xref: /openbmc/linux/fs/btrfs/volumes.c (revision 16beac87)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34 #include "discard.h"
35 #include "zoned.h"
36 
37 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
38 	[BTRFS_RAID_RAID10] = {
39 		.sub_stripes	= 2,
40 		.dev_stripes	= 1,
41 		.devs_max	= 0,	/* 0 == as many as possible */
42 		.devs_min	= 2,
43 		.tolerated_failures = 1,
44 		.devs_increment	= 2,
45 		.ncopies	= 2,
46 		.nparity        = 0,
47 		.raid_name	= "raid10",
48 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
49 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
50 	},
51 	[BTRFS_RAID_RAID1] = {
52 		.sub_stripes	= 1,
53 		.dev_stripes	= 1,
54 		.devs_max	= 2,
55 		.devs_min	= 2,
56 		.tolerated_failures = 1,
57 		.devs_increment	= 2,
58 		.ncopies	= 2,
59 		.nparity        = 0,
60 		.raid_name	= "raid1",
61 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
62 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
63 	},
64 	[BTRFS_RAID_RAID1C3] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 1,
67 		.devs_max	= 3,
68 		.devs_min	= 3,
69 		.tolerated_failures = 2,
70 		.devs_increment	= 3,
71 		.ncopies	= 3,
72 		.nparity        = 0,
73 		.raid_name	= "raid1c3",
74 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
75 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
76 	},
77 	[BTRFS_RAID_RAID1C4] = {
78 		.sub_stripes	= 1,
79 		.dev_stripes	= 1,
80 		.devs_max	= 4,
81 		.devs_min	= 4,
82 		.tolerated_failures = 3,
83 		.devs_increment	= 4,
84 		.ncopies	= 4,
85 		.nparity        = 0,
86 		.raid_name	= "raid1c4",
87 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
88 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
89 	},
90 	[BTRFS_RAID_DUP] = {
91 		.sub_stripes	= 1,
92 		.dev_stripes	= 2,
93 		.devs_max	= 1,
94 		.devs_min	= 1,
95 		.tolerated_failures = 0,
96 		.devs_increment	= 1,
97 		.ncopies	= 2,
98 		.nparity        = 0,
99 		.raid_name	= "dup",
100 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
101 		.mindev_error	= 0,
102 	},
103 	[BTRFS_RAID_RAID0] = {
104 		.sub_stripes	= 1,
105 		.dev_stripes	= 1,
106 		.devs_max	= 0,
107 		.devs_min	= 1,
108 		.tolerated_failures = 0,
109 		.devs_increment	= 1,
110 		.ncopies	= 1,
111 		.nparity        = 0,
112 		.raid_name	= "raid0",
113 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
114 		.mindev_error	= 0,
115 	},
116 	[BTRFS_RAID_SINGLE] = {
117 		.sub_stripes	= 1,
118 		.dev_stripes	= 1,
119 		.devs_max	= 1,
120 		.devs_min	= 1,
121 		.tolerated_failures = 0,
122 		.devs_increment	= 1,
123 		.ncopies	= 1,
124 		.nparity        = 0,
125 		.raid_name	= "single",
126 		.bg_flag	= 0,
127 		.mindev_error	= 0,
128 	},
129 	[BTRFS_RAID_RAID5] = {
130 		.sub_stripes	= 1,
131 		.dev_stripes	= 1,
132 		.devs_max	= 0,
133 		.devs_min	= 2,
134 		.tolerated_failures = 1,
135 		.devs_increment	= 1,
136 		.ncopies	= 1,
137 		.nparity        = 1,
138 		.raid_name	= "raid5",
139 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
140 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
141 	},
142 	[BTRFS_RAID_RAID6] = {
143 		.sub_stripes	= 1,
144 		.dev_stripes	= 1,
145 		.devs_max	= 0,
146 		.devs_min	= 3,
147 		.tolerated_failures = 2,
148 		.devs_increment	= 1,
149 		.ncopies	= 1,
150 		.nparity        = 2,
151 		.raid_name	= "raid6",
152 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
153 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
154 	},
155 };
156 
157 /*
158  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
159  * can be used as index to access btrfs_raid_array[].
160  */
161 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
162 {
163 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
164 		return BTRFS_RAID_RAID10;
165 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
166 		return BTRFS_RAID_RAID1;
167 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
168 		return BTRFS_RAID_RAID1C3;
169 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
170 		return BTRFS_RAID_RAID1C4;
171 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
172 		return BTRFS_RAID_DUP;
173 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
174 		return BTRFS_RAID_RAID0;
175 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
176 		return BTRFS_RAID_RAID5;
177 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
178 		return BTRFS_RAID_RAID6;
179 
180 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
181 }
182 
183 const char *btrfs_bg_type_to_raid_name(u64 flags)
184 {
185 	const int index = btrfs_bg_flags_to_raid_index(flags);
186 
187 	if (index >= BTRFS_NR_RAID_TYPES)
188 		return NULL;
189 
190 	return btrfs_raid_array[index].raid_name;
191 }
192 
193 /*
194  * Fill @buf with textual description of @bg_flags, no more than @size_buf
195  * bytes including terminating null byte.
196  */
197 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
198 {
199 	int i;
200 	int ret;
201 	char *bp = buf;
202 	u64 flags = bg_flags;
203 	u32 size_bp = size_buf;
204 
205 	if (!flags) {
206 		strcpy(bp, "NONE");
207 		return;
208 	}
209 
210 #define DESCRIBE_FLAG(flag, desc)						\
211 	do {								\
212 		if (flags & (flag)) {					\
213 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
214 			if (ret < 0 || ret >= size_bp)			\
215 				goto out_overflow;			\
216 			size_bp -= ret;					\
217 			bp += ret;					\
218 			flags &= ~(flag);				\
219 		}							\
220 	} while (0)
221 
222 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
223 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
224 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
225 
226 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
227 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
228 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
229 			      btrfs_raid_array[i].raid_name);
230 #undef DESCRIBE_FLAG
231 
232 	if (flags) {
233 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
234 		size_bp -= ret;
235 	}
236 
237 	if (size_bp < size_buf)
238 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
239 
240 	/*
241 	 * The text is trimmed, it's up to the caller to provide sufficiently
242 	 * large buffer
243 	 */
244 out_overflow:;
245 }
246 
247 static int init_first_rw_device(struct btrfs_trans_handle *trans);
248 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
249 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
252 			     enum btrfs_map_op op,
253 			     u64 logical, u64 *length,
254 			     struct btrfs_io_context **bioc_ret,
255 			     int mirror_num, int need_raid_map);
256 
257 /*
258  * Device locking
259  * ==============
260  *
261  * There are several mutexes that protect manipulation of devices and low-level
262  * structures like chunks but not block groups, extents or files
263  *
264  * uuid_mutex (global lock)
265  * ------------------------
266  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
267  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
268  * device) or requested by the device= mount option
269  *
270  * the mutex can be very coarse and can cover long-running operations
271  *
272  * protects: updates to fs_devices counters like missing devices, rw devices,
273  * seeding, structure cloning, opening/closing devices at mount/umount time
274  *
275  * global::fs_devs - add, remove, updates to the global list
276  *
277  * does not protect: manipulation of the fs_devices::devices list in general
278  * but in mount context it could be used to exclude list modifications by eg.
279  * scan ioctl
280  *
281  * btrfs_device::name - renames (write side), read is RCU
282  *
283  * fs_devices::device_list_mutex (per-fs, with RCU)
284  * ------------------------------------------------
285  * protects updates to fs_devices::devices, ie. adding and deleting
286  *
287  * simple list traversal with read-only actions can be done with RCU protection
288  *
289  * may be used to exclude some operations from running concurrently without any
290  * modifications to the list (see write_all_supers)
291  *
292  * Is not required at mount and close times, because our device list is
293  * protected by the uuid_mutex at that point.
294  *
295  * balance_mutex
296  * -------------
297  * protects balance structures (status, state) and context accessed from
298  * several places (internally, ioctl)
299  *
300  * chunk_mutex
301  * -----------
302  * protects chunks, adding or removing during allocation, trim or when a new
303  * device is added/removed. Additionally it also protects post_commit_list of
304  * individual devices, since they can be added to the transaction's
305  * post_commit_list only with chunk_mutex held.
306  *
307  * cleaner_mutex
308  * -------------
309  * a big lock that is held by the cleaner thread and prevents running subvolume
310  * cleaning together with relocation or delayed iputs
311  *
312  *
313  * Lock nesting
314  * ============
315  *
316  * uuid_mutex
317  *   device_list_mutex
318  *     chunk_mutex
319  *   balance_mutex
320  *
321  *
322  * Exclusive operations
323  * ====================
324  *
325  * Maintains the exclusivity of the following operations that apply to the
326  * whole filesystem and cannot run in parallel.
327  *
328  * - Balance (*)
329  * - Device add
330  * - Device remove
331  * - Device replace (*)
332  * - Resize
333  *
334  * The device operations (as above) can be in one of the following states:
335  *
336  * - Running state
337  * - Paused state
338  * - Completed state
339  *
340  * Only device operations marked with (*) can go into the Paused state for the
341  * following reasons:
342  *
343  * - ioctl (only Balance can be Paused through ioctl)
344  * - filesystem remounted as read-only
345  * - filesystem unmounted and mounted as read-only
346  * - system power-cycle and filesystem mounted as read-only
347  * - filesystem or device errors leading to forced read-only
348  *
349  * The status of exclusive operation is set and cleared atomically.
350  * During the course of Paused state, fs_info::exclusive_operation remains set.
351  * A device operation in Paused or Running state can be canceled or resumed
352  * either by ioctl (Balance only) or when remounted as read-write.
353  * The exclusive status is cleared when the device operation is canceled or
354  * completed.
355  */
356 
357 DEFINE_MUTEX(uuid_mutex);
358 static LIST_HEAD(fs_uuids);
359 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
360 {
361 	return &fs_uuids;
362 }
363 
364 /*
365  * alloc_fs_devices - allocate struct btrfs_fs_devices
366  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
367  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
368  *
369  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
370  * The returned struct is not linked onto any lists and can be destroyed with
371  * kfree() right away.
372  */
373 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
374 						 const u8 *metadata_fsid)
375 {
376 	struct btrfs_fs_devices *fs_devs;
377 
378 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
379 	if (!fs_devs)
380 		return ERR_PTR(-ENOMEM);
381 
382 	mutex_init(&fs_devs->device_list_mutex);
383 
384 	INIT_LIST_HEAD(&fs_devs->devices);
385 	INIT_LIST_HEAD(&fs_devs->alloc_list);
386 	INIT_LIST_HEAD(&fs_devs->fs_list);
387 	INIT_LIST_HEAD(&fs_devs->seed_list);
388 	if (fsid)
389 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
390 
391 	if (metadata_fsid)
392 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
393 	else if (fsid)
394 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
395 
396 	return fs_devs;
397 }
398 
399 void btrfs_free_device(struct btrfs_device *device)
400 {
401 	WARN_ON(!list_empty(&device->post_commit_list));
402 	rcu_string_free(device->name);
403 	extent_io_tree_release(&device->alloc_state);
404 	bio_put(device->flush_bio);
405 	btrfs_destroy_dev_zone_info(device);
406 	kfree(device);
407 }
408 
409 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
410 {
411 	struct btrfs_device *device;
412 	WARN_ON(fs_devices->opened);
413 	while (!list_empty(&fs_devices->devices)) {
414 		device = list_entry(fs_devices->devices.next,
415 				    struct btrfs_device, dev_list);
416 		list_del(&device->dev_list);
417 		btrfs_free_device(device);
418 	}
419 	kfree(fs_devices);
420 }
421 
422 void __exit btrfs_cleanup_fs_uuids(void)
423 {
424 	struct btrfs_fs_devices *fs_devices;
425 
426 	while (!list_empty(&fs_uuids)) {
427 		fs_devices = list_entry(fs_uuids.next,
428 					struct btrfs_fs_devices, fs_list);
429 		list_del(&fs_devices->fs_list);
430 		free_fs_devices(fs_devices);
431 	}
432 }
433 
434 static noinline struct btrfs_fs_devices *find_fsid(
435 		const u8 *fsid, const u8 *metadata_fsid)
436 {
437 	struct btrfs_fs_devices *fs_devices;
438 
439 	ASSERT(fsid);
440 
441 	/* Handle non-split brain cases */
442 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
443 		if (metadata_fsid) {
444 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
445 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
446 				      BTRFS_FSID_SIZE) == 0)
447 				return fs_devices;
448 		} else {
449 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
450 				return fs_devices;
451 		}
452 	}
453 	return NULL;
454 }
455 
456 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
457 				struct btrfs_super_block *disk_super)
458 {
459 
460 	struct btrfs_fs_devices *fs_devices;
461 
462 	/*
463 	 * Handle scanned device having completed its fsid change but
464 	 * belonging to a fs_devices that was created by first scanning
465 	 * a device which didn't have its fsid/metadata_uuid changed
466 	 * at all and the CHANGING_FSID_V2 flag set.
467 	 */
468 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
469 		if (fs_devices->fsid_change &&
470 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
471 			   BTRFS_FSID_SIZE) == 0 &&
472 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
473 			   BTRFS_FSID_SIZE) == 0) {
474 			return fs_devices;
475 		}
476 	}
477 	/*
478 	 * Handle scanned device having completed its fsid change but
479 	 * belonging to a fs_devices that was created by a device that
480 	 * has an outdated pair of fsid/metadata_uuid and
481 	 * CHANGING_FSID_V2 flag set.
482 	 */
483 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
484 		if (fs_devices->fsid_change &&
485 		    memcmp(fs_devices->metadata_uuid,
486 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
487 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
488 			   BTRFS_FSID_SIZE) == 0) {
489 			return fs_devices;
490 		}
491 	}
492 
493 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
494 }
495 
496 
497 static int
498 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
499 		      int flush, struct block_device **bdev,
500 		      struct btrfs_super_block **disk_super)
501 {
502 	int ret;
503 
504 	*bdev = blkdev_get_by_path(device_path, flags, holder);
505 
506 	if (IS_ERR(*bdev)) {
507 		ret = PTR_ERR(*bdev);
508 		goto error;
509 	}
510 
511 	if (flush)
512 		sync_blockdev(*bdev);
513 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
514 	if (ret) {
515 		blkdev_put(*bdev, flags);
516 		goto error;
517 	}
518 	invalidate_bdev(*bdev);
519 	*disk_super = btrfs_read_dev_super(*bdev);
520 	if (IS_ERR(*disk_super)) {
521 		ret = PTR_ERR(*disk_super);
522 		blkdev_put(*bdev, flags);
523 		goto error;
524 	}
525 
526 	return 0;
527 
528 error:
529 	*bdev = NULL;
530 	return ret;
531 }
532 
533 static bool device_path_matched(const char *path, struct btrfs_device *device)
534 {
535 	int found;
536 
537 	rcu_read_lock();
538 	found = strcmp(rcu_str_deref(device->name), path);
539 	rcu_read_unlock();
540 
541 	return found == 0;
542 }
543 
544 /*
545  *  Search and remove all stale (devices which are not mounted) devices.
546  *  When both inputs are NULL, it will search and release all stale devices.
547  *  path:	Optional. When provided will it release all unmounted devices
548  *		matching this path only.
549  *  skip_dev:	Optional. Will skip this device when searching for the stale
550  *		devices.
551  *  Return:	0 for success or if @path is NULL.
552  * 		-EBUSY if @path is a mounted device.
553  * 		-ENOENT if @path does not match any device in the list.
554  */
555 static int btrfs_free_stale_devices(const char *path,
556 				     struct btrfs_device *skip_device)
557 {
558 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
559 	struct btrfs_device *device, *tmp_device;
560 	int ret = 0;
561 
562 	lockdep_assert_held(&uuid_mutex);
563 
564 	if (path)
565 		ret = -ENOENT;
566 
567 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
568 
569 		mutex_lock(&fs_devices->device_list_mutex);
570 		list_for_each_entry_safe(device, tmp_device,
571 					 &fs_devices->devices, dev_list) {
572 			if (skip_device && skip_device == device)
573 				continue;
574 			if (path && !device->name)
575 				continue;
576 			if (path && !device_path_matched(path, device))
577 				continue;
578 			if (fs_devices->opened) {
579 				/* for an already deleted device return 0 */
580 				if (path && ret != 0)
581 					ret = -EBUSY;
582 				break;
583 			}
584 
585 			/* delete the stale device */
586 			fs_devices->num_devices--;
587 			list_del(&device->dev_list);
588 			btrfs_free_device(device);
589 
590 			ret = 0;
591 		}
592 		mutex_unlock(&fs_devices->device_list_mutex);
593 
594 		if (fs_devices->num_devices == 0) {
595 			btrfs_sysfs_remove_fsid(fs_devices);
596 			list_del(&fs_devices->fs_list);
597 			free_fs_devices(fs_devices);
598 		}
599 	}
600 
601 	return ret;
602 }
603 
604 /*
605  * This is only used on mount, and we are protected from competing things
606  * messing with our fs_devices by the uuid_mutex, thus we do not need the
607  * fs_devices->device_list_mutex here.
608  */
609 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
610 			struct btrfs_device *device, fmode_t flags,
611 			void *holder)
612 {
613 	struct request_queue *q;
614 	struct block_device *bdev;
615 	struct btrfs_super_block *disk_super;
616 	u64 devid;
617 	int ret;
618 
619 	if (device->bdev)
620 		return -EINVAL;
621 	if (!device->name)
622 		return -EINVAL;
623 
624 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
625 				    &bdev, &disk_super);
626 	if (ret)
627 		return ret;
628 
629 	devid = btrfs_stack_device_id(&disk_super->dev_item);
630 	if (devid != device->devid)
631 		goto error_free_page;
632 
633 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
634 		goto error_free_page;
635 
636 	device->generation = btrfs_super_generation(disk_super);
637 
638 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
639 		if (btrfs_super_incompat_flags(disk_super) &
640 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
641 			pr_err(
642 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
643 			goto error_free_page;
644 		}
645 
646 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
647 		fs_devices->seeding = true;
648 	} else {
649 		if (bdev_read_only(bdev))
650 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
651 		else
652 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653 	}
654 
655 	q = bdev_get_queue(bdev);
656 	if (!blk_queue_nonrot(q))
657 		fs_devices->rotating = true;
658 
659 	device->bdev = bdev;
660 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
661 	device->mode = flags;
662 
663 	fs_devices->open_devices++;
664 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
665 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
666 		fs_devices->rw_devices++;
667 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
668 	}
669 	btrfs_release_disk_super(disk_super);
670 
671 	return 0;
672 
673 error_free_page:
674 	btrfs_release_disk_super(disk_super);
675 	blkdev_put(bdev, flags);
676 
677 	return -EINVAL;
678 }
679 
680 /*
681  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
682  * being created with a disk that has already completed its fsid change. Such
683  * disk can belong to an fs which has its FSID changed or to one which doesn't.
684  * Handle both cases here.
685  */
686 static struct btrfs_fs_devices *find_fsid_inprogress(
687 					struct btrfs_super_block *disk_super)
688 {
689 	struct btrfs_fs_devices *fs_devices;
690 
691 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
692 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
693 			   BTRFS_FSID_SIZE) != 0 &&
694 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
695 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
696 			return fs_devices;
697 		}
698 	}
699 
700 	return find_fsid(disk_super->fsid, NULL);
701 }
702 
703 
704 static struct btrfs_fs_devices *find_fsid_changed(
705 					struct btrfs_super_block *disk_super)
706 {
707 	struct btrfs_fs_devices *fs_devices;
708 
709 	/*
710 	 * Handles the case where scanned device is part of an fs that had
711 	 * multiple successful changes of FSID but currently device didn't
712 	 * observe it. Meaning our fsid will be different than theirs. We need
713 	 * to handle two subcases :
714 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
715 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
716 	 *  are equal).
717 	 */
718 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
719 		/* Changed UUIDs */
720 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
721 			   BTRFS_FSID_SIZE) != 0 &&
722 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
723 			   BTRFS_FSID_SIZE) == 0 &&
724 		    memcmp(fs_devices->fsid, disk_super->fsid,
725 			   BTRFS_FSID_SIZE) != 0)
726 			return fs_devices;
727 
728 		/* Unchanged UUIDs */
729 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
730 			   BTRFS_FSID_SIZE) == 0 &&
731 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
732 			   BTRFS_FSID_SIZE) == 0)
733 			return fs_devices;
734 	}
735 
736 	return NULL;
737 }
738 
739 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
740 				struct btrfs_super_block *disk_super)
741 {
742 	struct btrfs_fs_devices *fs_devices;
743 
744 	/*
745 	 * Handle the case where the scanned device is part of an fs whose last
746 	 * metadata UUID change reverted it to the original FSID. At the same
747 	 * time * fs_devices was first created by another constitutent device
748 	 * which didn't fully observe the operation. This results in an
749 	 * btrfs_fs_devices created with metadata/fsid different AND
750 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
751 	 * fs_devices equal to the FSID of the disk.
752 	 */
753 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
754 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
755 			   BTRFS_FSID_SIZE) != 0 &&
756 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
757 			   BTRFS_FSID_SIZE) == 0 &&
758 		    fs_devices->fsid_change)
759 			return fs_devices;
760 	}
761 
762 	return NULL;
763 }
764 /*
765  * Add new device to list of registered devices
766  *
767  * Returns:
768  * device pointer which was just added or updated when successful
769  * error pointer when failed
770  */
771 static noinline struct btrfs_device *device_list_add(const char *path,
772 			   struct btrfs_super_block *disk_super,
773 			   bool *new_device_added)
774 {
775 	struct btrfs_device *device;
776 	struct btrfs_fs_devices *fs_devices = NULL;
777 	struct rcu_string *name;
778 	u64 found_transid = btrfs_super_generation(disk_super);
779 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
780 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
781 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
782 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
783 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
784 
785 	if (fsid_change_in_progress) {
786 		if (!has_metadata_uuid)
787 			fs_devices = find_fsid_inprogress(disk_super);
788 		else
789 			fs_devices = find_fsid_changed(disk_super);
790 	} else if (has_metadata_uuid) {
791 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
792 	} else {
793 		fs_devices = find_fsid_reverted_metadata(disk_super);
794 		if (!fs_devices)
795 			fs_devices = find_fsid(disk_super->fsid, NULL);
796 	}
797 
798 
799 	if (!fs_devices) {
800 		if (has_metadata_uuid)
801 			fs_devices = alloc_fs_devices(disk_super->fsid,
802 						      disk_super->metadata_uuid);
803 		else
804 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
805 
806 		if (IS_ERR(fs_devices))
807 			return ERR_CAST(fs_devices);
808 
809 		fs_devices->fsid_change = fsid_change_in_progress;
810 
811 		mutex_lock(&fs_devices->device_list_mutex);
812 		list_add(&fs_devices->fs_list, &fs_uuids);
813 
814 		device = NULL;
815 	} else {
816 		struct btrfs_dev_lookup_args args = {
817 			.devid = devid,
818 			.uuid = disk_super->dev_item.uuid,
819 		};
820 
821 		mutex_lock(&fs_devices->device_list_mutex);
822 		device = btrfs_find_device(fs_devices, &args);
823 
824 		/*
825 		 * If this disk has been pulled into an fs devices created by
826 		 * a device which had the CHANGING_FSID_V2 flag then replace the
827 		 * metadata_uuid/fsid values of the fs_devices.
828 		 */
829 		if (fs_devices->fsid_change &&
830 		    found_transid > fs_devices->latest_generation) {
831 			memcpy(fs_devices->fsid, disk_super->fsid,
832 					BTRFS_FSID_SIZE);
833 
834 			if (has_metadata_uuid)
835 				memcpy(fs_devices->metadata_uuid,
836 				       disk_super->metadata_uuid,
837 				       BTRFS_FSID_SIZE);
838 			else
839 				memcpy(fs_devices->metadata_uuid,
840 				       disk_super->fsid, BTRFS_FSID_SIZE);
841 
842 			fs_devices->fsid_change = false;
843 		}
844 	}
845 
846 	if (!device) {
847 		if (fs_devices->opened) {
848 			mutex_unlock(&fs_devices->device_list_mutex);
849 			return ERR_PTR(-EBUSY);
850 		}
851 
852 		device = btrfs_alloc_device(NULL, &devid,
853 					    disk_super->dev_item.uuid);
854 		if (IS_ERR(device)) {
855 			mutex_unlock(&fs_devices->device_list_mutex);
856 			/* we can safely leave the fs_devices entry around */
857 			return device;
858 		}
859 
860 		name = rcu_string_strdup(path, GFP_NOFS);
861 		if (!name) {
862 			btrfs_free_device(device);
863 			mutex_unlock(&fs_devices->device_list_mutex);
864 			return ERR_PTR(-ENOMEM);
865 		}
866 		rcu_assign_pointer(device->name, name);
867 
868 		list_add_rcu(&device->dev_list, &fs_devices->devices);
869 		fs_devices->num_devices++;
870 
871 		device->fs_devices = fs_devices;
872 		*new_device_added = true;
873 
874 		if (disk_super->label[0])
875 			pr_info(
876 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
877 				disk_super->label, devid, found_transid, path,
878 				current->comm, task_pid_nr(current));
879 		else
880 			pr_info(
881 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
882 				disk_super->fsid, devid, found_transid, path,
883 				current->comm, task_pid_nr(current));
884 
885 	} else if (!device->name || strcmp(device->name->str, path)) {
886 		/*
887 		 * When FS is already mounted.
888 		 * 1. If you are here and if the device->name is NULL that
889 		 *    means this device was missing at time of FS mount.
890 		 * 2. If you are here and if the device->name is different
891 		 *    from 'path' that means either
892 		 *      a. The same device disappeared and reappeared with
893 		 *         different name. or
894 		 *      b. The missing-disk-which-was-replaced, has
895 		 *         reappeared now.
896 		 *
897 		 * We must allow 1 and 2a above. But 2b would be a spurious
898 		 * and unintentional.
899 		 *
900 		 * Further in case of 1 and 2a above, the disk at 'path'
901 		 * would have missed some transaction when it was away and
902 		 * in case of 2a the stale bdev has to be updated as well.
903 		 * 2b must not be allowed at all time.
904 		 */
905 
906 		/*
907 		 * For now, we do allow update to btrfs_fs_device through the
908 		 * btrfs dev scan cli after FS has been mounted.  We're still
909 		 * tracking a problem where systems fail mount by subvolume id
910 		 * when we reject replacement on a mounted FS.
911 		 */
912 		if (!fs_devices->opened && found_transid < device->generation) {
913 			/*
914 			 * That is if the FS is _not_ mounted and if you
915 			 * are here, that means there is more than one
916 			 * disk with same uuid and devid.We keep the one
917 			 * with larger generation number or the last-in if
918 			 * generation are equal.
919 			 */
920 			mutex_unlock(&fs_devices->device_list_mutex);
921 			return ERR_PTR(-EEXIST);
922 		}
923 
924 		/*
925 		 * We are going to replace the device path for a given devid,
926 		 * make sure it's the same device if the device is mounted
927 		 */
928 		if (device->bdev) {
929 			int error;
930 			dev_t path_dev;
931 
932 			error = lookup_bdev(path, &path_dev);
933 			if (error) {
934 				mutex_unlock(&fs_devices->device_list_mutex);
935 				return ERR_PTR(error);
936 			}
937 
938 			if (device->bdev->bd_dev != path_dev) {
939 				mutex_unlock(&fs_devices->device_list_mutex);
940 				/*
941 				 * device->fs_info may not be reliable here, so
942 				 * pass in a NULL instead. This avoids a
943 				 * possible use-after-free when the fs_info and
944 				 * fs_info->sb are already torn down.
945 				 */
946 				btrfs_warn_in_rcu(NULL,
947 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
948 						  path, devid, found_transid,
949 						  current->comm,
950 						  task_pid_nr(current));
951 				return ERR_PTR(-EEXIST);
952 			}
953 			btrfs_info_in_rcu(device->fs_info,
954 	"devid %llu device path %s changed to %s scanned by %s (%d)",
955 					  devid, rcu_str_deref(device->name),
956 					  path, current->comm,
957 					  task_pid_nr(current));
958 		}
959 
960 		name = rcu_string_strdup(path, GFP_NOFS);
961 		if (!name) {
962 			mutex_unlock(&fs_devices->device_list_mutex);
963 			return ERR_PTR(-ENOMEM);
964 		}
965 		rcu_string_free(device->name);
966 		rcu_assign_pointer(device->name, name);
967 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
968 			fs_devices->missing_devices--;
969 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
970 		}
971 	}
972 
973 	/*
974 	 * Unmount does not free the btrfs_device struct but would zero
975 	 * generation along with most of the other members. So just update
976 	 * it back. We need it to pick the disk with largest generation
977 	 * (as above).
978 	 */
979 	if (!fs_devices->opened) {
980 		device->generation = found_transid;
981 		fs_devices->latest_generation = max_t(u64, found_transid,
982 						fs_devices->latest_generation);
983 	}
984 
985 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
986 
987 	mutex_unlock(&fs_devices->device_list_mutex);
988 	return device;
989 }
990 
991 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
992 {
993 	struct btrfs_fs_devices *fs_devices;
994 	struct btrfs_device *device;
995 	struct btrfs_device *orig_dev;
996 	int ret = 0;
997 
998 	lockdep_assert_held(&uuid_mutex);
999 
1000 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1001 	if (IS_ERR(fs_devices))
1002 		return fs_devices;
1003 
1004 	fs_devices->total_devices = orig->total_devices;
1005 
1006 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1007 		struct rcu_string *name;
1008 
1009 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1010 					    orig_dev->uuid);
1011 		if (IS_ERR(device)) {
1012 			ret = PTR_ERR(device);
1013 			goto error;
1014 		}
1015 
1016 		/*
1017 		 * This is ok to do without rcu read locked because we hold the
1018 		 * uuid mutex so nothing we touch in here is going to disappear.
1019 		 */
1020 		if (orig_dev->name) {
1021 			name = rcu_string_strdup(orig_dev->name->str,
1022 					GFP_KERNEL);
1023 			if (!name) {
1024 				btrfs_free_device(device);
1025 				ret = -ENOMEM;
1026 				goto error;
1027 			}
1028 			rcu_assign_pointer(device->name, name);
1029 		}
1030 
1031 		list_add(&device->dev_list, &fs_devices->devices);
1032 		device->fs_devices = fs_devices;
1033 		fs_devices->num_devices++;
1034 	}
1035 	return fs_devices;
1036 error:
1037 	free_fs_devices(fs_devices);
1038 	return ERR_PTR(ret);
1039 }
1040 
1041 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1042 				      struct btrfs_device **latest_dev)
1043 {
1044 	struct btrfs_device *device, *next;
1045 
1046 	/* This is the initialized path, it is safe to release the devices. */
1047 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1048 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1049 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1050 				      &device->dev_state) &&
1051 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1052 				      &device->dev_state) &&
1053 			    (!*latest_dev ||
1054 			     device->generation > (*latest_dev)->generation)) {
1055 				*latest_dev = device;
1056 			}
1057 			continue;
1058 		}
1059 
1060 		/*
1061 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1062 		 * in btrfs_init_dev_replace() so just continue.
1063 		 */
1064 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1065 			continue;
1066 
1067 		if (device->bdev) {
1068 			blkdev_put(device->bdev, device->mode);
1069 			device->bdev = NULL;
1070 			fs_devices->open_devices--;
1071 		}
1072 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1073 			list_del_init(&device->dev_alloc_list);
1074 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1075 			fs_devices->rw_devices--;
1076 		}
1077 		list_del_init(&device->dev_list);
1078 		fs_devices->num_devices--;
1079 		btrfs_free_device(device);
1080 	}
1081 
1082 }
1083 
1084 /*
1085  * After we have read the system tree and know devids belonging to this
1086  * filesystem, remove the device which does not belong there.
1087  */
1088 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1089 {
1090 	struct btrfs_device *latest_dev = NULL;
1091 	struct btrfs_fs_devices *seed_dev;
1092 
1093 	mutex_lock(&uuid_mutex);
1094 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1095 
1096 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1097 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1098 
1099 	fs_devices->latest_dev = latest_dev;
1100 
1101 	mutex_unlock(&uuid_mutex);
1102 }
1103 
1104 static void btrfs_close_bdev(struct btrfs_device *device)
1105 {
1106 	if (!device->bdev)
1107 		return;
1108 
1109 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1110 		sync_blockdev(device->bdev);
1111 		invalidate_bdev(device->bdev);
1112 	}
1113 
1114 	blkdev_put(device->bdev, device->mode);
1115 }
1116 
1117 static void btrfs_close_one_device(struct btrfs_device *device)
1118 {
1119 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1120 
1121 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1122 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1123 		list_del_init(&device->dev_alloc_list);
1124 		fs_devices->rw_devices--;
1125 	}
1126 
1127 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1128 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1129 
1130 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1131 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1132 		fs_devices->missing_devices--;
1133 	}
1134 
1135 	btrfs_close_bdev(device);
1136 	if (device->bdev) {
1137 		fs_devices->open_devices--;
1138 		device->bdev = NULL;
1139 	}
1140 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1141 	btrfs_destroy_dev_zone_info(device);
1142 
1143 	device->fs_info = NULL;
1144 	atomic_set(&device->dev_stats_ccnt, 0);
1145 	extent_io_tree_release(&device->alloc_state);
1146 
1147 	/*
1148 	 * Reset the flush error record. We might have a transient flush error
1149 	 * in this mount, and if so we aborted the current transaction and set
1150 	 * the fs to an error state, guaranteeing no super blocks can be further
1151 	 * committed. However that error might be transient and if we unmount the
1152 	 * filesystem and mount it again, we should allow the mount to succeed
1153 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1154 	 * filesystem again we still get flush errors, then we will again abort
1155 	 * any transaction and set the error state, guaranteeing no commits of
1156 	 * unsafe super blocks.
1157 	 */
1158 	device->last_flush_error = 0;
1159 
1160 	/* Verify the device is back in a pristine state  */
1161 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1162 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1163 	ASSERT(list_empty(&device->dev_alloc_list));
1164 	ASSERT(list_empty(&device->post_commit_list));
1165 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1166 }
1167 
1168 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1169 {
1170 	struct btrfs_device *device, *tmp;
1171 
1172 	lockdep_assert_held(&uuid_mutex);
1173 
1174 	if (--fs_devices->opened > 0)
1175 		return;
1176 
1177 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1178 		btrfs_close_one_device(device);
1179 
1180 	WARN_ON(fs_devices->open_devices);
1181 	WARN_ON(fs_devices->rw_devices);
1182 	fs_devices->opened = 0;
1183 	fs_devices->seeding = false;
1184 	fs_devices->fs_info = NULL;
1185 }
1186 
1187 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1188 {
1189 	LIST_HEAD(list);
1190 	struct btrfs_fs_devices *tmp;
1191 
1192 	mutex_lock(&uuid_mutex);
1193 	close_fs_devices(fs_devices);
1194 	if (!fs_devices->opened)
1195 		list_splice_init(&fs_devices->seed_list, &list);
1196 
1197 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1198 		close_fs_devices(fs_devices);
1199 		list_del(&fs_devices->seed_list);
1200 		free_fs_devices(fs_devices);
1201 	}
1202 	mutex_unlock(&uuid_mutex);
1203 }
1204 
1205 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1206 				fmode_t flags, void *holder)
1207 {
1208 	struct btrfs_device *device;
1209 	struct btrfs_device *latest_dev = NULL;
1210 	struct btrfs_device *tmp_device;
1211 
1212 	flags |= FMODE_EXCL;
1213 
1214 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1215 				 dev_list) {
1216 		int ret;
1217 
1218 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1219 		if (ret == 0 &&
1220 		    (!latest_dev || device->generation > latest_dev->generation)) {
1221 			latest_dev = device;
1222 		} else if (ret == -ENODATA) {
1223 			fs_devices->num_devices--;
1224 			list_del(&device->dev_list);
1225 			btrfs_free_device(device);
1226 		}
1227 	}
1228 	if (fs_devices->open_devices == 0)
1229 		return -EINVAL;
1230 
1231 	fs_devices->opened = 1;
1232 	fs_devices->latest_dev = latest_dev;
1233 	fs_devices->total_rw_bytes = 0;
1234 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1235 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1236 
1237 	return 0;
1238 }
1239 
1240 static int devid_cmp(void *priv, const struct list_head *a,
1241 		     const struct list_head *b)
1242 {
1243 	const struct btrfs_device *dev1, *dev2;
1244 
1245 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1246 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1247 
1248 	if (dev1->devid < dev2->devid)
1249 		return -1;
1250 	else if (dev1->devid > dev2->devid)
1251 		return 1;
1252 	return 0;
1253 }
1254 
1255 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1256 		       fmode_t flags, void *holder)
1257 {
1258 	int ret;
1259 
1260 	lockdep_assert_held(&uuid_mutex);
1261 	/*
1262 	 * The device_list_mutex cannot be taken here in case opening the
1263 	 * underlying device takes further locks like open_mutex.
1264 	 *
1265 	 * We also don't need the lock here as this is called during mount and
1266 	 * exclusion is provided by uuid_mutex
1267 	 */
1268 
1269 	if (fs_devices->opened) {
1270 		fs_devices->opened++;
1271 		ret = 0;
1272 	} else {
1273 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1274 		ret = open_fs_devices(fs_devices, flags, holder);
1275 	}
1276 
1277 	return ret;
1278 }
1279 
1280 void btrfs_release_disk_super(struct btrfs_super_block *super)
1281 {
1282 	struct page *page = virt_to_page(super);
1283 
1284 	put_page(page);
1285 }
1286 
1287 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1288 						       u64 bytenr, u64 bytenr_orig)
1289 {
1290 	struct btrfs_super_block *disk_super;
1291 	struct page *page;
1292 	void *p;
1293 	pgoff_t index;
1294 
1295 	/* make sure our super fits in the device */
1296 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1297 		return ERR_PTR(-EINVAL);
1298 
1299 	/* make sure our super fits in the page */
1300 	if (sizeof(*disk_super) > PAGE_SIZE)
1301 		return ERR_PTR(-EINVAL);
1302 
1303 	/* make sure our super doesn't straddle pages on disk */
1304 	index = bytenr >> PAGE_SHIFT;
1305 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1306 		return ERR_PTR(-EINVAL);
1307 
1308 	/* pull in the page with our super */
1309 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1310 
1311 	if (IS_ERR(page))
1312 		return ERR_CAST(page);
1313 
1314 	p = page_address(page);
1315 
1316 	/* align our pointer to the offset of the super block */
1317 	disk_super = p + offset_in_page(bytenr);
1318 
1319 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1320 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1321 		btrfs_release_disk_super(p);
1322 		return ERR_PTR(-EINVAL);
1323 	}
1324 
1325 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1326 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1327 
1328 	return disk_super;
1329 }
1330 
1331 int btrfs_forget_devices(const char *path)
1332 {
1333 	int ret;
1334 
1335 	mutex_lock(&uuid_mutex);
1336 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1337 	mutex_unlock(&uuid_mutex);
1338 
1339 	return ret;
1340 }
1341 
1342 /*
1343  * Look for a btrfs signature on a device. This may be called out of the mount path
1344  * and we are not allowed to call set_blocksize during the scan. The superblock
1345  * is read via pagecache
1346  */
1347 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1348 					   void *holder)
1349 {
1350 	struct btrfs_super_block *disk_super;
1351 	bool new_device_added = false;
1352 	struct btrfs_device *device = NULL;
1353 	struct block_device *bdev;
1354 	u64 bytenr, bytenr_orig;
1355 	int ret;
1356 
1357 	lockdep_assert_held(&uuid_mutex);
1358 
1359 	/*
1360 	 * we would like to check all the supers, but that would make
1361 	 * a btrfs mount succeed after a mkfs from a different FS.
1362 	 * So, we need to add a special mount option to scan for
1363 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1364 	 */
1365 	flags |= FMODE_EXCL;
1366 
1367 	bdev = blkdev_get_by_path(path, flags, holder);
1368 	if (IS_ERR(bdev))
1369 		return ERR_CAST(bdev);
1370 
1371 	bytenr_orig = btrfs_sb_offset(0);
1372 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1373 	if (ret) {
1374 		device = ERR_PTR(ret);
1375 		goto error_bdev_put;
1376 	}
1377 
1378 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1379 	if (IS_ERR(disk_super)) {
1380 		device = ERR_CAST(disk_super);
1381 		goto error_bdev_put;
1382 	}
1383 
1384 	device = device_list_add(path, disk_super, &new_device_added);
1385 	if (!IS_ERR(device)) {
1386 		if (new_device_added)
1387 			btrfs_free_stale_devices(path, device);
1388 	}
1389 
1390 	btrfs_release_disk_super(disk_super);
1391 
1392 error_bdev_put:
1393 	blkdev_put(bdev, flags);
1394 
1395 	return device;
1396 }
1397 
1398 /*
1399  * Try to find a chunk that intersects [start, start + len] range and when one
1400  * such is found, record the end of it in *start
1401  */
1402 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1403 				    u64 len)
1404 {
1405 	u64 physical_start, physical_end;
1406 
1407 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1408 
1409 	if (!find_first_extent_bit(&device->alloc_state, *start,
1410 				   &physical_start, &physical_end,
1411 				   CHUNK_ALLOCATED, NULL)) {
1412 
1413 		if (in_range(physical_start, *start, len) ||
1414 		    in_range(*start, physical_start,
1415 			     physical_end - physical_start)) {
1416 			*start = physical_end + 1;
1417 			return true;
1418 		}
1419 	}
1420 	return false;
1421 }
1422 
1423 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1424 {
1425 	switch (device->fs_devices->chunk_alloc_policy) {
1426 	case BTRFS_CHUNK_ALLOC_REGULAR:
1427 		/*
1428 		 * We don't want to overwrite the superblock on the drive nor
1429 		 * any area used by the boot loader (grub for example), so we
1430 		 * make sure to start at an offset of at least 1MB.
1431 		 */
1432 		return max_t(u64, start, SZ_1M);
1433 	case BTRFS_CHUNK_ALLOC_ZONED:
1434 		/*
1435 		 * We don't care about the starting region like regular
1436 		 * allocator, because we anyway use/reserve the first two zones
1437 		 * for superblock logging.
1438 		 */
1439 		return ALIGN(start, device->zone_info->zone_size);
1440 	default:
1441 		BUG();
1442 	}
1443 }
1444 
1445 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1446 					u64 *hole_start, u64 *hole_size,
1447 					u64 num_bytes)
1448 {
1449 	u64 zone_size = device->zone_info->zone_size;
1450 	u64 pos;
1451 	int ret;
1452 	bool changed = false;
1453 
1454 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1455 
1456 	while (*hole_size > 0) {
1457 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1458 						   *hole_start + *hole_size,
1459 						   num_bytes);
1460 		if (pos != *hole_start) {
1461 			*hole_size = *hole_start + *hole_size - pos;
1462 			*hole_start = pos;
1463 			changed = true;
1464 			if (*hole_size < num_bytes)
1465 				break;
1466 		}
1467 
1468 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1469 
1470 		/* Range is ensured to be empty */
1471 		if (!ret)
1472 			return changed;
1473 
1474 		/* Given hole range was invalid (outside of device) */
1475 		if (ret == -ERANGE) {
1476 			*hole_start += *hole_size;
1477 			*hole_size = 0;
1478 			return true;
1479 		}
1480 
1481 		*hole_start += zone_size;
1482 		*hole_size -= zone_size;
1483 		changed = true;
1484 	}
1485 
1486 	return changed;
1487 }
1488 
1489 /**
1490  * dev_extent_hole_check - check if specified hole is suitable for allocation
1491  * @device:	the device which we have the hole
1492  * @hole_start: starting position of the hole
1493  * @hole_size:	the size of the hole
1494  * @num_bytes:	the size of the free space that we need
1495  *
1496  * This function may modify @hole_start and @hole_size to reflect the suitable
1497  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1498  */
1499 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1500 				  u64 *hole_size, u64 num_bytes)
1501 {
1502 	bool changed = false;
1503 	u64 hole_end = *hole_start + *hole_size;
1504 
1505 	for (;;) {
1506 		/*
1507 		 * Check before we set max_hole_start, otherwise we could end up
1508 		 * sending back this offset anyway.
1509 		 */
1510 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1511 			if (hole_end >= *hole_start)
1512 				*hole_size = hole_end - *hole_start;
1513 			else
1514 				*hole_size = 0;
1515 			changed = true;
1516 		}
1517 
1518 		switch (device->fs_devices->chunk_alloc_policy) {
1519 		case BTRFS_CHUNK_ALLOC_REGULAR:
1520 			/* No extra check */
1521 			break;
1522 		case BTRFS_CHUNK_ALLOC_ZONED:
1523 			if (dev_extent_hole_check_zoned(device, hole_start,
1524 							hole_size, num_bytes)) {
1525 				changed = true;
1526 				/*
1527 				 * The changed hole can contain pending extent.
1528 				 * Loop again to check that.
1529 				 */
1530 				continue;
1531 			}
1532 			break;
1533 		default:
1534 			BUG();
1535 		}
1536 
1537 		break;
1538 	}
1539 
1540 	return changed;
1541 }
1542 
1543 /*
1544  * find_free_dev_extent_start - find free space in the specified device
1545  * @device:	  the device which we search the free space in
1546  * @num_bytes:	  the size of the free space that we need
1547  * @search_start: the position from which to begin the search
1548  * @start:	  store the start of the free space.
1549  * @len:	  the size of the free space. that we find, or the size
1550  *		  of the max free space if we don't find suitable free space
1551  *
1552  * this uses a pretty simple search, the expectation is that it is
1553  * called very infrequently and that a given device has a small number
1554  * of extents
1555  *
1556  * @start is used to store the start of the free space if we find. But if we
1557  * don't find suitable free space, it will be used to store the start position
1558  * of the max free space.
1559  *
1560  * @len is used to store the size of the free space that we find.
1561  * But if we don't find suitable free space, it is used to store the size of
1562  * the max free space.
1563  *
1564  * NOTE: This function will search *commit* root of device tree, and does extra
1565  * check to ensure dev extents are not double allocated.
1566  * This makes the function safe to allocate dev extents but may not report
1567  * correct usable device space, as device extent freed in current transaction
1568  * is not reported as available.
1569  */
1570 static int find_free_dev_extent_start(struct btrfs_device *device,
1571 				u64 num_bytes, u64 search_start, u64 *start,
1572 				u64 *len)
1573 {
1574 	struct btrfs_fs_info *fs_info = device->fs_info;
1575 	struct btrfs_root *root = fs_info->dev_root;
1576 	struct btrfs_key key;
1577 	struct btrfs_dev_extent *dev_extent;
1578 	struct btrfs_path *path;
1579 	u64 hole_size;
1580 	u64 max_hole_start;
1581 	u64 max_hole_size;
1582 	u64 extent_end;
1583 	u64 search_end = device->total_bytes;
1584 	int ret;
1585 	int slot;
1586 	struct extent_buffer *l;
1587 
1588 	search_start = dev_extent_search_start(device, search_start);
1589 
1590 	WARN_ON(device->zone_info &&
1591 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1592 
1593 	path = btrfs_alloc_path();
1594 	if (!path)
1595 		return -ENOMEM;
1596 
1597 	max_hole_start = search_start;
1598 	max_hole_size = 0;
1599 
1600 again:
1601 	if (search_start >= search_end ||
1602 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1603 		ret = -ENOSPC;
1604 		goto out;
1605 	}
1606 
1607 	path->reada = READA_FORWARD;
1608 	path->search_commit_root = 1;
1609 	path->skip_locking = 1;
1610 
1611 	key.objectid = device->devid;
1612 	key.offset = search_start;
1613 	key.type = BTRFS_DEV_EXTENT_KEY;
1614 
1615 	ret = btrfs_search_backwards(root, &key, path);
1616 	if (ret < 0)
1617 		goto out;
1618 
1619 	while (1) {
1620 		l = path->nodes[0];
1621 		slot = path->slots[0];
1622 		if (slot >= btrfs_header_nritems(l)) {
1623 			ret = btrfs_next_leaf(root, path);
1624 			if (ret == 0)
1625 				continue;
1626 			if (ret < 0)
1627 				goto out;
1628 
1629 			break;
1630 		}
1631 		btrfs_item_key_to_cpu(l, &key, slot);
1632 
1633 		if (key.objectid < device->devid)
1634 			goto next;
1635 
1636 		if (key.objectid > device->devid)
1637 			break;
1638 
1639 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1640 			goto next;
1641 
1642 		if (key.offset > search_start) {
1643 			hole_size = key.offset - search_start;
1644 			dev_extent_hole_check(device, &search_start, &hole_size,
1645 					      num_bytes);
1646 
1647 			if (hole_size > max_hole_size) {
1648 				max_hole_start = search_start;
1649 				max_hole_size = hole_size;
1650 			}
1651 
1652 			/*
1653 			 * If this free space is greater than which we need,
1654 			 * it must be the max free space that we have found
1655 			 * until now, so max_hole_start must point to the start
1656 			 * of this free space and the length of this free space
1657 			 * is stored in max_hole_size. Thus, we return
1658 			 * max_hole_start and max_hole_size and go back to the
1659 			 * caller.
1660 			 */
1661 			if (hole_size >= num_bytes) {
1662 				ret = 0;
1663 				goto out;
1664 			}
1665 		}
1666 
1667 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1668 		extent_end = key.offset + btrfs_dev_extent_length(l,
1669 								  dev_extent);
1670 		if (extent_end > search_start)
1671 			search_start = extent_end;
1672 next:
1673 		path->slots[0]++;
1674 		cond_resched();
1675 	}
1676 
1677 	/*
1678 	 * At this point, search_start should be the end of
1679 	 * allocated dev extents, and when shrinking the device,
1680 	 * search_end may be smaller than search_start.
1681 	 */
1682 	if (search_end > search_start) {
1683 		hole_size = search_end - search_start;
1684 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1685 					  num_bytes)) {
1686 			btrfs_release_path(path);
1687 			goto again;
1688 		}
1689 
1690 		if (hole_size > max_hole_size) {
1691 			max_hole_start = search_start;
1692 			max_hole_size = hole_size;
1693 		}
1694 	}
1695 
1696 	/* See above. */
1697 	if (max_hole_size < num_bytes)
1698 		ret = -ENOSPC;
1699 	else
1700 		ret = 0;
1701 
1702 out:
1703 	btrfs_free_path(path);
1704 	*start = max_hole_start;
1705 	if (len)
1706 		*len = max_hole_size;
1707 	return ret;
1708 }
1709 
1710 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1711 			 u64 *start, u64 *len)
1712 {
1713 	/* FIXME use last free of some kind */
1714 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1715 }
1716 
1717 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1718 			  struct btrfs_device *device,
1719 			  u64 start, u64 *dev_extent_len)
1720 {
1721 	struct btrfs_fs_info *fs_info = device->fs_info;
1722 	struct btrfs_root *root = fs_info->dev_root;
1723 	int ret;
1724 	struct btrfs_path *path;
1725 	struct btrfs_key key;
1726 	struct btrfs_key found_key;
1727 	struct extent_buffer *leaf = NULL;
1728 	struct btrfs_dev_extent *extent = NULL;
1729 
1730 	path = btrfs_alloc_path();
1731 	if (!path)
1732 		return -ENOMEM;
1733 
1734 	key.objectid = device->devid;
1735 	key.offset = start;
1736 	key.type = BTRFS_DEV_EXTENT_KEY;
1737 again:
1738 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1739 	if (ret > 0) {
1740 		ret = btrfs_previous_item(root, path, key.objectid,
1741 					  BTRFS_DEV_EXTENT_KEY);
1742 		if (ret)
1743 			goto out;
1744 		leaf = path->nodes[0];
1745 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1746 		extent = btrfs_item_ptr(leaf, path->slots[0],
1747 					struct btrfs_dev_extent);
1748 		BUG_ON(found_key.offset > start || found_key.offset +
1749 		       btrfs_dev_extent_length(leaf, extent) < start);
1750 		key = found_key;
1751 		btrfs_release_path(path);
1752 		goto again;
1753 	} else if (ret == 0) {
1754 		leaf = path->nodes[0];
1755 		extent = btrfs_item_ptr(leaf, path->slots[0],
1756 					struct btrfs_dev_extent);
1757 	} else {
1758 		goto out;
1759 	}
1760 
1761 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1762 
1763 	ret = btrfs_del_item(trans, root, path);
1764 	if (ret == 0)
1765 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1766 out:
1767 	btrfs_free_path(path);
1768 	return ret;
1769 }
1770 
1771 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1772 {
1773 	struct extent_map_tree *em_tree;
1774 	struct extent_map *em;
1775 	struct rb_node *n;
1776 	u64 ret = 0;
1777 
1778 	em_tree = &fs_info->mapping_tree;
1779 	read_lock(&em_tree->lock);
1780 	n = rb_last(&em_tree->map.rb_root);
1781 	if (n) {
1782 		em = rb_entry(n, struct extent_map, rb_node);
1783 		ret = em->start + em->len;
1784 	}
1785 	read_unlock(&em_tree->lock);
1786 
1787 	return ret;
1788 }
1789 
1790 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1791 				    u64 *devid_ret)
1792 {
1793 	int ret;
1794 	struct btrfs_key key;
1795 	struct btrfs_key found_key;
1796 	struct btrfs_path *path;
1797 
1798 	path = btrfs_alloc_path();
1799 	if (!path)
1800 		return -ENOMEM;
1801 
1802 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1803 	key.type = BTRFS_DEV_ITEM_KEY;
1804 	key.offset = (u64)-1;
1805 
1806 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1807 	if (ret < 0)
1808 		goto error;
1809 
1810 	if (ret == 0) {
1811 		/* Corruption */
1812 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1813 		ret = -EUCLEAN;
1814 		goto error;
1815 	}
1816 
1817 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1818 				  BTRFS_DEV_ITEMS_OBJECTID,
1819 				  BTRFS_DEV_ITEM_KEY);
1820 	if (ret) {
1821 		*devid_ret = 1;
1822 	} else {
1823 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1824 				      path->slots[0]);
1825 		*devid_ret = found_key.offset + 1;
1826 	}
1827 	ret = 0;
1828 error:
1829 	btrfs_free_path(path);
1830 	return ret;
1831 }
1832 
1833 /*
1834  * the device information is stored in the chunk root
1835  * the btrfs_device struct should be fully filled in
1836  */
1837 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1838 			    struct btrfs_device *device)
1839 {
1840 	int ret;
1841 	struct btrfs_path *path;
1842 	struct btrfs_dev_item *dev_item;
1843 	struct extent_buffer *leaf;
1844 	struct btrfs_key key;
1845 	unsigned long ptr;
1846 
1847 	path = btrfs_alloc_path();
1848 	if (!path)
1849 		return -ENOMEM;
1850 
1851 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1852 	key.type = BTRFS_DEV_ITEM_KEY;
1853 	key.offset = device->devid;
1854 
1855 	btrfs_reserve_chunk_metadata(trans, true);
1856 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1857 				      &key, sizeof(*dev_item));
1858 	btrfs_trans_release_chunk_metadata(trans);
1859 	if (ret)
1860 		goto out;
1861 
1862 	leaf = path->nodes[0];
1863 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1864 
1865 	btrfs_set_device_id(leaf, dev_item, device->devid);
1866 	btrfs_set_device_generation(leaf, dev_item, 0);
1867 	btrfs_set_device_type(leaf, dev_item, device->type);
1868 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1869 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1870 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1871 	btrfs_set_device_total_bytes(leaf, dev_item,
1872 				     btrfs_device_get_disk_total_bytes(device));
1873 	btrfs_set_device_bytes_used(leaf, dev_item,
1874 				    btrfs_device_get_bytes_used(device));
1875 	btrfs_set_device_group(leaf, dev_item, 0);
1876 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1877 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1878 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1879 
1880 	ptr = btrfs_device_uuid(dev_item);
1881 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1882 	ptr = btrfs_device_fsid(dev_item);
1883 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1884 			    ptr, BTRFS_FSID_SIZE);
1885 	btrfs_mark_buffer_dirty(leaf);
1886 
1887 	ret = 0;
1888 out:
1889 	btrfs_free_path(path);
1890 	return ret;
1891 }
1892 
1893 /*
1894  * Function to update ctime/mtime for a given device path.
1895  * Mainly used for ctime/mtime based probe like libblkid.
1896  *
1897  * We don't care about errors here, this is just to be kind to userspace.
1898  */
1899 static void update_dev_time(const char *device_path)
1900 {
1901 	struct path path;
1902 	struct timespec64 now;
1903 	int ret;
1904 
1905 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1906 	if (ret)
1907 		return;
1908 
1909 	now = current_time(d_inode(path.dentry));
1910 	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1911 	path_put(&path);
1912 }
1913 
1914 static int btrfs_rm_dev_item(struct btrfs_device *device)
1915 {
1916 	struct btrfs_root *root = device->fs_info->chunk_root;
1917 	int ret;
1918 	struct btrfs_path *path;
1919 	struct btrfs_key key;
1920 	struct btrfs_trans_handle *trans;
1921 
1922 	path = btrfs_alloc_path();
1923 	if (!path)
1924 		return -ENOMEM;
1925 
1926 	trans = btrfs_start_transaction(root, 0);
1927 	if (IS_ERR(trans)) {
1928 		btrfs_free_path(path);
1929 		return PTR_ERR(trans);
1930 	}
1931 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1932 	key.type = BTRFS_DEV_ITEM_KEY;
1933 	key.offset = device->devid;
1934 
1935 	btrfs_reserve_chunk_metadata(trans, false);
1936 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1937 	btrfs_trans_release_chunk_metadata(trans);
1938 	if (ret) {
1939 		if (ret > 0)
1940 			ret = -ENOENT;
1941 		btrfs_abort_transaction(trans, ret);
1942 		btrfs_end_transaction(trans);
1943 		goto out;
1944 	}
1945 
1946 	ret = btrfs_del_item(trans, root, path);
1947 	if (ret) {
1948 		btrfs_abort_transaction(trans, ret);
1949 		btrfs_end_transaction(trans);
1950 	}
1951 
1952 out:
1953 	btrfs_free_path(path);
1954 	if (!ret)
1955 		ret = btrfs_commit_transaction(trans);
1956 	return ret;
1957 }
1958 
1959 /*
1960  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1961  * filesystem. It's up to the caller to adjust that number regarding eg. device
1962  * replace.
1963  */
1964 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1965 		u64 num_devices)
1966 {
1967 	u64 all_avail;
1968 	unsigned seq;
1969 	int i;
1970 
1971 	do {
1972 		seq = read_seqbegin(&fs_info->profiles_lock);
1973 
1974 		all_avail = fs_info->avail_data_alloc_bits |
1975 			    fs_info->avail_system_alloc_bits |
1976 			    fs_info->avail_metadata_alloc_bits;
1977 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1978 
1979 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1980 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1981 			continue;
1982 
1983 		if (num_devices < btrfs_raid_array[i].devs_min)
1984 			return btrfs_raid_array[i].mindev_error;
1985 	}
1986 
1987 	return 0;
1988 }
1989 
1990 static struct btrfs_device * btrfs_find_next_active_device(
1991 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1992 {
1993 	struct btrfs_device *next_device;
1994 
1995 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1996 		if (next_device != device &&
1997 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1998 		    && next_device->bdev)
1999 			return next_device;
2000 	}
2001 
2002 	return NULL;
2003 }
2004 
2005 /*
2006  * Helper function to check if the given device is part of s_bdev / latest_dev
2007  * and replace it with the provided or the next active device, in the context
2008  * where this function called, there should be always be another device (or
2009  * this_dev) which is active.
2010  */
2011 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2012 					    struct btrfs_device *next_device)
2013 {
2014 	struct btrfs_fs_info *fs_info = device->fs_info;
2015 
2016 	if (!next_device)
2017 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2018 							    device);
2019 	ASSERT(next_device);
2020 
2021 	if (fs_info->sb->s_bdev &&
2022 			(fs_info->sb->s_bdev == device->bdev))
2023 		fs_info->sb->s_bdev = next_device->bdev;
2024 
2025 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2026 		fs_info->fs_devices->latest_dev = next_device;
2027 }
2028 
2029 /*
2030  * Return btrfs_fs_devices::num_devices excluding the device that's being
2031  * currently replaced.
2032  */
2033 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2034 {
2035 	u64 num_devices = fs_info->fs_devices->num_devices;
2036 
2037 	down_read(&fs_info->dev_replace.rwsem);
2038 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2039 		ASSERT(num_devices > 1);
2040 		num_devices--;
2041 	}
2042 	up_read(&fs_info->dev_replace.rwsem);
2043 
2044 	return num_devices;
2045 }
2046 
2047 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2048 			       struct block_device *bdev,
2049 			       const char *device_path)
2050 {
2051 	struct btrfs_super_block *disk_super;
2052 	int copy_num;
2053 
2054 	if (!bdev)
2055 		return;
2056 
2057 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2058 		struct page *page;
2059 		int ret;
2060 
2061 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2062 		if (IS_ERR(disk_super))
2063 			continue;
2064 
2065 		if (bdev_is_zoned(bdev)) {
2066 			btrfs_reset_sb_log_zones(bdev, copy_num);
2067 			continue;
2068 		}
2069 
2070 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2071 
2072 		page = virt_to_page(disk_super);
2073 		set_page_dirty(page);
2074 		lock_page(page);
2075 		/* write_on_page() unlocks the page */
2076 		ret = write_one_page(page);
2077 		if (ret)
2078 			btrfs_warn(fs_info,
2079 				"error clearing superblock number %d (%d)",
2080 				copy_num, ret);
2081 		btrfs_release_disk_super(disk_super);
2082 
2083 	}
2084 
2085 	/* Notify udev that device has changed */
2086 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2087 
2088 	/* Update ctime/mtime for device path for libblkid */
2089 	update_dev_time(device_path);
2090 }
2091 
2092 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2093 		    struct btrfs_dev_lookup_args *args,
2094 		    struct block_device **bdev, fmode_t *mode)
2095 {
2096 	struct btrfs_device *device;
2097 	struct btrfs_fs_devices *cur_devices;
2098 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2099 	u64 num_devices;
2100 	int ret = 0;
2101 
2102 	/*
2103 	 * The device list in fs_devices is accessed without locks (neither
2104 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2105 	 * filesystem and another device rm cannot run.
2106 	 */
2107 	num_devices = btrfs_num_devices(fs_info);
2108 
2109 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2110 	if (ret)
2111 		goto out;
2112 
2113 	device = btrfs_find_device(fs_info->fs_devices, args);
2114 	if (!device) {
2115 		if (args->missing)
2116 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2117 		else
2118 			ret = -ENOENT;
2119 		goto out;
2120 	}
2121 
2122 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2123 		btrfs_warn_in_rcu(fs_info,
2124 		  "cannot remove device %s (devid %llu) due to active swapfile",
2125 				  rcu_str_deref(device->name), device->devid);
2126 		ret = -ETXTBSY;
2127 		goto out;
2128 	}
2129 
2130 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2131 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2132 		goto out;
2133 	}
2134 
2135 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2136 	    fs_info->fs_devices->rw_devices == 1) {
2137 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2138 		goto out;
2139 	}
2140 
2141 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2142 		mutex_lock(&fs_info->chunk_mutex);
2143 		list_del_init(&device->dev_alloc_list);
2144 		device->fs_devices->rw_devices--;
2145 		mutex_unlock(&fs_info->chunk_mutex);
2146 	}
2147 
2148 	ret = btrfs_shrink_device(device, 0);
2149 	if (!ret)
2150 		btrfs_reada_remove_dev(device);
2151 	if (ret)
2152 		goto error_undo;
2153 
2154 	/*
2155 	 * TODO: the superblock still includes this device in its num_devices
2156 	 * counter although write_all_supers() is not locked out. This
2157 	 * could give a filesystem state which requires a degraded mount.
2158 	 */
2159 	ret = btrfs_rm_dev_item(device);
2160 	if (ret)
2161 		goto error_undo;
2162 
2163 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2164 	btrfs_scrub_cancel_dev(device);
2165 
2166 	/*
2167 	 * the device list mutex makes sure that we don't change
2168 	 * the device list while someone else is writing out all
2169 	 * the device supers. Whoever is writing all supers, should
2170 	 * lock the device list mutex before getting the number of
2171 	 * devices in the super block (super_copy). Conversely,
2172 	 * whoever updates the number of devices in the super block
2173 	 * (super_copy) should hold the device list mutex.
2174 	 */
2175 
2176 	/*
2177 	 * In normal cases the cur_devices == fs_devices. But in case
2178 	 * of deleting a seed device, the cur_devices should point to
2179 	 * its own fs_devices listed under the fs_devices->seed_list.
2180 	 */
2181 	cur_devices = device->fs_devices;
2182 	mutex_lock(&fs_devices->device_list_mutex);
2183 	list_del_rcu(&device->dev_list);
2184 
2185 	cur_devices->num_devices--;
2186 	cur_devices->total_devices--;
2187 	/* Update total_devices of the parent fs_devices if it's seed */
2188 	if (cur_devices != fs_devices)
2189 		fs_devices->total_devices--;
2190 
2191 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2192 		cur_devices->missing_devices--;
2193 
2194 	btrfs_assign_next_active_device(device, NULL);
2195 
2196 	if (device->bdev) {
2197 		cur_devices->open_devices--;
2198 		/* remove sysfs entry */
2199 		btrfs_sysfs_remove_device(device);
2200 	}
2201 
2202 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2203 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2204 	mutex_unlock(&fs_devices->device_list_mutex);
2205 
2206 	/*
2207 	 * At this point, the device is zero sized and detached from the
2208 	 * devices list.  All that's left is to zero out the old supers and
2209 	 * free the device.
2210 	 *
2211 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2212 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2213 	 * block device and it's dependencies.  Instead just flush the device
2214 	 * and let the caller do the final blkdev_put.
2215 	 */
2216 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2217 		btrfs_scratch_superblocks(fs_info, device->bdev,
2218 					  device->name->str);
2219 		if (device->bdev) {
2220 			sync_blockdev(device->bdev);
2221 			invalidate_bdev(device->bdev);
2222 		}
2223 	}
2224 
2225 	*bdev = device->bdev;
2226 	*mode = device->mode;
2227 	synchronize_rcu();
2228 	btrfs_free_device(device);
2229 
2230 	/*
2231 	 * This can happen if cur_devices is the private seed devices list.  We
2232 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2233 	 * to be held, but in fact we don't need that for the private
2234 	 * seed_devices, we can simply decrement cur_devices->opened and then
2235 	 * remove it from our list and free the fs_devices.
2236 	 */
2237 	if (cur_devices->num_devices == 0) {
2238 		list_del_init(&cur_devices->seed_list);
2239 		ASSERT(cur_devices->opened == 1);
2240 		cur_devices->opened--;
2241 		free_fs_devices(cur_devices);
2242 	}
2243 
2244 out:
2245 	return ret;
2246 
2247 error_undo:
2248 	btrfs_reada_undo_remove_dev(device);
2249 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2250 		mutex_lock(&fs_info->chunk_mutex);
2251 		list_add(&device->dev_alloc_list,
2252 			 &fs_devices->alloc_list);
2253 		device->fs_devices->rw_devices++;
2254 		mutex_unlock(&fs_info->chunk_mutex);
2255 	}
2256 	goto out;
2257 }
2258 
2259 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2260 {
2261 	struct btrfs_fs_devices *fs_devices;
2262 
2263 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2264 
2265 	/*
2266 	 * in case of fs with no seed, srcdev->fs_devices will point
2267 	 * to fs_devices of fs_info. However when the dev being replaced is
2268 	 * a seed dev it will point to the seed's local fs_devices. In short
2269 	 * srcdev will have its correct fs_devices in both the cases.
2270 	 */
2271 	fs_devices = srcdev->fs_devices;
2272 
2273 	list_del_rcu(&srcdev->dev_list);
2274 	list_del(&srcdev->dev_alloc_list);
2275 	fs_devices->num_devices--;
2276 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2277 		fs_devices->missing_devices--;
2278 
2279 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2280 		fs_devices->rw_devices--;
2281 
2282 	if (srcdev->bdev)
2283 		fs_devices->open_devices--;
2284 }
2285 
2286 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2287 {
2288 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2289 
2290 	mutex_lock(&uuid_mutex);
2291 
2292 	btrfs_close_bdev(srcdev);
2293 	synchronize_rcu();
2294 	btrfs_free_device(srcdev);
2295 
2296 	/* if this is no devs we rather delete the fs_devices */
2297 	if (!fs_devices->num_devices) {
2298 		/*
2299 		 * On a mounted FS, num_devices can't be zero unless it's a
2300 		 * seed. In case of a seed device being replaced, the replace
2301 		 * target added to the sprout FS, so there will be no more
2302 		 * device left under the seed FS.
2303 		 */
2304 		ASSERT(fs_devices->seeding);
2305 
2306 		list_del_init(&fs_devices->seed_list);
2307 		close_fs_devices(fs_devices);
2308 		free_fs_devices(fs_devices);
2309 	}
2310 	mutex_unlock(&uuid_mutex);
2311 }
2312 
2313 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2314 {
2315 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2316 
2317 	mutex_lock(&fs_devices->device_list_mutex);
2318 
2319 	btrfs_sysfs_remove_device(tgtdev);
2320 
2321 	if (tgtdev->bdev)
2322 		fs_devices->open_devices--;
2323 
2324 	fs_devices->num_devices--;
2325 
2326 	btrfs_assign_next_active_device(tgtdev, NULL);
2327 
2328 	list_del_rcu(&tgtdev->dev_list);
2329 
2330 	mutex_unlock(&fs_devices->device_list_mutex);
2331 
2332 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2333 				  tgtdev->name->str);
2334 
2335 	btrfs_close_bdev(tgtdev);
2336 	synchronize_rcu();
2337 	btrfs_free_device(tgtdev);
2338 }
2339 
2340 /**
2341  * Populate args from device at path
2342  *
2343  * @fs_info:	the filesystem
2344  * @args:	the args to populate
2345  * @path:	the path to the device
2346  *
2347  * This will read the super block of the device at @path and populate @args with
2348  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2349  * lookup a device to operate on, but need to do it before we take any locks.
2350  * This properly handles the special case of "missing" that a user may pass in,
2351  * and does some basic sanity checks.  The caller must make sure that @path is
2352  * properly NUL terminated before calling in, and must call
2353  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2354  * uuid buffers.
2355  *
2356  * Return: 0 for success, -errno for failure
2357  */
2358 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2359 				 struct btrfs_dev_lookup_args *args,
2360 				 const char *path)
2361 {
2362 	struct btrfs_super_block *disk_super;
2363 	struct block_device *bdev;
2364 	int ret;
2365 
2366 	if (!path || !path[0])
2367 		return -EINVAL;
2368 	if (!strcmp(path, "missing")) {
2369 		args->missing = true;
2370 		return 0;
2371 	}
2372 
2373 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2374 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2375 	if (!args->uuid || !args->fsid) {
2376 		btrfs_put_dev_args_from_path(args);
2377 		return -ENOMEM;
2378 	}
2379 
2380 	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2381 				    &bdev, &disk_super);
2382 	if (ret)
2383 		return ret;
2384 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2385 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2386 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2387 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2388 	else
2389 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2390 	btrfs_release_disk_super(disk_super);
2391 	blkdev_put(bdev, FMODE_READ);
2392 	return 0;
2393 }
2394 
2395 /*
2396  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2397  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2398  * that don't need to be freed.
2399  */
2400 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2401 {
2402 	kfree(args->uuid);
2403 	kfree(args->fsid);
2404 	args->uuid = NULL;
2405 	args->fsid = NULL;
2406 }
2407 
2408 struct btrfs_device *btrfs_find_device_by_devspec(
2409 		struct btrfs_fs_info *fs_info, u64 devid,
2410 		const char *device_path)
2411 {
2412 	BTRFS_DEV_LOOKUP_ARGS(args);
2413 	struct btrfs_device *device;
2414 	int ret;
2415 
2416 	if (devid) {
2417 		args.devid = devid;
2418 		device = btrfs_find_device(fs_info->fs_devices, &args);
2419 		if (!device)
2420 			return ERR_PTR(-ENOENT);
2421 		return device;
2422 	}
2423 
2424 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2425 	if (ret)
2426 		return ERR_PTR(ret);
2427 	device = btrfs_find_device(fs_info->fs_devices, &args);
2428 	btrfs_put_dev_args_from_path(&args);
2429 	if (!device)
2430 		return ERR_PTR(-ENOENT);
2431 	return device;
2432 }
2433 
2434 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2435 {
2436 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2437 	struct btrfs_fs_devices *old_devices;
2438 	struct btrfs_fs_devices *seed_devices;
2439 
2440 	lockdep_assert_held(&uuid_mutex);
2441 	if (!fs_devices->seeding)
2442 		return ERR_PTR(-EINVAL);
2443 
2444 	/*
2445 	 * Private copy of the seed devices, anchored at
2446 	 * fs_info->fs_devices->seed_list
2447 	 */
2448 	seed_devices = alloc_fs_devices(NULL, NULL);
2449 	if (IS_ERR(seed_devices))
2450 		return seed_devices;
2451 
2452 	/*
2453 	 * It's necessary to retain a copy of the original seed fs_devices in
2454 	 * fs_uuids so that filesystems which have been seeded can successfully
2455 	 * reference the seed device from open_seed_devices. This also supports
2456 	 * multiple fs seed.
2457 	 */
2458 	old_devices = clone_fs_devices(fs_devices);
2459 	if (IS_ERR(old_devices)) {
2460 		kfree(seed_devices);
2461 		return old_devices;
2462 	}
2463 
2464 	list_add(&old_devices->fs_list, &fs_uuids);
2465 
2466 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2467 	seed_devices->opened = 1;
2468 	INIT_LIST_HEAD(&seed_devices->devices);
2469 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2470 	mutex_init(&seed_devices->device_list_mutex);
2471 
2472 	return seed_devices;
2473 }
2474 
2475 /*
2476  * Splice seed devices into the sprout fs_devices.
2477  * Generate a new fsid for the sprouted read-write filesystem.
2478  */
2479 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2480 			       struct btrfs_fs_devices *seed_devices)
2481 {
2482 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2483 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2484 	struct btrfs_device *device;
2485 	u64 super_flags;
2486 
2487 	/*
2488 	 * We are updating the fsid, the thread leading to device_list_add()
2489 	 * could race, so uuid_mutex is needed.
2490 	 */
2491 	lockdep_assert_held(&uuid_mutex);
2492 
2493 	/*
2494 	 * The threads listed below may traverse dev_list but can do that without
2495 	 * device_list_mutex:
2496 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2497 	 * - Various dev_list readers - are using RCU.
2498 	 * - btrfs_ioctl_fitrim() - is using RCU.
2499 	 *
2500 	 * For-read threads as below are using device_list_mutex:
2501 	 * - Readonly scrub btrfs_scrub_dev()
2502 	 * - Readonly scrub btrfs_scrub_progress()
2503 	 * - btrfs_get_dev_stats()
2504 	 */
2505 	lockdep_assert_held(&fs_devices->device_list_mutex);
2506 
2507 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2508 			      synchronize_rcu);
2509 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2510 		device->fs_devices = seed_devices;
2511 
2512 	fs_devices->seeding = false;
2513 	fs_devices->num_devices = 0;
2514 	fs_devices->open_devices = 0;
2515 	fs_devices->missing_devices = 0;
2516 	fs_devices->rotating = false;
2517 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2518 
2519 	generate_random_uuid(fs_devices->fsid);
2520 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2521 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2522 
2523 	super_flags = btrfs_super_flags(disk_super) &
2524 		      ~BTRFS_SUPER_FLAG_SEEDING;
2525 	btrfs_set_super_flags(disk_super, super_flags);
2526 }
2527 
2528 /*
2529  * Store the expected generation for seed devices in device items.
2530  */
2531 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2532 {
2533 	BTRFS_DEV_LOOKUP_ARGS(args);
2534 	struct btrfs_fs_info *fs_info = trans->fs_info;
2535 	struct btrfs_root *root = fs_info->chunk_root;
2536 	struct btrfs_path *path;
2537 	struct extent_buffer *leaf;
2538 	struct btrfs_dev_item *dev_item;
2539 	struct btrfs_device *device;
2540 	struct btrfs_key key;
2541 	u8 fs_uuid[BTRFS_FSID_SIZE];
2542 	u8 dev_uuid[BTRFS_UUID_SIZE];
2543 	int ret;
2544 
2545 	path = btrfs_alloc_path();
2546 	if (!path)
2547 		return -ENOMEM;
2548 
2549 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2550 	key.offset = 0;
2551 	key.type = BTRFS_DEV_ITEM_KEY;
2552 
2553 	while (1) {
2554 		btrfs_reserve_chunk_metadata(trans, false);
2555 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2556 		btrfs_trans_release_chunk_metadata(trans);
2557 		if (ret < 0)
2558 			goto error;
2559 
2560 		leaf = path->nodes[0];
2561 next_slot:
2562 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2563 			ret = btrfs_next_leaf(root, path);
2564 			if (ret > 0)
2565 				break;
2566 			if (ret < 0)
2567 				goto error;
2568 			leaf = path->nodes[0];
2569 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2570 			btrfs_release_path(path);
2571 			continue;
2572 		}
2573 
2574 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2575 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2576 		    key.type != BTRFS_DEV_ITEM_KEY)
2577 			break;
2578 
2579 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2580 					  struct btrfs_dev_item);
2581 		args.devid = btrfs_device_id(leaf, dev_item);
2582 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2583 				   BTRFS_UUID_SIZE);
2584 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2585 				   BTRFS_FSID_SIZE);
2586 		args.uuid = dev_uuid;
2587 		args.fsid = fs_uuid;
2588 		device = btrfs_find_device(fs_info->fs_devices, &args);
2589 		BUG_ON(!device); /* Logic error */
2590 
2591 		if (device->fs_devices->seeding) {
2592 			btrfs_set_device_generation(leaf, dev_item,
2593 						    device->generation);
2594 			btrfs_mark_buffer_dirty(leaf);
2595 		}
2596 
2597 		path->slots[0]++;
2598 		goto next_slot;
2599 	}
2600 	ret = 0;
2601 error:
2602 	btrfs_free_path(path);
2603 	return ret;
2604 }
2605 
2606 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2607 {
2608 	struct btrfs_root *root = fs_info->dev_root;
2609 	struct request_queue *q;
2610 	struct btrfs_trans_handle *trans;
2611 	struct btrfs_device *device;
2612 	struct block_device *bdev;
2613 	struct super_block *sb = fs_info->sb;
2614 	struct rcu_string *name;
2615 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2616 	struct btrfs_fs_devices *seed_devices;
2617 	u64 orig_super_total_bytes;
2618 	u64 orig_super_num_devices;
2619 	int ret = 0;
2620 	bool seeding_dev = false;
2621 	bool locked = false;
2622 
2623 	if (sb_rdonly(sb) && !fs_devices->seeding)
2624 		return -EROFS;
2625 
2626 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2627 				  fs_info->bdev_holder);
2628 	if (IS_ERR(bdev))
2629 		return PTR_ERR(bdev);
2630 
2631 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2632 		ret = -EINVAL;
2633 		goto error;
2634 	}
2635 
2636 	if (fs_devices->seeding) {
2637 		seeding_dev = true;
2638 		down_write(&sb->s_umount);
2639 		mutex_lock(&uuid_mutex);
2640 		locked = true;
2641 	}
2642 
2643 	sync_blockdev(bdev);
2644 
2645 	rcu_read_lock();
2646 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2647 		if (device->bdev == bdev) {
2648 			ret = -EEXIST;
2649 			rcu_read_unlock();
2650 			goto error;
2651 		}
2652 	}
2653 	rcu_read_unlock();
2654 
2655 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2656 	if (IS_ERR(device)) {
2657 		/* we can safely leave the fs_devices entry around */
2658 		ret = PTR_ERR(device);
2659 		goto error;
2660 	}
2661 
2662 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2663 	if (!name) {
2664 		ret = -ENOMEM;
2665 		goto error_free_device;
2666 	}
2667 	rcu_assign_pointer(device->name, name);
2668 
2669 	device->fs_info = fs_info;
2670 	device->bdev = bdev;
2671 
2672 	ret = btrfs_get_dev_zone_info(device, false);
2673 	if (ret)
2674 		goto error_free_device;
2675 
2676 	trans = btrfs_start_transaction(root, 0);
2677 	if (IS_ERR(trans)) {
2678 		ret = PTR_ERR(trans);
2679 		goto error_free_zone;
2680 	}
2681 
2682 	q = bdev_get_queue(bdev);
2683 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2684 	device->generation = trans->transid;
2685 	device->io_width = fs_info->sectorsize;
2686 	device->io_align = fs_info->sectorsize;
2687 	device->sector_size = fs_info->sectorsize;
2688 	device->total_bytes =
2689 		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2690 	device->disk_total_bytes = device->total_bytes;
2691 	device->commit_total_bytes = device->total_bytes;
2692 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2693 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2694 	device->mode = FMODE_EXCL;
2695 	device->dev_stats_valid = 1;
2696 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2697 
2698 	if (seeding_dev) {
2699 		btrfs_clear_sb_rdonly(sb);
2700 
2701 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2702 		seed_devices = btrfs_init_sprout(fs_info);
2703 		if (IS_ERR(seed_devices)) {
2704 			ret = PTR_ERR(seed_devices);
2705 			btrfs_abort_transaction(trans, ret);
2706 			goto error_trans;
2707 		}
2708 	}
2709 
2710 	mutex_lock(&fs_devices->device_list_mutex);
2711 	if (seeding_dev) {
2712 		btrfs_setup_sprout(fs_info, seed_devices);
2713 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2714 						device);
2715 	}
2716 
2717 	device->fs_devices = fs_devices;
2718 
2719 	mutex_lock(&fs_info->chunk_mutex);
2720 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2721 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2722 	fs_devices->num_devices++;
2723 	fs_devices->open_devices++;
2724 	fs_devices->rw_devices++;
2725 	fs_devices->total_devices++;
2726 	fs_devices->total_rw_bytes += device->total_bytes;
2727 
2728 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2729 
2730 	if (!blk_queue_nonrot(q))
2731 		fs_devices->rotating = true;
2732 
2733 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2734 	btrfs_set_super_total_bytes(fs_info->super_copy,
2735 		round_down(orig_super_total_bytes + device->total_bytes,
2736 			   fs_info->sectorsize));
2737 
2738 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2739 	btrfs_set_super_num_devices(fs_info->super_copy,
2740 				    orig_super_num_devices + 1);
2741 
2742 	/*
2743 	 * we've got more storage, clear any full flags on the space
2744 	 * infos
2745 	 */
2746 	btrfs_clear_space_info_full(fs_info);
2747 
2748 	mutex_unlock(&fs_info->chunk_mutex);
2749 
2750 	/* Add sysfs device entry */
2751 	btrfs_sysfs_add_device(device);
2752 
2753 	mutex_unlock(&fs_devices->device_list_mutex);
2754 
2755 	if (seeding_dev) {
2756 		mutex_lock(&fs_info->chunk_mutex);
2757 		ret = init_first_rw_device(trans);
2758 		mutex_unlock(&fs_info->chunk_mutex);
2759 		if (ret) {
2760 			btrfs_abort_transaction(trans, ret);
2761 			goto error_sysfs;
2762 		}
2763 	}
2764 
2765 	ret = btrfs_add_dev_item(trans, device);
2766 	if (ret) {
2767 		btrfs_abort_transaction(trans, ret);
2768 		goto error_sysfs;
2769 	}
2770 
2771 	if (seeding_dev) {
2772 		ret = btrfs_finish_sprout(trans);
2773 		if (ret) {
2774 			btrfs_abort_transaction(trans, ret);
2775 			goto error_sysfs;
2776 		}
2777 
2778 		/*
2779 		 * fs_devices now represents the newly sprouted filesystem and
2780 		 * its fsid has been changed by btrfs_sprout_splice().
2781 		 */
2782 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2783 	}
2784 
2785 	ret = btrfs_commit_transaction(trans);
2786 
2787 	if (seeding_dev) {
2788 		mutex_unlock(&uuid_mutex);
2789 		up_write(&sb->s_umount);
2790 		locked = false;
2791 
2792 		if (ret) /* transaction commit */
2793 			return ret;
2794 
2795 		ret = btrfs_relocate_sys_chunks(fs_info);
2796 		if (ret < 0)
2797 			btrfs_handle_fs_error(fs_info, ret,
2798 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2799 		trans = btrfs_attach_transaction(root);
2800 		if (IS_ERR(trans)) {
2801 			if (PTR_ERR(trans) == -ENOENT)
2802 				return 0;
2803 			ret = PTR_ERR(trans);
2804 			trans = NULL;
2805 			goto error_sysfs;
2806 		}
2807 		ret = btrfs_commit_transaction(trans);
2808 	}
2809 
2810 	/*
2811 	 * Now that we have written a new super block to this device, check all
2812 	 * other fs_devices list if device_path alienates any other scanned
2813 	 * device.
2814 	 * We can ignore the return value as it typically returns -EINVAL and
2815 	 * only succeeds if the device was an alien.
2816 	 */
2817 	btrfs_forget_devices(device_path);
2818 
2819 	/* Update ctime/mtime for blkid or udev */
2820 	update_dev_time(device_path);
2821 
2822 	return ret;
2823 
2824 error_sysfs:
2825 	btrfs_sysfs_remove_device(device);
2826 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2827 	mutex_lock(&fs_info->chunk_mutex);
2828 	list_del_rcu(&device->dev_list);
2829 	list_del(&device->dev_alloc_list);
2830 	fs_info->fs_devices->num_devices--;
2831 	fs_info->fs_devices->open_devices--;
2832 	fs_info->fs_devices->rw_devices--;
2833 	fs_info->fs_devices->total_devices--;
2834 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2835 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2836 	btrfs_set_super_total_bytes(fs_info->super_copy,
2837 				    orig_super_total_bytes);
2838 	btrfs_set_super_num_devices(fs_info->super_copy,
2839 				    orig_super_num_devices);
2840 	mutex_unlock(&fs_info->chunk_mutex);
2841 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2842 error_trans:
2843 	if (seeding_dev)
2844 		btrfs_set_sb_rdonly(sb);
2845 	if (trans)
2846 		btrfs_end_transaction(trans);
2847 error_free_zone:
2848 	btrfs_destroy_dev_zone_info(device);
2849 error_free_device:
2850 	btrfs_free_device(device);
2851 error:
2852 	blkdev_put(bdev, FMODE_EXCL);
2853 	if (locked) {
2854 		mutex_unlock(&uuid_mutex);
2855 		up_write(&sb->s_umount);
2856 	}
2857 	return ret;
2858 }
2859 
2860 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2861 					struct btrfs_device *device)
2862 {
2863 	int ret;
2864 	struct btrfs_path *path;
2865 	struct btrfs_root *root = device->fs_info->chunk_root;
2866 	struct btrfs_dev_item *dev_item;
2867 	struct extent_buffer *leaf;
2868 	struct btrfs_key key;
2869 
2870 	path = btrfs_alloc_path();
2871 	if (!path)
2872 		return -ENOMEM;
2873 
2874 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2875 	key.type = BTRFS_DEV_ITEM_KEY;
2876 	key.offset = device->devid;
2877 
2878 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2879 	if (ret < 0)
2880 		goto out;
2881 
2882 	if (ret > 0) {
2883 		ret = -ENOENT;
2884 		goto out;
2885 	}
2886 
2887 	leaf = path->nodes[0];
2888 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2889 
2890 	btrfs_set_device_id(leaf, dev_item, device->devid);
2891 	btrfs_set_device_type(leaf, dev_item, device->type);
2892 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2893 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2894 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2895 	btrfs_set_device_total_bytes(leaf, dev_item,
2896 				     btrfs_device_get_disk_total_bytes(device));
2897 	btrfs_set_device_bytes_used(leaf, dev_item,
2898 				    btrfs_device_get_bytes_used(device));
2899 	btrfs_mark_buffer_dirty(leaf);
2900 
2901 out:
2902 	btrfs_free_path(path);
2903 	return ret;
2904 }
2905 
2906 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2907 		      struct btrfs_device *device, u64 new_size)
2908 {
2909 	struct btrfs_fs_info *fs_info = device->fs_info;
2910 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2911 	u64 old_total;
2912 	u64 diff;
2913 	int ret;
2914 
2915 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2916 		return -EACCES;
2917 
2918 	new_size = round_down(new_size, fs_info->sectorsize);
2919 
2920 	mutex_lock(&fs_info->chunk_mutex);
2921 	old_total = btrfs_super_total_bytes(super_copy);
2922 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2923 
2924 	if (new_size <= device->total_bytes ||
2925 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2926 		mutex_unlock(&fs_info->chunk_mutex);
2927 		return -EINVAL;
2928 	}
2929 
2930 	btrfs_set_super_total_bytes(super_copy,
2931 			round_down(old_total + diff, fs_info->sectorsize));
2932 	device->fs_devices->total_rw_bytes += diff;
2933 
2934 	btrfs_device_set_total_bytes(device, new_size);
2935 	btrfs_device_set_disk_total_bytes(device, new_size);
2936 	btrfs_clear_space_info_full(device->fs_info);
2937 	if (list_empty(&device->post_commit_list))
2938 		list_add_tail(&device->post_commit_list,
2939 			      &trans->transaction->dev_update_list);
2940 	mutex_unlock(&fs_info->chunk_mutex);
2941 
2942 	btrfs_reserve_chunk_metadata(trans, false);
2943 	ret = btrfs_update_device(trans, device);
2944 	btrfs_trans_release_chunk_metadata(trans);
2945 
2946 	return ret;
2947 }
2948 
2949 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2950 {
2951 	struct btrfs_fs_info *fs_info = trans->fs_info;
2952 	struct btrfs_root *root = fs_info->chunk_root;
2953 	int ret;
2954 	struct btrfs_path *path;
2955 	struct btrfs_key key;
2956 
2957 	path = btrfs_alloc_path();
2958 	if (!path)
2959 		return -ENOMEM;
2960 
2961 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2962 	key.offset = chunk_offset;
2963 	key.type = BTRFS_CHUNK_ITEM_KEY;
2964 
2965 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2966 	if (ret < 0)
2967 		goto out;
2968 	else if (ret > 0) { /* Logic error or corruption */
2969 		btrfs_handle_fs_error(fs_info, -ENOENT,
2970 				      "Failed lookup while freeing chunk.");
2971 		ret = -ENOENT;
2972 		goto out;
2973 	}
2974 
2975 	ret = btrfs_del_item(trans, root, path);
2976 	if (ret < 0)
2977 		btrfs_handle_fs_error(fs_info, ret,
2978 				      "Failed to delete chunk item.");
2979 out:
2980 	btrfs_free_path(path);
2981 	return ret;
2982 }
2983 
2984 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2985 {
2986 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2987 	struct btrfs_disk_key *disk_key;
2988 	struct btrfs_chunk *chunk;
2989 	u8 *ptr;
2990 	int ret = 0;
2991 	u32 num_stripes;
2992 	u32 array_size;
2993 	u32 len = 0;
2994 	u32 cur;
2995 	struct btrfs_key key;
2996 
2997 	lockdep_assert_held(&fs_info->chunk_mutex);
2998 	array_size = btrfs_super_sys_array_size(super_copy);
2999 
3000 	ptr = super_copy->sys_chunk_array;
3001 	cur = 0;
3002 
3003 	while (cur < array_size) {
3004 		disk_key = (struct btrfs_disk_key *)ptr;
3005 		btrfs_disk_key_to_cpu(&key, disk_key);
3006 
3007 		len = sizeof(*disk_key);
3008 
3009 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3010 			chunk = (struct btrfs_chunk *)(ptr + len);
3011 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3012 			len += btrfs_chunk_item_size(num_stripes);
3013 		} else {
3014 			ret = -EIO;
3015 			break;
3016 		}
3017 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3018 		    key.offset == chunk_offset) {
3019 			memmove(ptr, ptr + len, array_size - (cur + len));
3020 			array_size -= len;
3021 			btrfs_set_super_sys_array_size(super_copy, array_size);
3022 		} else {
3023 			ptr += len;
3024 			cur += len;
3025 		}
3026 	}
3027 	return ret;
3028 }
3029 
3030 /*
3031  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3032  * @logical: Logical block offset in bytes.
3033  * @length: Length of extent in bytes.
3034  *
3035  * Return: Chunk mapping or ERR_PTR.
3036  */
3037 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3038 				       u64 logical, u64 length)
3039 {
3040 	struct extent_map_tree *em_tree;
3041 	struct extent_map *em;
3042 
3043 	em_tree = &fs_info->mapping_tree;
3044 	read_lock(&em_tree->lock);
3045 	em = lookup_extent_mapping(em_tree, logical, length);
3046 	read_unlock(&em_tree->lock);
3047 
3048 	if (!em) {
3049 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3050 			   logical, length);
3051 		return ERR_PTR(-EINVAL);
3052 	}
3053 
3054 	if (em->start > logical || em->start + em->len < logical) {
3055 		btrfs_crit(fs_info,
3056 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3057 			   logical, length, em->start, em->start + em->len);
3058 		free_extent_map(em);
3059 		return ERR_PTR(-EINVAL);
3060 	}
3061 
3062 	/* callers are responsible for dropping em's ref. */
3063 	return em;
3064 }
3065 
3066 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3067 			     struct map_lookup *map, u64 chunk_offset)
3068 {
3069 	int i;
3070 
3071 	/*
3072 	 * Removing chunk items and updating the device items in the chunks btree
3073 	 * requires holding the chunk_mutex.
3074 	 * See the comment at btrfs_chunk_alloc() for the details.
3075 	 */
3076 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3077 
3078 	for (i = 0; i < map->num_stripes; i++) {
3079 		int ret;
3080 
3081 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3082 		if (ret)
3083 			return ret;
3084 	}
3085 
3086 	return btrfs_free_chunk(trans, chunk_offset);
3087 }
3088 
3089 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3090 {
3091 	struct btrfs_fs_info *fs_info = trans->fs_info;
3092 	struct extent_map *em;
3093 	struct map_lookup *map;
3094 	u64 dev_extent_len = 0;
3095 	int i, ret = 0;
3096 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3097 
3098 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3099 	if (IS_ERR(em)) {
3100 		/*
3101 		 * This is a logic error, but we don't want to just rely on the
3102 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3103 		 * do anything we still error out.
3104 		 */
3105 		ASSERT(0);
3106 		return PTR_ERR(em);
3107 	}
3108 	map = em->map_lookup;
3109 
3110 	/*
3111 	 * First delete the device extent items from the devices btree.
3112 	 * We take the device_list_mutex to avoid racing with the finishing phase
3113 	 * of a device replace operation. See the comment below before acquiring
3114 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3115 	 * because that can result in a deadlock when deleting the device extent
3116 	 * items from the devices btree - COWing an extent buffer from the btree
3117 	 * may result in allocating a new metadata chunk, which would attempt to
3118 	 * lock again fs_info->chunk_mutex.
3119 	 */
3120 	mutex_lock(&fs_devices->device_list_mutex);
3121 	for (i = 0; i < map->num_stripes; i++) {
3122 		struct btrfs_device *device = map->stripes[i].dev;
3123 		ret = btrfs_free_dev_extent(trans, device,
3124 					    map->stripes[i].physical,
3125 					    &dev_extent_len);
3126 		if (ret) {
3127 			mutex_unlock(&fs_devices->device_list_mutex);
3128 			btrfs_abort_transaction(trans, ret);
3129 			goto out;
3130 		}
3131 
3132 		if (device->bytes_used > 0) {
3133 			mutex_lock(&fs_info->chunk_mutex);
3134 			btrfs_device_set_bytes_used(device,
3135 					device->bytes_used - dev_extent_len);
3136 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3137 			btrfs_clear_space_info_full(fs_info);
3138 			mutex_unlock(&fs_info->chunk_mutex);
3139 		}
3140 	}
3141 	mutex_unlock(&fs_devices->device_list_mutex);
3142 
3143 	/*
3144 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3145 	 *
3146 	 * 1) Just like with the first phase of the chunk allocation, we must
3147 	 *    reserve system space, do all chunk btree updates and deletions, and
3148 	 *    update the system chunk array in the superblock while holding this
3149 	 *    mutex. This is for similar reasons as explained on the comment at
3150 	 *    the top of btrfs_chunk_alloc();
3151 	 *
3152 	 * 2) Prevent races with the final phase of a device replace operation
3153 	 *    that replaces the device object associated with the map's stripes,
3154 	 *    because the device object's id can change at any time during that
3155 	 *    final phase of the device replace operation
3156 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3157 	 *    replaced device and then see it with an ID of
3158 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3159 	 *    the device item, which does not exists on the chunk btree.
3160 	 *    The finishing phase of device replace acquires both the
3161 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3162 	 *    safe by just acquiring the chunk_mutex.
3163 	 */
3164 	trans->removing_chunk = true;
3165 	mutex_lock(&fs_info->chunk_mutex);
3166 
3167 	check_system_chunk(trans, map->type);
3168 
3169 	ret = remove_chunk_item(trans, map, chunk_offset);
3170 	/*
3171 	 * Normally we should not get -ENOSPC since we reserved space before
3172 	 * through the call to check_system_chunk().
3173 	 *
3174 	 * Despite our system space_info having enough free space, we may not
3175 	 * be able to allocate extents from its block groups, because all have
3176 	 * an incompatible profile, which will force us to allocate a new system
3177 	 * block group with the right profile, or right after we called
3178 	 * check_system_space() above, a scrub turned the only system block group
3179 	 * with enough free space into RO mode.
3180 	 * This is explained with more detail at do_chunk_alloc().
3181 	 *
3182 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3183 	 */
3184 	if (ret == -ENOSPC) {
3185 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3186 		struct btrfs_block_group *sys_bg;
3187 
3188 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3189 		if (IS_ERR(sys_bg)) {
3190 			ret = PTR_ERR(sys_bg);
3191 			btrfs_abort_transaction(trans, ret);
3192 			goto out;
3193 		}
3194 
3195 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3196 		if (ret) {
3197 			btrfs_abort_transaction(trans, ret);
3198 			goto out;
3199 		}
3200 
3201 		ret = remove_chunk_item(trans, map, chunk_offset);
3202 		if (ret) {
3203 			btrfs_abort_transaction(trans, ret);
3204 			goto out;
3205 		}
3206 	} else if (ret) {
3207 		btrfs_abort_transaction(trans, ret);
3208 		goto out;
3209 	}
3210 
3211 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3212 
3213 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3214 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3215 		if (ret) {
3216 			btrfs_abort_transaction(trans, ret);
3217 			goto out;
3218 		}
3219 	}
3220 
3221 	mutex_unlock(&fs_info->chunk_mutex);
3222 	trans->removing_chunk = false;
3223 
3224 	/*
3225 	 * We are done with chunk btree updates and deletions, so release the
3226 	 * system space we previously reserved (with check_system_chunk()).
3227 	 */
3228 	btrfs_trans_release_chunk_metadata(trans);
3229 
3230 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3231 	if (ret) {
3232 		btrfs_abort_transaction(trans, ret);
3233 		goto out;
3234 	}
3235 
3236 out:
3237 	if (trans->removing_chunk) {
3238 		mutex_unlock(&fs_info->chunk_mutex);
3239 		trans->removing_chunk = false;
3240 	}
3241 	/* once for us */
3242 	free_extent_map(em);
3243 	return ret;
3244 }
3245 
3246 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3247 {
3248 	struct btrfs_root *root = fs_info->chunk_root;
3249 	struct btrfs_trans_handle *trans;
3250 	struct btrfs_block_group *block_group;
3251 	u64 length;
3252 	int ret;
3253 
3254 	/*
3255 	 * Prevent races with automatic removal of unused block groups.
3256 	 * After we relocate and before we remove the chunk with offset
3257 	 * chunk_offset, automatic removal of the block group can kick in,
3258 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3259 	 *
3260 	 * Make sure to acquire this mutex before doing a tree search (dev
3261 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3262 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3263 	 * we release the path used to search the chunk/dev tree and before
3264 	 * the current task acquires this mutex and calls us.
3265 	 */
3266 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3267 
3268 	/* step one, relocate all the extents inside this chunk */
3269 	btrfs_scrub_pause(fs_info);
3270 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3271 	btrfs_scrub_continue(fs_info);
3272 	if (ret)
3273 		return ret;
3274 
3275 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3276 	if (!block_group)
3277 		return -ENOENT;
3278 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3279 	length = block_group->length;
3280 	btrfs_put_block_group(block_group);
3281 
3282 	/*
3283 	 * On a zoned file system, discard the whole block group, this will
3284 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3285 	 * resetting the zone fails, don't treat it as a fatal problem from the
3286 	 * filesystem's point of view.
3287 	 */
3288 	if (btrfs_is_zoned(fs_info)) {
3289 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3290 		if (ret)
3291 			btrfs_info(fs_info,
3292 				"failed to reset zone %llu after relocation",
3293 				chunk_offset);
3294 	}
3295 
3296 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3297 						     chunk_offset);
3298 	if (IS_ERR(trans)) {
3299 		ret = PTR_ERR(trans);
3300 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3301 		return ret;
3302 	}
3303 
3304 	/*
3305 	 * step two, delete the device extents and the
3306 	 * chunk tree entries
3307 	 */
3308 	ret = btrfs_remove_chunk(trans, chunk_offset);
3309 	btrfs_end_transaction(trans);
3310 	return ret;
3311 }
3312 
3313 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3314 {
3315 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3316 	struct btrfs_path *path;
3317 	struct extent_buffer *leaf;
3318 	struct btrfs_chunk *chunk;
3319 	struct btrfs_key key;
3320 	struct btrfs_key found_key;
3321 	u64 chunk_type;
3322 	bool retried = false;
3323 	int failed = 0;
3324 	int ret;
3325 
3326 	path = btrfs_alloc_path();
3327 	if (!path)
3328 		return -ENOMEM;
3329 
3330 again:
3331 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3332 	key.offset = (u64)-1;
3333 	key.type = BTRFS_CHUNK_ITEM_KEY;
3334 
3335 	while (1) {
3336 		mutex_lock(&fs_info->reclaim_bgs_lock);
3337 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3338 		if (ret < 0) {
3339 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3340 			goto error;
3341 		}
3342 		BUG_ON(ret == 0); /* Corruption */
3343 
3344 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3345 					  key.type);
3346 		if (ret)
3347 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3348 		if (ret < 0)
3349 			goto error;
3350 		if (ret > 0)
3351 			break;
3352 
3353 		leaf = path->nodes[0];
3354 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3355 
3356 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3357 				       struct btrfs_chunk);
3358 		chunk_type = btrfs_chunk_type(leaf, chunk);
3359 		btrfs_release_path(path);
3360 
3361 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3362 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3363 			if (ret == -ENOSPC)
3364 				failed++;
3365 			else
3366 				BUG_ON(ret);
3367 		}
3368 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3369 
3370 		if (found_key.offset == 0)
3371 			break;
3372 		key.offset = found_key.offset - 1;
3373 	}
3374 	ret = 0;
3375 	if (failed && !retried) {
3376 		failed = 0;
3377 		retried = true;
3378 		goto again;
3379 	} else if (WARN_ON(failed && retried)) {
3380 		ret = -ENOSPC;
3381 	}
3382 error:
3383 	btrfs_free_path(path);
3384 	return ret;
3385 }
3386 
3387 /*
3388  * return 1 : allocate a data chunk successfully,
3389  * return <0: errors during allocating a data chunk,
3390  * return 0 : no need to allocate a data chunk.
3391  */
3392 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3393 				      u64 chunk_offset)
3394 {
3395 	struct btrfs_block_group *cache;
3396 	u64 bytes_used;
3397 	u64 chunk_type;
3398 
3399 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3400 	ASSERT(cache);
3401 	chunk_type = cache->flags;
3402 	btrfs_put_block_group(cache);
3403 
3404 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3405 		return 0;
3406 
3407 	spin_lock(&fs_info->data_sinfo->lock);
3408 	bytes_used = fs_info->data_sinfo->bytes_used;
3409 	spin_unlock(&fs_info->data_sinfo->lock);
3410 
3411 	if (!bytes_used) {
3412 		struct btrfs_trans_handle *trans;
3413 		int ret;
3414 
3415 		trans =	btrfs_join_transaction(fs_info->tree_root);
3416 		if (IS_ERR(trans))
3417 			return PTR_ERR(trans);
3418 
3419 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3420 		btrfs_end_transaction(trans);
3421 		if (ret < 0)
3422 			return ret;
3423 		return 1;
3424 	}
3425 
3426 	return 0;
3427 }
3428 
3429 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3430 			       struct btrfs_balance_control *bctl)
3431 {
3432 	struct btrfs_root *root = fs_info->tree_root;
3433 	struct btrfs_trans_handle *trans;
3434 	struct btrfs_balance_item *item;
3435 	struct btrfs_disk_balance_args disk_bargs;
3436 	struct btrfs_path *path;
3437 	struct extent_buffer *leaf;
3438 	struct btrfs_key key;
3439 	int ret, err;
3440 
3441 	path = btrfs_alloc_path();
3442 	if (!path)
3443 		return -ENOMEM;
3444 
3445 	trans = btrfs_start_transaction(root, 0);
3446 	if (IS_ERR(trans)) {
3447 		btrfs_free_path(path);
3448 		return PTR_ERR(trans);
3449 	}
3450 
3451 	key.objectid = BTRFS_BALANCE_OBJECTID;
3452 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3453 	key.offset = 0;
3454 
3455 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3456 				      sizeof(*item));
3457 	if (ret)
3458 		goto out;
3459 
3460 	leaf = path->nodes[0];
3461 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3462 
3463 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3464 
3465 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3466 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3467 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3468 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3469 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3470 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3471 
3472 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3473 
3474 	btrfs_mark_buffer_dirty(leaf);
3475 out:
3476 	btrfs_free_path(path);
3477 	err = btrfs_commit_transaction(trans);
3478 	if (err && !ret)
3479 		ret = err;
3480 	return ret;
3481 }
3482 
3483 static int del_balance_item(struct btrfs_fs_info *fs_info)
3484 {
3485 	struct btrfs_root *root = fs_info->tree_root;
3486 	struct btrfs_trans_handle *trans;
3487 	struct btrfs_path *path;
3488 	struct btrfs_key key;
3489 	int ret, err;
3490 
3491 	path = btrfs_alloc_path();
3492 	if (!path)
3493 		return -ENOMEM;
3494 
3495 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3496 	if (IS_ERR(trans)) {
3497 		btrfs_free_path(path);
3498 		return PTR_ERR(trans);
3499 	}
3500 
3501 	key.objectid = BTRFS_BALANCE_OBJECTID;
3502 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3503 	key.offset = 0;
3504 
3505 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3506 	if (ret < 0)
3507 		goto out;
3508 	if (ret > 0) {
3509 		ret = -ENOENT;
3510 		goto out;
3511 	}
3512 
3513 	ret = btrfs_del_item(trans, root, path);
3514 out:
3515 	btrfs_free_path(path);
3516 	err = btrfs_commit_transaction(trans);
3517 	if (err && !ret)
3518 		ret = err;
3519 	return ret;
3520 }
3521 
3522 /*
3523  * This is a heuristic used to reduce the number of chunks balanced on
3524  * resume after balance was interrupted.
3525  */
3526 static void update_balance_args(struct btrfs_balance_control *bctl)
3527 {
3528 	/*
3529 	 * Turn on soft mode for chunk types that were being converted.
3530 	 */
3531 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3532 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3533 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3534 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3535 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3536 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3537 
3538 	/*
3539 	 * Turn on usage filter if is not already used.  The idea is
3540 	 * that chunks that we have already balanced should be
3541 	 * reasonably full.  Don't do it for chunks that are being
3542 	 * converted - that will keep us from relocating unconverted
3543 	 * (albeit full) chunks.
3544 	 */
3545 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3546 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3547 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3548 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3549 		bctl->data.usage = 90;
3550 	}
3551 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3552 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3553 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3554 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3555 		bctl->sys.usage = 90;
3556 	}
3557 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3558 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3559 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3560 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3561 		bctl->meta.usage = 90;
3562 	}
3563 }
3564 
3565 /*
3566  * Clear the balance status in fs_info and delete the balance item from disk.
3567  */
3568 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3569 {
3570 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3571 	int ret;
3572 
3573 	BUG_ON(!fs_info->balance_ctl);
3574 
3575 	spin_lock(&fs_info->balance_lock);
3576 	fs_info->balance_ctl = NULL;
3577 	spin_unlock(&fs_info->balance_lock);
3578 
3579 	kfree(bctl);
3580 	ret = del_balance_item(fs_info);
3581 	if (ret)
3582 		btrfs_handle_fs_error(fs_info, ret, NULL);
3583 }
3584 
3585 /*
3586  * Balance filters.  Return 1 if chunk should be filtered out
3587  * (should not be balanced).
3588  */
3589 static int chunk_profiles_filter(u64 chunk_type,
3590 				 struct btrfs_balance_args *bargs)
3591 {
3592 	chunk_type = chunk_to_extended(chunk_type) &
3593 				BTRFS_EXTENDED_PROFILE_MASK;
3594 
3595 	if (bargs->profiles & chunk_type)
3596 		return 0;
3597 
3598 	return 1;
3599 }
3600 
3601 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3602 			      struct btrfs_balance_args *bargs)
3603 {
3604 	struct btrfs_block_group *cache;
3605 	u64 chunk_used;
3606 	u64 user_thresh_min;
3607 	u64 user_thresh_max;
3608 	int ret = 1;
3609 
3610 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3611 	chunk_used = cache->used;
3612 
3613 	if (bargs->usage_min == 0)
3614 		user_thresh_min = 0;
3615 	else
3616 		user_thresh_min = div_factor_fine(cache->length,
3617 						  bargs->usage_min);
3618 
3619 	if (bargs->usage_max == 0)
3620 		user_thresh_max = 1;
3621 	else if (bargs->usage_max > 100)
3622 		user_thresh_max = cache->length;
3623 	else
3624 		user_thresh_max = div_factor_fine(cache->length,
3625 						  bargs->usage_max);
3626 
3627 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3628 		ret = 0;
3629 
3630 	btrfs_put_block_group(cache);
3631 	return ret;
3632 }
3633 
3634 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3635 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3636 {
3637 	struct btrfs_block_group *cache;
3638 	u64 chunk_used, user_thresh;
3639 	int ret = 1;
3640 
3641 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3642 	chunk_used = cache->used;
3643 
3644 	if (bargs->usage_min == 0)
3645 		user_thresh = 1;
3646 	else if (bargs->usage > 100)
3647 		user_thresh = cache->length;
3648 	else
3649 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3650 
3651 	if (chunk_used < user_thresh)
3652 		ret = 0;
3653 
3654 	btrfs_put_block_group(cache);
3655 	return ret;
3656 }
3657 
3658 static int chunk_devid_filter(struct extent_buffer *leaf,
3659 			      struct btrfs_chunk *chunk,
3660 			      struct btrfs_balance_args *bargs)
3661 {
3662 	struct btrfs_stripe *stripe;
3663 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3664 	int i;
3665 
3666 	for (i = 0; i < num_stripes; i++) {
3667 		stripe = btrfs_stripe_nr(chunk, i);
3668 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3669 			return 0;
3670 	}
3671 
3672 	return 1;
3673 }
3674 
3675 static u64 calc_data_stripes(u64 type, int num_stripes)
3676 {
3677 	const int index = btrfs_bg_flags_to_raid_index(type);
3678 	const int ncopies = btrfs_raid_array[index].ncopies;
3679 	const int nparity = btrfs_raid_array[index].nparity;
3680 
3681 	return (num_stripes - nparity) / ncopies;
3682 }
3683 
3684 /* [pstart, pend) */
3685 static int chunk_drange_filter(struct extent_buffer *leaf,
3686 			       struct btrfs_chunk *chunk,
3687 			       struct btrfs_balance_args *bargs)
3688 {
3689 	struct btrfs_stripe *stripe;
3690 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3691 	u64 stripe_offset;
3692 	u64 stripe_length;
3693 	u64 type;
3694 	int factor;
3695 	int i;
3696 
3697 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3698 		return 0;
3699 
3700 	type = btrfs_chunk_type(leaf, chunk);
3701 	factor = calc_data_stripes(type, num_stripes);
3702 
3703 	for (i = 0; i < num_stripes; i++) {
3704 		stripe = btrfs_stripe_nr(chunk, i);
3705 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3706 			continue;
3707 
3708 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3709 		stripe_length = btrfs_chunk_length(leaf, chunk);
3710 		stripe_length = div_u64(stripe_length, factor);
3711 
3712 		if (stripe_offset < bargs->pend &&
3713 		    stripe_offset + stripe_length > bargs->pstart)
3714 			return 0;
3715 	}
3716 
3717 	return 1;
3718 }
3719 
3720 /* [vstart, vend) */
3721 static int chunk_vrange_filter(struct extent_buffer *leaf,
3722 			       struct btrfs_chunk *chunk,
3723 			       u64 chunk_offset,
3724 			       struct btrfs_balance_args *bargs)
3725 {
3726 	if (chunk_offset < bargs->vend &&
3727 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3728 		/* at least part of the chunk is inside this vrange */
3729 		return 0;
3730 
3731 	return 1;
3732 }
3733 
3734 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3735 			       struct btrfs_chunk *chunk,
3736 			       struct btrfs_balance_args *bargs)
3737 {
3738 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3739 
3740 	if (bargs->stripes_min <= num_stripes
3741 			&& num_stripes <= bargs->stripes_max)
3742 		return 0;
3743 
3744 	return 1;
3745 }
3746 
3747 static int chunk_soft_convert_filter(u64 chunk_type,
3748 				     struct btrfs_balance_args *bargs)
3749 {
3750 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3751 		return 0;
3752 
3753 	chunk_type = chunk_to_extended(chunk_type) &
3754 				BTRFS_EXTENDED_PROFILE_MASK;
3755 
3756 	if (bargs->target == chunk_type)
3757 		return 1;
3758 
3759 	return 0;
3760 }
3761 
3762 static int should_balance_chunk(struct extent_buffer *leaf,
3763 				struct btrfs_chunk *chunk, u64 chunk_offset)
3764 {
3765 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3766 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3767 	struct btrfs_balance_args *bargs = NULL;
3768 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3769 
3770 	/* type filter */
3771 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3772 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3773 		return 0;
3774 	}
3775 
3776 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3777 		bargs = &bctl->data;
3778 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3779 		bargs = &bctl->sys;
3780 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3781 		bargs = &bctl->meta;
3782 
3783 	/* profiles filter */
3784 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3785 	    chunk_profiles_filter(chunk_type, bargs)) {
3786 		return 0;
3787 	}
3788 
3789 	/* usage filter */
3790 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3791 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3792 		return 0;
3793 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3794 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3795 		return 0;
3796 	}
3797 
3798 	/* devid filter */
3799 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3800 	    chunk_devid_filter(leaf, chunk, bargs)) {
3801 		return 0;
3802 	}
3803 
3804 	/* drange filter, makes sense only with devid filter */
3805 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3806 	    chunk_drange_filter(leaf, chunk, bargs)) {
3807 		return 0;
3808 	}
3809 
3810 	/* vrange filter */
3811 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3812 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3813 		return 0;
3814 	}
3815 
3816 	/* stripes filter */
3817 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3818 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3819 		return 0;
3820 	}
3821 
3822 	/* soft profile changing mode */
3823 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3824 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3825 		return 0;
3826 	}
3827 
3828 	/*
3829 	 * limited by count, must be the last filter
3830 	 */
3831 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3832 		if (bargs->limit == 0)
3833 			return 0;
3834 		else
3835 			bargs->limit--;
3836 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3837 		/*
3838 		 * Same logic as the 'limit' filter; the minimum cannot be
3839 		 * determined here because we do not have the global information
3840 		 * about the count of all chunks that satisfy the filters.
3841 		 */
3842 		if (bargs->limit_max == 0)
3843 			return 0;
3844 		else
3845 			bargs->limit_max--;
3846 	}
3847 
3848 	return 1;
3849 }
3850 
3851 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3852 {
3853 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3854 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3855 	u64 chunk_type;
3856 	struct btrfs_chunk *chunk;
3857 	struct btrfs_path *path = NULL;
3858 	struct btrfs_key key;
3859 	struct btrfs_key found_key;
3860 	struct extent_buffer *leaf;
3861 	int slot;
3862 	int ret;
3863 	int enospc_errors = 0;
3864 	bool counting = true;
3865 	/* The single value limit and min/max limits use the same bytes in the */
3866 	u64 limit_data = bctl->data.limit;
3867 	u64 limit_meta = bctl->meta.limit;
3868 	u64 limit_sys = bctl->sys.limit;
3869 	u32 count_data = 0;
3870 	u32 count_meta = 0;
3871 	u32 count_sys = 0;
3872 	int chunk_reserved = 0;
3873 
3874 	path = btrfs_alloc_path();
3875 	if (!path) {
3876 		ret = -ENOMEM;
3877 		goto error;
3878 	}
3879 
3880 	/* zero out stat counters */
3881 	spin_lock(&fs_info->balance_lock);
3882 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3883 	spin_unlock(&fs_info->balance_lock);
3884 again:
3885 	if (!counting) {
3886 		/*
3887 		 * The single value limit and min/max limits use the same bytes
3888 		 * in the
3889 		 */
3890 		bctl->data.limit = limit_data;
3891 		bctl->meta.limit = limit_meta;
3892 		bctl->sys.limit = limit_sys;
3893 	}
3894 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3895 	key.offset = (u64)-1;
3896 	key.type = BTRFS_CHUNK_ITEM_KEY;
3897 
3898 	while (1) {
3899 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3900 		    atomic_read(&fs_info->balance_cancel_req)) {
3901 			ret = -ECANCELED;
3902 			goto error;
3903 		}
3904 
3905 		mutex_lock(&fs_info->reclaim_bgs_lock);
3906 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3907 		if (ret < 0) {
3908 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3909 			goto error;
3910 		}
3911 
3912 		/*
3913 		 * this shouldn't happen, it means the last relocate
3914 		 * failed
3915 		 */
3916 		if (ret == 0)
3917 			BUG(); /* FIXME break ? */
3918 
3919 		ret = btrfs_previous_item(chunk_root, path, 0,
3920 					  BTRFS_CHUNK_ITEM_KEY);
3921 		if (ret) {
3922 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3923 			ret = 0;
3924 			break;
3925 		}
3926 
3927 		leaf = path->nodes[0];
3928 		slot = path->slots[0];
3929 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3930 
3931 		if (found_key.objectid != key.objectid) {
3932 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3933 			break;
3934 		}
3935 
3936 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3937 		chunk_type = btrfs_chunk_type(leaf, chunk);
3938 
3939 		if (!counting) {
3940 			spin_lock(&fs_info->balance_lock);
3941 			bctl->stat.considered++;
3942 			spin_unlock(&fs_info->balance_lock);
3943 		}
3944 
3945 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3946 
3947 		btrfs_release_path(path);
3948 		if (!ret) {
3949 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3950 			goto loop;
3951 		}
3952 
3953 		if (counting) {
3954 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3955 			spin_lock(&fs_info->balance_lock);
3956 			bctl->stat.expected++;
3957 			spin_unlock(&fs_info->balance_lock);
3958 
3959 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3960 				count_data++;
3961 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3962 				count_sys++;
3963 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3964 				count_meta++;
3965 
3966 			goto loop;
3967 		}
3968 
3969 		/*
3970 		 * Apply limit_min filter, no need to check if the LIMITS
3971 		 * filter is used, limit_min is 0 by default
3972 		 */
3973 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3974 					count_data < bctl->data.limit_min)
3975 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3976 					count_meta < bctl->meta.limit_min)
3977 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3978 					count_sys < bctl->sys.limit_min)) {
3979 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3980 			goto loop;
3981 		}
3982 
3983 		if (!chunk_reserved) {
3984 			/*
3985 			 * We may be relocating the only data chunk we have,
3986 			 * which could potentially end up with losing data's
3987 			 * raid profile, so lets allocate an empty one in
3988 			 * advance.
3989 			 */
3990 			ret = btrfs_may_alloc_data_chunk(fs_info,
3991 							 found_key.offset);
3992 			if (ret < 0) {
3993 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3994 				goto error;
3995 			} else if (ret == 1) {
3996 				chunk_reserved = 1;
3997 			}
3998 		}
3999 
4000 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4001 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4002 		if (ret == -ENOSPC) {
4003 			enospc_errors++;
4004 		} else if (ret == -ETXTBSY) {
4005 			btrfs_info(fs_info,
4006 	   "skipping relocation of block group %llu due to active swapfile",
4007 				   found_key.offset);
4008 			ret = 0;
4009 		} else if (ret) {
4010 			goto error;
4011 		} else {
4012 			spin_lock(&fs_info->balance_lock);
4013 			bctl->stat.completed++;
4014 			spin_unlock(&fs_info->balance_lock);
4015 		}
4016 loop:
4017 		if (found_key.offset == 0)
4018 			break;
4019 		key.offset = found_key.offset - 1;
4020 	}
4021 
4022 	if (counting) {
4023 		btrfs_release_path(path);
4024 		counting = false;
4025 		goto again;
4026 	}
4027 error:
4028 	btrfs_free_path(path);
4029 	if (enospc_errors) {
4030 		btrfs_info(fs_info, "%d enospc errors during balance",
4031 			   enospc_errors);
4032 		if (!ret)
4033 			ret = -ENOSPC;
4034 	}
4035 
4036 	return ret;
4037 }
4038 
4039 /**
4040  * alloc_profile_is_valid - see if a given profile is valid and reduced
4041  * @flags: profile to validate
4042  * @extended: if true @flags is treated as an extended profile
4043  */
4044 static int alloc_profile_is_valid(u64 flags, int extended)
4045 {
4046 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4047 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4048 
4049 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4050 
4051 	/* 1) check that all other bits are zeroed */
4052 	if (flags & ~mask)
4053 		return 0;
4054 
4055 	/* 2) see if profile is reduced */
4056 	if (flags == 0)
4057 		return !extended; /* "0" is valid for usual profiles */
4058 
4059 	return has_single_bit_set(flags);
4060 }
4061 
4062 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4063 {
4064 	/* cancel requested || normal exit path */
4065 	return atomic_read(&fs_info->balance_cancel_req) ||
4066 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4067 		 atomic_read(&fs_info->balance_cancel_req) == 0);
4068 }
4069 
4070 /*
4071  * Validate target profile against allowed profiles and return true if it's OK.
4072  * Otherwise print the error message and return false.
4073  */
4074 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4075 		const struct btrfs_balance_args *bargs,
4076 		u64 allowed, const char *type)
4077 {
4078 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4079 		return true;
4080 
4081 	if (fs_info->sectorsize < PAGE_SIZE &&
4082 		bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
4083 		btrfs_err(fs_info,
4084 		"RAID56 is not yet supported for sectorsize %u with page size %lu",
4085 			  fs_info->sectorsize, PAGE_SIZE);
4086 		return false;
4087 	}
4088 	/* Profile is valid and does not have bits outside of the allowed set */
4089 	if (alloc_profile_is_valid(bargs->target, 1) &&
4090 	    (bargs->target & ~allowed) == 0)
4091 		return true;
4092 
4093 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4094 			type, btrfs_bg_type_to_raid_name(bargs->target));
4095 	return false;
4096 }
4097 
4098 /*
4099  * Fill @buf with textual description of balance filter flags @bargs, up to
4100  * @size_buf including the terminating null. The output may be trimmed if it
4101  * does not fit into the provided buffer.
4102  */
4103 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4104 				 u32 size_buf)
4105 {
4106 	int ret;
4107 	u32 size_bp = size_buf;
4108 	char *bp = buf;
4109 	u64 flags = bargs->flags;
4110 	char tmp_buf[128] = {'\0'};
4111 
4112 	if (!flags)
4113 		return;
4114 
4115 #define CHECK_APPEND_NOARG(a)						\
4116 	do {								\
4117 		ret = snprintf(bp, size_bp, (a));			\
4118 		if (ret < 0 || ret >= size_bp)				\
4119 			goto out_overflow;				\
4120 		size_bp -= ret;						\
4121 		bp += ret;						\
4122 	} while (0)
4123 
4124 #define CHECK_APPEND_1ARG(a, v1)					\
4125 	do {								\
4126 		ret = snprintf(bp, size_bp, (a), (v1));			\
4127 		if (ret < 0 || ret >= size_bp)				\
4128 			goto out_overflow;				\
4129 		size_bp -= ret;						\
4130 		bp += ret;						\
4131 	} while (0)
4132 
4133 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4134 	do {								\
4135 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4136 		if (ret < 0 || ret >= size_bp)				\
4137 			goto out_overflow;				\
4138 		size_bp -= ret;						\
4139 		bp += ret;						\
4140 	} while (0)
4141 
4142 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4143 		CHECK_APPEND_1ARG("convert=%s,",
4144 				  btrfs_bg_type_to_raid_name(bargs->target));
4145 
4146 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4147 		CHECK_APPEND_NOARG("soft,");
4148 
4149 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4150 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4151 					    sizeof(tmp_buf));
4152 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4153 	}
4154 
4155 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4156 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4157 
4158 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4159 		CHECK_APPEND_2ARG("usage=%u..%u,",
4160 				  bargs->usage_min, bargs->usage_max);
4161 
4162 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4163 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4164 
4165 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4166 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4167 				  bargs->pstart, bargs->pend);
4168 
4169 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4170 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4171 				  bargs->vstart, bargs->vend);
4172 
4173 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4174 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4175 
4176 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4177 		CHECK_APPEND_2ARG("limit=%u..%u,",
4178 				bargs->limit_min, bargs->limit_max);
4179 
4180 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4181 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4182 				  bargs->stripes_min, bargs->stripes_max);
4183 
4184 #undef CHECK_APPEND_2ARG
4185 #undef CHECK_APPEND_1ARG
4186 #undef CHECK_APPEND_NOARG
4187 
4188 out_overflow:
4189 
4190 	if (size_bp < size_buf)
4191 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4192 	else
4193 		buf[0] = '\0';
4194 }
4195 
4196 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4197 {
4198 	u32 size_buf = 1024;
4199 	char tmp_buf[192] = {'\0'};
4200 	char *buf;
4201 	char *bp;
4202 	u32 size_bp = size_buf;
4203 	int ret;
4204 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4205 
4206 	buf = kzalloc(size_buf, GFP_KERNEL);
4207 	if (!buf)
4208 		return;
4209 
4210 	bp = buf;
4211 
4212 #define CHECK_APPEND_1ARG(a, v1)					\
4213 	do {								\
4214 		ret = snprintf(bp, size_bp, (a), (v1));			\
4215 		if (ret < 0 || ret >= size_bp)				\
4216 			goto out_overflow;				\
4217 		size_bp -= ret;						\
4218 		bp += ret;						\
4219 	} while (0)
4220 
4221 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4222 		CHECK_APPEND_1ARG("%s", "-f ");
4223 
4224 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4225 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4226 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4227 	}
4228 
4229 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4230 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4231 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4232 	}
4233 
4234 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4235 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4236 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4237 	}
4238 
4239 #undef CHECK_APPEND_1ARG
4240 
4241 out_overflow:
4242 
4243 	if (size_bp < size_buf)
4244 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4245 	btrfs_info(fs_info, "balance: %s %s",
4246 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4247 		   "resume" : "start", buf);
4248 
4249 	kfree(buf);
4250 }
4251 
4252 /*
4253  * Should be called with balance mutexe held
4254  */
4255 int btrfs_balance(struct btrfs_fs_info *fs_info,
4256 		  struct btrfs_balance_control *bctl,
4257 		  struct btrfs_ioctl_balance_args *bargs)
4258 {
4259 	u64 meta_target, data_target;
4260 	u64 allowed;
4261 	int mixed = 0;
4262 	int ret;
4263 	u64 num_devices;
4264 	unsigned seq;
4265 	bool reducing_redundancy;
4266 	int i;
4267 
4268 	if (btrfs_fs_closing(fs_info) ||
4269 	    atomic_read(&fs_info->balance_pause_req) ||
4270 	    btrfs_should_cancel_balance(fs_info)) {
4271 		ret = -EINVAL;
4272 		goto out;
4273 	}
4274 
4275 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4276 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4277 		mixed = 1;
4278 
4279 	/*
4280 	 * In case of mixed groups both data and meta should be picked,
4281 	 * and identical options should be given for both of them.
4282 	 */
4283 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4284 	if (mixed && (bctl->flags & allowed)) {
4285 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4286 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4287 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4288 			btrfs_err(fs_info,
4289 	  "balance: mixed groups data and metadata options must be the same");
4290 			ret = -EINVAL;
4291 			goto out;
4292 		}
4293 	}
4294 
4295 	/*
4296 	 * rw_devices will not change at the moment, device add/delete/replace
4297 	 * are exclusive
4298 	 */
4299 	num_devices = fs_info->fs_devices->rw_devices;
4300 
4301 	/*
4302 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4303 	 * special bit for it, to make it easier to distinguish.  Thus we need
4304 	 * to set it manually, or balance would refuse the profile.
4305 	 */
4306 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4307 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4308 		if (num_devices >= btrfs_raid_array[i].devs_min)
4309 			allowed |= btrfs_raid_array[i].bg_flag;
4310 
4311 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4312 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4313 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4314 		ret = -EINVAL;
4315 		goto out;
4316 	}
4317 
4318 	/*
4319 	 * Allow to reduce metadata or system integrity only if force set for
4320 	 * profiles with redundancy (copies, parity)
4321 	 */
4322 	allowed = 0;
4323 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4324 		if (btrfs_raid_array[i].ncopies >= 2 ||
4325 		    btrfs_raid_array[i].tolerated_failures >= 1)
4326 			allowed |= btrfs_raid_array[i].bg_flag;
4327 	}
4328 	do {
4329 		seq = read_seqbegin(&fs_info->profiles_lock);
4330 
4331 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4332 		     (fs_info->avail_system_alloc_bits & allowed) &&
4333 		     !(bctl->sys.target & allowed)) ||
4334 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4335 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4336 		     !(bctl->meta.target & allowed)))
4337 			reducing_redundancy = true;
4338 		else
4339 			reducing_redundancy = false;
4340 
4341 		/* if we're not converting, the target field is uninitialized */
4342 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4343 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4344 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4345 			bctl->data.target : fs_info->avail_data_alloc_bits;
4346 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4347 
4348 	if (reducing_redundancy) {
4349 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4350 			btrfs_info(fs_info,
4351 			   "balance: force reducing metadata redundancy");
4352 		} else {
4353 			btrfs_err(fs_info,
4354 	"balance: reduces metadata redundancy, use --force if you want this");
4355 			ret = -EINVAL;
4356 			goto out;
4357 		}
4358 	}
4359 
4360 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4361 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4362 		btrfs_warn(fs_info,
4363 	"balance: metadata profile %s has lower redundancy than data profile %s",
4364 				btrfs_bg_type_to_raid_name(meta_target),
4365 				btrfs_bg_type_to_raid_name(data_target));
4366 	}
4367 
4368 	ret = insert_balance_item(fs_info, bctl);
4369 	if (ret && ret != -EEXIST)
4370 		goto out;
4371 
4372 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4373 		BUG_ON(ret == -EEXIST);
4374 		BUG_ON(fs_info->balance_ctl);
4375 		spin_lock(&fs_info->balance_lock);
4376 		fs_info->balance_ctl = bctl;
4377 		spin_unlock(&fs_info->balance_lock);
4378 	} else {
4379 		BUG_ON(ret != -EEXIST);
4380 		spin_lock(&fs_info->balance_lock);
4381 		update_balance_args(bctl);
4382 		spin_unlock(&fs_info->balance_lock);
4383 	}
4384 
4385 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4386 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4387 	describe_balance_start_or_resume(fs_info);
4388 	mutex_unlock(&fs_info->balance_mutex);
4389 
4390 	ret = __btrfs_balance(fs_info);
4391 
4392 	mutex_lock(&fs_info->balance_mutex);
4393 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4394 		btrfs_info(fs_info, "balance: paused");
4395 	/*
4396 	 * Balance can be canceled by:
4397 	 *
4398 	 * - Regular cancel request
4399 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4400 	 *
4401 	 * - Fatal signal to "btrfs" process
4402 	 *   Either the signal caught by wait_reserve_ticket() and callers
4403 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4404 	 *   got -ECANCELED.
4405 	 *   Either way, in this case balance_cancel_req = 0, and
4406 	 *   ret == -EINTR or ret == -ECANCELED.
4407 	 *
4408 	 * So here we only check the return value to catch canceled balance.
4409 	 */
4410 	else if (ret == -ECANCELED || ret == -EINTR)
4411 		btrfs_info(fs_info, "balance: canceled");
4412 	else
4413 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4414 
4415 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4416 
4417 	if (bargs) {
4418 		memset(bargs, 0, sizeof(*bargs));
4419 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4420 	}
4421 
4422 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4423 	    balance_need_close(fs_info)) {
4424 		reset_balance_state(fs_info);
4425 		btrfs_exclop_finish(fs_info);
4426 	}
4427 
4428 	wake_up(&fs_info->balance_wait_q);
4429 
4430 	return ret;
4431 out:
4432 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4433 		reset_balance_state(fs_info);
4434 	else
4435 		kfree(bctl);
4436 	btrfs_exclop_finish(fs_info);
4437 
4438 	return ret;
4439 }
4440 
4441 static int balance_kthread(void *data)
4442 {
4443 	struct btrfs_fs_info *fs_info = data;
4444 	int ret = 0;
4445 
4446 	mutex_lock(&fs_info->balance_mutex);
4447 	if (fs_info->balance_ctl)
4448 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4449 	mutex_unlock(&fs_info->balance_mutex);
4450 
4451 	return ret;
4452 }
4453 
4454 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4455 {
4456 	struct task_struct *tsk;
4457 
4458 	mutex_lock(&fs_info->balance_mutex);
4459 	if (!fs_info->balance_ctl) {
4460 		mutex_unlock(&fs_info->balance_mutex);
4461 		return 0;
4462 	}
4463 	mutex_unlock(&fs_info->balance_mutex);
4464 
4465 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4466 		btrfs_info(fs_info, "balance: resume skipped");
4467 		return 0;
4468 	}
4469 
4470 	/*
4471 	 * A ro->rw remount sequence should continue with the paused balance
4472 	 * regardless of who pauses it, system or the user as of now, so set
4473 	 * the resume flag.
4474 	 */
4475 	spin_lock(&fs_info->balance_lock);
4476 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4477 	spin_unlock(&fs_info->balance_lock);
4478 
4479 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4480 	return PTR_ERR_OR_ZERO(tsk);
4481 }
4482 
4483 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4484 {
4485 	struct btrfs_balance_control *bctl;
4486 	struct btrfs_balance_item *item;
4487 	struct btrfs_disk_balance_args disk_bargs;
4488 	struct btrfs_path *path;
4489 	struct extent_buffer *leaf;
4490 	struct btrfs_key key;
4491 	int ret;
4492 
4493 	path = btrfs_alloc_path();
4494 	if (!path)
4495 		return -ENOMEM;
4496 
4497 	key.objectid = BTRFS_BALANCE_OBJECTID;
4498 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4499 	key.offset = 0;
4500 
4501 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4502 	if (ret < 0)
4503 		goto out;
4504 	if (ret > 0) { /* ret = -ENOENT; */
4505 		ret = 0;
4506 		goto out;
4507 	}
4508 
4509 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4510 	if (!bctl) {
4511 		ret = -ENOMEM;
4512 		goto out;
4513 	}
4514 
4515 	leaf = path->nodes[0];
4516 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4517 
4518 	bctl->flags = btrfs_balance_flags(leaf, item);
4519 	bctl->flags |= BTRFS_BALANCE_RESUME;
4520 
4521 	btrfs_balance_data(leaf, item, &disk_bargs);
4522 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4523 	btrfs_balance_meta(leaf, item, &disk_bargs);
4524 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4525 	btrfs_balance_sys(leaf, item, &disk_bargs);
4526 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4527 
4528 	/*
4529 	 * This should never happen, as the paused balance state is recovered
4530 	 * during mount without any chance of other exclusive ops to collide.
4531 	 *
4532 	 * This gives the exclusive op status to balance and keeps in paused
4533 	 * state until user intervention (cancel or umount). If the ownership
4534 	 * cannot be assigned, show a message but do not fail. The balance
4535 	 * is in a paused state and must have fs_info::balance_ctl properly
4536 	 * set up.
4537 	 */
4538 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4539 		btrfs_warn(fs_info,
4540 	"balance: cannot set exclusive op status, resume manually");
4541 
4542 	btrfs_release_path(path);
4543 
4544 	mutex_lock(&fs_info->balance_mutex);
4545 	BUG_ON(fs_info->balance_ctl);
4546 	spin_lock(&fs_info->balance_lock);
4547 	fs_info->balance_ctl = bctl;
4548 	spin_unlock(&fs_info->balance_lock);
4549 	mutex_unlock(&fs_info->balance_mutex);
4550 out:
4551 	btrfs_free_path(path);
4552 	return ret;
4553 }
4554 
4555 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4556 {
4557 	int ret = 0;
4558 
4559 	mutex_lock(&fs_info->balance_mutex);
4560 	if (!fs_info->balance_ctl) {
4561 		mutex_unlock(&fs_info->balance_mutex);
4562 		return -ENOTCONN;
4563 	}
4564 
4565 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4566 		atomic_inc(&fs_info->balance_pause_req);
4567 		mutex_unlock(&fs_info->balance_mutex);
4568 
4569 		wait_event(fs_info->balance_wait_q,
4570 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4571 
4572 		mutex_lock(&fs_info->balance_mutex);
4573 		/* we are good with balance_ctl ripped off from under us */
4574 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4575 		atomic_dec(&fs_info->balance_pause_req);
4576 	} else {
4577 		ret = -ENOTCONN;
4578 	}
4579 
4580 	mutex_unlock(&fs_info->balance_mutex);
4581 	return ret;
4582 }
4583 
4584 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4585 {
4586 	mutex_lock(&fs_info->balance_mutex);
4587 	if (!fs_info->balance_ctl) {
4588 		mutex_unlock(&fs_info->balance_mutex);
4589 		return -ENOTCONN;
4590 	}
4591 
4592 	/*
4593 	 * A paused balance with the item stored on disk can be resumed at
4594 	 * mount time if the mount is read-write. Otherwise it's still paused
4595 	 * and we must not allow cancelling as it deletes the item.
4596 	 */
4597 	if (sb_rdonly(fs_info->sb)) {
4598 		mutex_unlock(&fs_info->balance_mutex);
4599 		return -EROFS;
4600 	}
4601 
4602 	atomic_inc(&fs_info->balance_cancel_req);
4603 	/*
4604 	 * if we are running just wait and return, balance item is
4605 	 * deleted in btrfs_balance in this case
4606 	 */
4607 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4608 		mutex_unlock(&fs_info->balance_mutex);
4609 		wait_event(fs_info->balance_wait_q,
4610 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4611 		mutex_lock(&fs_info->balance_mutex);
4612 	} else {
4613 		mutex_unlock(&fs_info->balance_mutex);
4614 		/*
4615 		 * Lock released to allow other waiters to continue, we'll
4616 		 * reexamine the status again.
4617 		 */
4618 		mutex_lock(&fs_info->balance_mutex);
4619 
4620 		if (fs_info->balance_ctl) {
4621 			reset_balance_state(fs_info);
4622 			btrfs_exclop_finish(fs_info);
4623 			btrfs_info(fs_info, "balance: canceled");
4624 		}
4625 	}
4626 
4627 	BUG_ON(fs_info->balance_ctl ||
4628 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4629 	atomic_dec(&fs_info->balance_cancel_req);
4630 	mutex_unlock(&fs_info->balance_mutex);
4631 	return 0;
4632 }
4633 
4634 int btrfs_uuid_scan_kthread(void *data)
4635 {
4636 	struct btrfs_fs_info *fs_info = data;
4637 	struct btrfs_root *root = fs_info->tree_root;
4638 	struct btrfs_key key;
4639 	struct btrfs_path *path = NULL;
4640 	int ret = 0;
4641 	struct extent_buffer *eb;
4642 	int slot;
4643 	struct btrfs_root_item root_item;
4644 	u32 item_size;
4645 	struct btrfs_trans_handle *trans = NULL;
4646 	bool closing = false;
4647 
4648 	path = btrfs_alloc_path();
4649 	if (!path) {
4650 		ret = -ENOMEM;
4651 		goto out;
4652 	}
4653 
4654 	key.objectid = 0;
4655 	key.type = BTRFS_ROOT_ITEM_KEY;
4656 	key.offset = 0;
4657 
4658 	while (1) {
4659 		if (btrfs_fs_closing(fs_info)) {
4660 			closing = true;
4661 			break;
4662 		}
4663 		ret = btrfs_search_forward(root, &key, path,
4664 				BTRFS_OLDEST_GENERATION);
4665 		if (ret) {
4666 			if (ret > 0)
4667 				ret = 0;
4668 			break;
4669 		}
4670 
4671 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4672 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4673 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4674 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4675 			goto skip;
4676 
4677 		eb = path->nodes[0];
4678 		slot = path->slots[0];
4679 		item_size = btrfs_item_size(eb, slot);
4680 		if (item_size < sizeof(root_item))
4681 			goto skip;
4682 
4683 		read_extent_buffer(eb, &root_item,
4684 				   btrfs_item_ptr_offset(eb, slot),
4685 				   (int)sizeof(root_item));
4686 		if (btrfs_root_refs(&root_item) == 0)
4687 			goto skip;
4688 
4689 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4690 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4691 			if (trans)
4692 				goto update_tree;
4693 
4694 			btrfs_release_path(path);
4695 			/*
4696 			 * 1 - subvol uuid item
4697 			 * 1 - received_subvol uuid item
4698 			 */
4699 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4700 			if (IS_ERR(trans)) {
4701 				ret = PTR_ERR(trans);
4702 				break;
4703 			}
4704 			continue;
4705 		} else {
4706 			goto skip;
4707 		}
4708 update_tree:
4709 		btrfs_release_path(path);
4710 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4711 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4712 						  BTRFS_UUID_KEY_SUBVOL,
4713 						  key.objectid);
4714 			if (ret < 0) {
4715 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4716 					ret);
4717 				break;
4718 			}
4719 		}
4720 
4721 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4722 			ret = btrfs_uuid_tree_add(trans,
4723 						  root_item.received_uuid,
4724 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4725 						  key.objectid);
4726 			if (ret < 0) {
4727 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4728 					ret);
4729 				break;
4730 			}
4731 		}
4732 
4733 skip:
4734 		btrfs_release_path(path);
4735 		if (trans) {
4736 			ret = btrfs_end_transaction(trans);
4737 			trans = NULL;
4738 			if (ret)
4739 				break;
4740 		}
4741 
4742 		if (key.offset < (u64)-1) {
4743 			key.offset++;
4744 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4745 			key.offset = 0;
4746 			key.type = BTRFS_ROOT_ITEM_KEY;
4747 		} else if (key.objectid < (u64)-1) {
4748 			key.offset = 0;
4749 			key.type = BTRFS_ROOT_ITEM_KEY;
4750 			key.objectid++;
4751 		} else {
4752 			break;
4753 		}
4754 		cond_resched();
4755 	}
4756 
4757 out:
4758 	btrfs_free_path(path);
4759 	if (trans && !IS_ERR(trans))
4760 		btrfs_end_transaction(trans);
4761 	if (ret)
4762 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4763 	else if (!closing)
4764 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4765 	up(&fs_info->uuid_tree_rescan_sem);
4766 	return 0;
4767 }
4768 
4769 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4770 {
4771 	struct btrfs_trans_handle *trans;
4772 	struct btrfs_root *tree_root = fs_info->tree_root;
4773 	struct btrfs_root *uuid_root;
4774 	struct task_struct *task;
4775 	int ret;
4776 
4777 	/*
4778 	 * 1 - root node
4779 	 * 1 - root item
4780 	 */
4781 	trans = btrfs_start_transaction(tree_root, 2);
4782 	if (IS_ERR(trans))
4783 		return PTR_ERR(trans);
4784 
4785 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4786 	if (IS_ERR(uuid_root)) {
4787 		ret = PTR_ERR(uuid_root);
4788 		btrfs_abort_transaction(trans, ret);
4789 		btrfs_end_transaction(trans);
4790 		return ret;
4791 	}
4792 
4793 	fs_info->uuid_root = uuid_root;
4794 
4795 	ret = btrfs_commit_transaction(trans);
4796 	if (ret)
4797 		return ret;
4798 
4799 	down(&fs_info->uuid_tree_rescan_sem);
4800 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4801 	if (IS_ERR(task)) {
4802 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4803 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4804 		up(&fs_info->uuid_tree_rescan_sem);
4805 		return PTR_ERR(task);
4806 	}
4807 
4808 	return 0;
4809 }
4810 
4811 /*
4812  * shrinking a device means finding all of the device extents past
4813  * the new size, and then following the back refs to the chunks.
4814  * The chunk relocation code actually frees the device extent
4815  */
4816 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4817 {
4818 	struct btrfs_fs_info *fs_info = device->fs_info;
4819 	struct btrfs_root *root = fs_info->dev_root;
4820 	struct btrfs_trans_handle *trans;
4821 	struct btrfs_dev_extent *dev_extent = NULL;
4822 	struct btrfs_path *path;
4823 	u64 length;
4824 	u64 chunk_offset;
4825 	int ret;
4826 	int slot;
4827 	int failed = 0;
4828 	bool retried = false;
4829 	struct extent_buffer *l;
4830 	struct btrfs_key key;
4831 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4832 	u64 old_total = btrfs_super_total_bytes(super_copy);
4833 	u64 old_size = btrfs_device_get_total_bytes(device);
4834 	u64 diff;
4835 	u64 start;
4836 
4837 	new_size = round_down(new_size, fs_info->sectorsize);
4838 	start = new_size;
4839 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4840 
4841 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4842 		return -EINVAL;
4843 
4844 	path = btrfs_alloc_path();
4845 	if (!path)
4846 		return -ENOMEM;
4847 
4848 	path->reada = READA_BACK;
4849 
4850 	trans = btrfs_start_transaction(root, 0);
4851 	if (IS_ERR(trans)) {
4852 		btrfs_free_path(path);
4853 		return PTR_ERR(trans);
4854 	}
4855 
4856 	mutex_lock(&fs_info->chunk_mutex);
4857 
4858 	btrfs_device_set_total_bytes(device, new_size);
4859 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4860 		device->fs_devices->total_rw_bytes -= diff;
4861 		atomic64_sub(diff, &fs_info->free_chunk_space);
4862 	}
4863 
4864 	/*
4865 	 * Once the device's size has been set to the new size, ensure all
4866 	 * in-memory chunks are synced to disk so that the loop below sees them
4867 	 * and relocates them accordingly.
4868 	 */
4869 	if (contains_pending_extent(device, &start, diff)) {
4870 		mutex_unlock(&fs_info->chunk_mutex);
4871 		ret = btrfs_commit_transaction(trans);
4872 		if (ret)
4873 			goto done;
4874 	} else {
4875 		mutex_unlock(&fs_info->chunk_mutex);
4876 		btrfs_end_transaction(trans);
4877 	}
4878 
4879 again:
4880 	key.objectid = device->devid;
4881 	key.offset = (u64)-1;
4882 	key.type = BTRFS_DEV_EXTENT_KEY;
4883 
4884 	do {
4885 		mutex_lock(&fs_info->reclaim_bgs_lock);
4886 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4887 		if (ret < 0) {
4888 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4889 			goto done;
4890 		}
4891 
4892 		ret = btrfs_previous_item(root, path, 0, key.type);
4893 		if (ret) {
4894 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4895 			if (ret < 0)
4896 				goto done;
4897 			ret = 0;
4898 			btrfs_release_path(path);
4899 			break;
4900 		}
4901 
4902 		l = path->nodes[0];
4903 		slot = path->slots[0];
4904 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4905 
4906 		if (key.objectid != device->devid) {
4907 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4908 			btrfs_release_path(path);
4909 			break;
4910 		}
4911 
4912 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4913 		length = btrfs_dev_extent_length(l, dev_extent);
4914 
4915 		if (key.offset + length <= new_size) {
4916 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4917 			btrfs_release_path(path);
4918 			break;
4919 		}
4920 
4921 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4922 		btrfs_release_path(path);
4923 
4924 		/*
4925 		 * We may be relocating the only data chunk we have,
4926 		 * which could potentially end up with losing data's
4927 		 * raid profile, so lets allocate an empty one in
4928 		 * advance.
4929 		 */
4930 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4931 		if (ret < 0) {
4932 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4933 			goto done;
4934 		}
4935 
4936 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4937 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4938 		if (ret == -ENOSPC) {
4939 			failed++;
4940 		} else if (ret) {
4941 			if (ret == -ETXTBSY) {
4942 				btrfs_warn(fs_info,
4943 		   "could not shrink block group %llu due to active swapfile",
4944 					   chunk_offset);
4945 			}
4946 			goto done;
4947 		}
4948 	} while (key.offset-- > 0);
4949 
4950 	if (failed && !retried) {
4951 		failed = 0;
4952 		retried = true;
4953 		goto again;
4954 	} else if (failed && retried) {
4955 		ret = -ENOSPC;
4956 		goto done;
4957 	}
4958 
4959 	/* Shrinking succeeded, else we would be at "done". */
4960 	trans = btrfs_start_transaction(root, 0);
4961 	if (IS_ERR(trans)) {
4962 		ret = PTR_ERR(trans);
4963 		goto done;
4964 	}
4965 
4966 	mutex_lock(&fs_info->chunk_mutex);
4967 	/* Clear all state bits beyond the shrunk device size */
4968 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4969 			  CHUNK_STATE_MASK);
4970 
4971 	btrfs_device_set_disk_total_bytes(device, new_size);
4972 	if (list_empty(&device->post_commit_list))
4973 		list_add_tail(&device->post_commit_list,
4974 			      &trans->transaction->dev_update_list);
4975 
4976 	WARN_ON(diff > old_total);
4977 	btrfs_set_super_total_bytes(super_copy,
4978 			round_down(old_total - diff, fs_info->sectorsize));
4979 	mutex_unlock(&fs_info->chunk_mutex);
4980 
4981 	btrfs_reserve_chunk_metadata(trans, false);
4982 	/* Now btrfs_update_device() will change the on-disk size. */
4983 	ret = btrfs_update_device(trans, device);
4984 	btrfs_trans_release_chunk_metadata(trans);
4985 	if (ret < 0) {
4986 		btrfs_abort_transaction(trans, ret);
4987 		btrfs_end_transaction(trans);
4988 	} else {
4989 		ret = btrfs_commit_transaction(trans);
4990 	}
4991 done:
4992 	btrfs_free_path(path);
4993 	if (ret) {
4994 		mutex_lock(&fs_info->chunk_mutex);
4995 		btrfs_device_set_total_bytes(device, old_size);
4996 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4997 			device->fs_devices->total_rw_bytes += diff;
4998 		atomic64_add(diff, &fs_info->free_chunk_space);
4999 		mutex_unlock(&fs_info->chunk_mutex);
5000 	}
5001 	return ret;
5002 }
5003 
5004 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5005 			   struct btrfs_key *key,
5006 			   struct btrfs_chunk *chunk, int item_size)
5007 {
5008 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5009 	struct btrfs_disk_key disk_key;
5010 	u32 array_size;
5011 	u8 *ptr;
5012 
5013 	lockdep_assert_held(&fs_info->chunk_mutex);
5014 
5015 	array_size = btrfs_super_sys_array_size(super_copy);
5016 	if (array_size + item_size + sizeof(disk_key)
5017 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5018 		return -EFBIG;
5019 
5020 	ptr = super_copy->sys_chunk_array + array_size;
5021 	btrfs_cpu_key_to_disk(&disk_key, key);
5022 	memcpy(ptr, &disk_key, sizeof(disk_key));
5023 	ptr += sizeof(disk_key);
5024 	memcpy(ptr, chunk, item_size);
5025 	item_size += sizeof(disk_key);
5026 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5027 
5028 	return 0;
5029 }
5030 
5031 /*
5032  * sort the devices in descending order by max_avail, total_avail
5033  */
5034 static int btrfs_cmp_device_info(const void *a, const void *b)
5035 {
5036 	const struct btrfs_device_info *di_a = a;
5037 	const struct btrfs_device_info *di_b = b;
5038 
5039 	if (di_a->max_avail > di_b->max_avail)
5040 		return -1;
5041 	if (di_a->max_avail < di_b->max_avail)
5042 		return 1;
5043 	if (di_a->total_avail > di_b->total_avail)
5044 		return -1;
5045 	if (di_a->total_avail < di_b->total_avail)
5046 		return 1;
5047 	return 0;
5048 }
5049 
5050 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5051 {
5052 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5053 		return;
5054 
5055 	btrfs_set_fs_incompat(info, RAID56);
5056 }
5057 
5058 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5059 {
5060 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5061 		return;
5062 
5063 	btrfs_set_fs_incompat(info, RAID1C34);
5064 }
5065 
5066 /*
5067  * Structure used internally for btrfs_create_chunk() function.
5068  * Wraps needed parameters.
5069  */
5070 struct alloc_chunk_ctl {
5071 	u64 start;
5072 	u64 type;
5073 	/* Total number of stripes to allocate */
5074 	int num_stripes;
5075 	/* sub_stripes info for map */
5076 	int sub_stripes;
5077 	/* Stripes per device */
5078 	int dev_stripes;
5079 	/* Maximum number of devices to use */
5080 	int devs_max;
5081 	/* Minimum number of devices to use */
5082 	int devs_min;
5083 	/* ndevs has to be a multiple of this */
5084 	int devs_increment;
5085 	/* Number of copies */
5086 	int ncopies;
5087 	/* Number of stripes worth of bytes to store parity information */
5088 	int nparity;
5089 	u64 max_stripe_size;
5090 	u64 max_chunk_size;
5091 	u64 dev_extent_min;
5092 	u64 stripe_size;
5093 	u64 chunk_size;
5094 	int ndevs;
5095 };
5096 
5097 static void init_alloc_chunk_ctl_policy_regular(
5098 				struct btrfs_fs_devices *fs_devices,
5099 				struct alloc_chunk_ctl *ctl)
5100 {
5101 	u64 type = ctl->type;
5102 
5103 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5104 		ctl->max_stripe_size = SZ_1G;
5105 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5106 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5107 		/* For larger filesystems, use larger metadata chunks */
5108 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5109 			ctl->max_stripe_size = SZ_1G;
5110 		else
5111 			ctl->max_stripe_size = SZ_256M;
5112 		ctl->max_chunk_size = ctl->max_stripe_size;
5113 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5114 		ctl->max_stripe_size = SZ_32M;
5115 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5116 		ctl->devs_max = min_t(int, ctl->devs_max,
5117 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5118 	} else {
5119 		BUG();
5120 	}
5121 
5122 	/* We don't want a chunk larger than 10% of writable space */
5123 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5124 				  ctl->max_chunk_size);
5125 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5126 }
5127 
5128 static void init_alloc_chunk_ctl_policy_zoned(
5129 				      struct btrfs_fs_devices *fs_devices,
5130 				      struct alloc_chunk_ctl *ctl)
5131 {
5132 	u64 zone_size = fs_devices->fs_info->zone_size;
5133 	u64 limit;
5134 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5135 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5136 	u64 min_chunk_size = min_data_stripes * zone_size;
5137 	u64 type = ctl->type;
5138 
5139 	ctl->max_stripe_size = zone_size;
5140 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5141 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5142 						 zone_size);
5143 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5144 		ctl->max_chunk_size = ctl->max_stripe_size;
5145 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5146 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5147 		ctl->devs_max = min_t(int, ctl->devs_max,
5148 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5149 	} else {
5150 		BUG();
5151 	}
5152 
5153 	/* We don't want a chunk larger than 10% of writable space */
5154 	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5155 			       zone_size),
5156 		    min_chunk_size);
5157 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5158 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5159 }
5160 
5161 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5162 				 struct alloc_chunk_ctl *ctl)
5163 {
5164 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5165 
5166 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5167 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5168 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5169 	if (!ctl->devs_max)
5170 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5171 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5172 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5173 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5174 	ctl->nparity = btrfs_raid_array[index].nparity;
5175 	ctl->ndevs = 0;
5176 
5177 	switch (fs_devices->chunk_alloc_policy) {
5178 	case BTRFS_CHUNK_ALLOC_REGULAR:
5179 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5180 		break;
5181 	case BTRFS_CHUNK_ALLOC_ZONED:
5182 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5183 		break;
5184 	default:
5185 		BUG();
5186 	}
5187 }
5188 
5189 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5190 			      struct alloc_chunk_ctl *ctl,
5191 			      struct btrfs_device_info *devices_info)
5192 {
5193 	struct btrfs_fs_info *info = fs_devices->fs_info;
5194 	struct btrfs_device *device;
5195 	u64 total_avail;
5196 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5197 	int ret;
5198 	int ndevs = 0;
5199 	u64 max_avail;
5200 	u64 dev_offset;
5201 
5202 	/*
5203 	 * in the first pass through the devices list, we gather information
5204 	 * about the available holes on each device.
5205 	 */
5206 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5207 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5208 			WARN(1, KERN_ERR
5209 			       "BTRFS: read-only device in alloc_list\n");
5210 			continue;
5211 		}
5212 
5213 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5214 					&device->dev_state) ||
5215 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5216 			continue;
5217 
5218 		if (device->total_bytes > device->bytes_used)
5219 			total_avail = device->total_bytes - device->bytes_used;
5220 		else
5221 			total_avail = 0;
5222 
5223 		/* If there is no space on this device, skip it. */
5224 		if (total_avail < ctl->dev_extent_min)
5225 			continue;
5226 
5227 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5228 					   &max_avail);
5229 		if (ret && ret != -ENOSPC)
5230 			return ret;
5231 
5232 		if (ret == 0)
5233 			max_avail = dev_extent_want;
5234 
5235 		if (max_avail < ctl->dev_extent_min) {
5236 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5237 				btrfs_debug(info,
5238 			"%s: devid %llu has no free space, have=%llu want=%llu",
5239 					    __func__, device->devid, max_avail,
5240 					    ctl->dev_extent_min);
5241 			continue;
5242 		}
5243 
5244 		if (ndevs == fs_devices->rw_devices) {
5245 			WARN(1, "%s: found more than %llu devices\n",
5246 			     __func__, fs_devices->rw_devices);
5247 			break;
5248 		}
5249 		devices_info[ndevs].dev_offset = dev_offset;
5250 		devices_info[ndevs].max_avail = max_avail;
5251 		devices_info[ndevs].total_avail = total_avail;
5252 		devices_info[ndevs].dev = device;
5253 		++ndevs;
5254 	}
5255 	ctl->ndevs = ndevs;
5256 
5257 	/*
5258 	 * now sort the devices by hole size / available space
5259 	 */
5260 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5261 	     btrfs_cmp_device_info, NULL);
5262 
5263 	return 0;
5264 }
5265 
5266 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5267 				      struct btrfs_device_info *devices_info)
5268 {
5269 	/* Number of stripes that count for block group size */
5270 	int data_stripes;
5271 
5272 	/*
5273 	 * The primary goal is to maximize the number of stripes, so use as
5274 	 * many devices as possible, even if the stripes are not maximum sized.
5275 	 *
5276 	 * The DUP profile stores more than one stripe per device, the
5277 	 * max_avail is the total size so we have to adjust.
5278 	 */
5279 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5280 				   ctl->dev_stripes);
5281 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5282 
5283 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5284 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5285 
5286 	/*
5287 	 * Use the number of data stripes to figure out how big this chunk is
5288 	 * really going to be in terms of logical address space, and compare
5289 	 * that answer with the max chunk size. If it's higher, we try to
5290 	 * reduce stripe_size.
5291 	 */
5292 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5293 		/*
5294 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5295 		 * then use it, unless it ends up being even bigger than the
5296 		 * previous value we had already.
5297 		 */
5298 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5299 							data_stripes), SZ_16M),
5300 				       ctl->stripe_size);
5301 	}
5302 
5303 	/* Align to BTRFS_STRIPE_LEN */
5304 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5305 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5306 
5307 	return 0;
5308 }
5309 
5310 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5311 				    struct btrfs_device_info *devices_info)
5312 {
5313 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5314 	/* Number of stripes that count for block group size */
5315 	int data_stripes;
5316 
5317 	/*
5318 	 * It should hold because:
5319 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5320 	 */
5321 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5322 
5323 	ctl->stripe_size = zone_size;
5324 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5325 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5326 
5327 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5328 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5329 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5330 					     ctl->stripe_size) + ctl->nparity,
5331 				     ctl->dev_stripes);
5332 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5333 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5334 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5335 	}
5336 
5337 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5338 
5339 	return 0;
5340 }
5341 
5342 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5343 			      struct alloc_chunk_ctl *ctl,
5344 			      struct btrfs_device_info *devices_info)
5345 {
5346 	struct btrfs_fs_info *info = fs_devices->fs_info;
5347 
5348 	/*
5349 	 * Round down to number of usable stripes, devs_increment can be any
5350 	 * number so we can't use round_down() that requires power of 2, while
5351 	 * rounddown is safe.
5352 	 */
5353 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5354 
5355 	if (ctl->ndevs < ctl->devs_min) {
5356 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5357 			btrfs_debug(info,
5358 	"%s: not enough devices with free space: have=%d minimum required=%d",
5359 				    __func__, ctl->ndevs, ctl->devs_min);
5360 		}
5361 		return -ENOSPC;
5362 	}
5363 
5364 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5365 
5366 	switch (fs_devices->chunk_alloc_policy) {
5367 	case BTRFS_CHUNK_ALLOC_REGULAR:
5368 		return decide_stripe_size_regular(ctl, devices_info);
5369 	case BTRFS_CHUNK_ALLOC_ZONED:
5370 		return decide_stripe_size_zoned(ctl, devices_info);
5371 	default:
5372 		BUG();
5373 	}
5374 }
5375 
5376 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5377 			struct alloc_chunk_ctl *ctl,
5378 			struct btrfs_device_info *devices_info)
5379 {
5380 	struct btrfs_fs_info *info = trans->fs_info;
5381 	struct map_lookup *map = NULL;
5382 	struct extent_map_tree *em_tree;
5383 	struct btrfs_block_group *block_group;
5384 	struct extent_map *em;
5385 	u64 start = ctl->start;
5386 	u64 type = ctl->type;
5387 	int ret;
5388 	int i;
5389 	int j;
5390 
5391 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5392 	if (!map)
5393 		return ERR_PTR(-ENOMEM);
5394 	map->num_stripes = ctl->num_stripes;
5395 
5396 	for (i = 0; i < ctl->ndevs; ++i) {
5397 		for (j = 0; j < ctl->dev_stripes; ++j) {
5398 			int s = i * ctl->dev_stripes + j;
5399 			map->stripes[s].dev = devices_info[i].dev;
5400 			map->stripes[s].physical = devices_info[i].dev_offset +
5401 						   j * ctl->stripe_size;
5402 		}
5403 	}
5404 	map->stripe_len = BTRFS_STRIPE_LEN;
5405 	map->io_align = BTRFS_STRIPE_LEN;
5406 	map->io_width = BTRFS_STRIPE_LEN;
5407 	map->type = type;
5408 	map->sub_stripes = ctl->sub_stripes;
5409 
5410 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5411 
5412 	em = alloc_extent_map();
5413 	if (!em) {
5414 		kfree(map);
5415 		return ERR_PTR(-ENOMEM);
5416 	}
5417 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5418 	em->map_lookup = map;
5419 	em->start = start;
5420 	em->len = ctl->chunk_size;
5421 	em->block_start = 0;
5422 	em->block_len = em->len;
5423 	em->orig_block_len = ctl->stripe_size;
5424 
5425 	em_tree = &info->mapping_tree;
5426 	write_lock(&em_tree->lock);
5427 	ret = add_extent_mapping(em_tree, em, 0);
5428 	if (ret) {
5429 		write_unlock(&em_tree->lock);
5430 		free_extent_map(em);
5431 		return ERR_PTR(ret);
5432 	}
5433 	write_unlock(&em_tree->lock);
5434 
5435 	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5436 	if (IS_ERR(block_group))
5437 		goto error_del_extent;
5438 
5439 	for (i = 0; i < map->num_stripes; i++) {
5440 		struct btrfs_device *dev = map->stripes[i].dev;
5441 
5442 		btrfs_device_set_bytes_used(dev,
5443 					    dev->bytes_used + ctl->stripe_size);
5444 		if (list_empty(&dev->post_commit_list))
5445 			list_add_tail(&dev->post_commit_list,
5446 				      &trans->transaction->dev_update_list);
5447 	}
5448 
5449 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5450 		     &info->free_chunk_space);
5451 
5452 	free_extent_map(em);
5453 	check_raid56_incompat_flag(info, type);
5454 	check_raid1c34_incompat_flag(info, type);
5455 
5456 	return block_group;
5457 
5458 error_del_extent:
5459 	write_lock(&em_tree->lock);
5460 	remove_extent_mapping(em_tree, em);
5461 	write_unlock(&em_tree->lock);
5462 
5463 	/* One for our allocation */
5464 	free_extent_map(em);
5465 	/* One for the tree reference */
5466 	free_extent_map(em);
5467 
5468 	return block_group;
5469 }
5470 
5471 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5472 					    u64 type)
5473 {
5474 	struct btrfs_fs_info *info = trans->fs_info;
5475 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5476 	struct btrfs_device_info *devices_info = NULL;
5477 	struct alloc_chunk_ctl ctl;
5478 	struct btrfs_block_group *block_group;
5479 	int ret;
5480 
5481 	lockdep_assert_held(&info->chunk_mutex);
5482 
5483 	if (!alloc_profile_is_valid(type, 0)) {
5484 		ASSERT(0);
5485 		return ERR_PTR(-EINVAL);
5486 	}
5487 
5488 	if (list_empty(&fs_devices->alloc_list)) {
5489 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5490 			btrfs_debug(info, "%s: no writable device", __func__);
5491 		return ERR_PTR(-ENOSPC);
5492 	}
5493 
5494 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5495 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5496 		ASSERT(0);
5497 		return ERR_PTR(-EINVAL);
5498 	}
5499 
5500 	ctl.start = find_next_chunk(info);
5501 	ctl.type = type;
5502 	init_alloc_chunk_ctl(fs_devices, &ctl);
5503 
5504 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5505 			       GFP_NOFS);
5506 	if (!devices_info)
5507 		return ERR_PTR(-ENOMEM);
5508 
5509 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5510 	if (ret < 0) {
5511 		block_group = ERR_PTR(ret);
5512 		goto out;
5513 	}
5514 
5515 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5516 	if (ret < 0) {
5517 		block_group = ERR_PTR(ret);
5518 		goto out;
5519 	}
5520 
5521 	block_group = create_chunk(trans, &ctl, devices_info);
5522 
5523 out:
5524 	kfree(devices_info);
5525 	return block_group;
5526 }
5527 
5528 /*
5529  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5530  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5531  * chunks.
5532  *
5533  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5534  * phases.
5535  */
5536 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5537 				     struct btrfs_block_group *bg)
5538 {
5539 	struct btrfs_fs_info *fs_info = trans->fs_info;
5540 	struct btrfs_root *extent_root = fs_info->extent_root;
5541 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5542 	struct btrfs_key key;
5543 	struct btrfs_chunk *chunk;
5544 	struct btrfs_stripe *stripe;
5545 	struct extent_map *em;
5546 	struct map_lookup *map;
5547 	size_t item_size;
5548 	int i;
5549 	int ret;
5550 
5551 	/*
5552 	 * We take the chunk_mutex for 2 reasons:
5553 	 *
5554 	 * 1) Updates and insertions in the chunk btree must be done while holding
5555 	 *    the chunk_mutex, as well as updating the system chunk array in the
5556 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5557 	 *    details;
5558 	 *
5559 	 * 2) To prevent races with the final phase of a device replace operation
5560 	 *    that replaces the device object associated with the map's stripes,
5561 	 *    because the device object's id can change at any time during that
5562 	 *    final phase of the device replace operation
5563 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5564 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5565 	 *    which would cause a failure when updating the device item, which does
5566 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5567 	 *    Here we can't use the device_list_mutex because our caller already
5568 	 *    has locked the chunk_mutex, and the final phase of device replace
5569 	 *    acquires both mutexes - first the device_list_mutex and then the
5570 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5571 	 *    concurrent device replace.
5572 	 */
5573 	lockdep_assert_held(&fs_info->chunk_mutex);
5574 
5575 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5576 	if (IS_ERR(em)) {
5577 		ret = PTR_ERR(em);
5578 		btrfs_abort_transaction(trans, ret);
5579 		return ret;
5580 	}
5581 
5582 	map = em->map_lookup;
5583 	item_size = btrfs_chunk_item_size(map->num_stripes);
5584 
5585 	chunk = kzalloc(item_size, GFP_NOFS);
5586 	if (!chunk) {
5587 		ret = -ENOMEM;
5588 		btrfs_abort_transaction(trans, ret);
5589 		goto out;
5590 	}
5591 
5592 	for (i = 0; i < map->num_stripes; i++) {
5593 		struct btrfs_device *device = map->stripes[i].dev;
5594 
5595 		ret = btrfs_update_device(trans, device);
5596 		if (ret)
5597 			goto out;
5598 	}
5599 
5600 	stripe = &chunk->stripe;
5601 	for (i = 0; i < map->num_stripes; i++) {
5602 		struct btrfs_device *device = map->stripes[i].dev;
5603 		const u64 dev_offset = map->stripes[i].physical;
5604 
5605 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5606 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5607 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5608 		stripe++;
5609 	}
5610 
5611 	btrfs_set_stack_chunk_length(chunk, bg->length);
5612 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5613 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5614 	btrfs_set_stack_chunk_type(chunk, map->type);
5615 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5616 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5617 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5618 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5619 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5620 
5621 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5622 	key.type = BTRFS_CHUNK_ITEM_KEY;
5623 	key.offset = bg->start;
5624 
5625 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5626 	if (ret)
5627 		goto out;
5628 
5629 	bg->chunk_item_inserted = 1;
5630 
5631 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5632 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5633 		if (ret)
5634 			goto out;
5635 	}
5636 
5637 out:
5638 	kfree(chunk);
5639 	free_extent_map(em);
5640 	return ret;
5641 }
5642 
5643 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5644 {
5645 	struct btrfs_fs_info *fs_info = trans->fs_info;
5646 	u64 alloc_profile;
5647 	struct btrfs_block_group *meta_bg;
5648 	struct btrfs_block_group *sys_bg;
5649 
5650 	/*
5651 	 * When adding a new device for sprouting, the seed device is read-only
5652 	 * so we must first allocate a metadata and a system chunk. But before
5653 	 * adding the block group items to the extent, device and chunk btrees,
5654 	 * we must first:
5655 	 *
5656 	 * 1) Create both chunks without doing any changes to the btrees, as
5657 	 *    otherwise we would get -ENOSPC since the block groups from the
5658 	 *    seed device are read-only;
5659 	 *
5660 	 * 2) Add the device item for the new sprout device - finishing the setup
5661 	 *    of a new block group requires updating the device item in the chunk
5662 	 *    btree, so it must exist when we attempt to do it. The previous step
5663 	 *    ensures this does not fail with -ENOSPC.
5664 	 *
5665 	 * After that we can add the block group items to their btrees:
5666 	 * update existing device item in the chunk btree, add a new block group
5667 	 * item to the extent btree, add a new chunk item to the chunk btree and
5668 	 * finally add the new device extent items to the devices btree.
5669 	 */
5670 
5671 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5672 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5673 	if (IS_ERR(meta_bg))
5674 		return PTR_ERR(meta_bg);
5675 
5676 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5677 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5678 	if (IS_ERR(sys_bg))
5679 		return PTR_ERR(sys_bg);
5680 
5681 	return 0;
5682 }
5683 
5684 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5685 {
5686 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5687 
5688 	return btrfs_raid_array[index].tolerated_failures;
5689 }
5690 
5691 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5692 {
5693 	struct extent_map *em;
5694 	struct map_lookup *map;
5695 	int miss_ndevs = 0;
5696 	int i;
5697 	bool ret = true;
5698 
5699 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5700 	if (IS_ERR(em))
5701 		return false;
5702 
5703 	map = em->map_lookup;
5704 	for (i = 0; i < map->num_stripes; i++) {
5705 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5706 					&map->stripes[i].dev->dev_state)) {
5707 			miss_ndevs++;
5708 			continue;
5709 		}
5710 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5711 					&map->stripes[i].dev->dev_state)) {
5712 			ret = false;
5713 			goto end;
5714 		}
5715 	}
5716 
5717 	/*
5718 	 * If the number of missing devices is larger than max errors, we can
5719 	 * not write the data into that chunk successfully.
5720 	 */
5721 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5722 		ret = false;
5723 end:
5724 	free_extent_map(em);
5725 	return ret;
5726 }
5727 
5728 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5729 {
5730 	struct extent_map *em;
5731 
5732 	while (1) {
5733 		write_lock(&tree->lock);
5734 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5735 		if (em)
5736 			remove_extent_mapping(tree, em);
5737 		write_unlock(&tree->lock);
5738 		if (!em)
5739 			break;
5740 		/* once for us */
5741 		free_extent_map(em);
5742 		/* once for the tree */
5743 		free_extent_map(em);
5744 	}
5745 }
5746 
5747 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5748 {
5749 	struct extent_map *em;
5750 	struct map_lookup *map;
5751 	int ret;
5752 
5753 	em = btrfs_get_chunk_map(fs_info, logical, len);
5754 	if (IS_ERR(em))
5755 		/*
5756 		 * We could return errors for these cases, but that could get
5757 		 * ugly and we'd probably do the same thing which is just not do
5758 		 * anything else and exit, so return 1 so the callers don't try
5759 		 * to use other copies.
5760 		 */
5761 		return 1;
5762 
5763 	map = em->map_lookup;
5764 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5765 		ret = map->num_stripes;
5766 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5767 		ret = map->sub_stripes;
5768 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5769 		ret = 2;
5770 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5771 		/*
5772 		 * There could be two corrupted data stripes, we need
5773 		 * to loop retry in order to rebuild the correct data.
5774 		 *
5775 		 * Fail a stripe at a time on every retry except the
5776 		 * stripe under reconstruction.
5777 		 */
5778 		ret = map->num_stripes;
5779 	else
5780 		ret = 1;
5781 	free_extent_map(em);
5782 
5783 	down_read(&fs_info->dev_replace.rwsem);
5784 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5785 	    fs_info->dev_replace.tgtdev)
5786 		ret++;
5787 	up_read(&fs_info->dev_replace.rwsem);
5788 
5789 	return ret;
5790 }
5791 
5792 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5793 				    u64 logical)
5794 {
5795 	struct extent_map *em;
5796 	struct map_lookup *map;
5797 	unsigned long len = fs_info->sectorsize;
5798 
5799 	em = btrfs_get_chunk_map(fs_info, logical, len);
5800 
5801 	if (!WARN_ON(IS_ERR(em))) {
5802 		map = em->map_lookup;
5803 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5804 			len = map->stripe_len * nr_data_stripes(map);
5805 		free_extent_map(em);
5806 	}
5807 	return len;
5808 }
5809 
5810 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5811 {
5812 	struct extent_map *em;
5813 	struct map_lookup *map;
5814 	int ret = 0;
5815 
5816 	em = btrfs_get_chunk_map(fs_info, logical, len);
5817 
5818 	if(!WARN_ON(IS_ERR(em))) {
5819 		map = em->map_lookup;
5820 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5821 			ret = 1;
5822 		free_extent_map(em);
5823 	}
5824 	return ret;
5825 }
5826 
5827 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5828 			    struct map_lookup *map, int first,
5829 			    int dev_replace_is_ongoing)
5830 {
5831 	int i;
5832 	int num_stripes;
5833 	int preferred_mirror;
5834 	int tolerance;
5835 	struct btrfs_device *srcdev;
5836 
5837 	ASSERT((map->type &
5838 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5839 
5840 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5841 		num_stripes = map->sub_stripes;
5842 	else
5843 		num_stripes = map->num_stripes;
5844 
5845 	switch (fs_info->fs_devices->read_policy) {
5846 	default:
5847 		/* Shouldn't happen, just warn and use pid instead of failing */
5848 		btrfs_warn_rl(fs_info,
5849 			      "unknown read_policy type %u, reset to pid",
5850 			      fs_info->fs_devices->read_policy);
5851 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5852 		fallthrough;
5853 	case BTRFS_READ_POLICY_PID:
5854 		preferred_mirror = first + (current->pid % num_stripes);
5855 		break;
5856 	}
5857 
5858 	if (dev_replace_is_ongoing &&
5859 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5860 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5861 		srcdev = fs_info->dev_replace.srcdev;
5862 	else
5863 		srcdev = NULL;
5864 
5865 	/*
5866 	 * try to avoid the drive that is the source drive for a
5867 	 * dev-replace procedure, only choose it if no other non-missing
5868 	 * mirror is available
5869 	 */
5870 	for (tolerance = 0; tolerance < 2; tolerance++) {
5871 		if (map->stripes[preferred_mirror].dev->bdev &&
5872 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5873 			return preferred_mirror;
5874 		for (i = first; i < first + num_stripes; i++) {
5875 			if (map->stripes[i].dev->bdev &&
5876 			    (tolerance || map->stripes[i].dev != srcdev))
5877 				return i;
5878 		}
5879 	}
5880 
5881 	/* we couldn't find one that doesn't fail.  Just return something
5882 	 * and the io error handling code will clean up eventually
5883 	 */
5884 	return preferred_mirror;
5885 }
5886 
5887 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5888 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5889 {
5890 	int i;
5891 	int again = 1;
5892 
5893 	while (again) {
5894 		again = 0;
5895 		for (i = 0; i < num_stripes - 1; i++) {
5896 			/* Swap if parity is on a smaller index */
5897 			if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5898 				swap(bioc->stripes[i], bioc->stripes[i + 1]);
5899 				swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5900 				again = 1;
5901 			}
5902 		}
5903 	}
5904 }
5905 
5906 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5907 						       int total_stripes,
5908 						       int real_stripes)
5909 {
5910 	struct btrfs_io_context *bioc = kzalloc(
5911 		 /* The size of btrfs_io_context */
5912 		sizeof(struct btrfs_io_context) +
5913 		/* Plus the variable array for the stripes */
5914 		sizeof(struct btrfs_io_stripe) * (total_stripes) +
5915 		/* Plus the variable array for the tgt dev */
5916 		sizeof(int) * (real_stripes) +
5917 		/*
5918 		 * Plus the raid_map, which includes both the tgt dev
5919 		 * and the stripes.
5920 		 */
5921 		sizeof(u64) * (total_stripes),
5922 		GFP_NOFS|__GFP_NOFAIL);
5923 
5924 	atomic_set(&bioc->error, 0);
5925 	refcount_set(&bioc->refs, 1);
5926 
5927 	bioc->fs_info = fs_info;
5928 	bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5929 	bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5930 
5931 	return bioc;
5932 }
5933 
5934 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5935 {
5936 	WARN_ON(!refcount_read(&bioc->refs));
5937 	refcount_inc(&bioc->refs);
5938 }
5939 
5940 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5941 {
5942 	if (!bioc)
5943 		return;
5944 	if (refcount_dec_and_test(&bioc->refs))
5945 		kfree(bioc);
5946 }
5947 
5948 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5949 /*
5950  * Please note that, discard won't be sent to target device of device
5951  * replace.
5952  */
5953 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5954 					 u64 logical, u64 *length_ret,
5955 					 struct btrfs_io_context **bioc_ret)
5956 {
5957 	struct extent_map *em;
5958 	struct map_lookup *map;
5959 	struct btrfs_io_context *bioc;
5960 	u64 length = *length_ret;
5961 	u64 offset;
5962 	u64 stripe_nr;
5963 	u64 stripe_nr_end;
5964 	u64 stripe_end_offset;
5965 	u64 stripe_cnt;
5966 	u64 stripe_len;
5967 	u64 stripe_offset;
5968 	u64 num_stripes;
5969 	u32 stripe_index;
5970 	u32 factor = 0;
5971 	u32 sub_stripes = 0;
5972 	u64 stripes_per_dev = 0;
5973 	u32 remaining_stripes = 0;
5974 	u32 last_stripe = 0;
5975 	int ret = 0;
5976 	int i;
5977 
5978 	/* Discard always returns a bioc. */
5979 	ASSERT(bioc_ret);
5980 
5981 	em = btrfs_get_chunk_map(fs_info, logical, length);
5982 	if (IS_ERR(em))
5983 		return PTR_ERR(em);
5984 
5985 	map = em->map_lookup;
5986 	/* we don't discard raid56 yet */
5987 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5988 		ret = -EOPNOTSUPP;
5989 		goto out;
5990 	}
5991 
5992 	offset = logical - em->start;
5993 	length = min_t(u64, em->start + em->len - logical, length);
5994 	*length_ret = length;
5995 
5996 	stripe_len = map->stripe_len;
5997 	/*
5998 	 * stripe_nr counts the total number of stripes we have to stride
5999 	 * to get to this block
6000 	 */
6001 	stripe_nr = div64_u64(offset, stripe_len);
6002 
6003 	/* stripe_offset is the offset of this block in its stripe */
6004 	stripe_offset = offset - stripe_nr * stripe_len;
6005 
6006 	stripe_nr_end = round_up(offset + length, map->stripe_len);
6007 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
6008 	stripe_cnt = stripe_nr_end - stripe_nr;
6009 	stripe_end_offset = stripe_nr_end * map->stripe_len -
6010 			    (offset + length);
6011 	/*
6012 	 * after this, stripe_nr is the number of stripes on this
6013 	 * device we have to walk to find the data, and stripe_index is
6014 	 * the number of our device in the stripe array
6015 	 */
6016 	num_stripes = 1;
6017 	stripe_index = 0;
6018 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6019 			 BTRFS_BLOCK_GROUP_RAID10)) {
6020 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6021 			sub_stripes = 1;
6022 		else
6023 			sub_stripes = map->sub_stripes;
6024 
6025 		factor = map->num_stripes / sub_stripes;
6026 		num_stripes = min_t(u64, map->num_stripes,
6027 				    sub_stripes * stripe_cnt);
6028 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6029 		stripe_index *= sub_stripes;
6030 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6031 					      &remaining_stripes);
6032 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6033 		last_stripe *= sub_stripes;
6034 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6035 				BTRFS_BLOCK_GROUP_DUP)) {
6036 		num_stripes = map->num_stripes;
6037 	} else {
6038 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6039 					&stripe_index);
6040 	}
6041 
6042 	bioc = alloc_btrfs_io_context(fs_info, num_stripes, 0);
6043 	if (!bioc) {
6044 		ret = -ENOMEM;
6045 		goto out;
6046 	}
6047 
6048 	for (i = 0; i < num_stripes; i++) {
6049 		bioc->stripes[i].physical =
6050 			map->stripes[stripe_index].physical +
6051 			stripe_offset + stripe_nr * map->stripe_len;
6052 		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6053 
6054 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6055 				 BTRFS_BLOCK_GROUP_RAID10)) {
6056 			bioc->stripes[i].length = stripes_per_dev *
6057 				map->stripe_len;
6058 
6059 			if (i / sub_stripes < remaining_stripes)
6060 				bioc->stripes[i].length += map->stripe_len;
6061 
6062 			/*
6063 			 * Special for the first stripe and
6064 			 * the last stripe:
6065 			 *
6066 			 * |-------|...|-------|
6067 			 *     |----------|
6068 			 *    off     end_off
6069 			 */
6070 			if (i < sub_stripes)
6071 				bioc->stripes[i].length -= stripe_offset;
6072 
6073 			if (stripe_index >= last_stripe &&
6074 			    stripe_index <= (last_stripe +
6075 					     sub_stripes - 1))
6076 				bioc->stripes[i].length -= stripe_end_offset;
6077 
6078 			if (i == sub_stripes - 1)
6079 				stripe_offset = 0;
6080 		} else {
6081 			bioc->stripes[i].length = length;
6082 		}
6083 
6084 		stripe_index++;
6085 		if (stripe_index == map->num_stripes) {
6086 			stripe_index = 0;
6087 			stripe_nr++;
6088 		}
6089 	}
6090 
6091 	*bioc_ret = bioc;
6092 	bioc->map_type = map->type;
6093 	bioc->num_stripes = num_stripes;
6094 out:
6095 	free_extent_map(em);
6096 	return ret;
6097 }
6098 
6099 /*
6100  * In dev-replace case, for repair case (that's the only case where the mirror
6101  * is selected explicitly when calling btrfs_map_block), blocks left of the
6102  * left cursor can also be read from the target drive.
6103  *
6104  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6105  * array of stripes.
6106  * For READ, it also needs to be supported using the same mirror number.
6107  *
6108  * If the requested block is not left of the left cursor, EIO is returned. This
6109  * can happen because btrfs_num_copies() returns one more in the dev-replace
6110  * case.
6111  */
6112 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6113 					 u64 logical, u64 length,
6114 					 u64 srcdev_devid, int *mirror_num,
6115 					 u64 *physical)
6116 {
6117 	struct btrfs_io_context *bioc = NULL;
6118 	int num_stripes;
6119 	int index_srcdev = 0;
6120 	int found = 0;
6121 	u64 physical_of_found = 0;
6122 	int i;
6123 	int ret = 0;
6124 
6125 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6126 				logical, &length, &bioc, 0, 0);
6127 	if (ret) {
6128 		ASSERT(bioc == NULL);
6129 		return ret;
6130 	}
6131 
6132 	num_stripes = bioc->num_stripes;
6133 	if (*mirror_num > num_stripes) {
6134 		/*
6135 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6136 		 * that means that the requested area is not left of the left
6137 		 * cursor
6138 		 */
6139 		btrfs_put_bioc(bioc);
6140 		return -EIO;
6141 	}
6142 
6143 	/*
6144 	 * process the rest of the function using the mirror_num of the source
6145 	 * drive. Therefore look it up first.  At the end, patch the device
6146 	 * pointer to the one of the target drive.
6147 	 */
6148 	for (i = 0; i < num_stripes; i++) {
6149 		if (bioc->stripes[i].dev->devid != srcdev_devid)
6150 			continue;
6151 
6152 		/*
6153 		 * In case of DUP, in order to keep it simple, only add the
6154 		 * mirror with the lowest physical address
6155 		 */
6156 		if (found &&
6157 		    physical_of_found <= bioc->stripes[i].physical)
6158 			continue;
6159 
6160 		index_srcdev = i;
6161 		found = 1;
6162 		physical_of_found = bioc->stripes[i].physical;
6163 	}
6164 
6165 	btrfs_put_bioc(bioc);
6166 
6167 	ASSERT(found);
6168 	if (!found)
6169 		return -EIO;
6170 
6171 	*mirror_num = index_srcdev + 1;
6172 	*physical = physical_of_found;
6173 	return ret;
6174 }
6175 
6176 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6177 {
6178 	struct btrfs_block_group *cache;
6179 	bool ret;
6180 
6181 	/* Non zoned filesystem does not use "to_copy" flag */
6182 	if (!btrfs_is_zoned(fs_info))
6183 		return false;
6184 
6185 	cache = btrfs_lookup_block_group(fs_info, logical);
6186 
6187 	spin_lock(&cache->lock);
6188 	ret = cache->to_copy;
6189 	spin_unlock(&cache->lock);
6190 
6191 	btrfs_put_block_group(cache);
6192 	return ret;
6193 }
6194 
6195 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6196 				      struct btrfs_io_context **bioc_ret,
6197 				      struct btrfs_dev_replace *dev_replace,
6198 				      u64 logical,
6199 				      int *num_stripes_ret, int *max_errors_ret)
6200 {
6201 	struct btrfs_io_context *bioc = *bioc_ret;
6202 	u64 srcdev_devid = dev_replace->srcdev->devid;
6203 	int tgtdev_indexes = 0;
6204 	int num_stripes = *num_stripes_ret;
6205 	int max_errors = *max_errors_ret;
6206 	int i;
6207 
6208 	if (op == BTRFS_MAP_WRITE) {
6209 		int index_where_to_add;
6210 
6211 		/*
6212 		 * A block group which have "to_copy" set will eventually
6213 		 * copied by dev-replace process. We can avoid cloning IO here.
6214 		 */
6215 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6216 			return;
6217 
6218 		/*
6219 		 * duplicate the write operations while the dev replace
6220 		 * procedure is running. Since the copying of the old disk to
6221 		 * the new disk takes place at run time while the filesystem is
6222 		 * mounted writable, the regular write operations to the old
6223 		 * disk have to be duplicated to go to the new disk as well.
6224 		 *
6225 		 * Note that device->missing is handled by the caller, and that
6226 		 * the write to the old disk is already set up in the stripes
6227 		 * array.
6228 		 */
6229 		index_where_to_add = num_stripes;
6230 		for (i = 0; i < num_stripes; i++) {
6231 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6232 				/* write to new disk, too */
6233 				struct btrfs_io_stripe *new =
6234 					bioc->stripes + index_where_to_add;
6235 				struct btrfs_io_stripe *old =
6236 					bioc->stripes + i;
6237 
6238 				new->physical = old->physical;
6239 				new->length = old->length;
6240 				new->dev = dev_replace->tgtdev;
6241 				bioc->tgtdev_map[i] = index_where_to_add;
6242 				index_where_to_add++;
6243 				max_errors++;
6244 				tgtdev_indexes++;
6245 			}
6246 		}
6247 		num_stripes = index_where_to_add;
6248 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6249 		int index_srcdev = 0;
6250 		int found = 0;
6251 		u64 physical_of_found = 0;
6252 
6253 		/*
6254 		 * During the dev-replace procedure, the target drive can also
6255 		 * be used to read data in case it is needed to repair a corrupt
6256 		 * block elsewhere. This is possible if the requested area is
6257 		 * left of the left cursor. In this area, the target drive is a
6258 		 * full copy of the source drive.
6259 		 */
6260 		for (i = 0; i < num_stripes; i++) {
6261 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6262 				/*
6263 				 * In case of DUP, in order to keep it simple,
6264 				 * only add the mirror with the lowest physical
6265 				 * address
6266 				 */
6267 				if (found &&
6268 				    physical_of_found <= bioc->stripes[i].physical)
6269 					continue;
6270 				index_srcdev = i;
6271 				found = 1;
6272 				physical_of_found = bioc->stripes[i].physical;
6273 			}
6274 		}
6275 		if (found) {
6276 			struct btrfs_io_stripe *tgtdev_stripe =
6277 				bioc->stripes + num_stripes;
6278 
6279 			tgtdev_stripe->physical = physical_of_found;
6280 			tgtdev_stripe->length =
6281 				bioc->stripes[index_srcdev].length;
6282 			tgtdev_stripe->dev = dev_replace->tgtdev;
6283 			bioc->tgtdev_map[index_srcdev] = num_stripes;
6284 
6285 			tgtdev_indexes++;
6286 			num_stripes++;
6287 		}
6288 	}
6289 
6290 	*num_stripes_ret = num_stripes;
6291 	*max_errors_ret = max_errors;
6292 	bioc->num_tgtdevs = tgtdev_indexes;
6293 	*bioc_ret = bioc;
6294 }
6295 
6296 static bool need_full_stripe(enum btrfs_map_op op)
6297 {
6298 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6299 }
6300 
6301 /*
6302  * Calculate the geometry of a particular (address, len) tuple. This
6303  * information is used to calculate how big a particular bio can get before it
6304  * straddles a stripe.
6305  *
6306  * @fs_info: the filesystem
6307  * @em:      mapping containing the logical extent
6308  * @op:      type of operation - write or read
6309  * @logical: address that we want to figure out the geometry of
6310  * @io_geom: pointer used to return values
6311  *
6312  * Returns < 0 in case a chunk for the given logical address cannot be found,
6313  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6314  */
6315 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6316 			  enum btrfs_map_op op, u64 logical,
6317 			  struct btrfs_io_geometry *io_geom)
6318 {
6319 	struct map_lookup *map;
6320 	u64 len;
6321 	u64 offset;
6322 	u64 stripe_offset;
6323 	u64 stripe_nr;
6324 	u64 stripe_len;
6325 	u64 raid56_full_stripe_start = (u64)-1;
6326 	int data_stripes;
6327 
6328 	ASSERT(op != BTRFS_MAP_DISCARD);
6329 
6330 	map = em->map_lookup;
6331 	/* Offset of this logical address in the chunk */
6332 	offset = logical - em->start;
6333 	/* Len of a stripe in a chunk */
6334 	stripe_len = map->stripe_len;
6335 	/* Stripe where this block falls in */
6336 	stripe_nr = div64_u64(offset, stripe_len);
6337 	/* Offset of stripe in the chunk */
6338 	stripe_offset = stripe_nr * stripe_len;
6339 	if (offset < stripe_offset) {
6340 		btrfs_crit(fs_info,
6341 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6342 			stripe_offset, offset, em->start, logical, stripe_len);
6343 		return -EINVAL;
6344 	}
6345 
6346 	/* stripe_offset is the offset of this block in its stripe */
6347 	stripe_offset = offset - stripe_offset;
6348 	data_stripes = nr_data_stripes(map);
6349 
6350 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6351 		u64 max_len = stripe_len - stripe_offset;
6352 
6353 		/*
6354 		 * In case of raid56, we need to know the stripe aligned start
6355 		 */
6356 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6357 			unsigned long full_stripe_len = stripe_len * data_stripes;
6358 			raid56_full_stripe_start = offset;
6359 
6360 			/*
6361 			 * Allow a write of a full stripe, but make sure we
6362 			 * don't allow straddling of stripes
6363 			 */
6364 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6365 					full_stripe_len);
6366 			raid56_full_stripe_start *= full_stripe_len;
6367 
6368 			/*
6369 			 * For writes to RAID[56], allow a full stripeset across
6370 			 * all disks. For other RAID types and for RAID[56]
6371 			 * reads, just allow a single stripe (on a single disk).
6372 			 */
6373 			if (op == BTRFS_MAP_WRITE) {
6374 				max_len = stripe_len * data_stripes -
6375 					  (offset - raid56_full_stripe_start);
6376 			}
6377 		}
6378 		len = min_t(u64, em->len - offset, max_len);
6379 	} else {
6380 		len = em->len - offset;
6381 	}
6382 
6383 	io_geom->len = len;
6384 	io_geom->offset = offset;
6385 	io_geom->stripe_len = stripe_len;
6386 	io_geom->stripe_nr = stripe_nr;
6387 	io_geom->stripe_offset = stripe_offset;
6388 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6389 
6390 	return 0;
6391 }
6392 
6393 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6394 			     enum btrfs_map_op op,
6395 			     u64 logical, u64 *length,
6396 			     struct btrfs_io_context **bioc_ret,
6397 			     int mirror_num, int need_raid_map)
6398 {
6399 	struct extent_map *em;
6400 	struct map_lookup *map;
6401 	u64 stripe_offset;
6402 	u64 stripe_nr;
6403 	u64 stripe_len;
6404 	u32 stripe_index;
6405 	int data_stripes;
6406 	int i;
6407 	int ret = 0;
6408 	int num_stripes;
6409 	int max_errors = 0;
6410 	int tgtdev_indexes = 0;
6411 	struct btrfs_io_context *bioc = NULL;
6412 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6413 	int dev_replace_is_ongoing = 0;
6414 	int num_alloc_stripes;
6415 	int patch_the_first_stripe_for_dev_replace = 0;
6416 	u64 physical_to_patch_in_first_stripe = 0;
6417 	u64 raid56_full_stripe_start = (u64)-1;
6418 	struct btrfs_io_geometry geom;
6419 
6420 	ASSERT(bioc_ret);
6421 	ASSERT(op != BTRFS_MAP_DISCARD);
6422 
6423 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6424 	ASSERT(!IS_ERR(em));
6425 
6426 	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6427 	if (ret < 0)
6428 		return ret;
6429 
6430 	map = em->map_lookup;
6431 
6432 	*length = geom.len;
6433 	stripe_len = geom.stripe_len;
6434 	stripe_nr = geom.stripe_nr;
6435 	stripe_offset = geom.stripe_offset;
6436 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6437 	data_stripes = nr_data_stripes(map);
6438 
6439 	down_read(&dev_replace->rwsem);
6440 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6441 	/*
6442 	 * Hold the semaphore for read during the whole operation, write is
6443 	 * requested at commit time but must wait.
6444 	 */
6445 	if (!dev_replace_is_ongoing)
6446 		up_read(&dev_replace->rwsem);
6447 
6448 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6449 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6450 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6451 						    dev_replace->srcdev->devid,
6452 						    &mirror_num,
6453 					    &physical_to_patch_in_first_stripe);
6454 		if (ret)
6455 			goto out;
6456 		else
6457 			patch_the_first_stripe_for_dev_replace = 1;
6458 	} else if (mirror_num > map->num_stripes) {
6459 		mirror_num = 0;
6460 	}
6461 
6462 	num_stripes = 1;
6463 	stripe_index = 0;
6464 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6465 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6466 				&stripe_index);
6467 		if (!need_full_stripe(op))
6468 			mirror_num = 1;
6469 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6470 		if (need_full_stripe(op))
6471 			num_stripes = map->num_stripes;
6472 		else if (mirror_num)
6473 			stripe_index = mirror_num - 1;
6474 		else {
6475 			stripe_index = find_live_mirror(fs_info, map, 0,
6476 					    dev_replace_is_ongoing);
6477 			mirror_num = stripe_index + 1;
6478 		}
6479 
6480 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6481 		if (need_full_stripe(op)) {
6482 			num_stripes = map->num_stripes;
6483 		} else if (mirror_num) {
6484 			stripe_index = mirror_num - 1;
6485 		} else {
6486 			mirror_num = 1;
6487 		}
6488 
6489 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6490 		u32 factor = map->num_stripes / map->sub_stripes;
6491 
6492 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6493 		stripe_index *= map->sub_stripes;
6494 
6495 		if (need_full_stripe(op))
6496 			num_stripes = map->sub_stripes;
6497 		else if (mirror_num)
6498 			stripe_index += mirror_num - 1;
6499 		else {
6500 			int old_stripe_index = stripe_index;
6501 			stripe_index = find_live_mirror(fs_info, map,
6502 					      stripe_index,
6503 					      dev_replace_is_ongoing);
6504 			mirror_num = stripe_index - old_stripe_index + 1;
6505 		}
6506 
6507 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6508 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6509 			/* push stripe_nr back to the start of the full stripe */
6510 			stripe_nr = div64_u64(raid56_full_stripe_start,
6511 					stripe_len * data_stripes);
6512 
6513 			/* RAID[56] write or recovery. Return all stripes */
6514 			num_stripes = map->num_stripes;
6515 			max_errors = nr_parity_stripes(map);
6516 
6517 			*length = map->stripe_len;
6518 			stripe_index = 0;
6519 			stripe_offset = 0;
6520 		} else {
6521 			/*
6522 			 * Mirror #0 or #1 means the original data block.
6523 			 * Mirror #2 is RAID5 parity block.
6524 			 * Mirror #3 is RAID6 Q block.
6525 			 */
6526 			stripe_nr = div_u64_rem(stripe_nr,
6527 					data_stripes, &stripe_index);
6528 			if (mirror_num > 1)
6529 				stripe_index = data_stripes + mirror_num - 2;
6530 
6531 			/* We distribute the parity blocks across stripes */
6532 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6533 					&stripe_index);
6534 			if (!need_full_stripe(op) && mirror_num <= 1)
6535 				mirror_num = 1;
6536 		}
6537 	} else {
6538 		/*
6539 		 * after this, stripe_nr is the number of stripes on this
6540 		 * device we have to walk to find the data, and stripe_index is
6541 		 * the number of our device in the stripe array
6542 		 */
6543 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6544 				&stripe_index);
6545 		mirror_num = stripe_index + 1;
6546 	}
6547 	if (stripe_index >= map->num_stripes) {
6548 		btrfs_crit(fs_info,
6549 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6550 			   stripe_index, map->num_stripes);
6551 		ret = -EINVAL;
6552 		goto out;
6553 	}
6554 
6555 	num_alloc_stripes = num_stripes;
6556 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6557 		if (op == BTRFS_MAP_WRITE)
6558 			num_alloc_stripes <<= 1;
6559 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6560 			num_alloc_stripes++;
6561 		tgtdev_indexes = num_stripes;
6562 	}
6563 
6564 	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6565 	if (!bioc) {
6566 		ret = -ENOMEM;
6567 		goto out;
6568 	}
6569 
6570 	for (i = 0; i < num_stripes; i++) {
6571 		bioc->stripes[i].physical = map->stripes[stripe_index].physical +
6572 			stripe_offset + stripe_nr * map->stripe_len;
6573 		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6574 		stripe_index++;
6575 	}
6576 
6577 	/* Build raid_map */
6578 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6579 	    (need_full_stripe(op) || mirror_num > 1)) {
6580 		u64 tmp;
6581 		unsigned rot;
6582 
6583 		/* Work out the disk rotation on this stripe-set */
6584 		div_u64_rem(stripe_nr, num_stripes, &rot);
6585 
6586 		/* Fill in the logical address of each stripe */
6587 		tmp = stripe_nr * data_stripes;
6588 		for (i = 0; i < data_stripes; i++)
6589 			bioc->raid_map[(i + rot) % num_stripes] =
6590 				em->start + (tmp + i) * map->stripe_len;
6591 
6592 		bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6593 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6594 			bioc->raid_map[(i + rot + 1) % num_stripes] =
6595 				RAID6_Q_STRIPE;
6596 
6597 		sort_parity_stripes(bioc, num_stripes);
6598 	}
6599 
6600 	if (need_full_stripe(op))
6601 		max_errors = btrfs_chunk_max_errors(map);
6602 
6603 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6604 	    need_full_stripe(op)) {
6605 		handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6606 					  &num_stripes, &max_errors);
6607 	}
6608 
6609 	*bioc_ret = bioc;
6610 	bioc->map_type = map->type;
6611 	bioc->num_stripes = num_stripes;
6612 	bioc->max_errors = max_errors;
6613 	bioc->mirror_num = mirror_num;
6614 
6615 	/*
6616 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6617 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6618 	 * available as a mirror
6619 	 */
6620 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6621 		WARN_ON(num_stripes > 1);
6622 		bioc->stripes[0].dev = dev_replace->tgtdev;
6623 		bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6624 		bioc->mirror_num = map->num_stripes + 1;
6625 	}
6626 out:
6627 	if (dev_replace_is_ongoing) {
6628 		lockdep_assert_held(&dev_replace->rwsem);
6629 		/* Unlock and let waiting writers proceed */
6630 		up_read(&dev_replace->rwsem);
6631 	}
6632 	free_extent_map(em);
6633 	return ret;
6634 }
6635 
6636 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6637 		      u64 logical, u64 *length,
6638 		      struct btrfs_io_context **bioc_ret, int mirror_num)
6639 {
6640 	if (op == BTRFS_MAP_DISCARD)
6641 		return __btrfs_map_block_for_discard(fs_info, logical,
6642 						     length, bioc_ret);
6643 
6644 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6645 				 mirror_num, 0);
6646 }
6647 
6648 /* For Scrub/replace */
6649 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6650 		     u64 logical, u64 *length,
6651 		     struct btrfs_io_context **bioc_ret)
6652 {
6653 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1);
6654 }
6655 
6656 static inline void btrfs_end_bioc(struct btrfs_io_context *bioc, struct bio *bio)
6657 {
6658 	bio->bi_private = bioc->private;
6659 	bio->bi_end_io = bioc->end_io;
6660 	bio_endio(bio);
6661 
6662 	btrfs_put_bioc(bioc);
6663 }
6664 
6665 static void btrfs_end_bio(struct bio *bio)
6666 {
6667 	struct btrfs_io_context *bioc = bio->bi_private;
6668 	int is_orig_bio = 0;
6669 
6670 	if (bio->bi_status) {
6671 		atomic_inc(&bioc->error);
6672 		if (bio->bi_status == BLK_STS_IOERR ||
6673 		    bio->bi_status == BLK_STS_TARGET) {
6674 			struct btrfs_device *dev = btrfs_bio(bio)->device;
6675 
6676 			ASSERT(dev->bdev);
6677 			if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6678 				btrfs_dev_stat_inc_and_print(dev,
6679 						BTRFS_DEV_STAT_WRITE_ERRS);
6680 			else if (!(bio->bi_opf & REQ_RAHEAD))
6681 				btrfs_dev_stat_inc_and_print(dev,
6682 						BTRFS_DEV_STAT_READ_ERRS);
6683 			if (bio->bi_opf & REQ_PREFLUSH)
6684 				btrfs_dev_stat_inc_and_print(dev,
6685 						BTRFS_DEV_STAT_FLUSH_ERRS);
6686 		}
6687 	}
6688 
6689 	if (bio == bioc->orig_bio)
6690 		is_orig_bio = 1;
6691 
6692 	btrfs_bio_counter_dec(bioc->fs_info);
6693 
6694 	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6695 		if (!is_orig_bio) {
6696 			bio_put(bio);
6697 			bio = bioc->orig_bio;
6698 		}
6699 
6700 		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6701 		/* only send an error to the higher layers if it is
6702 		 * beyond the tolerance of the btrfs bio
6703 		 */
6704 		if (atomic_read(&bioc->error) > bioc->max_errors) {
6705 			bio->bi_status = BLK_STS_IOERR;
6706 		} else {
6707 			/*
6708 			 * this bio is actually up to date, we didn't
6709 			 * go over the max number of errors
6710 			 */
6711 			bio->bi_status = BLK_STS_OK;
6712 		}
6713 
6714 		btrfs_end_bioc(bioc, bio);
6715 	} else if (!is_orig_bio) {
6716 		bio_put(bio);
6717 	}
6718 }
6719 
6720 static void submit_stripe_bio(struct btrfs_io_context *bioc, struct bio *bio,
6721 			      u64 physical, struct btrfs_device *dev)
6722 {
6723 	struct btrfs_fs_info *fs_info = bioc->fs_info;
6724 
6725 	bio->bi_private = bioc;
6726 	btrfs_bio(bio)->device = dev;
6727 	bio->bi_end_io = btrfs_end_bio;
6728 	bio->bi_iter.bi_sector = physical >> 9;
6729 	/*
6730 	 * For zone append writing, bi_sector must point the beginning of the
6731 	 * zone
6732 	 */
6733 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6734 		if (btrfs_dev_is_sequential(dev, physical)) {
6735 			u64 zone_start = round_down(physical, fs_info->zone_size);
6736 
6737 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6738 		} else {
6739 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6740 			bio->bi_opf |= REQ_OP_WRITE;
6741 		}
6742 	}
6743 	btrfs_debug_in_rcu(fs_info,
6744 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6745 		bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6746 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6747 		dev->devid, bio->bi_iter.bi_size);
6748 	bio_set_dev(bio, dev->bdev);
6749 
6750 	btrfs_bio_counter_inc_noblocked(fs_info);
6751 
6752 	btrfsic_submit_bio(bio);
6753 }
6754 
6755 static void bioc_error(struct btrfs_io_context *bioc, struct bio *bio, u64 logical)
6756 {
6757 	atomic_inc(&bioc->error);
6758 	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6759 		/* Should be the original bio. */
6760 		WARN_ON(bio != bioc->orig_bio);
6761 
6762 		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6763 		bio->bi_iter.bi_sector = logical >> 9;
6764 		if (atomic_read(&bioc->error) > bioc->max_errors)
6765 			bio->bi_status = BLK_STS_IOERR;
6766 		else
6767 			bio->bi_status = BLK_STS_OK;
6768 		btrfs_end_bioc(bioc, bio);
6769 	}
6770 }
6771 
6772 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6773 			   int mirror_num)
6774 {
6775 	struct btrfs_device *dev;
6776 	struct bio *first_bio = bio;
6777 	u64 logical = bio->bi_iter.bi_sector << 9;
6778 	u64 length = 0;
6779 	u64 map_length;
6780 	int ret;
6781 	int dev_nr;
6782 	int total_devs;
6783 	struct btrfs_io_context *bioc = NULL;
6784 
6785 	length = bio->bi_iter.bi_size;
6786 	map_length = length;
6787 
6788 	btrfs_bio_counter_inc_blocked(fs_info);
6789 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6790 				&map_length, &bioc, mirror_num, 1);
6791 	if (ret) {
6792 		btrfs_bio_counter_dec(fs_info);
6793 		return errno_to_blk_status(ret);
6794 	}
6795 
6796 	total_devs = bioc->num_stripes;
6797 	bioc->orig_bio = first_bio;
6798 	bioc->private = first_bio->bi_private;
6799 	bioc->end_io = first_bio->bi_end_io;
6800 	atomic_set(&bioc->stripes_pending, bioc->num_stripes);
6801 
6802 	if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6803 	    ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6804 		/* In this case, map_length has been set to the length of
6805 		   a single stripe; not the whole write */
6806 		if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6807 			ret = raid56_parity_write(bio, bioc, map_length);
6808 		} else {
6809 			ret = raid56_parity_recover(bio, bioc, map_length,
6810 						    mirror_num, 1);
6811 		}
6812 
6813 		btrfs_bio_counter_dec(fs_info);
6814 		return errno_to_blk_status(ret);
6815 	}
6816 
6817 	if (map_length < length) {
6818 		btrfs_crit(fs_info,
6819 			   "mapping failed logical %llu bio len %llu len %llu",
6820 			   logical, length, map_length);
6821 		BUG();
6822 	}
6823 
6824 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6825 		dev = bioc->stripes[dev_nr].dev;
6826 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6827 						   &dev->dev_state) ||
6828 		    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6829 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6830 			bioc_error(bioc, first_bio, logical);
6831 			continue;
6832 		}
6833 
6834 		if (dev_nr < total_devs - 1)
6835 			bio = btrfs_bio_clone(first_bio);
6836 		else
6837 			bio = first_bio;
6838 
6839 		submit_stripe_bio(bioc, bio, bioc->stripes[dev_nr].physical, dev);
6840 	}
6841 	btrfs_bio_counter_dec(fs_info);
6842 	return BLK_STS_OK;
6843 }
6844 
6845 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6846 				      const struct btrfs_fs_devices *fs_devices)
6847 {
6848 	if (args->fsid == NULL)
6849 		return true;
6850 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6851 		return true;
6852 	return false;
6853 }
6854 
6855 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6856 				  const struct btrfs_device *device)
6857 {
6858 	ASSERT((args->devid != (u64)-1) || args->missing);
6859 
6860 	if ((args->devid != (u64)-1) && device->devid != args->devid)
6861 		return false;
6862 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6863 		return false;
6864 	if (!args->missing)
6865 		return true;
6866 	if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6867 	    !device->bdev)
6868 		return true;
6869 	return false;
6870 }
6871 
6872 /*
6873  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6874  * return NULL.
6875  *
6876  * If devid and uuid are both specified, the match must be exact, otherwise
6877  * only devid is used.
6878  */
6879 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6880 				       const struct btrfs_dev_lookup_args *args)
6881 {
6882 	struct btrfs_device *device;
6883 	struct btrfs_fs_devices *seed_devs;
6884 
6885 	if (dev_args_match_fs_devices(args, fs_devices)) {
6886 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6887 			if (dev_args_match_device(args, device))
6888 				return device;
6889 		}
6890 	}
6891 
6892 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6893 		if (!dev_args_match_fs_devices(args, seed_devs))
6894 			continue;
6895 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6896 			if (dev_args_match_device(args, device))
6897 				return device;
6898 		}
6899 	}
6900 
6901 	return NULL;
6902 }
6903 
6904 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6905 					    u64 devid, u8 *dev_uuid)
6906 {
6907 	struct btrfs_device *device;
6908 	unsigned int nofs_flag;
6909 
6910 	/*
6911 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6912 	 * allocation, however we don't want to change btrfs_alloc_device() to
6913 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6914 	 * places.
6915 	 */
6916 	nofs_flag = memalloc_nofs_save();
6917 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6918 	memalloc_nofs_restore(nofs_flag);
6919 	if (IS_ERR(device))
6920 		return device;
6921 
6922 	list_add(&device->dev_list, &fs_devices->devices);
6923 	device->fs_devices = fs_devices;
6924 	fs_devices->num_devices++;
6925 
6926 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6927 	fs_devices->missing_devices++;
6928 
6929 	return device;
6930 }
6931 
6932 /**
6933  * btrfs_alloc_device - allocate struct btrfs_device
6934  * @fs_info:	used only for generating a new devid, can be NULL if
6935  *		devid is provided (i.e. @devid != NULL).
6936  * @devid:	a pointer to devid for this device.  If NULL a new devid
6937  *		is generated.
6938  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6939  *		is generated.
6940  *
6941  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6942  * on error.  Returned struct is not linked onto any lists and must be
6943  * destroyed with btrfs_free_device.
6944  */
6945 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6946 					const u64 *devid,
6947 					const u8 *uuid)
6948 {
6949 	struct btrfs_device *dev;
6950 	u64 tmp;
6951 
6952 	if (WARN_ON(!devid && !fs_info))
6953 		return ERR_PTR(-EINVAL);
6954 
6955 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6956 	if (!dev)
6957 		return ERR_PTR(-ENOMEM);
6958 
6959 	/*
6960 	 * Preallocate a bio that's always going to be used for flushing device
6961 	 * barriers and matches the device lifespan
6962 	 */
6963 	dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6964 	if (!dev->flush_bio) {
6965 		kfree(dev);
6966 		return ERR_PTR(-ENOMEM);
6967 	}
6968 
6969 	INIT_LIST_HEAD(&dev->dev_list);
6970 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6971 	INIT_LIST_HEAD(&dev->post_commit_list);
6972 
6973 	atomic_set(&dev->reada_in_flight, 0);
6974 	atomic_set(&dev->dev_stats_ccnt, 0);
6975 	btrfs_device_data_ordered_init(dev);
6976 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6977 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6978 	extent_io_tree_init(fs_info, &dev->alloc_state,
6979 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
6980 
6981 	if (devid)
6982 		tmp = *devid;
6983 	else {
6984 		int ret;
6985 
6986 		ret = find_next_devid(fs_info, &tmp);
6987 		if (ret) {
6988 			btrfs_free_device(dev);
6989 			return ERR_PTR(ret);
6990 		}
6991 	}
6992 	dev->devid = tmp;
6993 
6994 	if (uuid)
6995 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6996 	else
6997 		generate_random_uuid(dev->uuid);
6998 
6999 	return dev;
7000 }
7001 
7002 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
7003 					u64 devid, u8 *uuid, bool error)
7004 {
7005 	if (error)
7006 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
7007 			      devid, uuid);
7008 	else
7009 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
7010 			      devid, uuid);
7011 }
7012 
7013 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7014 {
7015 	const int data_stripes = calc_data_stripes(type, num_stripes);
7016 
7017 	return div_u64(chunk_len, data_stripes);
7018 }
7019 
7020 #if BITS_PER_LONG == 32
7021 /*
7022  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7023  * can't be accessed on 32bit systems.
7024  *
7025  * This function do mount time check to reject the fs if it already has
7026  * metadata chunk beyond that limit.
7027  */
7028 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7029 				  u64 logical, u64 length, u64 type)
7030 {
7031 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7032 		return 0;
7033 
7034 	if (logical + length < MAX_LFS_FILESIZE)
7035 		return 0;
7036 
7037 	btrfs_err_32bit_limit(fs_info);
7038 	return -EOVERFLOW;
7039 }
7040 
7041 /*
7042  * This is to give early warning for any metadata chunk reaching
7043  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7044  * Although we can still access the metadata, it's not going to be possible
7045  * once the limit is reached.
7046  */
7047 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7048 				  u64 logical, u64 length, u64 type)
7049 {
7050 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7051 		return;
7052 
7053 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7054 		return;
7055 
7056 	btrfs_warn_32bit_limit(fs_info);
7057 }
7058 #endif
7059 
7060 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7061 			  struct btrfs_chunk *chunk)
7062 {
7063 	BTRFS_DEV_LOOKUP_ARGS(args);
7064 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7065 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7066 	struct map_lookup *map;
7067 	struct extent_map *em;
7068 	u64 logical;
7069 	u64 length;
7070 	u64 devid;
7071 	u64 type;
7072 	u8 uuid[BTRFS_UUID_SIZE];
7073 	int num_stripes;
7074 	int ret;
7075 	int i;
7076 
7077 	logical = key->offset;
7078 	length = btrfs_chunk_length(leaf, chunk);
7079 	type = btrfs_chunk_type(leaf, chunk);
7080 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7081 
7082 #if BITS_PER_LONG == 32
7083 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7084 	if (ret < 0)
7085 		return ret;
7086 	warn_32bit_meta_chunk(fs_info, logical, length, type);
7087 #endif
7088 
7089 	/*
7090 	 * Only need to verify chunk item if we're reading from sys chunk array,
7091 	 * as chunk item in tree block is already verified by tree-checker.
7092 	 */
7093 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7094 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7095 		if (ret)
7096 			return ret;
7097 	}
7098 
7099 	read_lock(&map_tree->lock);
7100 	em = lookup_extent_mapping(map_tree, logical, 1);
7101 	read_unlock(&map_tree->lock);
7102 
7103 	/* already mapped? */
7104 	if (em && em->start <= logical && em->start + em->len > logical) {
7105 		free_extent_map(em);
7106 		return 0;
7107 	} else if (em) {
7108 		free_extent_map(em);
7109 	}
7110 
7111 	em = alloc_extent_map();
7112 	if (!em)
7113 		return -ENOMEM;
7114 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7115 	if (!map) {
7116 		free_extent_map(em);
7117 		return -ENOMEM;
7118 	}
7119 
7120 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7121 	em->map_lookup = map;
7122 	em->start = logical;
7123 	em->len = length;
7124 	em->orig_start = 0;
7125 	em->block_start = 0;
7126 	em->block_len = em->len;
7127 
7128 	map->num_stripes = num_stripes;
7129 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7130 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7131 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7132 	map->type = type;
7133 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7134 	map->verified_stripes = 0;
7135 	em->orig_block_len = calc_stripe_length(type, em->len,
7136 						map->num_stripes);
7137 	for (i = 0; i < num_stripes; i++) {
7138 		map->stripes[i].physical =
7139 			btrfs_stripe_offset_nr(leaf, chunk, i);
7140 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7141 		args.devid = devid;
7142 		read_extent_buffer(leaf, uuid, (unsigned long)
7143 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7144 				   BTRFS_UUID_SIZE);
7145 		args.uuid = uuid;
7146 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7147 		if (!map->stripes[i].dev &&
7148 		    !btrfs_test_opt(fs_info, DEGRADED)) {
7149 			free_extent_map(em);
7150 			btrfs_report_missing_device(fs_info, devid, uuid, true);
7151 			return -ENOENT;
7152 		}
7153 		if (!map->stripes[i].dev) {
7154 			map->stripes[i].dev =
7155 				add_missing_dev(fs_info->fs_devices, devid,
7156 						uuid);
7157 			if (IS_ERR(map->stripes[i].dev)) {
7158 				free_extent_map(em);
7159 				btrfs_err(fs_info,
7160 					"failed to init missing dev %llu: %ld",
7161 					devid, PTR_ERR(map->stripes[i].dev));
7162 				return PTR_ERR(map->stripes[i].dev);
7163 			}
7164 			btrfs_report_missing_device(fs_info, devid, uuid, false);
7165 		}
7166 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7167 				&(map->stripes[i].dev->dev_state));
7168 
7169 	}
7170 
7171 	write_lock(&map_tree->lock);
7172 	ret = add_extent_mapping(map_tree, em, 0);
7173 	write_unlock(&map_tree->lock);
7174 	if (ret < 0) {
7175 		btrfs_err(fs_info,
7176 			  "failed to add chunk map, start=%llu len=%llu: %d",
7177 			  em->start, em->len, ret);
7178 	}
7179 	free_extent_map(em);
7180 
7181 	return ret;
7182 }
7183 
7184 static void fill_device_from_item(struct extent_buffer *leaf,
7185 				 struct btrfs_dev_item *dev_item,
7186 				 struct btrfs_device *device)
7187 {
7188 	unsigned long ptr;
7189 
7190 	device->devid = btrfs_device_id(leaf, dev_item);
7191 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7192 	device->total_bytes = device->disk_total_bytes;
7193 	device->commit_total_bytes = device->disk_total_bytes;
7194 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7195 	device->commit_bytes_used = device->bytes_used;
7196 	device->type = btrfs_device_type(leaf, dev_item);
7197 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7198 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7199 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7200 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7201 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7202 
7203 	ptr = btrfs_device_uuid(dev_item);
7204 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7205 }
7206 
7207 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7208 						  u8 *fsid)
7209 {
7210 	struct btrfs_fs_devices *fs_devices;
7211 	int ret;
7212 
7213 	lockdep_assert_held(&uuid_mutex);
7214 	ASSERT(fsid);
7215 
7216 	/* This will match only for multi-device seed fs */
7217 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7218 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7219 			return fs_devices;
7220 
7221 
7222 	fs_devices = find_fsid(fsid, NULL);
7223 	if (!fs_devices) {
7224 		if (!btrfs_test_opt(fs_info, DEGRADED))
7225 			return ERR_PTR(-ENOENT);
7226 
7227 		fs_devices = alloc_fs_devices(fsid, NULL);
7228 		if (IS_ERR(fs_devices))
7229 			return fs_devices;
7230 
7231 		fs_devices->seeding = true;
7232 		fs_devices->opened = 1;
7233 		return fs_devices;
7234 	}
7235 
7236 	/*
7237 	 * Upon first call for a seed fs fsid, just create a private copy of the
7238 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7239 	 */
7240 	fs_devices = clone_fs_devices(fs_devices);
7241 	if (IS_ERR(fs_devices))
7242 		return fs_devices;
7243 
7244 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7245 	if (ret) {
7246 		free_fs_devices(fs_devices);
7247 		return ERR_PTR(ret);
7248 	}
7249 
7250 	if (!fs_devices->seeding) {
7251 		close_fs_devices(fs_devices);
7252 		free_fs_devices(fs_devices);
7253 		return ERR_PTR(-EINVAL);
7254 	}
7255 
7256 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7257 
7258 	return fs_devices;
7259 }
7260 
7261 static int read_one_dev(struct extent_buffer *leaf,
7262 			struct btrfs_dev_item *dev_item)
7263 {
7264 	BTRFS_DEV_LOOKUP_ARGS(args);
7265 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7266 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7267 	struct btrfs_device *device;
7268 	u64 devid;
7269 	int ret;
7270 	u8 fs_uuid[BTRFS_FSID_SIZE];
7271 	u8 dev_uuid[BTRFS_UUID_SIZE];
7272 
7273 	devid = args.devid = btrfs_device_id(leaf, dev_item);
7274 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7275 			   BTRFS_UUID_SIZE);
7276 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7277 			   BTRFS_FSID_SIZE);
7278 	args.uuid = dev_uuid;
7279 	args.fsid = fs_uuid;
7280 
7281 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7282 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7283 		if (IS_ERR(fs_devices))
7284 			return PTR_ERR(fs_devices);
7285 	}
7286 
7287 	device = btrfs_find_device(fs_info->fs_devices, &args);
7288 	if (!device) {
7289 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7290 			btrfs_report_missing_device(fs_info, devid,
7291 							dev_uuid, true);
7292 			return -ENOENT;
7293 		}
7294 
7295 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7296 		if (IS_ERR(device)) {
7297 			btrfs_err(fs_info,
7298 				"failed to add missing dev %llu: %ld",
7299 				devid, PTR_ERR(device));
7300 			return PTR_ERR(device);
7301 		}
7302 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7303 	} else {
7304 		if (!device->bdev) {
7305 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7306 				btrfs_report_missing_device(fs_info,
7307 						devid, dev_uuid, true);
7308 				return -ENOENT;
7309 			}
7310 			btrfs_report_missing_device(fs_info, devid,
7311 							dev_uuid, false);
7312 		}
7313 
7314 		if (!device->bdev &&
7315 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7316 			/*
7317 			 * this happens when a device that was properly setup
7318 			 * in the device info lists suddenly goes bad.
7319 			 * device->bdev is NULL, and so we have to set
7320 			 * device->missing to one here
7321 			 */
7322 			device->fs_devices->missing_devices++;
7323 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7324 		}
7325 
7326 		/* Move the device to its own fs_devices */
7327 		if (device->fs_devices != fs_devices) {
7328 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7329 							&device->dev_state));
7330 
7331 			list_move(&device->dev_list, &fs_devices->devices);
7332 			device->fs_devices->num_devices--;
7333 			fs_devices->num_devices++;
7334 
7335 			device->fs_devices->missing_devices--;
7336 			fs_devices->missing_devices++;
7337 
7338 			device->fs_devices = fs_devices;
7339 		}
7340 	}
7341 
7342 	if (device->fs_devices != fs_info->fs_devices) {
7343 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7344 		if (device->generation !=
7345 		    btrfs_device_generation(leaf, dev_item))
7346 			return -EINVAL;
7347 	}
7348 
7349 	fill_device_from_item(leaf, dev_item, device);
7350 	if (device->bdev) {
7351 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7352 
7353 		if (device->total_bytes > max_total_bytes) {
7354 			btrfs_err(fs_info,
7355 			"device total_bytes should be at most %llu but found %llu",
7356 				  max_total_bytes, device->total_bytes);
7357 			return -EINVAL;
7358 		}
7359 	}
7360 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7361 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7362 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7363 		device->fs_devices->total_rw_bytes += device->total_bytes;
7364 		atomic64_add(device->total_bytes - device->bytes_used,
7365 				&fs_info->free_chunk_space);
7366 	}
7367 	ret = 0;
7368 	return ret;
7369 }
7370 
7371 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7372 {
7373 	struct btrfs_root *root = fs_info->tree_root;
7374 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7375 	struct extent_buffer *sb;
7376 	struct btrfs_disk_key *disk_key;
7377 	struct btrfs_chunk *chunk;
7378 	u8 *array_ptr;
7379 	unsigned long sb_array_offset;
7380 	int ret = 0;
7381 	u32 num_stripes;
7382 	u32 array_size;
7383 	u32 len = 0;
7384 	u32 cur_offset;
7385 	u64 type;
7386 	struct btrfs_key key;
7387 
7388 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7389 	/*
7390 	 * This will create extent buffer of nodesize, superblock size is
7391 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7392 	 * overallocate but we can keep it as-is, only the first page is used.
7393 	 */
7394 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7395 					  root->root_key.objectid, 0);
7396 	if (IS_ERR(sb))
7397 		return PTR_ERR(sb);
7398 	set_extent_buffer_uptodate(sb);
7399 	/*
7400 	 * The sb extent buffer is artificial and just used to read the system array.
7401 	 * set_extent_buffer_uptodate() call does not properly mark all it's
7402 	 * pages up-to-date when the page is larger: extent does not cover the
7403 	 * whole page and consequently check_page_uptodate does not find all
7404 	 * the page's extents up-to-date (the hole beyond sb),
7405 	 * write_extent_buffer then triggers a WARN_ON.
7406 	 *
7407 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7408 	 * but sb spans only this function. Add an explicit SetPageUptodate call
7409 	 * to silence the warning eg. on PowerPC 64.
7410 	 */
7411 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7412 		SetPageUptodate(sb->pages[0]);
7413 
7414 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7415 	array_size = btrfs_super_sys_array_size(super_copy);
7416 
7417 	array_ptr = super_copy->sys_chunk_array;
7418 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7419 	cur_offset = 0;
7420 
7421 	while (cur_offset < array_size) {
7422 		disk_key = (struct btrfs_disk_key *)array_ptr;
7423 		len = sizeof(*disk_key);
7424 		if (cur_offset + len > array_size)
7425 			goto out_short_read;
7426 
7427 		btrfs_disk_key_to_cpu(&key, disk_key);
7428 
7429 		array_ptr += len;
7430 		sb_array_offset += len;
7431 		cur_offset += len;
7432 
7433 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7434 			btrfs_err(fs_info,
7435 			    "unexpected item type %u in sys_array at offset %u",
7436 				  (u32)key.type, cur_offset);
7437 			ret = -EIO;
7438 			break;
7439 		}
7440 
7441 		chunk = (struct btrfs_chunk *)sb_array_offset;
7442 		/*
7443 		 * At least one btrfs_chunk with one stripe must be present,
7444 		 * exact stripe count check comes afterwards
7445 		 */
7446 		len = btrfs_chunk_item_size(1);
7447 		if (cur_offset + len > array_size)
7448 			goto out_short_read;
7449 
7450 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7451 		if (!num_stripes) {
7452 			btrfs_err(fs_info,
7453 			"invalid number of stripes %u in sys_array at offset %u",
7454 				  num_stripes, cur_offset);
7455 			ret = -EIO;
7456 			break;
7457 		}
7458 
7459 		type = btrfs_chunk_type(sb, chunk);
7460 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7461 			btrfs_err(fs_info,
7462 			"invalid chunk type %llu in sys_array at offset %u",
7463 				  type, cur_offset);
7464 			ret = -EIO;
7465 			break;
7466 		}
7467 
7468 		len = btrfs_chunk_item_size(num_stripes);
7469 		if (cur_offset + len > array_size)
7470 			goto out_short_read;
7471 
7472 		ret = read_one_chunk(&key, sb, chunk);
7473 		if (ret)
7474 			break;
7475 
7476 		array_ptr += len;
7477 		sb_array_offset += len;
7478 		cur_offset += len;
7479 	}
7480 	clear_extent_buffer_uptodate(sb);
7481 	free_extent_buffer_stale(sb);
7482 	return ret;
7483 
7484 out_short_read:
7485 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7486 			len, cur_offset);
7487 	clear_extent_buffer_uptodate(sb);
7488 	free_extent_buffer_stale(sb);
7489 	return -EIO;
7490 }
7491 
7492 /*
7493  * Check if all chunks in the fs are OK for read-write degraded mount
7494  *
7495  * If the @failing_dev is specified, it's accounted as missing.
7496  *
7497  * Return true if all chunks meet the minimal RW mount requirements.
7498  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7499  */
7500 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7501 					struct btrfs_device *failing_dev)
7502 {
7503 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7504 	struct extent_map *em;
7505 	u64 next_start = 0;
7506 	bool ret = true;
7507 
7508 	read_lock(&map_tree->lock);
7509 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7510 	read_unlock(&map_tree->lock);
7511 	/* No chunk at all? Return false anyway */
7512 	if (!em) {
7513 		ret = false;
7514 		goto out;
7515 	}
7516 	while (em) {
7517 		struct map_lookup *map;
7518 		int missing = 0;
7519 		int max_tolerated;
7520 		int i;
7521 
7522 		map = em->map_lookup;
7523 		max_tolerated =
7524 			btrfs_get_num_tolerated_disk_barrier_failures(
7525 					map->type);
7526 		for (i = 0; i < map->num_stripes; i++) {
7527 			struct btrfs_device *dev = map->stripes[i].dev;
7528 
7529 			if (!dev || !dev->bdev ||
7530 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7531 			    dev->last_flush_error)
7532 				missing++;
7533 			else if (failing_dev && failing_dev == dev)
7534 				missing++;
7535 		}
7536 		if (missing > max_tolerated) {
7537 			if (!failing_dev)
7538 				btrfs_warn(fs_info,
7539 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7540 				   em->start, missing, max_tolerated);
7541 			free_extent_map(em);
7542 			ret = false;
7543 			goto out;
7544 		}
7545 		next_start = extent_map_end(em);
7546 		free_extent_map(em);
7547 
7548 		read_lock(&map_tree->lock);
7549 		em = lookup_extent_mapping(map_tree, next_start,
7550 					   (u64)(-1) - next_start);
7551 		read_unlock(&map_tree->lock);
7552 	}
7553 out:
7554 	return ret;
7555 }
7556 
7557 static void readahead_tree_node_children(struct extent_buffer *node)
7558 {
7559 	int i;
7560 	const int nr_items = btrfs_header_nritems(node);
7561 
7562 	for (i = 0; i < nr_items; i++)
7563 		btrfs_readahead_node_child(node, i);
7564 }
7565 
7566 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7567 {
7568 	struct btrfs_root *root = fs_info->chunk_root;
7569 	struct btrfs_path *path;
7570 	struct extent_buffer *leaf;
7571 	struct btrfs_key key;
7572 	struct btrfs_key found_key;
7573 	int ret;
7574 	int slot;
7575 	u64 total_dev = 0;
7576 	u64 last_ra_node = 0;
7577 
7578 	path = btrfs_alloc_path();
7579 	if (!path)
7580 		return -ENOMEM;
7581 
7582 	/*
7583 	 * uuid_mutex is needed only if we are mounting a sprout FS
7584 	 * otherwise we don't need it.
7585 	 */
7586 	mutex_lock(&uuid_mutex);
7587 
7588 	/*
7589 	 * It is possible for mount and umount to race in such a way that
7590 	 * we execute this code path, but open_fs_devices failed to clear
7591 	 * total_rw_bytes. We certainly want it cleared before reading the
7592 	 * device items, so clear it here.
7593 	 */
7594 	fs_info->fs_devices->total_rw_bytes = 0;
7595 
7596 	/*
7597 	 * Lockdep complains about possible circular locking dependency between
7598 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7599 	 * used for freeze procection of a fs (struct super_block.s_writers),
7600 	 * which we take when starting a transaction, and extent buffers of the
7601 	 * chunk tree if we call read_one_dev() while holding a lock on an
7602 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7603 	 * and at this point there can't be any concurrent task modifying the
7604 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7605 	 */
7606 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7607 	path->skip_locking = 1;
7608 
7609 	/*
7610 	 * Read all device items, and then all the chunk items. All
7611 	 * device items are found before any chunk item (their object id
7612 	 * is smaller than the lowest possible object id for a chunk
7613 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7614 	 */
7615 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7616 	key.offset = 0;
7617 	key.type = 0;
7618 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7619 	if (ret < 0)
7620 		goto error;
7621 	while (1) {
7622 		struct extent_buffer *node;
7623 
7624 		leaf = path->nodes[0];
7625 		slot = path->slots[0];
7626 		if (slot >= btrfs_header_nritems(leaf)) {
7627 			ret = btrfs_next_leaf(root, path);
7628 			if (ret == 0)
7629 				continue;
7630 			if (ret < 0)
7631 				goto error;
7632 			break;
7633 		}
7634 		node = path->nodes[1];
7635 		if (node) {
7636 			if (last_ra_node != node->start) {
7637 				readahead_tree_node_children(node);
7638 				last_ra_node = node->start;
7639 			}
7640 		}
7641 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7642 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7643 			struct btrfs_dev_item *dev_item;
7644 			dev_item = btrfs_item_ptr(leaf, slot,
7645 						  struct btrfs_dev_item);
7646 			ret = read_one_dev(leaf, dev_item);
7647 			if (ret)
7648 				goto error;
7649 			total_dev++;
7650 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7651 			struct btrfs_chunk *chunk;
7652 
7653 			/*
7654 			 * We are only called at mount time, so no need to take
7655 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7656 			 * we always lock first fs_info->chunk_mutex before
7657 			 * acquiring any locks on the chunk tree. This is a
7658 			 * requirement for chunk allocation, see the comment on
7659 			 * top of btrfs_chunk_alloc() for details.
7660 			 */
7661 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7662 			ret = read_one_chunk(&found_key, leaf, chunk);
7663 			if (ret)
7664 				goto error;
7665 		}
7666 		path->slots[0]++;
7667 	}
7668 
7669 	/*
7670 	 * After loading chunk tree, we've got all device information,
7671 	 * do another round of validation checks.
7672 	 */
7673 	if (total_dev != fs_info->fs_devices->total_devices) {
7674 		btrfs_err(fs_info,
7675 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7676 			  btrfs_super_num_devices(fs_info->super_copy),
7677 			  total_dev);
7678 		ret = -EINVAL;
7679 		goto error;
7680 	}
7681 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7682 	    fs_info->fs_devices->total_rw_bytes) {
7683 		btrfs_err(fs_info,
7684 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7685 			  btrfs_super_total_bytes(fs_info->super_copy),
7686 			  fs_info->fs_devices->total_rw_bytes);
7687 		ret = -EINVAL;
7688 		goto error;
7689 	}
7690 	ret = 0;
7691 error:
7692 	mutex_unlock(&uuid_mutex);
7693 
7694 	btrfs_free_path(path);
7695 	return ret;
7696 }
7697 
7698 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7699 {
7700 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7701 	struct btrfs_device *device;
7702 
7703 	fs_devices->fs_info = fs_info;
7704 
7705 	mutex_lock(&fs_devices->device_list_mutex);
7706 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7707 		device->fs_info = fs_info;
7708 
7709 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7710 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7711 			device->fs_info = fs_info;
7712 
7713 		seed_devs->fs_info = fs_info;
7714 	}
7715 	mutex_unlock(&fs_devices->device_list_mutex);
7716 }
7717 
7718 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7719 				 const struct btrfs_dev_stats_item *ptr,
7720 				 int index)
7721 {
7722 	u64 val;
7723 
7724 	read_extent_buffer(eb, &val,
7725 			   offsetof(struct btrfs_dev_stats_item, values) +
7726 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7727 			   sizeof(val));
7728 	return val;
7729 }
7730 
7731 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7732 				      struct btrfs_dev_stats_item *ptr,
7733 				      int index, u64 val)
7734 {
7735 	write_extent_buffer(eb, &val,
7736 			    offsetof(struct btrfs_dev_stats_item, values) +
7737 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7738 			    sizeof(val));
7739 }
7740 
7741 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7742 				       struct btrfs_path *path)
7743 {
7744 	struct btrfs_dev_stats_item *ptr;
7745 	struct extent_buffer *eb;
7746 	struct btrfs_key key;
7747 	int item_size;
7748 	int i, ret, slot;
7749 
7750 	if (!device->fs_info->dev_root)
7751 		return 0;
7752 
7753 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7754 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7755 	key.offset = device->devid;
7756 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7757 	if (ret) {
7758 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7759 			btrfs_dev_stat_set(device, i, 0);
7760 		device->dev_stats_valid = 1;
7761 		btrfs_release_path(path);
7762 		return ret < 0 ? ret : 0;
7763 	}
7764 	slot = path->slots[0];
7765 	eb = path->nodes[0];
7766 	item_size = btrfs_item_size(eb, slot);
7767 
7768 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7769 
7770 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7771 		if (item_size >= (1 + i) * sizeof(__le64))
7772 			btrfs_dev_stat_set(device, i,
7773 					   btrfs_dev_stats_value(eb, ptr, i));
7774 		else
7775 			btrfs_dev_stat_set(device, i, 0);
7776 	}
7777 
7778 	device->dev_stats_valid = 1;
7779 	btrfs_dev_stat_print_on_load(device);
7780 	btrfs_release_path(path);
7781 
7782 	return 0;
7783 }
7784 
7785 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7786 {
7787 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7788 	struct btrfs_device *device;
7789 	struct btrfs_path *path = NULL;
7790 	int ret = 0;
7791 
7792 	path = btrfs_alloc_path();
7793 	if (!path)
7794 		return -ENOMEM;
7795 
7796 	mutex_lock(&fs_devices->device_list_mutex);
7797 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7798 		ret = btrfs_device_init_dev_stats(device, path);
7799 		if (ret)
7800 			goto out;
7801 	}
7802 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7803 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7804 			ret = btrfs_device_init_dev_stats(device, path);
7805 			if (ret)
7806 				goto out;
7807 		}
7808 	}
7809 out:
7810 	mutex_unlock(&fs_devices->device_list_mutex);
7811 
7812 	btrfs_free_path(path);
7813 	return ret;
7814 }
7815 
7816 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7817 				struct btrfs_device *device)
7818 {
7819 	struct btrfs_fs_info *fs_info = trans->fs_info;
7820 	struct btrfs_root *dev_root = fs_info->dev_root;
7821 	struct btrfs_path *path;
7822 	struct btrfs_key key;
7823 	struct extent_buffer *eb;
7824 	struct btrfs_dev_stats_item *ptr;
7825 	int ret;
7826 	int i;
7827 
7828 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7829 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7830 	key.offset = device->devid;
7831 
7832 	path = btrfs_alloc_path();
7833 	if (!path)
7834 		return -ENOMEM;
7835 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7836 	if (ret < 0) {
7837 		btrfs_warn_in_rcu(fs_info,
7838 			"error %d while searching for dev_stats item for device %s",
7839 			      ret, rcu_str_deref(device->name));
7840 		goto out;
7841 	}
7842 
7843 	if (ret == 0 &&
7844 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7845 		/* need to delete old one and insert a new one */
7846 		ret = btrfs_del_item(trans, dev_root, path);
7847 		if (ret != 0) {
7848 			btrfs_warn_in_rcu(fs_info,
7849 				"delete too small dev_stats item for device %s failed %d",
7850 				      rcu_str_deref(device->name), ret);
7851 			goto out;
7852 		}
7853 		ret = 1;
7854 	}
7855 
7856 	if (ret == 1) {
7857 		/* need to insert a new item */
7858 		btrfs_release_path(path);
7859 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7860 					      &key, sizeof(*ptr));
7861 		if (ret < 0) {
7862 			btrfs_warn_in_rcu(fs_info,
7863 				"insert dev_stats item for device %s failed %d",
7864 				rcu_str_deref(device->name), ret);
7865 			goto out;
7866 		}
7867 	}
7868 
7869 	eb = path->nodes[0];
7870 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7871 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7872 		btrfs_set_dev_stats_value(eb, ptr, i,
7873 					  btrfs_dev_stat_read(device, i));
7874 	btrfs_mark_buffer_dirty(eb);
7875 
7876 out:
7877 	btrfs_free_path(path);
7878 	return ret;
7879 }
7880 
7881 /*
7882  * called from commit_transaction. Writes all changed device stats to disk.
7883  */
7884 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7885 {
7886 	struct btrfs_fs_info *fs_info = trans->fs_info;
7887 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7888 	struct btrfs_device *device;
7889 	int stats_cnt;
7890 	int ret = 0;
7891 
7892 	mutex_lock(&fs_devices->device_list_mutex);
7893 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7894 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7895 		if (!device->dev_stats_valid || stats_cnt == 0)
7896 			continue;
7897 
7898 
7899 		/*
7900 		 * There is a LOAD-LOAD control dependency between the value of
7901 		 * dev_stats_ccnt and updating the on-disk values which requires
7902 		 * reading the in-memory counters. Such control dependencies
7903 		 * require explicit read memory barriers.
7904 		 *
7905 		 * This memory barriers pairs with smp_mb__before_atomic in
7906 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7907 		 * barrier implied by atomic_xchg in
7908 		 * btrfs_dev_stats_read_and_reset
7909 		 */
7910 		smp_rmb();
7911 
7912 		ret = update_dev_stat_item(trans, device);
7913 		if (!ret)
7914 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7915 	}
7916 	mutex_unlock(&fs_devices->device_list_mutex);
7917 
7918 	return ret;
7919 }
7920 
7921 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7922 {
7923 	btrfs_dev_stat_inc(dev, index);
7924 	btrfs_dev_stat_print_on_error(dev);
7925 }
7926 
7927 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7928 {
7929 	if (!dev->dev_stats_valid)
7930 		return;
7931 	btrfs_err_rl_in_rcu(dev->fs_info,
7932 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7933 			   rcu_str_deref(dev->name),
7934 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7935 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7936 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7937 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7938 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7939 }
7940 
7941 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7942 {
7943 	int i;
7944 
7945 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7946 		if (btrfs_dev_stat_read(dev, i) != 0)
7947 			break;
7948 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7949 		return; /* all values == 0, suppress message */
7950 
7951 	btrfs_info_in_rcu(dev->fs_info,
7952 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7953 	       rcu_str_deref(dev->name),
7954 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7955 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7956 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7957 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7958 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7959 }
7960 
7961 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7962 			struct btrfs_ioctl_get_dev_stats *stats)
7963 {
7964 	BTRFS_DEV_LOOKUP_ARGS(args);
7965 	struct btrfs_device *dev;
7966 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7967 	int i;
7968 
7969 	mutex_lock(&fs_devices->device_list_mutex);
7970 	args.devid = stats->devid;
7971 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7972 	mutex_unlock(&fs_devices->device_list_mutex);
7973 
7974 	if (!dev) {
7975 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7976 		return -ENODEV;
7977 	} else if (!dev->dev_stats_valid) {
7978 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7979 		return -ENODEV;
7980 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7981 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7982 			if (stats->nr_items > i)
7983 				stats->values[i] =
7984 					btrfs_dev_stat_read_and_reset(dev, i);
7985 			else
7986 				btrfs_dev_stat_set(dev, i, 0);
7987 		}
7988 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7989 			   current->comm, task_pid_nr(current));
7990 	} else {
7991 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7992 			if (stats->nr_items > i)
7993 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7994 	}
7995 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7996 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7997 	return 0;
7998 }
7999 
8000 /*
8001  * Update the size and bytes used for each device where it changed.  This is
8002  * delayed since we would otherwise get errors while writing out the
8003  * superblocks.
8004  *
8005  * Must be invoked during transaction commit.
8006  */
8007 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
8008 {
8009 	struct btrfs_device *curr, *next;
8010 
8011 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
8012 
8013 	if (list_empty(&trans->dev_update_list))
8014 		return;
8015 
8016 	/*
8017 	 * We don't need the device_list_mutex here.  This list is owned by the
8018 	 * transaction and the transaction must complete before the device is
8019 	 * released.
8020 	 */
8021 	mutex_lock(&trans->fs_info->chunk_mutex);
8022 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
8023 				 post_commit_list) {
8024 		list_del_init(&curr->post_commit_list);
8025 		curr->commit_total_bytes = curr->disk_total_bytes;
8026 		curr->commit_bytes_used = curr->bytes_used;
8027 	}
8028 	mutex_unlock(&trans->fs_info->chunk_mutex);
8029 }
8030 
8031 /*
8032  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
8033  */
8034 int btrfs_bg_type_to_factor(u64 flags)
8035 {
8036 	const int index = btrfs_bg_flags_to_raid_index(flags);
8037 
8038 	return btrfs_raid_array[index].ncopies;
8039 }
8040 
8041 
8042 
8043 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
8044 				 u64 chunk_offset, u64 devid,
8045 				 u64 physical_offset, u64 physical_len)
8046 {
8047 	struct btrfs_dev_lookup_args args = { .devid = devid };
8048 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8049 	struct extent_map *em;
8050 	struct map_lookup *map;
8051 	struct btrfs_device *dev;
8052 	u64 stripe_len;
8053 	bool found = false;
8054 	int ret = 0;
8055 	int i;
8056 
8057 	read_lock(&em_tree->lock);
8058 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8059 	read_unlock(&em_tree->lock);
8060 
8061 	if (!em) {
8062 		btrfs_err(fs_info,
8063 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8064 			  physical_offset, devid);
8065 		ret = -EUCLEAN;
8066 		goto out;
8067 	}
8068 
8069 	map = em->map_lookup;
8070 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
8071 	if (physical_len != stripe_len) {
8072 		btrfs_err(fs_info,
8073 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8074 			  physical_offset, devid, em->start, physical_len,
8075 			  stripe_len);
8076 		ret = -EUCLEAN;
8077 		goto out;
8078 	}
8079 
8080 	for (i = 0; i < map->num_stripes; i++) {
8081 		if (map->stripes[i].dev->devid == devid &&
8082 		    map->stripes[i].physical == physical_offset) {
8083 			found = true;
8084 			if (map->verified_stripes >= map->num_stripes) {
8085 				btrfs_err(fs_info,
8086 				"too many dev extents for chunk %llu found",
8087 					  em->start);
8088 				ret = -EUCLEAN;
8089 				goto out;
8090 			}
8091 			map->verified_stripes++;
8092 			break;
8093 		}
8094 	}
8095 	if (!found) {
8096 		btrfs_err(fs_info,
8097 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8098 			physical_offset, devid);
8099 		ret = -EUCLEAN;
8100 	}
8101 
8102 	/* Make sure no dev extent is beyond device boundary */
8103 	dev = btrfs_find_device(fs_info->fs_devices, &args);
8104 	if (!dev) {
8105 		btrfs_err(fs_info, "failed to find devid %llu", devid);
8106 		ret = -EUCLEAN;
8107 		goto out;
8108 	}
8109 
8110 	if (physical_offset + physical_len > dev->disk_total_bytes) {
8111 		btrfs_err(fs_info,
8112 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8113 			  devid, physical_offset, physical_len,
8114 			  dev->disk_total_bytes);
8115 		ret = -EUCLEAN;
8116 		goto out;
8117 	}
8118 
8119 	if (dev->zone_info) {
8120 		u64 zone_size = dev->zone_info->zone_size;
8121 
8122 		if (!IS_ALIGNED(physical_offset, zone_size) ||
8123 		    !IS_ALIGNED(physical_len, zone_size)) {
8124 			btrfs_err(fs_info,
8125 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8126 				  devid, physical_offset, physical_len);
8127 			ret = -EUCLEAN;
8128 			goto out;
8129 		}
8130 	}
8131 
8132 out:
8133 	free_extent_map(em);
8134 	return ret;
8135 }
8136 
8137 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8138 {
8139 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8140 	struct extent_map *em;
8141 	struct rb_node *node;
8142 	int ret = 0;
8143 
8144 	read_lock(&em_tree->lock);
8145 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8146 		em = rb_entry(node, struct extent_map, rb_node);
8147 		if (em->map_lookup->num_stripes !=
8148 		    em->map_lookup->verified_stripes) {
8149 			btrfs_err(fs_info,
8150 			"chunk %llu has missing dev extent, have %d expect %d",
8151 				  em->start, em->map_lookup->verified_stripes,
8152 				  em->map_lookup->num_stripes);
8153 			ret = -EUCLEAN;
8154 			goto out;
8155 		}
8156 	}
8157 out:
8158 	read_unlock(&em_tree->lock);
8159 	return ret;
8160 }
8161 
8162 /*
8163  * Ensure that all dev extents are mapped to correct chunk, otherwise
8164  * later chunk allocation/free would cause unexpected behavior.
8165  *
8166  * NOTE: This will iterate through the whole device tree, which should be of
8167  * the same size level as the chunk tree.  This slightly increases mount time.
8168  */
8169 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8170 {
8171 	struct btrfs_path *path;
8172 	struct btrfs_root *root = fs_info->dev_root;
8173 	struct btrfs_key key;
8174 	u64 prev_devid = 0;
8175 	u64 prev_dev_ext_end = 0;
8176 	int ret = 0;
8177 
8178 	/*
8179 	 * We don't have a dev_root because we mounted with ignorebadroots and
8180 	 * failed to load the root, so we want to skip the verification in this
8181 	 * case for sure.
8182 	 *
8183 	 * However if the dev root is fine, but the tree itself is corrupted
8184 	 * we'd still fail to mount.  This verification is only to make sure
8185 	 * writes can happen safely, so instead just bypass this check
8186 	 * completely in the case of IGNOREBADROOTS.
8187 	 */
8188 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8189 		return 0;
8190 
8191 	key.objectid = 1;
8192 	key.type = BTRFS_DEV_EXTENT_KEY;
8193 	key.offset = 0;
8194 
8195 	path = btrfs_alloc_path();
8196 	if (!path)
8197 		return -ENOMEM;
8198 
8199 	path->reada = READA_FORWARD;
8200 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8201 	if (ret < 0)
8202 		goto out;
8203 
8204 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8205 		ret = btrfs_next_leaf(root, path);
8206 		if (ret < 0)
8207 			goto out;
8208 		/* No dev extents at all? Not good */
8209 		if (ret > 0) {
8210 			ret = -EUCLEAN;
8211 			goto out;
8212 		}
8213 	}
8214 	while (1) {
8215 		struct extent_buffer *leaf = path->nodes[0];
8216 		struct btrfs_dev_extent *dext;
8217 		int slot = path->slots[0];
8218 		u64 chunk_offset;
8219 		u64 physical_offset;
8220 		u64 physical_len;
8221 		u64 devid;
8222 
8223 		btrfs_item_key_to_cpu(leaf, &key, slot);
8224 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8225 			break;
8226 		devid = key.objectid;
8227 		physical_offset = key.offset;
8228 
8229 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8230 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8231 		physical_len = btrfs_dev_extent_length(leaf, dext);
8232 
8233 		/* Check if this dev extent overlaps with the previous one */
8234 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8235 			btrfs_err(fs_info,
8236 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8237 				  devid, physical_offset, prev_dev_ext_end);
8238 			ret = -EUCLEAN;
8239 			goto out;
8240 		}
8241 
8242 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8243 					    physical_offset, physical_len);
8244 		if (ret < 0)
8245 			goto out;
8246 		prev_devid = devid;
8247 		prev_dev_ext_end = physical_offset + physical_len;
8248 
8249 		ret = btrfs_next_item(root, path);
8250 		if (ret < 0)
8251 			goto out;
8252 		if (ret > 0) {
8253 			ret = 0;
8254 			break;
8255 		}
8256 	}
8257 
8258 	/* Ensure all chunks have corresponding dev extents */
8259 	ret = verify_chunk_dev_extent_mapping(fs_info);
8260 out:
8261 	btrfs_free_path(path);
8262 	return ret;
8263 }
8264 
8265 /*
8266  * Check whether the given block group or device is pinned by any inode being
8267  * used as a swapfile.
8268  */
8269 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8270 {
8271 	struct btrfs_swapfile_pin *sp;
8272 	struct rb_node *node;
8273 
8274 	spin_lock(&fs_info->swapfile_pins_lock);
8275 	node = fs_info->swapfile_pins.rb_node;
8276 	while (node) {
8277 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8278 		if (ptr < sp->ptr)
8279 			node = node->rb_left;
8280 		else if (ptr > sp->ptr)
8281 			node = node->rb_right;
8282 		else
8283 			break;
8284 	}
8285 	spin_unlock(&fs_info->swapfile_pins_lock);
8286 	return node != NULL;
8287 }
8288 
8289 static int relocating_repair_kthread(void *data)
8290 {
8291 	struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8292 	struct btrfs_fs_info *fs_info = cache->fs_info;
8293 	u64 target;
8294 	int ret = 0;
8295 
8296 	target = cache->start;
8297 	btrfs_put_block_group(cache);
8298 
8299 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8300 		btrfs_info(fs_info,
8301 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8302 			   target);
8303 		return -EBUSY;
8304 	}
8305 
8306 	mutex_lock(&fs_info->reclaim_bgs_lock);
8307 
8308 	/* Ensure block group still exists */
8309 	cache = btrfs_lookup_block_group(fs_info, target);
8310 	if (!cache)
8311 		goto out;
8312 
8313 	if (!cache->relocating_repair)
8314 		goto out;
8315 
8316 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8317 	if (ret < 0)
8318 		goto out;
8319 
8320 	btrfs_info(fs_info,
8321 		   "zoned: relocating block group %llu to repair IO failure",
8322 		   target);
8323 	ret = btrfs_relocate_chunk(fs_info, target);
8324 
8325 out:
8326 	if (cache)
8327 		btrfs_put_block_group(cache);
8328 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8329 	btrfs_exclop_finish(fs_info);
8330 
8331 	return ret;
8332 }
8333 
8334 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8335 {
8336 	struct btrfs_block_group *cache;
8337 
8338 	/* Do not attempt to repair in degraded state */
8339 	if (btrfs_test_opt(fs_info, DEGRADED))
8340 		return 0;
8341 
8342 	cache = btrfs_lookup_block_group(fs_info, logical);
8343 	if (!cache)
8344 		return 0;
8345 
8346 	spin_lock(&cache->lock);
8347 	if (cache->relocating_repair) {
8348 		spin_unlock(&cache->lock);
8349 		btrfs_put_block_group(cache);
8350 		return 0;
8351 	}
8352 	cache->relocating_repair = 1;
8353 	spin_unlock(&cache->lock);
8354 
8355 	kthread_run(relocating_repair_kthread, cache,
8356 		    "btrfs-relocating-repair");
8357 
8358 	return 0;
8359 }
8360