1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "extent_map.h"
18 #include "disk-io.h"
19 #include "transaction.h"
20 #include "print-tree.h"
21 #include "volumes.h"
22 #include "raid56.h"
23 #include "rcu-string.h"
24 #include "dev-replace.h"
25 #include "sysfs.h"
26 #include "tree-checker.h"
27 #include "space-info.h"
28 #include "block-group.h"
29 #include "discard.h"
30 #include "zoned.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 #include "super.h"
38
39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
40 BTRFS_BLOCK_GROUP_RAID10 | \
41 BTRFS_BLOCK_GROUP_RAID56_MASK)
42
43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 [BTRFS_RAID_RAID10] = {
45 .sub_stripes = 2,
46 .dev_stripes = 1,
47 .devs_max = 0, /* 0 == as many as possible */
48 .devs_min = 2,
49 .tolerated_failures = 1,
50 .devs_increment = 2,
51 .ncopies = 2,
52 .nparity = 0,
53 .raid_name = "raid10",
54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 },
57 [BTRFS_RAID_RAID1] = {
58 .sub_stripes = 1,
59 .dev_stripes = 1,
60 .devs_max = 2,
61 .devs_min = 2,
62 .tolerated_failures = 1,
63 .devs_increment = 2,
64 .ncopies = 2,
65 .nparity = 0,
66 .raid_name = "raid1",
67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 },
70 [BTRFS_RAID_RAID1C3] = {
71 .sub_stripes = 1,
72 .dev_stripes = 1,
73 .devs_max = 3,
74 .devs_min = 3,
75 .tolerated_failures = 2,
76 .devs_increment = 3,
77 .ncopies = 3,
78 .nparity = 0,
79 .raid_name = "raid1c3",
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 },
83 [BTRFS_RAID_RAID1C4] = {
84 .sub_stripes = 1,
85 .dev_stripes = 1,
86 .devs_max = 4,
87 .devs_min = 4,
88 .tolerated_failures = 3,
89 .devs_increment = 4,
90 .ncopies = 4,
91 .nparity = 0,
92 .raid_name = "raid1c4",
93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 },
96 [BTRFS_RAID_DUP] = {
97 .sub_stripes = 1,
98 .dev_stripes = 2,
99 .devs_max = 1,
100 .devs_min = 1,
101 .tolerated_failures = 0,
102 .devs_increment = 1,
103 .ncopies = 2,
104 .nparity = 0,
105 .raid_name = "dup",
106 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
107 .mindev_error = 0,
108 },
109 [BTRFS_RAID_RAID0] = {
110 .sub_stripes = 1,
111 .dev_stripes = 1,
112 .devs_max = 0,
113 .devs_min = 1,
114 .tolerated_failures = 0,
115 .devs_increment = 1,
116 .ncopies = 1,
117 .nparity = 0,
118 .raid_name = "raid0",
119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
120 .mindev_error = 0,
121 },
122 [BTRFS_RAID_SINGLE] = {
123 .sub_stripes = 1,
124 .dev_stripes = 1,
125 .devs_max = 1,
126 .devs_min = 1,
127 .tolerated_failures = 0,
128 .devs_increment = 1,
129 .ncopies = 1,
130 .nparity = 0,
131 .raid_name = "single",
132 .bg_flag = 0,
133 .mindev_error = 0,
134 },
135 [BTRFS_RAID_RAID5] = {
136 .sub_stripes = 1,
137 .dev_stripes = 1,
138 .devs_max = 0,
139 .devs_min = 2,
140 .tolerated_failures = 1,
141 .devs_increment = 1,
142 .ncopies = 1,
143 .nparity = 1,
144 .raid_name = "raid5",
145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 },
148 [BTRFS_RAID_RAID6] = {
149 .sub_stripes = 1,
150 .dev_stripes = 1,
151 .devs_max = 0,
152 .devs_min = 3,
153 .tolerated_failures = 2,
154 .devs_increment = 1,
155 .ncopies = 1,
156 .nparity = 2,
157 .raid_name = "raid6",
158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 },
161 };
162
163 /*
164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165 * can be used as index to access btrfs_raid_array[].
166 */
btrfs_bg_flags_to_raid_index(u64 flags)167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168 {
169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170
171 if (!profile)
172 return BTRFS_RAID_SINGLE;
173
174 return BTRFS_BG_FLAG_TO_INDEX(profile);
175 }
176
btrfs_bg_type_to_raid_name(u64 flags)177 const char *btrfs_bg_type_to_raid_name(u64 flags)
178 {
179 const int index = btrfs_bg_flags_to_raid_index(flags);
180
181 if (index >= BTRFS_NR_RAID_TYPES)
182 return NULL;
183
184 return btrfs_raid_array[index].raid_name;
185 }
186
btrfs_nr_parity_stripes(u64 type)187 int btrfs_nr_parity_stripes(u64 type)
188 {
189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190
191 return btrfs_raid_array[index].nparity;
192 }
193
194 /*
195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
196 * bytes including terminating null byte.
197 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199 {
200 int i;
201 int ret;
202 char *bp = buf;
203 u64 flags = bg_flags;
204 u32 size_bp = size_buf;
205
206 if (!flags) {
207 strcpy(bp, "NONE");
208 return;
209 }
210
211 #define DESCRIBE_FLAG(flag, desc) \
212 do { \
213 if (flags & (flag)) { \
214 ret = snprintf(bp, size_bp, "%s|", (desc)); \
215 if (ret < 0 || ret >= size_bp) \
216 goto out_overflow; \
217 size_bp -= ret; \
218 bp += ret; \
219 flags &= ~(flag); \
220 } \
221 } while (0)
222
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226
227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 btrfs_raid_array[i].raid_name);
231 #undef DESCRIBE_FLAG
232
233 if (flags) {
234 ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 size_bp -= ret;
236 }
237
238 if (size_bp < size_buf)
239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240
241 /*
242 * The text is trimmed, it's up to the caller to provide sufficiently
243 * large buffer
244 */
245 out_overflow:;
246 }
247
248 static int init_first_rw_device(struct btrfs_trans_handle *trans);
249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251
252 /*
253 * Device locking
254 * ==============
255 *
256 * There are several mutexes that protect manipulation of devices and low-level
257 * structures like chunks but not block groups, extents or files
258 *
259 * uuid_mutex (global lock)
260 * ------------------------
261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263 * device) or requested by the device= mount option
264 *
265 * the mutex can be very coarse and can cover long-running operations
266 *
267 * protects: updates to fs_devices counters like missing devices, rw devices,
268 * seeding, structure cloning, opening/closing devices at mount/umount time
269 *
270 * global::fs_devs - add, remove, updates to the global list
271 *
272 * does not protect: manipulation of the fs_devices::devices list in general
273 * but in mount context it could be used to exclude list modifications by eg.
274 * scan ioctl
275 *
276 * btrfs_device::name - renames (write side), read is RCU
277 *
278 * fs_devices::device_list_mutex (per-fs, with RCU)
279 * ------------------------------------------------
280 * protects updates to fs_devices::devices, ie. adding and deleting
281 *
282 * simple list traversal with read-only actions can be done with RCU protection
283 *
284 * may be used to exclude some operations from running concurrently without any
285 * modifications to the list (see write_all_supers)
286 *
287 * Is not required at mount and close times, because our device list is
288 * protected by the uuid_mutex at that point.
289 *
290 * balance_mutex
291 * -------------
292 * protects balance structures (status, state) and context accessed from
293 * several places (internally, ioctl)
294 *
295 * chunk_mutex
296 * -----------
297 * protects chunks, adding or removing during allocation, trim or when a new
298 * device is added/removed. Additionally it also protects post_commit_list of
299 * individual devices, since they can be added to the transaction's
300 * post_commit_list only with chunk_mutex held.
301 *
302 * cleaner_mutex
303 * -------------
304 * a big lock that is held by the cleaner thread and prevents running subvolume
305 * cleaning together with relocation or delayed iputs
306 *
307 *
308 * Lock nesting
309 * ============
310 *
311 * uuid_mutex
312 * device_list_mutex
313 * chunk_mutex
314 * balance_mutex
315 *
316 *
317 * Exclusive operations
318 * ====================
319 *
320 * Maintains the exclusivity of the following operations that apply to the
321 * whole filesystem and cannot run in parallel.
322 *
323 * - Balance (*)
324 * - Device add
325 * - Device remove
326 * - Device replace (*)
327 * - Resize
328 *
329 * The device operations (as above) can be in one of the following states:
330 *
331 * - Running state
332 * - Paused state
333 * - Completed state
334 *
335 * Only device operations marked with (*) can go into the Paused state for the
336 * following reasons:
337 *
338 * - ioctl (only Balance can be Paused through ioctl)
339 * - filesystem remounted as read-only
340 * - filesystem unmounted and mounted as read-only
341 * - system power-cycle and filesystem mounted as read-only
342 * - filesystem or device errors leading to forced read-only
343 *
344 * The status of exclusive operation is set and cleared atomically.
345 * During the course of Paused state, fs_info::exclusive_operation remains set.
346 * A device operation in Paused or Running state can be canceled or resumed
347 * either by ioctl (Balance only) or when remounted as read-write.
348 * The exclusive status is cleared when the device operation is canceled or
349 * completed.
350 */
351
352 DEFINE_MUTEX(uuid_mutex);
353 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)354 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
355 {
356 return &fs_uuids;
357 }
358
359 /*
360 * alloc_fs_devices - allocate struct btrfs_fs_devices
361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
363 *
364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365 * The returned struct is not linked onto any lists and can be destroyed with
366 * kfree() right away.
367 */
alloc_fs_devices(const u8 * fsid,const u8 * metadata_fsid)368 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 const u8 *metadata_fsid)
370 {
371 struct btrfs_fs_devices *fs_devs;
372
373 ASSERT(fsid || !metadata_fsid);
374
375 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
376 if (!fs_devs)
377 return ERR_PTR(-ENOMEM);
378
379 mutex_init(&fs_devs->device_list_mutex);
380
381 INIT_LIST_HEAD(&fs_devs->devices);
382 INIT_LIST_HEAD(&fs_devs->alloc_list);
383 INIT_LIST_HEAD(&fs_devs->fs_list);
384 INIT_LIST_HEAD(&fs_devs->seed_list);
385
386 if (fsid) {
387 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
388 memcpy(fs_devs->metadata_uuid,
389 metadata_fsid ?: fsid, BTRFS_FSID_SIZE);
390 }
391
392 return fs_devs;
393 }
394
btrfs_free_device(struct btrfs_device * device)395 static void btrfs_free_device(struct btrfs_device *device)
396 {
397 WARN_ON(!list_empty(&device->post_commit_list));
398 rcu_string_free(device->name);
399 extent_io_tree_release(&device->alloc_state);
400 btrfs_destroy_dev_zone_info(device);
401 kfree(device);
402 }
403
free_fs_devices(struct btrfs_fs_devices * fs_devices)404 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
405 {
406 struct btrfs_device *device;
407
408 WARN_ON(fs_devices->opened);
409 while (!list_empty(&fs_devices->devices)) {
410 device = list_entry(fs_devices->devices.next,
411 struct btrfs_device, dev_list);
412 list_del(&device->dev_list);
413 btrfs_free_device(device);
414 }
415 kfree(fs_devices);
416 }
417
btrfs_cleanup_fs_uuids(void)418 void __exit btrfs_cleanup_fs_uuids(void)
419 {
420 struct btrfs_fs_devices *fs_devices;
421
422 while (!list_empty(&fs_uuids)) {
423 fs_devices = list_entry(fs_uuids.next,
424 struct btrfs_fs_devices, fs_list);
425 list_del(&fs_devices->fs_list);
426 free_fs_devices(fs_devices);
427 }
428 }
429
match_fsid_fs_devices(const struct btrfs_fs_devices * fs_devices,const u8 * fsid,const u8 * metadata_fsid)430 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
431 const u8 *fsid, const u8 *metadata_fsid)
432 {
433 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
434 return false;
435
436 if (!metadata_fsid)
437 return true;
438
439 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
440 return false;
441
442 return true;
443 }
444
find_fsid(const u8 * fsid,const u8 * metadata_fsid)445 static noinline struct btrfs_fs_devices *find_fsid(
446 const u8 *fsid, const u8 *metadata_fsid)
447 {
448 struct btrfs_fs_devices *fs_devices;
449
450 ASSERT(fsid);
451
452 /* Handle non-split brain cases */
453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
455 return fs_devices;
456 }
457 return NULL;
458 }
459
460 /*
461 * First check if the metadata_uuid is different from the fsid in the given
462 * fs_devices. Then check if the given fsid is the same as the metadata_uuid
463 * in the fs_devices. If it is, return true; otherwise, return false.
464 */
check_fsid_changed(const struct btrfs_fs_devices * fs_devices,const u8 * fsid)465 static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices,
466 const u8 *fsid)
467 {
468 return memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
469 BTRFS_FSID_SIZE) != 0 &&
470 memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0;
471 }
472
find_fsid_with_metadata_uuid(struct btrfs_super_block * disk_super)473 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
474 struct btrfs_super_block *disk_super)
475 {
476
477 struct btrfs_fs_devices *fs_devices;
478
479 /*
480 * Handle scanned device having completed its fsid change but
481 * belonging to a fs_devices that was created by first scanning
482 * a device which didn't have its fsid/metadata_uuid changed
483 * at all and the CHANGING_FSID_V2 flag set.
484 */
485 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
486 if (!fs_devices->fsid_change)
487 continue;
488
489 if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid,
490 fs_devices->fsid))
491 return fs_devices;
492 }
493
494 /*
495 * Handle scanned device having completed its fsid change but
496 * belonging to a fs_devices that was created by a device that
497 * has an outdated pair of fsid/metadata_uuid and
498 * CHANGING_FSID_V2 flag set.
499 */
500 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
501 if (!fs_devices->fsid_change)
502 continue;
503
504 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid))
505 return fs_devices;
506 }
507
508 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
509 }
510
511
512 static int
btrfs_get_bdev_and_sb(const char * device_path,blk_mode_t flags,void * holder,int flush,struct block_device ** bdev,struct btrfs_super_block ** disk_super)513 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
514 int flush, struct block_device **bdev,
515 struct btrfs_super_block **disk_super)
516 {
517 int ret;
518
519 *bdev = blkdev_get_by_path(device_path, flags, holder, NULL);
520
521 if (IS_ERR(*bdev)) {
522 ret = PTR_ERR(*bdev);
523 goto error;
524 }
525
526 if (flush)
527 sync_blockdev(*bdev);
528 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
529 if (ret) {
530 blkdev_put(*bdev, holder);
531 goto error;
532 }
533 invalidate_bdev(*bdev);
534 *disk_super = btrfs_read_dev_super(*bdev);
535 if (IS_ERR(*disk_super)) {
536 ret = PTR_ERR(*disk_super);
537 blkdev_put(*bdev, holder);
538 goto error;
539 }
540
541 return 0;
542
543 error:
544 *bdev = NULL;
545 return ret;
546 }
547
548 /*
549 * Search and remove all stale devices (which are not mounted). When both
550 * inputs are NULL, it will search and release all stale devices.
551 *
552 * @devt: Optional. When provided will it release all unmounted devices
553 * matching this devt only.
554 * @skip_device: Optional. Will skip this device when searching for the stale
555 * devices.
556 *
557 * Return: 0 for success or if @devt is 0.
558 * -EBUSY if @devt is a mounted device.
559 * -ENOENT if @devt does not match any device in the list.
560 */
btrfs_free_stale_devices(dev_t devt,struct btrfs_device * skip_device)561 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
562 {
563 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
564 struct btrfs_device *device, *tmp_device;
565 int ret = 0;
566
567 lockdep_assert_held(&uuid_mutex);
568
569 if (devt)
570 ret = -ENOENT;
571
572 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
573
574 mutex_lock(&fs_devices->device_list_mutex);
575 list_for_each_entry_safe(device, tmp_device,
576 &fs_devices->devices, dev_list) {
577 if (skip_device && skip_device == device)
578 continue;
579 if (devt && devt != device->devt)
580 continue;
581 if (fs_devices->opened) {
582 /* for an already deleted device return 0 */
583 if (devt && ret != 0)
584 ret = -EBUSY;
585 break;
586 }
587
588 /* delete the stale device */
589 fs_devices->num_devices--;
590 list_del(&device->dev_list);
591 btrfs_free_device(device);
592
593 ret = 0;
594 }
595 mutex_unlock(&fs_devices->device_list_mutex);
596
597 if (fs_devices->num_devices == 0) {
598 btrfs_sysfs_remove_fsid(fs_devices);
599 list_del(&fs_devices->fs_list);
600 free_fs_devices(fs_devices);
601 }
602 }
603
604 return ret;
605 }
606
607 /*
608 * This is only used on mount, and we are protected from competing things
609 * messing with our fs_devices by the uuid_mutex, thus we do not need the
610 * fs_devices->device_list_mutex here.
611 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,blk_mode_t flags,void * holder)612 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
613 struct btrfs_device *device, blk_mode_t flags,
614 void *holder)
615 {
616 struct block_device *bdev;
617 struct btrfs_super_block *disk_super;
618 u64 devid;
619 int ret;
620
621 if (device->bdev)
622 return -EINVAL;
623 if (!device->name)
624 return -EINVAL;
625
626 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
627 &bdev, &disk_super);
628 if (ret)
629 return ret;
630
631 devid = btrfs_stack_device_id(&disk_super->dev_item);
632 if (devid != device->devid)
633 goto error_free_page;
634
635 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
636 goto error_free_page;
637
638 device->generation = btrfs_super_generation(disk_super);
639
640 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
641 if (btrfs_super_incompat_flags(disk_super) &
642 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
643 pr_err(
644 "BTRFS: Invalid seeding and uuid-changed device detected\n");
645 goto error_free_page;
646 }
647
648 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
649 fs_devices->seeding = true;
650 } else {
651 if (bdev_read_only(bdev))
652 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653 else
654 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
655 }
656
657 if (!bdev_nonrot(bdev))
658 fs_devices->rotating = true;
659
660 if (bdev_max_discard_sectors(bdev))
661 fs_devices->discardable = true;
662
663 device->bdev = bdev;
664 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
665 device->holder = holder;
666
667 fs_devices->open_devices++;
668 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
669 device->devid != BTRFS_DEV_REPLACE_DEVID) {
670 fs_devices->rw_devices++;
671 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
672 }
673 btrfs_release_disk_super(disk_super);
674
675 return 0;
676
677 error_free_page:
678 btrfs_release_disk_super(disk_super);
679 blkdev_put(bdev, holder);
680
681 return -EINVAL;
682 }
683
btrfs_sb_fsid_ptr(struct btrfs_super_block * sb)684 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
685 {
686 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
687 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
688
689 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
690 }
691
692 /*
693 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
694 * being created with a disk that has already completed its fsid change. Such
695 * disk can belong to an fs which has its FSID changed or to one which doesn't.
696 * Handle both cases here.
697 */
find_fsid_inprogress(struct btrfs_super_block * disk_super)698 static struct btrfs_fs_devices *find_fsid_inprogress(
699 struct btrfs_super_block *disk_super)
700 {
701 struct btrfs_fs_devices *fs_devices;
702
703 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
704 if (fs_devices->fsid_change)
705 continue;
706
707 if (check_fsid_changed(fs_devices, disk_super->fsid))
708 return fs_devices;
709 }
710
711 return find_fsid(disk_super->fsid, NULL);
712 }
713
find_fsid_changed(struct btrfs_super_block * disk_super)714 static struct btrfs_fs_devices *find_fsid_changed(
715 struct btrfs_super_block *disk_super)
716 {
717 struct btrfs_fs_devices *fs_devices;
718
719 /*
720 * Handles the case where scanned device is part of an fs that had
721 * multiple successful changes of FSID but currently device didn't
722 * observe it. Meaning our fsid will be different than theirs. We need
723 * to handle two subcases :
724 * 1 - The fs still continues to have different METADATA/FSID uuids.
725 * 2 - The fs is switched back to its original FSID (METADATA/FSID
726 * are equal).
727 */
728 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
729 /* Changed UUIDs */
730 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) &&
731 memcmp(fs_devices->fsid, disk_super->fsid,
732 BTRFS_FSID_SIZE) != 0)
733 return fs_devices;
734
735 /* Unchanged UUIDs */
736 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737 BTRFS_FSID_SIZE) == 0 &&
738 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739 BTRFS_FSID_SIZE) == 0)
740 return fs_devices;
741 }
742
743 return NULL;
744 }
745
find_fsid_reverted_metadata(struct btrfs_super_block * disk_super)746 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747 struct btrfs_super_block *disk_super)
748 {
749 struct btrfs_fs_devices *fs_devices;
750
751 /*
752 * Handle the case where the scanned device is part of an fs whose last
753 * metadata UUID change reverted it to the original FSID. At the same
754 * time fs_devices was first created by another constituent device
755 * which didn't fully observe the operation. This results in an
756 * btrfs_fs_devices created with metadata/fsid different AND
757 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758 * fs_devices equal to the FSID of the disk.
759 */
760 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
761 if (!fs_devices->fsid_change)
762 continue;
763
764 if (check_fsid_changed(fs_devices, disk_super->fsid))
765 return fs_devices;
766 }
767
768 return NULL;
769 }
770 /*
771 * Add new device to list of registered devices
772 *
773 * Returns:
774 * device pointer which was just added or updated when successful
775 * error pointer when failed
776 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)777 static noinline struct btrfs_device *device_list_add(const char *path,
778 struct btrfs_super_block *disk_super,
779 bool *new_device_added)
780 {
781 struct btrfs_device *device;
782 struct btrfs_fs_devices *fs_devices = NULL;
783 struct rcu_string *name;
784 u64 found_transid = btrfs_super_generation(disk_super);
785 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
786 dev_t path_devt;
787 int error;
788 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
789 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
790 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
791 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
792
793 error = lookup_bdev(path, &path_devt);
794 if (error) {
795 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
796 path, error);
797 return ERR_PTR(error);
798 }
799
800 if (fsid_change_in_progress) {
801 if (!has_metadata_uuid)
802 fs_devices = find_fsid_inprogress(disk_super);
803 else
804 fs_devices = find_fsid_changed(disk_super);
805 } else if (has_metadata_uuid) {
806 fs_devices = find_fsid_with_metadata_uuid(disk_super);
807 } else {
808 fs_devices = find_fsid_reverted_metadata(disk_super);
809 if (!fs_devices)
810 fs_devices = find_fsid(disk_super->fsid, NULL);
811 }
812
813
814 if (!fs_devices) {
815 fs_devices = alloc_fs_devices(disk_super->fsid,
816 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
817 if (IS_ERR(fs_devices))
818 return ERR_CAST(fs_devices);
819
820 fs_devices->fsid_change = fsid_change_in_progress;
821
822 mutex_lock(&fs_devices->device_list_mutex);
823 list_add(&fs_devices->fs_list, &fs_uuids);
824
825 device = NULL;
826 } else {
827 struct btrfs_dev_lookup_args args = {
828 .devid = devid,
829 .uuid = disk_super->dev_item.uuid,
830 };
831
832 mutex_lock(&fs_devices->device_list_mutex);
833 device = btrfs_find_device(fs_devices, &args);
834
835 /*
836 * If this disk has been pulled into an fs devices created by
837 * a device which had the CHANGING_FSID_V2 flag then replace the
838 * metadata_uuid/fsid values of the fs_devices.
839 */
840 if (fs_devices->fsid_change &&
841 found_transid > fs_devices->latest_generation) {
842 memcpy(fs_devices->fsid, disk_super->fsid,
843 BTRFS_FSID_SIZE);
844 memcpy(fs_devices->metadata_uuid,
845 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
846 fs_devices->fsid_change = false;
847 }
848 }
849
850 if (!device) {
851 unsigned int nofs_flag;
852
853 if (fs_devices->opened) {
854 btrfs_err(NULL,
855 "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
856 path, fs_devices->fsid, current->comm,
857 task_pid_nr(current));
858 mutex_unlock(&fs_devices->device_list_mutex);
859 return ERR_PTR(-EBUSY);
860 }
861
862 nofs_flag = memalloc_nofs_save();
863 device = btrfs_alloc_device(NULL, &devid,
864 disk_super->dev_item.uuid, path);
865 memalloc_nofs_restore(nofs_flag);
866 if (IS_ERR(device)) {
867 mutex_unlock(&fs_devices->device_list_mutex);
868 /* we can safely leave the fs_devices entry around */
869 return device;
870 }
871
872 device->devt = path_devt;
873
874 list_add_rcu(&device->dev_list, &fs_devices->devices);
875 fs_devices->num_devices++;
876
877 device->fs_devices = fs_devices;
878 *new_device_added = true;
879
880 if (disk_super->label[0])
881 pr_info(
882 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
883 disk_super->label, devid, found_transid, path,
884 current->comm, task_pid_nr(current));
885 else
886 pr_info(
887 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
888 disk_super->fsid, devid, found_transid, path,
889 current->comm, task_pid_nr(current));
890
891 } else if (!device->name || strcmp(device->name->str, path)) {
892 /*
893 * When FS is already mounted.
894 * 1. If you are here and if the device->name is NULL that
895 * means this device was missing at time of FS mount.
896 * 2. If you are here and if the device->name is different
897 * from 'path' that means either
898 * a. The same device disappeared and reappeared with
899 * different name. or
900 * b. The missing-disk-which-was-replaced, has
901 * reappeared now.
902 *
903 * We must allow 1 and 2a above. But 2b would be a spurious
904 * and unintentional.
905 *
906 * Further in case of 1 and 2a above, the disk at 'path'
907 * would have missed some transaction when it was away and
908 * in case of 2a the stale bdev has to be updated as well.
909 * 2b must not be allowed at all time.
910 */
911
912 /*
913 * For now, we do allow update to btrfs_fs_device through the
914 * btrfs dev scan cli after FS has been mounted. We're still
915 * tracking a problem where systems fail mount by subvolume id
916 * when we reject replacement on a mounted FS.
917 */
918 if (!fs_devices->opened && found_transid < device->generation) {
919 /*
920 * That is if the FS is _not_ mounted and if you
921 * are here, that means there is more than one
922 * disk with same uuid and devid.We keep the one
923 * with larger generation number or the last-in if
924 * generation are equal.
925 */
926 mutex_unlock(&fs_devices->device_list_mutex);
927 btrfs_err(NULL,
928 "device %s already registered with a higher generation, found %llu expect %llu",
929 path, found_transid, device->generation);
930 return ERR_PTR(-EEXIST);
931 }
932
933 /*
934 * We are going to replace the device path for a given devid,
935 * make sure it's the same device if the device is mounted
936 *
937 * NOTE: the device->fs_info may not be reliable here so pass
938 * in a NULL to message helpers instead. This avoids a possible
939 * use-after-free when the fs_info and fs_info->sb are already
940 * torn down.
941 */
942 if (device->bdev) {
943 if (device->devt != path_devt) {
944 mutex_unlock(&fs_devices->device_list_mutex);
945 btrfs_warn_in_rcu(NULL,
946 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
947 path, devid, found_transid,
948 current->comm,
949 task_pid_nr(current));
950 return ERR_PTR(-EEXIST);
951 }
952 btrfs_info_in_rcu(NULL,
953 "devid %llu device path %s changed to %s scanned by %s (%d)",
954 devid, btrfs_dev_name(device),
955 path, current->comm,
956 task_pid_nr(current));
957 }
958
959 name = rcu_string_strdup(path, GFP_NOFS);
960 if (!name) {
961 mutex_unlock(&fs_devices->device_list_mutex);
962 return ERR_PTR(-ENOMEM);
963 }
964 rcu_string_free(device->name);
965 rcu_assign_pointer(device->name, name);
966 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
967 fs_devices->missing_devices--;
968 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
969 }
970 device->devt = path_devt;
971 }
972
973 /*
974 * Unmount does not free the btrfs_device struct but would zero
975 * generation along with most of the other members. So just update
976 * it back. We need it to pick the disk with largest generation
977 * (as above).
978 */
979 if (!fs_devices->opened) {
980 device->generation = found_transid;
981 fs_devices->latest_generation = max_t(u64, found_transid,
982 fs_devices->latest_generation);
983 }
984
985 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
986
987 mutex_unlock(&fs_devices->device_list_mutex);
988 return device;
989 }
990
clone_fs_devices(struct btrfs_fs_devices * orig)991 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
992 {
993 struct btrfs_fs_devices *fs_devices;
994 struct btrfs_device *device;
995 struct btrfs_device *orig_dev;
996 int ret = 0;
997
998 lockdep_assert_held(&uuid_mutex);
999
1000 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1001 if (IS_ERR(fs_devices))
1002 return fs_devices;
1003
1004 fs_devices->total_devices = orig->total_devices;
1005
1006 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1007 const char *dev_path = NULL;
1008
1009 /*
1010 * This is ok to do without RCU read locked because we hold the
1011 * uuid mutex so nothing we touch in here is going to disappear.
1012 */
1013 if (orig_dev->name)
1014 dev_path = orig_dev->name->str;
1015
1016 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1017 orig_dev->uuid, dev_path);
1018 if (IS_ERR(device)) {
1019 ret = PTR_ERR(device);
1020 goto error;
1021 }
1022
1023 if (orig_dev->zone_info) {
1024 struct btrfs_zoned_device_info *zone_info;
1025
1026 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1027 if (!zone_info) {
1028 btrfs_free_device(device);
1029 ret = -ENOMEM;
1030 goto error;
1031 }
1032 device->zone_info = zone_info;
1033 }
1034
1035 list_add(&device->dev_list, &fs_devices->devices);
1036 device->fs_devices = fs_devices;
1037 fs_devices->num_devices++;
1038 }
1039 return fs_devices;
1040 error:
1041 free_fs_devices(fs_devices);
1042 return ERR_PTR(ret);
1043 }
1044
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1045 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1046 struct btrfs_device **latest_dev)
1047 {
1048 struct btrfs_device *device, *next;
1049
1050 /* This is the initialized path, it is safe to release the devices. */
1051 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1052 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1053 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1054 &device->dev_state) &&
1055 !test_bit(BTRFS_DEV_STATE_MISSING,
1056 &device->dev_state) &&
1057 (!*latest_dev ||
1058 device->generation > (*latest_dev)->generation)) {
1059 *latest_dev = device;
1060 }
1061 continue;
1062 }
1063
1064 /*
1065 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1066 * in btrfs_init_dev_replace() so just continue.
1067 */
1068 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1069 continue;
1070
1071 if (device->bdev) {
1072 blkdev_put(device->bdev, device->holder);
1073 device->bdev = NULL;
1074 fs_devices->open_devices--;
1075 }
1076 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1077 list_del_init(&device->dev_alloc_list);
1078 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1079 fs_devices->rw_devices--;
1080 }
1081 list_del_init(&device->dev_list);
1082 fs_devices->num_devices--;
1083 btrfs_free_device(device);
1084 }
1085
1086 }
1087
1088 /*
1089 * After we have read the system tree and know devids belonging to this
1090 * filesystem, remove the device which does not belong there.
1091 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1092 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1093 {
1094 struct btrfs_device *latest_dev = NULL;
1095 struct btrfs_fs_devices *seed_dev;
1096
1097 mutex_lock(&uuid_mutex);
1098 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1099
1100 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1101 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1102
1103 fs_devices->latest_dev = latest_dev;
1104
1105 mutex_unlock(&uuid_mutex);
1106 }
1107
btrfs_close_bdev(struct btrfs_device * device)1108 static void btrfs_close_bdev(struct btrfs_device *device)
1109 {
1110 if (!device->bdev)
1111 return;
1112
1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1114 sync_blockdev(device->bdev);
1115 invalidate_bdev(device->bdev);
1116 }
1117
1118 blkdev_put(device->bdev, device->holder);
1119 }
1120
btrfs_close_one_device(struct btrfs_device * device)1121 static void btrfs_close_one_device(struct btrfs_device *device)
1122 {
1123 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1124
1125 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1126 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1127 list_del_init(&device->dev_alloc_list);
1128 fs_devices->rw_devices--;
1129 }
1130
1131 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1132 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1133
1134 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1135 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1136 fs_devices->missing_devices--;
1137 }
1138
1139 btrfs_close_bdev(device);
1140 if (device->bdev) {
1141 fs_devices->open_devices--;
1142 device->bdev = NULL;
1143 }
1144 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1145 btrfs_destroy_dev_zone_info(device);
1146
1147 device->fs_info = NULL;
1148 atomic_set(&device->dev_stats_ccnt, 0);
1149 extent_io_tree_release(&device->alloc_state);
1150
1151 /*
1152 * Reset the flush error record. We might have a transient flush error
1153 * in this mount, and if so we aborted the current transaction and set
1154 * the fs to an error state, guaranteeing no super blocks can be further
1155 * committed. However that error might be transient and if we unmount the
1156 * filesystem and mount it again, we should allow the mount to succeed
1157 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1158 * filesystem again we still get flush errors, then we will again abort
1159 * any transaction and set the error state, guaranteeing no commits of
1160 * unsafe super blocks.
1161 */
1162 device->last_flush_error = 0;
1163
1164 /* Verify the device is back in a pristine state */
1165 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1166 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1167 WARN_ON(!list_empty(&device->dev_alloc_list));
1168 WARN_ON(!list_empty(&device->post_commit_list));
1169 }
1170
close_fs_devices(struct btrfs_fs_devices * fs_devices)1171 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1172 {
1173 struct btrfs_device *device, *tmp;
1174
1175 lockdep_assert_held(&uuid_mutex);
1176
1177 if (--fs_devices->opened > 0)
1178 return;
1179
1180 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1181 btrfs_close_one_device(device);
1182
1183 WARN_ON(fs_devices->open_devices);
1184 WARN_ON(fs_devices->rw_devices);
1185 fs_devices->opened = 0;
1186 fs_devices->seeding = false;
1187 fs_devices->fs_info = NULL;
1188 }
1189
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1190 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1191 {
1192 LIST_HEAD(list);
1193 struct btrfs_fs_devices *tmp;
1194
1195 mutex_lock(&uuid_mutex);
1196 close_fs_devices(fs_devices);
1197 if (!fs_devices->opened) {
1198 list_splice_init(&fs_devices->seed_list, &list);
1199
1200 /*
1201 * If the struct btrfs_fs_devices is not assembled with any
1202 * other device, it can be re-initialized during the next mount
1203 * without the needing device-scan step. Therefore, it can be
1204 * fully freed.
1205 */
1206 if (fs_devices->num_devices == 1) {
1207 list_del(&fs_devices->fs_list);
1208 free_fs_devices(fs_devices);
1209 }
1210 }
1211
1212
1213 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1214 close_fs_devices(fs_devices);
1215 list_del(&fs_devices->seed_list);
1216 free_fs_devices(fs_devices);
1217 }
1218 mutex_unlock(&uuid_mutex);
1219 }
1220
open_fs_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1221 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1222 blk_mode_t flags, void *holder)
1223 {
1224 struct btrfs_device *device;
1225 struct btrfs_device *latest_dev = NULL;
1226 struct btrfs_device *tmp_device;
1227 int ret = 0;
1228
1229 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1230 dev_list) {
1231 int ret2;
1232
1233 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1234 if (ret2 == 0 &&
1235 (!latest_dev || device->generation > latest_dev->generation)) {
1236 latest_dev = device;
1237 } else if (ret2 == -ENODATA) {
1238 fs_devices->num_devices--;
1239 list_del(&device->dev_list);
1240 btrfs_free_device(device);
1241 }
1242 if (ret == 0 && ret2 != 0)
1243 ret = ret2;
1244 }
1245
1246 if (fs_devices->open_devices == 0) {
1247 if (ret)
1248 return ret;
1249 return -EINVAL;
1250 }
1251
1252 fs_devices->opened = 1;
1253 fs_devices->latest_dev = latest_dev;
1254 fs_devices->total_rw_bytes = 0;
1255 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1256 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1257
1258 return 0;
1259 }
1260
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1261 static int devid_cmp(void *priv, const struct list_head *a,
1262 const struct list_head *b)
1263 {
1264 const struct btrfs_device *dev1, *dev2;
1265
1266 dev1 = list_entry(a, struct btrfs_device, dev_list);
1267 dev2 = list_entry(b, struct btrfs_device, dev_list);
1268
1269 if (dev1->devid < dev2->devid)
1270 return -1;
1271 else if (dev1->devid > dev2->devid)
1272 return 1;
1273 return 0;
1274 }
1275
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1276 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1277 blk_mode_t flags, void *holder)
1278 {
1279 int ret;
1280
1281 lockdep_assert_held(&uuid_mutex);
1282 /*
1283 * The device_list_mutex cannot be taken here in case opening the
1284 * underlying device takes further locks like open_mutex.
1285 *
1286 * We also don't need the lock here as this is called during mount and
1287 * exclusion is provided by uuid_mutex
1288 */
1289
1290 if (fs_devices->opened) {
1291 fs_devices->opened++;
1292 ret = 0;
1293 } else {
1294 list_sort(NULL, &fs_devices->devices, devid_cmp);
1295 ret = open_fs_devices(fs_devices, flags, holder);
1296 }
1297
1298 return ret;
1299 }
1300
btrfs_release_disk_super(struct btrfs_super_block * super)1301 void btrfs_release_disk_super(struct btrfs_super_block *super)
1302 {
1303 struct page *page = virt_to_page(super);
1304
1305 put_page(page);
1306 }
1307
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,u64 bytenr_orig)1308 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1309 u64 bytenr, u64 bytenr_orig)
1310 {
1311 struct btrfs_super_block *disk_super;
1312 struct page *page;
1313 void *p;
1314 pgoff_t index;
1315
1316 /* make sure our super fits in the device */
1317 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1318 return ERR_PTR(-EINVAL);
1319
1320 /* make sure our super fits in the page */
1321 if (sizeof(*disk_super) > PAGE_SIZE)
1322 return ERR_PTR(-EINVAL);
1323
1324 /* make sure our super doesn't straddle pages on disk */
1325 index = bytenr >> PAGE_SHIFT;
1326 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1327 return ERR_PTR(-EINVAL);
1328
1329 /* pull in the page with our super */
1330 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1331
1332 if (IS_ERR(page))
1333 return ERR_CAST(page);
1334
1335 p = page_address(page);
1336
1337 /* align our pointer to the offset of the super block */
1338 disk_super = p + offset_in_page(bytenr);
1339
1340 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1341 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1342 btrfs_release_disk_super(p);
1343 return ERR_PTR(-EINVAL);
1344 }
1345
1346 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1347 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1348
1349 return disk_super;
1350 }
1351
btrfs_forget_devices(dev_t devt)1352 int btrfs_forget_devices(dev_t devt)
1353 {
1354 int ret;
1355
1356 mutex_lock(&uuid_mutex);
1357 ret = btrfs_free_stale_devices(devt, NULL);
1358 mutex_unlock(&uuid_mutex);
1359
1360 return ret;
1361 }
1362
1363 /*
1364 * Look for a btrfs signature on a device. This may be called out of the mount path
1365 * and we are not allowed to call set_blocksize during the scan. The superblock
1366 * is read via pagecache
1367 */
btrfs_scan_one_device(const char * path,blk_mode_t flags)1368 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags)
1369 {
1370 struct btrfs_super_block *disk_super;
1371 bool new_device_added = false;
1372 struct btrfs_device *device = NULL;
1373 struct block_device *bdev;
1374 u64 bytenr, bytenr_orig;
1375 int ret;
1376
1377 lockdep_assert_held(&uuid_mutex);
1378
1379 /*
1380 * we would like to check all the supers, but that would make
1381 * a btrfs mount succeed after a mkfs from a different FS.
1382 * So, we need to add a special mount option to scan for
1383 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1384 */
1385
1386 /*
1387 * Avoid an exclusive open here, as the systemd-udev may initiate the
1388 * device scan which may race with the user's mount or mkfs command,
1389 * resulting in failure.
1390 * Since the device scan is solely for reading purposes, there is no
1391 * need for an exclusive open. Additionally, the devices are read again
1392 * during the mount process. It is ok to get some inconsistent
1393 * values temporarily, as the device paths of the fsid are the only
1394 * required information for assembling the volume.
1395 */
1396 bdev = blkdev_get_by_path(path, flags, NULL, NULL);
1397 if (IS_ERR(bdev))
1398 return ERR_CAST(bdev);
1399
1400 bytenr_orig = btrfs_sb_offset(0);
1401 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1402 if (ret) {
1403 device = ERR_PTR(ret);
1404 goto error_bdev_put;
1405 }
1406
1407 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1408 if (IS_ERR(disk_super)) {
1409 device = ERR_CAST(disk_super);
1410 goto error_bdev_put;
1411 }
1412
1413 device = device_list_add(path, disk_super, &new_device_added);
1414 if (!IS_ERR(device) && new_device_added)
1415 btrfs_free_stale_devices(device->devt, device);
1416
1417 btrfs_release_disk_super(disk_super);
1418
1419 error_bdev_put:
1420 blkdev_put(bdev, NULL);
1421
1422 return device;
1423 }
1424
1425 /*
1426 * Try to find a chunk that intersects [start, start + len] range and when one
1427 * such is found, record the end of it in *start
1428 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1429 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1430 u64 len)
1431 {
1432 u64 physical_start, physical_end;
1433
1434 lockdep_assert_held(&device->fs_info->chunk_mutex);
1435
1436 if (find_first_extent_bit(&device->alloc_state, *start,
1437 &physical_start, &physical_end,
1438 CHUNK_ALLOCATED, NULL)) {
1439
1440 if (in_range(physical_start, *start, len) ||
1441 in_range(*start, physical_start,
1442 physical_end + 1 - physical_start)) {
1443 *start = physical_end + 1;
1444 return true;
1445 }
1446 }
1447 return false;
1448 }
1449
dev_extent_search_start(struct btrfs_device * device)1450 static u64 dev_extent_search_start(struct btrfs_device *device)
1451 {
1452 switch (device->fs_devices->chunk_alloc_policy) {
1453 case BTRFS_CHUNK_ALLOC_REGULAR:
1454 return BTRFS_DEVICE_RANGE_RESERVED;
1455 case BTRFS_CHUNK_ALLOC_ZONED:
1456 /*
1457 * We don't care about the starting region like regular
1458 * allocator, because we anyway use/reserve the first two zones
1459 * for superblock logging.
1460 */
1461 return 0;
1462 default:
1463 BUG();
1464 }
1465 }
1466
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1467 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1468 u64 *hole_start, u64 *hole_size,
1469 u64 num_bytes)
1470 {
1471 u64 zone_size = device->zone_info->zone_size;
1472 u64 pos;
1473 int ret;
1474 bool changed = false;
1475
1476 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1477
1478 while (*hole_size > 0) {
1479 pos = btrfs_find_allocatable_zones(device, *hole_start,
1480 *hole_start + *hole_size,
1481 num_bytes);
1482 if (pos != *hole_start) {
1483 *hole_size = *hole_start + *hole_size - pos;
1484 *hole_start = pos;
1485 changed = true;
1486 if (*hole_size < num_bytes)
1487 break;
1488 }
1489
1490 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1491
1492 /* Range is ensured to be empty */
1493 if (!ret)
1494 return changed;
1495
1496 /* Given hole range was invalid (outside of device) */
1497 if (ret == -ERANGE) {
1498 *hole_start += *hole_size;
1499 *hole_size = 0;
1500 return true;
1501 }
1502
1503 *hole_start += zone_size;
1504 *hole_size -= zone_size;
1505 changed = true;
1506 }
1507
1508 return changed;
1509 }
1510
1511 /*
1512 * Check if specified hole is suitable for allocation.
1513 *
1514 * @device: the device which we have the hole
1515 * @hole_start: starting position of the hole
1516 * @hole_size: the size of the hole
1517 * @num_bytes: the size of the free space that we need
1518 *
1519 * This function may modify @hole_start and @hole_size to reflect the suitable
1520 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1521 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1522 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1523 u64 *hole_size, u64 num_bytes)
1524 {
1525 bool changed = false;
1526 u64 hole_end = *hole_start + *hole_size;
1527
1528 for (;;) {
1529 /*
1530 * Check before we set max_hole_start, otherwise we could end up
1531 * sending back this offset anyway.
1532 */
1533 if (contains_pending_extent(device, hole_start, *hole_size)) {
1534 if (hole_end >= *hole_start)
1535 *hole_size = hole_end - *hole_start;
1536 else
1537 *hole_size = 0;
1538 changed = true;
1539 }
1540
1541 switch (device->fs_devices->chunk_alloc_policy) {
1542 case BTRFS_CHUNK_ALLOC_REGULAR:
1543 /* No extra check */
1544 break;
1545 case BTRFS_CHUNK_ALLOC_ZONED:
1546 if (dev_extent_hole_check_zoned(device, hole_start,
1547 hole_size, num_bytes)) {
1548 changed = true;
1549 /*
1550 * The changed hole can contain pending extent.
1551 * Loop again to check that.
1552 */
1553 continue;
1554 }
1555 break;
1556 default:
1557 BUG();
1558 }
1559
1560 break;
1561 }
1562
1563 return changed;
1564 }
1565
1566 /*
1567 * Find free space in the specified device.
1568 *
1569 * @device: the device which we search the free space in
1570 * @num_bytes: the size of the free space that we need
1571 * @search_start: the position from which to begin the search
1572 * @start: store the start of the free space.
1573 * @len: the size of the free space. that we find, or the size
1574 * of the max free space if we don't find suitable free space
1575 *
1576 * This does a pretty simple search, the expectation is that it is called very
1577 * infrequently and that a given device has a small number of extents.
1578 *
1579 * @start is used to store the start of the free space if we find. But if we
1580 * don't find suitable free space, it will be used to store the start position
1581 * of the max free space.
1582 *
1583 * @len is used to store the size of the free space that we find.
1584 * But if we don't find suitable free space, it is used to store the size of
1585 * the max free space.
1586 *
1587 * NOTE: This function will search *commit* root of device tree, and does extra
1588 * check to ensure dev extents are not double allocated.
1589 * This makes the function safe to allocate dev extents but may not report
1590 * correct usable device space, as device extent freed in current transaction
1591 * is not reported as available.
1592 */
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1593 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1594 u64 *start, u64 *len)
1595 {
1596 struct btrfs_fs_info *fs_info = device->fs_info;
1597 struct btrfs_root *root = fs_info->dev_root;
1598 struct btrfs_key key;
1599 struct btrfs_dev_extent *dev_extent;
1600 struct btrfs_path *path;
1601 u64 search_start;
1602 u64 hole_size;
1603 u64 max_hole_start;
1604 u64 max_hole_size = 0;
1605 u64 extent_end;
1606 u64 search_end = device->total_bytes;
1607 int ret;
1608 int slot;
1609 struct extent_buffer *l;
1610
1611 search_start = dev_extent_search_start(device);
1612 max_hole_start = search_start;
1613
1614 WARN_ON(device->zone_info &&
1615 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1616
1617 path = btrfs_alloc_path();
1618 if (!path) {
1619 ret = -ENOMEM;
1620 goto out;
1621 }
1622 again:
1623 if (search_start >= search_end ||
1624 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1625 ret = -ENOSPC;
1626 goto out;
1627 }
1628
1629 path->reada = READA_FORWARD;
1630 path->search_commit_root = 1;
1631 path->skip_locking = 1;
1632
1633 key.objectid = device->devid;
1634 key.offset = search_start;
1635 key.type = BTRFS_DEV_EXTENT_KEY;
1636
1637 ret = btrfs_search_backwards(root, &key, path);
1638 if (ret < 0)
1639 goto out;
1640
1641 while (search_start < search_end) {
1642 l = path->nodes[0];
1643 slot = path->slots[0];
1644 if (slot >= btrfs_header_nritems(l)) {
1645 ret = btrfs_next_leaf(root, path);
1646 if (ret == 0)
1647 continue;
1648 if (ret < 0)
1649 goto out;
1650
1651 break;
1652 }
1653 btrfs_item_key_to_cpu(l, &key, slot);
1654
1655 if (key.objectid < device->devid)
1656 goto next;
1657
1658 if (key.objectid > device->devid)
1659 break;
1660
1661 if (key.type != BTRFS_DEV_EXTENT_KEY)
1662 goto next;
1663
1664 if (key.offset > search_end)
1665 break;
1666
1667 if (key.offset > search_start) {
1668 hole_size = key.offset - search_start;
1669 dev_extent_hole_check(device, &search_start, &hole_size,
1670 num_bytes);
1671
1672 if (hole_size > max_hole_size) {
1673 max_hole_start = search_start;
1674 max_hole_size = hole_size;
1675 }
1676
1677 /*
1678 * If this free space is greater than which we need,
1679 * it must be the max free space that we have found
1680 * until now, so max_hole_start must point to the start
1681 * of this free space and the length of this free space
1682 * is stored in max_hole_size. Thus, we return
1683 * max_hole_start and max_hole_size and go back to the
1684 * caller.
1685 */
1686 if (hole_size >= num_bytes) {
1687 ret = 0;
1688 goto out;
1689 }
1690 }
1691
1692 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1693 extent_end = key.offset + btrfs_dev_extent_length(l,
1694 dev_extent);
1695 if (extent_end > search_start)
1696 search_start = extent_end;
1697 next:
1698 path->slots[0]++;
1699 cond_resched();
1700 }
1701
1702 /*
1703 * At this point, search_start should be the end of
1704 * allocated dev extents, and when shrinking the device,
1705 * search_end may be smaller than search_start.
1706 */
1707 if (search_end > search_start) {
1708 hole_size = search_end - search_start;
1709 if (dev_extent_hole_check(device, &search_start, &hole_size,
1710 num_bytes)) {
1711 btrfs_release_path(path);
1712 goto again;
1713 }
1714
1715 if (hole_size > max_hole_size) {
1716 max_hole_start = search_start;
1717 max_hole_size = hole_size;
1718 }
1719 }
1720
1721 /* See above. */
1722 if (max_hole_size < num_bytes)
1723 ret = -ENOSPC;
1724 else
1725 ret = 0;
1726
1727 ASSERT(max_hole_start + max_hole_size <= search_end);
1728 out:
1729 btrfs_free_path(path);
1730 *start = max_hole_start;
1731 if (len)
1732 *len = max_hole_size;
1733 return ret;
1734 }
1735
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1736 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1737 struct btrfs_device *device,
1738 u64 start, u64 *dev_extent_len)
1739 {
1740 struct btrfs_fs_info *fs_info = device->fs_info;
1741 struct btrfs_root *root = fs_info->dev_root;
1742 int ret;
1743 struct btrfs_path *path;
1744 struct btrfs_key key;
1745 struct btrfs_key found_key;
1746 struct extent_buffer *leaf = NULL;
1747 struct btrfs_dev_extent *extent = NULL;
1748
1749 path = btrfs_alloc_path();
1750 if (!path)
1751 return -ENOMEM;
1752
1753 key.objectid = device->devid;
1754 key.offset = start;
1755 key.type = BTRFS_DEV_EXTENT_KEY;
1756 again:
1757 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1758 if (ret > 0) {
1759 ret = btrfs_previous_item(root, path, key.objectid,
1760 BTRFS_DEV_EXTENT_KEY);
1761 if (ret)
1762 goto out;
1763 leaf = path->nodes[0];
1764 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1765 extent = btrfs_item_ptr(leaf, path->slots[0],
1766 struct btrfs_dev_extent);
1767 BUG_ON(found_key.offset > start || found_key.offset +
1768 btrfs_dev_extent_length(leaf, extent) < start);
1769 key = found_key;
1770 btrfs_release_path(path);
1771 goto again;
1772 } else if (ret == 0) {
1773 leaf = path->nodes[0];
1774 extent = btrfs_item_ptr(leaf, path->slots[0],
1775 struct btrfs_dev_extent);
1776 } else {
1777 goto out;
1778 }
1779
1780 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1781
1782 ret = btrfs_del_item(trans, root, path);
1783 if (ret == 0)
1784 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1785 out:
1786 btrfs_free_path(path);
1787 return ret;
1788 }
1789
find_next_chunk(struct btrfs_fs_info * fs_info)1790 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1791 {
1792 struct extent_map_tree *em_tree;
1793 struct extent_map *em;
1794 struct rb_node *n;
1795 u64 ret = 0;
1796
1797 em_tree = &fs_info->mapping_tree;
1798 read_lock(&em_tree->lock);
1799 n = rb_last(&em_tree->map.rb_root);
1800 if (n) {
1801 em = rb_entry(n, struct extent_map, rb_node);
1802 ret = em->start + em->len;
1803 }
1804 read_unlock(&em_tree->lock);
1805
1806 return ret;
1807 }
1808
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1809 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1810 u64 *devid_ret)
1811 {
1812 int ret;
1813 struct btrfs_key key;
1814 struct btrfs_key found_key;
1815 struct btrfs_path *path;
1816
1817 path = btrfs_alloc_path();
1818 if (!path)
1819 return -ENOMEM;
1820
1821 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1822 key.type = BTRFS_DEV_ITEM_KEY;
1823 key.offset = (u64)-1;
1824
1825 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1826 if (ret < 0)
1827 goto error;
1828
1829 if (ret == 0) {
1830 /* Corruption */
1831 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1832 ret = -EUCLEAN;
1833 goto error;
1834 }
1835
1836 ret = btrfs_previous_item(fs_info->chunk_root, path,
1837 BTRFS_DEV_ITEMS_OBJECTID,
1838 BTRFS_DEV_ITEM_KEY);
1839 if (ret) {
1840 *devid_ret = 1;
1841 } else {
1842 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1843 path->slots[0]);
1844 *devid_ret = found_key.offset + 1;
1845 }
1846 ret = 0;
1847 error:
1848 btrfs_free_path(path);
1849 return ret;
1850 }
1851
1852 /*
1853 * the device information is stored in the chunk root
1854 * the btrfs_device struct should be fully filled in
1855 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1856 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1857 struct btrfs_device *device)
1858 {
1859 int ret;
1860 struct btrfs_path *path;
1861 struct btrfs_dev_item *dev_item;
1862 struct extent_buffer *leaf;
1863 struct btrfs_key key;
1864 unsigned long ptr;
1865
1866 path = btrfs_alloc_path();
1867 if (!path)
1868 return -ENOMEM;
1869
1870 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1871 key.type = BTRFS_DEV_ITEM_KEY;
1872 key.offset = device->devid;
1873
1874 btrfs_reserve_chunk_metadata(trans, true);
1875 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1876 &key, sizeof(*dev_item));
1877 btrfs_trans_release_chunk_metadata(trans);
1878 if (ret)
1879 goto out;
1880
1881 leaf = path->nodes[0];
1882 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1883
1884 btrfs_set_device_id(leaf, dev_item, device->devid);
1885 btrfs_set_device_generation(leaf, dev_item, 0);
1886 btrfs_set_device_type(leaf, dev_item, device->type);
1887 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1888 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1889 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1890 btrfs_set_device_total_bytes(leaf, dev_item,
1891 btrfs_device_get_disk_total_bytes(device));
1892 btrfs_set_device_bytes_used(leaf, dev_item,
1893 btrfs_device_get_bytes_used(device));
1894 btrfs_set_device_group(leaf, dev_item, 0);
1895 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1896 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1897 btrfs_set_device_start_offset(leaf, dev_item, 0);
1898
1899 ptr = btrfs_device_uuid(dev_item);
1900 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1901 ptr = btrfs_device_fsid(dev_item);
1902 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1903 ptr, BTRFS_FSID_SIZE);
1904 btrfs_mark_buffer_dirty(trans, leaf);
1905
1906 ret = 0;
1907 out:
1908 btrfs_free_path(path);
1909 return ret;
1910 }
1911
1912 /*
1913 * Function to update ctime/mtime for a given device path.
1914 * Mainly used for ctime/mtime based probe like libblkid.
1915 *
1916 * We don't care about errors here, this is just to be kind to userspace.
1917 */
update_dev_time(const char * device_path)1918 static void update_dev_time(const char *device_path)
1919 {
1920 struct path path;
1921 int ret;
1922
1923 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1924 if (ret)
1925 return;
1926
1927 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1928 path_put(&path);
1929 }
1930
btrfs_rm_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1931 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1932 struct btrfs_device *device)
1933 {
1934 struct btrfs_root *root = device->fs_info->chunk_root;
1935 int ret;
1936 struct btrfs_path *path;
1937 struct btrfs_key key;
1938
1939 path = btrfs_alloc_path();
1940 if (!path)
1941 return -ENOMEM;
1942
1943 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1944 key.type = BTRFS_DEV_ITEM_KEY;
1945 key.offset = device->devid;
1946
1947 btrfs_reserve_chunk_metadata(trans, false);
1948 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1949 btrfs_trans_release_chunk_metadata(trans);
1950 if (ret) {
1951 if (ret > 0)
1952 ret = -ENOENT;
1953 goto out;
1954 }
1955
1956 ret = btrfs_del_item(trans, root, path);
1957 out:
1958 btrfs_free_path(path);
1959 return ret;
1960 }
1961
1962 /*
1963 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1964 * filesystem. It's up to the caller to adjust that number regarding eg. device
1965 * replace.
1966 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1967 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1968 u64 num_devices)
1969 {
1970 u64 all_avail;
1971 unsigned seq;
1972 int i;
1973
1974 do {
1975 seq = read_seqbegin(&fs_info->profiles_lock);
1976
1977 all_avail = fs_info->avail_data_alloc_bits |
1978 fs_info->avail_system_alloc_bits |
1979 fs_info->avail_metadata_alloc_bits;
1980 } while (read_seqretry(&fs_info->profiles_lock, seq));
1981
1982 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1983 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1984 continue;
1985
1986 if (num_devices < btrfs_raid_array[i].devs_min)
1987 return btrfs_raid_array[i].mindev_error;
1988 }
1989
1990 return 0;
1991 }
1992
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)1993 static struct btrfs_device * btrfs_find_next_active_device(
1994 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1995 {
1996 struct btrfs_device *next_device;
1997
1998 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1999 if (next_device != device &&
2000 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2001 && next_device->bdev)
2002 return next_device;
2003 }
2004
2005 return NULL;
2006 }
2007
2008 /*
2009 * Helper function to check if the given device is part of s_bdev / latest_dev
2010 * and replace it with the provided or the next active device, in the context
2011 * where this function called, there should be always be another device (or
2012 * this_dev) which is active.
2013 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)2014 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2015 struct btrfs_device *next_device)
2016 {
2017 struct btrfs_fs_info *fs_info = device->fs_info;
2018
2019 if (!next_device)
2020 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2021 device);
2022 ASSERT(next_device);
2023
2024 if (fs_info->sb->s_bdev &&
2025 (fs_info->sb->s_bdev == device->bdev))
2026 fs_info->sb->s_bdev = next_device->bdev;
2027
2028 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2029 fs_info->fs_devices->latest_dev = next_device;
2030 }
2031
2032 /*
2033 * Return btrfs_fs_devices::num_devices excluding the device that's being
2034 * currently replaced.
2035 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2036 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2037 {
2038 u64 num_devices = fs_info->fs_devices->num_devices;
2039
2040 down_read(&fs_info->dev_replace.rwsem);
2041 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2042 ASSERT(num_devices > 1);
2043 num_devices--;
2044 }
2045 up_read(&fs_info->dev_replace.rwsem);
2046
2047 return num_devices;
2048 }
2049
btrfs_scratch_superblock(struct btrfs_fs_info * fs_info,struct block_device * bdev,int copy_num)2050 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2051 struct block_device *bdev, int copy_num)
2052 {
2053 struct btrfs_super_block *disk_super;
2054 const size_t len = sizeof(disk_super->magic);
2055 const u64 bytenr = btrfs_sb_offset(copy_num);
2056 int ret;
2057
2058 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2059 if (IS_ERR(disk_super))
2060 return;
2061
2062 memset(&disk_super->magic, 0, len);
2063 folio_mark_dirty(virt_to_folio(disk_super));
2064 btrfs_release_disk_super(disk_super);
2065
2066 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2067 if (ret)
2068 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2069 copy_num, ret);
2070 }
2071
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct block_device * bdev,const char * device_path)2072 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2073 struct block_device *bdev,
2074 const char *device_path)
2075 {
2076 int copy_num;
2077
2078 if (!bdev)
2079 return;
2080
2081 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2082 if (bdev_is_zoned(bdev))
2083 btrfs_reset_sb_log_zones(bdev, copy_num);
2084 else
2085 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2086 }
2087
2088 /* Notify udev that device has changed */
2089 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2090
2091 /* Update ctime/mtime for device path for libblkid */
2092 update_dev_time(device_path);
2093 }
2094
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct block_device ** bdev,void ** holder)2095 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2096 struct btrfs_dev_lookup_args *args,
2097 struct block_device **bdev, void **holder)
2098 {
2099 struct btrfs_trans_handle *trans;
2100 struct btrfs_device *device;
2101 struct btrfs_fs_devices *cur_devices;
2102 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2103 u64 num_devices;
2104 int ret = 0;
2105
2106 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2107 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2108 return -EINVAL;
2109 }
2110
2111 /*
2112 * The device list in fs_devices is accessed without locks (neither
2113 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2114 * filesystem and another device rm cannot run.
2115 */
2116 num_devices = btrfs_num_devices(fs_info);
2117
2118 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2119 if (ret)
2120 return ret;
2121
2122 device = btrfs_find_device(fs_info->fs_devices, args);
2123 if (!device) {
2124 if (args->missing)
2125 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2126 else
2127 ret = -ENOENT;
2128 return ret;
2129 }
2130
2131 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2132 btrfs_warn_in_rcu(fs_info,
2133 "cannot remove device %s (devid %llu) due to active swapfile",
2134 btrfs_dev_name(device), device->devid);
2135 return -ETXTBSY;
2136 }
2137
2138 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2139 return BTRFS_ERROR_DEV_TGT_REPLACE;
2140
2141 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2142 fs_info->fs_devices->rw_devices == 1)
2143 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2144
2145 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2146 mutex_lock(&fs_info->chunk_mutex);
2147 list_del_init(&device->dev_alloc_list);
2148 device->fs_devices->rw_devices--;
2149 mutex_unlock(&fs_info->chunk_mutex);
2150 }
2151
2152 ret = btrfs_shrink_device(device, 0);
2153 if (ret)
2154 goto error_undo;
2155
2156 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2157 if (IS_ERR(trans)) {
2158 ret = PTR_ERR(trans);
2159 goto error_undo;
2160 }
2161
2162 ret = btrfs_rm_dev_item(trans, device);
2163 if (ret) {
2164 /* Any error in dev item removal is critical */
2165 btrfs_crit(fs_info,
2166 "failed to remove device item for devid %llu: %d",
2167 device->devid, ret);
2168 btrfs_abort_transaction(trans, ret);
2169 btrfs_end_transaction(trans);
2170 return ret;
2171 }
2172
2173 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2174 btrfs_scrub_cancel_dev(device);
2175
2176 /*
2177 * the device list mutex makes sure that we don't change
2178 * the device list while someone else is writing out all
2179 * the device supers. Whoever is writing all supers, should
2180 * lock the device list mutex before getting the number of
2181 * devices in the super block (super_copy). Conversely,
2182 * whoever updates the number of devices in the super block
2183 * (super_copy) should hold the device list mutex.
2184 */
2185
2186 /*
2187 * In normal cases the cur_devices == fs_devices. But in case
2188 * of deleting a seed device, the cur_devices should point to
2189 * its own fs_devices listed under the fs_devices->seed_list.
2190 */
2191 cur_devices = device->fs_devices;
2192 mutex_lock(&fs_devices->device_list_mutex);
2193 list_del_rcu(&device->dev_list);
2194
2195 cur_devices->num_devices--;
2196 cur_devices->total_devices--;
2197 /* Update total_devices of the parent fs_devices if it's seed */
2198 if (cur_devices != fs_devices)
2199 fs_devices->total_devices--;
2200
2201 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2202 cur_devices->missing_devices--;
2203
2204 btrfs_assign_next_active_device(device, NULL);
2205
2206 if (device->bdev) {
2207 cur_devices->open_devices--;
2208 /* remove sysfs entry */
2209 btrfs_sysfs_remove_device(device);
2210 }
2211
2212 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2213 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2214 mutex_unlock(&fs_devices->device_list_mutex);
2215
2216 /*
2217 * At this point, the device is zero sized and detached from the
2218 * devices list. All that's left is to zero out the old supers and
2219 * free the device.
2220 *
2221 * We cannot call btrfs_close_bdev() here because we're holding the sb
2222 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2223 * block device and it's dependencies. Instead just flush the device
2224 * and let the caller do the final blkdev_put.
2225 */
2226 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2227 btrfs_scratch_superblocks(fs_info, device->bdev,
2228 device->name->str);
2229 if (device->bdev) {
2230 sync_blockdev(device->bdev);
2231 invalidate_bdev(device->bdev);
2232 }
2233 }
2234
2235 *bdev = device->bdev;
2236 *holder = device->holder;
2237 synchronize_rcu();
2238 btrfs_free_device(device);
2239
2240 /*
2241 * This can happen if cur_devices is the private seed devices list. We
2242 * cannot call close_fs_devices() here because it expects the uuid_mutex
2243 * to be held, but in fact we don't need that for the private
2244 * seed_devices, we can simply decrement cur_devices->opened and then
2245 * remove it from our list and free the fs_devices.
2246 */
2247 if (cur_devices->num_devices == 0) {
2248 list_del_init(&cur_devices->seed_list);
2249 ASSERT(cur_devices->opened == 1);
2250 cur_devices->opened--;
2251 free_fs_devices(cur_devices);
2252 }
2253
2254 ret = btrfs_commit_transaction(trans);
2255
2256 return ret;
2257
2258 error_undo:
2259 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2260 mutex_lock(&fs_info->chunk_mutex);
2261 list_add(&device->dev_alloc_list,
2262 &fs_devices->alloc_list);
2263 device->fs_devices->rw_devices++;
2264 mutex_unlock(&fs_info->chunk_mutex);
2265 }
2266 return ret;
2267 }
2268
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2269 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2270 {
2271 struct btrfs_fs_devices *fs_devices;
2272
2273 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2274
2275 /*
2276 * in case of fs with no seed, srcdev->fs_devices will point
2277 * to fs_devices of fs_info. However when the dev being replaced is
2278 * a seed dev it will point to the seed's local fs_devices. In short
2279 * srcdev will have its correct fs_devices in both the cases.
2280 */
2281 fs_devices = srcdev->fs_devices;
2282
2283 list_del_rcu(&srcdev->dev_list);
2284 list_del(&srcdev->dev_alloc_list);
2285 fs_devices->num_devices--;
2286 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2287 fs_devices->missing_devices--;
2288
2289 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2290 fs_devices->rw_devices--;
2291
2292 if (srcdev->bdev)
2293 fs_devices->open_devices--;
2294 }
2295
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2296 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2297 {
2298 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2299
2300 mutex_lock(&uuid_mutex);
2301
2302 btrfs_close_bdev(srcdev);
2303 synchronize_rcu();
2304 btrfs_free_device(srcdev);
2305
2306 /* if this is no devs we rather delete the fs_devices */
2307 if (!fs_devices->num_devices) {
2308 /*
2309 * On a mounted FS, num_devices can't be zero unless it's a
2310 * seed. In case of a seed device being replaced, the replace
2311 * target added to the sprout FS, so there will be no more
2312 * device left under the seed FS.
2313 */
2314 ASSERT(fs_devices->seeding);
2315
2316 list_del_init(&fs_devices->seed_list);
2317 close_fs_devices(fs_devices);
2318 free_fs_devices(fs_devices);
2319 }
2320 mutex_unlock(&uuid_mutex);
2321 }
2322
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2323 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2324 {
2325 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2326
2327 mutex_lock(&fs_devices->device_list_mutex);
2328
2329 btrfs_sysfs_remove_device(tgtdev);
2330
2331 if (tgtdev->bdev)
2332 fs_devices->open_devices--;
2333
2334 fs_devices->num_devices--;
2335
2336 btrfs_assign_next_active_device(tgtdev, NULL);
2337
2338 list_del_rcu(&tgtdev->dev_list);
2339
2340 mutex_unlock(&fs_devices->device_list_mutex);
2341
2342 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2343 tgtdev->name->str);
2344
2345 btrfs_close_bdev(tgtdev);
2346 synchronize_rcu();
2347 btrfs_free_device(tgtdev);
2348 }
2349
2350 /*
2351 * Populate args from device at path.
2352 *
2353 * @fs_info: the filesystem
2354 * @args: the args to populate
2355 * @path: the path to the device
2356 *
2357 * This will read the super block of the device at @path and populate @args with
2358 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2359 * lookup a device to operate on, but need to do it before we take any locks.
2360 * This properly handles the special case of "missing" that a user may pass in,
2361 * and does some basic sanity checks. The caller must make sure that @path is
2362 * properly NUL terminated before calling in, and must call
2363 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2364 * uuid buffers.
2365 *
2366 * Return: 0 for success, -errno for failure
2367 */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2368 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2369 struct btrfs_dev_lookup_args *args,
2370 const char *path)
2371 {
2372 struct btrfs_super_block *disk_super;
2373 struct block_device *bdev;
2374 int ret;
2375
2376 if (!path || !path[0])
2377 return -EINVAL;
2378 if (!strcmp(path, "missing")) {
2379 args->missing = true;
2380 return 0;
2381 }
2382
2383 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2384 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2385 if (!args->uuid || !args->fsid) {
2386 btrfs_put_dev_args_from_path(args);
2387 return -ENOMEM;
2388 }
2389
2390 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2391 &bdev, &disk_super);
2392 if (ret) {
2393 btrfs_put_dev_args_from_path(args);
2394 return ret;
2395 }
2396
2397 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2398 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2399 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2400 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2401 else
2402 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2403 btrfs_release_disk_super(disk_super);
2404 blkdev_put(bdev, NULL);
2405 return 0;
2406 }
2407
2408 /*
2409 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2410 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2411 * that don't need to be freed.
2412 */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2413 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2414 {
2415 kfree(args->uuid);
2416 kfree(args->fsid);
2417 args->uuid = NULL;
2418 args->fsid = NULL;
2419 }
2420
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2421 struct btrfs_device *btrfs_find_device_by_devspec(
2422 struct btrfs_fs_info *fs_info, u64 devid,
2423 const char *device_path)
2424 {
2425 BTRFS_DEV_LOOKUP_ARGS(args);
2426 struct btrfs_device *device;
2427 int ret;
2428
2429 if (devid) {
2430 args.devid = devid;
2431 device = btrfs_find_device(fs_info->fs_devices, &args);
2432 if (!device)
2433 return ERR_PTR(-ENOENT);
2434 return device;
2435 }
2436
2437 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2438 if (ret)
2439 return ERR_PTR(ret);
2440 device = btrfs_find_device(fs_info->fs_devices, &args);
2441 btrfs_put_dev_args_from_path(&args);
2442 if (!device)
2443 return ERR_PTR(-ENOENT);
2444 return device;
2445 }
2446
btrfs_init_sprout(struct btrfs_fs_info * fs_info)2447 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2448 {
2449 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2450 struct btrfs_fs_devices *old_devices;
2451 struct btrfs_fs_devices *seed_devices;
2452
2453 lockdep_assert_held(&uuid_mutex);
2454 if (!fs_devices->seeding)
2455 return ERR_PTR(-EINVAL);
2456
2457 /*
2458 * Private copy of the seed devices, anchored at
2459 * fs_info->fs_devices->seed_list
2460 */
2461 seed_devices = alloc_fs_devices(NULL, NULL);
2462 if (IS_ERR(seed_devices))
2463 return seed_devices;
2464
2465 /*
2466 * It's necessary to retain a copy of the original seed fs_devices in
2467 * fs_uuids so that filesystems which have been seeded can successfully
2468 * reference the seed device from open_seed_devices. This also supports
2469 * multiple fs seed.
2470 */
2471 old_devices = clone_fs_devices(fs_devices);
2472 if (IS_ERR(old_devices)) {
2473 kfree(seed_devices);
2474 return old_devices;
2475 }
2476
2477 list_add(&old_devices->fs_list, &fs_uuids);
2478
2479 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2480 seed_devices->opened = 1;
2481 INIT_LIST_HEAD(&seed_devices->devices);
2482 INIT_LIST_HEAD(&seed_devices->alloc_list);
2483 mutex_init(&seed_devices->device_list_mutex);
2484
2485 return seed_devices;
2486 }
2487
2488 /*
2489 * Splice seed devices into the sprout fs_devices.
2490 * Generate a new fsid for the sprouted read-write filesystem.
2491 */
btrfs_setup_sprout(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * seed_devices)2492 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2493 struct btrfs_fs_devices *seed_devices)
2494 {
2495 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2496 struct btrfs_super_block *disk_super = fs_info->super_copy;
2497 struct btrfs_device *device;
2498 u64 super_flags;
2499
2500 /*
2501 * We are updating the fsid, the thread leading to device_list_add()
2502 * could race, so uuid_mutex is needed.
2503 */
2504 lockdep_assert_held(&uuid_mutex);
2505
2506 /*
2507 * The threads listed below may traverse dev_list but can do that without
2508 * device_list_mutex:
2509 * - All device ops and balance - as we are in btrfs_exclop_start.
2510 * - Various dev_list readers - are using RCU.
2511 * - btrfs_ioctl_fitrim() - is using RCU.
2512 *
2513 * For-read threads as below are using device_list_mutex:
2514 * - Readonly scrub btrfs_scrub_dev()
2515 * - Readonly scrub btrfs_scrub_progress()
2516 * - btrfs_get_dev_stats()
2517 */
2518 lockdep_assert_held(&fs_devices->device_list_mutex);
2519
2520 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2521 synchronize_rcu);
2522 list_for_each_entry(device, &seed_devices->devices, dev_list)
2523 device->fs_devices = seed_devices;
2524
2525 fs_devices->seeding = false;
2526 fs_devices->num_devices = 0;
2527 fs_devices->open_devices = 0;
2528 fs_devices->missing_devices = 0;
2529 fs_devices->rotating = false;
2530 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2531
2532 generate_random_uuid(fs_devices->fsid);
2533 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2534 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2535
2536 super_flags = btrfs_super_flags(disk_super) &
2537 ~BTRFS_SUPER_FLAG_SEEDING;
2538 btrfs_set_super_flags(disk_super, super_flags);
2539 }
2540
2541 /*
2542 * Store the expected generation for seed devices in device items.
2543 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2544 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2545 {
2546 BTRFS_DEV_LOOKUP_ARGS(args);
2547 struct btrfs_fs_info *fs_info = trans->fs_info;
2548 struct btrfs_root *root = fs_info->chunk_root;
2549 struct btrfs_path *path;
2550 struct extent_buffer *leaf;
2551 struct btrfs_dev_item *dev_item;
2552 struct btrfs_device *device;
2553 struct btrfs_key key;
2554 u8 fs_uuid[BTRFS_FSID_SIZE];
2555 u8 dev_uuid[BTRFS_UUID_SIZE];
2556 int ret;
2557
2558 path = btrfs_alloc_path();
2559 if (!path)
2560 return -ENOMEM;
2561
2562 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2563 key.offset = 0;
2564 key.type = BTRFS_DEV_ITEM_KEY;
2565
2566 while (1) {
2567 btrfs_reserve_chunk_metadata(trans, false);
2568 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2569 btrfs_trans_release_chunk_metadata(trans);
2570 if (ret < 0)
2571 goto error;
2572
2573 leaf = path->nodes[0];
2574 next_slot:
2575 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2576 ret = btrfs_next_leaf(root, path);
2577 if (ret > 0)
2578 break;
2579 if (ret < 0)
2580 goto error;
2581 leaf = path->nodes[0];
2582 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2583 btrfs_release_path(path);
2584 continue;
2585 }
2586
2587 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2588 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2589 key.type != BTRFS_DEV_ITEM_KEY)
2590 break;
2591
2592 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2593 struct btrfs_dev_item);
2594 args.devid = btrfs_device_id(leaf, dev_item);
2595 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2596 BTRFS_UUID_SIZE);
2597 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2598 BTRFS_FSID_SIZE);
2599 args.uuid = dev_uuid;
2600 args.fsid = fs_uuid;
2601 device = btrfs_find_device(fs_info->fs_devices, &args);
2602 BUG_ON(!device); /* Logic error */
2603
2604 if (device->fs_devices->seeding) {
2605 btrfs_set_device_generation(leaf, dev_item,
2606 device->generation);
2607 btrfs_mark_buffer_dirty(trans, leaf);
2608 }
2609
2610 path->slots[0]++;
2611 goto next_slot;
2612 }
2613 ret = 0;
2614 error:
2615 btrfs_free_path(path);
2616 return ret;
2617 }
2618
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2619 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2620 {
2621 struct btrfs_root *root = fs_info->dev_root;
2622 struct btrfs_trans_handle *trans;
2623 struct btrfs_device *device;
2624 struct block_device *bdev;
2625 struct super_block *sb = fs_info->sb;
2626 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2627 struct btrfs_fs_devices *seed_devices = NULL;
2628 u64 orig_super_total_bytes;
2629 u64 orig_super_num_devices;
2630 int ret = 0;
2631 bool seeding_dev = false;
2632 bool locked = false;
2633
2634 if (sb_rdonly(sb) && !fs_devices->seeding)
2635 return -EROFS;
2636
2637 bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE,
2638 fs_info->bdev_holder, NULL);
2639 if (IS_ERR(bdev))
2640 return PTR_ERR(bdev);
2641
2642 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2643 ret = -EINVAL;
2644 goto error;
2645 }
2646
2647 if (fs_devices->seeding) {
2648 seeding_dev = true;
2649 down_write(&sb->s_umount);
2650 mutex_lock(&uuid_mutex);
2651 locked = true;
2652 }
2653
2654 sync_blockdev(bdev);
2655
2656 rcu_read_lock();
2657 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2658 if (device->bdev == bdev) {
2659 ret = -EEXIST;
2660 rcu_read_unlock();
2661 goto error;
2662 }
2663 }
2664 rcu_read_unlock();
2665
2666 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2667 if (IS_ERR(device)) {
2668 /* we can safely leave the fs_devices entry around */
2669 ret = PTR_ERR(device);
2670 goto error;
2671 }
2672
2673 device->fs_info = fs_info;
2674 device->bdev = bdev;
2675 ret = lookup_bdev(device_path, &device->devt);
2676 if (ret)
2677 goto error_free_device;
2678
2679 ret = btrfs_get_dev_zone_info(device, false);
2680 if (ret)
2681 goto error_free_device;
2682
2683 trans = btrfs_start_transaction(root, 0);
2684 if (IS_ERR(trans)) {
2685 ret = PTR_ERR(trans);
2686 goto error_free_zone;
2687 }
2688
2689 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2690 device->generation = trans->transid;
2691 device->io_width = fs_info->sectorsize;
2692 device->io_align = fs_info->sectorsize;
2693 device->sector_size = fs_info->sectorsize;
2694 device->total_bytes =
2695 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2696 device->disk_total_bytes = device->total_bytes;
2697 device->commit_total_bytes = device->total_bytes;
2698 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2699 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2700 device->holder = fs_info->bdev_holder;
2701 device->dev_stats_valid = 1;
2702 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2703
2704 if (seeding_dev) {
2705 btrfs_clear_sb_rdonly(sb);
2706
2707 /* GFP_KERNEL allocation must not be under device_list_mutex */
2708 seed_devices = btrfs_init_sprout(fs_info);
2709 if (IS_ERR(seed_devices)) {
2710 ret = PTR_ERR(seed_devices);
2711 btrfs_abort_transaction(trans, ret);
2712 goto error_trans;
2713 }
2714 }
2715
2716 mutex_lock(&fs_devices->device_list_mutex);
2717 if (seeding_dev) {
2718 btrfs_setup_sprout(fs_info, seed_devices);
2719 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2720 device);
2721 }
2722
2723 device->fs_devices = fs_devices;
2724
2725 mutex_lock(&fs_info->chunk_mutex);
2726 list_add_rcu(&device->dev_list, &fs_devices->devices);
2727 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2728 fs_devices->num_devices++;
2729 fs_devices->open_devices++;
2730 fs_devices->rw_devices++;
2731 fs_devices->total_devices++;
2732 fs_devices->total_rw_bytes += device->total_bytes;
2733
2734 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2735
2736 if (!bdev_nonrot(bdev))
2737 fs_devices->rotating = true;
2738
2739 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2740 btrfs_set_super_total_bytes(fs_info->super_copy,
2741 round_down(orig_super_total_bytes + device->total_bytes,
2742 fs_info->sectorsize));
2743
2744 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2745 btrfs_set_super_num_devices(fs_info->super_copy,
2746 orig_super_num_devices + 1);
2747
2748 /*
2749 * we've got more storage, clear any full flags on the space
2750 * infos
2751 */
2752 btrfs_clear_space_info_full(fs_info);
2753
2754 mutex_unlock(&fs_info->chunk_mutex);
2755
2756 /* Add sysfs device entry */
2757 btrfs_sysfs_add_device(device);
2758
2759 mutex_unlock(&fs_devices->device_list_mutex);
2760
2761 if (seeding_dev) {
2762 mutex_lock(&fs_info->chunk_mutex);
2763 ret = init_first_rw_device(trans);
2764 mutex_unlock(&fs_info->chunk_mutex);
2765 if (ret) {
2766 btrfs_abort_transaction(trans, ret);
2767 goto error_sysfs;
2768 }
2769 }
2770
2771 ret = btrfs_add_dev_item(trans, device);
2772 if (ret) {
2773 btrfs_abort_transaction(trans, ret);
2774 goto error_sysfs;
2775 }
2776
2777 if (seeding_dev) {
2778 ret = btrfs_finish_sprout(trans);
2779 if (ret) {
2780 btrfs_abort_transaction(trans, ret);
2781 goto error_sysfs;
2782 }
2783
2784 /*
2785 * fs_devices now represents the newly sprouted filesystem and
2786 * its fsid has been changed by btrfs_sprout_splice().
2787 */
2788 btrfs_sysfs_update_sprout_fsid(fs_devices);
2789 }
2790
2791 ret = btrfs_commit_transaction(trans);
2792
2793 if (seeding_dev) {
2794 mutex_unlock(&uuid_mutex);
2795 up_write(&sb->s_umount);
2796 locked = false;
2797
2798 if (ret) /* transaction commit */
2799 return ret;
2800
2801 ret = btrfs_relocate_sys_chunks(fs_info);
2802 if (ret < 0)
2803 btrfs_handle_fs_error(fs_info, ret,
2804 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2805 trans = btrfs_attach_transaction(root);
2806 if (IS_ERR(trans)) {
2807 if (PTR_ERR(trans) == -ENOENT)
2808 return 0;
2809 ret = PTR_ERR(trans);
2810 trans = NULL;
2811 goto error_sysfs;
2812 }
2813 ret = btrfs_commit_transaction(trans);
2814 }
2815
2816 /*
2817 * Now that we have written a new super block to this device, check all
2818 * other fs_devices list if device_path alienates any other scanned
2819 * device.
2820 * We can ignore the return value as it typically returns -EINVAL and
2821 * only succeeds if the device was an alien.
2822 */
2823 btrfs_forget_devices(device->devt);
2824
2825 /* Update ctime/mtime for blkid or udev */
2826 update_dev_time(device_path);
2827
2828 return ret;
2829
2830 error_sysfs:
2831 btrfs_sysfs_remove_device(device);
2832 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2833 mutex_lock(&fs_info->chunk_mutex);
2834 list_del_rcu(&device->dev_list);
2835 list_del(&device->dev_alloc_list);
2836 fs_info->fs_devices->num_devices--;
2837 fs_info->fs_devices->open_devices--;
2838 fs_info->fs_devices->rw_devices--;
2839 fs_info->fs_devices->total_devices--;
2840 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2841 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2842 btrfs_set_super_total_bytes(fs_info->super_copy,
2843 orig_super_total_bytes);
2844 btrfs_set_super_num_devices(fs_info->super_copy,
2845 orig_super_num_devices);
2846 mutex_unlock(&fs_info->chunk_mutex);
2847 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2848 error_trans:
2849 if (seeding_dev)
2850 btrfs_set_sb_rdonly(sb);
2851 if (trans)
2852 btrfs_end_transaction(trans);
2853 error_free_zone:
2854 btrfs_destroy_dev_zone_info(device);
2855 error_free_device:
2856 btrfs_free_device(device);
2857 error:
2858 blkdev_put(bdev, fs_info->bdev_holder);
2859 if (locked) {
2860 mutex_unlock(&uuid_mutex);
2861 up_write(&sb->s_umount);
2862 }
2863 return ret;
2864 }
2865
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2866 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2867 struct btrfs_device *device)
2868 {
2869 int ret;
2870 struct btrfs_path *path;
2871 struct btrfs_root *root = device->fs_info->chunk_root;
2872 struct btrfs_dev_item *dev_item;
2873 struct extent_buffer *leaf;
2874 struct btrfs_key key;
2875
2876 path = btrfs_alloc_path();
2877 if (!path)
2878 return -ENOMEM;
2879
2880 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2881 key.type = BTRFS_DEV_ITEM_KEY;
2882 key.offset = device->devid;
2883
2884 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2885 if (ret < 0)
2886 goto out;
2887
2888 if (ret > 0) {
2889 ret = -ENOENT;
2890 goto out;
2891 }
2892
2893 leaf = path->nodes[0];
2894 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2895
2896 btrfs_set_device_id(leaf, dev_item, device->devid);
2897 btrfs_set_device_type(leaf, dev_item, device->type);
2898 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2899 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2900 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2901 btrfs_set_device_total_bytes(leaf, dev_item,
2902 btrfs_device_get_disk_total_bytes(device));
2903 btrfs_set_device_bytes_used(leaf, dev_item,
2904 btrfs_device_get_bytes_used(device));
2905 btrfs_mark_buffer_dirty(trans, leaf);
2906
2907 out:
2908 btrfs_free_path(path);
2909 return ret;
2910 }
2911
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2912 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2913 struct btrfs_device *device, u64 new_size)
2914 {
2915 struct btrfs_fs_info *fs_info = device->fs_info;
2916 struct btrfs_super_block *super_copy = fs_info->super_copy;
2917 u64 old_total;
2918 u64 diff;
2919 int ret;
2920
2921 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2922 return -EACCES;
2923
2924 new_size = round_down(new_size, fs_info->sectorsize);
2925
2926 mutex_lock(&fs_info->chunk_mutex);
2927 old_total = btrfs_super_total_bytes(super_copy);
2928 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2929
2930 if (new_size <= device->total_bytes ||
2931 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2932 mutex_unlock(&fs_info->chunk_mutex);
2933 return -EINVAL;
2934 }
2935
2936 btrfs_set_super_total_bytes(super_copy,
2937 round_down(old_total + diff, fs_info->sectorsize));
2938 device->fs_devices->total_rw_bytes += diff;
2939
2940 btrfs_device_set_total_bytes(device, new_size);
2941 btrfs_device_set_disk_total_bytes(device, new_size);
2942 btrfs_clear_space_info_full(device->fs_info);
2943 if (list_empty(&device->post_commit_list))
2944 list_add_tail(&device->post_commit_list,
2945 &trans->transaction->dev_update_list);
2946 mutex_unlock(&fs_info->chunk_mutex);
2947
2948 btrfs_reserve_chunk_metadata(trans, false);
2949 ret = btrfs_update_device(trans, device);
2950 btrfs_trans_release_chunk_metadata(trans);
2951
2952 return ret;
2953 }
2954
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2955 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2956 {
2957 struct btrfs_fs_info *fs_info = trans->fs_info;
2958 struct btrfs_root *root = fs_info->chunk_root;
2959 int ret;
2960 struct btrfs_path *path;
2961 struct btrfs_key key;
2962
2963 path = btrfs_alloc_path();
2964 if (!path)
2965 return -ENOMEM;
2966
2967 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2968 key.offset = chunk_offset;
2969 key.type = BTRFS_CHUNK_ITEM_KEY;
2970
2971 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2972 if (ret < 0)
2973 goto out;
2974 else if (ret > 0) { /* Logic error or corruption */
2975 btrfs_handle_fs_error(fs_info, -ENOENT,
2976 "Failed lookup while freeing chunk.");
2977 ret = -ENOENT;
2978 goto out;
2979 }
2980
2981 ret = btrfs_del_item(trans, root, path);
2982 if (ret < 0)
2983 btrfs_handle_fs_error(fs_info, ret,
2984 "Failed to delete chunk item.");
2985 out:
2986 btrfs_free_path(path);
2987 return ret;
2988 }
2989
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2990 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2991 {
2992 struct btrfs_super_block *super_copy = fs_info->super_copy;
2993 struct btrfs_disk_key *disk_key;
2994 struct btrfs_chunk *chunk;
2995 u8 *ptr;
2996 int ret = 0;
2997 u32 num_stripes;
2998 u32 array_size;
2999 u32 len = 0;
3000 u32 cur;
3001 struct btrfs_key key;
3002
3003 lockdep_assert_held(&fs_info->chunk_mutex);
3004 array_size = btrfs_super_sys_array_size(super_copy);
3005
3006 ptr = super_copy->sys_chunk_array;
3007 cur = 0;
3008
3009 while (cur < array_size) {
3010 disk_key = (struct btrfs_disk_key *)ptr;
3011 btrfs_disk_key_to_cpu(&key, disk_key);
3012
3013 len = sizeof(*disk_key);
3014
3015 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3016 chunk = (struct btrfs_chunk *)(ptr + len);
3017 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3018 len += btrfs_chunk_item_size(num_stripes);
3019 } else {
3020 ret = -EIO;
3021 break;
3022 }
3023 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3024 key.offset == chunk_offset) {
3025 memmove(ptr, ptr + len, array_size - (cur + len));
3026 array_size -= len;
3027 btrfs_set_super_sys_array_size(super_copy, array_size);
3028 } else {
3029 ptr += len;
3030 cur += len;
3031 }
3032 }
3033 return ret;
3034 }
3035
3036 /*
3037 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3038 * @logical: Logical block offset in bytes.
3039 * @length: Length of extent in bytes.
3040 *
3041 * Return: Chunk mapping or ERR_PTR.
3042 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3043 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3044 u64 logical, u64 length)
3045 {
3046 struct extent_map_tree *em_tree;
3047 struct extent_map *em;
3048
3049 em_tree = &fs_info->mapping_tree;
3050 read_lock(&em_tree->lock);
3051 em = lookup_extent_mapping(em_tree, logical, length);
3052 read_unlock(&em_tree->lock);
3053
3054 if (!em) {
3055 btrfs_crit(fs_info,
3056 "unable to find chunk map for logical %llu length %llu",
3057 logical, length);
3058 return ERR_PTR(-EINVAL);
3059 }
3060
3061 if (em->start > logical || em->start + em->len <= logical) {
3062 btrfs_crit(fs_info,
3063 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3064 logical, logical + length, em->start, em->start + em->len);
3065 free_extent_map(em);
3066 return ERR_PTR(-EINVAL);
3067 }
3068
3069 /* callers are responsible for dropping em's ref. */
3070 return em;
3071 }
3072
remove_chunk_item(struct btrfs_trans_handle * trans,struct map_lookup * map,u64 chunk_offset)3073 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3074 struct map_lookup *map, u64 chunk_offset)
3075 {
3076 int i;
3077
3078 /*
3079 * Removing chunk items and updating the device items in the chunks btree
3080 * requires holding the chunk_mutex.
3081 * See the comment at btrfs_chunk_alloc() for the details.
3082 */
3083 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3084
3085 for (i = 0; i < map->num_stripes; i++) {
3086 int ret;
3087
3088 ret = btrfs_update_device(trans, map->stripes[i].dev);
3089 if (ret)
3090 return ret;
3091 }
3092
3093 return btrfs_free_chunk(trans, chunk_offset);
3094 }
3095
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3096 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3097 {
3098 struct btrfs_fs_info *fs_info = trans->fs_info;
3099 struct extent_map *em;
3100 struct map_lookup *map;
3101 u64 dev_extent_len = 0;
3102 int i, ret = 0;
3103 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3104
3105 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3106 if (IS_ERR(em)) {
3107 /*
3108 * This is a logic error, but we don't want to just rely on the
3109 * user having built with ASSERT enabled, so if ASSERT doesn't
3110 * do anything we still error out.
3111 */
3112 ASSERT(0);
3113 return PTR_ERR(em);
3114 }
3115 map = em->map_lookup;
3116
3117 /*
3118 * First delete the device extent items from the devices btree.
3119 * We take the device_list_mutex to avoid racing with the finishing phase
3120 * of a device replace operation. See the comment below before acquiring
3121 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3122 * because that can result in a deadlock when deleting the device extent
3123 * items from the devices btree - COWing an extent buffer from the btree
3124 * may result in allocating a new metadata chunk, which would attempt to
3125 * lock again fs_info->chunk_mutex.
3126 */
3127 mutex_lock(&fs_devices->device_list_mutex);
3128 for (i = 0; i < map->num_stripes; i++) {
3129 struct btrfs_device *device = map->stripes[i].dev;
3130 ret = btrfs_free_dev_extent(trans, device,
3131 map->stripes[i].physical,
3132 &dev_extent_len);
3133 if (ret) {
3134 mutex_unlock(&fs_devices->device_list_mutex);
3135 btrfs_abort_transaction(trans, ret);
3136 goto out;
3137 }
3138
3139 if (device->bytes_used > 0) {
3140 mutex_lock(&fs_info->chunk_mutex);
3141 btrfs_device_set_bytes_used(device,
3142 device->bytes_used - dev_extent_len);
3143 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3144 btrfs_clear_space_info_full(fs_info);
3145 mutex_unlock(&fs_info->chunk_mutex);
3146 }
3147 }
3148 mutex_unlock(&fs_devices->device_list_mutex);
3149
3150 /*
3151 * We acquire fs_info->chunk_mutex for 2 reasons:
3152 *
3153 * 1) Just like with the first phase of the chunk allocation, we must
3154 * reserve system space, do all chunk btree updates and deletions, and
3155 * update the system chunk array in the superblock while holding this
3156 * mutex. This is for similar reasons as explained on the comment at
3157 * the top of btrfs_chunk_alloc();
3158 *
3159 * 2) Prevent races with the final phase of a device replace operation
3160 * that replaces the device object associated with the map's stripes,
3161 * because the device object's id can change at any time during that
3162 * final phase of the device replace operation
3163 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3164 * replaced device and then see it with an ID of
3165 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3166 * the device item, which does not exists on the chunk btree.
3167 * The finishing phase of device replace acquires both the
3168 * device_list_mutex and the chunk_mutex, in that order, so we are
3169 * safe by just acquiring the chunk_mutex.
3170 */
3171 trans->removing_chunk = true;
3172 mutex_lock(&fs_info->chunk_mutex);
3173
3174 check_system_chunk(trans, map->type);
3175
3176 ret = remove_chunk_item(trans, map, chunk_offset);
3177 /*
3178 * Normally we should not get -ENOSPC since we reserved space before
3179 * through the call to check_system_chunk().
3180 *
3181 * Despite our system space_info having enough free space, we may not
3182 * be able to allocate extents from its block groups, because all have
3183 * an incompatible profile, which will force us to allocate a new system
3184 * block group with the right profile, or right after we called
3185 * check_system_space() above, a scrub turned the only system block group
3186 * with enough free space into RO mode.
3187 * This is explained with more detail at do_chunk_alloc().
3188 *
3189 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3190 */
3191 if (ret == -ENOSPC) {
3192 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3193 struct btrfs_block_group *sys_bg;
3194
3195 sys_bg = btrfs_create_chunk(trans, sys_flags);
3196 if (IS_ERR(sys_bg)) {
3197 ret = PTR_ERR(sys_bg);
3198 btrfs_abort_transaction(trans, ret);
3199 goto out;
3200 }
3201
3202 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3203 if (ret) {
3204 btrfs_abort_transaction(trans, ret);
3205 goto out;
3206 }
3207
3208 ret = remove_chunk_item(trans, map, chunk_offset);
3209 if (ret) {
3210 btrfs_abort_transaction(trans, ret);
3211 goto out;
3212 }
3213 } else if (ret) {
3214 btrfs_abort_transaction(trans, ret);
3215 goto out;
3216 }
3217
3218 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3219
3220 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3221 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3222 if (ret) {
3223 btrfs_abort_transaction(trans, ret);
3224 goto out;
3225 }
3226 }
3227
3228 mutex_unlock(&fs_info->chunk_mutex);
3229 trans->removing_chunk = false;
3230
3231 /*
3232 * We are done with chunk btree updates and deletions, so release the
3233 * system space we previously reserved (with check_system_chunk()).
3234 */
3235 btrfs_trans_release_chunk_metadata(trans);
3236
3237 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3238 if (ret) {
3239 btrfs_abort_transaction(trans, ret);
3240 goto out;
3241 }
3242
3243 out:
3244 if (trans->removing_chunk) {
3245 mutex_unlock(&fs_info->chunk_mutex);
3246 trans->removing_chunk = false;
3247 }
3248 /* once for us */
3249 free_extent_map(em);
3250 return ret;
3251 }
3252
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3253 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3254 {
3255 struct btrfs_root *root = fs_info->chunk_root;
3256 struct btrfs_trans_handle *trans;
3257 struct btrfs_block_group *block_group;
3258 u64 length;
3259 int ret;
3260
3261 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3262 btrfs_err(fs_info,
3263 "relocate: not supported on extent tree v2 yet");
3264 return -EINVAL;
3265 }
3266
3267 /*
3268 * Prevent races with automatic removal of unused block groups.
3269 * After we relocate and before we remove the chunk with offset
3270 * chunk_offset, automatic removal of the block group can kick in,
3271 * resulting in a failure when calling btrfs_remove_chunk() below.
3272 *
3273 * Make sure to acquire this mutex before doing a tree search (dev
3274 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3275 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3276 * we release the path used to search the chunk/dev tree and before
3277 * the current task acquires this mutex and calls us.
3278 */
3279 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3280
3281 /* step one, relocate all the extents inside this chunk */
3282 btrfs_scrub_pause(fs_info);
3283 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3284 btrfs_scrub_continue(fs_info);
3285 if (ret) {
3286 /*
3287 * If we had a transaction abort, stop all running scrubs.
3288 * See transaction.c:cleanup_transaction() why we do it here.
3289 */
3290 if (BTRFS_FS_ERROR(fs_info))
3291 btrfs_scrub_cancel(fs_info);
3292 return ret;
3293 }
3294
3295 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3296 if (!block_group)
3297 return -ENOENT;
3298 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3299 length = block_group->length;
3300 btrfs_put_block_group(block_group);
3301
3302 /*
3303 * On a zoned file system, discard the whole block group, this will
3304 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3305 * resetting the zone fails, don't treat it as a fatal problem from the
3306 * filesystem's point of view.
3307 */
3308 if (btrfs_is_zoned(fs_info)) {
3309 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3310 if (ret)
3311 btrfs_info(fs_info,
3312 "failed to reset zone %llu after relocation",
3313 chunk_offset);
3314 }
3315
3316 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3317 chunk_offset);
3318 if (IS_ERR(trans)) {
3319 ret = PTR_ERR(trans);
3320 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3321 return ret;
3322 }
3323
3324 /*
3325 * step two, delete the device extents and the
3326 * chunk tree entries
3327 */
3328 ret = btrfs_remove_chunk(trans, chunk_offset);
3329 btrfs_end_transaction(trans);
3330 return ret;
3331 }
3332
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3333 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3334 {
3335 struct btrfs_root *chunk_root = fs_info->chunk_root;
3336 struct btrfs_path *path;
3337 struct extent_buffer *leaf;
3338 struct btrfs_chunk *chunk;
3339 struct btrfs_key key;
3340 struct btrfs_key found_key;
3341 u64 chunk_type;
3342 bool retried = false;
3343 int failed = 0;
3344 int ret;
3345
3346 path = btrfs_alloc_path();
3347 if (!path)
3348 return -ENOMEM;
3349
3350 again:
3351 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3352 key.offset = (u64)-1;
3353 key.type = BTRFS_CHUNK_ITEM_KEY;
3354
3355 while (1) {
3356 mutex_lock(&fs_info->reclaim_bgs_lock);
3357 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3358 if (ret < 0) {
3359 mutex_unlock(&fs_info->reclaim_bgs_lock);
3360 goto error;
3361 }
3362 if (ret == 0) {
3363 /*
3364 * On the first search we would find chunk tree with
3365 * offset -1, which is not possible. On subsequent
3366 * loops this would find an existing item on an invalid
3367 * offset (one less than the previous one, wrong
3368 * alignment and size).
3369 */
3370 ret = -EUCLEAN;
3371 mutex_unlock(&fs_info->reclaim_bgs_lock);
3372 goto error;
3373 }
3374
3375 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3376 key.type);
3377 if (ret)
3378 mutex_unlock(&fs_info->reclaim_bgs_lock);
3379 if (ret < 0)
3380 goto error;
3381 if (ret > 0)
3382 break;
3383
3384 leaf = path->nodes[0];
3385 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3386
3387 chunk = btrfs_item_ptr(leaf, path->slots[0],
3388 struct btrfs_chunk);
3389 chunk_type = btrfs_chunk_type(leaf, chunk);
3390 btrfs_release_path(path);
3391
3392 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3393 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3394 if (ret == -ENOSPC)
3395 failed++;
3396 else
3397 BUG_ON(ret);
3398 }
3399 mutex_unlock(&fs_info->reclaim_bgs_lock);
3400
3401 if (found_key.offset == 0)
3402 break;
3403 key.offset = found_key.offset - 1;
3404 }
3405 ret = 0;
3406 if (failed && !retried) {
3407 failed = 0;
3408 retried = true;
3409 goto again;
3410 } else if (WARN_ON(failed && retried)) {
3411 ret = -ENOSPC;
3412 }
3413 error:
3414 btrfs_free_path(path);
3415 return ret;
3416 }
3417
3418 /*
3419 * return 1 : allocate a data chunk successfully,
3420 * return <0: errors during allocating a data chunk,
3421 * return 0 : no need to allocate a data chunk.
3422 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3423 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3424 u64 chunk_offset)
3425 {
3426 struct btrfs_block_group *cache;
3427 u64 bytes_used;
3428 u64 chunk_type;
3429
3430 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3431 ASSERT(cache);
3432 chunk_type = cache->flags;
3433 btrfs_put_block_group(cache);
3434
3435 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3436 return 0;
3437
3438 spin_lock(&fs_info->data_sinfo->lock);
3439 bytes_used = fs_info->data_sinfo->bytes_used;
3440 spin_unlock(&fs_info->data_sinfo->lock);
3441
3442 if (!bytes_used) {
3443 struct btrfs_trans_handle *trans;
3444 int ret;
3445
3446 trans = btrfs_join_transaction(fs_info->tree_root);
3447 if (IS_ERR(trans))
3448 return PTR_ERR(trans);
3449
3450 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3451 btrfs_end_transaction(trans);
3452 if (ret < 0)
3453 return ret;
3454 return 1;
3455 }
3456
3457 return 0;
3458 }
3459
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3460 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3461 struct btrfs_balance_control *bctl)
3462 {
3463 struct btrfs_root *root = fs_info->tree_root;
3464 struct btrfs_trans_handle *trans;
3465 struct btrfs_balance_item *item;
3466 struct btrfs_disk_balance_args disk_bargs;
3467 struct btrfs_path *path;
3468 struct extent_buffer *leaf;
3469 struct btrfs_key key;
3470 int ret, err;
3471
3472 path = btrfs_alloc_path();
3473 if (!path)
3474 return -ENOMEM;
3475
3476 trans = btrfs_start_transaction(root, 0);
3477 if (IS_ERR(trans)) {
3478 btrfs_free_path(path);
3479 return PTR_ERR(trans);
3480 }
3481
3482 key.objectid = BTRFS_BALANCE_OBJECTID;
3483 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3484 key.offset = 0;
3485
3486 ret = btrfs_insert_empty_item(trans, root, path, &key,
3487 sizeof(*item));
3488 if (ret)
3489 goto out;
3490
3491 leaf = path->nodes[0];
3492 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3493
3494 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3495
3496 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3497 btrfs_set_balance_data(leaf, item, &disk_bargs);
3498 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3499 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3500 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3501 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3502
3503 btrfs_set_balance_flags(leaf, item, bctl->flags);
3504
3505 btrfs_mark_buffer_dirty(trans, leaf);
3506 out:
3507 btrfs_free_path(path);
3508 err = btrfs_commit_transaction(trans);
3509 if (err && !ret)
3510 ret = err;
3511 return ret;
3512 }
3513
del_balance_item(struct btrfs_fs_info * fs_info)3514 static int del_balance_item(struct btrfs_fs_info *fs_info)
3515 {
3516 struct btrfs_root *root = fs_info->tree_root;
3517 struct btrfs_trans_handle *trans;
3518 struct btrfs_path *path;
3519 struct btrfs_key key;
3520 int ret, err;
3521
3522 path = btrfs_alloc_path();
3523 if (!path)
3524 return -ENOMEM;
3525
3526 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3527 if (IS_ERR(trans)) {
3528 btrfs_free_path(path);
3529 return PTR_ERR(trans);
3530 }
3531
3532 key.objectid = BTRFS_BALANCE_OBJECTID;
3533 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3534 key.offset = 0;
3535
3536 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3537 if (ret < 0)
3538 goto out;
3539 if (ret > 0) {
3540 ret = -ENOENT;
3541 goto out;
3542 }
3543
3544 ret = btrfs_del_item(trans, root, path);
3545 out:
3546 btrfs_free_path(path);
3547 err = btrfs_commit_transaction(trans);
3548 if (err && !ret)
3549 ret = err;
3550 return ret;
3551 }
3552
3553 /*
3554 * This is a heuristic used to reduce the number of chunks balanced on
3555 * resume after balance was interrupted.
3556 */
update_balance_args(struct btrfs_balance_control * bctl)3557 static void update_balance_args(struct btrfs_balance_control *bctl)
3558 {
3559 /*
3560 * Turn on soft mode for chunk types that were being converted.
3561 */
3562 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3563 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3564 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3565 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3566 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3567 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3568
3569 /*
3570 * Turn on usage filter if is not already used. The idea is
3571 * that chunks that we have already balanced should be
3572 * reasonably full. Don't do it for chunks that are being
3573 * converted - that will keep us from relocating unconverted
3574 * (albeit full) chunks.
3575 */
3576 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3577 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3578 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3579 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3580 bctl->data.usage = 90;
3581 }
3582 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3583 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3584 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3585 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3586 bctl->sys.usage = 90;
3587 }
3588 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3589 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3590 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3591 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3592 bctl->meta.usage = 90;
3593 }
3594 }
3595
3596 /*
3597 * Clear the balance status in fs_info and delete the balance item from disk.
3598 */
reset_balance_state(struct btrfs_fs_info * fs_info)3599 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3600 {
3601 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3602 int ret;
3603
3604 BUG_ON(!fs_info->balance_ctl);
3605
3606 spin_lock(&fs_info->balance_lock);
3607 fs_info->balance_ctl = NULL;
3608 spin_unlock(&fs_info->balance_lock);
3609
3610 kfree(bctl);
3611 ret = del_balance_item(fs_info);
3612 if (ret)
3613 btrfs_handle_fs_error(fs_info, ret, NULL);
3614 }
3615
3616 /*
3617 * Balance filters. Return 1 if chunk should be filtered out
3618 * (should not be balanced).
3619 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3620 static int chunk_profiles_filter(u64 chunk_type,
3621 struct btrfs_balance_args *bargs)
3622 {
3623 chunk_type = chunk_to_extended(chunk_type) &
3624 BTRFS_EXTENDED_PROFILE_MASK;
3625
3626 if (bargs->profiles & chunk_type)
3627 return 0;
3628
3629 return 1;
3630 }
3631
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3632 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3633 struct btrfs_balance_args *bargs)
3634 {
3635 struct btrfs_block_group *cache;
3636 u64 chunk_used;
3637 u64 user_thresh_min;
3638 u64 user_thresh_max;
3639 int ret = 1;
3640
3641 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3642 chunk_used = cache->used;
3643
3644 if (bargs->usage_min == 0)
3645 user_thresh_min = 0;
3646 else
3647 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3648
3649 if (bargs->usage_max == 0)
3650 user_thresh_max = 1;
3651 else if (bargs->usage_max > 100)
3652 user_thresh_max = cache->length;
3653 else
3654 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3655
3656 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3657 ret = 0;
3658
3659 btrfs_put_block_group(cache);
3660 return ret;
3661 }
3662
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3663 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3664 u64 chunk_offset, struct btrfs_balance_args *bargs)
3665 {
3666 struct btrfs_block_group *cache;
3667 u64 chunk_used, user_thresh;
3668 int ret = 1;
3669
3670 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3671 chunk_used = cache->used;
3672
3673 if (bargs->usage_min == 0)
3674 user_thresh = 1;
3675 else if (bargs->usage > 100)
3676 user_thresh = cache->length;
3677 else
3678 user_thresh = mult_perc(cache->length, bargs->usage);
3679
3680 if (chunk_used < user_thresh)
3681 ret = 0;
3682
3683 btrfs_put_block_group(cache);
3684 return ret;
3685 }
3686
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3687 static int chunk_devid_filter(struct extent_buffer *leaf,
3688 struct btrfs_chunk *chunk,
3689 struct btrfs_balance_args *bargs)
3690 {
3691 struct btrfs_stripe *stripe;
3692 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3693 int i;
3694
3695 for (i = 0; i < num_stripes; i++) {
3696 stripe = btrfs_stripe_nr(chunk, i);
3697 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3698 return 0;
3699 }
3700
3701 return 1;
3702 }
3703
calc_data_stripes(u64 type,int num_stripes)3704 static u64 calc_data_stripes(u64 type, int num_stripes)
3705 {
3706 const int index = btrfs_bg_flags_to_raid_index(type);
3707 const int ncopies = btrfs_raid_array[index].ncopies;
3708 const int nparity = btrfs_raid_array[index].nparity;
3709
3710 return (num_stripes - nparity) / ncopies;
3711 }
3712
3713 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3714 static int chunk_drange_filter(struct extent_buffer *leaf,
3715 struct btrfs_chunk *chunk,
3716 struct btrfs_balance_args *bargs)
3717 {
3718 struct btrfs_stripe *stripe;
3719 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3720 u64 stripe_offset;
3721 u64 stripe_length;
3722 u64 type;
3723 int factor;
3724 int i;
3725
3726 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3727 return 0;
3728
3729 type = btrfs_chunk_type(leaf, chunk);
3730 factor = calc_data_stripes(type, num_stripes);
3731
3732 for (i = 0; i < num_stripes; i++) {
3733 stripe = btrfs_stripe_nr(chunk, i);
3734 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3735 continue;
3736
3737 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3738 stripe_length = btrfs_chunk_length(leaf, chunk);
3739 stripe_length = div_u64(stripe_length, factor);
3740
3741 if (stripe_offset < bargs->pend &&
3742 stripe_offset + stripe_length > bargs->pstart)
3743 return 0;
3744 }
3745
3746 return 1;
3747 }
3748
3749 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3750 static int chunk_vrange_filter(struct extent_buffer *leaf,
3751 struct btrfs_chunk *chunk,
3752 u64 chunk_offset,
3753 struct btrfs_balance_args *bargs)
3754 {
3755 if (chunk_offset < bargs->vend &&
3756 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3757 /* at least part of the chunk is inside this vrange */
3758 return 0;
3759
3760 return 1;
3761 }
3762
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3763 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3764 struct btrfs_chunk *chunk,
3765 struct btrfs_balance_args *bargs)
3766 {
3767 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3768
3769 if (bargs->stripes_min <= num_stripes
3770 && num_stripes <= bargs->stripes_max)
3771 return 0;
3772
3773 return 1;
3774 }
3775
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3776 static int chunk_soft_convert_filter(u64 chunk_type,
3777 struct btrfs_balance_args *bargs)
3778 {
3779 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3780 return 0;
3781
3782 chunk_type = chunk_to_extended(chunk_type) &
3783 BTRFS_EXTENDED_PROFILE_MASK;
3784
3785 if (bargs->target == chunk_type)
3786 return 1;
3787
3788 return 0;
3789 }
3790
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3791 static int should_balance_chunk(struct extent_buffer *leaf,
3792 struct btrfs_chunk *chunk, u64 chunk_offset)
3793 {
3794 struct btrfs_fs_info *fs_info = leaf->fs_info;
3795 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3796 struct btrfs_balance_args *bargs = NULL;
3797 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3798
3799 /* type filter */
3800 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3801 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3802 return 0;
3803 }
3804
3805 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3806 bargs = &bctl->data;
3807 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3808 bargs = &bctl->sys;
3809 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3810 bargs = &bctl->meta;
3811
3812 /* profiles filter */
3813 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3814 chunk_profiles_filter(chunk_type, bargs)) {
3815 return 0;
3816 }
3817
3818 /* usage filter */
3819 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3820 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3821 return 0;
3822 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3823 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3824 return 0;
3825 }
3826
3827 /* devid filter */
3828 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3829 chunk_devid_filter(leaf, chunk, bargs)) {
3830 return 0;
3831 }
3832
3833 /* drange filter, makes sense only with devid filter */
3834 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3835 chunk_drange_filter(leaf, chunk, bargs)) {
3836 return 0;
3837 }
3838
3839 /* vrange filter */
3840 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3841 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3842 return 0;
3843 }
3844
3845 /* stripes filter */
3846 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3847 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3848 return 0;
3849 }
3850
3851 /* soft profile changing mode */
3852 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3853 chunk_soft_convert_filter(chunk_type, bargs)) {
3854 return 0;
3855 }
3856
3857 /*
3858 * limited by count, must be the last filter
3859 */
3860 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3861 if (bargs->limit == 0)
3862 return 0;
3863 else
3864 bargs->limit--;
3865 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3866 /*
3867 * Same logic as the 'limit' filter; the minimum cannot be
3868 * determined here because we do not have the global information
3869 * about the count of all chunks that satisfy the filters.
3870 */
3871 if (bargs->limit_max == 0)
3872 return 0;
3873 else
3874 bargs->limit_max--;
3875 }
3876
3877 return 1;
3878 }
3879
__btrfs_balance(struct btrfs_fs_info * fs_info)3880 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3881 {
3882 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3883 struct btrfs_root *chunk_root = fs_info->chunk_root;
3884 u64 chunk_type;
3885 struct btrfs_chunk *chunk;
3886 struct btrfs_path *path = NULL;
3887 struct btrfs_key key;
3888 struct btrfs_key found_key;
3889 struct extent_buffer *leaf;
3890 int slot;
3891 int ret;
3892 int enospc_errors = 0;
3893 bool counting = true;
3894 /* The single value limit and min/max limits use the same bytes in the */
3895 u64 limit_data = bctl->data.limit;
3896 u64 limit_meta = bctl->meta.limit;
3897 u64 limit_sys = bctl->sys.limit;
3898 u32 count_data = 0;
3899 u32 count_meta = 0;
3900 u32 count_sys = 0;
3901 int chunk_reserved = 0;
3902
3903 path = btrfs_alloc_path();
3904 if (!path) {
3905 ret = -ENOMEM;
3906 goto error;
3907 }
3908
3909 /* zero out stat counters */
3910 spin_lock(&fs_info->balance_lock);
3911 memset(&bctl->stat, 0, sizeof(bctl->stat));
3912 spin_unlock(&fs_info->balance_lock);
3913 again:
3914 if (!counting) {
3915 /*
3916 * The single value limit and min/max limits use the same bytes
3917 * in the
3918 */
3919 bctl->data.limit = limit_data;
3920 bctl->meta.limit = limit_meta;
3921 bctl->sys.limit = limit_sys;
3922 }
3923 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3924 key.offset = (u64)-1;
3925 key.type = BTRFS_CHUNK_ITEM_KEY;
3926
3927 while (1) {
3928 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3929 atomic_read(&fs_info->balance_cancel_req)) {
3930 ret = -ECANCELED;
3931 goto error;
3932 }
3933
3934 mutex_lock(&fs_info->reclaim_bgs_lock);
3935 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3936 if (ret < 0) {
3937 mutex_unlock(&fs_info->reclaim_bgs_lock);
3938 goto error;
3939 }
3940
3941 /*
3942 * this shouldn't happen, it means the last relocate
3943 * failed
3944 */
3945 if (ret == 0)
3946 BUG(); /* FIXME break ? */
3947
3948 ret = btrfs_previous_item(chunk_root, path, 0,
3949 BTRFS_CHUNK_ITEM_KEY);
3950 if (ret) {
3951 mutex_unlock(&fs_info->reclaim_bgs_lock);
3952 ret = 0;
3953 break;
3954 }
3955
3956 leaf = path->nodes[0];
3957 slot = path->slots[0];
3958 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3959
3960 if (found_key.objectid != key.objectid) {
3961 mutex_unlock(&fs_info->reclaim_bgs_lock);
3962 break;
3963 }
3964
3965 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3966 chunk_type = btrfs_chunk_type(leaf, chunk);
3967
3968 if (!counting) {
3969 spin_lock(&fs_info->balance_lock);
3970 bctl->stat.considered++;
3971 spin_unlock(&fs_info->balance_lock);
3972 }
3973
3974 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3975
3976 btrfs_release_path(path);
3977 if (!ret) {
3978 mutex_unlock(&fs_info->reclaim_bgs_lock);
3979 goto loop;
3980 }
3981
3982 if (counting) {
3983 mutex_unlock(&fs_info->reclaim_bgs_lock);
3984 spin_lock(&fs_info->balance_lock);
3985 bctl->stat.expected++;
3986 spin_unlock(&fs_info->balance_lock);
3987
3988 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3989 count_data++;
3990 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3991 count_sys++;
3992 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3993 count_meta++;
3994
3995 goto loop;
3996 }
3997
3998 /*
3999 * Apply limit_min filter, no need to check if the LIMITS
4000 * filter is used, limit_min is 0 by default
4001 */
4002 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4003 count_data < bctl->data.limit_min)
4004 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4005 count_meta < bctl->meta.limit_min)
4006 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4007 count_sys < bctl->sys.limit_min)) {
4008 mutex_unlock(&fs_info->reclaim_bgs_lock);
4009 goto loop;
4010 }
4011
4012 if (!chunk_reserved) {
4013 /*
4014 * We may be relocating the only data chunk we have,
4015 * which could potentially end up with losing data's
4016 * raid profile, so lets allocate an empty one in
4017 * advance.
4018 */
4019 ret = btrfs_may_alloc_data_chunk(fs_info,
4020 found_key.offset);
4021 if (ret < 0) {
4022 mutex_unlock(&fs_info->reclaim_bgs_lock);
4023 goto error;
4024 } else if (ret == 1) {
4025 chunk_reserved = 1;
4026 }
4027 }
4028
4029 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4030 mutex_unlock(&fs_info->reclaim_bgs_lock);
4031 if (ret == -ENOSPC) {
4032 enospc_errors++;
4033 } else if (ret == -ETXTBSY) {
4034 btrfs_info(fs_info,
4035 "skipping relocation of block group %llu due to active swapfile",
4036 found_key.offset);
4037 ret = 0;
4038 } else if (ret) {
4039 goto error;
4040 } else {
4041 spin_lock(&fs_info->balance_lock);
4042 bctl->stat.completed++;
4043 spin_unlock(&fs_info->balance_lock);
4044 }
4045 loop:
4046 if (found_key.offset == 0)
4047 break;
4048 key.offset = found_key.offset - 1;
4049 }
4050
4051 if (counting) {
4052 btrfs_release_path(path);
4053 counting = false;
4054 goto again;
4055 }
4056 error:
4057 btrfs_free_path(path);
4058 if (enospc_errors) {
4059 btrfs_info(fs_info, "%d enospc errors during balance",
4060 enospc_errors);
4061 if (!ret)
4062 ret = -ENOSPC;
4063 }
4064
4065 return ret;
4066 }
4067
4068 /*
4069 * See if a given profile is valid and reduced.
4070 *
4071 * @flags: profile to validate
4072 * @extended: if true @flags is treated as an extended profile
4073 */
alloc_profile_is_valid(u64 flags,int extended)4074 static int alloc_profile_is_valid(u64 flags, int extended)
4075 {
4076 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4077 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4078
4079 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4080
4081 /* 1) check that all other bits are zeroed */
4082 if (flags & ~mask)
4083 return 0;
4084
4085 /* 2) see if profile is reduced */
4086 if (flags == 0)
4087 return !extended; /* "0" is valid for usual profiles */
4088
4089 return has_single_bit_set(flags);
4090 }
4091
4092 /*
4093 * Validate target profile against allowed profiles and return true if it's OK.
4094 * Otherwise print the error message and return false.
4095 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4096 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4097 const struct btrfs_balance_args *bargs,
4098 u64 allowed, const char *type)
4099 {
4100 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4101 return true;
4102
4103 /* Profile is valid and does not have bits outside of the allowed set */
4104 if (alloc_profile_is_valid(bargs->target, 1) &&
4105 (bargs->target & ~allowed) == 0)
4106 return true;
4107
4108 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4109 type, btrfs_bg_type_to_raid_name(bargs->target));
4110 return false;
4111 }
4112
4113 /*
4114 * Fill @buf with textual description of balance filter flags @bargs, up to
4115 * @size_buf including the terminating null. The output may be trimmed if it
4116 * does not fit into the provided buffer.
4117 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4118 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4119 u32 size_buf)
4120 {
4121 int ret;
4122 u32 size_bp = size_buf;
4123 char *bp = buf;
4124 u64 flags = bargs->flags;
4125 char tmp_buf[128] = {'\0'};
4126
4127 if (!flags)
4128 return;
4129
4130 #define CHECK_APPEND_NOARG(a) \
4131 do { \
4132 ret = snprintf(bp, size_bp, (a)); \
4133 if (ret < 0 || ret >= size_bp) \
4134 goto out_overflow; \
4135 size_bp -= ret; \
4136 bp += ret; \
4137 } while (0)
4138
4139 #define CHECK_APPEND_1ARG(a, v1) \
4140 do { \
4141 ret = snprintf(bp, size_bp, (a), (v1)); \
4142 if (ret < 0 || ret >= size_bp) \
4143 goto out_overflow; \
4144 size_bp -= ret; \
4145 bp += ret; \
4146 } while (0)
4147
4148 #define CHECK_APPEND_2ARG(a, v1, v2) \
4149 do { \
4150 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4151 if (ret < 0 || ret >= size_bp) \
4152 goto out_overflow; \
4153 size_bp -= ret; \
4154 bp += ret; \
4155 } while (0)
4156
4157 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4158 CHECK_APPEND_1ARG("convert=%s,",
4159 btrfs_bg_type_to_raid_name(bargs->target));
4160
4161 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4162 CHECK_APPEND_NOARG("soft,");
4163
4164 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4165 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4166 sizeof(tmp_buf));
4167 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4168 }
4169
4170 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4171 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4172
4173 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4174 CHECK_APPEND_2ARG("usage=%u..%u,",
4175 bargs->usage_min, bargs->usage_max);
4176
4177 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4178 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4179
4180 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4181 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4182 bargs->pstart, bargs->pend);
4183
4184 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4185 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4186 bargs->vstart, bargs->vend);
4187
4188 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4189 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4190
4191 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4192 CHECK_APPEND_2ARG("limit=%u..%u,",
4193 bargs->limit_min, bargs->limit_max);
4194
4195 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4196 CHECK_APPEND_2ARG("stripes=%u..%u,",
4197 bargs->stripes_min, bargs->stripes_max);
4198
4199 #undef CHECK_APPEND_2ARG
4200 #undef CHECK_APPEND_1ARG
4201 #undef CHECK_APPEND_NOARG
4202
4203 out_overflow:
4204
4205 if (size_bp < size_buf)
4206 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4207 else
4208 buf[0] = '\0';
4209 }
4210
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4211 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4212 {
4213 u32 size_buf = 1024;
4214 char tmp_buf[192] = {'\0'};
4215 char *buf;
4216 char *bp;
4217 u32 size_bp = size_buf;
4218 int ret;
4219 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4220
4221 buf = kzalloc(size_buf, GFP_KERNEL);
4222 if (!buf)
4223 return;
4224
4225 bp = buf;
4226
4227 #define CHECK_APPEND_1ARG(a, v1) \
4228 do { \
4229 ret = snprintf(bp, size_bp, (a), (v1)); \
4230 if (ret < 0 || ret >= size_bp) \
4231 goto out_overflow; \
4232 size_bp -= ret; \
4233 bp += ret; \
4234 } while (0)
4235
4236 if (bctl->flags & BTRFS_BALANCE_FORCE)
4237 CHECK_APPEND_1ARG("%s", "-f ");
4238
4239 if (bctl->flags & BTRFS_BALANCE_DATA) {
4240 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4241 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4242 }
4243
4244 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4245 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4246 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4247 }
4248
4249 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4250 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4251 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4252 }
4253
4254 #undef CHECK_APPEND_1ARG
4255
4256 out_overflow:
4257
4258 if (size_bp < size_buf)
4259 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4260 btrfs_info(fs_info, "balance: %s %s",
4261 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4262 "resume" : "start", buf);
4263
4264 kfree(buf);
4265 }
4266
4267 /*
4268 * Should be called with balance mutexe held
4269 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4270 int btrfs_balance(struct btrfs_fs_info *fs_info,
4271 struct btrfs_balance_control *bctl,
4272 struct btrfs_ioctl_balance_args *bargs)
4273 {
4274 u64 meta_target, data_target;
4275 u64 allowed;
4276 int mixed = 0;
4277 int ret;
4278 u64 num_devices;
4279 unsigned seq;
4280 bool reducing_redundancy;
4281 bool paused = false;
4282 int i;
4283
4284 if (btrfs_fs_closing(fs_info) ||
4285 atomic_read(&fs_info->balance_pause_req) ||
4286 btrfs_should_cancel_balance(fs_info)) {
4287 ret = -EINVAL;
4288 goto out;
4289 }
4290
4291 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4292 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4293 mixed = 1;
4294
4295 /*
4296 * In case of mixed groups both data and meta should be picked,
4297 * and identical options should be given for both of them.
4298 */
4299 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4300 if (mixed && (bctl->flags & allowed)) {
4301 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4302 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4303 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4304 btrfs_err(fs_info,
4305 "balance: mixed groups data and metadata options must be the same");
4306 ret = -EINVAL;
4307 goto out;
4308 }
4309 }
4310
4311 /*
4312 * rw_devices will not change at the moment, device add/delete/replace
4313 * are exclusive
4314 */
4315 num_devices = fs_info->fs_devices->rw_devices;
4316
4317 /*
4318 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4319 * special bit for it, to make it easier to distinguish. Thus we need
4320 * to set it manually, or balance would refuse the profile.
4321 */
4322 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4323 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4324 if (num_devices >= btrfs_raid_array[i].devs_min)
4325 allowed |= btrfs_raid_array[i].bg_flag;
4326
4327 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4328 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4329 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4330 ret = -EINVAL;
4331 goto out;
4332 }
4333
4334 /*
4335 * Allow to reduce metadata or system integrity only if force set for
4336 * profiles with redundancy (copies, parity)
4337 */
4338 allowed = 0;
4339 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4340 if (btrfs_raid_array[i].ncopies >= 2 ||
4341 btrfs_raid_array[i].tolerated_failures >= 1)
4342 allowed |= btrfs_raid_array[i].bg_flag;
4343 }
4344 do {
4345 seq = read_seqbegin(&fs_info->profiles_lock);
4346
4347 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4348 (fs_info->avail_system_alloc_bits & allowed) &&
4349 !(bctl->sys.target & allowed)) ||
4350 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4351 (fs_info->avail_metadata_alloc_bits & allowed) &&
4352 !(bctl->meta.target & allowed)))
4353 reducing_redundancy = true;
4354 else
4355 reducing_redundancy = false;
4356
4357 /* if we're not converting, the target field is uninitialized */
4358 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4359 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4360 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4361 bctl->data.target : fs_info->avail_data_alloc_bits;
4362 } while (read_seqretry(&fs_info->profiles_lock, seq));
4363
4364 if (reducing_redundancy) {
4365 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4366 btrfs_info(fs_info,
4367 "balance: force reducing metadata redundancy");
4368 } else {
4369 btrfs_err(fs_info,
4370 "balance: reduces metadata redundancy, use --force if you want this");
4371 ret = -EINVAL;
4372 goto out;
4373 }
4374 }
4375
4376 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4377 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4378 btrfs_warn(fs_info,
4379 "balance: metadata profile %s has lower redundancy than data profile %s",
4380 btrfs_bg_type_to_raid_name(meta_target),
4381 btrfs_bg_type_to_raid_name(data_target));
4382 }
4383
4384 ret = insert_balance_item(fs_info, bctl);
4385 if (ret && ret != -EEXIST)
4386 goto out;
4387
4388 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4389 BUG_ON(ret == -EEXIST);
4390 BUG_ON(fs_info->balance_ctl);
4391 spin_lock(&fs_info->balance_lock);
4392 fs_info->balance_ctl = bctl;
4393 spin_unlock(&fs_info->balance_lock);
4394 } else {
4395 BUG_ON(ret != -EEXIST);
4396 spin_lock(&fs_info->balance_lock);
4397 update_balance_args(bctl);
4398 spin_unlock(&fs_info->balance_lock);
4399 }
4400
4401 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4402 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4403 describe_balance_start_or_resume(fs_info);
4404 mutex_unlock(&fs_info->balance_mutex);
4405
4406 ret = __btrfs_balance(fs_info);
4407
4408 mutex_lock(&fs_info->balance_mutex);
4409 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4410 btrfs_info(fs_info, "balance: paused");
4411 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4412 paused = true;
4413 }
4414 /*
4415 * Balance can be canceled by:
4416 *
4417 * - Regular cancel request
4418 * Then ret == -ECANCELED and balance_cancel_req > 0
4419 *
4420 * - Fatal signal to "btrfs" process
4421 * Either the signal caught by wait_reserve_ticket() and callers
4422 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4423 * got -ECANCELED.
4424 * Either way, in this case balance_cancel_req = 0, and
4425 * ret == -EINTR or ret == -ECANCELED.
4426 *
4427 * So here we only check the return value to catch canceled balance.
4428 */
4429 else if (ret == -ECANCELED || ret == -EINTR)
4430 btrfs_info(fs_info, "balance: canceled");
4431 else
4432 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4433
4434 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4435
4436 if (bargs) {
4437 memset(bargs, 0, sizeof(*bargs));
4438 btrfs_update_ioctl_balance_args(fs_info, bargs);
4439 }
4440
4441 /* We didn't pause, we can clean everything up. */
4442 if (!paused) {
4443 reset_balance_state(fs_info);
4444 btrfs_exclop_finish(fs_info);
4445 }
4446
4447 wake_up(&fs_info->balance_wait_q);
4448
4449 return ret;
4450 out:
4451 if (bctl->flags & BTRFS_BALANCE_RESUME)
4452 reset_balance_state(fs_info);
4453 else
4454 kfree(bctl);
4455 btrfs_exclop_finish(fs_info);
4456
4457 return ret;
4458 }
4459
balance_kthread(void * data)4460 static int balance_kthread(void *data)
4461 {
4462 struct btrfs_fs_info *fs_info = data;
4463 int ret = 0;
4464
4465 sb_start_write(fs_info->sb);
4466 mutex_lock(&fs_info->balance_mutex);
4467 if (fs_info->balance_ctl)
4468 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4469 mutex_unlock(&fs_info->balance_mutex);
4470 sb_end_write(fs_info->sb);
4471
4472 return ret;
4473 }
4474
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4475 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4476 {
4477 struct task_struct *tsk;
4478
4479 mutex_lock(&fs_info->balance_mutex);
4480 if (!fs_info->balance_ctl) {
4481 mutex_unlock(&fs_info->balance_mutex);
4482 return 0;
4483 }
4484 mutex_unlock(&fs_info->balance_mutex);
4485
4486 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4487 btrfs_info(fs_info, "balance: resume skipped");
4488 return 0;
4489 }
4490
4491 spin_lock(&fs_info->super_lock);
4492 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4493 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4494 spin_unlock(&fs_info->super_lock);
4495 /*
4496 * A ro->rw remount sequence should continue with the paused balance
4497 * regardless of who pauses it, system or the user as of now, so set
4498 * the resume flag.
4499 */
4500 spin_lock(&fs_info->balance_lock);
4501 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4502 spin_unlock(&fs_info->balance_lock);
4503
4504 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4505 return PTR_ERR_OR_ZERO(tsk);
4506 }
4507
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4508 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4509 {
4510 struct btrfs_balance_control *bctl;
4511 struct btrfs_balance_item *item;
4512 struct btrfs_disk_balance_args disk_bargs;
4513 struct btrfs_path *path;
4514 struct extent_buffer *leaf;
4515 struct btrfs_key key;
4516 int ret;
4517
4518 path = btrfs_alloc_path();
4519 if (!path)
4520 return -ENOMEM;
4521
4522 key.objectid = BTRFS_BALANCE_OBJECTID;
4523 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4524 key.offset = 0;
4525
4526 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4527 if (ret < 0)
4528 goto out;
4529 if (ret > 0) { /* ret = -ENOENT; */
4530 ret = 0;
4531 goto out;
4532 }
4533
4534 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4535 if (!bctl) {
4536 ret = -ENOMEM;
4537 goto out;
4538 }
4539
4540 leaf = path->nodes[0];
4541 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4542
4543 bctl->flags = btrfs_balance_flags(leaf, item);
4544 bctl->flags |= BTRFS_BALANCE_RESUME;
4545
4546 btrfs_balance_data(leaf, item, &disk_bargs);
4547 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4548 btrfs_balance_meta(leaf, item, &disk_bargs);
4549 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4550 btrfs_balance_sys(leaf, item, &disk_bargs);
4551 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4552
4553 /*
4554 * This should never happen, as the paused balance state is recovered
4555 * during mount without any chance of other exclusive ops to collide.
4556 *
4557 * This gives the exclusive op status to balance and keeps in paused
4558 * state until user intervention (cancel or umount). If the ownership
4559 * cannot be assigned, show a message but do not fail. The balance
4560 * is in a paused state and must have fs_info::balance_ctl properly
4561 * set up.
4562 */
4563 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4564 btrfs_warn(fs_info,
4565 "balance: cannot set exclusive op status, resume manually");
4566
4567 btrfs_release_path(path);
4568
4569 mutex_lock(&fs_info->balance_mutex);
4570 BUG_ON(fs_info->balance_ctl);
4571 spin_lock(&fs_info->balance_lock);
4572 fs_info->balance_ctl = bctl;
4573 spin_unlock(&fs_info->balance_lock);
4574 mutex_unlock(&fs_info->balance_mutex);
4575 out:
4576 btrfs_free_path(path);
4577 return ret;
4578 }
4579
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4580 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4581 {
4582 int ret = 0;
4583
4584 mutex_lock(&fs_info->balance_mutex);
4585 if (!fs_info->balance_ctl) {
4586 mutex_unlock(&fs_info->balance_mutex);
4587 return -ENOTCONN;
4588 }
4589
4590 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4591 atomic_inc(&fs_info->balance_pause_req);
4592 mutex_unlock(&fs_info->balance_mutex);
4593
4594 wait_event(fs_info->balance_wait_q,
4595 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4596
4597 mutex_lock(&fs_info->balance_mutex);
4598 /* we are good with balance_ctl ripped off from under us */
4599 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4600 atomic_dec(&fs_info->balance_pause_req);
4601 } else {
4602 ret = -ENOTCONN;
4603 }
4604
4605 mutex_unlock(&fs_info->balance_mutex);
4606 return ret;
4607 }
4608
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4609 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4610 {
4611 mutex_lock(&fs_info->balance_mutex);
4612 if (!fs_info->balance_ctl) {
4613 mutex_unlock(&fs_info->balance_mutex);
4614 return -ENOTCONN;
4615 }
4616
4617 /*
4618 * A paused balance with the item stored on disk can be resumed at
4619 * mount time if the mount is read-write. Otherwise it's still paused
4620 * and we must not allow cancelling as it deletes the item.
4621 */
4622 if (sb_rdonly(fs_info->sb)) {
4623 mutex_unlock(&fs_info->balance_mutex);
4624 return -EROFS;
4625 }
4626
4627 atomic_inc(&fs_info->balance_cancel_req);
4628 /*
4629 * if we are running just wait and return, balance item is
4630 * deleted in btrfs_balance in this case
4631 */
4632 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4633 mutex_unlock(&fs_info->balance_mutex);
4634 wait_event(fs_info->balance_wait_q,
4635 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4636 mutex_lock(&fs_info->balance_mutex);
4637 } else {
4638 mutex_unlock(&fs_info->balance_mutex);
4639 /*
4640 * Lock released to allow other waiters to continue, we'll
4641 * reexamine the status again.
4642 */
4643 mutex_lock(&fs_info->balance_mutex);
4644
4645 if (fs_info->balance_ctl) {
4646 reset_balance_state(fs_info);
4647 btrfs_exclop_finish(fs_info);
4648 btrfs_info(fs_info, "balance: canceled");
4649 }
4650 }
4651
4652 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4653 atomic_dec(&fs_info->balance_cancel_req);
4654 mutex_unlock(&fs_info->balance_mutex);
4655 return 0;
4656 }
4657
btrfs_uuid_scan_kthread(void * data)4658 int btrfs_uuid_scan_kthread(void *data)
4659 {
4660 struct btrfs_fs_info *fs_info = data;
4661 struct btrfs_root *root = fs_info->tree_root;
4662 struct btrfs_key key;
4663 struct btrfs_path *path = NULL;
4664 int ret = 0;
4665 struct extent_buffer *eb;
4666 int slot;
4667 struct btrfs_root_item root_item;
4668 u32 item_size;
4669 struct btrfs_trans_handle *trans = NULL;
4670 bool closing = false;
4671
4672 path = btrfs_alloc_path();
4673 if (!path) {
4674 ret = -ENOMEM;
4675 goto out;
4676 }
4677
4678 key.objectid = 0;
4679 key.type = BTRFS_ROOT_ITEM_KEY;
4680 key.offset = 0;
4681
4682 while (1) {
4683 if (btrfs_fs_closing(fs_info)) {
4684 closing = true;
4685 break;
4686 }
4687 ret = btrfs_search_forward(root, &key, path,
4688 BTRFS_OLDEST_GENERATION);
4689 if (ret) {
4690 if (ret > 0)
4691 ret = 0;
4692 break;
4693 }
4694
4695 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4696 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4697 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4698 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4699 goto skip;
4700
4701 eb = path->nodes[0];
4702 slot = path->slots[0];
4703 item_size = btrfs_item_size(eb, slot);
4704 if (item_size < sizeof(root_item))
4705 goto skip;
4706
4707 read_extent_buffer(eb, &root_item,
4708 btrfs_item_ptr_offset(eb, slot),
4709 (int)sizeof(root_item));
4710 if (btrfs_root_refs(&root_item) == 0)
4711 goto skip;
4712
4713 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4714 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4715 if (trans)
4716 goto update_tree;
4717
4718 btrfs_release_path(path);
4719 /*
4720 * 1 - subvol uuid item
4721 * 1 - received_subvol uuid item
4722 */
4723 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4724 if (IS_ERR(trans)) {
4725 ret = PTR_ERR(trans);
4726 break;
4727 }
4728 continue;
4729 } else {
4730 goto skip;
4731 }
4732 update_tree:
4733 btrfs_release_path(path);
4734 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4735 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4736 BTRFS_UUID_KEY_SUBVOL,
4737 key.objectid);
4738 if (ret < 0) {
4739 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4740 ret);
4741 break;
4742 }
4743 }
4744
4745 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4746 ret = btrfs_uuid_tree_add(trans,
4747 root_item.received_uuid,
4748 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4749 key.objectid);
4750 if (ret < 0) {
4751 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4752 ret);
4753 break;
4754 }
4755 }
4756
4757 skip:
4758 btrfs_release_path(path);
4759 if (trans) {
4760 ret = btrfs_end_transaction(trans);
4761 trans = NULL;
4762 if (ret)
4763 break;
4764 }
4765
4766 if (key.offset < (u64)-1) {
4767 key.offset++;
4768 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4769 key.offset = 0;
4770 key.type = BTRFS_ROOT_ITEM_KEY;
4771 } else if (key.objectid < (u64)-1) {
4772 key.offset = 0;
4773 key.type = BTRFS_ROOT_ITEM_KEY;
4774 key.objectid++;
4775 } else {
4776 break;
4777 }
4778 cond_resched();
4779 }
4780
4781 out:
4782 btrfs_free_path(path);
4783 if (trans && !IS_ERR(trans))
4784 btrfs_end_transaction(trans);
4785 if (ret)
4786 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4787 else if (!closing)
4788 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4789 up(&fs_info->uuid_tree_rescan_sem);
4790 return 0;
4791 }
4792
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4793 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4794 {
4795 struct btrfs_trans_handle *trans;
4796 struct btrfs_root *tree_root = fs_info->tree_root;
4797 struct btrfs_root *uuid_root;
4798 struct task_struct *task;
4799 int ret;
4800
4801 /*
4802 * 1 - root node
4803 * 1 - root item
4804 */
4805 trans = btrfs_start_transaction(tree_root, 2);
4806 if (IS_ERR(trans))
4807 return PTR_ERR(trans);
4808
4809 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4810 if (IS_ERR(uuid_root)) {
4811 ret = PTR_ERR(uuid_root);
4812 btrfs_abort_transaction(trans, ret);
4813 btrfs_end_transaction(trans);
4814 return ret;
4815 }
4816
4817 fs_info->uuid_root = uuid_root;
4818
4819 ret = btrfs_commit_transaction(trans);
4820 if (ret)
4821 return ret;
4822
4823 down(&fs_info->uuid_tree_rescan_sem);
4824 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4825 if (IS_ERR(task)) {
4826 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4827 btrfs_warn(fs_info, "failed to start uuid_scan task");
4828 up(&fs_info->uuid_tree_rescan_sem);
4829 return PTR_ERR(task);
4830 }
4831
4832 return 0;
4833 }
4834
4835 /*
4836 * shrinking a device means finding all of the device extents past
4837 * the new size, and then following the back refs to the chunks.
4838 * The chunk relocation code actually frees the device extent
4839 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4840 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4841 {
4842 struct btrfs_fs_info *fs_info = device->fs_info;
4843 struct btrfs_root *root = fs_info->dev_root;
4844 struct btrfs_trans_handle *trans;
4845 struct btrfs_dev_extent *dev_extent = NULL;
4846 struct btrfs_path *path;
4847 u64 length;
4848 u64 chunk_offset;
4849 int ret;
4850 int slot;
4851 int failed = 0;
4852 bool retried = false;
4853 struct extent_buffer *l;
4854 struct btrfs_key key;
4855 struct btrfs_super_block *super_copy = fs_info->super_copy;
4856 u64 old_total = btrfs_super_total_bytes(super_copy);
4857 u64 old_size = btrfs_device_get_total_bytes(device);
4858 u64 diff;
4859 u64 start;
4860
4861 new_size = round_down(new_size, fs_info->sectorsize);
4862 start = new_size;
4863 diff = round_down(old_size - new_size, fs_info->sectorsize);
4864
4865 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4866 return -EINVAL;
4867
4868 path = btrfs_alloc_path();
4869 if (!path)
4870 return -ENOMEM;
4871
4872 path->reada = READA_BACK;
4873
4874 trans = btrfs_start_transaction(root, 0);
4875 if (IS_ERR(trans)) {
4876 btrfs_free_path(path);
4877 return PTR_ERR(trans);
4878 }
4879
4880 mutex_lock(&fs_info->chunk_mutex);
4881
4882 btrfs_device_set_total_bytes(device, new_size);
4883 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4884 device->fs_devices->total_rw_bytes -= diff;
4885 atomic64_sub(diff, &fs_info->free_chunk_space);
4886 }
4887
4888 /*
4889 * Once the device's size has been set to the new size, ensure all
4890 * in-memory chunks are synced to disk so that the loop below sees them
4891 * and relocates them accordingly.
4892 */
4893 if (contains_pending_extent(device, &start, diff)) {
4894 mutex_unlock(&fs_info->chunk_mutex);
4895 ret = btrfs_commit_transaction(trans);
4896 if (ret)
4897 goto done;
4898 } else {
4899 mutex_unlock(&fs_info->chunk_mutex);
4900 btrfs_end_transaction(trans);
4901 }
4902
4903 again:
4904 key.objectid = device->devid;
4905 key.offset = (u64)-1;
4906 key.type = BTRFS_DEV_EXTENT_KEY;
4907
4908 do {
4909 mutex_lock(&fs_info->reclaim_bgs_lock);
4910 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4911 if (ret < 0) {
4912 mutex_unlock(&fs_info->reclaim_bgs_lock);
4913 goto done;
4914 }
4915
4916 ret = btrfs_previous_item(root, path, 0, key.type);
4917 if (ret) {
4918 mutex_unlock(&fs_info->reclaim_bgs_lock);
4919 if (ret < 0)
4920 goto done;
4921 ret = 0;
4922 btrfs_release_path(path);
4923 break;
4924 }
4925
4926 l = path->nodes[0];
4927 slot = path->slots[0];
4928 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4929
4930 if (key.objectid != device->devid) {
4931 mutex_unlock(&fs_info->reclaim_bgs_lock);
4932 btrfs_release_path(path);
4933 break;
4934 }
4935
4936 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4937 length = btrfs_dev_extent_length(l, dev_extent);
4938
4939 if (key.offset + length <= new_size) {
4940 mutex_unlock(&fs_info->reclaim_bgs_lock);
4941 btrfs_release_path(path);
4942 break;
4943 }
4944
4945 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4946 btrfs_release_path(path);
4947
4948 /*
4949 * We may be relocating the only data chunk we have,
4950 * which could potentially end up with losing data's
4951 * raid profile, so lets allocate an empty one in
4952 * advance.
4953 */
4954 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4955 if (ret < 0) {
4956 mutex_unlock(&fs_info->reclaim_bgs_lock);
4957 goto done;
4958 }
4959
4960 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4961 mutex_unlock(&fs_info->reclaim_bgs_lock);
4962 if (ret == -ENOSPC) {
4963 failed++;
4964 } else if (ret) {
4965 if (ret == -ETXTBSY) {
4966 btrfs_warn(fs_info,
4967 "could not shrink block group %llu due to active swapfile",
4968 chunk_offset);
4969 }
4970 goto done;
4971 }
4972 } while (key.offset-- > 0);
4973
4974 if (failed && !retried) {
4975 failed = 0;
4976 retried = true;
4977 goto again;
4978 } else if (failed && retried) {
4979 ret = -ENOSPC;
4980 goto done;
4981 }
4982
4983 /* Shrinking succeeded, else we would be at "done". */
4984 trans = btrfs_start_transaction(root, 0);
4985 if (IS_ERR(trans)) {
4986 ret = PTR_ERR(trans);
4987 goto done;
4988 }
4989
4990 mutex_lock(&fs_info->chunk_mutex);
4991 /* Clear all state bits beyond the shrunk device size */
4992 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4993 CHUNK_STATE_MASK);
4994
4995 btrfs_device_set_disk_total_bytes(device, new_size);
4996 if (list_empty(&device->post_commit_list))
4997 list_add_tail(&device->post_commit_list,
4998 &trans->transaction->dev_update_list);
4999
5000 WARN_ON(diff > old_total);
5001 btrfs_set_super_total_bytes(super_copy,
5002 round_down(old_total - diff, fs_info->sectorsize));
5003 mutex_unlock(&fs_info->chunk_mutex);
5004
5005 btrfs_reserve_chunk_metadata(trans, false);
5006 /* Now btrfs_update_device() will change the on-disk size. */
5007 ret = btrfs_update_device(trans, device);
5008 btrfs_trans_release_chunk_metadata(trans);
5009 if (ret < 0) {
5010 btrfs_abort_transaction(trans, ret);
5011 btrfs_end_transaction(trans);
5012 } else {
5013 ret = btrfs_commit_transaction(trans);
5014 }
5015 done:
5016 btrfs_free_path(path);
5017 if (ret) {
5018 mutex_lock(&fs_info->chunk_mutex);
5019 btrfs_device_set_total_bytes(device, old_size);
5020 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5021 device->fs_devices->total_rw_bytes += diff;
5022 atomic64_add(diff, &fs_info->free_chunk_space);
5023 mutex_unlock(&fs_info->chunk_mutex);
5024 }
5025 return ret;
5026 }
5027
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)5028 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5029 struct btrfs_key *key,
5030 struct btrfs_chunk *chunk, int item_size)
5031 {
5032 struct btrfs_super_block *super_copy = fs_info->super_copy;
5033 struct btrfs_disk_key disk_key;
5034 u32 array_size;
5035 u8 *ptr;
5036
5037 lockdep_assert_held(&fs_info->chunk_mutex);
5038
5039 array_size = btrfs_super_sys_array_size(super_copy);
5040 if (array_size + item_size + sizeof(disk_key)
5041 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5042 return -EFBIG;
5043
5044 ptr = super_copy->sys_chunk_array + array_size;
5045 btrfs_cpu_key_to_disk(&disk_key, key);
5046 memcpy(ptr, &disk_key, sizeof(disk_key));
5047 ptr += sizeof(disk_key);
5048 memcpy(ptr, chunk, item_size);
5049 item_size += sizeof(disk_key);
5050 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5051
5052 return 0;
5053 }
5054
5055 /*
5056 * sort the devices in descending order by max_avail, total_avail
5057 */
btrfs_cmp_device_info(const void * a,const void * b)5058 static int btrfs_cmp_device_info(const void *a, const void *b)
5059 {
5060 const struct btrfs_device_info *di_a = a;
5061 const struct btrfs_device_info *di_b = b;
5062
5063 if (di_a->max_avail > di_b->max_avail)
5064 return -1;
5065 if (di_a->max_avail < di_b->max_avail)
5066 return 1;
5067 if (di_a->total_avail > di_b->total_avail)
5068 return -1;
5069 if (di_a->total_avail < di_b->total_avail)
5070 return 1;
5071 return 0;
5072 }
5073
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5074 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5075 {
5076 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5077 return;
5078
5079 btrfs_set_fs_incompat(info, RAID56);
5080 }
5081
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5082 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5083 {
5084 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5085 return;
5086
5087 btrfs_set_fs_incompat(info, RAID1C34);
5088 }
5089
5090 /*
5091 * Structure used internally for btrfs_create_chunk() function.
5092 * Wraps needed parameters.
5093 */
5094 struct alloc_chunk_ctl {
5095 u64 start;
5096 u64 type;
5097 /* Total number of stripes to allocate */
5098 int num_stripes;
5099 /* sub_stripes info for map */
5100 int sub_stripes;
5101 /* Stripes per device */
5102 int dev_stripes;
5103 /* Maximum number of devices to use */
5104 int devs_max;
5105 /* Minimum number of devices to use */
5106 int devs_min;
5107 /* ndevs has to be a multiple of this */
5108 int devs_increment;
5109 /* Number of copies */
5110 int ncopies;
5111 /* Number of stripes worth of bytes to store parity information */
5112 int nparity;
5113 u64 max_stripe_size;
5114 u64 max_chunk_size;
5115 u64 dev_extent_min;
5116 u64 stripe_size;
5117 u64 chunk_size;
5118 int ndevs;
5119 };
5120
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5121 static void init_alloc_chunk_ctl_policy_regular(
5122 struct btrfs_fs_devices *fs_devices,
5123 struct alloc_chunk_ctl *ctl)
5124 {
5125 struct btrfs_space_info *space_info;
5126
5127 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5128 ASSERT(space_info);
5129
5130 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5131 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5132
5133 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5134 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5135
5136 /* We don't want a chunk larger than 10% of writable space */
5137 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5138 ctl->max_chunk_size);
5139 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5140 }
5141
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5142 static void init_alloc_chunk_ctl_policy_zoned(
5143 struct btrfs_fs_devices *fs_devices,
5144 struct alloc_chunk_ctl *ctl)
5145 {
5146 u64 zone_size = fs_devices->fs_info->zone_size;
5147 u64 limit;
5148 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5149 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5150 u64 min_chunk_size = min_data_stripes * zone_size;
5151 u64 type = ctl->type;
5152
5153 ctl->max_stripe_size = zone_size;
5154 if (type & BTRFS_BLOCK_GROUP_DATA) {
5155 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5156 zone_size);
5157 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5158 ctl->max_chunk_size = ctl->max_stripe_size;
5159 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5160 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5161 ctl->devs_max = min_t(int, ctl->devs_max,
5162 BTRFS_MAX_DEVS_SYS_CHUNK);
5163 } else {
5164 BUG();
5165 }
5166
5167 /* We don't want a chunk larger than 10% of writable space */
5168 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5169 zone_size),
5170 min_chunk_size);
5171 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5172 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5173 }
5174
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5175 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5176 struct alloc_chunk_ctl *ctl)
5177 {
5178 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5179
5180 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5181 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5182 ctl->devs_max = btrfs_raid_array[index].devs_max;
5183 if (!ctl->devs_max)
5184 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5185 ctl->devs_min = btrfs_raid_array[index].devs_min;
5186 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5187 ctl->ncopies = btrfs_raid_array[index].ncopies;
5188 ctl->nparity = btrfs_raid_array[index].nparity;
5189 ctl->ndevs = 0;
5190
5191 switch (fs_devices->chunk_alloc_policy) {
5192 case BTRFS_CHUNK_ALLOC_REGULAR:
5193 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5194 break;
5195 case BTRFS_CHUNK_ALLOC_ZONED:
5196 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5197 break;
5198 default:
5199 BUG();
5200 }
5201 }
5202
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5203 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5204 struct alloc_chunk_ctl *ctl,
5205 struct btrfs_device_info *devices_info)
5206 {
5207 struct btrfs_fs_info *info = fs_devices->fs_info;
5208 struct btrfs_device *device;
5209 u64 total_avail;
5210 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5211 int ret;
5212 int ndevs = 0;
5213 u64 max_avail;
5214 u64 dev_offset;
5215
5216 /*
5217 * in the first pass through the devices list, we gather information
5218 * about the available holes on each device.
5219 */
5220 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5221 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5222 WARN(1, KERN_ERR
5223 "BTRFS: read-only device in alloc_list\n");
5224 continue;
5225 }
5226
5227 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5228 &device->dev_state) ||
5229 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5230 continue;
5231
5232 if (device->total_bytes > device->bytes_used)
5233 total_avail = device->total_bytes - device->bytes_used;
5234 else
5235 total_avail = 0;
5236
5237 /* If there is no space on this device, skip it. */
5238 if (total_avail < ctl->dev_extent_min)
5239 continue;
5240
5241 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5242 &max_avail);
5243 if (ret && ret != -ENOSPC)
5244 return ret;
5245
5246 if (ret == 0)
5247 max_avail = dev_extent_want;
5248
5249 if (max_avail < ctl->dev_extent_min) {
5250 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5251 btrfs_debug(info,
5252 "%s: devid %llu has no free space, have=%llu want=%llu",
5253 __func__, device->devid, max_avail,
5254 ctl->dev_extent_min);
5255 continue;
5256 }
5257
5258 if (ndevs == fs_devices->rw_devices) {
5259 WARN(1, "%s: found more than %llu devices\n",
5260 __func__, fs_devices->rw_devices);
5261 break;
5262 }
5263 devices_info[ndevs].dev_offset = dev_offset;
5264 devices_info[ndevs].max_avail = max_avail;
5265 devices_info[ndevs].total_avail = total_avail;
5266 devices_info[ndevs].dev = device;
5267 ++ndevs;
5268 }
5269 ctl->ndevs = ndevs;
5270
5271 /*
5272 * now sort the devices by hole size / available space
5273 */
5274 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5275 btrfs_cmp_device_info, NULL);
5276
5277 return 0;
5278 }
5279
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5280 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5281 struct btrfs_device_info *devices_info)
5282 {
5283 /* Number of stripes that count for block group size */
5284 int data_stripes;
5285
5286 /*
5287 * The primary goal is to maximize the number of stripes, so use as
5288 * many devices as possible, even if the stripes are not maximum sized.
5289 *
5290 * The DUP profile stores more than one stripe per device, the
5291 * max_avail is the total size so we have to adjust.
5292 */
5293 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5294 ctl->dev_stripes);
5295 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5296
5297 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5298 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5299
5300 /*
5301 * Use the number of data stripes to figure out how big this chunk is
5302 * really going to be in terms of logical address space, and compare
5303 * that answer with the max chunk size. If it's higher, we try to
5304 * reduce stripe_size.
5305 */
5306 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5307 /*
5308 * Reduce stripe_size, round it up to a 16MB boundary again and
5309 * then use it, unless it ends up being even bigger than the
5310 * previous value we had already.
5311 */
5312 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5313 data_stripes), SZ_16M),
5314 ctl->stripe_size);
5315 }
5316
5317 /* Stripe size should not go beyond 1G. */
5318 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5319
5320 /* Align to BTRFS_STRIPE_LEN */
5321 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5322 ctl->chunk_size = ctl->stripe_size * data_stripes;
5323
5324 return 0;
5325 }
5326
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5327 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5328 struct btrfs_device_info *devices_info)
5329 {
5330 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5331 /* Number of stripes that count for block group size */
5332 int data_stripes;
5333
5334 /*
5335 * It should hold because:
5336 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5337 */
5338 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5339
5340 ctl->stripe_size = zone_size;
5341 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5342 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5343
5344 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5345 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5346 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5347 ctl->stripe_size) + ctl->nparity,
5348 ctl->dev_stripes);
5349 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5350 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5351 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5352 }
5353
5354 ctl->chunk_size = ctl->stripe_size * data_stripes;
5355
5356 return 0;
5357 }
5358
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5359 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5360 struct alloc_chunk_ctl *ctl,
5361 struct btrfs_device_info *devices_info)
5362 {
5363 struct btrfs_fs_info *info = fs_devices->fs_info;
5364
5365 /*
5366 * Round down to number of usable stripes, devs_increment can be any
5367 * number so we can't use round_down() that requires power of 2, while
5368 * rounddown is safe.
5369 */
5370 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5371
5372 if (ctl->ndevs < ctl->devs_min) {
5373 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5374 btrfs_debug(info,
5375 "%s: not enough devices with free space: have=%d minimum required=%d",
5376 __func__, ctl->ndevs, ctl->devs_min);
5377 }
5378 return -ENOSPC;
5379 }
5380
5381 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5382
5383 switch (fs_devices->chunk_alloc_policy) {
5384 case BTRFS_CHUNK_ALLOC_REGULAR:
5385 return decide_stripe_size_regular(ctl, devices_info);
5386 case BTRFS_CHUNK_ALLOC_ZONED:
5387 return decide_stripe_size_zoned(ctl, devices_info);
5388 default:
5389 BUG();
5390 }
5391 }
5392
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5393 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5394 struct alloc_chunk_ctl *ctl,
5395 struct btrfs_device_info *devices_info)
5396 {
5397 struct btrfs_fs_info *info = trans->fs_info;
5398 struct map_lookup *map = NULL;
5399 struct extent_map_tree *em_tree;
5400 struct btrfs_block_group *block_group;
5401 struct extent_map *em;
5402 u64 start = ctl->start;
5403 u64 type = ctl->type;
5404 int ret;
5405 int i;
5406 int j;
5407
5408 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5409 if (!map)
5410 return ERR_PTR(-ENOMEM);
5411 map->num_stripes = ctl->num_stripes;
5412
5413 for (i = 0; i < ctl->ndevs; ++i) {
5414 for (j = 0; j < ctl->dev_stripes; ++j) {
5415 int s = i * ctl->dev_stripes + j;
5416 map->stripes[s].dev = devices_info[i].dev;
5417 map->stripes[s].physical = devices_info[i].dev_offset +
5418 j * ctl->stripe_size;
5419 }
5420 }
5421 map->io_align = BTRFS_STRIPE_LEN;
5422 map->io_width = BTRFS_STRIPE_LEN;
5423 map->type = type;
5424 map->sub_stripes = ctl->sub_stripes;
5425
5426 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5427
5428 em = alloc_extent_map();
5429 if (!em) {
5430 kfree(map);
5431 return ERR_PTR(-ENOMEM);
5432 }
5433 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5434 em->map_lookup = map;
5435 em->start = start;
5436 em->len = ctl->chunk_size;
5437 em->block_start = 0;
5438 em->block_len = em->len;
5439 em->orig_block_len = ctl->stripe_size;
5440
5441 em_tree = &info->mapping_tree;
5442 write_lock(&em_tree->lock);
5443 ret = add_extent_mapping(em_tree, em, 0);
5444 if (ret) {
5445 write_unlock(&em_tree->lock);
5446 free_extent_map(em);
5447 return ERR_PTR(ret);
5448 }
5449 write_unlock(&em_tree->lock);
5450
5451 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5452 if (IS_ERR(block_group))
5453 goto error_del_extent;
5454
5455 for (i = 0; i < map->num_stripes; i++) {
5456 struct btrfs_device *dev = map->stripes[i].dev;
5457
5458 btrfs_device_set_bytes_used(dev,
5459 dev->bytes_used + ctl->stripe_size);
5460 if (list_empty(&dev->post_commit_list))
5461 list_add_tail(&dev->post_commit_list,
5462 &trans->transaction->dev_update_list);
5463 }
5464
5465 atomic64_sub(ctl->stripe_size * map->num_stripes,
5466 &info->free_chunk_space);
5467
5468 free_extent_map(em);
5469 check_raid56_incompat_flag(info, type);
5470 check_raid1c34_incompat_flag(info, type);
5471
5472 return block_group;
5473
5474 error_del_extent:
5475 write_lock(&em_tree->lock);
5476 remove_extent_mapping(em_tree, em);
5477 write_unlock(&em_tree->lock);
5478
5479 /* One for our allocation */
5480 free_extent_map(em);
5481 /* One for the tree reference */
5482 free_extent_map(em);
5483
5484 return block_group;
5485 }
5486
btrfs_create_chunk(struct btrfs_trans_handle * trans,u64 type)5487 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5488 u64 type)
5489 {
5490 struct btrfs_fs_info *info = trans->fs_info;
5491 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5492 struct btrfs_device_info *devices_info = NULL;
5493 struct alloc_chunk_ctl ctl;
5494 struct btrfs_block_group *block_group;
5495 int ret;
5496
5497 lockdep_assert_held(&info->chunk_mutex);
5498
5499 if (!alloc_profile_is_valid(type, 0)) {
5500 ASSERT(0);
5501 return ERR_PTR(-EINVAL);
5502 }
5503
5504 if (list_empty(&fs_devices->alloc_list)) {
5505 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5506 btrfs_debug(info, "%s: no writable device", __func__);
5507 return ERR_PTR(-ENOSPC);
5508 }
5509
5510 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5511 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5512 ASSERT(0);
5513 return ERR_PTR(-EINVAL);
5514 }
5515
5516 ctl.start = find_next_chunk(info);
5517 ctl.type = type;
5518 init_alloc_chunk_ctl(fs_devices, &ctl);
5519
5520 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5521 GFP_NOFS);
5522 if (!devices_info)
5523 return ERR_PTR(-ENOMEM);
5524
5525 ret = gather_device_info(fs_devices, &ctl, devices_info);
5526 if (ret < 0) {
5527 block_group = ERR_PTR(ret);
5528 goto out;
5529 }
5530
5531 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5532 if (ret < 0) {
5533 block_group = ERR_PTR(ret);
5534 goto out;
5535 }
5536
5537 block_group = create_chunk(trans, &ctl, devices_info);
5538
5539 out:
5540 kfree(devices_info);
5541 return block_group;
5542 }
5543
5544 /*
5545 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5546 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5547 * chunks.
5548 *
5549 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5550 * phases.
5551 */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5552 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5553 struct btrfs_block_group *bg)
5554 {
5555 struct btrfs_fs_info *fs_info = trans->fs_info;
5556 struct btrfs_root *chunk_root = fs_info->chunk_root;
5557 struct btrfs_key key;
5558 struct btrfs_chunk *chunk;
5559 struct btrfs_stripe *stripe;
5560 struct extent_map *em;
5561 struct map_lookup *map;
5562 size_t item_size;
5563 int i;
5564 int ret;
5565
5566 /*
5567 * We take the chunk_mutex for 2 reasons:
5568 *
5569 * 1) Updates and insertions in the chunk btree must be done while holding
5570 * the chunk_mutex, as well as updating the system chunk array in the
5571 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5572 * details;
5573 *
5574 * 2) To prevent races with the final phase of a device replace operation
5575 * that replaces the device object associated with the map's stripes,
5576 * because the device object's id can change at any time during that
5577 * final phase of the device replace operation
5578 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5579 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5580 * which would cause a failure when updating the device item, which does
5581 * not exists, or persisting a stripe of the chunk item with such ID.
5582 * Here we can't use the device_list_mutex because our caller already
5583 * has locked the chunk_mutex, and the final phase of device replace
5584 * acquires both mutexes - first the device_list_mutex and then the
5585 * chunk_mutex. Using any of those two mutexes protects us from a
5586 * concurrent device replace.
5587 */
5588 lockdep_assert_held(&fs_info->chunk_mutex);
5589
5590 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5591 if (IS_ERR(em)) {
5592 ret = PTR_ERR(em);
5593 btrfs_abort_transaction(trans, ret);
5594 return ret;
5595 }
5596
5597 map = em->map_lookup;
5598 item_size = btrfs_chunk_item_size(map->num_stripes);
5599
5600 chunk = kzalloc(item_size, GFP_NOFS);
5601 if (!chunk) {
5602 ret = -ENOMEM;
5603 btrfs_abort_transaction(trans, ret);
5604 goto out;
5605 }
5606
5607 for (i = 0; i < map->num_stripes; i++) {
5608 struct btrfs_device *device = map->stripes[i].dev;
5609
5610 ret = btrfs_update_device(trans, device);
5611 if (ret)
5612 goto out;
5613 }
5614
5615 stripe = &chunk->stripe;
5616 for (i = 0; i < map->num_stripes; i++) {
5617 struct btrfs_device *device = map->stripes[i].dev;
5618 const u64 dev_offset = map->stripes[i].physical;
5619
5620 btrfs_set_stack_stripe_devid(stripe, device->devid);
5621 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5622 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5623 stripe++;
5624 }
5625
5626 btrfs_set_stack_chunk_length(chunk, bg->length);
5627 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5628 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5629 btrfs_set_stack_chunk_type(chunk, map->type);
5630 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5631 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5632 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5633 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5634 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5635
5636 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5637 key.type = BTRFS_CHUNK_ITEM_KEY;
5638 key.offset = bg->start;
5639
5640 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5641 if (ret)
5642 goto out;
5643
5644 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5645
5646 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5647 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5648 if (ret)
5649 goto out;
5650 }
5651
5652 out:
5653 kfree(chunk);
5654 free_extent_map(em);
5655 return ret;
5656 }
5657
init_first_rw_device(struct btrfs_trans_handle * trans)5658 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5659 {
5660 struct btrfs_fs_info *fs_info = trans->fs_info;
5661 u64 alloc_profile;
5662 struct btrfs_block_group *meta_bg;
5663 struct btrfs_block_group *sys_bg;
5664
5665 /*
5666 * When adding a new device for sprouting, the seed device is read-only
5667 * so we must first allocate a metadata and a system chunk. But before
5668 * adding the block group items to the extent, device and chunk btrees,
5669 * we must first:
5670 *
5671 * 1) Create both chunks without doing any changes to the btrees, as
5672 * otherwise we would get -ENOSPC since the block groups from the
5673 * seed device are read-only;
5674 *
5675 * 2) Add the device item for the new sprout device - finishing the setup
5676 * of a new block group requires updating the device item in the chunk
5677 * btree, so it must exist when we attempt to do it. The previous step
5678 * ensures this does not fail with -ENOSPC.
5679 *
5680 * After that we can add the block group items to their btrees:
5681 * update existing device item in the chunk btree, add a new block group
5682 * item to the extent btree, add a new chunk item to the chunk btree and
5683 * finally add the new device extent items to the devices btree.
5684 */
5685
5686 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5687 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5688 if (IS_ERR(meta_bg))
5689 return PTR_ERR(meta_bg);
5690
5691 alloc_profile = btrfs_system_alloc_profile(fs_info);
5692 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5693 if (IS_ERR(sys_bg))
5694 return PTR_ERR(sys_bg);
5695
5696 return 0;
5697 }
5698
btrfs_chunk_max_errors(struct map_lookup * map)5699 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5700 {
5701 const int index = btrfs_bg_flags_to_raid_index(map->type);
5702
5703 return btrfs_raid_array[index].tolerated_failures;
5704 }
5705
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5706 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5707 {
5708 struct extent_map *em;
5709 struct map_lookup *map;
5710 int miss_ndevs = 0;
5711 int i;
5712 bool ret = true;
5713
5714 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5715 if (IS_ERR(em))
5716 return false;
5717
5718 map = em->map_lookup;
5719 for (i = 0; i < map->num_stripes; i++) {
5720 if (test_bit(BTRFS_DEV_STATE_MISSING,
5721 &map->stripes[i].dev->dev_state)) {
5722 miss_ndevs++;
5723 continue;
5724 }
5725 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5726 &map->stripes[i].dev->dev_state)) {
5727 ret = false;
5728 goto end;
5729 }
5730 }
5731
5732 /*
5733 * If the number of missing devices is larger than max errors, we can
5734 * not write the data into that chunk successfully.
5735 */
5736 if (miss_ndevs > btrfs_chunk_max_errors(map))
5737 ret = false;
5738 end:
5739 free_extent_map(em);
5740 return ret;
5741 }
5742
btrfs_mapping_tree_free(struct extent_map_tree * tree)5743 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5744 {
5745 struct extent_map *em;
5746
5747 while (1) {
5748 write_lock(&tree->lock);
5749 em = lookup_extent_mapping(tree, 0, (u64)-1);
5750 if (em)
5751 remove_extent_mapping(tree, em);
5752 write_unlock(&tree->lock);
5753 if (!em)
5754 break;
5755 /* once for us */
5756 free_extent_map(em);
5757 /* once for the tree */
5758 free_extent_map(em);
5759 }
5760 }
5761
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5762 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5763 {
5764 struct extent_map *em;
5765 struct map_lookup *map;
5766 enum btrfs_raid_types index;
5767 int ret = 1;
5768
5769 em = btrfs_get_chunk_map(fs_info, logical, len);
5770 if (IS_ERR(em))
5771 /*
5772 * We could return errors for these cases, but that could get
5773 * ugly and we'd probably do the same thing which is just not do
5774 * anything else and exit, so return 1 so the callers don't try
5775 * to use other copies.
5776 */
5777 return 1;
5778
5779 map = em->map_lookup;
5780 index = btrfs_bg_flags_to_raid_index(map->type);
5781
5782 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5783 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5784 ret = btrfs_raid_array[index].ncopies;
5785 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5786 ret = 2;
5787 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5788 /*
5789 * There could be two corrupted data stripes, we need
5790 * to loop retry in order to rebuild the correct data.
5791 *
5792 * Fail a stripe at a time on every retry except the
5793 * stripe under reconstruction.
5794 */
5795 ret = map->num_stripes;
5796 free_extent_map(em);
5797 return ret;
5798 }
5799
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5800 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5801 u64 logical)
5802 {
5803 struct extent_map *em;
5804 struct map_lookup *map;
5805 unsigned long len = fs_info->sectorsize;
5806
5807 if (!btrfs_fs_incompat(fs_info, RAID56))
5808 return len;
5809
5810 em = btrfs_get_chunk_map(fs_info, logical, len);
5811
5812 if (!WARN_ON(IS_ERR(em))) {
5813 map = em->map_lookup;
5814 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5815 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5816 free_extent_map(em);
5817 }
5818 return len;
5819 }
5820
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5821 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5822 {
5823 struct extent_map *em;
5824 struct map_lookup *map;
5825 int ret = 0;
5826
5827 if (!btrfs_fs_incompat(fs_info, RAID56))
5828 return 0;
5829
5830 em = btrfs_get_chunk_map(fs_info, logical, len);
5831
5832 if(!WARN_ON(IS_ERR(em))) {
5833 map = em->map_lookup;
5834 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5835 ret = 1;
5836 free_extent_map(em);
5837 }
5838 return ret;
5839 }
5840
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5841 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5842 struct map_lookup *map, int first,
5843 int dev_replace_is_ongoing)
5844 {
5845 int i;
5846 int num_stripes;
5847 int preferred_mirror;
5848 int tolerance;
5849 struct btrfs_device *srcdev;
5850
5851 ASSERT((map->type &
5852 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5853
5854 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5855 num_stripes = map->sub_stripes;
5856 else
5857 num_stripes = map->num_stripes;
5858
5859 switch (fs_info->fs_devices->read_policy) {
5860 default:
5861 /* Shouldn't happen, just warn and use pid instead of failing */
5862 btrfs_warn_rl(fs_info,
5863 "unknown read_policy type %u, reset to pid",
5864 fs_info->fs_devices->read_policy);
5865 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5866 fallthrough;
5867 case BTRFS_READ_POLICY_PID:
5868 preferred_mirror = first + (current->pid % num_stripes);
5869 break;
5870 }
5871
5872 if (dev_replace_is_ongoing &&
5873 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5874 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5875 srcdev = fs_info->dev_replace.srcdev;
5876 else
5877 srcdev = NULL;
5878
5879 /*
5880 * try to avoid the drive that is the source drive for a
5881 * dev-replace procedure, only choose it if no other non-missing
5882 * mirror is available
5883 */
5884 for (tolerance = 0; tolerance < 2; tolerance++) {
5885 if (map->stripes[preferred_mirror].dev->bdev &&
5886 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5887 return preferred_mirror;
5888 for (i = first; i < first + num_stripes; i++) {
5889 if (map->stripes[i].dev->bdev &&
5890 (tolerance || map->stripes[i].dev != srcdev))
5891 return i;
5892 }
5893 }
5894
5895 /* we couldn't find one that doesn't fail. Just return something
5896 * and the io error handling code will clean up eventually
5897 */
5898 return preferred_mirror;
5899 }
5900
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,u16 total_stripes)5901 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5902 u16 total_stripes)
5903 {
5904 struct btrfs_io_context *bioc;
5905
5906 bioc = kzalloc(
5907 /* The size of btrfs_io_context */
5908 sizeof(struct btrfs_io_context) +
5909 /* Plus the variable array for the stripes */
5910 sizeof(struct btrfs_io_stripe) * (total_stripes),
5911 GFP_NOFS);
5912
5913 if (!bioc)
5914 return NULL;
5915
5916 refcount_set(&bioc->refs, 1);
5917
5918 bioc->fs_info = fs_info;
5919 bioc->replace_stripe_src = -1;
5920 bioc->full_stripe_logical = (u64)-1;
5921
5922 return bioc;
5923 }
5924
btrfs_get_bioc(struct btrfs_io_context * bioc)5925 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5926 {
5927 WARN_ON(!refcount_read(&bioc->refs));
5928 refcount_inc(&bioc->refs);
5929 }
5930
btrfs_put_bioc(struct btrfs_io_context * bioc)5931 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5932 {
5933 if (!bioc)
5934 return;
5935 if (refcount_dec_and_test(&bioc->refs))
5936 kfree(bioc);
5937 }
5938
5939 /*
5940 * Please note that, discard won't be sent to target device of device
5941 * replace.
5942 */
btrfs_map_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,u32 * num_stripes)5943 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5944 u64 logical, u64 *length_ret,
5945 u32 *num_stripes)
5946 {
5947 struct extent_map *em;
5948 struct map_lookup *map;
5949 struct btrfs_discard_stripe *stripes;
5950 u64 length = *length_ret;
5951 u64 offset;
5952 u32 stripe_nr;
5953 u32 stripe_nr_end;
5954 u32 stripe_cnt;
5955 u64 stripe_end_offset;
5956 u64 stripe_offset;
5957 u32 stripe_index;
5958 u32 factor = 0;
5959 u32 sub_stripes = 0;
5960 u32 stripes_per_dev = 0;
5961 u32 remaining_stripes = 0;
5962 u32 last_stripe = 0;
5963 int ret;
5964 int i;
5965
5966 em = btrfs_get_chunk_map(fs_info, logical, length);
5967 if (IS_ERR(em))
5968 return ERR_CAST(em);
5969
5970 map = em->map_lookup;
5971
5972 /* we don't discard raid56 yet */
5973 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5974 ret = -EOPNOTSUPP;
5975 goto out_free_map;
5976 }
5977
5978 offset = logical - em->start;
5979 length = min_t(u64, em->start + em->len - logical, length);
5980 *length_ret = length;
5981
5982 /*
5983 * stripe_nr counts the total number of stripes we have to stride
5984 * to get to this block
5985 */
5986 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
5987
5988 /* stripe_offset is the offset of this block in its stripe */
5989 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
5990
5991 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
5992 BTRFS_STRIPE_LEN_SHIFT;
5993 stripe_cnt = stripe_nr_end - stripe_nr;
5994 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
5995 (offset + length);
5996 /*
5997 * after this, stripe_nr is the number of stripes on this
5998 * device we have to walk to find the data, and stripe_index is
5999 * the number of our device in the stripe array
6000 */
6001 *num_stripes = 1;
6002 stripe_index = 0;
6003 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6004 BTRFS_BLOCK_GROUP_RAID10)) {
6005 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6006 sub_stripes = 1;
6007 else
6008 sub_stripes = map->sub_stripes;
6009
6010 factor = map->num_stripes / sub_stripes;
6011 *num_stripes = min_t(u64, map->num_stripes,
6012 sub_stripes * stripe_cnt);
6013 stripe_index = stripe_nr % factor;
6014 stripe_nr /= factor;
6015 stripe_index *= sub_stripes;
6016
6017 remaining_stripes = stripe_cnt % factor;
6018 stripes_per_dev = stripe_cnt / factor;
6019 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6020 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6021 BTRFS_BLOCK_GROUP_DUP)) {
6022 *num_stripes = map->num_stripes;
6023 } else {
6024 stripe_index = stripe_nr % map->num_stripes;
6025 stripe_nr /= map->num_stripes;
6026 }
6027
6028 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6029 if (!stripes) {
6030 ret = -ENOMEM;
6031 goto out_free_map;
6032 }
6033
6034 for (i = 0; i < *num_stripes; i++) {
6035 stripes[i].physical =
6036 map->stripes[stripe_index].physical +
6037 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6038 stripes[i].dev = map->stripes[stripe_index].dev;
6039
6040 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6041 BTRFS_BLOCK_GROUP_RAID10)) {
6042 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6043
6044 if (i / sub_stripes < remaining_stripes)
6045 stripes[i].length += BTRFS_STRIPE_LEN;
6046
6047 /*
6048 * Special for the first stripe and
6049 * the last stripe:
6050 *
6051 * |-------|...|-------|
6052 * |----------|
6053 * off end_off
6054 */
6055 if (i < sub_stripes)
6056 stripes[i].length -= stripe_offset;
6057
6058 if (stripe_index >= last_stripe &&
6059 stripe_index <= (last_stripe +
6060 sub_stripes - 1))
6061 stripes[i].length -= stripe_end_offset;
6062
6063 if (i == sub_stripes - 1)
6064 stripe_offset = 0;
6065 } else {
6066 stripes[i].length = length;
6067 }
6068
6069 stripe_index++;
6070 if (stripe_index == map->num_stripes) {
6071 stripe_index = 0;
6072 stripe_nr++;
6073 }
6074 }
6075
6076 free_extent_map(em);
6077 return stripes;
6078 out_free_map:
6079 free_extent_map(em);
6080 return ERR_PTR(ret);
6081 }
6082
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6083 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6084 {
6085 struct btrfs_block_group *cache;
6086 bool ret;
6087
6088 /* Non zoned filesystem does not use "to_copy" flag */
6089 if (!btrfs_is_zoned(fs_info))
6090 return false;
6091
6092 cache = btrfs_lookup_block_group(fs_info, logical);
6093
6094 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6095
6096 btrfs_put_block_group(cache);
6097 return ret;
6098 }
6099
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_io_context * bioc,struct btrfs_dev_replace * dev_replace,u64 logical,int * num_stripes_ret,int * max_errors_ret)6100 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6101 struct btrfs_io_context *bioc,
6102 struct btrfs_dev_replace *dev_replace,
6103 u64 logical,
6104 int *num_stripes_ret, int *max_errors_ret)
6105 {
6106 u64 srcdev_devid = dev_replace->srcdev->devid;
6107 /*
6108 * At this stage, num_stripes is still the real number of stripes,
6109 * excluding the duplicated stripes.
6110 */
6111 int num_stripes = *num_stripes_ret;
6112 int nr_extra_stripes = 0;
6113 int max_errors = *max_errors_ret;
6114 int i;
6115
6116 /*
6117 * A block group which has "to_copy" set will eventually be copied by
6118 * the dev-replace process. We can avoid cloning IO here.
6119 */
6120 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6121 return;
6122
6123 /*
6124 * Duplicate the write operations while the dev-replace procedure is
6125 * running. Since the copying of the old disk to the new disk takes
6126 * place at run time while the filesystem is mounted writable, the
6127 * regular write operations to the old disk have to be duplicated to go
6128 * to the new disk as well.
6129 *
6130 * Note that device->missing is handled by the caller, and that the
6131 * write to the old disk is already set up in the stripes array.
6132 */
6133 for (i = 0; i < num_stripes; i++) {
6134 struct btrfs_io_stripe *old = &bioc->stripes[i];
6135 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6136
6137 if (old->dev->devid != srcdev_devid)
6138 continue;
6139
6140 new->physical = old->physical;
6141 new->dev = dev_replace->tgtdev;
6142 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6143 bioc->replace_stripe_src = i;
6144 nr_extra_stripes++;
6145 }
6146
6147 /* We can only have at most 2 extra nr_stripes (for DUP). */
6148 ASSERT(nr_extra_stripes <= 2);
6149 /*
6150 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6151 * replace.
6152 * If we have 2 extra stripes, only choose the one with smaller physical.
6153 */
6154 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6155 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6156 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6157
6158 /* Only DUP can have two extra stripes. */
6159 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6160
6161 /*
6162 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6163 * The extra stripe would still be there, but won't be accessed.
6164 */
6165 if (first->physical > second->physical) {
6166 swap(second->physical, first->physical);
6167 swap(second->dev, first->dev);
6168 nr_extra_stripes--;
6169 }
6170 }
6171
6172 *num_stripes_ret = num_stripes + nr_extra_stripes;
6173 *max_errors_ret = max_errors + nr_extra_stripes;
6174 bioc->replace_nr_stripes = nr_extra_stripes;
6175 }
6176
btrfs_max_io_len(struct map_lookup * map,enum btrfs_map_op op,u64 offset,u32 * stripe_nr,u64 * stripe_offset,u64 * full_stripe_start)6177 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
6178 u64 offset, u32 *stripe_nr, u64 *stripe_offset,
6179 u64 *full_stripe_start)
6180 {
6181 /*
6182 * Stripe_nr is the stripe where this block falls. stripe_offset is
6183 * the offset of this block in its stripe.
6184 */
6185 *stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6186 *stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6187 ASSERT(*stripe_offset < U32_MAX);
6188
6189 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6190 unsigned long full_stripe_len =
6191 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6192
6193 /*
6194 * For full stripe start, we use previously calculated
6195 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6196 * STRIPE_LEN.
6197 *
6198 * By this we can avoid u64 division completely. And we have
6199 * to go rounddown(), not round_down(), as nr_data_stripes is
6200 * not ensured to be power of 2.
6201 */
6202 *full_stripe_start =
6203 btrfs_stripe_nr_to_offset(
6204 rounddown(*stripe_nr, nr_data_stripes(map)));
6205
6206 ASSERT(*full_stripe_start + full_stripe_len > offset);
6207 ASSERT(*full_stripe_start <= offset);
6208 /*
6209 * For writes to RAID56, allow to write a full stripe set, but
6210 * no straddling of stripe sets.
6211 */
6212 if (op == BTRFS_MAP_WRITE)
6213 return full_stripe_len - (offset - *full_stripe_start);
6214 }
6215
6216 /*
6217 * For other RAID types and for RAID56 reads, allow a single stripe (on
6218 * a single disk).
6219 */
6220 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6221 return BTRFS_STRIPE_LEN - *stripe_offset;
6222 return U64_MAX;
6223 }
6224
set_io_stripe(struct btrfs_io_stripe * dst,const struct map_lookup * map,u32 stripe_index,u64 stripe_offset,u32 stripe_nr)6225 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6226 u32 stripe_index, u64 stripe_offset, u32 stripe_nr)
6227 {
6228 dst->dev = map->stripes[stripe_index].dev;
6229 dst->physical = map->stripes[stripe_index].physical +
6230 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6231 }
6232
6233 /*
6234 * Map one logical range to one or more physical ranges.
6235 *
6236 * @length: (Mandatory) mapped length of this run.
6237 * One logical range can be split into different segments
6238 * due to factors like zones and RAID0/5/6/10 stripe
6239 * boundaries.
6240 *
6241 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6242 * which has one or more physical ranges (btrfs_io_stripe)
6243 * recorded inside.
6244 * Caller should call btrfs_put_bioc() to free it after use.
6245 *
6246 * @smap: (Optional) single physical range optimization.
6247 * If the map request can be fulfilled by one single
6248 * physical range, and this is parameter is not NULL,
6249 * then @bioc_ret would be NULL, and @smap would be
6250 * updated.
6251 *
6252 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6253 * value is 0.
6254 *
6255 * Mirror number 0 means to choose any live mirrors.
6256 *
6257 * For non-RAID56 profiles, non-zero mirror_num means
6258 * the Nth mirror. (e.g. mirror_num 1 means the first
6259 * copy).
6260 *
6261 * For RAID56 profile, mirror 1 means rebuild from P and
6262 * the remaining data stripes.
6263 *
6264 * For RAID6 profile, mirror > 2 means mark another
6265 * data/P stripe error and rebuild from the remaining
6266 * stripes..
6267 *
6268 * @need_raid_map: (Used only for integrity checker) whether the map wants
6269 * a full stripe map (including all data and P/Q stripes)
6270 * for RAID56. Should always be 1 except integrity checker.
6271 */
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,struct btrfs_io_stripe * smap,int * mirror_num_ret,int need_raid_map)6272 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6273 u64 logical, u64 *length,
6274 struct btrfs_io_context **bioc_ret,
6275 struct btrfs_io_stripe *smap, int *mirror_num_ret,
6276 int need_raid_map)
6277 {
6278 struct extent_map *em;
6279 struct map_lookup *map;
6280 u64 map_offset;
6281 u64 stripe_offset;
6282 u32 stripe_nr;
6283 u32 stripe_index;
6284 int data_stripes;
6285 int i;
6286 int ret = 0;
6287 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6288 int num_stripes;
6289 int num_copies;
6290 int max_errors = 0;
6291 struct btrfs_io_context *bioc = NULL;
6292 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6293 int dev_replace_is_ongoing = 0;
6294 u16 num_alloc_stripes;
6295 u64 raid56_full_stripe_start = (u64)-1;
6296 u64 max_len;
6297
6298 ASSERT(bioc_ret);
6299
6300 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6301 if (mirror_num > num_copies)
6302 return -EINVAL;
6303
6304 em = btrfs_get_chunk_map(fs_info, logical, *length);
6305 if (IS_ERR(em))
6306 return PTR_ERR(em);
6307
6308 map = em->map_lookup;
6309 data_stripes = nr_data_stripes(map);
6310
6311 map_offset = logical - em->start;
6312 max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
6313 &stripe_offset, &raid56_full_stripe_start);
6314 *length = min_t(u64, em->len - map_offset, max_len);
6315
6316 down_read(&dev_replace->rwsem);
6317 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6318 /*
6319 * Hold the semaphore for read during the whole operation, write is
6320 * requested at commit time but must wait.
6321 */
6322 if (!dev_replace_is_ongoing)
6323 up_read(&dev_replace->rwsem);
6324
6325 num_stripes = 1;
6326 stripe_index = 0;
6327 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6328 stripe_index = stripe_nr % map->num_stripes;
6329 stripe_nr /= map->num_stripes;
6330 if (op == BTRFS_MAP_READ)
6331 mirror_num = 1;
6332 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6333 if (op != BTRFS_MAP_READ) {
6334 num_stripes = map->num_stripes;
6335 } else if (mirror_num) {
6336 stripe_index = mirror_num - 1;
6337 } else {
6338 stripe_index = find_live_mirror(fs_info, map, 0,
6339 dev_replace_is_ongoing);
6340 mirror_num = stripe_index + 1;
6341 }
6342
6343 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6344 if (op != BTRFS_MAP_READ) {
6345 num_stripes = map->num_stripes;
6346 } else if (mirror_num) {
6347 stripe_index = mirror_num - 1;
6348 } else {
6349 mirror_num = 1;
6350 }
6351
6352 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6353 u32 factor = map->num_stripes / map->sub_stripes;
6354
6355 stripe_index = (stripe_nr % factor) * map->sub_stripes;
6356 stripe_nr /= factor;
6357
6358 if (op != BTRFS_MAP_READ)
6359 num_stripes = map->sub_stripes;
6360 else if (mirror_num)
6361 stripe_index += mirror_num - 1;
6362 else {
6363 int old_stripe_index = stripe_index;
6364 stripe_index = find_live_mirror(fs_info, map,
6365 stripe_index,
6366 dev_replace_is_ongoing);
6367 mirror_num = stripe_index - old_stripe_index + 1;
6368 }
6369
6370 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6371 if (need_raid_map && (op != BTRFS_MAP_READ || mirror_num > 1)) {
6372 /*
6373 * Push stripe_nr back to the start of the full stripe
6374 * For those cases needing a full stripe, @stripe_nr
6375 * is the full stripe number.
6376 *
6377 * Originally we go raid56_full_stripe_start / full_stripe_len,
6378 * but that can be expensive. Here we just divide
6379 * @stripe_nr with @data_stripes.
6380 */
6381 stripe_nr /= data_stripes;
6382
6383 /* RAID[56] write or recovery. Return all stripes */
6384 num_stripes = map->num_stripes;
6385 max_errors = btrfs_chunk_max_errors(map);
6386
6387 /* Return the length to the full stripe end */
6388 *length = min(logical + *length,
6389 raid56_full_stripe_start + em->start +
6390 btrfs_stripe_nr_to_offset(data_stripes)) -
6391 logical;
6392 stripe_index = 0;
6393 stripe_offset = 0;
6394 } else {
6395 /*
6396 * Mirror #0 or #1 means the original data block.
6397 * Mirror #2 is RAID5 parity block.
6398 * Mirror #3 is RAID6 Q block.
6399 */
6400 stripe_index = stripe_nr % data_stripes;
6401 stripe_nr /= data_stripes;
6402 if (mirror_num > 1)
6403 stripe_index = data_stripes + mirror_num - 2;
6404
6405 /* We distribute the parity blocks across stripes */
6406 stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
6407 if (op == BTRFS_MAP_READ && mirror_num <= 1)
6408 mirror_num = 1;
6409 }
6410 } else {
6411 /*
6412 * After this, stripe_nr is the number of stripes on this
6413 * device we have to walk to find the data, and stripe_index is
6414 * the number of our device in the stripe array
6415 */
6416 stripe_index = stripe_nr % map->num_stripes;
6417 stripe_nr /= map->num_stripes;
6418 mirror_num = stripe_index + 1;
6419 }
6420 if (stripe_index >= map->num_stripes) {
6421 btrfs_crit(fs_info,
6422 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6423 stripe_index, map->num_stripes);
6424 ret = -EINVAL;
6425 goto out;
6426 }
6427
6428 num_alloc_stripes = num_stripes;
6429 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6430 op != BTRFS_MAP_READ)
6431 /*
6432 * For replace case, we need to add extra stripes for extra
6433 * duplicated stripes.
6434 *
6435 * For both WRITE and GET_READ_MIRRORS, we may have at most
6436 * 2 more stripes (DUP types, otherwise 1).
6437 */
6438 num_alloc_stripes += 2;
6439
6440 /*
6441 * If this I/O maps to a single device, try to return the device and
6442 * physical block information on the stack instead of allocating an
6443 * I/O context structure.
6444 */
6445 if (smap && num_alloc_stripes == 1 &&
6446 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) {
6447 set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr);
6448 if (mirror_num_ret)
6449 *mirror_num_ret = mirror_num;
6450 *bioc_ret = NULL;
6451 ret = 0;
6452 goto out;
6453 }
6454
6455 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes);
6456 if (!bioc) {
6457 ret = -ENOMEM;
6458 goto out;
6459 }
6460 bioc->map_type = map->type;
6461
6462 /*
6463 * For RAID56 full map, we need to make sure the stripes[] follows the
6464 * rule that data stripes are all ordered, then followed with P and Q
6465 * (if we have).
6466 *
6467 * It's still mostly the same as other profiles, just with extra rotation.
6468 */
6469 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6470 (op != BTRFS_MAP_READ || mirror_num > 1)) {
6471 /*
6472 * For RAID56 @stripe_nr is already the number of full stripes
6473 * before us, which is also the rotation value (needs to modulo
6474 * with num_stripes).
6475 *
6476 * In this case, we just add @stripe_nr with @i, then do the
6477 * modulo, to reduce one modulo call.
6478 */
6479 bioc->full_stripe_logical = em->start +
6480 btrfs_stripe_nr_to_offset(stripe_nr * data_stripes);
6481 for (i = 0; i < num_stripes; i++)
6482 set_io_stripe(&bioc->stripes[i], map,
6483 (i + stripe_nr) % num_stripes,
6484 stripe_offset, stripe_nr);
6485 } else {
6486 /*
6487 * For all other non-RAID56 profiles, just copy the target
6488 * stripe into the bioc.
6489 */
6490 for (i = 0; i < num_stripes; i++) {
6491 set_io_stripe(&bioc->stripes[i], map, stripe_index,
6492 stripe_offset, stripe_nr);
6493 stripe_index++;
6494 }
6495 }
6496
6497 if (op != BTRFS_MAP_READ)
6498 max_errors = btrfs_chunk_max_errors(map);
6499
6500 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6501 op != BTRFS_MAP_READ) {
6502 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6503 &num_stripes, &max_errors);
6504 }
6505
6506 *bioc_ret = bioc;
6507 bioc->num_stripes = num_stripes;
6508 bioc->max_errors = max_errors;
6509 bioc->mirror_num = mirror_num;
6510
6511 out:
6512 if (dev_replace_is_ongoing) {
6513 lockdep_assert_held(&dev_replace->rwsem);
6514 /* Unlock and let waiting writers proceed */
6515 up_read(&dev_replace->rwsem);
6516 }
6517 free_extent_map(em);
6518 return ret;
6519 }
6520
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6521 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6522 const struct btrfs_fs_devices *fs_devices)
6523 {
6524 if (args->fsid == NULL)
6525 return true;
6526 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6527 return true;
6528 return false;
6529 }
6530
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6531 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6532 const struct btrfs_device *device)
6533 {
6534 if (args->missing) {
6535 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6536 !device->bdev)
6537 return true;
6538 return false;
6539 }
6540
6541 if (device->devid != args->devid)
6542 return false;
6543 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6544 return false;
6545 return true;
6546 }
6547
6548 /*
6549 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6550 * return NULL.
6551 *
6552 * If devid and uuid are both specified, the match must be exact, otherwise
6553 * only devid is used.
6554 */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6555 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6556 const struct btrfs_dev_lookup_args *args)
6557 {
6558 struct btrfs_device *device;
6559 struct btrfs_fs_devices *seed_devs;
6560
6561 if (dev_args_match_fs_devices(args, fs_devices)) {
6562 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6563 if (dev_args_match_device(args, device))
6564 return device;
6565 }
6566 }
6567
6568 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6569 if (!dev_args_match_fs_devices(args, seed_devs))
6570 continue;
6571 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6572 if (dev_args_match_device(args, device))
6573 return device;
6574 }
6575 }
6576
6577 return NULL;
6578 }
6579
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6580 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6581 u64 devid, u8 *dev_uuid)
6582 {
6583 struct btrfs_device *device;
6584 unsigned int nofs_flag;
6585
6586 /*
6587 * We call this under the chunk_mutex, so we want to use NOFS for this
6588 * allocation, however we don't want to change btrfs_alloc_device() to
6589 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6590 * places.
6591 */
6592
6593 nofs_flag = memalloc_nofs_save();
6594 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6595 memalloc_nofs_restore(nofs_flag);
6596 if (IS_ERR(device))
6597 return device;
6598
6599 list_add(&device->dev_list, &fs_devices->devices);
6600 device->fs_devices = fs_devices;
6601 fs_devices->num_devices++;
6602
6603 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6604 fs_devices->missing_devices++;
6605
6606 return device;
6607 }
6608
6609 /*
6610 * Allocate new device struct, set up devid and UUID.
6611 *
6612 * @fs_info: used only for generating a new devid, can be NULL if
6613 * devid is provided (i.e. @devid != NULL).
6614 * @devid: a pointer to devid for this device. If NULL a new devid
6615 * is generated.
6616 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6617 * is generated.
6618 * @path: a pointer to device path if available, NULL otherwise.
6619 *
6620 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6621 * on error. Returned struct is not linked onto any lists and must be
6622 * destroyed with btrfs_free_device.
6623 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid,const char * path)6624 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6625 const u64 *devid, const u8 *uuid,
6626 const char *path)
6627 {
6628 struct btrfs_device *dev;
6629 u64 tmp;
6630
6631 if (WARN_ON(!devid && !fs_info))
6632 return ERR_PTR(-EINVAL);
6633
6634 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6635 if (!dev)
6636 return ERR_PTR(-ENOMEM);
6637
6638 INIT_LIST_HEAD(&dev->dev_list);
6639 INIT_LIST_HEAD(&dev->dev_alloc_list);
6640 INIT_LIST_HEAD(&dev->post_commit_list);
6641
6642 atomic_set(&dev->dev_stats_ccnt, 0);
6643 btrfs_device_data_ordered_init(dev);
6644 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6645
6646 if (devid)
6647 tmp = *devid;
6648 else {
6649 int ret;
6650
6651 ret = find_next_devid(fs_info, &tmp);
6652 if (ret) {
6653 btrfs_free_device(dev);
6654 return ERR_PTR(ret);
6655 }
6656 }
6657 dev->devid = tmp;
6658
6659 if (uuid)
6660 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6661 else
6662 generate_random_uuid(dev->uuid);
6663
6664 if (path) {
6665 struct rcu_string *name;
6666
6667 name = rcu_string_strdup(path, GFP_KERNEL);
6668 if (!name) {
6669 btrfs_free_device(dev);
6670 return ERR_PTR(-ENOMEM);
6671 }
6672 rcu_assign_pointer(dev->name, name);
6673 }
6674
6675 return dev;
6676 }
6677
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6678 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6679 u64 devid, u8 *uuid, bool error)
6680 {
6681 if (error)
6682 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6683 devid, uuid);
6684 else
6685 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6686 devid, uuid);
6687 }
6688
btrfs_calc_stripe_length(const struct extent_map * em)6689 u64 btrfs_calc_stripe_length(const struct extent_map *em)
6690 {
6691 const struct map_lookup *map = em->map_lookup;
6692 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6693
6694 return div_u64(em->len, data_stripes);
6695 }
6696
6697 #if BITS_PER_LONG == 32
6698 /*
6699 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6700 * can't be accessed on 32bit systems.
6701 *
6702 * This function do mount time check to reject the fs if it already has
6703 * metadata chunk beyond that limit.
6704 */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6705 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6706 u64 logical, u64 length, u64 type)
6707 {
6708 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6709 return 0;
6710
6711 if (logical + length < MAX_LFS_FILESIZE)
6712 return 0;
6713
6714 btrfs_err_32bit_limit(fs_info);
6715 return -EOVERFLOW;
6716 }
6717
6718 /*
6719 * This is to give early warning for any metadata chunk reaching
6720 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6721 * Although we can still access the metadata, it's not going to be possible
6722 * once the limit is reached.
6723 */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6724 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6725 u64 logical, u64 length, u64 type)
6726 {
6727 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6728 return;
6729
6730 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6731 return;
6732
6733 btrfs_warn_32bit_limit(fs_info);
6734 }
6735 #endif
6736
handle_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)6737 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6738 u64 devid, u8 *uuid)
6739 {
6740 struct btrfs_device *dev;
6741
6742 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6743 btrfs_report_missing_device(fs_info, devid, uuid, true);
6744 return ERR_PTR(-ENOENT);
6745 }
6746
6747 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6748 if (IS_ERR(dev)) {
6749 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6750 devid, PTR_ERR(dev));
6751 return dev;
6752 }
6753 btrfs_report_missing_device(fs_info, devid, uuid, false);
6754
6755 return dev;
6756 }
6757
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6758 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6759 struct btrfs_chunk *chunk)
6760 {
6761 BTRFS_DEV_LOOKUP_ARGS(args);
6762 struct btrfs_fs_info *fs_info = leaf->fs_info;
6763 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6764 struct map_lookup *map;
6765 struct extent_map *em;
6766 u64 logical;
6767 u64 length;
6768 u64 devid;
6769 u64 type;
6770 u8 uuid[BTRFS_UUID_SIZE];
6771 int index;
6772 int num_stripes;
6773 int ret;
6774 int i;
6775
6776 logical = key->offset;
6777 length = btrfs_chunk_length(leaf, chunk);
6778 type = btrfs_chunk_type(leaf, chunk);
6779 index = btrfs_bg_flags_to_raid_index(type);
6780 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6781
6782 #if BITS_PER_LONG == 32
6783 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6784 if (ret < 0)
6785 return ret;
6786 warn_32bit_meta_chunk(fs_info, logical, length, type);
6787 #endif
6788
6789 /*
6790 * Only need to verify chunk item if we're reading from sys chunk array,
6791 * as chunk item in tree block is already verified by tree-checker.
6792 */
6793 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6794 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6795 if (ret)
6796 return ret;
6797 }
6798
6799 read_lock(&map_tree->lock);
6800 em = lookup_extent_mapping(map_tree, logical, 1);
6801 read_unlock(&map_tree->lock);
6802
6803 /* already mapped? */
6804 if (em && em->start <= logical && em->start + em->len > logical) {
6805 free_extent_map(em);
6806 return 0;
6807 } else if (em) {
6808 free_extent_map(em);
6809 }
6810
6811 em = alloc_extent_map();
6812 if (!em)
6813 return -ENOMEM;
6814 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6815 if (!map) {
6816 free_extent_map(em);
6817 return -ENOMEM;
6818 }
6819
6820 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6821 em->map_lookup = map;
6822 em->start = logical;
6823 em->len = length;
6824 em->orig_start = 0;
6825 em->block_start = 0;
6826 em->block_len = em->len;
6827
6828 map->num_stripes = num_stripes;
6829 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6830 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6831 map->type = type;
6832 /*
6833 * We can't use the sub_stripes value, as for profiles other than
6834 * RAID10, they may have 0 as sub_stripes for filesystems created by
6835 * older mkfs (<v5.4).
6836 * In that case, it can cause divide-by-zero errors later.
6837 * Since currently sub_stripes is fixed for each profile, let's
6838 * use the trusted value instead.
6839 */
6840 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6841 map->verified_stripes = 0;
6842 em->orig_block_len = btrfs_calc_stripe_length(em);
6843 for (i = 0; i < num_stripes; i++) {
6844 map->stripes[i].physical =
6845 btrfs_stripe_offset_nr(leaf, chunk, i);
6846 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6847 args.devid = devid;
6848 read_extent_buffer(leaf, uuid, (unsigned long)
6849 btrfs_stripe_dev_uuid_nr(chunk, i),
6850 BTRFS_UUID_SIZE);
6851 args.uuid = uuid;
6852 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6853 if (!map->stripes[i].dev) {
6854 map->stripes[i].dev = handle_missing_device(fs_info,
6855 devid, uuid);
6856 if (IS_ERR(map->stripes[i].dev)) {
6857 ret = PTR_ERR(map->stripes[i].dev);
6858 free_extent_map(em);
6859 return ret;
6860 }
6861 }
6862
6863 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6864 &(map->stripes[i].dev->dev_state));
6865 }
6866
6867 write_lock(&map_tree->lock);
6868 ret = add_extent_mapping(map_tree, em, 0);
6869 write_unlock(&map_tree->lock);
6870 if (ret < 0) {
6871 btrfs_err(fs_info,
6872 "failed to add chunk map, start=%llu len=%llu: %d",
6873 em->start, em->len, ret);
6874 }
6875 free_extent_map(em);
6876
6877 return ret;
6878 }
6879
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6880 static void fill_device_from_item(struct extent_buffer *leaf,
6881 struct btrfs_dev_item *dev_item,
6882 struct btrfs_device *device)
6883 {
6884 unsigned long ptr;
6885
6886 device->devid = btrfs_device_id(leaf, dev_item);
6887 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6888 device->total_bytes = device->disk_total_bytes;
6889 device->commit_total_bytes = device->disk_total_bytes;
6890 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6891 device->commit_bytes_used = device->bytes_used;
6892 device->type = btrfs_device_type(leaf, dev_item);
6893 device->io_align = btrfs_device_io_align(leaf, dev_item);
6894 device->io_width = btrfs_device_io_width(leaf, dev_item);
6895 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6896 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6897 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6898
6899 ptr = btrfs_device_uuid(dev_item);
6900 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6901 }
6902
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)6903 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6904 u8 *fsid)
6905 {
6906 struct btrfs_fs_devices *fs_devices;
6907 int ret;
6908
6909 lockdep_assert_held(&uuid_mutex);
6910 ASSERT(fsid);
6911
6912 /* This will match only for multi-device seed fs */
6913 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6914 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6915 return fs_devices;
6916
6917
6918 fs_devices = find_fsid(fsid, NULL);
6919 if (!fs_devices) {
6920 if (!btrfs_test_opt(fs_info, DEGRADED))
6921 return ERR_PTR(-ENOENT);
6922
6923 fs_devices = alloc_fs_devices(fsid, NULL);
6924 if (IS_ERR(fs_devices))
6925 return fs_devices;
6926
6927 fs_devices->seeding = true;
6928 fs_devices->opened = 1;
6929 return fs_devices;
6930 }
6931
6932 /*
6933 * Upon first call for a seed fs fsid, just create a private copy of the
6934 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6935 */
6936 fs_devices = clone_fs_devices(fs_devices);
6937 if (IS_ERR(fs_devices))
6938 return fs_devices;
6939
6940 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
6941 if (ret) {
6942 free_fs_devices(fs_devices);
6943 return ERR_PTR(ret);
6944 }
6945
6946 if (!fs_devices->seeding) {
6947 close_fs_devices(fs_devices);
6948 free_fs_devices(fs_devices);
6949 return ERR_PTR(-EINVAL);
6950 }
6951
6952 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6953
6954 return fs_devices;
6955 }
6956
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6957 static int read_one_dev(struct extent_buffer *leaf,
6958 struct btrfs_dev_item *dev_item)
6959 {
6960 BTRFS_DEV_LOOKUP_ARGS(args);
6961 struct btrfs_fs_info *fs_info = leaf->fs_info;
6962 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6963 struct btrfs_device *device;
6964 u64 devid;
6965 int ret;
6966 u8 fs_uuid[BTRFS_FSID_SIZE];
6967 u8 dev_uuid[BTRFS_UUID_SIZE];
6968
6969 devid = btrfs_device_id(leaf, dev_item);
6970 args.devid = devid;
6971 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6972 BTRFS_UUID_SIZE);
6973 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6974 BTRFS_FSID_SIZE);
6975 args.uuid = dev_uuid;
6976 args.fsid = fs_uuid;
6977
6978 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6979 fs_devices = open_seed_devices(fs_info, fs_uuid);
6980 if (IS_ERR(fs_devices))
6981 return PTR_ERR(fs_devices);
6982 }
6983
6984 device = btrfs_find_device(fs_info->fs_devices, &args);
6985 if (!device) {
6986 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6987 btrfs_report_missing_device(fs_info, devid,
6988 dev_uuid, true);
6989 return -ENOENT;
6990 }
6991
6992 device = add_missing_dev(fs_devices, devid, dev_uuid);
6993 if (IS_ERR(device)) {
6994 btrfs_err(fs_info,
6995 "failed to add missing dev %llu: %ld",
6996 devid, PTR_ERR(device));
6997 return PTR_ERR(device);
6998 }
6999 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7000 } else {
7001 if (!device->bdev) {
7002 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7003 btrfs_report_missing_device(fs_info,
7004 devid, dev_uuid, true);
7005 return -ENOENT;
7006 }
7007 btrfs_report_missing_device(fs_info, devid,
7008 dev_uuid, false);
7009 }
7010
7011 if (!device->bdev &&
7012 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7013 /*
7014 * this happens when a device that was properly setup
7015 * in the device info lists suddenly goes bad.
7016 * device->bdev is NULL, and so we have to set
7017 * device->missing to one here
7018 */
7019 device->fs_devices->missing_devices++;
7020 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7021 }
7022
7023 /* Move the device to its own fs_devices */
7024 if (device->fs_devices != fs_devices) {
7025 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7026 &device->dev_state));
7027
7028 list_move(&device->dev_list, &fs_devices->devices);
7029 device->fs_devices->num_devices--;
7030 fs_devices->num_devices++;
7031
7032 device->fs_devices->missing_devices--;
7033 fs_devices->missing_devices++;
7034
7035 device->fs_devices = fs_devices;
7036 }
7037 }
7038
7039 if (device->fs_devices != fs_info->fs_devices) {
7040 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7041 if (device->generation !=
7042 btrfs_device_generation(leaf, dev_item))
7043 return -EINVAL;
7044 }
7045
7046 fill_device_from_item(leaf, dev_item, device);
7047 if (device->bdev) {
7048 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7049
7050 if (device->total_bytes > max_total_bytes) {
7051 btrfs_err(fs_info,
7052 "device total_bytes should be at most %llu but found %llu",
7053 max_total_bytes, device->total_bytes);
7054 return -EINVAL;
7055 }
7056 }
7057 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7058 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7059 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7060 device->fs_devices->total_rw_bytes += device->total_bytes;
7061 atomic64_add(device->total_bytes - device->bytes_used,
7062 &fs_info->free_chunk_space);
7063 }
7064 ret = 0;
7065 return ret;
7066 }
7067
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7068 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7069 {
7070 struct btrfs_super_block *super_copy = fs_info->super_copy;
7071 struct extent_buffer *sb;
7072 struct btrfs_disk_key *disk_key;
7073 struct btrfs_chunk *chunk;
7074 u8 *array_ptr;
7075 unsigned long sb_array_offset;
7076 int ret = 0;
7077 u32 num_stripes;
7078 u32 array_size;
7079 u32 len = 0;
7080 u32 cur_offset;
7081 u64 type;
7082 struct btrfs_key key;
7083
7084 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7085
7086 /*
7087 * We allocated a dummy extent, just to use extent buffer accessors.
7088 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7089 * that's fine, we will not go beyond system chunk array anyway.
7090 */
7091 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7092 if (!sb)
7093 return -ENOMEM;
7094 set_extent_buffer_uptodate(sb);
7095
7096 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7097 array_size = btrfs_super_sys_array_size(super_copy);
7098
7099 array_ptr = super_copy->sys_chunk_array;
7100 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7101 cur_offset = 0;
7102
7103 while (cur_offset < array_size) {
7104 disk_key = (struct btrfs_disk_key *)array_ptr;
7105 len = sizeof(*disk_key);
7106 if (cur_offset + len > array_size)
7107 goto out_short_read;
7108
7109 btrfs_disk_key_to_cpu(&key, disk_key);
7110
7111 array_ptr += len;
7112 sb_array_offset += len;
7113 cur_offset += len;
7114
7115 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7116 btrfs_err(fs_info,
7117 "unexpected item type %u in sys_array at offset %u",
7118 (u32)key.type, cur_offset);
7119 ret = -EIO;
7120 break;
7121 }
7122
7123 chunk = (struct btrfs_chunk *)sb_array_offset;
7124 /*
7125 * At least one btrfs_chunk with one stripe must be present,
7126 * exact stripe count check comes afterwards
7127 */
7128 len = btrfs_chunk_item_size(1);
7129 if (cur_offset + len > array_size)
7130 goto out_short_read;
7131
7132 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7133 if (!num_stripes) {
7134 btrfs_err(fs_info,
7135 "invalid number of stripes %u in sys_array at offset %u",
7136 num_stripes, cur_offset);
7137 ret = -EIO;
7138 break;
7139 }
7140
7141 type = btrfs_chunk_type(sb, chunk);
7142 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7143 btrfs_err(fs_info,
7144 "invalid chunk type %llu in sys_array at offset %u",
7145 type, cur_offset);
7146 ret = -EIO;
7147 break;
7148 }
7149
7150 len = btrfs_chunk_item_size(num_stripes);
7151 if (cur_offset + len > array_size)
7152 goto out_short_read;
7153
7154 ret = read_one_chunk(&key, sb, chunk);
7155 if (ret)
7156 break;
7157
7158 array_ptr += len;
7159 sb_array_offset += len;
7160 cur_offset += len;
7161 }
7162 clear_extent_buffer_uptodate(sb);
7163 free_extent_buffer_stale(sb);
7164 return ret;
7165
7166 out_short_read:
7167 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7168 len, cur_offset);
7169 clear_extent_buffer_uptodate(sb);
7170 free_extent_buffer_stale(sb);
7171 return -EIO;
7172 }
7173
7174 /*
7175 * Check if all chunks in the fs are OK for read-write degraded mount
7176 *
7177 * If the @failing_dev is specified, it's accounted as missing.
7178 *
7179 * Return true if all chunks meet the minimal RW mount requirements.
7180 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7181 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7182 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7183 struct btrfs_device *failing_dev)
7184 {
7185 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7186 struct extent_map *em;
7187 u64 next_start = 0;
7188 bool ret = true;
7189
7190 read_lock(&map_tree->lock);
7191 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7192 read_unlock(&map_tree->lock);
7193 /* No chunk at all? Return false anyway */
7194 if (!em) {
7195 ret = false;
7196 goto out;
7197 }
7198 while (em) {
7199 struct map_lookup *map;
7200 int missing = 0;
7201 int max_tolerated;
7202 int i;
7203
7204 map = em->map_lookup;
7205 max_tolerated =
7206 btrfs_get_num_tolerated_disk_barrier_failures(
7207 map->type);
7208 for (i = 0; i < map->num_stripes; i++) {
7209 struct btrfs_device *dev = map->stripes[i].dev;
7210
7211 if (!dev || !dev->bdev ||
7212 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7213 dev->last_flush_error)
7214 missing++;
7215 else if (failing_dev && failing_dev == dev)
7216 missing++;
7217 }
7218 if (missing > max_tolerated) {
7219 if (!failing_dev)
7220 btrfs_warn(fs_info,
7221 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7222 em->start, missing, max_tolerated);
7223 free_extent_map(em);
7224 ret = false;
7225 goto out;
7226 }
7227 next_start = extent_map_end(em);
7228 free_extent_map(em);
7229
7230 read_lock(&map_tree->lock);
7231 em = lookup_extent_mapping(map_tree, next_start,
7232 (u64)(-1) - next_start);
7233 read_unlock(&map_tree->lock);
7234 }
7235 out:
7236 return ret;
7237 }
7238
readahead_tree_node_children(struct extent_buffer * node)7239 static void readahead_tree_node_children(struct extent_buffer *node)
7240 {
7241 int i;
7242 const int nr_items = btrfs_header_nritems(node);
7243
7244 for (i = 0; i < nr_items; i++)
7245 btrfs_readahead_node_child(node, i);
7246 }
7247
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7248 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7249 {
7250 struct btrfs_root *root = fs_info->chunk_root;
7251 struct btrfs_path *path;
7252 struct extent_buffer *leaf;
7253 struct btrfs_key key;
7254 struct btrfs_key found_key;
7255 int ret;
7256 int slot;
7257 int iter_ret = 0;
7258 u64 total_dev = 0;
7259 u64 last_ra_node = 0;
7260
7261 path = btrfs_alloc_path();
7262 if (!path)
7263 return -ENOMEM;
7264
7265 /*
7266 * uuid_mutex is needed only if we are mounting a sprout FS
7267 * otherwise we don't need it.
7268 */
7269 mutex_lock(&uuid_mutex);
7270
7271 /*
7272 * It is possible for mount and umount to race in such a way that
7273 * we execute this code path, but open_fs_devices failed to clear
7274 * total_rw_bytes. We certainly want it cleared before reading the
7275 * device items, so clear it here.
7276 */
7277 fs_info->fs_devices->total_rw_bytes = 0;
7278
7279 /*
7280 * Lockdep complains about possible circular locking dependency between
7281 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7282 * used for freeze procection of a fs (struct super_block.s_writers),
7283 * which we take when starting a transaction, and extent buffers of the
7284 * chunk tree if we call read_one_dev() while holding a lock on an
7285 * extent buffer of the chunk tree. Since we are mounting the filesystem
7286 * and at this point there can't be any concurrent task modifying the
7287 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7288 */
7289 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7290 path->skip_locking = 1;
7291
7292 /*
7293 * Read all device items, and then all the chunk items. All
7294 * device items are found before any chunk item (their object id
7295 * is smaller than the lowest possible object id for a chunk
7296 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7297 */
7298 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7299 key.offset = 0;
7300 key.type = 0;
7301 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7302 struct extent_buffer *node = path->nodes[1];
7303
7304 leaf = path->nodes[0];
7305 slot = path->slots[0];
7306
7307 if (node) {
7308 if (last_ra_node != node->start) {
7309 readahead_tree_node_children(node);
7310 last_ra_node = node->start;
7311 }
7312 }
7313 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7314 struct btrfs_dev_item *dev_item;
7315 dev_item = btrfs_item_ptr(leaf, slot,
7316 struct btrfs_dev_item);
7317 ret = read_one_dev(leaf, dev_item);
7318 if (ret)
7319 goto error;
7320 total_dev++;
7321 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7322 struct btrfs_chunk *chunk;
7323
7324 /*
7325 * We are only called at mount time, so no need to take
7326 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7327 * we always lock first fs_info->chunk_mutex before
7328 * acquiring any locks on the chunk tree. This is a
7329 * requirement for chunk allocation, see the comment on
7330 * top of btrfs_chunk_alloc() for details.
7331 */
7332 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7333 ret = read_one_chunk(&found_key, leaf, chunk);
7334 if (ret)
7335 goto error;
7336 }
7337 }
7338 /* Catch error found during iteration */
7339 if (iter_ret < 0) {
7340 ret = iter_ret;
7341 goto error;
7342 }
7343
7344 /*
7345 * After loading chunk tree, we've got all device information,
7346 * do another round of validation checks.
7347 */
7348 if (total_dev != fs_info->fs_devices->total_devices) {
7349 btrfs_warn(fs_info,
7350 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7351 btrfs_super_num_devices(fs_info->super_copy),
7352 total_dev);
7353 fs_info->fs_devices->total_devices = total_dev;
7354 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7355 }
7356 if (btrfs_super_total_bytes(fs_info->super_copy) <
7357 fs_info->fs_devices->total_rw_bytes) {
7358 btrfs_err(fs_info,
7359 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7360 btrfs_super_total_bytes(fs_info->super_copy),
7361 fs_info->fs_devices->total_rw_bytes);
7362 ret = -EINVAL;
7363 goto error;
7364 }
7365 ret = 0;
7366 error:
7367 mutex_unlock(&uuid_mutex);
7368
7369 btrfs_free_path(path);
7370 return ret;
7371 }
7372
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7373 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7374 {
7375 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7376 struct btrfs_device *device;
7377 int ret = 0;
7378
7379 fs_devices->fs_info = fs_info;
7380
7381 mutex_lock(&fs_devices->device_list_mutex);
7382 list_for_each_entry(device, &fs_devices->devices, dev_list)
7383 device->fs_info = fs_info;
7384
7385 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7386 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7387 device->fs_info = fs_info;
7388 ret = btrfs_get_dev_zone_info(device, false);
7389 if (ret)
7390 break;
7391 }
7392
7393 seed_devs->fs_info = fs_info;
7394 }
7395 mutex_unlock(&fs_devices->device_list_mutex);
7396
7397 return ret;
7398 }
7399
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7400 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7401 const struct btrfs_dev_stats_item *ptr,
7402 int index)
7403 {
7404 u64 val;
7405
7406 read_extent_buffer(eb, &val,
7407 offsetof(struct btrfs_dev_stats_item, values) +
7408 ((unsigned long)ptr) + (index * sizeof(u64)),
7409 sizeof(val));
7410 return val;
7411 }
7412
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7413 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7414 struct btrfs_dev_stats_item *ptr,
7415 int index, u64 val)
7416 {
7417 write_extent_buffer(eb, &val,
7418 offsetof(struct btrfs_dev_stats_item, values) +
7419 ((unsigned long)ptr) + (index * sizeof(u64)),
7420 sizeof(val));
7421 }
7422
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7423 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7424 struct btrfs_path *path)
7425 {
7426 struct btrfs_dev_stats_item *ptr;
7427 struct extent_buffer *eb;
7428 struct btrfs_key key;
7429 int item_size;
7430 int i, ret, slot;
7431
7432 if (!device->fs_info->dev_root)
7433 return 0;
7434
7435 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7436 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7437 key.offset = device->devid;
7438 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7439 if (ret) {
7440 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7441 btrfs_dev_stat_set(device, i, 0);
7442 device->dev_stats_valid = 1;
7443 btrfs_release_path(path);
7444 return ret < 0 ? ret : 0;
7445 }
7446 slot = path->slots[0];
7447 eb = path->nodes[0];
7448 item_size = btrfs_item_size(eb, slot);
7449
7450 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7451
7452 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7453 if (item_size >= (1 + i) * sizeof(__le64))
7454 btrfs_dev_stat_set(device, i,
7455 btrfs_dev_stats_value(eb, ptr, i));
7456 else
7457 btrfs_dev_stat_set(device, i, 0);
7458 }
7459
7460 device->dev_stats_valid = 1;
7461 btrfs_dev_stat_print_on_load(device);
7462 btrfs_release_path(path);
7463
7464 return 0;
7465 }
7466
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7467 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7468 {
7469 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7470 struct btrfs_device *device;
7471 struct btrfs_path *path = NULL;
7472 int ret = 0;
7473
7474 path = btrfs_alloc_path();
7475 if (!path)
7476 return -ENOMEM;
7477
7478 mutex_lock(&fs_devices->device_list_mutex);
7479 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7480 ret = btrfs_device_init_dev_stats(device, path);
7481 if (ret)
7482 goto out;
7483 }
7484 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7485 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7486 ret = btrfs_device_init_dev_stats(device, path);
7487 if (ret)
7488 goto out;
7489 }
7490 }
7491 out:
7492 mutex_unlock(&fs_devices->device_list_mutex);
7493
7494 btrfs_free_path(path);
7495 return ret;
7496 }
7497
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7498 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7499 struct btrfs_device *device)
7500 {
7501 struct btrfs_fs_info *fs_info = trans->fs_info;
7502 struct btrfs_root *dev_root = fs_info->dev_root;
7503 struct btrfs_path *path;
7504 struct btrfs_key key;
7505 struct extent_buffer *eb;
7506 struct btrfs_dev_stats_item *ptr;
7507 int ret;
7508 int i;
7509
7510 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7511 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7512 key.offset = device->devid;
7513
7514 path = btrfs_alloc_path();
7515 if (!path)
7516 return -ENOMEM;
7517 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7518 if (ret < 0) {
7519 btrfs_warn_in_rcu(fs_info,
7520 "error %d while searching for dev_stats item for device %s",
7521 ret, btrfs_dev_name(device));
7522 goto out;
7523 }
7524
7525 if (ret == 0 &&
7526 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7527 /* need to delete old one and insert a new one */
7528 ret = btrfs_del_item(trans, dev_root, path);
7529 if (ret != 0) {
7530 btrfs_warn_in_rcu(fs_info,
7531 "delete too small dev_stats item for device %s failed %d",
7532 btrfs_dev_name(device), ret);
7533 goto out;
7534 }
7535 ret = 1;
7536 }
7537
7538 if (ret == 1) {
7539 /* need to insert a new item */
7540 btrfs_release_path(path);
7541 ret = btrfs_insert_empty_item(trans, dev_root, path,
7542 &key, sizeof(*ptr));
7543 if (ret < 0) {
7544 btrfs_warn_in_rcu(fs_info,
7545 "insert dev_stats item for device %s failed %d",
7546 btrfs_dev_name(device), ret);
7547 goto out;
7548 }
7549 }
7550
7551 eb = path->nodes[0];
7552 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7553 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7554 btrfs_set_dev_stats_value(eb, ptr, i,
7555 btrfs_dev_stat_read(device, i));
7556 btrfs_mark_buffer_dirty(trans, eb);
7557
7558 out:
7559 btrfs_free_path(path);
7560 return ret;
7561 }
7562
7563 /*
7564 * called from commit_transaction. Writes all changed device stats to disk.
7565 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7566 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7567 {
7568 struct btrfs_fs_info *fs_info = trans->fs_info;
7569 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7570 struct btrfs_device *device;
7571 int stats_cnt;
7572 int ret = 0;
7573
7574 mutex_lock(&fs_devices->device_list_mutex);
7575 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7576 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7577 if (!device->dev_stats_valid || stats_cnt == 0)
7578 continue;
7579
7580
7581 /*
7582 * There is a LOAD-LOAD control dependency between the value of
7583 * dev_stats_ccnt and updating the on-disk values which requires
7584 * reading the in-memory counters. Such control dependencies
7585 * require explicit read memory barriers.
7586 *
7587 * This memory barriers pairs with smp_mb__before_atomic in
7588 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7589 * barrier implied by atomic_xchg in
7590 * btrfs_dev_stats_read_and_reset
7591 */
7592 smp_rmb();
7593
7594 ret = update_dev_stat_item(trans, device);
7595 if (!ret)
7596 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7597 }
7598 mutex_unlock(&fs_devices->device_list_mutex);
7599
7600 return ret;
7601 }
7602
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7603 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7604 {
7605 btrfs_dev_stat_inc(dev, index);
7606
7607 if (!dev->dev_stats_valid)
7608 return;
7609 btrfs_err_rl_in_rcu(dev->fs_info,
7610 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7611 btrfs_dev_name(dev),
7612 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7613 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7614 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7615 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7616 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7617 }
7618
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7619 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7620 {
7621 int i;
7622
7623 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7624 if (btrfs_dev_stat_read(dev, i) != 0)
7625 break;
7626 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7627 return; /* all values == 0, suppress message */
7628
7629 btrfs_info_in_rcu(dev->fs_info,
7630 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7631 btrfs_dev_name(dev),
7632 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7633 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7634 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7635 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7636 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7637 }
7638
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7639 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7640 struct btrfs_ioctl_get_dev_stats *stats)
7641 {
7642 BTRFS_DEV_LOOKUP_ARGS(args);
7643 struct btrfs_device *dev;
7644 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7645 int i;
7646
7647 mutex_lock(&fs_devices->device_list_mutex);
7648 args.devid = stats->devid;
7649 dev = btrfs_find_device(fs_info->fs_devices, &args);
7650 mutex_unlock(&fs_devices->device_list_mutex);
7651
7652 if (!dev) {
7653 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7654 return -ENODEV;
7655 } else if (!dev->dev_stats_valid) {
7656 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7657 return -ENODEV;
7658 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7659 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7660 if (stats->nr_items > i)
7661 stats->values[i] =
7662 btrfs_dev_stat_read_and_reset(dev, i);
7663 else
7664 btrfs_dev_stat_set(dev, i, 0);
7665 }
7666 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7667 current->comm, task_pid_nr(current));
7668 } else {
7669 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7670 if (stats->nr_items > i)
7671 stats->values[i] = btrfs_dev_stat_read(dev, i);
7672 }
7673 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7674 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7675 return 0;
7676 }
7677
7678 /*
7679 * Update the size and bytes used for each device where it changed. This is
7680 * delayed since we would otherwise get errors while writing out the
7681 * superblocks.
7682 *
7683 * Must be invoked during transaction commit.
7684 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7685 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7686 {
7687 struct btrfs_device *curr, *next;
7688
7689 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7690
7691 if (list_empty(&trans->dev_update_list))
7692 return;
7693
7694 /*
7695 * We don't need the device_list_mutex here. This list is owned by the
7696 * transaction and the transaction must complete before the device is
7697 * released.
7698 */
7699 mutex_lock(&trans->fs_info->chunk_mutex);
7700 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7701 post_commit_list) {
7702 list_del_init(&curr->post_commit_list);
7703 curr->commit_total_bytes = curr->disk_total_bytes;
7704 curr->commit_bytes_used = curr->bytes_used;
7705 }
7706 mutex_unlock(&trans->fs_info->chunk_mutex);
7707 }
7708
7709 /*
7710 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7711 */
btrfs_bg_type_to_factor(u64 flags)7712 int btrfs_bg_type_to_factor(u64 flags)
7713 {
7714 const int index = btrfs_bg_flags_to_raid_index(flags);
7715
7716 return btrfs_raid_array[index].ncopies;
7717 }
7718
7719
7720
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7721 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7722 u64 chunk_offset, u64 devid,
7723 u64 physical_offset, u64 physical_len)
7724 {
7725 struct btrfs_dev_lookup_args args = { .devid = devid };
7726 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7727 struct extent_map *em;
7728 struct map_lookup *map;
7729 struct btrfs_device *dev;
7730 u64 stripe_len;
7731 bool found = false;
7732 int ret = 0;
7733 int i;
7734
7735 read_lock(&em_tree->lock);
7736 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7737 read_unlock(&em_tree->lock);
7738
7739 if (!em) {
7740 btrfs_err(fs_info,
7741 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7742 physical_offset, devid);
7743 ret = -EUCLEAN;
7744 goto out;
7745 }
7746
7747 map = em->map_lookup;
7748 stripe_len = btrfs_calc_stripe_length(em);
7749 if (physical_len != stripe_len) {
7750 btrfs_err(fs_info,
7751 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7752 physical_offset, devid, em->start, physical_len,
7753 stripe_len);
7754 ret = -EUCLEAN;
7755 goto out;
7756 }
7757
7758 /*
7759 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7760 * space. Although kernel can handle it without problem, better to warn
7761 * the users.
7762 */
7763 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7764 btrfs_warn(fs_info,
7765 "devid %llu physical %llu len %llu inside the reserved space",
7766 devid, physical_offset, physical_len);
7767
7768 for (i = 0; i < map->num_stripes; i++) {
7769 if (map->stripes[i].dev->devid == devid &&
7770 map->stripes[i].physical == physical_offset) {
7771 found = true;
7772 if (map->verified_stripes >= map->num_stripes) {
7773 btrfs_err(fs_info,
7774 "too many dev extents for chunk %llu found",
7775 em->start);
7776 ret = -EUCLEAN;
7777 goto out;
7778 }
7779 map->verified_stripes++;
7780 break;
7781 }
7782 }
7783 if (!found) {
7784 btrfs_err(fs_info,
7785 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7786 physical_offset, devid);
7787 ret = -EUCLEAN;
7788 }
7789
7790 /* Make sure no dev extent is beyond device boundary */
7791 dev = btrfs_find_device(fs_info->fs_devices, &args);
7792 if (!dev) {
7793 btrfs_err(fs_info, "failed to find devid %llu", devid);
7794 ret = -EUCLEAN;
7795 goto out;
7796 }
7797
7798 if (physical_offset + physical_len > dev->disk_total_bytes) {
7799 btrfs_err(fs_info,
7800 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7801 devid, physical_offset, physical_len,
7802 dev->disk_total_bytes);
7803 ret = -EUCLEAN;
7804 goto out;
7805 }
7806
7807 if (dev->zone_info) {
7808 u64 zone_size = dev->zone_info->zone_size;
7809
7810 if (!IS_ALIGNED(physical_offset, zone_size) ||
7811 !IS_ALIGNED(physical_len, zone_size)) {
7812 btrfs_err(fs_info,
7813 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7814 devid, physical_offset, physical_len);
7815 ret = -EUCLEAN;
7816 goto out;
7817 }
7818 }
7819
7820 out:
7821 free_extent_map(em);
7822 return ret;
7823 }
7824
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7825 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7826 {
7827 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7828 struct extent_map *em;
7829 struct rb_node *node;
7830 int ret = 0;
7831
7832 read_lock(&em_tree->lock);
7833 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7834 em = rb_entry(node, struct extent_map, rb_node);
7835 if (em->map_lookup->num_stripes !=
7836 em->map_lookup->verified_stripes) {
7837 btrfs_err(fs_info,
7838 "chunk %llu has missing dev extent, have %d expect %d",
7839 em->start, em->map_lookup->verified_stripes,
7840 em->map_lookup->num_stripes);
7841 ret = -EUCLEAN;
7842 goto out;
7843 }
7844 }
7845 out:
7846 read_unlock(&em_tree->lock);
7847 return ret;
7848 }
7849
7850 /*
7851 * Ensure that all dev extents are mapped to correct chunk, otherwise
7852 * later chunk allocation/free would cause unexpected behavior.
7853 *
7854 * NOTE: This will iterate through the whole device tree, which should be of
7855 * the same size level as the chunk tree. This slightly increases mount time.
7856 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7857 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7858 {
7859 struct btrfs_path *path;
7860 struct btrfs_root *root = fs_info->dev_root;
7861 struct btrfs_key key;
7862 u64 prev_devid = 0;
7863 u64 prev_dev_ext_end = 0;
7864 int ret = 0;
7865
7866 /*
7867 * We don't have a dev_root because we mounted with ignorebadroots and
7868 * failed to load the root, so we want to skip the verification in this
7869 * case for sure.
7870 *
7871 * However if the dev root is fine, but the tree itself is corrupted
7872 * we'd still fail to mount. This verification is only to make sure
7873 * writes can happen safely, so instead just bypass this check
7874 * completely in the case of IGNOREBADROOTS.
7875 */
7876 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7877 return 0;
7878
7879 key.objectid = 1;
7880 key.type = BTRFS_DEV_EXTENT_KEY;
7881 key.offset = 0;
7882
7883 path = btrfs_alloc_path();
7884 if (!path)
7885 return -ENOMEM;
7886
7887 path->reada = READA_FORWARD;
7888 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7889 if (ret < 0)
7890 goto out;
7891
7892 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7893 ret = btrfs_next_leaf(root, path);
7894 if (ret < 0)
7895 goto out;
7896 /* No dev extents at all? Not good */
7897 if (ret > 0) {
7898 ret = -EUCLEAN;
7899 goto out;
7900 }
7901 }
7902 while (1) {
7903 struct extent_buffer *leaf = path->nodes[0];
7904 struct btrfs_dev_extent *dext;
7905 int slot = path->slots[0];
7906 u64 chunk_offset;
7907 u64 physical_offset;
7908 u64 physical_len;
7909 u64 devid;
7910
7911 btrfs_item_key_to_cpu(leaf, &key, slot);
7912 if (key.type != BTRFS_DEV_EXTENT_KEY)
7913 break;
7914 devid = key.objectid;
7915 physical_offset = key.offset;
7916
7917 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7918 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7919 physical_len = btrfs_dev_extent_length(leaf, dext);
7920
7921 /* Check if this dev extent overlaps with the previous one */
7922 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7923 btrfs_err(fs_info,
7924 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7925 devid, physical_offset, prev_dev_ext_end);
7926 ret = -EUCLEAN;
7927 goto out;
7928 }
7929
7930 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7931 physical_offset, physical_len);
7932 if (ret < 0)
7933 goto out;
7934 prev_devid = devid;
7935 prev_dev_ext_end = physical_offset + physical_len;
7936
7937 ret = btrfs_next_item(root, path);
7938 if (ret < 0)
7939 goto out;
7940 if (ret > 0) {
7941 ret = 0;
7942 break;
7943 }
7944 }
7945
7946 /* Ensure all chunks have corresponding dev extents */
7947 ret = verify_chunk_dev_extent_mapping(fs_info);
7948 out:
7949 btrfs_free_path(path);
7950 return ret;
7951 }
7952
7953 /*
7954 * Check whether the given block group or device is pinned by any inode being
7955 * used as a swapfile.
7956 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)7957 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7958 {
7959 struct btrfs_swapfile_pin *sp;
7960 struct rb_node *node;
7961
7962 spin_lock(&fs_info->swapfile_pins_lock);
7963 node = fs_info->swapfile_pins.rb_node;
7964 while (node) {
7965 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7966 if (ptr < sp->ptr)
7967 node = node->rb_left;
7968 else if (ptr > sp->ptr)
7969 node = node->rb_right;
7970 else
7971 break;
7972 }
7973 spin_unlock(&fs_info->swapfile_pins_lock);
7974 return node != NULL;
7975 }
7976
relocating_repair_kthread(void * data)7977 static int relocating_repair_kthread(void *data)
7978 {
7979 struct btrfs_block_group *cache = data;
7980 struct btrfs_fs_info *fs_info = cache->fs_info;
7981 u64 target;
7982 int ret = 0;
7983
7984 target = cache->start;
7985 btrfs_put_block_group(cache);
7986
7987 sb_start_write(fs_info->sb);
7988 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
7989 btrfs_info(fs_info,
7990 "zoned: skip relocating block group %llu to repair: EBUSY",
7991 target);
7992 sb_end_write(fs_info->sb);
7993 return -EBUSY;
7994 }
7995
7996 mutex_lock(&fs_info->reclaim_bgs_lock);
7997
7998 /* Ensure block group still exists */
7999 cache = btrfs_lookup_block_group(fs_info, target);
8000 if (!cache)
8001 goto out;
8002
8003 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8004 goto out;
8005
8006 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8007 if (ret < 0)
8008 goto out;
8009
8010 btrfs_info(fs_info,
8011 "zoned: relocating block group %llu to repair IO failure",
8012 target);
8013 ret = btrfs_relocate_chunk(fs_info, target);
8014
8015 out:
8016 if (cache)
8017 btrfs_put_block_group(cache);
8018 mutex_unlock(&fs_info->reclaim_bgs_lock);
8019 btrfs_exclop_finish(fs_info);
8020 sb_end_write(fs_info->sb);
8021
8022 return ret;
8023 }
8024
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8025 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8026 {
8027 struct btrfs_block_group *cache;
8028
8029 if (!btrfs_is_zoned(fs_info))
8030 return false;
8031
8032 /* Do not attempt to repair in degraded state */
8033 if (btrfs_test_opt(fs_info, DEGRADED))
8034 return true;
8035
8036 cache = btrfs_lookup_block_group(fs_info, logical);
8037 if (!cache)
8038 return true;
8039
8040 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8041 btrfs_put_block_group(cache);
8042 return true;
8043 }
8044
8045 kthread_run(relocating_repair_kthread, cache,
8046 "btrfs-relocating-repair");
8047
8048 return true;
8049 }
8050
map_raid56_repair_block(struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,u64 logical)8051 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8052 struct btrfs_io_stripe *smap,
8053 u64 logical)
8054 {
8055 int data_stripes = nr_bioc_data_stripes(bioc);
8056 int i;
8057
8058 for (i = 0; i < data_stripes; i++) {
8059 u64 stripe_start = bioc->full_stripe_logical +
8060 btrfs_stripe_nr_to_offset(i);
8061
8062 if (logical >= stripe_start &&
8063 logical < stripe_start + BTRFS_STRIPE_LEN)
8064 break;
8065 }
8066 ASSERT(i < data_stripes);
8067 smap->dev = bioc->stripes[i].dev;
8068 smap->physical = bioc->stripes[i].physical +
8069 ((logical - bioc->full_stripe_logical) &
8070 BTRFS_STRIPE_LEN_MASK);
8071 }
8072
8073 /*
8074 * Map a repair write into a single device.
8075 *
8076 * A repair write is triggered by read time repair or scrub, which would only
8077 * update the contents of a single device.
8078 * Not update any other mirrors nor go through RMW path.
8079 *
8080 * Callers should ensure:
8081 *
8082 * - Call btrfs_bio_counter_inc_blocked() first
8083 * - The range does not cross stripe boundary
8084 * - Has a valid @mirror_num passed in.
8085 */
btrfs_map_repair_block(struct btrfs_fs_info * fs_info,struct btrfs_io_stripe * smap,u64 logical,u32 length,int mirror_num)8086 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8087 struct btrfs_io_stripe *smap, u64 logical,
8088 u32 length, int mirror_num)
8089 {
8090 struct btrfs_io_context *bioc = NULL;
8091 u64 map_length = length;
8092 int mirror_ret = mirror_num;
8093 int ret;
8094
8095 ASSERT(mirror_num > 0);
8096
8097 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8098 &bioc, smap, &mirror_ret, true);
8099 if (ret < 0)
8100 return ret;
8101
8102 /* The map range should not cross stripe boundary. */
8103 ASSERT(map_length >= length);
8104
8105 /* Already mapped to single stripe. */
8106 if (!bioc)
8107 goto out;
8108
8109 /* Map the RAID56 multi-stripe writes to a single one. */
8110 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8111 map_raid56_repair_block(bioc, smap, logical);
8112 goto out;
8113 }
8114
8115 ASSERT(mirror_num <= bioc->num_stripes);
8116 smap->dev = bioc->stripes[mirror_num - 1].dev;
8117 smap->physical = bioc->stripes[mirror_num - 1].physical;
8118 out:
8119 btrfs_put_bioc(bioc);
8120 ASSERT(smap->dev);
8121 return 0;
8122 }
8123