1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/bio.h> 8 #include <linux/slab.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include "misc.h" 18 #include "ctree.h" 19 #include "extent_map.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "async-thread.h" 26 #include "check-integrity.h" 27 #include "rcu-string.h" 28 #include "dev-replace.h" 29 #include "sysfs.h" 30 #include "tree-checker.h" 31 #include "space-info.h" 32 #include "block-group.h" 33 34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 35 [BTRFS_RAID_RAID10] = { 36 .sub_stripes = 2, 37 .dev_stripes = 1, 38 .devs_max = 0, /* 0 == as many as possible */ 39 .devs_min = 4, 40 .tolerated_failures = 1, 41 .devs_increment = 2, 42 .ncopies = 2, 43 .nparity = 0, 44 .raid_name = "raid10", 45 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 46 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 47 }, 48 [BTRFS_RAID_RAID1] = { 49 .sub_stripes = 1, 50 .dev_stripes = 1, 51 .devs_max = 2, 52 .devs_min = 2, 53 .tolerated_failures = 1, 54 .devs_increment = 2, 55 .ncopies = 2, 56 .nparity = 0, 57 .raid_name = "raid1", 58 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 59 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 60 }, 61 [BTRFS_RAID_DUP] = { 62 .sub_stripes = 1, 63 .dev_stripes = 2, 64 .devs_max = 1, 65 .devs_min = 1, 66 .tolerated_failures = 0, 67 .devs_increment = 1, 68 .ncopies = 2, 69 .nparity = 0, 70 .raid_name = "dup", 71 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 72 .mindev_error = 0, 73 }, 74 [BTRFS_RAID_RAID0] = { 75 .sub_stripes = 1, 76 .dev_stripes = 1, 77 .devs_max = 0, 78 .devs_min = 2, 79 .tolerated_failures = 0, 80 .devs_increment = 1, 81 .ncopies = 1, 82 .nparity = 0, 83 .raid_name = "raid0", 84 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 85 .mindev_error = 0, 86 }, 87 [BTRFS_RAID_SINGLE] = { 88 .sub_stripes = 1, 89 .dev_stripes = 1, 90 .devs_max = 1, 91 .devs_min = 1, 92 .tolerated_failures = 0, 93 .devs_increment = 1, 94 .ncopies = 1, 95 .nparity = 0, 96 .raid_name = "single", 97 .bg_flag = 0, 98 .mindev_error = 0, 99 }, 100 [BTRFS_RAID_RAID5] = { 101 .sub_stripes = 1, 102 .dev_stripes = 1, 103 .devs_max = 0, 104 .devs_min = 2, 105 .tolerated_failures = 1, 106 .devs_increment = 1, 107 .ncopies = 1, 108 .nparity = 1, 109 .raid_name = "raid5", 110 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 111 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 112 }, 113 [BTRFS_RAID_RAID6] = { 114 .sub_stripes = 1, 115 .dev_stripes = 1, 116 .devs_max = 0, 117 .devs_min = 3, 118 .tolerated_failures = 2, 119 .devs_increment = 1, 120 .ncopies = 1, 121 .nparity = 2, 122 .raid_name = "raid6", 123 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 124 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 125 }, 126 }; 127 128 const char *btrfs_bg_type_to_raid_name(u64 flags) 129 { 130 const int index = btrfs_bg_flags_to_raid_index(flags); 131 132 if (index >= BTRFS_NR_RAID_TYPES) 133 return NULL; 134 135 return btrfs_raid_array[index].raid_name; 136 } 137 138 /* 139 * Fill @buf with textual description of @bg_flags, no more than @size_buf 140 * bytes including terminating null byte. 141 */ 142 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 143 { 144 int i; 145 int ret; 146 char *bp = buf; 147 u64 flags = bg_flags; 148 u32 size_bp = size_buf; 149 150 if (!flags) { 151 strcpy(bp, "NONE"); 152 return; 153 } 154 155 #define DESCRIBE_FLAG(flag, desc) \ 156 do { \ 157 if (flags & (flag)) { \ 158 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 159 if (ret < 0 || ret >= size_bp) \ 160 goto out_overflow; \ 161 size_bp -= ret; \ 162 bp += ret; \ 163 flags &= ~(flag); \ 164 } \ 165 } while (0) 166 167 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 168 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 169 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 170 171 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 172 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 173 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 174 btrfs_raid_array[i].raid_name); 175 #undef DESCRIBE_FLAG 176 177 if (flags) { 178 ret = snprintf(bp, size_bp, "0x%llx|", flags); 179 size_bp -= ret; 180 } 181 182 if (size_bp < size_buf) 183 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 184 185 /* 186 * The text is trimmed, it's up to the caller to provide sufficiently 187 * large buffer 188 */ 189 out_overflow:; 190 } 191 192 static int init_first_rw_device(struct btrfs_trans_handle *trans); 193 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 194 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 195 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 196 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 197 enum btrfs_map_op op, 198 u64 logical, u64 *length, 199 struct btrfs_bio **bbio_ret, 200 int mirror_num, int need_raid_map); 201 202 /* 203 * Device locking 204 * ============== 205 * 206 * There are several mutexes that protect manipulation of devices and low-level 207 * structures like chunks but not block groups, extents or files 208 * 209 * uuid_mutex (global lock) 210 * ------------------------ 211 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 212 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 213 * device) or requested by the device= mount option 214 * 215 * the mutex can be very coarse and can cover long-running operations 216 * 217 * protects: updates to fs_devices counters like missing devices, rw devices, 218 * seeding, structure cloning, opening/closing devices at mount/umount time 219 * 220 * global::fs_devs - add, remove, updates to the global list 221 * 222 * does not protect: manipulation of the fs_devices::devices list! 223 * 224 * btrfs_device::name - renames (write side), read is RCU 225 * 226 * fs_devices::device_list_mutex (per-fs, with RCU) 227 * ------------------------------------------------ 228 * protects updates to fs_devices::devices, ie. adding and deleting 229 * 230 * simple list traversal with read-only actions can be done with RCU protection 231 * 232 * may be used to exclude some operations from running concurrently without any 233 * modifications to the list (see write_all_supers) 234 * 235 * balance_mutex 236 * ------------- 237 * protects balance structures (status, state) and context accessed from 238 * several places (internally, ioctl) 239 * 240 * chunk_mutex 241 * ----------- 242 * protects chunks, adding or removing during allocation, trim or when a new 243 * device is added/removed. Additionally it also protects post_commit_list of 244 * individual devices, since they can be added to the transaction's 245 * post_commit_list only with chunk_mutex held. 246 * 247 * cleaner_mutex 248 * ------------- 249 * a big lock that is held by the cleaner thread and prevents running subvolume 250 * cleaning together with relocation or delayed iputs 251 * 252 * 253 * Lock nesting 254 * ============ 255 * 256 * uuid_mutex 257 * volume_mutex 258 * device_list_mutex 259 * chunk_mutex 260 * balance_mutex 261 * 262 * 263 * Exclusive operations, BTRFS_FS_EXCL_OP 264 * ====================================== 265 * 266 * Maintains the exclusivity of the following operations that apply to the 267 * whole filesystem and cannot run in parallel. 268 * 269 * - Balance (*) 270 * - Device add 271 * - Device remove 272 * - Device replace (*) 273 * - Resize 274 * 275 * The device operations (as above) can be in one of the following states: 276 * 277 * - Running state 278 * - Paused state 279 * - Completed state 280 * 281 * Only device operations marked with (*) can go into the Paused state for the 282 * following reasons: 283 * 284 * - ioctl (only Balance can be Paused through ioctl) 285 * - filesystem remounted as read-only 286 * - filesystem unmounted and mounted as read-only 287 * - system power-cycle and filesystem mounted as read-only 288 * - filesystem or device errors leading to forced read-only 289 * 290 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations. 291 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set. 292 * A device operation in Paused or Running state can be canceled or resumed 293 * either by ioctl (Balance only) or when remounted as read-write. 294 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or 295 * completed. 296 */ 297 298 DEFINE_MUTEX(uuid_mutex); 299 static LIST_HEAD(fs_uuids); 300 struct list_head *btrfs_get_fs_uuids(void) 301 { 302 return &fs_uuids; 303 } 304 305 /* 306 * alloc_fs_devices - allocate struct btrfs_fs_devices 307 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 308 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 309 * 310 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 311 * The returned struct is not linked onto any lists and can be destroyed with 312 * kfree() right away. 313 */ 314 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 315 const u8 *metadata_fsid) 316 { 317 struct btrfs_fs_devices *fs_devs; 318 319 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 320 if (!fs_devs) 321 return ERR_PTR(-ENOMEM); 322 323 mutex_init(&fs_devs->device_list_mutex); 324 325 INIT_LIST_HEAD(&fs_devs->devices); 326 INIT_LIST_HEAD(&fs_devs->alloc_list); 327 INIT_LIST_HEAD(&fs_devs->fs_list); 328 if (fsid) 329 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 330 331 if (metadata_fsid) 332 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 333 else if (fsid) 334 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 335 336 return fs_devs; 337 } 338 339 void btrfs_free_device(struct btrfs_device *device) 340 { 341 WARN_ON(!list_empty(&device->post_commit_list)); 342 rcu_string_free(device->name); 343 extent_io_tree_release(&device->alloc_state); 344 bio_put(device->flush_bio); 345 kfree(device); 346 } 347 348 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 349 { 350 struct btrfs_device *device; 351 WARN_ON(fs_devices->opened); 352 while (!list_empty(&fs_devices->devices)) { 353 device = list_entry(fs_devices->devices.next, 354 struct btrfs_device, dev_list); 355 list_del(&device->dev_list); 356 btrfs_free_device(device); 357 } 358 kfree(fs_devices); 359 } 360 361 void __exit btrfs_cleanup_fs_uuids(void) 362 { 363 struct btrfs_fs_devices *fs_devices; 364 365 while (!list_empty(&fs_uuids)) { 366 fs_devices = list_entry(fs_uuids.next, 367 struct btrfs_fs_devices, fs_list); 368 list_del(&fs_devices->fs_list); 369 free_fs_devices(fs_devices); 370 } 371 } 372 373 /* 374 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 375 * Returned struct is not linked onto any lists and must be destroyed using 376 * btrfs_free_device. 377 */ 378 static struct btrfs_device *__alloc_device(void) 379 { 380 struct btrfs_device *dev; 381 382 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 383 if (!dev) 384 return ERR_PTR(-ENOMEM); 385 386 /* 387 * Preallocate a bio that's always going to be used for flushing device 388 * barriers and matches the device lifespan 389 */ 390 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 391 if (!dev->flush_bio) { 392 kfree(dev); 393 return ERR_PTR(-ENOMEM); 394 } 395 396 INIT_LIST_HEAD(&dev->dev_list); 397 INIT_LIST_HEAD(&dev->dev_alloc_list); 398 INIT_LIST_HEAD(&dev->post_commit_list); 399 400 spin_lock_init(&dev->io_lock); 401 402 atomic_set(&dev->reada_in_flight, 0); 403 atomic_set(&dev->dev_stats_ccnt, 0); 404 btrfs_device_data_ordered_init(dev); 405 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 406 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 407 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL); 408 409 return dev; 410 } 411 412 static noinline struct btrfs_fs_devices *find_fsid( 413 const u8 *fsid, const u8 *metadata_fsid) 414 { 415 struct btrfs_fs_devices *fs_devices; 416 417 ASSERT(fsid); 418 419 if (metadata_fsid) { 420 /* 421 * Handle scanned device having completed its fsid change but 422 * belonging to a fs_devices that was created by first scanning 423 * a device which didn't have its fsid/metadata_uuid changed 424 * at all and the CHANGING_FSID_V2 flag set. 425 */ 426 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 427 if (fs_devices->fsid_change && 428 memcmp(metadata_fsid, fs_devices->fsid, 429 BTRFS_FSID_SIZE) == 0 && 430 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 431 BTRFS_FSID_SIZE) == 0) { 432 return fs_devices; 433 } 434 } 435 /* 436 * Handle scanned device having completed its fsid change but 437 * belonging to a fs_devices that was created by a device that 438 * has an outdated pair of fsid/metadata_uuid and 439 * CHANGING_FSID_V2 flag set. 440 */ 441 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 442 if (fs_devices->fsid_change && 443 memcmp(fs_devices->metadata_uuid, 444 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 445 memcmp(metadata_fsid, fs_devices->metadata_uuid, 446 BTRFS_FSID_SIZE) == 0) { 447 return fs_devices; 448 } 449 } 450 } 451 452 /* Handle non-split brain cases */ 453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 454 if (metadata_fsid) { 455 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 456 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 457 BTRFS_FSID_SIZE) == 0) 458 return fs_devices; 459 } else { 460 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 461 return fs_devices; 462 } 463 } 464 return NULL; 465 } 466 467 static int 468 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 469 int flush, struct block_device **bdev, 470 struct buffer_head **bh) 471 { 472 int ret; 473 474 *bdev = blkdev_get_by_path(device_path, flags, holder); 475 476 if (IS_ERR(*bdev)) { 477 ret = PTR_ERR(*bdev); 478 goto error; 479 } 480 481 if (flush) 482 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 483 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 484 if (ret) { 485 blkdev_put(*bdev, flags); 486 goto error; 487 } 488 invalidate_bdev(*bdev); 489 *bh = btrfs_read_dev_super(*bdev); 490 if (IS_ERR(*bh)) { 491 ret = PTR_ERR(*bh); 492 blkdev_put(*bdev, flags); 493 goto error; 494 } 495 496 return 0; 497 498 error: 499 *bdev = NULL; 500 *bh = NULL; 501 return ret; 502 } 503 504 static void requeue_list(struct btrfs_pending_bios *pending_bios, 505 struct bio *head, struct bio *tail) 506 { 507 508 struct bio *old_head; 509 510 old_head = pending_bios->head; 511 pending_bios->head = head; 512 if (pending_bios->tail) 513 tail->bi_next = old_head; 514 else 515 pending_bios->tail = tail; 516 } 517 518 /* 519 * we try to collect pending bios for a device so we don't get a large 520 * number of procs sending bios down to the same device. This greatly 521 * improves the schedulers ability to collect and merge the bios. 522 * 523 * But, it also turns into a long list of bios to process and that is sure 524 * to eventually make the worker thread block. The solution here is to 525 * make some progress and then put this work struct back at the end of 526 * the list if the block device is congested. This way, multiple devices 527 * can make progress from a single worker thread. 528 */ 529 static noinline void run_scheduled_bios(struct btrfs_device *device) 530 { 531 struct btrfs_fs_info *fs_info = device->fs_info; 532 struct bio *pending; 533 struct backing_dev_info *bdi; 534 struct btrfs_pending_bios *pending_bios; 535 struct bio *tail; 536 struct bio *cur; 537 int again = 0; 538 unsigned long num_run; 539 unsigned long batch_run = 0; 540 unsigned long last_waited = 0; 541 int force_reg = 0; 542 int sync_pending = 0; 543 struct blk_plug plug; 544 545 /* 546 * this function runs all the bios we've collected for 547 * a particular device. We don't want to wander off to 548 * another device without first sending all of these down. 549 * So, setup a plug here and finish it off before we return 550 */ 551 blk_start_plug(&plug); 552 553 bdi = device->bdev->bd_bdi; 554 555 loop: 556 spin_lock(&device->io_lock); 557 558 loop_lock: 559 num_run = 0; 560 561 /* take all the bios off the list at once and process them 562 * later on (without the lock held). But, remember the 563 * tail and other pointers so the bios can be properly reinserted 564 * into the list if we hit congestion 565 */ 566 if (!force_reg && device->pending_sync_bios.head) { 567 pending_bios = &device->pending_sync_bios; 568 force_reg = 1; 569 } else { 570 pending_bios = &device->pending_bios; 571 force_reg = 0; 572 } 573 574 pending = pending_bios->head; 575 tail = pending_bios->tail; 576 WARN_ON(pending && !tail); 577 578 /* 579 * if pending was null this time around, no bios need processing 580 * at all and we can stop. Otherwise it'll loop back up again 581 * and do an additional check so no bios are missed. 582 * 583 * device->running_pending is used to synchronize with the 584 * schedule_bio code. 585 */ 586 if (device->pending_sync_bios.head == NULL && 587 device->pending_bios.head == NULL) { 588 again = 0; 589 device->running_pending = 0; 590 } else { 591 again = 1; 592 device->running_pending = 1; 593 } 594 595 pending_bios->head = NULL; 596 pending_bios->tail = NULL; 597 598 spin_unlock(&device->io_lock); 599 600 while (pending) { 601 602 rmb(); 603 /* we want to work on both lists, but do more bios on the 604 * sync list than the regular list 605 */ 606 if ((num_run > 32 && 607 pending_bios != &device->pending_sync_bios && 608 device->pending_sync_bios.head) || 609 (num_run > 64 && pending_bios == &device->pending_sync_bios && 610 device->pending_bios.head)) { 611 spin_lock(&device->io_lock); 612 requeue_list(pending_bios, pending, tail); 613 goto loop_lock; 614 } 615 616 cur = pending; 617 pending = pending->bi_next; 618 cur->bi_next = NULL; 619 620 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 621 622 /* 623 * if we're doing the sync list, record that our 624 * plug has some sync requests on it 625 * 626 * If we're doing the regular list and there are 627 * sync requests sitting around, unplug before 628 * we add more 629 */ 630 if (pending_bios == &device->pending_sync_bios) { 631 sync_pending = 1; 632 } else if (sync_pending) { 633 blk_finish_plug(&plug); 634 blk_start_plug(&plug); 635 sync_pending = 0; 636 } 637 638 btrfsic_submit_bio(cur); 639 num_run++; 640 batch_run++; 641 642 cond_resched(); 643 644 /* 645 * we made progress, there is more work to do and the bdi 646 * is now congested. Back off and let other work structs 647 * run instead 648 */ 649 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 650 fs_info->fs_devices->open_devices > 1) { 651 struct io_context *ioc; 652 653 ioc = current->io_context; 654 655 /* 656 * the main goal here is that we don't want to 657 * block if we're going to be able to submit 658 * more requests without blocking. 659 * 660 * This code does two great things, it pokes into 661 * the elevator code from a filesystem _and_ 662 * it makes assumptions about how batching works. 663 */ 664 if (ioc && ioc->nr_batch_requests > 0 && 665 time_before(jiffies, ioc->last_waited + HZ/50UL) && 666 (last_waited == 0 || 667 ioc->last_waited == last_waited)) { 668 /* 669 * we want to go through our batch of 670 * requests and stop. So, we copy out 671 * the ioc->last_waited time and test 672 * against it before looping 673 */ 674 last_waited = ioc->last_waited; 675 cond_resched(); 676 continue; 677 } 678 spin_lock(&device->io_lock); 679 requeue_list(pending_bios, pending, tail); 680 device->running_pending = 1; 681 682 spin_unlock(&device->io_lock); 683 btrfs_queue_work(fs_info->submit_workers, 684 &device->work); 685 goto done; 686 } 687 } 688 689 cond_resched(); 690 if (again) 691 goto loop; 692 693 spin_lock(&device->io_lock); 694 if (device->pending_bios.head || device->pending_sync_bios.head) 695 goto loop_lock; 696 spin_unlock(&device->io_lock); 697 698 done: 699 blk_finish_plug(&plug); 700 } 701 702 static void pending_bios_fn(struct btrfs_work *work) 703 { 704 struct btrfs_device *device; 705 706 device = container_of(work, struct btrfs_device, work); 707 run_scheduled_bios(device); 708 } 709 710 static bool device_path_matched(const char *path, struct btrfs_device *device) 711 { 712 int found; 713 714 rcu_read_lock(); 715 found = strcmp(rcu_str_deref(device->name), path); 716 rcu_read_unlock(); 717 718 return found == 0; 719 } 720 721 /* 722 * Search and remove all stale (devices which are not mounted) devices. 723 * When both inputs are NULL, it will search and release all stale devices. 724 * path: Optional. When provided will it release all unmounted devices 725 * matching this path only. 726 * skip_dev: Optional. Will skip this device when searching for the stale 727 * devices. 728 * Return: 0 for success or if @path is NULL. 729 * -EBUSY if @path is a mounted device. 730 * -ENOENT if @path does not match any device in the list. 731 */ 732 static int btrfs_free_stale_devices(const char *path, 733 struct btrfs_device *skip_device) 734 { 735 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 736 struct btrfs_device *device, *tmp_device; 737 int ret = 0; 738 739 if (path) 740 ret = -ENOENT; 741 742 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 743 744 mutex_lock(&fs_devices->device_list_mutex); 745 list_for_each_entry_safe(device, tmp_device, 746 &fs_devices->devices, dev_list) { 747 if (skip_device && skip_device == device) 748 continue; 749 if (path && !device->name) 750 continue; 751 if (path && !device_path_matched(path, device)) 752 continue; 753 if (fs_devices->opened) { 754 /* for an already deleted device return 0 */ 755 if (path && ret != 0) 756 ret = -EBUSY; 757 break; 758 } 759 760 /* delete the stale device */ 761 fs_devices->num_devices--; 762 list_del(&device->dev_list); 763 btrfs_free_device(device); 764 765 ret = 0; 766 if (fs_devices->num_devices == 0) 767 break; 768 } 769 mutex_unlock(&fs_devices->device_list_mutex); 770 771 if (fs_devices->num_devices == 0) { 772 btrfs_sysfs_remove_fsid(fs_devices); 773 list_del(&fs_devices->fs_list); 774 free_fs_devices(fs_devices); 775 } 776 } 777 778 return ret; 779 } 780 781 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 782 struct btrfs_device *device, fmode_t flags, 783 void *holder) 784 { 785 struct request_queue *q; 786 struct block_device *bdev; 787 struct buffer_head *bh; 788 struct btrfs_super_block *disk_super; 789 u64 devid; 790 int ret; 791 792 if (device->bdev) 793 return -EINVAL; 794 if (!device->name) 795 return -EINVAL; 796 797 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 798 &bdev, &bh); 799 if (ret) 800 return ret; 801 802 disk_super = (struct btrfs_super_block *)bh->b_data; 803 devid = btrfs_stack_device_id(&disk_super->dev_item); 804 if (devid != device->devid) 805 goto error_brelse; 806 807 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 808 goto error_brelse; 809 810 device->generation = btrfs_super_generation(disk_super); 811 812 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 813 if (btrfs_super_incompat_flags(disk_super) & 814 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 815 pr_err( 816 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 817 goto error_brelse; 818 } 819 820 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 821 fs_devices->seeding = 1; 822 } else { 823 if (bdev_read_only(bdev)) 824 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 825 else 826 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 827 } 828 829 q = bdev_get_queue(bdev); 830 if (!blk_queue_nonrot(q)) 831 fs_devices->rotating = 1; 832 833 device->bdev = bdev; 834 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 835 device->mode = flags; 836 837 fs_devices->open_devices++; 838 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 839 device->devid != BTRFS_DEV_REPLACE_DEVID) { 840 fs_devices->rw_devices++; 841 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 842 } 843 brelse(bh); 844 845 return 0; 846 847 error_brelse: 848 brelse(bh); 849 blkdev_put(bdev, flags); 850 851 return -EINVAL; 852 } 853 854 /* 855 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 856 * being created with a disk that has already completed its fsid change. 857 */ 858 static struct btrfs_fs_devices *find_fsid_inprogress( 859 struct btrfs_super_block *disk_super) 860 { 861 struct btrfs_fs_devices *fs_devices; 862 863 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 864 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 865 BTRFS_FSID_SIZE) != 0 && 866 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 867 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 868 return fs_devices; 869 } 870 } 871 872 return NULL; 873 } 874 875 876 static struct btrfs_fs_devices *find_fsid_changed( 877 struct btrfs_super_block *disk_super) 878 { 879 struct btrfs_fs_devices *fs_devices; 880 881 /* 882 * Handles the case where scanned device is part of an fs that had 883 * multiple successful changes of FSID but curently device didn't 884 * observe it. Meaning our fsid will be different than theirs. 885 */ 886 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 887 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 888 BTRFS_FSID_SIZE) != 0 && 889 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 890 BTRFS_FSID_SIZE) == 0 && 891 memcmp(fs_devices->fsid, disk_super->fsid, 892 BTRFS_FSID_SIZE) != 0) { 893 return fs_devices; 894 } 895 } 896 897 return NULL; 898 } 899 /* 900 * Add new device to list of registered devices 901 * 902 * Returns: 903 * device pointer which was just added or updated when successful 904 * error pointer when failed 905 */ 906 static noinline struct btrfs_device *device_list_add(const char *path, 907 struct btrfs_super_block *disk_super, 908 bool *new_device_added) 909 { 910 struct btrfs_device *device; 911 struct btrfs_fs_devices *fs_devices = NULL; 912 struct rcu_string *name; 913 u64 found_transid = btrfs_super_generation(disk_super); 914 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 915 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 916 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 917 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 918 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 919 920 if (fsid_change_in_progress) { 921 if (!has_metadata_uuid) { 922 /* 923 * When we have an image which has CHANGING_FSID_V2 set 924 * it might belong to either a filesystem which has 925 * disks with completed fsid change or it might belong 926 * to fs with no UUID changes in effect, handle both. 927 */ 928 fs_devices = find_fsid_inprogress(disk_super); 929 if (!fs_devices) 930 fs_devices = find_fsid(disk_super->fsid, NULL); 931 } else { 932 fs_devices = find_fsid_changed(disk_super); 933 } 934 } else if (has_metadata_uuid) { 935 fs_devices = find_fsid(disk_super->fsid, 936 disk_super->metadata_uuid); 937 } else { 938 fs_devices = find_fsid(disk_super->fsid, NULL); 939 } 940 941 942 if (!fs_devices) { 943 if (has_metadata_uuid) 944 fs_devices = alloc_fs_devices(disk_super->fsid, 945 disk_super->metadata_uuid); 946 else 947 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 948 949 if (IS_ERR(fs_devices)) 950 return ERR_CAST(fs_devices); 951 952 fs_devices->fsid_change = fsid_change_in_progress; 953 954 mutex_lock(&fs_devices->device_list_mutex); 955 list_add(&fs_devices->fs_list, &fs_uuids); 956 957 device = NULL; 958 } else { 959 mutex_lock(&fs_devices->device_list_mutex); 960 device = btrfs_find_device(fs_devices, devid, 961 disk_super->dev_item.uuid, NULL, false); 962 963 /* 964 * If this disk has been pulled into an fs devices created by 965 * a device which had the CHANGING_FSID_V2 flag then replace the 966 * metadata_uuid/fsid values of the fs_devices. 967 */ 968 if (has_metadata_uuid && fs_devices->fsid_change && 969 found_transid > fs_devices->latest_generation) { 970 memcpy(fs_devices->fsid, disk_super->fsid, 971 BTRFS_FSID_SIZE); 972 memcpy(fs_devices->metadata_uuid, 973 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 974 975 fs_devices->fsid_change = false; 976 } 977 } 978 979 if (!device) { 980 if (fs_devices->opened) { 981 mutex_unlock(&fs_devices->device_list_mutex); 982 return ERR_PTR(-EBUSY); 983 } 984 985 device = btrfs_alloc_device(NULL, &devid, 986 disk_super->dev_item.uuid); 987 if (IS_ERR(device)) { 988 mutex_unlock(&fs_devices->device_list_mutex); 989 /* we can safely leave the fs_devices entry around */ 990 return device; 991 } 992 993 name = rcu_string_strdup(path, GFP_NOFS); 994 if (!name) { 995 btrfs_free_device(device); 996 mutex_unlock(&fs_devices->device_list_mutex); 997 return ERR_PTR(-ENOMEM); 998 } 999 rcu_assign_pointer(device->name, name); 1000 1001 list_add_rcu(&device->dev_list, &fs_devices->devices); 1002 fs_devices->num_devices++; 1003 1004 device->fs_devices = fs_devices; 1005 *new_device_added = true; 1006 1007 if (disk_super->label[0]) 1008 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n", 1009 disk_super->label, devid, found_transid, path); 1010 else 1011 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n", 1012 disk_super->fsid, devid, found_transid, path); 1013 1014 } else if (!device->name || strcmp(device->name->str, path)) { 1015 /* 1016 * When FS is already mounted. 1017 * 1. If you are here and if the device->name is NULL that 1018 * means this device was missing at time of FS mount. 1019 * 2. If you are here and if the device->name is different 1020 * from 'path' that means either 1021 * a. The same device disappeared and reappeared with 1022 * different name. or 1023 * b. The missing-disk-which-was-replaced, has 1024 * reappeared now. 1025 * 1026 * We must allow 1 and 2a above. But 2b would be a spurious 1027 * and unintentional. 1028 * 1029 * Further in case of 1 and 2a above, the disk at 'path' 1030 * would have missed some transaction when it was away and 1031 * in case of 2a the stale bdev has to be updated as well. 1032 * 2b must not be allowed at all time. 1033 */ 1034 1035 /* 1036 * For now, we do allow update to btrfs_fs_device through the 1037 * btrfs dev scan cli after FS has been mounted. We're still 1038 * tracking a problem where systems fail mount by subvolume id 1039 * when we reject replacement on a mounted FS. 1040 */ 1041 if (!fs_devices->opened && found_transid < device->generation) { 1042 /* 1043 * That is if the FS is _not_ mounted and if you 1044 * are here, that means there is more than one 1045 * disk with same uuid and devid.We keep the one 1046 * with larger generation number or the last-in if 1047 * generation are equal. 1048 */ 1049 mutex_unlock(&fs_devices->device_list_mutex); 1050 return ERR_PTR(-EEXIST); 1051 } 1052 1053 /* 1054 * We are going to replace the device path for a given devid, 1055 * make sure it's the same device if the device is mounted 1056 */ 1057 if (device->bdev) { 1058 struct block_device *path_bdev; 1059 1060 path_bdev = lookup_bdev(path); 1061 if (IS_ERR(path_bdev)) { 1062 mutex_unlock(&fs_devices->device_list_mutex); 1063 return ERR_CAST(path_bdev); 1064 } 1065 1066 if (device->bdev != path_bdev) { 1067 bdput(path_bdev); 1068 mutex_unlock(&fs_devices->device_list_mutex); 1069 btrfs_warn_in_rcu(device->fs_info, 1070 "duplicate device fsid:devid for %pU:%llu old:%s new:%s", 1071 disk_super->fsid, devid, 1072 rcu_str_deref(device->name), path); 1073 return ERR_PTR(-EEXIST); 1074 } 1075 bdput(path_bdev); 1076 btrfs_info_in_rcu(device->fs_info, 1077 "device fsid %pU devid %llu moved old:%s new:%s", 1078 disk_super->fsid, devid, 1079 rcu_str_deref(device->name), path); 1080 } 1081 1082 name = rcu_string_strdup(path, GFP_NOFS); 1083 if (!name) { 1084 mutex_unlock(&fs_devices->device_list_mutex); 1085 return ERR_PTR(-ENOMEM); 1086 } 1087 rcu_string_free(device->name); 1088 rcu_assign_pointer(device->name, name); 1089 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1090 fs_devices->missing_devices--; 1091 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1092 } 1093 } 1094 1095 /* 1096 * Unmount does not free the btrfs_device struct but would zero 1097 * generation along with most of the other members. So just update 1098 * it back. We need it to pick the disk with largest generation 1099 * (as above). 1100 */ 1101 if (!fs_devices->opened) { 1102 device->generation = found_transid; 1103 fs_devices->latest_generation = max_t(u64, found_transid, 1104 fs_devices->latest_generation); 1105 } 1106 1107 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 1108 1109 mutex_unlock(&fs_devices->device_list_mutex); 1110 return device; 1111 } 1112 1113 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 1114 { 1115 struct btrfs_fs_devices *fs_devices; 1116 struct btrfs_device *device; 1117 struct btrfs_device *orig_dev; 1118 int ret = 0; 1119 1120 fs_devices = alloc_fs_devices(orig->fsid, NULL); 1121 if (IS_ERR(fs_devices)) 1122 return fs_devices; 1123 1124 mutex_lock(&orig->device_list_mutex); 1125 fs_devices->total_devices = orig->total_devices; 1126 1127 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1128 struct rcu_string *name; 1129 1130 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1131 orig_dev->uuid); 1132 if (IS_ERR(device)) { 1133 ret = PTR_ERR(device); 1134 goto error; 1135 } 1136 1137 /* 1138 * This is ok to do without rcu read locked because we hold the 1139 * uuid mutex so nothing we touch in here is going to disappear. 1140 */ 1141 if (orig_dev->name) { 1142 name = rcu_string_strdup(orig_dev->name->str, 1143 GFP_KERNEL); 1144 if (!name) { 1145 btrfs_free_device(device); 1146 ret = -ENOMEM; 1147 goto error; 1148 } 1149 rcu_assign_pointer(device->name, name); 1150 } 1151 1152 list_add(&device->dev_list, &fs_devices->devices); 1153 device->fs_devices = fs_devices; 1154 fs_devices->num_devices++; 1155 } 1156 mutex_unlock(&orig->device_list_mutex); 1157 return fs_devices; 1158 error: 1159 mutex_unlock(&orig->device_list_mutex); 1160 free_fs_devices(fs_devices); 1161 return ERR_PTR(ret); 1162 } 1163 1164 /* 1165 * After we have read the system tree and know devids belonging to 1166 * this filesystem, remove the device which does not belong there. 1167 */ 1168 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) 1169 { 1170 struct btrfs_device *device, *next; 1171 struct btrfs_device *latest_dev = NULL; 1172 1173 mutex_lock(&uuid_mutex); 1174 again: 1175 /* This is the initialized path, it is safe to release the devices. */ 1176 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1177 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1178 &device->dev_state)) { 1179 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1180 &device->dev_state) && 1181 (!latest_dev || 1182 device->generation > latest_dev->generation)) { 1183 latest_dev = device; 1184 } 1185 continue; 1186 } 1187 1188 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 1189 /* 1190 * In the first step, keep the device which has 1191 * the correct fsid and the devid that is used 1192 * for the dev_replace procedure. 1193 * In the second step, the dev_replace state is 1194 * read from the device tree and it is known 1195 * whether the procedure is really active or 1196 * not, which means whether this device is 1197 * used or whether it should be removed. 1198 */ 1199 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1200 &device->dev_state)) { 1201 continue; 1202 } 1203 } 1204 if (device->bdev) { 1205 blkdev_put(device->bdev, device->mode); 1206 device->bdev = NULL; 1207 fs_devices->open_devices--; 1208 } 1209 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1210 list_del_init(&device->dev_alloc_list); 1211 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1212 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1213 &device->dev_state)) 1214 fs_devices->rw_devices--; 1215 } 1216 list_del_init(&device->dev_list); 1217 fs_devices->num_devices--; 1218 btrfs_free_device(device); 1219 } 1220 1221 if (fs_devices->seed) { 1222 fs_devices = fs_devices->seed; 1223 goto again; 1224 } 1225 1226 fs_devices->latest_bdev = latest_dev->bdev; 1227 1228 mutex_unlock(&uuid_mutex); 1229 } 1230 1231 static void btrfs_close_bdev(struct btrfs_device *device) 1232 { 1233 if (!device->bdev) 1234 return; 1235 1236 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1237 sync_blockdev(device->bdev); 1238 invalidate_bdev(device->bdev); 1239 } 1240 1241 blkdev_put(device->bdev, device->mode); 1242 } 1243 1244 static void btrfs_close_one_device(struct btrfs_device *device) 1245 { 1246 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1247 struct btrfs_device *new_device; 1248 struct rcu_string *name; 1249 1250 if (device->bdev) 1251 fs_devices->open_devices--; 1252 1253 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1254 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1255 list_del_init(&device->dev_alloc_list); 1256 fs_devices->rw_devices--; 1257 } 1258 1259 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 1260 fs_devices->missing_devices--; 1261 1262 btrfs_close_bdev(device); 1263 1264 new_device = btrfs_alloc_device(NULL, &device->devid, 1265 device->uuid); 1266 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 1267 1268 /* Safe because we are under uuid_mutex */ 1269 if (device->name) { 1270 name = rcu_string_strdup(device->name->str, GFP_NOFS); 1271 BUG_ON(!name); /* -ENOMEM */ 1272 rcu_assign_pointer(new_device->name, name); 1273 } 1274 1275 list_replace_rcu(&device->dev_list, &new_device->dev_list); 1276 new_device->fs_devices = device->fs_devices; 1277 1278 synchronize_rcu(); 1279 btrfs_free_device(device); 1280 } 1281 1282 static int close_fs_devices(struct btrfs_fs_devices *fs_devices) 1283 { 1284 struct btrfs_device *device, *tmp; 1285 1286 if (--fs_devices->opened > 0) 1287 return 0; 1288 1289 mutex_lock(&fs_devices->device_list_mutex); 1290 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 1291 btrfs_close_one_device(device); 1292 } 1293 mutex_unlock(&fs_devices->device_list_mutex); 1294 1295 WARN_ON(fs_devices->open_devices); 1296 WARN_ON(fs_devices->rw_devices); 1297 fs_devices->opened = 0; 1298 fs_devices->seeding = 0; 1299 1300 return 0; 1301 } 1302 1303 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1304 { 1305 struct btrfs_fs_devices *seed_devices = NULL; 1306 int ret; 1307 1308 mutex_lock(&uuid_mutex); 1309 ret = close_fs_devices(fs_devices); 1310 if (!fs_devices->opened) { 1311 seed_devices = fs_devices->seed; 1312 fs_devices->seed = NULL; 1313 } 1314 mutex_unlock(&uuid_mutex); 1315 1316 while (seed_devices) { 1317 fs_devices = seed_devices; 1318 seed_devices = fs_devices->seed; 1319 close_fs_devices(fs_devices); 1320 free_fs_devices(fs_devices); 1321 } 1322 return ret; 1323 } 1324 1325 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1326 fmode_t flags, void *holder) 1327 { 1328 struct btrfs_device *device; 1329 struct btrfs_device *latest_dev = NULL; 1330 int ret = 0; 1331 1332 flags |= FMODE_EXCL; 1333 1334 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1335 /* Just open everything we can; ignore failures here */ 1336 if (btrfs_open_one_device(fs_devices, device, flags, holder)) 1337 continue; 1338 1339 if (!latest_dev || 1340 device->generation > latest_dev->generation) 1341 latest_dev = device; 1342 } 1343 if (fs_devices->open_devices == 0) { 1344 ret = -EINVAL; 1345 goto out; 1346 } 1347 fs_devices->opened = 1; 1348 fs_devices->latest_bdev = latest_dev->bdev; 1349 fs_devices->total_rw_bytes = 0; 1350 out: 1351 return ret; 1352 } 1353 1354 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b) 1355 { 1356 struct btrfs_device *dev1, *dev2; 1357 1358 dev1 = list_entry(a, struct btrfs_device, dev_list); 1359 dev2 = list_entry(b, struct btrfs_device, dev_list); 1360 1361 if (dev1->devid < dev2->devid) 1362 return -1; 1363 else if (dev1->devid > dev2->devid) 1364 return 1; 1365 return 0; 1366 } 1367 1368 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1369 fmode_t flags, void *holder) 1370 { 1371 int ret; 1372 1373 lockdep_assert_held(&uuid_mutex); 1374 1375 mutex_lock(&fs_devices->device_list_mutex); 1376 if (fs_devices->opened) { 1377 fs_devices->opened++; 1378 ret = 0; 1379 } else { 1380 list_sort(NULL, &fs_devices->devices, devid_cmp); 1381 ret = open_fs_devices(fs_devices, flags, holder); 1382 } 1383 mutex_unlock(&fs_devices->device_list_mutex); 1384 1385 return ret; 1386 } 1387 1388 static void btrfs_release_disk_super(struct page *page) 1389 { 1390 kunmap(page); 1391 put_page(page); 1392 } 1393 1394 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, 1395 struct page **page, 1396 struct btrfs_super_block **disk_super) 1397 { 1398 void *p; 1399 pgoff_t index; 1400 1401 /* make sure our super fits in the device */ 1402 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1403 return 1; 1404 1405 /* make sure our super fits in the page */ 1406 if (sizeof(**disk_super) > PAGE_SIZE) 1407 return 1; 1408 1409 /* make sure our super doesn't straddle pages on disk */ 1410 index = bytenr >> PAGE_SHIFT; 1411 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) 1412 return 1; 1413 1414 /* pull in the page with our super */ 1415 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1416 index, GFP_KERNEL); 1417 1418 if (IS_ERR_OR_NULL(*page)) 1419 return 1; 1420 1421 p = kmap(*page); 1422 1423 /* align our pointer to the offset of the super block */ 1424 *disk_super = p + offset_in_page(bytenr); 1425 1426 if (btrfs_super_bytenr(*disk_super) != bytenr || 1427 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { 1428 btrfs_release_disk_super(*page); 1429 return 1; 1430 } 1431 1432 if ((*disk_super)->label[0] && 1433 (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) 1434 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1435 1436 return 0; 1437 } 1438 1439 int btrfs_forget_devices(const char *path) 1440 { 1441 int ret; 1442 1443 mutex_lock(&uuid_mutex); 1444 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1445 mutex_unlock(&uuid_mutex); 1446 1447 return ret; 1448 } 1449 1450 /* 1451 * Look for a btrfs signature on a device. This may be called out of the mount path 1452 * and we are not allowed to call set_blocksize during the scan. The superblock 1453 * is read via pagecache 1454 */ 1455 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1456 void *holder) 1457 { 1458 struct btrfs_super_block *disk_super; 1459 bool new_device_added = false; 1460 struct btrfs_device *device = NULL; 1461 struct block_device *bdev; 1462 struct page *page; 1463 u64 bytenr; 1464 1465 lockdep_assert_held(&uuid_mutex); 1466 1467 /* 1468 * we would like to check all the supers, but that would make 1469 * a btrfs mount succeed after a mkfs from a different FS. 1470 * So, we need to add a special mount option to scan for 1471 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1472 */ 1473 bytenr = btrfs_sb_offset(0); 1474 flags |= FMODE_EXCL; 1475 1476 bdev = blkdev_get_by_path(path, flags, holder); 1477 if (IS_ERR(bdev)) 1478 return ERR_CAST(bdev); 1479 1480 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) { 1481 device = ERR_PTR(-EINVAL); 1482 goto error_bdev_put; 1483 } 1484 1485 device = device_list_add(path, disk_super, &new_device_added); 1486 if (!IS_ERR(device)) { 1487 if (new_device_added) 1488 btrfs_free_stale_devices(path, device); 1489 } 1490 1491 btrfs_release_disk_super(page); 1492 1493 error_bdev_put: 1494 blkdev_put(bdev, flags); 1495 1496 return device; 1497 } 1498 1499 /* 1500 * Try to find a chunk that intersects [start, start + len] range and when one 1501 * such is found, record the end of it in *start 1502 */ 1503 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1504 u64 len) 1505 { 1506 u64 physical_start, physical_end; 1507 1508 lockdep_assert_held(&device->fs_info->chunk_mutex); 1509 1510 if (!find_first_extent_bit(&device->alloc_state, *start, 1511 &physical_start, &physical_end, 1512 CHUNK_ALLOCATED, NULL)) { 1513 1514 if (in_range(physical_start, *start, len) || 1515 in_range(*start, physical_start, 1516 physical_end - physical_start)) { 1517 *start = physical_end + 1; 1518 return true; 1519 } 1520 } 1521 return false; 1522 } 1523 1524 1525 /* 1526 * find_free_dev_extent_start - find free space in the specified device 1527 * @device: the device which we search the free space in 1528 * @num_bytes: the size of the free space that we need 1529 * @search_start: the position from which to begin the search 1530 * @start: store the start of the free space. 1531 * @len: the size of the free space. that we find, or the size 1532 * of the max free space if we don't find suitable free space 1533 * 1534 * this uses a pretty simple search, the expectation is that it is 1535 * called very infrequently and that a given device has a small number 1536 * of extents 1537 * 1538 * @start is used to store the start of the free space if we find. But if we 1539 * don't find suitable free space, it will be used to store the start position 1540 * of the max free space. 1541 * 1542 * @len is used to store the size of the free space that we find. 1543 * But if we don't find suitable free space, it is used to store the size of 1544 * the max free space. 1545 * 1546 * NOTE: This function will search *commit* root of device tree, and does extra 1547 * check to ensure dev extents are not double allocated. 1548 * This makes the function safe to allocate dev extents but may not report 1549 * correct usable device space, as device extent freed in current transaction 1550 * is not reported as avaiable. 1551 */ 1552 static int find_free_dev_extent_start(struct btrfs_device *device, 1553 u64 num_bytes, u64 search_start, u64 *start, 1554 u64 *len) 1555 { 1556 struct btrfs_fs_info *fs_info = device->fs_info; 1557 struct btrfs_root *root = fs_info->dev_root; 1558 struct btrfs_key key; 1559 struct btrfs_dev_extent *dev_extent; 1560 struct btrfs_path *path; 1561 u64 hole_size; 1562 u64 max_hole_start; 1563 u64 max_hole_size; 1564 u64 extent_end; 1565 u64 search_end = device->total_bytes; 1566 int ret; 1567 int slot; 1568 struct extent_buffer *l; 1569 1570 /* 1571 * We don't want to overwrite the superblock on the drive nor any area 1572 * used by the boot loader (grub for example), so we make sure to start 1573 * at an offset of at least 1MB. 1574 */ 1575 search_start = max_t(u64, search_start, SZ_1M); 1576 1577 path = btrfs_alloc_path(); 1578 if (!path) 1579 return -ENOMEM; 1580 1581 max_hole_start = search_start; 1582 max_hole_size = 0; 1583 1584 again: 1585 if (search_start >= search_end || 1586 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1587 ret = -ENOSPC; 1588 goto out; 1589 } 1590 1591 path->reada = READA_FORWARD; 1592 path->search_commit_root = 1; 1593 path->skip_locking = 1; 1594 1595 key.objectid = device->devid; 1596 key.offset = search_start; 1597 key.type = BTRFS_DEV_EXTENT_KEY; 1598 1599 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1600 if (ret < 0) 1601 goto out; 1602 if (ret > 0) { 1603 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1604 if (ret < 0) 1605 goto out; 1606 } 1607 1608 while (1) { 1609 l = path->nodes[0]; 1610 slot = path->slots[0]; 1611 if (slot >= btrfs_header_nritems(l)) { 1612 ret = btrfs_next_leaf(root, path); 1613 if (ret == 0) 1614 continue; 1615 if (ret < 0) 1616 goto out; 1617 1618 break; 1619 } 1620 btrfs_item_key_to_cpu(l, &key, slot); 1621 1622 if (key.objectid < device->devid) 1623 goto next; 1624 1625 if (key.objectid > device->devid) 1626 break; 1627 1628 if (key.type != BTRFS_DEV_EXTENT_KEY) 1629 goto next; 1630 1631 if (key.offset > search_start) { 1632 hole_size = key.offset - search_start; 1633 1634 /* 1635 * Have to check before we set max_hole_start, otherwise 1636 * we could end up sending back this offset anyway. 1637 */ 1638 if (contains_pending_extent(device, &search_start, 1639 hole_size)) { 1640 if (key.offset >= search_start) 1641 hole_size = key.offset - search_start; 1642 else 1643 hole_size = 0; 1644 } 1645 1646 if (hole_size > max_hole_size) { 1647 max_hole_start = search_start; 1648 max_hole_size = hole_size; 1649 } 1650 1651 /* 1652 * If this free space is greater than which we need, 1653 * it must be the max free space that we have found 1654 * until now, so max_hole_start must point to the start 1655 * of this free space and the length of this free space 1656 * is stored in max_hole_size. Thus, we return 1657 * max_hole_start and max_hole_size and go back to the 1658 * caller. 1659 */ 1660 if (hole_size >= num_bytes) { 1661 ret = 0; 1662 goto out; 1663 } 1664 } 1665 1666 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1667 extent_end = key.offset + btrfs_dev_extent_length(l, 1668 dev_extent); 1669 if (extent_end > search_start) 1670 search_start = extent_end; 1671 next: 1672 path->slots[0]++; 1673 cond_resched(); 1674 } 1675 1676 /* 1677 * At this point, search_start should be the end of 1678 * allocated dev extents, and when shrinking the device, 1679 * search_end may be smaller than search_start. 1680 */ 1681 if (search_end > search_start) { 1682 hole_size = search_end - search_start; 1683 1684 if (contains_pending_extent(device, &search_start, hole_size)) { 1685 btrfs_release_path(path); 1686 goto again; 1687 } 1688 1689 if (hole_size > max_hole_size) { 1690 max_hole_start = search_start; 1691 max_hole_size = hole_size; 1692 } 1693 } 1694 1695 /* See above. */ 1696 if (max_hole_size < num_bytes) 1697 ret = -ENOSPC; 1698 else 1699 ret = 0; 1700 1701 out: 1702 btrfs_free_path(path); 1703 *start = max_hole_start; 1704 if (len) 1705 *len = max_hole_size; 1706 return ret; 1707 } 1708 1709 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1710 u64 *start, u64 *len) 1711 { 1712 /* FIXME use last free of some kind */ 1713 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1714 } 1715 1716 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1717 struct btrfs_device *device, 1718 u64 start, u64 *dev_extent_len) 1719 { 1720 struct btrfs_fs_info *fs_info = device->fs_info; 1721 struct btrfs_root *root = fs_info->dev_root; 1722 int ret; 1723 struct btrfs_path *path; 1724 struct btrfs_key key; 1725 struct btrfs_key found_key; 1726 struct extent_buffer *leaf = NULL; 1727 struct btrfs_dev_extent *extent = NULL; 1728 1729 path = btrfs_alloc_path(); 1730 if (!path) 1731 return -ENOMEM; 1732 1733 key.objectid = device->devid; 1734 key.offset = start; 1735 key.type = BTRFS_DEV_EXTENT_KEY; 1736 again: 1737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1738 if (ret > 0) { 1739 ret = btrfs_previous_item(root, path, key.objectid, 1740 BTRFS_DEV_EXTENT_KEY); 1741 if (ret) 1742 goto out; 1743 leaf = path->nodes[0]; 1744 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1745 extent = btrfs_item_ptr(leaf, path->slots[0], 1746 struct btrfs_dev_extent); 1747 BUG_ON(found_key.offset > start || found_key.offset + 1748 btrfs_dev_extent_length(leaf, extent) < start); 1749 key = found_key; 1750 btrfs_release_path(path); 1751 goto again; 1752 } else if (ret == 0) { 1753 leaf = path->nodes[0]; 1754 extent = btrfs_item_ptr(leaf, path->slots[0], 1755 struct btrfs_dev_extent); 1756 } else { 1757 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1758 goto out; 1759 } 1760 1761 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1762 1763 ret = btrfs_del_item(trans, root, path); 1764 if (ret) { 1765 btrfs_handle_fs_error(fs_info, ret, 1766 "Failed to remove dev extent item"); 1767 } else { 1768 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1769 } 1770 out: 1771 btrfs_free_path(path); 1772 return ret; 1773 } 1774 1775 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1776 struct btrfs_device *device, 1777 u64 chunk_offset, u64 start, u64 num_bytes) 1778 { 1779 int ret; 1780 struct btrfs_path *path; 1781 struct btrfs_fs_info *fs_info = device->fs_info; 1782 struct btrfs_root *root = fs_info->dev_root; 1783 struct btrfs_dev_extent *extent; 1784 struct extent_buffer *leaf; 1785 struct btrfs_key key; 1786 1787 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1788 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1789 path = btrfs_alloc_path(); 1790 if (!path) 1791 return -ENOMEM; 1792 1793 key.objectid = device->devid; 1794 key.offset = start; 1795 key.type = BTRFS_DEV_EXTENT_KEY; 1796 ret = btrfs_insert_empty_item(trans, root, path, &key, 1797 sizeof(*extent)); 1798 if (ret) 1799 goto out; 1800 1801 leaf = path->nodes[0]; 1802 extent = btrfs_item_ptr(leaf, path->slots[0], 1803 struct btrfs_dev_extent); 1804 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1805 BTRFS_CHUNK_TREE_OBJECTID); 1806 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1807 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1808 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1809 1810 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1811 btrfs_mark_buffer_dirty(leaf); 1812 out: 1813 btrfs_free_path(path); 1814 return ret; 1815 } 1816 1817 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1818 { 1819 struct extent_map_tree *em_tree; 1820 struct extent_map *em; 1821 struct rb_node *n; 1822 u64 ret = 0; 1823 1824 em_tree = &fs_info->mapping_tree; 1825 read_lock(&em_tree->lock); 1826 n = rb_last(&em_tree->map.rb_root); 1827 if (n) { 1828 em = rb_entry(n, struct extent_map, rb_node); 1829 ret = em->start + em->len; 1830 } 1831 read_unlock(&em_tree->lock); 1832 1833 return ret; 1834 } 1835 1836 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1837 u64 *devid_ret) 1838 { 1839 int ret; 1840 struct btrfs_key key; 1841 struct btrfs_key found_key; 1842 struct btrfs_path *path; 1843 1844 path = btrfs_alloc_path(); 1845 if (!path) 1846 return -ENOMEM; 1847 1848 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1849 key.type = BTRFS_DEV_ITEM_KEY; 1850 key.offset = (u64)-1; 1851 1852 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1853 if (ret < 0) 1854 goto error; 1855 1856 if (ret == 0) { 1857 /* Corruption */ 1858 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1859 ret = -EUCLEAN; 1860 goto error; 1861 } 1862 1863 ret = btrfs_previous_item(fs_info->chunk_root, path, 1864 BTRFS_DEV_ITEMS_OBJECTID, 1865 BTRFS_DEV_ITEM_KEY); 1866 if (ret) { 1867 *devid_ret = 1; 1868 } else { 1869 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1870 path->slots[0]); 1871 *devid_ret = found_key.offset + 1; 1872 } 1873 ret = 0; 1874 error: 1875 btrfs_free_path(path); 1876 return ret; 1877 } 1878 1879 /* 1880 * the device information is stored in the chunk root 1881 * the btrfs_device struct should be fully filled in 1882 */ 1883 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1884 struct btrfs_device *device) 1885 { 1886 int ret; 1887 struct btrfs_path *path; 1888 struct btrfs_dev_item *dev_item; 1889 struct extent_buffer *leaf; 1890 struct btrfs_key key; 1891 unsigned long ptr; 1892 1893 path = btrfs_alloc_path(); 1894 if (!path) 1895 return -ENOMEM; 1896 1897 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1898 key.type = BTRFS_DEV_ITEM_KEY; 1899 key.offset = device->devid; 1900 1901 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1902 &key, sizeof(*dev_item)); 1903 if (ret) 1904 goto out; 1905 1906 leaf = path->nodes[0]; 1907 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1908 1909 btrfs_set_device_id(leaf, dev_item, device->devid); 1910 btrfs_set_device_generation(leaf, dev_item, 0); 1911 btrfs_set_device_type(leaf, dev_item, device->type); 1912 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1913 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1914 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1915 btrfs_set_device_total_bytes(leaf, dev_item, 1916 btrfs_device_get_disk_total_bytes(device)); 1917 btrfs_set_device_bytes_used(leaf, dev_item, 1918 btrfs_device_get_bytes_used(device)); 1919 btrfs_set_device_group(leaf, dev_item, 0); 1920 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1921 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1922 btrfs_set_device_start_offset(leaf, dev_item, 0); 1923 1924 ptr = btrfs_device_uuid(dev_item); 1925 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1926 ptr = btrfs_device_fsid(dev_item); 1927 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1928 ptr, BTRFS_FSID_SIZE); 1929 btrfs_mark_buffer_dirty(leaf); 1930 1931 ret = 0; 1932 out: 1933 btrfs_free_path(path); 1934 return ret; 1935 } 1936 1937 /* 1938 * Function to update ctime/mtime for a given device path. 1939 * Mainly used for ctime/mtime based probe like libblkid. 1940 */ 1941 static void update_dev_time(const char *path_name) 1942 { 1943 struct file *filp; 1944 1945 filp = filp_open(path_name, O_RDWR, 0); 1946 if (IS_ERR(filp)) 1947 return; 1948 file_update_time(filp); 1949 filp_close(filp, NULL); 1950 } 1951 1952 static int btrfs_rm_dev_item(struct btrfs_device *device) 1953 { 1954 struct btrfs_root *root = device->fs_info->chunk_root; 1955 int ret; 1956 struct btrfs_path *path; 1957 struct btrfs_key key; 1958 struct btrfs_trans_handle *trans; 1959 1960 path = btrfs_alloc_path(); 1961 if (!path) 1962 return -ENOMEM; 1963 1964 trans = btrfs_start_transaction(root, 0); 1965 if (IS_ERR(trans)) { 1966 btrfs_free_path(path); 1967 return PTR_ERR(trans); 1968 } 1969 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1970 key.type = BTRFS_DEV_ITEM_KEY; 1971 key.offset = device->devid; 1972 1973 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1974 if (ret) { 1975 if (ret > 0) 1976 ret = -ENOENT; 1977 btrfs_abort_transaction(trans, ret); 1978 btrfs_end_transaction(trans); 1979 goto out; 1980 } 1981 1982 ret = btrfs_del_item(trans, root, path); 1983 if (ret) { 1984 btrfs_abort_transaction(trans, ret); 1985 btrfs_end_transaction(trans); 1986 } 1987 1988 out: 1989 btrfs_free_path(path); 1990 if (!ret) 1991 ret = btrfs_commit_transaction(trans); 1992 return ret; 1993 } 1994 1995 /* 1996 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1997 * filesystem. It's up to the caller to adjust that number regarding eg. device 1998 * replace. 1999 */ 2000 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 2001 u64 num_devices) 2002 { 2003 u64 all_avail; 2004 unsigned seq; 2005 int i; 2006 2007 do { 2008 seq = read_seqbegin(&fs_info->profiles_lock); 2009 2010 all_avail = fs_info->avail_data_alloc_bits | 2011 fs_info->avail_system_alloc_bits | 2012 fs_info->avail_metadata_alloc_bits; 2013 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2014 2015 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2016 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2017 continue; 2018 2019 if (num_devices < btrfs_raid_array[i].devs_min) { 2020 int ret = btrfs_raid_array[i].mindev_error; 2021 2022 if (ret) 2023 return ret; 2024 } 2025 } 2026 2027 return 0; 2028 } 2029 2030 static struct btrfs_device * btrfs_find_next_active_device( 2031 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2032 { 2033 struct btrfs_device *next_device; 2034 2035 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2036 if (next_device != device && 2037 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2038 && next_device->bdev) 2039 return next_device; 2040 } 2041 2042 return NULL; 2043 } 2044 2045 /* 2046 * Helper function to check if the given device is part of s_bdev / latest_bdev 2047 * and replace it with the provided or the next active device, in the context 2048 * where this function called, there should be always be another device (or 2049 * this_dev) which is active. 2050 */ 2051 void btrfs_assign_next_active_device(struct btrfs_device *device, 2052 struct btrfs_device *this_dev) 2053 { 2054 struct btrfs_fs_info *fs_info = device->fs_info; 2055 struct btrfs_device *next_device; 2056 2057 if (this_dev) 2058 next_device = this_dev; 2059 else 2060 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2061 device); 2062 ASSERT(next_device); 2063 2064 if (fs_info->sb->s_bdev && 2065 (fs_info->sb->s_bdev == device->bdev)) 2066 fs_info->sb->s_bdev = next_device->bdev; 2067 2068 if (fs_info->fs_devices->latest_bdev == device->bdev) 2069 fs_info->fs_devices->latest_bdev = next_device->bdev; 2070 } 2071 2072 /* 2073 * Return btrfs_fs_devices::num_devices excluding the device that's being 2074 * currently replaced. 2075 */ 2076 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2077 { 2078 u64 num_devices = fs_info->fs_devices->num_devices; 2079 2080 down_read(&fs_info->dev_replace.rwsem); 2081 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2082 ASSERT(num_devices > 1); 2083 num_devices--; 2084 } 2085 up_read(&fs_info->dev_replace.rwsem); 2086 2087 return num_devices; 2088 } 2089 2090 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 2091 u64 devid) 2092 { 2093 struct btrfs_device *device; 2094 struct btrfs_fs_devices *cur_devices; 2095 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2096 u64 num_devices; 2097 int ret = 0; 2098 2099 mutex_lock(&uuid_mutex); 2100 2101 num_devices = btrfs_num_devices(fs_info); 2102 2103 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2104 if (ret) 2105 goto out; 2106 2107 device = btrfs_find_device_by_devspec(fs_info, devid, device_path); 2108 2109 if (IS_ERR(device)) { 2110 if (PTR_ERR(device) == -ENOENT && 2111 strcmp(device_path, "missing") == 0) 2112 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2113 else 2114 ret = PTR_ERR(device); 2115 goto out; 2116 } 2117 2118 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2119 btrfs_warn_in_rcu(fs_info, 2120 "cannot remove device %s (devid %llu) due to active swapfile", 2121 rcu_str_deref(device->name), device->devid); 2122 ret = -ETXTBSY; 2123 goto out; 2124 } 2125 2126 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2127 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 2128 goto out; 2129 } 2130 2131 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2132 fs_info->fs_devices->rw_devices == 1) { 2133 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 2134 goto out; 2135 } 2136 2137 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2138 mutex_lock(&fs_info->chunk_mutex); 2139 list_del_init(&device->dev_alloc_list); 2140 device->fs_devices->rw_devices--; 2141 mutex_unlock(&fs_info->chunk_mutex); 2142 } 2143 2144 mutex_unlock(&uuid_mutex); 2145 ret = btrfs_shrink_device(device, 0); 2146 mutex_lock(&uuid_mutex); 2147 if (ret) 2148 goto error_undo; 2149 2150 /* 2151 * TODO: the superblock still includes this device in its num_devices 2152 * counter although write_all_supers() is not locked out. This 2153 * could give a filesystem state which requires a degraded mount. 2154 */ 2155 ret = btrfs_rm_dev_item(device); 2156 if (ret) 2157 goto error_undo; 2158 2159 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2160 btrfs_scrub_cancel_dev(device); 2161 2162 /* 2163 * the device list mutex makes sure that we don't change 2164 * the device list while someone else is writing out all 2165 * the device supers. Whoever is writing all supers, should 2166 * lock the device list mutex before getting the number of 2167 * devices in the super block (super_copy). Conversely, 2168 * whoever updates the number of devices in the super block 2169 * (super_copy) should hold the device list mutex. 2170 */ 2171 2172 /* 2173 * In normal cases the cur_devices == fs_devices. But in case 2174 * of deleting a seed device, the cur_devices should point to 2175 * its own fs_devices listed under the fs_devices->seed. 2176 */ 2177 cur_devices = device->fs_devices; 2178 mutex_lock(&fs_devices->device_list_mutex); 2179 list_del_rcu(&device->dev_list); 2180 2181 cur_devices->num_devices--; 2182 cur_devices->total_devices--; 2183 /* Update total_devices of the parent fs_devices if it's seed */ 2184 if (cur_devices != fs_devices) 2185 fs_devices->total_devices--; 2186 2187 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2188 cur_devices->missing_devices--; 2189 2190 btrfs_assign_next_active_device(device, NULL); 2191 2192 if (device->bdev) { 2193 cur_devices->open_devices--; 2194 /* remove sysfs entry */ 2195 btrfs_sysfs_rm_device_link(fs_devices, device); 2196 } 2197 2198 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2199 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2200 mutex_unlock(&fs_devices->device_list_mutex); 2201 2202 /* 2203 * at this point, the device is zero sized and detached from 2204 * the devices list. All that's left is to zero out the old 2205 * supers and free the device. 2206 */ 2207 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2208 btrfs_scratch_superblocks(device->bdev, device->name->str); 2209 2210 btrfs_close_bdev(device); 2211 synchronize_rcu(); 2212 btrfs_free_device(device); 2213 2214 if (cur_devices->open_devices == 0) { 2215 while (fs_devices) { 2216 if (fs_devices->seed == cur_devices) { 2217 fs_devices->seed = cur_devices->seed; 2218 break; 2219 } 2220 fs_devices = fs_devices->seed; 2221 } 2222 cur_devices->seed = NULL; 2223 close_fs_devices(cur_devices); 2224 free_fs_devices(cur_devices); 2225 } 2226 2227 out: 2228 mutex_unlock(&uuid_mutex); 2229 return ret; 2230 2231 error_undo: 2232 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2233 mutex_lock(&fs_info->chunk_mutex); 2234 list_add(&device->dev_alloc_list, 2235 &fs_devices->alloc_list); 2236 device->fs_devices->rw_devices++; 2237 mutex_unlock(&fs_info->chunk_mutex); 2238 } 2239 goto out; 2240 } 2241 2242 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2243 { 2244 struct btrfs_fs_devices *fs_devices; 2245 2246 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2247 2248 /* 2249 * in case of fs with no seed, srcdev->fs_devices will point 2250 * to fs_devices of fs_info. However when the dev being replaced is 2251 * a seed dev it will point to the seed's local fs_devices. In short 2252 * srcdev will have its correct fs_devices in both the cases. 2253 */ 2254 fs_devices = srcdev->fs_devices; 2255 2256 list_del_rcu(&srcdev->dev_list); 2257 list_del(&srcdev->dev_alloc_list); 2258 fs_devices->num_devices--; 2259 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2260 fs_devices->missing_devices--; 2261 2262 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2263 fs_devices->rw_devices--; 2264 2265 if (srcdev->bdev) 2266 fs_devices->open_devices--; 2267 } 2268 2269 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2270 { 2271 struct btrfs_fs_info *fs_info = srcdev->fs_info; 2272 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2273 2274 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) { 2275 /* zero out the old super if it is writable */ 2276 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); 2277 } 2278 2279 btrfs_close_bdev(srcdev); 2280 synchronize_rcu(); 2281 btrfs_free_device(srcdev); 2282 2283 /* if this is no devs we rather delete the fs_devices */ 2284 if (!fs_devices->num_devices) { 2285 struct btrfs_fs_devices *tmp_fs_devices; 2286 2287 /* 2288 * On a mounted FS, num_devices can't be zero unless it's a 2289 * seed. In case of a seed device being replaced, the replace 2290 * target added to the sprout FS, so there will be no more 2291 * device left under the seed FS. 2292 */ 2293 ASSERT(fs_devices->seeding); 2294 2295 tmp_fs_devices = fs_info->fs_devices; 2296 while (tmp_fs_devices) { 2297 if (tmp_fs_devices->seed == fs_devices) { 2298 tmp_fs_devices->seed = fs_devices->seed; 2299 break; 2300 } 2301 tmp_fs_devices = tmp_fs_devices->seed; 2302 } 2303 fs_devices->seed = NULL; 2304 close_fs_devices(fs_devices); 2305 free_fs_devices(fs_devices); 2306 } 2307 } 2308 2309 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2310 { 2311 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2312 2313 WARN_ON(!tgtdev); 2314 mutex_lock(&fs_devices->device_list_mutex); 2315 2316 btrfs_sysfs_rm_device_link(fs_devices, tgtdev); 2317 2318 if (tgtdev->bdev) 2319 fs_devices->open_devices--; 2320 2321 fs_devices->num_devices--; 2322 2323 btrfs_assign_next_active_device(tgtdev, NULL); 2324 2325 list_del_rcu(&tgtdev->dev_list); 2326 2327 mutex_unlock(&fs_devices->device_list_mutex); 2328 2329 /* 2330 * The update_dev_time() with in btrfs_scratch_superblocks() 2331 * may lead to a call to btrfs_show_devname() which will try 2332 * to hold device_list_mutex. And here this device 2333 * is already out of device list, so we don't have to hold 2334 * the device_list_mutex lock. 2335 */ 2336 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); 2337 2338 btrfs_close_bdev(tgtdev); 2339 synchronize_rcu(); 2340 btrfs_free_device(tgtdev); 2341 } 2342 2343 static struct btrfs_device *btrfs_find_device_by_path( 2344 struct btrfs_fs_info *fs_info, const char *device_path) 2345 { 2346 int ret = 0; 2347 struct btrfs_super_block *disk_super; 2348 u64 devid; 2349 u8 *dev_uuid; 2350 struct block_device *bdev; 2351 struct buffer_head *bh; 2352 struct btrfs_device *device; 2353 2354 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2355 fs_info->bdev_holder, 0, &bdev, &bh); 2356 if (ret) 2357 return ERR_PTR(ret); 2358 disk_super = (struct btrfs_super_block *)bh->b_data; 2359 devid = btrfs_stack_device_id(&disk_super->dev_item); 2360 dev_uuid = disk_super->dev_item.uuid; 2361 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2362 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2363 disk_super->metadata_uuid, true); 2364 else 2365 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2366 disk_super->fsid, true); 2367 2368 brelse(bh); 2369 if (!device) 2370 device = ERR_PTR(-ENOENT); 2371 blkdev_put(bdev, FMODE_READ); 2372 return device; 2373 } 2374 2375 /* 2376 * Lookup a device given by device id, or the path if the id is 0. 2377 */ 2378 struct btrfs_device *btrfs_find_device_by_devspec( 2379 struct btrfs_fs_info *fs_info, u64 devid, 2380 const char *device_path) 2381 { 2382 struct btrfs_device *device; 2383 2384 if (devid) { 2385 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, 2386 NULL, true); 2387 if (!device) 2388 return ERR_PTR(-ENOENT); 2389 return device; 2390 } 2391 2392 if (!device_path || !device_path[0]) 2393 return ERR_PTR(-EINVAL); 2394 2395 if (strcmp(device_path, "missing") == 0) { 2396 /* Find first missing device */ 2397 list_for_each_entry(device, &fs_info->fs_devices->devices, 2398 dev_list) { 2399 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2400 &device->dev_state) && !device->bdev) 2401 return device; 2402 } 2403 return ERR_PTR(-ENOENT); 2404 } 2405 2406 return btrfs_find_device_by_path(fs_info, device_path); 2407 } 2408 2409 /* 2410 * does all the dirty work required for changing file system's UUID. 2411 */ 2412 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2413 { 2414 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2415 struct btrfs_fs_devices *old_devices; 2416 struct btrfs_fs_devices *seed_devices; 2417 struct btrfs_super_block *disk_super = fs_info->super_copy; 2418 struct btrfs_device *device; 2419 u64 super_flags; 2420 2421 lockdep_assert_held(&uuid_mutex); 2422 if (!fs_devices->seeding) 2423 return -EINVAL; 2424 2425 seed_devices = alloc_fs_devices(NULL, NULL); 2426 if (IS_ERR(seed_devices)) 2427 return PTR_ERR(seed_devices); 2428 2429 old_devices = clone_fs_devices(fs_devices); 2430 if (IS_ERR(old_devices)) { 2431 kfree(seed_devices); 2432 return PTR_ERR(old_devices); 2433 } 2434 2435 list_add(&old_devices->fs_list, &fs_uuids); 2436 2437 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2438 seed_devices->opened = 1; 2439 INIT_LIST_HEAD(&seed_devices->devices); 2440 INIT_LIST_HEAD(&seed_devices->alloc_list); 2441 mutex_init(&seed_devices->device_list_mutex); 2442 2443 mutex_lock(&fs_devices->device_list_mutex); 2444 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2445 synchronize_rcu); 2446 list_for_each_entry(device, &seed_devices->devices, dev_list) 2447 device->fs_devices = seed_devices; 2448 2449 mutex_lock(&fs_info->chunk_mutex); 2450 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2451 mutex_unlock(&fs_info->chunk_mutex); 2452 2453 fs_devices->seeding = 0; 2454 fs_devices->num_devices = 0; 2455 fs_devices->open_devices = 0; 2456 fs_devices->missing_devices = 0; 2457 fs_devices->rotating = 0; 2458 fs_devices->seed = seed_devices; 2459 2460 generate_random_uuid(fs_devices->fsid); 2461 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2462 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2463 mutex_unlock(&fs_devices->device_list_mutex); 2464 2465 super_flags = btrfs_super_flags(disk_super) & 2466 ~BTRFS_SUPER_FLAG_SEEDING; 2467 btrfs_set_super_flags(disk_super, super_flags); 2468 2469 return 0; 2470 } 2471 2472 /* 2473 * Store the expected generation for seed devices in device items. 2474 */ 2475 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2476 { 2477 struct btrfs_fs_info *fs_info = trans->fs_info; 2478 struct btrfs_root *root = fs_info->chunk_root; 2479 struct btrfs_path *path; 2480 struct extent_buffer *leaf; 2481 struct btrfs_dev_item *dev_item; 2482 struct btrfs_device *device; 2483 struct btrfs_key key; 2484 u8 fs_uuid[BTRFS_FSID_SIZE]; 2485 u8 dev_uuid[BTRFS_UUID_SIZE]; 2486 u64 devid; 2487 int ret; 2488 2489 path = btrfs_alloc_path(); 2490 if (!path) 2491 return -ENOMEM; 2492 2493 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2494 key.offset = 0; 2495 key.type = BTRFS_DEV_ITEM_KEY; 2496 2497 while (1) { 2498 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2499 if (ret < 0) 2500 goto error; 2501 2502 leaf = path->nodes[0]; 2503 next_slot: 2504 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2505 ret = btrfs_next_leaf(root, path); 2506 if (ret > 0) 2507 break; 2508 if (ret < 0) 2509 goto error; 2510 leaf = path->nodes[0]; 2511 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2512 btrfs_release_path(path); 2513 continue; 2514 } 2515 2516 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2517 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2518 key.type != BTRFS_DEV_ITEM_KEY) 2519 break; 2520 2521 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2522 struct btrfs_dev_item); 2523 devid = btrfs_device_id(leaf, dev_item); 2524 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2525 BTRFS_UUID_SIZE); 2526 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2527 BTRFS_FSID_SIZE); 2528 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2529 fs_uuid, true); 2530 BUG_ON(!device); /* Logic error */ 2531 2532 if (device->fs_devices->seeding) { 2533 btrfs_set_device_generation(leaf, dev_item, 2534 device->generation); 2535 btrfs_mark_buffer_dirty(leaf); 2536 } 2537 2538 path->slots[0]++; 2539 goto next_slot; 2540 } 2541 ret = 0; 2542 error: 2543 btrfs_free_path(path); 2544 return ret; 2545 } 2546 2547 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2548 { 2549 struct btrfs_root *root = fs_info->dev_root; 2550 struct request_queue *q; 2551 struct btrfs_trans_handle *trans; 2552 struct btrfs_device *device; 2553 struct block_device *bdev; 2554 struct super_block *sb = fs_info->sb; 2555 struct rcu_string *name; 2556 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2557 u64 orig_super_total_bytes; 2558 u64 orig_super_num_devices; 2559 int seeding_dev = 0; 2560 int ret = 0; 2561 bool unlocked = false; 2562 2563 if (sb_rdonly(sb) && !fs_devices->seeding) 2564 return -EROFS; 2565 2566 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2567 fs_info->bdev_holder); 2568 if (IS_ERR(bdev)) 2569 return PTR_ERR(bdev); 2570 2571 if (fs_devices->seeding) { 2572 seeding_dev = 1; 2573 down_write(&sb->s_umount); 2574 mutex_lock(&uuid_mutex); 2575 } 2576 2577 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2578 2579 mutex_lock(&fs_devices->device_list_mutex); 2580 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2581 if (device->bdev == bdev) { 2582 ret = -EEXIST; 2583 mutex_unlock( 2584 &fs_devices->device_list_mutex); 2585 goto error; 2586 } 2587 } 2588 mutex_unlock(&fs_devices->device_list_mutex); 2589 2590 device = btrfs_alloc_device(fs_info, NULL, NULL); 2591 if (IS_ERR(device)) { 2592 /* we can safely leave the fs_devices entry around */ 2593 ret = PTR_ERR(device); 2594 goto error; 2595 } 2596 2597 name = rcu_string_strdup(device_path, GFP_KERNEL); 2598 if (!name) { 2599 ret = -ENOMEM; 2600 goto error_free_device; 2601 } 2602 rcu_assign_pointer(device->name, name); 2603 2604 trans = btrfs_start_transaction(root, 0); 2605 if (IS_ERR(trans)) { 2606 ret = PTR_ERR(trans); 2607 goto error_free_device; 2608 } 2609 2610 q = bdev_get_queue(bdev); 2611 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2612 device->generation = trans->transid; 2613 device->io_width = fs_info->sectorsize; 2614 device->io_align = fs_info->sectorsize; 2615 device->sector_size = fs_info->sectorsize; 2616 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2617 fs_info->sectorsize); 2618 device->disk_total_bytes = device->total_bytes; 2619 device->commit_total_bytes = device->total_bytes; 2620 device->fs_info = fs_info; 2621 device->bdev = bdev; 2622 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2623 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2624 device->mode = FMODE_EXCL; 2625 device->dev_stats_valid = 1; 2626 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2627 2628 if (seeding_dev) { 2629 sb->s_flags &= ~SB_RDONLY; 2630 ret = btrfs_prepare_sprout(fs_info); 2631 if (ret) { 2632 btrfs_abort_transaction(trans, ret); 2633 goto error_trans; 2634 } 2635 } 2636 2637 device->fs_devices = fs_devices; 2638 2639 mutex_lock(&fs_devices->device_list_mutex); 2640 mutex_lock(&fs_info->chunk_mutex); 2641 list_add_rcu(&device->dev_list, &fs_devices->devices); 2642 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2643 fs_devices->num_devices++; 2644 fs_devices->open_devices++; 2645 fs_devices->rw_devices++; 2646 fs_devices->total_devices++; 2647 fs_devices->total_rw_bytes += device->total_bytes; 2648 2649 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2650 2651 if (!blk_queue_nonrot(q)) 2652 fs_devices->rotating = 1; 2653 2654 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2655 btrfs_set_super_total_bytes(fs_info->super_copy, 2656 round_down(orig_super_total_bytes + device->total_bytes, 2657 fs_info->sectorsize)); 2658 2659 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2660 btrfs_set_super_num_devices(fs_info->super_copy, 2661 orig_super_num_devices + 1); 2662 2663 /* add sysfs device entry */ 2664 btrfs_sysfs_add_device_link(fs_devices, device); 2665 2666 /* 2667 * we've got more storage, clear any full flags on the space 2668 * infos 2669 */ 2670 btrfs_clear_space_info_full(fs_info); 2671 2672 mutex_unlock(&fs_info->chunk_mutex); 2673 mutex_unlock(&fs_devices->device_list_mutex); 2674 2675 if (seeding_dev) { 2676 mutex_lock(&fs_info->chunk_mutex); 2677 ret = init_first_rw_device(trans); 2678 mutex_unlock(&fs_info->chunk_mutex); 2679 if (ret) { 2680 btrfs_abort_transaction(trans, ret); 2681 goto error_sysfs; 2682 } 2683 } 2684 2685 ret = btrfs_add_dev_item(trans, device); 2686 if (ret) { 2687 btrfs_abort_transaction(trans, ret); 2688 goto error_sysfs; 2689 } 2690 2691 if (seeding_dev) { 2692 ret = btrfs_finish_sprout(trans); 2693 if (ret) { 2694 btrfs_abort_transaction(trans, ret); 2695 goto error_sysfs; 2696 } 2697 2698 btrfs_sysfs_update_sprout_fsid(fs_devices, 2699 fs_info->fs_devices->fsid); 2700 } 2701 2702 ret = btrfs_commit_transaction(trans); 2703 2704 if (seeding_dev) { 2705 mutex_unlock(&uuid_mutex); 2706 up_write(&sb->s_umount); 2707 unlocked = true; 2708 2709 if (ret) /* transaction commit */ 2710 return ret; 2711 2712 ret = btrfs_relocate_sys_chunks(fs_info); 2713 if (ret < 0) 2714 btrfs_handle_fs_error(fs_info, ret, 2715 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2716 trans = btrfs_attach_transaction(root); 2717 if (IS_ERR(trans)) { 2718 if (PTR_ERR(trans) == -ENOENT) 2719 return 0; 2720 ret = PTR_ERR(trans); 2721 trans = NULL; 2722 goto error_sysfs; 2723 } 2724 ret = btrfs_commit_transaction(trans); 2725 } 2726 2727 /* Update ctime/mtime for libblkid */ 2728 update_dev_time(device_path); 2729 return ret; 2730 2731 error_sysfs: 2732 btrfs_sysfs_rm_device_link(fs_devices, device); 2733 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2734 mutex_lock(&fs_info->chunk_mutex); 2735 list_del_rcu(&device->dev_list); 2736 list_del(&device->dev_alloc_list); 2737 fs_info->fs_devices->num_devices--; 2738 fs_info->fs_devices->open_devices--; 2739 fs_info->fs_devices->rw_devices--; 2740 fs_info->fs_devices->total_devices--; 2741 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2742 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2743 btrfs_set_super_total_bytes(fs_info->super_copy, 2744 orig_super_total_bytes); 2745 btrfs_set_super_num_devices(fs_info->super_copy, 2746 orig_super_num_devices); 2747 mutex_unlock(&fs_info->chunk_mutex); 2748 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2749 error_trans: 2750 if (seeding_dev) 2751 sb->s_flags |= SB_RDONLY; 2752 if (trans) 2753 btrfs_end_transaction(trans); 2754 error_free_device: 2755 btrfs_free_device(device); 2756 error: 2757 blkdev_put(bdev, FMODE_EXCL); 2758 if (seeding_dev && !unlocked) { 2759 mutex_unlock(&uuid_mutex); 2760 up_write(&sb->s_umount); 2761 } 2762 return ret; 2763 } 2764 2765 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2766 struct btrfs_device *device) 2767 { 2768 int ret; 2769 struct btrfs_path *path; 2770 struct btrfs_root *root = device->fs_info->chunk_root; 2771 struct btrfs_dev_item *dev_item; 2772 struct extent_buffer *leaf; 2773 struct btrfs_key key; 2774 2775 path = btrfs_alloc_path(); 2776 if (!path) 2777 return -ENOMEM; 2778 2779 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2780 key.type = BTRFS_DEV_ITEM_KEY; 2781 key.offset = device->devid; 2782 2783 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2784 if (ret < 0) 2785 goto out; 2786 2787 if (ret > 0) { 2788 ret = -ENOENT; 2789 goto out; 2790 } 2791 2792 leaf = path->nodes[0]; 2793 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2794 2795 btrfs_set_device_id(leaf, dev_item, device->devid); 2796 btrfs_set_device_type(leaf, dev_item, device->type); 2797 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2798 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2799 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2800 btrfs_set_device_total_bytes(leaf, dev_item, 2801 btrfs_device_get_disk_total_bytes(device)); 2802 btrfs_set_device_bytes_used(leaf, dev_item, 2803 btrfs_device_get_bytes_used(device)); 2804 btrfs_mark_buffer_dirty(leaf); 2805 2806 out: 2807 btrfs_free_path(path); 2808 return ret; 2809 } 2810 2811 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2812 struct btrfs_device *device, u64 new_size) 2813 { 2814 struct btrfs_fs_info *fs_info = device->fs_info; 2815 struct btrfs_super_block *super_copy = fs_info->super_copy; 2816 u64 old_total; 2817 u64 diff; 2818 2819 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2820 return -EACCES; 2821 2822 new_size = round_down(new_size, fs_info->sectorsize); 2823 2824 mutex_lock(&fs_info->chunk_mutex); 2825 old_total = btrfs_super_total_bytes(super_copy); 2826 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2827 2828 if (new_size <= device->total_bytes || 2829 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2830 mutex_unlock(&fs_info->chunk_mutex); 2831 return -EINVAL; 2832 } 2833 2834 btrfs_set_super_total_bytes(super_copy, 2835 round_down(old_total + diff, fs_info->sectorsize)); 2836 device->fs_devices->total_rw_bytes += diff; 2837 2838 btrfs_device_set_total_bytes(device, new_size); 2839 btrfs_device_set_disk_total_bytes(device, new_size); 2840 btrfs_clear_space_info_full(device->fs_info); 2841 if (list_empty(&device->post_commit_list)) 2842 list_add_tail(&device->post_commit_list, 2843 &trans->transaction->dev_update_list); 2844 mutex_unlock(&fs_info->chunk_mutex); 2845 2846 return btrfs_update_device(trans, device); 2847 } 2848 2849 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2850 { 2851 struct btrfs_fs_info *fs_info = trans->fs_info; 2852 struct btrfs_root *root = fs_info->chunk_root; 2853 int ret; 2854 struct btrfs_path *path; 2855 struct btrfs_key key; 2856 2857 path = btrfs_alloc_path(); 2858 if (!path) 2859 return -ENOMEM; 2860 2861 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2862 key.offset = chunk_offset; 2863 key.type = BTRFS_CHUNK_ITEM_KEY; 2864 2865 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2866 if (ret < 0) 2867 goto out; 2868 else if (ret > 0) { /* Logic error or corruption */ 2869 btrfs_handle_fs_error(fs_info, -ENOENT, 2870 "Failed lookup while freeing chunk."); 2871 ret = -ENOENT; 2872 goto out; 2873 } 2874 2875 ret = btrfs_del_item(trans, root, path); 2876 if (ret < 0) 2877 btrfs_handle_fs_error(fs_info, ret, 2878 "Failed to delete chunk item."); 2879 out: 2880 btrfs_free_path(path); 2881 return ret; 2882 } 2883 2884 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2885 { 2886 struct btrfs_super_block *super_copy = fs_info->super_copy; 2887 struct btrfs_disk_key *disk_key; 2888 struct btrfs_chunk *chunk; 2889 u8 *ptr; 2890 int ret = 0; 2891 u32 num_stripes; 2892 u32 array_size; 2893 u32 len = 0; 2894 u32 cur; 2895 struct btrfs_key key; 2896 2897 mutex_lock(&fs_info->chunk_mutex); 2898 array_size = btrfs_super_sys_array_size(super_copy); 2899 2900 ptr = super_copy->sys_chunk_array; 2901 cur = 0; 2902 2903 while (cur < array_size) { 2904 disk_key = (struct btrfs_disk_key *)ptr; 2905 btrfs_disk_key_to_cpu(&key, disk_key); 2906 2907 len = sizeof(*disk_key); 2908 2909 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2910 chunk = (struct btrfs_chunk *)(ptr + len); 2911 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2912 len += btrfs_chunk_item_size(num_stripes); 2913 } else { 2914 ret = -EIO; 2915 break; 2916 } 2917 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2918 key.offset == chunk_offset) { 2919 memmove(ptr, ptr + len, array_size - (cur + len)); 2920 array_size -= len; 2921 btrfs_set_super_sys_array_size(super_copy, array_size); 2922 } else { 2923 ptr += len; 2924 cur += len; 2925 } 2926 } 2927 mutex_unlock(&fs_info->chunk_mutex); 2928 return ret; 2929 } 2930 2931 /* 2932 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2933 * @logical: Logical block offset in bytes. 2934 * @length: Length of extent in bytes. 2935 * 2936 * Return: Chunk mapping or ERR_PTR. 2937 */ 2938 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2939 u64 logical, u64 length) 2940 { 2941 struct extent_map_tree *em_tree; 2942 struct extent_map *em; 2943 2944 em_tree = &fs_info->mapping_tree; 2945 read_lock(&em_tree->lock); 2946 em = lookup_extent_mapping(em_tree, logical, length); 2947 read_unlock(&em_tree->lock); 2948 2949 if (!em) { 2950 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2951 logical, length); 2952 return ERR_PTR(-EINVAL); 2953 } 2954 2955 if (em->start > logical || em->start + em->len < logical) { 2956 btrfs_crit(fs_info, 2957 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 2958 logical, length, em->start, em->start + em->len); 2959 free_extent_map(em); 2960 return ERR_PTR(-EINVAL); 2961 } 2962 2963 /* callers are responsible for dropping em's ref. */ 2964 return em; 2965 } 2966 2967 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2968 { 2969 struct btrfs_fs_info *fs_info = trans->fs_info; 2970 struct extent_map *em; 2971 struct map_lookup *map; 2972 u64 dev_extent_len = 0; 2973 int i, ret = 0; 2974 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2975 2976 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 2977 if (IS_ERR(em)) { 2978 /* 2979 * This is a logic error, but we don't want to just rely on the 2980 * user having built with ASSERT enabled, so if ASSERT doesn't 2981 * do anything we still error out. 2982 */ 2983 ASSERT(0); 2984 return PTR_ERR(em); 2985 } 2986 map = em->map_lookup; 2987 mutex_lock(&fs_info->chunk_mutex); 2988 check_system_chunk(trans, map->type); 2989 mutex_unlock(&fs_info->chunk_mutex); 2990 2991 /* 2992 * Take the device list mutex to prevent races with the final phase of 2993 * a device replace operation that replaces the device object associated 2994 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2995 */ 2996 mutex_lock(&fs_devices->device_list_mutex); 2997 for (i = 0; i < map->num_stripes; i++) { 2998 struct btrfs_device *device = map->stripes[i].dev; 2999 ret = btrfs_free_dev_extent(trans, device, 3000 map->stripes[i].physical, 3001 &dev_extent_len); 3002 if (ret) { 3003 mutex_unlock(&fs_devices->device_list_mutex); 3004 btrfs_abort_transaction(trans, ret); 3005 goto out; 3006 } 3007 3008 if (device->bytes_used > 0) { 3009 mutex_lock(&fs_info->chunk_mutex); 3010 btrfs_device_set_bytes_used(device, 3011 device->bytes_used - dev_extent_len); 3012 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3013 btrfs_clear_space_info_full(fs_info); 3014 mutex_unlock(&fs_info->chunk_mutex); 3015 } 3016 3017 ret = btrfs_update_device(trans, device); 3018 if (ret) { 3019 mutex_unlock(&fs_devices->device_list_mutex); 3020 btrfs_abort_transaction(trans, ret); 3021 goto out; 3022 } 3023 } 3024 mutex_unlock(&fs_devices->device_list_mutex); 3025 3026 ret = btrfs_free_chunk(trans, chunk_offset); 3027 if (ret) { 3028 btrfs_abort_transaction(trans, ret); 3029 goto out; 3030 } 3031 3032 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3033 3034 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3035 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3036 if (ret) { 3037 btrfs_abort_transaction(trans, ret); 3038 goto out; 3039 } 3040 } 3041 3042 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3043 if (ret) { 3044 btrfs_abort_transaction(trans, ret); 3045 goto out; 3046 } 3047 3048 out: 3049 /* once for us */ 3050 free_extent_map(em); 3051 return ret; 3052 } 3053 3054 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3055 { 3056 struct btrfs_root *root = fs_info->chunk_root; 3057 struct btrfs_trans_handle *trans; 3058 int ret; 3059 3060 /* 3061 * Prevent races with automatic removal of unused block groups. 3062 * After we relocate and before we remove the chunk with offset 3063 * chunk_offset, automatic removal of the block group can kick in, 3064 * resulting in a failure when calling btrfs_remove_chunk() below. 3065 * 3066 * Make sure to acquire this mutex before doing a tree search (dev 3067 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3068 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3069 * we release the path used to search the chunk/dev tree and before 3070 * the current task acquires this mutex and calls us. 3071 */ 3072 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); 3073 3074 /* step one, relocate all the extents inside this chunk */ 3075 btrfs_scrub_pause(fs_info); 3076 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3077 btrfs_scrub_continue(fs_info); 3078 if (ret) 3079 return ret; 3080 3081 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3082 chunk_offset); 3083 if (IS_ERR(trans)) { 3084 ret = PTR_ERR(trans); 3085 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3086 return ret; 3087 } 3088 3089 /* 3090 * step two, delete the device extents and the 3091 * chunk tree entries 3092 */ 3093 ret = btrfs_remove_chunk(trans, chunk_offset); 3094 btrfs_end_transaction(trans); 3095 return ret; 3096 } 3097 3098 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3099 { 3100 struct btrfs_root *chunk_root = fs_info->chunk_root; 3101 struct btrfs_path *path; 3102 struct extent_buffer *leaf; 3103 struct btrfs_chunk *chunk; 3104 struct btrfs_key key; 3105 struct btrfs_key found_key; 3106 u64 chunk_type; 3107 bool retried = false; 3108 int failed = 0; 3109 int ret; 3110 3111 path = btrfs_alloc_path(); 3112 if (!path) 3113 return -ENOMEM; 3114 3115 again: 3116 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3117 key.offset = (u64)-1; 3118 key.type = BTRFS_CHUNK_ITEM_KEY; 3119 3120 while (1) { 3121 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3122 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3123 if (ret < 0) { 3124 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3125 goto error; 3126 } 3127 BUG_ON(ret == 0); /* Corruption */ 3128 3129 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3130 key.type); 3131 if (ret) 3132 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3133 if (ret < 0) 3134 goto error; 3135 if (ret > 0) 3136 break; 3137 3138 leaf = path->nodes[0]; 3139 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3140 3141 chunk = btrfs_item_ptr(leaf, path->slots[0], 3142 struct btrfs_chunk); 3143 chunk_type = btrfs_chunk_type(leaf, chunk); 3144 btrfs_release_path(path); 3145 3146 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3147 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3148 if (ret == -ENOSPC) 3149 failed++; 3150 else 3151 BUG_ON(ret); 3152 } 3153 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3154 3155 if (found_key.offset == 0) 3156 break; 3157 key.offset = found_key.offset - 1; 3158 } 3159 ret = 0; 3160 if (failed && !retried) { 3161 failed = 0; 3162 retried = true; 3163 goto again; 3164 } else if (WARN_ON(failed && retried)) { 3165 ret = -ENOSPC; 3166 } 3167 error: 3168 btrfs_free_path(path); 3169 return ret; 3170 } 3171 3172 /* 3173 * return 1 : allocate a data chunk successfully, 3174 * return <0: errors during allocating a data chunk, 3175 * return 0 : no need to allocate a data chunk. 3176 */ 3177 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3178 u64 chunk_offset) 3179 { 3180 struct btrfs_block_group_cache *cache; 3181 u64 bytes_used; 3182 u64 chunk_type; 3183 3184 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3185 ASSERT(cache); 3186 chunk_type = cache->flags; 3187 btrfs_put_block_group(cache); 3188 3189 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) { 3190 spin_lock(&fs_info->data_sinfo->lock); 3191 bytes_used = fs_info->data_sinfo->bytes_used; 3192 spin_unlock(&fs_info->data_sinfo->lock); 3193 3194 if (!bytes_used) { 3195 struct btrfs_trans_handle *trans; 3196 int ret; 3197 3198 trans = btrfs_join_transaction(fs_info->tree_root); 3199 if (IS_ERR(trans)) 3200 return PTR_ERR(trans); 3201 3202 ret = btrfs_force_chunk_alloc(trans, 3203 BTRFS_BLOCK_GROUP_DATA); 3204 btrfs_end_transaction(trans); 3205 if (ret < 0) 3206 return ret; 3207 return 1; 3208 } 3209 } 3210 return 0; 3211 } 3212 3213 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3214 struct btrfs_balance_control *bctl) 3215 { 3216 struct btrfs_root *root = fs_info->tree_root; 3217 struct btrfs_trans_handle *trans; 3218 struct btrfs_balance_item *item; 3219 struct btrfs_disk_balance_args disk_bargs; 3220 struct btrfs_path *path; 3221 struct extent_buffer *leaf; 3222 struct btrfs_key key; 3223 int ret, err; 3224 3225 path = btrfs_alloc_path(); 3226 if (!path) 3227 return -ENOMEM; 3228 3229 trans = btrfs_start_transaction(root, 0); 3230 if (IS_ERR(trans)) { 3231 btrfs_free_path(path); 3232 return PTR_ERR(trans); 3233 } 3234 3235 key.objectid = BTRFS_BALANCE_OBJECTID; 3236 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3237 key.offset = 0; 3238 3239 ret = btrfs_insert_empty_item(trans, root, path, &key, 3240 sizeof(*item)); 3241 if (ret) 3242 goto out; 3243 3244 leaf = path->nodes[0]; 3245 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3246 3247 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3248 3249 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3250 btrfs_set_balance_data(leaf, item, &disk_bargs); 3251 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3252 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3253 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3254 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3255 3256 btrfs_set_balance_flags(leaf, item, bctl->flags); 3257 3258 btrfs_mark_buffer_dirty(leaf); 3259 out: 3260 btrfs_free_path(path); 3261 err = btrfs_commit_transaction(trans); 3262 if (err && !ret) 3263 ret = err; 3264 return ret; 3265 } 3266 3267 static int del_balance_item(struct btrfs_fs_info *fs_info) 3268 { 3269 struct btrfs_root *root = fs_info->tree_root; 3270 struct btrfs_trans_handle *trans; 3271 struct btrfs_path *path; 3272 struct btrfs_key key; 3273 int ret, err; 3274 3275 path = btrfs_alloc_path(); 3276 if (!path) 3277 return -ENOMEM; 3278 3279 trans = btrfs_start_transaction(root, 0); 3280 if (IS_ERR(trans)) { 3281 btrfs_free_path(path); 3282 return PTR_ERR(trans); 3283 } 3284 3285 key.objectid = BTRFS_BALANCE_OBJECTID; 3286 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3287 key.offset = 0; 3288 3289 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3290 if (ret < 0) 3291 goto out; 3292 if (ret > 0) { 3293 ret = -ENOENT; 3294 goto out; 3295 } 3296 3297 ret = btrfs_del_item(trans, root, path); 3298 out: 3299 btrfs_free_path(path); 3300 err = btrfs_commit_transaction(trans); 3301 if (err && !ret) 3302 ret = err; 3303 return ret; 3304 } 3305 3306 /* 3307 * This is a heuristic used to reduce the number of chunks balanced on 3308 * resume after balance was interrupted. 3309 */ 3310 static void update_balance_args(struct btrfs_balance_control *bctl) 3311 { 3312 /* 3313 * Turn on soft mode for chunk types that were being converted. 3314 */ 3315 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3316 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3317 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3318 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3319 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3320 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3321 3322 /* 3323 * Turn on usage filter if is not already used. The idea is 3324 * that chunks that we have already balanced should be 3325 * reasonably full. Don't do it for chunks that are being 3326 * converted - that will keep us from relocating unconverted 3327 * (albeit full) chunks. 3328 */ 3329 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3330 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3331 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3332 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3333 bctl->data.usage = 90; 3334 } 3335 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3336 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3337 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3338 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3339 bctl->sys.usage = 90; 3340 } 3341 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3342 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3343 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3344 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3345 bctl->meta.usage = 90; 3346 } 3347 } 3348 3349 /* 3350 * Clear the balance status in fs_info and delete the balance item from disk. 3351 */ 3352 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3353 { 3354 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3355 int ret; 3356 3357 BUG_ON(!fs_info->balance_ctl); 3358 3359 spin_lock(&fs_info->balance_lock); 3360 fs_info->balance_ctl = NULL; 3361 spin_unlock(&fs_info->balance_lock); 3362 3363 kfree(bctl); 3364 ret = del_balance_item(fs_info); 3365 if (ret) 3366 btrfs_handle_fs_error(fs_info, ret, NULL); 3367 } 3368 3369 /* 3370 * Balance filters. Return 1 if chunk should be filtered out 3371 * (should not be balanced). 3372 */ 3373 static int chunk_profiles_filter(u64 chunk_type, 3374 struct btrfs_balance_args *bargs) 3375 { 3376 chunk_type = chunk_to_extended(chunk_type) & 3377 BTRFS_EXTENDED_PROFILE_MASK; 3378 3379 if (bargs->profiles & chunk_type) 3380 return 0; 3381 3382 return 1; 3383 } 3384 3385 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3386 struct btrfs_balance_args *bargs) 3387 { 3388 struct btrfs_block_group_cache *cache; 3389 u64 chunk_used; 3390 u64 user_thresh_min; 3391 u64 user_thresh_max; 3392 int ret = 1; 3393 3394 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3395 chunk_used = btrfs_block_group_used(&cache->item); 3396 3397 if (bargs->usage_min == 0) 3398 user_thresh_min = 0; 3399 else 3400 user_thresh_min = div_factor_fine(cache->key.offset, 3401 bargs->usage_min); 3402 3403 if (bargs->usage_max == 0) 3404 user_thresh_max = 1; 3405 else if (bargs->usage_max > 100) 3406 user_thresh_max = cache->key.offset; 3407 else 3408 user_thresh_max = div_factor_fine(cache->key.offset, 3409 bargs->usage_max); 3410 3411 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3412 ret = 0; 3413 3414 btrfs_put_block_group(cache); 3415 return ret; 3416 } 3417 3418 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3419 u64 chunk_offset, struct btrfs_balance_args *bargs) 3420 { 3421 struct btrfs_block_group_cache *cache; 3422 u64 chunk_used, user_thresh; 3423 int ret = 1; 3424 3425 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3426 chunk_used = btrfs_block_group_used(&cache->item); 3427 3428 if (bargs->usage_min == 0) 3429 user_thresh = 1; 3430 else if (bargs->usage > 100) 3431 user_thresh = cache->key.offset; 3432 else 3433 user_thresh = div_factor_fine(cache->key.offset, 3434 bargs->usage); 3435 3436 if (chunk_used < user_thresh) 3437 ret = 0; 3438 3439 btrfs_put_block_group(cache); 3440 return ret; 3441 } 3442 3443 static int chunk_devid_filter(struct extent_buffer *leaf, 3444 struct btrfs_chunk *chunk, 3445 struct btrfs_balance_args *bargs) 3446 { 3447 struct btrfs_stripe *stripe; 3448 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3449 int i; 3450 3451 for (i = 0; i < num_stripes; i++) { 3452 stripe = btrfs_stripe_nr(chunk, i); 3453 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3454 return 0; 3455 } 3456 3457 return 1; 3458 } 3459 3460 static u64 calc_data_stripes(u64 type, int num_stripes) 3461 { 3462 const int index = btrfs_bg_flags_to_raid_index(type); 3463 const int ncopies = btrfs_raid_array[index].ncopies; 3464 const int nparity = btrfs_raid_array[index].nparity; 3465 3466 if (nparity) 3467 return num_stripes - nparity; 3468 else 3469 return num_stripes / ncopies; 3470 } 3471 3472 /* [pstart, pend) */ 3473 static int chunk_drange_filter(struct extent_buffer *leaf, 3474 struct btrfs_chunk *chunk, 3475 struct btrfs_balance_args *bargs) 3476 { 3477 struct btrfs_stripe *stripe; 3478 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3479 u64 stripe_offset; 3480 u64 stripe_length; 3481 u64 type; 3482 int factor; 3483 int i; 3484 3485 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3486 return 0; 3487 3488 type = btrfs_chunk_type(leaf, chunk); 3489 factor = calc_data_stripes(type, num_stripes); 3490 3491 for (i = 0; i < num_stripes; i++) { 3492 stripe = btrfs_stripe_nr(chunk, i); 3493 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3494 continue; 3495 3496 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3497 stripe_length = btrfs_chunk_length(leaf, chunk); 3498 stripe_length = div_u64(stripe_length, factor); 3499 3500 if (stripe_offset < bargs->pend && 3501 stripe_offset + stripe_length > bargs->pstart) 3502 return 0; 3503 } 3504 3505 return 1; 3506 } 3507 3508 /* [vstart, vend) */ 3509 static int chunk_vrange_filter(struct extent_buffer *leaf, 3510 struct btrfs_chunk *chunk, 3511 u64 chunk_offset, 3512 struct btrfs_balance_args *bargs) 3513 { 3514 if (chunk_offset < bargs->vend && 3515 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3516 /* at least part of the chunk is inside this vrange */ 3517 return 0; 3518 3519 return 1; 3520 } 3521 3522 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3523 struct btrfs_chunk *chunk, 3524 struct btrfs_balance_args *bargs) 3525 { 3526 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3527 3528 if (bargs->stripes_min <= num_stripes 3529 && num_stripes <= bargs->stripes_max) 3530 return 0; 3531 3532 return 1; 3533 } 3534 3535 static int chunk_soft_convert_filter(u64 chunk_type, 3536 struct btrfs_balance_args *bargs) 3537 { 3538 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3539 return 0; 3540 3541 chunk_type = chunk_to_extended(chunk_type) & 3542 BTRFS_EXTENDED_PROFILE_MASK; 3543 3544 if (bargs->target == chunk_type) 3545 return 1; 3546 3547 return 0; 3548 } 3549 3550 static int should_balance_chunk(struct extent_buffer *leaf, 3551 struct btrfs_chunk *chunk, u64 chunk_offset) 3552 { 3553 struct btrfs_fs_info *fs_info = leaf->fs_info; 3554 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3555 struct btrfs_balance_args *bargs = NULL; 3556 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3557 3558 /* type filter */ 3559 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3560 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3561 return 0; 3562 } 3563 3564 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3565 bargs = &bctl->data; 3566 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3567 bargs = &bctl->sys; 3568 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3569 bargs = &bctl->meta; 3570 3571 /* profiles filter */ 3572 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3573 chunk_profiles_filter(chunk_type, bargs)) { 3574 return 0; 3575 } 3576 3577 /* usage filter */ 3578 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3579 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3580 return 0; 3581 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3582 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3583 return 0; 3584 } 3585 3586 /* devid filter */ 3587 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3588 chunk_devid_filter(leaf, chunk, bargs)) { 3589 return 0; 3590 } 3591 3592 /* drange filter, makes sense only with devid filter */ 3593 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3594 chunk_drange_filter(leaf, chunk, bargs)) { 3595 return 0; 3596 } 3597 3598 /* vrange filter */ 3599 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3600 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3601 return 0; 3602 } 3603 3604 /* stripes filter */ 3605 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3606 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3607 return 0; 3608 } 3609 3610 /* soft profile changing mode */ 3611 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3612 chunk_soft_convert_filter(chunk_type, bargs)) { 3613 return 0; 3614 } 3615 3616 /* 3617 * limited by count, must be the last filter 3618 */ 3619 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3620 if (bargs->limit == 0) 3621 return 0; 3622 else 3623 bargs->limit--; 3624 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3625 /* 3626 * Same logic as the 'limit' filter; the minimum cannot be 3627 * determined here because we do not have the global information 3628 * about the count of all chunks that satisfy the filters. 3629 */ 3630 if (bargs->limit_max == 0) 3631 return 0; 3632 else 3633 bargs->limit_max--; 3634 } 3635 3636 return 1; 3637 } 3638 3639 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3640 { 3641 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3642 struct btrfs_root *chunk_root = fs_info->chunk_root; 3643 u64 chunk_type; 3644 struct btrfs_chunk *chunk; 3645 struct btrfs_path *path = NULL; 3646 struct btrfs_key key; 3647 struct btrfs_key found_key; 3648 struct extent_buffer *leaf; 3649 int slot; 3650 int ret; 3651 int enospc_errors = 0; 3652 bool counting = true; 3653 /* The single value limit and min/max limits use the same bytes in the */ 3654 u64 limit_data = bctl->data.limit; 3655 u64 limit_meta = bctl->meta.limit; 3656 u64 limit_sys = bctl->sys.limit; 3657 u32 count_data = 0; 3658 u32 count_meta = 0; 3659 u32 count_sys = 0; 3660 int chunk_reserved = 0; 3661 3662 path = btrfs_alloc_path(); 3663 if (!path) { 3664 ret = -ENOMEM; 3665 goto error; 3666 } 3667 3668 /* zero out stat counters */ 3669 spin_lock(&fs_info->balance_lock); 3670 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3671 spin_unlock(&fs_info->balance_lock); 3672 again: 3673 if (!counting) { 3674 /* 3675 * The single value limit and min/max limits use the same bytes 3676 * in the 3677 */ 3678 bctl->data.limit = limit_data; 3679 bctl->meta.limit = limit_meta; 3680 bctl->sys.limit = limit_sys; 3681 } 3682 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3683 key.offset = (u64)-1; 3684 key.type = BTRFS_CHUNK_ITEM_KEY; 3685 3686 while (1) { 3687 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3688 atomic_read(&fs_info->balance_cancel_req)) { 3689 ret = -ECANCELED; 3690 goto error; 3691 } 3692 3693 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3694 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3695 if (ret < 0) { 3696 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3697 goto error; 3698 } 3699 3700 /* 3701 * this shouldn't happen, it means the last relocate 3702 * failed 3703 */ 3704 if (ret == 0) 3705 BUG(); /* FIXME break ? */ 3706 3707 ret = btrfs_previous_item(chunk_root, path, 0, 3708 BTRFS_CHUNK_ITEM_KEY); 3709 if (ret) { 3710 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3711 ret = 0; 3712 break; 3713 } 3714 3715 leaf = path->nodes[0]; 3716 slot = path->slots[0]; 3717 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3718 3719 if (found_key.objectid != key.objectid) { 3720 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3721 break; 3722 } 3723 3724 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3725 chunk_type = btrfs_chunk_type(leaf, chunk); 3726 3727 if (!counting) { 3728 spin_lock(&fs_info->balance_lock); 3729 bctl->stat.considered++; 3730 spin_unlock(&fs_info->balance_lock); 3731 } 3732 3733 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3734 3735 btrfs_release_path(path); 3736 if (!ret) { 3737 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3738 goto loop; 3739 } 3740 3741 if (counting) { 3742 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3743 spin_lock(&fs_info->balance_lock); 3744 bctl->stat.expected++; 3745 spin_unlock(&fs_info->balance_lock); 3746 3747 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3748 count_data++; 3749 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3750 count_sys++; 3751 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3752 count_meta++; 3753 3754 goto loop; 3755 } 3756 3757 /* 3758 * Apply limit_min filter, no need to check if the LIMITS 3759 * filter is used, limit_min is 0 by default 3760 */ 3761 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3762 count_data < bctl->data.limit_min) 3763 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3764 count_meta < bctl->meta.limit_min) 3765 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3766 count_sys < bctl->sys.limit_min)) { 3767 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3768 goto loop; 3769 } 3770 3771 if (!chunk_reserved) { 3772 /* 3773 * We may be relocating the only data chunk we have, 3774 * which could potentially end up with losing data's 3775 * raid profile, so lets allocate an empty one in 3776 * advance. 3777 */ 3778 ret = btrfs_may_alloc_data_chunk(fs_info, 3779 found_key.offset); 3780 if (ret < 0) { 3781 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3782 goto error; 3783 } else if (ret == 1) { 3784 chunk_reserved = 1; 3785 } 3786 } 3787 3788 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3789 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3790 if (ret == -ENOSPC) { 3791 enospc_errors++; 3792 } else if (ret == -ETXTBSY) { 3793 btrfs_info(fs_info, 3794 "skipping relocation of block group %llu due to active swapfile", 3795 found_key.offset); 3796 ret = 0; 3797 } else if (ret) { 3798 goto error; 3799 } else { 3800 spin_lock(&fs_info->balance_lock); 3801 bctl->stat.completed++; 3802 spin_unlock(&fs_info->balance_lock); 3803 } 3804 loop: 3805 if (found_key.offset == 0) 3806 break; 3807 key.offset = found_key.offset - 1; 3808 } 3809 3810 if (counting) { 3811 btrfs_release_path(path); 3812 counting = false; 3813 goto again; 3814 } 3815 error: 3816 btrfs_free_path(path); 3817 if (enospc_errors) { 3818 btrfs_info(fs_info, "%d enospc errors during balance", 3819 enospc_errors); 3820 if (!ret) 3821 ret = -ENOSPC; 3822 } 3823 3824 return ret; 3825 } 3826 3827 /** 3828 * alloc_profile_is_valid - see if a given profile is valid and reduced 3829 * @flags: profile to validate 3830 * @extended: if true @flags is treated as an extended profile 3831 */ 3832 static int alloc_profile_is_valid(u64 flags, int extended) 3833 { 3834 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3835 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3836 3837 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3838 3839 /* 1) check that all other bits are zeroed */ 3840 if (flags & ~mask) 3841 return 0; 3842 3843 /* 2) see if profile is reduced */ 3844 if (flags == 0) 3845 return !extended; /* "0" is valid for usual profiles */ 3846 3847 /* true if exactly one bit set */ 3848 return is_power_of_2(flags); 3849 } 3850 3851 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3852 { 3853 /* cancel requested || normal exit path */ 3854 return atomic_read(&fs_info->balance_cancel_req) || 3855 (atomic_read(&fs_info->balance_pause_req) == 0 && 3856 atomic_read(&fs_info->balance_cancel_req) == 0); 3857 } 3858 3859 /* Non-zero return value signifies invalidity */ 3860 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3861 u64 allowed) 3862 { 3863 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3864 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3865 (bctl_arg->target & ~allowed))); 3866 } 3867 3868 /* 3869 * Fill @buf with textual description of balance filter flags @bargs, up to 3870 * @size_buf including the terminating null. The output may be trimmed if it 3871 * does not fit into the provided buffer. 3872 */ 3873 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 3874 u32 size_buf) 3875 { 3876 int ret; 3877 u32 size_bp = size_buf; 3878 char *bp = buf; 3879 u64 flags = bargs->flags; 3880 char tmp_buf[128] = {'\0'}; 3881 3882 if (!flags) 3883 return; 3884 3885 #define CHECK_APPEND_NOARG(a) \ 3886 do { \ 3887 ret = snprintf(bp, size_bp, (a)); \ 3888 if (ret < 0 || ret >= size_bp) \ 3889 goto out_overflow; \ 3890 size_bp -= ret; \ 3891 bp += ret; \ 3892 } while (0) 3893 3894 #define CHECK_APPEND_1ARG(a, v1) \ 3895 do { \ 3896 ret = snprintf(bp, size_bp, (a), (v1)); \ 3897 if (ret < 0 || ret >= size_bp) \ 3898 goto out_overflow; \ 3899 size_bp -= ret; \ 3900 bp += ret; \ 3901 } while (0) 3902 3903 #define CHECK_APPEND_2ARG(a, v1, v2) \ 3904 do { \ 3905 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 3906 if (ret < 0 || ret >= size_bp) \ 3907 goto out_overflow; \ 3908 size_bp -= ret; \ 3909 bp += ret; \ 3910 } while (0) 3911 3912 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 3913 CHECK_APPEND_1ARG("convert=%s,", 3914 btrfs_bg_type_to_raid_name(bargs->target)); 3915 3916 if (flags & BTRFS_BALANCE_ARGS_SOFT) 3917 CHECK_APPEND_NOARG("soft,"); 3918 3919 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 3920 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 3921 sizeof(tmp_buf)); 3922 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 3923 } 3924 3925 if (flags & BTRFS_BALANCE_ARGS_USAGE) 3926 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 3927 3928 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 3929 CHECK_APPEND_2ARG("usage=%u..%u,", 3930 bargs->usage_min, bargs->usage_max); 3931 3932 if (flags & BTRFS_BALANCE_ARGS_DEVID) 3933 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 3934 3935 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 3936 CHECK_APPEND_2ARG("drange=%llu..%llu,", 3937 bargs->pstart, bargs->pend); 3938 3939 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 3940 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 3941 bargs->vstart, bargs->vend); 3942 3943 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 3944 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 3945 3946 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 3947 CHECK_APPEND_2ARG("limit=%u..%u,", 3948 bargs->limit_min, bargs->limit_max); 3949 3950 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 3951 CHECK_APPEND_2ARG("stripes=%u..%u,", 3952 bargs->stripes_min, bargs->stripes_max); 3953 3954 #undef CHECK_APPEND_2ARG 3955 #undef CHECK_APPEND_1ARG 3956 #undef CHECK_APPEND_NOARG 3957 3958 out_overflow: 3959 3960 if (size_bp < size_buf) 3961 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 3962 else 3963 buf[0] = '\0'; 3964 } 3965 3966 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 3967 { 3968 u32 size_buf = 1024; 3969 char tmp_buf[192] = {'\0'}; 3970 char *buf; 3971 char *bp; 3972 u32 size_bp = size_buf; 3973 int ret; 3974 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3975 3976 buf = kzalloc(size_buf, GFP_KERNEL); 3977 if (!buf) 3978 return; 3979 3980 bp = buf; 3981 3982 #define CHECK_APPEND_1ARG(a, v1) \ 3983 do { \ 3984 ret = snprintf(bp, size_bp, (a), (v1)); \ 3985 if (ret < 0 || ret >= size_bp) \ 3986 goto out_overflow; \ 3987 size_bp -= ret; \ 3988 bp += ret; \ 3989 } while (0) 3990 3991 if (bctl->flags & BTRFS_BALANCE_FORCE) 3992 CHECK_APPEND_1ARG("%s", "-f "); 3993 3994 if (bctl->flags & BTRFS_BALANCE_DATA) { 3995 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 3996 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 3997 } 3998 3999 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4000 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4001 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4002 } 4003 4004 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4005 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4006 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4007 } 4008 4009 #undef CHECK_APPEND_1ARG 4010 4011 out_overflow: 4012 4013 if (size_bp < size_buf) 4014 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4015 btrfs_info(fs_info, "balance: %s %s", 4016 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4017 "resume" : "start", buf); 4018 4019 kfree(buf); 4020 } 4021 4022 /* 4023 * Should be called with balance mutexe held 4024 */ 4025 int btrfs_balance(struct btrfs_fs_info *fs_info, 4026 struct btrfs_balance_control *bctl, 4027 struct btrfs_ioctl_balance_args *bargs) 4028 { 4029 u64 meta_target, data_target; 4030 u64 allowed; 4031 int mixed = 0; 4032 int ret; 4033 u64 num_devices; 4034 unsigned seq; 4035 bool reducing_integrity; 4036 int i; 4037 4038 if (btrfs_fs_closing(fs_info) || 4039 atomic_read(&fs_info->balance_pause_req) || 4040 atomic_read(&fs_info->balance_cancel_req)) { 4041 ret = -EINVAL; 4042 goto out; 4043 } 4044 4045 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4046 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4047 mixed = 1; 4048 4049 /* 4050 * In case of mixed groups both data and meta should be picked, 4051 * and identical options should be given for both of them. 4052 */ 4053 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4054 if (mixed && (bctl->flags & allowed)) { 4055 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4056 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4057 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4058 btrfs_err(fs_info, 4059 "balance: mixed groups data and metadata options must be the same"); 4060 ret = -EINVAL; 4061 goto out; 4062 } 4063 } 4064 4065 num_devices = btrfs_num_devices(fs_info); 4066 4067 /* 4068 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4069 * special bit for it, to make it easier to distinguish. Thus we need 4070 * to set it manually, or balance would refuse the profile. 4071 */ 4072 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4073 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4074 if (num_devices >= btrfs_raid_array[i].devs_min) 4075 allowed |= btrfs_raid_array[i].bg_flag; 4076 4077 if (validate_convert_profile(&bctl->data, allowed)) { 4078 btrfs_err(fs_info, 4079 "balance: invalid convert data profile %s", 4080 btrfs_bg_type_to_raid_name(bctl->data.target)); 4081 ret = -EINVAL; 4082 goto out; 4083 } 4084 if (validate_convert_profile(&bctl->meta, allowed)) { 4085 btrfs_err(fs_info, 4086 "balance: invalid convert metadata profile %s", 4087 btrfs_bg_type_to_raid_name(bctl->meta.target)); 4088 ret = -EINVAL; 4089 goto out; 4090 } 4091 if (validate_convert_profile(&bctl->sys, allowed)) { 4092 btrfs_err(fs_info, 4093 "balance: invalid convert system profile %s", 4094 btrfs_bg_type_to_raid_name(bctl->sys.target)); 4095 ret = -EINVAL; 4096 goto out; 4097 } 4098 4099 /* 4100 * Allow to reduce metadata or system integrity only if force set for 4101 * profiles with redundancy (copies, parity) 4102 */ 4103 allowed = 0; 4104 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4105 if (btrfs_raid_array[i].ncopies >= 2 || 4106 btrfs_raid_array[i].tolerated_failures >= 1) 4107 allowed |= btrfs_raid_array[i].bg_flag; 4108 } 4109 do { 4110 seq = read_seqbegin(&fs_info->profiles_lock); 4111 4112 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4113 (fs_info->avail_system_alloc_bits & allowed) && 4114 !(bctl->sys.target & allowed)) || 4115 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4116 (fs_info->avail_metadata_alloc_bits & allowed) && 4117 !(bctl->meta.target & allowed))) 4118 reducing_integrity = true; 4119 else 4120 reducing_integrity = false; 4121 4122 /* if we're not converting, the target field is uninitialized */ 4123 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4124 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4125 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4126 bctl->data.target : fs_info->avail_data_alloc_bits; 4127 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4128 4129 if (reducing_integrity) { 4130 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4131 btrfs_info(fs_info, 4132 "balance: force reducing metadata integrity"); 4133 } else { 4134 btrfs_err(fs_info, 4135 "balance: reduces metadata integrity, use --force if you want this"); 4136 ret = -EINVAL; 4137 goto out; 4138 } 4139 } 4140 4141 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4142 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4143 btrfs_warn(fs_info, 4144 "balance: metadata profile %s has lower redundancy than data profile %s", 4145 btrfs_bg_type_to_raid_name(meta_target), 4146 btrfs_bg_type_to_raid_name(data_target)); 4147 } 4148 4149 if (fs_info->send_in_progress) { 4150 btrfs_warn_rl(fs_info, 4151 "cannot run balance while send operations are in progress (%d in progress)", 4152 fs_info->send_in_progress); 4153 ret = -EAGAIN; 4154 goto out; 4155 } 4156 4157 ret = insert_balance_item(fs_info, bctl); 4158 if (ret && ret != -EEXIST) 4159 goto out; 4160 4161 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4162 BUG_ON(ret == -EEXIST); 4163 BUG_ON(fs_info->balance_ctl); 4164 spin_lock(&fs_info->balance_lock); 4165 fs_info->balance_ctl = bctl; 4166 spin_unlock(&fs_info->balance_lock); 4167 } else { 4168 BUG_ON(ret != -EEXIST); 4169 spin_lock(&fs_info->balance_lock); 4170 update_balance_args(bctl); 4171 spin_unlock(&fs_info->balance_lock); 4172 } 4173 4174 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4175 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4176 describe_balance_start_or_resume(fs_info); 4177 mutex_unlock(&fs_info->balance_mutex); 4178 4179 ret = __btrfs_balance(fs_info); 4180 4181 mutex_lock(&fs_info->balance_mutex); 4182 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4183 btrfs_info(fs_info, "balance: paused"); 4184 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req)) 4185 btrfs_info(fs_info, "balance: canceled"); 4186 else 4187 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4188 4189 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4190 4191 if (bargs) { 4192 memset(bargs, 0, sizeof(*bargs)); 4193 btrfs_update_ioctl_balance_args(fs_info, bargs); 4194 } 4195 4196 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4197 balance_need_close(fs_info)) { 4198 reset_balance_state(fs_info); 4199 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4200 } 4201 4202 wake_up(&fs_info->balance_wait_q); 4203 4204 return ret; 4205 out: 4206 if (bctl->flags & BTRFS_BALANCE_RESUME) 4207 reset_balance_state(fs_info); 4208 else 4209 kfree(bctl); 4210 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4211 4212 return ret; 4213 } 4214 4215 static int balance_kthread(void *data) 4216 { 4217 struct btrfs_fs_info *fs_info = data; 4218 int ret = 0; 4219 4220 mutex_lock(&fs_info->balance_mutex); 4221 if (fs_info->balance_ctl) 4222 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4223 mutex_unlock(&fs_info->balance_mutex); 4224 4225 return ret; 4226 } 4227 4228 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4229 { 4230 struct task_struct *tsk; 4231 4232 mutex_lock(&fs_info->balance_mutex); 4233 if (!fs_info->balance_ctl) { 4234 mutex_unlock(&fs_info->balance_mutex); 4235 return 0; 4236 } 4237 mutex_unlock(&fs_info->balance_mutex); 4238 4239 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4240 btrfs_info(fs_info, "balance: resume skipped"); 4241 return 0; 4242 } 4243 4244 /* 4245 * A ro->rw remount sequence should continue with the paused balance 4246 * regardless of who pauses it, system or the user as of now, so set 4247 * the resume flag. 4248 */ 4249 spin_lock(&fs_info->balance_lock); 4250 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4251 spin_unlock(&fs_info->balance_lock); 4252 4253 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4254 return PTR_ERR_OR_ZERO(tsk); 4255 } 4256 4257 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4258 { 4259 struct btrfs_balance_control *bctl; 4260 struct btrfs_balance_item *item; 4261 struct btrfs_disk_balance_args disk_bargs; 4262 struct btrfs_path *path; 4263 struct extent_buffer *leaf; 4264 struct btrfs_key key; 4265 int ret; 4266 4267 path = btrfs_alloc_path(); 4268 if (!path) 4269 return -ENOMEM; 4270 4271 key.objectid = BTRFS_BALANCE_OBJECTID; 4272 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4273 key.offset = 0; 4274 4275 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4276 if (ret < 0) 4277 goto out; 4278 if (ret > 0) { /* ret = -ENOENT; */ 4279 ret = 0; 4280 goto out; 4281 } 4282 4283 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4284 if (!bctl) { 4285 ret = -ENOMEM; 4286 goto out; 4287 } 4288 4289 leaf = path->nodes[0]; 4290 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4291 4292 bctl->flags = btrfs_balance_flags(leaf, item); 4293 bctl->flags |= BTRFS_BALANCE_RESUME; 4294 4295 btrfs_balance_data(leaf, item, &disk_bargs); 4296 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4297 btrfs_balance_meta(leaf, item, &disk_bargs); 4298 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4299 btrfs_balance_sys(leaf, item, &disk_bargs); 4300 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4301 4302 /* 4303 * This should never happen, as the paused balance state is recovered 4304 * during mount without any chance of other exclusive ops to collide. 4305 * 4306 * This gives the exclusive op status to balance and keeps in paused 4307 * state until user intervention (cancel or umount). If the ownership 4308 * cannot be assigned, show a message but do not fail. The balance 4309 * is in a paused state and must have fs_info::balance_ctl properly 4310 * set up. 4311 */ 4312 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 4313 btrfs_warn(fs_info, 4314 "balance: cannot set exclusive op status, resume manually"); 4315 4316 mutex_lock(&fs_info->balance_mutex); 4317 BUG_ON(fs_info->balance_ctl); 4318 spin_lock(&fs_info->balance_lock); 4319 fs_info->balance_ctl = bctl; 4320 spin_unlock(&fs_info->balance_lock); 4321 mutex_unlock(&fs_info->balance_mutex); 4322 out: 4323 btrfs_free_path(path); 4324 return ret; 4325 } 4326 4327 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4328 { 4329 int ret = 0; 4330 4331 mutex_lock(&fs_info->balance_mutex); 4332 if (!fs_info->balance_ctl) { 4333 mutex_unlock(&fs_info->balance_mutex); 4334 return -ENOTCONN; 4335 } 4336 4337 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4338 atomic_inc(&fs_info->balance_pause_req); 4339 mutex_unlock(&fs_info->balance_mutex); 4340 4341 wait_event(fs_info->balance_wait_q, 4342 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4343 4344 mutex_lock(&fs_info->balance_mutex); 4345 /* we are good with balance_ctl ripped off from under us */ 4346 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4347 atomic_dec(&fs_info->balance_pause_req); 4348 } else { 4349 ret = -ENOTCONN; 4350 } 4351 4352 mutex_unlock(&fs_info->balance_mutex); 4353 return ret; 4354 } 4355 4356 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4357 { 4358 mutex_lock(&fs_info->balance_mutex); 4359 if (!fs_info->balance_ctl) { 4360 mutex_unlock(&fs_info->balance_mutex); 4361 return -ENOTCONN; 4362 } 4363 4364 /* 4365 * A paused balance with the item stored on disk can be resumed at 4366 * mount time if the mount is read-write. Otherwise it's still paused 4367 * and we must not allow cancelling as it deletes the item. 4368 */ 4369 if (sb_rdonly(fs_info->sb)) { 4370 mutex_unlock(&fs_info->balance_mutex); 4371 return -EROFS; 4372 } 4373 4374 atomic_inc(&fs_info->balance_cancel_req); 4375 /* 4376 * if we are running just wait and return, balance item is 4377 * deleted in btrfs_balance in this case 4378 */ 4379 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4380 mutex_unlock(&fs_info->balance_mutex); 4381 wait_event(fs_info->balance_wait_q, 4382 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4383 mutex_lock(&fs_info->balance_mutex); 4384 } else { 4385 mutex_unlock(&fs_info->balance_mutex); 4386 /* 4387 * Lock released to allow other waiters to continue, we'll 4388 * reexamine the status again. 4389 */ 4390 mutex_lock(&fs_info->balance_mutex); 4391 4392 if (fs_info->balance_ctl) { 4393 reset_balance_state(fs_info); 4394 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4395 btrfs_info(fs_info, "balance: canceled"); 4396 } 4397 } 4398 4399 BUG_ON(fs_info->balance_ctl || 4400 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4401 atomic_dec(&fs_info->balance_cancel_req); 4402 mutex_unlock(&fs_info->balance_mutex); 4403 return 0; 4404 } 4405 4406 static int btrfs_uuid_scan_kthread(void *data) 4407 { 4408 struct btrfs_fs_info *fs_info = data; 4409 struct btrfs_root *root = fs_info->tree_root; 4410 struct btrfs_key key; 4411 struct btrfs_path *path = NULL; 4412 int ret = 0; 4413 struct extent_buffer *eb; 4414 int slot; 4415 struct btrfs_root_item root_item; 4416 u32 item_size; 4417 struct btrfs_trans_handle *trans = NULL; 4418 4419 path = btrfs_alloc_path(); 4420 if (!path) { 4421 ret = -ENOMEM; 4422 goto out; 4423 } 4424 4425 key.objectid = 0; 4426 key.type = BTRFS_ROOT_ITEM_KEY; 4427 key.offset = 0; 4428 4429 while (1) { 4430 ret = btrfs_search_forward(root, &key, path, 4431 BTRFS_OLDEST_GENERATION); 4432 if (ret) { 4433 if (ret > 0) 4434 ret = 0; 4435 break; 4436 } 4437 4438 if (key.type != BTRFS_ROOT_ITEM_KEY || 4439 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4440 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4441 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4442 goto skip; 4443 4444 eb = path->nodes[0]; 4445 slot = path->slots[0]; 4446 item_size = btrfs_item_size_nr(eb, slot); 4447 if (item_size < sizeof(root_item)) 4448 goto skip; 4449 4450 read_extent_buffer(eb, &root_item, 4451 btrfs_item_ptr_offset(eb, slot), 4452 (int)sizeof(root_item)); 4453 if (btrfs_root_refs(&root_item) == 0) 4454 goto skip; 4455 4456 if (!btrfs_is_empty_uuid(root_item.uuid) || 4457 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4458 if (trans) 4459 goto update_tree; 4460 4461 btrfs_release_path(path); 4462 /* 4463 * 1 - subvol uuid item 4464 * 1 - received_subvol uuid item 4465 */ 4466 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4467 if (IS_ERR(trans)) { 4468 ret = PTR_ERR(trans); 4469 break; 4470 } 4471 continue; 4472 } else { 4473 goto skip; 4474 } 4475 update_tree: 4476 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4477 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4478 BTRFS_UUID_KEY_SUBVOL, 4479 key.objectid); 4480 if (ret < 0) { 4481 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4482 ret); 4483 break; 4484 } 4485 } 4486 4487 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4488 ret = btrfs_uuid_tree_add(trans, 4489 root_item.received_uuid, 4490 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4491 key.objectid); 4492 if (ret < 0) { 4493 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4494 ret); 4495 break; 4496 } 4497 } 4498 4499 skip: 4500 if (trans) { 4501 ret = btrfs_end_transaction(trans); 4502 trans = NULL; 4503 if (ret) 4504 break; 4505 } 4506 4507 btrfs_release_path(path); 4508 if (key.offset < (u64)-1) { 4509 key.offset++; 4510 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4511 key.offset = 0; 4512 key.type = BTRFS_ROOT_ITEM_KEY; 4513 } else if (key.objectid < (u64)-1) { 4514 key.offset = 0; 4515 key.type = BTRFS_ROOT_ITEM_KEY; 4516 key.objectid++; 4517 } else { 4518 break; 4519 } 4520 cond_resched(); 4521 } 4522 4523 out: 4524 btrfs_free_path(path); 4525 if (trans && !IS_ERR(trans)) 4526 btrfs_end_transaction(trans); 4527 if (ret) 4528 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4529 else 4530 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4531 up(&fs_info->uuid_tree_rescan_sem); 4532 return 0; 4533 } 4534 4535 /* 4536 * Callback for btrfs_uuid_tree_iterate(). 4537 * returns: 4538 * 0 check succeeded, the entry is not outdated. 4539 * < 0 if an error occurred. 4540 * > 0 if the check failed, which means the caller shall remove the entry. 4541 */ 4542 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4543 u8 *uuid, u8 type, u64 subid) 4544 { 4545 struct btrfs_key key; 4546 int ret = 0; 4547 struct btrfs_root *subvol_root; 4548 4549 if (type != BTRFS_UUID_KEY_SUBVOL && 4550 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4551 goto out; 4552 4553 key.objectid = subid; 4554 key.type = BTRFS_ROOT_ITEM_KEY; 4555 key.offset = (u64)-1; 4556 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4557 if (IS_ERR(subvol_root)) { 4558 ret = PTR_ERR(subvol_root); 4559 if (ret == -ENOENT) 4560 ret = 1; 4561 goto out; 4562 } 4563 4564 switch (type) { 4565 case BTRFS_UUID_KEY_SUBVOL: 4566 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4567 ret = 1; 4568 break; 4569 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4570 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4571 BTRFS_UUID_SIZE)) 4572 ret = 1; 4573 break; 4574 } 4575 4576 out: 4577 return ret; 4578 } 4579 4580 static int btrfs_uuid_rescan_kthread(void *data) 4581 { 4582 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4583 int ret; 4584 4585 /* 4586 * 1st step is to iterate through the existing UUID tree and 4587 * to delete all entries that contain outdated data. 4588 * 2nd step is to add all missing entries to the UUID tree. 4589 */ 4590 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4591 if (ret < 0) { 4592 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4593 up(&fs_info->uuid_tree_rescan_sem); 4594 return ret; 4595 } 4596 return btrfs_uuid_scan_kthread(data); 4597 } 4598 4599 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4600 { 4601 struct btrfs_trans_handle *trans; 4602 struct btrfs_root *tree_root = fs_info->tree_root; 4603 struct btrfs_root *uuid_root; 4604 struct task_struct *task; 4605 int ret; 4606 4607 /* 4608 * 1 - root node 4609 * 1 - root item 4610 */ 4611 trans = btrfs_start_transaction(tree_root, 2); 4612 if (IS_ERR(trans)) 4613 return PTR_ERR(trans); 4614 4615 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4616 if (IS_ERR(uuid_root)) { 4617 ret = PTR_ERR(uuid_root); 4618 btrfs_abort_transaction(trans, ret); 4619 btrfs_end_transaction(trans); 4620 return ret; 4621 } 4622 4623 fs_info->uuid_root = uuid_root; 4624 4625 ret = btrfs_commit_transaction(trans); 4626 if (ret) 4627 return ret; 4628 4629 down(&fs_info->uuid_tree_rescan_sem); 4630 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4631 if (IS_ERR(task)) { 4632 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4633 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4634 up(&fs_info->uuid_tree_rescan_sem); 4635 return PTR_ERR(task); 4636 } 4637 4638 return 0; 4639 } 4640 4641 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4642 { 4643 struct task_struct *task; 4644 4645 down(&fs_info->uuid_tree_rescan_sem); 4646 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4647 if (IS_ERR(task)) { 4648 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4649 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4650 up(&fs_info->uuid_tree_rescan_sem); 4651 return PTR_ERR(task); 4652 } 4653 4654 return 0; 4655 } 4656 4657 /* 4658 * shrinking a device means finding all of the device extents past 4659 * the new size, and then following the back refs to the chunks. 4660 * The chunk relocation code actually frees the device extent 4661 */ 4662 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4663 { 4664 struct btrfs_fs_info *fs_info = device->fs_info; 4665 struct btrfs_root *root = fs_info->dev_root; 4666 struct btrfs_trans_handle *trans; 4667 struct btrfs_dev_extent *dev_extent = NULL; 4668 struct btrfs_path *path; 4669 u64 length; 4670 u64 chunk_offset; 4671 int ret; 4672 int slot; 4673 int failed = 0; 4674 bool retried = false; 4675 struct extent_buffer *l; 4676 struct btrfs_key key; 4677 struct btrfs_super_block *super_copy = fs_info->super_copy; 4678 u64 old_total = btrfs_super_total_bytes(super_copy); 4679 u64 old_size = btrfs_device_get_total_bytes(device); 4680 u64 diff; 4681 u64 start; 4682 4683 new_size = round_down(new_size, fs_info->sectorsize); 4684 start = new_size; 4685 diff = round_down(old_size - new_size, fs_info->sectorsize); 4686 4687 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4688 return -EINVAL; 4689 4690 path = btrfs_alloc_path(); 4691 if (!path) 4692 return -ENOMEM; 4693 4694 path->reada = READA_BACK; 4695 4696 trans = btrfs_start_transaction(root, 0); 4697 if (IS_ERR(trans)) { 4698 btrfs_free_path(path); 4699 return PTR_ERR(trans); 4700 } 4701 4702 mutex_lock(&fs_info->chunk_mutex); 4703 4704 btrfs_device_set_total_bytes(device, new_size); 4705 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4706 device->fs_devices->total_rw_bytes -= diff; 4707 atomic64_sub(diff, &fs_info->free_chunk_space); 4708 } 4709 4710 /* 4711 * Once the device's size has been set to the new size, ensure all 4712 * in-memory chunks are synced to disk so that the loop below sees them 4713 * and relocates them accordingly. 4714 */ 4715 if (contains_pending_extent(device, &start, diff)) { 4716 mutex_unlock(&fs_info->chunk_mutex); 4717 ret = btrfs_commit_transaction(trans); 4718 if (ret) 4719 goto done; 4720 } else { 4721 mutex_unlock(&fs_info->chunk_mutex); 4722 btrfs_end_transaction(trans); 4723 } 4724 4725 again: 4726 key.objectid = device->devid; 4727 key.offset = (u64)-1; 4728 key.type = BTRFS_DEV_EXTENT_KEY; 4729 4730 do { 4731 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4732 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4733 if (ret < 0) { 4734 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4735 goto done; 4736 } 4737 4738 ret = btrfs_previous_item(root, path, 0, key.type); 4739 if (ret) 4740 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4741 if (ret < 0) 4742 goto done; 4743 if (ret) { 4744 ret = 0; 4745 btrfs_release_path(path); 4746 break; 4747 } 4748 4749 l = path->nodes[0]; 4750 slot = path->slots[0]; 4751 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4752 4753 if (key.objectid != device->devid) { 4754 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4755 btrfs_release_path(path); 4756 break; 4757 } 4758 4759 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4760 length = btrfs_dev_extent_length(l, dev_extent); 4761 4762 if (key.offset + length <= new_size) { 4763 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4764 btrfs_release_path(path); 4765 break; 4766 } 4767 4768 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4769 btrfs_release_path(path); 4770 4771 /* 4772 * We may be relocating the only data chunk we have, 4773 * which could potentially end up with losing data's 4774 * raid profile, so lets allocate an empty one in 4775 * advance. 4776 */ 4777 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4778 if (ret < 0) { 4779 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4780 goto done; 4781 } 4782 4783 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4784 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4785 if (ret == -ENOSPC) { 4786 failed++; 4787 } else if (ret) { 4788 if (ret == -ETXTBSY) { 4789 btrfs_warn(fs_info, 4790 "could not shrink block group %llu due to active swapfile", 4791 chunk_offset); 4792 } 4793 goto done; 4794 } 4795 } while (key.offset-- > 0); 4796 4797 if (failed && !retried) { 4798 failed = 0; 4799 retried = true; 4800 goto again; 4801 } else if (failed && retried) { 4802 ret = -ENOSPC; 4803 goto done; 4804 } 4805 4806 /* Shrinking succeeded, else we would be at "done". */ 4807 trans = btrfs_start_transaction(root, 0); 4808 if (IS_ERR(trans)) { 4809 ret = PTR_ERR(trans); 4810 goto done; 4811 } 4812 4813 mutex_lock(&fs_info->chunk_mutex); 4814 btrfs_device_set_disk_total_bytes(device, new_size); 4815 if (list_empty(&device->post_commit_list)) 4816 list_add_tail(&device->post_commit_list, 4817 &trans->transaction->dev_update_list); 4818 4819 WARN_ON(diff > old_total); 4820 btrfs_set_super_total_bytes(super_copy, 4821 round_down(old_total - diff, fs_info->sectorsize)); 4822 mutex_unlock(&fs_info->chunk_mutex); 4823 4824 /* Now btrfs_update_device() will change the on-disk size. */ 4825 ret = btrfs_update_device(trans, device); 4826 if (ret < 0) { 4827 btrfs_abort_transaction(trans, ret); 4828 btrfs_end_transaction(trans); 4829 } else { 4830 ret = btrfs_commit_transaction(trans); 4831 } 4832 done: 4833 btrfs_free_path(path); 4834 if (ret) { 4835 mutex_lock(&fs_info->chunk_mutex); 4836 btrfs_device_set_total_bytes(device, old_size); 4837 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4838 device->fs_devices->total_rw_bytes += diff; 4839 atomic64_add(diff, &fs_info->free_chunk_space); 4840 mutex_unlock(&fs_info->chunk_mutex); 4841 } 4842 return ret; 4843 } 4844 4845 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4846 struct btrfs_key *key, 4847 struct btrfs_chunk *chunk, int item_size) 4848 { 4849 struct btrfs_super_block *super_copy = fs_info->super_copy; 4850 struct btrfs_disk_key disk_key; 4851 u32 array_size; 4852 u8 *ptr; 4853 4854 mutex_lock(&fs_info->chunk_mutex); 4855 array_size = btrfs_super_sys_array_size(super_copy); 4856 if (array_size + item_size + sizeof(disk_key) 4857 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4858 mutex_unlock(&fs_info->chunk_mutex); 4859 return -EFBIG; 4860 } 4861 4862 ptr = super_copy->sys_chunk_array + array_size; 4863 btrfs_cpu_key_to_disk(&disk_key, key); 4864 memcpy(ptr, &disk_key, sizeof(disk_key)); 4865 ptr += sizeof(disk_key); 4866 memcpy(ptr, chunk, item_size); 4867 item_size += sizeof(disk_key); 4868 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4869 mutex_unlock(&fs_info->chunk_mutex); 4870 4871 return 0; 4872 } 4873 4874 /* 4875 * sort the devices in descending order by max_avail, total_avail 4876 */ 4877 static int btrfs_cmp_device_info(const void *a, const void *b) 4878 { 4879 const struct btrfs_device_info *di_a = a; 4880 const struct btrfs_device_info *di_b = b; 4881 4882 if (di_a->max_avail > di_b->max_avail) 4883 return -1; 4884 if (di_a->max_avail < di_b->max_avail) 4885 return 1; 4886 if (di_a->total_avail > di_b->total_avail) 4887 return -1; 4888 if (di_a->total_avail < di_b->total_avail) 4889 return 1; 4890 return 0; 4891 } 4892 4893 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4894 { 4895 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4896 return; 4897 4898 btrfs_set_fs_incompat(info, RAID56); 4899 } 4900 4901 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4902 u64 start, u64 type) 4903 { 4904 struct btrfs_fs_info *info = trans->fs_info; 4905 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4906 struct btrfs_device *device; 4907 struct map_lookup *map = NULL; 4908 struct extent_map_tree *em_tree; 4909 struct extent_map *em; 4910 struct btrfs_device_info *devices_info = NULL; 4911 u64 total_avail; 4912 int num_stripes; /* total number of stripes to allocate */ 4913 int data_stripes; /* number of stripes that count for 4914 block group size */ 4915 int sub_stripes; /* sub_stripes info for map */ 4916 int dev_stripes; /* stripes per dev */ 4917 int devs_max; /* max devs to use */ 4918 int devs_min; /* min devs needed */ 4919 int devs_increment; /* ndevs has to be a multiple of this */ 4920 int ncopies; /* how many copies to data has */ 4921 int nparity; /* number of stripes worth of bytes to 4922 store parity information */ 4923 int ret; 4924 u64 max_stripe_size; 4925 u64 max_chunk_size; 4926 u64 stripe_size; 4927 u64 chunk_size; 4928 int ndevs; 4929 int i; 4930 int j; 4931 int index; 4932 4933 BUG_ON(!alloc_profile_is_valid(type, 0)); 4934 4935 if (list_empty(&fs_devices->alloc_list)) { 4936 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 4937 btrfs_debug(info, "%s: no writable device", __func__); 4938 return -ENOSPC; 4939 } 4940 4941 index = btrfs_bg_flags_to_raid_index(type); 4942 4943 sub_stripes = btrfs_raid_array[index].sub_stripes; 4944 dev_stripes = btrfs_raid_array[index].dev_stripes; 4945 devs_max = btrfs_raid_array[index].devs_max; 4946 if (!devs_max) 4947 devs_max = BTRFS_MAX_DEVS(info); 4948 devs_min = btrfs_raid_array[index].devs_min; 4949 devs_increment = btrfs_raid_array[index].devs_increment; 4950 ncopies = btrfs_raid_array[index].ncopies; 4951 nparity = btrfs_raid_array[index].nparity; 4952 4953 if (type & BTRFS_BLOCK_GROUP_DATA) { 4954 max_stripe_size = SZ_1G; 4955 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 4956 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4957 /* for larger filesystems, use larger metadata chunks */ 4958 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4959 max_stripe_size = SZ_1G; 4960 else 4961 max_stripe_size = SZ_256M; 4962 max_chunk_size = max_stripe_size; 4963 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4964 max_stripe_size = SZ_32M; 4965 max_chunk_size = 2 * max_stripe_size; 4966 } else { 4967 btrfs_err(info, "invalid chunk type 0x%llx requested", 4968 type); 4969 BUG(); 4970 } 4971 4972 /* We don't want a chunk larger than 10% of writable space */ 4973 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4974 max_chunk_size); 4975 4976 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4977 GFP_NOFS); 4978 if (!devices_info) 4979 return -ENOMEM; 4980 4981 /* 4982 * in the first pass through the devices list, we gather information 4983 * about the available holes on each device. 4984 */ 4985 ndevs = 0; 4986 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 4987 u64 max_avail; 4988 u64 dev_offset; 4989 4990 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4991 WARN(1, KERN_ERR 4992 "BTRFS: read-only device in alloc_list\n"); 4993 continue; 4994 } 4995 4996 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 4997 &device->dev_state) || 4998 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4999 continue; 5000 5001 if (device->total_bytes > device->bytes_used) 5002 total_avail = device->total_bytes - device->bytes_used; 5003 else 5004 total_avail = 0; 5005 5006 /* If there is no space on this device, skip it. */ 5007 if (total_avail == 0) 5008 continue; 5009 5010 ret = find_free_dev_extent(device, 5011 max_stripe_size * dev_stripes, 5012 &dev_offset, &max_avail); 5013 if (ret && ret != -ENOSPC) 5014 goto error; 5015 5016 if (ret == 0) 5017 max_avail = max_stripe_size * dev_stripes; 5018 5019 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) { 5020 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5021 btrfs_debug(info, 5022 "%s: devid %llu has no free space, have=%llu want=%u", 5023 __func__, device->devid, max_avail, 5024 BTRFS_STRIPE_LEN * dev_stripes); 5025 continue; 5026 } 5027 5028 if (ndevs == fs_devices->rw_devices) { 5029 WARN(1, "%s: found more than %llu devices\n", 5030 __func__, fs_devices->rw_devices); 5031 break; 5032 } 5033 devices_info[ndevs].dev_offset = dev_offset; 5034 devices_info[ndevs].max_avail = max_avail; 5035 devices_info[ndevs].total_avail = total_avail; 5036 devices_info[ndevs].dev = device; 5037 ++ndevs; 5038 } 5039 5040 /* 5041 * now sort the devices by hole size / available space 5042 */ 5043 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5044 btrfs_cmp_device_info, NULL); 5045 5046 /* round down to number of usable stripes */ 5047 ndevs = round_down(ndevs, devs_increment); 5048 5049 if (ndevs < devs_min) { 5050 ret = -ENOSPC; 5051 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5052 btrfs_debug(info, 5053 "%s: not enough devices with free space: have=%d minimum required=%d", 5054 __func__, ndevs, devs_min); 5055 } 5056 goto error; 5057 } 5058 5059 ndevs = min(ndevs, devs_max); 5060 5061 /* 5062 * The primary goal is to maximize the number of stripes, so use as 5063 * many devices as possible, even if the stripes are not maximum sized. 5064 * 5065 * The DUP profile stores more than one stripe per device, the 5066 * max_avail is the total size so we have to adjust. 5067 */ 5068 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes); 5069 num_stripes = ndevs * dev_stripes; 5070 5071 /* 5072 * this will have to be fixed for RAID1 and RAID10 over 5073 * more drives 5074 */ 5075 data_stripes = (num_stripes - nparity) / ncopies; 5076 5077 /* 5078 * Use the number of data stripes to figure out how big this chunk 5079 * is really going to be in terms of logical address space, 5080 * and compare that answer with the max chunk size. If it's higher, 5081 * we try to reduce stripe_size. 5082 */ 5083 if (stripe_size * data_stripes > max_chunk_size) { 5084 /* 5085 * Reduce stripe_size, round it up to a 16MB boundary again and 5086 * then use it, unless it ends up being even bigger than the 5087 * previous value we had already. 5088 */ 5089 stripe_size = min(round_up(div_u64(max_chunk_size, 5090 data_stripes), SZ_16M), 5091 stripe_size); 5092 } 5093 5094 /* align to BTRFS_STRIPE_LEN */ 5095 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN); 5096 5097 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 5098 if (!map) { 5099 ret = -ENOMEM; 5100 goto error; 5101 } 5102 map->num_stripes = num_stripes; 5103 5104 for (i = 0; i < ndevs; ++i) { 5105 for (j = 0; j < dev_stripes; ++j) { 5106 int s = i * dev_stripes + j; 5107 map->stripes[s].dev = devices_info[i].dev; 5108 map->stripes[s].physical = devices_info[i].dev_offset + 5109 j * stripe_size; 5110 } 5111 } 5112 map->stripe_len = BTRFS_STRIPE_LEN; 5113 map->io_align = BTRFS_STRIPE_LEN; 5114 map->io_width = BTRFS_STRIPE_LEN; 5115 map->type = type; 5116 map->sub_stripes = sub_stripes; 5117 5118 chunk_size = stripe_size * data_stripes; 5119 5120 trace_btrfs_chunk_alloc(info, map, start, chunk_size); 5121 5122 em = alloc_extent_map(); 5123 if (!em) { 5124 kfree(map); 5125 ret = -ENOMEM; 5126 goto error; 5127 } 5128 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5129 em->map_lookup = map; 5130 em->start = start; 5131 em->len = chunk_size; 5132 em->block_start = 0; 5133 em->block_len = em->len; 5134 em->orig_block_len = stripe_size; 5135 5136 em_tree = &info->mapping_tree; 5137 write_lock(&em_tree->lock); 5138 ret = add_extent_mapping(em_tree, em, 0); 5139 if (ret) { 5140 write_unlock(&em_tree->lock); 5141 free_extent_map(em); 5142 goto error; 5143 } 5144 write_unlock(&em_tree->lock); 5145 5146 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size); 5147 if (ret) 5148 goto error_del_extent; 5149 5150 for (i = 0; i < map->num_stripes; i++) { 5151 struct btrfs_device *dev = map->stripes[i].dev; 5152 5153 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size); 5154 if (list_empty(&dev->post_commit_list)) 5155 list_add_tail(&dev->post_commit_list, 5156 &trans->transaction->dev_update_list); 5157 } 5158 5159 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space); 5160 5161 free_extent_map(em); 5162 check_raid56_incompat_flag(info, type); 5163 5164 kfree(devices_info); 5165 return 0; 5166 5167 error_del_extent: 5168 write_lock(&em_tree->lock); 5169 remove_extent_mapping(em_tree, em); 5170 write_unlock(&em_tree->lock); 5171 5172 /* One for our allocation */ 5173 free_extent_map(em); 5174 /* One for the tree reference */ 5175 free_extent_map(em); 5176 error: 5177 kfree(devices_info); 5178 return ret; 5179 } 5180 5181 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 5182 u64 chunk_offset, u64 chunk_size) 5183 { 5184 struct btrfs_fs_info *fs_info = trans->fs_info; 5185 struct btrfs_root *extent_root = fs_info->extent_root; 5186 struct btrfs_root *chunk_root = fs_info->chunk_root; 5187 struct btrfs_key key; 5188 struct btrfs_device *device; 5189 struct btrfs_chunk *chunk; 5190 struct btrfs_stripe *stripe; 5191 struct extent_map *em; 5192 struct map_lookup *map; 5193 size_t item_size; 5194 u64 dev_offset; 5195 u64 stripe_size; 5196 int i = 0; 5197 int ret = 0; 5198 5199 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 5200 if (IS_ERR(em)) 5201 return PTR_ERR(em); 5202 5203 map = em->map_lookup; 5204 item_size = btrfs_chunk_item_size(map->num_stripes); 5205 stripe_size = em->orig_block_len; 5206 5207 chunk = kzalloc(item_size, GFP_NOFS); 5208 if (!chunk) { 5209 ret = -ENOMEM; 5210 goto out; 5211 } 5212 5213 /* 5214 * Take the device list mutex to prevent races with the final phase of 5215 * a device replace operation that replaces the device object associated 5216 * with the map's stripes, because the device object's id can change 5217 * at any time during that final phase of the device replace operation 5218 * (dev-replace.c:btrfs_dev_replace_finishing()). 5219 */ 5220 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5221 for (i = 0; i < map->num_stripes; i++) { 5222 device = map->stripes[i].dev; 5223 dev_offset = map->stripes[i].physical; 5224 5225 ret = btrfs_update_device(trans, device); 5226 if (ret) 5227 break; 5228 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5229 dev_offset, stripe_size); 5230 if (ret) 5231 break; 5232 } 5233 if (ret) { 5234 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5235 goto out; 5236 } 5237 5238 stripe = &chunk->stripe; 5239 for (i = 0; i < map->num_stripes; i++) { 5240 device = map->stripes[i].dev; 5241 dev_offset = map->stripes[i].physical; 5242 5243 btrfs_set_stack_stripe_devid(stripe, device->devid); 5244 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5245 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5246 stripe++; 5247 } 5248 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5249 5250 btrfs_set_stack_chunk_length(chunk, chunk_size); 5251 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5252 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5253 btrfs_set_stack_chunk_type(chunk, map->type); 5254 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5255 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5256 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5257 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5258 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5259 5260 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5261 key.type = BTRFS_CHUNK_ITEM_KEY; 5262 key.offset = chunk_offset; 5263 5264 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5265 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5266 /* 5267 * TODO: Cleanup of inserted chunk root in case of 5268 * failure. 5269 */ 5270 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5271 } 5272 5273 out: 5274 kfree(chunk); 5275 free_extent_map(em); 5276 return ret; 5277 } 5278 5279 /* 5280 * Chunk allocation falls into two parts. The first part does work 5281 * that makes the new allocated chunk usable, but does not do any operation 5282 * that modifies the chunk tree. The second part does the work that 5283 * requires modifying the chunk tree. This division is important for the 5284 * bootstrap process of adding storage to a seed btrfs. 5285 */ 5286 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) 5287 { 5288 u64 chunk_offset; 5289 5290 lockdep_assert_held(&trans->fs_info->chunk_mutex); 5291 chunk_offset = find_next_chunk(trans->fs_info); 5292 return __btrfs_alloc_chunk(trans, chunk_offset, type); 5293 } 5294 5295 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5296 { 5297 struct btrfs_fs_info *fs_info = trans->fs_info; 5298 u64 chunk_offset; 5299 u64 sys_chunk_offset; 5300 u64 alloc_profile; 5301 int ret; 5302 5303 chunk_offset = find_next_chunk(fs_info); 5304 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5305 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile); 5306 if (ret) 5307 return ret; 5308 5309 sys_chunk_offset = find_next_chunk(fs_info); 5310 alloc_profile = btrfs_system_alloc_profile(fs_info); 5311 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile); 5312 return ret; 5313 } 5314 5315 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5316 { 5317 const int index = btrfs_bg_flags_to_raid_index(map->type); 5318 5319 return btrfs_raid_array[index].tolerated_failures; 5320 } 5321 5322 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5323 { 5324 struct extent_map *em; 5325 struct map_lookup *map; 5326 int readonly = 0; 5327 int miss_ndevs = 0; 5328 int i; 5329 5330 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5331 if (IS_ERR(em)) 5332 return 1; 5333 5334 map = em->map_lookup; 5335 for (i = 0; i < map->num_stripes; i++) { 5336 if (test_bit(BTRFS_DEV_STATE_MISSING, 5337 &map->stripes[i].dev->dev_state)) { 5338 miss_ndevs++; 5339 continue; 5340 } 5341 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5342 &map->stripes[i].dev->dev_state)) { 5343 readonly = 1; 5344 goto end; 5345 } 5346 } 5347 5348 /* 5349 * If the number of missing devices is larger than max errors, 5350 * we can not write the data into that chunk successfully, so 5351 * set it readonly. 5352 */ 5353 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5354 readonly = 1; 5355 end: 5356 free_extent_map(em); 5357 return readonly; 5358 } 5359 5360 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5361 { 5362 struct extent_map *em; 5363 5364 while (1) { 5365 write_lock(&tree->lock); 5366 em = lookup_extent_mapping(tree, 0, (u64)-1); 5367 if (em) 5368 remove_extent_mapping(tree, em); 5369 write_unlock(&tree->lock); 5370 if (!em) 5371 break; 5372 /* once for us */ 5373 free_extent_map(em); 5374 /* once for the tree */ 5375 free_extent_map(em); 5376 } 5377 } 5378 5379 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5380 { 5381 struct extent_map *em; 5382 struct map_lookup *map; 5383 int ret; 5384 5385 em = btrfs_get_chunk_map(fs_info, logical, len); 5386 if (IS_ERR(em)) 5387 /* 5388 * We could return errors for these cases, but that could get 5389 * ugly and we'd probably do the same thing which is just not do 5390 * anything else and exit, so return 1 so the callers don't try 5391 * to use other copies. 5392 */ 5393 return 1; 5394 5395 map = em->map_lookup; 5396 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5397 ret = map->num_stripes; 5398 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5399 ret = map->sub_stripes; 5400 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5401 ret = 2; 5402 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5403 /* 5404 * There could be two corrupted data stripes, we need 5405 * to loop retry in order to rebuild the correct data. 5406 * 5407 * Fail a stripe at a time on every retry except the 5408 * stripe under reconstruction. 5409 */ 5410 ret = map->num_stripes; 5411 else 5412 ret = 1; 5413 free_extent_map(em); 5414 5415 down_read(&fs_info->dev_replace.rwsem); 5416 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5417 fs_info->dev_replace.tgtdev) 5418 ret++; 5419 up_read(&fs_info->dev_replace.rwsem); 5420 5421 return ret; 5422 } 5423 5424 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5425 u64 logical) 5426 { 5427 struct extent_map *em; 5428 struct map_lookup *map; 5429 unsigned long len = fs_info->sectorsize; 5430 5431 em = btrfs_get_chunk_map(fs_info, logical, len); 5432 5433 if (!WARN_ON(IS_ERR(em))) { 5434 map = em->map_lookup; 5435 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5436 len = map->stripe_len * nr_data_stripes(map); 5437 free_extent_map(em); 5438 } 5439 return len; 5440 } 5441 5442 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5443 { 5444 struct extent_map *em; 5445 struct map_lookup *map; 5446 int ret = 0; 5447 5448 em = btrfs_get_chunk_map(fs_info, logical, len); 5449 5450 if(!WARN_ON(IS_ERR(em))) { 5451 map = em->map_lookup; 5452 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5453 ret = 1; 5454 free_extent_map(em); 5455 } 5456 return ret; 5457 } 5458 5459 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5460 struct map_lookup *map, int first, 5461 int dev_replace_is_ongoing) 5462 { 5463 int i; 5464 int num_stripes; 5465 int preferred_mirror; 5466 int tolerance; 5467 struct btrfs_device *srcdev; 5468 5469 ASSERT((map->type & 5470 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5471 5472 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5473 num_stripes = map->sub_stripes; 5474 else 5475 num_stripes = map->num_stripes; 5476 5477 preferred_mirror = first + current->pid % num_stripes; 5478 5479 if (dev_replace_is_ongoing && 5480 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5481 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5482 srcdev = fs_info->dev_replace.srcdev; 5483 else 5484 srcdev = NULL; 5485 5486 /* 5487 * try to avoid the drive that is the source drive for a 5488 * dev-replace procedure, only choose it if no other non-missing 5489 * mirror is available 5490 */ 5491 for (tolerance = 0; tolerance < 2; tolerance++) { 5492 if (map->stripes[preferred_mirror].dev->bdev && 5493 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5494 return preferred_mirror; 5495 for (i = first; i < first + num_stripes; i++) { 5496 if (map->stripes[i].dev->bdev && 5497 (tolerance || map->stripes[i].dev != srcdev)) 5498 return i; 5499 } 5500 } 5501 5502 /* we couldn't find one that doesn't fail. Just return something 5503 * and the io error handling code will clean up eventually 5504 */ 5505 return preferred_mirror; 5506 } 5507 5508 static inline int parity_smaller(u64 a, u64 b) 5509 { 5510 return a > b; 5511 } 5512 5513 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5514 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5515 { 5516 struct btrfs_bio_stripe s; 5517 int i; 5518 u64 l; 5519 int again = 1; 5520 5521 while (again) { 5522 again = 0; 5523 for (i = 0; i < num_stripes - 1; i++) { 5524 if (parity_smaller(bbio->raid_map[i], 5525 bbio->raid_map[i+1])) { 5526 s = bbio->stripes[i]; 5527 l = bbio->raid_map[i]; 5528 bbio->stripes[i] = bbio->stripes[i+1]; 5529 bbio->raid_map[i] = bbio->raid_map[i+1]; 5530 bbio->stripes[i+1] = s; 5531 bbio->raid_map[i+1] = l; 5532 5533 again = 1; 5534 } 5535 } 5536 } 5537 } 5538 5539 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5540 { 5541 struct btrfs_bio *bbio = kzalloc( 5542 /* the size of the btrfs_bio */ 5543 sizeof(struct btrfs_bio) + 5544 /* plus the variable array for the stripes */ 5545 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5546 /* plus the variable array for the tgt dev */ 5547 sizeof(int) * (real_stripes) + 5548 /* 5549 * plus the raid_map, which includes both the tgt dev 5550 * and the stripes 5551 */ 5552 sizeof(u64) * (total_stripes), 5553 GFP_NOFS|__GFP_NOFAIL); 5554 5555 atomic_set(&bbio->error, 0); 5556 refcount_set(&bbio->refs, 1); 5557 5558 return bbio; 5559 } 5560 5561 void btrfs_get_bbio(struct btrfs_bio *bbio) 5562 { 5563 WARN_ON(!refcount_read(&bbio->refs)); 5564 refcount_inc(&bbio->refs); 5565 } 5566 5567 void btrfs_put_bbio(struct btrfs_bio *bbio) 5568 { 5569 if (!bbio) 5570 return; 5571 if (refcount_dec_and_test(&bbio->refs)) 5572 kfree(bbio); 5573 } 5574 5575 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5576 /* 5577 * Please note that, discard won't be sent to target device of device 5578 * replace. 5579 */ 5580 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5581 u64 logical, u64 length, 5582 struct btrfs_bio **bbio_ret) 5583 { 5584 struct extent_map *em; 5585 struct map_lookup *map; 5586 struct btrfs_bio *bbio; 5587 u64 offset; 5588 u64 stripe_nr; 5589 u64 stripe_nr_end; 5590 u64 stripe_end_offset; 5591 u64 stripe_cnt; 5592 u64 stripe_len; 5593 u64 stripe_offset; 5594 u64 num_stripes; 5595 u32 stripe_index; 5596 u32 factor = 0; 5597 u32 sub_stripes = 0; 5598 u64 stripes_per_dev = 0; 5599 u32 remaining_stripes = 0; 5600 u32 last_stripe = 0; 5601 int ret = 0; 5602 int i; 5603 5604 /* discard always return a bbio */ 5605 ASSERT(bbio_ret); 5606 5607 em = btrfs_get_chunk_map(fs_info, logical, length); 5608 if (IS_ERR(em)) 5609 return PTR_ERR(em); 5610 5611 map = em->map_lookup; 5612 /* we don't discard raid56 yet */ 5613 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5614 ret = -EOPNOTSUPP; 5615 goto out; 5616 } 5617 5618 offset = logical - em->start; 5619 length = min_t(u64, em->len - offset, length); 5620 5621 stripe_len = map->stripe_len; 5622 /* 5623 * stripe_nr counts the total number of stripes we have to stride 5624 * to get to this block 5625 */ 5626 stripe_nr = div64_u64(offset, stripe_len); 5627 5628 /* stripe_offset is the offset of this block in its stripe */ 5629 stripe_offset = offset - stripe_nr * stripe_len; 5630 5631 stripe_nr_end = round_up(offset + length, map->stripe_len); 5632 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5633 stripe_cnt = stripe_nr_end - stripe_nr; 5634 stripe_end_offset = stripe_nr_end * map->stripe_len - 5635 (offset + length); 5636 /* 5637 * after this, stripe_nr is the number of stripes on this 5638 * device we have to walk to find the data, and stripe_index is 5639 * the number of our device in the stripe array 5640 */ 5641 num_stripes = 1; 5642 stripe_index = 0; 5643 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5644 BTRFS_BLOCK_GROUP_RAID10)) { 5645 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5646 sub_stripes = 1; 5647 else 5648 sub_stripes = map->sub_stripes; 5649 5650 factor = map->num_stripes / sub_stripes; 5651 num_stripes = min_t(u64, map->num_stripes, 5652 sub_stripes * stripe_cnt); 5653 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5654 stripe_index *= sub_stripes; 5655 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5656 &remaining_stripes); 5657 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5658 last_stripe *= sub_stripes; 5659 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 5660 BTRFS_BLOCK_GROUP_DUP)) { 5661 num_stripes = map->num_stripes; 5662 } else { 5663 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5664 &stripe_index); 5665 } 5666 5667 bbio = alloc_btrfs_bio(num_stripes, 0); 5668 if (!bbio) { 5669 ret = -ENOMEM; 5670 goto out; 5671 } 5672 5673 for (i = 0; i < num_stripes; i++) { 5674 bbio->stripes[i].physical = 5675 map->stripes[stripe_index].physical + 5676 stripe_offset + stripe_nr * map->stripe_len; 5677 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5678 5679 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5680 BTRFS_BLOCK_GROUP_RAID10)) { 5681 bbio->stripes[i].length = stripes_per_dev * 5682 map->stripe_len; 5683 5684 if (i / sub_stripes < remaining_stripes) 5685 bbio->stripes[i].length += 5686 map->stripe_len; 5687 5688 /* 5689 * Special for the first stripe and 5690 * the last stripe: 5691 * 5692 * |-------|...|-------| 5693 * |----------| 5694 * off end_off 5695 */ 5696 if (i < sub_stripes) 5697 bbio->stripes[i].length -= 5698 stripe_offset; 5699 5700 if (stripe_index >= last_stripe && 5701 stripe_index <= (last_stripe + 5702 sub_stripes - 1)) 5703 bbio->stripes[i].length -= 5704 stripe_end_offset; 5705 5706 if (i == sub_stripes - 1) 5707 stripe_offset = 0; 5708 } else { 5709 bbio->stripes[i].length = length; 5710 } 5711 5712 stripe_index++; 5713 if (stripe_index == map->num_stripes) { 5714 stripe_index = 0; 5715 stripe_nr++; 5716 } 5717 } 5718 5719 *bbio_ret = bbio; 5720 bbio->map_type = map->type; 5721 bbio->num_stripes = num_stripes; 5722 out: 5723 free_extent_map(em); 5724 return ret; 5725 } 5726 5727 /* 5728 * In dev-replace case, for repair case (that's the only case where the mirror 5729 * is selected explicitly when calling btrfs_map_block), blocks left of the 5730 * left cursor can also be read from the target drive. 5731 * 5732 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5733 * array of stripes. 5734 * For READ, it also needs to be supported using the same mirror number. 5735 * 5736 * If the requested block is not left of the left cursor, EIO is returned. This 5737 * can happen because btrfs_num_copies() returns one more in the dev-replace 5738 * case. 5739 */ 5740 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5741 u64 logical, u64 length, 5742 u64 srcdev_devid, int *mirror_num, 5743 u64 *physical) 5744 { 5745 struct btrfs_bio *bbio = NULL; 5746 int num_stripes; 5747 int index_srcdev = 0; 5748 int found = 0; 5749 u64 physical_of_found = 0; 5750 int i; 5751 int ret = 0; 5752 5753 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5754 logical, &length, &bbio, 0, 0); 5755 if (ret) { 5756 ASSERT(bbio == NULL); 5757 return ret; 5758 } 5759 5760 num_stripes = bbio->num_stripes; 5761 if (*mirror_num > num_stripes) { 5762 /* 5763 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5764 * that means that the requested area is not left of the left 5765 * cursor 5766 */ 5767 btrfs_put_bbio(bbio); 5768 return -EIO; 5769 } 5770 5771 /* 5772 * process the rest of the function using the mirror_num of the source 5773 * drive. Therefore look it up first. At the end, patch the device 5774 * pointer to the one of the target drive. 5775 */ 5776 for (i = 0; i < num_stripes; i++) { 5777 if (bbio->stripes[i].dev->devid != srcdev_devid) 5778 continue; 5779 5780 /* 5781 * In case of DUP, in order to keep it simple, only add the 5782 * mirror with the lowest physical address 5783 */ 5784 if (found && 5785 physical_of_found <= bbio->stripes[i].physical) 5786 continue; 5787 5788 index_srcdev = i; 5789 found = 1; 5790 physical_of_found = bbio->stripes[i].physical; 5791 } 5792 5793 btrfs_put_bbio(bbio); 5794 5795 ASSERT(found); 5796 if (!found) 5797 return -EIO; 5798 5799 *mirror_num = index_srcdev + 1; 5800 *physical = physical_of_found; 5801 return ret; 5802 } 5803 5804 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5805 struct btrfs_bio **bbio_ret, 5806 struct btrfs_dev_replace *dev_replace, 5807 int *num_stripes_ret, int *max_errors_ret) 5808 { 5809 struct btrfs_bio *bbio = *bbio_ret; 5810 u64 srcdev_devid = dev_replace->srcdev->devid; 5811 int tgtdev_indexes = 0; 5812 int num_stripes = *num_stripes_ret; 5813 int max_errors = *max_errors_ret; 5814 int i; 5815 5816 if (op == BTRFS_MAP_WRITE) { 5817 int index_where_to_add; 5818 5819 /* 5820 * duplicate the write operations while the dev replace 5821 * procedure is running. Since the copying of the old disk to 5822 * the new disk takes place at run time while the filesystem is 5823 * mounted writable, the regular write operations to the old 5824 * disk have to be duplicated to go to the new disk as well. 5825 * 5826 * Note that device->missing is handled by the caller, and that 5827 * the write to the old disk is already set up in the stripes 5828 * array. 5829 */ 5830 index_where_to_add = num_stripes; 5831 for (i = 0; i < num_stripes; i++) { 5832 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5833 /* write to new disk, too */ 5834 struct btrfs_bio_stripe *new = 5835 bbio->stripes + index_where_to_add; 5836 struct btrfs_bio_stripe *old = 5837 bbio->stripes + i; 5838 5839 new->physical = old->physical; 5840 new->length = old->length; 5841 new->dev = dev_replace->tgtdev; 5842 bbio->tgtdev_map[i] = index_where_to_add; 5843 index_where_to_add++; 5844 max_errors++; 5845 tgtdev_indexes++; 5846 } 5847 } 5848 num_stripes = index_where_to_add; 5849 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5850 int index_srcdev = 0; 5851 int found = 0; 5852 u64 physical_of_found = 0; 5853 5854 /* 5855 * During the dev-replace procedure, the target drive can also 5856 * be used to read data in case it is needed to repair a corrupt 5857 * block elsewhere. This is possible if the requested area is 5858 * left of the left cursor. In this area, the target drive is a 5859 * full copy of the source drive. 5860 */ 5861 for (i = 0; i < num_stripes; i++) { 5862 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5863 /* 5864 * In case of DUP, in order to keep it simple, 5865 * only add the mirror with the lowest physical 5866 * address 5867 */ 5868 if (found && 5869 physical_of_found <= 5870 bbio->stripes[i].physical) 5871 continue; 5872 index_srcdev = i; 5873 found = 1; 5874 physical_of_found = bbio->stripes[i].physical; 5875 } 5876 } 5877 if (found) { 5878 struct btrfs_bio_stripe *tgtdev_stripe = 5879 bbio->stripes + num_stripes; 5880 5881 tgtdev_stripe->physical = physical_of_found; 5882 tgtdev_stripe->length = 5883 bbio->stripes[index_srcdev].length; 5884 tgtdev_stripe->dev = dev_replace->tgtdev; 5885 bbio->tgtdev_map[index_srcdev] = num_stripes; 5886 5887 tgtdev_indexes++; 5888 num_stripes++; 5889 } 5890 } 5891 5892 *num_stripes_ret = num_stripes; 5893 *max_errors_ret = max_errors; 5894 bbio->num_tgtdevs = tgtdev_indexes; 5895 *bbio_ret = bbio; 5896 } 5897 5898 static bool need_full_stripe(enum btrfs_map_op op) 5899 { 5900 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5901 } 5902 5903 /* 5904 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len) 5905 * tuple. This information is used to calculate how big a 5906 * particular bio can get before it straddles a stripe. 5907 * 5908 * @fs_info - the filesystem 5909 * @logical - address that we want to figure out the geometry of 5910 * @len - the length of IO we are going to perform, starting at @logical 5911 * @op - type of operation - write or read 5912 * @io_geom - pointer used to return values 5913 * 5914 * Returns < 0 in case a chunk for the given logical address cannot be found, 5915 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 5916 */ 5917 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5918 u64 logical, u64 len, struct btrfs_io_geometry *io_geom) 5919 { 5920 struct extent_map *em; 5921 struct map_lookup *map; 5922 u64 offset; 5923 u64 stripe_offset; 5924 u64 stripe_nr; 5925 u64 stripe_len; 5926 u64 raid56_full_stripe_start = (u64)-1; 5927 int data_stripes; 5928 int ret = 0; 5929 5930 ASSERT(op != BTRFS_MAP_DISCARD); 5931 5932 em = btrfs_get_chunk_map(fs_info, logical, len); 5933 if (IS_ERR(em)) 5934 return PTR_ERR(em); 5935 5936 map = em->map_lookup; 5937 /* Offset of this logical address in the chunk */ 5938 offset = logical - em->start; 5939 /* Len of a stripe in a chunk */ 5940 stripe_len = map->stripe_len; 5941 /* Stripe wher this block falls in */ 5942 stripe_nr = div64_u64(offset, stripe_len); 5943 /* Offset of stripe in the chunk */ 5944 stripe_offset = stripe_nr * stripe_len; 5945 if (offset < stripe_offset) { 5946 btrfs_crit(fs_info, 5947 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 5948 stripe_offset, offset, em->start, logical, stripe_len); 5949 ret = -EINVAL; 5950 goto out; 5951 } 5952 5953 /* stripe_offset is the offset of this block in its stripe */ 5954 stripe_offset = offset - stripe_offset; 5955 data_stripes = nr_data_stripes(map); 5956 5957 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5958 u64 max_len = stripe_len - stripe_offset; 5959 5960 /* 5961 * In case of raid56, we need to know the stripe aligned start 5962 */ 5963 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5964 unsigned long full_stripe_len = stripe_len * data_stripes; 5965 raid56_full_stripe_start = offset; 5966 5967 /* 5968 * Allow a write of a full stripe, but make sure we 5969 * don't allow straddling of stripes 5970 */ 5971 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5972 full_stripe_len); 5973 raid56_full_stripe_start *= full_stripe_len; 5974 5975 /* 5976 * For writes to RAID[56], allow a full stripeset across 5977 * all disks. For other RAID types and for RAID[56] 5978 * reads, just allow a single stripe (on a single disk). 5979 */ 5980 if (op == BTRFS_MAP_WRITE) { 5981 max_len = stripe_len * data_stripes - 5982 (offset - raid56_full_stripe_start); 5983 } 5984 } 5985 len = min_t(u64, em->len - offset, max_len); 5986 } else { 5987 len = em->len - offset; 5988 } 5989 5990 io_geom->len = len; 5991 io_geom->offset = offset; 5992 io_geom->stripe_len = stripe_len; 5993 io_geom->stripe_nr = stripe_nr; 5994 io_geom->stripe_offset = stripe_offset; 5995 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 5996 5997 out: 5998 /* once for us */ 5999 free_extent_map(em); 6000 return ret; 6001 } 6002 6003 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 6004 enum btrfs_map_op op, 6005 u64 logical, u64 *length, 6006 struct btrfs_bio **bbio_ret, 6007 int mirror_num, int need_raid_map) 6008 { 6009 struct extent_map *em; 6010 struct map_lookup *map; 6011 u64 stripe_offset; 6012 u64 stripe_nr; 6013 u64 stripe_len; 6014 u32 stripe_index; 6015 int data_stripes; 6016 int i; 6017 int ret = 0; 6018 int num_stripes; 6019 int max_errors = 0; 6020 int tgtdev_indexes = 0; 6021 struct btrfs_bio *bbio = NULL; 6022 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6023 int dev_replace_is_ongoing = 0; 6024 int num_alloc_stripes; 6025 int patch_the_first_stripe_for_dev_replace = 0; 6026 u64 physical_to_patch_in_first_stripe = 0; 6027 u64 raid56_full_stripe_start = (u64)-1; 6028 struct btrfs_io_geometry geom; 6029 6030 ASSERT(bbio_ret); 6031 6032 if (op == BTRFS_MAP_DISCARD) 6033 return __btrfs_map_block_for_discard(fs_info, logical, 6034 *length, bbio_ret); 6035 6036 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom); 6037 if (ret < 0) 6038 return ret; 6039 6040 em = btrfs_get_chunk_map(fs_info, logical, *length); 6041 ASSERT(!IS_ERR(em)); 6042 map = em->map_lookup; 6043 6044 *length = geom.len; 6045 stripe_len = geom.stripe_len; 6046 stripe_nr = geom.stripe_nr; 6047 stripe_offset = geom.stripe_offset; 6048 raid56_full_stripe_start = geom.raid56_stripe_offset; 6049 data_stripes = nr_data_stripes(map); 6050 6051 down_read(&dev_replace->rwsem); 6052 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6053 /* 6054 * Hold the semaphore for read during the whole operation, write is 6055 * requested at commit time but must wait. 6056 */ 6057 if (!dev_replace_is_ongoing) 6058 up_read(&dev_replace->rwsem); 6059 6060 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6061 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6062 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6063 dev_replace->srcdev->devid, 6064 &mirror_num, 6065 &physical_to_patch_in_first_stripe); 6066 if (ret) 6067 goto out; 6068 else 6069 patch_the_first_stripe_for_dev_replace = 1; 6070 } else if (mirror_num > map->num_stripes) { 6071 mirror_num = 0; 6072 } 6073 6074 num_stripes = 1; 6075 stripe_index = 0; 6076 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6077 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6078 &stripe_index); 6079 if (!need_full_stripe(op)) 6080 mirror_num = 1; 6081 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6082 if (need_full_stripe(op)) 6083 num_stripes = map->num_stripes; 6084 else if (mirror_num) 6085 stripe_index = mirror_num - 1; 6086 else { 6087 stripe_index = find_live_mirror(fs_info, map, 0, 6088 dev_replace_is_ongoing); 6089 mirror_num = stripe_index + 1; 6090 } 6091 6092 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6093 if (need_full_stripe(op)) { 6094 num_stripes = map->num_stripes; 6095 } else if (mirror_num) { 6096 stripe_index = mirror_num - 1; 6097 } else { 6098 mirror_num = 1; 6099 } 6100 6101 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6102 u32 factor = map->num_stripes / map->sub_stripes; 6103 6104 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6105 stripe_index *= map->sub_stripes; 6106 6107 if (need_full_stripe(op)) 6108 num_stripes = map->sub_stripes; 6109 else if (mirror_num) 6110 stripe_index += mirror_num - 1; 6111 else { 6112 int old_stripe_index = stripe_index; 6113 stripe_index = find_live_mirror(fs_info, map, 6114 stripe_index, 6115 dev_replace_is_ongoing); 6116 mirror_num = stripe_index - old_stripe_index + 1; 6117 } 6118 6119 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6120 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6121 /* push stripe_nr back to the start of the full stripe */ 6122 stripe_nr = div64_u64(raid56_full_stripe_start, 6123 stripe_len * data_stripes); 6124 6125 /* RAID[56] write or recovery. Return all stripes */ 6126 num_stripes = map->num_stripes; 6127 max_errors = nr_parity_stripes(map); 6128 6129 *length = map->stripe_len; 6130 stripe_index = 0; 6131 stripe_offset = 0; 6132 } else { 6133 /* 6134 * Mirror #0 or #1 means the original data block. 6135 * Mirror #2 is RAID5 parity block. 6136 * Mirror #3 is RAID6 Q block. 6137 */ 6138 stripe_nr = div_u64_rem(stripe_nr, 6139 data_stripes, &stripe_index); 6140 if (mirror_num > 1) 6141 stripe_index = data_stripes + mirror_num - 2; 6142 6143 /* We distribute the parity blocks across stripes */ 6144 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6145 &stripe_index); 6146 if (!need_full_stripe(op) && mirror_num <= 1) 6147 mirror_num = 1; 6148 } 6149 } else { 6150 /* 6151 * after this, stripe_nr is the number of stripes on this 6152 * device we have to walk to find the data, and stripe_index is 6153 * the number of our device in the stripe array 6154 */ 6155 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6156 &stripe_index); 6157 mirror_num = stripe_index + 1; 6158 } 6159 if (stripe_index >= map->num_stripes) { 6160 btrfs_crit(fs_info, 6161 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6162 stripe_index, map->num_stripes); 6163 ret = -EINVAL; 6164 goto out; 6165 } 6166 6167 num_alloc_stripes = num_stripes; 6168 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6169 if (op == BTRFS_MAP_WRITE) 6170 num_alloc_stripes <<= 1; 6171 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6172 num_alloc_stripes++; 6173 tgtdev_indexes = num_stripes; 6174 } 6175 6176 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 6177 if (!bbio) { 6178 ret = -ENOMEM; 6179 goto out; 6180 } 6181 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 6182 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 6183 6184 /* build raid_map */ 6185 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6186 (need_full_stripe(op) || mirror_num > 1)) { 6187 u64 tmp; 6188 unsigned rot; 6189 6190 bbio->raid_map = (u64 *)((void *)bbio->stripes + 6191 sizeof(struct btrfs_bio_stripe) * 6192 num_alloc_stripes + 6193 sizeof(int) * tgtdev_indexes); 6194 6195 /* Work out the disk rotation on this stripe-set */ 6196 div_u64_rem(stripe_nr, num_stripes, &rot); 6197 6198 /* Fill in the logical address of each stripe */ 6199 tmp = stripe_nr * data_stripes; 6200 for (i = 0; i < data_stripes; i++) 6201 bbio->raid_map[(i+rot) % num_stripes] = 6202 em->start + (tmp + i) * map->stripe_len; 6203 6204 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 6205 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6206 bbio->raid_map[(i+rot+1) % num_stripes] = 6207 RAID6_Q_STRIPE; 6208 } 6209 6210 6211 for (i = 0; i < num_stripes; i++) { 6212 bbio->stripes[i].physical = 6213 map->stripes[stripe_index].physical + 6214 stripe_offset + 6215 stripe_nr * map->stripe_len; 6216 bbio->stripes[i].dev = 6217 map->stripes[stripe_index].dev; 6218 stripe_index++; 6219 } 6220 6221 if (need_full_stripe(op)) 6222 max_errors = btrfs_chunk_max_errors(map); 6223 6224 if (bbio->raid_map) 6225 sort_parity_stripes(bbio, num_stripes); 6226 6227 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6228 need_full_stripe(op)) { 6229 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 6230 &max_errors); 6231 } 6232 6233 *bbio_ret = bbio; 6234 bbio->map_type = map->type; 6235 bbio->num_stripes = num_stripes; 6236 bbio->max_errors = max_errors; 6237 bbio->mirror_num = mirror_num; 6238 6239 /* 6240 * this is the case that REQ_READ && dev_replace_is_ongoing && 6241 * mirror_num == num_stripes + 1 && dev_replace target drive is 6242 * available as a mirror 6243 */ 6244 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6245 WARN_ON(num_stripes > 1); 6246 bbio->stripes[0].dev = dev_replace->tgtdev; 6247 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 6248 bbio->mirror_num = map->num_stripes + 1; 6249 } 6250 out: 6251 if (dev_replace_is_ongoing) { 6252 lockdep_assert_held(&dev_replace->rwsem); 6253 /* Unlock and let waiting writers proceed */ 6254 up_read(&dev_replace->rwsem); 6255 } 6256 free_extent_map(em); 6257 return ret; 6258 } 6259 6260 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6261 u64 logical, u64 *length, 6262 struct btrfs_bio **bbio_ret, int mirror_num) 6263 { 6264 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 6265 mirror_num, 0); 6266 } 6267 6268 /* For Scrub/replace */ 6269 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6270 u64 logical, u64 *length, 6271 struct btrfs_bio **bbio_ret) 6272 { 6273 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6274 } 6275 6276 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 6277 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 6278 { 6279 struct extent_map *em; 6280 struct map_lookup *map; 6281 u64 *buf; 6282 u64 bytenr; 6283 u64 length; 6284 u64 stripe_nr; 6285 u64 rmap_len; 6286 int i, j, nr = 0; 6287 6288 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 6289 if (IS_ERR(em)) 6290 return -EIO; 6291 6292 map = em->map_lookup; 6293 length = em->len; 6294 rmap_len = map->stripe_len; 6295 6296 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 6297 length = div_u64(length, map->num_stripes / map->sub_stripes); 6298 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6299 length = div_u64(length, map->num_stripes); 6300 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6301 length = div_u64(length, nr_data_stripes(map)); 6302 rmap_len = map->stripe_len * nr_data_stripes(map); 6303 } 6304 6305 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 6306 BUG_ON(!buf); /* -ENOMEM */ 6307 6308 for (i = 0; i < map->num_stripes; i++) { 6309 if (map->stripes[i].physical > physical || 6310 map->stripes[i].physical + length <= physical) 6311 continue; 6312 6313 stripe_nr = physical - map->stripes[i].physical; 6314 stripe_nr = div64_u64(stripe_nr, map->stripe_len); 6315 6316 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6317 stripe_nr = stripe_nr * map->num_stripes + i; 6318 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 6319 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6320 stripe_nr = stripe_nr * map->num_stripes + i; 6321 } /* else if RAID[56], multiply by nr_data_stripes(). 6322 * Alternatively, just use rmap_len below instead of 6323 * map->stripe_len */ 6324 6325 bytenr = chunk_start + stripe_nr * rmap_len; 6326 WARN_ON(nr >= map->num_stripes); 6327 for (j = 0; j < nr; j++) { 6328 if (buf[j] == bytenr) 6329 break; 6330 } 6331 if (j == nr) { 6332 WARN_ON(nr >= map->num_stripes); 6333 buf[nr++] = bytenr; 6334 } 6335 } 6336 6337 *logical = buf; 6338 *naddrs = nr; 6339 *stripe_len = rmap_len; 6340 6341 free_extent_map(em); 6342 return 0; 6343 } 6344 6345 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6346 { 6347 bio->bi_private = bbio->private; 6348 bio->bi_end_io = bbio->end_io; 6349 bio_endio(bio); 6350 6351 btrfs_put_bbio(bbio); 6352 } 6353 6354 static void btrfs_end_bio(struct bio *bio) 6355 { 6356 struct btrfs_bio *bbio = bio->bi_private; 6357 int is_orig_bio = 0; 6358 6359 if (bio->bi_status) { 6360 atomic_inc(&bbio->error); 6361 if (bio->bi_status == BLK_STS_IOERR || 6362 bio->bi_status == BLK_STS_TARGET) { 6363 unsigned int stripe_index = 6364 btrfs_io_bio(bio)->stripe_index; 6365 struct btrfs_device *dev; 6366 6367 BUG_ON(stripe_index >= bbio->num_stripes); 6368 dev = bbio->stripes[stripe_index].dev; 6369 if (dev->bdev) { 6370 if (bio_op(bio) == REQ_OP_WRITE) 6371 btrfs_dev_stat_inc_and_print(dev, 6372 BTRFS_DEV_STAT_WRITE_ERRS); 6373 else if (!(bio->bi_opf & REQ_RAHEAD)) 6374 btrfs_dev_stat_inc_and_print(dev, 6375 BTRFS_DEV_STAT_READ_ERRS); 6376 if (bio->bi_opf & REQ_PREFLUSH) 6377 btrfs_dev_stat_inc_and_print(dev, 6378 BTRFS_DEV_STAT_FLUSH_ERRS); 6379 } 6380 } 6381 } 6382 6383 if (bio == bbio->orig_bio) 6384 is_orig_bio = 1; 6385 6386 btrfs_bio_counter_dec(bbio->fs_info); 6387 6388 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6389 if (!is_orig_bio) { 6390 bio_put(bio); 6391 bio = bbio->orig_bio; 6392 } 6393 6394 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6395 /* only send an error to the higher layers if it is 6396 * beyond the tolerance of the btrfs bio 6397 */ 6398 if (atomic_read(&bbio->error) > bbio->max_errors) { 6399 bio->bi_status = BLK_STS_IOERR; 6400 } else { 6401 /* 6402 * this bio is actually up to date, we didn't 6403 * go over the max number of errors 6404 */ 6405 bio->bi_status = BLK_STS_OK; 6406 } 6407 6408 btrfs_end_bbio(bbio, bio); 6409 } else if (!is_orig_bio) { 6410 bio_put(bio); 6411 } 6412 } 6413 6414 /* 6415 * see run_scheduled_bios for a description of why bios are collected for 6416 * async submit. 6417 * 6418 * This will add one bio to the pending list for a device and make sure 6419 * the work struct is scheduled. 6420 */ 6421 static noinline void btrfs_schedule_bio(struct btrfs_device *device, 6422 struct bio *bio) 6423 { 6424 struct btrfs_fs_info *fs_info = device->fs_info; 6425 int should_queue = 1; 6426 struct btrfs_pending_bios *pending_bios; 6427 6428 /* don't bother with additional async steps for reads, right now */ 6429 if (bio_op(bio) == REQ_OP_READ) { 6430 btrfsic_submit_bio(bio); 6431 return; 6432 } 6433 6434 WARN_ON(bio->bi_next); 6435 bio->bi_next = NULL; 6436 6437 spin_lock(&device->io_lock); 6438 if (op_is_sync(bio->bi_opf)) 6439 pending_bios = &device->pending_sync_bios; 6440 else 6441 pending_bios = &device->pending_bios; 6442 6443 if (pending_bios->tail) 6444 pending_bios->tail->bi_next = bio; 6445 6446 pending_bios->tail = bio; 6447 if (!pending_bios->head) 6448 pending_bios->head = bio; 6449 if (device->running_pending) 6450 should_queue = 0; 6451 6452 spin_unlock(&device->io_lock); 6453 6454 if (should_queue) 6455 btrfs_queue_work(fs_info->submit_workers, &device->work); 6456 } 6457 6458 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6459 u64 physical, int dev_nr, int async) 6460 { 6461 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 6462 struct btrfs_fs_info *fs_info = bbio->fs_info; 6463 6464 bio->bi_private = bbio; 6465 btrfs_io_bio(bio)->stripe_index = dev_nr; 6466 bio->bi_end_io = btrfs_end_bio; 6467 bio->bi_iter.bi_sector = physical >> 9; 6468 btrfs_debug_in_rcu(fs_info, 6469 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6470 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector, 6471 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid, 6472 bio->bi_iter.bi_size); 6473 bio_set_dev(bio, dev->bdev); 6474 6475 btrfs_bio_counter_inc_noblocked(fs_info); 6476 6477 if (async) 6478 btrfs_schedule_bio(dev, bio); 6479 else 6480 btrfsic_submit_bio(bio); 6481 } 6482 6483 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6484 { 6485 atomic_inc(&bbio->error); 6486 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6487 /* Should be the original bio. */ 6488 WARN_ON(bio != bbio->orig_bio); 6489 6490 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6491 bio->bi_iter.bi_sector = logical >> 9; 6492 if (atomic_read(&bbio->error) > bbio->max_errors) 6493 bio->bi_status = BLK_STS_IOERR; 6494 else 6495 bio->bi_status = BLK_STS_OK; 6496 btrfs_end_bbio(bbio, bio); 6497 } 6498 } 6499 6500 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6501 int mirror_num, int async_submit) 6502 { 6503 struct btrfs_device *dev; 6504 struct bio *first_bio = bio; 6505 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6506 u64 length = 0; 6507 u64 map_length; 6508 int ret; 6509 int dev_nr; 6510 int total_devs; 6511 struct btrfs_bio *bbio = NULL; 6512 6513 length = bio->bi_iter.bi_size; 6514 map_length = length; 6515 6516 btrfs_bio_counter_inc_blocked(fs_info); 6517 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6518 &map_length, &bbio, mirror_num, 1); 6519 if (ret) { 6520 btrfs_bio_counter_dec(fs_info); 6521 return errno_to_blk_status(ret); 6522 } 6523 6524 total_devs = bbio->num_stripes; 6525 bbio->orig_bio = first_bio; 6526 bbio->private = first_bio->bi_private; 6527 bbio->end_io = first_bio->bi_end_io; 6528 bbio->fs_info = fs_info; 6529 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6530 6531 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6532 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6533 /* In this case, map_length has been set to the length of 6534 a single stripe; not the whole write */ 6535 if (bio_op(bio) == REQ_OP_WRITE) { 6536 ret = raid56_parity_write(fs_info, bio, bbio, 6537 map_length); 6538 } else { 6539 ret = raid56_parity_recover(fs_info, bio, bbio, 6540 map_length, mirror_num, 1); 6541 } 6542 6543 btrfs_bio_counter_dec(fs_info); 6544 return errno_to_blk_status(ret); 6545 } 6546 6547 if (map_length < length) { 6548 btrfs_crit(fs_info, 6549 "mapping failed logical %llu bio len %llu len %llu", 6550 logical, length, map_length); 6551 BUG(); 6552 } 6553 6554 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6555 dev = bbio->stripes[dev_nr].dev; 6556 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6557 &dev->dev_state) || 6558 (bio_op(first_bio) == REQ_OP_WRITE && 6559 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6560 bbio_error(bbio, first_bio, logical); 6561 continue; 6562 } 6563 6564 if (dev_nr < total_devs - 1) 6565 bio = btrfs_bio_clone(first_bio); 6566 else 6567 bio = first_bio; 6568 6569 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, 6570 dev_nr, async_submit); 6571 } 6572 btrfs_bio_counter_dec(fs_info); 6573 return BLK_STS_OK; 6574 } 6575 6576 /* 6577 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6578 * return NULL. 6579 * 6580 * If devid and uuid are both specified, the match must be exact, otherwise 6581 * only devid is used. 6582 * 6583 * If @seed is true, traverse through the seed devices. 6584 */ 6585 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 6586 u64 devid, u8 *uuid, u8 *fsid, 6587 bool seed) 6588 { 6589 struct btrfs_device *device; 6590 6591 while (fs_devices) { 6592 if (!fsid || 6593 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6594 list_for_each_entry(device, &fs_devices->devices, 6595 dev_list) { 6596 if (device->devid == devid && 6597 (!uuid || memcmp(device->uuid, uuid, 6598 BTRFS_UUID_SIZE) == 0)) 6599 return device; 6600 } 6601 } 6602 if (seed) 6603 fs_devices = fs_devices->seed; 6604 else 6605 return NULL; 6606 } 6607 return NULL; 6608 } 6609 6610 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6611 u64 devid, u8 *dev_uuid) 6612 { 6613 struct btrfs_device *device; 6614 6615 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6616 if (IS_ERR(device)) 6617 return device; 6618 6619 list_add(&device->dev_list, &fs_devices->devices); 6620 device->fs_devices = fs_devices; 6621 fs_devices->num_devices++; 6622 6623 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6624 fs_devices->missing_devices++; 6625 6626 return device; 6627 } 6628 6629 /** 6630 * btrfs_alloc_device - allocate struct btrfs_device 6631 * @fs_info: used only for generating a new devid, can be NULL if 6632 * devid is provided (i.e. @devid != NULL). 6633 * @devid: a pointer to devid for this device. If NULL a new devid 6634 * is generated. 6635 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6636 * is generated. 6637 * 6638 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6639 * on error. Returned struct is not linked onto any lists and must be 6640 * destroyed with btrfs_free_device. 6641 */ 6642 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6643 const u64 *devid, 6644 const u8 *uuid) 6645 { 6646 struct btrfs_device *dev; 6647 u64 tmp; 6648 6649 if (WARN_ON(!devid && !fs_info)) 6650 return ERR_PTR(-EINVAL); 6651 6652 dev = __alloc_device(); 6653 if (IS_ERR(dev)) 6654 return dev; 6655 6656 if (devid) 6657 tmp = *devid; 6658 else { 6659 int ret; 6660 6661 ret = find_next_devid(fs_info, &tmp); 6662 if (ret) { 6663 btrfs_free_device(dev); 6664 return ERR_PTR(ret); 6665 } 6666 } 6667 dev->devid = tmp; 6668 6669 if (uuid) 6670 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6671 else 6672 generate_random_uuid(dev->uuid); 6673 6674 btrfs_init_work(&dev->work, btrfs_submit_helper, 6675 pending_bios_fn, NULL, NULL); 6676 6677 return dev; 6678 } 6679 6680 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6681 u64 devid, u8 *uuid, bool error) 6682 { 6683 if (error) 6684 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6685 devid, uuid); 6686 else 6687 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6688 devid, uuid); 6689 } 6690 6691 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 6692 { 6693 int index = btrfs_bg_flags_to_raid_index(type); 6694 int ncopies = btrfs_raid_array[index].ncopies; 6695 int data_stripes; 6696 6697 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6698 case BTRFS_BLOCK_GROUP_RAID5: 6699 data_stripes = num_stripes - 1; 6700 break; 6701 case BTRFS_BLOCK_GROUP_RAID6: 6702 data_stripes = num_stripes - 2; 6703 break; 6704 default: 6705 data_stripes = num_stripes / ncopies; 6706 break; 6707 } 6708 return div_u64(chunk_len, data_stripes); 6709 } 6710 6711 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6712 struct btrfs_chunk *chunk) 6713 { 6714 struct btrfs_fs_info *fs_info = leaf->fs_info; 6715 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6716 struct map_lookup *map; 6717 struct extent_map *em; 6718 u64 logical; 6719 u64 length; 6720 u64 devid; 6721 u8 uuid[BTRFS_UUID_SIZE]; 6722 int num_stripes; 6723 int ret; 6724 int i; 6725 6726 logical = key->offset; 6727 length = btrfs_chunk_length(leaf, chunk); 6728 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6729 6730 /* 6731 * Only need to verify chunk item if we're reading from sys chunk array, 6732 * as chunk item in tree block is already verified by tree-checker. 6733 */ 6734 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6735 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6736 if (ret) 6737 return ret; 6738 } 6739 6740 read_lock(&map_tree->lock); 6741 em = lookup_extent_mapping(map_tree, logical, 1); 6742 read_unlock(&map_tree->lock); 6743 6744 /* already mapped? */ 6745 if (em && em->start <= logical && em->start + em->len > logical) { 6746 free_extent_map(em); 6747 return 0; 6748 } else if (em) { 6749 free_extent_map(em); 6750 } 6751 6752 em = alloc_extent_map(); 6753 if (!em) 6754 return -ENOMEM; 6755 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6756 if (!map) { 6757 free_extent_map(em); 6758 return -ENOMEM; 6759 } 6760 6761 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6762 em->map_lookup = map; 6763 em->start = logical; 6764 em->len = length; 6765 em->orig_start = 0; 6766 em->block_start = 0; 6767 em->block_len = em->len; 6768 6769 map->num_stripes = num_stripes; 6770 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6771 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6772 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6773 map->type = btrfs_chunk_type(leaf, chunk); 6774 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6775 map->verified_stripes = 0; 6776 em->orig_block_len = calc_stripe_length(map->type, em->len, 6777 map->num_stripes); 6778 for (i = 0; i < num_stripes; i++) { 6779 map->stripes[i].physical = 6780 btrfs_stripe_offset_nr(leaf, chunk, i); 6781 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6782 read_extent_buffer(leaf, uuid, (unsigned long) 6783 btrfs_stripe_dev_uuid_nr(chunk, i), 6784 BTRFS_UUID_SIZE); 6785 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, 6786 devid, uuid, NULL, true); 6787 if (!map->stripes[i].dev && 6788 !btrfs_test_opt(fs_info, DEGRADED)) { 6789 free_extent_map(em); 6790 btrfs_report_missing_device(fs_info, devid, uuid, true); 6791 return -ENOENT; 6792 } 6793 if (!map->stripes[i].dev) { 6794 map->stripes[i].dev = 6795 add_missing_dev(fs_info->fs_devices, devid, 6796 uuid); 6797 if (IS_ERR(map->stripes[i].dev)) { 6798 free_extent_map(em); 6799 btrfs_err(fs_info, 6800 "failed to init missing dev %llu: %ld", 6801 devid, PTR_ERR(map->stripes[i].dev)); 6802 return PTR_ERR(map->stripes[i].dev); 6803 } 6804 btrfs_report_missing_device(fs_info, devid, uuid, false); 6805 } 6806 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6807 &(map->stripes[i].dev->dev_state)); 6808 6809 } 6810 6811 write_lock(&map_tree->lock); 6812 ret = add_extent_mapping(map_tree, em, 0); 6813 write_unlock(&map_tree->lock); 6814 if (ret < 0) { 6815 btrfs_err(fs_info, 6816 "failed to add chunk map, start=%llu len=%llu: %d", 6817 em->start, em->len, ret); 6818 } 6819 free_extent_map(em); 6820 6821 return ret; 6822 } 6823 6824 static void fill_device_from_item(struct extent_buffer *leaf, 6825 struct btrfs_dev_item *dev_item, 6826 struct btrfs_device *device) 6827 { 6828 unsigned long ptr; 6829 6830 device->devid = btrfs_device_id(leaf, dev_item); 6831 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6832 device->total_bytes = device->disk_total_bytes; 6833 device->commit_total_bytes = device->disk_total_bytes; 6834 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6835 device->commit_bytes_used = device->bytes_used; 6836 device->type = btrfs_device_type(leaf, dev_item); 6837 device->io_align = btrfs_device_io_align(leaf, dev_item); 6838 device->io_width = btrfs_device_io_width(leaf, dev_item); 6839 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6840 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6841 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6842 6843 ptr = btrfs_device_uuid(dev_item); 6844 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6845 } 6846 6847 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6848 u8 *fsid) 6849 { 6850 struct btrfs_fs_devices *fs_devices; 6851 int ret; 6852 6853 lockdep_assert_held(&uuid_mutex); 6854 ASSERT(fsid); 6855 6856 fs_devices = fs_info->fs_devices->seed; 6857 while (fs_devices) { 6858 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6859 return fs_devices; 6860 6861 fs_devices = fs_devices->seed; 6862 } 6863 6864 fs_devices = find_fsid(fsid, NULL); 6865 if (!fs_devices) { 6866 if (!btrfs_test_opt(fs_info, DEGRADED)) 6867 return ERR_PTR(-ENOENT); 6868 6869 fs_devices = alloc_fs_devices(fsid, NULL); 6870 if (IS_ERR(fs_devices)) 6871 return fs_devices; 6872 6873 fs_devices->seeding = 1; 6874 fs_devices->opened = 1; 6875 return fs_devices; 6876 } 6877 6878 fs_devices = clone_fs_devices(fs_devices); 6879 if (IS_ERR(fs_devices)) 6880 return fs_devices; 6881 6882 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 6883 if (ret) { 6884 free_fs_devices(fs_devices); 6885 fs_devices = ERR_PTR(ret); 6886 goto out; 6887 } 6888 6889 if (!fs_devices->seeding) { 6890 close_fs_devices(fs_devices); 6891 free_fs_devices(fs_devices); 6892 fs_devices = ERR_PTR(-EINVAL); 6893 goto out; 6894 } 6895 6896 fs_devices->seed = fs_info->fs_devices->seed; 6897 fs_info->fs_devices->seed = fs_devices; 6898 out: 6899 return fs_devices; 6900 } 6901 6902 static int read_one_dev(struct extent_buffer *leaf, 6903 struct btrfs_dev_item *dev_item) 6904 { 6905 struct btrfs_fs_info *fs_info = leaf->fs_info; 6906 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6907 struct btrfs_device *device; 6908 u64 devid; 6909 int ret; 6910 u8 fs_uuid[BTRFS_FSID_SIZE]; 6911 u8 dev_uuid[BTRFS_UUID_SIZE]; 6912 6913 devid = btrfs_device_id(leaf, dev_item); 6914 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6915 BTRFS_UUID_SIZE); 6916 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6917 BTRFS_FSID_SIZE); 6918 6919 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6920 fs_devices = open_seed_devices(fs_info, fs_uuid); 6921 if (IS_ERR(fs_devices)) 6922 return PTR_ERR(fs_devices); 6923 } 6924 6925 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 6926 fs_uuid, true); 6927 if (!device) { 6928 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6929 btrfs_report_missing_device(fs_info, devid, 6930 dev_uuid, true); 6931 return -ENOENT; 6932 } 6933 6934 device = add_missing_dev(fs_devices, devid, dev_uuid); 6935 if (IS_ERR(device)) { 6936 btrfs_err(fs_info, 6937 "failed to add missing dev %llu: %ld", 6938 devid, PTR_ERR(device)); 6939 return PTR_ERR(device); 6940 } 6941 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6942 } else { 6943 if (!device->bdev) { 6944 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6945 btrfs_report_missing_device(fs_info, 6946 devid, dev_uuid, true); 6947 return -ENOENT; 6948 } 6949 btrfs_report_missing_device(fs_info, devid, 6950 dev_uuid, false); 6951 } 6952 6953 if (!device->bdev && 6954 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6955 /* 6956 * this happens when a device that was properly setup 6957 * in the device info lists suddenly goes bad. 6958 * device->bdev is NULL, and so we have to set 6959 * device->missing to one here 6960 */ 6961 device->fs_devices->missing_devices++; 6962 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6963 } 6964 6965 /* Move the device to its own fs_devices */ 6966 if (device->fs_devices != fs_devices) { 6967 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 6968 &device->dev_state)); 6969 6970 list_move(&device->dev_list, &fs_devices->devices); 6971 device->fs_devices->num_devices--; 6972 fs_devices->num_devices++; 6973 6974 device->fs_devices->missing_devices--; 6975 fs_devices->missing_devices++; 6976 6977 device->fs_devices = fs_devices; 6978 } 6979 } 6980 6981 if (device->fs_devices != fs_info->fs_devices) { 6982 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 6983 if (device->generation != 6984 btrfs_device_generation(leaf, dev_item)) 6985 return -EINVAL; 6986 } 6987 6988 fill_device_from_item(leaf, dev_item, device); 6989 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 6990 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 6991 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 6992 device->fs_devices->total_rw_bytes += device->total_bytes; 6993 atomic64_add(device->total_bytes - device->bytes_used, 6994 &fs_info->free_chunk_space); 6995 } 6996 ret = 0; 6997 return ret; 6998 } 6999 7000 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7001 { 7002 struct btrfs_root *root = fs_info->tree_root; 7003 struct btrfs_super_block *super_copy = fs_info->super_copy; 7004 struct extent_buffer *sb; 7005 struct btrfs_disk_key *disk_key; 7006 struct btrfs_chunk *chunk; 7007 u8 *array_ptr; 7008 unsigned long sb_array_offset; 7009 int ret = 0; 7010 u32 num_stripes; 7011 u32 array_size; 7012 u32 len = 0; 7013 u32 cur_offset; 7014 u64 type; 7015 struct btrfs_key key; 7016 7017 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7018 /* 7019 * This will create extent buffer of nodesize, superblock size is 7020 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 7021 * overallocate but we can keep it as-is, only the first page is used. 7022 */ 7023 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 7024 if (IS_ERR(sb)) 7025 return PTR_ERR(sb); 7026 set_extent_buffer_uptodate(sb); 7027 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 7028 /* 7029 * The sb extent buffer is artificial and just used to read the system array. 7030 * set_extent_buffer_uptodate() call does not properly mark all it's 7031 * pages up-to-date when the page is larger: extent does not cover the 7032 * whole page and consequently check_page_uptodate does not find all 7033 * the page's extents up-to-date (the hole beyond sb), 7034 * write_extent_buffer then triggers a WARN_ON. 7035 * 7036 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 7037 * but sb spans only this function. Add an explicit SetPageUptodate call 7038 * to silence the warning eg. on PowerPC 64. 7039 */ 7040 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 7041 SetPageUptodate(sb->pages[0]); 7042 7043 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7044 array_size = btrfs_super_sys_array_size(super_copy); 7045 7046 array_ptr = super_copy->sys_chunk_array; 7047 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7048 cur_offset = 0; 7049 7050 while (cur_offset < array_size) { 7051 disk_key = (struct btrfs_disk_key *)array_ptr; 7052 len = sizeof(*disk_key); 7053 if (cur_offset + len > array_size) 7054 goto out_short_read; 7055 7056 btrfs_disk_key_to_cpu(&key, disk_key); 7057 7058 array_ptr += len; 7059 sb_array_offset += len; 7060 cur_offset += len; 7061 7062 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 7063 chunk = (struct btrfs_chunk *)sb_array_offset; 7064 /* 7065 * At least one btrfs_chunk with one stripe must be 7066 * present, exact stripe count check comes afterwards 7067 */ 7068 len = btrfs_chunk_item_size(1); 7069 if (cur_offset + len > array_size) 7070 goto out_short_read; 7071 7072 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7073 if (!num_stripes) { 7074 btrfs_err(fs_info, 7075 "invalid number of stripes %u in sys_array at offset %u", 7076 num_stripes, cur_offset); 7077 ret = -EIO; 7078 break; 7079 } 7080 7081 type = btrfs_chunk_type(sb, chunk); 7082 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7083 btrfs_err(fs_info, 7084 "invalid chunk type %llu in sys_array at offset %u", 7085 type, cur_offset); 7086 ret = -EIO; 7087 break; 7088 } 7089 7090 len = btrfs_chunk_item_size(num_stripes); 7091 if (cur_offset + len > array_size) 7092 goto out_short_read; 7093 7094 ret = read_one_chunk(&key, sb, chunk); 7095 if (ret) 7096 break; 7097 } else { 7098 btrfs_err(fs_info, 7099 "unexpected item type %u in sys_array at offset %u", 7100 (u32)key.type, cur_offset); 7101 ret = -EIO; 7102 break; 7103 } 7104 array_ptr += len; 7105 sb_array_offset += len; 7106 cur_offset += len; 7107 } 7108 clear_extent_buffer_uptodate(sb); 7109 free_extent_buffer_stale(sb); 7110 return ret; 7111 7112 out_short_read: 7113 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7114 len, cur_offset); 7115 clear_extent_buffer_uptodate(sb); 7116 free_extent_buffer_stale(sb); 7117 return -EIO; 7118 } 7119 7120 /* 7121 * Check if all chunks in the fs are OK for read-write degraded mount 7122 * 7123 * If the @failing_dev is specified, it's accounted as missing. 7124 * 7125 * Return true if all chunks meet the minimal RW mount requirements. 7126 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7127 */ 7128 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7129 struct btrfs_device *failing_dev) 7130 { 7131 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7132 struct extent_map *em; 7133 u64 next_start = 0; 7134 bool ret = true; 7135 7136 read_lock(&map_tree->lock); 7137 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7138 read_unlock(&map_tree->lock); 7139 /* No chunk at all? Return false anyway */ 7140 if (!em) { 7141 ret = false; 7142 goto out; 7143 } 7144 while (em) { 7145 struct map_lookup *map; 7146 int missing = 0; 7147 int max_tolerated; 7148 int i; 7149 7150 map = em->map_lookup; 7151 max_tolerated = 7152 btrfs_get_num_tolerated_disk_barrier_failures( 7153 map->type); 7154 for (i = 0; i < map->num_stripes; i++) { 7155 struct btrfs_device *dev = map->stripes[i].dev; 7156 7157 if (!dev || !dev->bdev || 7158 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7159 dev->last_flush_error) 7160 missing++; 7161 else if (failing_dev && failing_dev == dev) 7162 missing++; 7163 } 7164 if (missing > max_tolerated) { 7165 if (!failing_dev) 7166 btrfs_warn(fs_info, 7167 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7168 em->start, missing, max_tolerated); 7169 free_extent_map(em); 7170 ret = false; 7171 goto out; 7172 } 7173 next_start = extent_map_end(em); 7174 free_extent_map(em); 7175 7176 read_lock(&map_tree->lock); 7177 em = lookup_extent_mapping(map_tree, next_start, 7178 (u64)(-1) - next_start); 7179 read_unlock(&map_tree->lock); 7180 } 7181 out: 7182 return ret; 7183 } 7184 7185 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7186 { 7187 struct btrfs_root *root = fs_info->chunk_root; 7188 struct btrfs_path *path; 7189 struct extent_buffer *leaf; 7190 struct btrfs_key key; 7191 struct btrfs_key found_key; 7192 int ret; 7193 int slot; 7194 u64 total_dev = 0; 7195 7196 path = btrfs_alloc_path(); 7197 if (!path) 7198 return -ENOMEM; 7199 7200 /* 7201 * uuid_mutex is needed only if we are mounting a sprout FS 7202 * otherwise we don't need it. 7203 */ 7204 mutex_lock(&uuid_mutex); 7205 mutex_lock(&fs_info->chunk_mutex); 7206 7207 /* 7208 * Read all device items, and then all the chunk items. All 7209 * device items are found before any chunk item (their object id 7210 * is smaller than the lowest possible object id for a chunk 7211 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7212 */ 7213 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7214 key.offset = 0; 7215 key.type = 0; 7216 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7217 if (ret < 0) 7218 goto error; 7219 while (1) { 7220 leaf = path->nodes[0]; 7221 slot = path->slots[0]; 7222 if (slot >= btrfs_header_nritems(leaf)) { 7223 ret = btrfs_next_leaf(root, path); 7224 if (ret == 0) 7225 continue; 7226 if (ret < 0) 7227 goto error; 7228 break; 7229 } 7230 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7231 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7232 struct btrfs_dev_item *dev_item; 7233 dev_item = btrfs_item_ptr(leaf, slot, 7234 struct btrfs_dev_item); 7235 ret = read_one_dev(leaf, dev_item); 7236 if (ret) 7237 goto error; 7238 total_dev++; 7239 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7240 struct btrfs_chunk *chunk; 7241 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7242 ret = read_one_chunk(&found_key, leaf, chunk); 7243 if (ret) 7244 goto error; 7245 } 7246 path->slots[0]++; 7247 } 7248 7249 /* 7250 * After loading chunk tree, we've got all device information, 7251 * do another round of validation checks. 7252 */ 7253 if (total_dev != fs_info->fs_devices->total_devices) { 7254 btrfs_err(fs_info, 7255 "super_num_devices %llu mismatch with num_devices %llu found here", 7256 btrfs_super_num_devices(fs_info->super_copy), 7257 total_dev); 7258 ret = -EINVAL; 7259 goto error; 7260 } 7261 if (btrfs_super_total_bytes(fs_info->super_copy) < 7262 fs_info->fs_devices->total_rw_bytes) { 7263 btrfs_err(fs_info, 7264 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7265 btrfs_super_total_bytes(fs_info->super_copy), 7266 fs_info->fs_devices->total_rw_bytes); 7267 ret = -EINVAL; 7268 goto error; 7269 } 7270 ret = 0; 7271 error: 7272 mutex_unlock(&fs_info->chunk_mutex); 7273 mutex_unlock(&uuid_mutex); 7274 7275 btrfs_free_path(path); 7276 return ret; 7277 } 7278 7279 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7280 { 7281 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7282 struct btrfs_device *device; 7283 7284 while (fs_devices) { 7285 mutex_lock(&fs_devices->device_list_mutex); 7286 list_for_each_entry(device, &fs_devices->devices, dev_list) 7287 device->fs_info = fs_info; 7288 mutex_unlock(&fs_devices->device_list_mutex); 7289 7290 fs_devices = fs_devices->seed; 7291 } 7292 } 7293 7294 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7295 const struct btrfs_dev_stats_item *ptr, 7296 int index) 7297 { 7298 u64 val; 7299 7300 read_extent_buffer(eb, &val, 7301 offsetof(struct btrfs_dev_stats_item, values) + 7302 ((unsigned long)ptr) + (index * sizeof(u64)), 7303 sizeof(val)); 7304 return val; 7305 } 7306 7307 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7308 struct btrfs_dev_stats_item *ptr, 7309 int index, u64 val) 7310 { 7311 write_extent_buffer(eb, &val, 7312 offsetof(struct btrfs_dev_stats_item, values) + 7313 ((unsigned long)ptr) + (index * sizeof(u64)), 7314 sizeof(val)); 7315 } 7316 7317 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7318 { 7319 struct btrfs_key key; 7320 struct btrfs_root *dev_root = fs_info->dev_root; 7321 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7322 struct extent_buffer *eb; 7323 int slot; 7324 int ret = 0; 7325 struct btrfs_device *device; 7326 struct btrfs_path *path = NULL; 7327 int i; 7328 7329 path = btrfs_alloc_path(); 7330 if (!path) 7331 return -ENOMEM; 7332 7333 mutex_lock(&fs_devices->device_list_mutex); 7334 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7335 int item_size; 7336 struct btrfs_dev_stats_item *ptr; 7337 7338 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7339 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7340 key.offset = device->devid; 7341 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 7342 if (ret) { 7343 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7344 btrfs_dev_stat_set(device, i, 0); 7345 device->dev_stats_valid = 1; 7346 btrfs_release_path(path); 7347 continue; 7348 } 7349 slot = path->slots[0]; 7350 eb = path->nodes[0]; 7351 item_size = btrfs_item_size_nr(eb, slot); 7352 7353 ptr = btrfs_item_ptr(eb, slot, 7354 struct btrfs_dev_stats_item); 7355 7356 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7357 if (item_size >= (1 + i) * sizeof(__le64)) 7358 btrfs_dev_stat_set(device, i, 7359 btrfs_dev_stats_value(eb, ptr, i)); 7360 else 7361 btrfs_dev_stat_set(device, i, 0); 7362 } 7363 7364 device->dev_stats_valid = 1; 7365 btrfs_dev_stat_print_on_load(device); 7366 btrfs_release_path(path); 7367 } 7368 mutex_unlock(&fs_devices->device_list_mutex); 7369 7370 btrfs_free_path(path); 7371 return ret < 0 ? ret : 0; 7372 } 7373 7374 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7375 struct btrfs_device *device) 7376 { 7377 struct btrfs_fs_info *fs_info = trans->fs_info; 7378 struct btrfs_root *dev_root = fs_info->dev_root; 7379 struct btrfs_path *path; 7380 struct btrfs_key key; 7381 struct extent_buffer *eb; 7382 struct btrfs_dev_stats_item *ptr; 7383 int ret; 7384 int i; 7385 7386 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7387 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7388 key.offset = device->devid; 7389 7390 path = btrfs_alloc_path(); 7391 if (!path) 7392 return -ENOMEM; 7393 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7394 if (ret < 0) { 7395 btrfs_warn_in_rcu(fs_info, 7396 "error %d while searching for dev_stats item for device %s", 7397 ret, rcu_str_deref(device->name)); 7398 goto out; 7399 } 7400 7401 if (ret == 0 && 7402 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7403 /* need to delete old one and insert a new one */ 7404 ret = btrfs_del_item(trans, dev_root, path); 7405 if (ret != 0) { 7406 btrfs_warn_in_rcu(fs_info, 7407 "delete too small dev_stats item for device %s failed %d", 7408 rcu_str_deref(device->name), ret); 7409 goto out; 7410 } 7411 ret = 1; 7412 } 7413 7414 if (ret == 1) { 7415 /* need to insert a new item */ 7416 btrfs_release_path(path); 7417 ret = btrfs_insert_empty_item(trans, dev_root, path, 7418 &key, sizeof(*ptr)); 7419 if (ret < 0) { 7420 btrfs_warn_in_rcu(fs_info, 7421 "insert dev_stats item for device %s failed %d", 7422 rcu_str_deref(device->name), ret); 7423 goto out; 7424 } 7425 } 7426 7427 eb = path->nodes[0]; 7428 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7429 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7430 btrfs_set_dev_stats_value(eb, ptr, i, 7431 btrfs_dev_stat_read(device, i)); 7432 btrfs_mark_buffer_dirty(eb); 7433 7434 out: 7435 btrfs_free_path(path); 7436 return ret; 7437 } 7438 7439 /* 7440 * called from commit_transaction. Writes all changed device stats to disk. 7441 */ 7442 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7443 { 7444 struct btrfs_fs_info *fs_info = trans->fs_info; 7445 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7446 struct btrfs_device *device; 7447 int stats_cnt; 7448 int ret = 0; 7449 7450 mutex_lock(&fs_devices->device_list_mutex); 7451 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7452 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7453 if (!device->dev_stats_valid || stats_cnt == 0) 7454 continue; 7455 7456 7457 /* 7458 * There is a LOAD-LOAD control dependency between the value of 7459 * dev_stats_ccnt and updating the on-disk values which requires 7460 * reading the in-memory counters. Such control dependencies 7461 * require explicit read memory barriers. 7462 * 7463 * This memory barriers pairs with smp_mb__before_atomic in 7464 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7465 * barrier implied by atomic_xchg in 7466 * btrfs_dev_stats_read_and_reset 7467 */ 7468 smp_rmb(); 7469 7470 ret = update_dev_stat_item(trans, device); 7471 if (!ret) 7472 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7473 } 7474 mutex_unlock(&fs_devices->device_list_mutex); 7475 7476 return ret; 7477 } 7478 7479 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7480 { 7481 btrfs_dev_stat_inc(dev, index); 7482 btrfs_dev_stat_print_on_error(dev); 7483 } 7484 7485 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7486 { 7487 if (!dev->dev_stats_valid) 7488 return; 7489 btrfs_err_rl_in_rcu(dev->fs_info, 7490 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7491 rcu_str_deref(dev->name), 7492 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7493 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7494 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7495 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7496 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7497 } 7498 7499 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7500 { 7501 int i; 7502 7503 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7504 if (btrfs_dev_stat_read(dev, i) != 0) 7505 break; 7506 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7507 return; /* all values == 0, suppress message */ 7508 7509 btrfs_info_in_rcu(dev->fs_info, 7510 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7511 rcu_str_deref(dev->name), 7512 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7513 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7514 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7515 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7516 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7517 } 7518 7519 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7520 struct btrfs_ioctl_get_dev_stats *stats) 7521 { 7522 struct btrfs_device *dev; 7523 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7524 int i; 7525 7526 mutex_lock(&fs_devices->device_list_mutex); 7527 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL, 7528 true); 7529 mutex_unlock(&fs_devices->device_list_mutex); 7530 7531 if (!dev) { 7532 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7533 return -ENODEV; 7534 } else if (!dev->dev_stats_valid) { 7535 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7536 return -ENODEV; 7537 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7538 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7539 if (stats->nr_items > i) 7540 stats->values[i] = 7541 btrfs_dev_stat_read_and_reset(dev, i); 7542 else 7543 btrfs_dev_stat_set(dev, i, 0); 7544 } 7545 } else { 7546 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7547 if (stats->nr_items > i) 7548 stats->values[i] = btrfs_dev_stat_read(dev, i); 7549 } 7550 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7551 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7552 return 0; 7553 } 7554 7555 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path) 7556 { 7557 struct buffer_head *bh; 7558 struct btrfs_super_block *disk_super; 7559 int copy_num; 7560 7561 if (!bdev) 7562 return; 7563 7564 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 7565 copy_num++) { 7566 7567 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 7568 continue; 7569 7570 disk_super = (struct btrfs_super_block *)bh->b_data; 7571 7572 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 7573 set_buffer_dirty(bh); 7574 sync_dirty_buffer(bh); 7575 brelse(bh); 7576 } 7577 7578 /* Notify udev that device has changed */ 7579 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 7580 7581 /* Update ctime/mtime for device path for libblkid */ 7582 update_dev_time(device_path); 7583 } 7584 7585 /* 7586 * Update the size and bytes used for each device where it changed. This is 7587 * delayed since we would otherwise get errors while writing out the 7588 * superblocks. 7589 * 7590 * Must be invoked during transaction commit. 7591 */ 7592 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7593 { 7594 struct btrfs_device *curr, *next; 7595 7596 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7597 7598 if (list_empty(&trans->dev_update_list)) 7599 return; 7600 7601 /* 7602 * We don't need the device_list_mutex here. This list is owned by the 7603 * transaction and the transaction must complete before the device is 7604 * released. 7605 */ 7606 mutex_lock(&trans->fs_info->chunk_mutex); 7607 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7608 post_commit_list) { 7609 list_del_init(&curr->post_commit_list); 7610 curr->commit_total_bytes = curr->disk_total_bytes; 7611 curr->commit_bytes_used = curr->bytes_used; 7612 } 7613 mutex_unlock(&trans->fs_info->chunk_mutex); 7614 } 7615 7616 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 7617 { 7618 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7619 while (fs_devices) { 7620 fs_devices->fs_info = fs_info; 7621 fs_devices = fs_devices->seed; 7622 } 7623 } 7624 7625 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 7626 { 7627 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7628 while (fs_devices) { 7629 fs_devices->fs_info = NULL; 7630 fs_devices = fs_devices->seed; 7631 } 7632 } 7633 7634 /* 7635 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7636 */ 7637 int btrfs_bg_type_to_factor(u64 flags) 7638 { 7639 const int index = btrfs_bg_flags_to_raid_index(flags); 7640 7641 return btrfs_raid_array[index].ncopies; 7642 } 7643 7644 7645 7646 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7647 u64 chunk_offset, u64 devid, 7648 u64 physical_offset, u64 physical_len) 7649 { 7650 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7651 struct extent_map *em; 7652 struct map_lookup *map; 7653 struct btrfs_device *dev; 7654 u64 stripe_len; 7655 bool found = false; 7656 int ret = 0; 7657 int i; 7658 7659 read_lock(&em_tree->lock); 7660 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7661 read_unlock(&em_tree->lock); 7662 7663 if (!em) { 7664 btrfs_err(fs_info, 7665 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7666 physical_offset, devid); 7667 ret = -EUCLEAN; 7668 goto out; 7669 } 7670 7671 map = em->map_lookup; 7672 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 7673 if (physical_len != stripe_len) { 7674 btrfs_err(fs_info, 7675 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7676 physical_offset, devid, em->start, physical_len, 7677 stripe_len); 7678 ret = -EUCLEAN; 7679 goto out; 7680 } 7681 7682 for (i = 0; i < map->num_stripes; i++) { 7683 if (map->stripes[i].dev->devid == devid && 7684 map->stripes[i].physical == physical_offset) { 7685 found = true; 7686 if (map->verified_stripes >= map->num_stripes) { 7687 btrfs_err(fs_info, 7688 "too many dev extents for chunk %llu found", 7689 em->start); 7690 ret = -EUCLEAN; 7691 goto out; 7692 } 7693 map->verified_stripes++; 7694 break; 7695 } 7696 } 7697 if (!found) { 7698 btrfs_err(fs_info, 7699 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7700 physical_offset, devid); 7701 ret = -EUCLEAN; 7702 } 7703 7704 /* Make sure no dev extent is beyond device bondary */ 7705 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 7706 if (!dev) { 7707 btrfs_err(fs_info, "failed to find devid %llu", devid); 7708 ret = -EUCLEAN; 7709 goto out; 7710 } 7711 7712 /* It's possible this device is a dummy for seed device */ 7713 if (dev->disk_total_bytes == 0) { 7714 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL, 7715 NULL, false); 7716 if (!dev) { 7717 btrfs_err(fs_info, "failed to find seed devid %llu", 7718 devid); 7719 ret = -EUCLEAN; 7720 goto out; 7721 } 7722 } 7723 7724 if (physical_offset + physical_len > dev->disk_total_bytes) { 7725 btrfs_err(fs_info, 7726 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7727 devid, physical_offset, physical_len, 7728 dev->disk_total_bytes); 7729 ret = -EUCLEAN; 7730 goto out; 7731 } 7732 out: 7733 free_extent_map(em); 7734 return ret; 7735 } 7736 7737 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7738 { 7739 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7740 struct extent_map *em; 7741 struct rb_node *node; 7742 int ret = 0; 7743 7744 read_lock(&em_tree->lock); 7745 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7746 em = rb_entry(node, struct extent_map, rb_node); 7747 if (em->map_lookup->num_stripes != 7748 em->map_lookup->verified_stripes) { 7749 btrfs_err(fs_info, 7750 "chunk %llu has missing dev extent, have %d expect %d", 7751 em->start, em->map_lookup->verified_stripes, 7752 em->map_lookup->num_stripes); 7753 ret = -EUCLEAN; 7754 goto out; 7755 } 7756 } 7757 out: 7758 read_unlock(&em_tree->lock); 7759 return ret; 7760 } 7761 7762 /* 7763 * Ensure that all dev extents are mapped to correct chunk, otherwise 7764 * later chunk allocation/free would cause unexpected behavior. 7765 * 7766 * NOTE: This will iterate through the whole device tree, which should be of 7767 * the same size level as the chunk tree. This slightly increases mount time. 7768 */ 7769 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7770 { 7771 struct btrfs_path *path; 7772 struct btrfs_root *root = fs_info->dev_root; 7773 struct btrfs_key key; 7774 u64 prev_devid = 0; 7775 u64 prev_dev_ext_end = 0; 7776 int ret = 0; 7777 7778 key.objectid = 1; 7779 key.type = BTRFS_DEV_EXTENT_KEY; 7780 key.offset = 0; 7781 7782 path = btrfs_alloc_path(); 7783 if (!path) 7784 return -ENOMEM; 7785 7786 path->reada = READA_FORWARD; 7787 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7788 if (ret < 0) 7789 goto out; 7790 7791 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7792 ret = btrfs_next_item(root, path); 7793 if (ret < 0) 7794 goto out; 7795 /* No dev extents at all? Not good */ 7796 if (ret > 0) { 7797 ret = -EUCLEAN; 7798 goto out; 7799 } 7800 } 7801 while (1) { 7802 struct extent_buffer *leaf = path->nodes[0]; 7803 struct btrfs_dev_extent *dext; 7804 int slot = path->slots[0]; 7805 u64 chunk_offset; 7806 u64 physical_offset; 7807 u64 physical_len; 7808 u64 devid; 7809 7810 btrfs_item_key_to_cpu(leaf, &key, slot); 7811 if (key.type != BTRFS_DEV_EXTENT_KEY) 7812 break; 7813 devid = key.objectid; 7814 physical_offset = key.offset; 7815 7816 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7817 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7818 physical_len = btrfs_dev_extent_length(leaf, dext); 7819 7820 /* Check if this dev extent overlaps with the previous one */ 7821 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7822 btrfs_err(fs_info, 7823 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7824 devid, physical_offset, prev_dev_ext_end); 7825 ret = -EUCLEAN; 7826 goto out; 7827 } 7828 7829 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7830 physical_offset, physical_len); 7831 if (ret < 0) 7832 goto out; 7833 prev_devid = devid; 7834 prev_dev_ext_end = physical_offset + physical_len; 7835 7836 ret = btrfs_next_item(root, path); 7837 if (ret < 0) 7838 goto out; 7839 if (ret > 0) { 7840 ret = 0; 7841 break; 7842 } 7843 } 7844 7845 /* Ensure all chunks have corresponding dev extents */ 7846 ret = verify_chunk_dev_extent_mapping(fs_info); 7847 out: 7848 btrfs_free_path(path); 7849 return ret; 7850 } 7851 7852 /* 7853 * Check whether the given block group or device is pinned by any inode being 7854 * used as a swapfile. 7855 */ 7856 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7857 { 7858 struct btrfs_swapfile_pin *sp; 7859 struct rb_node *node; 7860 7861 spin_lock(&fs_info->swapfile_pins_lock); 7862 node = fs_info->swapfile_pins.rb_node; 7863 while (node) { 7864 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7865 if (ptr < sp->ptr) 7866 node = node->rb_left; 7867 else if (ptr > sp->ptr) 7868 node = node->rb_right; 7869 else 7870 break; 7871 } 7872 spin_unlock(&fs_info->swapfile_pins_lock); 7873 return node != NULL; 7874 } 7875