xref: /openbmc/linux/fs/btrfs/volumes.c (revision 0d23b34c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "extent_map.h"
18 #include "disk-io.h"
19 #include "transaction.h"
20 #include "print-tree.h"
21 #include "volumes.h"
22 #include "raid56.h"
23 #include "rcu-string.h"
24 #include "dev-replace.h"
25 #include "sysfs.h"
26 #include "tree-checker.h"
27 #include "space-info.h"
28 #include "block-group.h"
29 #include "discard.h"
30 #include "zoned.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 #include "super.h"
38 
39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
40 					 BTRFS_BLOCK_GROUP_RAID10 | \
41 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
42 
43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 	[BTRFS_RAID_RAID10] = {
45 		.sub_stripes	= 2,
46 		.dev_stripes	= 1,
47 		.devs_max	= 0,	/* 0 == as many as possible */
48 		.devs_min	= 2,
49 		.tolerated_failures = 1,
50 		.devs_increment	= 2,
51 		.ncopies	= 2,
52 		.nparity        = 0,
53 		.raid_name	= "raid10",
54 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
55 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 	},
57 	[BTRFS_RAID_RAID1] = {
58 		.sub_stripes	= 1,
59 		.dev_stripes	= 1,
60 		.devs_max	= 2,
61 		.devs_min	= 2,
62 		.tolerated_failures = 1,
63 		.devs_increment	= 2,
64 		.ncopies	= 2,
65 		.nparity        = 0,
66 		.raid_name	= "raid1",
67 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
68 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 	},
70 	[BTRFS_RAID_RAID1C3] = {
71 		.sub_stripes	= 1,
72 		.dev_stripes	= 1,
73 		.devs_max	= 3,
74 		.devs_min	= 3,
75 		.tolerated_failures = 2,
76 		.devs_increment	= 3,
77 		.ncopies	= 3,
78 		.nparity        = 0,
79 		.raid_name	= "raid1c3",
80 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
81 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 	},
83 	[BTRFS_RAID_RAID1C4] = {
84 		.sub_stripes	= 1,
85 		.dev_stripes	= 1,
86 		.devs_max	= 4,
87 		.devs_min	= 4,
88 		.tolerated_failures = 3,
89 		.devs_increment	= 4,
90 		.ncopies	= 4,
91 		.nparity        = 0,
92 		.raid_name	= "raid1c4",
93 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
94 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 	},
96 	[BTRFS_RAID_DUP] = {
97 		.sub_stripes	= 1,
98 		.dev_stripes	= 2,
99 		.devs_max	= 1,
100 		.devs_min	= 1,
101 		.tolerated_failures = 0,
102 		.devs_increment	= 1,
103 		.ncopies	= 2,
104 		.nparity        = 0,
105 		.raid_name	= "dup",
106 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
107 		.mindev_error	= 0,
108 	},
109 	[BTRFS_RAID_RAID0] = {
110 		.sub_stripes	= 1,
111 		.dev_stripes	= 1,
112 		.devs_max	= 0,
113 		.devs_min	= 1,
114 		.tolerated_failures = 0,
115 		.devs_increment	= 1,
116 		.ncopies	= 1,
117 		.nparity        = 0,
118 		.raid_name	= "raid0",
119 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
120 		.mindev_error	= 0,
121 	},
122 	[BTRFS_RAID_SINGLE] = {
123 		.sub_stripes	= 1,
124 		.dev_stripes	= 1,
125 		.devs_max	= 1,
126 		.devs_min	= 1,
127 		.tolerated_failures = 0,
128 		.devs_increment	= 1,
129 		.ncopies	= 1,
130 		.nparity        = 0,
131 		.raid_name	= "single",
132 		.bg_flag	= 0,
133 		.mindev_error	= 0,
134 	},
135 	[BTRFS_RAID_RAID5] = {
136 		.sub_stripes	= 1,
137 		.dev_stripes	= 1,
138 		.devs_max	= 0,
139 		.devs_min	= 2,
140 		.tolerated_failures = 1,
141 		.devs_increment	= 1,
142 		.ncopies	= 1,
143 		.nparity        = 1,
144 		.raid_name	= "raid5",
145 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
146 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 	},
148 	[BTRFS_RAID_RAID6] = {
149 		.sub_stripes	= 1,
150 		.dev_stripes	= 1,
151 		.devs_max	= 0,
152 		.devs_min	= 3,
153 		.tolerated_failures = 2,
154 		.devs_increment	= 1,
155 		.ncopies	= 1,
156 		.nparity        = 2,
157 		.raid_name	= "raid6",
158 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
159 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 	},
161 };
162 
163 /*
164  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165  * can be used as index to access btrfs_raid_array[].
166  */
167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168 {
169 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170 
171 	if (!profile)
172 		return BTRFS_RAID_SINGLE;
173 
174 	return BTRFS_BG_FLAG_TO_INDEX(profile);
175 }
176 
177 const char *btrfs_bg_type_to_raid_name(u64 flags)
178 {
179 	const int index = btrfs_bg_flags_to_raid_index(flags);
180 
181 	if (index >= BTRFS_NR_RAID_TYPES)
182 		return NULL;
183 
184 	return btrfs_raid_array[index].raid_name;
185 }
186 
187 int btrfs_nr_parity_stripes(u64 type)
188 {
189 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190 
191 	return btrfs_raid_array[index].nparity;
192 }
193 
194 /*
195  * Fill @buf with textual description of @bg_flags, no more than @size_buf
196  * bytes including terminating null byte.
197  */
198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199 {
200 	int i;
201 	int ret;
202 	char *bp = buf;
203 	u64 flags = bg_flags;
204 	u32 size_bp = size_buf;
205 
206 	if (!flags) {
207 		strcpy(bp, "NONE");
208 		return;
209 	}
210 
211 #define DESCRIBE_FLAG(flag, desc)						\
212 	do {								\
213 		if (flags & (flag)) {					\
214 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
215 			if (ret < 0 || ret >= size_bp)			\
216 				goto out_overflow;			\
217 			size_bp -= ret;					\
218 			bp += ret;					\
219 			flags &= ~(flag);				\
220 		}							\
221 	} while (0)
222 
223 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226 
227 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 			      btrfs_raid_array[i].raid_name);
231 #undef DESCRIBE_FLAG
232 
233 	if (flags) {
234 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 		size_bp -= ret;
236 	}
237 
238 	if (size_bp < size_buf)
239 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240 
241 	/*
242 	 * The text is trimmed, it's up to the caller to provide sufficiently
243 	 * large buffer
244 	 */
245 out_overflow:;
246 }
247 
248 static int init_first_rw_device(struct btrfs_trans_handle *trans);
249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251 
252 /*
253  * Device locking
254  * ==============
255  *
256  * There are several mutexes that protect manipulation of devices and low-level
257  * structures like chunks but not block groups, extents or files
258  *
259  * uuid_mutex (global lock)
260  * ------------------------
261  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263  * device) or requested by the device= mount option
264  *
265  * the mutex can be very coarse and can cover long-running operations
266  *
267  * protects: updates to fs_devices counters like missing devices, rw devices,
268  * seeding, structure cloning, opening/closing devices at mount/umount time
269  *
270  * global::fs_devs - add, remove, updates to the global list
271  *
272  * does not protect: manipulation of the fs_devices::devices list in general
273  * but in mount context it could be used to exclude list modifications by eg.
274  * scan ioctl
275  *
276  * btrfs_device::name - renames (write side), read is RCU
277  *
278  * fs_devices::device_list_mutex (per-fs, with RCU)
279  * ------------------------------------------------
280  * protects updates to fs_devices::devices, ie. adding and deleting
281  *
282  * simple list traversal with read-only actions can be done with RCU protection
283  *
284  * may be used to exclude some operations from running concurrently without any
285  * modifications to the list (see write_all_supers)
286  *
287  * Is not required at mount and close times, because our device list is
288  * protected by the uuid_mutex at that point.
289  *
290  * balance_mutex
291  * -------------
292  * protects balance structures (status, state) and context accessed from
293  * several places (internally, ioctl)
294  *
295  * chunk_mutex
296  * -----------
297  * protects chunks, adding or removing during allocation, trim or when a new
298  * device is added/removed. Additionally it also protects post_commit_list of
299  * individual devices, since they can be added to the transaction's
300  * post_commit_list only with chunk_mutex held.
301  *
302  * cleaner_mutex
303  * -------------
304  * a big lock that is held by the cleaner thread and prevents running subvolume
305  * cleaning together with relocation or delayed iputs
306  *
307  *
308  * Lock nesting
309  * ============
310  *
311  * uuid_mutex
312  *   device_list_mutex
313  *     chunk_mutex
314  *   balance_mutex
315  *
316  *
317  * Exclusive operations
318  * ====================
319  *
320  * Maintains the exclusivity of the following operations that apply to the
321  * whole filesystem and cannot run in parallel.
322  *
323  * - Balance (*)
324  * - Device add
325  * - Device remove
326  * - Device replace (*)
327  * - Resize
328  *
329  * The device operations (as above) can be in one of the following states:
330  *
331  * - Running state
332  * - Paused state
333  * - Completed state
334  *
335  * Only device operations marked with (*) can go into the Paused state for the
336  * following reasons:
337  *
338  * - ioctl (only Balance can be Paused through ioctl)
339  * - filesystem remounted as read-only
340  * - filesystem unmounted and mounted as read-only
341  * - system power-cycle and filesystem mounted as read-only
342  * - filesystem or device errors leading to forced read-only
343  *
344  * The status of exclusive operation is set and cleared atomically.
345  * During the course of Paused state, fs_info::exclusive_operation remains set.
346  * A device operation in Paused or Running state can be canceled or resumed
347  * either by ioctl (Balance only) or when remounted as read-write.
348  * The exclusive status is cleared when the device operation is canceled or
349  * completed.
350  */
351 
352 DEFINE_MUTEX(uuid_mutex);
353 static LIST_HEAD(fs_uuids);
354 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
355 {
356 	return &fs_uuids;
357 }
358 
359 /*
360  * alloc_fs_devices - allocate struct btrfs_fs_devices
361  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
362  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
363  *
364  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365  * The returned struct is not linked onto any lists and can be destroyed with
366  * kfree() right away.
367  */
368 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 						 const u8 *metadata_fsid)
370 {
371 	struct btrfs_fs_devices *fs_devs;
372 
373 	ASSERT(fsid || !metadata_fsid);
374 
375 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
376 	if (!fs_devs)
377 		return ERR_PTR(-ENOMEM);
378 
379 	mutex_init(&fs_devs->device_list_mutex);
380 
381 	INIT_LIST_HEAD(&fs_devs->devices);
382 	INIT_LIST_HEAD(&fs_devs->alloc_list);
383 	INIT_LIST_HEAD(&fs_devs->fs_list);
384 	INIT_LIST_HEAD(&fs_devs->seed_list);
385 
386 	if (fsid) {
387 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
388 		memcpy(fs_devs->metadata_uuid,
389 		       metadata_fsid ?: fsid, BTRFS_FSID_SIZE);
390 	}
391 
392 	return fs_devs;
393 }
394 
395 static void btrfs_free_device(struct btrfs_device *device)
396 {
397 	WARN_ON(!list_empty(&device->post_commit_list));
398 	rcu_string_free(device->name);
399 	extent_io_tree_release(&device->alloc_state);
400 	btrfs_destroy_dev_zone_info(device);
401 	kfree(device);
402 }
403 
404 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
405 {
406 	struct btrfs_device *device;
407 
408 	WARN_ON(fs_devices->opened);
409 	while (!list_empty(&fs_devices->devices)) {
410 		device = list_entry(fs_devices->devices.next,
411 				    struct btrfs_device, dev_list);
412 		list_del(&device->dev_list);
413 		btrfs_free_device(device);
414 	}
415 	kfree(fs_devices);
416 }
417 
418 void __exit btrfs_cleanup_fs_uuids(void)
419 {
420 	struct btrfs_fs_devices *fs_devices;
421 
422 	while (!list_empty(&fs_uuids)) {
423 		fs_devices = list_entry(fs_uuids.next,
424 					struct btrfs_fs_devices, fs_list);
425 		list_del(&fs_devices->fs_list);
426 		free_fs_devices(fs_devices);
427 	}
428 }
429 
430 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
431 				  const u8 *fsid, const u8 *metadata_fsid)
432 {
433 	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
434 		return false;
435 
436 	if (!metadata_fsid)
437 		return true;
438 
439 	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
440 		return false;
441 
442 	return true;
443 }
444 
445 static noinline struct btrfs_fs_devices *find_fsid(
446 		const u8 *fsid, const u8 *metadata_fsid)
447 {
448 	struct btrfs_fs_devices *fs_devices;
449 
450 	ASSERT(fsid);
451 
452 	/* Handle non-split brain cases */
453 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
455 			return fs_devices;
456 	}
457 	return NULL;
458 }
459 
460 /*
461  * First check if the metadata_uuid is different from the fsid in the given
462  * fs_devices. Then check if the given fsid is the same as the metadata_uuid
463  * in the fs_devices. If it is, return true; otherwise, return false.
464  */
465 static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices,
466 				      const u8 *fsid)
467 {
468 	return memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
469 		      BTRFS_FSID_SIZE) != 0 &&
470 	       memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0;
471 }
472 
473 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
474 				struct btrfs_super_block *disk_super)
475 {
476 
477 	struct btrfs_fs_devices *fs_devices;
478 
479 	/*
480 	 * Handle scanned device having completed its fsid change but
481 	 * belonging to a fs_devices that was created by first scanning
482 	 * a device which didn't have its fsid/metadata_uuid changed
483 	 * at all and the CHANGING_FSID_V2 flag set.
484 	 */
485 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
486 		if (!fs_devices->fsid_change)
487 			continue;
488 
489 		if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid,
490 					  fs_devices->fsid))
491 			return fs_devices;
492 	}
493 
494 	/*
495 	 * Handle scanned device having completed its fsid change but
496 	 * belonging to a fs_devices that was created by a device that
497 	 * has an outdated pair of fsid/metadata_uuid and
498 	 * CHANGING_FSID_V2 flag set.
499 	 */
500 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
501 		if (!fs_devices->fsid_change)
502 			continue;
503 
504 		if (check_fsid_changed(fs_devices, disk_super->metadata_uuid))
505 			return fs_devices;
506 	}
507 
508 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
509 }
510 
511 
512 static int
513 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
514 		      int flush, struct block_device **bdev,
515 		      struct btrfs_super_block **disk_super)
516 {
517 	int ret;
518 
519 	*bdev = blkdev_get_by_path(device_path, flags, holder, NULL);
520 
521 	if (IS_ERR(*bdev)) {
522 		ret = PTR_ERR(*bdev);
523 		goto error;
524 	}
525 
526 	if (flush)
527 		sync_blockdev(*bdev);
528 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
529 	if (ret) {
530 		blkdev_put(*bdev, holder);
531 		goto error;
532 	}
533 	invalidate_bdev(*bdev);
534 	*disk_super = btrfs_read_dev_super(*bdev);
535 	if (IS_ERR(*disk_super)) {
536 		ret = PTR_ERR(*disk_super);
537 		blkdev_put(*bdev, holder);
538 		goto error;
539 	}
540 
541 	return 0;
542 
543 error:
544 	*bdev = NULL;
545 	return ret;
546 }
547 
548 /*
549  *  Search and remove all stale devices (which are not mounted).  When both
550  *  inputs are NULL, it will search and release all stale devices.
551  *
552  *  @devt:         Optional. When provided will it release all unmounted devices
553  *                 matching this devt only.
554  *  @skip_device:  Optional. Will skip this device when searching for the stale
555  *                 devices.
556  *
557  *  Return:	0 for success or if @devt is 0.
558  *		-EBUSY if @devt is a mounted device.
559  *		-ENOENT if @devt does not match any device in the list.
560  */
561 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
562 {
563 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
564 	struct btrfs_device *device, *tmp_device;
565 	int ret = 0;
566 
567 	lockdep_assert_held(&uuid_mutex);
568 
569 	if (devt)
570 		ret = -ENOENT;
571 
572 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
573 
574 		mutex_lock(&fs_devices->device_list_mutex);
575 		list_for_each_entry_safe(device, tmp_device,
576 					 &fs_devices->devices, dev_list) {
577 			if (skip_device && skip_device == device)
578 				continue;
579 			if (devt && devt != device->devt)
580 				continue;
581 			if (fs_devices->opened) {
582 				/* for an already deleted device return 0 */
583 				if (devt && ret != 0)
584 					ret = -EBUSY;
585 				break;
586 			}
587 
588 			/* delete the stale device */
589 			fs_devices->num_devices--;
590 			list_del(&device->dev_list);
591 			btrfs_free_device(device);
592 
593 			ret = 0;
594 		}
595 		mutex_unlock(&fs_devices->device_list_mutex);
596 
597 		if (fs_devices->num_devices == 0) {
598 			btrfs_sysfs_remove_fsid(fs_devices);
599 			list_del(&fs_devices->fs_list);
600 			free_fs_devices(fs_devices);
601 		}
602 	}
603 
604 	return ret;
605 }
606 
607 /*
608  * This is only used on mount, and we are protected from competing things
609  * messing with our fs_devices by the uuid_mutex, thus we do not need the
610  * fs_devices->device_list_mutex here.
611  */
612 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
613 			struct btrfs_device *device, blk_mode_t flags,
614 			void *holder)
615 {
616 	struct block_device *bdev;
617 	struct btrfs_super_block *disk_super;
618 	u64 devid;
619 	int ret;
620 
621 	if (device->bdev)
622 		return -EINVAL;
623 	if (!device->name)
624 		return -EINVAL;
625 
626 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
627 				    &bdev, &disk_super);
628 	if (ret)
629 		return ret;
630 
631 	devid = btrfs_stack_device_id(&disk_super->dev_item);
632 	if (devid != device->devid)
633 		goto error_free_page;
634 
635 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
636 		goto error_free_page;
637 
638 	device->generation = btrfs_super_generation(disk_super);
639 
640 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
641 		if (btrfs_super_incompat_flags(disk_super) &
642 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
643 			pr_err(
644 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
645 			goto error_free_page;
646 		}
647 
648 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
649 		fs_devices->seeding = true;
650 	} else {
651 		if (bdev_read_only(bdev))
652 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653 		else
654 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
655 	}
656 
657 	if (!bdev_nonrot(bdev))
658 		fs_devices->rotating = true;
659 
660 	if (bdev_max_discard_sectors(bdev))
661 		fs_devices->discardable = true;
662 
663 	device->bdev = bdev;
664 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
665 	device->holder = holder;
666 
667 	fs_devices->open_devices++;
668 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
669 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
670 		fs_devices->rw_devices++;
671 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
672 	}
673 	btrfs_release_disk_super(disk_super);
674 
675 	return 0;
676 
677 error_free_page:
678 	btrfs_release_disk_super(disk_super);
679 	blkdev_put(bdev, holder);
680 
681 	return -EINVAL;
682 }
683 
684 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
685 {
686 	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
687 				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
688 
689 	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
690 }
691 
692 /*
693  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
694  * being created with a disk that has already completed its fsid change. Such
695  * disk can belong to an fs which has its FSID changed or to one which doesn't.
696  * Handle both cases here.
697  */
698 static struct btrfs_fs_devices *find_fsid_inprogress(
699 					struct btrfs_super_block *disk_super)
700 {
701 	struct btrfs_fs_devices *fs_devices;
702 
703 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
704 		if (fs_devices->fsid_change)
705 			continue;
706 
707 		if (check_fsid_changed(fs_devices,  disk_super->fsid))
708 			return fs_devices;
709 	}
710 
711 	return find_fsid(disk_super->fsid, NULL);
712 }
713 
714 static struct btrfs_fs_devices *find_fsid_changed(
715 					struct btrfs_super_block *disk_super)
716 {
717 	struct btrfs_fs_devices *fs_devices;
718 
719 	/*
720 	 * Handles the case where scanned device is part of an fs that had
721 	 * multiple successful changes of FSID but currently device didn't
722 	 * observe it. Meaning our fsid will be different than theirs. We need
723 	 * to handle two subcases :
724 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
725 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
726 	 *  are equal).
727 	 */
728 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
729 		/* Changed UUIDs */
730 		if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) &&
731 		    memcmp(fs_devices->fsid, disk_super->fsid,
732 			   BTRFS_FSID_SIZE) != 0)
733 			return fs_devices;
734 
735 		/* Unchanged UUIDs */
736 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737 			   BTRFS_FSID_SIZE) == 0 &&
738 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739 			   BTRFS_FSID_SIZE) == 0)
740 			return fs_devices;
741 	}
742 
743 	return NULL;
744 }
745 
746 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747 				struct btrfs_super_block *disk_super)
748 {
749 	struct btrfs_fs_devices *fs_devices;
750 
751 	/*
752 	 * Handle the case where the scanned device is part of an fs whose last
753 	 * metadata UUID change reverted it to the original FSID. At the same
754 	 * time fs_devices was first created by another constituent device
755 	 * which didn't fully observe the operation. This results in an
756 	 * btrfs_fs_devices created with metadata/fsid different AND
757 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758 	 * fs_devices equal to the FSID of the disk.
759 	 */
760 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
761 		if (!fs_devices->fsid_change)
762 			continue;
763 
764 		if (check_fsid_changed(fs_devices, disk_super->fsid))
765 			return fs_devices;
766 	}
767 
768 	return NULL;
769 }
770 /*
771  * Add new device to list of registered devices
772  *
773  * Returns:
774  * device pointer which was just added or updated when successful
775  * error pointer when failed
776  */
777 static noinline struct btrfs_device *device_list_add(const char *path,
778 			   struct btrfs_super_block *disk_super,
779 			   bool *new_device_added)
780 {
781 	struct btrfs_device *device;
782 	struct btrfs_fs_devices *fs_devices = NULL;
783 	struct rcu_string *name;
784 	u64 found_transid = btrfs_super_generation(disk_super);
785 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
786 	dev_t path_devt;
787 	int error;
788 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
789 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
790 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
791 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
792 
793 	error = lookup_bdev(path, &path_devt);
794 	if (error) {
795 		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
796 			  path, error);
797 		return ERR_PTR(error);
798 	}
799 
800 	if (fsid_change_in_progress) {
801 		if (!has_metadata_uuid)
802 			fs_devices = find_fsid_inprogress(disk_super);
803 		else
804 			fs_devices = find_fsid_changed(disk_super);
805 	} else if (has_metadata_uuid) {
806 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
807 	} else {
808 		fs_devices = find_fsid_reverted_metadata(disk_super);
809 		if (!fs_devices)
810 			fs_devices = find_fsid(disk_super->fsid, NULL);
811 	}
812 
813 
814 	if (!fs_devices) {
815 		fs_devices = alloc_fs_devices(disk_super->fsid,
816 				has_metadata_uuid ? disk_super->metadata_uuid : NULL);
817 		if (IS_ERR(fs_devices))
818 			return ERR_CAST(fs_devices);
819 
820 		fs_devices->fsid_change = fsid_change_in_progress;
821 
822 		mutex_lock(&fs_devices->device_list_mutex);
823 		list_add(&fs_devices->fs_list, &fs_uuids);
824 
825 		device = NULL;
826 	} else {
827 		struct btrfs_dev_lookup_args args = {
828 			.devid = devid,
829 			.uuid = disk_super->dev_item.uuid,
830 		};
831 
832 		mutex_lock(&fs_devices->device_list_mutex);
833 		device = btrfs_find_device(fs_devices, &args);
834 
835 		/*
836 		 * If this disk has been pulled into an fs devices created by
837 		 * a device which had the CHANGING_FSID_V2 flag then replace the
838 		 * metadata_uuid/fsid values of the fs_devices.
839 		 */
840 		if (fs_devices->fsid_change &&
841 		    found_transid > fs_devices->latest_generation) {
842 			memcpy(fs_devices->fsid, disk_super->fsid,
843 					BTRFS_FSID_SIZE);
844 			memcpy(fs_devices->metadata_uuid,
845 			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
846 			fs_devices->fsid_change = false;
847 		}
848 	}
849 
850 	if (!device) {
851 		unsigned int nofs_flag;
852 
853 		if (fs_devices->opened) {
854 			btrfs_err(NULL,
855 "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
856 				  path, fs_devices->fsid, current->comm,
857 				  task_pid_nr(current));
858 			mutex_unlock(&fs_devices->device_list_mutex);
859 			return ERR_PTR(-EBUSY);
860 		}
861 
862 		nofs_flag = memalloc_nofs_save();
863 		device = btrfs_alloc_device(NULL, &devid,
864 					    disk_super->dev_item.uuid, path);
865 		memalloc_nofs_restore(nofs_flag);
866 		if (IS_ERR(device)) {
867 			mutex_unlock(&fs_devices->device_list_mutex);
868 			/* we can safely leave the fs_devices entry around */
869 			return device;
870 		}
871 
872 		device->devt = path_devt;
873 
874 		list_add_rcu(&device->dev_list, &fs_devices->devices);
875 		fs_devices->num_devices++;
876 
877 		device->fs_devices = fs_devices;
878 		*new_device_added = true;
879 
880 		if (disk_super->label[0])
881 			pr_info(
882 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
883 				disk_super->label, devid, found_transid, path,
884 				current->comm, task_pid_nr(current));
885 		else
886 			pr_info(
887 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
888 				disk_super->fsid, devid, found_transid, path,
889 				current->comm, task_pid_nr(current));
890 
891 	} else if (!device->name || strcmp(device->name->str, path)) {
892 		/*
893 		 * When FS is already mounted.
894 		 * 1. If you are here and if the device->name is NULL that
895 		 *    means this device was missing at time of FS mount.
896 		 * 2. If you are here and if the device->name is different
897 		 *    from 'path' that means either
898 		 *      a. The same device disappeared and reappeared with
899 		 *         different name. or
900 		 *      b. The missing-disk-which-was-replaced, has
901 		 *         reappeared now.
902 		 *
903 		 * We must allow 1 and 2a above. But 2b would be a spurious
904 		 * and unintentional.
905 		 *
906 		 * Further in case of 1 and 2a above, the disk at 'path'
907 		 * would have missed some transaction when it was away and
908 		 * in case of 2a the stale bdev has to be updated as well.
909 		 * 2b must not be allowed at all time.
910 		 */
911 
912 		/*
913 		 * For now, we do allow update to btrfs_fs_device through the
914 		 * btrfs dev scan cli after FS has been mounted.  We're still
915 		 * tracking a problem where systems fail mount by subvolume id
916 		 * when we reject replacement on a mounted FS.
917 		 */
918 		if (!fs_devices->opened && found_transid < device->generation) {
919 			/*
920 			 * That is if the FS is _not_ mounted and if you
921 			 * are here, that means there is more than one
922 			 * disk with same uuid and devid.We keep the one
923 			 * with larger generation number or the last-in if
924 			 * generation are equal.
925 			 */
926 			mutex_unlock(&fs_devices->device_list_mutex);
927 			btrfs_err(NULL,
928 "device %s already registered with a higher generation, found %llu expect %llu",
929 				  path, found_transid, device->generation);
930 			return ERR_PTR(-EEXIST);
931 		}
932 
933 		/*
934 		 * We are going to replace the device path for a given devid,
935 		 * make sure it's the same device if the device is mounted
936 		 *
937 		 * NOTE: the device->fs_info may not be reliable here so pass
938 		 * in a NULL to message helpers instead. This avoids a possible
939 		 * use-after-free when the fs_info and fs_info->sb are already
940 		 * torn down.
941 		 */
942 		if (device->bdev) {
943 			if (device->devt != path_devt) {
944 				mutex_unlock(&fs_devices->device_list_mutex);
945 				btrfs_warn_in_rcu(NULL,
946 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
947 						  path, devid, found_transid,
948 						  current->comm,
949 						  task_pid_nr(current));
950 				return ERR_PTR(-EEXIST);
951 			}
952 			btrfs_info_in_rcu(NULL,
953 	"devid %llu device path %s changed to %s scanned by %s (%d)",
954 					  devid, btrfs_dev_name(device),
955 					  path, current->comm,
956 					  task_pid_nr(current));
957 		}
958 
959 		name = rcu_string_strdup(path, GFP_NOFS);
960 		if (!name) {
961 			mutex_unlock(&fs_devices->device_list_mutex);
962 			return ERR_PTR(-ENOMEM);
963 		}
964 		rcu_string_free(device->name);
965 		rcu_assign_pointer(device->name, name);
966 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
967 			fs_devices->missing_devices--;
968 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
969 		}
970 		device->devt = path_devt;
971 	}
972 
973 	/*
974 	 * Unmount does not free the btrfs_device struct but would zero
975 	 * generation along with most of the other members. So just update
976 	 * it back. We need it to pick the disk with largest generation
977 	 * (as above).
978 	 */
979 	if (!fs_devices->opened) {
980 		device->generation = found_transid;
981 		fs_devices->latest_generation = max_t(u64, found_transid,
982 						fs_devices->latest_generation);
983 	}
984 
985 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
986 
987 	mutex_unlock(&fs_devices->device_list_mutex);
988 	return device;
989 }
990 
991 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
992 {
993 	struct btrfs_fs_devices *fs_devices;
994 	struct btrfs_device *device;
995 	struct btrfs_device *orig_dev;
996 	int ret = 0;
997 
998 	lockdep_assert_held(&uuid_mutex);
999 
1000 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1001 	if (IS_ERR(fs_devices))
1002 		return fs_devices;
1003 
1004 	fs_devices->total_devices = orig->total_devices;
1005 
1006 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1007 		const char *dev_path = NULL;
1008 
1009 		/*
1010 		 * This is ok to do without RCU read locked because we hold the
1011 		 * uuid mutex so nothing we touch in here is going to disappear.
1012 		 */
1013 		if (orig_dev->name)
1014 			dev_path = orig_dev->name->str;
1015 
1016 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1017 					    orig_dev->uuid, dev_path);
1018 		if (IS_ERR(device)) {
1019 			ret = PTR_ERR(device);
1020 			goto error;
1021 		}
1022 
1023 		if (orig_dev->zone_info) {
1024 			struct btrfs_zoned_device_info *zone_info;
1025 
1026 			zone_info = btrfs_clone_dev_zone_info(orig_dev);
1027 			if (!zone_info) {
1028 				btrfs_free_device(device);
1029 				ret = -ENOMEM;
1030 				goto error;
1031 			}
1032 			device->zone_info = zone_info;
1033 		}
1034 
1035 		list_add(&device->dev_list, &fs_devices->devices);
1036 		device->fs_devices = fs_devices;
1037 		fs_devices->num_devices++;
1038 	}
1039 	return fs_devices;
1040 error:
1041 	free_fs_devices(fs_devices);
1042 	return ERR_PTR(ret);
1043 }
1044 
1045 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1046 				      struct btrfs_device **latest_dev)
1047 {
1048 	struct btrfs_device *device, *next;
1049 
1050 	/* This is the initialized path, it is safe to release the devices. */
1051 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1052 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1053 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1054 				      &device->dev_state) &&
1055 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1056 				      &device->dev_state) &&
1057 			    (!*latest_dev ||
1058 			     device->generation > (*latest_dev)->generation)) {
1059 				*latest_dev = device;
1060 			}
1061 			continue;
1062 		}
1063 
1064 		/*
1065 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1066 		 * in btrfs_init_dev_replace() so just continue.
1067 		 */
1068 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1069 			continue;
1070 
1071 		if (device->bdev) {
1072 			blkdev_put(device->bdev, device->holder);
1073 			device->bdev = NULL;
1074 			fs_devices->open_devices--;
1075 		}
1076 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1077 			list_del_init(&device->dev_alloc_list);
1078 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1079 			fs_devices->rw_devices--;
1080 		}
1081 		list_del_init(&device->dev_list);
1082 		fs_devices->num_devices--;
1083 		btrfs_free_device(device);
1084 	}
1085 
1086 }
1087 
1088 /*
1089  * After we have read the system tree and know devids belonging to this
1090  * filesystem, remove the device which does not belong there.
1091  */
1092 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1093 {
1094 	struct btrfs_device *latest_dev = NULL;
1095 	struct btrfs_fs_devices *seed_dev;
1096 
1097 	mutex_lock(&uuid_mutex);
1098 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1099 
1100 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1101 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1102 
1103 	fs_devices->latest_dev = latest_dev;
1104 
1105 	mutex_unlock(&uuid_mutex);
1106 }
1107 
1108 static void btrfs_close_bdev(struct btrfs_device *device)
1109 {
1110 	if (!device->bdev)
1111 		return;
1112 
1113 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1114 		sync_blockdev(device->bdev);
1115 		invalidate_bdev(device->bdev);
1116 	}
1117 
1118 	blkdev_put(device->bdev, device->holder);
1119 }
1120 
1121 static void btrfs_close_one_device(struct btrfs_device *device)
1122 {
1123 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1124 
1125 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1126 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1127 		list_del_init(&device->dev_alloc_list);
1128 		fs_devices->rw_devices--;
1129 	}
1130 
1131 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1132 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1133 
1134 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1135 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1136 		fs_devices->missing_devices--;
1137 	}
1138 
1139 	btrfs_close_bdev(device);
1140 	if (device->bdev) {
1141 		fs_devices->open_devices--;
1142 		device->bdev = NULL;
1143 	}
1144 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1145 	btrfs_destroy_dev_zone_info(device);
1146 
1147 	device->fs_info = NULL;
1148 	atomic_set(&device->dev_stats_ccnt, 0);
1149 	extent_io_tree_release(&device->alloc_state);
1150 
1151 	/*
1152 	 * Reset the flush error record. We might have a transient flush error
1153 	 * in this mount, and if so we aborted the current transaction and set
1154 	 * the fs to an error state, guaranteeing no super blocks can be further
1155 	 * committed. However that error might be transient and if we unmount the
1156 	 * filesystem and mount it again, we should allow the mount to succeed
1157 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1158 	 * filesystem again we still get flush errors, then we will again abort
1159 	 * any transaction and set the error state, guaranteeing no commits of
1160 	 * unsafe super blocks.
1161 	 */
1162 	device->last_flush_error = 0;
1163 
1164 	/* Verify the device is back in a pristine state  */
1165 	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1166 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1167 	WARN_ON(!list_empty(&device->dev_alloc_list));
1168 	WARN_ON(!list_empty(&device->post_commit_list));
1169 }
1170 
1171 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1172 {
1173 	struct btrfs_device *device, *tmp;
1174 
1175 	lockdep_assert_held(&uuid_mutex);
1176 
1177 	if (--fs_devices->opened > 0)
1178 		return;
1179 
1180 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1181 		btrfs_close_one_device(device);
1182 
1183 	WARN_ON(fs_devices->open_devices);
1184 	WARN_ON(fs_devices->rw_devices);
1185 	fs_devices->opened = 0;
1186 	fs_devices->seeding = false;
1187 	fs_devices->fs_info = NULL;
1188 }
1189 
1190 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1191 {
1192 	LIST_HEAD(list);
1193 	struct btrfs_fs_devices *tmp;
1194 
1195 	mutex_lock(&uuid_mutex);
1196 	close_fs_devices(fs_devices);
1197 	if (!fs_devices->opened) {
1198 		list_splice_init(&fs_devices->seed_list, &list);
1199 
1200 		/*
1201 		 * If the struct btrfs_fs_devices is not assembled with any
1202 		 * other device, it can be re-initialized during the next mount
1203 		 * without the needing device-scan step. Therefore, it can be
1204 		 * fully freed.
1205 		 */
1206 		if (fs_devices->num_devices == 1) {
1207 			list_del(&fs_devices->fs_list);
1208 			free_fs_devices(fs_devices);
1209 		}
1210 	}
1211 
1212 
1213 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1214 		close_fs_devices(fs_devices);
1215 		list_del(&fs_devices->seed_list);
1216 		free_fs_devices(fs_devices);
1217 	}
1218 	mutex_unlock(&uuid_mutex);
1219 }
1220 
1221 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1222 				blk_mode_t flags, void *holder)
1223 {
1224 	struct btrfs_device *device;
1225 	struct btrfs_device *latest_dev = NULL;
1226 	struct btrfs_device *tmp_device;
1227 
1228 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1229 				 dev_list) {
1230 		int ret;
1231 
1232 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1233 		if (ret == 0 &&
1234 		    (!latest_dev || device->generation > latest_dev->generation)) {
1235 			latest_dev = device;
1236 		} else if (ret == -ENODATA) {
1237 			fs_devices->num_devices--;
1238 			list_del(&device->dev_list);
1239 			btrfs_free_device(device);
1240 		}
1241 	}
1242 	if (fs_devices->open_devices == 0)
1243 		return -EINVAL;
1244 
1245 	fs_devices->opened = 1;
1246 	fs_devices->latest_dev = latest_dev;
1247 	fs_devices->total_rw_bytes = 0;
1248 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1249 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1250 
1251 	return 0;
1252 }
1253 
1254 static int devid_cmp(void *priv, const struct list_head *a,
1255 		     const struct list_head *b)
1256 {
1257 	const struct btrfs_device *dev1, *dev2;
1258 
1259 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1260 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1261 
1262 	if (dev1->devid < dev2->devid)
1263 		return -1;
1264 	else if (dev1->devid > dev2->devid)
1265 		return 1;
1266 	return 0;
1267 }
1268 
1269 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1270 		       blk_mode_t flags, void *holder)
1271 {
1272 	int ret;
1273 
1274 	lockdep_assert_held(&uuid_mutex);
1275 	/*
1276 	 * The device_list_mutex cannot be taken here in case opening the
1277 	 * underlying device takes further locks like open_mutex.
1278 	 *
1279 	 * We also don't need the lock here as this is called during mount and
1280 	 * exclusion is provided by uuid_mutex
1281 	 */
1282 
1283 	if (fs_devices->opened) {
1284 		fs_devices->opened++;
1285 		ret = 0;
1286 	} else {
1287 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1288 		ret = open_fs_devices(fs_devices, flags, holder);
1289 	}
1290 
1291 	return ret;
1292 }
1293 
1294 void btrfs_release_disk_super(struct btrfs_super_block *super)
1295 {
1296 	struct page *page = virt_to_page(super);
1297 
1298 	put_page(page);
1299 }
1300 
1301 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1302 						       u64 bytenr, u64 bytenr_orig)
1303 {
1304 	struct btrfs_super_block *disk_super;
1305 	struct page *page;
1306 	void *p;
1307 	pgoff_t index;
1308 
1309 	/* make sure our super fits in the device */
1310 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1311 		return ERR_PTR(-EINVAL);
1312 
1313 	/* make sure our super fits in the page */
1314 	if (sizeof(*disk_super) > PAGE_SIZE)
1315 		return ERR_PTR(-EINVAL);
1316 
1317 	/* make sure our super doesn't straddle pages on disk */
1318 	index = bytenr >> PAGE_SHIFT;
1319 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1320 		return ERR_PTR(-EINVAL);
1321 
1322 	/* pull in the page with our super */
1323 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1324 
1325 	if (IS_ERR(page))
1326 		return ERR_CAST(page);
1327 
1328 	p = page_address(page);
1329 
1330 	/* align our pointer to the offset of the super block */
1331 	disk_super = p + offset_in_page(bytenr);
1332 
1333 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1334 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1335 		btrfs_release_disk_super(p);
1336 		return ERR_PTR(-EINVAL);
1337 	}
1338 
1339 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1340 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1341 
1342 	return disk_super;
1343 }
1344 
1345 int btrfs_forget_devices(dev_t devt)
1346 {
1347 	int ret;
1348 
1349 	mutex_lock(&uuid_mutex);
1350 	ret = btrfs_free_stale_devices(devt, NULL);
1351 	mutex_unlock(&uuid_mutex);
1352 
1353 	return ret;
1354 }
1355 
1356 /*
1357  * Look for a btrfs signature on a device. This may be called out of the mount path
1358  * and we are not allowed to call set_blocksize during the scan. The superblock
1359  * is read via pagecache
1360  */
1361 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags)
1362 {
1363 	struct btrfs_super_block *disk_super;
1364 	bool new_device_added = false;
1365 	struct btrfs_device *device = NULL;
1366 	struct block_device *bdev;
1367 	u64 bytenr, bytenr_orig;
1368 	int ret;
1369 
1370 	lockdep_assert_held(&uuid_mutex);
1371 
1372 	/*
1373 	 * we would like to check all the supers, but that would make
1374 	 * a btrfs mount succeed after a mkfs from a different FS.
1375 	 * So, we need to add a special mount option to scan for
1376 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1377 	 */
1378 
1379 	/*
1380 	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1381 	 * device scan which may race with the user's mount or mkfs command,
1382 	 * resulting in failure.
1383 	 * Since the device scan is solely for reading purposes, there is no
1384 	 * need for an exclusive open. Additionally, the devices are read again
1385 	 * during the mount process. It is ok to get some inconsistent
1386 	 * values temporarily, as the device paths of the fsid are the only
1387 	 * required information for assembling the volume.
1388 	 */
1389 	bdev = blkdev_get_by_path(path, flags, NULL, NULL);
1390 	if (IS_ERR(bdev))
1391 		return ERR_CAST(bdev);
1392 
1393 	bytenr_orig = btrfs_sb_offset(0);
1394 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1395 	if (ret) {
1396 		device = ERR_PTR(ret);
1397 		goto error_bdev_put;
1398 	}
1399 
1400 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1401 	if (IS_ERR(disk_super)) {
1402 		device = ERR_CAST(disk_super);
1403 		goto error_bdev_put;
1404 	}
1405 
1406 	device = device_list_add(path, disk_super, &new_device_added);
1407 	if (!IS_ERR(device) && new_device_added)
1408 		btrfs_free_stale_devices(device->devt, device);
1409 
1410 	btrfs_release_disk_super(disk_super);
1411 
1412 error_bdev_put:
1413 	blkdev_put(bdev, NULL);
1414 
1415 	return device;
1416 }
1417 
1418 /*
1419  * Try to find a chunk that intersects [start, start + len] range and when one
1420  * such is found, record the end of it in *start
1421  */
1422 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1423 				    u64 len)
1424 {
1425 	u64 physical_start, physical_end;
1426 
1427 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1428 
1429 	if (find_first_extent_bit(&device->alloc_state, *start,
1430 				  &physical_start, &physical_end,
1431 				  CHUNK_ALLOCATED, NULL)) {
1432 
1433 		if (in_range(physical_start, *start, len) ||
1434 		    in_range(*start, physical_start,
1435 			     physical_end + 1 - physical_start)) {
1436 			*start = physical_end + 1;
1437 			return true;
1438 		}
1439 	}
1440 	return false;
1441 }
1442 
1443 static u64 dev_extent_search_start(struct btrfs_device *device)
1444 {
1445 	switch (device->fs_devices->chunk_alloc_policy) {
1446 	case BTRFS_CHUNK_ALLOC_REGULAR:
1447 		return BTRFS_DEVICE_RANGE_RESERVED;
1448 	case BTRFS_CHUNK_ALLOC_ZONED:
1449 		/*
1450 		 * We don't care about the starting region like regular
1451 		 * allocator, because we anyway use/reserve the first two zones
1452 		 * for superblock logging.
1453 		 */
1454 		return 0;
1455 	default:
1456 		BUG();
1457 	}
1458 }
1459 
1460 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1461 					u64 *hole_start, u64 *hole_size,
1462 					u64 num_bytes)
1463 {
1464 	u64 zone_size = device->zone_info->zone_size;
1465 	u64 pos;
1466 	int ret;
1467 	bool changed = false;
1468 
1469 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1470 
1471 	while (*hole_size > 0) {
1472 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1473 						   *hole_start + *hole_size,
1474 						   num_bytes);
1475 		if (pos != *hole_start) {
1476 			*hole_size = *hole_start + *hole_size - pos;
1477 			*hole_start = pos;
1478 			changed = true;
1479 			if (*hole_size < num_bytes)
1480 				break;
1481 		}
1482 
1483 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1484 
1485 		/* Range is ensured to be empty */
1486 		if (!ret)
1487 			return changed;
1488 
1489 		/* Given hole range was invalid (outside of device) */
1490 		if (ret == -ERANGE) {
1491 			*hole_start += *hole_size;
1492 			*hole_size = 0;
1493 			return true;
1494 		}
1495 
1496 		*hole_start += zone_size;
1497 		*hole_size -= zone_size;
1498 		changed = true;
1499 	}
1500 
1501 	return changed;
1502 }
1503 
1504 /*
1505  * Check if specified hole is suitable for allocation.
1506  *
1507  * @device:	the device which we have the hole
1508  * @hole_start: starting position of the hole
1509  * @hole_size:	the size of the hole
1510  * @num_bytes:	the size of the free space that we need
1511  *
1512  * This function may modify @hole_start and @hole_size to reflect the suitable
1513  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1514  */
1515 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1516 				  u64 *hole_size, u64 num_bytes)
1517 {
1518 	bool changed = false;
1519 	u64 hole_end = *hole_start + *hole_size;
1520 
1521 	for (;;) {
1522 		/*
1523 		 * Check before we set max_hole_start, otherwise we could end up
1524 		 * sending back this offset anyway.
1525 		 */
1526 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1527 			if (hole_end >= *hole_start)
1528 				*hole_size = hole_end - *hole_start;
1529 			else
1530 				*hole_size = 0;
1531 			changed = true;
1532 		}
1533 
1534 		switch (device->fs_devices->chunk_alloc_policy) {
1535 		case BTRFS_CHUNK_ALLOC_REGULAR:
1536 			/* No extra check */
1537 			break;
1538 		case BTRFS_CHUNK_ALLOC_ZONED:
1539 			if (dev_extent_hole_check_zoned(device, hole_start,
1540 							hole_size, num_bytes)) {
1541 				changed = true;
1542 				/*
1543 				 * The changed hole can contain pending extent.
1544 				 * Loop again to check that.
1545 				 */
1546 				continue;
1547 			}
1548 			break;
1549 		default:
1550 			BUG();
1551 		}
1552 
1553 		break;
1554 	}
1555 
1556 	return changed;
1557 }
1558 
1559 /*
1560  * Find free space in the specified device.
1561  *
1562  * @device:	  the device which we search the free space in
1563  * @num_bytes:	  the size of the free space that we need
1564  * @search_start: the position from which to begin the search
1565  * @start:	  store the start of the free space.
1566  * @len:	  the size of the free space. that we find, or the size
1567  *		  of the max free space if we don't find suitable free space
1568  *
1569  * This does a pretty simple search, the expectation is that it is called very
1570  * infrequently and that a given device has a small number of extents.
1571  *
1572  * @start is used to store the start of the free space if we find. But if we
1573  * don't find suitable free space, it will be used to store the start position
1574  * of the max free space.
1575  *
1576  * @len is used to store the size of the free space that we find.
1577  * But if we don't find suitable free space, it is used to store the size of
1578  * the max free space.
1579  *
1580  * NOTE: This function will search *commit* root of device tree, and does extra
1581  * check to ensure dev extents are not double allocated.
1582  * This makes the function safe to allocate dev extents but may not report
1583  * correct usable device space, as device extent freed in current transaction
1584  * is not reported as available.
1585  */
1586 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1587 				u64 *start, u64 *len)
1588 {
1589 	struct btrfs_fs_info *fs_info = device->fs_info;
1590 	struct btrfs_root *root = fs_info->dev_root;
1591 	struct btrfs_key key;
1592 	struct btrfs_dev_extent *dev_extent;
1593 	struct btrfs_path *path;
1594 	u64 search_start;
1595 	u64 hole_size;
1596 	u64 max_hole_start;
1597 	u64 max_hole_size = 0;
1598 	u64 extent_end;
1599 	u64 search_end = device->total_bytes;
1600 	int ret;
1601 	int slot;
1602 	struct extent_buffer *l;
1603 
1604 	search_start = dev_extent_search_start(device);
1605 	max_hole_start = search_start;
1606 
1607 	WARN_ON(device->zone_info &&
1608 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1609 
1610 	path = btrfs_alloc_path();
1611 	if (!path) {
1612 		ret = -ENOMEM;
1613 		goto out;
1614 	}
1615 again:
1616 	if (search_start >= search_end ||
1617 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1618 		ret = -ENOSPC;
1619 		goto out;
1620 	}
1621 
1622 	path->reada = READA_FORWARD;
1623 	path->search_commit_root = 1;
1624 	path->skip_locking = 1;
1625 
1626 	key.objectid = device->devid;
1627 	key.offset = search_start;
1628 	key.type = BTRFS_DEV_EXTENT_KEY;
1629 
1630 	ret = btrfs_search_backwards(root, &key, path);
1631 	if (ret < 0)
1632 		goto out;
1633 
1634 	while (search_start < search_end) {
1635 		l = path->nodes[0];
1636 		slot = path->slots[0];
1637 		if (slot >= btrfs_header_nritems(l)) {
1638 			ret = btrfs_next_leaf(root, path);
1639 			if (ret == 0)
1640 				continue;
1641 			if (ret < 0)
1642 				goto out;
1643 
1644 			break;
1645 		}
1646 		btrfs_item_key_to_cpu(l, &key, slot);
1647 
1648 		if (key.objectid < device->devid)
1649 			goto next;
1650 
1651 		if (key.objectid > device->devid)
1652 			break;
1653 
1654 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1655 			goto next;
1656 
1657 		if (key.offset > search_end)
1658 			break;
1659 
1660 		if (key.offset > search_start) {
1661 			hole_size = key.offset - search_start;
1662 			dev_extent_hole_check(device, &search_start, &hole_size,
1663 					      num_bytes);
1664 
1665 			if (hole_size > max_hole_size) {
1666 				max_hole_start = search_start;
1667 				max_hole_size = hole_size;
1668 			}
1669 
1670 			/*
1671 			 * If this free space is greater than which we need,
1672 			 * it must be the max free space that we have found
1673 			 * until now, so max_hole_start must point to the start
1674 			 * of this free space and the length of this free space
1675 			 * is stored in max_hole_size. Thus, we return
1676 			 * max_hole_start and max_hole_size and go back to the
1677 			 * caller.
1678 			 */
1679 			if (hole_size >= num_bytes) {
1680 				ret = 0;
1681 				goto out;
1682 			}
1683 		}
1684 
1685 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1686 		extent_end = key.offset + btrfs_dev_extent_length(l,
1687 								  dev_extent);
1688 		if (extent_end > search_start)
1689 			search_start = extent_end;
1690 next:
1691 		path->slots[0]++;
1692 		cond_resched();
1693 	}
1694 
1695 	/*
1696 	 * At this point, search_start should be the end of
1697 	 * allocated dev extents, and when shrinking the device,
1698 	 * search_end may be smaller than search_start.
1699 	 */
1700 	if (search_end > search_start) {
1701 		hole_size = search_end - search_start;
1702 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1703 					  num_bytes)) {
1704 			btrfs_release_path(path);
1705 			goto again;
1706 		}
1707 
1708 		if (hole_size > max_hole_size) {
1709 			max_hole_start = search_start;
1710 			max_hole_size = hole_size;
1711 		}
1712 	}
1713 
1714 	/* See above. */
1715 	if (max_hole_size < num_bytes)
1716 		ret = -ENOSPC;
1717 	else
1718 		ret = 0;
1719 
1720 	ASSERT(max_hole_start + max_hole_size <= search_end);
1721 out:
1722 	btrfs_free_path(path);
1723 	*start = max_hole_start;
1724 	if (len)
1725 		*len = max_hole_size;
1726 	return ret;
1727 }
1728 
1729 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1730 			  struct btrfs_device *device,
1731 			  u64 start, u64 *dev_extent_len)
1732 {
1733 	struct btrfs_fs_info *fs_info = device->fs_info;
1734 	struct btrfs_root *root = fs_info->dev_root;
1735 	int ret;
1736 	struct btrfs_path *path;
1737 	struct btrfs_key key;
1738 	struct btrfs_key found_key;
1739 	struct extent_buffer *leaf = NULL;
1740 	struct btrfs_dev_extent *extent = NULL;
1741 
1742 	path = btrfs_alloc_path();
1743 	if (!path)
1744 		return -ENOMEM;
1745 
1746 	key.objectid = device->devid;
1747 	key.offset = start;
1748 	key.type = BTRFS_DEV_EXTENT_KEY;
1749 again:
1750 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1751 	if (ret > 0) {
1752 		ret = btrfs_previous_item(root, path, key.objectid,
1753 					  BTRFS_DEV_EXTENT_KEY);
1754 		if (ret)
1755 			goto out;
1756 		leaf = path->nodes[0];
1757 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1758 		extent = btrfs_item_ptr(leaf, path->slots[0],
1759 					struct btrfs_dev_extent);
1760 		BUG_ON(found_key.offset > start || found_key.offset +
1761 		       btrfs_dev_extent_length(leaf, extent) < start);
1762 		key = found_key;
1763 		btrfs_release_path(path);
1764 		goto again;
1765 	} else if (ret == 0) {
1766 		leaf = path->nodes[0];
1767 		extent = btrfs_item_ptr(leaf, path->slots[0],
1768 					struct btrfs_dev_extent);
1769 	} else {
1770 		goto out;
1771 	}
1772 
1773 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1774 
1775 	ret = btrfs_del_item(trans, root, path);
1776 	if (ret == 0)
1777 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1778 out:
1779 	btrfs_free_path(path);
1780 	return ret;
1781 }
1782 
1783 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1784 {
1785 	struct extent_map_tree *em_tree;
1786 	struct extent_map *em;
1787 	struct rb_node *n;
1788 	u64 ret = 0;
1789 
1790 	em_tree = &fs_info->mapping_tree;
1791 	read_lock(&em_tree->lock);
1792 	n = rb_last(&em_tree->map.rb_root);
1793 	if (n) {
1794 		em = rb_entry(n, struct extent_map, rb_node);
1795 		ret = em->start + em->len;
1796 	}
1797 	read_unlock(&em_tree->lock);
1798 
1799 	return ret;
1800 }
1801 
1802 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1803 				    u64 *devid_ret)
1804 {
1805 	int ret;
1806 	struct btrfs_key key;
1807 	struct btrfs_key found_key;
1808 	struct btrfs_path *path;
1809 
1810 	path = btrfs_alloc_path();
1811 	if (!path)
1812 		return -ENOMEM;
1813 
1814 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1815 	key.type = BTRFS_DEV_ITEM_KEY;
1816 	key.offset = (u64)-1;
1817 
1818 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1819 	if (ret < 0)
1820 		goto error;
1821 
1822 	if (ret == 0) {
1823 		/* Corruption */
1824 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1825 		ret = -EUCLEAN;
1826 		goto error;
1827 	}
1828 
1829 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1830 				  BTRFS_DEV_ITEMS_OBJECTID,
1831 				  BTRFS_DEV_ITEM_KEY);
1832 	if (ret) {
1833 		*devid_ret = 1;
1834 	} else {
1835 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1836 				      path->slots[0]);
1837 		*devid_ret = found_key.offset + 1;
1838 	}
1839 	ret = 0;
1840 error:
1841 	btrfs_free_path(path);
1842 	return ret;
1843 }
1844 
1845 /*
1846  * the device information is stored in the chunk root
1847  * the btrfs_device struct should be fully filled in
1848  */
1849 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1850 			    struct btrfs_device *device)
1851 {
1852 	int ret;
1853 	struct btrfs_path *path;
1854 	struct btrfs_dev_item *dev_item;
1855 	struct extent_buffer *leaf;
1856 	struct btrfs_key key;
1857 	unsigned long ptr;
1858 
1859 	path = btrfs_alloc_path();
1860 	if (!path)
1861 		return -ENOMEM;
1862 
1863 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1864 	key.type = BTRFS_DEV_ITEM_KEY;
1865 	key.offset = device->devid;
1866 
1867 	btrfs_reserve_chunk_metadata(trans, true);
1868 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1869 				      &key, sizeof(*dev_item));
1870 	btrfs_trans_release_chunk_metadata(trans);
1871 	if (ret)
1872 		goto out;
1873 
1874 	leaf = path->nodes[0];
1875 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1876 
1877 	btrfs_set_device_id(leaf, dev_item, device->devid);
1878 	btrfs_set_device_generation(leaf, dev_item, 0);
1879 	btrfs_set_device_type(leaf, dev_item, device->type);
1880 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1881 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1882 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1883 	btrfs_set_device_total_bytes(leaf, dev_item,
1884 				     btrfs_device_get_disk_total_bytes(device));
1885 	btrfs_set_device_bytes_used(leaf, dev_item,
1886 				    btrfs_device_get_bytes_used(device));
1887 	btrfs_set_device_group(leaf, dev_item, 0);
1888 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1889 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1890 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1891 
1892 	ptr = btrfs_device_uuid(dev_item);
1893 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1894 	ptr = btrfs_device_fsid(dev_item);
1895 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1896 			    ptr, BTRFS_FSID_SIZE);
1897 	btrfs_mark_buffer_dirty(trans, leaf);
1898 
1899 	ret = 0;
1900 out:
1901 	btrfs_free_path(path);
1902 	return ret;
1903 }
1904 
1905 /*
1906  * Function to update ctime/mtime for a given device path.
1907  * Mainly used for ctime/mtime based probe like libblkid.
1908  *
1909  * We don't care about errors here, this is just to be kind to userspace.
1910  */
1911 static void update_dev_time(const char *device_path)
1912 {
1913 	struct path path;
1914 	int ret;
1915 
1916 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1917 	if (ret)
1918 		return;
1919 
1920 	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1921 	path_put(&path);
1922 }
1923 
1924 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1925 			     struct btrfs_device *device)
1926 {
1927 	struct btrfs_root *root = device->fs_info->chunk_root;
1928 	int ret;
1929 	struct btrfs_path *path;
1930 	struct btrfs_key key;
1931 
1932 	path = btrfs_alloc_path();
1933 	if (!path)
1934 		return -ENOMEM;
1935 
1936 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1937 	key.type = BTRFS_DEV_ITEM_KEY;
1938 	key.offset = device->devid;
1939 
1940 	btrfs_reserve_chunk_metadata(trans, false);
1941 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1942 	btrfs_trans_release_chunk_metadata(trans);
1943 	if (ret) {
1944 		if (ret > 0)
1945 			ret = -ENOENT;
1946 		goto out;
1947 	}
1948 
1949 	ret = btrfs_del_item(trans, root, path);
1950 out:
1951 	btrfs_free_path(path);
1952 	return ret;
1953 }
1954 
1955 /*
1956  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1957  * filesystem. It's up to the caller to adjust that number regarding eg. device
1958  * replace.
1959  */
1960 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1961 		u64 num_devices)
1962 {
1963 	u64 all_avail;
1964 	unsigned seq;
1965 	int i;
1966 
1967 	do {
1968 		seq = read_seqbegin(&fs_info->profiles_lock);
1969 
1970 		all_avail = fs_info->avail_data_alloc_bits |
1971 			    fs_info->avail_system_alloc_bits |
1972 			    fs_info->avail_metadata_alloc_bits;
1973 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1974 
1975 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1976 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1977 			continue;
1978 
1979 		if (num_devices < btrfs_raid_array[i].devs_min)
1980 			return btrfs_raid_array[i].mindev_error;
1981 	}
1982 
1983 	return 0;
1984 }
1985 
1986 static struct btrfs_device * btrfs_find_next_active_device(
1987 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1988 {
1989 	struct btrfs_device *next_device;
1990 
1991 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1992 		if (next_device != device &&
1993 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1994 		    && next_device->bdev)
1995 			return next_device;
1996 	}
1997 
1998 	return NULL;
1999 }
2000 
2001 /*
2002  * Helper function to check if the given device is part of s_bdev / latest_dev
2003  * and replace it with the provided or the next active device, in the context
2004  * where this function called, there should be always be another device (or
2005  * this_dev) which is active.
2006  */
2007 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2008 					    struct btrfs_device *next_device)
2009 {
2010 	struct btrfs_fs_info *fs_info = device->fs_info;
2011 
2012 	if (!next_device)
2013 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2014 							    device);
2015 	ASSERT(next_device);
2016 
2017 	if (fs_info->sb->s_bdev &&
2018 			(fs_info->sb->s_bdev == device->bdev))
2019 		fs_info->sb->s_bdev = next_device->bdev;
2020 
2021 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2022 		fs_info->fs_devices->latest_dev = next_device;
2023 }
2024 
2025 /*
2026  * Return btrfs_fs_devices::num_devices excluding the device that's being
2027  * currently replaced.
2028  */
2029 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2030 {
2031 	u64 num_devices = fs_info->fs_devices->num_devices;
2032 
2033 	down_read(&fs_info->dev_replace.rwsem);
2034 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2035 		ASSERT(num_devices > 1);
2036 		num_devices--;
2037 	}
2038 	up_read(&fs_info->dev_replace.rwsem);
2039 
2040 	return num_devices;
2041 }
2042 
2043 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2044 				     struct block_device *bdev, int copy_num)
2045 {
2046 	struct btrfs_super_block *disk_super;
2047 	const size_t len = sizeof(disk_super->magic);
2048 	const u64 bytenr = btrfs_sb_offset(copy_num);
2049 	int ret;
2050 
2051 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2052 	if (IS_ERR(disk_super))
2053 		return;
2054 
2055 	memset(&disk_super->magic, 0, len);
2056 	folio_mark_dirty(virt_to_folio(disk_super));
2057 	btrfs_release_disk_super(disk_super);
2058 
2059 	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2060 	if (ret)
2061 		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2062 			copy_num, ret);
2063 }
2064 
2065 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2066 			       struct block_device *bdev,
2067 			       const char *device_path)
2068 {
2069 	int copy_num;
2070 
2071 	if (!bdev)
2072 		return;
2073 
2074 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2075 		if (bdev_is_zoned(bdev))
2076 			btrfs_reset_sb_log_zones(bdev, copy_num);
2077 		else
2078 			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2079 	}
2080 
2081 	/* Notify udev that device has changed */
2082 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2083 
2084 	/* Update ctime/mtime for device path for libblkid */
2085 	update_dev_time(device_path);
2086 }
2087 
2088 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2089 		    struct btrfs_dev_lookup_args *args,
2090 		    struct block_device **bdev, void **holder)
2091 {
2092 	struct btrfs_trans_handle *trans;
2093 	struct btrfs_device *device;
2094 	struct btrfs_fs_devices *cur_devices;
2095 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2096 	u64 num_devices;
2097 	int ret = 0;
2098 
2099 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2100 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2101 		return -EINVAL;
2102 	}
2103 
2104 	/*
2105 	 * The device list in fs_devices is accessed without locks (neither
2106 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2107 	 * filesystem and another device rm cannot run.
2108 	 */
2109 	num_devices = btrfs_num_devices(fs_info);
2110 
2111 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2112 	if (ret)
2113 		return ret;
2114 
2115 	device = btrfs_find_device(fs_info->fs_devices, args);
2116 	if (!device) {
2117 		if (args->missing)
2118 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2119 		else
2120 			ret = -ENOENT;
2121 		return ret;
2122 	}
2123 
2124 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2125 		btrfs_warn_in_rcu(fs_info,
2126 		  "cannot remove device %s (devid %llu) due to active swapfile",
2127 				  btrfs_dev_name(device), device->devid);
2128 		return -ETXTBSY;
2129 	}
2130 
2131 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2132 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2133 
2134 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2135 	    fs_info->fs_devices->rw_devices == 1)
2136 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2137 
2138 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2139 		mutex_lock(&fs_info->chunk_mutex);
2140 		list_del_init(&device->dev_alloc_list);
2141 		device->fs_devices->rw_devices--;
2142 		mutex_unlock(&fs_info->chunk_mutex);
2143 	}
2144 
2145 	ret = btrfs_shrink_device(device, 0);
2146 	if (ret)
2147 		goto error_undo;
2148 
2149 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2150 	if (IS_ERR(trans)) {
2151 		ret = PTR_ERR(trans);
2152 		goto error_undo;
2153 	}
2154 
2155 	ret = btrfs_rm_dev_item(trans, device);
2156 	if (ret) {
2157 		/* Any error in dev item removal is critical */
2158 		btrfs_crit(fs_info,
2159 			   "failed to remove device item for devid %llu: %d",
2160 			   device->devid, ret);
2161 		btrfs_abort_transaction(trans, ret);
2162 		btrfs_end_transaction(trans);
2163 		return ret;
2164 	}
2165 
2166 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2167 	btrfs_scrub_cancel_dev(device);
2168 
2169 	/*
2170 	 * the device list mutex makes sure that we don't change
2171 	 * the device list while someone else is writing out all
2172 	 * the device supers. Whoever is writing all supers, should
2173 	 * lock the device list mutex before getting the number of
2174 	 * devices in the super block (super_copy). Conversely,
2175 	 * whoever updates the number of devices in the super block
2176 	 * (super_copy) should hold the device list mutex.
2177 	 */
2178 
2179 	/*
2180 	 * In normal cases the cur_devices == fs_devices. But in case
2181 	 * of deleting a seed device, the cur_devices should point to
2182 	 * its own fs_devices listed under the fs_devices->seed_list.
2183 	 */
2184 	cur_devices = device->fs_devices;
2185 	mutex_lock(&fs_devices->device_list_mutex);
2186 	list_del_rcu(&device->dev_list);
2187 
2188 	cur_devices->num_devices--;
2189 	cur_devices->total_devices--;
2190 	/* Update total_devices of the parent fs_devices if it's seed */
2191 	if (cur_devices != fs_devices)
2192 		fs_devices->total_devices--;
2193 
2194 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2195 		cur_devices->missing_devices--;
2196 
2197 	btrfs_assign_next_active_device(device, NULL);
2198 
2199 	if (device->bdev) {
2200 		cur_devices->open_devices--;
2201 		/* remove sysfs entry */
2202 		btrfs_sysfs_remove_device(device);
2203 	}
2204 
2205 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2206 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2207 	mutex_unlock(&fs_devices->device_list_mutex);
2208 
2209 	/*
2210 	 * At this point, the device is zero sized and detached from the
2211 	 * devices list.  All that's left is to zero out the old supers and
2212 	 * free the device.
2213 	 *
2214 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2215 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2216 	 * block device and it's dependencies.  Instead just flush the device
2217 	 * and let the caller do the final blkdev_put.
2218 	 */
2219 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2220 		btrfs_scratch_superblocks(fs_info, device->bdev,
2221 					  device->name->str);
2222 		if (device->bdev) {
2223 			sync_blockdev(device->bdev);
2224 			invalidate_bdev(device->bdev);
2225 		}
2226 	}
2227 
2228 	*bdev = device->bdev;
2229 	*holder = device->holder;
2230 	synchronize_rcu();
2231 	btrfs_free_device(device);
2232 
2233 	/*
2234 	 * This can happen if cur_devices is the private seed devices list.  We
2235 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2236 	 * to be held, but in fact we don't need that for the private
2237 	 * seed_devices, we can simply decrement cur_devices->opened and then
2238 	 * remove it from our list and free the fs_devices.
2239 	 */
2240 	if (cur_devices->num_devices == 0) {
2241 		list_del_init(&cur_devices->seed_list);
2242 		ASSERT(cur_devices->opened == 1);
2243 		cur_devices->opened--;
2244 		free_fs_devices(cur_devices);
2245 	}
2246 
2247 	ret = btrfs_commit_transaction(trans);
2248 
2249 	return ret;
2250 
2251 error_undo:
2252 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2253 		mutex_lock(&fs_info->chunk_mutex);
2254 		list_add(&device->dev_alloc_list,
2255 			 &fs_devices->alloc_list);
2256 		device->fs_devices->rw_devices++;
2257 		mutex_unlock(&fs_info->chunk_mutex);
2258 	}
2259 	return ret;
2260 }
2261 
2262 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2263 {
2264 	struct btrfs_fs_devices *fs_devices;
2265 
2266 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2267 
2268 	/*
2269 	 * in case of fs with no seed, srcdev->fs_devices will point
2270 	 * to fs_devices of fs_info. However when the dev being replaced is
2271 	 * a seed dev it will point to the seed's local fs_devices. In short
2272 	 * srcdev will have its correct fs_devices in both the cases.
2273 	 */
2274 	fs_devices = srcdev->fs_devices;
2275 
2276 	list_del_rcu(&srcdev->dev_list);
2277 	list_del(&srcdev->dev_alloc_list);
2278 	fs_devices->num_devices--;
2279 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2280 		fs_devices->missing_devices--;
2281 
2282 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2283 		fs_devices->rw_devices--;
2284 
2285 	if (srcdev->bdev)
2286 		fs_devices->open_devices--;
2287 }
2288 
2289 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2290 {
2291 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2292 
2293 	mutex_lock(&uuid_mutex);
2294 
2295 	btrfs_close_bdev(srcdev);
2296 	synchronize_rcu();
2297 	btrfs_free_device(srcdev);
2298 
2299 	/* if this is no devs we rather delete the fs_devices */
2300 	if (!fs_devices->num_devices) {
2301 		/*
2302 		 * On a mounted FS, num_devices can't be zero unless it's a
2303 		 * seed. In case of a seed device being replaced, the replace
2304 		 * target added to the sprout FS, so there will be no more
2305 		 * device left under the seed FS.
2306 		 */
2307 		ASSERT(fs_devices->seeding);
2308 
2309 		list_del_init(&fs_devices->seed_list);
2310 		close_fs_devices(fs_devices);
2311 		free_fs_devices(fs_devices);
2312 	}
2313 	mutex_unlock(&uuid_mutex);
2314 }
2315 
2316 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2317 {
2318 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2319 
2320 	mutex_lock(&fs_devices->device_list_mutex);
2321 
2322 	btrfs_sysfs_remove_device(tgtdev);
2323 
2324 	if (tgtdev->bdev)
2325 		fs_devices->open_devices--;
2326 
2327 	fs_devices->num_devices--;
2328 
2329 	btrfs_assign_next_active_device(tgtdev, NULL);
2330 
2331 	list_del_rcu(&tgtdev->dev_list);
2332 
2333 	mutex_unlock(&fs_devices->device_list_mutex);
2334 
2335 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2336 				  tgtdev->name->str);
2337 
2338 	btrfs_close_bdev(tgtdev);
2339 	synchronize_rcu();
2340 	btrfs_free_device(tgtdev);
2341 }
2342 
2343 /*
2344  * Populate args from device at path.
2345  *
2346  * @fs_info:	the filesystem
2347  * @args:	the args to populate
2348  * @path:	the path to the device
2349  *
2350  * This will read the super block of the device at @path and populate @args with
2351  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2352  * lookup a device to operate on, but need to do it before we take any locks.
2353  * This properly handles the special case of "missing" that a user may pass in,
2354  * and does some basic sanity checks.  The caller must make sure that @path is
2355  * properly NUL terminated before calling in, and must call
2356  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2357  * uuid buffers.
2358  *
2359  * Return: 0 for success, -errno for failure
2360  */
2361 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2362 				 struct btrfs_dev_lookup_args *args,
2363 				 const char *path)
2364 {
2365 	struct btrfs_super_block *disk_super;
2366 	struct block_device *bdev;
2367 	int ret;
2368 
2369 	if (!path || !path[0])
2370 		return -EINVAL;
2371 	if (!strcmp(path, "missing")) {
2372 		args->missing = true;
2373 		return 0;
2374 	}
2375 
2376 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2377 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2378 	if (!args->uuid || !args->fsid) {
2379 		btrfs_put_dev_args_from_path(args);
2380 		return -ENOMEM;
2381 	}
2382 
2383 	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2384 				    &bdev, &disk_super);
2385 	if (ret) {
2386 		btrfs_put_dev_args_from_path(args);
2387 		return ret;
2388 	}
2389 
2390 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2391 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2392 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2393 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2394 	else
2395 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2396 	btrfs_release_disk_super(disk_super);
2397 	blkdev_put(bdev, NULL);
2398 	return 0;
2399 }
2400 
2401 /*
2402  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2403  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2404  * that don't need to be freed.
2405  */
2406 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2407 {
2408 	kfree(args->uuid);
2409 	kfree(args->fsid);
2410 	args->uuid = NULL;
2411 	args->fsid = NULL;
2412 }
2413 
2414 struct btrfs_device *btrfs_find_device_by_devspec(
2415 		struct btrfs_fs_info *fs_info, u64 devid,
2416 		const char *device_path)
2417 {
2418 	BTRFS_DEV_LOOKUP_ARGS(args);
2419 	struct btrfs_device *device;
2420 	int ret;
2421 
2422 	if (devid) {
2423 		args.devid = devid;
2424 		device = btrfs_find_device(fs_info->fs_devices, &args);
2425 		if (!device)
2426 			return ERR_PTR(-ENOENT);
2427 		return device;
2428 	}
2429 
2430 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2431 	if (ret)
2432 		return ERR_PTR(ret);
2433 	device = btrfs_find_device(fs_info->fs_devices, &args);
2434 	btrfs_put_dev_args_from_path(&args);
2435 	if (!device)
2436 		return ERR_PTR(-ENOENT);
2437 	return device;
2438 }
2439 
2440 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2441 {
2442 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2443 	struct btrfs_fs_devices *old_devices;
2444 	struct btrfs_fs_devices *seed_devices;
2445 
2446 	lockdep_assert_held(&uuid_mutex);
2447 	if (!fs_devices->seeding)
2448 		return ERR_PTR(-EINVAL);
2449 
2450 	/*
2451 	 * Private copy of the seed devices, anchored at
2452 	 * fs_info->fs_devices->seed_list
2453 	 */
2454 	seed_devices = alloc_fs_devices(NULL, NULL);
2455 	if (IS_ERR(seed_devices))
2456 		return seed_devices;
2457 
2458 	/*
2459 	 * It's necessary to retain a copy of the original seed fs_devices in
2460 	 * fs_uuids so that filesystems which have been seeded can successfully
2461 	 * reference the seed device from open_seed_devices. This also supports
2462 	 * multiple fs seed.
2463 	 */
2464 	old_devices = clone_fs_devices(fs_devices);
2465 	if (IS_ERR(old_devices)) {
2466 		kfree(seed_devices);
2467 		return old_devices;
2468 	}
2469 
2470 	list_add(&old_devices->fs_list, &fs_uuids);
2471 
2472 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2473 	seed_devices->opened = 1;
2474 	INIT_LIST_HEAD(&seed_devices->devices);
2475 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2476 	mutex_init(&seed_devices->device_list_mutex);
2477 
2478 	return seed_devices;
2479 }
2480 
2481 /*
2482  * Splice seed devices into the sprout fs_devices.
2483  * Generate a new fsid for the sprouted read-write filesystem.
2484  */
2485 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2486 			       struct btrfs_fs_devices *seed_devices)
2487 {
2488 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2489 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2490 	struct btrfs_device *device;
2491 	u64 super_flags;
2492 
2493 	/*
2494 	 * We are updating the fsid, the thread leading to device_list_add()
2495 	 * could race, so uuid_mutex is needed.
2496 	 */
2497 	lockdep_assert_held(&uuid_mutex);
2498 
2499 	/*
2500 	 * The threads listed below may traverse dev_list but can do that without
2501 	 * device_list_mutex:
2502 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2503 	 * - Various dev_list readers - are using RCU.
2504 	 * - btrfs_ioctl_fitrim() - is using RCU.
2505 	 *
2506 	 * For-read threads as below are using device_list_mutex:
2507 	 * - Readonly scrub btrfs_scrub_dev()
2508 	 * - Readonly scrub btrfs_scrub_progress()
2509 	 * - btrfs_get_dev_stats()
2510 	 */
2511 	lockdep_assert_held(&fs_devices->device_list_mutex);
2512 
2513 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2514 			      synchronize_rcu);
2515 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2516 		device->fs_devices = seed_devices;
2517 
2518 	fs_devices->seeding = false;
2519 	fs_devices->num_devices = 0;
2520 	fs_devices->open_devices = 0;
2521 	fs_devices->missing_devices = 0;
2522 	fs_devices->rotating = false;
2523 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2524 
2525 	generate_random_uuid(fs_devices->fsid);
2526 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2527 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2528 
2529 	super_flags = btrfs_super_flags(disk_super) &
2530 		      ~BTRFS_SUPER_FLAG_SEEDING;
2531 	btrfs_set_super_flags(disk_super, super_flags);
2532 }
2533 
2534 /*
2535  * Store the expected generation for seed devices in device items.
2536  */
2537 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2538 {
2539 	BTRFS_DEV_LOOKUP_ARGS(args);
2540 	struct btrfs_fs_info *fs_info = trans->fs_info;
2541 	struct btrfs_root *root = fs_info->chunk_root;
2542 	struct btrfs_path *path;
2543 	struct extent_buffer *leaf;
2544 	struct btrfs_dev_item *dev_item;
2545 	struct btrfs_device *device;
2546 	struct btrfs_key key;
2547 	u8 fs_uuid[BTRFS_FSID_SIZE];
2548 	u8 dev_uuid[BTRFS_UUID_SIZE];
2549 	int ret;
2550 
2551 	path = btrfs_alloc_path();
2552 	if (!path)
2553 		return -ENOMEM;
2554 
2555 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2556 	key.offset = 0;
2557 	key.type = BTRFS_DEV_ITEM_KEY;
2558 
2559 	while (1) {
2560 		btrfs_reserve_chunk_metadata(trans, false);
2561 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2562 		btrfs_trans_release_chunk_metadata(trans);
2563 		if (ret < 0)
2564 			goto error;
2565 
2566 		leaf = path->nodes[0];
2567 next_slot:
2568 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2569 			ret = btrfs_next_leaf(root, path);
2570 			if (ret > 0)
2571 				break;
2572 			if (ret < 0)
2573 				goto error;
2574 			leaf = path->nodes[0];
2575 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2576 			btrfs_release_path(path);
2577 			continue;
2578 		}
2579 
2580 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2581 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2582 		    key.type != BTRFS_DEV_ITEM_KEY)
2583 			break;
2584 
2585 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2586 					  struct btrfs_dev_item);
2587 		args.devid = btrfs_device_id(leaf, dev_item);
2588 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2589 				   BTRFS_UUID_SIZE);
2590 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2591 				   BTRFS_FSID_SIZE);
2592 		args.uuid = dev_uuid;
2593 		args.fsid = fs_uuid;
2594 		device = btrfs_find_device(fs_info->fs_devices, &args);
2595 		BUG_ON(!device); /* Logic error */
2596 
2597 		if (device->fs_devices->seeding) {
2598 			btrfs_set_device_generation(leaf, dev_item,
2599 						    device->generation);
2600 			btrfs_mark_buffer_dirty(trans, leaf);
2601 		}
2602 
2603 		path->slots[0]++;
2604 		goto next_slot;
2605 	}
2606 	ret = 0;
2607 error:
2608 	btrfs_free_path(path);
2609 	return ret;
2610 }
2611 
2612 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2613 {
2614 	struct btrfs_root *root = fs_info->dev_root;
2615 	struct btrfs_trans_handle *trans;
2616 	struct btrfs_device *device;
2617 	struct block_device *bdev;
2618 	struct super_block *sb = fs_info->sb;
2619 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2620 	struct btrfs_fs_devices *seed_devices = NULL;
2621 	u64 orig_super_total_bytes;
2622 	u64 orig_super_num_devices;
2623 	int ret = 0;
2624 	bool seeding_dev = false;
2625 	bool locked = false;
2626 
2627 	if (sb_rdonly(sb) && !fs_devices->seeding)
2628 		return -EROFS;
2629 
2630 	bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE,
2631 				  fs_info->bdev_holder, NULL);
2632 	if (IS_ERR(bdev))
2633 		return PTR_ERR(bdev);
2634 
2635 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2636 		ret = -EINVAL;
2637 		goto error;
2638 	}
2639 
2640 	if (fs_devices->seeding) {
2641 		seeding_dev = true;
2642 		down_write(&sb->s_umount);
2643 		mutex_lock(&uuid_mutex);
2644 		locked = true;
2645 	}
2646 
2647 	sync_blockdev(bdev);
2648 
2649 	rcu_read_lock();
2650 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2651 		if (device->bdev == bdev) {
2652 			ret = -EEXIST;
2653 			rcu_read_unlock();
2654 			goto error;
2655 		}
2656 	}
2657 	rcu_read_unlock();
2658 
2659 	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2660 	if (IS_ERR(device)) {
2661 		/* we can safely leave the fs_devices entry around */
2662 		ret = PTR_ERR(device);
2663 		goto error;
2664 	}
2665 
2666 	device->fs_info = fs_info;
2667 	device->bdev = bdev;
2668 	ret = lookup_bdev(device_path, &device->devt);
2669 	if (ret)
2670 		goto error_free_device;
2671 
2672 	ret = btrfs_get_dev_zone_info(device, false);
2673 	if (ret)
2674 		goto error_free_device;
2675 
2676 	trans = btrfs_start_transaction(root, 0);
2677 	if (IS_ERR(trans)) {
2678 		ret = PTR_ERR(trans);
2679 		goto error_free_zone;
2680 	}
2681 
2682 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2683 	device->generation = trans->transid;
2684 	device->io_width = fs_info->sectorsize;
2685 	device->io_align = fs_info->sectorsize;
2686 	device->sector_size = fs_info->sectorsize;
2687 	device->total_bytes =
2688 		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2689 	device->disk_total_bytes = device->total_bytes;
2690 	device->commit_total_bytes = device->total_bytes;
2691 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2692 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2693 	device->holder = fs_info->bdev_holder;
2694 	device->dev_stats_valid = 1;
2695 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2696 
2697 	if (seeding_dev) {
2698 		btrfs_clear_sb_rdonly(sb);
2699 
2700 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2701 		seed_devices = btrfs_init_sprout(fs_info);
2702 		if (IS_ERR(seed_devices)) {
2703 			ret = PTR_ERR(seed_devices);
2704 			btrfs_abort_transaction(trans, ret);
2705 			goto error_trans;
2706 		}
2707 	}
2708 
2709 	mutex_lock(&fs_devices->device_list_mutex);
2710 	if (seeding_dev) {
2711 		btrfs_setup_sprout(fs_info, seed_devices);
2712 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2713 						device);
2714 	}
2715 
2716 	device->fs_devices = fs_devices;
2717 
2718 	mutex_lock(&fs_info->chunk_mutex);
2719 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2720 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2721 	fs_devices->num_devices++;
2722 	fs_devices->open_devices++;
2723 	fs_devices->rw_devices++;
2724 	fs_devices->total_devices++;
2725 	fs_devices->total_rw_bytes += device->total_bytes;
2726 
2727 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2728 
2729 	if (!bdev_nonrot(bdev))
2730 		fs_devices->rotating = true;
2731 
2732 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2733 	btrfs_set_super_total_bytes(fs_info->super_copy,
2734 		round_down(orig_super_total_bytes + device->total_bytes,
2735 			   fs_info->sectorsize));
2736 
2737 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2738 	btrfs_set_super_num_devices(fs_info->super_copy,
2739 				    orig_super_num_devices + 1);
2740 
2741 	/*
2742 	 * we've got more storage, clear any full flags on the space
2743 	 * infos
2744 	 */
2745 	btrfs_clear_space_info_full(fs_info);
2746 
2747 	mutex_unlock(&fs_info->chunk_mutex);
2748 
2749 	/* Add sysfs device entry */
2750 	btrfs_sysfs_add_device(device);
2751 
2752 	mutex_unlock(&fs_devices->device_list_mutex);
2753 
2754 	if (seeding_dev) {
2755 		mutex_lock(&fs_info->chunk_mutex);
2756 		ret = init_first_rw_device(trans);
2757 		mutex_unlock(&fs_info->chunk_mutex);
2758 		if (ret) {
2759 			btrfs_abort_transaction(trans, ret);
2760 			goto error_sysfs;
2761 		}
2762 	}
2763 
2764 	ret = btrfs_add_dev_item(trans, device);
2765 	if (ret) {
2766 		btrfs_abort_transaction(trans, ret);
2767 		goto error_sysfs;
2768 	}
2769 
2770 	if (seeding_dev) {
2771 		ret = btrfs_finish_sprout(trans);
2772 		if (ret) {
2773 			btrfs_abort_transaction(trans, ret);
2774 			goto error_sysfs;
2775 		}
2776 
2777 		/*
2778 		 * fs_devices now represents the newly sprouted filesystem and
2779 		 * its fsid has been changed by btrfs_sprout_splice().
2780 		 */
2781 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2782 	}
2783 
2784 	ret = btrfs_commit_transaction(trans);
2785 
2786 	if (seeding_dev) {
2787 		mutex_unlock(&uuid_mutex);
2788 		up_write(&sb->s_umount);
2789 		locked = false;
2790 
2791 		if (ret) /* transaction commit */
2792 			return ret;
2793 
2794 		ret = btrfs_relocate_sys_chunks(fs_info);
2795 		if (ret < 0)
2796 			btrfs_handle_fs_error(fs_info, ret,
2797 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2798 		trans = btrfs_attach_transaction(root);
2799 		if (IS_ERR(trans)) {
2800 			if (PTR_ERR(trans) == -ENOENT)
2801 				return 0;
2802 			ret = PTR_ERR(trans);
2803 			trans = NULL;
2804 			goto error_sysfs;
2805 		}
2806 		ret = btrfs_commit_transaction(trans);
2807 	}
2808 
2809 	/*
2810 	 * Now that we have written a new super block to this device, check all
2811 	 * other fs_devices list if device_path alienates any other scanned
2812 	 * device.
2813 	 * We can ignore the return value as it typically returns -EINVAL and
2814 	 * only succeeds if the device was an alien.
2815 	 */
2816 	btrfs_forget_devices(device->devt);
2817 
2818 	/* Update ctime/mtime for blkid or udev */
2819 	update_dev_time(device_path);
2820 
2821 	return ret;
2822 
2823 error_sysfs:
2824 	btrfs_sysfs_remove_device(device);
2825 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2826 	mutex_lock(&fs_info->chunk_mutex);
2827 	list_del_rcu(&device->dev_list);
2828 	list_del(&device->dev_alloc_list);
2829 	fs_info->fs_devices->num_devices--;
2830 	fs_info->fs_devices->open_devices--;
2831 	fs_info->fs_devices->rw_devices--;
2832 	fs_info->fs_devices->total_devices--;
2833 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2834 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2835 	btrfs_set_super_total_bytes(fs_info->super_copy,
2836 				    orig_super_total_bytes);
2837 	btrfs_set_super_num_devices(fs_info->super_copy,
2838 				    orig_super_num_devices);
2839 	mutex_unlock(&fs_info->chunk_mutex);
2840 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2841 error_trans:
2842 	if (seeding_dev)
2843 		btrfs_set_sb_rdonly(sb);
2844 	if (trans)
2845 		btrfs_end_transaction(trans);
2846 error_free_zone:
2847 	btrfs_destroy_dev_zone_info(device);
2848 error_free_device:
2849 	btrfs_free_device(device);
2850 error:
2851 	blkdev_put(bdev, fs_info->bdev_holder);
2852 	if (locked) {
2853 		mutex_unlock(&uuid_mutex);
2854 		up_write(&sb->s_umount);
2855 	}
2856 	return ret;
2857 }
2858 
2859 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2860 					struct btrfs_device *device)
2861 {
2862 	int ret;
2863 	struct btrfs_path *path;
2864 	struct btrfs_root *root = device->fs_info->chunk_root;
2865 	struct btrfs_dev_item *dev_item;
2866 	struct extent_buffer *leaf;
2867 	struct btrfs_key key;
2868 
2869 	path = btrfs_alloc_path();
2870 	if (!path)
2871 		return -ENOMEM;
2872 
2873 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2874 	key.type = BTRFS_DEV_ITEM_KEY;
2875 	key.offset = device->devid;
2876 
2877 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2878 	if (ret < 0)
2879 		goto out;
2880 
2881 	if (ret > 0) {
2882 		ret = -ENOENT;
2883 		goto out;
2884 	}
2885 
2886 	leaf = path->nodes[0];
2887 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2888 
2889 	btrfs_set_device_id(leaf, dev_item, device->devid);
2890 	btrfs_set_device_type(leaf, dev_item, device->type);
2891 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2892 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2893 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2894 	btrfs_set_device_total_bytes(leaf, dev_item,
2895 				     btrfs_device_get_disk_total_bytes(device));
2896 	btrfs_set_device_bytes_used(leaf, dev_item,
2897 				    btrfs_device_get_bytes_used(device));
2898 	btrfs_mark_buffer_dirty(trans, leaf);
2899 
2900 out:
2901 	btrfs_free_path(path);
2902 	return ret;
2903 }
2904 
2905 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2906 		      struct btrfs_device *device, u64 new_size)
2907 {
2908 	struct btrfs_fs_info *fs_info = device->fs_info;
2909 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2910 	u64 old_total;
2911 	u64 diff;
2912 	int ret;
2913 
2914 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2915 		return -EACCES;
2916 
2917 	new_size = round_down(new_size, fs_info->sectorsize);
2918 
2919 	mutex_lock(&fs_info->chunk_mutex);
2920 	old_total = btrfs_super_total_bytes(super_copy);
2921 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2922 
2923 	if (new_size <= device->total_bytes ||
2924 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2925 		mutex_unlock(&fs_info->chunk_mutex);
2926 		return -EINVAL;
2927 	}
2928 
2929 	btrfs_set_super_total_bytes(super_copy,
2930 			round_down(old_total + diff, fs_info->sectorsize));
2931 	device->fs_devices->total_rw_bytes += diff;
2932 
2933 	btrfs_device_set_total_bytes(device, new_size);
2934 	btrfs_device_set_disk_total_bytes(device, new_size);
2935 	btrfs_clear_space_info_full(device->fs_info);
2936 	if (list_empty(&device->post_commit_list))
2937 		list_add_tail(&device->post_commit_list,
2938 			      &trans->transaction->dev_update_list);
2939 	mutex_unlock(&fs_info->chunk_mutex);
2940 
2941 	btrfs_reserve_chunk_metadata(trans, false);
2942 	ret = btrfs_update_device(trans, device);
2943 	btrfs_trans_release_chunk_metadata(trans);
2944 
2945 	return ret;
2946 }
2947 
2948 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2949 {
2950 	struct btrfs_fs_info *fs_info = trans->fs_info;
2951 	struct btrfs_root *root = fs_info->chunk_root;
2952 	int ret;
2953 	struct btrfs_path *path;
2954 	struct btrfs_key key;
2955 
2956 	path = btrfs_alloc_path();
2957 	if (!path)
2958 		return -ENOMEM;
2959 
2960 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2961 	key.offset = chunk_offset;
2962 	key.type = BTRFS_CHUNK_ITEM_KEY;
2963 
2964 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2965 	if (ret < 0)
2966 		goto out;
2967 	else if (ret > 0) { /* Logic error or corruption */
2968 		btrfs_handle_fs_error(fs_info, -ENOENT,
2969 				      "Failed lookup while freeing chunk.");
2970 		ret = -ENOENT;
2971 		goto out;
2972 	}
2973 
2974 	ret = btrfs_del_item(trans, root, path);
2975 	if (ret < 0)
2976 		btrfs_handle_fs_error(fs_info, ret,
2977 				      "Failed to delete chunk item.");
2978 out:
2979 	btrfs_free_path(path);
2980 	return ret;
2981 }
2982 
2983 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2984 {
2985 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2986 	struct btrfs_disk_key *disk_key;
2987 	struct btrfs_chunk *chunk;
2988 	u8 *ptr;
2989 	int ret = 0;
2990 	u32 num_stripes;
2991 	u32 array_size;
2992 	u32 len = 0;
2993 	u32 cur;
2994 	struct btrfs_key key;
2995 
2996 	lockdep_assert_held(&fs_info->chunk_mutex);
2997 	array_size = btrfs_super_sys_array_size(super_copy);
2998 
2999 	ptr = super_copy->sys_chunk_array;
3000 	cur = 0;
3001 
3002 	while (cur < array_size) {
3003 		disk_key = (struct btrfs_disk_key *)ptr;
3004 		btrfs_disk_key_to_cpu(&key, disk_key);
3005 
3006 		len = sizeof(*disk_key);
3007 
3008 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3009 			chunk = (struct btrfs_chunk *)(ptr + len);
3010 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3011 			len += btrfs_chunk_item_size(num_stripes);
3012 		} else {
3013 			ret = -EIO;
3014 			break;
3015 		}
3016 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3017 		    key.offset == chunk_offset) {
3018 			memmove(ptr, ptr + len, array_size - (cur + len));
3019 			array_size -= len;
3020 			btrfs_set_super_sys_array_size(super_copy, array_size);
3021 		} else {
3022 			ptr += len;
3023 			cur += len;
3024 		}
3025 	}
3026 	return ret;
3027 }
3028 
3029 /*
3030  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3031  * @logical: Logical block offset in bytes.
3032  * @length: Length of extent in bytes.
3033  *
3034  * Return: Chunk mapping or ERR_PTR.
3035  */
3036 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3037 				       u64 logical, u64 length)
3038 {
3039 	struct extent_map_tree *em_tree;
3040 	struct extent_map *em;
3041 
3042 	em_tree = &fs_info->mapping_tree;
3043 	read_lock(&em_tree->lock);
3044 	em = lookup_extent_mapping(em_tree, logical, length);
3045 	read_unlock(&em_tree->lock);
3046 
3047 	if (!em) {
3048 		btrfs_crit(fs_info,
3049 			   "unable to find chunk map for logical %llu length %llu",
3050 			   logical, length);
3051 		return ERR_PTR(-EINVAL);
3052 	}
3053 
3054 	if (em->start > logical || em->start + em->len <= logical) {
3055 		btrfs_crit(fs_info,
3056 			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3057 			   logical, logical + length, em->start, em->start + em->len);
3058 		free_extent_map(em);
3059 		return ERR_PTR(-EINVAL);
3060 	}
3061 
3062 	/* callers are responsible for dropping em's ref. */
3063 	return em;
3064 }
3065 
3066 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3067 			     struct map_lookup *map, u64 chunk_offset)
3068 {
3069 	int i;
3070 
3071 	/*
3072 	 * Removing chunk items and updating the device items in the chunks btree
3073 	 * requires holding the chunk_mutex.
3074 	 * See the comment at btrfs_chunk_alloc() for the details.
3075 	 */
3076 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3077 
3078 	for (i = 0; i < map->num_stripes; i++) {
3079 		int ret;
3080 
3081 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3082 		if (ret)
3083 			return ret;
3084 	}
3085 
3086 	return btrfs_free_chunk(trans, chunk_offset);
3087 }
3088 
3089 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3090 {
3091 	struct btrfs_fs_info *fs_info = trans->fs_info;
3092 	struct extent_map *em;
3093 	struct map_lookup *map;
3094 	u64 dev_extent_len = 0;
3095 	int i, ret = 0;
3096 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3097 
3098 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3099 	if (IS_ERR(em)) {
3100 		/*
3101 		 * This is a logic error, but we don't want to just rely on the
3102 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3103 		 * do anything we still error out.
3104 		 */
3105 		ASSERT(0);
3106 		return PTR_ERR(em);
3107 	}
3108 	map = em->map_lookup;
3109 
3110 	/*
3111 	 * First delete the device extent items from the devices btree.
3112 	 * We take the device_list_mutex to avoid racing with the finishing phase
3113 	 * of a device replace operation. See the comment below before acquiring
3114 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3115 	 * because that can result in a deadlock when deleting the device extent
3116 	 * items from the devices btree - COWing an extent buffer from the btree
3117 	 * may result in allocating a new metadata chunk, which would attempt to
3118 	 * lock again fs_info->chunk_mutex.
3119 	 */
3120 	mutex_lock(&fs_devices->device_list_mutex);
3121 	for (i = 0; i < map->num_stripes; i++) {
3122 		struct btrfs_device *device = map->stripes[i].dev;
3123 		ret = btrfs_free_dev_extent(trans, device,
3124 					    map->stripes[i].physical,
3125 					    &dev_extent_len);
3126 		if (ret) {
3127 			mutex_unlock(&fs_devices->device_list_mutex);
3128 			btrfs_abort_transaction(trans, ret);
3129 			goto out;
3130 		}
3131 
3132 		if (device->bytes_used > 0) {
3133 			mutex_lock(&fs_info->chunk_mutex);
3134 			btrfs_device_set_bytes_used(device,
3135 					device->bytes_used - dev_extent_len);
3136 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3137 			btrfs_clear_space_info_full(fs_info);
3138 			mutex_unlock(&fs_info->chunk_mutex);
3139 		}
3140 	}
3141 	mutex_unlock(&fs_devices->device_list_mutex);
3142 
3143 	/*
3144 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3145 	 *
3146 	 * 1) Just like with the first phase of the chunk allocation, we must
3147 	 *    reserve system space, do all chunk btree updates and deletions, and
3148 	 *    update the system chunk array in the superblock while holding this
3149 	 *    mutex. This is for similar reasons as explained on the comment at
3150 	 *    the top of btrfs_chunk_alloc();
3151 	 *
3152 	 * 2) Prevent races with the final phase of a device replace operation
3153 	 *    that replaces the device object associated with the map's stripes,
3154 	 *    because the device object's id can change at any time during that
3155 	 *    final phase of the device replace operation
3156 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3157 	 *    replaced device and then see it with an ID of
3158 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3159 	 *    the device item, which does not exists on the chunk btree.
3160 	 *    The finishing phase of device replace acquires both the
3161 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3162 	 *    safe by just acquiring the chunk_mutex.
3163 	 */
3164 	trans->removing_chunk = true;
3165 	mutex_lock(&fs_info->chunk_mutex);
3166 
3167 	check_system_chunk(trans, map->type);
3168 
3169 	ret = remove_chunk_item(trans, map, chunk_offset);
3170 	/*
3171 	 * Normally we should not get -ENOSPC since we reserved space before
3172 	 * through the call to check_system_chunk().
3173 	 *
3174 	 * Despite our system space_info having enough free space, we may not
3175 	 * be able to allocate extents from its block groups, because all have
3176 	 * an incompatible profile, which will force us to allocate a new system
3177 	 * block group with the right profile, or right after we called
3178 	 * check_system_space() above, a scrub turned the only system block group
3179 	 * with enough free space into RO mode.
3180 	 * This is explained with more detail at do_chunk_alloc().
3181 	 *
3182 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3183 	 */
3184 	if (ret == -ENOSPC) {
3185 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3186 		struct btrfs_block_group *sys_bg;
3187 
3188 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3189 		if (IS_ERR(sys_bg)) {
3190 			ret = PTR_ERR(sys_bg);
3191 			btrfs_abort_transaction(trans, ret);
3192 			goto out;
3193 		}
3194 
3195 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3196 		if (ret) {
3197 			btrfs_abort_transaction(trans, ret);
3198 			goto out;
3199 		}
3200 
3201 		ret = remove_chunk_item(trans, map, chunk_offset);
3202 		if (ret) {
3203 			btrfs_abort_transaction(trans, ret);
3204 			goto out;
3205 		}
3206 	} else if (ret) {
3207 		btrfs_abort_transaction(trans, ret);
3208 		goto out;
3209 	}
3210 
3211 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3212 
3213 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3214 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3215 		if (ret) {
3216 			btrfs_abort_transaction(trans, ret);
3217 			goto out;
3218 		}
3219 	}
3220 
3221 	mutex_unlock(&fs_info->chunk_mutex);
3222 	trans->removing_chunk = false;
3223 
3224 	/*
3225 	 * We are done with chunk btree updates and deletions, so release the
3226 	 * system space we previously reserved (with check_system_chunk()).
3227 	 */
3228 	btrfs_trans_release_chunk_metadata(trans);
3229 
3230 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3231 	if (ret) {
3232 		btrfs_abort_transaction(trans, ret);
3233 		goto out;
3234 	}
3235 
3236 out:
3237 	if (trans->removing_chunk) {
3238 		mutex_unlock(&fs_info->chunk_mutex);
3239 		trans->removing_chunk = false;
3240 	}
3241 	/* once for us */
3242 	free_extent_map(em);
3243 	return ret;
3244 }
3245 
3246 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3247 {
3248 	struct btrfs_root *root = fs_info->chunk_root;
3249 	struct btrfs_trans_handle *trans;
3250 	struct btrfs_block_group *block_group;
3251 	u64 length;
3252 	int ret;
3253 
3254 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3255 		btrfs_err(fs_info,
3256 			  "relocate: not supported on extent tree v2 yet");
3257 		return -EINVAL;
3258 	}
3259 
3260 	/*
3261 	 * Prevent races with automatic removal of unused block groups.
3262 	 * After we relocate and before we remove the chunk with offset
3263 	 * chunk_offset, automatic removal of the block group can kick in,
3264 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3265 	 *
3266 	 * Make sure to acquire this mutex before doing a tree search (dev
3267 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3268 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3269 	 * we release the path used to search the chunk/dev tree and before
3270 	 * the current task acquires this mutex and calls us.
3271 	 */
3272 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3273 
3274 	/* step one, relocate all the extents inside this chunk */
3275 	btrfs_scrub_pause(fs_info);
3276 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3277 	btrfs_scrub_continue(fs_info);
3278 	if (ret) {
3279 		/*
3280 		 * If we had a transaction abort, stop all running scrubs.
3281 		 * See transaction.c:cleanup_transaction() why we do it here.
3282 		 */
3283 		if (BTRFS_FS_ERROR(fs_info))
3284 			btrfs_scrub_cancel(fs_info);
3285 		return ret;
3286 	}
3287 
3288 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3289 	if (!block_group)
3290 		return -ENOENT;
3291 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3292 	length = block_group->length;
3293 	btrfs_put_block_group(block_group);
3294 
3295 	/*
3296 	 * On a zoned file system, discard the whole block group, this will
3297 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3298 	 * resetting the zone fails, don't treat it as a fatal problem from the
3299 	 * filesystem's point of view.
3300 	 */
3301 	if (btrfs_is_zoned(fs_info)) {
3302 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3303 		if (ret)
3304 			btrfs_info(fs_info,
3305 				"failed to reset zone %llu after relocation",
3306 				chunk_offset);
3307 	}
3308 
3309 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3310 						     chunk_offset);
3311 	if (IS_ERR(trans)) {
3312 		ret = PTR_ERR(trans);
3313 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3314 		return ret;
3315 	}
3316 
3317 	/*
3318 	 * step two, delete the device extents and the
3319 	 * chunk tree entries
3320 	 */
3321 	ret = btrfs_remove_chunk(trans, chunk_offset);
3322 	btrfs_end_transaction(trans);
3323 	return ret;
3324 }
3325 
3326 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3327 {
3328 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3329 	struct btrfs_path *path;
3330 	struct extent_buffer *leaf;
3331 	struct btrfs_chunk *chunk;
3332 	struct btrfs_key key;
3333 	struct btrfs_key found_key;
3334 	u64 chunk_type;
3335 	bool retried = false;
3336 	int failed = 0;
3337 	int ret;
3338 
3339 	path = btrfs_alloc_path();
3340 	if (!path)
3341 		return -ENOMEM;
3342 
3343 again:
3344 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3345 	key.offset = (u64)-1;
3346 	key.type = BTRFS_CHUNK_ITEM_KEY;
3347 
3348 	while (1) {
3349 		mutex_lock(&fs_info->reclaim_bgs_lock);
3350 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3351 		if (ret < 0) {
3352 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3353 			goto error;
3354 		}
3355 		if (ret == 0) {
3356 			/*
3357 			 * On the first search we would find chunk tree with
3358 			 * offset -1, which is not possible. On subsequent
3359 			 * loops this would find an existing item on an invalid
3360 			 * offset (one less than the previous one, wrong
3361 			 * alignment and size).
3362 			 */
3363 			ret = -EUCLEAN;
3364 			goto error;
3365 		}
3366 
3367 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3368 					  key.type);
3369 		if (ret)
3370 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3371 		if (ret < 0)
3372 			goto error;
3373 		if (ret > 0)
3374 			break;
3375 
3376 		leaf = path->nodes[0];
3377 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3378 
3379 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3380 				       struct btrfs_chunk);
3381 		chunk_type = btrfs_chunk_type(leaf, chunk);
3382 		btrfs_release_path(path);
3383 
3384 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3385 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3386 			if (ret == -ENOSPC)
3387 				failed++;
3388 			else
3389 				BUG_ON(ret);
3390 		}
3391 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3392 
3393 		if (found_key.offset == 0)
3394 			break;
3395 		key.offset = found_key.offset - 1;
3396 	}
3397 	ret = 0;
3398 	if (failed && !retried) {
3399 		failed = 0;
3400 		retried = true;
3401 		goto again;
3402 	} else if (WARN_ON(failed && retried)) {
3403 		ret = -ENOSPC;
3404 	}
3405 error:
3406 	btrfs_free_path(path);
3407 	return ret;
3408 }
3409 
3410 /*
3411  * return 1 : allocate a data chunk successfully,
3412  * return <0: errors during allocating a data chunk,
3413  * return 0 : no need to allocate a data chunk.
3414  */
3415 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3416 				      u64 chunk_offset)
3417 {
3418 	struct btrfs_block_group *cache;
3419 	u64 bytes_used;
3420 	u64 chunk_type;
3421 
3422 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3423 	ASSERT(cache);
3424 	chunk_type = cache->flags;
3425 	btrfs_put_block_group(cache);
3426 
3427 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3428 		return 0;
3429 
3430 	spin_lock(&fs_info->data_sinfo->lock);
3431 	bytes_used = fs_info->data_sinfo->bytes_used;
3432 	spin_unlock(&fs_info->data_sinfo->lock);
3433 
3434 	if (!bytes_used) {
3435 		struct btrfs_trans_handle *trans;
3436 		int ret;
3437 
3438 		trans =	btrfs_join_transaction(fs_info->tree_root);
3439 		if (IS_ERR(trans))
3440 			return PTR_ERR(trans);
3441 
3442 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3443 		btrfs_end_transaction(trans);
3444 		if (ret < 0)
3445 			return ret;
3446 		return 1;
3447 	}
3448 
3449 	return 0;
3450 }
3451 
3452 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3453 			       struct btrfs_balance_control *bctl)
3454 {
3455 	struct btrfs_root *root = fs_info->tree_root;
3456 	struct btrfs_trans_handle *trans;
3457 	struct btrfs_balance_item *item;
3458 	struct btrfs_disk_balance_args disk_bargs;
3459 	struct btrfs_path *path;
3460 	struct extent_buffer *leaf;
3461 	struct btrfs_key key;
3462 	int ret, err;
3463 
3464 	path = btrfs_alloc_path();
3465 	if (!path)
3466 		return -ENOMEM;
3467 
3468 	trans = btrfs_start_transaction(root, 0);
3469 	if (IS_ERR(trans)) {
3470 		btrfs_free_path(path);
3471 		return PTR_ERR(trans);
3472 	}
3473 
3474 	key.objectid = BTRFS_BALANCE_OBJECTID;
3475 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3476 	key.offset = 0;
3477 
3478 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3479 				      sizeof(*item));
3480 	if (ret)
3481 		goto out;
3482 
3483 	leaf = path->nodes[0];
3484 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3485 
3486 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3487 
3488 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3489 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3490 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3491 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3492 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3493 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3494 
3495 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3496 
3497 	btrfs_mark_buffer_dirty(trans, leaf);
3498 out:
3499 	btrfs_free_path(path);
3500 	err = btrfs_commit_transaction(trans);
3501 	if (err && !ret)
3502 		ret = err;
3503 	return ret;
3504 }
3505 
3506 static int del_balance_item(struct btrfs_fs_info *fs_info)
3507 {
3508 	struct btrfs_root *root = fs_info->tree_root;
3509 	struct btrfs_trans_handle *trans;
3510 	struct btrfs_path *path;
3511 	struct btrfs_key key;
3512 	int ret, err;
3513 
3514 	path = btrfs_alloc_path();
3515 	if (!path)
3516 		return -ENOMEM;
3517 
3518 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3519 	if (IS_ERR(trans)) {
3520 		btrfs_free_path(path);
3521 		return PTR_ERR(trans);
3522 	}
3523 
3524 	key.objectid = BTRFS_BALANCE_OBJECTID;
3525 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3526 	key.offset = 0;
3527 
3528 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3529 	if (ret < 0)
3530 		goto out;
3531 	if (ret > 0) {
3532 		ret = -ENOENT;
3533 		goto out;
3534 	}
3535 
3536 	ret = btrfs_del_item(trans, root, path);
3537 out:
3538 	btrfs_free_path(path);
3539 	err = btrfs_commit_transaction(trans);
3540 	if (err && !ret)
3541 		ret = err;
3542 	return ret;
3543 }
3544 
3545 /*
3546  * This is a heuristic used to reduce the number of chunks balanced on
3547  * resume after balance was interrupted.
3548  */
3549 static void update_balance_args(struct btrfs_balance_control *bctl)
3550 {
3551 	/*
3552 	 * Turn on soft mode for chunk types that were being converted.
3553 	 */
3554 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3555 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3556 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3557 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3558 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3559 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3560 
3561 	/*
3562 	 * Turn on usage filter if is not already used.  The idea is
3563 	 * that chunks that we have already balanced should be
3564 	 * reasonably full.  Don't do it for chunks that are being
3565 	 * converted - that will keep us from relocating unconverted
3566 	 * (albeit full) chunks.
3567 	 */
3568 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3569 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3570 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3571 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3572 		bctl->data.usage = 90;
3573 	}
3574 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3575 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3576 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3577 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3578 		bctl->sys.usage = 90;
3579 	}
3580 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3581 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3582 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3583 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3584 		bctl->meta.usage = 90;
3585 	}
3586 }
3587 
3588 /*
3589  * Clear the balance status in fs_info and delete the balance item from disk.
3590  */
3591 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3592 {
3593 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3594 	int ret;
3595 
3596 	BUG_ON(!fs_info->balance_ctl);
3597 
3598 	spin_lock(&fs_info->balance_lock);
3599 	fs_info->balance_ctl = NULL;
3600 	spin_unlock(&fs_info->balance_lock);
3601 
3602 	kfree(bctl);
3603 	ret = del_balance_item(fs_info);
3604 	if (ret)
3605 		btrfs_handle_fs_error(fs_info, ret, NULL);
3606 }
3607 
3608 /*
3609  * Balance filters.  Return 1 if chunk should be filtered out
3610  * (should not be balanced).
3611  */
3612 static int chunk_profiles_filter(u64 chunk_type,
3613 				 struct btrfs_balance_args *bargs)
3614 {
3615 	chunk_type = chunk_to_extended(chunk_type) &
3616 				BTRFS_EXTENDED_PROFILE_MASK;
3617 
3618 	if (bargs->profiles & chunk_type)
3619 		return 0;
3620 
3621 	return 1;
3622 }
3623 
3624 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3625 			      struct btrfs_balance_args *bargs)
3626 {
3627 	struct btrfs_block_group *cache;
3628 	u64 chunk_used;
3629 	u64 user_thresh_min;
3630 	u64 user_thresh_max;
3631 	int ret = 1;
3632 
3633 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3634 	chunk_used = cache->used;
3635 
3636 	if (bargs->usage_min == 0)
3637 		user_thresh_min = 0;
3638 	else
3639 		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3640 
3641 	if (bargs->usage_max == 0)
3642 		user_thresh_max = 1;
3643 	else if (bargs->usage_max > 100)
3644 		user_thresh_max = cache->length;
3645 	else
3646 		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3647 
3648 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3649 		ret = 0;
3650 
3651 	btrfs_put_block_group(cache);
3652 	return ret;
3653 }
3654 
3655 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3656 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3657 {
3658 	struct btrfs_block_group *cache;
3659 	u64 chunk_used, user_thresh;
3660 	int ret = 1;
3661 
3662 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3663 	chunk_used = cache->used;
3664 
3665 	if (bargs->usage_min == 0)
3666 		user_thresh = 1;
3667 	else if (bargs->usage > 100)
3668 		user_thresh = cache->length;
3669 	else
3670 		user_thresh = mult_perc(cache->length, bargs->usage);
3671 
3672 	if (chunk_used < user_thresh)
3673 		ret = 0;
3674 
3675 	btrfs_put_block_group(cache);
3676 	return ret;
3677 }
3678 
3679 static int chunk_devid_filter(struct extent_buffer *leaf,
3680 			      struct btrfs_chunk *chunk,
3681 			      struct btrfs_balance_args *bargs)
3682 {
3683 	struct btrfs_stripe *stripe;
3684 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3685 	int i;
3686 
3687 	for (i = 0; i < num_stripes; i++) {
3688 		stripe = btrfs_stripe_nr(chunk, i);
3689 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3690 			return 0;
3691 	}
3692 
3693 	return 1;
3694 }
3695 
3696 static u64 calc_data_stripes(u64 type, int num_stripes)
3697 {
3698 	const int index = btrfs_bg_flags_to_raid_index(type);
3699 	const int ncopies = btrfs_raid_array[index].ncopies;
3700 	const int nparity = btrfs_raid_array[index].nparity;
3701 
3702 	return (num_stripes - nparity) / ncopies;
3703 }
3704 
3705 /* [pstart, pend) */
3706 static int chunk_drange_filter(struct extent_buffer *leaf,
3707 			       struct btrfs_chunk *chunk,
3708 			       struct btrfs_balance_args *bargs)
3709 {
3710 	struct btrfs_stripe *stripe;
3711 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3712 	u64 stripe_offset;
3713 	u64 stripe_length;
3714 	u64 type;
3715 	int factor;
3716 	int i;
3717 
3718 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3719 		return 0;
3720 
3721 	type = btrfs_chunk_type(leaf, chunk);
3722 	factor = calc_data_stripes(type, num_stripes);
3723 
3724 	for (i = 0; i < num_stripes; i++) {
3725 		stripe = btrfs_stripe_nr(chunk, i);
3726 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3727 			continue;
3728 
3729 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3730 		stripe_length = btrfs_chunk_length(leaf, chunk);
3731 		stripe_length = div_u64(stripe_length, factor);
3732 
3733 		if (stripe_offset < bargs->pend &&
3734 		    stripe_offset + stripe_length > bargs->pstart)
3735 			return 0;
3736 	}
3737 
3738 	return 1;
3739 }
3740 
3741 /* [vstart, vend) */
3742 static int chunk_vrange_filter(struct extent_buffer *leaf,
3743 			       struct btrfs_chunk *chunk,
3744 			       u64 chunk_offset,
3745 			       struct btrfs_balance_args *bargs)
3746 {
3747 	if (chunk_offset < bargs->vend &&
3748 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3749 		/* at least part of the chunk is inside this vrange */
3750 		return 0;
3751 
3752 	return 1;
3753 }
3754 
3755 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3756 			       struct btrfs_chunk *chunk,
3757 			       struct btrfs_balance_args *bargs)
3758 {
3759 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3760 
3761 	if (bargs->stripes_min <= num_stripes
3762 			&& num_stripes <= bargs->stripes_max)
3763 		return 0;
3764 
3765 	return 1;
3766 }
3767 
3768 static int chunk_soft_convert_filter(u64 chunk_type,
3769 				     struct btrfs_balance_args *bargs)
3770 {
3771 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3772 		return 0;
3773 
3774 	chunk_type = chunk_to_extended(chunk_type) &
3775 				BTRFS_EXTENDED_PROFILE_MASK;
3776 
3777 	if (bargs->target == chunk_type)
3778 		return 1;
3779 
3780 	return 0;
3781 }
3782 
3783 static int should_balance_chunk(struct extent_buffer *leaf,
3784 				struct btrfs_chunk *chunk, u64 chunk_offset)
3785 {
3786 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3787 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3788 	struct btrfs_balance_args *bargs = NULL;
3789 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3790 
3791 	/* type filter */
3792 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3793 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3794 		return 0;
3795 	}
3796 
3797 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3798 		bargs = &bctl->data;
3799 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3800 		bargs = &bctl->sys;
3801 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3802 		bargs = &bctl->meta;
3803 
3804 	/* profiles filter */
3805 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3806 	    chunk_profiles_filter(chunk_type, bargs)) {
3807 		return 0;
3808 	}
3809 
3810 	/* usage filter */
3811 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3812 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3813 		return 0;
3814 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3815 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3816 		return 0;
3817 	}
3818 
3819 	/* devid filter */
3820 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3821 	    chunk_devid_filter(leaf, chunk, bargs)) {
3822 		return 0;
3823 	}
3824 
3825 	/* drange filter, makes sense only with devid filter */
3826 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3827 	    chunk_drange_filter(leaf, chunk, bargs)) {
3828 		return 0;
3829 	}
3830 
3831 	/* vrange filter */
3832 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3833 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3834 		return 0;
3835 	}
3836 
3837 	/* stripes filter */
3838 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3839 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3840 		return 0;
3841 	}
3842 
3843 	/* soft profile changing mode */
3844 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3845 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3846 		return 0;
3847 	}
3848 
3849 	/*
3850 	 * limited by count, must be the last filter
3851 	 */
3852 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3853 		if (bargs->limit == 0)
3854 			return 0;
3855 		else
3856 			bargs->limit--;
3857 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3858 		/*
3859 		 * Same logic as the 'limit' filter; the minimum cannot be
3860 		 * determined here because we do not have the global information
3861 		 * about the count of all chunks that satisfy the filters.
3862 		 */
3863 		if (bargs->limit_max == 0)
3864 			return 0;
3865 		else
3866 			bargs->limit_max--;
3867 	}
3868 
3869 	return 1;
3870 }
3871 
3872 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3873 {
3874 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3875 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3876 	u64 chunk_type;
3877 	struct btrfs_chunk *chunk;
3878 	struct btrfs_path *path = NULL;
3879 	struct btrfs_key key;
3880 	struct btrfs_key found_key;
3881 	struct extent_buffer *leaf;
3882 	int slot;
3883 	int ret;
3884 	int enospc_errors = 0;
3885 	bool counting = true;
3886 	/* The single value limit and min/max limits use the same bytes in the */
3887 	u64 limit_data = bctl->data.limit;
3888 	u64 limit_meta = bctl->meta.limit;
3889 	u64 limit_sys = bctl->sys.limit;
3890 	u32 count_data = 0;
3891 	u32 count_meta = 0;
3892 	u32 count_sys = 0;
3893 	int chunk_reserved = 0;
3894 
3895 	path = btrfs_alloc_path();
3896 	if (!path) {
3897 		ret = -ENOMEM;
3898 		goto error;
3899 	}
3900 
3901 	/* zero out stat counters */
3902 	spin_lock(&fs_info->balance_lock);
3903 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3904 	spin_unlock(&fs_info->balance_lock);
3905 again:
3906 	if (!counting) {
3907 		/*
3908 		 * The single value limit and min/max limits use the same bytes
3909 		 * in the
3910 		 */
3911 		bctl->data.limit = limit_data;
3912 		bctl->meta.limit = limit_meta;
3913 		bctl->sys.limit = limit_sys;
3914 	}
3915 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3916 	key.offset = (u64)-1;
3917 	key.type = BTRFS_CHUNK_ITEM_KEY;
3918 
3919 	while (1) {
3920 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3921 		    atomic_read(&fs_info->balance_cancel_req)) {
3922 			ret = -ECANCELED;
3923 			goto error;
3924 		}
3925 
3926 		mutex_lock(&fs_info->reclaim_bgs_lock);
3927 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3928 		if (ret < 0) {
3929 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3930 			goto error;
3931 		}
3932 
3933 		/*
3934 		 * this shouldn't happen, it means the last relocate
3935 		 * failed
3936 		 */
3937 		if (ret == 0)
3938 			BUG(); /* FIXME break ? */
3939 
3940 		ret = btrfs_previous_item(chunk_root, path, 0,
3941 					  BTRFS_CHUNK_ITEM_KEY);
3942 		if (ret) {
3943 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3944 			ret = 0;
3945 			break;
3946 		}
3947 
3948 		leaf = path->nodes[0];
3949 		slot = path->slots[0];
3950 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3951 
3952 		if (found_key.objectid != key.objectid) {
3953 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3954 			break;
3955 		}
3956 
3957 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3958 		chunk_type = btrfs_chunk_type(leaf, chunk);
3959 
3960 		if (!counting) {
3961 			spin_lock(&fs_info->balance_lock);
3962 			bctl->stat.considered++;
3963 			spin_unlock(&fs_info->balance_lock);
3964 		}
3965 
3966 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3967 
3968 		btrfs_release_path(path);
3969 		if (!ret) {
3970 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3971 			goto loop;
3972 		}
3973 
3974 		if (counting) {
3975 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3976 			spin_lock(&fs_info->balance_lock);
3977 			bctl->stat.expected++;
3978 			spin_unlock(&fs_info->balance_lock);
3979 
3980 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3981 				count_data++;
3982 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3983 				count_sys++;
3984 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3985 				count_meta++;
3986 
3987 			goto loop;
3988 		}
3989 
3990 		/*
3991 		 * Apply limit_min filter, no need to check if the LIMITS
3992 		 * filter is used, limit_min is 0 by default
3993 		 */
3994 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3995 					count_data < bctl->data.limit_min)
3996 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3997 					count_meta < bctl->meta.limit_min)
3998 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3999 					count_sys < bctl->sys.limit_min)) {
4000 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4001 			goto loop;
4002 		}
4003 
4004 		if (!chunk_reserved) {
4005 			/*
4006 			 * We may be relocating the only data chunk we have,
4007 			 * which could potentially end up with losing data's
4008 			 * raid profile, so lets allocate an empty one in
4009 			 * advance.
4010 			 */
4011 			ret = btrfs_may_alloc_data_chunk(fs_info,
4012 							 found_key.offset);
4013 			if (ret < 0) {
4014 				mutex_unlock(&fs_info->reclaim_bgs_lock);
4015 				goto error;
4016 			} else if (ret == 1) {
4017 				chunk_reserved = 1;
4018 			}
4019 		}
4020 
4021 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4022 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4023 		if (ret == -ENOSPC) {
4024 			enospc_errors++;
4025 		} else if (ret == -ETXTBSY) {
4026 			btrfs_info(fs_info,
4027 	   "skipping relocation of block group %llu due to active swapfile",
4028 				   found_key.offset);
4029 			ret = 0;
4030 		} else if (ret) {
4031 			goto error;
4032 		} else {
4033 			spin_lock(&fs_info->balance_lock);
4034 			bctl->stat.completed++;
4035 			spin_unlock(&fs_info->balance_lock);
4036 		}
4037 loop:
4038 		if (found_key.offset == 0)
4039 			break;
4040 		key.offset = found_key.offset - 1;
4041 	}
4042 
4043 	if (counting) {
4044 		btrfs_release_path(path);
4045 		counting = false;
4046 		goto again;
4047 	}
4048 error:
4049 	btrfs_free_path(path);
4050 	if (enospc_errors) {
4051 		btrfs_info(fs_info, "%d enospc errors during balance",
4052 			   enospc_errors);
4053 		if (!ret)
4054 			ret = -ENOSPC;
4055 	}
4056 
4057 	return ret;
4058 }
4059 
4060 /*
4061  * See if a given profile is valid and reduced.
4062  *
4063  * @flags:     profile to validate
4064  * @extended:  if true @flags is treated as an extended profile
4065  */
4066 static int alloc_profile_is_valid(u64 flags, int extended)
4067 {
4068 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4069 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4070 
4071 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4072 
4073 	/* 1) check that all other bits are zeroed */
4074 	if (flags & ~mask)
4075 		return 0;
4076 
4077 	/* 2) see if profile is reduced */
4078 	if (flags == 0)
4079 		return !extended; /* "0" is valid for usual profiles */
4080 
4081 	return has_single_bit_set(flags);
4082 }
4083 
4084 /*
4085  * Validate target profile against allowed profiles and return true if it's OK.
4086  * Otherwise print the error message and return false.
4087  */
4088 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4089 		const struct btrfs_balance_args *bargs,
4090 		u64 allowed, const char *type)
4091 {
4092 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4093 		return true;
4094 
4095 	/* Profile is valid and does not have bits outside of the allowed set */
4096 	if (alloc_profile_is_valid(bargs->target, 1) &&
4097 	    (bargs->target & ~allowed) == 0)
4098 		return true;
4099 
4100 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4101 			type, btrfs_bg_type_to_raid_name(bargs->target));
4102 	return false;
4103 }
4104 
4105 /*
4106  * Fill @buf with textual description of balance filter flags @bargs, up to
4107  * @size_buf including the terminating null. The output may be trimmed if it
4108  * does not fit into the provided buffer.
4109  */
4110 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4111 				 u32 size_buf)
4112 {
4113 	int ret;
4114 	u32 size_bp = size_buf;
4115 	char *bp = buf;
4116 	u64 flags = bargs->flags;
4117 	char tmp_buf[128] = {'\0'};
4118 
4119 	if (!flags)
4120 		return;
4121 
4122 #define CHECK_APPEND_NOARG(a)						\
4123 	do {								\
4124 		ret = snprintf(bp, size_bp, (a));			\
4125 		if (ret < 0 || ret >= size_bp)				\
4126 			goto out_overflow;				\
4127 		size_bp -= ret;						\
4128 		bp += ret;						\
4129 	} while (0)
4130 
4131 #define CHECK_APPEND_1ARG(a, v1)					\
4132 	do {								\
4133 		ret = snprintf(bp, size_bp, (a), (v1));			\
4134 		if (ret < 0 || ret >= size_bp)				\
4135 			goto out_overflow;				\
4136 		size_bp -= ret;						\
4137 		bp += ret;						\
4138 	} while (0)
4139 
4140 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4141 	do {								\
4142 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4143 		if (ret < 0 || ret >= size_bp)				\
4144 			goto out_overflow;				\
4145 		size_bp -= ret;						\
4146 		bp += ret;						\
4147 	} while (0)
4148 
4149 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4150 		CHECK_APPEND_1ARG("convert=%s,",
4151 				  btrfs_bg_type_to_raid_name(bargs->target));
4152 
4153 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4154 		CHECK_APPEND_NOARG("soft,");
4155 
4156 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4157 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4158 					    sizeof(tmp_buf));
4159 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4160 	}
4161 
4162 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4163 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4164 
4165 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4166 		CHECK_APPEND_2ARG("usage=%u..%u,",
4167 				  bargs->usage_min, bargs->usage_max);
4168 
4169 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4170 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4171 
4172 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4173 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4174 				  bargs->pstart, bargs->pend);
4175 
4176 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4177 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4178 				  bargs->vstart, bargs->vend);
4179 
4180 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4181 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4182 
4183 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4184 		CHECK_APPEND_2ARG("limit=%u..%u,",
4185 				bargs->limit_min, bargs->limit_max);
4186 
4187 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4188 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4189 				  bargs->stripes_min, bargs->stripes_max);
4190 
4191 #undef CHECK_APPEND_2ARG
4192 #undef CHECK_APPEND_1ARG
4193 #undef CHECK_APPEND_NOARG
4194 
4195 out_overflow:
4196 
4197 	if (size_bp < size_buf)
4198 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4199 	else
4200 		buf[0] = '\0';
4201 }
4202 
4203 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4204 {
4205 	u32 size_buf = 1024;
4206 	char tmp_buf[192] = {'\0'};
4207 	char *buf;
4208 	char *bp;
4209 	u32 size_bp = size_buf;
4210 	int ret;
4211 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4212 
4213 	buf = kzalloc(size_buf, GFP_KERNEL);
4214 	if (!buf)
4215 		return;
4216 
4217 	bp = buf;
4218 
4219 #define CHECK_APPEND_1ARG(a, v1)					\
4220 	do {								\
4221 		ret = snprintf(bp, size_bp, (a), (v1));			\
4222 		if (ret < 0 || ret >= size_bp)				\
4223 			goto out_overflow;				\
4224 		size_bp -= ret;						\
4225 		bp += ret;						\
4226 	} while (0)
4227 
4228 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4229 		CHECK_APPEND_1ARG("%s", "-f ");
4230 
4231 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4232 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4233 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4234 	}
4235 
4236 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4237 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4238 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4239 	}
4240 
4241 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4242 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4243 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4244 	}
4245 
4246 #undef CHECK_APPEND_1ARG
4247 
4248 out_overflow:
4249 
4250 	if (size_bp < size_buf)
4251 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4252 	btrfs_info(fs_info, "balance: %s %s",
4253 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4254 		   "resume" : "start", buf);
4255 
4256 	kfree(buf);
4257 }
4258 
4259 /*
4260  * Should be called with balance mutexe held
4261  */
4262 int btrfs_balance(struct btrfs_fs_info *fs_info,
4263 		  struct btrfs_balance_control *bctl,
4264 		  struct btrfs_ioctl_balance_args *bargs)
4265 {
4266 	u64 meta_target, data_target;
4267 	u64 allowed;
4268 	int mixed = 0;
4269 	int ret;
4270 	u64 num_devices;
4271 	unsigned seq;
4272 	bool reducing_redundancy;
4273 	bool paused = false;
4274 	int i;
4275 
4276 	if (btrfs_fs_closing(fs_info) ||
4277 	    atomic_read(&fs_info->balance_pause_req) ||
4278 	    btrfs_should_cancel_balance(fs_info)) {
4279 		ret = -EINVAL;
4280 		goto out;
4281 	}
4282 
4283 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4284 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4285 		mixed = 1;
4286 
4287 	/*
4288 	 * In case of mixed groups both data and meta should be picked,
4289 	 * and identical options should be given for both of them.
4290 	 */
4291 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4292 	if (mixed && (bctl->flags & allowed)) {
4293 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4294 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4295 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4296 			btrfs_err(fs_info,
4297 	  "balance: mixed groups data and metadata options must be the same");
4298 			ret = -EINVAL;
4299 			goto out;
4300 		}
4301 	}
4302 
4303 	/*
4304 	 * rw_devices will not change at the moment, device add/delete/replace
4305 	 * are exclusive
4306 	 */
4307 	num_devices = fs_info->fs_devices->rw_devices;
4308 
4309 	/*
4310 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4311 	 * special bit for it, to make it easier to distinguish.  Thus we need
4312 	 * to set it manually, or balance would refuse the profile.
4313 	 */
4314 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4315 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4316 		if (num_devices >= btrfs_raid_array[i].devs_min)
4317 			allowed |= btrfs_raid_array[i].bg_flag;
4318 
4319 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4320 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4321 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4322 		ret = -EINVAL;
4323 		goto out;
4324 	}
4325 
4326 	/*
4327 	 * Allow to reduce metadata or system integrity only if force set for
4328 	 * profiles with redundancy (copies, parity)
4329 	 */
4330 	allowed = 0;
4331 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4332 		if (btrfs_raid_array[i].ncopies >= 2 ||
4333 		    btrfs_raid_array[i].tolerated_failures >= 1)
4334 			allowed |= btrfs_raid_array[i].bg_flag;
4335 	}
4336 	do {
4337 		seq = read_seqbegin(&fs_info->profiles_lock);
4338 
4339 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4340 		     (fs_info->avail_system_alloc_bits & allowed) &&
4341 		     !(bctl->sys.target & allowed)) ||
4342 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4343 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4344 		     !(bctl->meta.target & allowed)))
4345 			reducing_redundancy = true;
4346 		else
4347 			reducing_redundancy = false;
4348 
4349 		/* if we're not converting, the target field is uninitialized */
4350 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4351 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4352 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4353 			bctl->data.target : fs_info->avail_data_alloc_bits;
4354 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4355 
4356 	if (reducing_redundancy) {
4357 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4358 			btrfs_info(fs_info,
4359 			   "balance: force reducing metadata redundancy");
4360 		} else {
4361 			btrfs_err(fs_info,
4362 	"balance: reduces metadata redundancy, use --force if you want this");
4363 			ret = -EINVAL;
4364 			goto out;
4365 		}
4366 	}
4367 
4368 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4369 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4370 		btrfs_warn(fs_info,
4371 	"balance: metadata profile %s has lower redundancy than data profile %s",
4372 				btrfs_bg_type_to_raid_name(meta_target),
4373 				btrfs_bg_type_to_raid_name(data_target));
4374 	}
4375 
4376 	ret = insert_balance_item(fs_info, bctl);
4377 	if (ret && ret != -EEXIST)
4378 		goto out;
4379 
4380 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4381 		BUG_ON(ret == -EEXIST);
4382 		BUG_ON(fs_info->balance_ctl);
4383 		spin_lock(&fs_info->balance_lock);
4384 		fs_info->balance_ctl = bctl;
4385 		spin_unlock(&fs_info->balance_lock);
4386 	} else {
4387 		BUG_ON(ret != -EEXIST);
4388 		spin_lock(&fs_info->balance_lock);
4389 		update_balance_args(bctl);
4390 		spin_unlock(&fs_info->balance_lock);
4391 	}
4392 
4393 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4394 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4395 	describe_balance_start_or_resume(fs_info);
4396 	mutex_unlock(&fs_info->balance_mutex);
4397 
4398 	ret = __btrfs_balance(fs_info);
4399 
4400 	mutex_lock(&fs_info->balance_mutex);
4401 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4402 		btrfs_info(fs_info, "balance: paused");
4403 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4404 		paused = true;
4405 	}
4406 	/*
4407 	 * Balance can be canceled by:
4408 	 *
4409 	 * - Regular cancel request
4410 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4411 	 *
4412 	 * - Fatal signal to "btrfs" process
4413 	 *   Either the signal caught by wait_reserve_ticket() and callers
4414 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4415 	 *   got -ECANCELED.
4416 	 *   Either way, in this case balance_cancel_req = 0, and
4417 	 *   ret == -EINTR or ret == -ECANCELED.
4418 	 *
4419 	 * So here we only check the return value to catch canceled balance.
4420 	 */
4421 	else if (ret == -ECANCELED || ret == -EINTR)
4422 		btrfs_info(fs_info, "balance: canceled");
4423 	else
4424 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4425 
4426 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4427 
4428 	if (bargs) {
4429 		memset(bargs, 0, sizeof(*bargs));
4430 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4431 	}
4432 
4433 	/* We didn't pause, we can clean everything up. */
4434 	if (!paused) {
4435 		reset_balance_state(fs_info);
4436 		btrfs_exclop_finish(fs_info);
4437 	}
4438 
4439 	wake_up(&fs_info->balance_wait_q);
4440 
4441 	return ret;
4442 out:
4443 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4444 		reset_balance_state(fs_info);
4445 	else
4446 		kfree(bctl);
4447 	btrfs_exclop_finish(fs_info);
4448 
4449 	return ret;
4450 }
4451 
4452 static int balance_kthread(void *data)
4453 {
4454 	struct btrfs_fs_info *fs_info = data;
4455 	int ret = 0;
4456 
4457 	sb_start_write(fs_info->sb);
4458 	mutex_lock(&fs_info->balance_mutex);
4459 	if (fs_info->balance_ctl)
4460 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4461 	mutex_unlock(&fs_info->balance_mutex);
4462 	sb_end_write(fs_info->sb);
4463 
4464 	return ret;
4465 }
4466 
4467 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4468 {
4469 	struct task_struct *tsk;
4470 
4471 	mutex_lock(&fs_info->balance_mutex);
4472 	if (!fs_info->balance_ctl) {
4473 		mutex_unlock(&fs_info->balance_mutex);
4474 		return 0;
4475 	}
4476 	mutex_unlock(&fs_info->balance_mutex);
4477 
4478 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4479 		btrfs_info(fs_info, "balance: resume skipped");
4480 		return 0;
4481 	}
4482 
4483 	spin_lock(&fs_info->super_lock);
4484 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4485 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4486 	spin_unlock(&fs_info->super_lock);
4487 	/*
4488 	 * A ro->rw remount sequence should continue with the paused balance
4489 	 * regardless of who pauses it, system or the user as of now, so set
4490 	 * the resume flag.
4491 	 */
4492 	spin_lock(&fs_info->balance_lock);
4493 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4494 	spin_unlock(&fs_info->balance_lock);
4495 
4496 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4497 	return PTR_ERR_OR_ZERO(tsk);
4498 }
4499 
4500 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4501 {
4502 	struct btrfs_balance_control *bctl;
4503 	struct btrfs_balance_item *item;
4504 	struct btrfs_disk_balance_args disk_bargs;
4505 	struct btrfs_path *path;
4506 	struct extent_buffer *leaf;
4507 	struct btrfs_key key;
4508 	int ret;
4509 
4510 	path = btrfs_alloc_path();
4511 	if (!path)
4512 		return -ENOMEM;
4513 
4514 	key.objectid = BTRFS_BALANCE_OBJECTID;
4515 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4516 	key.offset = 0;
4517 
4518 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4519 	if (ret < 0)
4520 		goto out;
4521 	if (ret > 0) { /* ret = -ENOENT; */
4522 		ret = 0;
4523 		goto out;
4524 	}
4525 
4526 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4527 	if (!bctl) {
4528 		ret = -ENOMEM;
4529 		goto out;
4530 	}
4531 
4532 	leaf = path->nodes[0];
4533 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4534 
4535 	bctl->flags = btrfs_balance_flags(leaf, item);
4536 	bctl->flags |= BTRFS_BALANCE_RESUME;
4537 
4538 	btrfs_balance_data(leaf, item, &disk_bargs);
4539 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4540 	btrfs_balance_meta(leaf, item, &disk_bargs);
4541 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4542 	btrfs_balance_sys(leaf, item, &disk_bargs);
4543 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4544 
4545 	/*
4546 	 * This should never happen, as the paused balance state is recovered
4547 	 * during mount without any chance of other exclusive ops to collide.
4548 	 *
4549 	 * This gives the exclusive op status to balance and keeps in paused
4550 	 * state until user intervention (cancel or umount). If the ownership
4551 	 * cannot be assigned, show a message but do not fail. The balance
4552 	 * is in a paused state and must have fs_info::balance_ctl properly
4553 	 * set up.
4554 	 */
4555 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4556 		btrfs_warn(fs_info,
4557 	"balance: cannot set exclusive op status, resume manually");
4558 
4559 	btrfs_release_path(path);
4560 
4561 	mutex_lock(&fs_info->balance_mutex);
4562 	BUG_ON(fs_info->balance_ctl);
4563 	spin_lock(&fs_info->balance_lock);
4564 	fs_info->balance_ctl = bctl;
4565 	spin_unlock(&fs_info->balance_lock);
4566 	mutex_unlock(&fs_info->balance_mutex);
4567 out:
4568 	btrfs_free_path(path);
4569 	return ret;
4570 }
4571 
4572 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4573 {
4574 	int ret = 0;
4575 
4576 	mutex_lock(&fs_info->balance_mutex);
4577 	if (!fs_info->balance_ctl) {
4578 		mutex_unlock(&fs_info->balance_mutex);
4579 		return -ENOTCONN;
4580 	}
4581 
4582 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4583 		atomic_inc(&fs_info->balance_pause_req);
4584 		mutex_unlock(&fs_info->balance_mutex);
4585 
4586 		wait_event(fs_info->balance_wait_q,
4587 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4588 
4589 		mutex_lock(&fs_info->balance_mutex);
4590 		/* we are good with balance_ctl ripped off from under us */
4591 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4592 		atomic_dec(&fs_info->balance_pause_req);
4593 	} else {
4594 		ret = -ENOTCONN;
4595 	}
4596 
4597 	mutex_unlock(&fs_info->balance_mutex);
4598 	return ret;
4599 }
4600 
4601 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4602 {
4603 	mutex_lock(&fs_info->balance_mutex);
4604 	if (!fs_info->balance_ctl) {
4605 		mutex_unlock(&fs_info->balance_mutex);
4606 		return -ENOTCONN;
4607 	}
4608 
4609 	/*
4610 	 * A paused balance with the item stored on disk can be resumed at
4611 	 * mount time if the mount is read-write. Otherwise it's still paused
4612 	 * and we must not allow cancelling as it deletes the item.
4613 	 */
4614 	if (sb_rdonly(fs_info->sb)) {
4615 		mutex_unlock(&fs_info->balance_mutex);
4616 		return -EROFS;
4617 	}
4618 
4619 	atomic_inc(&fs_info->balance_cancel_req);
4620 	/*
4621 	 * if we are running just wait and return, balance item is
4622 	 * deleted in btrfs_balance in this case
4623 	 */
4624 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4625 		mutex_unlock(&fs_info->balance_mutex);
4626 		wait_event(fs_info->balance_wait_q,
4627 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4628 		mutex_lock(&fs_info->balance_mutex);
4629 	} else {
4630 		mutex_unlock(&fs_info->balance_mutex);
4631 		/*
4632 		 * Lock released to allow other waiters to continue, we'll
4633 		 * reexamine the status again.
4634 		 */
4635 		mutex_lock(&fs_info->balance_mutex);
4636 
4637 		if (fs_info->balance_ctl) {
4638 			reset_balance_state(fs_info);
4639 			btrfs_exclop_finish(fs_info);
4640 			btrfs_info(fs_info, "balance: canceled");
4641 		}
4642 	}
4643 
4644 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4645 	atomic_dec(&fs_info->balance_cancel_req);
4646 	mutex_unlock(&fs_info->balance_mutex);
4647 	return 0;
4648 }
4649 
4650 int btrfs_uuid_scan_kthread(void *data)
4651 {
4652 	struct btrfs_fs_info *fs_info = data;
4653 	struct btrfs_root *root = fs_info->tree_root;
4654 	struct btrfs_key key;
4655 	struct btrfs_path *path = NULL;
4656 	int ret = 0;
4657 	struct extent_buffer *eb;
4658 	int slot;
4659 	struct btrfs_root_item root_item;
4660 	u32 item_size;
4661 	struct btrfs_trans_handle *trans = NULL;
4662 	bool closing = false;
4663 
4664 	path = btrfs_alloc_path();
4665 	if (!path) {
4666 		ret = -ENOMEM;
4667 		goto out;
4668 	}
4669 
4670 	key.objectid = 0;
4671 	key.type = BTRFS_ROOT_ITEM_KEY;
4672 	key.offset = 0;
4673 
4674 	while (1) {
4675 		if (btrfs_fs_closing(fs_info)) {
4676 			closing = true;
4677 			break;
4678 		}
4679 		ret = btrfs_search_forward(root, &key, path,
4680 				BTRFS_OLDEST_GENERATION);
4681 		if (ret) {
4682 			if (ret > 0)
4683 				ret = 0;
4684 			break;
4685 		}
4686 
4687 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4688 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4689 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4690 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4691 			goto skip;
4692 
4693 		eb = path->nodes[0];
4694 		slot = path->slots[0];
4695 		item_size = btrfs_item_size(eb, slot);
4696 		if (item_size < sizeof(root_item))
4697 			goto skip;
4698 
4699 		read_extent_buffer(eb, &root_item,
4700 				   btrfs_item_ptr_offset(eb, slot),
4701 				   (int)sizeof(root_item));
4702 		if (btrfs_root_refs(&root_item) == 0)
4703 			goto skip;
4704 
4705 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4706 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4707 			if (trans)
4708 				goto update_tree;
4709 
4710 			btrfs_release_path(path);
4711 			/*
4712 			 * 1 - subvol uuid item
4713 			 * 1 - received_subvol uuid item
4714 			 */
4715 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4716 			if (IS_ERR(trans)) {
4717 				ret = PTR_ERR(trans);
4718 				break;
4719 			}
4720 			continue;
4721 		} else {
4722 			goto skip;
4723 		}
4724 update_tree:
4725 		btrfs_release_path(path);
4726 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4727 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4728 						  BTRFS_UUID_KEY_SUBVOL,
4729 						  key.objectid);
4730 			if (ret < 0) {
4731 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4732 					ret);
4733 				break;
4734 			}
4735 		}
4736 
4737 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4738 			ret = btrfs_uuid_tree_add(trans,
4739 						  root_item.received_uuid,
4740 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4741 						  key.objectid);
4742 			if (ret < 0) {
4743 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4744 					ret);
4745 				break;
4746 			}
4747 		}
4748 
4749 skip:
4750 		btrfs_release_path(path);
4751 		if (trans) {
4752 			ret = btrfs_end_transaction(trans);
4753 			trans = NULL;
4754 			if (ret)
4755 				break;
4756 		}
4757 
4758 		if (key.offset < (u64)-1) {
4759 			key.offset++;
4760 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4761 			key.offset = 0;
4762 			key.type = BTRFS_ROOT_ITEM_KEY;
4763 		} else if (key.objectid < (u64)-1) {
4764 			key.offset = 0;
4765 			key.type = BTRFS_ROOT_ITEM_KEY;
4766 			key.objectid++;
4767 		} else {
4768 			break;
4769 		}
4770 		cond_resched();
4771 	}
4772 
4773 out:
4774 	btrfs_free_path(path);
4775 	if (trans && !IS_ERR(trans))
4776 		btrfs_end_transaction(trans);
4777 	if (ret)
4778 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4779 	else if (!closing)
4780 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4781 	up(&fs_info->uuid_tree_rescan_sem);
4782 	return 0;
4783 }
4784 
4785 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4786 {
4787 	struct btrfs_trans_handle *trans;
4788 	struct btrfs_root *tree_root = fs_info->tree_root;
4789 	struct btrfs_root *uuid_root;
4790 	struct task_struct *task;
4791 	int ret;
4792 
4793 	/*
4794 	 * 1 - root node
4795 	 * 1 - root item
4796 	 */
4797 	trans = btrfs_start_transaction(tree_root, 2);
4798 	if (IS_ERR(trans))
4799 		return PTR_ERR(trans);
4800 
4801 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4802 	if (IS_ERR(uuid_root)) {
4803 		ret = PTR_ERR(uuid_root);
4804 		btrfs_abort_transaction(trans, ret);
4805 		btrfs_end_transaction(trans);
4806 		return ret;
4807 	}
4808 
4809 	fs_info->uuid_root = uuid_root;
4810 
4811 	ret = btrfs_commit_transaction(trans);
4812 	if (ret)
4813 		return ret;
4814 
4815 	down(&fs_info->uuid_tree_rescan_sem);
4816 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4817 	if (IS_ERR(task)) {
4818 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4819 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4820 		up(&fs_info->uuid_tree_rescan_sem);
4821 		return PTR_ERR(task);
4822 	}
4823 
4824 	return 0;
4825 }
4826 
4827 /*
4828  * shrinking a device means finding all of the device extents past
4829  * the new size, and then following the back refs to the chunks.
4830  * The chunk relocation code actually frees the device extent
4831  */
4832 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4833 {
4834 	struct btrfs_fs_info *fs_info = device->fs_info;
4835 	struct btrfs_root *root = fs_info->dev_root;
4836 	struct btrfs_trans_handle *trans;
4837 	struct btrfs_dev_extent *dev_extent = NULL;
4838 	struct btrfs_path *path;
4839 	u64 length;
4840 	u64 chunk_offset;
4841 	int ret;
4842 	int slot;
4843 	int failed = 0;
4844 	bool retried = false;
4845 	struct extent_buffer *l;
4846 	struct btrfs_key key;
4847 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4848 	u64 old_total = btrfs_super_total_bytes(super_copy);
4849 	u64 old_size = btrfs_device_get_total_bytes(device);
4850 	u64 diff;
4851 	u64 start;
4852 
4853 	new_size = round_down(new_size, fs_info->sectorsize);
4854 	start = new_size;
4855 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4856 
4857 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4858 		return -EINVAL;
4859 
4860 	path = btrfs_alloc_path();
4861 	if (!path)
4862 		return -ENOMEM;
4863 
4864 	path->reada = READA_BACK;
4865 
4866 	trans = btrfs_start_transaction(root, 0);
4867 	if (IS_ERR(trans)) {
4868 		btrfs_free_path(path);
4869 		return PTR_ERR(trans);
4870 	}
4871 
4872 	mutex_lock(&fs_info->chunk_mutex);
4873 
4874 	btrfs_device_set_total_bytes(device, new_size);
4875 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4876 		device->fs_devices->total_rw_bytes -= diff;
4877 		atomic64_sub(diff, &fs_info->free_chunk_space);
4878 	}
4879 
4880 	/*
4881 	 * Once the device's size has been set to the new size, ensure all
4882 	 * in-memory chunks are synced to disk so that the loop below sees them
4883 	 * and relocates them accordingly.
4884 	 */
4885 	if (contains_pending_extent(device, &start, diff)) {
4886 		mutex_unlock(&fs_info->chunk_mutex);
4887 		ret = btrfs_commit_transaction(trans);
4888 		if (ret)
4889 			goto done;
4890 	} else {
4891 		mutex_unlock(&fs_info->chunk_mutex);
4892 		btrfs_end_transaction(trans);
4893 	}
4894 
4895 again:
4896 	key.objectid = device->devid;
4897 	key.offset = (u64)-1;
4898 	key.type = BTRFS_DEV_EXTENT_KEY;
4899 
4900 	do {
4901 		mutex_lock(&fs_info->reclaim_bgs_lock);
4902 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4903 		if (ret < 0) {
4904 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4905 			goto done;
4906 		}
4907 
4908 		ret = btrfs_previous_item(root, path, 0, key.type);
4909 		if (ret) {
4910 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4911 			if (ret < 0)
4912 				goto done;
4913 			ret = 0;
4914 			btrfs_release_path(path);
4915 			break;
4916 		}
4917 
4918 		l = path->nodes[0];
4919 		slot = path->slots[0];
4920 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4921 
4922 		if (key.objectid != device->devid) {
4923 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4924 			btrfs_release_path(path);
4925 			break;
4926 		}
4927 
4928 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4929 		length = btrfs_dev_extent_length(l, dev_extent);
4930 
4931 		if (key.offset + length <= new_size) {
4932 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4933 			btrfs_release_path(path);
4934 			break;
4935 		}
4936 
4937 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4938 		btrfs_release_path(path);
4939 
4940 		/*
4941 		 * We may be relocating the only data chunk we have,
4942 		 * which could potentially end up with losing data's
4943 		 * raid profile, so lets allocate an empty one in
4944 		 * advance.
4945 		 */
4946 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4947 		if (ret < 0) {
4948 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4949 			goto done;
4950 		}
4951 
4952 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4953 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4954 		if (ret == -ENOSPC) {
4955 			failed++;
4956 		} else if (ret) {
4957 			if (ret == -ETXTBSY) {
4958 				btrfs_warn(fs_info,
4959 		   "could not shrink block group %llu due to active swapfile",
4960 					   chunk_offset);
4961 			}
4962 			goto done;
4963 		}
4964 	} while (key.offset-- > 0);
4965 
4966 	if (failed && !retried) {
4967 		failed = 0;
4968 		retried = true;
4969 		goto again;
4970 	} else if (failed && retried) {
4971 		ret = -ENOSPC;
4972 		goto done;
4973 	}
4974 
4975 	/* Shrinking succeeded, else we would be at "done". */
4976 	trans = btrfs_start_transaction(root, 0);
4977 	if (IS_ERR(trans)) {
4978 		ret = PTR_ERR(trans);
4979 		goto done;
4980 	}
4981 
4982 	mutex_lock(&fs_info->chunk_mutex);
4983 	/* Clear all state bits beyond the shrunk device size */
4984 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4985 			  CHUNK_STATE_MASK);
4986 
4987 	btrfs_device_set_disk_total_bytes(device, new_size);
4988 	if (list_empty(&device->post_commit_list))
4989 		list_add_tail(&device->post_commit_list,
4990 			      &trans->transaction->dev_update_list);
4991 
4992 	WARN_ON(diff > old_total);
4993 	btrfs_set_super_total_bytes(super_copy,
4994 			round_down(old_total - diff, fs_info->sectorsize));
4995 	mutex_unlock(&fs_info->chunk_mutex);
4996 
4997 	btrfs_reserve_chunk_metadata(trans, false);
4998 	/* Now btrfs_update_device() will change the on-disk size. */
4999 	ret = btrfs_update_device(trans, device);
5000 	btrfs_trans_release_chunk_metadata(trans);
5001 	if (ret < 0) {
5002 		btrfs_abort_transaction(trans, ret);
5003 		btrfs_end_transaction(trans);
5004 	} else {
5005 		ret = btrfs_commit_transaction(trans);
5006 	}
5007 done:
5008 	btrfs_free_path(path);
5009 	if (ret) {
5010 		mutex_lock(&fs_info->chunk_mutex);
5011 		btrfs_device_set_total_bytes(device, old_size);
5012 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5013 			device->fs_devices->total_rw_bytes += diff;
5014 		atomic64_add(diff, &fs_info->free_chunk_space);
5015 		mutex_unlock(&fs_info->chunk_mutex);
5016 	}
5017 	return ret;
5018 }
5019 
5020 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5021 			   struct btrfs_key *key,
5022 			   struct btrfs_chunk *chunk, int item_size)
5023 {
5024 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5025 	struct btrfs_disk_key disk_key;
5026 	u32 array_size;
5027 	u8 *ptr;
5028 
5029 	lockdep_assert_held(&fs_info->chunk_mutex);
5030 
5031 	array_size = btrfs_super_sys_array_size(super_copy);
5032 	if (array_size + item_size + sizeof(disk_key)
5033 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5034 		return -EFBIG;
5035 
5036 	ptr = super_copy->sys_chunk_array + array_size;
5037 	btrfs_cpu_key_to_disk(&disk_key, key);
5038 	memcpy(ptr, &disk_key, sizeof(disk_key));
5039 	ptr += sizeof(disk_key);
5040 	memcpy(ptr, chunk, item_size);
5041 	item_size += sizeof(disk_key);
5042 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5043 
5044 	return 0;
5045 }
5046 
5047 /*
5048  * sort the devices in descending order by max_avail, total_avail
5049  */
5050 static int btrfs_cmp_device_info(const void *a, const void *b)
5051 {
5052 	const struct btrfs_device_info *di_a = a;
5053 	const struct btrfs_device_info *di_b = b;
5054 
5055 	if (di_a->max_avail > di_b->max_avail)
5056 		return -1;
5057 	if (di_a->max_avail < di_b->max_avail)
5058 		return 1;
5059 	if (di_a->total_avail > di_b->total_avail)
5060 		return -1;
5061 	if (di_a->total_avail < di_b->total_avail)
5062 		return 1;
5063 	return 0;
5064 }
5065 
5066 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5067 {
5068 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5069 		return;
5070 
5071 	btrfs_set_fs_incompat(info, RAID56);
5072 }
5073 
5074 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5075 {
5076 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5077 		return;
5078 
5079 	btrfs_set_fs_incompat(info, RAID1C34);
5080 }
5081 
5082 /*
5083  * Structure used internally for btrfs_create_chunk() function.
5084  * Wraps needed parameters.
5085  */
5086 struct alloc_chunk_ctl {
5087 	u64 start;
5088 	u64 type;
5089 	/* Total number of stripes to allocate */
5090 	int num_stripes;
5091 	/* sub_stripes info for map */
5092 	int sub_stripes;
5093 	/* Stripes per device */
5094 	int dev_stripes;
5095 	/* Maximum number of devices to use */
5096 	int devs_max;
5097 	/* Minimum number of devices to use */
5098 	int devs_min;
5099 	/* ndevs has to be a multiple of this */
5100 	int devs_increment;
5101 	/* Number of copies */
5102 	int ncopies;
5103 	/* Number of stripes worth of bytes to store parity information */
5104 	int nparity;
5105 	u64 max_stripe_size;
5106 	u64 max_chunk_size;
5107 	u64 dev_extent_min;
5108 	u64 stripe_size;
5109 	u64 chunk_size;
5110 	int ndevs;
5111 };
5112 
5113 static void init_alloc_chunk_ctl_policy_regular(
5114 				struct btrfs_fs_devices *fs_devices,
5115 				struct alloc_chunk_ctl *ctl)
5116 {
5117 	struct btrfs_space_info *space_info;
5118 
5119 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5120 	ASSERT(space_info);
5121 
5122 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5123 	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5124 
5125 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5126 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5127 
5128 	/* We don't want a chunk larger than 10% of writable space */
5129 	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5130 				  ctl->max_chunk_size);
5131 	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5132 }
5133 
5134 static void init_alloc_chunk_ctl_policy_zoned(
5135 				      struct btrfs_fs_devices *fs_devices,
5136 				      struct alloc_chunk_ctl *ctl)
5137 {
5138 	u64 zone_size = fs_devices->fs_info->zone_size;
5139 	u64 limit;
5140 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5141 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5142 	u64 min_chunk_size = min_data_stripes * zone_size;
5143 	u64 type = ctl->type;
5144 
5145 	ctl->max_stripe_size = zone_size;
5146 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5147 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5148 						 zone_size);
5149 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5150 		ctl->max_chunk_size = ctl->max_stripe_size;
5151 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5152 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5153 		ctl->devs_max = min_t(int, ctl->devs_max,
5154 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5155 	} else {
5156 		BUG();
5157 	}
5158 
5159 	/* We don't want a chunk larger than 10% of writable space */
5160 	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5161 			       zone_size),
5162 		    min_chunk_size);
5163 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5164 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5165 }
5166 
5167 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5168 				 struct alloc_chunk_ctl *ctl)
5169 {
5170 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5171 
5172 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5173 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5174 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5175 	if (!ctl->devs_max)
5176 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5177 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5178 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5179 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5180 	ctl->nparity = btrfs_raid_array[index].nparity;
5181 	ctl->ndevs = 0;
5182 
5183 	switch (fs_devices->chunk_alloc_policy) {
5184 	case BTRFS_CHUNK_ALLOC_REGULAR:
5185 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5186 		break;
5187 	case BTRFS_CHUNK_ALLOC_ZONED:
5188 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5189 		break;
5190 	default:
5191 		BUG();
5192 	}
5193 }
5194 
5195 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5196 			      struct alloc_chunk_ctl *ctl,
5197 			      struct btrfs_device_info *devices_info)
5198 {
5199 	struct btrfs_fs_info *info = fs_devices->fs_info;
5200 	struct btrfs_device *device;
5201 	u64 total_avail;
5202 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5203 	int ret;
5204 	int ndevs = 0;
5205 	u64 max_avail;
5206 	u64 dev_offset;
5207 
5208 	/*
5209 	 * in the first pass through the devices list, we gather information
5210 	 * about the available holes on each device.
5211 	 */
5212 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5213 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5214 			WARN(1, KERN_ERR
5215 			       "BTRFS: read-only device in alloc_list\n");
5216 			continue;
5217 		}
5218 
5219 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5220 					&device->dev_state) ||
5221 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5222 			continue;
5223 
5224 		if (device->total_bytes > device->bytes_used)
5225 			total_avail = device->total_bytes - device->bytes_used;
5226 		else
5227 			total_avail = 0;
5228 
5229 		/* If there is no space on this device, skip it. */
5230 		if (total_avail < ctl->dev_extent_min)
5231 			continue;
5232 
5233 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5234 					   &max_avail);
5235 		if (ret && ret != -ENOSPC)
5236 			return ret;
5237 
5238 		if (ret == 0)
5239 			max_avail = dev_extent_want;
5240 
5241 		if (max_avail < ctl->dev_extent_min) {
5242 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5243 				btrfs_debug(info,
5244 			"%s: devid %llu has no free space, have=%llu want=%llu",
5245 					    __func__, device->devid, max_avail,
5246 					    ctl->dev_extent_min);
5247 			continue;
5248 		}
5249 
5250 		if (ndevs == fs_devices->rw_devices) {
5251 			WARN(1, "%s: found more than %llu devices\n",
5252 			     __func__, fs_devices->rw_devices);
5253 			break;
5254 		}
5255 		devices_info[ndevs].dev_offset = dev_offset;
5256 		devices_info[ndevs].max_avail = max_avail;
5257 		devices_info[ndevs].total_avail = total_avail;
5258 		devices_info[ndevs].dev = device;
5259 		++ndevs;
5260 	}
5261 	ctl->ndevs = ndevs;
5262 
5263 	/*
5264 	 * now sort the devices by hole size / available space
5265 	 */
5266 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5267 	     btrfs_cmp_device_info, NULL);
5268 
5269 	return 0;
5270 }
5271 
5272 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5273 				      struct btrfs_device_info *devices_info)
5274 {
5275 	/* Number of stripes that count for block group size */
5276 	int data_stripes;
5277 
5278 	/*
5279 	 * The primary goal is to maximize the number of stripes, so use as
5280 	 * many devices as possible, even if the stripes are not maximum sized.
5281 	 *
5282 	 * The DUP profile stores more than one stripe per device, the
5283 	 * max_avail is the total size so we have to adjust.
5284 	 */
5285 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5286 				   ctl->dev_stripes);
5287 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5288 
5289 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5290 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5291 
5292 	/*
5293 	 * Use the number of data stripes to figure out how big this chunk is
5294 	 * really going to be in terms of logical address space, and compare
5295 	 * that answer with the max chunk size. If it's higher, we try to
5296 	 * reduce stripe_size.
5297 	 */
5298 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5299 		/*
5300 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5301 		 * then use it, unless it ends up being even bigger than the
5302 		 * previous value we had already.
5303 		 */
5304 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5305 							data_stripes), SZ_16M),
5306 				       ctl->stripe_size);
5307 	}
5308 
5309 	/* Stripe size should not go beyond 1G. */
5310 	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5311 
5312 	/* Align to BTRFS_STRIPE_LEN */
5313 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5314 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5315 
5316 	return 0;
5317 }
5318 
5319 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5320 				    struct btrfs_device_info *devices_info)
5321 {
5322 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5323 	/* Number of stripes that count for block group size */
5324 	int data_stripes;
5325 
5326 	/*
5327 	 * It should hold because:
5328 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5329 	 */
5330 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5331 
5332 	ctl->stripe_size = zone_size;
5333 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5334 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5335 
5336 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5337 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5338 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5339 					     ctl->stripe_size) + ctl->nparity,
5340 				     ctl->dev_stripes);
5341 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5342 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5343 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5344 	}
5345 
5346 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5347 
5348 	return 0;
5349 }
5350 
5351 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5352 			      struct alloc_chunk_ctl *ctl,
5353 			      struct btrfs_device_info *devices_info)
5354 {
5355 	struct btrfs_fs_info *info = fs_devices->fs_info;
5356 
5357 	/*
5358 	 * Round down to number of usable stripes, devs_increment can be any
5359 	 * number so we can't use round_down() that requires power of 2, while
5360 	 * rounddown is safe.
5361 	 */
5362 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5363 
5364 	if (ctl->ndevs < ctl->devs_min) {
5365 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5366 			btrfs_debug(info,
5367 	"%s: not enough devices with free space: have=%d minimum required=%d",
5368 				    __func__, ctl->ndevs, ctl->devs_min);
5369 		}
5370 		return -ENOSPC;
5371 	}
5372 
5373 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5374 
5375 	switch (fs_devices->chunk_alloc_policy) {
5376 	case BTRFS_CHUNK_ALLOC_REGULAR:
5377 		return decide_stripe_size_regular(ctl, devices_info);
5378 	case BTRFS_CHUNK_ALLOC_ZONED:
5379 		return decide_stripe_size_zoned(ctl, devices_info);
5380 	default:
5381 		BUG();
5382 	}
5383 }
5384 
5385 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5386 			struct alloc_chunk_ctl *ctl,
5387 			struct btrfs_device_info *devices_info)
5388 {
5389 	struct btrfs_fs_info *info = trans->fs_info;
5390 	struct map_lookup *map = NULL;
5391 	struct extent_map_tree *em_tree;
5392 	struct btrfs_block_group *block_group;
5393 	struct extent_map *em;
5394 	u64 start = ctl->start;
5395 	u64 type = ctl->type;
5396 	int ret;
5397 	int i;
5398 	int j;
5399 
5400 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5401 	if (!map)
5402 		return ERR_PTR(-ENOMEM);
5403 	map->num_stripes = ctl->num_stripes;
5404 
5405 	for (i = 0; i < ctl->ndevs; ++i) {
5406 		for (j = 0; j < ctl->dev_stripes; ++j) {
5407 			int s = i * ctl->dev_stripes + j;
5408 			map->stripes[s].dev = devices_info[i].dev;
5409 			map->stripes[s].physical = devices_info[i].dev_offset +
5410 						   j * ctl->stripe_size;
5411 		}
5412 	}
5413 	map->io_align = BTRFS_STRIPE_LEN;
5414 	map->io_width = BTRFS_STRIPE_LEN;
5415 	map->type = type;
5416 	map->sub_stripes = ctl->sub_stripes;
5417 
5418 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5419 
5420 	em = alloc_extent_map();
5421 	if (!em) {
5422 		kfree(map);
5423 		return ERR_PTR(-ENOMEM);
5424 	}
5425 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5426 	em->map_lookup = map;
5427 	em->start = start;
5428 	em->len = ctl->chunk_size;
5429 	em->block_start = 0;
5430 	em->block_len = em->len;
5431 	em->orig_block_len = ctl->stripe_size;
5432 
5433 	em_tree = &info->mapping_tree;
5434 	write_lock(&em_tree->lock);
5435 	ret = add_extent_mapping(em_tree, em, 0);
5436 	if (ret) {
5437 		write_unlock(&em_tree->lock);
5438 		free_extent_map(em);
5439 		return ERR_PTR(ret);
5440 	}
5441 	write_unlock(&em_tree->lock);
5442 
5443 	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5444 	if (IS_ERR(block_group))
5445 		goto error_del_extent;
5446 
5447 	for (i = 0; i < map->num_stripes; i++) {
5448 		struct btrfs_device *dev = map->stripes[i].dev;
5449 
5450 		btrfs_device_set_bytes_used(dev,
5451 					    dev->bytes_used + ctl->stripe_size);
5452 		if (list_empty(&dev->post_commit_list))
5453 			list_add_tail(&dev->post_commit_list,
5454 				      &trans->transaction->dev_update_list);
5455 	}
5456 
5457 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5458 		     &info->free_chunk_space);
5459 
5460 	free_extent_map(em);
5461 	check_raid56_incompat_flag(info, type);
5462 	check_raid1c34_incompat_flag(info, type);
5463 
5464 	return block_group;
5465 
5466 error_del_extent:
5467 	write_lock(&em_tree->lock);
5468 	remove_extent_mapping(em_tree, em);
5469 	write_unlock(&em_tree->lock);
5470 
5471 	/* One for our allocation */
5472 	free_extent_map(em);
5473 	/* One for the tree reference */
5474 	free_extent_map(em);
5475 
5476 	return block_group;
5477 }
5478 
5479 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5480 					    u64 type)
5481 {
5482 	struct btrfs_fs_info *info = trans->fs_info;
5483 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5484 	struct btrfs_device_info *devices_info = NULL;
5485 	struct alloc_chunk_ctl ctl;
5486 	struct btrfs_block_group *block_group;
5487 	int ret;
5488 
5489 	lockdep_assert_held(&info->chunk_mutex);
5490 
5491 	if (!alloc_profile_is_valid(type, 0)) {
5492 		ASSERT(0);
5493 		return ERR_PTR(-EINVAL);
5494 	}
5495 
5496 	if (list_empty(&fs_devices->alloc_list)) {
5497 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5498 			btrfs_debug(info, "%s: no writable device", __func__);
5499 		return ERR_PTR(-ENOSPC);
5500 	}
5501 
5502 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5503 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5504 		ASSERT(0);
5505 		return ERR_PTR(-EINVAL);
5506 	}
5507 
5508 	ctl.start = find_next_chunk(info);
5509 	ctl.type = type;
5510 	init_alloc_chunk_ctl(fs_devices, &ctl);
5511 
5512 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5513 			       GFP_NOFS);
5514 	if (!devices_info)
5515 		return ERR_PTR(-ENOMEM);
5516 
5517 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5518 	if (ret < 0) {
5519 		block_group = ERR_PTR(ret);
5520 		goto out;
5521 	}
5522 
5523 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5524 	if (ret < 0) {
5525 		block_group = ERR_PTR(ret);
5526 		goto out;
5527 	}
5528 
5529 	block_group = create_chunk(trans, &ctl, devices_info);
5530 
5531 out:
5532 	kfree(devices_info);
5533 	return block_group;
5534 }
5535 
5536 /*
5537  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5538  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5539  * chunks.
5540  *
5541  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5542  * phases.
5543  */
5544 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5545 				     struct btrfs_block_group *bg)
5546 {
5547 	struct btrfs_fs_info *fs_info = trans->fs_info;
5548 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5549 	struct btrfs_key key;
5550 	struct btrfs_chunk *chunk;
5551 	struct btrfs_stripe *stripe;
5552 	struct extent_map *em;
5553 	struct map_lookup *map;
5554 	size_t item_size;
5555 	int i;
5556 	int ret;
5557 
5558 	/*
5559 	 * We take the chunk_mutex for 2 reasons:
5560 	 *
5561 	 * 1) Updates and insertions in the chunk btree must be done while holding
5562 	 *    the chunk_mutex, as well as updating the system chunk array in the
5563 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5564 	 *    details;
5565 	 *
5566 	 * 2) To prevent races with the final phase of a device replace operation
5567 	 *    that replaces the device object associated with the map's stripes,
5568 	 *    because the device object's id can change at any time during that
5569 	 *    final phase of the device replace operation
5570 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5571 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5572 	 *    which would cause a failure when updating the device item, which does
5573 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5574 	 *    Here we can't use the device_list_mutex because our caller already
5575 	 *    has locked the chunk_mutex, and the final phase of device replace
5576 	 *    acquires both mutexes - first the device_list_mutex and then the
5577 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5578 	 *    concurrent device replace.
5579 	 */
5580 	lockdep_assert_held(&fs_info->chunk_mutex);
5581 
5582 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5583 	if (IS_ERR(em)) {
5584 		ret = PTR_ERR(em);
5585 		btrfs_abort_transaction(trans, ret);
5586 		return ret;
5587 	}
5588 
5589 	map = em->map_lookup;
5590 	item_size = btrfs_chunk_item_size(map->num_stripes);
5591 
5592 	chunk = kzalloc(item_size, GFP_NOFS);
5593 	if (!chunk) {
5594 		ret = -ENOMEM;
5595 		btrfs_abort_transaction(trans, ret);
5596 		goto out;
5597 	}
5598 
5599 	for (i = 0; i < map->num_stripes; i++) {
5600 		struct btrfs_device *device = map->stripes[i].dev;
5601 
5602 		ret = btrfs_update_device(trans, device);
5603 		if (ret)
5604 			goto out;
5605 	}
5606 
5607 	stripe = &chunk->stripe;
5608 	for (i = 0; i < map->num_stripes; i++) {
5609 		struct btrfs_device *device = map->stripes[i].dev;
5610 		const u64 dev_offset = map->stripes[i].physical;
5611 
5612 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5613 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5614 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5615 		stripe++;
5616 	}
5617 
5618 	btrfs_set_stack_chunk_length(chunk, bg->length);
5619 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5620 	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5621 	btrfs_set_stack_chunk_type(chunk, map->type);
5622 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5623 	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5624 	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5625 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5626 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5627 
5628 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5629 	key.type = BTRFS_CHUNK_ITEM_KEY;
5630 	key.offset = bg->start;
5631 
5632 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5633 	if (ret)
5634 		goto out;
5635 
5636 	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5637 
5638 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5639 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5640 		if (ret)
5641 			goto out;
5642 	}
5643 
5644 out:
5645 	kfree(chunk);
5646 	free_extent_map(em);
5647 	return ret;
5648 }
5649 
5650 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5651 {
5652 	struct btrfs_fs_info *fs_info = trans->fs_info;
5653 	u64 alloc_profile;
5654 	struct btrfs_block_group *meta_bg;
5655 	struct btrfs_block_group *sys_bg;
5656 
5657 	/*
5658 	 * When adding a new device for sprouting, the seed device is read-only
5659 	 * so we must first allocate a metadata and a system chunk. But before
5660 	 * adding the block group items to the extent, device and chunk btrees,
5661 	 * we must first:
5662 	 *
5663 	 * 1) Create both chunks without doing any changes to the btrees, as
5664 	 *    otherwise we would get -ENOSPC since the block groups from the
5665 	 *    seed device are read-only;
5666 	 *
5667 	 * 2) Add the device item for the new sprout device - finishing the setup
5668 	 *    of a new block group requires updating the device item in the chunk
5669 	 *    btree, so it must exist when we attempt to do it. The previous step
5670 	 *    ensures this does not fail with -ENOSPC.
5671 	 *
5672 	 * After that we can add the block group items to their btrees:
5673 	 * update existing device item in the chunk btree, add a new block group
5674 	 * item to the extent btree, add a new chunk item to the chunk btree and
5675 	 * finally add the new device extent items to the devices btree.
5676 	 */
5677 
5678 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5679 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5680 	if (IS_ERR(meta_bg))
5681 		return PTR_ERR(meta_bg);
5682 
5683 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5684 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5685 	if (IS_ERR(sys_bg))
5686 		return PTR_ERR(sys_bg);
5687 
5688 	return 0;
5689 }
5690 
5691 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5692 {
5693 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5694 
5695 	return btrfs_raid_array[index].tolerated_failures;
5696 }
5697 
5698 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5699 {
5700 	struct extent_map *em;
5701 	struct map_lookup *map;
5702 	int miss_ndevs = 0;
5703 	int i;
5704 	bool ret = true;
5705 
5706 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5707 	if (IS_ERR(em))
5708 		return false;
5709 
5710 	map = em->map_lookup;
5711 	for (i = 0; i < map->num_stripes; i++) {
5712 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5713 					&map->stripes[i].dev->dev_state)) {
5714 			miss_ndevs++;
5715 			continue;
5716 		}
5717 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5718 					&map->stripes[i].dev->dev_state)) {
5719 			ret = false;
5720 			goto end;
5721 		}
5722 	}
5723 
5724 	/*
5725 	 * If the number of missing devices is larger than max errors, we can
5726 	 * not write the data into that chunk successfully.
5727 	 */
5728 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5729 		ret = false;
5730 end:
5731 	free_extent_map(em);
5732 	return ret;
5733 }
5734 
5735 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5736 {
5737 	struct extent_map *em;
5738 
5739 	while (1) {
5740 		write_lock(&tree->lock);
5741 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5742 		if (em)
5743 			remove_extent_mapping(tree, em);
5744 		write_unlock(&tree->lock);
5745 		if (!em)
5746 			break;
5747 		/* once for us */
5748 		free_extent_map(em);
5749 		/* once for the tree */
5750 		free_extent_map(em);
5751 	}
5752 }
5753 
5754 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5755 {
5756 	struct extent_map *em;
5757 	struct map_lookup *map;
5758 	enum btrfs_raid_types index;
5759 	int ret = 1;
5760 
5761 	em = btrfs_get_chunk_map(fs_info, logical, len);
5762 	if (IS_ERR(em))
5763 		/*
5764 		 * We could return errors for these cases, but that could get
5765 		 * ugly and we'd probably do the same thing which is just not do
5766 		 * anything else and exit, so return 1 so the callers don't try
5767 		 * to use other copies.
5768 		 */
5769 		return 1;
5770 
5771 	map = em->map_lookup;
5772 	index = btrfs_bg_flags_to_raid_index(map->type);
5773 
5774 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5775 	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5776 		ret = btrfs_raid_array[index].ncopies;
5777 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5778 		ret = 2;
5779 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5780 		/*
5781 		 * There could be two corrupted data stripes, we need
5782 		 * to loop retry in order to rebuild the correct data.
5783 		 *
5784 		 * Fail a stripe at a time on every retry except the
5785 		 * stripe under reconstruction.
5786 		 */
5787 		ret = map->num_stripes;
5788 	free_extent_map(em);
5789 	return ret;
5790 }
5791 
5792 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5793 				    u64 logical)
5794 {
5795 	struct extent_map *em;
5796 	struct map_lookup *map;
5797 	unsigned long len = fs_info->sectorsize;
5798 
5799 	if (!btrfs_fs_incompat(fs_info, RAID56))
5800 		return len;
5801 
5802 	em = btrfs_get_chunk_map(fs_info, logical, len);
5803 
5804 	if (!WARN_ON(IS_ERR(em))) {
5805 		map = em->map_lookup;
5806 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5807 			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5808 		free_extent_map(em);
5809 	}
5810 	return len;
5811 }
5812 
5813 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5814 {
5815 	struct extent_map *em;
5816 	struct map_lookup *map;
5817 	int ret = 0;
5818 
5819 	if (!btrfs_fs_incompat(fs_info, RAID56))
5820 		return 0;
5821 
5822 	em = btrfs_get_chunk_map(fs_info, logical, len);
5823 
5824 	if(!WARN_ON(IS_ERR(em))) {
5825 		map = em->map_lookup;
5826 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5827 			ret = 1;
5828 		free_extent_map(em);
5829 	}
5830 	return ret;
5831 }
5832 
5833 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5834 			    struct map_lookup *map, int first,
5835 			    int dev_replace_is_ongoing)
5836 {
5837 	int i;
5838 	int num_stripes;
5839 	int preferred_mirror;
5840 	int tolerance;
5841 	struct btrfs_device *srcdev;
5842 
5843 	ASSERT((map->type &
5844 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5845 
5846 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5847 		num_stripes = map->sub_stripes;
5848 	else
5849 		num_stripes = map->num_stripes;
5850 
5851 	switch (fs_info->fs_devices->read_policy) {
5852 	default:
5853 		/* Shouldn't happen, just warn and use pid instead of failing */
5854 		btrfs_warn_rl(fs_info,
5855 			      "unknown read_policy type %u, reset to pid",
5856 			      fs_info->fs_devices->read_policy);
5857 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5858 		fallthrough;
5859 	case BTRFS_READ_POLICY_PID:
5860 		preferred_mirror = first + (current->pid % num_stripes);
5861 		break;
5862 	}
5863 
5864 	if (dev_replace_is_ongoing &&
5865 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5866 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5867 		srcdev = fs_info->dev_replace.srcdev;
5868 	else
5869 		srcdev = NULL;
5870 
5871 	/*
5872 	 * try to avoid the drive that is the source drive for a
5873 	 * dev-replace procedure, only choose it if no other non-missing
5874 	 * mirror is available
5875 	 */
5876 	for (tolerance = 0; tolerance < 2; tolerance++) {
5877 		if (map->stripes[preferred_mirror].dev->bdev &&
5878 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5879 			return preferred_mirror;
5880 		for (i = first; i < first + num_stripes; i++) {
5881 			if (map->stripes[i].dev->bdev &&
5882 			    (tolerance || map->stripes[i].dev != srcdev))
5883 				return i;
5884 		}
5885 	}
5886 
5887 	/* we couldn't find one that doesn't fail.  Just return something
5888 	 * and the io error handling code will clean up eventually
5889 	 */
5890 	return preferred_mirror;
5891 }
5892 
5893 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5894 						       u16 total_stripes)
5895 {
5896 	struct btrfs_io_context *bioc;
5897 
5898 	bioc = kzalloc(
5899 		 /* The size of btrfs_io_context */
5900 		sizeof(struct btrfs_io_context) +
5901 		/* Plus the variable array for the stripes */
5902 		sizeof(struct btrfs_io_stripe) * (total_stripes),
5903 		GFP_NOFS);
5904 
5905 	if (!bioc)
5906 		return NULL;
5907 
5908 	refcount_set(&bioc->refs, 1);
5909 
5910 	bioc->fs_info = fs_info;
5911 	bioc->replace_stripe_src = -1;
5912 	bioc->full_stripe_logical = (u64)-1;
5913 
5914 	return bioc;
5915 }
5916 
5917 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5918 {
5919 	WARN_ON(!refcount_read(&bioc->refs));
5920 	refcount_inc(&bioc->refs);
5921 }
5922 
5923 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5924 {
5925 	if (!bioc)
5926 		return;
5927 	if (refcount_dec_and_test(&bioc->refs))
5928 		kfree(bioc);
5929 }
5930 
5931 /*
5932  * Please note that, discard won't be sent to target device of device
5933  * replace.
5934  */
5935 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5936 					       u64 logical, u64 *length_ret,
5937 					       u32 *num_stripes)
5938 {
5939 	struct extent_map *em;
5940 	struct map_lookup *map;
5941 	struct btrfs_discard_stripe *stripes;
5942 	u64 length = *length_ret;
5943 	u64 offset;
5944 	u32 stripe_nr;
5945 	u32 stripe_nr_end;
5946 	u32 stripe_cnt;
5947 	u64 stripe_end_offset;
5948 	u64 stripe_offset;
5949 	u32 stripe_index;
5950 	u32 factor = 0;
5951 	u32 sub_stripes = 0;
5952 	u32 stripes_per_dev = 0;
5953 	u32 remaining_stripes = 0;
5954 	u32 last_stripe = 0;
5955 	int ret;
5956 	int i;
5957 
5958 	em = btrfs_get_chunk_map(fs_info, logical, length);
5959 	if (IS_ERR(em))
5960 		return ERR_CAST(em);
5961 
5962 	map = em->map_lookup;
5963 
5964 	/* we don't discard raid56 yet */
5965 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5966 		ret = -EOPNOTSUPP;
5967 		goto out_free_map;
5968 	}
5969 
5970 	offset = logical - em->start;
5971 	length = min_t(u64, em->start + em->len - logical, length);
5972 	*length_ret = length;
5973 
5974 	/*
5975 	 * stripe_nr counts the total number of stripes we have to stride
5976 	 * to get to this block
5977 	 */
5978 	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
5979 
5980 	/* stripe_offset is the offset of this block in its stripe */
5981 	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
5982 
5983 	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
5984 			BTRFS_STRIPE_LEN_SHIFT;
5985 	stripe_cnt = stripe_nr_end - stripe_nr;
5986 	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
5987 			    (offset + length);
5988 	/*
5989 	 * after this, stripe_nr is the number of stripes on this
5990 	 * device we have to walk to find the data, and stripe_index is
5991 	 * the number of our device in the stripe array
5992 	 */
5993 	*num_stripes = 1;
5994 	stripe_index = 0;
5995 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5996 			 BTRFS_BLOCK_GROUP_RAID10)) {
5997 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5998 			sub_stripes = 1;
5999 		else
6000 			sub_stripes = map->sub_stripes;
6001 
6002 		factor = map->num_stripes / sub_stripes;
6003 		*num_stripes = min_t(u64, map->num_stripes,
6004 				    sub_stripes * stripe_cnt);
6005 		stripe_index = stripe_nr % factor;
6006 		stripe_nr /= factor;
6007 		stripe_index *= sub_stripes;
6008 
6009 		remaining_stripes = stripe_cnt % factor;
6010 		stripes_per_dev = stripe_cnt / factor;
6011 		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6012 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6013 				BTRFS_BLOCK_GROUP_DUP)) {
6014 		*num_stripes = map->num_stripes;
6015 	} else {
6016 		stripe_index = stripe_nr % map->num_stripes;
6017 		stripe_nr /= map->num_stripes;
6018 	}
6019 
6020 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6021 	if (!stripes) {
6022 		ret = -ENOMEM;
6023 		goto out_free_map;
6024 	}
6025 
6026 	for (i = 0; i < *num_stripes; i++) {
6027 		stripes[i].physical =
6028 			map->stripes[stripe_index].physical +
6029 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6030 		stripes[i].dev = map->stripes[stripe_index].dev;
6031 
6032 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6033 				 BTRFS_BLOCK_GROUP_RAID10)) {
6034 			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6035 
6036 			if (i / sub_stripes < remaining_stripes)
6037 				stripes[i].length += BTRFS_STRIPE_LEN;
6038 
6039 			/*
6040 			 * Special for the first stripe and
6041 			 * the last stripe:
6042 			 *
6043 			 * |-------|...|-------|
6044 			 *     |----------|
6045 			 *    off     end_off
6046 			 */
6047 			if (i < sub_stripes)
6048 				stripes[i].length -= stripe_offset;
6049 
6050 			if (stripe_index >= last_stripe &&
6051 			    stripe_index <= (last_stripe +
6052 					     sub_stripes - 1))
6053 				stripes[i].length -= stripe_end_offset;
6054 
6055 			if (i == sub_stripes - 1)
6056 				stripe_offset = 0;
6057 		} else {
6058 			stripes[i].length = length;
6059 		}
6060 
6061 		stripe_index++;
6062 		if (stripe_index == map->num_stripes) {
6063 			stripe_index = 0;
6064 			stripe_nr++;
6065 		}
6066 	}
6067 
6068 	free_extent_map(em);
6069 	return stripes;
6070 out_free_map:
6071 	free_extent_map(em);
6072 	return ERR_PTR(ret);
6073 }
6074 
6075 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6076 {
6077 	struct btrfs_block_group *cache;
6078 	bool ret;
6079 
6080 	/* Non zoned filesystem does not use "to_copy" flag */
6081 	if (!btrfs_is_zoned(fs_info))
6082 		return false;
6083 
6084 	cache = btrfs_lookup_block_group(fs_info, logical);
6085 
6086 	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6087 
6088 	btrfs_put_block_group(cache);
6089 	return ret;
6090 }
6091 
6092 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6093 				      struct btrfs_io_context *bioc,
6094 				      struct btrfs_dev_replace *dev_replace,
6095 				      u64 logical,
6096 				      int *num_stripes_ret, int *max_errors_ret)
6097 {
6098 	u64 srcdev_devid = dev_replace->srcdev->devid;
6099 	/*
6100 	 * At this stage, num_stripes is still the real number of stripes,
6101 	 * excluding the duplicated stripes.
6102 	 */
6103 	int num_stripes = *num_stripes_ret;
6104 	int nr_extra_stripes = 0;
6105 	int max_errors = *max_errors_ret;
6106 	int i;
6107 
6108 	/*
6109 	 * A block group which has "to_copy" set will eventually be copied by
6110 	 * the dev-replace process. We can avoid cloning IO here.
6111 	 */
6112 	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6113 		return;
6114 
6115 	/*
6116 	 * Duplicate the write operations while the dev-replace procedure is
6117 	 * running. Since the copying of the old disk to the new disk takes
6118 	 * place at run time while the filesystem is mounted writable, the
6119 	 * regular write operations to the old disk have to be duplicated to go
6120 	 * to the new disk as well.
6121 	 *
6122 	 * Note that device->missing is handled by the caller, and that the
6123 	 * write to the old disk is already set up in the stripes array.
6124 	 */
6125 	for (i = 0; i < num_stripes; i++) {
6126 		struct btrfs_io_stripe *old = &bioc->stripes[i];
6127 		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6128 
6129 		if (old->dev->devid != srcdev_devid)
6130 			continue;
6131 
6132 		new->physical = old->physical;
6133 		new->dev = dev_replace->tgtdev;
6134 		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6135 			bioc->replace_stripe_src = i;
6136 		nr_extra_stripes++;
6137 	}
6138 
6139 	/* We can only have at most 2 extra nr_stripes (for DUP). */
6140 	ASSERT(nr_extra_stripes <= 2);
6141 	/*
6142 	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6143 	 * replace.
6144 	 * If we have 2 extra stripes, only choose the one with smaller physical.
6145 	 */
6146 	if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6147 		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6148 		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6149 
6150 		/* Only DUP can have two extra stripes. */
6151 		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6152 
6153 		/*
6154 		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6155 		 * The extra stripe would still be there, but won't be accessed.
6156 		 */
6157 		if (first->physical > second->physical) {
6158 			swap(second->physical, first->physical);
6159 			swap(second->dev, first->dev);
6160 			nr_extra_stripes--;
6161 		}
6162 	}
6163 
6164 	*num_stripes_ret = num_stripes + nr_extra_stripes;
6165 	*max_errors_ret = max_errors + nr_extra_stripes;
6166 	bioc->replace_nr_stripes = nr_extra_stripes;
6167 }
6168 
6169 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
6170 			    u64 offset, u32 *stripe_nr, u64 *stripe_offset,
6171 			    u64 *full_stripe_start)
6172 {
6173 	/*
6174 	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6175 	 * the offset of this block in its stripe.
6176 	 */
6177 	*stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6178 	*stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6179 	ASSERT(*stripe_offset < U32_MAX);
6180 
6181 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6182 		unsigned long full_stripe_len =
6183 			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6184 
6185 		/*
6186 		 * For full stripe start, we use previously calculated
6187 		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6188 		 * STRIPE_LEN.
6189 		 *
6190 		 * By this we can avoid u64 division completely.  And we have
6191 		 * to go rounddown(), not round_down(), as nr_data_stripes is
6192 		 * not ensured to be power of 2.
6193 		 */
6194 		*full_stripe_start =
6195 			btrfs_stripe_nr_to_offset(
6196 				rounddown(*stripe_nr, nr_data_stripes(map)));
6197 
6198 		ASSERT(*full_stripe_start + full_stripe_len > offset);
6199 		ASSERT(*full_stripe_start <= offset);
6200 		/*
6201 		 * For writes to RAID56, allow to write a full stripe set, but
6202 		 * no straddling of stripe sets.
6203 		 */
6204 		if (op == BTRFS_MAP_WRITE)
6205 			return full_stripe_len - (offset - *full_stripe_start);
6206 	}
6207 
6208 	/*
6209 	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6210 	 * a single disk).
6211 	 */
6212 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6213 		return BTRFS_STRIPE_LEN - *stripe_offset;
6214 	return U64_MAX;
6215 }
6216 
6217 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6218 			  u32 stripe_index, u64 stripe_offset, u32 stripe_nr)
6219 {
6220 	dst->dev = map->stripes[stripe_index].dev;
6221 	dst->physical = map->stripes[stripe_index].physical +
6222 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6223 }
6224 
6225 /*
6226  * Map one logical range to one or more physical ranges.
6227  *
6228  * @length:		(Mandatory) mapped length of this run.
6229  *			One logical range can be split into different segments
6230  *			due to factors like zones and RAID0/5/6/10 stripe
6231  *			boundaries.
6232  *
6233  * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6234  *			which has one or more physical ranges (btrfs_io_stripe)
6235  *			recorded inside.
6236  *			Caller should call btrfs_put_bioc() to free it after use.
6237  *
6238  * @smap:		(Optional) single physical range optimization.
6239  *			If the map request can be fulfilled by one single
6240  *			physical range, and this is parameter is not NULL,
6241  *			then @bioc_ret would be NULL, and @smap would be
6242  *			updated.
6243  *
6244  * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6245  *			value is 0.
6246  *
6247  *			Mirror number 0 means to choose any live mirrors.
6248  *
6249  *			For non-RAID56 profiles, non-zero mirror_num means
6250  *			the Nth mirror. (e.g. mirror_num 1 means the first
6251  *			copy).
6252  *
6253  *			For RAID56 profile, mirror 1 means rebuild from P and
6254  *			the remaining data stripes.
6255  *
6256  *			For RAID6 profile, mirror > 2 means mark another
6257  *			data/P stripe error and rebuild from the remaining
6258  *			stripes..
6259  *
6260  * @need_raid_map:	(Used only for integrity checker) whether the map wants
6261  *                      a full stripe map (including all data and P/Q stripes)
6262  *                      for RAID56. Should always be 1 except integrity checker.
6263  */
6264 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6265 		    u64 logical, u64 *length,
6266 		    struct btrfs_io_context **bioc_ret,
6267 		    struct btrfs_io_stripe *smap, int *mirror_num_ret,
6268 		    int need_raid_map)
6269 {
6270 	struct extent_map *em;
6271 	struct map_lookup *map;
6272 	u64 map_offset;
6273 	u64 stripe_offset;
6274 	u32 stripe_nr;
6275 	u32 stripe_index;
6276 	int data_stripes;
6277 	int i;
6278 	int ret = 0;
6279 	int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6280 	int num_stripes;
6281 	int num_copies;
6282 	int max_errors = 0;
6283 	struct btrfs_io_context *bioc = NULL;
6284 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6285 	int dev_replace_is_ongoing = 0;
6286 	u16 num_alloc_stripes;
6287 	u64 raid56_full_stripe_start = (u64)-1;
6288 	u64 max_len;
6289 
6290 	ASSERT(bioc_ret);
6291 
6292 	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6293 	if (mirror_num > num_copies)
6294 		return -EINVAL;
6295 
6296 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6297 	if (IS_ERR(em))
6298 		return PTR_ERR(em);
6299 
6300 	map = em->map_lookup;
6301 	data_stripes = nr_data_stripes(map);
6302 
6303 	map_offset = logical - em->start;
6304 	max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
6305 				   &stripe_offset, &raid56_full_stripe_start);
6306 	*length = min_t(u64, em->len - map_offset, max_len);
6307 
6308 	down_read(&dev_replace->rwsem);
6309 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6310 	/*
6311 	 * Hold the semaphore for read during the whole operation, write is
6312 	 * requested at commit time but must wait.
6313 	 */
6314 	if (!dev_replace_is_ongoing)
6315 		up_read(&dev_replace->rwsem);
6316 
6317 	num_stripes = 1;
6318 	stripe_index = 0;
6319 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6320 		stripe_index = stripe_nr % map->num_stripes;
6321 		stripe_nr /= map->num_stripes;
6322 		if (op == BTRFS_MAP_READ)
6323 			mirror_num = 1;
6324 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6325 		if (op != BTRFS_MAP_READ) {
6326 			num_stripes = map->num_stripes;
6327 		} else if (mirror_num) {
6328 			stripe_index = mirror_num - 1;
6329 		} else {
6330 			stripe_index = find_live_mirror(fs_info, map, 0,
6331 					    dev_replace_is_ongoing);
6332 			mirror_num = stripe_index + 1;
6333 		}
6334 
6335 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6336 		if (op != BTRFS_MAP_READ) {
6337 			num_stripes = map->num_stripes;
6338 		} else if (mirror_num) {
6339 			stripe_index = mirror_num - 1;
6340 		} else {
6341 			mirror_num = 1;
6342 		}
6343 
6344 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6345 		u32 factor = map->num_stripes / map->sub_stripes;
6346 
6347 		stripe_index = (stripe_nr % factor) * map->sub_stripes;
6348 		stripe_nr /= factor;
6349 
6350 		if (op != BTRFS_MAP_READ)
6351 			num_stripes = map->sub_stripes;
6352 		else if (mirror_num)
6353 			stripe_index += mirror_num - 1;
6354 		else {
6355 			int old_stripe_index = stripe_index;
6356 			stripe_index = find_live_mirror(fs_info, map,
6357 					      stripe_index,
6358 					      dev_replace_is_ongoing);
6359 			mirror_num = stripe_index - old_stripe_index + 1;
6360 		}
6361 
6362 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6363 		if (need_raid_map && (op != BTRFS_MAP_READ || mirror_num > 1)) {
6364 			/*
6365 			 * Push stripe_nr back to the start of the full stripe
6366 			 * For those cases needing a full stripe, @stripe_nr
6367 			 * is the full stripe number.
6368 			 *
6369 			 * Originally we go raid56_full_stripe_start / full_stripe_len,
6370 			 * but that can be expensive.  Here we just divide
6371 			 * @stripe_nr with @data_stripes.
6372 			 */
6373 			stripe_nr /= data_stripes;
6374 
6375 			/* RAID[56] write or recovery. Return all stripes */
6376 			num_stripes = map->num_stripes;
6377 			max_errors = btrfs_chunk_max_errors(map);
6378 
6379 			/* Return the length to the full stripe end */
6380 			*length = min(logical + *length,
6381 				      raid56_full_stripe_start + em->start +
6382 				      btrfs_stripe_nr_to_offset(data_stripes)) -
6383 				  logical;
6384 			stripe_index = 0;
6385 			stripe_offset = 0;
6386 		} else {
6387 			/*
6388 			 * Mirror #0 or #1 means the original data block.
6389 			 * Mirror #2 is RAID5 parity block.
6390 			 * Mirror #3 is RAID6 Q block.
6391 			 */
6392 			stripe_index = stripe_nr % data_stripes;
6393 			stripe_nr /= data_stripes;
6394 			if (mirror_num > 1)
6395 				stripe_index = data_stripes + mirror_num - 2;
6396 
6397 			/* We distribute the parity blocks across stripes */
6398 			stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
6399 			if (op == BTRFS_MAP_READ && mirror_num <= 1)
6400 				mirror_num = 1;
6401 		}
6402 	} else {
6403 		/*
6404 		 * After this, stripe_nr is the number of stripes on this
6405 		 * device we have to walk to find the data, and stripe_index is
6406 		 * the number of our device in the stripe array
6407 		 */
6408 		stripe_index = stripe_nr % map->num_stripes;
6409 		stripe_nr /= map->num_stripes;
6410 		mirror_num = stripe_index + 1;
6411 	}
6412 	if (stripe_index >= map->num_stripes) {
6413 		btrfs_crit(fs_info,
6414 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6415 			   stripe_index, map->num_stripes);
6416 		ret = -EINVAL;
6417 		goto out;
6418 	}
6419 
6420 	num_alloc_stripes = num_stripes;
6421 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6422 	    op != BTRFS_MAP_READ)
6423 		/*
6424 		 * For replace case, we need to add extra stripes for extra
6425 		 * duplicated stripes.
6426 		 *
6427 		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6428 		 * 2 more stripes (DUP types, otherwise 1).
6429 		 */
6430 		num_alloc_stripes += 2;
6431 
6432 	/*
6433 	 * If this I/O maps to a single device, try to return the device and
6434 	 * physical block information on the stack instead of allocating an
6435 	 * I/O context structure.
6436 	 */
6437 	if (smap && num_alloc_stripes == 1 &&
6438 	    !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) {
6439 		set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr);
6440 		if (mirror_num_ret)
6441 			*mirror_num_ret = mirror_num;
6442 		*bioc_ret = NULL;
6443 		ret = 0;
6444 		goto out;
6445 	}
6446 
6447 	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes);
6448 	if (!bioc) {
6449 		ret = -ENOMEM;
6450 		goto out;
6451 	}
6452 	bioc->map_type = map->type;
6453 
6454 	/*
6455 	 * For RAID56 full map, we need to make sure the stripes[] follows the
6456 	 * rule that data stripes are all ordered, then followed with P and Q
6457 	 * (if we have).
6458 	 *
6459 	 * It's still mostly the same as other profiles, just with extra rotation.
6460 	 */
6461 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6462 	    (op != BTRFS_MAP_READ || mirror_num > 1)) {
6463 		/*
6464 		 * For RAID56 @stripe_nr is already the number of full stripes
6465 		 * before us, which is also the rotation value (needs to modulo
6466 		 * with num_stripes).
6467 		 *
6468 		 * In this case, we just add @stripe_nr with @i, then do the
6469 		 * modulo, to reduce one modulo call.
6470 		 */
6471 		bioc->full_stripe_logical = em->start +
6472 			btrfs_stripe_nr_to_offset(stripe_nr * data_stripes);
6473 		for (i = 0; i < num_stripes; i++)
6474 			set_io_stripe(&bioc->stripes[i], map,
6475 				      (i + stripe_nr) % num_stripes,
6476 				      stripe_offset, stripe_nr);
6477 	} else {
6478 		/*
6479 		 * For all other non-RAID56 profiles, just copy the target
6480 		 * stripe into the bioc.
6481 		 */
6482 		for (i = 0; i < num_stripes; i++) {
6483 			set_io_stripe(&bioc->stripes[i], map, stripe_index,
6484 				      stripe_offset, stripe_nr);
6485 			stripe_index++;
6486 		}
6487 	}
6488 
6489 	if (op != BTRFS_MAP_READ)
6490 		max_errors = btrfs_chunk_max_errors(map);
6491 
6492 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6493 	    op != BTRFS_MAP_READ) {
6494 		handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6495 					  &num_stripes, &max_errors);
6496 	}
6497 
6498 	*bioc_ret = bioc;
6499 	bioc->num_stripes = num_stripes;
6500 	bioc->max_errors = max_errors;
6501 	bioc->mirror_num = mirror_num;
6502 
6503 out:
6504 	if (dev_replace_is_ongoing) {
6505 		lockdep_assert_held(&dev_replace->rwsem);
6506 		/* Unlock and let waiting writers proceed */
6507 		up_read(&dev_replace->rwsem);
6508 	}
6509 	free_extent_map(em);
6510 	return ret;
6511 }
6512 
6513 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6514 				      const struct btrfs_fs_devices *fs_devices)
6515 {
6516 	if (args->fsid == NULL)
6517 		return true;
6518 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6519 		return true;
6520 	return false;
6521 }
6522 
6523 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6524 				  const struct btrfs_device *device)
6525 {
6526 	if (args->missing) {
6527 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6528 		    !device->bdev)
6529 			return true;
6530 		return false;
6531 	}
6532 
6533 	if (device->devid != args->devid)
6534 		return false;
6535 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6536 		return false;
6537 	return true;
6538 }
6539 
6540 /*
6541  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6542  * return NULL.
6543  *
6544  * If devid and uuid are both specified, the match must be exact, otherwise
6545  * only devid is used.
6546  */
6547 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6548 				       const struct btrfs_dev_lookup_args *args)
6549 {
6550 	struct btrfs_device *device;
6551 	struct btrfs_fs_devices *seed_devs;
6552 
6553 	if (dev_args_match_fs_devices(args, fs_devices)) {
6554 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6555 			if (dev_args_match_device(args, device))
6556 				return device;
6557 		}
6558 	}
6559 
6560 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6561 		if (!dev_args_match_fs_devices(args, seed_devs))
6562 			continue;
6563 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6564 			if (dev_args_match_device(args, device))
6565 				return device;
6566 		}
6567 	}
6568 
6569 	return NULL;
6570 }
6571 
6572 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6573 					    u64 devid, u8 *dev_uuid)
6574 {
6575 	struct btrfs_device *device;
6576 	unsigned int nofs_flag;
6577 
6578 	/*
6579 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6580 	 * allocation, however we don't want to change btrfs_alloc_device() to
6581 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6582 	 * places.
6583 	 */
6584 
6585 	nofs_flag = memalloc_nofs_save();
6586 	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6587 	memalloc_nofs_restore(nofs_flag);
6588 	if (IS_ERR(device))
6589 		return device;
6590 
6591 	list_add(&device->dev_list, &fs_devices->devices);
6592 	device->fs_devices = fs_devices;
6593 	fs_devices->num_devices++;
6594 
6595 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6596 	fs_devices->missing_devices++;
6597 
6598 	return device;
6599 }
6600 
6601 /*
6602  * Allocate new device struct, set up devid and UUID.
6603  *
6604  * @fs_info:	used only for generating a new devid, can be NULL if
6605  *		devid is provided (i.e. @devid != NULL).
6606  * @devid:	a pointer to devid for this device.  If NULL a new devid
6607  *		is generated.
6608  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6609  *		is generated.
6610  * @path:	a pointer to device path if available, NULL otherwise.
6611  *
6612  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6613  * on error.  Returned struct is not linked onto any lists and must be
6614  * destroyed with btrfs_free_device.
6615  */
6616 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6617 					const u64 *devid, const u8 *uuid,
6618 					const char *path)
6619 {
6620 	struct btrfs_device *dev;
6621 	u64 tmp;
6622 
6623 	if (WARN_ON(!devid && !fs_info))
6624 		return ERR_PTR(-EINVAL);
6625 
6626 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6627 	if (!dev)
6628 		return ERR_PTR(-ENOMEM);
6629 
6630 	INIT_LIST_HEAD(&dev->dev_list);
6631 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6632 	INIT_LIST_HEAD(&dev->post_commit_list);
6633 
6634 	atomic_set(&dev->dev_stats_ccnt, 0);
6635 	btrfs_device_data_ordered_init(dev);
6636 	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6637 
6638 	if (devid)
6639 		tmp = *devid;
6640 	else {
6641 		int ret;
6642 
6643 		ret = find_next_devid(fs_info, &tmp);
6644 		if (ret) {
6645 			btrfs_free_device(dev);
6646 			return ERR_PTR(ret);
6647 		}
6648 	}
6649 	dev->devid = tmp;
6650 
6651 	if (uuid)
6652 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6653 	else
6654 		generate_random_uuid(dev->uuid);
6655 
6656 	if (path) {
6657 		struct rcu_string *name;
6658 
6659 		name = rcu_string_strdup(path, GFP_KERNEL);
6660 		if (!name) {
6661 			btrfs_free_device(dev);
6662 			return ERR_PTR(-ENOMEM);
6663 		}
6664 		rcu_assign_pointer(dev->name, name);
6665 	}
6666 
6667 	return dev;
6668 }
6669 
6670 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6671 					u64 devid, u8 *uuid, bool error)
6672 {
6673 	if (error)
6674 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6675 			      devid, uuid);
6676 	else
6677 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6678 			      devid, uuid);
6679 }
6680 
6681 u64 btrfs_calc_stripe_length(const struct extent_map *em)
6682 {
6683 	const struct map_lookup *map = em->map_lookup;
6684 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6685 
6686 	return div_u64(em->len, data_stripes);
6687 }
6688 
6689 #if BITS_PER_LONG == 32
6690 /*
6691  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6692  * can't be accessed on 32bit systems.
6693  *
6694  * This function do mount time check to reject the fs if it already has
6695  * metadata chunk beyond that limit.
6696  */
6697 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6698 				  u64 logical, u64 length, u64 type)
6699 {
6700 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6701 		return 0;
6702 
6703 	if (logical + length < MAX_LFS_FILESIZE)
6704 		return 0;
6705 
6706 	btrfs_err_32bit_limit(fs_info);
6707 	return -EOVERFLOW;
6708 }
6709 
6710 /*
6711  * This is to give early warning for any metadata chunk reaching
6712  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6713  * Although we can still access the metadata, it's not going to be possible
6714  * once the limit is reached.
6715  */
6716 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6717 				  u64 logical, u64 length, u64 type)
6718 {
6719 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6720 		return;
6721 
6722 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6723 		return;
6724 
6725 	btrfs_warn_32bit_limit(fs_info);
6726 }
6727 #endif
6728 
6729 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6730 						  u64 devid, u8 *uuid)
6731 {
6732 	struct btrfs_device *dev;
6733 
6734 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6735 		btrfs_report_missing_device(fs_info, devid, uuid, true);
6736 		return ERR_PTR(-ENOENT);
6737 	}
6738 
6739 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6740 	if (IS_ERR(dev)) {
6741 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6742 			  devid, PTR_ERR(dev));
6743 		return dev;
6744 	}
6745 	btrfs_report_missing_device(fs_info, devid, uuid, false);
6746 
6747 	return dev;
6748 }
6749 
6750 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6751 			  struct btrfs_chunk *chunk)
6752 {
6753 	BTRFS_DEV_LOOKUP_ARGS(args);
6754 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6755 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6756 	struct map_lookup *map;
6757 	struct extent_map *em;
6758 	u64 logical;
6759 	u64 length;
6760 	u64 devid;
6761 	u64 type;
6762 	u8 uuid[BTRFS_UUID_SIZE];
6763 	int index;
6764 	int num_stripes;
6765 	int ret;
6766 	int i;
6767 
6768 	logical = key->offset;
6769 	length = btrfs_chunk_length(leaf, chunk);
6770 	type = btrfs_chunk_type(leaf, chunk);
6771 	index = btrfs_bg_flags_to_raid_index(type);
6772 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6773 
6774 #if BITS_PER_LONG == 32
6775 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6776 	if (ret < 0)
6777 		return ret;
6778 	warn_32bit_meta_chunk(fs_info, logical, length, type);
6779 #endif
6780 
6781 	/*
6782 	 * Only need to verify chunk item if we're reading from sys chunk array,
6783 	 * as chunk item in tree block is already verified by tree-checker.
6784 	 */
6785 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6786 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6787 		if (ret)
6788 			return ret;
6789 	}
6790 
6791 	read_lock(&map_tree->lock);
6792 	em = lookup_extent_mapping(map_tree, logical, 1);
6793 	read_unlock(&map_tree->lock);
6794 
6795 	/* already mapped? */
6796 	if (em && em->start <= logical && em->start + em->len > logical) {
6797 		free_extent_map(em);
6798 		return 0;
6799 	} else if (em) {
6800 		free_extent_map(em);
6801 	}
6802 
6803 	em = alloc_extent_map();
6804 	if (!em)
6805 		return -ENOMEM;
6806 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6807 	if (!map) {
6808 		free_extent_map(em);
6809 		return -ENOMEM;
6810 	}
6811 
6812 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6813 	em->map_lookup = map;
6814 	em->start = logical;
6815 	em->len = length;
6816 	em->orig_start = 0;
6817 	em->block_start = 0;
6818 	em->block_len = em->len;
6819 
6820 	map->num_stripes = num_stripes;
6821 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6822 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6823 	map->type = type;
6824 	/*
6825 	 * We can't use the sub_stripes value, as for profiles other than
6826 	 * RAID10, they may have 0 as sub_stripes for filesystems created by
6827 	 * older mkfs (<v5.4).
6828 	 * In that case, it can cause divide-by-zero errors later.
6829 	 * Since currently sub_stripes is fixed for each profile, let's
6830 	 * use the trusted value instead.
6831 	 */
6832 	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6833 	map->verified_stripes = 0;
6834 	em->orig_block_len = btrfs_calc_stripe_length(em);
6835 	for (i = 0; i < num_stripes; i++) {
6836 		map->stripes[i].physical =
6837 			btrfs_stripe_offset_nr(leaf, chunk, i);
6838 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6839 		args.devid = devid;
6840 		read_extent_buffer(leaf, uuid, (unsigned long)
6841 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6842 				   BTRFS_UUID_SIZE);
6843 		args.uuid = uuid;
6844 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6845 		if (!map->stripes[i].dev) {
6846 			map->stripes[i].dev = handle_missing_device(fs_info,
6847 								    devid, uuid);
6848 			if (IS_ERR(map->stripes[i].dev)) {
6849 				ret = PTR_ERR(map->stripes[i].dev);
6850 				free_extent_map(em);
6851 				return ret;
6852 			}
6853 		}
6854 
6855 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6856 				&(map->stripes[i].dev->dev_state));
6857 	}
6858 
6859 	write_lock(&map_tree->lock);
6860 	ret = add_extent_mapping(map_tree, em, 0);
6861 	write_unlock(&map_tree->lock);
6862 	if (ret < 0) {
6863 		btrfs_err(fs_info,
6864 			  "failed to add chunk map, start=%llu len=%llu: %d",
6865 			  em->start, em->len, ret);
6866 	}
6867 	free_extent_map(em);
6868 
6869 	return ret;
6870 }
6871 
6872 static void fill_device_from_item(struct extent_buffer *leaf,
6873 				 struct btrfs_dev_item *dev_item,
6874 				 struct btrfs_device *device)
6875 {
6876 	unsigned long ptr;
6877 
6878 	device->devid = btrfs_device_id(leaf, dev_item);
6879 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6880 	device->total_bytes = device->disk_total_bytes;
6881 	device->commit_total_bytes = device->disk_total_bytes;
6882 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6883 	device->commit_bytes_used = device->bytes_used;
6884 	device->type = btrfs_device_type(leaf, dev_item);
6885 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6886 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6887 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6888 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6889 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6890 
6891 	ptr = btrfs_device_uuid(dev_item);
6892 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6893 }
6894 
6895 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6896 						  u8 *fsid)
6897 {
6898 	struct btrfs_fs_devices *fs_devices;
6899 	int ret;
6900 
6901 	lockdep_assert_held(&uuid_mutex);
6902 	ASSERT(fsid);
6903 
6904 	/* This will match only for multi-device seed fs */
6905 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6906 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6907 			return fs_devices;
6908 
6909 
6910 	fs_devices = find_fsid(fsid, NULL);
6911 	if (!fs_devices) {
6912 		if (!btrfs_test_opt(fs_info, DEGRADED))
6913 			return ERR_PTR(-ENOENT);
6914 
6915 		fs_devices = alloc_fs_devices(fsid, NULL);
6916 		if (IS_ERR(fs_devices))
6917 			return fs_devices;
6918 
6919 		fs_devices->seeding = true;
6920 		fs_devices->opened = 1;
6921 		return fs_devices;
6922 	}
6923 
6924 	/*
6925 	 * Upon first call for a seed fs fsid, just create a private copy of the
6926 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6927 	 */
6928 	fs_devices = clone_fs_devices(fs_devices);
6929 	if (IS_ERR(fs_devices))
6930 		return fs_devices;
6931 
6932 	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
6933 	if (ret) {
6934 		free_fs_devices(fs_devices);
6935 		return ERR_PTR(ret);
6936 	}
6937 
6938 	if (!fs_devices->seeding) {
6939 		close_fs_devices(fs_devices);
6940 		free_fs_devices(fs_devices);
6941 		return ERR_PTR(-EINVAL);
6942 	}
6943 
6944 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6945 
6946 	return fs_devices;
6947 }
6948 
6949 static int read_one_dev(struct extent_buffer *leaf,
6950 			struct btrfs_dev_item *dev_item)
6951 {
6952 	BTRFS_DEV_LOOKUP_ARGS(args);
6953 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6954 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6955 	struct btrfs_device *device;
6956 	u64 devid;
6957 	int ret;
6958 	u8 fs_uuid[BTRFS_FSID_SIZE];
6959 	u8 dev_uuid[BTRFS_UUID_SIZE];
6960 
6961 	devid = btrfs_device_id(leaf, dev_item);
6962 	args.devid = devid;
6963 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6964 			   BTRFS_UUID_SIZE);
6965 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6966 			   BTRFS_FSID_SIZE);
6967 	args.uuid = dev_uuid;
6968 	args.fsid = fs_uuid;
6969 
6970 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6971 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6972 		if (IS_ERR(fs_devices))
6973 			return PTR_ERR(fs_devices);
6974 	}
6975 
6976 	device = btrfs_find_device(fs_info->fs_devices, &args);
6977 	if (!device) {
6978 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6979 			btrfs_report_missing_device(fs_info, devid,
6980 							dev_uuid, true);
6981 			return -ENOENT;
6982 		}
6983 
6984 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6985 		if (IS_ERR(device)) {
6986 			btrfs_err(fs_info,
6987 				"failed to add missing dev %llu: %ld",
6988 				devid, PTR_ERR(device));
6989 			return PTR_ERR(device);
6990 		}
6991 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6992 	} else {
6993 		if (!device->bdev) {
6994 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6995 				btrfs_report_missing_device(fs_info,
6996 						devid, dev_uuid, true);
6997 				return -ENOENT;
6998 			}
6999 			btrfs_report_missing_device(fs_info, devid,
7000 							dev_uuid, false);
7001 		}
7002 
7003 		if (!device->bdev &&
7004 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7005 			/*
7006 			 * this happens when a device that was properly setup
7007 			 * in the device info lists suddenly goes bad.
7008 			 * device->bdev is NULL, and so we have to set
7009 			 * device->missing to one here
7010 			 */
7011 			device->fs_devices->missing_devices++;
7012 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7013 		}
7014 
7015 		/* Move the device to its own fs_devices */
7016 		if (device->fs_devices != fs_devices) {
7017 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7018 							&device->dev_state));
7019 
7020 			list_move(&device->dev_list, &fs_devices->devices);
7021 			device->fs_devices->num_devices--;
7022 			fs_devices->num_devices++;
7023 
7024 			device->fs_devices->missing_devices--;
7025 			fs_devices->missing_devices++;
7026 
7027 			device->fs_devices = fs_devices;
7028 		}
7029 	}
7030 
7031 	if (device->fs_devices != fs_info->fs_devices) {
7032 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7033 		if (device->generation !=
7034 		    btrfs_device_generation(leaf, dev_item))
7035 			return -EINVAL;
7036 	}
7037 
7038 	fill_device_from_item(leaf, dev_item, device);
7039 	if (device->bdev) {
7040 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7041 
7042 		if (device->total_bytes > max_total_bytes) {
7043 			btrfs_err(fs_info,
7044 			"device total_bytes should be at most %llu but found %llu",
7045 				  max_total_bytes, device->total_bytes);
7046 			return -EINVAL;
7047 		}
7048 	}
7049 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7050 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7051 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7052 		device->fs_devices->total_rw_bytes += device->total_bytes;
7053 		atomic64_add(device->total_bytes - device->bytes_used,
7054 				&fs_info->free_chunk_space);
7055 	}
7056 	ret = 0;
7057 	return ret;
7058 }
7059 
7060 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7061 {
7062 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7063 	struct extent_buffer *sb;
7064 	struct btrfs_disk_key *disk_key;
7065 	struct btrfs_chunk *chunk;
7066 	u8 *array_ptr;
7067 	unsigned long sb_array_offset;
7068 	int ret = 0;
7069 	u32 num_stripes;
7070 	u32 array_size;
7071 	u32 len = 0;
7072 	u32 cur_offset;
7073 	u64 type;
7074 	struct btrfs_key key;
7075 
7076 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7077 
7078 	/*
7079 	 * We allocated a dummy extent, just to use extent buffer accessors.
7080 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7081 	 * that's fine, we will not go beyond system chunk array anyway.
7082 	 */
7083 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7084 	if (!sb)
7085 		return -ENOMEM;
7086 	set_extent_buffer_uptodate(sb);
7087 
7088 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7089 	array_size = btrfs_super_sys_array_size(super_copy);
7090 
7091 	array_ptr = super_copy->sys_chunk_array;
7092 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7093 	cur_offset = 0;
7094 
7095 	while (cur_offset < array_size) {
7096 		disk_key = (struct btrfs_disk_key *)array_ptr;
7097 		len = sizeof(*disk_key);
7098 		if (cur_offset + len > array_size)
7099 			goto out_short_read;
7100 
7101 		btrfs_disk_key_to_cpu(&key, disk_key);
7102 
7103 		array_ptr += len;
7104 		sb_array_offset += len;
7105 		cur_offset += len;
7106 
7107 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7108 			btrfs_err(fs_info,
7109 			    "unexpected item type %u in sys_array at offset %u",
7110 				  (u32)key.type, cur_offset);
7111 			ret = -EIO;
7112 			break;
7113 		}
7114 
7115 		chunk = (struct btrfs_chunk *)sb_array_offset;
7116 		/*
7117 		 * At least one btrfs_chunk with one stripe must be present,
7118 		 * exact stripe count check comes afterwards
7119 		 */
7120 		len = btrfs_chunk_item_size(1);
7121 		if (cur_offset + len > array_size)
7122 			goto out_short_read;
7123 
7124 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7125 		if (!num_stripes) {
7126 			btrfs_err(fs_info,
7127 			"invalid number of stripes %u in sys_array at offset %u",
7128 				  num_stripes, cur_offset);
7129 			ret = -EIO;
7130 			break;
7131 		}
7132 
7133 		type = btrfs_chunk_type(sb, chunk);
7134 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7135 			btrfs_err(fs_info,
7136 			"invalid chunk type %llu in sys_array at offset %u",
7137 				  type, cur_offset);
7138 			ret = -EIO;
7139 			break;
7140 		}
7141 
7142 		len = btrfs_chunk_item_size(num_stripes);
7143 		if (cur_offset + len > array_size)
7144 			goto out_short_read;
7145 
7146 		ret = read_one_chunk(&key, sb, chunk);
7147 		if (ret)
7148 			break;
7149 
7150 		array_ptr += len;
7151 		sb_array_offset += len;
7152 		cur_offset += len;
7153 	}
7154 	clear_extent_buffer_uptodate(sb);
7155 	free_extent_buffer_stale(sb);
7156 	return ret;
7157 
7158 out_short_read:
7159 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7160 			len, cur_offset);
7161 	clear_extent_buffer_uptodate(sb);
7162 	free_extent_buffer_stale(sb);
7163 	return -EIO;
7164 }
7165 
7166 /*
7167  * Check if all chunks in the fs are OK for read-write degraded mount
7168  *
7169  * If the @failing_dev is specified, it's accounted as missing.
7170  *
7171  * Return true if all chunks meet the minimal RW mount requirements.
7172  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7173  */
7174 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7175 					struct btrfs_device *failing_dev)
7176 {
7177 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7178 	struct extent_map *em;
7179 	u64 next_start = 0;
7180 	bool ret = true;
7181 
7182 	read_lock(&map_tree->lock);
7183 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7184 	read_unlock(&map_tree->lock);
7185 	/* No chunk at all? Return false anyway */
7186 	if (!em) {
7187 		ret = false;
7188 		goto out;
7189 	}
7190 	while (em) {
7191 		struct map_lookup *map;
7192 		int missing = 0;
7193 		int max_tolerated;
7194 		int i;
7195 
7196 		map = em->map_lookup;
7197 		max_tolerated =
7198 			btrfs_get_num_tolerated_disk_barrier_failures(
7199 					map->type);
7200 		for (i = 0; i < map->num_stripes; i++) {
7201 			struct btrfs_device *dev = map->stripes[i].dev;
7202 
7203 			if (!dev || !dev->bdev ||
7204 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7205 			    dev->last_flush_error)
7206 				missing++;
7207 			else if (failing_dev && failing_dev == dev)
7208 				missing++;
7209 		}
7210 		if (missing > max_tolerated) {
7211 			if (!failing_dev)
7212 				btrfs_warn(fs_info,
7213 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7214 				   em->start, missing, max_tolerated);
7215 			free_extent_map(em);
7216 			ret = false;
7217 			goto out;
7218 		}
7219 		next_start = extent_map_end(em);
7220 		free_extent_map(em);
7221 
7222 		read_lock(&map_tree->lock);
7223 		em = lookup_extent_mapping(map_tree, next_start,
7224 					   (u64)(-1) - next_start);
7225 		read_unlock(&map_tree->lock);
7226 	}
7227 out:
7228 	return ret;
7229 }
7230 
7231 static void readahead_tree_node_children(struct extent_buffer *node)
7232 {
7233 	int i;
7234 	const int nr_items = btrfs_header_nritems(node);
7235 
7236 	for (i = 0; i < nr_items; i++)
7237 		btrfs_readahead_node_child(node, i);
7238 }
7239 
7240 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7241 {
7242 	struct btrfs_root *root = fs_info->chunk_root;
7243 	struct btrfs_path *path;
7244 	struct extent_buffer *leaf;
7245 	struct btrfs_key key;
7246 	struct btrfs_key found_key;
7247 	int ret;
7248 	int slot;
7249 	int iter_ret = 0;
7250 	u64 total_dev = 0;
7251 	u64 last_ra_node = 0;
7252 
7253 	path = btrfs_alloc_path();
7254 	if (!path)
7255 		return -ENOMEM;
7256 
7257 	/*
7258 	 * uuid_mutex is needed only if we are mounting a sprout FS
7259 	 * otherwise we don't need it.
7260 	 */
7261 	mutex_lock(&uuid_mutex);
7262 
7263 	/*
7264 	 * It is possible for mount and umount to race in such a way that
7265 	 * we execute this code path, but open_fs_devices failed to clear
7266 	 * total_rw_bytes. We certainly want it cleared before reading the
7267 	 * device items, so clear it here.
7268 	 */
7269 	fs_info->fs_devices->total_rw_bytes = 0;
7270 
7271 	/*
7272 	 * Lockdep complains about possible circular locking dependency between
7273 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7274 	 * used for freeze procection of a fs (struct super_block.s_writers),
7275 	 * which we take when starting a transaction, and extent buffers of the
7276 	 * chunk tree if we call read_one_dev() while holding a lock on an
7277 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7278 	 * and at this point there can't be any concurrent task modifying the
7279 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7280 	 */
7281 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7282 	path->skip_locking = 1;
7283 
7284 	/*
7285 	 * Read all device items, and then all the chunk items. All
7286 	 * device items are found before any chunk item (their object id
7287 	 * is smaller than the lowest possible object id for a chunk
7288 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7289 	 */
7290 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7291 	key.offset = 0;
7292 	key.type = 0;
7293 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7294 		struct extent_buffer *node = path->nodes[1];
7295 
7296 		leaf = path->nodes[0];
7297 		slot = path->slots[0];
7298 
7299 		if (node) {
7300 			if (last_ra_node != node->start) {
7301 				readahead_tree_node_children(node);
7302 				last_ra_node = node->start;
7303 			}
7304 		}
7305 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7306 			struct btrfs_dev_item *dev_item;
7307 			dev_item = btrfs_item_ptr(leaf, slot,
7308 						  struct btrfs_dev_item);
7309 			ret = read_one_dev(leaf, dev_item);
7310 			if (ret)
7311 				goto error;
7312 			total_dev++;
7313 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7314 			struct btrfs_chunk *chunk;
7315 
7316 			/*
7317 			 * We are only called at mount time, so no need to take
7318 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7319 			 * we always lock first fs_info->chunk_mutex before
7320 			 * acquiring any locks on the chunk tree. This is a
7321 			 * requirement for chunk allocation, see the comment on
7322 			 * top of btrfs_chunk_alloc() for details.
7323 			 */
7324 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7325 			ret = read_one_chunk(&found_key, leaf, chunk);
7326 			if (ret)
7327 				goto error;
7328 		}
7329 	}
7330 	/* Catch error found during iteration */
7331 	if (iter_ret < 0) {
7332 		ret = iter_ret;
7333 		goto error;
7334 	}
7335 
7336 	/*
7337 	 * After loading chunk tree, we've got all device information,
7338 	 * do another round of validation checks.
7339 	 */
7340 	if (total_dev != fs_info->fs_devices->total_devices) {
7341 		btrfs_warn(fs_info,
7342 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7343 			  btrfs_super_num_devices(fs_info->super_copy),
7344 			  total_dev);
7345 		fs_info->fs_devices->total_devices = total_dev;
7346 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7347 	}
7348 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7349 	    fs_info->fs_devices->total_rw_bytes) {
7350 		btrfs_err(fs_info,
7351 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7352 			  btrfs_super_total_bytes(fs_info->super_copy),
7353 			  fs_info->fs_devices->total_rw_bytes);
7354 		ret = -EINVAL;
7355 		goto error;
7356 	}
7357 	ret = 0;
7358 error:
7359 	mutex_unlock(&uuid_mutex);
7360 
7361 	btrfs_free_path(path);
7362 	return ret;
7363 }
7364 
7365 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7366 {
7367 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7368 	struct btrfs_device *device;
7369 	int ret = 0;
7370 
7371 	fs_devices->fs_info = fs_info;
7372 
7373 	mutex_lock(&fs_devices->device_list_mutex);
7374 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7375 		device->fs_info = fs_info;
7376 
7377 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7378 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7379 			device->fs_info = fs_info;
7380 			ret = btrfs_get_dev_zone_info(device, false);
7381 			if (ret)
7382 				break;
7383 		}
7384 
7385 		seed_devs->fs_info = fs_info;
7386 	}
7387 	mutex_unlock(&fs_devices->device_list_mutex);
7388 
7389 	return ret;
7390 }
7391 
7392 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7393 				 const struct btrfs_dev_stats_item *ptr,
7394 				 int index)
7395 {
7396 	u64 val;
7397 
7398 	read_extent_buffer(eb, &val,
7399 			   offsetof(struct btrfs_dev_stats_item, values) +
7400 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7401 			   sizeof(val));
7402 	return val;
7403 }
7404 
7405 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7406 				      struct btrfs_dev_stats_item *ptr,
7407 				      int index, u64 val)
7408 {
7409 	write_extent_buffer(eb, &val,
7410 			    offsetof(struct btrfs_dev_stats_item, values) +
7411 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7412 			    sizeof(val));
7413 }
7414 
7415 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7416 				       struct btrfs_path *path)
7417 {
7418 	struct btrfs_dev_stats_item *ptr;
7419 	struct extent_buffer *eb;
7420 	struct btrfs_key key;
7421 	int item_size;
7422 	int i, ret, slot;
7423 
7424 	if (!device->fs_info->dev_root)
7425 		return 0;
7426 
7427 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7428 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7429 	key.offset = device->devid;
7430 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7431 	if (ret) {
7432 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7433 			btrfs_dev_stat_set(device, i, 0);
7434 		device->dev_stats_valid = 1;
7435 		btrfs_release_path(path);
7436 		return ret < 0 ? ret : 0;
7437 	}
7438 	slot = path->slots[0];
7439 	eb = path->nodes[0];
7440 	item_size = btrfs_item_size(eb, slot);
7441 
7442 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7443 
7444 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7445 		if (item_size >= (1 + i) * sizeof(__le64))
7446 			btrfs_dev_stat_set(device, i,
7447 					   btrfs_dev_stats_value(eb, ptr, i));
7448 		else
7449 			btrfs_dev_stat_set(device, i, 0);
7450 	}
7451 
7452 	device->dev_stats_valid = 1;
7453 	btrfs_dev_stat_print_on_load(device);
7454 	btrfs_release_path(path);
7455 
7456 	return 0;
7457 }
7458 
7459 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7460 {
7461 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7462 	struct btrfs_device *device;
7463 	struct btrfs_path *path = NULL;
7464 	int ret = 0;
7465 
7466 	path = btrfs_alloc_path();
7467 	if (!path)
7468 		return -ENOMEM;
7469 
7470 	mutex_lock(&fs_devices->device_list_mutex);
7471 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7472 		ret = btrfs_device_init_dev_stats(device, path);
7473 		if (ret)
7474 			goto out;
7475 	}
7476 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7477 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7478 			ret = btrfs_device_init_dev_stats(device, path);
7479 			if (ret)
7480 				goto out;
7481 		}
7482 	}
7483 out:
7484 	mutex_unlock(&fs_devices->device_list_mutex);
7485 
7486 	btrfs_free_path(path);
7487 	return ret;
7488 }
7489 
7490 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7491 				struct btrfs_device *device)
7492 {
7493 	struct btrfs_fs_info *fs_info = trans->fs_info;
7494 	struct btrfs_root *dev_root = fs_info->dev_root;
7495 	struct btrfs_path *path;
7496 	struct btrfs_key key;
7497 	struct extent_buffer *eb;
7498 	struct btrfs_dev_stats_item *ptr;
7499 	int ret;
7500 	int i;
7501 
7502 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7503 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7504 	key.offset = device->devid;
7505 
7506 	path = btrfs_alloc_path();
7507 	if (!path)
7508 		return -ENOMEM;
7509 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7510 	if (ret < 0) {
7511 		btrfs_warn_in_rcu(fs_info,
7512 			"error %d while searching for dev_stats item for device %s",
7513 				  ret, btrfs_dev_name(device));
7514 		goto out;
7515 	}
7516 
7517 	if (ret == 0 &&
7518 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7519 		/* need to delete old one and insert a new one */
7520 		ret = btrfs_del_item(trans, dev_root, path);
7521 		if (ret != 0) {
7522 			btrfs_warn_in_rcu(fs_info,
7523 				"delete too small dev_stats item for device %s failed %d",
7524 					  btrfs_dev_name(device), ret);
7525 			goto out;
7526 		}
7527 		ret = 1;
7528 	}
7529 
7530 	if (ret == 1) {
7531 		/* need to insert a new item */
7532 		btrfs_release_path(path);
7533 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7534 					      &key, sizeof(*ptr));
7535 		if (ret < 0) {
7536 			btrfs_warn_in_rcu(fs_info,
7537 				"insert dev_stats item for device %s failed %d",
7538 				btrfs_dev_name(device), ret);
7539 			goto out;
7540 		}
7541 	}
7542 
7543 	eb = path->nodes[0];
7544 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7545 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7546 		btrfs_set_dev_stats_value(eb, ptr, i,
7547 					  btrfs_dev_stat_read(device, i));
7548 	btrfs_mark_buffer_dirty(trans, eb);
7549 
7550 out:
7551 	btrfs_free_path(path);
7552 	return ret;
7553 }
7554 
7555 /*
7556  * called from commit_transaction. Writes all changed device stats to disk.
7557  */
7558 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7559 {
7560 	struct btrfs_fs_info *fs_info = trans->fs_info;
7561 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7562 	struct btrfs_device *device;
7563 	int stats_cnt;
7564 	int ret = 0;
7565 
7566 	mutex_lock(&fs_devices->device_list_mutex);
7567 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7568 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7569 		if (!device->dev_stats_valid || stats_cnt == 0)
7570 			continue;
7571 
7572 
7573 		/*
7574 		 * There is a LOAD-LOAD control dependency between the value of
7575 		 * dev_stats_ccnt and updating the on-disk values which requires
7576 		 * reading the in-memory counters. Such control dependencies
7577 		 * require explicit read memory barriers.
7578 		 *
7579 		 * This memory barriers pairs with smp_mb__before_atomic in
7580 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7581 		 * barrier implied by atomic_xchg in
7582 		 * btrfs_dev_stats_read_and_reset
7583 		 */
7584 		smp_rmb();
7585 
7586 		ret = update_dev_stat_item(trans, device);
7587 		if (!ret)
7588 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7589 	}
7590 	mutex_unlock(&fs_devices->device_list_mutex);
7591 
7592 	return ret;
7593 }
7594 
7595 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7596 {
7597 	btrfs_dev_stat_inc(dev, index);
7598 
7599 	if (!dev->dev_stats_valid)
7600 		return;
7601 	btrfs_err_rl_in_rcu(dev->fs_info,
7602 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7603 			   btrfs_dev_name(dev),
7604 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7605 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7606 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7607 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7608 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7609 }
7610 
7611 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7612 {
7613 	int i;
7614 
7615 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7616 		if (btrfs_dev_stat_read(dev, i) != 0)
7617 			break;
7618 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7619 		return; /* all values == 0, suppress message */
7620 
7621 	btrfs_info_in_rcu(dev->fs_info,
7622 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7623 	       btrfs_dev_name(dev),
7624 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7625 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7626 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7627 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7628 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7629 }
7630 
7631 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7632 			struct btrfs_ioctl_get_dev_stats *stats)
7633 {
7634 	BTRFS_DEV_LOOKUP_ARGS(args);
7635 	struct btrfs_device *dev;
7636 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7637 	int i;
7638 
7639 	mutex_lock(&fs_devices->device_list_mutex);
7640 	args.devid = stats->devid;
7641 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7642 	mutex_unlock(&fs_devices->device_list_mutex);
7643 
7644 	if (!dev) {
7645 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7646 		return -ENODEV;
7647 	} else if (!dev->dev_stats_valid) {
7648 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7649 		return -ENODEV;
7650 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7651 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7652 			if (stats->nr_items > i)
7653 				stats->values[i] =
7654 					btrfs_dev_stat_read_and_reset(dev, i);
7655 			else
7656 				btrfs_dev_stat_set(dev, i, 0);
7657 		}
7658 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7659 			   current->comm, task_pid_nr(current));
7660 	} else {
7661 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7662 			if (stats->nr_items > i)
7663 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7664 	}
7665 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7666 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7667 	return 0;
7668 }
7669 
7670 /*
7671  * Update the size and bytes used for each device where it changed.  This is
7672  * delayed since we would otherwise get errors while writing out the
7673  * superblocks.
7674  *
7675  * Must be invoked during transaction commit.
7676  */
7677 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7678 {
7679 	struct btrfs_device *curr, *next;
7680 
7681 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7682 
7683 	if (list_empty(&trans->dev_update_list))
7684 		return;
7685 
7686 	/*
7687 	 * We don't need the device_list_mutex here.  This list is owned by the
7688 	 * transaction and the transaction must complete before the device is
7689 	 * released.
7690 	 */
7691 	mutex_lock(&trans->fs_info->chunk_mutex);
7692 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7693 				 post_commit_list) {
7694 		list_del_init(&curr->post_commit_list);
7695 		curr->commit_total_bytes = curr->disk_total_bytes;
7696 		curr->commit_bytes_used = curr->bytes_used;
7697 	}
7698 	mutex_unlock(&trans->fs_info->chunk_mutex);
7699 }
7700 
7701 /*
7702  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7703  */
7704 int btrfs_bg_type_to_factor(u64 flags)
7705 {
7706 	const int index = btrfs_bg_flags_to_raid_index(flags);
7707 
7708 	return btrfs_raid_array[index].ncopies;
7709 }
7710 
7711 
7712 
7713 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7714 				 u64 chunk_offset, u64 devid,
7715 				 u64 physical_offset, u64 physical_len)
7716 {
7717 	struct btrfs_dev_lookup_args args = { .devid = devid };
7718 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7719 	struct extent_map *em;
7720 	struct map_lookup *map;
7721 	struct btrfs_device *dev;
7722 	u64 stripe_len;
7723 	bool found = false;
7724 	int ret = 0;
7725 	int i;
7726 
7727 	read_lock(&em_tree->lock);
7728 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7729 	read_unlock(&em_tree->lock);
7730 
7731 	if (!em) {
7732 		btrfs_err(fs_info,
7733 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7734 			  physical_offset, devid);
7735 		ret = -EUCLEAN;
7736 		goto out;
7737 	}
7738 
7739 	map = em->map_lookup;
7740 	stripe_len = btrfs_calc_stripe_length(em);
7741 	if (physical_len != stripe_len) {
7742 		btrfs_err(fs_info,
7743 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7744 			  physical_offset, devid, em->start, physical_len,
7745 			  stripe_len);
7746 		ret = -EUCLEAN;
7747 		goto out;
7748 	}
7749 
7750 	/*
7751 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7752 	 * space. Although kernel can handle it without problem, better to warn
7753 	 * the users.
7754 	 */
7755 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7756 		btrfs_warn(fs_info,
7757 		"devid %llu physical %llu len %llu inside the reserved space",
7758 			   devid, physical_offset, physical_len);
7759 
7760 	for (i = 0; i < map->num_stripes; i++) {
7761 		if (map->stripes[i].dev->devid == devid &&
7762 		    map->stripes[i].physical == physical_offset) {
7763 			found = true;
7764 			if (map->verified_stripes >= map->num_stripes) {
7765 				btrfs_err(fs_info,
7766 				"too many dev extents for chunk %llu found",
7767 					  em->start);
7768 				ret = -EUCLEAN;
7769 				goto out;
7770 			}
7771 			map->verified_stripes++;
7772 			break;
7773 		}
7774 	}
7775 	if (!found) {
7776 		btrfs_err(fs_info,
7777 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7778 			physical_offset, devid);
7779 		ret = -EUCLEAN;
7780 	}
7781 
7782 	/* Make sure no dev extent is beyond device boundary */
7783 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7784 	if (!dev) {
7785 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7786 		ret = -EUCLEAN;
7787 		goto out;
7788 	}
7789 
7790 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7791 		btrfs_err(fs_info,
7792 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7793 			  devid, physical_offset, physical_len,
7794 			  dev->disk_total_bytes);
7795 		ret = -EUCLEAN;
7796 		goto out;
7797 	}
7798 
7799 	if (dev->zone_info) {
7800 		u64 zone_size = dev->zone_info->zone_size;
7801 
7802 		if (!IS_ALIGNED(physical_offset, zone_size) ||
7803 		    !IS_ALIGNED(physical_len, zone_size)) {
7804 			btrfs_err(fs_info,
7805 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7806 				  devid, physical_offset, physical_len);
7807 			ret = -EUCLEAN;
7808 			goto out;
7809 		}
7810 	}
7811 
7812 out:
7813 	free_extent_map(em);
7814 	return ret;
7815 }
7816 
7817 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7818 {
7819 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7820 	struct extent_map *em;
7821 	struct rb_node *node;
7822 	int ret = 0;
7823 
7824 	read_lock(&em_tree->lock);
7825 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7826 		em = rb_entry(node, struct extent_map, rb_node);
7827 		if (em->map_lookup->num_stripes !=
7828 		    em->map_lookup->verified_stripes) {
7829 			btrfs_err(fs_info,
7830 			"chunk %llu has missing dev extent, have %d expect %d",
7831 				  em->start, em->map_lookup->verified_stripes,
7832 				  em->map_lookup->num_stripes);
7833 			ret = -EUCLEAN;
7834 			goto out;
7835 		}
7836 	}
7837 out:
7838 	read_unlock(&em_tree->lock);
7839 	return ret;
7840 }
7841 
7842 /*
7843  * Ensure that all dev extents are mapped to correct chunk, otherwise
7844  * later chunk allocation/free would cause unexpected behavior.
7845  *
7846  * NOTE: This will iterate through the whole device tree, which should be of
7847  * the same size level as the chunk tree.  This slightly increases mount time.
7848  */
7849 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7850 {
7851 	struct btrfs_path *path;
7852 	struct btrfs_root *root = fs_info->dev_root;
7853 	struct btrfs_key key;
7854 	u64 prev_devid = 0;
7855 	u64 prev_dev_ext_end = 0;
7856 	int ret = 0;
7857 
7858 	/*
7859 	 * We don't have a dev_root because we mounted with ignorebadroots and
7860 	 * failed to load the root, so we want to skip the verification in this
7861 	 * case for sure.
7862 	 *
7863 	 * However if the dev root is fine, but the tree itself is corrupted
7864 	 * we'd still fail to mount.  This verification is only to make sure
7865 	 * writes can happen safely, so instead just bypass this check
7866 	 * completely in the case of IGNOREBADROOTS.
7867 	 */
7868 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7869 		return 0;
7870 
7871 	key.objectid = 1;
7872 	key.type = BTRFS_DEV_EXTENT_KEY;
7873 	key.offset = 0;
7874 
7875 	path = btrfs_alloc_path();
7876 	if (!path)
7877 		return -ENOMEM;
7878 
7879 	path->reada = READA_FORWARD;
7880 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7881 	if (ret < 0)
7882 		goto out;
7883 
7884 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7885 		ret = btrfs_next_leaf(root, path);
7886 		if (ret < 0)
7887 			goto out;
7888 		/* No dev extents at all? Not good */
7889 		if (ret > 0) {
7890 			ret = -EUCLEAN;
7891 			goto out;
7892 		}
7893 	}
7894 	while (1) {
7895 		struct extent_buffer *leaf = path->nodes[0];
7896 		struct btrfs_dev_extent *dext;
7897 		int slot = path->slots[0];
7898 		u64 chunk_offset;
7899 		u64 physical_offset;
7900 		u64 physical_len;
7901 		u64 devid;
7902 
7903 		btrfs_item_key_to_cpu(leaf, &key, slot);
7904 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7905 			break;
7906 		devid = key.objectid;
7907 		physical_offset = key.offset;
7908 
7909 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7910 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7911 		physical_len = btrfs_dev_extent_length(leaf, dext);
7912 
7913 		/* Check if this dev extent overlaps with the previous one */
7914 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7915 			btrfs_err(fs_info,
7916 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7917 				  devid, physical_offset, prev_dev_ext_end);
7918 			ret = -EUCLEAN;
7919 			goto out;
7920 		}
7921 
7922 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7923 					    physical_offset, physical_len);
7924 		if (ret < 0)
7925 			goto out;
7926 		prev_devid = devid;
7927 		prev_dev_ext_end = physical_offset + physical_len;
7928 
7929 		ret = btrfs_next_item(root, path);
7930 		if (ret < 0)
7931 			goto out;
7932 		if (ret > 0) {
7933 			ret = 0;
7934 			break;
7935 		}
7936 	}
7937 
7938 	/* Ensure all chunks have corresponding dev extents */
7939 	ret = verify_chunk_dev_extent_mapping(fs_info);
7940 out:
7941 	btrfs_free_path(path);
7942 	return ret;
7943 }
7944 
7945 /*
7946  * Check whether the given block group or device is pinned by any inode being
7947  * used as a swapfile.
7948  */
7949 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7950 {
7951 	struct btrfs_swapfile_pin *sp;
7952 	struct rb_node *node;
7953 
7954 	spin_lock(&fs_info->swapfile_pins_lock);
7955 	node = fs_info->swapfile_pins.rb_node;
7956 	while (node) {
7957 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7958 		if (ptr < sp->ptr)
7959 			node = node->rb_left;
7960 		else if (ptr > sp->ptr)
7961 			node = node->rb_right;
7962 		else
7963 			break;
7964 	}
7965 	spin_unlock(&fs_info->swapfile_pins_lock);
7966 	return node != NULL;
7967 }
7968 
7969 static int relocating_repair_kthread(void *data)
7970 {
7971 	struct btrfs_block_group *cache = data;
7972 	struct btrfs_fs_info *fs_info = cache->fs_info;
7973 	u64 target;
7974 	int ret = 0;
7975 
7976 	target = cache->start;
7977 	btrfs_put_block_group(cache);
7978 
7979 	sb_start_write(fs_info->sb);
7980 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
7981 		btrfs_info(fs_info,
7982 			   "zoned: skip relocating block group %llu to repair: EBUSY",
7983 			   target);
7984 		sb_end_write(fs_info->sb);
7985 		return -EBUSY;
7986 	}
7987 
7988 	mutex_lock(&fs_info->reclaim_bgs_lock);
7989 
7990 	/* Ensure block group still exists */
7991 	cache = btrfs_lookup_block_group(fs_info, target);
7992 	if (!cache)
7993 		goto out;
7994 
7995 	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
7996 		goto out;
7997 
7998 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
7999 	if (ret < 0)
8000 		goto out;
8001 
8002 	btrfs_info(fs_info,
8003 		   "zoned: relocating block group %llu to repair IO failure",
8004 		   target);
8005 	ret = btrfs_relocate_chunk(fs_info, target);
8006 
8007 out:
8008 	if (cache)
8009 		btrfs_put_block_group(cache);
8010 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8011 	btrfs_exclop_finish(fs_info);
8012 	sb_end_write(fs_info->sb);
8013 
8014 	return ret;
8015 }
8016 
8017 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8018 {
8019 	struct btrfs_block_group *cache;
8020 
8021 	if (!btrfs_is_zoned(fs_info))
8022 		return false;
8023 
8024 	/* Do not attempt to repair in degraded state */
8025 	if (btrfs_test_opt(fs_info, DEGRADED))
8026 		return true;
8027 
8028 	cache = btrfs_lookup_block_group(fs_info, logical);
8029 	if (!cache)
8030 		return true;
8031 
8032 	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8033 		btrfs_put_block_group(cache);
8034 		return true;
8035 	}
8036 
8037 	kthread_run(relocating_repair_kthread, cache,
8038 		    "btrfs-relocating-repair");
8039 
8040 	return true;
8041 }
8042 
8043 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8044 				    struct btrfs_io_stripe *smap,
8045 				    u64 logical)
8046 {
8047 	int data_stripes = nr_bioc_data_stripes(bioc);
8048 	int i;
8049 
8050 	for (i = 0; i < data_stripes; i++) {
8051 		u64 stripe_start = bioc->full_stripe_logical +
8052 				   btrfs_stripe_nr_to_offset(i);
8053 
8054 		if (logical >= stripe_start &&
8055 		    logical < stripe_start + BTRFS_STRIPE_LEN)
8056 			break;
8057 	}
8058 	ASSERT(i < data_stripes);
8059 	smap->dev = bioc->stripes[i].dev;
8060 	smap->physical = bioc->stripes[i].physical +
8061 			((logical - bioc->full_stripe_logical) &
8062 			 BTRFS_STRIPE_LEN_MASK);
8063 }
8064 
8065 /*
8066  * Map a repair write into a single device.
8067  *
8068  * A repair write is triggered by read time repair or scrub, which would only
8069  * update the contents of a single device.
8070  * Not update any other mirrors nor go through RMW path.
8071  *
8072  * Callers should ensure:
8073  *
8074  * - Call btrfs_bio_counter_inc_blocked() first
8075  * - The range does not cross stripe boundary
8076  * - Has a valid @mirror_num passed in.
8077  */
8078 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8079 			   struct btrfs_io_stripe *smap, u64 logical,
8080 			   u32 length, int mirror_num)
8081 {
8082 	struct btrfs_io_context *bioc = NULL;
8083 	u64 map_length = length;
8084 	int mirror_ret = mirror_num;
8085 	int ret;
8086 
8087 	ASSERT(mirror_num > 0);
8088 
8089 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8090 			      &bioc, smap, &mirror_ret, true);
8091 	if (ret < 0)
8092 		return ret;
8093 
8094 	/* The map range should not cross stripe boundary. */
8095 	ASSERT(map_length >= length);
8096 
8097 	/* Already mapped to single stripe. */
8098 	if (!bioc)
8099 		goto out;
8100 
8101 	/* Map the RAID56 multi-stripe writes to a single one. */
8102 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8103 		map_raid56_repair_block(bioc, smap, logical);
8104 		goto out;
8105 	}
8106 
8107 	ASSERT(mirror_num <= bioc->num_stripes);
8108 	smap->dev = bioc->stripes[mirror_num - 1].dev;
8109 	smap->physical = bioc->stripes[mirror_num - 1].physical;
8110 out:
8111 	btrfs_put_bioc(bioc);
8112 	ASSERT(smap->dev);
8113 	return 0;
8114 }
8115