1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include "misc.h" 18 #include "ctree.h" 19 #include "extent_map.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "async-thread.h" 26 #include "check-integrity.h" 27 #include "rcu-string.h" 28 #include "dev-replace.h" 29 #include "sysfs.h" 30 #include "tree-checker.h" 31 #include "space-info.h" 32 #include "block-group.h" 33 #include "discard.h" 34 #include "zoned.h" 35 36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 37 [BTRFS_RAID_RAID10] = { 38 .sub_stripes = 2, 39 .dev_stripes = 1, 40 .devs_max = 0, /* 0 == as many as possible */ 41 .devs_min = 4, 42 .tolerated_failures = 1, 43 .devs_increment = 2, 44 .ncopies = 2, 45 .nparity = 0, 46 .raid_name = "raid10", 47 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 48 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 49 }, 50 [BTRFS_RAID_RAID1] = { 51 .sub_stripes = 1, 52 .dev_stripes = 1, 53 .devs_max = 2, 54 .devs_min = 2, 55 .tolerated_failures = 1, 56 .devs_increment = 2, 57 .ncopies = 2, 58 .nparity = 0, 59 .raid_name = "raid1", 60 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 61 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 62 }, 63 [BTRFS_RAID_RAID1C3] = { 64 .sub_stripes = 1, 65 .dev_stripes = 1, 66 .devs_max = 3, 67 .devs_min = 3, 68 .tolerated_failures = 2, 69 .devs_increment = 3, 70 .ncopies = 3, 71 .nparity = 0, 72 .raid_name = "raid1c3", 73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 74 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 75 }, 76 [BTRFS_RAID_RAID1C4] = { 77 .sub_stripes = 1, 78 .dev_stripes = 1, 79 .devs_max = 4, 80 .devs_min = 4, 81 .tolerated_failures = 3, 82 .devs_increment = 4, 83 .ncopies = 4, 84 .nparity = 0, 85 .raid_name = "raid1c4", 86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 87 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 88 }, 89 [BTRFS_RAID_DUP] = { 90 .sub_stripes = 1, 91 .dev_stripes = 2, 92 .devs_max = 1, 93 .devs_min = 1, 94 .tolerated_failures = 0, 95 .devs_increment = 1, 96 .ncopies = 2, 97 .nparity = 0, 98 .raid_name = "dup", 99 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 100 .mindev_error = 0, 101 }, 102 [BTRFS_RAID_RAID0] = { 103 .sub_stripes = 1, 104 .dev_stripes = 1, 105 .devs_max = 0, 106 .devs_min = 2, 107 .tolerated_failures = 0, 108 .devs_increment = 1, 109 .ncopies = 1, 110 .nparity = 0, 111 .raid_name = "raid0", 112 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 113 .mindev_error = 0, 114 }, 115 [BTRFS_RAID_SINGLE] = { 116 .sub_stripes = 1, 117 .dev_stripes = 1, 118 .devs_max = 1, 119 .devs_min = 1, 120 .tolerated_failures = 0, 121 .devs_increment = 1, 122 .ncopies = 1, 123 .nparity = 0, 124 .raid_name = "single", 125 .bg_flag = 0, 126 .mindev_error = 0, 127 }, 128 [BTRFS_RAID_RAID5] = { 129 .sub_stripes = 1, 130 .dev_stripes = 1, 131 .devs_max = 0, 132 .devs_min = 2, 133 .tolerated_failures = 1, 134 .devs_increment = 1, 135 .ncopies = 1, 136 .nparity = 1, 137 .raid_name = "raid5", 138 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 139 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 140 }, 141 [BTRFS_RAID_RAID6] = { 142 .sub_stripes = 1, 143 .dev_stripes = 1, 144 .devs_max = 0, 145 .devs_min = 3, 146 .tolerated_failures = 2, 147 .devs_increment = 1, 148 .ncopies = 1, 149 .nparity = 2, 150 .raid_name = "raid6", 151 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 152 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 153 }, 154 }; 155 156 const char *btrfs_bg_type_to_raid_name(u64 flags) 157 { 158 const int index = btrfs_bg_flags_to_raid_index(flags); 159 160 if (index >= BTRFS_NR_RAID_TYPES) 161 return NULL; 162 163 return btrfs_raid_array[index].raid_name; 164 } 165 166 /* 167 * Fill @buf with textual description of @bg_flags, no more than @size_buf 168 * bytes including terminating null byte. 169 */ 170 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 171 { 172 int i; 173 int ret; 174 char *bp = buf; 175 u64 flags = bg_flags; 176 u32 size_bp = size_buf; 177 178 if (!flags) { 179 strcpy(bp, "NONE"); 180 return; 181 } 182 183 #define DESCRIBE_FLAG(flag, desc) \ 184 do { \ 185 if (flags & (flag)) { \ 186 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 187 if (ret < 0 || ret >= size_bp) \ 188 goto out_overflow; \ 189 size_bp -= ret; \ 190 bp += ret; \ 191 flags &= ~(flag); \ 192 } \ 193 } while (0) 194 195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 197 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 198 199 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 201 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 202 btrfs_raid_array[i].raid_name); 203 #undef DESCRIBE_FLAG 204 205 if (flags) { 206 ret = snprintf(bp, size_bp, "0x%llx|", flags); 207 size_bp -= ret; 208 } 209 210 if (size_bp < size_buf) 211 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 212 213 /* 214 * The text is trimmed, it's up to the caller to provide sufficiently 215 * large buffer 216 */ 217 out_overflow:; 218 } 219 220 static int init_first_rw_device(struct btrfs_trans_handle *trans); 221 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 222 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 223 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 224 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 225 enum btrfs_map_op op, 226 u64 logical, u64 *length, 227 struct btrfs_bio **bbio_ret, 228 int mirror_num, int need_raid_map); 229 230 /* 231 * Device locking 232 * ============== 233 * 234 * There are several mutexes that protect manipulation of devices and low-level 235 * structures like chunks but not block groups, extents or files 236 * 237 * uuid_mutex (global lock) 238 * ------------------------ 239 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 240 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 241 * device) or requested by the device= mount option 242 * 243 * the mutex can be very coarse and can cover long-running operations 244 * 245 * protects: updates to fs_devices counters like missing devices, rw devices, 246 * seeding, structure cloning, opening/closing devices at mount/umount time 247 * 248 * global::fs_devs - add, remove, updates to the global list 249 * 250 * does not protect: manipulation of the fs_devices::devices list in general 251 * but in mount context it could be used to exclude list modifications by eg. 252 * scan ioctl 253 * 254 * btrfs_device::name - renames (write side), read is RCU 255 * 256 * fs_devices::device_list_mutex (per-fs, with RCU) 257 * ------------------------------------------------ 258 * protects updates to fs_devices::devices, ie. adding and deleting 259 * 260 * simple list traversal with read-only actions can be done with RCU protection 261 * 262 * may be used to exclude some operations from running concurrently without any 263 * modifications to the list (see write_all_supers) 264 * 265 * Is not required at mount and close times, because our device list is 266 * protected by the uuid_mutex at that point. 267 * 268 * balance_mutex 269 * ------------- 270 * protects balance structures (status, state) and context accessed from 271 * several places (internally, ioctl) 272 * 273 * chunk_mutex 274 * ----------- 275 * protects chunks, adding or removing during allocation, trim or when a new 276 * device is added/removed. Additionally it also protects post_commit_list of 277 * individual devices, since they can be added to the transaction's 278 * post_commit_list only with chunk_mutex held. 279 * 280 * cleaner_mutex 281 * ------------- 282 * a big lock that is held by the cleaner thread and prevents running subvolume 283 * cleaning together with relocation or delayed iputs 284 * 285 * 286 * Lock nesting 287 * ============ 288 * 289 * uuid_mutex 290 * device_list_mutex 291 * chunk_mutex 292 * balance_mutex 293 * 294 * 295 * Exclusive operations 296 * ==================== 297 * 298 * Maintains the exclusivity of the following operations that apply to the 299 * whole filesystem and cannot run in parallel. 300 * 301 * - Balance (*) 302 * - Device add 303 * - Device remove 304 * - Device replace (*) 305 * - Resize 306 * 307 * The device operations (as above) can be in one of the following states: 308 * 309 * - Running state 310 * - Paused state 311 * - Completed state 312 * 313 * Only device operations marked with (*) can go into the Paused state for the 314 * following reasons: 315 * 316 * - ioctl (only Balance can be Paused through ioctl) 317 * - filesystem remounted as read-only 318 * - filesystem unmounted and mounted as read-only 319 * - system power-cycle and filesystem mounted as read-only 320 * - filesystem or device errors leading to forced read-only 321 * 322 * The status of exclusive operation is set and cleared atomically. 323 * During the course of Paused state, fs_info::exclusive_operation remains set. 324 * A device operation in Paused or Running state can be canceled or resumed 325 * either by ioctl (Balance only) or when remounted as read-write. 326 * The exclusive status is cleared when the device operation is canceled or 327 * completed. 328 */ 329 330 DEFINE_MUTEX(uuid_mutex); 331 static LIST_HEAD(fs_uuids); 332 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 333 { 334 return &fs_uuids; 335 } 336 337 /* 338 * alloc_fs_devices - allocate struct btrfs_fs_devices 339 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 340 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 341 * 342 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 343 * The returned struct is not linked onto any lists and can be destroyed with 344 * kfree() right away. 345 */ 346 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 347 const u8 *metadata_fsid) 348 { 349 struct btrfs_fs_devices *fs_devs; 350 351 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 352 if (!fs_devs) 353 return ERR_PTR(-ENOMEM); 354 355 mutex_init(&fs_devs->device_list_mutex); 356 357 INIT_LIST_HEAD(&fs_devs->devices); 358 INIT_LIST_HEAD(&fs_devs->alloc_list); 359 INIT_LIST_HEAD(&fs_devs->fs_list); 360 INIT_LIST_HEAD(&fs_devs->seed_list); 361 if (fsid) 362 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 363 364 if (metadata_fsid) 365 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 366 else if (fsid) 367 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 368 369 return fs_devs; 370 } 371 372 void btrfs_free_device(struct btrfs_device *device) 373 { 374 WARN_ON(!list_empty(&device->post_commit_list)); 375 rcu_string_free(device->name); 376 extent_io_tree_release(&device->alloc_state); 377 bio_put(device->flush_bio); 378 btrfs_destroy_dev_zone_info(device); 379 kfree(device); 380 } 381 382 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 383 { 384 struct btrfs_device *device; 385 WARN_ON(fs_devices->opened); 386 while (!list_empty(&fs_devices->devices)) { 387 device = list_entry(fs_devices->devices.next, 388 struct btrfs_device, dev_list); 389 list_del(&device->dev_list); 390 btrfs_free_device(device); 391 } 392 kfree(fs_devices); 393 } 394 395 void __exit btrfs_cleanup_fs_uuids(void) 396 { 397 struct btrfs_fs_devices *fs_devices; 398 399 while (!list_empty(&fs_uuids)) { 400 fs_devices = list_entry(fs_uuids.next, 401 struct btrfs_fs_devices, fs_list); 402 list_del(&fs_devices->fs_list); 403 free_fs_devices(fs_devices); 404 } 405 } 406 407 /* 408 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 409 * Returned struct is not linked onto any lists and must be destroyed using 410 * btrfs_free_device. 411 */ 412 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info) 413 { 414 struct btrfs_device *dev; 415 416 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 417 if (!dev) 418 return ERR_PTR(-ENOMEM); 419 420 /* 421 * Preallocate a bio that's always going to be used for flushing device 422 * barriers and matches the device lifespan 423 */ 424 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0); 425 if (!dev->flush_bio) { 426 kfree(dev); 427 return ERR_PTR(-ENOMEM); 428 } 429 430 INIT_LIST_HEAD(&dev->dev_list); 431 INIT_LIST_HEAD(&dev->dev_alloc_list); 432 INIT_LIST_HEAD(&dev->post_commit_list); 433 434 atomic_set(&dev->reada_in_flight, 0); 435 atomic_set(&dev->dev_stats_ccnt, 0); 436 btrfs_device_data_ordered_init(dev); 437 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 438 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 439 extent_io_tree_init(fs_info, &dev->alloc_state, 440 IO_TREE_DEVICE_ALLOC_STATE, NULL); 441 442 return dev; 443 } 444 445 static noinline struct btrfs_fs_devices *find_fsid( 446 const u8 *fsid, const u8 *metadata_fsid) 447 { 448 struct btrfs_fs_devices *fs_devices; 449 450 ASSERT(fsid); 451 452 /* Handle non-split brain cases */ 453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 454 if (metadata_fsid) { 455 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 456 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 457 BTRFS_FSID_SIZE) == 0) 458 return fs_devices; 459 } else { 460 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 461 return fs_devices; 462 } 463 } 464 return NULL; 465 } 466 467 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 468 struct btrfs_super_block *disk_super) 469 { 470 471 struct btrfs_fs_devices *fs_devices; 472 473 /* 474 * Handle scanned device having completed its fsid change but 475 * belonging to a fs_devices that was created by first scanning 476 * a device which didn't have its fsid/metadata_uuid changed 477 * at all and the CHANGING_FSID_V2 flag set. 478 */ 479 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 480 if (fs_devices->fsid_change && 481 memcmp(disk_super->metadata_uuid, fs_devices->fsid, 482 BTRFS_FSID_SIZE) == 0 && 483 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 484 BTRFS_FSID_SIZE) == 0) { 485 return fs_devices; 486 } 487 } 488 /* 489 * Handle scanned device having completed its fsid change but 490 * belonging to a fs_devices that was created by a device that 491 * has an outdated pair of fsid/metadata_uuid and 492 * CHANGING_FSID_V2 flag set. 493 */ 494 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 495 if (fs_devices->fsid_change && 496 memcmp(fs_devices->metadata_uuid, 497 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 498 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, 499 BTRFS_FSID_SIZE) == 0) { 500 return fs_devices; 501 } 502 } 503 504 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 505 } 506 507 508 static int 509 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 510 int flush, struct block_device **bdev, 511 struct btrfs_super_block **disk_super) 512 { 513 int ret; 514 515 *bdev = blkdev_get_by_path(device_path, flags, holder); 516 517 if (IS_ERR(*bdev)) { 518 ret = PTR_ERR(*bdev); 519 goto error; 520 } 521 522 if (flush) 523 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 524 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 525 if (ret) { 526 blkdev_put(*bdev, flags); 527 goto error; 528 } 529 invalidate_bdev(*bdev); 530 *disk_super = btrfs_read_dev_super(*bdev); 531 if (IS_ERR(*disk_super)) { 532 ret = PTR_ERR(*disk_super); 533 blkdev_put(*bdev, flags); 534 goto error; 535 } 536 537 return 0; 538 539 error: 540 *bdev = NULL; 541 return ret; 542 } 543 544 static bool device_path_matched(const char *path, struct btrfs_device *device) 545 { 546 int found; 547 548 rcu_read_lock(); 549 found = strcmp(rcu_str_deref(device->name), path); 550 rcu_read_unlock(); 551 552 return found == 0; 553 } 554 555 /* 556 * Search and remove all stale (devices which are not mounted) devices. 557 * When both inputs are NULL, it will search and release all stale devices. 558 * path: Optional. When provided will it release all unmounted devices 559 * matching this path only. 560 * skip_dev: Optional. Will skip this device when searching for the stale 561 * devices. 562 * Return: 0 for success or if @path is NULL. 563 * -EBUSY if @path is a mounted device. 564 * -ENOENT if @path does not match any device in the list. 565 */ 566 static int btrfs_free_stale_devices(const char *path, 567 struct btrfs_device *skip_device) 568 { 569 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 570 struct btrfs_device *device, *tmp_device; 571 int ret = 0; 572 573 if (path) 574 ret = -ENOENT; 575 576 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 577 578 mutex_lock(&fs_devices->device_list_mutex); 579 list_for_each_entry_safe(device, tmp_device, 580 &fs_devices->devices, dev_list) { 581 if (skip_device && skip_device == device) 582 continue; 583 if (path && !device->name) 584 continue; 585 if (path && !device_path_matched(path, device)) 586 continue; 587 if (fs_devices->opened) { 588 /* for an already deleted device return 0 */ 589 if (path && ret != 0) 590 ret = -EBUSY; 591 break; 592 } 593 594 /* delete the stale device */ 595 fs_devices->num_devices--; 596 list_del(&device->dev_list); 597 btrfs_free_device(device); 598 599 ret = 0; 600 } 601 mutex_unlock(&fs_devices->device_list_mutex); 602 603 if (fs_devices->num_devices == 0) { 604 btrfs_sysfs_remove_fsid(fs_devices); 605 list_del(&fs_devices->fs_list); 606 free_fs_devices(fs_devices); 607 } 608 } 609 610 return ret; 611 } 612 613 /* 614 * This is only used on mount, and we are protected from competing things 615 * messing with our fs_devices by the uuid_mutex, thus we do not need the 616 * fs_devices->device_list_mutex here. 617 */ 618 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 619 struct btrfs_device *device, fmode_t flags, 620 void *holder) 621 { 622 struct request_queue *q; 623 struct block_device *bdev; 624 struct btrfs_super_block *disk_super; 625 u64 devid; 626 int ret; 627 628 if (device->bdev) 629 return -EINVAL; 630 if (!device->name) 631 return -EINVAL; 632 633 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 634 &bdev, &disk_super); 635 if (ret) 636 return ret; 637 638 devid = btrfs_stack_device_id(&disk_super->dev_item); 639 if (devid != device->devid) 640 goto error_free_page; 641 642 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 643 goto error_free_page; 644 645 device->generation = btrfs_super_generation(disk_super); 646 647 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 648 if (btrfs_super_incompat_flags(disk_super) & 649 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 650 pr_err( 651 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 652 goto error_free_page; 653 } 654 655 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 656 fs_devices->seeding = true; 657 } else { 658 if (bdev_read_only(bdev)) 659 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 660 else 661 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 662 } 663 664 q = bdev_get_queue(bdev); 665 if (!blk_queue_nonrot(q)) 666 fs_devices->rotating = true; 667 668 device->bdev = bdev; 669 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 670 device->mode = flags; 671 672 fs_devices->open_devices++; 673 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 674 device->devid != BTRFS_DEV_REPLACE_DEVID) { 675 fs_devices->rw_devices++; 676 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 677 } 678 btrfs_release_disk_super(disk_super); 679 680 return 0; 681 682 error_free_page: 683 btrfs_release_disk_super(disk_super); 684 blkdev_put(bdev, flags); 685 686 return -EINVAL; 687 } 688 689 /* 690 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 691 * being created with a disk that has already completed its fsid change. Such 692 * disk can belong to an fs which has its FSID changed or to one which doesn't. 693 * Handle both cases here. 694 */ 695 static struct btrfs_fs_devices *find_fsid_inprogress( 696 struct btrfs_super_block *disk_super) 697 { 698 struct btrfs_fs_devices *fs_devices; 699 700 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 701 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 702 BTRFS_FSID_SIZE) != 0 && 703 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 704 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 705 return fs_devices; 706 } 707 } 708 709 return find_fsid(disk_super->fsid, NULL); 710 } 711 712 713 static struct btrfs_fs_devices *find_fsid_changed( 714 struct btrfs_super_block *disk_super) 715 { 716 struct btrfs_fs_devices *fs_devices; 717 718 /* 719 * Handles the case where scanned device is part of an fs that had 720 * multiple successful changes of FSID but currently device didn't 721 * observe it. Meaning our fsid will be different than theirs. We need 722 * to handle two subcases : 723 * 1 - The fs still continues to have different METADATA/FSID uuids. 724 * 2 - The fs is switched back to its original FSID (METADATA/FSID 725 * are equal). 726 */ 727 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 728 /* Changed UUIDs */ 729 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 730 BTRFS_FSID_SIZE) != 0 && 731 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 732 BTRFS_FSID_SIZE) == 0 && 733 memcmp(fs_devices->fsid, disk_super->fsid, 734 BTRFS_FSID_SIZE) != 0) 735 return fs_devices; 736 737 /* Unchanged UUIDs */ 738 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 739 BTRFS_FSID_SIZE) == 0 && 740 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 741 BTRFS_FSID_SIZE) == 0) 742 return fs_devices; 743 } 744 745 return NULL; 746 } 747 748 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 749 struct btrfs_super_block *disk_super) 750 { 751 struct btrfs_fs_devices *fs_devices; 752 753 /* 754 * Handle the case where the scanned device is part of an fs whose last 755 * metadata UUID change reverted it to the original FSID. At the same 756 * time * fs_devices was first created by another constitutent device 757 * which didn't fully observe the operation. This results in an 758 * btrfs_fs_devices created with metadata/fsid different AND 759 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 760 * fs_devices equal to the FSID of the disk. 761 */ 762 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 763 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 764 BTRFS_FSID_SIZE) != 0 && 765 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 766 BTRFS_FSID_SIZE) == 0 && 767 fs_devices->fsid_change) 768 return fs_devices; 769 } 770 771 return NULL; 772 } 773 /* 774 * Add new device to list of registered devices 775 * 776 * Returns: 777 * device pointer which was just added or updated when successful 778 * error pointer when failed 779 */ 780 static noinline struct btrfs_device *device_list_add(const char *path, 781 struct btrfs_super_block *disk_super, 782 bool *new_device_added) 783 { 784 struct btrfs_device *device; 785 struct btrfs_fs_devices *fs_devices = NULL; 786 struct rcu_string *name; 787 u64 found_transid = btrfs_super_generation(disk_super); 788 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 789 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 790 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 791 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 792 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 793 794 if (fsid_change_in_progress) { 795 if (!has_metadata_uuid) 796 fs_devices = find_fsid_inprogress(disk_super); 797 else 798 fs_devices = find_fsid_changed(disk_super); 799 } else if (has_metadata_uuid) { 800 fs_devices = find_fsid_with_metadata_uuid(disk_super); 801 } else { 802 fs_devices = find_fsid_reverted_metadata(disk_super); 803 if (!fs_devices) 804 fs_devices = find_fsid(disk_super->fsid, NULL); 805 } 806 807 808 if (!fs_devices) { 809 if (has_metadata_uuid) 810 fs_devices = alloc_fs_devices(disk_super->fsid, 811 disk_super->metadata_uuid); 812 else 813 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 814 815 if (IS_ERR(fs_devices)) 816 return ERR_CAST(fs_devices); 817 818 fs_devices->fsid_change = fsid_change_in_progress; 819 820 mutex_lock(&fs_devices->device_list_mutex); 821 list_add(&fs_devices->fs_list, &fs_uuids); 822 823 device = NULL; 824 } else { 825 mutex_lock(&fs_devices->device_list_mutex); 826 device = btrfs_find_device(fs_devices, devid, 827 disk_super->dev_item.uuid, NULL); 828 829 /* 830 * If this disk has been pulled into an fs devices created by 831 * a device which had the CHANGING_FSID_V2 flag then replace the 832 * metadata_uuid/fsid values of the fs_devices. 833 */ 834 if (fs_devices->fsid_change && 835 found_transid > fs_devices->latest_generation) { 836 memcpy(fs_devices->fsid, disk_super->fsid, 837 BTRFS_FSID_SIZE); 838 839 if (has_metadata_uuid) 840 memcpy(fs_devices->metadata_uuid, 841 disk_super->metadata_uuid, 842 BTRFS_FSID_SIZE); 843 else 844 memcpy(fs_devices->metadata_uuid, 845 disk_super->fsid, BTRFS_FSID_SIZE); 846 847 fs_devices->fsid_change = false; 848 } 849 } 850 851 if (!device) { 852 if (fs_devices->opened) { 853 mutex_unlock(&fs_devices->device_list_mutex); 854 return ERR_PTR(-EBUSY); 855 } 856 857 device = btrfs_alloc_device(NULL, &devid, 858 disk_super->dev_item.uuid); 859 if (IS_ERR(device)) { 860 mutex_unlock(&fs_devices->device_list_mutex); 861 /* we can safely leave the fs_devices entry around */ 862 return device; 863 } 864 865 name = rcu_string_strdup(path, GFP_NOFS); 866 if (!name) { 867 btrfs_free_device(device); 868 mutex_unlock(&fs_devices->device_list_mutex); 869 return ERR_PTR(-ENOMEM); 870 } 871 rcu_assign_pointer(device->name, name); 872 873 list_add_rcu(&device->dev_list, &fs_devices->devices); 874 fs_devices->num_devices++; 875 876 device->fs_devices = fs_devices; 877 *new_device_added = true; 878 879 if (disk_super->label[0]) 880 pr_info( 881 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 882 disk_super->label, devid, found_transid, path, 883 current->comm, task_pid_nr(current)); 884 else 885 pr_info( 886 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 887 disk_super->fsid, devid, found_transid, path, 888 current->comm, task_pid_nr(current)); 889 890 } else if (!device->name || strcmp(device->name->str, path)) { 891 /* 892 * When FS is already mounted. 893 * 1. If you are here and if the device->name is NULL that 894 * means this device was missing at time of FS mount. 895 * 2. If you are here and if the device->name is different 896 * from 'path' that means either 897 * a. The same device disappeared and reappeared with 898 * different name. or 899 * b. The missing-disk-which-was-replaced, has 900 * reappeared now. 901 * 902 * We must allow 1 and 2a above. But 2b would be a spurious 903 * and unintentional. 904 * 905 * Further in case of 1 and 2a above, the disk at 'path' 906 * would have missed some transaction when it was away and 907 * in case of 2a the stale bdev has to be updated as well. 908 * 2b must not be allowed at all time. 909 */ 910 911 /* 912 * For now, we do allow update to btrfs_fs_device through the 913 * btrfs dev scan cli after FS has been mounted. We're still 914 * tracking a problem where systems fail mount by subvolume id 915 * when we reject replacement on a mounted FS. 916 */ 917 if (!fs_devices->opened && found_transid < device->generation) { 918 /* 919 * That is if the FS is _not_ mounted and if you 920 * are here, that means there is more than one 921 * disk with same uuid and devid.We keep the one 922 * with larger generation number or the last-in if 923 * generation are equal. 924 */ 925 mutex_unlock(&fs_devices->device_list_mutex); 926 return ERR_PTR(-EEXIST); 927 } 928 929 /* 930 * We are going to replace the device path for a given devid, 931 * make sure it's the same device if the device is mounted 932 */ 933 if (device->bdev) { 934 int error; 935 dev_t path_dev; 936 937 error = lookup_bdev(path, &path_dev); 938 if (error) { 939 mutex_unlock(&fs_devices->device_list_mutex); 940 return ERR_PTR(error); 941 } 942 943 if (device->bdev->bd_dev != path_dev) { 944 mutex_unlock(&fs_devices->device_list_mutex); 945 /* 946 * device->fs_info may not be reliable here, so 947 * pass in a NULL instead. This avoids a 948 * possible use-after-free when the fs_info and 949 * fs_info->sb are already torn down. 950 */ 951 btrfs_warn_in_rcu(NULL, 952 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 953 path, devid, found_transid, 954 current->comm, 955 task_pid_nr(current)); 956 return ERR_PTR(-EEXIST); 957 } 958 btrfs_info_in_rcu(device->fs_info, 959 "devid %llu device path %s changed to %s scanned by %s (%d)", 960 devid, rcu_str_deref(device->name), 961 path, current->comm, 962 task_pid_nr(current)); 963 } 964 965 name = rcu_string_strdup(path, GFP_NOFS); 966 if (!name) { 967 mutex_unlock(&fs_devices->device_list_mutex); 968 return ERR_PTR(-ENOMEM); 969 } 970 rcu_string_free(device->name); 971 rcu_assign_pointer(device->name, name); 972 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 973 fs_devices->missing_devices--; 974 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 975 } 976 } 977 978 /* 979 * Unmount does not free the btrfs_device struct but would zero 980 * generation along with most of the other members. So just update 981 * it back. We need it to pick the disk with largest generation 982 * (as above). 983 */ 984 if (!fs_devices->opened) { 985 device->generation = found_transid; 986 fs_devices->latest_generation = max_t(u64, found_transid, 987 fs_devices->latest_generation); 988 } 989 990 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 991 992 mutex_unlock(&fs_devices->device_list_mutex); 993 return device; 994 } 995 996 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 997 { 998 struct btrfs_fs_devices *fs_devices; 999 struct btrfs_device *device; 1000 struct btrfs_device *orig_dev; 1001 int ret = 0; 1002 1003 fs_devices = alloc_fs_devices(orig->fsid, NULL); 1004 if (IS_ERR(fs_devices)) 1005 return fs_devices; 1006 1007 mutex_lock(&orig->device_list_mutex); 1008 fs_devices->total_devices = orig->total_devices; 1009 1010 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1011 struct rcu_string *name; 1012 1013 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1014 orig_dev->uuid); 1015 if (IS_ERR(device)) { 1016 ret = PTR_ERR(device); 1017 goto error; 1018 } 1019 1020 /* 1021 * This is ok to do without rcu read locked because we hold the 1022 * uuid mutex so nothing we touch in here is going to disappear. 1023 */ 1024 if (orig_dev->name) { 1025 name = rcu_string_strdup(orig_dev->name->str, 1026 GFP_KERNEL); 1027 if (!name) { 1028 btrfs_free_device(device); 1029 ret = -ENOMEM; 1030 goto error; 1031 } 1032 rcu_assign_pointer(device->name, name); 1033 } 1034 1035 list_add(&device->dev_list, &fs_devices->devices); 1036 device->fs_devices = fs_devices; 1037 fs_devices->num_devices++; 1038 } 1039 mutex_unlock(&orig->device_list_mutex); 1040 return fs_devices; 1041 error: 1042 mutex_unlock(&orig->device_list_mutex); 1043 free_fs_devices(fs_devices); 1044 return ERR_PTR(ret); 1045 } 1046 1047 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1048 struct btrfs_device **latest_dev) 1049 { 1050 struct btrfs_device *device, *next; 1051 1052 /* This is the initialized path, it is safe to release the devices. */ 1053 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1054 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1055 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1056 &device->dev_state) && 1057 !test_bit(BTRFS_DEV_STATE_MISSING, 1058 &device->dev_state) && 1059 (!*latest_dev || 1060 device->generation > (*latest_dev)->generation)) { 1061 *latest_dev = device; 1062 } 1063 continue; 1064 } 1065 1066 /* 1067 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1068 * in btrfs_init_dev_replace() so just continue. 1069 */ 1070 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1071 continue; 1072 1073 if (device->bdev) { 1074 blkdev_put(device->bdev, device->mode); 1075 device->bdev = NULL; 1076 fs_devices->open_devices--; 1077 } 1078 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1079 list_del_init(&device->dev_alloc_list); 1080 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1081 } 1082 list_del_init(&device->dev_list); 1083 fs_devices->num_devices--; 1084 btrfs_free_device(device); 1085 } 1086 1087 } 1088 1089 /* 1090 * After we have read the system tree and know devids belonging to this 1091 * filesystem, remove the device which does not belong there. 1092 */ 1093 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1094 { 1095 struct btrfs_device *latest_dev = NULL; 1096 struct btrfs_fs_devices *seed_dev; 1097 1098 mutex_lock(&uuid_mutex); 1099 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1100 1101 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1102 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1103 1104 fs_devices->latest_bdev = latest_dev->bdev; 1105 1106 mutex_unlock(&uuid_mutex); 1107 } 1108 1109 static void btrfs_close_bdev(struct btrfs_device *device) 1110 { 1111 if (!device->bdev) 1112 return; 1113 1114 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1115 sync_blockdev(device->bdev); 1116 invalidate_bdev(device->bdev); 1117 } 1118 1119 blkdev_put(device->bdev, device->mode); 1120 } 1121 1122 static void btrfs_close_one_device(struct btrfs_device *device) 1123 { 1124 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1125 1126 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1127 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1128 list_del_init(&device->dev_alloc_list); 1129 fs_devices->rw_devices--; 1130 } 1131 1132 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 1133 fs_devices->missing_devices--; 1134 1135 btrfs_close_bdev(device); 1136 if (device->bdev) { 1137 fs_devices->open_devices--; 1138 device->bdev = NULL; 1139 } 1140 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1141 btrfs_destroy_dev_zone_info(device); 1142 1143 device->fs_info = NULL; 1144 atomic_set(&device->dev_stats_ccnt, 0); 1145 extent_io_tree_release(&device->alloc_state); 1146 1147 /* Verify the device is back in a pristine state */ 1148 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1149 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1150 ASSERT(list_empty(&device->dev_alloc_list)); 1151 ASSERT(list_empty(&device->post_commit_list)); 1152 ASSERT(atomic_read(&device->reada_in_flight) == 0); 1153 } 1154 1155 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1156 { 1157 struct btrfs_device *device, *tmp; 1158 1159 lockdep_assert_held(&uuid_mutex); 1160 1161 if (--fs_devices->opened > 0) 1162 return; 1163 1164 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1165 btrfs_close_one_device(device); 1166 1167 WARN_ON(fs_devices->open_devices); 1168 WARN_ON(fs_devices->rw_devices); 1169 fs_devices->opened = 0; 1170 fs_devices->seeding = false; 1171 fs_devices->fs_info = NULL; 1172 } 1173 1174 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1175 { 1176 LIST_HEAD(list); 1177 struct btrfs_fs_devices *tmp; 1178 1179 mutex_lock(&uuid_mutex); 1180 close_fs_devices(fs_devices); 1181 if (!fs_devices->opened) 1182 list_splice_init(&fs_devices->seed_list, &list); 1183 1184 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1185 close_fs_devices(fs_devices); 1186 list_del(&fs_devices->seed_list); 1187 free_fs_devices(fs_devices); 1188 } 1189 mutex_unlock(&uuid_mutex); 1190 } 1191 1192 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1193 fmode_t flags, void *holder) 1194 { 1195 struct btrfs_device *device; 1196 struct btrfs_device *latest_dev = NULL; 1197 struct btrfs_device *tmp_device; 1198 1199 flags |= FMODE_EXCL; 1200 1201 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1202 dev_list) { 1203 int ret; 1204 1205 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1206 if (ret == 0 && 1207 (!latest_dev || device->generation > latest_dev->generation)) { 1208 latest_dev = device; 1209 } else if (ret == -ENODATA) { 1210 fs_devices->num_devices--; 1211 list_del(&device->dev_list); 1212 btrfs_free_device(device); 1213 } 1214 } 1215 if (fs_devices->open_devices == 0) 1216 return -EINVAL; 1217 1218 fs_devices->opened = 1; 1219 fs_devices->latest_bdev = latest_dev->bdev; 1220 fs_devices->total_rw_bytes = 0; 1221 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1222 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1223 1224 return 0; 1225 } 1226 1227 static int devid_cmp(void *priv, const struct list_head *a, 1228 const struct list_head *b) 1229 { 1230 struct btrfs_device *dev1, *dev2; 1231 1232 dev1 = list_entry(a, struct btrfs_device, dev_list); 1233 dev2 = list_entry(b, struct btrfs_device, dev_list); 1234 1235 if (dev1->devid < dev2->devid) 1236 return -1; 1237 else if (dev1->devid > dev2->devid) 1238 return 1; 1239 return 0; 1240 } 1241 1242 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1243 fmode_t flags, void *holder) 1244 { 1245 int ret; 1246 1247 lockdep_assert_held(&uuid_mutex); 1248 /* 1249 * The device_list_mutex cannot be taken here in case opening the 1250 * underlying device takes further locks like open_mutex. 1251 * 1252 * We also don't need the lock here as this is called during mount and 1253 * exclusion is provided by uuid_mutex 1254 */ 1255 1256 if (fs_devices->opened) { 1257 fs_devices->opened++; 1258 ret = 0; 1259 } else { 1260 list_sort(NULL, &fs_devices->devices, devid_cmp); 1261 ret = open_fs_devices(fs_devices, flags, holder); 1262 } 1263 1264 return ret; 1265 } 1266 1267 void btrfs_release_disk_super(struct btrfs_super_block *super) 1268 { 1269 struct page *page = virt_to_page(super); 1270 1271 put_page(page); 1272 } 1273 1274 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1275 u64 bytenr, u64 bytenr_orig) 1276 { 1277 struct btrfs_super_block *disk_super; 1278 struct page *page; 1279 void *p; 1280 pgoff_t index; 1281 1282 /* make sure our super fits in the device */ 1283 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1284 return ERR_PTR(-EINVAL); 1285 1286 /* make sure our super fits in the page */ 1287 if (sizeof(*disk_super) > PAGE_SIZE) 1288 return ERR_PTR(-EINVAL); 1289 1290 /* make sure our super doesn't straddle pages on disk */ 1291 index = bytenr >> PAGE_SHIFT; 1292 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1293 return ERR_PTR(-EINVAL); 1294 1295 /* pull in the page with our super */ 1296 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1297 1298 if (IS_ERR(page)) 1299 return ERR_CAST(page); 1300 1301 p = page_address(page); 1302 1303 /* align our pointer to the offset of the super block */ 1304 disk_super = p + offset_in_page(bytenr); 1305 1306 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1307 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1308 btrfs_release_disk_super(p); 1309 return ERR_PTR(-EINVAL); 1310 } 1311 1312 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1313 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1314 1315 return disk_super; 1316 } 1317 1318 int btrfs_forget_devices(const char *path) 1319 { 1320 int ret; 1321 1322 mutex_lock(&uuid_mutex); 1323 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1324 mutex_unlock(&uuid_mutex); 1325 1326 return ret; 1327 } 1328 1329 /* 1330 * Look for a btrfs signature on a device. This may be called out of the mount path 1331 * and we are not allowed to call set_blocksize during the scan. The superblock 1332 * is read via pagecache 1333 */ 1334 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1335 void *holder) 1336 { 1337 struct btrfs_super_block *disk_super; 1338 bool new_device_added = false; 1339 struct btrfs_device *device = NULL; 1340 struct block_device *bdev; 1341 u64 bytenr, bytenr_orig; 1342 int ret; 1343 1344 lockdep_assert_held(&uuid_mutex); 1345 1346 /* 1347 * we would like to check all the supers, but that would make 1348 * a btrfs mount succeed after a mkfs from a different FS. 1349 * So, we need to add a special mount option to scan for 1350 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1351 */ 1352 flags |= FMODE_EXCL; 1353 1354 bdev = blkdev_get_by_path(path, flags, holder); 1355 if (IS_ERR(bdev)) 1356 return ERR_CAST(bdev); 1357 1358 bytenr_orig = btrfs_sb_offset(0); 1359 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr); 1360 if (ret) 1361 return ERR_PTR(ret); 1362 1363 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig); 1364 if (IS_ERR(disk_super)) { 1365 device = ERR_CAST(disk_super); 1366 goto error_bdev_put; 1367 } 1368 1369 device = device_list_add(path, disk_super, &new_device_added); 1370 if (!IS_ERR(device)) { 1371 if (new_device_added) 1372 btrfs_free_stale_devices(path, device); 1373 } 1374 1375 btrfs_release_disk_super(disk_super); 1376 1377 error_bdev_put: 1378 blkdev_put(bdev, flags); 1379 1380 return device; 1381 } 1382 1383 /* 1384 * Try to find a chunk that intersects [start, start + len] range and when one 1385 * such is found, record the end of it in *start 1386 */ 1387 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1388 u64 len) 1389 { 1390 u64 physical_start, physical_end; 1391 1392 lockdep_assert_held(&device->fs_info->chunk_mutex); 1393 1394 if (!find_first_extent_bit(&device->alloc_state, *start, 1395 &physical_start, &physical_end, 1396 CHUNK_ALLOCATED, NULL)) { 1397 1398 if (in_range(physical_start, *start, len) || 1399 in_range(*start, physical_start, 1400 physical_end - physical_start)) { 1401 *start = physical_end + 1; 1402 return true; 1403 } 1404 } 1405 return false; 1406 } 1407 1408 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1409 { 1410 switch (device->fs_devices->chunk_alloc_policy) { 1411 case BTRFS_CHUNK_ALLOC_REGULAR: 1412 /* 1413 * We don't want to overwrite the superblock on the drive nor 1414 * any area used by the boot loader (grub for example), so we 1415 * make sure to start at an offset of at least 1MB. 1416 */ 1417 return max_t(u64, start, SZ_1M); 1418 case BTRFS_CHUNK_ALLOC_ZONED: 1419 /* 1420 * We don't care about the starting region like regular 1421 * allocator, because we anyway use/reserve the first two zones 1422 * for superblock logging. 1423 */ 1424 return ALIGN(start, device->zone_info->zone_size); 1425 default: 1426 BUG(); 1427 } 1428 } 1429 1430 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1431 u64 *hole_start, u64 *hole_size, 1432 u64 num_bytes) 1433 { 1434 u64 zone_size = device->zone_info->zone_size; 1435 u64 pos; 1436 int ret; 1437 bool changed = false; 1438 1439 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1440 1441 while (*hole_size > 0) { 1442 pos = btrfs_find_allocatable_zones(device, *hole_start, 1443 *hole_start + *hole_size, 1444 num_bytes); 1445 if (pos != *hole_start) { 1446 *hole_size = *hole_start + *hole_size - pos; 1447 *hole_start = pos; 1448 changed = true; 1449 if (*hole_size < num_bytes) 1450 break; 1451 } 1452 1453 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1454 1455 /* Range is ensured to be empty */ 1456 if (!ret) 1457 return changed; 1458 1459 /* Given hole range was invalid (outside of device) */ 1460 if (ret == -ERANGE) { 1461 *hole_start += *hole_size; 1462 *hole_size = 0; 1463 return true; 1464 } 1465 1466 *hole_start += zone_size; 1467 *hole_size -= zone_size; 1468 changed = true; 1469 } 1470 1471 return changed; 1472 } 1473 1474 /** 1475 * dev_extent_hole_check - check if specified hole is suitable for allocation 1476 * @device: the device which we have the hole 1477 * @hole_start: starting position of the hole 1478 * @hole_size: the size of the hole 1479 * @num_bytes: the size of the free space that we need 1480 * 1481 * This function may modify @hole_start and @hole_size to reflect the suitable 1482 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1483 */ 1484 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1485 u64 *hole_size, u64 num_bytes) 1486 { 1487 bool changed = false; 1488 u64 hole_end = *hole_start + *hole_size; 1489 1490 for (;;) { 1491 /* 1492 * Check before we set max_hole_start, otherwise we could end up 1493 * sending back this offset anyway. 1494 */ 1495 if (contains_pending_extent(device, hole_start, *hole_size)) { 1496 if (hole_end >= *hole_start) 1497 *hole_size = hole_end - *hole_start; 1498 else 1499 *hole_size = 0; 1500 changed = true; 1501 } 1502 1503 switch (device->fs_devices->chunk_alloc_policy) { 1504 case BTRFS_CHUNK_ALLOC_REGULAR: 1505 /* No extra check */ 1506 break; 1507 case BTRFS_CHUNK_ALLOC_ZONED: 1508 if (dev_extent_hole_check_zoned(device, hole_start, 1509 hole_size, num_bytes)) { 1510 changed = true; 1511 /* 1512 * The changed hole can contain pending extent. 1513 * Loop again to check that. 1514 */ 1515 continue; 1516 } 1517 break; 1518 default: 1519 BUG(); 1520 } 1521 1522 break; 1523 } 1524 1525 return changed; 1526 } 1527 1528 /* 1529 * find_free_dev_extent_start - find free space in the specified device 1530 * @device: the device which we search the free space in 1531 * @num_bytes: the size of the free space that we need 1532 * @search_start: the position from which to begin the search 1533 * @start: store the start of the free space. 1534 * @len: the size of the free space. that we find, or the size 1535 * of the max free space if we don't find suitable free space 1536 * 1537 * this uses a pretty simple search, the expectation is that it is 1538 * called very infrequently and that a given device has a small number 1539 * of extents 1540 * 1541 * @start is used to store the start of the free space if we find. But if we 1542 * don't find suitable free space, it will be used to store the start position 1543 * of the max free space. 1544 * 1545 * @len is used to store the size of the free space that we find. 1546 * But if we don't find suitable free space, it is used to store the size of 1547 * the max free space. 1548 * 1549 * NOTE: This function will search *commit* root of device tree, and does extra 1550 * check to ensure dev extents are not double allocated. 1551 * This makes the function safe to allocate dev extents but may not report 1552 * correct usable device space, as device extent freed in current transaction 1553 * is not reported as available. 1554 */ 1555 static int find_free_dev_extent_start(struct btrfs_device *device, 1556 u64 num_bytes, u64 search_start, u64 *start, 1557 u64 *len) 1558 { 1559 struct btrfs_fs_info *fs_info = device->fs_info; 1560 struct btrfs_root *root = fs_info->dev_root; 1561 struct btrfs_key key; 1562 struct btrfs_dev_extent *dev_extent; 1563 struct btrfs_path *path; 1564 u64 hole_size; 1565 u64 max_hole_start; 1566 u64 max_hole_size; 1567 u64 extent_end; 1568 u64 search_end = device->total_bytes; 1569 int ret; 1570 int slot; 1571 struct extent_buffer *l; 1572 1573 search_start = dev_extent_search_start(device, search_start); 1574 1575 WARN_ON(device->zone_info && 1576 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1577 1578 path = btrfs_alloc_path(); 1579 if (!path) 1580 return -ENOMEM; 1581 1582 max_hole_start = search_start; 1583 max_hole_size = 0; 1584 1585 again: 1586 if (search_start >= search_end || 1587 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1588 ret = -ENOSPC; 1589 goto out; 1590 } 1591 1592 path->reada = READA_FORWARD; 1593 path->search_commit_root = 1; 1594 path->skip_locking = 1; 1595 1596 key.objectid = device->devid; 1597 key.offset = search_start; 1598 key.type = BTRFS_DEV_EXTENT_KEY; 1599 1600 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1601 if (ret < 0) 1602 goto out; 1603 if (ret > 0) { 1604 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1605 if (ret < 0) 1606 goto out; 1607 } 1608 1609 while (1) { 1610 l = path->nodes[0]; 1611 slot = path->slots[0]; 1612 if (slot >= btrfs_header_nritems(l)) { 1613 ret = btrfs_next_leaf(root, path); 1614 if (ret == 0) 1615 continue; 1616 if (ret < 0) 1617 goto out; 1618 1619 break; 1620 } 1621 btrfs_item_key_to_cpu(l, &key, slot); 1622 1623 if (key.objectid < device->devid) 1624 goto next; 1625 1626 if (key.objectid > device->devid) 1627 break; 1628 1629 if (key.type != BTRFS_DEV_EXTENT_KEY) 1630 goto next; 1631 1632 if (key.offset > search_start) { 1633 hole_size = key.offset - search_start; 1634 dev_extent_hole_check(device, &search_start, &hole_size, 1635 num_bytes); 1636 1637 if (hole_size > max_hole_size) { 1638 max_hole_start = search_start; 1639 max_hole_size = hole_size; 1640 } 1641 1642 /* 1643 * If this free space is greater than which we need, 1644 * it must be the max free space that we have found 1645 * until now, so max_hole_start must point to the start 1646 * of this free space and the length of this free space 1647 * is stored in max_hole_size. Thus, we return 1648 * max_hole_start and max_hole_size and go back to the 1649 * caller. 1650 */ 1651 if (hole_size >= num_bytes) { 1652 ret = 0; 1653 goto out; 1654 } 1655 } 1656 1657 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1658 extent_end = key.offset + btrfs_dev_extent_length(l, 1659 dev_extent); 1660 if (extent_end > search_start) 1661 search_start = extent_end; 1662 next: 1663 path->slots[0]++; 1664 cond_resched(); 1665 } 1666 1667 /* 1668 * At this point, search_start should be the end of 1669 * allocated dev extents, and when shrinking the device, 1670 * search_end may be smaller than search_start. 1671 */ 1672 if (search_end > search_start) { 1673 hole_size = search_end - search_start; 1674 if (dev_extent_hole_check(device, &search_start, &hole_size, 1675 num_bytes)) { 1676 btrfs_release_path(path); 1677 goto again; 1678 } 1679 1680 if (hole_size > max_hole_size) { 1681 max_hole_start = search_start; 1682 max_hole_size = hole_size; 1683 } 1684 } 1685 1686 /* See above. */ 1687 if (max_hole_size < num_bytes) 1688 ret = -ENOSPC; 1689 else 1690 ret = 0; 1691 1692 out: 1693 btrfs_free_path(path); 1694 *start = max_hole_start; 1695 if (len) 1696 *len = max_hole_size; 1697 return ret; 1698 } 1699 1700 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1701 u64 *start, u64 *len) 1702 { 1703 /* FIXME use last free of some kind */ 1704 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1705 } 1706 1707 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1708 struct btrfs_device *device, 1709 u64 start, u64 *dev_extent_len) 1710 { 1711 struct btrfs_fs_info *fs_info = device->fs_info; 1712 struct btrfs_root *root = fs_info->dev_root; 1713 int ret; 1714 struct btrfs_path *path; 1715 struct btrfs_key key; 1716 struct btrfs_key found_key; 1717 struct extent_buffer *leaf = NULL; 1718 struct btrfs_dev_extent *extent = NULL; 1719 1720 path = btrfs_alloc_path(); 1721 if (!path) 1722 return -ENOMEM; 1723 1724 key.objectid = device->devid; 1725 key.offset = start; 1726 key.type = BTRFS_DEV_EXTENT_KEY; 1727 again: 1728 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1729 if (ret > 0) { 1730 ret = btrfs_previous_item(root, path, key.objectid, 1731 BTRFS_DEV_EXTENT_KEY); 1732 if (ret) 1733 goto out; 1734 leaf = path->nodes[0]; 1735 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1736 extent = btrfs_item_ptr(leaf, path->slots[0], 1737 struct btrfs_dev_extent); 1738 BUG_ON(found_key.offset > start || found_key.offset + 1739 btrfs_dev_extent_length(leaf, extent) < start); 1740 key = found_key; 1741 btrfs_release_path(path); 1742 goto again; 1743 } else if (ret == 0) { 1744 leaf = path->nodes[0]; 1745 extent = btrfs_item_ptr(leaf, path->slots[0], 1746 struct btrfs_dev_extent); 1747 } else { 1748 goto out; 1749 } 1750 1751 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1752 1753 ret = btrfs_del_item(trans, root, path); 1754 if (ret == 0) 1755 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1756 out: 1757 btrfs_free_path(path); 1758 return ret; 1759 } 1760 1761 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1762 struct btrfs_device *device, 1763 u64 chunk_offset, u64 start, u64 num_bytes) 1764 { 1765 int ret; 1766 struct btrfs_path *path; 1767 struct btrfs_fs_info *fs_info = device->fs_info; 1768 struct btrfs_root *root = fs_info->dev_root; 1769 struct btrfs_dev_extent *extent; 1770 struct extent_buffer *leaf; 1771 struct btrfs_key key; 1772 1773 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1774 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1775 path = btrfs_alloc_path(); 1776 if (!path) 1777 return -ENOMEM; 1778 1779 key.objectid = device->devid; 1780 key.offset = start; 1781 key.type = BTRFS_DEV_EXTENT_KEY; 1782 ret = btrfs_insert_empty_item(trans, root, path, &key, 1783 sizeof(*extent)); 1784 if (ret) 1785 goto out; 1786 1787 leaf = path->nodes[0]; 1788 extent = btrfs_item_ptr(leaf, path->slots[0], 1789 struct btrfs_dev_extent); 1790 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1791 BTRFS_CHUNK_TREE_OBJECTID); 1792 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1793 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1794 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1795 1796 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1797 btrfs_mark_buffer_dirty(leaf); 1798 out: 1799 btrfs_free_path(path); 1800 return ret; 1801 } 1802 1803 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1804 { 1805 struct extent_map_tree *em_tree; 1806 struct extent_map *em; 1807 struct rb_node *n; 1808 u64 ret = 0; 1809 1810 em_tree = &fs_info->mapping_tree; 1811 read_lock(&em_tree->lock); 1812 n = rb_last(&em_tree->map.rb_root); 1813 if (n) { 1814 em = rb_entry(n, struct extent_map, rb_node); 1815 ret = em->start + em->len; 1816 } 1817 read_unlock(&em_tree->lock); 1818 1819 return ret; 1820 } 1821 1822 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1823 u64 *devid_ret) 1824 { 1825 int ret; 1826 struct btrfs_key key; 1827 struct btrfs_key found_key; 1828 struct btrfs_path *path; 1829 1830 path = btrfs_alloc_path(); 1831 if (!path) 1832 return -ENOMEM; 1833 1834 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1835 key.type = BTRFS_DEV_ITEM_KEY; 1836 key.offset = (u64)-1; 1837 1838 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1839 if (ret < 0) 1840 goto error; 1841 1842 if (ret == 0) { 1843 /* Corruption */ 1844 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1845 ret = -EUCLEAN; 1846 goto error; 1847 } 1848 1849 ret = btrfs_previous_item(fs_info->chunk_root, path, 1850 BTRFS_DEV_ITEMS_OBJECTID, 1851 BTRFS_DEV_ITEM_KEY); 1852 if (ret) { 1853 *devid_ret = 1; 1854 } else { 1855 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1856 path->slots[0]); 1857 *devid_ret = found_key.offset + 1; 1858 } 1859 ret = 0; 1860 error: 1861 btrfs_free_path(path); 1862 return ret; 1863 } 1864 1865 /* 1866 * the device information is stored in the chunk root 1867 * the btrfs_device struct should be fully filled in 1868 */ 1869 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1870 struct btrfs_device *device) 1871 { 1872 int ret; 1873 struct btrfs_path *path; 1874 struct btrfs_dev_item *dev_item; 1875 struct extent_buffer *leaf; 1876 struct btrfs_key key; 1877 unsigned long ptr; 1878 1879 path = btrfs_alloc_path(); 1880 if (!path) 1881 return -ENOMEM; 1882 1883 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1884 key.type = BTRFS_DEV_ITEM_KEY; 1885 key.offset = device->devid; 1886 1887 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1888 &key, sizeof(*dev_item)); 1889 if (ret) 1890 goto out; 1891 1892 leaf = path->nodes[0]; 1893 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1894 1895 btrfs_set_device_id(leaf, dev_item, device->devid); 1896 btrfs_set_device_generation(leaf, dev_item, 0); 1897 btrfs_set_device_type(leaf, dev_item, device->type); 1898 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1899 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1900 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1901 btrfs_set_device_total_bytes(leaf, dev_item, 1902 btrfs_device_get_disk_total_bytes(device)); 1903 btrfs_set_device_bytes_used(leaf, dev_item, 1904 btrfs_device_get_bytes_used(device)); 1905 btrfs_set_device_group(leaf, dev_item, 0); 1906 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1907 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1908 btrfs_set_device_start_offset(leaf, dev_item, 0); 1909 1910 ptr = btrfs_device_uuid(dev_item); 1911 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1912 ptr = btrfs_device_fsid(dev_item); 1913 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1914 ptr, BTRFS_FSID_SIZE); 1915 btrfs_mark_buffer_dirty(leaf); 1916 1917 ret = 0; 1918 out: 1919 btrfs_free_path(path); 1920 return ret; 1921 } 1922 1923 /* 1924 * Function to update ctime/mtime for a given device path. 1925 * Mainly used for ctime/mtime based probe like libblkid. 1926 */ 1927 static void update_dev_time(const char *path_name) 1928 { 1929 struct file *filp; 1930 1931 filp = filp_open(path_name, O_RDWR, 0); 1932 if (IS_ERR(filp)) 1933 return; 1934 file_update_time(filp); 1935 filp_close(filp, NULL); 1936 } 1937 1938 static int btrfs_rm_dev_item(struct btrfs_device *device) 1939 { 1940 struct btrfs_root *root = device->fs_info->chunk_root; 1941 int ret; 1942 struct btrfs_path *path; 1943 struct btrfs_key key; 1944 struct btrfs_trans_handle *trans; 1945 1946 path = btrfs_alloc_path(); 1947 if (!path) 1948 return -ENOMEM; 1949 1950 trans = btrfs_start_transaction(root, 0); 1951 if (IS_ERR(trans)) { 1952 btrfs_free_path(path); 1953 return PTR_ERR(trans); 1954 } 1955 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1956 key.type = BTRFS_DEV_ITEM_KEY; 1957 key.offset = device->devid; 1958 1959 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1960 if (ret) { 1961 if (ret > 0) 1962 ret = -ENOENT; 1963 btrfs_abort_transaction(trans, ret); 1964 btrfs_end_transaction(trans); 1965 goto out; 1966 } 1967 1968 ret = btrfs_del_item(trans, root, path); 1969 if (ret) { 1970 btrfs_abort_transaction(trans, ret); 1971 btrfs_end_transaction(trans); 1972 } 1973 1974 out: 1975 btrfs_free_path(path); 1976 if (!ret) 1977 ret = btrfs_commit_transaction(trans); 1978 return ret; 1979 } 1980 1981 /* 1982 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1983 * filesystem. It's up to the caller to adjust that number regarding eg. device 1984 * replace. 1985 */ 1986 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1987 u64 num_devices) 1988 { 1989 u64 all_avail; 1990 unsigned seq; 1991 int i; 1992 1993 do { 1994 seq = read_seqbegin(&fs_info->profiles_lock); 1995 1996 all_avail = fs_info->avail_data_alloc_bits | 1997 fs_info->avail_system_alloc_bits | 1998 fs_info->avail_metadata_alloc_bits; 1999 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2000 2001 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2002 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2003 continue; 2004 2005 if (num_devices < btrfs_raid_array[i].devs_min) { 2006 int ret = btrfs_raid_array[i].mindev_error; 2007 2008 if (ret) 2009 return ret; 2010 } 2011 } 2012 2013 return 0; 2014 } 2015 2016 static struct btrfs_device * btrfs_find_next_active_device( 2017 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2018 { 2019 struct btrfs_device *next_device; 2020 2021 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2022 if (next_device != device && 2023 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2024 && next_device->bdev) 2025 return next_device; 2026 } 2027 2028 return NULL; 2029 } 2030 2031 /* 2032 * Helper function to check if the given device is part of s_bdev / latest_bdev 2033 * and replace it with the provided or the next active device, in the context 2034 * where this function called, there should be always be another device (or 2035 * this_dev) which is active. 2036 */ 2037 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2038 struct btrfs_device *next_device) 2039 { 2040 struct btrfs_fs_info *fs_info = device->fs_info; 2041 2042 if (!next_device) 2043 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2044 device); 2045 ASSERT(next_device); 2046 2047 if (fs_info->sb->s_bdev && 2048 (fs_info->sb->s_bdev == device->bdev)) 2049 fs_info->sb->s_bdev = next_device->bdev; 2050 2051 if (fs_info->fs_devices->latest_bdev == device->bdev) 2052 fs_info->fs_devices->latest_bdev = next_device->bdev; 2053 } 2054 2055 /* 2056 * Return btrfs_fs_devices::num_devices excluding the device that's being 2057 * currently replaced. 2058 */ 2059 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2060 { 2061 u64 num_devices = fs_info->fs_devices->num_devices; 2062 2063 down_read(&fs_info->dev_replace.rwsem); 2064 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2065 ASSERT(num_devices > 1); 2066 num_devices--; 2067 } 2068 up_read(&fs_info->dev_replace.rwsem); 2069 2070 return num_devices; 2071 } 2072 2073 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2074 struct block_device *bdev, 2075 const char *device_path) 2076 { 2077 struct btrfs_super_block *disk_super; 2078 int copy_num; 2079 2080 if (!bdev) 2081 return; 2082 2083 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2084 struct page *page; 2085 int ret; 2086 2087 disk_super = btrfs_read_dev_one_super(bdev, copy_num); 2088 if (IS_ERR(disk_super)) 2089 continue; 2090 2091 if (bdev_is_zoned(bdev)) { 2092 btrfs_reset_sb_log_zones(bdev, copy_num); 2093 continue; 2094 } 2095 2096 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 2097 2098 page = virt_to_page(disk_super); 2099 set_page_dirty(page); 2100 lock_page(page); 2101 /* write_on_page() unlocks the page */ 2102 ret = write_one_page(page); 2103 if (ret) 2104 btrfs_warn(fs_info, 2105 "error clearing superblock number %d (%d)", 2106 copy_num, ret); 2107 btrfs_release_disk_super(disk_super); 2108 2109 } 2110 2111 /* Notify udev that device has changed */ 2112 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2113 2114 /* Update ctime/mtime for device path for libblkid */ 2115 update_dev_time(device_path); 2116 } 2117 2118 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 2119 u64 devid) 2120 { 2121 struct btrfs_device *device; 2122 struct btrfs_fs_devices *cur_devices; 2123 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2124 u64 num_devices; 2125 int ret = 0; 2126 2127 mutex_lock(&uuid_mutex); 2128 2129 num_devices = btrfs_num_devices(fs_info); 2130 2131 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2132 if (ret) 2133 goto out; 2134 2135 device = btrfs_find_device_by_devspec(fs_info, devid, device_path); 2136 2137 if (IS_ERR(device)) { 2138 if (PTR_ERR(device) == -ENOENT && 2139 strcmp(device_path, "missing") == 0) 2140 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2141 else 2142 ret = PTR_ERR(device); 2143 goto out; 2144 } 2145 2146 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2147 btrfs_warn_in_rcu(fs_info, 2148 "cannot remove device %s (devid %llu) due to active swapfile", 2149 rcu_str_deref(device->name), device->devid); 2150 ret = -ETXTBSY; 2151 goto out; 2152 } 2153 2154 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2155 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 2156 goto out; 2157 } 2158 2159 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2160 fs_info->fs_devices->rw_devices == 1) { 2161 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 2162 goto out; 2163 } 2164 2165 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2166 mutex_lock(&fs_info->chunk_mutex); 2167 list_del_init(&device->dev_alloc_list); 2168 device->fs_devices->rw_devices--; 2169 mutex_unlock(&fs_info->chunk_mutex); 2170 } 2171 2172 mutex_unlock(&uuid_mutex); 2173 ret = btrfs_shrink_device(device, 0); 2174 if (!ret) 2175 btrfs_reada_remove_dev(device); 2176 mutex_lock(&uuid_mutex); 2177 if (ret) 2178 goto error_undo; 2179 2180 /* 2181 * TODO: the superblock still includes this device in its num_devices 2182 * counter although write_all_supers() is not locked out. This 2183 * could give a filesystem state which requires a degraded mount. 2184 */ 2185 ret = btrfs_rm_dev_item(device); 2186 if (ret) 2187 goto error_undo; 2188 2189 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2190 btrfs_scrub_cancel_dev(device); 2191 2192 /* 2193 * the device list mutex makes sure that we don't change 2194 * the device list while someone else is writing out all 2195 * the device supers. Whoever is writing all supers, should 2196 * lock the device list mutex before getting the number of 2197 * devices in the super block (super_copy). Conversely, 2198 * whoever updates the number of devices in the super block 2199 * (super_copy) should hold the device list mutex. 2200 */ 2201 2202 /* 2203 * In normal cases the cur_devices == fs_devices. But in case 2204 * of deleting a seed device, the cur_devices should point to 2205 * its own fs_devices listed under the fs_devices->seed. 2206 */ 2207 cur_devices = device->fs_devices; 2208 mutex_lock(&fs_devices->device_list_mutex); 2209 list_del_rcu(&device->dev_list); 2210 2211 cur_devices->num_devices--; 2212 cur_devices->total_devices--; 2213 /* Update total_devices of the parent fs_devices if it's seed */ 2214 if (cur_devices != fs_devices) 2215 fs_devices->total_devices--; 2216 2217 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2218 cur_devices->missing_devices--; 2219 2220 btrfs_assign_next_active_device(device, NULL); 2221 2222 if (device->bdev) { 2223 cur_devices->open_devices--; 2224 /* remove sysfs entry */ 2225 btrfs_sysfs_remove_device(device); 2226 } 2227 2228 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2229 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2230 mutex_unlock(&fs_devices->device_list_mutex); 2231 2232 /* 2233 * at this point, the device is zero sized and detached from 2234 * the devices list. All that's left is to zero out the old 2235 * supers and free the device. 2236 */ 2237 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2238 btrfs_scratch_superblocks(fs_info, device->bdev, 2239 device->name->str); 2240 2241 btrfs_close_bdev(device); 2242 synchronize_rcu(); 2243 btrfs_free_device(device); 2244 2245 if (cur_devices->open_devices == 0) { 2246 list_del_init(&cur_devices->seed_list); 2247 close_fs_devices(cur_devices); 2248 free_fs_devices(cur_devices); 2249 } 2250 2251 out: 2252 mutex_unlock(&uuid_mutex); 2253 return ret; 2254 2255 error_undo: 2256 btrfs_reada_undo_remove_dev(device); 2257 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2258 mutex_lock(&fs_info->chunk_mutex); 2259 list_add(&device->dev_alloc_list, 2260 &fs_devices->alloc_list); 2261 device->fs_devices->rw_devices++; 2262 mutex_unlock(&fs_info->chunk_mutex); 2263 } 2264 goto out; 2265 } 2266 2267 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2268 { 2269 struct btrfs_fs_devices *fs_devices; 2270 2271 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2272 2273 /* 2274 * in case of fs with no seed, srcdev->fs_devices will point 2275 * to fs_devices of fs_info. However when the dev being replaced is 2276 * a seed dev it will point to the seed's local fs_devices. In short 2277 * srcdev will have its correct fs_devices in both the cases. 2278 */ 2279 fs_devices = srcdev->fs_devices; 2280 2281 list_del_rcu(&srcdev->dev_list); 2282 list_del(&srcdev->dev_alloc_list); 2283 fs_devices->num_devices--; 2284 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2285 fs_devices->missing_devices--; 2286 2287 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2288 fs_devices->rw_devices--; 2289 2290 if (srcdev->bdev) 2291 fs_devices->open_devices--; 2292 } 2293 2294 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2295 { 2296 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2297 2298 mutex_lock(&uuid_mutex); 2299 2300 btrfs_close_bdev(srcdev); 2301 synchronize_rcu(); 2302 btrfs_free_device(srcdev); 2303 2304 /* if this is no devs we rather delete the fs_devices */ 2305 if (!fs_devices->num_devices) { 2306 /* 2307 * On a mounted FS, num_devices can't be zero unless it's a 2308 * seed. In case of a seed device being replaced, the replace 2309 * target added to the sprout FS, so there will be no more 2310 * device left under the seed FS. 2311 */ 2312 ASSERT(fs_devices->seeding); 2313 2314 list_del_init(&fs_devices->seed_list); 2315 close_fs_devices(fs_devices); 2316 free_fs_devices(fs_devices); 2317 } 2318 mutex_unlock(&uuid_mutex); 2319 } 2320 2321 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2322 { 2323 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2324 2325 mutex_lock(&fs_devices->device_list_mutex); 2326 2327 btrfs_sysfs_remove_device(tgtdev); 2328 2329 if (tgtdev->bdev) 2330 fs_devices->open_devices--; 2331 2332 fs_devices->num_devices--; 2333 2334 btrfs_assign_next_active_device(tgtdev, NULL); 2335 2336 list_del_rcu(&tgtdev->dev_list); 2337 2338 mutex_unlock(&fs_devices->device_list_mutex); 2339 2340 /* 2341 * The update_dev_time() with in btrfs_scratch_superblocks() 2342 * may lead to a call to btrfs_show_devname() which will try 2343 * to hold device_list_mutex. And here this device 2344 * is already out of device list, so we don't have to hold 2345 * the device_list_mutex lock. 2346 */ 2347 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2348 tgtdev->name->str); 2349 2350 btrfs_close_bdev(tgtdev); 2351 synchronize_rcu(); 2352 btrfs_free_device(tgtdev); 2353 } 2354 2355 static struct btrfs_device *btrfs_find_device_by_path( 2356 struct btrfs_fs_info *fs_info, const char *device_path) 2357 { 2358 int ret = 0; 2359 struct btrfs_super_block *disk_super; 2360 u64 devid; 2361 u8 *dev_uuid; 2362 struct block_device *bdev; 2363 struct btrfs_device *device; 2364 2365 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2366 fs_info->bdev_holder, 0, &bdev, &disk_super); 2367 if (ret) 2368 return ERR_PTR(ret); 2369 2370 devid = btrfs_stack_device_id(&disk_super->dev_item); 2371 dev_uuid = disk_super->dev_item.uuid; 2372 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2373 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2374 disk_super->metadata_uuid); 2375 else 2376 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2377 disk_super->fsid); 2378 2379 btrfs_release_disk_super(disk_super); 2380 if (!device) 2381 device = ERR_PTR(-ENOENT); 2382 blkdev_put(bdev, FMODE_READ); 2383 return device; 2384 } 2385 2386 /* 2387 * Lookup a device given by device id, or the path if the id is 0. 2388 */ 2389 struct btrfs_device *btrfs_find_device_by_devspec( 2390 struct btrfs_fs_info *fs_info, u64 devid, 2391 const char *device_path) 2392 { 2393 struct btrfs_device *device; 2394 2395 if (devid) { 2396 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, 2397 NULL); 2398 if (!device) 2399 return ERR_PTR(-ENOENT); 2400 return device; 2401 } 2402 2403 if (!device_path || !device_path[0]) 2404 return ERR_PTR(-EINVAL); 2405 2406 if (strcmp(device_path, "missing") == 0) { 2407 /* Find first missing device */ 2408 list_for_each_entry(device, &fs_info->fs_devices->devices, 2409 dev_list) { 2410 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2411 &device->dev_state) && !device->bdev) 2412 return device; 2413 } 2414 return ERR_PTR(-ENOENT); 2415 } 2416 2417 return btrfs_find_device_by_path(fs_info, device_path); 2418 } 2419 2420 /* 2421 * does all the dirty work required for changing file system's UUID. 2422 */ 2423 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2424 { 2425 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2426 struct btrfs_fs_devices *old_devices; 2427 struct btrfs_fs_devices *seed_devices; 2428 struct btrfs_super_block *disk_super = fs_info->super_copy; 2429 struct btrfs_device *device; 2430 u64 super_flags; 2431 2432 lockdep_assert_held(&uuid_mutex); 2433 if (!fs_devices->seeding) 2434 return -EINVAL; 2435 2436 /* 2437 * Private copy of the seed devices, anchored at 2438 * fs_info->fs_devices->seed_list 2439 */ 2440 seed_devices = alloc_fs_devices(NULL, NULL); 2441 if (IS_ERR(seed_devices)) 2442 return PTR_ERR(seed_devices); 2443 2444 /* 2445 * It's necessary to retain a copy of the original seed fs_devices in 2446 * fs_uuids so that filesystems which have been seeded can successfully 2447 * reference the seed device from open_seed_devices. This also supports 2448 * multiple fs seed. 2449 */ 2450 old_devices = clone_fs_devices(fs_devices); 2451 if (IS_ERR(old_devices)) { 2452 kfree(seed_devices); 2453 return PTR_ERR(old_devices); 2454 } 2455 2456 list_add(&old_devices->fs_list, &fs_uuids); 2457 2458 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2459 seed_devices->opened = 1; 2460 INIT_LIST_HEAD(&seed_devices->devices); 2461 INIT_LIST_HEAD(&seed_devices->alloc_list); 2462 mutex_init(&seed_devices->device_list_mutex); 2463 2464 mutex_lock(&fs_devices->device_list_mutex); 2465 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2466 synchronize_rcu); 2467 list_for_each_entry(device, &seed_devices->devices, dev_list) 2468 device->fs_devices = seed_devices; 2469 2470 fs_devices->seeding = false; 2471 fs_devices->num_devices = 0; 2472 fs_devices->open_devices = 0; 2473 fs_devices->missing_devices = 0; 2474 fs_devices->rotating = false; 2475 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2476 2477 generate_random_uuid(fs_devices->fsid); 2478 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2479 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2480 mutex_unlock(&fs_devices->device_list_mutex); 2481 2482 super_flags = btrfs_super_flags(disk_super) & 2483 ~BTRFS_SUPER_FLAG_SEEDING; 2484 btrfs_set_super_flags(disk_super, super_flags); 2485 2486 return 0; 2487 } 2488 2489 /* 2490 * Store the expected generation for seed devices in device items. 2491 */ 2492 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2493 { 2494 struct btrfs_fs_info *fs_info = trans->fs_info; 2495 struct btrfs_root *root = fs_info->chunk_root; 2496 struct btrfs_path *path; 2497 struct extent_buffer *leaf; 2498 struct btrfs_dev_item *dev_item; 2499 struct btrfs_device *device; 2500 struct btrfs_key key; 2501 u8 fs_uuid[BTRFS_FSID_SIZE]; 2502 u8 dev_uuid[BTRFS_UUID_SIZE]; 2503 u64 devid; 2504 int ret; 2505 2506 path = btrfs_alloc_path(); 2507 if (!path) 2508 return -ENOMEM; 2509 2510 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2511 key.offset = 0; 2512 key.type = BTRFS_DEV_ITEM_KEY; 2513 2514 while (1) { 2515 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2516 if (ret < 0) 2517 goto error; 2518 2519 leaf = path->nodes[0]; 2520 next_slot: 2521 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2522 ret = btrfs_next_leaf(root, path); 2523 if (ret > 0) 2524 break; 2525 if (ret < 0) 2526 goto error; 2527 leaf = path->nodes[0]; 2528 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2529 btrfs_release_path(path); 2530 continue; 2531 } 2532 2533 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2534 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2535 key.type != BTRFS_DEV_ITEM_KEY) 2536 break; 2537 2538 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2539 struct btrfs_dev_item); 2540 devid = btrfs_device_id(leaf, dev_item); 2541 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2542 BTRFS_UUID_SIZE); 2543 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2544 BTRFS_FSID_SIZE); 2545 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2546 fs_uuid); 2547 BUG_ON(!device); /* Logic error */ 2548 2549 if (device->fs_devices->seeding) { 2550 btrfs_set_device_generation(leaf, dev_item, 2551 device->generation); 2552 btrfs_mark_buffer_dirty(leaf); 2553 } 2554 2555 path->slots[0]++; 2556 goto next_slot; 2557 } 2558 ret = 0; 2559 error: 2560 btrfs_free_path(path); 2561 return ret; 2562 } 2563 2564 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2565 { 2566 struct btrfs_root *root = fs_info->dev_root; 2567 struct request_queue *q; 2568 struct btrfs_trans_handle *trans; 2569 struct btrfs_device *device; 2570 struct block_device *bdev; 2571 struct super_block *sb = fs_info->sb; 2572 struct rcu_string *name; 2573 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2574 u64 orig_super_total_bytes; 2575 u64 orig_super_num_devices; 2576 int seeding_dev = 0; 2577 int ret = 0; 2578 bool locked = false; 2579 2580 if (sb_rdonly(sb) && !fs_devices->seeding) 2581 return -EROFS; 2582 2583 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2584 fs_info->bdev_holder); 2585 if (IS_ERR(bdev)) 2586 return PTR_ERR(bdev); 2587 2588 if (!btrfs_check_device_zone_type(fs_info, bdev)) { 2589 ret = -EINVAL; 2590 goto error; 2591 } 2592 2593 if (fs_devices->seeding) { 2594 seeding_dev = 1; 2595 down_write(&sb->s_umount); 2596 mutex_lock(&uuid_mutex); 2597 locked = true; 2598 } 2599 2600 sync_blockdev(bdev); 2601 2602 rcu_read_lock(); 2603 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2604 if (device->bdev == bdev) { 2605 ret = -EEXIST; 2606 rcu_read_unlock(); 2607 goto error; 2608 } 2609 } 2610 rcu_read_unlock(); 2611 2612 device = btrfs_alloc_device(fs_info, NULL, NULL); 2613 if (IS_ERR(device)) { 2614 /* we can safely leave the fs_devices entry around */ 2615 ret = PTR_ERR(device); 2616 goto error; 2617 } 2618 2619 name = rcu_string_strdup(device_path, GFP_KERNEL); 2620 if (!name) { 2621 ret = -ENOMEM; 2622 goto error_free_device; 2623 } 2624 rcu_assign_pointer(device->name, name); 2625 2626 device->fs_info = fs_info; 2627 device->bdev = bdev; 2628 2629 ret = btrfs_get_dev_zone_info(device); 2630 if (ret) 2631 goto error_free_device; 2632 2633 trans = btrfs_start_transaction(root, 0); 2634 if (IS_ERR(trans)) { 2635 ret = PTR_ERR(trans); 2636 goto error_free_zone; 2637 } 2638 2639 q = bdev_get_queue(bdev); 2640 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2641 device->generation = trans->transid; 2642 device->io_width = fs_info->sectorsize; 2643 device->io_align = fs_info->sectorsize; 2644 device->sector_size = fs_info->sectorsize; 2645 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2646 fs_info->sectorsize); 2647 device->disk_total_bytes = device->total_bytes; 2648 device->commit_total_bytes = device->total_bytes; 2649 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2650 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2651 device->mode = FMODE_EXCL; 2652 device->dev_stats_valid = 1; 2653 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2654 2655 if (seeding_dev) { 2656 btrfs_clear_sb_rdonly(sb); 2657 ret = btrfs_prepare_sprout(fs_info); 2658 if (ret) { 2659 btrfs_abort_transaction(trans, ret); 2660 goto error_trans; 2661 } 2662 } 2663 2664 device->fs_devices = fs_devices; 2665 2666 mutex_lock(&fs_devices->device_list_mutex); 2667 mutex_lock(&fs_info->chunk_mutex); 2668 list_add_rcu(&device->dev_list, &fs_devices->devices); 2669 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2670 fs_devices->num_devices++; 2671 fs_devices->open_devices++; 2672 fs_devices->rw_devices++; 2673 fs_devices->total_devices++; 2674 fs_devices->total_rw_bytes += device->total_bytes; 2675 2676 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2677 2678 if (!blk_queue_nonrot(q)) 2679 fs_devices->rotating = true; 2680 2681 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2682 btrfs_set_super_total_bytes(fs_info->super_copy, 2683 round_down(orig_super_total_bytes + device->total_bytes, 2684 fs_info->sectorsize)); 2685 2686 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2687 btrfs_set_super_num_devices(fs_info->super_copy, 2688 orig_super_num_devices + 1); 2689 2690 /* 2691 * we've got more storage, clear any full flags on the space 2692 * infos 2693 */ 2694 btrfs_clear_space_info_full(fs_info); 2695 2696 mutex_unlock(&fs_info->chunk_mutex); 2697 2698 /* Add sysfs device entry */ 2699 btrfs_sysfs_add_device(device); 2700 2701 mutex_unlock(&fs_devices->device_list_mutex); 2702 2703 if (seeding_dev) { 2704 mutex_lock(&fs_info->chunk_mutex); 2705 ret = init_first_rw_device(trans); 2706 mutex_unlock(&fs_info->chunk_mutex); 2707 if (ret) { 2708 btrfs_abort_transaction(trans, ret); 2709 goto error_sysfs; 2710 } 2711 } 2712 2713 ret = btrfs_add_dev_item(trans, device); 2714 if (ret) { 2715 btrfs_abort_transaction(trans, ret); 2716 goto error_sysfs; 2717 } 2718 2719 if (seeding_dev) { 2720 ret = btrfs_finish_sprout(trans); 2721 if (ret) { 2722 btrfs_abort_transaction(trans, ret); 2723 goto error_sysfs; 2724 } 2725 2726 /* 2727 * fs_devices now represents the newly sprouted filesystem and 2728 * its fsid has been changed by btrfs_prepare_sprout 2729 */ 2730 btrfs_sysfs_update_sprout_fsid(fs_devices); 2731 } 2732 2733 ret = btrfs_commit_transaction(trans); 2734 2735 if (seeding_dev) { 2736 mutex_unlock(&uuid_mutex); 2737 up_write(&sb->s_umount); 2738 locked = false; 2739 2740 if (ret) /* transaction commit */ 2741 return ret; 2742 2743 ret = btrfs_relocate_sys_chunks(fs_info); 2744 if (ret < 0) 2745 btrfs_handle_fs_error(fs_info, ret, 2746 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2747 trans = btrfs_attach_transaction(root); 2748 if (IS_ERR(trans)) { 2749 if (PTR_ERR(trans) == -ENOENT) 2750 return 0; 2751 ret = PTR_ERR(trans); 2752 trans = NULL; 2753 goto error_sysfs; 2754 } 2755 ret = btrfs_commit_transaction(trans); 2756 } 2757 2758 /* 2759 * Now that we have written a new super block to this device, check all 2760 * other fs_devices list if device_path alienates any other scanned 2761 * device. 2762 * We can ignore the return value as it typically returns -EINVAL and 2763 * only succeeds if the device was an alien. 2764 */ 2765 btrfs_forget_devices(device_path); 2766 2767 /* Update ctime/mtime for blkid or udev */ 2768 update_dev_time(device_path); 2769 2770 return ret; 2771 2772 error_sysfs: 2773 btrfs_sysfs_remove_device(device); 2774 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2775 mutex_lock(&fs_info->chunk_mutex); 2776 list_del_rcu(&device->dev_list); 2777 list_del(&device->dev_alloc_list); 2778 fs_info->fs_devices->num_devices--; 2779 fs_info->fs_devices->open_devices--; 2780 fs_info->fs_devices->rw_devices--; 2781 fs_info->fs_devices->total_devices--; 2782 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2783 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2784 btrfs_set_super_total_bytes(fs_info->super_copy, 2785 orig_super_total_bytes); 2786 btrfs_set_super_num_devices(fs_info->super_copy, 2787 orig_super_num_devices); 2788 mutex_unlock(&fs_info->chunk_mutex); 2789 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2790 error_trans: 2791 if (seeding_dev) 2792 btrfs_set_sb_rdonly(sb); 2793 if (trans) 2794 btrfs_end_transaction(trans); 2795 error_free_zone: 2796 btrfs_destroy_dev_zone_info(device); 2797 error_free_device: 2798 btrfs_free_device(device); 2799 error: 2800 blkdev_put(bdev, FMODE_EXCL); 2801 if (locked) { 2802 mutex_unlock(&uuid_mutex); 2803 up_write(&sb->s_umount); 2804 } 2805 return ret; 2806 } 2807 2808 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2809 struct btrfs_device *device) 2810 { 2811 int ret; 2812 struct btrfs_path *path; 2813 struct btrfs_root *root = device->fs_info->chunk_root; 2814 struct btrfs_dev_item *dev_item; 2815 struct extent_buffer *leaf; 2816 struct btrfs_key key; 2817 2818 path = btrfs_alloc_path(); 2819 if (!path) 2820 return -ENOMEM; 2821 2822 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2823 key.type = BTRFS_DEV_ITEM_KEY; 2824 key.offset = device->devid; 2825 2826 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2827 if (ret < 0) 2828 goto out; 2829 2830 if (ret > 0) { 2831 ret = -ENOENT; 2832 goto out; 2833 } 2834 2835 leaf = path->nodes[0]; 2836 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2837 2838 btrfs_set_device_id(leaf, dev_item, device->devid); 2839 btrfs_set_device_type(leaf, dev_item, device->type); 2840 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2841 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2842 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2843 btrfs_set_device_total_bytes(leaf, dev_item, 2844 btrfs_device_get_disk_total_bytes(device)); 2845 btrfs_set_device_bytes_used(leaf, dev_item, 2846 btrfs_device_get_bytes_used(device)); 2847 btrfs_mark_buffer_dirty(leaf); 2848 2849 out: 2850 btrfs_free_path(path); 2851 return ret; 2852 } 2853 2854 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2855 struct btrfs_device *device, u64 new_size) 2856 { 2857 struct btrfs_fs_info *fs_info = device->fs_info; 2858 struct btrfs_super_block *super_copy = fs_info->super_copy; 2859 u64 old_total; 2860 u64 diff; 2861 2862 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2863 return -EACCES; 2864 2865 new_size = round_down(new_size, fs_info->sectorsize); 2866 2867 mutex_lock(&fs_info->chunk_mutex); 2868 old_total = btrfs_super_total_bytes(super_copy); 2869 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2870 2871 if (new_size <= device->total_bytes || 2872 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2873 mutex_unlock(&fs_info->chunk_mutex); 2874 return -EINVAL; 2875 } 2876 2877 btrfs_set_super_total_bytes(super_copy, 2878 round_down(old_total + diff, fs_info->sectorsize)); 2879 device->fs_devices->total_rw_bytes += diff; 2880 2881 btrfs_device_set_total_bytes(device, new_size); 2882 btrfs_device_set_disk_total_bytes(device, new_size); 2883 btrfs_clear_space_info_full(device->fs_info); 2884 if (list_empty(&device->post_commit_list)) 2885 list_add_tail(&device->post_commit_list, 2886 &trans->transaction->dev_update_list); 2887 mutex_unlock(&fs_info->chunk_mutex); 2888 2889 return btrfs_update_device(trans, device); 2890 } 2891 2892 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2893 { 2894 struct btrfs_fs_info *fs_info = trans->fs_info; 2895 struct btrfs_root *root = fs_info->chunk_root; 2896 int ret; 2897 struct btrfs_path *path; 2898 struct btrfs_key key; 2899 2900 path = btrfs_alloc_path(); 2901 if (!path) 2902 return -ENOMEM; 2903 2904 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2905 key.offset = chunk_offset; 2906 key.type = BTRFS_CHUNK_ITEM_KEY; 2907 2908 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2909 if (ret < 0) 2910 goto out; 2911 else if (ret > 0) { /* Logic error or corruption */ 2912 btrfs_handle_fs_error(fs_info, -ENOENT, 2913 "Failed lookup while freeing chunk."); 2914 ret = -ENOENT; 2915 goto out; 2916 } 2917 2918 ret = btrfs_del_item(trans, root, path); 2919 if (ret < 0) 2920 btrfs_handle_fs_error(fs_info, ret, 2921 "Failed to delete chunk item."); 2922 out: 2923 btrfs_free_path(path); 2924 return ret; 2925 } 2926 2927 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2928 { 2929 struct btrfs_super_block *super_copy = fs_info->super_copy; 2930 struct btrfs_disk_key *disk_key; 2931 struct btrfs_chunk *chunk; 2932 u8 *ptr; 2933 int ret = 0; 2934 u32 num_stripes; 2935 u32 array_size; 2936 u32 len = 0; 2937 u32 cur; 2938 struct btrfs_key key; 2939 2940 lockdep_assert_held(&fs_info->chunk_mutex); 2941 array_size = btrfs_super_sys_array_size(super_copy); 2942 2943 ptr = super_copy->sys_chunk_array; 2944 cur = 0; 2945 2946 while (cur < array_size) { 2947 disk_key = (struct btrfs_disk_key *)ptr; 2948 btrfs_disk_key_to_cpu(&key, disk_key); 2949 2950 len = sizeof(*disk_key); 2951 2952 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2953 chunk = (struct btrfs_chunk *)(ptr + len); 2954 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2955 len += btrfs_chunk_item_size(num_stripes); 2956 } else { 2957 ret = -EIO; 2958 break; 2959 } 2960 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2961 key.offset == chunk_offset) { 2962 memmove(ptr, ptr + len, array_size - (cur + len)); 2963 array_size -= len; 2964 btrfs_set_super_sys_array_size(super_copy, array_size); 2965 } else { 2966 ptr += len; 2967 cur += len; 2968 } 2969 } 2970 return ret; 2971 } 2972 2973 /* 2974 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2975 * @logical: Logical block offset in bytes. 2976 * @length: Length of extent in bytes. 2977 * 2978 * Return: Chunk mapping or ERR_PTR. 2979 */ 2980 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2981 u64 logical, u64 length) 2982 { 2983 struct extent_map_tree *em_tree; 2984 struct extent_map *em; 2985 2986 em_tree = &fs_info->mapping_tree; 2987 read_lock(&em_tree->lock); 2988 em = lookup_extent_mapping(em_tree, logical, length); 2989 read_unlock(&em_tree->lock); 2990 2991 if (!em) { 2992 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2993 logical, length); 2994 return ERR_PTR(-EINVAL); 2995 } 2996 2997 if (em->start > logical || em->start + em->len < logical) { 2998 btrfs_crit(fs_info, 2999 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 3000 logical, length, em->start, em->start + em->len); 3001 free_extent_map(em); 3002 return ERR_PTR(-EINVAL); 3003 } 3004 3005 /* callers are responsible for dropping em's ref. */ 3006 return em; 3007 } 3008 3009 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3010 struct map_lookup *map, u64 chunk_offset) 3011 { 3012 int i; 3013 3014 /* 3015 * Removing chunk items and updating the device items in the chunks btree 3016 * requires holding the chunk_mutex. 3017 * See the comment at btrfs_chunk_alloc() for the details. 3018 */ 3019 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3020 3021 for (i = 0; i < map->num_stripes; i++) { 3022 int ret; 3023 3024 ret = btrfs_update_device(trans, map->stripes[i].dev); 3025 if (ret) 3026 return ret; 3027 } 3028 3029 return btrfs_free_chunk(trans, chunk_offset); 3030 } 3031 3032 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3033 { 3034 struct btrfs_fs_info *fs_info = trans->fs_info; 3035 struct extent_map *em; 3036 struct map_lookup *map; 3037 u64 dev_extent_len = 0; 3038 int i, ret = 0; 3039 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3040 3041 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3042 if (IS_ERR(em)) { 3043 /* 3044 * This is a logic error, but we don't want to just rely on the 3045 * user having built with ASSERT enabled, so if ASSERT doesn't 3046 * do anything we still error out. 3047 */ 3048 ASSERT(0); 3049 return PTR_ERR(em); 3050 } 3051 map = em->map_lookup; 3052 3053 /* 3054 * First delete the device extent items from the devices btree. 3055 * We take the device_list_mutex to avoid racing with the finishing phase 3056 * of a device replace operation. See the comment below before acquiring 3057 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3058 * because that can result in a deadlock when deleting the device extent 3059 * items from the devices btree - COWing an extent buffer from the btree 3060 * may result in allocating a new metadata chunk, which would attempt to 3061 * lock again fs_info->chunk_mutex. 3062 */ 3063 mutex_lock(&fs_devices->device_list_mutex); 3064 for (i = 0; i < map->num_stripes; i++) { 3065 struct btrfs_device *device = map->stripes[i].dev; 3066 ret = btrfs_free_dev_extent(trans, device, 3067 map->stripes[i].physical, 3068 &dev_extent_len); 3069 if (ret) { 3070 mutex_unlock(&fs_devices->device_list_mutex); 3071 btrfs_abort_transaction(trans, ret); 3072 goto out; 3073 } 3074 3075 if (device->bytes_used > 0) { 3076 mutex_lock(&fs_info->chunk_mutex); 3077 btrfs_device_set_bytes_used(device, 3078 device->bytes_used - dev_extent_len); 3079 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3080 btrfs_clear_space_info_full(fs_info); 3081 mutex_unlock(&fs_info->chunk_mutex); 3082 } 3083 } 3084 mutex_unlock(&fs_devices->device_list_mutex); 3085 3086 /* 3087 * We acquire fs_info->chunk_mutex for 2 reasons: 3088 * 3089 * 1) Just like with the first phase of the chunk allocation, we must 3090 * reserve system space, do all chunk btree updates and deletions, and 3091 * update the system chunk array in the superblock while holding this 3092 * mutex. This is for similar reasons as explained on the comment at 3093 * the top of btrfs_chunk_alloc(); 3094 * 3095 * 2) Prevent races with the final phase of a device replace operation 3096 * that replaces the device object associated with the map's stripes, 3097 * because the device object's id can change at any time during that 3098 * final phase of the device replace operation 3099 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3100 * replaced device and then see it with an ID of 3101 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3102 * the device item, which does not exists on the chunk btree. 3103 * The finishing phase of device replace acquires both the 3104 * device_list_mutex and the chunk_mutex, in that order, so we are 3105 * safe by just acquiring the chunk_mutex. 3106 */ 3107 trans->removing_chunk = true; 3108 mutex_lock(&fs_info->chunk_mutex); 3109 3110 check_system_chunk(trans, map->type); 3111 3112 ret = remove_chunk_item(trans, map, chunk_offset); 3113 /* 3114 * Normally we should not get -ENOSPC since we reserved space before 3115 * through the call to check_system_chunk(). 3116 * 3117 * Despite our system space_info having enough free space, we may not 3118 * be able to allocate extents from its block groups, because all have 3119 * an incompatible profile, which will force us to allocate a new system 3120 * block group with the right profile, or right after we called 3121 * check_system_space() above, a scrub turned the only system block group 3122 * with enough free space into RO mode. 3123 * This is explained with more detail at do_chunk_alloc(). 3124 * 3125 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3126 */ 3127 if (ret == -ENOSPC) { 3128 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3129 struct btrfs_block_group *sys_bg; 3130 3131 sys_bg = btrfs_alloc_chunk(trans, sys_flags); 3132 if (IS_ERR(sys_bg)) { 3133 ret = PTR_ERR(sys_bg); 3134 btrfs_abort_transaction(trans, ret); 3135 goto out; 3136 } 3137 3138 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3139 if (ret) { 3140 btrfs_abort_transaction(trans, ret); 3141 goto out; 3142 } 3143 3144 ret = remove_chunk_item(trans, map, chunk_offset); 3145 if (ret) { 3146 btrfs_abort_transaction(trans, ret); 3147 goto out; 3148 } 3149 } else if (ret) { 3150 btrfs_abort_transaction(trans, ret); 3151 goto out; 3152 } 3153 3154 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3155 3156 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3157 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3158 if (ret) { 3159 btrfs_abort_transaction(trans, ret); 3160 goto out; 3161 } 3162 } 3163 3164 mutex_unlock(&fs_info->chunk_mutex); 3165 trans->removing_chunk = false; 3166 3167 /* 3168 * We are done with chunk btree updates and deletions, so release the 3169 * system space we previously reserved (with check_system_chunk()). 3170 */ 3171 btrfs_trans_release_chunk_metadata(trans); 3172 3173 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3174 if (ret) { 3175 btrfs_abort_transaction(trans, ret); 3176 goto out; 3177 } 3178 3179 out: 3180 if (trans->removing_chunk) { 3181 mutex_unlock(&fs_info->chunk_mutex); 3182 trans->removing_chunk = false; 3183 } 3184 /* once for us */ 3185 free_extent_map(em); 3186 return ret; 3187 } 3188 3189 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3190 { 3191 struct btrfs_root *root = fs_info->chunk_root; 3192 struct btrfs_trans_handle *trans; 3193 struct btrfs_block_group *block_group; 3194 u64 length; 3195 int ret; 3196 3197 /* 3198 * Prevent races with automatic removal of unused block groups. 3199 * After we relocate and before we remove the chunk with offset 3200 * chunk_offset, automatic removal of the block group can kick in, 3201 * resulting in a failure when calling btrfs_remove_chunk() below. 3202 * 3203 * Make sure to acquire this mutex before doing a tree search (dev 3204 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3205 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3206 * we release the path used to search the chunk/dev tree and before 3207 * the current task acquires this mutex and calls us. 3208 */ 3209 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3210 3211 /* step one, relocate all the extents inside this chunk */ 3212 btrfs_scrub_pause(fs_info); 3213 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3214 btrfs_scrub_continue(fs_info); 3215 if (ret) 3216 return ret; 3217 3218 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3219 if (!block_group) 3220 return -ENOENT; 3221 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3222 length = block_group->length; 3223 btrfs_put_block_group(block_group); 3224 3225 /* 3226 * On a zoned file system, discard the whole block group, this will 3227 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3228 * resetting the zone fails, don't treat it as a fatal problem from the 3229 * filesystem's point of view. 3230 */ 3231 if (btrfs_is_zoned(fs_info)) { 3232 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3233 if (ret) 3234 btrfs_info(fs_info, 3235 "failed to reset zone %llu after relocation", 3236 chunk_offset); 3237 } 3238 3239 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3240 chunk_offset); 3241 if (IS_ERR(trans)) { 3242 ret = PTR_ERR(trans); 3243 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3244 return ret; 3245 } 3246 3247 /* 3248 * step two, delete the device extents and the 3249 * chunk tree entries 3250 */ 3251 ret = btrfs_remove_chunk(trans, chunk_offset); 3252 btrfs_end_transaction(trans); 3253 return ret; 3254 } 3255 3256 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3257 { 3258 struct btrfs_root *chunk_root = fs_info->chunk_root; 3259 struct btrfs_path *path; 3260 struct extent_buffer *leaf; 3261 struct btrfs_chunk *chunk; 3262 struct btrfs_key key; 3263 struct btrfs_key found_key; 3264 u64 chunk_type; 3265 bool retried = false; 3266 int failed = 0; 3267 int ret; 3268 3269 path = btrfs_alloc_path(); 3270 if (!path) 3271 return -ENOMEM; 3272 3273 again: 3274 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3275 key.offset = (u64)-1; 3276 key.type = BTRFS_CHUNK_ITEM_KEY; 3277 3278 while (1) { 3279 mutex_lock(&fs_info->reclaim_bgs_lock); 3280 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3281 if (ret < 0) { 3282 mutex_unlock(&fs_info->reclaim_bgs_lock); 3283 goto error; 3284 } 3285 BUG_ON(ret == 0); /* Corruption */ 3286 3287 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3288 key.type); 3289 if (ret) 3290 mutex_unlock(&fs_info->reclaim_bgs_lock); 3291 if (ret < 0) 3292 goto error; 3293 if (ret > 0) 3294 break; 3295 3296 leaf = path->nodes[0]; 3297 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3298 3299 chunk = btrfs_item_ptr(leaf, path->slots[0], 3300 struct btrfs_chunk); 3301 chunk_type = btrfs_chunk_type(leaf, chunk); 3302 btrfs_release_path(path); 3303 3304 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3305 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3306 if (ret == -ENOSPC) 3307 failed++; 3308 else 3309 BUG_ON(ret); 3310 } 3311 mutex_unlock(&fs_info->reclaim_bgs_lock); 3312 3313 if (found_key.offset == 0) 3314 break; 3315 key.offset = found_key.offset - 1; 3316 } 3317 ret = 0; 3318 if (failed && !retried) { 3319 failed = 0; 3320 retried = true; 3321 goto again; 3322 } else if (WARN_ON(failed && retried)) { 3323 ret = -ENOSPC; 3324 } 3325 error: 3326 btrfs_free_path(path); 3327 return ret; 3328 } 3329 3330 /* 3331 * return 1 : allocate a data chunk successfully, 3332 * return <0: errors during allocating a data chunk, 3333 * return 0 : no need to allocate a data chunk. 3334 */ 3335 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3336 u64 chunk_offset) 3337 { 3338 struct btrfs_block_group *cache; 3339 u64 bytes_used; 3340 u64 chunk_type; 3341 3342 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3343 ASSERT(cache); 3344 chunk_type = cache->flags; 3345 btrfs_put_block_group(cache); 3346 3347 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3348 return 0; 3349 3350 spin_lock(&fs_info->data_sinfo->lock); 3351 bytes_used = fs_info->data_sinfo->bytes_used; 3352 spin_unlock(&fs_info->data_sinfo->lock); 3353 3354 if (!bytes_used) { 3355 struct btrfs_trans_handle *trans; 3356 int ret; 3357 3358 trans = btrfs_join_transaction(fs_info->tree_root); 3359 if (IS_ERR(trans)) 3360 return PTR_ERR(trans); 3361 3362 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3363 btrfs_end_transaction(trans); 3364 if (ret < 0) 3365 return ret; 3366 return 1; 3367 } 3368 3369 return 0; 3370 } 3371 3372 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3373 struct btrfs_balance_control *bctl) 3374 { 3375 struct btrfs_root *root = fs_info->tree_root; 3376 struct btrfs_trans_handle *trans; 3377 struct btrfs_balance_item *item; 3378 struct btrfs_disk_balance_args disk_bargs; 3379 struct btrfs_path *path; 3380 struct extent_buffer *leaf; 3381 struct btrfs_key key; 3382 int ret, err; 3383 3384 path = btrfs_alloc_path(); 3385 if (!path) 3386 return -ENOMEM; 3387 3388 trans = btrfs_start_transaction(root, 0); 3389 if (IS_ERR(trans)) { 3390 btrfs_free_path(path); 3391 return PTR_ERR(trans); 3392 } 3393 3394 key.objectid = BTRFS_BALANCE_OBJECTID; 3395 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3396 key.offset = 0; 3397 3398 ret = btrfs_insert_empty_item(trans, root, path, &key, 3399 sizeof(*item)); 3400 if (ret) 3401 goto out; 3402 3403 leaf = path->nodes[0]; 3404 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3405 3406 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3407 3408 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3409 btrfs_set_balance_data(leaf, item, &disk_bargs); 3410 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3411 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3412 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3413 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3414 3415 btrfs_set_balance_flags(leaf, item, bctl->flags); 3416 3417 btrfs_mark_buffer_dirty(leaf); 3418 out: 3419 btrfs_free_path(path); 3420 err = btrfs_commit_transaction(trans); 3421 if (err && !ret) 3422 ret = err; 3423 return ret; 3424 } 3425 3426 static int del_balance_item(struct btrfs_fs_info *fs_info) 3427 { 3428 struct btrfs_root *root = fs_info->tree_root; 3429 struct btrfs_trans_handle *trans; 3430 struct btrfs_path *path; 3431 struct btrfs_key key; 3432 int ret, err; 3433 3434 path = btrfs_alloc_path(); 3435 if (!path) 3436 return -ENOMEM; 3437 3438 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3439 if (IS_ERR(trans)) { 3440 btrfs_free_path(path); 3441 return PTR_ERR(trans); 3442 } 3443 3444 key.objectid = BTRFS_BALANCE_OBJECTID; 3445 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3446 key.offset = 0; 3447 3448 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3449 if (ret < 0) 3450 goto out; 3451 if (ret > 0) { 3452 ret = -ENOENT; 3453 goto out; 3454 } 3455 3456 ret = btrfs_del_item(trans, root, path); 3457 out: 3458 btrfs_free_path(path); 3459 err = btrfs_commit_transaction(trans); 3460 if (err && !ret) 3461 ret = err; 3462 return ret; 3463 } 3464 3465 /* 3466 * This is a heuristic used to reduce the number of chunks balanced on 3467 * resume after balance was interrupted. 3468 */ 3469 static void update_balance_args(struct btrfs_balance_control *bctl) 3470 { 3471 /* 3472 * Turn on soft mode for chunk types that were being converted. 3473 */ 3474 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3475 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3476 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3477 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3478 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3479 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3480 3481 /* 3482 * Turn on usage filter if is not already used. The idea is 3483 * that chunks that we have already balanced should be 3484 * reasonably full. Don't do it for chunks that are being 3485 * converted - that will keep us from relocating unconverted 3486 * (albeit full) chunks. 3487 */ 3488 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3489 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3490 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3491 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3492 bctl->data.usage = 90; 3493 } 3494 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3495 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3496 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3497 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3498 bctl->sys.usage = 90; 3499 } 3500 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3501 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3502 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3503 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3504 bctl->meta.usage = 90; 3505 } 3506 } 3507 3508 /* 3509 * Clear the balance status in fs_info and delete the balance item from disk. 3510 */ 3511 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3512 { 3513 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3514 int ret; 3515 3516 BUG_ON(!fs_info->balance_ctl); 3517 3518 spin_lock(&fs_info->balance_lock); 3519 fs_info->balance_ctl = NULL; 3520 spin_unlock(&fs_info->balance_lock); 3521 3522 kfree(bctl); 3523 ret = del_balance_item(fs_info); 3524 if (ret) 3525 btrfs_handle_fs_error(fs_info, ret, NULL); 3526 } 3527 3528 /* 3529 * Balance filters. Return 1 if chunk should be filtered out 3530 * (should not be balanced). 3531 */ 3532 static int chunk_profiles_filter(u64 chunk_type, 3533 struct btrfs_balance_args *bargs) 3534 { 3535 chunk_type = chunk_to_extended(chunk_type) & 3536 BTRFS_EXTENDED_PROFILE_MASK; 3537 3538 if (bargs->profiles & chunk_type) 3539 return 0; 3540 3541 return 1; 3542 } 3543 3544 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3545 struct btrfs_balance_args *bargs) 3546 { 3547 struct btrfs_block_group *cache; 3548 u64 chunk_used; 3549 u64 user_thresh_min; 3550 u64 user_thresh_max; 3551 int ret = 1; 3552 3553 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3554 chunk_used = cache->used; 3555 3556 if (bargs->usage_min == 0) 3557 user_thresh_min = 0; 3558 else 3559 user_thresh_min = div_factor_fine(cache->length, 3560 bargs->usage_min); 3561 3562 if (bargs->usage_max == 0) 3563 user_thresh_max = 1; 3564 else if (bargs->usage_max > 100) 3565 user_thresh_max = cache->length; 3566 else 3567 user_thresh_max = div_factor_fine(cache->length, 3568 bargs->usage_max); 3569 3570 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3571 ret = 0; 3572 3573 btrfs_put_block_group(cache); 3574 return ret; 3575 } 3576 3577 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3578 u64 chunk_offset, struct btrfs_balance_args *bargs) 3579 { 3580 struct btrfs_block_group *cache; 3581 u64 chunk_used, user_thresh; 3582 int ret = 1; 3583 3584 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3585 chunk_used = cache->used; 3586 3587 if (bargs->usage_min == 0) 3588 user_thresh = 1; 3589 else if (bargs->usage > 100) 3590 user_thresh = cache->length; 3591 else 3592 user_thresh = div_factor_fine(cache->length, bargs->usage); 3593 3594 if (chunk_used < user_thresh) 3595 ret = 0; 3596 3597 btrfs_put_block_group(cache); 3598 return ret; 3599 } 3600 3601 static int chunk_devid_filter(struct extent_buffer *leaf, 3602 struct btrfs_chunk *chunk, 3603 struct btrfs_balance_args *bargs) 3604 { 3605 struct btrfs_stripe *stripe; 3606 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3607 int i; 3608 3609 for (i = 0; i < num_stripes; i++) { 3610 stripe = btrfs_stripe_nr(chunk, i); 3611 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3612 return 0; 3613 } 3614 3615 return 1; 3616 } 3617 3618 static u64 calc_data_stripes(u64 type, int num_stripes) 3619 { 3620 const int index = btrfs_bg_flags_to_raid_index(type); 3621 const int ncopies = btrfs_raid_array[index].ncopies; 3622 const int nparity = btrfs_raid_array[index].nparity; 3623 3624 if (nparity) 3625 return num_stripes - nparity; 3626 else 3627 return num_stripes / ncopies; 3628 } 3629 3630 /* [pstart, pend) */ 3631 static int chunk_drange_filter(struct extent_buffer *leaf, 3632 struct btrfs_chunk *chunk, 3633 struct btrfs_balance_args *bargs) 3634 { 3635 struct btrfs_stripe *stripe; 3636 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3637 u64 stripe_offset; 3638 u64 stripe_length; 3639 u64 type; 3640 int factor; 3641 int i; 3642 3643 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3644 return 0; 3645 3646 type = btrfs_chunk_type(leaf, chunk); 3647 factor = calc_data_stripes(type, num_stripes); 3648 3649 for (i = 0; i < num_stripes; i++) { 3650 stripe = btrfs_stripe_nr(chunk, i); 3651 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3652 continue; 3653 3654 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3655 stripe_length = btrfs_chunk_length(leaf, chunk); 3656 stripe_length = div_u64(stripe_length, factor); 3657 3658 if (stripe_offset < bargs->pend && 3659 stripe_offset + stripe_length > bargs->pstart) 3660 return 0; 3661 } 3662 3663 return 1; 3664 } 3665 3666 /* [vstart, vend) */ 3667 static int chunk_vrange_filter(struct extent_buffer *leaf, 3668 struct btrfs_chunk *chunk, 3669 u64 chunk_offset, 3670 struct btrfs_balance_args *bargs) 3671 { 3672 if (chunk_offset < bargs->vend && 3673 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3674 /* at least part of the chunk is inside this vrange */ 3675 return 0; 3676 3677 return 1; 3678 } 3679 3680 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3681 struct btrfs_chunk *chunk, 3682 struct btrfs_balance_args *bargs) 3683 { 3684 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3685 3686 if (bargs->stripes_min <= num_stripes 3687 && num_stripes <= bargs->stripes_max) 3688 return 0; 3689 3690 return 1; 3691 } 3692 3693 static int chunk_soft_convert_filter(u64 chunk_type, 3694 struct btrfs_balance_args *bargs) 3695 { 3696 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3697 return 0; 3698 3699 chunk_type = chunk_to_extended(chunk_type) & 3700 BTRFS_EXTENDED_PROFILE_MASK; 3701 3702 if (bargs->target == chunk_type) 3703 return 1; 3704 3705 return 0; 3706 } 3707 3708 static int should_balance_chunk(struct extent_buffer *leaf, 3709 struct btrfs_chunk *chunk, u64 chunk_offset) 3710 { 3711 struct btrfs_fs_info *fs_info = leaf->fs_info; 3712 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3713 struct btrfs_balance_args *bargs = NULL; 3714 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3715 3716 /* type filter */ 3717 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3718 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3719 return 0; 3720 } 3721 3722 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3723 bargs = &bctl->data; 3724 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3725 bargs = &bctl->sys; 3726 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3727 bargs = &bctl->meta; 3728 3729 /* profiles filter */ 3730 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3731 chunk_profiles_filter(chunk_type, bargs)) { 3732 return 0; 3733 } 3734 3735 /* usage filter */ 3736 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3737 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3738 return 0; 3739 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3740 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3741 return 0; 3742 } 3743 3744 /* devid filter */ 3745 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3746 chunk_devid_filter(leaf, chunk, bargs)) { 3747 return 0; 3748 } 3749 3750 /* drange filter, makes sense only with devid filter */ 3751 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3752 chunk_drange_filter(leaf, chunk, bargs)) { 3753 return 0; 3754 } 3755 3756 /* vrange filter */ 3757 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3758 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3759 return 0; 3760 } 3761 3762 /* stripes filter */ 3763 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3764 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3765 return 0; 3766 } 3767 3768 /* soft profile changing mode */ 3769 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3770 chunk_soft_convert_filter(chunk_type, bargs)) { 3771 return 0; 3772 } 3773 3774 /* 3775 * limited by count, must be the last filter 3776 */ 3777 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3778 if (bargs->limit == 0) 3779 return 0; 3780 else 3781 bargs->limit--; 3782 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3783 /* 3784 * Same logic as the 'limit' filter; the minimum cannot be 3785 * determined here because we do not have the global information 3786 * about the count of all chunks that satisfy the filters. 3787 */ 3788 if (bargs->limit_max == 0) 3789 return 0; 3790 else 3791 bargs->limit_max--; 3792 } 3793 3794 return 1; 3795 } 3796 3797 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3798 { 3799 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3800 struct btrfs_root *chunk_root = fs_info->chunk_root; 3801 u64 chunk_type; 3802 struct btrfs_chunk *chunk; 3803 struct btrfs_path *path = NULL; 3804 struct btrfs_key key; 3805 struct btrfs_key found_key; 3806 struct extent_buffer *leaf; 3807 int slot; 3808 int ret; 3809 int enospc_errors = 0; 3810 bool counting = true; 3811 /* The single value limit and min/max limits use the same bytes in the */ 3812 u64 limit_data = bctl->data.limit; 3813 u64 limit_meta = bctl->meta.limit; 3814 u64 limit_sys = bctl->sys.limit; 3815 u32 count_data = 0; 3816 u32 count_meta = 0; 3817 u32 count_sys = 0; 3818 int chunk_reserved = 0; 3819 3820 path = btrfs_alloc_path(); 3821 if (!path) { 3822 ret = -ENOMEM; 3823 goto error; 3824 } 3825 3826 /* zero out stat counters */ 3827 spin_lock(&fs_info->balance_lock); 3828 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3829 spin_unlock(&fs_info->balance_lock); 3830 again: 3831 if (!counting) { 3832 /* 3833 * The single value limit and min/max limits use the same bytes 3834 * in the 3835 */ 3836 bctl->data.limit = limit_data; 3837 bctl->meta.limit = limit_meta; 3838 bctl->sys.limit = limit_sys; 3839 } 3840 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3841 key.offset = (u64)-1; 3842 key.type = BTRFS_CHUNK_ITEM_KEY; 3843 3844 while (1) { 3845 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3846 atomic_read(&fs_info->balance_cancel_req)) { 3847 ret = -ECANCELED; 3848 goto error; 3849 } 3850 3851 mutex_lock(&fs_info->reclaim_bgs_lock); 3852 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3853 if (ret < 0) { 3854 mutex_unlock(&fs_info->reclaim_bgs_lock); 3855 goto error; 3856 } 3857 3858 /* 3859 * this shouldn't happen, it means the last relocate 3860 * failed 3861 */ 3862 if (ret == 0) 3863 BUG(); /* FIXME break ? */ 3864 3865 ret = btrfs_previous_item(chunk_root, path, 0, 3866 BTRFS_CHUNK_ITEM_KEY); 3867 if (ret) { 3868 mutex_unlock(&fs_info->reclaim_bgs_lock); 3869 ret = 0; 3870 break; 3871 } 3872 3873 leaf = path->nodes[0]; 3874 slot = path->slots[0]; 3875 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3876 3877 if (found_key.objectid != key.objectid) { 3878 mutex_unlock(&fs_info->reclaim_bgs_lock); 3879 break; 3880 } 3881 3882 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3883 chunk_type = btrfs_chunk_type(leaf, chunk); 3884 3885 if (!counting) { 3886 spin_lock(&fs_info->balance_lock); 3887 bctl->stat.considered++; 3888 spin_unlock(&fs_info->balance_lock); 3889 } 3890 3891 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3892 3893 btrfs_release_path(path); 3894 if (!ret) { 3895 mutex_unlock(&fs_info->reclaim_bgs_lock); 3896 goto loop; 3897 } 3898 3899 if (counting) { 3900 mutex_unlock(&fs_info->reclaim_bgs_lock); 3901 spin_lock(&fs_info->balance_lock); 3902 bctl->stat.expected++; 3903 spin_unlock(&fs_info->balance_lock); 3904 3905 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3906 count_data++; 3907 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3908 count_sys++; 3909 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3910 count_meta++; 3911 3912 goto loop; 3913 } 3914 3915 /* 3916 * Apply limit_min filter, no need to check if the LIMITS 3917 * filter is used, limit_min is 0 by default 3918 */ 3919 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3920 count_data < bctl->data.limit_min) 3921 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3922 count_meta < bctl->meta.limit_min) 3923 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3924 count_sys < bctl->sys.limit_min)) { 3925 mutex_unlock(&fs_info->reclaim_bgs_lock); 3926 goto loop; 3927 } 3928 3929 if (!chunk_reserved) { 3930 /* 3931 * We may be relocating the only data chunk we have, 3932 * which could potentially end up with losing data's 3933 * raid profile, so lets allocate an empty one in 3934 * advance. 3935 */ 3936 ret = btrfs_may_alloc_data_chunk(fs_info, 3937 found_key.offset); 3938 if (ret < 0) { 3939 mutex_unlock(&fs_info->reclaim_bgs_lock); 3940 goto error; 3941 } else if (ret == 1) { 3942 chunk_reserved = 1; 3943 } 3944 } 3945 3946 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3947 mutex_unlock(&fs_info->reclaim_bgs_lock); 3948 if (ret == -ENOSPC) { 3949 enospc_errors++; 3950 } else if (ret == -ETXTBSY) { 3951 btrfs_info(fs_info, 3952 "skipping relocation of block group %llu due to active swapfile", 3953 found_key.offset); 3954 ret = 0; 3955 } else if (ret) { 3956 goto error; 3957 } else { 3958 spin_lock(&fs_info->balance_lock); 3959 bctl->stat.completed++; 3960 spin_unlock(&fs_info->balance_lock); 3961 } 3962 loop: 3963 if (found_key.offset == 0) 3964 break; 3965 key.offset = found_key.offset - 1; 3966 } 3967 3968 if (counting) { 3969 btrfs_release_path(path); 3970 counting = false; 3971 goto again; 3972 } 3973 error: 3974 btrfs_free_path(path); 3975 if (enospc_errors) { 3976 btrfs_info(fs_info, "%d enospc errors during balance", 3977 enospc_errors); 3978 if (!ret) 3979 ret = -ENOSPC; 3980 } 3981 3982 return ret; 3983 } 3984 3985 /** 3986 * alloc_profile_is_valid - see if a given profile is valid and reduced 3987 * @flags: profile to validate 3988 * @extended: if true @flags is treated as an extended profile 3989 */ 3990 static int alloc_profile_is_valid(u64 flags, int extended) 3991 { 3992 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3993 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3994 3995 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3996 3997 /* 1) check that all other bits are zeroed */ 3998 if (flags & ~mask) 3999 return 0; 4000 4001 /* 2) see if profile is reduced */ 4002 if (flags == 0) 4003 return !extended; /* "0" is valid for usual profiles */ 4004 4005 return has_single_bit_set(flags); 4006 } 4007 4008 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 4009 { 4010 /* cancel requested || normal exit path */ 4011 return atomic_read(&fs_info->balance_cancel_req) || 4012 (atomic_read(&fs_info->balance_pause_req) == 0 && 4013 atomic_read(&fs_info->balance_cancel_req) == 0); 4014 } 4015 4016 /* 4017 * Validate target profile against allowed profiles and return true if it's OK. 4018 * Otherwise print the error message and return false. 4019 */ 4020 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4021 const struct btrfs_balance_args *bargs, 4022 u64 allowed, const char *type) 4023 { 4024 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4025 return true; 4026 4027 /* Profile is valid and does not have bits outside of the allowed set */ 4028 if (alloc_profile_is_valid(bargs->target, 1) && 4029 (bargs->target & ~allowed) == 0) 4030 return true; 4031 4032 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4033 type, btrfs_bg_type_to_raid_name(bargs->target)); 4034 return false; 4035 } 4036 4037 /* 4038 * Fill @buf with textual description of balance filter flags @bargs, up to 4039 * @size_buf including the terminating null. The output may be trimmed if it 4040 * does not fit into the provided buffer. 4041 */ 4042 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4043 u32 size_buf) 4044 { 4045 int ret; 4046 u32 size_bp = size_buf; 4047 char *bp = buf; 4048 u64 flags = bargs->flags; 4049 char tmp_buf[128] = {'\0'}; 4050 4051 if (!flags) 4052 return; 4053 4054 #define CHECK_APPEND_NOARG(a) \ 4055 do { \ 4056 ret = snprintf(bp, size_bp, (a)); \ 4057 if (ret < 0 || ret >= size_bp) \ 4058 goto out_overflow; \ 4059 size_bp -= ret; \ 4060 bp += ret; \ 4061 } while (0) 4062 4063 #define CHECK_APPEND_1ARG(a, v1) \ 4064 do { \ 4065 ret = snprintf(bp, size_bp, (a), (v1)); \ 4066 if (ret < 0 || ret >= size_bp) \ 4067 goto out_overflow; \ 4068 size_bp -= ret; \ 4069 bp += ret; \ 4070 } while (0) 4071 4072 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4073 do { \ 4074 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4075 if (ret < 0 || ret >= size_bp) \ 4076 goto out_overflow; \ 4077 size_bp -= ret; \ 4078 bp += ret; \ 4079 } while (0) 4080 4081 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4082 CHECK_APPEND_1ARG("convert=%s,", 4083 btrfs_bg_type_to_raid_name(bargs->target)); 4084 4085 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4086 CHECK_APPEND_NOARG("soft,"); 4087 4088 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4089 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4090 sizeof(tmp_buf)); 4091 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4092 } 4093 4094 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4095 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4096 4097 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4098 CHECK_APPEND_2ARG("usage=%u..%u,", 4099 bargs->usage_min, bargs->usage_max); 4100 4101 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4102 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4103 4104 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4105 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4106 bargs->pstart, bargs->pend); 4107 4108 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4109 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4110 bargs->vstart, bargs->vend); 4111 4112 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4113 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4114 4115 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4116 CHECK_APPEND_2ARG("limit=%u..%u,", 4117 bargs->limit_min, bargs->limit_max); 4118 4119 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4120 CHECK_APPEND_2ARG("stripes=%u..%u,", 4121 bargs->stripes_min, bargs->stripes_max); 4122 4123 #undef CHECK_APPEND_2ARG 4124 #undef CHECK_APPEND_1ARG 4125 #undef CHECK_APPEND_NOARG 4126 4127 out_overflow: 4128 4129 if (size_bp < size_buf) 4130 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4131 else 4132 buf[0] = '\0'; 4133 } 4134 4135 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4136 { 4137 u32 size_buf = 1024; 4138 char tmp_buf[192] = {'\0'}; 4139 char *buf; 4140 char *bp; 4141 u32 size_bp = size_buf; 4142 int ret; 4143 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4144 4145 buf = kzalloc(size_buf, GFP_KERNEL); 4146 if (!buf) 4147 return; 4148 4149 bp = buf; 4150 4151 #define CHECK_APPEND_1ARG(a, v1) \ 4152 do { \ 4153 ret = snprintf(bp, size_bp, (a), (v1)); \ 4154 if (ret < 0 || ret >= size_bp) \ 4155 goto out_overflow; \ 4156 size_bp -= ret; \ 4157 bp += ret; \ 4158 } while (0) 4159 4160 if (bctl->flags & BTRFS_BALANCE_FORCE) 4161 CHECK_APPEND_1ARG("%s", "-f "); 4162 4163 if (bctl->flags & BTRFS_BALANCE_DATA) { 4164 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4165 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4166 } 4167 4168 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4169 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4170 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4171 } 4172 4173 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4174 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4175 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4176 } 4177 4178 #undef CHECK_APPEND_1ARG 4179 4180 out_overflow: 4181 4182 if (size_bp < size_buf) 4183 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4184 btrfs_info(fs_info, "balance: %s %s", 4185 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4186 "resume" : "start", buf); 4187 4188 kfree(buf); 4189 } 4190 4191 /* 4192 * Should be called with balance mutexe held 4193 */ 4194 int btrfs_balance(struct btrfs_fs_info *fs_info, 4195 struct btrfs_balance_control *bctl, 4196 struct btrfs_ioctl_balance_args *bargs) 4197 { 4198 u64 meta_target, data_target; 4199 u64 allowed; 4200 int mixed = 0; 4201 int ret; 4202 u64 num_devices; 4203 unsigned seq; 4204 bool reducing_redundancy; 4205 int i; 4206 4207 if (btrfs_fs_closing(fs_info) || 4208 atomic_read(&fs_info->balance_pause_req) || 4209 btrfs_should_cancel_balance(fs_info)) { 4210 ret = -EINVAL; 4211 goto out; 4212 } 4213 4214 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4215 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4216 mixed = 1; 4217 4218 /* 4219 * In case of mixed groups both data and meta should be picked, 4220 * and identical options should be given for both of them. 4221 */ 4222 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4223 if (mixed && (bctl->flags & allowed)) { 4224 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4225 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4226 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4227 btrfs_err(fs_info, 4228 "balance: mixed groups data and metadata options must be the same"); 4229 ret = -EINVAL; 4230 goto out; 4231 } 4232 } 4233 4234 /* 4235 * rw_devices will not change at the moment, device add/delete/replace 4236 * are exclusive 4237 */ 4238 num_devices = fs_info->fs_devices->rw_devices; 4239 4240 /* 4241 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4242 * special bit for it, to make it easier to distinguish. Thus we need 4243 * to set it manually, or balance would refuse the profile. 4244 */ 4245 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4246 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4247 if (num_devices >= btrfs_raid_array[i].devs_min) 4248 allowed |= btrfs_raid_array[i].bg_flag; 4249 4250 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4251 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4252 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4253 ret = -EINVAL; 4254 goto out; 4255 } 4256 4257 /* 4258 * Allow to reduce metadata or system integrity only if force set for 4259 * profiles with redundancy (copies, parity) 4260 */ 4261 allowed = 0; 4262 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4263 if (btrfs_raid_array[i].ncopies >= 2 || 4264 btrfs_raid_array[i].tolerated_failures >= 1) 4265 allowed |= btrfs_raid_array[i].bg_flag; 4266 } 4267 do { 4268 seq = read_seqbegin(&fs_info->profiles_lock); 4269 4270 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4271 (fs_info->avail_system_alloc_bits & allowed) && 4272 !(bctl->sys.target & allowed)) || 4273 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4274 (fs_info->avail_metadata_alloc_bits & allowed) && 4275 !(bctl->meta.target & allowed))) 4276 reducing_redundancy = true; 4277 else 4278 reducing_redundancy = false; 4279 4280 /* if we're not converting, the target field is uninitialized */ 4281 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4282 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4283 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4284 bctl->data.target : fs_info->avail_data_alloc_bits; 4285 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4286 4287 if (reducing_redundancy) { 4288 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4289 btrfs_info(fs_info, 4290 "balance: force reducing metadata redundancy"); 4291 } else { 4292 btrfs_err(fs_info, 4293 "balance: reduces metadata redundancy, use --force if you want this"); 4294 ret = -EINVAL; 4295 goto out; 4296 } 4297 } 4298 4299 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4300 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4301 btrfs_warn(fs_info, 4302 "balance: metadata profile %s has lower redundancy than data profile %s", 4303 btrfs_bg_type_to_raid_name(meta_target), 4304 btrfs_bg_type_to_raid_name(data_target)); 4305 } 4306 4307 ret = insert_balance_item(fs_info, bctl); 4308 if (ret && ret != -EEXIST) 4309 goto out; 4310 4311 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4312 BUG_ON(ret == -EEXIST); 4313 BUG_ON(fs_info->balance_ctl); 4314 spin_lock(&fs_info->balance_lock); 4315 fs_info->balance_ctl = bctl; 4316 spin_unlock(&fs_info->balance_lock); 4317 } else { 4318 BUG_ON(ret != -EEXIST); 4319 spin_lock(&fs_info->balance_lock); 4320 update_balance_args(bctl); 4321 spin_unlock(&fs_info->balance_lock); 4322 } 4323 4324 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4325 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4326 describe_balance_start_or_resume(fs_info); 4327 mutex_unlock(&fs_info->balance_mutex); 4328 4329 ret = __btrfs_balance(fs_info); 4330 4331 mutex_lock(&fs_info->balance_mutex); 4332 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4333 btrfs_info(fs_info, "balance: paused"); 4334 /* 4335 * Balance can be canceled by: 4336 * 4337 * - Regular cancel request 4338 * Then ret == -ECANCELED and balance_cancel_req > 0 4339 * 4340 * - Fatal signal to "btrfs" process 4341 * Either the signal caught by wait_reserve_ticket() and callers 4342 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4343 * got -ECANCELED. 4344 * Either way, in this case balance_cancel_req = 0, and 4345 * ret == -EINTR or ret == -ECANCELED. 4346 * 4347 * So here we only check the return value to catch canceled balance. 4348 */ 4349 else if (ret == -ECANCELED || ret == -EINTR) 4350 btrfs_info(fs_info, "balance: canceled"); 4351 else 4352 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4353 4354 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4355 4356 if (bargs) { 4357 memset(bargs, 0, sizeof(*bargs)); 4358 btrfs_update_ioctl_balance_args(fs_info, bargs); 4359 } 4360 4361 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4362 balance_need_close(fs_info)) { 4363 reset_balance_state(fs_info); 4364 btrfs_exclop_finish(fs_info); 4365 } 4366 4367 wake_up(&fs_info->balance_wait_q); 4368 4369 return ret; 4370 out: 4371 if (bctl->flags & BTRFS_BALANCE_RESUME) 4372 reset_balance_state(fs_info); 4373 else 4374 kfree(bctl); 4375 btrfs_exclop_finish(fs_info); 4376 4377 return ret; 4378 } 4379 4380 static int balance_kthread(void *data) 4381 { 4382 struct btrfs_fs_info *fs_info = data; 4383 int ret = 0; 4384 4385 mutex_lock(&fs_info->balance_mutex); 4386 if (fs_info->balance_ctl) 4387 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4388 mutex_unlock(&fs_info->balance_mutex); 4389 4390 return ret; 4391 } 4392 4393 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4394 { 4395 struct task_struct *tsk; 4396 4397 mutex_lock(&fs_info->balance_mutex); 4398 if (!fs_info->balance_ctl) { 4399 mutex_unlock(&fs_info->balance_mutex); 4400 return 0; 4401 } 4402 mutex_unlock(&fs_info->balance_mutex); 4403 4404 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4405 btrfs_info(fs_info, "balance: resume skipped"); 4406 return 0; 4407 } 4408 4409 /* 4410 * A ro->rw remount sequence should continue with the paused balance 4411 * regardless of who pauses it, system or the user as of now, so set 4412 * the resume flag. 4413 */ 4414 spin_lock(&fs_info->balance_lock); 4415 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4416 spin_unlock(&fs_info->balance_lock); 4417 4418 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4419 return PTR_ERR_OR_ZERO(tsk); 4420 } 4421 4422 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4423 { 4424 struct btrfs_balance_control *bctl; 4425 struct btrfs_balance_item *item; 4426 struct btrfs_disk_balance_args disk_bargs; 4427 struct btrfs_path *path; 4428 struct extent_buffer *leaf; 4429 struct btrfs_key key; 4430 int ret; 4431 4432 path = btrfs_alloc_path(); 4433 if (!path) 4434 return -ENOMEM; 4435 4436 key.objectid = BTRFS_BALANCE_OBJECTID; 4437 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4438 key.offset = 0; 4439 4440 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4441 if (ret < 0) 4442 goto out; 4443 if (ret > 0) { /* ret = -ENOENT; */ 4444 ret = 0; 4445 goto out; 4446 } 4447 4448 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4449 if (!bctl) { 4450 ret = -ENOMEM; 4451 goto out; 4452 } 4453 4454 leaf = path->nodes[0]; 4455 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4456 4457 bctl->flags = btrfs_balance_flags(leaf, item); 4458 bctl->flags |= BTRFS_BALANCE_RESUME; 4459 4460 btrfs_balance_data(leaf, item, &disk_bargs); 4461 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4462 btrfs_balance_meta(leaf, item, &disk_bargs); 4463 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4464 btrfs_balance_sys(leaf, item, &disk_bargs); 4465 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4466 4467 /* 4468 * This should never happen, as the paused balance state is recovered 4469 * during mount without any chance of other exclusive ops to collide. 4470 * 4471 * This gives the exclusive op status to balance and keeps in paused 4472 * state until user intervention (cancel or umount). If the ownership 4473 * cannot be assigned, show a message but do not fail. The balance 4474 * is in a paused state and must have fs_info::balance_ctl properly 4475 * set up. 4476 */ 4477 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) 4478 btrfs_warn(fs_info, 4479 "balance: cannot set exclusive op status, resume manually"); 4480 4481 btrfs_release_path(path); 4482 4483 mutex_lock(&fs_info->balance_mutex); 4484 BUG_ON(fs_info->balance_ctl); 4485 spin_lock(&fs_info->balance_lock); 4486 fs_info->balance_ctl = bctl; 4487 spin_unlock(&fs_info->balance_lock); 4488 mutex_unlock(&fs_info->balance_mutex); 4489 out: 4490 btrfs_free_path(path); 4491 return ret; 4492 } 4493 4494 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4495 { 4496 int ret = 0; 4497 4498 mutex_lock(&fs_info->balance_mutex); 4499 if (!fs_info->balance_ctl) { 4500 mutex_unlock(&fs_info->balance_mutex); 4501 return -ENOTCONN; 4502 } 4503 4504 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4505 atomic_inc(&fs_info->balance_pause_req); 4506 mutex_unlock(&fs_info->balance_mutex); 4507 4508 wait_event(fs_info->balance_wait_q, 4509 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4510 4511 mutex_lock(&fs_info->balance_mutex); 4512 /* we are good with balance_ctl ripped off from under us */ 4513 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4514 atomic_dec(&fs_info->balance_pause_req); 4515 } else { 4516 ret = -ENOTCONN; 4517 } 4518 4519 mutex_unlock(&fs_info->balance_mutex); 4520 return ret; 4521 } 4522 4523 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4524 { 4525 mutex_lock(&fs_info->balance_mutex); 4526 if (!fs_info->balance_ctl) { 4527 mutex_unlock(&fs_info->balance_mutex); 4528 return -ENOTCONN; 4529 } 4530 4531 /* 4532 * A paused balance with the item stored on disk can be resumed at 4533 * mount time if the mount is read-write. Otherwise it's still paused 4534 * and we must not allow cancelling as it deletes the item. 4535 */ 4536 if (sb_rdonly(fs_info->sb)) { 4537 mutex_unlock(&fs_info->balance_mutex); 4538 return -EROFS; 4539 } 4540 4541 atomic_inc(&fs_info->balance_cancel_req); 4542 /* 4543 * if we are running just wait and return, balance item is 4544 * deleted in btrfs_balance in this case 4545 */ 4546 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4547 mutex_unlock(&fs_info->balance_mutex); 4548 wait_event(fs_info->balance_wait_q, 4549 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4550 mutex_lock(&fs_info->balance_mutex); 4551 } else { 4552 mutex_unlock(&fs_info->balance_mutex); 4553 /* 4554 * Lock released to allow other waiters to continue, we'll 4555 * reexamine the status again. 4556 */ 4557 mutex_lock(&fs_info->balance_mutex); 4558 4559 if (fs_info->balance_ctl) { 4560 reset_balance_state(fs_info); 4561 btrfs_exclop_finish(fs_info); 4562 btrfs_info(fs_info, "balance: canceled"); 4563 } 4564 } 4565 4566 BUG_ON(fs_info->balance_ctl || 4567 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4568 atomic_dec(&fs_info->balance_cancel_req); 4569 mutex_unlock(&fs_info->balance_mutex); 4570 return 0; 4571 } 4572 4573 int btrfs_uuid_scan_kthread(void *data) 4574 { 4575 struct btrfs_fs_info *fs_info = data; 4576 struct btrfs_root *root = fs_info->tree_root; 4577 struct btrfs_key key; 4578 struct btrfs_path *path = NULL; 4579 int ret = 0; 4580 struct extent_buffer *eb; 4581 int slot; 4582 struct btrfs_root_item root_item; 4583 u32 item_size; 4584 struct btrfs_trans_handle *trans = NULL; 4585 bool closing = false; 4586 4587 path = btrfs_alloc_path(); 4588 if (!path) { 4589 ret = -ENOMEM; 4590 goto out; 4591 } 4592 4593 key.objectid = 0; 4594 key.type = BTRFS_ROOT_ITEM_KEY; 4595 key.offset = 0; 4596 4597 while (1) { 4598 if (btrfs_fs_closing(fs_info)) { 4599 closing = true; 4600 break; 4601 } 4602 ret = btrfs_search_forward(root, &key, path, 4603 BTRFS_OLDEST_GENERATION); 4604 if (ret) { 4605 if (ret > 0) 4606 ret = 0; 4607 break; 4608 } 4609 4610 if (key.type != BTRFS_ROOT_ITEM_KEY || 4611 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4612 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4613 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4614 goto skip; 4615 4616 eb = path->nodes[0]; 4617 slot = path->slots[0]; 4618 item_size = btrfs_item_size_nr(eb, slot); 4619 if (item_size < sizeof(root_item)) 4620 goto skip; 4621 4622 read_extent_buffer(eb, &root_item, 4623 btrfs_item_ptr_offset(eb, slot), 4624 (int)sizeof(root_item)); 4625 if (btrfs_root_refs(&root_item) == 0) 4626 goto skip; 4627 4628 if (!btrfs_is_empty_uuid(root_item.uuid) || 4629 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4630 if (trans) 4631 goto update_tree; 4632 4633 btrfs_release_path(path); 4634 /* 4635 * 1 - subvol uuid item 4636 * 1 - received_subvol uuid item 4637 */ 4638 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4639 if (IS_ERR(trans)) { 4640 ret = PTR_ERR(trans); 4641 break; 4642 } 4643 continue; 4644 } else { 4645 goto skip; 4646 } 4647 update_tree: 4648 btrfs_release_path(path); 4649 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4650 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4651 BTRFS_UUID_KEY_SUBVOL, 4652 key.objectid); 4653 if (ret < 0) { 4654 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4655 ret); 4656 break; 4657 } 4658 } 4659 4660 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4661 ret = btrfs_uuid_tree_add(trans, 4662 root_item.received_uuid, 4663 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4664 key.objectid); 4665 if (ret < 0) { 4666 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4667 ret); 4668 break; 4669 } 4670 } 4671 4672 skip: 4673 btrfs_release_path(path); 4674 if (trans) { 4675 ret = btrfs_end_transaction(trans); 4676 trans = NULL; 4677 if (ret) 4678 break; 4679 } 4680 4681 if (key.offset < (u64)-1) { 4682 key.offset++; 4683 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4684 key.offset = 0; 4685 key.type = BTRFS_ROOT_ITEM_KEY; 4686 } else if (key.objectid < (u64)-1) { 4687 key.offset = 0; 4688 key.type = BTRFS_ROOT_ITEM_KEY; 4689 key.objectid++; 4690 } else { 4691 break; 4692 } 4693 cond_resched(); 4694 } 4695 4696 out: 4697 btrfs_free_path(path); 4698 if (trans && !IS_ERR(trans)) 4699 btrfs_end_transaction(trans); 4700 if (ret) 4701 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4702 else if (!closing) 4703 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4704 up(&fs_info->uuid_tree_rescan_sem); 4705 return 0; 4706 } 4707 4708 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4709 { 4710 struct btrfs_trans_handle *trans; 4711 struct btrfs_root *tree_root = fs_info->tree_root; 4712 struct btrfs_root *uuid_root; 4713 struct task_struct *task; 4714 int ret; 4715 4716 /* 4717 * 1 - root node 4718 * 1 - root item 4719 */ 4720 trans = btrfs_start_transaction(tree_root, 2); 4721 if (IS_ERR(trans)) 4722 return PTR_ERR(trans); 4723 4724 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4725 if (IS_ERR(uuid_root)) { 4726 ret = PTR_ERR(uuid_root); 4727 btrfs_abort_transaction(trans, ret); 4728 btrfs_end_transaction(trans); 4729 return ret; 4730 } 4731 4732 fs_info->uuid_root = uuid_root; 4733 4734 ret = btrfs_commit_transaction(trans); 4735 if (ret) 4736 return ret; 4737 4738 down(&fs_info->uuid_tree_rescan_sem); 4739 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4740 if (IS_ERR(task)) { 4741 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4742 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4743 up(&fs_info->uuid_tree_rescan_sem); 4744 return PTR_ERR(task); 4745 } 4746 4747 return 0; 4748 } 4749 4750 /* 4751 * shrinking a device means finding all of the device extents past 4752 * the new size, and then following the back refs to the chunks. 4753 * The chunk relocation code actually frees the device extent 4754 */ 4755 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4756 { 4757 struct btrfs_fs_info *fs_info = device->fs_info; 4758 struct btrfs_root *root = fs_info->dev_root; 4759 struct btrfs_trans_handle *trans; 4760 struct btrfs_dev_extent *dev_extent = NULL; 4761 struct btrfs_path *path; 4762 u64 length; 4763 u64 chunk_offset; 4764 int ret; 4765 int slot; 4766 int failed = 0; 4767 bool retried = false; 4768 struct extent_buffer *l; 4769 struct btrfs_key key; 4770 struct btrfs_super_block *super_copy = fs_info->super_copy; 4771 u64 old_total = btrfs_super_total_bytes(super_copy); 4772 u64 old_size = btrfs_device_get_total_bytes(device); 4773 u64 diff; 4774 u64 start; 4775 4776 new_size = round_down(new_size, fs_info->sectorsize); 4777 start = new_size; 4778 diff = round_down(old_size - new_size, fs_info->sectorsize); 4779 4780 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4781 return -EINVAL; 4782 4783 path = btrfs_alloc_path(); 4784 if (!path) 4785 return -ENOMEM; 4786 4787 path->reada = READA_BACK; 4788 4789 trans = btrfs_start_transaction(root, 0); 4790 if (IS_ERR(trans)) { 4791 btrfs_free_path(path); 4792 return PTR_ERR(trans); 4793 } 4794 4795 mutex_lock(&fs_info->chunk_mutex); 4796 4797 btrfs_device_set_total_bytes(device, new_size); 4798 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4799 device->fs_devices->total_rw_bytes -= diff; 4800 atomic64_sub(diff, &fs_info->free_chunk_space); 4801 } 4802 4803 /* 4804 * Once the device's size has been set to the new size, ensure all 4805 * in-memory chunks are synced to disk so that the loop below sees them 4806 * and relocates them accordingly. 4807 */ 4808 if (contains_pending_extent(device, &start, diff)) { 4809 mutex_unlock(&fs_info->chunk_mutex); 4810 ret = btrfs_commit_transaction(trans); 4811 if (ret) 4812 goto done; 4813 } else { 4814 mutex_unlock(&fs_info->chunk_mutex); 4815 btrfs_end_transaction(trans); 4816 } 4817 4818 again: 4819 key.objectid = device->devid; 4820 key.offset = (u64)-1; 4821 key.type = BTRFS_DEV_EXTENT_KEY; 4822 4823 do { 4824 mutex_lock(&fs_info->reclaim_bgs_lock); 4825 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4826 if (ret < 0) { 4827 mutex_unlock(&fs_info->reclaim_bgs_lock); 4828 goto done; 4829 } 4830 4831 ret = btrfs_previous_item(root, path, 0, key.type); 4832 if (ret) { 4833 mutex_unlock(&fs_info->reclaim_bgs_lock); 4834 if (ret < 0) 4835 goto done; 4836 ret = 0; 4837 btrfs_release_path(path); 4838 break; 4839 } 4840 4841 l = path->nodes[0]; 4842 slot = path->slots[0]; 4843 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4844 4845 if (key.objectid != device->devid) { 4846 mutex_unlock(&fs_info->reclaim_bgs_lock); 4847 btrfs_release_path(path); 4848 break; 4849 } 4850 4851 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4852 length = btrfs_dev_extent_length(l, dev_extent); 4853 4854 if (key.offset + length <= new_size) { 4855 mutex_unlock(&fs_info->reclaim_bgs_lock); 4856 btrfs_release_path(path); 4857 break; 4858 } 4859 4860 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4861 btrfs_release_path(path); 4862 4863 /* 4864 * We may be relocating the only data chunk we have, 4865 * which could potentially end up with losing data's 4866 * raid profile, so lets allocate an empty one in 4867 * advance. 4868 */ 4869 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4870 if (ret < 0) { 4871 mutex_unlock(&fs_info->reclaim_bgs_lock); 4872 goto done; 4873 } 4874 4875 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4876 mutex_unlock(&fs_info->reclaim_bgs_lock); 4877 if (ret == -ENOSPC) { 4878 failed++; 4879 } else if (ret) { 4880 if (ret == -ETXTBSY) { 4881 btrfs_warn(fs_info, 4882 "could not shrink block group %llu due to active swapfile", 4883 chunk_offset); 4884 } 4885 goto done; 4886 } 4887 } while (key.offset-- > 0); 4888 4889 if (failed && !retried) { 4890 failed = 0; 4891 retried = true; 4892 goto again; 4893 } else if (failed && retried) { 4894 ret = -ENOSPC; 4895 goto done; 4896 } 4897 4898 /* Shrinking succeeded, else we would be at "done". */ 4899 trans = btrfs_start_transaction(root, 0); 4900 if (IS_ERR(trans)) { 4901 ret = PTR_ERR(trans); 4902 goto done; 4903 } 4904 4905 mutex_lock(&fs_info->chunk_mutex); 4906 /* Clear all state bits beyond the shrunk device size */ 4907 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4908 CHUNK_STATE_MASK); 4909 4910 btrfs_device_set_disk_total_bytes(device, new_size); 4911 if (list_empty(&device->post_commit_list)) 4912 list_add_tail(&device->post_commit_list, 4913 &trans->transaction->dev_update_list); 4914 4915 WARN_ON(diff > old_total); 4916 btrfs_set_super_total_bytes(super_copy, 4917 round_down(old_total - diff, fs_info->sectorsize)); 4918 mutex_unlock(&fs_info->chunk_mutex); 4919 4920 /* Now btrfs_update_device() will change the on-disk size. */ 4921 ret = btrfs_update_device(trans, device); 4922 if (ret < 0) { 4923 btrfs_abort_transaction(trans, ret); 4924 btrfs_end_transaction(trans); 4925 } else { 4926 ret = btrfs_commit_transaction(trans); 4927 } 4928 done: 4929 btrfs_free_path(path); 4930 if (ret) { 4931 mutex_lock(&fs_info->chunk_mutex); 4932 btrfs_device_set_total_bytes(device, old_size); 4933 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4934 device->fs_devices->total_rw_bytes += diff; 4935 atomic64_add(diff, &fs_info->free_chunk_space); 4936 mutex_unlock(&fs_info->chunk_mutex); 4937 } 4938 return ret; 4939 } 4940 4941 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4942 struct btrfs_key *key, 4943 struct btrfs_chunk *chunk, int item_size) 4944 { 4945 struct btrfs_super_block *super_copy = fs_info->super_copy; 4946 struct btrfs_disk_key disk_key; 4947 u32 array_size; 4948 u8 *ptr; 4949 4950 lockdep_assert_held(&fs_info->chunk_mutex); 4951 4952 array_size = btrfs_super_sys_array_size(super_copy); 4953 if (array_size + item_size + sizeof(disk_key) 4954 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 4955 return -EFBIG; 4956 4957 ptr = super_copy->sys_chunk_array + array_size; 4958 btrfs_cpu_key_to_disk(&disk_key, key); 4959 memcpy(ptr, &disk_key, sizeof(disk_key)); 4960 ptr += sizeof(disk_key); 4961 memcpy(ptr, chunk, item_size); 4962 item_size += sizeof(disk_key); 4963 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4964 4965 return 0; 4966 } 4967 4968 /* 4969 * sort the devices in descending order by max_avail, total_avail 4970 */ 4971 static int btrfs_cmp_device_info(const void *a, const void *b) 4972 { 4973 const struct btrfs_device_info *di_a = a; 4974 const struct btrfs_device_info *di_b = b; 4975 4976 if (di_a->max_avail > di_b->max_avail) 4977 return -1; 4978 if (di_a->max_avail < di_b->max_avail) 4979 return 1; 4980 if (di_a->total_avail > di_b->total_avail) 4981 return -1; 4982 if (di_a->total_avail < di_b->total_avail) 4983 return 1; 4984 return 0; 4985 } 4986 4987 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4988 { 4989 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4990 return; 4991 4992 btrfs_set_fs_incompat(info, RAID56); 4993 } 4994 4995 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 4996 { 4997 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 4998 return; 4999 5000 btrfs_set_fs_incompat(info, RAID1C34); 5001 } 5002 5003 /* 5004 * Structure used internally for __btrfs_alloc_chunk() function. 5005 * Wraps needed parameters. 5006 */ 5007 struct alloc_chunk_ctl { 5008 u64 start; 5009 u64 type; 5010 /* Total number of stripes to allocate */ 5011 int num_stripes; 5012 /* sub_stripes info for map */ 5013 int sub_stripes; 5014 /* Stripes per device */ 5015 int dev_stripes; 5016 /* Maximum number of devices to use */ 5017 int devs_max; 5018 /* Minimum number of devices to use */ 5019 int devs_min; 5020 /* ndevs has to be a multiple of this */ 5021 int devs_increment; 5022 /* Number of copies */ 5023 int ncopies; 5024 /* Number of stripes worth of bytes to store parity information */ 5025 int nparity; 5026 u64 max_stripe_size; 5027 u64 max_chunk_size; 5028 u64 dev_extent_min; 5029 u64 stripe_size; 5030 u64 chunk_size; 5031 int ndevs; 5032 }; 5033 5034 static void init_alloc_chunk_ctl_policy_regular( 5035 struct btrfs_fs_devices *fs_devices, 5036 struct alloc_chunk_ctl *ctl) 5037 { 5038 u64 type = ctl->type; 5039 5040 if (type & BTRFS_BLOCK_GROUP_DATA) { 5041 ctl->max_stripe_size = SZ_1G; 5042 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 5043 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5044 /* For larger filesystems, use larger metadata chunks */ 5045 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 5046 ctl->max_stripe_size = SZ_1G; 5047 else 5048 ctl->max_stripe_size = SZ_256M; 5049 ctl->max_chunk_size = ctl->max_stripe_size; 5050 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5051 ctl->max_stripe_size = SZ_32M; 5052 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5053 ctl->devs_max = min_t(int, ctl->devs_max, 5054 BTRFS_MAX_DEVS_SYS_CHUNK); 5055 } else { 5056 BUG(); 5057 } 5058 5059 /* We don't want a chunk larger than 10% of writable space */ 5060 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 5061 ctl->max_chunk_size); 5062 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes; 5063 } 5064 5065 static void init_alloc_chunk_ctl_policy_zoned( 5066 struct btrfs_fs_devices *fs_devices, 5067 struct alloc_chunk_ctl *ctl) 5068 { 5069 u64 zone_size = fs_devices->fs_info->zone_size; 5070 u64 limit; 5071 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5072 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5073 u64 min_chunk_size = min_data_stripes * zone_size; 5074 u64 type = ctl->type; 5075 5076 ctl->max_stripe_size = zone_size; 5077 if (type & BTRFS_BLOCK_GROUP_DATA) { 5078 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5079 zone_size); 5080 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5081 ctl->max_chunk_size = ctl->max_stripe_size; 5082 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5083 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5084 ctl->devs_max = min_t(int, ctl->devs_max, 5085 BTRFS_MAX_DEVS_SYS_CHUNK); 5086 } else { 5087 BUG(); 5088 } 5089 5090 /* We don't want a chunk larger than 10% of writable space */ 5091 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1), 5092 zone_size), 5093 min_chunk_size); 5094 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5095 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5096 } 5097 5098 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5099 struct alloc_chunk_ctl *ctl) 5100 { 5101 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5102 5103 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5104 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5105 ctl->devs_max = btrfs_raid_array[index].devs_max; 5106 if (!ctl->devs_max) 5107 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5108 ctl->devs_min = btrfs_raid_array[index].devs_min; 5109 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5110 ctl->ncopies = btrfs_raid_array[index].ncopies; 5111 ctl->nparity = btrfs_raid_array[index].nparity; 5112 ctl->ndevs = 0; 5113 5114 switch (fs_devices->chunk_alloc_policy) { 5115 case BTRFS_CHUNK_ALLOC_REGULAR: 5116 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5117 break; 5118 case BTRFS_CHUNK_ALLOC_ZONED: 5119 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5120 break; 5121 default: 5122 BUG(); 5123 } 5124 } 5125 5126 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5127 struct alloc_chunk_ctl *ctl, 5128 struct btrfs_device_info *devices_info) 5129 { 5130 struct btrfs_fs_info *info = fs_devices->fs_info; 5131 struct btrfs_device *device; 5132 u64 total_avail; 5133 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5134 int ret; 5135 int ndevs = 0; 5136 u64 max_avail; 5137 u64 dev_offset; 5138 5139 /* 5140 * in the first pass through the devices list, we gather information 5141 * about the available holes on each device. 5142 */ 5143 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5144 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5145 WARN(1, KERN_ERR 5146 "BTRFS: read-only device in alloc_list\n"); 5147 continue; 5148 } 5149 5150 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5151 &device->dev_state) || 5152 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5153 continue; 5154 5155 if (device->total_bytes > device->bytes_used) 5156 total_avail = device->total_bytes - device->bytes_used; 5157 else 5158 total_avail = 0; 5159 5160 /* If there is no space on this device, skip it. */ 5161 if (total_avail < ctl->dev_extent_min) 5162 continue; 5163 5164 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5165 &max_avail); 5166 if (ret && ret != -ENOSPC) 5167 return ret; 5168 5169 if (ret == 0) 5170 max_avail = dev_extent_want; 5171 5172 if (max_avail < ctl->dev_extent_min) { 5173 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5174 btrfs_debug(info, 5175 "%s: devid %llu has no free space, have=%llu want=%llu", 5176 __func__, device->devid, max_avail, 5177 ctl->dev_extent_min); 5178 continue; 5179 } 5180 5181 if (ndevs == fs_devices->rw_devices) { 5182 WARN(1, "%s: found more than %llu devices\n", 5183 __func__, fs_devices->rw_devices); 5184 break; 5185 } 5186 devices_info[ndevs].dev_offset = dev_offset; 5187 devices_info[ndevs].max_avail = max_avail; 5188 devices_info[ndevs].total_avail = total_avail; 5189 devices_info[ndevs].dev = device; 5190 ++ndevs; 5191 } 5192 ctl->ndevs = ndevs; 5193 5194 /* 5195 * now sort the devices by hole size / available space 5196 */ 5197 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5198 btrfs_cmp_device_info, NULL); 5199 5200 return 0; 5201 } 5202 5203 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5204 struct btrfs_device_info *devices_info) 5205 { 5206 /* Number of stripes that count for block group size */ 5207 int data_stripes; 5208 5209 /* 5210 * The primary goal is to maximize the number of stripes, so use as 5211 * many devices as possible, even if the stripes are not maximum sized. 5212 * 5213 * The DUP profile stores more than one stripe per device, the 5214 * max_avail is the total size so we have to adjust. 5215 */ 5216 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5217 ctl->dev_stripes); 5218 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5219 5220 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5221 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5222 5223 /* 5224 * Use the number of data stripes to figure out how big this chunk is 5225 * really going to be in terms of logical address space, and compare 5226 * that answer with the max chunk size. If it's higher, we try to 5227 * reduce stripe_size. 5228 */ 5229 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5230 /* 5231 * Reduce stripe_size, round it up to a 16MB boundary again and 5232 * then use it, unless it ends up being even bigger than the 5233 * previous value we had already. 5234 */ 5235 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5236 data_stripes), SZ_16M), 5237 ctl->stripe_size); 5238 } 5239 5240 /* Align to BTRFS_STRIPE_LEN */ 5241 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5242 ctl->chunk_size = ctl->stripe_size * data_stripes; 5243 5244 return 0; 5245 } 5246 5247 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5248 struct btrfs_device_info *devices_info) 5249 { 5250 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5251 /* Number of stripes that count for block group size */ 5252 int data_stripes; 5253 5254 /* 5255 * It should hold because: 5256 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5257 */ 5258 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5259 5260 ctl->stripe_size = zone_size; 5261 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5262 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5263 5264 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5265 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5266 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5267 ctl->stripe_size) + ctl->nparity, 5268 ctl->dev_stripes); 5269 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5270 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5271 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5272 } 5273 5274 ctl->chunk_size = ctl->stripe_size * data_stripes; 5275 5276 return 0; 5277 } 5278 5279 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5280 struct alloc_chunk_ctl *ctl, 5281 struct btrfs_device_info *devices_info) 5282 { 5283 struct btrfs_fs_info *info = fs_devices->fs_info; 5284 5285 /* 5286 * Round down to number of usable stripes, devs_increment can be any 5287 * number so we can't use round_down() that requires power of 2, while 5288 * rounddown is safe. 5289 */ 5290 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5291 5292 if (ctl->ndevs < ctl->devs_min) { 5293 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5294 btrfs_debug(info, 5295 "%s: not enough devices with free space: have=%d minimum required=%d", 5296 __func__, ctl->ndevs, ctl->devs_min); 5297 } 5298 return -ENOSPC; 5299 } 5300 5301 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5302 5303 switch (fs_devices->chunk_alloc_policy) { 5304 case BTRFS_CHUNK_ALLOC_REGULAR: 5305 return decide_stripe_size_regular(ctl, devices_info); 5306 case BTRFS_CHUNK_ALLOC_ZONED: 5307 return decide_stripe_size_zoned(ctl, devices_info); 5308 default: 5309 BUG(); 5310 } 5311 } 5312 5313 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5314 struct alloc_chunk_ctl *ctl, 5315 struct btrfs_device_info *devices_info) 5316 { 5317 struct btrfs_fs_info *info = trans->fs_info; 5318 struct map_lookup *map = NULL; 5319 struct extent_map_tree *em_tree; 5320 struct btrfs_block_group *block_group; 5321 struct extent_map *em; 5322 u64 start = ctl->start; 5323 u64 type = ctl->type; 5324 int ret; 5325 int i; 5326 int j; 5327 5328 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5329 if (!map) 5330 return ERR_PTR(-ENOMEM); 5331 map->num_stripes = ctl->num_stripes; 5332 5333 for (i = 0; i < ctl->ndevs; ++i) { 5334 for (j = 0; j < ctl->dev_stripes; ++j) { 5335 int s = i * ctl->dev_stripes + j; 5336 map->stripes[s].dev = devices_info[i].dev; 5337 map->stripes[s].physical = devices_info[i].dev_offset + 5338 j * ctl->stripe_size; 5339 } 5340 } 5341 map->stripe_len = BTRFS_STRIPE_LEN; 5342 map->io_align = BTRFS_STRIPE_LEN; 5343 map->io_width = BTRFS_STRIPE_LEN; 5344 map->type = type; 5345 map->sub_stripes = ctl->sub_stripes; 5346 5347 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5348 5349 em = alloc_extent_map(); 5350 if (!em) { 5351 kfree(map); 5352 return ERR_PTR(-ENOMEM); 5353 } 5354 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5355 em->map_lookup = map; 5356 em->start = start; 5357 em->len = ctl->chunk_size; 5358 em->block_start = 0; 5359 em->block_len = em->len; 5360 em->orig_block_len = ctl->stripe_size; 5361 5362 em_tree = &info->mapping_tree; 5363 write_lock(&em_tree->lock); 5364 ret = add_extent_mapping(em_tree, em, 0); 5365 if (ret) { 5366 write_unlock(&em_tree->lock); 5367 free_extent_map(em); 5368 return ERR_PTR(ret); 5369 } 5370 write_unlock(&em_tree->lock); 5371 5372 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size); 5373 if (IS_ERR(block_group)) 5374 goto error_del_extent; 5375 5376 for (i = 0; i < map->num_stripes; i++) { 5377 struct btrfs_device *dev = map->stripes[i].dev; 5378 5379 btrfs_device_set_bytes_used(dev, 5380 dev->bytes_used + ctl->stripe_size); 5381 if (list_empty(&dev->post_commit_list)) 5382 list_add_tail(&dev->post_commit_list, 5383 &trans->transaction->dev_update_list); 5384 } 5385 5386 atomic64_sub(ctl->stripe_size * map->num_stripes, 5387 &info->free_chunk_space); 5388 5389 free_extent_map(em); 5390 check_raid56_incompat_flag(info, type); 5391 check_raid1c34_incompat_flag(info, type); 5392 5393 return block_group; 5394 5395 error_del_extent: 5396 write_lock(&em_tree->lock); 5397 remove_extent_mapping(em_tree, em); 5398 write_unlock(&em_tree->lock); 5399 5400 /* One for our allocation */ 5401 free_extent_map(em); 5402 /* One for the tree reference */ 5403 free_extent_map(em); 5404 5405 return block_group; 5406 } 5407 5408 struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 5409 u64 type) 5410 { 5411 struct btrfs_fs_info *info = trans->fs_info; 5412 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5413 struct btrfs_device_info *devices_info = NULL; 5414 struct alloc_chunk_ctl ctl; 5415 struct btrfs_block_group *block_group; 5416 int ret; 5417 5418 lockdep_assert_held(&info->chunk_mutex); 5419 5420 if (!alloc_profile_is_valid(type, 0)) { 5421 ASSERT(0); 5422 return ERR_PTR(-EINVAL); 5423 } 5424 5425 if (list_empty(&fs_devices->alloc_list)) { 5426 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5427 btrfs_debug(info, "%s: no writable device", __func__); 5428 return ERR_PTR(-ENOSPC); 5429 } 5430 5431 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5432 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5433 ASSERT(0); 5434 return ERR_PTR(-EINVAL); 5435 } 5436 5437 ctl.start = find_next_chunk(info); 5438 ctl.type = type; 5439 init_alloc_chunk_ctl(fs_devices, &ctl); 5440 5441 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5442 GFP_NOFS); 5443 if (!devices_info) 5444 return ERR_PTR(-ENOMEM); 5445 5446 ret = gather_device_info(fs_devices, &ctl, devices_info); 5447 if (ret < 0) { 5448 block_group = ERR_PTR(ret); 5449 goto out; 5450 } 5451 5452 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5453 if (ret < 0) { 5454 block_group = ERR_PTR(ret); 5455 goto out; 5456 } 5457 5458 block_group = create_chunk(trans, &ctl, devices_info); 5459 5460 out: 5461 kfree(devices_info); 5462 return block_group; 5463 } 5464 5465 /* 5466 * This function, btrfs_finish_chunk_alloc(), belongs to phase 2. 5467 * 5468 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5469 * phases. 5470 */ 5471 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 5472 u64 chunk_offset, u64 chunk_size) 5473 { 5474 struct btrfs_fs_info *fs_info = trans->fs_info; 5475 struct btrfs_device *device; 5476 struct extent_map *em; 5477 struct map_lookup *map; 5478 u64 dev_offset; 5479 u64 stripe_size; 5480 int i; 5481 int ret = 0; 5482 5483 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 5484 if (IS_ERR(em)) 5485 return PTR_ERR(em); 5486 5487 map = em->map_lookup; 5488 stripe_size = em->orig_block_len; 5489 5490 /* 5491 * Take the device list mutex to prevent races with the final phase of 5492 * a device replace operation that replaces the device object associated 5493 * with the map's stripes, because the device object's id can change 5494 * at any time during that final phase of the device replace operation 5495 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5496 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5497 * resulting in persisting a device extent item with such ID. 5498 */ 5499 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5500 for (i = 0; i < map->num_stripes; i++) { 5501 device = map->stripes[i].dev; 5502 dev_offset = map->stripes[i].physical; 5503 5504 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5505 dev_offset, stripe_size); 5506 if (ret) 5507 break; 5508 } 5509 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5510 5511 free_extent_map(em); 5512 return ret; 5513 } 5514 5515 /* 5516 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5517 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5518 * chunks. 5519 * 5520 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5521 * phases. 5522 */ 5523 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5524 struct btrfs_block_group *bg) 5525 { 5526 struct btrfs_fs_info *fs_info = trans->fs_info; 5527 struct btrfs_root *extent_root = fs_info->extent_root; 5528 struct btrfs_root *chunk_root = fs_info->chunk_root; 5529 struct btrfs_key key; 5530 struct btrfs_chunk *chunk; 5531 struct btrfs_stripe *stripe; 5532 struct extent_map *em; 5533 struct map_lookup *map; 5534 size_t item_size; 5535 int i; 5536 int ret; 5537 5538 /* 5539 * We take the chunk_mutex for 2 reasons: 5540 * 5541 * 1) Updates and insertions in the chunk btree must be done while holding 5542 * the chunk_mutex, as well as updating the system chunk array in the 5543 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5544 * details; 5545 * 5546 * 2) To prevent races with the final phase of a device replace operation 5547 * that replaces the device object associated with the map's stripes, 5548 * because the device object's id can change at any time during that 5549 * final phase of the device replace operation 5550 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5551 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5552 * which would cause a failure when updating the device item, which does 5553 * not exists, or persisting a stripe of the chunk item with such ID. 5554 * Here we can't use the device_list_mutex because our caller already 5555 * has locked the chunk_mutex, and the final phase of device replace 5556 * acquires both mutexes - first the device_list_mutex and then the 5557 * chunk_mutex. Using any of those two mutexes protects us from a 5558 * concurrent device replace. 5559 */ 5560 lockdep_assert_held(&fs_info->chunk_mutex); 5561 5562 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5563 if (IS_ERR(em)) { 5564 ret = PTR_ERR(em); 5565 btrfs_abort_transaction(trans, ret); 5566 return ret; 5567 } 5568 5569 map = em->map_lookup; 5570 item_size = btrfs_chunk_item_size(map->num_stripes); 5571 5572 chunk = kzalloc(item_size, GFP_NOFS); 5573 if (!chunk) { 5574 ret = -ENOMEM; 5575 btrfs_abort_transaction(trans, ret); 5576 goto out; 5577 } 5578 5579 for (i = 0; i < map->num_stripes; i++) { 5580 struct btrfs_device *device = map->stripes[i].dev; 5581 5582 ret = btrfs_update_device(trans, device); 5583 if (ret) 5584 goto out; 5585 } 5586 5587 stripe = &chunk->stripe; 5588 for (i = 0; i < map->num_stripes; i++) { 5589 struct btrfs_device *device = map->stripes[i].dev; 5590 const u64 dev_offset = map->stripes[i].physical; 5591 5592 btrfs_set_stack_stripe_devid(stripe, device->devid); 5593 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5594 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5595 stripe++; 5596 } 5597 5598 btrfs_set_stack_chunk_length(chunk, bg->length); 5599 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5600 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5601 btrfs_set_stack_chunk_type(chunk, map->type); 5602 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5603 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5604 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5605 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5606 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5607 5608 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5609 key.type = BTRFS_CHUNK_ITEM_KEY; 5610 key.offset = bg->start; 5611 5612 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5613 if (ret) 5614 goto out; 5615 5616 bg->chunk_item_inserted = 1; 5617 5618 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5619 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5620 if (ret) 5621 goto out; 5622 } 5623 5624 out: 5625 kfree(chunk); 5626 free_extent_map(em); 5627 return ret; 5628 } 5629 5630 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5631 { 5632 struct btrfs_fs_info *fs_info = trans->fs_info; 5633 u64 alloc_profile; 5634 struct btrfs_block_group *meta_bg; 5635 struct btrfs_block_group *sys_bg; 5636 5637 /* 5638 * When adding a new device for sprouting, the seed device is read-only 5639 * so we must first allocate a metadata and a system chunk. But before 5640 * adding the block group items to the extent, device and chunk btrees, 5641 * we must first: 5642 * 5643 * 1) Create both chunks without doing any changes to the btrees, as 5644 * otherwise we would get -ENOSPC since the block groups from the 5645 * seed device are read-only; 5646 * 5647 * 2) Add the device item for the new sprout device - finishing the setup 5648 * of a new block group requires updating the device item in the chunk 5649 * btree, so it must exist when we attempt to do it. The previous step 5650 * ensures this does not fail with -ENOSPC. 5651 * 5652 * After that we can add the block group items to their btrees: 5653 * update existing device item in the chunk btree, add a new block group 5654 * item to the extent btree, add a new chunk item to the chunk btree and 5655 * finally add the new device extent items to the devices btree. 5656 */ 5657 5658 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5659 meta_bg = btrfs_alloc_chunk(trans, alloc_profile); 5660 if (IS_ERR(meta_bg)) 5661 return PTR_ERR(meta_bg); 5662 5663 alloc_profile = btrfs_system_alloc_profile(fs_info); 5664 sys_bg = btrfs_alloc_chunk(trans, alloc_profile); 5665 if (IS_ERR(sys_bg)) 5666 return PTR_ERR(sys_bg); 5667 5668 return 0; 5669 } 5670 5671 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5672 { 5673 const int index = btrfs_bg_flags_to_raid_index(map->type); 5674 5675 return btrfs_raid_array[index].tolerated_failures; 5676 } 5677 5678 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5679 { 5680 struct extent_map *em; 5681 struct map_lookup *map; 5682 int readonly = 0; 5683 int miss_ndevs = 0; 5684 int i; 5685 5686 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5687 if (IS_ERR(em)) 5688 return 1; 5689 5690 map = em->map_lookup; 5691 for (i = 0; i < map->num_stripes; i++) { 5692 if (test_bit(BTRFS_DEV_STATE_MISSING, 5693 &map->stripes[i].dev->dev_state)) { 5694 miss_ndevs++; 5695 continue; 5696 } 5697 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5698 &map->stripes[i].dev->dev_state)) { 5699 readonly = 1; 5700 goto end; 5701 } 5702 } 5703 5704 /* 5705 * If the number of missing devices is larger than max errors, 5706 * we can not write the data into that chunk successfully, so 5707 * set it readonly. 5708 */ 5709 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5710 readonly = 1; 5711 end: 5712 free_extent_map(em); 5713 return readonly; 5714 } 5715 5716 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5717 { 5718 struct extent_map *em; 5719 5720 while (1) { 5721 write_lock(&tree->lock); 5722 em = lookup_extent_mapping(tree, 0, (u64)-1); 5723 if (em) 5724 remove_extent_mapping(tree, em); 5725 write_unlock(&tree->lock); 5726 if (!em) 5727 break; 5728 /* once for us */ 5729 free_extent_map(em); 5730 /* once for the tree */ 5731 free_extent_map(em); 5732 } 5733 } 5734 5735 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5736 { 5737 struct extent_map *em; 5738 struct map_lookup *map; 5739 int ret; 5740 5741 em = btrfs_get_chunk_map(fs_info, logical, len); 5742 if (IS_ERR(em)) 5743 /* 5744 * We could return errors for these cases, but that could get 5745 * ugly and we'd probably do the same thing which is just not do 5746 * anything else and exit, so return 1 so the callers don't try 5747 * to use other copies. 5748 */ 5749 return 1; 5750 5751 map = em->map_lookup; 5752 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5753 ret = map->num_stripes; 5754 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5755 ret = map->sub_stripes; 5756 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5757 ret = 2; 5758 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5759 /* 5760 * There could be two corrupted data stripes, we need 5761 * to loop retry in order to rebuild the correct data. 5762 * 5763 * Fail a stripe at a time on every retry except the 5764 * stripe under reconstruction. 5765 */ 5766 ret = map->num_stripes; 5767 else 5768 ret = 1; 5769 free_extent_map(em); 5770 5771 down_read(&fs_info->dev_replace.rwsem); 5772 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5773 fs_info->dev_replace.tgtdev) 5774 ret++; 5775 up_read(&fs_info->dev_replace.rwsem); 5776 5777 return ret; 5778 } 5779 5780 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5781 u64 logical) 5782 { 5783 struct extent_map *em; 5784 struct map_lookup *map; 5785 unsigned long len = fs_info->sectorsize; 5786 5787 em = btrfs_get_chunk_map(fs_info, logical, len); 5788 5789 if (!WARN_ON(IS_ERR(em))) { 5790 map = em->map_lookup; 5791 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5792 len = map->stripe_len * nr_data_stripes(map); 5793 free_extent_map(em); 5794 } 5795 return len; 5796 } 5797 5798 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5799 { 5800 struct extent_map *em; 5801 struct map_lookup *map; 5802 int ret = 0; 5803 5804 em = btrfs_get_chunk_map(fs_info, logical, len); 5805 5806 if(!WARN_ON(IS_ERR(em))) { 5807 map = em->map_lookup; 5808 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5809 ret = 1; 5810 free_extent_map(em); 5811 } 5812 return ret; 5813 } 5814 5815 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5816 struct map_lookup *map, int first, 5817 int dev_replace_is_ongoing) 5818 { 5819 int i; 5820 int num_stripes; 5821 int preferred_mirror; 5822 int tolerance; 5823 struct btrfs_device *srcdev; 5824 5825 ASSERT((map->type & 5826 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5827 5828 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5829 num_stripes = map->sub_stripes; 5830 else 5831 num_stripes = map->num_stripes; 5832 5833 switch (fs_info->fs_devices->read_policy) { 5834 default: 5835 /* Shouldn't happen, just warn and use pid instead of failing */ 5836 btrfs_warn_rl(fs_info, 5837 "unknown read_policy type %u, reset to pid", 5838 fs_info->fs_devices->read_policy); 5839 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5840 fallthrough; 5841 case BTRFS_READ_POLICY_PID: 5842 preferred_mirror = first + (current->pid % num_stripes); 5843 break; 5844 } 5845 5846 if (dev_replace_is_ongoing && 5847 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5848 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5849 srcdev = fs_info->dev_replace.srcdev; 5850 else 5851 srcdev = NULL; 5852 5853 /* 5854 * try to avoid the drive that is the source drive for a 5855 * dev-replace procedure, only choose it if no other non-missing 5856 * mirror is available 5857 */ 5858 for (tolerance = 0; tolerance < 2; tolerance++) { 5859 if (map->stripes[preferred_mirror].dev->bdev && 5860 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5861 return preferred_mirror; 5862 for (i = first; i < first + num_stripes; i++) { 5863 if (map->stripes[i].dev->bdev && 5864 (tolerance || map->stripes[i].dev != srcdev)) 5865 return i; 5866 } 5867 } 5868 5869 /* we couldn't find one that doesn't fail. Just return something 5870 * and the io error handling code will clean up eventually 5871 */ 5872 return preferred_mirror; 5873 } 5874 5875 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5876 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5877 { 5878 int i; 5879 int again = 1; 5880 5881 while (again) { 5882 again = 0; 5883 for (i = 0; i < num_stripes - 1; i++) { 5884 /* Swap if parity is on a smaller index */ 5885 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) { 5886 swap(bbio->stripes[i], bbio->stripes[i + 1]); 5887 swap(bbio->raid_map[i], bbio->raid_map[i + 1]); 5888 again = 1; 5889 } 5890 } 5891 } 5892 } 5893 5894 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5895 { 5896 struct btrfs_bio *bbio = kzalloc( 5897 /* the size of the btrfs_bio */ 5898 sizeof(struct btrfs_bio) + 5899 /* plus the variable array for the stripes */ 5900 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5901 /* plus the variable array for the tgt dev */ 5902 sizeof(int) * (real_stripes) + 5903 /* 5904 * plus the raid_map, which includes both the tgt dev 5905 * and the stripes 5906 */ 5907 sizeof(u64) * (total_stripes), 5908 GFP_NOFS|__GFP_NOFAIL); 5909 5910 atomic_set(&bbio->error, 0); 5911 refcount_set(&bbio->refs, 1); 5912 5913 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes); 5914 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes); 5915 5916 return bbio; 5917 } 5918 5919 void btrfs_get_bbio(struct btrfs_bio *bbio) 5920 { 5921 WARN_ON(!refcount_read(&bbio->refs)); 5922 refcount_inc(&bbio->refs); 5923 } 5924 5925 void btrfs_put_bbio(struct btrfs_bio *bbio) 5926 { 5927 if (!bbio) 5928 return; 5929 if (refcount_dec_and_test(&bbio->refs)) 5930 kfree(bbio); 5931 } 5932 5933 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5934 /* 5935 * Please note that, discard won't be sent to target device of device 5936 * replace. 5937 */ 5938 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5939 u64 logical, u64 *length_ret, 5940 struct btrfs_bio **bbio_ret) 5941 { 5942 struct extent_map *em; 5943 struct map_lookup *map; 5944 struct btrfs_bio *bbio; 5945 u64 length = *length_ret; 5946 u64 offset; 5947 u64 stripe_nr; 5948 u64 stripe_nr_end; 5949 u64 stripe_end_offset; 5950 u64 stripe_cnt; 5951 u64 stripe_len; 5952 u64 stripe_offset; 5953 u64 num_stripes; 5954 u32 stripe_index; 5955 u32 factor = 0; 5956 u32 sub_stripes = 0; 5957 u64 stripes_per_dev = 0; 5958 u32 remaining_stripes = 0; 5959 u32 last_stripe = 0; 5960 int ret = 0; 5961 int i; 5962 5963 /* discard always return a bbio */ 5964 ASSERT(bbio_ret); 5965 5966 em = btrfs_get_chunk_map(fs_info, logical, length); 5967 if (IS_ERR(em)) 5968 return PTR_ERR(em); 5969 5970 map = em->map_lookup; 5971 /* we don't discard raid56 yet */ 5972 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5973 ret = -EOPNOTSUPP; 5974 goto out; 5975 } 5976 5977 offset = logical - em->start; 5978 length = min_t(u64, em->start + em->len - logical, length); 5979 *length_ret = length; 5980 5981 stripe_len = map->stripe_len; 5982 /* 5983 * stripe_nr counts the total number of stripes we have to stride 5984 * to get to this block 5985 */ 5986 stripe_nr = div64_u64(offset, stripe_len); 5987 5988 /* stripe_offset is the offset of this block in its stripe */ 5989 stripe_offset = offset - stripe_nr * stripe_len; 5990 5991 stripe_nr_end = round_up(offset + length, map->stripe_len); 5992 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5993 stripe_cnt = stripe_nr_end - stripe_nr; 5994 stripe_end_offset = stripe_nr_end * map->stripe_len - 5995 (offset + length); 5996 /* 5997 * after this, stripe_nr is the number of stripes on this 5998 * device we have to walk to find the data, and stripe_index is 5999 * the number of our device in the stripe array 6000 */ 6001 num_stripes = 1; 6002 stripe_index = 0; 6003 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6004 BTRFS_BLOCK_GROUP_RAID10)) { 6005 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6006 sub_stripes = 1; 6007 else 6008 sub_stripes = map->sub_stripes; 6009 6010 factor = map->num_stripes / sub_stripes; 6011 num_stripes = min_t(u64, map->num_stripes, 6012 sub_stripes * stripe_cnt); 6013 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6014 stripe_index *= sub_stripes; 6015 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 6016 &remaining_stripes); 6017 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 6018 last_stripe *= sub_stripes; 6019 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6020 BTRFS_BLOCK_GROUP_DUP)) { 6021 num_stripes = map->num_stripes; 6022 } else { 6023 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6024 &stripe_index); 6025 } 6026 6027 bbio = alloc_btrfs_bio(num_stripes, 0); 6028 if (!bbio) { 6029 ret = -ENOMEM; 6030 goto out; 6031 } 6032 6033 for (i = 0; i < num_stripes; i++) { 6034 bbio->stripes[i].physical = 6035 map->stripes[stripe_index].physical + 6036 stripe_offset + stripe_nr * map->stripe_len; 6037 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 6038 6039 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6040 BTRFS_BLOCK_GROUP_RAID10)) { 6041 bbio->stripes[i].length = stripes_per_dev * 6042 map->stripe_len; 6043 6044 if (i / sub_stripes < remaining_stripes) 6045 bbio->stripes[i].length += 6046 map->stripe_len; 6047 6048 /* 6049 * Special for the first stripe and 6050 * the last stripe: 6051 * 6052 * |-------|...|-------| 6053 * |----------| 6054 * off end_off 6055 */ 6056 if (i < sub_stripes) 6057 bbio->stripes[i].length -= 6058 stripe_offset; 6059 6060 if (stripe_index >= last_stripe && 6061 stripe_index <= (last_stripe + 6062 sub_stripes - 1)) 6063 bbio->stripes[i].length -= 6064 stripe_end_offset; 6065 6066 if (i == sub_stripes - 1) 6067 stripe_offset = 0; 6068 } else { 6069 bbio->stripes[i].length = length; 6070 } 6071 6072 stripe_index++; 6073 if (stripe_index == map->num_stripes) { 6074 stripe_index = 0; 6075 stripe_nr++; 6076 } 6077 } 6078 6079 *bbio_ret = bbio; 6080 bbio->map_type = map->type; 6081 bbio->num_stripes = num_stripes; 6082 out: 6083 free_extent_map(em); 6084 return ret; 6085 } 6086 6087 /* 6088 * In dev-replace case, for repair case (that's the only case where the mirror 6089 * is selected explicitly when calling btrfs_map_block), blocks left of the 6090 * left cursor can also be read from the target drive. 6091 * 6092 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 6093 * array of stripes. 6094 * For READ, it also needs to be supported using the same mirror number. 6095 * 6096 * If the requested block is not left of the left cursor, EIO is returned. This 6097 * can happen because btrfs_num_copies() returns one more in the dev-replace 6098 * case. 6099 */ 6100 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 6101 u64 logical, u64 length, 6102 u64 srcdev_devid, int *mirror_num, 6103 u64 *physical) 6104 { 6105 struct btrfs_bio *bbio = NULL; 6106 int num_stripes; 6107 int index_srcdev = 0; 6108 int found = 0; 6109 u64 physical_of_found = 0; 6110 int i; 6111 int ret = 0; 6112 6113 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 6114 logical, &length, &bbio, 0, 0); 6115 if (ret) { 6116 ASSERT(bbio == NULL); 6117 return ret; 6118 } 6119 6120 num_stripes = bbio->num_stripes; 6121 if (*mirror_num > num_stripes) { 6122 /* 6123 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 6124 * that means that the requested area is not left of the left 6125 * cursor 6126 */ 6127 btrfs_put_bbio(bbio); 6128 return -EIO; 6129 } 6130 6131 /* 6132 * process the rest of the function using the mirror_num of the source 6133 * drive. Therefore look it up first. At the end, patch the device 6134 * pointer to the one of the target drive. 6135 */ 6136 for (i = 0; i < num_stripes; i++) { 6137 if (bbio->stripes[i].dev->devid != srcdev_devid) 6138 continue; 6139 6140 /* 6141 * In case of DUP, in order to keep it simple, only add the 6142 * mirror with the lowest physical address 6143 */ 6144 if (found && 6145 physical_of_found <= bbio->stripes[i].physical) 6146 continue; 6147 6148 index_srcdev = i; 6149 found = 1; 6150 physical_of_found = bbio->stripes[i].physical; 6151 } 6152 6153 btrfs_put_bbio(bbio); 6154 6155 ASSERT(found); 6156 if (!found) 6157 return -EIO; 6158 6159 *mirror_num = index_srcdev + 1; 6160 *physical = physical_of_found; 6161 return ret; 6162 } 6163 6164 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6165 { 6166 struct btrfs_block_group *cache; 6167 bool ret; 6168 6169 /* Non zoned filesystem does not use "to_copy" flag */ 6170 if (!btrfs_is_zoned(fs_info)) 6171 return false; 6172 6173 cache = btrfs_lookup_block_group(fs_info, logical); 6174 6175 spin_lock(&cache->lock); 6176 ret = cache->to_copy; 6177 spin_unlock(&cache->lock); 6178 6179 btrfs_put_block_group(cache); 6180 return ret; 6181 } 6182 6183 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6184 struct btrfs_bio **bbio_ret, 6185 struct btrfs_dev_replace *dev_replace, 6186 u64 logical, 6187 int *num_stripes_ret, int *max_errors_ret) 6188 { 6189 struct btrfs_bio *bbio = *bbio_ret; 6190 u64 srcdev_devid = dev_replace->srcdev->devid; 6191 int tgtdev_indexes = 0; 6192 int num_stripes = *num_stripes_ret; 6193 int max_errors = *max_errors_ret; 6194 int i; 6195 6196 if (op == BTRFS_MAP_WRITE) { 6197 int index_where_to_add; 6198 6199 /* 6200 * A block group which have "to_copy" set will eventually 6201 * copied by dev-replace process. We can avoid cloning IO here. 6202 */ 6203 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6204 return; 6205 6206 /* 6207 * duplicate the write operations while the dev replace 6208 * procedure is running. Since the copying of the old disk to 6209 * the new disk takes place at run time while the filesystem is 6210 * mounted writable, the regular write operations to the old 6211 * disk have to be duplicated to go to the new disk as well. 6212 * 6213 * Note that device->missing is handled by the caller, and that 6214 * the write to the old disk is already set up in the stripes 6215 * array. 6216 */ 6217 index_where_to_add = num_stripes; 6218 for (i = 0; i < num_stripes; i++) { 6219 if (bbio->stripes[i].dev->devid == srcdev_devid) { 6220 /* write to new disk, too */ 6221 struct btrfs_bio_stripe *new = 6222 bbio->stripes + index_where_to_add; 6223 struct btrfs_bio_stripe *old = 6224 bbio->stripes + i; 6225 6226 new->physical = old->physical; 6227 new->length = old->length; 6228 new->dev = dev_replace->tgtdev; 6229 bbio->tgtdev_map[i] = index_where_to_add; 6230 index_where_to_add++; 6231 max_errors++; 6232 tgtdev_indexes++; 6233 } 6234 } 6235 num_stripes = index_where_to_add; 6236 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 6237 int index_srcdev = 0; 6238 int found = 0; 6239 u64 physical_of_found = 0; 6240 6241 /* 6242 * During the dev-replace procedure, the target drive can also 6243 * be used to read data in case it is needed to repair a corrupt 6244 * block elsewhere. This is possible if the requested area is 6245 * left of the left cursor. In this area, the target drive is a 6246 * full copy of the source drive. 6247 */ 6248 for (i = 0; i < num_stripes; i++) { 6249 if (bbio->stripes[i].dev->devid == srcdev_devid) { 6250 /* 6251 * In case of DUP, in order to keep it simple, 6252 * only add the mirror with the lowest physical 6253 * address 6254 */ 6255 if (found && 6256 physical_of_found <= 6257 bbio->stripes[i].physical) 6258 continue; 6259 index_srcdev = i; 6260 found = 1; 6261 physical_of_found = bbio->stripes[i].physical; 6262 } 6263 } 6264 if (found) { 6265 struct btrfs_bio_stripe *tgtdev_stripe = 6266 bbio->stripes + num_stripes; 6267 6268 tgtdev_stripe->physical = physical_of_found; 6269 tgtdev_stripe->length = 6270 bbio->stripes[index_srcdev].length; 6271 tgtdev_stripe->dev = dev_replace->tgtdev; 6272 bbio->tgtdev_map[index_srcdev] = num_stripes; 6273 6274 tgtdev_indexes++; 6275 num_stripes++; 6276 } 6277 } 6278 6279 *num_stripes_ret = num_stripes; 6280 *max_errors_ret = max_errors; 6281 bbio->num_tgtdevs = tgtdev_indexes; 6282 *bbio_ret = bbio; 6283 } 6284 6285 static bool need_full_stripe(enum btrfs_map_op op) 6286 { 6287 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 6288 } 6289 6290 /* 6291 * Calculate the geometry of a particular (address, len) tuple. This 6292 * information is used to calculate how big a particular bio can get before it 6293 * straddles a stripe. 6294 * 6295 * @fs_info: the filesystem 6296 * @em: mapping containing the logical extent 6297 * @op: type of operation - write or read 6298 * @logical: address that we want to figure out the geometry of 6299 * @io_geom: pointer used to return values 6300 * 6301 * Returns < 0 in case a chunk for the given logical address cannot be found, 6302 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 6303 */ 6304 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em, 6305 enum btrfs_map_op op, u64 logical, 6306 struct btrfs_io_geometry *io_geom) 6307 { 6308 struct map_lookup *map; 6309 u64 len; 6310 u64 offset; 6311 u64 stripe_offset; 6312 u64 stripe_nr; 6313 u64 stripe_len; 6314 u64 raid56_full_stripe_start = (u64)-1; 6315 int data_stripes; 6316 6317 ASSERT(op != BTRFS_MAP_DISCARD); 6318 6319 map = em->map_lookup; 6320 /* Offset of this logical address in the chunk */ 6321 offset = logical - em->start; 6322 /* Len of a stripe in a chunk */ 6323 stripe_len = map->stripe_len; 6324 /* Stripe where this block falls in */ 6325 stripe_nr = div64_u64(offset, stripe_len); 6326 /* Offset of stripe in the chunk */ 6327 stripe_offset = stripe_nr * stripe_len; 6328 if (offset < stripe_offset) { 6329 btrfs_crit(fs_info, 6330 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 6331 stripe_offset, offset, em->start, logical, stripe_len); 6332 return -EINVAL; 6333 } 6334 6335 /* stripe_offset is the offset of this block in its stripe */ 6336 stripe_offset = offset - stripe_offset; 6337 data_stripes = nr_data_stripes(map); 6338 6339 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6340 u64 max_len = stripe_len - stripe_offset; 6341 6342 /* 6343 * In case of raid56, we need to know the stripe aligned start 6344 */ 6345 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6346 unsigned long full_stripe_len = stripe_len * data_stripes; 6347 raid56_full_stripe_start = offset; 6348 6349 /* 6350 * Allow a write of a full stripe, but make sure we 6351 * don't allow straddling of stripes 6352 */ 6353 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 6354 full_stripe_len); 6355 raid56_full_stripe_start *= full_stripe_len; 6356 6357 /* 6358 * For writes to RAID[56], allow a full stripeset across 6359 * all disks. For other RAID types and for RAID[56] 6360 * reads, just allow a single stripe (on a single disk). 6361 */ 6362 if (op == BTRFS_MAP_WRITE) { 6363 max_len = stripe_len * data_stripes - 6364 (offset - raid56_full_stripe_start); 6365 } 6366 } 6367 len = min_t(u64, em->len - offset, max_len); 6368 } else { 6369 len = em->len - offset; 6370 } 6371 6372 io_geom->len = len; 6373 io_geom->offset = offset; 6374 io_geom->stripe_len = stripe_len; 6375 io_geom->stripe_nr = stripe_nr; 6376 io_geom->stripe_offset = stripe_offset; 6377 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 6378 6379 return 0; 6380 } 6381 6382 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 6383 enum btrfs_map_op op, 6384 u64 logical, u64 *length, 6385 struct btrfs_bio **bbio_ret, 6386 int mirror_num, int need_raid_map) 6387 { 6388 struct extent_map *em; 6389 struct map_lookup *map; 6390 u64 stripe_offset; 6391 u64 stripe_nr; 6392 u64 stripe_len; 6393 u32 stripe_index; 6394 int data_stripes; 6395 int i; 6396 int ret = 0; 6397 int num_stripes; 6398 int max_errors = 0; 6399 int tgtdev_indexes = 0; 6400 struct btrfs_bio *bbio = NULL; 6401 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6402 int dev_replace_is_ongoing = 0; 6403 int num_alloc_stripes; 6404 int patch_the_first_stripe_for_dev_replace = 0; 6405 u64 physical_to_patch_in_first_stripe = 0; 6406 u64 raid56_full_stripe_start = (u64)-1; 6407 struct btrfs_io_geometry geom; 6408 6409 ASSERT(bbio_ret); 6410 ASSERT(op != BTRFS_MAP_DISCARD); 6411 6412 em = btrfs_get_chunk_map(fs_info, logical, *length); 6413 ASSERT(!IS_ERR(em)); 6414 6415 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom); 6416 if (ret < 0) 6417 return ret; 6418 6419 map = em->map_lookup; 6420 6421 *length = geom.len; 6422 stripe_len = geom.stripe_len; 6423 stripe_nr = geom.stripe_nr; 6424 stripe_offset = geom.stripe_offset; 6425 raid56_full_stripe_start = geom.raid56_stripe_offset; 6426 data_stripes = nr_data_stripes(map); 6427 6428 down_read(&dev_replace->rwsem); 6429 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6430 /* 6431 * Hold the semaphore for read during the whole operation, write is 6432 * requested at commit time but must wait. 6433 */ 6434 if (!dev_replace_is_ongoing) 6435 up_read(&dev_replace->rwsem); 6436 6437 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6438 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6439 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6440 dev_replace->srcdev->devid, 6441 &mirror_num, 6442 &physical_to_patch_in_first_stripe); 6443 if (ret) 6444 goto out; 6445 else 6446 patch_the_first_stripe_for_dev_replace = 1; 6447 } else if (mirror_num > map->num_stripes) { 6448 mirror_num = 0; 6449 } 6450 6451 num_stripes = 1; 6452 stripe_index = 0; 6453 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6454 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6455 &stripe_index); 6456 if (!need_full_stripe(op)) 6457 mirror_num = 1; 6458 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6459 if (need_full_stripe(op)) 6460 num_stripes = map->num_stripes; 6461 else if (mirror_num) 6462 stripe_index = mirror_num - 1; 6463 else { 6464 stripe_index = find_live_mirror(fs_info, map, 0, 6465 dev_replace_is_ongoing); 6466 mirror_num = stripe_index + 1; 6467 } 6468 6469 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6470 if (need_full_stripe(op)) { 6471 num_stripes = map->num_stripes; 6472 } else if (mirror_num) { 6473 stripe_index = mirror_num - 1; 6474 } else { 6475 mirror_num = 1; 6476 } 6477 6478 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6479 u32 factor = map->num_stripes / map->sub_stripes; 6480 6481 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6482 stripe_index *= map->sub_stripes; 6483 6484 if (need_full_stripe(op)) 6485 num_stripes = map->sub_stripes; 6486 else if (mirror_num) 6487 stripe_index += mirror_num - 1; 6488 else { 6489 int old_stripe_index = stripe_index; 6490 stripe_index = find_live_mirror(fs_info, map, 6491 stripe_index, 6492 dev_replace_is_ongoing); 6493 mirror_num = stripe_index - old_stripe_index + 1; 6494 } 6495 6496 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6497 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6498 /* push stripe_nr back to the start of the full stripe */ 6499 stripe_nr = div64_u64(raid56_full_stripe_start, 6500 stripe_len * data_stripes); 6501 6502 /* RAID[56] write or recovery. Return all stripes */ 6503 num_stripes = map->num_stripes; 6504 max_errors = nr_parity_stripes(map); 6505 6506 *length = map->stripe_len; 6507 stripe_index = 0; 6508 stripe_offset = 0; 6509 } else { 6510 /* 6511 * Mirror #0 or #1 means the original data block. 6512 * Mirror #2 is RAID5 parity block. 6513 * Mirror #3 is RAID6 Q block. 6514 */ 6515 stripe_nr = div_u64_rem(stripe_nr, 6516 data_stripes, &stripe_index); 6517 if (mirror_num > 1) 6518 stripe_index = data_stripes + mirror_num - 2; 6519 6520 /* We distribute the parity blocks across stripes */ 6521 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6522 &stripe_index); 6523 if (!need_full_stripe(op) && mirror_num <= 1) 6524 mirror_num = 1; 6525 } 6526 } else { 6527 /* 6528 * after this, stripe_nr is the number of stripes on this 6529 * device we have to walk to find the data, and stripe_index is 6530 * the number of our device in the stripe array 6531 */ 6532 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6533 &stripe_index); 6534 mirror_num = stripe_index + 1; 6535 } 6536 if (stripe_index >= map->num_stripes) { 6537 btrfs_crit(fs_info, 6538 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6539 stripe_index, map->num_stripes); 6540 ret = -EINVAL; 6541 goto out; 6542 } 6543 6544 num_alloc_stripes = num_stripes; 6545 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6546 if (op == BTRFS_MAP_WRITE) 6547 num_alloc_stripes <<= 1; 6548 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6549 num_alloc_stripes++; 6550 tgtdev_indexes = num_stripes; 6551 } 6552 6553 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 6554 if (!bbio) { 6555 ret = -ENOMEM; 6556 goto out; 6557 } 6558 6559 for (i = 0; i < num_stripes; i++) { 6560 bbio->stripes[i].physical = map->stripes[stripe_index].physical + 6561 stripe_offset + stripe_nr * map->stripe_len; 6562 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 6563 stripe_index++; 6564 } 6565 6566 /* build raid_map */ 6567 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6568 (need_full_stripe(op) || mirror_num > 1)) { 6569 u64 tmp; 6570 unsigned rot; 6571 6572 /* Work out the disk rotation on this stripe-set */ 6573 div_u64_rem(stripe_nr, num_stripes, &rot); 6574 6575 /* Fill in the logical address of each stripe */ 6576 tmp = stripe_nr * data_stripes; 6577 for (i = 0; i < data_stripes; i++) 6578 bbio->raid_map[(i+rot) % num_stripes] = 6579 em->start + (tmp + i) * map->stripe_len; 6580 6581 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 6582 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6583 bbio->raid_map[(i+rot+1) % num_stripes] = 6584 RAID6_Q_STRIPE; 6585 6586 sort_parity_stripes(bbio, num_stripes); 6587 } 6588 6589 if (need_full_stripe(op)) 6590 max_errors = btrfs_chunk_max_errors(map); 6591 6592 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6593 need_full_stripe(op)) { 6594 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical, 6595 &num_stripes, &max_errors); 6596 } 6597 6598 *bbio_ret = bbio; 6599 bbio->map_type = map->type; 6600 bbio->num_stripes = num_stripes; 6601 bbio->max_errors = max_errors; 6602 bbio->mirror_num = mirror_num; 6603 6604 /* 6605 * this is the case that REQ_READ && dev_replace_is_ongoing && 6606 * mirror_num == num_stripes + 1 && dev_replace target drive is 6607 * available as a mirror 6608 */ 6609 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6610 WARN_ON(num_stripes > 1); 6611 bbio->stripes[0].dev = dev_replace->tgtdev; 6612 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 6613 bbio->mirror_num = map->num_stripes + 1; 6614 } 6615 out: 6616 if (dev_replace_is_ongoing) { 6617 lockdep_assert_held(&dev_replace->rwsem); 6618 /* Unlock and let waiting writers proceed */ 6619 up_read(&dev_replace->rwsem); 6620 } 6621 free_extent_map(em); 6622 return ret; 6623 } 6624 6625 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6626 u64 logical, u64 *length, 6627 struct btrfs_bio **bbio_ret, int mirror_num) 6628 { 6629 if (op == BTRFS_MAP_DISCARD) 6630 return __btrfs_map_block_for_discard(fs_info, logical, 6631 length, bbio_ret); 6632 6633 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 6634 mirror_num, 0); 6635 } 6636 6637 /* For Scrub/replace */ 6638 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6639 u64 logical, u64 *length, 6640 struct btrfs_bio **bbio_ret) 6641 { 6642 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6643 } 6644 6645 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6646 { 6647 bio->bi_private = bbio->private; 6648 bio->bi_end_io = bbio->end_io; 6649 bio_endio(bio); 6650 6651 btrfs_put_bbio(bbio); 6652 } 6653 6654 static void btrfs_end_bio(struct bio *bio) 6655 { 6656 struct btrfs_bio *bbio = bio->bi_private; 6657 int is_orig_bio = 0; 6658 6659 if (bio->bi_status) { 6660 atomic_inc(&bbio->error); 6661 if (bio->bi_status == BLK_STS_IOERR || 6662 bio->bi_status == BLK_STS_TARGET) { 6663 struct btrfs_device *dev = btrfs_io_bio(bio)->device; 6664 6665 ASSERT(dev->bdev); 6666 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 6667 btrfs_dev_stat_inc_and_print(dev, 6668 BTRFS_DEV_STAT_WRITE_ERRS); 6669 else if (!(bio->bi_opf & REQ_RAHEAD)) 6670 btrfs_dev_stat_inc_and_print(dev, 6671 BTRFS_DEV_STAT_READ_ERRS); 6672 if (bio->bi_opf & REQ_PREFLUSH) 6673 btrfs_dev_stat_inc_and_print(dev, 6674 BTRFS_DEV_STAT_FLUSH_ERRS); 6675 } 6676 } 6677 6678 if (bio == bbio->orig_bio) 6679 is_orig_bio = 1; 6680 6681 btrfs_bio_counter_dec(bbio->fs_info); 6682 6683 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6684 if (!is_orig_bio) { 6685 bio_put(bio); 6686 bio = bbio->orig_bio; 6687 } 6688 6689 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6690 /* only send an error to the higher layers if it is 6691 * beyond the tolerance of the btrfs bio 6692 */ 6693 if (atomic_read(&bbio->error) > bbio->max_errors) { 6694 bio->bi_status = BLK_STS_IOERR; 6695 } else { 6696 /* 6697 * this bio is actually up to date, we didn't 6698 * go over the max number of errors 6699 */ 6700 bio->bi_status = BLK_STS_OK; 6701 } 6702 6703 btrfs_end_bbio(bbio, bio); 6704 } else if (!is_orig_bio) { 6705 bio_put(bio); 6706 } 6707 } 6708 6709 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6710 u64 physical, struct btrfs_device *dev) 6711 { 6712 struct btrfs_fs_info *fs_info = bbio->fs_info; 6713 6714 bio->bi_private = bbio; 6715 btrfs_io_bio(bio)->device = dev; 6716 bio->bi_end_io = btrfs_end_bio; 6717 bio->bi_iter.bi_sector = physical >> 9; 6718 /* 6719 * For zone append writing, bi_sector must point the beginning of the 6720 * zone 6721 */ 6722 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 6723 if (btrfs_dev_is_sequential(dev, physical)) { 6724 u64 zone_start = round_down(physical, fs_info->zone_size); 6725 6726 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 6727 } else { 6728 bio->bi_opf &= ~REQ_OP_ZONE_APPEND; 6729 bio->bi_opf |= REQ_OP_WRITE; 6730 } 6731 } 6732 btrfs_debug_in_rcu(fs_info, 6733 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6734 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 6735 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name), 6736 dev->devid, bio->bi_iter.bi_size); 6737 bio_set_dev(bio, dev->bdev); 6738 6739 btrfs_bio_counter_inc_noblocked(fs_info); 6740 6741 btrfsic_submit_bio(bio); 6742 } 6743 6744 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6745 { 6746 atomic_inc(&bbio->error); 6747 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6748 /* Should be the original bio. */ 6749 WARN_ON(bio != bbio->orig_bio); 6750 6751 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6752 bio->bi_iter.bi_sector = logical >> 9; 6753 if (atomic_read(&bbio->error) > bbio->max_errors) 6754 bio->bi_status = BLK_STS_IOERR; 6755 else 6756 bio->bi_status = BLK_STS_OK; 6757 btrfs_end_bbio(bbio, bio); 6758 } 6759 } 6760 6761 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6762 int mirror_num) 6763 { 6764 struct btrfs_device *dev; 6765 struct bio *first_bio = bio; 6766 u64 logical = bio->bi_iter.bi_sector << 9; 6767 u64 length = 0; 6768 u64 map_length; 6769 int ret; 6770 int dev_nr; 6771 int total_devs; 6772 struct btrfs_bio *bbio = NULL; 6773 6774 length = bio->bi_iter.bi_size; 6775 map_length = length; 6776 6777 btrfs_bio_counter_inc_blocked(fs_info); 6778 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6779 &map_length, &bbio, mirror_num, 1); 6780 if (ret) { 6781 btrfs_bio_counter_dec(fs_info); 6782 return errno_to_blk_status(ret); 6783 } 6784 6785 total_devs = bbio->num_stripes; 6786 bbio->orig_bio = first_bio; 6787 bbio->private = first_bio->bi_private; 6788 bbio->end_io = first_bio->bi_end_io; 6789 bbio->fs_info = fs_info; 6790 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6791 6792 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6793 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) { 6794 /* In this case, map_length has been set to the length of 6795 a single stripe; not the whole write */ 6796 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 6797 ret = raid56_parity_write(fs_info, bio, bbio, 6798 map_length); 6799 } else { 6800 ret = raid56_parity_recover(fs_info, bio, bbio, 6801 map_length, mirror_num, 1); 6802 } 6803 6804 btrfs_bio_counter_dec(fs_info); 6805 return errno_to_blk_status(ret); 6806 } 6807 6808 if (map_length < length) { 6809 btrfs_crit(fs_info, 6810 "mapping failed logical %llu bio len %llu len %llu", 6811 logical, length, map_length); 6812 BUG(); 6813 } 6814 6815 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6816 dev = bbio->stripes[dev_nr].dev; 6817 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6818 &dev->dev_state) || 6819 (btrfs_op(first_bio) == BTRFS_MAP_WRITE && 6820 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6821 bbio_error(bbio, first_bio, logical); 6822 continue; 6823 } 6824 6825 if (dev_nr < total_devs - 1) 6826 bio = btrfs_bio_clone(first_bio); 6827 else 6828 bio = first_bio; 6829 6830 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev); 6831 } 6832 btrfs_bio_counter_dec(fs_info); 6833 return BLK_STS_OK; 6834 } 6835 6836 /* 6837 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6838 * return NULL. 6839 * 6840 * If devid and uuid are both specified, the match must be exact, otherwise 6841 * only devid is used. 6842 */ 6843 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 6844 u64 devid, u8 *uuid, u8 *fsid) 6845 { 6846 struct btrfs_device *device; 6847 struct btrfs_fs_devices *seed_devs; 6848 6849 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6850 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6851 if (device->devid == devid && 6852 (!uuid || memcmp(device->uuid, uuid, 6853 BTRFS_UUID_SIZE) == 0)) 6854 return device; 6855 } 6856 } 6857 6858 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6859 if (!fsid || 6860 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6861 list_for_each_entry(device, &seed_devs->devices, 6862 dev_list) { 6863 if (device->devid == devid && 6864 (!uuid || memcmp(device->uuid, uuid, 6865 BTRFS_UUID_SIZE) == 0)) 6866 return device; 6867 } 6868 } 6869 } 6870 6871 return NULL; 6872 } 6873 6874 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6875 u64 devid, u8 *dev_uuid) 6876 { 6877 struct btrfs_device *device; 6878 unsigned int nofs_flag; 6879 6880 /* 6881 * We call this under the chunk_mutex, so we want to use NOFS for this 6882 * allocation, however we don't want to change btrfs_alloc_device() to 6883 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6884 * places. 6885 */ 6886 nofs_flag = memalloc_nofs_save(); 6887 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6888 memalloc_nofs_restore(nofs_flag); 6889 if (IS_ERR(device)) 6890 return device; 6891 6892 list_add(&device->dev_list, &fs_devices->devices); 6893 device->fs_devices = fs_devices; 6894 fs_devices->num_devices++; 6895 6896 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6897 fs_devices->missing_devices++; 6898 6899 return device; 6900 } 6901 6902 /** 6903 * btrfs_alloc_device - allocate struct btrfs_device 6904 * @fs_info: used only for generating a new devid, can be NULL if 6905 * devid is provided (i.e. @devid != NULL). 6906 * @devid: a pointer to devid for this device. If NULL a new devid 6907 * is generated. 6908 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6909 * is generated. 6910 * 6911 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6912 * on error. Returned struct is not linked onto any lists and must be 6913 * destroyed with btrfs_free_device. 6914 */ 6915 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6916 const u64 *devid, 6917 const u8 *uuid) 6918 { 6919 struct btrfs_device *dev; 6920 u64 tmp; 6921 6922 if (WARN_ON(!devid && !fs_info)) 6923 return ERR_PTR(-EINVAL); 6924 6925 dev = __alloc_device(fs_info); 6926 if (IS_ERR(dev)) 6927 return dev; 6928 6929 if (devid) 6930 tmp = *devid; 6931 else { 6932 int ret; 6933 6934 ret = find_next_devid(fs_info, &tmp); 6935 if (ret) { 6936 btrfs_free_device(dev); 6937 return ERR_PTR(ret); 6938 } 6939 } 6940 dev->devid = tmp; 6941 6942 if (uuid) 6943 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6944 else 6945 generate_random_uuid(dev->uuid); 6946 6947 return dev; 6948 } 6949 6950 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6951 u64 devid, u8 *uuid, bool error) 6952 { 6953 if (error) 6954 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6955 devid, uuid); 6956 else 6957 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6958 devid, uuid); 6959 } 6960 6961 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 6962 { 6963 int index = btrfs_bg_flags_to_raid_index(type); 6964 int ncopies = btrfs_raid_array[index].ncopies; 6965 const int nparity = btrfs_raid_array[index].nparity; 6966 int data_stripes; 6967 6968 if (nparity) 6969 data_stripes = num_stripes - nparity; 6970 else 6971 data_stripes = num_stripes / ncopies; 6972 6973 return div_u64(chunk_len, data_stripes); 6974 } 6975 6976 #if BITS_PER_LONG == 32 6977 /* 6978 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6979 * can't be accessed on 32bit systems. 6980 * 6981 * This function do mount time check to reject the fs if it already has 6982 * metadata chunk beyond that limit. 6983 */ 6984 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6985 u64 logical, u64 length, u64 type) 6986 { 6987 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6988 return 0; 6989 6990 if (logical + length < MAX_LFS_FILESIZE) 6991 return 0; 6992 6993 btrfs_err_32bit_limit(fs_info); 6994 return -EOVERFLOW; 6995 } 6996 6997 /* 6998 * This is to give early warning for any metadata chunk reaching 6999 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 7000 * Although we can still access the metadata, it's not going to be possible 7001 * once the limit is reached. 7002 */ 7003 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7004 u64 logical, u64 length, u64 type) 7005 { 7006 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7007 return; 7008 7009 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 7010 return; 7011 7012 btrfs_warn_32bit_limit(fs_info); 7013 } 7014 #endif 7015 7016 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 7017 struct btrfs_chunk *chunk) 7018 { 7019 struct btrfs_fs_info *fs_info = leaf->fs_info; 7020 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7021 struct map_lookup *map; 7022 struct extent_map *em; 7023 u64 logical; 7024 u64 length; 7025 u64 devid; 7026 u64 type; 7027 u8 uuid[BTRFS_UUID_SIZE]; 7028 int num_stripes; 7029 int ret; 7030 int i; 7031 7032 logical = key->offset; 7033 length = btrfs_chunk_length(leaf, chunk); 7034 type = btrfs_chunk_type(leaf, chunk); 7035 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7036 7037 #if BITS_PER_LONG == 32 7038 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7039 if (ret < 0) 7040 return ret; 7041 warn_32bit_meta_chunk(fs_info, logical, length, type); 7042 #endif 7043 7044 /* 7045 * Only need to verify chunk item if we're reading from sys chunk array, 7046 * as chunk item in tree block is already verified by tree-checker. 7047 */ 7048 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 7049 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 7050 if (ret) 7051 return ret; 7052 } 7053 7054 read_lock(&map_tree->lock); 7055 em = lookup_extent_mapping(map_tree, logical, 1); 7056 read_unlock(&map_tree->lock); 7057 7058 /* already mapped? */ 7059 if (em && em->start <= logical && em->start + em->len > logical) { 7060 free_extent_map(em); 7061 return 0; 7062 } else if (em) { 7063 free_extent_map(em); 7064 } 7065 7066 em = alloc_extent_map(); 7067 if (!em) 7068 return -ENOMEM; 7069 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 7070 if (!map) { 7071 free_extent_map(em); 7072 return -ENOMEM; 7073 } 7074 7075 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 7076 em->map_lookup = map; 7077 em->start = logical; 7078 em->len = length; 7079 em->orig_start = 0; 7080 em->block_start = 0; 7081 em->block_len = em->len; 7082 7083 map->num_stripes = num_stripes; 7084 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7085 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7086 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 7087 map->type = type; 7088 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 7089 map->verified_stripes = 0; 7090 em->orig_block_len = calc_stripe_length(type, em->len, 7091 map->num_stripes); 7092 for (i = 0; i < num_stripes; i++) { 7093 map->stripes[i].physical = 7094 btrfs_stripe_offset_nr(leaf, chunk, i); 7095 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7096 read_extent_buffer(leaf, uuid, (unsigned long) 7097 btrfs_stripe_dev_uuid_nr(chunk, i), 7098 BTRFS_UUID_SIZE); 7099 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, 7100 devid, uuid, NULL); 7101 if (!map->stripes[i].dev && 7102 !btrfs_test_opt(fs_info, DEGRADED)) { 7103 free_extent_map(em); 7104 btrfs_report_missing_device(fs_info, devid, uuid, true); 7105 return -ENOENT; 7106 } 7107 if (!map->stripes[i].dev) { 7108 map->stripes[i].dev = 7109 add_missing_dev(fs_info->fs_devices, devid, 7110 uuid); 7111 if (IS_ERR(map->stripes[i].dev)) { 7112 free_extent_map(em); 7113 btrfs_err(fs_info, 7114 "failed to init missing dev %llu: %ld", 7115 devid, PTR_ERR(map->stripes[i].dev)); 7116 return PTR_ERR(map->stripes[i].dev); 7117 } 7118 btrfs_report_missing_device(fs_info, devid, uuid, false); 7119 } 7120 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7121 &(map->stripes[i].dev->dev_state)); 7122 7123 } 7124 7125 write_lock(&map_tree->lock); 7126 ret = add_extent_mapping(map_tree, em, 0); 7127 write_unlock(&map_tree->lock); 7128 if (ret < 0) { 7129 btrfs_err(fs_info, 7130 "failed to add chunk map, start=%llu len=%llu: %d", 7131 em->start, em->len, ret); 7132 } 7133 free_extent_map(em); 7134 7135 return ret; 7136 } 7137 7138 static void fill_device_from_item(struct extent_buffer *leaf, 7139 struct btrfs_dev_item *dev_item, 7140 struct btrfs_device *device) 7141 { 7142 unsigned long ptr; 7143 7144 device->devid = btrfs_device_id(leaf, dev_item); 7145 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7146 device->total_bytes = device->disk_total_bytes; 7147 device->commit_total_bytes = device->disk_total_bytes; 7148 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7149 device->commit_bytes_used = device->bytes_used; 7150 device->type = btrfs_device_type(leaf, dev_item); 7151 device->io_align = btrfs_device_io_align(leaf, dev_item); 7152 device->io_width = btrfs_device_io_width(leaf, dev_item); 7153 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7154 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7155 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7156 7157 ptr = btrfs_device_uuid(dev_item); 7158 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7159 } 7160 7161 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7162 u8 *fsid) 7163 { 7164 struct btrfs_fs_devices *fs_devices; 7165 int ret; 7166 7167 lockdep_assert_held(&uuid_mutex); 7168 ASSERT(fsid); 7169 7170 /* This will match only for multi-device seed fs */ 7171 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7172 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7173 return fs_devices; 7174 7175 7176 fs_devices = find_fsid(fsid, NULL); 7177 if (!fs_devices) { 7178 if (!btrfs_test_opt(fs_info, DEGRADED)) 7179 return ERR_PTR(-ENOENT); 7180 7181 fs_devices = alloc_fs_devices(fsid, NULL); 7182 if (IS_ERR(fs_devices)) 7183 return fs_devices; 7184 7185 fs_devices->seeding = true; 7186 fs_devices->opened = 1; 7187 return fs_devices; 7188 } 7189 7190 /* 7191 * Upon first call for a seed fs fsid, just create a private copy of the 7192 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7193 */ 7194 fs_devices = clone_fs_devices(fs_devices); 7195 if (IS_ERR(fs_devices)) 7196 return fs_devices; 7197 7198 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 7199 if (ret) { 7200 free_fs_devices(fs_devices); 7201 return ERR_PTR(ret); 7202 } 7203 7204 if (!fs_devices->seeding) { 7205 close_fs_devices(fs_devices); 7206 free_fs_devices(fs_devices); 7207 return ERR_PTR(-EINVAL); 7208 } 7209 7210 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7211 7212 return fs_devices; 7213 } 7214 7215 static int read_one_dev(struct extent_buffer *leaf, 7216 struct btrfs_dev_item *dev_item) 7217 { 7218 struct btrfs_fs_info *fs_info = leaf->fs_info; 7219 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7220 struct btrfs_device *device; 7221 u64 devid; 7222 int ret; 7223 u8 fs_uuid[BTRFS_FSID_SIZE]; 7224 u8 dev_uuid[BTRFS_UUID_SIZE]; 7225 7226 devid = btrfs_device_id(leaf, dev_item); 7227 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7228 BTRFS_UUID_SIZE); 7229 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7230 BTRFS_FSID_SIZE); 7231 7232 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7233 fs_devices = open_seed_devices(fs_info, fs_uuid); 7234 if (IS_ERR(fs_devices)) 7235 return PTR_ERR(fs_devices); 7236 } 7237 7238 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 7239 fs_uuid); 7240 if (!device) { 7241 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7242 btrfs_report_missing_device(fs_info, devid, 7243 dev_uuid, true); 7244 return -ENOENT; 7245 } 7246 7247 device = add_missing_dev(fs_devices, devid, dev_uuid); 7248 if (IS_ERR(device)) { 7249 btrfs_err(fs_info, 7250 "failed to add missing dev %llu: %ld", 7251 devid, PTR_ERR(device)); 7252 return PTR_ERR(device); 7253 } 7254 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7255 } else { 7256 if (!device->bdev) { 7257 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7258 btrfs_report_missing_device(fs_info, 7259 devid, dev_uuid, true); 7260 return -ENOENT; 7261 } 7262 btrfs_report_missing_device(fs_info, devid, 7263 dev_uuid, false); 7264 } 7265 7266 if (!device->bdev && 7267 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7268 /* 7269 * this happens when a device that was properly setup 7270 * in the device info lists suddenly goes bad. 7271 * device->bdev is NULL, and so we have to set 7272 * device->missing to one here 7273 */ 7274 device->fs_devices->missing_devices++; 7275 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7276 } 7277 7278 /* Move the device to its own fs_devices */ 7279 if (device->fs_devices != fs_devices) { 7280 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7281 &device->dev_state)); 7282 7283 list_move(&device->dev_list, &fs_devices->devices); 7284 device->fs_devices->num_devices--; 7285 fs_devices->num_devices++; 7286 7287 device->fs_devices->missing_devices--; 7288 fs_devices->missing_devices++; 7289 7290 device->fs_devices = fs_devices; 7291 } 7292 } 7293 7294 if (device->fs_devices != fs_info->fs_devices) { 7295 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7296 if (device->generation != 7297 btrfs_device_generation(leaf, dev_item)) 7298 return -EINVAL; 7299 } 7300 7301 fill_device_from_item(leaf, dev_item, device); 7302 if (device->bdev) { 7303 u64 max_total_bytes = i_size_read(device->bdev->bd_inode); 7304 7305 if (device->total_bytes > max_total_bytes) { 7306 btrfs_err(fs_info, 7307 "device total_bytes should be at most %llu but found %llu", 7308 max_total_bytes, device->total_bytes); 7309 return -EINVAL; 7310 } 7311 } 7312 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7313 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7314 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7315 device->fs_devices->total_rw_bytes += device->total_bytes; 7316 atomic64_add(device->total_bytes - device->bytes_used, 7317 &fs_info->free_chunk_space); 7318 } 7319 ret = 0; 7320 return ret; 7321 } 7322 7323 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7324 { 7325 struct btrfs_root *root = fs_info->tree_root; 7326 struct btrfs_super_block *super_copy = fs_info->super_copy; 7327 struct extent_buffer *sb; 7328 struct btrfs_disk_key *disk_key; 7329 struct btrfs_chunk *chunk; 7330 u8 *array_ptr; 7331 unsigned long sb_array_offset; 7332 int ret = 0; 7333 u32 num_stripes; 7334 u32 array_size; 7335 u32 len = 0; 7336 u32 cur_offset; 7337 u64 type; 7338 struct btrfs_key key; 7339 7340 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7341 /* 7342 * This will create extent buffer of nodesize, superblock size is 7343 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 7344 * overallocate but we can keep it as-is, only the first page is used. 7345 */ 7346 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET, 7347 root->root_key.objectid, 0); 7348 if (IS_ERR(sb)) 7349 return PTR_ERR(sb); 7350 set_extent_buffer_uptodate(sb); 7351 /* 7352 * The sb extent buffer is artificial and just used to read the system array. 7353 * set_extent_buffer_uptodate() call does not properly mark all it's 7354 * pages up-to-date when the page is larger: extent does not cover the 7355 * whole page and consequently check_page_uptodate does not find all 7356 * the page's extents up-to-date (the hole beyond sb), 7357 * write_extent_buffer then triggers a WARN_ON. 7358 * 7359 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 7360 * but sb spans only this function. Add an explicit SetPageUptodate call 7361 * to silence the warning eg. on PowerPC 64. 7362 */ 7363 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 7364 SetPageUptodate(sb->pages[0]); 7365 7366 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7367 array_size = btrfs_super_sys_array_size(super_copy); 7368 7369 array_ptr = super_copy->sys_chunk_array; 7370 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7371 cur_offset = 0; 7372 7373 while (cur_offset < array_size) { 7374 disk_key = (struct btrfs_disk_key *)array_ptr; 7375 len = sizeof(*disk_key); 7376 if (cur_offset + len > array_size) 7377 goto out_short_read; 7378 7379 btrfs_disk_key_to_cpu(&key, disk_key); 7380 7381 array_ptr += len; 7382 sb_array_offset += len; 7383 cur_offset += len; 7384 7385 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7386 btrfs_err(fs_info, 7387 "unexpected item type %u in sys_array at offset %u", 7388 (u32)key.type, cur_offset); 7389 ret = -EIO; 7390 break; 7391 } 7392 7393 chunk = (struct btrfs_chunk *)sb_array_offset; 7394 /* 7395 * At least one btrfs_chunk with one stripe must be present, 7396 * exact stripe count check comes afterwards 7397 */ 7398 len = btrfs_chunk_item_size(1); 7399 if (cur_offset + len > array_size) 7400 goto out_short_read; 7401 7402 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7403 if (!num_stripes) { 7404 btrfs_err(fs_info, 7405 "invalid number of stripes %u in sys_array at offset %u", 7406 num_stripes, cur_offset); 7407 ret = -EIO; 7408 break; 7409 } 7410 7411 type = btrfs_chunk_type(sb, chunk); 7412 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7413 btrfs_err(fs_info, 7414 "invalid chunk type %llu in sys_array at offset %u", 7415 type, cur_offset); 7416 ret = -EIO; 7417 break; 7418 } 7419 7420 len = btrfs_chunk_item_size(num_stripes); 7421 if (cur_offset + len > array_size) 7422 goto out_short_read; 7423 7424 ret = read_one_chunk(&key, sb, chunk); 7425 if (ret) 7426 break; 7427 7428 array_ptr += len; 7429 sb_array_offset += len; 7430 cur_offset += len; 7431 } 7432 clear_extent_buffer_uptodate(sb); 7433 free_extent_buffer_stale(sb); 7434 return ret; 7435 7436 out_short_read: 7437 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7438 len, cur_offset); 7439 clear_extent_buffer_uptodate(sb); 7440 free_extent_buffer_stale(sb); 7441 return -EIO; 7442 } 7443 7444 /* 7445 * Check if all chunks in the fs are OK for read-write degraded mount 7446 * 7447 * If the @failing_dev is specified, it's accounted as missing. 7448 * 7449 * Return true if all chunks meet the minimal RW mount requirements. 7450 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7451 */ 7452 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7453 struct btrfs_device *failing_dev) 7454 { 7455 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7456 struct extent_map *em; 7457 u64 next_start = 0; 7458 bool ret = true; 7459 7460 read_lock(&map_tree->lock); 7461 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7462 read_unlock(&map_tree->lock); 7463 /* No chunk at all? Return false anyway */ 7464 if (!em) { 7465 ret = false; 7466 goto out; 7467 } 7468 while (em) { 7469 struct map_lookup *map; 7470 int missing = 0; 7471 int max_tolerated; 7472 int i; 7473 7474 map = em->map_lookup; 7475 max_tolerated = 7476 btrfs_get_num_tolerated_disk_barrier_failures( 7477 map->type); 7478 for (i = 0; i < map->num_stripes; i++) { 7479 struct btrfs_device *dev = map->stripes[i].dev; 7480 7481 if (!dev || !dev->bdev || 7482 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7483 dev->last_flush_error) 7484 missing++; 7485 else if (failing_dev && failing_dev == dev) 7486 missing++; 7487 } 7488 if (missing > max_tolerated) { 7489 if (!failing_dev) 7490 btrfs_warn(fs_info, 7491 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7492 em->start, missing, max_tolerated); 7493 free_extent_map(em); 7494 ret = false; 7495 goto out; 7496 } 7497 next_start = extent_map_end(em); 7498 free_extent_map(em); 7499 7500 read_lock(&map_tree->lock); 7501 em = lookup_extent_mapping(map_tree, next_start, 7502 (u64)(-1) - next_start); 7503 read_unlock(&map_tree->lock); 7504 } 7505 out: 7506 return ret; 7507 } 7508 7509 static void readahead_tree_node_children(struct extent_buffer *node) 7510 { 7511 int i; 7512 const int nr_items = btrfs_header_nritems(node); 7513 7514 for (i = 0; i < nr_items; i++) 7515 btrfs_readahead_node_child(node, i); 7516 } 7517 7518 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7519 { 7520 struct btrfs_root *root = fs_info->chunk_root; 7521 struct btrfs_path *path; 7522 struct extent_buffer *leaf; 7523 struct btrfs_key key; 7524 struct btrfs_key found_key; 7525 int ret; 7526 int slot; 7527 u64 total_dev = 0; 7528 u64 last_ra_node = 0; 7529 7530 path = btrfs_alloc_path(); 7531 if (!path) 7532 return -ENOMEM; 7533 7534 /* 7535 * uuid_mutex is needed only if we are mounting a sprout FS 7536 * otherwise we don't need it. 7537 */ 7538 mutex_lock(&uuid_mutex); 7539 7540 /* 7541 * It is possible for mount and umount to race in such a way that 7542 * we execute this code path, but open_fs_devices failed to clear 7543 * total_rw_bytes. We certainly want it cleared before reading the 7544 * device items, so clear it here. 7545 */ 7546 fs_info->fs_devices->total_rw_bytes = 0; 7547 7548 /* 7549 * Read all device items, and then all the chunk items. All 7550 * device items are found before any chunk item (their object id 7551 * is smaller than the lowest possible object id for a chunk 7552 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7553 */ 7554 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7555 key.offset = 0; 7556 key.type = 0; 7557 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7558 if (ret < 0) 7559 goto error; 7560 while (1) { 7561 struct extent_buffer *node; 7562 7563 leaf = path->nodes[0]; 7564 slot = path->slots[0]; 7565 if (slot >= btrfs_header_nritems(leaf)) { 7566 ret = btrfs_next_leaf(root, path); 7567 if (ret == 0) 7568 continue; 7569 if (ret < 0) 7570 goto error; 7571 break; 7572 } 7573 /* 7574 * The nodes on level 1 are not locked but we don't need to do 7575 * that during mount time as nothing else can access the tree 7576 */ 7577 node = path->nodes[1]; 7578 if (node) { 7579 if (last_ra_node != node->start) { 7580 readahead_tree_node_children(node); 7581 last_ra_node = node->start; 7582 } 7583 } 7584 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7585 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7586 struct btrfs_dev_item *dev_item; 7587 dev_item = btrfs_item_ptr(leaf, slot, 7588 struct btrfs_dev_item); 7589 ret = read_one_dev(leaf, dev_item); 7590 if (ret) 7591 goto error; 7592 total_dev++; 7593 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7594 struct btrfs_chunk *chunk; 7595 7596 /* 7597 * We are only called at mount time, so no need to take 7598 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7599 * we always lock first fs_info->chunk_mutex before 7600 * acquiring any locks on the chunk tree. This is a 7601 * requirement for chunk allocation, see the comment on 7602 * top of btrfs_chunk_alloc() for details. 7603 */ 7604 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7605 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7606 ret = read_one_chunk(&found_key, leaf, chunk); 7607 if (ret) 7608 goto error; 7609 } 7610 path->slots[0]++; 7611 } 7612 7613 /* 7614 * After loading chunk tree, we've got all device information, 7615 * do another round of validation checks. 7616 */ 7617 if (total_dev != fs_info->fs_devices->total_devices) { 7618 btrfs_err(fs_info, 7619 "super_num_devices %llu mismatch with num_devices %llu found here", 7620 btrfs_super_num_devices(fs_info->super_copy), 7621 total_dev); 7622 ret = -EINVAL; 7623 goto error; 7624 } 7625 if (btrfs_super_total_bytes(fs_info->super_copy) < 7626 fs_info->fs_devices->total_rw_bytes) { 7627 btrfs_err(fs_info, 7628 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7629 btrfs_super_total_bytes(fs_info->super_copy), 7630 fs_info->fs_devices->total_rw_bytes); 7631 ret = -EINVAL; 7632 goto error; 7633 } 7634 ret = 0; 7635 error: 7636 mutex_unlock(&uuid_mutex); 7637 7638 btrfs_free_path(path); 7639 return ret; 7640 } 7641 7642 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7643 { 7644 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7645 struct btrfs_device *device; 7646 7647 fs_devices->fs_info = fs_info; 7648 7649 mutex_lock(&fs_devices->device_list_mutex); 7650 list_for_each_entry(device, &fs_devices->devices, dev_list) 7651 device->fs_info = fs_info; 7652 7653 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7654 list_for_each_entry(device, &seed_devs->devices, dev_list) 7655 device->fs_info = fs_info; 7656 7657 seed_devs->fs_info = fs_info; 7658 } 7659 mutex_unlock(&fs_devices->device_list_mutex); 7660 } 7661 7662 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7663 const struct btrfs_dev_stats_item *ptr, 7664 int index) 7665 { 7666 u64 val; 7667 7668 read_extent_buffer(eb, &val, 7669 offsetof(struct btrfs_dev_stats_item, values) + 7670 ((unsigned long)ptr) + (index * sizeof(u64)), 7671 sizeof(val)); 7672 return val; 7673 } 7674 7675 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7676 struct btrfs_dev_stats_item *ptr, 7677 int index, u64 val) 7678 { 7679 write_extent_buffer(eb, &val, 7680 offsetof(struct btrfs_dev_stats_item, values) + 7681 ((unsigned long)ptr) + (index * sizeof(u64)), 7682 sizeof(val)); 7683 } 7684 7685 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7686 struct btrfs_path *path) 7687 { 7688 struct btrfs_dev_stats_item *ptr; 7689 struct extent_buffer *eb; 7690 struct btrfs_key key; 7691 int item_size; 7692 int i, ret, slot; 7693 7694 if (!device->fs_info->dev_root) 7695 return 0; 7696 7697 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7698 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7699 key.offset = device->devid; 7700 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7701 if (ret) { 7702 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7703 btrfs_dev_stat_set(device, i, 0); 7704 device->dev_stats_valid = 1; 7705 btrfs_release_path(path); 7706 return ret < 0 ? ret : 0; 7707 } 7708 slot = path->slots[0]; 7709 eb = path->nodes[0]; 7710 item_size = btrfs_item_size_nr(eb, slot); 7711 7712 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7713 7714 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7715 if (item_size >= (1 + i) * sizeof(__le64)) 7716 btrfs_dev_stat_set(device, i, 7717 btrfs_dev_stats_value(eb, ptr, i)); 7718 else 7719 btrfs_dev_stat_set(device, i, 0); 7720 } 7721 7722 device->dev_stats_valid = 1; 7723 btrfs_dev_stat_print_on_load(device); 7724 btrfs_release_path(path); 7725 7726 return 0; 7727 } 7728 7729 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7730 { 7731 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7732 struct btrfs_device *device; 7733 struct btrfs_path *path = NULL; 7734 int ret = 0; 7735 7736 path = btrfs_alloc_path(); 7737 if (!path) 7738 return -ENOMEM; 7739 7740 mutex_lock(&fs_devices->device_list_mutex); 7741 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7742 ret = btrfs_device_init_dev_stats(device, path); 7743 if (ret) 7744 goto out; 7745 } 7746 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7747 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7748 ret = btrfs_device_init_dev_stats(device, path); 7749 if (ret) 7750 goto out; 7751 } 7752 } 7753 out: 7754 mutex_unlock(&fs_devices->device_list_mutex); 7755 7756 btrfs_free_path(path); 7757 return ret; 7758 } 7759 7760 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7761 struct btrfs_device *device) 7762 { 7763 struct btrfs_fs_info *fs_info = trans->fs_info; 7764 struct btrfs_root *dev_root = fs_info->dev_root; 7765 struct btrfs_path *path; 7766 struct btrfs_key key; 7767 struct extent_buffer *eb; 7768 struct btrfs_dev_stats_item *ptr; 7769 int ret; 7770 int i; 7771 7772 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7773 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7774 key.offset = device->devid; 7775 7776 path = btrfs_alloc_path(); 7777 if (!path) 7778 return -ENOMEM; 7779 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7780 if (ret < 0) { 7781 btrfs_warn_in_rcu(fs_info, 7782 "error %d while searching for dev_stats item for device %s", 7783 ret, rcu_str_deref(device->name)); 7784 goto out; 7785 } 7786 7787 if (ret == 0 && 7788 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7789 /* need to delete old one and insert a new one */ 7790 ret = btrfs_del_item(trans, dev_root, path); 7791 if (ret != 0) { 7792 btrfs_warn_in_rcu(fs_info, 7793 "delete too small dev_stats item for device %s failed %d", 7794 rcu_str_deref(device->name), ret); 7795 goto out; 7796 } 7797 ret = 1; 7798 } 7799 7800 if (ret == 1) { 7801 /* need to insert a new item */ 7802 btrfs_release_path(path); 7803 ret = btrfs_insert_empty_item(trans, dev_root, path, 7804 &key, sizeof(*ptr)); 7805 if (ret < 0) { 7806 btrfs_warn_in_rcu(fs_info, 7807 "insert dev_stats item for device %s failed %d", 7808 rcu_str_deref(device->name), ret); 7809 goto out; 7810 } 7811 } 7812 7813 eb = path->nodes[0]; 7814 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7815 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7816 btrfs_set_dev_stats_value(eb, ptr, i, 7817 btrfs_dev_stat_read(device, i)); 7818 btrfs_mark_buffer_dirty(eb); 7819 7820 out: 7821 btrfs_free_path(path); 7822 return ret; 7823 } 7824 7825 /* 7826 * called from commit_transaction. Writes all changed device stats to disk. 7827 */ 7828 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7829 { 7830 struct btrfs_fs_info *fs_info = trans->fs_info; 7831 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7832 struct btrfs_device *device; 7833 int stats_cnt; 7834 int ret = 0; 7835 7836 mutex_lock(&fs_devices->device_list_mutex); 7837 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7838 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7839 if (!device->dev_stats_valid || stats_cnt == 0) 7840 continue; 7841 7842 7843 /* 7844 * There is a LOAD-LOAD control dependency between the value of 7845 * dev_stats_ccnt and updating the on-disk values which requires 7846 * reading the in-memory counters. Such control dependencies 7847 * require explicit read memory barriers. 7848 * 7849 * This memory barriers pairs with smp_mb__before_atomic in 7850 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7851 * barrier implied by atomic_xchg in 7852 * btrfs_dev_stats_read_and_reset 7853 */ 7854 smp_rmb(); 7855 7856 ret = update_dev_stat_item(trans, device); 7857 if (!ret) 7858 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7859 } 7860 mutex_unlock(&fs_devices->device_list_mutex); 7861 7862 return ret; 7863 } 7864 7865 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7866 { 7867 btrfs_dev_stat_inc(dev, index); 7868 btrfs_dev_stat_print_on_error(dev); 7869 } 7870 7871 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7872 { 7873 if (!dev->dev_stats_valid) 7874 return; 7875 btrfs_err_rl_in_rcu(dev->fs_info, 7876 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7877 rcu_str_deref(dev->name), 7878 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7879 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7880 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7881 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7882 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7883 } 7884 7885 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7886 { 7887 int i; 7888 7889 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7890 if (btrfs_dev_stat_read(dev, i) != 0) 7891 break; 7892 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7893 return; /* all values == 0, suppress message */ 7894 7895 btrfs_info_in_rcu(dev->fs_info, 7896 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7897 rcu_str_deref(dev->name), 7898 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7899 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7900 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7901 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7902 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7903 } 7904 7905 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7906 struct btrfs_ioctl_get_dev_stats *stats) 7907 { 7908 struct btrfs_device *dev; 7909 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7910 int i; 7911 7912 mutex_lock(&fs_devices->device_list_mutex); 7913 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL); 7914 mutex_unlock(&fs_devices->device_list_mutex); 7915 7916 if (!dev) { 7917 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7918 return -ENODEV; 7919 } else if (!dev->dev_stats_valid) { 7920 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7921 return -ENODEV; 7922 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7923 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7924 if (stats->nr_items > i) 7925 stats->values[i] = 7926 btrfs_dev_stat_read_and_reset(dev, i); 7927 else 7928 btrfs_dev_stat_set(dev, i, 0); 7929 } 7930 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7931 current->comm, task_pid_nr(current)); 7932 } else { 7933 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7934 if (stats->nr_items > i) 7935 stats->values[i] = btrfs_dev_stat_read(dev, i); 7936 } 7937 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7938 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7939 return 0; 7940 } 7941 7942 /* 7943 * Update the size and bytes used for each device where it changed. This is 7944 * delayed since we would otherwise get errors while writing out the 7945 * superblocks. 7946 * 7947 * Must be invoked during transaction commit. 7948 */ 7949 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7950 { 7951 struct btrfs_device *curr, *next; 7952 7953 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7954 7955 if (list_empty(&trans->dev_update_list)) 7956 return; 7957 7958 /* 7959 * We don't need the device_list_mutex here. This list is owned by the 7960 * transaction and the transaction must complete before the device is 7961 * released. 7962 */ 7963 mutex_lock(&trans->fs_info->chunk_mutex); 7964 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7965 post_commit_list) { 7966 list_del_init(&curr->post_commit_list); 7967 curr->commit_total_bytes = curr->disk_total_bytes; 7968 curr->commit_bytes_used = curr->bytes_used; 7969 } 7970 mutex_unlock(&trans->fs_info->chunk_mutex); 7971 } 7972 7973 /* 7974 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7975 */ 7976 int btrfs_bg_type_to_factor(u64 flags) 7977 { 7978 const int index = btrfs_bg_flags_to_raid_index(flags); 7979 7980 return btrfs_raid_array[index].ncopies; 7981 } 7982 7983 7984 7985 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7986 u64 chunk_offset, u64 devid, 7987 u64 physical_offset, u64 physical_len) 7988 { 7989 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7990 struct extent_map *em; 7991 struct map_lookup *map; 7992 struct btrfs_device *dev; 7993 u64 stripe_len; 7994 bool found = false; 7995 int ret = 0; 7996 int i; 7997 7998 read_lock(&em_tree->lock); 7999 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 8000 read_unlock(&em_tree->lock); 8001 8002 if (!em) { 8003 btrfs_err(fs_info, 8004 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 8005 physical_offset, devid); 8006 ret = -EUCLEAN; 8007 goto out; 8008 } 8009 8010 map = em->map_lookup; 8011 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 8012 if (physical_len != stripe_len) { 8013 btrfs_err(fs_info, 8014 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 8015 physical_offset, devid, em->start, physical_len, 8016 stripe_len); 8017 ret = -EUCLEAN; 8018 goto out; 8019 } 8020 8021 for (i = 0; i < map->num_stripes; i++) { 8022 if (map->stripes[i].dev->devid == devid && 8023 map->stripes[i].physical == physical_offset) { 8024 found = true; 8025 if (map->verified_stripes >= map->num_stripes) { 8026 btrfs_err(fs_info, 8027 "too many dev extents for chunk %llu found", 8028 em->start); 8029 ret = -EUCLEAN; 8030 goto out; 8031 } 8032 map->verified_stripes++; 8033 break; 8034 } 8035 } 8036 if (!found) { 8037 btrfs_err(fs_info, 8038 "dev extent physical offset %llu devid %llu has no corresponding chunk", 8039 physical_offset, devid); 8040 ret = -EUCLEAN; 8041 } 8042 8043 /* Make sure no dev extent is beyond device boundary */ 8044 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); 8045 if (!dev) { 8046 btrfs_err(fs_info, "failed to find devid %llu", devid); 8047 ret = -EUCLEAN; 8048 goto out; 8049 } 8050 8051 if (physical_offset + physical_len > dev->disk_total_bytes) { 8052 btrfs_err(fs_info, 8053 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 8054 devid, physical_offset, physical_len, 8055 dev->disk_total_bytes); 8056 ret = -EUCLEAN; 8057 goto out; 8058 } 8059 8060 if (dev->zone_info) { 8061 u64 zone_size = dev->zone_info->zone_size; 8062 8063 if (!IS_ALIGNED(physical_offset, zone_size) || 8064 !IS_ALIGNED(physical_len, zone_size)) { 8065 btrfs_err(fs_info, 8066 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 8067 devid, physical_offset, physical_len); 8068 ret = -EUCLEAN; 8069 goto out; 8070 } 8071 } 8072 8073 out: 8074 free_extent_map(em); 8075 return ret; 8076 } 8077 8078 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 8079 { 8080 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 8081 struct extent_map *em; 8082 struct rb_node *node; 8083 int ret = 0; 8084 8085 read_lock(&em_tree->lock); 8086 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 8087 em = rb_entry(node, struct extent_map, rb_node); 8088 if (em->map_lookup->num_stripes != 8089 em->map_lookup->verified_stripes) { 8090 btrfs_err(fs_info, 8091 "chunk %llu has missing dev extent, have %d expect %d", 8092 em->start, em->map_lookup->verified_stripes, 8093 em->map_lookup->num_stripes); 8094 ret = -EUCLEAN; 8095 goto out; 8096 } 8097 } 8098 out: 8099 read_unlock(&em_tree->lock); 8100 return ret; 8101 } 8102 8103 /* 8104 * Ensure that all dev extents are mapped to correct chunk, otherwise 8105 * later chunk allocation/free would cause unexpected behavior. 8106 * 8107 * NOTE: This will iterate through the whole device tree, which should be of 8108 * the same size level as the chunk tree. This slightly increases mount time. 8109 */ 8110 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8111 { 8112 struct btrfs_path *path; 8113 struct btrfs_root *root = fs_info->dev_root; 8114 struct btrfs_key key; 8115 u64 prev_devid = 0; 8116 u64 prev_dev_ext_end = 0; 8117 int ret = 0; 8118 8119 /* 8120 * We don't have a dev_root because we mounted with ignorebadroots and 8121 * failed to load the root, so we want to skip the verification in this 8122 * case for sure. 8123 * 8124 * However if the dev root is fine, but the tree itself is corrupted 8125 * we'd still fail to mount. This verification is only to make sure 8126 * writes can happen safely, so instead just bypass this check 8127 * completely in the case of IGNOREBADROOTS. 8128 */ 8129 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8130 return 0; 8131 8132 key.objectid = 1; 8133 key.type = BTRFS_DEV_EXTENT_KEY; 8134 key.offset = 0; 8135 8136 path = btrfs_alloc_path(); 8137 if (!path) 8138 return -ENOMEM; 8139 8140 path->reada = READA_FORWARD; 8141 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8142 if (ret < 0) 8143 goto out; 8144 8145 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8146 ret = btrfs_next_item(root, path); 8147 if (ret < 0) 8148 goto out; 8149 /* No dev extents at all? Not good */ 8150 if (ret > 0) { 8151 ret = -EUCLEAN; 8152 goto out; 8153 } 8154 } 8155 while (1) { 8156 struct extent_buffer *leaf = path->nodes[0]; 8157 struct btrfs_dev_extent *dext; 8158 int slot = path->slots[0]; 8159 u64 chunk_offset; 8160 u64 physical_offset; 8161 u64 physical_len; 8162 u64 devid; 8163 8164 btrfs_item_key_to_cpu(leaf, &key, slot); 8165 if (key.type != BTRFS_DEV_EXTENT_KEY) 8166 break; 8167 devid = key.objectid; 8168 physical_offset = key.offset; 8169 8170 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8171 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8172 physical_len = btrfs_dev_extent_length(leaf, dext); 8173 8174 /* Check if this dev extent overlaps with the previous one */ 8175 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8176 btrfs_err(fs_info, 8177 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8178 devid, physical_offset, prev_dev_ext_end); 8179 ret = -EUCLEAN; 8180 goto out; 8181 } 8182 8183 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8184 physical_offset, physical_len); 8185 if (ret < 0) 8186 goto out; 8187 prev_devid = devid; 8188 prev_dev_ext_end = physical_offset + physical_len; 8189 8190 ret = btrfs_next_item(root, path); 8191 if (ret < 0) 8192 goto out; 8193 if (ret > 0) { 8194 ret = 0; 8195 break; 8196 } 8197 } 8198 8199 /* Ensure all chunks have corresponding dev extents */ 8200 ret = verify_chunk_dev_extent_mapping(fs_info); 8201 out: 8202 btrfs_free_path(path); 8203 return ret; 8204 } 8205 8206 /* 8207 * Check whether the given block group or device is pinned by any inode being 8208 * used as a swapfile. 8209 */ 8210 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8211 { 8212 struct btrfs_swapfile_pin *sp; 8213 struct rb_node *node; 8214 8215 spin_lock(&fs_info->swapfile_pins_lock); 8216 node = fs_info->swapfile_pins.rb_node; 8217 while (node) { 8218 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8219 if (ptr < sp->ptr) 8220 node = node->rb_left; 8221 else if (ptr > sp->ptr) 8222 node = node->rb_right; 8223 else 8224 break; 8225 } 8226 spin_unlock(&fs_info->swapfile_pins_lock); 8227 return node != NULL; 8228 } 8229 8230 static int relocating_repair_kthread(void *data) 8231 { 8232 struct btrfs_block_group *cache = (struct btrfs_block_group *)data; 8233 struct btrfs_fs_info *fs_info = cache->fs_info; 8234 u64 target; 8235 int ret = 0; 8236 8237 target = cache->start; 8238 btrfs_put_block_group(cache); 8239 8240 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8241 btrfs_info(fs_info, 8242 "zoned: skip relocating block group %llu to repair: EBUSY", 8243 target); 8244 return -EBUSY; 8245 } 8246 8247 mutex_lock(&fs_info->reclaim_bgs_lock); 8248 8249 /* Ensure block group still exists */ 8250 cache = btrfs_lookup_block_group(fs_info, target); 8251 if (!cache) 8252 goto out; 8253 8254 if (!cache->relocating_repair) 8255 goto out; 8256 8257 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8258 if (ret < 0) 8259 goto out; 8260 8261 btrfs_info(fs_info, 8262 "zoned: relocating block group %llu to repair IO failure", 8263 target); 8264 ret = btrfs_relocate_chunk(fs_info, target); 8265 8266 out: 8267 if (cache) 8268 btrfs_put_block_group(cache); 8269 mutex_unlock(&fs_info->reclaim_bgs_lock); 8270 btrfs_exclop_finish(fs_info); 8271 8272 return ret; 8273 } 8274 8275 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8276 { 8277 struct btrfs_block_group *cache; 8278 8279 /* Do not attempt to repair in degraded state */ 8280 if (btrfs_test_opt(fs_info, DEGRADED)) 8281 return 0; 8282 8283 cache = btrfs_lookup_block_group(fs_info, logical); 8284 if (!cache) 8285 return 0; 8286 8287 spin_lock(&cache->lock); 8288 if (cache->relocating_repair) { 8289 spin_unlock(&cache->lock); 8290 btrfs_put_block_group(cache); 8291 return 0; 8292 } 8293 cache->relocating_repair = 1; 8294 spin_unlock(&cache->lock); 8295 8296 kthread_run(relocating_repair_kthread, cache, 8297 "btrfs-relocating-repair"); 8298 8299 return 0; 8300 } 8301