	}
7972 	spin_unlock(&fs_info->swapfile_pins_lock);
7973 	return node != NULL;
7974 }
7975 
7976 static int relocating_repair_kthread(void *data)
7977 {
7978 	struct btrfs_block_group *cache = data;
7979 	struct btrfs_fs_info *fs_info = cache->fs_info;
7980 	u64 target;
7981 	int ret = 0;
7982 
7983 	target = cache->start;
7984 	btrfs_put_block_group(cache);
7985 
7986 	sb_start_write(fs_info->sb);
7987 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
7988 		btrfs_info(fs_info,
7989 			   "zoned: skip relocating block group %llu to repair: EBUSY",
7990 			   target);
7991 		sb_end_write(fs_info->sb);
7992 		return -EBUSY;
7993 	}
7994 
7995 	mutex_lock(&fs_info->reclaim_bgs_lock);
7996 
7997 	/* Ensure block group still exists */
7998 	cache = btrfs_lookup_block_group(fs_info, target);
7999 	if (!cache)
8000 		goto out;
8001 
8002 	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8003 		goto out;
8004 
8005 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8006 	if (ret < 0)
8007 		goto out;
8008 
8009 	btrfs_info(fs_info,
8010 		   "zoned: relocating block group %llu to repair IO failure",
8011 		   target);
8012 	ret = btrfs_relocate_chunk(fs_info, target);
8013 
8014 out:
8015 	if (cache)
8016 		btrfs_put_block_group(cache);
8017 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8018 	btrfs_exclop_finish(fs_info);
8019 	sb_end_write(fs_info->sb);
8020 
8021 	return ret;
8022 }
8023 
8024 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8025 {
8026 	struct btrfs_block_group *cache;
8027 
8028 	if (!btrfs_is_zoned(fs_info))
8029 		return false;
8030 
8031 	/* Do not attempt to repair in degraded state */
8032 	if (btrfs_test_opt(fs_info, DEGRADED))
8033 		return true;
8034 
8035 	cache = btrfs_lookup_block_group(fs_info, logical);
8036 	if (!cache)
8037 		return true;
8038 
8039 	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8040 		btrfs_put_block_group(cache);
8041 		return true;
8042 	}
8043 
8044 	kthread_run(relocating_repair_kthread, cache,
8045 		    "btrfs-relocating-repair");
8046 
8047 	return true;
8048 }
8049 
8050 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8051 				    struct btrfs_io_stripe *smap,
8052 				    u64 logical)
8053 {
8054 	int data_stripes = nr_bioc_data_stripes(bioc);
8055 	int i;
8056 
8057 	for (i = 0; i < data_stripes; i++) {
8058 		u64 stripe_start = bioc->full_stripe_logical +
8059 				   btrfs_stripe_nr_to_offset(i);
8060 
8061 		if (logical >= stripe_start &&
8062 		    logical < stripe_start + BTRFS_STRIPE_LEN)
8063 			break;
8064 	}
8065 	ASSERT(i < data_stripes);
8066 	smap->dev = bioc->stripes[i].dev;
8067 	smap->physical = bioc->stripes[i].physical +
8068 			((logical - bioc->full_stripe_logical) &
8069 			 BTRFS_STRIPE_LEN_MASK);
8070 }
8071 
8072 /*
8073  * Map a repair write into a single device.
8074  *
8075  * A repair write is triggered by read time repair or scrub, which would only
8076  * update the contents of a single device.
8077  * Not update any other mirrors nor go through RMW path.
8078  *
8079  * Callers should ensure:
8080  *
8081  * - Call btrfs_bio_counter_inc_blocked() first
8082  * - The range does not cross stripe boundary
8083  * - Has a valid @mirror_num passed in.
8084  */
8085 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8086 			   struct btrfs_io_stripe *smap, u64 logical,
8087 			   u32 length, int mirror_num)
8088 {
8089 	struct btrfs_io_context *bioc = NULL;
8090 	u64 map_length = length;
8091 	int mirror_ret = mirror_num;
8092 	int ret;
8093 
8094 	ASSERT(mirror_num > 0);
8095 
8096 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8097 			      &bioc, smap, &mirror_ret, true);
8098 	if (ret < 0)
8099 		return ret;
8100 
8101 	/* The map range should not cross stripe boundary. */
8102 	ASSERT(map_length >= length);
8103 
8104 	/* Already mapped to single stripe. */
8105 	if (!bioc)
8106 		goto out;
8107 
8108 	/* Map the RAID56 multi-stripe writes to a single one. */
8109 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8110 		map_raid56_repair_block(bioc, smap, logical);
8111 		goto out;
8112 	}
8113 
8114 	ASSERT(mirror_num <= bioc->num_stripes);
8115 	smap->dev = bioc->stripes[mirror_num - 1].dev;
8116 	smap->physical = bioc->stripes[mirror_num - 1].physical;
8117 out:
8118 	btrfs_put_bioc(bioc);
8119 	ASSERT(smap->dev);
8120 	return 0;
8121 }
8122