xref: /openbmc/linux/fs/btrfs/tree-mod-log.c (revision 406808ab)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "tree-mod-log.h"
4 #include "disk-io.h"
5 
6 struct tree_mod_root {
7 	u64 logical;
8 	u8 level;
9 };
10 
11 struct tree_mod_elem {
12 	struct rb_node node;
13 	u64 logical;
14 	u64 seq;
15 	enum btrfs_mod_log_op op;
16 
17 	/*
18 	 * This is used for BTRFS_MOD_LOG_KEY_* and BTRFS_MOD_LOG_MOVE_KEYS
19 	 * operations.
20 	 */
21 	int slot;
22 
23 	/* This is used for BTRFS_MOD_LOG_KEY* and BTRFS_MOD_LOG_ROOT_REPLACE. */
24 	u64 generation;
25 
26 	/* Those are used for op == BTRFS_MOD_LOG_KEY_{REPLACE,REMOVE}. */
27 	struct btrfs_disk_key key;
28 	u64 blockptr;
29 
30 	/* This is used for op == BTRFS_MOD_LOG_MOVE_KEYS. */
31 	struct {
32 		int dst_slot;
33 		int nr_items;
34 	} move;
35 
36 	/* This is used for op == BTRFS_MOD_LOG_ROOT_REPLACE. */
37 	struct tree_mod_root old_root;
38 };
39 
40 /*
41  * Pull a new tree mod seq number for our operation.
42  */
43 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
44 {
45 	return atomic64_inc_return(&fs_info->tree_mod_seq);
46 }
47 
48 /*
49  * This adds a new blocker to the tree mod log's blocker list if the @elem
50  * passed does not already have a sequence number set. So when a caller expects
51  * to record tree modifications, it should ensure to set elem->seq to zero
52  * before calling btrfs_get_tree_mod_seq.
53  * Returns a fresh, unused tree log modification sequence number, even if no new
54  * blocker was added.
55  */
56 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
57 			   struct btrfs_seq_list *elem)
58 {
59 	write_lock(&fs_info->tree_mod_log_lock);
60 	if (!elem->seq) {
61 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
62 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
63 	}
64 	write_unlock(&fs_info->tree_mod_log_lock);
65 
66 	return elem->seq;
67 }
68 
69 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
70 			    struct btrfs_seq_list *elem)
71 {
72 	struct rb_root *tm_root;
73 	struct rb_node *node;
74 	struct rb_node *next;
75 	struct tree_mod_elem *tm;
76 	u64 min_seq = BTRFS_SEQ_LAST;
77 	u64 seq_putting = elem->seq;
78 
79 	if (!seq_putting)
80 		return;
81 
82 	write_lock(&fs_info->tree_mod_log_lock);
83 	list_del(&elem->list);
84 	elem->seq = 0;
85 
86 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
87 		struct btrfs_seq_list *first;
88 
89 		first = list_first_entry(&fs_info->tree_mod_seq_list,
90 					 struct btrfs_seq_list, list);
91 		if (seq_putting > first->seq) {
92 			/*
93 			 * Blocker with lower sequence number exists, we cannot
94 			 * remove anything from the log.
95 			 */
96 			write_unlock(&fs_info->tree_mod_log_lock);
97 			return;
98 		}
99 		min_seq = first->seq;
100 	}
101 
102 	/*
103 	 * Anything that's lower than the lowest existing (read: blocked)
104 	 * sequence number can be removed from the tree.
105 	 */
106 	tm_root = &fs_info->tree_mod_log;
107 	for (node = rb_first(tm_root); node; node = next) {
108 		next = rb_next(node);
109 		tm = rb_entry(node, struct tree_mod_elem, node);
110 		if (tm->seq >= min_seq)
111 			continue;
112 		rb_erase(node, tm_root);
113 		kfree(tm);
114 	}
115 	write_unlock(&fs_info->tree_mod_log_lock);
116 }
117 
118 /*
119  * Key order of the log:
120  *       node/leaf start address -> sequence
121  *
122  * The 'start address' is the logical address of the *new* root node for root
123  * replace operations, or the logical address of the affected block for all
124  * other operations.
125  */
126 static noinline int tree_mod_log_insert(struct btrfs_fs_info *fs_info,
127 					struct tree_mod_elem *tm)
128 {
129 	struct rb_root *tm_root;
130 	struct rb_node **new;
131 	struct rb_node *parent = NULL;
132 	struct tree_mod_elem *cur;
133 
134 	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
135 
136 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
137 
138 	tm_root = &fs_info->tree_mod_log;
139 	new = &tm_root->rb_node;
140 	while (*new) {
141 		cur = rb_entry(*new, struct tree_mod_elem, node);
142 		parent = *new;
143 		if (cur->logical < tm->logical)
144 			new = &((*new)->rb_left);
145 		else if (cur->logical > tm->logical)
146 			new = &((*new)->rb_right);
147 		else if (cur->seq < tm->seq)
148 			new = &((*new)->rb_left);
149 		else if (cur->seq > tm->seq)
150 			new = &((*new)->rb_right);
151 		else
152 			return -EEXIST;
153 	}
154 
155 	rb_link_node(&tm->node, parent, new);
156 	rb_insert_color(&tm->node, tm_root);
157 	return 0;
158 }
159 
160 /*
161  * Determines if logging can be omitted. Returns true if it can. Otherwise, it
162  * returns false with the tree_mod_log_lock acquired. The caller must hold
163  * this until all tree mod log insertions are recorded in the rb tree and then
164  * write unlock fs_info::tree_mod_log_lock.
165  */
166 static inline bool tree_mod_dont_log(struct btrfs_fs_info *fs_info,
167 				    struct extent_buffer *eb)
168 {
169 	smp_mb();
170 	if (list_empty(&(fs_info)->tree_mod_seq_list))
171 		return true;
172 	if (eb && btrfs_header_level(eb) == 0)
173 		return true;
174 
175 	write_lock(&fs_info->tree_mod_log_lock);
176 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
177 		write_unlock(&fs_info->tree_mod_log_lock);
178 		return true;
179 	}
180 
181 	return false;
182 }
183 
184 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
185 static inline bool tree_mod_need_log(const struct btrfs_fs_info *fs_info,
186 				    struct extent_buffer *eb)
187 {
188 	smp_mb();
189 	if (list_empty(&(fs_info)->tree_mod_seq_list))
190 		return false;
191 	if (eb && btrfs_header_level(eb) == 0)
192 		return false;
193 
194 	return true;
195 }
196 
197 static struct tree_mod_elem *alloc_tree_mod_elem(struct extent_buffer *eb,
198 						 int slot,
199 						 enum btrfs_mod_log_op op,
200 						 gfp_t flags)
201 {
202 	struct tree_mod_elem *tm;
203 
204 	tm = kzalloc(sizeof(*tm), flags);
205 	if (!tm)
206 		return NULL;
207 
208 	tm->logical = eb->start;
209 	if (op != BTRFS_MOD_LOG_KEY_ADD) {
210 		btrfs_node_key(eb, &tm->key, slot);
211 		tm->blockptr = btrfs_node_blockptr(eb, slot);
212 	}
213 	tm->op = op;
214 	tm->slot = slot;
215 	tm->generation = btrfs_node_ptr_generation(eb, slot);
216 	RB_CLEAR_NODE(&tm->node);
217 
218 	return tm;
219 }
220 
221 int btrfs_tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
222 				  enum btrfs_mod_log_op op, gfp_t flags)
223 {
224 	struct tree_mod_elem *tm;
225 	int ret;
226 
227 	if (!tree_mod_need_log(eb->fs_info, eb))
228 		return 0;
229 
230 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
231 	if (!tm)
232 		return -ENOMEM;
233 
234 	if (tree_mod_dont_log(eb->fs_info, eb)) {
235 		kfree(tm);
236 		return 0;
237 	}
238 
239 	ret = tree_mod_log_insert(eb->fs_info, tm);
240 	write_unlock(&eb->fs_info->tree_mod_log_lock);
241 	if (ret)
242 		kfree(tm);
243 
244 	return ret;
245 }
246 
247 int btrfs_tree_mod_log_insert_move(struct extent_buffer *eb,
248 				   int dst_slot, int src_slot,
249 				   int nr_items)
250 {
251 	struct tree_mod_elem *tm = NULL;
252 	struct tree_mod_elem **tm_list = NULL;
253 	int ret = 0;
254 	int i;
255 	bool locked = false;
256 
257 	if (!tree_mod_need_log(eb->fs_info, eb))
258 		return 0;
259 
260 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
261 	if (!tm_list)
262 		return -ENOMEM;
263 
264 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
265 	if (!tm) {
266 		ret = -ENOMEM;
267 		goto free_tms;
268 	}
269 
270 	tm->logical = eb->start;
271 	tm->slot = src_slot;
272 	tm->move.dst_slot = dst_slot;
273 	tm->move.nr_items = nr_items;
274 	tm->op = BTRFS_MOD_LOG_MOVE_KEYS;
275 
276 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
277 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
278 				BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
279 		if (!tm_list[i]) {
280 			ret = -ENOMEM;
281 			goto free_tms;
282 		}
283 	}
284 
285 	if (tree_mod_dont_log(eb->fs_info, eb))
286 		goto free_tms;
287 	locked = true;
288 
289 	/*
290 	 * When we override something during the move, we log these removals.
291 	 * This can only happen when we move towards the beginning of the
292 	 * buffer, i.e. dst_slot < src_slot.
293 	 */
294 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
295 		ret = tree_mod_log_insert(eb->fs_info, tm_list[i]);
296 		if (ret)
297 			goto free_tms;
298 	}
299 
300 	ret = tree_mod_log_insert(eb->fs_info, tm);
301 	if (ret)
302 		goto free_tms;
303 	write_unlock(&eb->fs_info->tree_mod_log_lock);
304 	kfree(tm_list);
305 
306 	return 0;
307 
308 free_tms:
309 	for (i = 0; i < nr_items; i++) {
310 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
311 			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
312 		kfree(tm_list[i]);
313 	}
314 	if (locked)
315 		write_unlock(&eb->fs_info->tree_mod_log_lock);
316 	kfree(tm_list);
317 	kfree(tm);
318 
319 	return ret;
320 }
321 
322 static inline int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
323 				       struct tree_mod_elem **tm_list,
324 				       int nritems)
325 {
326 	int i, j;
327 	int ret;
328 
329 	for (i = nritems - 1; i >= 0; i--) {
330 		ret = tree_mod_log_insert(fs_info, tm_list[i]);
331 		if (ret) {
332 			for (j = nritems - 1; j > i; j--)
333 				rb_erase(&tm_list[j]->node,
334 					 &fs_info->tree_mod_log);
335 			return ret;
336 		}
337 	}
338 
339 	return 0;
340 }
341 
342 int btrfs_tree_mod_log_insert_root(struct extent_buffer *old_root,
343 				   struct extent_buffer *new_root,
344 				   bool log_removal)
345 {
346 	struct btrfs_fs_info *fs_info = old_root->fs_info;
347 	struct tree_mod_elem *tm = NULL;
348 	struct tree_mod_elem **tm_list = NULL;
349 	int nritems = 0;
350 	int ret = 0;
351 	int i;
352 
353 	if (!tree_mod_need_log(fs_info, NULL))
354 		return 0;
355 
356 	if (log_removal && btrfs_header_level(old_root) > 0) {
357 		nritems = btrfs_header_nritems(old_root);
358 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
359 				  GFP_NOFS);
360 		if (!tm_list) {
361 			ret = -ENOMEM;
362 			goto free_tms;
363 		}
364 		for (i = 0; i < nritems; i++) {
365 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
366 			    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
367 			if (!tm_list[i]) {
368 				ret = -ENOMEM;
369 				goto free_tms;
370 			}
371 		}
372 	}
373 
374 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
375 	if (!tm) {
376 		ret = -ENOMEM;
377 		goto free_tms;
378 	}
379 
380 	tm->logical = new_root->start;
381 	tm->old_root.logical = old_root->start;
382 	tm->old_root.level = btrfs_header_level(old_root);
383 	tm->generation = btrfs_header_generation(old_root);
384 	tm->op = BTRFS_MOD_LOG_ROOT_REPLACE;
385 
386 	if (tree_mod_dont_log(fs_info, NULL))
387 		goto free_tms;
388 
389 	if (tm_list)
390 		ret = tree_mod_log_free_eb(fs_info, tm_list, nritems);
391 	if (!ret)
392 		ret = tree_mod_log_insert(fs_info, tm);
393 
394 	write_unlock(&fs_info->tree_mod_log_lock);
395 	if (ret)
396 		goto free_tms;
397 	kfree(tm_list);
398 
399 	return ret;
400 
401 free_tms:
402 	if (tm_list) {
403 		for (i = 0; i < nritems; i++)
404 			kfree(tm_list[i]);
405 		kfree(tm_list);
406 	}
407 	kfree(tm);
408 
409 	return ret;
410 }
411 
412 static struct tree_mod_elem *__tree_mod_log_search(struct btrfs_fs_info *fs_info,
413 						   u64 start, u64 min_seq,
414 						   bool smallest)
415 {
416 	struct rb_root *tm_root;
417 	struct rb_node *node;
418 	struct tree_mod_elem *cur = NULL;
419 	struct tree_mod_elem *found = NULL;
420 
421 	read_lock(&fs_info->tree_mod_log_lock);
422 	tm_root = &fs_info->tree_mod_log;
423 	node = tm_root->rb_node;
424 	while (node) {
425 		cur = rb_entry(node, struct tree_mod_elem, node);
426 		if (cur->logical < start) {
427 			node = node->rb_left;
428 		} else if (cur->logical > start) {
429 			node = node->rb_right;
430 		} else if (cur->seq < min_seq) {
431 			node = node->rb_left;
432 		} else if (!smallest) {
433 			/* We want the node with the highest seq */
434 			if (found)
435 				BUG_ON(found->seq > cur->seq);
436 			found = cur;
437 			node = node->rb_left;
438 		} else if (cur->seq > min_seq) {
439 			/* We want the node with the smallest seq */
440 			if (found)
441 				BUG_ON(found->seq < cur->seq);
442 			found = cur;
443 			node = node->rb_right;
444 		} else {
445 			found = cur;
446 			break;
447 		}
448 	}
449 	read_unlock(&fs_info->tree_mod_log_lock);
450 
451 	return found;
452 }
453 
454 /*
455  * This returns the element from the log with the smallest time sequence
456  * value that's in the log (the oldest log item). Any element with a time
457  * sequence lower than min_seq will be ignored.
458  */
459 static struct tree_mod_elem *tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info,
460 							u64 start, u64 min_seq)
461 {
462 	return __tree_mod_log_search(fs_info, start, min_seq, true);
463 }
464 
465 /*
466  * This returns the element from the log with the largest time sequence
467  * value that's in the log (the most recent log item). Any element with
468  * a time sequence lower than min_seq will be ignored.
469  */
470 static struct tree_mod_elem *tree_mod_log_search(struct btrfs_fs_info *fs_info,
471 						 u64 start, u64 min_seq)
472 {
473 	return __tree_mod_log_search(fs_info, start, min_seq, false);
474 }
475 
476 int btrfs_tree_mod_log_eb_copy(struct extent_buffer *dst,
477 			       struct extent_buffer *src,
478 			       unsigned long dst_offset,
479 			       unsigned long src_offset,
480 			       int nr_items)
481 {
482 	struct btrfs_fs_info *fs_info = dst->fs_info;
483 	int ret = 0;
484 	struct tree_mod_elem **tm_list = NULL;
485 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
486 	int i;
487 	bool locked = false;
488 
489 	if (!tree_mod_need_log(fs_info, NULL))
490 		return 0;
491 
492 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
493 		return 0;
494 
495 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
496 			  GFP_NOFS);
497 	if (!tm_list)
498 		return -ENOMEM;
499 
500 	tm_list_add = tm_list;
501 	tm_list_rem = tm_list + nr_items;
502 	for (i = 0; i < nr_items; i++) {
503 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
504 		    BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
505 		if (!tm_list_rem[i]) {
506 			ret = -ENOMEM;
507 			goto free_tms;
508 		}
509 
510 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
511 						BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
512 		if (!tm_list_add[i]) {
513 			ret = -ENOMEM;
514 			goto free_tms;
515 		}
516 	}
517 
518 	if (tree_mod_dont_log(fs_info, NULL))
519 		goto free_tms;
520 	locked = true;
521 
522 	for (i = 0; i < nr_items; i++) {
523 		ret = tree_mod_log_insert(fs_info, tm_list_rem[i]);
524 		if (ret)
525 			goto free_tms;
526 		ret = tree_mod_log_insert(fs_info, tm_list_add[i]);
527 		if (ret)
528 			goto free_tms;
529 	}
530 
531 	write_unlock(&fs_info->tree_mod_log_lock);
532 	kfree(tm_list);
533 
534 	return 0;
535 
536 free_tms:
537 	for (i = 0; i < nr_items * 2; i++) {
538 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
539 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
540 		kfree(tm_list[i]);
541 	}
542 	if (locked)
543 		write_unlock(&fs_info->tree_mod_log_lock);
544 	kfree(tm_list);
545 
546 	return ret;
547 }
548 
549 int btrfs_tree_mod_log_free_eb(struct extent_buffer *eb)
550 {
551 	struct tree_mod_elem **tm_list = NULL;
552 	int nritems = 0;
553 	int i;
554 	int ret = 0;
555 
556 	if (btrfs_header_level(eb) == 0)
557 		return 0;
558 
559 	if (!tree_mod_need_log(eb->fs_info, NULL))
560 		return 0;
561 
562 	nritems = btrfs_header_nritems(eb);
563 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
564 	if (!tm_list)
565 		return -ENOMEM;
566 
567 	for (i = 0; i < nritems; i++) {
568 		tm_list[i] = alloc_tree_mod_elem(eb, i,
569 		    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
570 		if (!tm_list[i]) {
571 			ret = -ENOMEM;
572 			goto free_tms;
573 		}
574 	}
575 
576 	if (tree_mod_dont_log(eb->fs_info, eb))
577 		goto free_tms;
578 
579 	ret = tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
580 	write_unlock(&eb->fs_info->tree_mod_log_lock);
581 	if (ret)
582 		goto free_tms;
583 	kfree(tm_list);
584 
585 	return 0;
586 
587 free_tms:
588 	for (i = 0; i < nritems; i++)
589 		kfree(tm_list[i]);
590 	kfree(tm_list);
591 
592 	return ret;
593 }
594 
595 /*
596  * Returns the logical address of the oldest predecessor of the given root.
597  * Entries older than time_seq are ignored.
598  */
599 static struct tree_mod_elem *tree_mod_log_oldest_root(struct extent_buffer *eb_root,
600 						      u64 time_seq)
601 {
602 	struct tree_mod_elem *tm;
603 	struct tree_mod_elem *found = NULL;
604 	u64 root_logical = eb_root->start;
605 	bool looped = false;
606 
607 	if (!time_seq)
608 		return NULL;
609 
610 	/*
611 	 * The very last operation that's logged for a root is the replacement
612 	 * operation (if it is replaced at all). This has the logical address
613 	 * of the *new* root, making it the very first operation that's logged
614 	 * for this root.
615 	 */
616 	while (1) {
617 		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
618 						time_seq);
619 		if (!looped && !tm)
620 			return NULL;
621 		/*
622 		 * If there are no tree operation for the oldest root, we simply
623 		 * return it. This should only happen if that (old) root is at
624 		 * level 0.
625 		 */
626 		if (!tm)
627 			break;
628 
629 		/*
630 		 * If there's an operation that's not a root replacement, we
631 		 * found the oldest version of our root. Normally, we'll find a
632 		 * BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
633 		 */
634 		if (tm->op != BTRFS_MOD_LOG_ROOT_REPLACE)
635 			break;
636 
637 		found = tm;
638 		root_logical = tm->old_root.logical;
639 		looped = true;
640 	}
641 
642 	/* If there's no old root to return, return what we found instead */
643 	if (!found)
644 		found = tm;
645 
646 	return found;
647 }
648 
649 
650 /*
651  * tm is a pointer to the first operation to rewind within eb. Then, all
652  * previous operations will be rewound (until we reach something older than
653  * time_seq).
654  */
655 static void tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
656 				struct extent_buffer *eb,
657 				u64 time_seq,
658 				struct tree_mod_elem *first_tm)
659 {
660 	u32 n;
661 	struct rb_node *next;
662 	struct tree_mod_elem *tm = first_tm;
663 	unsigned long o_dst;
664 	unsigned long o_src;
665 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
666 
667 	n = btrfs_header_nritems(eb);
668 	read_lock(&fs_info->tree_mod_log_lock);
669 	while (tm && tm->seq >= time_seq) {
670 		/*
671 		 * All the operations are recorded with the operator used for
672 		 * the modification. As we're going backwards, we do the
673 		 * opposite of each operation here.
674 		 */
675 		switch (tm->op) {
676 		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
677 			BUG_ON(tm->slot < n);
678 			fallthrough;
679 		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
680 		case BTRFS_MOD_LOG_KEY_REMOVE:
681 			btrfs_set_node_key(eb, &tm->key, tm->slot);
682 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
683 			btrfs_set_node_ptr_generation(eb, tm->slot,
684 						      tm->generation);
685 			n++;
686 			break;
687 		case BTRFS_MOD_LOG_KEY_REPLACE:
688 			BUG_ON(tm->slot >= n);
689 			btrfs_set_node_key(eb, &tm->key, tm->slot);
690 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
691 			btrfs_set_node_ptr_generation(eb, tm->slot,
692 						      tm->generation);
693 			break;
694 		case BTRFS_MOD_LOG_KEY_ADD:
695 			/* if a move operation is needed it's in the log */
696 			n--;
697 			break;
698 		case BTRFS_MOD_LOG_MOVE_KEYS:
699 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
700 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
701 			memmove_extent_buffer(eb, o_dst, o_src,
702 					      tm->move.nr_items * p_size);
703 			break;
704 		case BTRFS_MOD_LOG_ROOT_REPLACE:
705 			/*
706 			 * This operation is special. For roots, this must be
707 			 * handled explicitly before rewinding.
708 			 * For non-roots, this operation may exist if the node
709 			 * was a root: root A -> child B; then A gets empty and
710 			 * B is promoted to the new root. In the mod log, we'll
711 			 * have a root-replace operation for B, a tree block
712 			 * that is no root. We simply ignore that operation.
713 			 */
714 			break;
715 		}
716 		next = rb_next(&tm->node);
717 		if (!next)
718 			break;
719 		tm = rb_entry(next, struct tree_mod_elem, node);
720 		if (tm->logical != first_tm->logical)
721 			break;
722 	}
723 	read_unlock(&fs_info->tree_mod_log_lock);
724 	btrfs_set_header_nritems(eb, n);
725 }
726 
727 /*
728  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
729  * is returned. If rewind operations happen, a fresh buffer is returned. The
730  * returned buffer is always read-locked. If the returned buffer is not the
731  * input buffer, the lock on the input buffer is released and the input buffer
732  * is freed (its refcount is decremented).
733  */
734 struct extent_buffer *btrfs_tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
735 						struct btrfs_path *path,
736 						struct extent_buffer *eb,
737 						u64 time_seq)
738 {
739 	struct extent_buffer *eb_rewin;
740 	struct tree_mod_elem *tm;
741 
742 	if (!time_seq)
743 		return eb;
744 
745 	if (btrfs_header_level(eb) == 0)
746 		return eb;
747 
748 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
749 	if (!tm)
750 		return eb;
751 
752 	if (tm->op == BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
753 		BUG_ON(tm->slot != 0);
754 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
755 		if (!eb_rewin) {
756 			btrfs_tree_read_unlock(eb);
757 			free_extent_buffer(eb);
758 			return NULL;
759 		}
760 		btrfs_set_header_bytenr(eb_rewin, eb->start);
761 		btrfs_set_header_backref_rev(eb_rewin,
762 					     btrfs_header_backref_rev(eb));
763 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
764 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
765 	} else {
766 		eb_rewin = btrfs_clone_extent_buffer(eb);
767 		if (!eb_rewin) {
768 			btrfs_tree_read_unlock(eb);
769 			free_extent_buffer(eb);
770 			return NULL;
771 		}
772 	}
773 
774 	btrfs_tree_read_unlock(eb);
775 	free_extent_buffer(eb);
776 
777 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
778 				       eb_rewin, btrfs_header_level(eb_rewin));
779 	btrfs_tree_read_lock(eb_rewin);
780 	tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
781 	WARN_ON(btrfs_header_nritems(eb_rewin) >
782 		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
783 
784 	return eb_rewin;
785 }
786 
787 /*
788  * Rewind the state of @root's root node to the given @time_seq value.
789  * If there are no changes, the current root->root_node is returned. If anything
790  * changed in between, there's a fresh buffer allocated on which the rewind
791  * operations are done. In any case, the returned buffer is read locked.
792  * Returns NULL on error (with no locks held).
793  */
794 struct extent_buffer *btrfs_get_old_root(struct btrfs_root *root, u64 time_seq)
795 {
796 	struct btrfs_fs_info *fs_info = root->fs_info;
797 	struct tree_mod_elem *tm;
798 	struct extent_buffer *eb = NULL;
799 	struct extent_buffer *eb_root;
800 	u64 eb_root_owner = 0;
801 	struct extent_buffer *old;
802 	struct tree_mod_root *old_root = NULL;
803 	u64 old_generation = 0;
804 	u64 logical;
805 	int level;
806 
807 	eb_root = btrfs_read_lock_root_node(root);
808 	tm = tree_mod_log_oldest_root(eb_root, time_seq);
809 	if (!tm)
810 		return eb_root;
811 
812 	if (tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) {
813 		old_root = &tm->old_root;
814 		old_generation = tm->generation;
815 		logical = old_root->logical;
816 		level = old_root->level;
817 	} else {
818 		logical = eb_root->start;
819 		level = btrfs_header_level(eb_root);
820 	}
821 
822 	tm = tree_mod_log_search(fs_info, logical, time_seq);
823 	if (old_root && tm && tm->op != BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
824 		btrfs_tree_read_unlock(eb_root);
825 		free_extent_buffer(eb_root);
826 		old = read_tree_block(fs_info, logical, root->root_key.objectid,
827 				      0, level, NULL);
828 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
829 			if (!IS_ERR(old))
830 				free_extent_buffer(old);
831 			btrfs_warn(fs_info,
832 				   "failed to read tree block %llu from get_old_root",
833 				   logical);
834 		} else {
835 			btrfs_tree_read_lock(old);
836 			eb = btrfs_clone_extent_buffer(old);
837 			btrfs_tree_read_unlock(old);
838 			free_extent_buffer(old);
839 		}
840 	} else if (old_root) {
841 		eb_root_owner = btrfs_header_owner(eb_root);
842 		btrfs_tree_read_unlock(eb_root);
843 		free_extent_buffer(eb_root);
844 		eb = alloc_dummy_extent_buffer(fs_info, logical);
845 	} else {
846 		eb = btrfs_clone_extent_buffer(eb_root);
847 		btrfs_tree_read_unlock(eb_root);
848 		free_extent_buffer(eb_root);
849 	}
850 
851 	if (!eb)
852 		return NULL;
853 	if (old_root) {
854 		btrfs_set_header_bytenr(eb, eb->start);
855 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
856 		btrfs_set_header_owner(eb, eb_root_owner);
857 		btrfs_set_header_level(eb, old_root->level);
858 		btrfs_set_header_generation(eb, old_generation);
859 	}
860 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
861 				       btrfs_header_level(eb));
862 	btrfs_tree_read_lock(eb);
863 	if (tm)
864 		tree_mod_log_rewind(fs_info, eb, time_seq, tm);
865 	else
866 		WARN_ON(btrfs_header_level(eb) != 0);
867 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
868 
869 	return eb;
870 }
871 
872 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
873 {
874 	struct tree_mod_elem *tm;
875 	int level;
876 	struct extent_buffer *eb_root = btrfs_root_node(root);
877 
878 	tm = tree_mod_log_oldest_root(eb_root, time_seq);
879 	if (tm && tm->op == BTRFS_MOD_LOG_ROOT_REPLACE)
880 		level = tm->old_root.level;
881 	else
882 		level = btrfs_header_level(eb_root);
883 
884 	free_extent_buffer(eb_root);
885 
886 	return level;
887 }
888 
889