xref: /openbmc/linux/fs/btrfs/volumes.c (revision 06ff634c0dae791c17ceeeb60c74e14470d76898)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/ratelimit.h>
11 #include <linux/kthread.h>
12 #include <linux/raid/pq.h>
13 #include <linux/semaphore.h>
14 #include <linux/uuid.h>
15 #include <linux/list_sort.h>
16 #include "misc.h"
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "dev-replace.h"
28 #include "sysfs.h"
29 #include "tree-checker.h"
30 #include "space-info.h"
31 #include "block-group.h"
32 #include "discard.h"
33 
34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35 	[BTRFS_RAID_RAID10] = {
36 		.sub_stripes	= 2,
37 		.dev_stripes	= 1,
38 		.devs_max	= 0,	/* 0 == as many as possible */
39 		.devs_min	= 4,
40 		.tolerated_failures = 1,
41 		.devs_increment	= 2,
42 		.ncopies	= 2,
43 		.nparity        = 0,
44 		.raid_name	= "raid10",
45 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
46 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
47 	},
48 	[BTRFS_RAID_RAID1] = {
49 		.sub_stripes	= 1,
50 		.dev_stripes	= 1,
51 		.devs_max	= 2,
52 		.devs_min	= 2,
53 		.tolerated_failures = 1,
54 		.devs_increment	= 2,
55 		.ncopies	= 2,
56 		.nparity        = 0,
57 		.raid_name	= "raid1",
58 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
59 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
60 	},
61 	[BTRFS_RAID_RAID1C3] = {
62 		.sub_stripes	= 1,
63 		.dev_stripes	= 1,
64 		.devs_max	= 3,
65 		.devs_min	= 3,
66 		.tolerated_failures = 2,
67 		.devs_increment	= 3,
68 		.ncopies	= 3,
69 		.nparity        = 0,
70 		.raid_name	= "raid1c3",
71 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
72 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
73 	},
74 	[BTRFS_RAID_RAID1C4] = {
75 		.sub_stripes	= 1,
76 		.dev_stripes	= 1,
77 		.devs_max	= 4,
78 		.devs_min	= 4,
79 		.tolerated_failures = 3,
80 		.devs_increment	= 4,
81 		.ncopies	= 4,
82 		.nparity        = 0,
83 		.raid_name	= "raid1c4",
84 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
85 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
86 	},
87 	[BTRFS_RAID_DUP] = {
88 		.sub_stripes	= 1,
89 		.dev_stripes	= 2,
90 		.devs_max	= 1,
91 		.devs_min	= 1,
92 		.tolerated_failures = 0,
93 		.devs_increment	= 1,
94 		.ncopies	= 2,
95 		.nparity        = 0,
96 		.raid_name	= "dup",
97 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
98 		.mindev_error	= 0,
99 	},
100 	[BTRFS_RAID_RAID0] = {
101 		.sub_stripes	= 1,
102 		.dev_stripes	= 1,
103 		.devs_max	= 0,
104 		.devs_min	= 2,
105 		.tolerated_failures = 0,
106 		.devs_increment	= 1,
107 		.ncopies	= 1,
108 		.nparity        = 0,
109 		.raid_name	= "raid0",
110 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
111 		.mindev_error	= 0,
112 	},
113 	[BTRFS_RAID_SINGLE] = {
114 		.sub_stripes	= 1,
115 		.dev_stripes	= 1,
116 		.devs_max	= 1,
117 		.devs_min	= 1,
118 		.tolerated_failures = 0,
119 		.devs_increment	= 1,
120 		.ncopies	= 1,
121 		.nparity        = 0,
122 		.raid_name	= "single",
123 		.bg_flag	= 0,
124 		.mindev_error	= 0,
125 	},
126 	[BTRFS_RAID_RAID5] = {
127 		.sub_stripes	= 1,
128 		.dev_stripes	= 1,
129 		.devs_max	= 0,
130 		.devs_min	= 2,
131 		.tolerated_failures = 1,
132 		.devs_increment	= 1,
133 		.ncopies	= 1,
134 		.nparity        = 1,
135 		.raid_name	= "raid5",
136 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
137 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
138 	},
139 	[BTRFS_RAID_RAID6] = {
140 		.sub_stripes	= 1,
141 		.dev_stripes	= 1,
142 		.devs_max	= 0,
143 		.devs_min	= 3,
144 		.tolerated_failures = 2,
145 		.devs_increment	= 1,
146 		.ncopies	= 1,
147 		.nparity        = 2,
148 		.raid_name	= "raid6",
149 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
150 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
151 	},
152 };
153 
154 const char *btrfs_bg_type_to_raid_name(u64 flags)
155 {
156 	const int index = btrfs_bg_flags_to_raid_index(flags);
157 
158 	if (index >= BTRFS_NR_RAID_TYPES)
159 		return NULL;
160 
161 	return btrfs_raid_array[index].raid_name;
162 }
163 
164 /*
165  * Fill @buf with textual description of @bg_flags, no more than @size_buf
166  * bytes including terminating null byte.
167  */
168 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
169 {
170 	int i;
171 	int ret;
172 	char *bp = buf;
173 	u64 flags = bg_flags;
174 	u32 size_bp = size_buf;
175 
176 	if (!flags) {
177 		strcpy(bp, "NONE");
178 		return;
179 	}
180 
181 #define DESCRIBE_FLAG(flag, desc)						\
182 	do {								\
183 		if (flags & (flag)) {					\
184 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
185 			if (ret < 0 || ret >= size_bp)			\
186 				goto out_overflow;			\
187 			size_bp -= ret;					\
188 			bp += ret;					\
189 			flags &= ~(flag);				\
190 		}							\
191 	} while (0)
192 
193 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
194 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
195 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
196 
197 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
198 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
199 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
200 			      btrfs_raid_array[i].raid_name);
201 #undef DESCRIBE_FLAG
202 
203 	if (flags) {
204 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
205 		size_bp -= ret;
206 	}
207 
208 	if (size_bp < size_buf)
209 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
210 
211 	/*
212 	 * The text is trimmed, it's up to the caller to provide sufficiently
213 	 * large buffer
214 	 */
215 out_overflow:;
216 }
217 
218 static int init_first_rw_device(struct btrfs_trans_handle *trans);
219 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
220 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
221 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
222 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
223 			     enum btrfs_map_op op,
224 			     u64 logical, u64 *length,
225 			     struct btrfs_bio **bbio_ret,
226 			     int mirror_num, int need_raid_map);
227 
228 /*
229  * Device locking
230  * ==============
231  *
232  * There are several mutexes that protect manipulation of devices and low-level
233  * structures like chunks but not block groups, extents or files
234  *
235  * uuid_mutex (global lock)
236  * ------------------------
237  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
238  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
239  * device) or requested by the device= mount option
240  *
241  * the mutex can be very coarse and can cover long-running operations
242  *
243  * protects: updates to fs_devices counters like missing devices, rw devices,
244  * seeding, structure cloning, opening/closing devices at mount/umount time
245  *
246  * global::fs_devs - add, remove, updates to the global list
247  *
248  * does not protect: manipulation of the fs_devices::devices list!
249  *
250  * btrfs_device::name - renames (write side), read is RCU
251  *
252  * fs_devices::device_list_mutex (per-fs, with RCU)
253  * ------------------------------------------------
254  * protects updates to fs_devices::devices, ie. adding and deleting
255  *
256  * simple list traversal with read-only actions can be done with RCU protection
257  *
258  * may be used to exclude some operations from running concurrently without any
259  * modifications to the list (see write_all_supers)
260  *
261  * balance_mutex
262  * -------------
263  * protects balance structures (status, state) and context accessed from
264  * several places (internally, ioctl)
265  *
266  * chunk_mutex
267  * -----------
268  * protects chunks, adding or removing during allocation, trim or when a new
269  * device is added/removed. Additionally it also protects post_commit_list of
270  * individual devices, since they can be added to the transaction's
271  * post_commit_list only with chunk_mutex held.
272  *
273  * cleaner_mutex
274  * -------------
275  * a big lock that is held by the cleaner thread and prevents running subvolume
276  * cleaning together with relocation or delayed iputs
277  *
278  *
279  * Lock nesting
280  * ============
281  *
282  * uuid_mutex
283  *   volume_mutex
284  *     device_list_mutex
285  *       chunk_mutex
286  *     balance_mutex
287  *
288  *
289  * Exclusive operations, BTRFS_FS_EXCL_OP
290  * ======================================
291  *
292  * Maintains the exclusivity of the following operations that apply to the
293  * whole filesystem and cannot run in parallel.
294  *
295  * - Balance (*)
296  * - Device add
297  * - Device remove
298  * - Device replace (*)
299  * - Resize
300  *
301  * The device operations (as above) can be in one of the following states:
302  *
303  * - Running state
304  * - Paused state
305  * - Completed state
306  *
307  * Only device operations marked with (*) can go into the Paused state for the
308  * following reasons:
309  *
310  * - ioctl (only Balance can be Paused through ioctl)
311  * - filesystem remounted as read-only
312  * - filesystem unmounted and mounted as read-only
313  * - system power-cycle and filesystem mounted as read-only
314  * - filesystem or device errors leading to forced read-only
315  *
316  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
317  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
318  * A device operation in Paused or Running state can be canceled or resumed
319  * either by ioctl (Balance only) or when remounted as read-write.
320  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
321  * completed.
322  */
323 
324 DEFINE_MUTEX(uuid_mutex);
325 static LIST_HEAD(fs_uuids);
326 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
327 {
328 	return &fs_uuids;
329 }
330 
331 /*
332  * alloc_fs_devices - allocate struct btrfs_fs_devices
333  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
334  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
335  *
336  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
337  * The returned struct is not linked onto any lists and can be destroyed with
338  * kfree() right away.
339  */
340 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
341 						 const u8 *metadata_fsid)
342 {
343 	struct btrfs_fs_devices *fs_devs;
344 
345 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
346 	if (!fs_devs)
347 		return ERR_PTR(-ENOMEM);
348 
349 	mutex_init(&fs_devs->device_list_mutex);
350 
351 	INIT_LIST_HEAD(&fs_devs->devices);
352 	INIT_LIST_HEAD(&fs_devs->alloc_list);
353 	INIT_LIST_HEAD(&fs_devs->fs_list);
354 	if (fsid)
355 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
356 
357 	if (metadata_fsid)
358 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
359 	else if (fsid)
360 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
361 
362 	return fs_devs;
363 }
364 
365 void btrfs_free_device(struct btrfs_device *device)
366 {
367 	WARN_ON(!list_empty(&device->post_commit_list));
368 	rcu_string_free(device->name);
369 	extent_io_tree_release(&device->alloc_state);
370 	bio_put(device->flush_bio);
371 	kfree(device);
372 }
373 
374 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
375 {
376 	struct btrfs_device *device;
377 	WARN_ON(fs_devices->opened);
378 	while (!list_empty(&fs_devices->devices)) {
379 		device = list_entry(fs_devices->devices.next,
380 				    struct btrfs_device, dev_list);
381 		list_del(&device->dev_list);
382 		btrfs_free_device(device);
383 	}
384 	kfree(fs_devices);
385 }
386 
387 void __exit btrfs_cleanup_fs_uuids(void)
388 {
389 	struct btrfs_fs_devices *fs_devices;
390 
391 	while (!list_empty(&fs_uuids)) {
392 		fs_devices = list_entry(fs_uuids.next,
393 					struct btrfs_fs_devices, fs_list);
394 		list_del(&fs_devices->fs_list);
395 		free_fs_devices(fs_devices);
396 	}
397 }
398 
399 /*
400  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
401  * Returned struct is not linked onto any lists and must be destroyed using
402  * btrfs_free_device.
403  */
404 static struct btrfs_device *__alloc_device(void)
405 {
406 	struct btrfs_device *dev;
407 
408 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
409 	if (!dev)
410 		return ERR_PTR(-ENOMEM);
411 
412 	/*
413 	 * Preallocate a bio that's always going to be used for flushing device
414 	 * barriers and matches the device lifespan
415 	 */
416 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
417 	if (!dev->flush_bio) {
418 		kfree(dev);
419 		return ERR_PTR(-ENOMEM);
420 	}
421 
422 	INIT_LIST_HEAD(&dev->dev_list);
423 	INIT_LIST_HEAD(&dev->dev_alloc_list);
424 	INIT_LIST_HEAD(&dev->post_commit_list);
425 
426 	atomic_set(&dev->reada_in_flight, 0);
427 	atomic_set(&dev->dev_stats_ccnt, 0);
428 	btrfs_device_data_ordered_init(dev);
429 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
430 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
431 	extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
432 
433 	return dev;
434 }
435 
436 static noinline struct btrfs_fs_devices *find_fsid(
437 		const u8 *fsid, const u8 *metadata_fsid)
438 {
439 	struct btrfs_fs_devices *fs_devices;
440 
441 	ASSERT(fsid);
442 
443 	/* Handle non-split brain cases */
444 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
445 		if (metadata_fsid) {
446 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
447 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
448 				      BTRFS_FSID_SIZE) == 0)
449 				return fs_devices;
450 		} else {
451 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
452 				return fs_devices;
453 		}
454 	}
455 	return NULL;
456 }
457 
458 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
459 				struct btrfs_super_block *disk_super)
460 {
461 
462 	struct btrfs_fs_devices *fs_devices;
463 
464 	/*
465 	 * Handle scanned device having completed its fsid change but
466 	 * belonging to a fs_devices that was created by first scanning
467 	 * a device which didn't have its fsid/metadata_uuid changed
468 	 * at all and the CHANGING_FSID_V2 flag set.
469 	 */
470 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
471 		if (fs_devices->fsid_change &&
472 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
473 			   BTRFS_FSID_SIZE) == 0 &&
474 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
475 			   BTRFS_FSID_SIZE) == 0) {
476 			return fs_devices;
477 		}
478 	}
479 	/*
480 	 * Handle scanned device having completed its fsid change but
481 	 * belonging to a fs_devices that was created by a device that
482 	 * has an outdated pair of fsid/metadata_uuid and
483 	 * CHANGING_FSID_V2 flag set.
484 	 */
485 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
486 		if (fs_devices->fsid_change &&
487 		    memcmp(fs_devices->metadata_uuid,
488 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
489 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
490 			   BTRFS_FSID_SIZE) == 0) {
491 			return fs_devices;
492 		}
493 	}
494 
495 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
496 }
497 
498 
499 static int
500 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
501 		      int flush, struct block_device **bdev,
502 		      struct btrfs_super_block **disk_super)
503 {
504 	int ret;
505 
506 	*bdev = blkdev_get_by_path(device_path, flags, holder);
507 
508 	if (IS_ERR(*bdev)) {
509 		ret = PTR_ERR(*bdev);
510 		goto error;
511 	}
512 
513 	if (flush)
514 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
515 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
516 	if (ret) {
517 		blkdev_put(*bdev, flags);
518 		goto error;
519 	}
520 	invalidate_bdev(*bdev);
521 	*disk_super = btrfs_read_dev_super(*bdev);
522 	if (IS_ERR(*disk_super)) {
523 		ret = PTR_ERR(*disk_super);
524 		blkdev_put(*bdev, flags);
525 		goto error;
526 	}
527 
528 	return 0;
529 
530 error:
531 	*bdev = NULL;
532 	return ret;
533 }
534 
535 static bool device_path_matched(const char *path, struct btrfs_device *device)
536 {
537 	int found;
538 
539 	rcu_read_lock();
540 	found = strcmp(rcu_str_deref(device->name), path);
541 	rcu_read_unlock();
542 
543 	return found == 0;
544 }
545 
546 /*
547  *  Search and remove all stale (devices which are not mounted) devices.
548  *  When both inputs are NULL, it will search and release all stale devices.
549  *  path:	Optional. When provided will it release all unmounted devices
550  *		matching this path only.
551  *  skip_dev:	Optional. Will skip this device when searching for the stale
552  *		devices.
553  *  Return:	0 for success or if @path is NULL.
554  * 		-EBUSY if @path is a mounted device.
555  * 		-ENOENT if @path does not match any device in the list.
556  */
557 static int btrfs_free_stale_devices(const char *path,
558 				     struct btrfs_device *skip_device)
559 {
560 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
561 	struct btrfs_device *device, *tmp_device;
562 	int ret = 0;
563 
564 	if (path)
565 		ret = -ENOENT;
566 
567 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
568 
569 		mutex_lock(&fs_devices->device_list_mutex);
570 		list_for_each_entry_safe(device, tmp_device,
571 					 &fs_devices->devices, dev_list) {
572 			if (skip_device && skip_device == device)
573 				continue;
574 			if (path && !device->name)
575 				continue;
576 			if (path && !device_path_matched(path, device))
577 				continue;
578 			if (fs_devices->opened) {
579 				/* for an already deleted device return 0 */
580 				if (path && ret != 0)
581 					ret = -EBUSY;
582 				break;
583 			}
584 
585 			/* delete the stale device */
586 			fs_devices->num_devices--;
587 			list_del(&device->dev_list);
588 			btrfs_free_device(device);
589 
590 			ret = 0;
591 			if (fs_devices->num_devices == 0)
592 				break;
593 		}
594 		mutex_unlock(&fs_devices->device_list_mutex);
595 
596 		if (fs_devices->num_devices == 0) {
597 			btrfs_sysfs_remove_fsid(fs_devices);
598 			list_del(&fs_devices->fs_list);
599 			free_fs_devices(fs_devices);
600 		}
601 	}
602 
603 	return ret;
604 }
605 
606 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
607 			struct btrfs_device *device, fmode_t flags,
608 			void *holder)
609 {
610 	struct request_queue *q;
611 	struct block_device *bdev;
612 	struct btrfs_super_block *disk_super;
613 	u64 devid;
614 	int ret;
615 
616 	if (device->bdev)
617 		return -EINVAL;
618 	if (!device->name)
619 		return -EINVAL;
620 
621 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
622 				    &bdev, &disk_super);
623 	if (ret)
624 		return ret;
625 
626 	devid = btrfs_stack_device_id(&disk_super->dev_item);
627 	if (devid != device->devid)
628 		goto error_free_page;
629 
630 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
631 		goto error_free_page;
632 
633 	device->generation = btrfs_super_generation(disk_super);
634 
635 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
636 		if (btrfs_super_incompat_flags(disk_super) &
637 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
638 			pr_err(
639 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
640 			goto error_free_page;
641 		}
642 
643 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
644 		fs_devices->seeding = true;
645 	} else {
646 		if (bdev_read_only(bdev))
647 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
648 		else
649 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
650 	}
651 
652 	q = bdev_get_queue(bdev);
653 	if (!blk_queue_nonrot(q))
654 		fs_devices->rotating = true;
655 
656 	device->bdev = bdev;
657 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
658 	device->mode = flags;
659 
660 	fs_devices->open_devices++;
661 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
662 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
663 		fs_devices->rw_devices++;
664 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
665 	}
666 	btrfs_release_disk_super(disk_super);
667 
668 	return 0;
669 
670 error_free_page:
671 	btrfs_release_disk_super(disk_super);
672 	blkdev_put(bdev, flags);
673 
674 	return -EINVAL;
675 }
676 
677 /*
678  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
679  * being created with a disk that has already completed its fsid change. Such
680  * disk can belong to an fs which has its FSID changed or to one which doesn't.
681  * Handle both cases here.
682  */
683 static struct btrfs_fs_devices *find_fsid_inprogress(
684 					struct btrfs_super_block *disk_super)
685 {
686 	struct btrfs_fs_devices *fs_devices;
687 
688 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
689 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
690 			   BTRFS_FSID_SIZE) != 0 &&
691 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
692 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
693 			return fs_devices;
694 		}
695 	}
696 
697 	return find_fsid(disk_super->fsid, NULL);
698 }
699 
700 
701 static struct btrfs_fs_devices *find_fsid_changed(
702 					struct btrfs_super_block *disk_super)
703 {
704 	struct btrfs_fs_devices *fs_devices;
705 
706 	/*
707 	 * Handles the case where scanned device is part of an fs that had
708 	 * multiple successful changes of FSID but curently device didn't
709 	 * observe it. Meaning our fsid will be different than theirs. We need
710 	 * to handle two subcases :
711 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
712 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
713 	 *  are equal).
714 	 */
715 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
716 		/* Changed UUIDs */
717 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
718 			   BTRFS_FSID_SIZE) != 0 &&
719 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
720 			   BTRFS_FSID_SIZE) == 0 &&
721 		    memcmp(fs_devices->fsid, disk_super->fsid,
722 			   BTRFS_FSID_SIZE) != 0)
723 			return fs_devices;
724 
725 		/* Unchanged UUIDs */
726 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
727 			   BTRFS_FSID_SIZE) == 0 &&
728 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
729 			   BTRFS_FSID_SIZE) == 0)
730 			return fs_devices;
731 	}
732 
733 	return NULL;
734 }
735 
736 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
737 				struct btrfs_super_block *disk_super)
738 {
739 	struct btrfs_fs_devices *fs_devices;
740 
741 	/*
742 	 * Handle the case where the scanned device is part of an fs whose last
743 	 * metadata UUID change reverted it to the original FSID. At the same
744 	 * time * fs_devices was first created by another constitutent device
745 	 * which didn't fully observe the operation. This results in an
746 	 * btrfs_fs_devices created with metadata/fsid different AND
747 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
748 	 * fs_devices equal to the FSID of the disk.
749 	 */
750 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
751 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
752 			   BTRFS_FSID_SIZE) != 0 &&
753 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
754 			   BTRFS_FSID_SIZE) == 0 &&
755 		    fs_devices->fsid_change)
756 			return fs_devices;
757 	}
758 
759 	return NULL;
760 }
761 /*
762  * Add new device to list of registered devices
763  *
764  * Returns:
765  * device pointer which was just added or updated when successful
766  * error pointer when failed
767  */
768 static noinline struct btrfs_device *device_list_add(const char *path,
769 			   struct btrfs_super_block *disk_super,
770 			   bool *new_device_added)
771 {
772 	struct btrfs_device *device;
773 	struct btrfs_fs_devices *fs_devices = NULL;
774 	struct rcu_string *name;
775 	u64 found_transid = btrfs_super_generation(disk_super);
776 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
777 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
778 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
779 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
780 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
781 
782 	if (fsid_change_in_progress) {
783 		if (!has_metadata_uuid)
784 			fs_devices = find_fsid_inprogress(disk_super);
785 		else
786 			fs_devices = find_fsid_changed(disk_super);
787 	} else if (has_metadata_uuid) {
788 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
789 	} else {
790 		fs_devices = find_fsid_reverted_metadata(disk_super);
791 		if (!fs_devices)
792 			fs_devices = find_fsid(disk_super->fsid, NULL);
793 	}
794 
795 
796 	if (!fs_devices) {
797 		if (has_metadata_uuid)
798 			fs_devices = alloc_fs_devices(disk_super->fsid,
799 						      disk_super->metadata_uuid);
800 		else
801 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
802 
803 		if (IS_ERR(fs_devices))
804 			return ERR_CAST(fs_devices);
805 
806 		fs_devices->fsid_change = fsid_change_in_progress;
807 
808 		mutex_lock(&fs_devices->device_list_mutex);
809 		list_add(&fs_devices->fs_list, &fs_uuids);
810 
811 		device = NULL;
812 	} else {
813 		mutex_lock(&fs_devices->device_list_mutex);
814 		device = btrfs_find_device(fs_devices, devid,
815 				disk_super->dev_item.uuid, NULL, false);
816 
817 		/*
818 		 * If this disk has been pulled into an fs devices created by
819 		 * a device which had the CHANGING_FSID_V2 flag then replace the
820 		 * metadata_uuid/fsid values of the fs_devices.
821 		 */
822 		if (fs_devices->fsid_change &&
823 		    found_transid > fs_devices->latest_generation) {
824 			memcpy(fs_devices->fsid, disk_super->fsid,
825 					BTRFS_FSID_SIZE);
826 
827 			if (has_metadata_uuid)
828 				memcpy(fs_devices->metadata_uuid,
829 				       disk_super->metadata_uuid,
830 				       BTRFS_FSID_SIZE);
831 			else
832 				memcpy(fs_devices->metadata_uuid,
833 				       disk_super->fsid, BTRFS_FSID_SIZE);
834 
835 			fs_devices->fsid_change = false;
836 		}
837 	}
838 
839 	if (!device) {
840 		if (fs_devices->opened) {
841 			mutex_unlock(&fs_devices->device_list_mutex);
842 			return ERR_PTR(-EBUSY);
843 		}
844 
845 		device = btrfs_alloc_device(NULL, &devid,
846 					    disk_super->dev_item.uuid);
847 		if (IS_ERR(device)) {
848 			mutex_unlock(&fs_devices->device_list_mutex);
849 			/* we can safely leave the fs_devices entry around */
850 			return device;
851 		}
852 
853 		name = rcu_string_strdup(path, GFP_NOFS);
854 		if (!name) {
855 			btrfs_free_device(device);
856 			mutex_unlock(&fs_devices->device_list_mutex);
857 			return ERR_PTR(-ENOMEM);
858 		}
859 		rcu_assign_pointer(device->name, name);
860 
861 		list_add_rcu(&device->dev_list, &fs_devices->devices);
862 		fs_devices->num_devices++;
863 
864 		device->fs_devices = fs_devices;
865 		*new_device_added = true;
866 
867 		if (disk_super->label[0])
868 			pr_info(
869 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
870 				disk_super->label, devid, found_transid, path,
871 				current->comm, task_pid_nr(current));
872 		else
873 			pr_info(
874 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
875 				disk_super->fsid, devid, found_transid, path,
876 				current->comm, task_pid_nr(current));
877 
878 	} else if (!device->name || strcmp(device->name->str, path)) {
879 		/*
880 		 * When FS is already mounted.
881 		 * 1. If you are here and if the device->name is NULL that
882 		 *    means this device was missing at time of FS mount.
883 		 * 2. If you are here and if the device->name is different
884 		 *    from 'path' that means either
885 		 *      a. The same device disappeared and reappeared with
886 		 *         different name. or
887 		 *      b. The missing-disk-which-was-replaced, has
888 		 *         reappeared now.
889 		 *
890 		 * We must allow 1 and 2a above. But 2b would be a spurious
891 		 * and unintentional.
892 		 *
893 		 * Further in case of 1 and 2a above, the disk at 'path'
894 		 * would have missed some transaction when it was away and
895 		 * in case of 2a the stale bdev has to be updated as well.
896 		 * 2b must not be allowed at all time.
897 		 */
898 
899 		/*
900 		 * For now, we do allow update to btrfs_fs_device through the
901 		 * btrfs dev scan cli after FS has been mounted.  We're still
902 		 * tracking a problem where systems fail mount by subvolume id
903 		 * when we reject replacement on a mounted FS.
904 		 */
905 		if (!fs_devices->opened && found_transid < device->generation) {
906 			/*
907 			 * That is if the FS is _not_ mounted and if you
908 			 * are here, that means there is more than one
909 			 * disk with same uuid and devid.We keep the one
910 			 * with larger generation number or the last-in if
911 			 * generation are equal.
912 			 */
913 			mutex_unlock(&fs_devices->device_list_mutex);
914 			return ERR_PTR(-EEXIST);
915 		}
916 
917 		/*
918 		 * We are going to replace the device path for a given devid,
919 		 * make sure it's the same device if the device is mounted
920 		 */
921 		if (device->bdev) {
922 			struct block_device *path_bdev;
923 
924 			path_bdev = lookup_bdev(path);
925 			if (IS_ERR(path_bdev)) {
926 				mutex_unlock(&fs_devices->device_list_mutex);
927 				return ERR_CAST(path_bdev);
928 			}
929 
930 			if (device->bdev != path_bdev) {
931 				bdput(path_bdev);
932 				mutex_unlock(&fs_devices->device_list_mutex);
933 				btrfs_warn_in_rcu(device->fs_info,
934 			"duplicate device fsid:devid for %pU:%llu old:%s new:%s",
935 					disk_super->fsid, devid,
936 					rcu_str_deref(device->name), path);
937 				return ERR_PTR(-EEXIST);
938 			}
939 			bdput(path_bdev);
940 			btrfs_info_in_rcu(device->fs_info,
941 				"device fsid %pU devid %llu moved old:%s new:%s",
942 				disk_super->fsid, devid,
943 				rcu_str_deref(device->name), path);
944 		}
945 
946 		name = rcu_string_strdup(path, GFP_NOFS);
947 		if (!name) {
948 			mutex_unlock(&fs_devices->device_list_mutex);
949 			return ERR_PTR(-ENOMEM);
950 		}
951 		rcu_string_free(device->name);
952 		rcu_assign_pointer(device->name, name);
953 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
954 			fs_devices->missing_devices--;
955 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
956 		}
957 	}
958 
959 	/*
960 	 * Unmount does not free the btrfs_device struct but would zero
961 	 * generation along with most of the other members. So just update
962 	 * it back. We need it to pick the disk with largest generation
963 	 * (as above).
964 	 */
965 	if (!fs_devices->opened) {
966 		device->generation = found_transid;
967 		fs_devices->latest_generation = max_t(u64, found_transid,
968 						fs_devices->latest_generation);
969 	}
970 
971 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
972 
973 	mutex_unlock(&fs_devices->device_list_mutex);
974 	return device;
975 }
976 
977 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
978 {
979 	struct btrfs_fs_devices *fs_devices;
980 	struct btrfs_device *device;
981 	struct btrfs_device *orig_dev;
982 	int ret = 0;
983 
984 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
985 	if (IS_ERR(fs_devices))
986 		return fs_devices;
987 
988 	mutex_lock(&orig->device_list_mutex);
989 	fs_devices->total_devices = orig->total_devices;
990 
991 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
992 		struct rcu_string *name;
993 
994 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
995 					    orig_dev->uuid);
996 		if (IS_ERR(device)) {
997 			ret = PTR_ERR(device);
998 			goto error;
999 		}
1000 
1001 		/*
1002 		 * This is ok to do without rcu read locked because we hold the
1003 		 * uuid mutex so nothing we touch in here is going to disappear.
1004 		 */
1005 		if (orig_dev->name) {
1006 			name = rcu_string_strdup(orig_dev->name->str,
1007 					GFP_KERNEL);
1008 			if (!name) {
1009 				btrfs_free_device(device);
1010 				ret = -ENOMEM;
1011 				goto error;
1012 			}
1013 			rcu_assign_pointer(device->name, name);
1014 		}
1015 
1016 		list_add(&device->dev_list, &fs_devices->devices);
1017 		device->fs_devices = fs_devices;
1018 		fs_devices->num_devices++;
1019 	}
1020 	mutex_unlock(&orig->device_list_mutex);
1021 	return fs_devices;
1022 error:
1023 	mutex_unlock(&orig->device_list_mutex);
1024 	free_fs_devices(fs_devices);
1025 	return ERR_PTR(ret);
1026 }
1027 
1028 /*
1029  * After we have read the system tree and know devids belonging to
1030  * this filesystem, remove the device which does not belong there.
1031  */
1032 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1033 {
1034 	struct btrfs_device *device, *next;
1035 	struct btrfs_device *latest_dev = NULL;
1036 
1037 	mutex_lock(&uuid_mutex);
1038 again:
1039 	/* This is the initialized path, it is safe to release the devices. */
1040 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1041 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1042 							&device->dev_state)) {
1043 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1044 			     &device->dev_state) &&
1045 			     (!latest_dev ||
1046 			      device->generation > latest_dev->generation)) {
1047 				latest_dev = device;
1048 			}
1049 			continue;
1050 		}
1051 
1052 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1053 			/*
1054 			 * In the first step, keep the device which has
1055 			 * the correct fsid and the devid that is used
1056 			 * for the dev_replace procedure.
1057 			 * In the second step, the dev_replace state is
1058 			 * read from the device tree and it is known
1059 			 * whether the procedure is really active or
1060 			 * not, which means whether this device is
1061 			 * used or whether it should be removed.
1062 			 */
1063 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1064 						  &device->dev_state)) {
1065 				continue;
1066 			}
1067 		}
1068 		if (device->bdev) {
1069 			blkdev_put(device->bdev, device->mode);
1070 			device->bdev = NULL;
1071 			fs_devices->open_devices--;
1072 		}
1073 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1074 			list_del_init(&device->dev_alloc_list);
1075 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1076 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1077 				      &device->dev_state))
1078 				fs_devices->rw_devices--;
1079 		}
1080 		list_del_init(&device->dev_list);
1081 		fs_devices->num_devices--;
1082 		btrfs_free_device(device);
1083 	}
1084 
1085 	if (fs_devices->seed) {
1086 		fs_devices = fs_devices->seed;
1087 		goto again;
1088 	}
1089 
1090 	fs_devices->latest_bdev = latest_dev->bdev;
1091 
1092 	mutex_unlock(&uuid_mutex);
1093 }
1094 
1095 static void btrfs_close_bdev(struct btrfs_device *device)
1096 {
1097 	if (!device->bdev)
1098 		return;
1099 
1100 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1101 		sync_blockdev(device->bdev);
1102 		invalidate_bdev(device->bdev);
1103 	}
1104 
1105 	blkdev_put(device->bdev, device->mode);
1106 }
1107 
1108 static void btrfs_close_one_device(struct btrfs_device *device)
1109 {
1110 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1111 
1112 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1113 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1114 		list_del_init(&device->dev_alloc_list);
1115 		fs_devices->rw_devices--;
1116 	}
1117 
1118 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1119 		fs_devices->missing_devices--;
1120 
1121 	btrfs_close_bdev(device);
1122 	if (device->bdev) {
1123 		fs_devices->open_devices--;
1124 		device->bdev = NULL;
1125 	}
1126 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1127 
1128 	device->fs_info = NULL;
1129 	atomic_set(&device->dev_stats_ccnt, 0);
1130 	extent_io_tree_release(&device->alloc_state);
1131 
1132 	/* Verify the device is back in a pristine state  */
1133 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1134 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1135 	ASSERT(list_empty(&device->dev_alloc_list));
1136 	ASSERT(list_empty(&device->post_commit_list));
1137 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1138 }
1139 
1140 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1141 {
1142 	struct btrfs_device *device, *tmp;
1143 
1144 	if (--fs_devices->opened > 0)
1145 		return 0;
1146 
1147 	mutex_lock(&fs_devices->device_list_mutex);
1148 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1149 		btrfs_close_one_device(device);
1150 	}
1151 	mutex_unlock(&fs_devices->device_list_mutex);
1152 
1153 	WARN_ON(fs_devices->open_devices);
1154 	WARN_ON(fs_devices->rw_devices);
1155 	fs_devices->opened = 0;
1156 	fs_devices->seeding = false;
1157 
1158 	return 0;
1159 }
1160 
1161 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1162 {
1163 	struct btrfs_fs_devices *seed_devices = NULL;
1164 	int ret;
1165 
1166 	mutex_lock(&uuid_mutex);
1167 	ret = close_fs_devices(fs_devices);
1168 	if (!fs_devices->opened) {
1169 		seed_devices = fs_devices->seed;
1170 		fs_devices->seed = NULL;
1171 	}
1172 	mutex_unlock(&uuid_mutex);
1173 
1174 	while (seed_devices) {
1175 		fs_devices = seed_devices;
1176 		seed_devices = fs_devices->seed;
1177 		close_fs_devices(fs_devices);
1178 		free_fs_devices(fs_devices);
1179 	}
1180 	return ret;
1181 }
1182 
1183 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1184 				fmode_t flags, void *holder)
1185 {
1186 	struct btrfs_device *device;
1187 	struct btrfs_device *latest_dev = NULL;
1188 	int ret = 0;
1189 
1190 	flags |= FMODE_EXCL;
1191 
1192 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1193 		/* Just open everything we can; ignore failures here */
1194 		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1195 			continue;
1196 
1197 		if (!latest_dev ||
1198 		    device->generation > latest_dev->generation)
1199 			latest_dev = device;
1200 	}
1201 	if (fs_devices->open_devices == 0) {
1202 		ret = -EINVAL;
1203 		goto out;
1204 	}
1205 	fs_devices->opened = 1;
1206 	fs_devices->latest_bdev = latest_dev->bdev;
1207 	fs_devices->total_rw_bytes = 0;
1208 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1209 out:
1210 	return ret;
1211 }
1212 
1213 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1214 {
1215 	struct btrfs_device *dev1, *dev2;
1216 
1217 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1218 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1219 
1220 	if (dev1->devid < dev2->devid)
1221 		return -1;
1222 	else if (dev1->devid > dev2->devid)
1223 		return 1;
1224 	return 0;
1225 }
1226 
1227 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1228 		       fmode_t flags, void *holder)
1229 {
1230 	int ret;
1231 
1232 	lockdep_assert_held(&uuid_mutex);
1233 
1234 	mutex_lock(&fs_devices->device_list_mutex);
1235 	if (fs_devices->opened) {
1236 		fs_devices->opened++;
1237 		ret = 0;
1238 	} else {
1239 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1240 		ret = open_fs_devices(fs_devices, flags, holder);
1241 	}
1242 	mutex_unlock(&fs_devices->device_list_mutex);
1243 
1244 	return ret;
1245 }
1246 
1247 void btrfs_release_disk_super(struct btrfs_super_block *super)
1248 {
1249 	struct page *page = virt_to_page(super);
1250 
1251 	put_page(page);
1252 }
1253 
1254 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1255 				 struct page **page,
1256 				 struct btrfs_super_block **disk_super)
1257 {
1258 	void *p;
1259 	pgoff_t index;
1260 
1261 	/* make sure our super fits in the device */
1262 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1263 		return 1;
1264 
1265 	/* make sure our super fits in the page */
1266 	if (sizeof(**disk_super) > PAGE_SIZE)
1267 		return 1;
1268 
1269 	/* make sure our super doesn't straddle pages on disk */
1270 	index = bytenr >> PAGE_SHIFT;
1271 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1272 		return 1;
1273 
1274 	/* pull in the page with our super */
1275 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1276 				   index, GFP_KERNEL);
1277 
1278 	if (IS_ERR(*page))
1279 		return 1;
1280 
1281 	p = page_address(*page);
1282 
1283 	/* align our pointer to the offset of the super block */
1284 	*disk_super = p + offset_in_page(bytenr);
1285 
1286 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1287 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1288 		btrfs_release_disk_super(p);
1289 		return 1;
1290 	}
1291 
1292 	if ((*disk_super)->label[0] &&
1293 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1294 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1295 
1296 	return 0;
1297 }
1298 
1299 int btrfs_forget_devices(const char *path)
1300 {
1301 	int ret;
1302 
1303 	mutex_lock(&uuid_mutex);
1304 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1305 	mutex_unlock(&uuid_mutex);
1306 
1307 	return ret;
1308 }
1309 
1310 /*
1311  * Look for a btrfs signature on a device. This may be called out of the mount path
1312  * and we are not allowed to call set_blocksize during the scan. The superblock
1313  * is read via pagecache
1314  */
1315 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1316 					   void *holder)
1317 {
1318 	struct btrfs_super_block *disk_super;
1319 	bool new_device_added = false;
1320 	struct btrfs_device *device = NULL;
1321 	struct block_device *bdev;
1322 	struct page *page;
1323 	u64 bytenr;
1324 
1325 	lockdep_assert_held(&uuid_mutex);
1326 
1327 	/*
1328 	 * we would like to check all the supers, but that would make
1329 	 * a btrfs mount succeed after a mkfs from a different FS.
1330 	 * So, we need to add a special mount option to scan for
1331 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1332 	 */
1333 	bytenr = btrfs_sb_offset(0);
1334 	flags |= FMODE_EXCL;
1335 
1336 	bdev = blkdev_get_by_path(path, flags, holder);
1337 	if (IS_ERR(bdev))
1338 		return ERR_CAST(bdev);
1339 
1340 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1341 		device = ERR_PTR(-EINVAL);
1342 		goto error_bdev_put;
1343 	}
1344 
1345 	device = device_list_add(path, disk_super, &new_device_added);
1346 	if (!IS_ERR(device)) {
1347 		if (new_device_added)
1348 			btrfs_free_stale_devices(path, device);
1349 	}
1350 
1351 	btrfs_release_disk_super(disk_super);
1352 
1353 error_bdev_put:
1354 	blkdev_put(bdev, flags);
1355 
1356 	return device;
1357 }
1358 
1359 /*
1360  * Try to find a chunk that intersects [start, start + len] range and when one
1361  * such is found, record the end of it in *start
1362  */
1363 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1364 				    u64 len)
1365 {
1366 	u64 physical_start, physical_end;
1367 
1368 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1369 
1370 	if (!find_first_extent_bit(&device->alloc_state, *start,
1371 				   &physical_start, &physical_end,
1372 				   CHUNK_ALLOCATED, NULL)) {
1373 
1374 		if (in_range(physical_start, *start, len) ||
1375 		    in_range(*start, physical_start,
1376 			     physical_end - physical_start)) {
1377 			*start = physical_end + 1;
1378 			return true;
1379 		}
1380 	}
1381 	return false;
1382 }
1383 
1384 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1385 {
1386 	switch (device->fs_devices->chunk_alloc_policy) {
1387 	case BTRFS_CHUNK_ALLOC_REGULAR:
1388 		/*
1389 		 * We don't want to overwrite the superblock on the drive nor
1390 		 * any area used by the boot loader (grub for example), so we
1391 		 * make sure to start at an offset of at least 1MB.
1392 		 */
1393 		return max_t(u64, start, SZ_1M);
1394 	default:
1395 		BUG();
1396 	}
1397 }
1398 
1399 /**
1400  * dev_extent_hole_check - check if specified hole is suitable for allocation
1401  * @device:	the device which we have the hole
1402  * @hole_start: starting position of the hole
1403  * @hole_size:	the size of the hole
1404  * @num_bytes:	the size of the free space that we need
1405  *
1406  * This function may modify @hole_start and @hole_end to reflect the suitable
1407  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1408  */
1409 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1410 				  u64 *hole_size, u64 num_bytes)
1411 {
1412 	bool changed = false;
1413 	u64 hole_end = *hole_start + *hole_size;
1414 
1415 	/*
1416 	 * Check before we set max_hole_start, otherwise we could end up
1417 	 * sending back this offset anyway.
1418 	 */
1419 	if (contains_pending_extent(device, hole_start, *hole_size)) {
1420 		if (hole_end >= *hole_start)
1421 			*hole_size = hole_end - *hole_start;
1422 		else
1423 			*hole_size = 0;
1424 		changed = true;
1425 	}
1426 
1427 	switch (device->fs_devices->chunk_alloc_policy) {
1428 	case BTRFS_CHUNK_ALLOC_REGULAR:
1429 		/* No extra check */
1430 		break;
1431 	default:
1432 		BUG();
1433 	}
1434 
1435 	return changed;
1436 }
1437 
1438 /*
1439  * find_free_dev_extent_start - find free space in the specified device
1440  * @device:	  the device which we search the free space in
1441  * @num_bytes:	  the size of the free space that we need
1442  * @search_start: the position from which to begin the search
1443  * @start:	  store the start of the free space.
1444  * @len:	  the size of the free space. that we find, or the size
1445  *		  of the max free space if we don't find suitable free space
1446  *
1447  * this uses a pretty simple search, the expectation is that it is
1448  * called very infrequently and that a given device has a small number
1449  * of extents
1450  *
1451  * @start is used to store the start of the free space if we find. But if we
1452  * don't find suitable free space, it will be used to store the start position
1453  * of the max free space.
1454  *
1455  * @len is used to store the size of the free space that we find.
1456  * But if we don't find suitable free space, it is used to store the size of
1457  * the max free space.
1458  *
1459  * NOTE: This function will search *commit* root of device tree, and does extra
1460  * check to ensure dev extents are not double allocated.
1461  * This makes the function safe to allocate dev extents but may not report
1462  * correct usable device space, as device extent freed in current transaction
1463  * is not reported as avaiable.
1464  */
1465 static int find_free_dev_extent_start(struct btrfs_device *device,
1466 				u64 num_bytes, u64 search_start, u64 *start,
1467 				u64 *len)
1468 {
1469 	struct btrfs_fs_info *fs_info = device->fs_info;
1470 	struct btrfs_root *root = fs_info->dev_root;
1471 	struct btrfs_key key;
1472 	struct btrfs_dev_extent *dev_extent;
1473 	struct btrfs_path *path;
1474 	u64 hole_size;
1475 	u64 max_hole_start;
1476 	u64 max_hole_size;
1477 	u64 extent_end;
1478 	u64 search_end = device->total_bytes;
1479 	int ret;
1480 	int slot;
1481 	struct extent_buffer *l;
1482 
1483 	search_start = dev_extent_search_start(device, search_start);
1484 
1485 	path = btrfs_alloc_path();
1486 	if (!path)
1487 		return -ENOMEM;
1488 
1489 	max_hole_start = search_start;
1490 	max_hole_size = 0;
1491 
1492 again:
1493 	if (search_start >= search_end ||
1494 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1495 		ret = -ENOSPC;
1496 		goto out;
1497 	}
1498 
1499 	path->reada = READA_FORWARD;
1500 	path->search_commit_root = 1;
1501 	path->skip_locking = 1;
1502 
1503 	key.objectid = device->devid;
1504 	key.offset = search_start;
1505 	key.type = BTRFS_DEV_EXTENT_KEY;
1506 
1507 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1508 	if (ret < 0)
1509 		goto out;
1510 	if (ret > 0) {
1511 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1512 		if (ret < 0)
1513 			goto out;
1514 	}
1515 
1516 	while (1) {
1517 		l = path->nodes[0];
1518 		slot = path->slots[0];
1519 		if (slot >= btrfs_header_nritems(l)) {
1520 			ret = btrfs_next_leaf(root, path);
1521 			if (ret == 0)
1522 				continue;
1523 			if (ret < 0)
1524 				goto out;
1525 
1526 			break;
1527 		}
1528 		btrfs_item_key_to_cpu(l, &key, slot);
1529 
1530 		if (key.objectid < device->devid)
1531 			goto next;
1532 
1533 		if (key.objectid > device->devid)
1534 			break;
1535 
1536 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1537 			goto next;
1538 
1539 		if (key.offset > search_start) {
1540 			hole_size = key.offset - search_start;
1541 			dev_extent_hole_check(device, &search_start, &hole_size,
1542 					      num_bytes);
1543 
1544 			if (hole_size > max_hole_size) {
1545 				max_hole_start = search_start;
1546 				max_hole_size = hole_size;
1547 			}
1548 
1549 			/*
1550 			 * If this free space is greater than which we need,
1551 			 * it must be the max free space that we have found
1552 			 * until now, so max_hole_start must point to the start
1553 			 * of this free space and the length of this free space
1554 			 * is stored in max_hole_size. Thus, we return
1555 			 * max_hole_start and max_hole_size and go back to the
1556 			 * caller.
1557 			 */
1558 			if (hole_size >= num_bytes) {
1559 				ret = 0;
1560 				goto out;
1561 			}
1562 		}
1563 
1564 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1565 		extent_end = key.offset + btrfs_dev_extent_length(l,
1566 								  dev_extent);
1567 		if (extent_end > search_start)
1568 			search_start = extent_end;
1569 next:
1570 		path->slots[0]++;
1571 		cond_resched();
1572 	}
1573 
1574 	/*
1575 	 * At this point, search_start should be the end of
1576 	 * allocated dev extents, and when shrinking the device,
1577 	 * search_end may be smaller than search_start.
1578 	 */
1579 	if (search_end > search_start) {
1580 		hole_size = search_end - search_start;
1581 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1582 					  num_bytes)) {
1583 			btrfs_release_path(path);
1584 			goto again;
1585 		}
1586 
1587 		if (hole_size > max_hole_size) {
1588 			max_hole_start = search_start;
1589 			max_hole_size = hole_size;
1590 		}
1591 	}
1592 
1593 	/* See above. */
1594 	if (max_hole_size < num_bytes)
1595 		ret = -ENOSPC;
1596 	else
1597 		ret = 0;
1598 
1599 out:
1600 	btrfs_free_path(path);
1601 	*start = max_hole_start;
1602 	if (len)
1603 		*len = max_hole_size;
1604 	return ret;
1605 }
1606 
1607 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1608 			 u64 *start, u64 *len)
1609 {
1610 	/* FIXME use last free of some kind */
1611 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1612 }
1613 
1614 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1615 			  struct btrfs_device *device,
1616 			  u64 start, u64 *dev_extent_len)
1617 {
1618 	struct btrfs_fs_info *fs_info = device->fs_info;
1619 	struct btrfs_root *root = fs_info->dev_root;
1620 	int ret;
1621 	struct btrfs_path *path;
1622 	struct btrfs_key key;
1623 	struct btrfs_key found_key;
1624 	struct extent_buffer *leaf = NULL;
1625 	struct btrfs_dev_extent *extent = NULL;
1626 
1627 	path = btrfs_alloc_path();
1628 	if (!path)
1629 		return -ENOMEM;
1630 
1631 	key.objectid = device->devid;
1632 	key.offset = start;
1633 	key.type = BTRFS_DEV_EXTENT_KEY;
1634 again:
1635 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1636 	if (ret > 0) {
1637 		ret = btrfs_previous_item(root, path, key.objectid,
1638 					  BTRFS_DEV_EXTENT_KEY);
1639 		if (ret)
1640 			goto out;
1641 		leaf = path->nodes[0];
1642 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1643 		extent = btrfs_item_ptr(leaf, path->slots[0],
1644 					struct btrfs_dev_extent);
1645 		BUG_ON(found_key.offset > start || found_key.offset +
1646 		       btrfs_dev_extent_length(leaf, extent) < start);
1647 		key = found_key;
1648 		btrfs_release_path(path);
1649 		goto again;
1650 	} else if (ret == 0) {
1651 		leaf = path->nodes[0];
1652 		extent = btrfs_item_ptr(leaf, path->slots[0],
1653 					struct btrfs_dev_extent);
1654 	} else {
1655 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1656 		goto out;
1657 	}
1658 
1659 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1660 
1661 	ret = btrfs_del_item(trans, root, path);
1662 	if (ret) {
1663 		btrfs_handle_fs_error(fs_info, ret,
1664 				      "Failed to remove dev extent item");
1665 	} else {
1666 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1667 	}
1668 out:
1669 	btrfs_free_path(path);
1670 	return ret;
1671 }
1672 
1673 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1674 				  struct btrfs_device *device,
1675 				  u64 chunk_offset, u64 start, u64 num_bytes)
1676 {
1677 	int ret;
1678 	struct btrfs_path *path;
1679 	struct btrfs_fs_info *fs_info = device->fs_info;
1680 	struct btrfs_root *root = fs_info->dev_root;
1681 	struct btrfs_dev_extent *extent;
1682 	struct extent_buffer *leaf;
1683 	struct btrfs_key key;
1684 
1685 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1686 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1687 	path = btrfs_alloc_path();
1688 	if (!path)
1689 		return -ENOMEM;
1690 
1691 	key.objectid = device->devid;
1692 	key.offset = start;
1693 	key.type = BTRFS_DEV_EXTENT_KEY;
1694 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1695 				      sizeof(*extent));
1696 	if (ret)
1697 		goto out;
1698 
1699 	leaf = path->nodes[0];
1700 	extent = btrfs_item_ptr(leaf, path->slots[0],
1701 				struct btrfs_dev_extent);
1702 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1703 					BTRFS_CHUNK_TREE_OBJECTID);
1704 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1705 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1706 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1707 
1708 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1709 	btrfs_mark_buffer_dirty(leaf);
1710 out:
1711 	btrfs_free_path(path);
1712 	return ret;
1713 }
1714 
1715 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1716 {
1717 	struct extent_map_tree *em_tree;
1718 	struct extent_map *em;
1719 	struct rb_node *n;
1720 	u64 ret = 0;
1721 
1722 	em_tree = &fs_info->mapping_tree;
1723 	read_lock(&em_tree->lock);
1724 	n = rb_last(&em_tree->map.rb_root);
1725 	if (n) {
1726 		em = rb_entry(n, struct extent_map, rb_node);
1727 		ret = em->start + em->len;
1728 	}
1729 	read_unlock(&em_tree->lock);
1730 
1731 	return ret;
1732 }
1733 
1734 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1735 				    u64 *devid_ret)
1736 {
1737 	int ret;
1738 	struct btrfs_key key;
1739 	struct btrfs_key found_key;
1740 	struct btrfs_path *path;
1741 
1742 	path = btrfs_alloc_path();
1743 	if (!path)
1744 		return -ENOMEM;
1745 
1746 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1747 	key.type = BTRFS_DEV_ITEM_KEY;
1748 	key.offset = (u64)-1;
1749 
1750 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1751 	if (ret < 0)
1752 		goto error;
1753 
1754 	if (ret == 0) {
1755 		/* Corruption */
1756 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1757 		ret = -EUCLEAN;
1758 		goto error;
1759 	}
1760 
1761 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1762 				  BTRFS_DEV_ITEMS_OBJECTID,
1763 				  BTRFS_DEV_ITEM_KEY);
1764 	if (ret) {
1765 		*devid_ret = 1;
1766 	} else {
1767 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1768 				      path->slots[0]);
1769 		*devid_ret = found_key.offset + 1;
1770 	}
1771 	ret = 0;
1772 error:
1773 	btrfs_free_path(path);
1774 	return ret;
1775 }
1776 
1777 /*
1778  * the device information is stored in the chunk root
1779  * the btrfs_device struct should be fully filled in
1780  */
1781 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1782 			    struct btrfs_device *device)
1783 {
1784 	int ret;
1785 	struct btrfs_path *path;
1786 	struct btrfs_dev_item *dev_item;
1787 	struct extent_buffer *leaf;
1788 	struct btrfs_key key;
1789 	unsigned long ptr;
1790 
1791 	path = btrfs_alloc_path();
1792 	if (!path)
1793 		return -ENOMEM;
1794 
1795 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1796 	key.type = BTRFS_DEV_ITEM_KEY;
1797 	key.offset = device->devid;
1798 
1799 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1800 				      &key, sizeof(*dev_item));
1801 	if (ret)
1802 		goto out;
1803 
1804 	leaf = path->nodes[0];
1805 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1806 
1807 	btrfs_set_device_id(leaf, dev_item, device->devid);
1808 	btrfs_set_device_generation(leaf, dev_item, 0);
1809 	btrfs_set_device_type(leaf, dev_item, device->type);
1810 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1811 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1812 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1813 	btrfs_set_device_total_bytes(leaf, dev_item,
1814 				     btrfs_device_get_disk_total_bytes(device));
1815 	btrfs_set_device_bytes_used(leaf, dev_item,
1816 				    btrfs_device_get_bytes_used(device));
1817 	btrfs_set_device_group(leaf, dev_item, 0);
1818 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1819 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1820 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1821 
1822 	ptr = btrfs_device_uuid(dev_item);
1823 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1824 	ptr = btrfs_device_fsid(dev_item);
1825 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1826 			    ptr, BTRFS_FSID_SIZE);
1827 	btrfs_mark_buffer_dirty(leaf);
1828 
1829 	ret = 0;
1830 out:
1831 	btrfs_free_path(path);
1832 	return ret;
1833 }
1834 
1835 /*
1836  * Function to update ctime/mtime for a given device path.
1837  * Mainly used for ctime/mtime based probe like libblkid.
1838  */
1839 static void update_dev_time(const char *path_name)
1840 {
1841 	struct file *filp;
1842 
1843 	filp = filp_open(path_name, O_RDWR, 0);
1844 	if (IS_ERR(filp))
1845 		return;
1846 	file_update_time(filp);
1847 	filp_close(filp, NULL);
1848 }
1849 
1850 static int btrfs_rm_dev_item(struct btrfs_device *device)
1851 {
1852 	struct btrfs_root *root = device->fs_info->chunk_root;
1853 	int ret;
1854 	struct btrfs_path *path;
1855 	struct btrfs_key key;
1856 	struct btrfs_trans_handle *trans;
1857 
1858 	path = btrfs_alloc_path();
1859 	if (!path)
1860 		return -ENOMEM;
1861 
1862 	trans = btrfs_start_transaction(root, 0);
1863 	if (IS_ERR(trans)) {
1864 		btrfs_free_path(path);
1865 		return PTR_ERR(trans);
1866 	}
1867 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1868 	key.type = BTRFS_DEV_ITEM_KEY;
1869 	key.offset = device->devid;
1870 
1871 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1872 	if (ret) {
1873 		if (ret > 0)
1874 			ret = -ENOENT;
1875 		btrfs_abort_transaction(trans, ret);
1876 		btrfs_end_transaction(trans);
1877 		goto out;
1878 	}
1879 
1880 	ret = btrfs_del_item(trans, root, path);
1881 	if (ret) {
1882 		btrfs_abort_transaction(trans, ret);
1883 		btrfs_end_transaction(trans);
1884 	}
1885 
1886 out:
1887 	btrfs_free_path(path);
1888 	if (!ret)
1889 		ret = btrfs_commit_transaction(trans);
1890 	return ret;
1891 }
1892 
1893 /*
1894  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1895  * filesystem. It's up to the caller to adjust that number regarding eg. device
1896  * replace.
1897  */
1898 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1899 		u64 num_devices)
1900 {
1901 	u64 all_avail;
1902 	unsigned seq;
1903 	int i;
1904 
1905 	do {
1906 		seq = read_seqbegin(&fs_info->profiles_lock);
1907 
1908 		all_avail = fs_info->avail_data_alloc_bits |
1909 			    fs_info->avail_system_alloc_bits |
1910 			    fs_info->avail_metadata_alloc_bits;
1911 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1912 
1913 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1914 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1915 			continue;
1916 
1917 		if (num_devices < btrfs_raid_array[i].devs_min) {
1918 			int ret = btrfs_raid_array[i].mindev_error;
1919 
1920 			if (ret)
1921 				return ret;
1922 		}
1923 	}
1924 
1925 	return 0;
1926 }
1927 
1928 static struct btrfs_device * btrfs_find_next_active_device(
1929 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1930 {
1931 	struct btrfs_device *next_device;
1932 
1933 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1934 		if (next_device != device &&
1935 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1936 		    && next_device->bdev)
1937 			return next_device;
1938 	}
1939 
1940 	return NULL;
1941 }
1942 
1943 /*
1944  * Helper function to check if the given device is part of s_bdev / latest_bdev
1945  * and replace it with the provided or the next active device, in the context
1946  * where this function called, there should be always be another device (or
1947  * this_dev) which is active.
1948  */
1949 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1950 				     struct btrfs_device *this_dev)
1951 {
1952 	struct btrfs_fs_info *fs_info = device->fs_info;
1953 	struct btrfs_device *next_device;
1954 
1955 	if (this_dev)
1956 		next_device = this_dev;
1957 	else
1958 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1959 								device);
1960 	ASSERT(next_device);
1961 
1962 	if (fs_info->sb->s_bdev &&
1963 			(fs_info->sb->s_bdev == device->bdev))
1964 		fs_info->sb->s_bdev = next_device->bdev;
1965 
1966 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1967 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1968 }
1969 
1970 /*
1971  * Return btrfs_fs_devices::num_devices excluding the device that's being
1972  * currently replaced.
1973  */
1974 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1975 {
1976 	u64 num_devices = fs_info->fs_devices->num_devices;
1977 
1978 	down_read(&fs_info->dev_replace.rwsem);
1979 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1980 		ASSERT(num_devices > 1);
1981 		num_devices--;
1982 	}
1983 	up_read(&fs_info->dev_replace.rwsem);
1984 
1985 	return num_devices;
1986 }
1987 
1988 static void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
1989 				      struct block_device *bdev,
1990 				      const char *device_path)
1991 {
1992 	struct btrfs_super_block *disk_super;
1993 	int copy_num;
1994 
1995 	if (!bdev)
1996 		return;
1997 
1998 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
1999 		struct page *page;
2000 		int ret;
2001 
2002 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2003 		if (IS_ERR(disk_super))
2004 			continue;
2005 
2006 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2007 
2008 		page = virt_to_page(disk_super);
2009 		set_page_dirty(page);
2010 		lock_page(page);
2011 		/* write_on_page() unlocks the page */
2012 		ret = write_one_page(page);
2013 		if (ret)
2014 			btrfs_warn(fs_info,
2015 				"error clearing superblock number %d (%d)",
2016 				copy_num, ret);
2017 		btrfs_release_disk_super(disk_super);
2018 
2019 	}
2020 
2021 	/* Notify udev that device has changed */
2022 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2023 
2024 	/* Update ctime/mtime for device path for libblkid */
2025 	update_dev_time(device_path);
2026 }
2027 
2028 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2029 		u64 devid)
2030 {
2031 	struct btrfs_device *device;
2032 	struct btrfs_fs_devices *cur_devices;
2033 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2034 	u64 num_devices;
2035 	int ret = 0;
2036 
2037 	mutex_lock(&uuid_mutex);
2038 
2039 	num_devices = btrfs_num_devices(fs_info);
2040 
2041 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2042 	if (ret)
2043 		goto out;
2044 
2045 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2046 
2047 	if (IS_ERR(device)) {
2048 		if (PTR_ERR(device) == -ENOENT &&
2049 		    strcmp(device_path, "missing") == 0)
2050 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2051 		else
2052 			ret = PTR_ERR(device);
2053 		goto out;
2054 	}
2055 
2056 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2057 		btrfs_warn_in_rcu(fs_info,
2058 		  "cannot remove device %s (devid %llu) due to active swapfile",
2059 				  rcu_str_deref(device->name), device->devid);
2060 		ret = -ETXTBSY;
2061 		goto out;
2062 	}
2063 
2064 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2065 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2066 		goto out;
2067 	}
2068 
2069 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2070 	    fs_info->fs_devices->rw_devices == 1) {
2071 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2072 		goto out;
2073 	}
2074 
2075 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2076 		mutex_lock(&fs_info->chunk_mutex);
2077 		list_del_init(&device->dev_alloc_list);
2078 		device->fs_devices->rw_devices--;
2079 		mutex_unlock(&fs_info->chunk_mutex);
2080 	}
2081 
2082 	mutex_unlock(&uuid_mutex);
2083 	ret = btrfs_shrink_device(device, 0);
2084 	mutex_lock(&uuid_mutex);
2085 	if (ret)
2086 		goto error_undo;
2087 
2088 	/*
2089 	 * TODO: the superblock still includes this device in its num_devices
2090 	 * counter although write_all_supers() is not locked out. This
2091 	 * could give a filesystem state which requires a degraded mount.
2092 	 */
2093 	ret = btrfs_rm_dev_item(device);
2094 	if (ret)
2095 		goto error_undo;
2096 
2097 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2098 	btrfs_scrub_cancel_dev(device);
2099 
2100 	/*
2101 	 * the device list mutex makes sure that we don't change
2102 	 * the device list while someone else is writing out all
2103 	 * the device supers. Whoever is writing all supers, should
2104 	 * lock the device list mutex before getting the number of
2105 	 * devices in the super block (super_copy). Conversely,
2106 	 * whoever updates the number of devices in the super block
2107 	 * (super_copy) should hold the device list mutex.
2108 	 */
2109 
2110 	/*
2111 	 * In normal cases the cur_devices == fs_devices. But in case
2112 	 * of deleting a seed device, the cur_devices should point to
2113 	 * its own fs_devices listed under the fs_devices->seed.
2114 	 */
2115 	cur_devices = device->fs_devices;
2116 	mutex_lock(&fs_devices->device_list_mutex);
2117 	list_del_rcu(&device->dev_list);
2118 
2119 	cur_devices->num_devices--;
2120 	cur_devices->total_devices--;
2121 	/* Update total_devices of the parent fs_devices if it's seed */
2122 	if (cur_devices != fs_devices)
2123 		fs_devices->total_devices--;
2124 
2125 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2126 		cur_devices->missing_devices--;
2127 
2128 	btrfs_assign_next_active_device(device, NULL);
2129 
2130 	if (device->bdev) {
2131 		cur_devices->open_devices--;
2132 		/* remove sysfs entry */
2133 		btrfs_sysfs_remove_devices_dir(fs_devices, device);
2134 	}
2135 
2136 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2137 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2138 	mutex_unlock(&fs_devices->device_list_mutex);
2139 
2140 	/*
2141 	 * at this point, the device is zero sized and detached from
2142 	 * the devices list.  All that's left is to zero out the old
2143 	 * supers and free the device.
2144 	 */
2145 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2146 		btrfs_scratch_superblocks(fs_info, device->bdev,
2147 					  device->name->str);
2148 
2149 	btrfs_close_bdev(device);
2150 	synchronize_rcu();
2151 	btrfs_free_device(device);
2152 
2153 	if (cur_devices->open_devices == 0) {
2154 		while (fs_devices) {
2155 			if (fs_devices->seed == cur_devices) {
2156 				fs_devices->seed = cur_devices->seed;
2157 				break;
2158 			}
2159 			fs_devices = fs_devices->seed;
2160 		}
2161 		cur_devices->seed = NULL;
2162 		close_fs_devices(cur_devices);
2163 		free_fs_devices(cur_devices);
2164 	}
2165 
2166 out:
2167 	mutex_unlock(&uuid_mutex);
2168 	return ret;
2169 
2170 error_undo:
2171 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2172 		mutex_lock(&fs_info->chunk_mutex);
2173 		list_add(&device->dev_alloc_list,
2174 			 &fs_devices->alloc_list);
2175 		device->fs_devices->rw_devices++;
2176 		mutex_unlock(&fs_info->chunk_mutex);
2177 	}
2178 	goto out;
2179 }
2180 
2181 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2182 {
2183 	struct btrfs_fs_devices *fs_devices;
2184 
2185 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2186 
2187 	/*
2188 	 * in case of fs with no seed, srcdev->fs_devices will point
2189 	 * to fs_devices of fs_info. However when the dev being replaced is
2190 	 * a seed dev it will point to the seed's local fs_devices. In short
2191 	 * srcdev will have its correct fs_devices in both the cases.
2192 	 */
2193 	fs_devices = srcdev->fs_devices;
2194 
2195 	list_del_rcu(&srcdev->dev_list);
2196 	list_del(&srcdev->dev_alloc_list);
2197 	fs_devices->num_devices--;
2198 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2199 		fs_devices->missing_devices--;
2200 
2201 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2202 		fs_devices->rw_devices--;
2203 
2204 	if (srcdev->bdev)
2205 		fs_devices->open_devices--;
2206 }
2207 
2208 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2209 {
2210 	struct btrfs_fs_info *fs_info = srcdev->fs_info;
2211 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2212 
2213 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2214 		/* zero out the old super if it is writable */
2215 		btrfs_scratch_superblocks(fs_info, srcdev->bdev,
2216 					  srcdev->name->str);
2217 	}
2218 
2219 	btrfs_close_bdev(srcdev);
2220 	synchronize_rcu();
2221 	btrfs_free_device(srcdev);
2222 
2223 	/* if this is no devs we rather delete the fs_devices */
2224 	if (!fs_devices->num_devices) {
2225 		struct btrfs_fs_devices *tmp_fs_devices;
2226 
2227 		/*
2228 		 * On a mounted FS, num_devices can't be zero unless it's a
2229 		 * seed. In case of a seed device being replaced, the replace
2230 		 * target added to the sprout FS, so there will be no more
2231 		 * device left under the seed FS.
2232 		 */
2233 		ASSERT(fs_devices->seeding);
2234 
2235 		tmp_fs_devices = fs_info->fs_devices;
2236 		while (tmp_fs_devices) {
2237 			if (tmp_fs_devices->seed == fs_devices) {
2238 				tmp_fs_devices->seed = fs_devices->seed;
2239 				break;
2240 			}
2241 			tmp_fs_devices = tmp_fs_devices->seed;
2242 		}
2243 		fs_devices->seed = NULL;
2244 		close_fs_devices(fs_devices);
2245 		free_fs_devices(fs_devices);
2246 	}
2247 }
2248 
2249 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2250 {
2251 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2252 
2253 	mutex_lock(&fs_devices->device_list_mutex);
2254 
2255 	btrfs_sysfs_remove_devices_dir(fs_devices, tgtdev);
2256 
2257 	if (tgtdev->bdev)
2258 		fs_devices->open_devices--;
2259 
2260 	fs_devices->num_devices--;
2261 
2262 	btrfs_assign_next_active_device(tgtdev, NULL);
2263 
2264 	list_del_rcu(&tgtdev->dev_list);
2265 
2266 	mutex_unlock(&fs_devices->device_list_mutex);
2267 
2268 	/*
2269 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2270 	 * may lead to a call to btrfs_show_devname() which will try
2271 	 * to hold device_list_mutex. And here this device
2272 	 * is already out of device list, so we don't have to hold
2273 	 * the device_list_mutex lock.
2274 	 */
2275 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2276 				  tgtdev->name->str);
2277 
2278 	btrfs_close_bdev(tgtdev);
2279 	synchronize_rcu();
2280 	btrfs_free_device(tgtdev);
2281 }
2282 
2283 static struct btrfs_device *btrfs_find_device_by_path(
2284 		struct btrfs_fs_info *fs_info, const char *device_path)
2285 {
2286 	int ret = 0;
2287 	struct btrfs_super_block *disk_super;
2288 	u64 devid;
2289 	u8 *dev_uuid;
2290 	struct block_device *bdev;
2291 	struct btrfs_device *device;
2292 
2293 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2294 				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2295 	if (ret)
2296 		return ERR_PTR(ret);
2297 
2298 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2299 	dev_uuid = disk_super->dev_item.uuid;
2300 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2301 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2302 					   disk_super->metadata_uuid, true);
2303 	else
2304 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2305 					   disk_super->fsid, true);
2306 
2307 	btrfs_release_disk_super(disk_super);
2308 	if (!device)
2309 		device = ERR_PTR(-ENOENT);
2310 	blkdev_put(bdev, FMODE_READ);
2311 	return device;
2312 }
2313 
2314 /*
2315  * Lookup a device given by device id, or the path if the id is 0.
2316  */
2317 struct btrfs_device *btrfs_find_device_by_devspec(
2318 		struct btrfs_fs_info *fs_info, u64 devid,
2319 		const char *device_path)
2320 {
2321 	struct btrfs_device *device;
2322 
2323 	if (devid) {
2324 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2325 					   NULL, true);
2326 		if (!device)
2327 			return ERR_PTR(-ENOENT);
2328 		return device;
2329 	}
2330 
2331 	if (!device_path || !device_path[0])
2332 		return ERR_PTR(-EINVAL);
2333 
2334 	if (strcmp(device_path, "missing") == 0) {
2335 		/* Find first missing device */
2336 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2337 				    dev_list) {
2338 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2339 				     &device->dev_state) && !device->bdev)
2340 				return device;
2341 		}
2342 		return ERR_PTR(-ENOENT);
2343 	}
2344 
2345 	return btrfs_find_device_by_path(fs_info, device_path);
2346 }
2347 
2348 /*
2349  * does all the dirty work required for changing file system's UUID.
2350  */
2351 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2352 {
2353 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2354 	struct btrfs_fs_devices *old_devices;
2355 	struct btrfs_fs_devices *seed_devices;
2356 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2357 	struct btrfs_device *device;
2358 	u64 super_flags;
2359 
2360 	lockdep_assert_held(&uuid_mutex);
2361 	if (!fs_devices->seeding)
2362 		return -EINVAL;
2363 
2364 	seed_devices = alloc_fs_devices(NULL, NULL);
2365 	if (IS_ERR(seed_devices))
2366 		return PTR_ERR(seed_devices);
2367 
2368 	old_devices = clone_fs_devices(fs_devices);
2369 	if (IS_ERR(old_devices)) {
2370 		kfree(seed_devices);
2371 		return PTR_ERR(old_devices);
2372 	}
2373 
2374 	list_add(&old_devices->fs_list, &fs_uuids);
2375 
2376 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2377 	seed_devices->opened = 1;
2378 	INIT_LIST_HEAD(&seed_devices->devices);
2379 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2380 	mutex_init(&seed_devices->device_list_mutex);
2381 
2382 	mutex_lock(&fs_devices->device_list_mutex);
2383 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2384 			      synchronize_rcu);
2385 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2386 		device->fs_devices = seed_devices;
2387 
2388 	mutex_lock(&fs_info->chunk_mutex);
2389 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2390 	mutex_unlock(&fs_info->chunk_mutex);
2391 
2392 	fs_devices->seeding = false;
2393 	fs_devices->num_devices = 0;
2394 	fs_devices->open_devices = 0;
2395 	fs_devices->missing_devices = 0;
2396 	fs_devices->rotating = false;
2397 	fs_devices->seed = seed_devices;
2398 
2399 	generate_random_uuid(fs_devices->fsid);
2400 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2401 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2402 	mutex_unlock(&fs_devices->device_list_mutex);
2403 
2404 	super_flags = btrfs_super_flags(disk_super) &
2405 		      ~BTRFS_SUPER_FLAG_SEEDING;
2406 	btrfs_set_super_flags(disk_super, super_flags);
2407 
2408 	return 0;
2409 }
2410 
2411 /*
2412  * Store the expected generation for seed devices in device items.
2413  */
2414 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2415 {
2416 	struct btrfs_fs_info *fs_info = trans->fs_info;
2417 	struct btrfs_root *root = fs_info->chunk_root;
2418 	struct btrfs_path *path;
2419 	struct extent_buffer *leaf;
2420 	struct btrfs_dev_item *dev_item;
2421 	struct btrfs_device *device;
2422 	struct btrfs_key key;
2423 	u8 fs_uuid[BTRFS_FSID_SIZE];
2424 	u8 dev_uuid[BTRFS_UUID_SIZE];
2425 	u64 devid;
2426 	int ret;
2427 
2428 	path = btrfs_alloc_path();
2429 	if (!path)
2430 		return -ENOMEM;
2431 
2432 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2433 	key.offset = 0;
2434 	key.type = BTRFS_DEV_ITEM_KEY;
2435 
2436 	while (1) {
2437 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2438 		if (ret < 0)
2439 			goto error;
2440 
2441 		leaf = path->nodes[0];
2442 next_slot:
2443 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2444 			ret = btrfs_next_leaf(root, path);
2445 			if (ret > 0)
2446 				break;
2447 			if (ret < 0)
2448 				goto error;
2449 			leaf = path->nodes[0];
2450 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2451 			btrfs_release_path(path);
2452 			continue;
2453 		}
2454 
2455 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2456 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2457 		    key.type != BTRFS_DEV_ITEM_KEY)
2458 			break;
2459 
2460 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2461 					  struct btrfs_dev_item);
2462 		devid = btrfs_device_id(leaf, dev_item);
2463 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2464 				   BTRFS_UUID_SIZE);
2465 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2466 				   BTRFS_FSID_SIZE);
2467 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2468 					   fs_uuid, true);
2469 		BUG_ON(!device); /* Logic error */
2470 
2471 		if (device->fs_devices->seeding) {
2472 			btrfs_set_device_generation(leaf, dev_item,
2473 						    device->generation);
2474 			btrfs_mark_buffer_dirty(leaf);
2475 		}
2476 
2477 		path->slots[0]++;
2478 		goto next_slot;
2479 	}
2480 	ret = 0;
2481 error:
2482 	btrfs_free_path(path);
2483 	return ret;
2484 }
2485 
2486 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2487 {
2488 	struct btrfs_root *root = fs_info->dev_root;
2489 	struct request_queue *q;
2490 	struct btrfs_trans_handle *trans;
2491 	struct btrfs_device *device;
2492 	struct block_device *bdev;
2493 	struct super_block *sb = fs_info->sb;
2494 	struct rcu_string *name;
2495 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2496 	u64 orig_super_total_bytes;
2497 	u64 orig_super_num_devices;
2498 	int seeding_dev = 0;
2499 	int ret = 0;
2500 	bool unlocked = false;
2501 
2502 	if (sb_rdonly(sb) && !fs_devices->seeding)
2503 		return -EROFS;
2504 
2505 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2506 				  fs_info->bdev_holder);
2507 	if (IS_ERR(bdev))
2508 		return PTR_ERR(bdev);
2509 
2510 	if (fs_devices->seeding) {
2511 		seeding_dev = 1;
2512 		down_write(&sb->s_umount);
2513 		mutex_lock(&uuid_mutex);
2514 	}
2515 
2516 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2517 
2518 	mutex_lock(&fs_devices->device_list_mutex);
2519 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2520 		if (device->bdev == bdev) {
2521 			ret = -EEXIST;
2522 			mutex_unlock(
2523 				&fs_devices->device_list_mutex);
2524 			goto error;
2525 		}
2526 	}
2527 	mutex_unlock(&fs_devices->device_list_mutex);
2528 
2529 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2530 	if (IS_ERR(device)) {
2531 		/* we can safely leave the fs_devices entry around */
2532 		ret = PTR_ERR(device);
2533 		goto error;
2534 	}
2535 
2536 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2537 	if (!name) {
2538 		ret = -ENOMEM;
2539 		goto error_free_device;
2540 	}
2541 	rcu_assign_pointer(device->name, name);
2542 
2543 	trans = btrfs_start_transaction(root, 0);
2544 	if (IS_ERR(trans)) {
2545 		ret = PTR_ERR(trans);
2546 		goto error_free_device;
2547 	}
2548 
2549 	q = bdev_get_queue(bdev);
2550 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2551 	device->generation = trans->transid;
2552 	device->io_width = fs_info->sectorsize;
2553 	device->io_align = fs_info->sectorsize;
2554 	device->sector_size = fs_info->sectorsize;
2555 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2556 					 fs_info->sectorsize);
2557 	device->disk_total_bytes = device->total_bytes;
2558 	device->commit_total_bytes = device->total_bytes;
2559 	device->fs_info = fs_info;
2560 	device->bdev = bdev;
2561 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2562 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2563 	device->mode = FMODE_EXCL;
2564 	device->dev_stats_valid = 1;
2565 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2566 
2567 	if (seeding_dev) {
2568 		sb->s_flags &= ~SB_RDONLY;
2569 		ret = btrfs_prepare_sprout(fs_info);
2570 		if (ret) {
2571 			btrfs_abort_transaction(trans, ret);
2572 			goto error_trans;
2573 		}
2574 	}
2575 
2576 	device->fs_devices = fs_devices;
2577 
2578 	mutex_lock(&fs_devices->device_list_mutex);
2579 	mutex_lock(&fs_info->chunk_mutex);
2580 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2581 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2582 	fs_devices->num_devices++;
2583 	fs_devices->open_devices++;
2584 	fs_devices->rw_devices++;
2585 	fs_devices->total_devices++;
2586 	fs_devices->total_rw_bytes += device->total_bytes;
2587 
2588 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2589 
2590 	if (!blk_queue_nonrot(q))
2591 		fs_devices->rotating = true;
2592 
2593 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2594 	btrfs_set_super_total_bytes(fs_info->super_copy,
2595 		round_down(orig_super_total_bytes + device->total_bytes,
2596 			   fs_info->sectorsize));
2597 
2598 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2599 	btrfs_set_super_num_devices(fs_info->super_copy,
2600 				    orig_super_num_devices + 1);
2601 
2602 	/* add sysfs device entry */
2603 	btrfs_sysfs_add_devices_dir(fs_devices, device);
2604 
2605 	/*
2606 	 * we've got more storage, clear any full flags on the space
2607 	 * infos
2608 	 */
2609 	btrfs_clear_space_info_full(fs_info);
2610 
2611 	mutex_unlock(&fs_info->chunk_mutex);
2612 	mutex_unlock(&fs_devices->device_list_mutex);
2613 
2614 	if (seeding_dev) {
2615 		mutex_lock(&fs_info->chunk_mutex);
2616 		ret = init_first_rw_device(trans);
2617 		mutex_unlock(&fs_info->chunk_mutex);
2618 		if (ret) {
2619 			btrfs_abort_transaction(trans, ret);
2620 			goto error_sysfs;
2621 		}
2622 	}
2623 
2624 	ret = btrfs_add_dev_item(trans, device);
2625 	if (ret) {
2626 		btrfs_abort_transaction(trans, ret);
2627 		goto error_sysfs;
2628 	}
2629 
2630 	if (seeding_dev) {
2631 		ret = btrfs_finish_sprout(trans);
2632 		if (ret) {
2633 			btrfs_abort_transaction(trans, ret);
2634 			goto error_sysfs;
2635 		}
2636 
2637 		btrfs_sysfs_update_sprout_fsid(fs_devices,
2638 				fs_info->fs_devices->fsid);
2639 	}
2640 
2641 	ret = btrfs_commit_transaction(trans);
2642 
2643 	if (seeding_dev) {
2644 		mutex_unlock(&uuid_mutex);
2645 		up_write(&sb->s_umount);
2646 		unlocked = true;
2647 
2648 		if (ret) /* transaction commit */
2649 			return ret;
2650 
2651 		ret = btrfs_relocate_sys_chunks(fs_info);
2652 		if (ret < 0)
2653 			btrfs_handle_fs_error(fs_info, ret,
2654 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2655 		trans = btrfs_attach_transaction(root);
2656 		if (IS_ERR(trans)) {
2657 			if (PTR_ERR(trans) == -ENOENT)
2658 				return 0;
2659 			ret = PTR_ERR(trans);
2660 			trans = NULL;
2661 			goto error_sysfs;
2662 		}
2663 		ret = btrfs_commit_transaction(trans);
2664 	}
2665 
2666 	/* Update ctime/mtime for libblkid */
2667 	update_dev_time(device_path);
2668 	return ret;
2669 
2670 error_sysfs:
2671 	btrfs_sysfs_remove_devices_dir(fs_devices, device);
2672 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2673 	mutex_lock(&fs_info->chunk_mutex);
2674 	list_del_rcu(&device->dev_list);
2675 	list_del(&device->dev_alloc_list);
2676 	fs_info->fs_devices->num_devices--;
2677 	fs_info->fs_devices->open_devices--;
2678 	fs_info->fs_devices->rw_devices--;
2679 	fs_info->fs_devices->total_devices--;
2680 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2681 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2682 	btrfs_set_super_total_bytes(fs_info->super_copy,
2683 				    orig_super_total_bytes);
2684 	btrfs_set_super_num_devices(fs_info->super_copy,
2685 				    orig_super_num_devices);
2686 	mutex_unlock(&fs_info->chunk_mutex);
2687 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2688 error_trans:
2689 	if (seeding_dev)
2690 		sb->s_flags |= SB_RDONLY;
2691 	if (trans)
2692 		btrfs_end_transaction(trans);
2693 error_free_device:
2694 	btrfs_free_device(device);
2695 error:
2696 	blkdev_put(bdev, FMODE_EXCL);
2697 	if (seeding_dev && !unlocked) {
2698 		mutex_unlock(&uuid_mutex);
2699 		up_write(&sb->s_umount);
2700 	}
2701 	return ret;
2702 }
2703 
2704 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2705 					struct btrfs_device *device)
2706 {
2707 	int ret;
2708 	struct btrfs_path *path;
2709 	struct btrfs_root *root = device->fs_info->chunk_root;
2710 	struct btrfs_dev_item *dev_item;
2711 	struct extent_buffer *leaf;
2712 	struct btrfs_key key;
2713 
2714 	path = btrfs_alloc_path();
2715 	if (!path)
2716 		return -ENOMEM;
2717 
2718 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2719 	key.type = BTRFS_DEV_ITEM_KEY;
2720 	key.offset = device->devid;
2721 
2722 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2723 	if (ret < 0)
2724 		goto out;
2725 
2726 	if (ret > 0) {
2727 		ret = -ENOENT;
2728 		goto out;
2729 	}
2730 
2731 	leaf = path->nodes[0];
2732 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2733 
2734 	btrfs_set_device_id(leaf, dev_item, device->devid);
2735 	btrfs_set_device_type(leaf, dev_item, device->type);
2736 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2737 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2738 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2739 	btrfs_set_device_total_bytes(leaf, dev_item,
2740 				     btrfs_device_get_disk_total_bytes(device));
2741 	btrfs_set_device_bytes_used(leaf, dev_item,
2742 				    btrfs_device_get_bytes_used(device));
2743 	btrfs_mark_buffer_dirty(leaf);
2744 
2745 out:
2746 	btrfs_free_path(path);
2747 	return ret;
2748 }
2749 
2750 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2751 		      struct btrfs_device *device, u64 new_size)
2752 {
2753 	struct btrfs_fs_info *fs_info = device->fs_info;
2754 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2755 	u64 old_total;
2756 	u64 diff;
2757 
2758 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2759 		return -EACCES;
2760 
2761 	new_size = round_down(new_size, fs_info->sectorsize);
2762 
2763 	mutex_lock(&fs_info->chunk_mutex);
2764 	old_total = btrfs_super_total_bytes(super_copy);
2765 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2766 
2767 	if (new_size <= device->total_bytes ||
2768 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2769 		mutex_unlock(&fs_info->chunk_mutex);
2770 		return -EINVAL;
2771 	}
2772 
2773 	btrfs_set_super_total_bytes(super_copy,
2774 			round_down(old_total + diff, fs_info->sectorsize));
2775 	device->fs_devices->total_rw_bytes += diff;
2776 
2777 	btrfs_device_set_total_bytes(device, new_size);
2778 	btrfs_device_set_disk_total_bytes(device, new_size);
2779 	btrfs_clear_space_info_full(device->fs_info);
2780 	if (list_empty(&device->post_commit_list))
2781 		list_add_tail(&device->post_commit_list,
2782 			      &trans->transaction->dev_update_list);
2783 	mutex_unlock(&fs_info->chunk_mutex);
2784 
2785 	return btrfs_update_device(trans, device);
2786 }
2787 
2788 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2789 {
2790 	struct btrfs_fs_info *fs_info = trans->fs_info;
2791 	struct btrfs_root *root = fs_info->chunk_root;
2792 	int ret;
2793 	struct btrfs_path *path;
2794 	struct btrfs_key key;
2795 
2796 	path = btrfs_alloc_path();
2797 	if (!path)
2798 		return -ENOMEM;
2799 
2800 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2801 	key.offset = chunk_offset;
2802 	key.type = BTRFS_CHUNK_ITEM_KEY;
2803 
2804 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2805 	if (ret < 0)
2806 		goto out;
2807 	else if (ret > 0) { /* Logic error or corruption */
2808 		btrfs_handle_fs_error(fs_info, -ENOENT,
2809 				      "Failed lookup while freeing chunk.");
2810 		ret = -ENOENT;
2811 		goto out;
2812 	}
2813 
2814 	ret = btrfs_del_item(trans, root, path);
2815 	if (ret < 0)
2816 		btrfs_handle_fs_error(fs_info, ret,
2817 				      "Failed to delete chunk item.");
2818 out:
2819 	btrfs_free_path(path);
2820 	return ret;
2821 }
2822 
2823 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2824 {
2825 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2826 	struct btrfs_disk_key *disk_key;
2827 	struct btrfs_chunk *chunk;
2828 	u8 *ptr;
2829 	int ret = 0;
2830 	u32 num_stripes;
2831 	u32 array_size;
2832 	u32 len = 0;
2833 	u32 cur;
2834 	struct btrfs_key key;
2835 
2836 	mutex_lock(&fs_info->chunk_mutex);
2837 	array_size = btrfs_super_sys_array_size(super_copy);
2838 
2839 	ptr = super_copy->sys_chunk_array;
2840 	cur = 0;
2841 
2842 	while (cur < array_size) {
2843 		disk_key = (struct btrfs_disk_key *)ptr;
2844 		btrfs_disk_key_to_cpu(&key, disk_key);
2845 
2846 		len = sizeof(*disk_key);
2847 
2848 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2849 			chunk = (struct btrfs_chunk *)(ptr + len);
2850 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2851 			len += btrfs_chunk_item_size(num_stripes);
2852 		} else {
2853 			ret = -EIO;
2854 			break;
2855 		}
2856 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2857 		    key.offset == chunk_offset) {
2858 			memmove(ptr, ptr + len, array_size - (cur + len));
2859 			array_size -= len;
2860 			btrfs_set_super_sys_array_size(super_copy, array_size);
2861 		} else {
2862 			ptr += len;
2863 			cur += len;
2864 		}
2865 	}
2866 	mutex_unlock(&fs_info->chunk_mutex);
2867 	return ret;
2868 }
2869 
2870 /*
2871  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2872  * @logical: Logical block offset in bytes.
2873  * @length: Length of extent in bytes.
2874  *
2875  * Return: Chunk mapping or ERR_PTR.
2876  */
2877 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2878 				       u64 logical, u64 length)
2879 {
2880 	struct extent_map_tree *em_tree;
2881 	struct extent_map *em;
2882 
2883 	em_tree = &fs_info->mapping_tree;
2884 	read_lock(&em_tree->lock);
2885 	em = lookup_extent_mapping(em_tree, logical, length);
2886 	read_unlock(&em_tree->lock);
2887 
2888 	if (!em) {
2889 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2890 			   logical, length);
2891 		return ERR_PTR(-EINVAL);
2892 	}
2893 
2894 	if (em->start > logical || em->start + em->len < logical) {
2895 		btrfs_crit(fs_info,
2896 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2897 			   logical, length, em->start, em->start + em->len);
2898 		free_extent_map(em);
2899 		return ERR_PTR(-EINVAL);
2900 	}
2901 
2902 	/* callers are responsible for dropping em's ref. */
2903 	return em;
2904 }
2905 
2906 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2907 {
2908 	struct btrfs_fs_info *fs_info = trans->fs_info;
2909 	struct extent_map *em;
2910 	struct map_lookup *map;
2911 	u64 dev_extent_len = 0;
2912 	int i, ret = 0;
2913 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2914 
2915 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2916 	if (IS_ERR(em)) {
2917 		/*
2918 		 * This is a logic error, but we don't want to just rely on the
2919 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2920 		 * do anything we still error out.
2921 		 */
2922 		ASSERT(0);
2923 		return PTR_ERR(em);
2924 	}
2925 	map = em->map_lookup;
2926 	mutex_lock(&fs_info->chunk_mutex);
2927 	check_system_chunk(trans, map->type);
2928 	mutex_unlock(&fs_info->chunk_mutex);
2929 
2930 	/*
2931 	 * Take the device list mutex to prevent races with the final phase of
2932 	 * a device replace operation that replaces the device object associated
2933 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2934 	 */
2935 	mutex_lock(&fs_devices->device_list_mutex);
2936 	for (i = 0; i < map->num_stripes; i++) {
2937 		struct btrfs_device *device = map->stripes[i].dev;
2938 		ret = btrfs_free_dev_extent(trans, device,
2939 					    map->stripes[i].physical,
2940 					    &dev_extent_len);
2941 		if (ret) {
2942 			mutex_unlock(&fs_devices->device_list_mutex);
2943 			btrfs_abort_transaction(trans, ret);
2944 			goto out;
2945 		}
2946 
2947 		if (device->bytes_used > 0) {
2948 			mutex_lock(&fs_info->chunk_mutex);
2949 			btrfs_device_set_bytes_used(device,
2950 					device->bytes_used - dev_extent_len);
2951 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2952 			btrfs_clear_space_info_full(fs_info);
2953 			mutex_unlock(&fs_info->chunk_mutex);
2954 		}
2955 
2956 		ret = btrfs_update_device(trans, device);
2957 		if (ret) {
2958 			mutex_unlock(&fs_devices->device_list_mutex);
2959 			btrfs_abort_transaction(trans, ret);
2960 			goto out;
2961 		}
2962 	}
2963 	mutex_unlock(&fs_devices->device_list_mutex);
2964 
2965 	ret = btrfs_free_chunk(trans, chunk_offset);
2966 	if (ret) {
2967 		btrfs_abort_transaction(trans, ret);
2968 		goto out;
2969 	}
2970 
2971 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2972 
2973 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2974 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2975 		if (ret) {
2976 			btrfs_abort_transaction(trans, ret);
2977 			goto out;
2978 		}
2979 	}
2980 
2981 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
2982 	if (ret) {
2983 		btrfs_abort_transaction(trans, ret);
2984 		goto out;
2985 	}
2986 
2987 out:
2988 	/* once for us */
2989 	free_extent_map(em);
2990 	return ret;
2991 }
2992 
2993 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2994 {
2995 	struct btrfs_root *root = fs_info->chunk_root;
2996 	struct btrfs_trans_handle *trans;
2997 	struct btrfs_block_group *block_group;
2998 	int ret;
2999 
3000 	/*
3001 	 * Prevent races with automatic removal of unused block groups.
3002 	 * After we relocate and before we remove the chunk with offset
3003 	 * chunk_offset, automatic removal of the block group can kick in,
3004 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3005 	 *
3006 	 * Make sure to acquire this mutex before doing a tree search (dev
3007 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3008 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3009 	 * we release the path used to search the chunk/dev tree and before
3010 	 * the current task acquires this mutex and calls us.
3011 	 */
3012 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3013 
3014 	/* step one, relocate all the extents inside this chunk */
3015 	btrfs_scrub_pause(fs_info);
3016 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3017 	btrfs_scrub_continue(fs_info);
3018 	if (ret)
3019 		return ret;
3020 
3021 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3022 	if (!block_group)
3023 		return -ENOENT;
3024 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3025 	btrfs_put_block_group(block_group);
3026 
3027 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3028 						     chunk_offset);
3029 	if (IS_ERR(trans)) {
3030 		ret = PTR_ERR(trans);
3031 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3032 		return ret;
3033 	}
3034 
3035 	/*
3036 	 * step two, delete the device extents and the
3037 	 * chunk tree entries
3038 	 */
3039 	ret = btrfs_remove_chunk(trans, chunk_offset);
3040 	btrfs_end_transaction(trans);
3041 	return ret;
3042 }
3043 
3044 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3045 {
3046 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3047 	struct btrfs_path *path;
3048 	struct extent_buffer *leaf;
3049 	struct btrfs_chunk *chunk;
3050 	struct btrfs_key key;
3051 	struct btrfs_key found_key;
3052 	u64 chunk_type;
3053 	bool retried = false;
3054 	int failed = 0;
3055 	int ret;
3056 
3057 	path = btrfs_alloc_path();
3058 	if (!path)
3059 		return -ENOMEM;
3060 
3061 again:
3062 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3063 	key.offset = (u64)-1;
3064 	key.type = BTRFS_CHUNK_ITEM_KEY;
3065 
3066 	while (1) {
3067 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3068 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3069 		if (ret < 0) {
3070 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3071 			goto error;
3072 		}
3073 		BUG_ON(ret == 0); /* Corruption */
3074 
3075 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3076 					  key.type);
3077 		if (ret)
3078 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3079 		if (ret < 0)
3080 			goto error;
3081 		if (ret > 0)
3082 			break;
3083 
3084 		leaf = path->nodes[0];
3085 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3086 
3087 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3088 				       struct btrfs_chunk);
3089 		chunk_type = btrfs_chunk_type(leaf, chunk);
3090 		btrfs_release_path(path);
3091 
3092 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3093 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3094 			if (ret == -ENOSPC)
3095 				failed++;
3096 			else
3097 				BUG_ON(ret);
3098 		}
3099 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3100 
3101 		if (found_key.offset == 0)
3102 			break;
3103 		key.offset = found_key.offset - 1;
3104 	}
3105 	ret = 0;
3106 	if (failed && !retried) {
3107 		failed = 0;
3108 		retried = true;
3109 		goto again;
3110 	} else if (WARN_ON(failed && retried)) {
3111 		ret = -ENOSPC;
3112 	}
3113 error:
3114 	btrfs_free_path(path);
3115 	return ret;
3116 }
3117 
3118 /*
3119  * return 1 : allocate a data chunk successfully,
3120  * return <0: errors during allocating a data chunk,
3121  * return 0 : no need to allocate a data chunk.
3122  */
3123 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3124 				      u64 chunk_offset)
3125 {
3126 	struct btrfs_block_group *cache;
3127 	u64 bytes_used;
3128 	u64 chunk_type;
3129 
3130 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3131 	ASSERT(cache);
3132 	chunk_type = cache->flags;
3133 	btrfs_put_block_group(cache);
3134 
3135 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3136 		return 0;
3137 
3138 	spin_lock(&fs_info->data_sinfo->lock);
3139 	bytes_used = fs_info->data_sinfo->bytes_used;
3140 	spin_unlock(&fs_info->data_sinfo->lock);
3141 
3142 	if (!bytes_used) {
3143 		struct btrfs_trans_handle *trans;
3144 		int ret;
3145 
3146 		trans =	btrfs_join_transaction(fs_info->tree_root);
3147 		if (IS_ERR(trans))
3148 			return PTR_ERR(trans);
3149 
3150 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3151 		btrfs_end_transaction(trans);
3152 		if (ret < 0)
3153 			return ret;
3154 		return 1;
3155 	}
3156 
3157 	return 0;
3158 }
3159 
3160 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3161 			       struct btrfs_balance_control *bctl)
3162 {
3163 	struct btrfs_root *root = fs_info->tree_root;
3164 	struct btrfs_trans_handle *trans;
3165 	struct btrfs_balance_item *item;
3166 	struct btrfs_disk_balance_args disk_bargs;
3167 	struct btrfs_path *path;
3168 	struct extent_buffer *leaf;
3169 	struct btrfs_key key;
3170 	int ret, err;
3171 
3172 	path = btrfs_alloc_path();
3173 	if (!path)
3174 		return -ENOMEM;
3175 
3176 	trans = btrfs_start_transaction(root, 0);
3177 	if (IS_ERR(trans)) {
3178 		btrfs_free_path(path);
3179 		return PTR_ERR(trans);
3180 	}
3181 
3182 	key.objectid = BTRFS_BALANCE_OBJECTID;
3183 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3184 	key.offset = 0;
3185 
3186 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3187 				      sizeof(*item));
3188 	if (ret)
3189 		goto out;
3190 
3191 	leaf = path->nodes[0];
3192 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3193 
3194 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3195 
3196 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3197 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3198 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3199 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3200 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3201 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3202 
3203 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3204 
3205 	btrfs_mark_buffer_dirty(leaf);
3206 out:
3207 	btrfs_free_path(path);
3208 	err = btrfs_commit_transaction(trans);
3209 	if (err && !ret)
3210 		ret = err;
3211 	return ret;
3212 }
3213 
3214 static int del_balance_item(struct btrfs_fs_info *fs_info)
3215 {
3216 	struct btrfs_root *root = fs_info->tree_root;
3217 	struct btrfs_trans_handle *trans;
3218 	struct btrfs_path *path;
3219 	struct btrfs_key key;
3220 	int ret, err;
3221 
3222 	path = btrfs_alloc_path();
3223 	if (!path)
3224 		return -ENOMEM;
3225 
3226 	trans = btrfs_start_transaction(root, 0);
3227 	if (IS_ERR(trans)) {
3228 		btrfs_free_path(path);
3229 		return PTR_ERR(trans);
3230 	}
3231 
3232 	key.objectid = BTRFS_BALANCE_OBJECTID;
3233 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3234 	key.offset = 0;
3235 
3236 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3237 	if (ret < 0)
3238 		goto out;
3239 	if (ret > 0) {
3240 		ret = -ENOENT;
3241 		goto out;
3242 	}
3243 
3244 	ret = btrfs_del_item(trans, root, path);
3245 out:
3246 	btrfs_free_path(path);
3247 	err = btrfs_commit_transaction(trans);
3248 	if (err && !ret)
3249 		ret = err;
3250 	return ret;
3251 }
3252 
3253 /*
3254  * This is a heuristic used to reduce the number of chunks balanced on
3255  * resume after balance was interrupted.
3256  */
3257 static void update_balance_args(struct btrfs_balance_control *bctl)
3258 {
3259 	/*
3260 	 * Turn on soft mode for chunk types that were being converted.
3261 	 */
3262 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3263 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3264 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3265 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3266 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3267 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3268 
3269 	/*
3270 	 * Turn on usage filter if is not already used.  The idea is
3271 	 * that chunks that we have already balanced should be
3272 	 * reasonably full.  Don't do it for chunks that are being
3273 	 * converted - that will keep us from relocating unconverted
3274 	 * (albeit full) chunks.
3275 	 */
3276 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3277 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3278 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3279 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3280 		bctl->data.usage = 90;
3281 	}
3282 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3283 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3284 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3285 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3286 		bctl->sys.usage = 90;
3287 	}
3288 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3289 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3290 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3291 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3292 		bctl->meta.usage = 90;
3293 	}
3294 }
3295 
3296 /*
3297  * Clear the balance status in fs_info and delete the balance item from disk.
3298  */
3299 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3300 {
3301 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3302 	int ret;
3303 
3304 	BUG_ON(!fs_info->balance_ctl);
3305 
3306 	spin_lock(&fs_info->balance_lock);
3307 	fs_info->balance_ctl = NULL;
3308 	spin_unlock(&fs_info->balance_lock);
3309 
3310 	kfree(bctl);
3311 	ret = del_balance_item(fs_info);
3312 	if (ret)
3313 		btrfs_handle_fs_error(fs_info, ret, NULL);
3314 }
3315 
3316 /*
3317  * Balance filters.  Return 1 if chunk should be filtered out
3318  * (should not be balanced).
3319  */
3320 static int chunk_profiles_filter(u64 chunk_type,
3321 				 struct btrfs_balance_args *bargs)
3322 {
3323 	chunk_type = chunk_to_extended(chunk_type) &
3324 				BTRFS_EXTENDED_PROFILE_MASK;
3325 
3326 	if (bargs->profiles & chunk_type)
3327 		return 0;
3328 
3329 	return 1;
3330 }
3331 
3332 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3333 			      struct btrfs_balance_args *bargs)
3334 {
3335 	struct btrfs_block_group *cache;
3336 	u64 chunk_used;
3337 	u64 user_thresh_min;
3338 	u64 user_thresh_max;
3339 	int ret = 1;
3340 
3341 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3342 	chunk_used = cache->used;
3343 
3344 	if (bargs->usage_min == 0)
3345 		user_thresh_min = 0;
3346 	else
3347 		user_thresh_min = div_factor_fine(cache->length,
3348 						  bargs->usage_min);
3349 
3350 	if (bargs->usage_max == 0)
3351 		user_thresh_max = 1;
3352 	else if (bargs->usage_max > 100)
3353 		user_thresh_max = cache->length;
3354 	else
3355 		user_thresh_max = div_factor_fine(cache->length,
3356 						  bargs->usage_max);
3357 
3358 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3359 		ret = 0;
3360 
3361 	btrfs_put_block_group(cache);
3362 	return ret;
3363 }
3364 
3365 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3366 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3367 {
3368 	struct btrfs_block_group *cache;
3369 	u64 chunk_used, user_thresh;
3370 	int ret = 1;
3371 
3372 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3373 	chunk_used = cache->used;
3374 
3375 	if (bargs->usage_min == 0)
3376 		user_thresh = 1;
3377 	else if (bargs->usage > 100)
3378 		user_thresh = cache->length;
3379 	else
3380 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3381 
3382 	if (chunk_used < user_thresh)
3383 		ret = 0;
3384 
3385 	btrfs_put_block_group(cache);
3386 	return ret;
3387 }
3388 
3389 static int chunk_devid_filter(struct extent_buffer *leaf,
3390 			      struct btrfs_chunk *chunk,
3391 			      struct btrfs_balance_args *bargs)
3392 {
3393 	struct btrfs_stripe *stripe;
3394 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3395 	int i;
3396 
3397 	for (i = 0; i < num_stripes; i++) {
3398 		stripe = btrfs_stripe_nr(chunk, i);
3399 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3400 			return 0;
3401 	}
3402 
3403 	return 1;
3404 }
3405 
3406 static u64 calc_data_stripes(u64 type, int num_stripes)
3407 {
3408 	const int index = btrfs_bg_flags_to_raid_index(type);
3409 	const int ncopies = btrfs_raid_array[index].ncopies;
3410 	const int nparity = btrfs_raid_array[index].nparity;
3411 
3412 	if (nparity)
3413 		return num_stripes - nparity;
3414 	else
3415 		return num_stripes / ncopies;
3416 }
3417 
3418 /* [pstart, pend) */
3419 static int chunk_drange_filter(struct extent_buffer *leaf,
3420 			       struct btrfs_chunk *chunk,
3421 			       struct btrfs_balance_args *bargs)
3422 {
3423 	struct btrfs_stripe *stripe;
3424 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3425 	u64 stripe_offset;
3426 	u64 stripe_length;
3427 	u64 type;
3428 	int factor;
3429 	int i;
3430 
3431 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3432 		return 0;
3433 
3434 	type = btrfs_chunk_type(leaf, chunk);
3435 	factor = calc_data_stripes(type, num_stripes);
3436 
3437 	for (i = 0; i < num_stripes; i++) {
3438 		stripe = btrfs_stripe_nr(chunk, i);
3439 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3440 			continue;
3441 
3442 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3443 		stripe_length = btrfs_chunk_length(leaf, chunk);
3444 		stripe_length = div_u64(stripe_length, factor);
3445 
3446 		if (stripe_offset < bargs->pend &&
3447 		    stripe_offset + stripe_length > bargs->pstart)
3448 			return 0;
3449 	}
3450 
3451 	return 1;
3452 }
3453 
3454 /* [vstart, vend) */
3455 static int chunk_vrange_filter(struct extent_buffer *leaf,
3456 			       struct btrfs_chunk *chunk,
3457 			       u64 chunk_offset,
3458 			       struct btrfs_balance_args *bargs)
3459 {
3460 	if (chunk_offset < bargs->vend &&
3461 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3462 		/* at least part of the chunk is inside this vrange */
3463 		return 0;
3464 
3465 	return 1;
3466 }
3467 
3468 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3469 			       struct btrfs_chunk *chunk,
3470 			       struct btrfs_balance_args *bargs)
3471 {
3472 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3473 
3474 	if (bargs->stripes_min <= num_stripes
3475 			&& num_stripes <= bargs->stripes_max)
3476 		return 0;
3477 
3478 	return 1;
3479 }
3480 
3481 static int chunk_soft_convert_filter(u64 chunk_type,
3482 				     struct btrfs_balance_args *bargs)
3483 {
3484 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3485 		return 0;
3486 
3487 	chunk_type = chunk_to_extended(chunk_type) &
3488 				BTRFS_EXTENDED_PROFILE_MASK;
3489 
3490 	if (bargs->target == chunk_type)
3491 		return 1;
3492 
3493 	return 0;
3494 }
3495 
3496 static int should_balance_chunk(struct extent_buffer *leaf,
3497 				struct btrfs_chunk *chunk, u64 chunk_offset)
3498 {
3499 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3500 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3501 	struct btrfs_balance_args *bargs = NULL;
3502 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3503 
3504 	/* type filter */
3505 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3506 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3507 		return 0;
3508 	}
3509 
3510 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3511 		bargs = &bctl->data;
3512 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3513 		bargs = &bctl->sys;
3514 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3515 		bargs = &bctl->meta;
3516 
3517 	/* profiles filter */
3518 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3519 	    chunk_profiles_filter(chunk_type, bargs)) {
3520 		return 0;
3521 	}
3522 
3523 	/* usage filter */
3524 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3525 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3526 		return 0;
3527 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3528 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3529 		return 0;
3530 	}
3531 
3532 	/* devid filter */
3533 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3534 	    chunk_devid_filter(leaf, chunk, bargs)) {
3535 		return 0;
3536 	}
3537 
3538 	/* drange filter, makes sense only with devid filter */
3539 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3540 	    chunk_drange_filter(leaf, chunk, bargs)) {
3541 		return 0;
3542 	}
3543 
3544 	/* vrange filter */
3545 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3546 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3547 		return 0;
3548 	}
3549 
3550 	/* stripes filter */
3551 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3552 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3553 		return 0;
3554 	}
3555 
3556 	/* soft profile changing mode */
3557 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3558 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3559 		return 0;
3560 	}
3561 
3562 	/*
3563 	 * limited by count, must be the last filter
3564 	 */
3565 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3566 		if (bargs->limit == 0)
3567 			return 0;
3568 		else
3569 			bargs->limit--;
3570 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3571 		/*
3572 		 * Same logic as the 'limit' filter; the minimum cannot be
3573 		 * determined here because we do not have the global information
3574 		 * about the count of all chunks that satisfy the filters.
3575 		 */
3576 		if (bargs->limit_max == 0)
3577 			return 0;
3578 		else
3579 			bargs->limit_max--;
3580 	}
3581 
3582 	return 1;
3583 }
3584 
3585 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3586 {
3587 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3588 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3589 	u64 chunk_type;
3590 	struct btrfs_chunk *chunk;
3591 	struct btrfs_path *path = NULL;
3592 	struct btrfs_key key;
3593 	struct btrfs_key found_key;
3594 	struct extent_buffer *leaf;
3595 	int slot;
3596 	int ret;
3597 	int enospc_errors = 0;
3598 	bool counting = true;
3599 	/* The single value limit and min/max limits use the same bytes in the */
3600 	u64 limit_data = bctl->data.limit;
3601 	u64 limit_meta = bctl->meta.limit;
3602 	u64 limit_sys = bctl->sys.limit;
3603 	u32 count_data = 0;
3604 	u32 count_meta = 0;
3605 	u32 count_sys = 0;
3606 	int chunk_reserved = 0;
3607 
3608 	path = btrfs_alloc_path();
3609 	if (!path) {
3610 		ret = -ENOMEM;
3611 		goto error;
3612 	}
3613 
3614 	/* zero out stat counters */
3615 	spin_lock(&fs_info->balance_lock);
3616 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3617 	spin_unlock(&fs_info->balance_lock);
3618 again:
3619 	if (!counting) {
3620 		/*
3621 		 * The single value limit and min/max limits use the same bytes
3622 		 * in the
3623 		 */
3624 		bctl->data.limit = limit_data;
3625 		bctl->meta.limit = limit_meta;
3626 		bctl->sys.limit = limit_sys;
3627 	}
3628 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3629 	key.offset = (u64)-1;
3630 	key.type = BTRFS_CHUNK_ITEM_KEY;
3631 
3632 	while (1) {
3633 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3634 		    atomic_read(&fs_info->balance_cancel_req)) {
3635 			ret = -ECANCELED;
3636 			goto error;
3637 		}
3638 
3639 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3640 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3641 		if (ret < 0) {
3642 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3643 			goto error;
3644 		}
3645 
3646 		/*
3647 		 * this shouldn't happen, it means the last relocate
3648 		 * failed
3649 		 */
3650 		if (ret == 0)
3651 			BUG(); /* FIXME break ? */
3652 
3653 		ret = btrfs_previous_item(chunk_root, path, 0,
3654 					  BTRFS_CHUNK_ITEM_KEY);
3655 		if (ret) {
3656 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3657 			ret = 0;
3658 			break;
3659 		}
3660 
3661 		leaf = path->nodes[0];
3662 		slot = path->slots[0];
3663 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3664 
3665 		if (found_key.objectid != key.objectid) {
3666 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3667 			break;
3668 		}
3669 
3670 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3671 		chunk_type = btrfs_chunk_type(leaf, chunk);
3672 
3673 		if (!counting) {
3674 			spin_lock(&fs_info->balance_lock);
3675 			bctl->stat.considered++;
3676 			spin_unlock(&fs_info->balance_lock);
3677 		}
3678 
3679 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3680 
3681 		btrfs_release_path(path);
3682 		if (!ret) {
3683 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3684 			goto loop;
3685 		}
3686 
3687 		if (counting) {
3688 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3689 			spin_lock(&fs_info->balance_lock);
3690 			bctl->stat.expected++;
3691 			spin_unlock(&fs_info->balance_lock);
3692 
3693 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3694 				count_data++;
3695 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3696 				count_sys++;
3697 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3698 				count_meta++;
3699 
3700 			goto loop;
3701 		}
3702 
3703 		/*
3704 		 * Apply limit_min filter, no need to check if the LIMITS
3705 		 * filter is used, limit_min is 0 by default
3706 		 */
3707 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3708 					count_data < bctl->data.limit_min)
3709 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3710 					count_meta < bctl->meta.limit_min)
3711 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3712 					count_sys < bctl->sys.limit_min)) {
3713 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3714 			goto loop;
3715 		}
3716 
3717 		if (!chunk_reserved) {
3718 			/*
3719 			 * We may be relocating the only data chunk we have,
3720 			 * which could potentially end up with losing data's
3721 			 * raid profile, so lets allocate an empty one in
3722 			 * advance.
3723 			 */
3724 			ret = btrfs_may_alloc_data_chunk(fs_info,
3725 							 found_key.offset);
3726 			if (ret < 0) {
3727 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3728 				goto error;
3729 			} else if (ret == 1) {
3730 				chunk_reserved = 1;
3731 			}
3732 		}
3733 
3734 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3735 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3736 		if (ret == -ENOSPC) {
3737 			enospc_errors++;
3738 		} else if (ret == -ETXTBSY) {
3739 			btrfs_info(fs_info,
3740 	   "skipping relocation of block group %llu due to active swapfile",
3741 				   found_key.offset);
3742 			ret = 0;
3743 		} else if (ret) {
3744 			goto error;
3745 		} else {
3746 			spin_lock(&fs_info->balance_lock);
3747 			bctl->stat.completed++;
3748 			spin_unlock(&fs_info->balance_lock);
3749 		}
3750 loop:
3751 		if (found_key.offset == 0)
3752 			break;
3753 		key.offset = found_key.offset - 1;
3754 	}
3755 
3756 	if (counting) {
3757 		btrfs_release_path(path);
3758 		counting = false;
3759 		goto again;
3760 	}
3761 error:
3762 	btrfs_free_path(path);
3763 	if (enospc_errors) {
3764 		btrfs_info(fs_info, "%d enospc errors during balance",
3765 			   enospc_errors);
3766 		if (!ret)
3767 			ret = -ENOSPC;
3768 	}
3769 
3770 	return ret;
3771 }
3772 
3773 /**
3774  * alloc_profile_is_valid - see if a given profile is valid and reduced
3775  * @flags: profile to validate
3776  * @extended: if true @flags is treated as an extended profile
3777  */
3778 static int alloc_profile_is_valid(u64 flags, int extended)
3779 {
3780 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3781 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3782 
3783 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3784 
3785 	/* 1) check that all other bits are zeroed */
3786 	if (flags & ~mask)
3787 		return 0;
3788 
3789 	/* 2) see if profile is reduced */
3790 	if (flags == 0)
3791 		return !extended; /* "0" is valid for usual profiles */
3792 
3793 	return has_single_bit_set(flags);
3794 }
3795 
3796 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3797 {
3798 	/* cancel requested || normal exit path */
3799 	return atomic_read(&fs_info->balance_cancel_req) ||
3800 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3801 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3802 }
3803 
3804 /*
3805  * Validate target profile against allowed profiles and return true if it's OK.
3806  * Otherwise print the error message and return false.
3807  */
3808 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3809 		const struct btrfs_balance_args *bargs,
3810 		u64 allowed, const char *type)
3811 {
3812 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3813 		return true;
3814 
3815 	/* Profile is valid and does not have bits outside of the allowed set */
3816 	if (alloc_profile_is_valid(bargs->target, 1) &&
3817 	    (bargs->target & ~allowed) == 0)
3818 		return true;
3819 
3820 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3821 			type, btrfs_bg_type_to_raid_name(bargs->target));
3822 	return false;
3823 }
3824 
3825 /*
3826  * Fill @buf with textual description of balance filter flags @bargs, up to
3827  * @size_buf including the terminating null. The output may be trimmed if it
3828  * does not fit into the provided buffer.
3829  */
3830 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3831 				 u32 size_buf)
3832 {
3833 	int ret;
3834 	u32 size_bp = size_buf;
3835 	char *bp = buf;
3836 	u64 flags = bargs->flags;
3837 	char tmp_buf[128] = {'\0'};
3838 
3839 	if (!flags)
3840 		return;
3841 
3842 #define CHECK_APPEND_NOARG(a)						\
3843 	do {								\
3844 		ret = snprintf(bp, size_bp, (a));			\
3845 		if (ret < 0 || ret >= size_bp)				\
3846 			goto out_overflow;				\
3847 		size_bp -= ret;						\
3848 		bp += ret;						\
3849 	} while (0)
3850 
3851 #define CHECK_APPEND_1ARG(a, v1)					\
3852 	do {								\
3853 		ret = snprintf(bp, size_bp, (a), (v1));			\
3854 		if (ret < 0 || ret >= size_bp)				\
3855 			goto out_overflow;				\
3856 		size_bp -= ret;						\
3857 		bp += ret;						\
3858 	} while (0)
3859 
3860 #define CHECK_APPEND_2ARG(a, v1, v2)					\
3861 	do {								\
3862 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
3863 		if (ret < 0 || ret >= size_bp)				\
3864 			goto out_overflow;				\
3865 		size_bp -= ret;						\
3866 		bp += ret;						\
3867 	} while (0)
3868 
3869 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3870 		CHECK_APPEND_1ARG("convert=%s,",
3871 				  btrfs_bg_type_to_raid_name(bargs->target));
3872 
3873 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
3874 		CHECK_APPEND_NOARG("soft,");
3875 
3876 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3877 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3878 					    sizeof(tmp_buf));
3879 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3880 	}
3881 
3882 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
3883 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3884 
3885 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3886 		CHECK_APPEND_2ARG("usage=%u..%u,",
3887 				  bargs->usage_min, bargs->usage_max);
3888 
3889 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
3890 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3891 
3892 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3893 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
3894 				  bargs->pstart, bargs->pend);
3895 
3896 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3897 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3898 				  bargs->vstart, bargs->vend);
3899 
3900 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3901 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3902 
3903 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3904 		CHECK_APPEND_2ARG("limit=%u..%u,",
3905 				bargs->limit_min, bargs->limit_max);
3906 
3907 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3908 		CHECK_APPEND_2ARG("stripes=%u..%u,",
3909 				  bargs->stripes_min, bargs->stripes_max);
3910 
3911 #undef CHECK_APPEND_2ARG
3912 #undef CHECK_APPEND_1ARG
3913 #undef CHECK_APPEND_NOARG
3914 
3915 out_overflow:
3916 
3917 	if (size_bp < size_buf)
3918 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3919 	else
3920 		buf[0] = '\0';
3921 }
3922 
3923 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3924 {
3925 	u32 size_buf = 1024;
3926 	char tmp_buf[192] = {'\0'};
3927 	char *buf;
3928 	char *bp;
3929 	u32 size_bp = size_buf;
3930 	int ret;
3931 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3932 
3933 	buf = kzalloc(size_buf, GFP_KERNEL);
3934 	if (!buf)
3935 		return;
3936 
3937 	bp = buf;
3938 
3939 #define CHECK_APPEND_1ARG(a, v1)					\
3940 	do {								\
3941 		ret = snprintf(bp, size_bp, (a), (v1));			\
3942 		if (ret < 0 || ret >= size_bp)				\
3943 			goto out_overflow;				\
3944 		size_bp -= ret;						\
3945 		bp += ret;						\
3946 	} while (0)
3947 
3948 	if (bctl->flags & BTRFS_BALANCE_FORCE)
3949 		CHECK_APPEND_1ARG("%s", "-f ");
3950 
3951 	if (bctl->flags & BTRFS_BALANCE_DATA) {
3952 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3953 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3954 	}
3955 
3956 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
3957 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3958 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3959 	}
3960 
3961 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3962 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3963 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3964 	}
3965 
3966 #undef CHECK_APPEND_1ARG
3967 
3968 out_overflow:
3969 
3970 	if (size_bp < size_buf)
3971 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3972 	btrfs_info(fs_info, "balance: %s %s",
3973 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
3974 		   "resume" : "start", buf);
3975 
3976 	kfree(buf);
3977 }
3978 
3979 /*
3980  * Should be called with balance mutexe held
3981  */
3982 int btrfs_balance(struct btrfs_fs_info *fs_info,
3983 		  struct btrfs_balance_control *bctl,
3984 		  struct btrfs_ioctl_balance_args *bargs)
3985 {
3986 	u64 meta_target, data_target;
3987 	u64 allowed;
3988 	int mixed = 0;
3989 	int ret;
3990 	u64 num_devices;
3991 	unsigned seq;
3992 	bool reducing_redundancy;
3993 	int i;
3994 
3995 	if (btrfs_fs_closing(fs_info) ||
3996 	    atomic_read(&fs_info->balance_pause_req) ||
3997 	    btrfs_should_cancel_balance(fs_info)) {
3998 		ret = -EINVAL;
3999 		goto out;
4000 	}
4001 
4002 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4003 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4004 		mixed = 1;
4005 
4006 	/*
4007 	 * In case of mixed groups both data and meta should be picked,
4008 	 * and identical options should be given for both of them.
4009 	 */
4010 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4011 	if (mixed && (bctl->flags & allowed)) {
4012 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4013 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4014 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4015 			btrfs_err(fs_info,
4016 	  "balance: mixed groups data and metadata options must be the same");
4017 			ret = -EINVAL;
4018 			goto out;
4019 		}
4020 	}
4021 
4022 	/*
4023 	 * rw_devices will not change at the moment, device add/delete/replace
4024 	 * are excluded by EXCL_OP
4025 	 */
4026 	num_devices = fs_info->fs_devices->rw_devices;
4027 
4028 	/*
4029 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4030 	 * special bit for it, to make it easier to distinguish.  Thus we need
4031 	 * to set it manually, or balance would refuse the profile.
4032 	 */
4033 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4034 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4035 		if (num_devices >= btrfs_raid_array[i].devs_min)
4036 			allowed |= btrfs_raid_array[i].bg_flag;
4037 
4038 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4039 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4040 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4041 		ret = -EINVAL;
4042 		goto out;
4043 	}
4044 
4045 	/*
4046 	 * Allow to reduce metadata or system integrity only if force set for
4047 	 * profiles with redundancy (copies, parity)
4048 	 */
4049 	allowed = 0;
4050 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4051 		if (btrfs_raid_array[i].ncopies >= 2 ||
4052 		    btrfs_raid_array[i].tolerated_failures >= 1)
4053 			allowed |= btrfs_raid_array[i].bg_flag;
4054 	}
4055 	do {
4056 		seq = read_seqbegin(&fs_info->profiles_lock);
4057 
4058 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4059 		     (fs_info->avail_system_alloc_bits & allowed) &&
4060 		     !(bctl->sys.target & allowed)) ||
4061 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4062 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4063 		     !(bctl->meta.target & allowed)))
4064 			reducing_redundancy = true;
4065 		else
4066 			reducing_redundancy = false;
4067 
4068 		/* if we're not converting, the target field is uninitialized */
4069 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4070 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4071 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4072 			bctl->data.target : fs_info->avail_data_alloc_bits;
4073 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4074 
4075 	if (reducing_redundancy) {
4076 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4077 			btrfs_info(fs_info,
4078 			   "balance: force reducing metadata redundancy");
4079 		} else {
4080 			btrfs_err(fs_info,
4081 	"balance: reduces metadata redundancy, use --force if you want this");
4082 			ret = -EINVAL;
4083 			goto out;
4084 		}
4085 	}
4086 
4087 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4088 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4089 		btrfs_warn(fs_info,
4090 	"balance: metadata profile %s has lower redundancy than data profile %s",
4091 				btrfs_bg_type_to_raid_name(meta_target),
4092 				btrfs_bg_type_to_raid_name(data_target));
4093 	}
4094 
4095 	if (fs_info->send_in_progress) {
4096 		btrfs_warn_rl(fs_info,
4097 "cannot run balance while send operations are in progress (%d in progress)",
4098 			      fs_info->send_in_progress);
4099 		ret = -EAGAIN;
4100 		goto out;
4101 	}
4102 
4103 	ret = insert_balance_item(fs_info, bctl);
4104 	if (ret && ret != -EEXIST)
4105 		goto out;
4106 
4107 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4108 		BUG_ON(ret == -EEXIST);
4109 		BUG_ON(fs_info->balance_ctl);
4110 		spin_lock(&fs_info->balance_lock);
4111 		fs_info->balance_ctl = bctl;
4112 		spin_unlock(&fs_info->balance_lock);
4113 	} else {
4114 		BUG_ON(ret != -EEXIST);
4115 		spin_lock(&fs_info->balance_lock);
4116 		update_balance_args(bctl);
4117 		spin_unlock(&fs_info->balance_lock);
4118 	}
4119 
4120 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4121 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4122 	describe_balance_start_or_resume(fs_info);
4123 	mutex_unlock(&fs_info->balance_mutex);
4124 
4125 	ret = __btrfs_balance(fs_info);
4126 
4127 	mutex_lock(&fs_info->balance_mutex);
4128 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4129 		btrfs_info(fs_info, "balance: paused");
4130 	else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4131 		btrfs_info(fs_info, "balance: canceled");
4132 	else
4133 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4134 
4135 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4136 
4137 	if (bargs) {
4138 		memset(bargs, 0, sizeof(*bargs));
4139 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4140 	}
4141 
4142 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4143 	    balance_need_close(fs_info)) {
4144 		reset_balance_state(fs_info);
4145 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4146 	}
4147 
4148 	wake_up(&fs_info->balance_wait_q);
4149 
4150 	return ret;
4151 out:
4152 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4153 		reset_balance_state(fs_info);
4154 	else
4155 		kfree(bctl);
4156 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4157 
4158 	return ret;
4159 }
4160 
4161 static int balance_kthread(void *data)
4162 {
4163 	struct btrfs_fs_info *fs_info = data;
4164 	int ret = 0;
4165 
4166 	mutex_lock(&fs_info->balance_mutex);
4167 	if (fs_info->balance_ctl)
4168 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4169 	mutex_unlock(&fs_info->balance_mutex);
4170 
4171 	return ret;
4172 }
4173 
4174 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4175 {
4176 	struct task_struct *tsk;
4177 
4178 	mutex_lock(&fs_info->balance_mutex);
4179 	if (!fs_info->balance_ctl) {
4180 		mutex_unlock(&fs_info->balance_mutex);
4181 		return 0;
4182 	}
4183 	mutex_unlock(&fs_info->balance_mutex);
4184 
4185 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4186 		btrfs_info(fs_info, "balance: resume skipped");
4187 		return 0;
4188 	}
4189 
4190 	/*
4191 	 * A ro->rw remount sequence should continue with the paused balance
4192 	 * regardless of who pauses it, system or the user as of now, so set
4193 	 * the resume flag.
4194 	 */
4195 	spin_lock(&fs_info->balance_lock);
4196 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4197 	spin_unlock(&fs_info->balance_lock);
4198 
4199 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4200 	return PTR_ERR_OR_ZERO(tsk);
4201 }
4202 
4203 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4204 {
4205 	struct btrfs_balance_control *bctl;
4206 	struct btrfs_balance_item *item;
4207 	struct btrfs_disk_balance_args disk_bargs;
4208 	struct btrfs_path *path;
4209 	struct extent_buffer *leaf;
4210 	struct btrfs_key key;
4211 	int ret;
4212 
4213 	path = btrfs_alloc_path();
4214 	if (!path)
4215 		return -ENOMEM;
4216 
4217 	key.objectid = BTRFS_BALANCE_OBJECTID;
4218 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4219 	key.offset = 0;
4220 
4221 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4222 	if (ret < 0)
4223 		goto out;
4224 	if (ret > 0) { /* ret = -ENOENT; */
4225 		ret = 0;
4226 		goto out;
4227 	}
4228 
4229 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4230 	if (!bctl) {
4231 		ret = -ENOMEM;
4232 		goto out;
4233 	}
4234 
4235 	leaf = path->nodes[0];
4236 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4237 
4238 	bctl->flags = btrfs_balance_flags(leaf, item);
4239 	bctl->flags |= BTRFS_BALANCE_RESUME;
4240 
4241 	btrfs_balance_data(leaf, item, &disk_bargs);
4242 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4243 	btrfs_balance_meta(leaf, item, &disk_bargs);
4244 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4245 	btrfs_balance_sys(leaf, item, &disk_bargs);
4246 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4247 
4248 	/*
4249 	 * This should never happen, as the paused balance state is recovered
4250 	 * during mount without any chance of other exclusive ops to collide.
4251 	 *
4252 	 * This gives the exclusive op status to balance and keeps in paused
4253 	 * state until user intervention (cancel or umount). If the ownership
4254 	 * cannot be assigned, show a message but do not fail. The balance
4255 	 * is in a paused state and must have fs_info::balance_ctl properly
4256 	 * set up.
4257 	 */
4258 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4259 		btrfs_warn(fs_info,
4260 	"balance: cannot set exclusive op status, resume manually");
4261 
4262 	mutex_lock(&fs_info->balance_mutex);
4263 	BUG_ON(fs_info->balance_ctl);
4264 	spin_lock(&fs_info->balance_lock);
4265 	fs_info->balance_ctl = bctl;
4266 	spin_unlock(&fs_info->balance_lock);
4267 	mutex_unlock(&fs_info->balance_mutex);
4268 out:
4269 	btrfs_free_path(path);
4270 	return ret;
4271 }
4272 
4273 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4274 {
4275 	int ret = 0;
4276 
4277 	mutex_lock(&fs_info->balance_mutex);
4278 	if (!fs_info->balance_ctl) {
4279 		mutex_unlock(&fs_info->balance_mutex);
4280 		return -ENOTCONN;
4281 	}
4282 
4283 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4284 		atomic_inc(&fs_info->balance_pause_req);
4285 		mutex_unlock(&fs_info->balance_mutex);
4286 
4287 		wait_event(fs_info->balance_wait_q,
4288 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4289 
4290 		mutex_lock(&fs_info->balance_mutex);
4291 		/* we are good with balance_ctl ripped off from under us */
4292 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4293 		atomic_dec(&fs_info->balance_pause_req);
4294 	} else {
4295 		ret = -ENOTCONN;
4296 	}
4297 
4298 	mutex_unlock(&fs_info->balance_mutex);
4299 	return ret;
4300 }
4301 
4302 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4303 {
4304 	mutex_lock(&fs_info->balance_mutex);
4305 	if (!fs_info->balance_ctl) {
4306 		mutex_unlock(&fs_info->balance_mutex);
4307 		return -ENOTCONN;
4308 	}
4309 
4310 	/*
4311 	 * A paused balance with the item stored on disk can be resumed at
4312 	 * mount time if the mount is read-write. Otherwise it's still paused
4313 	 * and we must not allow cancelling as it deletes the item.
4314 	 */
4315 	if (sb_rdonly(fs_info->sb)) {
4316 		mutex_unlock(&fs_info->balance_mutex);
4317 		return -EROFS;
4318 	}
4319 
4320 	atomic_inc(&fs_info->balance_cancel_req);
4321 	/*
4322 	 * if we are running just wait and return, balance item is
4323 	 * deleted in btrfs_balance in this case
4324 	 */
4325 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4326 		mutex_unlock(&fs_info->balance_mutex);
4327 		wait_event(fs_info->balance_wait_q,
4328 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4329 		mutex_lock(&fs_info->balance_mutex);
4330 	} else {
4331 		mutex_unlock(&fs_info->balance_mutex);
4332 		/*
4333 		 * Lock released to allow other waiters to continue, we'll
4334 		 * reexamine the status again.
4335 		 */
4336 		mutex_lock(&fs_info->balance_mutex);
4337 
4338 		if (fs_info->balance_ctl) {
4339 			reset_balance_state(fs_info);
4340 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4341 			btrfs_info(fs_info, "balance: canceled");
4342 		}
4343 	}
4344 
4345 	BUG_ON(fs_info->balance_ctl ||
4346 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4347 	atomic_dec(&fs_info->balance_cancel_req);
4348 	mutex_unlock(&fs_info->balance_mutex);
4349 	return 0;
4350 }
4351 
4352 int btrfs_uuid_scan_kthread(void *data)
4353 {
4354 	struct btrfs_fs_info *fs_info = data;
4355 	struct btrfs_root *root = fs_info->tree_root;
4356 	struct btrfs_key key;
4357 	struct btrfs_path *path = NULL;
4358 	int ret = 0;
4359 	struct extent_buffer *eb;
4360 	int slot;
4361 	struct btrfs_root_item root_item;
4362 	u32 item_size;
4363 	struct btrfs_trans_handle *trans = NULL;
4364 	bool closing = false;
4365 
4366 	path = btrfs_alloc_path();
4367 	if (!path) {
4368 		ret = -ENOMEM;
4369 		goto out;
4370 	}
4371 
4372 	key.objectid = 0;
4373 	key.type = BTRFS_ROOT_ITEM_KEY;
4374 	key.offset = 0;
4375 
4376 	while (1) {
4377 		if (btrfs_fs_closing(fs_info)) {
4378 			closing = true;
4379 			break;
4380 		}
4381 		ret = btrfs_search_forward(root, &key, path,
4382 				BTRFS_OLDEST_GENERATION);
4383 		if (ret) {
4384 			if (ret > 0)
4385 				ret = 0;
4386 			break;
4387 		}
4388 
4389 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4390 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4391 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4392 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4393 			goto skip;
4394 
4395 		eb = path->nodes[0];
4396 		slot = path->slots[0];
4397 		item_size = btrfs_item_size_nr(eb, slot);
4398 		if (item_size < sizeof(root_item))
4399 			goto skip;
4400 
4401 		read_extent_buffer(eb, &root_item,
4402 				   btrfs_item_ptr_offset(eb, slot),
4403 				   (int)sizeof(root_item));
4404 		if (btrfs_root_refs(&root_item) == 0)
4405 			goto skip;
4406 
4407 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4408 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4409 			if (trans)
4410 				goto update_tree;
4411 
4412 			btrfs_release_path(path);
4413 			/*
4414 			 * 1 - subvol uuid item
4415 			 * 1 - received_subvol uuid item
4416 			 */
4417 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4418 			if (IS_ERR(trans)) {
4419 				ret = PTR_ERR(trans);
4420 				break;
4421 			}
4422 			continue;
4423 		} else {
4424 			goto skip;
4425 		}
4426 update_tree:
4427 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4428 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4429 						  BTRFS_UUID_KEY_SUBVOL,
4430 						  key.objectid);
4431 			if (ret < 0) {
4432 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4433 					ret);
4434 				break;
4435 			}
4436 		}
4437 
4438 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4439 			ret = btrfs_uuid_tree_add(trans,
4440 						  root_item.received_uuid,
4441 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4442 						  key.objectid);
4443 			if (ret < 0) {
4444 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4445 					ret);
4446 				break;
4447 			}
4448 		}
4449 
4450 skip:
4451 		if (trans) {
4452 			ret = btrfs_end_transaction(trans);
4453 			trans = NULL;
4454 			if (ret)
4455 				break;
4456 		}
4457 
4458 		btrfs_release_path(path);
4459 		if (key.offset < (u64)-1) {
4460 			key.offset++;
4461 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4462 			key.offset = 0;
4463 			key.type = BTRFS_ROOT_ITEM_KEY;
4464 		} else if (key.objectid < (u64)-1) {
4465 			key.offset = 0;
4466 			key.type = BTRFS_ROOT_ITEM_KEY;
4467 			key.objectid++;
4468 		} else {
4469 			break;
4470 		}
4471 		cond_resched();
4472 	}
4473 
4474 out:
4475 	btrfs_free_path(path);
4476 	if (trans && !IS_ERR(trans))
4477 		btrfs_end_transaction(trans);
4478 	if (ret)
4479 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4480 	else if (!closing)
4481 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4482 	up(&fs_info->uuid_tree_rescan_sem);
4483 	return 0;
4484 }
4485 
4486 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4487 {
4488 	struct btrfs_trans_handle *trans;
4489 	struct btrfs_root *tree_root = fs_info->tree_root;
4490 	struct btrfs_root *uuid_root;
4491 	struct task_struct *task;
4492 	int ret;
4493 
4494 	/*
4495 	 * 1 - root node
4496 	 * 1 - root item
4497 	 */
4498 	trans = btrfs_start_transaction(tree_root, 2);
4499 	if (IS_ERR(trans))
4500 		return PTR_ERR(trans);
4501 
4502 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4503 	if (IS_ERR(uuid_root)) {
4504 		ret = PTR_ERR(uuid_root);
4505 		btrfs_abort_transaction(trans, ret);
4506 		btrfs_end_transaction(trans);
4507 		return ret;
4508 	}
4509 
4510 	fs_info->uuid_root = uuid_root;
4511 
4512 	ret = btrfs_commit_transaction(trans);
4513 	if (ret)
4514 		return ret;
4515 
4516 	down(&fs_info->uuid_tree_rescan_sem);
4517 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4518 	if (IS_ERR(task)) {
4519 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4520 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4521 		up(&fs_info->uuid_tree_rescan_sem);
4522 		return PTR_ERR(task);
4523 	}
4524 
4525 	return 0;
4526 }
4527 
4528 /*
4529  * shrinking a device means finding all of the device extents past
4530  * the new size, and then following the back refs to the chunks.
4531  * The chunk relocation code actually frees the device extent
4532  */
4533 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4534 {
4535 	struct btrfs_fs_info *fs_info = device->fs_info;
4536 	struct btrfs_root *root = fs_info->dev_root;
4537 	struct btrfs_trans_handle *trans;
4538 	struct btrfs_dev_extent *dev_extent = NULL;
4539 	struct btrfs_path *path;
4540 	u64 length;
4541 	u64 chunk_offset;
4542 	int ret;
4543 	int slot;
4544 	int failed = 0;
4545 	bool retried = false;
4546 	struct extent_buffer *l;
4547 	struct btrfs_key key;
4548 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4549 	u64 old_total = btrfs_super_total_bytes(super_copy);
4550 	u64 old_size = btrfs_device_get_total_bytes(device);
4551 	u64 diff;
4552 	u64 start;
4553 
4554 	new_size = round_down(new_size, fs_info->sectorsize);
4555 	start = new_size;
4556 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4557 
4558 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4559 		return -EINVAL;
4560 
4561 	path = btrfs_alloc_path();
4562 	if (!path)
4563 		return -ENOMEM;
4564 
4565 	path->reada = READA_BACK;
4566 
4567 	trans = btrfs_start_transaction(root, 0);
4568 	if (IS_ERR(trans)) {
4569 		btrfs_free_path(path);
4570 		return PTR_ERR(trans);
4571 	}
4572 
4573 	mutex_lock(&fs_info->chunk_mutex);
4574 
4575 	btrfs_device_set_total_bytes(device, new_size);
4576 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4577 		device->fs_devices->total_rw_bytes -= diff;
4578 		atomic64_sub(diff, &fs_info->free_chunk_space);
4579 	}
4580 
4581 	/*
4582 	 * Once the device's size has been set to the new size, ensure all
4583 	 * in-memory chunks are synced to disk so that the loop below sees them
4584 	 * and relocates them accordingly.
4585 	 */
4586 	if (contains_pending_extent(device, &start, diff)) {
4587 		mutex_unlock(&fs_info->chunk_mutex);
4588 		ret = btrfs_commit_transaction(trans);
4589 		if (ret)
4590 			goto done;
4591 	} else {
4592 		mutex_unlock(&fs_info->chunk_mutex);
4593 		btrfs_end_transaction(trans);
4594 	}
4595 
4596 again:
4597 	key.objectid = device->devid;
4598 	key.offset = (u64)-1;
4599 	key.type = BTRFS_DEV_EXTENT_KEY;
4600 
4601 	do {
4602 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4603 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4604 		if (ret < 0) {
4605 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4606 			goto done;
4607 		}
4608 
4609 		ret = btrfs_previous_item(root, path, 0, key.type);
4610 		if (ret)
4611 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4612 		if (ret < 0)
4613 			goto done;
4614 		if (ret) {
4615 			ret = 0;
4616 			btrfs_release_path(path);
4617 			break;
4618 		}
4619 
4620 		l = path->nodes[0];
4621 		slot = path->slots[0];
4622 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4623 
4624 		if (key.objectid != device->devid) {
4625 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4626 			btrfs_release_path(path);
4627 			break;
4628 		}
4629 
4630 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4631 		length = btrfs_dev_extent_length(l, dev_extent);
4632 
4633 		if (key.offset + length <= new_size) {
4634 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4635 			btrfs_release_path(path);
4636 			break;
4637 		}
4638 
4639 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4640 		btrfs_release_path(path);
4641 
4642 		/*
4643 		 * We may be relocating the only data chunk we have,
4644 		 * which could potentially end up with losing data's
4645 		 * raid profile, so lets allocate an empty one in
4646 		 * advance.
4647 		 */
4648 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4649 		if (ret < 0) {
4650 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4651 			goto done;
4652 		}
4653 
4654 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4655 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4656 		if (ret == -ENOSPC) {
4657 			failed++;
4658 		} else if (ret) {
4659 			if (ret == -ETXTBSY) {
4660 				btrfs_warn(fs_info,
4661 		   "could not shrink block group %llu due to active swapfile",
4662 					   chunk_offset);
4663 			}
4664 			goto done;
4665 		}
4666 	} while (key.offset-- > 0);
4667 
4668 	if (failed && !retried) {
4669 		failed = 0;
4670 		retried = true;
4671 		goto again;
4672 	} else if (failed && retried) {
4673 		ret = -ENOSPC;
4674 		goto done;
4675 	}
4676 
4677 	/* Shrinking succeeded, else we would be at "done". */
4678 	trans = btrfs_start_transaction(root, 0);
4679 	if (IS_ERR(trans)) {
4680 		ret = PTR_ERR(trans);
4681 		goto done;
4682 	}
4683 
4684 	mutex_lock(&fs_info->chunk_mutex);
4685 	btrfs_device_set_disk_total_bytes(device, new_size);
4686 	if (list_empty(&device->post_commit_list))
4687 		list_add_tail(&device->post_commit_list,
4688 			      &trans->transaction->dev_update_list);
4689 
4690 	WARN_ON(diff > old_total);
4691 	btrfs_set_super_total_bytes(super_copy,
4692 			round_down(old_total - diff, fs_info->sectorsize));
4693 	mutex_unlock(&fs_info->chunk_mutex);
4694 
4695 	/* Now btrfs_update_device() will change the on-disk size. */
4696 	ret = btrfs_update_device(trans, device);
4697 	if (ret < 0) {
4698 		btrfs_abort_transaction(trans, ret);
4699 		btrfs_end_transaction(trans);
4700 	} else {
4701 		ret = btrfs_commit_transaction(trans);
4702 	}
4703 done:
4704 	btrfs_free_path(path);
4705 	if (ret) {
4706 		mutex_lock(&fs_info->chunk_mutex);
4707 		btrfs_device_set_total_bytes(device, old_size);
4708 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4709 			device->fs_devices->total_rw_bytes += diff;
4710 		atomic64_add(diff, &fs_info->free_chunk_space);
4711 		mutex_unlock(&fs_info->chunk_mutex);
4712 	}
4713 	return ret;
4714 }
4715 
4716 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4717 			   struct btrfs_key *key,
4718 			   struct btrfs_chunk *chunk, int item_size)
4719 {
4720 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4721 	struct btrfs_disk_key disk_key;
4722 	u32 array_size;
4723 	u8 *ptr;
4724 
4725 	mutex_lock(&fs_info->chunk_mutex);
4726 	array_size = btrfs_super_sys_array_size(super_copy);
4727 	if (array_size + item_size + sizeof(disk_key)
4728 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4729 		mutex_unlock(&fs_info->chunk_mutex);
4730 		return -EFBIG;
4731 	}
4732 
4733 	ptr = super_copy->sys_chunk_array + array_size;
4734 	btrfs_cpu_key_to_disk(&disk_key, key);
4735 	memcpy(ptr, &disk_key, sizeof(disk_key));
4736 	ptr += sizeof(disk_key);
4737 	memcpy(ptr, chunk, item_size);
4738 	item_size += sizeof(disk_key);
4739 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4740 	mutex_unlock(&fs_info->chunk_mutex);
4741 
4742 	return 0;
4743 }
4744 
4745 /*
4746  * sort the devices in descending order by max_avail, total_avail
4747  */
4748 static int btrfs_cmp_device_info(const void *a, const void *b)
4749 {
4750 	const struct btrfs_device_info *di_a = a;
4751 	const struct btrfs_device_info *di_b = b;
4752 
4753 	if (di_a->max_avail > di_b->max_avail)
4754 		return -1;
4755 	if (di_a->max_avail < di_b->max_avail)
4756 		return 1;
4757 	if (di_a->total_avail > di_b->total_avail)
4758 		return -1;
4759 	if (di_a->total_avail < di_b->total_avail)
4760 		return 1;
4761 	return 0;
4762 }
4763 
4764 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4765 {
4766 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4767 		return;
4768 
4769 	btrfs_set_fs_incompat(info, RAID56);
4770 }
4771 
4772 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4773 {
4774 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4775 		return;
4776 
4777 	btrfs_set_fs_incompat(info, RAID1C34);
4778 }
4779 
4780 /*
4781  * Structure used internally for __btrfs_alloc_chunk() function.
4782  * Wraps needed parameters.
4783  */
4784 struct alloc_chunk_ctl {
4785 	u64 start;
4786 	u64 type;
4787 	/* Total number of stripes to allocate */
4788 	int num_stripes;
4789 	/* sub_stripes info for map */
4790 	int sub_stripes;
4791 	/* Stripes per device */
4792 	int dev_stripes;
4793 	/* Maximum number of devices to use */
4794 	int devs_max;
4795 	/* Minimum number of devices to use */
4796 	int devs_min;
4797 	/* ndevs has to be a multiple of this */
4798 	int devs_increment;
4799 	/* Number of copies */
4800 	int ncopies;
4801 	/* Number of stripes worth of bytes to store parity information */
4802 	int nparity;
4803 	u64 max_stripe_size;
4804 	u64 max_chunk_size;
4805 	u64 dev_extent_min;
4806 	u64 stripe_size;
4807 	u64 chunk_size;
4808 	int ndevs;
4809 };
4810 
4811 static void init_alloc_chunk_ctl_policy_regular(
4812 				struct btrfs_fs_devices *fs_devices,
4813 				struct alloc_chunk_ctl *ctl)
4814 {
4815 	u64 type = ctl->type;
4816 
4817 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4818 		ctl->max_stripe_size = SZ_1G;
4819 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4820 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4821 		/* For larger filesystems, use larger metadata chunks */
4822 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4823 			ctl->max_stripe_size = SZ_1G;
4824 		else
4825 			ctl->max_stripe_size = SZ_256M;
4826 		ctl->max_chunk_size = ctl->max_stripe_size;
4827 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4828 		ctl->max_stripe_size = SZ_32M;
4829 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4830 		ctl->devs_max = min_t(int, ctl->devs_max,
4831 				      BTRFS_MAX_DEVS_SYS_CHUNK);
4832 	} else {
4833 		BUG();
4834 	}
4835 
4836 	/* We don't want a chunk larger than 10% of writable space */
4837 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4838 				  ctl->max_chunk_size);
4839 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4840 }
4841 
4842 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4843 				 struct alloc_chunk_ctl *ctl)
4844 {
4845 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
4846 
4847 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4848 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4849 	ctl->devs_max = btrfs_raid_array[index].devs_max;
4850 	if (!ctl->devs_max)
4851 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4852 	ctl->devs_min = btrfs_raid_array[index].devs_min;
4853 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4854 	ctl->ncopies = btrfs_raid_array[index].ncopies;
4855 	ctl->nparity = btrfs_raid_array[index].nparity;
4856 	ctl->ndevs = 0;
4857 
4858 	switch (fs_devices->chunk_alloc_policy) {
4859 	case BTRFS_CHUNK_ALLOC_REGULAR:
4860 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4861 		break;
4862 	default:
4863 		BUG();
4864 	}
4865 }
4866 
4867 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4868 			      struct alloc_chunk_ctl *ctl,
4869 			      struct btrfs_device_info *devices_info)
4870 {
4871 	struct btrfs_fs_info *info = fs_devices->fs_info;
4872 	struct btrfs_device *device;
4873 	u64 total_avail;
4874 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4875 	int ret;
4876 	int ndevs = 0;
4877 	u64 max_avail;
4878 	u64 dev_offset;
4879 
4880 	/*
4881 	 * in the first pass through the devices list, we gather information
4882 	 * about the available holes on each device.
4883 	 */
4884 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4885 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4886 			WARN(1, KERN_ERR
4887 			       "BTRFS: read-only device in alloc_list\n");
4888 			continue;
4889 		}
4890 
4891 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4892 					&device->dev_state) ||
4893 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4894 			continue;
4895 
4896 		if (device->total_bytes > device->bytes_used)
4897 			total_avail = device->total_bytes - device->bytes_used;
4898 		else
4899 			total_avail = 0;
4900 
4901 		/* If there is no space on this device, skip it. */
4902 		if (total_avail < ctl->dev_extent_min)
4903 			continue;
4904 
4905 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4906 					   &max_avail);
4907 		if (ret && ret != -ENOSPC)
4908 			return ret;
4909 
4910 		if (ret == 0)
4911 			max_avail = dev_extent_want;
4912 
4913 		if (max_avail < ctl->dev_extent_min) {
4914 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
4915 				btrfs_debug(info,
4916 			"%s: devid %llu has no free space, have=%llu want=%llu",
4917 					    __func__, device->devid, max_avail,
4918 					    ctl->dev_extent_min);
4919 			continue;
4920 		}
4921 
4922 		if (ndevs == fs_devices->rw_devices) {
4923 			WARN(1, "%s: found more than %llu devices\n",
4924 			     __func__, fs_devices->rw_devices);
4925 			break;
4926 		}
4927 		devices_info[ndevs].dev_offset = dev_offset;
4928 		devices_info[ndevs].max_avail = max_avail;
4929 		devices_info[ndevs].total_avail = total_avail;
4930 		devices_info[ndevs].dev = device;
4931 		++ndevs;
4932 	}
4933 	ctl->ndevs = ndevs;
4934 
4935 	/*
4936 	 * now sort the devices by hole size / available space
4937 	 */
4938 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4939 	     btrfs_cmp_device_info, NULL);
4940 
4941 	return 0;
4942 }
4943 
4944 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
4945 				      struct btrfs_device_info *devices_info)
4946 {
4947 	/* Number of stripes that count for block group size */
4948 	int data_stripes;
4949 
4950 	/*
4951 	 * The primary goal is to maximize the number of stripes, so use as
4952 	 * many devices as possible, even if the stripes are not maximum sized.
4953 	 *
4954 	 * The DUP profile stores more than one stripe per device, the
4955 	 * max_avail is the total size so we have to adjust.
4956 	 */
4957 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
4958 				   ctl->dev_stripes);
4959 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
4960 
4961 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
4962 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
4963 
4964 	/*
4965 	 * Use the number of data stripes to figure out how big this chunk is
4966 	 * really going to be in terms of logical address space, and compare
4967 	 * that answer with the max chunk size. If it's higher, we try to
4968 	 * reduce stripe_size.
4969 	 */
4970 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
4971 		/*
4972 		 * Reduce stripe_size, round it up to a 16MB boundary again and
4973 		 * then use it, unless it ends up being even bigger than the
4974 		 * previous value we had already.
4975 		 */
4976 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
4977 							data_stripes), SZ_16M),
4978 				       ctl->stripe_size);
4979 	}
4980 
4981 	/* Align to BTRFS_STRIPE_LEN */
4982 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
4983 	ctl->chunk_size = ctl->stripe_size * data_stripes;
4984 
4985 	return 0;
4986 }
4987 
4988 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
4989 			      struct alloc_chunk_ctl *ctl,
4990 			      struct btrfs_device_info *devices_info)
4991 {
4992 	struct btrfs_fs_info *info = fs_devices->fs_info;
4993 
4994 	/*
4995 	 * Round down to number of usable stripes, devs_increment can be any
4996 	 * number so we can't use round_down() that requires power of 2, while
4997 	 * rounddown is safe.
4998 	 */
4999 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5000 
5001 	if (ctl->ndevs < ctl->devs_min) {
5002 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5003 			btrfs_debug(info,
5004 	"%s: not enough devices with free space: have=%d minimum required=%d",
5005 				    __func__, ctl->ndevs, ctl->devs_min);
5006 		}
5007 		return -ENOSPC;
5008 	}
5009 
5010 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5011 
5012 	switch (fs_devices->chunk_alloc_policy) {
5013 	case BTRFS_CHUNK_ALLOC_REGULAR:
5014 		return decide_stripe_size_regular(ctl, devices_info);
5015 	default:
5016 		BUG();
5017 	}
5018 }
5019 
5020 static int create_chunk(struct btrfs_trans_handle *trans,
5021 			struct alloc_chunk_ctl *ctl,
5022 			struct btrfs_device_info *devices_info)
5023 {
5024 	struct btrfs_fs_info *info = trans->fs_info;
5025 	struct map_lookup *map = NULL;
5026 	struct extent_map_tree *em_tree;
5027 	struct extent_map *em;
5028 	u64 start = ctl->start;
5029 	u64 type = ctl->type;
5030 	int ret;
5031 	int i;
5032 	int j;
5033 
5034 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5035 	if (!map)
5036 		return -ENOMEM;
5037 	map->num_stripes = ctl->num_stripes;
5038 
5039 	for (i = 0; i < ctl->ndevs; ++i) {
5040 		for (j = 0; j < ctl->dev_stripes; ++j) {
5041 			int s = i * ctl->dev_stripes + j;
5042 			map->stripes[s].dev = devices_info[i].dev;
5043 			map->stripes[s].physical = devices_info[i].dev_offset +
5044 						   j * ctl->stripe_size;
5045 		}
5046 	}
5047 	map->stripe_len = BTRFS_STRIPE_LEN;
5048 	map->io_align = BTRFS_STRIPE_LEN;
5049 	map->io_width = BTRFS_STRIPE_LEN;
5050 	map->type = type;
5051 	map->sub_stripes = ctl->sub_stripes;
5052 
5053 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5054 
5055 	em = alloc_extent_map();
5056 	if (!em) {
5057 		kfree(map);
5058 		return -ENOMEM;
5059 	}
5060 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5061 	em->map_lookup = map;
5062 	em->start = start;
5063 	em->len = ctl->chunk_size;
5064 	em->block_start = 0;
5065 	em->block_len = em->len;
5066 	em->orig_block_len = ctl->stripe_size;
5067 
5068 	em_tree = &info->mapping_tree;
5069 	write_lock(&em_tree->lock);
5070 	ret = add_extent_mapping(em_tree, em, 0);
5071 	if (ret) {
5072 		write_unlock(&em_tree->lock);
5073 		free_extent_map(em);
5074 		return ret;
5075 	}
5076 	write_unlock(&em_tree->lock);
5077 
5078 	ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5079 	if (ret)
5080 		goto error_del_extent;
5081 
5082 	for (i = 0; i < map->num_stripes; i++) {
5083 		struct btrfs_device *dev = map->stripes[i].dev;
5084 
5085 		btrfs_device_set_bytes_used(dev,
5086 					    dev->bytes_used + ctl->stripe_size);
5087 		if (list_empty(&dev->post_commit_list))
5088 			list_add_tail(&dev->post_commit_list,
5089 				      &trans->transaction->dev_update_list);
5090 	}
5091 
5092 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5093 		     &info->free_chunk_space);
5094 
5095 	free_extent_map(em);
5096 	check_raid56_incompat_flag(info, type);
5097 	check_raid1c34_incompat_flag(info, type);
5098 
5099 	return 0;
5100 
5101 error_del_extent:
5102 	write_lock(&em_tree->lock);
5103 	remove_extent_mapping(em_tree, em);
5104 	write_unlock(&em_tree->lock);
5105 
5106 	/* One for our allocation */
5107 	free_extent_map(em);
5108 	/* One for the tree reference */
5109 	free_extent_map(em);
5110 
5111 	return ret;
5112 }
5113 
5114 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5115 {
5116 	struct btrfs_fs_info *info = trans->fs_info;
5117 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5118 	struct btrfs_device_info *devices_info = NULL;
5119 	struct alloc_chunk_ctl ctl;
5120 	int ret;
5121 
5122 	lockdep_assert_held(&info->chunk_mutex);
5123 
5124 	if (!alloc_profile_is_valid(type, 0)) {
5125 		ASSERT(0);
5126 		return -EINVAL;
5127 	}
5128 
5129 	if (list_empty(&fs_devices->alloc_list)) {
5130 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5131 			btrfs_debug(info, "%s: no writable device", __func__);
5132 		return -ENOSPC;
5133 	}
5134 
5135 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5136 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5137 		ASSERT(0);
5138 		return -EINVAL;
5139 	}
5140 
5141 	ctl.start = find_next_chunk(info);
5142 	ctl.type = type;
5143 	init_alloc_chunk_ctl(fs_devices, &ctl);
5144 
5145 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5146 			       GFP_NOFS);
5147 	if (!devices_info)
5148 		return -ENOMEM;
5149 
5150 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5151 	if (ret < 0)
5152 		goto out;
5153 
5154 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5155 	if (ret < 0)
5156 		goto out;
5157 
5158 	ret = create_chunk(trans, &ctl, devices_info);
5159 
5160 out:
5161 	kfree(devices_info);
5162 	return ret;
5163 }
5164 
5165 /*
5166  * Chunk allocation falls into two parts. The first part does work
5167  * that makes the new allocated chunk usable, but does not do any operation
5168  * that modifies the chunk tree. The second part does the work that
5169  * requires modifying the chunk tree. This division is important for the
5170  * bootstrap process of adding storage to a seed btrfs.
5171  */
5172 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5173 			     u64 chunk_offset, u64 chunk_size)
5174 {
5175 	struct btrfs_fs_info *fs_info = trans->fs_info;
5176 	struct btrfs_root *extent_root = fs_info->extent_root;
5177 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5178 	struct btrfs_key key;
5179 	struct btrfs_device *device;
5180 	struct btrfs_chunk *chunk;
5181 	struct btrfs_stripe *stripe;
5182 	struct extent_map *em;
5183 	struct map_lookup *map;
5184 	size_t item_size;
5185 	u64 dev_offset;
5186 	u64 stripe_size;
5187 	int i = 0;
5188 	int ret = 0;
5189 
5190 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5191 	if (IS_ERR(em))
5192 		return PTR_ERR(em);
5193 
5194 	map = em->map_lookup;
5195 	item_size = btrfs_chunk_item_size(map->num_stripes);
5196 	stripe_size = em->orig_block_len;
5197 
5198 	chunk = kzalloc(item_size, GFP_NOFS);
5199 	if (!chunk) {
5200 		ret = -ENOMEM;
5201 		goto out;
5202 	}
5203 
5204 	/*
5205 	 * Take the device list mutex to prevent races with the final phase of
5206 	 * a device replace operation that replaces the device object associated
5207 	 * with the map's stripes, because the device object's id can change
5208 	 * at any time during that final phase of the device replace operation
5209 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5210 	 */
5211 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5212 	for (i = 0; i < map->num_stripes; i++) {
5213 		device = map->stripes[i].dev;
5214 		dev_offset = map->stripes[i].physical;
5215 
5216 		ret = btrfs_update_device(trans, device);
5217 		if (ret)
5218 			break;
5219 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5220 					     dev_offset, stripe_size);
5221 		if (ret)
5222 			break;
5223 	}
5224 	if (ret) {
5225 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5226 		goto out;
5227 	}
5228 
5229 	stripe = &chunk->stripe;
5230 	for (i = 0; i < map->num_stripes; i++) {
5231 		device = map->stripes[i].dev;
5232 		dev_offset = map->stripes[i].physical;
5233 
5234 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5235 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5236 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5237 		stripe++;
5238 	}
5239 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5240 
5241 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5242 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5243 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5244 	btrfs_set_stack_chunk_type(chunk, map->type);
5245 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5246 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5247 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5248 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5249 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5250 
5251 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5252 	key.type = BTRFS_CHUNK_ITEM_KEY;
5253 	key.offset = chunk_offset;
5254 
5255 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5256 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5257 		/*
5258 		 * TODO: Cleanup of inserted chunk root in case of
5259 		 * failure.
5260 		 */
5261 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5262 	}
5263 
5264 out:
5265 	kfree(chunk);
5266 	free_extent_map(em);
5267 	return ret;
5268 }
5269 
5270 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5271 {
5272 	struct btrfs_fs_info *fs_info = trans->fs_info;
5273 	u64 alloc_profile;
5274 	int ret;
5275 
5276 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5277 	ret = btrfs_alloc_chunk(trans, alloc_profile);
5278 	if (ret)
5279 		return ret;
5280 
5281 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5282 	ret = btrfs_alloc_chunk(trans, alloc_profile);
5283 	return ret;
5284 }
5285 
5286 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5287 {
5288 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5289 
5290 	return btrfs_raid_array[index].tolerated_failures;
5291 }
5292 
5293 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5294 {
5295 	struct extent_map *em;
5296 	struct map_lookup *map;
5297 	int readonly = 0;
5298 	int miss_ndevs = 0;
5299 	int i;
5300 
5301 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5302 	if (IS_ERR(em))
5303 		return 1;
5304 
5305 	map = em->map_lookup;
5306 	for (i = 0; i < map->num_stripes; i++) {
5307 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5308 					&map->stripes[i].dev->dev_state)) {
5309 			miss_ndevs++;
5310 			continue;
5311 		}
5312 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5313 					&map->stripes[i].dev->dev_state)) {
5314 			readonly = 1;
5315 			goto end;
5316 		}
5317 	}
5318 
5319 	/*
5320 	 * If the number of missing devices is larger than max errors,
5321 	 * we can not write the data into that chunk successfully, so
5322 	 * set it readonly.
5323 	 */
5324 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5325 		readonly = 1;
5326 end:
5327 	free_extent_map(em);
5328 	return readonly;
5329 }
5330 
5331 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5332 {
5333 	struct extent_map *em;
5334 
5335 	while (1) {
5336 		write_lock(&tree->lock);
5337 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5338 		if (em)
5339 			remove_extent_mapping(tree, em);
5340 		write_unlock(&tree->lock);
5341 		if (!em)
5342 			break;
5343 		/* once for us */
5344 		free_extent_map(em);
5345 		/* once for the tree */
5346 		free_extent_map(em);
5347 	}
5348 }
5349 
5350 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5351 {
5352 	struct extent_map *em;
5353 	struct map_lookup *map;
5354 	int ret;
5355 
5356 	em = btrfs_get_chunk_map(fs_info, logical, len);
5357 	if (IS_ERR(em))
5358 		/*
5359 		 * We could return errors for these cases, but that could get
5360 		 * ugly and we'd probably do the same thing which is just not do
5361 		 * anything else and exit, so return 1 so the callers don't try
5362 		 * to use other copies.
5363 		 */
5364 		return 1;
5365 
5366 	map = em->map_lookup;
5367 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5368 		ret = map->num_stripes;
5369 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5370 		ret = map->sub_stripes;
5371 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5372 		ret = 2;
5373 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5374 		/*
5375 		 * There could be two corrupted data stripes, we need
5376 		 * to loop retry in order to rebuild the correct data.
5377 		 *
5378 		 * Fail a stripe at a time on every retry except the
5379 		 * stripe under reconstruction.
5380 		 */
5381 		ret = map->num_stripes;
5382 	else
5383 		ret = 1;
5384 	free_extent_map(em);
5385 
5386 	down_read(&fs_info->dev_replace.rwsem);
5387 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5388 	    fs_info->dev_replace.tgtdev)
5389 		ret++;
5390 	up_read(&fs_info->dev_replace.rwsem);
5391 
5392 	return ret;
5393 }
5394 
5395 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5396 				    u64 logical)
5397 {
5398 	struct extent_map *em;
5399 	struct map_lookup *map;
5400 	unsigned long len = fs_info->sectorsize;
5401 
5402 	em = btrfs_get_chunk_map(fs_info, logical, len);
5403 
5404 	if (!WARN_ON(IS_ERR(em))) {
5405 		map = em->map_lookup;
5406 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5407 			len = map->stripe_len * nr_data_stripes(map);
5408 		free_extent_map(em);
5409 	}
5410 	return len;
5411 }
5412 
5413 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5414 {
5415 	struct extent_map *em;
5416 	struct map_lookup *map;
5417 	int ret = 0;
5418 
5419 	em = btrfs_get_chunk_map(fs_info, logical, len);
5420 
5421 	if(!WARN_ON(IS_ERR(em))) {
5422 		map = em->map_lookup;
5423 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5424 			ret = 1;
5425 		free_extent_map(em);
5426 	}
5427 	return ret;
5428 }
5429 
5430 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5431 			    struct map_lookup *map, int first,
5432 			    int dev_replace_is_ongoing)
5433 {
5434 	int i;
5435 	int num_stripes;
5436 	int preferred_mirror;
5437 	int tolerance;
5438 	struct btrfs_device *srcdev;
5439 
5440 	ASSERT((map->type &
5441 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5442 
5443 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5444 		num_stripes = map->sub_stripes;
5445 	else
5446 		num_stripes = map->num_stripes;
5447 
5448 	preferred_mirror = first + current->pid % num_stripes;
5449 
5450 	if (dev_replace_is_ongoing &&
5451 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5452 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5453 		srcdev = fs_info->dev_replace.srcdev;
5454 	else
5455 		srcdev = NULL;
5456 
5457 	/*
5458 	 * try to avoid the drive that is the source drive for a
5459 	 * dev-replace procedure, only choose it if no other non-missing
5460 	 * mirror is available
5461 	 */
5462 	for (tolerance = 0; tolerance < 2; tolerance++) {
5463 		if (map->stripes[preferred_mirror].dev->bdev &&
5464 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5465 			return preferred_mirror;
5466 		for (i = first; i < first + num_stripes; i++) {
5467 			if (map->stripes[i].dev->bdev &&
5468 			    (tolerance || map->stripes[i].dev != srcdev))
5469 				return i;
5470 		}
5471 	}
5472 
5473 	/* we couldn't find one that doesn't fail.  Just return something
5474 	 * and the io error handling code will clean up eventually
5475 	 */
5476 	return preferred_mirror;
5477 }
5478 
5479 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5480 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5481 {
5482 	int i;
5483 	int again = 1;
5484 
5485 	while (again) {
5486 		again = 0;
5487 		for (i = 0; i < num_stripes - 1; i++) {
5488 			/* Swap if parity is on a smaller index */
5489 			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5490 				swap(bbio->stripes[i], bbio->stripes[i + 1]);
5491 				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5492 				again = 1;
5493 			}
5494 		}
5495 	}
5496 }
5497 
5498 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5499 {
5500 	struct btrfs_bio *bbio = kzalloc(
5501 		 /* the size of the btrfs_bio */
5502 		sizeof(struct btrfs_bio) +
5503 		/* plus the variable array for the stripes */
5504 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5505 		/* plus the variable array for the tgt dev */
5506 		sizeof(int) * (real_stripes) +
5507 		/*
5508 		 * plus the raid_map, which includes both the tgt dev
5509 		 * and the stripes
5510 		 */
5511 		sizeof(u64) * (total_stripes),
5512 		GFP_NOFS|__GFP_NOFAIL);
5513 
5514 	atomic_set(&bbio->error, 0);
5515 	refcount_set(&bbio->refs, 1);
5516 
5517 	return bbio;
5518 }
5519 
5520 void btrfs_get_bbio(struct btrfs_bio *bbio)
5521 {
5522 	WARN_ON(!refcount_read(&bbio->refs));
5523 	refcount_inc(&bbio->refs);
5524 }
5525 
5526 void btrfs_put_bbio(struct btrfs_bio *bbio)
5527 {
5528 	if (!bbio)
5529 		return;
5530 	if (refcount_dec_and_test(&bbio->refs))
5531 		kfree(bbio);
5532 }
5533 
5534 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5535 /*
5536  * Please note that, discard won't be sent to target device of device
5537  * replace.
5538  */
5539 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5540 					 u64 logical, u64 *length_ret,
5541 					 struct btrfs_bio **bbio_ret)
5542 {
5543 	struct extent_map *em;
5544 	struct map_lookup *map;
5545 	struct btrfs_bio *bbio;
5546 	u64 length = *length_ret;
5547 	u64 offset;
5548 	u64 stripe_nr;
5549 	u64 stripe_nr_end;
5550 	u64 stripe_end_offset;
5551 	u64 stripe_cnt;
5552 	u64 stripe_len;
5553 	u64 stripe_offset;
5554 	u64 num_stripes;
5555 	u32 stripe_index;
5556 	u32 factor = 0;
5557 	u32 sub_stripes = 0;
5558 	u64 stripes_per_dev = 0;
5559 	u32 remaining_stripes = 0;
5560 	u32 last_stripe = 0;
5561 	int ret = 0;
5562 	int i;
5563 
5564 	/* discard always return a bbio */
5565 	ASSERT(bbio_ret);
5566 
5567 	em = btrfs_get_chunk_map(fs_info, logical, length);
5568 	if (IS_ERR(em))
5569 		return PTR_ERR(em);
5570 
5571 	map = em->map_lookup;
5572 	/* we don't discard raid56 yet */
5573 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5574 		ret = -EOPNOTSUPP;
5575 		goto out;
5576 	}
5577 
5578 	offset = logical - em->start;
5579 	length = min_t(u64, em->start + em->len - logical, length);
5580 	*length_ret = length;
5581 
5582 	stripe_len = map->stripe_len;
5583 	/*
5584 	 * stripe_nr counts the total number of stripes we have to stride
5585 	 * to get to this block
5586 	 */
5587 	stripe_nr = div64_u64(offset, stripe_len);
5588 
5589 	/* stripe_offset is the offset of this block in its stripe */
5590 	stripe_offset = offset - stripe_nr * stripe_len;
5591 
5592 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5593 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5594 	stripe_cnt = stripe_nr_end - stripe_nr;
5595 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5596 			    (offset + length);
5597 	/*
5598 	 * after this, stripe_nr is the number of stripes on this
5599 	 * device we have to walk to find the data, and stripe_index is
5600 	 * the number of our device in the stripe array
5601 	 */
5602 	num_stripes = 1;
5603 	stripe_index = 0;
5604 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5605 			 BTRFS_BLOCK_GROUP_RAID10)) {
5606 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5607 			sub_stripes = 1;
5608 		else
5609 			sub_stripes = map->sub_stripes;
5610 
5611 		factor = map->num_stripes / sub_stripes;
5612 		num_stripes = min_t(u64, map->num_stripes,
5613 				    sub_stripes * stripe_cnt);
5614 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5615 		stripe_index *= sub_stripes;
5616 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5617 					      &remaining_stripes);
5618 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5619 		last_stripe *= sub_stripes;
5620 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5621 				BTRFS_BLOCK_GROUP_DUP)) {
5622 		num_stripes = map->num_stripes;
5623 	} else {
5624 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5625 					&stripe_index);
5626 	}
5627 
5628 	bbio = alloc_btrfs_bio(num_stripes, 0);
5629 	if (!bbio) {
5630 		ret = -ENOMEM;
5631 		goto out;
5632 	}
5633 
5634 	for (i = 0; i < num_stripes; i++) {
5635 		bbio->stripes[i].physical =
5636 			map->stripes[stripe_index].physical +
5637 			stripe_offset + stripe_nr * map->stripe_len;
5638 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5639 
5640 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5641 				 BTRFS_BLOCK_GROUP_RAID10)) {
5642 			bbio->stripes[i].length = stripes_per_dev *
5643 				map->stripe_len;
5644 
5645 			if (i / sub_stripes < remaining_stripes)
5646 				bbio->stripes[i].length +=
5647 					map->stripe_len;
5648 
5649 			/*
5650 			 * Special for the first stripe and
5651 			 * the last stripe:
5652 			 *
5653 			 * |-------|...|-------|
5654 			 *     |----------|
5655 			 *    off     end_off
5656 			 */
5657 			if (i < sub_stripes)
5658 				bbio->stripes[i].length -=
5659 					stripe_offset;
5660 
5661 			if (stripe_index >= last_stripe &&
5662 			    stripe_index <= (last_stripe +
5663 					     sub_stripes - 1))
5664 				bbio->stripes[i].length -=
5665 					stripe_end_offset;
5666 
5667 			if (i == sub_stripes - 1)
5668 				stripe_offset = 0;
5669 		} else {
5670 			bbio->stripes[i].length = length;
5671 		}
5672 
5673 		stripe_index++;
5674 		if (stripe_index == map->num_stripes) {
5675 			stripe_index = 0;
5676 			stripe_nr++;
5677 		}
5678 	}
5679 
5680 	*bbio_ret = bbio;
5681 	bbio->map_type = map->type;
5682 	bbio->num_stripes = num_stripes;
5683 out:
5684 	free_extent_map(em);
5685 	return ret;
5686 }
5687 
5688 /*
5689  * In dev-replace case, for repair case (that's the only case where the mirror
5690  * is selected explicitly when calling btrfs_map_block), blocks left of the
5691  * left cursor can also be read from the target drive.
5692  *
5693  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5694  * array of stripes.
5695  * For READ, it also needs to be supported using the same mirror number.
5696  *
5697  * If the requested block is not left of the left cursor, EIO is returned. This
5698  * can happen because btrfs_num_copies() returns one more in the dev-replace
5699  * case.
5700  */
5701 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5702 					 u64 logical, u64 length,
5703 					 u64 srcdev_devid, int *mirror_num,
5704 					 u64 *physical)
5705 {
5706 	struct btrfs_bio *bbio = NULL;
5707 	int num_stripes;
5708 	int index_srcdev = 0;
5709 	int found = 0;
5710 	u64 physical_of_found = 0;
5711 	int i;
5712 	int ret = 0;
5713 
5714 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5715 				logical, &length, &bbio, 0, 0);
5716 	if (ret) {
5717 		ASSERT(bbio == NULL);
5718 		return ret;
5719 	}
5720 
5721 	num_stripes = bbio->num_stripes;
5722 	if (*mirror_num > num_stripes) {
5723 		/*
5724 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5725 		 * that means that the requested area is not left of the left
5726 		 * cursor
5727 		 */
5728 		btrfs_put_bbio(bbio);
5729 		return -EIO;
5730 	}
5731 
5732 	/*
5733 	 * process the rest of the function using the mirror_num of the source
5734 	 * drive. Therefore look it up first.  At the end, patch the device
5735 	 * pointer to the one of the target drive.
5736 	 */
5737 	for (i = 0; i < num_stripes; i++) {
5738 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5739 			continue;
5740 
5741 		/*
5742 		 * In case of DUP, in order to keep it simple, only add the
5743 		 * mirror with the lowest physical address
5744 		 */
5745 		if (found &&
5746 		    physical_of_found <= bbio->stripes[i].physical)
5747 			continue;
5748 
5749 		index_srcdev = i;
5750 		found = 1;
5751 		physical_of_found = bbio->stripes[i].physical;
5752 	}
5753 
5754 	btrfs_put_bbio(bbio);
5755 
5756 	ASSERT(found);
5757 	if (!found)
5758 		return -EIO;
5759 
5760 	*mirror_num = index_srcdev + 1;
5761 	*physical = physical_of_found;
5762 	return ret;
5763 }
5764 
5765 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5766 				      struct btrfs_bio **bbio_ret,
5767 				      struct btrfs_dev_replace *dev_replace,
5768 				      int *num_stripes_ret, int *max_errors_ret)
5769 {
5770 	struct btrfs_bio *bbio = *bbio_ret;
5771 	u64 srcdev_devid = dev_replace->srcdev->devid;
5772 	int tgtdev_indexes = 0;
5773 	int num_stripes = *num_stripes_ret;
5774 	int max_errors = *max_errors_ret;
5775 	int i;
5776 
5777 	if (op == BTRFS_MAP_WRITE) {
5778 		int index_where_to_add;
5779 
5780 		/*
5781 		 * duplicate the write operations while the dev replace
5782 		 * procedure is running. Since the copying of the old disk to
5783 		 * the new disk takes place at run time while the filesystem is
5784 		 * mounted writable, the regular write operations to the old
5785 		 * disk have to be duplicated to go to the new disk as well.
5786 		 *
5787 		 * Note that device->missing is handled by the caller, and that
5788 		 * the write to the old disk is already set up in the stripes
5789 		 * array.
5790 		 */
5791 		index_where_to_add = num_stripes;
5792 		for (i = 0; i < num_stripes; i++) {
5793 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5794 				/* write to new disk, too */
5795 				struct btrfs_bio_stripe *new =
5796 					bbio->stripes + index_where_to_add;
5797 				struct btrfs_bio_stripe *old =
5798 					bbio->stripes + i;
5799 
5800 				new->physical = old->physical;
5801 				new->length = old->length;
5802 				new->dev = dev_replace->tgtdev;
5803 				bbio->tgtdev_map[i] = index_where_to_add;
5804 				index_where_to_add++;
5805 				max_errors++;
5806 				tgtdev_indexes++;
5807 			}
5808 		}
5809 		num_stripes = index_where_to_add;
5810 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5811 		int index_srcdev = 0;
5812 		int found = 0;
5813 		u64 physical_of_found = 0;
5814 
5815 		/*
5816 		 * During the dev-replace procedure, the target drive can also
5817 		 * be used to read data in case it is needed to repair a corrupt
5818 		 * block elsewhere. This is possible if the requested area is
5819 		 * left of the left cursor. In this area, the target drive is a
5820 		 * full copy of the source drive.
5821 		 */
5822 		for (i = 0; i < num_stripes; i++) {
5823 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5824 				/*
5825 				 * In case of DUP, in order to keep it simple,
5826 				 * only add the mirror with the lowest physical
5827 				 * address
5828 				 */
5829 				if (found &&
5830 				    physical_of_found <=
5831 				     bbio->stripes[i].physical)
5832 					continue;
5833 				index_srcdev = i;
5834 				found = 1;
5835 				physical_of_found = bbio->stripes[i].physical;
5836 			}
5837 		}
5838 		if (found) {
5839 			struct btrfs_bio_stripe *tgtdev_stripe =
5840 				bbio->stripes + num_stripes;
5841 
5842 			tgtdev_stripe->physical = physical_of_found;
5843 			tgtdev_stripe->length =
5844 				bbio->stripes[index_srcdev].length;
5845 			tgtdev_stripe->dev = dev_replace->tgtdev;
5846 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5847 
5848 			tgtdev_indexes++;
5849 			num_stripes++;
5850 		}
5851 	}
5852 
5853 	*num_stripes_ret = num_stripes;
5854 	*max_errors_ret = max_errors;
5855 	bbio->num_tgtdevs = tgtdev_indexes;
5856 	*bbio_ret = bbio;
5857 }
5858 
5859 static bool need_full_stripe(enum btrfs_map_op op)
5860 {
5861 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5862 }
5863 
5864 /*
5865  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5866  *		       tuple. This information is used to calculate how big a
5867  *		       particular bio can get before it straddles a stripe.
5868  *
5869  * @fs_info - the filesystem
5870  * @logical - address that we want to figure out the geometry of
5871  * @len	    - the length of IO we are going to perform, starting at @logical
5872  * @op      - type of operation - write or read
5873  * @io_geom - pointer used to return values
5874  *
5875  * Returns < 0 in case a chunk for the given logical address cannot be found,
5876  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5877  */
5878 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5879 			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5880 {
5881 	struct extent_map *em;
5882 	struct map_lookup *map;
5883 	u64 offset;
5884 	u64 stripe_offset;
5885 	u64 stripe_nr;
5886 	u64 stripe_len;
5887 	u64 raid56_full_stripe_start = (u64)-1;
5888 	int data_stripes;
5889 	int ret = 0;
5890 
5891 	ASSERT(op != BTRFS_MAP_DISCARD);
5892 
5893 	em = btrfs_get_chunk_map(fs_info, logical, len);
5894 	if (IS_ERR(em))
5895 		return PTR_ERR(em);
5896 
5897 	map = em->map_lookup;
5898 	/* Offset of this logical address in the chunk */
5899 	offset = logical - em->start;
5900 	/* Len of a stripe in a chunk */
5901 	stripe_len = map->stripe_len;
5902 	/* Stripe wher this block falls in */
5903 	stripe_nr = div64_u64(offset, stripe_len);
5904 	/* Offset of stripe in the chunk */
5905 	stripe_offset = stripe_nr * stripe_len;
5906 	if (offset < stripe_offset) {
5907 		btrfs_crit(fs_info,
5908 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5909 			stripe_offset, offset, em->start, logical, stripe_len);
5910 		ret = -EINVAL;
5911 		goto out;
5912 	}
5913 
5914 	/* stripe_offset is the offset of this block in its stripe */
5915 	stripe_offset = offset - stripe_offset;
5916 	data_stripes = nr_data_stripes(map);
5917 
5918 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5919 		u64 max_len = stripe_len - stripe_offset;
5920 
5921 		/*
5922 		 * In case of raid56, we need to know the stripe aligned start
5923 		 */
5924 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5925 			unsigned long full_stripe_len = stripe_len * data_stripes;
5926 			raid56_full_stripe_start = offset;
5927 
5928 			/*
5929 			 * Allow a write of a full stripe, but make sure we
5930 			 * don't allow straddling of stripes
5931 			 */
5932 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5933 					full_stripe_len);
5934 			raid56_full_stripe_start *= full_stripe_len;
5935 
5936 			/*
5937 			 * For writes to RAID[56], allow a full stripeset across
5938 			 * all disks. For other RAID types and for RAID[56]
5939 			 * reads, just allow a single stripe (on a single disk).
5940 			 */
5941 			if (op == BTRFS_MAP_WRITE) {
5942 				max_len = stripe_len * data_stripes -
5943 					  (offset - raid56_full_stripe_start);
5944 			}
5945 		}
5946 		len = min_t(u64, em->len - offset, max_len);
5947 	} else {
5948 		len = em->len - offset;
5949 	}
5950 
5951 	io_geom->len = len;
5952 	io_geom->offset = offset;
5953 	io_geom->stripe_len = stripe_len;
5954 	io_geom->stripe_nr = stripe_nr;
5955 	io_geom->stripe_offset = stripe_offset;
5956 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
5957 
5958 out:
5959 	/* once for us */
5960 	free_extent_map(em);
5961 	return ret;
5962 }
5963 
5964 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5965 			     enum btrfs_map_op op,
5966 			     u64 logical, u64 *length,
5967 			     struct btrfs_bio **bbio_ret,
5968 			     int mirror_num, int need_raid_map)
5969 {
5970 	struct extent_map *em;
5971 	struct map_lookup *map;
5972 	u64 stripe_offset;
5973 	u64 stripe_nr;
5974 	u64 stripe_len;
5975 	u32 stripe_index;
5976 	int data_stripes;
5977 	int i;
5978 	int ret = 0;
5979 	int num_stripes;
5980 	int max_errors = 0;
5981 	int tgtdev_indexes = 0;
5982 	struct btrfs_bio *bbio = NULL;
5983 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5984 	int dev_replace_is_ongoing = 0;
5985 	int num_alloc_stripes;
5986 	int patch_the_first_stripe_for_dev_replace = 0;
5987 	u64 physical_to_patch_in_first_stripe = 0;
5988 	u64 raid56_full_stripe_start = (u64)-1;
5989 	struct btrfs_io_geometry geom;
5990 
5991 	ASSERT(bbio_ret);
5992 	ASSERT(op != BTRFS_MAP_DISCARD);
5993 
5994 	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
5995 	if (ret < 0)
5996 		return ret;
5997 
5998 	em = btrfs_get_chunk_map(fs_info, logical, *length);
5999 	ASSERT(!IS_ERR(em));
6000 	map = em->map_lookup;
6001 
6002 	*length = geom.len;
6003 	stripe_len = geom.stripe_len;
6004 	stripe_nr = geom.stripe_nr;
6005 	stripe_offset = geom.stripe_offset;
6006 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6007 	data_stripes = nr_data_stripes(map);
6008 
6009 	down_read(&dev_replace->rwsem);
6010 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6011 	/*
6012 	 * Hold the semaphore for read during the whole operation, write is
6013 	 * requested at commit time but must wait.
6014 	 */
6015 	if (!dev_replace_is_ongoing)
6016 		up_read(&dev_replace->rwsem);
6017 
6018 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6019 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6020 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6021 						    dev_replace->srcdev->devid,
6022 						    &mirror_num,
6023 					    &physical_to_patch_in_first_stripe);
6024 		if (ret)
6025 			goto out;
6026 		else
6027 			patch_the_first_stripe_for_dev_replace = 1;
6028 	} else if (mirror_num > map->num_stripes) {
6029 		mirror_num = 0;
6030 	}
6031 
6032 	num_stripes = 1;
6033 	stripe_index = 0;
6034 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6035 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6036 				&stripe_index);
6037 		if (!need_full_stripe(op))
6038 			mirror_num = 1;
6039 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6040 		if (need_full_stripe(op))
6041 			num_stripes = map->num_stripes;
6042 		else if (mirror_num)
6043 			stripe_index = mirror_num - 1;
6044 		else {
6045 			stripe_index = find_live_mirror(fs_info, map, 0,
6046 					    dev_replace_is_ongoing);
6047 			mirror_num = stripe_index + 1;
6048 		}
6049 
6050 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6051 		if (need_full_stripe(op)) {
6052 			num_stripes = map->num_stripes;
6053 		} else if (mirror_num) {
6054 			stripe_index = mirror_num - 1;
6055 		} else {
6056 			mirror_num = 1;
6057 		}
6058 
6059 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6060 		u32 factor = map->num_stripes / map->sub_stripes;
6061 
6062 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6063 		stripe_index *= map->sub_stripes;
6064 
6065 		if (need_full_stripe(op))
6066 			num_stripes = map->sub_stripes;
6067 		else if (mirror_num)
6068 			stripe_index += mirror_num - 1;
6069 		else {
6070 			int old_stripe_index = stripe_index;
6071 			stripe_index = find_live_mirror(fs_info, map,
6072 					      stripe_index,
6073 					      dev_replace_is_ongoing);
6074 			mirror_num = stripe_index - old_stripe_index + 1;
6075 		}
6076 
6077 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6078 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6079 			/* push stripe_nr back to the start of the full stripe */
6080 			stripe_nr = div64_u64(raid56_full_stripe_start,
6081 					stripe_len * data_stripes);
6082 
6083 			/* RAID[56] write or recovery. Return all stripes */
6084 			num_stripes = map->num_stripes;
6085 			max_errors = nr_parity_stripes(map);
6086 
6087 			*length = map->stripe_len;
6088 			stripe_index = 0;
6089 			stripe_offset = 0;
6090 		} else {
6091 			/*
6092 			 * Mirror #0 or #1 means the original data block.
6093 			 * Mirror #2 is RAID5 parity block.
6094 			 * Mirror #3 is RAID6 Q block.
6095 			 */
6096 			stripe_nr = div_u64_rem(stripe_nr,
6097 					data_stripes, &stripe_index);
6098 			if (mirror_num > 1)
6099 				stripe_index = data_stripes + mirror_num - 2;
6100 
6101 			/* We distribute the parity blocks across stripes */
6102 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6103 					&stripe_index);
6104 			if (!need_full_stripe(op) && mirror_num <= 1)
6105 				mirror_num = 1;
6106 		}
6107 	} else {
6108 		/*
6109 		 * after this, stripe_nr is the number of stripes on this
6110 		 * device we have to walk to find the data, and stripe_index is
6111 		 * the number of our device in the stripe array
6112 		 */
6113 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6114 				&stripe_index);
6115 		mirror_num = stripe_index + 1;
6116 	}
6117 	if (stripe_index >= map->num_stripes) {
6118 		btrfs_crit(fs_info,
6119 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6120 			   stripe_index, map->num_stripes);
6121 		ret = -EINVAL;
6122 		goto out;
6123 	}
6124 
6125 	num_alloc_stripes = num_stripes;
6126 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6127 		if (op == BTRFS_MAP_WRITE)
6128 			num_alloc_stripes <<= 1;
6129 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6130 			num_alloc_stripes++;
6131 		tgtdev_indexes = num_stripes;
6132 	}
6133 
6134 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6135 	if (!bbio) {
6136 		ret = -ENOMEM;
6137 		goto out;
6138 	}
6139 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6140 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6141 
6142 	/* build raid_map */
6143 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6144 	    (need_full_stripe(op) || mirror_num > 1)) {
6145 		u64 tmp;
6146 		unsigned rot;
6147 
6148 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
6149 				 sizeof(struct btrfs_bio_stripe) *
6150 				 num_alloc_stripes +
6151 				 sizeof(int) * tgtdev_indexes);
6152 
6153 		/* Work out the disk rotation on this stripe-set */
6154 		div_u64_rem(stripe_nr, num_stripes, &rot);
6155 
6156 		/* Fill in the logical address of each stripe */
6157 		tmp = stripe_nr * data_stripes;
6158 		for (i = 0; i < data_stripes; i++)
6159 			bbio->raid_map[(i+rot) % num_stripes] =
6160 				em->start + (tmp + i) * map->stripe_len;
6161 
6162 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6163 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6164 			bbio->raid_map[(i+rot+1) % num_stripes] =
6165 				RAID6_Q_STRIPE;
6166 	}
6167 
6168 
6169 	for (i = 0; i < num_stripes; i++) {
6170 		bbio->stripes[i].physical =
6171 			map->stripes[stripe_index].physical +
6172 			stripe_offset +
6173 			stripe_nr * map->stripe_len;
6174 		bbio->stripes[i].dev =
6175 			map->stripes[stripe_index].dev;
6176 		stripe_index++;
6177 	}
6178 
6179 	if (need_full_stripe(op))
6180 		max_errors = btrfs_chunk_max_errors(map);
6181 
6182 	if (bbio->raid_map)
6183 		sort_parity_stripes(bbio, num_stripes);
6184 
6185 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6186 	    need_full_stripe(op)) {
6187 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6188 					  &max_errors);
6189 	}
6190 
6191 	*bbio_ret = bbio;
6192 	bbio->map_type = map->type;
6193 	bbio->num_stripes = num_stripes;
6194 	bbio->max_errors = max_errors;
6195 	bbio->mirror_num = mirror_num;
6196 
6197 	/*
6198 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6199 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6200 	 * available as a mirror
6201 	 */
6202 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6203 		WARN_ON(num_stripes > 1);
6204 		bbio->stripes[0].dev = dev_replace->tgtdev;
6205 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6206 		bbio->mirror_num = map->num_stripes + 1;
6207 	}
6208 out:
6209 	if (dev_replace_is_ongoing) {
6210 		lockdep_assert_held(&dev_replace->rwsem);
6211 		/* Unlock and let waiting writers proceed */
6212 		up_read(&dev_replace->rwsem);
6213 	}
6214 	free_extent_map(em);
6215 	return ret;
6216 }
6217 
6218 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6219 		      u64 logical, u64 *length,
6220 		      struct btrfs_bio **bbio_ret, int mirror_num)
6221 {
6222 	if (op == BTRFS_MAP_DISCARD)
6223 		return __btrfs_map_block_for_discard(fs_info, logical,
6224 						     length, bbio_ret);
6225 
6226 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6227 				 mirror_num, 0);
6228 }
6229 
6230 /* For Scrub/replace */
6231 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6232 		     u64 logical, u64 *length,
6233 		     struct btrfs_bio **bbio_ret)
6234 {
6235 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6236 }
6237 
6238 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6239 {
6240 	bio->bi_private = bbio->private;
6241 	bio->bi_end_io = bbio->end_io;
6242 	bio_endio(bio);
6243 
6244 	btrfs_put_bbio(bbio);
6245 }
6246 
6247 static void btrfs_end_bio(struct bio *bio)
6248 {
6249 	struct btrfs_bio *bbio = bio->bi_private;
6250 	int is_orig_bio = 0;
6251 
6252 	if (bio->bi_status) {
6253 		atomic_inc(&bbio->error);
6254 		if (bio->bi_status == BLK_STS_IOERR ||
6255 		    bio->bi_status == BLK_STS_TARGET) {
6256 			unsigned int stripe_index =
6257 				btrfs_io_bio(bio)->stripe_index;
6258 			struct btrfs_device *dev;
6259 
6260 			BUG_ON(stripe_index >= bbio->num_stripes);
6261 			dev = bbio->stripes[stripe_index].dev;
6262 			if (dev->bdev) {
6263 				if (bio_op(bio) == REQ_OP_WRITE)
6264 					btrfs_dev_stat_inc_and_print(dev,
6265 						BTRFS_DEV_STAT_WRITE_ERRS);
6266 				else if (!(bio->bi_opf & REQ_RAHEAD))
6267 					btrfs_dev_stat_inc_and_print(dev,
6268 						BTRFS_DEV_STAT_READ_ERRS);
6269 				if (bio->bi_opf & REQ_PREFLUSH)
6270 					btrfs_dev_stat_inc_and_print(dev,
6271 						BTRFS_DEV_STAT_FLUSH_ERRS);
6272 			}
6273 		}
6274 	}
6275 
6276 	if (bio == bbio->orig_bio)
6277 		is_orig_bio = 1;
6278 
6279 	btrfs_bio_counter_dec(bbio->fs_info);
6280 
6281 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6282 		if (!is_orig_bio) {
6283 			bio_put(bio);
6284 			bio = bbio->orig_bio;
6285 		}
6286 
6287 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6288 		/* only send an error to the higher layers if it is
6289 		 * beyond the tolerance of the btrfs bio
6290 		 */
6291 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6292 			bio->bi_status = BLK_STS_IOERR;
6293 		} else {
6294 			/*
6295 			 * this bio is actually up to date, we didn't
6296 			 * go over the max number of errors
6297 			 */
6298 			bio->bi_status = BLK_STS_OK;
6299 		}
6300 
6301 		btrfs_end_bbio(bbio, bio);
6302 	} else if (!is_orig_bio) {
6303 		bio_put(bio);
6304 	}
6305 }
6306 
6307 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6308 			      u64 physical, int dev_nr)
6309 {
6310 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6311 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6312 
6313 	bio->bi_private = bbio;
6314 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6315 	bio->bi_end_io = btrfs_end_bio;
6316 	bio->bi_iter.bi_sector = physical >> 9;
6317 	btrfs_debug_in_rcu(fs_info,
6318 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6319 		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6320 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6321 		dev->devid, bio->bi_iter.bi_size);
6322 	bio_set_dev(bio, dev->bdev);
6323 
6324 	btrfs_bio_counter_inc_noblocked(fs_info);
6325 
6326 	btrfsic_submit_bio(bio);
6327 }
6328 
6329 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6330 {
6331 	atomic_inc(&bbio->error);
6332 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6333 		/* Should be the original bio. */
6334 		WARN_ON(bio != bbio->orig_bio);
6335 
6336 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6337 		bio->bi_iter.bi_sector = logical >> 9;
6338 		if (atomic_read(&bbio->error) > bbio->max_errors)
6339 			bio->bi_status = BLK_STS_IOERR;
6340 		else
6341 			bio->bi_status = BLK_STS_OK;
6342 		btrfs_end_bbio(bbio, bio);
6343 	}
6344 }
6345 
6346 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6347 			   int mirror_num)
6348 {
6349 	struct btrfs_device *dev;
6350 	struct bio *first_bio = bio;
6351 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6352 	u64 length = 0;
6353 	u64 map_length;
6354 	int ret;
6355 	int dev_nr;
6356 	int total_devs;
6357 	struct btrfs_bio *bbio = NULL;
6358 
6359 	length = bio->bi_iter.bi_size;
6360 	map_length = length;
6361 
6362 	btrfs_bio_counter_inc_blocked(fs_info);
6363 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6364 				&map_length, &bbio, mirror_num, 1);
6365 	if (ret) {
6366 		btrfs_bio_counter_dec(fs_info);
6367 		return errno_to_blk_status(ret);
6368 	}
6369 
6370 	total_devs = bbio->num_stripes;
6371 	bbio->orig_bio = first_bio;
6372 	bbio->private = first_bio->bi_private;
6373 	bbio->end_io = first_bio->bi_end_io;
6374 	bbio->fs_info = fs_info;
6375 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6376 
6377 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6378 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6379 		/* In this case, map_length has been set to the length of
6380 		   a single stripe; not the whole write */
6381 		if (bio_op(bio) == REQ_OP_WRITE) {
6382 			ret = raid56_parity_write(fs_info, bio, bbio,
6383 						  map_length);
6384 		} else {
6385 			ret = raid56_parity_recover(fs_info, bio, bbio,
6386 						    map_length, mirror_num, 1);
6387 		}
6388 
6389 		btrfs_bio_counter_dec(fs_info);
6390 		return errno_to_blk_status(ret);
6391 	}
6392 
6393 	if (map_length < length) {
6394 		btrfs_crit(fs_info,
6395 			   "mapping failed logical %llu bio len %llu len %llu",
6396 			   logical, length, map_length);
6397 		BUG();
6398 	}
6399 
6400 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6401 		dev = bbio->stripes[dev_nr].dev;
6402 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6403 						   &dev->dev_state) ||
6404 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6405 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6406 			bbio_error(bbio, first_bio, logical);
6407 			continue;
6408 		}
6409 
6410 		if (dev_nr < total_devs - 1)
6411 			bio = btrfs_bio_clone(first_bio);
6412 		else
6413 			bio = first_bio;
6414 
6415 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6416 				  dev_nr);
6417 	}
6418 	btrfs_bio_counter_dec(fs_info);
6419 	return BLK_STS_OK;
6420 }
6421 
6422 /*
6423  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6424  * return NULL.
6425  *
6426  * If devid and uuid are both specified, the match must be exact, otherwise
6427  * only devid is used.
6428  *
6429  * If @seed is true, traverse through the seed devices.
6430  */
6431 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6432 				       u64 devid, u8 *uuid, u8 *fsid,
6433 				       bool seed)
6434 {
6435 	struct btrfs_device *device;
6436 
6437 	while (fs_devices) {
6438 		if (!fsid ||
6439 		    !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6440 			list_for_each_entry(device, &fs_devices->devices,
6441 					    dev_list) {
6442 				if (device->devid == devid &&
6443 				    (!uuid || memcmp(device->uuid, uuid,
6444 						     BTRFS_UUID_SIZE) == 0))
6445 					return device;
6446 			}
6447 		}
6448 		if (seed)
6449 			fs_devices = fs_devices->seed;
6450 		else
6451 			return NULL;
6452 	}
6453 	return NULL;
6454 }
6455 
6456 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6457 					    u64 devid, u8 *dev_uuid)
6458 {
6459 	struct btrfs_device *device;
6460 
6461 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6462 	if (IS_ERR(device))
6463 		return device;
6464 
6465 	list_add(&device->dev_list, &fs_devices->devices);
6466 	device->fs_devices = fs_devices;
6467 	fs_devices->num_devices++;
6468 
6469 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6470 	fs_devices->missing_devices++;
6471 
6472 	return device;
6473 }
6474 
6475 /**
6476  * btrfs_alloc_device - allocate struct btrfs_device
6477  * @fs_info:	used only for generating a new devid, can be NULL if
6478  *		devid is provided (i.e. @devid != NULL).
6479  * @devid:	a pointer to devid for this device.  If NULL a new devid
6480  *		is generated.
6481  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6482  *		is generated.
6483  *
6484  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6485  * on error.  Returned struct is not linked onto any lists and must be
6486  * destroyed with btrfs_free_device.
6487  */
6488 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6489 					const u64 *devid,
6490 					const u8 *uuid)
6491 {
6492 	struct btrfs_device *dev;
6493 	u64 tmp;
6494 
6495 	if (WARN_ON(!devid && !fs_info))
6496 		return ERR_PTR(-EINVAL);
6497 
6498 	dev = __alloc_device();
6499 	if (IS_ERR(dev))
6500 		return dev;
6501 
6502 	if (devid)
6503 		tmp = *devid;
6504 	else {
6505 		int ret;
6506 
6507 		ret = find_next_devid(fs_info, &tmp);
6508 		if (ret) {
6509 			btrfs_free_device(dev);
6510 			return ERR_PTR(ret);
6511 		}
6512 	}
6513 	dev->devid = tmp;
6514 
6515 	if (uuid)
6516 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6517 	else
6518 		generate_random_uuid(dev->uuid);
6519 
6520 	return dev;
6521 }
6522 
6523 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6524 					u64 devid, u8 *uuid, bool error)
6525 {
6526 	if (error)
6527 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6528 			      devid, uuid);
6529 	else
6530 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6531 			      devid, uuid);
6532 }
6533 
6534 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6535 {
6536 	int index = btrfs_bg_flags_to_raid_index(type);
6537 	int ncopies = btrfs_raid_array[index].ncopies;
6538 	const int nparity = btrfs_raid_array[index].nparity;
6539 	int data_stripes;
6540 
6541 	if (nparity)
6542 		data_stripes = num_stripes - nparity;
6543 	else
6544 		data_stripes = num_stripes / ncopies;
6545 
6546 	return div_u64(chunk_len, data_stripes);
6547 }
6548 
6549 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6550 			  struct btrfs_chunk *chunk)
6551 {
6552 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6553 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6554 	struct map_lookup *map;
6555 	struct extent_map *em;
6556 	u64 logical;
6557 	u64 length;
6558 	u64 devid;
6559 	u8 uuid[BTRFS_UUID_SIZE];
6560 	int num_stripes;
6561 	int ret;
6562 	int i;
6563 
6564 	logical = key->offset;
6565 	length = btrfs_chunk_length(leaf, chunk);
6566 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6567 
6568 	/*
6569 	 * Only need to verify chunk item if we're reading from sys chunk array,
6570 	 * as chunk item in tree block is already verified by tree-checker.
6571 	 */
6572 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6573 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6574 		if (ret)
6575 			return ret;
6576 	}
6577 
6578 	read_lock(&map_tree->lock);
6579 	em = lookup_extent_mapping(map_tree, logical, 1);
6580 	read_unlock(&map_tree->lock);
6581 
6582 	/* already mapped? */
6583 	if (em && em->start <= logical && em->start + em->len > logical) {
6584 		free_extent_map(em);
6585 		return 0;
6586 	} else if (em) {
6587 		free_extent_map(em);
6588 	}
6589 
6590 	em = alloc_extent_map();
6591 	if (!em)
6592 		return -ENOMEM;
6593 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6594 	if (!map) {
6595 		free_extent_map(em);
6596 		return -ENOMEM;
6597 	}
6598 
6599 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6600 	em->map_lookup = map;
6601 	em->start = logical;
6602 	em->len = length;
6603 	em->orig_start = 0;
6604 	em->block_start = 0;
6605 	em->block_len = em->len;
6606 
6607 	map->num_stripes = num_stripes;
6608 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6609 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6610 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6611 	map->type = btrfs_chunk_type(leaf, chunk);
6612 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6613 	map->verified_stripes = 0;
6614 	em->orig_block_len = calc_stripe_length(map->type, em->len,
6615 						map->num_stripes);
6616 	for (i = 0; i < num_stripes; i++) {
6617 		map->stripes[i].physical =
6618 			btrfs_stripe_offset_nr(leaf, chunk, i);
6619 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6620 		read_extent_buffer(leaf, uuid, (unsigned long)
6621 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6622 				   BTRFS_UUID_SIZE);
6623 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6624 							devid, uuid, NULL, true);
6625 		if (!map->stripes[i].dev &&
6626 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6627 			free_extent_map(em);
6628 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6629 			return -ENOENT;
6630 		}
6631 		if (!map->stripes[i].dev) {
6632 			map->stripes[i].dev =
6633 				add_missing_dev(fs_info->fs_devices, devid,
6634 						uuid);
6635 			if (IS_ERR(map->stripes[i].dev)) {
6636 				free_extent_map(em);
6637 				btrfs_err(fs_info,
6638 					"failed to init missing dev %llu: %ld",
6639 					devid, PTR_ERR(map->stripes[i].dev));
6640 				return PTR_ERR(map->stripes[i].dev);
6641 			}
6642 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6643 		}
6644 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6645 				&(map->stripes[i].dev->dev_state));
6646 
6647 	}
6648 
6649 	write_lock(&map_tree->lock);
6650 	ret = add_extent_mapping(map_tree, em, 0);
6651 	write_unlock(&map_tree->lock);
6652 	if (ret < 0) {
6653 		btrfs_err(fs_info,
6654 			  "failed to add chunk map, start=%llu len=%llu: %d",
6655 			  em->start, em->len, ret);
6656 	}
6657 	free_extent_map(em);
6658 
6659 	return ret;
6660 }
6661 
6662 static void fill_device_from_item(struct extent_buffer *leaf,
6663 				 struct btrfs_dev_item *dev_item,
6664 				 struct btrfs_device *device)
6665 {
6666 	unsigned long ptr;
6667 
6668 	device->devid = btrfs_device_id(leaf, dev_item);
6669 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6670 	device->total_bytes = device->disk_total_bytes;
6671 	device->commit_total_bytes = device->disk_total_bytes;
6672 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6673 	device->commit_bytes_used = device->bytes_used;
6674 	device->type = btrfs_device_type(leaf, dev_item);
6675 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6676 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6677 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6678 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6679 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6680 
6681 	ptr = btrfs_device_uuid(dev_item);
6682 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6683 }
6684 
6685 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6686 						  u8 *fsid)
6687 {
6688 	struct btrfs_fs_devices *fs_devices;
6689 	int ret;
6690 
6691 	lockdep_assert_held(&uuid_mutex);
6692 	ASSERT(fsid);
6693 
6694 	fs_devices = fs_info->fs_devices->seed;
6695 	while (fs_devices) {
6696 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6697 			return fs_devices;
6698 
6699 		fs_devices = fs_devices->seed;
6700 	}
6701 
6702 	fs_devices = find_fsid(fsid, NULL);
6703 	if (!fs_devices) {
6704 		if (!btrfs_test_opt(fs_info, DEGRADED))
6705 			return ERR_PTR(-ENOENT);
6706 
6707 		fs_devices = alloc_fs_devices(fsid, NULL);
6708 		if (IS_ERR(fs_devices))
6709 			return fs_devices;
6710 
6711 		fs_devices->seeding = true;
6712 		fs_devices->opened = 1;
6713 		return fs_devices;
6714 	}
6715 
6716 	fs_devices = clone_fs_devices(fs_devices);
6717 	if (IS_ERR(fs_devices))
6718 		return fs_devices;
6719 
6720 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6721 	if (ret) {
6722 		free_fs_devices(fs_devices);
6723 		fs_devices = ERR_PTR(ret);
6724 		goto out;
6725 	}
6726 
6727 	if (!fs_devices->seeding) {
6728 		close_fs_devices(fs_devices);
6729 		free_fs_devices(fs_devices);
6730 		fs_devices = ERR_PTR(-EINVAL);
6731 		goto out;
6732 	}
6733 
6734 	fs_devices->seed = fs_info->fs_devices->seed;
6735 	fs_info->fs_devices->seed = fs_devices;
6736 out:
6737 	return fs_devices;
6738 }
6739 
6740 static int read_one_dev(struct extent_buffer *leaf,
6741 			struct btrfs_dev_item *dev_item)
6742 {
6743 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6744 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6745 	struct btrfs_device *device;
6746 	u64 devid;
6747 	int ret;
6748 	u8 fs_uuid[BTRFS_FSID_SIZE];
6749 	u8 dev_uuid[BTRFS_UUID_SIZE];
6750 
6751 	devid = btrfs_device_id(leaf, dev_item);
6752 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6753 			   BTRFS_UUID_SIZE);
6754 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6755 			   BTRFS_FSID_SIZE);
6756 
6757 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6758 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6759 		if (IS_ERR(fs_devices))
6760 			return PTR_ERR(fs_devices);
6761 	}
6762 
6763 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6764 				   fs_uuid, true);
6765 	if (!device) {
6766 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6767 			btrfs_report_missing_device(fs_info, devid,
6768 							dev_uuid, true);
6769 			return -ENOENT;
6770 		}
6771 
6772 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6773 		if (IS_ERR(device)) {
6774 			btrfs_err(fs_info,
6775 				"failed to add missing dev %llu: %ld",
6776 				devid, PTR_ERR(device));
6777 			return PTR_ERR(device);
6778 		}
6779 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6780 	} else {
6781 		if (!device->bdev) {
6782 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6783 				btrfs_report_missing_device(fs_info,
6784 						devid, dev_uuid, true);
6785 				return -ENOENT;
6786 			}
6787 			btrfs_report_missing_device(fs_info, devid,
6788 							dev_uuid, false);
6789 		}
6790 
6791 		if (!device->bdev &&
6792 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6793 			/*
6794 			 * this happens when a device that was properly setup
6795 			 * in the device info lists suddenly goes bad.
6796 			 * device->bdev is NULL, and so we have to set
6797 			 * device->missing to one here
6798 			 */
6799 			device->fs_devices->missing_devices++;
6800 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6801 		}
6802 
6803 		/* Move the device to its own fs_devices */
6804 		if (device->fs_devices != fs_devices) {
6805 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6806 							&device->dev_state));
6807 
6808 			list_move(&device->dev_list, &fs_devices->devices);
6809 			device->fs_devices->num_devices--;
6810 			fs_devices->num_devices++;
6811 
6812 			device->fs_devices->missing_devices--;
6813 			fs_devices->missing_devices++;
6814 
6815 			device->fs_devices = fs_devices;
6816 		}
6817 	}
6818 
6819 	if (device->fs_devices != fs_info->fs_devices) {
6820 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6821 		if (device->generation !=
6822 		    btrfs_device_generation(leaf, dev_item))
6823 			return -EINVAL;
6824 	}
6825 
6826 	fill_device_from_item(leaf, dev_item, device);
6827 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6828 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6829 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6830 		device->fs_devices->total_rw_bytes += device->total_bytes;
6831 		atomic64_add(device->total_bytes - device->bytes_used,
6832 				&fs_info->free_chunk_space);
6833 	}
6834 	ret = 0;
6835 	return ret;
6836 }
6837 
6838 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6839 {
6840 	struct btrfs_root *root = fs_info->tree_root;
6841 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6842 	struct extent_buffer *sb;
6843 	struct btrfs_disk_key *disk_key;
6844 	struct btrfs_chunk *chunk;
6845 	u8 *array_ptr;
6846 	unsigned long sb_array_offset;
6847 	int ret = 0;
6848 	u32 num_stripes;
6849 	u32 array_size;
6850 	u32 len = 0;
6851 	u32 cur_offset;
6852 	u64 type;
6853 	struct btrfs_key key;
6854 
6855 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6856 	/*
6857 	 * This will create extent buffer of nodesize, superblock size is
6858 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6859 	 * overallocate but we can keep it as-is, only the first page is used.
6860 	 */
6861 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6862 	if (IS_ERR(sb))
6863 		return PTR_ERR(sb);
6864 	set_extent_buffer_uptodate(sb);
6865 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6866 	/*
6867 	 * The sb extent buffer is artificial and just used to read the system array.
6868 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6869 	 * pages up-to-date when the page is larger: extent does not cover the
6870 	 * whole page and consequently check_page_uptodate does not find all
6871 	 * the page's extents up-to-date (the hole beyond sb),
6872 	 * write_extent_buffer then triggers a WARN_ON.
6873 	 *
6874 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6875 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6876 	 * to silence the warning eg. on PowerPC 64.
6877 	 */
6878 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6879 		SetPageUptodate(sb->pages[0]);
6880 
6881 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6882 	array_size = btrfs_super_sys_array_size(super_copy);
6883 
6884 	array_ptr = super_copy->sys_chunk_array;
6885 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6886 	cur_offset = 0;
6887 
6888 	while (cur_offset < array_size) {
6889 		disk_key = (struct btrfs_disk_key *)array_ptr;
6890 		len = sizeof(*disk_key);
6891 		if (cur_offset + len > array_size)
6892 			goto out_short_read;
6893 
6894 		btrfs_disk_key_to_cpu(&key, disk_key);
6895 
6896 		array_ptr += len;
6897 		sb_array_offset += len;
6898 		cur_offset += len;
6899 
6900 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6901 			btrfs_err(fs_info,
6902 			    "unexpected item type %u in sys_array at offset %u",
6903 				  (u32)key.type, cur_offset);
6904 			ret = -EIO;
6905 			break;
6906 		}
6907 
6908 		chunk = (struct btrfs_chunk *)sb_array_offset;
6909 		/*
6910 		 * At least one btrfs_chunk with one stripe must be present,
6911 		 * exact stripe count check comes afterwards
6912 		 */
6913 		len = btrfs_chunk_item_size(1);
6914 		if (cur_offset + len > array_size)
6915 			goto out_short_read;
6916 
6917 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6918 		if (!num_stripes) {
6919 			btrfs_err(fs_info,
6920 			"invalid number of stripes %u in sys_array at offset %u",
6921 				  num_stripes, cur_offset);
6922 			ret = -EIO;
6923 			break;
6924 		}
6925 
6926 		type = btrfs_chunk_type(sb, chunk);
6927 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6928 			btrfs_err(fs_info,
6929 			"invalid chunk type %llu in sys_array at offset %u",
6930 				  type, cur_offset);
6931 			ret = -EIO;
6932 			break;
6933 		}
6934 
6935 		len = btrfs_chunk_item_size(num_stripes);
6936 		if (cur_offset + len > array_size)
6937 			goto out_short_read;
6938 
6939 		ret = read_one_chunk(&key, sb, chunk);
6940 		if (ret)
6941 			break;
6942 
6943 		array_ptr += len;
6944 		sb_array_offset += len;
6945 		cur_offset += len;
6946 	}
6947 	clear_extent_buffer_uptodate(sb);
6948 	free_extent_buffer_stale(sb);
6949 	return ret;
6950 
6951 out_short_read:
6952 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6953 			len, cur_offset);
6954 	clear_extent_buffer_uptodate(sb);
6955 	free_extent_buffer_stale(sb);
6956 	return -EIO;
6957 }
6958 
6959 /*
6960  * Check if all chunks in the fs are OK for read-write degraded mount
6961  *
6962  * If the @failing_dev is specified, it's accounted as missing.
6963  *
6964  * Return true if all chunks meet the minimal RW mount requirements.
6965  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6966  */
6967 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6968 					struct btrfs_device *failing_dev)
6969 {
6970 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6971 	struct extent_map *em;
6972 	u64 next_start = 0;
6973 	bool ret = true;
6974 
6975 	read_lock(&map_tree->lock);
6976 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
6977 	read_unlock(&map_tree->lock);
6978 	/* No chunk at all? Return false anyway */
6979 	if (!em) {
6980 		ret = false;
6981 		goto out;
6982 	}
6983 	while (em) {
6984 		struct map_lookup *map;
6985 		int missing = 0;
6986 		int max_tolerated;
6987 		int i;
6988 
6989 		map = em->map_lookup;
6990 		max_tolerated =
6991 			btrfs_get_num_tolerated_disk_barrier_failures(
6992 					map->type);
6993 		for (i = 0; i < map->num_stripes; i++) {
6994 			struct btrfs_device *dev = map->stripes[i].dev;
6995 
6996 			if (!dev || !dev->bdev ||
6997 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6998 			    dev->last_flush_error)
6999 				missing++;
7000 			else if (failing_dev && failing_dev == dev)
7001 				missing++;
7002 		}
7003 		if (missing > max_tolerated) {
7004 			if (!failing_dev)
7005 				btrfs_warn(fs_info,
7006 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7007 				   em->start, missing, max_tolerated);
7008 			free_extent_map(em);
7009 			ret = false;
7010 			goto out;
7011 		}
7012 		next_start = extent_map_end(em);
7013 		free_extent_map(em);
7014 
7015 		read_lock(&map_tree->lock);
7016 		em = lookup_extent_mapping(map_tree, next_start,
7017 					   (u64)(-1) - next_start);
7018 		read_unlock(&map_tree->lock);
7019 	}
7020 out:
7021 	return ret;
7022 }
7023 
7024 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7025 {
7026 	struct btrfs_root *root = fs_info->chunk_root;
7027 	struct btrfs_path *path;
7028 	struct extent_buffer *leaf;
7029 	struct btrfs_key key;
7030 	struct btrfs_key found_key;
7031 	int ret;
7032 	int slot;
7033 	u64 total_dev = 0;
7034 
7035 	path = btrfs_alloc_path();
7036 	if (!path)
7037 		return -ENOMEM;
7038 
7039 	/*
7040 	 * uuid_mutex is needed only if we are mounting a sprout FS
7041 	 * otherwise we don't need it.
7042 	 */
7043 	mutex_lock(&uuid_mutex);
7044 	mutex_lock(&fs_info->chunk_mutex);
7045 
7046 	/*
7047 	 * Read all device items, and then all the chunk items. All
7048 	 * device items are found before any chunk item (their object id
7049 	 * is smaller than the lowest possible object id for a chunk
7050 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7051 	 */
7052 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7053 	key.offset = 0;
7054 	key.type = 0;
7055 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7056 	if (ret < 0)
7057 		goto error;
7058 	while (1) {
7059 		leaf = path->nodes[0];
7060 		slot = path->slots[0];
7061 		if (slot >= btrfs_header_nritems(leaf)) {
7062 			ret = btrfs_next_leaf(root, path);
7063 			if (ret == 0)
7064 				continue;
7065 			if (ret < 0)
7066 				goto error;
7067 			break;
7068 		}
7069 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7070 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7071 			struct btrfs_dev_item *dev_item;
7072 			dev_item = btrfs_item_ptr(leaf, slot,
7073 						  struct btrfs_dev_item);
7074 			ret = read_one_dev(leaf, dev_item);
7075 			if (ret)
7076 				goto error;
7077 			total_dev++;
7078 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7079 			struct btrfs_chunk *chunk;
7080 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7081 			ret = read_one_chunk(&found_key, leaf, chunk);
7082 			if (ret)
7083 				goto error;
7084 		}
7085 		path->slots[0]++;
7086 	}
7087 
7088 	/*
7089 	 * After loading chunk tree, we've got all device information,
7090 	 * do another round of validation checks.
7091 	 */
7092 	if (total_dev != fs_info->fs_devices->total_devices) {
7093 		btrfs_err(fs_info,
7094 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7095 			  btrfs_super_num_devices(fs_info->super_copy),
7096 			  total_dev);
7097 		ret = -EINVAL;
7098 		goto error;
7099 	}
7100 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7101 	    fs_info->fs_devices->total_rw_bytes) {
7102 		btrfs_err(fs_info,
7103 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7104 			  btrfs_super_total_bytes(fs_info->super_copy),
7105 			  fs_info->fs_devices->total_rw_bytes);
7106 		ret = -EINVAL;
7107 		goto error;
7108 	}
7109 	ret = 0;
7110 error:
7111 	mutex_unlock(&fs_info->chunk_mutex);
7112 	mutex_unlock(&uuid_mutex);
7113 
7114 	btrfs_free_path(path);
7115 	return ret;
7116 }
7117 
7118 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7119 {
7120 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7121 	struct btrfs_device *device;
7122 
7123 	while (fs_devices) {
7124 		mutex_lock(&fs_devices->device_list_mutex);
7125 		list_for_each_entry(device, &fs_devices->devices, dev_list)
7126 			device->fs_info = fs_info;
7127 		mutex_unlock(&fs_devices->device_list_mutex);
7128 
7129 		fs_devices = fs_devices->seed;
7130 	}
7131 }
7132 
7133 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7134 				 const struct btrfs_dev_stats_item *ptr,
7135 				 int index)
7136 {
7137 	u64 val;
7138 
7139 	read_extent_buffer(eb, &val,
7140 			   offsetof(struct btrfs_dev_stats_item, values) +
7141 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7142 			   sizeof(val));
7143 	return val;
7144 }
7145 
7146 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7147 				      struct btrfs_dev_stats_item *ptr,
7148 				      int index, u64 val)
7149 {
7150 	write_extent_buffer(eb, &val,
7151 			    offsetof(struct btrfs_dev_stats_item, values) +
7152 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7153 			    sizeof(val));
7154 }
7155 
7156 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7157 {
7158 	struct btrfs_key key;
7159 	struct btrfs_root *dev_root = fs_info->dev_root;
7160 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7161 	struct extent_buffer *eb;
7162 	int slot;
7163 	int ret = 0;
7164 	struct btrfs_device *device;
7165 	struct btrfs_path *path = NULL;
7166 	int i;
7167 
7168 	path = btrfs_alloc_path();
7169 	if (!path)
7170 		return -ENOMEM;
7171 
7172 	mutex_lock(&fs_devices->device_list_mutex);
7173 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7174 		int item_size;
7175 		struct btrfs_dev_stats_item *ptr;
7176 
7177 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
7178 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7179 		key.offset = device->devid;
7180 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7181 		if (ret) {
7182 			for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7183 				btrfs_dev_stat_set(device, i, 0);
7184 			device->dev_stats_valid = 1;
7185 			btrfs_release_path(path);
7186 			continue;
7187 		}
7188 		slot = path->slots[0];
7189 		eb = path->nodes[0];
7190 		item_size = btrfs_item_size_nr(eb, slot);
7191 
7192 		ptr = btrfs_item_ptr(eb, slot,
7193 				     struct btrfs_dev_stats_item);
7194 
7195 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7196 			if (item_size >= (1 + i) * sizeof(__le64))
7197 				btrfs_dev_stat_set(device, i,
7198 					btrfs_dev_stats_value(eb, ptr, i));
7199 			else
7200 				btrfs_dev_stat_set(device, i, 0);
7201 		}
7202 
7203 		device->dev_stats_valid = 1;
7204 		btrfs_dev_stat_print_on_load(device);
7205 		btrfs_release_path(path);
7206 	}
7207 	mutex_unlock(&fs_devices->device_list_mutex);
7208 
7209 	btrfs_free_path(path);
7210 	return ret < 0 ? ret : 0;
7211 }
7212 
7213 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7214 				struct btrfs_device *device)
7215 {
7216 	struct btrfs_fs_info *fs_info = trans->fs_info;
7217 	struct btrfs_root *dev_root = fs_info->dev_root;
7218 	struct btrfs_path *path;
7219 	struct btrfs_key key;
7220 	struct extent_buffer *eb;
7221 	struct btrfs_dev_stats_item *ptr;
7222 	int ret;
7223 	int i;
7224 
7225 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7226 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7227 	key.offset = device->devid;
7228 
7229 	path = btrfs_alloc_path();
7230 	if (!path)
7231 		return -ENOMEM;
7232 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7233 	if (ret < 0) {
7234 		btrfs_warn_in_rcu(fs_info,
7235 			"error %d while searching for dev_stats item for device %s",
7236 			      ret, rcu_str_deref(device->name));
7237 		goto out;
7238 	}
7239 
7240 	if (ret == 0 &&
7241 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7242 		/* need to delete old one and insert a new one */
7243 		ret = btrfs_del_item(trans, dev_root, path);
7244 		if (ret != 0) {
7245 			btrfs_warn_in_rcu(fs_info,
7246 				"delete too small dev_stats item for device %s failed %d",
7247 				      rcu_str_deref(device->name), ret);
7248 			goto out;
7249 		}
7250 		ret = 1;
7251 	}
7252 
7253 	if (ret == 1) {
7254 		/* need to insert a new item */
7255 		btrfs_release_path(path);
7256 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7257 					      &key, sizeof(*ptr));
7258 		if (ret < 0) {
7259 			btrfs_warn_in_rcu(fs_info,
7260 				"insert dev_stats item for device %s failed %d",
7261 				rcu_str_deref(device->name), ret);
7262 			goto out;
7263 		}
7264 	}
7265 
7266 	eb = path->nodes[0];
7267 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7268 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7269 		btrfs_set_dev_stats_value(eb, ptr, i,
7270 					  btrfs_dev_stat_read(device, i));
7271 	btrfs_mark_buffer_dirty(eb);
7272 
7273 out:
7274 	btrfs_free_path(path);
7275 	return ret;
7276 }
7277 
7278 /*
7279  * called from commit_transaction. Writes all changed device stats to disk.
7280  */
7281 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7282 {
7283 	struct btrfs_fs_info *fs_info = trans->fs_info;
7284 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7285 	struct btrfs_device *device;
7286 	int stats_cnt;
7287 	int ret = 0;
7288 
7289 	mutex_lock(&fs_devices->device_list_mutex);
7290 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7291 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7292 		if (!device->dev_stats_valid || stats_cnt == 0)
7293 			continue;
7294 
7295 
7296 		/*
7297 		 * There is a LOAD-LOAD control dependency between the value of
7298 		 * dev_stats_ccnt and updating the on-disk values which requires
7299 		 * reading the in-memory counters. Such control dependencies
7300 		 * require explicit read memory barriers.
7301 		 *
7302 		 * This memory barriers pairs with smp_mb__before_atomic in
7303 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7304 		 * barrier implied by atomic_xchg in
7305 		 * btrfs_dev_stats_read_and_reset
7306 		 */
7307 		smp_rmb();
7308 
7309 		ret = update_dev_stat_item(trans, device);
7310 		if (!ret)
7311 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7312 	}
7313 	mutex_unlock(&fs_devices->device_list_mutex);
7314 
7315 	return ret;
7316 }
7317 
7318 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7319 {
7320 	btrfs_dev_stat_inc(dev, index);
7321 	btrfs_dev_stat_print_on_error(dev);
7322 }
7323 
7324 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7325 {
7326 	if (!dev->dev_stats_valid)
7327 		return;
7328 	btrfs_err_rl_in_rcu(dev->fs_info,
7329 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7330 			   rcu_str_deref(dev->name),
7331 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7332 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7333 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7334 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7335 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7336 }
7337 
7338 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7339 {
7340 	int i;
7341 
7342 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7343 		if (btrfs_dev_stat_read(dev, i) != 0)
7344 			break;
7345 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7346 		return; /* all values == 0, suppress message */
7347 
7348 	btrfs_info_in_rcu(dev->fs_info,
7349 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7350 	       rcu_str_deref(dev->name),
7351 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7352 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7353 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7354 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7355 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7356 }
7357 
7358 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7359 			struct btrfs_ioctl_get_dev_stats *stats)
7360 {
7361 	struct btrfs_device *dev;
7362 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7363 	int i;
7364 
7365 	mutex_lock(&fs_devices->device_list_mutex);
7366 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7367 				true);
7368 	mutex_unlock(&fs_devices->device_list_mutex);
7369 
7370 	if (!dev) {
7371 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7372 		return -ENODEV;
7373 	} else if (!dev->dev_stats_valid) {
7374 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7375 		return -ENODEV;
7376 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7377 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7378 			if (stats->nr_items > i)
7379 				stats->values[i] =
7380 					btrfs_dev_stat_read_and_reset(dev, i);
7381 			else
7382 				btrfs_dev_stat_set(dev, i, 0);
7383 		}
7384 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7385 			   current->comm, task_pid_nr(current));
7386 	} else {
7387 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7388 			if (stats->nr_items > i)
7389 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7390 	}
7391 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7392 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7393 	return 0;
7394 }
7395 
7396 /*
7397  * Update the size and bytes used for each device where it changed.  This is
7398  * delayed since we would otherwise get errors while writing out the
7399  * superblocks.
7400  *
7401  * Must be invoked during transaction commit.
7402  */
7403 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7404 {
7405 	struct btrfs_device *curr, *next;
7406 
7407 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7408 
7409 	if (list_empty(&trans->dev_update_list))
7410 		return;
7411 
7412 	/*
7413 	 * We don't need the device_list_mutex here.  This list is owned by the
7414 	 * transaction and the transaction must complete before the device is
7415 	 * released.
7416 	 */
7417 	mutex_lock(&trans->fs_info->chunk_mutex);
7418 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7419 				 post_commit_list) {
7420 		list_del_init(&curr->post_commit_list);
7421 		curr->commit_total_bytes = curr->disk_total_bytes;
7422 		curr->commit_bytes_used = curr->bytes_used;
7423 	}
7424 	mutex_unlock(&trans->fs_info->chunk_mutex);
7425 }
7426 
7427 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7428 {
7429 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7430 	while (fs_devices) {
7431 		fs_devices->fs_info = fs_info;
7432 		fs_devices = fs_devices->seed;
7433 	}
7434 }
7435 
7436 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7437 {
7438 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7439 	while (fs_devices) {
7440 		fs_devices->fs_info = NULL;
7441 		fs_devices = fs_devices->seed;
7442 	}
7443 }
7444 
7445 /*
7446  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7447  */
7448 int btrfs_bg_type_to_factor(u64 flags)
7449 {
7450 	const int index = btrfs_bg_flags_to_raid_index(flags);
7451 
7452 	return btrfs_raid_array[index].ncopies;
7453 }
7454 
7455 
7456 
7457 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7458 				 u64 chunk_offset, u64 devid,
7459 				 u64 physical_offset, u64 physical_len)
7460 {
7461 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7462 	struct extent_map *em;
7463 	struct map_lookup *map;
7464 	struct btrfs_device *dev;
7465 	u64 stripe_len;
7466 	bool found = false;
7467 	int ret = 0;
7468 	int i;
7469 
7470 	read_lock(&em_tree->lock);
7471 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7472 	read_unlock(&em_tree->lock);
7473 
7474 	if (!em) {
7475 		btrfs_err(fs_info,
7476 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7477 			  physical_offset, devid);
7478 		ret = -EUCLEAN;
7479 		goto out;
7480 	}
7481 
7482 	map = em->map_lookup;
7483 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7484 	if (physical_len != stripe_len) {
7485 		btrfs_err(fs_info,
7486 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7487 			  physical_offset, devid, em->start, physical_len,
7488 			  stripe_len);
7489 		ret = -EUCLEAN;
7490 		goto out;
7491 	}
7492 
7493 	for (i = 0; i < map->num_stripes; i++) {
7494 		if (map->stripes[i].dev->devid == devid &&
7495 		    map->stripes[i].physical == physical_offset) {
7496 			found = true;
7497 			if (map->verified_stripes >= map->num_stripes) {
7498 				btrfs_err(fs_info,
7499 				"too many dev extents for chunk %llu found",
7500 					  em->start);
7501 				ret = -EUCLEAN;
7502 				goto out;
7503 			}
7504 			map->verified_stripes++;
7505 			break;
7506 		}
7507 	}
7508 	if (!found) {
7509 		btrfs_err(fs_info,
7510 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7511 			physical_offset, devid);
7512 		ret = -EUCLEAN;
7513 	}
7514 
7515 	/* Make sure no dev extent is beyond device bondary */
7516 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7517 	if (!dev) {
7518 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7519 		ret = -EUCLEAN;
7520 		goto out;
7521 	}
7522 
7523 	/* It's possible this device is a dummy for seed device */
7524 	if (dev->disk_total_bytes == 0) {
7525 		dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7526 					NULL, false);
7527 		if (!dev) {
7528 			btrfs_err(fs_info, "failed to find seed devid %llu",
7529 				  devid);
7530 			ret = -EUCLEAN;
7531 			goto out;
7532 		}
7533 	}
7534 
7535 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7536 		btrfs_err(fs_info,
7537 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7538 			  devid, physical_offset, physical_len,
7539 			  dev->disk_total_bytes);
7540 		ret = -EUCLEAN;
7541 		goto out;
7542 	}
7543 out:
7544 	free_extent_map(em);
7545 	return ret;
7546 }
7547 
7548 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7549 {
7550 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7551 	struct extent_map *em;
7552 	struct rb_node *node;
7553 	int ret = 0;
7554 
7555 	read_lock(&em_tree->lock);
7556 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7557 		em = rb_entry(node, struct extent_map, rb_node);
7558 		if (em->map_lookup->num_stripes !=
7559 		    em->map_lookup->verified_stripes) {
7560 			btrfs_err(fs_info,
7561 			"chunk %llu has missing dev extent, have %d expect %d",
7562 				  em->start, em->map_lookup->verified_stripes,
7563 				  em->map_lookup->num_stripes);
7564 			ret = -EUCLEAN;
7565 			goto out;
7566 		}
7567 	}
7568 out:
7569 	read_unlock(&em_tree->lock);
7570 	return ret;
7571 }
7572 
7573 /*
7574  * Ensure that all dev extents are mapped to correct chunk, otherwise
7575  * later chunk allocation/free would cause unexpected behavior.
7576  *
7577  * NOTE: This will iterate through the whole device tree, which should be of
7578  * the same size level as the chunk tree.  This slightly increases mount time.
7579  */
7580 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7581 {
7582 	struct btrfs_path *path;
7583 	struct btrfs_root *root = fs_info->dev_root;
7584 	struct btrfs_key key;
7585 	u64 prev_devid = 0;
7586 	u64 prev_dev_ext_end = 0;
7587 	int ret = 0;
7588 
7589 	key.objectid = 1;
7590 	key.type = BTRFS_DEV_EXTENT_KEY;
7591 	key.offset = 0;
7592 
7593 	path = btrfs_alloc_path();
7594 	if (!path)
7595 		return -ENOMEM;
7596 
7597 	path->reada = READA_FORWARD;
7598 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7599 	if (ret < 0)
7600 		goto out;
7601 
7602 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7603 		ret = btrfs_next_item(root, path);
7604 		if (ret < 0)
7605 			goto out;
7606 		/* No dev extents at all? Not good */
7607 		if (ret > 0) {
7608 			ret = -EUCLEAN;
7609 			goto out;
7610 		}
7611 	}
7612 	while (1) {
7613 		struct extent_buffer *leaf = path->nodes[0];
7614 		struct btrfs_dev_extent *dext;
7615 		int slot = path->slots[0];
7616 		u64 chunk_offset;
7617 		u64 physical_offset;
7618 		u64 physical_len;
7619 		u64 devid;
7620 
7621 		btrfs_item_key_to_cpu(leaf, &key, slot);
7622 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7623 			break;
7624 		devid = key.objectid;
7625 		physical_offset = key.offset;
7626 
7627 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7628 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7629 		physical_len = btrfs_dev_extent_length(leaf, dext);
7630 
7631 		/* Check if this dev extent overlaps with the previous one */
7632 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7633 			btrfs_err(fs_info,
7634 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7635 				  devid, physical_offset, prev_dev_ext_end);
7636 			ret = -EUCLEAN;
7637 			goto out;
7638 		}
7639 
7640 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7641 					    physical_offset, physical_len);
7642 		if (ret < 0)
7643 			goto out;
7644 		prev_devid = devid;
7645 		prev_dev_ext_end = physical_offset + physical_len;
7646 
7647 		ret = btrfs_next_item(root, path);
7648 		if (ret < 0)
7649 			goto out;
7650 		if (ret > 0) {
7651 			ret = 0;
7652 			break;
7653 		}
7654 	}
7655 
7656 	/* Ensure all chunks have corresponding dev extents */
7657 	ret = verify_chunk_dev_extent_mapping(fs_info);
7658 out:
7659 	btrfs_free_path(path);
7660 	return ret;
7661 }
7662 
7663 /*
7664  * Check whether the given block group or device is pinned by any inode being
7665  * used as a swapfile.
7666  */
7667 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7668 {
7669 	struct btrfs_swapfile_pin *sp;
7670 	struct rb_node *node;
7671 
7672 	spin_lock(&fs_info->swapfile_pins_lock);
7673 	node = fs_info->swapfile_pins.rb_node;
7674 	while (node) {
7675 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7676 		if (ptr < sp->ptr)
7677 			node = node->rb_left;
7678 		else if (ptr > sp->ptr)
7679 			node = node->rb_right;
7680 		else
7681 			break;
7682 	}
7683 	spin_unlock(&fs_info->swapfile_pins_lock);
7684 	return node != NULL;
7685 }
7686