xref: /openbmc/linux/fs/btrfs/volumes.c (revision 179dd8c0348af75b02c7d72eaaf1cb179f1721ef)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 				struct btrfs_root *root,
47 				struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52 
53 DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55 struct list_head *btrfs_get_fs_uuids(void)
56 {
57 	return &fs_uuids;
58 }
59 
60 static struct btrfs_fs_devices *__alloc_fs_devices(void)
61 {
62 	struct btrfs_fs_devices *fs_devs;
63 
64 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
65 	if (!fs_devs)
66 		return ERR_PTR(-ENOMEM);
67 
68 	mutex_init(&fs_devs->device_list_mutex);
69 
70 	INIT_LIST_HEAD(&fs_devs->devices);
71 	INIT_LIST_HEAD(&fs_devs->resized_devices);
72 	INIT_LIST_HEAD(&fs_devs->alloc_list);
73 	INIT_LIST_HEAD(&fs_devs->list);
74 
75 	return fs_devs;
76 }
77 
78 /**
79  * alloc_fs_devices - allocate struct btrfs_fs_devices
80  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
81  *		generated.
82  *
83  * Return: a pointer to a new &struct btrfs_fs_devices on success;
84  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
85  * can be destroyed with kfree() right away.
86  */
87 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
88 {
89 	struct btrfs_fs_devices *fs_devs;
90 
91 	fs_devs = __alloc_fs_devices();
92 	if (IS_ERR(fs_devs))
93 		return fs_devs;
94 
95 	if (fsid)
96 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
97 	else
98 		generate_random_uuid(fs_devs->fsid);
99 
100 	return fs_devs;
101 }
102 
103 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
104 {
105 	struct btrfs_device *device;
106 	WARN_ON(fs_devices->opened);
107 	while (!list_empty(&fs_devices->devices)) {
108 		device = list_entry(fs_devices->devices.next,
109 				    struct btrfs_device, dev_list);
110 		list_del(&device->dev_list);
111 		rcu_string_free(device->name);
112 		kfree(device);
113 	}
114 	kfree(fs_devices);
115 }
116 
117 static void btrfs_kobject_uevent(struct block_device *bdev,
118 				 enum kobject_action action)
119 {
120 	int ret;
121 
122 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
123 	if (ret)
124 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
125 			action,
126 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
127 			&disk_to_dev(bdev->bd_disk)->kobj);
128 }
129 
130 void btrfs_cleanup_fs_uuids(void)
131 {
132 	struct btrfs_fs_devices *fs_devices;
133 
134 	while (!list_empty(&fs_uuids)) {
135 		fs_devices = list_entry(fs_uuids.next,
136 					struct btrfs_fs_devices, list);
137 		list_del(&fs_devices->list);
138 		free_fs_devices(fs_devices);
139 	}
140 }
141 
142 static struct btrfs_device *__alloc_device(void)
143 {
144 	struct btrfs_device *dev;
145 
146 	dev = kzalloc(sizeof(*dev), GFP_NOFS);
147 	if (!dev)
148 		return ERR_PTR(-ENOMEM);
149 
150 	INIT_LIST_HEAD(&dev->dev_list);
151 	INIT_LIST_HEAD(&dev->dev_alloc_list);
152 	INIT_LIST_HEAD(&dev->resized_list);
153 
154 	spin_lock_init(&dev->io_lock);
155 
156 	spin_lock_init(&dev->reada_lock);
157 	atomic_set(&dev->reada_in_flight, 0);
158 	atomic_set(&dev->dev_stats_ccnt, 0);
159 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
160 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
161 
162 	return dev;
163 }
164 
165 static noinline struct btrfs_device *__find_device(struct list_head *head,
166 						   u64 devid, u8 *uuid)
167 {
168 	struct btrfs_device *dev;
169 
170 	list_for_each_entry(dev, head, dev_list) {
171 		if (dev->devid == devid &&
172 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
173 			return dev;
174 		}
175 	}
176 	return NULL;
177 }
178 
179 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
180 {
181 	struct btrfs_fs_devices *fs_devices;
182 
183 	list_for_each_entry(fs_devices, &fs_uuids, list) {
184 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
185 			return fs_devices;
186 	}
187 	return NULL;
188 }
189 
190 static int
191 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
192 		      int flush, struct block_device **bdev,
193 		      struct buffer_head **bh)
194 {
195 	int ret;
196 
197 	*bdev = blkdev_get_by_path(device_path, flags, holder);
198 
199 	if (IS_ERR(*bdev)) {
200 		ret = PTR_ERR(*bdev);
201 		printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
202 		goto error;
203 	}
204 
205 	if (flush)
206 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
207 	ret = set_blocksize(*bdev, 4096);
208 	if (ret) {
209 		blkdev_put(*bdev, flags);
210 		goto error;
211 	}
212 	invalidate_bdev(*bdev);
213 	*bh = btrfs_read_dev_super(*bdev);
214 	if (!*bh) {
215 		ret = -EINVAL;
216 		blkdev_put(*bdev, flags);
217 		goto error;
218 	}
219 
220 	return 0;
221 
222 error:
223 	*bdev = NULL;
224 	*bh = NULL;
225 	return ret;
226 }
227 
228 static void requeue_list(struct btrfs_pending_bios *pending_bios,
229 			struct bio *head, struct bio *tail)
230 {
231 
232 	struct bio *old_head;
233 
234 	old_head = pending_bios->head;
235 	pending_bios->head = head;
236 	if (pending_bios->tail)
237 		tail->bi_next = old_head;
238 	else
239 		pending_bios->tail = tail;
240 }
241 
242 /*
243  * we try to collect pending bios for a device so we don't get a large
244  * number of procs sending bios down to the same device.  This greatly
245  * improves the schedulers ability to collect and merge the bios.
246  *
247  * But, it also turns into a long list of bios to process and that is sure
248  * to eventually make the worker thread block.  The solution here is to
249  * make some progress and then put this work struct back at the end of
250  * the list if the block device is congested.  This way, multiple devices
251  * can make progress from a single worker thread.
252  */
253 static noinline void run_scheduled_bios(struct btrfs_device *device)
254 {
255 	struct bio *pending;
256 	struct backing_dev_info *bdi;
257 	struct btrfs_fs_info *fs_info;
258 	struct btrfs_pending_bios *pending_bios;
259 	struct bio *tail;
260 	struct bio *cur;
261 	int again = 0;
262 	unsigned long num_run;
263 	unsigned long batch_run = 0;
264 	unsigned long limit;
265 	unsigned long last_waited = 0;
266 	int force_reg = 0;
267 	int sync_pending = 0;
268 	struct blk_plug plug;
269 
270 	/*
271 	 * this function runs all the bios we've collected for
272 	 * a particular device.  We don't want to wander off to
273 	 * another device without first sending all of these down.
274 	 * So, setup a plug here and finish it off before we return
275 	 */
276 	blk_start_plug(&plug);
277 
278 	bdi = blk_get_backing_dev_info(device->bdev);
279 	fs_info = device->dev_root->fs_info;
280 	limit = btrfs_async_submit_limit(fs_info);
281 	limit = limit * 2 / 3;
282 
283 loop:
284 	spin_lock(&device->io_lock);
285 
286 loop_lock:
287 	num_run = 0;
288 
289 	/* take all the bios off the list at once and process them
290 	 * later on (without the lock held).  But, remember the
291 	 * tail and other pointers so the bios can be properly reinserted
292 	 * into the list if we hit congestion
293 	 */
294 	if (!force_reg && device->pending_sync_bios.head) {
295 		pending_bios = &device->pending_sync_bios;
296 		force_reg = 1;
297 	} else {
298 		pending_bios = &device->pending_bios;
299 		force_reg = 0;
300 	}
301 
302 	pending = pending_bios->head;
303 	tail = pending_bios->tail;
304 	WARN_ON(pending && !tail);
305 
306 	/*
307 	 * if pending was null this time around, no bios need processing
308 	 * at all and we can stop.  Otherwise it'll loop back up again
309 	 * and do an additional check so no bios are missed.
310 	 *
311 	 * device->running_pending is used to synchronize with the
312 	 * schedule_bio code.
313 	 */
314 	if (device->pending_sync_bios.head == NULL &&
315 	    device->pending_bios.head == NULL) {
316 		again = 0;
317 		device->running_pending = 0;
318 	} else {
319 		again = 1;
320 		device->running_pending = 1;
321 	}
322 
323 	pending_bios->head = NULL;
324 	pending_bios->tail = NULL;
325 
326 	spin_unlock(&device->io_lock);
327 
328 	while (pending) {
329 
330 		rmb();
331 		/* we want to work on both lists, but do more bios on the
332 		 * sync list than the regular list
333 		 */
334 		if ((num_run > 32 &&
335 		    pending_bios != &device->pending_sync_bios &&
336 		    device->pending_sync_bios.head) ||
337 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
338 		    device->pending_bios.head)) {
339 			spin_lock(&device->io_lock);
340 			requeue_list(pending_bios, pending, tail);
341 			goto loop_lock;
342 		}
343 
344 		cur = pending;
345 		pending = pending->bi_next;
346 		cur->bi_next = NULL;
347 
348 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
349 		    waitqueue_active(&fs_info->async_submit_wait))
350 			wake_up(&fs_info->async_submit_wait);
351 
352 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
353 
354 		/*
355 		 * if we're doing the sync list, record that our
356 		 * plug has some sync requests on it
357 		 *
358 		 * If we're doing the regular list and there are
359 		 * sync requests sitting around, unplug before
360 		 * we add more
361 		 */
362 		if (pending_bios == &device->pending_sync_bios) {
363 			sync_pending = 1;
364 		} else if (sync_pending) {
365 			blk_finish_plug(&plug);
366 			blk_start_plug(&plug);
367 			sync_pending = 0;
368 		}
369 
370 		btrfsic_submit_bio(cur->bi_rw, cur);
371 		num_run++;
372 		batch_run++;
373 
374 		cond_resched();
375 
376 		/*
377 		 * we made progress, there is more work to do and the bdi
378 		 * is now congested.  Back off and let other work structs
379 		 * run instead
380 		 */
381 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
382 		    fs_info->fs_devices->open_devices > 1) {
383 			struct io_context *ioc;
384 
385 			ioc = current->io_context;
386 
387 			/*
388 			 * the main goal here is that we don't want to
389 			 * block if we're going to be able to submit
390 			 * more requests without blocking.
391 			 *
392 			 * This code does two great things, it pokes into
393 			 * the elevator code from a filesystem _and_
394 			 * it makes assumptions about how batching works.
395 			 */
396 			if (ioc && ioc->nr_batch_requests > 0 &&
397 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
398 			    (last_waited == 0 ||
399 			     ioc->last_waited == last_waited)) {
400 				/*
401 				 * we want to go through our batch of
402 				 * requests and stop.  So, we copy out
403 				 * the ioc->last_waited time and test
404 				 * against it before looping
405 				 */
406 				last_waited = ioc->last_waited;
407 				cond_resched();
408 				continue;
409 			}
410 			spin_lock(&device->io_lock);
411 			requeue_list(pending_bios, pending, tail);
412 			device->running_pending = 1;
413 
414 			spin_unlock(&device->io_lock);
415 			btrfs_queue_work(fs_info->submit_workers,
416 					 &device->work);
417 			goto done;
418 		}
419 		/* unplug every 64 requests just for good measure */
420 		if (batch_run % 64 == 0) {
421 			blk_finish_plug(&plug);
422 			blk_start_plug(&plug);
423 			sync_pending = 0;
424 		}
425 	}
426 
427 	cond_resched();
428 	if (again)
429 		goto loop;
430 
431 	spin_lock(&device->io_lock);
432 	if (device->pending_bios.head || device->pending_sync_bios.head)
433 		goto loop_lock;
434 	spin_unlock(&device->io_lock);
435 
436 done:
437 	blk_finish_plug(&plug);
438 }
439 
440 static void pending_bios_fn(struct btrfs_work *work)
441 {
442 	struct btrfs_device *device;
443 
444 	device = container_of(work, struct btrfs_device, work);
445 	run_scheduled_bios(device);
446 }
447 
448 
449 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
450 {
451 	struct btrfs_fs_devices *fs_devs;
452 	struct btrfs_device *dev;
453 
454 	if (!cur_dev->name)
455 		return;
456 
457 	list_for_each_entry(fs_devs, &fs_uuids, list) {
458 		int del = 1;
459 
460 		if (fs_devs->opened)
461 			continue;
462 		if (fs_devs->seeding)
463 			continue;
464 
465 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
466 
467 			if (dev == cur_dev)
468 				continue;
469 			if (!dev->name)
470 				continue;
471 
472 			/*
473 			 * Todo: This won't be enough. What if the same device
474 			 * comes back (with new uuid and) with its mapper path?
475 			 * But for now, this does help as mostly an admin will
476 			 * either use mapper or non mapper path throughout.
477 			 */
478 			rcu_read_lock();
479 			del = strcmp(rcu_str_deref(dev->name),
480 						rcu_str_deref(cur_dev->name));
481 			rcu_read_unlock();
482 			if (!del)
483 				break;
484 		}
485 
486 		if (!del) {
487 			/* delete the stale device */
488 			if (fs_devs->num_devices == 1) {
489 				btrfs_sysfs_remove_fsid(fs_devs);
490 				list_del(&fs_devs->list);
491 				free_fs_devices(fs_devs);
492 			} else {
493 				fs_devs->num_devices--;
494 				list_del(&dev->dev_list);
495 				rcu_string_free(dev->name);
496 				kfree(dev);
497 			}
498 			break;
499 		}
500 	}
501 }
502 
503 /*
504  * Add new device to list of registered devices
505  *
506  * Returns:
507  * 1   - first time device is seen
508  * 0   - device already known
509  * < 0 - error
510  */
511 static noinline int device_list_add(const char *path,
512 			   struct btrfs_super_block *disk_super,
513 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
514 {
515 	struct btrfs_device *device;
516 	struct btrfs_fs_devices *fs_devices;
517 	struct rcu_string *name;
518 	int ret = 0;
519 	u64 found_transid = btrfs_super_generation(disk_super);
520 
521 	fs_devices = find_fsid(disk_super->fsid);
522 	if (!fs_devices) {
523 		fs_devices = alloc_fs_devices(disk_super->fsid);
524 		if (IS_ERR(fs_devices))
525 			return PTR_ERR(fs_devices);
526 
527 		list_add(&fs_devices->list, &fs_uuids);
528 
529 		device = NULL;
530 	} else {
531 		device = __find_device(&fs_devices->devices, devid,
532 				       disk_super->dev_item.uuid);
533 	}
534 
535 	if (!device) {
536 		if (fs_devices->opened)
537 			return -EBUSY;
538 
539 		device = btrfs_alloc_device(NULL, &devid,
540 					    disk_super->dev_item.uuid);
541 		if (IS_ERR(device)) {
542 			/* we can safely leave the fs_devices entry around */
543 			return PTR_ERR(device);
544 		}
545 
546 		name = rcu_string_strdup(path, GFP_NOFS);
547 		if (!name) {
548 			kfree(device);
549 			return -ENOMEM;
550 		}
551 		rcu_assign_pointer(device->name, name);
552 
553 		mutex_lock(&fs_devices->device_list_mutex);
554 		list_add_rcu(&device->dev_list, &fs_devices->devices);
555 		fs_devices->num_devices++;
556 		mutex_unlock(&fs_devices->device_list_mutex);
557 
558 		ret = 1;
559 		device->fs_devices = fs_devices;
560 	} else if (!device->name || strcmp(device->name->str, path)) {
561 		/*
562 		 * When FS is already mounted.
563 		 * 1. If you are here and if the device->name is NULL that
564 		 *    means this device was missing at time of FS mount.
565 		 * 2. If you are here and if the device->name is different
566 		 *    from 'path' that means either
567 		 *      a. The same device disappeared and reappeared with
568 		 *         different name. or
569 		 *      b. The missing-disk-which-was-replaced, has
570 		 *         reappeared now.
571 		 *
572 		 * We must allow 1 and 2a above. But 2b would be a spurious
573 		 * and unintentional.
574 		 *
575 		 * Further in case of 1 and 2a above, the disk at 'path'
576 		 * would have missed some transaction when it was away and
577 		 * in case of 2a the stale bdev has to be updated as well.
578 		 * 2b must not be allowed at all time.
579 		 */
580 
581 		/*
582 		 * For now, we do allow update to btrfs_fs_device through the
583 		 * btrfs dev scan cli after FS has been mounted.  We're still
584 		 * tracking a problem where systems fail mount by subvolume id
585 		 * when we reject replacement on a mounted FS.
586 		 */
587 		if (!fs_devices->opened && found_transid < device->generation) {
588 			/*
589 			 * That is if the FS is _not_ mounted and if you
590 			 * are here, that means there is more than one
591 			 * disk with same uuid and devid.We keep the one
592 			 * with larger generation number or the last-in if
593 			 * generation are equal.
594 			 */
595 			return -EEXIST;
596 		}
597 
598 		name = rcu_string_strdup(path, GFP_NOFS);
599 		if (!name)
600 			return -ENOMEM;
601 		rcu_string_free(device->name);
602 		rcu_assign_pointer(device->name, name);
603 		if (device->missing) {
604 			fs_devices->missing_devices--;
605 			device->missing = 0;
606 		}
607 	}
608 
609 	/*
610 	 * Unmount does not free the btrfs_device struct but would zero
611 	 * generation along with most of the other members. So just update
612 	 * it back. We need it to pick the disk with largest generation
613 	 * (as above).
614 	 */
615 	if (!fs_devices->opened)
616 		device->generation = found_transid;
617 
618 	/*
619 	 * if there is new btrfs on an already registered device,
620 	 * then remove the stale device entry.
621 	 */
622 	btrfs_free_stale_device(device);
623 
624 	*fs_devices_ret = fs_devices;
625 
626 	return ret;
627 }
628 
629 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
630 {
631 	struct btrfs_fs_devices *fs_devices;
632 	struct btrfs_device *device;
633 	struct btrfs_device *orig_dev;
634 
635 	fs_devices = alloc_fs_devices(orig->fsid);
636 	if (IS_ERR(fs_devices))
637 		return fs_devices;
638 
639 	mutex_lock(&orig->device_list_mutex);
640 	fs_devices->total_devices = orig->total_devices;
641 
642 	/* We have held the volume lock, it is safe to get the devices. */
643 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
644 		struct rcu_string *name;
645 
646 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
647 					    orig_dev->uuid);
648 		if (IS_ERR(device))
649 			goto error;
650 
651 		/*
652 		 * This is ok to do without rcu read locked because we hold the
653 		 * uuid mutex so nothing we touch in here is going to disappear.
654 		 */
655 		if (orig_dev->name) {
656 			name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
657 			if (!name) {
658 				kfree(device);
659 				goto error;
660 			}
661 			rcu_assign_pointer(device->name, name);
662 		}
663 
664 		list_add(&device->dev_list, &fs_devices->devices);
665 		device->fs_devices = fs_devices;
666 		fs_devices->num_devices++;
667 	}
668 	mutex_unlock(&orig->device_list_mutex);
669 	return fs_devices;
670 error:
671 	mutex_unlock(&orig->device_list_mutex);
672 	free_fs_devices(fs_devices);
673 	return ERR_PTR(-ENOMEM);
674 }
675 
676 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
677 {
678 	struct btrfs_device *device, *next;
679 	struct btrfs_device *latest_dev = NULL;
680 
681 	mutex_lock(&uuid_mutex);
682 again:
683 	/* This is the initialized path, it is safe to release the devices. */
684 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
685 		if (device->in_fs_metadata) {
686 			if (!device->is_tgtdev_for_dev_replace &&
687 			    (!latest_dev ||
688 			     device->generation > latest_dev->generation)) {
689 				latest_dev = device;
690 			}
691 			continue;
692 		}
693 
694 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
695 			/*
696 			 * In the first step, keep the device which has
697 			 * the correct fsid and the devid that is used
698 			 * for the dev_replace procedure.
699 			 * In the second step, the dev_replace state is
700 			 * read from the device tree and it is known
701 			 * whether the procedure is really active or
702 			 * not, which means whether this device is
703 			 * used or whether it should be removed.
704 			 */
705 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
706 				continue;
707 			}
708 		}
709 		if (device->bdev) {
710 			blkdev_put(device->bdev, device->mode);
711 			device->bdev = NULL;
712 			fs_devices->open_devices--;
713 		}
714 		if (device->writeable) {
715 			list_del_init(&device->dev_alloc_list);
716 			device->writeable = 0;
717 			if (!device->is_tgtdev_for_dev_replace)
718 				fs_devices->rw_devices--;
719 		}
720 		list_del_init(&device->dev_list);
721 		fs_devices->num_devices--;
722 		rcu_string_free(device->name);
723 		kfree(device);
724 	}
725 
726 	if (fs_devices->seed) {
727 		fs_devices = fs_devices->seed;
728 		goto again;
729 	}
730 
731 	fs_devices->latest_bdev = latest_dev->bdev;
732 
733 	mutex_unlock(&uuid_mutex);
734 }
735 
736 static void __free_device(struct work_struct *work)
737 {
738 	struct btrfs_device *device;
739 
740 	device = container_of(work, struct btrfs_device, rcu_work);
741 
742 	if (device->bdev)
743 		blkdev_put(device->bdev, device->mode);
744 
745 	rcu_string_free(device->name);
746 	kfree(device);
747 }
748 
749 static void free_device(struct rcu_head *head)
750 {
751 	struct btrfs_device *device;
752 
753 	device = container_of(head, struct btrfs_device, rcu);
754 
755 	INIT_WORK(&device->rcu_work, __free_device);
756 	schedule_work(&device->rcu_work);
757 }
758 
759 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
760 {
761 	struct btrfs_device *device, *tmp;
762 
763 	if (--fs_devices->opened > 0)
764 		return 0;
765 
766 	mutex_lock(&fs_devices->device_list_mutex);
767 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
768 		struct btrfs_device *new_device;
769 		struct rcu_string *name;
770 
771 		if (device->bdev)
772 			fs_devices->open_devices--;
773 
774 		if (device->writeable &&
775 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
776 			list_del_init(&device->dev_alloc_list);
777 			fs_devices->rw_devices--;
778 		}
779 
780 		if (device->missing)
781 			fs_devices->missing_devices--;
782 
783 		new_device = btrfs_alloc_device(NULL, &device->devid,
784 						device->uuid);
785 		BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
786 
787 		/* Safe because we are under uuid_mutex */
788 		if (device->name) {
789 			name = rcu_string_strdup(device->name->str, GFP_NOFS);
790 			BUG_ON(!name); /* -ENOMEM */
791 			rcu_assign_pointer(new_device->name, name);
792 		}
793 
794 		list_replace_rcu(&device->dev_list, &new_device->dev_list);
795 		new_device->fs_devices = device->fs_devices;
796 
797 		call_rcu(&device->rcu, free_device);
798 	}
799 	mutex_unlock(&fs_devices->device_list_mutex);
800 
801 	WARN_ON(fs_devices->open_devices);
802 	WARN_ON(fs_devices->rw_devices);
803 	fs_devices->opened = 0;
804 	fs_devices->seeding = 0;
805 
806 	return 0;
807 }
808 
809 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
810 {
811 	struct btrfs_fs_devices *seed_devices = NULL;
812 	int ret;
813 
814 	mutex_lock(&uuid_mutex);
815 	ret = __btrfs_close_devices(fs_devices);
816 	if (!fs_devices->opened) {
817 		seed_devices = fs_devices->seed;
818 		fs_devices->seed = NULL;
819 	}
820 	mutex_unlock(&uuid_mutex);
821 
822 	while (seed_devices) {
823 		fs_devices = seed_devices;
824 		seed_devices = fs_devices->seed;
825 		__btrfs_close_devices(fs_devices);
826 		free_fs_devices(fs_devices);
827 	}
828 	/*
829 	 * Wait for rcu kworkers under __btrfs_close_devices
830 	 * to finish all blkdev_puts so device is really
831 	 * free when umount is done.
832 	 */
833 	rcu_barrier();
834 	return ret;
835 }
836 
837 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
838 				fmode_t flags, void *holder)
839 {
840 	struct request_queue *q;
841 	struct block_device *bdev;
842 	struct list_head *head = &fs_devices->devices;
843 	struct btrfs_device *device;
844 	struct btrfs_device *latest_dev = NULL;
845 	struct buffer_head *bh;
846 	struct btrfs_super_block *disk_super;
847 	u64 devid;
848 	int seeding = 1;
849 	int ret = 0;
850 
851 	flags |= FMODE_EXCL;
852 
853 	list_for_each_entry(device, head, dev_list) {
854 		if (device->bdev)
855 			continue;
856 		if (!device->name)
857 			continue;
858 
859 		/* Just open everything we can; ignore failures here */
860 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
861 					    &bdev, &bh))
862 			continue;
863 
864 		disk_super = (struct btrfs_super_block *)bh->b_data;
865 		devid = btrfs_stack_device_id(&disk_super->dev_item);
866 		if (devid != device->devid)
867 			goto error_brelse;
868 
869 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
870 			   BTRFS_UUID_SIZE))
871 			goto error_brelse;
872 
873 		device->generation = btrfs_super_generation(disk_super);
874 		if (!latest_dev ||
875 		    device->generation > latest_dev->generation)
876 			latest_dev = device;
877 
878 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
879 			device->writeable = 0;
880 		} else {
881 			device->writeable = !bdev_read_only(bdev);
882 			seeding = 0;
883 		}
884 
885 		q = bdev_get_queue(bdev);
886 		if (blk_queue_discard(q))
887 			device->can_discard = 1;
888 
889 		device->bdev = bdev;
890 		device->in_fs_metadata = 0;
891 		device->mode = flags;
892 
893 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
894 			fs_devices->rotating = 1;
895 
896 		fs_devices->open_devices++;
897 		if (device->writeable &&
898 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
899 			fs_devices->rw_devices++;
900 			list_add(&device->dev_alloc_list,
901 				 &fs_devices->alloc_list);
902 		}
903 		brelse(bh);
904 		continue;
905 
906 error_brelse:
907 		brelse(bh);
908 		blkdev_put(bdev, flags);
909 		continue;
910 	}
911 	if (fs_devices->open_devices == 0) {
912 		ret = -EINVAL;
913 		goto out;
914 	}
915 	fs_devices->seeding = seeding;
916 	fs_devices->opened = 1;
917 	fs_devices->latest_bdev = latest_dev->bdev;
918 	fs_devices->total_rw_bytes = 0;
919 out:
920 	return ret;
921 }
922 
923 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
924 		       fmode_t flags, void *holder)
925 {
926 	int ret;
927 
928 	mutex_lock(&uuid_mutex);
929 	if (fs_devices->opened) {
930 		fs_devices->opened++;
931 		ret = 0;
932 	} else {
933 		ret = __btrfs_open_devices(fs_devices, flags, holder);
934 	}
935 	mutex_unlock(&uuid_mutex);
936 	return ret;
937 }
938 
939 /*
940  * Look for a btrfs signature on a device. This may be called out of the mount path
941  * and we are not allowed to call set_blocksize during the scan. The superblock
942  * is read via pagecache
943  */
944 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
945 			  struct btrfs_fs_devices **fs_devices_ret)
946 {
947 	struct btrfs_super_block *disk_super;
948 	struct block_device *bdev;
949 	struct page *page;
950 	void *p;
951 	int ret = -EINVAL;
952 	u64 devid;
953 	u64 transid;
954 	u64 total_devices;
955 	u64 bytenr;
956 	pgoff_t index;
957 
958 	/*
959 	 * we would like to check all the supers, but that would make
960 	 * a btrfs mount succeed after a mkfs from a different FS.
961 	 * So, we need to add a special mount option to scan for
962 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
963 	 */
964 	bytenr = btrfs_sb_offset(0);
965 	flags |= FMODE_EXCL;
966 	mutex_lock(&uuid_mutex);
967 
968 	bdev = blkdev_get_by_path(path, flags, holder);
969 
970 	if (IS_ERR(bdev)) {
971 		ret = PTR_ERR(bdev);
972 		goto error;
973 	}
974 
975 	/* make sure our super fits in the device */
976 	if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
977 		goto error_bdev_put;
978 
979 	/* make sure our super fits in the page */
980 	if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
981 		goto error_bdev_put;
982 
983 	/* make sure our super doesn't straddle pages on disk */
984 	index = bytenr >> PAGE_CACHE_SHIFT;
985 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
986 		goto error_bdev_put;
987 
988 	/* pull in the page with our super */
989 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
990 				   index, GFP_NOFS);
991 
992 	if (IS_ERR_OR_NULL(page))
993 		goto error_bdev_put;
994 
995 	p = kmap(page);
996 
997 	/* align our pointer to the offset of the super block */
998 	disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
999 
1000 	if (btrfs_super_bytenr(disk_super) != bytenr ||
1001 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1002 		goto error_unmap;
1003 
1004 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1005 	transid = btrfs_super_generation(disk_super);
1006 	total_devices = btrfs_super_num_devices(disk_super);
1007 
1008 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1009 	if (ret > 0) {
1010 		if (disk_super->label[0]) {
1011 			if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1012 				disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1013 			printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1014 		} else {
1015 			printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1016 		}
1017 
1018 		printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1019 		ret = 0;
1020 	}
1021 	if (!ret && fs_devices_ret)
1022 		(*fs_devices_ret)->total_devices = total_devices;
1023 
1024 error_unmap:
1025 	kunmap(page);
1026 	page_cache_release(page);
1027 
1028 error_bdev_put:
1029 	blkdev_put(bdev, flags);
1030 error:
1031 	mutex_unlock(&uuid_mutex);
1032 	return ret;
1033 }
1034 
1035 /* helper to account the used device space in the range */
1036 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1037 				   u64 end, u64 *length)
1038 {
1039 	struct btrfs_key key;
1040 	struct btrfs_root *root = device->dev_root;
1041 	struct btrfs_dev_extent *dev_extent;
1042 	struct btrfs_path *path;
1043 	u64 extent_end;
1044 	int ret;
1045 	int slot;
1046 	struct extent_buffer *l;
1047 
1048 	*length = 0;
1049 
1050 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1051 		return 0;
1052 
1053 	path = btrfs_alloc_path();
1054 	if (!path)
1055 		return -ENOMEM;
1056 	path->reada = 2;
1057 
1058 	key.objectid = device->devid;
1059 	key.offset = start;
1060 	key.type = BTRFS_DEV_EXTENT_KEY;
1061 
1062 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1063 	if (ret < 0)
1064 		goto out;
1065 	if (ret > 0) {
1066 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1067 		if (ret < 0)
1068 			goto out;
1069 	}
1070 
1071 	while (1) {
1072 		l = path->nodes[0];
1073 		slot = path->slots[0];
1074 		if (slot >= btrfs_header_nritems(l)) {
1075 			ret = btrfs_next_leaf(root, path);
1076 			if (ret == 0)
1077 				continue;
1078 			if (ret < 0)
1079 				goto out;
1080 
1081 			break;
1082 		}
1083 		btrfs_item_key_to_cpu(l, &key, slot);
1084 
1085 		if (key.objectid < device->devid)
1086 			goto next;
1087 
1088 		if (key.objectid > device->devid)
1089 			break;
1090 
1091 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1092 			goto next;
1093 
1094 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1095 		extent_end = key.offset + btrfs_dev_extent_length(l,
1096 								  dev_extent);
1097 		if (key.offset <= start && extent_end > end) {
1098 			*length = end - start + 1;
1099 			break;
1100 		} else if (key.offset <= start && extent_end > start)
1101 			*length += extent_end - start;
1102 		else if (key.offset > start && extent_end <= end)
1103 			*length += extent_end - key.offset;
1104 		else if (key.offset > start && key.offset <= end) {
1105 			*length += end - key.offset + 1;
1106 			break;
1107 		} else if (key.offset > end)
1108 			break;
1109 
1110 next:
1111 		path->slots[0]++;
1112 	}
1113 	ret = 0;
1114 out:
1115 	btrfs_free_path(path);
1116 	return ret;
1117 }
1118 
1119 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1120 				   struct btrfs_device *device,
1121 				   u64 *start, u64 len)
1122 {
1123 	struct extent_map *em;
1124 	struct list_head *search_list = &trans->transaction->pending_chunks;
1125 	int ret = 0;
1126 	u64 physical_start = *start;
1127 
1128 again:
1129 	list_for_each_entry(em, search_list, list) {
1130 		struct map_lookup *map;
1131 		int i;
1132 
1133 		map = (struct map_lookup *)em->bdev;
1134 		for (i = 0; i < map->num_stripes; i++) {
1135 			u64 end;
1136 
1137 			if (map->stripes[i].dev != device)
1138 				continue;
1139 			if (map->stripes[i].physical >= physical_start + len ||
1140 			    map->stripes[i].physical + em->orig_block_len <=
1141 			    physical_start)
1142 				continue;
1143 			/*
1144 			 * Make sure that while processing the pinned list we do
1145 			 * not override our *start with a lower value, because
1146 			 * we can have pinned chunks that fall within this
1147 			 * device hole and that have lower physical addresses
1148 			 * than the pending chunks we processed before. If we
1149 			 * do not take this special care we can end up getting
1150 			 * 2 pending chunks that start at the same physical
1151 			 * device offsets because the end offset of a pinned
1152 			 * chunk can be equal to the start offset of some
1153 			 * pending chunk.
1154 			 */
1155 			end = map->stripes[i].physical + em->orig_block_len;
1156 			if (end > *start) {
1157 				*start = end;
1158 				ret = 1;
1159 			}
1160 		}
1161 	}
1162 	if (search_list == &trans->transaction->pending_chunks) {
1163 		search_list = &trans->root->fs_info->pinned_chunks;
1164 		goto again;
1165 	}
1166 
1167 	return ret;
1168 }
1169 
1170 
1171 /*
1172  * find_free_dev_extent - find free space in the specified device
1173  * @device:	the device which we search the free space in
1174  * @num_bytes:	the size of the free space that we need
1175  * @start:	store the start of the free space.
1176  * @len:	the size of the free space. that we find, or the size of the max
1177  * 		free space if we don't find suitable free space
1178  *
1179  * this uses a pretty simple search, the expectation is that it is
1180  * called very infrequently and that a given device has a small number
1181  * of extents
1182  *
1183  * @start is used to store the start of the free space if we find. But if we
1184  * don't find suitable free space, it will be used to store the start position
1185  * of the max free space.
1186  *
1187  * @len is used to store the size of the free space that we find.
1188  * But if we don't find suitable free space, it is used to store the size of
1189  * the max free space.
1190  */
1191 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1192 			 struct btrfs_device *device, u64 num_bytes,
1193 			 u64 *start, u64 *len)
1194 {
1195 	struct btrfs_key key;
1196 	struct btrfs_root *root = device->dev_root;
1197 	struct btrfs_dev_extent *dev_extent;
1198 	struct btrfs_path *path;
1199 	u64 hole_size;
1200 	u64 max_hole_start;
1201 	u64 max_hole_size;
1202 	u64 extent_end;
1203 	u64 search_start;
1204 	u64 search_end = device->total_bytes;
1205 	int ret;
1206 	int slot;
1207 	struct extent_buffer *l;
1208 
1209 	/* FIXME use last free of some kind */
1210 
1211 	/* we don't want to overwrite the superblock on the drive,
1212 	 * so we make sure to start at an offset of at least 1MB
1213 	 */
1214 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1215 
1216 	path = btrfs_alloc_path();
1217 	if (!path)
1218 		return -ENOMEM;
1219 
1220 	max_hole_start = search_start;
1221 	max_hole_size = 0;
1222 
1223 again:
1224 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1225 		ret = -ENOSPC;
1226 		goto out;
1227 	}
1228 
1229 	path->reada = 2;
1230 	path->search_commit_root = 1;
1231 	path->skip_locking = 1;
1232 
1233 	key.objectid = device->devid;
1234 	key.offset = search_start;
1235 	key.type = BTRFS_DEV_EXTENT_KEY;
1236 
1237 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1238 	if (ret < 0)
1239 		goto out;
1240 	if (ret > 0) {
1241 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1242 		if (ret < 0)
1243 			goto out;
1244 	}
1245 
1246 	while (1) {
1247 		l = path->nodes[0];
1248 		slot = path->slots[0];
1249 		if (slot >= btrfs_header_nritems(l)) {
1250 			ret = btrfs_next_leaf(root, path);
1251 			if (ret == 0)
1252 				continue;
1253 			if (ret < 0)
1254 				goto out;
1255 
1256 			break;
1257 		}
1258 		btrfs_item_key_to_cpu(l, &key, slot);
1259 
1260 		if (key.objectid < device->devid)
1261 			goto next;
1262 
1263 		if (key.objectid > device->devid)
1264 			break;
1265 
1266 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1267 			goto next;
1268 
1269 		if (key.offset > search_start) {
1270 			hole_size = key.offset - search_start;
1271 
1272 			/*
1273 			 * Have to check before we set max_hole_start, otherwise
1274 			 * we could end up sending back this offset anyway.
1275 			 */
1276 			if (contains_pending_extent(trans, device,
1277 						    &search_start,
1278 						    hole_size)) {
1279 				if (key.offset >= search_start) {
1280 					hole_size = key.offset - search_start;
1281 				} else {
1282 					WARN_ON_ONCE(1);
1283 					hole_size = 0;
1284 				}
1285 			}
1286 
1287 			if (hole_size > max_hole_size) {
1288 				max_hole_start = search_start;
1289 				max_hole_size = hole_size;
1290 			}
1291 
1292 			/*
1293 			 * If this free space is greater than which we need,
1294 			 * it must be the max free space that we have found
1295 			 * until now, so max_hole_start must point to the start
1296 			 * of this free space and the length of this free space
1297 			 * is stored in max_hole_size. Thus, we return
1298 			 * max_hole_start and max_hole_size and go back to the
1299 			 * caller.
1300 			 */
1301 			if (hole_size >= num_bytes) {
1302 				ret = 0;
1303 				goto out;
1304 			}
1305 		}
1306 
1307 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1308 		extent_end = key.offset + btrfs_dev_extent_length(l,
1309 								  dev_extent);
1310 		if (extent_end > search_start)
1311 			search_start = extent_end;
1312 next:
1313 		path->slots[0]++;
1314 		cond_resched();
1315 	}
1316 
1317 	/*
1318 	 * At this point, search_start should be the end of
1319 	 * allocated dev extents, and when shrinking the device,
1320 	 * search_end may be smaller than search_start.
1321 	 */
1322 	if (search_end > search_start) {
1323 		hole_size = search_end - search_start;
1324 
1325 		if (contains_pending_extent(trans, device, &search_start,
1326 					    hole_size)) {
1327 			btrfs_release_path(path);
1328 			goto again;
1329 		}
1330 
1331 		if (hole_size > max_hole_size) {
1332 			max_hole_start = search_start;
1333 			max_hole_size = hole_size;
1334 		}
1335 	}
1336 
1337 	/* See above. */
1338 	if (max_hole_size < num_bytes)
1339 		ret = -ENOSPC;
1340 	else
1341 		ret = 0;
1342 
1343 out:
1344 	btrfs_free_path(path);
1345 	*start = max_hole_start;
1346 	if (len)
1347 		*len = max_hole_size;
1348 	return ret;
1349 }
1350 
1351 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1352 			  struct btrfs_device *device,
1353 			  u64 start, u64 *dev_extent_len)
1354 {
1355 	int ret;
1356 	struct btrfs_path *path;
1357 	struct btrfs_root *root = device->dev_root;
1358 	struct btrfs_key key;
1359 	struct btrfs_key found_key;
1360 	struct extent_buffer *leaf = NULL;
1361 	struct btrfs_dev_extent *extent = NULL;
1362 
1363 	path = btrfs_alloc_path();
1364 	if (!path)
1365 		return -ENOMEM;
1366 
1367 	key.objectid = device->devid;
1368 	key.offset = start;
1369 	key.type = BTRFS_DEV_EXTENT_KEY;
1370 again:
1371 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1372 	if (ret > 0) {
1373 		ret = btrfs_previous_item(root, path, key.objectid,
1374 					  BTRFS_DEV_EXTENT_KEY);
1375 		if (ret)
1376 			goto out;
1377 		leaf = path->nodes[0];
1378 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1379 		extent = btrfs_item_ptr(leaf, path->slots[0],
1380 					struct btrfs_dev_extent);
1381 		BUG_ON(found_key.offset > start || found_key.offset +
1382 		       btrfs_dev_extent_length(leaf, extent) < start);
1383 		key = found_key;
1384 		btrfs_release_path(path);
1385 		goto again;
1386 	} else if (ret == 0) {
1387 		leaf = path->nodes[0];
1388 		extent = btrfs_item_ptr(leaf, path->slots[0],
1389 					struct btrfs_dev_extent);
1390 	} else {
1391 		btrfs_error(root->fs_info, ret, "Slot search failed");
1392 		goto out;
1393 	}
1394 
1395 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1396 
1397 	ret = btrfs_del_item(trans, root, path);
1398 	if (ret) {
1399 		btrfs_error(root->fs_info, ret,
1400 			    "Failed to remove dev extent item");
1401 	} else {
1402 		trans->transaction->have_free_bgs = 1;
1403 	}
1404 out:
1405 	btrfs_free_path(path);
1406 	return ret;
1407 }
1408 
1409 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1410 				  struct btrfs_device *device,
1411 				  u64 chunk_tree, u64 chunk_objectid,
1412 				  u64 chunk_offset, u64 start, u64 num_bytes)
1413 {
1414 	int ret;
1415 	struct btrfs_path *path;
1416 	struct btrfs_root *root = device->dev_root;
1417 	struct btrfs_dev_extent *extent;
1418 	struct extent_buffer *leaf;
1419 	struct btrfs_key key;
1420 
1421 	WARN_ON(!device->in_fs_metadata);
1422 	WARN_ON(device->is_tgtdev_for_dev_replace);
1423 	path = btrfs_alloc_path();
1424 	if (!path)
1425 		return -ENOMEM;
1426 
1427 	key.objectid = device->devid;
1428 	key.offset = start;
1429 	key.type = BTRFS_DEV_EXTENT_KEY;
1430 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1431 				      sizeof(*extent));
1432 	if (ret)
1433 		goto out;
1434 
1435 	leaf = path->nodes[0];
1436 	extent = btrfs_item_ptr(leaf, path->slots[0],
1437 				struct btrfs_dev_extent);
1438 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1439 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1440 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1441 
1442 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1443 		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1444 
1445 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1446 	btrfs_mark_buffer_dirty(leaf);
1447 out:
1448 	btrfs_free_path(path);
1449 	return ret;
1450 }
1451 
1452 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1453 {
1454 	struct extent_map_tree *em_tree;
1455 	struct extent_map *em;
1456 	struct rb_node *n;
1457 	u64 ret = 0;
1458 
1459 	em_tree = &fs_info->mapping_tree.map_tree;
1460 	read_lock(&em_tree->lock);
1461 	n = rb_last(&em_tree->map);
1462 	if (n) {
1463 		em = rb_entry(n, struct extent_map, rb_node);
1464 		ret = em->start + em->len;
1465 	}
1466 	read_unlock(&em_tree->lock);
1467 
1468 	return ret;
1469 }
1470 
1471 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1472 				    u64 *devid_ret)
1473 {
1474 	int ret;
1475 	struct btrfs_key key;
1476 	struct btrfs_key found_key;
1477 	struct btrfs_path *path;
1478 
1479 	path = btrfs_alloc_path();
1480 	if (!path)
1481 		return -ENOMEM;
1482 
1483 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1484 	key.type = BTRFS_DEV_ITEM_KEY;
1485 	key.offset = (u64)-1;
1486 
1487 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1488 	if (ret < 0)
1489 		goto error;
1490 
1491 	BUG_ON(ret == 0); /* Corruption */
1492 
1493 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1494 				  BTRFS_DEV_ITEMS_OBJECTID,
1495 				  BTRFS_DEV_ITEM_KEY);
1496 	if (ret) {
1497 		*devid_ret = 1;
1498 	} else {
1499 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1500 				      path->slots[0]);
1501 		*devid_ret = found_key.offset + 1;
1502 	}
1503 	ret = 0;
1504 error:
1505 	btrfs_free_path(path);
1506 	return ret;
1507 }
1508 
1509 /*
1510  * the device information is stored in the chunk root
1511  * the btrfs_device struct should be fully filled in
1512  */
1513 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1514 			    struct btrfs_root *root,
1515 			    struct btrfs_device *device)
1516 {
1517 	int ret;
1518 	struct btrfs_path *path;
1519 	struct btrfs_dev_item *dev_item;
1520 	struct extent_buffer *leaf;
1521 	struct btrfs_key key;
1522 	unsigned long ptr;
1523 
1524 	root = root->fs_info->chunk_root;
1525 
1526 	path = btrfs_alloc_path();
1527 	if (!path)
1528 		return -ENOMEM;
1529 
1530 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1531 	key.type = BTRFS_DEV_ITEM_KEY;
1532 	key.offset = device->devid;
1533 
1534 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1535 				      sizeof(*dev_item));
1536 	if (ret)
1537 		goto out;
1538 
1539 	leaf = path->nodes[0];
1540 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1541 
1542 	btrfs_set_device_id(leaf, dev_item, device->devid);
1543 	btrfs_set_device_generation(leaf, dev_item, 0);
1544 	btrfs_set_device_type(leaf, dev_item, device->type);
1545 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1546 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1547 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1548 	btrfs_set_device_total_bytes(leaf, dev_item,
1549 				     btrfs_device_get_disk_total_bytes(device));
1550 	btrfs_set_device_bytes_used(leaf, dev_item,
1551 				    btrfs_device_get_bytes_used(device));
1552 	btrfs_set_device_group(leaf, dev_item, 0);
1553 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1554 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1555 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1556 
1557 	ptr = btrfs_device_uuid(dev_item);
1558 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1559 	ptr = btrfs_device_fsid(dev_item);
1560 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1561 	btrfs_mark_buffer_dirty(leaf);
1562 
1563 	ret = 0;
1564 out:
1565 	btrfs_free_path(path);
1566 	return ret;
1567 }
1568 
1569 /*
1570  * Function to update ctime/mtime for a given device path.
1571  * Mainly used for ctime/mtime based probe like libblkid.
1572  */
1573 static void update_dev_time(char *path_name)
1574 {
1575 	struct file *filp;
1576 
1577 	filp = filp_open(path_name, O_RDWR, 0);
1578 	if (IS_ERR(filp))
1579 		return;
1580 	file_update_time(filp);
1581 	filp_close(filp, NULL);
1582 	return;
1583 }
1584 
1585 static int btrfs_rm_dev_item(struct btrfs_root *root,
1586 			     struct btrfs_device *device)
1587 {
1588 	int ret;
1589 	struct btrfs_path *path;
1590 	struct btrfs_key key;
1591 	struct btrfs_trans_handle *trans;
1592 
1593 	root = root->fs_info->chunk_root;
1594 
1595 	path = btrfs_alloc_path();
1596 	if (!path)
1597 		return -ENOMEM;
1598 
1599 	trans = btrfs_start_transaction(root, 0);
1600 	if (IS_ERR(trans)) {
1601 		btrfs_free_path(path);
1602 		return PTR_ERR(trans);
1603 	}
1604 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1605 	key.type = BTRFS_DEV_ITEM_KEY;
1606 	key.offset = device->devid;
1607 
1608 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1609 	if (ret < 0)
1610 		goto out;
1611 
1612 	if (ret > 0) {
1613 		ret = -ENOENT;
1614 		goto out;
1615 	}
1616 
1617 	ret = btrfs_del_item(trans, root, path);
1618 	if (ret)
1619 		goto out;
1620 out:
1621 	btrfs_free_path(path);
1622 	btrfs_commit_transaction(trans, root);
1623 	return ret;
1624 }
1625 
1626 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1627 {
1628 	struct btrfs_device *device;
1629 	struct btrfs_device *next_device;
1630 	struct block_device *bdev;
1631 	struct buffer_head *bh = NULL;
1632 	struct btrfs_super_block *disk_super;
1633 	struct btrfs_fs_devices *cur_devices;
1634 	u64 all_avail;
1635 	u64 devid;
1636 	u64 num_devices;
1637 	u8 *dev_uuid;
1638 	unsigned seq;
1639 	int ret = 0;
1640 	bool clear_super = false;
1641 
1642 	mutex_lock(&uuid_mutex);
1643 
1644 	do {
1645 		seq = read_seqbegin(&root->fs_info->profiles_lock);
1646 
1647 		all_avail = root->fs_info->avail_data_alloc_bits |
1648 			    root->fs_info->avail_system_alloc_bits |
1649 			    root->fs_info->avail_metadata_alloc_bits;
1650 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
1651 
1652 	num_devices = root->fs_info->fs_devices->num_devices;
1653 	btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1654 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1655 		WARN_ON(num_devices < 1);
1656 		num_devices--;
1657 	}
1658 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1659 
1660 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1661 		ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1662 		goto out;
1663 	}
1664 
1665 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1666 		ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1667 		goto out;
1668 	}
1669 
1670 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1671 	    root->fs_info->fs_devices->rw_devices <= 2) {
1672 		ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1673 		goto out;
1674 	}
1675 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1676 	    root->fs_info->fs_devices->rw_devices <= 3) {
1677 		ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1678 		goto out;
1679 	}
1680 
1681 	if (strcmp(device_path, "missing") == 0) {
1682 		struct list_head *devices;
1683 		struct btrfs_device *tmp;
1684 
1685 		device = NULL;
1686 		devices = &root->fs_info->fs_devices->devices;
1687 		/*
1688 		 * It is safe to read the devices since the volume_mutex
1689 		 * is held.
1690 		 */
1691 		list_for_each_entry(tmp, devices, dev_list) {
1692 			if (tmp->in_fs_metadata &&
1693 			    !tmp->is_tgtdev_for_dev_replace &&
1694 			    !tmp->bdev) {
1695 				device = tmp;
1696 				break;
1697 			}
1698 		}
1699 		bdev = NULL;
1700 		bh = NULL;
1701 		disk_super = NULL;
1702 		if (!device) {
1703 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1704 			goto out;
1705 		}
1706 	} else {
1707 		ret = btrfs_get_bdev_and_sb(device_path,
1708 					    FMODE_WRITE | FMODE_EXCL,
1709 					    root->fs_info->bdev_holder, 0,
1710 					    &bdev, &bh);
1711 		if (ret)
1712 			goto out;
1713 		disk_super = (struct btrfs_super_block *)bh->b_data;
1714 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1715 		dev_uuid = disk_super->dev_item.uuid;
1716 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1717 					   disk_super->fsid);
1718 		if (!device) {
1719 			ret = -ENOENT;
1720 			goto error_brelse;
1721 		}
1722 	}
1723 
1724 	if (device->is_tgtdev_for_dev_replace) {
1725 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1726 		goto error_brelse;
1727 	}
1728 
1729 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1730 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1731 		goto error_brelse;
1732 	}
1733 
1734 	if (device->writeable) {
1735 		lock_chunks(root);
1736 		list_del_init(&device->dev_alloc_list);
1737 		device->fs_devices->rw_devices--;
1738 		unlock_chunks(root);
1739 		clear_super = true;
1740 	}
1741 
1742 	mutex_unlock(&uuid_mutex);
1743 	ret = btrfs_shrink_device(device, 0);
1744 	mutex_lock(&uuid_mutex);
1745 	if (ret)
1746 		goto error_undo;
1747 
1748 	/*
1749 	 * TODO: the superblock still includes this device in its num_devices
1750 	 * counter although write_all_supers() is not locked out. This
1751 	 * could give a filesystem state which requires a degraded mount.
1752 	 */
1753 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1754 	if (ret)
1755 		goto error_undo;
1756 
1757 	device->in_fs_metadata = 0;
1758 	btrfs_scrub_cancel_dev(root->fs_info, device);
1759 
1760 	/*
1761 	 * the device list mutex makes sure that we don't change
1762 	 * the device list while someone else is writing out all
1763 	 * the device supers. Whoever is writing all supers, should
1764 	 * lock the device list mutex before getting the number of
1765 	 * devices in the super block (super_copy). Conversely,
1766 	 * whoever updates the number of devices in the super block
1767 	 * (super_copy) should hold the device list mutex.
1768 	 */
1769 
1770 	cur_devices = device->fs_devices;
1771 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1772 	list_del_rcu(&device->dev_list);
1773 
1774 	device->fs_devices->num_devices--;
1775 	device->fs_devices->total_devices--;
1776 
1777 	if (device->missing)
1778 		device->fs_devices->missing_devices--;
1779 
1780 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1781 				 struct btrfs_device, dev_list);
1782 	if (device->bdev == root->fs_info->sb->s_bdev)
1783 		root->fs_info->sb->s_bdev = next_device->bdev;
1784 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1785 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1786 
1787 	if (device->bdev) {
1788 		device->fs_devices->open_devices--;
1789 		/* remove sysfs entry */
1790 		btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
1791 	}
1792 
1793 	call_rcu(&device->rcu, free_device);
1794 
1795 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1796 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1797 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1798 
1799 	if (cur_devices->open_devices == 0) {
1800 		struct btrfs_fs_devices *fs_devices;
1801 		fs_devices = root->fs_info->fs_devices;
1802 		while (fs_devices) {
1803 			if (fs_devices->seed == cur_devices) {
1804 				fs_devices->seed = cur_devices->seed;
1805 				break;
1806 			}
1807 			fs_devices = fs_devices->seed;
1808 		}
1809 		cur_devices->seed = NULL;
1810 		__btrfs_close_devices(cur_devices);
1811 		free_fs_devices(cur_devices);
1812 	}
1813 
1814 	root->fs_info->num_tolerated_disk_barrier_failures =
1815 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1816 
1817 	/*
1818 	 * at this point, the device is zero sized.  We want to
1819 	 * remove it from the devices list and zero out the old super
1820 	 */
1821 	if (clear_super && disk_super) {
1822 		u64 bytenr;
1823 		int i;
1824 
1825 		/* make sure this device isn't detected as part of
1826 		 * the FS anymore
1827 		 */
1828 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1829 		set_buffer_dirty(bh);
1830 		sync_dirty_buffer(bh);
1831 
1832 		/* clear the mirror copies of super block on the disk
1833 		 * being removed, 0th copy is been taken care above and
1834 		 * the below would take of the rest
1835 		 */
1836 		for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1837 			bytenr = btrfs_sb_offset(i);
1838 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1839 					i_size_read(bdev->bd_inode))
1840 				break;
1841 
1842 			brelse(bh);
1843 			bh = __bread(bdev, bytenr / 4096,
1844 					BTRFS_SUPER_INFO_SIZE);
1845 			if (!bh)
1846 				continue;
1847 
1848 			disk_super = (struct btrfs_super_block *)bh->b_data;
1849 
1850 			if (btrfs_super_bytenr(disk_super) != bytenr ||
1851 				btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1852 				continue;
1853 			}
1854 			memset(&disk_super->magic, 0,
1855 						sizeof(disk_super->magic));
1856 			set_buffer_dirty(bh);
1857 			sync_dirty_buffer(bh);
1858 		}
1859 	}
1860 
1861 	ret = 0;
1862 
1863 	if (bdev) {
1864 		/* Notify udev that device has changed */
1865 		btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1866 
1867 		/* Update ctime/mtime for device path for libblkid */
1868 		update_dev_time(device_path);
1869 	}
1870 
1871 error_brelse:
1872 	brelse(bh);
1873 	if (bdev)
1874 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1875 out:
1876 	mutex_unlock(&uuid_mutex);
1877 	return ret;
1878 error_undo:
1879 	if (device->writeable) {
1880 		lock_chunks(root);
1881 		list_add(&device->dev_alloc_list,
1882 			 &root->fs_info->fs_devices->alloc_list);
1883 		device->fs_devices->rw_devices++;
1884 		unlock_chunks(root);
1885 	}
1886 	goto error_brelse;
1887 }
1888 
1889 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1890 					struct btrfs_device *srcdev)
1891 {
1892 	struct btrfs_fs_devices *fs_devices;
1893 
1894 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1895 
1896 	/*
1897 	 * in case of fs with no seed, srcdev->fs_devices will point
1898 	 * to fs_devices of fs_info. However when the dev being replaced is
1899 	 * a seed dev it will point to the seed's local fs_devices. In short
1900 	 * srcdev will have its correct fs_devices in both the cases.
1901 	 */
1902 	fs_devices = srcdev->fs_devices;
1903 
1904 	list_del_rcu(&srcdev->dev_list);
1905 	list_del_rcu(&srcdev->dev_alloc_list);
1906 	fs_devices->num_devices--;
1907 	if (srcdev->missing)
1908 		fs_devices->missing_devices--;
1909 
1910 	if (srcdev->writeable) {
1911 		fs_devices->rw_devices--;
1912 		/* zero out the old super if it is writable */
1913 		btrfs_scratch_superblock(srcdev);
1914 	}
1915 
1916 	if (srcdev->bdev)
1917 		fs_devices->open_devices--;
1918 }
1919 
1920 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1921 				      struct btrfs_device *srcdev)
1922 {
1923 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1924 
1925 	call_rcu(&srcdev->rcu, free_device);
1926 
1927 	/*
1928 	 * unless fs_devices is seed fs, num_devices shouldn't go
1929 	 * zero
1930 	 */
1931 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1932 
1933 	/* if this is no devs we rather delete the fs_devices */
1934 	if (!fs_devices->num_devices) {
1935 		struct btrfs_fs_devices *tmp_fs_devices;
1936 
1937 		tmp_fs_devices = fs_info->fs_devices;
1938 		while (tmp_fs_devices) {
1939 			if (tmp_fs_devices->seed == fs_devices) {
1940 				tmp_fs_devices->seed = fs_devices->seed;
1941 				break;
1942 			}
1943 			tmp_fs_devices = tmp_fs_devices->seed;
1944 		}
1945 		fs_devices->seed = NULL;
1946 		__btrfs_close_devices(fs_devices);
1947 		free_fs_devices(fs_devices);
1948 	}
1949 }
1950 
1951 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1952 				      struct btrfs_device *tgtdev)
1953 {
1954 	struct btrfs_device *next_device;
1955 
1956 	mutex_lock(&uuid_mutex);
1957 	WARN_ON(!tgtdev);
1958 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1959 
1960 	btrfs_kobj_rm_device(fs_info->fs_devices, tgtdev);
1961 
1962 	if (tgtdev->bdev) {
1963 		btrfs_scratch_superblock(tgtdev);
1964 		fs_info->fs_devices->open_devices--;
1965 	}
1966 	fs_info->fs_devices->num_devices--;
1967 
1968 	next_device = list_entry(fs_info->fs_devices->devices.next,
1969 				 struct btrfs_device, dev_list);
1970 	if (tgtdev->bdev == fs_info->sb->s_bdev)
1971 		fs_info->sb->s_bdev = next_device->bdev;
1972 	if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1973 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1974 	list_del_rcu(&tgtdev->dev_list);
1975 
1976 	call_rcu(&tgtdev->rcu, free_device);
1977 
1978 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1979 	mutex_unlock(&uuid_mutex);
1980 }
1981 
1982 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1983 				     struct btrfs_device **device)
1984 {
1985 	int ret = 0;
1986 	struct btrfs_super_block *disk_super;
1987 	u64 devid;
1988 	u8 *dev_uuid;
1989 	struct block_device *bdev;
1990 	struct buffer_head *bh;
1991 
1992 	*device = NULL;
1993 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1994 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
1995 	if (ret)
1996 		return ret;
1997 	disk_super = (struct btrfs_super_block *)bh->b_data;
1998 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1999 	dev_uuid = disk_super->dev_item.uuid;
2000 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2001 				    disk_super->fsid);
2002 	brelse(bh);
2003 	if (!*device)
2004 		ret = -ENOENT;
2005 	blkdev_put(bdev, FMODE_READ);
2006 	return ret;
2007 }
2008 
2009 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2010 					 char *device_path,
2011 					 struct btrfs_device **device)
2012 {
2013 	*device = NULL;
2014 	if (strcmp(device_path, "missing") == 0) {
2015 		struct list_head *devices;
2016 		struct btrfs_device *tmp;
2017 
2018 		devices = &root->fs_info->fs_devices->devices;
2019 		/*
2020 		 * It is safe to read the devices since the volume_mutex
2021 		 * is held by the caller.
2022 		 */
2023 		list_for_each_entry(tmp, devices, dev_list) {
2024 			if (tmp->in_fs_metadata && !tmp->bdev) {
2025 				*device = tmp;
2026 				break;
2027 			}
2028 		}
2029 
2030 		if (!*device) {
2031 			btrfs_err(root->fs_info, "no missing device found");
2032 			return -ENOENT;
2033 		}
2034 
2035 		return 0;
2036 	} else {
2037 		return btrfs_find_device_by_path(root, device_path, device);
2038 	}
2039 }
2040 
2041 /*
2042  * does all the dirty work required for changing file system's UUID.
2043  */
2044 static int btrfs_prepare_sprout(struct btrfs_root *root)
2045 {
2046 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2047 	struct btrfs_fs_devices *old_devices;
2048 	struct btrfs_fs_devices *seed_devices;
2049 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2050 	struct btrfs_device *device;
2051 	u64 super_flags;
2052 
2053 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2054 	if (!fs_devices->seeding)
2055 		return -EINVAL;
2056 
2057 	seed_devices = __alloc_fs_devices();
2058 	if (IS_ERR(seed_devices))
2059 		return PTR_ERR(seed_devices);
2060 
2061 	old_devices = clone_fs_devices(fs_devices);
2062 	if (IS_ERR(old_devices)) {
2063 		kfree(seed_devices);
2064 		return PTR_ERR(old_devices);
2065 	}
2066 
2067 	list_add(&old_devices->list, &fs_uuids);
2068 
2069 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2070 	seed_devices->opened = 1;
2071 	INIT_LIST_HEAD(&seed_devices->devices);
2072 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2073 	mutex_init(&seed_devices->device_list_mutex);
2074 
2075 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2076 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2077 			      synchronize_rcu);
2078 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2079 		device->fs_devices = seed_devices;
2080 
2081 	lock_chunks(root);
2082 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2083 	unlock_chunks(root);
2084 
2085 	fs_devices->seeding = 0;
2086 	fs_devices->num_devices = 0;
2087 	fs_devices->open_devices = 0;
2088 	fs_devices->missing_devices = 0;
2089 	fs_devices->rotating = 0;
2090 	fs_devices->seed = seed_devices;
2091 
2092 	generate_random_uuid(fs_devices->fsid);
2093 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2094 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2095 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2096 
2097 	super_flags = btrfs_super_flags(disk_super) &
2098 		      ~BTRFS_SUPER_FLAG_SEEDING;
2099 	btrfs_set_super_flags(disk_super, super_flags);
2100 
2101 	return 0;
2102 }
2103 
2104 /*
2105  * strore the expected generation for seed devices in device items.
2106  */
2107 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2108 			       struct btrfs_root *root)
2109 {
2110 	struct btrfs_path *path;
2111 	struct extent_buffer *leaf;
2112 	struct btrfs_dev_item *dev_item;
2113 	struct btrfs_device *device;
2114 	struct btrfs_key key;
2115 	u8 fs_uuid[BTRFS_UUID_SIZE];
2116 	u8 dev_uuid[BTRFS_UUID_SIZE];
2117 	u64 devid;
2118 	int ret;
2119 
2120 	path = btrfs_alloc_path();
2121 	if (!path)
2122 		return -ENOMEM;
2123 
2124 	root = root->fs_info->chunk_root;
2125 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2126 	key.offset = 0;
2127 	key.type = BTRFS_DEV_ITEM_KEY;
2128 
2129 	while (1) {
2130 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2131 		if (ret < 0)
2132 			goto error;
2133 
2134 		leaf = path->nodes[0];
2135 next_slot:
2136 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2137 			ret = btrfs_next_leaf(root, path);
2138 			if (ret > 0)
2139 				break;
2140 			if (ret < 0)
2141 				goto error;
2142 			leaf = path->nodes[0];
2143 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2144 			btrfs_release_path(path);
2145 			continue;
2146 		}
2147 
2148 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2149 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2150 		    key.type != BTRFS_DEV_ITEM_KEY)
2151 			break;
2152 
2153 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2154 					  struct btrfs_dev_item);
2155 		devid = btrfs_device_id(leaf, dev_item);
2156 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2157 				   BTRFS_UUID_SIZE);
2158 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2159 				   BTRFS_UUID_SIZE);
2160 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2161 					   fs_uuid);
2162 		BUG_ON(!device); /* Logic error */
2163 
2164 		if (device->fs_devices->seeding) {
2165 			btrfs_set_device_generation(leaf, dev_item,
2166 						    device->generation);
2167 			btrfs_mark_buffer_dirty(leaf);
2168 		}
2169 
2170 		path->slots[0]++;
2171 		goto next_slot;
2172 	}
2173 	ret = 0;
2174 error:
2175 	btrfs_free_path(path);
2176 	return ret;
2177 }
2178 
2179 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2180 {
2181 	struct request_queue *q;
2182 	struct btrfs_trans_handle *trans;
2183 	struct btrfs_device *device;
2184 	struct block_device *bdev;
2185 	struct list_head *devices;
2186 	struct super_block *sb = root->fs_info->sb;
2187 	struct rcu_string *name;
2188 	u64 tmp;
2189 	int seeding_dev = 0;
2190 	int ret = 0;
2191 
2192 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2193 		return -EROFS;
2194 
2195 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2196 				  root->fs_info->bdev_holder);
2197 	if (IS_ERR(bdev))
2198 		return PTR_ERR(bdev);
2199 
2200 	if (root->fs_info->fs_devices->seeding) {
2201 		seeding_dev = 1;
2202 		down_write(&sb->s_umount);
2203 		mutex_lock(&uuid_mutex);
2204 	}
2205 
2206 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2207 
2208 	devices = &root->fs_info->fs_devices->devices;
2209 
2210 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2211 	list_for_each_entry(device, devices, dev_list) {
2212 		if (device->bdev == bdev) {
2213 			ret = -EEXIST;
2214 			mutex_unlock(
2215 				&root->fs_info->fs_devices->device_list_mutex);
2216 			goto error;
2217 		}
2218 	}
2219 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2220 
2221 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2222 	if (IS_ERR(device)) {
2223 		/* we can safely leave the fs_devices entry around */
2224 		ret = PTR_ERR(device);
2225 		goto error;
2226 	}
2227 
2228 	name = rcu_string_strdup(device_path, GFP_NOFS);
2229 	if (!name) {
2230 		kfree(device);
2231 		ret = -ENOMEM;
2232 		goto error;
2233 	}
2234 	rcu_assign_pointer(device->name, name);
2235 
2236 	trans = btrfs_start_transaction(root, 0);
2237 	if (IS_ERR(trans)) {
2238 		rcu_string_free(device->name);
2239 		kfree(device);
2240 		ret = PTR_ERR(trans);
2241 		goto error;
2242 	}
2243 
2244 	q = bdev_get_queue(bdev);
2245 	if (blk_queue_discard(q))
2246 		device->can_discard = 1;
2247 	device->writeable = 1;
2248 	device->generation = trans->transid;
2249 	device->io_width = root->sectorsize;
2250 	device->io_align = root->sectorsize;
2251 	device->sector_size = root->sectorsize;
2252 	device->total_bytes = i_size_read(bdev->bd_inode);
2253 	device->disk_total_bytes = device->total_bytes;
2254 	device->commit_total_bytes = device->total_bytes;
2255 	device->dev_root = root->fs_info->dev_root;
2256 	device->bdev = bdev;
2257 	device->in_fs_metadata = 1;
2258 	device->is_tgtdev_for_dev_replace = 0;
2259 	device->mode = FMODE_EXCL;
2260 	device->dev_stats_valid = 1;
2261 	set_blocksize(device->bdev, 4096);
2262 
2263 	if (seeding_dev) {
2264 		sb->s_flags &= ~MS_RDONLY;
2265 		ret = btrfs_prepare_sprout(root);
2266 		BUG_ON(ret); /* -ENOMEM */
2267 	}
2268 
2269 	device->fs_devices = root->fs_info->fs_devices;
2270 
2271 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2272 	lock_chunks(root);
2273 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2274 	list_add(&device->dev_alloc_list,
2275 		 &root->fs_info->fs_devices->alloc_list);
2276 	root->fs_info->fs_devices->num_devices++;
2277 	root->fs_info->fs_devices->open_devices++;
2278 	root->fs_info->fs_devices->rw_devices++;
2279 	root->fs_info->fs_devices->total_devices++;
2280 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2281 
2282 	spin_lock(&root->fs_info->free_chunk_lock);
2283 	root->fs_info->free_chunk_space += device->total_bytes;
2284 	spin_unlock(&root->fs_info->free_chunk_lock);
2285 
2286 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2287 		root->fs_info->fs_devices->rotating = 1;
2288 
2289 	tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2290 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2291 				    tmp + device->total_bytes);
2292 
2293 	tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2294 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2295 				    tmp + 1);
2296 
2297 	/* add sysfs device entry */
2298 	btrfs_kobj_add_device(root->fs_info->fs_devices, device);
2299 
2300 	/*
2301 	 * we've got more storage, clear any full flags on the space
2302 	 * infos
2303 	 */
2304 	btrfs_clear_space_info_full(root->fs_info);
2305 
2306 	unlock_chunks(root);
2307 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2308 
2309 	if (seeding_dev) {
2310 		lock_chunks(root);
2311 		ret = init_first_rw_device(trans, root, device);
2312 		unlock_chunks(root);
2313 		if (ret) {
2314 			btrfs_abort_transaction(trans, root, ret);
2315 			goto error_trans;
2316 		}
2317 	}
2318 
2319 	ret = btrfs_add_device(trans, root, device);
2320 	if (ret) {
2321 		btrfs_abort_transaction(trans, root, ret);
2322 		goto error_trans;
2323 	}
2324 
2325 	if (seeding_dev) {
2326 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2327 
2328 		ret = btrfs_finish_sprout(trans, root);
2329 		if (ret) {
2330 			btrfs_abort_transaction(trans, root, ret);
2331 			goto error_trans;
2332 		}
2333 
2334 		/* Sprouting would change fsid of the mounted root,
2335 		 * so rename the fsid on the sysfs
2336 		 */
2337 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2338 						root->fs_info->fsid);
2339 		if (kobject_rename(&root->fs_info->fs_devices->super_kobj,
2340 								fsid_buf))
2341 			pr_warn("BTRFS: sysfs: failed to create fsid for sprout\n");
2342 	}
2343 
2344 	root->fs_info->num_tolerated_disk_barrier_failures =
2345 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2346 	ret = btrfs_commit_transaction(trans, root);
2347 
2348 	if (seeding_dev) {
2349 		mutex_unlock(&uuid_mutex);
2350 		up_write(&sb->s_umount);
2351 
2352 		if (ret) /* transaction commit */
2353 			return ret;
2354 
2355 		ret = btrfs_relocate_sys_chunks(root);
2356 		if (ret < 0)
2357 			btrfs_error(root->fs_info, ret,
2358 				    "Failed to relocate sys chunks after "
2359 				    "device initialization. This can be fixed "
2360 				    "using the \"btrfs balance\" command.");
2361 		trans = btrfs_attach_transaction(root);
2362 		if (IS_ERR(trans)) {
2363 			if (PTR_ERR(trans) == -ENOENT)
2364 				return 0;
2365 			return PTR_ERR(trans);
2366 		}
2367 		ret = btrfs_commit_transaction(trans, root);
2368 	}
2369 
2370 	/* Update ctime/mtime for libblkid */
2371 	update_dev_time(device_path);
2372 	return ret;
2373 
2374 error_trans:
2375 	btrfs_end_transaction(trans, root);
2376 	rcu_string_free(device->name);
2377 	btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
2378 	kfree(device);
2379 error:
2380 	blkdev_put(bdev, FMODE_EXCL);
2381 	if (seeding_dev) {
2382 		mutex_unlock(&uuid_mutex);
2383 		up_write(&sb->s_umount);
2384 	}
2385 	return ret;
2386 }
2387 
2388 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2389 				  struct btrfs_device *srcdev,
2390 				  struct btrfs_device **device_out)
2391 {
2392 	struct request_queue *q;
2393 	struct btrfs_device *device;
2394 	struct block_device *bdev;
2395 	struct btrfs_fs_info *fs_info = root->fs_info;
2396 	struct list_head *devices;
2397 	struct rcu_string *name;
2398 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2399 	int ret = 0;
2400 
2401 	*device_out = NULL;
2402 	if (fs_info->fs_devices->seeding) {
2403 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2404 		return -EINVAL;
2405 	}
2406 
2407 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2408 				  fs_info->bdev_holder);
2409 	if (IS_ERR(bdev)) {
2410 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2411 		return PTR_ERR(bdev);
2412 	}
2413 
2414 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2415 
2416 	devices = &fs_info->fs_devices->devices;
2417 	list_for_each_entry(device, devices, dev_list) {
2418 		if (device->bdev == bdev) {
2419 			btrfs_err(fs_info, "target device is in the filesystem!");
2420 			ret = -EEXIST;
2421 			goto error;
2422 		}
2423 	}
2424 
2425 
2426 	if (i_size_read(bdev->bd_inode) <
2427 	    btrfs_device_get_total_bytes(srcdev)) {
2428 		btrfs_err(fs_info, "target device is smaller than source device!");
2429 		ret = -EINVAL;
2430 		goto error;
2431 	}
2432 
2433 
2434 	device = btrfs_alloc_device(NULL, &devid, NULL);
2435 	if (IS_ERR(device)) {
2436 		ret = PTR_ERR(device);
2437 		goto error;
2438 	}
2439 
2440 	name = rcu_string_strdup(device_path, GFP_NOFS);
2441 	if (!name) {
2442 		kfree(device);
2443 		ret = -ENOMEM;
2444 		goto error;
2445 	}
2446 	rcu_assign_pointer(device->name, name);
2447 
2448 	q = bdev_get_queue(bdev);
2449 	if (blk_queue_discard(q))
2450 		device->can_discard = 1;
2451 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2452 	device->writeable = 1;
2453 	device->generation = 0;
2454 	device->io_width = root->sectorsize;
2455 	device->io_align = root->sectorsize;
2456 	device->sector_size = root->sectorsize;
2457 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2458 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2459 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2460 	ASSERT(list_empty(&srcdev->resized_list));
2461 	device->commit_total_bytes = srcdev->commit_total_bytes;
2462 	device->commit_bytes_used = device->bytes_used;
2463 	device->dev_root = fs_info->dev_root;
2464 	device->bdev = bdev;
2465 	device->in_fs_metadata = 1;
2466 	device->is_tgtdev_for_dev_replace = 1;
2467 	device->mode = FMODE_EXCL;
2468 	device->dev_stats_valid = 1;
2469 	set_blocksize(device->bdev, 4096);
2470 	device->fs_devices = fs_info->fs_devices;
2471 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2472 	fs_info->fs_devices->num_devices++;
2473 	fs_info->fs_devices->open_devices++;
2474 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2475 
2476 	*device_out = device;
2477 	return ret;
2478 
2479 error:
2480 	blkdev_put(bdev, FMODE_EXCL);
2481 	return ret;
2482 }
2483 
2484 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2485 					      struct btrfs_device *tgtdev)
2486 {
2487 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2488 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2489 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2490 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2491 	tgtdev->dev_root = fs_info->dev_root;
2492 	tgtdev->in_fs_metadata = 1;
2493 }
2494 
2495 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2496 					struct btrfs_device *device)
2497 {
2498 	int ret;
2499 	struct btrfs_path *path;
2500 	struct btrfs_root *root;
2501 	struct btrfs_dev_item *dev_item;
2502 	struct extent_buffer *leaf;
2503 	struct btrfs_key key;
2504 
2505 	root = device->dev_root->fs_info->chunk_root;
2506 
2507 	path = btrfs_alloc_path();
2508 	if (!path)
2509 		return -ENOMEM;
2510 
2511 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2512 	key.type = BTRFS_DEV_ITEM_KEY;
2513 	key.offset = device->devid;
2514 
2515 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2516 	if (ret < 0)
2517 		goto out;
2518 
2519 	if (ret > 0) {
2520 		ret = -ENOENT;
2521 		goto out;
2522 	}
2523 
2524 	leaf = path->nodes[0];
2525 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2526 
2527 	btrfs_set_device_id(leaf, dev_item, device->devid);
2528 	btrfs_set_device_type(leaf, dev_item, device->type);
2529 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2530 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2531 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2532 	btrfs_set_device_total_bytes(leaf, dev_item,
2533 				     btrfs_device_get_disk_total_bytes(device));
2534 	btrfs_set_device_bytes_used(leaf, dev_item,
2535 				    btrfs_device_get_bytes_used(device));
2536 	btrfs_mark_buffer_dirty(leaf);
2537 
2538 out:
2539 	btrfs_free_path(path);
2540 	return ret;
2541 }
2542 
2543 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2544 		      struct btrfs_device *device, u64 new_size)
2545 {
2546 	struct btrfs_super_block *super_copy =
2547 		device->dev_root->fs_info->super_copy;
2548 	struct btrfs_fs_devices *fs_devices;
2549 	u64 old_total;
2550 	u64 diff;
2551 
2552 	if (!device->writeable)
2553 		return -EACCES;
2554 
2555 	lock_chunks(device->dev_root);
2556 	old_total = btrfs_super_total_bytes(super_copy);
2557 	diff = new_size - device->total_bytes;
2558 
2559 	if (new_size <= device->total_bytes ||
2560 	    device->is_tgtdev_for_dev_replace) {
2561 		unlock_chunks(device->dev_root);
2562 		return -EINVAL;
2563 	}
2564 
2565 	fs_devices = device->dev_root->fs_info->fs_devices;
2566 
2567 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2568 	device->fs_devices->total_rw_bytes += diff;
2569 
2570 	btrfs_device_set_total_bytes(device, new_size);
2571 	btrfs_device_set_disk_total_bytes(device, new_size);
2572 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2573 	if (list_empty(&device->resized_list))
2574 		list_add_tail(&device->resized_list,
2575 			      &fs_devices->resized_devices);
2576 	unlock_chunks(device->dev_root);
2577 
2578 	return btrfs_update_device(trans, device);
2579 }
2580 
2581 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2582 			    struct btrfs_root *root, u64 chunk_objectid,
2583 			    u64 chunk_offset)
2584 {
2585 	int ret;
2586 	struct btrfs_path *path;
2587 	struct btrfs_key key;
2588 
2589 	root = root->fs_info->chunk_root;
2590 	path = btrfs_alloc_path();
2591 	if (!path)
2592 		return -ENOMEM;
2593 
2594 	key.objectid = chunk_objectid;
2595 	key.offset = chunk_offset;
2596 	key.type = BTRFS_CHUNK_ITEM_KEY;
2597 
2598 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2599 	if (ret < 0)
2600 		goto out;
2601 	else if (ret > 0) { /* Logic error or corruption */
2602 		btrfs_error(root->fs_info, -ENOENT,
2603 			    "Failed lookup while freeing chunk.");
2604 		ret = -ENOENT;
2605 		goto out;
2606 	}
2607 
2608 	ret = btrfs_del_item(trans, root, path);
2609 	if (ret < 0)
2610 		btrfs_error(root->fs_info, ret,
2611 			    "Failed to delete chunk item.");
2612 out:
2613 	btrfs_free_path(path);
2614 	return ret;
2615 }
2616 
2617 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2618 			chunk_offset)
2619 {
2620 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2621 	struct btrfs_disk_key *disk_key;
2622 	struct btrfs_chunk *chunk;
2623 	u8 *ptr;
2624 	int ret = 0;
2625 	u32 num_stripes;
2626 	u32 array_size;
2627 	u32 len = 0;
2628 	u32 cur;
2629 	struct btrfs_key key;
2630 
2631 	lock_chunks(root);
2632 	array_size = btrfs_super_sys_array_size(super_copy);
2633 
2634 	ptr = super_copy->sys_chunk_array;
2635 	cur = 0;
2636 
2637 	while (cur < array_size) {
2638 		disk_key = (struct btrfs_disk_key *)ptr;
2639 		btrfs_disk_key_to_cpu(&key, disk_key);
2640 
2641 		len = sizeof(*disk_key);
2642 
2643 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2644 			chunk = (struct btrfs_chunk *)(ptr + len);
2645 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2646 			len += btrfs_chunk_item_size(num_stripes);
2647 		} else {
2648 			ret = -EIO;
2649 			break;
2650 		}
2651 		if (key.objectid == chunk_objectid &&
2652 		    key.offset == chunk_offset) {
2653 			memmove(ptr, ptr + len, array_size - (cur + len));
2654 			array_size -= len;
2655 			btrfs_set_super_sys_array_size(super_copy, array_size);
2656 		} else {
2657 			ptr += len;
2658 			cur += len;
2659 		}
2660 	}
2661 	unlock_chunks(root);
2662 	return ret;
2663 }
2664 
2665 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2666 		       struct btrfs_root *root, u64 chunk_offset)
2667 {
2668 	struct extent_map_tree *em_tree;
2669 	struct extent_map *em;
2670 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2671 	struct map_lookup *map;
2672 	u64 dev_extent_len = 0;
2673 	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2674 	int i, ret = 0;
2675 
2676 	/* Just in case */
2677 	root = root->fs_info->chunk_root;
2678 	em_tree = &root->fs_info->mapping_tree.map_tree;
2679 
2680 	read_lock(&em_tree->lock);
2681 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2682 	read_unlock(&em_tree->lock);
2683 
2684 	if (!em || em->start > chunk_offset ||
2685 	    em->start + em->len < chunk_offset) {
2686 		/*
2687 		 * This is a logic error, but we don't want to just rely on the
2688 		 * user having built with ASSERT enabled, so if ASSERT doens't
2689 		 * do anything we still error out.
2690 		 */
2691 		ASSERT(0);
2692 		if (em)
2693 			free_extent_map(em);
2694 		return -EINVAL;
2695 	}
2696 	map = (struct map_lookup *)em->bdev;
2697 	lock_chunks(root->fs_info->chunk_root);
2698 	check_system_chunk(trans, extent_root, map->type);
2699 	unlock_chunks(root->fs_info->chunk_root);
2700 
2701 	for (i = 0; i < map->num_stripes; i++) {
2702 		struct btrfs_device *device = map->stripes[i].dev;
2703 		ret = btrfs_free_dev_extent(trans, device,
2704 					    map->stripes[i].physical,
2705 					    &dev_extent_len);
2706 		if (ret) {
2707 			btrfs_abort_transaction(trans, root, ret);
2708 			goto out;
2709 		}
2710 
2711 		if (device->bytes_used > 0) {
2712 			lock_chunks(root);
2713 			btrfs_device_set_bytes_used(device,
2714 					device->bytes_used - dev_extent_len);
2715 			spin_lock(&root->fs_info->free_chunk_lock);
2716 			root->fs_info->free_chunk_space += dev_extent_len;
2717 			spin_unlock(&root->fs_info->free_chunk_lock);
2718 			btrfs_clear_space_info_full(root->fs_info);
2719 			unlock_chunks(root);
2720 		}
2721 
2722 		if (map->stripes[i].dev) {
2723 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2724 			if (ret) {
2725 				btrfs_abort_transaction(trans, root, ret);
2726 				goto out;
2727 			}
2728 		}
2729 	}
2730 	ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2731 	if (ret) {
2732 		btrfs_abort_transaction(trans, root, ret);
2733 		goto out;
2734 	}
2735 
2736 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2737 
2738 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2739 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2740 		if (ret) {
2741 			btrfs_abort_transaction(trans, root, ret);
2742 			goto out;
2743 		}
2744 	}
2745 
2746 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2747 	if (ret) {
2748 		btrfs_abort_transaction(trans, extent_root, ret);
2749 		goto out;
2750 	}
2751 
2752 out:
2753 	/* once for us */
2754 	free_extent_map(em);
2755 	return ret;
2756 }
2757 
2758 static int btrfs_relocate_chunk(struct btrfs_root *root,
2759 				u64 chunk_objectid,
2760 				u64 chunk_offset)
2761 {
2762 	struct btrfs_root *extent_root;
2763 	struct btrfs_trans_handle *trans;
2764 	int ret;
2765 
2766 	root = root->fs_info->chunk_root;
2767 	extent_root = root->fs_info->extent_root;
2768 
2769 	/*
2770 	 * Prevent races with automatic removal of unused block groups.
2771 	 * After we relocate and before we remove the chunk with offset
2772 	 * chunk_offset, automatic removal of the block group can kick in,
2773 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2774 	 *
2775 	 * Make sure to acquire this mutex before doing a tree search (dev
2776 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2777 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2778 	 * we release the path used to search the chunk/dev tree and before
2779 	 * the current task acquires this mutex and calls us.
2780 	 */
2781 	ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2782 
2783 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2784 	if (ret)
2785 		return -ENOSPC;
2786 
2787 	/* step one, relocate all the extents inside this chunk */
2788 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2789 	if (ret)
2790 		return ret;
2791 
2792 	trans = btrfs_start_transaction(root, 0);
2793 	if (IS_ERR(trans)) {
2794 		ret = PTR_ERR(trans);
2795 		btrfs_std_error(root->fs_info, ret);
2796 		return ret;
2797 	}
2798 
2799 	/*
2800 	 * step two, delete the device extents and the
2801 	 * chunk tree entries
2802 	 */
2803 	ret = btrfs_remove_chunk(trans, root, chunk_offset);
2804 	btrfs_end_transaction(trans, root);
2805 	return ret;
2806 }
2807 
2808 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2809 {
2810 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2811 	struct btrfs_path *path;
2812 	struct extent_buffer *leaf;
2813 	struct btrfs_chunk *chunk;
2814 	struct btrfs_key key;
2815 	struct btrfs_key found_key;
2816 	u64 chunk_type;
2817 	bool retried = false;
2818 	int failed = 0;
2819 	int ret;
2820 
2821 	path = btrfs_alloc_path();
2822 	if (!path)
2823 		return -ENOMEM;
2824 
2825 again:
2826 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2827 	key.offset = (u64)-1;
2828 	key.type = BTRFS_CHUNK_ITEM_KEY;
2829 
2830 	while (1) {
2831 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2832 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2833 		if (ret < 0) {
2834 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2835 			goto error;
2836 		}
2837 		BUG_ON(ret == 0); /* Corruption */
2838 
2839 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2840 					  key.type);
2841 		if (ret)
2842 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2843 		if (ret < 0)
2844 			goto error;
2845 		if (ret > 0)
2846 			break;
2847 
2848 		leaf = path->nodes[0];
2849 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2850 
2851 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2852 				       struct btrfs_chunk);
2853 		chunk_type = btrfs_chunk_type(leaf, chunk);
2854 		btrfs_release_path(path);
2855 
2856 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2857 			ret = btrfs_relocate_chunk(chunk_root,
2858 						   found_key.objectid,
2859 						   found_key.offset);
2860 			if (ret == -ENOSPC)
2861 				failed++;
2862 			else
2863 				BUG_ON(ret);
2864 		}
2865 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2866 
2867 		if (found_key.offset == 0)
2868 			break;
2869 		key.offset = found_key.offset - 1;
2870 	}
2871 	ret = 0;
2872 	if (failed && !retried) {
2873 		failed = 0;
2874 		retried = true;
2875 		goto again;
2876 	} else if (WARN_ON(failed && retried)) {
2877 		ret = -ENOSPC;
2878 	}
2879 error:
2880 	btrfs_free_path(path);
2881 	return ret;
2882 }
2883 
2884 static int insert_balance_item(struct btrfs_root *root,
2885 			       struct btrfs_balance_control *bctl)
2886 {
2887 	struct btrfs_trans_handle *trans;
2888 	struct btrfs_balance_item *item;
2889 	struct btrfs_disk_balance_args disk_bargs;
2890 	struct btrfs_path *path;
2891 	struct extent_buffer *leaf;
2892 	struct btrfs_key key;
2893 	int ret, err;
2894 
2895 	path = btrfs_alloc_path();
2896 	if (!path)
2897 		return -ENOMEM;
2898 
2899 	trans = btrfs_start_transaction(root, 0);
2900 	if (IS_ERR(trans)) {
2901 		btrfs_free_path(path);
2902 		return PTR_ERR(trans);
2903 	}
2904 
2905 	key.objectid = BTRFS_BALANCE_OBJECTID;
2906 	key.type = BTRFS_BALANCE_ITEM_KEY;
2907 	key.offset = 0;
2908 
2909 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2910 				      sizeof(*item));
2911 	if (ret)
2912 		goto out;
2913 
2914 	leaf = path->nodes[0];
2915 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2916 
2917 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2918 
2919 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2920 	btrfs_set_balance_data(leaf, item, &disk_bargs);
2921 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2922 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2923 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2924 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2925 
2926 	btrfs_set_balance_flags(leaf, item, bctl->flags);
2927 
2928 	btrfs_mark_buffer_dirty(leaf);
2929 out:
2930 	btrfs_free_path(path);
2931 	err = btrfs_commit_transaction(trans, root);
2932 	if (err && !ret)
2933 		ret = err;
2934 	return ret;
2935 }
2936 
2937 static int del_balance_item(struct btrfs_root *root)
2938 {
2939 	struct btrfs_trans_handle *trans;
2940 	struct btrfs_path *path;
2941 	struct btrfs_key key;
2942 	int ret, err;
2943 
2944 	path = btrfs_alloc_path();
2945 	if (!path)
2946 		return -ENOMEM;
2947 
2948 	trans = btrfs_start_transaction(root, 0);
2949 	if (IS_ERR(trans)) {
2950 		btrfs_free_path(path);
2951 		return PTR_ERR(trans);
2952 	}
2953 
2954 	key.objectid = BTRFS_BALANCE_OBJECTID;
2955 	key.type = BTRFS_BALANCE_ITEM_KEY;
2956 	key.offset = 0;
2957 
2958 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2959 	if (ret < 0)
2960 		goto out;
2961 	if (ret > 0) {
2962 		ret = -ENOENT;
2963 		goto out;
2964 	}
2965 
2966 	ret = btrfs_del_item(trans, root, path);
2967 out:
2968 	btrfs_free_path(path);
2969 	err = btrfs_commit_transaction(trans, root);
2970 	if (err && !ret)
2971 		ret = err;
2972 	return ret;
2973 }
2974 
2975 /*
2976  * This is a heuristic used to reduce the number of chunks balanced on
2977  * resume after balance was interrupted.
2978  */
2979 static void update_balance_args(struct btrfs_balance_control *bctl)
2980 {
2981 	/*
2982 	 * Turn on soft mode for chunk types that were being converted.
2983 	 */
2984 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2985 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2986 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2987 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2988 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2989 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2990 
2991 	/*
2992 	 * Turn on usage filter if is not already used.  The idea is
2993 	 * that chunks that we have already balanced should be
2994 	 * reasonably full.  Don't do it for chunks that are being
2995 	 * converted - that will keep us from relocating unconverted
2996 	 * (albeit full) chunks.
2997 	 */
2998 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2999 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3000 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3001 		bctl->data.usage = 90;
3002 	}
3003 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3004 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3005 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3006 		bctl->sys.usage = 90;
3007 	}
3008 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3009 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3010 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3011 		bctl->meta.usage = 90;
3012 	}
3013 }
3014 
3015 /*
3016  * Should be called with both balance and volume mutexes held to
3017  * serialize other volume operations (add_dev/rm_dev/resize) with
3018  * restriper.  Same goes for unset_balance_control.
3019  */
3020 static void set_balance_control(struct btrfs_balance_control *bctl)
3021 {
3022 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3023 
3024 	BUG_ON(fs_info->balance_ctl);
3025 
3026 	spin_lock(&fs_info->balance_lock);
3027 	fs_info->balance_ctl = bctl;
3028 	spin_unlock(&fs_info->balance_lock);
3029 }
3030 
3031 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3032 {
3033 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3034 
3035 	BUG_ON(!fs_info->balance_ctl);
3036 
3037 	spin_lock(&fs_info->balance_lock);
3038 	fs_info->balance_ctl = NULL;
3039 	spin_unlock(&fs_info->balance_lock);
3040 
3041 	kfree(bctl);
3042 }
3043 
3044 /*
3045  * Balance filters.  Return 1 if chunk should be filtered out
3046  * (should not be balanced).
3047  */
3048 static int chunk_profiles_filter(u64 chunk_type,
3049 				 struct btrfs_balance_args *bargs)
3050 {
3051 	chunk_type = chunk_to_extended(chunk_type) &
3052 				BTRFS_EXTENDED_PROFILE_MASK;
3053 
3054 	if (bargs->profiles & chunk_type)
3055 		return 0;
3056 
3057 	return 1;
3058 }
3059 
3060 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3061 			      struct btrfs_balance_args *bargs)
3062 {
3063 	struct btrfs_block_group_cache *cache;
3064 	u64 chunk_used, user_thresh;
3065 	int ret = 1;
3066 
3067 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3068 	chunk_used = btrfs_block_group_used(&cache->item);
3069 
3070 	if (bargs->usage == 0)
3071 		user_thresh = 1;
3072 	else if (bargs->usage > 100)
3073 		user_thresh = cache->key.offset;
3074 	else
3075 		user_thresh = div_factor_fine(cache->key.offset,
3076 					      bargs->usage);
3077 
3078 	if (chunk_used < user_thresh)
3079 		ret = 0;
3080 
3081 	btrfs_put_block_group(cache);
3082 	return ret;
3083 }
3084 
3085 static int chunk_devid_filter(struct extent_buffer *leaf,
3086 			      struct btrfs_chunk *chunk,
3087 			      struct btrfs_balance_args *bargs)
3088 {
3089 	struct btrfs_stripe *stripe;
3090 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3091 	int i;
3092 
3093 	for (i = 0; i < num_stripes; i++) {
3094 		stripe = btrfs_stripe_nr(chunk, i);
3095 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3096 			return 0;
3097 	}
3098 
3099 	return 1;
3100 }
3101 
3102 /* [pstart, pend) */
3103 static int chunk_drange_filter(struct extent_buffer *leaf,
3104 			       struct btrfs_chunk *chunk,
3105 			       u64 chunk_offset,
3106 			       struct btrfs_balance_args *bargs)
3107 {
3108 	struct btrfs_stripe *stripe;
3109 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3110 	u64 stripe_offset;
3111 	u64 stripe_length;
3112 	int factor;
3113 	int i;
3114 
3115 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3116 		return 0;
3117 
3118 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3119 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3120 		factor = num_stripes / 2;
3121 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3122 		factor = num_stripes - 1;
3123 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3124 		factor = num_stripes - 2;
3125 	} else {
3126 		factor = num_stripes;
3127 	}
3128 
3129 	for (i = 0; i < num_stripes; i++) {
3130 		stripe = btrfs_stripe_nr(chunk, i);
3131 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3132 			continue;
3133 
3134 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3135 		stripe_length = btrfs_chunk_length(leaf, chunk);
3136 		stripe_length = div_u64(stripe_length, factor);
3137 
3138 		if (stripe_offset < bargs->pend &&
3139 		    stripe_offset + stripe_length > bargs->pstart)
3140 			return 0;
3141 	}
3142 
3143 	return 1;
3144 }
3145 
3146 /* [vstart, vend) */
3147 static int chunk_vrange_filter(struct extent_buffer *leaf,
3148 			       struct btrfs_chunk *chunk,
3149 			       u64 chunk_offset,
3150 			       struct btrfs_balance_args *bargs)
3151 {
3152 	if (chunk_offset < bargs->vend &&
3153 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3154 		/* at least part of the chunk is inside this vrange */
3155 		return 0;
3156 
3157 	return 1;
3158 }
3159 
3160 static int chunk_soft_convert_filter(u64 chunk_type,
3161 				     struct btrfs_balance_args *bargs)
3162 {
3163 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3164 		return 0;
3165 
3166 	chunk_type = chunk_to_extended(chunk_type) &
3167 				BTRFS_EXTENDED_PROFILE_MASK;
3168 
3169 	if (bargs->target == chunk_type)
3170 		return 1;
3171 
3172 	return 0;
3173 }
3174 
3175 static int should_balance_chunk(struct btrfs_root *root,
3176 				struct extent_buffer *leaf,
3177 				struct btrfs_chunk *chunk, u64 chunk_offset)
3178 {
3179 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3180 	struct btrfs_balance_args *bargs = NULL;
3181 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3182 
3183 	/* type filter */
3184 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3185 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3186 		return 0;
3187 	}
3188 
3189 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3190 		bargs = &bctl->data;
3191 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3192 		bargs = &bctl->sys;
3193 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3194 		bargs = &bctl->meta;
3195 
3196 	/* profiles filter */
3197 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3198 	    chunk_profiles_filter(chunk_type, bargs)) {
3199 		return 0;
3200 	}
3201 
3202 	/* usage filter */
3203 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3204 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3205 		return 0;
3206 	}
3207 
3208 	/* devid filter */
3209 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3210 	    chunk_devid_filter(leaf, chunk, bargs)) {
3211 		return 0;
3212 	}
3213 
3214 	/* drange filter, makes sense only with devid filter */
3215 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3216 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3217 		return 0;
3218 	}
3219 
3220 	/* vrange filter */
3221 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3222 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3223 		return 0;
3224 	}
3225 
3226 	/* soft profile changing mode */
3227 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3228 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3229 		return 0;
3230 	}
3231 
3232 	/*
3233 	 * limited by count, must be the last filter
3234 	 */
3235 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3236 		if (bargs->limit == 0)
3237 			return 0;
3238 		else
3239 			bargs->limit--;
3240 	}
3241 
3242 	return 1;
3243 }
3244 
3245 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3246 {
3247 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3248 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3249 	struct btrfs_root *dev_root = fs_info->dev_root;
3250 	struct list_head *devices;
3251 	struct btrfs_device *device;
3252 	u64 old_size;
3253 	u64 size_to_free;
3254 	struct btrfs_chunk *chunk;
3255 	struct btrfs_path *path;
3256 	struct btrfs_key key;
3257 	struct btrfs_key found_key;
3258 	struct btrfs_trans_handle *trans;
3259 	struct extent_buffer *leaf;
3260 	int slot;
3261 	int ret;
3262 	int enospc_errors = 0;
3263 	bool counting = true;
3264 	u64 limit_data = bctl->data.limit;
3265 	u64 limit_meta = bctl->meta.limit;
3266 	u64 limit_sys = bctl->sys.limit;
3267 
3268 	/* step one make some room on all the devices */
3269 	devices = &fs_info->fs_devices->devices;
3270 	list_for_each_entry(device, devices, dev_list) {
3271 		old_size = btrfs_device_get_total_bytes(device);
3272 		size_to_free = div_factor(old_size, 1);
3273 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3274 		if (!device->writeable ||
3275 		    btrfs_device_get_total_bytes(device) -
3276 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3277 		    device->is_tgtdev_for_dev_replace)
3278 			continue;
3279 
3280 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3281 		if (ret == -ENOSPC)
3282 			break;
3283 		BUG_ON(ret);
3284 
3285 		trans = btrfs_start_transaction(dev_root, 0);
3286 		BUG_ON(IS_ERR(trans));
3287 
3288 		ret = btrfs_grow_device(trans, device, old_size);
3289 		BUG_ON(ret);
3290 
3291 		btrfs_end_transaction(trans, dev_root);
3292 	}
3293 
3294 	/* step two, relocate all the chunks */
3295 	path = btrfs_alloc_path();
3296 	if (!path) {
3297 		ret = -ENOMEM;
3298 		goto error;
3299 	}
3300 
3301 	/* zero out stat counters */
3302 	spin_lock(&fs_info->balance_lock);
3303 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3304 	spin_unlock(&fs_info->balance_lock);
3305 again:
3306 	if (!counting) {
3307 		bctl->data.limit = limit_data;
3308 		bctl->meta.limit = limit_meta;
3309 		bctl->sys.limit = limit_sys;
3310 	}
3311 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3312 	key.offset = (u64)-1;
3313 	key.type = BTRFS_CHUNK_ITEM_KEY;
3314 
3315 	while (1) {
3316 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3317 		    atomic_read(&fs_info->balance_cancel_req)) {
3318 			ret = -ECANCELED;
3319 			goto error;
3320 		}
3321 
3322 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3323 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3324 		if (ret < 0) {
3325 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3326 			goto error;
3327 		}
3328 
3329 		/*
3330 		 * this shouldn't happen, it means the last relocate
3331 		 * failed
3332 		 */
3333 		if (ret == 0)
3334 			BUG(); /* FIXME break ? */
3335 
3336 		ret = btrfs_previous_item(chunk_root, path, 0,
3337 					  BTRFS_CHUNK_ITEM_KEY);
3338 		if (ret) {
3339 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3340 			ret = 0;
3341 			break;
3342 		}
3343 
3344 		leaf = path->nodes[0];
3345 		slot = path->slots[0];
3346 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3347 
3348 		if (found_key.objectid != key.objectid) {
3349 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3350 			break;
3351 		}
3352 
3353 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3354 
3355 		if (!counting) {
3356 			spin_lock(&fs_info->balance_lock);
3357 			bctl->stat.considered++;
3358 			spin_unlock(&fs_info->balance_lock);
3359 		}
3360 
3361 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3362 					   found_key.offset);
3363 		btrfs_release_path(path);
3364 		if (!ret) {
3365 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3366 			goto loop;
3367 		}
3368 
3369 		if (counting) {
3370 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3371 			spin_lock(&fs_info->balance_lock);
3372 			bctl->stat.expected++;
3373 			spin_unlock(&fs_info->balance_lock);
3374 			goto loop;
3375 		}
3376 
3377 		ret = btrfs_relocate_chunk(chunk_root,
3378 					   found_key.objectid,
3379 					   found_key.offset);
3380 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3381 		if (ret && ret != -ENOSPC)
3382 			goto error;
3383 		if (ret == -ENOSPC) {
3384 			enospc_errors++;
3385 		} else {
3386 			spin_lock(&fs_info->balance_lock);
3387 			bctl->stat.completed++;
3388 			spin_unlock(&fs_info->balance_lock);
3389 		}
3390 loop:
3391 		if (found_key.offset == 0)
3392 			break;
3393 		key.offset = found_key.offset - 1;
3394 	}
3395 
3396 	if (counting) {
3397 		btrfs_release_path(path);
3398 		counting = false;
3399 		goto again;
3400 	}
3401 error:
3402 	btrfs_free_path(path);
3403 	if (enospc_errors) {
3404 		btrfs_info(fs_info, "%d enospc errors during balance",
3405 		       enospc_errors);
3406 		if (!ret)
3407 			ret = -ENOSPC;
3408 	}
3409 
3410 	return ret;
3411 }
3412 
3413 /**
3414  * alloc_profile_is_valid - see if a given profile is valid and reduced
3415  * @flags: profile to validate
3416  * @extended: if true @flags is treated as an extended profile
3417  */
3418 static int alloc_profile_is_valid(u64 flags, int extended)
3419 {
3420 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3421 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3422 
3423 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3424 
3425 	/* 1) check that all other bits are zeroed */
3426 	if (flags & ~mask)
3427 		return 0;
3428 
3429 	/* 2) see if profile is reduced */
3430 	if (flags == 0)
3431 		return !extended; /* "0" is valid for usual profiles */
3432 
3433 	/* true if exactly one bit set */
3434 	return (flags & (flags - 1)) == 0;
3435 }
3436 
3437 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3438 {
3439 	/* cancel requested || normal exit path */
3440 	return atomic_read(&fs_info->balance_cancel_req) ||
3441 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3442 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3443 }
3444 
3445 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3446 {
3447 	int ret;
3448 
3449 	unset_balance_control(fs_info);
3450 	ret = del_balance_item(fs_info->tree_root);
3451 	if (ret)
3452 		btrfs_std_error(fs_info, ret);
3453 
3454 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3455 }
3456 
3457 /*
3458  * Should be called with both balance and volume mutexes held
3459  */
3460 int btrfs_balance(struct btrfs_balance_control *bctl,
3461 		  struct btrfs_ioctl_balance_args *bargs)
3462 {
3463 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3464 	u64 allowed;
3465 	int mixed = 0;
3466 	int ret;
3467 	u64 num_devices;
3468 	unsigned seq;
3469 
3470 	if (btrfs_fs_closing(fs_info) ||
3471 	    atomic_read(&fs_info->balance_pause_req) ||
3472 	    atomic_read(&fs_info->balance_cancel_req)) {
3473 		ret = -EINVAL;
3474 		goto out;
3475 	}
3476 
3477 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3478 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3479 		mixed = 1;
3480 
3481 	/*
3482 	 * In case of mixed groups both data and meta should be picked,
3483 	 * and identical options should be given for both of them.
3484 	 */
3485 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3486 	if (mixed && (bctl->flags & allowed)) {
3487 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3488 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3489 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3490 			btrfs_err(fs_info, "with mixed groups data and "
3491 				   "metadata balance options must be the same");
3492 			ret = -EINVAL;
3493 			goto out;
3494 		}
3495 	}
3496 
3497 	num_devices = fs_info->fs_devices->num_devices;
3498 	btrfs_dev_replace_lock(&fs_info->dev_replace);
3499 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3500 		BUG_ON(num_devices < 1);
3501 		num_devices--;
3502 	}
3503 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3504 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3505 	if (num_devices == 1)
3506 		allowed |= BTRFS_BLOCK_GROUP_DUP;
3507 	else if (num_devices > 1)
3508 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3509 	if (num_devices > 2)
3510 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3511 	if (num_devices > 3)
3512 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3513 			    BTRFS_BLOCK_GROUP_RAID6);
3514 	if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3515 	    (!alloc_profile_is_valid(bctl->data.target, 1) ||
3516 	     (bctl->data.target & ~allowed))) {
3517 		btrfs_err(fs_info, "unable to start balance with target "
3518 			   "data profile %llu",
3519 		       bctl->data.target);
3520 		ret = -EINVAL;
3521 		goto out;
3522 	}
3523 	if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3524 	    (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3525 	     (bctl->meta.target & ~allowed))) {
3526 		btrfs_err(fs_info,
3527 			   "unable to start balance with target metadata profile %llu",
3528 		       bctl->meta.target);
3529 		ret = -EINVAL;
3530 		goto out;
3531 	}
3532 	if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3533 	    (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3534 	     (bctl->sys.target & ~allowed))) {
3535 		btrfs_err(fs_info,
3536 			   "unable to start balance with target system profile %llu",
3537 		       bctl->sys.target);
3538 		ret = -EINVAL;
3539 		goto out;
3540 	}
3541 
3542 	/* allow dup'ed data chunks only in mixed mode */
3543 	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3544 	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3545 		btrfs_err(fs_info, "dup for data is not allowed");
3546 		ret = -EINVAL;
3547 		goto out;
3548 	}
3549 
3550 	/* allow to reduce meta or sys integrity only if force set */
3551 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3552 			BTRFS_BLOCK_GROUP_RAID10 |
3553 			BTRFS_BLOCK_GROUP_RAID5 |
3554 			BTRFS_BLOCK_GROUP_RAID6;
3555 	do {
3556 		seq = read_seqbegin(&fs_info->profiles_lock);
3557 
3558 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3559 		     (fs_info->avail_system_alloc_bits & allowed) &&
3560 		     !(bctl->sys.target & allowed)) ||
3561 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3562 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3563 		     !(bctl->meta.target & allowed))) {
3564 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3565 				btrfs_info(fs_info, "force reducing metadata integrity");
3566 			} else {
3567 				btrfs_err(fs_info, "balance will reduce metadata "
3568 					   "integrity, use force if you want this");
3569 				ret = -EINVAL;
3570 				goto out;
3571 			}
3572 		}
3573 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3574 
3575 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3576 		int num_tolerated_disk_barrier_failures;
3577 		u64 target = bctl->sys.target;
3578 
3579 		num_tolerated_disk_barrier_failures =
3580 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3581 		if (num_tolerated_disk_barrier_failures > 0 &&
3582 		    (target &
3583 		     (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3584 		      BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3585 			num_tolerated_disk_barrier_failures = 0;
3586 		else if (num_tolerated_disk_barrier_failures > 1 &&
3587 			 (target &
3588 			  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3589 			num_tolerated_disk_barrier_failures = 1;
3590 
3591 		fs_info->num_tolerated_disk_barrier_failures =
3592 			num_tolerated_disk_barrier_failures;
3593 	}
3594 
3595 	ret = insert_balance_item(fs_info->tree_root, bctl);
3596 	if (ret && ret != -EEXIST)
3597 		goto out;
3598 
3599 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3600 		BUG_ON(ret == -EEXIST);
3601 		set_balance_control(bctl);
3602 	} else {
3603 		BUG_ON(ret != -EEXIST);
3604 		spin_lock(&fs_info->balance_lock);
3605 		update_balance_args(bctl);
3606 		spin_unlock(&fs_info->balance_lock);
3607 	}
3608 
3609 	atomic_inc(&fs_info->balance_running);
3610 	mutex_unlock(&fs_info->balance_mutex);
3611 
3612 	ret = __btrfs_balance(fs_info);
3613 
3614 	mutex_lock(&fs_info->balance_mutex);
3615 	atomic_dec(&fs_info->balance_running);
3616 
3617 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3618 		fs_info->num_tolerated_disk_barrier_failures =
3619 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3620 	}
3621 
3622 	if (bargs) {
3623 		memset(bargs, 0, sizeof(*bargs));
3624 		update_ioctl_balance_args(fs_info, 0, bargs);
3625 	}
3626 
3627 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3628 	    balance_need_close(fs_info)) {
3629 		__cancel_balance(fs_info);
3630 	}
3631 
3632 	wake_up(&fs_info->balance_wait_q);
3633 
3634 	return ret;
3635 out:
3636 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3637 		__cancel_balance(fs_info);
3638 	else {
3639 		kfree(bctl);
3640 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3641 	}
3642 	return ret;
3643 }
3644 
3645 static int balance_kthread(void *data)
3646 {
3647 	struct btrfs_fs_info *fs_info = data;
3648 	int ret = 0;
3649 
3650 	mutex_lock(&fs_info->volume_mutex);
3651 	mutex_lock(&fs_info->balance_mutex);
3652 
3653 	if (fs_info->balance_ctl) {
3654 		btrfs_info(fs_info, "continuing balance");
3655 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3656 	}
3657 
3658 	mutex_unlock(&fs_info->balance_mutex);
3659 	mutex_unlock(&fs_info->volume_mutex);
3660 
3661 	return ret;
3662 }
3663 
3664 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3665 {
3666 	struct task_struct *tsk;
3667 
3668 	spin_lock(&fs_info->balance_lock);
3669 	if (!fs_info->balance_ctl) {
3670 		spin_unlock(&fs_info->balance_lock);
3671 		return 0;
3672 	}
3673 	spin_unlock(&fs_info->balance_lock);
3674 
3675 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3676 		btrfs_info(fs_info, "force skipping balance");
3677 		return 0;
3678 	}
3679 
3680 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3681 	return PTR_ERR_OR_ZERO(tsk);
3682 }
3683 
3684 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3685 {
3686 	struct btrfs_balance_control *bctl;
3687 	struct btrfs_balance_item *item;
3688 	struct btrfs_disk_balance_args disk_bargs;
3689 	struct btrfs_path *path;
3690 	struct extent_buffer *leaf;
3691 	struct btrfs_key key;
3692 	int ret;
3693 
3694 	path = btrfs_alloc_path();
3695 	if (!path)
3696 		return -ENOMEM;
3697 
3698 	key.objectid = BTRFS_BALANCE_OBJECTID;
3699 	key.type = BTRFS_BALANCE_ITEM_KEY;
3700 	key.offset = 0;
3701 
3702 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3703 	if (ret < 0)
3704 		goto out;
3705 	if (ret > 0) { /* ret = -ENOENT; */
3706 		ret = 0;
3707 		goto out;
3708 	}
3709 
3710 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3711 	if (!bctl) {
3712 		ret = -ENOMEM;
3713 		goto out;
3714 	}
3715 
3716 	leaf = path->nodes[0];
3717 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3718 
3719 	bctl->fs_info = fs_info;
3720 	bctl->flags = btrfs_balance_flags(leaf, item);
3721 	bctl->flags |= BTRFS_BALANCE_RESUME;
3722 
3723 	btrfs_balance_data(leaf, item, &disk_bargs);
3724 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3725 	btrfs_balance_meta(leaf, item, &disk_bargs);
3726 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3727 	btrfs_balance_sys(leaf, item, &disk_bargs);
3728 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3729 
3730 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3731 
3732 	mutex_lock(&fs_info->volume_mutex);
3733 	mutex_lock(&fs_info->balance_mutex);
3734 
3735 	set_balance_control(bctl);
3736 
3737 	mutex_unlock(&fs_info->balance_mutex);
3738 	mutex_unlock(&fs_info->volume_mutex);
3739 out:
3740 	btrfs_free_path(path);
3741 	return ret;
3742 }
3743 
3744 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3745 {
3746 	int ret = 0;
3747 
3748 	mutex_lock(&fs_info->balance_mutex);
3749 	if (!fs_info->balance_ctl) {
3750 		mutex_unlock(&fs_info->balance_mutex);
3751 		return -ENOTCONN;
3752 	}
3753 
3754 	if (atomic_read(&fs_info->balance_running)) {
3755 		atomic_inc(&fs_info->balance_pause_req);
3756 		mutex_unlock(&fs_info->balance_mutex);
3757 
3758 		wait_event(fs_info->balance_wait_q,
3759 			   atomic_read(&fs_info->balance_running) == 0);
3760 
3761 		mutex_lock(&fs_info->balance_mutex);
3762 		/* we are good with balance_ctl ripped off from under us */
3763 		BUG_ON(atomic_read(&fs_info->balance_running));
3764 		atomic_dec(&fs_info->balance_pause_req);
3765 	} else {
3766 		ret = -ENOTCONN;
3767 	}
3768 
3769 	mutex_unlock(&fs_info->balance_mutex);
3770 	return ret;
3771 }
3772 
3773 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3774 {
3775 	if (fs_info->sb->s_flags & MS_RDONLY)
3776 		return -EROFS;
3777 
3778 	mutex_lock(&fs_info->balance_mutex);
3779 	if (!fs_info->balance_ctl) {
3780 		mutex_unlock(&fs_info->balance_mutex);
3781 		return -ENOTCONN;
3782 	}
3783 
3784 	atomic_inc(&fs_info->balance_cancel_req);
3785 	/*
3786 	 * if we are running just wait and return, balance item is
3787 	 * deleted in btrfs_balance in this case
3788 	 */
3789 	if (atomic_read(&fs_info->balance_running)) {
3790 		mutex_unlock(&fs_info->balance_mutex);
3791 		wait_event(fs_info->balance_wait_q,
3792 			   atomic_read(&fs_info->balance_running) == 0);
3793 		mutex_lock(&fs_info->balance_mutex);
3794 	} else {
3795 		/* __cancel_balance needs volume_mutex */
3796 		mutex_unlock(&fs_info->balance_mutex);
3797 		mutex_lock(&fs_info->volume_mutex);
3798 		mutex_lock(&fs_info->balance_mutex);
3799 
3800 		if (fs_info->balance_ctl)
3801 			__cancel_balance(fs_info);
3802 
3803 		mutex_unlock(&fs_info->volume_mutex);
3804 	}
3805 
3806 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3807 	atomic_dec(&fs_info->balance_cancel_req);
3808 	mutex_unlock(&fs_info->balance_mutex);
3809 	return 0;
3810 }
3811 
3812 static int btrfs_uuid_scan_kthread(void *data)
3813 {
3814 	struct btrfs_fs_info *fs_info = data;
3815 	struct btrfs_root *root = fs_info->tree_root;
3816 	struct btrfs_key key;
3817 	struct btrfs_key max_key;
3818 	struct btrfs_path *path = NULL;
3819 	int ret = 0;
3820 	struct extent_buffer *eb;
3821 	int slot;
3822 	struct btrfs_root_item root_item;
3823 	u32 item_size;
3824 	struct btrfs_trans_handle *trans = NULL;
3825 
3826 	path = btrfs_alloc_path();
3827 	if (!path) {
3828 		ret = -ENOMEM;
3829 		goto out;
3830 	}
3831 
3832 	key.objectid = 0;
3833 	key.type = BTRFS_ROOT_ITEM_KEY;
3834 	key.offset = 0;
3835 
3836 	max_key.objectid = (u64)-1;
3837 	max_key.type = BTRFS_ROOT_ITEM_KEY;
3838 	max_key.offset = (u64)-1;
3839 
3840 	while (1) {
3841 		ret = btrfs_search_forward(root, &key, path, 0);
3842 		if (ret) {
3843 			if (ret > 0)
3844 				ret = 0;
3845 			break;
3846 		}
3847 
3848 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
3849 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3850 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3851 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
3852 			goto skip;
3853 
3854 		eb = path->nodes[0];
3855 		slot = path->slots[0];
3856 		item_size = btrfs_item_size_nr(eb, slot);
3857 		if (item_size < sizeof(root_item))
3858 			goto skip;
3859 
3860 		read_extent_buffer(eb, &root_item,
3861 				   btrfs_item_ptr_offset(eb, slot),
3862 				   (int)sizeof(root_item));
3863 		if (btrfs_root_refs(&root_item) == 0)
3864 			goto skip;
3865 
3866 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
3867 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
3868 			if (trans)
3869 				goto update_tree;
3870 
3871 			btrfs_release_path(path);
3872 			/*
3873 			 * 1 - subvol uuid item
3874 			 * 1 - received_subvol uuid item
3875 			 */
3876 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3877 			if (IS_ERR(trans)) {
3878 				ret = PTR_ERR(trans);
3879 				break;
3880 			}
3881 			continue;
3882 		} else {
3883 			goto skip;
3884 		}
3885 update_tree:
3886 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
3887 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3888 						  root_item.uuid,
3889 						  BTRFS_UUID_KEY_SUBVOL,
3890 						  key.objectid);
3891 			if (ret < 0) {
3892 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
3893 					ret);
3894 				break;
3895 			}
3896 		}
3897 
3898 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3899 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3900 						  root_item.received_uuid,
3901 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3902 						  key.objectid);
3903 			if (ret < 0) {
3904 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
3905 					ret);
3906 				break;
3907 			}
3908 		}
3909 
3910 skip:
3911 		if (trans) {
3912 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3913 			trans = NULL;
3914 			if (ret)
3915 				break;
3916 		}
3917 
3918 		btrfs_release_path(path);
3919 		if (key.offset < (u64)-1) {
3920 			key.offset++;
3921 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3922 			key.offset = 0;
3923 			key.type = BTRFS_ROOT_ITEM_KEY;
3924 		} else if (key.objectid < (u64)-1) {
3925 			key.offset = 0;
3926 			key.type = BTRFS_ROOT_ITEM_KEY;
3927 			key.objectid++;
3928 		} else {
3929 			break;
3930 		}
3931 		cond_resched();
3932 	}
3933 
3934 out:
3935 	btrfs_free_path(path);
3936 	if (trans && !IS_ERR(trans))
3937 		btrfs_end_transaction(trans, fs_info->uuid_root);
3938 	if (ret)
3939 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3940 	else
3941 		fs_info->update_uuid_tree_gen = 1;
3942 	up(&fs_info->uuid_tree_rescan_sem);
3943 	return 0;
3944 }
3945 
3946 /*
3947  * Callback for btrfs_uuid_tree_iterate().
3948  * returns:
3949  * 0	check succeeded, the entry is not outdated.
3950  * < 0	if an error occured.
3951  * > 0	if the check failed, which means the caller shall remove the entry.
3952  */
3953 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3954 				       u8 *uuid, u8 type, u64 subid)
3955 {
3956 	struct btrfs_key key;
3957 	int ret = 0;
3958 	struct btrfs_root *subvol_root;
3959 
3960 	if (type != BTRFS_UUID_KEY_SUBVOL &&
3961 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3962 		goto out;
3963 
3964 	key.objectid = subid;
3965 	key.type = BTRFS_ROOT_ITEM_KEY;
3966 	key.offset = (u64)-1;
3967 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3968 	if (IS_ERR(subvol_root)) {
3969 		ret = PTR_ERR(subvol_root);
3970 		if (ret == -ENOENT)
3971 			ret = 1;
3972 		goto out;
3973 	}
3974 
3975 	switch (type) {
3976 	case BTRFS_UUID_KEY_SUBVOL:
3977 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3978 			ret = 1;
3979 		break;
3980 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3981 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
3982 			   BTRFS_UUID_SIZE))
3983 			ret = 1;
3984 		break;
3985 	}
3986 
3987 out:
3988 	return ret;
3989 }
3990 
3991 static int btrfs_uuid_rescan_kthread(void *data)
3992 {
3993 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3994 	int ret;
3995 
3996 	/*
3997 	 * 1st step is to iterate through the existing UUID tree and
3998 	 * to delete all entries that contain outdated data.
3999 	 * 2nd step is to add all missing entries to the UUID tree.
4000 	 */
4001 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4002 	if (ret < 0) {
4003 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4004 		up(&fs_info->uuid_tree_rescan_sem);
4005 		return ret;
4006 	}
4007 	return btrfs_uuid_scan_kthread(data);
4008 }
4009 
4010 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4011 {
4012 	struct btrfs_trans_handle *trans;
4013 	struct btrfs_root *tree_root = fs_info->tree_root;
4014 	struct btrfs_root *uuid_root;
4015 	struct task_struct *task;
4016 	int ret;
4017 
4018 	/*
4019 	 * 1 - root node
4020 	 * 1 - root item
4021 	 */
4022 	trans = btrfs_start_transaction(tree_root, 2);
4023 	if (IS_ERR(trans))
4024 		return PTR_ERR(trans);
4025 
4026 	uuid_root = btrfs_create_tree(trans, fs_info,
4027 				      BTRFS_UUID_TREE_OBJECTID);
4028 	if (IS_ERR(uuid_root)) {
4029 		ret = PTR_ERR(uuid_root);
4030 		btrfs_abort_transaction(trans, tree_root, ret);
4031 		return ret;
4032 	}
4033 
4034 	fs_info->uuid_root = uuid_root;
4035 
4036 	ret = btrfs_commit_transaction(trans, tree_root);
4037 	if (ret)
4038 		return ret;
4039 
4040 	down(&fs_info->uuid_tree_rescan_sem);
4041 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4042 	if (IS_ERR(task)) {
4043 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4044 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4045 		up(&fs_info->uuid_tree_rescan_sem);
4046 		return PTR_ERR(task);
4047 	}
4048 
4049 	return 0;
4050 }
4051 
4052 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4053 {
4054 	struct task_struct *task;
4055 
4056 	down(&fs_info->uuid_tree_rescan_sem);
4057 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4058 	if (IS_ERR(task)) {
4059 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4060 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4061 		up(&fs_info->uuid_tree_rescan_sem);
4062 		return PTR_ERR(task);
4063 	}
4064 
4065 	return 0;
4066 }
4067 
4068 /*
4069  * shrinking a device means finding all of the device extents past
4070  * the new size, and then following the back refs to the chunks.
4071  * The chunk relocation code actually frees the device extent
4072  */
4073 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4074 {
4075 	struct btrfs_trans_handle *trans;
4076 	struct btrfs_root *root = device->dev_root;
4077 	struct btrfs_dev_extent *dev_extent = NULL;
4078 	struct btrfs_path *path;
4079 	u64 length;
4080 	u64 chunk_objectid;
4081 	u64 chunk_offset;
4082 	int ret;
4083 	int slot;
4084 	int failed = 0;
4085 	bool retried = false;
4086 	bool checked_pending_chunks = false;
4087 	struct extent_buffer *l;
4088 	struct btrfs_key key;
4089 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4090 	u64 old_total = btrfs_super_total_bytes(super_copy);
4091 	u64 old_size = btrfs_device_get_total_bytes(device);
4092 	u64 diff = old_size - new_size;
4093 
4094 	if (device->is_tgtdev_for_dev_replace)
4095 		return -EINVAL;
4096 
4097 	path = btrfs_alloc_path();
4098 	if (!path)
4099 		return -ENOMEM;
4100 
4101 	path->reada = 2;
4102 
4103 	lock_chunks(root);
4104 
4105 	btrfs_device_set_total_bytes(device, new_size);
4106 	if (device->writeable) {
4107 		device->fs_devices->total_rw_bytes -= diff;
4108 		spin_lock(&root->fs_info->free_chunk_lock);
4109 		root->fs_info->free_chunk_space -= diff;
4110 		spin_unlock(&root->fs_info->free_chunk_lock);
4111 	}
4112 	unlock_chunks(root);
4113 
4114 again:
4115 	key.objectid = device->devid;
4116 	key.offset = (u64)-1;
4117 	key.type = BTRFS_DEV_EXTENT_KEY;
4118 
4119 	do {
4120 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4121 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4122 		if (ret < 0) {
4123 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4124 			goto done;
4125 		}
4126 
4127 		ret = btrfs_previous_item(root, path, 0, key.type);
4128 		if (ret)
4129 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4130 		if (ret < 0)
4131 			goto done;
4132 		if (ret) {
4133 			ret = 0;
4134 			btrfs_release_path(path);
4135 			break;
4136 		}
4137 
4138 		l = path->nodes[0];
4139 		slot = path->slots[0];
4140 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4141 
4142 		if (key.objectid != device->devid) {
4143 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4144 			btrfs_release_path(path);
4145 			break;
4146 		}
4147 
4148 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4149 		length = btrfs_dev_extent_length(l, dev_extent);
4150 
4151 		if (key.offset + length <= new_size) {
4152 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4153 			btrfs_release_path(path);
4154 			break;
4155 		}
4156 
4157 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
4158 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4159 		btrfs_release_path(path);
4160 
4161 		ret = btrfs_relocate_chunk(root, chunk_objectid, chunk_offset);
4162 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4163 		if (ret && ret != -ENOSPC)
4164 			goto done;
4165 		if (ret == -ENOSPC)
4166 			failed++;
4167 	} while (key.offset-- > 0);
4168 
4169 	if (failed && !retried) {
4170 		failed = 0;
4171 		retried = true;
4172 		goto again;
4173 	} else if (failed && retried) {
4174 		ret = -ENOSPC;
4175 		goto done;
4176 	}
4177 
4178 	/* Shrinking succeeded, else we would be at "done". */
4179 	trans = btrfs_start_transaction(root, 0);
4180 	if (IS_ERR(trans)) {
4181 		ret = PTR_ERR(trans);
4182 		goto done;
4183 	}
4184 
4185 	lock_chunks(root);
4186 
4187 	/*
4188 	 * We checked in the above loop all device extents that were already in
4189 	 * the device tree. However before we have updated the device's
4190 	 * total_bytes to the new size, we might have had chunk allocations that
4191 	 * have not complete yet (new block groups attached to transaction
4192 	 * handles), and therefore their device extents were not yet in the
4193 	 * device tree and we missed them in the loop above. So if we have any
4194 	 * pending chunk using a device extent that overlaps the device range
4195 	 * that we can not use anymore, commit the current transaction and
4196 	 * repeat the search on the device tree - this way we guarantee we will
4197 	 * not have chunks using device extents that end beyond 'new_size'.
4198 	 */
4199 	if (!checked_pending_chunks) {
4200 		u64 start = new_size;
4201 		u64 len = old_size - new_size;
4202 
4203 		if (contains_pending_extent(trans, device, &start, len)) {
4204 			unlock_chunks(root);
4205 			checked_pending_chunks = true;
4206 			failed = 0;
4207 			retried = false;
4208 			ret = btrfs_commit_transaction(trans, root);
4209 			if (ret)
4210 				goto done;
4211 			goto again;
4212 		}
4213 	}
4214 
4215 	btrfs_device_set_disk_total_bytes(device, new_size);
4216 	if (list_empty(&device->resized_list))
4217 		list_add_tail(&device->resized_list,
4218 			      &root->fs_info->fs_devices->resized_devices);
4219 
4220 	WARN_ON(diff > old_total);
4221 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
4222 	unlock_chunks(root);
4223 
4224 	/* Now btrfs_update_device() will change the on-disk size. */
4225 	ret = btrfs_update_device(trans, device);
4226 	btrfs_end_transaction(trans, root);
4227 done:
4228 	btrfs_free_path(path);
4229 	if (ret) {
4230 		lock_chunks(root);
4231 		btrfs_device_set_total_bytes(device, old_size);
4232 		if (device->writeable)
4233 			device->fs_devices->total_rw_bytes += diff;
4234 		spin_lock(&root->fs_info->free_chunk_lock);
4235 		root->fs_info->free_chunk_space += diff;
4236 		spin_unlock(&root->fs_info->free_chunk_lock);
4237 		unlock_chunks(root);
4238 	}
4239 	return ret;
4240 }
4241 
4242 static int btrfs_add_system_chunk(struct btrfs_root *root,
4243 			   struct btrfs_key *key,
4244 			   struct btrfs_chunk *chunk, int item_size)
4245 {
4246 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4247 	struct btrfs_disk_key disk_key;
4248 	u32 array_size;
4249 	u8 *ptr;
4250 
4251 	lock_chunks(root);
4252 	array_size = btrfs_super_sys_array_size(super_copy);
4253 	if (array_size + item_size + sizeof(disk_key)
4254 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4255 		unlock_chunks(root);
4256 		return -EFBIG;
4257 	}
4258 
4259 	ptr = super_copy->sys_chunk_array + array_size;
4260 	btrfs_cpu_key_to_disk(&disk_key, key);
4261 	memcpy(ptr, &disk_key, sizeof(disk_key));
4262 	ptr += sizeof(disk_key);
4263 	memcpy(ptr, chunk, item_size);
4264 	item_size += sizeof(disk_key);
4265 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4266 	unlock_chunks(root);
4267 
4268 	return 0;
4269 }
4270 
4271 /*
4272  * sort the devices in descending order by max_avail, total_avail
4273  */
4274 static int btrfs_cmp_device_info(const void *a, const void *b)
4275 {
4276 	const struct btrfs_device_info *di_a = a;
4277 	const struct btrfs_device_info *di_b = b;
4278 
4279 	if (di_a->max_avail > di_b->max_avail)
4280 		return -1;
4281 	if (di_a->max_avail < di_b->max_avail)
4282 		return 1;
4283 	if (di_a->total_avail > di_b->total_avail)
4284 		return -1;
4285 	if (di_a->total_avail < di_b->total_avail)
4286 		return 1;
4287 	return 0;
4288 }
4289 
4290 static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4291 	[BTRFS_RAID_RAID10] = {
4292 		.sub_stripes	= 2,
4293 		.dev_stripes	= 1,
4294 		.devs_max	= 0,	/* 0 == as many as possible */
4295 		.devs_min	= 4,
4296 		.devs_increment	= 2,
4297 		.ncopies	= 2,
4298 	},
4299 	[BTRFS_RAID_RAID1] = {
4300 		.sub_stripes	= 1,
4301 		.dev_stripes	= 1,
4302 		.devs_max	= 2,
4303 		.devs_min	= 2,
4304 		.devs_increment	= 2,
4305 		.ncopies	= 2,
4306 	},
4307 	[BTRFS_RAID_DUP] = {
4308 		.sub_stripes	= 1,
4309 		.dev_stripes	= 2,
4310 		.devs_max	= 1,
4311 		.devs_min	= 1,
4312 		.devs_increment	= 1,
4313 		.ncopies	= 2,
4314 	},
4315 	[BTRFS_RAID_RAID0] = {
4316 		.sub_stripes	= 1,
4317 		.dev_stripes	= 1,
4318 		.devs_max	= 0,
4319 		.devs_min	= 2,
4320 		.devs_increment	= 1,
4321 		.ncopies	= 1,
4322 	},
4323 	[BTRFS_RAID_SINGLE] = {
4324 		.sub_stripes	= 1,
4325 		.dev_stripes	= 1,
4326 		.devs_max	= 1,
4327 		.devs_min	= 1,
4328 		.devs_increment	= 1,
4329 		.ncopies	= 1,
4330 	},
4331 	[BTRFS_RAID_RAID5] = {
4332 		.sub_stripes	= 1,
4333 		.dev_stripes	= 1,
4334 		.devs_max	= 0,
4335 		.devs_min	= 2,
4336 		.devs_increment	= 1,
4337 		.ncopies	= 2,
4338 	},
4339 	[BTRFS_RAID_RAID6] = {
4340 		.sub_stripes	= 1,
4341 		.dev_stripes	= 1,
4342 		.devs_max	= 0,
4343 		.devs_min	= 3,
4344 		.devs_increment	= 1,
4345 		.ncopies	= 3,
4346 	},
4347 };
4348 
4349 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4350 {
4351 	/* TODO allow them to set a preferred stripe size */
4352 	return 64 * 1024;
4353 }
4354 
4355 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4356 {
4357 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4358 		return;
4359 
4360 	btrfs_set_fs_incompat(info, RAID56);
4361 }
4362 
4363 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)		\
4364 			- sizeof(struct btrfs_item)		\
4365 			- sizeof(struct btrfs_chunk))		\
4366 			/ sizeof(struct btrfs_stripe) + 1)
4367 
4368 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4369 				- 2 * sizeof(struct btrfs_disk_key)	\
4370 				- 2 * sizeof(struct btrfs_chunk))	\
4371 				/ sizeof(struct btrfs_stripe) + 1)
4372 
4373 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4374 			       struct btrfs_root *extent_root, u64 start,
4375 			       u64 type)
4376 {
4377 	struct btrfs_fs_info *info = extent_root->fs_info;
4378 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4379 	struct list_head *cur;
4380 	struct map_lookup *map = NULL;
4381 	struct extent_map_tree *em_tree;
4382 	struct extent_map *em;
4383 	struct btrfs_device_info *devices_info = NULL;
4384 	u64 total_avail;
4385 	int num_stripes;	/* total number of stripes to allocate */
4386 	int data_stripes;	/* number of stripes that count for
4387 				   block group size */
4388 	int sub_stripes;	/* sub_stripes info for map */
4389 	int dev_stripes;	/* stripes per dev */
4390 	int devs_max;		/* max devs to use */
4391 	int devs_min;		/* min devs needed */
4392 	int devs_increment;	/* ndevs has to be a multiple of this */
4393 	int ncopies;		/* how many copies to data has */
4394 	int ret;
4395 	u64 max_stripe_size;
4396 	u64 max_chunk_size;
4397 	u64 stripe_size;
4398 	u64 num_bytes;
4399 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4400 	int ndevs;
4401 	int i;
4402 	int j;
4403 	int index;
4404 
4405 	BUG_ON(!alloc_profile_is_valid(type, 0));
4406 
4407 	if (list_empty(&fs_devices->alloc_list))
4408 		return -ENOSPC;
4409 
4410 	index = __get_raid_index(type);
4411 
4412 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4413 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4414 	devs_max = btrfs_raid_array[index].devs_max;
4415 	devs_min = btrfs_raid_array[index].devs_min;
4416 	devs_increment = btrfs_raid_array[index].devs_increment;
4417 	ncopies = btrfs_raid_array[index].ncopies;
4418 
4419 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4420 		max_stripe_size = 1024 * 1024 * 1024;
4421 		max_chunk_size = 10 * max_stripe_size;
4422 		if (!devs_max)
4423 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4424 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4425 		/* for larger filesystems, use larger metadata chunks */
4426 		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4427 			max_stripe_size = 1024 * 1024 * 1024;
4428 		else
4429 			max_stripe_size = 256 * 1024 * 1024;
4430 		max_chunk_size = max_stripe_size;
4431 		if (!devs_max)
4432 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4433 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4434 		max_stripe_size = 32 * 1024 * 1024;
4435 		max_chunk_size = 2 * max_stripe_size;
4436 		if (!devs_max)
4437 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4438 	} else {
4439 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4440 		       type);
4441 		BUG_ON(1);
4442 	}
4443 
4444 	/* we don't want a chunk larger than 10% of writeable space */
4445 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4446 			     max_chunk_size);
4447 
4448 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4449 			       GFP_NOFS);
4450 	if (!devices_info)
4451 		return -ENOMEM;
4452 
4453 	cur = fs_devices->alloc_list.next;
4454 
4455 	/*
4456 	 * in the first pass through the devices list, we gather information
4457 	 * about the available holes on each device.
4458 	 */
4459 	ndevs = 0;
4460 	while (cur != &fs_devices->alloc_list) {
4461 		struct btrfs_device *device;
4462 		u64 max_avail;
4463 		u64 dev_offset;
4464 
4465 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4466 
4467 		cur = cur->next;
4468 
4469 		if (!device->writeable) {
4470 			WARN(1, KERN_ERR
4471 			       "BTRFS: read-only device in alloc_list\n");
4472 			continue;
4473 		}
4474 
4475 		if (!device->in_fs_metadata ||
4476 		    device->is_tgtdev_for_dev_replace)
4477 			continue;
4478 
4479 		if (device->total_bytes > device->bytes_used)
4480 			total_avail = device->total_bytes - device->bytes_used;
4481 		else
4482 			total_avail = 0;
4483 
4484 		/* If there is no space on this device, skip it. */
4485 		if (total_avail == 0)
4486 			continue;
4487 
4488 		ret = find_free_dev_extent(trans, device,
4489 					   max_stripe_size * dev_stripes,
4490 					   &dev_offset, &max_avail);
4491 		if (ret && ret != -ENOSPC)
4492 			goto error;
4493 
4494 		if (ret == 0)
4495 			max_avail = max_stripe_size * dev_stripes;
4496 
4497 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4498 			continue;
4499 
4500 		if (ndevs == fs_devices->rw_devices) {
4501 			WARN(1, "%s: found more than %llu devices\n",
4502 			     __func__, fs_devices->rw_devices);
4503 			break;
4504 		}
4505 		devices_info[ndevs].dev_offset = dev_offset;
4506 		devices_info[ndevs].max_avail = max_avail;
4507 		devices_info[ndevs].total_avail = total_avail;
4508 		devices_info[ndevs].dev = device;
4509 		++ndevs;
4510 	}
4511 
4512 	/*
4513 	 * now sort the devices by hole size / available space
4514 	 */
4515 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4516 	     btrfs_cmp_device_info, NULL);
4517 
4518 	/* round down to number of usable stripes */
4519 	ndevs -= ndevs % devs_increment;
4520 
4521 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4522 		ret = -ENOSPC;
4523 		goto error;
4524 	}
4525 
4526 	if (devs_max && ndevs > devs_max)
4527 		ndevs = devs_max;
4528 	/*
4529 	 * the primary goal is to maximize the number of stripes, so use as many
4530 	 * devices as possible, even if the stripes are not maximum sized.
4531 	 */
4532 	stripe_size = devices_info[ndevs-1].max_avail;
4533 	num_stripes = ndevs * dev_stripes;
4534 
4535 	/*
4536 	 * this will have to be fixed for RAID1 and RAID10 over
4537 	 * more drives
4538 	 */
4539 	data_stripes = num_stripes / ncopies;
4540 
4541 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4542 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4543 				 btrfs_super_stripesize(info->super_copy));
4544 		data_stripes = num_stripes - 1;
4545 	}
4546 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4547 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4548 				 btrfs_super_stripesize(info->super_copy));
4549 		data_stripes = num_stripes - 2;
4550 	}
4551 
4552 	/*
4553 	 * Use the number of data stripes to figure out how big this chunk
4554 	 * is really going to be in terms of logical address space,
4555 	 * and compare that answer with the max chunk size
4556 	 */
4557 	if (stripe_size * data_stripes > max_chunk_size) {
4558 		u64 mask = (1ULL << 24) - 1;
4559 
4560 		stripe_size = div_u64(max_chunk_size, data_stripes);
4561 
4562 		/* bump the answer up to a 16MB boundary */
4563 		stripe_size = (stripe_size + mask) & ~mask;
4564 
4565 		/* but don't go higher than the limits we found
4566 		 * while searching for free extents
4567 		 */
4568 		if (stripe_size > devices_info[ndevs-1].max_avail)
4569 			stripe_size = devices_info[ndevs-1].max_avail;
4570 	}
4571 
4572 	stripe_size = div_u64(stripe_size, dev_stripes);
4573 
4574 	/* align to BTRFS_STRIPE_LEN */
4575 	stripe_size = div_u64(stripe_size, raid_stripe_len);
4576 	stripe_size *= raid_stripe_len;
4577 
4578 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4579 	if (!map) {
4580 		ret = -ENOMEM;
4581 		goto error;
4582 	}
4583 	map->num_stripes = num_stripes;
4584 
4585 	for (i = 0; i < ndevs; ++i) {
4586 		for (j = 0; j < dev_stripes; ++j) {
4587 			int s = i * dev_stripes + j;
4588 			map->stripes[s].dev = devices_info[i].dev;
4589 			map->stripes[s].physical = devices_info[i].dev_offset +
4590 						   j * stripe_size;
4591 		}
4592 	}
4593 	map->sector_size = extent_root->sectorsize;
4594 	map->stripe_len = raid_stripe_len;
4595 	map->io_align = raid_stripe_len;
4596 	map->io_width = raid_stripe_len;
4597 	map->type = type;
4598 	map->sub_stripes = sub_stripes;
4599 
4600 	num_bytes = stripe_size * data_stripes;
4601 
4602 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4603 
4604 	em = alloc_extent_map();
4605 	if (!em) {
4606 		kfree(map);
4607 		ret = -ENOMEM;
4608 		goto error;
4609 	}
4610 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4611 	em->bdev = (struct block_device *)map;
4612 	em->start = start;
4613 	em->len = num_bytes;
4614 	em->block_start = 0;
4615 	em->block_len = em->len;
4616 	em->orig_block_len = stripe_size;
4617 
4618 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4619 	write_lock(&em_tree->lock);
4620 	ret = add_extent_mapping(em_tree, em, 0);
4621 	if (!ret) {
4622 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4623 		atomic_inc(&em->refs);
4624 	}
4625 	write_unlock(&em_tree->lock);
4626 	if (ret) {
4627 		free_extent_map(em);
4628 		goto error;
4629 	}
4630 
4631 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4632 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4633 				     start, num_bytes);
4634 	if (ret)
4635 		goto error_del_extent;
4636 
4637 	for (i = 0; i < map->num_stripes; i++) {
4638 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4639 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4640 	}
4641 
4642 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4643 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4644 						   map->num_stripes);
4645 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4646 
4647 	free_extent_map(em);
4648 	check_raid56_incompat_flag(extent_root->fs_info, type);
4649 
4650 	kfree(devices_info);
4651 	return 0;
4652 
4653 error_del_extent:
4654 	write_lock(&em_tree->lock);
4655 	remove_extent_mapping(em_tree, em);
4656 	write_unlock(&em_tree->lock);
4657 
4658 	/* One for our allocation */
4659 	free_extent_map(em);
4660 	/* One for the tree reference */
4661 	free_extent_map(em);
4662 	/* One for the pending_chunks list reference */
4663 	free_extent_map(em);
4664 error:
4665 	kfree(devices_info);
4666 	return ret;
4667 }
4668 
4669 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4670 				struct btrfs_root *extent_root,
4671 				u64 chunk_offset, u64 chunk_size)
4672 {
4673 	struct btrfs_key key;
4674 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4675 	struct btrfs_device *device;
4676 	struct btrfs_chunk *chunk;
4677 	struct btrfs_stripe *stripe;
4678 	struct extent_map_tree *em_tree;
4679 	struct extent_map *em;
4680 	struct map_lookup *map;
4681 	size_t item_size;
4682 	u64 dev_offset;
4683 	u64 stripe_size;
4684 	int i = 0;
4685 	int ret;
4686 
4687 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4688 	read_lock(&em_tree->lock);
4689 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4690 	read_unlock(&em_tree->lock);
4691 
4692 	if (!em) {
4693 		btrfs_crit(extent_root->fs_info, "unable to find logical "
4694 			   "%Lu len %Lu", chunk_offset, chunk_size);
4695 		return -EINVAL;
4696 	}
4697 
4698 	if (em->start != chunk_offset || em->len != chunk_size) {
4699 		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4700 			  " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4701 			  chunk_size, em->start, em->len);
4702 		free_extent_map(em);
4703 		return -EINVAL;
4704 	}
4705 
4706 	map = (struct map_lookup *)em->bdev;
4707 	item_size = btrfs_chunk_item_size(map->num_stripes);
4708 	stripe_size = em->orig_block_len;
4709 
4710 	chunk = kzalloc(item_size, GFP_NOFS);
4711 	if (!chunk) {
4712 		ret = -ENOMEM;
4713 		goto out;
4714 	}
4715 
4716 	for (i = 0; i < map->num_stripes; i++) {
4717 		device = map->stripes[i].dev;
4718 		dev_offset = map->stripes[i].physical;
4719 
4720 		ret = btrfs_update_device(trans, device);
4721 		if (ret)
4722 			goto out;
4723 		ret = btrfs_alloc_dev_extent(trans, device,
4724 					     chunk_root->root_key.objectid,
4725 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4726 					     chunk_offset, dev_offset,
4727 					     stripe_size);
4728 		if (ret)
4729 			goto out;
4730 	}
4731 
4732 	stripe = &chunk->stripe;
4733 	for (i = 0; i < map->num_stripes; i++) {
4734 		device = map->stripes[i].dev;
4735 		dev_offset = map->stripes[i].physical;
4736 
4737 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4738 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4739 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4740 		stripe++;
4741 	}
4742 
4743 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4744 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4745 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4746 	btrfs_set_stack_chunk_type(chunk, map->type);
4747 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4748 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4749 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4750 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4751 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4752 
4753 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4754 	key.type = BTRFS_CHUNK_ITEM_KEY;
4755 	key.offset = chunk_offset;
4756 
4757 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4758 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4759 		/*
4760 		 * TODO: Cleanup of inserted chunk root in case of
4761 		 * failure.
4762 		 */
4763 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4764 					     item_size);
4765 	}
4766 
4767 out:
4768 	kfree(chunk);
4769 	free_extent_map(em);
4770 	return ret;
4771 }
4772 
4773 /*
4774  * Chunk allocation falls into two parts. The first part does works
4775  * that make the new allocated chunk useable, but not do any operation
4776  * that modifies the chunk tree. The second part does the works that
4777  * require modifying the chunk tree. This division is important for the
4778  * bootstrap process of adding storage to a seed btrfs.
4779  */
4780 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4781 		      struct btrfs_root *extent_root, u64 type)
4782 {
4783 	u64 chunk_offset;
4784 
4785 	ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4786 	chunk_offset = find_next_chunk(extent_root->fs_info);
4787 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4788 }
4789 
4790 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4791 					 struct btrfs_root *root,
4792 					 struct btrfs_device *device)
4793 {
4794 	u64 chunk_offset;
4795 	u64 sys_chunk_offset;
4796 	u64 alloc_profile;
4797 	struct btrfs_fs_info *fs_info = root->fs_info;
4798 	struct btrfs_root *extent_root = fs_info->extent_root;
4799 	int ret;
4800 
4801 	chunk_offset = find_next_chunk(fs_info);
4802 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4803 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4804 				  alloc_profile);
4805 	if (ret)
4806 		return ret;
4807 
4808 	sys_chunk_offset = find_next_chunk(root->fs_info);
4809 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4810 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4811 				  alloc_profile);
4812 	return ret;
4813 }
4814 
4815 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4816 {
4817 	int max_errors;
4818 
4819 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4820 			 BTRFS_BLOCK_GROUP_RAID10 |
4821 			 BTRFS_BLOCK_GROUP_RAID5 |
4822 			 BTRFS_BLOCK_GROUP_DUP)) {
4823 		max_errors = 1;
4824 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4825 		max_errors = 2;
4826 	} else {
4827 		max_errors = 0;
4828 	}
4829 
4830 	return max_errors;
4831 }
4832 
4833 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4834 {
4835 	struct extent_map *em;
4836 	struct map_lookup *map;
4837 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4838 	int readonly = 0;
4839 	int miss_ndevs = 0;
4840 	int i;
4841 
4842 	read_lock(&map_tree->map_tree.lock);
4843 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4844 	read_unlock(&map_tree->map_tree.lock);
4845 	if (!em)
4846 		return 1;
4847 
4848 	map = (struct map_lookup *)em->bdev;
4849 	for (i = 0; i < map->num_stripes; i++) {
4850 		if (map->stripes[i].dev->missing) {
4851 			miss_ndevs++;
4852 			continue;
4853 		}
4854 
4855 		if (!map->stripes[i].dev->writeable) {
4856 			readonly = 1;
4857 			goto end;
4858 		}
4859 	}
4860 
4861 	/*
4862 	 * If the number of missing devices is larger than max errors,
4863 	 * we can not write the data into that chunk successfully, so
4864 	 * set it readonly.
4865 	 */
4866 	if (miss_ndevs > btrfs_chunk_max_errors(map))
4867 		readonly = 1;
4868 end:
4869 	free_extent_map(em);
4870 	return readonly;
4871 }
4872 
4873 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4874 {
4875 	extent_map_tree_init(&tree->map_tree);
4876 }
4877 
4878 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4879 {
4880 	struct extent_map *em;
4881 
4882 	while (1) {
4883 		write_lock(&tree->map_tree.lock);
4884 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4885 		if (em)
4886 			remove_extent_mapping(&tree->map_tree, em);
4887 		write_unlock(&tree->map_tree.lock);
4888 		if (!em)
4889 			break;
4890 		/* once for us */
4891 		free_extent_map(em);
4892 		/* once for the tree */
4893 		free_extent_map(em);
4894 	}
4895 }
4896 
4897 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4898 {
4899 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4900 	struct extent_map *em;
4901 	struct map_lookup *map;
4902 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4903 	int ret;
4904 
4905 	read_lock(&em_tree->lock);
4906 	em = lookup_extent_mapping(em_tree, logical, len);
4907 	read_unlock(&em_tree->lock);
4908 
4909 	/*
4910 	 * We could return errors for these cases, but that could get ugly and
4911 	 * we'd probably do the same thing which is just not do anything else
4912 	 * and exit, so return 1 so the callers don't try to use other copies.
4913 	 */
4914 	if (!em) {
4915 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4916 			    logical+len);
4917 		return 1;
4918 	}
4919 
4920 	if (em->start > logical || em->start + em->len < logical) {
4921 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4922 			    "%Lu-%Lu", logical, logical+len, em->start,
4923 			    em->start + em->len);
4924 		free_extent_map(em);
4925 		return 1;
4926 	}
4927 
4928 	map = (struct map_lookup *)em->bdev;
4929 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4930 		ret = map->num_stripes;
4931 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4932 		ret = map->sub_stripes;
4933 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4934 		ret = 2;
4935 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4936 		ret = 3;
4937 	else
4938 		ret = 1;
4939 	free_extent_map(em);
4940 
4941 	btrfs_dev_replace_lock(&fs_info->dev_replace);
4942 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4943 		ret++;
4944 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
4945 
4946 	return ret;
4947 }
4948 
4949 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4950 				    struct btrfs_mapping_tree *map_tree,
4951 				    u64 logical)
4952 {
4953 	struct extent_map *em;
4954 	struct map_lookup *map;
4955 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4956 	unsigned long len = root->sectorsize;
4957 
4958 	read_lock(&em_tree->lock);
4959 	em = lookup_extent_mapping(em_tree, logical, len);
4960 	read_unlock(&em_tree->lock);
4961 	BUG_ON(!em);
4962 
4963 	BUG_ON(em->start > logical || em->start + em->len < logical);
4964 	map = (struct map_lookup *)em->bdev;
4965 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4966 		len = map->stripe_len * nr_data_stripes(map);
4967 	free_extent_map(em);
4968 	return len;
4969 }
4970 
4971 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4972 			   u64 logical, u64 len, int mirror_num)
4973 {
4974 	struct extent_map *em;
4975 	struct map_lookup *map;
4976 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4977 	int ret = 0;
4978 
4979 	read_lock(&em_tree->lock);
4980 	em = lookup_extent_mapping(em_tree, logical, len);
4981 	read_unlock(&em_tree->lock);
4982 	BUG_ON(!em);
4983 
4984 	BUG_ON(em->start > logical || em->start + em->len < logical);
4985 	map = (struct map_lookup *)em->bdev;
4986 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4987 		ret = 1;
4988 	free_extent_map(em);
4989 	return ret;
4990 }
4991 
4992 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4993 			    struct map_lookup *map, int first, int num,
4994 			    int optimal, int dev_replace_is_ongoing)
4995 {
4996 	int i;
4997 	int tolerance;
4998 	struct btrfs_device *srcdev;
4999 
5000 	if (dev_replace_is_ongoing &&
5001 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5002 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5003 		srcdev = fs_info->dev_replace.srcdev;
5004 	else
5005 		srcdev = NULL;
5006 
5007 	/*
5008 	 * try to avoid the drive that is the source drive for a
5009 	 * dev-replace procedure, only choose it if no other non-missing
5010 	 * mirror is available
5011 	 */
5012 	for (tolerance = 0; tolerance < 2; tolerance++) {
5013 		if (map->stripes[optimal].dev->bdev &&
5014 		    (tolerance || map->stripes[optimal].dev != srcdev))
5015 			return optimal;
5016 		for (i = first; i < first + num; i++) {
5017 			if (map->stripes[i].dev->bdev &&
5018 			    (tolerance || map->stripes[i].dev != srcdev))
5019 				return i;
5020 		}
5021 	}
5022 
5023 	/* we couldn't find one that doesn't fail.  Just return something
5024 	 * and the io error handling code will clean up eventually
5025 	 */
5026 	return optimal;
5027 }
5028 
5029 static inline int parity_smaller(u64 a, u64 b)
5030 {
5031 	return a > b;
5032 }
5033 
5034 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5035 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5036 {
5037 	struct btrfs_bio_stripe s;
5038 	int i;
5039 	u64 l;
5040 	int again = 1;
5041 
5042 	while (again) {
5043 		again = 0;
5044 		for (i = 0; i < num_stripes - 1; i++) {
5045 			if (parity_smaller(bbio->raid_map[i],
5046 					   bbio->raid_map[i+1])) {
5047 				s = bbio->stripes[i];
5048 				l = bbio->raid_map[i];
5049 				bbio->stripes[i] = bbio->stripes[i+1];
5050 				bbio->raid_map[i] = bbio->raid_map[i+1];
5051 				bbio->stripes[i+1] = s;
5052 				bbio->raid_map[i+1] = l;
5053 
5054 				again = 1;
5055 			}
5056 		}
5057 	}
5058 }
5059 
5060 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5061 {
5062 	struct btrfs_bio *bbio = kzalloc(
5063 		 /* the size of the btrfs_bio */
5064 		sizeof(struct btrfs_bio) +
5065 		/* plus the variable array for the stripes */
5066 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5067 		/* plus the variable array for the tgt dev */
5068 		sizeof(int) * (real_stripes) +
5069 		/*
5070 		 * plus the raid_map, which includes both the tgt dev
5071 		 * and the stripes
5072 		 */
5073 		sizeof(u64) * (total_stripes),
5074 		GFP_NOFS);
5075 	if (!bbio)
5076 		return NULL;
5077 
5078 	atomic_set(&bbio->error, 0);
5079 	atomic_set(&bbio->refs, 1);
5080 
5081 	return bbio;
5082 }
5083 
5084 void btrfs_get_bbio(struct btrfs_bio *bbio)
5085 {
5086 	WARN_ON(!atomic_read(&bbio->refs));
5087 	atomic_inc(&bbio->refs);
5088 }
5089 
5090 void btrfs_put_bbio(struct btrfs_bio *bbio)
5091 {
5092 	if (!bbio)
5093 		return;
5094 	if (atomic_dec_and_test(&bbio->refs))
5095 		kfree(bbio);
5096 }
5097 
5098 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5099 			     u64 logical, u64 *length,
5100 			     struct btrfs_bio **bbio_ret,
5101 			     int mirror_num, int need_raid_map)
5102 {
5103 	struct extent_map *em;
5104 	struct map_lookup *map;
5105 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5106 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5107 	u64 offset;
5108 	u64 stripe_offset;
5109 	u64 stripe_end_offset;
5110 	u64 stripe_nr;
5111 	u64 stripe_nr_orig;
5112 	u64 stripe_nr_end;
5113 	u64 stripe_len;
5114 	u32 stripe_index;
5115 	int i;
5116 	int ret = 0;
5117 	int num_stripes;
5118 	int max_errors = 0;
5119 	int tgtdev_indexes = 0;
5120 	struct btrfs_bio *bbio = NULL;
5121 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5122 	int dev_replace_is_ongoing = 0;
5123 	int num_alloc_stripes;
5124 	int patch_the_first_stripe_for_dev_replace = 0;
5125 	u64 physical_to_patch_in_first_stripe = 0;
5126 	u64 raid56_full_stripe_start = (u64)-1;
5127 
5128 	read_lock(&em_tree->lock);
5129 	em = lookup_extent_mapping(em_tree, logical, *length);
5130 	read_unlock(&em_tree->lock);
5131 
5132 	if (!em) {
5133 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5134 			logical, *length);
5135 		return -EINVAL;
5136 	}
5137 
5138 	if (em->start > logical || em->start + em->len < logical) {
5139 		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5140 			   "found %Lu-%Lu", logical, em->start,
5141 			   em->start + em->len);
5142 		free_extent_map(em);
5143 		return -EINVAL;
5144 	}
5145 
5146 	map = (struct map_lookup *)em->bdev;
5147 	offset = logical - em->start;
5148 
5149 	stripe_len = map->stripe_len;
5150 	stripe_nr = offset;
5151 	/*
5152 	 * stripe_nr counts the total number of stripes we have to stride
5153 	 * to get to this block
5154 	 */
5155 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5156 
5157 	stripe_offset = stripe_nr * stripe_len;
5158 	BUG_ON(offset < stripe_offset);
5159 
5160 	/* stripe_offset is the offset of this block in its stripe*/
5161 	stripe_offset = offset - stripe_offset;
5162 
5163 	/* if we're here for raid56, we need to know the stripe aligned start */
5164 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5165 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5166 		raid56_full_stripe_start = offset;
5167 
5168 		/* allow a write of a full stripe, but make sure we don't
5169 		 * allow straddling of stripes
5170 		 */
5171 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5172 				full_stripe_len);
5173 		raid56_full_stripe_start *= full_stripe_len;
5174 	}
5175 
5176 	if (rw & REQ_DISCARD) {
5177 		/* we don't discard raid56 yet */
5178 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5179 			ret = -EOPNOTSUPP;
5180 			goto out;
5181 		}
5182 		*length = min_t(u64, em->len - offset, *length);
5183 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5184 		u64 max_len;
5185 		/* For writes to RAID[56], allow a full stripeset across all disks.
5186 		   For other RAID types and for RAID[56] reads, just allow a single
5187 		   stripe (on a single disk). */
5188 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5189 		    (rw & REQ_WRITE)) {
5190 			max_len = stripe_len * nr_data_stripes(map) -
5191 				(offset - raid56_full_stripe_start);
5192 		} else {
5193 			/* we limit the length of each bio to what fits in a stripe */
5194 			max_len = stripe_len - stripe_offset;
5195 		}
5196 		*length = min_t(u64, em->len - offset, max_len);
5197 	} else {
5198 		*length = em->len - offset;
5199 	}
5200 
5201 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5202 	   it cares about is the length */
5203 	if (!bbio_ret)
5204 		goto out;
5205 
5206 	btrfs_dev_replace_lock(dev_replace);
5207 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5208 	if (!dev_replace_is_ongoing)
5209 		btrfs_dev_replace_unlock(dev_replace);
5210 
5211 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5212 	    !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5213 	    dev_replace->tgtdev != NULL) {
5214 		/*
5215 		 * in dev-replace case, for repair case (that's the only
5216 		 * case where the mirror is selected explicitly when
5217 		 * calling btrfs_map_block), blocks left of the left cursor
5218 		 * can also be read from the target drive.
5219 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
5220 		 * the last one to the array of stripes. For READ, it also
5221 		 * needs to be supported using the same mirror number.
5222 		 * If the requested block is not left of the left cursor,
5223 		 * EIO is returned. This can happen because btrfs_num_copies()
5224 		 * returns one more in the dev-replace case.
5225 		 */
5226 		u64 tmp_length = *length;
5227 		struct btrfs_bio *tmp_bbio = NULL;
5228 		int tmp_num_stripes;
5229 		u64 srcdev_devid = dev_replace->srcdev->devid;
5230 		int index_srcdev = 0;
5231 		int found = 0;
5232 		u64 physical_of_found = 0;
5233 
5234 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5235 			     logical, &tmp_length, &tmp_bbio, 0, 0);
5236 		if (ret) {
5237 			WARN_ON(tmp_bbio != NULL);
5238 			goto out;
5239 		}
5240 
5241 		tmp_num_stripes = tmp_bbio->num_stripes;
5242 		if (mirror_num > tmp_num_stripes) {
5243 			/*
5244 			 * REQ_GET_READ_MIRRORS does not contain this
5245 			 * mirror, that means that the requested area
5246 			 * is not left of the left cursor
5247 			 */
5248 			ret = -EIO;
5249 			btrfs_put_bbio(tmp_bbio);
5250 			goto out;
5251 		}
5252 
5253 		/*
5254 		 * process the rest of the function using the mirror_num
5255 		 * of the source drive. Therefore look it up first.
5256 		 * At the end, patch the device pointer to the one of the
5257 		 * target drive.
5258 		 */
5259 		for (i = 0; i < tmp_num_stripes; i++) {
5260 			if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5261 				/*
5262 				 * In case of DUP, in order to keep it
5263 				 * simple, only add the mirror with the
5264 				 * lowest physical address
5265 				 */
5266 				if (found &&
5267 				    physical_of_found <=
5268 				     tmp_bbio->stripes[i].physical)
5269 					continue;
5270 				index_srcdev = i;
5271 				found = 1;
5272 				physical_of_found =
5273 					tmp_bbio->stripes[i].physical;
5274 			}
5275 		}
5276 
5277 		if (found) {
5278 			mirror_num = index_srcdev + 1;
5279 			patch_the_first_stripe_for_dev_replace = 1;
5280 			physical_to_patch_in_first_stripe = physical_of_found;
5281 		} else {
5282 			WARN_ON(1);
5283 			ret = -EIO;
5284 			btrfs_put_bbio(tmp_bbio);
5285 			goto out;
5286 		}
5287 
5288 		btrfs_put_bbio(tmp_bbio);
5289 	} else if (mirror_num > map->num_stripes) {
5290 		mirror_num = 0;
5291 	}
5292 
5293 	num_stripes = 1;
5294 	stripe_index = 0;
5295 	stripe_nr_orig = stripe_nr;
5296 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5297 	stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5298 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5299 			    (offset + *length);
5300 
5301 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5302 		if (rw & REQ_DISCARD)
5303 			num_stripes = min_t(u64, map->num_stripes,
5304 					    stripe_nr_end - stripe_nr_orig);
5305 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5306 				&stripe_index);
5307 		if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5308 			mirror_num = 1;
5309 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5310 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5311 			num_stripes = map->num_stripes;
5312 		else if (mirror_num)
5313 			stripe_index = mirror_num - 1;
5314 		else {
5315 			stripe_index = find_live_mirror(fs_info, map, 0,
5316 					    map->num_stripes,
5317 					    current->pid % map->num_stripes,
5318 					    dev_replace_is_ongoing);
5319 			mirror_num = stripe_index + 1;
5320 		}
5321 
5322 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5323 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5324 			num_stripes = map->num_stripes;
5325 		} else if (mirror_num) {
5326 			stripe_index = mirror_num - 1;
5327 		} else {
5328 			mirror_num = 1;
5329 		}
5330 
5331 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5332 		u32 factor = map->num_stripes / map->sub_stripes;
5333 
5334 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5335 		stripe_index *= map->sub_stripes;
5336 
5337 		if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5338 			num_stripes = map->sub_stripes;
5339 		else if (rw & REQ_DISCARD)
5340 			num_stripes = min_t(u64, map->sub_stripes *
5341 					    (stripe_nr_end - stripe_nr_orig),
5342 					    map->num_stripes);
5343 		else if (mirror_num)
5344 			stripe_index += mirror_num - 1;
5345 		else {
5346 			int old_stripe_index = stripe_index;
5347 			stripe_index = find_live_mirror(fs_info, map,
5348 					      stripe_index,
5349 					      map->sub_stripes, stripe_index +
5350 					      current->pid % map->sub_stripes,
5351 					      dev_replace_is_ongoing);
5352 			mirror_num = stripe_index - old_stripe_index + 1;
5353 		}
5354 
5355 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5356 		if (need_raid_map &&
5357 		    ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5358 		     mirror_num > 1)) {
5359 			/* push stripe_nr back to the start of the full stripe */
5360 			stripe_nr = div_u64(raid56_full_stripe_start,
5361 					stripe_len * nr_data_stripes(map));
5362 
5363 			/* RAID[56] write or recovery. Return all stripes */
5364 			num_stripes = map->num_stripes;
5365 			max_errors = nr_parity_stripes(map);
5366 
5367 			*length = map->stripe_len;
5368 			stripe_index = 0;
5369 			stripe_offset = 0;
5370 		} else {
5371 			/*
5372 			 * Mirror #0 or #1 means the original data block.
5373 			 * Mirror #2 is RAID5 parity block.
5374 			 * Mirror #3 is RAID6 Q block.
5375 			 */
5376 			stripe_nr = div_u64_rem(stripe_nr,
5377 					nr_data_stripes(map), &stripe_index);
5378 			if (mirror_num > 1)
5379 				stripe_index = nr_data_stripes(map) +
5380 						mirror_num - 2;
5381 
5382 			/* We distribute the parity blocks across stripes */
5383 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5384 					&stripe_index);
5385 			if (!(rw & (REQ_WRITE | REQ_DISCARD |
5386 				    REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5387 				mirror_num = 1;
5388 		}
5389 	} else {
5390 		/*
5391 		 * after this, stripe_nr is the number of stripes on this
5392 		 * device we have to walk to find the data, and stripe_index is
5393 		 * the number of our device in the stripe array
5394 		 */
5395 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5396 				&stripe_index);
5397 		mirror_num = stripe_index + 1;
5398 	}
5399 	BUG_ON(stripe_index >= map->num_stripes);
5400 
5401 	num_alloc_stripes = num_stripes;
5402 	if (dev_replace_is_ongoing) {
5403 		if (rw & (REQ_WRITE | REQ_DISCARD))
5404 			num_alloc_stripes <<= 1;
5405 		if (rw & REQ_GET_READ_MIRRORS)
5406 			num_alloc_stripes++;
5407 		tgtdev_indexes = num_stripes;
5408 	}
5409 
5410 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5411 	if (!bbio) {
5412 		ret = -ENOMEM;
5413 		goto out;
5414 	}
5415 	if (dev_replace_is_ongoing)
5416 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5417 
5418 	/* build raid_map */
5419 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5420 	    need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5421 	    mirror_num > 1)) {
5422 		u64 tmp;
5423 		unsigned rot;
5424 
5425 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5426 				 sizeof(struct btrfs_bio_stripe) *
5427 				 num_alloc_stripes +
5428 				 sizeof(int) * tgtdev_indexes);
5429 
5430 		/* Work out the disk rotation on this stripe-set */
5431 		div_u64_rem(stripe_nr, num_stripes, &rot);
5432 
5433 		/* Fill in the logical address of each stripe */
5434 		tmp = stripe_nr * nr_data_stripes(map);
5435 		for (i = 0; i < nr_data_stripes(map); i++)
5436 			bbio->raid_map[(i+rot) % num_stripes] =
5437 				em->start + (tmp + i) * map->stripe_len;
5438 
5439 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5440 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5441 			bbio->raid_map[(i+rot+1) % num_stripes] =
5442 				RAID6_Q_STRIPE;
5443 	}
5444 
5445 	if (rw & REQ_DISCARD) {
5446 		u32 factor = 0;
5447 		u32 sub_stripes = 0;
5448 		u64 stripes_per_dev = 0;
5449 		u32 remaining_stripes = 0;
5450 		u32 last_stripe = 0;
5451 
5452 		if (map->type &
5453 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5454 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5455 				sub_stripes = 1;
5456 			else
5457 				sub_stripes = map->sub_stripes;
5458 
5459 			factor = map->num_stripes / sub_stripes;
5460 			stripes_per_dev = div_u64_rem(stripe_nr_end -
5461 						      stripe_nr_orig,
5462 						      factor,
5463 						      &remaining_stripes);
5464 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5465 			last_stripe *= sub_stripes;
5466 		}
5467 
5468 		for (i = 0; i < num_stripes; i++) {
5469 			bbio->stripes[i].physical =
5470 				map->stripes[stripe_index].physical +
5471 				stripe_offset + stripe_nr * map->stripe_len;
5472 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5473 
5474 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5475 					 BTRFS_BLOCK_GROUP_RAID10)) {
5476 				bbio->stripes[i].length = stripes_per_dev *
5477 							  map->stripe_len;
5478 
5479 				if (i / sub_stripes < remaining_stripes)
5480 					bbio->stripes[i].length +=
5481 						map->stripe_len;
5482 
5483 				/*
5484 				 * Special for the first stripe and
5485 				 * the last stripe:
5486 				 *
5487 				 * |-------|...|-------|
5488 				 *     |----------|
5489 				 *    off     end_off
5490 				 */
5491 				if (i < sub_stripes)
5492 					bbio->stripes[i].length -=
5493 						stripe_offset;
5494 
5495 				if (stripe_index >= last_stripe &&
5496 				    stripe_index <= (last_stripe +
5497 						     sub_stripes - 1))
5498 					bbio->stripes[i].length -=
5499 						stripe_end_offset;
5500 
5501 				if (i == sub_stripes - 1)
5502 					stripe_offset = 0;
5503 			} else
5504 				bbio->stripes[i].length = *length;
5505 
5506 			stripe_index++;
5507 			if (stripe_index == map->num_stripes) {
5508 				/* This could only happen for RAID0/10 */
5509 				stripe_index = 0;
5510 				stripe_nr++;
5511 			}
5512 		}
5513 	} else {
5514 		for (i = 0; i < num_stripes; i++) {
5515 			bbio->stripes[i].physical =
5516 				map->stripes[stripe_index].physical +
5517 				stripe_offset +
5518 				stripe_nr * map->stripe_len;
5519 			bbio->stripes[i].dev =
5520 				map->stripes[stripe_index].dev;
5521 			stripe_index++;
5522 		}
5523 	}
5524 
5525 	if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5526 		max_errors = btrfs_chunk_max_errors(map);
5527 
5528 	if (bbio->raid_map)
5529 		sort_parity_stripes(bbio, num_stripes);
5530 
5531 	tgtdev_indexes = 0;
5532 	if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5533 	    dev_replace->tgtdev != NULL) {
5534 		int index_where_to_add;
5535 		u64 srcdev_devid = dev_replace->srcdev->devid;
5536 
5537 		/*
5538 		 * duplicate the write operations while the dev replace
5539 		 * procedure is running. Since the copying of the old disk
5540 		 * to the new disk takes place at run time while the
5541 		 * filesystem is mounted writable, the regular write
5542 		 * operations to the old disk have to be duplicated to go
5543 		 * to the new disk as well.
5544 		 * Note that device->missing is handled by the caller, and
5545 		 * that the write to the old disk is already set up in the
5546 		 * stripes array.
5547 		 */
5548 		index_where_to_add = num_stripes;
5549 		for (i = 0; i < num_stripes; i++) {
5550 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5551 				/* write to new disk, too */
5552 				struct btrfs_bio_stripe *new =
5553 					bbio->stripes + index_where_to_add;
5554 				struct btrfs_bio_stripe *old =
5555 					bbio->stripes + i;
5556 
5557 				new->physical = old->physical;
5558 				new->length = old->length;
5559 				new->dev = dev_replace->tgtdev;
5560 				bbio->tgtdev_map[i] = index_where_to_add;
5561 				index_where_to_add++;
5562 				max_errors++;
5563 				tgtdev_indexes++;
5564 			}
5565 		}
5566 		num_stripes = index_where_to_add;
5567 	} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5568 		   dev_replace->tgtdev != NULL) {
5569 		u64 srcdev_devid = dev_replace->srcdev->devid;
5570 		int index_srcdev = 0;
5571 		int found = 0;
5572 		u64 physical_of_found = 0;
5573 
5574 		/*
5575 		 * During the dev-replace procedure, the target drive can
5576 		 * also be used to read data in case it is needed to repair
5577 		 * a corrupt block elsewhere. This is possible if the
5578 		 * requested area is left of the left cursor. In this area,
5579 		 * the target drive is a full copy of the source drive.
5580 		 */
5581 		for (i = 0; i < num_stripes; i++) {
5582 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5583 				/*
5584 				 * In case of DUP, in order to keep it
5585 				 * simple, only add the mirror with the
5586 				 * lowest physical address
5587 				 */
5588 				if (found &&
5589 				    physical_of_found <=
5590 				     bbio->stripes[i].physical)
5591 					continue;
5592 				index_srcdev = i;
5593 				found = 1;
5594 				physical_of_found = bbio->stripes[i].physical;
5595 			}
5596 		}
5597 		if (found) {
5598 			if (physical_of_found + map->stripe_len <=
5599 			    dev_replace->cursor_left) {
5600 				struct btrfs_bio_stripe *tgtdev_stripe =
5601 					bbio->stripes + num_stripes;
5602 
5603 				tgtdev_stripe->physical = physical_of_found;
5604 				tgtdev_stripe->length =
5605 					bbio->stripes[index_srcdev].length;
5606 				tgtdev_stripe->dev = dev_replace->tgtdev;
5607 				bbio->tgtdev_map[index_srcdev] = num_stripes;
5608 
5609 				tgtdev_indexes++;
5610 				num_stripes++;
5611 			}
5612 		}
5613 	}
5614 
5615 	*bbio_ret = bbio;
5616 	bbio->map_type = map->type;
5617 	bbio->num_stripes = num_stripes;
5618 	bbio->max_errors = max_errors;
5619 	bbio->mirror_num = mirror_num;
5620 	bbio->num_tgtdevs = tgtdev_indexes;
5621 
5622 	/*
5623 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5624 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5625 	 * available as a mirror
5626 	 */
5627 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5628 		WARN_ON(num_stripes > 1);
5629 		bbio->stripes[0].dev = dev_replace->tgtdev;
5630 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5631 		bbio->mirror_num = map->num_stripes + 1;
5632 	}
5633 out:
5634 	if (dev_replace_is_ongoing)
5635 		btrfs_dev_replace_unlock(dev_replace);
5636 	free_extent_map(em);
5637 	return ret;
5638 }
5639 
5640 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5641 		      u64 logical, u64 *length,
5642 		      struct btrfs_bio **bbio_ret, int mirror_num)
5643 {
5644 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5645 				 mirror_num, 0);
5646 }
5647 
5648 /* For Scrub/replace */
5649 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5650 		     u64 logical, u64 *length,
5651 		     struct btrfs_bio **bbio_ret, int mirror_num,
5652 		     int need_raid_map)
5653 {
5654 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5655 				 mirror_num, need_raid_map);
5656 }
5657 
5658 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5659 		     u64 chunk_start, u64 physical, u64 devid,
5660 		     u64 **logical, int *naddrs, int *stripe_len)
5661 {
5662 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5663 	struct extent_map *em;
5664 	struct map_lookup *map;
5665 	u64 *buf;
5666 	u64 bytenr;
5667 	u64 length;
5668 	u64 stripe_nr;
5669 	u64 rmap_len;
5670 	int i, j, nr = 0;
5671 
5672 	read_lock(&em_tree->lock);
5673 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5674 	read_unlock(&em_tree->lock);
5675 
5676 	if (!em) {
5677 		printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5678 		       chunk_start);
5679 		return -EIO;
5680 	}
5681 
5682 	if (em->start != chunk_start) {
5683 		printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5684 		       em->start, chunk_start);
5685 		free_extent_map(em);
5686 		return -EIO;
5687 	}
5688 	map = (struct map_lookup *)em->bdev;
5689 
5690 	length = em->len;
5691 	rmap_len = map->stripe_len;
5692 
5693 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5694 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5695 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5696 		length = div_u64(length, map->num_stripes);
5697 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5698 		length = div_u64(length, nr_data_stripes(map));
5699 		rmap_len = map->stripe_len * nr_data_stripes(map);
5700 	}
5701 
5702 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5703 	BUG_ON(!buf); /* -ENOMEM */
5704 
5705 	for (i = 0; i < map->num_stripes; i++) {
5706 		if (devid && map->stripes[i].dev->devid != devid)
5707 			continue;
5708 		if (map->stripes[i].physical > physical ||
5709 		    map->stripes[i].physical + length <= physical)
5710 			continue;
5711 
5712 		stripe_nr = physical - map->stripes[i].physical;
5713 		stripe_nr = div_u64(stripe_nr, map->stripe_len);
5714 
5715 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5716 			stripe_nr = stripe_nr * map->num_stripes + i;
5717 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5718 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5719 			stripe_nr = stripe_nr * map->num_stripes + i;
5720 		} /* else if RAID[56], multiply by nr_data_stripes().
5721 		   * Alternatively, just use rmap_len below instead of
5722 		   * map->stripe_len */
5723 
5724 		bytenr = chunk_start + stripe_nr * rmap_len;
5725 		WARN_ON(nr >= map->num_stripes);
5726 		for (j = 0; j < nr; j++) {
5727 			if (buf[j] == bytenr)
5728 				break;
5729 		}
5730 		if (j == nr) {
5731 			WARN_ON(nr >= map->num_stripes);
5732 			buf[nr++] = bytenr;
5733 		}
5734 	}
5735 
5736 	*logical = buf;
5737 	*naddrs = nr;
5738 	*stripe_len = rmap_len;
5739 
5740 	free_extent_map(em);
5741 	return 0;
5742 }
5743 
5744 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5745 {
5746 	bio->bi_private = bbio->private;
5747 	bio->bi_end_io = bbio->end_io;
5748 	bio_endio(bio, err);
5749 
5750 	btrfs_put_bbio(bbio);
5751 }
5752 
5753 static void btrfs_end_bio(struct bio *bio, int err)
5754 {
5755 	struct btrfs_bio *bbio = bio->bi_private;
5756 	int is_orig_bio = 0;
5757 
5758 	if (err) {
5759 		atomic_inc(&bbio->error);
5760 		if (err == -EIO || err == -EREMOTEIO) {
5761 			unsigned int stripe_index =
5762 				btrfs_io_bio(bio)->stripe_index;
5763 			struct btrfs_device *dev;
5764 
5765 			BUG_ON(stripe_index >= bbio->num_stripes);
5766 			dev = bbio->stripes[stripe_index].dev;
5767 			if (dev->bdev) {
5768 				if (bio->bi_rw & WRITE)
5769 					btrfs_dev_stat_inc(dev,
5770 						BTRFS_DEV_STAT_WRITE_ERRS);
5771 				else
5772 					btrfs_dev_stat_inc(dev,
5773 						BTRFS_DEV_STAT_READ_ERRS);
5774 				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5775 					btrfs_dev_stat_inc(dev,
5776 						BTRFS_DEV_STAT_FLUSH_ERRS);
5777 				btrfs_dev_stat_print_on_error(dev);
5778 			}
5779 		}
5780 	}
5781 
5782 	if (bio == bbio->orig_bio)
5783 		is_orig_bio = 1;
5784 
5785 	btrfs_bio_counter_dec(bbio->fs_info);
5786 
5787 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5788 		if (!is_orig_bio) {
5789 			bio_put(bio);
5790 			bio = bbio->orig_bio;
5791 		}
5792 
5793 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5794 		/* only send an error to the higher layers if it is
5795 		 * beyond the tolerance of the btrfs bio
5796 		 */
5797 		if (atomic_read(&bbio->error) > bbio->max_errors) {
5798 			err = -EIO;
5799 		} else {
5800 			/*
5801 			 * this bio is actually up to date, we didn't
5802 			 * go over the max number of errors
5803 			 */
5804 			set_bit(BIO_UPTODATE, &bio->bi_flags);
5805 			err = 0;
5806 		}
5807 
5808 		btrfs_end_bbio(bbio, bio, err);
5809 	} else if (!is_orig_bio) {
5810 		bio_put(bio);
5811 	}
5812 }
5813 
5814 /*
5815  * see run_scheduled_bios for a description of why bios are collected for
5816  * async submit.
5817  *
5818  * This will add one bio to the pending list for a device and make sure
5819  * the work struct is scheduled.
5820  */
5821 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5822 					struct btrfs_device *device,
5823 					int rw, struct bio *bio)
5824 {
5825 	int should_queue = 1;
5826 	struct btrfs_pending_bios *pending_bios;
5827 
5828 	if (device->missing || !device->bdev) {
5829 		bio_endio(bio, -EIO);
5830 		return;
5831 	}
5832 
5833 	/* don't bother with additional async steps for reads, right now */
5834 	if (!(rw & REQ_WRITE)) {
5835 		bio_get(bio);
5836 		btrfsic_submit_bio(rw, bio);
5837 		bio_put(bio);
5838 		return;
5839 	}
5840 
5841 	/*
5842 	 * nr_async_bios allows us to reliably return congestion to the
5843 	 * higher layers.  Otherwise, the async bio makes it appear we have
5844 	 * made progress against dirty pages when we've really just put it
5845 	 * on a queue for later
5846 	 */
5847 	atomic_inc(&root->fs_info->nr_async_bios);
5848 	WARN_ON(bio->bi_next);
5849 	bio->bi_next = NULL;
5850 	bio->bi_rw |= rw;
5851 
5852 	spin_lock(&device->io_lock);
5853 	if (bio->bi_rw & REQ_SYNC)
5854 		pending_bios = &device->pending_sync_bios;
5855 	else
5856 		pending_bios = &device->pending_bios;
5857 
5858 	if (pending_bios->tail)
5859 		pending_bios->tail->bi_next = bio;
5860 
5861 	pending_bios->tail = bio;
5862 	if (!pending_bios->head)
5863 		pending_bios->head = bio;
5864 	if (device->running_pending)
5865 		should_queue = 0;
5866 
5867 	spin_unlock(&device->io_lock);
5868 
5869 	if (should_queue)
5870 		btrfs_queue_work(root->fs_info->submit_workers,
5871 				 &device->work);
5872 }
5873 
5874 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5875 		       sector_t sector)
5876 {
5877 	struct bio_vec *prev;
5878 	struct request_queue *q = bdev_get_queue(bdev);
5879 	unsigned int max_sectors = queue_max_sectors(q);
5880 	struct bvec_merge_data bvm = {
5881 		.bi_bdev = bdev,
5882 		.bi_sector = sector,
5883 		.bi_rw = bio->bi_rw,
5884 	};
5885 
5886 	if (WARN_ON(bio->bi_vcnt == 0))
5887 		return 1;
5888 
5889 	prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5890 	if (bio_sectors(bio) > max_sectors)
5891 		return 0;
5892 
5893 	if (!q->merge_bvec_fn)
5894 		return 1;
5895 
5896 	bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5897 	if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5898 		return 0;
5899 	return 1;
5900 }
5901 
5902 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5903 			      struct bio *bio, u64 physical, int dev_nr,
5904 			      int rw, int async)
5905 {
5906 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5907 
5908 	bio->bi_private = bbio;
5909 	btrfs_io_bio(bio)->stripe_index = dev_nr;
5910 	bio->bi_end_io = btrfs_end_bio;
5911 	bio->bi_iter.bi_sector = physical >> 9;
5912 #ifdef DEBUG
5913 	{
5914 		struct rcu_string *name;
5915 
5916 		rcu_read_lock();
5917 		name = rcu_dereference(dev->name);
5918 		pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5919 			 "(%s id %llu), size=%u\n", rw,
5920 			 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5921 			 name->str, dev->devid, bio->bi_iter.bi_size);
5922 		rcu_read_unlock();
5923 	}
5924 #endif
5925 	bio->bi_bdev = dev->bdev;
5926 
5927 	btrfs_bio_counter_inc_noblocked(root->fs_info);
5928 
5929 	if (async)
5930 		btrfs_schedule_bio(root, dev, rw, bio);
5931 	else
5932 		btrfsic_submit_bio(rw, bio);
5933 }
5934 
5935 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5936 			      struct bio *first_bio, struct btrfs_device *dev,
5937 			      int dev_nr, int rw, int async)
5938 {
5939 	struct bio_vec *bvec = first_bio->bi_io_vec;
5940 	struct bio *bio;
5941 	int nr_vecs = bio_get_nr_vecs(dev->bdev);
5942 	u64 physical = bbio->stripes[dev_nr].physical;
5943 
5944 again:
5945 	bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5946 	if (!bio)
5947 		return -ENOMEM;
5948 
5949 	while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5950 		if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5951 				 bvec->bv_offset) < bvec->bv_len) {
5952 			u64 len = bio->bi_iter.bi_size;
5953 
5954 			atomic_inc(&bbio->stripes_pending);
5955 			submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5956 					  rw, async);
5957 			physical += len;
5958 			goto again;
5959 		}
5960 		bvec++;
5961 	}
5962 
5963 	submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5964 	return 0;
5965 }
5966 
5967 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5968 {
5969 	atomic_inc(&bbio->error);
5970 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5971 		/* Shoud be the original bio. */
5972 		WARN_ON(bio != bbio->orig_bio);
5973 
5974 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5975 		bio->bi_iter.bi_sector = logical >> 9;
5976 
5977 		btrfs_end_bbio(bbio, bio, -EIO);
5978 	}
5979 }
5980 
5981 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5982 		  int mirror_num, int async_submit)
5983 {
5984 	struct btrfs_device *dev;
5985 	struct bio *first_bio = bio;
5986 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5987 	u64 length = 0;
5988 	u64 map_length;
5989 	int ret;
5990 	int dev_nr;
5991 	int total_devs;
5992 	struct btrfs_bio *bbio = NULL;
5993 
5994 	length = bio->bi_iter.bi_size;
5995 	map_length = length;
5996 
5997 	btrfs_bio_counter_inc_blocked(root->fs_info);
5998 	ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5999 			      mirror_num, 1);
6000 	if (ret) {
6001 		btrfs_bio_counter_dec(root->fs_info);
6002 		return ret;
6003 	}
6004 
6005 	total_devs = bbio->num_stripes;
6006 	bbio->orig_bio = first_bio;
6007 	bbio->private = first_bio->bi_private;
6008 	bbio->end_io = first_bio->bi_end_io;
6009 	bbio->fs_info = root->fs_info;
6010 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6011 
6012 	if (bbio->raid_map) {
6013 		/* In this case, map_length has been set to the length of
6014 		   a single stripe; not the whole write */
6015 		if (rw & WRITE) {
6016 			ret = raid56_parity_write(root, bio, bbio, map_length);
6017 		} else {
6018 			ret = raid56_parity_recover(root, bio, bbio, map_length,
6019 						    mirror_num, 1);
6020 		}
6021 
6022 		btrfs_bio_counter_dec(root->fs_info);
6023 		return ret;
6024 	}
6025 
6026 	if (map_length < length) {
6027 		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6028 			logical, length, map_length);
6029 		BUG();
6030 	}
6031 
6032 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6033 		dev = bbio->stripes[dev_nr].dev;
6034 		if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6035 			bbio_error(bbio, first_bio, logical);
6036 			continue;
6037 		}
6038 
6039 		/*
6040 		 * Check and see if we're ok with this bio based on it's size
6041 		 * and offset with the given device.
6042 		 */
6043 		if (!bio_size_ok(dev->bdev, first_bio,
6044 				 bbio->stripes[dev_nr].physical >> 9)) {
6045 			ret = breakup_stripe_bio(root, bbio, first_bio, dev,
6046 						 dev_nr, rw, async_submit);
6047 			BUG_ON(ret);
6048 			continue;
6049 		}
6050 
6051 		if (dev_nr < total_devs - 1) {
6052 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6053 			BUG_ON(!bio); /* -ENOMEM */
6054 		} else
6055 			bio = first_bio;
6056 
6057 		submit_stripe_bio(root, bbio, bio,
6058 				  bbio->stripes[dev_nr].physical, dev_nr, rw,
6059 				  async_submit);
6060 	}
6061 	btrfs_bio_counter_dec(root->fs_info);
6062 	return 0;
6063 }
6064 
6065 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6066 				       u8 *uuid, u8 *fsid)
6067 {
6068 	struct btrfs_device *device;
6069 	struct btrfs_fs_devices *cur_devices;
6070 
6071 	cur_devices = fs_info->fs_devices;
6072 	while (cur_devices) {
6073 		if (!fsid ||
6074 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6075 			device = __find_device(&cur_devices->devices,
6076 					       devid, uuid);
6077 			if (device)
6078 				return device;
6079 		}
6080 		cur_devices = cur_devices->seed;
6081 	}
6082 	return NULL;
6083 }
6084 
6085 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6086 					    struct btrfs_fs_devices *fs_devices,
6087 					    u64 devid, u8 *dev_uuid)
6088 {
6089 	struct btrfs_device *device;
6090 
6091 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6092 	if (IS_ERR(device))
6093 		return NULL;
6094 
6095 	list_add(&device->dev_list, &fs_devices->devices);
6096 	device->fs_devices = fs_devices;
6097 	fs_devices->num_devices++;
6098 
6099 	device->missing = 1;
6100 	fs_devices->missing_devices++;
6101 
6102 	return device;
6103 }
6104 
6105 /**
6106  * btrfs_alloc_device - allocate struct btrfs_device
6107  * @fs_info:	used only for generating a new devid, can be NULL if
6108  *		devid is provided (i.e. @devid != NULL).
6109  * @devid:	a pointer to devid for this device.  If NULL a new devid
6110  *		is generated.
6111  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6112  *		is generated.
6113  *
6114  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6115  * on error.  Returned struct is not linked onto any lists and can be
6116  * destroyed with kfree() right away.
6117  */
6118 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6119 					const u64 *devid,
6120 					const u8 *uuid)
6121 {
6122 	struct btrfs_device *dev;
6123 	u64 tmp;
6124 
6125 	if (WARN_ON(!devid && !fs_info))
6126 		return ERR_PTR(-EINVAL);
6127 
6128 	dev = __alloc_device();
6129 	if (IS_ERR(dev))
6130 		return dev;
6131 
6132 	if (devid)
6133 		tmp = *devid;
6134 	else {
6135 		int ret;
6136 
6137 		ret = find_next_devid(fs_info, &tmp);
6138 		if (ret) {
6139 			kfree(dev);
6140 			return ERR_PTR(ret);
6141 		}
6142 	}
6143 	dev->devid = tmp;
6144 
6145 	if (uuid)
6146 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6147 	else
6148 		generate_random_uuid(dev->uuid);
6149 
6150 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6151 			pending_bios_fn, NULL, NULL);
6152 
6153 	return dev;
6154 }
6155 
6156 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6157 			  struct extent_buffer *leaf,
6158 			  struct btrfs_chunk *chunk)
6159 {
6160 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6161 	struct map_lookup *map;
6162 	struct extent_map *em;
6163 	u64 logical;
6164 	u64 length;
6165 	u64 devid;
6166 	u8 uuid[BTRFS_UUID_SIZE];
6167 	int num_stripes;
6168 	int ret;
6169 	int i;
6170 
6171 	logical = key->offset;
6172 	length = btrfs_chunk_length(leaf, chunk);
6173 
6174 	read_lock(&map_tree->map_tree.lock);
6175 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6176 	read_unlock(&map_tree->map_tree.lock);
6177 
6178 	/* already mapped? */
6179 	if (em && em->start <= logical && em->start + em->len > logical) {
6180 		free_extent_map(em);
6181 		return 0;
6182 	} else if (em) {
6183 		free_extent_map(em);
6184 	}
6185 
6186 	em = alloc_extent_map();
6187 	if (!em)
6188 		return -ENOMEM;
6189 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6190 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6191 	if (!map) {
6192 		free_extent_map(em);
6193 		return -ENOMEM;
6194 	}
6195 
6196 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6197 	em->bdev = (struct block_device *)map;
6198 	em->start = logical;
6199 	em->len = length;
6200 	em->orig_start = 0;
6201 	em->block_start = 0;
6202 	em->block_len = em->len;
6203 
6204 	map->num_stripes = num_stripes;
6205 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6206 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6207 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6208 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6209 	map->type = btrfs_chunk_type(leaf, chunk);
6210 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6211 	for (i = 0; i < num_stripes; i++) {
6212 		map->stripes[i].physical =
6213 			btrfs_stripe_offset_nr(leaf, chunk, i);
6214 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6215 		read_extent_buffer(leaf, uuid, (unsigned long)
6216 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6217 				   BTRFS_UUID_SIZE);
6218 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6219 							uuid, NULL);
6220 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6221 			free_extent_map(em);
6222 			return -EIO;
6223 		}
6224 		if (!map->stripes[i].dev) {
6225 			map->stripes[i].dev =
6226 				add_missing_dev(root, root->fs_info->fs_devices,
6227 						devid, uuid);
6228 			if (!map->stripes[i].dev) {
6229 				free_extent_map(em);
6230 				return -EIO;
6231 			}
6232 			btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6233 						devid, uuid);
6234 		}
6235 		map->stripes[i].dev->in_fs_metadata = 1;
6236 	}
6237 
6238 	write_lock(&map_tree->map_tree.lock);
6239 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6240 	write_unlock(&map_tree->map_tree.lock);
6241 	BUG_ON(ret); /* Tree corruption */
6242 	free_extent_map(em);
6243 
6244 	return 0;
6245 }
6246 
6247 static void fill_device_from_item(struct extent_buffer *leaf,
6248 				 struct btrfs_dev_item *dev_item,
6249 				 struct btrfs_device *device)
6250 {
6251 	unsigned long ptr;
6252 
6253 	device->devid = btrfs_device_id(leaf, dev_item);
6254 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6255 	device->total_bytes = device->disk_total_bytes;
6256 	device->commit_total_bytes = device->disk_total_bytes;
6257 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6258 	device->commit_bytes_used = device->bytes_used;
6259 	device->type = btrfs_device_type(leaf, dev_item);
6260 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6261 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6262 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6263 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6264 	device->is_tgtdev_for_dev_replace = 0;
6265 
6266 	ptr = btrfs_device_uuid(dev_item);
6267 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6268 }
6269 
6270 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6271 						  u8 *fsid)
6272 {
6273 	struct btrfs_fs_devices *fs_devices;
6274 	int ret;
6275 
6276 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6277 
6278 	fs_devices = root->fs_info->fs_devices->seed;
6279 	while (fs_devices) {
6280 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6281 			return fs_devices;
6282 
6283 		fs_devices = fs_devices->seed;
6284 	}
6285 
6286 	fs_devices = find_fsid(fsid);
6287 	if (!fs_devices) {
6288 		if (!btrfs_test_opt(root, DEGRADED))
6289 			return ERR_PTR(-ENOENT);
6290 
6291 		fs_devices = alloc_fs_devices(fsid);
6292 		if (IS_ERR(fs_devices))
6293 			return fs_devices;
6294 
6295 		fs_devices->seeding = 1;
6296 		fs_devices->opened = 1;
6297 		return fs_devices;
6298 	}
6299 
6300 	fs_devices = clone_fs_devices(fs_devices);
6301 	if (IS_ERR(fs_devices))
6302 		return fs_devices;
6303 
6304 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6305 				   root->fs_info->bdev_holder);
6306 	if (ret) {
6307 		free_fs_devices(fs_devices);
6308 		fs_devices = ERR_PTR(ret);
6309 		goto out;
6310 	}
6311 
6312 	if (!fs_devices->seeding) {
6313 		__btrfs_close_devices(fs_devices);
6314 		free_fs_devices(fs_devices);
6315 		fs_devices = ERR_PTR(-EINVAL);
6316 		goto out;
6317 	}
6318 
6319 	fs_devices->seed = root->fs_info->fs_devices->seed;
6320 	root->fs_info->fs_devices->seed = fs_devices;
6321 out:
6322 	return fs_devices;
6323 }
6324 
6325 static int read_one_dev(struct btrfs_root *root,
6326 			struct extent_buffer *leaf,
6327 			struct btrfs_dev_item *dev_item)
6328 {
6329 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6330 	struct btrfs_device *device;
6331 	u64 devid;
6332 	int ret;
6333 	u8 fs_uuid[BTRFS_UUID_SIZE];
6334 	u8 dev_uuid[BTRFS_UUID_SIZE];
6335 
6336 	devid = btrfs_device_id(leaf, dev_item);
6337 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6338 			   BTRFS_UUID_SIZE);
6339 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6340 			   BTRFS_UUID_SIZE);
6341 
6342 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6343 		fs_devices = open_seed_devices(root, fs_uuid);
6344 		if (IS_ERR(fs_devices))
6345 			return PTR_ERR(fs_devices);
6346 	}
6347 
6348 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6349 	if (!device) {
6350 		if (!btrfs_test_opt(root, DEGRADED))
6351 			return -EIO;
6352 
6353 		device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6354 		if (!device)
6355 			return -ENOMEM;
6356 		btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6357 				devid, dev_uuid);
6358 	} else {
6359 		if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6360 			return -EIO;
6361 
6362 		if(!device->bdev && !device->missing) {
6363 			/*
6364 			 * this happens when a device that was properly setup
6365 			 * in the device info lists suddenly goes bad.
6366 			 * device->bdev is NULL, and so we have to set
6367 			 * device->missing to one here
6368 			 */
6369 			device->fs_devices->missing_devices++;
6370 			device->missing = 1;
6371 		}
6372 
6373 		/* Move the device to its own fs_devices */
6374 		if (device->fs_devices != fs_devices) {
6375 			ASSERT(device->missing);
6376 
6377 			list_move(&device->dev_list, &fs_devices->devices);
6378 			device->fs_devices->num_devices--;
6379 			fs_devices->num_devices++;
6380 
6381 			device->fs_devices->missing_devices--;
6382 			fs_devices->missing_devices++;
6383 
6384 			device->fs_devices = fs_devices;
6385 		}
6386 	}
6387 
6388 	if (device->fs_devices != root->fs_info->fs_devices) {
6389 		BUG_ON(device->writeable);
6390 		if (device->generation !=
6391 		    btrfs_device_generation(leaf, dev_item))
6392 			return -EINVAL;
6393 	}
6394 
6395 	fill_device_from_item(leaf, dev_item, device);
6396 	device->in_fs_metadata = 1;
6397 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6398 		device->fs_devices->total_rw_bytes += device->total_bytes;
6399 		spin_lock(&root->fs_info->free_chunk_lock);
6400 		root->fs_info->free_chunk_space += device->total_bytes -
6401 			device->bytes_used;
6402 		spin_unlock(&root->fs_info->free_chunk_lock);
6403 	}
6404 	ret = 0;
6405 	return ret;
6406 }
6407 
6408 int btrfs_read_sys_array(struct btrfs_root *root)
6409 {
6410 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6411 	struct extent_buffer *sb;
6412 	struct btrfs_disk_key *disk_key;
6413 	struct btrfs_chunk *chunk;
6414 	u8 *array_ptr;
6415 	unsigned long sb_array_offset;
6416 	int ret = 0;
6417 	u32 num_stripes;
6418 	u32 array_size;
6419 	u32 len = 0;
6420 	u32 cur_offset;
6421 	struct btrfs_key key;
6422 
6423 	ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6424 	/*
6425 	 * This will create extent buffer of nodesize, superblock size is
6426 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6427 	 * overallocate but we can keep it as-is, only the first page is used.
6428 	 */
6429 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6430 	if (!sb)
6431 		return -ENOMEM;
6432 	btrfs_set_buffer_uptodate(sb);
6433 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6434 	/*
6435 	 * The sb extent buffer is artifical and just used to read the system array.
6436 	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6437 	 * pages up-to-date when the page is larger: extent does not cover the
6438 	 * whole page and consequently check_page_uptodate does not find all
6439 	 * the page's extents up-to-date (the hole beyond sb),
6440 	 * write_extent_buffer then triggers a WARN_ON.
6441 	 *
6442 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6443 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6444 	 * to silence the warning eg. on PowerPC 64.
6445 	 */
6446 	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6447 		SetPageUptodate(sb->pages[0]);
6448 
6449 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6450 	array_size = btrfs_super_sys_array_size(super_copy);
6451 
6452 	array_ptr = super_copy->sys_chunk_array;
6453 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6454 	cur_offset = 0;
6455 
6456 	while (cur_offset < array_size) {
6457 		disk_key = (struct btrfs_disk_key *)array_ptr;
6458 		len = sizeof(*disk_key);
6459 		if (cur_offset + len > array_size)
6460 			goto out_short_read;
6461 
6462 		btrfs_disk_key_to_cpu(&key, disk_key);
6463 
6464 		array_ptr += len;
6465 		sb_array_offset += len;
6466 		cur_offset += len;
6467 
6468 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6469 			chunk = (struct btrfs_chunk *)sb_array_offset;
6470 			/*
6471 			 * At least one btrfs_chunk with one stripe must be
6472 			 * present, exact stripe count check comes afterwards
6473 			 */
6474 			len = btrfs_chunk_item_size(1);
6475 			if (cur_offset + len > array_size)
6476 				goto out_short_read;
6477 
6478 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6479 			len = btrfs_chunk_item_size(num_stripes);
6480 			if (cur_offset + len > array_size)
6481 				goto out_short_read;
6482 
6483 			ret = read_one_chunk(root, &key, sb, chunk);
6484 			if (ret)
6485 				break;
6486 		} else {
6487 			ret = -EIO;
6488 			break;
6489 		}
6490 		array_ptr += len;
6491 		sb_array_offset += len;
6492 		cur_offset += len;
6493 	}
6494 	free_extent_buffer(sb);
6495 	return ret;
6496 
6497 out_short_read:
6498 	printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6499 			len, cur_offset);
6500 	free_extent_buffer(sb);
6501 	return -EIO;
6502 }
6503 
6504 int btrfs_read_chunk_tree(struct btrfs_root *root)
6505 {
6506 	struct btrfs_path *path;
6507 	struct extent_buffer *leaf;
6508 	struct btrfs_key key;
6509 	struct btrfs_key found_key;
6510 	int ret;
6511 	int slot;
6512 
6513 	root = root->fs_info->chunk_root;
6514 
6515 	path = btrfs_alloc_path();
6516 	if (!path)
6517 		return -ENOMEM;
6518 
6519 	mutex_lock(&uuid_mutex);
6520 	lock_chunks(root);
6521 
6522 	/*
6523 	 * Read all device items, and then all the chunk items. All
6524 	 * device items are found before any chunk item (their object id
6525 	 * is smaller than the lowest possible object id for a chunk
6526 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6527 	 */
6528 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6529 	key.offset = 0;
6530 	key.type = 0;
6531 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6532 	if (ret < 0)
6533 		goto error;
6534 	while (1) {
6535 		leaf = path->nodes[0];
6536 		slot = path->slots[0];
6537 		if (slot >= btrfs_header_nritems(leaf)) {
6538 			ret = btrfs_next_leaf(root, path);
6539 			if (ret == 0)
6540 				continue;
6541 			if (ret < 0)
6542 				goto error;
6543 			break;
6544 		}
6545 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6546 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6547 			struct btrfs_dev_item *dev_item;
6548 			dev_item = btrfs_item_ptr(leaf, slot,
6549 						  struct btrfs_dev_item);
6550 			ret = read_one_dev(root, leaf, dev_item);
6551 			if (ret)
6552 				goto error;
6553 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6554 			struct btrfs_chunk *chunk;
6555 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6556 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6557 			if (ret)
6558 				goto error;
6559 		}
6560 		path->slots[0]++;
6561 	}
6562 	ret = 0;
6563 error:
6564 	unlock_chunks(root);
6565 	mutex_unlock(&uuid_mutex);
6566 
6567 	btrfs_free_path(path);
6568 	return ret;
6569 }
6570 
6571 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6572 {
6573 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6574 	struct btrfs_device *device;
6575 
6576 	while (fs_devices) {
6577 		mutex_lock(&fs_devices->device_list_mutex);
6578 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6579 			device->dev_root = fs_info->dev_root;
6580 		mutex_unlock(&fs_devices->device_list_mutex);
6581 
6582 		fs_devices = fs_devices->seed;
6583 	}
6584 }
6585 
6586 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6587 {
6588 	int i;
6589 
6590 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6591 		btrfs_dev_stat_reset(dev, i);
6592 }
6593 
6594 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6595 {
6596 	struct btrfs_key key;
6597 	struct btrfs_key found_key;
6598 	struct btrfs_root *dev_root = fs_info->dev_root;
6599 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6600 	struct extent_buffer *eb;
6601 	int slot;
6602 	int ret = 0;
6603 	struct btrfs_device *device;
6604 	struct btrfs_path *path = NULL;
6605 	int i;
6606 
6607 	path = btrfs_alloc_path();
6608 	if (!path) {
6609 		ret = -ENOMEM;
6610 		goto out;
6611 	}
6612 
6613 	mutex_lock(&fs_devices->device_list_mutex);
6614 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6615 		int item_size;
6616 		struct btrfs_dev_stats_item *ptr;
6617 
6618 		key.objectid = 0;
6619 		key.type = BTRFS_DEV_STATS_KEY;
6620 		key.offset = device->devid;
6621 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6622 		if (ret) {
6623 			__btrfs_reset_dev_stats(device);
6624 			device->dev_stats_valid = 1;
6625 			btrfs_release_path(path);
6626 			continue;
6627 		}
6628 		slot = path->slots[0];
6629 		eb = path->nodes[0];
6630 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6631 		item_size = btrfs_item_size_nr(eb, slot);
6632 
6633 		ptr = btrfs_item_ptr(eb, slot,
6634 				     struct btrfs_dev_stats_item);
6635 
6636 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6637 			if (item_size >= (1 + i) * sizeof(__le64))
6638 				btrfs_dev_stat_set(device, i,
6639 					btrfs_dev_stats_value(eb, ptr, i));
6640 			else
6641 				btrfs_dev_stat_reset(device, i);
6642 		}
6643 
6644 		device->dev_stats_valid = 1;
6645 		btrfs_dev_stat_print_on_load(device);
6646 		btrfs_release_path(path);
6647 	}
6648 	mutex_unlock(&fs_devices->device_list_mutex);
6649 
6650 out:
6651 	btrfs_free_path(path);
6652 	return ret < 0 ? ret : 0;
6653 }
6654 
6655 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6656 				struct btrfs_root *dev_root,
6657 				struct btrfs_device *device)
6658 {
6659 	struct btrfs_path *path;
6660 	struct btrfs_key key;
6661 	struct extent_buffer *eb;
6662 	struct btrfs_dev_stats_item *ptr;
6663 	int ret;
6664 	int i;
6665 
6666 	key.objectid = 0;
6667 	key.type = BTRFS_DEV_STATS_KEY;
6668 	key.offset = device->devid;
6669 
6670 	path = btrfs_alloc_path();
6671 	BUG_ON(!path);
6672 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6673 	if (ret < 0) {
6674 		printk_in_rcu(KERN_WARNING "BTRFS: "
6675 			"error %d while searching for dev_stats item for device %s!\n",
6676 			      ret, rcu_str_deref(device->name));
6677 		goto out;
6678 	}
6679 
6680 	if (ret == 0 &&
6681 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6682 		/* need to delete old one and insert a new one */
6683 		ret = btrfs_del_item(trans, dev_root, path);
6684 		if (ret != 0) {
6685 			printk_in_rcu(KERN_WARNING "BTRFS: "
6686 				"delete too small dev_stats item for device %s failed %d!\n",
6687 				      rcu_str_deref(device->name), ret);
6688 			goto out;
6689 		}
6690 		ret = 1;
6691 	}
6692 
6693 	if (ret == 1) {
6694 		/* need to insert a new item */
6695 		btrfs_release_path(path);
6696 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6697 					      &key, sizeof(*ptr));
6698 		if (ret < 0) {
6699 			printk_in_rcu(KERN_WARNING "BTRFS: "
6700 					  "insert dev_stats item for device %s failed %d!\n",
6701 				      rcu_str_deref(device->name), ret);
6702 			goto out;
6703 		}
6704 	}
6705 
6706 	eb = path->nodes[0];
6707 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6708 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6709 		btrfs_set_dev_stats_value(eb, ptr, i,
6710 					  btrfs_dev_stat_read(device, i));
6711 	btrfs_mark_buffer_dirty(eb);
6712 
6713 out:
6714 	btrfs_free_path(path);
6715 	return ret;
6716 }
6717 
6718 /*
6719  * called from commit_transaction. Writes all changed device stats to disk.
6720  */
6721 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6722 			struct btrfs_fs_info *fs_info)
6723 {
6724 	struct btrfs_root *dev_root = fs_info->dev_root;
6725 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6726 	struct btrfs_device *device;
6727 	int stats_cnt;
6728 	int ret = 0;
6729 
6730 	mutex_lock(&fs_devices->device_list_mutex);
6731 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6732 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6733 			continue;
6734 
6735 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
6736 		ret = update_dev_stat_item(trans, dev_root, device);
6737 		if (!ret)
6738 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6739 	}
6740 	mutex_unlock(&fs_devices->device_list_mutex);
6741 
6742 	return ret;
6743 }
6744 
6745 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6746 {
6747 	btrfs_dev_stat_inc(dev, index);
6748 	btrfs_dev_stat_print_on_error(dev);
6749 }
6750 
6751 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6752 {
6753 	if (!dev->dev_stats_valid)
6754 		return;
6755 	printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6756 			   "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6757 			   rcu_str_deref(dev->name),
6758 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6759 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6760 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6761 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6762 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6763 }
6764 
6765 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6766 {
6767 	int i;
6768 
6769 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6770 		if (btrfs_dev_stat_read(dev, i) != 0)
6771 			break;
6772 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
6773 		return; /* all values == 0, suppress message */
6774 
6775 	printk_in_rcu(KERN_INFO "BTRFS: "
6776 		   "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6777 	       rcu_str_deref(dev->name),
6778 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6779 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6780 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6781 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6782 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6783 }
6784 
6785 int btrfs_get_dev_stats(struct btrfs_root *root,
6786 			struct btrfs_ioctl_get_dev_stats *stats)
6787 {
6788 	struct btrfs_device *dev;
6789 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6790 	int i;
6791 
6792 	mutex_lock(&fs_devices->device_list_mutex);
6793 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6794 	mutex_unlock(&fs_devices->device_list_mutex);
6795 
6796 	if (!dev) {
6797 		btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6798 		return -ENODEV;
6799 	} else if (!dev->dev_stats_valid) {
6800 		btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6801 		return -ENODEV;
6802 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6803 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6804 			if (stats->nr_items > i)
6805 				stats->values[i] =
6806 					btrfs_dev_stat_read_and_reset(dev, i);
6807 			else
6808 				btrfs_dev_stat_reset(dev, i);
6809 		}
6810 	} else {
6811 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6812 			if (stats->nr_items > i)
6813 				stats->values[i] = btrfs_dev_stat_read(dev, i);
6814 	}
6815 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6816 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6817 	return 0;
6818 }
6819 
6820 int btrfs_scratch_superblock(struct btrfs_device *device)
6821 {
6822 	struct buffer_head *bh;
6823 	struct btrfs_super_block *disk_super;
6824 
6825 	bh = btrfs_read_dev_super(device->bdev);
6826 	if (!bh)
6827 		return -EINVAL;
6828 	disk_super = (struct btrfs_super_block *)bh->b_data;
6829 
6830 	memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6831 	set_buffer_dirty(bh);
6832 	sync_dirty_buffer(bh);
6833 	brelse(bh);
6834 
6835 	return 0;
6836 }
6837 
6838 /*
6839  * Update the size of all devices, which is used for writing out the
6840  * super blocks.
6841  */
6842 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6843 {
6844 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6845 	struct btrfs_device *curr, *next;
6846 
6847 	if (list_empty(&fs_devices->resized_devices))
6848 		return;
6849 
6850 	mutex_lock(&fs_devices->device_list_mutex);
6851 	lock_chunks(fs_info->dev_root);
6852 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6853 				 resized_list) {
6854 		list_del_init(&curr->resized_list);
6855 		curr->commit_total_bytes = curr->disk_total_bytes;
6856 	}
6857 	unlock_chunks(fs_info->dev_root);
6858 	mutex_unlock(&fs_devices->device_list_mutex);
6859 }
6860 
6861 /* Must be invoked during the transaction commit */
6862 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6863 					struct btrfs_transaction *transaction)
6864 {
6865 	struct extent_map *em;
6866 	struct map_lookup *map;
6867 	struct btrfs_device *dev;
6868 	int i;
6869 
6870 	if (list_empty(&transaction->pending_chunks))
6871 		return;
6872 
6873 	/* In order to kick the device replace finish process */
6874 	lock_chunks(root);
6875 	list_for_each_entry(em, &transaction->pending_chunks, list) {
6876 		map = (struct map_lookup *)em->bdev;
6877 
6878 		for (i = 0; i < map->num_stripes; i++) {
6879 			dev = map->stripes[i].dev;
6880 			dev->commit_bytes_used = dev->bytes_used;
6881 		}
6882 	}
6883 	unlock_chunks(root);
6884 }
6885 
6886 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6887 {
6888 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6889 	while (fs_devices) {
6890 		fs_devices->fs_info = fs_info;
6891 		fs_devices = fs_devices->seed;
6892 	}
6893 }
6894 
6895 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6896 {
6897 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6898 	while (fs_devices) {
6899 		fs_devices->fs_info = NULL;
6900 		fs_devices = fs_devices->seed;
6901 	}
6902 }
6903