xref: /openbmc/linux/fs/btrfs/volumes.c (revision 0edbfea5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 	[BTRFS_RAID_RAID10] = {
47 		.sub_stripes	= 2,
48 		.dev_stripes	= 1,
49 		.devs_max	= 0,	/* 0 == as many as possible */
50 		.devs_min	= 4,
51 		.tolerated_failures = 1,
52 		.devs_increment	= 2,
53 		.ncopies	= 2,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 	},
64 	[BTRFS_RAID_DUP] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 2,
67 		.devs_max	= 1,
68 		.devs_min	= 1,
69 		.tolerated_failures = 0,
70 		.devs_increment	= 1,
71 		.ncopies	= 2,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 	},
82 	[BTRFS_RAID_SINGLE] = {
83 		.sub_stripes	= 1,
84 		.dev_stripes	= 1,
85 		.devs_max	= 1,
86 		.devs_min	= 1,
87 		.tolerated_failures = 0,
88 		.devs_increment	= 1,
89 		.ncopies	= 1,
90 	},
91 	[BTRFS_RAID_RAID5] = {
92 		.sub_stripes	= 1,
93 		.dev_stripes	= 1,
94 		.devs_max	= 0,
95 		.devs_min	= 2,
96 		.tolerated_failures = 1,
97 		.devs_increment	= 1,
98 		.ncopies	= 2,
99 	},
100 	[BTRFS_RAID_RAID6] = {
101 		.sub_stripes	= 1,
102 		.dev_stripes	= 1,
103 		.devs_max	= 0,
104 		.devs_min	= 3,
105 		.tolerated_failures = 2,
106 		.devs_increment	= 1,
107 		.ncopies	= 3,
108 	},
109 };
110 
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116 	[BTRFS_RAID_SINGLE] = 0,
117 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120 
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 	[BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 	[BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 	[BTRFS_RAID_DUP]    = 0,
130 	[BTRFS_RAID_RAID0]  = 0,
131 	[BTRFS_RAID_SINGLE] = 0,
132 	[BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 	[BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135 
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 				struct btrfs_root *root,
138 				struct btrfs_device *device);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143 static void btrfs_close_one_device(struct btrfs_device *device);
144 
145 DEFINE_MUTEX(uuid_mutex);
146 static LIST_HEAD(fs_uuids);
147 struct list_head *btrfs_get_fs_uuids(void)
148 {
149 	return &fs_uuids;
150 }
151 
152 static struct btrfs_fs_devices *__alloc_fs_devices(void)
153 {
154 	struct btrfs_fs_devices *fs_devs;
155 
156 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
157 	if (!fs_devs)
158 		return ERR_PTR(-ENOMEM);
159 
160 	mutex_init(&fs_devs->device_list_mutex);
161 
162 	INIT_LIST_HEAD(&fs_devs->devices);
163 	INIT_LIST_HEAD(&fs_devs->resized_devices);
164 	INIT_LIST_HEAD(&fs_devs->alloc_list);
165 	INIT_LIST_HEAD(&fs_devs->list);
166 
167 	return fs_devs;
168 }
169 
170 /**
171  * alloc_fs_devices - allocate struct btrfs_fs_devices
172  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
173  *		generated.
174  *
175  * Return: a pointer to a new &struct btrfs_fs_devices on success;
176  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
177  * can be destroyed with kfree() right away.
178  */
179 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
180 {
181 	struct btrfs_fs_devices *fs_devs;
182 
183 	fs_devs = __alloc_fs_devices();
184 	if (IS_ERR(fs_devs))
185 		return fs_devs;
186 
187 	if (fsid)
188 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
189 	else
190 		generate_random_uuid(fs_devs->fsid);
191 
192 	return fs_devs;
193 }
194 
195 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
196 {
197 	struct btrfs_device *device;
198 	WARN_ON(fs_devices->opened);
199 	while (!list_empty(&fs_devices->devices)) {
200 		device = list_entry(fs_devices->devices.next,
201 				    struct btrfs_device, dev_list);
202 		list_del(&device->dev_list);
203 		rcu_string_free(device->name);
204 		kfree(device);
205 	}
206 	kfree(fs_devices);
207 }
208 
209 static void btrfs_kobject_uevent(struct block_device *bdev,
210 				 enum kobject_action action)
211 {
212 	int ret;
213 
214 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
215 	if (ret)
216 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
217 			action,
218 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
219 			&disk_to_dev(bdev->bd_disk)->kobj);
220 }
221 
222 void btrfs_cleanup_fs_uuids(void)
223 {
224 	struct btrfs_fs_devices *fs_devices;
225 
226 	while (!list_empty(&fs_uuids)) {
227 		fs_devices = list_entry(fs_uuids.next,
228 					struct btrfs_fs_devices, list);
229 		list_del(&fs_devices->list);
230 		free_fs_devices(fs_devices);
231 	}
232 }
233 
234 static struct btrfs_device *__alloc_device(void)
235 {
236 	struct btrfs_device *dev;
237 
238 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
239 	if (!dev)
240 		return ERR_PTR(-ENOMEM);
241 
242 	INIT_LIST_HEAD(&dev->dev_list);
243 	INIT_LIST_HEAD(&dev->dev_alloc_list);
244 	INIT_LIST_HEAD(&dev->resized_list);
245 
246 	spin_lock_init(&dev->io_lock);
247 
248 	spin_lock_init(&dev->reada_lock);
249 	atomic_set(&dev->reada_in_flight, 0);
250 	atomic_set(&dev->dev_stats_ccnt, 0);
251 	btrfs_device_data_ordered_init(dev);
252 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
254 
255 	return dev;
256 }
257 
258 static noinline struct btrfs_device *__find_device(struct list_head *head,
259 						   u64 devid, u8 *uuid)
260 {
261 	struct btrfs_device *dev;
262 
263 	list_for_each_entry(dev, head, dev_list) {
264 		if (dev->devid == devid &&
265 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
266 			return dev;
267 		}
268 	}
269 	return NULL;
270 }
271 
272 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
273 {
274 	struct btrfs_fs_devices *fs_devices;
275 
276 	list_for_each_entry(fs_devices, &fs_uuids, list) {
277 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
278 			return fs_devices;
279 	}
280 	return NULL;
281 }
282 
283 static int
284 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
285 		      int flush, struct block_device **bdev,
286 		      struct buffer_head **bh)
287 {
288 	int ret;
289 
290 	*bdev = blkdev_get_by_path(device_path, flags, holder);
291 
292 	if (IS_ERR(*bdev)) {
293 		ret = PTR_ERR(*bdev);
294 		goto error;
295 	}
296 
297 	if (flush)
298 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
299 	ret = set_blocksize(*bdev, 4096);
300 	if (ret) {
301 		blkdev_put(*bdev, flags);
302 		goto error;
303 	}
304 	invalidate_bdev(*bdev);
305 	*bh = btrfs_read_dev_super(*bdev);
306 	if (IS_ERR(*bh)) {
307 		ret = PTR_ERR(*bh);
308 		blkdev_put(*bdev, flags);
309 		goto error;
310 	}
311 
312 	return 0;
313 
314 error:
315 	*bdev = NULL;
316 	*bh = NULL;
317 	return ret;
318 }
319 
320 static void requeue_list(struct btrfs_pending_bios *pending_bios,
321 			struct bio *head, struct bio *tail)
322 {
323 
324 	struct bio *old_head;
325 
326 	old_head = pending_bios->head;
327 	pending_bios->head = head;
328 	if (pending_bios->tail)
329 		tail->bi_next = old_head;
330 	else
331 		pending_bios->tail = tail;
332 }
333 
334 /*
335  * we try to collect pending bios for a device so we don't get a large
336  * number of procs sending bios down to the same device.  This greatly
337  * improves the schedulers ability to collect and merge the bios.
338  *
339  * But, it also turns into a long list of bios to process and that is sure
340  * to eventually make the worker thread block.  The solution here is to
341  * make some progress and then put this work struct back at the end of
342  * the list if the block device is congested.  This way, multiple devices
343  * can make progress from a single worker thread.
344  */
345 static noinline void run_scheduled_bios(struct btrfs_device *device)
346 {
347 	struct bio *pending;
348 	struct backing_dev_info *bdi;
349 	struct btrfs_fs_info *fs_info;
350 	struct btrfs_pending_bios *pending_bios;
351 	struct bio *tail;
352 	struct bio *cur;
353 	int again = 0;
354 	unsigned long num_run;
355 	unsigned long batch_run = 0;
356 	unsigned long limit;
357 	unsigned long last_waited = 0;
358 	int force_reg = 0;
359 	int sync_pending = 0;
360 	struct blk_plug plug;
361 
362 	/*
363 	 * this function runs all the bios we've collected for
364 	 * a particular device.  We don't want to wander off to
365 	 * another device without first sending all of these down.
366 	 * So, setup a plug here and finish it off before we return
367 	 */
368 	blk_start_plug(&plug);
369 
370 	bdi = blk_get_backing_dev_info(device->bdev);
371 	fs_info = device->dev_root->fs_info;
372 	limit = btrfs_async_submit_limit(fs_info);
373 	limit = limit * 2 / 3;
374 
375 loop:
376 	spin_lock(&device->io_lock);
377 
378 loop_lock:
379 	num_run = 0;
380 
381 	/* take all the bios off the list at once and process them
382 	 * later on (without the lock held).  But, remember the
383 	 * tail and other pointers so the bios can be properly reinserted
384 	 * into the list if we hit congestion
385 	 */
386 	if (!force_reg && device->pending_sync_bios.head) {
387 		pending_bios = &device->pending_sync_bios;
388 		force_reg = 1;
389 	} else {
390 		pending_bios = &device->pending_bios;
391 		force_reg = 0;
392 	}
393 
394 	pending = pending_bios->head;
395 	tail = pending_bios->tail;
396 	WARN_ON(pending && !tail);
397 
398 	/*
399 	 * if pending was null this time around, no bios need processing
400 	 * at all and we can stop.  Otherwise it'll loop back up again
401 	 * and do an additional check so no bios are missed.
402 	 *
403 	 * device->running_pending is used to synchronize with the
404 	 * schedule_bio code.
405 	 */
406 	if (device->pending_sync_bios.head == NULL &&
407 	    device->pending_bios.head == NULL) {
408 		again = 0;
409 		device->running_pending = 0;
410 	} else {
411 		again = 1;
412 		device->running_pending = 1;
413 	}
414 
415 	pending_bios->head = NULL;
416 	pending_bios->tail = NULL;
417 
418 	spin_unlock(&device->io_lock);
419 
420 	while (pending) {
421 
422 		rmb();
423 		/* we want to work on both lists, but do more bios on the
424 		 * sync list than the regular list
425 		 */
426 		if ((num_run > 32 &&
427 		    pending_bios != &device->pending_sync_bios &&
428 		    device->pending_sync_bios.head) ||
429 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
430 		    device->pending_bios.head)) {
431 			spin_lock(&device->io_lock);
432 			requeue_list(pending_bios, pending, tail);
433 			goto loop_lock;
434 		}
435 
436 		cur = pending;
437 		pending = pending->bi_next;
438 		cur->bi_next = NULL;
439 
440 		/*
441 		 * atomic_dec_return implies a barrier for waitqueue_active
442 		 */
443 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
444 		    waitqueue_active(&fs_info->async_submit_wait))
445 			wake_up(&fs_info->async_submit_wait);
446 
447 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
448 
449 		/*
450 		 * if we're doing the sync list, record that our
451 		 * plug has some sync requests on it
452 		 *
453 		 * If we're doing the regular list and there are
454 		 * sync requests sitting around, unplug before
455 		 * we add more
456 		 */
457 		if (pending_bios == &device->pending_sync_bios) {
458 			sync_pending = 1;
459 		} else if (sync_pending) {
460 			blk_finish_plug(&plug);
461 			blk_start_plug(&plug);
462 			sync_pending = 0;
463 		}
464 
465 		btrfsic_submit_bio(cur->bi_rw, cur);
466 		num_run++;
467 		batch_run++;
468 
469 		cond_resched();
470 
471 		/*
472 		 * we made progress, there is more work to do and the bdi
473 		 * is now congested.  Back off and let other work structs
474 		 * run instead
475 		 */
476 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
477 		    fs_info->fs_devices->open_devices > 1) {
478 			struct io_context *ioc;
479 
480 			ioc = current->io_context;
481 
482 			/*
483 			 * the main goal here is that we don't want to
484 			 * block if we're going to be able to submit
485 			 * more requests without blocking.
486 			 *
487 			 * This code does two great things, it pokes into
488 			 * the elevator code from a filesystem _and_
489 			 * it makes assumptions about how batching works.
490 			 */
491 			if (ioc && ioc->nr_batch_requests > 0 &&
492 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
493 			    (last_waited == 0 ||
494 			     ioc->last_waited == last_waited)) {
495 				/*
496 				 * we want to go through our batch of
497 				 * requests and stop.  So, we copy out
498 				 * the ioc->last_waited time and test
499 				 * against it before looping
500 				 */
501 				last_waited = ioc->last_waited;
502 				cond_resched();
503 				continue;
504 			}
505 			spin_lock(&device->io_lock);
506 			requeue_list(pending_bios, pending, tail);
507 			device->running_pending = 1;
508 
509 			spin_unlock(&device->io_lock);
510 			btrfs_queue_work(fs_info->submit_workers,
511 					 &device->work);
512 			goto done;
513 		}
514 		/* unplug every 64 requests just for good measure */
515 		if (batch_run % 64 == 0) {
516 			blk_finish_plug(&plug);
517 			blk_start_plug(&plug);
518 			sync_pending = 0;
519 		}
520 	}
521 
522 	cond_resched();
523 	if (again)
524 		goto loop;
525 
526 	spin_lock(&device->io_lock);
527 	if (device->pending_bios.head || device->pending_sync_bios.head)
528 		goto loop_lock;
529 	spin_unlock(&device->io_lock);
530 
531 done:
532 	blk_finish_plug(&plug);
533 }
534 
535 static void pending_bios_fn(struct btrfs_work *work)
536 {
537 	struct btrfs_device *device;
538 
539 	device = container_of(work, struct btrfs_device, work);
540 	run_scheduled_bios(device);
541 }
542 
543 
544 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
545 {
546 	struct btrfs_fs_devices *fs_devs;
547 	struct btrfs_device *dev;
548 
549 	if (!cur_dev->name)
550 		return;
551 
552 	list_for_each_entry(fs_devs, &fs_uuids, list) {
553 		int del = 1;
554 
555 		if (fs_devs->opened)
556 			continue;
557 		if (fs_devs->seeding)
558 			continue;
559 
560 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
561 
562 			if (dev == cur_dev)
563 				continue;
564 			if (!dev->name)
565 				continue;
566 
567 			/*
568 			 * Todo: This won't be enough. What if the same device
569 			 * comes back (with new uuid and) with its mapper path?
570 			 * But for now, this does help as mostly an admin will
571 			 * either use mapper or non mapper path throughout.
572 			 */
573 			rcu_read_lock();
574 			del = strcmp(rcu_str_deref(dev->name),
575 						rcu_str_deref(cur_dev->name));
576 			rcu_read_unlock();
577 			if (!del)
578 				break;
579 		}
580 
581 		if (!del) {
582 			/* delete the stale device */
583 			if (fs_devs->num_devices == 1) {
584 				btrfs_sysfs_remove_fsid(fs_devs);
585 				list_del(&fs_devs->list);
586 				free_fs_devices(fs_devs);
587 			} else {
588 				fs_devs->num_devices--;
589 				list_del(&dev->dev_list);
590 				rcu_string_free(dev->name);
591 				kfree(dev);
592 			}
593 			break;
594 		}
595 	}
596 }
597 
598 /*
599  * Add new device to list of registered devices
600  *
601  * Returns:
602  * 1   - first time device is seen
603  * 0   - device already known
604  * < 0 - error
605  */
606 static noinline int device_list_add(const char *path,
607 			   struct btrfs_super_block *disk_super,
608 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
609 {
610 	struct btrfs_device *device;
611 	struct btrfs_fs_devices *fs_devices;
612 	struct rcu_string *name;
613 	int ret = 0;
614 	u64 found_transid = btrfs_super_generation(disk_super);
615 
616 	fs_devices = find_fsid(disk_super->fsid);
617 	if (!fs_devices) {
618 		fs_devices = alloc_fs_devices(disk_super->fsid);
619 		if (IS_ERR(fs_devices))
620 			return PTR_ERR(fs_devices);
621 
622 		list_add(&fs_devices->list, &fs_uuids);
623 
624 		device = NULL;
625 	} else {
626 		device = __find_device(&fs_devices->devices, devid,
627 				       disk_super->dev_item.uuid);
628 	}
629 
630 	if (!device) {
631 		if (fs_devices->opened)
632 			return -EBUSY;
633 
634 		device = btrfs_alloc_device(NULL, &devid,
635 					    disk_super->dev_item.uuid);
636 		if (IS_ERR(device)) {
637 			/* we can safely leave the fs_devices entry around */
638 			return PTR_ERR(device);
639 		}
640 
641 		name = rcu_string_strdup(path, GFP_NOFS);
642 		if (!name) {
643 			kfree(device);
644 			return -ENOMEM;
645 		}
646 		rcu_assign_pointer(device->name, name);
647 
648 		mutex_lock(&fs_devices->device_list_mutex);
649 		list_add_rcu(&device->dev_list, &fs_devices->devices);
650 		fs_devices->num_devices++;
651 		mutex_unlock(&fs_devices->device_list_mutex);
652 
653 		ret = 1;
654 		device->fs_devices = fs_devices;
655 	} else if (!device->name || strcmp(device->name->str, path)) {
656 		/*
657 		 * When FS is already mounted.
658 		 * 1. If you are here and if the device->name is NULL that
659 		 *    means this device was missing at time of FS mount.
660 		 * 2. If you are here and if the device->name is different
661 		 *    from 'path' that means either
662 		 *      a. The same device disappeared and reappeared with
663 		 *         different name. or
664 		 *      b. The missing-disk-which-was-replaced, has
665 		 *         reappeared now.
666 		 *
667 		 * We must allow 1 and 2a above. But 2b would be a spurious
668 		 * and unintentional.
669 		 *
670 		 * Further in case of 1 and 2a above, the disk at 'path'
671 		 * would have missed some transaction when it was away and
672 		 * in case of 2a the stale bdev has to be updated as well.
673 		 * 2b must not be allowed at all time.
674 		 */
675 
676 		/*
677 		 * For now, we do allow update to btrfs_fs_device through the
678 		 * btrfs dev scan cli after FS has been mounted.  We're still
679 		 * tracking a problem where systems fail mount by subvolume id
680 		 * when we reject replacement on a mounted FS.
681 		 */
682 		if (!fs_devices->opened && found_transid < device->generation) {
683 			/*
684 			 * That is if the FS is _not_ mounted and if you
685 			 * are here, that means there is more than one
686 			 * disk with same uuid and devid.We keep the one
687 			 * with larger generation number or the last-in if
688 			 * generation are equal.
689 			 */
690 			return -EEXIST;
691 		}
692 
693 		name = rcu_string_strdup(path, GFP_NOFS);
694 		if (!name)
695 			return -ENOMEM;
696 		rcu_string_free(device->name);
697 		rcu_assign_pointer(device->name, name);
698 		if (device->missing) {
699 			fs_devices->missing_devices--;
700 			device->missing = 0;
701 		}
702 	}
703 
704 	/*
705 	 * Unmount does not free the btrfs_device struct but would zero
706 	 * generation along with most of the other members. So just update
707 	 * it back. We need it to pick the disk with largest generation
708 	 * (as above).
709 	 */
710 	if (!fs_devices->opened)
711 		device->generation = found_transid;
712 
713 	/*
714 	 * if there is new btrfs on an already registered device,
715 	 * then remove the stale device entry.
716 	 */
717 	if (ret > 0)
718 		btrfs_free_stale_device(device);
719 
720 	*fs_devices_ret = fs_devices;
721 
722 	return ret;
723 }
724 
725 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
726 {
727 	struct btrfs_fs_devices *fs_devices;
728 	struct btrfs_device *device;
729 	struct btrfs_device *orig_dev;
730 
731 	fs_devices = alloc_fs_devices(orig->fsid);
732 	if (IS_ERR(fs_devices))
733 		return fs_devices;
734 
735 	mutex_lock(&orig->device_list_mutex);
736 	fs_devices->total_devices = orig->total_devices;
737 
738 	/* We have held the volume lock, it is safe to get the devices. */
739 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
740 		struct rcu_string *name;
741 
742 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
743 					    orig_dev->uuid);
744 		if (IS_ERR(device))
745 			goto error;
746 
747 		/*
748 		 * This is ok to do without rcu read locked because we hold the
749 		 * uuid mutex so nothing we touch in here is going to disappear.
750 		 */
751 		if (orig_dev->name) {
752 			name = rcu_string_strdup(orig_dev->name->str,
753 					GFP_KERNEL);
754 			if (!name) {
755 				kfree(device);
756 				goto error;
757 			}
758 			rcu_assign_pointer(device->name, name);
759 		}
760 
761 		list_add(&device->dev_list, &fs_devices->devices);
762 		device->fs_devices = fs_devices;
763 		fs_devices->num_devices++;
764 	}
765 	mutex_unlock(&orig->device_list_mutex);
766 	return fs_devices;
767 error:
768 	mutex_unlock(&orig->device_list_mutex);
769 	free_fs_devices(fs_devices);
770 	return ERR_PTR(-ENOMEM);
771 }
772 
773 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
774 {
775 	struct btrfs_device *device, *next;
776 	struct btrfs_device *latest_dev = NULL;
777 
778 	mutex_lock(&uuid_mutex);
779 again:
780 	/* This is the initialized path, it is safe to release the devices. */
781 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
782 		if (device->in_fs_metadata) {
783 			if (!device->is_tgtdev_for_dev_replace &&
784 			    (!latest_dev ||
785 			     device->generation > latest_dev->generation)) {
786 				latest_dev = device;
787 			}
788 			continue;
789 		}
790 
791 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
792 			/*
793 			 * In the first step, keep the device which has
794 			 * the correct fsid and the devid that is used
795 			 * for the dev_replace procedure.
796 			 * In the second step, the dev_replace state is
797 			 * read from the device tree and it is known
798 			 * whether the procedure is really active or
799 			 * not, which means whether this device is
800 			 * used or whether it should be removed.
801 			 */
802 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
803 				continue;
804 			}
805 		}
806 		if (device->bdev) {
807 			blkdev_put(device->bdev, device->mode);
808 			device->bdev = NULL;
809 			fs_devices->open_devices--;
810 		}
811 		if (device->writeable) {
812 			list_del_init(&device->dev_alloc_list);
813 			device->writeable = 0;
814 			if (!device->is_tgtdev_for_dev_replace)
815 				fs_devices->rw_devices--;
816 		}
817 		list_del_init(&device->dev_list);
818 		fs_devices->num_devices--;
819 		rcu_string_free(device->name);
820 		kfree(device);
821 	}
822 
823 	if (fs_devices->seed) {
824 		fs_devices = fs_devices->seed;
825 		goto again;
826 	}
827 
828 	fs_devices->latest_bdev = latest_dev->bdev;
829 
830 	mutex_unlock(&uuid_mutex);
831 }
832 
833 static void __free_device(struct work_struct *work)
834 {
835 	struct btrfs_device *device;
836 
837 	device = container_of(work, struct btrfs_device, rcu_work);
838 
839 	if (device->bdev)
840 		blkdev_put(device->bdev, device->mode);
841 
842 	rcu_string_free(device->name);
843 	kfree(device);
844 }
845 
846 static void free_device(struct rcu_head *head)
847 {
848 	struct btrfs_device *device;
849 
850 	device = container_of(head, struct btrfs_device, rcu);
851 
852 	INIT_WORK(&device->rcu_work, __free_device);
853 	schedule_work(&device->rcu_work);
854 }
855 
856 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
857 {
858 	struct btrfs_device *device, *tmp;
859 
860 	if (--fs_devices->opened > 0)
861 		return 0;
862 
863 	mutex_lock(&fs_devices->device_list_mutex);
864 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
865 		btrfs_close_one_device(device);
866 	}
867 	mutex_unlock(&fs_devices->device_list_mutex);
868 
869 	WARN_ON(fs_devices->open_devices);
870 	WARN_ON(fs_devices->rw_devices);
871 	fs_devices->opened = 0;
872 	fs_devices->seeding = 0;
873 
874 	return 0;
875 }
876 
877 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
878 {
879 	struct btrfs_fs_devices *seed_devices = NULL;
880 	int ret;
881 
882 	mutex_lock(&uuid_mutex);
883 	ret = __btrfs_close_devices(fs_devices);
884 	if (!fs_devices->opened) {
885 		seed_devices = fs_devices->seed;
886 		fs_devices->seed = NULL;
887 	}
888 	mutex_unlock(&uuid_mutex);
889 
890 	while (seed_devices) {
891 		fs_devices = seed_devices;
892 		seed_devices = fs_devices->seed;
893 		__btrfs_close_devices(fs_devices);
894 		free_fs_devices(fs_devices);
895 	}
896 	/*
897 	 * Wait for rcu kworkers under __btrfs_close_devices
898 	 * to finish all blkdev_puts so device is really
899 	 * free when umount is done.
900 	 */
901 	rcu_barrier();
902 	return ret;
903 }
904 
905 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
906 				fmode_t flags, void *holder)
907 {
908 	struct request_queue *q;
909 	struct block_device *bdev;
910 	struct list_head *head = &fs_devices->devices;
911 	struct btrfs_device *device;
912 	struct btrfs_device *latest_dev = NULL;
913 	struct buffer_head *bh;
914 	struct btrfs_super_block *disk_super;
915 	u64 devid;
916 	int seeding = 1;
917 	int ret = 0;
918 
919 	flags |= FMODE_EXCL;
920 
921 	list_for_each_entry(device, head, dev_list) {
922 		if (device->bdev)
923 			continue;
924 		if (!device->name)
925 			continue;
926 
927 		/* Just open everything we can; ignore failures here */
928 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
929 					    &bdev, &bh))
930 			continue;
931 
932 		disk_super = (struct btrfs_super_block *)bh->b_data;
933 		devid = btrfs_stack_device_id(&disk_super->dev_item);
934 		if (devid != device->devid)
935 			goto error_brelse;
936 
937 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
938 			   BTRFS_UUID_SIZE))
939 			goto error_brelse;
940 
941 		device->generation = btrfs_super_generation(disk_super);
942 		if (!latest_dev ||
943 		    device->generation > latest_dev->generation)
944 			latest_dev = device;
945 
946 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
947 			device->writeable = 0;
948 		} else {
949 			device->writeable = !bdev_read_only(bdev);
950 			seeding = 0;
951 		}
952 
953 		q = bdev_get_queue(bdev);
954 		if (blk_queue_discard(q))
955 			device->can_discard = 1;
956 
957 		device->bdev = bdev;
958 		device->in_fs_metadata = 0;
959 		device->mode = flags;
960 
961 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
962 			fs_devices->rotating = 1;
963 
964 		fs_devices->open_devices++;
965 		if (device->writeable &&
966 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
967 			fs_devices->rw_devices++;
968 			list_add(&device->dev_alloc_list,
969 				 &fs_devices->alloc_list);
970 		}
971 		brelse(bh);
972 		continue;
973 
974 error_brelse:
975 		brelse(bh);
976 		blkdev_put(bdev, flags);
977 		continue;
978 	}
979 	if (fs_devices->open_devices == 0) {
980 		ret = -EINVAL;
981 		goto out;
982 	}
983 	fs_devices->seeding = seeding;
984 	fs_devices->opened = 1;
985 	fs_devices->latest_bdev = latest_dev->bdev;
986 	fs_devices->total_rw_bytes = 0;
987 out:
988 	return ret;
989 }
990 
991 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
992 		       fmode_t flags, void *holder)
993 {
994 	int ret;
995 
996 	mutex_lock(&uuid_mutex);
997 	if (fs_devices->opened) {
998 		fs_devices->opened++;
999 		ret = 0;
1000 	} else {
1001 		ret = __btrfs_open_devices(fs_devices, flags, holder);
1002 	}
1003 	mutex_unlock(&uuid_mutex);
1004 	return ret;
1005 }
1006 
1007 void btrfs_release_disk_super(struct page *page)
1008 {
1009 	kunmap(page);
1010 	put_page(page);
1011 }
1012 
1013 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1014 		struct page **page, struct btrfs_super_block **disk_super)
1015 {
1016 	void *p;
1017 	pgoff_t index;
1018 
1019 	/* make sure our super fits in the device */
1020 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1021 		return 1;
1022 
1023 	/* make sure our super fits in the page */
1024 	if (sizeof(**disk_super) > PAGE_SIZE)
1025 		return 1;
1026 
1027 	/* make sure our super doesn't straddle pages on disk */
1028 	index = bytenr >> PAGE_SHIFT;
1029 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1030 		return 1;
1031 
1032 	/* pull in the page with our super */
1033 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1034 				   index, GFP_KERNEL);
1035 
1036 	if (IS_ERR_OR_NULL(*page))
1037 		return 1;
1038 
1039 	p = kmap(*page);
1040 
1041 	/* align our pointer to the offset of the super block */
1042 	*disk_super = p + (bytenr & ~PAGE_MASK);
1043 
1044 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1045 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1046 		btrfs_release_disk_super(*page);
1047 		return 1;
1048 	}
1049 
1050 	if ((*disk_super)->label[0] &&
1051 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1052 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1053 
1054 	return 0;
1055 }
1056 
1057 /*
1058  * Look for a btrfs signature on a device. This may be called out of the mount path
1059  * and we are not allowed to call set_blocksize during the scan. The superblock
1060  * is read via pagecache
1061  */
1062 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1063 			  struct btrfs_fs_devices **fs_devices_ret)
1064 {
1065 	struct btrfs_super_block *disk_super;
1066 	struct block_device *bdev;
1067 	struct page *page;
1068 	int ret = -EINVAL;
1069 	u64 devid;
1070 	u64 transid;
1071 	u64 total_devices;
1072 	u64 bytenr;
1073 
1074 	/*
1075 	 * we would like to check all the supers, but that would make
1076 	 * a btrfs mount succeed after a mkfs from a different FS.
1077 	 * So, we need to add a special mount option to scan for
1078 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1079 	 */
1080 	bytenr = btrfs_sb_offset(0);
1081 	flags |= FMODE_EXCL;
1082 	mutex_lock(&uuid_mutex);
1083 
1084 	bdev = blkdev_get_by_path(path, flags, holder);
1085 	if (IS_ERR(bdev)) {
1086 		ret = PTR_ERR(bdev);
1087 		goto error;
1088 	}
1089 
1090 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1091 		goto error_bdev_put;
1092 
1093 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1094 	transid = btrfs_super_generation(disk_super);
1095 	total_devices = btrfs_super_num_devices(disk_super);
1096 
1097 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1098 	if (ret > 0) {
1099 		if (disk_super->label[0]) {
1100 			printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1101 		} else {
1102 			printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1103 		}
1104 
1105 		printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1106 		ret = 0;
1107 	}
1108 	if (!ret && fs_devices_ret)
1109 		(*fs_devices_ret)->total_devices = total_devices;
1110 
1111 	btrfs_release_disk_super(page);
1112 
1113 error_bdev_put:
1114 	blkdev_put(bdev, flags);
1115 error:
1116 	mutex_unlock(&uuid_mutex);
1117 	return ret;
1118 }
1119 
1120 /* helper to account the used device space in the range */
1121 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1122 				   u64 end, u64 *length)
1123 {
1124 	struct btrfs_key key;
1125 	struct btrfs_root *root = device->dev_root;
1126 	struct btrfs_dev_extent *dev_extent;
1127 	struct btrfs_path *path;
1128 	u64 extent_end;
1129 	int ret;
1130 	int slot;
1131 	struct extent_buffer *l;
1132 
1133 	*length = 0;
1134 
1135 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1136 		return 0;
1137 
1138 	path = btrfs_alloc_path();
1139 	if (!path)
1140 		return -ENOMEM;
1141 	path->reada = READA_FORWARD;
1142 
1143 	key.objectid = device->devid;
1144 	key.offset = start;
1145 	key.type = BTRFS_DEV_EXTENT_KEY;
1146 
1147 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1148 	if (ret < 0)
1149 		goto out;
1150 	if (ret > 0) {
1151 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1152 		if (ret < 0)
1153 			goto out;
1154 	}
1155 
1156 	while (1) {
1157 		l = path->nodes[0];
1158 		slot = path->slots[0];
1159 		if (slot >= btrfs_header_nritems(l)) {
1160 			ret = btrfs_next_leaf(root, path);
1161 			if (ret == 0)
1162 				continue;
1163 			if (ret < 0)
1164 				goto out;
1165 
1166 			break;
1167 		}
1168 		btrfs_item_key_to_cpu(l, &key, slot);
1169 
1170 		if (key.objectid < device->devid)
1171 			goto next;
1172 
1173 		if (key.objectid > device->devid)
1174 			break;
1175 
1176 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1177 			goto next;
1178 
1179 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1180 		extent_end = key.offset + btrfs_dev_extent_length(l,
1181 								  dev_extent);
1182 		if (key.offset <= start && extent_end > end) {
1183 			*length = end - start + 1;
1184 			break;
1185 		} else if (key.offset <= start && extent_end > start)
1186 			*length += extent_end - start;
1187 		else if (key.offset > start && extent_end <= end)
1188 			*length += extent_end - key.offset;
1189 		else if (key.offset > start && key.offset <= end) {
1190 			*length += end - key.offset + 1;
1191 			break;
1192 		} else if (key.offset > end)
1193 			break;
1194 
1195 next:
1196 		path->slots[0]++;
1197 	}
1198 	ret = 0;
1199 out:
1200 	btrfs_free_path(path);
1201 	return ret;
1202 }
1203 
1204 static int contains_pending_extent(struct btrfs_transaction *transaction,
1205 				   struct btrfs_device *device,
1206 				   u64 *start, u64 len)
1207 {
1208 	struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1209 	struct extent_map *em;
1210 	struct list_head *search_list = &fs_info->pinned_chunks;
1211 	int ret = 0;
1212 	u64 physical_start = *start;
1213 
1214 	if (transaction)
1215 		search_list = &transaction->pending_chunks;
1216 again:
1217 	list_for_each_entry(em, search_list, list) {
1218 		struct map_lookup *map;
1219 		int i;
1220 
1221 		map = em->map_lookup;
1222 		for (i = 0; i < map->num_stripes; i++) {
1223 			u64 end;
1224 
1225 			if (map->stripes[i].dev != device)
1226 				continue;
1227 			if (map->stripes[i].physical >= physical_start + len ||
1228 			    map->stripes[i].physical + em->orig_block_len <=
1229 			    physical_start)
1230 				continue;
1231 			/*
1232 			 * Make sure that while processing the pinned list we do
1233 			 * not override our *start with a lower value, because
1234 			 * we can have pinned chunks that fall within this
1235 			 * device hole and that have lower physical addresses
1236 			 * than the pending chunks we processed before. If we
1237 			 * do not take this special care we can end up getting
1238 			 * 2 pending chunks that start at the same physical
1239 			 * device offsets because the end offset of a pinned
1240 			 * chunk can be equal to the start offset of some
1241 			 * pending chunk.
1242 			 */
1243 			end = map->stripes[i].physical + em->orig_block_len;
1244 			if (end > *start) {
1245 				*start = end;
1246 				ret = 1;
1247 			}
1248 		}
1249 	}
1250 	if (search_list != &fs_info->pinned_chunks) {
1251 		search_list = &fs_info->pinned_chunks;
1252 		goto again;
1253 	}
1254 
1255 	return ret;
1256 }
1257 
1258 
1259 /*
1260  * find_free_dev_extent_start - find free space in the specified device
1261  * @device:	  the device which we search the free space in
1262  * @num_bytes:	  the size of the free space that we need
1263  * @search_start: the position from which to begin the search
1264  * @start:	  store the start of the free space.
1265  * @len:	  the size of the free space. that we find, or the size
1266  *		  of the max free space if we don't find suitable free space
1267  *
1268  * this uses a pretty simple search, the expectation is that it is
1269  * called very infrequently and that a given device has a small number
1270  * of extents
1271  *
1272  * @start is used to store the start of the free space if we find. But if we
1273  * don't find suitable free space, it will be used to store the start position
1274  * of the max free space.
1275  *
1276  * @len is used to store the size of the free space that we find.
1277  * But if we don't find suitable free space, it is used to store the size of
1278  * the max free space.
1279  */
1280 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1281 			       struct btrfs_device *device, u64 num_bytes,
1282 			       u64 search_start, u64 *start, u64 *len)
1283 {
1284 	struct btrfs_key key;
1285 	struct btrfs_root *root = device->dev_root;
1286 	struct btrfs_dev_extent *dev_extent;
1287 	struct btrfs_path *path;
1288 	u64 hole_size;
1289 	u64 max_hole_start;
1290 	u64 max_hole_size;
1291 	u64 extent_end;
1292 	u64 search_end = device->total_bytes;
1293 	int ret;
1294 	int slot;
1295 	struct extent_buffer *l;
1296 	u64 min_search_start;
1297 
1298 	/*
1299 	 * We don't want to overwrite the superblock on the drive nor any area
1300 	 * used by the boot loader (grub for example), so we make sure to start
1301 	 * at an offset of at least 1MB.
1302 	 */
1303 	min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1304 	search_start = max(search_start, min_search_start);
1305 
1306 	path = btrfs_alloc_path();
1307 	if (!path)
1308 		return -ENOMEM;
1309 
1310 	max_hole_start = search_start;
1311 	max_hole_size = 0;
1312 
1313 again:
1314 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1315 		ret = -ENOSPC;
1316 		goto out;
1317 	}
1318 
1319 	path->reada = READA_FORWARD;
1320 	path->search_commit_root = 1;
1321 	path->skip_locking = 1;
1322 
1323 	key.objectid = device->devid;
1324 	key.offset = search_start;
1325 	key.type = BTRFS_DEV_EXTENT_KEY;
1326 
1327 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1328 	if (ret < 0)
1329 		goto out;
1330 	if (ret > 0) {
1331 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1332 		if (ret < 0)
1333 			goto out;
1334 	}
1335 
1336 	while (1) {
1337 		l = path->nodes[0];
1338 		slot = path->slots[0];
1339 		if (slot >= btrfs_header_nritems(l)) {
1340 			ret = btrfs_next_leaf(root, path);
1341 			if (ret == 0)
1342 				continue;
1343 			if (ret < 0)
1344 				goto out;
1345 
1346 			break;
1347 		}
1348 		btrfs_item_key_to_cpu(l, &key, slot);
1349 
1350 		if (key.objectid < device->devid)
1351 			goto next;
1352 
1353 		if (key.objectid > device->devid)
1354 			break;
1355 
1356 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1357 			goto next;
1358 
1359 		if (key.offset > search_start) {
1360 			hole_size = key.offset - search_start;
1361 
1362 			/*
1363 			 * Have to check before we set max_hole_start, otherwise
1364 			 * we could end up sending back this offset anyway.
1365 			 */
1366 			if (contains_pending_extent(transaction, device,
1367 						    &search_start,
1368 						    hole_size)) {
1369 				if (key.offset >= search_start) {
1370 					hole_size = key.offset - search_start;
1371 				} else {
1372 					WARN_ON_ONCE(1);
1373 					hole_size = 0;
1374 				}
1375 			}
1376 
1377 			if (hole_size > max_hole_size) {
1378 				max_hole_start = search_start;
1379 				max_hole_size = hole_size;
1380 			}
1381 
1382 			/*
1383 			 * If this free space is greater than which we need,
1384 			 * it must be the max free space that we have found
1385 			 * until now, so max_hole_start must point to the start
1386 			 * of this free space and the length of this free space
1387 			 * is stored in max_hole_size. Thus, we return
1388 			 * max_hole_start and max_hole_size and go back to the
1389 			 * caller.
1390 			 */
1391 			if (hole_size >= num_bytes) {
1392 				ret = 0;
1393 				goto out;
1394 			}
1395 		}
1396 
1397 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1398 		extent_end = key.offset + btrfs_dev_extent_length(l,
1399 								  dev_extent);
1400 		if (extent_end > search_start)
1401 			search_start = extent_end;
1402 next:
1403 		path->slots[0]++;
1404 		cond_resched();
1405 	}
1406 
1407 	/*
1408 	 * At this point, search_start should be the end of
1409 	 * allocated dev extents, and when shrinking the device,
1410 	 * search_end may be smaller than search_start.
1411 	 */
1412 	if (search_end > search_start) {
1413 		hole_size = search_end - search_start;
1414 
1415 		if (contains_pending_extent(transaction, device, &search_start,
1416 					    hole_size)) {
1417 			btrfs_release_path(path);
1418 			goto again;
1419 		}
1420 
1421 		if (hole_size > max_hole_size) {
1422 			max_hole_start = search_start;
1423 			max_hole_size = hole_size;
1424 		}
1425 	}
1426 
1427 	/* See above. */
1428 	if (max_hole_size < num_bytes)
1429 		ret = -ENOSPC;
1430 	else
1431 		ret = 0;
1432 
1433 out:
1434 	btrfs_free_path(path);
1435 	*start = max_hole_start;
1436 	if (len)
1437 		*len = max_hole_size;
1438 	return ret;
1439 }
1440 
1441 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1442 			 struct btrfs_device *device, u64 num_bytes,
1443 			 u64 *start, u64 *len)
1444 {
1445 	/* FIXME use last free of some kind */
1446 	return find_free_dev_extent_start(trans->transaction, device,
1447 					  num_bytes, 0, start, len);
1448 }
1449 
1450 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1451 			  struct btrfs_device *device,
1452 			  u64 start, u64 *dev_extent_len)
1453 {
1454 	int ret;
1455 	struct btrfs_path *path;
1456 	struct btrfs_root *root = device->dev_root;
1457 	struct btrfs_key key;
1458 	struct btrfs_key found_key;
1459 	struct extent_buffer *leaf = NULL;
1460 	struct btrfs_dev_extent *extent = NULL;
1461 
1462 	path = btrfs_alloc_path();
1463 	if (!path)
1464 		return -ENOMEM;
1465 
1466 	key.objectid = device->devid;
1467 	key.offset = start;
1468 	key.type = BTRFS_DEV_EXTENT_KEY;
1469 again:
1470 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1471 	if (ret > 0) {
1472 		ret = btrfs_previous_item(root, path, key.objectid,
1473 					  BTRFS_DEV_EXTENT_KEY);
1474 		if (ret)
1475 			goto out;
1476 		leaf = path->nodes[0];
1477 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1478 		extent = btrfs_item_ptr(leaf, path->slots[0],
1479 					struct btrfs_dev_extent);
1480 		BUG_ON(found_key.offset > start || found_key.offset +
1481 		       btrfs_dev_extent_length(leaf, extent) < start);
1482 		key = found_key;
1483 		btrfs_release_path(path);
1484 		goto again;
1485 	} else if (ret == 0) {
1486 		leaf = path->nodes[0];
1487 		extent = btrfs_item_ptr(leaf, path->slots[0],
1488 					struct btrfs_dev_extent);
1489 	} else {
1490 		btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
1491 		goto out;
1492 	}
1493 
1494 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1495 
1496 	ret = btrfs_del_item(trans, root, path);
1497 	if (ret) {
1498 		btrfs_handle_fs_error(root->fs_info, ret,
1499 			    "Failed to remove dev extent item");
1500 	} else {
1501 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1502 	}
1503 out:
1504 	btrfs_free_path(path);
1505 	return ret;
1506 }
1507 
1508 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1509 				  struct btrfs_device *device,
1510 				  u64 chunk_tree, u64 chunk_objectid,
1511 				  u64 chunk_offset, u64 start, u64 num_bytes)
1512 {
1513 	int ret;
1514 	struct btrfs_path *path;
1515 	struct btrfs_root *root = device->dev_root;
1516 	struct btrfs_dev_extent *extent;
1517 	struct extent_buffer *leaf;
1518 	struct btrfs_key key;
1519 
1520 	WARN_ON(!device->in_fs_metadata);
1521 	WARN_ON(device->is_tgtdev_for_dev_replace);
1522 	path = btrfs_alloc_path();
1523 	if (!path)
1524 		return -ENOMEM;
1525 
1526 	key.objectid = device->devid;
1527 	key.offset = start;
1528 	key.type = BTRFS_DEV_EXTENT_KEY;
1529 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1530 				      sizeof(*extent));
1531 	if (ret)
1532 		goto out;
1533 
1534 	leaf = path->nodes[0];
1535 	extent = btrfs_item_ptr(leaf, path->slots[0],
1536 				struct btrfs_dev_extent);
1537 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1538 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1539 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1540 
1541 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1542 		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1543 
1544 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1545 	btrfs_mark_buffer_dirty(leaf);
1546 out:
1547 	btrfs_free_path(path);
1548 	return ret;
1549 }
1550 
1551 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1552 {
1553 	struct extent_map_tree *em_tree;
1554 	struct extent_map *em;
1555 	struct rb_node *n;
1556 	u64 ret = 0;
1557 
1558 	em_tree = &fs_info->mapping_tree.map_tree;
1559 	read_lock(&em_tree->lock);
1560 	n = rb_last(&em_tree->map);
1561 	if (n) {
1562 		em = rb_entry(n, struct extent_map, rb_node);
1563 		ret = em->start + em->len;
1564 	}
1565 	read_unlock(&em_tree->lock);
1566 
1567 	return ret;
1568 }
1569 
1570 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1571 				    u64 *devid_ret)
1572 {
1573 	int ret;
1574 	struct btrfs_key key;
1575 	struct btrfs_key found_key;
1576 	struct btrfs_path *path;
1577 
1578 	path = btrfs_alloc_path();
1579 	if (!path)
1580 		return -ENOMEM;
1581 
1582 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1583 	key.type = BTRFS_DEV_ITEM_KEY;
1584 	key.offset = (u64)-1;
1585 
1586 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1587 	if (ret < 0)
1588 		goto error;
1589 
1590 	BUG_ON(ret == 0); /* Corruption */
1591 
1592 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1593 				  BTRFS_DEV_ITEMS_OBJECTID,
1594 				  BTRFS_DEV_ITEM_KEY);
1595 	if (ret) {
1596 		*devid_ret = 1;
1597 	} else {
1598 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1599 				      path->slots[0]);
1600 		*devid_ret = found_key.offset + 1;
1601 	}
1602 	ret = 0;
1603 error:
1604 	btrfs_free_path(path);
1605 	return ret;
1606 }
1607 
1608 /*
1609  * the device information is stored in the chunk root
1610  * the btrfs_device struct should be fully filled in
1611  */
1612 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1613 			    struct btrfs_root *root,
1614 			    struct btrfs_device *device)
1615 {
1616 	int ret;
1617 	struct btrfs_path *path;
1618 	struct btrfs_dev_item *dev_item;
1619 	struct extent_buffer *leaf;
1620 	struct btrfs_key key;
1621 	unsigned long ptr;
1622 
1623 	root = root->fs_info->chunk_root;
1624 
1625 	path = btrfs_alloc_path();
1626 	if (!path)
1627 		return -ENOMEM;
1628 
1629 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1630 	key.type = BTRFS_DEV_ITEM_KEY;
1631 	key.offset = device->devid;
1632 
1633 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1634 				      sizeof(*dev_item));
1635 	if (ret)
1636 		goto out;
1637 
1638 	leaf = path->nodes[0];
1639 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1640 
1641 	btrfs_set_device_id(leaf, dev_item, device->devid);
1642 	btrfs_set_device_generation(leaf, dev_item, 0);
1643 	btrfs_set_device_type(leaf, dev_item, device->type);
1644 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1645 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1646 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1647 	btrfs_set_device_total_bytes(leaf, dev_item,
1648 				     btrfs_device_get_disk_total_bytes(device));
1649 	btrfs_set_device_bytes_used(leaf, dev_item,
1650 				    btrfs_device_get_bytes_used(device));
1651 	btrfs_set_device_group(leaf, dev_item, 0);
1652 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1653 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1654 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1655 
1656 	ptr = btrfs_device_uuid(dev_item);
1657 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1658 	ptr = btrfs_device_fsid(dev_item);
1659 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1660 	btrfs_mark_buffer_dirty(leaf);
1661 
1662 	ret = 0;
1663 out:
1664 	btrfs_free_path(path);
1665 	return ret;
1666 }
1667 
1668 /*
1669  * Function to update ctime/mtime for a given device path.
1670  * Mainly used for ctime/mtime based probe like libblkid.
1671  */
1672 static void update_dev_time(char *path_name)
1673 {
1674 	struct file *filp;
1675 
1676 	filp = filp_open(path_name, O_RDWR, 0);
1677 	if (IS_ERR(filp))
1678 		return;
1679 	file_update_time(filp);
1680 	filp_close(filp, NULL);
1681 }
1682 
1683 static int btrfs_rm_dev_item(struct btrfs_root *root,
1684 			     struct btrfs_device *device)
1685 {
1686 	int ret;
1687 	struct btrfs_path *path;
1688 	struct btrfs_key key;
1689 	struct btrfs_trans_handle *trans;
1690 
1691 	root = root->fs_info->chunk_root;
1692 
1693 	path = btrfs_alloc_path();
1694 	if (!path)
1695 		return -ENOMEM;
1696 
1697 	trans = btrfs_start_transaction(root, 0);
1698 	if (IS_ERR(trans)) {
1699 		btrfs_free_path(path);
1700 		return PTR_ERR(trans);
1701 	}
1702 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1703 	key.type = BTRFS_DEV_ITEM_KEY;
1704 	key.offset = device->devid;
1705 
1706 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1707 	if (ret < 0)
1708 		goto out;
1709 
1710 	if (ret > 0) {
1711 		ret = -ENOENT;
1712 		goto out;
1713 	}
1714 
1715 	ret = btrfs_del_item(trans, root, path);
1716 	if (ret)
1717 		goto out;
1718 out:
1719 	btrfs_free_path(path);
1720 	btrfs_commit_transaction(trans, root);
1721 	return ret;
1722 }
1723 
1724 /*
1725  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1726  * filesystem. It's up to the caller to adjust that number regarding eg. device
1727  * replace.
1728  */
1729 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1730 		u64 num_devices)
1731 {
1732 	u64 all_avail;
1733 	unsigned seq;
1734 	int i;
1735 
1736 	do {
1737 		seq = read_seqbegin(&fs_info->profiles_lock);
1738 
1739 		all_avail = fs_info->avail_data_alloc_bits |
1740 			    fs_info->avail_system_alloc_bits |
1741 			    fs_info->avail_metadata_alloc_bits;
1742 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1743 
1744 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1745 		if (!(all_avail & btrfs_raid_group[i]))
1746 			continue;
1747 
1748 		if (num_devices < btrfs_raid_array[i].devs_min) {
1749 			int ret = btrfs_raid_mindev_error[i];
1750 
1751 			if (ret)
1752 				return ret;
1753 		}
1754 	}
1755 
1756 	return 0;
1757 }
1758 
1759 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1760 					struct btrfs_device *device)
1761 {
1762 	struct btrfs_device *next_device;
1763 
1764 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1765 		if (next_device != device &&
1766 			!next_device->missing && next_device->bdev)
1767 			return next_device;
1768 	}
1769 
1770 	return NULL;
1771 }
1772 
1773 /*
1774  * Helper function to check if the given device is part of s_bdev / latest_bdev
1775  * and replace it with the provided or the next active device, in the context
1776  * where this function called, there should be always be another device (or
1777  * this_dev) which is active.
1778  */
1779 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1780 		struct btrfs_device *device, struct btrfs_device *this_dev)
1781 {
1782 	struct btrfs_device *next_device;
1783 
1784 	if (this_dev)
1785 		next_device = this_dev;
1786 	else
1787 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1788 								device);
1789 	ASSERT(next_device);
1790 
1791 	if (fs_info->sb->s_bdev &&
1792 			(fs_info->sb->s_bdev == device->bdev))
1793 		fs_info->sb->s_bdev = next_device->bdev;
1794 
1795 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1796 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1797 }
1798 
1799 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1800 {
1801 	struct btrfs_device *device;
1802 	struct btrfs_fs_devices *cur_devices;
1803 	u64 num_devices;
1804 	int ret = 0;
1805 	bool clear_super = false;
1806 	char *dev_name = NULL;
1807 
1808 	mutex_lock(&uuid_mutex);
1809 
1810 	num_devices = root->fs_info->fs_devices->num_devices;
1811 	btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1812 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1813 		WARN_ON(num_devices < 1);
1814 		num_devices--;
1815 	}
1816 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1817 
1818 	ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
1819 	if (ret)
1820 		goto out;
1821 
1822 	ret = btrfs_find_device_by_devspec(root, devid, device_path,
1823 				&device);
1824 	if (ret)
1825 		goto out;
1826 
1827 	if (device->is_tgtdev_for_dev_replace) {
1828 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1829 		goto out;
1830 	}
1831 
1832 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1833 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1834 		goto out;
1835 	}
1836 
1837 	if (device->writeable) {
1838 		lock_chunks(root);
1839 		list_del_init(&device->dev_alloc_list);
1840 		device->fs_devices->rw_devices--;
1841 		unlock_chunks(root);
1842 		dev_name = kstrdup(device->name->str, GFP_KERNEL);
1843 		if (!dev_name) {
1844 			ret = -ENOMEM;
1845 			goto error_undo;
1846 		}
1847 		clear_super = true;
1848 	}
1849 
1850 	mutex_unlock(&uuid_mutex);
1851 	ret = btrfs_shrink_device(device, 0);
1852 	mutex_lock(&uuid_mutex);
1853 	if (ret)
1854 		goto error_undo;
1855 
1856 	/*
1857 	 * TODO: the superblock still includes this device in its num_devices
1858 	 * counter although write_all_supers() is not locked out. This
1859 	 * could give a filesystem state which requires a degraded mount.
1860 	 */
1861 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1862 	if (ret)
1863 		goto error_undo;
1864 
1865 	device->in_fs_metadata = 0;
1866 	btrfs_scrub_cancel_dev(root->fs_info, device);
1867 
1868 	/*
1869 	 * the device list mutex makes sure that we don't change
1870 	 * the device list while someone else is writing out all
1871 	 * the device supers. Whoever is writing all supers, should
1872 	 * lock the device list mutex before getting the number of
1873 	 * devices in the super block (super_copy). Conversely,
1874 	 * whoever updates the number of devices in the super block
1875 	 * (super_copy) should hold the device list mutex.
1876 	 */
1877 
1878 	cur_devices = device->fs_devices;
1879 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1880 	list_del_rcu(&device->dev_list);
1881 
1882 	device->fs_devices->num_devices--;
1883 	device->fs_devices->total_devices--;
1884 
1885 	if (device->missing)
1886 		device->fs_devices->missing_devices--;
1887 
1888 	btrfs_assign_next_active_device(root->fs_info, device, NULL);
1889 
1890 	if (device->bdev) {
1891 		device->fs_devices->open_devices--;
1892 		/* remove sysfs entry */
1893 		btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1894 	}
1895 
1896 	call_rcu(&device->rcu, free_device);
1897 
1898 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1899 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1900 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1901 
1902 	if (cur_devices->open_devices == 0) {
1903 		struct btrfs_fs_devices *fs_devices;
1904 		fs_devices = root->fs_info->fs_devices;
1905 		while (fs_devices) {
1906 			if (fs_devices->seed == cur_devices) {
1907 				fs_devices->seed = cur_devices->seed;
1908 				break;
1909 			}
1910 			fs_devices = fs_devices->seed;
1911 		}
1912 		cur_devices->seed = NULL;
1913 		__btrfs_close_devices(cur_devices);
1914 		free_fs_devices(cur_devices);
1915 	}
1916 
1917 	root->fs_info->num_tolerated_disk_barrier_failures =
1918 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1919 
1920 	/*
1921 	 * at this point, the device is zero sized.  We want to
1922 	 * remove it from the devices list and zero out the old super
1923 	 */
1924 	if (clear_super) {
1925 		struct block_device *bdev;
1926 
1927 		bdev = blkdev_get_by_path(dev_name, FMODE_READ | FMODE_EXCL,
1928 						root->fs_info->bdev_holder);
1929 		if (!IS_ERR(bdev)) {
1930 			btrfs_scratch_superblocks(bdev, dev_name);
1931 			blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1932 		}
1933 	}
1934 
1935 out:
1936 	kfree(dev_name);
1937 
1938 	mutex_unlock(&uuid_mutex);
1939 	return ret;
1940 
1941 error_undo:
1942 	if (device->writeable) {
1943 		lock_chunks(root);
1944 		list_add(&device->dev_alloc_list,
1945 			 &root->fs_info->fs_devices->alloc_list);
1946 		device->fs_devices->rw_devices++;
1947 		unlock_chunks(root);
1948 	}
1949 	goto out;
1950 }
1951 
1952 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1953 					struct btrfs_device *srcdev)
1954 {
1955 	struct btrfs_fs_devices *fs_devices;
1956 
1957 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1958 
1959 	/*
1960 	 * in case of fs with no seed, srcdev->fs_devices will point
1961 	 * to fs_devices of fs_info. However when the dev being replaced is
1962 	 * a seed dev it will point to the seed's local fs_devices. In short
1963 	 * srcdev will have its correct fs_devices in both the cases.
1964 	 */
1965 	fs_devices = srcdev->fs_devices;
1966 
1967 	list_del_rcu(&srcdev->dev_list);
1968 	list_del_rcu(&srcdev->dev_alloc_list);
1969 	fs_devices->num_devices--;
1970 	if (srcdev->missing)
1971 		fs_devices->missing_devices--;
1972 
1973 	if (srcdev->writeable)
1974 		fs_devices->rw_devices--;
1975 
1976 	if (srcdev->bdev)
1977 		fs_devices->open_devices--;
1978 }
1979 
1980 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1981 				      struct btrfs_device *srcdev)
1982 {
1983 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1984 
1985 	if (srcdev->writeable) {
1986 		/* zero out the old super if it is writable */
1987 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1988 	}
1989 	call_rcu(&srcdev->rcu, free_device);
1990 
1991 	/*
1992 	 * unless fs_devices is seed fs, num_devices shouldn't go
1993 	 * zero
1994 	 */
1995 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1996 
1997 	/* if this is no devs we rather delete the fs_devices */
1998 	if (!fs_devices->num_devices) {
1999 		struct btrfs_fs_devices *tmp_fs_devices;
2000 
2001 		tmp_fs_devices = fs_info->fs_devices;
2002 		while (tmp_fs_devices) {
2003 			if (tmp_fs_devices->seed == fs_devices) {
2004 				tmp_fs_devices->seed = fs_devices->seed;
2005 				break;
2006 			}
2007 			tmp_fs_devices = tmp_fs_devices->seed;
2008 		}
2009 		fs_devices->seed = NULL;
2010 		__btrfs_close_devices(fs_devices);
2011 		free_fs_devices(fs_devices);
2012 	}
2013 }
2014 
2015 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2016 				      struct btrfs_device *tgtdev)
2017 {
2018 	mutex_lock(&uuid_mutex);
2019 	WARN_ON(!tgtdev);
2020 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2021 
2022 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2023 
2024 	if (tgtdev->bdev)
2025 		fs_info->fs_devices->open_devices--;
2026 
2027 	fs_info->fs_devices->num_devices--;
2028 
2029 	btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2030 
2031 	list_del_rcu(&tgtdev->dev_list);
2032 
2033 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2034 	mutex_unlock(&uuid_mutex);
2035 
2036 	/*
2037 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2038 	 * may lead to a call to btrfs_show_devname() which will try
2039 	 * to hold device_list_mutex. And here this device
2040 	 * is already out of device list, so we don't have to hold
2041 	 * the device_list_mutex lock.
2042 	 */
2043 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2044 	call_rcu(&tgtdev->rcu, free_device);
2045 }
2046 
2047 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2048 				     struct btrfs_device **device)
2049 {
2050 	int ret = 0;
2051 	struct btrfs_super_block *disk_super;
2052 	u64 devid;
2053 	u8 *dev_uuid;
2054 	struct block_device *bdev;
2055 	struct buffer_head *bh;
2056 
2057 	*device = NULL;
2058 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2059 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
2060 	if (ret)
2061 		return ret;
2062 	disk_super = (struct btrfs_super_block *)bh->b_data;
2063 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2064 	dev_uuid = disk_super->dev_item.uuid;
2065 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2066 				    disk_super->fsid);
2067 	brelse(bh);
2068 	if (!*device)
2069 		ret = -ENOENT;
2070 	blkdev_put(bdev, FMODE_READ);
2071 	return ret;
2072 }
2073 
2074 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2075 					 char *device_path,
2076 					 struct btrfs_device **device)
2077 {
2078 	*device = NULL;
2079 	if (strcmp(device_path, "missing") == 0) {
2080 		struct list_head *devices;
2081 		struct btrfs_device *tmp;
2082 
2083 		devices = &root->fs_info->fs_devices->devices;
2084 		/*
2085 		 * It is safe to read the devices since the volume_mutex
2086 		 * is held by the caller.
2087 		 */
2088 		list_for_each_entry(tmp, devices, dev_list) {
2089 			if (tmp->in_fs_metadata && !tmp->bdev) {
2090 				*device = tmp;
2091 				break;
2092 			}
2093 		}
2094 
2095 		if (!*device)
2096 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2097 
2098 		return 0;
2099 	} else {
2100 		return btrfs_find_device_by_path(root, device_path, device);
2101 	}
2102 }
2103 
2104 /*
2105  * Lookup a device given by device id, or the path if the id is 0.
2106  */
2107 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2108 					 char *devpath,
2109 					 struct btrfs_device **device)
2110 {
2111 	int ret;
2112 
2113 	if (devid) {
2114 		ret = 0;
2115 		*device = btrfs_find_device(root->fs_info, devid, NULL,
2116 					    NULL);
2117 		if (!*device)
2118 			ret = -ENOENT;
2119 	} else {
2120 		if (!devpath || !devpath[0])
2121 			return -EINVAL;
2122 
2123 		ret = btrfs_find_device_missing_or_by_path(root, devpath,
2124 							   device);
2125 	}
2126 	return ret;
2127 }
2128 
2129 /*
2130  * does all the dirty work required for changing file system's UUID.
2131  */
2132 static int btrfs_prepare_sprout(struct btrfs_root *root)
2133 {
2134 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2135 	struct btrfs_fs_devices *old_devices;
2136 	struct btrfs_fs_devices *seed_devices;
2137 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2138 	struct btrfs_device *device;
2139 	u64 super_flags;
2140 
2141 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2142 	if (!fs_devices->seeding)
2143 		return -EINVAL;
2144 
2145 	seed_devices = __alloc_fs_devices();
2146 	if (IS_ERR(seed_devices))
2147 		return PTR_ERR(seed_devices);
2148 
2149 	old_devices = clone_fs_devices(fs_devices);
2150 	if (IS_ERR(old_devices)) {
2151 		kfree(seed_devices);
2152 		return PTR_ERR(old_devices);
2153 	}
2154 
2155 	list_add(&old_devices->list, &fs_uuids);
2156 
2157 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2158 	seed_devices->opened = 1;
2159 	INIT_LIST_HEAD(&seed_devices->devices);
2160 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2161 	mutex_init(&seed_devices->device_list_mutex);
2162 
2163 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2164 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2165 			      synchronize_rcu);
2166 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2167 		device->fs_devices = seed_devices;
2168 
2169 	lock_chunks(root);
2170 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2171 	unlock_chunks(root);
2172 
2173 	fs_devices->seeding = 0;
2174 	fs_devices->num_devices = 0;
2175 	fs_devices->open_devices = 0;
2176 	fs_devices->missing_devices = 0;
2177 	fs_devices->rotating = 0;
2178 	fs_devices->seed = seed_devices;
2179 
2180 	generate_random_uuid(fs_devices->fsid);
2181 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2182 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2183 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2184 
2185 	super_flags = btrfs_super_flags(disk_super) &
2186 		      ~BTRFS_SUPER_FLAG_SEEDING;
2187 	btrfs_set_super_flags(disk_super, super_flags);
2188 
2189 	return 0;
2190 }
2191 
2192 /*
2193  * Store the expected generation for seed devices in device items.
2194  */
2195 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2196 			       struct btrfs_root *root)
2197 {
2198 	struct btrfs_path *path;
2199 	struct extent_buffer *leaf;
2200 	struct btrfs_dev_item *dev_item;
2201 	struct btrfs_device *device;
2202 	struct btrfs_key key;
2203 	u8 fs_uuid[BTRFS_UUID_SIZE];
2204 	u8 dev_uuid[BTRFS_UUID_SIZE];
2205 	u64 devid;
2206 	int ret;
2207 
2208 	path = btrfs_alloc_path();
2209 	if (!path)
2210 		return -ENOMEM;
2211 
2212 	root = root->fs_info->chunk_root;
2213 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2214 	key.offset = 0;
2215 	key.type = BTRFS_DEV_ITEM_KEY;
2216 
2217 	while (1) {
2218 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2219 		if (ret < 0)
2220 			goto error;
2221 
2222 		leaf = path->nodes[0];
2223 next_slot:
2224 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2225 			ret = btrfs_next_leaf(root, path);
2226 			if (ret > 0)
2227 				break;
2228 			if (ret < 0)
2229 				goto error;
2230 			leaf = path->nodes[0];
2231 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2232 			btrfs_release_path(path);
2233 			continue;
2234 		}
2235 
2236 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2237 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2238 		    key.type != BTRFS_DEV_ITEM_KEY)
2239 			break;
2240 
2241 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2242 					  struct btrfs_dev_item);
2243 		devid = btrfs_device_id(leaf, dev_item);
2244 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2245 				   BTRFS_UUID_SIZE);
2246 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2247 				   BTRFS_UUID_SIZE);
2248 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2249 					   fs_uuid);
2250 		BUG_ON(!device); /* Logic error */
2251 
2252 		if (device->fs_devices->seeding) {
2253 			btrfs_set_device_generation(leaf, dev_item,
2254 						    device->generation);
2255 			btrfs_mark_buffer_dirty(leaf);
2256 		}
2257 
2258 		path->slots[0]++;
2259 		goto next_slot;
2260 	}
2261 	ret = 0;
2262 error:
2263 	btrfs_free_path(path);
2264 	return ret;
2265 }
2266 
2267 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2268 {
2269 	struct request_queue *q;
2270 	struct btrfs_trans_handle *trans;
2271 	struct btrfs_device *device;
2272 	struct block_device *bdev;
2273 	struct list_head *devices;
2274 	struct super_block *sb = root->fs_info->sb;
2275 	struct rcu_string *name;
2276 	u64 tmp;
2277 	int seeding_dev = 0;
2278 	int ret = 0;
2279 
2280 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2281 		return -EROFS;
2282 
2283 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2284 				  root->fs_info->bdev_holder);
2285 	if (IS_ERR(bdev))
2286 		return PTR_ERR(bdev);
2287 
2288 	if (root->fs_info->fs_devices->seeding) {
2289 		seeding_dev = 1;
2290 		down_write(&sb->s_umount);
2291 		mutex_lock(&uuid_mutex);
2292 	}
2293 
2294 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2295 
2296 	devices = &root->fs_info->fs_devices->devices;
2297 
2298 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2299 	list_for_each_entry(device, devices, dev_list) {
2300 		if (device->bdev == bdev) {
2301 			ret = -EEXIST;
2302 			mutex_unlock(
2303 				&root->fs_info->fs_devices->device_list_mutex);
2304 			goto error;
2305 		}
2306 	}
2307 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2308 
2309 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2310 	if (IS_ERR(device)) {
2311 		/* we can safely leave the fs_devices entry around */
2312 		ret = PTR_ERR(device);
2313 		goto error;
2314 	}
2315 
2316 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2317 	if (!name) {
2318 		kfree(device);
2319 		ret = -ENOMEM;
2320 		goto error;
2321 	}
2322 	rcu_assign_pointer(device->name, name);
2323 
2324 	trans = btrfs_start_transaction(root, 0);
2325 	if (IS_ERR(trans)) {
2326 		rcu_string_free(device->name);
2327 		kfree(device);
2328 		ret = PTR_ERR(trans);
2329 		goto error;
2330 	}
2331 
2332 	q = bdev_get_queue(bdev);
2333 	if (blk_queue_discard(q))
2334 		device->can_discard = 1;
2335 	device->writeable = 1;
2336 	device->generation = trans->transid;
2337 	device->io_width = root->sectorsize;
2338 	device->io_align = root->sectorsize;
2339 	device->sector_size = root->sectorsize;
2340 	device->total_bytes = i_size_read(bdev->bd_inode);
2341 	device->disk_total_bytes = device->total_bytes;
2342 	device->commit_total_bytes = device->total_bytes;
2343 	device->dev_root = root->fs_info->dev_root;
2344 	device->bdev = bdev;
2345 	device->in_fs_metadata = 1;
2346 	device->is_tgtdev_for_dev_replace = 0;
2347 	device->mode = FMODE_EXCL;
2348 	device->dev_stats_valid = 1;
2349 	set_blocksize(device->bdev, 4096);
2350 
2351 	if (seeding_dev) {
2352 		sb->s_flags &= ~MS_RDONLY;
2353 		ret = btrfs_prepare_sprout(root);
2354 		BUG_ON(ret); /* -ENOMEM */
2355 	}
2356 
2357 	device->fs_devices = root->fs_info->fs_devices;
2358 
2359 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2360 	lock_chunks(root);
2361 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2362 	list_add(&device->dev_alloc_list,
2363 		 &root->fs_info->fs_devices->alloc_list);
2364 	root->fs_info->fs_devices->num_devices++;
2365 	root->fs_info->fs_devices->open_devices++;
2366 	root->fs_info->fs_devices->rw_devices++;
2367 	root->fs_info->fs_devices->total_devices++;
2368 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2369 
2370 	spin_lock(&root->fs_info->free_chunk_lock);
2371 	root->fs_info->free_chunk_space += device->total_bytes;
2372 	spin_unlock(&root->fs_info->free_chunk_lock);
2373 
2374 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2375 		root->fs_info->fs_devices->rotating = 1;
2376 
2377 	tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2378 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2379 				    tmp + device->total_bytes);
2380 
2381 	tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2382 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2383 				    tmp + 1);
2384 
2385 	/* add sysfs device entry */
2386 	btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2387 
2388 	/*
2389 	 * we've got more storage, clear any full flags on the space
2390 	 * infos
2391 	 */
2392 	btrfs_clear_space_info_full(root->fs_info);
2393 
2394 	unlock_chunks(root);
2395 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2396 
2397 	if (seeding_dev) {
2398 		lock_chunks(root);
2399 		ret = init_first_rw_device(trans, root, device);
2400 		unlock_chunks(root);
2401 		if (ret) {
2402 			btrfs_abort_transaction(trans, root, ret);
2403 			goto error_trans;
2404 		}
2405 	}
2406 
2407 	ret = btrfs_add_device(trans, root, device);
2408 	if (ret) {
2409 		btrfs_abort_transaction(trans, root, ret);
2410 		goto error_trans;
2411 	}
2412 
2413 	if (seeding_dev) {
2414 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2415 
2416 		ret = btrfs_finish_sprout(trans, root);
2417 		if (ret) {
2418 			btrfs_abort_transaction(trans, root, ret);
2419 			goto error_trans;
2420 		}
2421 
2422 		/* Sprouting would change fsid of the mounted root,
2423 		 * so rename the fsid on the sysfs
2424 		 */
2425 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2426 						root->fs_info->fsid);
2427 		if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2428 								fsid_buf))
2429 			btrfs_warn(root->fs_info,
2430 				"sysfs: failed to create fsid for sprout");
2431 	}
2432 
2433 	root->fs_info->num_tolerated_disk_barrier_failures =
2434 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2435 	ret = btrfs_commit_transaction(trans, root);
2436 
2437 	if (seeding_dev) {
2438 		mutex_unlock(&uuid_mutex);
2439 		up_write(&sb->s_umount);
2440 
2441 		if (ret) /* transaction commit */
2442 			return ret;
2443 
2444 		ret = btrfs_relocate_sys_chunks(root);
2445 		if (ret < 0)
2446 			btrfs_handle_fs_error(root->fs_info, ret,
2447 				    "Failed to relocate sys chunks after "
2448 				    "device initialization. This can be fixed "
2449 				    "using the \"btrfs balance\" command.");
2450 		trans = btrfs_attach_transaction(root);
2451 		if (IS_ERR(trans)) {
2452 			if (PTR_ERR(trans) == -ENOENT)
2453 				return 0;
2454 			return PTR_ERR(trans);
2455 		}
2456 		ret = btrfs_commit_transaction(trans, root);
2457 	}
2458 
2459 	/* Update ctime/mtime for libblkid */
2460 	update_dev_time(device_path);
2461 	return ret;
2462 
2463 error_trans:
2464 	btrfs_end_transaction(trans, root);
2465 	rcu_string_free(device->name);
2466 	btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2467 	kfree(device);
2468 error:
2469 	blkdev_put(bdev, FMODE_EXCL);
2470 	if (seeding_dev) {
2471 		mutex_unlock(&uuid_mutex);
2472 		up_write(&sb->s_umount);
2473 	}
2474 	return ret;
2475 }
2476 
2477 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2478 				  struct btrfs_device *srcdev,
2479 				  struct btrfs_device **device_out)
2480 {
2481 	struct request_queue *q;
2482 	struct btrfs_device *device;
2483 	struct block_device *bdev;
2484 	struct btrfs_fs_info *fs_info = root->fs_info;
2485 	struct list_head *devices;
2486 	struct rcu_string *name;
2487 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2488 	int ret = 0;
2489 
2490 	*device_out = NULL;
2491 	if (fs_info->fs_devices->seeding) {
2492 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2493 		return -EINVAL;
2494 	}
2495 
2496 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2497 				  fs_info->bdev_holder);
2498 	if (IS_ERR(bdev)) {
2499 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2500 		return PTR_ERR(bdev);
2501 	}
2502 
2503 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2504 
2505 	devices = &fs_info->fs_devices->devices;
2506 	list_for_each_entry(device, devices, dev_list) {
2507 		if (device->bdev == bdev) {
2508 			btrfs_err(fs_info, "target device is in the filesystem!");
2509 			ret = -EEXIST;
2510 			goto error;
2511 		}
2512 	}
2513 
2514 
2515 	if (i_size_read(bdev->bd_inode) <
2516 	    btrfs_device_get_total_bytes(srcdev)) {
2517 		btrfs_err(fs_info, "target device is smaller than source device!");
2518 		ret = -EINVAL;
2519 		goto error;
2520 	}
2521 
2522 
2523 	device = btrfs_alloc_device(NULL, &devid, NULL);
2524 	if (IS_ERR(device)) {
2525 		ret = PTR_ERR(device);
2526 		goto error;
2527 	}
2528 
2529 	name = rcu_string_strdup(device_path, GFP_NOFS);
2530 	if (!name) {
2531 		kfree(device);
2532 		ret = -ENOMEM;
2533 		goto error;
2534 	}
2535 	rcu_assign_pointer(device->name, name);
2536 
2537 	q = bdev_get_queue(bdev);
2538 	if (blk_queue_discard(q))
2539 		device->can_discard = 1;
2540 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2541 	device->writeable = 1;
2542 	device->generation = 0;
2543 	device->io_width = root->sectorsize;
2544 	device->io_align = root->sectorsize;
2545 	device->sector_size = root->sectorsize;
2546 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2547 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2548 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2549 	ASSERT(list_empty(&srcdev->resized_list));
2550 	device->commit_total_bytes = srcdev->commit_total_bytes;
2551 	device->commit_bytes_used = device->bytes_used;
2552 	device->dev_root = fs_info->dev_root;
2553 	device->bdev = bdev;
2554 	device->in_fs_metadata = 1;
2555 	device->is_tgtdev_for_dev_replace = 1;
2556 	device->mode = FMODE_EXCL;
2557 	device->dev_stats_valid = 1;
2558 	set_blocksize(device->bdev, 4096);
2559 	device->fs_devices = fs_info->fs_devices;
2560 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2561 	fs_info->fs_devices->num_devices++;
2562 	fs_info->fs_devices->open_devices++;
2563 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2564 
2565 	*device_out = device;
2566 	return ret;
2567 
2568 error:
2569 	blkdev_put(bdev, FMODE_EXCL);
2570 	return ret;
2571 }
2572 
2573 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2574 					      struct btrfs_device *tgtdev)
2575 {
2576 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2577 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2578 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2579 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2580 	tgtdev->dev_root = fs_info->dev_root;
2581 	tgtdev->in_fs_metadata = 1;
2582 }
2583 
2584 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2585 					struct btrfs_device *device)
2586 {
2587 	int ret;
2588 	struct btrfs_path *path;
2589 	struct btrfs_root *root;
2590 	struct btrfs_dev_item *dev_item;
2591 	struct extent_buffer *leaf;
2592 	struct btrfs_key key;
2593 
2594 	root = device->dev_root->fs_info->chunk_root;
2595 
2596 	path = btrfs_alloc_path();
2597 	if (!path)
2598 		return -ENOMEM;
2599 
2600 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2601 	key.type = BTRFS_DEV_ITEM_KEY;
2602 	key.offset = device->devid;
2603 
2604 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2605 	if (ret < 0)
2606 		goto out;
2607 
2608 	if (ret > 0) {
2609 		ret = -ENOENT;
2610 		goto out;
2611 	}
2612 
2613 	leaf = path->nodes[0];
2614 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2615 
2616 	btrfs_set_device_id(leaf, dev_item, device->devid);
2617 	btrfs_set_device_type(leaf, dev_item, device->type);
2618 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2619 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2620 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2621 	btrfs_set_device_total_bytes(leaf, dev_item,
2622 				     btrfs_device_get_disk_total_bytes(device));
2623 	btrfs_set_device_bytes_used(leaf, dev_item,
2624 				    btrfs_device_get_bytes_used(device));
2625 	btrfs_mark_buffer_dirty(leaf);
2626 
2627 out:
2628 	btrfs_free_path(path);
2629 	return ret;
2630 }
2631 
2632 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2633 		      struct btrfs_device *device, u64 new_size)
2634 {
2635 	struct btrfs_super_block *super_copy =
2636 		device->dev_root->fs_info->super_copy;
2637 	struct btrfs_fs_devices *fs_devices;
2638 	u64 old_total;
2639 	u64 diff;
2640 
2641 	if (!device->writeable)
2642 		return -EACCES;
2643 
2644 	lock_chunks(device->dev_root);
2645 	old_total = btrfs_super_total_bytes(super_copy);
2646 	diff = new_size - device->total_bytes;
2647 
2648 	if (new_size <= device->total_bytes ||
2649 	    device->is_tgtdev_for_dev_replace) {
2650 		unlock_chunks(device->dev_root);
2651 		return -EINVAL;
2652 	}
2653 
2654 	fs_devices = device->dev_root->fs_info->fs_devices;
2655 
2656 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2657 	device->fs_devices->total_rw_bytes += diff;
2658 
2659 	btrfs_device_set_total_bytes(device, new_size);
2660 	btrfs_device_set_disk_total_bytes(device, new_size);
2661 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2662 	if (list_empty(&device->resized_list))
2663 		list_add_tail(&device->resized_list,
2664 			      &fs_devices->resized_devices);
2665 	unlock_chunks(device->dev_root);
2666 
2667 	return btrfs_update_device(trans, device);
2668 }
2669 
2670 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2671 			    struct btrfs_root *root, u64 chunk_objectid,
2672 			    u64 chunk_offset)
2673 {
2674 	int ret;
2675 	struct btrfs_path *path;
2676 	struct btrfs_key key;
2677 
2678 	root = root->fs_info->chunk_root;
2679 	path = btrfs_alloc_path();
2680 	if (!path)
2681 		return -ENOMEM;
2682 
2683 	key.objectid = chunk_objectid;
2684 	key.offset = chunk_offset;
2685 	key.type = BTRFS_CHUNK_ITEM_KEY;
2686 
2687 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2688 	if (ret < 0)
2689 		goto out;
2690 	else if (ret > 0) { /* Logic error or corruption */
2691 		btrfs_handle_fs_error(root->fs_info, -ENOENT,
2692 			    "Failed lookup while freeing chunk.");
2693 		ret = -ENOENT;
2694 		goto out;
2695 	}
2696 
2697 	ret = btrfs_del_item(trans, root, path);
2698 	if (ret < 0)
2699 		btrfs_handle_fs_error(root->fs_info, ret,
2700 			    "Failed to delete chunk item.");
2701 out:
2702 	btrfs_free_path(path);
2703 	return ret;
2704 }
2705 
2706 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2707 			chunk_offset)
2708 {
2709 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2710 	struct btrfs_disk_key *disk_key;
2711 	struct btrfs_chunk *chunk;
2712 	u8 *ptr;
2713 	int ret = 0;
2714 	u32 num_stripes;
2715 	u32 array_size;
2716 	u32 len = 0;
2717 	u32 cur;
2718 	struct btrfs_key key;
2719 
2720 	lock_chunks(root);
2721 	array_size = btrfs_super_sys_array_size(super_copy);
2722 
2723 	ptr = super_copy->sys_chunk_array;
2724 	cur = 0;
2725 
2726 	while (cur < array_size) {
2727 		disk_key = (struct btrfs_disk_key *)ptr;
2728 		btrfs_disk_key_to_cpu(&key, disk_key);
2729 
2730 		len = sizeof(*disk_key);
2731 
2732 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2733 			chunk = (struct btrfs_chunk *)(ptr + len);
2734 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2735 			len += btrfs_chunk_item_size(num_stripes);
2736 		} else {
2737 			ret = -EIO;
2738 			break;
2739 		}
2740 		if (key.objectid == chunk_objectid &&
2741 		    key.offset == chunk_offset) {
2742 			memmove(ptr, ptr + len, array_size - (cur + len));
2743 			array_size -= len;
2744 			btrfs_set_super_sys_array_size(super_copy, array_size);
2745 		} else {
2746 			ptr += len;
2747 			cur += len;
2748 		}
2749 	}
2750 	unlock_chunks(root);
2751 	return ret;
2752 }
2753 
2754 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2755 		       struct btrfs_root *root, u64 chunk_offset)
2756 {
2757 	struct extent_map_tree *em_tree;
2758 	struct extent_map *em;
2759 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2760 	struct map_lookup *map;
2761 	u64 dev_extent_len = 0;
2762 	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2763 	int i, ret = 0;
2764 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2765 
2766 	/* Just in case */
2767 	root = root->fs_info->chunk_root;
2768 	em_tree = &root->fs_info->mapping_tree.map_tree;
2769 
2770 	read_lock(&em_tree->lock);
2771 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2772 	read_unlock(&em_tree->lock);
2773 
2774 	if (!em || em->start > chunk_offset ||
2775 	    em->start + em->len < chunk_offset) {
2776 		/*
2777 		 * This is a logic error, but we don't want to just rely on the
2778 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2779 		 * do anything we still error out.
2780 		 */
2781 		ASSERT(0);
2782 		if (em)
2783 			free_extent_map(em);
2784 		return -EINVAL;
2785 	}
2786 	map = em->map_lookup;
2787 	lock_chunks(root->fs_info->chunk_root);
2788 	check_system_chunk(trans, extent_root, map->type);
2789 	unlock_chunks(root->fs_info->chunk_root);
2790 
2791 	/*
2792 	 * Take the device list mutex to prevent races with the final phase of
2793 	 * a device replace operation that replaces the device object associated
2794 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2795 	 */
2796 	mutex_lock(&fs_devices->device_list_mutex);
2797 	for (i = 0; i < map->num_stripes; i++) {
2798 		struct btrfs_device *device = map->stripes[i].dev;
2799 		ret = btrfs_free_dev_extent(trans, device,
2800 					    map->stripes[i].physical,
2801 					    &dev_extent_len);
2802 		if (ret) {
2803 			mutex_unlock(&fs_devices->device_list_mutex);
2804 			btrfs_abort_transaction(trans, root, ret);
2805 			goto out;
2806 		}
2807 
2808 		if (device->bytes_used > 0) {
2809 			lock_chunks(root);
2810 			btrfs_device_set_bytes_used(device,
2811 					device->bytes_used - dev_extent_len);
2812 			spin_lock(&root->fs_info->free_chunk_lock);
2813 			root->fs_info->free_chunk_space += dev_extent_len;
2814 			spin_unlock(&root->fs_info->free_chunk_lock);
2815 			btrfs_clear_space_info_full(root->fs_info);
2816 			unlock_chunks(root);
2817 		}
2818 
2819 		if (map->stripes[i].dev) {
2820 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2821 			if (ret) {
2822 				mutex_unlock(&fs_devices->device_list_mutex);
2823 				btrfs_abort_transaction(trans, root, ret);
2824 				goto out;
2825 			}
2826 		}
2827 	}
2828 	mutex_unlock(&fs_devices->device_list_mutex);
2829 
2830 	ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2831 	if (ret) {
2832 		btrfs_abort_transaction(trans, root, ret);
2833 		goto out;
2834 	}
2835 
2836 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2837 
2838 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2839 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2840 		if (ret) {
2841 			btrfs_abort_transaction(trans, root, ret);
2842 			goto out;
2843 		}
2844 	}
2845 
2846 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2847 	if (ret) {
2848 		btrfs_abort_transaction(trans, extent_root, ret);
2849 		goto out;
2850 	}
2851 
2852 out:
2853 	/* once for us */
2854 	free_extent_map(em);
2855 	return ret;
2856 }
2857 
2858 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2859 {
2860 	struct btrfs_root *extent_root;
2861 	struct btrfs_trans_handle *trans;
2862 	int ret;
2863 
2864 	root = root->fs_info->chunk_root;
2865 	extent_root = root->fs_info->extent_root;
2866 
2867 	/*
2868 	 * Prevent races with automatic removal of unused block groups.
2869 	 * After we relocate and before we remove the chunk with offset
2870 	 * chunk_offset, automatic removal of the block group can kick in,
2871 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2872 	 *
2873 	 * Make sure to acquire this mutex before doing a tree search (dev
2874 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2875 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2876 	 * we release the path used to search the chunk/dev tree and before
2877 	 * the current task acquires this mutex and calls us.
2878 	 */
2879 	ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2880 
2881 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2882 	if (ret)
2883 		return -ENOSPC;
2884 
2885 	/* step one, relocate all the extents inside this chunk */
2886 	btrfs_scrub_pause(root);
2887 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2888 	btrfs_scrub_continue(root);
2889 	if (ret)
2890 		return ret;
2891 
2892 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2893 						     chunk_offset);
2894 	if (IS_ERR(trans)) {
2895 		ret = PTR_ERR(trans);
2896 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2897 		return ret;
2898 	}
2899 
2900 	/*
2901 	 * step two, delete the device extents and the
2902 	 * chunk tree entries
2903 	 */
2904 	ret = btrfs_remove_chunk(trans, root, chunk_offset);
2905 	btrfs_end_transaction(trans, root);
2906 	return ret;
2907 }
2908 
2909 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2910 {
2911 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2912 	struct btrfs_path *path;
2913 	struct extent_buffer *leaf;
2914 	struct btrfs_chunk *chunk;
2915 	struct btrfs_key key;
2916 	struct btrfs_key found_key;
2917 	u64 chunk_type;
2918 	bool retried = false;
2919 	int failed = 0;
2920 	int ret;
2921 
2922 	path = btrfs_alloc_path();
2923 	if (!path)
2924 		return -ENOMEM;
2925 
2926 again:
2927 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2928 	key.offset = (u64)-1;
2929 	key.type = BTRFS_CHUNK_ITEM_KEY;
2930 
2931 	while (1) {
2932 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2933 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2934 		if (ret < 0) {
2935 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2936 			goto error;
2937 		}
2938 		BUG_ON(ret == 0); /* Corruption */
2939 
2940 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2941 					  key.type);
2942 		if (ret)
2943 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2944 		if (ret < 0)
2945 			goto error;
2946 		if (ret > 0)
2947 			break;
2948 
2949 		leaf = path->nodes[0];
2950 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2951 
2952 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2953 				       struct btrfs_chunk);
2954 		chunk_type = btrfs_chunk_type(leaf, chunk);
2955 		btrfs_release_path(path);
2956 
2957 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2958 			ret = btrfs_relocate_chunk(chunk_root,
2959 						   found_key.offset);
2960 			if (ret == -ENOSPC)
2961 				failed++;
2962 			else
2963 				BUG_ON(ret);
2964 		}
2965 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2966 
2967 		if (found_key.offset == 0)
2968 			break;
2969 		key.offset = found_key.offset - 1;
2970 	}
2971 	ret = 0;
2972 	if (failed && !retried) {
2973 		failed = 0;
2974 		retried = true;
2975 		goto again;
2976 	} else if (WARN_ON(failed && retried)) {
2977 		ret = -ENOSPC;
2978 	}
2979 error:
2980 	btrfs_free_path(path);
2981 	return ret;
2982 }
2983 
2984 static int insert_balance_item(struct btrfs_root *root,
2985 			       struct btrfs_balance_control *bctl)
2986 {
2987 	struct btrfs_trans_handle *trans;
2988 	struct btrfs_balance_item *item;
2989 	struct btrfs_disk_balance_args disk_bargs;
2990 	struct btrfs_path *path;
2991 	struct extent_buffer *leaf;
2992 	struct btrfs_key key;
2993 	int ret, err;
2994 
2995 	path = btrfs_alloc_path();
2996 	if (!path)
2997 		return -ENOMEM;
2998 
2999 	trans = btrfs_start_transaction(root, 0);
3000 	if (IS_ERR(trans)) {
3001 		btrfs_free_path(path);
3002 		return PTR_ERR(trans);
3003 	}
3004 
3005 	key.objectid = BTRFS_BALANCE_OBJECTID;
3006 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3007 	key.offset = 0;
3008 
3009 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3010 				      sizeof(*item));
3011 	if (ret)
3012 		goto out;
3013 
3014 	leaf = path->nodes[0];
3015 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3016 
3017 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3018 
3019 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3020 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3021 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3022 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3023 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3024 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3025 
3026 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3027 
3028 	btrfs_mark_buffer_dirty(leaf);
3029 out:
3030 	btrfs_free_path(path);
3031 	err = btrfs_commit_transaction(trans, root);
3032 	if (err && !ret)
3033 		ret = err;
3034 	return ret;
3035 }
3036 
3037 static int del_balance_item(struct btrfs_root *root)
3038 {
3039 	struct btrfs_trans_handle *trans;
3040 	struct btrfs_path *path;
3041 	struct btrfs_key key;
3042 	int ret, err;
3043 
3044 	path = btrfs_alloc_path();
3045 	if (!path)
3046 		return -ENOMEM;
3047 
3048 	trans = btrfs_start_transaction(root, 0);
3049 	if (IS_ERR(trans)) {
3050 		btrfs_free_path(path);
3051 		return PTR_ERR(trans);
3052 	}
3053 
3054 	key.objectid = BTRFS_BALANCE_OBJECTID;
3055 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3056 	key.offset = 0;
3057 
3058 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3059 	if (ret < 0)
3060 		goto out;
3061 	if (ret > 0) {
3062 		ret = -ENOENT;
3063 		goto out;
3064 	}
3065 
3066 	ret = btrfs_del_item(trans, root, path);
3067 out:
3068 	btrfs_free_path(path);
3069 	err = btrfs_commit_transaction(trans, root);
3070 	if (err && !ret)
3071 		ret = err;
3072 	return ret;
3073 }
3074 
3075 /*
3076  * This is a heuristic used to reduce the number of chunks balanced on
3077  * resume after balance was interrupted.
3078  */
3079 static void update_balance_args(struct btrfs_balance_control *bctl)
3080 {
3081 	/*
3082 	 * Turn on soft mode for chunk types that were being converted.
3083 	 */
3084 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3085 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3086 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3087 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3088 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3089 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3090 
3091 	/*
3092 	 * Turn on usage filter if is not already used.  The idea is
3093 	 * that chunks that we have already balanced should be
3094 	 * reasonably full.  Don't do it for chunks that are being
3095 	 * converted - that will keep us from relocating unconverted
3096 	 * (albeit full) chunks.
3097 	 */
3098 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3099 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3100 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3101 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3102 		bctl->data.usage = 90;
3103 	}
3104 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3105 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3106 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3107 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3108 		bctl->sys.usage = 90;
3109 	}
3110 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3111 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3112 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3113 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3114 		bctl->meta.usage = 90;
3115 	}
3116 }
3117 
3118 /*
3119  * Should be called with both balance and volume mutexes held to
3120  * serialize other volume operations (add_dev/rm_dev/resize) with
3121  * restriper.  Same goes for unset_balance_control.
3122  */
3123 static void set_balance_control(struct btrfs_balance_control *bctl)
3124 {
3125 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3126 
3127 	BUG_ON(fs_info->balance_ctl);
3128 
3129 	spin_lock(&fs_info->balance_lock);
3130 	fs_info->balance_ctl = bctl;
3131 	spin_unlock(&fs_info->balance_lock);
3132 }
3133 
3134 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3135 {
3136 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3137 
3138 	BUG_ON(!fs_info->balance_ctl);
3139 
3140 	spin_lock(&fs_info->balance_lock);
3141 	fs_info->balance_ctl = NULL;
3142 	spin_unlock(&fs_info->balance_lock);
3143 
3144 	kfree(bctl);
3145 }
3146 
3147 /*
3148  * Balance filters.  Return 1 if chunk should be filtered out
3149  * (should not be balanced).
3150  */
3151 static int chunk_profiles_filter(u64 chunk_type,
3152 				 struct btrfs_balance_args *bargs)
3153 {
3154 	chunk_type = chunk_to_extended(chunk_type) &
3155 				BTRFS_EXTENDED_PROFILE_MASK;
3156 
3157 	if (bargs->profiles & chunk_type)
3158 		return 0;
3159 
3160 	return 1;
3161 }
3162 
3163 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3164 			      struct btrfs_balance_args *bargs)
3165 {
3166 	struct btrfs_block_group_cache *cache;
3167 	u64 chunk_used;
3168 	u64 user_thresh_min;
3169 	u64 user_thresh_max;
3170 	int ret = 1;
3171 
3172 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3173 	chunk_used = btrfs_block_group_used(&cache->item);
3174 
3175 	if (bargs->usage_min == 0)
3176 		user_thresh_min = 0;
3177 	else
3178 		user_thresh_min = div_factor_fine(cache->key.offset,
3179 					bargs->usage_min);
3180 
3181 	if (bargs->usage_max == 0)
3182 		user_thresh_max = 1;
3183 	else if (bargs->usage_max > 100)
3184 		user_thresh_max = cache->key.offset;
3185 	else
3186 		user_thresh_max = div_factor_fine(cache->key.offset,
3187 					bargs->usage_max);
3188 
3189 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3190 		ret = 0;
3191 
3192 	btrfs_put_block_group(cache);
3193 	return ret;
3194 }
3195 
3196 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3197 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3198 {
3199 	struct btrfs_block_group_cache *cache;
3200 	u64 chunk_used, user_thresh;
3201 	int ret = 1;
3202 
3203 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3204 	chunk_used = btrfs_block_group_used(&cache->item);
3205 
3206 	if (bargs->usage_min == 0)
3207 		user_thresh = 1;
3208 	else if (bargs->usage > 100)
3209 		user_thresh = cache->key.offset;
3210 	else
3211 		user_thresh = div_factor_fine(cache->key.offset,
3212 					      bargs->usage);
3213 
3214 	if (chunk_used < user_thresh)
3215 		ret = 0;
3216 
3217 	btrfs_put_block_group(cache);
3218 	return ret;
3219 }
3220 
3221 static int chunk_devid_filter(struct extent_buffer *leaf,
3222 			      struct btrfs_chunk *chunk,
3223 			      struct btrfs_balance_args *bargs)
3224 {
3225 	struct btrfs_stripe *stripe;
3226 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3227 	int i;
3228 
3229 	for (i = 0; i < num_stripes; i++) {
3230 		stripe = btrfs_stripe_nr(chunk, i);
3231 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3232 			return 0;
3233 	}
3234 
3235 	return 1;
3236 }
3237 
3238 /* [pstart, pend) */
3239 static int chunk_drange_filter(struct extent_buffer *leaf,
3240 			       struct btrfs_chunk *chunk,
3241 			       u64 chunk_offset,
3242 			       struct btrfs_balance_args *bargs)
3243 {
3244 	struct btrfs_stripe *stripe;
3245 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3246 	u64 stripe_offset;
3247 	u64 stripe_length;
3248 	int factor;
3249 	int i;
3250 
3251 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3252 		return 0;
3253 
3254 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3255 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3256 		factor = num_stripes / 2;
3257 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3258 		factor = num_stripes - 1;
3259 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3260 		factor = num_stripes - 2;
3261 	} else {
3262 		factor = num_stripes;
3263 	}
3264 
3265 	for (i = 0; i < num_stripes; i++) {
3266 		stripe = btrfs_stripe_nr(chunk, i);
3267 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3268 			continue;
3269 
3270 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3271 		stripe_length = btrfs_chunk_length(leaf, chunk);
3272 		stripe_length = div_u64(stripe_length, factor);
3273 
3274 		if (stripe_offset < bargs->pend &&
3275 		    stripe_offset + stripe_length > bargs->pstart)
3276 			return 0;
3277 	}
3278 
3279 	return 1;
3280 }
3281 
3282 /* [vstart, vend) */
3283 static int chunk_vrange_filter(struct extent_buffer *leaf,
3284 			       struct btrfs_chunk *chunk,
3285 			       u64 chunk_offset,
3286 			       struct btrfs_balance_args *bargs)
3287 {
3288 	if (chunk_offset < bargs->vend &&
3289 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3290 		/* at least part of the chunk is inside this vrange */
3291 		return 0;
3292 
3293 	return 1;
3294 }
3295 
3296 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3297 			       struct btrfs_chunk *chunk,
3298 			       struct btrfs_balance_args *bargs)
3299 {
3300 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3301 
3302 	if (bargs->stripes_min <= num_stripes
3303 			&& num_stripes <= bargs->stripes_max)
3304 		return 0;
3305 
3306 	return 1;
3307 }
3308 
3309 static int chunk_soft_convert_filter(u64 chunk_type,
3310 				     struct btrfs_balance_args *bargs)
3311 {
3312 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3313 		return 0;
3314 
3315 	chunk_type = chunk_to_extended(chunk_type) &
3316 				BTRFS_EXTENDED_PROFILE_MASK;
3317 
3318 	if (bargs->target == chunk_type)
3319 		return 1;
3320 
3321 	return 0;
3322 }
3323 
3324 static int should_balance_chunk(struct btrfs_root *root,
3325 				struct extent_buffer *leaf,
3326 				struct btrfs_chunk *chunk, u64 chunk_offset)
3327 {
3328 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3329 	struct btrfs_balance_args *bargs = NULL;
3330 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3331 
3332 	/* type filter */
3333 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3334 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3335 		return 0;
3336 	}
3337 
3338 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3339 		bargs = &bctl->data;
3340 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3341 		bargs = &bctl->sys;
3342 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3343 		bargs = &bctl->meta;
3344 
3345 	/* profiles filter */
3346 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3347 	    chunk_profiles_filter(chunk_type, bargs)) {
3348 		return 0;
3349 	}
3350 
3351 	/* usage filter */
3352 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3353 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3354 		return 0;
3355 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3356 	    chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3357 		return 0;
3358 	}
3359 
3360 	/* devid filter */
3361 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3362 	    chunk_devid_filter(leaf, chunk, bargs)) {
3363 		return 0;
3364 	}
3365 
3366 	/* drange filter, makes sense only with devid filter */
3367 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3368 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3369 		return 0;
3370 	}
3371 
3372 	/* vrange filter */
3373 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3374 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3375 		return 0;
3376 	}
3377 
3378 	/* stripes filter */
3379 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3380 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3381 		return 0;
3382 	}
3383 
3384 	/* soft profile changing mode */
3385 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3386 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3387 		return 0;
3388 	}
3389 
3390 	/*
3391 	 * limited by count, must be the last filter
3392 	 */
3393 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3394 		if (bargs->limit == 0)
3395 			return 0;
3396 		else
3397 			bargs->limit--;
3398 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3399 		/*
3400 		 * Same logic as the 'limit' filter; the minimum cannot be
3401 		 * determined here because we do not have the global information
3402 		 * about the count of all chunks that satisfy the filters.
3403 		 */
3404 		if (bargs->limit_max == 0)
3405 			return 0;
3406 		else
3407 			bargs->limit_max--;
3408 	}
3409 
3410 	return 1;
3411 }
3412 
3413 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3414 {
3415 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3416 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3417 	struct btrfs_root *dev_root = fs_info->dev_root;
3418 	struct list_head *devices;
3419 	struct btrfs_device *device;
3420 	u64 old_size;
3421 	u64 size_to_free;
3422 	u64 chunk_type;
3423 	struct btrfs_chunk *chunk;
3424 	struct btrfs_path *path;
3425 	struct btrfs_key key;
3426 	struct btrfs_key found_key;
3427 	struct btrfs_trans_handle *trans;
3428 	struct extent_buffer *leaf;
3429 	int slot;
3430 	int ret;
3431 	int enospc_errors = 0;
3432 	bool counting = true;
3433 	/* The single value limit and min/max limits use the same bytes in the */
3434 	u64 limit_data = bctl->data.limit;
3435 	u64 limit_meta = bctl->meta.limit;
3436 	u64 limit_sys = bctl->sys.limit;
3437 	u32 count_data = 0;
3438 	u32 count_meta = 0;
3439 	u32 count_sys = 0;
3440 	int chunk_reserved = 0;
3441 	u64 bytes_used = 0;
3442 
3443 	/* step one make some room on all the devices */
3444 	devices = &fs_info->fs_devices->devices;
3445 	list_for_each_entry(device, devices, dev_list) {
3446 		old_size = btrfs_device_get_total_bytes(device);
3447 		size_to_free = div_factor(old_size, 1);
3448 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3449 		if (!device->writeable ||
3450 		    btrfs_device_get_total_bytes(device) -
3451 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3452 		    device->is_tgtdev_for_dev_replace)
3453 			continue;
3454 
3455 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3456 		if (ret == -ENOSPC)
3457 			break;
3458 		BUG_ON(ret);
3459 
3460 		trans = btrfs_start_transaction(dev_root, 0);
3461 		BUG_ON(IS_ERR(trans));
3462 
3463 		ret = btrfs_grow_device(trans, device, old_size);
3464 		BUG_ON(ret);
3465 
3466 		btrfs_end_transaction(trans, dev_root);
3467 	}
3468 
3469 	/* step two, relocate all the chunks */
3470 	path = btrfs_alloc_path();
3471 	if (!path) {
3472 		ret = -ENOMEM;
3473 		goto error;
3474 	}
3475 
3476 	/* zero out stat counters */
3477 	spin_lock(&fs_info->balance_lock);
3478 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3479 	spin_unlock(&fs_info->balance_lock);
3480 again:
3481 	if (!counting) {
3482 		/*
3483 		 * The single value limit and min/max limits use the same bytes
3484 		 * in the
3485 		 */
3486 		bctl->data.limit = limit_data;
3487 		bctl->meta.limit = limit_meta;
3488 		bctl->sys.limit = limit_sys;
3489 	}
3490 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3491 	key.offset = (u64)-1;
3492 	key.type = BTRFS_CHUNK_ITEM_KEY;
3493 
3494 	while (1) {
3495 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3496 		    atomic_read(&fs_info->balance_cancel_req)) {
3497 			ret = -ECANCELED;
3498 			goto error;
3499 		}
3500 
3501 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3502 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3503 		if (ret < 0) {
3504 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3505 			goto error;
3506 		}
3507 
3508 		/*
3509 		 * this shouldn't happen, it means the last relocate
3510 		 * failed
3511 		 */
3512 		if (ret == 0)
3513 			BUG(); /* FIXME break ? */
3514 
3515 		ret = btrfs_previous_item(chunk_root, path, 0,
3516 					  BTRFS_CHUNK_ITEM_KEY);
3517 		if (ret) {
3518 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3519 			ret = 0;
3520 			break;
3521 		}
3522 
3523 		leaf = path->nodes[0];
3524 		slot = path->slots[0];
3525 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3526 
3527 		if (found_key.objectid != key.objectid) {
3528 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3529 			break;
3530 		}
3531 
3532 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3533 		chunk_type = btrfs_chunk_type(leaf, chunk);
3534 
3535 		if (!counting) {
3536 			spin_lock(&fs_info->balance_lock);
3537 			bctl->stat.considered++;
3538 			spin_unlock(&fs_info->balance_lock);
3539 		}
3540 
3541 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3542 					   found_key.offset);
3543 
3544 		btrfs_release_path(path);
3545 		if (!ret) {
3546 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3547 			goto loop;
3548 		}
3549 
3550 		if (counting) {
3551 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3552 			spin_lock(&fs_info->balance_lock);
3553 			bctl->stat.expected++;
3554 			spin_unlock(&fs_info->balance_lock);
3555 
3556 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3557 				count_data++;
3558 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3559 				count_sys++;
3560 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3561 				count_meta++;
3562 
3563 			goto loop;
3564 		}
3565 
3566 		/*
3567 		 * Apply limit_min filter, no need to check if the LIMITS
3568 		 * filter is used, limit_min is 0 by default
3569 		 */
3570 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3571 					count_data < bctl->data.limit_min)
3572 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3573 					count_meta < bctl->meta.limit_min)
3574 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3575 					count_sys < bctl->sys.limit_min)) {
3576 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3577 			goto loop;
3578 		}
3579 
3580 		ASSERT(fs_info->data_sinfo);
3581 		spin_lock(&fs_info->data_sinfo->lock);
3582 		bytes_used = fs_info->data_sinfo->bytes_used;
3583 		spin_unlock(&fs_info->data_sinfo->lock);
3584 
3585 		if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3586 		    !chunk_reserved && !bytes_used) {
3587 			trans = btrfs_start_transaction(chunk_root, 0);
3588 			if (IS_ERR(trans)) {
3589 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3590 				ret = PTR_ERR(trans);
3591 				goto error;
3592 			}
3593 
3594 			ret = btrfs_force_chunk_alloc(trans, chunk_root,
3595 						      BTRFS_BLOCK_GROUP_DATA);
3596 			btrfs_end_transaction(trans, chunk_root);
3597 			if (ret < 0) {
3598 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3599 				goto error;
3600 			}
3601 			chunk_reserved = 1;
3602 		}
3603 
3604 		ret = btrfs_relocate_chunk(chunk_root,
3605 					   found_key.offset);
3606 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3607 		if (ret && ret != -ENOSPC)
3608 			goto error;
3609 		if (ret == -ENOSPC) {
3610 			enospc_errors++;
3611 		} else {
3612 			spin_lock(&fs_info->balance_lock);
3613 			bctl->stat.completed++;
3614 			spin_unlock(&fs_info->balance_lock);
3615 		}
3616 loop:
3617 		if (found_key.offset == 0)
3618 			break;
3619 		key.offset = found_key.offset - 1;
3620 	}
3621 
3622 	if (counting) {
3623 		btrfs_release_path(path);
3624 		counting = false;
3625 		goto again;
3626 	}
3627 error:
3628 	btrfs_free_path(path);
3629 	if (enospc_errors) {
3630 		btrfs_info(fs_info, "%d enospc errors during balance",
3631 		       enospc_errors);
3632 		if (!ret)
3633 			ret = -ENOSPC;
3634 	}
3635 
3636 	return ret;
3637 }
3638 
3639 /**
3640  * alloc_profile_is_valid - see if a given profile is valid and reduced
3641  * @flags: profile to validate
3642  * @extended: if true @flags is treated as an extended profile
3643  */
3644 static int alloc_profile_is_valid(u64 flags, int extended)
3645 {
3646 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3647 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3648 
3649 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3650 
3651 	/* 1) check that all other bits are zeroed */
3652 	if (flags & ~mask)
3653 		return 0;
3654 
3655 	/* 2) see if profile is reduced */
3656 	if (flags == 0)
3657 		return !extended; /* "0" is valid for usual profiles */
3658 
3659 	/* true if exactly one bit set */
3660 	return (flags & (flags - 1)) == 0;
3661 }
3662 
3663 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3664 {
3665 	/* cancel requested || normal exit path */
3666 	return atomic_read(&fs_info->balance_cancel_req) ||
3667 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3668 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3669 }
3670 
3671 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3672 {
3673 	int ret;
3674 
3675 	unset_balance_control(fs_info);
3676 	ret = del_balance_item(fs_info->tree_root);
3677 	if (ret)
3678 		btrfs_handle_fs_error(fs_info, ret, NULL);
3679 
3680 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3681 }
3682 
3683 /* Non-zero return value signifies invalidity */
3684 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3685 		u64 allowed)
3686 {
3687 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3688 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3689 		 (bctl_arg->target & ~allowed)));
3690 }
3691 
3692 /*
3693  * Should be called with both balance and volume mutexes held
3694  */
3695 int btrfs_balance(struct btrfs_balance_control *bctl,
3696 		  struct btrfs_ioctl_balance_args *bargs)
3697 {
3698 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3699 	u64 allowed;
3700 	int mixed = 0;
3701 	int ret;
3702 	u64 num_devices;
3703 	unsigned seq;
3704 
3705 	if (btrfs_fs_closing(fs_info) ||
3706 	    atomic_read(&fs_info->balance_pause_req) ||
3707 	    atomic_read(&fs_info->balance_cancel_req)) {
3708 		ret = -EINVAL;
3709 		goto out;
3710 	}
3711 
3712 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3713 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3714 		mixed = 1;
3715 
3716 	/*
3717 	 * In case of mixed groups both data and meta should be picked,
3718 	 * and identical options should be given for both of them.
3719 	 */
3720 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3721 	if (mixed && (bctl->flags & allowed)) {
3722 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3723 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3724 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3725 			btrfs_err(fs_info, "with mixed groups data and "
3726 				   "metadata balance options must be the same");
3727 			ret = -EINVAL;
3728 			goto out;
3729 		}
3730 	}
3731 
3732 	num_devices = fs_info->fs_devices->num_devices;
3733 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3734 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3735 		BUG_ON(num_devices < 1);
3736 		num_devices--;
3737 	}
3738 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3739 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3740 	if (num_devices > 1)
3741 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3742 	if (num_devices > 2)
3743 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3744 	if (num_devices > 3)
3745 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3746 			    BTRFS_BLOCK_GROUP_RAID6);
3747 	if (validate_convert_profile(&bctl->data, allowed)) {
3748 		btrfs_err(fs_info, "unable to start balance with target "
3749 			   "data profile %llu",
3750 		       bctl->data.target);
3751 		ret = -EINVAL;
3752 		goto out;
3753 	}
3754 	if (validate_convert_profile(&bctl->meta, allowed)) {
3755 		btrfs_err(fs_info,
3756 			   "unable to start balance with target metadata profile %llu",
3757 		       bctl->meta.target);
3758 		ret = -EINVAL;
3759 		goto out;
3760 	}
3761 	if (validate_convert_profile(&bctl->sys, allowed)) {
3762 		btrfs_err(fs_info,
3763 			   "unable to start balance with target system profile %llu",
3764 		       bctl->sys.target);
3765 		ret = -EINVAL;
3766 		goto out;
3767 	}
3768 
3769 	/* allow to reduce meta or sys integrity only if force set */
3770 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3771 			BTRFS_BLOCK_GROUP_RAID10 |
3772 			BTRFS_BLOCK_GROUP_RAID5 |
3773 			BTRFS_BLOCK_GROUP_RAID6;
3774 	do {
3775 		seq = read_seqbegin(&fs_info->profiles_lock);
3776 
3777 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3778 		     (fs_info->avail_system_alloc_bits & allowed) &&
3779 		     !(bctl->sys.target & allowed)) ||
3780 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3781 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3782 		     !(bctl->meta.target & allowed))) {
3783 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3784 				btrfs_info(fs_info, "force reducing metadata integrity");
3785 			} else {
3786 				btrfs_err(fs_info, "balance will reduce metadata "
3787 					   "integrity, use force if you want this");
3788 				ret = -EINVAL;
3789 				goto out;
3790 			}
3791 		}
3792 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3793 
3794 	if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3795 		btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3796 		btrfs_warn(fs_info,
3797 	"metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3798 			bctl->meta.target, bctl->data.target);
3799 	}
3800 
3801 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3802 		fs_info->num_tolerated_disk_barrier_failures = min(
3803 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3804 			btrfs_get_num_tolerated_disk_barrier_failures(
3805 				bctl->sys.target));
3806 	}
3807 
3808 	ret = insert_balance_item(fs_info->tree_root, bctl);
3809 	if (ret && ret != -EEXIST)
3810 		goto out;
3811 
3812 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3813 		BUG_ON(ret == -EEXIST);
3814 		set_balance_control(bctl);
3815 	} else {
3816 		BUG_ON(ret != -EEXIST);
3817 		spin_lock(&fs_info->balance_lock);
3818 		update_balance_args(bctl);
3819 		spin_unlock(&fs_info->balance_lock);
3820 	}
3821 
3822 	atomic_inc(&fs_info->balance_running);
3823 	mutex_unlock(&fs_info->balance_mutex);
3824 
3825 	ret = __btrfs_balance(fs_info);
3826 
3827 	mutex_lock(&fs_info->balance_mutex);
3828 	atomic_dec(&fs_info->balance_running);
3829 
3830 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3831 		fs_info->num_tolerated_disk_barrier_failures =
3832 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3833 	}
3834 
3835 	if (bargs) {
3836 		memset(bargs, 0, sizeof(*bargs));
3837 		update_ioctl_balance_args(fs_info, 0, bargs);
3838 	}
3839 
3840 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3841 	    balance_need_close(fs_info)) {
3842 		__cancel_balance(fs_info);
3843 	}
3844 
3845 	wake_up(&fs_info->balance_wait_q);
3846 
3847 	return ret;
3848 out:
3849 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3850 		__cancel_balance(fs_info);
3851 	else {
3852 		kfree(bctl);
3853 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3854 	}
3855 	return ret;
3856 }
3857 
3858 static int balance_kthread(void *data)
3859 {
3860 	struct btrfs_fs_info *fs_info = data;
3861 	int ret = 0;
3862 
3863 	mutex_lock(&fs_info->volume_mutex);
3864 	mutex_lock(&fs_info->balance_mutex);
3865 
3866 	if (fs_info->balance_ctl) {
3867 		btrfs_info(fs_info, "continuing balance");
3868 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3869 	}
3870 
3871 	mutex_unlock(&fs_info->balance_mutex);
3872 	mutex_unlock(&fs_info->volume_mutex);
3873 
3874 	return ret;
3875 }
3876 
3877 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3878 {
3879 	struct task_struct *tsk;
3880 
3881 	spin_lock(&fs_info->balance_lock);
3882 	if (!fs_info->balance_ctl) {
3883 		spin_unlock(&fs_info->balance_lock);
3884 		return 0;
3885 	}
3886 	spin_unlock(&fs_info->balance_lock);
3887 
3888 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3889 		btrfs_info(fs_info, "force skipping balance");
3890 		return 0;
3891 	}
3892 
3893 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3894 	return PTR_ERR_OR_ZERO(tsk);
3895 }
3896 
3897 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3898 {
3899 	struct btrfs_balance_control *bctl;
3900 	struct btrfs_balance_item *item;
3901 	struct btrfs_disk_balance_args disk_bargs;
3902 	struct btrfs_path *path;
3903 	struct extent_buffer *leaf;
3904 	struct btrfs_key key;
3905 	int ret;
3906 
3907 	path = btrfs_alloc_path();
3908 	if (!path)
3909 		return -ENOMEM;
3910 
3911 	key.objectid = BTRFS_BALANCE_OBJECTID;
3912 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3913 	key.offset = 0;
3914 
3915 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3916 	if (ret < 0)
3917 		goto out;
3918 	if (ret > 0) { /* ret = -ENOENT; */
3919 		ret = 0;
3920 		goto out;
3921 	}
3922 
3923 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3924 	if (!bctl) {
3925 		ret = -ENOMEM;
3926 		goto out;
3927 	}
3928 
3929 	leaf = path->nodes[0];
3930 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3931 
3932 	bctl->fs_info = fs_info;
3933 	bctl->flags = btrfs_balance_flags(leaf, item);
3934 	bctl->flags |= BTRFS_BALANCE_RESUME;
3935 
3936 	btrfs_balance_data(leaf, item, &disk_bargs);
3937 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3938 	btrfs_balance_meta(leaf, item, &disk_bargs);
3939 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3940 	btrfs_balance_sys(leaf, item, &disk_bargs);
3941 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3942 
3943 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3944 
3945 	mutex_lock(&fs_info->volume_mutex);
3946 	mutex_lock(&fs_info->balance_mutex);
3947 
3948 	set_balance_control(bctl);
3949 
3950 	mutex_unlock(&fs_info->balance_mutex);
3951 	mutex_unlock(&fs_info->volume_mutex);
3952 out:
3953 	btrfs_free_path(path);
3954 	return ret;
3955 }
3956 
3957 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3958 {
3959 	int ret = 0;
3960 
3961 	mutex_lock(&fs_info->balance_mutex);
3962 	if (!fs_info->balance_ctl) {
3963 		mutex_unlock(&fs_info->balance_mutex);
3964 		return -ENOTCONN;
3965 	}
3966 
3967 	if (atomic_read(&fs_info->balance_running)) {
3968 		atomic_inc(&fs_info->balance_pause_req);
3969 		mutex_unlock(&fs_info->balance_mutex);
3970 
3971 		wait_event(fs_info->balance_wait_q,
3972 			   atomic_read(&fs_info->balance_running) == 0);
3973 
3974 		mutex_lock(&fs_info->balance_mutex);
3975 		/* we are good with balance_ctl ripped off from under us */
3976 		BUG_ON(atomic_read(&fs_info->balance_running));
3977 		atomic_dec(&fs_info->balance_pause_req);
3978 	} else {
3979 		ret = -ENOTCONN;
3980 	}
3981 
3982 	mutex_unlock(&fs_info->balance_mutex);
3983 	return ret;
3984 }
3985 
3986 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3987 {
3988 	if (fs_info->sb->s_flags & MS_RDONLY)
3989 		return -EROFS;
3990 
3991 	mutex_lock(&fs_info->balance_mutex);
3992 	if (!fs_info->balance_ctl) {
3993 		mutex_unlock(&fs_info->balance_mutex);
3994 		return -ENOTCONN;
3995 	}
3996 
3997 	atomic_inc(&fs_info->balance_cancel_req);
3998 	/*
3999 	 * if we are running just wait and return, balance item is
4000 	 * deleted in btrfs_balance in this case
4001 	 */
4002 	if (atomic_read(&fs_info->balance_running)) {
4003 		mutex_unlock(&fs_info->balance_mutex);
4004 		wait_event(fs_info->balance_wait_q,
4005 			   atomic_read(&fs_info->balance_running) == 0);
4006 		mutex_lock(&fs_info->balance_mutex);
4007 	} else {
4008 		/* __cancel_balance needs volume_mutex */
4009 		mutex_unlock(&fs_info->balance_mutex);
4010 		mutex_lock(&fs_info->volume_mutex);
4011 		mutex_lock(&fs_info->balance_mutex);
4012 
4013 		if (fs_info->balance_ctl)
4014 			__cancel_balance(fs_info);
4015 
4016 		mutex_unlock(&fs_info->volume_mutex);
4017 	}
4018 
4019 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4020 	atomic_dec(&fs_info->balance_cancel_req);
4021 	mutex_unlock(&fs_info->balance_mutex);
4022 	return 0;
4023 }
4024 
4025 static int btrfs_uuid_scan_kthread(void *data)
4026 {
4027 	struct btrfs_fs_info *fs_info = data;
4028 	struct btrfs_root *root = fs_info->tree_root;
4029 	struct btrfs_key key;
4030 	struct btrfs_key max_key;
4031 	struct btrfs_path *path = NULL;
4032 	int ret = 0;
4033 	struct extent_buffer *eb;
4034 	int slot;
4035 	struct btrfs_root_item root_item;
4036 	u32 item_size;
4037 	struct btrfs_trans_handle *trans = NULL;
4038 
4039 	path = btrfs_alloc_path();
4040 	if (!path) {
4041 		ret = -ENOMEM;
4042 		goto out;
4043 	}
4044 
4045 	key.objectid = 0;
4046 	key.type = BTRFS_ROOT_ITEM_KEY;
4047 	key.offset = 0;
4048 
4049 	max_key.objectid = (u64)-1;
4050 	max_key.type = BTRFS_ROOT_ITEM_KEY;
4051 	max_key.offset = (u64)-1;
4052 
4053 	while (1) {
4054 		ret = btrfs_search_forward(root, &key, path, 0);
4055 		if (ret) {
4056 			if (ret > 0)
4057 				ret = 0;
4058 			break;
4059 		}
4060 
4061 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4062 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4063 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4064 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4065 			goto skip;
4066 
4067 		eb = path->nodes[0];
4068 		slot = path->slots[0];
4069 		item_size = btrfs_item_size_nr(eb, slot);
4070 		if (item_size < sizeof(root_item))
4071 			goto skip;
4072 
4073 		read_extent_buffer(eb, &root_item,
4074 				   btrfs_item_ptr_offset(eb, slot),
4075 				   (int)sizeof(root_item));
4076 		if (btrfs_root_refs(&root_item) == 0)
4077 			goto skip;
4078 
4079 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4080 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4081 			if (trans)
4082 				goto update_tree;
4083 
4084 			btrfs_release_path(path);
4085 			/*
4086 			 * 1 - subvol uuid item
4087 			 * 1 - received_subvol uuid item
4088 			 */
4089 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4090 			if (IS_ERR(trans)) {
4091 				ret = PTR_ERR(trans);
4092 				break;
4093 			}
4094 			continue;
4095 		} else {
4096 			goto skip;
4097 		}
4098 update_tree:
4099 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4100 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4101 						  root_item.uuid,
4102 						  BTRFS_UUID_KEY_SUBVOL,
4103 						  key.objectid);
4104 			if (ret < 0) {
4105 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4106 					ret);
4107 				break;
4108 			}
4109 		}
4110 
4111 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4112 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4113 						  root_item.received_uuid,
4114 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4115 						  key.objectid);
4116 			if (ret < 0) {
4117 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4118 					ret);
4119 				break;
4120 			}
4121 		}
4122 
4123 skip:
4124 		if (trans) {
4125 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4126 			trans = NULL;
4127 			if (ret)
4128 				break;
4129 		}
4130 
4131 		btrfs_release_path(path);
4132 		if (key.offset < (u64)-1) {
4133 			key.offset++;
4134 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4135 			key.offset = 0;
4136 			key.type = BTRFS_ROOT_ITEM_KEY;
4137 		} else if (key.objectid < (u64)-1) {
4138 			key.offset = 0;
4139 			key.type = BTRFS_ROOT_ITEM_KEY;
4140 			key.objectid++;
4141 		} else {
4142 			break;
4143 		}
4144 		cond_resched();
4145 	}
4146 
4147 out:
4148 	btrfs_free_path(path);
4149 	if (trans && !IS_ERR(trans))
4150 		btrfs_end_transaction(trans, fs_info->uuid_root);
4151 	if (ret)
4152 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4153 	else
4154 		fs_info->update_uuid_tree_gen = 1;
4155 	up(&fs_info->uuid_tree_rescan_sem);
4156 	return 0;
4157 }
4158 
4159 /*
4160  * Callback for btrfs_uuid_tree_iterate().
4161  * returns:
4162  * 0	check succeeded, the entry is not outdated.
4163  * < 0	if an error occurred.
4164  * > 0	if the check failed, which means the caller shall remove the entry.
4165  */
4166 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4167 				       u8 *uuid, u8 type, u64 subid)
4168 {
4169 	struct btrfs_key key;
4170 	int ret = 0;
4171 	struct btrfs_root *subvol_root;
4172 
4173 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4174 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4175 		goto out;
4176 
4177 	key.objectid = subid;
4178 	key.type = BTRFS_ROOT_ITEM_KEY;
4179 	key.offset = (u64)-1;
4180 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4181 	if (IS_ERR(subvol_root)) {
4182 		ret = PTR_ERR(subvol_root);
4183 		if (ret == -ENOENT)
4184 			ret = 1;
4185 		goto out;
4186 	}
4187 
4188 	switch (type) {
4189 	case BTRFS_UUID_KEY_SUBVOL:
4190 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4191 			ret = 1;
4192 		break;
4193 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4194 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4195 			   BTRFS_UUID_SIZE))
4196 			ret = 1;
4197 		break;
4198 	}
4199 
4200 out:
4201 	return ret;
4202 }
4203 
4204 static int btrfs_uuid_rescan_kthread(void *data)
4205 {
4206 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4207 	int ret;
4208 
4209 	/*
4210 	 * 1st step is to iterate through the existing UUID tree and
4211 	 * to delete all entries that contain outdated data.
4212 	 * 2nd step is to add all missing entries to the UUID tree.
4213 	 */
4214 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4215 	if (ret < 0) {
4216 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4217 		up(&fs_info->uuid_tree_rescan_sem);
4218 		return ret;
4219 	}
4220 	return btrfs_uuid_scan_kthread(data);
4221 }
4222 
4223 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4224 {
4225 	struct btrfs_trans_handle *trans;
4226 	struct btrfs_root *tree_root = fs_info->tree_root;
4227 	struct btrfs_root *uuid_root;
4228 	struct task_struct *task;
4229 	int ret;
4230 
4231 	/*
4232 	 * 1 - root node
4233 	 * 1 - root item
4234 	 */
4235 	trans = btrfs_start_transaction(tree_root, 2);
4236 	if (IS_ERR(trans))
4237 		return PTR_ERR(trans);
4238 
4239 	uuid_root = btrfs_create_tree(trans, fs_info,
4240 				      BTRFS_UUID_TREE_OBJECTID);
4241 	if (IS_ERR(uuid_root)) {
4242 		ret = PTR_ERR(uuid_root);
4243 		btrfs_abort_transaction(trans, tree_root, ret);
4244 		return ret;
4245 	}
4246 
4247 	fs_info->uuid_root = uuid_root;
4248 
4249 	ret = btrfs_commit_transaction(trans, tree_root);
4250 	if (ret)
4251 		return ret;
4252 
4253 	down(&fs_info->uuid_tree_rescan_sem);
4254 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4255 	if (IS_ERR(task)) {
4256 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4257 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4258 		up(&fs_info->uuid_tree_rescan_sem);
4259 		return PTR_ERR(task);
4260 	}
4261 
4262 	return 0;
4263 }
4264 
4265 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4266 {
4267 	struct task_struct *task;
4268 
4269 	down(&fs_info->uuid_tree_rescan_sem);
4270 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4271 	if (IS_ERR(task)) {
4272 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4273 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4274 		up(&fs_info->uuid_tree_rescan_sem);
4275 		return PTR_ERR(task);
4276 	}
4277 
4278 	return 0;
4279 }
4280 
4281 /*
4282  * shrinking a device means finding all of the device extents past
4283  * the new size, and then following the back refs to the chunks.
4284  * The chunk relocation code actually frees the device extent
4285  */
4286 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4287 {
4288 	struct btrfs_trans_handle *trans;
4289 	struct btrfs_root *root = device->dev_root;
4290 	struct btrfs_dev_extent *dev_extent = NULL;
4291 	struct btrfs_path *path;
4292 	u64 length;
4293 	u64 chunk_offset;
4294 	int ret;
4295 	int slot;
4296 	int failed = 0;
4297 	bool retried = false;
4298 	bool checked_pending_chunks = false;
4299 	struct extent_buffer *l;
4300 	struct btrfs_key key;
4301 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4302 	u64 old_total = btrfs_super_total_bytes(super_copy);
4303 	u64 old_size = btrfs_device_get_total_bytes(device);
4304 	u64 diff = old_size - new_size;
4305 
4306 	if (device->is_tgtdev_for_dev_replace)
4307 		return -EINVAL;
4308 
4309 	path = btrfs_alloc_path();
4310 	if (!path)
4311 		return -ENOMEM;
4312 
4313 	path->reada = READA_FORWARD;
4314 
4315 	lock_chunks(root);
4316 
4317 	btrfs_device_set_total_bytes(device, new_size);
4318 	if (device->writeable) {
4319 		device->fs_devices->total_rw_bytes -= diff;
4320 		spin_lock(&root->fs_info->free_chunk_lock);
4321 		root->fs_info->free_chunk_space -= diff;
4322 		spin_unlock(&root->fs_info->free_chunk_lock);
4323 	}
4324 	unlock_chunks(root);
4325 
4326 again:
4327 	key.objectid = device->devid;
4328 	key.offset = (u64)-1;
4329 	key.type = BTRFS_DEV_EXTENT_KEY;
4330 
4331 	do {
4332 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4333 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4334 		if (ret < 0) {
4335 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4336 			goto done;
4337 		}
4338 
4339 		ret = btrfs_previous_item(root, path, 0, key.type);
4340 		if (ret)
4341 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4342 		if (ret < 0)
4343 			goto done;
4344 		if (ret) {
4345 			ret = 0;
4346 			btrfs_release_path(path);
4347 			break;
4348 		}
4349 
4350 		l = path->nodes[0];
4351 		slot = path->slots[0];
4352 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4353 
4354 		if (key.objectid != device->devid) {
4355 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4356 			btrfs_release_path(path);
4357 			break;
4358 		}
4359 
4360 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4361 		length = btrfs_dev_extent_length(l, dev_extent);
4362 
4363 		if (key.offset + length <= new_size) {
4364 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4365 			btrfs_release_path(path);
4366 			break;
4367 		}
4368 
4369 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4370 		btrfs_release_path(path);
4371 
4372 		ret = btrfs_relocate_chunk(root, chunk_offset);
4373 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4374 		if (ret && ret != -ENOSPC)
4375 			goto done;
4376 		if (ret == -ENOSPC)
4377 			failed++;
4378 	} while (key.offset-- > 0);
4379 
4380 	if (failed && !retried) {
4381 		failed = 0;
4382 		retried = true;
4383 		goto again;
4384 	} else if (failed && retried) {
4385 		ret = -ENOSPC;
4386 		goto done;
4387 	}
4388 
4389 	/* Shrinking succeeded, else we would be at "done". */
4390 	trans = btrfs_start_transaction(root, 0);
4391 	if (IS_ERR(trans)) {
4392 		ret = PTR_ERR(trans);
4393 		goto done;
4394 	}
4395 
4396 	lock_chunks(root);
4397 
4398 	/*
4399 	 * We checked in the above loop all device extents that were already in
4400 	 * the device tree. However before we have updated the device's
4401 	 * total_bytes to the new size, we might have had chunk allocations that
4402 	 * have not complete yet (new block groups attached to transaction
4403 	 * handles), and therefore their device extents were not yet in the
4404 	 * device tree and we missed them in the loop above. So if we have any
4405 	 * pending chunk using a device extent that overlaps the device range
4406 	 * that we can not use anymore, commit the current transaction and
4407 	 * repeat the search on the device tree - this way we guarantee we will
4408 	 * not have chunks using device extents that end beyond 'new_size'.
4409 	 */
4410 	if (!checked_pending_chunks) {
4411 		u64 start = new_size;
4412 		u64 len = old_size - new_size;
4413 
4414 		if (contains_pending_extent(trans->transaction, device,
4415 					    &start, len)) {
4416 			unlock_chunks(root);
4417 			checked_pending_chunks = true;
4418 			failed = 0;
4419 			retried = false;
4420 			ret = btrfs_commit_transaction(trans, root);
4421 			if (ret)
4422 				goto done;
4423 			goto again;
4424 		}
4425 	}
4426 
4427 	btrfs_device_set_disk_total_bytes(device, new_size);
4428 	if (list_empty(&device->resized_list))
4429 		list_add_tail(&device->resized_list,
4430 			      &root->fs_info->fs_devices->resized_devices);
4431 
4432 	WARN_ON(diff > old_total);
4433 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
4434 	unlock_chunks(root);
4435 
4436 	/* Now btrfs_update_device() will change the on-disk size. */
4437 	ret = btrfs_update_device(trans, device);
4438 	btrfs_end_transaction(trans, root);
4439 done:
4440 	btrfs_free_path(path);
4441 	if (ret) {
4442 		lock_chunks(root);
4443 		btrfs_device_set_total_bytes(device, old_size);
4444 		if (device->writeable)
4445 			device->fs_devices->total_rw_bytes += diff;
4446 		spin_lock(&root->fs_info->free_chunk_lock);
4447 		root->fs_info->free_chunk_space += diff;
4448 		spin_unlock(&root->fs_info->free_chunk_lock);
4449 		unlock_chunks(root);
4450 	}
4451 	return ret;
4452 }
4453 
4454 static int btrfs_add_system_chunk(struct btrfs_root *root,
4455 			   struct btrfs_key *key,
4456 			   struct btrfs_chunk *chunk, int item_size)
4457 {
4458 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4459 	struct btrfs_disk_key disk_key;
4460 	u32 array_size;
4461 	u8 *ptr;
4462 
4463 	lock_chunks(root);
4464 	array_size = btrfs_super_sys_array_size(super_copy);
4465 	if (array_size + item_size + sizeof(disk_key)
4466 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4467 		unlock_chunks(root);
4468 		return -EFBIG;
4469 	}
4470 
4471 	ptr = super_copy->sys_chunk_array + array_size;
4472 	btrfs_cpu_key_to_disk(&disk_key, key);
4473 	memcpy(ptr, &disk_key, sizeof(disk_key));
4474 	ptr += sizeof(disk_key);
4475 	memcpy(ptr, chunk, item_size);
4476 	item_size += sizeof(disk_key);
4477 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4478 	unlock_chunks(root);
4479 
4480 	return 0;
4481 }
4482 
4483 /*
4484  * sort the devices in descending order by max_avail, total_avail
4485  */
4486 static int btrfs_cmp_device_info(const void *a, const void *b)
4487 {
4488 	const struct btrfs_device_info *di_a = a;
4489 	const struct btrfs_device_info *di_b = b;
4490 
4491 	if (di_a->max_avail > di_b->max_avail)
4492 		return -1;
4493 	if (di_a->max_avail < di_b->max_avail)
4494 		return 1;
4495 	if (di_a->total_avail > di_b->total_avail)
4496 		return -1;
4497 	if (di_a->total_avail < di_b->total_avail)
4498 		return 1;
4499 	return 0;
4500 }
4501 
4502 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4503 {
4504 	/* TODO allow them to set a preferred stripe size */
4505 	return SZ_64K;
4506 }
4507 
4508 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4509 {
4510 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4511 		return;
4512 
4513 	btrfs_set_fs_incompat(info, RAID56);
4514 }
4515 
4516 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)		\
4517 			- sizeof(struct btrfs_item)		\
4518 			- sizeof(struct btrfs_chunk))		\
4519 			/ sizeof(struct btrfs_stripe) + 1)
4520 
4521 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4522 				- 2 * sizeof(struct btrfs_disk_key)	\
4523 				- 2 * sizeof(struct btrfs_chunk))	\
4524 				/ sizeof(struct btrfs_stripe) + 1)
4525 
4526 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4527 			       struct btrfs_root *extent_root, u64 start,
4528 			       u64 type)
4529 {
4530 	struct btrfs_fs_info *info = extent_root->fs_info;
4531 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4532 	struct list_head *cur;
4533 	struct map_lookup *map = NULL;
4534 	struct extent_map_tree *em_tree;
4535 	struct extent_map *em;
4536 	struct btrfs_device_info *devices_info = NULL;
4537 	u64 total_avail;
4538 	int num_stripes;	/* total number of stripes to allocate */
4539 	int data_stripes;	/* number of stripes that count for
4540 				   block group size */
4541 	int sub_stripes;	/* sub_stripes info for map */
4542 	int dev_stripes;	/* stripes per dev */
4543 	int devs_max;		/* max devs to use */
4544 	int devs_min;		/* min devs needed */
4545 	int devs_increment;	/* ndevs has to be a multiple of this */
4546 	int ncopies;		/* how many copies to data has */
4547 	int ret;
4548 	u64 max_stripe_size;
4549 	u64 max_chunk_size;
4550 	u64 stripe_size;
4551 	u64 num_bytes;
4552 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4553 	int ndevs;
4554 	int i;
4555 	int j;
4556 	int index;
4557 
4558 	BUG_ON(!alloc_profile_is_valid(type, 0));
4559 
4560 	if (list_empty(&fs_devices->alloc_list))
4561 		return -ENOSPC;
4562 
4563 	index = __get_raid_index(type);
4564 
4565 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4566 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4567 	devs_max = btrfs_raid_array[index].devs_max;
4568 	devs_min = btrfs_raid_array[index].devs_min;
4569 	devs_increment = btrfs_raid_array[index].devs_increment;
4570 	ncopies = btrfs_raid_array[index].ncopies;
4571 
4572 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4573 		max_stripe_size = SZ_1G;
4574 		max_chunk_size = 10 * max_stripe_size;
4575 		if (!devs_max)
4576 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4577 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4578 		/* for larger filesystems, use larger metadata chunks */
4579 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4580 			max_stripe_size = SZ_1G;
4581 		else
4582 			max_stripe_size = SZ_256M;
4583 		max_chunk_size = max_stripe_size;
4584 		if (!devs_max)
4585 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4586 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4587 		max_stripe_size = SZ_32M;
4588 		max_chunk_size = 2 * max_stripe_size;
4589 		if (!devs_max)
4590 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4591 	} else {
4592 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4593 		       type);
4594 		BUG_ON(1);
4595 	}
4596 
4597 	/* we don't want a chunk larger than 10% of writeable space */
4598 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4599 			     max_chunk_size);
4600 
4601 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4602 			       GFP_NOFS);
4603 	if (!devices_info)
4604 		return -ENOMEM;
4605 
4606 	cur = fs_devices->alloc_list.next;
4607 
4608 	/*
4609 	 * in the first pass through the devices list, we gather information
4610 	 * about the available holes on each device.
4611 	 */
4612 	ndevs = 0;
4613 	while (cur != &fs_devices->alloc_list) {
4614 		struct btrfs_device *device;
4615 		u64 max_avail;
4616 		u64 dev_offset;
4617 
4618 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4619 
4620 		cur = cur->next;
4621 
4622 		if (!device->writeable) {
4623 			WARN(1, KERN_ERR
4624 			       "BTRFS: read-only device in alloc_list\n");
4625 			continue;
4626 		}
4627 
4628 		if (!device->in_fs_metadata ||
4629 		    device->is_tgtdev_for_dev_replace)
4630 			continue;
4631 
4632 		if (device->total_bytes > device->bytes_used)
4633 			total_avail = device->total_bytes - device->bytes_used;
4634 		else
4635 			total_avail = 0;
4636 
4637 		/* If there is no space on this device, skip it. */
4638 		if (total_avail == 0)
4639 			continue;
4640 
4641 		ret = find_free_dev_extent(trans, device,
4642 					   max_stripe_size * dev_stripes,
4643 					   &dev_offset, &max_avail);
4644 		if (ret && ret != -ENOSPC)
4645 			goto error;
4646 
4647 		if (ret == 0)
4648 			max_avail = max_stripe_size * dev_stripes;
4649 
4650 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4651 			continue;
4652 
4653 		if (ndevs == fs_devices->rw_devices) {
4654 			WARN(1, "%s: found more than %llu devices\n",
4655 			     __func__, fs_devices->rw_devices);
4656 			break;
4657 		}
4658 		devices_info[ndevs].dev_offset = dev_offset;
4659 		devices_info[ndevs].max_avail = max_avail;
4660 		devices_info[ndevs].total_avail = total_avail;
4661 		devices_info[ndevs].dev = device;
4662 		++ndevs;
4663 	}
4664 
4665 	/*
4666 	 * now sort the devices by hole size / available space
4667 	 */
4668 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4669 	     btrfs_cmp_device_info, NULL);
4670 
4671 	/* round down to number of usable stripes */
4672 	ndevs -= ndevs % devs_increment;
4673 
4674 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4675 		ret = -ENOSPC;
4676 		goto error;
4677 	}
4678 
4679 	if (devs_max && ndevs > devs_max)
4680 		ndevs = devs_max;
4681 	/*
4682 	 * the primary goal is to maximize the number of stripes, so use as many
4683 	 * devices as possible, even if the stripes are not maximum sized.
4684 	 */
4685 	stripe_size = devices_info[ndevs-1].max_avail;
4686 	num_stripes = ndevs * dev_stripes;
4687 
4688 	/*
4689 	 * this will have to be fixed for RAID1 and RAID10 over
4690 	 * more drives
4691 	 */
4692 	data_stripes = num_stripes / ncopies;
4693 
4694 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4695 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4696 				 btrfs_super_stripesize(info->super_copy));
4697 		data_stripes = num_stripes - 1;
4698 	}
4699 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4700 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4701 				 btrfs_super_stripesize(info->super_copy));
4702 		data_stripes = num_stripes - 2;
4703 	}
4704 
4705 	/*
4706 	 * Use the number of data stripes to figure out how big this chunk
4707 	 * is really going to be in terms of logical address space,
4708 	 * and compare that answer with the max chunk size
4709 	 */
4710 	if (stripe_size * data_stripes > max_chunk_size) {
4711 		u64 mask = (1ULL << 24) - 1;
4712 
4713 		stripe_size = div_u64(max_chunk_size, data_stripes);
4714 
4715 		/* bump the answer up to a 16MB boundary */
4716 		stripe_size = (stripe_size + mask) & ~mask;
4717 
4718 		/* but don't go higher than the limits we found
4719 		 * while searching for free extents
4720 		 */
4721 		if (stripe_size > devices_info[ndevs-1].max_avail)
4722 			stripe_size = devices_info[ndevs-1].max_avail;
4723 	}
4724 
4725 	stripe_size = div_u64(stripe_size, dev_stripes);
4726 
4727 	/* align to BTRFS_STRIPE_LEN */
4728 	stripe_size = div_u64(stripe_size, raid_stripe_len);
4729 	stripe_size *= raid_stripe_len;
4730 
4731 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4732 	if (!map) {
4733 		ret = -ENOMEM;
4734 		goto error;
4735 	}
4736 	map->num_stripes = num_stripes;
4737 
4738 	for (i = 0; i < ndevs; ++i) {
4739 		for (j = 0; j < dev_stripes; ++j) {
4740 			int s = i * dev_stripes + j;
4741 			map->stripes[s].dev = devices_info[i].dev;
4742 			map->stripes[s].physical = devices_info[i].dev_offset +
4743 						   j * stripe_size;
4744 		}
4745 	}
4746 	map->sector_size = extent_root->sectorsize;
4747 	map->stripe_len = raid_stripe_len;
4748 	map->io_align = raid_stripe_len;
4749 	map->io_width = raid_stripe_len;
4750 	map->type = type;
4751 	map->sub_stripes = sub_stripes;
4752 
4753 	num_bytes = stripe_size * data_stripes;
4754 
4755 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4756 
4757 	em = alloc_extent_map();
4758 	if (!em) {
4759 		kfree(map);
4760 		ret = -ENOMEM;
4761 		goto error;
4762 	}
4763 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4764 	em->map_lookup = map;
4765 	em->start = start;
4766 	em->len = num_bytes;
4767 	em->block_start = 0;
4768 	em->block_len = em->len;
4769 	em->orig_block_len = stripe_size;
4770 
4771 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4772 	write_lock(&em_tree->lock);
4773 	ret = add_extent_mapping(em_tree, em, 0);
4774 	if (!ret) {
4775 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4776 		atomic_inc(&em->refs);
4777 	}
4778 	write_unlock(&em_tree->lock);
4779 	if (ret) {
4780 		free_extent_map(em);
4781 		goto error;
4782 	}
4783 
4784 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4785 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4786 				     start, num_bytes);
4787 	if (ret)
4788 		goto error_del_extent;
4789 
4790 	for (i = 0; i < map->num_stripes; i++) {
4791 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4792 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4793 	}
4794 
4795 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4796 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4797 						   map->num_stripes);
4798 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4799 
4800 	free_extent_map(em);
4801 	check_raid56_incompat_flag(extent_root->fs_info, type);
4802 
4803 	kfree(devices_info);
4804 	return 0;
4805 
4806 error_del_extent:
4807 	write_lock(&em_tree->lock);
4808 	remove_extent_mapping(em_tree, em);
4809 	write_unlock(&em_tree->lock);
4810 
4811 	/* One for our allocation */
4812 	free_extent_map(em);
4813 	/* One for the tree reference */
4814 	free_extent_map(em);
4815 	/* One for the pending_chunks list reference */
4816 	free_extent_map(em);
4817 error:
4818 	kfree(devices_info);
4819 	return ret;
4820 }
4821 
4822 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4823 				struct btrfs_root *extent_root,
4824 				u64 chunk_offset, u64 chunk_size)
4825 {
4826 	struct btrfs_key key;
4827 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4828 	struct btrfs_device *device;
4829 	struct btrfs_chunk *chunk;
4830 	struct btrfs_stripe *stripe;
4831 	struct extent_map_tree *em_tree;
4832 	struct extent_map *em;
4833 	struct map_lookup *map;
4834 	size_t item_size;
4835 	u64 dev_offset;
4836 	u64 stripe_size;
4837 	int i = 0;
4838 	int ret = 0;
4839 
4840 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4841 	read_lock(&em_tree->lock);
4842 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4843 	read_unlock(&em_tree->lock);
4844 
4845 	if (!em) {
4846 		btrfs_crit(extent_root->fs_info, "unable to find logical "
4847 			   "%Lu len %Lu", chunk_offset, chunk_size);
4848 		return -EINVAL;
4849 	}
4850 
4851 	if (em->start != chunk_offset || em->len != chunk_size) {
4852 		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4853 			  " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4854 			  chunk_size, em->start, em->len);
4855 		free_extent_map(em);
4856 		return -EINVAL;
4857 	}
4858 
4859 	map = em->map_lookup;
4860 	item_size = btrfs_chunk_item_size(map->num_stripes);
4861 	stripe_size = em->orig_block_len;
4862 
4863 	chunk = kzalloc(item_size, GFP_NOFS);
4864 	if (!chunk) {
4865 		ret = -ENOMEM;
4866 		goto out;
4867 	}
4868 
4869 	/*
4870 	 * Take the device list mutex to prevent races with the final phase of
4871 	 * a device replace operation that replaces the device object associated
4872 	 * with the map's stripes, because the device object's id can change
4873 	 * at any time during that final phase of the device replace operation
4874 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4875 	 */
4876 	mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4877 	for (i = 0; i < map->num_stripes; i++) {
4878 		device = map->stripes[i].dev;
4879 		dev_offset = map->stripes[i].physical;
4880 
4881 		ret = btrfs_update_device(trans, device);
4882 		if (ret)
4883 			break;
4884 		ret = btrfs_alloc_dev_extent(trans, device,
4885 					     chunk_root->root_key.objectid,
4886 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4887 					     chunk_offset, dev_offset,
4888 					     stripe_size);
4889 		if (ret)
4890 			break;
4891 	}
4892 	if (ret) {
4893 		mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4894 		goto out;
4895 	}
4896 
4897 	stripe = &chunk->stripe;
4898 	for (i = 0; i < map->num_stripes; i++) {
4899 		device = map->stripes[i].dev;
4900 		dev_offset = map->stripes[i].physical;
4901 
4902 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4903 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4904 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4905 		stripe++;
4906 	}
4907 	mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4908 
4909 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4910 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4911 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4912 	btrfs_set_stack_chunk_type(chunk, map->type);
4913 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4914 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4915 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4916 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4917 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4918 
4919 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4920 	key.type = BTRFS_CHUNK_ITEM_KEY;
4921 	key.offset = chunk_offset;
4922 
4923 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4924 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4925 		/*
4926 		 * TODO: Cleanup of inserted chunk root in case of
4927 		 * failure.
4928 		 */
4929 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4930 					     item_size);
4931 	}
4932 
4933 out:
4934 	kfree(chunk);
4935 	free_extent_map(em);
4936 	return ret;
4937 }
4938 
4939 /*
4940  * Chunk allocation falls into two parts. The first part does works
4941  * that make the new allocated chunk useable, but not do any operation
4942  * that modifies the chunk tree. The second part does the works that
4943  * require modifying the chunk tree. This division is important for the
4944  * bootstrap process of adding storage to a seed btrfs.
4945  */
4946 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4947 		      struct btrfs_root *extent_root, u64 type)
4948 {
4949 	u64 chunk_offset;
4950 
4951 	ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4952 	chunk_offset = find_next_chunk(extent_root->fs_info);
4953 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4954 }
4955 
4956 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4957 					 struct btrfs_root *root,
4958 					 struct btrfs_device *device)
4959 {
4960 	u64 chunk_offset;
4961 	u64 sys_chunk_offset;
4962 	u64 alloc_profile;
4963 	struct btrfs_fs_info *fs_info = root->fs_info;
4964 	struct btrfs_root *extent_root = fs_info->extent_root;
4965 	int ret;
4966 
4967 	chunk_offset = find_next_chunk(fs_info);
4968 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4969 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4970 				  alloc_profile);
4971 	if (ret)
4972 		return ret;
4973 
4974 	sys_chunk_offset = find_next_chunk(root->fs_info);
4975 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4976 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4977 				  alloc_profile);
4978 	return ret;
4979 }
4980 
4981 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4982 {
4983 	int max_errors;
4984 
4985 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4986 			 BTRFS_BLOCK_GROUP_RAID10 |
4987 			 BTRFS_BLOCK_GROUP_RAID5 |
4988 			 BTRFS_BLOCK_GROUP_DUP)) {
4989 		max_errors = 1;
4990 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4991 		max_errors = 2;
4992 	} else {
4993 		max_errors = 0;
4994 	}
4995 
4996 	return max_errors;
4997 }
4998 
4999 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5000 {
5001 	struct extent_map *em;
5002 	struct map_lookup *map;
5003 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5004 	int readonly = 0;
5005 	int miss_ndevs = 0;
5006 	int i;
5007 
5008 	read_lock(&map_tree->map_tree.lock);
5009 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5010 	read_unlock(&map_tree->map_tree.lock);
5011 	if (!em)
5012 		return 1;
5013 
5014 	map = em->map_lookup;
5015 	for (i = 0; i < map->num_stripes; i++) {
5016 		if (map->stripes[i].dev->missing) {
5017 			miss_ndevs++;
5018 			continue;
5019 		}
5020 
5021 		if (!map->stripes[i].dev->writeable) {
5022 			readonly = 1;
5023 			goto end;
5024 		}
5025 	}
5026 
5027 	/*
5028 	 * If the number of missing devices is larger than max errors,
5029 	 * we can not write the data into that chunk successfully, so
5030 	 * set it readonly.
5031 	 */
5032 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5033 		readonly = 1;
5034 end:
5035 	free_extent_map(em);
5036 	return readonly;
5037 }
5038 
5039 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5040 {
5041 	extent_map_tree_init(&tree->map_tree);
5042 }
5043 
5044 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5045 {
5046 	struct extent_map *em;
5047 
5048 	while (1) {
5049 		write_lock(&tree->map_tree.lock);
5050 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5051 		if (em)
5052 			remove_extent_mapping(&tree->map_tree, em);
5053 		write_unlock(&tree->map_tree.lock);
5054 		if (!em)
5055 			break;
5056 		/* once for us */
5057 		free_extent_map(em);
5058 		/* once for the tree */
5059 		free_extent_map(em);
5060 	}
5061 }
5062 
5063 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5064 {
5065 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5066 	struct extent_map *em;
5067 	struct map_lookup *map;
5068 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5069 	int ret;
5070 
5071 	read_lock(&em_tree->lock);
5072 	em = lookup_extent_mapping(em_tree, logical, len);
5073 	read_unlock(&em_tree->lock);
5074 
5075 	/*
5076 	 * We could return errors for these cases, but that could get ugly and
5077 	 * we'd probably do the same thing which is just not do anything else
5078 	 * and exit, so return 1 so the callers don't try to use other copies.
5079 	 */
5080 	if (!em) {
5081 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5082 			    logical+len);
5083 		return 1;
5084 	}
5085 
5086 	if (em->start > logical || em->start + em->len < logical) {
5087 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5088 			    "%Lu-%Lu", logical, logical+len, em->start,
5089 			    em->start + em->len);
5090 		free_extent_map(em);
5091 		return 1;
5092 	}
5093 
5094 	map = em->map_lookup;
5095 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5096 		ret = map->num_stripes;
5097 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5098 		ret = map->sub_stripes;
5099 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5100 		ret = 2;
5101 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5102 		ret = 3;
5103 	else
5104 		ret = 1;
5105 	free_extent_map(em);
5106 
5107 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5108 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5109 		ret++;
5110 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5111 
5112 	return ret;
5113 }
5114 
5115 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5116 				    struct btrfs_mapping_tree *map_tree,
5117 				    u64 logical)
5118 {
5119 	struct extent_map *em;
5120 	struct map_lookup *map;
5121 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5122 	unsigned long len = root->sectorsize;
5123 
5124 	read_lock(&em_tree->lock);
5125 	em = lookup_extent_mapping(em_tree, logical, len);
5126 	read_unlock(&em_tree->lock);
5127 	BUG_ON(!em);
5128 
5129 	BUG_ON(em->start > logical || em->start + em->len < logical);
5130 	map = em->map_lookup;
5131 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5132 		len = map->stripe_len * nr_data_stripes(map);
5133 	free_extent_map(em);
5134 	return len;
5135 }
5136 
5137 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5138 			   u64 logical, u64 len, int mirror_num)
5139 {
5140 	struct extent_map *em;
5141 	struct map_lookup *map;
5142 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5143 	int ret = 0;
5144 
5145 	read_lock(&em_tree->lock);
5146 	em = lookup_extent_mapping(em_tree, logical, len);
5147 	read_unlock(&em_tree->lock);
5148 	BUG_ON(!em);
5149 
5150 	BUG_ON(em->start > logical || em->start + em->len < logical);
5151 	map = em->map_lookup;
5152 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5153 		ret = 1;
5154 	free_extent_map(em);
5155 	return ret;
5156 }
5157 
5158 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5159 			    struct map_lookup *map, int first, int num,
5160 			    int optimal, int dev_replace_is_ongoing)
5161 {
5162 	int i;
5163 	int tolerance;
5164 	struct btrfs_device *srcdev;
5165 
5166 	if (dev_replace_is_ongoing &&
5167 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5168 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5169 		srcdev = fs_info->dev_replace.srcdev;
5170 	else
5171 		srcdev = NULL;
5172 
5173 	/*
5174 	 * try to avoid the drive that is the source drive for a
5175 	 * dev-replace procedure, only choose it if no other non-missing
5176 	 * mirror is available
5177 	 */
5178 	for (tolerance = 0; tolerance < 2; tolerance++) {
5179 		if (map->stripes[optimal].dev->bdev &&
5180 		    (tolerance || map->stripes[optimal].dev != srcdev))
5181 			return optimal;
5182 		for (i = first; i < first + num; i++) {
5183 			if (map->stripes[i].dev->bdev &&
5184 			    (tolerance || map->stripes[i].dev != srcdev))
5185 				return i;
5186 		}
5187 	}
5188 
5189 	/* we couldn't find one that doesn't fail.  Just return something
5190 	 * and the io error handling code will clean up eventually
5191 	 */
5192 	return optimal;
5193 }
5194 
5195 static inline int parity_smaller(u64 a, u64 b)
5196 {
5197 	return a > b;
5198 }
5199 
5200 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5201 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5202 {
5203 	struct btrfs_bio_stripe s;
5204 	int i;
5205 	u64 l;
5206 	int again = 1;
5207 
5208 	while (again) {
5209 		again = 0;
5210 		for (i = 0; i < num_stripes - 1; i++) {
5211 			if (parity_smaller(bbio->raid_map[i],
5212 					   bbio->raid_map[i+1])) {
5213 				s = bbio->stripes[i];
5214 				l = bbio->raid_map[i];
5215 				bbio->stripes[i] = bbio->stripes[i+1];
5216 				bbio->raid_map[i] = bbio->raid_map[i+1];
5217 				bbio->stripes[i+1] = s;
5218 				bbio->raid_map[i+1] = l;
5219 
5220 				again = 1;
5221 			}
5222 		}
5223 	}
5224 }
5225 
5226 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5227 {
5228 	struct btrfs_bio *bbio = kzalloc(
5229 		 /* the size of the btrfs_bio */
5230 		sizeof(struct btrfs_bio) +
5231 		/* plus the variable array for the stripes */
5232 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5233 		/* plus the variable array for the tgt dev */
5234 		sizeof(int) * (real_stripes) +
5235 		/*
5236 		 * plus the raid_map, which includes both the tgt dev
5237 		 * and the stripes
5238 		 */
5239 		sizeof(u64) * (total_stripes),
5240 		GFP_NOFS|__GFP_NOFAIL);
5241 
5242 	atomic_set(&bbio->error, 0);
5243 	atomic_set(&bbio->refs, 1);
5244 
5245 	return bbio;
5246 }
5247 
5248 void btrfs_get_bbio(struct btrfs_bio *bbio)
5249 {
5250 	WARN_ON(!atomic_read(&bbio->refs));
5251 	atomic_inc(&bbio->refs);
5252 }
5253 
5254 void btrfs_put_bbio(struct btrfs_bio *bbio)
5255 {
5256 	if (!bbio)
5257 		return;
5258 	if (atomic_dec_and_test(&bbio->refs))
5259 		kfree(bbio);
5260 }
5261 
5262 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5263 			     u64 logical, u64 *length,
5264 			     struct btrfs_bio **bbio_ret,
5265 			     int mirror_num, int need_raid_map)
5266 {
5267 	struct extent_map *em;
5268 	struct map_lookup *map;
5269 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5270 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5271 	u64 offset;
5272 	u64 stripe_offset;
5273 	u64 stripe_end_offset;
5274 	u64 stripe_nr;
5275 	u64 stripe_nr_orig;
5276 	u64 stripe_nr_end;
5277 	u64 stripe_len;
5278 	u32 stripe_index;
5279 	int i;
5280 	int ret = 0;
5281 	int num_stripes;
5282 	int max_errors = 0;
5283 	int tgtdev_indexes = 0;
5284 	struct btrfs_bio *bbio = NULL;
5285 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5286 	int dev_replace_is_ongoing = 0;
5287 	int num_alloc_stripes;
5288 	int patch_the_first_stripe_for_dev_replace = 0;
5289 	u64 physical_to_patch_in_first_stripe = 0;
5290 	u64 raid56_full_stripe_start = (u64)-1;
5291 
5292 	read_lock(&em_tree->lock);
5293 	em = lookup_extent_mapping(em_tree, logical, *length);
5294 	read_unlock(&em_tree->lock);
5295 
5296 	if (!em) {
5297 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5298 			logical, *length);
5299 		return -EINVAL;
5300 	}
5301 
5302 	if (em->start > logical || em->start + em->len < logical) {
5303 		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5304 			   "found %Lu-%Lu", logical, em->start,
5305 			   em->start + em->len);
5306 		free_extent_map(em);
5307 		return -EINVAL;
5308 	}
5309 
5310 	map = em->map_lookup;
5311 	offset = logical - em->start;
5312 
5313 	stripe_len = map->stripe_len;
5314 	stripe_nr = offset;
5315 	/*
5316 	 * stripe_nr counts the total number of stripes we have to stride
5317 	 * to get to this block
5318 	 */
5319 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5320 
5321 	stripe_offset = stripe_nr * stripe_len;
5322 	if (offset < stripe_offset) {
5323 		btrfs_crit(fs_info, "stripe math has gone wrong, "
5324 			   "stripe_offset=%llu, offset=%llu, start=%llu, "
5325 			   "logical=%llu, stripe_len=%llu",
5326 			   stripe_offset, offset, em->start, logical,
5327 			   stripe_len);
5328 		free_extent_map(em);
5329 		return -EINVAL;
5330 	}
5331 
5332 	/* stripe_offset is the offset of this block in its stripe*/
5333 	stripe_offset = offset - stripe_offset;
5334 
5335 	/* if we're here for raid56, we need to know the stripe aligned start */
5336 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5337 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5338 		raid56_full_stripe_start = offset;
5339 
5340 		/* allow a write of a full stripe, but make sure we don't
5341 		 * allow straddling of stripes
5342 		 */
5343 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5344 				full_stripe_len);
5345 		raid56_full_stripe_start *= full_stripe_len;
5346 	}
5347 
5348 	if (rw & REQ_DISCARD) {
5349 		/* we don't discard raid56 yet */
5350 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5351 			ret = -EOPNOTSUPP;
5352 			goto out;
5353 		}
5354 		*length = min_t(u64, em->len - offset, *length);
5355 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5356 		u64 max_len;
5357 		/* For writes to RAID[56], allow a full stripeset across all disks.
5358 		   For other RAID types and for RAID[56] reads, just allow a single
5359 		   stripe (on a single disk). */
5360 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5361 		    (rw & REQ_WRITE)) {
5362 			max_len = stripe_len * nr_data_stripes(map) -
5363 				(offset - raid56_full_stripe_start);
5364 		} else {
5365 			/* we limit the length of each bio to what fits in a stripe */
5366 			max_len = stripe_len - stripe_offset;
5367 		}
5368 		*length = min_t(u64, em->len - offset, max_len);
5369 	} else {
5370 		*length = em->len - offset;
5371 	}
5372 
5373 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5374 	   it cares about is the length */
5375 	if (!bbio_ret)
5376 		goto out;
5377 
5378 	btrfs_dev_replace_lock(dev_replace, 0);
5379 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5380 	if (!dev_replace_is_ongoing)
5381 		btrfs_dev_replace_unlock(dev_replace, 0);
5382 	else
5383 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5384 
5385 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5386 	    !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5387 	    dev_replace->tgtdev != NULL) {
5388 		/*
5389 		 * in dev-replace case, for repair case (that's the only
5390 		 * case where the mirror is selected explicitly when
5391 		 * calling btrfs_map_block), blocks left of the left cursor
5392 		 * can also be read from the target drive.
5393 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
5394 		 * the last one to the array of stripes. For READ, it also
5395 		 * needs to be supported using the same mirror number.
5396 		 * If the requested block is not left of the left cursor,
5397 		 * EIO is returned. This can happen because btrfs_num_copies()
5398 		 * returns one more in the dev-replace case.
5399 		 */
5400 		u64 tmp_length = *length;
5401 		struct btrfs_bio *tmp_bbio = NULL;
5402 		int tmp_num_stripes;
5403 		u64 srcdev_devid = dev_replace->srcdev->devid;
5404 		int index_srcdev = 0;
5405 		int found = 0;
5406 		u64 physical_of_found = 0;
5407 
5408 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5409 			     logical, &tmp_length, &tmp_bbio, 0, 0);
5410 		if (ret) {
5411 			WARN_ON(tmp_bbio != NULL);
5412 			goto out;
5413 		}
5414 
5415 		tmp_num_stripes = tmp_bbio->num_stripes;
5416 		if (mirror_num > tmp_num_stripes) {
5417 			/*
5418 			 * REQ_GET_READ_MIRRORS does not contain this
5419 			 * mirror, that means that the requested area
5420 			 * is not left of the left cursor
5421 			 */
5422 			ret = -EIO;
5423 			btrfs_put_bbio(tmp_bbio);
5424 			goto out;
5425 		}
5426 
5427 		/*
5428 		 * process the rest of the function using the mirror_num
5429 		 * of the source drive. Therefore look it up first.
5430 		 * At the end, patch the device pointer to the one of the
5431 		 * target drive.
5432 		 */
5433 		for (i = 0; i < tmp_num_stripes; i++) {
5434 			if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5435 				continue;
5436 
5437 			/*
5438 			 * In case of DUP, in order to keep it simple, only add
5439 			 * the mirror with the lowest physical address
5440 			 */
5441 			if (found &&
5442 			    physical_of_found <= tmp_bbio->stripes[i].physical)
5443 				continue;
5444 
5445 			index_srcdev = i;
5446 			found = 1;
5447 			physical_of_found = tmp_bbio->stripes[i].physical;
5448 		}
5449 
5450 		btrfs_put_bbio(tmp_bbio);
5451 
5452 		if (!found) {
5453 			WARN_ON(1);
5454 			ret = -EIO;
5455 			goto out;
5456 		}
5457 
5458 		mirror_num = index_srcdev + 1;
5459 		patch_the_first_stripe_for_dev_replace = 1;
5460 		physical_to_patch_in_first_stripe = physical_of_found;
5461 	} else if (mirror_num > map->num_stripes) {
5462 		mirror_num = 0;
5463 	}
5464 
5465 	num_stripes = 1;
5466 	stripe_index = 0;
5467 	stripe_nr_orig = stripe_nr;
5468 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5469 	stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5470 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5471 			    (offset + *length);
5472 
5473 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5474 		if (rw & REQ_DISCARD)
5475 			num_stripes = min_t(u64, map->num_stripes,
5476 					    stripe_nr_end - stripe_nr_orig);
5477 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5478 				&stripe_index);
5479 		if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5480 			mirror_num = 1;
5481 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5482 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5483 			num_stripes = map->num_stripes;
5484 		else if (mirror_num)
5485 			stripe_index = mirror_num - 1;
5486 		else {
5487 			stripe_index = find_live_mirror(fs_info, map, 0,
5488 					    map->num_stripes,
5489 					    current->pid % map->num_stripes,
5490 					    dev_replace_is_ongoing);
5491 			mirror_num = stripe_index + 1;
5492 		}
5493 
5494 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5495 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5496 			num_stripes = map->num_stripes;
5497 		} else if (mirror_num) {
5498 			stripe_index = mirror_num - 1;
5499 		} else {
5500 			mirror_num = 1;
5501 		}
5502 
5503 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5504 		u32 factor = map->num_stripes / map->sub_stripes;
5505 
5506 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5507 		stripe_index *= map->sub_stripes;
5508 
5509 		if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5510 			num_stripes = map->sub_stripes;
5511 		else if (rw & REQ_DISCARD)
5512 			num_stripes = min_t(u64, map->sub_stripes *
5513 					    (stripe_nr_end - stripe_nr_orig),
5514 					    map->num_stripes);
5515 		else if (mirror_num)
5516 			stripe_index += mirror_num - 1;
5517 		else {
5518 			int old_stripe_index = stripe_index;
5519 			stripe_index = find_live_mirror(fs_info, map,
5520 					      stripe_index,
5521 					      map->sub_stripes, stripe_index +
5522 					      current->pid % map->sub_stripes,
5523 					      dev_replace_is_ongoing);
5524 			mirror_num = stripe_index - old_stripe_index + 1;
5525 		}
5526 
5527 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5528 		if (need_raid_map &&
5529 		    ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5530 		     mirror_num > 1)) {
5531 			/* push stripe_nr back to the start of the full stripe */
5532 			stripe_nr = div_u64(raid56_full_stripe_start,
5533 					stripe_len * nr_data_stripes(map));
5534 
5535 			/* RAID[56] write or recovery. Return all stripes */
5536 			num_stripes = map->num_stripes;
5537 			max_errors = nr_parity_stripes(map);
5538 
5539 			*length = map->stripe_len;
5540 			stripe_index = 0;
5541 			stripe_offset = 0;
5542 		} else {
5543 			/*
5544 			 * Mirror #0 or #1 means the original data block.
5545 			 * Mirror #2 is RAID5 parity block.
5546 			 * Mirror #3 is RAID6 Q block.
5547 			 */
5548 			stripe_nr = div_u64_rem(stripe_nr,
5549 					nr_data_stripes(map), &stripe_index);
5550 			if (mirror_num > 1)
5551 				stripe_index = nr_data_stripes(map) +
5552 						mirror_num - 2;
5553 
5554 			/* We distribute the parity blocks across stripes */
5555 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5556 					&stripe_index);
5557 			if (!(rw & (REQ_WRITE | REQ_DISCARD |
5558 				    REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5559 				mirror_num = 1;
5560 		}
5561 	} else {
5562 		/*
5563 		 * after this, stripe_nr is the number of stripes on this
5564 		 * device we have to walk to find the data, and stripe_index is
5565 		 * the number of our device in the stripe array
5566 		 */
5567 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5568 				&stripe_index);
5569 		mirror_num = stripe_index + 1;
5570 	}
5571 	if (stripe_index >= map->num_stripes) {
5572 		btrfs_crit(fs_info, "stripe index math went horribly wrong, "
5573 			   "got stripe_index=%u, num_stripes=%u",
5574 			   stripe_index, map->num_stripes);
5575 		ret = -EINVAL;
5576 		goto out;
5577 	}
5578 
5579 	num_alloc_stripes = num_stripes;
5580 	if (dev_replace_is_ongoing) {
5581 		if (rw & (REQ_WRITE | REQ_DISCARD))
5582 			num_alloc_stripes <<= 1;
5583 		if (rw & REQ_GET_READ_MIRRORS)
5584 			num_alloc_stripes++;
5585 		tgtdev_indexes = num_stripes;
5586 	}
5587 
5588 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5589 	if (!bbio) {
5590 		ret = -ENOMEM;
5591 		goto out;
5592 	}
5593 	if (dev_replace_is_ongoing)
5594 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5595 
5596 	/* build raid_map */
5597 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5598 	    need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5599 	    mirror_num > 1)) {
5600 		u64 tmp;
5601 		unsigned rot;
5602 
5603 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5604 				 sizeof(struct btrfs_bio_stripe) *
5605 				 num_alloc_stripes +
5606 				 sizeof(int) * tgtdev_indexes);
5607 
5608 		/* Work out the disk rotation on this stripe-set */
5609 		div_u64_rem(stripe_nr, num_stripes, &rot);
5610 
5611 		/* Fill in the logical address of each stripe */
5612 		tmp = stripe_nr * nr_data_stripes(map);
5613 		for (i = 0; i < nr_data_stripes(map); i++)
5614 			bbio->raid_map[(i+rot) % num_stripes] =
5615 				em->start + (tmp + i) * map->stripe_len;
5616 
5617 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5618 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5619 			bbio->raid_map[(i+rot+1) % num_stripes] =
5620 				RAID6_Q_STRIPE;
5621 	}
5622 
5623 	if (rw & REQ_DISCARD) {
5624 		u32 factor = 0;
5625 		u32 sub_stripes = 0;
5626 		u64 stripes_per_dev = 0;
5627 		u32 remaining_stripes = 0;
5628 		u32 last_stripe = 0;
5629 
5630 		if (map->type &
5631 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5632 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5633 				sub_stripes = 1;
5634 			else
5635 				sub_stripes = map->sub_stripes;
5636 
5637 			factor = map->num_stripes / sub_stripes;
5638 			stripes_per_dev = div_u64_rem(stripe_nr_end -
5639 						      stripe_nr_orig,
5640 						      factor,
5641 						      &remaining_stripes);
5642 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5643 			last_stripe *= sub_stripes;
5644 		}
5645 
5646 		for (i = 0; i < num_stripes; i++) {
5647 			bbio->stripes[i].physical =
5648 				map->stripes[stripe_index].physical +
5649 				stripe_offset + stripe_nr * map->stripe_len;
5650 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5651 
5652 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5653 					 BTRFS_BLOCK_GROUP_RAID10)) {
5654 				bbio->stripes[i].length = stripes_per_dev *
5655 							  map->stripe_len;
5656 
5657 				if (i / sub_stripes < remaining_stripes)
5658 					bbio->stripes[i].length +=
5659 						map->stripe_len;
5660 
5661 				/*
5662 				 * Special for the first stripe and
5663 				 * the last stripe:
5664 				 *
5665 				 * |-------|...|-------|
5666 				 *     |----------|
5667 				 *    off     end_off
5668 				 */
5669 				if (i < sub_stripes)
5670 					bbio->stripes[i].length -=
5671 						stripe_offset;
5672 
5673 				if (stripe_index >= last_stripe &&
5674 				    stripe_index <= (last_stripe +
5675 						     sub_stripes - 1))
5676 					bbio->stripes[i].length -=
5677 						stripe_end_offset;
5678 
5679 				if (i == sub_stripes - 1)
5680 					stripe_offset = 0;
5681 			} else
5682 				bbio->stripes[i].length = *length;
5683 
5684 			stripe_index++;
5685 			if (stripe_index == map->num_stripes) {
5686 				/* This could only happen for RAID0/10 */
5687 				stripe_index = 0;
5688 				stripe_nr++;
5689 			}
5690 		}
5691 	} else {
5692 		for (i = 0; i < num_stripes; i++) {
5693 			bbio->stripes[i].physical =
5694 				map->stripes[stripe_index].physical +
5695 				stripe_offset +
5696 				stripe_nr * map->stripe_len;
5697 			bbio->stripes[i].dev =
5698 				map->stripes[stripe_index].dev;
5699 			stripe_index++;
5700 		}
5701 	}
5702 
5703 	if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5704 		max_errors = btrfs_chunk_max_errors(map);
5705 
5706 	if (bbio->raid_map)
5707 		sort_parity_stripes(bbio, num_stripes);
5708 
5709 	tgtdev_indexes = 0;
5710 	if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5711 	    dev_replace->tgtdev != NULL) {
5712 		int index_where_to_add;
5713 		u64 srcdev_devid = dev_replace->srcdev->devid;
5714 
5715 		/*
5716 		 * duplicate the write operations while the dev replace
5717 		 * procedure is running. Since the copying of the old disk
5718 		 * to the new disk takes place at run time while the
5719 		 * filesystem is mounted writable, the regular write
5720 		 * operations to the old disk have to be duplicated to go
5721 		 * to the new disk as well.
5722 		 * Note that device->missing is handled by the caller, and
5723 		 * that the write to the old disk is already set up in the
5724 		 * stripes array.
5725 		 */
5726 		index_where_to_add = num_stripes;
5727 		for (i = 0; i < num_stripes; i++) {
5728 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5729 				/* write to new disk, too */
5730 				struct btrfs_bio_stripe *new =
5731 					bbio->stripes + index_where_to_add;
5732 				struct btrfs_bio_stripe *old =
5733 					bbio->stripes + i;
5734 
5735 				new->physical = old->physical;
5736 				new->length = old->length;
5737 				new->dev = dev_replace->tgtdev;
5738 				bbio->tgtdev_map[i] = index_where_to_add;
5739 				index_where_to_add++;
5740 				max_errors++;
5741 				tgtdev_indexes++;
5742 			}
5743 		}
5744 		num_stripes = index_where_to_add;
5745 	} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5746 		   dev_replace->tgtdev != NULL) {
5747 		u64 srcdev_devid = dev_replace->srcdev->devid;
5748 		int index_srcdev = 0;
5749 		int found = 0;
5750 		u64 physical_of_found = 0;
5751 
5752 		/*
5753 		 * During the dev-replace procedure, the target drive can
5754 		 * also be used to read data in case it is needed to repair
5755 		 * a corrupt block elsewhere. This is possible if the
5756 		 * requested area is left of the left cursor. In this area,
5757 		 * the target drive is a full copy of the source drive.
5758 		 */
5759 		for (i = 0; i < num_stripes; i++) {
5760 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5761 				/*
5762 				 * In case of DUP, in order to keep it
5763 				 * simple, only add the mirror with the
5764 				 * lowest physical address
5765 				 */
5766 				if (found &&
5767 				    physical_of_found <=
5768 				     bbio->stripes[i].physical)
5769 					continue;
5770 				index_srcdev = i;
5771 				found = 1;
5772 				physical_of_found = bbio->stripes[i].physical;
5773 			}
5774 		}
5775 		if (found) {
5776 			struct btrfs_bio_stripe *tgtdev_stripe =
5777 				bbio->stripes + num_stripes;
5778 
5779 			tgtdev_stripe->physical = physical_of_found;
5780 			tgtdev_stripe->length =
5781 				bbio->stripes[index_srcdev].length;
5782 			tgtdev_stripe->dev = dev_replace->tgtdev;
5783 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5784 
5785 			tgtdev_indexes++;
5786 			num_stripes++;
5787 		}
5788 	}
5789 
5790 	*bbio_ret = bbio;
5791 	bbio->map_type = map->type;
5792 	bbio->num_stripes = num_stripes;
5793 	bbio->max_errors = max_errors;
5794 	bbio->mirror_num = mirror_num;
5795 	bbio->num_tgtdevs = tgtdev_indexes;
5796 
5797 	/*
5798 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5799 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5800 	 * available as a mirror
5801 	 */
5802 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5803 		WARN_ON(num_stripes > 1);
5804 		bbio->stripes[0].dev = dev_replace->tgtdev;
5805 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5806 		bbio->mirror_num = map->num_stripes + 1;
5807 	}
5808 out:
5809 	if (dev_replace_is_ongoing) {
5810 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
5811 		btrfs_dev_replace_unlock(dev_replace, 0);
5812 	}
5813 	free_extent_map(em);
5814 	return ret;
5815 }
5816 
5817 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5818 		      u64 logical, u64 *length,
5819 		      struct btrfs_bio **bbio_ret, int mirror_num)
5820 {
5821 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5822 				 mirror_num, 0);
5823 }
5824 
5825 /* For Scrub/replace */
5826 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5827 		     u64 logical, u64 *length,
5828 		     struct btrfs_bio **bbio_ret, int mirror_num,
5829 		     int need_raid_map)
5830 {
5831 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5832 				 mirror_num, need_raid_map);
5833 }
5834 
5835 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5836 		     u64 chunk_start, u64 physical, u64 devid,
5837 		     u64 **logical, int *naddrs, int *stripe_len)
5838 {
5839 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5840 	struct extent_map *em;
5841 	struct map_lookup *map;
5842 	u64 *buf;
5843 	u64 bytenr;
5844 	u64 length;
5845 	u64 stripe_nr;
5846 	u64 rmap_len;
5847 	int i, j, nr = 0;
5848 
5849 	read_lock(&em_tree->lock);
5850 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5851 	read_unlock(&em_tree->lock);
5852 
5853 	if (!em) {
5854 		printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5855 		       chunk_start);
5856 		return -EIO;
5857 	}
5858 
5859 	if (em->start != chunk_start) {
5860 		printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5861 		       em->start, chunk_start);
5862 		free_extent_map(em);
5863 		return -EIO;
5864 	}
5865 	map = em->map_lookup;
5866 
5867 	length = em->len;
5868 	rmap_len = map->stripe_len;
5869 
5870 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5871 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5872 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5873 		length = div_u64(length, map->num_stripes);
5874 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5875 		length = div_u64(length, nr_data_stripes(map));
5876 		rmap_len = map->stripe_len * nr_data_stripes(map);
5877 	}
5878 
5879 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5880 	BUG_ON(!buf); /* -ENOMEM */
5881 
5882 	for (i = 0; i < map->num_stripes; i++) {
5883 		if (devid && map->stripes[i].dev->devid != devid)
5884 			continue;
5885 		if (map->stripes[i].physical > physical ||
5886 		    map->stripes[i].physical + length <= physical)
5887 			continue;
5888 
5889 		stripe_nr = physical - map->stripes[i].physical;
5890 		stripe_nr = div_u64(stripe_nr, map->stripe_len);
5891 
5892 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5893 			stripe_nr = stripe_nr * map->num_stripes + i;
5894 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5895 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5896 			stripe_nr = stripe_nr * map->num_stripes + i;
5897 		} /* else if RAID[56], multiply by nr_data_stripes().
5898 		   * Alternatively, just use rmap_len below instead of
5899 		   * map->stripe_len */
5900 
5901 		bytenr = chunk_start + stripe_nr * rmap_len;
5902 		WARN_ON(nr >= map->num_stripes);
5903 		for (j = 0; j < nr; j++) {
5904 			if (buf[j] == bytenr)
5905 				break;
5906 		}
5907 		if (j == nr) {
5908 			WARN_ON(nr >= map->num_stripes);
5909 			buf[nr++] = bytenr;
5910 		}
5911 	}
5912 
5913 	*logical = buf;
5914 	*naddrs = nr;
5915 	*stripe_len = rmap_len;
5916 
5917 	free_extent_map(em);
5918 	return 0;
5919 }
5920 
5921 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5922 {
5923 	bio->bi_private = bbio->private;
5924 	bio->bi_end_io = bbio->end_io;
5925 	bio_endio(bio);
5926 
5927 	btrfs_put_bbio(bbio);
5928 }
5929 
5930 static void btrfs_end_bio(struct bio *bio)
5931 {
5932 	struct btrfs_bio *bbio = bio->bi_private;
5933 	int is_orig_bio = 0;
5934 
5935 	if (bio->bi_error) {
5936 		atomic_inc(&bbio->error);
5937 		if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5938 			unsigned int stripe_index =
5939 				btrfs_io_bio(bio)->stripe_index;
5940 			struct btrfs_device *dev;
5941 
5942 			BUG_ON(stripe_index >= bbio->num_stripes);
5943 			dev = bbio->stripes[stripe_index].dev;
5944 			if (dev->bdev) {
5945 				if (bio->bi_rw & WRITE)
5946 					btrfs_dev_stat_inc(dev,
5947 						BTRFS_DEV_STAT_WRITE_ERRS);
5948 				else
5949 					btrfs_dev_stat_inc(dev,
5950 						BTRFS_DEV_STAT_READ_ERRS);
5951 				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5952 					btrfs_dev_stat_inc(dev,
5953 						BTRFS_DEV_STAT_FLUSH_ERRS);
5954 				btrfs_dev_stat_print_on_error(dev);
5955 			}
5956 		}
5957 	}
5958 
5959 	if (bio == bbio->orig_bio)
5960 		is_orig_bio = 1;
5961 
5962 	btrfs_bio_counter_dec(bbio->fs_info);
5963 
5964 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5965 		if (!is_orig_bio) {
5966 			bio_put(bio);
5967 			bio = bbio->orig_bio;
5968 		}
5969 
5970 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5971 		/* only send an error to the higher layers if it is
5972 		 * beyond the tolerance of the btrfs bio
5973 		 */
5974 		if (atomic_read(&bbio->error) > bbio->max_errors) {
5975 			bio->bi_error = -EIO;
5976 		} else {
5977 			/*
5978 			 * this bio is actually up to date, we didn't
5979 			 * go over the max number of errors
5980 			 */
5981 			bio->bi_error = 0;
5982 		}
5983 
5984 		btrfs_end_bbio(bbio, bio);
5985 	} else if (!is_orig_bio) {
5986 		bio_put(bio);
5987 	}
5988 }
5989 
5990 /*
5991  * see run_scheduled_bios for a description of why bios are collected for
5992  * async submit.
5993  *
5994  * This will add one bio to the pending list for a device and make sure
5995  * the work struct is scheduled.
5996  */
5997 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5998 					struct btrfs_device *device,
5999 					int rw, struct bio *bio)
6000 {
6001 	int should_queue = 1;
6002 	struct btrfs_pending_bios *pending_bios;
6003 
6004 	if (device->missing || !device->bdev) {
6005 		bio_io_error(bio);
6006 		return;
6007 	}
6008 
6009 	/* don't bother with additional async steps for reads, right now */
6010 	if (!(rw & REQ_WRITE)) {
6011 		bio_get(bio);
6012 		btrfsic_submit_bio(rw, bio);
6013 		bio_put(bio);
6014 		return;
6015 	}
6016 
6017 	/*
6018 	 * nr_async_bios allows us to reliably return congestion to the
6019 	 * higher layers.  Otherwise, the async bio makes it appear we have
6020 	 * made progress against dirty pages when we've really just put it
6021 	 * on a queue for later
6022 	 */
6023 	atomic_inc(&root->fs_info->nr_async_bios);
6024 	WARN_ON(bio->bi_next);
6025 	bio->bi_next = NULL;
6026 	bio->bi_rw |= rw;
6027 
6028 	spin_lock(&device->io_lock);
6029 	if (bio->bi_rw & REQ_SYNC)
6030 		pending_bios = &device->pending_sync_bios;
6031 	else
6032 		pending_bios = &device->pending_bios;
6033 
6034 	if (pending_bios->tail)
6035 		pending_bios->tail->bi_next = bio;
6036 
6037 	pending_bios->tail = bio;
6038 	if (!pending_bios->head)
6039 		pending_bios->head = bio;
6040 	if (device->running_pending)
6041 		should_queue = 0;
6042 
6043 	spin_unlock(&device->io_lock);
6044 
6045 	if (should_queue)
6046 		btrfs_queue_work(root->fs_info->submit_workers,
6047 				 &device->work);
6048 }
6049 
6050 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6051 			      struct bio *bio, u64 physical, int dev_nr,
6052 			      int rw, int async)
6053 {
6054 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6055 
6056 	bio->bi_private = bbio;
6057 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6058 	bio->bi_end_io = btrfs_end_bio;
6059 	bio->bi_iter.bi_sector = physical >> 9;
6060 #ifdef DEBUG
6061 	{
6062 		struct rcu_string *name;
6063 
6064 		rcu_read_lock();
6065 		name = rcu_dereference(dev->name);
6066 		pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
6067 			 "(%s id %llu), size=%u\n", rw,
6068 			 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6069 			 name->str, dev->devid, bio->bi_iter.bi_size);
6070 		rcu_read_unlock();
6071 	}
6072 #endif
6073 	bio->bi_bdev = dev->bdev;
6074 
6075 	btrfs_bio_counter_inc_noblocked(root->fs_info);
6076 
6077 	if (async)
6078 		btrfs_schedule_bio(root, dev, rw, bio);
6079 	else
6080 		btrfsic_submit_bio(rw, bio);
6081 }
6082 
6083 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6084 {
6085 	atomic_inc(&bbio->error);
6086 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6087 		/* Should be the original bio. */
6088 		WARN_ON(bio != bbio->orig_bio);
6089 
6090 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6091 		bio->bi_iter.bi_sector = logical >> 9;
6092 		bio->bi_error = -EIO;
6093 		btrfs_end_bbio(bbio, bio);
6094 	}
6095 }
6096 
6097 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
6098 		  int mirror_num, int async_submit)
6099 {
6100 	struct btrfs_device *dev;
6101 	struct bio *first_bio = bio;
6102 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6103 	u64 length = 0;
6104 	u64 map_length;
6105 	int ret;
6106 	int dev_nr;
6107 	int total_devs;
6108 	struct btrfs_bio *bbio = NULL;
6109 
6110 	length = bio->bi_iter.bi_size;
6111 	map_length = length;
6112 
6113 	btrfs_bio_counter_inc_blocked(root->fs_info);
6114 	ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
6115 			      mirror_num, 1);
6116 	if (ret) {
6117 		btrfs_bio_counter_dec(root->fs_info);
6118 		return ret;
6119 	}
6120 
6121 	total_devs = bbio->num_stripes;
6122 	bbio->orig_bio = first_bio;
6123 	bbio->private = first_bio->bi_private;
6124 	bbio->end_io = first_bio->bi_end_io;
6125 	bbio->fs_info = root->fs_info;
6126 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6127 
6128 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6129 	    ((rw & WRITE) || (mirror_num > 1))) {
6130 		/* In this case, map_length has been set to the length of
6131 		   a single stripe; not the whole write */
6132 		if (rw & WRITE) {
6133 			ret = raid56_parity_write(root, bio, bbio, map_length);
6134 		} else {
6135 			ret = raid56_parity_recover(root, bio, bbio, map_length,
6136 						    mirror_num, 1);
6137 		}
6138 
6139 		btrfs_bio_counter_dec(root->fs_info);
6140 		return ret;
6141 	}
6142 
6143 	if (map_length < length) {
6144 		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6145 			logical, length, map_length);
6146 		BUG();
6147 	}
6148 
6149 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6150 		dev = bbio->stripes[dev_nr].dev;
6151 		if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6152 			bbio_error(bbio, first_bio, logical);
6153 			continue;
6154 		}
6155 
6156 		if (dev_nr < total_devs - 1) {
6157 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6158 			BUG_ON(!bio); /* -ENOMEM */
6159 		} else
6160 			bio = first_bio;
6161 
6162 		submit_stripe_bio(root, bbio, bio,
6163 				  bbio->stripes[dev_nr].physical, dev_nr, rw,
6164 				  async_submit);
6165 	}
6166 	btrfs_bio_counter_dec(root->fs_info);
6167 	return 0;
6168 }
6169 
6170 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6171 				       u8 *uuid, u8 *fsid)
6172 {
6173 	struct btrfs_device *device;
6174 	struct btrfs_fs_devices *cur_devices;
6175 
6176 	cur_devices = fs_info->fs_devices;
6177 	while (cur_devices) {
6178 		if (!fsid ||
6179 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6180 			device = __find_device(&cur_devices->devices,
6181 					       devid, uuid);
6182 			if (device)
6183 				return device;
6184 		}
6185 		cur_devices = cur_devices->seed;
6186 	}
6187 	return NULL;
6188 }
6189 
6190 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6191 					    struct btrfs_fs_devices *fs_devices,
6192 					    u64 devid, u8 *dev_uuid)
6193 {
6194 	struct btrfs_device *device;
6195 
6196 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6197 	if (IS_ERR(device))
6198 		return NULL;
6199 
6200 	list_add(&device->dev_list, &fs_devices->devices);
6201 	device->fs_devices = fs_devices;
6202 	fs_devices->num_devices++;
6203 
6204 	device->missing = 1;
6205 	fs_devices->missing_devices++;
6206 
6207 	return device;
6208 }
6209 
6210 /**
6211  * btrfs_alloc_device - allocate struct btrfs_device
6212  * @fs_info:	used only for generating a new devid, can be NULL if
6213  *		devid is provided (i.e. @devid != NULL).
6214  * @devid:	a pointer to devid for this device.  If NULL a new devid
6215  *		is generated.
6216  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6217  *		is generated.
6218  *
6219  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6220  * on error.  Returned struct is not linked onto any lists and can be
6221  * destroyed with kfree() right away.
6222  */
6223 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6224 					const u64 *devid,
6225 					const u8 *uuid)
6226 {
6227 	struct btrfs_device *dev;
6228 	u64 tmp;
6229 
6230 	if (WARN_ON(!devid && !fs_info))
6231 		return ERR_PTR(-EINVAL);
6232 
6233 	dev = __alloc_device();
6234 	if (IS_ERR(dev))
6235 		return dev;
6236 
6237 	if (devid)
6238 		tmp = *devid;
6239 	else {
6240 		int ret;
6241 
6242 		ret = find_next_devid(fs_info, &tmp);
6243 		if (ret) {
6244 			kfree(dev);
6245 			return ERR_PTR(ret);
6246 		}
6247 	}
6248 	dev->devid = tmp;
6249 
6250 	if (uuid)
6251 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6252 	else
6253 		generate_random_uuid(dev->uuid);
6254 
6255 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6256 			pending_bios_fn, NULL, NULL);
6257 
6258 	return dev;
6259 }
6260 
6261 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6262 			  struct extent_buffer *leaf,
6263 			  struct btrfs_chunk *chunk)
6264 {
6265 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6266 	struct map_lookup *map;
6267 	struct extent_map *em;
6268 	u64 logical;
6269 	u64 length;
6270 	u64 stripe_len;
6271 	u64 devid;
6272 	u8 uuid[BTRFS_UUID_SIZE];
6273 	int num_stripes;
6274 	int ret;
6275 	int i;
6276 
6277 	logical = key->offset;
6278 	length = btrfs_chunk_length(leaf, chunk);
6279 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6280 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6281 	/* Validation check */
6282 	if (!num_stripes) {
6283 		btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6284 			  num_stripes);
6285 		return -EIO;
6286 	}
6287 	if (!IS_ALIGNED(logical, root->sectorsize)) {
6288 		btrfs_err(root->fs_info,
6289 			  "invalid chunk logical %llu", logical);
6290 		return -EIO;
6291 	}
6292 	if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6293 		btrfs_err(root->fs_info,
6294 			"invalid chunk length %llu", length);
6295 		return -EIO;
6296 	}
6297 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6298 		btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6299 			  stripe_len);
6300 		return -EIO;
6301 	}
6302 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6303 	    btrfs_chunk_type(leaf, chunk)) {
6304 		btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6305 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6306 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6307 			  btrfs_chunk_type(leaf, chunk));
6308 		return -EIO;
6309 	}
6310 
6311 	read_lock(&map_tree->map_tree.lock);
6312 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6313 	read_unlock(&map_tree->map_tree.lock);
6314 
6315 	/* already mapped? */
6316 	if (em && em->start <= logical && em->start + em->len > logical) {
6317 		free_extent_map(em);
6318 		return 0;
6319 	} else if (em) {
6320 		free_extent_map(em);
6321 	}
6322 
6323 	em = alloc_extent_map();
6324 	if (!em)
6325 		return -ENOMEM;
6326 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6327 	if (!map) {
6328 		free_extent_map(em);
6329 		return -ENOMEM;
6330 	}
6331 
6332 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6333 	em->map_lookup = map;
6334 	em->start = logical;
6335 	em->len = length;
6336 	em->orig_start = 0;
6337 	em->block_start = 0;
6338 	em->block_len = em->len;
6339 
6340 	map->num_stripes = num_stripes;
6341 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6342 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6343 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6344 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6345 	map->type = btrfs_chunk_type(leaf, chunk);
6346 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6347 	for (i = 0; i < num_stripes; i++) {
6348 		map->stripes[i].physical =
6349 			btrfs_stripe_offset_nr(leaf, chunk, i);
6350 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6351 		read_extent_buffer(leaf, uuid, (unsigned long)
6352 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6353 				   BTRFS_UUID_SIZE);
6354 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6355 							uuid, NULL);
6356 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6357 			free_extent_map(em);
6358 			return -EIO;
6359 		}
6360 		if (!map->stripes[i].dev) {
6361 			map->stripes[i].dev =
6362 				add_missing_dev(root, root->fs_info->fs_devices,
6363 						devid, uuid);
6364 			if (!map->stripes[i].dev) {
6365 				free_extent_map(em);
6366 				return -EIO;
6367 			}
6368 			btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6369 						devid, uuid);
6370 		}
6371 		map->stripes[i].dev->in_fs_metadata = 1;
6372 	}
6373 
6374 	write_lock(&map_tree->map_tree.lock);
6375 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6376 	write_unlock(&map_tree->map_tree.lock);
6377 	BUG_ON(ret); /* Tree corruption */
6378 	free_extent_map(em);
6379 
6380 	return 0;
6381 }
6382 
6383 static void fill_device_from_item(struct extent_buffer *leaf,
6384 				 struct btrfs_dev_item *dev_item,
6385 				 struct btrfs_device *device)
6386 {
6387 	unsigned long ptr;
6388 
6389 	device->devid = btrfs_device_id(leaf, dev_item);
6390 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6391 	device->total_bytes = device->disk_total_bytes;
6392 	device->commit_total_bytes = device->disk_total_bytes;
6393 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6394 	device->commit_bytes_used = device->bytes_used;
6395 	device->type = btrfs_device_type(leaf, dev_item);
6396 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6397 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6398 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6399 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6400 	device->is_tgtdev_for_dev_replace = 0;
6401 
6402 	ptr = btrfs_device_uuid(dev_item);
6403 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6404 }
6405 
6406 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6407 						  u8 *fsid)
6408 {
6409 	struct btrfs_fs_devices *fs_devices;
6410 	int ret;
6411 
6412 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6413 
6414 	fs_devices = root->fs_info->fs_devices->seed;
6415 	while (fs_devices) {
6416 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6417 			return fs_devices;
6418 
6419 		fs_devices = fs_devices->seed;
6420 	}
6421 
6422 	fs_devices = find_fsid(fsid);
6423 	if (!fs_devices) {
6424 		if (!btrfs_test_opt(root, DEGRADED))
6425 			return ERR_PTR(-ENOENT);
6426 
6427 		fs_devices = alloc_fs_devices(fsid);
6428 		if (IS_ERR(fs_devices))
6429 			return fs_devices;
6430 
6431 		fs_devices->seeding = 1;
6432 		fs_devices->opened = 1;
6433 		return fs_devices;
6434 	}
6435 
6436 	fs_devices = clone_fs_devices(fs_devices);
6437 	if (IS_ERR(fs_devices))
6438 		return fs_devices;
6439 
6440 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6441 				   root->fs_info->bdev_holder);
6442 	if (ret) {
6443 		free_fs_devices(fs_devices);
6444 		fs_devices = ERR_PTR(ret);
6445 		goto out;
6446 	}
6447 
6448 	if (!fs_devices->seeding) {
6449 		__btrfs_close_devices(fs_devices);
6450 		free_fs_devices(fs_devices);
6451 		fs_devices = ERR_PTR(-EINVAL);
6452 		goto out;
6453 	}
6454 
6455 	fs_devices->seed = root->fs_info->fs_devices->seed;
6456 	root->fs_info->fs_devices->seed = fs_devices;
6457 out:
6458 	return fs_devices;
6459 }
6460 
6461 static int read_one_dev(struct btrfs_root *root,
6462 			struct extent_buffer *leaf,
6463 			struct btrfs_dev_item *dev_item)
6464 {
6465 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6466 	struct btrfs_device *device;
6467 	u64 devid;
6468 	int ret;
6469 	u8 fs_uuid[BTRFS_UUID_SIZE];
6470 	u8 dev_uuid[BTRFS_UUID_SIZE];
6471 
6472 	devid = btrfs_device_id(leaf, dev_item);
6473 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6474 			   BTRFS_UUID_SIZE);
6475 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6476 			   BTRFS_UUID_SIZE);
6477 
6478 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6479 		fs_devices = open_seed_devices(root, fs_uuid);
6480 		if (IS_ERR(fs_devices))
6481 			return PTR_ERR(fs_devices);
6482 	}
6483 
6484 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6485 	if (!device) {
6486 		if (!btrfs_test_opt(root, DEGRADED))
6487 			return -EIO;
6488 
6489 		device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6490 		if (!device)
6491 			return -ENOMEM;
6492 		btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6493 				devid, dev_uuid);
6494 	} else {
6495 		if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6496 			return -EIO;
6497 
6498 		if(!device->bdev && !device->missing) {
6499 			/*
6500 			 * this happens when a device that was properly setup
6501 			 * in the device info lists suddenly goes bad.
6502 			 * device->bdev is NULL, and so we have to set
6503 			 * device->missing to one here
6504 			 */
6505 			device->fs_devices->missing_devices++;
6506 			device->missing = 1;
6507 		}
6508 
6509 		/* Move the device to its own fs_devices */
6510 		if (device->fs_devices != fs_devices) {
6511 			ASSERT(device->missing);
6512 
6513 			list_move(&device->dev_list, &fs_devices->devices);
6514 			device->fs_devices->num_devices--;
6515 			fs_devices->num_devices++;
6516 
6517 			device->fs_devices->missing_devices--;
6518 			fs_devices->missing_devices++;
6519 
6520 			device->fs_devices = fs_devices;
6521 		}
6522 	}
6523 
6524 	if (device->fs_devices != root->fs_info->fs_devices) {
6525 		BUG_ON(device->writeable);
6526 		if (device->generation !=
6527 		    btrfs_device_generation(leaf, dev_item))
6528 			return -EINVAL;
6529 	}
6530 
6531 	fill_device_from_item(leaf, dev_item, device);
6532 	device->in_fs_metadata = 1;
6533 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6534 		device->fs_devices->total_rw_bytes += device->total_bytes;
6535 		spin_lock(&root->fs_info->free_chunk_lock);
6536 		root->fs_info->free_chunk_space += device->total_bytes -
6537 			device->bytes_used;
6538 		spin_unlock(&root->fs_info->free_chunk_lock);
6539 	}
6540 	ret = 0;
6541 	return ret;
6542 }
6543 
6544 int btrfs_read_sys_array(struct btrfs_root *root)
6545 {
6546 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6547 	struct extent_buffer *sb;
6548 	struct btrfs_disk_key *disk_key;
6549 	struct btrfs_chunk *chunk;
6550 	u8 *array_ptr;
6551 	unsigned long sb_array_offset;
6552 	int ret = 0;
6553 	u32 num_stripes;
6554 	u32 array_size;
6555 	u32 len = 0;
6556 	u32 cur_offset;
6557 	struct btrfs_key key;
6558 
6559 	ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6560 	/*
6561 	 * This will create extent buffer of nodesize, superblock size is
6562 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6563 	 * overallocate but we can keep it as-is, only the first page is used.
6564 	 */
6565 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6566 	if (!sb)
6567 		return -ENOMEM;
6568 	set_extent_buffer_uptodate(sb);
6569 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6570 	/*
6571 	 * The sb extent buffer is artificial and just used to read the system array.
6572 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6573 	 * pages up-to-date when the page is larger: extent does not cover the
6574 	 * whole page and consequently check_page_uptodate does not find all
6575 	 * the page's extents up-to-date (the hole beyond sb),
6576 	 * write_extent_buffer then triggers a WARN_ON.
6577 	 *
6578 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6579 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6580 	 * to silence the warning eg. on PowerPC 64.
6581 	 */
6582 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6583 		SetPageUptodate(sb->pages[0]);
6584 
6585 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6586 	array_size = btrfs_super_sys_array_size(super_copy);
6587 
6588 	array_ptr = super_copy->sys_chunk_array;
6589 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6590 	cur_offset = 0;
6591 
6592 	while (cur_offset < array_size) {
6593 		disk_key = (struct btrfs_disk_key *)array_ptr;
6594 		len = sizeof(*disk_key);
6595 		if (cur_offset + len > array_size)
6596 			goto out_short_read;
6597 
6598 		btrfs_disk_key_to_cpu(&key, disk_key);
6599 
6600 		array_ptr += len;
6601 		sb_array_offset += len;
6602 		cur_offset += len;
6603 
6604 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6605 			chunk = (struct btrfs_chunk *)sb_array_offset;
6606 			/*
6607 			 * At least one btrfs_chunk with one stripe must be
6608 			 * present, exact stripe count check comes afterwards
6609 			 */
6610 			len = btrfs_chunk_item_size(1);
6611 			if (cur_offset + len > array_size)
6612 				goto out_short_read;
6613 
6614 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6615 			if (!num_stripes) {
6616 				printk(KERN_ERR
6617 	    "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6618 					num_stripes, cur_offset);
6619 				ret = -EIO;
6620 				break;
6621 			}
6622 
6623 			len = btrfs_chunk_item_size(num_stripes);
6624 			if (cur_offset + len > array_size)
6625 				goto out_short_read;
6626 
6627 			ret = read_one_chunk(root, &key, sb, chunk);
6628 			if (ret)
6629 				break;
6630 		} else {
6631 			printk(KERN_ERR
6632 		"BTRFS: unexpected item type %u in sys_array at offset %u\n",
6633 				(u32)key.type, cur_offset);
6634 			ret = -EIO;
6635 			break;
6636 		}
6637 		array_ptr += len;
6638 		sb_array_offset += len;
6639 		cur_offset += len;
6640 	}
6641 	free_extent_buffer_stale(sb);
6642 	return ret;
6643 
6644 out_short_read:
6645 	printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6646 			len, cur_offset);
6647 	free_extent_buffer_stale(sb);
6648 	return -EIO;
6649 }
6650 
6651 int btrfs_read_chunk_tree(struct btrfs_root *root)
6652 {
6653 	struct btrfs_path *path;
6654 	struct extent_buffer *leaf;
6655 	struct btrfs_key key;
6656 	struct btrfs_key found_key;
6657 	int ret;
6658 	int slot;
6659 
6660 	root = root->fs_info->chunk_root;
6661 
6662 	path = btrfs_alloc_path();
6663 	if (!path)
6664 		return -ENOMEM;
6665 
6666 	mutex_lock(&uuid_mutex);
6667 	lock_chunks(root);
6668 
6669 	/*
6670 	 * Read all device items, and then all the chunk items. All
6671 	 * device items are found before any chunk item (their object id
6672 	 * is smaller than the lowest possible object id for a chunk
6673 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6674 	 */
6675 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6676 	key.offset = 0;
6677 	key.type = 0;
6678 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6679 	if (ret < 0)
6680 		goto error;
6681 	while (1) {
6682 		leaf = path->nodes[0];
6683 		slot = path->slots[0];
6684 		if (slot >= btrfs_header_nritems(leaf)) {
6685 			ret = btrfs_next_leaf(root, path);
6686 			if (ret == 0)
6687 				continue;
6688 			if (ret < 0)
6689 				goto error;
6690 			break;
6691 		}
6692 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6693 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6694 			struct btrfs_dev_item *dev_item;
6695 			dev_item = btrfs_item_ptr(leaf, slot,
6696 						  struct btrfs_dev_item);
6697 			ret = read_one_dev(root, leaf, dev_item);
6698 			if (ret)
6699 				goto error;
6700 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6701 			struct btrfs_chunk *chunk;
6702 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6703 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6704 			if (ret)
6705 				goto error;
6706 		}
6707 		path->slots[0]++;
6708 	}
6709 	ret = 0;
6710 error:
6711 	unlock_chunks(root);
6712 	mutex_unlock(&uuid_mutex);
6713 
6714 	btrfs_free_path(path);
6715 	return ret;
6716 }
6717 
6718 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6719 {
6720 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6721 	struct btrfs_device *device;
6722 
6723 	while (fs_devices) {
6724 		mutex_lock(&fs_devices->device_list_mutex);
6725 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6726 			device->dev_root = fs_info->dev_root;
6727 		mutex_unlock(&fs_devices->device_list_mutex);
6728 
6729 		fs_devices = fs_devices->seed;
6730 	}
6731 }
6732 
6733 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6734 {
6735 	int i;
6736 
6737 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6738 		btrfs_dev_stat_reset(dev, i);
6739 }
6740 
6741 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6742 {
6743 	struct btrfs_key key;
6744 	struct btrfs_key found_key;
6745 	struct btrfs_root *dev_root = fs_info->dev_root;
6746 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6747 	struct extent_buffer *eb;
6748 	int slot;
6749 	int ret = 0;
6750 	struct btrfs_device *device;
6751 	struct btrfs_path *path = NULL;
6752 	int i;
6753 
6754 	path = btrfs_alloc_path();
6755 	if (!path) {
6756 		ret = -ENOMEM;
6757 		goto out;
6758 	}
6759 
6760 	mutex_lock(&fs_devices->device_list_mutex);
6761 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6762 		int item_size;
6763 		struct btrfs_dev_stats_item *ptr;
6764 
6765 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
6766 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
6767 		key.offset = device->devid;
6768 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6769 		if (ret) {
6770 			__btrfs_reset_dev_stats(device);
6771 			device->dev_stats_valid = 1;
6772 			btrfs_release_path(path);
6773 			continue;
6774 		}
6775 		slot = path->slots[0];
6776 		eb = path->nodes[0];
6777 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6778 		item_size = btrfs_item_size_nr(eb, slot);
6779 
6780 		ptr = btrfs_item_ptr(eb, slot,
6781 				     struct btrfs_dev_stats_item);
6782 
6783 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6784 			if (item_size >= (1 + i) * sizeof(__le64))
6785 				btrfs_dev_stat_set(device, i,
6786 					btrfs_dev_stats_value(eb, ptr, i));
6787 			else
6788 				btrfs_dev_stat_reset(device, i);
6789 		}
6790 
6791 		device->dev_stats_valid = 1;
6792 		btrfs_dev_stat_print_on_load(device);
6793 		btrfs_release_path(path);
6794 	}
6795 	mutex_unlock(&fs_devices->device_list_mutex);
6796 
6797 out:
6798 	btrfs_free_path(path);
6799 	return ret < 0 ? ret : 0;
6800 }
6801 
6802 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6803 				struct btrfs_root *dev_root,
6804 				struct btrfs_device *device)
6805 {
6806 	struct btrfs_path *path;
6807 	struct btrfs_key key;
6808 	struct extent_buffer *eb;
6809 	struct btrfs_dev_stats_item *ptr;
6810 	int ret;
6811 	int i;
6812 
6813 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
6814 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
6815 	key.offset = device->devid;
6816 
6817 	path = btrfs_alloc_path();
6818 	BUG_ON(!path);
6819 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6820 	if (ret < 0) {
6821 		btrfs_warn_in_rcu(dev_root->fs_info,
6822 			"error %d while searching for dev_stats item for device %s",
6823 			      ret, rcu_str_deref(device->name));
6824 		goto out;
6825 	}
6826 
6827 	if (ret == 0 &&
6828 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6829 		/* need to delete old one and insert a new one */
6830 		ret = btrfs_del_item(trans, dev_root, path);
6831 		if (ret != 0) {
6832 			btrfs_warn_in_rcu(dev_root->fs_info,
6833 				"delete too small dev_stats item for device %s failed %d",
6834 				      rcu_str_deref(device->name), ret);
6835 			goto out;
6836 		}
6837 		ret = 1;
6838 	}
6839 
6840 	if (ret == 1) {
6841 		/* need to insert a new item */
6842 		btrfs_release_path(path);
6843 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6844 					      &key, sizeof(*ptr));
6845 		if (ret < 0) {
6846 			btrfs_warn_in_rcu(dev_root->fs_info,
6847 				"insert dev_stats item for device %s failed %d",
6848 				rcu_str_deref(device->name), ret);
6849 			goto out;
6850 		}
6851 	}
6852 
6853 	eb = path->nodes[0];
6854 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6855 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6856 		btrfs_set_dev_stats_value(eb, ptr, i,
6857 					  btrfs_dev_stat_read(device, i));
6858 	btrfs_mark_buffer_dirty(eb);
6859 
6860 out:
6861 	btrfs_free_path(path);
6862 	return ret;
6863 }
6864 
6865 /*
6866  * called from commit_transaction. Writes all changed device stats to disk.
6867  */
6868 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6869 			struct btrfs_fs_info *fs_info)
6870 {
6871 	struct btrfs_root *dev_root = fs_info->dev_root;
6872 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6873 	struct btrfs_device *device;
6874 	int stats_cnt;
6875 	int ret = 0;
6876 
6877 	mutex_lock(&fs_devices->device_list_mutex);
6878 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6879 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6880 			continue;
6881 
6882 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
6883 		ret = update_dev_stat_item(trans, dev_root, device);
6884 		if (!ret)
6885 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6886 	}
6887 	mutex_unlock(&fs_devices->device_list_mutex);
6888 
6889 	return ret;
6890 }
6891 
6892 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6893 {
6894 	btrfs_dev_stat_inc(dev, index);
6895 	btrfs_dev_stat_print_on_error(dev);
6896 }
6897 
6898 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6899 {
6900 	if (!dev->dev_stats_valid)
6901 		return;
6902 	btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6903 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6904 			   rcu_str_deref(dev->name),
6905 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6906 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6907 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6908 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6909 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6910 }
6911 
6912 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6913 {
6914 	int i;
6915 
6916 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6917 		if (btrfs_dev_stat_read(dev, i) != 0)
6918 			break;
6919 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
6920 		return; /* all values == 0, suppress message */
6921 
6922 	btrfs_info_in_rcu(dev->dev_root->fs_info,
6923 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6924 	       rcu_str_deref(dev->name),
6925 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6926 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6927 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6928 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6929 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6930 }
6931 
6932 int btrfs_get_dev_stats(struct btrfs_root *root,
6933 			struct btrfs_ioctl_get_dev_stats *stats)
6934 {
6935 	struct btrfs_device *dev;
6936 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6937 	int i;
6938 
6939 	mutex_lock(&fs_devices->device_list_mutex);
6940 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6941 	mutex_unlock(&fs_devices->device_list_mutex);
6942 
6943 	if (!dev) {
6944 		btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6945 		return -ENODEV;
6946 	} else if (!dev->dev_stats_valid) {
6947 		btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6948 		return -ENODEV;
6949 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6950 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6951 			if (stats->nr_items > i)
6952 				stats->values[i] =
6953 					btrfs_dev_stat_read_and_reset(dev, i);
6954 			else
6955 				btrfs_dev_stat_reset(dev, i);
6956 		}
6957 	} else {
6958 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6959 			if (stats->nr_items > i)
6960 				stats->values[i] = btrfs_dev_stat_read(dev, i);
6961 	}
6962 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6963 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6964 	return 0;
6965 }
6966 
6967 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
6968 {
6969 	struct buffer_head *bh;
6970 	struct btrfs_super_block *disk_super;
6971 	int copy_num;
6972 
6973 	if (!bdev)
6974 		return;
6975 
6976 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6977 		copy_num++) {
6978 
6979 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6980 			continue;
6981 
6982 		disk_super = (struct btrfs_super_block *)bh->b_data;
6983 
6984 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6985 		set_buffer_dirty(bh);
6986 		sync_dirty_buffer(bh);
6987 		brelse(bh);
6988 	}
6989 
6990 	/* Notify udev that device has changed */
6991 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6992 
6993 	/* Update ctime/mtime for device path for libblkid */
6994 	update_dev_time(device_path);
6995 }
6996 
6997 /*
6998  * Update the size of all devices, which is used for writing out the
6999  * super blocks.
7000  */
7001 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7002 {
7003 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7004 	struct btrfs_device *curr, *next;
7005 
7006 	if (list_empty(&fs_devices->resized_devices))
7007 		return;
7008 
7009 	mutex_lock(&fs_devices->device_list_mutex);
7010 	lock_chunks(fs_info->dev_root);
7011 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7012 				 resized_list) {
7013 		list_del_init(&curr->resized_list);
7014 		curr->commit_total_bytes = curr->disk_total_bytes;
7015 	}
7016 	unlock_chunks(fs_info->dev_root);
7017 	mutex_unlock(&fs_devices->device_list_mutex);
7018 }
7019 
7020 /* Must be invoked during the transaction commit */
7021 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7022 					struct btrfs_transaction *transaction)
7023 {
7024 	struct extent_map *em;
7025 	struct map_lookup *map;
7026 	struct btrfs_device *dev;
7027 	int i;
7028 
7029 	if (list_empty(&transaction->pending_chunks))
7030 		return;
7031 
7032 	/* In order to kick the device replace finish process */
7033 	lock_chunks(root);
7034 	list_for_each_entry(em, &transaction->pending_chunks, list) {
7035 		map = em->map_lookup;
7036 
7037 		for (i = 0; i < map->num_stripes; i++) {
7038 			dev = map->stripes[i].dev;
7039 			dev->commit_bytes_used = dev->bytes_used;
7040 		}
7041 	}
7042 	unlock_chunks(root);
7043 }
7044 
7045 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7046 {
7047 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7048 	while (fs_devices) {
7049 		fs_devices->fs_info = fs_info;
7050 		fs_devices = fs_devices->seed;
7051 	}
7052 }
7053 
7054 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7055 {
7056 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7057 	while (fs_devices) {
7058 		fs_devices->fs_info = NULL;
7059 		fs_devices = fs_devices->seed;
7060 	}
7061 }
7062 
7063 static void btrfs_close_one_device(struct btrfs_device *device)
7064 {
7065 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
7066 	struct btrfs_device *new_device;
7067 	struct rcu_string *name;
7068 
7069 	if (device->bdev)
7070 		fs_devices->open_devices--;
7071 
7072 	if (device->writeable &&
7073 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
7074 		list_del_init(&device->dev_alloc_list);
7075 		fs_devices->rw_devices--;
7076 	}
7077 
7078 	if (device->missing)
7079 		fs_devices->missing_devices--;
7080 
7081 	new_device = btrfs_alloc_device(NULL, &device->devid,
7082 					device->uuid);
7083 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
7084 
7085 	/* Safe because we are under uuid_mutex */
7086 	if (device->name) {
7087 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
7088 		BUG_ON(!name); /* -ENOMEM */
7089 		rcu_assign_pointer(new_device->name, name);
7090 	}
7091 
7092 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
7093 	new_device->fs_devices = device->fs_devices;
7094 
7095 	call_rcu(&device->rcu, free_device);
7096 }
7097