xref: /openbmc/linux/fs/btrfs/ulist.c (revision ca79522c)
1 /*
2  * Copyright (C) 2011 STRATO AG
3  * written by Arne Jansen <sensille@gmx.net>
4  * Distributed under the GNU GPL license version 2.
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/export.h>
9 #include "ulist.h"
10 
11 /*
12  * ulist is a generic data structure to hold a collection of unique u64
13  * values. The only operations it supports is adding to the list and
14  * enumerating it.
15  * It is possible to store an auxiliary value along with the key.
16  *
17  * The implementation is preliminary and can probably be sped up
18  * significantly. A first step would be to store the values in an rbtree
19  * as soon as ULIST_SIZE is exceeded.
20  *
21  * A sample usage for ulists is the enumeration of directed graphs without
22  * visiting a node twice. The pseudo-code could look like this:
23  *
24  * ulist = ulist_alloc();
25  * ulist_add(ulist, root);
26  * ULIST_ITER_INIT(&uiter);
27  *
28  * while ((elem = ulist_next(ulist, &uiter)) {
29  * 	for (all child nodes n in elem)
30  *		ulist_add(ulist, n);
31  *	do something useful with the node;
32  * }
33  * ulist_free(ulist);
34  *
35  * This assumes the graph nodes are adressable by u64. This stems from the
36  * usage for tree enumeration in btrfs, where the logical addresses are
37  * 64 bit.
38  *
39  * It is also useful for tree enumeration which could be done elegantly
40  * recursively, but is not possible due to kernel stack limitations. The
41  * loop would be similar to the above.
42  */
43 
44 /**
45  * ulist_init - freshly initialize a ulist
46  * @ulist:	the ulist to initialize
47  *
48  * Note: don't use this function to init an already used ulist, use
49  * ulist_reinit instead.
50  */
51 void ulist_init(struct ulist *ulist)
52 {
53 	ulist->nnodes = 0;
54 	ulist->nodes = ulist->int_nodes;
55 	ulist->nodes_alloced = ULIST_SIZE;
56 	ulist->root = RB_ROOT;
57 }
58 EXPORT_SYMBOL(ulist_init);
59 
60 /**
61  * ulist_fini - free up additionally allocated memory for the ulist
62  * @ulist:	the ulist from which to free the additional memory
63  *
64  * This is useful in cases where the base 'struct ulist' has been statically
65  * allocated.
66  */
67 void ulist_fini(struct ulist *ulist)
68 {
69 	/*
70 	 * The first ULIST_SIZE elements are stored inline in struct ulist.
71 	 * Only if more elements are alocated they need to be freed.
72 	 */
73 	if (ulist->nodes_alloced > ULIST_SIZE)
74 		kfree(ulist->nodes);
75 	ulist->nodes_alloced = 0;	/* in case ulist_fini is called twice */
76 	ulist->root = RB_ROOT;
77 }
78 EXPORT_SYMBOL(ulist_fini);
79 
80 /**
81  * ulist_reinit - prepare a ulist for reuse
82  * @ulist:	ulist to be reused
83  *
84  * Free up all additional memory allocated for the list elements and reinit
85  * the ulist.
86  */
87 void ulist_reinit(struct ulist *ulist)
88 {
89 	ulist_fini(ulist);
90 	ulist_init(ulist);
91 }
92 EXPORT_SYMBOL(ulist_reinit);
93 
94 /**
95  * ulist_alloc - dynamically allocate a ulist
96  * @gfp_mask:	allocation flags to for base allocation
97  *
98  * The allocated ulist will be returned in an initialized state.
99  */
100 struct ulist *ulist_alloc(gfp_t gfp_mask)
101 {
102 	struct ulist *ulist = kmalloc(sizeof(*ulist), gfp_mask);
103 
104 	if (!ulist)
105 		return NULL;
106 
107 	ulist_init(ulist);
108 
109 	return ulist;
110 }
111 EXPORT_SYMBOL(ulist_alloc);
112 
113 /**
114  * ulist_free - free dynamically allocated ulist
115  * @ulist:	ulist to free
116  *
117  * It is not necessary to call ulist_fini before.
118  */
119 void ulist_free(struct ulist *ulist)
120 {
121 	if (!ulist)
122 		return;
123 	ulist_fini(ulist);
124 	kfree(ulist);
125 }
126 EXPORT_SYMBOL(ulist_free);
127 
128 static struct ulist_node *ulist_rbtree_search(struct ulist *ulist, u64 val)
129 {
130 	struct rb_node *n = ulist->root.rb_node;
131 	struct ulist_node *u = NULL;
132 
133 	while (n) {
134 		u = rb_entry(n, struct ulist_node, rb_node);
135 		if (u->val < val)
136 			n = n->rb_right;
137 		else if (u->val > val)
138 			n = n->rb_left;
139 		else
140 			return u;
141 	}
142 	return NULL;
143 }
144 
145 static int ulist_rbtree_insert(struct ulist *ulist, struct ulist_node *ins)
146 {
147 	struct rb_node **p = &ulist->root.rb_node;
148 	struct rb_node *parent = NULL;
149 	struct ulist_node *cur = NULL;
150 
151 	while (*p) {
152 		parent = *p;
153 		cur = rb_entry(parent, struct ulist_node, rb_node);
154 
155 		if (cur->val < ins->val)
156 			p = &(*p)->rb_right;
157 		else if (cur->val > ins->val)
158 			p = &(*p)->rb_left;
159 		else
160 			return -EEXIST;
161 	}
162 	rb_link_node(&ins->rb_node, parent, p);
163 	rb_insert_color(&ins->rb_node, &ulist->root);
164 	return 0;
165 }
166 
167 /**
168  * ulist_add - add an element to the ulist
169  * @ulist:	ulist to add the element to
170  * @val:	value to add to ulist
171  * @aux:	auxiliary value to store along with val
172  * @gfp_mask:	flags to use for allocation
173  *
174  * Note: locking must be provided by the caller. In case of rwlocks write
175  *       locking is needed
176  *
177  * Add an element to a ulist. The @val will only be added if it doesn't
178  * already exist. If it is added, the auxiliary value @aux is stored along with
179  * it. In case @val already exists in the ulist, @aux is ignored, even if
180  * it differs from the already stored value.
181  *
182  * ulist_add returns 0 if @val already exists in ulist and 1 if @val has been
183  * inserted.
184  * In case of allocation failure -ENOMEM is returned and the ulist stays
185  * unaltered.
186  */
187 int ulist_add(struct ulist *ulist, u64 val, u64 aux, gfp_t gfp_mask)
188 {
189 	return ulist_add_merge(ulist, val, aux, NULL, gfp_mask);
190 }
191 
192 int ulist_add_merge(struct ulist *ulist, u64 val, u64 aux,
193 		    u64 *old_aux, gfp_t gfp_mask)
194 {
195 	int ret = 0;
196 	struct ulist_node *node = NULL;
197 	node = ulist_rbtree_search(ulist, val);
198 	if (node) {
199 		if (old_aux)
200 			*old_aux = node->aux;
201 		return 0;
202 	}
203 
204 	if (ulist->nnodes >= ulist->nodes_alloced) {
205 		u64 new_alloced = ulist->nodes_alloced + 128;
206 		struct ulist_node *new_nodes;
207 		void *old = NULL;
208 
209 		/*
210 		 * if nodes_alloced == ULIST_SIZE no memory has been allocated
211 		 * yet, so pass NULL to krealloc
212 		 */
213 		if (ulist->nodes_alloced > ULIST_SIZE)
214 			old = ulist->nodes;
215 
216 		new_nodes = krealloc(old, sizeof(*new_nodes) * new_alloced,
217 				     gfp_mask);
218 		if (!new_nodes)
219 			return -ENOMEM;
220 
221 		if (!old)
222 			memcpy(new_nodes, ulist->int_nodes,
223 			       sizeof(ulist->int_nodes));
224 
225 		ulist->nodes = new_nodes;
226 		ulist->nodes_alloced = new_alloced;
227 	}
228 	ulist->nodes[ulist->nnodes].val = val;
229 	ulist->nodes[ulist->nnodes].aux = aux;
230 	ret = ulist_rbtree_insert(ulist, &ulist->nodes[ulist->nnodes]);
231 	BUG_ON(ret);
232 	++ulist->nnodes;
233 
234 	return 1;
235 }
236 EXPORT_SYMBOL(ulist_add);
237 
238 /**
239  * ulist_next - iterate ulist
240  * @ulist:	ulist to iterate
241  * @uiter:	iterator variable, initialized with ULIST_ITER_INIT(&iterator)
242  *
243  * Note: locking must be provided by the caller. In case of rwlocks only read
244  *       locking is needed
245  *
246  * This function is used to iterate an ulist.
247  * It returns the next element from the ulist or %NULL when the
248  * end is reached. No guarantee is made with respect to the order in which
249  * the elements are returned. They might neither be returned in order of
250  * addition nor in ascending order.
251  * It is allowed to call ulist_add during an enumeration. Newly added items
252  * are guaranteed to show up in the running enumeration.
253  */
254 struct ulist_node *ulist_next(struct ulist *ulist, struct ulist_iterator *uiter)
255 {
256 	if (ulist->nnodes == 0)
257 		return NULL;
258 	if (uiter->i < 0 || uiter->i >= ulist->nnodes)
259 		return NULL;
260 
261 	return &ulist->nodes[uiter->i++];
262 }
263 EXPORT_SYMBOL(ulist_next);
264