1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/random.h> 24 #include <linux/iocontext.h> 25 #include <linux/capability.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <linux/raid/pq.h> 29 #include <linux/semaphore.h> 30 #include <asm/div64.h> 31 #include "compat.h" 32 #include "ctree.h" 33 #include "extent_map.h" 34 #include "disk-io.h" 35 #include "transaction.h" 36 #include "print-tree.h" 37 #include "volumes.h" 38 #include "raid56.h" 39 #include "async-thread.h" 40 #include "check-integrity.h" 41 #include "rcu-string.h" 42 #include "math.h" 43 #include "dev-replace.h" 44 45 static int init_first_rw_device(struct btrfs_trans_handle *trans, 46 struct btrfs_root *root, 47 struct btrfs_device *device); 48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 52 53 static DEFINE_MUTEX(uuid_mutex); 54 static LIST_HEAD(fs_uuids); 55 56 static void lock_chunks(struct btrfs_root *root) 57 { 58 mutex_lock(&root->fs_info->chunk_mutex); 59 } 60 61 static void unlock_chunks(struct btrfs_root *root) 62 { 63 mutex_unlock(&root->fs_info->chunk_mutex); 64 } 65 66 static struct btrfs_fs_devices *__alloc_fs_devices(void) 67 { 68 struct btrfs_fs_devices *fs_devs; 69 70 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS); 71 if (!fs_devs) 72 return ERR_PTR(-ENOMEM); 73 74 mutex_init(&fs_devs->device_list_mutex); 75 76 INIT_LIST_HEAD(&fs_devs->devices); 77 INIT_LIST_HEAD(&fs_devs->alloc_list); 78 INIT_LIST_HEAD(&fs_devs->list); 79 80 return fs_devs; 81 } 82 83 /** 84 * alloc_fs_devices - allocate struct btrfs_fs_devices 85 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is 86 * generated. 87 * 88 * Return: a pointer to a new &struct btrfs_fs_devices on success; 89 * ERR_PTR() on error. Returned struct is not linked onto any lists and 90 * can be destroyed with kfree() right away. 91 */ 92 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 93 { 94 struct btrfs_fs_devices *fs_devs; 95 96 fs_devs = __alloc_fs_devices(); 97 if (IS_ERR(fs_devs)) 98 return fs_devs; 99 100 if (fsid) 101 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 102 else 103 generate_random_uuid(fs_devs->fsid); 104 105 return fs_devs; 106 } 107 108 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 109 { 110 struct btrfs_device *device; 111 WARN_ON(fs_devices->opened); 112 while (!list_empty(&fs_devices->devices)) { 113 device = list_entry(fs_devices->devices.next, 114 struct btrfs_device, dev_list); 115 list_del(&device->dev_list); 116 rcu_string_free(device->name); 117 kfree(device); 118 } 119 kfree(fs_devices); 120 } 121 122 static void btrfs_kobject_uevent(struct block_device *bdev, 123 enum kobject_action action) 124 { 125 int ret; 126 127 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 128 if (ret) 129 pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n", 130 action, 131 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 132 &disk_to_dev(bdev->bd_disk)->kobj); 133 } 134 135 void btrfs_cleanup_fs_uuids(void) 136 { 137 struct btrfs_fs_devices *fs_devices; 138 139 while (!list_empty(&fs_uuids)) { 140 fs_devices = list_entry(fs_uuids.next, 141 struct btrfs_fs_devices, list); 142 list_del(&fs_devices->list); 143 free_fs_devices(fs_devices); 144 } 145 } 146 147 static struct btrfs_device *__alloc_device(void) 148 { 149 struct btrfs_device *dev; 150 151 dev = kzalloc(sizeof(*dev), GFP_NOFS); 152 if (!dev) 153 return ERR_PTR(-ENOMEM); 154 155 INIT_LIST_HEAD(&dev->dev_list); 156 INIT_LIST_HEAD(&dev->dev_alloc_list); 157 158 spin_lock_init(&dev->io_lock); 159 160 spin_lock_init(&dev->reada_lock); 161 atomic_set(&dev->reada_in_flight, 0); 162 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT); 163 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT); 164 165 return dev; 166 } 167 168 static noinline struct btrfs_device *__find_device(struct list_head *head, 169 u64 devid, u8 *uuid) 170 { 171 struct btrfs_device *dev; 172 173 list_for_each_entry(dev, head, dev_list) { 174 if (dev->devid == devid && 175 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 176 return dev; 177 } 178 } 179 return NULL; 180 } 181 182 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 183 { 184 struct btrfs_fs_devices *fs_devices; 185 186 list_for_each_entry(fs_devices, &fs_uuids, list) { 187 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 188 return fs_devices; 189 } 190 return NULL; 191 } 192 193 static int 194 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 195 int flush, struct block_device **bdev, 196 struct buffer_head **bh) 197 { 198 int ret; 199 200 *bdev = blkdev_get_by_path(device_path, flags, holder); 201 202 if (IS_ERR(*bdev)) { 203 ret = PTR_ERR(*bdev); 204 printk(KERN_INFO "btrfs: open %s failed\n", device_path); 205 goto error; 206 } 207 208 if (flush) 209 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 210 ret = set_blocksize(*bdev, 4096); 211 if (ret) { 212 blkdev_put(*bdev, flags); 213 goto error; 214 } 215 invalidate_bdev(*bdev); 216 *bh = btrfs_read_dev_super(*bdev); 217 if (!*bh) { 218 ret = -EINVAL; 219 blkdev_put(*bdev, flags); 220 goto error; 221 } 222 223 return 0; 224 225 error: 226 *bdev = NULL; 227 *bh = NULL; 228 return ret; 229 } 230 231 static void requeue_list(struct btrfs_pending_bios *pending_bios, 232 struct bio *head, struct bio *tail) 233 { 234 235 struct bio *old_head; 236 237 old_head = pending_bios->head; 238 pending_bios->head = head; 239 if (pending_bios->tail) 240 tail->bi_next = old_head; 241 else 242 pending_bios->tail = tail; 243 } 244 245 /* 246 * we try to collect pending bios for a device so we don't get a large 247 * number of procs sending bios down to the same device. This greatly 248 * improves the schedulers ability to collect and merge the bios. 249 * 250 * But, it also turns into a long list of bios to process and that is sure 251 * to eventually make the worker thread block. The solution here is to 252 * make some progress and then put this work struct back at the end of 253 * the list if the block device is congested. This way, multiple devices 254 * can make progress from a single worker thread. 255 */ 256 static noinline void run_scheduled_bios(struct btrfs_device *device) 257 { 258 struct bio *pending; 259 struct backing_dev_info *bdi; 260 struct btrfs_fs_info *fs_info; 261 struct btrfs_pending_bios *pending_bios; 262 struct bio *tail; 263 struct bio *cur; 264 int again = 0; 265 unsigned long num_run; 266 unsigned long batch_run = 0; 267 unsigned long limit; 268 unsigned long last_waited = 0; 269 int force_reg = 0; 270 int sync_pending = 0; 271 struct blk_plug plug; 272 273 /* 274 * this function runs all the bios we've collected for 275 * a particular device. We don't want to wander off to 276 * another device without first sending all of these down. 277 * So, setup a plug here and finish it off before we return 278 */ 279 blk_start_plug(&plug); 280 281 bdi = blk_get_backing_dev_info(device->bdev); 282 fs_info = device->dev_root->fs_info; 283 limit = btrfs_async_submit_limit(fs_info); 284 limit = limit * 2 / 3; 285 286 loop: 287 spin_lock(&device->io_lock); 288 289 loop_lock: 290 num_run = 0; 291 292 /* take all the bios off the list at once and process them 293 * later on (without the lock held). But, remember the 294 * tail and other pointers so the bios can be properly reinserted 295 * into the list if we hit congestion 296 */ 297 if (!force_reg && device->pending_sync_bios.head) { 298 pending_bios = &device->pending_sync_bios; 299 force_reg = 1; 300 } else { 301 pending_bios = &device->pending_bios; 302 force_reg = 0; 303 } 304 305 pending = pending_bios->head; 306 tail = pending_bios->tail; 307 WARN_ON(pending && !tail); 308 309 /* 310 * if pending was null this time around, no bios need processing 311 * at all and we can stop. Otherwise it'll loop back up again 312 * and do an additional check so no bios are missed. 313 * 314 * device->running_pending is used to synchronize with the 315 * schedule_bio code. 316 */ 317 if (device->pending_sync_bios.head == NULL && 318 device->pending_bios.head == NULL) { 319 again = 0; 320 device->running_pending = 0; 321 } else { 322 again = 1; 323 device->running_pending = 1; 324 } 325 326 pending_bios->head = NULL; 327 pending_bios->tail = NULL; 328 329 spin_unlock(&device->io_lock); 330 331 while (pending) { 332 333 rmb(); 334 /* we want to work on both lists, but do more bios on the 335 * sync list than the regular list 336 */ 337 if ((num_run > 32 && 338 pending_bios != &device->pending_sync_bios && 339 device->pending_sync_bios.head) || 340 (num_run > 64 && pending_bios == &device->pending_sync_bios && 341 device->pending_bios.head)) { 342 spin_lock(&device->io_lock); 343 requeue_list(pending_bios, pending, tail); 344 goto loop_lock; 345 } 346 347 cur = pending; 348 pending = pending->bi_next; 349 cur->bi_next = NULL; 350 351 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 352 waitqueue_active(&fs_info->async_submit_wait)) 353 wake_up(&fs_info->async_submit_wait); 354 355 BUG_ON(atomic_read(&cur->bi_cnt) == 0); 356 357 /* 358 * if we're doing the sync list, record that our 359 * plug has some sync requests on it 360 * 361 * If we're doing the regular list and there are 362 * sync requests sitting around, unplug before 363 * we add more 364 */ 365 if (pending_bios == &device->pending_sync_bios) { 366 sync_pending = 1; 367 } else if (sync_pending) { 368 blk_finish_plug(&plug); 369 blk_start_plug(&plug); 370 sync_pending = 0; 371 } 372 373 btrfsic_submit_bio(cur->bi_rw, cur); 374 num_run++; 375 batch_run++; 376 if (need_resched()) 377 cond_resched(); 378 379 /* 380 * we made progress, there is more work to do and the bdi 381 * is now congested. Back off and let other work structs 382 * run instead 383 */ 384 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 385 fs_info->fs_devices->open_devices > 1) { 386 struct io_context *ioc; 387 388 ioc = current->io_context; 389 390 /* 391 * the main goal here is that we don't want to 392 * block if we're going to be able to submit 393 * more requests without blocking. 394 * 395 * This code does two great things, it pokes into 396 * the elevator code from a filesystem _and_ 397 * it makes assumptions about how batching works. 398 */ 399 if (ioc && ioc->nr_batch_requests > 0 && 400 time_before(jiffies, ioc->last_waited + HZ/50UL) && 401 (last_waited == 0 || 402 ioc->last_waited == last_waited)) { 403 /* 404 * we want to go through our batch of 405 * requests and stop. So, we copy out 406 * the ioc->last_waited time and test 407 * against it before looping 408 */ 409 last_waited = ioc->last_waited; 410 if (need_resched()) 411 cond_resched(); 412 continue; 413 } 414 spin_lock(&device->io_lock); 415 requeue_list(pending_bios, pending, tail); 416 device->running_pending = 1; 417 418 spin_unlock(&device->io_lock); 419 btrfs_requeue_work(&device->work); 420 goto done; 421 } 422 /* unplug every 64 requests just for good measure */ 423 if (batch_run % 64 == 0) { 424 blk_finish_plug(&plug); 425 blk_start_plug(&plug); 426 sync_pending = 0; 427 } 428 } 429 430 cond_resched(); 431 if (again) 432 goto loop; 433 434 spin_lock(&device->io_lock); 435 if (device->pending_bios.head || device->pending_sync_bios.head) 436 goto loop_lock; 437 spin_unlock(&device->io_lock); 438 439 done: 440 blk_finish_plug(&plug); 441 } 442 443 static void pending_bios_fn(struct btrfs_work *work) 444 { 445 struct btrfs_device *device; 446 447 device = container_of(work, struct btrfs_device, work); 448 run_scheduled_bios(device); 449 } 450 451 static noinline int device_list_add(const char *path, 452 struct btrfs_super_block *disk_super, 453 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 454 { 455 struct btrfs_device *device; 456 struct btrfs_fs_devices *fs_devices; 457 struct rcu_string *name; 458 u64 found_transid = btrfs_super_generation(disk_super); 459 460 fs_devices = find_fsid(disk_super->fsid); 461 if (!fs_devices) { 462 fs_devices = alloc_fs_devices(disk_super->fsid); 463 if (IS_ERR(fs_devices)) 464 return PTR_ERR(fs_devices); 465 466 list_add(&fs_devices->list, &fs_uuids); 467 fs_devices->latest_devid = devid; 468 fs_devices->latest_trans = found_transid; 469 470 device = NULL; 471 } else { 472 device = __find_device(&fs_devices->devices, devid, 473 disk_super->dev_item.uuid); 474 } 475 if (!device) { 476 if (fs_devices->opened) 477 return -EBUSY; 478 479 device = btrfs_alloc_device(NULL, &devid, 480 disk_super->dev_item.uuid); 481 if (IS_ERR(device)) { 482 /* we can safely leave the fs_devices entry around */ 483 return PTR_ERR(device); 484 } 485 486 name = rcu_string_strdup(path, GFP_NOFS); 487 if (!name) { 488 kfree(device); 489 return -ENOMEM; 490 } 491 rcu_assign_pointer(device->name, name); 492 493 mutex_lock(&fs_devices->device_list_mutex); 494 list_add_rcu(&device->dev_list, &fs_devices->devices); 495 fs_devices->num_devices++; 496 mutex_unlock(&fs_devices->device_list_mutex); 497 498 device->fs_devices = fs_devices; 499 } else if (!device->name || strcmp(device->name->str, path)) { 500 name = rcu_string_strdup(path, GFP_NOFS); 501 if (!name) 502 return -ENOMEM; 503 rcu_string_free(device->name); 504 rcu_assign_pointer(device->name, name); 505 if (device->missing) { 506 fs_devices->missing_devices--; 507 device->missing = 0; 508 } 509 } 510 511 if (found_transid > fs_devices->latest_trans) { 512 fs_devices->latest_devid = devid; 513 fs_devices->latest_trans = found_transid; 514 } 515 *fs_devices_ret = fs_devices; 516 return 0; 517 } 518 519 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 520 { 521 struct btrfs_fs_devices *fs_devices; 522 struct btrfs_device *device; 523 struct btrfs_device *orig_dev; 524 525 fs_devices = alloc_fs_devices(orig->fsid); 526 if (IS_ERR(fs_devices)) 527 return fs_devices; 528 529 fs_devices->latest_devid = orig->latest_devid; 530 fs_devices->latest_trans = orig->latest_trans; 531 fs_devices->total_devices = orig->total_devices; 532 533 /* We have held the volume lock, it is safe to get the devices. */ 534 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 535 struct rcu_string *name; 536 537 device = btrfs_alloc_device(NULL, &orig_dev->devid, 538 orig_dev->uuid); 539 if (IS_ERR(device)) 540 goto error; 541 542 /* 543 * This is ok to do without rcu read locked because we hold the 544 * uuid mutex so nothing we touch in here is going to disappear. 545 */ 546 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); 547 if (!name) { 548 kfree(device); 549 goto error; 550 } 551 rcu_assign_pointer(device->name, name); 552 553 list_add(&device->dev_list, &fs_devices->devices); 554 device->fs_devices = fs_devices; 555 fs_devices->num_devices++; 556 } 557 return fs_devices; 558 error: 559 free_fs_devices(fs_devices); 560 return ERR_PTR(-ENOMEM); 561 } 562 563 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info, 564 struct btrfs_fs_devices *fs_devices, int step) 565 { 566 struct btrfs_device *device, *next; 567 568 struct block_device *latest_bdev = NULL; 569 u64 latest_devid = 0; 570 u64 latest_transid = 0; 571 572 mutex_lock(&uuid_mutex); 573 again: 574 /* This is the initialized path, it is safe to release the devices. */ 575 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 576 if (device->in_fs_metadata) { 577 if (!device->is_tgtdev_for_dev_replace && 578 (!latest_transid || 579 device->generation > latest_transid)) { 580 latest_devid = device->devid; 581 latest_transid = device->generation; 582 latest_bdev = device->bdev; 583 } 584 continue; 585 } 586 587 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 588 /* 589 * In the first step, keep the device which has 590 * the correct fsid and the devid that is used 591 * for the dev_replace procedure. 592 * In the second step, the dev_replace state is 593 * read from the device tree and it is known 594 * whether the procedure is really active or 595 * not, which means whether this device is 596 * used or whether it should be removed. 597 */ 598 if (step == 0 || device->is_tgtdev_for_dev_replace) { 599 continue; 600 } 601 } 602 if (device->bdev) { 603 blkdev_put(device->bdev, device->mode); 604 device->bdev = NULL; 605 fs_devices->open_devices--; 606 } 607 if (device->writeable) { 608 list_del_init(&device->dev_alloc_list); 609 device->writeable = 0; 610 if (!device->is_tgtdev_for_dev_replace) 611 fs_devices->rw_devices--; 612 } 613 list_del_init(&device->dev_list); 614 fs_devices->num_devices--; 615 rcu_string_free(device->name); 616 kfree(device); 617 } 618 619 if (fs_devices->seed) { 620 fs_devices = fs_devices->seed; 621 goto again; 622 } 623 624 fs_devices->latest_bdev = latest_bdev; 625 fs_devices->latest_devid = latest_devid; 626 fs_devices->latest_trans = latest_transid; 627 628 mutex_unlock(&uuid_mutex); 629 } 630 631 static void __free_device(struct work_struct *work) 632 { 633 struct btrfs_device *device; 634 635 device = container_of(work, struct btrfs_device, rcu_work); 636 637 if (device->bdev) 638 blkdev_put(device->bdev, device->mode); 639 640 rcu_string_free(device->name); 641 kfree(device); 642 } 643 644 static void free_device(struct rcu_head *head) 645 { 646 struct btrfs_device *device; 647 648 device = container_of(head, struct btrfs_device, rcu); 649 650 INIT_WORK(&device->rcu_work, __free_device); 651 schedule_work(&device->rcu_work); 652 } 653 654 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 655 { 656 struct btrfs_device *device; 657 658 if (--fs_devices->opened > 0) 659 return 0; 660 661 mutex_lock(&fs_devices->device_list_mutex); 662 list_for_each_entry(device, &fs_devices->devices, dev_list) { 663 struct btrfs_device *new_device; 664 struct rcu_string *name; 665 666 if (device->bdev) 667 fs_devices->open_devices--; 668 669 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 670 list_del_init(&device->dev_alloc_list); 671 fs_devices->rw_devices--; 672 } 673 674 if (device->can_discard) 675 fs_devices->num_can_discard--; 676 if (device->missing) 677 fs_devices->missing_devices--; 678 679 new_device = btrfs_alloc_device(NULL, &device->devid, 680 device->uuid); 681 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 682 683 /* Safe because we are under uuid_mutex */ 684 if (device->name) { 685 name = rcu_string_strdup(device->name->str, GFP_NOFS); 686 BUG_ON(!name); /* -ENOMEM */ 687 rcu_assign_pointer(new_device->name, name); 688 } 689 690 list_replace_rcu(&device->dev_list, &new_device->dev_list); 691 new_device->fs_devices = device->fs_devices; 692 693 call_rcu(&device->rcu, free_device); 694 } 695 mutex_unlock(&fs_devices->device_list_mutex); 696 697 WARN_ON(fs_devices->open_devices); 698 WARN_ON(fs_devices->rw_devices); 699 fs_devices->opened = 0; 700 fs_devices->seeding = 0; 701 702 return 0; 703 } 704 705 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 706 { 707 struct btrfs_fs_devices *seed_devices = NULL; 708 int ret; 709 710 mutex_lock(&uuid_mutex); 711 ret = __btrfs_close_devices(fs_devices); 712 if (!fs_devices->opened) { 713 seed_devices = fs_devices->seed; 714 fs_devices->seed = NULL; 715 } 716 mutex_unlock(&uuid_mutex); 717 718 while (seed_devices) { 719 fs_devices = seed_devices; 720 seed_devices = fs_devices->seed; 721 __btrfs_close_devices(fs_devices); 722 free_fs_devices(fs_devices); 723 } 724 /* 725 * Wait for rcu kworkers under __btrfs_close_devices 726 * to finish all blkdev_puts so device is really 727 * free when umount is done. 728 */ 729 rcu_barrier(); 730 return ret; 731 } 732 733 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 734 fmode_t flags, void *holder) 735 { 736 struct request_queue *q; 737 struct block_device *bdev; 738 struct list_head *head = &fs_devices->devices; 739 struct btrfs_device *device; 740 struct block_device *latest_bdev = NULL; 741 struct buffer_head *bh; 742 struct btrfs_super_block *disk_super; 743 u64 latest_devid = 0; 744 u64 latest_transid = 0; 745 u64 devid; 746 int seeding = 1; 747 int ret = 0; 748 749 flags |= FMODE_EXCL; 750 751 list_for_each_entry(device, head, dev_list) { 752 if (device->bdev) 753 continue; 754 if (!device->name) 755 continue; 756 757 /* Just open everything we can; ignore failures here */ 758 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 759 &bdev, &bh)) 760 continue; 761 762 disk_super = (struct btrfs_super_block *)bh->b_data; 763 devid = btrfs_stack_device_id(&disk_super->dev_item); 764 if (devid != device->devid) 765 goto error_brelse; 766 767 if (memcmp(device->uuid, disk_super->dev_item.uuid, 768 BTRFS_UUID_SIZE)) 769 goto error_brelse; 770 771 device->generation = btrfs_super_generation(disk_super); 772 if (!latest_transid || device->generation > latest_transid) { 773 latest_devid = devid; 774 latest_transid = device->generation; 775 latest_bdev = bdev; 776 } 777 778 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 779 device->writeable = 0; 780 } else { 781 device->writeable = !bdev_read_only(bdev); 782 seeding = 0; 783 } 784 785 q = bdev_get_queue(bdev); 786 if (blk_queue_discard(q)) { 787 device->can_discard = 1; 788 fs_devices->num_can_discard++; 789 } 790 791 device->bdev = bdev; 792 device->in_fs_metadata = 0; 793 device->mode = flags; 794 795 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 796 fs_devices->rotating = 1; 797 798 fs_devices->open_devices++; 799 if (device->writeable && 800 device->devid != BTRFS_DEV_REPLACE_DEVID) { 801 fs_devices->rw_devices++; 802 list_add(&device->dev_alloc_list, 803 &fs_devices->alloc_list); 804 } 805 brelse(bh); 806 continue; 807 808 error_brelse: 809 brelse(bh); 810 blkdev_put(bdev, flags); 811 continue; 812 } 813 if (fs_devices->open_devices == 0) { 814 ret = -EINVAL; 815 goto out; 816 } 817 fs_devices->seeding = seeding; 818 fs_devices->opened = 1; 819 fs_devices->latest_bdev = latest_bdev; 820 fs_devices->latest_devid = latest_devid; 821 fs_devices->latest_trans = latest_transid; 822 fs_devices->total_rw_bytes = 0; 823 out: 824 return ret; 825 } 826 827 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 828 fmode_t flags, void *holder) 829 { 830 int ret; 831 832 mutex_lock(&uuid_mutex); 833 if (fs_devices->opened) { 834 fs_devices->opened++; 835 ret = 0; 836 } else { 837 ret = __btrfs_open_devices(fs_devices, flags, holder); 838 } 839 mutex_unlock(&uuid_mutex); 840 return ret; 841 } 842 843 /* 844 * Look for a btrfs signature on a device. This may be called out of the mount path 845 * and we are not allowed to call set_blocksize during the scan. The superblock 846 * is read via pagecache 847 */ 848 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 849 struct btrfs_fs_devices **fs_devices_ret) 850 { 851 struct btrfs_super_block *disk_super; 852 struct block_device *bdev; 853 struct page *page; 854 void *p; 855 int ret = -EINVAL; 856 u64 devid; 857 u64 transid; 858 u64 total_devices; 859 u64 bytenr; 860 pgoff_t index; 861 862 /* 863 * we would like to check all the supers, but that would make 864 * a btrfs mount succeed after a mkfs from a different FS. 865 * So, we need to add a special mount option to scan for 866 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 867 */ 868 bytenr = btrfs_sb_offset(0); 869 flags |= FMODE_EXCL; 870 mutex_lock(&uuid_mutex); 871 872 bdev = blkdev_get_by_path(path, flags, holder); 873 874 if (IS_ERR(bdev)) { 875 ret = PTR_ERR(bdev); 876 goto error; 877 } 878 879 /* make sure our super fits in the device */ 880 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode)) 881 goto error_bdev_put; 882 883 /* make sure our super fits in the page */ 884 if (sizeof(*disk_super) > PAGE_CACHE_SIZE) 885 goto error_bdev_put; 886 887 /* make sure our super doesn't straddle pages on disk */ 888 index = bytenr >> PAGE_CACHE_SHIFT; 889 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index) 890 goto error_bdev_put; 891 892 /* pull in the page with our super */ 893 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 894 index, GFP_NOFS); 895 896 if (IS_ERR_OR_NULL(page)) 897 goto error_bdev_put; 898 899 p = kmap(page); 900 901 /* align our pointer to the offset of the super block */ 902 disk_super = p + (bytenr & ~PAGE_CACHE_MASK); 903 904 if (btrfs_super_bytenr(disk_super) != bytenr || 905 btrfs_super_magic(disk_super) != BTRFS_MAGIC) 906 goto error_unmap; 907 908 devid = btrfs_stack_device_id(&disk_super->dev_item); 909 transid = btrfs_super_generation(disk_super); 910 total_devices = btrfs_super_num_devices(disk_super); 911 912 if (disk_super->label[0]) { 913 if (disk_super->label[BTRFS_LABEL_SIZE - 1]) 914 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0'; 915 printk(KERN_INFO "btrfs: device label %s ", disk_super->label); 916 } else { 917 printk(KERN_INFO "btrfs: device fsid %pU ", disk_super->fsid); 918 } 919 920 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path); 921 922 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 923 if (!ret && fs_devices_ret) 924 (*fs_devices_ret)->total_devices = total_devices; 925 926 error_unmap: 927 kunmap(page); 928 page_cache_release(page); 929 930 error_bdev_put: 931 blkdev_put(bdev, flags); 932 error: 933 mutex_unlock(&uuid_mutex); 934 return ret; 935 } 936 937 /* helper to account the used device space in the range */ 938 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 939 u64 end, u64 *length) 940 { 941 struct btrfs_key key; 942 struct btrfs_root *root = device->dev_root; 943 struct btrfs_dev_extent *dev_extent; 944 struct btrfs_path *path; 945 u64 extent_end; 946 int ret; 947 int slot; 948 struct extent_buffer *l; 949 950 *length = 0; 951 952 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 953 return 0; 954 955 path = btrfs_alloc_path(); 956 if (!path) 957 return -ENOMEM; 958 path->reada = 2; 959 960 key.objectid = device->devid; 961 key.offset = start; 962 key.type = BTRFS_DEV_EXTENT_KEY; 963 964 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 965 if (ret < 0) 966 goto out; 967 if (ret > 0) { 968 ret = btrfs_previous_item(root, path, key.objectid, key.type); 969 if (ret < 0) 970 goto out; 971 } 972 973 while (1) { 974 l = path->nodes[0]; 975 slot = path->slots[0]; 976 if (slot >= btrfs_header_nritems(l)) { 977 ret = btrfs_next_leaf(root, path); 978 if (ret == 0) 979 continue; 980 if (ret < 0) 981 goto out; 982 983 break; 984 } 985 btrfs_item_key_to_cpu(l, &key, slot); 986 987 if (key.objectid < device->devid) 988 goto next; 989 990 if (key.objectid > device->devid) 991 break; 992 993 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 994 goto next; 995 996 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 997 extent_end = key.offset + btrfs_dev_extent_length(l, 998 dev_extent); 999 if (key.offset <= start && extent_end > end) { 1000 *length = end - start + 1; 1001 break; 1002 } else if (key.offset <= start && extent_end > start) 1003 *length += extent_end - start; 1004 else if (key.offset > start && extent_end <= end) 1005 *length += extent_end - key.offset; 1006 else if (key.offset > start && key.offset <= end) { 1007 *length += end - key.offset + 1; 1008 break; 1009 } else if (key.offset > end) 1010 break; 1011 1012 next: 1013 path->slots[0]++; 1014 } 1015 ret = 0; 1016 out: 1017 btrfs_free_path(path); 1018 return ret; 1019 } 1020 1021 static int contains_pending_extent(struct btrfs_trans_handle *trans, 1022 struct btrfs_device *device, 1023 u64 *start, u64 len) 1024 { 1025 struct extent_map *em; 1026 int ret = 0; 1027 1028 list_for_each_entry(em, &trans->transaction->pending_chunks, list) { 1029 struct map_lookup *map; 1030 int i; 1031 1032 map = (struct map_lookup *)em->bdev; 1033 for (i = 0; i < map->num_stripes; i++) { 1034 if (map->stripes[i].dev != device) 1035 continue; 1036 if (map->stripes[i].physical >= *start + len || 1037 map->stripes[i].physical + em->orig_block_len <= 1038 *start) 1039 continue; 1040 *start = map->stripes[i].physical + 1041 em->orig_block_len; 1042 ret = 1; 1043 } 1044 } 1045 1046 return ret; 1047 } 1048 1049 1050 /* 1051 * find_free_dev_extent - find free space in the specified device 1052 * @device: the device which we search the free space in 1053 * @num_bytes: the size of the free space that we need 1054 * @start: store the start of the free space. 1055 * @len: the size of the free space. that we find, or the size of the max 1056 * free space if we don't find suitable free space 1057 * 1058 * this uses a pretty simple search, the expectation is that it is 1059 * called very infrequently and that a given device has a small number 1060 * of extents 1061 * 1062 * @start is used to store the start of the free space if we find. But if we 1063 * don't find suitable free space, it will be used to store the start position 1064 * of the max free space. 1065 * 1066 * @len is used to store the size of the free space that we find. 1067 * But if we don't find suitable free space, it is used to store the size of 1068 * the max free space. 1069 */ 1070 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1071 struct btrfs_device *device, u64 num_bytes, 1072 u64 *start, u64 *len) 1073 { 1074 struct btrfs_key key; 1075 struct btrfs_root *root = device->dev_root; 1076 struct btrfs_dev_extent *dev_extent; 1077 struct btrfs_path *path; 1078 u64 hole_size; 1079 u64 max_hole_start; 1080 u64 max_hole_size; 1081 u64 extent_end; 1082 u64 search_start; 1083 u64 search_end = device->total_bytes; 1084 int ret; 1085 int slot; 1086 struct extent_buffer *l; 1087 1088 /* FIXME use last free of some kind */ 1089 1090 /* we don't want to overwrite the superblock on the drive, 1091 * so we make sure to start at an offset of at least 1MB 1092 */ 1093 search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 1094 1095 path = btrfs_alloc_path(); 1096 if (!path) 1097 return -ENOMEM; 1098 again: 1099 max_hole_start = search_start; 1100 max_hole_size = 0; 1101 hole_size = 0; 1102 1103 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1104 ret = -ENOSPC; 1105 goto out; 1106 } 1107 1108 path->reada = 2; 1109 path->search_commit_root = 1; 1110 path->skip_locking = 1; 1111 1112 key.objectid = device->devid; 1113 key.offset = search_start; 1114 key.type = BTRFS_DEV_EXTENT_KEY; 1115 1116 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1117 if (ret < 0) 1118 goto out; 1119 if (ret > 0) { 1120 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1121 if (ret < 0) 1122 goto out; 1123 } 1124 1125 while (1) { 1126 l = path->nodes[0]; 1127 slot = path->slots[0]; 1128 if (slot >= btrfs_header_nritems(l)) { 1129 ret = btrfs_next_leaf(root, path); 1130 if (ret == 0) 1131 continue; 1132 if (ret < 0) 1133 goto out; 1134 1135 break; 1136 } 1137 btrfs_item_key_to_cpu(l, &key, slot); 1138 1139 if (key.objectid < device->devid) 1140 goto next; 1141 1142 if (key.objectid > device->devid) 1143 break; 1144 1145 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 1146 goto next; 1147 1148 if (key.offset > search_start) { 1149 hole_size = key.offset - search_start; 1150 1151 /* 1152 * Have to check before we set max_hole_start, otherwise 1153 * we could end up sending back this offset anyway. 1154 */ 1155 if (contains_pending_extent(trans, device, 1156 &search_start, 1157 hole_size)) 1158 hole_size = 0; 1159 1160 if (hole_size > max_hole_size) { 1161 max_hole_start = search_start; 1162 max_hole_size = hole_size; 1163 } 1164 1165 /* 1166 * If this free space is greater than which we need, 1167 * it must be the max free space that we have found 1168 * until now, so max_hole_start must point to the start 1169 * of this free space and the length of this free space 1170 * is stored in max_hole_size. Thus, we return 1171 * max_hole_start and max_hole_size and go back to the 1172 * caller. 1173 */ 1174 if (hole_size >= num_bytes) { 1175 ret = 0; 1176 goto out; 1177 } 1178 } 1179 1180 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1181 extent_end = key.offset + btrfs_dev_extent_length(l, 1182 dev_extent); 1183 if (extent_end > search_start) 1184 search_start = extent_end; 1185 next: 1186 path->slots[0]++; 1187 cond_resched(); 1188 } 1189 1190 /* 1191 * At this point, search_start should be the end of 1192 * allocated dev extents, and when shrinking the device, 1193 * search_end may be smaller than search_start. 1194 */ 1195 if (search_end > search_start) 1196 hole_size = search_end - search_start; 1197 1198 if (hole_size > max_hole_size) { 1199 max_hole_start = search_start; 1200 max_hole_size = hole_size; 1201 } 1202 1203 if (contains_pending_extent(trans, device, &search_start, hole_size)) { 1204 btrfs_release_path(path); 1205 goto again; 1206 } 1207 1208 /* See above. */ 1209 if (hole_size < num_bytes) 1210 ret = -ENOSPC; 1211 else 1212 ret = 0; 1213 1214 out: 1215 btrfs_free_path(path); 1216 *start = max_hole_start; 1217 if (len) 1218 *len = max_hole_size; 1219 return ret; 1220 } 1221 1222 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1223 struct btrfs_device *device, 1224 u64 start) 1225 { 1226 int ret; 1227 struct btrfs_path *path; 1228 struct btrfs_root *root = device->dev_root; 1229 struct btrfs_key key; 1230 struct btrfs_key found_key; 1231 struct extent_buffer *leaf = NULL; 1232 struct btrfs_dev_extent *extent = NULL; 1233 1234 path = btrfs_alloc_path(); 1235 if (!path) 1236 return -ENOMEM; 1237 1238 key.objectid = device->devid; 1239 key.offset = start; 1240 key.type = BTRFS_DEV_EXTENT_KEY; 1241 again: 1242 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1243 if (ret > 0) { 1244 ret = btrfs_previous_item(root, path, key.objectid, 1245 BTRFS_DEV_EXTENT_KEY); 1246 if (ret) 1247 goto out; 1248 leaf = path->nodes[0]; 1249 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1250 extent = btrfs_item_ptr(leaf, path->slots[0], 1251 struct btrfs_dev_extent); 1252 BUG_ON(found_key.offset > start || found_key.offset + 1253 btrfs_dev_extent_length(leaf, extent) < start); 1254 key = found_key; 1255 btrfs_release_path(path); 1256 goto again; 1257 } else if (ret == 0) { 1258 leaf = path->nodes[0]; 1259 extent = btrfs_item_ptr(leaf, path->slots[0], 1260 struct btrfs_dev_extent); 1261 } else { 1262 btrfs_error(root->fs_info, ret, "Slot search failed"); 1263 goto out; 1264 } 1265 1266 if (device->bytes_used > 0) { 1267 u64 len = btrfs_dev_extent_length(leaf, extent); 1268 device->bytes_used -= len; 1269 spin_lock(&root->fs_info->free_chunk_lock); 1270 root->fs_info->free_chunk_space += len; 1271 spin_unlock(&root->fs_info->free_chunk_lock); 1272 } 1273 ret = btrfs_del_item(trans, root, path); 1274 if (ret) { 1275 btrfs_error(root->fs_info, ret, 1276 "Failed to remove dev extent item"); 1277 } 1278 out: 1279 btrfs_free_path(path); 1280 return ret; 1281 } 1282 1283 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1284 struct btrfs_device *device, 1285 u64 chunk_tree, u64 chunk_objectid, 1286 u64 chunk_offset, u64 start, u64 num_bytes) 1287 { 1288 int ret; 1289 struct btrfs_path *path; 1290 struct btrfs_root *root = device->dev_root; 1291 struct btrfs_dev_extent *extent; 1292 struct extent_buffer *leaf; 1293 struct btrfs_key key; 1294 1295 WARN_ON(!device->in_fs_metadata); 1296 WARN_ON(device->is_tgtdev_for_dev_replace); 1297 path = btrfs_alloc_path(); 1298 if (!path) 1299 return -ENOMEM; 1300 1301 key.objectid = device->devid; 1302 key.offset = start; 1303 key.type = BTRFS_DEV_EXTENT_KEY; 1304 ret = btrfs_insert_empty_item(trans, root, path, &key, 1305 sizeof(*extent)); 1306 if (ret) 1307 goto out; 1308 1309 leaf = path->nodes[0]; 1310 extent = btrfs_item_ptr(leaf, path->slots[0], 1311 struct btrfs_dev_extent); 1312 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1313 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1314 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1315 1316 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1317 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE); 1318 1319 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1320 btrfs_mark_buffer_dirty(leaf); 1321 out: 1322 btrfs_free_path(path); 1323 return ret; 1324 } 1325 1326 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1327 { 1328 struct extent_map_tree *em_tree; 1329 struct extent_map *em; 1330 struct rb_node *n; 1331 u64 ret = 0; 1332 1333 em_tree = &fs_info->mapping_tree.map_tree; 1334 read_lock(&em_tree->lock); 1335 n = rb_last(&em_tree->map); 1336 if (n) { 1337 em = rb_entry(n, struct extent_map, rb_node); 1338 ret = em->start + em->len; 1339 } 1340 read_unlock(&em_tree->lock); 1341 1342 return ret; 1343 } 1344 1345 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1346 u64 *devid_ret) 1347 { 1348 int ret; 1349 struct btrfs_key key; 1350 struct btrfs_key found_key; 1351 struct btrfs_path *path; 1352 1353 path = btrfs_alloc_path(); 1354 if (!path) 1355 return -ENOMEM; 1356 1357 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1358 key.type = BTRFS_DEV_ITEM_KEY; 1359 key.offset = (u64)-1; 1360 1361 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1362 if (ret < 0) 1363 goto error; 1364 1365 BUG_ON(ret == 0); /* Corruption */ 1366 1367 ret = btrfs_previous_item(fs_info->chunk_root, path, 1368 BTRFS_DEV_ITEMS_OBJECTID, 1369 BTRFS_DEV_ITEM_KEY); 1370 if (ret) { 1371 *devid_ret = 1; 1372 } else { 1373 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1374 path->slots[0]); 1375 *devid_ret = found_key.offset + 1; 1376 } 1377 ret = 0; 1378 error: 1379 btrfs_free_path(path); 1380 return ret; 1381 } 1382 1383 /* 1384 * the device information is stored in the chunk root 1385 * the btrfs_device struct should be fully filled in 1386 */ 1387 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1388 struct btrfs_root *root, 1389 struct btrfs_device *device) 1390 { 1391 int ret; 1392 struct btrfs_path *path; 1393 struct btrfs_dev_item *dev_item; 1394 struct extent_buffer *leaf; 1395 struct btrfs_key key; 1396 unsigned long ptr; 1397 1398 root = root->fs_info->chunk_root; 1399 1400 path = btrfs_alloc_path(); 1401 if (!path) 1402 return -ENOMEM; 1403 1404 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1405 key.type = BTRFS_DEV_ITEM_KEY; 1406 key.offset = device->devid; 1407 1408 ret = btrfs_insert_empty_item(trans, root, path, &key, 1409 sizeof(*dev_item)); 1410 if (ret) 1411 goto out; 1412 1413 leaf = path->nodes[0]; 1414 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1415 1416 btrfs_set_device_id(leaf, dev_item, device->devid); 1417 btrfs_set_device_generation(leaf, dev_item, 0); 1418 btrfs_set_device_type(leaf, dev_item, device->type); 1419 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1420 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1421 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1422 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); 1423 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 1424 btrfs_set_device_group(leaf, dev_item, 0); 1425 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1426 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1427 btrfs_set_device_start_offset(leaf, dev_item, 0); 1428 1429 ptr = btrfs_device_uuid(dev_item); 1430 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1431 ptr = btrfs_device_fsid(dev_item); 1432 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1433 btrfs_mark_buffer_dirty(leaf); 1434 1435 ret = 0; 1436 out: 1437 btrfs_free_path(path); 1438 return ret; 1439 } 1440 1441 static int btrfs_rm_dev_item(struct btrfs_root *root, 1442 struct btrfs_device *device) 1443 { 1444 int ret; 1445 struct btrfs_path *path; 1446 struct btrfs_key key; 1447 struct btrfs_trans_handle *trans; 1448 1449 root = root->fs_info->chunk_root; 1450 1451 path = btrfs_alloc_path(); 1452 if (!path) 1453 return -ENOMEM; 1454 1455 trans = btrfs_start_transaction(root, 0); 1456 if (IS_ERR(trans)) { 1457 btrfs_free_path(path); 1458 return PTR_ERR(trans); 1459 } 1460 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1461 key.type = BTRFS_DEV_ITEM_KEY; 1462 key.offset = device->devid; 1463 lock_chunks(root); 1464 1465 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1466 if (ret < 0) 1467 goto out; 1468 1469 if (ret > 0) { 1470 ret = -ENOENT; 1471 goto out; 1472 } 1473 1474 ret = btrfs_del_item(trans, root, path); 1475 if (ret) 1476 goto out; 1477 out: 1478 btrfs_free_path(path); 1479 unlock_chunks(root); 1480 btrfs_commit_transaction(trans, root); 1481 return ret; 1482 } 1483 1484 int btrfs_rm_device(struct btrfs_root *root, char *device_path) 1485 { 1486 struct btrfs_device *device; 1487 struct btrfs_device *next_device; 1488 struct block_device *bdev; 1489 struct buffer_head *bh = NULL; 1490 struct btrfs_super_block *disk_super; 1491 struct btrfs_fs_devices *cur_devices; 1492 u64 all_avail; 1493 u64 devid; 1494 u64 num_devices; 1495 u8 *dev_uuid; 1496 unsigned seq; 1497 int ret = 0; 1498 bool clear_super = false; 1499 1500 mutex_lock(&uuid_mutex); 1501 1502 do { 1503 seq = read_seqbegin(&root->fs_info->profiles_lock); 1504 1505 all_avail = root->fs_info->avail_data_alloc_bits | 1506 root->fs_info->avail_system_alloc_bits | 1507 root->fs_info->avail_metadata_alloc_bits; 1508 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 1509 1510 num_devices = root->fs_info->fs_devices->num_devices; 1511 btrfs_dev_replace_lock(&root->fs_info->dev_replace); 1512 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) { 1513 WARN_ON(num_devices < 1); 1514 num_devices--; 1515 } 1516 btrfs_dev_replace_unlock(&root->fs_info->dev_replace); 1517 1518 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) { 1519 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET; 1520 goto out; 1521 } 1522 1523 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) { 1524 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET; 1525 goto out; 1526 } 1527 1528 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) && 1529 root->fs_info->fs_devices->rw_devices <= 2) { 1530 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET; 1531 goto out; 1532 } 1533 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) && 1534 root->fs_info->fs_devices->rw_devices <= 3) { 1535 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET; 1536 goto out; 1537 } 1538 1539 if (strcmp(device_path, "missing") == 0) { 1540 struct list_head *devices; 1541 struct btrfs_device *tmp; 1542 1543 device = NULL; 1544 devices = &root->fs_info->fs_devices->devices; 1545 /* 1546 * It is safe to read the devices since the volume_mutex 1547 * is held. 1548 */ 1549 list_for_each_entry(tmp, devices, dev_list) { 1550 if (tmp->in_fs_metadata && 1551 !tmp->is_tgtdev_for_dev_replace && 1552 !tmp->bdev) { 1553 device = tmp; 1554 break; 1555 } 1556 } 1557 bdev = NULL; 1558 bh = NULL; 1559 disk_super = NULL; 1560 if (!device) { 1561 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 1562 goto out; 1563 } 1564 } else { 1565 ret = btrfs_get_bdev_and_sb(device_path, 1566 FMODE_WRITE | FMODE_EXCL, 1567 root->fs_info->bdev_holder, 0, 1568 &bdev, &bh); 1569 if (ret) 1570 goto out; 1571 disk_super = (struct btrfs_super_block *)bh->b_data; 1572 devid = btrfs_stack_device_id(&disk_super->dev_item); 1573 dev_uuid = disk_super->dev_item.uuid; 1574 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1575 disk_super->fsid); 1576 if (!device) { 1577 ret = -ENOENT; 1578 goto error_brelse; 1579 } 1580 } 1581 1582 if (device->is_tgtdev_for_dev_replace) { 1583 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1584 goto error_brelse; 1585 } 1586 1587 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1588 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1589 goto error_brelse; 1590 } 1591 1592 if (device->writeable) { 1593 lock_chunks(root); 1594 list_del_init(&device->dev_alloc_list); 1595 unlock_chunks(root); 1596 root->fs_info->fs_devices->rw_devices--; 1597 clear_super = true; 1598 } 1599 1600 mutex_unlock(&uuid_mutex); 1601 ret = btrfs_shrink_device(device, 0); 1602 mutex_lock(&uuid_mutex); 1603 if (ret) 1604 goto error_undo; 1605 1606 /* 1607 * TODO: the superblock still includes this device in its num_devices 1608 * counter although write_all_supers() is not locked out. This 1609 * could give a filesystem state which requires a degraded mount. 1610 */ 1611 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1612 if (ret) 1613 goto error_undo; 1614 1615 spin_lock(&root->fs_info->free_chunk_lock); 1616 root->fs_info->free_chunk_space = device->total_bytes - 1617 device->bytes_used; 1618 spin_unlock(&root->fs_info->free_chunk_lock); 1619 1620 device->in_fs_metadata = 0; 1621 btrfs_scrub_cancel_dev(root->fs_info, device); 1622 1623 /* 1624 * the device list mutex makes sure that we don't change 1625 * the device list while someone else is writing out all 1626 * the device supers. Whoever is writing all supers, should 1627 * lock the device list mutex before getting the number of 1628 * devices in the super block (super_copy). Conversely, 1629 * whoever updates the number of devices in the super block 1630 * (super_copy) should hold the device list mutex. 1631 */ 1632 1633 cur_devices = device->fs_devices; 1634 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1635 list_del_rcu(&device->dev_list); 1636 1637 device->fs_devices->num_devices--; 1638 device->fs_devices->total_devices--; 1639 1640 if (device->missing) 1641 root->fs_info->fs_devices->missing_devices--; 1642 1643 next_device = list_entry(root->fs_info->fs_devices->devices.next, 1644 struct btrfs_device, dev_list); 1645 if (device->bdev == root->fs_info->sb->s_bdev) 1646 root->fs_info->sb->s_bdev = next_device->bdev; 1647 if (device->bdev == root->fs_info->fs_devices->latest_bdev) 1648 root->fs_info->fs_devices->latest_bdev = next_device->bdev; 1649 1650 if (device->bdev) 1651 device->fs_devices->open_devices--; 1652 1653 call_rcu(&device->rcu, free_device); 1654 1655 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1656 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1657 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1658 1659 if (cur_devices->open_devices == 0) { 1660 struct btrfs_fs_devices *fs_devices; 1661 fs_devices = root->fs_info->fs_devices; 1662 while (fs_devices) { 1663 if (fs_devices->seed == cur_devices) 1664 break; 1665 fs_devices = fs_devices->seed; 1666 } 1667 fs_devices->seed = cur_devices->seed; 1668 cur_devices->seed = NULL; 1669 lock_chunks(root); 1670 __btrfs_close_devices(cur_devices); 1671 unlock_chunks(root); 1672 free_fs_devices(cur_devices); 1673 } 1674 1675 root->fs_info->num_tolerated_disk_barrier_failures = 1676 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1677 1678 /* 1679 * at this point, the device is zero sized. We want to 1680 * remove it from the devices list and zero out the old super 1681 */ 1682 if (clear_super && disk_super) { 1683 /* make sure this device isn't detected as part of 1684 * the FS anymore 1685 */ 1686 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 1687 set_buffer_dirty(bh); 1688 sync_dirty_buffer(bh); 1689 } 1690 1691 ret = 0; 1692 1693 /* Notify udev that device has changed */ 1694 if (bdev) 1695 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 1696 1697 error_brelse: 1698 brelse(bh); 1699 if (bdev) 1700 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1701 out: 1702 mutex_unlock(&uuid_mutex); 1703 return ret; 1704 error_undo: 1705 if (device->writeable) { 1706 lock_chunks(root); 1707 list_add(&device->dev_alloc_list, 1708 &root->fs_info->fs_devices->alloc_list); 1709 unlock_chunks(root); 1710 root->fs_info->fs_devices->rw_devices++; 1711 } 1712 goto error_brelse; 1713 } 1714 1715 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info, 1716 struct btrfs_device *srcdev) 1717 { 1718 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 1719 list_del_rcu(&srcdev->dev_list); 1720 list_del_rcu(&srcdev->dev_alloc_list); 1721 fs_info->fs_devices->num_devices--; 1722 if (srcdev->missing) { 1723 fs_info->fs_devices->missing_devices--; 1724 fs_info->fs_devices->rw_devices++; 1725 } 1726 if (srcdev->can_discard) 1727 fs_info->fs_devices->num_can_discard--; 1728 if (srcdev->bdev) 1729 fs_info->fs_devices->open_devices--; 1730 1731 call_rcu(&srcdev->rcu, free_device); 1732 } 1733 1734 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 1735 struct btrfs_device *tgtdev) 1736 { 1737 struct btrfs_device *next_device; 1738 1739 WARN_ON(!tgtdev); 1740 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1741 if (tgtdev->bdev) { 1742 btrfs_scratch_superblock(tgtdev); 1743 fs_info->fs_devices->open_devices--; 1744 } 1745 fs_info->fs_devices->num_devices--; 1746 if (tgtdev->can_discard) 1747 fs_info->fs_devices->num_can_discard++; 1748 1749 next_device = list_entry(fs_info->fs_devices->devices.next, 1750 struct btrfs_device, dev_list); 1751 if (tgtdev->bdev == fs_info->sb->s_bdev) 1752 fs_info->sb->s_bdev = next_device->bdev; 1753 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev) 1754 fs_info->fs_devices->latest_bdev = next_device->bdev; 1755 list_del_rcu(&tgtdev->dev_list); 1756 1757 call_rcu(&tgtdev->rcu, free_device); 1758 1759 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1760 } 1761 1762 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path, 1763 struct btrfs_device **device) 1764 { 1765 int ret = 0; 1766 struct btrfs_super_block *disk_super; 1767 u64 devid; 1768 u8 *dev_uuid; 1769 struct block_device *bdev; 1770 struct buffer_head *bh; 1771 1772 *device = NULL; 1773 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 1774 root->fs_info->bdev_holder, 0, &bdev, &bh); 1775 if (ret) 1776 return ret; 1777 disk_super = (struct btrfs_super_block *)bh->b_data; 1778 devid = btrfs_stack_device_id(&disk_super->dev_item); 1779 dev_uuid = disk_super->dev_item.uuid; 1780 *device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1781 disk_super->fsid); 1782 brelse(bh); 1783 if (!*device) 1784 ret = -ENOENT; 1785 blkdev_put(bdev, FMODE_READ); 1786 return ret; 1787 } 1788 1789 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root, 1790 char *device_path, 1791 struct btrfs_device **device) 1792 { 1793 *device = NULL; 1794 if (strcmp(device_path, "missing") == 0) { 1795 struct list_head *devices; 1796 struct btrfs_device *tmp; 1797 1798 devices = &root->fs_info->fs_devices->devices; 1799 /* 1800 * It is safe to read the devices since the volume_mutex 1801 * is held by the caller. 1802 */ 1803 list_for_each_entry(tmp, devices, dev_list) { 1804 if (tmp->in_fs_metadata && !tmp->bdev) { 1805 *device = tmp; 1806 break; 1807 } 1808 } 1809 1810 if (!*device) { 1811 pr_err("btrfs: no missing device found\n"); 1812 return -ENOENT; 1813 } 1814 1815 return 0; 1816 } else { 1817 return btrfs_find_device_by_path(root, device_path, device); 1818 } 1819 } 1820 1821 /* 1822 * does all the dirty work required for changing file system's UUID. 1823 */ 1824 static int btrfs_prepare_sprout(struct btrfs_root *root) 1825 { 1826 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 1827 struct btrfs_fs_devices *old_devices; 1828 struct btrfs_fs_devices *seed_devices; 1829 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 1830 struct btrfs_device *device; 1831 u64 super_flags; 1832 1833 BUG_ON(!mutex_is_locked(&uuid_mutex)); 1834 if (!fs_devices->seeding) 1835 return -EINVAL; 1836 1837 seed_devices = __alloc_fs_devices(); 1838 if (IS_ERR(seed_devices)) 1839 return PTR_ERR(seed_devices); 1840 1841 old_devices = clone_fs_devices(fs_devices); 1842 if (IS_ERR(old_devices)) { 1843 kfree(seed_devices); 1844 return PTR_ERR(old_devices); 1845 } 1846 1847 list_add(&old_devices->list, &fs_uuids); 1848 1849 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 1850 seed_devices->opened = 1; 1851 INIT_LIST_HEAD(&seed_devices->devices); 1852 INIT_LIST_HEAD(&seed_devices->alloc_list); 1853 mutex_init(&seed_devices->device_list_mutex); 1854 1855 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1856 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 1857 synchronize_rcu); 1858 1859 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 1860 list_for_each_entry(device, &seed_devices->devices, dev_list) { 1861 device->fs_devices = seed_devices; 1862 } 1863 1864 fs_devices->seeding = 0; 1865 fs_devices->num_devices = 0; 1866 fs_devices->open_devices = 0; 1867 fs_devices->total_devices = 0; 1868 fs_devices->seed = seed_devices; 1869 1870 generate_random_uuid(fs_devices->fsid); 1871 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1872 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1873 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1874 1875 super_flags = btrfs_super_flags(disk_super) & 1876 ~BTRFS_SUPER_FLAG_SEEDING; 1877 btrfs_set_super_flags(disk_super, super_flags); 1878 1879 return 0; 1880 } 1881 1882 /* 1883 * strore the expected generation for seed devices in device items. 1884 */ 1885 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 1886 struct btrfs_root *root) 1887 { 1888 struct btrfs_path *path; 1889 struct extent_buffer *leaf; 1890 struct btrfs_dev_item *dev_item; 1891 struct btrfs_device *device; 1892 struct btrfs_key key; 1893 u8 fs_uuid[BTRFS_UUID_SIZE]; 1894 u8 dev_uuid[BTRFS_UUID_SIZE]; 1895 u64 devid; 1896 int ret; 1897 1898 path = btrfs_alloc_path(); 1899 if (!path) 1900 return -ENOMEM; 1901 1902 root = root->fs_info->chunk_root; 1903 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1904 key.offset = 0; 1905 key.type = BTRFS_DEV_ITEM_KEY; 1906 1907 while (1) { 1908 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1909 if (ret < 0) 1910 goto error; 1911 1912 leaf = path->nodes[0]; 1913 next_slot: 1914 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1915 ret = btrfs_next_leaf(root, path); 1916 if (ret > 0) 1917 break; 1918 if (ret < 0) 1919 goto error; 1920 leaf = path->nodes[0]; 1921 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1922 btrfs_release_path(path); 1923 continue; 1924 } 1925 1926 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1927 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 1928 key.type != BTRFS_DEV_ITEM_KEY) 1929 break; 1930 1931 dev_item = btrfs_item_ptr(leaf, path->slots[0], 1932 struct btrfs_dev_item); 1933 devid = btrfs_device_id(leaf, dev_item); 1934 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 1935 BTRFS_UUID_SIZE); 1936 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 1937 BTRFS_UUID_SIZE); 1938 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1939 fs_uuid); 1940 BUG_ON(!device); /* Logic error */ 1941 1942 if (device->fs_devices->seeding) { 1943 btrfs_set_device_generation(leaf, dev_item, 1944 device->generation); 1945 btrfs_mark_buffer_dirty(leaf); 1946 } 1947 1948 path->slots[0]++; 1949 goto next_slot; 1950 } 1951 ret = 0; 1952 error: 1953 btrfs_free_path(path); 1954 return ret; 1955 } 1956 1957 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 1958 { 1959 struct request_queue *q; 1960 struct btrfs_trans_handle *trans; 1961 struct btrfs_device *device; 1962 struct block_device *bdev; 1963 struct list_head *devices; 1964 struct super_block *sb = root->fs_info->sb; 1965 struct rcu_string *name; 1966 u64 total_bytes; 1967 int seeding_dev = 0; 1968 int ret = 0; 1969 1970 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 1971 return -EROFS; 1972 1973 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 1974 root->fs_info->bdev_holder); 1975 if (IS_ERR(bdev)) 1976 return PTR_ERR(bdev); 1977 1978 if (root->fs_info->fs_devices->seeding) { 1979 seeding_dev = 1; 1980 down_write(&sb->s_umount); 1981 mutex_lock(&uuid_mutex); 1982 } 1983 1984 filemap_write_and_wait(bdev->bd_inode->i_mapping); 1985 1986 devices = &root->fs_info->fs_devices->devices; 1987 1988 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1989 list_for_each_entry(device, devices, dev_list) { 1990 if (device->bdev == bdev) { 1991 ret = -EEXIST; 1992 mutex_unlock( 1993 &root->fs_info->fs_devices->device_list_mutex); 1994 goto error; 1995 } 1996 } 1997 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1998 1999 device = btrfs_alloc_device(root->fs_info, NULL, NULL); 2000 if (IS_ERR(device)) { 2001 /* we can safely leave the fs_devices entry around */ 2002 ret = PTR_ERR(device); 2003 goto error; 2004 } 2005 2006 name = rcu_string_strdup(device_path, GFP_NOFS); 2007 if (!name) { 2008 kfree(device); 2009 ret = -ENOMEM; 2010 goto error; 2011 } 2012 rcu_assign_pointer(device->name, name); 2013 2014 trans = btrfs_start_transaction(root, 0); 2015 if (IS_ERR(trans)) { 2016 rcu_string_free(device->name); 2017 kfree(device); 2018 ret = PTR_ERR(trans); 2019 goto error; 2020 } 2021 2022 lock_chunks(root); 2023 2024 q = bdev_get_queue(bdev); 2025 if (blk_queue_discard(q)) 2026 device->can_discard = 1; 2027 device->writeable = 1; 2028 device->generation = trans->transid; 2029 device->io_width = root->sectorsize; 2030 device->io_align = root->sectorsize; 2031 device->sector_size = root->sectorsize; 2032 device->total_bytes = i_size_read(bdev->bd_inode); 2033 device->disk_total_bytes = device->total_bytes; 2034 device->dev_root = root->fs_info->dev_root; 2035 device->bdev = bdev; 2036 device->in_fs_metadata = 1; 2037 device->is_tgtdev_for_dev_replace = 0; 2038 device->mode = FMODE_EXCL; 2039 set_blocksize(device->bdev, 4096); 2040 2041 if (seeding_dev) { 2042 sb->s_flags &= ~MS_RDONLY; 2043 ret = btrfs_prepare_sprout(root); 2044 BUG_ON(ret); /* -ENOMEM */ 2045 } 2046 2047 device->fs_devices = root->fs_info->fs_devices; 2048 2049 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2050 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 2051 list_add(&device->dev_alloc_list, 2052 &root->fs_info->fs_devices->alloc_list); 2053 root->fs_info->fs_devices->num_devices++; 2054 root->fs_info->fs_devices->open_devices++; 2055 root->fs_info->fs_devices->rw_devices++; 2056 root->fs_info->fs_devices->total_devices++; 2057 if (device->can_discard) 2058 root->fs_info->fs_devices->num_can_discard++; 2059 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2060 2061 spin_lock(&root->fs_info->free_chunk_lock); 2062 root->fs_info->free_chunk_space += device->total_bytes; 2063 spin_unlock(&root->fs_info->free_chunk_lock); 2064 2065 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2066 root->fs_info->fs_devices->rotating = 1; 2067 2068 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy); 2069 btrfs_set_super_total_bytes(root->fs_info->super_copy, 2070 total_bytes + device->total_bytes); 2071 2072 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy); 2073 btrfs_set_super_num_devices(root->fs_info->super_copy, 2074 total_bytes + 1); 2075 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2076 2077 if (seeding_dev) { 2078 ret = init_first_rw_device(trans, root, device); 2079 if (ret) { 2080 btrfs_abort_transaction(trans, root, ret); 2081 goto error_trans; 2082 } 2083 ret = btrfs_finish_sprout(trans, root); 2084 if (ret) { 2085 btrfs_abort_transaction(trans, root, ret); 2086 goto error_trans; 2087 } 2088 } else { 2089 ret = btrfs_add_device(trans, root, device); 2090 if (ret) { 2091 btrfs_abort_transaction(trans, root, ret); 2092 goto error_trans; 2093 } 2094 } 2095 2096 /* 2097 * we've got more storage, clear any full flags on the space 2098 * infos 2099 */ 2100 btrfs_clear_space_info_full(root->fs_info); 2101 2102 unlock_chunks(root); 2103 root->fs_info->num_tolerated_disk_barrier_failures = 2104 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 2105 ret = btrfs_commit_transaction(trans, root); 2106 2107 if (seeding_dev) { 2108 mutex_unlock(&uuid_mutex); 2109 up_write(&sb->s_umount); 2110 2111 if (ret) /* transaction commit */ 2112 return ret; 2113 2114 ret = btrfs_relocate_sys_chunks(root); 2115 if (ret < 0) 2116 btrfs_error(root->fs_info, ret, 2117 "Failed to relocate sys chunks after " 2118 "device initialization. This can be fixed " 2119 "using the \"btrfs balance\" command."); 2120 trans = btrfs_attach_transaction(root); 2121 if (IS_ERR(trans)) { 2122 if (PTR_ERR(trans) == -ENOENT) 2123 return 0; 2124 return PTR_ERR(trans); 2125 } 2126 ret = btrfs_commit_transaction(trans, root); 2127 } 2128 2129 return ret; 2130 2131 error_trans: 2132 unlock_chunks(root); 2133 btrfs_end_transaction(trans, root); 2134 rcu_string_free(device->name); 2135 kfree(device); 2136 error: 2137 blkdev_put(bdev, FMODE_EXCL); 2138 if (seeding_dev) { 2139 mutex_unlock(&uuid_mutex); 2140 up_write(&sb->s_umount); 2141 } 2142 return ret; 2143 } 2144 2145 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path, 2146 struct btrfs_device **device_out) 2147 { 2148 struct request_queue *q; 2149 struct btrfs_device *device; 2150 struct block_device *bdev; 2151 struct btrfs_fs_info *fs_info = root->fs_info; 2152 struct list_head *devices; 2153 struct rcu_string *name; 2154 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2155 int ret = 0; 2156 2157 *device_out = NULL; 2158 if (fs_info->fs_devices->seeding) 2159 return -EINVAL; 2160 2161 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2162 fs_info->bdev_holder); 2163 if (IS_ERR(bdev)) 2164 return PTR_ERR(bdev); 2165 2166 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2167 2168 devices = &fs_info->fs_devices->devices; 2169 list_for_each_entry(device, devices, dev_list) { 2170 if (device->bdev == bdev) { 2171 ret = -EEXIST; 2172 goto error; 2173 } 2174 } 2175 2176 device = btrfs_alloc_device(NULL, &devid, NULL); 2177 if (IS_ERR(device)) { 2178 ret = PTR_ERR(device); 2179 goto error; 2180 } 2181 2182 name = rcu_string_strdup(device_path, GFP_NOFS); 2183 if (!name) { 2184 kfree(device); 2185 ret = -ENOMEM; 2186 goto error; 2187 } 2188 rcu_assign_pointer(device->name, name); 2189 2190 q = bdev_get_queue(bdev); 2191 if (blk_queue_discard(q)) 2192 device->can_discard = 1; 2193 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2194 device->writeable = 1; 2195 device->generation = 0; 2196 device->io_width = root->sectorsize; 2197 device->io_align = root->sectorsize; 2198 device->sector_size = root->sectorsize; 2199 device->total_bytes = i_size_read(bdev->bd_inode); 2200 device->disk_total_bytes = device->total_bytes; 2201 device->dev_root = fs_info->dev_root; 2202 device->bdev = bdev; 2203 device->in_fs_metadata = 1; 2204 device->is_tgtdev_for_dev_replace = 1; 2205 device->mode = FMODE_EXCL; 2206 set_blocksize(device->bdev, 4096); 2207 device->fs_devices = fs_info->fs_devices; 2208 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2209 fs_info->fs_devices->num_devices++; 2210 fs_info->fs_devices->open_devices++; 2211 if (device->can_discard) 2212 fs_info->fs_devices->num_can_discard++; 2213 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2214 2215 *device_out = device; 2216 return ret; 2217 2218 error: 2219 blkdev_put(bdev, FMODE_EXCL); 2220 return ret; 2221 } 2222 2223 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2224 struct btrfs_device *tgtdev) 2225 { 2226 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2227 tgtdev->io_width = fs_info->dev_root->sectorsize; 2228 tgtdev->io_align = fs_info->dev_root->sectorsize; 2229 tgtdev->sector_size = fs_info->dev_root->sectorsize; 2230 tgtdev->dev_root = fs_info->dev_root; 2231 tgtdev->in_fs_metadata = 1; 2232 } 2233 2234 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2235 struct btrfs_device *device) 2236 { 2237 int ret; 2238 struct btrfs_path *path; 2239 struct btrfs_root *root; 2240 struct btrfs_dev_item *dev_item; 2241 struct extent_buffer *leaf; 2242 struct btrfs_key key; 2243 2244 root = device->dev_root->fs_info->chunk_root; 2245 2246 path = btrfs_alloc_path(); 2247 if (!path) 2248 return -ENOMEM; 2249 2250 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2251 key.type = BTRFS_DEV_ITEM_KEY; 2252 key.offset = device->devid; 2253 2254 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2255 if (ret < 0) 2256 goto out; 2257 2258 if (ret > 0) { 2259 ret = -ENOENT; 2260 goto out; 2261 } 2262 2263 leaf = path->nodes[0]; 2264 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2265 2266 btrfs_set_device_id(leaf, dev_item, device->devid); 2267 btrfs_set_device_type(leaf, dev_item, device->type); 2268 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2269 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2270 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2271 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes); 2272 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 2273 btrfs_mark_buffer_dirty(leaf); 2274 2275 out: 2276 btrfs_free_path(path); 2277 return ret; 2278 } 2279 2280 static int __btrfs_grow_device(struct btrfs_trans_handle *trans, 2281 struct btrfs_device *device, u64 new_size) 2282 { 2283 struct btrfs_super_block *super_copy = 2284 device->dev_root->fs_info->super_copy; 2285 u64 old_total = btrfs_super_total_bytes(super_copy); 2286 u64 diff = new_size - device->total_bytes; 2287 2288 if (!device->writeable) 2289 return -EACCES; 2290 if (new_size <= device->total_bytes || 2291 device->is_tgtdev_for_dev_replace) 2292 return -EINVAL; 2293 2294 btrfs_set_super_total_bytes(super_copy, old_total + diff); 2295 device->fs_devices->total_rw_bytes += diff; 2296 2297 device->total_bytes = new_size; 2298 device->disk_total_bytes = new_size; 2299 btrfs_clear_space_info_full(device->dev_root->fs_info); 2300 2301 return btrfs_update_device(trans, device); 2302 } 2303 2304 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2305 struct btrfs_device *device, u64 new_size) 2306 { 2307 int ret; 2308 lock_chunks(device->dev_root); 2309 ret = __btrfs_grow_device(trans, device, new_size); 2310 unlock_chunks(device->dev_root); 2311 return ret; 2312 } 2313 2314 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2315 struct btrfs_root *root, 2316 u64 chunk_tree, u64 chunk_objectid, 2317 u64 chunk_offset) 2318 { 2319 int ret; 2320 struct btrfs_path *path; 2321 struct btrfs_key key; 2322 2323 root = root->fs_info->chunk_root; 2324 path = btrfs_alloc_path(); 2325 if (!path) 2326 return -ENOMEM; 2327 2328 key.objectid = chunk_objectid; 2329 key.offset = chunk_offset; 2330 key.type = BTRFS_CHUNK_ITEM_KEY; 2331 2332 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2333 if (ret < 0) 2334 goto out; 2335 else if (ret > 0) { /* Logic error or corruption */ 2336 btrfs_error(root->fs_info, -ENOENT, 2337 "Failed lookup while freeing chunk."); 2338 ret = -ENOENT; 2339 goto out; 2340 } 2341 2342 ret = btrfs_del_item(trans, root, path); 2343 if (ret < 0) 2344 btrfs_error(root->fs_info, ret, 2345 "Failed to delete chunk item."); 2346 out: 2347 btrfs_free_path(path); 2348 return ret; 2349 } 2350 2351 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 2352 chunk_offset) 2353 { 2354 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 2355 struct btrfs_disk_key *disk_key; 2356 struct btrfs_chunk *chunk; 2357 u8 *ptr; 2358 int ret = 0; 2359 u32 num_stripes; 2360 u32 array_size; 2361 u32 len = 0; 2362 u32 cur; 2363 struct btrfs_key key; 2364 2365 array_size = btrfs_super_sys_array_size(super_copy); 2366 2367 ptr = super_copy->sys_chunk_array; 2368 cur = 0; 2369 2370 while (cur < array_size) { 2371 disk_key = (struct btrfs_disk_key *)ptr; 2372 btrfs_disk_key_to_cpu(&key, disk_key); 2373 2374 len = sizeof(*disk_key); 2375 2376 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2377 chunk = (struct btrfs_chunk *)(ptr + len); 2378 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2379 len += btrfs_chunk_item_size(num_stripes); 2380 } else { 2381 ret = -EIO; 2382 break; 2383 } 2384 if (key.objectid == chunk_objectid && 2385 key.offset == chunk_offset) { 2386 memmove(ptr, ptr + len, array_size - (cur + len)); 2387 array_size -= len; 2388 btrfs_set_super_sys_array_size(super_copy, array_size); 2389 } else { 2390 ptr += len; 2391 cur += len; 2392 } 2393 } 2394 return ret; 2395 } 2396 2397 static int btrfs_relocate_chunk(struct btrfs_root *root, 2398 u64 chunk_tree, u64 chunk_objectid, 2399 u64 chunk_offset) 2400 { 2401 struct extent_map_tree *em_tree; 2402 struct btrfs_root *extent_root; 2403 struct btrfs_trans_handle *trans; 2404 struct extent_map *em; 2405 struct map_lookup *map; 2406 int ret; 2407 int i; 2408 2409 root = root->fs_info->chunk_root; 2410 extent_root = root->fs_info->extent_root; 2411 em_tree = &root->fs_info->mapping_tree.map_tree; 2412 2413 ret = btrfs_can_relocate(extent_root, chunk_offset); 2414 if (ret) 2415 return -ENOSPC; 2416 2417 /* step one, relocate all the extents inside this chunk */ 2418 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2419 if (ret) 2420 return ret; 2421 2422 trans = btrfs_start_transaction(root, 0); 2423 if (IS_ERR(trans)) { 2424 ret = PTR_ERR(trans); 2425 btrfs_std_error(root->fs_info, ret); 2426 return ret; 2427 } 2428 2429 lock_chunks(root); 2430 2431 /* 2432 * step two, delete the device extents and the 2433 * chunk tree entries 2434 */ 2435 read_lock(&em_tree->lock); 2436 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2437 read_unlock(&em_tree->lock); 2438 2439 BUG_ON(!em || em->start > chunk_offset || 2440 em->start + em->len < chunk_offset); 2441 map = (struct map_lookup *)em->bdev; 2442 2443 for (i = 0; i < map->num_stripes; i++) { 2444 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, 2445 map->stripes[i].physical); 2446 BUG_ON(ret); 2447 2448 if (map->stripes[i].dev) { 2449 ret = btrfs_update_device(trans, map->stripes[i].dev); 2450 BUG_ON(ret); 2451 } 2452 } 2453 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, 2454 chunk_offset); 2455 2456 BUG_ON(ret); 2457 2458 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2459 2460 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2461 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2462 BUG_ON(ret); 2463 } 2464 2465 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); 2466 BUG_ON(ret); 2467 2468 write_lock(&em_tree->lock); 2469 remove_extent_mapping(em_tree, em); 2470 write_unlock(&em_tree->lock); 2471 2472 kfree(map); 2473 em->bdev = NULL; 2474 2475 /* once for the tree */ 2476 free_extent_map(em); 2477 /* once for us */ 2478 free_extent_map(em); 2479 2480 unlock_chunks(root); 2481 btrfs_end_transaction(trans, root); 2482 return 0; 2483 } 2484 2485 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2486 { 2487 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2488 struct btrfs_path *path; 2489 struct extent_buffer *leaf; 2490 struct btrfs_chunk *chunk; 2491 struct btrfs_key key; 2492 struct btrfs_key found_key; 2493 u64 chunk_tree = chunk_root->root_key.objectid; 2494 u64 chunk_type; 2495 bool retried = false; 2496 int failed = 0; 2497 int ret; 2498 2499 path = btrfs_alloc_path(); 2500 if (!path) 2501 return -ENOMEM; 2502 2503 again: 2504 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2505 key.offset = (u64)-1; 2506 key.type = BTRFS_CHUNK_ITEM_KEY; 2507 2508 while (1) { 2509 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2510 if (ret < 0) 2511 goto error; 2512 BUG_ON(ret == 0); /* Corruption */ 2513 2514 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2515 key.type); 2516 if (ret < 0) 2517 goto error; 2518 if (ret > 0) 2519 break; 2520 2521 leaf = path->nodes[0]; 2522 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2523 2524 chunk = btrfs_item_ptr(leaf, path->slots[0], 2525 struct btrfs_chunk); 2526 chunk_type = btrfs_chunk_type(leaf, chunk); 2527 btrfs_release_path(path); 2528 2529 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2530 ret = btrfs_relocate_chunk(chunk_root, chunk_tree, 2531 found_key.objectid, 2532 found_key.offset); 2533 if (ret == -ENOSPC) 2534 failed++; 2535 else if (ret) 2536 BUG(); 2537 } 2538 2539 if (found_key.offset == 0) 2540 break; 2541 key.offset = found_key.offset - 1; 2542 } 2543 ret = 0; 2544 if (failed && !retried) { 2545 failed = 0; 2546 retried = true; 2547 goto again; 2548 } else if (failed && retried) { 2549 WARN_ON(1); 2550 ret = -ENOSPC; 2551 } 2552 error: 2553 btrfs_free_path(path); 2554 return ret; 2555 } 2556 2557 static int insert_balance_item(struct btrfs_root *root, 2558 struct btrfs_balance_control *bctl) 2559 { 2560 struct btrfs_trans_handle *trans; 2561 struct btrfs_balance_item *item; 2562 struct btrfs_disk_balance_args disk_bargs; 2563 struct btrfs_path *path; 2564 struct extent_buffer *leaf; 2565 struct btrfs_key key; 2566 int ret, err; 2567 2568 path = btrfs_alloc_path(); 2569 if (!path) 2570 return -ENOMEM; 2571 2572 trans = btrfs_start_transaction(root, 0); 2573 if (IS_ERR(trans)) { 2574 btrfs_free_path(path); 2575 return PTR_ERR(trans); 2576 } 2577 2578 key.objectid = BTRFS_BALANCE_OBJECTID; 2579 key.type = BTRFS_BALANCE_ITEM_KEY; 2580 key.offset = 0; 2581 2582 ret = btrfs_insert_empty_item(trans, root, path, &key, 2583 sizeof(*item)); 2584 if (ret) 2585 goto out; 2586 2587 leaf = path->nodes[0]; 2588 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2589 2590 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 2591 2592 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 2593 btrfs_set_balance_data(leaf, item, &disk_bargs); 2594 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 2595 btrfs_set_balance_meta(leaf, item, &disk_bargs); 2596 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 2597 btrfs_set_balance_sys(leaf, item, &disk_bargs); 2598 2599 btrfs_set_balance_flags(leaf, item, bctl->flags); 2600 2601 btrfs_mark_buffer_dirty(leaf); 2602 out: 2603 btrfs_free_path(path); 2604 err = btrfs_commit_transaction(trans, root); 2605 if (err && !ret) 2606 ret = err; 2607 return ret; 2608 } 2609 2610 static int del_balance_item(struct btrfs_root *root) 2611 { 2612 struct btrfs_trans_handle *trans; 2613 struct btrfs_path *path; 2614 struct btrfs_key key; 2615 int ret, err; 2616 2617 path = btrfs_alloc_path(); 2618 if (!path) 2619 return -ENOMEM; 2620 2621 trans = btrfs_start_transaction(root, 0); 2622 if (IS_ERR(trans)) { 2623 btrfs_free_path(path); 2624 return PTR_ERR(trans); 2625 } 2626 2627 key.objectid = BTRFS_BALANCE_OBJECTID; 2628 key.type = BTRFS_BALANCE_ITEM_KEY; 2629 key.offset = 0; 2630 2631 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2632 if (ret < 0) 2633 goto out; 2634 if (ret > 0) { 2635 ret = -ENOENT; 2636 goto out; 2637 } 2638 2639 ret = btrfs_del_item(trans, root, path); 2640 out: 2641 btrfs_free_path(path); 2642 err = btrfs_commit_transaction(trans, root); 2643 if (err && !ret) 2644 ret = err; 2645 return ret; 2646 } 2647 2648 /* 2649 * This is a heuristic used to reduce the number of chunks balanced on 2650 * resume after balance was interrupted. 2651 */ 2652 static void update_balance_args(struct btrfs_balance_control *bctl) 2653 { 2654 /* 2655 * Turn on soft mode for chunk types that were being converted. 2656 */ 2657 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 2658 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 2659 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 2660 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 2661 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 2662 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 2663 2664 /* 2665 * Turn on usage filter if is not already used. The idea is 2666 * that chunks that we have already balanced should be 2667 * reasonably full. Don't do it for chunks that are being 2668 * converted - that will keep us from relocating unconverted 2669 * (albeit full) chunks. 2670 */ 2671 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 2672 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2673 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 2674 bctl->data.usage = 90; 2675 } 2676 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 2677 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2678 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 2679 bctl->sys.usage = 90; 2680 } 2681 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 2682 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2683 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 2684 bctl->meta.usage = 90; 2685 } 2686 } 2687 2688 /* 2689 * Should be called with both balance and volume mutexes held to 2690 * serialize other volume operations (add_dev/rm_dev/resize) with 2691 * restriper. Same goes for unset_balance_control. 2692 */ 2693 static void set_balance_control(struct btrfs_balance_control *bctl) 2694 { 2695 struct btrfs_fs_info *fs_info = bctl->fs_info; 2696 2697 BUG_ON(fs_info->balance_ctl); 2698 2699 spin_lock(&fs_info->balance_lock); 2700 fs_info->balance_ctl = bctl; 2701 spin_unlock(&fs_info->balance_lock); 2702 } 2703 2704 static void unset_balance_control(struct btrfs_fs_info *fs_info) 2705 { 2706 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2707 2708 BUG_ON(!fs_info->balance_ctl); 2709 2710 spin_lock(&fs_info->balance_lock); 2711 fs_info->balance_ctl = NULL; 2712 spin_unlock(&fs_info->balance_lock); 2713 2714 kfree(bctl); 2715 } 2716 2717 /* 2718 * Balance filters. Return 1 if chunk should be filtered out 2719 * (should not be balanced). 2720 */ 2721 static int chunk_profiles_filter(u64 chunk_type, 2722 struct btrfs_balance_args *bargs) 2723 { 2724 chunk_type = chunk_to_extended(chunk_type) & 2725 BTRFS_EXTENDED_PROFILE_MASK; 2726 2727 if (bargs->profiles & chunk_type) 2728 return 0; 2729 2730 return 1; 2731 } 2732 2733 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 2734 struct btrfs_balance_args *bargs) 2735 { 2736 struct btrfs_block_group_cache *cache; 2737 u64 chunk_used, user_thresh; 2738 int ret = 1; 2739 2740 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2741 chunk_used = btrfs_block_group_used(&cache->item); 2742 2743 if (bargs->usage == 0) 2744 user_thresh = 1; 2745 else if (bargs->usage > 100) 2746 user_thresh = cache->key.offset; 2747 else 2748 user_thresh = div_factor_fine(cache->key.offset, 2749 bargs->usage); 2750 2751 if (chunk_used < user_thresh) 2752 ret = 0; 2753 2754 btrfs_put_block_group(cache); 2755 return ret; 2756 } 2757 2758 static int chunk_devid_filter(struct extent_buffer *leaf, 2759 struct btrfs_chunk *chunk, 2760 struct btrfs_balance_args *bargs) 2761 { 2762 struct btrfs_stripe *stripe; 2763 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2764 int i; 2765 2766 for (i = 0; i < num_stripes; i++) { 2767 stripe = btrfs_stripe_nr(chunk, i); 2768 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 2769 return 0; 2770 } 2771 2772 return 1; 2773 } 2774 2775 /* [pstart, pend) */ 2776 static int chunk_drange_filter(struct extent_buffer *leaf, 2777 struct btrfs_chunk *chunk, 2778 u64 chunk_offset, 2779 struct btrfs_balance_args *bargs) 2780 { 2781 struct btrfs_stripe *stripe; 2782 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2783 u64 stripe_offset; 2784 u64 stripe_length; 2785 int factor; 2786 int i; 2787 2788 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 2789 return 0; 2790 2791 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 2792 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 2793 factor = num_stripes / 2; 2794 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 2795 factor = num_stripes - 1; 2796 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 2797 factor = num_stripes - 2; 2798 } else { 2799 factor = num_stripes; 2800 } 2801 2802 for (i = 0; i < num_stripes; i++) { 2803 stripe = btrfs_stripe_nr(chunk, i); 2804 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 2805 continue; 2806 2807 stripe_offset = btrfs_stripe_offset(leaf, stripe); 2808 stripe_length = btrfs_chunk_length(leaf, chunk); 2809 do_div(stripe_length, factor); 2810 2811 if (stripe_offset < bargs->pend && 2812 stripe_offset + stripe_length > bargs->pstart) 2813 return 0; 2814 } 2815 2816 return 1; 2817 } 2818 2819 /* [vstart, vend) */ 2820 static int chunk_vrange_filter(struct extent_buffer *leaf, 2821 struct btrfs_chunk *chunk, 2822 u64 chunk_offset, 2823 struct btrfs_balance_args *bargs) 2824 { 2825 if (chunk_offset < bargs->vend && 2826 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 2827 /* at least part of the chunk is inside this vrange */ 2828 return 0; 2829 2830 return 1; 2831 } 2832 2833 static int chunk_soft_convert_filter(u64 chunk_type, 2834 struct btrfs_balance_args *bargs) 2835 { 2836 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 2837 return 0; 2838 2839 chunk_type = chunk_to_extended(chunk_type) & 2840 BTRFS_EXTENDED_PROFILE_MASK; 2841 2842 if (bargs->target == chunk_type) 2843 return 1; 2844 2845 return 0; 2846 } 2847 2848 static int should_balance_chunk(struct btrfs_root *root, 2849 struct extent_buffer *leaf, 2850 struct btrfs_chunk *chunk, u64 chunk_offset) 2851 { 2852 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 2853 struct btrfs_balance_args *bargs = NULL; 2854 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 2855 2856 /* type filter */ 2857 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 2858 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 2859 return 0; 2860 } 2861 2862 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 2863 bargs = &bctl->data; 2864 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 2865 bargs = &bctl->sys; 2866 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 2867 bargs = &bctl->meta; 2868 2869 /* profiles filter */ 2870 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 2871 chunk_profiles_filter(chunk_type, bargs)) { 2872 return 0; 2873 } 2874 2875 /* usage filter */ 2876 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 2877 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 2878 return 0; 2879 } 2880 2881 /* devid filter */ 2882 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 2883 chunk_devid_filter(leaf, chunk, bargs)) { 2884 return 0; 2885 } 2886 2887 /* drange filter, makes sense only with devid filter */ 2888 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 2889 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 2890 return 0; 2891 } 2892 2893 /* vrange filter */ 2894 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 2895 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 2896 return 0; 2897 } 2898 2899 /* soft profile changing mode */ 2900 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 2901 chunk_soft_convert_filter(chunk_type, bargs)) { 2902 return 0; 2903 } 2904 2905 return 1; 2906 } 2907 2908 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 2909 { 2910 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2911 struct btrfs_root *chunk_root = fs_info->chunk_root; 2912 struct btrfs_root *dev_root = fs_info->dev_root; 2913 struct list_head *devices; 2914 struct btrfs_device *device; 2915 u64 old_size; 2916 u64 size_to_free; 2917 struct btrfs_chunk *chunk; 2918 struct btrfs_path *path; 2919 struct btrfs_key key; 2920 struct btrfs_key found_key; 2921 struct btrfs_trans_handle *trans; 2922 struct extent_buffer *leaf; 2923 int slot; 2924 int ret; 2925 int enospc_errors = 0; 2926 bool counting = true; 2927 2928 /* step one make some room on all the devices */ 2929 devices = &fs_info->fs_devices->devices; 2930 list_for_each_entry(device, devices, dev_list) { 2931 old_size = device->total_bytes; 2932 size_to_free = div_factor(old_size, 1); 2933 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); 2934 if (!device->writeable || 2935 device->total_bytes - device->bytes_used > size_to_free || 2936 device->is_tgtdev_for_dev_replace) 2937 continue; 2938 2939 ret = btrfs_shrink_device(device, old_size - size_to_free); 2940 if (ret == -ENOSPC) 2941 break; 2942 BUG_ON(ret); 2943 2944 trans = btrfs_start_transaction(dev_root, 0); 2945 BUG_ON(IS_ERR(trans)); 2946 2947 ret = btrfs_grow_device(trans, device, old_size); 2948 BUG_ON(ret); 2949 2950 btrfs_end_transaction(trans, dev_root); 2951 } 2952 2953 /* step two, relocate all the chunks */ 2954 path = btrfs_alloc_path(); 2955 if (!path) { 2956 ret = -ENOMEM; 2957 goto error; 2958 } 2959 2960 /* zero out stat counters */ 2961 spin_lock(&fs_info->balance_lock); 2962 memset(&bctl->stat, 0, sizeof(bctl->stat)); 2963 spin_unlock(&fs_info->balance_lock); 2964 again: 2965 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2966 key.offset = (u64)-1; 2967 key.type = BTRFS_CHUNK_ITEM_KEY; 2968 2969 while (1) { 2970 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 2971 atomic_read(&fs_info->balance_cancel_req)) { 2972 ret = -ECANCELED; 2973 goto error; 2974 } 2975 2976 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2977 if (ret < 0) 2978 goto error; 2979 2980 /* 2981 * this shouldn't happen, it means the last relocate 2982 * failed 2983 */ 2984 if (ret == 0) 2985 BUG(); /* FIXME break ? */ 2986 2987 ret = btrfs_previous_item(chunk_root, path, 0, 2988 BTRFS_CHUNK_ITEM_KEY); 2989 if (ret) { 2990 ret = 0; 2991 break; 2992 } 2993 2994 leaf = path->nodes[0]; 2995 slot = path->slots[0]; 2996 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2997 2998 if (found_key.objectid != key.objectid) 2999 break; 3000 3001 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3002 3003 if (!counting) { 3004 spin_lock(&fs_info->balance_lock); 3005 bctl->stat.considered++; 3006 spin_unlock(&fs_info->balance_lock); 3007 } 3008 3009 ret = should_balance_chunk(chunk_root, leaf, chunk, 3010 found_key.offset); 3011 btrfs_release_path(path); 3012 if (!ret) 3013 goto loop; 3014 3015 if (counting) { 3016 spin_lock(&fs_info->balance_lock); 3017 bctl->stat.expected++; 3018 spin_unlock(&fs_info->balance_lock); 3019 goto loop; 3020 } 3021 3022 ret = btrfs_relocate_chunk(chunk_root, 3023 chunk_root->root_key.objectid, 3024 found_key.objectid, 3025 found_key.offset); 3026 if (ret && ret != -ENOSPC) 3027 goto error; 3028 if (ret == -ENOSPC) { 3029 enospc_errors++; 3030 } else { 3031 spin_lock(&fs_info->balance_lock); 3032 bctl->stat.completed++; 3033 spin_unlock(&fs_info->balance_lock); 3034 } 3035 loop: 3036 if (found_key.offset == 0) 3037 break; 3038 key.offset = found_key.offset - 1; 3039 } 3040 3041 if (counting) { 3042 btrfs_release_path(path); 3043 counting = false; 3044 goto again; 3045 } 3046 error: 3047 btrfs_free_path(path); 3048 if (enospc_errors) { 3049 printk(KERN_INFO "btrfs: %d enospc errors during balance\n", 3050 enospc_errors); 3051 if (!ret) 3052 ret = -ENOSPC; 3053 } 3054 3055 return ret; 3056 } 3057 3058 /** 3059 * alloc_profile_is_valid - see if a given profile is valid and reduced 3060 * @flags: profile to validate 3061 * @extended: if true @flags is treated as an extended profile 3062 */ 3063 static int alloc_profile_is_valid(u64 flags, int extended) 3064 { 3065 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3066 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3067 3068 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3069 3070 /* 1) check that all other bits are zeroed */ 3071 if (flags & ~mask) 3072 return 0; 3073 3074 /* 2) see if profile is reduced */ 3075 if (flags == 0) 3076 return !extended; /* "0" is valid for usual profiles */ 3077 3078 /* true if exactly one bit set */ 3079 return (flags & (flags - 1)) == 0; 3080 } 3081 3082 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3083 { 3084 /* cancel requested || normal exit path */ 3085 return atomic_read(&fs_info->balance_cancel_req) || 3086 (atomic_read(&fs_info->balance_pause_req) == 0 && 3087 atomic_read(&fs_info->balance_cancel_req) == 0); 3088 } 3089 3090 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3091 { 3092 int ret; 3093 3094 unset_balance_control(fs_info); 3095 ret = del_balance_item(fs_info->tree_root); 3096 if (ret) 3097 btrfs_std_error(fs_info, ret); 3098 3099 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3100 } 3101 3102 /* 3103 * Should be called with both balance and volume mutexes held 3104 */ 3105 int btrfs_balance(struct btrfs_balance_control *bctl, 3106 struct btrfs_ioctl_balance_args *bargs) 3107 { 3108 struct btrfs_fs_info *fs_info = bctl->fs_info; 3109 u64 allowed; 3110 int mixed = 0; 3111 int ret; 3112 u64 num_devices; 3113 unsigned seq; 3114 3115 if (btrfs_fs_closing(fs_info) || 3116 atomic_read(&fs_info->balance_pause_req) || 3117 atomic_read(&fs_info->balance_cancel_req)) { 3118 ret = -EINVAL; 3119 goto out; 3120 } 3121 3122 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3123 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3124 mixed = 1; 3125 3126 /* 3127 * In case of mixed groups both data and meta should be picked, 3128 * and identical options should be given for both of them. 3129 */ 3130 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3131 if (mixed && (bctl->flags & allowed)) { 3132 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3133 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3134 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3135 printk(KERN_ERR "btrfs: with mixed groups data and " 3136 "metadata balance options must be the same\n"); 3137 ret = -EINVAL; 3138 goto out; 3139 } 3140 } 3141 3142 num_devices = fs_info->fs_devices->num_devices; 3143 btrfs_dev_replace_lock(&fs_info->dev_replace); 3144 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3145 BUG_ON(num_devices < 1); 3146 num_devices--; 3147 } 3148 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3149 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 3150 if (num_devices == 1) 3151 allowed |= BTRFS_BLOCK_GROUP_DUP; 3152 else if (num_devices > 1) 3153 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3154 if (num_devices > 2) 3155 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3156 if (num_devices > 3) 3157 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3158 BTRFS_BLOCK_GROUP_RAID6); 3159 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3160 (!alloc_profile_is_valid(bctl->data.target, 1) || 3161 (bctl->data.target & ~allowed))) { 3162 printk(KERN_ERR "btrfs: unable to start balance with target " 3163 "data profile %llu\n", 3164 bctl->data.target); 3165 ret = -EINVAL; 3166 goto out; 3167 } 3168 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3169 (!alloc_profile_is_valid(bctl->meta.target, 1) || 3170 (bctl->meta.target & ~allowed))) { 3171 printk(KERN_ERR "btrfs: unable to start balance with target " 3172 "metadata profile %llu\n", 3173 bctl->meta.target); 3174 ret = -EINVAL; 3175 goto out; 3176 } 3177 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3178 (!alloc_profile_is_valid(bctl->sys.target, 1) || 3179 (bctl->sys.target & ~allowed))) { 3180 printk(KERN_ERR "btrfs: unable to start balance with target " 3181 "system profile %llu\n", 3182 bctl->sys.target); 3183 ret = -EINVAL; 3184 goto out; 3185 } 3186 3187 /* allow dup'ed data chunks only in mixed mode */ 3188 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3189 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) { 3190 printk(KERN_ERR "btrfs: dup for data is not allowed\n"); 3191 ret = -EINVAL; 3192 goto out; 3193 } 3194 3195 /* allow to reduce meta or sys integrity only if force set */ 3196 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3197 BTRFS_BLOCK_GROUP_RAID10 | 3198 BTRFS_BLOCK_GROUP_RAID5 | 3199 BTRFS_BLOCK_GROUP_RAID6; 3200 do { 3201 seq = read_seqbegin(&fs_info->profiles_lock); 3202 3203 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3204 (fs_info->avail_system_alloc_bits & allowed) && 3205 !(bctl->sys.target & allowed)) || 3206 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3207 (fs_info->avail_metadata_alloc_bits & allowed) && 3208 !(bctl->meta.target & allowed))) { 3209 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3210 printk(KERN_INFO "btrfs: force reducing metadata " 3211 "integrity\n"); 3212 } else { 3213 printk(KERN_ERR "btrfs: balance will reduce metadata " 3214 "integrity, use force if you want this\n"); 3215 ret = -EINVAL; 3216 goto out; 3217 } 3218 } 3219 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3220 3221 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3222 int num_tolerated_disk_barrier_failures; 3223 u64 target = bctl->sys.target; 3224 3225 num_tolerated_disk_barrier_failures = 3226 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3227 if (num_tolerated_disk_barrier_failures > 0 && 3228 (target & 3229 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3230 BTRFS_AVAIL_ALLOC_BIT_SINGLE))) 3231 num_tolerated_disk_barrier_failures = 0; 3232 else if (num_tolerated_disk_barrier_failures > 1 && 3233 (target & 3234 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))) 3235 num_tolerated_disk_barrier_failures = 1; 3236 3237 fs_info->num_tolerated_disk_barrier_failures = 3238 num_tolerated_disk_barrier_failures; 3239 } 3240 3241 ret = insert_balance_item(fs_info->tree_root, bctl); 3242 if (ret && ret != -EEXIST) 3243 goto out; 3244 3245 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3246 BUG_ON(ret == -EEXIST); 3247 set_balance_control(bctl); 3248 } else { 3249 BUG_ON(ret != -EEXIST); 3250 spin_lock(&fs_info->balance_lock); 3251 update_balance_args(bctl); 3252 spin_unlock(&fs_info->balance_lock); 3253 } 3254 3255 atomic_inc(&fs_info->balance_running); 3256 mutex_unlock(&fs_info->balance_mutex); 3257 3258 ret = __btrfs_balance(fs_info); 3259 3260 mutex_lock(&fs_info->balance_mutex); 3261 atomic_dec(&fs_info->balance_running); 3262 3263 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3264 fs_info->num_tolerated_disk_barrier_failures = 3265 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3266 } 3267 3268 if (bargs) { 3269 memset(bargs, 0, sizeof(*bargs)); 3270 update_ioctl_balance_args(fs_info, 0, bargs); 3271 } 3272 3273 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3274 balance_need_close(fs_info)) { 3275 __cancel_balance(fs_info); 3276 } 3277 3278 wake_up(&fs_info->balance_wait_q); 3279 3280 return ret; 3281 out: 3282 if (bctl->flags & BTRFS_BALANCE_RESUME) 3283 __cancel_balance(fs_info); 3284 else { 3285 kfree(bctl); 3286 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3287 } 3288 return ret; 3289 } 3290 3291 static int balance_kthread(void *data) 3292 { 3293 struct btrfs_fs_info *fs_info = data; 3294 int ret = 0; 3295 3296 mutex_lock(&fs_info->volume_mutex); 3297 mutex_lock(&fs_info->balance_mutex); 3298 3299 if (fs_info->balance_ctl) { 3300 printk(KERN_INFO "btrfs: continuing balance\n"); 3301 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3302 } 3303 3304 mutex_unlock(&fs_info->balance_mutex); 3305 mutex_unlock(&fs_info->volume_mutex); 3306 3307 return ret; 3308 } 3309 3310 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3311 { 3312 struct task_struct *tsk; 3313 3314 spin_lock(&fs_info->balance_lock); 3315 if (!fs_info->balance_ctl) { 3316 spin_unlock(&fs_info->balance_lock); 3317 return 0; 3318 } 3319 spin_unlock(&fs_info->balance_lock); 3320 3321 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 3322 printk(KERN_INFO "btrfs: force skipping balance\n"); 3323 return 0; 3324 } 3325 3326 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3327 return PTR_ERR_OR_ZERO(tsk); 3328 } 3329 3330 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3331 { 3332 struct btrfs_balance_control *bctl; 3333 struct btrfs_balance_item *item; 3334 struct btrfs_disk_balance_args disk_bargs; 3335 struct btrfs_path *path; 3336 struct extent_buffer *leaf; 3337 struct btrfs_key key; 3338 int ret; 3339 3340 path = btrfs_alloc_path(); 3341 if (!path) 3342 return -ENOMEM; 3343 3344 key.objectid = BTRFS_BALANCE_OBJECTID; 3345 key.type = BTRFS_BALANCE_ITEM_KEY; 3346 key.offset = 0; 3347 3348 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3349 if (ret < 0) 3350 goto out; 3351 if (ret > 0) { /* ret = -ENOENT; */ 3352 ret = 0; 3353 goto out; 3354 } 3355 3356 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3357 if (!bctl) { 3358 ret = -ENOMEM; 3359 goto out; 3360 } 3361 3362 leaf = path->nodes[0]; 3363 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3364 3365 bctl->fs_info = fs_info; 3366 bctl->flags = btrfs_balance_flags(leaf, item); 3367 bctl->flags |= BTRFS_BALANCE_RESUME; 3368 3369 btrfs_balance_data(leaf, item, &disk_bargs); 3370 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 3371 btrfs_balance_meta(leaf, item, &disk_bargs); 3372 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 3373 btrfs_balance_sys(leaf, item, &disk_bargs); 3374 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 3375 3376 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); 3377 3378 mutex_lock(&fs_info->volume_mutex); 3379 mutex_lock(&fs_info->balance_mutex); 3380 3381 set_balance_control(bctl); 3382 3383 mutex_unlock(&fs_info->balance_mutex); 3384 mutex_unlock(&fs_info->volume_mutex); 3385 out: 3386 btrfs_free_path(path); 3387 return ret; 3388 } 3389 3390 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 3391 { 3392 int ret = 0; 3393 3394 mutex_lock(&fs_info->balance_mutex); 3395 if (!fs_info->balance_ctl) { 3396 mutex_unlock(&fs_info->balance_mutex); 3397 return -ENOTCONN; 3398 } 3399 3400 if (atomic_read(&fs_info->balance_running)) { 3401 atomic_inc(&fs_info->balance_pause_req); 3402 mutex_unlock(&fs_info->balance_mutex); 3403 3404 wait_event(fs_info->balance_wait_q, 3405 atomic_read(&fs_info->balance_running) == 0); 3406 3407 mutex_lock(&fs_info->balance_mutex); 3408 /* we are good with balance_ctl ripped off from under us */ 3409 BUG_ON(atomic_read(&fs_info->balance_running)); 3410 atomic_dec(&fs_info->balance_pause_req); 3411 } else { 3412 ret = -ENOTCONN; 3413 } 3414 3415 mutex_unlock(&fs_info->balance_mutex); 3416 return ret; 3417 } 3418 3419 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 3420 { 3421 mutex_lock(&fs_info->balance_mutex); 3422 if (!fs_info->balance_ctl) { 3423 mutex_unlock(&fs_info->balance_mutex); 3424 return -ENOTCONN; 3425 } 3426 3427 atomic_inc(&fs_info->balance_cancel_req); 3428 /* 3429 * if we are running just wait and return, balance item is 3430 * deleted in btrfs_balance in this case 3431 */ 3432 if (atomic_read(&fs_info->balance_running)) { 3433 mutex_unlock(&fs_info->balance_mutex); 3434 wait_event(fs_info->balance_wait_q, 3435 atomic_read(&fs_info->balance_running) == 0); 3436 mutex_lock(&fs_info->balance_mutex); 3437 } else { 3438 /* __cancel_balance needs volume_mutex */ 3439 mutex_unlock(&fs_info->balance_mutex); 3440 mutex_lock(&fs_info->volume_mutex); 3441 mutex_lock(&fs_info->balance_mutex); 3442 3443 if (fs_info->balance_ctl) 3444 __cancel_balance(fs_info); 3445 3446 mutex_unlock(&fs_info->volume_mutex); 3447 } 3448 3449 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 3450 atomic_dec(&fs_info->balance_cancel_req); 3451 mutex_unlock(&fs_info->balance_mutex); 3452 return 0; 3453 } 3454 3455 static int btrfs_uuid_scan_kthread(void *data) 3456 { 3457 struct btrfs_fs_info *fs_info = data; 3458 struct btrfs_root *root = fs_info->tree_root; 3459 struct btrfs_key key; 3460 struct btrfs_key max_key; 3461 struct btrfs_path *path = NULL; 3462 int ret = 0; 3463 struct extent_buffer *eb; 3464 int slot; 3465 struct btrfs_root_item root_item; 3466 u32 item_size; 3467 struct btrfs_trans_handle *trans = NULL; 3468 3469 path = btrfs_alloc_path(); 3470 if (!path) { 3471 ret = -ENOMEM; 3472 goto out; 3473 } 3474 3475 key.objectid = 0; 3476 key.type = BTRFS_ROOT_ITEM_KEY; 3477 key.offset = 0; 3478 3479 max_key.objectid = (u64)-1; 3480 max_key.type = BTRFS_ROOT_ITEM_KEY; 3481 max_key.offset = (u64)-1; 3482 3483 path->keep_locks = 1; 3484 3485 while (1) { 3486 ret = btrfs_search_forward(root, &key, &max_key, path, 0); 3487 if (ret) { 3488 if (ret > 0) 3489 ret = 0; 3490 break; 3491 } 3492 3493 if (key.type != BTRFS_ROOT_ITEM_KEY || 3494 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 3495 key.objectid != BTRFS_FS_TREE_OBJECTID) || 3496 key.objectid > BTRFS_LAST_FREE_OBJECTID) 3497 goto skip; 3498 3499 eb = path->nodes[0]; 3500 slot = path->slots[0]; 3501 item_size = btrfs_item_size_nr(eb, slot); 3502 if (item_size < sizeof(root_item)) 3503 goto skip; 3504 3505 read_extent_buffer(eb, &root_item, 3506 btrfs_item_ptr_offset(eb, slot), 3507 (int)sizeof(root_item)); 3508 if (btrfs_root_refs(&root_item) == 0) 3509 goto skip; 3510 3511 if (!btrfs_is_empty_uuid(root_item.uuid) || 3512 !btrfs_is_empty_uuid(root_item.received_uuid)) { 3513 if (trans) 3514 goto update_tree; 3515 3516 btrfs_release_path(path); 3517 /* 3518 * 1 - subvol uuid item 3519 * 1 - received_subvol uuid item 3520 */ 3521 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 3522 if (IS_ERR(trans)) { 3523 ret = PTR_ERR(trans); 3524 break; 3525 } 3526 continue; 3527 } else { 3528 goto skip; 3529 } 3530 update_tree: 3531 if (!btrfs_is_empty_uuid(root_item.uuid)) { 3532 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3533 root_item.uuid, 3534 BTRFS_UUID_KEY_SUBVOL, 3535 key.objectid); 3536 if (ret < 0) { 3537 pr_warn("btrfs: uuid_tree_add failed %d\n", 3538 ret); 3539 break; 3540 } 3541 } 3542 3543 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 3544 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3545 root_item.received_uuid, 3546 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3547 key.objectid); 3548 if (ret < 0) { 3549 pr_warn("btrfs: uuid_tree_add failed %d\n", 3550 ret); 3551 break; 3552 } 3553 } 3554 3555 skip: 3556 if (trans) { 3557 ret = btrfs_end_transaction(trans, fs_info->uuid_root); 3558 trans = NULL; 3559 if (ret) 3560 break; 3561 } 3562 3563 btrfs_release_path(path); 3564 if (key.offset < (u64)-1) { 3565 key.offset++; 3566 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 3567 key.offset = 0; 3568 key.type = BTRFS_ROOT_ITEM_KEY; 3569 } else if (key.objectid < (u64)-1) { 3570 key.offset = 0; 3571 key.type = BTRFS_ROOT_ITEM_KEY; 3572 key.objectid++; 3573 } else { 3574 break; 3575 } 3576 cond_resched(); 3577 } 3578 3579 out: 3580 btrfs_free_path(path); 3581 if (trans && !IS_ERR(trans)) 3582 btrfs_end_transaction(trans, fs_info->uuid_root); 3583 if (ret) 3584 pr_warn("btrfs: btrfs_uuid_scan_kthread failed %d\n", ret); 3585 else 3586 fs_info->update_uuid_tree_gen = 1; 3587 up(&fs_info->uuid_tree_rescan_sem); 3588 return 0; 3589 } 3590 3591 /* 3592 * Callback for btrfs_uuid_tree_iterate(). 3593 * returns: 3594 * 0 check succeeded, the entry is not outdated. 3595 * < 0 if an error occured. 3596 * > 0 if the check failed, which means the caller shall remove the entry. 3597 */ 3598 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 3599 u8 *uuid, u8 type, u64 subid) 3600 { 3601 struct btrfs_key key; 3602 int ret = 0; 3603 struct btrfs_root *subvol_root; 3604 3605 if (type != BTRFS_UUID_KEY_SUBVOL && 3606 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 3607 goto out; 3608 3609 key.objectid = subid; 3610 key.type = BTRFS_ROOT_ITEM_KEY; 3611 key.offset = (u64)-1; 3612 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 3613 if (IS_ERR(subvol_root)) { 3614 ret = PTR_ERR(subvol_root); 3615 if (ret == -ENOENT) 3616 ret = 1; 3617 goto out; 3618 } 3619 3620 switch (type) { 3621 case BTRFS_UUID_KEY_SUBVOL: 3622 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 3623 ret = 1; 3624 break; 3625 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 3626 if (memcmp(uuid, subvol_root->root_item.received_uuid, 3627 BTRFS_UUID_SIZE)) 3628 ret = 1; 3629 break; 3630 } 3631 3632 out: 3633 return ret; 3634 } 3635 3636 static int btrfs_uuid_rescan_kthread(void *data) 3637 { 3638 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 3639 int ret; 3640 3641 /* 3642 * 1st step is to iterate through the existing UUID tree and 3643 * to delete all entries that contain outdated data. 3644 * 2nd step is to add all missing entries to the UUID tree. 3645 */ 3646 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 3647 if (ret < 0) { 3648 pr_warn("btrfs: iterating uuid_tree failed %d\n", ret); 3649 up(&fs_info->uuid_tree_rescan_sem); 3650 return ret; 3651 } 3652 return btrfs_uuid_scan_kthread(data); 3653 } 3654 3655 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 3656 { 3657 struct btrfs_trans_handle *trans; 3658 struct btrfs_root *tree_root = fs_info->tree_root; 3659 struct btrfs_root *uuid_root; 3660 struct task_struct *task; 3661 int ret; 3662 3663 /* 3664 * 1 - root node 3665 * 1 - root item 3666 */ 3667 trans = btrfs_start_transaction(tree_root, 2); 3668 if (IS_ERR(trans)) 3669 return PTR_ERR(trans); 3670 3671 uuid_root = btrfs_create_tree(trans, fs_info, 3672 BTRFS_UUID_TREE_OBJECTID); 3673 if (IS_ERR(uuid_root)) { 3674 btrfs_abort_transaction(trans, tree_root, 3675 PTR_ERR(uuid_root)); 3676 return PTR_ERR(uuid_root); 3677 } 3678 3679 fs_info->uuid_root = uuid_root; 3680 3681 ret = btrfs_commit_transaction(trans, tree_root); 3682 if (ret) 3683 return ret; 3684 3685 down(&fs_info->uuid_tree_rescan_sem); 3686 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 3687 if (IS_ERR(task)) { 3688 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3689 pr_warn("btrfs: failed to start uuid_scan task\n"); 3690 up(&fs_info->uuid_tree_rescan_sem); 3691 return PTR_ERR(task); 3692 } 3693 3694 return 0; 3695 } 3696 3697 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3698 { 3699 struct task_struct *task; 3700 3701 down(&fs_info->uuid_tree_rescan_sem); 3702 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3703 if (IS_ERR(task)) { 3704 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3705 pr_warn("btrfs: failed to start uuid_rescan task\n"); 3706 up(&fs_info->uuid_tree_rescan_sem); 3707 return PTR_ERR(task); 3708 } 3709 3710 return 0; 3711 } 3712 3713 /* 3714 * shrinking a device means finding all of the device extents past 3715 * the new size, and then following the back refs to the chunks. 3716 * The chunk relocation code actually frees the device extent 3717 */ 3718 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 3719 { 3720 struct btrfs_trans_handle *trans; 3721 struct btrfs_root *root = device->dev_root; 3722 struct btrfs_dev_extent *dev_extent = NULL; 3723 struct btrfs_path *path; 3724 u64 length; 3725 u64 chunk_tree; 3726 u64 chunk_objectid; 3727 u64 chunk_offset; 3728 int ret; 3729 int slot; 3730 int failed = 0; 3731 bool retried = false; 3732 struct extent_buffer *l; 3733 struct btrfs_key key; 3734 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3735 u64 old_total = btrfs_super_total_bytes(super_copy); 3736 u64 old_size = device->total_bytes; 3737 u64 diff = device->total_bytes - new_size; 3738 3739 if (device->is_tgtdev_for_dev_replace) 3740 return -EINVAL; 3741 3742 path = btrfs_alloc_path(); 3743 if (!path) 3744 return -ENOMEM; 3745 3746 path->reada = 2; 3747 3748 lock_chunks(root); 3749 3750 device->total_bytes = new_size; 3751 if (device->writeable) { 3752 device->fs_devices->total_rw_bytes -= diff; 3753 spin_lock(&root->fs_info->free_chunk_lock); 3754 root->fs_info->free_chunk_space -= diff; 3755 spin_unlock(&root->fs_info->free_chunk_lock); 3756 } 3757 unlock_chunks(root); 3758 3759 again: 3760 key.objectid = device->devid; 3761 key.offset = (u64)-1; 3762 key.type = BTRFS_DEV_EXTENT_KEY; 3763 3764 do { 3765 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3766 if (ret < 0) 3767 goto done; 3768 3769 ret = btrfs_previous_item(root, path, 0, key.type); 3770 if (ret < 0) 3771 goto done; 3772 if (ret) { 3773 ret = 0; 3774 btrfs_release_path(path); 3775 break; 3776 } 3777 3778 l = path->nodes[0]; 3779 slot = path->slots[0]; 3780 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 3781 3782 if (key.objectid != device->devid) { 3783 btrfs_release_path(path); 3784 break; 3785 } 3786 3787 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3788 length = btrfs_dev_extent_length(l, dev_extent); 3789 3790 if (key.offset + length <= new_size) { 3791 btrfs_release_path(path); 3792 break; 3793 } 3794 3795 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 3796 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 3797 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3798 btrfs_release_path(path); 3799 3800 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, 3801 chunk_offset); 3802 if (ret && ret != -ENOSPC) 3803 goto done; 3804 if (ret == -ENOSPC) 3805 failed++; 3806 } while (key.offset-- > 0); 3807 3808 if (failed && !retried) { 3809 failed = 0; 3810 retried = true; 3811 goto again; 3812 } else if (failed && retried) { 3813 ret = -ENOSPC; 3814 lock_chunks(root); 3815 3816 device->total_bytes = old_size; 3817 if (device->writeable) 3818 device->fs_devices->total_rw_bytes += diff; 3819 spin_lock(&root->fs_info->free_chunk_lock); 3820 root->fs_info->free_chunk_space += diff; 3821 spin_unlock(&root->fs_info->free_chunk_lock); 3822 unlock_chunks(root); 3823 goto done; 3824 } 3825 3826 /* Shrinking succeeded, else we would be at "done". */ 3827 trans = btrfs_start_transaction(root, 0); 3828 if (IS_ERR(trans)) { 3829 ret = PTR_ERR(trans); 3830 goto done; 3831 } 3832 3833 lock_chunks(root); 3834 3835 device->disk_total_bytes = new_size; 3836 /* Now btrfs_update_device() will change the on-disk size. */ 3837 ret = btrfs_update_device(trans, device); 3838 if (ret) { 3839 unlock_chunks(root); 3840 btrfs_end_transaction(trans, root); 3841 goto done; 3842 } 3843 WARN_ON(diff > old_total); 3844 btrfs_set_super_total_bytes(super_copy, old_total - diff); 3845 unlock_chunks(root); 3846 btrfs_end_transaction(trans, root); 3847 done: 3848 btrfs_free_path(path); 3849 return ret; 3850 } 3851 3852 static int btrfs_add_system_chunk(struct btrfs_root *root, 3853 struct btrfs_key *key, 3854 struct btrfs_chunk *chunk, int item_size) 3855 { 3856 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3857 struct btrfs_disk_key disk_key; 3858 u32 array_size; 3859 u8 *ptr; 3860 3861 array_size = btrfs_super_sys_array_size(super_copy); 3862 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 3863 return -EFBIG; 3864 3865 ptr = super_copy->sys_chunk_array + array_size; 3866 btrfs_cpu_key_to_disk(&disk_key, key); 3867 memcpy(ptr, &disk_key, sizeof(disk_key)); 3868 ptr += sizeof(disk_key); 3869 memcpy(ptr, chunk, item_size); 3870 item_size += sizeof(disk_key); 3871 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 3872 return 0; 3873 } 3874 3875 /* 3876 * sort the devices in descending order by max_avail, total_avail 3877 */ 3878 static int btrfs_cmp_device_info(const void *a, const void *b) 3879 { 3880 const struct btrfs_device_info *di_a = a; 3881 const struct btrfs_device_info *di_b = b; 3882 3883 if (di_a->max_avail > di_b->max_avail) 3884 return -1; 3885 if (di_a->max_avail < di_b->max_avail) 3886 return 1; 3887 if (di_a->total_avail > di_b->total_avail) 3888 return -1; 3889 if (di_a->total_avail < di_b->total_avail) 3890 return 1; 3891 return 0; 3892 } 3893 3894 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 3895 [BTRFS_RAID_RAID10] = { 3896 .sub_stripes = 2, 3897 .dev_stripes = 1, 3898 .devs_max = 0, /* 0 == as many as possible */ 3899 .devs_min = 4, 3900 .devs_increment = 2, 3901 .ncopies = 2, 3902 }, 3903 [BTRFS_RAID_RAID1] = { 3904 .sub_stripes = 1, 3905 .dev_stripes = 1, 3906 .devs_max = 2, 3907 .devs_min = 2, 3908 .devs_increment = 2, 3909 .ncopies = 2, 3910 }, 3911 [BTRFS_RAID_DUP] = { 3912 .sub_stripes = 1, 3913 .dev_stripes = 2, 3914 .devs_max = 1, 3915 .devs_min = 1, 3916 .devs_increment = 1, 3917 .ncopies = 2, 3918 }, 3919 [BTRFS_RAID_RAID0] = { 3920 .sub_stripes = 1, 3921 .dev_stripes = 1, 3922 .devs_max = 0, 3923 .devs_min = 2, 3924 .devs_increment = 1, 3925 .ncopies = 1, 3926 }, 3927 [BTRFS_RAID_SINGLE] = { 3928 .sub_stripes = 1, 3929 .dev_stripes = 1, 3930 .devs_max = 1, 3931 .devs_min = 1, 3932 .devs_increment = 1, 3933 .ncopies = 1, 3934 }, 3935 [BTRFS_RAID_RAID5] = { 3936 .sub_stripes = 1, 3937 .dev_stripes = 1, 3938 .devs_max = 0, 3939 .devs_min = 2, 3940 .devs_increment = 1, 3941 .ncopies = 2, 3942 }, 3943 [BTRFS_RAID_RAID6] = { 3944 .sub_stripes = 1, 3945 .dev_stripes = 1, 3946 .devs_max = 0, 3947 .devs_min = 3, 3948 .devs_increment = 1, 3949 .ncopies = 3, 3950 }, 3951 }; 3952 3953 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) 3954 { 3955 /* TODO allow them to set a preferred stripe size */ 3956 return 64 * 1024; 3957 } 3958 3959 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 3960 { 3961 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))) 3962 return; 3963 3964 btrfs_set_fs_incompat(info, RAID56); 3965 } 3966 3967 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 3968 struct btrfs_root *extent_root, u64 start, 3969 u64 type) 3970 { 3971 struct btrfs_fs_info *info = extent_root->fs_info; 3972 struct btrfs_fs_devices *fs_devices = info->fs_devices; 3973 struct list_head *cur; 3974 struct map_lookup *map = NULL; 3975 struct extent_map_tree *em_tree; 3976 struct extent_map *em; 3977 struct btrfs_device_info *devices_info = NULL; 3978 u64 total_avail; 3979 int num_stripes; /* total number of stripes to allocate */ 3980 int data_stripes; /* number of stripes that count for 3981 block group size */ 3982 int sub_stripes; /* sub_stripes info for map */ 3983 int dev_stripes; /* stripes per dev */ 3984 int devs_max; /* max devs to use */ 3985 int devs_min; /* min devs needed */ 3986 int devs_increment; /* ndevs has to be a multiple of this */ 3987 int ncopies; /* how many copies to data has */ 3988 int ret; 3989 u64 max_stripe_size; 3990 u64 max_chunk_size; 3991 u64 stripe_size; 3992 u64 num_bytes; 3993 u64 raid_stripe_len = BTRFS_STRIPE_LEN; 3994 int ndevs; 3995 int i; 3996 int j; 3997 int index; 3998 3999 BUG_ON(!alloc_profile_is_valid(type, 0)); 4000 4001 if (list_empty(&fs_devices->alloc_list)) 4002 return -ENOSPC; 4003 4004 index = __get_raid_index(type); 4005 4006 sub_stripes = btrfs_raid_array[index].sub_stripes; 4007 dev_stripes = btrfs_raid_array[index].dev_stripes; 4008 devs_max = btrfs_raid_array[index].devs_max; 4009 devs_min = btrfs_raid_array[index].devs_min; 4010 devs_increment = btrfs_raid_array[index].devs_increment; 4011 ncopies = btrfs_raid_array[index].ncopies; 4012 4013 if (type & BTRFS_BLOCK_GROUP_DATA) { 4014 max_stripe_size = 1024 * 1024 * 1024; 4015 max_chunk_size = 10 * max_stripe_size; 4016 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4017 /* for larger filesystems, use larger metadata chunks */ 4018 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) 4019 max_stripe_size = 1024 * 1024 * 1024; 4020 else 4021 max_stripe_size = 256 * 1024 * 1024; 4022 max_chunk_size = max_stripe_size; 4023 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4024 max_stripe_size = 32 * 1024 * 1024; 4025 max_chunk_size = 2 * max_stripe_size; 4026 } else { 4027 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n", 4028 type); 4029 BUG_ON(1); 4030 } 4031 4032 /* we don't want a chunk larger than 10% of writeable space */ 4033 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4034 max_chunk_size); 4035 4036 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices, 4037 GFP_NOFS); 4038 if (!devices_info) 4039 return -ENOMEM; 4040 4041 cur = fs_devices->alloc_list.next; 4042 4043 /* 4044 * in the first pass through the devices list, we gather information 4045 * about the available holes on each device. 4046 */ 4047 ndevs = 0; 4048 while (cur != &fs_devices->alloc_list) { 4049 struct btrfs_device *device; 4050 u64 max_avail; 4051 u64 dev_offset; 4052 4053 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 4054 4055 cur = cur->next; 4056 4057 if (!device->writeable) { 4058 WARN(1, KERN_ERR 4059 "btrfs: read-only device in alloc_list\n"); 4060 continue; 4061 } 4062 4063 if (!device->in_fs_metadata || 4064 device->is_tgtdev_for_dev_replace) 4065 continue; 4066 4067 if (device->total_bytes > device->bytes_used) 4068 total_avail = device->total_bytes - device->bytes_used; 4069 else 4070 total_avail = 0; 4071 4072 /* If there is no space on this device, skip it. */ 4073 if (total_avail == 0) 4074 continue; 4075 4076 ret = find_free_dev_extent(trans, device, 4077 max_stripe_size * dev_stripes, 4078 &dev_offset, &max_avail); 4079 if (ret && ret != -ENOSPC) 4080 goto error; 4081 4082 if (ret == 0) 4083 max_avail = max_stripe_size * dev_stripes; 4084 4085 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4086 continue; 4087 4088 if (ndevs == fs_devices->rw_devices) { 4089 WARN(1, "%s: found more than %llu devices\n", 4090 __func__, fs_devices->rw_devices); 4091 break; 4092 } 4093 devices_info[ndevs].dev_offset = dev_offset; 4094 devices_info[ndevs].max_avail = max_avail; 4095 devices_info[ndevs].total_avail = total_avail; 4096 devices_info[ndevs].dev = device; 4097 ++ndevs; 4098 } 4099 4100 /* 4101 * now sort the devices by hole size / available space 4102 */ 4103 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4104 btrfs_cmp_device_info, NULL); 4105 4106 /* round down to number of usable stripes */ 4107 ndevs -= ndevs % devs_increment; 4108 4109 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4110 ret = -ENOSPC; 4111 goto error; 4112 } 4113 4114 if (devs_max && ndevs > devs_max) 4115 ndevs = devs_max; 4116 /* 4117 * the primary goal is to maximize the number of stripes, so use as many 4118 * devices as possible, even if the stripes are not maximum sized. 4119 */ 4120 stripe_size = devices_info[ndevs-1].max_avail; 4121 num_stripes = ndevs * dev_stripes; 4122 4123 /* 4124 * this will have to be fixed for RAID1 and RAID10 over 4125 * more drives 4126 */ 4127 data_stripes = num_stripes / ncopies; 4128 4129 if (type & BTRFS_BLOCK_GROUP_RAID5) { 4130 raid_stripe_len = find_raid56_stripe_len(ndevs - 1, 4131 btrfs_super_stripesize(info->super_copy)); 4132 data_stripes = num_stripes - 1; 4133 } 4134 if (type & BTRFS_BLOCK_GROUP_RAID6) { 4135 raid_stripe_len = find_raid56_stripe_len(ndevs - 2, 4136 btrfs_super_stripesize(info->super_copy)); 4137 data_stripes = num_stripes - 2; 4138 } 4139 4140 /* 4141 * Use the number of data stripes to figure out how big this chunk 4142 * is really going to be in terms of logical address space, 4143 * and compare that answer with the max chunk size 4144 */ 4145 if (stripe_size * data_stripes > max_chunk_size) { 4146 u64 mask = (1ULL << 24) - 1; 4147 stripe_size = max_chunk_size; 4148 do_div(stripe_size, data_stripes); 4149 4150 /* bump the answer up to a 16MB boundary */ 4151 stripe_size = (stripe_size + mask) & ~mask; 4152 4153 /* but don't go higher than the limits we found 4154 * while searching for free extents 4155 */ 4156 if (stripe_size > devices_info[ndevs-1].max_avail) 4157 stripe_size = devices_info[ndevs-1].max_avail; 4158 } 4159 4160 do_div(stripe_size, dev_stripes); 4161 4162 /* align to BTRFS_STRIPE_LEN */ 4163 do_div(stripe_size, raid_stripe_len); 4164 stripe_size *= raid_stripe_len; 4165 4166 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4167 if (!map) { 4168 ret = -ENOMEM; 4169 goto error; 4170 } 4171 map->num_stripes = num_stripes; 4172 4173 for (i = 0; i < ndevs; ++i) { 4174 for (j = 0; j < dev_stripes; ++j) { 4175 int s = i * dev_stripes + j; 4176 map->stripes[s].dev = devices_info[i].dev; 4177 map->stripes[s].physical = devices_info[i].dev_offset + 4178 j * stripe_size; 4179 } 4180 } 4181 map->sector_size = extent_root->sectorsize; 4182 map->stripe_len = raid_stripe_len; 4183 map->io_align = raid_stripe_len; 4184 map->io_width = raid_stripe_len; 4185 map->type = type; 4186 map->sub_stripes = sub_stripes; 4187 4188 num_bytes = stripe_size * data_stripes; 4189 4190 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 4191 4192 em = alloc_extent_map(); 4193 if (!em) { 4194 ret = -ENOMEM; 4195 goto error; 4196 } 4197 em->bdev = (struct block_device *)map; 4198 em->start = start; 4199 em->len = num_bytes; 4200 em->block_start = 0; 4201 em->block_len = em->len; 4202 em->orig_block_len = stripe_size; 4203 4204 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4205 write_lock(&em_tree->lock); 4206 ret = add_extent_mapping(em_tree, em, 0); 4207 if (!ret) { 4208 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4209 atomic_inc(&em->refs); 4210 } 4211 write_unlock(&em_tree->lock); 4212 if (ret) { 4213 free_extent_map(em); 4214 goto error; 4215 } 4216 4217 ret = btrfs_make_block_group(trans, extent_root, 0, type, 4218 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4219 start, num_bytes); 4220 if (ret) 4221 goto error_del_extent; 4222 4223 free_extent_map(em); 4224 check_raid56_incompat_flag(extent_root->fs_info, type); 4225 4226 kfree(devices_info); 4227 return 0; 4228 4229 error_del_extent: 4230 write_lock(&em_tree->lock); 4231 remove_extent_mapping(em_tree, em); 4232 write_unlock(&em_tree->lock); 4233 4234 /* One for our allocation */ 4235 free_extent_map(em); 4236 /* One for the tree reference */ 4237 free_extent_map(em); 4238 error: 4239 kfree(map); 4240 kfree(devices_info); 4241 return ret; 4242 } 4243 4244 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4245 struct btrfs_root *extent_root, 4246 u64 chunk_offset, u64 chunk_size) 4247 { 4248 struct btrfs_key key; 4249 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 4250 struct btrfs_device *device; 4251 struct btrfs_chunk *chunk; 4252 struct btrfs_stripe *stripe; 4253 struct extent_map_tree *em_tree; 4254 struct extent_map *em; 4255 struct map_lookup *map; 4256 size_t item_size; 4257 u64 dev_offset; 4258 u64 stripe_size; 4259 int i = 0; 4260 int ret; 4261 4262 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4263 read_lock(&em_tree->lock); 4264 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size); 4265 read_unlock(&em_tree->lock); 4266 4267 if (!em) { 4268 btrfs_crit(extent_root->fs_info, "unable to find logical " 4269 "%Lu len %Lu", chunk_offset, chunk_size); 4270 return -EINVAL; 4271 } 4272 4273 if (em->start != chunk_offset || em->len != chunk_size) { 4274 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted" 4275 " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset, 4276 chunk_size, em->start, em->len); 4277 free_extent_map(em); 4278 return -EINVAL; 4279 } 4280 4281 map = (struct map_lookup *)em->bdev; 4282 item_size = btrfs_chunk_item_size(map->num_stripes); 4283 stripe_size = em->orig_block_len; 4284 4285 chunk = kzalloc(item_size, GFP_NOFS); 4286 if (!chunk) { 4287 ret = -ENOMEM; 4288 goto out; 4289 } 4290 4291 for (i = 0; i < map->num_stripes; i++) { 4292 device = map->stripes[i].dev; 4293 dev_offset = map->stripes[i].physical; 4294 4295 device->bytes_used += stripe_size; 4296 ret = btrfs_update_device(trans, device); 4297 if (ret) 4298 goto out; 4299 ret = btrfs_alloc_dev_extent(trans, device, 4300 chunk_root->root_key.objectid, 4301 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4302 chunk_offset, dev_offset, 4303 stripe_size); 4304 if (ret) 4305 goto out; 4306 } 4307 4308 spin_lock(&extent_root->fs_info->free_chunk_lock); 4309 extent_root->fs_info->free_chunk_space -= (stripe_size * 4310 map->num_stripes); 4311 spin_unlock(&extent_root->fs_info->free_chunk_lock); 4312 4313 stripe = &chunk->stripe; 4314 for (i = 0; i < map->num_stripes; i++) { 4315 device = map->stripes[i].dev; 4316 dev_offset = map->stripes[i].physical; 4317 4318 btrfs_set_stack_stripe_devid(stripe, device->devid); 4319 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4320 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4321 stripe++; 4322 } 4323 4324 btrfs_set_stack_chunk_length(chunk, chunk_size); 4325 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4326 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4327 btrfs_set_stack_chunk_type(chunk, map->type); 4328 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4329 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4330 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4331 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 4332 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4333 4334 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4335 key.type = BTRFS_CHUNK_ITEM_KEY; 4336 key.offset = chunk_offset; 4337 4338 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4339 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4340 /* 4341 * TODO: Cleanup of inserted chunk root in case of 4342 * failure. 4343 */ 4344 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 4345 item_size); 4346 } 4347 4348 out: 4349 kfree(chunk); 4350 free_extent_map(em); 4351 return ret; 4352 } 4353 4354 /* 4355 * Chunk allocation falls into two parts. The first part does works 4356 * that make the new allocated chunk useable, but not do any operation 4357 * that modifies the chunk tree. The second part does the works that 4358 * require modifying the chunk tree. This division is important for the 4359 * bootstrap process of adding storage to a seed btrfs. 4360 */ 4361 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4362 struct btrfs_root *extent_root, u64 type) 4363 { 4364 u64 chunk_offset; 4365 4366 chunk_offset = find_next_chunk(extent_root->fs_info); 4367 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type); 4368 } 4369 4370 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 4371 struct btrfs_root *root, 4372 struct btrfs_device *device) 4373 { 4374 u64 chunk_offset; 4375 u64 sys_chunk_offset; 4376 u64 alloc_profile; 4377 struct btrfs_fs_info *fs_info = root->fs_info; 4378 struct btrfs_root *extent_root = fs_info->extent_root; 4379 int ret; 4380 4381 chunk_offset = find_next_chunk(fs_info); 4382 alloc_profile = btrfs_get_alloc_profile(extent_root, 0); 4383 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset, 4384 alloc_profile); 4385 if (ret) 4386 return ret; 4387 4388 sys_chunk_offset = find_next_chunk(root->fs_info); 4389 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); 4390 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset, 4391 alloc_profile); 4392 if (ret) { 4393 btrfs_abort_transaction(trans, root, ret); 4394 goto out; 4395 } 4396 4397 ret = btrfs_add_device(trans, fs_info->chunk_root, device); 4398 if (ret) 4399 btrfs_abort_transaction(trans, root, ret); 4400 out: 4401 return ret; 4402 } 4403 4404 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 4405 { 4406 struct extent_map *em; 4407 struct map_lookup *map; 4408 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4409 int readonly = 0; 4410 int i; 4411 4412 read_lock(&map_tree->map_tree.lock); 4413 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 4414 read_unlock(&map_tree->map_tree.lock); 4415 if (!em) 4416 return 1; 4417 4418 if (btrfs_test_opt(root, DEGRADED)) { 4419 free_extent_map(em); 4420 return 0; 4421 } 4422 4423 map = (struct map_lookup *)em->bdev; 4424 for (i = 0; i < map->num_stripes; i++) { 4425 if (!map->stripes[i].dev->writeable) { 4426 readonly = 1; 4427 break; 4428 } 4429 } 4430 free_extent_map(em); 4431 return readonly; 4432 } 4433 4434 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 4435 { 4436 extent_map_tree_init(&tree->map_tree); 4437 } 4438 4439 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 4440 { 4441 struct extent_map *em; 4442 4443 while (1) { 4444 write_lock(&tree->map_tree.lock); 4445 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 4446 if (em) 4447 remove_extent_mapping(&tree->map_tree, em); 4448 write_unlock(&tree->map_tree.lock); 4449 if (!em) 4450 break; 4451 kfree(em->bdev); 4452 /* once for us */ 4453 free_extent_map(em); 4454 /* once for the tree */ 4455 free_extent_map(em); 4456 } 4457 } 4458 4459 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 4460 { 4461 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 4462 struct extent_map *em; 4463 struct map_lookup *map; 4464 struct extent_map_tree *em_tree = &map_tree->map_tree; 4465 int ret; 4466 4467 read_lock(&em_tree->lock); 4468 em = lookup_extent_mapping(em_tree, logical, len); 4469 read_unlock(&em_tree->lock); 4470 4471 /* 4472 * We could return errors for these cases, but that could get ugly and 4473 * we'd probably do the same thing which is just not do anything else 4474 * and exit, so return 1 so the callers don't try to use other copies. 4475 */ 4476 if (!em) { 4477 btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical, 4478 logical+len); 4479 return 1; 4480 } 4481 4482 if (em->start > logical || em->start + em->len < logical) { 4483 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got " 4484 "%Lu-%Lu\n", logical, logical+len, em->start, 4485 em->start + em->len); 4486 return 1; 4487 } 4488 4489 map = (struct map_lookup *)em->bdev; 4490 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 4491 ret = map->num_stripes; 4492 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 4493 ret = map->sub_stripes; 4494 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 4495 ret = 2; 4496 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 4497 ret = 3; 4498 else 4499 ret = 1; 4500 free_extent_map(em); 4501 4502 btrfs_dev_replace_lock(&fs_info->dev_replace); 4503 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) 4504 ret++; 4505 btrfs_dev_replace_unlock(&fs_info->dev_replace); 4506 4507 return ret; 4508 } 4509 4510 unsigned long btrfs_full_stripe_len(struct btrfs_root *root, 4511 struct btrfs_mapping_tree *map_tree, 4512 u64 logical) 4513 { 4514 struct extent_map *em; 4515 struct map_lookup *map; 4516 struct extent_map_tree *em_tree = &map_tree->map_tree; 4517 unsigned long len = root->sectorsize; 4518 4519 read_lock(&em_tree->lock); 4520 em = lookup_extent_mapping(em_tree, logical, len); 4521 read_unlock(&em_tree->lock); 4522 BUG_ON(!em); 4523 4524 BUG_ON(em->start > logical || em->start + em->len < logical); 4525 map = (struct map_lookup *)em->bdev; 4526 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 4527 BTRFS_BLOCK_GROUP_RAID6)) { 4528 len = map->stripe_len * nr_data_stripes(map); 4529 } 4530 free_extent_map(em); 4531 return len; 4532 } 4533 4534 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, 4535 u64 logical, u64 len, int mirror_num) 4536 { 4537 struct extent_map *em; 4538 struct map_lookup *map; 4539 struct extent_map_tree *em_tree = &map_tree->map_tree; 4540 int ret = 0; 4541 4542 read_lock(&em_tree->lock); 4543 em = lookup_extent_mapping(em_tree, logical, len); 4544 read_unlock(&em_tree->lock); 4545 BUG_ON(!em); 4546 4547 BUG_ON(em->start > logical || em->start + em->len < logical); 4548 map = (struct map_lookup *)em->bdev; 4549 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 4550 BTRFS_BLOCK_GROUP_RAID6)) 4551 ret = 1; 4552 free_extent_map(em); 4553 return ret; 4554 } 4555 4556 static int find_live_mirror(struct btrfs_fs_info *fs_info, 4557 struct map_lookup *map, int first, int num, 4558 int optimal, int dev_replace_is_ongoing) 4559 { 4560 int i; 4561 int tolerance; 4562 struct btrfs_device *srcdev; 4563 4564 if (dev_replace_is_ongoing && 4565 fs_info->dev_replace.cont_reading_from_srcdev_mode == 4566 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 4567 srcdev = fs_info->dev_replace.srcdev; 4568 else 4569 srcdev = NULL; 4570 4571 /* 4572 * try to avoid the drive that is the source drive for a 4573 * dev-replace procedure, only choose it if no other non-missing 4574 * mirror is available 4575 */ 4576 for (tolerance = 0; tolerance < 2; tolerance++) { 4577 if (map->stripes[optimal].dev->bdev && 4578 (tolerance || map->stripes[optimal].dev != srcdev)) 4579 return optimal; 4580 for (i = first; i < first + num; i++) { 4581 if (map->stripes[i].dev->bdev && 4582 (tolerance || map->stripes[i].dev != srcdev)) 4583 return i; 4584 } 4585 } 4586 4587 /* we couldn't find one that doesn't fail. Just return something 4588 * and the io error handling code will clean up eventually 4589 */ 4590 return optimal; 4591 } 4592 4593 static inline int parity_smaller(u64 a, u64 b) 4594 { 4595 return a > b; 4596 } 4597 4598 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 4599 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map) 4600 { 4601 struct btrfs_bio_stripe s; 4602 int i; 4603 u64 l; 4604 int again = 1; 4605 4606 while (again) { 4607 again = 0; 4608 for (i = 0; i < bbio->num_stripes - 1; i++) { 4609 if (parity_smaller(raid_map[i], raid_map[i+1])) { 4610 s = bbio->stripes[i]; 4611 l = raid_map[i]; 4612 bbio->stripes[i] = bbio->stripes[i+1]; 4613 raid_map[i] = raid_map[i+1]; 4614 bbio->stripes[i+1] = s; 4615 raid_map[i+1] = l; 4616 again = 1; 4617 } 4618 } 4619 } 4620 } 4621 4622 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 4623 u64 logical, u64 *length, 4624 struct btrfs_bio **bbio_ret, 4625 int mirror_num, u64 **raid_map_ret) 4626 { 4627 struct extent_map *em; 4628 struct map_lookup *map; 4629 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 4630 struct extent_map_tree *em_tree = &map_tree->map_tree; 4631 u64 offset; 4632 u64 stripe_offset; 4633 u64 stripe_end_offset; 4634 u64 stripe_nr; 4635 u64 stripe_nr_orig; 4636 u64 stripe_nr_end; 4637 u64 stripe_len; 4638 u64 *raid_map = NULL; 4639 int stripe_index; 4640 int i; 4641 int ret = 0; 4642 int num_stripes; 4643 int max_errors = 0; 4644 struct btrfs_bio *bbio = NULL; 4645 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 4646 int dev_replace_is_ongoing = 0; 4647 int num_alloc_stripes; 4648 int patch_the_first_stripe_for_dev_replace = 0; 4649 u64 physical_to_patch_in_first_stripe = 0; 4650 u64 raid56_full_stripe_start = (u64)-1; 4651 4652 read_lock(&em_tree->lock); 4653 em = lookup_extent_mapping(em_tree, logical, *length); 4654 read_unlock(&em_tree->lock); 4655 4656 if (!em) { 4657 btrfs_crit(fs_info, "unable to find logical %llu len %llu", 4658 logical, *length); 4659 return -EINVAL; 4660 } 4661 4662 if (em->start > logical || em->start + em->len < logical) { 4663 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, " 4664 "found %Lu-%Lu\n", logical, em->start, 4665 em->start + em->len); 4666 return -EINVAL; 4667 } 4668 4669 map = (struct map_lookup *)em->bdev; 4670 offset = logical - em->start; 4671 4672 stripe_len = map->stripe_len; 4673 stripe_nr = offset; 4674 /* 4675 * stripe_nr counts the total number of stripes we have to stride 4676 * to get to this block 4677 */ 4678 do_div(stripe_nr, stripe_len); 4679 4680 stripe_offset = stripe_nr * stripe_len; 4681 BUG_ON(offset < stripe_offset); 4682 4683 /* stripe_offset is the offset of this block in its stripe*/ 4684 stripe_offset = offset - stripe_offset; 4685 4686 /* if we're here for raid56, we need to know the stripe aligned start */ 4687 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { 4688 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 4689 raid56_full_stripe_start = offset; 4690 4691 /* allow a write of a full stripe, but make sure we don't 4692 * allow straddling of stripes 4693 */ 4694 do_div(raid56_full_stripe_start, full_stripe_len); 4695 raid56_full_stripe_start *= full_stripe_len; 4696 } 4697 4698 if (rw & REQ_DISCARD) { 4699 /* we don't discard raid56 yet */ 4700 if (map->type & 4701 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { 4702 ret = -EOPNOTSUPP; 4703 goto out; 4704 } 4705 *length = min_t(u64, em->len - offset, *length); 4706 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 4707 u64 max_len; 4708 /* For writes to RAID[56], allow a full stripeset across all disks. 4709 For other RAID types and for RAID[56] reads, just allow a single 4710 stripe (on a single disk). */ 4711 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) && 4712 (rw & REQ_WRITE)) { 4713 max_len = stripe_len * nr_data_stripes(map) - 4714 (offset - raid56_full_stripe_start); 4715 } else { 4716 /* we limit the length of each bio to what fits in a stripe */ 4717 max_len = stripe_len - stripe_offset; 4718 } 4719 *length = min_t(u64, em->len - offset, max_len); 4720 } else { 4721 *length = em->len - offset; 4722 } 4723 4724 /* This is for when we're called from btrfs_merge_bio_hook() and all 4725 it cares about is the length */ 4726 if (!bbio_ret) 4727 goto out; 4728 4729 btrfs_dev_replace_lock(dev_replace); 4730 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 4731 if (!dev_replace_is_ongoing) 4732 btrfs_dev_replace_unlock(dev_replace); 4733 4734 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 4735 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) && 4736 dev_replace->tgtdev != NULL) { 4737 /* 4738 * in dev-replace case, for repair case (that's the only 4739 * case where the mirror is selected explicitly when 4740 * calling btrfs_map_block), blocks left of the left cursor 4741 * can also be read from the target drive. 4742 * For REQ_GET_READ_MIRRORS, the target drive is added as 4743 * the last one to the array of stripes. For READ, it also 4744 * needs to be supported using the same mirror number. 4745 * If the requested block is not left of the left cursor, 4746 * EIO is returned. This can happen because btrfs_num_copies() 4747 * returns one more in the dev-replace case. 4748 */ 4749 u64 tmp_length = *length; 4750 struct btrfs_bio *tmp_bbio = NULL; 4751 int tmp_num_stripes; 4752 u64 srcdev_devid = dev_replace->srcdev->devid; 4753 int index_srcdev = 0; 4754 int found = 0; 4755 u64 physical_of_found = 0; 4756 4757 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, 4758 logical, &tmp_length, &tmp_bbio, 0, NULL); 4759 if (ret) { 4760 WARN_ON(tmp_bbio != NULL); 4761 goto out; 4762 } 4763 4764 tmp_num_stripes = tmp_bbio->num_stripes; 4765 if (mirror_num > tmp_num_stripes) { 4766 /* 4767 * REQ_GET_READ_MIRRORS does not contain this 4768 * mirror, that means that the requested area 4769 * is not left of the left cursor 4770 */ 4771 ret = -EIO; 4772 kfree(tmp_bbio); 4773 goto out; 4774 } 4775 4776 /* 4777 * process the rest of the function using the mirror_num 4778 * of the source drive. Therefore look it up first. 4779 * At the end, patch the device pointer to the one of the 4780 * target drive. 4781 */ 4782 for (i = 0; i < tmp_num_stripes; i++) { 4783 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) { 4784 /* 4785 * In case of DUP, in order to keep it 4786 * simple, only add the mirror with the 4787 * lowest physical address 4788 */ 4789 if (found && 4790 physical_of_found <= 4791 tmp_bbio->stripes[i].physical) 4792 continue; 4793 index_srcdev = i; 4794 found = 1; 4795 physical_of_found = 4796 tmp_bbio->stripes[i].physical; 4797 } 4798 } 4799 4800 if (found) { 4801 mirror_num = index_srcdev + 1; 4802 patch_the_first_stripe_for_dev_replace = 1; 4803 physical_to_patch_in_first_stripe = physical_of_found; 4804 } else { 4805 WARN_ON(1); 4806 ret = -EIO; 4807 kfree(tmp_bbio); 4808 goto out; 4809 } 4810 4811 kfree(tmp_bbio); 4812 } else if (mirror_num > map->num_stripes) { 4813 mirror_num = 0; 4814 } 4815 4816 num_stripes = 1; 4817 stripe_index = 0; 4818 stripe_nr_orig = stripe_nr; 4819 stripe_nr_end = ALIGN(offset + *length, map->stripe_len); 4820 do_div(stripe_nr_end, map->stripe_len); 4821 stripe_end_offset = stripe_nr_end * map->stripe_len - 4822 (offset + *length); 4823 4824 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 4825 if (rw & REQ_DISCARD) 4826 num_stripes = min_t(u64, map->num_stripes, 4827 stripe_nr_end - stripe_nr_orig); 4828 stripe_index = do_div(stripe_nr, map->num_stripes); 4829 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 4830 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) 4831 num_stripes = map->num_stripes; 4832 else if (mirror_num) 4833 stripe_index = mirror_num - 1; 4834 else { 4835 stripe_index = find_live_mirror(fs_info, map, 0, 4836 map->num_stripes, 4837 current->pid % map->num_stripes, 4838 dev_replace_is_ongoing); 4839 mirror_num = stripe_index + 1; 4840 } 4841 4842 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 4843 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) { 4844 num_stripes = map->num_stripes; 4845 } else if (mirror_num) { 4846 stripe_index = mirror_num - 1; 4847 } else { 4848 mirror_num = 1; 4849 } 4850 4851 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 4852 int factor = map->num_stripes / map->sub_stripes; 4853 4854 stripe_index = do_div(stripe_nr, factor); 4855 stripe_index *= map->sub_stripes; 4856 4857 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 4858 num_stripes = map->sub_stripes; 4859 else if (rw & REQ_DISCARD) 4860 num_stripes = min_t(u64, map->sub_stripes * 4861 (stripe_nr_end - stripe_nr_orig), 4862 map->num_stripes); 4863 else if (mirror_num) 4864 stripe_index += mirror_num - 1; 4865 else { 4866 int old_stripe_index = stripe_index; 4867 stripe_index = find_live_mirror(fs_info, map, 4868 stripe_index, 4869 map->sub_stripes, stripe_index + 4870 current->pid % map->sub_stripes, 4871 dev_replace_is_ongoing); 4872 mirror_num = stripe_index - old_stripe_index + 1; 4873 } 4874 4875 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 4876 BTRFS_BLOCK_GROUP_RAID6)) { 4877 u64 tmp; 4878 4879 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1) 4880 && raid_map_ret) { 4881 int i, rot; 4882 4883 /* push stripe_nr back to the start of the full stripe */ 4884 stripe_nr = raid56_full_stripe_start; 4885 do_div(stripe_nr, stripe_len); 4886 4887 stripe_index = do_div(stripe_nr, nr_data_stripes(map)); 4888 4889 /* RAID[56] write or recovery. Return all stripes */ 4890 num_stripes = map->num_stripes; 4891 max_errors = nr_parity_stripes(map); 4892 4893 raid_map = kmalloc(sizeof(u64) * num_stripes, 4894 GFP_NOFS); 4895 if (!raid_map) { 4896 ret = -ENOMEM; 4897 goto out; 4898 } 4899 4900 /* Work out the disk rotation on this stripe-set */ 4901 tmp = stripe_nr; 4902 rot = do_div(tmp, num_stripes); 4903 4904 /* Fill in the logical address of each stripe */ 4905 tmp = stripe_nr * nr_data_stripes(map); 4906 for (i = 0; i < nr_data_stripes(map); i++) 4907 raid_map[(i+rot) % num_stripes] = 4908 em->start + (tmp + i) * map->stripe_len; 4909 4910 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 4911 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 4912 raid_map[(i+rot+1) % num_stripes] = 4913 RAID6_Q_STRIPE; 4914 4915 *length = map->stripe_len; 4916 stripe_index = 0; 4917 stripe_offset = 0; 4918 } else { 4919 /* 4920 * Mirror #0 or #1 means the original data block. 4921 * Mirror #2 is RAID5 parity block. 4922 * Mirror #3 is RAID6 Q block. 4923 */ 4924 stripe_index = do_div(stripe_nr, nr_data_stripes(map)); 4925 if (mirror_num > 1) 4926 stripe_index = nr_data_stripes(map) + 4927 mirror_num - 2; 4928 4929 /* We distribute the parity blocks across stripes */ 4930 tmp = stripe_nr + stripe_index; 4931 stripe_index = do_div(tmp, map->num_stripes); 4932 } 4933 } else { 4934 /* 4935 * after this do_div call, stripe_nr is the number of stripes 4936 * on this device we have to walk to find the data, and 4937 * stripe_index is the number of our device in the stripe array 4938 */ 4939 stripe_index = do_div(stripe_nr, map->num_stripes); 4940 mirror_num = stripe_index + 1; 4941 } 4942 BUG_ON(stripe_index >= map->num_stripes); 4943 4944 num_alloc_stripes = num_stripes; 4945 if (dev_replace_is_ongoing) { 4946 if (rw & (REQ_WRITE | REQ_DISCARD)) 4947 num_alloc_stripes <<= 1; 4948 if (rw & REQ_GET_READ_MIRRORS) 4949 num_alloc_stripes++; 4950 } 4951 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS); 4952 if (!bbio) { 4953 kfree(raid_map); 4954 ret = -ENOMEM; 4955 goto out; 4956 } 4957 atomic_set(&bbio->error, 0); 4958 4959 if (rw & REQ_DISCARD) { 4960 int factor = 0; 4961 int sub_stripes = 0; 4962 u64 stripes_per_dev = 0; 4963 u32 remaining_stripes = 0; 4964 u32 last_stripe = 0; 4965 4966 if (map->type & 4967 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 4968 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 4969 sub_stripes = 1; 4970 else 4971 sub_stripes = map->sub_stripes; 4972 4973 factor = map->num_stripes / sub_stripes; 4974 stripes_per_dev = div_u64_rem(stripe_nr_end - 4975 stripe_nr_orig, 4976 factor, 4977 &remaining_stripes); 4978 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 4979 last_stripe *= sub_stripes; 4980 } 4981 4982 for (i = 0; i < num_stripes; i++) { 4983 bbio->stripes[i].physical = 4984 map->stripes[stripe_index].physical + 4985 stripe_offset + stripe_nr * map->stripe_len; 4986 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 4987 4988 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 4989 BTRFS_BLOCK_GROUP_RAID10)) { 4990 bbio->stripes[i].length = stripes_per_dev * 4991 map->stripe_len; 4992 4993 if (i / sub_stripes < remaining_stripes) 4994 bbio->stripes[i].length += 4995 map->stripe_len; 4996 4997 /* 4998 * Special for the first stripe and 4999 * the last stripe: 5000 * 5001 * |-------|...|-------| 5002 * |----------| 5003 * off end_off 5004 */ 5005 if (i < sub_stripes) 5006 bbio->stripes[i].length -= 5007 stripe_offset; 5008 5009 if (stripe_index >= last_stripe && 5010 stripe_index <= (last_stripe + 5011 sub_stripes - 1)) 5012 bbio->stripes[i].length -= 5013 stripe_end_offset; 5014 5015 if (i == sub_stripes - 1) 5016 stripe_offset = 0; 5017 } else 5018 bbio->stripes[i].length = *length; 5019 5020 stripe_index++; 5021 if (stripe_index == map->num_stripes) { 5022 /* This could only happen for RAID0/10 */ 5023 stripe_index = 0; 5024 stripe_nr++; 5025 } 5026 } 5027 } else { 5028 for (i = 0; i < num_stripes; i++) { 5029 bbio->stripes[i].physical = 5030 map->stripes[stripe_index].physical + 5031 stripe_offset + 5032 stripe_nr * map->stripe_len; 5033 bbio->stripes[i].dev = 5034 map->stripes[stripe_index].dev; 5035 stripe_index++; 5036 } 5037 } 5038 5039 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) { 5040 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 5041 BTRFS_BLOCK_GROUP_RAID10 | 5042 BTRFS_BLOCK_GROUP_RAID5 | 5043 BTRFS_BLOCK_GROUP_DUP)) { 5044 max_errors = 1; 5045 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 5046 max_errors = 2; 5047 } 5048 } 5049 5050 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) && 5051 dev_replace->tgtdev != NULL) { 5052 int index_where_to_add; 5053 u64 srcdev_devid = dev_replace->srcdev->devid; 5054 5055 /* 5056 * duplicate the write operations while the dev replace 5057 * procedure is running. Since the copying of the old disk 5058 * to the new disk takes place at run time while the 5059 * filesystem is mounted writable, the regular write 5060 * operations to the old disk have to be duplicated to go 5061 * to the new disk as well. 5062 * Note that device->missing is handled by the caller, and 5063 * that the write to the old disk is already set up in the 5064 * stripes array. 5065 */ 5066 index_where_to_add = num_stripes; 5067 for (i = 0; i < num_stripes; i++) { 5068 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5069 /* write to new disk, too */ 5070 struct btrfs_bio_stripe *new = 5071 bbio->stripes + index_where_to_add; 5072 struct btrfs_bio_stripe *old = 5073 bbio->stripes + i; 5074 5075 new->physical = old->physical; 5076 new->length = old->length; 5077 new->dev = dev_replace->tgtdev; 5078 index_where_to_add++; 5079 max_errors++; 5080 } 5081 } 5082 num_stripes = index_where_to_add; 5083 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) && 5084 dev_replace->tgtdev != NULL) { 5085 u64 srcdev_devid = dev_replace->srcdev->devid; 5086 int index_srcdev = 0; 5087 int found = 0; 5088 u64 physical_of_found = 0; 5089 5090 /* 5091 * During the dev-replace procedure, the target drive can 5092 * also be used to read data in case it is needed to repair 5093 * a corrupt block elsewhere. This is possible if the 5094 * requested area is left of the left cursor. In this area, 5095 * the target drive is a full copy of the source drive. 5096 */ 5097 for (i = 0; i < num_stripes; i++) { 5098 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5099 /* 5100 * In case of DUP, in order to keep it 5101 * simple, only add the mirror with the 5102 * lowest physical address 5103 */ 5104 if (found && 5105 physical_of_found <= 5106 bbio->stripes[i].physical) 5107 continue; 5108 index_srcdev = i; 5109 found = 1; 5110 physical_of_found = bbio->stripes[i].physical; 5111 } 5112 } 5113 if (found) { 5114 u64 length = map->stripe_len; 5115 5116 if (physical_of_found + length <= 5117 dev_replace->cursor_left) { 5118 struct btrfs_bio_stripe *tgtdev_stripe = 5119 bbio->stripes + num_stripes; 5120 5121 tgtdev_stripe->physical = physical_of_found; 5122 tgtdev_stripe->length = 5123 bbio->stripes[index_srcdev].length; 5124 tgtdev_stripe->dev = dev_replace->tgtdev; 5125 5126 num_stripes++; 5127 } 5128 } 5129 } 5130 5131 *bbio_ret = bbio; 5132 bbio->num_stripes = num_stripes; 5133 bbio->max_errors = max_errors; 5134 bbio->mirror_num = mirror_num; 5135 5136 /* 5137 * this is the case that REQ_READ && dev_replace_is_ongoing && 5138 * mirror_num == num_stripes + 1 && dev_replace target drive is 5139 * available as a mirror 5140 */ 5141 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5142 WARN_ON(num_stripes > 1); 5143 bbio->stripes[0].dev = dev_replace->tgtdev; 5144 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5145 bbio->mirror_num = map->num_stripes + 1; 5146 } 5147 if (raid_map) { 5148 sort_parity_stripes(bbio, raid_map); 5149 *raid_map_ret = raid_map; 5150 } 5151 out: 5152 if (dev_replace_is_ongoing) 5153 btrfs_dev_replace_unlock(dev_replace); 5154 free_extent_map(em); 5155 return ret; 5156 } 5157 5158 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5159 u64 logical, u64 *length, 5160 struct btrfs_bio **bbio_ret, int mirror_num) 5161 { 5162 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5163 mirror_num, NULL); 5164 } 5165 5166 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 5167 u64 chunk_start, u64 physical, u64 devid, 5168 u64 **logical, int *naddrs, int *stripe_len) 5169 { 5170 struct extent_map_tree *em_tree = &map_tree->map_tree; 5171 struct extent_map *em; 5172 struct map_lookup *map; 5173 u64 *buf; 5174 u64 bytenr; 5175 u64 length; 5176 u64 stripe_nr; 5177 u64 rmap_len; 5178 int i, j, nr = 0; 5179 5180 read_lock(&em_tree->lock); 5181 em = lookup_extent_mapping(em_tree, chunk_start, 1); 5182 read_unlock(&em_tree->lock); 5183 5184 if (!em) { 5185 printk(KERN_ERR "btrfs: couldn't find em for chunk %Lu\n", 5186 chunk_start); 5187 return -EIO; 5188 } 5189 5190 if (em->start != chunk_start) { 5191 printk(KERN_ERR "btrfs: bad chunk start, em=%Lu, wanted=%Lu\n", 5192 em->start, chunk_start); 5193 free_extent_map(em); 5194 return -EIO; 5195 } 5196 map = (struct map_lookup *)em->bdev; 5197 5198 length = em->len; 5199 rmap_len = map->stripe_len; 5200 5201 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5202 do_div(length, map->num_stripes / map->sub_stripes); 5203 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5204 do_div(length, map->num_stripes); 5205 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 5206 BTRFS_BLOCK_GROUP_RAID6)) { 5207 do_div(length, nr_data_stripes(map)); 5208 rmap_len = map->stripe_len * nr_data_stripes(map); 5209 } 5210 5211 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); 5212 BUG_ON(!buf); /* -ENOMEM */ 5213 5214 for (i = 0; i < map->num_stripes; i++) { 5215 if (devid && map->stripes[i].dev->devid != devid) 5216 continue; 5217 if (map->stripes[i].physical > physical || 5218 map->stripes[i].physical + length <= physical) 5219 continue; 5220 5221 stripe_nr = physical - map->stripes[i].physical; 5222 do_div(stripe_nr, map->stripe_len); 5223 5224 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5225 stripe_nr = stripe_nr * map->num_stripes + i; 5226 do_div(stripe_nr, map->sub_stripes); 5227 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5228 stripe_nr = stripe_nr * map->num_stripes + i; 5229 } /* else if RAID[56], multiply by nr_data_stripes(). 5230 * Alternatively, just use rmap_len below instead of 5231 * map->stripe_len */ 5232 5233 bytenr = chunk_start + stripe_nr * rmap_len; 5234 WARN_ON(nr >= map->num_stripes); 5235 for (j = 0; j < nr; j++) { 5236 if (buf[j] == bytenr) 5237 break; 5238 } 5239 if (j == nr) { 5240 WARN_ON(nr >= map->num_stripes); 5241 buf[nr++] = bytenr; 5242 } 5243 } 5244 5245 *logical = buf; 5246 *naddrs = nr; 5247 *stripe_len = rmap_len; 5248 5249 free_extent_map(em); 5250 return 0; 5251 } 5252 5253 static void btrfs_end_bio(struct bio *bio, int err) 5254 { 5255 struct btrfs_bio *bbio = bio->bi_private; 5256 int is_orig_bio = 0; 5257 5258 if (err) { 5259 atomic_inc(&bbio->error); 5260 if (err == -EIO || err == -EREMOTEIO) { 5261 unsigned int stripe_index = 5262 btrfs_io_bio(bio)->stripe_index; 5263 struct btrfs_device *dev; 5264 5265 BUG_ON(stripe_index >= bbio->num_stripes); 5266 dev = bbio->stripes[stripe_index].dev; 5267 if (dev->bdev) { 5268 if (bio->bi_rw & WRITE) 5269 btrfs_dev_stat_inc(dev, 5270 BTRFS_DEV_STAT_WRITE_ERRS); 5271 else 5272 btrfs_dev_stat_inc(dev, 5273 BTRFS_DEV_STAT_READ_ERRS); 5274 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) 5275 btrfs_dev_stat_inc(dev, 5276 BTRFS_DEV_STAT_FLUSH_ERRS); 5277 btrfs_dev_stat_print_on_error(dev); 5278 } 5279 } 5280 } 5281 5282 if (bio == bbio->orig_bio) 5283 is_orig_bio = 1; 5284 5285 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5286 if (!is_orig_bio) { 5287 bio_put(bio); 5288 bio = bbio->orig_bio; 5289 } 5290 bio->bi_private = bbio->private; 5291 bio->bi_end_io = bbio->end_io; 5292 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5293 /* only send an error to the higher layers if it is 5294 * beyond the tolerance of the btrfs bio 5295 */ 5296 if (atomic_read(&bbio->error) > bbio->max_errors) { 5297 err = -EIO; 5298 } else { 5299 /* 5300 * this bio is actually up to date, we didn't 5301 * go over the max number of errors 5302 */ 5303 set_bit(BIO_UPTODATE, &bio->bi_flags); 5304 err = 0; 5305 } 5306 kfree(bbio); 5307 5308 bio_endio(bio, err); 5309 } else if (!is_orig_bio) { 5310 bio_put(bio); 5311 } 5312 } 5313 5314 struct async_sched { 5315 struct bio *bio; 5316 int rw; 5317 struct btrfs_fs_info *info; 5318 struct btrfs_work work; 5319 }; 5320 5321 /* 5322 * see run_scheduled_bios for a description of why bios are collected for 5323 * async submit. 5324 * 5325 * This will add one bio to the pending list for a device and make sure 5326 * the work struct is scheduled. 5327 */ 5328 static noinline void btrfs_schedule_bio(struct btrfs_root *root, 5329 struct btrfs_device *device, 5330 int rw, struct bio *bio) 5331 { 5332 int should_queue = 1; 5333 struct btrfs_pending_bios *pending_bios; 5334 5335 if (device->missing || !device->bdev) { 5336 bio_endio(bio, -EIO); 5337 return; 5338 } 5339 5340 /* don't bother with additional async steps for reads, right now */ 5341 if (!(rw & REQ_WRITE)) { 5342 bio_get(bio); 5343 btrfsic_submit_bio(rw, bio); 5344 bio_put(bio); 5345 return; 5346 } 5347 5348 /* 5349 * nr_async_bios allows us to reliably return congestion to the 5350 * higher layers. Otherwise, the async bio makes it appear we have 5351 * made progress against dirty pages when we've really just put it 5352 * on a queue for later 5353 */ 5354 atomic_inc(&root->fs_info->nr_async_bios); 5355 WARN_ON(bio->bi_next); 5356 bio->bi_next = NULL; 5357 bio->bi_rw |= rw; 5358 5359 spin_lock(&device->io_lock); 5360 if (bio->bi_rw & REQ_SYNC) 5361 pending_bios = &device->pending_sync_bios; 5362 else 5363 pending_bios = &device->pending_bios; 5364 5365 if (pending_bios->tail) 5366 pending_bios->tail->bi_next = bio; 5367 5368 pending_bios->tail = bio; 5369 if (!pending_bios->head) 5370 pending_bios->head = bio; 5371 if (device->running_pending) 5372 should_queue = 0; 5373 5374 spin_unlock(&device->io_lock); 5375 5376 if (should_queue) 5377 btrfs_queue_worker(&root->fs_info->submit_workers, 5378 &device->work); 5379 } 5380 5381 static int bio_size_ok(struct block_device *bdev, struct bio *bio, 5382 sector_t sector) 5383 { 5384 struct bio_vec *prev; 5385 struct request_queue *q = bdev_get_queue(bdev); 5386 unsigned short max_sectors = queue_max_sectors(q); 5387 struct bvec_merge_data bvm = { 5388 .bi_bdev = bdev, 5389 .bi_sector = sector, 5390 .bi_rw = bio->bi_rw, 5391 }; 5392 5393 if (bio->bi_vcnt == 0) { 5394 WARN_ON(1); 5395 return 1; 5396 } 5397 5398 prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 5399 if (bio_sectors(bio) > max_sectors) 5400 return 0; 5401 5402 if (!q->merge_bvec_fn) 5403 return 1; 5404 5405 bvm.bi_size = bio->bi_size - prev->bv_len; 5406 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) 5407 return 0; 5408 return 1; 5409 } 5410 5411 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5412 struct bio *bio, u64 physical, int dev_nr, 5413 int rw, int async) 5414 { 5415 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 5416 5417 bio->bi_private = bbio; 5418 btrfs_io_bio(bio)->stripe_index = dev_nr; 5419 bio->bi_end_io = btrfs_end_bio; 5420 bio->bi_sector = physical >> 9; 5421 #ifdef DEBUG 5422 { 5423 struct rcu_string *name; 5424 5425 rcu_read_lock(); 5426 name = rcu_dereference(dev->name); 5427 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu " 5428 "(%s id %llu), size=%u\n", rw, 5429 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev, 5430 name->str, dev->devid, bio->bi_size); 5431 rcu_read_unlock(); 5432 } 5433 #endif 5434 bio->bi_bdev = dev->bdev; 5435 if (async) 5436 btrfs_schedule_bio(root, dev, rw, bio); 5437 else 5438 btrfsic_submit_bio(rw, bio); 5439 } 5440 5441 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5442 struct bio *first_bio, struct btrfs_device *dev, 5443 int dev_nr, int rw, int async) 5444 { 5445 struct bio_vec *bvec = first_bio->bi_io_vec; 5446 struct bio *bio; 5447 int nr_vecs = bio_get_nr_vecs(dev->bdev); 5448 u64 physical = bbio->stripes[dev_nr].physical; 5449 5450 again: 5451 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS); 5452 if (!bio) 5453 return -ENOMEM; 5454 5455 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) { 5456 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5457 bvec->bv_offset) < bvec->bv_len) { 5458 u64 len = bio->bi_size; 5459 5460 atomic_inc(&bbio->stripes_pending); 5461 submit_stripe_bio(root, bbio, bio, physical, dev_nr, 5462 rw, async); 5463 physical += len; 5464 goto again; 5465 } 5466 bvec++; 5467 } 5468 5469 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async); 5470 return 0; 5471 } 5472 5473 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 5474 { 5475 atomic_inc(&bbio->error); 5476 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5477 bio->bi_private = bbio->private; 5478 bio->bi_end_io = bbio->end_io; 5479 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5480 bio->bi_sector = logical >> 9; 5481 kfree(bbio); 5482 bio_endio(bio, -EIO); 5483 } 5484 } 5485 5486 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 5487 int mirror_num, int async_submit) 5488 { 5489 struct btrfs_device *dev; 5490 struct bio *first_bio = bio; 5491 u64 logical = (u64)bio->bi_sector << 9; 5492 u64 length = 0; 5493 u64 map_length; 5494 u64 *raid_map = NULL; 5495 int ret; 5496 int dev_nr = 0; 5497 int total_devs = 1; 5498 struct btrfs_bio *bbio = NULL; 5499 5500 length = bio->bi_size; 5501 map_length = length; 5502 5503 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio, 5504 mirror_num, &raid_map); 5505 if (ret) /* -ENOMEM */ 5506 return ret; 5507 5508 total_devs = bbio->num_stripes; 5509 bbio->orig_bio = first_bio; 5510 bbio->private = first_bio->bi_private; 5511 bbio->end_io = first_bio->bi_end_io; 5512 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 5513 5514 if (raid_map) { 5515 /* In this case, map_length has been set to the length of 5516 a single stripe; not the whole write */ 5517 if (rw & WRITE) { 5518 return raid56_parity_write(root, bio, bbio, 5519 raid_map, map_length); 5520 } else { 5521 return raid56_parity_recover(root, bio, bbio, 5522 raid_map, map_length, 5523 mirror_num); 5524 } 5525 } 5526 5527 if (map_length < length) { 5528 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu", 5529 logical, length, map_length); 5530 BUG(); 5531 } 5532 5533 while (dev_nr < total_devs) { 5534 dev = bbio->stripes[dev_nr].dev; 5535 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) { 5536 bbio_error(bbio, first_bio, logical); 5537 dev_nr++; 5538 continue; 5539 } 5540 5541 /* 5542 * Check and see if we're ok with this bio based on it's size 5543 * and offset with the given device. 5544 */ 5545 if (!bio_size_ok(dev->bdev, first_bio, 5546 bbio->stripes[dev_nr].physical >> 9)) { 5547 ret = breakup_stripe_bio(root, bbio, first_bio, dev, 5548 dev_nr, rw, async_submit); 5549 BUG_ON(ret); 5550 dev_nr++; 5551 continue; 5552 } 5553 5554 if (dev_nr < total_devs - 1) { 5555 bio = btrfs_bio_clone(first_bio, GFP_NOFS); 5556 BUG_ON(!bio); /* -ENOMEM */ 5557 } else { 5558 bio = first_bio; 5559 } 5560 5561 submit_stripe_bio(root, bbio, bio, 5562 bbio->stripes[dev_nr].physical, dev_nr, rw, 5563 async_submit); 5564 dev_nr++; 5565 } 5566 return 0; 5567 } 5568 5569 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 5570 u8 *uuid, u8 *fsid) 5571 { 5572 struct btrfs_device *device; 5573 struct btrfs_fs_devices *cur_devices; 5574 5575 cur_devices = fs_info->fs_devices; 5576 while (cur_devices) { 5577 if (!fsid || 5578 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 5579 device = __find_device(&cur_devices->devices, 5580 devid, uuid); 5581 if (device) 5582 return device; 5583 } 5584 cur_devices = cur_devices->seed; 5585 } 5586 return NULL; 5587 } 5588 5589 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 5590 u64 devid, u8 *dev_uuid) 5591 { 5592 struct btrfs_device *device; 5593 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 5594 5595 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 5596 if (IS_ERR(device)) 5597 return NULL; 5598 5599 list_add(&device->dev_list, &fs_devices->devices); 5600 device->fs_devices = fs_devices; 5601 fs_devices->num_devices++; 5602 5603 device->missing = 1; 5604 fs_devices->missing_devices++; 5605 5606 return device; 5607 } 5608 5609 /** 5610 * btrfs_alloc_device - allocate struct btrfs_device 5611 * @fs_info: used only for generating a new devid, can be NULL if 5612 * devid is provided (i.e. @devid != NULL). 5613 * @devid: a pointer to devid for this device. If NULL a new devid 5614 * is generated. 5615 * @uuid: a pointer to UUID for this device. If NULL a new UUID 5616 * is generated. 5617 * 5618 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 5619 * on error. Returned struct is not linked onto any lists and can be 5620 * destroyed with kfree() right away. 5621 */ 5622 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 5623 const u64 *devid, 5624 const u8 *uuid) 5625 { 5626 struct btrfs_device *dev; 5627 u64 tmp; 5628 5629 if (!devid && !fs_info) { 5630 WARN_ON(1); 5631 return ERR_PTR(-EINVAL); 5632 } 5633 5634 dev = __alloc_device(); 5635 if (IS_ERR(dev)) 5636 return dev; 5637 5638 if (devid) 5639 tmp = *devid; 5640 else { 5641 int ret; 5642 5643 ret = find_next_devid(fs_info, &tmp); 5644 if (ret) { 5645 kfree(dev); 5646 return ERR_PTR(ret); 5647 } 5648 } 5649 dev->devid = tmp; 5650 5651 if (uuid) 5652 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 5653 else 5654 generate_random_uuid(dev->uuid); 5655 5656 dev->work.func = pending_bios_fn; 5657 5658 return dev; 5659 } 5660 5661 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 5662 struct extent_buffer *leaf, 5663 struct btrfs_chunk *chunk) 5664 { 5665 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5666 struct map_lookup *map; 5667 struct extent_map *em; 5668 u64 logical; 5669 u64 length; 5670 u64 devid; 5671 u8 uuid[BTRFS_UUID_SIZE]; 5672 int num_stripes; 5673 int ret; 5674 int i; 5675 5676 logical = key->offset; 5677 length = btrfs_chunk_length(leaf, chunk); 5678 5679 read_lock(&map_tree->map_tree.lock); 5680 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 5681 read_unlock(&map_tree->map_tree.lock); 5682 5683 /* already mapped? */ 5684 if (em && em->start <= logical && em->start + em->len > logical) { 5685 free_extent_map(em); 5686 return 0; 5687 } else if (em) { 5688 free_extent_map(em); 5689 } 5690 5691 em = alloc_extent_map(); 5692 if (!em) 5693 return -ENOMEM; 5694 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 5695 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 5696 if (!map) { 5697 free_extent_map(em); 5698 return -ENOMEM; 5699 } 5700 5701 em->bdev = (struct block_device *)map; 5702 em->start = logical; 5703 em->len = length; 5704 em->orig_start = 0; 5705 em->block_start = 0; 5706 em->block_len = em->len; 5707 5708 map->num_stripes = num_stripes; 5709 map->io_width = btrfs_chunk_io_width(leaf, chunk); 5710 map->io_align = btrfs_chunk_io_align(leaf, chunk); 5711 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 5712 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 5713 map->type = btrfs_chunk_type(leaf, chunk); 5714 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 5715 for (i = 0; i < num_stripes; i++) { 5716 map->stripes[i].physical = 5717 btrfs_stripe_offset_nr(leaf, chunk, i); 5718 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 5719 read_extent_buffer(leaf, uuid, (unsigned long) 5720 btrfs_stripe_dev_uuid_nr(chunk, i), 5721 BTRFS_UUID_SIZE); 5722 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid, 5723 uuid, NULL); 5724 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 5725 kfree(map); 5726 free_extent_map(em); 5727 return -EIO; 5728 } 5729 if (!map->stripes[i].dev) { 5730 map->stripes[i].dev = 5731 add_missing_dev(root, devid, uuid); 5732 if (!map->stripes[i].dev) { 5733 kfree(map); 5734 free_extent_map(em); 5735 return -EIO; 5736 } 5737 } 5738 map->stripes[i].dev->in_fs_metadata = 1; 5739 } 5740 5741 write_lock(&map_tree->map_tree.lock); 5742 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 5743 write_unlock(&map_tree->map_tree.lock); 5744 BUG_ON(ret); /* Tree corruption */ 5745 free_extent_map(em); 5746 5747 return 0; 5748 } 5749 5750 static void fill_device_from_item(struct extent_buffer *leaf, 5751 struct btrfs_dev_item *dev_item, 5752 struct btrfs_device *device) 5753 { 5754 unsigned long ptr; 5755 5756 device->devid = btrfs_device_id(leaf, dev_item); 5757 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 5758 device->total_bytes = device->disk_total_bytes; 5759 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 5760 device->type = btrfs_device_type(leaf, dev_item); 5761 device->io_align = btrfs_device_io_align(leaf, dev_item); 5762 device->io_width = btrfs_device_io_width(leaf, dev_item); 5763 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 5764 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 5765 device->is_tgtdev_for_dev_replace = 0; 5766 5767 ptr = btrfs_device_uuid(dev_item); 5768 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 5769 } 5770 5771 static int open_seed_devices(struct btrfs_root *root, u8 *fsid) 5772 { 5773 struct btrfs_fs_devices *fs_devices; 5774 int ret; 5775 5776 BUG_ON(!mutex_is_locked(&uuid_mutex)); 5777 5778 fs_devices = root->fs_info->fs_devices->seed; 5779 while (fs_devices) { 5780 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 5781 ret = 0; 5782 goto out; 5783 } 5784 fs_devices = fs_devices->seed; 5785 } 5786 5787 fs_devices = find_fsid(fsid); 5788 if (!fs_devices) { 5789 ret = -ENOENT; 5790 goto out; 5791 } 5792 5793 fs_devices = clone_fs_devices(fs_devices); 5794 if (IS_ERR(fs_devices)) { 5795 ret = PTR_ERR(fs_devices); 5796 goto out; 5797 } 5798 5799 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 5800 root->fs_info->bdev_holder); 5801 if (ret) { 5802 free_fs_devices(fs_devices); 5803 goto out; 5804 } 5805 5806 if (!fs_devices->seeding) { 5807 __btrfs_close_devices(fs_devices); 5808 free_fs_devices(fs_devices); 5809 ret = -EINVAL; 5810 goto out; 5811 } 5812 5813 fs_devices->seed = root->fs_info->fs_devices->seed; 5814 root->fs_info->fs_devices->seed = fs_devices; 5815 out: 5816 return ret; 5817 } 5818 5819 static int read_one_dev(struct btrfs_root *root, 5820 struct extent_buffer *leaf, 5821 struct btrfs_dev_item *dev_item) 5822 { 5823 struct btrfs_device *device; 5824 u64 devid; 5825 int ret; 5826 u8 fs_uuid[BTRFS_UUID_SIZE]; 5827 u8 dev_uuid[BTRFS_UUID_SIZE]; 5828 5829 devid = btrfs_device_id(leaf, dev_item); 5830 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 5831 BTRFS_UUID_SIZE); 5832 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 5833 BTRFS_UUID_SIZE); 5834 5835 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 5836 ret = open_seed_devices(root, fs_uuid); 5837 if (ret && !btrfs_test_opt(root, DEGRADED)) 5838 return ret; 5839 } 5840 5841 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid); 5842 if (!device || !device->bdev) { 5843 if (!btrfs_test_opt(root, DEGRADED)) 5844 return -EIO; 5845 5846 if (!device) { 5847 btrfs_warn(root->fs_info, "devid %llu missing", devid); 5848 device = add_missing_dev(root, devid, dev_uuid); 5849 if (!device) 5850 return -ENOMEM; 5851 } else if (!device->missing) { 5852 /* 5853 * this happens when a device that was properly setup 5854 * in the device info lists suddenly goes bad. 5855 * device->bdev is NULL, and so we have to set 5856 * device->missing to one here 5857 */ 5858 root->fs_info->fs_devices->missing_devices++; 5859 device->missing = 1; 5860 } 5861 } 5862 5863 if (device->fs_devices != root->fs_info->fs_devices) { 5864 BUG_ON(device->writeable); 5865 if (device->generation != 5866 btrfs_device_generation(leaf, dev_item)) 5867 return -EINVAL; 5868 } 5869 5870 fill_device_from_item(leaf, dev_item, device); 5871 device->in_fs_metadata = 1; 5872 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 5873 device->fs_devices->total_rw_bytes += device->total_bytes; 5874 spin_lock(&root->fs_info->free_chunk_lock); 5875 root->fs_info->free_chunk_space += device->total_bytes - 5876 device->bytes_used; 5877 spin_unlock(&root->fs_info->free_chunk_lock); 5878 } 5879 ret = 0; 5880 return ret; 5881 } 5882 5883 int btrfs_read_sys_array(struct btrfs_root *root) 5884 { 5885 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 5886 struct extent_buffer *sb; 5887 struct btrfs_disk_key *disk_key; 5888 struct btrfs_chunk *chunk; 5889 u8 *ptr; 5890 unsigned long sb_ptr; 5891 int ret = 0; 5892 u32 num_stripes; 5893 u32 array_size; 5894 u32 len = 0; 5895 u32 cur; 5896 struct btrfs_key key; 5897 5898 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, 5899 BTRFS_SUPER_INFO_SIZE); 5900 if (!sb) 5901 return -ENOMEM; 5902 btrfs_set_buffer_uptodate(sb); 5903 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 5904 /* 5905 * The sb extent buffer is artifical and just used to read the system array. 5906 * btrfs_set_buffer_uptodate() call does not properly mark all it's 5907 * pages up-to-date when the page is larger: extent does not cover the 5908 * whole page and consequently check_page_uptodate does not find all 5909 * the page's extents up-to-date (the hole beyond sb), 5910 * write_extent_buffer then triggers a WARN_ON. 5911 * 5912 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 5913 * but sb spans only this function. Add an explicit SetPageUptodate call 5914 * to silence the warning eg. on PowerPC 64. 5915 */ 5916 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) 5917 SetPageUptodate(sb->pages[0]); 5918 5919 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 5920 array_size = btrfs_super_sys_array_size(super_copy); 5921 5922 ptr = super_copy->sys_chunk_array; 5923 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); 5924 cur = 0; 5925 5926 while (cur < array_size) { 5927 disk_key = (struct btrfs_disk_key *)ptr; 5928 btrfs_disk_key_to_cpu(&key, disk_key); 5929 5930 len = sizeof(*disk_key); ptr += len; 5931 sb_ptr += len; 5932 cur += len; 5933 5934 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 5935 chunk = (struct btrfs_chunk *)sb_ptr; 5936 ret = read_one_chunk(root, &key, sb, chunk); 5937 if (ret) 5938 break; 5939 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 5940 len = btrfs_chunk_item_size(num_stripes); 5941 } else { 5942 ret = -EIO; 5943 break; 5944 } 5945 ptr += len; 5946 sb_ptr += len; 5947 cur += len; 5948 } 5949 free_extent_buffer(sb); 5950 return ret; 5951 } 5952 5953 int btrfs_read_chunk_tree(struct btrfs_root *root) 5954 { 5955 struct btrfs_path *path; 5956 struct extent_buffer *leaf; 5957 struct btrfs_key key; 5958 struct btrfs_key found_key; 5959 int ret; 5960 int slot; 5961 5962 root = root->fs_info->chunk_root; 5963 5964 path = btrfs_alloc_path(); 5965 if (!path) 5966 return -ENOMEM; 5967 5968 mutex_lock(&uuid_mutex); 5969 lock_chunks(root); 5970 5971 /* 5972 * Read all device items, and then all the chunk items. All 5973 * device items are found before any chunk item (their object id 5974 * is smaller than the lowest possible object id for a chunk 5975 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 5976 */ 5977 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 5978 key.offset = 0; 5979 key.type = 0; 5980 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5981 if (ret < 0) 5982 goto error; 5983 while (1) { 5984 leaf = path->nodes[0]; 5985 slot = path->slots[0]; 5986 if (slot >= btrfs_header_nritems(leaf)) { 5987 ret = btrfs_next_leaf(root, path); 5988 if (ret == 0) 5989 continue; 5990 if (ret < 0) 5991 goto error; 5992 break; 5993 } 5994 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5995 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 5996 struct btrfs_dev_item *dev_item; 5997 dev_item = btrfs_item_ptr(leaf, slot, 5998 struct btrfs_dev_item); 5999 ret = read_one_dev(root, leaf, dev_item); 6000 if (ret) 6001 goto error; 6002 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6003 struct btrfs_chunk *chunk; 6004 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6005 ret = read_one_chunk(root, &found_key, leaf, chunk); 6006 if (ret) 6007 goto error; 6008 } 6009 path->slots[0]++; 6010 } 6011 ret = 0; 6012 error: 6013 unlock_chunks(root); 6014 mutex_unlock(&uuid_mutex); 6015 6016 btrfs_free_path(path); 6017 return ret; 6018 } 6019 6020 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6021 { 6022 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6023 struct btrfs_device *device; 6024 6025 mutex_lock(&fs_devices->device_list_mutex); 6026 list_for_each_entry(device, &fs_devices->devices, dev_list) 6027 device->dev_root = fs_info->dev_root; 6028 mutex_unlock(&fs_devices->device_list_mutex); 6029 } 6030 6031 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6032 { 6033 int i; 6034 6035 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6036 btrfs_dev_stat_reset(dev, i); 6037 } 6038 6039 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6040 { 6041 struct btrfs_key key; 6042 struct btrfs_key found_key; 6043 struct btrfs_root *dev_root = fs_info->dev_root; 6044 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6045 struct extent_buffer *eb; 6046 int slot; 6047 int ret = 0; 6048 struct btrfs_device *device; 6049 struct btrfs_path *path = NULL; 6050 int i; 6051 6052 path = btrfs_alloc_path(); 6053 if (!path) { 6054 ret = -ENOMEM; 6055 goto out; 6056 } 6057 6058 mutex_lock(&fs_devices->device_list_mutex); 6059 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6060 int item_size; 6061 struct btrfs_dev_stats_item *ptr; 6062 6063 key.objectid = 0; 6064 key.type = BTRFS_DEV_STATS_KEY; 6065 key.offset = device->devid; 6066 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6067 if (ret) { 6068 __btrfs_reset_dev_stats(device); 6069 device->dev_stats_valid = 1; 6070 btrfs_release_path(path); 6071 continue; 6072 } 6073 slot = path->slots[0]; 6074 eb = path->nodes[0]; 6075 btrfs_item_key_to_cpu(eb, &found_key, slot); 6076 item_size = btrfs_item_size_nr(eb, slot); 6077 6078 ptr = btrfs_item_ptr(eb, slot, 6079 struct btrfs_dev_stats_item); 6080 6081 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6082 if (item_size >= (1 + i) * sizeof(__le64)) 6083 btrfs_dev_stat_set(device, i, 6084 btrfs_dev_stats_value(eb, ptr, i)); 6085 else 6086 btrfs_dev_stat_reset(device, i); 6087 } 6088 6089 device->dev_stats_valid = 1; 6090 btrfs_dev_stat_print_on_load(device); 6091 btrfs_release_path(path); 6092 } 6093 mutex_unlock(&fs_devices->device_list_mutex); 6094 6095 out: 6096 btrfs_free_path(path); 6097 return ret < 0 ? ret : 0; 6098 } 6099 6100 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 6101 struct btrfs_root *dev_root, 6102 struct btrfs_device *device) 6103 { 6104 struct btrfs_path *path; 6105 struct btrfs_key key; 6106 struct extent_buffer *eb; 6107 struct btrfs_dev_stats_item *ptr; 6108 int ret; 6109 int i; 6110 6111 key.objectid = 0; 6112 key.type = BTRFS_DEV_STATS_KEY; 6113 key.offset = device->devid; 6114 6115 path = btrfs_alloc_path(); 6116 BUG_ON(!path); 6117 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 6118 if (ret < 0) { 6119 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n", 6120 ret, rcu_str_deref(device->name)); 6121 goto out; 6122 } 6123 6124 if (ret == 0 && 6125 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 6126 /* need to delete old one and insert a new one */ 6127 ret = btrfs_del_item(trans, dev_root, path); 6128 if (ret != 0) { 6129 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n", 6130 rcu_str_deref(device->name), ret); 6131 goto out; 6132 } 6133 ret = 1; 6134 } 6135 6136 if (ret == 1) { 6137 /* need to insert a new item */ 6138 btrfs_release_path(path); 6139 ret = btrfs_insert_empty_item(trans, dev_root, path, 6140 &key, sizeof(*ptr)); 6141 if (ret < 0) { 6142 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n", 6143 rcu_str_deref(device->name), ret); 6144 goto out; 6145 } 6146 } 6147 6148 eb = path->nodes[0]; 6149 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 6150 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6151 btrfs_set_dev_stats_value(eb, ptr, i, 6152 btrfs_dev_stat_read(device, i)); 6153 btrfs_mark_buffer_dirty(eb); 6154 6155 out: 6156 btrfs_free_path(path); 6157 return ret; 6158 } 6159 6160 /* 6161 * called from commit_transaction. Writes all changed device stats to disk. 6162 */ 6163 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 6164 struct btrfs_fs_info *fs_info) 6165 { 6166 struct btrfs_root *dev_root = fs_info->dev_root; 6167 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6168 struct btrfs_device *device; 6169 int ret = 0; 6170 6171 mutex_lock(&fs_devices->device_list_mutex); 6172 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6173 if (!device->dev_stats_valid || !device->dev_stats_dirty) 6174 continue; 6175 6176 ret = update_dev_stat_item(trans, dev_root, device); 6177 if (!ret) 6178 device->dev_stats_dirty = 0; 6179 } 6180 mutex_unlock(&fs_devices->device_list_mutex); 6181 6182 return ret; 6183 } 6184 6185 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 6186 { 6187 btrfs_dev_stat_inc(dev, index); 6188 btrfs_dev_stat_print_on_error(dev); 6189 } 6190 6191 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 6192 { 6193 if (!dev->dev_stats_valid) 6194 return; 6195 printk_ratelimited_in_rcu(KERN_ERR 6196 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6197 rcu_str_deref(dev->name), 6198 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6199 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6200 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6201 btrfs_dev_stat_read(dev, 6202 BTRFS_DEV_STAT_CORRUPTION_ERRS), 6203 btrfs_dev_stat_read(dev, 6204 BTRFS_DEV_STAT_GENERATION_ERRS)); 6205 } 6206 6207 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 6208 { 6209 int i; 6210 6211 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6212 if (btrfs_dev_stat_read(dev, i) != 0) 6213 break; 6214 if (i == BTRFS_DEV_STAT_VALUES_MAX) 6215 return; /* all values == 0, suppress message */ 6216 6217 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6218 rcu_str_deref(dev->name), 6219 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6220 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6221 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6222 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6223 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6224 } 6225 6226 int btrfs_get_dev_stats(struct btrfs_root *root, 6227 struct btrfs_ioctl_get_dev_stats *stats) 6228 { 6229 struct btrfs_device *dev; 6230 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6231 int i; 6232 6233 mutex_lock(&fs_devices->device_list_mutex); 6234 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL); 6235 mutex_unlock(&fs_devices->device_list_mutex); 6236 6237 if (!dev) { 6238 printk(KERN_WARNING 6239 "btrfs: get dev_stats failed, device not found\n"); 6240 return -ENODEV; 6241 } else if (!dev->dev_stats_valid) { 6242 printk(KERN_WARNING 6243 "btrfs: get dev_stats failed, not yet valid\n"); 6244 return -ENODEV; 6245 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 6246 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6247 if (stats->nr_items > i) 6248 stats->values[i] = 6249 btrfs_dev_stat_read_and_reset(dev, i); 6250 else 6251 btrfs_dev_stat_reset(dev, i); 6252 } 6253 } else { 6254 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6255 if (stats->nr_items > i) 6256 stats->values[i] = btrfs_dev_stat_read(dev, i); 6257 } 6258 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 6259 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 6260 return 0; 6261 } 6262 6263 int btrfs_scratch_superblock(struct btrfs_device *device) 6264 { 6265 struct buffer_head *bh; 6266 struct btrfs_super_block *disk_super; 6267 6268 bh = btrfs_read_dev_super(device->bdev); 6269 if (!bh) 6270 return -EINVAL; 6271 disk_super = (struct btrfs_super_block *)bh->b_data; 6272 6273 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 6274 set_buffer_dirty(bh); 6275 sync_dirty_buffer(bh); 6276 brelse(bh); 6277 6278 return 0; 6279 } 6280