xref: /openbmc/linux/fs/btrfs/volumes.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 
31 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
32 	[BTRFS_RAID_RAID10] = {
33 		.sub_stripes	= 2,
34 		.dev_stripes	= 1,
35 		.devs_max	= 0,	/* 0 == as many as possible */
36 		.devs_min	= 4,
37 		.tolerated_failures = 1,
38 		.devs_increment	= 2,
39 		.ncopies	= 2,
40 		.raid_name	= "raid10",
41 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
42 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
43 	},
44 	[BTRFS_RAID_RAID1] = {
45 		.sub_stripes	= 1,
46 		.dev_stripes	= 1,
47 		.devs_max	= 2,
48 		.devs_min	= 2,
49 		.tolerated_failures = 1,
50 		.devs_increment	= 2,
51 		.ncopies	= 2,
52 		.raid_name	= "raid1",
53 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
54 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
55 	},
56 	[BTRFS_RAID_DUP] = {
57 		.sub_stripes	= 1,
58 		.dev_stripes	= 2,
59 		.devs_max	= 1,
60 		.devs_min	= 1,
61 		.tolerated_failures = 0,
62 		.devs_increment	= 1,
63 		.ncopies	= 2,
64 		.raid_name	= "dup",
65 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
66 		.mindev_error	= 0,
67 	},
68 	[BTRFS_RAID_RAID0] = {
69 		.sub_stripes	= 1,
70 		.dev_stripes	= 1,
71 		.devs_max	= 0,
72 		.devs_min	= 2,
73 		.tolerated_failures = 0,
74 		.devs_increment	= 1,
75 		.ncopies	= 1,
76 		.raid_name	= "raid0",
77 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
78 		.mindev_error	= 0,
79 	},
80 	[BTRFS_RAID_SINGLE] = {
81 		.sub_stripes	= 1,
82 		.dev_stripes	= 1,
83 		.devs_max	= 1,
84 		.devs_min	= 1,
85 		.tolerated_failures = 0,
86 		.devs_increment	= 1,
87 		.ncopies	= 1,
88 		.raid_name	= "single",
89 		.bg_flag	= 0,
90 		.mindev_error	= 0,
91 	},
92 	[BTRFS_RAID_RAID5] = {
93 		.sub_stripes	= 1,
94 		.dev_stripes	= 1,
95 		.devs_max	= 0,
96 		.devs_min	= 2,
97 		.tolerated_failures = 1,
98 		.devs_increment	= 1,
99 		.ncopies	= 2,
100 		.raid_name	= "raid5",
101 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
102 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
103 	},
104 	[BTRFS_RAID_RAID6] = {
105 		.sub_stripes	= 1,
106 		.dev_stripes	= 1,
107 		.devs_max	= 0,
108 		.devs_min	= 3,
109 		.tolerated_failures = 2,
110 		.devs_increment	= 1,
111 		.ncopies	= 3,
112 		.raid_name	= "raid6",
113 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
114 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
115 	},
116 };
117 
118 const char *get_raid_name(enum btrfs_raid_types type)
119 {
120 	if (type >= BTRFS_NR_RAID_TYPES)
121 		return NULL;
122 
123 	return btrfs_raid_array[type].raid_name;
124 }
125 
126 static int init_first_rw_device(struct btrfs_trans_handle *trans,
127 				struct btrfs_fs_info *fs_info);
128 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
129 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
130 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
131 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
132 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
133 			     enum btrfs_map_op op,
134 			     u64 logical, u64 *length,
135 			     struct btrfs_bio **bbio_ret,
136 			     int mirror_num, int need_raid_map);
137 
138 /*
139  * Device locking
140  * ==============
141  *
142  * There are several mutexes that protect manipulation of devices and low-level
143  * structures like chunks but not block groups, extents or files
144  *
145  * uuid_mutex (global lock)
146  * ------------------------
147  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
148  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
149  * device) or requested by the device= mount option
150  *
151  * the mutex can be very coarse and can cover long-running operations
152  *
153  * protects: updates to fs_devices counters like missing devices, rw devices,
154  * seeding, structure cloning, openning/closing devices at mount/umount time
155  *
156  * global::fs_devs - add, remove, updates to the global list
157  *
158  * does not protect: manipulation of the fs_devices::devices list!
159  *
160  * btrfs_device::name - renames (write side), read is RCU
161  *
162  * fs_devices::device_list_mutex (per-fs, with RCU)
163  * ------------------------------------------------
164  * protects updates to fs_devices::devices, ie. adding and deleting
165  *
166  * simple list traversal with read-only actions can be done with RCU protection
167  *
168  * may be used to exclude some operations from running concurrently without any
169  * modifications to the list (see write_all_supers)
170  *
171  * balance_mutex
172  * -------------
173  * protects balance structures (status, state) and context accessed from
174  * several places (internally, ioctl)
175  *
176  * chunk_mutex
177  * -----------
178  * protects chunks, adding or removing during allocation, trim or when a new
179  * device is added/removed
180  *
181  * cleaner_mutex
182  * -------------
183  * a big lock that is held by the cleaner thread and prevents running subvolume
184  * cleaning together with relocation or delayed iputs
185  *
186  *
187  * Lock nesting
188  * ============
189  *
190  * uuid_mutex
191  *   volume_mutex
192  *     device_list_mutex
193  *       chunk_mutex
194  *     balance_mutex
195  *
196  *
197  * Exclusive operations, BTRFS_FS_EXCL_OP
198  * ======================================
199  *
200  * Maintains the exclusivity of the following operations that apply to the
201  * whole filesystem and cannot run in parallel.
202  *
203  * - Balance (*)
204  * - Device add
205  * - Device remove
206  * - Device replace (*)
207  * - Resize
208  *
209  * The device operations (as above) can be in one of the following states:
210  *
211  * - Running state
212  * - Paused state
213  * - Completed state
214  *
215  * Only device operations marked with (*) can go into the Paused state for the
216  * following reasons:
217  *
218  * - ioctl (only Balance can be Paused through ioctl)
219  * - filesystem remounted as read-only
220  * - filesystem unmounted and mounted as read-only
221  * - system power-cycle and filesystem mounted as read-only
222  * - filesystem or device errors leading to forced read-only
223  *
224  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
225  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
226  * A device operation in Paused or Running state can be canceled or resumed
227  * either by ioctl (Balance only) or when remounted as read-write.
228  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
229  * completed.
230  */
231 
232 DEFINE_MUTEX(uuid_mutex);
233 static LIST_HEAD(fs_uuids);
234 struct list_head *btrfs_get_fs_uuids(void)
235 {
236 	return &fs_uuids;
237 }
238 
239 /*
240  * alloc_fs_devices - allocate struct btrfs_fs_devices
241  * @fsid:	if not NULL, copy the uuid to fs_devices::fsid
242  *
243  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
244  * The returned struct is not linked onto any lists and can be destroyed with
245  * kfree() right away.
246  */
247 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
248 {
249 	struct btrfs_fs_devices *fs_devs;
250 
251 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
252 	if (!fs_devs)
253 		return ERR_PTR(-ENOMEM);
254 
255 	mutex_init(&fs_devs->device_list_mutex);
256 
257 	INIT_LIST_HEAD(&fs_devs->devices);
258 	INIT_LIST_HEAD(&fs_devs->resized_devices);
259 	INIT_LIST_HEAD(&fs_devs->alloc_list);
260 	INIT_LIST_HEAD(&fs_devs->fs_list);
261 	if (fsid)
262 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
263 
264 	return fs_devs;
265 }
266 
267 void btrfs_free_device(struct btrfs_device *device)
268 {
269 	rcu_string_free(device->name);
270 	bio_put(device->flush_bio);
271 	kfree(device);
272 }
273 
274 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
275 {
276 	struct btrfs_device *device;
277 	WARN_ON(fs_devices->opened);
278 	while (!list_empty(&fs_devices->devices)) {
279 		device = list_entry(fs_devices->devices.next,
280 				    struct btrfs_device, dev_list);
281 		list_del(&device->dev_list);
282 		btrfs_free_device(device);
283 	}
284 	kfree(fs_devices);
285 }
286 
287 static void btrfs_kobject_uevent(struct block_device *bdev,
288 				 enum kobject_action action)
289 {
290 	int ret;
291 
292 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
293 	if (ret)
294 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
295 			action,
296 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
297 			&disk_to_dev(bdev->bd_disk)->kobj);
298 }
299 
300 void __exit btrfs_cleanup_fs_uuids(void)
301 {
302 	struct btrfs_fs_devices *fs_devices;
303 
304 	while (!list_empty(&fs_uuids)) {
305 		fs_devices = list_entry(fs_uuids.next,
306 					struct btrfs_fs_devices, fs_list);
307 		list_del(&fs_devices->fs_list);
308 		free_fs_devices(fs_devices);
309 	}
310 }
311 
312 /*
313  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
314  * Returned struct is not linked onto any lists and must be destroyed using
315  * btrfs_free_device.
316  */
317 static struct btrfs_device *__alloc_device(void)
318 {
319 	struct btrfs_device *dev;
320 
321 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
322 	if (!dev)
323 		return ERR_PTR(-ENOMEM);
324 
325 	/*
326 	 * Preallocate a bio that's always going to be used for flushing device
327 	 * barriers and matches the device lifespan
328 	 */
329 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
330 	if (!dev->flush_bio) {
331 		kfree(dev);
332 		return ERR_PTR(-ENOMEM);
333 	}
334 
335 	INIT_LIST_HEAD(&dev->dev_list);
336 	INIT_LIST_HEAD(&dev->dev_alloc_list);
337 	INIT_LIST_HEAD(&dev->resized_list);
338 
339 	spin_lock_init(&dev->io_lock);
340 
341 	atomic_set(&dev->reada_in_flight, 0);
342 	atomic_set(&dev->dev_stats_ccnt, 0);
343 	btrfs_device_data_ordered_init(dev);
344 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
345 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
346 
347 	return dev;
348 }
349 
350 /*
351  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
352  * return NULL.
353  *
354  * If devid and uuid are both specified, the match must be exact, otherwise
355  * only devid is used.
356  */
357 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
358 		u64 devid, const u8 *uuid)
359 {
360 	struct btrfs_device *dev;
361 
362 	list_for_each_entry(dev, &fs_devices->devices, dev_list) {
363 		if (dev->devid == devid &&
364 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
365 			return dev;
366 		}
367 	}
368 	return NULL;
369 }
370 
371 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
372 {
373 	struct btrfs_fs_devices *fs_devices;
374 
375 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
376 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
377 			return fs_devices;
378 	}
379 	return NULL;
380 }
381 
382 static int
383 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
384 		      int flush, struct block_device **bdev,
385 		      struct buffer_head **bh)
386 {
387 	int ret;
388 
389 	*bdev = blkdev_get_by_path(device_path, flags, holder);
390 
391 	if (IS_ERR(*bdev)) {
392 		ret = PTR_ERR(*bdev);
393 		goto error;
394 	}
395 
396 	if (flush)
397 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
398 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
399 	if (ret) {
400 		blkdev_put(*bdev, flags);
401 		goto error;
402 	}
403 	invalidate_bdev(*bdev);
404 	*bh = btrfs_read_dev_super(*bdev);
405 	if (IS_ERR(*bh)) {
406 		ret = PTR_ERR(*bh);
407 		blkdev_put(*bdev, flags);
408 		goto error;
409 	}
410 
411 	return 0;
412 
413 error:
414 	*bdev = NULL;
415 	*bh = NULL;
416 	return ret;
417 }
418 
419 static void requeue_list(struct btrfs_pending_bios *pending_bios,
420 			struct bio *head, struct bio *tail)
421 {
422 
423 	struct bio *old_head;
424 
425 	old_head = pending_bios->head;
426 	pending_bios->head = head;
427 	if (pending_bios->tail)
428 		tail->bi_next = old_head;
429 	else
430 		pending_bios->tail = tail;
431 }
432 
433 /*
434  * we try to collect pending bios for a device so we don't get a large
435  * number of procs sending bios down to the same device.  This greatly
436  * improves the schedulers ability to collect and merge the bios.
437  *
438  * But, it also turns into a long list of bios to process and that is sure
439  * to eventually make the worker thread block.  The solution here is to
440  * make some progress and then put this work struct back at the end of
441  * the list if the block device is congested.  This way, multiple devices
442  * can make progress from a single worker thread.
443  */
444 static noinline void run_scheduled_bios(struct btrfs_device *device)
445 {
446 	struct btrfs_fs_info *fs_info = device->fs_info;
447 	struct bio *pending;
448 	struct backing_dev_info *bdi;
449 	struct btrfs_pending_bios *pending_bios;
450 	struct bio *tail;
451 	struct bio *cur;
452 	int again = 0;
453 	unsigned long num_run;
454 	unsigned long batch_run = 0;
455 	unsigned long last_waited = 0;
456 	int force_reg = 0;
457 	int sync_pending = 0;
458 	struct blk_plug plug;
459 
460 	/*
461 	 * this function runs all the bios we've collected for
462 	 * a particular device.  We don't want to wander off to
463 	 * another device without first sending all of these down.
464 	 * So, setup a plug here and finish it off before we return
465 	 */
466 	blk_start_plug(&plug);
467 
468 	bdi = device->bdev->bd_bdi;
469 
470 loop:
471 	spin_lock(&device->io_lock);
472 
473 loop_lock:
474 	num_run = 0;
475 
476 	/* take all the bios off the list at once and process them
477 	 * later on (without the lock held).  But, remember the
478 	 * tail and other pointers so the bios can be properly reinserted
479 	 * into the list if we hit congestion
480 	 */
481 	if (!force_reg && device->pending_sync_bios.head) {
482 		pending_bios = &device->pending_sync_bios;
483 		force_reg = 1;
484 	} else {
485 		pending_bios = &device->pending_bios;
486 		force_reg = 0;
487 	}
488 
489 	pending = pending_bios->head;
490 	tail = pending_bios->tail;
491 	WARN_ON(pending && !tail);
492 
493 	/*
494 	 * if pending was null this time around, no bios need processing
495 	 * at all and we can stop.  Otherwise it'll loop back up again
496 	 * and do an additional check so no bios are missed.
497 	 *
498 	 * device->running_pending is used to synchronize with the
499 	 * schedule_bio code.
500 	 */
501 	if (device->pending_sync_bios.head == NULL &&
502 	    device->pending_bios.head == NULL) {
503 		again = 0;
504 		device->running_pending = 0;
505 	} else {
506 		again = 1;
507 		device->running_pending = 1;
508 	}
509 
510 	pending_bios->head = NULL;
511 	pending_bios->tail = NULL;
512 
513 	spin_unlock(&device->io_lock);
514 
515 	while (pending) {
516 
517 		rmb();
518 		/* we want to work on both lists, but do more bios on the
519 		 * sync list than the regular list
520 		 */
521 		if ((num_run > 32 &&
522 		    pending_bios != &device->pending_sync_bios &&
523 		    device->pending_sync_bios.head) ||
524 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
525 		    device->pending_bios.head)) {
526 			spin_lock(&device->io_lock);
527 			requeue_list(pending_bios, pending, tail);
528 			goto loop_lock;
529 		}
530 
531 		cur = pending;
532 		pending = pending->bi_next;
533 		cur->bi_next = NULL;
534 
535 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
536 
537 		/*
538 		 * if we're doing the sync list, record that our
539 		 * plug has some sync requests on it
540 		 *
541 		 * If we're doing the regular list and there are
542 		 * sync requests sitting around, unplug before
543 		 * we add more
544 		 */
545 		if (pending_bios == &device->pending_sync_bios) {
546 			sync_pending = 1;
547 		} else if (sync_pending) {
548 			blk_finish_plug(&plug);
549 			blk_start_plug(&plug);
550 			sync_pending = 0;
551 		}
552 
553 		btrfsic_submit_bio(cur);
554 		num_run++;
555 		batch_run++;
556 
557 		cond_resched();
558 
559 		/*
560 		 * we made progress, there is more work to do and the bdi
561 		 * is now congested.  Back off and let other work structs
562 		 * run instead
563 		 */
564 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
565 		    fs_info->fs_devices->open_devices > 1) {
566 			struct io_context *ioc;
567 
568 			ioc = current->io_context;
569 
570 			/*
571 			 * the main goal here is that we don't want to
572 			 * block if we're going to be able to submit
573 			 * more requests without blocking.
574 			 *
575 			 * This code does two great things, it pokes into
576 			 * the elevator code from a filesystem _and_
577 			 * it makes assumptions about how batching works.
578 			 */
579 			if (ioc && ioc->nr_batch_requests > 0 &&
580 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
581 			    (last_waited == 0 ||
582 			     ioc->last_waited == last_waited)) {
583 				/*
584 				 * we want to go through our batch of
585 				 * requests and stop.  So, we copy out
586 				 * the ioc->last_waited time and test
587 				 * against it before looping
588 				 */
589 				last_waited = ioc->last_waited;
590 				cond_resched();
591 				continue;
592 			}
593 			spin_lock(&device->io_lock);
594 			requeue_list(pending_bios, pending, tail);
595 			device->running_pending = 1;
596 
597 			spin_unlock(&device->io_lock);
598 			btrfs_queue_work(fs_info->submit_workers,
599 					 &device->work);
600 			goto done;
601 		}
602 	}
603 
604 	cond_resched();
605 	if (again)
606 		goto loop;
607 
608 	spin_lock(&device->io_lock);
609 	if (device->pending_bios.head || device->pending_sync_bios.head)
610 		goto loop_lock;
611 	spin_unlock(&device->io_lock);
612 
613 done:
614 	blk_finish_plug(&plug);
615 }
616 
617 static void pending_bios_fn(struct btrfs_work *work)
618 {
619 	struct btrfs_device *device;
620 
621 	device = container_of(work, struct btrfs_device, work);
622 	run_scheduled_bios(device);
623 }
624 
625 /*
626  *  Search and remove all stale (devices which are not mounted) devices.
627  *  When both inputs are NULL, it will search and release all stale devices.
628  *  path:	Optional. When provided will it release all unmounted devices
629  *		matching this path only.
630  *  skip_dev:	Optional. Will skip this device when searching for the stale
631  *		devices.
632  */
633 static void btrfs_free_stale_devices(const char *path,
634 				     struct btrfs_device *skip_device)
635 {
636 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
637 	struct btrfs_device *device, *tmp_device;
638 
639 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
640 		mutex_lock(&fs_devices->device_list_mutex);
641 		if (fs_devices->opened) {
642 			mutex_unlock(&fs_devices->device_list_mutex);
643 			continue;
644 		}
645 
646 		list_for_each_entry_safe(device, tmp_device,
647 					 &fs_devices->devices, dev_list) {
648 			int not_found = 0;
649 
650 			if (skip_device && skip_device == device)
651 				continue;
652 			if (path && !device->name)
653 				continue;
654 
655 			rcu_read_lock();
656 			if (path)
657 				not_found = strcmp(rcu_str_deref(device->name),
658 						   path);
659 			rcu_read_unlock();
660 			if (not_found)
661 				continue;
662 
663 			/* delete the stale device */
664 			fs_devices->num_devices--;
665 			list_del(&device->dev_list);
666 			btrfs_free_device(device);
667 
668 			if (fs_devices->num_devices == 0)
669 				break;
670 		}
671 		mutex_unlock(&fs_devices->device_list_mutex);
672 		if (fs_devices->num_devices == 0) {
673 			btrfs_sysfs_remove_fsid(fs_devices);
674 			list_del(&fs_devices->fs_list);
675 			free_fs_devices(fs_devices);
676 		}
677 	}
678 }
679 
680 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
681 			struct btrfs_device *device, fmode_t flags,
682 			void *holder)
683 {
684 	struct request_queue *q;
685 	struct block_device *bdev;
686 	struct buffer_head *bh;
687 	struct btrfs_super_block *disk_super;
688 	u64 devid;
689 	int ret;
690 
691 	if (device->bdev)
692 		return -EINVAL;
693 	if (!device->name)
694 		return -EINVAL;
695 
696 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
697 				    &bdev, &bh);
698 	if (ret)
699 		return ret;
700 
701 	disk_super = (struct btrfs_super_block *)bh->b_data;
702 	devid = btrfs_stack_device_id(&disk_super->dev_item);
703 	if (devid != device->devid)
704 		goto error_brelse;
705 
706 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
707 		goto error_brelse;
708 
709 	device->generation = btrfs_super_generation(disk_super);
710 
711 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
712 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
713 		fs_devices->seeding = 1;
714 	} else {
715 		if (bdev_read_only(bdev))
716 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
717 		else
718 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
719 	}
720 
721 	q = bdev_get_queue(bdev);
722 	if (!blk_queue_nonrot(q))
723 		fs_devices->rotating = 1;
724 
725 	device->bdev = bdev;
726 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
727 	device->mode = flags;
728 
729 	fs_devices->open_devices++;
730 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
731 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
732 		fs_devices->rw_devices++;
733 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
734 	}
735 	brelse(bh);
736 
737 	return 0;
738 
739 error_brelse:
740 	brelse(bh);
741 	blkdev_put(bdev, flags);
742 
743 	return -EINVAL;
744 }
745 
746 /*
747  * Add new device to list of registered devices
748  *
749  * Returns:
750  * device pointer which was just added or updated when successful
751  * error pointer when failed
752  */
753 static noinline struct btrfs_device *device_list_add(const char *path,
754 			   struct btrfs_super_block *disk_super,
755 			   bool *new_device_added)
756 {
757 	struct btrfs_device *device;
758 	struct btrfs_fs_devices *fs_devices;
759 	struct rcu_string *name;
760 	u64 found_transid = btrfs_super_generation(disk_super);
761 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
762 
763 	fs_devices = find_fsid(disk_super->fsid);
764 	if (!fs_devices) {
765 		fs_devices = alloc_fs_devices(disk_super->fsid);
766 		if (IS_ERR(fs_devices))
767 			return ERR_CAST(fs_devices);
768 
769 		mutex_lock(&fs_devices->device_list_mutex);
770 		list_add(&fs_devices->fs_list, &fs_uuids);
771 
772 		device = NULL;
773 	} else {
774 		mutex_lock(&fs_devices->device_list_mutex);
775 		device = find_device(fs_devices, devid,
776 				disk_super->dev_item.uuid);
777 	}
778 
779 	if (!device) {
780 		if (fs_devices->opened) {
781 			mutex_unlock(&fs_devices->device_list_mutex);
782 			return ERR_PTR(-EBUSY);
783 		}
784 
785 		device = btrfs_alloc_device(NULL, &devid,
786 					    disk_super->dev_item.uuid);
787 		if (IS_ERR(device)) {
788 			mutex_unlock(&fs_devices->device_list_mutex);
789 			/* we can safely leave the fs_devices entry around */
790 			return device;
791 		}
792 
793 		name = rcu_string_strdup(path, GFP_NOFS);
794 		if (!name) {
795 			btrfs_free_device(device);
796 			mutex_unlock(&fs_devices->device_list_mutex);
797 			return ERR_PTR(-ENOMEM);
798 		}
799 		rcu_assign_pointer(device->name, name);
800 
801 		list_add_rcu(&device->dev_list, &fs_devices->devices);
802 		fs_devices->num_devices++;
803 
804 		device->fs_devices = fs_devices;
805 		*new_device_added = true;
806 
807 		if (disk_super->label[0])
808 			pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
809 				disk_super->label, devid, found_transid, path);
810 		else
811 			pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
812 				disk_super->fsid, devid, found_transid, path);
813 
814 	} else if (!device->name || strcmp(device->name->str, path)) {
815 		/*
816 		 * When FS is already mounted.
817 		 * 1. If you are here and if the device->name is NULL that
818 		 *    means this device was missing at time of FS mount.
819 		 * 2. If you are here and if the device->name is different
820 		 *    from 'path' that means either
821 		 *      a. The same device disappeared and reappeared with
822 		 *         different name. or
823 		 *      b. The missing-disk-which-was-replaced, has
824 		 *         reappeared now.
825 		 *
826 		 * We must allow 1 and 2a above. But 2b would be a spurious
827 		 * and unintentional.
828 		 *
829 		 * Further in case of 1 and 2a above, the disk at 'path'
830 		 * would have missed some transaction when it was away and
831 		 * in case of 2a the stale bdev has to be updated as well.
832 		 * 2b must not be allowed at all time.
833 		 */
834 
835 		/*
836 		 * For now, we do allow update to btrfs_fs_device through the
837 		 * btrfs dev scan cli after FS has been mounted.  We're still
838 		 * tracking a problem where systems fail mount by subvolume id
839 		 * when we reject replacement on a mounted FS.
840 		 */
841 		if (!fs_devices->opened && found_transid < device->generation) {
842 			/*
843 			 * That is if the FS is _not_ mounted and if you
844 			 * are here, that means there is more than one
845 			 * disk with same uuid and devid.We keep the one
846 			 * with larger generation number or the last-in if
847 			 * generation are equal.
848 			 */
849 			mutex_unlock(&fs_devices->device_list_mutex);
850 			return ERR_PTR(-EEXIST);
851 		}
852 
853 		name = rcu_string_strdup(path, GFP_NOFS);
854 		if (!name) {
855 			mutex_unlock(&fs_devices->device_list_mutex);
856 			return ERR_PTR(-ENOMEM);
857 		}
858 		rcu_string_free(device->name);
859 		rcu_assign_pointer(device->name, name);
860 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
861 			fs_devices->missing_devices--;
862 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
863 		}
864 	}
865 
866 	/*
867 	 * Unmount does not free the btrfs_device struct but would zero
868 	 * generation along with most of the other members. So just update
869 	 * it back. We need it to pick the disk with largest generation
870 	 * (as above).
871 	 */
872 	if (!fs_devices->opened)
873 		device->generation = found_transid;
874 
875 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
876 
877 	mutex_unlock(&fs_devices->device_list_mutex);
878 	return device;
879 }
880 
881 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
882 {
883 	struct btrfs_fs_devices *fs_devices;
884 	struct btrfs_device *device;
885 	struct btrfs_device *orig_dev;
886 
887 	fs_devices = alloc_fs_devices(orig->fsid);
888 	if (IS_ERR(fs_devices))
889 		return fs_devices;
890 
891 	mutex_lock(&orig->device_list_mutex);
892 	fs_devices->total_devices = orig->total_devices;
893 
894 	/* We have held the volume lock, it is safe to get the devices. */
895 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
896 		struct rcu_string *name;
897 
898 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
899 					    orig_dev->uuid);
900 		if (IS_ERR(device))
901 			goto error;
902 
903 		/*
904 		 * This is ok to do without rcu read locked because we hold the
905 		 * uuid mutex so nothing we touch in here is going to disappear.
906 		 */
907 		if (orig_dev->name) {
908 			name = rcu_string_strdup(orig_dev->name->str,
909 					GFP_KERNEL);
910 			if (!name) {
911 				btrfs_free_device(device);
912 				goto error;
913 			}
914 			rcu_assign_pointer(device->name, name);
915 		}
916 
917 		list_add(&device->dev_list, &fs_devices->devices);
918 		device->fs_devices = fs_devices;
919 		fs_devices->num_devices++;
920 	}
921 	mutex_unlock(&orig->device_list_mutex);
922 	return fs_devices;
923 error:
924 	mutex_unlock(&orig->device_list_mutex);
925 	free_fs_devices(fs_devices);
926 	return ERR_PTR(-ENOMEM);
927 }
928 
929 /*
930  * After we have read the system tree and know devids belonging to
931  * this filesystem, remove the device which does not belong there.
932  */
933 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
934 {
935 	struct btrfs_device *device, *next;
936 	struct btrfs_device *latest_dev = NULL;
937 
938 	mutex_lock(&uuid_mutex);
939 again:
940 	/* This is the initialized path, it is safe to release the devices. */
941 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
942 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
943 							&device->dev_state)) {
944 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
945 			     &device->dev_state) &&
946 			     (!latest_dev ||
947 			      device->generation > latest_dev->generation)) {
948 				latest_dev = device;
949 			}
950 			continue;
951 		}
952 
953 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
954 			/*
955 			 * In the first step, keep the device which has
956 			 * the correct fsid and the devid that is used
957 			 * for the dev_replace procedure.
958 			 * In the second step, the dev_replace state is
959 			 * read from the device tree and it is known
960 			 * whether the procedure is really active or
961 			 * not, which means whether this device is
962 			 * used or whether it should be removed.
963 			 */
964 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
965 						  &device->dev_state)) {
966 				continue;
967 			}
968 		}
969 		if (device->bdev) {
970 			blkdev_put(device->bdev, device->mode);
971 			device->bdev = NULL;
972 			fs_devices->open_devices--;
973 		}
974 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
975 			list_del_init(&device->dev_alloc_list);
976 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
977 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
978 				      &device->dev_state))
979 				fs_devices->rw_devices--;
980 		}
981 		list_del_init(&device->dev_list);
982 		fs_devices->num_devices--;
983 		btrfs_free_device(device);
984 	}
985 
986 	if (fs_devices->seed) {
987 		fs_devices = fs_devices->seed;
988 		goto again;
989 	}
990 
991 	fs_devices->latest_bdev = latest_dev->bdev;
992 
993 	mutex_unlock(&uuid_mutex);
994 }
995 
996 static void free_device_rcu(struct rcu_head *head)
997 {
998 	struct btrfs_device *device;
999 
1000 	device = container_of(head, struct btrfs_device, rcu);
1001 	btrfs_free_device(device);
1002 }
1003 
1004 static void btrfs_close_bdev(struct btrfs_device *device)
1005 {
1006 	if (!device->bdev)
1007 		return;
1008 
1009 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1010 		sync_blockdev(device->bdev);
1011 		invalidate_bdev(device->bdev);
1012 	}
1013 
1014 	blkdev_put(device->bdev, device->mode);
1015 }
1016 
1017 static void btrfs_close_one_device(struct btrfs_device *device)
1018 {
1019 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1020 	struct btrfs_device *new_device;
1021 	struct rcu_string *name;
1022 
1023 	if (device->bdev)
1024 		fs_devices->open_devices--;
1025 
1026 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1027 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1028 		list_del_init(&device->dev_alloc_list);
1029 		fs_devices->rw_devices--;
1030 	}
1031 
1032 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1033 		fs_devices->missing_devices--;
1034 
1035 	btrfs_close_bdev(device);
1036 
1037 	new_device = btrfs_alloc_device(NULL, &device->devid,
1038 					device->uuid);
1039 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1040 
1041 	/* Safe because we are under uuid_mutex */
1042 	if (device->name) {
1043 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
1044 		BUG_ON(!name); /* -ENOMEM */
1045 		rcu_assign_pointer(new_device->name, name);
1046 	}
1047 
1048 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
1049 	new_device->fs_devices = device->fs_devices;
1050 
1051 	call_rcu(&device->rcu, free_device_rcu);
1052 }
1053 
1054 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1055 {
1056 	struct btrfs_device *device, *tmp;
1057 
1058 	if (--fs_devices->opened > 0)
1059 		return 0;
1060 
1061 	mutex_lock(&fs_devices->device_list_mutex);
1062 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1063 		btrfs_close_one_device(device);
1064 	}
1065 	mutex_unlock(&fs_devices->device_list_mutex);
1066 
1067 	WARN_ON(fs_devices->open_devices);
1068 	WARN_ON(fs_devices->rw_devices);
1069 	fs_devices->opened = 0;
1070 	fs_devices->seeding = 0;
1071 
1072 	return 0;
1073 }
1074 
1075 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1076 {
1077 	struct btrfs_fs_devices *seed_devices = NULL;
1078 	int ret;
1079 
1080 	mutex_lock(&uuid_mutex);
1081 	ret = close_fs_devices(fs_devices);
1082 	if (!fs_devices->opened) {
1083 		seed_devices = fs_devices->seed;
1084 		fs_devices->seed = NULL;
1085 	}
1086 	mutex_unlock(&uuid_mutex);
1087 
1088 	while (seed_devices) {
1089 		fs_devices = seed_devices;
1090 		seed_devices = fs_devices->seed;
1091 		close_fs_devices(fs_devices);
1092 		free_fs_devices(fs_devices);
1093 	}
1094 	return ret;
1095 }
1096 
1097 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1098 				fmode_t flags, void *holder)
1099 {
1100 	struct btrfs_device *device;
1101 	struct btrfs_device *latest_dev = NULL;
1102 	int ret = 0;
1103 
1104 	flags |= FMODE_EXCL;
1105 
1106 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1107 		/* Just open everything we can; ignore failures here */
1108 		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1109 			continue;
1110 
1111 		if (!latest_dev ||
1112 		    device->generation > latest_dev->generation)
1113 			latest_dev = device;
1114 	}
1115 	if (fs_devices->open_devices == 0) {
1116 		ret = -EINVAL;
1117 		goto out;
1118 	}
1119 	fs_devices->opened = 1;
1120 	fs_devices->latest_bdev = latest_dev->bdev;
1121 	fs_devices->total_rw_bytes = 0;
1122 out:
1123 	return ret;
1124 }
1125 
1126 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1127 {
1128 	struct btrfs_device *dev1, *dev2;
1129 
1130 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1131 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1132 
1133 	if (dev1->devid < dev2->devid)
1134 		return -1;
1135 	else if (dev1->devid > dev2->devid)
1136 		return 1;
1137 	return 0;
1138 }
1139 
1140 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1141 		       fmode_t flags, void *holder)
1142 {
1143 	int ret;
1144 
1145 	lockdep_assert_held(&uuid_mutex);
1146 
1147 	mutex_lock(&fs_devices->device_list_mutex);
1148 	if (fs_devices->opened) {
1149 		fs_devices->opened++;
1150 		ret = 0;
1151 	} else {
1152 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1153 		ret = open_fs_devices(fs_devices, flags, holder);
1154 	}
1155 	mutex_unlock(&fs_devices->device_list_mutex);
1156 
1157 	return ret;
1158 }
1159 
1160 static void btrfs_release_disk_super(struct page *page)
1161 {
1162 	kunmap(page);
1163 	put_page(page);
1164 }
1165 
1166 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1167 				 struct page **page,
1168 				 struct btrfs_super_block **disk_super)
1169 {
1170 	void *p;
1171 	pgoff_t index;
1172 
1173 	/* make sure our super fits in the device */
1174 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1175 		return 1;
1176 
1177 	/* make sure our super fits in the page */
1178 	if (sizeof(**disk_super) > PAGE_SIZE)
1179 		return 1;
1180 
1181 	/* make sure our super doesn't straddle pages on disk */
1182 	index = bytenr >> PAGE_SHIFT;
1183 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1184 		return 1;
1185 
1186 	/* pull in the page with our super */
1187 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1188 				   index, GFP_KERNEL);
1189 
1190 	if (IS_ERR_OR_NULL(*page))
1191 		return 1;
1192 
1193 	p = kmap(*page);
1194 
1195 	/* align our pointer to the offset of the super block */
1196 	*disk_super = p + (bytenr & ~PAGE_MASK);
1197 
1198 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1199 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1200 		btrfs_release_disk_super(*page);
1201 		return 1;
1202 	}
1203 
1204 	if ((*disk_super)->label[0] &&
1205 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1206 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1207 
1208 	return 0;
1209 }
1210 
1211 /*
1212  * Look for a btrfs signature on a device. This may be called out of the mount path
1213  * and we are not allowed to call set_blocksize during the scan. The superblock
1214  * is read via pagecache
1215  */
1216 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1217 					   void *holder)
1218 {
1219 	struct btrfs_super_block *disk_super;
1220 	bool new_device_added = false;
1221 	struct btrfs_device *device = NULL;
1222 	struct block_device *bdev;
1223 	struct page *page;
1224 	u64 bytenr;
1225 
1226 	lockdep_assert_held(&uuid_mutex);
1227 
1228 	/*
1229 	 * we would like to check all the supers, but that would make
1230 	 * a btrfs mount succeed after a mkfs from a different FS.
1231 	 * So, we need to add a special mount option to scan for
1232 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1233 	 */
1234 	bytenr = btrfs_sb_offset(0);
1235 	flags |= FMODE_EXCL;
1236 
1237 	bdev = blkdev_get_by_path(path, flags, holder);
1238 	if (IS_ERR(bdev))
1239 		return ERR_CAST(bdev);
1240 
1241 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1242 		device = ERR_PTR(-EINVAL);
1243 		goto error_bdev_put;
1244 	}
1245 
1246 	device = device_list_add(path, disk_super, &new_device_added);
1247 	if (!IS_ERR(device)) {
1248 		if (new_device_added)
1249 			btrfs_free_stale_devices(path, device);
1250 	}
1251 
1252 	btrfs_release_disk_super(page);
1253 
1254 error_bdev_put:
1255 	blkdev_put(bdev, flags);
1256 
1257 	return device;
1258 }
1259 
1260 static int contains_pending_extent(struct btrfs_transaction *transaction,
1261 				   struct btrfs_device *device,
1262 				   u64 *start, u64 len)
1263 {
1264 	struct btrfs_fs_info *fs_info = device->fs_info;
1265 	struct extent_map *em;
1266 	struct list_head *search_list = &fs_info->pinned_chunks;
1267 	int ret = 0;
1268 	u64 physical_start = *start;
1269 
1270 	if (transaction)
1271 		search_list = &transaction->pending_chunks;
1272 again:
1273 	list_for_each_entry(em, search_list, list) {
1274 		struct map_lookup *map;
1275 		int i;
1276 
1277 		map = em->map_lookup;
1278 		for (i = 0; i < map->num_stripes; i++) {
1279 			u64 end;
1280 
1281 			if (map->stripes[i].dev != device)
1282 				continue;
1283 			if (map->stripes[i].physical >= physical_start + len ||
1284 			    map->stripes[i].physical + em->orig_block_len <=
1285 			    physical_start)
1286 				continue;
1287 			/*
1288 			 * Make sure that while processing the pinned list we do
1289 			 * not override our *start with a lower value, because
1290 			 * we can have pinned chunks that fall within this
1291 			 * device hole and that have lower physical addresses
1292 			 * than the pending chunks we processed before. If we
1293 			 * do not take this special care we can end up getting
1294 			 * 2 pending chunks that start at the same physical
1295 			 * device offsets because the end offset of a pinned
1296 			 * chunk can be equal to the start offset of some
1297 			 * pending chunk.
1298 			 */
1299 			end = map->stripes[i].physical + em->orig_block_len;
1300 			if (end > *start) {
1301 				*start = end;
1302 				ret = 1;
1303 			}
1304 		}
1305 	}
1306 	if (search_list != &fs_info->pinned_chunks) {
1307 		search_list = &fs_info->pinned_chunks;
1308 		goto again;
1309 	}
1310 
1311 	return ret;
1312 }
1313 
1314 
1315 /*
1316  * find_free_dev_extent_start - find free space in the specified device
1317  * @device:	  the device which we search the free space in
1318  * @num_bytes:	  the size of the free space that we need
1319  * @search_start: the position from which to begin the search
1320  * @start:	  store the start of the free space.
1321  * @len:	  the size of the free space. that we find, or the size
1322  *		  of the max free space if we don't find suitable free space
1323  *
1324  * this uses a pretty simple search, the expectation is that it is
1325  * called very infrequently and that a given device has a small number
1326  * of extents
1327  *
1328  * @start is used to store the start of the free space if we find. But if we
1329  * don't find suitable free space, it will be used to store the start position
1330  * of the max free space.
1331  *
1332  * @len is used to store the size of the free space that we find.
1333  * But if we don't find suitable free space, it is used to store the size of
1334  * the max free space.
1335  */
1336 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1337 			       struct btrfs_device *device, u64 num_bytes,
1338 			       u64 search_start, u64 *start, u64 *len)
1339 {
1340 	struct btrfs_fs_info *fs_info = device->fs_info;
1341 	struct btrfs_root *root = fs_info->dev_root;
1342 	struct btrfs_key key;
1343 	struct btrfs_dev_extent *dev_extent;
1344 	struct btrfs_path *path;
1345 	u64 hole_size;
1346 	u64 max_hole_start;
1347 	u64 max_hole_size;
1348 	u64 extent_end;
1349 	u64 search_end = device->total_bytes;
1350 	int ret;
1351 	int slot;
1352 	struct extent_buffer *l;
1353 
1354 	/*
1355 	 * We don't want to overwrite the superblock on the drive nor any area
1356 	 * used by the boot loader (grub for example), so we make sure to start
1357 	 * at an offset of at least 1MB.
1358 	 */
1359 	search_start = max_t(u64, search_start, SZ_1M);
1360 
1361 	path = btrfs_alloc_path();
1362 	if (!path)
1363 		return -ENOMEM;
1364 
1365 	max_hole_start = search_start;
1366 	max_hole_size = 0;
1367 
1368 again:
1369 	if (search_start >= search_end ||
1370 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1371 		ret = -ENOSPC;
1372 		goto out;
1373 	}
1374 
1375 	path->reada = READA_FORWARD;
1376 	path->search_commit_root = 1;
1377 	path->skip_locking = 1;
1378 
1379 	key.objectid = device->devid;
1380 	key.offset = search_start;
1381 	key.type = BTRFS_DEV_EXTENT_KEY;
1382 
1383 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1384 	if (ret < 0)
1385 		goto out;
1386 	if (ret > 0) {
1387 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1388 		if (ret < 0)
1389 			goto out;
1390 	}
1391 
1392 	while (1) {
1393 		l = path->nodes[0];
1394 		slot = path->slots[0];
1395 		if (slot >= btrfs_header_nritems(l)) {
1396 			ret = btrfs_next_leaf(root, path);
1397 			if (ret == 0)
1398 				continue;
1399 			if (ret < 0)
1400 				goto out;
1401 
1402 			break;
1403 		}
1404 		btrfs_item_key_to_cpu(l, &key, slot);
1405 
1406 		if (key.objectid < device->devid)
1407 			goto next;
1408 
1409 		if (key.objectid > device->devid)
1410 			break;
1411 
1412 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1413 			goto next;
1414 
1415 		if (key.offset > search_start) {
1416 			hole_size = key.offset - search_start;
1417 
1418 			/*
1419 			 * Have to check before we set max_hole_start, otherwise
1420 			 * we could end up sending back this offset anyway.
1421 			 */
1422 			if (contains_pending_extent(transaction, device,
1423 						    &search_start,
1424 						    hole_size)) {
1425 				if (key.offset >= search_start) {
1426 					hole_size = key.offset - search_start;
1427 				} else {
1428 					WARN_ON_ONCE(1);
1429 					hole_size = 0;
1430 				}
1431 			}
1432 
1433 			if (hole_size > max_hole_size) {
1434 				max_hole_start = search_start;
1435 				max_hole_size = hole_size;
1436 			}
1437 
1438 			/*
1439 			 * If this free space is greater than which we need,
1440 			 * it must be the max free space that we have found
1441 			 * until now, so max_hole_start must point to the start
1442 			 * of this free space and the length of this free space
1443 			 * is stored in max_hole_size. Thus, we return
1444 			 * max_hole_start and max_hole_size and go back to the
1445 			 * caller.
1446 			 */
1447 			if (hole_size >= num_bytes) {
1448 				ret = 0;
1449 				goto out;
1450 			}
1451 		}
1452 
1453 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1454 		extent_end = key.offset + btrfs_dev_extent_length(l,
1455 								  dev_extent);
1456 		if (extent_end > search_start)
1457 			search_start = extent_end;
1458 next:
1459 		path->slots[0]++;
1460 		cond_resched();
1461 	}
1462 
1463 	/*
1464 	 * At this point, search_start should be the end of
1465 	 * allocated dev extents, and when shrinking the device,
1466 	 * search_end may be smaller than search_start.
1467 	 */
1468 	if (search_end > search_start) {
1469 		hole_size = search_end - search_start;
1470 
1471 		if (contains_pending_extent(transaction, device, &search_start,
1472 					    hole_size)) {
1473 			btrfs_release_path(path);
1474 			goto again;
1475 		}
1476 
1477 		if (hole_size > max_hole_size) {
1478 			max_hole_start = search_start;
1479 			max_hole_size = hole_size;
1480 		}
1481 	}
1482 
1483 	/* See above. */
1484 	if (max_hole_size < num_bytes)
1485 		ret = -ENOSPC;
1486 	else
1487 		ret = 0;
1488 
1489 out:
1490 	btrfs_free_path(path);
1491 	*start = max_hole_start;
1492 	if (len)
1493 		*len = max_hole_size;
1494 	return ret;
1495 }
1496 
1497 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1498 			 struct btrfs_device *device, u64 num_bytes,
1499 			 u64 *start, u64 *len)
1500 {
1501 	/* FIXME use last free of some kind */
1502 	return find_free_dev_extent_start(trans->transaction, device,
1503 					  num_bytes, 0, start, len);
1504 }
1505 
1506 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1507 			  struct btrfs_device *device,
1508 			  u64 start, u64 *dev_extent_len)
1509 {
1510 	struct btrfs_fs_info *fs_info = device->fs_info;
1511 	struct btrfs_root *root = fs_info->dev_root;
1512 	int ret;
1513 	struct btrfs_path *path;
1514 	struct btrfs_key key;
1515 	struct btrfs_key found_key;
1516 	struct extent_buffer *leaf = NULL;
1517 	struct btrfs_dev_extent *extent = NULL;
1518 
1519 	path = btrfs_alloc_path();
1520 	if (!path)
1521 		return -ENOMEM;
1522 
1523 	key.objectid = device->devid;
1524 	key.offset = start;
1525 	key.type = BTRFS_DEV_EXTENT_KEY;
1526 again:
1527 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528 	if (ret > 0) {
1529 		ret = btrfs_previous_item(root, path, key.objectid,
1530 					  BTRFS_DEV_EXTENT_KEY);
1531 		if (ret)
1532 			goto out;
1533 		leaf = path->nodes[0];
1534 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1535 		extent = btrfs_item_ptr(leaf, path->slots[0],
1536 					struct btrfs_dev_extent);
1537 		BUG_ON(found_key.offset > start || found_key.offset +
1538 		       btrfs_dev_extent_length(leaf, extent) < start);
1539 		key = found_key;
1540 		btrfs_release_path(path);
1541 		goto again;
1542 	} else if (ret == 0) {
1543 		leaf = path->nodes[0];
1544 		extent = btrfs_item_ptr(leaf, path->slots[0],
1545 					struct btrfs_dev_extent);
1546 	} else {
1547 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1548 		goto out;
1549 	}
1550 
1551 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1552 
1553 	ret = btrfs_del_item(trans, root, path);
1554 	if (ret) {
1555 		btrfs_handle_fs_error(fs_info, ret,
1556 				      "Failed to remove dev extent item");
1557 	} else {
1558 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1559 	}
1560 out:
1561 	btrfs_free_path(path);
1562 	return ret;
1563 }
1564 
1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1566 				  struct btrfs_device *device,
1567 				  u64 chunk_offset, u64 start, u64 num_bytes)
1568 {
1569 	int ret;
1570 	struct btrfs_path *path;
1571 	struct btrfs_fs_info *fs_info = device->fs_info;
1572 	struct btrfs_root *root = fs_info->dev_root;
1573 	struct btrfs_dev_extent *extent;
1574 	struct extent_buffer *leaf;
1575 	struct btrfs_key key;
1576 
1577 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1578 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1579 	path = btrfs_alloc_path();
1580 	if (!path)
1581 		return -ENOMEM;
1582 
1583 	key.objectid = device->devid;
1584 	key.offset = start;
1585 	key.type = BTRFS_DEV_EXTENT_KEY;
1586 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1587 				      sizeof(*extent));
1588 	if (ret)
1589 		goto out;
1590 
1591 	leaf = path->nodes[0];
1592 	extent = btrfs_item_ptr(leaf, path->slots[0],
1593 				struct btrfs_dev_extent);
1594 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1595 					BTRFS_CHUNK_TREE_OBJECTID);
1596 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1597 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1598 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1599 
1600 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1601 	btrfs_mark_buffer_dirty(leaf);
1602 out:
1603 	btrfs_free_path(path);
1604 	return ret;
1605 }
1606 
1607 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1608 {
1609 	struct extent_map_tree *em_tree;
1610 	struct extent_map *em;
1611 	struct rb_node *n;
1612 	u64 ret = 0;
1613 
1614 	em_tree = &fs_info->mapping_tree.map_tree;
1615 	read_lock(&em_tree->lock);
1616 	n = rb_last(&em_tree->map.rb_root);
1617 	if (n) {
1618 		em = rb_entry(n, struct extent_map, rb_node);
1619 		ret = em->start + em->len;
1620 	}
1621 	read_unlock(&em_tree->lock);
1622 
1623 	return ret;
1624 }
1625 
1626 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1627 				    u64 *devid_ret)
1628 {
1629 	int ret;
1630 	struct btrfs_key key;
1631 	struct btrfs_key found_key;
1632 	struct btrfs_path *path;
1633 
1634 	path = btrfs_alloc_path();
1635 	if (!path)
1636 		return -ENOMEM;
1637 
1638 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1639 	key.type = BTRFS_DEV_ITEM_KEY;
1640 	key.offset = (u64)-1;
1641 
1642 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1643 	if (ret < 0)
1644 		goto error;
1645 
1646 	BUG_ON(ret == 0); /* Corruption */
1647 
1648 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1649 				  BTRFS_DEV_ITEMS_OBJECTID,
1650 				  BTRFS_DEV_ITEM_KEY);
1651 	if (ret) {
1652 		*devid_ret = 1;
1653 	} else {
1654 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1655 				      path->slots[0]);
1656 		*devid_ret = found_key.offset + 1;
1657 	}
1658 	ret = 0;
1659 error:
1660 	btrfs_free_path(path);
1661 	return ret;
1662 }
1663 
1664 /*
1665  * the device information is stored in the chunk root
1666  * the btrfs_device struct should be fully filled in
1667  */
1668 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1669 			    struct btrfs_device *device)
1670 {
1671 	int ret;
1672 	struct btrfs_path *path;
1673 	struct btrfs_dev_item *dev_item;
1674 	struct extent_buffer *leaf;
1675 	struct btrfs_key key;
1676 	unsigned long ptr;
1677 
1678 	path = btrfs_alloc_path();
1679 	if (!path)
1680 		return -ENOMEM;
1681 
1682 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1683 	key.type = BTRFS_DEV_ITEM_KEY;
1684 	key.offset = device->devid;
1685 
1686 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1687 				      &key, sizeof(*dev_item));
1688 	if (ret)
1689 		goto out;
1690 
1691 	leaf = path->nodes[0];
1692 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1693 
1694 	btrfs_set_device_id(leaf, dev_item, device->devid);
1695 	btrfs_set_device_generation(leaf, dev_item, 0);
1696 	btrfs_set_device_type(leaf, dev_item, device->type);
1697 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1698 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1699 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1700 	btrfs_set_device_total_bytes(leaf, dev_item,
1701 				     btrfs_device_get_disk_total_bytes(device));
1702 	btrfs_set_device_bytes_used(leaf, dev_item,
1703 				    btrfs_device_get_bytes_used(device));
1704 	btrfs_set_device_group(leaf, dev_item, 0);
1705 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1706 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1707 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1708 
1709 	ptr = btrfs_device_uuid(dev_item);
1710 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1711 	ptr = btrfs_device_fsid(dev_item);
1712 	write_extent_buffer(leaf, trans->fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1713 	btrfs_mark_buffer_dirty(leaf);
1714 
1715 	ret = 0;
1716 out:
1717 	btrfs_free_path(path);
1718 	return ret;
1719 }
1720 
1721 /*
1722  * Function to update ctime/mtime for a given device path.
1723  * Mainly used for ctime/mtime based probe like libblkid.
1724  */
1725 static void update_dev_time(const char *path_name)
1726 {
1727 	struct file *filp;
1728 
1729 	filp = filp_open(path_name, O_RDWR, 0);
1730 	if (IS_ERR(filp))
1731 		return;
1732 	file_update_time(filp);
1733 	filp_close(filp, NULL);
1734 }
1735 
1736 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1737 			     struct btrfs_device *device)
1738 {
1739 	struct btrfs_root *root = fs_info->chunk_root;
1740 	int ret;
1741 	struct btrfs_path *path;
1742 	struct btrfs_key key;
1743 	struct btrfs_trans_handle *trans;
1744 
1745 	path = btrfs_alloc_path();
1746 	if (!path)
1747 		return -ENOMEM;
1748 
1749 	trans = btrfs_start_transaction(root, 0);
1750 	if (IS_ERR(trans)) {
1751 		btrfs_free_path(path);
1752 		return PTR_ERR(trans);
1753 	}
1754 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1755 	key.type = BTRFS_DEV_ITEM_KEY;
1756 	key.offset = device->devid;
1757 
1758 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1759 	if (ret) {
1760 		if (ret > 0)
1761 			ret = -ENOENT;
1762 		btrfs_abort_transaction(trans, ret);
1763 		btrfs_end_transaction(trans);
1764 		goto out;
1765 	}
1766 
1767 	ret = btrfs_del_item(trans, root, path);
1768 	if (ret) {
1769 		btrfs_abort_transaction(trans, ret);
1770 		btrfs_end_transaction(trans);
1771 	}
1772 
1773 out:
1774 	btrfs_free_path(path);
1775 	if (!ret)
1776 		ret = btrfs_commit_transaction(trans);
1777 	return ret;
1778 }
1779 
1780 /*
1781  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1782  * filesystem. It's up to the caller to adjust that number regarding eg. device
1783  * replace.
1784  */
1785 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1786 		u64 num_devices)
1787 {
1788 	u64 all_avail;
1789 	unsigned seq;
1790 	int i;
1791 
1792 	do {
1793 		seq = read_seqbegin(&fs_info->profiles_lock);
1794 
1795 		all_avail = fs_info->avail_data_alloc_bits |
1796 			    fs_info->avail_system_alloc_bits |
1797 			    fs_info->avail_metadata_alloc_bits;
1798 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1799 
1800 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1801 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1802 			continue;
1803 
1804 		if (num_devices < btrfs_raid_array[i].devs_min) {
1805 			int ret = btrfs_raid_array[i].mindev_error;
1806 
1807 			if (ret)
1808 				return ret;
1809 		}
1810 	}
1811 
1812 	return 0;
1813 }
1814 
1815 static struct btrfs_device * btrfs_find_next_active_device(
1816 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1817 {
1818 	struct btrfs_device *next_device;
1819 
1820 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1821 		if (next_device != device &&
1822 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1823 		    && next_device->bdev)
1824 			return next_device;
1825 	}
1826 
1827 	return NULL;
1828 }
1829 
1830 /*
1831  * Helper function to check if the given device is part of s_bdev / latest_bdev
1832  * and replace it with the provided or the next active device, in the context
1833  * where this function called, there should be always be another device (or
1834  * this_dev) which is active.
1835  */
1836 void btrfs_assign_next_active_device(struct btrfs_device *device,
1837 				     struct btrfs_device *this_dev)
1838 {
1839 	struct btrfs_fs_info *fs_info = device->fs_info;
1840 	struct btrfs_device *next_device;
1841 
1842 	if (this_dev)
1843 		next_device = this_dev;
1844 	else
1845 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1846 								device);
1847 	ASSERT(next_device);
1848 
1849 	if (fs_info->sb->s_bdev &&
1850 			(fs_info->sb->s_bdev == device->bdev))
1851 		fs_info->sb->s_bdev = next_device->bdev;
1852 
1853 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1854 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1855 }
1856 
1857 /*
1858  * Return btrfs_fs_devices::num_devices excluding the device that's being
1859  * currently replaced.
1860  */
1861 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1862 {
1863 	u64 num_devices = fs_info->fs_devices->num_devices;
1864 
1865 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1866 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1867 		ASSERT(num_devices > 1);
1868 		num_devices--;
1869 	}
1870 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1871 
1872 	return num_devices;
1873 }
1874 
1875 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1876 		u64 devid)
1877 {
1878 	struct btrfs_device *device;
1879 	struct btrfs_fs_devices *cur_devices;
1880 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1881 	u64 num_devices;
1882 	int ret = 0;
1883 
1884 	mutex_lock(&uuid_mutex);
1885 
1886 	num_devices = btrfs_num_devices(fs_info);
1887 
1888 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1889 	if (ret)
1890 		goto out;
1891 
1892 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
1893 
1894 	if (IS_ERR(device)) {
1895 		if (PTR_ERR(device) == -ENOENT &&
1896 		    strcmp(device_path, "missing") == 0)
1897 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1898 		else
1899 			ret = PTR_ERR(device);
1900 		goto out;
1901 	}
1902 
1903 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1904 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1905 		goto out;
1906 	}
1907 
1908 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1909 	    fs_info->fs_devices->rw_devices == 1) {
1910 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1911 		goto out;
1912 	}
1913 
1914 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1915 		mutex_lock(&fs_info->chunk_mutex);
1916 		list_del_init(&device->dev_alloc_list);
1917 		device->fs_devices->rw_devices--;
1918 		mutex_unlock(&fs_info->chunk_mutex);
1919 	}
1920 
1921 	mutex_unlock(&uuid_mutex);
1922 	ret = btrfs_shrink_device(device, 0);
1923 	mutex_lock(&uuid_mutex);
1924 	if (ret)
1925 		goto error_undo;
1926 
1927 	/*
1928 	 * TODO: the superblock still includes this device in its num_devices
1929 	 * counter although write_all_supers() is not locked out. This
1930 	 * could give a filesystem state which requires a degraded mount.
1931 	 */
1932 	ret = btrfs_rm_dev_item(fs_info, device);
1933 	if (ret)
1934 		goto error_undo;
1935 
1936 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1937 	btrfs_scrub_cancel_dev(fs_info, device);
1938 
1939 	/*
1940 	 * the device list mutex makes sure that we don't change
1941 	 * the device list while someone else is writing out all
1942 	 * the device supers. Whoever is writing all supers, should
1943 	 * lock the device list mutex before getting the number of
1944 	 * devices in the super block (super_copy). Conversely,
1945 	 * whoever updates the number of devices in the super block
1946 	 * (super_copy) should hold the device list mutex.
1947 	 */
1948 
1949 	/*
1950 	 * In normal cases the cur_devices == fs_devices. But in case
1951 	 * of deleting a seed device, the cur_devices should point to
1952 	 * its own fs_devices listed under the fs_devices->seed.
1953 	 */
1954 	cur_devices = device->fs_devices;
1955 	mutex_lock(&fs_devices->device_list_mutex);
1956 	list_del_rcu(&device->dev_list);
1957 
1958 	cur_devices->num_devices--;
1959 	cur_devices->total_devices--;
1960 	/* Update total_devices of the parent fs_devices if it's seed */
1961 	if (cur_devices != fs_devices)
1962 		fs_devices->total_devices--;
1963 
1964 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1965 		cur_devices->missing_devices--;
1966 
1967 	btrfs_assign_next_active_device(device, NULL);
1968 
1969 	if (device->bdev) {
1970 		cur_devices->open_devices--;
1971 		/* remove sysfs entry */
1972 		btrfs_sysfs_rm_device_link(fs_devices, device);
1973 	}
1974 
1975 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1976 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1977 	mutex_unlock(&fs_devices->device_list_mutex);
1978 
1979 	/*
1980 	 * at this point, the device is zero sized and detached from
1981 	 * the devices list.  All that's left is to zero out the old
1982 	 * supers and free the device.
1983 	 */
1984 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1985 		btrfs_scratch_superblocks(device->bdev, device->name->str);
1986 
1987 	btrfs_close_bdev(device);
1988 	call_rcu(&device->rcu, free_device_rcu);
1989 
1990 	if (cur_devices->open_devices == 0) {
1991 		while (fs_devices) {
1992 			if (fs_devices->seed == cur_devices) {
1993 				fs_devices->seed = cur_devices->seed;
1994 				break;
1995 			}
1996 			fs_devices = fs_devices->seed;
1997 		}
1998 		cur_devices->seed = NULL;
1999 		close_fs_devices(cur_devices);
2000 		free_fs_devices(cur_devices);
2001 	}
2002 
2003 out:
2004 	mutex_unlock(&uuid_mutex);
2005 	return ret;
2006 
2007 error_undo:
2008 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2009 		mutex_lock(&fs_info->chunk_mutex);
2010 		list_add(&device->dev_alloc_list,
2011 			 &fs_devices->alloc_list);
2012 		device->fs_devices->rw_devices++;
2013 		mutex_unlock(&fs_info->chunk_mutex);
2014 	}
2015 	goto out;
2016 }
2017 
2018 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2019 {
2020 	struct btrfs_fs_devices *fs_devices;
2021 
2022 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2023 
2024 	/*
2025 	 * in case of fs with no seed, srcdev->fs_devices will point
2026 	 * to fs_devices of fs_info. However when the dev being replaced is
2027 	 * a seed dev it will point to the seed's local fs_devices. In short
2028 	 * srcdev will have its correct fs_devices in both the cases.
2029 	 */
2030 	fs_devices = srcdev->fs_devices;
2031 
2032 	list_del_rcu(&srcdev->dev_list);
2033 	list_del(&srcdev->dev_alloc_list);
2034 	fs_devices->num_devices--;
2035 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2036 		fs_devices->missing_devices--;
2037 
2038 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2039 		fs_devices->rw_devices--;
2040 
2041 	if (srcdev->bdev)
2042 		fs_devices->open_devices--;
2043 }
2044 
2045 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2046 				      struct btrfs_device *srcdev)
2047 {
2048 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2049 
2050 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2051 		/* zero out the old super if it is writable */
2052 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2053 	}
2054 
2055 	btrfs_close_bdev(srcdev);
2056 	call_rcu(&srcdev->rcu, free_device_rcu);
2057 
2058 	/* if this is no devs we rather delete the fs_devices */
2059 	if (!fs_devices->num_devices) {
2060 		struct btrfs_fs_devices *tmp_fs_devices;
2061 
2062 		/*
2063 		 * On a mounted FS, num_devices can't be zero unless it's a
2064 		 * seed. In case of a seed device being replaced, the replace
2065 		 * target added to the sprout FS, so there will be no more
2066 		 * device left under the seed FS.
2067 		 */
2068 		ASSERT(fs_devices->seeding);
2069 
2070 		tmp_fs_devices = fs_info->fs_devices;
2071 		while (tmp_fs_devices) {
2072 			if (tmp_fs_devices->seed == fs_devices) {
2073 				tmp_fs_devices->seed = fs_devices->seed;
2074 				break;
2075 			}
2076 			tmp_fs_devices = tmp_fs_devices->seed;
2077 		}
2078 		fs_devices->seed = NULL;
2079 		close_fs_devices(fs_devices);
2080 		free_fs_devices(fs_devices);
2081 	}
2082 }
2083 
2084 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2085 {
2086 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2087 
2088 	WARN_ON(!tgtdev);
2089 	mutex_lock(&fs_devices->device_list_mutex);
2090 
2091 	btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2092 
2093 	if (tgtdev->bdev)
2094 		fs_devices->open_devices--;
2095 
2096 	fs_devices->num_devices--;
2097 
2098 	btrfs_assign_next_active_device(tgtdev, NULL);
2099 
2100 	list_del_rcu(&tgtdev->dev_list);
2101 
2102 	mutex_unlock(&fs_devices->device_list_mutex);
2103 
2104 	/*
2105 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2106 	 * may lead to a call to btrfs_show_devname() which will try
2107 	 * to hold device_list_mutex. And here this device
2108 	 * is already out of device list, so we don't have to hold
2109 	 * the device_list_mutex lock.
2110 	 */
2111 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2112 
2113 	btrfs_close_bdev(tgtdev);
2114 	call_rcu(&tgtdev->rcu, free_device_rcu);
2115 }
2116 
2117 static struct btrfs_device *btrfs_find_device_by_path(
2118 		struct btrfs_fs_info *fs_info, const char *device_path)
2119 {
2120 	int ret = 0;
2121 	struct btrfs_super_block *disk_super;
2122 	u64 devid;
2123 	u8 *dev_uuid;
2124 	struct block_device *bdev;
2125 	struct buffer_head *bh;
2126 	struct btrfs_device *device;
2127 
2128 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2129 				    fs_info->bdev_holder, 0, &bdev, &bh);
2130 	if (ret)
2131 		return ERR_PTR(ret);
2132 	disk_super = (struct btrfs_super_block *)bh->b_data;
2133 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2134 	dev_uuid = disk_super->dev_item.uuid;
2135 	device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2136 	brelse(bh);
2137 	if (!device)
2138 		device = ERR_PTR(-ENOENT);
2139 	blkdev_put(bdev, FMODE_READ);
2140 	return device;
2141 }
2142 
2143 static struct btrfs_device *btrfs_find_device_missing_or_by_path(
2144 		struct btrfs_fs_info *fs_info, const char *device_path)
2145 {
2146 	struct btrfs_device *device = NULL;
2147 	if (strcmp(device_path, "missing") == 0) {
2148 		struct list_head *devices;
2149 		struct btrfs_device *tmp;
2150 
2151 		devices = &fs_info->fs_devices->devices;
2152 		list_for_each_entry(tmp, devices, dev_list) {
2153 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2154 					&tmp->dev_state) && !tmp->bdev) {
2155 				device = tmp;
2156 				break;
2157 			}
2158 		}
2159 
2160 		if (!device)
2161 			return ERR_PTR(-ENOENT);
2162 	} else {
2163 		device = btrfs_find_device_by_path(fs_info, device_path);
2164 	}
2165 
2166 	return device;
2167 }
2168 
2169 /*
2170  * Lookup a device given by device id, or the path if the id is 0.
2171  */
2172 struct btrfs_device *btrfs_find_device_by_devspec(
2173 		struct btrfs_fs_info *fs_info, u64 devid, const char *devpath)
2174 {
2175 	struct btrfs_device *device;
2176 
2177 	if (devid) {
2178 		device = btrfs_find_device(fs_info, devid, NULL, NULL);
2179 		if (!device)
2180 			return ERR_PTR(-ENOENT);
2181 	} else {
2182 		if (!devpath || !devpath[0])
2183 			return ERR_PTR(-EINVAL);
2184 		device = btrfs_find_device_missing_or_by_path(fs_info, devpath);
2185 	}
2186 	return device;
2187 }
2188 
2189 /*
2190  * does all the dirty work required for changing file system's UUID.
2191  */
2192 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2193 {
2194 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2195 	struct btrfs_fs_devices *old_devices;
2196 	struct btrfs_fs_devices *seed_devices;
2197 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2198 	struct btrfs_device *device;
2199 	u64 super_flags;
2200 
2201 	lockdep_assert_held(&uuid_mutex);
2202 	if (!fs_devices->seeding)
2203 		return -EINVAL;
2204 
2205 	seed_devices = alloc_fs_devices(NULL);
2206 	if (IS_ERR(seed_devices))
2207 		return PTR_ERR(seed_devices);
2208 
2209 	old_devices = clone_fs_devices(fs_devices);
2210 	if (IS_ERR(old_devices)) {
2211 		kfree(seed_devices);
2212 		return PTR_ERR(old_devices);
2213 	}
2214 
2215 	list_add(&old_devices->fs_list, &fs_uuids);
2216 
2217 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2218 	seed_devices->opened = 1;
2219 	INIT_LIST_HEAD(&seed_devices->devices);
2220 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2221 	mutex_init(&seed_devices->device_list_mutex);
2222 
2223 	mutex_lock(&fs_devices->device_list_mutex);
2224 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2225 			      synchronize_rcu);
2226 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2227 		device->fs_devices = seed_devices;
2228 
2229 	mutex_lock(&fs_info->chunk_mutex);
2230 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2231 	mutex_unlock(&fs_info->chunk_mutex);
2232 
2233 	fs_devices->seeding = 0;
2234 	fs_devices->num_devices = 0;
2235 	fs_devices->open_devices = 0;
2236 	fs_devices->missing_devices = 0;
2237 	fs_devices->rotating = 0;
2238 	fs_devices->seed = seed_devices;
2239 
2240 	generate_random_uuid(fs_devices->fsid);
2241 	memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2242 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2243 	mutex_unlock(&fs_devices->device_list_mutex);
2244 
2245 	super_flags = btrfs_super_flags(disk_super) &
2246 		      ~BTRFS_SUPER_FLAG_SEEDING;
2247 	btrfs_set_super_flags(disk_super, super_flags);
2248 
2249 	return 0;
2250 }
2251 
2252 /*
2253  * Store the expected generation for seed devices in device items.
2254  */
2255 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2256 			       struct btrfs_fs_info *fs_info)
2257 {
2258 	struct btrfs_root *root = fs_info->chunk_root;
2259 	struct btrfs_path *path;
2260 	struct extent_buffer *leaf;
2261 	struct btrfs_dev_item *dev_item;
2262 	struct btrfs_device *device;
2263 	struct btrfs_key key;
2264 	u8 fs_uuid[BTRFS_FSID_SIZE];
2265 	u8 dev_uuid[BTRFS_UUID_SIZE];
2266 	u64 devid;
2267 	int ret;
2268 
2269 	path = btrfs_alloc_path();
2270 	if (!path)
2271 		return -ENOMEM;
2272 
2273 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2274 	key.offset = 0;
2275 	key.type = BTRFS_DEV_ITEM_KEY;
2276 
2277 	while (1) {
2278 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2279 		if (ret < 0)
2280 			goto error;
2281 
2282 		leaf = path->nodes[0];
2283 next_slot:
2284 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2285 			ret = btrfs_next_leaf(root, path);
2286 			if (ret > 0)
2287 				break;
2288 			if (ret < 0)
2289 				goto error;
2290 			leaf = path->nodes[0];
2291 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2292 			btrfs_release_path(path);
2293 			continue;
2294 		}
2295 
2296 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2297 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2298 		    key.type != BTRFS_DEV_ITEM_KEY)
2299 			break;
2300 
2301 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2302 					  struct btrfs_dev_item);
2303 		devid = btrfs_device_id(leaf, dev_item);
2304 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2305 				   BTRFS_UUID_SIZE);
2306 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2307 				   BTRFS_FSID_SIZE);
2308 		device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2309 		BUG_ON(!device); /* Logic error */
2310 
2311 		if (device->fs_devices->seeding) {
2312 			btrfs_set_device_generation(leaf, dev_item,
2313 						    device->generation);
2314 			btrfs_mark_buffer_dirty(leaf);
2315 		}
2316 
2317 		path->slots[0]++;
2318 		goto next_slot;
2319 	}
2320 	ret = 0;
2321 error:
2322 	btrfs_free_path(path);
2323 	return ret;
2324 }
2325 
2326 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2327 {
2328 	struct btrfs_root *root = fs_info->dev_root;
2329 	struct request_queue *q;
2330 	struct btrfs_trans_handle *trans;
2331 	struct btrfs_device *device;
2332 	struct block_device *bdev;
2333 	struct super_block *sb = fs_info->sb;
2334 	struct rcu_string *name;
2335 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2336 	u64 orig_super_total_bytes;
2337 	u64 orig_super_num_devices;
2338 	int seeding_dev = 0;
2339 	int ret = 0;
2340 	bool unlocked = false;
2341 
2342 	if (sb_rdonly(sb) && !fs_devices->seeding)
2343 		return -EROFS;
2344 
2345 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2346 				  fs_info->bdev_holder);
2347 	if (IS_ERR(bdev))
2348 		return PTR_ERR(bdev);
2349 
2350 	if (fs_devices->seeding) {
2351 		seeding_dev = 1;
2352 		down_write(&sb->s_umount);
2353 		mutex_lock(&uuid_mutex);
2354 	}
2355 
2356 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2357 
2358 	mutex_lock(&fs_devices->device_list_mutex);
2359 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2360 		if (device->bdev == bdev) {
2361 			ret = -EEXIST;
2362 			mutex_unlock(
2363 				&fs_devices->device_list_mutex);
2364 			goto error;
2365 		}
2366 	}
2367 	mutex_unlock(&fs_devices->device_list_mutex);
2368 
2369 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2370 	if (IS_ERR(device)) {
2371 		/* we can safely leave the fs_devices entry around */
2372 		ret = PTR_ERR(device);
2373 		goto error;
2374 	}
2375 
2376 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2377 	if (!name) {
2378 		ret = -ENOMEM;
2379 		goto error_free_device;
2380 	}
2381 	rcu_assign_pointer(device->name, name);
2382 
2383 	trans = btrfs_start_transaction(root, 0);
2384 	if (IS_ERR(trans)) {
2385 		ret = PTR_ERR(trans);
2386 		goto error_free_device;
2387 	}
2388 
2389 	q = bdev_get_queue(bdev);
2390 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2391 	device->generation = trans->transid;
2392 	device->io_width = fs_info->sectorsize;
2393 	device->io_align = fs_info->sectorsize;
2394 	device->sector_size = fs_info->sectorsize;
2395 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2396 					 fs_info->sectorsize);
2397 	device->disk_total_bytes = device->total_bytes;
2398 	device->commit_total_bytes = device->total_bytes;
2399 	device->fs_info = fs_info;
2400 	device->bdev = bdev;
2401 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2402 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2403 	device->mode = FMODE_EXCL;
2404 	device->dev_stats_valid = 1;
2405 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2406 
2407 	if (seeding_dev) {
2408 		sb->s_flags &= ~SB_RDONLY;
2409 		ret = btrfs_prepare_sprout(fs_info);
2410 		if (ret) {
2411 			btrfs_abort_transaction(trans, ret);
2412 			goto error_trans;
2413 		}
2414 	}
2415 
2416 	device->fs_devices = fs_devices;
2417 
2418 	mutex_lock(&fs_devices->device_list_mutex);
2419 	mutex_lock(&fs_info->chunk_mutex);
2420 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2421 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2422 	fs_devices->num_devices++;
2423 	fs_devices->open_devices++;
2424 	fs_devices->rw_devices++;
2425 	fs_devices->total_devices++;
2426 	fs_devices->total_rw_bytes += device->total_bytes;
2427 
2428 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2429 
2430 	if (!blk_queue_nonrot(q))
2431 		fs_devices->rotating = 1;
2432 
2433 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2434 	btrfs_set_super_total_bytes(fs_info->super_copy,
2435 		round_down(orig_super_total_bytes + device->total_bytes,
2436 			   fs_info->sectorsize));
2437 
2438 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2439 	btrfs_set_super_num_devices(fs_info->super_copy,
2440 				    orig_super_num_devices + 1);
2441 
2442 	/* add sysfs device entry */
2443 	btrfs_sysfs_add_device_link(fs_devices, device);
2444 
2445 	/*
2446 	 * we've got more storage, clear any full flags on the space
2447 	 * infos
2448 	 */
2449 	btrfs_clear_space_info_full(fs_info);
2450 
2451 	mutex_unlock(&fs_info->chunk_mutex);
2452 	mutex_unlock(&fs_devices->device_list_mutex);
2453 
2454 	if (seeding_dev) {
2455 		mutex_lock(&fs_info->chunk_mutex);
2456 		ret = init_first_rw_device(trans, fs_info);
2457 		mutex_unlock(&fs_info->chunk_mutex);
2458 		if (ret) {
2459 			btrfs_abort_transaction(trans, ret);
2460 			goto error_sysfs;
2461 		}
2462 	}
2463 
2464 	ret = btrfs_add_dev_item(trans, device);
2465 	if (ret) {
2466 		btrfs_abort_transaction(trans, ret);
2467 		goto error_sysfs;
2468 	}
2469 
2470 	if (seeding_dev) {
2471 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2472 
2473 		ret = btrfs_finish_sprout(trans, fs_info);
2474 		if (ret) {
2475 			btrfs_abort_transaction(trans, ret);
2476 			goto error_sysfs;
2477 		}
2478 
2479 		/* Sprouting would change fsid of the mounted root,
2480 		 * so rename the fsid on the sysfs
2481 		 */
2482 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2483 						fs_info->fsid);
2484 		if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2485 			btrfs_warn(fs_info,
2486 				   "sysfs: failed to create fsid for sprout");
2487 	}
2488 
2489 	ret = btrfs_commit_transaction(trans);
2490 
2491 	if (seeding_dev) {
2492 		mutex_unlock(&uuid_mutex);
2493 		up_write(&sb->s_umount);
2494 		unlocked = true;
2495 
2496 		if (ret) /* transaction commit */
2497 			return ret;
2498 
2499 		ret = btrfs_relocate_sys_chunks(fs_info);
2500 		if (ret < 0)
2501 			btrfs_handle_fs_error(fs_info, ret,
2502 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2503 		trans = btrfs_attach_transaction(root);
2504 		if (IS_ERR(trans)) {
2505 			if (PTR_ERR(trans) == -ENOENT)
2506 				return 0;
2507 			ret = PTR_ERR(trans);
2508 			trans = NULL;
2509 			goto error_sysfs;
2510 		}
2511 		ret = btrfs_commit_transaction(trans);
2512 	}
2513 
2514 	/* Update ctime/mtime for libblkid */
2515 	update_dev_time(device_path);
2516 	return ret;
2517 
2518 error_sysfs:
2519 	btrfs_sysfs_rm_device_link(fs_devices, device);
2520 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2521 	mutex_lock(&fs_info->chunk_mutex);
2522 	list_del_rcu(&device->dev_list);
2523 	list_del(&device->dev_alloc_list);
2524 	fs_info->fs_devices->num_devices--;
2525 	fs_info->fs_devices->open_devices--;
2526 	fs_info->fs_devices->rw_devices--;
2527 	fs_info->fs_devices->total_devices--;
2528 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2529 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2530 	btrfs_set_super_total_bytes(fs_info->super_copy,
2531 				    orig_super_total_bytes);
2532 	btrfs_set_super_num_devices(fs_info->super_copy,
2533 				    orig_super_num_devices);
2534 	mutex_unlock(&fs_info->chunk_mutex);
2535 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2536 error_trans:
2537 	if (seeding_dev)
2538 		sb->s_flags |= SB_RDONLY;
2539 	if (trans)
2540 		btrfs_end_transaction(trans);
2541 error_free_device:
2542 	btrfs_free_device(device);
2543 error:
2544 	blkdev_put(bdev, FMODE_EXCL);
2545 	if (seeding_dev && !unlocked) {
2546 		mutex_unlock(&uuid_mutex);
2547 		up_write(&sb->s_umount);
2548 	}
2549 	return ret;
2550 }
2551 
2552 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2553 					struct btrfs_device *device)
2554 {
2555 	int ret;
2556 	struct btrfs_path *path;
2557 	struct btrfs_root *root = device->fs_info->chunk_root;
2558 	struct btrfs_dev_item *dev_item;
2559 	struct extent_buffer *leaf;
2560 	struct btrfs_key key;
2561 
2562 	path = btrfs_alloc_path();
2563 	if (!path)
2564 		return -ENOMEM;
2565 
2566 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2567 	key.type = BTRFS_DEV_ITEM_KEY;
2568 	key.offset = device->devid;
2569 
2570 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2571 	if (ret < 0)
2572 		goto out;
2573 
2574 	if (ret > 0) {
2575 		ret = -ENOENT;
2576 		goto out;
2577 	}
2578 
2579 	leaf = path->nodes[0];
2580 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2581 
2582 	btrfs_set_device_id(leaf, dev_item, device->devid);
2583 	btrfs_set_device_type(leaf, dev_item, device->type);
2584 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2585 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2586 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2587 	btrfs_set_device_total_bytes(leaf, dev_item,
2588 				     btrfs_device_get_disk_total_bytes(device));
2589 	btrfs_set_device_bytes_used(leaf, dev_item,
2590 				    btrfs_device_get_bytes_used(device));
2591 	btrfs_mark_buffer_dirty(leaf);
2592 
2593 out:
2594 	btrfs_free_path(path);
2595 	return ret;
2596 }
2597 
2598 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2599 		      struct btrfs_device *device, u64 new_size)
2600 {
2601 	struct btrfs_fs_info *fs_info = device->fs_info;
2602 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2603 	struct btrfs_fs_devices *fs_devices;
2604 	u64 old_total;
2605 	u64 diff;
2606 
2607 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2608 		return -EACCES;
2609 
2610 	new_size = round_down(new_size, fs_info->sectorsize);
2611 
2612 	mutex_lock(&fs_info->chunk_mutex);
2613 	old_total = btrfs_super_total_bytes(super_copy);
2614 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2615 
2616 	if (new_size <= device->total_bytes ||
2617 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2618 		mutex_unlock(&fs_info->chunk_mutex);
2619 		return -EINVAL;
2620 	}
2621 
2622 	fs_devices = fs_info->fs_devices;
2623 
2624 	btrfs_set_super_total_bytes(super_copy,
2625 			round_down(old_total + diff, fs_info->sectorsize));
2626 	device->fs_devices->total_rw_bytes += diff;
2627 
2628 	btrfs_device_set_total_bytes(device, new_size);
2629 	btrfs_device_set_disk_total_bytes(device, new_size);
2630 	btrfs_clear_space_info_full(device->fs_info);
2631 	if (list_empty(&device->resized_list))
2632 		list_add_tail(&device->resized_list,
2633 			      &fs_devices->resized_devices);
2634 	mutex_unlock(&fs_info->chunk_mutex);
2635 
2636 	return btrfs_update_device(trans, device);
2637 }
2638 
2639 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2640 {
2641 	struct btrfs_fs_info *fs_info = trans->fs_info;
2642 	struct btrfs_root *root = fs_info->chunk_root;
2643 	int ret;
2644 	struct btrfs_path *path;
2645 	struct btrfs_key key;
2646 
2647 	path = btrfs_alloc_path();
2648 	if (!path)
2649 		return -ENOMEM;
2650 
2651 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2652 	key.offset = chunk_offset;
2653 	key.type = BTRFS_CHUNK_ITEM_KEY;
2654 
2655 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2656 	if (ret < 0)
2657 		goto out;
2658 	else if (ret > 0) { /* Logic error or corruption */
2659 		btrfs_handle_fs_error(fs_info, -ENOENT,
2660 				      "Failed lookup while freeing chunk.");
2661 		ret = -ENOENT;
2662 		goto out;
2663 	}
2664 
2665 	ret = btrfs_del_item(trans, root, path);
2666 	if (ret < 0)
2667 		btrfs_handle_fs_error(fs_info, ret,
2668 				      "Failed to delete chunk item.");
2669 out:
2670 	btrfs_free_path(path);
2671 	return ret;
2672 }
2673 
2674 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2675 {
2676 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2677 	struct btrfs_disk_key *disk_key;
2678 	struct btrfs_chunk *chunk;
2679 	u8 *ptr;
2680 	int ret = 0;
2681 	u32 num_stripes;
2682 	u32 array_size;
2683 	u32 len = 0;
2684 	u32 cur;
2685 	struct btrfs_key key;
2686 
2687 	mutex_lock(&fs_info->chunk_mutex);
2688 	array_size = btrfs_super_sys_array_size(super_copy);
2689 
2690 	ptr = super_copy->sys_chunk_array;
2691 	cur = 0;
2692 
2693 	while (cur < array_size) {
2694 		disk_key = (struct btrfs_disk_key *)ptr;
2695 		btrfs_disk_key_to_cpu(&key, disk_key);
2696 
2697 		len = sizeof(*disk_key);
2698 
2699 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2700 			chunk = (struct btrfs_chunk *)(ptr + len);
2701 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2702 			len += btrfs_chunk_item_size(num_stripes);
2703 		} else {
2704 			ret = -EIO;
2705 			break;
2706 		}
2707 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2708 		    key.offset == chunk_offset) {
2709 			memmove(ptr, ptr + len, array_size - (cur + len));
2710 			array_size -= len;
2711 			btrfs_set_super_sys_array_size(super_copy, array_size);
2712 		} else {
2713 			ptr += len;
2714 			cur += len;
2715 		}
2716 	}
2717 	mutex_unlock(&fs_info->chunk_mutex);
2718 	return ret;
2719 }
2720 
2721 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2722 					u64 logical, u64 length)
2723 {
2724 	struct extent_map_tree *em_tree;
2725 	struct extent_map *em;
2726 
2727 	em_tree = &fs_info->mapping_tree.map_tree;
2728 	read_lock(&em_tree->lock);
2729 	em = lookup_extent_mapping(em_tree, logical, length);
2730 	read_unlock(&em_tree->lock);
2731 
2732 	if (!em) {
2733 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2734 			   logical, length);
2735 		return ERR_PTR(-EINVAL);
2736 	}
2737 
2738 	if (em->start > logical || em->start + em->len < logical) {
2739 		btrfs_crit(fs_info,
2740 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2741 			   logical, length, em->start, em->start + em->len);
2742 		free_extent_map(em);
2743 		return ERR_PTR(-EINVAL);
2744 	}
2745 
2746 	/* callers are responsible for dropping em's ref. */
2747 	return em;
2748 }
2749 
2750 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2751 {
2752 	struct btrfs_fs_info *fs_info = trans->fs_info;
2753 	struct extent_map *em;
2754 	struct map_lookup *map;
2755 	u64 dev_extent_len = 0;
2756 	int i, ret = 0;
2757 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2758 
2759 	em = get_chunk_map(fs_info, chunk_offset, 1);
2760 	if (IS_ERR(em)) {
2761 		/*
2762 		 * This is a logic error, but we don't want to just rely on the
2763 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2764 		 * do anything we still error out.
2765 		 */
2766 		ASSERT(0);
2767 		return PTR_ERR(em);
2768 	}
2769 	map = em->map_lookup;
2770 	mutex_lock(&fs_info->chunk_mutex);
2771 	check_system_chunk(trans, map->type);
2772 	mutex_unlock(&fs_info->chunk_mutex);
2773 
2774 	/*
2775 	 * Take the device list mutex to prevent races with the final phase of
2776 	 * a device replace operation that replaces the device object associated
2777 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2778 	 */
2779 	mutex_lock(&fs_devices->device_list_mutex);
2780 	for (i = 0; i < map->num_stripes; i++) {
2781 		struct btrfs_device *device = map->stripes[i].dev;
2782 		ret = btrfs_free_dev_extent(trans, device,
2783 					    map->stripes[i].physical,
2784 					    &dev_extent_len);
2785 		if (ret) {
2786 			mutex_unlock(&fs_devices->device_list_mutex);
2787 			btrfs_abort_transaction(trans, ret);
2788 			goto out;
2789 		}
2790 
2791 		if (device->bytes_used > 0) {
2792 			mutex_lock(&fs_info->chunk_mutex);
2793 			btrfs_device_set_bytes_used(device,
2794 					device->bytes_used - dev_extent_len);
2795 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2796 			btrfs_clear_space_info_full(fs_info);
2797 			mutex_unlock(&fs_info->chunk_mutex);
2798 		}
2799 
2800 		if (map->stripes[i].dev) {
2801 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2802 			if (ret) {
2803 				mutex_unlock(&fs_devices->device_list_mutex);
2804 				btrfs_abort_transaction(trans, ret);
2805 				goto out;
2806 			}
2807 		}
2808 	}
2809 	mutex_unlock(&fs_devices->device_list_mutex);
2810 
2811 	ret = btrfs_free_chunk(trans, chunk_offset);
2812 	if (ret) {
2813 		btrfs_abort_transaction(trans, ret);
2814 		goto out;
2815 	}
2816 
2817 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2818 
2819 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2820 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2821 		if (ret) {
2822 			btrfs_abort_transaction(trans, ret);
2823 			goto out;
2824 		}
2825 	}
2826 
2827 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
2828 	if (ret) {
2829 		btrfs_abort_transaction(trans, ret);
2830 		goto out;
2831 	}
2832 
2833 out:
2834 	/* once for us */
2835 	free_extent_map(em);
2836 	return ret;
2837 }
2838 
2839 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2840 {
2841 	struct btrfs_root *root = fs_info->chunk_root;
2842 	struct btrfs_trans_handle *trans;
2843 	int ret;
2844 
2845 	/*
2846 	 * Prevent races with automatic removal of unused block groups.
2847 	 * After we relocate and before we remove the chunk with offset
2848 	 * chunk_offset, automatic removal of the block group can kick in,
2849 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2850 	 *
2851 	 * Make sure to acquire this mutex before doing a tree search (dev
2852 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2853 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2854 	 * we release the path used to search the chunk/dev tree and before
2855 	 * the current task acquires this mutex and calls us.
2856 	 */
2857 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2858 
2859 	ret = btrfs_can_relocate(fs_info, chunk_offset);
2860 	if (ret)
2861 		return -ENOSPC;
2862 
2863 	/* step one, relocate all the extents inside this chunk */
2864 	btrfs_scrub_pause(fs_info);
2865 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2866 	btrfs_scrub_continue(fs_info);
2867 	if (ret)
2868 		return ret;
2869 
2870 	/*
2871 	 * We add the kobjects here (and after forcing data chunk creation)
2872 	 * since relocation is the only place we'll create chunks of a new
2873 	 * type at runtime.  The only place where we'll remove the last
2874 	 * chunk of a type is the call immediately below this one.  Even
2875 	 * so, we're protected against races with the cleaner thread since
2876 	 * we're covered by the delete_unused_bgs_mutex.
2877 	 */
2878 	btrfs_add_raid_kobjects(fs_info);
2879 
2880 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2881 						     chunk_offset);
2882 	if (IS_ERR(trans)) {
2883 		ret = PTR_ERR(trans);
2884 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2885 		return ret;
2886 	}
2887 
2888 	/*
2889 	 * step two, delete the device extents and the
2890 	 * chunk tree entries
2891 	 */
2892 	ret = btrfs_remove_chunk(trans, chunk_offset);
2893 	btrfs_end_transaction(trans);
2894 	return ret;
2895 }
2896 
2897 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2898 {
2899 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2900 	struct btrfs_path *path;
2901 	struct extent_buffer *leaf;
2902 	struct btrfs_chunk *chunk;
2903 	struct btrfs_key key;
2904 	struct btrfs_key found_key;
2905 	u64 chunk_type;
2906 	bool retried = false;
2907 	int failed = 0;
2908 	int ret;
2909 
2910 	path = btrfs_alloc_path();
2911 	if (!path)
2912 		return -ENOMEM;
2913 
2914 again:
2915 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2916 	key.offset = (u64)-1;
2917 	key.type = BTRFS_CHUNK_ITEM_KEY;
2918 
2919 	while (1) {
2920 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
2921 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2922 		if (ret < 0) {
2923 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2924 			goto error;
2925 		}
2926 		BUG_ON(ret == 0); /* Corruption */
2927 
2928 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2929 					  key.type);
2930 		if (ret)
2931 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2932 		if (ret < 0)
2933 			goto error;
2934 		if (ret > 0)
2935 			break;
2936 
2937 		leaf = path->nodes[0];
2938 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2939 
2940 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2941 				       struct btrfs_chunk);
2942 		chunk_type = btrfs_chunk_type(leaf, chunk);
2943 		btrfs_release_path(path);
2944 
2945 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2946 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2947 			if (ret == -ENOSPC)
2948 				failed++;
2949 			else
2950 				BUG_ON(ret);
2951 		}
2952 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2953 
2954 		if (found_key.offset == 0)
2955 			break;
2956 		key.offset = found_key.offset - 1;
2957 	}
2958 	ret = 0;
2959 	if (failed && !retried) {
2960 		failed = 0;
2961 		retried = true;
2962 		goto again;
2963 	} else if (WARN_ON(failed && retried)) {
2964 		ret = -ENOSPC;
2965 	}
2966 error:
2967 	btrfs_free_path(path);
2968 	return ret;
2969 }
2970 
2971 /*
2972  * return 1 : allocate a data chunk successfully,
2973  * return <0: errors during allocating a data chunk,
2974  * return 0 : no need to allocate a data chunk.
2975  */
2976 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
2977 				      u64 chunk_offset)
2978 {
2979 	struct btrfs_block_group_cache *cache;
2980 	u64 bytes_used;
2981 	u64 chunk_type;
2982 
2983 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2984 	ASSERT(cache);
2985 	chunk_type = cache->flags;
2986 	btrfs_put_block_group(cache);
2987 
2988 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
2989 		spin_lock(&fs_info->data_sinfo->lock);
2990 		bytes_used = fs_info->data_sinfo->bytes_used;
2991 		spin_unlock(&fs_info->data_sinfo->lock);
2992 
2993 		if (!bytes_used) {
2994 			struct btrfs_trans_handle *trans;
2995 			int ret;
2996 
2997 			trans =	btrfs_join_transaction(fs_info->tree_root);
2998 			if (IS_ERR(trans))
2999 				return PTR_ERR(trans);
3000 
3001 			ret = btrfs_force_chunk_alloc(trans,
3002 						      BTRFS_BLOCK_GROUP_DATA);
3003 			btrfs_end_transaction(trans);
3004 			if (ret < 0)
3005 				return ret;
3006 
3007 			btrfs_add_raid_kobjects(fs_info);
3008 
3009 			return 1;
3010 		}
3011 	}
3012 	return 0;
3013 }
3014 
3015 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3016 			       struct btrfs_balance_control *bctl)
3017 {
3018 	struct btrfs_root *root = fs_info->tree_root;
3019 	struct btrfs_trans_handle *trans;
3020 	struct btrfs_balance_item *item;
3021 	struct btrfs_disk_balance_args disk_bargs;
3022 	struct btrfs_path *path;
3023 	struct extent_buffer *leaf;
3024 	struct btrfs_key key;
3025 	int ret, err;
3026 
3027 	path = btrfs_alloc_path();
3028 	if (!path)
3029 		return -ENOMEM;
3030 
3031 	trans = btrfs_start_transaction(root, 0);
3032 	if (IS_ERR(trans)) {
3033 		btrfs_free_path(path);
3034 		return PTR_ERR(trans);
3035 	}
3036 
3037 	key.objectid = BTRFS_BALANCE_OBJECTID;
3038 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3039 	key.offset = 0;
3040 
3041 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3042 				      sizeof(*item));
3043 	if (ret)
3044 		goto out;
3045 
3046 	leaf = path->nodes[0];
3047 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3048 
3049 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3050 
3051 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3052 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3053 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3054 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3055 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3056 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3057 
3058 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3059 
3060 	btrfs_mark_buffer_dirty(leaf);
3061 out:
3062 	btrfs_free_path(path);
3063 	err = btrfs_commit_transaction(trans);
3064 	if (err && !ret)
3065 		ret = err;
3066 	return ret;
3067 }
3068 
3069 static int del_balance_item(struct btrfs_fs_info *fs_info)
3070 {
3071 	struct btrfs_root *root = fs_info->tree_root;
3072 	struct btrfs_trans_handle *trans;
3073 	struct btrfs_path *path;
3074 	struct btrfs_key key;
3075 	int ret, err;
3076 
3077 	path = btrfs_alloc_path();
3078 	if (!path)
3079 		return -ENOMEM;
3080 
3081 	trans = btrfs_start_transaction(root, 0);
3082 	if (IS_ERR(trans)) {
3083 		btrfs_free_path(path);
3084 		return PTR_ERR(trans);
3085 	}
3086 
3087 	key.objectid = BTRFS_BALANCE_OBJECTID;
3088 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3089 	key.offset = 0;
3090 
3091 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3092 	if (ret < 0)
3093 		goto out;
3094 	if (ret > 0) {
3095 		ret = -ENOENT;
3096 		goto out;
3097 	}
3098 
3099 	ret = btrfs_del_item(trans, root, path);
3100 out:
3101 	btrfs_free_path(path);
3102 	err = btrfs_commit_transaction(trans);
3103 	if (err && !ret)
3104 		ret = err;
3105 	return ret;
3106 }
3107 
3108 /*
3109  * This is a heuristic used to reduce the number of chunks balanced on
3110  * resume after balance was interrupted.
3111  */
3112 static void update_balance_args(struct btrfs_balance_control *bctl)
3113 {
3114 	/*
3115 	 * Turn on soft mode for chunk types that were being converted.
3116 	 */
3117 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3118 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3119 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3120 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3121 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3122 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3123 
3124 	/*
3125 	 * Turn on usage filter if is not already used.  The idea is
3126 	 * that chunks that we have already balanced should be
3127 	 * reasonably full.  Don't do it for chunks that are being
3128 	 * converted - that will keep us from relocating unconverted
3129 	 * (albeit full) chunks.
3130 	 */
3131 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3132 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3133 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3134 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3135 		bctl->data.usage = 90;
3136 	}
3137 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3138 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3139 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3140 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3141 		bctl->sys.usage = 90;
3142 	}
3143 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3144 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3145 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3146 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3147 		bctl->meta.usage = 90;
3148 	}
3149 }
3150 
3151 /*
3152  * Clear the balance status in fs_info and delete the balance item from disk.
3153  */
3154 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3155 {
3156 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3157 	int ret;
3158 
3159 	BUG_ON(!fs_info->balance_ctl);
3160 
3161 	spin_lock(&fs_info->balance_lock);
3162 	fs_info->balance_ctl = NULL;
3163 	spin_unlock(&fs_info->balance_lock);
3164 
3165 	kfree(bctl);
3166 	ret = del_balance_item(fs_info);
3167 	if (ret)
3168 		btrfs_handle_fs_error(fs_info, ret, NULL);
3169 }
3170 
3171 /*
3172  * Balance filters.  Return 1 if chunk should be filtered out
3173  * (should not be balanced).
3174  */
3175 static int chunk_profiles_filter(u64 chunk_type,
3176 				 struct btrfs_balance_args *bargs)
3177 {
3178 	chunk_type = chunk_to_extended(chunk_type) &
3179 				BTRFS_EXTENDED_PROFILE_MASK;
3180 
3181 	if (bargs->profiles & chunk_type)
3182 		return 0;
3183 
3184 	return 1;
3185 }
3186 
3187 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3188 			      struct btrfs_balance_args *bargs)
3189 {
3190 	struct btrfs_block_group_cache *cache;
3191 	u64 chunk_used;
3192 	u64 user_thresh_min;
3193 	u64 user_thresh_max;
3194 	int ret = 1;
3195 
3196 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3197 	chunk_used = btrfs_block_group_used(&cache->item);
3198 
3199 	if (bargs->usage_min == 0)
3200 		user_thresh_min = 0;
3201 	else
3202 		user_thresh_min = div_factor_fine(cache->key.offset,
3203 					bargs->usage_min);
3204 
3205 	if (bargs->usage_max == 0)
3206 		user_thresh_max = 1;
3207 	else if (bargs->usage_max > 100)
3208 		user_thresh_max = cache->key.offset;
3209 	else
3210 		user_thresh_max = div_factor_fine(cache->key.offset,
3211 					bargs->usage_max);
3212 
3213 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3214 		ret = 0;
3215 
3216 	btrfs_put_block_group(cache);
3217 	return ret;
3218 }
3219 
3220 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3221 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3222 {
3223 	struct btrfs_block_group_cache *cache;
3224 	u64 chunk_used, user_thresh;
3225 	int ret = 1;
3226 
3227 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3228 	chunk_used = btrfs_block_group_used(&cache->item);
3229 
3230 	if (bargs->usage_min == 0)
3231 		user_thresh = 1;
3232 	else if (bargs->usage > 100)
3233 		user_thresh = cache->key.offset;
3234 	else
3235 		user_thresh = div_factor_fine(cache->key.offset,
3236 					      bargs->usage);
3237 
3238 	if (chunk_used < user_thresh)
3239 		ret = 0;
3240 
3241 	btrfs_put_block_group(cache);
3242 	return ret;
3243 }
3244 
3245 static int chunk_devid_filter(struct extent_buffer *leaf,
3246 			      struct btrfs_chunk *chunk,
3247 			      struct btrfs_balance_args *bargs)
3248 {
3249 	struct btrfs_stripe *stripe;
3250 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3251 	int i;
3252 
3253 	for (i = 0; i < num_stripes; i++) {
3254 		stripe = btrfs_stripe_nr(chunk, i);
3255 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3256 			return 0;
3257 	}
3258 
3259 	return 1;
3260 }
3261 
3262 /* [pstart, pend) */
3263 static int chunk_drange_filter(struct extent_buffer *leaf,
3264 			       struct btrfs_chunk *chunk,
3265 			       struct btrfs_balance_args *bargs)
3266 {
3267 	struct btrfs_stripe *stripe;
3268 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3269 	u64 stripe_offset;
3270 	u64 stripe_length;
3271 	int factor;
3272 	int i;
3273 
3274 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3275 		return 0;
3276 
3277 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3278 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3279 		factor = num_stripes / 2;
3280 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3281 		factor = num_stripes - 1;
3282 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3283 		factor = num_stripes - 2;
3284 	} else {
3285 		factor = num_stripes;
3286 	}
3287 
3288 	for (i = 0; i < num_stripes; i++) {
3289 		stripe = btrfs_stripe_nr(chunk, i);
3290 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3291 			continue;
3292 
3293 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3294 		stripe_length = btrfs_chunk_length(leaf, chunk);
3295 		stripe_length = div_u64(stripe_length, factor);
3296 
3297 		if (stripe_offset < bargs->pend &&
3298 		    stripe_offset + stripe_length > bargs->pstart)
3299 			return 0;
3300 	}
3301 
3302 	return 1;
3303 }
3304 
3305 /* [vstart, vend) */
3306 static int chunk_vrange_filter(struct extent_buffer *leaf,
3307 			       struct btrfs_chunk *chunk,
3308 			       u64 chunk_offset,
3309 			       struct btrfs_balance_args *bargs)
3310 {
3311 	if (chunk_offset < bargs->vend &&
3312 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3313 		/* at least part of the chunk is inside this vrange */
3314 		return 0;
3315 
3316 	return 1;
3317 }
3318 
3319 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3320 			       struct btrfs_chunk *chunk,
3321 			       struct btrfs_balance_args *bargs)
3322 {
3323 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3324 
3325 	if (bargs->stripes_min <= num_stripes
3326 			&& num_stripes <= bargs->stripes_max)
3327 		return 0;
3328 
3329 	return 1;
3330 }
3331 
3332 static int chunk_soft_convert_filter(u64 chunk_type,
3333 				     struct btrfs_balance_args *bargs)
3334 {
3335 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3336 		return 0;
3337 
3338 	chunk_type = chunk_to_extended(chunk_type) &
3339 				BTRFS_EXTENDED_PROFILE_MASK;
3340 
3341 	if (bargs->target == chunk_type)
3342 		return 1;
3343 
3344 	return 0;
3345 }
3346 
3347 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3348 				struct extent_buffer *leaf,
3349 				struct btrfs_chunk *chunk, u64 chunk_offset)
3350 {
3351 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3352 	struct btrfs_balance_args *bargs = NULL;
3353 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3354 
3355 	/* type filter */
3356 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3357 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3358 		return 0;
3359 	}
3360 
3361 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3362 		bargs = &bctl->data;
3363 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3364 		bargs = &bctl->sys;
3365 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3366 		bargs = &bctl->meta;
3367 
3368 	/* profiles filter */
3369 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3370 	    chunk_profiles_filter(chunk_type, bargs)) {
3371 		return 0;
3372 	}
3373 
3374 	/* usage filter */
3375 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3376 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3377 		return 0;
3378 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3379 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3380 		return 0;
3381 	}
3382 
3383 	/* devid filter */
3384 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3385 	    chunk_devid_filter(leaf, chunk, bargs)) {
3386 		return 0;
3387 	}
3388 
3389 	/* drange filter, makes sense only with devid filter */
3390 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3391 	    chunk_drange_filter(leaf, chunk, bargs)) {
3392 		return 0;
3393 	}
3394 
3395 	/* vrange filter */
3396 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3397 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3398 		return 0;
3399 	}
3400 
3401 	/* stripes filter */
3402 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3403 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3404 		return 0;
3405 	}
3406 
3407 	/* soft profile changing mode */
3408 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3409 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3410 		return 0;
3411 	}
3412 
3413 	/*
3414 	 * limited by count, must be the last filter
3415 	 */
3416 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3417 		if (bargs->limit == 0)
3418 			return 0;
3419 		else
3420 			bargs->limit--;
3421 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3422 		/*
3423 		 * Same logic as the 'limit' filter; the minimum cannot be
3424 		 * determined here because we do not have the global information
3425 		 * about the count of all chunks that satisfy the filters.
3426 		 */
3427 		if (bargs->limit_max == 0)
3428 			return 0;
3429 		else
3430 			bargs->limit_max--;
3431 	}
3432 
3433 	return 1;
3434 }
3435 
3436 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3437 {
3438 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3439 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3440 	struct btrfs_root *dev_root = fs_info->dev_root;
3441 	struct list_head *devices;
3442 	struct btrfs_device *device;
3443 	u64 old_size;
3444 	u64 size_to_free;
3445 	u64 chunk_type;
3446 	struct btrfs_chunk *chunk;
3447 	struct btrfs_path *path = NULL;
3448 	struct btrfs_key key;
3449 	struct btrfs_key found_key;
3450 	struct btrfs_trans_handle *trans;
3451 	struct extent_buffer *leaf;
3452 	int slot;
3453 	int ret;
3454 	int enospc_errors = 0;
3455 	bool counting = true;
3456 	/* The single value limit and min/max limits use the same bytes in the */
3457 	u64 limit_data = bctl->data.limit;
3458 	u64 limit_meta = bctl->meta.limit;
3459 	u64 limit_sys = bctl->sys.limit;
3460 	u32 count_data = 0;
3461 	u32 count_meta = 0;
3462 	u32 count_sys = 0;
3463 	int chunk_reserved = 0;
3464 
3465 	/* step one make some room on all the devices */
3466 	devices = &fs_info->fs_devices->devices;
3467 	list_for_each_entry(device, devices, dev_list) {
3468 		old_size = btrfs_device_get_total_bytes(device);
3469 		size_to_free = div_factor(old_size, 1);
3470 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3471 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3472 		    btrfs_device_get_total_bytes(device) -
3473 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3474 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3475 			continue;
3476 
3477 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3478 		if (ret == -ENOSPC)
3479 			break;
3480 		if (ret) {
3481 			/* btrfs_shrink_device never returns ret > 0 */
3482 			WARN_ON(ret > 0);
3483 			goto error;
3484 		}
3485 
3486 		trans = btrfs_start_transaction(dev_root, 0);
3487 		if (IS_ERR(trans)) {
3488 			ret = PTR_ERR(trans);
3489 			btrfs_info_in_rcu(fs_info,
3490 		 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3491 					  rcu_str_deref(device->name), ret,
3492 					  old_size, old_size - size_to_free);
3493 			goto error;
3494 		}
3495 
3496 		ret = btrfs_grow_device(trans, device, old_size);
3497 		if (ret) {
3498 			btrfs_end_transaction(trans);
3499 			/* btrfs_grow_device never returns ret > 0 */
3500 			WARN_ON(ret > 0);
3501 			btrfs_info_in_rcu(fs_info,
3502 		 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3503 					  rcu_str_deref(device->name), ret,
3504 					  old_size, old_size - size_to_free);
3505 			goto error;
3506 		}
3507 
3508 		btrfs_end_transaction(trans);
3509 	}
3510 
3511 	/* step two, relocate all the chunks */
3512 	path = btrfs_alloc_path();
3513 	if (!path) {
3514 		ret = -ENOMEM;
3515 		goto error;
3516 	}
3517 
3518 	/* zero out stat counters */
3519 	spin_lock(&fs_info->balance_lock);
3520 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3521 	spin_unlock(&fs_info->balance_lock);
3522 again:
3523 	if (!counting) {
3524 		/*
3525 		 * The single value limit and min/max limits use the same bytes
3526 		 * in the
3527 		 */
3528 		bctl->data.limit = limit_data;
3529 		bctl->meta.limit = limit_meta;
3530 		bctl->sys.limit = limit_sys;
3531 	}
3532 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3533 	key.offset = (u64)-1;
3534 	key.type = BTRFS_CHUNK_ITEM_KEY;
3535 
3536 	while (1) {
3537 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3538 		    atomic_read(&fs_info->balance_cancel_req)) {
3539 			ret = -ECANCELED;
3540 			goto error;
3541 		}
3542 
3543 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3544 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3545 		if (ret < 0) {
3546 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3547 			goto error;
3548 		}
3549 
3550 		/*
3551 		 * this shouldn't happen, it means the last relocate
3552 		 * failed
3553 		 */
3554 		if (ret == 0)
3555 			BUG(); /* FIXME break ? */
3556 
3557 		ret = btrfs_previous_item(chunk_root, path, 0,
3558 					  BTRFS_CHUNK_ITEM_KEY);
3559 		if (ret) {
3560 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3561 			ret = 0;
3562 			break;
3563 		}
3564 
3565 		leaf = path->nodes[0];
3566 		slot = path->slots[0];
3567 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3568 
3569 		if (found_key.objectid != key.objectid) {
3570 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3571 			break;
3572 		}
3573 
3574 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3575 		chunk_type = btrfs_chunk_type(leaf, chunk);
3576 
3577 		if (!counting) {
3578 			spin_lock(&fs_info->balance_lock);
3579 			bctl->stat.considered++;
3580 			spin_unlock(&fs_info->balance_lock);
3581 		}
3582 
3583 		ret = should_balance_chunk(fs_info, leaf, chunk,
3584 					   found_key.offset);
3585 
3586 		btrfs_release_path(path);
3587 		if (!ret) {
3588 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3589 			goto loop;
3590 		}
3591 
3592 		if (counting) {
3593 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3594 			spin_lock(&fs_info->balance_lock);
3595 			bctl->stat.expected++;
3596 			spin_unlock(&fs_info->balance_lock);
3597 
3598 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3599 				count_data++;
3600 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3601 				count_sys++;
3602 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3603 				count_meta++;
3604 
3605 			goto loop;
3606 		}
3607 
3608 		/*
3609 		 * Apply limit_min filter, no need to check if the LIMITS
3610 		 * filter is used, limit_min is 0 by default
3611 		 */
3612 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3613 					count_data < bctl->data.limit_min)
3614 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3615 					count_meta < bctl->meta.limit_min)
3616 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3617 					count_sys < bctl->sys.limit_min)) {
3618 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3619 			goto loop;
3620 		}
3621 
3622 		if (!chunk_reserved) {
3623 			/*
3624 			 * We may be relocating the only data chunk we have,
3625 			 * which could potentially end up with losing data's
3626 			 * raid profile, so lets allocate an empty one in
3627 			 * advance.
3628 			 */
3629 			ret = btrfs_may_alloc_data_chunk(fs_info,
3630 							 found_key.offset);
3631 			if (ret < 0) {
3632 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3633 				goto error;
3634 			} else if (ret == 1) {
3635 				chunk_reserved = 1;
3636 			}
3637 		}
3638 
3639 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3640 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3641 		if (ret && ret != -ENOSPC)
3642 			goto error;
3643 		if (ret == -ENOSPC) {
3644 			enospc_errors++;
3645 		} else {
3646 			spin_lock(&fs_info->balance_lock);
3647 			bctl->stat.completed++;
3648 			spin_unlock(&fs_info->balance_lock);
3649 		}
3650 loop:
3651 		if (found_key.offset == 0)
3652 			break;
3653 		key.offset = found_key.offset - 1;
3654 	}
3655 
3656 	if (counting) {
3657 		btrfs_release_path(path);
3658 		counting = false;
3659 		goto again;
3660 	}
3661 error:
3662 	btrfs_free_path(path);
3663 	if (enospc_errors) {
3664 		btrfs_info(fs_info, "%d enospc errors during balance",
3665 			   enospc_errors);
3666 		if (!ret)
3667 			ret = -ENOSPC;
3668 	}
3669 
3670 	return ret;
3671 }
3672 
3673 /**
3674  * alloc_profile_is_valid - see if a given profile is valid and reduced
3675  * @flags: profile to validate
3676  * @extended: if true @flags is treated as an extended profile
3677  */
3678 static int alloc_profile_is_valid(u64 flags, int extended)
3679 {
3680 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3681 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3682 
3683 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3684 
3685 	/* 1) check that all other bits are zeroed */
3686 	if (flags & ~mask)
3687 		return 0;
3688 
3689 	/* 2) see if profile is reduced */
3690 	if (flags == 0)
3691 		return !extended; /* "0" is valid for usual profiles */
3692 
3693 	/* true if exactly one bit set */
3694 	return is_power_of_2(flags);
3695 }
3696 
3697 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3698 {
3699 	/* cancel requested || normal exit path */
3700 	return atomic_read(&fs_info->balance_cancel_req) ||
3701 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3702 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3703 }
3704 
3705 /* Non-zero return value signifies invalidity */
3706 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3707 		u64 allowed)
3708 {
3709 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3710 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3711 		 (bctl_arg->target & ~allowed)));
3712 }
3713 
3714 /*
3715  * Should be called with balance mutexe held
3716  */
3717 int btrfs_balance(struct btrfs_fs_info *fs_info,
3718 		  struct btrfs_balance_control *bctl,
3719 		  struct btrfs_ioctl_balance_args *bargs)
3720 {
3721 	u64 meta_target, data_target;
3722 	u64 allowed;
3723 	int mixed = 0;
3724 	int ret;
3725 	u64 num_devices;
3726 	unsigned seq;
3727 
3728 	if (btrfs_fs_closing(fs_info) ||
3729 	    atomic_read(&fs_info->balance_pause_req) ||
3730 	    atomic_read(&fs_info->balance_cancel_req)) {
3731 		ret = -EINVAL;
3732 		goto out;
3733 	}
3734 
3735 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3736 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3737 		mixed = 1;
3738 
3739 	/*
3740 	 * In case of mixed groups both data and meta should be picked,
3741 	 * and identical options should be given for both of them.
3742 	 */
3743 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3744 	if (mixed && (bctl->flags & allowed)) {
3745 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3746 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3747 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3748 			btrfs_err(fs_info,
3749 	  "balance: mixed groups data and metadata options must be the same");
3750 			ret = -EINVAL;
3751 			goto out;
3752 		}
3753 	}
3754 
3755 	num_devices = btrfs_num_devices(fs_info);
3756 
3757 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3758 	if (num_devices > 1)
3759 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3760 	if (num_devices > 2)
3761 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3762 	if (num_devices > 3)
3763 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3764 			    BTRFS_BLOCK_GROUP_RAID6);
3765 	if (validate_convert_profile(&bctl->data, allowed)) {
3766 		int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
3767 
3768 		btrfs_err(fs_info,
3769 			  "balance: invalid convert data profile %s",
3770 			  get_raid_name(index));
3771 		ret = -EINVAL;
3772 		goto out;
3773 	}
3774 	if (validate_convert_profile(&bctl->meta, allowed)) {
3775 		int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
3776 
3777 		btrfs_err(fs_info,
3778 			  "balance: invalid convert metadata profile %s",
3779 			  get_raid_name(index));
3780 		ret = -EINVAL;
3781 		goto out;
3782 	}
3783 	if (validate_convert_profile(&bctl->sys, allowed)) {
3784 		int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
3785 
3786 		btrfs_err(fs_info,
3787 			  "balance: invalid convert system profile %s",
3788 			  get_raid_name(index));
3789 		ret = -EINVAL;
3790 		goto out;
3791 	}
3792 
3793 	/* allow to reduce meta or sys integrity only if force set */
3794 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3795 			BTRFS_BLOCK_GROUP_RAID10 |
3796 			BTRFS_BLOCK_GROUP_RAID5 |
3797 			BTRFS_BLOCK_GROUP_RAID6;
3798 	do {
3799 		seq = read_seqbegin(&fs_info->profiles_lock);
3800 
3801 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3802 		     (fs_info->avail_system_alloc_bits & allowed) &&
3803 		     !(bctl->sys.target & allowed)) ||
3804 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3805 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3806 		     !(bctl->meta.target & allowed))) {
3807 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3808 				btrfs_info(fs_info,
3809 				"balance: force reducing metadata integrity");
3810 			} else {
3811 				btrfs_err(fs_info,
3812 	"balance: reduces metadata integrity, use --force if you want this");
3813 				ret = -EINVAL;
3814 				goto out;
3815 			}
3816 		}
3817 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3818 
3819 	/* if we're not converting, the target field is uninitialized */
3820 	meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3821 		bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3822 	data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3823 		bctl->data.target : fs_info->avail_data_alloc_bits;
3824 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3825 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3826 		int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
3827 		int data_index = btrfs_bg_flags_to_raid_index(data_target);
3828 
3829 		btrfs_warn(fs_info,
3830 	"balance: metadata profile %s has lower redundancy than data profile %s",
3831 			   get_raid_name(meta_index), get_raid_name(data_index));
3832 	}
3833 
3834 	ret = insert_balance_item(fs_info, bctl);
3835 	if (ret && ret != -EEXIST)
3836 		goto out;
3837 
3838 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3839 		BUG_ON(ret == -EEXIST);
3840 		BUG_ON(fs_info->balance_ctl);
3841 		spin_lock(&fs_info->balance_lock);
3842 		fs_info->balance_ctl = bctl;
3843 		spin_unlock(&fs_info->balance_lock);
3844 	} else {
3845 		BUG_ON(ret != -EEXIST);
3846 		spin_lock(&fs_info->balance_lock);
3847 		update_balance_args(bctl);
3848 		spin_unlock(&fs_info->balance_lock);
3849 	}
3850 
3851 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3852 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3853 	mutex_unlock(&fs_info->balance_mutex);
3854 
3855 	ret = __btrfs_balance(fs_info);
3856 
3857 	mutex_lock(&fs_info->balance_mutex);
3858 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3859 
3860 	if (bargs) {
3861 		memset(bargs, 0, sizeof(*bargs));
3862 		btrfs_update_ioctl_balance_args(fs_info, bargs);
3863 	}
3864 
3865 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3866 	    balance_need_close(fs_info)) {
3867 		reset_balance_state(fs_info);
3868 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3869 	}
3870 
3871 	wake_up(&fs_info->balance_wait_q);
3872 
3873 	return ret;
3874 out:
3875 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3876 		reset_balance_state(fs_info);
3877 	else
3878 		kfree(bctl);
3879 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3880 
3881 	return ret;
3882 }
3883 
3884 static int balance_kthread(void *data)
3885 {
3886 	struct btrfs_fs_info *fs_info = data;
3887 	int ret = 0;
3888 
3889 	mutex_lock(&fs_info->balance_mutex);
3890 	if (fs_info->balance_ctl) {
3891 		btrfs_info(fs_info, "balance: resuming");
3892 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
3893 	}
3894 	mutex_unlock(&fs_info->balance_mutex);
3895 
3896 	return ret;
3897 }
3898 
3899 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3900 {
3901 	struct task_struct *tsk;
3902 
3903 	mutex_lock(&fs_info->balance_mutex);
3904 	if (!fs_info->balance_ctl) {
3905 		mutex_unlock(&fs_info->balance_mutex);
3906 		return 0;
3907 	}
3908 	mutex_unlock(&fs_info->balance_mutex);
3909 
3910 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3911 		btrfs_info(fs_info, "balance: resume skipped");
3912 		return 0;
3913 	}
3914 
3915 	/*
3916 	 * A ro->rw remount sequence should continue with the paused balance
3917 	 * regardless of who pauses it, system or the user as of now, so set
3918 	 * the resume flag.
3919 	 */
3920 	spin_lock(&fs_info->balance_lock);
3921 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3922 	spin_unlock(&fs_info->balance_lock);
3923 
3924 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3925 	return PTR_ERR_OR_ZERO(tsk);
3926 }
3927 
3928 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3929 {
3930 	struct btrfs_balance_control *bctl;
3931 	struct btrfs_balance_item *item;
3932 	struct btrfs_disk_balance_args disk_bargs;
3933 	struct btrfs_path *path;
3934 	struct extent_buffer *leaf;
3935 	struct btrfs_key key;
3936 	int ret;
3937 
3938 	path = btrfs_alloc_path();
3939 	if (!path)
3940 		return -ENOMEM;
3941 
3942 	key.objectid = BTRFS_BALANCE_OBJECTID;
3943 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3944 	key.offset = 0;
3945 
3946 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3947 	if (ret < 0)
3948 		goto out;
3949 	if (ret > 0) { /* ret = -ENOENT; */
3950 		ret = 0;
3951 		goto out;
3952 	}
3953 
3954 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3955 	if (!bctl) {
3956 		ret = -ENOMEM;
3957 		goto out;
3958 	}
3959 
3960 	leaf = path->nodes[0];
3961 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3962 
3963 	bctl->flags = btrfs_balance_flags(leaf, item);
3964 	bctl->flags |= BTRFS_BALANCE_RESUME;
3965 
3966 	btrfs_balance_data(leaf, item, &disk_bargs);
3967 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3968 	btrfs_balance_meta(leaf, item, &disk_bargs);
3969 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3970 	btrfs_balance_sys(leaf, item, &disk_bargs);
3971 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3972 
3973 	/*
3974 	 * This should never happen, as the paused balance state is recovered
3975 	 * during mount without any chance of other exclusive ops to collide.
3976 	 *
3977 	 * This gives the exclusive op status to balance and keeps in paused
3978 	 * state until user intervention (cancel or umount). If the ownership
3979 	 * cannot be assigned, show a message but do not fail. The balance
3980 	 * is in a paused state and must have fs_info::balance_ctl properly
3981 	 * set up.
3982 	 */
3983 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3984 		btrfs_warn(fs_info,
3985 	"balance: cannot set exclusive op status, resume manually");
3986 
3987 	mutex_lock(&fs_info->balance_mutex);
3988 	BUG_ON(fs_info->balance_ctl);
3989 	spin_lock(&fs_info->balance_lock);
3990 	fs_info->balance_ctl = bctl;
3991 	spin_unlock(&fs_info->balance_lock);
3992 	mutex_unlock(&fs_info->balance_mutex);
3993 out:
3994 	btrfs_free_path(path);
3995 	return ret;
3996 }
3997 
3998 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3999 {
4000 	int ret = 0;
4001 
4002 	mutex_lock(&fs_info->balance_mutex);
4003 	if (!fs_info->balance_ctl) {
4004 		mutex_unlock(&fs_info->balance_mutex);
4005 		return -ENOTCONN;
4006 	}
4007 
4008 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4009 		atomic_inc(&fs_info->balance_pause_req);
4010 		mutex_unlock(&fs_info->balance_mutex);
4011 
4012 		wait_event(fs_info->balance_wait_q,
4013 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4014 
4015 		mutex_lock(&fs_info->balance_mutex);
4016 		/* we are good with balance_ctl ripped off from under us */
4017 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4018 		atomic_dec(&fs_info->balance_pause_req);
4019 	} else {
4020 		ret = -ENOTCONN;
4021 	}
4022 
4023 	mutex_unlock(&fs_info->balance_mutex);
4024 	return ret;
4025 }
4026 
4027 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4028 {
4029 	mutex_lock(&fs_info->balance_mutex);
4030 	if (!fs_info->balance_ctl) {
4031 		mutex_unlock(&fs_info->balance_mutex);
4032 		return -ENOTCONN;
4033 	}
4034 
4035 	/*
4036 	 * A paused balance with the item stored on disk can be resumed at
4037 	 * mount time if the mount is read-write. Otherwise it's still paused
4038 	 * and we must not allow cancelling as it deletes the item.
4039 	 */
4040 	if (sb_rdonly(fs_info->sb)) {
4041 		mutex_unlock(&fs_info->balance_mutex);
4042 		return -EROFS;
4043 	}
4044 
4045 	atomic_inc(&fs_info->balance_cancel_req);
4046 	/*
4047 	 * if we are running just wait and return, balance item is
4048 	 * deleted in btrfs_balance in this case
4049 	 */
4050 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4051 		mutex_unlock(&fs_info->balance_mutex);
4052 		wait_event(fs_info->balance_wait_q,
4053 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4054 		mutex_lock(&fs_info->balance_mutex);
4055 	} else {
4056 		mutex_unlock(&fs_info->balance_mutex);
4057 		/*
4058 		 * Lock released to allow other waiters to continue, we'll
4059 		 * reexamine the status again.
4060 		 */
4061 		mutex_lock(&fs_info->balance_mutex);
4062 
4063 		if (fs_info->balance_ctl) {
4064 			reset_balance_state(fs_info);
4065 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4066 			btrfs_info(fs_info, "balance: canceled");
4067 		}
4068 	}
4069 
4070 	BUG_ON(fs_info->balance_ctl ||
4071 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4072 	atomic_dec(&fs_info->balance_cancel_req);
4073 	mutex_unlock(&fs_info->balance_mutex);
4074 	return 0;
4075 }
4076 
4077 static int btrfs_uuid_scan_kthread(void *data)
4078 {
4079 	struct btrfs_fs_info *fs_info = data;
4080 	struct btrfs_root *root = fs_info->tree_root;
4081 	struct btrfs_key key;
4082 	struct btrfs_path *path = NULL;
4083 	int ret = 0;
4084 	struct extent_buffer *eb;
4085 	int slot;
4086 	struct btrfs_root_item root_item;
4087 	u32 item_size;
4088 	struct btrfs_trans_handle *trans = NULL;
4089 
4090 	path = btrfs_alloc_path();
4091 	if (!path) {
4092 		ret = -ENOMEM;
4093 		goto out;
4094 	}
4095 
4096 	key.objectid = 0;
4097 	key.type = BTRFS_ROOT_ITEM_KEY;
4098 	key.offset = 0;
4099 
4100 	while (1) {
4101 		ret = btrfs_search_forward(root, &key, path,
4102 				BTRFS_OLDEST_GENERATION);
4103 		if (ret) {
4104 			if (ret > 0)
4105 				ret = 0;
4106 			break;
4107 		}
4108 
4109 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4110 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4111 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4112 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4113 			goto skip;
4114 
4115 		eb = path->nodes[0];
4116 		slot = path->slots[0];
4117 		item_size = btrfs_item_size_nr(eb, slot);
4118 		if (item_size < sizeof(root_item))
4119 			goto skip;
4120 
4121 		read_extent_buffer(eb, &root_item,
4122 				   btrfs_item_ptr_offset(eb, slot),
4123 				   (int)sizeof(root_item));
4124 		if (btrfs_root_refs(&root_item) == 0)
4125 			goto skip;
4126 
4127 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4128 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4129 			if (trans)
4130 				goto update_tree;
4131 
4132 			btrfs_release_path(path);
4133 			/*
4134 			 * 1 - subvol uuid item
4135 			 * 1 - received_subvol uuid item
4136 			 */
4137 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4138 			if (IS_ERR(trans)) {
4139 				ret = PTR_ERR(trans);
4140 				break;
4141 			}
4142 			continue;
4143 		} else {
4144 			goto skip;
4145 		}
4146 update_tree:
4147 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4148 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4149 						  BTRFS_UUID_KEY_SUBVOL,
4150 						  key.objectid);
4151 			if (ret < 0) {
4152 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4153 					ret);
4154 				break;
4155 			}
4156 		}
4157 
4158 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4159 			ret = btrfs_uuid_tree_add(trans,
4160 						  root_item.received_uuid,
4161 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4162 						  key.objectid);
4163 			if (ret < 0) {
4164 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4165 					ret);
4166 				break;
4167 			}
4168 		}
4169 
4170 skip:
4171 		if (trans) {
4172 			ret = btrfs_end_transaction(trans);
4173 			trans = NULL;
4174 			if (ret)
4175 				break;
4176 		}
4177 
4178 		btrfs_release_path(path);
4179 		if (key.offset < (u64)-1) {
4180 			key.offset++;
4181 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4182 			key.offset = 0;
4183 			key.type = BTRFS_ROOT_ITEM_KEY;
4184 		} else if (key.objectid < (u64)-1) {
4185 			key.offset = 0;
4186 			key.type = BTRFS_ROOT_ITEM_KEY;
4187 			key.objectid++;
4188 		} else {
4189 			break;
4190 		}
4191 		cond_resched();
4192 	}
4193 
4194 out:
4195 	btrfs_free_path(path);
4196 	if (trans && !IS_ERR(trans))
4197 		btrfs_end_transaction(trans);
4198 	if (ret)
4199 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4200 	else
4201 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4202 	up(&fs_info->uuid_tree_rescan_sem);
4203 	return 0;
4204 }
4205 
4206 /*
4207  * Callback for btrfs_uuid_tree_iterate().
4208  * returns:
4209  * 0	check succeeded, the entry is not outdated.
4210  * < 0	if an error occurred.
4211  * > 0	if the check failed, which means the caller shall remove the entry.
4212  */
4213 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4214 				       u8 *uuid, u8 type, u64 subid)
4215 {
4216 	struct btrfs_key key;
4217 	int ret = 0;
4218 	struct btrfs_root *subvol_root;
4219 
4220 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4221 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4222 		goto out;
4223 
4224 	key.objectid = subid;
4225 	key.type = BTRFS_ROOT_ITEM_KEY;
4226 	key.offset = (u64)-1;
4227 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4228 	if (IS_ERR(subvol_root)) {
4229 		ret = PTR_ERR(subvol_root);
4230 		if (ret == -ENOENT)
4231 			ret = 1;
4232 		goto out;
4233 	}
4234 
4235 	switch (type) {
4236 	case BTRFS_UUID_KEY_SUBVOL:
4237 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4238 			ret = 1;
4239 		break;
4240 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4241 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4242 			   BTRFS_UUID_SIZE))
4243 			ret = 1;
4244 		break;
4245 	}
4246 
4247 out:
4248 	return ret;
4249 }
4250 
4251 static int btrfs_uuid_rescan_kthread(void *data)
4252 {
4253 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4254 	int ret;
4255 
4256 	/*
4257 	 * 1st step is to iterate through the existing UUID tree and
4258 	 * to delete all entries that contain outdated data.
4259 	 * 2nd step is to add all missing entries to the UUID tree.
4260 	 */
4261 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4262 	if (ret < 0) {
4263 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4264 		up(&fs_info->uuid_tree_rescan_sem);
4265 		return ret;
4266 	}
4267 	return btrfs_uuid_scan_kthread(data);
4268 }
4269 
4270 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4271 {
4272 	struct btrfs_trans_handle *trans;
4273 	struct btrfs_root *tree_root = fs_info->tree_root;
4274 	struct btrfs_root *uuid_root;
4275 	struct task_struct *task;
4276 	int ret;
4277 
4278 	/*
4279 	 * 1 - root node
4280 	 * 1 - root item
4281 	 */
4282 	trans = btrfs_start_transaction(tree_root, 2);
4283 	if (IS_ERR(trans))
4284 		return PTR_ERR(trans);
4285 
4286 	uuid_root = btrfs_create_tree(trans, fs_info,
4287 				      BTRFS_UUID_TREE_OBJECTID);
4288 	if (IS_ERR(uuid_root)) {
4289 		ret = PTR_ERR(uuid_root);
4290 		btrfs_abort_transaction(trans, ret);
4291 		btrfs_end_transaction(trans);
4292 		return ret;
4293 	}
4294 
4295 	fs_info->uuid_root = uuid_root;
4296 
4297 	ret = btrfs_commit_transaction(trans);
4298 	if (ret)
4299 		return ret;
4300 
4301 	down(&fs_info->uuid_tree_rescan_sem);
4302 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4303 	if (IS_ERR(task)) {
4304 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4305 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4306 		up(&fs_info->uuid_tree_rescan_sem);
4307 		return PTR_ERR(task);
4308 	}
4309 
4310 	return 0;
4311 }
4312 
4313 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4314 {
4315 	struct task_struct *task;
4316 
4317 	down(&fs_info->uuid_tree_rescan_sem);
4318 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4319 	if (IS_ERR(task)) {
4320 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4321 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4322 		up(&fs_info->uuid_tree_rescan_sem);
4323 		return PTR_ERR(task);
4324 	}
4325 
4326 	return 0;
4327 }
4328 
4329 /*
4330  * shrinking a device means finding all of the device extents past
4331  * the new size, and then following the back refs to the chunks.
4332  * The chunk relocation code actually frees the device extent
4333  */
4334 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4335 {
4336 	struct btrfs_fs_info *fs_info = device->fs_info;
4337 	struct btrfs_root *root = fs_info->dev_root;
4338 	struct btrfs_trans_handle *trans;
4339 	struct btrfs_dev_extent *dev_extent = NULL;
4340 	struct btrfs_path *path;
4341 	u64 length;
4342 	u64 chunk_offset;
4343 	int ret;
4344 	int slot;
4345 	int failed = 0;
4346 	bool retried = false;
4347 	bool checked_pending_chunks = false;
4348 	struct extent_buffer *l;
4349 	struct btrfs_key key;
4350 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4351 	u64 old_total = btrfs_super_total_bytes(super_copy);
4352 	u64 old_size = btrfs_device_get_total_bytes(device);
4353 	u64 diff;
4354 
4355 	new_size = round_down(new_size, fs_info->sectorsize);
4356 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4357 
4358 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4359 		return -EINVAL;
4360 
4361 	path = btrfs_alloc_path();
4362 	if (!path)
4363 		return -ENOMEM;
4364 
4365 	path->reada = READA_BACK;
4366 
4367 	mutex_lock(&fs_info->chunk_mutex);
4368 
4369 	btrfs_device_set_total_bytes(device, new_size);
4370 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4371 		device->fs_devices->total_rw_bytes -= diff;
4372 		atomic64_sub(diff, &fs_info->free_chunk_space);
4373 	}
4374 	mutex_unlock(&fs_info->chunk_mutex);
4375 
4376 again:
4377 	key.objectid = device->devid;
4378 	key.offset = (u64)-1;
4379 	key.type = BTRFS_DEV_EXTENT_KEY;
4380 
4381 	do {
4382 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4383 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4384 		if (ret < 0) {
4385 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4386 			goto done;
4387 		}
4388 
4389 		ret = btrfs_previous_item(root, path, 0, key.type);
4390 		if (ret)
4391 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4392 		if (ret < 0)
4393 			goto done;
4394 		if (ret) {
4395 			ret = 0;
4396 			btrfs_release_path(path);
4397 			break;
4398 		}
4399 
4400 		l = path->nodes[0];
4401 		slot = path->slots[0];
4402 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4403 
4404 		if (key.objectid != device->devid) {
4405 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4406 			btrfs_release_path(path);
4407 			break;
4408 		}
4409 
4410 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4411 		length = btrfs_dev_extent_length(l, dev_extent);
4412 
4413 		if (key.offset + length <= new_size) {
4414 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4415 			btrfs_release_path(path);
4416 			break;
4417 		}
4418 
4419 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4420 		btrfs_release_path(path);
4421 
4422 		/*
4423 		 * We may be relocating the only data chunk we have,
4424 		 * which could potentially end up with losing data's
4425 		 * raid profile, so lets allocate an empty one in
4426 		 * advance.
4427 		 */
4428 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4429 		if (ret < 0) {
4430 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4431 			goto done;
4432 		}
4433 
4434 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4435 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4436 		if (ret && ret != -ENOSPC)
4437 			goto done;
4438 		if (ret == -ENOSPC)
4439 			failed++;
4440 	} while (key.offset-- > 0);
4441 
4442 	if (failed && !retried) {
4443 		failed = 0;
4444 		retried = true;
4445 		goto again;
4446 	} else if (failed && retried) {
4447 		ret = -ENOSPC;
4448 		goto done;
4449 	}
4450 
4451 	/* Shrinking succeeded, else we would be at "done". */
4452 	trans = btrfs_start_transaction(root, 0);
4453 	if (IS_ERR(trans)) {
4454 		ret = PTR_ERR(trans);
4455 		goto done;
4456 	}
4457 
4458 	mutex_lock(&fs_info->chunk_mutex);
4459 
4460 	/*
4461 	 * We checked in the above loop all device extents that were already in
4462 	 * the device tree. However before we have updated the device's
4463 	 * total_bytes to the new size, we might have had chunk allocations that
4464 	 * have not complete yet (new block groups attached to transaction
4465 	 * handles), and therefore their device extents were not yet in the
4466 	 * device tree and we missed them in the loop above. So if we have any
4467 	 * pending chunk using a device extent that overlaps the device range
4468 	 * that we can not use anymore, commit the current transaction and
4469 	 * repeat the search on the device tree - this way we guarantee we will
4470 	 * not have chunks using device extents that end beyond 'new_size'.
4471 	 */
4472 	if (!checked_pending_chunks) {
4473 		u64 start = new_size;
4474 		u64 len = old_size - new_size;
4475 
4476 		if (contains_pending_extent(trans->transaction, device,
4477 					    &start, len)) {
4478 			mutex_unlock(&fs_info->chunk_mutex);
4479 			checked_pending_chunks = true;
4480 			failed = 0;
4481 			retried = false;
4482 			ret = btrfs_commit_transaction(trans);
4483 			if (ret)
4484 				goto done;
4485 			goto again;
4486 		}
4487 	}
4488 
4489 	btrfs_device_set_disk_total_bytes(device, new_size);
4490 	if (list_empty(&device->resized_list))
4491 		list_add_tail(&device->resized_list,
4492 			      &fs_info->fs_devices->resized_devices);
4493 
4494 	WARN_ON(diff > old_total);
4495 	btrfs_set_super_total_bytes(super_copy,
4496 			round_down(old_total - diff, fs_info->sectorsize));
4497 	mutex_unlock(&fs_info->chunk_mutex);
4498 
4499 	/* Now btrfs_update_device() will change the on-disk size. */
4500 	ret = btrfs_update_device(trans, device);
4501 	if (ret < 0) {
4502 		btrfs_abort_transaction(trans, ret);
4503 		btrfs_end_transaction(trans);
4504 	} else {
4505 		ret = btrfs_commit_transaction(trans);
4506 	}
4507 done:
4508 	btrfs_free_path(path);
4509 	if (ret) {
4510 		mutex_lock(&fs_info->chunk_mutex);
4511 		btrfs_device_set_total_bytes(device, old_size);
4512 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4513 			device->fs_devices->total_rw_bytes += diff;
4514 		atomic64_add(diff, &fs_info->free_chunk_space);
4515 		mutex_unlock(&fs_info->chunk_mutex);
4516 	}
4517 	return ret;
4518 }
4519 
4520 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4521 			   struct btrfs_key *key,
4522 			   struct btrfs_chunk *chunk, int item_size)
4523 {
4524 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4525 	struct btrfs_disk_key disk_key;
4526 	u32 array_size;
4527 	u8 *ptr;
4528 
4529 	mutex_lock(&fs_info->chunk_mutex);
4530 	array_size = btrfs_super_sys_array_size(super_copy);
4531 	if (array_size + item_size + sizeof(disk_key)
4532 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4533 		mutex_unlock(&fs_info->chunk_mutex);
4534 		return -EFBIG;
4535 	}
4536 
4537 	ptr = super_copy->sys_chunk_array + array_size;
4538 	btrfs_cpu_key_to_disk(&disk_key, key);
4539 	memcpy(ptr, &disk_key, sizeof(disk_key));
4540 	ptr += sizeof(disk_key);
4541 	memcpy(ptr, chunk, item_size);
4542 	item_size += sizeof(disk_key);
4543 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4544 	mutex_unlock(&fs_info->chunk_mutex);
4545 
4546 	return 0;
4547 }
4548 
4549 /*
4550  * sort the devices in descending order by max_avail, total_avail
4551  */
4552 static int btrfs_cmp_device_info(const void *a, const void *b)
4553 {
4554 	const struct btrfs_device_info *di_a = a;
4555 	const struct btrfs_device_info *di_b = b;
4556 
4557 	if (di_a->max_avail > di_b->max_avail)
4558 		return -1;
4559 	if (di_a->max_avail < di_b->max_avail)
4560 		return 1;
4561 	if (di_a->total_avail > di_b->total_avail)
4562 		return -1;
4563 	if (di_a->total_avail < di_b->total_avail)
4564 		return 1;
4565 	return 0;
4566 }
4567 
4568 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4569 {
4570 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4571 		return;
4572 
4573 	btrfs_set_fs_incompat(info, RAID56);
4574 }
4575 
4576 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)	\
4577 			- sizeof(struct btrfs_chunk))		\
4578 			/ sizeof(struct btrfs_stripe) + 1)
4579 
4580 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4581 				- 2 * sizeof(struct btrfs_disk_key)	\
4582 				- 2 * sizeof(struct btrfs_chunk))	\
4583 				/ sizeof(struct btrfs_stripe) + 1)
4584 
4585 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4586 			       u64 start, u64 type)
4587 {
4588 	struct btrfs_fs_info *info = trans->fs_info;
4589 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4590 	struct btrfs_device *device;
4591 	struct map_lookup *map = NULL;
4592 	struct extent_map_tree *em_tree;
4593 	struct extent_map *em;
4594 	struct btrfs_device_info *devices_info = NULL;
4595 	u64 total_avail;
4596 	int num_stripes;	/* total number of stripes to allocate */
4597 	int data_stripes;	/* number of stripes that count for
4598 				   block group size */
4599 	int sub_stripes;	/* sub_stripes info for map */
4600 	int dev_stripes;	/* stripes per dev */
4601 	int devs_max;		/* max devs to use */
4602 	int devs_min;		/* min devs needed */
4603 	int devs_increment;	/* ndevs has to be a multiple of this */
4604 	int ncopies;		/* how many copies to data has */
4605 	int ret;
4606 	u64 max_stripe_size;
4607 	u64 max_chunk_size;
4608 	u64 stripe_size;
4609 	u64 num_bytes;
4610 	int ndevs;
4611 	int i;
4612 	int j;
4613 	int index;
4614 
4615 	BUG_ON(!alloc_profile_is_valid(type, 0));
4616 
4617 	if (list_empty(&fs_devices->alloc_list)) {
4618 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
4619 			btrfs_debug(info, "%s: no writable device", __func__);
4620 		return -ENOSPC;
4621 	}
4622 
4623 	index = btrfs_bg_flags_to_raid_index(type);
4624 
4625 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4626 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4627 	devs_max = btrfs_raid_array[index].devs_max;
4628 	devs_min = btrfs_raid_array[index].devs_min;
4629 	devs_increment = btrfs_raid_array[index].devs_increment;
4630 	ncopies = btrfs_raid_array[index].ncopies;
4631 
4632 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4633 		max_stripe_size = SZ_1G;
4634 		max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4635 		if (!devs_max)
4636 			devs_max = BTRFS_MAX_DEVS(info);
4637 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4638 		/* for larger filesystems, use larger metadata chunks */
4639 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4640 			max_stripe_size = SZ_1G;
4641 		else
4642 			max_stripe_size = SZ_256M;
4643 		max_chunk_size = max_stripe_size;
4644 		if (!devs_max)
4645 			devs_max = BTRFS_MAX_DEVS(info);
4646 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4647 		max_stripe_size = SZ_32M;
4648 		max_chunk_size = 2 * max_stripe_size;
4649 		if (!devs_max)
4650 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4651 	} else {
4652 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4653 		       type);
4654 		BUG_ON(1);
4655 	}
4656 
4657 	/* we don't want a chunk larger than 10% of writeable space */
4658 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4659 			     max_chunk_size);
4660 
4661 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4662 			       GFP_NOFS);
4663 	if (!devices_info)
4664 		return -ENOMEM;
4665 
4666 	/*
4667 	 * in the first pass through the devices list, we gather information
4668 	 * about the available holes on each device.
4669 	 */
4670 	ndevs = 0;
4671 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4672 		u64 max_avail;
4673 		u64 dev_offset;
4674 
4675 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4676 			WARN(1, KERN_ERR
4677 			       "BTRFS: read-only device in alloc_list\n");
4678 			continue;
4679 		}
4680 
4681 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4682 					&device->dev_state) ||
4683 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4684 			continue;
4685 
4686 		if (device->total_bytes > device->bytes_used)
4687 			total_avail = device->total_bytes - device->bytes_used;
4688 		else
4689 			total_avail = 0;
4690 
4691 		/* If there is no space on this device, skip it. */
4692 		if (total_avail == 0)
4693 			continue;
4694 
4695 		ret = find_free_dev_extent(trans, device,
4696 					   max_stripe_size * dev_stripes,
4697 					   &dev_offset, &max_avail);
4698 		if (ret && ret != -ENOSPC)
4699 			goto error;
4700 
4701 		if (ret == 0)
4702 			max_avail = max_stripe_size * dev_stripes;
4703 
4704 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4705 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
4706 				btrfs_debug(info,
4707 			"%s: devid %llu has no free space, have=%llu want=%u",
4708 					    __func__, device->devid, max_avail,
4709 					    BTRFS_STRIPE_LEN * dev_stripes);
4710 			continue;
4711 		}
4712 
4713 		if (ndevs == fs_devices->rw_devices) {
4714 			WARN(1, "%s: found more than %llu devices\n",
4715 			     __func__, fs_devices->rw_devices);
4716 			break;
4717 		}
4718 		devices_info[ndevs].dev_offset = dev_offset;
4719 		devices_info[ndevs].max_avail = max_avail;
4720 		devices_info[ndevs].total_avail = total_avail;
4721 		devices_info[ndevs].dev = device;
4722 		++ndevs;
4723 	}
4724 
4725 	/*
4726 	 * now sort the devices by hole size / available space
4727 	 */
4728 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4729 	     btrfs_cmp_device_info, NULL);
4730 
4731 	/* round down to number of usable stripes */
4732 	ndevs = round_down(ndevs, devs_increment);
4733 
4734 	if (ndevs < devs_min) {
4735 		ret = -ENOSPC;
4736 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4737 			btrfs_debug(info,
4738 	"%s: not enough devices with free space: have=%d minimum required=%d",
4739 				    __func__, ndevs, devs_min);
4740 		}
4741 		goto error;
4742 	}
4743 
4744 	ndevs = min(ndevs, devs_max);
4745 
4746 	/*
4747 	 * The primary goal is to maximize the number of stripes, so use as
4748 	 * many devices as possible, even if the stripes are not maximum sized.
4749 	 *
4750 	 * The DUP profile stores more than one stripe per device, the
4751 	 * max_avail is the total size so we have to adjust.
4752 	 */
4753 	stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4754 	num_stripes = ndevs * dev_stripes;
4755 
4756 	/*
4757 	 * this will have to be fixed for RAID1 and RAID10 over
4758 	 * more drives
4759 	 */
4760 	data_stripes = num_stripes / ncopies;
4761 
4762 	if (type & BTRFS_BLOCK_GROUP_RAID5)
4763 		data_stripes = num_stripes - 1;
4764 
4765 	if (type & BTRFS_BLOCK_GROUP_RAID6)
4766 		data_stripes = num_stripes - 2;
4767 
4768 	/*
4769 	 * Use the number of data stripes to figure out how big this chunk
4770 	 * is really going to be in terms of logical address space,
4771 	 * and compare that answer with the max chunk size
4772 	 */
4773 	if (stripe_size * data_stripes > max_chunk_size) {
4774 		stripe_size = div_u64(max_chunk_size, data_stripes);
4775 
4776 		/* bump the answer up to a 16MB boundary */
4777 		stripe_size = round_up(stripe_size, SZ_16M);
4778 
4779 		/*
4780 		 * But don't go higher than the limits we found while searching
4781 		 * for free extents
4782 		 */
4783 		stripe_size = min(devices_info[ndevs - 1].max_avail,
4784 				  stripe_size);
4785 	}
4786 
4787 	/* align to BTRFS_STRIPE_LEN */
4788 	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4789 
4790 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4791 	if (!map) {
4792 		ret = -ENOMEM;
4793 		goto error;
4794 	}
4795 	map->num_stripes = num_stripes;
4796 
4797 	for (i = 0; i < ndevs; ++i) {
4798 		for (j = 0; j < dev_stripes; ++j) {
4799 			int s = i * dev_stripes + j;
4800 			map->stripes[s].dev = devices_info[i].dev;
4801 			map->stripes[s].physical = devices_info[i].dev_offset +
4802 						   j * stripe_size;
4803 		}
4804 	}
4805 	map->stripe_len = BTRFS_STRIPE_LEN;
4806 	map->io_align = BTRFS_STRIPE_LEN;
4807 	map->io_width = BTRFS_STRIPE_LEN;
4808 	map->type = type;
4809 	map->sub_stripes = sub_stripes;
4810 
4811 	num_bytes = stripe_size * data_stripes;
4812 
4813 	trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4814 
4815 	em = alloc_extent_map();
4816 	if (!em) {
4817 		kfree(map);
4818 		ret = -ENOMEM;
4819 		goto error;
4820 	}
4821 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4822 	em->map_lookup = map;
4823 	em->start = start;
4824 	em->len = num_bytes;
4825 	em->block_start = 0;
4826 	em->block_len = em->len;
4827 	em->orig_block_len = stripe_size;
4828 
4829 	em_tree = &info->mapping_tree.map_tree;
4830 	write_lock(&em_tree->lock);
4831 	ret = add_extent_mapping(em_tree, em, 0);
4832 	if (ret) {
4833 		write_unlock(&em_tree->lock);
4834 		free_extent_map(em);
4835 		goto error;
4836 	}
4837 
4838 	list_add_tail(&em->list, &trans->transaction->pending_chunks);
4839 	refcount_inc(&em->refs);
4840 	write_unlock(&em_tree->lock);
4841 
4842 	ret = btrfs_make_block_group(trans, 0, type, start, num_bytes);
4843 	if (ret)
4844 		goto error_del_extent;
4845 
4846 	for (i = 0; i < map->num_stripes; i++) {
4847 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4848 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4849 	}
4850 
4851 	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4852 
4853 	free_extent_map(em);
4854 	check_raid56_incompat_flag(info, type);
4855 
4856 	kfree(devices_info);
4857 	return 0;
4858 
4859 error_del_extent:
4860 	write_lock(&em_tree->lock);
4861 	remove_extent_mapping(em_tree, em);
4862 	write_unlock(&em_tree->lock);
4863 
4864 	/* One for our allocation */
4865 	free_extent_map(em);
4866 	/* One for the tree reference */
4867 	free_extent_map(em);
4868 	/* One for the pending_chunks list reference */
4869 	free_extent_map(em);
4870 error:
4871 	kfree(devices_info);
4872 	return ret;
4873 }
4874 
4875 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4876 			     u64 chunk_offset, u64 chunk_size)
4877 {
4878 	struct btrfs_fs_info *fs_info = trans->fs_info;
4879 	struct btrfs_root *extent_root = fs_info->extent_root;
4880 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4881 	struct btrfs_key key;
4882 	struct btrfs_device *device;
4883 	struct btrfs_chunk *chunk;
4884 	struct btrfs_stripe *stripe;
4885 	struct extent_map *em;
4886 	struct map_lookup *map;
4887 	size_t item_size;
4888 	u64 dev_offset;
4889 	u64 stripe_size;
4890 	int i = 0;
4891 	int ret = 0;
4892 
4893 	em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4894 	if (IS_ERR(em))
4895 		return PTR_ERR(em);
4896 
4897 	map = em->map_lookup;
4898 	item_size = btrfs_chunk_item_size(map->num_stripes);
4899 	stripe_size = em->orig_block_len;
4900 
4901 	chunk = kzalloc(item_size, GFP_NOFS);
4902 	if (!chunk) {
4903 		ret = -ENOMEM;
4904 		goto out;
4905 	}
4906 
4907 	/*
4908 	 * Take the device list mutex to prevent races with the final phase of
4909 	 * a device replace operation that replaces the device object associated
4910 	 * with the map's stripes, because the device object's id can change
4911 	 * at any time during that final phase of the device replace operation
4912 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4913 	 */
4914 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4915 	for (i = 0; i < map->num_stripes; i++) {
4916 		device = map->stripes[i].dev;
4917 		dev_offset = map->stripes[i].physical;
4918 
4919 		ret = btrfs_update_device(trans, device);
4920 		if (ret)
4921 			break;
4922 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4923 					     dev_offset, stripe_size);
4924 		if (ret)
4925 			break;
4926 	}
4927 	if (ret) {
4928 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4929 		goto out;
4930 	}
4931 
4932 	stripe = &chunk->stripe;
4933 	for (i = 0; i < map->num_stripes; i++) {
4934 		device = map->stripes[i].dev;
4935 		dev_offset = map->stripes[i].physical;
4936 
4937 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4938 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4939 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4940 		stripe++;
4941 	}
4942 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4943 
4944 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4945 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4946 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4947 	btrfs_set_stack_chunk_type(chunk, map->type);
4948 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4949 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4950 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4951 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4952 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4953 
4954 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4955 	key.type = BTRFS_CHUNK_ITEM_KEY;
4956 	key.offset = chunk_offset;
4957 
4958 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4959 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4960 		/*
4961 		 * TODO: Cleanup of inserted chunk root in case of
4962 		 * failure.
4963 		 */
4964 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4965 	}
4966 
4967 out:
4968 	kfree(chunk);
4969 	free_extent_map(em);
4970 	return ret;
4971 }
4972 
4973 /*
4974  * Chunk allocation falls into two parts. The first part does works
4975  * that make the new allocated chunk useable, but not do any operation
4976  * that modifies the chunk tree. The second part does the works that
4977  * require modifying the chunk tree. This division is important for the
4978  * bootstrap process of adding storage to a seed btrfs.
4979  */
4980 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
4981 {
4982 	u64 chunk_offset;
4983 
4984 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
4985 	chunk_offset = find_next_chunk(trans->fs_info);
4986 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
4987 }
4988 
4989 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4990 					 struct btrfs_fs_info *fs_info)
4991 {
4992 	u64 chunk_offset;
4993 	u64 sys_chunk_offset;
4994 	u64 alloc_profile;
4995 	int ret;
4996 
4997 	chunk_offset = find_next_chunk(fs_info);
4998 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4999 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5000 	if (ret)
5001 		return ret;
5002 
5003 	sys_chunk_offset = find_next_chunk(fs_info);
5004 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5005 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5006 	return ret;
5007 }
5008 
5009 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5010 {
5011 	int max_errors;
5012 
5013 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5014 			 BTRFS_BLOCK_GROUP_RAID10 |
5015 			 BTRFS_BLOCK_GROUP_RAID5 |
5016 			 BTRFS_BLOCK_GROUP_DUP)) {
5017 		max_errors = 1;
5018 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5019 		max_errors = 2;
5020 	} else {
5021 		max_errors = 0;
5022 	}
5023 
5024 	return max_errors;
5025 }
5026 
5027 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5028 {
5029 	struct extent_map *em;
5030 	struct map_lookup *map;
5031 	int readonly = 0;
5032 	int miss_ndevs = 0;
5033 	int i;
5034 
5035 	em = get_chunk_map(fs_info, chunk_offset, 1);
5036 	if (IS_ERR(em))
5037 		return 1;
5038 
5039 	map = em->map_lookup;
5040 	for (i = 0; i < map->num_stripes; i++) {
5041 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5042 					&map->stripes[i].dev->dev_state)) {
5043 			miss_ndevs++;
5044 			continue;
5045 		}
5046 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5047 					&map->stripes[i].dev->dev_state)) {
5048 			readonly = 1;
5049 			goto end;
5050 		}
5051 	}
5052 
5053 	/*
5054 	 * If the number of missing devices is larger than max errors,
5055 	 * we can not write the data into that chunk successfully, so
5056 	 * set it readonly.
5057 	 */
5058 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5059 		readonly = 1;
5060 end:
5061 	free_extent_map(em);
5062 	return readonly;
5063 }
5064 
5065 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5066 {
5067 	extent_map_tree_init(&tree->map_tree);
5068 }
5069 
5070 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5071 {
5072 	struct extent_map *em;
5073 
5074 	while (1) {
5075 		write_lock(&tree->map_tree.lock);
5076 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5077 		if (em)
5078 			remove_extent_mapping(&tree->map_tree, em);
5079 		write_unlock(&tree->map_tree.lock);
5080 		if (!em)
5081 			break;
5082 		/* once for us */
5083 		free_extent_map(em);
5084 		/* once for the tree */
5085 		free_extent_map(em);
5086 	}
5087 }
5088 
5089 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5090 {
5091 	struct extent_map *em;
5092 	struct map_lookup *map;
5093 	int ret;
5094 
5095 	em = get_chunk_map(fs_info, logical, len);
5096 	if (IS_ERR(em))
5097 		/*
5098 		 * We could return errors for these cases, but that could get
5099 		 * ugly and we'd probably do the same thing which is just not do
5100 		 * anything else and exit, so return 1 so the callers don't try
5101 		 * to use other copies.
5102 		 */
5103 		return 1;
5104 
5105 	map = em->map_lookup;
5106 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5107 		ret = map->num_stripes;
5108 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5109 		ret = map->sub_stripes;
5110 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5111 		ret = 2;
5112 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5113 		/*
5114 		 * There could be two corrupted data stripes, we need
5115 		 * to loop retry in order to rebuild the correct data.
5116 		 *
5117 		 * Fail a stripe at a time on every retry except the
5118 		 * stripe under reconstruction.
5119 		 */
5120 		ret = map->num_stripes;
5121 	else
5122 		ret = 1;
5123 	free_extent_map(em);
5124 
5125 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5126 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5127 	    fs_info->dev_replace.tgtdev)
5128 		ret++;
5129 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5130 
5131 	return ret;
5132 }
5133 
5134 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5135 				    u64 logical)
5136 {
5137 	struct extent_map *em;
5138 	struct map_lookup *map;
5139 	unsigned long len = fs_info->sectorsize;
5140 
5141 	em = get_chunk_map(fs_info, logical, len);
5142 
5143 	if (!WARN_ON(IS_ERR(em))) {
5144 		map = em->map_lookup;
5145 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5146 			len = map->stripe_len * nr_data_stripes(map);
5147 		free_extent_map(em);
5148 	}
5149 	return len;
5150 }
5151 
5152 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5153 {
5154 	struct extent_map *em;
5155 	struct map_lookup *map;
5156 	int ret = 0;
5157 
5158 	em = get_chunk_map(fs_info, logical, len);
5159 
5160 	if(!WARN_ON(IS_ERR(em))) {
5161 		map = em->map_lookup;
5162 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5163 			ret = 1;
5164 		free_extent_map(em);
5165 	}
5166 	return ret;
5167 }
5168 
5169 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5170 			    struct map_lookup *map, int first,
5171 			    int dev_replace_is_ongoing)
5172 {
5173 	int i;
5174 	int num_stripes;
5175 	int preferred_mirror;
5176 	int tolerance;
5177 	struct btrfs_device *srcdev;
5178 
5179 	ASSERT((map->type &
5180 		 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5181 
5182 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5183 		num_stripes = map->sub_stripes;
5184 	else
5185 		num_stripes = map->num_stripes;
5186 
5187 	preferred_mirror = first + current->pid % num_stripes;
5188 
5189 	if (dev_replace_is_ongoing &&
5190 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5191 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5192 		srcdev = fs_info->dev_replace.srcdev;
5193 	else
5194 		srcdev = NULL;
5195 
5196 	/*
5197 	 * try to avoid the drive that is the source drive for a
5198 	 * dev-replace procedure, only choose it if no other non-missing
5199 	 * mirror is available
5200 	 */
5201 	for (tolerance = 0; tolerance < 2; tolerance++) {
5202 		if (map->stripes[preferred_mirror].dev->bdev &&
5203 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5204 			return preferred_mirror;
5205 		for (i = first; i < first + num_stripes; i++) {
5206 			if (map->stripes[i].dev->bdev &&
5207 			    (tolerance || map->stripes[i].dev != srcdev))
5208 				return i;
5209 		}
5210 	}
5211 
5212 	/* we couldn't find one that doesn't fail.  Just return something
5213 	 * and the io error handling code will clean up eventually
5214 	 */
5215 	return preferred_mirror;
5216 }
5217 
5218 static inline int parity_smaller(u64 a, u64 b)
5219 {
5220 	return a > b;
5221 }
5222 
5223 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5224 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5225 {
5226 	struct btrfs_bio_stripe s;
5227 	int i;
5228 	u64 l;
5229 	int again = 1;
5230 
5231 	while (again) {
5232 		again = 0;
5233 		for (i = 0; i < num_stripes - 1; i++) {
5234 			if (parity_smaller(bbio->raid_map[i],
5235 					   bbio->raid_map[i+1])) {
5236 				s = bbio->stripes[i];
5237 				l = bbio->raid_map[i];
5238 				bbio->stripes[i] = bbio->stripes[i+1];
5239 				bbio->raid_map[i] = bbio->raid_map[i+1];
5240 				bbio->stripes[i+1] = s;
5241 				bbio->raid_map[i+1] = l;
5242 
5243 				again = 1;
5244 			}
5245 		}
5246 	}
5247 }
5248 
5249 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5250 {
5251 	struct btrfs_bio *bbio = kzalloc(
5252 		 /* the size of the btrfs_bio */
5253 		sizeof(struct btrfs_bio) +
5254 		/* plus the variable array for the stripes */
5255 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5256 		/* plus the variable array for the tgt dev */
5257 		sizeof(int) * (real_stripes) +
5258 		/*
5259 		 * plus the raid_map, which includes both the tgt dev
5260 		 * and the stripes
5261 		 */
5262 		sizeof(u64) * (total_stripes),
5263 		GFP_NOFS|__GFP_NOFAIL);
5264 
5265 	atomic_set(&bbio->error, 0);
5266 	refcount_set(&bbio->refs, 1);
5267 
5268 	return bbio;
5269 }
5270 
5271 void btrfs_get_bbio(struct btrfs_bio *bbio)
5272 {
5273 	WARN_ON(!refcount_read(&bbio->refs));
5274 	refcount_inc(&bbio->refs);
5275 }
5276 
5277 void btrfs_put_bbio(struct btrfs_bio *bbio)
5278 {
5279 	if (!bbio)
5280 		return;
5281 	if (refcount_dec_and_test(&bbio->refs))
5282 		kfree(bbio);
5283 }
5284 
5285 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5286 /*
5287  * Please note that, discard won't be sent to target device of device
5288  * replace.
5289  */
5290 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5291 					 u64 logical, u64 length,
5292 					 struct btrfs_bio **bbio_ret)
5293 {
5294 	struct extent_map *em;
5295 	struct map_lookup *map;
5296 	struct btrfs_bio *bbio;
5297 	u64 offset;
5298 	u64 stripe_nr;
5299 	u64 stripe_nr_end;
5300 	u64 stripe_end_offset;
5301 	u64 stripe_cnt;
5302 	u64 stripe_len;
5303 	u64 stripe_offset;
5304 	u64 num_stripes;
5305 	u32 stripe_index;
5306 	u32 factor = 0;
5307 	u32 sub_stripes = 0;
5308 	u64 stripes_per_dev = 0;
5309 	u32 remaining_stripes = 0;
5310 	u32 last_stripe = 0;
5311 	int ret = 0;
5312 	int i;
5313 
5314 	/* discard always return a bbio */
5315 	ASSERT(bbio_ret);
5316 
5317 	em = get_chunk_map(fs_info, logical, length);
5318 	if (IS_ERR(em))
5319 		return PTR_ERR(em);
5320 
5321 	map = em->map_lookup;
5322 	/* we don't discard raid56 yet */
5323 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5324 		ret = -EOPNOTSUPP;
5325 		goto out;
5326 	}
5327 
5328 	offset = logical - em->start;
5329 	length = min_t(u64, em->len - offset, length);
5330 
5331 	stripe_len = map->stripe_len;
5332 	/*
5333 	 * stripe_nr counts the total number of stripes we have to stride
5334 	 * to get to this block
5335 	 */
5336 	stripe_nr = div64_u64(offset, stripe_len);
5337 
5338 	/* stripe_offset is the offset of this block in its stripe */
5339 	stripe_offset = offset - stripe_nr * stripe_len;
5340 
5341 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5342 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5343 	stripe_cnt = stripe_nr_end - stripe_nr;
5344 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5345 			    (offset + length);
5346 	/*
5347 	 * after this, stripe_nr is the number of stripes on this
5348 	 * device we have to walk to find the data, and stripe_index is
5349 	 * the number of our device in the stripe array
5350 	 */
5351 	num_stripes = 1;
5352 	stripe_index = 0;
5353 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5354 			 BTRFS_BLOCK_GROUP_RAID10)) {
5355 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5356 			sub_stripes = 1;
5357 		else
5358 			sub_stripes = map->sub_stripes;
5359 
5360 		factor = map->num_stripes / sub_stripes;
5361 		num_stripes = min_t(u64, map->num_stripes,
5362 				    sub_stripes * stripe_cnt);
5363 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5364 		stripe_index *= sub_stripes;
5365 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5366 					      &remaining_stripes);
5367 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5368 		last_stripe *= sub_stripes;
5369 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5370 				BTRFS_BLOCK_GROUP_DUP)) {
5371 		num_stripes = map->num_stripes;
5372 	} else {
5373 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5374 					&stripe_index);
5375 	}
5376 
5377 	bbio = alloc_btrfs_bio(num_stripes, 0);
5378 	if (!bbio) {
5379 		ret = -ENOMEM;
5380 		goto out;
5381 	}
5382 
5383 	for (i = 0; i < num_stripes; i++) {
5384 		bbio->stripes[i].physical =
5385 			map->stripes[stripe_index].physical +
5386 			stripe_offset + stripe_nr * map->stripe_len;
5387 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5388 
5389 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5390 				 BTRFS_BLOCK_GROUP_RAID10)) {
5391 			bbio->stripes[i].length = stripes_per_dev *
5392 				map->stripe_len;
5393 
5394 			if (i / sub_stripes < remaining_stripes)
5395 				bbio->stripes[i].length +=
5396 					map->stripe_len;
5397 
5398 			/*
5399 			 * Special for the first stripe and
5400 			 * the last stripe:
5401 			 *
5402 			 * |-------|...|-------|
5403 			 *     |----------|
5404 			 *    off     end_off
5405 			 */
5406 			if (i < sub_stripes)
5407 				bbio->stripes[i].length -=
5408 					stripe_offset;
5409 
5410 			if (stripe_index >= last_stripe &&
5411 			    stripe_index <= (last_stripe +
5412 					     sub_stripes - 1))
5413 				bbio->stripes[i].length -=
5414 					stripe_end_offset;
5415 
5416 			if (i == sub_stripes - 1)
5417 				stripe_offset = 0;
5418 		} else {
5419 			bbio->stripes[i].length = length;
5420 		}
5421 
5422 		stripe_index++;
5423 		if (stripe_index == map->num_stripes) {
5424 			stripe_index = 0;
5425 			stripe_nr++;
5426 		}
5427 	}
5428 
5429 	*bbio_ret = bbio;
5430 	bbio->map_type = map->type;
5431 	bbio->num_stripes = num_stripes;
5432 out:
5433 	free_extent_map(em);
5434 	return ret;
5435 }
5436 
5437 /*
5438  * In dev-replace case, for repair case (that's the only case where the mirror
5439  * is selected explicitly when calling btrfs_map_block), blocks left of the
5440  * left cursor can also be read from the target drive.
5441  *
5442  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5443  * array of stripes.
5444  * For READ, it also needs to be supported using the same mirror number.
5445  *
5446  * If the requested block is not left of the left cursor, EIO is returned. This
5447  * can happen because btrfs_num_copies() returns one more in the dev-replace
5448  * case.
5449  */
5450 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5451 					 u64 logical, u64 length,
5452 					 u64 srcdev_devid, int *mirror_num,
5453 					 u64 *physical)
5454 {
5455 	struct btrfs_bio *bbio = NULL;
5456 	int num_stripes;
5457 	int index_srcdev = 0;
5458 	int found = 0;
5459 	u64 physical_of_found = 0;
5460 	int i;
5461 	int ret = 0;
5462 
5463 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5464 				logical, &length, &bbio, 0, 0);
5465 	if (ret) {
5466 		ASSERT(bbio == NULL);
5467 		return ret;
5468 	}
5469 
5470 	num_stripes = bbio->num_stripes;
5471 	if (*mirror_num > num_stripes) {
5472 		/*
5473 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5474 		 * that means that the requested area is not left of the left
5475 		 * cursor
5476 		 */
5477 		btrfs_put_bbio(bbio);
5478 		return -EIO;
5479 	}
5480 
5481 	/*
5482 	 * process the rest of the function using the mirror_num of the source
5483 	 * drive. Therefore look it up first.  At the end, patch the device
5484 	 * pointer to the one of the target drive.
5485 	 */
5486 	for (i = 0; i < num_stripes; i++) {
5487 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5488 			continue;
5489 
5490 		/*
5491 		 * In case of DUP, in order to keep it simple, only add the
5492 		 * mirror with the lowest physical address
5493 		 */
5494 		if (found &&
5495 		    physical_of_found <= bbio->stripes[i].physical)
5496 			continue;
5497 
5498 		index_srcdev = i;
5499 		found = 1;
5500 		physical_of_found = bbio->stripes[i].physical;
5501 	}
5502 
5503 	btrfs_put_bbio(bbio);
5504 
5505 	ASSERT(found);
5506 	if (!found)
5507 		return -EIO;
5508 
5509 	*mirror_num = index_srcdev + 1;
5510 	*physical = physical_of_found;
5511 	return ret;
5512 }
5513 
5514 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5515 				      struct btrfs_bio **bbio_ret,
5516 				      struct btrfs_dev_replace *dev_replace,
5517 				      int *num_stripes_ret, int *max_errors_ret)
5518 {
5519 	struct btrfs_bio *bbio = *bbio_ret;
5520 	u64 srcdev_devid = dev_replace->srcdev->devid;
5521 	int tgtdev_indexes = 0;
5522 	int num_stripes = *num_stripes_ret;
5523 	int max_errors = *max_errors_ret;
5524 	int i;
5525 
5526 	if (op == BTRFS_MAP_WRITE) {
5527 		int index_where_to_add;
5528 
5529 		/*
5530 		 * duplicate the write operations while the dev replace
5531 		 * procedure is running. Since the copying of the old disk to
5532 		 * the new disk takes place at run time while the filesystem is
5533 		 * mounted writable, the regular write operations to the old
5534 		 * disk have to be duplicated to go to the new disk as well.
5535 		 *
5536 		 * Note that device->missing is handled by the caller, and that
5537 		 * the write to the old disk is already set up in the stripes
5538 		 * array.
5539 		 */
5540 		index_where_to_add = num_stripes;
5541 		for (i = 0; i < num_stripes; i++) {
5542 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5543 				/* write to new disk, too */
5544 				struct btrfs_bio_stripe *new =
5545 					bbio->stripes + index_where_to_add;
5546 				struct btrfs_bio_stripe *old =
5547 					bbio->stripes + i;
5548 
5549 				new->physical = old->physical;
5550 				new->length = old->length;
5551 				new->dev = dev_replace->tgtdev;
5552 				bbio->tgtdev_map[i] = index_where_to_add;
5553 				index_where_to_add++;
5554 				max_errors++;
5555 				tgtdev_indexes++;
5556 			}
5557 		}
5558 		num_stripes = index_where_to_add;
5559 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5560 		int index_srcdev = 0;
5561 		int found = 0;
5562 		u64 physical_of_found = 0;
5563 
5564 		/*
5565 		 * During the dev-replace procedure, the target drive can also
5566 		 * be used to read data in case it is needed to repair a corrupt
5567 		 * block elsewhere. This is possible if the requested area is
5568 		 * left of the left cursor. In this area, the target drive is a
5569 		 * full copy of the source drive.
5570 		 */
5571 		for (i = 0; i < num_stripes; i++) {
5572 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5573 				/*
5574 				 * In case of DUP, in order to keep it simple,
5575 				 * only add the mirror with the lowest physical
5576 				 * address
5577 				 */
5578 				if (found &&
5579 				    physical_of_found <=
5580 				     bbio->stripes[i].physical)
5581 					continue;
5582 				index_srcdev = i;
5583 				found = 1;
5584 				physical_of_found = bbio->stripes[i].physical;
5585 			}
5586 		}
5587 		if (found) {
5588 			struct btrfs_bio_stripe *tgtdev_stripe =
5589 				bbio->stripes + num_stripes;
5590 
5591 			tgtdev_stripe->physical = physical_of_found;
5592 			tgtdev_stripe->length =
5593 				bbio->stripes[index_srcdev].length;
5594 			tgtdev_stripe->dev = dev_replace->tgtdev;
5595 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5596 
5597 			tgtdev_indexes++;
5598 			num_stripes++;
5599 		}
5600 	}
5601 
5602 	*num_stripes_ret = num_stripes;
5603 	*max_errors_ret = max_errors;
5604 	bbio->num_tgtdevs = tgtdev_indexes;
5605 	*bbio_ret = bbio;
5606 }
5607 
5608 static bool need_full_stripe(enum btrfs_map_op op)
5609 {
5610 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5611 }
5612 
5613 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5614 			     enum btrfs_map_op op,
5615 			     u64 logical, u64 *length,
5616 			     struct btrfs_bio **bbio_ret,
5617 			     int mirror_num, int need_raid_map)
5618 {
5619 	struct extent_map *em;
5620 	struct map_lookup *map;
5621 	u64 offset;
5622 	u64 stripe_offset;
5623 	u64 stripe_nr;
5624 	u64 stripe_len;
5625 	u32 stripe_index;
5626 	int i;
5627 	int ret = 0;
5628 	int num_stripes;
5629 	int max_errors = 0;
5630 	int tgtdev_indexes = 0;
5631 	struct btrfs_bio *bbio = NULL;
5632 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5633 	int dev_replace_is_ongoing = 0;
5634 	int num_alloc_stripes;
5635 	int patch_the_first_stripe_for_dev_replace = 0;
5636 	u64 physical_to_patch_in_first_stripe = 0;
5637 	u64 raid56_full_stripe_start = (u64)-1;
5638 
5639 	if (op == BTRFS_MAP_DISCARD)
5640 		return __btrfs_map_block_for_discard(fs_info, logical,
5641 						     *length, bbio_ret);
5642 
5643 	em = get_chunk_map(fs_info, logical, *length);
5644 	if (IS_ERR(em))
5645 		return PTR_ERR(em);
5646 
5647 	map = em->map_lookup;
5648 	offset = logical - em->start;
5649 
5650 	stripe_len = map->stripe_len;
5651 	stripe_nr = offset;
5652 	/*
5653 	 * stripe_nr counts the total number of stripes we have to stride
5654 	 * to get to this block
5655 	 */
5656 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5657 
5658 	stripe_offset = stripe_nr * stripe_len;
5659 	if (offset < stripe_offset) {
5660 		btrfs_crit(fs_info,
5661 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5662 			   stripe_offset, offset, em->start, logical,
5663 			   stripe_len);
5664 		free_extent_map(em);
5665 		return -EINVAL;
5666 	}
5667 
5668 	/* stripe_offset is the offset of this block in its stripe*/
5669 	stripe_offset = offset - stripe_offset;
5670 
5671 	/* if we're here for raid56, we need to know the stripe aligned start */
5672 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5673 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5674 		raid56_full_stripe_start = offset;
5675 
5676 		/* allow a write of a full stripe, but make sure we don't
5677 		 * allow straddling of stripes
5678 		 */
5679 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5680 				full_stripe_len);
5681 		raid56_full_stripe_start *= full_stripe_len;
5682 	}
5683 
5684 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5685 		u64 max_len;
5686 		/* For writes to RAID[56], allow a full stripeset across all disks.
5687 		   For other RAID types and for RAID[56] reads, just allow a single
5688 		   stripe (on a single disk). */
5689 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5690 		    (op == BTRFS_MAP_WRITE)) {
5691 			max_len = stripe_len * nr_data_stripes(map) -
5692 				(offset - raid56_full_stripe_start);
5693 		} else {
5694 			/* we limit the length of each bio to what fits in a stripe */
5695 			max_len = stripe_len - stripe_offset;
5696 		}
5697 		*length = min_t(u64, em->len - offset, max_len);
5698 	} else {
5699 		*length = em->len - offset;
5700 	}
5701 
5702 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5703 	   it cares about is the length */
5704 	if (!bbio_ret)
5705 		goto out;
5706 
5707 	btrfs_dev_replace_read_lock(dev_replace);
5708 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5709 	if (!dev_replace_is_ongoing)
5710 		btrfs_dev_replace_read_unlock(dev_replace);
5711 	else
5712 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5713 
5714 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5715 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5716 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5717 						    dev_replace->srcdev->devid,
5718 						    &mirror_num,
5719 					    &physical_to_patch_in_first_stripe);
5720 		if (ret)
5721 			goto out;
5722 		else
5723 			patch_the_first_stripe_for_dev_replace = 1;
5724 	} else if (mirror_num > map->num_stripes) {
5725 		mirror_num = 0;
5726 	}
5727 
5728 	num_stripes = 1;
5729 	stripe_index = 0;
5730 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5731 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5732 				&stripe_index);
5733 		if (!need_full_stripe(op))
5734 			mirror_num = 1;
5735 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5736 		if (need_full_stripe(op))
5737 			num_stripes = map->num_stripes;
5738 		else if (mirror_num)
5739 			stripe_index = mirror_num - 1;
5740 		else {
5741 			stripe_index = find_live_mirror(fs_info, map, 0,
5742 					    dev_replace_is_ongoing);
5743 			mirror_num = stripe_index + 1;
5744 		}
5745 
5746 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5747 		if (need_full_stripe(op)) {
5748 			num_stripes = map->num_stripes;
5749 		} else if (mirror_num) {
5750 			stripe_index = mirror_num - 1;
5751 		} else {
5752 			mirror_num = 1;
5753 		}
5754 
5755 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5756 		u32 factor = map->num_stripes / map->sub_stripes;
5757 
5758 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5759 		stripe_index *= map->sub_stripes;
5760 
5761 		if (need_full_stripe(op))
5762 			num_stripes = map->sub_stripes;
5763 		else if (mirror_num)
5764 			stripe_index += mirror_num - 1;
5765 		else {
5766 			int old_stripe_index = stripe_index;
5767 			stripe_index = find_live_mirror(fs_info, map,
5768 					      stripe_index,
5769 					      dev_replace_is_ongoing);
5770 			mirror_num = stripe_index - old_stripe_index + 1;
5771 		}
5772 
5773 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5774 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5775 			/* push stripe_nr back to the start of the full stripe */
5776 			stripe_nr = div64_u64(raid56_full_stripe_start,
5777 					stripe_len * nr_data_stripes(map));
5778 
5779 			/* RAID[56] write or recovery. Return all stripes */
5780 			num_stripes = map->num_stripes;
5781 			max_errors = nr_parity_stripes(map);
5782 
5783 			*length = map->stripe_len;
5784 			stripe_index = 0;
5785 			stripe_offset = 0;
5786 		} else {
5787 			/*
5788 			 * Mirror #0 or #1 means the original data block.
5789 			 * Mirror #2 is RAID5 parity block.
5790 			 * Mirror #3 is RAID6 Q block.
5791 			 */
5792 			stripe_nr = div_u64_rem(stripe_nr,
5793 					nr_data_stripes(map), &stripe_index);
5794 			if (mirror_num > 1)
5795 				stripe_index = nr_data_stripes(map) +
5796 						mirror_num - 2;
5797 
5798 			/* We distribute the parity blocks across stripes */
5799 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5800 					&stripe_index);
5801 			if (!need_full_stripe(op) && mirror_num <= 1)
5802 				mirror_num = 1;
5803 		}
5804 	} else {
5805 		/*
5806 		 * after this, stripe_nr is the number of stripes on this
5807 		 * device we have to walk to find the data, and stripe_index is
5808 		 * the number of our device in the stripe array
5809 		 */
5810 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5811 				&stripe_index);
5812 		mirror_num = stripe_index + 1;
5813 	}
5814 	if (stripe_index >= map->num_stripes) {
5815 		btrfs_crit(fs_info,
5816 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5817 			   stripe_index, map->num_stripes);
5818 		ret = -EINVAL;
5819 		goto out;
5820 	}
5821 
5822 	num_alloc_stripes = num_stripes;
5823 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5824 		if (op == BTRFS_MAP_WRITE)
5825 			num_alloc_stripes <<= 1;
5826 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
5827 			num_alloc_stripes++;
5828 		tgtdev_indexes = num_stripes;
5829 	}
5830 
5831 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5832 	if (!bbio) {
5833 		ret = -ENOMEM;
5834 		goto out;
5835 	}
5836 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5837 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5838 
5839 	/* build raid_map */
5840 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5841 	    (need_full_stripe(op) || mirror_num > 1)) {
5842 		u64 tmp;
5843 		unsigned rot;
5844 
5845 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5846 				 sizeof(struct btrfs_bio_stripe) *
5847 				 num_alloc_stripes +
5848 				 sizeof(int) * tgtdev_indexes);
5849 
5850 		/* Work out the disk rotation on this stripe-set */
5851 		div_u64_rem(stripe_nr, num_stripes, &rot);
5852 
5853 		/* Fill in the logical address of each stripe */
5854 		tmp = stripe_nr * nr_data_stripes(map);
5855 		for (i = 0; i < nr_data_stripes(map); i++)
5856 			bbio->raid_map[(i+rot) % num_stripes] =
5857 				em->start + (tmp + i) * map->stripe_len;
5858 
5859 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5860 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5861 			bbio->raid_map[(i+rot+1) % num_stripes] =
5862 				RAID6_Q_STRIPE;
5863 	}
5864 
5865 
5866 	for (i = 0; i < num_stripes; i++) {
5867 		bbio->stripes[i].physical =
5868 			map->stripes[stripe_index].physical +
5869 			stripe_offset +
5870 			stripe_nr * map->stripe_len;
5871 		bbio->stripes[i].dev =
5872 			map->stripes[stripe_index].dev;
5873 		stripe_index++;
5874 	}
5875 
5876 	if (need_full_stripe(op))
5877 		max_errors = btrfs_chunk_max_errors(map);
5878 
5879 	if (bbio->raid_map)
5880 		sort_parity_stripes(bbio, num_stripes);
5881 
5882 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5883 	    need_full_stripe(op)) {
5884 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5885 					  &max_errors);
5886 	}
5887 
5888 	*bbio_ret = bbio;
5889 	bbio->map_type = map->type;
5890 	bbio->num_stripes = num_stripes;
5891 	bbio->max_errors = max_errors;
5892 	bbio->mirror_num = mirror_num;
5893 
5894 	/*
5895 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5896 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5897 	 * available as a mirror
5898 	 */
5899 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5900 		WARN_ON(num_stripes > 1);
5901 		bbio->stripes[0].dev = dev_replace->tgtdev;
5902 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5903 		bbio->mirror_num = map->num_stripes + 1;
5904 	}
5905 out:
5906 	if (dev_replace_is_ongoing) {
5907 		ASSERT(atomic_read(&dev_replace->blocking_readers) > 0);
5908 		btrfs_dev_replace_read_lock(dev_replace);
5909 		/* Barrier implied by atomic_dec_and_test */
5910 		if (atomic_dec_and_test(&dev_replace->blocking_readers))
5911 			cond_wake_up_nomb(&dev_replace->read_lock_wq);
5912 		btrfs_dev_replace_read_unlock(dev_replace);
5913 	}
5914 	free_extent_map(em);
5915 	return ret;
5916 }
5917 
5918 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5919 		      u64 logical, u64 *length,
5920 		      struct btrfs_bio **bbio_ret, int mirror_num)
5921 {
5922 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5923 				 mirror_num, 0);
5924 }
5925 
5926 /* For Scrub/replace */
5927 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5928 		     u64 logical, u64 *length,
5929 		     struct btrfs_bio **bbio_ret)
5930 {
5931 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5932 }
5933 
5934 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
5935 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
5936 {
5937 	struct extent_map *em;
5938 	struct map_lookup *map;
5939 	u64 *buf;
5940 	u64 bytenr;
5941 	u64 length;
5942 	u64 stripe_nr;
5943 	u64 rmap_len;
5944 	int i, j, nr = 0;
5945 
5946 	em = get_chunk_map(fs_info, chunk_start, 1);
5947 	if (IS_ERR(em))
5948 		return -EIO;
5949 
5950 	map = em->map_lookup;
5951 	length = em->len;
5952 	rmap_len = map->stripe_len;
5953 
5954 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5955 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5956 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5957 		length = div_u64(length, map->num_stripes);
5958 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5959 		length = div_u64(length, nr_data_stripes(map));
5960 		rmap_len = map->stripe_len * nr_data_stripes(map);
5961 	}
5962 
5963 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5964 	BUG_ON(!buf); /* -ENOMEM */
5965 
5966 	for (i = 0; i < map->num_stripes; i++) {
5967 		if (map->stripes[i].physical > physical ||
5968 		    map->stripes[i].physical + length <= physical)
5969 			continue;
5970 
5971 		stripe_nr = physical - map->stripes[i].physical;
5972 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5973 
5974 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5975 			stripe_nr = stripe_nr * map->num_stripes + i;
5976 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5977 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5978 			stripe_nr = stripe_nr * map->num_stripes + i;
5979 		} /* else if RAID[56], multiply by nr_data_stripes().
5980 		   * Alternatively, just use rmap_len below instead of
5981 		   * map->stripe_len */
5982 
5983 		bytenr = chunk_start + stripe_nr * rmap_len;
5984 		WARN_ON(nr >= map->num_stripes);
5985 		for (j = 0; j < nr; j++) {
5986 			if (buf[j] == bytenr)
5987 				break;
5988 		}
5989 		if (j == nr) {
5990 			WARN_ON(nr >= map->num_stripes);
5991 			buf[nr++] = bytenr;
5992 		}
5993 	}
5994 
5995 	*logical = buf;
5996 	*naddrs = nr;
5997 	*stripe_len = rmap_len;
5998 
5999 	free_extent_map(em);
6000 	return 0;
6001 }
6002 
6003 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6004 {
6005 	bio->bi_private = bbio->private;
6006 	bio->bi_end_io = bbio->end_io;
6007 	bio_endio(bio);
6008 
6009 	btrfs_put_bbio(bbio);
6010 }
6011 
6012 static void btrfs_end_bio(struct bio *bio)
6013 {
6014 	struct btrfs_bio *bbio = bio->bi_private;
6015 	int is_orig_bio = 0;
6016 
6017 	if (bio->bi_status) {
6018 		atomic_inc(&bbio->error);
6019 		if (bio->bi_status == BLK_STS_IOERR ||
6020 		    bio->bi_status == BLK_STS_TARGET) {
6021 			unsigned int stripe_index =
6022 				btrfs_io_bio(bio)->stripe_index;
6023 			struct btrfs_device *dev;
6024 
6025 			BUG_ON(stripe_index >= bbio->num_stripes);
6026 			dev = bbio->stripes[stripe_index].dev;
6027 			if (dev->bdev) {
6028 				if (bio_op(bio) == REQ_OP_WRITE)
6029 					btrfs_dev_stat_inc_and_print(dev,
6030 						BTRFS_DEV_STAT_WRITE_ERRS);
6031 				else
6032 					btrfs_dev_stat_inc_and_print(dev,
6033 						BTRFS_DEV_STAT_READ_ERRS);
6034 				if (bio->bi_opf & REQ_PREFLUSH)
6035 					btrfs_dev_stat_inc_and_print(dev,
6036 						BTRFS_DEV_STAT_FLUSH_ERRS);
6037 			}
6038 		}
6039 	}
6040 
6041 	if (bio == bbio->orig_bio)
6042 		is_orig_bio = 1;
6043 
6044 	btrfs_bio_counter_dec(bbio->fs_info);
6045 
6046 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6047 		if (!is_orig_bio) {
6048 			bio_put(bio);
6049 			bio = bbio->orig_bio;
6050 		}
6051 
6052 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6053 		/* only send an error to the higher layers if it is
6054 		 * beyond the tolerance of the btrfs bio
6055 		 */
6056 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6057 			bio->bi_status = BLK_STS_IOERR;
6058 		} else {
6059 			/*
6060 			 * this bio is actually up to date, we didn't
6061 			 * go over the max number of errors
6062 			 */
6063 			bio->bi_status = BLK_STS_OK;
6064 		}
6065 
6066 		btrfs_end_bbio(bbio, bio);
6067 	} else if (!is_orig_bio) {
6068 		bio_put(bio);
6069 	}
6070 }
6071 
6072 /*
6073  * see run_scheduled_bios for a description of why bios are collected for
6074  * async submit.
6075  *
6076  * This will add one bio to the pending list for a device and make sure
6077  * the work struct is scheduled.
6078  */
6079 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6080 					struct bio *bio)
6081 {
6082 	struct btrfs_fs_info *fs_info = device->fs_info;
6083 	int should_queue = 1;
6084 	struct btrfs_pending_bios *pending_bios;
6085 
6086 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6087 	    !device->bdev) {
6088 		bio_io_error(bio);
6089 		return;
6090 	}
6091 
6092 	/* don't bother with additional async steps for reads, right now */
6093 	if (bio_op(bio) == REQ_OP_READ) {
6094 		btrfsic_submit_bio(bio);
6095 		return;
6096 	}
6097 
6098 	WARN_ON(bio->bi_next);
6099 	bio->bi_next = NULL;
6100 
6101 	spin_lock(&device->io_lock);
6102 	if (op_is_sync(bio->bi_opf))
6103 		pending_bios = &device->pending_sync_bios;
6104 	else
6105 		pending_bios = &device->pending_bios;
6106 
6107 	if (pending_bios->tail)
6108 		pending_bios->tail->bi_next = bio;
6109 
6110 	pending_bios->tail = bio;
6111 	if (!pending_bios->head)
6112 		pending_bios->head = bio;
6113 	if (device->running_pending)
6114 		should_queue = 0;
6115 
6116 	spin_unlock(&device->io_lock);
6117 
6118 	if (should_queue)
6119 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6120 }
6121 
6122 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6123 			      u64 physical, int dev_nr, int async)
6124 {
6125 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6126 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6127 
6128 	bio->bi_private = bbio;
6129 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6130 	bio->bi_end_io = btrfs_end_bio;
6131 	bio->bi_iter.bi_sector = physical >> 9;
6132 	btrfs_debug_in_rcu(fs_info,
6133 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6134 		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6135 		(u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6136 		bio->bi_iter.bi_size);
6137 	bio_set_dev(bio, dev->bdev);
6138 
6139 	btrfs_bio_counter_inc_noblocked(fs_info);
6140 
6141 	if (async)
6142 		btrfs_schedule_bio(dev, bio);
6143 	else
6144 		btrfsic_submit_bio(bio);
6145 }
6146 
6147 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6148 {
6149 	atomic_inc(&bbio->error);
6150 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6151 		/* Should be the original bio. */
6152 		WARN_ON(bio != bbio->orig_bio);
6153 
6154 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6155 		bio->bi_iter.bi_sector = logical >> 9;
6156 		if (atomic_read(&bbio->error) > bbio->max_errors)
6157 			bio->bi_status = BLK_STS_IOERR;
6158 		else
6159 			bio->bi_status = BLK_STS_OK;
6160 		btrfs_end_bbio(bbio, bio);
6161 	}
6162 }
6163 
6164 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6165 			   int mirror_num, int async_submit)
6166 {
6167 	struct btrfs_device *dev;
6168 	struct bio *first_bio = bio;
6169 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6170 	u64 length = 0;
6171 	u64 map_length;
6172 	int ret;
6173 	int dev_nr;
6174 	int total_devs;
6175 	struct btrfs_bio *bbio = NULL;
6176 
6177 	length = bio->bi_iter.bi_size;
6178 	map_length = length;
6179 
6180 	btrfs_bio_counter_inc_blocked(fs_info);
6181 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6182 				&map_length, &bbio, mirror_num, 1);
6183 	if (ret) {
6184 		btrfs_bio_counter_dec(fs_info);
6185 		return errno_to_blk_status(ret);
6186 	}
6187 
6188 	total_devs = bbio->num_stripes;
6189 	bbio->orig_bio = first_bio;
6190 	bbio->private = first_bio->bi_private;
6191 	bbio->end_io = first_bio->bi_end_io;
6192 	bbio->fs_info = fs_info;
6193 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6194 
6195 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6196 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6197 		/* In this case, map_length has been set to the length of
6198 		   a single stripe; not the whole write */
6199 		if (bio_op(bio) == REQ_OP_WRITE) {
6200 			ret = raid56_parity_write(fs_info, bio, bbio,
6201 						  map_length);
6202 		} else {
6203 			ret = raid56_parity_recover(fs_info, bio, bbio,
6204 						    map_length, mirror_num, 1);
6205 		}
6206 
6207 		btrfs_bio_counter_dec(fs_info);
6208 		return errno_to_blk_status(ret);
6209 	}
6210 
6211 	if (map_length < length) {
6212 		btrfs_crit(fs_info,
6213 			   "mapping failed logical %llu bio len %llu len %llu",
6214 			   logical, length, map_length);
6215 		BUG();
6216 	}
6217 
6218 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6219 		dev = bbio->stripes[dev_nr].dev;
6220 		if (!dev || !dev->bdev ||
6221 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6222 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6223 			bbio_error(bbio, first_bio, logical);
6224 			continue;
6225 		}
6226 
6227 		if (dev_nr < total_devs - 1)
6228 			bio = btrfs_bio_clone(first_bio);
6229 		else
6230 			bio = first_bio;
6231 
6232 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6233 				  dev_nr, async_submit);
6234 	}
6235 	btrfs_bio_counter_dec(fs_info);
6236 	return BLK_STS_OK;
6237 }
6238 
6239 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6240 				       u8 *uuid, u8 *fsid)
6241 {
6242 	struct btrfs_device *device;
6243 	struct btrfs_fs_devices *cur_devices;
6244 
6245 	cur_devices = fs_info->fs_devices;
6246 	while (cur_devices) {
6247 		if (!fsid ||
6248 		    !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6249 			device = find_device(cur_devices, devid, uuid);
6250 			if (device)
6251 				return device;
6252 		}
6253 		cur_devices = cur_devices->seed;
6254 	}
6255 	return NULL;
6256 }
6257 
6258 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6259 					    u64 devid, u8 *dev_uuid)
6260 {
6261 	struct btrfs_device *device;
6262 
6263 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6264 	if (IS_ERR(device))
6265 		return device;
6266 
6267 	list_add(&device->dev_list, &fs_devices->devices);
6268 	device->fs_devices = fs_devices;
6269 	fs_devices->num_devices++;
6270 
6271 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6272 	fs_devices->missing_devices++;
6273 
6274 	return device;
6275 }
6276 
6277 /**
6278  * btrfs_alloc_device - allocate struct btrfs_device
6279  * @fs_info:	used only for generating a new devid, can be NULL if
6280  *		devid is provided (i.e. @devid != NULL).
6281  * @devid:	a pointer to devid for this device.  If NULL a new devid
6282  *		is generated.
6283  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6284  *		is generated.
6285  *
6286  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6287  * on error.  Returned struct is not linked onto any lists and must be
6288  * destroyed with btrfs_free_device.
6289  */
6290 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6291 					const u64 *devid,
6292 					const u8 *uuid)
6293 {
6294 	struct btrfs_device *dev;
6295 	u64 tmp;
6296 
6297 	if (WARN_ON(!devid && !fs_info))
6298 		return ERR_PTR(-EINVAL);
6299 
6300 	dev = __alloc_device();
6301 	if (IS_ERR(dev))
6302 		return dev;
6303 
6304 	if (devid)
6305 		tmp = *devid;
6306 	else {
6307 		int ret;
6308 
6309 		ret = find_next_devid(fs_info, &tmp);
6310 		if (ret) {
6311 			btrfs_free_device(dev);
6312 			return ERR_PTR(ret);
6313 		}
6314 	}
6315 	dev->devid = tmp;
6316 
6317 	if (uuid)
6318 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6319 	else
6320 		generate_random_uuid(dev->uuid);
6321 
6322 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6323 			pending_bios_fn, NULL, NULL);
6324 
6325 	return dev;
6326 }
6327 
6328 /* Return -EIO if any error, otherwise return 0. */
6329 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6330 				   struct extent_buffer *leaf,
6331 				   struct btrfs_chunk *chunk, u64 logical)
6332 {
6333 	u64 length;
6334 	u64 stripe_len;
6335 	u16 num_stripes;
6336 	u16 sub_stripes;
6337 	u64 type;
6338 	u64 features;
6339 	bool mixed = false;
6340 
6341 	length = btrfs_chunk_length(leaf, chunk);
6342 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6343 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6344 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6345 	type = btrfs_chunk_type(leaf, chunk);
6346 
6347 	if (!num_stripes) {
6348 		btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6349 			  num_stripes);
6350 		return -EIO;
6351 	}
6352 	if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6353 		btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6354 		return -EIO;
6355 	}
6356 	if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6357 		btrfs_err(fs_info, "invalid chunk sectorsize %u",
6358 			  btrfs_chunk_sector_size(leaf, chunk));
6359 		return -EIO;
6360 	}
6361 	if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6362 		btrfs_err(fs_info, "invalid chunk length %llu", length);
6363 		return -EIO;
6364 	}
6365 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6366 		btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6367 			  stripe_len);
6368 		return -EIO;
6369 	}
6370 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6371 	    type) {
6372 		btrfs_err(fs_info, "unrecognized chunk type: %llu",
6373 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6374 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6375 			  btrfs_chunk_type(leaf, chunk));
6376 		return -EIO;
6377 	}
6378 
6379 	if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6380 		btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type);
6381 		return -EIO;
6382 	}
6383 
6384 	if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6385 	    (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6386 		btrfs_err(fs_info,
6387 			"system chunk with data or metadata type: 0x%llx", type);
6388 		return -EIO;
6389 	}
6390 
6391 	features = btrfs_super_incompat_flags(fs_info->super_copy);
6392 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6393 		mixed = true;
6394 
6395 	if (!mixed) {
6396 		if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6397 		    (type & BTRFS_BLOCK_GROUP_DATA)) {
6398 			btrfs_err(fs_info,
6399 			"mixed chunk type in non-mixed mode: 0x%llx", type);
6400 			return -EIO;
6401 		}
6402 	}
6403 
6404 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6405 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6406 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6407 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6408 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6409 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6410 	     num_stripes != 1)) {
6411 		btrfs_err(fs_info,
6412 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6413 			num_stripes, sub_stripes,
6414 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6415 		return -EIO;
6416 	}
6417 
6418 	return 0;
6419 }
6420 
6421 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6422 					u64 devid, u8 *uuid, bool error)
6423 {
6424 	if (error)
6425 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6426 			      devid, uuid);
6427 	else
6428 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6429 			      devid, uuid);
6430 }
6431 
6432 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6433 			  struct extent_buffer *leaf,
6434 			  struct btrfs_chunk *chunk)
6435 {
6436 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6437 	struct map_lookup *map;
6438 	struct extent_map *em;
6439 	u64 logical;
6440 	u64 length;
6441 	u64 devid;
6442 	u8 uuid[BTRFS_UUID_SIZE];
6443 	int num_stripes;
6444 	int ret;
6445 	int i;
6446 
6447 	logical = key->offset;
6448 	length = btrfs_chunk_length(leaf, chunk);
6449 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6450 
6451 	ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6452 	if (ret)
6453 		return ret;
6454 
6455 	read_lock(&map_tree->map_tree.lock);
6456 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6457 	read_unlock(&map_tree->map_tree.lock);
6458 
6459 	/* already mapped? */
6460 	if (em && em->start <= logical && em->start + em->len > logical) {
6461 		free_extent_map(em);
6462 		return 0;
6463 	} else if (em) {
6464 		free_extent_map(em);
6465 	}
6466 
6467 	em = alloc_extent_map();
6468 	if (!em)
6469 		return -ENOMEM;
6470 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6471 	if (!map) {
6472 		free_extent_map(em);
6473 		return -ENOMEM;
6474 	}
6475 
6476 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6477 	em->map_lookup = map;
6478 	em->start = logical;
6479 	em->len = length;
6480 	em->orig_start = 0;
6481 	em->block_start = 0;
6482 	em->block_len = em->len;
6483 
6484 	map->num_stripes = num_stripes;
6485 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6486 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6487 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6488 	map->type = btrfs_chunk_type(leaf, chunk);
6489 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6490 	map->verified_stripes = 0;
6491 	for (i = 0; i < num_stripes; i++) {
6492 		map->stripes[i].physical =
6493 			btrfs_stripe_offset_nr(leaf, chunk, i);
6494 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6495 		read_extent_buffer(leaf, uuid, (unsigned long)
6496 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6497 				   BTRFS_UUID_SIZE);
6498 		map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6499 							uuid, NULL);
6500 		if (!map->stripes[i].dev &&
6501 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6502 			free_extent_map(em);
6503 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6504 			return -ENOENT;
6505 		}
6506 		if (!map->stripes[i].dev) {
6507 			map->stripes[i].dev =
6508 				add_missing_dev(fs_info->fs_devices, devid,
6509 						uuid);
6510 			if (IS_ERR(map->stripes[i].dev)) {
6511 				free_extent_map(em);
6512 				btrfs_err(fs_info,
6513 					"failed to init missing dev %llu: %ld",
6514 					devid, PTR_ERR(map->stripes[i].dev));
6515 				return PTR_ERR(map->stripes[i].dev);
6516 			}
6517 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6518 		}
6519 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6520 				&(map->stripes[i].dev->dev_state));
6521 
6522 	}
6523 
6524 	write_lock(&map_tree->map_tree.lock);
6525 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6526 	write_unlock(&map_tree->map_tree.lock);
6527 	if (ret < 0) {
6528 		btrfs_err(fs_info,
6529 			  "failed to add chunk map, start=%llu len=%llu: %d",
6530 			  em->start, em->len, ret);
6531 	}
6532 	free_extent_map(em);
6533 
6534 	return ret;
6535 }
6536 
6537 static void fill_device_from_item(struct extent_buffer *leaf,
6538 				 struct btrfs_dev_item *dev_item,
6539 				 struct btrfs_device *device)
6540 {
6541 	unsigned long ptr;
6542 
6543 	device->devid = btrfs_device_id(leaf, dev_item);
6544 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6545 	device->total_bytes = device->disk_total_bytes;
6546 	device->commit_total_bytes = device->disk_total_bytes;
6547 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6548 	device->commit_bytes_used = device->bytes_used;
6549 	device->type = btrfs_device_type(leaf, dev_item);
6550 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6551 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6552 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6553 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6554 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6555 
6556 	ptr = btrfs_device_uuid(dev_item);
6557 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6558 }
6559 
6560 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6561 						  u8 *fsid)
6562 {
6563 	struct btrfs_fs_devices *fs_devices;
6564 	int ret;
6565 
6566 	lockdep_assert_held(&uuid_mutex);
6567 	ASSERT(fsid);
6568 
6569 	fs_devices = fs_info->fs_devices->seed;
6570 	while (fs_devices) {
6571 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6572 			return fs_devices;
6573 
6574 		fs_devices = fs_devices->seed;
6575 	}
6576 
6577 	fs_devices = find_fsid(fsid);
6578 	if (!fs_devices) {
6579 		if (!btrfs_test_opt(fs_info, DEGRADED))
6580 			return ERR_PTR(-ENOENT);
6581 
6582 		fs_devices = alloc_fs_devices(fsid);
6583 		if (IS_ERR(fs_devices))
6584 			return fs_devices;
6585 
6586 		fs_devices->seeding = 1;
6587 		fs_devices->opened = 1;
6588 		return fs_devices;
6589 	}
6590 
6591 	fs_devices = clone_fs_devices(fs_devices);
6592 	if (IS_ERR(fs_devices))
6593 		return fs_devices;
6594 
6595 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6596 	if (ret) {
6597 		free_fs_devices(fs_devices);
6598 		fs_devices = ERR_PTR(ret);
6599 		goto out;
6600 	}
6601 
6602 	if (!fs_devices->seeding) {
6603 		close_fs_devices(fs_devices);
6604 		free_fs_devices(fs_devices);
6605 		fs_devices = ERR_PTR(-EINVAL);
6606 		goto out;
6607 	}
6608 
6609 	fs_devices->seed = fs_info->fs_devices->seed;
6610 	fs_info->fs_devices->seed = fs_devices;
6611 out:
6612 	return fs_devices;
6613 }
6614 
6615 static int read_one_dev(struct btrfs_fs_info *fs_info,
6616 			struct extent_buffer *leaf,
6617 			struct btrfs_dev_item *dev_item)
6618 {
6619 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6620 	struct btrfs_device *device;
6621 	u64 devid;
6622 	int ret;
6623 	u8 fs_uuid[BTRFS_FSID_SIZE];
6624 	u8 dev_uuid[BTRFS_UUID_SIZE];
6625 
6626 	devid = btrfs_device_id(leaf, dev_item);
6627 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6628 			   BTRFS_UUID_SIZE);
6629 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6630 			   BTRFS_FSID_SIZE);
6631 
6632 	if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6633 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6634 		if (IS_ERR(fs_devices))
6635 			return PTR_ERR(fs_devices);
6636 	}
6637 
6638 	device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6639 	if (!device) {
6640 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6641 			btrfs_report_missing_device(fs_info, devid,
6642 							dev_uuid, true);
6643 			return -ENOENT;
6644 		}
6645 
6646 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6647 		if (IS_ERR(device)) {
6648 			btrfs_err(fs_info,
6649 				"failed to add missing dev %llu: %ld",
6650 				devid, PTR_ERR(device));
6651 			return PTR_ERR(device);
6652 		}
6653 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6654 	} else {
6655 		if (!device->bdev) {
6656 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6657 				btrfs_report_missing_device(fs_info,
6658 						devid, dev_uuid, true);
6659 				return -ENOENT;
6660 			}
6661 			btrfs_report_missing_device(fs_info, devid,
6662 							dev_uuid, false);
6663 		}
6664 
6665 		if (!device->bdev &&
6666 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6667 			/*
6668 			 * this happens when a device that was properly setup
6669 			 * in the device info lists suddenly goes bad.
6670 			 * device->bdev is NULL, and so we have to set
6671 			 * device->missing to one here
6672 			 */
6673 			device->fs_devices->missing_devices++;
6674 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6675 		}
6676 
6677 		/* Move the device to its own fs_devices */
6678 		if (device->fs_devices != fs_devices) {
6679 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6680 							&device->dev_state));
6681 
6682 			list_move(&device->dev_list, &fs_devices->devices);
6683 			device->fs_devices->num_devices--;
6684 			fs_devices->num_devices++;
6685 
6686 			device->fs_devices->missing_devices--;
6687 			fs_devices->missing_devices++;
6688 
6689 			device->fs_devices = fs_devices;
6690 		}
6691 	}
6692 
6693 	if (device->fs_devices != fs_info->fs_devices) {
6694 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6695 		if (device->generation !=
6696 		    btrfs_device_generation(leaf, dev_item))
6697 			return -EINVAL;
6698 	}
6699 
6700 	fill_device_from_item(leaf, dev_item, device);
6701 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6702 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6703 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6704 		device->fs_devices->total_rw_bytes += device->total_bytes;
6705 		atomic64_add(device->total_bytes - device->bytes_used,
6706 				&fs_info->free_chunk_space);
6707 	}
6708 	ret = 0;
6709 	return ret;
6710 }
6711 
6712 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6713 {
6714 	struct btrfs_root *root = fs_info->tree_root;
6715 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6716 	struct extent_buffer *sb;
6717 	struct btrfs_disk_key *disk_key;
6718 	struct btrfs_chunk *chunk;
6719 	u8 *array_ptr;
6720 	unsigned long sb_array_offset;
6721 	int ret = 0;
6722 	u32 num_stripes;
6723 	u32 array_size;
6724 	u32 len = 0;
6725 	u32 cur_offset;
6726 	u64 type;
6727 	struct btrfs_key key;
6728 
6729 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6730 	/*
6731 	 * This will create extent buffer of nodesize, superblock size is
6732 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6733 	 * overallocate but we can keep it as-is, only the first page is used.
6734 	 */
6735 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6736 	if (IS_ERR(sb))
6737 		return PTR_ERR(sb);
6738 	set_extent_buffer_uptodate(sb);
6739 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6740 	/*
6741 	 * The sb extent buffer is artificial and just used to read the system array.
6742 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6743 	 * pages up-to-date when the page is larger: extent does not cover the
6744 	 * whole page and consequently check_page_uptodate does not find all
6745 	 * the page's extents up-to-date (the hole beyond sb),
6746 	 * write_extent_buffer then triggers a WARN_ON.
6747 	 *
6748 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6749 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6750 	 * to silence the warning eg. on PowerPC 64.
6751 	 */
6752 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6753 		SetPageUptodate(sb->pages[0]);
6754 
6755 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6756 	array_size = btrfs_super_sys_array_size(super_copy);
6757 
6758 	array_ptr = super_copy->sys_chunk_array;
6759 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6760 	cur_offset = 0;
6761 
6762 	while (cur_offset < array_size) {
6763 		disk_key = (struct btrfs_disk_key *)array_ptr;
6764 		len = sizeof(*disk_key);
6765 		if (cur_offset + len > array_size)
6766 			goto out_short_read;
6767 
6768 		btrfs_disk_key_to_cpu(&key, disk_key);
6769 
6770 		array_ptr += len;
6771 		sb_array_offset += len;
6772 		cur_offset += len;
6773 
6774 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6775 			chunk = (struct btrfs_chunk *)sb_array_offset;
6776 			/*
6777 			 * At least one btrfs_chunk with one stripe must be
6778 			 * present, exact stripe count check comes afterwards
6779 			 */
6780 			len = btrfs_chunk_item_size(1);
6781 			if (cur_offset + len > array_size)
6782 				goto out_short_read;
6783 
6784 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6785 			if (!num_stripes) {
6786 				btrfs_err(fs_info,
6787 					"invalid number of stripes %u in sys_array at offset %u",
6788 					num_stripes, cur_offset);
6789 				ret = -EIO;
6790 				break;
6791 			}
6792 
6793 			type = btrfs_chunk_type(sb, chunk);
6794 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6795 				btrfs_err(fs_info,
6796 			    "invalid chunk type %llu in sys_array at offset %u",
6797 					type, cur_offset);
6798 				ret = -EIO;
6799 				break;
6800 			}
6801 
6802 			len = btrfs_chunk_item_size(num_stripes);
6803 			if (cur_offset + len > array_size)
6804 				goto out_short_read;
6805 
6806 			ret = read_one_chunk(fs_info, &key, sb, chunk);
6807 			if (ret)
6808 				break;
6809 		} else {
6810 			btrfs_err(fs_info,
6811 			    "unexpected item type %u in sys_array at offset %u",
6812 				  (u32)key.type, cur_offset);
6813 			ret = -EIO;
6814 			break;
6815 		}
6816 		array_ptr += len;
6817 		sb_array_offset += len;
6818 		cur_offset += len;
6819 	}
6820 	clear_extent_buffer_uptodate(sb);
6821 	free_extent_buffer_stale(sb);
6822 	return ret;
6823 
6824 out_short_read:
6825 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6826 			len, cur_offset);
6827 	clear_extent_buffer_uptodate(sb);
6828 	free_extent_buffer_stale(sb);
6829 	return -EIO;
6830 }
6831 
6832 /*
6833  * Check if all chunks in the fs are OK for read-write degraded mount
6834  *
6835  * If the @failing_dev is specified, it's accounted as missing.
6836  *
6837  * Return true if all chunks meet the minimal RW mount requirements.
6838  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6839  */
6840 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6841 					struct btrfs_device *failing_dev)
6842 {
6843 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6844 	struct extent_map *em;
6845 	u64 next_start = 0;
6846 	bool ret = true;
6847 
6848 	read_lock(&map_tree->map_tree.lock);
6849 	em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6850 	read_unlock(&map_tree->map_tree.lock);
6851 	/* No chunk at all? Return false anyway */
6852 	if (!em) {
6853 		ret = false;
6854 		goto out;
6855 	}
6856 	while (em) {
6857 		struct map_lookup *map;
6858 		int missing = 0;
6859 		int max_tolerated;
6860 		int i;
6861 
6862 		map = em->map_lookup;
6863 		max_tolerated =
6864 			btrfs_get_num_tolerated_disk_barrier_failures(
6865 					map->type);
6866 		for (i = 0; i < map->num_stripes; i++) {
6867 			struct btrfs_device *dev = map->stripes[i].dev;
6868 
6869 			if (!dev || !dev->bdev ||
6870 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6871 			    dev->last_flush_error)
6872 				missing++;
6873 			else if (failing_dev && failing_dev == dev)
6874 				missing++;
6875 		}
6876 		if (missing > max_tolerated) {
6877 			if (!failing_dev)
6878 				btrfs_warn(fs_info,
6879 	"chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6880 				   em->start, missing, max_tolerated);
6881 			free_extent_map(em);
6882 			ret = false;
6883 			goto out;
6884 		}
6885 		next_start = extent_map_end(em);
6886 		free_extent_map(em);
6887 
6888 		read_lock(&map_tree->map_tree.lock);
6889 		em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6890 					   (u64)(-1) - next_start);
6891 		read_unlock(&map_tree->map_tree.lock);
6892 	}
6893 out:
6894 	return ret;
6895 }
6896 
6897 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6898 {
6899 	struct btrfs_root *root = fs_info->chunk_root;
6900 	struct btrfs_path *path;
6901 	struct extent_buffer *leaf;
6902 	struct btrfs_key key;
6903 	struct btrfs_key found_key;
6904 	int ret;
6905 	int slot;
6906 	u64 total_dev = 0;
6907 
6908 	path = btrfs_alloc_path();
6909 	if (!path)
6910 		return -ENOMEM;
6911 
6912 	/*
6913 	 * uuid_mutex is needed only if we are mounting a sprout FS
6914 	 * otherwise we don't need it.
6915 	 */
6916 	mutex_lock(&uuid_mutex);
6917 	mutex_lock(&fs_info->chunk_mutex);
6918 
6919 	/*
6920 	 * Read all device items, and then all the chunk items. All
6921 	 * device items are found before any chunk item (their object id
6922 	 * is smaller than the lowest possible object id for a chunk
6923 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6924 	 */
6925 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6926 	key.offset = 0;
6927 	key.type = 0;
6928 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6929 	if (ret < 0)
6930 		goto error;
6931 	while (1) {
6932 		leaf = path->nodes[0];
6933 		slot = path->slots[0];
6934 		if (slot >= btrfs_header_nritems(leaf)) {
6935 			ret = btrfs_next_leaf(root, path);
6936 			if (ret == 0)
6937 				continue;
6938 			if (ret < 0)
6939 				goto error;
6940 			break;
6941 		}
6942 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6943 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6944 			struct btrfs_dev_item *dev_item;
6945 			dev_item = btrfs_item_ptr(leaf, slot,
6946 						  struct btrfs_dev_item);
6947 			ret = read_one_dev(fs_info, leaf, dev_item);
6948 			if (ret)
6949 				goto error;
6950 			total_dev++;
6951 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6952 			struct btrfs_chunk *chunk;
6953 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6954 			ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6955 			if (ret)
6956 				goto error;
6957 		}
6958 		path->slots[0]++;
6959 	}
6960 
6961 	/*
6962 	 * After loading chunk tree, we've got all device information,
6963 	 * do another round of validation checks.
6964 	 */
6965 	if (total_dev != fs_info->fs_devices->total_devices) {
6966 		btrfs_err(fs_info,
6967 	   "super_num_devices %llu mismatch with num_devices %llu found here",
6968 			  btrfs_super_num_devices(fs_info->super_copy),
6969 			  total_dev);
6970 		ret = -EINVAL;
6971 		goto error;
6972 	}
6973 	if (btrfs_super_total_bytes(fs_info->super_copy) <
6974 	    fs_info->fs_devices->total_rw_bytes) {
6975 		btrfs_err(fs_info,
6976 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6977 			  btrfs_super_total_bytes(fs_info->super_copy),
6978 			  fs_info->fs_devices->total_rw_bytes);
6979 		ret = -EINVAL;
6980 		goto error;
6981 	}
6982 	ret = 0;
6983 error:
6984 	mutex_unlock(&fs_info->chunk_mutex);
6985 	mutex_unlock(&uuid_mutex);
6986 
6987 	btrfs_free_path(path);
6988 	return ret;
6989 }
6990 
6991 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6992 {
6993 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6994 	struct btrfs_device *device;
6995 
6996 	while (fs_devices) {
6997 		mutex_lock(&fs_devices->device_list_mutex);
6998 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6999 			device->fs_info = fs_info;
7000 		mutex_unlock(&fs_devices->device_list_mutex);
7001 
7002 		fs_devices = fs_devices->seed;
7003 	}
7004 }
7005 
7006 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7007 {
7008 	int i;
7009 
7010 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7011 		btrfs_dev_stat_reset(dev, i);
7012 }
7013 
7014 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7015 {
7016 	struct btrfs_key key;
7017 	struct btrfs_key found_key;
7018 	struct btrfs_root *dev_root = fs_info->dev_root;
7019 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7020 	struct extent_buffer *eb;
7021 	int slot;
7022 	int ret = 0;
7023 	struct btrfs_device *device;
7024 	struct btrfs_path *path = NULL;
7025 	int i;
7026 
7027 	path = btrfs_alloc_path();
7028 	if (!path) {
7029 		ret = -ENOMEM;
7030 		goto out;
7031 	}
7032 
7033 	mutex_lock(&fs_devices->device_list_mutex);
7034 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7035 		int item_size;
7036 		struct btrfs_dev_stats_item *ptr;
7037 
7038 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
7039 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7040 		key.offset = device->devid;
7041 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7042 		if (ret) {
7043 			__btrfs_reset_dev_stats(device);
7044 			device->dev_stats_valid = 1;
7045 			btrfs_release_path(path);
7046 			continue;
7047 		}
7048 		slot = path->slots[0];
7049 		eb = path->nodes[0];
7050 		btrfs_item_key_to_cpu(eb, &found_key, slot);
7051 		item_size = btrfs_item_size_nr(eb, slot);
7052 
7053 		ptr = btrfs_item_ptr(eb, slot,
7054 				     struct btrfs_dev_stats_item);
7055 
7056 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7057 			if (item_size >= (1 + i) * sizeof(__le64))
7058 				btrfs_dev_stat_set(device, i,
7059 					btrfs_dev_stats_value(eb, ptr, i));
7060 			else
7061 				btrfs_dev_stat_reset(device, i);
7062 		}
7063 
7064 		device->dev_stats_valid = 1;
7065 		btrfs_dev_stat_print_on_load(device);
7066 		btrfs_release_path(path);
7067 	}
7068 	mutex_unlock(&fs_devices->device_list_mutex);
7069 
7070 out:
7071 	btrfs_free_path(path);
7072 	return ret < 0 ? ret : 0;
7073 }
7074 
7075 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7076 				struct btrfs_device *device)
7077 {
7078 	struct btrfs_fs_info *fs_info = trans->fs_info;
7079 	struct btrfs_root *dev_root = fs_info->dev_root;
7080 	struct btrfs_path *path;
7081 	struct btrfs_key key;
7082 	struct extent_buffer *eb;
7083 	struct btrfs_dev_stats_item *ptr;
7084 	int ret;
7085 	int i;
7086 
7087 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7088 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7089 	key.offset = device->devid;
7090 
7091 	path = btrfs_alloc_path();
7092 	if (!path)
7093 		return -ENOMEM;
7094 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7095 	if (ret < 0) {
7096 		btrfs_warn_in_rcu(fs_info,
7097 			"error %d while searching for dev_stats item for device %s",
7098 			      ret, rcu_str_deref(device->name));
7099 		goto out;
7100 	}
7101 
7102 	if (ret == 0 &&
7103 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7104 		/* need to delete old one and insert a new one */
7105 		ret = btrfs_del_item(trans, dev_root, path);
7106 		if (ret != 0) {
7107 			btrfs_warn_in_rcu(fs_info,
7108 				"delete too small dev_stats item for device %s failed %d",
7109 				      rcu_str_deref(device->name), ret);
7110 			goto out;
7111 		}
7112 		ret = 1;
7113 	}
7114 
7115 	if (ret == 1) {
7116 		/* need to insert a new item */
7117 		btrfs_release_path(path);
7118 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7119 					      &key, sizeof(*ptr));
7120 		if (ret < 0) {
7121 			btrfs_warn_in_rcu(fs_info,
7122 				"insert dev_stats item for device %s failed %d",
7123 				rcu_str_deref(device->name), ret);
7124 			goto out;
7125 		}
7126 	}
7127 
7128 	eb = path->nodes[0];
7129 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7130 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7131 		btrfs_set_dev_stats_value(eb, ptr, i,
7132 					  btrfs_dev_stat_read(device, i));
7133 	btrfs_mark_buffer_dirty(eb);
7134 
7135 out:
7136 	btrfs_free_path(path);
7137 	return ret;
7138 }
7139 
7140 /*
7141  * called from commit_transaction. Writes all changed device stats to disk.
7142  */
7143 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7144 			struct btrfs_fs_info *fs_info)
7145 {
7146 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7147 	struct btrfs_device *device;
7148 	int stats_cnt;
7149 	int ret = 0;
7150 
7151 	mutex_lock(&fs_devices->device_list_mutex);
7152 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7153 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7154 		if (!device->dev_stats_valid || stats_cnt == 0)
7155 			continue;
7156 
7157 
7158 		/*
7159 		 * There is a LOAD-LOAD control dependency between the value of
7160 		 * dev_stats_ccnt and updating the on-disk values which requires
7161 		 * reading the in-memory counters. Such control dependencies
7162 		 * require explicit read memory barriers.
7163 		 *
7164 		 * This memory barriers pairs with smp_mb__before_atomic in
7165 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7166 		 * barrier implied by atomic_xchg in
7167 		 * btrfs_dev_stats_read_and_reset
7168 		 */
7169 		smp_rmb();
7170 
7171 		ret = update_dev_stat_item(trans, device);
7172 		if (!ret)
7173 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7174 	}
7175 	mutex_unlock(&fs_devices->device_list_mutex);
7176 
7177 	return ret;
7178 }
7179 
7180 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7181 {
7182 	btrfs_dev_stat_inc(dev, index);
7183 	btrfs_dev_stat_print_on_error(dev);
7184 }
7185 
7186 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7187 {
7188 	if (!dev->dev_stats_valid)
7189 		return;
7190 	btrfs_err_rl_in_rcu(dev->fs_info,
7191 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7192 			   rcu_str_deref(dev->name),
7193 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7194 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7195 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7196 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7197 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7198 }
7199 
7200 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7201 {
7202 	int i;
7203 
7204 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7205 		if (btrfs_dev_stat_read(dev, i) != 0)
7206 			break;
7207 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7208 		return; /* all values == 0, suppress message */
7209 
7210 	btrfs_info_in_rcu(dev->fs_info,
7211 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7212 	       rcu_str_deref(dev->name),
7213 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7214 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7215 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7216 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7217 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7218 }
7219 
7220 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7221 			struct btrfs_ioctl_get_dev_stats *stats)
7222 {
7223 	struct btrfs_device *dev;
7224 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7225 	int i;
7226 
7227 	mutex_lock(&fs_devices->device_list_mutex);
7228 	dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7229 	mutex_unlock(&fs_devices->device_list_mutex);
7230 
7231 	if (!dev) {
7232 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7233 		return -ENODEV;
7234 	} else if (!dev->dev_stats_valid) {
7235 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7236 		return -ENODEV;
7237 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7238 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7239 			if (stats->nr_items > i)
7240 				stats->values[i] =
7241 					btrfs_dev_stat_read_and_reset(dev, i);
7242 			else
7243 				btrfs_dev_stat_reset(dev, i);
7244 		}
7245 	} else {
7246 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7247 			if (stats->nr_items > i)
7248 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7249 	}
7250 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7251 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7252 	return 0;
7253 }
7254 
7255 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7256 {
7257 	struct buffer_head *bh;
7258 	struct btrfs_super_block *disk_super;
7259 	int copy_num;
7260 
7261 	if (!bdev)
7262 		return;
7263 
7264 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7265 		copy_num++) {
7266 
7267 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7268 			continue;
7269 
7270 		disk_super = (struct btrfs_super_block *)bh->b_data;
7271 
7272 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7273 		set_buffer_dirty(bh);
7274 		sync_dirty_buffer(bh);
7275 		brelse(bh);
7276 	}
7277 
7278 	/* Notify udev that device has changed */
7279 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7280 
7281 	/* Update ctime/mtime for device path for libblkid */
7282 	update_dev_time(device_path);
7283 }
7284 
7285 /*
7286  * Update the size of all devices, which is used for writing out the
7287  * super blocks.
7288  */
7289 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7290 {
7291 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7292 	struct btrfs_device *curr, *next;
7293 
7294 	if (list_empty(&fs_devices->resized_devices))
7295 		return;
7296 
7297 	mutex_lock(&fs_devices->device_list_mutex);
7298 	mutex_lock(&fs_info->chunk_mutex);
7299 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7300 				 resized_list) {
7301 		list_del_init(&curr->resized_list);
7302 		curr->commit_total_bytes = curr->disk_total_bytes;
7303 	}
7304 	mutex_unlock(&fs_info->chunk_mutex);
7305 	mutex_unlock(&fs_devices->device_list_mutex);
7306 }
7307 
7308 /* Must be invoked during the transaction commit */
7309 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7310 {
7311 	struct btrfs_fs_info *fs_info = trans->fs_info;
7312 	struct extent_map *em;
7313 	struct map_lookup *map;
7314 	struct btrfs_device *dev;
7315 	int i;
7316 
7317 	if (list_empty(&trans->pending_chunks))
7318 		return;
7319 
7320 	/* In order to kick the device replace finish process */
7321 	mutex_lock(&fs_info->chunk_mutex);
7322 	list_for_each_entry(em, &trans->pending_chunks, list) {
7323 		map = em->map_lookup;
7324 
7325 		for (i = 0; i < map->num_stripes; i++) {
7326 			dev = map->stripes[i].dev;
7327 			dev->commit_bytes_used = dev->bytes_used;
7328 		}
7329 	}
7330 	mutex_unlock(&fs_info->chunk_mutex);
7331 }
7332 
7333 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7334 {
7335 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7336 	while (fs_devices) {
7337 		fs_devices->fs_info = fs_info;
7338 		fs_devices = fs_devices->seed;
7339 	}
7340 }
7341 
7342 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7343 {
7344 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7345 	while (fs_devices) {
7346 		fs_devices->fs_info = NULL;
7347 		fs_devices = fs_devices->seed;
7348 	}
7349 }
7350 
7351 /*
7352  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7353  */
7354 int btrfs_bg_type_to_factor(u64 flags)
7355 {
7356 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
7357 		     BTRFS_BLOCK_GROUP_RAID10))
7358 		return 2;
7359 	return 1;
7360 }
7361 
7362 
7363 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7364 {
7365 	int index = btrfs_bg_flags_to_raid_index(type);
7366 	int ncopies = btrfs_raid_array[index].ncopies;
7367 	int data_stripes;
7368 
7369 	switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
7370 	case BTRFS_BLOCK_GROUP_RAID5:
7371 		data_stripes = num_stripes - 1;
7372 		break;
7373 	case BTRFS_BLOCK_GROUP_RAID6:
7374 		data_stripes = num_stripes - 2;
7375 		break;
7376 	default:
7377 		data_stripes = num_stripes / ncopies;
7378 		break;
7379 	}
7380 	return div_u64(chunk_len, data_stripes);
7381 }
7382 
7383 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7384 				 u64 chunk_offset, u64 devid,
7385 				 u64 physical_offset, u64 physical_len)
7386 {
7387 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7388 	struct extent_map *em;
7389 	struct map_lookup *map;
7390 	u64 stripe_len;
7391 	bool found = false;
7392 	int ret = 0;
7393 	int i;
7394 
7395 	read_lock(&em_tree->lock);
7396 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7397 	read_unlock(&em_tree->lock);
7398 
7399 	if (!em) {
7400 		btrfs_err(fs_info,
7401 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7402 			  physical_offset, devid);
7403 		ret = -EUCLEAN;
7404 		goto out;
7405 	}
7406 
7407 	map = em->map_lookup;
7408 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7409 	if (physical_len != stripe_len) {
7410 		btrfs_err(fs_info,
7411 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7412 			  physical_offset, devid, em->start, physical_len,
7413 			  stripe_len);
7414 		ret = -EUCLEAN;
7415 		goto out;
7416 	}
7417 
7418 	for (i = 0; i < map->num_stripes; i++) {
7419 		if (map->stripes[i].dev->devid == devid &&
7420 		    map->stripes[i].physical == physical_offset) {
7421 			found = true;
7422 			if (map->verified_stripes >= map->num_stripes) {
7423 				btrfs_err(fs_info,
7424 				"too many dev extents for chunk %llu found",
7425 					  em->start);
7426 				ret = -EUCLEAN;
7427 				goto out;
7428 			}
7429 			map->verified_stripes++;
7430 			break;
7431 		}
7432 	}
7433 	if (!found) {
7434 		btrfs_err(fs_info,
7435 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7436 			physical_offset, devid);
7437 		ret = -EUCLEAN;
7438 	}
7439 out:
7440 	free_extent_map(em);
7441 	return ret;
7442 }
7443 
7444 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7445 {
7446 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7447 	struct extent_map *em;
7448 	struct rb_node *node;
7449 	int ret = 0;
7450 
7451 	read_lock(&em_tree->lock);
7452 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7453 		em = rb_entry(node, struct extent_map, rb_node);
7454 		if (em->map_lookup->num_stripes !=
7455 		    em->map_lookup->verified_stripes) {
7456 			btrfs_err(fs_info,
7457 			"chunk %llu has missing dev extent, have %d expect %d",
7458 				  em->start, em->map_lookup->verified_stripes,
7459 				  em->map_lookup->num_stripes);
7460 			ret = -EUCLEAN;
7461 			goto out;
7462 		}
7463 	}
7464 out:
7465 	read_unlock(&em_tree->lock);
7466 	return ret;
7467 }
7468 
7469 /*
7470  * Ensure that all dev extents are mapped to correct chunk, otherwise
7471  * later chunk allocation/free would cause unexpected behavior.
7472  *
7473  * NOTE: This will iterate through the whole device tree, which should be of
7474  * the same size level as the chunk tree.  This slightly increases mount time.
7475  */
7476 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7477 {
7478 	struct btrfs_path *path;
7479 	struct btrfs_root *root = fs_info->dev_root;
7480 	struct btrfs_key key;
7481 	int ret = 0;
7482 
7483 	key.objectid = 1;
7484 	key.type = BTRFS_DEV_EXTENT_KEY;
7485 	key.offset = 0;
7486 
7487 	path = btrfs_alloc_path();
7488 	if (!path)
7489 		return -ENOMEM;
7490 
7491 	path->reada = READA_FORWARD;
7492 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7493 	if (ret < 0)
7494 		goto out;
7495 
7496 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7497 		ret = btrfs_next_item(root, path);
7498 		if (ret < 0)
7499 			goto out;
7500 		/* No dev extents at all? Not good */
7501 		if (ret > 0) {
7502 			ret = -EUCLEAN;
7503 			goto out;
7504 		}
7505 	}
7506 	while (1) {
7507 		struct extent_buffer *leaf = path->nodes[0];
7508 		struct btrfs_dev_extent *dext;
7509 		int slot = path->slots[0];
7510 		u64 chunk_offset;
7511 		u64 physical_offset;
7512 		u64 physical_len;
7513 		u64 devid;
7514 
7515 		btrfs_item_key_to_cpu(leaf, &key, slot);
7516 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7517 			break;
7518 		devid = key.objectid;
7519 		physical_offset = key.offset;
7520 
7521 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7522 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7523 		physical_len = btrfs_dev_extent_length(leaf, dext);
7524 
7525 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7526 					    physical_offset, physical_len);
7527 		if (ret < 0)
7528 			goto out;
7529 		ret = btrfs_next_item(root, path);
7530 		if (ret < 0)
7531 			goto out;
7532 		if (ret > 0) {
7533 			ret = 0;
7534 			break;
7535 		}
7536 	}
7537 
7538 	/* Ensure all chunks have corresponding dev extents */
7539 	ret = verify_chunk_dev_extent_mapping(fs_info);
7540 out:
7541 	btrfs_free_path(path);
7542 	return ret;
7543 }
7544