xref: /openbmc/linux/fs/btrfs/ulist.c (revision 46c30cb8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO AG
4  * written by Arne Jansen <sensille@gmx.net>
5  */
6 
7 #include <linux/slab.h>
8 #include "messages.h"
9 #include "ulist.h"
10 #include "ctree.h"
11 
12 /*
13  * ulist is a generic data structure to hold a collection of unique u64
14  * values. The only operations it supports is adding to the list and
15  * enumerating it.
16  * It is possible to store an auxiliary value along with the key.
17  *
18  * A sample usage for ulists is the enumeration of directed graphs without
19  * visiting a node twice. The pseudo-code could look like this:
20  *
21  * ulist = ulist_alloc();
22  * ulist_add(ulist, root);
23  * ULIST_ITER_INIT(&uiter);
24  *
25  * while ((elem = ulist_next(ulist, &uiter)) {
26  * 	for (all child nodes n in elem)
27  *		ulist_add(ulist, n);
28  *	do something useful with the node;
29  * }
30  * ulist_free(ulist);
31  *
32  * This assumes the graph nodes are addressable by u64. This stems from the
33  * usage for tree enumeration in btrfs, where the logical addresses are
34  * 64 bit.
35  *
36  * It is also useful for tree enumeration which could be done elegantly
37  * recursively, but is not possible due to kernel stack limitations. The
38  * loop would be similar to the above.
39  */
40 
41 /*
42  * Freshly initialize a ulist.
43  *
44  * @ulist:	the ulist to initialize
45  *
46  * Note: don't use this function to init an already used ulist, use
47  * ulist_reinit instead.
48  */
49 void ulist_init(struct ulist *ulist)
50 {
51 	INIT_LIST_HEAD(&ulist->nodes);
52 	ulist->root = RB_ROOT;
53 	ulist->nnodes = 0;
54 }
55 
56 /*
57  * Free up additionally allocated memory for the ulist.
58  *
59  * @ulist:	the ulist from which to free the additional memory
60  *
61  * This is useful in cases where the base 'struct ulist' has been statically
62  * allocated.
63  */
64 void ulist_release(struct ulist *ulist)
65 {
66 	struct ulist_node *node;
67 	struct ulist_node *next;
68 
69 	list_for_each_entry_safe(node, next, &ulist->nodes, list) {
70 		kfree(node);
71 	}
72 	ulist->root = RB_ROOT;
73 	INIT_LIST_HEAD(&ulist->nodes);
74 }
75 
76 /*
77  * Prepare a ulist for reuse.
78  *
79  * @ulist:	ulist to be reused
80  *
81  * Free up all additional memory allocated for the list elements and reinit
82  * the ulist.
83  */
84 void ulist_reinit(struct ulist *ulist)
85 {
86 	ulist_release(ulist);
87 	ulist_init(ulist);
88 }
89 
90 /*
91  * Dynamically allocate a ulist.
92  *
93  * @gfp_mask:	allocation flags to for base allocation
94  *
95  * The allocated ulist will be returned in an initialized state.
96  */
97 struct ulist *ulist_alloc(gfp_t gfp_mask)
98 {
99 	struct ulist *ulist = kmalloc(sizeof(*ulist), gfp_mask);
100 
101 	if (!ulist)
102 		return NULL;
103 
104 	ulist_init(ulist);
105 
106 	return ulist;
107 }
108 
109 /*
110  * Free dynamically allocated ulist.
111  *
112  * @ulist:	ulist to free
113  *
114  * It is not necessary to call ulist_release before.
115  */
116 void ulist_free(struct ulist *ulist)
117 {
118 	if (!ulist)
119 		return;
120 	ulist_release(ulist);
121 	kfree(ulist);
122 }
123 
124 static struct ulist_node *ulist_rbtree_search(struct ulist *ulist, u64 val)
125 {
126 	struct rb_node *n = ulist->root.rb_node;
127 	struct ulist_node *u = NULL;
128 
129 	while (n) {
130 		u = rb_entry(n, struct ulist_node, rb_node);
131 		if (u->val < val)
132 			n = n->rb_right;
133 		else if (u->val > val)
134 			n = n->rb_left;
135 		else
136 			return u;
137 	}
138 	return NULL;
139 }
140 
141 static void ulist_rbtree_erase(struct ulist *ulist, struct ulist_node *node)
142 {
143 	rb_erase(&node->rb_node, &ulist->root);
144 	list_del(&node->list);
145 	kfree(node);
146 	BUG_ON(ulist->nnodes == 0);
147 	ulist->nnodes--;
148 }
149 
150 static int ulist_rbtree_insert(struct ulist *ulist, struct ulist_node *ins)
151 {
152 	struct rb_node **p = &ulist->root.rb_node;
153 	struct rb_node *parent = NULL;
154 	struct ulist_node *cur = NULL;
155 
156 	while (*p) {
157 		parent = *p;
158 		cur = rb_entry(parent, struct ulist_node, rb_node);
159 
160 		if (cur->val < ins->val)
161 			p = &(*p)->rb_right;
162 		else if (cur->val > ins->val)
163 			p = &(*p)->rb_left;
164 		else
165 			return -EEXIST;
166 	}
167 	rb_link_node(&ins->rb_node, parent, p);
168 	rb_insert_color(&ins->rb_node, &ulist->root);
169 	return 0;
170 }
171 
172 /*
173  * Add an element to the ulist.
174  *
175  * @ulist:	ulist to add the element to
176  * @val:	value to add to ulist
177  * @aux:	auxiliary value to store along with val
178  * @gfp_mask:	flags to use for allocation
179  *
180  * Note: locking must be provided by the caller. In case of rwlocks write
181  *       locking is needed
182  *
183  * Add an element to a ulist. The @val will only be added if it doesn't
184  * already exist. If it is added, the auxiliary value @aux is stored along with
185  * it. In case @val already exists in the ulist, @aux is ignored, even if
186  * it differs from the already stored value.
187  *
188  * ulist_add returns 0 if @val already exists in ulist and 1 if @val has been
189  * inserted.
190  * In case of allocation failure -ENOMEM is returned and the ulist stays
191  * unaltered.
192  */
193 int ulist_add(struct ulist *ulist, u64 val, u64 aux, gfp_t gfp_mask)
194 {
195 	return ulist_add_merge(ulist, val, aux, NULL, gfp_mask);
196 }
197 
198 int ulist_add_merge(struct ulist *ulist, u64 val, u64 aux,
199 		    u64 *old_aux, gfp_t gfp_mask)
200 {
201 	int ret;
202 	struct ulist_node *node;
203 
204 	node = ulist_rbtree_search(ulist, val);
205 	if (node) {
206 		if (old_aux)
207 			*old_aux = node->aux;
208 		return 0;
209 	}
210 	node = kmalloc(sizeof(*node), gfp_mask);
211 	if (!node)
212 		return -ENOMEM;
213 
214 	node->val = val;
215 	node->aux = aux;
216 
217 	ret = ulist_rbtree_insert(ulist, node);
218 	ASSERT(!ret);
219 	list_add_tail(&node->list, &ulist->nodes);
220 	ulist->nnodes++;
221 
222 	return 1;
223 }
224 
225 /*
226  * ulist_del - delete one node from ulist
227  * @ulist:	ulist to remove node from
228  * @val:	value to delete
229  * @aux:	aux to delete
230  *
231  * The deletion will only be done when *BOTH* val and aux matches.
232  * Return 0 for successful delete.
233  * Return > 0 for not found.
234  */
235 int ulist_del(struct ulist *ulist, u64 val, u64 aux)
236 {
237 	struct ulist_node *node;
238 
239 	node = ulist_rbtree_search(ulist, val);
240 	/* Not found */
241 	if (!node)
242 		return 1;
243 
244 	if (node->aux != aux)
245 		return 1;
246 
247 	/* Found and delete */
248 	ulist_rbtree_erase(ulist, node);
249 	return 0;
250 }
251 
252 /*
253  * Iterate ulist.
254  *
255  * @ulist:	ulist to iterate
256  * @uiter:	iterator variable, initialized with ULIST_ITER_INIT(&iterator)
257  *
258  * Note: locking must be provided by the caller. In case of rwlocks only read
259  *       locking is needed
260  *
261  * This function is used to iterate an ulist.
262  * It returns the next element from the ulist or %NULL when the
263  * end is reached. No guarantee is made with respect to the order in which
264  * the elements are returned. They might neither be returned in order of
265  * addition nor in ascending order.
266  * It is allowed to call ulist_add during an enumeration. Newly added items
267  * are guaranteed to show up in the running enumeration.
268  */
269 struct ulist_node *ulist_next(const struct ulist *ulist, struct ulist_iterator *uiter)
270 {
271 	struct ulist_node *node;
272 
273 	if (list_empty(&ulist->nodes))
274 		return NULL;
275 	if (uiter->cur_list && uiter->cur_list->next == &ulist->nodes)
276 		return NULL;
277 	if (uiter->cur_list) {
278 		uiter->cur_list = uiter->cur_list->next;
279 	} else {
280 		uiter->cur_list = ulist->nodes.next;
281 	}
282 	node = list_entry(uiter->cur_list, struct ulist_node, list);
283 	return node;
284 }
285