1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/random.h> 24 #include <linux/iocontext.h> 25 #include <linux/capability.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <asm/div64.h> 29 #include "compat.h" 30 #include "ctree.h" 31 #include "extent_map.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "print-tree.h" 35 #include "volumes.h" 36 #include "async-thread.h" 37 #include "check-integrity.h" 38 #include "rcu-string.h" 39 40 static int init_first_rw_device(struct btrfs_trans_handle *trans, 41 struct btrfs_root *root, 42 struct btrfs_device *device); 43 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 44 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 45 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 46 47 static DEFINE_MUTEX(uuid_mutex); 48 static LIST_HEAD(fs_uuids); 49 50 static void lock_chunks(struct btrfs_root *root) 51 { 52 mutex_lock(&root->fs_info->chunk_mutex); 53 } 54 55 static void unlock_chunks(struct btrfs_root *root) 56 { 57 mutex_unlock(&root->fs_info->chunk_mutex); 58 } 59 60 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 61 { 62 struct btrfs_device *device; 63 WARN_ON(fs_devices->opened); 64 while (!list_empty(&fs_devices->devices)) { 65 device = list_entry(fs_devices->devices.next, 66 struct btrfs_device, dev_list); 67 list_del(&device->dev_list); 68 rcu_string_free(device->name); 69 kfree(device); 70 } 71 kfree(fs_devices); 72 } 73 74 void btrfs_cleanup_fs_uuids(void) 75 { 76 struct btrfs_fs_devices *fs_devices; 77 78 while (!list_empty(&fs_uuids)) { 79 fs_devices = list_entry(fs_uuids.next, 80 struct btrfs_fs_devices, list); 81 list_del(&fs_devices->list); 82 free_fs_devices(fs_devices); 83 } 84 } 85 86 static noinline struct btrfs_device *__find_device(struct list_head *head, 87 u64 devid, u8 *uuid) 88 { 89 struct btrfs_device *dev; 90 91 list_for_each_entry(dev, head, dev_list) { 92 if (dev->devid == devid && 93 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 94 return dev; 95 } 96 } 97 return NULL; 98 } 99 100 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 101 { 102 struct btrfs_fs_devices *fs_devices; 103 104 list_for_each_entry(fs_devices, &fs_uuids, list) { 105 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 106 return fs_devices; 107 } 108 return NULL; 109 } 110 111 static void requeue_list(struct btrfs_pending_bios *pending_bios, 112 struct bio *head, struct bio *tail) 113 { 114 115 struct bio *old_head; 116 117 old_head = pending_bios->head; 118 pending_bios->head = head; 119 if (pending_bios->tail) 120 tail->bi_next = old_head; 121 else 122 pending_bios->tail = tail; 123 } 124 125 /* 126 * we try to collect pending bios for a device so we don't get a large 127 * number of procs sending bios down to the same device. This greatly 128 * improves the schedulers ability to collect and merge the bios. 129 * 130 * But, it also turns into a long list of bios to process and that is sure 131 * to eventually make the worker thread block. The solution here is to 132 * make some progress and then put this work struct back at the end of 133 * the list if the block device is congested. This way, multiple devices 134 * can make progress from a single worker thread. 135 */ 136 static noinline void run_scheduled_bios(struct btrfs_device *device) 137 { 138 struct bio *pending; 139 struct backing_dev_info *bdi; 140 struct btrfs_fs_info *fs_info; 141 struct btrfs_pending_bios *pending_bios; 142 struct bio *tail; 143 struct bio *cur; 144 int again = 0; 145 unsigned long num_run; 146 unsigned long batch_run = 0; 147 unsigned long limit; 148 unsigned long last_waited = 0; 149 int force_reg = 0; 150 int sync_pending = 0; 151 struct blk_plug plug; 152 153 /* 154 * this function runs all the bios we've collected for 155 * a particular device. We don't want to wander off to 156 * another device without first sending all of these down. 157 * So, setup a plug here and finish it off before we return 158 */ 159 blk_start_plug(&plug); 160 161 bdi = blk_get_backing_dev_info(device->bdev); 162 fs_info = device->dev_root->fs_info; 163 limit = btrfs_async_submit_limit(fs_info); 164 limit = limit * 2 / 3; 165 166 loop: 167 spin_lock(&device->io_lock); 168 169 loop_lock: 170 num_run = 0; 171 172 /* take all the bios off the list at once and process them 173 * later on (without the lock held). But, remember the 174 * tail and other pointers so the bios can be properly reinserted 175 * into the list if we hit congestion 176 */ 177 if (!force_reg && device->pending_sync_bios.head) { 178 pending_bios = &device->pending_sync_bios; 179 force_reg = 1; 180 } else { 181 pending_bios = &device->pending_bios; 182 force_reg = 0; 183 } 184 185 pending = pending_bios->head; 186 tail = pending_bios->tail; 187 WARN_ON(pending && !tail); 188 189 /* 190 * if pending was null this time around, no bios need processing 191 * at all and we can stop. Otherwise it'll loop back up again 192 * and do an additional check so no bios are missed. 193 * 194 * device->running_pending is used to synchronize with the 195 * schedule_bio code. 196 */ 197 if (device->pending_sync_bios.head == NULL && 198 device->pending_bios.head == NULL) { 199 again = 0; 200 device->running_pending = 0; 201 } else { 202 again = 1; 203 device->running_pending = 1; 204 } 205 206 pending_bios->head = NULL; 207 pending_bios->tail = NULL; 208 209 spin_unlock(&device->io_lock); 210 211 while (pending) { 212 213 rmb(); 214 /* we want to work on both lists, but do more bios on the 215 * sync list than the regular list 216 */ 217 if ((num_run > 32 && 218 pending_bios != &device->pending_sync_bios && 219 device->pending_sync_bios.head) || 220 (num_run > 64 && pending_bios == &device->pending_sync_bios && 221 device->pending_bios.head)) { 222 spin_lock(&device->io_lock); 223 requeue_list(pending_bios, pending, tail); 224 goto loop_lock; 225 } 226 227 cur = pending; 228 pending = pending->bi_next; 229 cur->bi_next = NULL; 230 231 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 232 waitqueue_active(&fs_info->async_submit_wait)) 233 wake_up(&fs_info->async_submit_wait); 234 235 BUG_ON(atomic_read(&cur->bi_cnt) == 0); 236 237 /* 238 * if we're doing the sync list, record that our 239 * plug has some sync requests on it 240 * 241 * If we're doing the regular list and there are 242 * sync requests sitting around, unplug before 243 * we add more 244 */ 245 if (pending_bios == &device->pending_sync_bios) { 246 sync_pending = 1; 247 } else if (sync_pending) { 248 blk_finish_plug(&plug); 249 blk_start_plug(&plug); 250 sync_pending = 0; 251 } 252 253 btrfsic_submit_bio(cur->bi_rw, cur); 254 num_run++; 255 batch_run++; 256 if (need_resched()) 257 cond_resched(); 258 259 /* 260 * we made progress, there is more work to do and the bdi 261 * is now congested. Back off and let other work structs 262 * run instead 263 */ 264 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 265 fs_info->fs_devices->open_devices > 1) { 266 struct io_context *ioc; 267 268 ioc = current->io_context; 269 270 /* 271 * the main goal here is that we don't want to 272 * block if we're going to be able to submit 273 * more requests without blocking. 274 * 275 * This code does two great things, it pokes into 276 * the elevator code from a filesystem _and_ 277 * it makes assumptions about how batching works. 278 */ 279 if (ioc && ioc->nr_batch_requests > 0 && 280 time_before(jiffies, ioc->last_waited + HZ/50UL) && 281 (last_waited == 0 || 282 ioc->last_waited == last_waited)) { 283 /* 284 * we want to go through our batch of 285 * requests and stop. So, we copy out 286 * the ioc->last_waited time and test 287 * against it before looping 288 */ 289 last_waited = ioc->last_waited; 290 if (need_resched()) 291 cond_resched(); 292 continue; 293 } 294 spin_lock(&device->io_lock); 295 requeue_list(pending_bios, pending, tail); 296 device->running_pending = 1; 297 298 spin_unlock(&device->io_lock); 299 btrfs_requeue_work(&device->work); 300 goto done; 301 } 302 /* unplug every 64 requests just for good measure */ 303 if (batch_run % 64 == 0) { 304 blk_finish_plug(&plug); 305 blk_start_plug(&plug); 306 sync_pending = 0; 307 } 308 } 309 310 cond_resched(); 311 if (again) 312 goto loop; 313 314 spin_lock(&device->io_lock); 315 if (device->pending_bios.head || device->pending_sync_bios.head) 316 goto loop_lock; 317 spin_unlock(&device->io_lock); 318 319 done: 320 blk_finish_plug(&plug); 321 } 322 323 static void pending_bios_fn(struct btrfs_work *work) 324 { 325 struct btrfs_device *device; 326 327 device = container_of(work, struct btrfs_device, work); 328 run_scheduled_bios(device); 329 } 330 331 static noinline int device_list_add(const char *path, 332 struct btrfs_super_block *disk_super, 333 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 334 { 335 struct btrfs_device *device; 336 struct btrfs_fs_devices *fs_devices; 337 struct rcu_string *name; 338 u64 found_transid = btrfs_super_generation(disk_super); 339 340 fs_devices = find_fsid(disk_super->fsid); 341 if (!fs_devices) { 342 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); 343 if (!fs_devices) 344 return -ENOMEM; 345 INIT_LIST_HEAD(&fs_devices->devices); 346 INIT_LIST_HEAD(&fs_devices->alloc_list); 347 list_add(&fs_devices->list, &fs_uuids); 348 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 349 fs_devices->latest_devid = devid; 350 fs_devices->latest_trans = found_transid; 351 mutex_init(&fs_devices->device_list_mutex); 352 device = NULL; 353 } else { 354 device = __find_device(&fs_devices->devices, devid, 355 disk_super->dev_item.uuid); 356 } 357 if (!device) { 358 if (fs_devices->opened) 359 return -EBUSY; 360 361 device = kzalloc(sizeof(*device), GFP_NOFS); 362 if (!device) { 363 /* we can safely leave the fs_devices entry around */ 364 return -ENOMEM; 365 } 366 device->devid = devid; 367 device->dev_stats_valid = 0; 368 device->work.func = pending_bios_fn; 369 memcpy(device->uuid, disk_super->dev_item.uuid, 370 BTRFS_UUID_SIZE); 371 spin_lock_init(&device->io_lock); 372 373 name = rcu_string_strdup(path, GFP_NOFS); 374 if (!name) { 375 kfree(device); 376 return -ENOMEM; 377 } 378 rcu_assign_pointer(device->name, name); 379 INIT_LIST_HEAD(&device->dev_alloc_list); 380 381 /* init readahead state */ 382 spin_lock_init(&device->reada_lock); 383 device->reada_curr_zone = NULL; 384 atomic_set(&device->reada_in_flight, 0); 385 device->reada_next = 0; 386 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT); 387 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT); 388 389 mutex_lock(&fs_devices->device_list_mutex); 390 list_add_rcu(&device->dev_list, &fs_devices->devices); 391 mutex_unlock(&fs_devices->device_list_mutex); 392 393 device->fs_devices = fs_devices; 394 fs_devices->num_devices++; 395 } else if (!device->name || strcmp(device->name->str, path)) { 396 name = rcu_string_strdup(path, GFP_NOFS); 397 if (!name) 398 return -ENOMEM; 399 rcu_string_free(device->name); 400 rcu_assign_pointer(device->name, name); 401 if (device->missing) { 402 fs_devices->missing_devices--; 403 device->missing = 0; 404 } 405 } 406 407 if (found_transid > fs_devices->latest_trans) { 408 fs_devices->latest_devid = devid; 409 fs_devices->latest_trans = found_transid; 410 } 411 *fs_devices_ret = fs_devices; 412 return 0; 413 } 414 415 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 416 { 417 struct btrfs_fs_devices *fs_devices; 418 struct btrfs_device *device; 419 struct btrfs_device *orig_dev; 420 421 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); 422 if (!fs_devices) 423 return ERR_PTR(-ENOMEM); 424 425 INIT_LIST_HEAD(&fs_devices->devices); 426 INIT_LIST_HEAD(&fs_devices->alloc_list); 427 INIT_LIST_HEAD(&fs_devices->list); 428 mutex_init(&fs_devices->device_list_mutex); 429 fs_devices->latest_devid = orig->latest_devid; 430 fs_devices->latest_trans = orig->latest_trans; 431 fs_devices->total_devices = orig->total_devices; 432 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid)); 433 434 /* We have held the volume lock, it is safe to get the devices. */ 435 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 436 struct rcu_string *name; 437 438 device = kzalloc(sizeof(*device), GFP_NOFS); 439 if (!device) 440 goto error; 441 442 /* 443 * This is ok to do without rcu read locked because we hold the 444 * uuid mutex so nothing we touch in here is going to disappear. 445 */ 446 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); 447 if (!name) { 448 kfree(device); 449 goto error; 450 } 451 rcu_assign_pointer(device->name, name); 452 453 device->devid = orig_dev->devid; 454 device->work.func = pending_bios_fn; 455 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid)); 456 spin_lock_init(&device->io_lock); 457 INIT_LIST_HEAD(&device->dev_list); 458 INIT_LIST_HEAD(&device->dev_alloc_list); 459 460 list_add(&device->dev_list, &fs_devices->devices); 461 device->fs_devices = fs_devices; 462 fs_devices->num_devices++; 463 } 464 return fs_devices; 465 error: 466 free_fs_devices(fs_devices); 467 return ERR_PTR(-ENOMEM); 468 } 469 470 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices) 471 { 472 struct btrfs_device *device, *next; 473 474 struct block_device *latest_bdev = NULL; 475 u64 latest_devid = 0; 476 u64 latest_transid = 0; 477 478 mutex_lock(&uuid_mutex); 479 again: 480 /* This is the initialized path, it is safe to release the devices. */ 481 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 482 if (device->in_fs_metadata) { 483 if (!latest_transid || 484 device->generation > latest_transid) { 485 latest_devid = device->devid; 486 latest_transid = device->generation; 487 latest_bdev = device->bdev; 488 } 489 continue; 490 } 491 492 if (device->bdev) { 493 blkdev_put(device->bdev, device->mode); 494 device->bdev = NULL; 495 fs_devices->open_devices--; 496 } 497 if (device->writeable) { 498 list_del_init(&device->dev_alloc_list); 499 device->writeable = 0; 500 fs_devices->rw_devices--; 501 } 502 list_del_init(&device->dev_list); 503 fs_devices->num_devices--; 504 rcu_string_free(device->name); 505 kfree(device); 506 } 507 508 if (fs_devices->seed) { 509 fs_devices = fs_devices->seed; 510 goto again; 511 } 512 513 fs_devices->latest_bdev = latest_bdev; 514 fs_devices->latest_devid = latest_devid; 515 fs_devices->latest_trans = latest_transid; 516 517 mutex_unlock(&uuid_mutex); 518 } 519 520 static void __free_device(struct work_struct *work) 521 { 522 struct btrfs_device *device; 523 524 device = container_of(work, struct btrfs_device, rcu_work); 525 526 if (device->bdev) 527 blkdev_put(device->bdev, device->mode); 528 529 rcu_string_free(device->name); 530 kfree(device); 531 } 532 533 static void free_device(struct rcu_head *head) 534 { 535 struct btrfs_device *device; 536 537 device = container_of(head, struct btrfs_device, rcu); 538 539 INIT_WORK(&device->rcu_work, __free_device); 540 schedule_work(&device->rcu_work); 541 } 542 543 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 544 { 545 struct btrfs_device *device; 546 547 if (--fs_devices->opened > 0) 548 return 0; 549 550 mutex_lock(&fs_devices->device_list_mutex); 551 list_for_each_entry(device, &fs_devices->devices, dev_list) { 552 struct btrfs_device *new_device; 553 struct rcu_string *name; 554 555 if (device->bdev) 556 fs_devices->open_devices--; 557 558 if (device->writeable) { 559 list_del_init(&device->dev_alloc_list); 560 fs_devices->rw_devices--; 561 } 562 563 if (device->can_discard) 564 fs_devices->num_can_discard--; 565 566 new_device = kmalloc(sizeof(*new_device), GFP_NOFS); 567 BUG_ON(!new_device); /* -ENOMEM */ 568 memcpy(new_device, device, sizeof(*new_device)); 569 570 /* Safe because we are under uuid_mutex */ 571 if (device->name) { 572 name = rcu_string_strdup(device->name->str, GFP_NOFS); 573 BUG_ON(device->name && !name); /* -ENOMEM */ 574 rcu_assign_pointer(new_device->name, name); 575 } 576 new_device->bdev = NULL; 577 new_device->writeable = 0; 578 new_device->in_fs_metadata = 0; 579 new_device->can_discard = 0; 580 list_replace_rcu(&device->dev_list, &new_device->dev_list); 581 582 call_rcu(&device->rcu, free_device); 583 } 584 mutex_unlock(&fs_devices->device_list_mutex); 585 586 WARN_ON(fs_devices->open_devices); 587 WARN_ON(fs_devices->rw_devices); 588 fs_devices->opened = 0; 589 fs_devices->seeding = 0; 590 591 return 0; 592 } 593 594 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 595 { 596 struct btrfs_fs_devices *seed_devices = NULL; 597 int ret; 598 599 mutex_lock(&uuid_mutex); 600 ret = __btrfs_close_devices(fs_devices); 601 if (!fs_devices->opened) { 602 seed_devices = fs_devices->seed; 603 fs_devices->seed = NULL; 604 } 605 mutex_unlock(&uuid_mutex); 606 607 while (seed_devices) { 608 fs_devices = seed_devices; 609 seed_devices = fs_devices->seed; 610 __btrfs_close_devices(fs_devices); 611 free_fs_devices(fs_devices); 612 } 613 return ret; 614 } 615 616 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 617 fmode_t flags, void *holder) 618 { 619 struct request_queue *q; 620 struct block_device *bdev; 621 struct list_head *head = &fs_devices->devices; 622 struct btrfs_device *device; 623 struct block_device *latest_bdev = NULL; 624 struct buffer_head *bh; 625 struct btrfs_super_block *disk_super; 626 u64 latest_devid = 0; 627 u64 latest_transid = 0; 628 u64 devid; 629 int seeding = 1; 630 int ret = 0; 631 632 flags |= FMODE_EXCL; 633 634 list_for_each_entry(device, head, dev_list) { 635 if (device->bdev) 636 continue; 637 if (!device->name) 638 continue; 639 640 bdev = blkdev_get_by_path(device->name->str, flags, holder); 641 if (IS_ERR(bdev)) { 642 printk(KERN_INFO "btrfs: open %s failed\n", device->name->str); 643 goto error; 644 } 645 filemap_write_and_wait(bdev->bd_inode->i_mapping); 646 invalidate_bdev(bdev); 647 set_blocksize(bdev, 4096); 648 649 bh = btrfs_read_dev_super(bdev); 650 if (!bh) 651 goto error_close; 652 653 disk_super = (struct btrfs_super_block *)bh->b_data; 654 devid = btrfs_stack_device_id(&disk_super->dev_item); 655 if (devid != device->devid) 656 goto error_brelse; 657 658 if (memcmp(device->uuid, disk_super->dev_item.uuid, 659 BTRFS_UUID_SIZE)) 660 goto error_brelse; 661 662 device->generation = btrfs_super_generation(disk_super); 663 if (!latest_transid || device->generation > latest_transid) { 664 latest_devid = devid; 665 latest_transid = device->generation; 666 latest_bdev = bdev; 667 } 668 669 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 670 device->writeable = 0; 671 } else { 672 device->writeable = !bdev_read_only(bdev); 673 seeding = 0; 674 } 675 676 q = bdev_get_queue(bdev); 677 if (blk_queue_discard(q)) { 678 device->can_discard = 1; 679 fs_devices->num_can_discard++; 680 } 681 682 device->bdev = bdev; 683 device->in_fs_metadata = 0; 684 device->mode = flags; 685 686 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 687 fs_devices->rotating = 1; 688 689 fs_devices->open_devices++; 690 if (device->writeable) { 691 fs_devices->rw_devices++; 692 list_add(&device->dev_alloc_list, 693 &fs_devices->alloc_list); 694 } 695 brelse(bh); 696 continue; 697 698 error_brelse: 699 brelse(bh); 700 error_close: 701 blkdev_put(bdev, flags); 702 error: 703 continue; 704 } 705 if (fs_devices->open_devices == 0) { 706 ret = -EINVAL; 707 goto out; 708 } 709 fs_devices->seeding = seeding; 710 fs_devices->opened = 1; 711 fs_devices->latest_bdev = latest_bdev; 712 fs_devices->latest_devid = latest_devid; 713 fs_devices->latest_trans = latest_transid; 714 fs_devices->total_rw_bytes = 0; 715 out: 716 return ret; 717 } 718 719 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 720 fmode_t flags, void *holder) 721 { 722 int ret; 723 724 mutex_lock(&uuid_mutex); 725 if (fs_devices->opened) { 726 fs_devices->opened++; 727 ret = 0; 728 } else { 729 ret = __btrfs_open_devices(fs_devices, flags, holder); 730 } 731 mutex_unlock(&uuid_mutex); 732 return ret; 733 } 734 735 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 736 struct btrfs_fs_devices **fs_devices_ret) 737 { 738 struct btrfs_super_block *disk_super; 739 struct block_device *bdev; 740 struct buffer_head *bh; 741 int ret; 742 u64 devid; 743 u64 transid; 744 u64 total_devices; 745 746 flags |= FMODE_EXCL; 747 bdev = blkdev_get_by_path(path, flags, holder); 748 749 if (IS_ERR(bdev)) { 750 ret = PTR_ERR(bdev); 751 goto error; 752 } 753 754 mutex_lock(&uuid_mutex); 755 ret = set_blocksize(bdev, 4096); 756 if (ret) 757 goto error_close; 758 bh = btrfs_read_dev_super(bdev); 759 if (!bh) { 760 ret = -EINVAL; 761 goto error_close; 762 } 763 disk_super = (struct btrfs_super_block *)bh->b_data; 764 devid = btrfs_stack_device_id(&disk_super->dev_item); 765 transid = btrfs_super_generation(disk_super); 766 total_devices = btrfs_super_num_devices(disk_super); 767 if (disk_super->label[0]) 768 printk(KERN_INFO "device label %s ", disk_super->label); 769 else 770 printk(KERN_INFO "device fsid %pU ", disk_super->fsid); 771 printk(KERN_CONT "devid %llu transid %llu %s\n", 772 (unsigned long long)devid, (unsigned long long)transid, path); 773 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 774 if (!ret && fs_devices_ret) 775 (*fs_devices_ret)->total_devices = total_devices; 776 brelse(bh); 777 error_close: 778 mutex_unlock(&uuid_mutex); 779 blkdev_put(bdev, flags); 780 error: 781 return ret; 782 } 783 784 /* helper to account the used device space in the range */ 785 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 786 u64 end, u64 *length) 787 { 788 struct btrfs_key key; 789 struct btrfs_root *root = device->dev_root; 790 struct btrfs_dev_extent *dev_extent; 791 struct btrfs_path *path; 792 u64 extent_end; 793 int ret; 794 int slot; 795 struct extent_buffer *l; 796 797 *length = 0; 798 799 if (start >= device->total_bytes) 800 return 0; 801 802 path = btrfs_alloc_path(); 803 if (!path) 804 return -ENOMEM; 805 path->reada = 2; 806 807 key.objectid = device->devid; 808 key.offset = start; 809 key.type = BTRFS_DEV_EXTENT_KEY; 810 811 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 812 if (ret < 0) 813 goto out; 814 if (ret > 0) { 815 ret = btrfs_previous_item(root, path, key.objectid, key.type); 816 if (ret < 0) 817 goto out; 818 } 819 820 while (1) { 821 l = path->nodes[0]; 822 slot = path->slots[0]; 823 if (slot >= btrfs_header_nritems(l)) { 824 ret = btrfs_next_leaf(root, path); 825 if (ret == 0) 826 continue; 827 if (ret < 0) 828 goto out; 829 830 break; 831 } 832 btrfs_item_key_to_cpu(l, &key, slot); 833 834 if (key.objectid < device->devid) 835 goto next; 836 837 if (key.objectid > device->devid) 838 break; 839 840 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 841 goto next; 842 843 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 844 extent_end = key.offset + btrfs_dev_extent_length(l, 845 dev_extent); 846 if (key.offset <= start && extent_end > end) { 847 *length = end - start + 1; 848 break; 849 } else if (key.offset <= start && extent_end > start) 850 *length += extent_end - start; 851 else if (key.offset > start && extent_end <= end) 852 *length += extent_end - key.offset; 853 else if (key.offset > start && key.offset <= end) { 854 *length += end - key.offset + 1; 855 break; 856 } else if (key.offset > end) 857 break; 858 859 next: 860 path->slots[0]++; 861 } 862 ret = 0; 863 out: 864 btrfs_free_path(path); 865 return ret; 866 } 867 868 /* 869 * find_free_dev_extent - find free space in the specified device 870 * @device: the device which we search the free space in 871 * @num_bytes: the size of the free space that we need 872 * @start: store the start of the free space. 873 * @len: the size of the free space. that we find, or the size of the max 874 * free space if we don't find suitable free space 875 * 876 * this uses a pretty simple search, the expectation is that it is 877 * called very infrequently and that a given device has a small number 878 * of extents 879 * 880 * @start is used to store the start of the free space if we find. But if we 881 * don't find suitable free space, it will be used to store the start position 882 * of the max free space. 883 * 884 * @len is used to store the size of the free space that we find. 885 * But if we don't find suitable free space, it is used to store the size of 886 * the max free space. 887 */ 888 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 889 u64 *start, u64 *len) 890 { 891 struct btrfs_key key; 892 struct btrfs_root *root = device->dev_root; 893 struct btrfs_dev_extent *dev_extent; 894 struct btrfs_path *path; 895 u64 hole_size; 896 u64 max_hole_start; 897 u64 max_hole_size; 898 u64 extent_end; 899 u64 search_start; 900 u64 search_end = device->total_bytes; 901 int ret; 902 int slot; 903 struct extent_buffer *l; 904 905 /* FIXME use last free of some kind */ 906 907 /* we don't want to overwrite the superblock on the drive, 908 * so we make sure to start at an offset of at least 1MB 909 */ 910 search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 911 912 max_hole_start = search_start; 913 max_hole_size = 0; 914 hole_size = 0; 915 916 if (search_start >= search_end) { 917 ret = -ENOSPC; 918 goto error; 919 } 920 921 path = btrfs_alloc_path(); 922 if (!path) { 923 ret = -ENOMEM; 924 goto error; 925 } 926 path->reada = 2; 927 928 key.objectid = device->devid; 929 key.offset = search_start; 930 key.type = BTRFS_DEV_EXTENT_KEY; 931 932 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 933 if (ret < 0) 934 goto out; 935 if (ret > 0) { 936 ret = btrfs_previous_item(root, path, key.objectid, key.type); 937 if (ret < 0) 938 goto out; 939 } 940 941 while (1) { 942 l = path->nodes[0]; 943 slot = path->slots[0]; 944 if (slot >= btrfs_header_nritems(l)) { 945 ret = btrfs_next_leaf(root, path); 946 if (ret == 0) 947 continue; 948 if (ret < 0) 949 goto out; 950 951 break; 952 } 953 btrfs_item_key_to_cpu(l, &key, slot); 954 955 if (key.objectid < device->devid) 956 goto next; 957 958 if (key.objectid > device->devid) 959 break; 960 961 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 962 goto next; 963 964 if (key.offset > search_start) { 965 hole_size = key.offset - search_start; 966 967 if (hole_size > max_hole_size) { 968 max_hole_start = search_start; 969 max_hole_size = hole_size; 970 } 971 972 /* 973 * If this free space is greater than which we need, 974 * it must be the max free space that we have found 975 * until now, so max_hole_start must point to the start 976 * of this free space and the length of this free space 977 * is stored in max_hole_size. Thus, we return 978 * max_hole_start and max_hole_size and go back to the 979 * caller. 980 */ 981 if (hole_size >= num_bytes) { 982 ret = 0; 983 goto out; 984 } 985 } 986 987 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 988 extent_end = key.offset + btrfs_dev_extent_length(l, 989 dev_extent); 990 if (extent_end > search_start) 991 search_start = extent_end; 992 next: 993 path->slots[0]++; 994 cond_resched(); 995 } 996 997 /* 998 * At this point, search_start should be the end of 999 * allocated dev extents, and when shrinking the device, 1000 * search_end may be smaller than search_start. 1001 */ 1002 if (search_end > search_start) 1003 hole_size = search_end - search_start; 1004 1005 if (hole_size > max_hole_size) { 1006 max_hole_start = search_start; 1007 max_hole_size = hole_size; 1008 } 1009 1010 /* See above. */ 1011 if (hole_size < num_bytes) 1012 ret = -ENOSPC; 1013 else 1014 ret = 0; 1015 1016 out: 1017 btrfs_free_path(path); 1018 error: 1019 *start = max_hole_start; 1020 if (len) 1021 *len = max_hole_size; 1022 return ret; 1023 } 1024 1025 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1026 struct btrfs_device *device, 1027 u64 start) 1028 { 1029 int ret; 1030 struct btrfs_path *path; 1031 struct btrfs_root *root = device->dev_root; 1032 struct btrfs_key key; 1033 struct btrfs_key found_key; 1034 struct extent_buffer *leaf = NULL; 1035 struct btrfs_dev_extent *extent = NULL; 1036 1037 path = btrfs_alloc_path(); 1038 if (!path) 1039 return -ENOMEM; 1040 1041 key.objectid = device->devid; 1042 key.offset = start; 1043 key.type = BTRFS_DEV_EXTENT_KEY; 1044 again: 1045 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1046 if (ret > 0) { 1047 ret = btrfs_previous_item(root, path, key.objectid, 1048 BTRFS_DEV_EXTENT_KEY); 1049 if (ret) 1050 goto out; 1051 leaf = path->nodes[0]; 1052 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1053 extent = btrfs_item_ptr(leaf, path->slots[0], 1054 struct btrfs_dev_extent); 1055 BUG_ON(found_key.offset > start || found_key.offset + 1056 btrfs_dev_extent_length(leaf, extent) < start); 1057 key = found_key; 1058 btrfs_release_path(path); 1059 goto again; 1060 } else if (ret == 0) { 1061 leaf = path->nodes[0]; 1062 extent = btrfs_item_ptr(leaf, path->slots[0], 1063 struct btrfs_dev_extent); 1064 } else { 1065 btrfs_error(root->fs_info, ret, "Slot search failed"); 1066 goto out; 1067 } 1068 1069 if (device->bytes_used > 0) { 1070 u64 len = btrfs_dev_extent_length(leaf, extent); 1071 device->bytes_used -= len; 1072 spin_lock(&root->fs_info->free_chunk_lock); 1073 root->fs_info->free_chunk_space += len; 1074 spin_unlock(&root->fs_info->free_chunk_lock); 1075 } 1076 ret = btrfs_del_item(trans, root, path); 1077 if (ret) { 1078 btrfs_error(root->fs_info, ret, 1079 "Failed to remove dev extent item"); 1080 } 1081 out: 1082 btrfs_free_path(path); 1083 return ret; 1084 } 1085 1086 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1087 struct btrfs_device *device, 1088 u64 chunk_tree, u64 chunk_objectid, 1089 u64 chunk_offset, u64 start, u64 num_bytes) 1090 { 1091 int ret; 1092 struct btrfs_path *path; 1093 struct btrfs_root *root = device->dev_root; 1094 struct btrfs_dev_extent *extent; 1095 struct extent_buffer *leaf; 1096 struct btrfs_key key; 1097 1098 WARN_ON(!device->in_fs_metadata); 1099 path = btrfs_alloc_path(); 1100 if (!path) 1101 return -ENOMEM; 1102 1103 key.objectid = device->devid; 1104 key.offset = start; 1105 key.type = BTRFS_DEV_EXTENT_KEY; 1106 ret = btrfs_insert_empty_item(trans, root, path, &key, 1107 sizeof(*extent)); 1108 if (ret) 1109 goto out; 1110 1111 leaf = path->nodes[0]; 1112 extent = btrfs_item_ptr(leaf, path->slots[0], 1113 struct btrfs_dev_extent); 1114 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1115 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1116 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1117 1118 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1119 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent), 1120 BTRFS_UUID_SIZE); 1121 1122 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1123 btrfs_mark_buffer_dirty(leaf); 1124 out: 1125 btrfs_free_path(path); 1126 return ret; 1127 } 1128 1129 static noinline int find_next_chunk(struct btrfs_root *root, 1130 u64 objectid, u64 *offset) 1131 { 1132 struct btrfs_path *path; 1133 int ret; 1134 struct btrfs_key key; 1135 struct btrfs_chunk *chunk; 1136 struct btrfs_key found_key; 1137 1138 path = btrfs_alloc_path(); 1139 if (!path) 1140 return -ENOMEM; 1141 1142 key.objectid = objectid; 1143 key.offset = (u64)-1; 1144 key.type = BTRFS_CHUNK_ITEM_KEY; 1145 1146 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1147 if (ret < 0) 1148 goto error; 1149 1150 BUG_ON(ret == 0); /* Corruption */ 1151 1152 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY); 1153 if (ret) { 1154 *offset = 0; 1155 } else { 1156 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1157 path->slots[0]); 1158 if (found_key.objectid != objectid) 1159 *offset = 0; 1160 else { 1161 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0], 1162 struct btrfs_chunk); 1163 *offset = found_key.offset + 1164 btrfs_chunk_length(path->nodes[0], chunk); 1165 } 1166 } 1167 ret = 0; 1168 error: 1169 btrfs_free_path(path); 1170 return ret; 1171 } 1172 1173 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid) 1174 { 1175 int ret; 1176 struct btrfs_key key; 1177 struct btrfs_key found_key; 1178 struct btrfs_path *path; 1179 1180 root = root->fs_info->chunk_root; 1181 1182 path = btrfs_alloc_path(); 1183 if (!path) 1184 return -ENOMEM; 1185 1186 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1187 key.type = BTRFS_DEV_ITEM_KEY; 1188 key.offset = (u64)-1; 1189 1190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1191 if (ret < 0) 1192 goto error; 1193 1194 BUG_ON(ret == 0); /* Corruption */ 1195 1196 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID, 1197 BTRFS_DEV_ITEM_KEY); 1198 if (ret) { 1199 *objectid = 1; 1200 } else { 1201 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1202 path->slots[0]); 1203 *objectid = found_key.offset + 1; 1204 } 1205 ret = 0; 1206 error: 1207 btrfs_free_path(path); 1208 return ret; 1209 } 1210 1211 /* 1212 * the device information is stored in the chunk root 1213 * the btrfs_device struct should be fully filled in 1214 */ 1215 int btrfs_add_device(struct btrfs_trans_handle *trans, 1216 struct btrfs_root *root, 1217 struct btrfs_device *device) 1218 { 1219 int ret; 1220 struct btrfs_path *path; 1221 struct btrfs_dev_item *dev_item; 1222 struct extent_buffer *leaf; 1223 struct btrfs_key key; 1224 unsigned long ptr; 1225 1226 root = root->fs_info->chunk_root; 1227 1228 path = btrfs_alloc_path(); 1229 if (!path) 1230 return -ENOMEM; 1231 1232 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1233 key.type = BTRFS_DEV_ITEM_KEY; 1234 key.offset = device->devid; 1235 1236 ret = btrfs_insert_empty_item(trans, root, path, &key, 1237 sizeof(*dev_item)); 1238 if (ret) 1239 goto out; 1240 1241 leaf = path->nodes[0]; 1242 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1243 1244 btrfs_set_device_id(leaf, dev_item, device->devid); 1245 btrfs_set_device_generation(leaf, dev_item, 0); 1246 btrfs_set_device_type(leaf, dev_item, device->type); 1247 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1248 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1249 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1250 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); 1251 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 1252 btrfs_set_device_group(leaf, dev_item, 0); 1253 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1254 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1255 btrfs_set_device_start_offset(leaf, dev_item, 0); 1256 1257 ptr = (unsigned long)btrfs_device_uuid(dev_item); 1258 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1259 ptr = (unsigned long)btrfs_device_fsid(dev_item); 1260 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1261 btrfs_mark_buffer_dirty(leaf); 1262 1263 ret = 0; 1264 out: 1265 btrfs_free_path(path); 1266 return ret; 1267 } 1268 1269 static int btrfs_rm_dev_item(struct btrfs_root *root, 1270 struct btrfs_device *device) 1271 { 1272 int ret; 1273 struct btrfs_path *path; 1274 struct btrfs_key key; 1275 struct btrfs_trans_handle *trans; 1276 1277 root = root->fs_info->chunk_root; 1278 1279 path = btrfs_alloc_path(); 1280 if (!path) 1281 return -ENOMEM; 1282 1283 trans = btrfs_start_transaction(root, 0); 1284 if (IS_ERR(trans)) { 1285 btrfs_free_path(path); 1286 return PTR_ERR(trans); 1287 } 1288 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1289 key.type = BTRFS_DEV_ITEM_KEY; 1290 key.offset = device->devid; 1291 lock_chunks(root); 1292 1293 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1294 if (ret < 0) 1295 goto out; 1296 1297 if (ret > 0) { 1298 ret = -ENOENT; 1299 goto out; 1300 } 1301 1302 ret = btrfs_del_item(trans, root, path); 1303 if (ret) 1304 goto out; 1305 out: 1306 btrfs_free_path(path); 1307 unlock_chunks(root); 1308 btrfs_commit_transaction(trans, root); 1309 return ret; 1310 } 1311 1312 int btrfs_rm_device(struct btrfs_root *root, char *device_path) 1313 { 1314 struct btrfs_device *device; 1315 struct btrfs_device *next_device; 1316 struct block_device *bdev; 1317 struct buffer_head *bh = NULL; 1318 struct btrfs_super_block *disk_super; 1319 struct btrfs_fs_devices *cur_devices; 1320 u64 all_avail; 1321 u64 devid; 1322 u64 num_devices; 1323 u8 *dev_uuid; 1324 int ret = 0; 1325 bool clear_super = false; 1326 1327 mutex_lock(&uuid_mutex); 1328 1329 all_avail = root->fs_info->avail_data_alloc_bits | 1330 root->fs_info->avail_system_alloc_bits | 1331 root->fs_info->avail_metadata_alloc_bits; 1332 1333 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && 1334 root->fs_info->fs_devices->num_devices <= 4) { 1335 printk(KERN_ERR "btrfs: unable to go below four devices " 1336 "on raid10\n"); 1337 ret = -EINVAL; 1338 goto out; 1339 } 1340 1341 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && 1342 root->fs_info->fs_devices->num_devices <= 2) { 1343 printk(KERN_ERR "btrfs: unable to go below two " 1344 "devices on raid1\n"); 1345 ret = -EINVAL; 1346 goto out; 1347 } 1348 1349 if (strcmp(device_path, "missing") == 0) { 1350 struct list_head *devices; 1351 struct btrfs_device *tmp; 1352 1353 device = NULL; 1354 devices = &root->fs_info->fs_devices->devices; 1355 /* 1356 * It is safe to read the devices since the volume_mutex 1357 * is held. 1358 */ 1359 list_for_each_entry(tmp, devices, dev_list) { 1360 if (tmp->in_fs_metadata && !tmp->bdev) { 1361 device = tmp; 1362 break; 1363 } 1364 } 1365 bdev = NULL; 1366 bh = NULL; 1367 disk_super = NULL; 1368 if (!device) { 1369 printk(KERN_ERR "btrfs: no missing devices found to " 1370 "remove\n"); 1371 goto out; 1372 } 1373 } else { 1374 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL, 1375 root->fs_info->bdev_holder); 1376 if (IS_ERR(bdev)) { 1377 ret = PTR_ERR(bdev); 1378 goto out; 1379 } 1380 1381 set_blocksize(bdev, 4096); 1382 invalidate_bdev(bdev); 1383 bh = btrfs_read_dev_super(bdev); 1384 if (!bh) { 1385 ret = -EINVAL; 1386 goto error_close; 1387 } 1388 disk_super = (struct btrfs_super_block *)bh->b_data; 1389 devid = btrfs_stack_device_id(&disk_super->dev_item); 1390 dev_uuid = disk_super->dev_item.uuid; 1391 device = btrfs_find_device(root, devid, dev_uuid, 1392 disk_super->fsid); 1393 if (!device) { 1394 ret = -ENOENT; 1395 goto error_brelse; 1396 } 1397 } 1398 1399 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1400 printk(KERN_ERR "btrfs: unable to remove the only writeable " 1401 "device\n"); 1402 ret = -EINVAL; 1403 goto error_brelse; 1404 } 1405 1406 if (device->writeable) { 1407 lock_chunks(root); 1408 list_del_init(&device->dev_alloc_list); 1409 unlock_chunks(root); 1410 root->fs_info->fs_devices->rw_devices--; 1411 clear_super = true; 1412 } 1413 1414 ret = btrfs_shrink_device(device, 0); 1415 if (ret) 1416 goto error_undo; 1417 1418 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1419 if (ret) 1420 goto error_undo; 1421 1422 spin_lock(&root->fs_info->free_chunk_lock); 1423 root->fs_info->free_chunk_space = device->total_bytes - 1424 device->bytes_used; 1425 spin_unlock(&root->fs_info->free_chunk_lock); 1426 1427 device->in_fs_metadata = 0; 1428 btrfs_scrub_cancel_dev(root, device); 1429 1430 /* 1431 * the device list mutex makes sure that we don't change 1432 * the device list while someone else is writing out all 1433 * the device supers. 1434 */ 1435 1436 cur_devices = device->fs_devices; 1437 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1438 list_del_rcu(&device->dev_list); 1439 1440 device->fs_devices->num_devices--; 1441 device->fs_devices->total_devices--; 1442 1443 if (device->missing) 1444 root->fs_info->fs_devices->missing_devices--; 1445 1446 next_device = list_entry(root->fs_info->fs_devices->devices.next, 1447 struct btrfs_device, dev_list); 1448 if (device->bdev == root->fs_info->sb->s_bdev) 1449 root->fs_info->sb->s_bdev = next_device->bdev; 1450 if (device->bdev == root->fs_info->fs_devices->latest_bdev) 1451 root->fs_info->fs_devices->latest_bdev = next_device->bdev; 1452 1453 if (device->bdev) 1454 device->fs_devices->open_devices--; 1455 1456 call_rcu(&device->rcu, free_device); 1457 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1458 1459 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1460 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1461 1462 if (cur_devices->open_devices == 0) { 1463 struct btrfs_fs_devices *fs_devices; 1464 fs_devices = root->fs_info->fs_devices; 1465 while (fs_devices) { 1466 if (fs_devices->seed == cur_devices) 1467 break; 1468 fs_devices = fs_devices->seed; 1469 } 1470 fs_devices->seed = cur_devices->seed; 1471 cur_devices->seed = NULL; 1472 lock_chunks(root); 1473 __btrfs_close_devices(cur_devices); 1474 unlock_chunks(root); 1475 free_fs_devices(cur_devices); 1476 } 1477 1478 root->fs_info->num_tolerated_disk_barrier_failures = 1479 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1480 1481 /* 1482 * at this point, the device is zero sized. We want to 1483 * remove it from the devices list and zero out the old super 1484 */ 1485 if (clear_super) { 1486 /* make sure this device isn't detected as part of 1487 * the FS anymore 1488 */ 1489 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 1490 set_buffer_dirty(bh); 1491 sync_dirty_buffer(bh); 1492 } 1493 1494 ret = 0; 1495 1496 error_brelse: 1497 brelse(bh); 1498 error_close: 1499 if (bdev) 1500 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1501 out: 1502 mutex_unlock(&uuid_mutex); 1503 return ret; 1504 error_undo: 1505 if (device->writeable) { 1506 lock_chunks(root); 1507 list_add(&device->dev_alloc_list, 1508 &root->fs_info->fs_devices->alloc_list); 1509 unlock_chunks(root); 1510 root->fs_info->fs_devices->rw_devices++; 1511 } 1512 goto error_brelse; 1513 } 1514 1515 /* 1516 * does all the dirty work required for changing file system's UUID. 1517 */ 1518 static int btrfs_prepare_sprout(struct btrfs_root *root) 1519 { 1520 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 1521 struct btrfs_fs_devices *old_devices; 1522 struct btrfs_fs_devices *seed_devices; 1523 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 1524 struct btrfs_device *device; 1525 u64 super_flags; 1526 1527 BUG_ON(!mutex_is_locked(&uuid_mutex)); 1528 if (!fs_devices->seeding) 1529 return -EINVAL; 1530 1531 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); 1532 if (!seed_devices) 1533 return -ENOMEM; 1534 1535 old_devices = clone_fs_devices(fs_devices); 1536 if (IS_ERR(old_devices)) { 1537 kfree(seed_devices); 1538 return PTR_ERR(old_devices); 1539 } 1540 1541 list_add(&old_devices->list, &fs_uuids); 1542 1543 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 1544 seed_devices->opened = 1; 1545 INIT_LIST_HEAD(&seed_devices->devices); 1546 INIT_LIST_HEAD(&seed_devices->alloc_list); 1547 mutex_init(&seed_devices->device_list_mutex); 1548 1549 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1550 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 1551 synchronize_rcu); 1552 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1553 1554 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 1555 list_for_each_entry(device, &seed_devices->devices, dev_list) { 1556 device->fs_devices = seed_devices; 1557 } 1558 1559 fs_devices->seeding = 0; 1560 fs_devices->num_devices = 0; 1561 fs_devices->open_devices = 0; 1562 fs_devices->total_devices = 0; 1563 fs_devices->seed = seed_devices; 1564 1565 generate_random_uuid(fs_devices->fsid); 1566 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1567 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1568 super_flags = btrfs_super_flags(disk_super) & 1569 ~BTRFS_SUPER_FLAG_SEEDING; 1570 btrfs_set_super_flags(disk_super, super_flags); 1571 1572 return 0; 1573 } 1574 1575 /* 1576 * strore the expected generation for seed devices in device items. 1577 */ 1578 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 1579 struct btrfs_root *root) 1580 { 1581 struct btrfs_path *path; 1582 struct extent_buffer *leaf; 1583 struct btrfs_dev_item *dev_item; 1584 struct btrfs_device *device; 1585 struct btrfs_key key; 1586 u8 fs_uuid[BTRFS_UUID_SIZE]; 1587 u8 dev_uuid[BTRFS_UUID_SIZE]; 1588 u64 devid; 1589 int ret; 1590 1591 path = btrfs_alloc_path(); 1592 if (!path) 1593 return -ENOMEM; 1594 1595 root = root->fs_info->chunk_root; 1596 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1597 key.offset = 0; 1598 key.type = BTRFS_DEV_ITEM_KEY; 1599 1600 while (1) { 1601 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1602 if (ret < 0) 1603 goto error; 1604 1605 leaf = path->nodes[0]; 1606 next_slot: 1607 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1608 ret = btrfs_next_leaf(root, path); 1609 if (ret > 0) 1610 break; 1611 if (ret < 0) 1612 goto error; 1613 leaf = path->nodes[0]; 1614 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1615 btrfs_release_path(path); 1616 continue; 1617 } 1618 1619 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1620 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 1621 key.type != BTRFS_DEV_ITEM_KEY) 1622 break; 1623 1624 dev_item = btrfs_item_ptr(leaf, path->slots[0], 1625 struct btrfs_dev_item); 1626 devid = btrfs_device_id(leaf, dev_item); 1627 read_extent_buffer(leaf, dev_uuid, 1628 (unsigned long)btrfs_device_uuid(dev_item), 1629 BTRFS_UUID_SIZE); 1630 read_extent_buffer(leaf, fs_uuid, 1631 (unsigned long)btrfs_device_fsid(dev_item), 1632 BTRFS_UUID_SIZE); 1633 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); 1634 BUG_ON(!device); /* Logic error */ 1635 1636 if (device->fs_devices->seeding) { 1637 btrfs_set_device_generation(leaf, dev_item, 1638 device->generation); 1639 btrfs_mark_buffer_dirty(leaf); 1640 } 1641 1642 path->slots[0]++; 1643 goto next_slot; 1644 } 1645 ret = 0; 1646 error: 1647 btrfs_free_path(path); 1648 return ret; 1649 } 1650 1651 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 1652 { 1653 struct request_queue *q; 1654 struct btrfs_trans_handle *trans; 1655 struct btrfs_device *device; 1656 struct block_device *bdev; 1657 struct list_head *devices; 1658 struct super_block *sb = root->fs_info->sb; 1659 struct rcu_string *name; 1660 u64 total_bytes; 1661 int seeding_dev = 0; 1662 int ret = 0; 1663 1664 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 1665 return -EROFS; 1666 1667 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 1668 root->fs_info->bdev_holder); 1669 if (IS_ERR(bdev)) 1670 return PTR_ERR(bdev); 1671 1672 if (root->fs_info->fs_devices->seeding) { 1673 seeding_dev = 1; 1674 down_write(&sb->s_umount); 1675 mutex_lock(&uuid_mutex); 1676 } 1677 1678 filemap_write_and_wait(bdev->bd_inode->i_mapping); 1679 1680 devices = &root->fs_info->fs_devices->devices; 1681 /* 1682 * we have the volume lock, so we don't need the extra 1683 * device list mutex while reading the list here. 1684 */ 1685 list_for_each_entry(device, devices, dev_list) { 1686 if (device->bdev == bdev) { 1687 ret = -EEXIST; 1688 goto error; 1689 } 1690 } 1691 1692 device = kzalloc(sizeof(*device), GFP_NOFS); 1693 if (!device) { 1694 /* we can safely leave the fs_devices entry around */ 1695 ret = -ENOMEM; 1696 goto error; 1697 } 1698 1699 name = rcu_string_strdup(device_path, GFP_NOFS); 1700 if (!name) { 1701 kfree(device); 1702 ret = -ENOMEM; 1703 goto error; 1704 } 1705 rcu_assign_pointer(device->name, name); 1706 1707 ret = find_next_devid(root, &device->devid); 1708 if (ret) { 1709 rcu_string_free(device->name); 1710 kfree(device); 1711 goto error; 1712 } 1713 1714 trans = btrfs_start_transaction(root, 0); 1715 if (IS_ERR(trans)) { 1716 rcu_string_free(device->name); 1717 kfree(device); 1718 ret = PTR_ERR(trans); 1719 goto error; 1720 } 1721 1722 lock_chunks(root); 1723 1724 q = bdev_get_queue(bdev); 1725 if (blk_queue_discard(q)) 1726 device->can_discard = 1; 1727 device->writeable = 1; 1728 device->work.func = pending_bios_fn; 1729 generate_random_uuid(device->uuid); 1730 spin_lock_init(&device->io_lock); 1731 device->generation = trans->transid; 1732 device->io_width = root->sectorsize; 1733 device->io_align = root->sectorsize; 1734 device->sector_size = root->sectorsize; 1735 device->total_bytes = i_size_read(bdev->bd_inode); 1736 device->disk_total_bytes = device->total_bytes; 1737 device->dev_root = root->fs_info->dev_root; 1738 device->bdev = bdev; 1739 device->in_fs_metadata = 1; 1740 device->mode = FMODE_EXCL; 1741 set_blocksize(device->bdev, 4096); 1742 1743 if (seeding_dev) { 1744 sb->s_flags &= ~MS_RDONLY; 1745 ret = btrfs_prepare_sprout(root); 1746 BUG_ON(ret); /* -ENOMEM */ 1747 } 1748 1749 device->fs_devices = root->fs_info->fs_devices; 1750 1751 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1752 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 1753 list_add(&device->dev_alloc_list, 1754 &root->fs_info->fs_devices->alloc_list); 1755 root->fs_info->fs_devices->num_devices++; 1756 root->fs_info->fs_devices->open_devices++; 1757 root->fs_info->fs_devices->rw_devices++; 1758 root->fs_info->fs_devices->total_devices++; 1759 if (device->can_discard) 1760 root->fs_info->fs_devices->num_can_discard++; 1761 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 1762 1763 spin_lock(&root->fs_info->free_chunk_lock); 1764 root->fs_info->free_chunk_space += device->total_bytes; 1765 spin_unlock(&root->fs_info->free_chunk_lock); 1766 1767 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 1768 root->fs_info->fs_devices->rotating = 1; 1769 1770 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy); 1771 btrfs_set_super_total_bytes(root->fs_info->super_copy, 1772 total_bytes + device->total_bytes); 1773 1774 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy); 1775 btrfs_set_super_num_devices(root->fs_info->super_copy, 1776 total_bytes + 1); 1777 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1778 1779 if (seeding_dev) { 1780 ret = init_first_rw_device(trans, root, device); 1781 if (ret) { 1782 btrfs_abort_transaction(trans, root, ret); 1783 goto error_trans; 1784 } 1785 ret = btrfs_finish_sprout(trans, root); 1786 if (ret) { 1787 btrfs_abort_transaction(trans, root, ret); 1788 goto error_trans; 1789 } 1790 } else { 1791 ret = btrfs_add_device(trans, root, device); 1792 if (ret) { 1793 btrfs_abort_transaction(trans, root, ret); 1794 goto error_trans; 1795 } 1796 } 1797 1798 /* 1799 * we've got more storage, clear any full flags on the space 1800 * infos 1801 */ 1802 btrfs_clear_space_info_full(root->fs_info); 1803 1804 unlock_chunks(root); 1805 root->fs_info->num_tolerated_disk_barrier_failures = 1806 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1807 ret = btrfs_commit_transaction(trans, root); 1808 1809 if (seeding_dev) { 1810 mutex_unlock(&uuid_mutex); 1811 up_write(&sb->s_umount); 1812 1813 if (ret) /* transaction commit */ 1814 return ret; 1815 1816 ret = btrfs_relocate_sys_chunks(root); 1817 if (ret < 0) 1818 btrfs_error(root->fs_info, ret, 1819 "Failed to relocate sys chunks after " 1820 "device initialization. This can be fixed " 1821 "using the \"btrfs balance\" command."); 1822 trans = btrfs_attach_transaction(root); 1823 if (IS_ERR(trans)) { 1824 if (PTR_ERR(trans) == -ENOENT) 1825 return 0; 1826 return PTR_ERR(trans); 1827 } 1828 ret = btrfs_commit_transaction(trans, root); 1829 } 1830 1831 return ret; 1832 1833 error_trans: 1834 unlock_chunks(root); 1835 btrfs_end_transaction(trans, root); 1836 rcu_string_free(device->name); 1837 kfree(device); 1838 error: 1839 blkdev_put(bdev, FMODE_EXCL); 1840 if (seeding_dev) { 1841 mutex_unlock(&uuid_mutex); 1842 up_write(&sb->s_umount); 1843 } 1844 return ret; 1845 } 1846 1847 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 1848 struct btrfs_device *device) 1849 { 1850 int ret; 1851 struct btrfs_path *path; 1852 struct btrfs_root *root; 1853 struct btrfs_dev_item *dev_item; 1854 struct extent_buffer *leaf; 1855 struct btrfs_key key; 1856 1857 root = device->dev_root->fs_info->chunk_root; 1858 1859 path = btrfs_alloc_path(); 1860 if (!path) 1861 return -ENOMEM; 1862 1863 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1864 key.type = BTRFS_DEV_ITEM_KEY; 1865 key.offset = device->devid; 1866 1867 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1868 if (ret < 0) 1869 goto out; 1870 1871 if (ret > 0) { 1872 ret = -ENOENT; 1873 goto out; 1874 } 1875 1876 leaf = path->nodes[0]; 1877 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1878 1879 btrfs_set_device_id(leaf, dev_item, device->devid); 1880 btrfs_set_device_type(leaf, dev_item, device->type); 1881 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1882 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1883 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1884 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes); 1885 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 1886 btrfs_mark_buffer_dirty(leaf); 1887 1888 out: 1889 btrfs_free_path(path); 1890 return ret; 1891 } 1892 1893 static int __btrfs_grow_device(struct btrfs_trans_handle *trans, 1894 struct btrfs_device *device, u64 new_size) 1895 { 1896 struct btrfs_super_block *super_copy = 1897 device->dev_root->fs_info->super_copy; 1898 u64 old_total = btrfs_super_total_bytes(super_copy); 1899 u64 diff = new_size - device->total_bytes; 1900 1901 if (!device->writeable) 1902 return -EACCES; 1903 if (new_size <= device->total_bytes) 1904 return -EINVAL; 1905 1906 btrfs_set_super_total_bytes(super_copy, old_total + diff); 1907 device->fs_devices->total_rw_bytes += diff; 1908 1909 device->total_bytes = new_size; 1910 device->disk_total_bytes = new_size; 1911 btrfs_clear_space_info_full(device->dev_root->fs_info); 1912 1913 return btrfs_update_device(trans, device); 1914 } 1915 1916 int btrfs_grow_device(struct btrfs_trans_handle *trans, 1917 struct btrfs_device *device, u64 new_size) 1918 { 1919 int ret; 1920 lock_chunks(device->dev_root); 1921 ret = __btrfs_grow_device(trans, device, new_size); 1922 unlock_chunks(device->dev_root); 1923 return ret; 1924 } 1925 1926 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 1927 struct btrfs_root *root, 1928 u64 chunk_tree, u64 chunk_objectid, 1929 u64 chunk_offset) 1930 { 1931 int ret; 1932 struct btrfs_path *path; 1933 struct btrfs_key key; 1934 1935 root = root->fs_info->chunk_root; 1936 path = btrfs_alloc_path(); 1937 if (!path) 1938 return -ENOMEM; 1939 1940 key.objectid = chunk_objectid; 1941 key.offset = chunk_offset; 1942 key.type = BTRFS_CHUNK_ITEM_KEY; 1943 1944 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1945 if (ret < 0) 1946 goto out; 1947 else if (ret > 0) { /* Logic error or corruption */ 1948 btrfs_error(root->fs_info, -ENOENT, 1949 "Failed lookup while freeing chunk."); 1950 ret = -ENOENT; 1951 goto out; 1952 } 1953 1954 ret = btrfs_del_item(trans, root, path); 1955 if (ret < 0) 1956 btrfs_error(root->fs_info, ret, 1957 "Failed to delete chunk item."); 1958 out: 1959 btrfs_free_path(path); 1960 return ret; 1961 } 1962 1963 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 1964 chunk_offset) 1965 { 1966 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 1967 struct btrfs_disk_key *disk_key; 1968 struct btrfs_chunk *chunk; 1969 u8 *ptr; 1970 int ret = 0; 1971 u32 num_stripes; 1972 u32 array_size; 1973 u32 len = 0; 1974 u32 cur; 1975 struct btrfs_key key; 1976 1977 array_size = btrfs_super_sys_array_size(super_copy); 1978 1979 ptr = super_copy->sys_chunk_array; 1980 cur = 0; 1981 1982 while (cur < array_size) { 1983 disk_key = (struct btrfs_disk_key *)ptr; 1984 btrfs_disk_key_to_cpu(&key, disk_key); 1985 1986 len = sizeof(*disk_key); 1987 1988 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 1989 chunk = (struct btrfs_chunk *)(ptr + len); 1990 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 1991 len += btrfs_chunk_item_size(num_stripes); 1992 } else { 1993 ret = -EIO; 1994 break; 1995 } 1996 if (key.objectid == chunk_objectid && 1997 key.offset == chunk_offset) { 1998 memmove(ptr, ptr + len, array_size - (cur + len)); 1999 array_size -= len; 2000 btrfs_set_super_sys_array_size(super_copy, array_size); 2001 } else { 2002 ptr += len; 2003 cur += len; 2004 } 2005 } 2006 return ret; 2007 } 2008 2009 static int btrfs_relocate_chunk(struct btrfs_root *root, 2010 u64 chunk_tree, u64 chunk_objectid, 2011 u64 chunk_offset) 2012 { 2013 struct extent_map_tree *em_tree; 2014 struct btrfs_root *extent_root; 2015 struct btrfs_trans_handle *trans; 2016 struct extent_map *em; 2017 struct map_lookup *map; 2018 int ret; 2019 int i; 2020 2021 root = root->fs_info->chunk_root; 2022 extent_root = root->fs_info->extent_root; 2023 em_tree = &root->fs_info->mapping_tree.map_tree; 2024 2025 ret = btrfs_can_relocate(extent_root, chunk_offset); 2026 if (ret) 2027 return -ENOSPC; 2028 2029 /* step one, relocate all the extents inside this chunk */ 2030 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2031 if (ret) 2032 return ret; 2033 2034 trans = btrfs_start_transaction(root, 0); 2035 BUG_ON(IS_ERR(trans)); 2036 2037 lock_chunks(root); 2038 2039 /* 2040 * step two, delete the device extents and the 2041 * chunk tree entries 2042 */ 2043 read_lock(&em_tree->lock); 2044 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2045 read_unlock(&em_tree->lock); 2046 2047 BUG_ON(!em || em->start > chunk_offset || 2048 em->start + em->len < chunk_offset); 2049 map = (struct map_lookup *)em->bdev; 2050 2051 for (i = 0; i < map->num_stripes; i++) { 2052 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, 2053 map->stripes[i].physical); 2054 BUG_ON(ret); 2055 2056 if (map->stripes[i].dev) { 2057 ret = btrfs_update_device(trans, map->stripes[i].dev); 2058 BUG_ON(ret); 2059 } 2060 } 2061 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, 2062 chunk_offset); 2063 2064 BUG_ON(ret); 2065 2066 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2067 2068 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2069 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2070 BUG_ON(ret); 2071 } 2072 2073 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); 2074 BUG_ON(ret); 2075 2076 write_lock(&em_tree->lock); 2077 remove_extent_mapping(em_tree, em); 2078 write_unlock(&em_tree->lock); 2079 2080 kfree(map); 2081 em->bdev = NULL; 2082 2083 /* once for the tree */ 2084 free_extent_map(em); 2085 /* once for us */ 2086 free_extent_map(em); 2087 2088 unlock_chunks(root); 2089 btrfs_end_transaction(trans, root); 2090 return 0; 2091 } 2092 2093 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2094 { 2095 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2096 struct btrfs_path *path; 2097 struct extent_buffer *leaf; 2098 struct btrfs_chunk *chunk; 2099 struct btrfs_key key; 2100 struct btrfs_key found_key; 2101 u64 chunk_tree = chunk_root->root_key.objectid; 2102 u64 chunk_type; 2103 bool retried = false; 2104 int failed = 0; 2105 int ret; 2106 2107 path = btrfs_alloc_path(); 2108 if (!path) 2109 return -ENOMEM; 2110 2111 again: 2112 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2113 key.offset = (u64)-1; 2114 key.type = BTRFS_CHUNK_ITEM_KEY; 2115 2116 while (1) { 2117 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2118 if (ret < 0) 2119 goto error; 2120 BUG_ON(ret == 0); /* Corruption */ 2121 2122 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2123 key.type); 2124 if (ret < 0) 2125 goto error; 2126 if (ret > 0) 2127 break; 2128 2129 leaf = path->nodes[0]; 2130 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2131 2132 chunk = btrfs_item_ptr(leaf, path->slots[0], 2133 struct btrfs_chunk); 2134 chunk_type = btrfs_chunk_type(leaf, chunk); 2135 btrfs_release_path(path); 2136 2137 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2138 ret = btrfs_relocate_chunk(chunk_root, chunk_tree, 2139 found_key.objectid, 2140 found_key.offset); 2141 if (ret == -ENOSPC) 2142 failed++; 2143 else if (ret) 2144 BUG(); 2145 } 2146 2147 if (found_key.offset == 0) 2148 break; 2149 key.offset = found_key.offset - 1; 2150 } 2151 ret = 0; 2152 if (failed && !retried) { 2153 failed = 0; 2154 retried = true; 2155 goto again; 2156 } else if (failed && retried) { 2157 WARN_ON(1); 2158 ret = -ENOSPC; 2159 } 2160 error: 2161 btrfs_free_path(path); 2162 return ret; 2163 } 2164 2165 static int insert_balance_item(struct btrfs_root *root, 2166 struct btrfs_balance_control *bctl) 2167 { 2168 struct btrfs_trans_handle *trans; 2169 struct btrfs_balance_item *item; 2170 struct btrfs_disk_balance_args disk_bargs; 2171 struct btrfs_path *path; 2172 struct extent_buffer *leaf; 2173 struct btrfs_key key; 2174 int ret, err; 2175 2176 path = btrfs_alloc_path(); 2177 if (!path) 2178 return -ENOMEM; 2179 2180 trans = btrfs_start_transaction(root, 0); 2181 if (IS_ERR(trans)) { 2182 btrfs_free_path(path); 2183 return PTR_ERR(trans); 2184 } 2185 2186 key.objectid = BTRFS_BALANCE_OBJECTID; 2187 key.type = BTRFS_BALANCE_ITEM_KEY; 2188 key.offset = 0; 2189 2190 ret = btrfs_insert_empty_item(trans, root, path, &key, 2191 sizeof(*item)); 2192 if (ret) 2193 goto out; 2194 2195 leaf = path->nodes[0]; 2196 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2197 2198 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 2199 2200 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 2201 btrfs_set_balance_data(leaf, item, &disk_bargs); 2202 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 2203 btrfs_set_balance_meta(leaf, item, &disk_bargs); 2204 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 2205 btrfs_set_balance_sys(leaf, item, &disk_bargs); 2206 2207 btrfs_set_balance_flags(leaf, item, bctl->flags); 2208 2209 btrfs_mark_buffer_dirty(leaf); 2210 out: 2211 btrfs_free_path(path); 2212 err = btrfs_commit_transaction(trans, root); 2213 if (err && !ret) 2214 ret = err; 2215 return ret; 2216 } 2217 2218 static int del_balance_item(struct btrfs_root *root) 2219 { 2220 struct btrfs_trans_handle *trans; 2221 struct btrfs_path *path; 2222 struct btrfs_key key; 2223 int ret, err; 2224 2225 path = btrfs_alloc_path(); 2226 if (!path) 2227 return -ENOMEM; 2228 2229 trans = btrfs_start_transaction(root, 0); 2230 if (IS_ERR(trans)) { 2231 btrfs_free_path(path); 2232 return PTR_ERR(trans); 2233 } 2234 2235 key.objectid = BTRFS_BALANCE_OBJECTID; 2236 key.type = BTRFS_BALANCE_ITEM_KEY; 2237 key.offset = 0; 2238 2239 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2240 if (ret < 0) 2241 goto out; 2242 if (ret > 0) { 2243 ret = -ENOENT; 2244 goto out; 2245 } 2246 2247 ret = btrfs_del_item(trans, root, path); 2248 out: 2249 btrfs_free_path(path); 2250 err = btrfs_commit_transaction(trans, root); 2251 if (err && !ret) 2252 ret = err; 2253 return ret; 2254 } 2255 2256 /* 2257 * This is a heuristic used to reduce the number of chunks balanced on 2258 * resume after balance was interrupted. 2259 */ 2260 static void update_balance_args(struct btrfs_balance_control *bctl) 2261 { 2262 /* 2263 * Turn on soft mode for chunk types that were being converted. 2264 */ 2265 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 2266 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 2267 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 2268 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 2269 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 2270 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 2271 2272 /* 2273 * Turn on usage filter if is not already used. The idea is 2274 * that chunks that we have already balanced should be 2275 * reasonably full. Don't do it for chunks that are being 2276 * converted - that will keep us from relocating unconverted 2277 * (albeit full) chunks. 2278 */ 2279 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 2280 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2281 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 2282 bctl->data.usage = 90; 2283 } 2284 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 2285 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2286 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 2287 bctl->sys.usage = 90; 2288 } 2289 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 2290 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2291 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 2292 bctl->meta.usage = 90; 2293 } 2294 } 2295 2296 /* 2297 * Should be called with both balance and volume mutexes held to 2298 * serialize other volume operations (add_dev/rm_dev/resize) with 2299 * restriper. Same goes for unset_balance_control. 2300 */ 2301 static void set_balance_control(struct btrfs_balance_control *bctl) 2302 { 2303 struct btrfs_fs_info *fs_info = bctl->fs_info; 2304 2305 BUG_ON(fs_info->balance_ctl); 2306 2307 spin_lock(&fs_info->balance_lock); 2308 fs_info->balance_ctl = bctl; 2309 spin_unlock(&fs_info->balance_lock); 2310 } 2311 2312 static void unset_balance_control(struct btrfs_fs_info *fs_info) 2313 { 2314 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2315 2316 BUG_ON(!fs_info->balance_ctl); 2317 2318 spin_lock(&fs_info->balance_lock); 2319 fs_info->balance_ctl = NULL; 2320 spin_unlock(&fs_info->balance_lock); 2321 2322 kfree(bctl); 2323 } 2324 2325 /* 2326 * Balance filters. Return 1 if chunk should be filtered out 2327 * (should not be balanced). 2328 */ 2329 static int chunk_profiles_filter(u64 chunk_type, 2330 struct btrfs_balance_args *bargs) 2331 { 2332 chunk_type = chunk_to_extended(chunk_type) & 2333 BTRFS_EXTENDED_PROFILE_MASK; 2334 2335 if (bargs->profiles & chunk_type) 2336 return 0; 2337 2338 return 1; 2339 } 2340 2341 static u64 div_factor_fine(u64 num, int factor) 2342 { 2343 if (factor <= 0) 2344 return 0; 2345 if (factor >= 100) 2346 return num; 2347 2348 num *= factor; 2349 do_div(num, 100); 2350 return num; 2351 } 2352 2353 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 2354 struct btrfs_balance_args *bargs) 2355 { 2356 struct btrfs_block_group_cache *cache; 2357 u64 chunk_used, user_thresh; 2358 int ret = 1; 2359 2360 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2361 chunk_used = btrfs_block_group_used(&cache->item); 2362 2363 user_thresh = div_factor_fine(cache->key.offset, bargs->usage); 2364 if (chunk_used < user_thresh) 2365 ret = 0; 2366 2367 btrfs_put_block_group(cache); 2368 return ret; 2369 } 2370 2371 static int chunk_devid_filter(struct extent_buffer *leaf, 2372 struct btrfs_chunk *chunk, 2373 struct btrfs_balance_args *bargs) 2374 { 2375 struct btrfs_stripe *stripe; 2376 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2377 int i; 2378 2379 for (i = 0; i < num_stripes; i++) { 2380 stripe = btrfs_stripe_nr(chunk, i); 2381 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 2382 return 0; 2383 } 2384 2385 return 1; 2386 } 2387 2388 /* [pstart, pend) */ 2389 static int chunk_drange_filter(struct extent_buffer *leaf, 2390 struct btrfs_chunk *chunk, 2391 u64 chunk_offset, 2392 struct btrfs_balance_args *bargs) 2393 { 2394 struct btrfs_stripe *stripe; 2395 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2396 u64 stripe_offset; 2397 u64 stripe_length; 2398 int factor; 2399 int i; 2400 2401 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 2402 return 0; 2403 2404 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 2405 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) 2406 factor = 2; 2407 else 2408 factor = 1; 2409 factor = num_stripes / factor; 2410 2411 for (i = 0; i < num_stripes; i++) { 2412 stripe = btrfs_stripe_nr(chunk, i); 2413 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 2414 continue; 2415 2416 stripe_offset = btrfs_stripe_offset(leaf, stripe); 2417 stripe_length = btrfs_chunk_length(leaf, chunk); 2418 do_div(stripe_length, factor); 2419 2420 if (stripe_offset < bargs->pend && 2421 stripe_offset + stripe_length > bargs->pstart) 2422 return 0; 2423 } 2424 2425 return 1; 2426 } 2427 2428 /* [vstart, vend) */ 2429 static int chunk_vrange_filter(struct extent_buffer *leaf, 2430 struct btrfs_chunk *chunk, 2431 u64 chunk_offset, 2432 struct btrfs_balance_args *bargs) 2433 { 2434 if (chunk_offset < bargs->vend && 2435 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 2436 /* at least part of the chunk is inside this vrange */ 2437 return 0; 2438 2439 return 1; 2440 } 2441 2442 static int chunk_soft_convert_filter(u64 chunk_type, 2443 struct btrfs_balance_args *bargs) 2444 { 2445 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 2446 return 0; 2447 2448 chunk_type = chunk_to_extended(chunk_type) & 2449 BTRFS_EXTENDED_PROFILE_MASK; 2450 2451 if (bargs->target == chunk_type) 2452 return 1; 2453 2454 return 0; 2455 } 2456 2457 static int should_balance_chunk(struct btrfs_root *root, 2458 struct extent_buffer *leaf, 2459 struct btrfs_chunk *chunk, u64 chunk_offset) 2460 { 2461 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 2462 struct btrfs_balance_args *bargs = NULL; 2463 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 2464 2465 /* type filter */ 2466 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 2467 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 2468 return 0; 2469 } 2470 2471 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 2472 bargs = &bctl->data; 2473 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 2474 bargs = &bctl->sys; 2475 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 2476 bargs = &bctl->meta; 2477 2478 /* profiles filter */ 2479 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 2480 chunk_profiles_filter(chunk_type, bargs)) { 2481 return 0; 2482 } 2483 2484 /* usage filter */ 2485 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 2486 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 2487 return 0; 2488 } 2489 2490 /* devid filter */ 2491 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 2492 chunk_devid_filter(leaf, chunk, bargs)) { 2493 return 0; 2494 } 2495 2496 /* drange filter, makes sense only with devid filter */ 2497 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 2498 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 2499 return 0; 2500 } 2501 2502 /* vrange filter */ 2503 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 2504 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 2505 return 0; 2506 } 2507 2508 /* soft profile changing mode */ 2509 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 2510 chunk_soft_convert_filter(chunk_type, bargs)) { 2511 return 0; 2512 } 2513 2514 return 1; 2515 } 2516 2517 static u64 div_factor(u64 num, int factor) 2518 { 2519 if (factor == 10) 2520 return num; 2521 num *= factor; 2522 do_div(num, 10); 2523 return num; 2524 } 2525 2526 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 2527 { 2528 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2529 struct btrfs_root *chunk_root = fs_info->chunk_root; 2530 struct btrfs_root *dev_root = fs_info->dev_root; 2531 struct list_head *devices; 2532 struct btrfs_device *device; 2533 u64 old_size; 2534 u64 size_to_free; 2535 struct btrfs_chunk *chunk; 2536 struct btrfs_path *path; 2537 struct btrfs_key key; 2538 struct btrfs_key found_key; 2539 struct btrfs_trans_handle *trans; 2540 struct extent_buffer *leaf; 2541 int slot; 2542 int ret; 2543 int enospc_errors = 0; 2544 bool counting = true; 2545 2546 /* step one make some room on all the devices */ 2547 devices = &fs_info->fs_devices->devices; 2548 list_for_each_entry(device, devices, dev_list) { 2549 old_size = device->total_bytes; 2550 size_to_free = div_factor(old_size, 1); 2551 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); 2552 if (!device->writeable || 2553 device->total_bytes - device->bytes_used > size_to_free) 2554 continue; 2555 2556 ret = btrfs_shrink_device(device, old_size - size_to_free); 2557 if (ret == -ENOSPC) 2558 break; 2559 BUG_ON(ret); 2560 2561 trans = btrfs_start_transaction(dev_root, 0); 2562 BUG_ON(IS_ERR(trans)); 2563 2564 ret = btrfs_grow_device(trans, device, old_size); 2565 BUG_ON(ret); 2566 2567 btrfs_end_transaction(trans, dev_root); 2568 } 2569 2570 /* step two, relocate all the chunks */ 2571 path = btrfs_alloc_path(); 2572 if (!path) { 2573 ret = -ENOMEM; 2574 goto error; 2575 } 2576 2577 /* zero out stat counters */ 2578 spin_lock(&fs_info->balance_lock); 2579 memset(&bctl->stat, 0, sizeof(bctl->stat)); 2580 spin_unlock(&fs_info->balance_lock); 2581 again: 2582 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2583 key.offset = (u64)-1; 2584 key.type = BTRFS_CHUNK_ITEM_KEY; 2585 2586 while (1) { 2587 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 2588 atomic_read(&fs_info->balance_cancel_req)) { 2589 ret = -ECANCELED; 2590 goto error; 2591 } 2592 2593 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2594 if (ret < 0) 2595 goto error; 2596 2597 /* 2598 * this shouldn't happen, it means the last relocate 2599 * failed 2600 */ 2601 if (ret == 0) 2602 BUG(); /* FIXME break ? */ 2603 2604 ret = btrfs_previous_item(chunk_root, path, 0, 2605 BTRFS_CHUNK_ITEM_KEY); 2606 if (ret) { 2607 ret = 0; 2608 break; 2609 } 2610 2611 leaf = path->nodes[0]; 2612 slot = path->slots[0]; 2613 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2614 2615 if (found_key.objectid != key.objectid) 2616 break; 2617 2618 /* chunk zero is special */ 2619 if (found_key.offset == 0) 2620 break; 2621 2622 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 2623 2624 if (!counting) { 2625 spin_lock(&fs_info->balance_lock); 2626 bctl->stat.considered++; 2627 spin_unlock(&fs_info->balance_lock); 2628 } 2629 2630 ret = should_balance_chunk(chunk_root, leaf, chunk, 2631 found_key.offset); 2632 btrfs_release_path(path); 2633 if (!ret) 2634 goto loop; 2635 2636 if (counting) { 2637 spin_lock(&fs_info->balance_lock); 2638 bctl->stat.expected++; 2639 spin_unlock(&fs_info->balance_lock); 2640 goto loop; 2641 } 2642 2643 ret = btrfs_relocate_chunk(chunk_root, 2644 chunk_root->root_key.objectid, 2645 found_key.objectid, 2646 found_key.offset); 2647 if (ret && ret != -ENOSPC) 2648 goto error; 2649 if (ret == -ENOSPC) { 2650 enospc_errors++; 2651 } else { 2652 spin_lock(&fs_info->balance_lock); 2653 bctl->stat.completed++; 2654 spin_unlock(&fs_info->balance_lock); 2655 } 2656 loop: 2657 key.offset = found_key.offset - 1; 2658 } 2659 2660 if (counting) { 2661 btrfs_release_path(path); 2662 counting = false; 2663 goto again; 2664 } 2665 error: 2666 btrfs_free_path(path); 2667 if (enospc_errors) { 2668 printk(KERN_INFO "btrfs: %d enospc errors during balance\n", 2669 enospc_errors); 2670 if (!ret) 2671 ret = -ENOSPC; 2672 } 2673 2674 return ret; 2675 } 2676 2677 /** 2678 * alloc_profile_is_valid - see if a given profile is valid and reduced 2679 * @flags: profile to validate 2680 * @extended: if true @flags is treated as an extended profile 2681 */ 2682 static int alloc_profile_is_valid(u64 flags, int extended) 2683 { 2684 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 2685 BTRFS_BLOCK_GROUP_PROFILE_MASK); 2686 2687 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 2688 2689 /* 1) check that all other bits are zeroed */ 2690 if (flags & ~mask) 2691 return 0; 2692 2693 /* 2) see if profile is reduced */ 2694 if (flags == 0) 2695 return !extended; /* "0" is valid for usual profiles */ 2696 2697 /* true if exactly one bit set */ 2698 return (flags & (flags - 1)) == 0; 2699 } 2700 2701 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 2702 { 2703 /* cancel requested || normal exit path */ 2704 return atomic_read(&fs_info->balance_cancel_req) || 2705 (atomic_read(&fs_info->balance_pause_req) == 0 && 2706 atomic_read(&fs_info->balance_cancel_req) == 0); 2707 } 2708 2709 static void __cancel_balance(struct btrfs_fs_info *fs_info) 2710 { 2711 int ret; 2712 2713 unset_balance_control(fs_info); 2714 ret = del_balance_item(fs_info->tree_root); 2715 BUG_ON(ret); 2716 } 2717 2718 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 2719 struct btrfs_ioctl_balance_args *bargs); 2720 2721 /* 2722 * Should be called with both balance and volume mutexes held 2723 */ 2724 int btrfs_balance(struct btrfs_balance_control *bctl, 2725 struct btrfs_ioctl_balance_args *bargs) 2726 { 2727 struct btrfs_fs_info *fs_info = bctl->fs_info; 2728 u64 allowed; 2729 int mixed = 0; 2730 int ret; 2731 2732 if (btrfs_fs_closing(fs_info) || 2733 atomic_read(&fs_info->balance_pause_req) || 2734 atomic_read(&fs_info->balance_cancel_req)) { 2735 ret = -EINVAL; 2736 goto out; 2737 } 2738 2739 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 2740 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 2741 mixed = 1; 2742 2743 /* 2744 * In case of mixed groups both data and meta should be picked, 2745 * and identical options should be given for both of them. 2746 */ 2747 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 2748 if (mixed && (bctl->flags & allowed)) { 2749 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 2750 !(bctl->flags & BTRFS_BALANCE_METADATA) || 2751 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 2752 printk(KERN_ERR "btrfs: with mixed groups data and " 2753 "metadata balance options must be the same\n"); 2754 ret = -EINVAL; 2755 goto out; 2756 } 2757 } 2758 2759 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 2760 if (fs_info->fs_devices->num_devices == 1) 2761 allowed |= BTRFS_BLOCK_GROUP_DUP; 2762 else if (fs_info->fs_devices->num_devices < 4) 2763 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 2764 else 2765 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 | 2766 BTRFS_BLOCK_GROUP_RAID10); 2767 2768 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2769 (!alloc_profile_is_valid(bctl->data.target, 1) || 2770 (bctl->data.target & ~allowed))) { 2771 printk(KERN_ERR "btrfs: unable to start balance with target " 2772 "data profile %llu\n", 2773 (unsigned long long)bctl->data.target); 2774 ret = -EINVAL; 2775 goto out; 2776 } 2777 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2778 (!alloc_profile_is_valid(bctl->meta.target, 1) || 2779 (bctl->meta.target & ~allowed))) { 2780 printk(KERN_ERR "btrfs: unable to start balance with target " 2781 "metadata profile %llu\n", 2782 (unsigned long long)bctl->meta.target); 2783 ret = -EINVAL; 2784 goto out; 2785 } 2786 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2787 (!alloc_profile_is_valid(bctl->sys.target, 1) || 2788 (bctl->sys.target & ~allowed))) { 2789 printk(KERN_ERR "btrfs: unable to start balance with target " 2790 "system profile %llu\n", 2791 (unsigned long long)bctl->sys.target); 2792 ret = -EINVAL; 2793 goto out; 2794 } 2795 2796 /* allow dup'ed data chunks only in mixed mode */ 2797 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2798 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) { 2799 printk(KERN_ERR "btrfs: dup for data is not allowed\n"); 2800 ret = -EINVAL; 2801 goto out; 2802 } 2803 2804 /* allow to reduce meta or sys integrity only if force set */ 2805 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 2806 BTRFS_BLOCK_GROUP_RAID10; 2807 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2808 (fs_info->avail_system_alloc_bits & allowed) && 2809 !(bctl->sys.target & allowed)) || 2810 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2811 (fs_info->avail_metadata_alloc_bits & allowed) && 2812 !(bctl->meta.target & allowed))) { 2813 if (bctl->flags & BTRFS_BALANCE_FORCE) { 2814 printk(KERN_INFO "btrfs: force reducing metadata " 2815 "integrity\n"); 2816 } else { 2817 printk(KERN_ERR "btrfs: balance will reduce metadata " 2818 "integrity, use force if you want this\n"); 2819 ret = -EINVAL; 2820 goto out; 2821 } 2822 } 2823 2824 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 2825 int num_tolerated_disk_barrier_failures; 2826 u64 target = bctl->sys.target; 2827 2828 num_tolerated_disk_barrier_failures = 2829 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2830 if (num_tolerated_disk_barrier_failures > 0 && 2831 (target & 2832 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 2833 BTRFS_AVAIL_ALLOC_BIT_SINGLE))) 2834 num_tolerated_disk_barrier_failures = 0; 2835 else if (num_tolerated_disk_barrier_failures > 1 && 2836 (target & 2837 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))) 2838 num_tolerated_disk_barrier_failures = 1; 2839 2840 fs_info->num_tolerated_disk_barrier_failures = 2841 num_tolerated_disk_barrier_failures; 2842 } 2843 2844 ret = insert_balance_item(fs_info->tree_root, bctl); 2845 if (ret && ret != -EEXIST) 2846 goto out; 2847 2848 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 2849 BUG_ON(ret == -EEXIST); 2850 set_balance_control(bctl); 2851 } else { 2852 BUG_ON(ret != -EEXIST); 2853 spin_lock(&fs_info->balance_lock); 2854 update_balance_args(bctl); 2855 spin_unlock(&fs_info->balance_lock); 2856 } 2857 2858 atomic_inc(&fs_info->balance_running); 2859 mutex_unlock(&fs_info->balance_mutex); 2860 2861 ret = __btrfs_balance(fs_info); 2862 2863 mutex_lock(&fs_info->balance_mutex); 2864 atomic_dec(&fs_info->balance_running); 2865 2866 if (bargs) { 2867 memset(bargs, 0, sizeof(*bargs)); 2868 update_ioctl_balance_args(fs_info, 0, bargs); 2869 } 2870 2871 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 2872 balance_need_close(fs_info)) { 2873 __cancel_balance(fs_info); 2874 } 2875 2876 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 2877 fs_info->num_tolerated_disk_barrier_failures = 2878 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2879 } 2880 2881 wake_up(&fs_info->balance_wait_q); 2882 2883 return ret; 2884 out: 2885 if (bctl->flags & BTRFS_BALANCE_RESUME) 2886 __cancel_balance(fs_info); 2887 else 2888 kfree(bctl); 2889 return ret; 2890 } 2891 2892 static int balance_kthread(void *data) 2893 { 2894 struct btrfs_fs_info *fs_info = data; 2895 int ret = 0; 2896 2897 mutex_lock(&fs_info->volume_mutex); 2898 mutex_lock(&fs_info->balance_mutex); 2899 2900 if (fs_info->balance_ctl) { 2901 printk(KERN_INFO "btrfs: continuing balance\n"); 2902 ret = btrfs_balance(fs_info->balance_ctl, NULL); 2903 } 2904 2905 mutex_unlock(&fs_info->balance_mutex); 2906 mutex_unlock(&fs_info->volume_mutex); 2907 2908 return ret; 2909 } 2910 2911 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 2912 { 2913 struct task_struct *tsk; 2914 2915 spin_lock(&fs_info->balance_lock); 2916 if (!fs_info->balance_ctl) { 2917 spin_unlock(&fs_info->balance_lock); 2918 return 0; 2919 } 2920 spin_unlock(&fs_info->balance_lock); 2921 2922 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 2923 printk(KERN_INFO "btrfs: force skipping balance\n"); 2924 return 0; 2925 } 2926 2927 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 2928 if (IS_ERR(tsk)) 2929 return PTR_ERR(tsk); 2930 2931 return 0; 2932 } 2933 2934 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 2935 { 2936 struct btrfs_balance_control *bctl; 2937 struct btrfs_balance_item *item; 2938 struct btrfs_disk_balance_args disk_bargs; 2939 struct btrfs_path *path; 2940 struct extent_buffer *leaf; 2941 struct btrfs_key key; 2942 int ret; 2943 2944 path = btrfs_alloc_path(); 2945 if (!path) 2946 return -ENOMEM; 2947 2948 key.objectid = BTRFS_BALANCE_OBJECTID; 2949 key.type = BTRFS_BALANCE_ITEM_KEY; 2950 key.offset = 0; 2951 2952 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2953 if (ret < 0) 2954 goto out; 2955 if (ret > 0) { /* ret = -ENOENT; */ 2956 ret = 0; 2957 goto out; 2958 } 2959 2960 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 2961 if (!bctl) { 2962 ret = -ENOMEM; 2963 goto out; 2964 } 2965 2966 leaf = path->nodes[0]; 2967 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2968 2969 bctl->fs_info = fs_info; 2970 bctl->flags = btrfs_balance_flags(leaf, item); 2971 bctl->flags |= BTRFS_BALANCE_RESUME; 2972 2973 btrfs_balance_data(leaf, item, &disk_bargs); 2974 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 2975 btrfs_balance_meta(leaf, item, &disk_bargs); 2976 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 2977 btrfs_balance_sys(leaf, item, &disk_bargs); 2978 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 2979 2980 mutex_lock(&fs_info->volume_mutex); 2981 mutex_lock(&fs_info->balance_mutex); 2982 2983 set_balance_control(bctl); 2984 2985 mutex_unlock(&fs_info->balance_mutex); 2986 mutex_unlock(&fs_info->volume_mutex); 2987 out: 2988 btrfs_free_path(path); 2989 return ret; 2990 } 2991 2992 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 2993 { 2994 int ret = 0; 2995 2996 mutex_lock(&fs_info->balance_mutex); 2997 if (!fs_info->balance_ctl) { 2998 mutex_unlock(&fs_info->balance_mutex); 2999 return -ENOTCONN; 3000 } 3001 3002 if (atomic_read(&fs_info->balance_running)) { 3003 atomic_inc(&fs_info->balance_pause_req); 3004 mutex_unlock(&fs_info->balance_mutex); 3005 3006 wait_event(fs_info->balance_wait_q, 3007 atomic_read(&fs_info->balance_running) == 0); 3008 3009 mutex_lock(&fs_info->balance_mutex); 3010 /* we are good with balance_ctl ripped off from under us */ 3011 BUG_ON(atomic_read(&fs_info->balance_running)); 3012 atomic_dec(&fs_info->balance_pause_req); 3013 } else { 3014 ret = -ENOTCONN; 3015 } 3016 3017 mutex_unlock(&fs_info->balance_mutex); 3018 return ret; 3019 } 3020 3021 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 3022 { 3023 mutex_lock(&fs_info->balance_mutex); 3024 if (!fs_info->balance_ctl) { 3025 mutex_unlock(&fs_info->balance_mutex); 3026 return -ENOTCONN; 3027 } 3028 3029 atomic_inc(&fs_info->balance_cancel_req); 3030 /* 3031 * if we are running just wait and return, balance item is 3032 * deleted in btrfs_balance in this case 3033 */ 3034 if (atomic_read(&fs_info->balance_running)) { 3035 mutex_unlock(&fs_info->balance_mutex); 3036 wait_event(fs_info->balance_wait_q, 3037 atomic_read(&fs_info->balance_running) == 0); 3038 mutex_lock(&fs_info->balance_mutex); 3039 } else { 3040 /* __cancel_balance needs volume_mutex */ 3041 mutex_unlock(&fs_info->balance_mutex); 3042 mutex_lock(&fs_info->volume_mutex); 3043 mutex_lock(&fs_info->balance_mutex); 3044 3045 if (fs_info->balance_ctl) 3046 __cancel_balance(fs_info); 3047 3048 mutex_unlock(&fs_info->volume_mutex); 3049 } 3050 3051 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 3052 atomic_dec(&fs_info->balance_cancel_req); 3053 mutex_unlock(&fs_info->balance_mutex); 3054 return 0; 3055 } 3056 3057 /* 3058 * shrinking a device means finding all of the device extents past 3059 * the new size, and then following the back refs to the chunks. 3060 * The chunk relocation code actually frees the device extent 3061 */ 3062 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 3063 { 3064 struct btrfs_trans_handle *trans; 3065 struct btrfs_root *root = device->dev_root; 3066 struct btrfs_dev_extent *dev_extent = NULL; 3067 struct btrfs_path *path; 3068 u64 length; 3069 u64 chunk_tree; 3070 u64 chunk_objectid; 3071 u64 chunk_offset; 3072 int ret; 3073 int slot; 3074 int failed = 0; 3075 bool retried = false; 3076 struct extent_buffer *l; 3077 struct btrfs_key key; 3078 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3079 u64 old_total = btrfs_super_total_bytes(super_copy); 3080 u64 old_size = device->total_bytes; 3081 u64 diff = device->total_bytes - new_size; 3082 3083 if (new_size >= device->total_bytes) 3084 return -EINVAL; 3085 3086 path = btrfs_alloc_path(); 3087 if (!path) 3088 return -ENOMEM; 3089 3090 path->reada = 2; 3091 3092 lock_chunks(root); 3093 3094 device->total_bytes = new_size; 3095 if (device->writeable) { 3096 device->fs_devices->total_rw_bytes -= diff; 3097 spin_lock(&root->fs_info->free_chunk_lock); 3098 root->fs_info->free_chunk_space -= diff; 3099 spin_unlock(&root->fs_info->free_chunk_lock); 3100 } 3101 unlock_chunks(root); 3102 3103 again: 3104 key.objectid = device->devid; 3105 key.offset = (u64)-1; 3106 key.type = BTRFS_DEV_EXTENT_KEY; 3107 3108 do { 3109 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3110 if (ret < 0) 3111 goto done; 3112 3113 ret = btrfs_previous_item(root, path, 0, key.type); 3114 if (ret < 0) 3115 goto done; 3116 if (ret) { 3117 ret = 0; 3118 btrfs_release_path(path); 3119 break; 3120 } 3121 3122 l = path->nodes[0]; 3123 slot = path->slots[0]; 3124 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 3125 3126 if (key.objectid != device->devid) { 3127 btrfs_release_path(path); 3128 break; 3129 } 3130 3131 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3132 length = btrfs_dev_extent_length(l, dev_extent); 3133 3134 if (key.offset + length <= new_size) { 3135 btrfs_release_path(path); 3136 break; 3137 } 3138 3139 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 3140 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 3141 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3142 btrfs_release_path(path); 3143 3144 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, 3145 chunk_offset); 3146 if (ret && ret != -ENOSPC) 3147 goto done; 3148 if (ret == -ENOSPC) 3149 failed++; 3150 } while (key.offset-- > 0); 3151 3152 if (failed && !retried) { 3153 failed = 0; 3154 retried = true; 3155 goto again; 3156 } else if (failed && retried) { 3157 ret = -ENOSPC; 3158 lock_chunks(root); 3159 3160 device->total_bytes = old_size; 3161 if (device->writeable) 3162 device->fs_devices->total_rw_bytes += diff; 3163 spin_lock(&root->fs_info->free_chunk_lock); 3164 root->fs_info->free_chunk_space += diff; 3165 spin_unlock(&root->fs_info->free_chunk_lock); 3166 unlock_chunks(root); 3167 goto done; 3168 } 3169 3170 /* Shrinking succeeded, else we would be at "done". */ 3171 trans = btrfs_start_transaction(root, 0); 3172 if (IS_ERR(trans)) { 3173 ret = PTR_ERR(trans); 3174 goto done; 3175 } 3176 3177 lock_chunks(root); 3178 3179 device->disk_total_bytes = new_size; 3180 /* Now btrfs_update_device() will change the on-disk size. */ 3181 ret = btrfs_update_device(trans, device); 3182 if (ret) { 3183 unlock_chunks(root); 3184 btrfs_end_transaction(trans, root); 3185 goto done; 3186 } 3187 WARN_ON(diff > old_total); 3188 btrfs_set_super_total_bytes(super_copy, old_total - diff); 3189 unlock_chunks(root); 3190 btrfs_end_transaction(trans, root); 3191 done: 3192 btrfs_free_path(path); 3193 return ret; 3194 } 3195 3196 static int btrfs_add_system_chunk(struct btrfs_root *root, 3197 struct btrfs_key *key, 3198 struct btrfs_chunk *chunk, int item_size) 3199 { 3200 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3201 struct btrfs_disk_key disk_key; 3202 u32 array_size; 3203 u8 *ptr; 3204 3205 array_size = btrfs_super_sys_array_size(super_copy); 3206 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 3207 return -EFBIG; 3208 3209 ptr = super_copy->sys_chunk_array + array_size; 3210 btrfs_cpu_key_to_disk(&disk_key, key); 3211 memcpy(ptr, &disk_key, sizeof(disk_key)); 3212 ptr += sizeof(disk_key); 3213 memcpy(ptr, chunk, item_size); 3214 item_size += sizeof(disk_key); 3215 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 3216 return 0; 3217 } 3218 3219 /* 3220 * sort the devices in descending order by max_avail, total_avail 3221 */ 3222 static int btrfs_cmp_device_info(const void *a, const void *b) 3223 { 3224 const struct btrfs_device_info *di_a = a; 3225 const struct btrfs_device_info *di_b = b; 3226 3227 if (di_a->max_avail > di_b->max_avail) 3228 return -1; 3229 if (di_a->max_avail < di_b->max_avail) 3230 return 1; 3231 if (di_a->total_avail > di_b->total_avail) 3232 return -1; 3233 if (di_a->total_avail < di_b->total_avail) 3234 return 1; 3235 return 0; 3236 } 3237 3238 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 3239 struct btrfs_root *extent_root, 3240 struct map_lookup **map_ret, 3241 u64 *num_bytes_out, u64 *stripe_size_out, 3242 u64 start, u64 type) 3243 { 3244 struct btrfs_fs_info *info = extent_root->fs_info; 3245 struct btrfs_fs_devices *fs_devices = info->fs_devices; 3246 struct list_head *cur; 3247 struct map_lookup *map = NULL; 3248 struct extent_map_tree *em_tree; 3249 struct extent_map *em; 3250 struct btrfs_device_info *devices_info = NULL; 3251 u64 total_avail; 3252 int num_stripes; /* total number of stripes to allocate */ 3253 int sub_stripes; /* sub_stripes info for map */ 3254 int dev_stripes; /* stripes per dev */ 3255 int devs_max; /* max devs to use */ 3256 int devs_min; /* min devs needed */ 3257 int devs_increment; /* ndevs has to be a multiple of this */ 3258 int ncopies; /* how many copies to data has */ 3259 int ret; 3260 u64 max_stripe_size; 3261 u64 max_chunk_size; 3262 u64 stripe_size; 3263 u64 num_bytes; 3264 int ndevs; 3265 int i; 3266 int j; 3267 3268 BUG_ON(!alloc_profile_is_valid(type, 0)); 3269 3270 if (list_empty(&fs_devices->alloc_list)) 3271 return -ENOSPC; 3272 3273 sub_stripes = 1; 3274 dev_stripes = 1; 3275 devs_increment = 1; 3276 ncopies = 1; 3277 devs_max = 0; /* 0 == as many as possible */ 3278 devs_min = 1; 3279 3280 /* 3281 * define the properties of each RAID type. 3282 * FIXME: move this to a global table and use it in all RAID 3283 * calculation code 3284 */ 3285 if (type & (BTRFS_BLOCK_GROUP_DUP)) { 3286 dev_stripes = 2; 3287 ncopies = 2; 3288 devs_max = 1; 3289 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) { 3290 devs_min = 2; 3291 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) { 3292 devs_increment = 2; 3293 ncopies = 2; 3294 devs_max = 2; 3295 devs_min = 2; 3296 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) { 3297 sub_stripes = 2; 3298 devs_increment = 2; 3299 ncopies = 2; 3300 devs_min = 4; 3301 } else { 3302 devs_max = 1; 3303 } 3304 3305 if (type & BTRFS_BLOCK_GROUP_DATA) { 3306 max_stripe_size = 1024 * 1024 * 1024; 3307 max_chunk_size = 10 * max_stripe_size; 3308 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 3309 /* for larger filesystems, use larger metadata chunks */ 3310 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) 3311 max_stripe_size = 1024 * 1024 * 1024; 3312 else 3313 max_stripe_size = 256 * 1024 * 1024; 3314 max_chunk_size = max_stripe_size; 3315 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 3316 max_stripe_size = 32 * 1024 * 1024; 3317 max_chunk_size = 2 * max_stripe_size; 3318 } else { 3319 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n", 3320 type); 3321 BUG_ON(1); 3322 } 3323 3324 /* we don't want a chunk larger than 10% of writeable space */ 3325 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 3326 max_chunk_size); 3327 3328 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices, 3329 GFP_NOFS); 3330 if (!devices_info) 3331 return -ENOMEM; 3332 3333 cur = fs_devices->alloc_list.next; 3334 3335 /* 3336 * in the first pass through the devices list, we gather information 3337 * about the available holes on each device. 3338 */ 3339 ndevs = 0; 3340 while (cur != &fs_devices->alloc_list) { 3341 struct btrfs_device *device; 3342 u64 max_avail; 3343 u64 dev_offset; 3344 3345 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 3346 3347 cur = cur->next; 3348 3349 if (!device->writeable) { 3350 printk(KERN_ERR 3351 "btrfs: read-only device in alloc_list\n"); 3352 WARN_ON(1); 3353 continue; 3354 } 3355 3356 if (!device->in_fs_metadata) 3357 continue; 3358 3359 if (device->total_bytes > device->bytes_used) 3360 total_avail = device->total_bytes - device->bytes_used; 3361 else 3362 total_avail = 0; 3363 3364 /* If there is no space on this device, skip it. */ 3365 if (total_avail == 0) 3366 continue; 3367 3368 ret = find_free_dev_extent(device, 3369 max_stripe_size * dev_stripes, 3370 &dev_offset, &max_avail); 3371 if (ret && ret != -ENOSPC) 3372 goto error; 3373 3374 if (ret == 0) 3375 max_avail = max_stripe_size * dev_stripes; 3376 3377 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 3378 continue; 3379 3380 devices_info[ndevs].dev_offset = dev_offset; 3381 devices_info[ndevs].max_avail = max_avail; 3382 devices_info[ndevs].total_avail = total_avail; 3383 devices_info[ndevs].dev = device; 3384 ++ndevs; 3385 } 3386 3387 /* 3388 * now sort the devices by hole size / available space 3389 */ 3390 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 3391 btrfs_cmp_device_info, NULL); 3392 3393 /* round down to number of usable stripes */ 3394 ndevs -= ndevs % devs_increment; 3395 3396 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 3397 ret = -ENOSPC; 3398 goto error; 3399 } 3400 3401 if (devs_max && ndevs > devs_max) 3402 ndevs = devs_max; 3403 /* 3404 * the primary goal is to maximize the number of stripes, so use as many 3405 * devices as possible, even if the stripes are not maximum sized. 3406 */ 3407 stripe_size = devices_info[ndevs-1].max_avail; 3408 num_stripes = ndevs * dev_stripes; 3409 3410 if (stripe_size * ndevs > max_chunk_size * ncopies) { 3411 stripe_size = max_chunk_size * ncopies; 3412 do_div(stripe_size, ndevs); 3413 } 3414 3415 do_div(stripe_size, dev_stripes); 3416 3417 /* align to BTRFS_STRIPE_LEN */ 3418 do_div(stripe_size, BTRFS_STRIPE_LEN); 3419 stripe_size *= BTRFS_STRIPE_LEN; 3420 3421 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 3422 if (!map) { 3423 ret = -ENOMEM; 3424 goto error; 3425 } 3426 map->num_stripes = num_stripes; 3427 3428 for (i = 0; i < ndevs; ++i) { 3429 for (j = 0; j < dev_stripes; ++j) { 3430 int s = i * dev_stripes + j; 3431 map->stripes[s].dev = devices_info[i].dev; 3432 map->stripes[s].physical = devices_info[i].dev_offset + 3433 j * stripe_size; 3434 } 3435 } 3436 map->sector_size = extent_root->sectorsize; 3437 map->stripe_len = BTRFS_STRIPE_LEN; 3438 map->io_align = BTRFS_STRIPE_LEN; 3439 map->io_width = BTRFS_STRIPE_LEN; 3440 map->type = type; 3441 map->sub_stripes = sub_stripes; 3442 3443 *map_ret = map; 3444 num_bytes = stripe_size * (num_stripes / ncopies); 3445 3446 *stripe_size_out = stripe_size; 3447 *num_bytes_out = num_bytes; 3448 3449 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 3450 3451 em = alloc_extent_map(); 3452 if (!em) { 3453 ret = -ENOMEM; 3454 goto error; 3455 } 3456 em->bdev = (struct block_device *)map; 3457 em->start = start; 3458 em->len = num_bytes; 3459 em->block_start = 0; 3460 em->block_len = em->len; 3461 3462 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 3463 write_lock(&em_tree->lock); 3464 ret = add_extent_mapping(em_tree, em); 3465 write_unlock(&em_tree->lock); 3466 free_extent_map(em); 3467 if (ret) 3468 goto error; 3469 3470 ret = btrfs_make_block_group(trans, extent_root, 0, type, 3471 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 3472 start, num_bytes); 3473 if (ret) 3474 goto error; 3475 3476 for (i = 0; i < map->num_stripes; ++i) { 3477 struct btrfs_device *device; 3478 u64 dev_offset; 3479 3480 device = map->stripes[i].dev; 3481 dev_offset = map->stripes[i].physical; 3482 3483 ret = btrfs_alloc_dev_extent(trans, device, 3484 info->chunk_root->root_key.objectid, 3485 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 3486 start, dev_offset, stripe_size); 3487 if (ret) { 3488 btrfs_abort_transaction(trans, extent_root, ret); 3489 goto error; 3490 } 3491 } 3492 3493 kfree(devices_info); 3494 return 0; 3495 3496 error: 3497 kfree(map); 3498 kfree(devices_info); 3499 return ret; 3500 } 3501 3502 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans, 3503 struct btrfs_root *extent_root, 3504 struct map_lookup *map, u64 chunk_offset, 3505 u64 chunk_size, u64 stripe_size) 3506 { 3507 u64 dev_offset; 3508 struct btrfs_key key; 3509 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 3510 struct btrfs_device *device; 3511 struct btrfs_chunk *chunk; 3512 struct btrfs_stripe *stripe; 3513 size_t item_size = btrfs_chunk_item_size(map->num_stripes); 3514 int index = 0; 3515 int ret; 3516 3517 chunk = kzalloc(item_size, GFP_NOFS); 3518 if (!chunk) 3519 return -ENOMEM; 3520 3521 index = 0; 3522 while (index < map->num_stripes) { 3523 device = map->stripes[index].dev; 3524 device->bytes_used += stripe_size; 3525 ret = btrfs_update_device(trans, device); 3526 if (ret) 3527 goto out_free; 3528 index++; 3529 } 3530 3531 spin_lock(&extent_root->fs_info->free_chunk_lock); 3532 extent_root->fs_info->free_chunk_space -= (stripe_size * 3533 map->num_stripes); 3534 spin_unlock(&extent_root->fs_info->free_chunk_lock); 3535 3536 index = 0; 3537 stripe = &chunk->stripe; 3538 while (index < map->num_stripes) { 3539 device = map->stripes[index].dev; 3540 dev_offset = map->stripes[index].physical; 3541 3542 btrfs_set_stack_stripe_devid(stripe, device->devid); 3543 btrfs_set_stack_stripe_offset(stripe, dev_offset); 3544 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 3545 stripe++; 3546 index++; 3547 } 3548 3549 btrfs_set_stack_chunk_length(chunk, chunk_size); 3550 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 3551 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 3552 btrfs_set_stack_chunk_type(chunk, map->type); 3553 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 3554 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 3555 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 3556 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 3557 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 3558 3559 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3560 key.type = BTRFS_CHUNK_ITEM_KEY; 3561 key.offset = chunk_offset; 3562 3563 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 3564 3565 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3566 /* 3567 * TODO: Cleanup of inserted chunk root in case of 3568 * failure. 3569 */ 3570 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 3571 item_size); 3572 } 3573 3574 out_free: 3575 kfree(chunk); 3576 return ret; 3577 } 3578 3579 /* 3580 * Chunk allocation falls into two parts. The first part does works 3581 * that make the new allocated chunk useable, but not do any operation 3582 * that modifies the chunk tree. The second part does the works that 3583 * require modifying the chunk tree. This division is important for the 3584 * bootstrap process of adding storage to a seed btrfs. 3585 */ 3586 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 3587 struct btrfs_root *extent_root, u64 type) 3588 { 3589 u64 chunk_offset; 3590 u64 chunk_size; 3591 u64 stripe_size; 3592 struct map_lookup *map; 3593 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 3594 int ret; 3595 3596 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID, 3597 &chunk_offset); 3598 if (ret) 3599 return ret; 3600 3601 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, 3602 &stripe_size, chunk_offset, type); 3603 if (ret) 3604 return ret; 3605 3606 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, 3607 chunk_size, stripe_size); 3608 if (ret) 3609 return ret; 3610 return 0; 3611 } 3612 3613 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 3614 struct btrfs_root *root, 3615 struct btrfs_device *device) 3616 { 3617 u64 chunk_offset; 3618 u64 sys_chunk_offset; 3619 u64 chunk_size; 3620 u64 sys_chunk_size; 3621 u64 stripe_size; 3622 u64 sys_stripe_size; 3623 u64 alloc_profile; 3624 struct map_lookup *map; 3625 struct map_lookup *sys_map; 3626 struct btrfs_fs_info *fs_info = root->fs_info; 3627 struct btrfs_root *extent_root = fs_info->extent_root; 3628 int ret; 3629 3630 ret = find_next_chunk(fs_info->chunk_root, 3631 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset); 3632 if (ret) 3633 return ret; 3634 3635 alloc_profile = BTRFS_BLOCK_GROUP_METADATA | 3636 fs_info->avail_metadata_alloc_bits; 3637 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); 3638 3639 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, 3640 &stripe_size, chunk_offset, alloc_profile); 3641 if (ret) 3642 return ret; 3643 3644 sys_chunk_offset = chunk_offset + chunk_size; 3645 3646 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM | 3647 fs_info->avail_system_alloc_bits; 3648 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); 3649 3650 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map, 3651 &sys_chunk_size, &sys_stripe_size, 3652 sys_chunk_offset, alloc_profile); 3653 if (ret) { 3654 btrfs_abort_transaction(trans, root, ret); 3655 goto out; 3656 } 3657 3658 ret = btrfs_add_device(trans, fs_info->chunk_root, device); 3659 if (ret) { 3660 btrfs_abort_transaction(trans, root, ret); 3661 goto out; 3662 } 3663 3664 /* 3665 * Modifying chunk tree needs allocating new blocks from both 3666 * system block group and metadata block group. So we only can 3667 * do operations require modifying the chunk tree after both 3668 * block groups were created. 3669 */ 3670 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, 3671 chunk_size, stripe_size); 3672 if (ret) { 3673 btrfs_abort_transaction(trans, root, ret); 3674 goto out; 3675 } 3676 3677 ret = __finish_chunk_alloc(trans, extent_root, sys_map, 3678 sys_chunk_offset, sys_chunk_size, 3679 sys_stripe_size); 3680 if (ret) 3681 btrfs_abort_transaction(trans, root, ret); 3682 3683 out: 3684 3685 return ret; 3686 } 3687 3688 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 3689 { 3690 struct extent_map *em; 3691 struct map_lookup *map; 3692 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 3693 int readonly = 0; 3694 int i; 3695 3696 read_lock(&map_tree->map_tree.lock); 3697 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 3698 read_unlock(&map_tree->map_tree.lock); 3699 if (!em) 3700 return 1; 3701 3702 if (btrfs_test_opt(root, DEGRADED)) { 3703 free_extent_map(em); 3704 return 0; 3705 } 3706 3707 map = (struct map_lookup *)em->bdev; 3708 for (i = 0; i < map->num_stripes; i++) { 3709 if (!map->stripes[i].dev->writeable) { 3710 readonly = 1; 3711 break; 3712 } 3713 } 3714 free_extent_map(em); 3715 return readonly; 3716 } 3717 3718 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 3719 { 3720 extent_map_tree_init(&tree->map_tree); 3721 } 3722 3723 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 3724 { 3725 struct extent_map *em; 3726 3727 while (1) { 3728 write_lock(&tree->map_tree.lock); 3729 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 3730 if (em) 3731 remove_extent_mapping(&tree->map_tree, em); 3732 write_unlock(&tree->map_tree.lock); 3733 if (!em) 3734 break; 3735 kfree(em->bdev); 3736 /* once for us */ 3737 free_extent_map(em); 3738 /* once for the tree */ 3739 free_extent_map(em); 3740 } 3741 } 3742 3743 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len) 3744 { 3745 struct extent_map *em; 3746 struct map_lookup *map; 3747 struct extent_map_tree *em_tree = &map_tree->map_tree; 3748 int ret; 3749 3750 read_lock(&em_tree->lock); 3751 em = lookup_extent_mapping(em_tree, logical, len); 3752 read_unlock(&em_tree->lock); 3753 BUG_ON(!em); 3754 3755 BUG_ON(em->start > logical || em->start + em->len < logical); 3756 map = (struct map_lookup *)em->bdev; 3757 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 3758 ret = map->num_stripes; 3759 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 3760 ret = map->sub_stripes; 3761 else 3762 ret = 1; 3763 free_extent_map(em); 3764 return ret; 3765 } 3766 3767 static int find_live_mirror(struct map_lookup *map, int first, int num, 3768 int optimal) 3769 { 3770 int i; 3771 if (map->stripes[optimal].dev->bdev) 3772 return optimal; 3773 for (i = first; i < first + num; i++) { 3774 if (map->stripes[i].dev->bdev) 3775 return i; 3776 } 3777 /* we couldn't find one that doesn't fail. Just return something 3778 * and the io error handling code will clean up eventually 3779 */ 3780 return optimal; 3781 } 3782 3783 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, 3784 u64 logical, u64 *length, 3785 struct btrfs_bio **bbio_ret, 3786 int mirror_num) 3787 { 3788 struct extent_map *em; 3789 struct map_lookup *map; 3790 struct extent_map_tree *em_tree = &map_tree->map_tree; 3791 u64 offset; 3792 u64 stripe_offset; 3793 u64 stripe_end_offset; 3794 u64 stripe_nr; 3795 u64 stripe_nr_orig; 3796 u64 stripe_nr_end; 3797 int stripe_index; 3798 int i; 3799 int ret = 0; 3800 int num_stripes; 3801 int max_errors = 0; 3802 struct btrfs_bio *bbio = NULL; 3803 3804 read_lock(&em_tree->lock); 3805 em = lookup_extent_mapping(em_tree, logical, *length); 3806 read_unlock(&em_tree->lock); 3807 3808 if (!em) { 3809 printk(KERN_CRIT "btrfs: unable to find logical %llu len %llu\n", 3810 (unsigned long long)logical, 3811 (unsigned long long)*length); 3812 BUG(); 3813 } 3814 3815 BUG_ON(em->start > logical || em->start + em->len < logical); 3816 map = (struct map_lookup *)em->bdev; 3817 offset = logical - em->start; 3818 3819 if (mirror_num > map->num_stripes) 3820 mirror_num = 0; 3821 3822 stripe_nr = offset; 3823 /* 3824 * stripe_nr counts the total number of stripes we have to stride 3825 * to get to this block 3826 */ 3827 do_div(stripe_nr, map->stripe_len); 3828 3829 stripe_offset = stripe_nr * map->stripe_len; 3830 BUG_ON(offset < stripe_offset); 3831 3832 /* stripe_offset is the offset of this block in its stripe*/ 3833 stripe_offset = offset - stripe_offset; 3834 3835 if (rw & REQ_DISCARD) 3836 *length = min_t(u64, em->len - offset, *length); 3837 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 3838 /* we limit the length of each bio to what fits in a stripe */ 3839 *length = min_t(u64, em->len - offset, 3840 map->stripe_len - stripe_offset); 3841 } else { 3842 *length = em->len - offset; 3843 } 3844 3845 if (!bbio_ret) 3846 goto out; 3847 3848 num_stripes = 1; 3849 stripe_index = 0; 3850 stripe_nr_orig = stripe_nr; 3851 stripe_nr_end = (offset + *length + map->stripe_len - 1) & 3852 (~(map->stripe_len - 1)); 3853 do_div(stripe_nr_end, map->stripe_len); 3854 stripe_end_offset = stripe_nr_end * map->stripe_len - 3855 (offset + *length); 3856 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3857 if (rw & REQ_DISCARD) 3858 num_stripes = min_t(u64, map->num_stripes, 3859 stripe_nr_end - stripe_nr_orig); 3860 stripe_index = do_div(stripe_nr, map->num_stripes); 3861 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 3862 if (rw & (REQ_WRITE | REQ_DISCARD)) 3863 num_stripes = map->num_stripes; 3864 else if (mirror_num) 3865 stripe_index = mirror_num - 1; 3866 else { 3867 stripe_index = find_live_mirror(map, 0, 3868 map->num_stripes, 3869 current->pid % map->num_stripes); 3870 mirror_num = stripe_index + 1; 3871 } 3872 3873 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3874 if (rw & (REQ_WRITE | REQ_DISCARD)) { 3875 num_stripes = map->num_stripes; 3876 } else if (mirror_num) { 3877 stripe_index = mirror_num - 1; 3878 } else { 3879 mirror_num = 1; 3880 } 3881 3882 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3883 int factor = map->num_stripes / map->sub_stripes; 3884 3885 stripe_index = do_div(stripe_nr, factor); 3886 stripe_index *= map->sub_stripes; 3887 3888 if (rw & REQ_WRITE) 3889 num_stripes = map->sub_stripes; 3890 else if (rw & REQ_DISCARD) 3891 num_stripes = min_t(u64, map->sub_stripes * 3892 (stripe_nr_end - stripe_nr_orig), 3893 map->num_stripes); 3894 else if (mirror_num) 3895 stripe_index += mirror_num - 1; 3896 else { 3897 int old_stripe_index = stripe_index; 3898 stripe_index = find_live_mirror(map, stripe_index, 3899 map->sub_stripes, stripe_index + 3900 current->pid % map->sub_stripes); 3901 mirror_num = stripe_index - old_stripe_index + 1; 3902 } 3903 } else { 3904 /* 3905 * after this do_div call, stripe_nr is the number of stripes 3906 * on this device we have to walk to find the data, and 3907 * stripe_index is the number of our device in the stripe array 3908 */ 3909 stripe_index = do_div(stripe_nr, map->num_stripes); 3910 mirror_num = stripe_index + 1; 3911 } 3912 BUG_ON(stripe_index >= map->num_stripes); 3913 3914 bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS); 3915 if (!bbio) { 3916 ret = -ENOMEM; 3917 goto out; 3918 } 3919 atomic_set(&bbio->error, 0); 3920 3921 if (rw & REQ_DISCARD) { 3922 int factor = 0; 3923 int sub_stripes = 0; 3924 u64 stripes_per_dev = 0; 3925 u32 remaining_stripes = 0; 3926 u32 last_stripe = 0; 3927 3928 if (map->type & 3929 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 3930 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 3931 sub_stripes = 1; 3932 else 3933 sub_stripes = map->sub_stripes; 3934 3935 factor = map->num_stripes / sub_stripes; 3936 stripes_per_dev = div_u64_rem(stripe_nr_end - 3937 stripe_nr_orig, 3938 factor, 3939 &remaining_stripes); 3940 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 3941 last_stripe *= sub_stripes; 3942 } 3943 3944 for (i = 0; i < num_stripes; i++) { 3945 bbio->stripes[i].physical = 3946 map->stripes[stripe_index].physical + 3947 stripe_offset + stripe_nr * map->stripe_len; 3948 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 3949 3950 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 3951 BTRFS_BLOCK_GROUP_RAID10)) { 3952 bbio->stripes[i].length = stripes_per_dev * 3953 map->stripe_len; 3954 3955 if (i / sub_stripes < remaining_stripes) 3956 bbio->stripes[i].length += 3957 map->stripe_len; 3958 3959 /* 3960 * Special for the first stripe and 3961 * the last stripe: 3962 * 3963 * |-------|...|-------| 3964 * |----------| 3965 * off end_off 3966 */ 3967 if (i < sub_stripes) 3968 bbio->stripes[i].length -= 3969 stripe_offset; 3970 3971 if (stripe_index >= last_stripe && 3972 stripe_index <= (last_stripe + 3973 sub_stripes - 1)) 3974 bbio->stripes[i].length -= 3975 stripe_end_offset; 3976 3977 if (i == sub_stripes - 1) 3978 stripe_offset = 0; 3979 } else 3980 bbio->stripes[i].length = *length; 3981 3982 stripe_index++; 3983 if (stripe_index == map->num_stripes) { 3984 /* This could only happen for RAID0/10 */ 3985 stripe_index = 0; 3986 stripe_nr++; 3987 } 3988 } 3989 } else { 3990 for (i = 0; i < num_stripes; i++) { 3991 bbio->stripes[i].physical = 3992 map->stripes[stripe_index].physical + 3993 stripe_offset + 3994 stripe_nr * map->stripe_len; 3995 bbio->stripes[i].dev = 3996 map->stripes[stripe_index].dev; 3997 stripe_index++; 3998 } 3999 } 4000 4001 if (rw & REQ_WRITE) { 4002 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 4003 BTRFS_BLOCK_GROUP_RAID10 | 4004 BTRFS_BLOCK_GROUP_DUP)) { 4005 max_errors = 1; 4006 } 4007 } 4008 4009 *bbio_ret = bbio; 4010 bbio->num_stripes = num_stripes; 4011 bbio->max_errors = max_errors; 4012 bbio->mirror_num = mirror_num; 4013 out: 4014 free_extent_map(em); 4015 return ret; 4016 } 4017 4018 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, 4019 u64 logical, u64 *length, 4020 struct btrfs_bio **bbio_ret, int mirror_num) 4021 { 4022 return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret, 4023 mirror_num); 4024 } 4025 4026 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 4027 u64 chunk_start, u64 physical, u64 devid, 4028 u64 **logical, int *naddrs, int *stripe_len) 4029 { 4030 struct extent_map_tree *em_tree = &map_tree->map_tree; 4031 struct extent_map *em; 4032 struct map_lookup *map; 4033 u64 *buf; 4034 u64 bytenr; 4035 u64 length; 4036 u64 stripe_nr; 4037 int i, j, nr = 0; 4038 4039 read_lock(&em_tree->lock); 4040 em = lookup_extent_mapping(em_tree, chunk_start, 1); 4041 read_unlock(&em_tree->lock); 4042 4043 BUG_ON(!em || em->start != chunk_start); 4044 map = (struct map_lookup *)em->bdev; 4045 4046 length = em->len; 4047 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 4048 do_div(length, map->num_stripes / map->sub_stripes); 4049 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 4050 do_div(length, map->num_stripes); 4051 4052 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); 4053 BUG_ON(!buf); /* -ENOMEM */ 4054 4055 for (i = 0; i < map->num_stripes; i++) { 4056 if (devid && map->stripes[i].dev->devid != devid) 4057 continue; 4058 if (map->stripes[i].physical > physical || 4059 map->stripes[i].physical + length <= physical) 4060 continue; 4061 4062 stripe_nr = physical - map->stripes[i].physical; 4063 do_div(stripe_nr, map->stripe_len); 4064 4065 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 4066 stripe_nr = stripe_nr * map->num_stripes + i; 4067 do_div(stripe_nr, map->sub_stripes); 4068 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 4069 stripe_nr = stripe_nr * map->num_stripes + i; 4070 } 4071 bytenr = chunk_start + stripe_nr * map->stripe_len; 4072 WARN_ON(nr >= map->num_stripes); 4073 for (j = 0; j < nr; j++) { 4074 if (buf[j] == bytenr) 4075 break; 4076 } 4077 if (j == nr) { 4078 WARN_ON(nr >= map->num_stripes); 4079 buf[nr++] = bytenr; 4080 } 4081 } 4082 4083 *logical = buf; 4084 *naddrs = nr; 4085 *stripe_len = map->stripe_len; 4086 4087 free_extent_map(em); 4088 return 0; 4089 } 4090 4091 static void *merge_stripe_index_into_bio_private(void *bi_private, 4092 unsigned int stripe_index) 4093 { 4094 /* 4095 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is 4096 * at most 1. 4097 * The alternative solution (instead of stealing bits from the 4098 * pointer) would be to allocate an intermediate structure 4099 * that contains the old private pointer plus the stripe_index. 4100 */ 4101 BUG_ON((((uintptr_t)bi_private) & 3) != 0); 4102 BUG_ON(stripe_index > 3); 4103 return (void *)(((uintptr_t)bi_private) | stripe_index); 4104 } 4105 4106 static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private) 4107 { 4108 return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3)); 4109 } 4110 4111 static unsigned int extract_stripe_index_from_bio_private(void *bi_private) 4112 { 4113 return (unsigned int)((uintptr_t)bi_private) & 3; 4114 } 4115 4116 static void btrfs_end_bio(struct bio *bio, int err) 4117 { 4118 struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private); 4119 int is_orig_bio = 0; 4120 4121 if (err) { 4122 atomic_inc(&bbio->error); 4123 if (err == -EIO || err == -EREMOTEIO) { 4124 unsigned int stripe_index = 4125 extract_stripe_index_from_bio_private( 4126 bio->bi_private); 4127 struct btrfs_device *dev; 4128 4129 BUG_ON(stripe_index >= bbio->num_stripes); 4130 dev = bbio->stripes[stripe_index].dev; 4131 if (dev->bdev) { 4132 if (bio->bi_rw & WRITE) 4133 btrfs_dev_stat_inc(dev, 4134 BTRFS_DEV_STAT_WRITE_ERRS); 4135 else 4136 btrfs_dev_stat_inc(dev, 4137 BTRFS_DEV_STAT_READ_ERRS); 4138 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) 4139 btrfs_dev_stat_inc(dev, 4140 BTRFS_DEV_STAT_FLUSH_ERRS); 4141 btrfs_dev_stat_print_on_error(dev); 4142 } 4143 } 4144 } 4145 4146 if (bio == bbio->orig_bio) 4147 is_orig_bio = 1; 4148 4149 if (atomic_dec_and_test(&bbio->stripes_pending)) { 4150 if (!is_orig_bio) { 4151 bio_put(bio); 4152 bio = bbio->orig_bio; 4153 } 4154 bio->bi_private = bbio->private; 4155 bio->bi_end_io = bbio->end_io; 4156 bio->bi_bdev = (struct block_device *) 4157 (unsigned long)bbio->mirror_num; 4158 /* only send an error to the higher layers if it is 4159 * beyond the tolerance of the multi-bio 4160 */ 4161 if (atomic_read(&bbio->error) > bbio->max_errors) { 4162 err = -EIO; 4163 } else { 4164 /* 4165 * this bio is actually up to date, we didn't 4166 * go over the max number of errors 4167 */ 4168 set_bit(BIO_UPTODATE, &bio->bi_flags); 4169 err = 0; 4170 } 4171 kfree(bbio); 4172 4173 bio_endio(bio, err); 4174 } else if (!is_orig_bio) { 4175 bio_put(bio); 4176 } 4177 } 4178 4179 struct async_sched { 4180 struct bio *bio; 4181 int rw; 4182 struct btrfs_fs_info *info; 4183 struct btrfs_work work; 4184 }; 4185 4186 /* 4187 * see run_scheduled_bios for a description of why bios are collected for 4188 * async submit. 4189 * 4190 * This will add one bio to the pending list for a device and make sure 4191 * the work struct is scheduled. 4192 */ 4193 static noinline void schedule_bio(struct btrfs_root *root, 4194 struct btrfs_device *device, 4195 int rw, struct bio *bio) 4196 { 4197 int should_queue = 1; 4198 struct btrfs_pending_bios *pending_bios; 4199 4200 /* don't bother with additional async steps for reads, right now */ 4201 if (!(rw & REQ_WRITE)) { 4202 bio_get(bio); 4203 btrfsic_submit_bio(rw, bio); 4204 bio_put(bio); 4205 return; 4206 } 4207 4208 /* 4209 * nr_async_bios allows us to reliably return congestion to the 4210 * higher layers. Otherwise, the async bio makes it appear we have 4211 * made progress against dirty pages when we've really just put it 4212 * on a queue for later 4213 */ 4214 atomic_inc(&root->fs_info->nr_async_bios); 4215 WARN_ON(bio->bi_next); 4216 bio->bi_next = NULL; 4217 bio->bi_rw |= rw; 4218 4219 spin_lock(&device->io_lock); 4220 if (bio->bi_rw & REQ_SYNC) 4221 pending_bios = &device->pending_sync_bios; 4222 else 4223 pending_bios = &device->pending_bios; 4224 4225 if (pending_bios->tail) 4226 pending_bios->tail->bi_next = bio; 4227 4228 pending_bios->tail = bio; 4229 if (!pending_bios->head) 4230 pending_bios->head = bio; 4231 if (device->running_pending) 4232 should_queue = 0; 4233 4234 spin_unlock(&device->io_lock); 4235 4236 if (should_queue) 4237 btrfs_queue_worker(&root->fs_info->submit_workers, 4238 &device->work); 4239 } 4240 4241 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 4242 int mirror_num, int async_submit) 4243 { 4244 struct btrfs_mapping_tree *map_tree; 4245 struct btrfs_device *dev; 4246 struct bio *first_bio = bio; 4247 u64 logical = (u64)bio->bi_sector << 9; 4248 u64 length = 0; 4249 u64 map_length; 4250 int ret; 4251 int dev_nr = 0; 4252 int total_devs = 1; 4253 struct btrfs_bio *bbio = NULL; 4254 4255 length = bio->bi_size; 4256 map_tree = &root->fs_info->mapping_tree; 4257 map_length = length; 4258 4259 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio, 4260 mirror_num); 4261 if (ret) /* -ENOMEM */ 4262 return ret; 4263 4264 total_devs = bbio->num_stripes; 4265 if (map_length < length) { 4266 printk(KERN_CRIT "btrfs: mapping failed logical %llu bio len %llu " 4267 "len %llu\n", (unsigned long long)logical, 4268 (unsigned long long)length, 4269 (unsigned long long)map_length); 4270 BUG(); 4271 } 4272 4273 bbio->orig_bio = first_bio; 4274 bbio->private = first_bio->bi_private; 4275 bbio->end_io = first_bio->bi_end_io; 4276 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 4277 4278 while (dev_nr < total_devs) { 4279 if (dev_nr < total_devs - 1) { 4280 bio = bio_clone(first_bio, GFP_NOFS); 4281 BUG_ON(!bio); /* -ENOMEM */ 4282 } else { 4283 bio = first_bio; 4284 } 4285 bio->bi_private = bbio; 4286 bio->bi_private = merge_stripe_index_into_bio_private( 4287 bio->bi_private, (unsigned int)dev_nr); 4288 bio->bi_end_io = btrfs_end_bio; 4289 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9; 4290 dev = bbio->stripes[dev_nr].dev; 4291 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) { 4292 #ifdef DEBUG 4293 struct rcu_string *name; 4294 4295 rcu_read_lock(); 4296 name = rcu_dereference(dev->name); 4297 pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu " 4298 "(%s id %llu), size=%u\n", rw, 4299 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev, 4300 name->str, dev->devid, bio->bi_size); 4301 rcu_read_unlock(); 4302 #endif 4303 bio->bi_bdev = dev->bdev; 4304 if (async_submit) 4305 schedule_bio(root, dev, rw, bio); 4306 else 4307 btrfsic_submit_bio(rw, bio); 4308 } else { 4309 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev; 4310 bio->bi_sector = logical >> 9; 4311 bio_endio(bio, -EIO); 4312 } 4313 dev_nr++; 4314 } 4315 return 0; 4316 } 4317 4318 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid, 4319 u8 *uuid, u8 *fsid) 4320 { 4321 struct btrfs_device *device; 4322 struct btrfs_fs_devices *cur_devices; 4323 4324 cur_devices = root->fs_info->fs_devices; 4325 while (cur_devices) { 4326 if (!fsid || 4327 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 4328 device = __find_device(&cur_devices->devices, 4329 devid, uuid); 4330 if (device) 4331 return device; 4332 } 4333 cur_devices = cur_devices->seed; 4334 } 4335 return NULL; 4336 } 4337 4338 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 4339 u64 devid, u8 *dev_uuid) 4340 { 4341 struct btrfs_device *device; 4342 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 4343 4344 device = kzalloc(sizeof(*device), GFP_NOFS); 4345 if (!device) 4346 return NULL; 4347 list_add(&device->dev_list, 4348 &fs_devices->devices); 4349 device->dev_root = root->fs_info->dev_root; 4350 device->devid = devid; 4351 device->work.func = pending_bios_fn; 4352 device->fs_devices = fs_devices; 4353 device->missing = 1; 4354 fs_devices->num_devices++; 4355 fs_devices->missing_devices++; 4356 spin_lock_init(&device->io_lock); 4357 INIT_LIST_HEAD(&device->dev_alloc_list); 4358 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE); 4359 return device; 4360 } 4361 4362 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 4363 struct extent_buffer *leaf, 4364 struct btrfs_chunk *chunk) 4365 { 4366 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4367 struct map_lookup *map; 4368 struct extent_map *em; 4369 u64 logical; 4370 u64 length; 4371 u64 devid; 4372 u8 uuid[BTRFS_UUID_SIZE]; 4373 int num_stripes; 4374 int ret; 4375 int i; 4376 4377 logical = key->offset; 4378 length = btrfs_chunk_length(leaf, chunk); 4379 4380 read_lock(&map_tree->map_tree.lock); 4381 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 4382 read_unlock(&map_tree->map_tree.lock); 4383 4384 /* already mapped? */ 4385 if (em && em->start <= logical && em->start + em->len > logical) { 4386 free_extent_map(em); 4387 return 0; 4388 } else if (em) { 4389 free_extent_map(em); 4390 } 4391 4392 em = alloc_extent_map(); 4393 if (!em) 4394 return -ENOMEM; 4395 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 4396 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4397 if (!map) { 4398 free_extent_map(em); 4399 return -ENOMEM; 4400 } 4401 4402 em->bdev = (struct block_device *)map; 4403 em->start = logical; 4404 em->len = length; 4405 em->block_start = 0; 4406 em->block_len = em->len; 4407 4408 map->num_stripes = num_stripes; 4409 map->io_width = btrfs_chunk_io_width(leaf, chunk); 4410 map->io_align = btrfs_chunk_io_align(leaf, chunk); 4411 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 4412 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 4413 map->type = btrfs_chunk_type(leaf, chunk); 4414 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 4415 for (i = 0; i < num_stripes; i++) { 4416 map->stripes[i].physical = 4417 btrfs_stripe_offset_nr(leaf, chunk, i); 4418 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 4419 read_extent_buffer(leaf, uuid, (unsigned long) 4420 btrfs_stripe_dev_uuid_nr(chunk, i), 4421 BTRFS_UUID_SIZE); 4422 map->stripes[i].dev = btrfs_find_device(root, devid, uuid, 4423 NULL); 4424 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 4425 kfree(map); 4426 free_extent_map(em); 4427 return -EIO; 4428 } 4429 if (!map->stripes[i].dev) { 4430 map->stripes[i].dev = 4431 add_missing_dev(root, devid, uuid); 4432 if (!map->stripes[i].dev) { 4433 kfree(map); 4434 free_extent_map(em); 4435 return -EIO; 4436 } 4437 } 4438 map->stripes[i].dev->in_fs_metadata = 1; 4439 } 4440 4441 write_lock(&map_tree->map_tree.lock); 4442 ret = add_extent_mapping(&map_tree->map_tree, em); 4443 write_unlock(&map_tree->map_tree.lock); 4444 BUG_ON(ret); /* Tree corruption */ 4445 free_extent_map(em); 4446 4447 return 0; 4448 } 4449 4450 static void fill_device_from_item(struct extent_buffer *leaf, 4451 struct btrfs_dev_item *dev_item, 4452 struct btrfs_device *device) 4453 { 4454 unsigned long ptr; 4455 4456 device->devid = btrfs_device_id(leaf, dev_item); 4457 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 4458 device->total_bytes = device->disk_total_bytes; 4459 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 4460 device->type = btrfs_device_type(leaf, dev_item); 4461 device->io_align = btrfs_device_io_align(leaf, dev_item); 4462 device->io_width = btrfs_device_io_width(leaf, dev_item); 4463 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 4464 4465 ptr = (unsigned long)btrfs_device_uuid(dev_item); 4466 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 4467 } 4468 4469 static int open_seed_devices(struct btrfs_root *root, u8 *fsid) 4470 { 4471 struct btrfs_fs_devices *fs_devices; 4472 int ret; 4473 4474 BUG_ON(!mutex_is_locked(&uuid_mutex)); 4475 4476 fs_devices = root->fs_info->fs_devices->seed; 4477 while (fs_devices) { 4478 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 4479 ret = 0; 4480 goto out; 4481 } 4482 fs_devices = fs_devices->seed; 4483 } 4484 4485 fs_devices = find_fsid(fsid); 4486 if (!fs_devices) { 4487 ret = -ENOENT; 4488 goto out; 4489 } 4490 4491 fs_devices = clone_fs_devices(fs_devices); 4492 if (IS_ERR(fs_devices)) { 4493 ret = PTR_ERR(fs_devices); 4494 goto out; 4495 } 4496 4497 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 4498 root->fs_info->bdev_holder); 4499 if (ret) { 4500 free_fs_devices(fs_devices); 4501 goto out; 4502 } 4503 4504 if (!fs_devices->seeding) { 4505 __btrfs_close_devices(fs_devices); 4506 free_fs_devices(fs_devices); 4507 ret = -EINVAL; 4508 goto out; 4509 } 4510 4511 fs_devices->seed = root->fs_info->fs_devices->seed; 4512 root->fs_info->fs_devices->seed = fs_devices; 4513 out: 4514 return ret; 4515 } 4516 4517 static int read_one_dev(struct btrfs_root *root, 4518 struct extent_buffer *leaf, 4519 struct btrfs_dev_item *dev_item) 4520 { 4521 struct btrfs_device *device; 4522 u64 devid; 4523 int ret; 4524 u8 fs_uuid[BTRFS_UUID_SIZE]; 4525 u8 dev_uuid[BTRFS_UUID_SIZE]; 4526 4527 devid = btrfs_device_id(leaf, dev_item); 4528 read_extent_buffer(leaf, dev_uuid, 4529 (unsigned long)btrfs_device_uuid(dev_item), 4530 BTRFS_UUID_SIZE); 4531 read_extent_buffer(leaf, fs_uuid, 4532 (unsigned long)btrfs_device_fsid(dev_item), 4533 BTRFS_UUID_SIZE); 4534 4535 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 4536 ret = open_seed_devices(root, fs_uuid); 4537 if (ret && !btrfs_test_opt(root, DEGRADED)) 4538 return ret; 4539 } 4540 4541 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); 4542 if (!device || !device->bdev) { 4543 if (!btrfs_test_opt(root, DEGRADED)) 4544 return -EIO; 4545 4546 if (!device) { 4547 printk(KERN_WARNING "warning devid %llu missing\n", 4548 (unsigned long long)devid); 4549 device = add_missing_dev(root, devid, dev_uuid); 4550 if (!device) 4551 return -ENOMEM; 4552 } else if (!device->missing) { 4553 /* 4554 * this happens when a device that was properly setup 4555 * in the device info lists suddenly goes bad. 4556 * device->bdev is NULL, and so we have to set 4557 * device->missing to one here 4558 */ 4559 root->fs_info->fs_devices->missing_devices++; 4560 device->missing = 1; 4561 } 4562 } 4563 4564 if (device->fs_devices != root->fs_info->fs_devices) { 4565 BUG_ON(device->writeable); 4566 if (device->generation != 4567 btrfs_device_generation(leaf, dev_item)) 4568 return -EINVAL; 4569 } 4570 4571 fill_device_from_item(leaf, dev_item, device); 4572 device->dev_root = root->fs_info->dev_root; 4573 device->in_fs_metadata = 1; 4574 if (device->writeable) { 4575 device->fs_devices->total_rw_bytes += device->total_bytes; 4576 spin_lock(&root->fs_info->free_chunk_lock); 4577 root->fs_info->free_chunk_space += device->total_bytes - 4578 device->bytes_used; 4579 spin_unlock(&root->fs_info->free_chunk_lock); 4580 } 4581 ret = 0; 4582 return ret; 4583 } 4584 4585 int btrfs_read_sys_array(struct btrfs_root *root) 4586 { 4587 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4588 struct extent_buffer *sb; 4589 struct btrfs_disk_key *disk_key; 4590 struct btrfs_chunk *chunk; 4591 u8 *ptr; 4592 unsigned long sb_ptr; 4593 int ret = 0; 4594 u32 num_stripes; 4595 u32 array_size; 4596 u32 len = 0; 4597 u32 cur; 4598 struct btrfs_key key; 4599 4600 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, 4601 BTRFS_SUPER_INFO_SIZE); 4602 if (!sb) 4603 return -ENOMEM; 4604 btrfs_set_buffer_uptodate(sb); 4605 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 4606 /* 4607 * The sb extent buffer is artifical and just used to read the system array. 4608 * btrfs_set_buffer_uptodate() call does not properly mark all it's 4609 * pages up-to-date when the page is larger: extent does not cover the 4610 * whole page and consequently check_page_uptodate does not find all 4611 * the page's extents up-to-date (the hole beyond sb), 4612 * write_extent_buffer then triggers a WARN_ON. 4613 * 4614 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 4615 * but sb spans only this function. Add an explicit SetPageUptodate call 4616 * to silence the warning eg. on PowerPC 64. 4617 */ 4618 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) 4619 SetPageUptodate(sb->pages[0]); 4620 4621 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 4622 array_size = btrfs_super_sys_array_size(super_copy); 4623 4624 ptr = super_copy->sys_chunk_array; 4625 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); 4626 cur = 0; 4627 4628 while (cur < array_size) { 4629 disk_key = (struct btrfs_disk_key *)ptr; 4630 btrfs_disk_key_to_cpu(&key, disk_key); 4631 4632 len = sizeof(*disk_key); ptr += len; 4633 sb_ptr += len; 4634 cur += len; 4635 4636 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 4637 chunk = (struct btrfs_chunk *)sb_ptr; 4638 ret = read_one_chunk(root, &key, sb, chunk); 4639 if (ret) 4640 break; 4641 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 4642 len = btrfs_chunk_item_size(num_stripes); 4643 } else { 4644 ret = -EIO; 4645 break; 4646 } 4647 ptr += len; 4648 sb_ptr += len; 4649 cur += len; 4650 } 4651 free_extent_buffer(sb); 4652 return ret; 4653 } 4654 4655 int btrfs_read_chunk_tree(struct btrfs_root *root) 4656 { 4657 struct btrfs_path *path; 4658 struct extent_buffer *leaf; 4659 struct btrfs_key key; 4660 struct btrfs_key found_key; 4661 int ret; 4662 int slot; 4663 4664 root = root->fs_info->chunk_root; 4665 4666 path = btrfs_alloc_path(); 4667 if (!path) 4668 return -ENOMEM; 4669 4670 mutex_lock(&uuid_mutex); 4671 lock_chunks(root); 4672 4673 /* first we search for all of the device items, and then we 4674 * read in all of the chunk items. This way we can create chunk 4675 * mappings that reference all of the devices that are afound 4676 */ 4677 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 4678 key.offset = 0; 4679 key.type = 0; 4680 again: 4681 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4682 if (ret < 0) 4683 goto error; 4684 while (1) { 4685 leaf = path->nodes[0]; 4686 slot = path->slots[0]; 4687 if (slot >= btrfs_header_nritems(leaf)) { 4688 ret = btrfs_next_leaf(root, path); 4689 if (ret == 0) 4690 continue; 4691 if (ret < 0) 4692 goto error; 4693 break; 4694 } 4695 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4696 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { 4697 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID) 4698 break; 4699 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 4700 struct btrfs_dev_item *dev_item; 4701 dev_item = btrfs_item_ptr(leaf, slot, 4702 struct btrfs_dev_item); 4703 ret = read_one_dev(root, leaf, dev_item); 4704 if (ret) 4705 goto error; 4706 } 4707 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 4708 struct btrfs_chunk *chunk; 4709 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4710 ret = read_one_chunk(root, &found_key, leaf, chunk); 4711 if (ret) 4712 goto error; 4713 } 4714 path->slots[0]++; 4715 } 4716 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { 4717 key.objectid = 0; 4718 btrfs_release_path(path); 4719 goto again; 4720 } 4721 ret = 0; 4722 error: 4723 unlock_chunks(root); 4724 mutex_unlock(&uuid_mutex); 4725 4726 btrfs_free_path(path); 4727 return ret; 4728 } 4729 4730 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 4731 { 4732 int i; 4733 4734 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 4735 btrfs_dev_stat_reset(dev, i); 4736 } 4737 4738 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 4739 { 4740 struct btrfs_key key; 4741 struct btrfs_key found_key; 4742 struct btrfs_root *dev_root = fs_info->dev_root; 4743 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 4744 struct extent_buffer *eb; 4745 int slot; 4746 int ret = 0; 4747 struct btrfs_device *device; 4748 struct btrfs_path *path = NULL; 4749 int i; 4750 4751 path = btrfs_alloc_path(); 4752 if (!path) { 4753 ret = -ENOMEM; 4754 goto out; 4755 } 4756 4757 mutex_lock(&fs_devices->device_list_mutex); 4758 list_for_each_entry(device, &fs_devices->devices, dev_list) { 4759 int item_size; 4760 struct btrfs_dev_stats_item *ptr; 4761 4762 key.objectid = 0; 4763 key.type = BTRFS_DEV_STATS_KEY; 4764 key.offset = device->devid; 4765 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 4766 if (ret) { 4767 __btrfs_reset_dev_stats(device); 4768 device->dev_stats_valid = 1; 4769 btrfs_release_path(path); 4770 continue; 4771 } 4772 slot = path->slots[0]; 4773 eb = path->nodes[0]; 4774 btrfs_item_key_to_cpu(eb, &found_key, slot); 4775 item_size = btrfs_item_size_nr(eb, slot); 4776 4777 ptr = btrfs_item_ptr(eb, slot, 4778 struct btrfs_dev_stats_item); 4779 4780 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 4781 if (item_size >= (1 + i) * sizeof(__le64)) 4782 btrfs_dev_stat_set(device, i, 4783 btrfs_dev_stats_value(eb, ptr, i)); 4784 else 4785 btrfs_dev_stat_reset(device, i); 4786 } 4787 4788 device->dev_stats_valid = 1; 4789 btrfs_dev_stat_print_on_load(device); 4790 btrfs_release_path(path); 4791 } 4792 mutex_unlock(&fs_devices->device_list_mutex); 4793 4794 out: 4795 btrfs_free_path(path); 4796 return ret < 0 ? ret : 0; 4797 } 4798 4799 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 4800 struct btrfs_root *dev_root, 4801 struct btrfs_device *device) 4802 { 4803 struct btrfs_path *path; 4804 struct btrfs_key key; 4805 struct extent_buffer *eb; 4806 struct btrfs_dev_stats_item *ptr; 4807 int ret; 4808 int i; 4809 4810 key.objectid = 0; 4811 key.type = BTRFS_DEV_STATS_KEY; 4812 key.offset = device->devid; 4813 4814 path = btrfs_alloc_path(); 4815 BUG_ON(!path); 4816 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 4817 if (ret < 0) { 4818 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n", 4819 ret, rcu_str_deref(device->name)); 4820 goto out; 4821 } 4822 4823 if (ret == 0 && 4824 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 4825 /* need to delete old one and insert a new one */ 4826 ret = btrfs_del_item(trans, dev_root, path); 4827 if (ret != 0) { 4828 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n", 4829 rcu_str_deref(device->name), ret); 4830 goto out; 4831 } 4832 ret = 1; 4833 } 4834 4835 if (ret == 1) { 4836 /* need to insert a new item */ 4837 btrfs_release_path(path); 4838 ret = btrfs_insert_empty_item(trans, dev_root, path, 4839 &key, sizeof(*ptr)); 4840 if (ret < 0) { 4841 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n", 4842 rcu_str_deref(device->name), ret); 4843 goto out; 4844 } 4845 } 4846 4847 eb = path->nodes[0]; 4848 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 4849 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 4850 btrfs_set_dev_stats_value(eb, ptr, i, 4851 btrfs_dev_stat_read(device, i)); 4852 btrfs_mark_buffer_dirty(eb); 4853 4854 out: 4855 btrfs_free_path(path); 4856 return ret; 4857 } 4858 4859 /* 4860 * called from commit_transaction. Writes all changed device stats to disk. 4861 */ 4862 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 4863 struct btrfs_fs_info *fs_info) 4864 { 4865 struct btrfs_root *dev_root = fs_info->dev_root; 4866 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 4867 struct btrfs_device *device; 4868 int ret = 0; 4869 4870 mutex_lock(&fs_devices->device_list_mutex); 4871 list_for_each_entry(device, &fs_devices->devices, dev_list) { 4872 if (!device->dev_stats_valid || !device->dev_stats_dirty) 4873 continue; 4874 4875 ret = update_dev_stat_item(trans, dev_root, device); 4876 if (!ret) 4877 device->dev_stats_dirty = 0; 4878 } 4879 mutex_unlock(&fs_devices->device_list_mutex); 4880 4881 return ret; 4882 } 4883 4884 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 4885 { 4886 btrfs_dev_stat_inc(dev, index); 4887 btrfs_dev_stat_print_on_error(dev); 4888 } 4889 4890 void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 4891 { 4892 if (!dev->dev_stats_valid) 4893 return; 4894 printk_ratelimited_in_rcu(KERN_ERR 4895 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 4896 rcu_str_deref(dev->name), 4897 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 4898 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 4899 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 4900 btrfs_dev_stat_read(dev, 4901 BTRFS_DEV_STAT_CORRUPTION_ERRS), 4902 btrfs_dev_stat_read(dev, 4903 BTRFS_DEV_STAT_GENERATION_ERRS)); 4904 } 4905 4906 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 4907 { 4908 int i; 4909 4910 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 4911 if (btrfs_dev_stat_read(dev, i) != 0) 4912 break; 4913 if (i == BTRFS_DEV_STAT_VALUES_MAX) 4914 return; /* all values == 0, suppress message */ 4915 4916 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 4917 rcu_str_deref(dev->name), 4918 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 4919 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 4920 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 4921 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 4922 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 4923 } 4924 4925 int btrfs_get_dev_stats(struct btrfs_root *root, 4926 struct btrfs_ioctl_get_dev_stats *stats) 4927 { 4928 struct btrfs_device *dev; 4929 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 4930 int i; 4931 4932 mutex_lock(&fs_devices->device_list_mutex); 4933 dev = btrfs_find_device(root, stats->devid, NULL, NULL); 4934 mutex_unlock(&fs_devices->device_list_mutex); 4935 4936 if (!dev) { 4937 printk(KERN_WARNING 4938 "btrfs: get dev_stats failed, device not found\n"); 4939 return -ENODEV; 4940 } else if (!dev->dev_stats_valid) { 4941 printk(KERN_WARNING 4942 "btrfs: get dev_stats failed, not yet valid\n"); 4943 return -ENODEV; 4944 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 4945 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 4946 if (stats->nr_items > i) 4947 stats->values[i] = 4948 btrfs_dev_stat_read_and_reset(dev, i); 4949 else 4950 btrfs_dev_stat_reset(dev, i); 4951 } 4952 } else { 4953 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 4954 if (stats->nr_items > i) 4955 stats->values[i] = btrfs_dev_stat_read(dev, i); 4956 } 4957 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 4958 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 4959 return 0; 4960 } 4961