xref: /openbmc/linux/fs/btrfs/tree-log.c (revision fca3aa16)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "ctree.h"
12 #include "tree-log.h"
13 #include "disk-io.h"
14 #include "locking.h"
15 #include "print-tree.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "inode-map.h"
20 
21 /* magic values for the inode_only field in btrfs_log_inode:
22  *
23  * LOG_INODE_ALL means to log everything
24  * LOG_INODE_EXISTS means to log just enough to recreate the inode
25  * during log replay
26  */
27 #define LOG_INODE_ALL 0
28 #define LOG_INODE_EXISTS 1
29 #define LOG_OTHER_INODE 2
30 
31 /*
32  * directory trouble cases
33  *
34  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
35  * log, we must force a full commit before doing an fsync of the directory
36  * where the unlink was done.
37  * ---> record transid of last unlink/rename per directory
38  *
39  * mkdir foo/some_dir
40  * normal commit
41  * rename foo/some_dir foo2/some_dir
42  * mkdir foo/some_dir
43  * fsync foo/some_dir/some_file
44  *
45  * The fsync above will unlink the original some_dir without recording
46  * it in its new location (foo2).  After a crash, some_dir will be gone
47  * unless the fsync of some_file forces a full commit
48  *
49  * 2) we must log any new names for any file or dir that is in the fsync
50  * log. ---> check inode while renaming/linking.
51  *
52  * 2a) we must log any new names for any file or dir during rename
53  * when the directory they are being removed from was logged.
54  * ---> check inode and old parent dir during rename
55  *
56  *  2a is actually the more important variant.  With the extra logging
57  *  a crash might unlink the old name without recreating the new one
58  *
59  * 3) after a crash, we must go through any directories with a link count
60  * of zero and redo the rm -rf
61  *
62  * mkdir f1/foo
63  * normal commit
64  * rm -rf f1/foo
65  * fsync(f1)
66  *
67  * The directory f1 was fully removed from the FS, but fsync was never
68  * called on f1, only its parent dir.  After a crash the rm -rf must
69  * be replayed.  This must be able to recurse down the entire
70  * directory tree.  The inode link count fixup code takes care of the
71  * ugly details.
72  */
73 
74 /*
75  * stages for the tree walking.  The first
76  * stage (0) is to only pin down the blocks we find
77  * the second stage (1) is to make sure that all the inodes
78  * we find in the log are created in the subvolume.
79  *
80  * The last stage is to deal with directories and links and extents
81  * and all the other fun semantics
82  */
83 #define LOG_WALK_PIN_ONLY 0
84 #define LOG_WALK_REPLAY_INODES 1
85 #define LOG_WALK_REPLAY_DIR_INDEX 2
86 #define LOG_WALK_REPLAY_ALL 3
87 
88 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
89 			   struct btrfs_root *root, struct btrfs_inode *inode,
90 			   int inode_only,
91 			   const loff_t start,
92 			   const loff_t end,
93 			   struct btrfs_log_ctx *ctx);
94 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
95 			     struct btrfs_root *root,
96 			     struct btrfs_path *path, u64 objectid);
97 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
98 				       struct btrfs_root *root,
99 				       struct btrfs_root *log,
100 				       struct btrfs_path *path,
101 				       u64 dirid, int del_all);
102 
103 /*
104  * tree logging is a special write ahead log used to make sure that
105  * fsyncs and O_SYNCs can happen without doing full tree commits.
106  *
107  * Full tree commits are expensive because they require commonly
108  * modified blocks to be recowed, creating many dirty pages in the
109  * extent tree an 4x-6x higher write load than ext3.
110  *
111  * Instead of doing a tree commit on every fsync, we use the
112  * key ranges and transaction ids to find items for a given file or directory
113  * that have changed in this transaction.  Those items are copied into
114  * a special tree (one per subvolume root), that tree is written to disk
115  * and then the fsync is considered complete.
116  *
117  * After a crash, items are copied out of the log-tree back into the
118  * subvolume tree.  Any file data extents found are recorded in the extent
119  * allocation tree, and the log-tree freed.
120  *
121  * The log tree is read three times, once to pin down all the extents it is
122  * using in ram and once, once to create all the inodes logged in the tree
123  * and once to do all the other items.
124  */
125 
126 /*
127  * start a sub transaction and setup the log tree
128  * this increments the log tree writer count to make the people
129  * syncing the tree wait for us to finish
130  */
131 static int start_log_trans(struct btrfs_trans_handle *trans,
132 			   struct btrfs_root *root,
133 			   struct btrfs_log_ctx *ctx)
134 {
135 	struct btrfs_fs_info *fs_info = root->fs_info;
136 	int ret = 0;
137 
138 	mutex_lock(&root->log_mutex);
139 
140 	if (root->log_root) {
141 		if (btrfs_need_log_full_commit(fs_info, trans)) {
142 			ret = -EAGAIN;
143 			goto out;
144 		}
145 
146 		if (!root->log_start_pid) {
147 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
148 			root->log_start_pid = current->pid;
149 		} else if (root->log_start_pid != current->pid) {
150 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
151 		}
152 	} else {
153 		mutex_lock(&fs_info->tree_log_mutex);
154 		if (!fs_info->log_root_tree)
155 			ret = btrfs_init_log_root_tree(trans, fs_info);
156 		mutex_unlock(&fs_info->tree_log_mutex);
157 		if (ret)
158 			goto out;
159 
160 		ret = btrfs_add_log_tree(trans, root);
161 		if (ret)
162 			goto out;
163 
164 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
165 		root->log_start_pid = current->pid;
166 	}
167 
168 	atomic_inc(&root->log_batch);
169 	atomic_inc(&root->log_writers);
170 	if (ctx) {
171 		int index = root->log_transid % 2;
172 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
173 		ctx->log_transid = root->log_transid;
174 	}
175 
176 out:
177 	mutex_unlock(&root->log_mutex);
178 	return ret;
179 }
180 
181 /*
182  * returns 0 if there was a log transaction running and we were able
183  * to join, or returns -ENOENT if there were not transactions
184  * in progress
185  */
186 static int join_running_log_trans(struct btrfs_root *root)
187 {
188 	int ret = -ENOENT;
189 
190 	smp_mb();
191 	if (!root->log_root)
192 		return -ENOENT;
193 
194 	mutex_lock(&root->log_mutex);
195 	if (root->log_root) {
196 		ret = 0;
197 		atomic_inc(&root->log_writers);
198 	}
199 	mutex_unlock(&root->log_mutex);
200 	return ret;
201 }
202 
203 /*
204  * This either makes the current running log transaction wait
205  * until you call btrfs_end_log_trans() or it makes any future
206  * log transactions wait until you call btrfs_end_log_trans()
207  */
208 int btrfs_pin_log_trans(struct btrfs_root *root)
209 {
210 	int ret = -ENOENT;
211 
212 	mutex_lock(&root->log_mutex);
213 	atomic_inc(&root->log_writers);
214 	mutex_unlock(&root->log_mutex);
215 	return ret;
216 }
217 
218 /*
219  * indicate we're done making changes to the log tree
220  * and wake up anyone waiting to do a sync
221  */
222 void btrfs_end_log_trans(struct btrfs_root *root)
223 {
224 	if (atomic_dec_and_test(&root->log_writers)) {
225 		/*
226 		 * Implicit memory barrier after atomic_dec_and_test
227 		 */
228 		if (waitqueue_active(&root->log_writer_wait))
229 			wake_up(&root->log_writer_wait);
230 	}
231 }
232 
233 
234 /*
235  * the walk control struct is used to pass state down the chain when
236  * processing the log tree.  The stage field tells us which part
237  * of the log tree processing we are currently doing.  The others
238  * are state fields used for that specific part
239  */
240 struct walk_control {
241 	/* should we free the extent on disk when done?  This is used
242 	 * at transaction commit time while freeing a log tree
243 	 */
244 	int free;
245 
246 	/* should we write out the extent buffer?  This is used
247 	 * while flushing the log tree to disk during a sync
248 	 */
249 	int write;
250 
251 	/* should we wait for the extent buffer io to finish?  Also used
252 	 * while flushing the log tree to disk for a sync
253 	 */
254 	int wait;
255 
256 	/* pin only walk, we record which extents on disk belong to the
257 	 * log trees
258 	 */
259 	int pin;
260 
261 	/* what stage of the replay code we're currently in */
262 	int stage;
263 
264 	/* the root we are currently replaying */
265 	struct btrfs_root *replay_dest;
266 
267 	/* the trans handle for the current replay */
268 	struct btrfs_trans_handle *trans;
269 
270 	/* the function that gets used to process blocks we find in the
271 	 * tree.  Note the extent_buffer might not be up to date when it is
272 	 * passed in, and it must be checked or read if you need the data
273 	 * inside it
274 	 */
275 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
276 			    struct walk_control *wc, u64 gen, int level);
277 };
278 
279 /*
280  * process_func used to pin down extents, write them or wait on them
281  */
282 static int process_one_buffer(struct btrfs_root *log,
283 			      struct extent_buffer *eb,
284 			      struct walk_control *wc, u64 gen, int level)
285 {
286 	struct btrfs_fs_info *fs_info = log->fs_info;
287 	int ret = 0;
288 
289 	/*
290 	 * If this fs is mixed then we need to be able to process the leaves to
291 	 * pin down any logged extents, so we have to read the block.
292 	 */
293 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
294 		ret = btrfs_read_buffer(eb, gen, level, NULL);
295 		if (ret)
296 			return ret;
297 	}
298 
299 	if (wc->pin)
300 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
301 						      eb->len);
302 
303 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
304 		if (wc->pin && btrfs_header_level(eb) == 0)
305 			ret = btrfs_exclude_logged_extents(fs_info, eb);
306 		if (wc->write)
307 			btrfs_write_tree_block(eb);
308 		if (wc->wait)
309 			btrfs_wait_tree_block_writeback(eb);
310 	}
311 	return ret;
312 }
313 
314 /*
315  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
316  * to the src data we are copying out.
317  *
318  * root is the tree we are copying into, and path is a scratch
319  * path for use in this function (it should be released on entry and
320  * will be released on exit).
321  *
322  * If the key is already in the destination tree the existing item is
323  * overwritten.  If the existing item isn't big enough, it is extended.
324  * If it is too large, it is truncated.
325  *
326  * If the key isn't in the destination yet, a new item is inserted.
327  */
328 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
329 				   struct btrfs_root *root,
330 				   struct btrfs_path *path,
331 				   struct extent_buffer *eb, int slot,
332 				   struct btrfs_key *key)
333 {
334 	struct btrfs_fs_info *fs_info = root->fs_info;
335 	int ret;
336 	u32 item_size;
337 	u64 saved_i_size = 0;
338 	int save_old_i_size = 0;
339 	unsigned long src_ptr;
340 	unsigned long dst_ptr;
341 	int overwrite_root = 0;
342 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
343 
344 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
345 		overwrite_root = 1;
346 
347 	item_size = btrfs_item_size_nr(eb, slot);
348 	src_ptr = btrfs_item_ptr_offset(eb, slot);
349 
350 	/* look for the key in the destination tree */
351 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
352 	if (ret < 0)
353 		return ret;
354 
355 	if (ret == 0) {
356 		char *src_copy;
357 		char *dst_copy;
358 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
359 						  path->slots[0]);
360 		if (dst_size != item_size)
361 			goto insert;
362 
363 		if (item_size == 0) {
364 			btrfs_release_path(path);
365 			return 0;
366 		}
367 		dst_copy = kmalloc(item_size, GFP_NOFS);
368 		src_copy = kmalloc(item_size, GFP_NOFS);
369 		if (!dst_copy || !src_copy) {
370 			btrfs_release_path(path);
371 			kfree(dst_copy);
372 			kfree(src_copy);
373 			return -ENOMEM;
374 		}
375 
376 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
377 
378 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
379 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
380 				   item_size);
381 		ret = memcmp(dst_copy, src_copy, item_size);
382 
383 		kfree(dst_copy);
384 		kfree(src_copy);
385 		/*
386 		 * they have the same contents, just return, this saves
387 		 * us from cowing blocks in the destination tree and doing
388 		 * extra writes that may not have been done by a previous
389 		 * sync
390 		 */
391 		if (ret == 0) {
392 			btrfs_release_path(path);
393 			return 0;
394 		}
395 
396 		/*
397 		 * We need to load the old nbytes into the inode so when we
398 		 * replay the extents we've logged we get the right nbytes.
399 		 */
400 		if (inode_item) {
401 			struct btrfs_inode_item *item;
402 			u64 nbytes;
403 			u32 mode;
404 
405 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
406 					      struct btrfs_inode_item);
407 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
408 			item = btrfs_item_ptr(eb, slot,
409 					      struct btrfs_inode_item);
410 			btrfs_set_inode_nbytes(eb, item, nbytes);
411 
412 			/*
413 			 * If this is a directory we need to reset the i_size to
414 			 * 0 so that we can set it up properly when replaying
415 			 * the rest of the items in this log.
416 			 */
417 			mode = btrfs_inode_mode(eb, item);
418 			if (S_ISDIR(mode))
419 				btrfs_set_inode_size(eb, item, 0);
420 		}
421 	} else if (inode_item) {
422 		struct btrfs_inode_item *item;
423 		u32 mode;
424 
425 		/*
426 		 * New inode, set nbytes to 0 so that the nbytes comes out
427 		 * properly when we replay the extents.
428 		 */
429 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
430 		btrfs_set_inode_nbytes(eb, item, 0);
431 
432 		/*
433 		 * If this is a directory we need to reset the i_size to 0 so
434 		 * that we can set it up properly when replaying the rest of
435 		 * the items in this log.
436 		 */
437 		mode = btrfs_inode_mode(eb, item);
438 		if (S_ISDIR(mode))
439 			btrfs_set_inode_size(eb, item, 0);
440 	}
441 insert:
442 	btrfs_release_path(path);
443 	/* try to insert the key into the destination tree */
444 	path->skip_release_on_error = 1;
445 	ret = btrfs_insert_empty_item(trans, root, path,
446 				      key, item_size);
447 	path->skip_release_on_error = 0;
448 
449 	/* make sure any existing item is the correct size */
450 	if (ret == -EEXIST || ret == -EOVERFLOW) {
451 		u32 found_size;
452 		found_size = btrfs_item_size_nr(path->nodes[0],
453 						path->slots[0]);
454 		if (found_size > item_size)
455 			btrfs_truncate_item(fs_info, path, item_size, 1);
456 		else if (found_size < item_size)
457 			btrfs_extend_item(fs_info, path,
458 					  item_size - found_size);
459 	} else if (ret) {
460 		return ret;
461 	}
462 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
463 					path->slots[0]);
464 
465 	/* don't overwrite an existing inode if the generation number
466 	 * was logged as zero.  This is done when the tree logging code
467 	 * is just logging an inode to make sure it exists after recovery.
468 	 *
469 	 * Also, don't overwrite i_size on directories during replay.
470 	 * log replay inserts and removes directory items based on the
471 	 * state of the tree found in the subvolume, and i_size is modified
472 	 * as it goes
473 	 */
474 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
475 		struct btrfs_inode_item *src_item;
476 		struct btrfs_inode_item *dst_item;
477 
478 		src_item = (struct btrfs_inode_item *)src_ptr;
479 		dst_item = (struct btrfs_inode_item *)dst_ptr;
480 
481 		if (btrfs_inode_generation(eb, src_item) == 0) {
482 			struct extent_buffer *dst_eb = path->nodes[0];
483 			const u64 ino_size = btrfs_inode_size(eb, src_item);
484 
485 			/*
486 			 * For regular files an ino_size == 0 is used only when
487 			 * logging that an inode exists, as part of a directory
488 			 * fsync, and the inode wasn't fsynced before. In this
489 			 * case don't set the size of the inode in the fs/subvol
490 			 * tree, otherwise we would be throwing valid data away.
491 			 */
492 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
493 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
494 			    ino_size != 0) {
495 				struct btrfs_map_token token;
496 
497 				btrfs_init_map_token(&token);
498 				btrfs_set_token_inode_size(dst_eb, dst_item,
499 							   ino_size, &token);
500 			}
501 			goto no_copy;
502 		}
503 
504 		if (overwrite_root &&
505 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
506 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
507 			save_old_i_size = 1;
508 			saved_i_size = btrfs_inode_size(path->nodes[0],
509 							dst_item);
510 		}
511 	}
512 
513 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
514 			   src_ptr, item_size);
515 
516 	if (save_old_i_size) {
517 		struct btrfs_inode_item *dst_item;
518 		dst_item = (struct btrfs_inode_item *)dst_ptr;
519 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
520 	}
521 
522 	/* make sure the generation is filled in */
523 	if (key->type == BTRFS_INODE_ITEM_KEY) {
524 		struct btrfs_inode_item *dst_item;
525 		dst_item = (struct btrfs_inode_item *)dst_ptr;
526 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
527 			btrfs_set_inode_generation(path->nodes[0], dst_item,
528 						   trans->transid);
529 		}
530 	}
531 no_copy:
532 	btrfs_mark_buffer_dirty(path->nodes[0]);
533 	btrfs_release_path(path);
534 	return 0;
535 }
536 
537 /*
538  * simple helper to read an inode off the disk from a given root
539  * This can only be called for subvolume roots and not for the log
540  */
541 static noinline struct inode *read_one_inode(struct btrfs_root *root,
542 					     u64 objectid)
543 {
544 	struct btrfs_key key;
545 	struct inode *inode;
546 
547 	key.objectid = objectid;
548 	key.type = BTRFS_INODE_ITEM_KEY;
549 	key.offset = 0;
550 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
551 	if (IS_ERR(inode)) {
552 		inode = NULL;
553 	} else if (is_bad_inode(inode)) {
554 		iput(inode);
555 		inode = NULL;
556 	}
557 	return inode;
558 }
559 
560 /* replays a single extent in 'eb' at 'slot' with 'key' into the
561  * subvolume 'root'.  path is released on entry and should be released
562  * on exit.
563  *
564  * extents in the log tree have not been allocated out of the extent
565  * tree yet.  So, this completes the allocation, taking a reference
566  * as required if the extent already exists or creating a new extent
567  * if it isn't in the extent allocation tree yet.
568  *
569  * The extent is inserted into the file, dropping any existing extents
570  * from the file that overlap the new one.
571  */
572 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
573 				      struct btrfs_root *root,
574 				      struct btrfs_path *path,
575 				      struct extent_buffer *eb, int slot,
576 				      struct btrfs_key *key)
577 {
578 	struct btrfs_fs_info *fs_info = root->fs_info;
579 	int found_type;
580 	u64 extent_end;
581 	u64 start = key->offset;
582 	u64 nbytes = 0;
583 	struct btrfs_file_extent_item *item;
584 	struct inode *inode = NULL;
585 	unsigned long size;
586 	int ret = 0;
587 
588 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
589 	found_type = btrfs_file_extent_type(eb, item);
590 
591 	if (found_type == BTRFS_FILE_EXTENT_REG ||
592 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
593 		nbytes = btrfs_file_extent_num_bytes(eb, item);
594 		extent_end = start + nbytes;
595 
596 		/*
597 		 * We don't add to the inodes nbytes if we are prealloc or a
598 		 * hole.
599 		 */
600 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
601 			nbytes = 0;
602 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
603 		size = btrfs_file_extent_inline_len(eb, slot, item);
604 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
605 		extent_end = ALIGN(start + size,
606 				   fs_info->sectorsize);
607 	} else {
608 		ret = 0;
609 		goto out;
610 	}
611 
612 	inode = read_one_inode(root, key->objectid);
613 	if (!inode) {
614 		ret = -EIO;
615 		goto out;
616 	}
617 
618 	/*
619 	 * first check to see if we already have this extent in the
620 	 * file.  This must be done before the btrfs_drop_extents run
621 	 * so we don't try to drop this extent.
622 	 */
623 	ret = btrfs_lookup_file_extent(trans, root, path,
624 			btrfs_ino(BTRFS_I(inode)), start, 0);
625 
626 	if (ret == 0 &&
627 	    (found_type == BTRFS_FILE_EXTENT_REG ||
628 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
629 		struct btrfs_file_extent_item cmp1;
630 		struct btrfs_file_extent_item cmp2;
631 		struct btrfs_file_extent_item *existing;
632 		struct extent_buffer *leaf;
633 
634 		leaf = path->nodes[0];
635 		existing = btrfs_item_ptr(leaf, path->slots[0],
636 					  struct btrfs_file_extent_item);
637 
638 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
639 				   sizeof(cmp1));
640 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
641 				   sizeof(cmp2));
642 
643 		/*
644 		 * we already have a pointer to this exact extent,
645 		 * we don't have to do anything
646 		 */
647 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
648 			btrfs_release_path(path);
649 			goto out;
650 		}
651 	}
652 	btrfs_release_path(path);
653 
654 	/* drop any overlapping extents */
655 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
656 	if (ret)
657 		goto out;
658 
659 	if (found_type == BTRFS_FILE_EXTENT_REG ||
660 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
661 		u64 offset;
662 		unsigned long dest_offset;
663 		struct btrfs_key ins;
664 
665 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
666 		    btrfs_fs_incompat(fs_info, NO_HOLES))
667 			goto update_inode;
668 
669 		ret = btrfs_insert_empty_item(trans, root, path, key,
670 					      sizeof(*item));
671 		if (ret)
672 			goto out;
673 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
674 						    path->slots[0]);
675 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
676 				(unsigned long)item,  sizeof(*item));
677 
678 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
679 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
680 		ins.type = BTRFS_EXTENT_ITEM_KEY;
681 		offset = key->offset - btrfs_file_extent_offset(eb, item);
682 
683 		/*
684 		 * Manually record dirty extent, as here we did a shallow
685 		 * file extent item copy and skip normal backref update,
686 		 * but modifying extent tree all by ourselves.
687 		 * So need to manually record dirty extent for qgroup,
688 		 * as the owner of the file extent changed from log tree
689 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
690 		 */
691 		ret = btrfs_qgroup_trace_extent(trans, fs_info,
692 				btrfs_file_extent_disk_bytenr(eb, item),
693 				btrfs_file_extent_disk_num_bytes(eb, item),
694 				GFP_NOFS);
695 		if (ret < 0)
696 			goto out;
697 
698 		if (ins.objectid > 0) {
699 			u64 csum_start;
700 			u64 csum_end;
701 			LIST_HEAD(ordered_sums);
702 			/*
703 			 * is this extent already allocated in the extent
704 			 * allocation tree?  If so, just add a reference
705 			 */
706 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
707 						ins.offset);
708 			if (ret == 0) {
709 				ret = btrfs_inc_extent_ref(trans, root,
710 						ins.objectid, ins.offset,
711 						0, root->root_key.objectid,
712 						key->objectid, offset);
713 				if (ret)
714 					goto out;
715 			} else {
716 				/*
717 				 * insert the extent pointer in the extent
718 				 * allocation tree
719 				 */
720 				ret = btrfs_alloc_logged_file_extent(trans,
721 						fs_info,
722 						root->root_key.objectid,
723 						key->objectid, offset, &ins);
724 				if (ret)
725 					goto out;
726 			}
727 			btrfs_release_path(path);
728 
729 			if (btrfs_file_extent_compression(eb, item)) {
730 				csum_start = ins.objectid;
731 				csum_end = csum_start + ins.offset;
732 			} else {
733 				csum_start = ins.objectid +
734 					btrfs_file_extent_offset(eb, item);
735 				csum_end = csum_start +
736 					btrfs_file_extent_num_bytes(eb, item);
737 			}
738 
739 			ret = btrfs_lookup_csums_range(root->log_root,
740 						csum_start, csum_end - 1,
741 						&ordered_sums, 0);
742 			if (ret)
743 				goto out;
744 			/*
745 			 * Now delete all existing cums in the csum root that
746 			 * cover our range. We do this because we can have an
747 			 * extent that is completely referenced by one file
748 			 * extent item and partially referenced by another
749 			 * file extent item (like after using the clone or
750 			 * extent_same ioctls). In this case if we end up doing
751 			 * the replay of the one that partially references the
752 			 * extent first, and we do not do the csum deletion
753 			 * below, we can get 2 csum items in the csum tree that
754 			 * overlap each other. For example, imagine our log has
755 			 * the two following file extent items:
756 			 *
757 			 * key (257 EXTENT_DATA 409600)
758 			 *     extent data disk byte 12845056 nr 102400
759 			 *     extent data offset 20480 nr 20480 ram 102400
760 			 *
761 			 * key (257 EXTENT_DATA 819200)
762 			 *     extent data disk byte 12845056 nr 102400
763 			 *     extent data offset 0 nr 102400 ram 102400
764 			 *
765 			 * Where the second one fully references the 100K extent
766 			 * that starts at disk byte 12845056, and the log tree
767 			 * has a single csum item that covers the entire range
768 			 * of the extent:
769 			 *
770 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
771 			 *
772 			 * After the first file extent item is replayed, the
773 			 * csum tree gets the following csum item:
774 			 *
775 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
776 			 *
777 			 * Which covers the 20K sub-range starting at offset 20K
778 			 * of our extent. Now when we replay the second file
779 			 * extent item, if we do not delete existing csum items
780 			 * that cover any of its blocks, we end up getting two
781 			 * csum items in our csum tree that overlap each other:
782 			 *
783 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
785 			 *
786 			 * Which is a problem, because after this anyone trying
787 			 * to lookup up for the checksum of any block of our
788 			 * extent starting at an offset of 40K or higher, will
789 			 * end up looking at the second csum item only, which
790 			 * does not contain the checksum for any block starting
791 			 * at offset 40K or higher of our extent.
792 			 */
793 			while (!list_empty(&ordered_sums)) {
794 				struct btrfs_ordered_sum *sums;
795 				sums = list_entry(ordered_sums.next,
796 						struct btrfs_ordered_sum,
797 						list);
798 				if (!ret)
799 					ret = btrfs_del_csums(trans, fs_info,
800 							      sums->bytenr,
801 							      sums->len);
802 				if (!ret)
803 					ret = btrfs_csum_file_blocks(trans,
804 						fs_info->csum_root, sums);
805 				list_del(&sums->list);
806 				kfree(sums);
807 			}
808 			if (ret)
809 				goto out;
810 		} else {
811 			btrfs_release_path(path);
812 		}
813 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
814 		/* inline extents are easy, we just overwrite them */
815 		ret = overwrite_item(trans, root, path, eb, slot, key);
816 		if (ret)
817 			goto out;
818 	}
819 
820 	inode_add_bytes(inode, nbytes);
821 update_inode:
822 	ret = btrfs_update_inode(trans, root, inode);
823 out:
824 	if (inode)
825 		iput(inode);
826 	return ret;
827 }
828 
829 /*
830  * when cleaning up conflicts between the directory names in the
831  * subvolume, directory names in the log and directory names in the
832  * inode back references, we may have to unlink inodes from directories.
833  *
834  * This is a helper function to do the unlink of a specific directory
835  * item
836  */
837 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
838 				      struct btrfs_root *root,
839 				      struct btrfs_path *path,
840 				      struct btrfs_inode *dir,
841 				      struct btrfs_dir_item *di)
842 {
843 	struct inode *inode;
844 	char *name;
845 	int name_len;
846 	struct extent_buffer *leaf;
847 	struct btrfs_key location;
848 	int ret;
849 
850 	leaf = path->nodes[0];
851 
852 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
853 	name_len = btrfs_dir_name_len(leaf, di);
854 	name = kmalloc(name_len, GFP_NOFS);
855 	if (!name)
856 		return -ENOMEM;
857 
858 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
859 	btrfs_release_path(path);
860 
861 	inode = read_one_inode(root, location.objectid);
862 	if (!inode) {
863 		ret = -EIO;
864 		goto out;
865 	}
866 
867 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
868 	if (ret)
869 		goto out;
870 
871 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
872 			name_len);
873 	if (ret)
874 		goto out;
875 	else
876 		ret = btrfs_run_delayed_items(trans);
877 out:
878 	kfree(name);
879 	iput(inode);
880 	return ret;
881 }
882 
883 /*
884  * helper function to see if a given name and sequence number found
885  * in an inode back reference are already in a directory and correctly
886  * point to this inode
887  */
888 static noinline int inode_in_dir(struct btrfs_root *root,
889 				 struct btrfs_path *path,
890 				 u64 dirid, u64 objectid, u64 index,
891 				 const char *name, int name_len)
892 {
893 	struct btrfs_dir_item *di;
894 	struct btrfs_key location;
895 	int match = 0;
896 
897 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
898 					 index, name, name_len, 0);
899 	if (di && !IS_ERR(di)) {
900 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
901 		if (location.objectid != objectid)
902 			goto out;
903 	} else
904 		goto out;
905 	btrfs_release_path(path);
906 
907 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
908 	if (di && !IS_ERR(di)) {
909 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
910 		if (location.objectid != objectid)
911 			goto out;
912 	} else
913 		goto out;
914 	match = 1;
915 out:
916 	btrfs_release_path(path);
917 	return match;
918 }
919 
920 /*
921  * helper function to check a log tree for a named back reference in
922  * an inode.  This is used to decide if a back reference that is
923  * found in the subvolume conflicts with what we find in the log.
924  *
925  * inode backreferences may have multiple refs in a single item,
926  * during replay we process one reference at a time, and we don't
927  * want to delete valid links to a file from the subvolume if that
928  * link is also in the log.
929  */
930 static noinline int backref_in_log(struct btrfs_root *log,
931 				   struct btrfs_key *key,
932 				   u64 ref_objectid,
933 				   const char *name, int namelen)
934 {
935 	struct btrfs_path *path;
936 	struct btrfs_inode_ref *ref;
937 	unsigned long ptr;
938 	unsigned long ptr_end;
939 	unsigned long name_ptr;
940 	int found_name_len;
941 	int item_size;
942 	int ret;
943 	int match = 0;
944 
945 	path = btrfs_alloc_path();
946 	if (!path)
947 		return -ENOMEM;
948 
949 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
950 	if (ret != 0)
951 		goto out;
952 
953 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
954 
955 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
956 		if (btrfs_find_name_in_ext_backref(path->nodes[0],
957 						   path->slots[0],
958 						   ref_objectid,
959 						   name, namelen, NULL))
960 			match = 1;
961 
962 		goto out;
963 	}
964 
965 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
966 	ptr_end = ptr + item_size;
967 	while (ptr < ptr_end) {
968 		ref = (struct btrfs_inode_ref *)ptr;
969 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
970 		if (found_name_len == namelen) {
971 			name_ptr = (unsigned long)(ref + 1);
972 			ret = memcmp_extent_buffer(path->nodes[0], name,
973 						   name_ptr, namelen);
974 			if (ret == 0) {
975 				match = 1;
976 				goto out;
977 			}
978 		}
979 		ptr = (unsigned long)(ref + 1) + found_name_len;
980 	}
981 out:
982 	btrfs_free_path(path);
983 	return match;
984 }
985 
986 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
987 				  struct btrfs_root *root,
988 				  struct btrfs_path *path,
989 				  struct btrfs_root *log_root,
990 				  struct btrfs_inode *dir,
991 				  struct btrfs_inode *inode,
992 				  u64 inode_objectid, u64 parent_objectid,
993 				  u64 ref_index, char *name, int namelen,
994 				  int *search_done)
995 {
996 	int ret;
997 	char *victim_name;
998 	int victim_name_len;
999 	struct extent_buffer *leaf;
1000 	struct btrfs_dir_item *di;
1001 	struct btrfs_key search_key;
1002 	struct btrfs_inode_extref *extref;
1003 
1004 again:
1005 	/* Search old style refs */
1006 	search_key.objectid = inode_objectid;
1007 	search_key.type = BTRFS_INODE_REF_KEY;
1008 	search_key.offset = parent_objectid;
1009 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1010 	if (ret == 0) {
1011 		struct btrfs_inode_ref *victim_ref;
1012 		unsigned long ptr;
1013 		unsigned long ptr_end;
1014 
1015 		leaf = path->nodes[0];
1016 
1017 		/* are we trying to overwrite a back ref for the root directory
1018 		 * if so, just jump out, we're done
1019 		 */
1020 		if (search_key.objectid == search_key.offset)
1021 			return 1;
1022 
1023 		/* check all the names in this back reference to see
1024 		 * if they are in the log.  if so, we allow them to stay
1025 		 * otherwise they must be unlinked as a conflict
1026 		 */
1027 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1028 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1029 		while (ptr < ptr_end) {
1030 			victim_ref = (struct btrfs_inode_ref *)ptr;
1031 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1032 								   victim_ref);
1033 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1034 			if (!victim_name)
1035 				return -ENOMEM;
1036 
1037 			read_extent_buffer(leaf, victim_name,
1038 					   (unsigned long)(victim_ref + 1),
1039 					   victim_name_len);
1040 
1041 			if (!backref_in_log(log_root, &search_key,
1042 					    parent_objectid,
1043 					    victim_name,
1044 					    victim_name_len)) {
1045 				inc_nlink(&inode->vfs_inode);
1046 				btrfs_release_path(path);
1047 
1048 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1049 						victim_name, victim_name_len);
1050 				kfree(victim_name);
1051 				if (ret)
1052 					return ret;
1053 				ret = btrfs_run_delayed_items(trans);
1054 				if (ret)
1055 					return ret;
1056 				*search_done = 1;
1057 				goto again;
1058 			}
1059 			kfree(victim_name);
1060 
1061 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1062 		}
1063 
1064 		/*
1065 		 * NOTE: we have searched root tree and checked the
1066 		 * corresponding ref, it does not need to check again.
1067 		 */
1068 		*search_done = 1;
1069 	}
1070 	btrfs_release_path(path);
1071 
1072 	/* Same search but for extended refs */
1073 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1074 					   inode_objectid, parent_objectid, 0,
1075 					   0);
1076 	if (!IS_ERR_OR_NULL(extref)) {
1077 		u32 item_size;
1078 		u32 cur_offset = 0;
1079 		unsigned long base;
1080 		struct inode *victim_parent;
1081 
1082 		leaf = path->nodes[0];
1083 
1084 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1085 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1086 
1087 		while (cur_offset < item_size) {
1088 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1089 
1090 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1091 
1092 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1093 				goto next;
1094 
1095 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1096 			if (!victim_name)
1097 				return -ENOMEM;
1098 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1099 					   victim_name_len);
1100 
1101 			search_key.objectid = inode_objectid;
1102 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1103 			search_key.offset = btrfs_extref_hash(parent_objectid,
1104 							      victim_name,
1105 							      victim_name_len);
1106 			ret = 0;
1107 			if (!backref_in_log(log_root, &search_key,
1108 					    parent_objectid, victim_name,
1109 					    victim_name_len)) {
1110 				ret = -ENOENT;
1111 				victim_parent = read_one_inode(root,
1112 						parent_objectid);
1113 				if (victim_parent) {
1114 					inc_nlink(&inode->vfs_inode);
1115 					btrfs_release_path(path);
1116 
1117 					ret = btrfs_unlink_inode(trans, root,
1118 							BTRFS_I(victim_parent),
1119 							inode,
1120 							victim_name,
1121 							victim_name_len);
1122 					if (!ret)
1123 						ret = btrfs_run_delayed_items(
1124 								  trans);
1125 				}
1126 				iput(victim_parent);
1127 				kfree(victim_name);
1128 				if (ret)
1129 					return ret;
1130 				*search_done = 1;
1131 				goto again;
1132 			}
1133 			kfree(victim_name);
1134 next:
1135 			cur_offset += victim_name_len + sizeof(*extref);
1136 		}
1137 		*search_done = 1;
1138 	}
1139 	btrfs_release_path(path);
1140 
1141 	/* look for a conflicting sequence number */
1142 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1143 					 ref_index, name, namelen, 0);
1144 	if (di && !IS_ERR(di)) {
1145 		ret = drop_one_dir_item(trans, root, path, dir, di);
1146 		if (ret)
1147 			return ret;
1148 	}
1149 	btrfs_release_path(path);
1150 
1151 	/* look for a conflicing name */
1152 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1153 				   name, namelen, 0);
1154 	if (di && !IS_ERR(di)) {
1155 		ret = drop_one_dir_item(trans, root, path, dir, di);
1156 		if (ret)
1157 			return ret;
1158 	}
1159 	btrfs_release_path(path);
1160 
1161 	return 0;
1162 }
1163 
1164 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1165 			     u32 *namelen, char **name, u64 *index,
1166 			     u64 *parent_objectid)
1167 {
1168 	struct btrfs_inode_extref *extref;
1169 
1170 	extref = (struct btrfs_inode_extref *)ref_ptr;
1171 
1172 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1173 	*name = kmalloc(*namelen, GFP_NOFS);
1174 	if (*name == NULL)
1175 		return -ENOMEM;
1176 
1177 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1178 			   *namelen);
1179 
1180 	if (index)
1181 		*index = btrfs_inode_extref_index(eb, extref);
1182 	if (parent_objectid)
1183 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1184 
1185 	return 0;
1186 }
1187 
1188 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1189 			  u32 *namelen, char **name, u64 *index)
1190 {
1191 	struct btrfs_inode_ref *ref;
1192 
1193 	ref = (struct btrfs_inode_ref *)ref_ptr;
1194 
1195 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1196 	*name = kmalloc(*namelen, GFP_NOFS);
1197 	if (*name == NULL)
1198 		return -ENOMEM;
1199 
1200 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1201 
1202 	if (index)
1203 		*index = btrfs_inode_ref_index(eb, ref);
1204 
1205 	return 0;
1206 }
1207 
1208 /*
1209  * Take an inode reference item from the log tree and iterate all names from the
1210  * inode reference item in the subvolume tree with the same key (if it exists).
1211  * For any name that is not in the inode reference item from the log tree, do a
1212  * proper unlink of that name (that is, remove its entry from the inode
1213  * reference item and both dir index keys).
1214  */
1215 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1216 				 struct btrfs_root *root,
1217 				 struct btrfs_path *path,
1218 				 struct btrfs_inode *inode,
1219 				 struct extent_buffer *log_eb,
1220 				 int log_slot,
1221 				 struct btrfs_key *key)
1222 {
1223 	int ret;
1224 	unsigned long ref_ptr;
1225 	unsigned long ref_end;
1226 	struct extent_buffer *eb;
1227 
1228 again:
1229 	btrfs_release_path(path);
1230 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1231 	if (ret > 0) {
1232 		ret = 0;
1233 		goto out;
1234 	}
1235 	if (ret < 0)
1236 		goto out;
1237 
1238 	eb = path->nodes[0];
1239 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1240 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1241 	while (ref_ptr < ref_end) {
1242 		char *name = NULL;
1243 		int namelen;
1244 		u64 parent_id;
1245 
1246 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1247 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1248 						NULL, &parent_id);
1249 		} else {
1250 			parent_id = key->offset;
1251 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1252 					     NULL);
1253 		}
1254 		if (ret)
1255 			goto out;
1256 
1257 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1258 			ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1259 							     parent_id, name,
1260 							     namelen, NULL);
1261 		else
1262 			ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1263 							 namelen, NULL);
1264 
1265 		if (!ret) {
1266 			struct inode *dir;
1267 
1268 			btrfs_release_path(path);
1269 			dir = read_one_inode(root, parent_id);
1270 			if (!dir) {
1271 				ret = -ENOENT;
1272 				kfree(name);
1273 				goto out;
1274 			}
1275 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1276 						 inode, name, namelen);
1277 			kfree(name);
1278 			iput(dir);
1279 			if (ret)
1280 				goto out;
1281 			goto again;
1282 		}
1283 
1284 		kfree(name);
1285 		ref_ptr += namelen;
1286 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1287 			ref_ptr += sizeof(struct btrfs_inode_extref);
1288 		else
1289 			ref_ptr += sizeof(struct btrfs_inode_ref);
1290 	}
1291 	ret = 0;
1292  out:
1293 	btrfs_release_path(path);
1294 	return ret;
1295 }
1296 
1297 /*
1298  * replay one inode back reference item found in the log tree.
1299  * eb, slot and key refer to the buffer and key found in the log tree.
1300  * root is the destination we are replaying into, and path is for temp
1301  * use by this function.  (it should be released on return).
1302  */
1303 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1304 				  struct btrfs_root *root,
1305 				  struct btrfs_root *log,
1306 				  struct btrfs_path *path,
1307 				  struct extent_buffer *eb, int slot,
1308 				  struct btrfs_key *key)
1309 {
1310 	struct inode *dir = NULL;
1311 	struct inode *inode = NULL;
1312 	unsigned long ref_ptr;
1313 	unsigned long ref_end;
1314 	char *name = NULL;
1315 	int namelen;
1316 	int ret;
1317 	int search_done = 0;
1318 	int log_ref_ver = 0;
1319 	u64 parent_objectid;
1320 	u64 inode_objectid;
1321 	u64 ref_index = 0;
1322 	int ref_struct_size;
1323 
1324 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1325 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1326 
1327 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1328 		struct btrfs_inode_extref *r;
1329 
1330 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1331 		log_ref_ver = 1;
1332 		r = (struct btrfs_inode_extref *)ref_ptr;
1333 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1334 	} else {
1335 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1336 		parent_objectid = key->offset;
1337 	}
1338 	inode_objectid = key->objectid;
1339 
1340 	/*
1341 	 * it is possible that we didn't log all the parent directories
1342 	 * for a given inode.  If we don't find the dir, just don't
1343 	 * copy the back ref in.  The link count fixup code will take
1344 	 * care of the rest
1345 	 */
1346 	dir = read_one_inode(root, parent_objectid);
1347 	if (!dir) {
1348 		ret = -ENOENT;
1349 		goto out;
1350 	}
1351 
1352 	inode = read_one_inode(root, inode_objectid);
1353 	if (!inode) {
1354 		ret = -EIO;
1355 		goto out;
1356 	}
1357 
1358 	while (ref_ptr < ref_end) {
1359 		if (log_ref_ver) {
1360 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1361 						&ref_index, &parent_objectid);
1362 			/*
1363 			 * parent object can change from one array
1364 			 * item to another.
1365 			 */
1366 			if (!dir)
1367 				dir = read_one_inode(root, parent_objectid);
1368 			if (!dir) {
1369 				ret = -ENOENT;
1370 				goto out;
1371 			}
1372 		} else {
1373 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1374 					     &ref_index);
1375 		}
1376 		if (ret)
1377 			goto out;
1378 
1379 		/* if we already have a perfect match, we're done */
1380 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1381 					btrfs_ino(BTRFS_I(inode)), ref_index,
1382 					name, namelen)) {
1383 			/*
1384 			 * look for a conflicting back reference in the
1385 			 * metadata. if we find one we have to unlink that name
1386 			 * of the file before we add our new link.  Later on, we
1387 			 * overwrite any existing back reference, and we don't
1388 			 * want to create dangling pointers in the directory.
1389 			 */
1390 
1391 			if (!search_done) {
1392 				ret = __add_inode_ref(trans, root, path, log,
1393 						      BTRFS_I(dir),
1394 						      BTRFS_I(inode),
1395 						      inode_objectid,
1396 						      parent_objectid,
1397 						      ref_index, name, namelen,
1398 						      &search_done);
1399 				if (ret) {
1400 					if (ret == 1)
1401 						ret = 0;
1402 					goto out;
1403 				}
1404 			}
1405 
1406 			/* insert our name */
1407 			ret = btrfs_add_link(trans, BTRFS_I(dir),
1408 					BTRFS_I(inode),
1409 					name, namelen, 0, ref_index);
1410 			if (ret)
1411 				goto out;
1412 
1413 			btrfs_update_inode(trans, root, inode);
1414 		}
1415 
1416 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1417 		kfree(name);
1418 		name = NULL;
1419 		if (log_ref_ver) {
1420 			iput(dir);
1421 			dir = NULL;
1422 		}
1423 	}
1424 
1425 	/*
1426 	 * Before we overwrite the inode reference item in the subvolume tree
1427 	 * with the item from the log tree, we must unlink all names from the
1428 	 * parent directory that are in the subvolume's tree inode reference
1429 	 * item, otherwise we end up with an inconsistent subvolume tree where
1430 	 * dir index entries exist for a name but there is no inode reference
1431 	 * item with the same name.
1432 	 */
1433 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1434 				    key);
1435 	if (ret)
1436 		goto out;
1437 
1438 	/* finally write the back reference in the inode */
1439 	ret = overwrite_item(trans, root, path, eb, slot, key);
1440 out:
1441 	btrfs_release_path(path);
1442 	kfree(name);
1443 	iput(dir);
1444 	iput(inode);
1445 	return ret;
1446 }
1447 
1448 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1449 			      struct btrfs_root *root, u64 ino)
1450 {
1451 	int ret;
1452 
1453 	ret = btrfs_insert_orphan_item(trans, root, ino);
1454 	if (ret == -EEXIST)
1455 		ret = 0;
1456 
1457 	return ret;
1458 }
1459 
1460 static int count_inode_extrefs(struct btrfs_root *root,
1461 		struct btrfs_inode *inode, struct btrfs_path *path)
1462 {
1463 	int ret = 0;
1464 	int name_len;
1465 	unsigned int nlink = 0;
1466 	u32 item_size;
1467 	u32 cur_offset = 0;
1468 	u64 inode_objectid = btrfs_ino(inode);
1469 	u64 offset = 0;
1470 	unsigned long ptr;
1471 	struct btrfs_inode_extref *extref;
1472 	struct extent_buffer *leaf;
1473 
1474 	while (1) {
1475 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1476 					    &extref, &offset);
1477 		if (ret)
1478 			break;
1479 
1480 		leaf = path->nodes[0];
1481 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1482 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1483 		cur_offset = 0;
1484 
1485 		while (cur_offset < item_size) {
1486 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1487 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1488 
1489 			nlink++;
1490 
1491 			cur_offset += name_len + sizeof(*extref);
1492 		}
1493 
1494 		offset++;
1495 		btrfs_release_path(path);
1496 	}
1497 	btrfs_release_path(path);
1498 
1499 	if (ret < 0 && ret != -ENOENT)
1500 		return ret;
1501 	return nlink;
1502 }
1503 
1504 static int count_inode_refs(struct btrfs_root *root,
1505 			struct btrfs_inode *inode, struct btrfs_path *path)
1506 {
1507 	int ret;
1508 	struct btrfs_key key;
1509 	unsigned int nlink = 0;
1510 	unsigned long ptr;
1511 	unsigned long ptr_end;
1512 	int name_len;
1513 	u64 ino = btrfs_ino(inode);
1514 
1515 	key.objectid = ino;
1516 	key.type = BTRFS_INODE_REF_KEY;
1517 	key.offset = (u64)-1;
1518 
1519 	while (1) {
1520 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1521 		if (ret < 0)
1522 			break;
1523 		if (ret > 0) {
1524 			if (path->slots[0] == 0)
1525 				break;
1526 			path->slots[0]--;
1527 		}
1528 process_slot:
1529 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 				      path->slots[0]);
1531 		if (key.objectid != ino ||
1532 		    key.type != BTRFS_INODE_REF_KEY)
1533 			break;
1534 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1535 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1536 						   path->slots[0]);
1537 		while (ptr < ptr_end) {
1538 			struct btrfs_inode_ref *ref;
1539 
1540 			ref = (struct btrfs_inode_ref *)ptr;
1541 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1542 							    ref);
1543 			ptr = (unsigned long)(ref + 1) + name_len;
1544 			nlink++;
1545 		}
1546 
1547 		if (key.offset == 0)
1548 			break;
1549 		if (path->slots[0] > 0) {
1550 			path->slots[0]--;
1551 			goto process_slot;
1552 		}
1553 		key.offset--;
1554 		btrfs_release_path(path);
1555 	}
1556 	btrfs_release_path(path);
1557 
1558 	return nlink;
1559 }
1560 
1561 /*
1562  * There are a few corners where the link count of the file can't
1563  * be properly maintained during replay.  So, instead of adding
1564  * lots of complexity to the log code, we just scan the backrefs
1565  * for any file that has been through replay.
1566  *
1567  * The scan will update the link count on the inode to reflect the
1568  * number of back refs found.  If it goes down to zero, the iput
1569  * will free the inode.
1570  */
1571 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1572 					   struct btrfs_root *root,
1573 					   struct inode *inode)
1574 {
1575 	struct btrfs_path *path;
1576 	int ret;
1577 	u64 nlink = 0;
1578 	u64 ino = btrfs_ino(BTRFS_I(inode));
1579 
1580 	path = btrfs_alloc_path();
1581 	if (!path)
1582 		return -ENOMEM;
1583 
1584 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1585 	if (ret < 0)
1586 		goto out;
1587 
1588 	nlink = ret;
1589 
1590 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1591 	if (ret < 0)
1592 		goto out;
1593 
1594 	nlink += ret;
1595 
1596 	ret = 0;
1597 
1598 	if (nlink != inode->i_nlink) {
1599 		set_nlink(inode, nlink);
1600 		btrfs_update_inode(trans, root, inode);
1601 	}
1602 	BTRFS_I(inode)->index_cnt = (u64)-1;
1603 
1604 	if (inode->i_nlink == 0) {
1605 		if (S_ISDIR(inode->i_mode)) {
1606 			ret = replay_dir_deletes(trans, root, NULL, path,
1607 						 ino, 1);
1608 			if (ret)
1609 				goto out;
1610 		}
1611 		ret = insert_orphan_item(trans, root, ino);
1612 	}
1613 
1614 out:
1615 	btrfs_free_path(path);
1616 	return ret;
1617 }
1618 
1619 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1620 					    struct btrfs_root *root,
1621 					    struct btrfs_path *path)
1622 {
1623 	int ret;
1624 	struct btrfs_key key;
1625 	struct inode *inode;
1626 
1627 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1628 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1629 	key.offset = (u64)-1;
1630 	while (1) {
1631 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1632 		if (ret < 0)
1633 			break;
1634 
1635 		if (ret == 1) {
1636 			if (path->slots[0] == 0)
1637 				break;
1638 			path->slots[0]--;
1639 		}
1640 
1641 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1642 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1643 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1644 			break;
1645 
1646 		ret = btrfs_del_item(trans, root, path);
1647 		if (ret)
1648 			goto out;
1649 
1650 		btrfs_release_path(path);
1651 		inode = read_one_inode(root, key.offset);
1652 		if (!inode)
1653 			return -EIO;
1654 
1655 		ret = fixup_inode_link_count(trans, root, inode);
1656 		iput(inode);
1657 		if (ret)
1658 			goto out;
1659 
1660 		/*
1661 		 * fixup on a directory may create new entries,
1662 		 * make sure we always look for the highset possible
1663 		 * offset
1664 		 */
1665 		key.offset = (u64)-1;
1666 	}
1667 	ret = 0;
1668 out:
1669 	btrfs_release_path(path);
1670 	return ret;
1671 }
1672 
1673 
1674 /*
1675  * record a given inode in the fixup dir so we can check its link
1676  * count when replay is done.  The link count is incremented here
1677  * so the inode won't go away until we check it
1678  */
1679 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1680 				      struct btrfs_root *root,
1681 				      struct btrfs_path *path,
1682 				      u64 objectid)
1683 {
1684 	struct btrfs_key key;
1685 	int ret = 0;
1686 	struct inode *inode;
1687 
1688 	inode = read_one_inode(root, objectid);
1689 	if (!inode)
1690 		return -EIO;
1691 
1692 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1693 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1694 	key.offset = objectid;
1695 
1696 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1697 
1698 	btrfs_release_path(path);
1699 	if (ret == 0) {
1700 		if (!inode->i_nlink)
1701 			set_nlink(inode, 1);
1702 		else
1703 			inc_nlink(inode);
1704 		ret = btrfs_update_inode(trans, root, inode);
1705 	} else if (ret == -EEXIST) {
1706 		ret = 0;
1707 	} else {
1708 		BUG(); /* Logic Error */
1709 	}
1710 	iput(inode);
1711 
1712 	return ret;
1713 }
1714 
1715 /*
1716  * when replaying the log for a directory, we only insert names
1717  * for inodes that actually exist.  This means an fsync on a directory
1718  * does not implicitly fsync all the new files in it
1719  */
1720 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1721 				    struct btrfs_root *root,
1722 				    u64 dirid, u64 index,
1723 				    char *name, int name_len,
1724 				    struct btrfs_key *location)
1725 {
1726 	struct inode *inode;
1727 	struct inode *dir;
1728 	int ret;
1729 
1730 	inode = read_one_inode(root, location->objectid);
1731 	if (!inode)
1732 		return -ENOENT;
1733 
1734 	dir = read_one_inode(root, dirid);
1735 	if (!dir) {
1736 		iput(inode);
1737 		return -EIO;
1738 	}
1739 
1740 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1741 			name_len, 1, index);
1742 
1743 	/* FIXME, put inode into FIXUP list */
1744 
1745 	iput(inode);
1746 	iput(dir);
1747 	return ret;
1748 }
1749 
1750 /*
1751  * Return true if an inode reference exists in the log for the given name,
1752  * inode and parent inode.
1753  */
1754 static bool name_in_log_ref(struct btrfs_root *log_root,
1755 			    const char *name, const int name_len,
1756 			    const u64 dirid, const u64 ino)
1757 {
1758 	struct btrfs_key search_key;
1759 
1760 	search_key.objectid = ino;
1761 	search_key.type = BTRFS_INODE_REF_KEY;
1762 	search_key.offset = dirid;
1763 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1764 		return true;
1765 
1766 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1767 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1768 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1769 		return true;
1770 
1771 	return false;
1772 }
1773 
1774 /*
1775  * take a single entry in a log directory item and replay it into
1776  * the subvolume.
1777  *
1778  * if a conflicting item exists in the subdirectory already,
1779  * the inode it points to is unlinked and put into the link count
1780  * fix up tree.
1781  *
1782  * If a name from the log points to a file or directory that does
1783  * not exist in the FS, it is skipped.  fsyncs on directories
1784  * do not force down inodes inside that directory, just changes to the
1785  * names or unlinks in a directory.
1786  *
1787  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1788  * non-existing inode) and 1 if the name was replayed.
1789  */
1790 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1791 				    struct btrfs_root *root,
1792 				    struct btrfs_path *path,
1793 				    struct extent_buffer *eb,
1794 				    struct btrfs_dir_item *di,
1795 				    struct btrfs_key *key)
1796 {
1797 	char *name;
1798 	int name_len;
1799 	struct btrfs_dir_item *dst_di;
1800 	struct btrfs_key found_key;
1801 	struct btrfs_key log_key;
1802 	struct inode *dir;
1803 	u8 log_type;
1804 	int exists;
1805 	int ret = 0;
1806 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1807 	bool name_added = false;
1808 
1809 	dir = read_one_inode(root, key->objectid);
1810 	if (!dir)
1811 		return -EIO;
1812 
1813 	name_len = btrfs_dir_name_len(eb, di);
1814 	name = kmalloc(name_len, GFP_NOFS);
1815 	if (!name) {
1816 		ret = -ENOMEM;
1817 		goto out;
1818 	}
1819 
1820 	log_type = btrfs_dir_type(eb, di);
1821 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1822 		   name_len);
1823 
1824 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1825 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1826 	if (exists == 0)
1827 		exists = 1;
1828 	else
1829 		exists = 0;
1830 	btrfs_release_path(path);
1831 
1832 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1833 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1834 				       name, name_len, 1);
1835 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1836 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1837 						     key->objectid,
1838 						     key->offset, name,
1839 						     name_len, 1);
1840 	} else {
1841 		/* Corruption */
1842 		ret = -EINVAL;
1843 		goto out;
1844 	}
1845 	if (IS_ERR_OR_NULL(dst_di)) {
1846 		/* we need a sequence number to insert, so we only
1847 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1848 		 */
1849 		if (key->type != BTRFS_DIR_INDEX_KEY)
1850 			goto out;
1851 		goto insert;
1852 	}
1853 
1854 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1855 	/* the existing item matches the logged item */
1856 	if (found_key.objectid == log_key.objectid &&
1857 	    found_key.type == log_key.type &&
1858 	    found_key.offset == log_key.offset &&
1859 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1860 		update_size = false;
1861 		goto out;
1862 	}
1863 
1864 	/*
1865 	 * don't drop the conflicting directory entry if the inode
1866 	 * for the new entry doesn't exist
1867 	 */
1868 	if (!exists)
1869 		goto out;
1870 
1871 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1872 	if (ret)
1873 		goto out;
1874 
1875 	if (key->type == BTRFS_DIR_INDEX_KEY)
1876 		goto insert;
1877 out:
1878 	btrfs_release_path(path);
1879 	if (!ret && update_size) {
1880 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1881 		ret = btrfs_update_inode(trans, root, dir);
1882 	}
1883 	kfree(name);
1884 	iput(dir);
1885 	if (!ret && name_added)
1886 		ret = 1;
1887 	return ret;
1888 
1889 insert:
1890 	if (name_in_log_ref(root->log_root, name, name_len,
1891 			    key->objectid, log_key.objectid)) {
1892 		/* The dentry will be added later. */
1893 		ret = 0;
1894 		update_size = false;
1895 		goto out;
1896 	}
1897 	btrfs_release_path(path);
1898 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1899 			      name, name_len, &log_key);
1900 	if (ret && ret != -ENOENT && ret != -EEXIST)
1901 		goto out;
1902 	if (!ret)
1903 		name_added = true;
1904 	update_size = false;
1905 	ret = 0;
1906 	goto out;
1907 }
1908 
1909 /*
1910  * find all the names in a directory item and reconcile them into
1911  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1912  * one name in a directory item, but the same code gets used for
1913  * both directory index types
1914  */
1915 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1916 					struct btrfs_root *root,
1917 					struct btrfs_path *path,
1918 					struct extent_buffer *eb, int slot,
1919 					struct btrfs_key *key)
1920 {
1921 	int ret = 0;
1922 	u32 item_size = btrfs_item_size_nr(eb, slot);
1923 	struct btrfs_dir_item *di;
1924 	int name_len;
1925 	unsigned long ptr;
1926 	unsigned long ptr_end;
1927 	struct btrfs_path *fixup_path = NULL;
1928 
1929 	ptr = btrfs_item_ptr_offset(eb, slot);
1930 	ptr_end = ptr + item_size;
1931 	while (ptr < ptr_end) {
1932 		di = (struct btrfs_dir_item *)ptr;
1933 		name_len = btrfs_dir_name_len(eb, di);
1934 		ret = replay_one_name(trans, root, path, eb, di, key);
1935 		if (ret < 0)
1936 			break;
1937 		ptr = (unsigned long)(di + 1);
1938 		ptr += name_len;
1939 
1940 		/*
1941 		 * If this entry refers to a non-directory (directories can not
1942 		 * have a link count > 1) and it was added in the transaction
1943 		 * that was not committed, make sure we fixup the link count of
1944 		 * the inode it the entry points to. Otherwise something like
1945 		 * the following would result in a directory pointing to an
1946 		 * inode with a wrong link that does not account for this dir
1947 		 * entry:
1948 		 *
1949 		 * mkdir testdir
1950 		 * touch testdir/foo
1951 		 * touch testdir/bar
1952 		 * sync
1953 		 *
1954 		 * ln testdir/bar testdir/bar_link
1955 		 * ln testdir/foo testdir/foo_link
1956 		 * xfs_io -c "fsync" testdir/bar
1957 		 *
1958 		 * <power failure>
1959 		 *
1960 		 * mount fs, log replay happens
1961 		 *
1962 		 * File foo would remain with a link count of 1 when it has two
1963 		 * entries pointing to it in the directory testdir. This would
1964 		 * make it impossible to ever delete the parent directory has
1965 		 * it would result in stale dentries that can never be deleted.
1966 		 */
1967 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1968 			struct btrfs_key di_key;
1969 
1970 			if (!fixup_path) {
1971 				fixup_path = btrfs_alloc_path();
1972 				if (!fixup_path) {
1973 					ret = -ENOMEM;
1974 					break;
1975 				}
1976 			}
1977 
1978 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1979 			ret = link_to_fixup_dir(trans, root, fixup_path,
1980 						di_key.objectid);
1981 			if (ret)
1982 				break;
1983 		}
1984 		ret = 0;
1985 	}
1986 	btrfs_free_path(fixup_path);
1987 	return ret;
1988 }
1989 
1990 /*
1991  * directory replay has two parts.  There are the standard directory
1992  * items in the log copied from the subvolume, and range items
1993  * created in the log while the subvolume was logged.
1994  *
1995  * The range items tell us which parts of the key space the log
1996  * is authoritative for.  During replay, if a key in the subvolume
1997  * directory is in a logged range item, but not actually in the log
1998  * that means it was deleted from the directory before the fsync
1999  * and should be removed.
2000  */
2001 static noinline int find_dir_range(struct btrfs_root *root,
2002 				   struct btrfs_path *path,
2003 				   u64 dirid, int key_type,
2004 				   u64 *start_ret, u64 *end_ret)
2005 {
2006 	struct btrfs_key key;
2007 	u64 found_end;
2008 	struct btrfs_dir_log_item *item;
2009 	int ret;
2010 	int nritems;
2011 
2012 	if (*start_ret == (u64)-1)
2013 		return 1;
2014 
2015 	key.objectid = dirid;
2016 	key.type = key_type;
2017 	key.offset = *start_ret;
2018 
2019 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2020 	if (ret < 0)
2021 		goto out;
2022 	if (ret > 0) {
2023 		if (path->slots[0] == 0)
2024 			goto out;
2025 		path->slots[0]--;
2026 	}
2027 	if (ret != 0)
2028 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2029 
2030 	if (key.type != key_type || key.objectid != dirid) {
2031 		ret = 1;
2032 		goto next;
2033 	}
2034 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2035 			      struct btrfs_dir_log_item);
2036 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2037 
2038 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2039 		ret = 0;
2040 		*start_ret = key.offset;
2041 		*end_ret = found_end;
2042 		goto out;
2043 	}
2044 	ret = 1;
2045 next:
2046 	/* check the next slot in the tree to see if it is a valid item */
2047 	nritems = btrfs_header_nritems(path->nodes[0]);
2048 	path->slots[0]++;
2049 	if (path->slots[0] >= nritems) {
2050 		ret = btrfs_next_leaf(root, path);
2051 		if (ret)
2052 			goto out;
2053 	}
2054 
2055 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2056 
2057 	if (key.type != key_type || key.objectid != dirid) {
2058 		ret = 1;
2059 		goto out;
2060 	}
2061 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2062 			      struct btrfs_dir_log_item);
2063 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2064 	*start_ret = key.offset;
2065 	*end_ret = found_end;
2066 	ret = 0;
2067 out:
2068 	btrfs_release_path(path);
2069 	return ret;
2070 }
2071 
2072 /*
2073  * this looks for a given directory item in the log.  If the directory
2074  * item is not in the log, the item is removed and the inode it points
2075  * to is unlinked
2076  */
2077 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2078 				      struct btrfs_root *root,
2079 				      struct btrfs_root *log,
2080 				      struct btrfs_path *path,
2081 				      struct btrfs_path *log_path,
2082 				      struct inode *dir,
2083 				      struct btrfs_key *dir_key)
2084 {
2085 	int ret;
2086 	struct extent_buffer *eb;
2087 	int slot;
2088 	u32 item_size;
2089 	struct btrfs_dir_item *di;
2090 	struct btrfs_dir_item *log_di;
2091 	int name_len;
2092 	unsigned long ptr;
2093 	unsigned long ptr_end;
2094 	char *name;
2095 	struct inode *inode;
2096 	struct btrfs_key location;
2097 
2098 again:
2099 	eb = path->nodes[0];
2100 	slot = path->slots[0];
2101 	item_size = btrfs_item_size_nr(eb, slot);
2102 	ptr = btrfs_item_ptr_offset(eb, slot);
2103 	ptr_end = ptr + item_size;
2104 	while (ptr < ptr_end) {
2105 		di = (struct btrfs_dir_item *)ptr;
2106 		name_len = btrfs_dir_name_len(eb, di);
2107 		name = kmalloc(name_len, GFP_NOFS);
2108 		if (!name) {
2109 			ret = -ENOMEM;
2110 			goto out;
2111 		}
2112 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2113 				  name_len);
2114 		log_di = NULL;
2115 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2116 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2117 						       dir_key->objectid,
2118 						       name, name_len, 0);
2119 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2120 			log_di = btrfs_lookup_dir_index_item(trans, log,
2121 						     log_path,
2122 						     dir_key->objectid,
2123 						     dir_key->offset,
2124 						     name, name_len, 0);
2125 		}
2126 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2127 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2128 			btrfs_release_path(path);
2129 			btrfs_release_path(log_path);
2130 			inode = read_one_inode(root, location.objectid);
2131 			if (!inode) {
2132 				kfree(name);
2133 				return -EIO;
2134 			}
2135 
2136 			ret = link_to_fixup_dir(trans, root,
2137 						path, location.objectid);
2138 			if (ret) {
2139 				kfree(name);
2140 				iput(inode);
2141 				goto out;
2142 			}
2143 
2144 			inc_nlink(inode);
2145 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2146 					BTRFS_I(inode), name, name_len);
2147 			if (!ret)
2148 				ret = btrfs_run_delayed_items(trans);
2149 			kfree(name);
2150 			iput(inode);
2151 			if (ret)
2152 				goto out;
2153 
2154 			/* there might still be more names under this key
2155 			 * check and repeat if required
2156 			 */
2157 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2158 						0, 0);
2159 			if (ret == 0)
2160 				goto again;
2161 			ret = 0;
2162 			goto out;
2163 		} else if (IS_ERR(log_di)) {
2164 			kfree(name);
2165 			return PTR_ERR(log_di);
2166 		}
2167 		btrfs_release_path(log_path);
2168 		kfree(name);
2169 
2170 		ptr = (unsigned long)(di + 1);
2171 		ptr += name_len;
2172 	}
2173 	ret = 0;
2174 out:
2175 	btrfs_release_path(path);
2176 	btrfs_release_path(log_path);
2177 	return ret;
2178 }
2179 
2180 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2181 			      struct btrfs_root *root,
2182 			      struct btrfs_root *log,
2183 			      struct btrfs_path *path,
2184 			      const u64 ino)
2185 {
2186 	struct btrfs_key search_key;
2187 	struct btrfs_path *log_path;
2188 	int i;
2189 	int nritems;
2190 	int ret;
2191 
2192 	log_path = btrfs_alloc_path();
2193 	if (!log_path)
2194 		return -ENOMEM;
2195 
2196 	search_key.objectid = ino;
2197 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2198 	search_key.offset = 0;
2199 again:
2200 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2201 	if (ret < 0)
2202 		goto out;
2203 process_leaf:
2204 	nritems = btrfs_header_nritems(path->nodes[0]);
2205 	for (i = path->slots[0]; i < nritems; i++) {
2206 		struct btrfs_key key;
2207 		struct btrfs_dir_item *di;
2208 		struct btrfs_dir_item *log_di;
2209 		u32 total_size;
2210 		u32 cur;
2211 
2212 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2213 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2214 			ret = 0;
2215 			goto out;
2216 		}
2217 
2218 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2219 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2220 		cur = 0;
2221 		while (cur < total_size) {
2222 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2223 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2224 			u32 this_len = sizeof(*di) + name_len + data_len;
2225 			char *name;
2226 
2227 			name = kmalloc(name_len, GFP_NOFS);
2228 			if (!name) {
2229 				ret = -ENOMEM;
2230 				goto out;
2231 			}
2232 			read_extent_buffer(path->nodes[0], name,
2233 					   (unsigned long)(di + 1), name_len);
2234 
2235 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2236 						    name, name_len, 0);
2237 			btrfs_release_path(log_path);
2238 			if (!log_di) {
2239 				/* Doesn't exist in log tree, so delete it. */
2240 				btrfs_release_path(path);
2241 				di = btrfs_lookup_xattr(trans, root, path, ino,
2242 							name, name_len, -1);
2243 				kfree(name);
2244 				if (IS_ERR(di)) {
2245 					ret = PTR_ERR(di);
2246 					goto out;
2247 				}
2248 				ASSERT(di);
2249 				ret = btrfs_delete_one_dir_name(trans, root,
2250 								path, di);
2251 				if (ret)
2252 					goto out;
2253 				btrfs_release_path(path);
2254 				search_key = key;
2255 				goto again;
2256 			}
2257 			kfree(name);
2258 			if (IS_ERR(log_di)) {
2259 				ret = PTR_ERR(log_di);
2260 				goto out;
2261 			}
2262 			cur += this_len;
2263 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2264 		}
2265 	}
2266 	ret = btrfs_next_leaf(root, path);
2267 	if (ret > 0)
2268 		ret = 0;
2269 	else if (ret == 0)
2270 		goto process_leaf;
2271 out:
2272 	btrfs_free_path(log_path);
2273 	btrfs_release_path(path);
2274 	return ret;
2275 }
2276 
2277 
2278 /*
2279  * deletion replay happens before we copy any new directory items
2280  * out of the log or out of backreferences from inodes.  It
2281  * scans the log to find ranges of keys that log is authoritative for,
2282  * and then scans the directory to find items in those ranges that are
2283  * not present in the log.
2284  *
2285  * Anything we don't find in the log is unlinked and removed from the
2286  * directory.
2287  */
2288 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2289 				       struct btrfs_root *root,
2290 				       struct btrfs_root *log,
2291 				       struct btrfs_path *path,
2292 				       u64 dirid, int del_all)
2293 {
2294 	u64 range_start;
2295 	u64 range_end;
2296 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2297 	int ret = 0;
2298 	struct btrfs_key dir_key;
2299 	struct btrfs_key found_key;
2300 	struct btrfs_path *log_path;
2301 	struct inode *dir;
2302 
2303 	dir_key.objectid = dirid;
2304 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2305 	log_path = btrfs_alloc_path();
2306 	if (!log_path)
2307 		return -ENOMEM;
2308 
2309 	dir = read_one_inode(root, dirid);
2310 	/* it isn't an error if the inode isn't there, that can happen
2311 	 * because we replay the deletes before we copy in the inode item
2312 	 * from the log
2313 	 */
2314 	if (!dir) {
2315 		btrfs_free_path(log_path);
2316 		return 0;
2317 	}
2318 again:
2319 	range_start = 0;
2320 	range_end = 0;
2321 	while (1) {
2322 		if (del_all)
2323 			range_end = (u64)-1;
2324 		else {
2325 			ret = find_dir_range(log, path, dirid, key_type,
2326 					     &range_start, &range_end);
2327 			if (ret != 0)
2328 				break;
2329 		}
2330 
2331 		dir_key.offset = range_start;
2332 		while (1) {
2333 			int nritems;
2334 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2335 						0, 0);
2336 			if (ret < 0)
2337 				goto out;
2338 
2339 			nritems = btrfs_header_nritems(path->nodes[0]);
2340 			if (path->slots[0] >= nritems) {
2341 				ret = btrfs_next_leaf(root, path);
2342 				if (ret == 1)
2343 					break;
2344 				else if (ret < 0)
2345 					goto out;
2346 			}
2347 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2348 					      path->slots[0]);
2349 			if (found_key.objectid != dirid ||
2350 			    found_key.type != dir_key.type)
2351 				goto next_type;
2352 
2353 			if (found_key.offset > range_end)
2354 				break;
2355 
2356 			ret = check_item_in_log(trans, root, log, path,
2357 						log_path, dir,
2358 						&found_key);
2359 			if (ret)
2360 				goto out;
2361 			if (found_key.offset == (u64)-1)
2362 				break;
2363 			dir_key.offset = found_key.offset + 1;
2364 		}
2365 		btrfs_release_path(path);
2366 		if (range_end == (u64)-1)
2367 			break;
2368 		range_start = range_end + 1;
2369 	}
2370 
2371 next_type:
2372 	ret = 0;
2373 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2374 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2375 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2376 		btrfs_release_path(path);
2377 		goto again;
2378 	}
2379 out:
2380 	btrfs_release_path(path);
2381 	btrfs_free_path(log_path);
2382 	iput(dir);
2383 	return ret;
2384 }
2385 
2386 /*
2387  * the process_func used to replay items from the log tree.  This
2388  * gets called in two different stages.  The first stage just looks
2389  * for inodes and makes sure they are all copied into the subvolume.
2390  *
2391  * The second stage copies all the other item types from the log into
2392  * the subvolume.  The two stage approach is slower, but gets rid of
2393  * lots of complexity around inodes referencing other inodes that exist
2394  * only in the log (references come from either directory items or inode
2395  * back refs).
2396  */
2397 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2398 			     struct walk_control *wc, u64 gen, int level)
2399 {
2400 	int nritems;
2401 	struct btrfs_path *path;
2402 	struct btrfs_root *root = wc->replay_dest;
2403 	struct btrfs_key key;
2404 	int i;
2405 	int ret;
2406 
2407 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2408 	if (ret)
2409 		return ret;
2410 
2411 	level = btrfs_header_level(eb);
2412 
2413 	if (level != 0)
2414 		return 0;
2415 
2416 	path = btrfs_alloc_path();
2417 	if (!path)
2418 		return -ENOMEM;
2419 
2420 	nritems = btrfs_header_nritems(eb);
2421 	for (i = 0; i < nritems; i++) {
2422 		btrfs_item_key_to_cpu(eb, &key, i);
2423 
2424 		/* inode keys are done during the first stage */
2425 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2426 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2427 			struct btrfs_inode_item *inode_item;
2428 			u32 mode;
2429 
2430 			inode_item = btrfs_item_ptr(eb, i,
2431 					    struct btrfs_inode_item);
2432 			ret = replay_xattr_deletes(wc->trans, root, log,
2433 						   path, key.objectid);
2434 			if (ret)
2435 				break;
2436 			mode = btrfs_inode_mode(eb, inode_item);
2437 			if (S_ISDIR(mode)) {
2438 				ret = replay_dir_deletes(wc->trans,
2439 					 root, log, path, key.objectid, 0);
2440 				if (ret)
2441 					break;
2442 			}
2443 			ret = overwrite_item(wc->trans, root, path,
2444 					     eb, i, &key);
2445 			if (ret)
2446 				break;
2447 
2448 			/*
2449 			 * Before replaying extents, truncate the inode to its
2450 			 * size. We need to do it now and not after log replay
2451 			 * because before an fsync we can have prealloc extents
2452 			 * added beyond the inode's i_size. If we did it after,
2453 			 * through orphan cleanup for example, we would drop
2454 			 * those prealloc extents just after replaying them.
2455 			 */
2456 			if (S_ISREG(mode)) {
2457 				struct inode *inode;
2458 				u64 from;
2459 
2460 				inode = read_one_inode(root, key.objectid);
2461 				if (!inode) {
2462 					ret = -EIO;
2463 					break;
2464 				}
2465 				from = ALIGN(i_size_read(inode),
2466 					     root->fs_info->sectorsize);
2467 				ret = btrfs_drop_extents(wc->trans, root, inode,
2468 							 from, (u64)-1, 1);
2469 				/*
2470 				 * If the nlink count is zero here, the iput
2471 				 * will free the inode.  We bump it to make
2472 				 * sure it doesn't get freed until the link
2473 				 * count fixup is done.
2474 				 */
2475 				if (!ret) {
2476 					if (inode->i_nlink == 0)
2477 						inc_nlink(inode);
2478 					/* Update link count and nbytes. */
2479 					ret = btrfs_update_inode(wc->trans,
2480 								 root, inode);
2481 				}
2482 				iput(inode);
2483 				if (ret)
2484 					break;
2485 			}
2486 
2487 			ret = link_to_fixup_dir(wc->trans, root,
2488 						path, key.objectid);
2489 			if (ret)
2490 				break;
2491 		}
2492 
2493 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2494 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2495 			ret = replay_one_dir_item(wc->trans, root, path,
2496 						  eb, i, &key);
2497 			if (ret)
2498 				break;
2499 		}
2500 
2501 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2502 			continue;
2503 
2504 		/* these keys are simply copied */
2505 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2506 			ret = overwrite_item(wc->trans, root, path,
2507 					     eb, i, &key);
2508 			if (ret)
2509 				break;
2510 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2511 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2512 			ret = add_inode_ref(wc->trans, root, log, path,
2513 					    eb, i, &key);
2514 			if (ret && ret != -ENOENT)
2515 				break;
2516 			ret = 0;
2517 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2518 			ret = replay_one_extent(wc->trans, root, path,
2519 						eb, i, &key);
2520 			if (ret)
2521 				break;
2522 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2523 			ret = replay_one_dir_item(wc->trans, root, path,
2524 						  eb, i, &key);
2525 			if (ret)
2526 				break;
2527 		}
2528 	}
2529 	btrfs_free_path(path);
2530 	return ret;
2531 }
2532 
2533 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2534 				   struct btrfs_root *root,
2535 				   struct btrfs_path *path, int *level,
2536 				   struct walk_control *wc)
2537 {
2538 	struct btrfs_fs_info *fs_info = root->fs_info;
2539 	u64 root_owner;
2540 	u64 bytenr;
2541 	u64 ptr_gen;
2542 	struct extent_buffer *next;
2543 	struct extent_buffer *cur;
2544 	struct extent_buffer *parent;
2545 	u32 blocksize;
2546 	int ret = 0;
2547 
2548 	WARN_ON(*level < 0);
2549 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2550 
2551 	while (*level > 0) {
2552 		struct btrfs_key first_key;
2553 
2554 		WARN_ON(*level < 0);
2555 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2556 		cur = path->nodes[*level];
2557 
2558 		WARN_ON(btrfs_header_level(cur) != *level);
2559 
2560 		if (path->slots[*level] >=
2561 		    btrfs_header_nritems(cur))
2562 			break;
2563 
2564 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2565 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2566 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2567 		blocksize = fs_info->nodesize;
2568 
2569 		parent = path->nodes[*level];
2570 		root_owner = btrfs_header_owner(parent);
2571 
2572 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2573 		if (IS_ERR(next))
2574 			return PTR_ERR(next);
2575 
2576 		if (*level == 1) {
2577 			ret = wc->process_func(root, next, wc, ptr_gen,
2578 					       *level - 1);
2579 			if (ret) {
2580 				free_extent_buffer(next);
2581 				return ret;
2582 			}
2583 
2584 			path->slots[*level]++;
2585 			if (wc->free) {
2586 				ret = btrfs_read_buffer(next, ptr_gen,
2587 							*level - 1, &first_key);
2588 				if (ret) {
2589 					free_extent_buffer(next);
2590 					return ret;
2591 				}
2592 
2593 				if (trans) {
2594 					btrfs_tree_lock(next);
2595 					btrfs_set_lock_blocking(next);
2596 					clean_tree_block(fs_info, next);
2597 					btrfs_wait_tree_block_writeback(next);
2598 					btrfs_tree_unlock(next);
2599 				} else {
2600 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2601 						clear_extent_buffer_dirty(next);
2602 				}
2603 
2604 				WARN_ON(root_owner !=
2605 					BTRFS_TREE_LOG_OBJECTID);
2606 				ret = btrfs_free_and_pin_reserved_extent(
2607 							fs_info, bytenr,
2608 							blocksize);
2609 				if (ret) {
2610 					free_extent_buffer(next);
2611 					return ret;
2612 				}
2613 			}
2614 			free_extent_buffer(next);
2615 			continue;
2616 		}
2617 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2618 		if (ret) {
2619 			free_extent_buffer(next);
2620 			return ret;
2621 		}
2622 
2623 		WARN_ON(*level <= 0);
2624 		if (path->nodes[*level-1])
2625 			free_extent_buffer(path->nodes[*level-1]);
2626 		path->nodes[*level-1] = next;
2627 		*level = btrfs_header_level(next);
2628 		path->slots[*level] = 0;
2629 		cond_resched();
2630 	}
2631 	WARN_ON(*level < 0);
2632 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2633 
2634 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2635 
2636 	cond_resched();
2637 	return 0;
2638 }
2639 
2640 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2641 				 struct btrfs_root *root,
2642 				 struct btrfs_path *path, int *level,
2643 				 struct walk_control *wc)
2644 {
2645 	struct btrfs_fs_info *fs_info = root->fs_info;
2646 	u64 root_owner;
2647 	int i;
2648 	int slot;
2649 	int ret;
2650 
2651 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2652 		slot = path->slots[i];
2653 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2654 			path->slots[i]++;
2655 			*level = i;
2656 			WARN_ON(*level == 0);
2657 			return 0;
2658 		} else {
2659 			struct extent_buffer *parent;
2660 			if (path->nodes[*level] == root->node)
2661 				parent = path->nodes[*level];
2662 			else
2663 				parent = path->nodes[*level + 1];
2664 
2665 			root_owner = btrfs_header_owner(parent);
2666 			ret = wc->process_func(root, path->nodes[*level], wc,
2667 				 btrfs_header_generation(path->nodes[*level]),
2668 				 *level);
2669 			if (ret)
2670 				return ret;
2671 
2672 			if (wc->free) {
2673 				struct extent_buffer *next;
2674 
2675 				next = path->nodes[*level];
2676 
2677 				if (trans) {
2678 					btrfs_tree_lock(next);
2679 					btrfs_set_lock_blocking(next);
2680 					clean_tree_block(fs_info, next);
2681 					btrfs_wait_tree_block_writeback(next);
2682 					btrfs_tree_unlock(next);
2683 				} else {
2684 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2685 						clear_extent_buffer_dirty(next);
2686 				}
2687 
2688 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2689 				ret = btrfs_free_and_pin_reserved_extent(
2690 						fs_info,
2691 						path->nodes[*level]->start,
2692 						path->nodes[*level]->len);
2693 				if (ret)
2694 					return ret;
2695 			}
2696 			free_extent_buffer(path->nodes[*level]);
2697 			path->nodes[*level] = NULL;
2698 			*level = i + 1;
2699 		}
2700 	}
2701 	return 1;
2702 }
2703 
2704 /*
2705  * drop the reference count on the tree rooted at 'snap'.  This traverses
2706  * the tree freeing any blocks that have a ref count of zero after being
2707  * decremented.
2708  */
2709 static int walk_log_tree(struct btrfs_trans_handle *trans,
2710 			 struct btrfs_root *log, struct walk_control *wc)
2711 {
2712 	struct btrfs_fs_info *fs_info = log->fs_info;
2713 	int ret = 0;
2714 	int wret;
2715 	int level;
2716 	struct btrfs_path *path;
2717 	int orig_level;
2718 
2719 	path = btrfs_alloc_path();
2720 	if (!path)
2721 		return -ENOMEM;
2722 
2723 	level = btrfs_header_level(log->node);
2724 	orig_level = level;
2725 	path->nodes[level] = log->node;
2726 	extent_buffer_get(log->node);
2727 	path->slots[level] = 0;
2728 
2729 	while (1) {
2730 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2731 		if (wret > 0)
2732 			break;
2733 		if (wret < 0) {
2734 			ret = wret;
2735 			goto out;
2736 		}
2737 
2738 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2739 		if (wret > 0)
2740 			break;
2741 		if (wret < 0) {
2742 			ret = wret;
2743 			goto out;
2744 		}
2745 	}
2746 
2747 	/* was the root node processed? if not, catch it here */
2748 	if (path->nodes[orig_level]) {
2749 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2750 			 btrfs_header_generation(path->nodes[orig_level]),
2751 			 orig_level);
2752 		if (ret)
2753 			goto out;
2754 		if (wc->free) {
2755 			struct extent_buffer *next;
2756 
2757 			next = path->nodes[orig_level];
2758 
2759 			if (trans) {
2760 				btrfs_tree_lock(next);
2761 				btrfs_set_lock_blocking(next);
2762 				clean_tree_block(fs_info, next);
2763 				btrfs_wait_tree_block_writeback(next);
2764 				btrfs_tree_unlock(next);
2765 			} else {
2766 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2767 					clear_extent_buffer_dirty(next);
2768 			}
2769 
2770 			WARN_ON(log->root_key.objectid !=
2771 				BTRFS_TREE_LOG_OBJECTID);
2772 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2773 							next->start, next->len);
2774 			if (ret)
2775 				goto out;
2776 		}
2777 	}
2778 
2779 out:
2780 	btrfs_free_path(path);
2781 	return ret;
2782 }
2783 
2784 /*
2785  * helper function to update the item for a given subvolumes log root
2786  * in the tree of log roots
2787  */
2788 static int update_log_root(struct btrfs_trans_handle *trans,
2789 			   struct btrfs_root *log)
2790 {
2791 	struct btrfs_fs_info *fs_info = log->fs_info;
2792 	int ret;
2793 
2794 	if (log->log_transid == 1) {
2795 		/* insert root item on the first sync */
2796 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2797 				&log->root_key, &log->root_item);
2798 	} else {
2799 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2800 				&log->root_key, &log->root_item);
2801 	}
2802 	return ret;
2803 }
2804 
2805 static void wait_log_commit(struct btrfs_root *root, int transid)
2806 {
2807 	DEFINE_WAIT(wait);
2808 	int index = transid % 2;
2809 
2810 	/*
2811 	 * we only allow two pending log transactions at a time,
2812 	 * so we know that if ours is more than 2 older than the
2813 	 * current transaction, we're done
2814 	 */
2815 	for (;;) {
2816 		prepare_to_wait(&root->log_commit_wait[index],
2817 				&wait, TASK_UNINTERRUPTIBLE);
2818 
2819 		if (!(root->log_transid_committed < transid &&
2820 		      atomic_read(&root->log_commit[index])))
2821 			break;
2822 
2823 		mutex_unlock(&root->log_mutex);
2824 		schedule();
2825 		mutex_lock(&root->log_mutex);
2826 	}
2827 	finish_wait(&root->log_commit_wait[index], &wait);
2828 }
2829 
2830 static void wait_for_writer(struct btrfs_root *root)
2831 {
2832 	DEFINE_WAIT(wait);
2833 
2834 	for (;;) {
2835 		prepare_to_wait(&root->log_writer_wait, &wait,
2836 				TASK_UNINTERRUPTIBLE);
2837 		if (!atomic_read(&root->log_writers))
2838 			break;
2839 
2840 		mutex_unlock(&root->log_mutex);
2841 		schedule();
2842 		mutex_lock(&root->log_mutex);
2843 	}
2844 	finish_wait(&root->log_writer_wait, &wait);
2845 }
2846 
2847 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2848 					struct btrfs_log_ctx *ctx)
2849 {
2850 	if (!ctx)
2851 		return;
2852 
2853 	mutex_lock(&root->log_mutex);
2854 	list_del_init(&ctx->list);
2855 	mutex_unlock(&root->log_mutex);
2856 }
2857 
2858 /*
2859  * Invoked in log mutex context, or be sure there is no other task which
2860  * can access the list.
2861  */
2862 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2863 					     int index, int error)
2864 {
2865 	struct btrfs_log_ctx *ctx;
2866 	struct btrfs_log_ctx *safe;
2867 
2868 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2869 		list_del_init(&ctx->list);
2870 		ctx->log_ret = error;
2871 	}
2872 
2873 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2874 }
2875 
2876 /*
2877  * btrfs_sync_log does sends a given tree log down to the disk and
2878  * updates the super blocks to record it.  When this call is done,
2879  * you know that any inodes previously logged are safely on disk only
2880  * if it returns 0.
2881  *
2882  * Any other return value means you need to call btrfs_commit_transaction.
2883  * Some of the edge cases for fsyncing directories that have had unlinks
2884  * or renames done in the past mean that sometimes the only safe
2885  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2886  * that has happened.
2887  */
2888 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2889 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2890 {
2891 	int index1;
2892 	int index2;
2893 	int mark;
2894 	int ret;
2895 	struct btrfs_fs_info *fs_info = root->fs_info;
2896 	struct btrfs_root *log = root->log_root;
2897 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2898 	int log_transid = 0;
2899 	struct btrfs_log_ctx root_log_ctx;
2900 	struct blk_plug plug;
2901 
2902 	mutex_lock(&root->log_mutex);
2903 	log_transid = ctx->log_transid;
2904 	if (root->log_transid_committed >= log_transid) {
2905 		mutex_unlock(&root->log_mutex);
2906 		return ctx->log_ret;
2907 	}
2908 
2909 	index1 = log_transid % 2;
2910 	if (atomic_read(&root->log_commit[index1])) {
2911 		wait_log_commit(root, log_transid);
2912 		mutex_unlock(&root->log_mutex);
2913 		return ctx->log_ret;
2914 	}
2915 	ASSERT(log_transid == root->log_transid);
2916 	atomic_set(&root->log_commit[index1], 1);
2917 
2918 	/* wait for previous tree log sync to complete */
2919 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2920 		wait_log_commit(root, log_transid - 1);
2921 
2922 	while (1) {
2923 		int batch = atomic_read(&root->log_batch);
2924 		/* when we're on an ssd, just kick the log commit out */
2925 		if (!btrfs_test_opt(fs_info, SSD) &&
2926 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2927 			mutex_unlock(&root->log_mutex);
2928 			schedule_timeout_uninterruptible(1);
2929 			mutex_lock(&root->log_mutex);
2930 		}
2931 		wait_for_writer(root);
2932 		if (batch == atomic_read(&root->log_batch))
2933 			break;
2934 	}
2935 
2936 	/* bail out if we need to do a full commit */
2937 	if (btrfs_need_log_full_commit(fs_info, trans)) {
2938 		ret = -EAGAIN;
2939 		btrfs_free_logged_extents(log, log_transid);
2940 		mutex_unlock(&root->log_mutex);
2941 		goto out;
2942 	}
2943 
2944 	if (log_transid % 2 == 0)
2945 		mark = EXTENT_DIRTY;
2946 	else
2947 		mark = EXTENT_NEW;
2948 
2949 	/* we start IO on  all the marked extents here, but we don't actually
2950 	 * wait for them until later.
2951 	 */
2952 	blk_start_plug(&plug);
2953 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2954 	if (ret) {
2955 		blk_finish_plug(&plug);
2956 		btrfs_abort_transaction(trans, ret);
2957 		btrfs_free_logged_extents(log, log_transid);
2958 		btrfs_set_log_full_commit(fs_info, trans);
2959 		mutex_unlock(&root->log_mutex);
2960 		goto out;
2961 	}
2962 
2963 	btrfs_set_root_node(&log->root_item, log->node);
2964 
2965 	root->log_transid++;
2966 	log->log_transid = root->log_transid;
2967 	root->log_start_pid = 0;
2968 	/*
2969 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2970 	 * in their headers. new modifications of the log will be written to
2971 	 * new positions. so it's safe to allow log writers to go in.
2972 	 */
2973 	mutex_unlock(&root->log_mutex);
2974 
2975 	btrfs_init_log_ctx(&root_log_ctx, NULL);
2976 
2977 	mutex_lock(&log_root_tree->log_mutex);
2978 	atomic_inc(&log_root_tree->log_batch);
2979 	atomic_inc(&log_root_tree->log_writers);
2980 
2981 	index2 = log_root_tree->log_transid % 2;
2982 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2983 	root_log_ctx.log_transid = log_root_tree->log_transid;
2984 
2985 	mutex_unlock(&log_root_tree->log_mutex);
2986 
2987 	ret = update_log_root(trans, log);
2988 
2989 	mutex_lock(&log_root_tree->log_mutex);
2990 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2991 		/*
2992 		 * Implicit memory barrier after atomic_dec_and_test
2993 		 */
2994 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2995 			wake_up(&log_root_tree->log_writer_wait);
2996 	}
2997 
2998 	if (ret) {
2999 		if (!list_empty(&root_log_ctx.list))
3000 			list_del_init(&root_log_ctx.list);
3001 
3002 		blk_finish_plug(&plug);
3003 		btrfs_set_log_full_commit(fs_info, trans);
3004 
3005 		if (ret != -ENOSPC) {
3006 			btrfs_abort_transaction(trans, ret);
3007 			mutex_unlock(&log_root_tree->log_mutex);
3008 			goto out;
3009 		}
3010 		btrfs_wait_tree_log_extents(log, mark);
3011 		btrfs_free_logged_extents(log, log_transid);
3012 		mutex_unlock(&log_root_tree->log_mutex);
3013 		ret = -EAGAIN;
3014 		goto out;
3015 	}
3016 
3017 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3018 		blk_finish_plug(&plug);
3019 		list_del_init(&root_log_ctx.list);
3020 		mutex_unlock(&log_root_tree->log_mutex);
3021 		ret = root_log_ctx.log_ret;
3022 		goto out;
3023 	}
3024 
3025 	index2 = root_log_ctx.log_transid % 2;
3026 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3027 		blk_finish_plug(&plug);
3028 		ret = btrfs_wait_tree_log_extents(log, mark);
3029 		btrfs_wait_logged_extents(trans, log, log_transid);
3030 		wait_log_commit(log_root_tree,
3031 				root_log_ctx.log_transid);
3032 		mutex_unlock(&log_root_tree->log_mutex);
3033 		if (!ret)
3034 			ret = root_log_ctx.log_ret;
3035 		goto out;
3036 	}
3037 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3038 	atomic_set(&log_root_tree->log_commit[index2], 1);
3039 
3040 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3041 		wait_log_commit(log_root_tree,
3042 				root_log_ctx.log_transid - 1);
3043 	}
3044 
3045 	wait_for_writer(log_root_tree);
3046 
3047 	/*
3048 	 * now that we've moved on to the tree of log tree roots,
3049 	 * check the full commit flag again
3050 	 */
3051 	if (btrfs_need_log_full_commit(fs_info, trans)) {
3052 		blk_finish_plug(&plug);
3053 		btrfs_wait_tree_log_extents(log, mark);
3054 		btrfs_free_logged_extents(log, log_transid);
3055 		mutex_unlock(&log_root_tree->log_mutex);
3056 		ret = -EAGAIN;
3057 		goto out_wake_log_root;
3058 	}
3059 
3060 	ret = btrfs_write_marked_extents(fs_info,
3061 					 &log_root_tree->dirty_log_pages,
3062 					 EXTENT_DIRTY | EXTENT_NEW);
3063 	blk_finish_plug(&plug);
3064 	if (ret) {
3065 		btrfs_set_log_full_commit(fs_info, trans);
3066 		btrfs_abort_transaction(trans, ret);
3067 		btrfs_free_logged_extents(log, log_transid);
3068 		mutex_unlock(&log_root_tree->log_mutex);
3069 		goto out_wake_log_root;
3070 	}
3071 	ret = btrfs_wait_tree_log_extents(log, mark);
3072 	if (!ret)
3073 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3074 						  EXTENT_NEW | EXTENT_DIRTY);
3075 	if (ret) {
3076 		btrfs_set_log_full_commit(fs_info, trans);
3077 		btrfs_free_logged_extents(log, log_transid);
3078 		mutex_unlock(&log_root_tree->log_mutex);
3079 		goto out_wake_log_root;
3080 	}
3081 	btrfs_wait_logged_extents(trans, log, log_transid);
3082 
3083 	btrfs_set_super_log_root(fs_info->super_for_commit,
3084 				 log_root_tree->node->start);
3085 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3086 				       btrfs_header_level(log_root_tree->node));
3087 
3088 	log_root_tree->log_transid++;
3089 	mutex_unlock(&log_root_tree->log_mutex);
3090 
3091 	/*
3092 	 * nobody else is going to jump in and write the the ctree
3093 	 * super here because the log_commit atomic below is protecting
3094 	 * us.  We must be called with a transaction handle pinning
3095 	 * the running transaction open, so a full commit can't hop
3096 	 * in and cause problems either.
3097 	 */
3098 	ret = write_all_supers(fs_info, 1);
3099 	if (ret) {
3100 		btrfs_set_log_full_commit(fs_info, trans);
3101 		btrfs_abort_transaction(trans, ret);
3102 		goto out_wake_log_root;
3103 	}
3104 
3105 	mutex_lock(&root->log_mutex);
3106 	if (root->last_log_commit < log_transid)
3107 		root->last_log_commit = log_transid;
3108 	mutex_unlock(&root->log_mutex);
3109 
3110 out_wake_log_root:
3111 	mutex_lock(&log_root_tree->log_mutex);
3112 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3113 
3114 	log_root_tree->log_transid_committed++;
3115 	atomic_set(&log_root_tree->log_commit[index2], 0);
3116 	mutex_unlock(&log_root_tree->log_mutex);
3117 
3118 	/*
3119 	 * The barrier before waitqueue_active is implied by mutex_unlock
3120 	 */
3121 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
3122 		wake_up(&log_root_tree->log_commit_wait[index2]);
3123 out:
3124 	mutex_lock(&root->log_mutex);
3125 	btrfs_remove_all_log_ctxs(root, index1, ret);
3126 	root->log_transid_committed++;
3127 	atomic_set(&root->log_commit[index1], 0);
3128 	mutex_unlock(&root->log_mutex);
3129 
3130 	/*
3131 	 * The barrier before waitqueue_active is implied by mutex_unlock
3132 	 */
3133 	if (waitqueue_active(&root->log_commit_wait[index1]))
3134 		wake_up(&root->log_commit_wait[index1]);
3135 	return ret;
3136 }
3137 
3138 static void free_log_tree(struct btrfs_trans_handle *trans,
3139 			  struct btrfs_root *log)
3140 {
3141 	int ret;
3142 	u64 start;
3143 	u64 end;
3144 	struct walk_control wc = {
3145 		.free = 1,
3146 		.process_func = process_one_buffer
3147 	};
3148 
3149 	ret = walk_log_tree(trans, log, &wc);
3150 	/* I don't think this can happen but just in case */
3151 	if (ret)
3152 		btrfs_abort_transaction(trans, ret);
3153 
3154 	while (1) {
3155 		ret = find_first_extent_bit(&log->dirty_log_pages,
3156 				0, &start, &end,
3157 				EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
3158 				NULL);
3159 		if (ret)
3160 			break;
3161 
3162 		clear_extent_bits(&log->dirty_log_pages, start, end,
3163 				  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3164 	}
3165 
3166 	/*
3167 	 * We may have short-circuited the log tree with the full commit logic
3168 	 * and left ordered extents on our list, so clear these out to keep us
3169 	 * from leaking inodes and memory.
3170 	 */
3171 	btrfs_free_logged_extents(log, 0);
3172 	btrfs_free_logged_extents(log, 1);
3173 
3174 	free_extent_buffer(log->node);
3175 	kfree(log);
3176 }
3177 
3178 /*
3179  * free all the extents used by the tree log.  This should be called
3180  * at commit time of the full transaction
3181  */
3182 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3183 {
3184 	if (root->log_root) {
3185 		free_log_tree(trans, root->log_root);
3186 		root->log_root = NULL;
3187 	}
3188 	return 0;
3189 }
3190 
3191 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3192 			     struct btrfs_fs_info *fs_info)
3193 {
3194 	if (fs_info->log_root_tree) {
3195 		free_log_tree(trans, fs_info->log_root_tree);
3196 		fs_info->log_root_tree = NULL;
3197 	}
3198 	return 0;
3199 }
3200 
3201 /*
3202  * If both a file and directory are logged, and unlinks or renames are
3203  * mixed in, we have a few interesting corners:
3204  *
3205  * create file X in dir Y
3206  * link file X to X.link in dir Y
3207  * fsync file X
3208  * unlink file X but leave X.link
3209  * fsync dir Y
3210  *
3211  * After a crash we would expect only X.link to exist.  But file X
3212  * didn't get fsync'd again so the log has back refs for X and X.link.
3213  *
3214  * We solve this by removing directory entries and inode backrefs from the
3215  * log when a file that was logged in the current transaction is
3216  * unlinked.  Any later fsync will include the updated log entries, and
3217  * we'll be able to reconstruct the proper directory items from backrefs.
3218  *
3219  * This optimizations allows us to avoid relogging the entire inode
3220  * or the entire directory.
3221  */
3222 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3223 				 struct btrfs_root *root,
3224 				 const char *name, int name_len,
3225 				 struct btrfs_inode *dir, u64 index)
3226 {
3227 	struct btrfs_root *log;
3228 	struct btrfs_dir_item *di;
3229 	struct btrfs_path *path;
3230 	int ret;
3231 	int err = 0;
3232 	int bytes_del = 0;
3233 	u64 dir_ino = btrfs_ino(dir);
3234 
3235 	if (dir->logged_trans < trans->transid)
3236 		return 0;
3237 
3238 	ret = join_running_log_trans(root);
3239 	if (ret)
3240 		return 0;
3241 
3242 	mutex_lock(&dir->log_mutex);
3243 
3244 	log = root->log_root;
3245 	path = btrfs_alloc_path();
3246 	if (!path) {
3247 		err = -ENOMEM;
3248 		goto out_unlock;
3249 	}
3250 
3251 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3252 				   name, name_len, -1);
3253 	if (IS_ERR(di)) {
3254 		err = PTR_ERR(di);
3255 		goto fail;
3256 	}
3257 	if (di) {
3258 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3259 		bytes_del += name_len;
3260 		if (ret) {
3261 			err = ret;
3262 			goto fail;
3263 		}
3264 	}
3265 	btrfs_release_path(path);
3266 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3267 					 index, name, name_len, -1);
3268 	if (IS_ERR(di)) {
3269 		err = PTR_ERR(di);
3270 		goto fail;
3271 	}
3272 	if (di) {
3273 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3274 		bytes_del += name_len;
3275 		if (ret) {
3276 			err = ret;
3277 			goto fail;
3278 		}
3279 	}
3280 
3281 	/* update the directory size in the log to reflect the names
3282 	 * we have removed
3283 	 */
3284 	if (bytes_del) {
3285 		struct btrfs_key key;
3286 
3287 		key.objectid = dir_ino;
3288 		key.offset = 0;
3289 		key.type = BTRFS_INODE_ITEM_KEY;
3290 		btrfs_release_path(path);
3291 
3292 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3293 		if (ret < 0) {
3294 			err = ret;
3295 			goto fail;
3296 		}
3297 		if (ret == 0) {
3298 			struct btrfs_inode_item *item;
3299 			u64 i_size;
3300 
3301 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3302 					      struct btrfs_inode_item);
3303 			i_size = btrfs_inode_size(path->nodes[0], item);
3304 			if (i_size > bytes_del)
3305 				i_size -= bytes_del;
3306 			else
3307 				i_size = 0;
3308 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3309 			btrfs_mark_buffer_dirty(path->nodes[0]);
3310 		} else
3311 			ret = 0;
3312 		btrfs_release_path(path);
3313 	}
3314 fail:
3315 	btrfs_free_path(path);
3316 out_unlock:
3317 	mutex_unlock(&dir->log_mutex);
3318 	if (ret == -ENOSPC) {
3319 		btrfs_set_log_full_commit(root->fs_info, trans);
3320 		ret = 0;
3321 	} else if (ret < 0)
3322 		btrfs_abort_transaction(trans, ret);
3323 
3324 	btrfs_end_log_trans(root);
3325 
3326 	return err;
3327 }
3328 
3329 /* see comments for btrfs_del_dir_entries_in_log */
3330 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3331 			       struct btrfs_root *root,
3332 			       const char *name, int name_len,
3333 			       struct btrfs_inode *inode, u64 dirid)
3334 {
3335 	struct btrfs_fs_info *fs_info = root->fs_info;
3336 	struct btrfs_root *log;
3337 	u64 index;
3338 	int ret;
3339 
3340 	if (inode->logged_trans < trans->transid)
3341 		return 0;
3342 
3343 	ret = join_running_log_trans(root);
3344 	if (ret)
3345 		return 0;
3346 	log = root->log_root;
3347 	mutex_lock(&inode->log_mutex);
3348 
3349 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3350 				  dirid, &index);
3351 	mutex_unlock(&inode->log_mutex);
3352 	if (ret == -ENOSPC) {
3353 		btrfs_set_log_full_commit(fs_info, trans);
3354 		ret = 0;
3355 	} else if (ret < 0 && ret != -ENOENT)
3356 		btrfs_abort_transaction(trans, ret);
3357 	btrfs_end_log_trans(root);
3358 
3359 	return ret;
3360 }
3361 
3362 /*
3363  * creates a range item in the log for 'dirid'.  first_offset and
3364  * last_offset tell us which parts of the key space the log should
3365  * be considered authoritative for.
3366  */
3367 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3368 				       struct btrfs_root *log,
3369 				       struct btrfs_path *path,
3370 				       int key_type, u64 dirid,
3371 				       u64 first_offset, u64 last_offset)
3372 {
3373 	int ret;
3374 	struct btrfs_key key;
3375 	struct btrfs_dir_log_item *item;
3376 
3377 	key.objectid = dirid;
3378 	key.offset = first_offset;
3379 	if (key_type == BTRFS_DIR_ITEM_KEY)
3380 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3381 	else
3382 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3383 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3384 	if (ret)
3385 		return ret;
3386 
3387 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3388 			      struct btrfs_dir_log_item);
3389 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3390 	btrfs_mark_buffer_dirty(path->nodes[0]);
3391 	btrfs_release_path(path);
3392 	return 0;
3393 }
3394 
3395 /*
3396  * log all the items included in the current transaction for a given
3397  * directory.  This also creates the range items in the log tree required
3398  * to replay anything deleted before the fsync
3399  */
3400 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3401 			  struct btrfs_root *root, struct btrfs_inode *inode,
3402 			  struct btrfs_path *path,
3403 			  struct btrfs_path *dst_path, int key_type,
3404 			  struct btrfs_log_ctx *ctx,
3405 			  u64 min_offset, u64 *last_offset_ret)
3406 {
3407 	struct btrfs_key min_key;
3408 	struct btrfs_root *log = root->log_root;
3409 	struct extent_buffer *src;
3410 	int err = 0;
3411 	int ret;
3412 	int i;
3413 	int nritems;
3414 	u64 first_offset = min_offset;
3415 	u64 last_offset = (u64)-1;
3416 	u64 ino = btrfs_ino(inode);
3417 
3418 	log = root->log_root;
3419 
3420 	min_key.objectid = ino;
3421 	min_key.type = key_type;
3422 	min_key.offset = min_offset;
3423 
3424 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3425 
3426 	/*
3427 	 * we didn't find anything from this transaction, see if there
3428 	 * is anything at all
3429 	 */
3430 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3431 		min_key.objectid = ino;
3432 		min_key.type = key_type;
3433 		min_key.offset = (u64)-1;
3434 		btrfs_release_path(path);
3435 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3436 		if (ret < 0) {
3437 			btrfs_release_path(path);
3438 			return ret;
3439 		}
3440 		ret = btrfs_previous_item(root, path, ino, key_type);
3441 
3442 		/* if ret == 0 there are items for this type,
3443 		 * create a range to tell us the last key of this type.
3444 		 * otherwise, there are no items in this directory after
3445 		 * *min_offset, and we create a range to indicate that.
3446 		 */
3447 		if (ret == 0) {
3448 			struct btrfs_key tmp;
3449 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3450 					      path->slots[0]);
3451 			if (key_type == tmp.type)
3452 				first_offset = max(min_offset, tmp.offset) + 1;
3453 		}
3454 		goto done;
3455 	}
3456 
3457 	/* go backward to find any previous key */
3458 	ret = btrfs_previous_item(root, path, ino, key_type);
3459 	if (ret == 0) {
3460 		struct btrfs_key tmp;
3461 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3462 		if (key_type == tmp.type) {
3463 			first_offset = tmp.offset;
3464 			ret = overwrite_item(trans, log, dst_path,
3465 					     path->nodes[0], path->slots[0],
3466 					     &tmp);
3467 			if (ret) {
3468 				err = ret;
3469 				goto done;
3470 			}
3471 		}
3472 	}
3473 	btrfs_release_path(path);
3474 
3475 	/* find the first key from this transaction again */
3476 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3477 	if (WARN_ON(ret != 0))
3478 		goto done;
3479 
3480 	/*
3481 	 * we have a block from this transaction, log every item in it
3482 	 * from our directory
3483 	 */
3484 	while (1) {
3485 		struct btrfs_key tmp;
3486 		src = path->nodes[0];
3487 		nritems = btrfs_header_nritems(src);
3488 		for (i = path->slots[0]; i < nritems; i++) {
3489 			struct btrfs_dir_item *di;
3490 
3491 			btrfs_item_key_to_cpu(src, &min_key, i);
3492 
3493 			if (min_key.objectid != ino || min_key.type != key_type)
3494 				goto done;
3495 			ret = overwrite_item(trans, log, dst_path, src, i,
3496 					     &min_key);
3497 			if (ret) {
3498 				err = ret;
3499 				goto done;
3500 			}
3501 
3502 			/*
3503 			 * We must make sure that when we log a directory entry,
3504 			 * the corresponding inode, after log replay, has a
3505 			 * matching link count. For example:
3506 			 *
3507 			 * touch foo
3508 			 * mkdir mydir
3509 			 * sync
3510 			 * ln foo mydir/bar
3511 			 * xfs_io -c "fsync" mydir
3512 			 * <crash>
3513 			 * <mount fs and log replay>
3514 			 *
3515 			 * Would result in a fsync log that when replayed, our
3516 			 * file inode would have a link count of 1, but we get
3517 			 * two directory entries pointing to the same inode.
3518 			 * After removing one of the names, it would not be
3519 			 * possible to remove the other name, which resulted
3520 			 * always in stale file handle errors, and would not
3521 			 * be possible to rmdir the parent directory, since
3522 			 * its i_size could never decrement to the value
3523 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3524 			 */
3525 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3526 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3527 			if (ctx &&
3528 			    (btrfs_dir_transid(src, di) == trans->transid ||
3529 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3530 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3531 				ctx->log_new_dentries = true;
3532 		}
3533 		path->slots[0] = nritems;
3534 
3535 		/*
3536 		 * look ahead to the next item and see if it is also
3537 		 * from this directory and from this transaction
3538 		 */
3539 		ret = btrfs_next_leaf(root, path);
3540 		if (ret) {
3541 			if (ret == 1)
3542 				last_offset = (u64)-1;
3543 			else
3544 				err = ret;
3545 			goto done;
3546 		}
3547 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3548 		if (tmp.objectid != ino || tmp.type != key_type) {
3549 			last_offset = (u64)-1;
3550 			goto done;
3551 		}
3552 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3553 			ret = overwrite_item(trans, log, dst_path,
3554 					     path->nodes[0], path->slots[0],
3555 					     &tmp);
3556 			if (ret)
3557 				err = ret;
3558 			else
3559 				last_offset = tmp.offset;
3560 			goto done;
3561 		}
3562 	}
3563 done:
3564 	btrfs_release_path(path);
3565 	btrfs_release_path(dst_path);
3566 
3567 	if (err == 0) {
3568 		*last_offset_ret = last_offset;
3569 		/*
3570 		 * insert the log range keys to indicate where the log
3571 		 * is valid
3572 		 */
3573 		ret = insert_dir_log_key(trans, log, path, key_type,
3574 					 ino, first_offset, last_offset);
3575 		if (ret)
3576 			err = ret;
3577 	}
3578 	return err;
3579 }
3580 
3581 /*
3582  * logging directories is very similar to logging inodes, We find all the items
3583  * from the current transaction and write them to the log.
3584  *
3585  * The recovery code scans the directory in the subvolume, and if it finds a
3586  * key in the range logged that is not present in the log tree, then it means
3587  * that dir entry was unlinked during the transaction.
3588  *
3589  * In order for that scan to work, we must include one key smaller than
3590  * the smallest logged by this transaction and one key larger than the largest
3591  * key logged by this transaction.
3592  */
3593 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3594 			  struct btrfs_root *root, struct btrfs_inode *inode,
3595 			  struct btrfs_path *path,
3596 			  struct btrfs_path *dst_path,
3597 			  struct btrfs_log_ctx *ctx)
3598 {
3599 	u64 min_key;
3600 	u64 max_key;
3601 	int ret;
3602 	int key_type = BTRFS_DIR_ITEM_KEY;
3603 
3604 again:
3605 	min_key = 0;
3606 	max_key = 0;
3607 	while (1) {
3608 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3609 				ctx, min_key, &max_key);
3610 		if (ret)
3611 			return ret;
3612 		if (max_key == (u64)-1)
3613 			break;
3614 		min_key = max_key + 1;
3615 	}
3616 
3617 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3618 		key_type = BTRFS_DIR_INDEX_KEY;
3619 		goto again;
3620 	}
3621 	return 0;
3622 }
3623 
3624 /*
3625  * a helper function to drop items from the log before we relog an
3626  * inode.  max_key_type indicates the highest item type to remove.
3627  * This cannot be run for file data extents because it does not
3628  * free the extents they point to.
3629  */
3630 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3631 				  struct btrfs_root *log,
3632 				  struct btrfs_path *path,
3633 				  u64 objectid, int max_key_type)
3634 {
3635 	int ret;
3636 	struct btrfs_key key;
3637 	struct btrfs_key found_key;
3638 	int start_slot;
3639 
3640 	key.objectid = objectid;
3641 	key.type = max_key_type;
3642 	key.offset = (u64)-1;
3643 
3644 	while (1) {
3645 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3646 		BUG_ON(ret == 0); /* Logic error */
3647 		if (ret < 0)
3648 			break;
3649 
3650 		if (path->slots[0] == 0)
3651 			break;
3652 
3653 		path->slots[0]--;
3654 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3655 				      path->slots[0]);
3656 
3657 		if (found_key.objectid != objectid)
3658 			break;
3659 
3660 		found_key.offset = 0;
3661 		found_key.type = 0;
3662 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3663 				       &start_slot);
3664 
3665 		ret = btrfs_del_items(trans, log, path, start_slot,
3666 				      path->slots[0] - start_slot + 1);
3667 		/*
3668 		 * If start slot isn't 0 then we don't need to re-search, we've
3669 		 * found the last guy with the objectid in this tree.
3670 		 */
3671 		if (ret || start_slot != 0)
3672 			break;
3673 		btrfs_release_path(path);
3674 	}
3675 	btrfs_release_path(path);
3676 	if (ret > 0)
3677 		ret = 0;
3678 	return ret;
3679 }
3680 
3681 static void fill_inode_item(struct btrfs_trans_handle *trans,
3682 			    struct extent_buffer *leaf,
3683 			    struct btrfs_inode_item *item,
3684 			    struct inode *inode, int log_inode_only,
3685 			    u64 logged_isize)
3686 {
3687 	struct btrfs_map_token token;
3688 
3689 	btrfs_init_map_token(&token);
3690 
3691 	if (log_inode_only) {
3692 		/* set the generation to zero so the recover code
3693 		 * can tell the difference between an logging
3694 		 * just to say 'this inode exists' and a logging
3695 		 * to say 'update this inode with these values'
3696 		 */
3697 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3698 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3699 	} else {
3700 		btrfs_set_token_inode_generation(leaf, item,
3701 						 BTRFS_I(inode)->generation,
3702 						 &token);
3703 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3704 	}
3705 
3706 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3707 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3708 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3709 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3710 
3711 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3712 				     inode->i_atime.tv_sec, &token);
3713 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3714 				      inode->i_atime.tv_nsec, &token);
3715 
3716 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3717 				     inode->i_mtime.tv_sec, &token);
3718 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3719 				      inode->i_mtime.tv_nsec, &token);
3720 
3721 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3722 				     inode->i_ctime.tv_sec, &token);
3723 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3724 				      inode->i_ctime.tv_nsec, &token);
3725 
3726 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3727 				     &token);
3728 
3729 	btrfs_set_token_inode_sequence(leaf, item,
3730 				       inode_peek_iversion(inode), &token);
3731 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3732 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3733 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3734 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3735 }
3736 
3737 static int log_inode_item(struct btrfs_trans_handle *trans,
3738 			  struct btrfs_root *log, struct btrfs_path *path,
3739 			  struct btrfs_inode *inode)
3740 {
3741 	struct btrfs_inode_item *inode_item;
3742 	int ret;
3743 
3744 	ret = btrfs_insert_empty_item(trans, log, path,
3745 				      &inode->location, sizeof(*inode_item));
3746 	if (ret && ret != -EEXIST)
3747 		return ret;
3748 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3749 				    struct btrfs_inode_item);
3750 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3751 			0, 0);
3752 	btrfs_release_path(path);
3753 	return 0;
3754 }
3755 
3756 static noinline int copy_items(struct btrfs_trans_handle *trans,
3757 			       struct btrfs_inode *inode,
3758 			       struct btrfs_path *dst_path,
3759 			       struct btrfs_path *src_path, u64 *last_extent,
3760 			       int start_slot, int nr, int inode_only,
3761 			       u64 logged_isize)
3762 {
3763 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3764 	unsigned long src_offset;
3765 	unsigned long dst_offset;
3766 	struct btrfs_root *log = inode->root->log_root;
3767 	struct btrfs_file_extent_item *extent;
3768 	struct btrfs_inode_item *inode_item;
3769 	struct extent_buffer *src = src_path->nodes[0];
3770 	struct btrfs_key first_key, last_key, key;
3771 	int ret;
3772 	struct btrfs_key *ins_keys;
3773 	u32 *ins_sizes;
3774 	char *ins_data;
3775 	int i;
3776 	struct list_head ordered_sums;
3777 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3778 	bool has_extents = false;
3779 	bool need_find_last_extent = true;
3780 	bool done = false;
3781 
3782 	INIT_LIST_HEAD(&ordered_sums);
3783 
3784 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3785 			   nr * sizeof(u32), GFP_NOFS);
3786 	if (!ins_data)
3787 		return -ENOMEM;
3788 
3789 	first_key.objectid = (u64)-1;
3790 
3791 	ins_sizes = (u32 *)ins_data;
3792 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3793 
3794 	for (i = 0; i < nr; i++) {
3795 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3796 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3797 	}
3798 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3799 				       ins_keys, ins_sizes, nr);
3800 	if (ret) {
3801 		kfree(ins_data);
3802 		return ret;
3803 	}
3804 
3805 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3806 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3807 						   dst_path->slots[0]);
3808 
3809 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3810 
3811 		if (i == nr - 1)
3812 			last_key = ins_keys[i];
3813 
3814 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3815 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3816 						    dst_path->slots[0],
3817 						    struct btrfs_inode_item);
3818 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3819 					&inode->vfs_inode,
3820 					inode_only == LOG_INODE_EXISTS,
3821 					logged_isize);
3822 		} else {
3823 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3824 					   src_offset, ins_sizes[i]);
3825 		}
3826 
3827 		/*
3828 		 * We set need_find_last_extent here in case we know we were
3829 		 * processing other items and then walk into the first extent in
3830 		 * the inode.  If we don't hit an extent then nothing changes,
3831 		 * we'll do the last search the next time around.
3832 		 */
3833 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3834 			has_extents = true;
3835 			if (first_key.objectid == (u64)-1)
3836 				first_key = ins_keys[i];
3837 		} else {
3838 			need_find_last_extent = false;
3839 		}
3840 
3841 		/* take a reference on file data extents so that truncates
3842 		 * or deletes of this inode don't have to relog the inode
3843 		 * again
3844 		 */
3845 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3846 		    !skip_csum) {
3847 			int found_type;
3848 			extent = btrfs_item_ptr(src, start_slot + i,
3849 						struct btrfs_file_extent_item);
3850 
3851 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3852 				continue;
3853 
3854 			found_type = btrfs_file_extent_type(src, extent);
3855 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3856 				u64 ds, dl, cs, cl;
3857 				ds = btrfs_file_extent_disk_bytenr(src,
3858 								extent);
3859 				/* ds == 0 is a hole */
3860 				if (ds == 0)
3861 					continue;
3862 
3863 				dl = btrfs_file_extent_disk_num_bytes(src,
3864 								extent);
3865 				cs = btrfs_file_extent_offset(src, extent);
3866 				cl = btrfs_file_extent_num_bytes(src,
3867 								extent);
3868 				if (btrfs_file_extent_compression(src,
3869 								  extent)) {
3870 					cs = 0;
3871 					cl = dl;
3872 				}
3873 
3874 				ret = btrfs_lookup_csums_range(
3875 						fs_info->csum_root,
3876 						ds + cs, ds + cs + cl - 1,
3877 						&ordered_sums, 0);
3878 				if (ret) {
3879 					btrfs_release_path(dst_path);
3880 					kfree(ins_data);
3881 					return ret;
3882 				}
3883 			}
3884 		}
3885 	}
3886 
3887 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3888 	btrfs_release_path(dst_path);
3889 	kfree(ins_data);
3890 
3891 	/*
3892 	 * we have to do this after the loop above to avoid changing the
3893 	 * log tree while trying to change the log tree.
3894 	 */
3895 	ret = 0;
3896 	while (!list_empty(&ordered_sums)) {
3897 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3898 						   struct btrfs_ordered_sum,
3899 						   list);
3900 		if (!ret)
3901 			ret = btrfs_csum_file_blocks(trans, log, sums);
3902 		list_del(&sums->list);
3903 		kfree(sums);
3904 	}
3905 
3906 	if (!has_extents)
3907 		return ret;
3908 
3909 	if (need_find_last_extent && *last_extent == first_key.offset) {
3910 		/*
3911 		 * We don't have any leafs between our current one and the one
3912 		 * we processed before that can have file extent items for our
3913 		 * inode (and have a generation number smaller than our current
3914 		 * transaction id).
3915 		 */
3916 		need_find_last_extent = false;
3917 	}
3918 
3919 	/*
3920 	 * Because we use btrfs_search_forward we could skip leaves that were
3921 	 * not modified and then assume *last_extent is valid when it really
3922 	 * isn't.  So back up to the previous leaf and read the end of the last
3923 	 * extent before we go and fill in holes.
3924 	 */
3925 	if (need_find_last_extent) {
3926 		u64 len;
3927 
3928 		ret = btrfs_prev_leaf(inode->root, src_path);
3929 		if (ret < 0)
3930 			return ret;
3931 		if (ret)
3932 			goto fill_holes;
3933 		if (src_path->slots[0])
3934 			src_path->slots[0]--;
3935 		src = src_path->nodes[0];
3936 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3937 		if (key.objectid != btrfs_ino(inode) ||
3938 		    key.type != BTRFS_EXTENT_DATA_KEY)
3939 			goto fill_holes;
3940 		extent = btrfs_item_ptr(src, src_path->slots[0],
3941 					struct btrfs_file_extent_item);
3942 		if (btrfs_file_extent_type(src, extent) ==
3943 		    BTRFS_FILE_EXTENT_INLINE) {
3944 			len = btrfs_file_extent_inline_len(src,
3945 							   src_path->slots[0],
3946 							   extent);
3947 			*last_extent = ALIGN(key.offset + len,
3948 					     fs_info->sectorsize);
3949 		} else {
3950 			len = btrfs_file_extent_num_bytes(src, extent);
3951 			*last_extent = key.offset + len;
3952 		}
3953 	}
3954 fill_holes:
3955 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3956 	 * things could have happened
3957 	 *
3958 	 * 1) A merge could have happened, so we could currently be on a leaf
3959 	 * that holds what we were copying in the first place.
3960 	 * 2) A split could have happened, and now not all of the items we want
3961 	 * are on the same leaf.
3962 	 *
3963 	 * So we need to adjust how we search for holes, we need to drop the
3964 	 * path and re-search for the first extent key we found, and then walk
3965 	 * forward until we hit the last one we copied.
3966 	 */
3967 	if (need_find_last_extent) {
3968 		/* btrfs_prev_leaf could return 1 without releasing the path */
3969 		btrfs_release_path(src_path);
3970 		ret = btrfs_search_slot(NULL, inode->root, &first_key,
3971 				src_path, 0, 0);
3972 		if (ret < 0)
3973 			return ret;
3974 		ASSERT(ret == 0);
3975 		src = src_path->nodes[0];
3976 		i = src_path->slots[0];
3977 	} else {
3978 		i = start_slot;
3979 	}
3980 
3981 	/*
3982 	 * Ok so here we need to go through and fill in any holes we may have
3983 	 * to make sure that holes are punched for those areas in case they had
3984 	 * extents previously.
3985 	 */
3986 	while (!done) {
3987 		u64 offset, len;
3988 		u64 extent_end;
3989 
3990 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3991 			ret = btrfs_next_leaf(inode->root, src_path);
3992 			if (ret < 0)
3993 				return ret;
3994 			ASSERT(ret == 0);
3995 			src = src_path->nodes[0];
3996 			i = 0;
3997 			need_find_last_extent = true;
3998 		}
3999 
4000 		btrfs_item_key_to_cpu(src, &key, i);
4001 		if (!btrfs_comp_cpu_keys(&key, &last_key))
4002 			done = true;
4003 		if (key.objectid != btrfs_ino(inode) ||
4004 		    key.type != BTRFS_EXTENT_DATA_KEY) {
4005 			i++;
4006 			continue;
4007 		}
4008 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4009 		if (btrfs_file_extent_type(src, extent) ==
4010 		    BTRFS_FILE_EXTENT_INLINE) {
4011 			len = btrfs_file_extent_inline_len(src, i, extent);
4012 			extent_end = ALIGN(key.offset + len,
4013 					   fs_info->sectorsize);
4014 		} else {
4015 			len = btrfs_file_extent_num_bytes(src, extent);
4016 			extent_end = key.offset + len;
4017 		}
4018 		i++;
4019 
4020 		if (*last_extent == key.offset) {
4021 			*last_extent = extent_end;
4022 			continue;
4023 		}
4024 		offset = *last_extent;
4025 		len = key.offset - *last_extent;
4026 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4027 				offset, 0, 0, len, 0, len, 0, 0, 0);
4028 		if (ret)
4029 			break;
4030 		*last_extent = extent_end;
4031 	}
4032 
4033 	/*
4034 	 * Check if there is a hole between the last extent found in our leaf
4035 	 * and the first extent in the next leaf. If there is one, we need to
4036 	 * log an explicit hole so that at replay time we can punch the hole.
4037 	 */
4038 	if (ret == 0 &&
4039 	    key.objectid == btrfs_ino(inode) &&
4040 	    key.type == BTRFS_EXTENT_DATA_KEY &&
4041 	    i == btrfs_header_nritems(src_path->nodes[0])) {
4042 		ret = btrfs_next_leaf(inode->root, src_path);
4043 		need_find_last_extent = true;
4044 		if (ret > 0) {
4045 			ret = 0;
4046 		} else if (ret == 0) {
4047 			btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4048 					      src_path->slots[0]);
4049 			if (key.objectid == btrfs_ino(inode) &&
4050 			    key.type == BTRFS_EXTENT_DATA_KEY &&
4051 			    *last_extent < key.offset) {
4052 				const u64 len = key.offset - *last_extent;
4053 
4054 				ret = btrfs_insert_file_extent(trans, log,
4055 							       btrfs_ino(inode),
4056 							       *last_extent, 0,
4057 							       0, len, 0, len,
4058 							       0, 0, 0);
4059 			}
4060 		}
4061 	}
4062 	/*
4063 	 * Need to let the callers know we dropped the path so they should
4064 	 * re-search.
4065 	 */
4066 	if (!ret && need_find_last_extent)
4067 		ret = 1;
4068 	return ret;
4069 }
4070 
4071 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4072 {
4073 	struct extent_map *em1, *em2;
4074 
4075 	em1 = list_entry(a, struct extent_map, list);
4076 	em2 = list_entry(b, struct extent_map, list);
4077 
4078 	if (em1->start < em2->start)
4079 		return -1;
4080 	else if (em1->start > em2->start)
4081 		return 1;
4082 	return 0;
4083 }
4084 
4085 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
4086 				struct inode *inode,
4087 				struct btrfs_root *root,
4088 				const struct extent_map *em,
4089 				const struct list_head *logged_list,
4090 				bool *ordered_io_error)
4091 {
4092 	struct btrfs_fs_info *fs_info = root->fs_info;
4093 	struct btrfs_ordered_extent *ordered;
4094 	struct btrfs_root *log = root->log_root;
4095 	u64 mod_start = em->mod_start;
4096 	u64 mod_len = em->mod_len;
4097 	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
4098 	u64 csum_offset;
4099 	u64 csum_len;
4100 	LIST_HEAD(ordered_sums);
4101 	int ret = 0;
4102 
4103 	*ordered_io_error = false;
4104 
4105 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4106 	    em->block_start == EXTENT_MAP_HOLE)
4107 		return 0;
4108 
4109 	/*
4110 	 * Wait far any ordered extent that covers our extent map. If it
4111 	 * finishes without an error, first check and see if our csums are on
4112 	 * our outstanding ordered extents.
4113 	 */
4114 	list_for_each_entry(ordered, logged_list, log_list) {
4115 		struct btrfs_ordered_sum *sum;
4116 
4117 		if (!mod_len)
4118 			break;
4119 
4120 		if (ordered->file_offset + ordered->len <= mod_start ||
4121 		    mod_start + mod_len <= ordered->file_offset)
4122 			continue;
4123 
4124 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
4125 		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
4126 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
4127 			const u64 start = ordered->file_offset;
4128 			const u64 end = ordered->file_offset + ordered->len - 1;
4129 
4130 			WARN_ON(ordered->inode != inode);
4131 			filemap_fdatawrite_range(inode->i_mapping, start, end);
4132 		}
4133 
4134 		wait_event(ordered->wait,
4135 			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
4136 			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
4137 
4138 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
4139 			/*
4140 			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
4141 			 * i_mapping flags, so that the next fsync won't get
4142 			 * an outdated io error too.
4143 			 */
4144 			filemap_check_errors(inode->i_mapping);
4145 			*ordered_io_error = true;
4146 			break;
4147 		}
4148 		/*
4149 		 * We are going to copy all the csums on this ordered extent, so
4150 		 * go ahead and adjust mod_start and mod_len in case this
4151 		 * ordered extent has already been logged.
4152 		 */
4153 		if (ordered->file_offset > mod_start) {
4154 			if (ordered->file_offset + ordered->len >=
4155 			    mod_start + mod_len)
4156 				mod_len = ordered->file_offset - mod_start;
4157 			/*
4158 			 * If we have this case
4159 			 *
4160 			 * |--------- logged extent ---------|
4161 			 *       |----- ordered extent ----|
4162 			 *
4163 			 * Just don't mess with mod_start and mod_len, we'll
4164 			 * just end up logging more csums than we need and it
4165 			 * will be ok.
4166 			 */
4167 		} else {
4168 			if (ordered->file_offset + ordered->len <
4169 			    mod_start + mod_len) {
4170 				mod_len = (mod_start + mod_len) -
4171 					(ordered->file_offset + ordered->len);
4172 				mod_start = ordered->file_offset +
4173 					ordered->len;
4174 			} else {
4175 				mod_len = 0;
4176 			}
4177 		}
4178 
4179 		if (skip_csum)
4180 			continue;
4181 
4182 		/*
4183 		 * To keep us from looping for the above case of an ordered
4184 		 * extent that falls inside of the logged extent.
4185 		 */
4186 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4187 				     &ordered->flags))
4188 			continue;
4189 
4190 		list_for_each_entry(sum, &ordered->list, list) {
4191 			ret = btrfs_csum_file_blocks(trans, log, sum);
4192 			if (ret)
4193 				break;
4194 		}
4195 	}
4196 
4197 	if (*ordered_io_error || !mod_len || ret || skip_csum)
4198 		return ret;
4199 
4200 	if (em->compress_type) {
4201 		csum_offset = 0;
4202 		csum_len = max(em->block_len, em->orig_block_len);
4203 	} else {
4204 		csum_offset = mod_start - em->start;
4205 		csum_len = mod_len;
4206 	}
4207 
4208 	/* block start is already adjusted for the file extent offset. */
4209 	ret = btrfs_lookup_csums_range(fs_info->csum_root,
4210 				       em->block_start + csum_offset,
4211 				       em->block_start + csum_offset +
4212 				       csum_len - 1, &ordered_sums, 0);
4213 	if (ret)
4214 		return ret;
4215 
4216 	while (!list_empty(&ordered_sums)) {
4217 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4218 						   struct btrfs_ordered_sum,
4219 						   list);
4220 		if (!ret)
4221 			ret = btrfs_csum_file_blocks(trans, log, sums);
4222 		list_del(&sums->list);
4223 		kfree(sums);
4224 	}
4225 
4226 	return ret;
4227 }
4228 
4229 static int log_one_extent(struct btrfs_trans_handle *trans,
4230 			  struct btrfs_inode *inode, struct btrfs_root *root,
4231 			  const struct extent_map *em,
4232 			  struct btrfs_path *path,
4233 			  const struct list_head *logged_list,
4234 			  struct btrfs_log_ctx *ctx)
4235 {
4236 	struct btrfs_root *log = root->log_root;
4237 	struct btrfs_file_extent_item *fi;
4238 	struct extent_buffer *leaf;
4239 	struct btrfs_map_token token;
4240 	struct btrfs_key key;
4241 	u64 extent_offset = em->start - em->orig_start;
4242 	u64 block_len;
4243 	int ret;
4244 	int extent_inserted = 0;
4245 	bool ordered_io_err = false;
4246 
4247 	ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4248 			logged_list, &ordered_io_err);
4249 	if (ret)
4250 		return ret;
4251 
4252 	if (ordered_io_err) {
4253 		ctx->io_err = -EIO;
4254 		return ctx->io_err;
4255 	}
4256 
4257 	btrfs_init_map_token(&token);
4258 
4259 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4260 				   em->start + em->len, NULL, 0, 1,
4261 				   sizeof(*fi), &extent_inserted);
4262 	if (ret)
4263 		return ret;
4264 
4265 	if (!extent_inserted) {
4266 		key.objectid = btrfs_ino(inode);
4267 		key.type = BTRFS_EXTENT_DATA_KEY;
4268 		key.offset = em->start;
4269 
4270 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4271 					      sizeof(*fi));
4272 		if (ret)
4273 			return ret;
4274 	}
4275 	leaf = path->nodes[0];
4276 	fi = btrfs_item_ptr(leaf, path->slots[0],
4277 			    struct btrfs_file_extent_item);
4278 
4279 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4280 					       &token);
4281 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4282 		btrfs_set_token_file_extent_type(leaf, fi,
4283 						 BTRFS_FILE_EXTENT_PREALLOC,
4284 						 &token);
4285 	else
4286 		btrfs_set_token_file_extent_type(leaf, fi,
4287 						 BTRFS_FILE_EXTENT_REG,
4288 						 &token);
4289 
4290 	block_len = max(em->block_len, em->orig_block_len);
4291 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4292 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4293 							em->block_start,
4294 							&token);
4295 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4296 							   &token);
4297 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4298 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4299 							em->block_start -
4300 							extent_offset, &token);
4301 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4302 							   &token);
4303 	} else {
4304 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4305 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4306 							   &token);
4307 	}
4308 
4309 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4310 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4311 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4312 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4313 						&token);
4314 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4315 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4316 	btrfs_mark_buffer_dirty(leaf);
4317 
4318 	btrfs_release_path(path);
4319 
4320 	return ret;
4321 }
4322 
4323 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4324 				     struct btrfs_root *root,
4325 				     struct btrfs_inode *inode,
4326 				     struct btrfs_path *path,
4327 				     struct list_head *logged_list,
4328 				     struct btrfs_log_ctx *ctx,
4329 				     const u64 start,
4330 				     const u64 end)
4331 {
4332 	struct extent_map *em, *n;
4333 	struct list_head extents;
4334 	struct extent_map_tree *tree = &inode->extent_tree;
4335 	u64 logged_start, logged_end;
4336 	u64 test_gen;
4337 	int ret = 0;
4338 	int num = 0;
4339 
4340 	INIT_LIST_HEAD(&extents);
4341 
4342 	down_write(&inode->dio_sem);
4343 	write_lock(&tree->lock);
4344 	test_gen = root->fs_info->last_trans_committed;
4345 	logged_start = start;
4346 	logged_end = end;
4347 
4348 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4349 		list_del_init(&em->list);
4350 		/*
4351 		 * Just an arbitrary number, this can be really CPU intensive
4352 		 * once we start getting a lot of extents, and really once we
4353 		 * have a bunch of extents we just want to commit since it will
4354 		 * be faster.
4355 		 */
4356 		if (++num > 32768) {
4357 			list_del_init(&tree->modified_extents);
4358 			ret = -EFBIG;
4359 			goto process;
4360 		}
4361 
4362 		if (em->generation <= test_gen)
4363 			continue;
4364 
4365 		if (em->start < logged_start)
4366 			logged_start = em->start;
4367 		if ((em->start + em->len - 1) > logged_end)
4368 			logged_end = em->start + em->len - 1;
4369 
4370 		/* Need a ref to keep it from getting evicted from cache */
4371 		refcount_inc(&em->refs);
4372 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4373 		list_add_tail(&em->list, &extents);
4374 		num++;
4375 	}
4376 
4377 	/*
4378 	 * Add all prealloc extents beyond the inode's i_size to make sure we
4379 	 * don't lose them after doing a fast fsync and replaying the log.
4380 	 */
4381 	if (inode->flags & BTRFS_INODE_PREALLOC) {
4382 		struct rb_node *node;
4383 
4384 		for (node = rb_last(&tree->map); node; node = rb_prev(node)) {
4385 			em = rb_entry(node, struct extent_map, rb_node);
4386 			if (em->start < i_size_read(&inode->vfs_inode))
4387 				break;
4388 			if (!list_empty(&em->list))
4389 				continue;
4390 			/* Same as above loop. */
4391 			if (++num > 32768) {
4392 				list_del_init(&tree->modified_extents);
4393 				ret = -EFBIG;
4394 				goto process;
4395 			}
4396 			refcount_inc(&em->refs);
4397 			set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4398 			list_add_tail(&em->list, &extents);
4399 		}
4400 	}
4401 
4402 	list_sort(NULL, &extents, extent_cmp);
4403 	btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end);
4404 	/*
4405 	 * Some ordered extents started by fsync might have completed
4406 	 * before we could collect them into the list logged_list, which
4407 	 * means they're gone, not in our logged_list nor in the inode's
4408 	 * ordered tree. We want the application/user space to know an
4409 	 * error happened while attempting to persist file data so that
4410 	 * it can take proper action. If such error happened, we leave
4411 	 * without writing to the log tree and the fsync must report the
4412 	 * file data write error and not commit the current transaction.
4413 	 */
4414 	ret = filemap_check_errors(inode->vfs_inode.i_mapping);
4415 	if (ret)
4416 		ctx->io_err = ret;
4417 process:
4418 	while (!list_empty(&extents)) {
4419 		em = list_entry(extents.next, struct extent_map, list);
4420 
4421 		list_del_init(&em->list);
4422 
4423 		/*
4424 		 * If we had an error we just need to delete everybody from our
4425 		 * private list.
4426 		 */
4427 		if (ret) {
4428 			clear_em_logging(tree, em);
4429 			free_extent_map(em);
4430 			continue;
4431 		}
4432 
4433 		write_unlock(&tree->lock);
4434 
4435 		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4436 				     ctx);
4437 		write_lock(&tree->lock);
4438 		clear_em_logging(tree, em);
4439 		free_extent_map(em);
4440 	}
4441 	WARN_ON(!list_empty(&extents));
4442 	write_unlock(&tree->lock);
4443 	up_write(&inode->dio_sem);
4444 
4445 	btrfs_release_path(path);
4446 	return ret;
4447 }
4448 
4449 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4450 			     struct btrfs_path *path, u64 *size_ret)
4451 {
4452 	struct btrfs_key key;
4453 	int ret;
4454 
4455 	key.objectid = btrfs_ino(inode);
4456 	key.type = BTRFS_INODE_ITEM_KEY;
4457 	key.offset = 0;
4458 
4459 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4460 	if (ret < 0) {
4461 		return ret;
4462 	} else if (ret > 0) {
4463 		*size_ret = 0;
4464 	} else {
4465 		struct btrfs_inode_item *item;
4466 
4467 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4468 				      struct btrfs_inode_item);
4469 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4470 	}
4471 
4472 	btrfs_release_path(path);
4473 	return 0;
4474 }
4475 
4476 /*
4477  * At the moment we always log all xattrs. This is to figure out at log replay
4478  * time which xattrs must have their deletion replayed. If a xattr is missing
4479  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4480  * because if a xattr is deleted, the inode is fsynced and a power failure
4481  * happens, causing the log to be replayed the next time the fs is mounted,
4482  * we want the xattr to not exist anymore (same behaviour as other filesystems
4483  * with a journal, ext3/4, xfs, f2fs, etc).
4484  */
4485 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4486 				struct btrfs_root *root,
4487 				struct btrfs_inode *inode,
4488 				struct btrfs_path *path,
4489 				struct btrfs_path *dst_path)
4490 {
4491 	int ret;
4492 	struct btrfs_key key;
4493 	const u64 ino = btrfs_ino(inode);
4494 	int ins_nr = 0;
4495 	int start_slot = 0;
4496 
4497 	key.objectid = ino;
4498 	key.type = BTRFS_XATTR_ITEM_KEY;
4499 	key.offset = 0;
4500 
4501 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4502 	if (ret < 0)
4503 		return ret;
4504 
4505 	while (true) {
4506 		int slot = path->slots[0];
4507 		struct extent_buffer *leaf = path->nodes[0];
4508 		int nritems = btrfs_header_nritems(leaf);
4509 
4510 		if (slot >= nritems) {
4511 			if (ins_nr > 0) {
4512 				u64 last_extent = 0;
4513 
4514 				ret = copy_items(trans, inode, dst_path, path,
4515 						 &last_extent, start_slot,
4516 						 ins_nr, 1, 0);
4517 				/* can't be 1, extent items aren't processed */
4518 				ASSERT(ret <= 0);
4519 				if (ret < 0)
4520 					return ret;
4521 				ins_nr = 0;
4522 			}
4523 			ret = btrfs_next_leaf(root, path);
4524 			if (ret < 0)
4525 				return ret;
4526 			else if (ret > 0)
4527 				break;
4528 			continue;
4529 		}
4530 
4531 		btrfs_item_key_to_cpu(leaf, &key, slot);
4532 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4533 			break;
4534 
4535 		if (ins_nr == 0)
4536 			start_slot = slot;
4537 		ins_nr++;
4538 		path->slots[0]++;
4539 		cond_resched();
4540 	}
4541 	if (ins_nr > 0) {
4542 		u64 last_extent = 0;
4543 
4544 		ret = copy_items(trans, inode, dst_path, path,
4545 				 &last_extent, start_slot,
4546 				 ins_nr, 1, 0);
4547 		/* can't be 1, extent items aren't processed */
4548 		ASSERT(ret <= 0);
4549 		if (ret < 0)
4550 			return ret;
4551 	}
4552 
4553 	return 0;
4554 }
4555 
4556 /*
4557  * If the no holes feature is enabled we need to make sure any hole between the
4558  * last extent and the i_size of our inode is explicitly marked in the log. This
4559  * is to make sure that doing something like:
4560  *
4561  *      1) create file with 128Kb of data
4562  *      2) truncate file to 64Kb
4563  *      3) truncate file to 256Kb
4564  *      4) fsync file
4565  *      5) <crash/power failure>
4566  *      6) mount fs and trigger log replay
4567  *
4568  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4569  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4570  * file correspond to a hole. The presence of explicit holes in a log tree is
4571  * what guarantees that log replay will remove/adjust file extent items in the
4572  * fs/subvol tree.
4573  *
4574  * Here we do not need to care about holes between extents, that is already done
4575  * by copy_items(). We also only need to do this in the full sync path, where we
4576  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4577  * lookup the list of modified extent maps and if any represents a hole, we
4578  * insert a corresponding extent representing a hole in the log tree.
4579  */
4580 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4581 				   struct btrfs_root *root,
4582 				   struct btrfs_inode *inode,
4583 				   struct btrfs_path *path)
4584 {
4585 	struct btrfs_fs_info *fs_info = root->fs_info;
4586 	int ret;
4587 	struct btrfs_key key;
4588 	u64 hole_start;
4589 	u64 hole_size;
4590 	struct extent_buffer *leaf;
4591 	struct btrfs_root *log = root->log_root;
4592 	const u64 ino = btrfs_ino(inode);
4593 	const u64 i_size = i_size_read(&inode->vfs_inode);
4594 
4595 	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4596 		return 0;
4597 
4598 	key.objectid = ino;
4599 	key.type = BTRFS_EXTENT_DATA_KEY;
4600 	key.offset = (u64)-1;
4601 
4602 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4603 	ASSERT(ret != 0);
4604 	if (ret < 0)
4605 		return ret;
4606 
4607 	ASSERT(path->slots[0] > 0);
4608 	path->slots[0]--;
4609 	leaf = path->nodes[0];
4610 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4611 
4612 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4613 		/* inode does not have any extents */
4614 		hole_start = 0;
4615 		hole_size = i_size;
4616 	} else {
4617 		struct btrfs_file_extent_item *extent;
4618 		u64 len;
4619 
4620 		/*
4621 		 * If there's an extent beyond i_size, an explicit hole was
4622 		 * already inserted by copy_items().
4623 		 */
4624 		if (key.offset >= i_size)
4625 			return 0;
4626 
4627 		extent = btrfs_item_ptr(leaf, path->slots[0],
4628 					struct btrfs_file_extent_item);
4629 
4630 		if (btrfs_file_extent_type(leaf, extent) ==
4631 		    BTRFS_FILE_EXTENT_INLINE) {
4632 			len = btrfs_file_extent_inline_len(leaf,
4633 							   path->slots[0],
4634 							   extent);
4635 			ASSERT(len == i_size ||
4636 			       (len == fs_info->sectorsize &&
4637 				btrfs_file_extent_compression(leaf, extent) !=
4638 				BTRFS_COMPRESS_NONE));
4639 			return 0;
4640 		}
4641 
4642 		len = btrfs_file_extent_num_bytes(leaf, extent);
4643 		/* Last extent goes beyond i_size, no need to log a hole. */
4644 		if (key.offset + len > i_size)
4645 			return 0;
4646 		hole_start = key.offset + len;
4647 		hole_size = i_size - hole_start;
4648 	}
4649 	btrfs_release_path(path);
4650 
4651 	/* Last extent ends at i_size. */
4652 	if (hole_size == 0)
4653 		return 0;
4654 
4655 	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4656 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4657 				       hole_size, 0, hole_size, 0, 0, 0);
4658 	return ret;
4659 }
4660 
4661 /*
4662  * When we are logging a new inode X, check if it doesn't have a reference that
4663  * matches the reference from some other inode Y created in a past transaction
4664  * and that was renamed in the current transaction. If we don't do this, then at
4665  * log replay time we can lose inode Y (and all its files if it's a directory):
4666  *
4667  * mkdir /mnt/x
4668  * echo "hello world" > /mnt/x/foobar
4669  * sync
4670  * mv /mnt/x /mnt/y
4671  * mkdir /mnt/x                 # or touch /mnt/x
4672  * xfs_io -c fsync /mnt/x
4673  * <power fail>
4674  * mount fs, trigger log replay
4675  *
4676  * After the log replay procedure, we would lose the first directory and all its
4677  * files (file foobar).
4678  * For the case where inode Y is not a directory we simply end up losing it:
4679  *
4680  * echo "123" > /mnt/foo
4681  * sync
4682  * mv /mnt/foo /mnt/bar
4683  * echo "abc" > /mnt/foo
4684  * xfs_io -c fsync /mnt/foo
4685  * <power fail>
4686  *
4687  * We also need this for cases where a snapshot entry is replaced by some other
4688  * entry (file or directory) otherwise we end up with an unreplayable log due to
4689  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4690  * if it were a regular entry:
4691  *
4692  * mkdir /mnt/x
4693  * btrfs subvolume snapshot /mnt /mnt/x/snap
4694  * btrfs subvolume delete /mnt/x/snap
4695  * rmdir /mnt/x
4696  * mkdir /mnt/x
4697  * fsync /mnt/x or fsync some new file inside it
4698  * <power fail>
4699  *
4700  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4701  * the same transaction.
4702  */
4703 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4704 					 const int slot,
4705 					 const struct btrfs_key *key,
4706 					 struct btrfs_inode *inode,
4707 					 u64 *other_ino)
4708 {
4709 	int ret;
4710 	struct btrfs_path *search_path;
4711 	char *name = NULL;
4712 	u32 name_len = 0;
4713 	u32 item_size = btrfs_item_size_nr(eb, slot);
4714 	u32 cur_offset = 0;
4715 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4716 
4717 	search_path = btrfs_alloc_path();
4718 	if (!search_path)
4719 		return -ENOMEM;
4720 	search_path->search_commit_root = 1;
4721 	search_path->skip_locking = 1;
4722 
4723 	while (cur_offset < item_size) {
4724 		u64 parent;
4725 		u32 this_name_len;
4726 		u32 this_len;
4727 		unsigned long name_ptr;
4728 		struct btrfs_dir_item *di;
4729 
4730 		if (key->type == BTRFS_INODE_REF_KEY) {
4731 			struct btrfs_inode_ref *iref;
4732 
4733 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4734 			parent = key->offset;
4735 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4736 			name_ptr = (unsigned long)(iref + 1);
4737 			this_len = sizeof(*iref) + this_name_len;
4738 		} else {
4739 			struct btrfs_inode_extref *extref;
4740 
4741 			extref = (struct btrfs_inode_extref *)(ptr +
4742 							       cur_offset);
4743 			parent = btrfs_inode_extref_parent(eb, extref);
4744 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4745 			name_ptr = (unsigned long)&extref->name;
4746 			this_len = sizeof(*extref) + this_name_len;
4747 		}
4748 
4749 		if (this_name_len > name_len) {
4750 			char *new_name;
4751 
4752 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4753 			if (!new_name) {
4754 				ret = -ENOMEM;
4755 				goto out;
4756 			}
4757 			name_len = this_name_len;
4758 			name = new_name;
4759 		}
4760 
4761 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4762 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4763 				parent, name, this_name_len, 0);
4764 		if (di && !IS_ERR(di)) {
4765 			struct btrfs_key di_key;
4766 
4767 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4768 						  di, &di_key);
4769 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4770 				ret = 1;
4771 				*other_ino = di_key.objectid;
4772 			} else {
4773 				ret = -EAGAIN;
4774 			}
4775 			goto out;
4776 		} else if (IS_ERR(di)) {
4777 			ret = PTR_ERR(di);
4778 			goto out;
4779 		}
4780 		btrfs_release_path(search_path);
4781 
4782 		cur_offset += this_len;
4783 	}
4784 	ret = 0;
4785 out:
4786 	btrfs_free_path(search_path);
4787 	kfree(name);
4788 	return ret;
4789 }
4790 
4791 /* log a single inode in the tree log.
4792  * At least one parent directory for this inode must exist in the tree
4793  * or be logged already.
4794  *
4795  * Any items from this inode changed by the current transaction are copied
4796  * to the log tree.  An extra reference is taken on any extents in this
4797  * file, allowing us to avoid a whole pile of corner cases around logging
4798  * blocks that have been removed from the tree.
4799  *
4800  * See LOG_INODE_ALL and related defines for a description of what inode_only
4801  * does.
4802  *
4803  * This handles both files and directories.
4804  */
4805 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4806 			   struct btrfs_root *root, struct btrfs_inode *inode,
4807 			   int inode_only,
4808 			   const loff_t start,
4809 			   const loff_t end,
4810 			   struct btrfs_log_ctx *ctx)
4811 {
4812 	struct btrfs_fs_info *fs_info = root->fs_info;
4813 	struct btrfs_path *path;
4814 	struct btrfs_path *dst_path;
4815 	struct btrfs_key min_key;
4816 	struct btrfs_key max_key;
4817 	struct btrfs_root *log = root->log_root;
4818 	LIST_HEAD(logged_list);
4819 	u64 last_extent = 0;
4820 	int err = 0;
4821 	int ret;
4822 	int nritems;
4823 	int ins_start_slot = 0;
4824 	int ins_nr;
4825 	bool fast_search = false;
4826 	u64 ino = btrfs_ino(inode);
4827 	struct extent_map_tree *em_tree = &inode->extent_tree;
4828 	u64 logged_isize = 0;
4829 	bool need_log_inode_item = true;
4830 
4831 	path = btrfs_alloc_path();
4832 	if (!path)
4833 		return -ENOMEM;
4834 	dst_path = btrfs_alloc_path();
4835 	if (!dst_path) {
4836 		btrfs_free_path(path);
4837 		return -ENOMEM;
4838 	}
4839 
4840 	min_key.objectid = ino;
4841 	min_key.type = BTRFS_INODE_ITEM_KEY;
4842 	min_key.offset = 0;
4843 
4844 	max_key.objectid = ino;
4845 
4846 
4847 	/* today the code can only do partial logging of directories */
4848 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4849 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4850 		       &inode->runtime_flags) &&
4851 	     inode_only >= LOG_INODE_EXISTS))
4852 		max_key.type = BTRFS_XATTR_ITEM_KEY;
4853 	else
4854 		max_key.type = (u8)-1;
4855 	max_key.offset = (u64)-1;
4856 
4857 	/*
4858 	 * Only run delayed items if we are a dir or a new file.
4859 	 * Otherwise commit the delayed inode only, which is needed in
4860 	 * order for the log replay code to mark inodes for link count
4861 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4862 	 */
4863 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4864 	    inode->generation > fs_info->last_trans_committed)
4865 		ret = btrfs_commit_inode_delayed_items(trans, inode);
4866 	else
4867 		ret = btrfs_commit_inode_delayed_inode(inode);
4868 
4869 	if (ret) {
4870 		btrfs_free_path(path);
4871 		btrfs_free_path(dst_path);
4872 		return ret;
4873 	}
4874 
4875 	if (inode_only == LOG_OTHER_INODE) {
4876 		inode_only = LOG_INODE_EXISTS;
4877 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4878 	} else {
4879 		mutex_lock(&inode->log_mutex);
4880 	}
4881 
4882 	/*
4883 	 * a brute force approach to making sure we get the most uptodate
4884 	 * copies of everything.
4885 	 */
4886 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
4887 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4888 
4889 		if (inode_only == LOG_INODE_EXISTS)
4890 			max_key_type = BTRFS_XATTR_ITEM_KEY;
4891 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4892 	} else {
4893 		if (inode_only == LOG_INODE_EXISTS) {
4894 			/*
4895 			 * Make sure the new inode item we write to the log has
4896 			 * the same isize as the current one (if it exists).
4897 			 * This is necessary to prevent data loss after log
4898 			 * replay, and also to prevent doing a wrong expanding
4899 			 * truncate - for e.g. create file, write 4K into offset
4900 			 * 0, fsync, write 4K into offset 4096, add hard link,
4901 			 * fsync some other file (to sync log), power fail - if
4902 			 * we use the inode's current i_size, after log replay
4903 			 * we get a 8Kb file, with the last 4Kb extent as a hole
4904 			 * (zeroes), as if an expanding truncate happened,
4905 			 * instead of getting a file of 4Kb only.
4906 			 */
4907 			err = logged_inode_size(log, inode, path, &logged_isize);
4908 			if (err)
4909 				goto out_unlock;
4910 		}
4911 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4912 			     &inode->runtime_flags)) {
4913 			if (inode_only == LOG_INODE_EXISTS) {
4914 				max_key.type = BTRFS_XATTR_ITEM_KEY;
4915 				ret = drop_objectid_items(trans, log, path, ino,
4916 							  max_key.type);
4917 			} else {
4918 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4919 					  &inode->runtime_flags);
4920 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4921 					  &inode->runtime_flags);
4922 				while(1) {
4923 					ret = btrfs_truncate_inode_items(trans,
4924 						log, &inode->vfs_inode, 0, 0);
4925 					if (ret != -EAGAIN)
4926 						break;
4927 				}
4928 			}
4929 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4930 					      &inode->runtime_flags) ||
4931 			   inode_only == LOG_INODE_EXISTS) {
4932 			if (inode_only == LOG_INODE_ALL)
4933 				fast_search = true;
4934 			max_key.type = BTRFS_XATTR_ITEM_KEY;
4935 			ret = drop_objectid_items(trans, log, path, ino,
4936 						  max_key.type);
4937 		} else {
4938 			if (inode_only == LOG_INODE_ALL)
4939 				fast_search = true;
4940 			goto log_extents;
4941 		}
4942 
4943 	}
4944 	if (ret) {
4945 		err = ret;
4946 		goto out_unlock;
4947 	}
4948 
4949 	while (1) {
4950 		ins_nr = 0;
4951 		ret = btrfs_search_forward(root, &min_key,
4952 					   path, trans->transid);
4953 		if (ret < 0) {
4954 			err = ret;
4955 			goto out_unlock;
4956 		}
4957 		if (ret != 0)
4958 			break;
4959 again:
4960 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4961 		if (min_key.objectid != ino)
4962 			break;
4963 		if (min_key.type > max_key.type)
4964 			break;
4965 
4966 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4967 			need_log_inode_item = false;
4968 
4969 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
4970 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4971 		    inode->generation == trans->transid) {
4972 			u64 other_ino = 0;
4973 
4974 			ret = btrfs_check_ref_name_override(path->nodes[0],
4975 					path->slots[0], &min_key, inode,
4976 					&other_ino);
4977 			if (ret < 0) {
4978 				err = ret;
4979 				goto out_unlock;
4980 			} else if (ret > 0 && ctx &&
4981 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
4982 				struct btrfs_key inode_key;
4983 				struct inode *other_inode;
4984 
4985 				if (ins_nr > 0) {
4986 					ins_nr++;
4987 				} else {
4988 					ins_nr = 1;
4989 					ins_start_slot = path->slots[0];
4990 				}
4991 				ret = copy_items(trans, inode, dst_path, path,
4992 						 &last_extent, ins_start_slot,
4993 						 ins_nr, inode_only,
4994 						 logged_isize);
4995 				if (ret < 0) {
4996 					err = ret;
4997 					goto out_unlock;
4998 				}
4999 				ins_nr = 0;
5000 				btrfs_release_path(path);
5001 				inode_key.objectid = other_ino;
5002 				inode_key.type = BTRFS_INODE_ITEM_KEY;
5003 				inode_key.offset = 0;
5004 				other_inode = btrfs_iget(fs_info->sb,
5005 							 &inode_key, root,
5006 							 NULL);
5007 				/*
5008 				 * If the other inode that had a conflicting dir
5009 				 * entry was deleted in the current transaction,
5010 				 * we don't need to do more work nor fallback to
5011 				 * a transaction commit.
5012 				 */
5013 				if (IS_ERR(other_inode) &&
5014 				    PTR_ERR(other_inode) == -ENOENT) {
5015 					goto next_key;
5016 				} else if (IS_ERR(other_inode)) {
5017 					err = PTR_ERR(other_inode);
5018 					goto out_unlock;
5019 				}
5020 				/*
5021 				 * We are safe logging the other inode without
5022 				 * acquiring its i_mutex as long as we log with
5023 				 * the LOG_INODE_EXISTS mode. We're safe against
5024 				 * concurrent renames of the other inode as well
5025 				 * because during a rename we pin the log and
5026 				 * update the log with the new name before we
5027 				 * unpin it.
5028 				 */
5029 				err = btrfs_log_inode(trans, root,
5030 						BTRFS_I(other_inode),
5031 						LOG_OTHER_INODE, 0, LLONG_MAX,
5032 						ctx);
5033 				iput(other_inode);
5034 				if (err)
5035 					goto out_unlock;
5036 				else
5037 					goto next_key;
5038 			}
5039 		}
5040 
5041 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5042 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5043 			if (ins_nr == 0)
5044 				goto next_slot;
5045 			ret = copy_items(trans, inode, dst_path, path,
5046 					 &last_extent, ins_start_slot,
5047 					 ins_nr, inode_only, logged_isize);
5048 			if (ret < 0) {
5049 				err = ret;
5050 				goto out_unlock;
5051 			}
5052 			ins_nr = 0;
5053 			if (ret) {
5054 				btrfs_release_path(path);
5055 				continue;
5056 			}
5057 			goto next_slot;
5058 		}
5059 
5060 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5061 			ins_nr++;
5062 			goto next_slot;
5063 		} else if (!ins_nr) {
5064 			ins_start_slot = path->slots[0];
5065 			ins_nr = 1;
5066 			goto next_slot;
5067 		}
5068 
5069 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5070 				 ins_start_slot, ins_nr, inode_only,
5071 				 logged_isize);
5072 		if (ret < 0) {
5073 			err = ret;
5074 			goto out_unlock;
5075 		}
5076 		if (ret) {
5077 			ins_nr = 0;
5078 			btrfs_release_path(path);
5079 			continue;
5080 		}
5081 		ins_nr = 1;
5082 		ins_start_slot = path->slots[0];
5083 next_slot:
5084 
5085 		nritems = btrfs_header_nritems(path->nodes[0]);
5086 		path->slots[0]++;
5087 		if (path->slots[0] < nritems) {
5088 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5089 					      path->slots[0]);
5090 			goto again;
5091 		}
5092 		if (ins_nr) {
5093 			ret = copy_items(trans, inode, dst_path, path,
5094 					 &last_extent, ins_start_slot,
5095 					 ins_nr, inode_only, logged_isize);
5096 			if (ret < 0) {
5097 				err = ret;
5098 				goto out_unlock;
5099 			}
5100 			ret = 0;
5101 			ins_nr = 0;
5102 		}
5103 		btrfs_release_path(path);
5104 next_key:
5105 		if (min_key.offset < (u64)-1) {
5106 			min_key.offset++;
5107 		} else if (min_key.type < max_key.type) {
5108 			min_key.type++;
5109 			min_key.offset = 0;
5110 		} else {
5111 			break;
5112 		}
5113 	}
5114 	if (ins_nr) {
5115 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5116 				 ins_start_slot, ins_nr, inode_only,
5117 				 logged_isize);
5118 		if (ret < 0) {
5119 			err = ret;
5120 			goto out_unlock;
5121 		}
5122 		ret = 0;
5123 		ins_nr = 0;
5124 	}
5125 
5126 	btrfs_release_path(path);
5127 	btrfs_release_path(dst_path);
5128 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5129 	if (err)
5130 		goto out_unlock;
5131 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5132 		btrfs_release_path(path);
5133 		btrfs_release_path(dst_path);
5134 		err = btrfs_log_trailing_hole(trans, root, inode, path);
5135 		if (err)
5136 			goto out_unlock;
5137 	}
5138 log_extents:
5139 	btrfs_release_path(path);
5140 	btrfs_release_path(dst_path);
5141 	if (need_log_inode_item) {
5142 		err = log_inode_item(trans, log, dst_path, inode);
5143 		if (err)
5144 			goto out_unlock;
5145 	}
5146 	if (fast_search) {
5147 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5148 						&logged_list, ctx, start, end);
5149 		if (ret) {
5150 			err = ret;
5151 			goto out_unlock;
5152 		}
5153 	} else if (inode_only == LOG_INODE_ALL) {
5154 		struct extent_map *em, *n;
5155 
5156 		write_lock(&em_tree->lock);
5157 		/*
5158 		 * We can't just remove every em if we're called for a ranged
5159 		 * fsync - that is, one that doesn't cover the whole possible
5160 		 * file range (0 to LLONG_MAX). This is because we can have
5161 		 * em's that fall outside the range we're logging and therefore
5162 		 * their ordered operations haven't completed yet
5163 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5164 		 * didn't get their respective file extent item in the fs/subvol
5165 		 * tree yet, and need to let the next fast fsync (one which
5166 		 * consults the list of modified extent maps) find the em so
5167 		 * that it logs a matching file extent item and waits for the
5168 		 * respective ordered operation to complete (if it's still
5169 		 * running).
5170 		 *
5171 		 * Removing every em outside the range we're logging would make
5172 		 * the next fast fsync not log their matching file extent items,
5173 		 * therefore making us lose data after a log replay.
5174 		 */
5175 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5176 					 list) {
5177 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5178 
5179 			if (em->mod_start >= start && mod_end <= end)
5180 				list_del_init(&em->list);
5181 		}
5182 		write_unlock(&em_tree->lock);
5183 	}
5184 
5185 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5186 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5187 					ctx);
5188 		if (ret) {
5189 			err = ret;
5190 			goto out_unlock;
5191 		}
5192 	}
5193 
5194 	spin_lock(&inode->lock);
5195 	inode->logged_trans = trans->transid;
5196 	inode->last_log_commit = inode->last_sub_trans;
5197 	spin_unlock(&inode->lock);
5198 out_unlock:
5199 	if (unlikely(err))
5200 		btrfs_put_logged_extents(&logged_list);
5201 	else
5202 		btrfs_submit_logged_extents(&logged_list, log);
5203 	mutex_unlock(&inode->log_mutex);
5204 
5205 	btrfs_free_path(path);
5206 	btrfs_free_path(dst_path);
5207 	return err;
5208 }
5209 
5210 /*
5211  * Check if we must fallback to a transaction commit when logging an inode.
5212  * This must be called after logging the inode and is used only in the context
5213  * when fsyncing an inode requires the need to log some other inode - in which
5214  * case we can't lock the i_mutex of each other inode we need to log as that
5215  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5216  * log inodes up or down in the hierarchy) or rename operations for example. So
5217  * we take the log_mutex of the inode after we have logged it and then check for
5218  * its last_unlink_trans value - this is safe because any task setting
5219  * last_unlink_trans must take the log_mutex and it must do this before it does
5220  * the actual unlink operation, so if we do this check before a concurrent task
5221  * sets last_unlink_trans it means we've logged a consistent version/state of
5222  * all the inode items, otherwise we are not sure and must do a transaction
5223  * commit (the concurrent task might have only updated last_unlink_trans before
5224  * we logged the inode or it might have also done the unlink).
5225  */
5226 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5227 					  struct btrfs_inode *inode)
5228 {
5229 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5230 	bool ret = false;
5231 
5232 	mutex_lock(&inode->log_mutex);
5233 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5234 		/*
5235 		 * Make sure any commits to the log are forced to be full
5236 		 * commits.
5237 		 */
5238 		btrfs_set_log_full_commit(fs_info, trans);
5239 		ret = true;
5240 	}
5241 	mutex_unlock(&inode->log_mutex);
5242 
5243 	return ret;
5244 }
5245 
5246 /*
5247  * follow the dentry parent pointers up the chain and see if any
5248  * of the directories in it require a full commit before they can
5249  * be logged.  Returns zero if nothing special needs to be done or 1 if
5250  * a full commit is required.
5251  */
5252 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5253 					       struct btrfs_inode *inode,
5254 					       struct dentry *parent,
5255 					       struct super_block *sb,
5256 					       u64 last_committed)
5257 {
5258 	int ret = 0;
5259 	struct dentry *old_parent = NULL;
5260 	struct btrfs_inode *orig_inode = inode;
5261 
5262 	/*
5263 	 * for regular files, if its inode is already on disk, we don't
5264 	 * have to worry about the parents at all.  This is because
5265 	 * we can use the last_unlink_trans field to record renames
5266 	 * and other fun in this file.
5267 	 */
5268 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5269 	    inode->generation <= last_committed &&
5270 	    inode->last_unlink_trans <= last_committed)
5271 		goto out;
5272 
5273 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5274 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5275 			goto out;
5276 		inode = BTRFS_I(d_inode(parent));
5277 	}
5278 
5279 	while (1) {
5280 		/*
5281 		 * If we are logging a directory then we start with our inode,
5282 		 * not our parent's inode, so we need to skip setting the
5283 		 * logged_trans so that further down in the log code we don't
5284 		 * think this inode has already been logged.
5285 		 */
5286 		if (inode != orig_inode)
5287 			inode->logged_trans = trans->transid;
5288 		smp_mb();
5289 
5290 		if (btrfs_must_commit_transaction(trans, inode)) {
5291 			ret = 1;
5292 			break;
5293 		}
5294 
5295 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5296 			break;
5297 
5298 		if (IS_ROOT(parent)) {
5299 			inode = BTRFS_I(d_inode(parent));
5300 			if (btrfs_must_commit_transaction(trans, inode))
5301 				ret = 1;
5302 			break;
5303 		}
5304 
5305 		parent = dget_parent(parent);
5306 		dput(old_parent);
5307 		old_parent = parent;
5308 		inode = BTRFS_I(d_inode(parent));
5309 
5310 	}
5311 	dput(old_parent);
5312 out:
5313 	return ret;
5314 }
5315 
5316 struct btrfs_dir_list {
5317 	u64 ino;
5318 	struct list_head list;
5319 };
5320 
5321 /*
5322  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5323  * details about the why it is needed.
5324  * This is a recursive operation - if an existing dentry corresponds to a
5325  * directory, that directory's new entries are logged too (same behaviour as
5326  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5327  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5328  * complains about the following circular lock dependency / possible deadlock:
5329  *
5330  *        CPU0                                        CPU1
5331  *        ----                                        ----
5332  * lock(&type->i_mutex_dir_key#3/2);
5333  *                                            lock(sb_internal#2);
5334  *                                            lock(&type->i_mutex_dir_key#3/2);
5335  * lock(&sb->s_type->i_mutex_key#14);
5336  *
5337  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5338  * sb_start_intwrite() in btrfs_start_transaction().
5339  * Not locking i_mutex of the inodes is still safe because:
5340  *
5341  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5342  *    that while logging the inode new references (names) are added or removed
5343  *    from the inode, leaving the logged inode item with a link count that does
5344  *    not match the number of logged inode reference items. This is fine because
5345  *    at log replay time we compute the real number of links and correct the
5346  *    link count in the inode item (see replay_one_buffer() and
5347  *    link_to_fixup_dir());
5348  *
5349  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5350  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5351  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5352  *    has a size that doesn't match the sum of the lengths of all the logged
5353  *    names. This does not result in a problem because if a dir_item key is
5354  *    logged but its matching dir_index key is not logged, at log replay time we
5355  *    don't use it to replay the respective name (see replay_one_name()). On the
5356  *    other hand if only the dir_index key ends up being logged, the respective
5357  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5358  *    keys created (see replay_one_name()).
5359  *    The directory's inode item with a wrong i_size is not a problem as well,
5360  *    since we don't use it at log replay time to set the i_size in the inode
5361  *    item of the fs/subvol tree (see overwrite_item()).
5362  */
5363 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5364 				struct btrfs_root *root,
5365 				struct btrfs_inode *start_inode,
5366 				struct btrfs_log_ctx *ctx)
5367 {
5368 	struct btrfs_fs_info *fs_info = root->fs_info;
5369 	struct btrfs_root *log = root->log_root;
5370 	struct btrfs_path *path;
5371 	LIST_HEAD(dir_list);
5372 	struct btrfs_dir_list *dir_elem;
5373 	int ret = 0;
5374 
5375 	path = btrfs_alloc_path();
5376 	if (!path)
5377 		return -ENOMEM;
5378 
5379 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5380 	if (!dir_elem) {
5381 		btrfs_free_path(path);
5382 		return -ENOMEM;
5383 	}
5384 	dir_elem->ino = btrfs_ino(start_inode);
5385 	list_add_tail(&dir_elem->list, &dir_list);
5386 
5387 	while (!list_empty(&dir_list)) {
5388 		struct extent_buffer *leaf;
5389 		struct btrfs_key min_key;
5390 		int nritems;
5391 		int i;
5392 
5393 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5394 					    list);
5395 		if (ret)
5396 			goto next_dir_inode;
5397 
5398 		min_key.objectid = dir_elem->ino;
5399 		min_key.type = BTRFS_DIR_ITEM_KEY;
5400 		min_key.offset = 0;
5401 again:
5402 		btrfs_release_path(path);
5403 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5404 		if (ret < 0) {
5405 			goto next_dir_inode;
5406 		} else if (ret > 0) {
5407 			ret = 0;
5408 			goto next_dir_inode;
5409 		}
5410 
5411 process_leaf:
5412 		leaf = path->nodes[0];
5413 		nritems = btrfs_header_nritems(leaf);
5414 		for (i = path->slots[0]; i < nritems; i++) {
5415 			struct btrfs_dir_item *di;
5416 			struct btrfs_key di_key;
5417 			struct inode *di_inode;
5418 			struct btrfs_dir_list *new_dir_elem;
5419 			int log_mode = LOG_INODE_EXISTS;
5420 			int type;
5421 
5422 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5423 			if (min_key.objectid != dir_elem->ino ||
5424 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5425 				goto next_dir_inode;
5426 
5427 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5428 			type = btrfs_dir_type(leaf, di);
5429 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5430 			    type != BTRFS_FT_DIR)
5431 				continue;
5432 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5433 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5434 				continue;
5435 
5436 			btrfs_release_path(path);
5437 			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5438 			if (IS_ERR(di_inode)) {
5439 				ret = PTR_ERR(di_inode);
5440 				goto next_dir_inode;
5441 			}
5442 
5443 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5444 				iput(di_inode);
5445 				break;
5446 			}
5447 
5448 			ctx->log_new_dentries = false;
5449 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5450 				log_mode = LOG_INODE_ALL;
5451 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5452 					      log_mode, 0, LLONG_MAX, ctx);
5453 			if (!ret &&
5454 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5455 				ret = 1;
5456 			iput(di_inode);
5457 			if (ret)
5458 				goto next_dir_inode;
5459 			if (ctx->log_new_dentries) {
5460 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5461 						       GFP_NOFS);
5462 				if (!new_dir_elem) {
5463 					ret = -ENOMEM;
5464 					goto next_dir_inode;
5465 				}
5466 				new_dir_elem->ino = di_key.objectid;
5467 				list_add_tail(&new_dir_elem->list, &dir_list);
5468 			}
5469 			break;
5470 		}
5471 		if (i == nritems) {
5472 			ret = btrfs_next_leaf(log, path);
5473 			if (ret < 0) {
5474 				goto next_dir_inode;
5475 			} else if (ret > 0) {
5476 				ret = 0;
5477 				goto next_dir_inode;
5478 			}
5479 			goto process_leaf;
5480 		}
5481 		if (min_key.offset < (u64)-1) {
5482 			min_key.offset++;
5483 			goto again;
5484 		}
5485 next_dir_inode:
5486 		list_del(&dir_elem->list);
5487 		kfree(dir_elem);
5488 	}
5489 
5490 	btrfs_free_path(path);
5491 	return ret;
5492 }
5493 
5494 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5495 				 struct btrfs_inode *inode,
5496 				 struct btrfs_log_ctx *ctx)
5497 {
5498 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5499 	int ret;
5500 	struct btrfs_path *path;
5501 	struct btrfs_key key;
5502 	struct btrfs_root *root = inode->root;
5503 	const u64 ino = btrfs_ino(inode);
5504 
5505 	path = btrfs_alloc_path();
5506 	if (!path)
5507 		return -ENOMEM;
5508 	path->skip_locking = 1;
5509 	path->search_commit_root = 1;
5510 
5511 	key.objectid = ino;
5512 	key.type = BTRFS_INODE_REF_KEY;
5513 	key.offset = 0;
5514 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5515 	if (ret < 0)
5516 		goto out;
5517 
5518 	while (true) {
5519 		struct extent_buffer *leaf = path->nodes[0];
5520 		int slot = path->slots[0];
5521 		u32 cur_offset = 0;
5522 		u32 item_size;
5523 		unsigned long ptr;
5524 
5525 		if (slot >= btrfs_header_nritems(leaf)) {
5526 			ret = btrfs_next_leaf(root, path);
5527 			if (ret < 0)
5528 				goto out;
5529 			else if (ret > 0)
5530 				break;
5531 			continue;
5532 		}
5533 
5534 		btrfs_item_key_to_cpu(leaf, &key, slot);
5535 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5536 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5537 			break;
5538 
5539 		item_size = btrfs_item_size_nr(leaf, slot);
5540 		ptr = btrfs_item_ptr_offset(leaf, slot);
5541 		while (cur_offset < item_size) {
5542 			struct btrfs_key inode_key;
5543 			struct inode *dir_inode;
5544 
5545 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5546 			inode_key.offset = 0;
5547 
5548 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5549 				struct btrfs_inode_extref *extref;
5550 
5551 				extref = (struct btrfs_inode_extref *)
5552 					(ptr + cur_offset);
5553 				inode_key.objectid = btrfs_inode_extref_parent(
5554 					leaf, extref);
5555 				cur_offset += sizeof(*extref);
5556 				cur_offset += btrfs_inode_extref_name_len(leaf,
5557 					extref);
5558 			} else {
5559 				inode_key.objectid = key.offset;
5560 				cur_offset = item_size;
5561 			}
5562 
5563 			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5564 					       root, NULL);
5565 			/* If parent inode was deleted, skip it. */
5566 			if (IS_ERR(dir_inode))
5567 				continue;
5568 
5569 			if (ctx)
5570 				ctx->log_new_dentries = false;
5571 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5572 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5573 			if (!ret &&
5574 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5575 				ret = 1;
5576 			if (!ret && ctx && ctx->log_new_dentries)
5577 				ret = log_new_dir_dentries(trans, root,
5578 						   BTRFS_I(dir_inode), ctx);
5579 			iput(dir_inode);
5580 			if (ret)
5581 				goto out;
5582 		}
5583 		path->slots[0]++;
5584 	}
5585 	ret = 0;
5586 out:
5587 	btrfs_free_path(path);
5588 	return ret;
5589 }
5590 
5591 /*
5592  * helper function around btrfs_log_inode to make sure newly created
5593  * parent directories also end up in the log.  A minimal inode and backref
5594  * only logging is done of any parent directories that are older than
5595  * the last committed transaction
5596  */
5597 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5598 				  struct btrfs_inode *inode,
5599 				  struct dentry *parent,
5600 				  const loff_t start,
5601 				  const loff_t end,
5602 				  int inode_only,
5603 				  struct btrfs_log_ctx *ctx)
5604 {
5605 	struct btrfs_root *root = inode->root;
5606 	struct btrfs_fs_info *fs_info = root->fs_info;
5607 	struct super_block *sb;
5608 	struct dentry *old_parent = NULL;
5609 	int ret = 0;
5610 	u64 last_committed = fs_info->last_trans_committed;
5611 	bool log_dentries = false;
5612 	struct btrfs_inode *orig_inode = inode;
5613 
5614 	sb = inode->vfs_inode.i_sb;
5615 
5616 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5617 		ret = 1;
5618 		goto end_no_trans;
5619 	}
5620 
5621 	/*
5622 	 * The prev transaction commit doesn't complete, we need do
5623 	 * full commit by ourselves.
5624 	 */
5625 	if (fs_info->last_trans_log_full_commit >
5626 	    fs_info->last_trans_committed) {
5627 		ret = 1;
5628 		goto end_no_trans;
5629 	}
5630 
5631 	if (btrfs_root_refs(&root->root_item) == 0) {
5632 		ret = 1;
5633 		goto end_no_trans;
5634 	}
5635 
5636 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5637 			last_committed);
5638 	if (ret)
5639 		goto end_no_trans;
5640 
5641 	if (btrfs_inode_in_log(inode, trans->transid)) {
5642 		ret = BTRFS_NO_LOG_SYNC;
5643 		goto end_no_trans;
5644 	}
5645 
5646 	ret = start_log_trans(trans, root, ctx);
5647 	if (ret)
5648 		goto end_no_trans;
5649 
5650 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5651 	if (ret)
5652 		goto end_trans;
5653 
5654 	/*
5655 	 * for regular files, if its inode is already on disk, we don't
5656 	 * have to worry about the parents at all.  This is because
5657 	 * we can use the last_unlink_trans field to record renames
5658 	 * and other fun in this file.
5659 	 */
5660 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5661 	    inode->generation <= last_committed &&
5662 	    inode->last_unlink_trans <= last_committed) {
5663 		ret = 0;
5664 		goto end_trans;
5665 	}
5666 
5667 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5668 		log_dentries = true;
5669 
5670 	/*
5671 	 * On unlink we must make sure all our current and old parent directory
5672 	 * inodes are fully logged. This is to prevent leaving dangling
5673 	 * directory index entries in directories that were our parents but are
5674 	 * not anymore. Not doing this results in old parent directory being
5675 	 * impossible to delete after log replay (rmdir will always fail with
5676 	 * error -ENOTEMPTY).
5677 	 *
5678 	 * Example 1:
5679 	 *
5680 	 * mkdir testdir
5681 	 * touch testdir/foo
5682 	 * ln testdir/foo testdir/bar
5683 	 * sync
5684 	 * unlink testdir/bar
5685 	 * xfs_io -c fsync testdir/foo
5686 	 * <power failure>
5687 	 * mount fs, triggers log replay
5688 	 *
5689 	 * If we don't log the parent directory (testdir), after log replay the
5690 	 * directory still has an entry pointing to the file inode using the bar
5691 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5692 	 * the file inode has a link count of 1.
5693 	 *
5694 	 * Example 2:
5695 	 *
5696 	 * mkdir testdir
5697 	 * touch foo
5698 	 * ln foo testdir/foo2
5699 	 * ln foo testdir/foo3
5700 	 * sync
5701 	 * unlink testdir/foo3
5702 	 * xfs_io -c fsync foo
5703 	 * <power failure>
5704 	 * mount fs, triggers log replay
5705 	 *
5706 	 * Similar as the first example, after log replay the parent directory
5707 	 * testdir still has an entry pointing to the inode file with name foo3
5708 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5709 	 * and has a link count of 2.
5710 	 */
5711 	if (inode->last_unlink_trans > last_committed) {
5712 		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5713 		if (ret)
5714 			goto end_trans;
5715 	}
5716 
5717 	while (1) {
5718 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5719 			break;
5720 
5721 		inode = BTRFS_I(d_inode(parent));
5722 		if (root != inode->root)
5723 			break;
5724 
5725 		if (inode->generation > last_committed) {
5726 			ret = btrfs_log_inode(trans, root, inode,
5727 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5728 			if (ret)
5729 				goto end_trans;
5730 		}
5731 		if (IS_ROOT(parent))
5732 			break;
5733 
5734 		parent = dget_parent(parent);
5735 		dput(old_parent);
5736 		old_parent = parent;
5737 	}
5738 	if (log_dentries)
5739 		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5740 	else
5741 		ret = 0;
5742 end_trans:
5743 	dput(old_parent);
5744 	if (ret < 0) {
5745 		btrfs_set_log_full_commit(fs_info, trans);
5746 		ret = 1;
5747 	}
5748 
5749 	if (ret)
5750 		btrfs_remove_log_ctx(root, ctx);
5751 	btrfs_end_log_trans(root);
5752 end_no_trans:
5753 	return ret;
5754 }
5755 
5756 /*
5757  * it is not safe to log dentry if the chunk root has added new
5758  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5759  * If this returns 1, you must commit the transaction to safely get your
5760  * data on disk.
5761  */
5762 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5763 			  struct dentry *dentry,
5764 			  const loff_t start,
5765 			  const loff_t end,
5766 			  struct btrfs_log_ctx *ctx)
5767 {
5768 	struct dentry *parent = dget_parent(dentry);
5769 	int ret;
5770 
5771 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
5772 				     start, end, LOG_INODE_ALL, ctx);
5773 	dput(parent);
5774 
5775 	return ret;
5776 }
5777 
5778 /*
5779  * should be called during mount to recover any replay any log trees
5780  * from the FS
5781  */
5782 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5783 {
5784 	int ret;
5785 	struct btrfs_path *path;
5786 	struct btrfs_trans_handle *trans;
5787 	struct btrfs_key key;
5788 	struct btrfs_key found_key;
5789 	struct btrfs_key tmp_key;
5790 	struct btrfs_root *log;
5791 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5792 	struct walk_control wc = {
5793 		.process_func = process_one_buffer,
5794 		.stage = 0,
5795 	};
5796 
5797 	path = btrfs_alloc_path();
5798 	if (!path)
5799 		return -ENOMEM;
5800 
5801 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5802 
5803 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5804 	if (IS_ERR(trans)) {
5805 		ret = PTR_ERR(trans);
5806 		goto error;
5807 	}
5808 
5809 	wc.trans = trans;
5810 	wc.pin = 1;
5811 
5812 	ret = walk_log_tree(trans, log_root_tree, &wc);
5813 	if (ret) {
5814 		btrfs_handle_fs_error(fs_info, ret,
5815 			"Failed to pin buffers while recovering log root tree.");
5816 		goto error;
5817 	}
5818 
5819 again:
5820 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5821 	key.offset = (u64)-1;
5822 	key.type = BTRFS_ROOT_ITEM_KEY;
5823 
5824 	while (1) {
5825 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5826 
5827 		if (ret < 0) {
5828 			btrfs_handle_fs_error(fs_info, ret,
5829 				    "Couldn't find tree log root.");
5830 			goto error;
5831 		}
5832 		if (ret > 0) {
5833 			if (path->slots[0] == 0)
5834 				break;
5835 			path->slots[0]--;
5836 		}
5837 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5838 				      path->slots[0]);
5839 		btrfs_release_path(path);
5840 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5841 			break;
5842 
5843 		log = btrfs_read_fs_root(log_root_tree, &found_key);
5844 		if (IS_ERR(log)) {
5845 			ret = PTR_ERR(log);
5846 			btrfs_handle_fs_error(fs_info, ret,
5847 				    "Couldn't read tree log root.");
5848 			goto error;
5849 		}
5850 
5851 		tmp_key.objectid = found_key.offset;
5852 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5853 		tmp_key.offset = (u64)-1;
5854 
5855 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5856 		if (IS_ERR(wc.replay_dest)) {
5857 			ret = PTR_ERR(wc.replay_dest);
5858 			free_extent_buffer(log->node);
5859 			free_extent_buffer(log->commit_root);
5860 			kfree(log);
5861 			btrfs_handle_fs_error(fs_info, ret,
5862 				"Couldn't read target root for tree log recovery.");
5863 			goto error;
5864 		}
5865 
5866 		wc.replay_dest->log_root = log;
5867 		btrfs_record_root_in_trans(trans, wc.replay_dest);
5868 		ret = walk_log_tree(trans, log, &wc);
5869 
5870 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5871 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5872 						      path);
5873 		}
5874 
5875 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5876 			struct btrfs_root *root = wc.replay_dest;
5877 
5878 			btrfs_release_path(path);
5879 
5880 			/*
5881 			 * We have just replayed everything, and the highest
5882 			 * objectid of fs roots probably has changed in case
5883 			 * some inode_item's got replayed.
5884 			 *
5885 			 * root->objectid_mutex is not acquired as log replay
5886 			 * could only happen during mount.
5887 			 */
5888 			ret = btrfs_find_highest_objectid(root,
5889 						  &root->highest_objectid);
5890 		}
5891 
5892 		key.offset = found_key.offset - 1;
5893 		wc.replay_dest->log_root = NULL;
5894 		free_extent_buffer(log->node);
5895 		free_extent_buffer(log->commit_root);
5896 		kfree(log);
5897 
5898 		if (ret)
5899 			goto error;
5900 
5901 		if (found_key.offset == 0)
5902 			break;
5903 	}
5904 	btrfs_release_path(path);
5905 
5906 	/* step one is to pin it all, step two is to replay just inodes */
5907 	if (wc.pin) {
5908 		wc.pin = 0;
5909 		wc.process_func = replay_one_buffer;
5910 		wc.stage = LOG_WALK_REPLAY_INODES;
5911 		goto again;
5912 	}
5913 	/* step three is to replay everything */
5914 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5915 		wc.stage++;
5916 		goto again;
5917 	}
5918 
5919 	btrfs_free_path(path);
5920 
5921 	/* step 4: commit the transaction, which also unpins the blocks */
5922 	ret = btrfs_commit_transaction(trans);
5923 	if (ret)
5924 		return ret;
5925 
5926 	free_extent_buffer(log_root_tree->node);
5927 	log_root_tree->log_root = NULL;
5928 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5929 	kfree(log_root_tree);
5930 
5931 	return 0;
5932 error:
5933 	if (wc.trans)
5934 		btrfs_end_transaction(wc.trans);
5935 	btrfs_free_path(path);
5936 	return ret;
5937 }
5938 
5939 /*
5940  * there are some corner cases where we want to force a full
5941  * commit instead of allowing a directory to be logged.
5942  *
5943  * They revolve around files there were unlinked from the directory, and
5944  * this function updates the parent directory so that a full commit is
5945  * properly done if it is fsync'd later after the unlinks are done.
5946  *
5947  * Must be called before the unlink operations (updates to the subvolume tree,
5948  * inodes, etc) are done.
5949  */
5950 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5951 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
5952 			     int for_rename)
5953 {
5954 	/*
5955 	 * when we're logging a file, if it hasn't been renamed
5956 	 * or unlinked, and its inode is fully committed on disk,
5957 	 * we don't have to worry about walking up the directory chain
5958 	 * to log its parents.
5959 	 *
5960 	 * So, we use the last_unlink_trans field to put this transid
5961 	 * into the file.  When the file is logged we check it and
5962 	 * don't log the parents if the file is fully on disk.
5963 	 */
5964 	mutex_lock(&inode->log_mutex);
5965 	inode->last_unlink_trans = trans->transid;
5966 	mutex_unlock(&inode->log_mutex);
5967 
5968 	/*
5969 	 * if this directory was already logged any new
5970 	 * names for this file/dir will get recorded
5971 	 */
5972 	smp_mb();
5973 	if (dir->logged_trans == trans->transid)
5974 		return;
5975 
5976 	/*
5977 	 * if the inode we're about to unlink was logged,
5978 	 * the log will be properly updated for any new names
5979 	 */
5980 	if (inode->logged_trans == trans->transid)
5981 		return;
5982 
5983 	/*
5984 	 * when renaming files across directories, if the directory
5985 	 * there we're unlinking from gets fsync'd later on, there's
5986 	 * no way to find the destination directory later and fsync it
5987 	 * properly.  So, we have to be conservative and force commits
5988 	 * so the new name gets discovered.
5989 	 */
5990 	if (for_rename)
5991 		goto record;
5992 
5993 	/* we can safely do the unlink without any special recording */
5994 	return;
5995 
5996 record:
5997 	mutex_lock(&dir->log_mutex);
5998 	dir->last_unlink_trans = trans->transid;
5999 	mutex_unlock(&dir->log_mutex);
6000 }
6001 
6002 /*
6003  * Make sure that if someone attempts to fsync the parent directory of a deleted
6004  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6005  * that after replaying the log tree of the parent directory's root we will not
6006  * see the snapshot anymore and at log replay time we will not see any log tree
6007  * corresponding to the deleted snapshot's root, which could lead to replaying
6008  * it after replaying the log tree of the parent directory (which would replay
6009  * the snapshot delete operation).
6010  *
6011  * Must be called before the actual snapshot destroy operation (updates to the
6012  * parent root and tree of tree roots trees, etc) are done.
6013  */
6014 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6015 				   struct btrfs_inode *dir)
6016 {
6017 	mutex_lock(&dir->log_mutex);
6018 	dir->last_unlink_trans = trans->transid;
6019 	mutex_unlock(&dir->log_mutex);
6020 }
6021 
6022 /*
6023  * Call this after adding a new name for a file and it will properly
6024  * update the log to reflect the new name.
6025  *
6026  * It will return zero if all goes well, and it will return 1 if a
6027  * full transaction commit is required.
6028  */
6029 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6030 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6031 			struct dentry *parent)
6032 {
6033 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6034 
6035 	/*
6036 	 * this will force the logging code to walk the dentry chain
6037 	 * up for the file
6038 	 */
6039 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6040 		inode->last_unlink_trans = trans->transid;
6041 
6042 	/*
6043 	 * if this inode hasn't been logged and directory we're renaming it
6044 	 * from hasn't been logged, we don't need to log it
6045 	 */
6046 	if (inode->logged_trans <= fs_info->last_trans_committed &&
6047 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6048 		return 0;
6049 
6050 	return btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6051 				      LOG_INODE_EXISTS, NULL);
6052 }
6053 
6054