xref: /openbmc/linux/fs/btrfs/tree-log.c (revision fa538f7cf05aab61cd91e01c160d4a09c81b8ffe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "inode-map.h"
21 #include "block-group.h"
22 #include "space-info.h"
23 
24 /* magic values for the inode_only field in btrfs_log_inode:
25  *
26  * LOG_INODE_ALL means to log everything
27  * LOG_INODE_EXISTS means to log just enough to recreate the inode
28  * during log replay
29  */
30 enum {
31 	LOG_INODE_ALL,
32 	LOG_INODE_EXISTS,
33 	LOG_OTHER_INODE,
34 	LOG_OTHER_INODE_ALL,
35 };
36 
37 /*
38  * directory trouble cases
39  *
40  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41  * log, we must force a full commit before doing an fsync of the directory
42  * where the unlink was done.
43  * ---> record transid of last unlink/rename per directory
44  *
45  * mkdir foo/some_dir
46  * normal commit
47  * rename foo/some_dir foo2/some_dir
48  * mkdir foo/some_dir
49  * fsync foo/some_dir/some_file
50  *
51  * The fsync above will unlink the original some_dir without recording
52  * it in its new location (foo2).  After a crash, some_dir will be gone
53  * unless the fsync of some_file forces a full commit
54  *
55  * 2) we must log any new names for any file or dir that is in the fsync
56  * log. ---> check inode while renaming/linking.
57  *
58  * 2a) we must log any new names for any file or dir during rename
59  * when the directory they are being removed from was logged.
60  * ---> check inode and old parent dir during rename
61  *
62  *  2a is actually the more important variant.  With the extra logging
63  *  a crash might unlink the old name without recreating the new one
64  *
65  * 3) after a crash, we must go through any directories with a link count
66  * of zero and redo the rm -rf
67  *
68  * mkdir f1/foo
69  * normal commit
70  * rm -rf f1/foo
71  * fsync(f1)
72  *
73  * The directory f1 was fully removed from the FS, but fsync was never
74  * called on f1, only its parent dir.  After a crash the rm -rf must
75  * be replayed.  This must be able to recurse down the entire
76  * directory tree.  The inode link count fixup code takes care of the
77  * ugly details.
78  */
79 
80 /*
81  * stages for the tree walking.  The first
82  * stage (0) is to only pin down the blocks we find
83  * the second stage (1) is to make sure that all the inodes
84  * we find in the log are created in the subvolume.
85  *
86  * The last stage is to deal with directories and links and extents
87  * and all the other fun semantics
88  */
89 enum {
90 	LOG_WALK_PIN_ONLY,
91 	LOG_WALK_REPLAY_INODES,
92 	LOG_WALK_REPLAY_DIR_INDEX,
93 	LOG_WALK_REPLAY_ALL,
94 };
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct btrfs_inode *inode,
98 			   int inode_only,
99 			   struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 			     struct btrfs_root *root,
102 			     struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 				       struct btrfs_root *root,
105 				       struct btrfs_root *log,
106 				       struct btrfs_path *path,
107 				       u64 dirid, int del_all);
108 
109 /*
110  * tree logging is a special write ahead log used to make sure that
111  * fsyncs and O_SYNCs can happen without doing full tree commits.
112  *
113  * Full tree commits are expensive because they require commonly
114  * modified blocks to be recowed, creating many dirty pages in the
115  * extent tree an 4x-6x higher write load than ext3.
116  *
117  * Instead of doing a tree commit on every fsync, we use the
118  * key ranges and transaction ids to find items for a given file or directory
119  * that have changed in this transaction.  Those items are copied into
120  * a special tree (one per subvolume root), that tree is written to disk
121  * and then the fsync is considered complete.
122  *
123  * After a crash, items are copied out of the log-tree back into the
124  * subvolume tree.  Any file data extents found are recorded in the extent
125  * allocation tree, and the log-tree freed.
126  *
127  * The log tree is read three times, once to pin down all the extents it is
128  * using in ram and once, once to create all the inodes logged in the tree
129  * and once to do all the other items.
130  */
131 
132 /*
133  * start a sub transaction and setup the log tree
134  * this increments the log tree writer count to make the people
135  * syncing the tree wait for us to finish
136  */
137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 			   struct btrfs_root *root,
139 			   struct btrfs_log_ctx *ctx)
140 {
141 	struct btrfs_fs_info *fs_info = root->fs_info;
142 	int ret = 0;
143 
144 	mutex_lock(&root->log_mutex);
145 
146 	if (root->log_root) {
147 		if (btrfs_need_log_full_commit(trans)) {
148 			ret = -EAGAIN;
149 			goto out;
150 		}
151 
152 		if (!root->log_start_pid) {
153 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154 			root->log_start_pid = current->pid;
155 		} else if (root->log_start_pid != current->pid) {
156 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 		}
158 	} else {
159 		mutex_lock(&fs_info->tree_log_mutex);
160 		if (!fs_info->log_root_tree)
161 			ret = btrfs_init_log_root_tree(trans, fs_info);
162 		mutex_unlock(&fs_info->tree_log_mutex);
163 		if (ret)
164 			goto out;
165 
166 		ret = btrfs_add_log_tree(trans, root);
167 		if (ret)
168 			goto out;
169 
170 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
171 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
172 		root->log_start_pid = current->pid;
173 	}
174 
175 	atomic_inc(&root->log_batch);
176 	atomic_inc(&root->log_writers);
177 	if (ctx && !ctx->logging_new_name) {
178 		int index = root->log_transid % 2;
179 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
180 		ctx->log_transid = root->log_transid;
181 	}
182 
183 out:
184 	mutex_unlock(&root->log_mutex);
185 	return ret;
186 }
187 
188 /*
189  * returns 0 if there was a log transaction running and we were able
190  * to join, or returns -ENOENT if there were not transactions
191  * in progress
192  */
193 static int join_running_log_trans(struct btrfs_root *root)
194 {
195 	int ret = -ENOENT;
196 
197 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
198 		return ret;
199 
200 	mutex_lock(&root->log_mutex);
201 	if (root->log_root) {
202 		ret = 0;
203 		atomic_inc(&root->log_writers);
204 	}
205 	mutex_unlock(&root->log_mutex);
206 	return ret;
207 }
208 
209 /*
210  * This either makes the current running log transaction wait
211  * until you call btrfs_end_log_trans() or it makes any future
212  * log transactions wait until you call btrfs_end_log_trans()
213  */
214 void btrfs_pin_log_trans(struct btrfs_root *root)
215 {
216 	atomic_inc(&root->log_writers);
217 }
218 
219 /*
220  * indicate we're done making changes to the log tree
221  * and wake up anyone waiting to do a sync
222  */
223 void btrfs_end_log_trans(struct btrfs_root *root)
224 {
225 	if (atomic_dec_and_test(&root->log_writers)) {
226 		/* atomic_dec_and_test implies a barrier */
227 		cond_wake_up_nomb(&root->log_writer_wait);
228 	}
229 }
230 
231 static int btrfs_write_tree_block(struct extent_buffer *buf)
232 {
233 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
234 					buf->start + buf->len - 1);
235 }
236 
237 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
238 {
239 	filemap_fdatawait_range(buf->pages[0]->mapping,
240 			        buf->start, buf->start + buf->len - 1);
241 }
242 
243 /*
244  * the walk control struct is used to pass state down the chain when
245  * processing the log tree.  The stage field tells us which part
246  * of the log tree processing we are currently doing.  The others
247  * are state fields used for that specific part
248  */
249 struct walk_control {
250 	/* should we free the extent on disk when done?  This is used
251 	 * at transaction commit time while freeing a log tree
252 	 */
253 	int free;
254 
255 	/* should we write out the extent buffer?  This is used
256 	 * while flushing the log tree to disk during a sync
257 	 */
258 	int write;
259 
260 	/* should we wait for the extent buffer io to finish?  Also used
261 	 * while flushing the log tree to disk for a sync
262 	 */
263 	int wait;
264 
265 	/* pin only walk, we record which extents on disk belong to the
266 	 * log trees
267 	 */
268 	int pin;
269 
270 	/* what stage of the replay code we're currently in */
271 	int stage;
272 
273 	/*
274 	 * Ignore any items from the inode currently being processed. Needs
275 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
276 	 * the LOG_WALK_REPLAY_INODES stage.
277 	 */
278 	bool ignore_cur_inode;
279 
280 	/* the root we are currently replaying */
281 	struct btrfs_root *replay_dest;
282 
283 	/* the trans handle for the current replay */
284 	struct btrfs_trans_handle *trans;
285 
286 	/* the function that gets used to process blocks we find in the
287 	 * tree.  Note the extent_buffer might not be up to date when it is
288 	 * passed in, and it must be checked or read if you need the data
289 	 * inside it
290 	 */
291 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
292 			    struct walk_control *wc, u64 gen, int level);
293 };
294 
295 /*
296  * process_func used to pin down extents, write them or wait on them
297  */
298 static int process_one_buffer(struct btrfs_root *log,
299 			      struct extent_buffer *eb,
300 			      struct walk_control *wc, u64 gen, int level)
301 {
302 	struct btrfs_fs_info *fs_info = log->fs_info;
303 	int ret = 0;
304 
305 	/*
306 	 * If this fs is mixed then we need to be able to process the leaves to
307 	 * pin down any logged extents, so we have to read the block.
308 	 */
309 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
310 		ret = btrfs_read_buffer(eb, gen, level, NULL);
311 		if (ret)
312 			return ret;
313 	}
314 
315 	if (wc->pin)
316 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
317 						      eb->len);
318 
319 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
320 		if (wc->pin && btrfs_header_level(eb) == 0)
321 			ret = btrfs_exclude_logged_extents(eb);
322 		if (wc->write)
323 			btrfs_write_tree_block(eb);
324 		if (wc->wait)
325 			btrfs_wait_tree_block_writeback(eb);
326 	}
327 	return ret;
328 }
329 
330 /*
331  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
332  * to the src data we are copying out.
333  *
334  * root is the tree we are copying into, and path is a scratch
335  * path for use in this function (it should be released on entry and
336  * will be released on exit).
337  *
338  * If the key is already in the destination tree the existing item is
339  * overwritten.  If the existing item isn't big enough, it is extended.
340  * If it is too large, it is truncated.
341  *
342  * If the key isn't in the destination yet, a new item is inserted.
343  */
344 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
345 				   struct btrfs_root *root,
346 				   struct btrfs_path *path,
347 				   struct extent_buffer *eb, int slot,
348 				   struct btrfs_key *key)
349 {
350 	int ret;
351 	u32 item_size;
352 	u64 saved_i_size = 0;
353 	int save_old_i_size = 0;
354 	unsigned long src_ptr;
355 	unsigned long dst_ptr;
356 	int overwrite_root = 0;
357 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
358 
359 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
360 		overwrite_root = 1;
361 
362 	item_size = btrfs_item_size_nr(eb, slot);
363 	src_ptr = btrfs_item_ptr_offset(eb, slot);
364 
365 	/* look for the key in the destination tree */
366 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
367 	if (ret < 0)
368 		return ret;
369 
370 	if (ret == 0) {
371 		char *src_copy;
372 		char *dst_copy;
373 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
374 						  path->slots[0]);
375 		if (dst_size != item_size)
376 			goto insert;
377 
378 		if (item_size == 0) {
379 			btrfs_release_path(path);
380 			return 0;
381 		}
382 		dst_copy = kmalloc(item_size, GFP_NOFS);
383 		src_copy = kmalloc(item_size, GFP_NOFS);
384 		if (!dst_copy || !src_copy) {
385 			btrfs_release_path(path);
386 			kfree(dst_copy);
387 			kfree(src_copy);
388 			return -ENOMEM;
389 		}
390 
391 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
392 
393 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
394 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
395 				   item_size);
396 		ret = memcmp(dst_copy, src_copy, item_size);
397 
398 		kfree(dst_copy);
399 		kfree(src_copy);
400 		/*
401 		 * they have the same contents, just return, this saves
402 		 * us from cowing blocks in the destination tree and doing
403 		 * extra writes that may not have been done by a previous
404 		 * sync
405 		 */
406 		if (ret == 0) {
407 			btrfs_release_path(path);
408 			return 0;
409 		}
410 
411 		/*
412 		 * We need to load the old nbytes into the inode so when we
413 		 * replay the extents we've logged we get the right nbytes.
414 		 */
415 		if (inode_item) {
416 			struct btrfs_inode_item *item;
417 			u64 nbytes;
418 			u32 mode;
419 
420 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
421 					      struct btrfs_inode_item);
422 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
423 			item = btrfs_item_ptr(eb, slot,
424 					      struct btrfs_inode_item);
425 			btrfs_set_inode_nbytes(eb, item, nbytes);
426 
427 			/*
428 			 * If this is a directory we need to reset the i_size to
429 			 * 0 so that we can set it up properly when replaying
430 			 * the rest of the items in this log.
431 			 */
432 			mode = btrfs_inode_mode(eb, item);
433 			if (S_ISDIR(mode))
434 				btrfs_set_inode_size(eb, item, 0);
435 		}
436 	} else if (inode_item) {
437 		struct btrfs_inode_item *item;
438 		u32 mode;
439 
440 		/*
441 		 * New inode, set nbytes to 0 so that the nbytes comes out
442 		 * properly when we replay the extents.
443 		 */
444 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
445 		btrfs_set_inode_nbytes(eb, item, 0);
446 
447 		/*
448 		 * If this is a directory we need to reset the i_size to 0 so
449 		 * that we can set it up properly when replaying the rest of
450 		 * the items in this log.
451 		 */
452 		mode = btrfs_inode_mode(eb, item);
453 		if (S_ISDIR(mode))
454 			btrfs_set_inode_size(eb, item, 0);
455 	}
456 insert:
457 	btrfs_release_path(path);
458 	/* try to insert the key into the destination tree */
459 	path->skip_release_on_error = 1;
460 	ret = btrfs_insert_empty_item(trans, root, path,
461 				      key, item_size);
462 	path->skip_release_on_error = 0;
463 
464 	/* make sure any existing item is the correct size */
465 	if (ret == -EEXIST || ret == -EOVERFLOW) {
466 		u32 found_size;
467 		found_size = btrfs_item_size_nr(path->nodes[0],
468 						path->slots[0]);
469 		if (found_size > item_size)
470 			btrfs_truncate_item(path, item_size, 1);
471 		else if (found_size < item_size)
472 			btrfs_extend_item(path, item_size - found_size);
473 	} else if (ret) {
474 		return ret;
475 	}
476 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
477 					path->slots[0]);
478 
479 	/* don't overwrite an existing inode if the generation number
480 	 * was logged as zero.  This is done when the tree logging code
481 	 * is just logging an inode to make sure it exists after recovery.
482 	 *
483 	 * Also, don't overwrite i_size on directories during replay.
484 	 * log replay inserts and removes directory items based on the
485 	 * state of the tree found in the subvolume, and i_size is modified
486 	 * as it goes
487 	 */
488 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
489 		struct btrfs_inode_item *src_item;
490 		struct btrfs_inode_item *dst_item;
491 
492 		src_item = (struct btrfs_inode_item *)src_ptr;
493 		dst_item = (struct btrfs_inode_item *)dst_ptr;
494 
495 		if (btrfs_inode_generation(eb, src_item) == 0) {
496 			struct extent_buffer *dst_eb = path->nodes[0];
497 			const u64 ino_size = btrfs_inode_size(eb, src_item);
498 
499 			/*
500 			 * For regular files an ino_size == 0 is used only when
501 			 * logging that an inode exists, as part of a directory
502 			 * fsync, and the inode wasn't fsynced before. In this
503 			 * case don't set the size of the inode in the fs/subvol
504 			 * tree, otherwise we would be throwing valid data away.
505 			 */
506 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
507 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
508 			    ino_size != 0)
509 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
510 			goto no_copy;
511 		}
512 
513 		if (overwrite_root &&
514 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
515 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
516 			save_old_i_size = 1;
517 			saved_i_size = btrfs_inode_size(path->nodes[0],
518 							dst_item);
519 		}
520 	}
521 
522 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
523 			   src_ptr, item_size);
524 
525 	if (save_old_i_size) {
526 		struct btrfs_inode_item *dst_item;
527 		dst_item = (struct btrfs_inode_item *)dst_ptr;
528 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
529 	}
530 
531 	/* make sure the generation is filled in */
532 	if (key->type == BTRFS_INODE_ITEM_KEY) {
533 		struct btrfs_inode_item *dst_item;
534 		dst_item = (struct btrfs_inode_item *)dst_ptr;
535 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
536 			btrfs_set_inode_generation(path->nodes[0], dst_item,
537 						   trans->transid);
538 		}
539 	}
540 no_copy:
541 	btrfs_mark_buffer_dirty(path->nodes[0]);
542 	btrfs_release_path(path);
543 	return 0;
544 }
545 
546 /*
547  * simple helper to read an inode off the disk from a given root
548  * This can only be called for subvolume roots and not for the log
549  */
550 static noinline struct inode *read_one_inode(struct btrfs_root *root,
551 					     u64 objectid)
552 {
553 	struct inode *inode;
554 
555 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
556 	if (IS_ERR(inode))
557 		inode = NULL;
558 	return inode;
559 }
560 
561 /* replays a single extent in 'eb' at 'slot' with 'key' into the
562  * subvolume 'root'.  path is released on entry and should be released
563  * on exit.
564  *
565  * extents in the log tree have not been allocated out of the extent
566  * tree yet.  So, this completes the allocation, taking a reference
567  * as required if the extent already exists or creating a new extent
568  * if it isn't in the extent allocation tree yet.
569  *
570  * The extent is inserted into the file, dropping any existing extents
571  * from the file that overlap the new one.
572  */
573 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
574 				      struct btrfs_root *root,
575 				      struct btrfs_path *path,
576 				      struct extent_buffer *eb, int slot,
577 				      struct btrfs_key *key)
578 {
579 	struct btrfs_fs_info *fs_info = root->fs_info;
580 	int found_type;
581 	u64 extent_end;
582 	u64 start = key->offset;
583 	u64 nbytes = 0;
584 	struct btrfs_file_extent_item *item;
585 	struct inode *inode = NULL;
586 	unsigned long size;
587 	int ret = 0;
588 
589 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
590 	found_type = btrfs_file_extent_type(eb, item);
591 
592 	if (found_type == BTRFS_FILE_EXTENT_REG ||
593 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
594 		nbytes = btrfs_file_extent_num_bytes(eb, item);
595 		extent_end = start + nbytes;
596 
597 		/*
598 		 * We don't add to the inodes nbytes if we are prealloc or a
599 		 * hole.
600 		 */
601 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
602 			nbytes = 0;
603 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
604 		size = btrfs_file_extent_ram_bytes(eb, item);
605 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
606 		extent_end = ALIGN(start + size,
607 				   fs_info->sectorsize);
608 	} else {
609 		ret = 0;
610 		goto out;
611 	}
612 
613 	inode = read_one_inode(root, key->objectid);
614 	if (!inode) {
615 		ret = -EIO;
616 		goto out;
617 	}
618 
619 	/*
620 	 * first check to see if we already have this extent in the
621 	 * file.  This must be done before the btrfs_drop_extents run
622 	 * so we don't try to drop this extent.
623 	 */
624 	ret = btrfs_lookup_file_extent(trans, root, path,
625 			btrfs_ino(BTRFS_I(inode)), start, 0);
626 
627 	if (ret == 0 &&
628 	    (found_type == BTRFS_FILE_EXTENT_REG ||
629 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
630 		struct btrfs_file_extent_item cmp1;
631 		struct btrfs_file_extent_item cmp2;
632 		struct btrfs_file_extent_item *existing;
633 		struct extent_buffer *leaf;
634 
635 		leaf = path->nodes[0];
636 		existing = btrfs_item_ptr(leaf, path->slots[0],
637 					  struct btrfs_file_extent_item);
638 
639 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
640 				   sizeof(cmp1));
641 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
642 				   sizeof(cmp2));
643 
644 		/*
645 		 * we already have a pointer to this exact extent,
646 		 * we don't have to do anything
647 		 */
648 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
649 			btrfs_release_path(path);
650 			goto out;
651 		}
652 	}
653 	btrfs_release_path(path);
654 
655 	/* drop any overlapping extents */
656 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
657 	if (ret)
658 		goto out;
659 
660 	if (found_type == BTRFS_FILE_EXTENT_REG ||
661 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
662 		u64 offset;
663 		unsigned long dest_offset;
664 		struct btrfs_key ins;
665 
666 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
667 		    btrfs_fs_incompat(fs_info, NO_HOLES))
668 			goto update_inode;
669 
670 		ret = btrfs_insert_empty_item(trans, root, path, key,
671 					      sizeof(*item));
672 		if (ret)
673 			goto out;
674 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
675 						    path->slots[0]);
676 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
677 				(unsigned long)item,  sizeof(*item));
678 
679 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
680 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
681 		ins.type = BTRFS_EXTENT_ITEM_KEY;
682 		offset = key->offset - btrfs_file_extent_offset(eb, item);
683 
684 		/*
685 		 * Manually record dirty extent, as here we did a shallow
686 		 * file extent item copy and skip normal backref update,
687 		 * but modifying extent tree all by ourselves.
688 		 * So need to manually record dirty extent for qgroup,
689 		 * as the owner of the file extent changed from log tree
690 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
691 		 */
692 		ret = btrfs_qgroup_trace_extent(trans,
693 				btrfs_file_extent_disk_bytenr(eb, item),
694 				btrfs_file_extent_disk_num_bytes(eb, item),
695 				GFP_NOFS);
696 		if (ret < 0)
697 			goto out;
698 
699 		if (ins.objectid > 0) {
700 			struct btrfs_ref ref = { 0 };
701 			u64 csum_start;
702 			u64 csum_end;
703 			LIST_HEAD(ordered_sums);
704 
705 			/*
706 			 * is this extent already allocated in the extent
707 			 * allocation tree?  If so, just add a reference
708 			 */
709 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
710 						ins.offset);
711 			if (ret == 0) {
712 				btrfs_init_generic_ref(&ref,
713 						BTRFS_ADD_DELAYED_REF,
714 						ins.objectid, ins.offset, 0);
715 				btrfs_init_data_ref(&ref,
716 						root->root_key.objectid,
717 						key->objectid, offset);
718 				ret = btrfs_inc_extent_ref(trans, &ref);
719 				if (ret)
720 					goto out;
721 			} else {
722 				/*
723 				 * insert the extent pointer in the extent
724 				 * allocation tree
725 				 */
726 				ret = btrfs_alloc_logged_file_extent(trans,
727 						root->root_key.objectid,
728 						key->objectid, offset, &ins);
729 				if (ret)
730 					goto out;
731 			}
732 			btrfs_release_path(path);
733 
734 			if (btrfs_file_extent_compression(eb, item)) {
735 				csum_start = ins.objectid;
736 				csum_end = csum_start + ins.offset;
737 			} else {
738 				csum_start = ins.objectid +
739 					btrfs_file_extent_offset(eb, item);
740 				csum_end = csum_start +
741 					btrfs_file_extent_num_bytes(eb, item);
742 			}
743 
744 			ret = btrfs_lookup_csums_range(root->log_root,
745 						csum_start, csum_end - 1,
746 						&ordered_sums, 0);
747 			if (ret)
748 				goto out;
749 			/*
750 			 * Now delete all existing cums in the csum root that
751 			 * cover our range. We do this because we can have an
752 			 * extent that is completely referenced by one file
753 			 * extent item and partially referenced by another
754 			 * file extent item (like after using the clone or
755 			 * extent_same ioctls). In this case if we end up doing
756 			 * the replay of the one that partially references the
757 			 * extent first, and we do not do the csum deletion
758 			 * below, we can get 2 csum items in the csum tree that
759 			 * overlap each other. For example, imagine our log has
760 			 * the two following file extent items:
761 			 *
762 			 * key (257 EXTENT_DATA 409600)
763 			 *     extent data disk byte 12845056 nr 102400
764 			 *     extent data offset 20480 nr 20480 ram 102400
765 			 *
766 			 * key (257 EXTENT_DATA 819200)
767 			 *     extent data disk byte 12845056 nr 102400
768 			 *     extent data offset 0 nr 102400 ram 102400
769 			 *
770 			 * Where the second one fully references the 100K extent
771 			 * that starts at disk byte 12845056, and the log tree
772 			 * has a single csum item that covers the entire range
773 			 * of the extent:
774 			 *
775 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
776 			 *
777 			 * After the first file extent item is replayed, the
778 			 * csum tree gets the following csum item:
779 			 *
780 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
781 			 *
782 			 * Which covers the 20K sub-range starting at offset 20K
783 			 * of our extent. Now when we replay the second file
784 			 * extent item, if we do not delete existing csum items
785 			 * that cover any of its blocks, we end up getting two
786 			 * csum items in our csum tree that overlap each other:
787 			 *
788 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
789 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
790 			 *
791 			 * Which is a problem, because after this anyone trying
792 			 * to lookup up for the checksum of any block of our
793 			 * extent starting at an offset of 40K or higher, will
794 			 * end up looking at the second csum item only, which
795 			 * does not contain the checksum for any block starting
796 			 * at offset 40K or higher of our extent.
797 			 */
798 			while (!list_empty(&ordered_sums)) {
799 				struct btrfs_ordered_sum *sums;
800 				sums = list_entry(ordered_sums.next,
801 						struct btrfs_ordered_sum,
802 						list);
803 				if (!ret)
804 					ret = btrfs_del_csums(trans,
805 							      fs_info->csum_root,
806 							      sums->bytenr,
807 							      sums->len);
808 				if (!ret)
809 					ret = btrfs_csum_file_blocks(trans,
810 						fs_info->csum_root, sums);
811 				list_del(&sums->list);
812 				kfree(sums);
813 			}
814 			if (ret)
815 				goto out;
816 		} else {
817 			btrfs_release_path(path);
818 		}
819 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
820 		/* inline extents are easy, we just overwrite them */
821 		ret = overwrite_item(trans, root, path, eb, slot, key);
822 		if (ret)
823 			goto out;
824 	}
825 
826 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
827 						extent_end - start);
828 	if (ret)
829 		goto out;
830 
831 	inode_add_bytes(inode, nbytes);
832 update_inode:
833 	ret = btrfs_update_inode(trans, root, inode);
834 out:
835 	if (inode)
836 		iput(inode);
837 	return ret;
838 }
839 
840 /*
841  * when cleaning up conflicts between the directory names in the
842  * subvolume, directory names in the log and directory names in the
843  * inode back references, we may have to unlink inodes from directories.
844  *
845  * This is a helper function to do the unlink of a specific directory
846  * item
847  */
848 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
849 				      struct btrfs_root *root,
850 				      struct btrfs_path *path,
851 				      struct btrfs_inode *dir,
852 				      struct btrfs_dir_item *di)
853 {
854 	struct inode *inode;
855 	char *name;
856 	int name_len;
857 	struct extent_buffer *leaf;
858 	struct btrfs_key location;
859 	int ret;
860 
861 	leaf = path->nodes[0];
862 
863 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
864 	name_len = btrfs_dir_name_len(leaf, di);
865 	name = kmalloc(name_len, GFP_NOFS);
866 	if (!name)
867 		return -ENOMEM;
868 
869 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
870 	btrfs_release_path(path);
871 
872 	inode = read_one_inode(root, location.objectid);
873 	if (!inode) {
874 		ret = -EIO;
875 		goto out;
876 	}
877 
878 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
879 	if (ret)
880 		goto out;
881 
882 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
883 			name_len);
884 	if (ret)
885 		goto out;
886 	else
887 		ret = btrfs_run_delayed_items(trans);
888 out:
889 	kfree(name);
890 	iput(inode);
891 	return ret;
892 }
893 
894 /*
895  * helper function to see if a given name and sequence number found
896  * in an inode back reference are already in a directory and correctly
897  * point to this inode
898  */
899 static noinline int inode_in_dir(struct btrfs_root *root,
900 				 struct btrfs_path *path,
901 				 u64 dirid, u64 objectid, u64 index,
902 				 const char *name, int name_len)
903 {
904 	struct btrfs_dir_item *di;
905 	struct btrfs_key location;
906 	int match = 0;
907 
908 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
909 					 index, name, name_len, 0);
910 	if (di && !IS_ERR(di)) {
911 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
912 		if (location.objectid != objectid)
913 			goto out;
914 	} else
915 		goto out;
916 	btrfs_release_path(path);
917 
918 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
919 	if (di && !IS_ERR(di)) {
920 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
921 		if (location.objectid != objectid)
922 			goto out;
923 	} else
924 		goto out;
925 	match = 1;
926 out:
927 	btrfs_release_path(path);
928 	return match;
929 }
930 
931 /*
932  * helper function to check a log tree for a named back reference in
933  * an inode.  This is used to decide if a back reference that is
934  * found in the subvolume conflicts with what we find in the log.
935  *
936  * inode backreferences may have multiple refs in a single item,
937  * during replay we process one reference at a time, and we don't
938  * want to delete valid links to a file from the subvolume if that
939  * link is also in the log.
940  */
941 static noinline int backref_in_log(struct btrfs_root *log,
942 				   struct btrfs_key *key,
943 				   u64 ref_objectid,
944 				   const char *name, int namelen)
945 {
946 	struct btrfs_path *path;
947 	int ret;
948 
949 	path = btrfs_alloc_path();
950 	if (!path)
951 		return -ENOMEM;
952 
953 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
954 	if (ret < 0) {
955 		goto out;
956 	} else if (ret == 1) {
957 		ret = 0;
958 		goto out;
959 	}
960 
961 	if (key->type == BTRFS_INODE_EXTREF_KEY)
962 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
963 						       path->slots[0],
964 						       ref_objectid,
965 						       name, namelen);
966 	else
967 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
968 						   path->slots[0],
969 						   name, namelen);
970 out:
971 	btrfs_free_path(path);
972 	return ret;
973 }
974 
975 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
976 				  struct btrfs_root *root,
977 				  struct btrfs_path *path,
978 				  struct btrfs_root *log_root,
979 				  struct btrfs_inode *dir,
980 				  struct btrfs_inode *inode,
981 				  u64 inode_objectid, u64 parent_objectid,
982 				  u64 ref_index, char *name, int namelen,
983 				  int *search_done)
984 {
985 	int ret;
986 	char *victim_name;
987 	int victim_name_len;
988 	struct extent_buffer *leaf;
989 	struct btrfs_dir_item *di;
990 	struct btrfs_key search_key;
991 	struct btrfs_inode_extref *extref;
992 
993 again:
994 	/* Search old style refs */
995 	search_key.objectid = inode_objectid;
996 	search_key.type = BTRFS_INODE_REF_KEY;
997 	search_key.offset = parent_objectid;
998 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
999 	if (ret == 0) {
1000 		struct btrfs_inode_ref *victim_ref;
1001 		unsigned long ptr;
1002 		unsigned long ptr_end;
1003 
1004 		leaf = path->nodes[0];
1005 
1006 		/* are we trying to overwrite a back ref for the root directory
1007 		 * if so, just jump out, we're done
1008 		 */
1009 		if (search_key.objectid == search_key.offset)
1010 			return 1;
1011 
1012 		/* check all the names in this back reference to see
1013 		 * if they are in the log.  if so, we allow them to stay
1014 		 * otherwise they must be unlinked as a conflict
1015 		 */
1016 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1017 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1018 		while (ptr < ptr_end) {
1019 			victim_ref = (struct btrfs_inode_ref *)ptr;
1020 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1021 								   victim_ref);
1022 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1023 			if (!victim_name)
1024 				return -ENOMEM;
1025 
1026 			read_extent_buffer(leaf, victim_name,
1027 					   (unsigned long)(victim_ref + 1),
1028 					   victim_name_len);
1029 
1030 			ret = backref_in_log(log_root, &search_key,
1031 					     parent_objectid, victim_name,
1032 					     victim_name_len);
1033 			if (ret < 0) {
1034 				kfree(victim_name);
1035 				return ret;
1036 			} else if (!ret) {
1037 				inc_nlink(&inode->vfs_inode);
1038 				btrfs_release_path(path);
1039 
1040 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1041 						victim_name, victim_name_len);
1042 				kfree(victim_name);
1043 				if (ret)
1044 					return ret;
1045 				ret = btrfs_run_delayed_items(trans);
1046 				if (ret)
1047 					return ret;
1048 				*search_done = 1;
1049 				goto again;
1050 			}
1051 			kfree(victim_name);
1052 
1053 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1054 		}
1055 
1056 		/*
1057 		 * NOTE: we have searched root tree and checked the
1058 		 * corresponding ref, it does not need to check again.
1059 		 */
1060 		*search_done = 1;
1061 	}
1062 	btrfs_release_path(path);
1063 
1064 	/* Same search but for extended refs */
1065 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1066 					   inode_objectid, parent_objectid, 0,
1067 					   0);
1068 	if (!IS_ERR_OR_NULL(extref)) {
1069 		u32 item_size;
1070 		u32 cur_offset = 0;
1071 		unsigned long base;
1072 		struct inode *victim_parent;
1073 
1074 		leaf = path->nodes[0];
1075 
1076 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1077 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1078 
1079 		while (cur_offset < item_size) {
1080 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1081 
1082 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1083 
1084 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1085 				goto next;
1086 
1087 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1088 			if (!victim_name)
1089 				return -ENOMEM;
1090 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1091 					   victim_name_len);
1092 
1093 			search_key.objectid = inode_objectid;
1094 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1095 			search_key.offset = btrfs_extref_hash(parent_objectid,
1096 							      victim_name,
1097 							      victim_name_len);
1098 			ret = backref_in_log(log_root, &search_key,
1099 					     parent_objectid, victim_name,
1100 					     victim_name_len);
1101 			if (ret < 0) {
1102 				return ret;
1103 			} else if (!ret) {
1104 				ret = -ENOENT;
1105 				victim_parent = read_one_inode(root,
1106 						parent_objectid);
1107 				if (victim_parent) {
1108 					inc_nlink(&inode->vfs_inode);
1109 					btrfs_release_path(path);
1110 
1111 					ret = btrfs_unlink_inode(trans, root,
1112 							BTRFS_I(victim_parent),
1113 							inode,
1114 							victim_name,
1115 							victim_name_len);
1116 					if (!ret)
1117 						ret = btrfs_run_delayed_items(
1118 								  trans);
1119 				}
1120 				iput(victim_parent);
1121 				kfree(victim_name);
1122 				if (ret)
1123 					return ret;
1124 				*search_done = 1;
1125 				goto again;
1126 			}
1127 			kfree(victim_name);
1128 next:
1129 			cur_offset += victim_name_len + sizeof(*extref);
1130 		}
1131 		*search_done = 1;
1132 	}
1133 	btrfs_release_path(path);
1134 
1135 	/* look for a conflicting sequence number */
1136 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1137 					 ref_index, name, namelen, 0);
1138 	if (di && !IS_ERR(di)) {
1139 		ret = drop_one_dir_item(trans, root, path, dir, di);
1140 		if (ret)
1141 			return ret;
1142 	}
1143 	btrfs_release_path(path);
1144 
1145 	/* look for a conflicting name */
1146 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1147 				   name, namelen, 0);
1148 	if (di && !IS_ERR(di)) {
1149 		ret = drop_one_dir_item(trans, root, path, dir, di);
1150 		if (ret)
1151 			return ret;
1152 	}
1153 	btrfs_release_path(path);
1154 
1155 	return 0;
1156 }
1157 
1158 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1159 			     u32 *namelen, char **name, u64 *index,
1160 			     u64 *parent_objectid)
1161 {
1162 	struct btrfs_inode_extref *extref;
1163 
1164 	extref = (struct btrfs_inode_extref *)ref_ptr;
1165 
1166 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1167 	*name = kmalloc(*namelen, GFP_NOFS);
1168 	if (*name == NULL)
1169 		return -ENOMEM;
1170 
1171 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1172 			   *namelen);
1173 
1174 	if (index)
1175 		*index = btrfs_inode_extref_index(eb, extref);
1176 	if (parent_objectid)
1177 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1178 
1179 	return 0;
1180 }
1181 
1182 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1183 			  u32 *namelen, char **name, u64 *index)
1184 {
1185 	struct btrfs_inode_ref *ref;
1186 
1187 	ref = (struct btrfs_inode_ref *)ref_ptr;
1188 
1189 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1190 	*name = kmalloc(*namelen, GFP_NOFS);
1191 	if (*name == NULL)
1192 		return -ENOMEM;
1193 
1194 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1195 
1196 	if (index)
1197 		*index = btrfs_inode_ref_index(eb, ref);
1198 
1199 	return 0;
1200 }
1201 
1202 /*
1203  * Take an inode reference item from the log tree and iterate all names from the
1204  * inode reference item in the subvolume tree with the same key (if it exists).
1205  * For any name that is not in the inode reference item from the log tree, do a
1206  * proper unlink of that name (that is, remove its entry from the inode
1207  * reference item and both dir index keys).
1208  */
1209 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1210 				 struct btrfs_root *root,
1211 				 struct btrfs_path *path,
1212 				 struct btrfs_inode *inode,
1213 				 struct extent_buffer *log_eb,
1214 				 int log_slot,
1215 				 struct btrfs_key *key)
1216 {
1217 	int ret;
1218 	unsigned long ref_ptr;
1219 	unsigned long ref_end;
1220 	struct extent_buffer *eb;
1221 
1222 again:
1223 	btrfs_release_path(path);
1224 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1225 	if (ret > 0) {
1226 		ret = 0;
1227 		goto out;
1228 	}
1229 	if (ret < 0)
1230 		goto out;
1231 
1232 	eb = path->nodes[0];
1233 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1234 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1235 	while (ref_ptr < ref_end) {
1236 		char *name = NULL;
1237 		int namelen;
1238 		u64 parent_id;
1239 
1240 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1241 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1242 						NULL, &parent_id);
1243 		} else {
1244 			parent_id = key->offset;
1245 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1246 					     NULL);
1247 		}
1248 		if (ret)
1249 			goto out;
1250 
1251 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1252 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1253 							       parent_id, name,
1254 							       namelen);
1255 		else
1256 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1257 							   name, namelen);
1258 
1259 		if (!ret) {
1260 			struct inode *dir;
1261 
1262 			btrfs_release_path(path);
1263 			dir = read_one_inode(root, parent_id);
1264 			if (!dir) {
1265 				ret = -ENOENT;
1266 				kfree(name);
1267 				goto out;
1268 			}
1269 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1270 						 inode, name, namelen);
1271 			kfree(name);
1272 			iput(dir);
1273 			if (ret)
1274 				goto out;
1275 			goto again;
1276 		}
1277 
1278 		kfree(name);
1279 		ref_ptr += namelen;
1280 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1281 			ref_ptr += sizeof(struct btrfs_inode_extref);
1282 		else
1283 			ref_ptr += sizeof(struct btrfs_inode_ref);
1284 	}
1285 	ret = 0;
1286  out:
1287 	btrfs_release_path(path);
1288 	return ret;
1289 }
1290 
1291 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1292 				  const u8 ref_type, const char *name,
1293 				  const int namelen)
1294 {
1295 	struct btrfs_key key;
1296 	struct btrfs_path *path;
1297 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1298 	int ret;
1299 
1300 	path = btrfs_alloc_path();
1301 	if (!path)
1302 		return -ENOMEM;
1303 
1304 	key.objectid = btrfs_ino(BTRFS_I(inode));
1305 	key.type = ref_type;
1306 	if (key.type == BTRFS_INODE_REF_KEY)
1307 		key.offset = parent_id;
1308 	else
1309 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1310 
1311 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1312 	if (ret < 0)
1313 		goto out;
1314 	if (ret > 0) {
1315 		ret = 0;
1316 		goto out;
1317 	}
1318 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1319 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1320 				path->slots[0], parent_id, name, namelen);
1321 	else
1322 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1323 						   name, namelen);
1324 
1325 out:
1326 	btrfs_free_path(path);
1327 	return ret;
1328 }
1329 
1330 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1331 		    struct inode *dir, struct inode *inode, const char *name,
1332 		    int namelen, u64 ref_index)
1333 {
1334 	struct btrfs_dir_item *dir_item;
1335 	struct btrfs_key key;
1336 	struct btrfs_path *path;
1337 	struct inode *other_inode = NULL;
1338 	int ret;
1339 
1340 	path = btrfs_alloc_path();
1341 	if (!path)
1342 		return -ENOMEM;
1343 
1344 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1345 					 btrfs_ino(BTRFS_I(dir)),
1346 					 name, namelen, 0);
1347 	if (!dir_item) {
1348 		btrfs_release_path(path);
1349 		goto add_link;
1350 	} else if (IS_ERR(dir_item)) {
1351 		ret = PTR_ERR(dir_item);
1352 		goto out;
1353 	}
1354 
1355 	/*
1356 	 * Our inode's dentry collides with the dentry of another inode which is
1357 	 * in the log but not yet processed since it has a higher inode number.
1358 	 * So delete that other dentry.
1359 	 */
1360 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1361 	btrfs_release_path(path);
1362 	other_inode = read_one_inode(root, key.objectid);
1363 	if (!other_inode) {
1364 		ret = -ENOENT;
1365 		goto out;
1366 	}
1367 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1368 				 name, namelen);
1369 	if (ret)
1370 		goto out;
1371 	/*
1372 	 * If we dropped the link count to 0, bump it so that later the iput()
1373 	 * on the inode will not free it. We will fixup the link count later.
1374 	 */
1375 	if (other_inode->i_nlink == 0)
1376 		inc_nlink(other_inode);
1377 
1378 	ret = btrfs_run_delayed_items(trans);
1379 	if (ret)
1380 		goto out;
1381 add_link:
1382 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1383 			     name, namelen, 0, ref_index);
1384 out:
1385 	iput(other_inode);
1386 	btrfs_free_path(path);
1387 
1388 	return ret;
1389 }
1390 
1391 /*
1392  * replay one inode back reference item found in the log tree.
1393  * eb, slot and key refer to the buffer and key found in the log tree.
1394  * root is the destination we are replaying into, and path is for temp
1395  * use by this function.  (it should be released on return).
1396  */
1397 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1398 				  struct btrfs_root *root,
1399 				  struct btrfs_root *log,
1400 				  struct btrfs_path *path,
1401 				  struct extent_buffer *eb, int slot,
1402 				  struct btrfs_key *key)
1403 {
1404 	struct inode *dir = NULL;
1405 	struct inode *inode = NULL;
1406 	unsigned long ref_ptr;
1407 	unsigned long ref_end;
1408 	char *name = NULL;
1409 	int namelen;
1410 	int ret;
1411 	int search_done = 0;
1412 	int log_ref_ver = 0;
1413 	u64 parent_objectid;
1414 	u64 inode_objectid;
1415 	u64 ref_index = 0;
1416 	int ref_struct_size;
1417 
1418 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1419 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1420 
1421 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1422 		struct btrfs_inode_extref *r;
1423 
1424 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1425 		log_ref_ver = 1;
1426 		r = (struct btrfs_inode_extref *)ref_ptr;
1427 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1428 	} else {
1429 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1430 		parent_objectid = key->offset;
1431 	}
1432 	inode_objectid = key->objectid;
1433 
1434 	/*
1435 	 * it is possible that we didn't log all the parent directories
1436 	 * for a given inode.  If we don't find the dir, just don't
1437 	 * copy the back ref in.  The link count fixup code will take
1438 	 * care of the rest
1439 	 */
1440 	dir = read_one_inode(root, parent_objectid);
1441 	if (!dir) {
1442 		ret = -ENOENT;
1443 		goto out;
1444 	}
1445 
1446 	inode = read_one_inode(root, inode_objectid);
1447 	if (!inode) {
1448 		ret = -EIO;
1449 		goto out;
1450 	}
1451 
1452 	while (ref_ptr < ref_end) {
1453 		if (log_ref_ver) {
1454 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1455 						&ref_index, &parent_objectid);
1456 			/*
1457 			 * parent object can change from one array
1458 			 * item to another.
1459 			 */
1460 			if (!dir)
1461 				dir = read_one_inode(root, parent_objectid);
1462 			if (!dir) {
1463 				ret = -ENOENT;
1464 				goto out;
1465 			}
1466 		} else {
1467 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1468 					     &ref_index);
1469 		}
1470 		if (ret)
1471 			goto out;
1472 
1473 		/* if we already have a perfect match, we're done */
1474 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1475 					btrfs_ino(BTRFS_I(inode)), ref_index,
1476 					name, namelen)) {
1477 			/*
1478 			 * look for a conflicting back reference in the
1479 			 * metadata. if we find one we have to unlink that name
1480 			 * of the file before we add our new link.  Later on, we
1481 			 * overwrite any existing back reference, and we don't
1482 			 * want to create dangling pointers in the directory.
1483 			 */
1484 
1485 			if (!search_done) {
1486 				ret = __add_inode_ref(trans, root, path, log,
1487 						      BTRFS_I(dir),
1488 						      BTRFS_I(inode),
1489 						      inode_objectid,
1490 						      parent_objectid,
1491 						      ref_index, name, namelen,
1492 						      &search_done);
1493 				if (ret) {
1494 					if (ret == 1)
1495 						ret = 0;
1496 					goto out;
1497 				}
1498 			}
1499 
1500 			/*
1501 			 * If a reference item already exists for this inode
1502 			 * with the same parent and name, but different index,
1503 			 * drop it and the corresponding directory index entries
1504 			 * from the parent before adding the new reference item
1505 			 * and dir index entries, otherwise we would fail with
1506 			 * -EEXIST returned from btrfs_add_link() below.
1507 			 */
1508 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1509 						     name, namelen);
1510 			if (ret > 0) {
1511 				ret = btrfs_unlink_inode(trans, root,
1512 							 BTRFS_I(dir),
1513 							 BTRFS_I(inode),
1514 							 name, namelen);
1515 				/*
1516 				 * If we dropped the link count to 0, bump it so
1517 				 * that later the iput() on the inode will not
1518 				 * free it. We will fixup the link count later.
1519 				 */
1520 				if (!ret && inode->i_nlink == 0)
1521 					inc_nlink(inode);
1522 			}
1523 			if (ret < 0)
1524 				goto out;
1525 
1526 			/* insert our name */
1527 			ret = add_link(trans, root, dir, inode, name, namelen,
1528 				       ref_index);
1529 			if (ret)
1530 				goto out;
1531 
1532 			btrfs_update_inode(trans, root, inode);
1533 		}
1534 
1535 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1536 		kfree(name);
1537 		name = NULL;
1538 		if (log_ref_ver) {
1539 			iput(dir);
1540 			dir = NULL;
1541 		}
1542 	}
1543 
1544 	/*
1545 	 * Before we overwrite the inode reference item in the subvolume tree
1546 	 * with the item from the log tree, we must unlink all names from the
1547 	 * parent directory that are in the subvolume's tree inode reference
1548 	 * item, otherwise we end up with an inconsistent subvolume tree where
1549 	 * dir index entries exist for a name but there is no inode reference
1550 	 * item with the same name.
1551 	 */
1552 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1553 				    key);
1554 	if (ret)
1555 		goto out;
1556 
1557 	/* finally write the back reference in the inode */
1558 	ret = overwrite_item(trans, root, path, eb, slot, key);
1559 out:
1560 	btrfs_release_path(path);
1561 	kfree(name);
1562 	iput(dir);
1563 	iput(inode);
1564 	return ret;
1565 }
1566 
1567 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1568 			      struct btrfs_root *root, u64 ino)
1569 {
1570 	int ret;
1571 
1572 	ret = btrfs_insert_orphan_item(trans, root, ino);
1573 	if (ret == -EEXIST)
1574 		ret = 0;
1575 
1576 	return ret;
1577 }
1578 
1579 static int count_inode_extrefs(struct btrfs_root *root,
1580 		struct btrfs_inode *inode, struct btrfs_path *path)
1581 {
1582 	int ret = 0;
1583 	int name_len;
1584 	unsigned int nlink = 0;
1585 	u32 item_size;
1586 	u32 cur_offset = 0;
1587 	u64 inode_objectid = btrfs_ino(inode);
1588 	u64 offset = 0;
1589 	unsigned long ptr;
1590 	struct btrfs_inode_extref *extref;
1591 	struct extent_buffer *leaf;
1592 
1593 	while (1) {
1594 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1595 					    &extref, &offset);
1596 		if (ret)
1597 			break;
1598 
1599 		leaf = path->nodes[0];
1600 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1601 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1602 		cur_offset = 0;
1603 
1604 		while (cur_offset < item_size) {
1605 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1606 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1607 
1608 			nlink++;
1609 
1610 			cur_offset += name_len + sizeof(*extref);
1611 		}
1612 
1613 		offset++;
1614 		btrfs_release_path(path);
1615 	}
1616 	btrfs_release_path(path);
1617 
1618 	if (ret < 0 && ret != -ENOENT)
1619 		return ret;
1620 	return nlink;
1621 }
1622 
1623 static int count_inode_refs(struct btrfs_root *root,
1624 			struct btrfs_inode *inode, struct btrfs_path *path)
1625 {
1626 	int ret;
1627 	struct btrfs_key key;
1628 	unsigned int nlink = 0;
1629 	unsigned long ptr;
1630 	unsigned long ptr_end;
1631 	int name_len;
1632 	u64 ino = btrfs_ino(inode);
1633 
1634 	key.objectid = ino;
1635 	key.type = BTRFS_INODE_REF_KEY;
1636 	key.offset = (u64)-1;
1637 
1638 	while (1) {
1639 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1640 		if (ret < 0)
1641 			break;
1642 		if (ret > 0) {
1643 			if (path->slots[0] == 0)
1644 				break;
1645 			path->slots[0]--;
1646 		}
1647 process_slot:
1648 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1649 				      path->slots[0]);
1650 		if (key.objectid != ino ||
1651 		    key.type != BTRFS_INODE_REF_KEY)
1652 			break;
1653 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1654 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1655 						   path->slots[0]);
1656 		while (ptr < ptr_end) {
1657 			struct btrfs_inode_ref *ref;
1658 
1659 			ref = (struct btrfs_inode_ref *)ptr;
1660 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1661 							    ref);
1662 			ptr = (unsigned long)(ref + 1) + name_len;
1663 			nlink++;
1664 		}
1665 
1666 		if (key.offset == 0)
1667 			break;
1668 		if (path->slots[0] > 0) {
1669 			path->slots[0]--;
1670 			goto process_slot;
1671 		}
1672 		key.offset--;
1673 		btrfs_release_path(path);
1674 	}
1675 	btrfs_release_path(path);
1676 
1677 	return nlink;
1678 }
1679 
1680 /*
1681  * There are a few corners where the link count of the file can't
1682  * be properly maintained during replay.  So, instead of adding
1683  * lots of complexity to the log code, we just scan the backrefs
1684  * for any file that has been through replay.
1685  *
1686  * The scan will update the link count on the inode to reflect the
1687  * number of back refs found.  If it goes down to zero, the iput
1688  * will free the inode.
1689  */
1690 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1691 					   struct btrfs_root *root,
1692 					   struct inode *inode)
1693 {
1694 	struct btrfs_path *path;
1695 	int ret;
1696 	u64 nlink = 0;
1697 	u64 ino = btrfs_ino(BTRFS_I(inode));
1698 
1699 	path = btrfs_alloc_path();
1700 	if (!path)
1701 		return -ENOMEM;
1702 
1703 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1704 	if (ret < 0)
1705 		goto out;
1706 
1707 	nlink = ret;
1708 
1709 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1710 	if (ret < 0)
1711 		goto out;
1712 
1713 	nlink += ret;
1714 
1715 	ret = 0;
1716 
1717 	if (nlink != inode->i_nlink) {
1718 		set_nlink(inode, nlink);
1719 		btrfs_update_inode(trans, root, inode);
1720 	}
1721 	BTRFS_I(inode)->index_cnt = (u64)-1;
1722 
1723 	if (inode->i_nlink == 0) {
1724 		if (S_ISDIR(inode->i_mode)) {
1725 			ret = replay_dir_deletes(trans, root, NULL, path,
1726 						 ino, 1);
1727 			if (ret)
1728 				goto out;
1729 		}
1730 		ret = insert_orphan_item(trans, root, ino);
1731 	}
1732 
1733 out:
1734 	btrfs_free_path(path);
1735 	return ret;
1736 }
1737 
1738 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1739 					    struct btrfs_root *root,
1740 					    struct btrfs_path *path)
1741 {
1742 	int ret;
1743 	struct btrfs_key key;
1744 	struct inode *inode;
1745 
1746 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1747 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1748 	key.offset = (u64)-1;
1749 	while (1) {
1750 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1751 		if (ret < 0)
1752 			break;
1753 
1754 		if (ret == 1) {
1755 			if (path->slots[0] == 0)
1756 				break;
1757 			path->slots[0]--;
1758 		}
1759 
1760 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1761 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1762 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1763 			break;
1764 
1765 		ret = btrfs_del_item(trans, root, path);
1766 		if (ret)
1767 			goto out;
1768 
1769 		btrfs_release_path(path);
1770 		inode = read_one_inode(root, key.offset);
1771 		if (!inode)
1772 			return -EIO;
1773 
1774 		ret = fixup_inode_link_count(trans, root, inode);
1775 		iput(inode);
1776 		if (ret)
1777 			goto out;
1778 
1779 		/*
1780 		 * fixup on a directory may create new entries,
1781 		 * make sure we always look for the highset possible
1782 		 * offset
1783 		 */
1784 		key.offset = (u64)-1;
1785 	}
1786 	ret = 0;
1787 out:
1788 	btrfs_release_path(path);
1789 	return ret;
1790 }
1791 
1792 
1793 /*
1794  * record a given inode in the fixup dir so we can check its link
1795  * count when replay is done.  The link count is incremented here
1796  * so the inode won't go away until we check it
1797  */
1798 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1799 				      struct btrfs_root *root,
1800 				      struct btrfs_path *path,
1801 				      u64 objectid)
1802 {
1803 	struct btrfs_key key;
1804 	int ret = 0;
1805 	struct inode *inode;
1806 
1807 	inode = read_one_inode(root, objectid);
1808 	if (!inode)
1809 		return -EIO;
1810 
1811 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1812 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1813 	key.offset = objectid;
1814 
1815 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1816 
1817 	btrfs_release_path(path);
1818 	if (ret == 0) {
1819 		if (!inode->i_nlink)
1820 			set_nlink(inode, 1);
1821 		else
1822 			inc_nlink(inode);
1823 		ret = btrfs_update_inode(trans, root, inode);
1824 	} else if (ret == -EEXIST) {
1825 		ret = 0;
1826 	} else {
1827 		BUG(); /* Logic Error */
1828 	}
1829 	iput(inode);
1830 
1831 	return ret;
1832 }
1833 
1834 /*
1835  * when replaying the log for a directory, we only insert names
1836  * for inodes that actually exist.  This means an fsync on a directory
1837  * does not implicitly fsync all the new files in it
1838  */
1839 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1840 				    struct btrfs_root *root,
1841 				    u64 dirid, u64 index,
1842 				    char *name, int name_len,
1843 				    struct btrfs_key *location)
1844 {
1845 	struct inode *inode;
1846 	struct inode *dir;
1847 	int ret;
1848 
1849 	inode = read_one_inode(root, location->objectid);
1850 	if (!inode)
1851 		return -ENOENT;
1852 
1853 	dir = read_one_inode(root, dirid);
1854 	if (!dir) {
1855 		iput(inode);
1856 		return -EIO;
1857 	}
1858 
1859 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1860 			name_len, 1, index);
1861 
1862 	/* FIXME, put inode into FIXUP list */
1863 
1864 	iput(inode);
1865 	iput(dir);
1866 	return ret;
1867 }
1868 
1869 /*
1870  * take a single entry in a log directory item and replay it into
1871  * the subvolume.
1872  *
1873  * if a conflicting item exists in the subdirectory already,
1874  * the inode it points to is unlinked and put into the link count
1875  * fix up tree.
1876  *
1877  * If a name from the log points to a file or directory that does
1878  * not exist in the FS, it is skipped.  fsyncs on directories
1879  * do not force down inodes inside that directory, just changes to the
1880  * names or unlinks in a directory.
1881  *
1882  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1883  * non-existing inode) and 1 if the name was replayed.
1884  */
1885 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1886 				    struct btrfs_root *root,
1887 				    struct btrfs_path *path,
1888 				    struct extent_buffer *eb,
1889 				    struct btrfs_dir_item *di,
1890 				    struct btrfs_key *key)
1891 {
1892 	char *name;
1893 	int name_len;
1894 	struct btrfs_dir_item *dst_di;
1895 	struct btrfs_key found_key;
1896 	struct btrfs_key log_key;
1897 	struct inode *dir;
1898 	u8 log_type;
1899 	int exists;
1900 	int ret = 0;
1901 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1902 	bool name_added = false;
1903 
1904 	dir = read_one_inode(root, key->objectid);
1905 	if (!dir)
1906 		return -EIO;
1907 
1908 	name_len = btrfs_dir_name_len(eb, di);
1909 	name = kmalloc(name_len, GFP_NOFS);
1910 	if (!name) {
1911 		ret = -ENOMEM;
1912 		goto out;
1913 	}
1914 
1915 	log_type = btrfs_dir_type(eb, di);
1916 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1917 		   name_len);
1918 
1919 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1920 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1921 	if (exists == 0)
1922 		exists = 1;
1923 	else
1924 		exists = 0;
1925 	btrfs_release_path(path);
1926 
1927 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1928 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1929 				       name, name_len, 1);
1930 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1931 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1932 						     key->objectid,
1933 						     key->offset, name,
1934 						     name_len, 1);
1935 	} else {
1936 		/* Corruption */
1937 		ret = -EINVAL;
1938 		goto out;
1939 	}
1940 	if (IS_ERR_OR_NULL(dst_di)) {
1941 		/* we need a sequence number to insert, so we only
1942 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1943 		 */
1944 		if (key->type != BTRFS_DIR_INDEX_KEY)
1945 			goto out;
1946 		goto insert;
1947 	}
1948 
1949 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1950 	/* the existing item matches the logged item */
1951 	if (found_key.objectid == log_key.objectid &&
1952 	    found_key.type == log_key.type &&
1953 	    found_key.offset == log_key.offset &&
1954 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1955 		update_size = false;
1956 		goto out;
1957 	}
1958 
1959 	/*
1960 	 * don't drop the conflicting directory entry if the inode
1961 	 * for the new entry doesn't exist
1962 	 */
1963 	if (!exists)
1964 		goto out;
1965 
1966 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1967 	if (ret)
1968 		goto out;
1969 
1970 	if (key->type == BTRFS_DIR_INDEX_KEY)
1971 		goto insert;
1972 out:
1973 	btrfs_release_path(path);
1974 	if (!ret && update_size) {
1975 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1976 		ret = btrfs_update_inode(trans, root, dir);
1977 	}
1978 	kfree(name);
1979 	iput(dir);
1980 	if (!ret && name_added)
1981 		ret = 1;
1982 	return ret;
1983 
1984 insert:
1985 	/*
1986 	 * Check if the inode reference exists in the log for the given name,
1987 	 * inode and parent inode
1988 	 */
1989 	found_key.objectid = log_key.objectid;
1990 	found_key.type = BTRFS_INODE_REF_KEY;
1991 	found_key.offset = key->objectid;
1992 	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
1993 	if (ret < 0) {
1994 	        goto out;
1995 	} else if (ret) {
1996 	        /* The dentry will be added later. */
1997 	        ret = 0;
1998 	        update_size = false;
1999 	        goto out;
2000 	}
2001 
2002 	found_key.objectid = log_key.objectid;
2003 	found_key.type = BTRFS_INODE_EXTREF_KEY;
2004 	found_key.offset = key->objectid;
2005 	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2006 			     name_len);
2007 	if (ret < 0) {
2008 		goto out;
2009 	} else if (ret) {
2010 		/* The dentry will be added later. */
2011 		ret = 0;
2012 		update_size = false;
2013 		goto out;
2014 	}
2015 	btrfs_release_path(path);
2016 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2017 			      name, name_len, &log_key);
2018 	if (ret && ret != -ENOENT && ret != -EEXIST)
2019 		goto out;
2020 	if (!ret)
2021 		name_added = true;
2022 	update_size = false;
2023 	ret = 0;
2024 	goto out;
2025 }
2026 
2027 /*
2028  * find all the names in a directory item and reconcile them into
2029  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2030  * one name in a directory item, but the same code gets used for
2031  * both directory index types
2032  */
2033 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2034 					struct btrfs_root *root,
2035 					struct btrfs_path *path,
2036 					struct extent_buffer *eb, int slot,
2037 					struct btrfs_key *key)
2038 {
2039 	int ret = 0;
2040 	u32 item_size = btrfs_item_size_nr(eb, slot);
2041 	struct btrfs_dir_item *di;
2042 	int name_len;
2043 	unsigned long ptr;
2044 	unsigned long ptr_end;
2045 	struct btrfs_path *fixup_path = NULL;
2046 
2047 	ptr = btrfs_item_ptr_offset(eb, slot);
2048 	ptr_end = ptr + item_size;
2049 	while (ptr < ptr_end) {
2050 		di = (struct btrfs_dir_item *)ptr;
2051 		name_len = btrfs_dir_name_len(eb, di);
2052 		ret = replay_one_name(trans, root, path, eb, di, key);
2053 		if (ret < 0)
2054 			break;
2055 		ptr = (unsigned long)(di + 1);
2056 		ptr += name_len;
2057 
2058 		/*
2059 		 * If this entry refers to a non-directory (directories can not
2060 		 * have a link count > 1) and it was added in the transaction
2061 		 * that was not committed, make sure we fixup the link count of
2062 		 * the inode it the entry points to. Otherwise something like
2063 		 * the following would result in a directory pointing to an
2064 		 * inode with a wrong link that does not account for this dir
2065 		 * entry:
2066 		 *
2067 		 * mkdir testdir
2068 		 * touch testdir/foo
2069 		 * touch testdir/bar
2070 		 * sync
2071 		 *
2072 		 * ln testdir/bar testdir/bar_link
2073 		 * ln testdir/foo testdir/foo_link
2074 		 * xfs_io -c "fsync" testdir/bar
2075 		 *
2076 		 * <power failure>
2077 		 *
2078 		 * mount fs, log replay happens
2079 		 *
2080 		 * File foo would remain with a link count of 1 when it has two
2081 		 * entries pointing to it in the directory testdir. This would
2082 		 * make it impossible to ever delete the parent directory has
2083 		 * it would result in stale dentries that can never be deleted.
2084 		 */
2085 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2086 			struct btrfs_key di_key;
2087 
2088 			if (!fixup_path) {
2089 				fixup_path = btrfs_alloc_path();
2090 				if (!fixup_path) {
2091 					ret = -ENOMEM;
2092 					break;
2093 				}
2094 			}
2095 
2096 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2097 			ret = link_to_fixup_dir(trans, root, fixup_path,
2098 						di_key.objectid);
2099 			if (ret)
2100 				break;
2101 		}
2102 		ret = 0;
2103 	}
2104 	btrfs_free_path(fixup_path);
2105 	return ret;
2106 }
2107 
2108 /*
2109  * directory replay has two parts.  There are the standard directory
2110  * items in the log copied from the subvolume, and range items
2111  * created in the log while the subvolume was logged.
2112  *
2113  * The range items tell us which parts of the key space the log
2114  * is authoritative for.  During replay, if a key in the subvolume
2115  * directory is in a logged range item, but not actually in the log
2116  * that means it was deleted from the directory before the fsync
2117  * and should be removed.
2118  */
2119 static noinline int find_dir_range(struct btrfs_root *root,
2120 				   struct btrfs_path *path,
2121 				   u64 dirid, int key_type,
2122 				   u64 *start_ret, u64 *end_ret)
2123 {
2124 	struct btrfs_key key;
2125 	u64 found_end;
2126 	struct btrfs_dir_log_item *item;
2127 	int ret;
2128 	int nritems;
2129 
2130 	if (*start_ret == (u64)-1)
2131 		return 1;
2132 
2133 	key.objectid = dirid;
2134 	key.type = key_type;
2135 	key.offset = *start_ret;
2136 
2137 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2138 	if (ret < 0)
2139 		goto out;
2140 	if (ret > 0) {
2141 		if (path->slots[0] == 0)
2142 			goto out;
2143 		path->slots[0]--;
2144 	}
2145 	if (ret != 0)
2146 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2147 
2148 	if (key.type != key_type || key.objectid != dirid) {
2149 		ret = 1;
2150 		goto next;
2151 	}
2152 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2153 			      struct btrfs_dir_log_item);
2154 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2155 
2156 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2157 		ret = 0;
2158 		*start_ret = key.offset;
2159 		*end_ret = found_end;
2160 		goto out;
2161 	}
2162 	ret = 1;
2163 next:
2164 	/* check the next slot in the tree to see if it is a valid item */
2165 	nritems = btrfs_header_nritems(path->nodes[0]);
2166 	path->slots[0]++;
2167 	if (path->slots[0] >= nritems) {
2168 		ret = btrfs_next_leaf(root, path);
2169 		if (ret)
2170 			goto out;
2171 	}
2172 
2173 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2174 
2175 	if (key.type != key_type || key.objectid != dirid) {
2176 		ret = 1;
2177 		goto out;
2178 	}
2179 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2180 			      struct btrfs_dir_log_item);
2181 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2182 	*start_ret = key.offset;
2183 	*end_ret = found_end;
2184 	ret = 0;
2185 out:
2186 	btrfs_release_path(path);
2187 	return ret;
2188 }
2189 
2190 /*
2191  * this looks for a given directory item in the log.  If the directory
2192  * item is not in the log, the item is removed and the inode it points
2193  * to is unlinked
2194  */
2195 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2196 				      struct btrfs_root *root,
2197 				      struct btrfs_root *log,
2198 				      struct btrfs_path *path,
2199 				      struct btrfs_path *log_path,
2200 				      struct inode *dir,
2201 				      struct btrfs_key *dir_key)
2202 {
2203 	int ret;
2204 	struct extent_buffer *eb;
2205 	int slot;
2206 	u32 item_size;
2207 	struct btrfs_dir_item *di;
2208 	struct btrfs_dir_item *log_di;
2209 	int name_len;
2210 	unsigned long ptr;
2211 	unsigned long ptr_end;
2212 	char *name;
2213 	struct inode *inode;
2214 	struct btrfs_key location;
2215 
2216 again:
2217 	eb = path->nodes[0];
2218 	slot = path->slots[0];
2219 	item_size = btrfs_item_size_nr(eb, slot);
2220 	ptr = btrfs_item_ptr_offset(eb, slot);
2221 	ptr_end = ptr + item_size;
2222 	while (ptr < ptr_end) {
2223 		di = (struct btrfs_dir_item *)ptr;
2224 		name_len = btrfs_dir_name_len(eb, di);
2225 		name = kmalloc(name_len, GFP_NOFS);
2226 		if (!name) {
2227 			ret = -ENOMEM;
2228 			goto out;
2229 		}
2230 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2231 				  name_len);
2232 		log_di = NULL;
2233 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2234 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2235 						       dir_key->objectid,
2236 						       name, name_len, 0);
2237 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2238 			log_di = btrfs_lookup_dir_index_item(trans, log,
2239 						     log_path,
2240 						     dir_key->objectid,
2241 						     dir_key->offset,
2242 						     name, name_len, 0);
2243 		}
2244 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2245 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2246 			btrfs_release_path(path);
2247 			btrfs_release_path(log_path);
2248 			inode = read_one_inode(root, location.objectid);
2249 			if (!inode) {
2250 				kfree(name);
2251 				return -EIO;
2252 			}
2253 
2254 			ret = link_to_fixup_dir(trans, root,
2255 						path, location.objectid);
2256 			if (ret) {
2257 				kfree(name);
2258 				iput(inode);
2259 				goto out;
2260 			}
2261 
2262 			inc_nlink(inode);
2263 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2264 					BTRFS_I(inode), name, name_len);
2265 			if (!ret)
2266 				ret = btrfs_run_delayed_items(trans);
2267 			kfree(name);
2268 			iput(inode);
2269 			if (ret)
2270 				goto out;
2271 
2272 			/* there might still be more names under this key
2273 			 * check and repeat if required
2274 			 */
2275 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2276 						0, 0);
2277 			if (ret == 0)
2278 				goto again;
2279 			ret = 0;
2280 			goto out;
2281 		} else if (IS_ERR(log_di)) {
2282 			kfree(name);
2283 			return PTR_ERR(log_di);
2284 		}
2285 		btrfs_release_path(log_path);
2286 		kfree(name);
2287 
2288 		ptr = (unsigned long)(di + 1);
2289 		ptr += name_len;
2290 	}
2291 	ret = 0;
2292 out:
2293 	btrfs_release_path(path);
2294 	btrfs_release_path(log_path);
2295 	return ret;
2296 }
2297 
2298 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2299 			      struct btrfs_root *root,
2300 			      struct btrfs_root *log,
2301 			      struct btrfs_path *path,
2302 			      const u64 ino)
2303 {
2304 	struct btrfs_key search_key;
2305 	struct btrfs_path *log_path;
2306 	int i;
2307 	int nritems;
2308 	int ret;
2309 
2310 	log_path = btrfs_alloc_path();
2311 	if (!log_path)
2312 		return -ENOMEM;
2313 
2314 	search_key.objectid = ino;
2315 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2316 	search_key.offset = 0;
2317 again:
2318 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2319 	if (ret < 0)
2320 		goto out;
2321 process_leaf:
2322 	nritems = btrfs_header_nritems(path->nodes[0]);
2323 	for (i = path->slots[0]; i < nritems; i++) {
2324 		struct btrfs_key key;
2325 		struct btrfs_dir_item *di;
2326 		struct btrfs_dir_item *log_di;
2327 		u32 total_size;
2328 		u32 cur;
2329 
2330 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2331 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2332 			ret = 0;
2333 			goto out;
2334 		}
2335 
2336 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2337 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2338 		cur = 0;
2339 		while (cur < total_size) {
2340 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2341 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2342 			u32 this_len = sizeof(*di) + name_len + data_len;
2343 			char *name;
2344 
2345 			name = kmalloc(name_len, GFP_NOFS);
2346 			if (!name) {
2347 				ret = -ENOMEM;
2348 				goto out;
2349 			}
2350 			read_extent_buffer(path->nodes[0], name,
2351 					   (unsigned long)(di + 1), name_len);
2352 
2353 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2354 						    name, name_len, 0);
2355 			btrfs_release_path(log_path);
2356 			if (!log_di) {
2357 				/* Doesn't exist in log tree, so delete it. */
2358 				btrfs_release_path(path);
2359 				di = btrfs_lookup_xattr(trans, root, path, ino,
2360 							name, name_len, -1);
2361 				kfree(name);
2362 				if (IS_ERR(di)) {
2363 					ret = PTR_ERR(di);
2364 					goto out;
2365 				}
2366 				ASSERT(di);
2367 				ret = btrfs_delete_one_dir_name(trans, root,
2368 								path, di);
2369 				if (ret)
2370 					goto out;
2371 				btrfs_release_path(path);
2372 				search_key = key;
2373 				goto again;
2374 			}
2375 			kfree(name);
2376 			if (IS_ERR(log_di)) {
2377 				ret = PTR_ERR(log_di);
2378 				goto out;
2379 			}
2380 			cur += this_len;
2381 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2382 		}
2383 	}
2384 	ret = btrfs_next_leaf(root, path);
2385 	if (ret > 0)
2386 		ret = 0;
2387 	else if (ret == 0)
2388 		goto process_leaf;
2389 out:
2390 	btrfs_free_path(log_path);
2391 	btrfs_release_path(path);
2392 	return ret;
2393 }
2394 
2395 
2396 /*
2397  * deletion replay happens before we copy any new directory items
2398  * out of the log or out of backreferences from inodes.  It
2399  * scans the log to find ranges of keys that log is authoritative for,
2400  * and then scans the directory to find items in those ranges that are
2401  * not present in the log.
2402  *
2403  * Anything we don't find in the log is unlinked and removed from the
2404  * directory.
2405  */
2406 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2407 				       struct btrfs_root *root,
2408 				       struct btrfs_root *log,
2409 				       struct btrfs_path *path,
2410 				       u64 dirid, int del_all)
2411 {
2412 	u64 range_start;
2413 	u64 range_end;
2414 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2415 	int ret = 0;
2416 	struct btrfs_key dir_key;
2417 	struct btrfs_key found_key;
2418 	struct btrfs_path *log_path;
2419 	struct inode *dir;
2420 
2421 	dir_key.objectid = dirid;
2422 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2423 	log_path = btrfs_alloc_path();
2424 	if (!log_path)
2425 		return -ENOMEM;
2426 
2427 	dir = read_one_inode(root, dirid);
2428 	/* it isn't an error if the inode isn't there, that can happen
2429 	 * because we replay the deletes before we copy in the inode item
2430 	 * from the log
2431 	 */
2432 	if (!dir) {
2433 		btrfs_free_path(log_path);
2434 		return 0;
2435 	}
2436 again:
2437 	range_start = 0;
2438 	range_end = 0;
2439 	while (1) {
2440 		if (del_all)
2441 			range_end = (u64)-1;
2442 		else {
2443 			ret = find_dir_range(log, path, dirid, key_type,
2444 					     &range_start, &range_end);
2445 			if (ret != 0)
2446 				break;
2447 		}
2448 
2449 		dir_key.offset = range_start;
2450 		while (1) {
2451 			int nritems;
2452 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2453 						0, 0);
2454 			if (ret < 0)
2455 				goto out;
2456 
2457 			nritems = btrfs_header_nritems(path->nodes[0]);
2458 			if (path->slots[0] >= nritems) {
2459 				ret = btrfs_next_leaf(root, path);
2460 				if (ret == 1)
2461 					break;
2462 				else if (ret < 0)
2463 					goto out;
2464 			}
2465 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2466 					      path->slots[0]);
2467 			if (found_key.objectid != dirid ||
2468 			    found_key.type != dir_key.type)
2469 				goto next_type;
2470 
2471 			if (found_key.offset > range_end)
2472 				break;
2473 
2474 			ret = check_item_in_log(trans, root, log, path,
2475 						log_path, dir,
2476 						&found_key);
2477 			if (ret)
2478 				goto out;
2479 			if (found_key.offset == (u64)-1)
2480 				break;
2481 			dir_key.offset = found_key.offset + 1;
2482 		}
2483 		btrfs_release_path(path);
2484 		if (range_end == (u64)-1)
2485 			break;
2486 		range_start = range_end + 1;
2487 	}
2488 
2489 next_type:
2490 	ret = 0;
2491 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2492 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2493 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2494 		btrfs_release_path(path);
2495 		goto again;
2496 	}
2497 out:
2498 	btrfs_release_path(path);
2499 	btrfs_free_path(log_path);
2500 	iput(dir);
2501 	return ret;
2502 }
2503 
2504 /*
2505  * the process_func used to replay items from the log tree.  This
2506  * gets called in two different stages.  The first stage just looks
2507  * for inodes and makes sure they are all copied into the subvolume.
2508  *
2509  * The second stage copies all the other item types from the log into
2510  * the subvolume.  The two stage approach is slower, but gets rid of
2511  * lots of complexity around inodes referencing other inodes that exist
2512  * only in the log (references come from either directory items or inode
2513  * back refs).
2514  */
2515 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2516 			     struct walk_control *wc, u64 gen, int level)
2517 {
2518 	int nritems;
2519 	struct btrfs_path *path;
2520 	struct btrfs_root *root = wc->replay_dest;
2521 	struct btrfs_key key;
2522 	int i;
2523 	int ret;
2524 
2525 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2526 	if (ret)
2527 		return ret;
2528 
2529 	level = btrfs_header_level(eb);
2530 
2531 	if (level != 0)
2532 		return 0;
2533 
2534 	path = btrfs_alloc_path();
2535 	if (!path)
2536 		return -ENOMEM;
2537 
2538 	nritems = btrfs_header_nritems(eb);
2539 	for (i = 0; i < nritems; i++) {
2540 		btrfs_item_key_to_cpu(eb, &key, i);
2541 
2542 		/* inode keys are done during the first stage */
2543 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2544 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2545 			struct btrfs_inode_item *inode_item;
2546 			u32 mode;
2547 
2548 			inode_item = btrfs_item_ptr(eb, i,
2549 					    struct btrfs_inode_item);
2550 			/*
2551 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2552 			 * and never got linked before the fsync, skip it, as
2553 			 * replaying it is pointless since it would be deleted
2554 			 * later. We skip logging tmpfiles, but it's always
2555 			 * possible we are replaying a log created with a kernel
2556 			 * that used to log tmpfiles.
2557 			 */
2558 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2559 				wc->ignore_cur_inode = true;
2560 				continue;
2561 			} else {
2562 				wc->ignore_cur_inode = false;
2563 			}
2564 			ret = replay_xattr_deletes(wc->trans, root, log,
2565 						   path, key.objectid);
2566 			if (ret)
2567 				break;
2568 			mode = btrfs_inode_mode(eb, inode_item);
2569 			if (S_ISDIR(mode)) {
2570 				ret = replay_dir_deletes(wc->trans,
2571 					 root, log, path, key.objectid, 0);
2572 				if (ret)
2573 					break;
2574 			}
2575 			ret = overwrite_item(wc->trans, root, path,
2576 					     eb, i, &key);
2577 			if (ret)
2578 				break;
2579 
2580 			/*
2581 			 * Before replaying extents, truncate the inode to its
2582 			 * size. We need to do it now and not after log replay
2583 			 * because before an fsync we can have prealloc extents
2584 			 * added beyond the inode's i_size. If we did it after,
2585 			 * through orphan cleanup for example, we would drop
2586 			 * those prealloc extents just after replaying them.
2587 			 */
2588 			if (S_ISREG(mode)) {
2589 				struct inode *inode;
2590 				u64 from;
2591 
2592 				inode = read_one_inode(root, key.objectid);
2593 				if (!inode) {
2594 					ret = -EIO;
2595 					break;
2596 				}
2597 				from = ALIGN(i_size_read(inode),
2598 					     root->fs_info->sectorsize);
2599 				ret = btrfs_drop_extents(wc->trans, root, inode,
2600 							 from, (u64)-1, 1);
2601 				if (!ret) {
2602 					/* Update the inode's nbytes. */
2603 					ret = btrfs_update_inode(wc->trans,
2604 								 root, inode);
2605 				}
2606 				iput(inode);
2607 				if (ret)
2608 					break;
2609 			}
2610 
2611 			ret = link_to_fixup_dir(wc->trans, root,
2612 						path, key.objectid);
2613 			if (ret)
2614 				break;
2615 		}
2616 
2617 		if (wc->ignore_cur_inode)
2618 			continue;
2619 
2620 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2621 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2622 			ret = replay_one_dir_item(wc->trans, root, path,
2623 						  eb, i, &key);
2624 			if (ret)
2625 				break;
2626 		}
2627 
2628 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2629 			continue;
2630 
2631 		/* these keys are simply copied */
2632 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2633 			ret = overwrite_item(wc->trans, root, path,
2634 					     eb, i, &key);
2635 			if (ret)
2636 				break;
2637 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2638 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2639 			ret = add_inode_ref(wc->trans, root, log, path,
2640 					    eb, i, &key);
2641 			if (ret && ret != -ENOENT)
2642 				break;
2643 			ret = 0;
2644 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2645 			ret = replay_one_extent(wc->trans, root, path,
2646 						eb, i, &key);
2647 			if (ret)
2648 				break;
2649 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2650 			ret = replay_one_dir_item(wc->trans, root, path,
2651 						  eb, i, &key);
2652 			if (ret)
2653 				break;
2654 		}
2655 	}
2656 	btrfs_free_path(path);
2657 	return ret;
2658 }
2659 
2660 /*
2661  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2662  */
2663 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2664 {
2665 	struct btrfs_block_group *cache;
2666 
2667 	cache = btrfs_lookup_block_group(fs_info, start);
2668 	if (!cache) {
2669 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2670 		return;
2671 	}
2672 
2673 	spin_lock(&cache->space_info->lock);
2674 	spin_lock(&cache->lock);
2675 	cache->reserved -= fs_info->nodesize;
2676 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2677 	spin_unlock(&cache->lock);
2678 	spin_unlock(&cache->space_info->lock);
2679 
2680 	btrfs_put_block_group(cache);
2681 }
2682 
2683 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2684 				   struct btrfs_root *root,
2685 				   struct btrfs_path *path, int *level,
2686 				   struct walk_control *wc)
2687 {
2688 	struct btrfs_fs_info *fs_info = root->fs_info;
2689 	u64 bytenr;
2690 	u64 ptr_gen;
2691 	struct extent_buffer *next;
2692 	struct extent_buffer *cur;
2693 	u32 blocksize;
2694 	int ret = 0;
2695 
2696 	while (*level > 0) {
2697 		struct btrfs_key first_key;
2698 
2699 		cur = path->nodes[*level];
2700 
2701 		WARN_ON(btrfs_header_level(cur) != *level);
2702 
2703 		if (path->slots[*level] >=
2704 		    btrfs_header_nritems(cur))
2705 			break;
2706 
2707 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2708 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2709 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2710 		blocksize = fs_info->nodesize;
2711 
2712 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2713 		if (IS_ERR(next))
2714 			return PTR_ERR(next);
2715 
2716 		if (*level == 1) {
2717 			ret = wc->process_func(root, next, wc, ptr_gen,
2718 					       *level - 1);
2719 			if (ret) {
2720 				free_extent_buffer(next);
2721 				return ret;
2722 			}
2723 
2724 			path->slots[*level]++;
2725 			if (wc->free) {
2726 				ret = btrfs_read_buffer(next, ptr_gen,
2727 							*level - 1, &first_key);
2728 				if (ret) {
2729 					free_extent_buffer(next);
2730 					return ret;
2731 				}
2732 
2733 				if (trans) {
2734 					btrfs_tree_lock(next);
2735 					btrfs_set_lock_blocking_write(next);
2736 					btrfs_clean_tree_block(next);
2737 					btrfs_wait_tree_block_writeback(next);
2738 					btrfs_tree_unlock(next);
2739 					ret = btrfs_pin_reserved_extent(trans,
2740 							bytenr, blocksize);
2741 					if (ret) {
2742 						free_extent_buffer(next);
2743 						return ret;
2744 					}
2745 				} else {
2746 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2747 						clear_extent_buffer_dirty(next);
2748 					unaccount_log_buffer(fs_info, bytenr);
2749 				}
2750 			}
2751 			free_extent_buffer(next);
2752 			continue;
2753 		}
2754 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2755 		if (ret) {
2756 			free_extent_buffer(next);
2757 			return ret;
2758 		}
2759 
2760 		if (path->nodes[*level-1])
2761 			free_extent_buffer(path->nodes[*level-1]);
2762 		path->nodes[*level-1] = next;
2763 		*level = btrfs_header_level(next);
2764 		path->slots[*level] = 0;
2765 		cond_resched();
2766 	}
2767 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2768 
2769 	cond_resched();
2770 	return 0;
2771 }
2772 
2773 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2774 				 struct btrfs_root *root,
2775 				 struct btrfs_path *path, int *level,
2776 				 struct walk_control *wc)
2777 {
2778 	struct btrfs_fs_info *fs_info = root->fs_info;
2779 	int i;
2780 	int slot;
2781 	int ret;
2782 
2783 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2784 		slot = path->slots[i];
2785 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2786 			path->slots[i]++;
2787 			*level = i;
2788 			WARN_ON(*level == 0);
2789 			return 0;
2790 		} else {
2791 			ret = wc->process_func(root, path->nodes[*level], wc,
2792 				 btrfs_header_generation(path->nodes[*level]),
2793 				 *level);
2794 			if (ret)
2795 				return ret;
2796 
2797 			if (wc->free) {
2798 				struct extent_buffer *next;
2799 
2800 				next = path->nodes[*level];
2801 
2802 				if (trans) {
2803 					btrfs_tree_lock(next);
2804 					btrfs_set_lock_blocking_write(next);
2805 					btrfs_clean_tree_block(next);
2806 					btrfs_wait_tree_block_writeback(next);
2807 					btrfs_tree_unlock(next);
2808 					ret = btrfs_pin_reserved_extent(trans,
2809 						     path->nodes[*level]->start,
2810 						     path->nodes[*level]->len);
2811 					if (ret)
2812 						return ret;
2813 				} else {
2814 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2815 						clear_extent_buffer_dirty(next);
2816 
2817 					unaccount_log_buffer(fs_info,
2818 						path->nodes[*level]->start);
2819 				}
2820 			}
2821 			free_extent_buffer(path->nodes[*level]);
2822 			path->nodes[*level] = NULL;
2823 			*level = i + 1;
2824 		}
2825 	}
2826 	return 1;
2827 }
2828 
2829 /*
2830  * drop the reference count on the tree rooted at 'snap'.  This traverses
2831  * the tree freeing any blocks that have a ref count of zero after being
2832  * decremented.
2833  */
2834 static int walk_log_tree(struct btrfs_trans_handle *trans,
2835 			 struct btrfs_root *log, struct walk_control *wc)
2836 {
2837 	struct btrfs_fs_info *fs_info = log->fs_info;
2838 	int ret = 0;
2839 	int wret;
2840 	int level;
2841 	struct btrfs_path *path;
2842 	int orig_level;
2843 
2844 	path = btrfs_alloc_path();
2845 	if (!path)
2846 		return -ENOMEM;
2847 
2848 	level = btrfs_header_level(log->node);
2849 	orig_level = level;
2850 	path->nodes[level] = log->node;
2851 	atomic_inc(&log->node->refs);
2852 	path->slots[level] = 0;
2853 
2854 	while (1) {
2855 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2856 		if (wret > 0)
2857 			break;
2858 		if (wret < 0) {
2859 			ret = wret;
2860 			goto out;
2861 		}
2862 
2863 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2864 		if (wret > 0)
2865 			break;
2866 		if (wret < 0) {
2867 			ret = wret;
2868 			goto out;
2869 		}
2870 	}
2871 
2872 	/* was the root node processed? if not, catch it here */
2873 	if (path->nodes[orig_level]) {
2874 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2875 			 btrfs_header_generation(path->nodes[orig_level]),
2876 			 orig_level);
2877 		if (ret)
2878 			goto out;
2879 		if (wc->free) {
2880 			struct extent_buffer *next;
2881 
2882 			next = path->nodes[orig_level];
2883 
2884 			if (trans) {
2885 				btrfs_tree_lock(next);
2886 				btrfs_set_lock_blocking_write(next);
2887 				btrfs_clean_tree_block(next);
2888 				btrfs_wait_tree_block_writeback(next);
2889 				btrfs_tree_unlock(next);
2890 				ret = btrfs_pin_reserved_extent(trans,
2891 						next->start, next->len);
2892 				if (ret)
2893 					goto out;
2894 			} else {
2895 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2896 					clear_extent_buffer_dirty(next);
2897 				unaccount_log_buffer(fs_info, next->start);
2898 			}
2899 		}
2900 	}
2901 
2902 out:
2903 	btrfs_free_path(path);
2904 	return ret;
2905 }
2906 
2907 /*
2908  * helper function to update the item for a given subvolumes log root
2909  * in the tree of log roots
2910  */
2911 static int update_log_root(struct btrfs_trans_handle *trans,
2912 			   struct btrfs_root *log,
2913 			   struct btrfs_root_item *root_item)
2914 {
2915 	struct btrfs_fs_info *fs_info = log->fs_info;
2916 	int ret;
2917 
2918 	if (log->log_transid == 1) {
2919 		/* insert root item on the first sync */
2920 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2921 				&log->root_key, root_item);
2922 	} else {
2923 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2924 				&log->root_key, root_item);
2925 	}
2926 	return ret;
2927 }
2928 
2929 static void wait_log_commit(struct btrfs_root *root, int transid)
2930 {
2931 	DEFINE_WAIT(wait);
2932 	int index = transid % 2;
2933 
2934 	/*
2935 	 * we only allow two pending log transactions at a time,
2936 	 * so we know that if ours is more than 2 older than the
2937 	 * current transaction, we're done
2938 	 */
2939 	for (;;) {
2940 		prepare_to_wait(&root->log_commit_wait[index],
2941 				&wait, TASK_UNINTERRUPTIBLE);
2942 
2943 		if (!(root->log_transid_committed < transid &&
2944 		      atomic_read(&root->log_commit[index])))
2945 			break;
2946 
2947 		mutex_unlock(&root->log_mutex);
2948 		schedule();
2949 		mutex_lock(&root->log_mutex);
2950 	}
2951 	finish_wait(&root->log_commit_wait[index], &wait);
2952 }
2953 
2954 static void wait_for_writer(struct btrfs_root *root)
2955 {
2956 	DEFINE_WAIT(wait);
2957 
2958 	for (;;) {
2959 		prepare_to_wait(&root->log_writer_wait, &wait,
2960 				TASK_UNINTERRUPTIBLE);
2961 		if (!atomic_read(&root->log_writers))
2962 			break;
2963 
2964 		mutex_unlock(&root->log_mutex);
2965 		schedule();
2966 		mutex_lock(&root->log_mutex);
2967 	}
2968 	finish_wait(&root->log_writer_wait, &wait);
2969 }
2970 
2971 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2972 					struct btrfs_log_ctx *ctx)
2973 {
2974 	if (!ctx)
2975 		return;
2976 
2977 	mutex_lock(&root->log_mutex);
2978 	list_del_init(&ctx->list);
2979 	mutex_unlock(&root->log_mutex);
2980 }
2981 
2982 /*
2983  * Invoked in log mutex context, or be sure there is no other task which
2984  * can access the list.
2985  */
2986 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2987 					     int index, int error)
2988 {
2989 	struct btrfs_log_ctx *ctx;
2990 	struct btrfs_log_ctx *safe;
2991 
2992 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2993 		list_del_init(&ctx->list);
2994 		ctx->log_ret = error;
2995 	}
2996 
2997 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2998 }
2999 
3000 /*
3001  * btrfs_sync_log does sends a given tree log down to the disk and
3002  * updates the super blocks to record it.  When this call is done,
3003  * you know that any inodes previously logged are safely on disk only
3004  * if it returns 0.
3005  *
3006  * Any other return value means you need to call btrfs_commit_transaction.
3007  * Some of the edge cases for fsyncing directories that have had unlinks
3008  * or renames done in the past mean that sometimes the only safe
3009  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3010  * that has happened.
3011  */
3012 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3013 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3014 {
3015 	int index1;
3016 	int index2;
3017 	int mark;
3018 	int ret;
3019 	struct btrfs_fs_info *fs_info = root->fs_info;
3020 	struct btrfs_root *log = root->log_root;
3021 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3022 	struct btrfs_root_item new_root_item;
3023 	int log_transid = 0;
3024 	struct btrfs_log_ctx root_log_ctx;
3025 	struct blk_plug plug;
3026 
3027 	mutex_lock(&root->log_mutex);
3028 	log_transid = ctx->log_transid;
3029 	if (root->log_transid_committed >= log_transid) {
3030 		mutex_unlock(&root->log_mutex);
3031 		return ctx->log_ret;
3032 	}
3033 
3034 	index1 = log_transid % 2;
3035 	if (atomic_read(&root->log_commit[index1])) {
3036 		wait_log_commit(root, log_transid);
3037 		mutex_unlock(&root->log_mutex);
3038 		return ctx->log_ret;
3039 	}
3040 	ASSERT(log_transid == root->log_transid);
3041 	atomic_set(&root->log_commit[index1], 1);
3042 
3043 	/* wait for previous tree log sync to complete */
3044 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3045 		wait_log_commit(root, log_transid - 1);
3046 
3047 	while (1) {
3048 		int batch = atomic_read(&root->log_batch);
3049 		/* when we're on an ssd, just kick the log commit out */
3050 		if (!btrfs_test_opt(fs_info, SSD) &&
3051 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3052 			mutex_unlock(&root->log_mutex);
3053 			schedule_timeout_uninterruptible(1);
3054 			mutex_lock(&root->log_mutex);
3055 		}
3056 		wait_for_writer(root);
3057 		if (batch == atomic_read(&root->log_batch))
3058 			break;
3059 	}
3060 
3061 	/* bail out if we need to do a full commit */
3062 	if (btrfs_need_log_full_commit(trans)) {
3063 		ret = -EAGAIN;
3064 		mutex_unlock(&root->log_mutex);
3065 		goto out;
3066 	}
3067 
3068 	if (log_transid % 2 == 0)
3069 		mark = EXTENT_DIRTY;
3070 	else
3071 		mark = EXTENT_NEW;
3072 
3073 	/* we start IO on  all the marked extents here, but we don't actually
3074 	 * wait for them until later.
3075 	 */
3076 	blk_start_plug(&plug);
3077 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3078 	if (ret) {
3079 		blk_finish_plug(&plug);
3080 		btrfs_abort_transaction(trans, ret);
3081 		btrfs_set_log_full_commit(trans);
3082 		mutex_unlock(&root->log_mutex);
3083 		goto out;
3084 	}
3085 
3086 	/*
3087 	 * We _must_ update under the root->log_mutex in order to make sure we
3088 	 * have a consistent view of the log root we are trying to commit at
3089 	 * this moment.
3090 	 *
3091 	 * We _must_ copy this into a local copy, because we are not holding the
3092 	 * log_root_tree->log_mutex yet.  This is important because when we
3093 	 * commit the log_root_tree we must have a consistent view of the
3094 	 * log_root_tree when we update the super block to point at the
3095 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3096 	 * with the commit and possibly point at the new block which we may not
3097 	 * have written out.
3098 	 */
3099 	btrfs_set_root_node(&log->root_item, log->node);
3100 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3101 
3102 	root->log_transid++;
3103 	log->log_transid = root->log_transid;
3104 	root->log_start_pid = 0;
3105 	/*
3106 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3107 	 * in their headers. new modifications of the log will be written to
3108 	 * new positions. so it's safe to allow log writers to go in.
3109 	 */
3110 	mutex_unlock(&root->log_mutex);
3111 
3112 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3113 
3114 	mutex_lock(&log_root_tree->log_mutex);
3115 
3116 	index2 = log_root_tree->log_transid % 2;
3117 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3118 	root_log_ctx.log_transid = log_root_tree->log_transid;
3119 
3120 	/*
3121 	 * Now we are safe to update the log_root_tree because we're under the
3122 	 * log_mutex, and we're a current writer so we're holding the commit
3123 	 * open until we drop the log_mutex.
3124 	 */
3125 	ret = update_log_root(trans, log, &new_root_item);
3126 	if (ret) {
3127 		if (!list_empty(&root_log_ctx.list))
3128 			list_del_init(&root_log_ctx.list);
3129 
3130 		blk_finish_plug(&plug);
3131 		btrfs_set_log_full_commit(trans);
3132 
3133 		if (ret != -ENOSPC) {
3134 			btrfs_abort_transaction(trans, ret);
3135 			mutex_unlock(&log_root_tree->log_mutex);
3136 			goto out;
3137 		}
3138 		btrfs_wait_tree_log_extents(log, mark);
3139 		mutex_unlock(&log_root_tree->log_mutex);
3140 		ret = -EAGAIN;
3141 		goto out;
3142 	}
3143 
3144 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3145 		blk_finish_plug(&plug);
3146 		list_del_init(&root_log_ctx.list);
3147 		mutex_unlock(&log_root_tree->log_mutex);
3148 		ret = root_log_ctx.log_ret;
3149 		goto out;
3150 	}
3151 
3152 	index2 = root_log_ctx.log_transid % 2;
3153 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3154 		blk_finish_plug(&plug);
3155 		ret = btrfs_wait_tree_log_extents(log, mark);
3156 		wait_log_commit(log_root_tree,
3157 				root_log_ctx.log_transid);
3158 		mutex_unlock(&log_root_tree->log_mutex);
3159 		if (!ret)
3160 			ret = root_log_ctx.log_ret;
3161 		goto out;
3162 	}
3163 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3164 	atomic_set(&log_root_tree->log_commit[index2], 1);
3165 
3166 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3167 		wait_log_commit(log_root_tree,
3168 				root_log_ctx.log_transid - 1);
3169 	}
3170 
3171 	/*
3172 	 * now that we've moved on to the tree of log tree roots,
3173 	 * check the full commit flag again
3174 	 */
3175 	if (btrfs_need_log_full_commit(trans)) {
3176 		blk_finish_plug(&plug);
3177 		btrfs_wait_tree_log_extents(log, mark);
3178 		mutex_unlock(&log_root_tree->log_mutex);
3179 		ret = -EAGAIN;
3180 		goto out_wake_log_root;
3181 	}
3182 
3183 	ret = btrfs_write_marked_extents(fs_info,
3184 					 &log_root_tree->dirty_log_pages,
3185 					 EXTENT_DIRTY | EXTENT_NEW);
3186 	blk_finish_plug(&plug);
3187 	if (ret) {
3188 		btrfs_set_log_full_commit(trans);
3189 		btrfs_abort_transaction(trans, ret);
3190 		mutex_unlock(&log_root_tree->log_mutex);
3191 		goto out_wake_log_root;
3192 	}
3193 	ret = btrfs_wait_tree_log_extents(log, mark);
3194 	if (!ret)
3195 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3196 						  EXTENT_NEW | EXTENT_DIRTY);
3197 	if (ret) {
3198 		btrfs_set_log_full_commit(trans);
3199 		mutex_unlock(&log_root_tree->log_mutex);
3200 		goto out_wake_log_root;
3201 	}
3202 
3203 	btrfs_set_super_log_root(fs_info->super_for_commit,
3204 				 log_root_tree->node->start);
3205 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3206 				       btrfs_header_level(log_root_tree->node));
3207 
3208 	log_root_tree->log_transid++;
3209 	mutex_unlock(&log_root_tree->log_mutex);
3210 
3211 	/*
3212 	 * Nobody else is going to jump in and write the ctree
3213 	 * super here because the log_commit atomic below is protecting
3214 	 * us.  We must be called with a transaction handle pinning
3215 	 * the running transaction open, so a full commit can't hop
3216 	 * in and cause problems either.
3217 	 */
3218 	ret = write_all_supers(fs_info, 1);
3219 	if (ret) {
3220 		btrfs_set_log_full_commit(trans);
3221 		btrfs_abort_transaction(trans, ret);
3222 		goto out_wake_log_root;
3223 	}
3224 
3225 	mutex_lock(&root->log_mutex);
3226 	if (root->last_log_commit < log_transid)
3227 		root->last_log_commit = log_transid;
3228 	mutex_unlock(&root->log_mutex);
3229 
3230 out_wake_log_root:
3231 	mutex_lock(&log_root_tree->log_mutex);
3232 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3233 
3234 	log_root_tree->log_transid_committed++;
3235 	atomic_set(&log_root_tree->log_commit[index2], 0);
3236 	mutex_unlock(&log_root_tree->log_mutex);
3237 
3238 	/*
3239 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3240 	 * all the updates above are seen by the woken threads. It might not be
3241 	 * necessary, but proving that seems to be hard.
3242 	 */
3243 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3244 out:
3245 	mutex_lock(&root->log_mutex);
3246 	btrfs_remove_all_log_ctxs(root, index1, ret);
3247 	root->log_transid_committed++;
3248 	atomic_set(&root->log_commit[index1], 0);
3249 	mutex_unlock(&root->log_mutex);
3250 
3251 	/*
3252 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3253 	 * all the updates above are seen by the woken threads. It might not be
3254 	 * necessary, but proving that seems to be hard.
3255 	 */
3256 	cond_wake_up(&root->log_commit_wait[index1]);
3257 	return ret;
3258 }
3259 
3260 static void free_log_tree(struct btrfs_trans_handle *trans,
3261 			  struct btrfs_root *log)
3262 {
3263 	int ret;
3264 	struct walk_control wc = {
3265 		.free = 1,
3266 		.process_func = process_one_buffer
3267 	};
3268 
3269 	ret = walk_log_tree(trans, log, &wc);
3270 	if (ret) {
3271 		if (trans)
3272 			btrfs_abort_transaction(trans, ret);
3273 		else
3274 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3275 	}
3276 
3277 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3278 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3279 	extent_io_tree_release(&log->log_csum_range);
3280 	btrfs_put_root(log);
3281 }
3282 
3283 /*
3284  * free all the extents used by the tree log.  This should be called
3285  * at commit time of the full transaction
3286  */
3287 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3288 {
3289 	if (root->log_root) {
3290 		free_log_tree(trans, root->log_root);
3291 		root->log_root = NULL;
3292 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3293 	}
3294 	return 0;
3295 }
3296 
3297 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3298 			     struct btrfs_fs_info *fs_info)
3299 {
3300 	if (fs_info->log_root_tree) {
3301 		free_log_tree(trans, fs_info->log_root_tree);
3302 		fs_info->log_root_tree = NULL;
3303 	}
3304 	return 0;
3305 }
3306 
3307 /*
3308  * Check if an inode was logged in the current transaction. We can't always rely
3309  * on an inode's logged_trans value, because it's an in-memory only field and
3310  * therefore not persisted. This means that its value is lost if the inode gets
3311  * evicted and loaded again from disk (in which case it has a value of 0, and
3312  * certainly it is smaller then any possible transaction ID), when that happens
3313  * the full_sync flag is set in the inode's runtime flags, so on that case we
3314  * assume eviction happened and ignore the logged_trans value, assuming the
3315  * worst case, that the inode was logged before in the current transaction.
3316  */
3317 static bool inode_logged(struct btrfs_trans_handle *trans,
3318 			 struct btrfs_inode *inode)
3319 {
3320 	if (inode->logged_trans == trans->transid)
3321 		return true;
3322 
3323 	if (inode->last_trans == trans->transid &&
3324 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3325 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3326 		return true;
3327 
3328 	return false;
3329 }
3330 
3331 /*
3332  * If both a file and directory are logged, and unlinks or renames are
3333  * mixed in, we have a few interesting corners:
3334  *
3335  * create file X in dir Y
3336  * link file X to X.link in dir Y
3337  * fsync file X
3338  * unlink file X but leave X.link
3339  * fsync dir Y
3340  *
3341  * After a crash we would expect only X.link to exist.  But file X
3342  * didn't get fsync'd again so the log has back refs for X and X.link.
3343  *
3344  * We solve this by removing directory entries and inode backrefs from the
3345  * log when a file that was logged in the current transaction is
3346  * unlinked.  Any later fsync will include the updated log entries, and
3347  * we'll be able to reconstruct the proper directory items from backrefs.
3348  *
3349  * This optimizations allows us to avoid relogging the entire inode
3350  * or the entire directory.
3351  */
3352 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3353 				 struct btrfs_root *root,
3354 				 const char *name, int name_len,
3355 				 struct btrfs_inode *dir, u64 index)
3356 {
3357 	struct btrfs_root *log;
3358 	struct btrfs_dir_item *di;
3359 	struct btrfs_path *path;
3360 	int ret;
3361 	int err = 0;
3362 	int bytes_del = 0;
3363 	u64 dir_ino = btrfs_ino(dir);
3364 
3365 	if (!inode_logged(trans, dir))
3366 		return 0;
3367 
3368 	ret = join_running_log_trans(root);
3369 	if (ret)
3370 		return 0;
3371 
3372 	mutex_lock(&dir->log_mutex);
3373 
3374 	log = root->log_root;
3375 	path = btrfs_alloc_path();
3376 	if (!path) {
3377 		err = -ENOMEM;
3378 		goto out_unlock;
3379 	}
3380 
3381 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3382 				   name, name_len, -1);
3383 	if (IS_ERR(di)) {
3384 		err = PTR_ERR(di);
3385 		goto fail;
3386 	}
3387 	if (di) {
3388 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3389 		bytes_del += name_len;
3390 		if (ret) {
3391 			err = ret;
3392 			goto fail;
3393 		}
3394 	}
3395 	btrfs_release_path(path);
3396 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3397 					 index, name, name_len, -1);
3398 	if (IS_ERR(di)) {
3399 		err = PTR_ERR(di);
3400 		goto fail;
3401 	}
3402 	if (di) {
3403 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3404 		bytes_del += name_len;
3405 		if (ret) {
3406 			err = ret;
3407 			goto fail;
3408 		}
3409 	}
3410 
3411 	/* update the directory size in the log to reflect the names
3412 	 * we have removed
3413 	 */
3414 	if (bytes_del) {
3415 		struct btrfs_key key;
3416 
3417 		key.objectid = dir_ino;
3418 		key.offset = 0;
3419 		key.type = BTRFS_INODE_ITEM_KEY;
3420 		btrfs_release_path(path);
3421 
3422 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3423 		if (ret < 0) {
3424 			err = ret;
3425 			goto fail;
3426 		}
3427 		if (ret == 0) {
3428 			struct btrfs_inode_item *item;
3429 			u64 i_size;
3430 
3431 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3432 					      struct btrfs_inode_item);
3433 			i_size = btrfs_inode_size(path->nodes[0], item);
3434 			if (i_size > bytes_del)
3435 				i_size -= bytes_del;
3436 			else
3437 				i_size = 0;
3438 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3439 			btrfs_mark_buffer_dirty(path->nodes[0]);
3440 		} else
3441 			ret = 0;
3442 		btrfs_release_path(path);
3443 	}
3444 fail:
3445 	btrfs_free_path(path);
3446 out_unlock:
3447 	mutex_unlock(&dir->log_mutex);
3448 	if (err == -ENOSPC) {
3449 		btrfs_set_log_full_commit(trans);
3450 		err = 0;
3451 	} else if (err < 0 && err != -ENOENT) {
3452 		/* ENOENT can be returned if the entry hasn't been fsynced yet */
3453 		btrfs_abort_transaction(trans, err);
3454 	}
3455 
3456 	btrfs_end_log_trans(root);
3457 
3458 	return err;
3459 }
3460 
3461 /* see comments for btrfs_del_dir_entries_in_log */
3462 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3463 			       struct btrfs_root *root,
3464 			       const char *name, int name_len,
3465 			       struct btrfs_inode *inode, u64 dirid)
3466 {
3467 	struct btrfs_root *log;
3468 	u64 index;
3469 	int ret;
3470 
3471 	if (!inode_logged(trans, inode))
3472 		return 0;
3473 
3474 	ret = join_running_log_trans(root);
3475 	if (ret)
3476 		return 0;
3477 	log = root->log_root;
3478 	mutex_lock(&inode->log_mutex);
3479 
3480 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3481 				  dirid, &index);
3482 	mutex_unlock(&inode->log_mutex);
3483 	if (ret == -ENOSPC) {
3484 		btrfs_set_log_full_commit(trans);
3485 		ret = 0;
3486 	} else if (ret < 0 && ret != -ENOENT)
3487 		btrfs_abort_transaction(trans, ret);
3488 	btrfs_end_log_trans(root);
3489 
3490 	return ret;
3491 }
3492 
3493 /*
3494  * creates a range item in the log for 'dirid'.  first_offset and
3495  * last_offset tell us which parts of the key space the log should
3496  * be considered authoritative for.
3497  */
3498 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3499 				       struct btrfs_root *log,
3500 				       struct btrfs_path *path,
3501 				       int key_type, u64 dirid,
3502 				       u64 first_offset, u64 last_offset)
3503 {
3504 	int ret;
3505 	struct btrfs_key key;
3506 	struct btrfs_dir_log_item *item;
3507 
3508 	key.objectid = dirid;
3509 	key.offset = first_offset;
3510 	if (key_type == BTRFS_DIR_ITEM_KEY)
3511 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3512 	else
3513 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3514 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3515 	if (ret)
3516 		return ret;
3517 
3518 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3519 			      struct btrfs_dir_log_item);
3520 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3521 	btrfs_mark_buffer_dirty(path->nodes[0]);
3522 	btrfs_release_path(path);
3523 	return 0;
3524 }
3525 
3526 /*
3527  * log all the items included in the current transaction for a given
3528  * directory.  This also creates the range items in the log tree required
3529  * to replay anything deleted before the fsync
3530  */
3531 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3532 			  struct btrfs_root *root, struct btrfs_inode *inode,
3533 			  struct btrfs_path *path,
3534 			  struct btrfs_path *dst_path, int key_type,
3535 			  struct btrfs_log_ctx *ctx,
3536 			  u64 min_offset, u64 *last_offset_ret)
3537 {
3538 	struct btrfs_key min_key;
3539 	struct btrfs_root *log = root->log_root;
3540 	struct extent_buffer *src;
3541 	int err = 0;
3542 	int ret;
3543 	int i;
3544 	int nritems;
3545 	u64 first_offset = min_offset;
3546 	u64 last_offset = (u64)-1;
3547 	u64 ino = btrfs_ino(inode);
3548 
3549 	log = root->log_root;
3550 
3551 	min_key.objectid = ino;
3552 	min_key.type = key_type;
3553 	min_key.offset = min_offset;
3554 
3555 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3556 
3557 	/*
3558 	 * we didn't find anything from this transaction, see if there
3559 	 * is anything at all
3560 	 */
3561 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3562 		min_key.objectid = ino;
3563 		min_key.type = key_type;
3564 		min_key.offset = (u64)-1;
3565 		btrfs_release_path(path);
3566 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3567 		if (ret < 0) {
3568 			btrfs_release_path(path);
3569 			return ret;
3570 		}
3571 		ret = btrfs_previous_item(root, path, ino, key_type);
3572 
3573 		/* if ret == 0 there are items for this type,
3574 		 * create a range to tell us the last key of this type.
3575 		 * otherwise, there are no items in this directory after
3576 		 * *min_offset, and we create a range to indicate that.
3577 		 */
3578 		if (ret == 0) {
3579 			struct btrfs_key tmp;
3580 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3581 					      path->slots[0]);
3582 			if (key_type == tmp.type)
3583 				first_offset = max(min_offset, tmp.offset) + 1;
3584 		}
3585 		goto done;
3586 	}
3587 
3588 	/* go backward to find any previous key */
3589 	ret = btrfs_previous_item(root, path, ino, key_type);
3590 	if (ret == 0) {
3591 		struct btrfs_key tmp;
3592 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3593 		if (key_type == tmp.type) {
3594 			first_offset = tmp.offset;
3595 			ret = overwrite_item(trans, log, dst_path,
3596 					     path->nodes[0], path->slots[0],
3597 					     &tmp);
3598 			if (ret) {
3599 				err = ret;
3600 				goto done;
3601 			}
3602 		}
3603 	}
3604 	btrfs_release_path(path);
3605 
3606 	/*
3607 	 * Find the first key from this transaction again.  See the note for
3608 	 * log_new_dir_dentries, if we're logging a directory recursively we
3609 	 * won't be holding its i_mutex, which means we can modify the directory
3610 	 * while we're logging it.  If we remove an entry between our first
3611 	 * search and this search we'll not find the key again and can just
3612 	 * bail.
3613 	 */
3614 search:
3615 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3616 	if (ret != 0)
3617 		goto done;
3618 
3619 	/*
3620 	 * we have a block from this transaction, log every item in it
3621 	 * from our directory
3622 	 */
3623 	while (1) {
3624 		struct btrfs_key tmp;
3625 		src = path->nodes[0];
3626 		nritems = btrfs_header_nritems(src);
3627 		for (i = path->slots[0]; i < nritems; i++) {
3628 			struct btrfs_dir_item *di;
3629 
3630 			btrfs_item_key_to_cpu(src, &min_key, i);
3631 
3632 			if (min_key.objectid != ino || min_key.type != key_type)
3633 				goto done;
3634 
3635 			if (need_resched()) {
3636 				btrfs_release_path(path);
3637 				cond_resched();
3638 				goto search;
3639 			}
3640 
3641 			ret = overwrite_item(trans, log, dst_path, src, i,
3642 					     &min_key);
3643 			if (ret) {
3644 				err = ret;
3645 				goto done;
3646 			}
3647 
3648 			/*
3649 			 * We must make sure that when we log a directory entry,
3650 			 * the corresponding inode, after log replay, has a
3651 			 * matching link count. For example:
3652 			 *
3653 			 * touch foo
3654 			 * mkdir mydir
3655 			 * sync
3656 			 * ln foo mydir/bar
3657 			 * xfs_io -c "fsync" mydir
3658 			 * <crash>
3659 			 * <mount fs and log replay>
3660 			 *
3661 			 * Would result in a fsync log that when replayed, our
3662 			 * file inode would have a link count of 1, but we get
3663 			 * two directory entries pointing to the same inode.
3664 			 * After removing one of the names, it would not be
3665 			 * possible to remove the other name, which resulted
3666 			 * always in stale file handle errors, and would not
3667 			 * be possible to rmdir the parent directory, since
3668 			 * its i_size could never decrement to the value
3669 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3670 			 */
3671 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3672 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3673 			if (ctx &&
3674 			    (btrfs_dir_transid(src, di) == trans->transid ||
3675 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3676 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3677 				ctx->log_new_dentries = true;
3678 		}
3679 		path->slots[0] = nritems;
3680 
3681 		/*
3682 		 * look ahead to the next item and see if it is also
3683 		 * from this directory and from this transaction
3684 		 */
3685 		ret = btrfs_next_leaf(root, path);
3686 		if (ret) {
3687 			if (ret == 1)
3688 				last_offset = (u64)-1;
3689 			else
3690 				err = ret;
3691 			goto done;
3692 		}
3693 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3694 		if (tmp.objectid != ino || tmp.type != key_type) {
3695 			last_offset = (u64)-1;
3696 			goto done;
3697 		}
3698 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3699 			ret = overwrite_item(trans, log, dst_path,
3700 					     path->nodes[0], path->slots[0],
3701 					     &tmp);
3702 			if (ret)
3703 				err = ret;
3704 			else
3705 				last_offset = tmp.offset;
3706 			goto done;
3707 		}
3708 	}
3709 done:
3710 	btrfs_release_path(path);
3711 	btrfs_release_path(dst_path);
3712 
3713 	if (err == 0) {
3714 		*last_offset_ret = last_offset;
3715 		/*
3716 		 * insert the log range keys to indicate where the log
3717 		 * is valid
3718 		 */
3719 		ret = insert_dir_log_key(trans, log, path, key_type,
3720 					 ino, first_offset, last_offset);
3721 		if (ret)
3722 			err = ret;
3723 	}
3724 	return err;
3725 }
3726 
3727 /*
3728  * logging directories is very similar to logging inodes, We find all the items
3729  * from the current transaction and write them to the log.
3730  *
3731  * The recovery code scans the directory in the subvolume, and if it finds a
3732  * key in the range logged that is not present in the log tree, then it means
3733  * that dir entry was unlinked during the transaction.
3734  *
3735  * In order for that scan to work, we must include one key smaller than
3736  * the smallest logged by this transaction and one key larger than the largest
3737  * key logged by this transaction.
3738  */
3739 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3740 			  struct btrfs_root *root, struct btrfs_inode *inode,
3741 			  struct btrfs_path *path,
3742 			  struct btrfs_path *dst_path,
3743 			  struct btrfs_log_ctx *ctx)
3744 {
3745 	u64 min_key;
3746 	u64 max_key;
3747 	int ret;
3748 	int key_type = BTRFS_DIR_ITEM_KEY;
3749 
3750 again:
3751 	min_key = 0;
3752 	max_key = 0;
3753 	while (1) {
3754 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3755 				ctx, min_key, &max_key);
3756 		if (ret)
3757 			return ret;
3758 		if (max_key == (u64)-1)
3759 			break;
3760 		min_key = max_key + 1;
3761 	}
3762 
3763 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3764 		key_type = BTRFS_DIR_INDEX_KEY;
3765 		goto again;
3766 	}
3767 	return 0;
3768 }
3769 
3770 /*
3771  * a helper function to drop items from the log before we relog an
3772  * inode.  max_key_type indicates the highest item type to remove.
3773  * This cannot be run for file data extents because it does not
3774  * free the extents they point to.
3775  */
3776 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3777 				  struct btrfs_root *log,
3778 				  struct btrfs_path *path,
3779 				  u64 objectid, int max_key_type)
3780 {
3781 	int ret;
3782 	struct btrfs_key key;
3783 	struct btrfs_key found_key;
3784 	int start_slot;
3785 
3786 	key.objectid = objectid;
3787 	key.type = max_key_type;
3788 	key.offset = (u64)-1;
3789 
3790 	while (1) {
3791 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3792 		BUG_ON(ret == 0); /* Logic error */
3793 		if (ret < 0)
3794 			break;
3795 
3796 		if (path->slots[0] == 0)
3797 			break;
3798 
3799 		path->slots[0]--;
3800 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3801 				      path->slots[0]);
3802 
3803 		if (found_key.objectid != objectid)
3804 			break;
3805 
3806 		found_key.offset = 0;
3807 		found_key.type = 0;
3808 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3809 		if (ret < 0)
3810 			break;
3811 
3812 		ret = btrfs_del_items(trans, log, path, start_slot,
3813 				      path->slots[0] - start_slot + 1);
3814 		/*
3815 		 * If start slot isn't 0 then we don't need to re-search, we've
3816 		 * found the last guy with the objectid in this tree.
3817 		 */
3818 		if (ret || start_slot != 0)
3819 			break;
3820 		btrfs_release_path(path);
3821 	}
3822 	btrfs_release_path(path);
3823 	if (ret > 0)
3824 		ret = 0;
3825 	return ret;
3826 }
3827 
3828 static void fill_inode_item(struct btrfs_trans_handle *trans,
3829 			    struct extent_buffer *leaf,
3830 			    struct btrfs_inode_item *item,
3831 			    struct inode *inode, int log_inode_only,
3832 			    u64 logged_isize)
3833 {
3834 	struct btrfs_map_token token;
3835 
3836 	btrfs_init_map_token(&token, leaf);
3837 
3838 	if (log_inode_only) {
3839 		/* set the generation to zero so the recover code
3840 		 * can tell the difference between an logging
3841 		 * just to say 'this inode exists' and a logging
3842 		 * to say 'update this inode with these values'
3843 		 */
3844 		btrfs_set_token_inode_generation(&token, item, 0);
3845 		btrfs_set_token_inode_size(&token, item, logged_isize);
3846 	} else {
3847 		btrfs_set_token_inode_generation(&token, item,
3848 						 BTRFS_I(inode)->generation);
3849 		btrfs_set_token_inode_size(&token, item, inode->i_size);
3850 	}
3851 
3852 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3853 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3854 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3855 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3856 
3857 	btrfs_set_token_timespec_sec(&token, &item->atime,
3858 				     inode->i_atime.tv_sec);
3859 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3860 				      inode->i_atime.tv_nsec);
3861 
3862 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3863 				     inode->i_mtime.tv_sec);
3864 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3865 				      inode->i_mtime.tv_nsec);
3866 
3867 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3868 				     inode->i_ctime.tv_sec);
3869 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3870 				      inode->i_ctime.tv_nsec);
3871 
3872 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3873 
3874 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3875 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3876 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3877 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3878 	btrfs_set_token_inode_block_group(&token, item, 0);
3879 }
3880 
3881 static int log_inode_item(struct btrfs_trans_handle *trans,
3882 			  struct btrfs_root *log, struct btrfs_path *path,
3883 			  struct btrfs_inode *inode)
3884 {
3885 	struct btrfs_inode_item *inode_item;
3886 	int ret;
3887 
3888 	ret = btrfs_insert_empty_item(trans, log, path,
3889 				      &inode->location, sizeof(*inode_item));
3890 	if (ret && ret != -EEXIST)
3891 		return ret;
3892 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3893 				    struct btrfs_inode_item);
3894 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3895 			0, 0);
3896 	btrfs_release_path(path);
3897 	return 0;
3898 }
3899 
3900 static int log_csums(struct btrfs_trans_handle *trans,
3901 		     struct btrfs_inode *inode,
3902 		     struct btrfs_root *log_root,
3903 		     struct btrfs_ordered_sum *sums)
3904 {
3905 	const u64 lock_end = sums->bytenr + sums->len - 1;
3906 	struct extent_state *cached_state = NULL;
3907 	int ret;
3908 
3909 	/*
3910 	 * If this inode was not used for reflink operations in the current
3911 	 * transaction with new extents, then do the fast path, no need to
3912 	 * worry about logging checksum items with overlapping ranges.
3913 	 */
3914 	if (inode->last_reflink_trans < trans->transid)
3915 		return btrfs_csum_file_blocks(trans, log_root, sums);
3916 
3917 	/*
3918 	 * Serialize logging for checksums. This is to avoid racing with the
3919 	 * same checksum being logged by another task that is logging another
3920 	 * file which happens to refer to the same extent as well. Such races
3921 	 * can leave checksum items in the log with overlapping ranges.
3922 	 */
3923 	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3924 			       lock_end, &cached_state);
3925 	if (ret)
3926 		return ret;
3927 	/*
3928 	 * Due to extent cloning, we might have logged a csum item that covers a
3929 	 * subrange of a cloned extent, and later we can end up logging a csum
3930 	 * item for a larger subrange of the same extent or the entire range.
3931 	 * This would leave csum items in the log tree that cover the same range
3932 	 * and break the searches for checksums in the log tree, resulting in
3933 	 * some checksums missing in the fs/subvolume tree. So just delete (or
3934 	 * trim and adjust) any existing csum items in the log for this range.
3935 	 */
3936 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3937 	if (!ret)
3938 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
3939 
3940 	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
3941 			     &cached_state);
3942 
3943 	return ret;
3944 }
3945 
3946 static noinline int copy_items(struct btrfs_trans_handle *trans,
3947 			       struct btrfs_inode *inode,
3948 			       struct btrfs_path *dst_path,
3949 			       struct btrfs_path *src_path,
3950 			       int start_slot, int nr, int inode_only,
3951 			       u64 logged_isize)
3952 {
3953 	struct btrfs_fs_info *fs_info = trans->fs_info;
3954 	unsigned long src_offset;
3955 	unsigned long dst_offset;
3956 	struct btrfs_root *log = inode->root->log_root;
3957 	struct btrfs_file_extent_item *extent;
3958 	struct btrfs_inode_item *inode_item;
3959 	struct extent_buffer *src = src_path->nodes[0];
3960 	int ret;
3961 	struct btrfs_key *ins_keys;
3962 	u32 *ins_sizes;
3963 	char *ins_data;
3964 	int i;
3965 	struct list_head ordered_sums;
3966 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3967 
3968 	INIT_LIST_HEAD(&ordered_sums);
3969 
3970 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3971 			   nr * sizeof(u32), GFP_NOFS);
3972 	if (!ins_data)
3973 		return -ENOMEM;
3974 
3975 	ins_sizes = (u32 *)ins_data;
3976 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3977 
3978 	for (i = 0; i < nr; i++) {
3979 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3980 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3981 	}
3982 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3983 				       ins_keys, ins_sizes, nr);
3984 	if (ret) {
3985 		kfree(ins_data);
3986 		return ret;
3987 	}
3988 
3989 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3990 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3991 						   dst_path->slots[0]);
3992 
3993 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3994 
3995 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3996 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3997 						    dst_path->slots[0],
3998 						    struct btrfs_inode_item);
3999 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4000 					&inode->vfs_inode,
4001 					inode_only == LOG_INODE_EXISTS,
4002 					logged_isize);
4003 		} else {
4004 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4005 					   src_offset, ins_sizes[i]);
4006 		}
4007 
4008 		/* take a reference on file data extents so that truncates
4009 		 * or deletes of this inode don't have to relog the inode
4010 		 * again
4011 		 */
4012 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4013 		    !skip_csum) {
4014 			int found_type;
4015 			extent = btrfs_item_ptr(src, start_slot + i,
4016 						struct btrfs_file_extent_item);
4017 
4018 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4019 				continue;
4020 
4021 			found_type = btrfs_file_extent_type(src, extent);
4022 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4023 				u64 ds, dl, cs, cl;
4024 				ds = btrfs_file_extent_disk_bytenr(src,
4025 								extent);
4026 				/* ds == 0 is a hole */
4027 				if (ds == 0)
4028 					continue;
4029 
4030 				dl = btrfs_file_extent_disk_num_bytes(src,
4031 								extent);
4032 				cs = btrfs_file_extent_offset(src, extent);
4033 				cl = btrfs_file_extent_num_bytes(src,
4034 								extent);
4035 				if (btrfs_file_extent_compression(src,
4036 								  extent)) {
4037 					cs = 0;
4038 					cl = dl;
4039 				}
4040 
4041 				ret = btrfs_lookup_csums_range(
4042 						fs_info->csum_root,
4043 						ds + cs, ds + cs + cl - 1,
4044 						&ordered_sums, 0);
4045 				if (ret)
4046 					break;
4047 			}
4048 		}
4049 	}
4050 
4051 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4052 	btrfs_release_path(dst_path);
4053 	kfree(ins_data);
4054 
4055 	/*
4056 	 * we have to do this after the loop above to avoid changing the
4057 	 * log tree while trying to change the log tree.
4058 	 */
4059 	while (!list_empty(&ordered_sums)) {
4060 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4061 						   struct btrfs_ordered_sum,
4062 						   list);
4063 		if (!ret)
4064 			ret = log_csums(trans, inode, log, sums);
4065 		list_del(&sums->list);
4066 		kfree(sums);
4067 	}
4068 
4069 	return ret;
4070 }
4071 
4072 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4073 {
4074 	struct extent_map *em1, *em2;
4075 
4076 	em1 = list_entry(a, struct extent_map, list);
4077 	em2 = list_entry(b, struct extent_map, list);
4078 
4079 	if (em1->start < em2->start)
4080 		return -1;
4081 	else if (em1->start > em2->start)
4082 		return 1;
4083 	return 0;
4084 }
4085 
4086 static int log_extent_csums(struct btrfs_trans_handle *trans,
4087 			    struct btrfs_inode *inode,
4088 			    struct btrfs_root *log_root,
4089 			    const struct extent_map *em,
4090 			    struct btrfs_log_ctx *ctx)
4091 {
4092 	struct btrfs_ordered_extent *ordered;
4093 	u64 csum_offset;
4094 	u64 csum_len;
4095 	u64 mod_start = em->mod_start;
4096 	u64 mod_len = em->mod_len;
4097 	LIST_HEAD(ordered_sums);
4098 	int ret = 0;
4099 
4100 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4101 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4102 	    em->block_start == EXTENT_MAP_HOLE)
4103 		return 0;
4104 
4105 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4106 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4107 		const u64 mod_end = mod_start + mod_len;
4108 		struct btrfs_ordered_sum *sums;
4109 
4110 		if (mod_len == 0)
4111 			break;
4112 
4113 		if (ordered_end <= mod_start)
4114 			continue;
4115 		if (mod_end <= ordered->file_offset)
4116 			break;
4117 
4118 		/*
4119 		 * We are going to copy all the csums on this ordered extent, so
4120 		 * go ahead and adjust mod_start and mod_len in case this ordered
4121 		 * extent has already been logged.
4122 		 */
4123 		if (ordered->file_offset > mod_start) {
4124 			if (ordered_end >= mod_end)
4125 				mod_len = ordered->file_offset - mod_start;
4126 			/*
4127 			 * If we have this case
4128 			 *
4129 			 * |--------- logged extent ---------|
4130 			 *       |----- ordered extent ----|
4131 			 *
4132 			 * Just don't mess with mod_start and mod_len, we'll
4133 			 * just end up logging more csums than we need and it
4134 			 * will be ok.
4135 			 */
4136 		} else {
4137 			if (ordered_end < mod_end) {
4138 				mod_len = mod_end - ordered_end;
4139 				mod_start = ordered_end;
4140 			} else {
4141 				mod_len = 0;
4142 			}
4143 		}
4144 
4145 		/*
4146 		 * To keep us from looping for the above case of an ordered
4147 		 * extent that falls inside of the logged extent.
4148 		 */
4149 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4150 			continue;
4151 
4152 		list_for_each_entry(sums, &ordered->list, list) {
4153 			ret = log_csums(trans, inode, log_root, sums);
4154 			if (ret)
4155 				return ret;
4156 		}
4157 	}
4158 
4159 	/* We're done, found all csums in the ordered extents. */
4160 	if (mod_len == 0)
4161 		return 0;
4162 
4163 	/* If we're compressed we have to save the entire range of csums. */
4164 	if (em->compress_type) {
4165 		csum_offset = 0;
4166 		csum_len = max(em->block_len, em->orig_block_len);
4167 	} else {
4168 		csum_offset = mod_start - em->start;
4169 		csum_len = mod_len;
4170 	}
4171 
4172 	/* block start is already adjusted for the file extent offset. */
4173 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4174 				       em->block_start + csum_offset,
4175 				       em->block_start + csum_offset +
4176 				       csum_len - 1, &ordered_sums, 0);
4177 	if (ret)
4178 		return ret;
4179 
4180 	while (!list_empty(&ordered_sums)) {
4181 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4182 						   struct btrfs_ordered_sum,
4183 						   list);
4184 		if (!ret)
4185 			ret = log_csums(trans, inode, log_root, sums);
4186 		list_del(&sums->list);
4187 		kfree(sums);
4188 	}
4189 
4190 	return ret;
4191 }
4192 
4193 static int log_one_extent(struct btrfs_trans_handle *trans,
4194 			  struct btrfs_inode *inode, struct btrfs_root *root,
4195 			  const struct extent_map *em,
4196 			  struct btrfs_path *path,
4197 			  struct btrfs_log_ctx *ctx)
4198 {
4199 	struct btrfs_root *log = root->log_root;
4200 	struct btrfs_file_extent_item *fi;
4201 	struct extent_buffer *leaf;
4202 	struct btrfs_map_token token;
4203 	struct btrfs_key key;
4204 	u64 extent_offset = em->start - em->orig_start;
4205 	u64 block_len;
4206 	int ret;
4207 	int extent_inserted = 0;
4208 
4209 	ret = log_extent_csums(trans, inode, log, em, ctx);
4210 	if (ret)
4211 		return ret;
4212 
4213 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4214 				   em->start + em->len, NULL, 0, 1,
4215 				   sizeof(*fi), &extent_inserted);
4216 	if (ret)
4217 		return ret;
4218 
4219 	if (!extent_inserted) {
4220 		key.objectid = btrfs_ino(inode);
4221 		key.type = BTRFS_EXTENT_DATA_KEY;
4222 		key.offset = em->start;
4223 
4224 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4225 					      sizeof(*fi));
4226 		if (ret)
4227 			return ret;
4228 	}
4229 	leaf = path->nodes[0];
4230 	btrfs_init_map_token(&token, leaf);
4231 	fi = btrfs_item_ptr(leaf, path->slots[0],
4232 			    struct btrfs_file_extent_item);
4233 
4234 	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4235 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4236 		btrfs_set_token_file_extent_type(&token, fi,
4237 						 BTRFS_FILE_EXTENT_PREALLOC);
4238 	else
4239 		btrfs_set_token_file_extent_type(&token, fi,
4240 						 BTRFS_FILE_EXTENT_REG);
4241 
4242 	block_len = max(em->block_len, em->orig_block_len);
4243 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4244 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4245 							em->block_start);
4246 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4247 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4248 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4249 							em->block_start -
4250 							extent_offset);
4251 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4252 	} else {
4253 		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4254 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4255 	}
4256 
4257 	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4258 	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4259 	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4260 	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4261 	btrfs_set_token_file_extent_encryption(&token, fi, 0);
4262 	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4263 	btrfs_mark_buffer_dirty(leaf);
4264 
4265 	btrfs_release_path(path);
4266 
4267 	return ret;
4268 }
4269 
4270 /*
4271  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4272  * lose them after doing a fast fsync and replaying the log. We scan the
4273  * subvolume's root instead of iterating the inode's extent map tree because
4274  * otherwise we can log incorrect extent items based on extent map conversion.
4275  * That can happen due to the fact that extent maps are merged when they
4276  * are not in the extent map tree's list of modified extents.
4277  */
4278 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4279 				      struct btrfs_inode *inode,
4280 				      struct btrfs_path *path)
4281 {
4282 	struct btrfs_root *root = inode->root;
4283 	struct btrfs_key key;
4284 	const u64 i_size = i_size_read(&inode->vfs_inode);
4285 	const u64 ino = btrfs_ino(inode);
4286 	struct btrfs_path *dst_path = NULL;
4287 	bool dropped_extents = false;
4288 	u64 truncate_offset = i_size;
4289 	struct extent_buffer *leaf;
4290 	int slot;
4291 	int ins_nr = 0;
4292 	int start_slot;
4293 	int ret;
4294 
4295 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4296 		return 0;
4297 
4298 	key.objectid = ino;
4299 	key.type = BTRFS_EXTENT_DATA_KEY;
4300 	key.offset = i_size;
4301 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4302 	if (ret < 0)
4303 		goto out;
4304 
4305 	/*
4306 	 * We must check if there is a prealloc extent that starts before the
4307 	 * i_size and crosses the i_size boundary. This is to ensure later we
4308 	 * truncate down to the end of that extent and not to the i_size, as
4309 	 * otherwise we end up losing part of the prealloc extent after a log
4310 	 * replay and with an implicit hole if there is another prealloc extent
4311 	 * that starts at an offset beyond i_size.
4312 	 */
4313 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4314 	if (ret < 0)
4315 		goto out;
4316 
4317 	if (ret == 0) {
4318 		struct btrfs_file_extent_item *ei;
4319 
4320 		leaf = path->nodes[0];
4321 		slot = path->slots[0];
4322 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4323 
4324 		if (btrfs_file_extent_type(leaf, ei) ==
4325 		    BTRFS_FILE_EXTENT_PREALLOC) {
4326 			u64 extent_end;
4327 
4328 			btrfs_item_key_to_cpu(leaf, &key, slot);
4329 			extent_end = key.offset +
4330 				btrfs_file_extent_num_bytes(leaf, ei);
4331 
4332 			if (extent_end > i_size)
4333 				truncate_offset = extent_end;
4334 		}
4335 	} else {
4336 		ret = 0;
4337 	}
4338 
4339 	while (true) {
4340 		leaf = path->nodes[0];
4341 		slot = path->slots[0];
4342 
4343 		if (slot >= btrfs_header_nritems(leaf)) {
4344 			if (ins_nr > 0) {
4345 				ret = copy_items(trans, inode, dst_path, path,
4346 						 start_slot, ins_nr, 1, 0);
4347 				if (ret < 0)
4348 					goto out;
4349 				ins_nr = 0;
4350 			}
4351 			ret = btrfs_next_leaf(root, path);
4352 			if (ret < 0)
4353 				goto out;
4354 			if (ret > 0) {
4355 				ret = 0;
4356 				break;
4357 			}
4358 			continue;
4359 		}
4360 
4361 		btrfs_item_key_to_cpu(leaf, &key, slot);
4362 		if (key.objectid > ino)
4363 			break;
4364 		if (WARN_ON_ONCE(key.objectid < ino) ||
4365 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4366 		    key.offset < i_size) {
4367 			path->slots[0]++;
4368 			continue;
4369 		}
4370 		if (!dropped_extents) {
4371 			/*
4372 			 * Avoid logging extent items logged in past fsync calls
4373 			 * and leading to duplicate keys in the log tree.
4374 			 */
4375 			do {
4376 				ret = btrfs_truncate_inode_items(trans,
4377 							 root->log_root,
4378 							 &inode->vfs_inode,
4379 							 truncate_offset,
4380 							 BTRFS_EXTENT_DATA_KEY);
4381 			} while (ret == -EAGAIN);
4382 			if (ret)
4383 				goto out;
4384 			dropped_extents = true;
4385 		}
4386 		if (ins_nr == 0)
4387 			start_slot = slot;
4388 		ins_nr++;
4389 		path->slots[0]++;
4390 		if (!dst_path) {
4391 			dst_path = btrfs_alloc_path();
4392 			if (!dst_path) {
4393 				ret = -ENOMEM;
4394 				goto out;
4395 			}
4396 		}
4397 	}
4398 	if (ins_nr > 0)
4399 		ret = copy_items(trans, inode, dst_path, path,
4400 				 start_slot, ins_nr, 1, 0);
4401 out:
4402 	btrfs_release_path(path);
4403 	btrfs_free_path(dst_path);
4404 	return ret;
4405 }
4406 
4407 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4408 				     struct btrfs_root *root,
4409 				     struct btrfs_inode *inode,
4410 				     struct btrfs_path *path,
4411 				     struct btrfs_log_ctx *ctx)
4412 {
4413 	struct btrfs_ordered_extent *ordered;
4414 	struct btrfs_ordered_extent *tmp;
4415 	struct extent_map *em, *n;
4416 	struct list_head extents;
4417 	struct extent_map_tree *tree = &inode->extent_tree;
4418 	u64 test_gen;
4419 	int ret = 0;
4420 	int num = 0;
4421 
4422 	INIT_LIST_HEAD(&extents);
4423 
4424 	write_lock(&tree->lock);
4425 	test_gen = root->fs_info->last_trans_committed;
4426 
4427 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4428 		list_del_init(&em->list);
4429 		/*
4430 		 * Just an arbitrary number, this can be really CPU intensive
4431 		 * once we start getting a lot of extents, and really once we
4432 		 * have a bunch of extents we just want to commit since it will
4433 		 * be faster.
4434 		 */
4435 		if (++num > 32768) {
4436 			list_del_init(&tree->modified_extents);
4437 			ret = -EFBIG;
4438 			goto process;
4439 		}
4440 
4441 		if (em->generation <= test_gen)
4442 			continue;
4443 
4444 		/* We log prealloc extents beyond eof later. */
4445 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4446 		    em->start >= i_size_read(&inode->vfs_inode))
4447 			continue;
4448 
4449 		/* Need a ref to keep it from getting evicted from cache */
4450 		refcount_inc(&em->refs);
4451 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4452 		list_add_tail(&em->list, &extents);
4453 		num++;
4454 	}
4455 
4456 	list_sort(NULL, &extents, extent_cmp);
4457 process:
4458 	while (!list_empty(&extents)) {
4459 		em = list_entry(extents.next, struct extent_map, list);
4460 
4461 		list_del_init(&em->list);
4462 
4463 		/*
4464 		 * If we had an error we just need to delete everybody from our
4465 		 * private list.
4466 		 */
4467 		if (ret) {
4468 			clear_em_logging(tree, em);
4469 			free_extent_map(em);
4470 			continue;
4471 		}
4472 
4473 		write_unlock(&tree->lock);
4474 
4475 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4476 		write_lock(&tree->lock);
4477 		clear_em_logging(tree, em);
4478 		free_extent_map(em);
4479 	}
4480 	WARN_ON(!list_empty(&extents));
4481 	write_unlock(&tree->lock);
4482 
4483 	btrfs_release_path(path);
4484 	if (!ret)
4485 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4486 	if (ret)
4487 		return ret;
4488 
4489 	/*
4490 	 * We have logged all extents successfully, now make sure the commit of
4491 	 * the current transaction waits for the ordered extents to complete
4492 	 * before it commits and wipes out the log trees, otherwise we would
4493 	 * lose data if an ordered extents completes after the transaction
4494 	 * commits and a power failure happens after the transaction commit.
4495 	 */
4496 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4497 		list_del_init(&ordered->log_list);
4498 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4499 
4500 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4501 			spin_lock_irq(&inode->ordered_tree.lock);
4502 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4503 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4504 				atomic_inc(&trans->transaction->pending_ordered);
4505 			}
4506 			spin_unlock_irq(&inode->ordered_tree.lock);
4507 		}
4508 		btrfs_put_ordered_extent(ordered);
4509 	}
4510 
4511 	return 0;
4512 }
4513 
4514 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4515 			     struct btrfs_path *path, u64 *size_ret)
4516 {
4517 	struct btrfs_key key;
4518 	int ret;
4519 
4520 	key.objectid = btrfs_ino(inode);
4521 	key.type = BTRFS_INODE_ITEM_KEY;
4522 	key.offset = 0;
4523 
4524 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4525 	if (ret < 0) {
4526 		return ret;
4527 	} else if (ret > 0) {
4528 		*size_ret = 0;
4529 	} else {
4530 		struct btrfs_inode_item *item;
4531 
4532 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4533 				      struct btrfs_inode_item);
4534 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4535 		/*
4536 		 * If the in-memory inode's i_size is smaller then the inode
4537 		 * size stored in the btree, return the inode's i_size, so
4538 		 * that we get a correct inode size after replaying the log
4539 		 * when before a power failure we had a shrinking truncate
4540 		 * followed by addition of a new name (rename / new hard link).
4541 		 * Otherwise return the inode size from the btree, to avoid
4542 		 * data loss when replaying a log due to previously doing a
4543 		 * write that expands the inode's size and logging a new name
4544 		 * immediately after.
4545 		 */
4546 		if (*size_ret > inode->vfs_inode.i_size)
4547 			*size_ret = inode->vfs_inode.i_size;
4548 	}
4549 
4550 	btrfs_release_path(path);
4551 	return 0;
4552 }
4553 
4554 /*
4555  * At the moment we always log all xattrs. This is to figure out at log replay
4556  * time which xattrs must have their deletion replayed. If a xattr is missing
4557  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4558  * because if a xattr is deleted, the inode is fsynced and a power failure
4559  * happens, causing the log to be replayed the next time the fs is mounted,
4560  * we want the xattr to not exist anymore (same behaviour as other filesystems
4561  * with a journal, ext3/4, xfs, f2fs, etc).
4562  */
4563 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4564 				struct btrfs_root *root,
4565 				struct btrfs_inode *inode,
4566 				struct btrfs_path *path,
4567 				struct btrfs_path *dst_path)
4568 {
4569 	int ret;
4570 	struct btrfs_key key;
4571 	const u64 ino = btrfs_ino(inode);
4572 	int ins_nr = 0;
4573 	int start_slot = 0;
4574 
4575 	key.objectid = ino;
4576 	key.type = BTRFS_XATTR_ITEM_KEY;
4577 	key.offset = 0;
4578 
4579 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4580 	if (ret < 0)
4581 		return ret;
4582 
4583 	while (true) {
4584 		int slot = path->slots[0];
4585 		struct extent_buffer *leaf = path->nodes[0];
4586 		int nritems = btrfs_header_nritems(leaf);
4587 
4588 		if (slot >= nritems) {
4589 			if (ins_nr > 0) {
4590 				ret = copy_items(trans, inode, dst_path, path,
4591 						 start_slot, ins_nr, 1, 0);
4592 				if (ret < 0)
4593 					return ret;
4594 				ins_nr = 0;
4595 			}
4596 			ret = btrfs_next_leaf(root, path);
4597 			if (ret < 0)
4598 				return ret;
4599 			else if (ret > 0)
4600 				break;
4601 			continue;
4602 		}
4603 
4604 		btrfs_item_key_to_cpu(leaf, &key, slot);
4605 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4606 			break;
4607 
4608 		if (ins_nr == 0)
4609 			start_slot = slot;
4610 		ins_nr++;
4611 		path->slots[0]++;
4612 		cond_resched();
4613 	}
4614 	if (ins_nr > 0) {
4615 		ret = copy_items(trans, inode, dst_path, path,
4616 				 start_slot, ins_nr, 1, 0);
4617 		if (ret < 0)
4618 			return ret;
4619 	}
4620 
4621 	return 0;
4622 }
4623 
4624 /*
4625  * When using the NO_HOLES feature if we punched a hole that causes the
4626  * deletion of entire leafs or all the extent items of the first leaf (the one
4627  * that contains the inode item and references) we may end up not processing
4628  * any extents, because there are no leafs with a generation matching the
4629  * current transaction that have extent items for our inode. So we need to find
4630  * if any holes exist and then log them. We also need to log holes after any
4631  * truncate operation that changes the inode's size.
4632  */
4633 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4634 			   struct btrfs_root *root,
4635 			   struct btrfs_inode *inode,
4636 			   struct btrfs_path *path)
4637 {
4638 	struct btrfs_fs_info *fs_info = root->fs_info;
4639 	struct btrfs_key key;
4640 	const u64 ino = btrfs_ino(inode);
4641 	const u64 i_size = i_size_read(&inode->vfs_inode);
4642 	u64 prev_extent_end = 0;
4643 	int ret;
4644 
4645 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4646 		return 0;
4647 
4648 	key.objectid = ino;
4649 	key.type = BTRFS_EXTENT_DATA_KEY;
4650 	key.offset = 0;
4651 
4652 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4653 	if (ret < 0)
4654 		return ret;
4655 
4656 	while (true) {
4657 		struct extent_buffer *leaf = path->nodes[0];
4658 
4659 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4660 			ret = btrfs_next_leaf(root, path);
4661 			if (ret < 0)
4662 				return ret;
4663 			if (ret > 0) {
4664 				ret = 0;
4665 				break;
4666 			}
4667 			leaf = path->nodes[0];
4668 		}
4669 
4670 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4671 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4672 			break;
4673 
4674 		/* We have a hole, log it. */
4675 		if (prev_extent_end < key.offset) {
4676 			const u64 hole_len = key.offset - prev_extent_end;
4677 
4678 			/*
4679 			 * Release the path to avoid deadlocks with other code
4680 			 * paths that search the root while holding locks on
4681 			 * leafs from the log root.
4682 			 */
4683 			btrfs_release_path(path);
4684 			ret = btrfs_insert_file_extent(trans, root->log_root,
4685 						       ino, prev_extent_end, 0,
4686 						       0, hole_len, 0, hole_len,
4687 						       0, 0, 0);
4688 			if (ret < 0)
4689 				return ret;
4690 
4691 			/*
4692 			 * Search for the same key again in the root. Since it's
4693 			 * an extent item and we are holding the inode lock, the
4694 			 * key must still exist. If it doesn't just emit warning
4695 			 * and return an error to fall back to a transaction
4696 			 * commit.
4697 			 */
4698 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4699 			if (ret < 0)
4700 				return ret;
4701 			if (WARN_ON(ret > 0))
4702 				return -ENOENT;
4703 			leaf = path->nodes[0];
4704 		}
4705 
4706 		prev_extent_end = btrfs_file_extent_end(path);
4707 		path->slots[0]++;
4708 		cond_resched();
4709 	}
4710 
4711 	if (prev_extent_end < i_size) {
4712 		u64 hole_len;
4713 
4714 		btrfs_release_path(path);
4715 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4716 		ret = btrfs_insert_file_extent(trans, root->log_root,
4717 					       ino, prev_extent_end, 0, 0,
4718 					       hole_len, 0, hole_len,
4719 					       0, 0, 0);
4720 		if (ret < 0)
4721 			return ret;
4722 	}
4723 
4724 	return 0;
4725 }
4726 
4727 /*
4728  * When we are logging a new inode X, check if it doesn't have a reference that
4729  * matches the reference from some other inode Y created in a past transaction
4730  * and that was renamed in the current transaction. If we don't do this, then at
4731  * log replay time we can lose inode Y (and all its files if it's a directory):
4732  *
4733  * mkdir /mnt/x
4734  * echo "hello world" > /mnt/x/foobar
4735  * sync
4736  * mv /mnt/x /mnt/y
4737  * mkdir /mnt/x                 # or touch /mnt/x
4738  * xfs_io -c fsync /mnt/x
4739  * <power fail>
4740  * mount fs, trigger log replay
4741  *
4742  * After the log replay procedure, we would lose the first directory and all its
4743  * files (file foobar).
4744  * For the case where inode Y is not a directory we simply end up losing it:
4745  *
4746  * echo "123" > /mnt/foo
4747  * sync
4748  * mv /mnt/foo /mnt/bar
4749  * echo "abc" > /mnt/foo
4750  * xfs_io -c fsync /mnt/foo
4751  * <power fail>
4752  *
4753  * We also need this for cases where a snapshot entry is replaced by some other
4754  * entry (file or directory) otherwise we end up with an unreplayable log due to
4755  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4756  * if it were a regular entry:
4757  *
4758  * mkdir /mnt/x
4759  * btrfs subvolume snapshot /mnt /mnt/x/snap
4760  * btrfs subvolume delete /mnt/x/snap
4761  * rmdir /mnt/x
4762  * mkdir /mnt/x
4763  * fsync /mnt/x or fsync some new file inside it
4764  * <power fail>
4765  *
4766  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4767  * the same transaction.
4768  */
4769 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4770 					 const int slot,
4771 					 const struct btrfs_key *key,
4772 					 struct btrfs_inode *inode,
4773 					 u64 *other_ino, u64 *other_parent)
4774 {
4775 	int ret;
4776 	struct btrfs_path *search_path;
4777 	char *name = NULL;
4778 	u32 name_len = 0;
4779 	u32 item_size = btrfs_item_size_nr(eb, slot);
4780 	u32 cur_offset = 0;
4781 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4782 
4783 	search_path = btrfs_alloc_path();
4784 	if (!search_path)
4785 		return -ENOMEM;
4786 	search_path->search_commit_root = 1;
4787 	search_path->skip_locking = 1;
4788 
4789 	while (cur_offset < item_size) {
4790 		u64 parent;
4791 		u32 this_name_len;
4792 		u32 this_len;
4793 		unsigned long name_ptr;
4794 		struct btrfs_dir_item *di;
4795 
4796 		if (key->type == BTRFS_INODE_REF_KEY) {
4797 			struct btrfs_inode_ref *iref;
4798 
4799 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4800 			parent = key->offset;
4801 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4802 			name_ptr = (unsigned long)(iref + 1);
4803 			this_len = sizeof(*iref) + this_name_len;
4804 		} else {
4805 			struct btrfs_inode_extref *extref;
4806 
4807 			extref = (struct btrfs_inode_extref *)(ptr +
4808 							       cur_offset);
4809 			parent = btrfs_inode_extref_parent(eb, extref);
4810 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4811 			name_ptr = (unsigned long)&extref->name;
4812 			this_len = sizeof(*extref) + this_name_len;
4813 		}
4814 
4815 		if (this_name_len > name_len) {
4816 			char *new_name;
4817 
4818 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4819 			if (!new_name) {
4820 				ret = -ENOMEM;
4821 				goto out;
4822 			}
4823 			name_len = this_name_len;
4824 			name = new_name;
4825 		}
4826 
4827 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4828 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4829 				parent, name, this_name_len, 0);
4830 		if (di && !IS_ERR(di)) {
4831 			struct btrfs_key di_key;
4832 
4833 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4834 						  di, &di_key);
4835 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4836 				if (di_key.objectid != key->objectid) {
4837 					ret = 1;
4838 					*other_ino = di_key.objectid;
4839 					*other_parent = parent;
4840 				} else {
4841 					ret = 0;
4842 				}
4843 			} else {
4844 				ret = -EAGAIN;
4845 			}
4846 			goto out;
4847 		} else if (IS_ERR(di)) {
4848 			ret = PTR_ERR(di);
4849 			goto out;
4850 		}
4851 		btrfs_release_path(search_path);
4852 
4853 		cur_offset += this_len;
4854 	}
4855 	ret = 0;
4856 out:
4857 	btrfs_free_path(search_path);
4858 	kfree(name);
4859 	return ret;
4860 }
4861 
4862 struct btrfs_ino_list {
4863 	u64 ino;
4864 	u64 parent;
4865 	struct list_head list;
4866 };
4867 
4868 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4869 				  struct btrfs_root *root,
4870 				  struct btrfs_path *path,
4871 				  struct btrfs_log_ctx *ctx,
4872 				  u64 ino, u64 parent)
4873 {
4874 	struct btrfs_ino_list *ino_elem;
4875 	LIST_HEAD(inode_list);
4876 	int ret = 0;
4877 
4878 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4879 	if (!ino_elem)
4880 		return -ENOMEM;
4881 	ino_elem->ino = ino;
4882 	ino_elem->parent = parent;
4883 	list_add_tail(&ino_elem->list, &inode_list);
4884 
4885 	while (!list_empty(&inode_list)) {
4886 		struct btrfs_fs_info *fs_info = root->fs_info;
4887 		struct btrfs_key key;
4888 		struct inode *inode;
4889 
4890 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4891 					    list);
4892 		ino = ino_elem->ino;
4893 		parent = ino_elem->parent;
4894 		list_del(&ino_elem->list);
4895 		kfree(ino_elem);
4896 		if (ret)
4897 			continue;
4898 
4899 		btrfs_release_path(path);
4900 
4901 		inode = btrfs_iget(fs_info->sb, ino, root);
4902 		/*
4903 		 * If the other inode that had a conflicting dir entry was
4904 		 * deleted in the current transaction, we need to log its parent
4905 		 * directory.
4906 		 */
4907 		if (IS_ERR(inode)) {
4908 			ret = PTR_ERR(inode);
4909 			if (ret == -ENOENT) {
4910 				inode = btrfs_iget(fs_info->sb, parent, root);
4911 				if (IS_ERR(inode)) {
4912 					ret = PTR_ERR(inode);
4913 				} else {
4914 					ret = btrfs_log_inode(trans, root,
4915 						      BTRFS_I(inode),
4916 						      LOG_OTHER_INODE_ALL,
4917 						      ctx);
4918 					btrfs_add_delayed_iput(inode);
4919 				}
4920 			}
4921 			continue;
4922 		}
4923 		/*
4924 		 * If the inode was already logged skip it - otherwise we can
4925 		 * hit an infinite loop. Example:
4926 		 *
4927 		 * From the commit root (previous transaction) we have the
4928 		 * following inodes:
4929 		 *
4930 		 * inode 257 a directory
4931 		 * inode 258 with references "zz" and "zz_link" on inode 257
4932 		 * inode 259 with reference "a" on inode 257
4933 		 *
4934 		 * And in the current (uncommitted) transaction we have:
4935 		 *
4936 		 * inode 257 a directory, unchanged
4937 		 * inode 258 with references "a" and "a2" on inode 257
4938 		 * inode 259 with reference "zz_link" on inode 257
4939 		 * inode 261 with reference "zz" on inode 257
4940 		 *
4941 		 * When logging inode 261 the following infinite loop could
4942 		 * happen if we don't skip already logged inodes:
4943 		 *
4944 		 * - we detect inode 258 as a conflicting inode, with inode 261
4945 		 *   on reference "zz", and log it;
4946 		 *
4947 		 * - we detect inode 259 as a conflicting inode, with inode 258
4948 		 *   on reference "a", and log it;
4949 		 *
4950 		 * - we detect inode 258 as a conflicting inode, with inode 259
4951 		 *   on reference "zz_link", and log it - again! After this we
4952 		 *   repeat the above steps forever.
4953 		 */
4954 		spin_lock(&BTRFS_I(inode)->lock);
4955 		/*
4956 		 * Check the inode's logged_trans only instead of
4957 		 * btrfs_inode_in_log(). This is because the last_log_commit of
4958 		 * the inode is not updated when we only log that it exists and
4959 		 * it has the full sync bit set (see btrfs_log_inode()).
4960 		 */
4961 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
4962 			spin_unlock(&BTRFS_I(inode)->lock);
4963 			btrfs_add_delayed_iput(inode);
4964 			continue;
4965 		}
4966 		spin_unlock(&BTRFS_I(inode)->lock);
4967 		/*
4968 		 * We are safe logging the other inode without acquiring its
4969 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4970 		 * are safe against concurrent renames of the other inode as
4971 		 * well because during a rename we pin the log and update the
4972 		 * log with the new name before we unpin it.
4973 		 */
4974 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4975 				      LOG_OTHER_INODE, ctx);
4976 		if (ret) {
4977 			btrfs_add_delayed_iput(inode);
4978 			continue;
4979 		}
4980 
4981 		key.objectid = ino;
4982 		key.type = BTRFS_INODE_REF_KEY;
4983 		key.offset = 0;
4984 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4985 		if (ret < 0) {
4986 			btrfs_add_delayed_iput(inode);
4987 			continue;
4988 		}
4989 
4990 		while (true) {
4991 			struct extent_buffer *leaf = path->nodes[0];
4992 			int slot = path->slots[0];
4993 			u64 other_ino = 0;
4994 			u64 other_parent = 0;
4995 
4996 			if (slot >= btrfs_header_nritems(leaf)) {
4997 				ret = btrfs_next_leaf(root, path);
4998 				if (ret < 0) {
4999 					break;
5000 				} else if (ret > 0) {
5001 					ret = 0;
5002 					break;
5003 				}
5004 				continue;
5005 			}
5006 
5007 			btrfs_item_key_to_cpu(leaf, &key, slot);
5008 			if (key.objectid != ino ||
5009 			    (key.type != BTRFS_INODE_REF_KEY &&
5010 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5011 				ret = 0;
5012 				break;
5013 			}
5014 
5015 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5016 					BTRFS_I(inode), &other_ino,
5017 					&other_parent);
5018 			if (ret < 0)
5019 				break;
5020 			if (ret > 0) {
5021 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5022 				if (!ino_elem) {
5023 					ret = -ENOMEM;
5024 					break;
5025 				}
5026 				ino_elem->ino = other_ino;
5027 				ino_elem->parent = other_parent;
5028 				list_add_tail(&ino_elem->list, &inode_list);
5029 				ret = 0;
5030 			}
5031 			path->slots[0]++;
5032 		}
5033 		btrfs_add_delayed_iput(inode);
5034 	}
5035 
5036 	return ret;
5037 }
5038 
5039 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5040 				   struct btrfs_inode *inode,
5041 				   struct btrfs_key *min_key,
5042 				   const struct btrfs_key *max_key,
5043 				   struct btrfs_path *path,
5044 				   struct btrfs_path *dst_path,
5045 				   const u64 logged_isize,
5046 				   const bool recursive_logging,
5047 				   const int inode_only,
5048 				   struct btrfs_log_ctx *ctx,
5049 				   bool *need_log_inode_item)
5050 {
5051 	struct btrfs_root *root = inode->root;
5052 	int ins_start_slot = 0;
5053 	int ins_nr = 0;
5054 	int ret;
5055 
5056 	while (1) {
5057 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5058 		if (ret < 0)
5059 			return ret;
5060 		if (ret > 0) {
5061 			ret = 0;
5062 			break;
5063 		}
5064 again:
5065 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5066 		if (min_key->objectid != max_key->objectid)
5067 			break;
5068 		if (min_key->type > max_key->type)
5069 			break;
5070 
5071 		if (min_key->type == BTRFS_INODE_ITEM_KEY)
5072 			*need_log_inode_item = false;
5073 
5074 		if ((min_key->type == BTRFS_INODE_REF_KEY ||
5075 		     min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5076 		    inode->generation == trans->transid &&
5077 		    !recursive_logging) {
5078 			u64 other_ino = 0;
5079 			u64 other_parent = 0;
5080 
5081 			ret = btrfs_check_ref_name_override(path->nodes[0],
5082 					path->slots[0], min_key, inode,
5083 					&other_ino, &other_parent);
5084 			if (ret < 0) {
5085 				return ret;
5086 			} else if (ret > 0 && ctx &&
5087 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5088 				if (ins_nr > 0) {
5089 					ins_nr++;
5090 				} else {
5091 					ins_nr = 1;
5092 					ins_start_slot = path->slots[0];
5093 				}
5094 				ret = copy_items(trans, inode, dst_path, path,
5095 						 ins_start_slot, ins_nr,
5096 						 inode_only, logged_isize);
5097 				if (ret < 0)
5098 					return ret;
5099 				ins_nr = 0;
5100 
5101 				ret = log_conflicting_inodes(trans, root, path,
5102 						ctx, other_ino, other_parent);
5103 				if (ret)
5104 					return ret;
5105 				btrfs_release_path(path);
5106 				goto next_key;
5107 			}
5108 		}
5109 
5110 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5111 		if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5112 			if (ins_nr == 0)
5113 				goto next_slot;
5114 			ret = copy_items(trans, inode, dst_path, path,
5115 					 ins_start_slot,
5116 					 ins_nr, inode_only, logged_isize);
5117 			if (ret < 0)
5118 				return ret;
5119 			ins_nr = 0;
5120 			goto next_slot;
5121 		}
5122 
5123 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5124 			ins_nr++;
5125 			goto next_slot;
5126 		} else if (!ins_nr) {
5127 			ins_start_slot = path->slots[0];
5128 			ins_nr = 1;
5129 			goto next_slot;
5130 		}
5131 
5132 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5133 				 ins_nr, inode_only, logged_isize);
5134 		if (ret < 0)
5135 			return ret;
5136 		ins_nr = 1;
5137 		ins_start_slot = path->slots[0];
5138 next_slot:
5139 		path->slots[0]++;
5140 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5141 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5142 					      path->slots[0]);
5143 			goto again;
5144 		}
5145 		if (ins_nr) {
5146 			ret = copy_items(trans, inode, dst_path, path,
5147 					 ins_start_slot, ins_nr, inode_only,
5148 					 logged_isize);
5149 			if (ret < 0)
5150 				return ret;
5151 			ins_nr = 0;
5152 		}
5153 		btrfs_release_path(path);
5154 next_key:
5155 		if (min_key->offset < (u64)-1) {
5156 			min_key->offset++;
5157 		} else if (min_key->type < max_key->type) {
5158 			min_key->type++;
5159 			min_key->offset = 0;
5160 		} else {
5161 			break;
5162 		}
5163 	}
5164 	if (ins_nr)
5165 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5166 				 ins_nr, inode_only, logged_isize);
5167 
5168 	return ret;
5169 }
5170 
5171 /* log a single inode in the tree log.
5172  * At least one parent directory for this inode must exist in the tree
5173  * or be logged already.
5174  *
5175  * Any items from this inode changed by the current transaction are copied
5176  * to the log tree.  An extra reference is taken on any extents in this
5177  * file, allowing us to avoid a whole pile of corner cases around logging
5178  * blocks that have been removed from the tree.
5179  *
5180  * See LOG_INODE_ALL and related defines for a description of what inode_only
5181  * does.
5182  *
5183  * This handles both files and directories.
5184  */
5185 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5186 			   struct btrfs_root *root, struct btrfs_inode *inode,
5187 			   int inode_only,
5188 			   struct btrfs_log_ctx *ctx)
5189 {
5190 	struct btrfs_path *path;
5191 	struct btrfs_path *dst_path;
5192 	struct btrfs_key min_key;
5193 	struct btrfs_key max_key;
5194 	struct btrfs_root *log = root->log_root;
5195 	int err = 0;
5196 	int ret = 0;
5197 	bool fast_search = false;
5198 	u64 ino = btrfs_ino(inode);
5199 	struct extent_map_tree *em_tree = &inode->extent_tree;
5200 	u64 logged_isize = 0;
5201 	bool need_log_inode_item = true;
5202 	bool xattrs_logged = false;
5203 	bool recursive_logging = false;
5204 
5205 	path = btrfs_alloc_path();
5206 	if (!path)
5207 		return -ENOMEM;
5208 	dst_path = btrfs_alloc_path();
5209 	if (!dst_path) {
5210 		btrfs_free_path(path);
5211 		return -ENOMEM;
5212 	}
5213 
5214 	min_key.objectid = ino;
5215 	min_key.type = BTRFS_INODE_ITEM_KEY;
5216 	min_key.offset = 0;
5217 
5218 	max_key.objectid = ino;
5219 
5220 
5221 	/* today the code can only do partial logging of directories */
5222 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5223 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5224 		       &inode->runtime_flags) &&
5225 	     inode_only >= LOG_INODE_EXISTS))
5226 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5227 	else
5228 		max_key.type = (u8)-1;
5229 	max_key.offset = (u64)-1;
5230 
5231 	/*
5232 	 * Only run delayed items if we are a directory. We want to make sure
5233 	 * all directory indexes hit the fs/subvolume tree so we can find them
5234 	 * and figure out which index ranges have to be logged.
5235 	 *
5236 	 * Otherwise commit the delayed inode only if the full sync flag is set,
5237 	 * as we want to make sure an up to date version is in the subvolume
5238 	 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5239 	 * it to the log tree. For a non full sync, we always log the inode item
5240 	 * based on the in-memory struct btrfs_inode which is always up to date.
5241 	 */
5242 	if (S_ISDIR(inode->vfs_inode.i_mode))
5243 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5244 	else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5245 		ret = btrfs_commit_inode_delayed_inode(inode);
5246 
5247 	if (ret) {
5248 		btrfs_free_path(path);
5249 		btrfs_free_path(dst_path);
5250 		return ret;
5251 	}
5252 
5253 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5254 		recursive_logging = true;
5255 		if (inode_only == LOG_OTHER_INODE)
5256 			inode_only = LOG_INODE_EXISTS;
5257 		else
5258 			inode_only = LOG_INODE_ALL;
5259 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5260 	} else {
5261 		mutex_lock(&inode->log_mutex);
5262 	}
5263 
5264 	/*
5265 	 * a brute force approach to making sure we get the most uptodate
5266 	 * copies of everything.
5267 	 */
5268 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5269 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5270 
5271 		if (inode_only == LOG_INODE_EXISTS)
5272 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5273 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5274 	} else {
5275 		if (inode_only == LOG_INODE_EXISTS) {
5276 			/*
5277 			 * Make sure the new inode item we write to the log has
5278 			 * the same isize as the current one (if it exists).
5279 			 * This is necessary to prevent data loss after log
5280 			 * replay, and also to prevent doing a wrong expanding
5281 			 * truncate - for e.g. create file, write 4K into offset
5282 			 * 0, fsync, write 4K into offset 4096, add hard link,
5283 			 * fsync some other file (to sync log), power fail - if
5284 			 * we use the inode's current i_size, after log replay
5285 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5286 			 * (zeroes), as if an expanding truncate happened,
5287 			 * instead of getting a file of 4Kb only.
5288 			 */
5289 			err = logged_inode_size(log, inode, path, &logged_isize);
5290 			if (err)
5291 				goto out_unlock;
5292 		}
5293 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5294 			     &inode->runtime_flags)) {
5295 			if (inode_only == LOG_INODE_EXISTS) {
5296 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5297 				ret = drop_objectid_items(trans, log, path, ino,
5298 							  max_key.type);
5299 			} else {
5300 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5301 					  &inode->runtime_flags);
5302 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5303 					  &inode->runtime_flags);
5304 				while(1) {
5305 					ret = btrfs_truncate_inode_items(trans,
5306 						log, &inode->vfs_inode, 0, 0);
5307 					if (ret != -EAGAIN)
5308 						break;
5309 				}
5310 			}
5311 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5312 					      &inode->runtime_flags) ||
5313 			   inode_only == LOG_INODE_EXISTS) {
5314 			if (inode_only == LOG_INODE_ALL)
5315 				fast_search = true;
5316 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5317 			ret = drop_objectid_items(trans, log, path, ino,
5318 						  max_key.type);
5319 		} else {
5320 			if (inode_only == LOG_INODE_ALL)
5321 				fast_search = true;
5322 			goto log_extents;
5323 		}
5324 
5325 	}
5326 	if (ret) {
5327 		err = ret;
5328 		goto out_unlock;
5329 	}
5330 
5331 	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5332 				      path, dst_path, logged_isize,
5333 				      recursive_logging, inode_only, ctx,
5334 				      &need_log_inode_item);
5335 	if (err)
5336 		goto out_unlock;
5337 
5338 	btrfs_release_path(path);
5339 	btrfs_release_path(dst_path);
5340 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5341 	if (err)
5342 		goto out_unlock;
5343 	xattrs_logged = true;
5344 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5345 		btrfs_release_path(path);
5346 		btrfs_release_path(dst_path);
5347 		err = btrfs_log_holes(trans, root, inode, path);
5348 		if (err)
5349 			goto out_unlock;
5350 	}
5351 log_extents:
5352 	btrfs_release_path(path);
5353 	btrfs_release_path(dst_path);
5354 	if (need_log_inode_item) {
5355 		err = log_inode_item(trans, log, dst_path, inode);
5356 		if (!err && !xattrs_logged) {
5357 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5358 						   dst_path);
5359 			btrfs_release_path(path);
5360 		}
5361 		if (err)
5362 			goto out_unlock;
5363 	}
5364 	if (fast_search) {
5365 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5366 						ctx);
5367 		if (ret) {
5368 			err = ret;
5369 			goto out_unlock;
5370 		}
5371 	} else if (inode_only == LOG_INODE_ALL) {
5372 		struct extent_map *em, *n;
5373 
5374 		write_lock(&em_tree->lock);
5375 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5376 			list_del_init(&em->list);
5377 		write_unlock(&em_tree->lock);
5378 	}
5379 
5380 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5381 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5382 					ctx);
5383 		if (ret) {
5384 			err = ret;
5385 			goto out_unlock;
5386 		}
5387 	}
5388 
5389 	/*
5390 	 * If we are logging that an ancestor inode exists as part of logging a
5391 	 * new name from a link or rename operation, don't mark the inode as
5392 	 * logged - otherwise if an explicit fsync is made against an ancestor,
5393 	 * the fsync considers the inode in the log and doesn't sync the log,
5394 	 * resulting in the ancestor missing after a power failure unless the
5395 	 * log was synced as part of an fsync against any other unrelated inode.
5396 	 * So keep it simple for this case and just don't flag the ancestors as
5397 	 * logged.
5398 	 */
5399 	if (!ctx ||
5400 	    !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5401 	      &inode->vfs_inode != ctx->inode)) {
5402 		spin_lock(&inode->lock);
5403 		inode->logged_trans = trans->transid;
5404 		/*
5405 		 * Don't update last_log_commit if we logged that an inode exists
5406 		 * after it was loaded to memory (full_sync bit set).
5407 		 * This is to prevent data loss when we do a write to the inode,
5408 		 * then the inode gets evicted after all delalloc was flushed,
5409 		 * then we log it exists (due to a rename for example) and then
5410 		 * fsync it. This last fsync would do nothing (not logging the
5411 		 * extents previously written).
5412 		 */
5413 		if (inode_only != LOG_INODE_EXISTS ||
5414 		    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5415 			inode->last_log_commit = inode->last_sub_trans;
5416 		spin_unlock(&inode->lock);
5417 	}
5418 out_unlock:
5419 	mutex_unlock(&inode->log_mutex);
5420 
5421 	btrfs_free_path(path);
5422 	btrfs_free_path(dst_path);
5423 	return err;
5424 }
5425 
5426 /*
5427  * Check if we must fallback to a transaction commit when logging an inode.
5428  * This must be called after logging the inode and is used only in the context
5429  * when fsyncing an inode requires the need to log some other inode - in which
5430  * case we can't lock the i_mutex of each other inode we need to log as that
5431  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5432  * log inodes up or down in the hierarchy) or rename operations for example. So
5433  * we take the log_mutex of the inode after we have logged it and then check for
5434  * its last_unlink_trans value - this is safe because any task setting
5435  * last_unlink_trans must take the log_mutex and it must do this before it does
5436  * the actual unlink operation, so if we do this check before a concurrent task
5437  * sets last_unlink_trans it means we've logged a consistent version/state of
5438  * all the inode items, otherwise we are not sure and must do a transaction
5439  * commit (the concurrent task might have only updated last_unlink_trans before
5440  * we logged the inode or it might have also done the unlink).
5441  */
5442 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5443 					  struct btrfs_inode *inode)
5444 {
5445 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5446 	bool ret = false;
5447 
5448 	mutex_lock(&inode->log_mutex);
5449 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5450 		/*
5451 		 * Make sure any commits to the log are forced to be full
5452 		 * commits.
5453 		 */
5454 		btrfs_set_log_full_commit(trans);
5455 		ret = true;
5456 	}
5457 	mutex_unlock(&inode->log_mutex);
5458 
5459 	return ret;
5460 }
5461 
5462 /*
5463  * follow the dentry parent pointers up the chain and see if any
5464  * of the directories in it require a full commit before they can
5465  * be logged.  Returns zero if nothing special needs to be done or 1 if
5466  * a full commit is required.
5467  */
5468 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5469 					       struct btrfs_inode *inode,
5470 					       struct dentry *parent,
5471 					       struct super_block *sb,
5472 					       u64 last_committed)
5473 {
5474 	int ret = 0;
5475 	struct dentry *old_parent = NULL;
5476 
5477 	/*
5478 	 * for regular files, if its inode is already on disk, we don't
5479 	 * have to worry about the parents at all.  This is because
5480 	 * we can use the last_unlink_trans field to record renames
5481 	 * and other fun in this file.
5482 	 */
5483 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5484 	    inode->generation <= last_committed &&
5485 	    inode->last_unlink_trans <= last_committed)
5486 		goto out;
5487 
5488 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5489 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5490 			goto out;
5491 		inode = BTRFS_I(d_inode(parent));
5492 	}
5493 
5494 	while (1) {
5495 		if (btrfs_must_commit_transaction(trans, inode)) {
5496 			ret = 1;
5497 			break;
5498 		}
5499 
5500 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5501 			break;
5502 
5503 		if (IS_ROOT(parent)) {
5504 			inode = BTRFS_I(d_inode(parent));
5505 			if (btrfs_must_commit_transaction(trans, inode))
5506 				ret = 1;
5507 			break;
5508 		}
5509 
5510 		parent = dget_parent(parent);
5511 		dput(old_parent);
5512 		old_parent = parent;
5513 		inode = BTRFS_I(d_inode(parent));
5514 
5515 	}
5516 	dput(old_parent);
5517 out:
5518 	return ret;
5519 }
5520 
5521 struct btrfs_dir_list {
5522 	u64 ino;
5523 	struct list_head list;
5524 };
5525 
5526 /*
5527  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5528  * details about the why it is needed.
5529  * This is a recursive operation - if an existing dentry corresponds to a
5530  * directory, that directory's new entries are logged too (same behaviour as
5531  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5532  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5533  * complains about the following circular lock dependency / possible deadlock:
5534  *
5535  *        CPU0                                        CPU1
5536  *        ----                                        ----
5537  * lock(&type->i_mutex_dir_key#3/2);
5538  *                                            lock(sb_internal#2);
5539  *                                            lock(&type->i_mutex_dir_key#3/2);
5540  * lock(&sb->s_type->i_mutex_key#14);
5541  *
5542  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5543  * sb_start_intwrite() in btrfs_start_transaction().
5544  * Not locking i_mutex of the inodes is still safe because:
5545  *
5546  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5547  *    that while logging the inode new references (names) are added or removed
5548  *    from the inode, leaving the logged inode item with a link count that does
5549  *    not match the number of logged inode reference items. This is fine because
5550  *    at log replay time we compute the real number of links and correct the
5551  *    link count in the inode item (see replay_one_buffer() and
5552  *    link_to_fixup_dir());
5553  *
5554  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5555  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5556  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5557  *    has a size that doesn't match the sum of the lengths of all the logged
5558  *    names. This does not result in a problem because if a dir_item key is
5559  *    logged but its matching dir_index key is not logged, at log replay time we
5560  *    don't use it to replay the respective name (see replay_one_name()). On the
5561  *    other hand if only the dir_index key ends up being logged, the respective
5562  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5563  *    keys created (see replay_one_name()).
5564  *    The directory's inode item with a wrong i_size is not a problem as well,
5565  *    since we don't use it at log replay time to set the i_size in the inode
5566  *    item of the fs/subvol tree (see overwrite_item()).
5567  */
5568 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5569 				struct btrfs_root *root,
5570 				struct btrfs_inode *start_inode,
5571 				struct btrfs_log_ctx *ctx)
5572 {
5573 	struct btrfs_fs_info *fs_info = root->fs_info;
5574 	struct btrfs_root *log = root->log_root;
5575 	struct btrfs_path *path;
5576 	LIST_HEAD(dir_list);
5577 	struct btrfs_dir_list *dir_elem;
5578 	int ret = 0;
5579 
5580 	path = btrfs_alloc_path();
5581 	if (!path)
5582 		return -ENOMEM;
5583 
5584 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5585 	if (!dir_elem) {
5586 		btrfs_free_path(path);
5587 		return -ENOMEM;
5588 	}
5589 	dir_elem->ino = btrfs_ino(start_inode);
5590 	list_add_tail(&dir_elem->list, &dir_list);
5591 
5592 	while (!list_empty(&dir_list)) {
5593 		struct extent_buffer *leaf;
5594 		struct btrfs_key min_key;
5595 		int nritems;
5596 		int i;
5597 
5598 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5599 					    list);
5600 		if (ret)
5601 			goto next_dir_inode;
5602 
5603 		min_key.objectid = dir_elem->ino;
5604 		min_key.type = BTRFS_DIR_ITEM_KEY;
5605 		min_key.offset = 0;
5606 again:
5607 		btrfs_release_path(path);
5608 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5609 		if (ret < 0) {
5610 			goto next_dir_inode;
5611 		} else if (ret > 0) {
5612 			ret = 0;
5613 			goto next_dir_inode;
5614 		}
5615 
5616 process_leaf:
5617 		leaf = path->nodes[0];
5618 		nritems = btrfs_header_nritems(leaf);
5619 		for (i = path->slots[0]; i < nritems; i++) {
5620 			struct btrfs_dir_item *di;
5621 			struct btrfs_key di_key;
5622 			struct inode *di_inode;
5623 			struct btrfs_dir_list *new_dir_elem;
5624 			int log_mode = LOG_INODE_EXISTS;
5625 			int type;
5626 
5627 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5628 			if (min_key.objectid != dir_elem->ino ||
5629 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5630 				goto next_dir_inode;
5631 
5632 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5633 			type = btrfs_dir_type(leaf, di);
5634 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5635 			    type != BTRFS_FT_DIR)
5636 				continue;
5637 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5638 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5639 				continue;
5640 
5641 			btrfs_release_path(path);
5642 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5643 			if (IS_ERR(di_inode)) {
5644 				ret = PTR_ERR(di_inode);
5645 				goto next_dir_inode;
5646 			}
5647 
5648 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5649 				btrfs_add_delayed_iput(di_inode);
5650 				break;
5651 			}
5652 
5653 			ctx->log_new_dentries = false;
5654 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5655 				log_mode = LOG_INODE_ALL;
5656 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5657 					      log_mode, ctx);
5658 			if (!ret &&
5659 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5660 				ret = 1;
5661 			btrfs_add_delayed_iput(di_inode);
5662 			if (ret)
5663 				goto next_dir_inode;
5664 			if (ctx->log_new_dentries) {
5665 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5666 						       GFP_NOFS);
5667 				if (!new_dir_elem) {
5668 					ret = -ENOMEM;
5669 					goto next_dir_inode;
5670 				}
5671 				new_dir_elem->ino = di_key.objectid;
5672 				list_add_tail(&new_dir_elem->list, &dir_list);
5673 			}
5674 			break;
5675 		}
5676 		if (i == nritems) {
5677 			ret = btrfs_next_leaf(log, path);
5678 			if (ret < 0) {
5679 				goto next_dir_inode;
5680 			} else if (ret > 0) {
5681 				ret = 0;
5682 				goto next_dir_inode;
5683 			}
5684 			goto process_leaf;
5685 		}
5686 		if (min_key.offset < (u64)-1) {
5687 			min_key.offset++;
5688 			goto again;
5689 		}
5690 next_dir_inode:
5691 		list_del(&dir_elem->list);
5692 		kfree(dir_elem);
5693 	}
5694 
5695 	btrfs_free_path(path);
5696 	return ret;
5697 }
5698 
5699 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5700 				 struct btrfs_inode *inode,
5701 				 struct btrfs_log_ctx *ctx)
5702 {
5703 	struct btrfs_fs_info *fs_info = trans->fs_info;
5704 	int ret;
5705 	struct btrfs_path *path;
5706 	struct btrfs_key key;
5707 	struct btrfs_root *root = inode->root;
5708 	const u64 ino = btrfs_ino(inode);
5709 
5710 	path = btrfs_alloc_path();
5711 	if (!path)
5712 		return -ENOMEM;
5713 	path->skip_locking = 1;
5714 	path->search_commit_root = 1;
5715 
5716 	key.objectid = ino;
5717 	key.type = BTRFS_INODE_REF_KEY;
5718 	key.offset = 0;
5719 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5720 	if (ret < 0)
5721 		goto out;
5722 
5723 	while (true) {
5724 		struct extent_buffer *leaf = path->nodes[0];
5725 		int slot = path->slots[0];
5726 		u32 cur_offset = 0;
5727 		u32 item_size;
5728 		unsigned long ptr;
5729 
5730 		if (slot >= btrfs_header_nritems(leaf)) {
5731 			ret = btrfs_next_leaf(root, path);
5732 			if (ret < 0)
5733 				goto out;
5734 			else if (ret > 0)
5735 				break;
5736 			continue;
5737 		}
5738 
5739 		btrfs_item_key_to_cpu(leaf, &key, slot);
5740 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5741 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5742 			break;
5743 
5744 		item_size = btrfs_item_size_nr(leaf, slot);
5745 		ptr = btrfs_item_ptr_offset(leaf, slot);
5746 		while (cur_offset < item_size) {
5747 			struct btrfs_key inode_key;
5748 			struct inode *dir_inode;
5749 
5750 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5751 			inode_key.offset = 0;
5752 
5753 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5754 				struct btrfs_inode_extref *extref;
5755 
5756 				extref = (struct btrfs_inode_extref *)
5757 					(ptr + cur_offset);
5758 				inode_key.objectid = btrfs_inode_extref_parent(
5759 					leaf, extref);
5760 				cur_offset += sizeof(*extref);
5761 				cur_offset += btrfs_inode_extref_name_len(leaf,
5762 					extref);
5763 			} else {
5764 				inode_key.objectid = key.offset;
5765 				cur_offset = item_size;
5766 			}
5767 
5768 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5769 					       root);
5770 			/*
5771 			 * If the parent inode was deleted, return an error to
5772 			 * fallback to a transaction commit. This is to prevent
5773 			 * getting an inode that was moved from one parent A to
5774 			 * a parent B, got its former parent A deleted and then
5775 			 * it got fsync'ed, from existing at both parents after
5776 			 * a log replay (and the old parent still existing).
5777 			 * Example:
5778 			 *
5779 			 * mkdir /mnt/A
5780 			 * mkdir /mnt/B
5781 			 * touch /mnt/B/bar
5782 			 * sync
5783 			 * mv /mnt/B/bar /mnt/A/bar
5784 			 * mv -T /mnt/A /mnt/B
5785 			 * fsync /mnt/B/bar
5786 			 * <power fail>
5787 			 *
5788 			 * If we ignore the old parent B which got deleted,
5789 			 * after a log replay we would have file bar linked
5790 			 * at both parents and the old parent B would still
5791 			 * exist.
5792 			 */
5793 			if (IS_ERR(dir_inode)) {
5794 				ret = PTR_ERR(dir_inode);
5795 				goto out;
5796 			}
5797 
5798 			if (ctx)
5799 				ctx->log_new_dentries = false;
5800 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5801 					      LOG_INODE_ALL, ctx);
5802 			if (!ret &&
5803 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5804 				ret = 1;
5805 			if (!ret && ctx && ctx->log_new_dentries)
5806 				ret = log_new_dir_dentries(trans, root,
5807 						   BTRFS_I(dir_inode), ctx);
5808 			btrfs_add_delayed_iput(dir_inode);
5809 			if (ret)
5810 				goto out;
5811 		}
5812 		path->slots[0]++;
5813 	}
5814 	ret = 0;
5815 out:
5816 	btrfs_free_path(path);
5817 	return ret;
5818 }
5819 
5820 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5821 			     struct btrfs_root *root,
5822 			     struct btrfs_path *path,
5823 			     struct btrfs_log_ctx *ctx)
5824 {
5825 	struct btrfs_key found_key;
5826 
5827 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5828 
5829 	while (true) {
5830 		struct btrfs_fs_info *fs_info = root->fs_info;
5831 		const u64 last_committed = fs_info->last_trans_committed;
5832 		struct extent_buffer *leaf = path->nodes[0];
5833 		int slot = path->slots[0];
5834 		struct btrfs_key search_key;
5835 		struct inode *inode;
5836 		u64 ino;
5837 		int ret = 0;
5838 
5839 		btrfs_release_path(path);
5840 
5841 		ino = found_key.offset;
5842 
5843 		search_key.objectid = found_key.offset;
5844 		search_key.type = BTRFS_INODE_ITEM_KEY;
5845 		search_key.offset = 0;
5846 		inode = btrfs_iget(fs_info->sb, ino, root);
5847 		if (IS_ERR(inode))
5848 			return PTR_ERR(inode);
5849 
5850 		if (BTRFS_I(inode)->generation > last_committed)
5851 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5852 					      LOG_INODE_EXISTS, ctx);
5853 		btrfs_add_delayed_iput(inode);
5854 		if (ret)
5855 			return ret;
5856 
5857 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5858 			break;
5859 
5860 		search_key.type = BTRFS_INODE_REF_KEY;
5861 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5862 		if (ret < 0)
5863 			return ret;
5864 
5865 		leaf = path->nodes[0];
5866 		slot = path->slots[0];
5867 		if (slot >= btrfs_header_nritems(leaf)) {
5868 			ret = btrfs_next_leaf(root, path);
5869 			if (ret < 0)
5870 				return ret;
5871 			else if (ret > 0)
5872 				return -ENOENT;
5873 			leaf = path->nodes[0];
5874 			slot = path->slots[0];
5875 		}
5876 
5877 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5878 		if (found_key.objectid != search_key.objectid ||
5879 		    found_key.type != BTRFS_INODE_REF_KEY)
5880 			return -ENOENT;
5881 	}
5882 	return 0;
5883 }
5884 
5885 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5886 				  struct btrfs_inode *inode,
5887 				  struct dentry *parent,
5888 				  struct btrfs_log_ctx *ctx)
5889 {
5890 	struct btrfs_root *root = inode->root;
5891 	struct btrfs_fs_info *fs_info = root->fs_info;
5892 	struct dentry *old_parent = NULL;
5893 	struct super_block *sb = inode->vfs_inode.i_sb;
5894 	int ret = 0;
5895 
5896 	while (true) {
5897 		if (!parent || d_really_is_negative(parent) ||
5898 		    sb != parent->d_sb)
5899 			break;
5900 
5901 		inode = BTRFS_I(d_inode(parent));
5902 		if (root != inode->root)
5903 			break;
5904 
5905 		if (inode->generation > fs_info->last_trans_committed) {
5906 			ret = btrfs_log_inode(trans, root, inode,
5907 					      LOG_INODE_EXISTS, ctx);
5908 			if (ret)
5909 				break;
5910 		}
5911 		if (IS_ROOT(parent))
5912 			break;
5913 
5914 		parent = dget_parent(parent);
5915 		dput(old_parent);
5916 		old_parent = parent;
5917 	}
5918 	dput(old_parent);
5919 
5920 	return ret;
5921 }
5922 
5923 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5924 				 struct btrfs_inode *inode,
5925 				 struct dentry *parent,
5926 				 struct btrfs_log_ctx *ctx)
5927 {
5928 	struct btrfs_root *root = inode->root;
5929 	const u64 ino = btrfs_ino(inode);
5930 	struct btrfs_path *path;
5931 	struct btrfs_key search_key;
5932 	int ret;
5933 
5934 	/*
5935 	 * For a single hard link case, go through a fast path that does not
5936 	 * need to iterate the fs/subvolume tree.
5937 	 */
5938 	if (inode->vfs_inode.i_nlink < 2)
5939 		return log_new_ancestors_fast(trans, inode, parent, ctx);
5940 
5941 	path = btrfs_alloc_path();
5942 	if (!path)
5943 		return -ENOMEM;
5944 
5945 	search_key.objectid = ino;
5946 	search_key.type = BTRFS_INODE_REF_KEY;
5947 	search_key.offset = 0;
5948 again:
5949 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5950 	if (ret < 0)
5951 		goto out;
5952 	if (ret == 0)
5953 		path->slots[0]++;
5954 
5955 	while (true) {
5956 		struct extent_buffer *leaf = path->nodes[0];
5957 		int slot = path->slots[0];
5958 		struct btrfs_key found_key;
5959 
5960 		if (slot >= btrfs_header_nritems(leaf)) {
5961 			ret = btrfs_next_leaf(root, path);
5962 			if (ret < 0)
5963 				goto out;
5964 			else if (ret > 0)
5965 				break;
5966 			continue;
5967 		}
5968 
5969 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5970 		if (found_key.objectid != ino ||
5971 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
5972 			break;
5973 
5974 		/*
5975 		 * Don't deal with extended references because they are rare
5976 		 * cases and too complex to deal with (we would need to keep
5977 		 * track of which subitem we are processing for each item in
5978 		 * this loop, etc). So just return some error to fallback to
5979 		 * a transaction commit.
5980 		 */
5981 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5982 			ret = -EMLINK;
5983 			goto out;
5984 		}
5985 
5986 		/*
5987 		 * Logging ancestors needs to do more searches on the fs/subvol
5988 		 * tree, so it releases the path as needed to avoid deadlocks.
5989 		 * Keep track of the last inode ref key and resume from that key
5990 		 * after logging all new ancestors for the current hard link.
5991 		 */
5992 		memcpy(&search_key, &found_key, sizeof(search_key));
5993 
5994 		ret = log_new_ancestors(trans, root, path, ctx);
5995 		if (ret)
5996 			goto out;
5997 		btrfs_release_path(path);
5998 		goto again;
5999 	}
6000 	ret = 0;
6001 out:
6002 	btrfs_free_path(path);
6003 	return ret;
6004 }
6005 
6006 /*
6007  * helper function around btrfs_log_inode to make sure newly created
6008  * parent directories also end up in the log.  A minimal inode and backref
6009  * only logging is done of any parent directories that are older than
6010  * the last committed transaction
6011  */
6012 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6013 				  struct btrfs_inode *inode,
6014 				  struct dentry *parent,
6015 				  int inode_only,
6016 				  struct btrfs_log_ctx *ctx)
6017 {
6018 	struct btrfs_root *root = inode->root;
6019 	struct btrfs_fs_info *fs_info = root->fs_info;
6020 	struct super_block *sb;
6021 	int ret = 0;
6022 	u64 last_committed = fs_info->last_trans_committed;
6023 	bool log_dentries = false;
6024 
6025 	sb = inode->vfs_inode.i_sb;
6026 
6027 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6028 		ret = 1;
6029 		goto end_no_trans;
6030 	}
6031 
6032 	/*
6033 	 * The prev transaction commit doesn't complete, we need do
6034 	 * full commit by ourselves.
6035 	 */
6036 	if (fs_info->last_trans_log_full_commit >
6037 	    fs_info->last_trans_committed) {
6038 		ret = 1;
6039 		goto end_no_trans;
6040 	}
6041 
6042 	if (btrfs_root_refs(&root->root_item) == 0) {
6043 		ret = 1;
6044 		goto end_no_trans;
6045 	}
6046 
6047 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6048 			last_committed);
6049 	if (ret)
6050 		goto end_no_trans;
6051 
6052 	/*
6053 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6054 	 * (since logging them is pointless, a link count of 0 means they
6055 	 * will never be accessible).
6056 	 */
6057 	if (btrfs_inode_in_log(inode, trans->transid) ||
6058 	    inode->vfs_inode.i_nlink == 0) {
6059 		ret = BTRFS_NO_LOG_SYNC;
6060 		goto end_no_trans;
6061 	}
6062 
6063 	ret = start_log_trans(trans, root, ctx);
6064 	if (ret)
6065 		goto end_no_trans;
6066 
6067 	ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6068 	if (ret)
6069 		goto end_trans;
6070 
6071 	/*
6072 	 * for regular files, if its inode is already on disk, we don't
6073 	 * have to worry about the parents at all.  This is because
6074 	 * we can use the last_unlink_trans field to record renames
6075 	 * and other fun in this file.
6076 	 */
6077 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6078 	    inode->generation <= last_committed &&
6079 	    inode->last_unlink_trans <= last_committed) {
6080 		ret = 0;
6081 		goto end_trans;
6082 	}
6083 
6084 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6085 		log_dentries = true;
6086 
6087 	/*
6088 	 * On unlink we must make sure all our current and old parent directory
6089 	 * inodes are fully logged. This is to prevent leaving dangling
6090 	 * directory index entries in directories that were our parents but are
6091 	 * not anymore. Not doing this results in old parent directory being
6092 	 * impossible to delete after log replay (rmdir will always fail with
6093 	 * error -ENOTEMPTY).
6094 	 *
6095 	 * Example 1:
6096 	 *
6097 	 * mkdir testdir
6098 	 * touch testdir/foo
6099 	 * ln testdir/foo testdir/bar
6100 	 * sync
6101 	 * unlink testdir/bar
6102 	 * xfs_io -c fsync testdir/foo
6103 	 * <power failure>
6104 	 * mount fs, triggers log replay
6105 	 *
6106 	 * If we don't log the parent directory (testdir), after log replay the
6107 	 * directory still has an entry pointing to the file inode using the bar
6108 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6109 	 * the file inode has a link count of 1.
6110 	 *
6111 	 * Example 2:
6112 	 *
6113 	 * mkdir testdir
6114 	 * touch foo
6115 	 * ln foo testdir/foo2
6116 	 * ln foo testdir/foo3
6117 	 * sync
6118 	 * unlink testdir/foo3
6119 	 * xfs_io -c fsync foo
6120 	 * <power failure>
6121 	 * mount fs, triggers log replay
6122 	 *
6123 	 * Similar as the first example, after log replay the parent directory
6124 	 * testdir still has an entry pointing to the inode file with name foo3
6125 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6126 	 * and has a link count of 2.
6127 	 */
6128 	if (inode->last_unlink_trans > last_committed) {
6129 		ret = btrfs_log_all_parents(trans, inode, ctx);
6130 		if (ret)
6131 			goto end_trans;
6132 	}
6133 
6134 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6135 	if (ret)
6136 		goto end_trans;
6137 
6138 	if (log_dentries)
6139 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6140 	else
6141 		ret = 0;
6142 end_trans:
6143 	if (ret < 0) {
6144 		btrfs_set_log_full_commit(trans);
6145 		ret = 1;
6146 	}
6147 
6148 	if (ret)
6149 		btrfs_remove_log_ctx(root, ctx);
6150 	btrfs_end_log_trans(root);
6151 end_no_trans:
6152 	return ret;
6153 }
6154 
6155 /*
6156  * it is not safe to log dentry if the chunk root has added new
6157  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6158  * If this returns 1, you must commit the transaction to safely get your
6159  * data on disk.
6160  */
6161 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6162 			  struct dentry *dentry,
6163 			  struct btrfs_log_ctx *ctx)
6164 {
6165 	struct dentry *parent = dget_parent(dentry);
6166 	int ret;
6167 
6168 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6169 				     LOG_INODE_ALL, ctx);
6170 	dput(parent);
6171 
6172 	return ret;
6173 }
6174 
6175 /*
6176  * should be called during mount to recover any replay any log trees
6177  * from the FS
6178  */
6179 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6180 {
6181 	int ret;
6182 	struct btrfs_path *path;
6183 	struct btrfs_trans_handle *trans;
6184 	struct btrfs_key key;
6185 	struct btrfs_key found_key;
6186 	struct btrfs_root *log;
6187 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6188 	struct walk_control wc = {
6189 		.process_func = process_one_buffer,
6190 		.stage = LOG_WALK_PIN_ONLY,
6191 	};
6192 
6193 	path = btrfs_alloc_path();
6194 	if (!path)
6195 		return -ENOMEM;
6196 
6197 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6198 
6199 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6200 	if (IS_ERR(trans)) {
6201 		ret = PTR_ERR(trans);
6202 		goto error;
6203 	}
6204 
6205 	wc.trans = trans;
6206 	wc.pin = 1;
6207 
6208 	ret = walk_log_tree(trans, log_root_tree, &wc);
6209 	if (ret) {
6210 		btrfs_handle_fs_error(fs_info, ret,
6211 			"Failed to pin buffers while recovering log root tree.");
6212 		goto error;
6213 	}
6214 
6215 again:
6216 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6217 	key.offset = (u64)-1;
6218 	key.type = BTRFS_ROOT_ITEM_KEY;
6219 
6220 	while (1) {
6221 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6222 
6223 		if (ret < 0) {
6224 			btrfs_handle_fs_error(fs_info, ret,
6225 				    "Couldn't find tree log root.");
6226 			goto error;
6227 		}
6228 		if (ret > 0) {
6229 			if (path->slots[0] == 0)
6230 				break;
6231 			path->slots[0]--;
6232 		}
6233 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6234 				      path->slots[0]);
6235 		btrfs_release_path(path);
6236 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6237 			break;
6238 
6239 		log = btrfs_read_tree_root(log_root_tree, &found_key);
6240 		if (IS_ERR(log)) {
6241 			ret = PTR_ERR(log);
6242 			btrfs_handle_fs_error(fs_info, ret,
6243 				    "Couldn't read tree log root.");
6244 			goto error;
6245 		}
6246 
6247 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6248 						   true);
6249 		if (IS_ERR(wc.replay_dest)) {
6250 			ret = PTR_ERR(wc.replay_dest);
6251 
6252 			/*
6253 			 * We didn't find the subvol, likely because it was
6254 			 * deleted.  This is ok, simply skip this log and go to
6255 			 * the next one.
6256 			 *
6257 			 * We need to exclude the root because we can't have
6258 			 * other log replays overwriting this log as we'll read
6259 			 * it back in a few more times.  This will keep our
6260 			 * block from being modified, and we'll just bail for
6261 			 * each subsequent pass.
6262 			 */
6263 			if (ret == -ENOENT)
6264 				ret = btrfs_pin_extent_for_log_replay(trans,
6265 							log->node->start,
6266 							log->node->len);
6267 			btrfs_put_root(log);
6268 
6269 			if (!ret)
6270 				goto next;
6271 			btrfs_handle_fs_error(fs_info, ret,
6272 				"Couldn't read target root for tree log recovery.");
6273 			goto error;
6274 		}
6275 
6276 		wc.replay_dest->log_root = log;
6277 		btrfs_record_root_in_trans(trans, wc.replay_dest);
6278 		ret = walk_log_tree(trans, log, &wc);
6279 
6280 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6281 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6282 						      path);
6283 		}
6284 
6285 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6286 			struct btrfs_root *root = wc.replay_dest;
6287 
6288 			btrfs_release_path(path);
6289 
6290 			/*
6291 			 * We have just replayed everything, and the highest
6292 			 * objectid of fs roots probably has changed in case
6293 			 * some inode_item's got replayed.
6294 			 *
6295 			 * root->objectid_mutex is not acquired as log replay
6296 			 * could only happen during mount.
6297 			 */
6298 			ret = btrfs_find_highest_objectid(root,
6299 						  &root->highest_objectid);
6300 		}
6301 
6302 		wc.replay_dest->log_root = NULL;
6303 		btrfs_put_root(wc.replay_dest);
6304 		btrfs_put_root(log);
6305 
6306 		if (ret)
6307 			goto error;
6308 next:
6309 		if (found_key.offset == 0)
6310 			break;
6311 		key.offset = found_key.offset - 1;
6312 	}
6313 	btrfs_release_path(path);
6314 
6315 	/* step one is to pin it all, step two is to replay just inodes */
6316 	if (wc.pin) {
6317 		wc.pin = 0;
6318 		wc.process_func = replay_one_buffer;
6319 		wc.stage = LOG_WALK_REPLAY_INODES;
6320 		goto again;
6321 	}
6322 	/* step three is to replay everything */
6323 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6324 		wc.stage++;
6325 		goto again;
6326 	}
6327 
6328 	btrfs_free_path(path);
6329 
6330 	/* step 4: commit the transaction, which also unpins the blocks */
6331 	ret = btrfs_commit_transaction(trans);
6332 	if (ret)
6333 		return ret;
6334 
6335 	log_root_tree->log_root = NULL;
6336 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6337 	btrfs_put_root(log_root_tree);
6338 
6339 	return 0;
6340 error:
6341 	if (wc.trans)
6342 		btrfs_end_transaction(wc.trans);
6343 	btrfs_free_path(path);
6344 	return ret;
6345 }
6346 
6347 /*
6348  * there are some corner cases where we want to force a full
6349  * commit instead of allowing a directory to be logged.
6350  *
6351  * They revolve around files there were unlinked from the directory, and
6352  * this function updates the parent directory so that a full commit is
6353  * properly done if it is fsync'd later after the unlinks are done.
6354  *
6355  * Must be called before the unlink operations (updates to the subvolume tree,
6356  * inodes, etc) are done.
6357  */
6358 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6359 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6360 			     int for_rename)
6361 {
6362 	/*
6363 	 * when we're logging a file, if it hasn't been renamed
6364 	 * or unlinked, and its inode is fully committed on disk,
6365 	 * we don't have to worry about walking up the directory chain
6366 	 * to log its parents.
6367 	 *
6368 	 * So, we use the last_unlink_trans field to put this transid
6369 	 * into the file.  When the file is logged we check it and
6370 	 * don't log the parents if the file is fully on disk.
6371 	 */
6372 	mutex_lock(&inode->log_mutex);
6373 	inode->last_unlink_trans = trans->transid;
6374 	mutex_unlock(&inode->log_mutex);
6375 
6376 	/*
6377 	 * if this directory was already logged any new
6378 	 * names for this file/dir will get recorded
6379 	 */
6380 	if (dir->logged_trans == trans->transid)
6381 		return;
6382 
6383 	/*
6384 	 * if the inode we're about to unlink was logged,
6385 	 * the log will be properly updated for any new names
6386 	 */
6387 	if (inode->logged_trans == trans->transid)
6388 		return;
6389 
6390 	/*
6391 	 * when renaming files across directories, if the directory
6392 	 * there we're unlinking from gets fsync'd later on, there's
6393 	 * no way to find the destination directory later and fsync it
6394 	 * properly.  So, we have to be conservative and force commits
6395 	 * so the new name gets discovered.
6396 	 */
6397 	if (for_rename)
6398 		goto record;
6399 
6400 	/* we can safely do the unlink without any special recording */
6401 	return;
6402 
6403 record:
6404 	mutex_lock(&dir->log_mutex);
6405 	dir->last_unlink_trans = trans->transid;
6406 	mutex_unlock(&dir->log_mutex);
6407 }
6408 
6409 /*
6410  * Make sure that if someone attempts to fsync the parent directory of a deleted
6411  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6412  * that after replaying the log tree of the parent directory's root we will not
6413  * see the snapshot anymore and at log replay time we will not see any log tree
6414  * corresponding to the deleted snapshot's root, which could lead to replaying
6415  * it after replaying the log tree of the parent directory (which would replay
6416  * the snapshot delete operation).
6417  *
6418  * Must be called before the actual snapshot destroy operation (updates to the
6419  * parent root and tree of tree roots trees, etc) are done.
6420  */
6421 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6422 				   struct btrfs_inode *dir)
6423 {
6424 	mutex_lock(&dir->log_mutex);
6425 	dir->last_unlink_trans = trans->transid;
6426 	mutex_unlock(&dir->log_mutex);
6427 }
6428 
6429 /*
6430  * Call this after adding a new name for a file and it will properly
6431  * update the log to reflect the new name.
6432  */
6433 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6434 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6435 			struct dentry *parent)
6436 {
6437 	struct btrfs_fs_info *fs_info = trans->fs_info;
6438 	struct btrfs_log_ctx ctx;
6439 
6440 	/*
6441 	 * this will force the logging code to walk the dentry chain
6442 	 * up for the file
6443 	 */
6444 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6445 		inode->last_unlink_trans = trans->transid;
6446 
6447 	/*
6448 	 * if this inode hasn't been logged and directory we're renaming it
6449 	 * from hasn't been logged, we don't need to log it
6450 	 */
6451 	if (inode->logged_trans <= fs_info->last_trans_committed &&
6452 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6453 		return;
6454 
6455 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6456 	ctx.logging_new_name = true;
6457 	/*
6458 	 * We don't care about the return value. If we fail to log the new name
6459 	 * then we know the next attempt to sync the log will fallback to a full
6460 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6461 	 * we don't need to worry about getting a log committed that has an
6462 	 * inconsistent state after a rename operation.
6463 	 */
6464 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6465 }
6466 
6467