xref: /openbmc/linux/fs/btrfs/tree-log.c (revision f7af616c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 
24 /* magic values for the inode_only field in btrfs_log_inode:
25  *
26  * LOG_INODE_ALL means to log everything
27  * LOG_INODE_EXISTS means to log just enough to recreate the inode
28  * during log replay
29  */
30 enum {
31 	LOG_INODE_ALL,
32 	LOG_INODE_EXISTS,
33 	LOG_OTHER_INODE,
34 	LOG_OTHER_INODE_ALL,
35 };
36 
37 /*
38  * directory trouble cases
39  *
40  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41  * log, we must force a full commit before doing an fsync of the directory
42  * where the unlink was done.
43  * ---> record transid of last unlink/rename per directory
44  *
45  * mkdir foo/some_dir
46  * normal commit
47  * rename foo/some_dir foo2/some_dir
48  * mkdir foo/some_dir
49  * fsync foo/some_dir/some_file
50  *
51  * The fsync above will unlink the original some_dir without recording
52  * it in its new location (foo2).  After a crash, some_dir will be gone
53  * unless the fsync of some_file forces a full commit
54  *
55  * 2) we must log any new names for any file or dir that is in the fsync
56  * log. ---> check inode while renaming/linking.
57  *
58  * 2a) we must log any new names for any file or dir during rename
59  * when the directory they are being removed from was logged.
60  * ---> check inode and old parent dir during rename
61  *
62  *  2a is actually the more important variant.  With the extra logging
63  *  a crash might unlink the old name without recreating the new one
64  *
65  * 3) after a crash, we must go through any directories with a link count
66  * of zero and redo the rm -rf
67  *
68  * mkdir f1/foo
69  * normal commit
70  * rm -rf f1/foo
71  * fsync(f1)
72  *
73  * The directory f1 was fully removed from the FS, but fsync was never
74  * called on f1, only its parent dir.  After a crash the rm -rf must
75  * be replayed.  This must be able to recurse down the entire
76  * directory tree.  The inode link count fixup code takes care of the
77  * ugly details.
78  */
79 
80 /*
81  * stages for the tree walking.  The first
82  * stage (0) is to only pin down the blocks we find
83  * the second stage (1) is to make sure that all the inodes
84  * we find in the log are created in the subvolume.
85  *
86  * The last stage is to deal with directories and links and extents
87  * and all the other fun semantics
88  */
89 enum {
90 	LOG_WALK_PIN_ONLY,
91 	LOG_WALK_REPLAY_INODES,
92 	LOG_WALK_REPLAY_DIR_INDEX,
93 	LOG_WALK_REPLAY_ALL,
94 };
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct btrfs_inode *inode,
98 			   int inode_only,
99 			   struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 			     struct btrfs_root *root,
102 			     struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 				       struct btrfs_root *root,
105 				       struct btrfs_root *log,
106 				       struct btrfs_path *path,
107 				       u64 dirid, int del_all);
108 static void wait_log_commit(struct btrfs_root *root, int transid);
109 
110 /*
111  * tree logging is a special write ahead log used to make sure that
112  * fsyncs and O_SYNCs can happen without doing full tree commits.
113  *
114  * Full tree commits are expensive because they require commonly
115  * modified blocks to be recowed, creating many dirty pages in the
116  * extent tree an 4x-6x higher write load than ext3.
117  *
118  * Instead of doing a tree commit on every fsync, we use the
119  * key ranges and transaction ids to find items for a given file or directory
120  * that have changed in this transaction.  Those items are copied into
121  * a special tree (one per subvolume root), that tree is written to disk
122  * and then the fsync is considered complete.
123  *
124  * After a crash, items are copied out of the log-tree back into the
125  * subvolume tree.  Any file data extents found are recorded in the extent
126  * allocation tree, and the log-tree freed.
127  *
128  * The log tree is read three times, once to pin down all the extents it is
129  * using in ram and once, once to create all the inodes logged in the tree
130  * and once to do all the other items.
131  */
132 
133 /*
134  * start a sub transaction and setup the log tree
135  * this increments the log tree writer count to make the people
136  * syncing the tree wait for us to finish
137  */
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139 			   struct btrfs_root *root,
140 			   struct btrfs_log_ctx *ctx)
141 {
142 	struct btrfs_fs_info *fs_info = root->fs_info;
143 	struct btrfs_root *tree_root = fs_info->tree_root;
144 	const bool zoned = btrfs_is_zoned(fs_info);
145 	int ret = 0;
146 	bool created = false;
147 
148 	/*
149 	 * First check if the log root tree was already created. If not, create
150 	 * it before locking the root's log_mutex, just to keep lockdep happy.
151 	 */
152 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
153 		mutex_lock(&tree_root->log_mutex);
154 		if (!fs_info->log_root_tree) {
155 			ret = btrfs_init_log_root_tree(trans, fs_info);
156 			if (!ret) {
157 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
158 				created = true;
159 			}
160 		}
161 		mutex_unlock(&tree_root->log_mutex);
162 		if (ret)
163 			return ret;
164 	}
165 
166 	mutex_lock(&root->log_mutex);
167 
168 again:
169 	if (root->log_root) {
170 		int index = (root->log_transid + 1) % 2;
171 
172 		if (btrfs_need_log_full_commit(trans)) {
173 			ret = -EAGAIN;
174 			goto out;
175 		}
176 
177 		if (zoned && atomic_read(&root->log_commit[index])) {
178 			wait_log_commit(root, root->log_transid - 1);
179 			goto again;
180 		}
181 
182 		if (!root->log_start_pid) {
183 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
184 			root->log_start_pid = current->pid;
185 		} else if (root->log_start_pid != current->pid) {
186 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
187 		}
188 	} else {
189 		/*
190 		 * This means fs_info->log_root_tree was already created
191 		 * for some other FS trees. Do the full commit not to mix
192 		 * nodes from multiple log transactions to do sequential
193 		 * writing.
194 		 */
195 		if (zoned && !created) {
196 			ret = -EAGAIN;
197 			goto out;
198 		}
199 
200 		ret = btrfs_add_log_tree(trans, root);
201 		if (ret)
202 			goto out;
203 
204 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
205 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
206 		root->log_start_pid = current->pid;
207 	}
208 
209 	atomic_inc(&root->log_writers);
210 	if (ctx && !ctx->logging_new_name) {
211 		int index = root->log_transid % 2;
212 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
213 		ctx->log_transid = root->log_transid;
214 	}
215 
216 out:
217 	mutex_unlock(&root->log_mutex);
218 	return ret;
219 }
220 
221 /*
222  * returns 0 if there was a log transaction running and we were able
223  * to join, or returns -ENOENT if there were not transactions
224  * in progress
225  */
226 static int join_running_log_trans(struct btrfs_root *root)
227 {
228 	const bool zoned = btrfs_is_zoned(root->fs_info);
229 	int ret = -ENOENT;
230 
231 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
232 		return ret;
233 
234 	mutex_lock(&root->log_mutex);
235 again:
236 	if (root->log_root) {
237 		int index = (root->log_transid + 1) % 2;
238 
239 		ret = 0;
240 		if (zoned && atomic_read(&root->log_commit[index])) {
241 			wait_log_commit(root, root->log_transid - 1);
242 			goto again;
243 		}
244 		atomic_inc(&root->log_writers);
245 	}
246 	mutex_unlock(&root->log_mutex);
247 	return ret;
248 }
249 
250 /*
251  * This either makes the current running log transaction wait
252  * until you call btrfs_end_log_trans() or it makes any future
253  * log transactions wait until you call btrfs_end_log_trans()
254  */
255 void btrfs_pin_log_trans(struct btrfs_root *root)
256 {
257 	atomic_inc(&root->log_writers);
258 }
259 
260 /*
261  * indicate we're done making changes to the log tree
262  * and wake up anyone waiting to do a sync
263  */
264 void btrfs_end_log_trans(struct btrfs_root *root)
265 {
266 	if (atomic_dec_and_test(&root->log_writers)) {
267 		/* atomic_dec_and_test implies a barrier */
268 		cond_wake_up_nomb(&root->log_writer_wait);
269 	}
270 }
271 
272 static int btrfs_write_tree_block(struct extent_buffer *buf)
273 {
274 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
275 					buf->start + buf->len - 1);
276 }
277 
278 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
279 {
280 	filemap_fdatawait_range(buf->pages[0]->mapping,
281 			        buf->start, buf->start + buf->len - 1);
282 }
283 
284 /*
285  * the walk control struct is used to pass state down the chain when
286  * processing the log tree.  The stage field tells us which part
287  * of the log tree processing we are currently doing.  The others
288  * are state fields used for that specific part
289  */
290 struct walk_control {
291 	/* should we free the extent on disk when done?  This is used
292 	 * at transaction commit time while freeing a log tree
293 	 */
294 	int free;
295 
296 	/* should we write out the extent buffer?  This is used
297 	 * while flushing the log tree to disk during a sync
298 	 */
299 	int write;
300 
301 	/* should we wait for the extent buffer io to finish?  Also used
302 	 * while flushing the log tree to disk for a sync
303 	 */
304 	int wait;
305 
306 	/* pin only walk, we record which extents on disk belong to the
307 	 * log trees
308 	 */
309 	int pin;
310 
311 	/* what stage of the replay code we're currently in */
312 	int stage;
313 
314 	/*
315 	 * Ignore any items from the inode currently being processed. Needs
316 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
317 	 * the LOG_WALK_REPLAY_INODES stage.
318 	 */
319 	bool ignore_cur_inode;
320 
321 	/* the root we are currently replaying */
322 	struct btrfs_root *replay_dest;
323 
324 	/* the trans handle for the current replay */
325 	struct btrfs_trans_handle *trans;
326 
327 	/* the function that gets used to process blocks we find in the
328 	 * tree.  Note the extent_buffer might not be up to date when it is
329 	 * passed in, and it must be checked or read if you need the data
330 	 * inside it
331 	 */
332 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
333 			    struct walk_control *wc, u64 gen, int level);
334 };
335 
336 /*
337  * process_func used to pin down extents, write them or wait on them
338  */
339 static int process_one_buffer(struct btrfs_root *log,
340 			      struct extent_buffer *eb,
341 			      struct walk_control *wc, u64 gen, int level)
342 {
343 	struct btrfs_fs_info *fs_info = log->fs_info;
344 	int ret = 0;
345 
346 	/*
347 	 * If this fs is mixed then we need to be able to process the leaves to
348 	 * pin down any logged extents, so we have to read the block.
349 	 */
350 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
351 		ret = btrfs_read_buffer(eb, gen, level, NULL);
352 		if (ret)
353 			return ret;
354 	}
355 
356 	if (wc->pin)
357 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
358 						      eb->len);
359 
360 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
361 		if (wc->pin && btrfs_header_level(eb) == 0)
362 			ret = btrfs_exclude_logged_extents(eb);
363 		if (wc->write)
364 			btrfs_write_tree_block(eb);
365 		if (wc->wait)
366 			btrfs_wait_tree_block_writeback(eb);
367 	}
368 	return ret;
369 }
370 
371 /*
372  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
373  * to the src data we are copying out.
374  *
375  * root is the tree we are copying into, and path is a scratch
376  * path for use in this function (it should be released on entry and
377  * will be released on exit).
378  *
379  * If the key is already in the destination tree the existing item is
380  * overwritten.  If the existing item isn't big enough, it is extended.
381  * If it is too large, it is truncated.
382  *
383  * If the key isn't in the destination yet, a new item is inserted.
384  */
385 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
386 				   struct btrfs_root *root,
387 				   struct btrfs_path *path,
388 				   struct extent_buffer *eb, int slot,
389 				   struct btrfs_key *key)
390 {
391 	int ret;
392 	u32 item_size;
393 	u64 saved_i_size = 0;
394 	int save_old_i_size = 0;
395 	unsigned long src_ptr;
396 	unsigned long dst_ptr;
397 	int overwrite_root = 0;
398 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
399 
400 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
401 		overwrite_root = 1;
402 
403 	item_size = btrfs_item_size_nr(eb, slot);
404 	src_ptr = btrfs_item_ptr_offset(eb, slot);
405 
406 	/* look for the key in the destination tree */
407 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
408 	if (ret < 0)
409 		return ret;
410 
411 	if (ret == 0) {
412 		char *src_copy;
413 		char *dst_copy;
414 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
415 						  path->slots[0]);
416 		if (dst_size != item_size)
417 			goto insert;
418 
419 		if (item_size == 0) {
420 			btrfs_release_path(path);
421 			return 0;
422 		}
423 		dst_copy = kmalloc(item_size, GFP_NOFS);
424 		src_copy = kmalloc(item_size, GFP_NOFS);
425 		if (!dst_copy || !src_copy) {
426 			btrfs_release_path(path);
427 			kfree(dst_copy);
428 			kfree(src_copy);
429 			return -ENOMEM;
430 		}
431 
432 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
433 
434 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
435 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
436 				   item_size);
437 		ret = memcmp(dst_copy, src_copy, item_size);
438 
439 		kfree(dst_copy);
440 		kfree(src_copy);
441 		/*
442 		 * they have the same contents, just return, this saves
443 		 * us from cowing blocks in the destination tree and doing
444 		 * extra writes that may not have been done by a previous
445 		 * sync
446 		 */
447 		if (ret == 0) {
448 			btrfs_release_path(path);
449 			return 0;
450 		}
451 
452 		/*
453 		 * We need to load the old nbytes into the inode so when we
454 		 * replay the extents we've logged we get the right nbytes.
455 		 */
456 		if (inode_item) {
457 			struct btrfs_inode_item *item;
458 			u64 nbytes;
459 			u32 mode;
460 
461 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
462 					      struct btrfs_inode_item);
463 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
464 			item = btrfs_item_ptr(eb, slot,
465 					      struct btrfs_inode_item);
466 			btrfs_set_inode_nbytes(eb, item, nbytes);
467 
468 			/*
469 			 * If this is a directory we need to reset the i_size to
470 			 * 0 so that we can set it up properly when replaying
471 			 * the rest of the items in this log.
472 			 */
473 			mode = btrfs_inode_mode(eb, item);
474 			if (S_ISDIR(mode))
475 				btrfs_set_inode_size(eb, item, 0);
476 		}
477 	} else if (inode_item) {
478 		struct btrfs_inode_item *item;
479 		u32 mode;
480 
481 		/*
482 		 * New inode, set nbytes to 0 so that the nbytes comes out
483 		 * properly when we replay the extents.
484 		 */
485 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
486 		btrfs_set_inode_nbytes(eb, item, 0);
487 
488 		/*
489 		 * If this is a directory we need to reset the i_size to 0 so
490 		 * that we can set it up properly when replaying the rest of
491 		 * the items in this log.
492 		 */
493 		mode = btrfs_inode_mode(eb, item);
494 		if (S_ISDIR(mode))
495 			btrfs_set_inode_size(eb, item, 0);
496 	}
497 insert:
498 	btrfs_release_path(path);
499 	/* try to insert the key into the destination tree */
500 	path->skip_release_on_error = 1;
501 	ret = btrfs_insert_empty_item(trans, root, path,
502 				      key, item_size);
503 	path->skip_release_on_error = 0;
504 
505 	/* make sure any existing item is the correct size */
506 	if (ret == -EEXIST || ret == -EOVERFLOW) {
507 		u32 found_size;
508 		found_size = btrfs_item_size_nr(path->nodes[0],
509 						path->slots[0]);
510 		if (found_size > item_size)
511 			btrfs_truncate_item(path, item_size, 1);
512 		else if (found_size < item_size)
513 			btrfs_extend_item(path, item_size - found_size);
514 	} else if (ret) {
515 		return ret;
516 	}
517 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
518 					path->slots[0]);
519 
520 	/* don't overwrite an existing inode if the generation number
521 	 * was logged as zero.  This is done when the tree logging code
522 	 * is just logging an inode to make sure it exists after recovery.
523 	 *
524 	 * Also, don't overwrite i_size on directories during replay.
525 	 * log replay inserts and removes directory items based on the
526 	 * state of the tree found in the subvolume, and i_size is modified
527 	 * as it goes
528 	 */
529 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
530 		struct btrfs_inode_item *src_item;
531 		struct btrfs_inode_item *dst_item;
532 
533 		src_item = (struct btrfs_inode_item *)src_ptr;
534 		dst_item = (struct btrfs_inode_item *)dst_ptr;
535 
536 		if (btrfs_inode_generation(eb, src_item) == 0) {
537 			struct extent_buffer *dst_eb = path->nodes[0];
538 			const u64 ino_size = btrfs_inode_size(eb, src_item);
539 
540 			/*
541 			 * For regular files an ino_size == 0 is used only when
542 			 * logging that an inode exists, as part of a directory
543 			 * fsync, and the inode wasn't fsynced before. In this
544 			 * case don't set the size of the inode in the fs/subvol
545 			 * tree, otherwise we would be throwing valid data away.
546 			 */
547 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
548 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
549 			    ino_size != 0)
550 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
551 			goto no_copy;
552 		}
553 
554 		if (overwrite_root &&
555 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
556 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
557 			save_old_i_size = 1;
558 			saved_i_size = btrfs_inode_size(path->nodes[0],
559 							dst_item);
560 		}
561 	}
562 
563 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
564 			   src_ptr, item_size);
565 
566 	if (save_old_i_size) {
567 		struct btrfs_inode_item *dst_item;
568 		dst_item = (struct btrfs_inode_item *)dst_ptr;
569 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
570 	}
571 
572 	/* make sure the generation is filled in */
573 	if (key->type == BTRFS_INODE_ITEM_KEY) {
574 		struct btrfs_inode_item *dst_item;
575 		dst_item = (struct btrfs_inode_item *)dst_ptr;
576 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
577 			btrfs_set_inode_generation(path->nodes[0], dst_item,
578 						   trans->transid);
579 		}
580 	}
581 no_copy:
582 	btrfs_mark_buffer_dirty(path->nodes[0]);
583 	btrfs_release_path(path);
584 	return 0;
585 }
586 
587 /*
588  * simple helper to read an inode off the disk from a given root
589  * This can only be called for subvolume roots and not for the log
590  */
591 static noinline struct inode *read_one_inode(struct btrfs_root *root,
592 					     u64 objectid)
593 {
594 	struct inode *inode;
595 
596 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
597 	if (IS_ERR(inode))
598 		inode = NULL;
599 	return inode;
600 }
601 
602 /* replays a single extent in 'eb' at 'slot' with 'key' into the
603  * subvolume 'root'.  path is released on entry and should be released
604  * on exit.
605  *
606  * extents in the log tree have not been allocated out of the extent
607  * tree yet.  So, this completes the allocation, taking a reference
608  * as required if the extent already exists or creating a new extent
609  * if it isn't in the extent allocation tree yet.
610  *
611  * The extent is inserted into the file, dropping any existing extents
612  * from the file that overlap the new one.
613  */
614 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
615 				      struct btrfs_root *root,
616 				      struct btrfs_path *path,
617 				      struct extent_buffer *eb, int slot,
618 				      struct btrfs_key *key)
619 {
620 	struct btrfs_drop_extents_args drop_args = { 0 };
621 	struct btrfs_fs_info *fs_info = root->fs_info;
622 	int found_type;
623 	u64 extent_end;
624 	u64 start = key->offset;
625 	u64 nbytes = 0;
626 	struct btrfs_file_extent_item *item;
627 	struct inode *inode = NULL;
628 	unsigned long size;
629 	int ret = 0;
630 
631 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
632 	found_type = btrfs_file_extent_type(eb, item);
633 
634 	if (found_type == BTRFS_FILE_EXTENT_REG ||
635 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
636 		nbytes = btrfs_file_extent_num_bytes(eb, item);
637 		extent_end = start + nbytes;
638 
639 		/*
640 		 * We don't add to the inodes nbytes if we are prealloc or a
641 		 * hole.
642 		 */
643 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
644 			nbytes = 0;
645 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
646 		size = btrfs_file_extent_ram_bytes(eb, item);
647 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
648 		extent_end = ALIGN(start + size,
649 				   fs_info->sectorsize);
650 	} else {
651 		ret = 0;
652 		goto out;
653 	}
654 
655 	inode = read_one_inode(root, key->objectid);
656 	if (!inode) {
657 		ret = -EIO;
658 		goto out;
659 	}
660 
661 	/*
662 	 * first check to see if we already have this extent in the
663 	 * file.  This must be done before the btrfs_drop_extents run
664 	 * so we don't try to drop this extent.
665 	 */
666 	ret = btrfs_lookup_file_extent(trans, root, path,
667 			btrfs_ino(BTRFS_I(inode)), start, 0);
668 
669 	if (ret == 0 &&
670 	    (found_type == BTRFS_FILE_EXTENT_REG ||
671 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
672 		struct btrfs_file_extent_item cmp1;
673 		struct btrfs_file_extent_item cmp2;
674 		struct btrfs_file_extent_item *existing;
675 		struct extent_buffer *leaf;
676 
677 		leaf = path->nodes[0];
678 		existing = btrfs_item_ptr(leaf, path->slots[0],
679 					  struct btrfs_file_extent_item);
680 
681 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
682 				   sizeof(cmp1));
683 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
684 				   sizeof(cmp2));
685 
686 		/*
687 		 * we already have a pointer to this exact extent,
688 		 * we don't have to do anything
689 		 */
690 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
691 			btrfs_release_path(path);
692 			goto out;
693 		}
694 	}
695 	btrfs_release_path(path);
696 
697 	/* drop any overlapping extents */
698 	drop_args.start = start;
699 	drop_args.end = extent_end;
700 	drop_args.drop_cache = true;
701 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
702 	if (ret)
703 		goto out;
704 
705 	if (found_type == BTRFS_FILE_EXTENT_REG ||
706 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
707 		u64 offset;
708 		unsigned long dest_offset;
709 		struct btrfs_key ins;
710 
711 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
712 		    btrfs_fs_incompat(fs_info, NO_HOLES))
713 			goto update_inode;
714 
715 		ret = btrfs_insert_empty_item(trans, root, path, key,
716 					      sizeof(*item));
717 		if (ret)
718 			goto out;
719 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
720 						    path->slots[0]);
721 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
722 				(unsigned long)item,  sizeof(*item));
723 
724 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
725 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
726 		ins.type = BTRFS_EXTENT_ITEM_KEY;
727 		offset = key->offset - btrfs_file_extent_offset(eb, item);
728 
729 		/*
730 		 * Manually record dirty extent, as here we did a shallow
731 		 * file extent item copy and skip normal backref update,
732 		 * but modifying extent tree all by ourselves.
733 		 * So need to manually record dirty extent for qgroup,
734 		 * as the owner of the file extent changed from log tree
735 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
736 		 */
737 		ret = btrfs_qgroup_trace_extent(trans,
738 				btrfs_file_extent_disk_bytenr(eb, item),
739 				btrfs_file_extent_disk_num_bytes(eb, item),
740 				GFP_NOFS);
741 		if (ret < 0)
742 			goto out;
743 
744 		if (ins.objectid > 0) {
745 			struct btrfs_ref ref = { 0 };
746 			u64 csum_start;
747 			u64 csum_end;
748 			LIST_HEAD(ordered_sums);
749 
750 			/*
751 			 * is this extent already allocated in the extent
752 			 * allocation tree?  If so, just add a reference
753 			 */
754 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
755 						ins.offset);
756 			if (ret == 0) {
757 				btrfs_init_generic_ref(&ref,
758 						BTRFS_ADD_DELAYED_REF,
759 						ins.objectid, ins.offset, 0);
760 				btrfs_init_data_ref(&ref,
761 						root->root_key.objectid,
762 						key->objectid, offset);
763 				ret = btrfs_inc_extent_ref(trans, &ref);
764 				if (ret)
765 					goto out;
766 			} else {
767 				/*
768 				 * insert the extent pointer in the extent
769 				 * allocation tree
770 				 */
771 				ret = btrfs_alloc_logged_file_extent(trans,
772 						root->root_key.objectid,
773 						key->objectid, offset, &ins);
774 				if (ret)
775 					goto out;
776 			}
777 			btrfs_release_path(path);
778 
779 			if (btrfs_file_extent_compression(eb, item)) {
780 				csum_start = ins.objectid;
781 				csum_end = csum_start + ins.offset;
782 			} else {
783 				csum_start = ins.objectid +
784 					btrfs_file_extent_offset(eb, item);
785 				csum_end = csum_start +
786 					btrfs_file_extent_num_bytes(eb, item);
787 			}
788 
789 			ret = btrfs_lookup_csums_range(root->log_root,
790 						csum_start, csum_end - 1,
791 						&ordered_sums, 0);
792 			if (ret)
793 				goto out;
794 			/*
795 			 * Now delete all existing cums in the csum root that
796 			 * cover our range. We do this because we can have an
797 			 * extent that is completely referenced by one file
798 			 * extent item and partially referenced by another
799 			 * file extent item (like after using the clone or
800 			 * extent_same ioctls). In this case if we end up doing
801 			 * the replay of the one that partially references the
802 			 * extent first, and we do not do the csum deletion
803 			 * below, we can get 2 csum items in the csum tree that
804 			 * overlap each other. For example, imagine our log has
805 			 * the two following file extent items:
806 			 *
807 			 * key (257 EXTENT_DATA 409600)
808 			 *     extent data disk byte 12845056 nr 102400
809 			 *     extent data offset 20480 nr 20480 ram 102400
810 			 *
811 			 * key (257 EXTENT_DATA 819200)
812 			 *     extent data disk byte 12845056 nr 102400
813 			 *     extent data offset 0 nr 102400 ram 102400
814 			 *
815 			 * Where the second one fully references the 100K extent
816 			 * that starts at disk byte 12845056, and the log tree
817 			 * has a single csum item that covers the entire range
818 			 * of the extent:
819 			 *
820 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
821 			 *
822 			 * After the first file extent item is replayed, the
823 			 * csum tree gets the following csum item:
824 			 *
825 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
826 			 *
827 			 * Which covers the 20K sub-range starting at offset 20K
828 			 * of our extent. Now when we replay the second file
829 			 * extent item, if we do not delete existing csum items
830 			 * that cover any of its blocks, we end up getting two
831 			 * csum items in our csum tree that overlap each other:
832 			 *
833 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
834 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
835 			 *
836 			 * Which is a problem, because after this anyone trying
837 			 * to lookup up for the checksum of any block of our
838 			 * extent starting at an offset of 40K or higher, will
839 			 * end up looking at the second csum item only, which
840 			 * does not contain the checksum for any block starting
841 			 * at offset 40K or higher of our extent.
842 			 */
843 			while (!list_empty(&ordered_sums)) {
844 				struct btrfs_ordered_sum *sums;
845 				sums = list_entry(ordered_sums.next,
846 						struct btrfs_ordered_sum,
847 						list);
848 				if (!ret)
849 					ret = btrfs_del_csums(trans,
850 							      fs_info->csum_root,
851 							      sums->bytenr,
852 							      sums->len);
853 				if (!ret)
854 					ret = btrfs_csum_file_blocks(trans,
855 						fs_info->csum_root, sums);
856 				list_del(&sums->list);
857 				kfree(sums);
858 			}
859 			if (ret)
860 				goto out;
861 		} else {
862 			btrfs_release_path(path);
863 		}
864 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
865 		/* inline extents are easy, we just overwrite them */
866 		ret = overwrite_item(trans, root, path, eb, slot, key);
867 		if (ret)
868 			goto out;
869 	}
870 
871 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
872 						extent_end - start);
873 	if (ret)
874 		goto out;
875 
876 update_inode:
877 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
878 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
879 out:
880 	if (inode)
881 		iput(inode);
882 	return ret;
883 }
884 
885 /*
886  * when cleaning up conflicts between the directory names in the
887  * subvolume, directory names in the log and directory names in the
888  * inode back references, we may have to unlink inodes from directories.
889  *
890  * This is a helper function to do the unlink of a specific directory
891  * item
892  */
893 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
894 				      struct btrfs_root *root,
895 				      struct btrfs_path *path,
896 				      struct btrfs_inode *dir,
897 				      struct btrfs_dir_item *di)
898 {
899 	struct inode *inode;
900 	char *name;
901 	int name_len;
902 	struct extent_buffer *leaf;
903 	struct btrfs_key location;
904 	int ret;
905 
906 	leaf = path->nodes[0];
907 
908 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
909 	name_len = btrfs_dir_name_len(leaf, di);
910 	name = kmalloc(name_len, GFP_NOFS);
911 	if (!name)
912 		return -ENOMEM;
913 
914 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
915 	btrfs_release_path(path);
916 
917 	inode = read_one_inode(root, location.objectid);
918 	if (!inode) {
919 		ret = -EIO;
920 		goto out;
921 	}
922 
923 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
924 	if (ret)
925 		goto out;
926 
927 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
928 			name_len);
929 	if (ret)
930 		goto out;
931 	else
932 		ret = btrfs_run_delayed_items(trans);
933 out:
934 	kfree(name);
935 	iput(inode);
936 	return ret;
937 }
938 
939 /*
940  * helper function to see if a given name and sequence number found
941  * in an inode back reference are already in a directory and correctly
942  * point to this inode
943  */
944 static noinline int inode_in_dir(struct btrfs_root *root,
945 				 struct btrfs_path *path,
946 				 u64 dirid, u64 objectid, u64 index,
947 				 const char *name, int name_len)
948 {
949 	struct btrfs_dir_item *di;
950 	struct btrfs_key location;
951 	int match = 0;
952 
953 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
954 					 index, name, name_len, 0);
955 	if (di && !IS_ERR(di)) {
956 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
957 		if (location.objectid != objectid)
958 			goto out;
959 	} else
960 		goto out;
961 	btrfs_release_path(path);
962 
963 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
964 	if (di && !IS_ERR(di)) {
965 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
966 		if (location.objectid != objectid)
967 			goto out;
968 	} else
969 		goto out;
970 	match = 1;
971 out:
972 	btrfs_release_path(path);
973 	return match;
974 }
975 
976 /*
977  * helper function to check a log tree for a named back reference in
978  * an inode.  This is used to decide if a back reference that is
979  * found in the subvolume conflicts with what we find in the log.
980  *
981  * inode backreferences may have multiple refs in a single item,
982  * during replay we process one reference at a time, and we don't
983  * want to delete valid links to a file from the subvolume if that
984  * link is also in the log.
985  */
986 static noinline int backref_in_log(struct btrfs_root *log,
987 				   struct btrfs_key *key,
988 				   u64 ref_objectid,
989 				   const char *name, int namelen)
990 {
991 	struct btrfs_path *path;
992 	int ret;
993 
994 	path = btrfs_alloc_path();
995 	if (!path)
996 		return -ENOMEM;
997 
998 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
999 	if (ret < 0) {
1000 		goto out;
1001 	} else if (ret == 1) {
1002 		ret = 0;
1003 		goto out;
1004 	}
1005 
1006 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1007 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1008 						       path->slots[0],
1009 						       ref_objectid,
1010 						       name, namelen);
1011 	else
1012 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1013 						   path->slots[0],
1014 						   name, namelen);
1015 out:
1016 	btrfs_free_path(path);
1017 	return ret;
1018 }
1019 
1020 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1021 				  struct btrfs_root *root,
1022 				  struct btrfs_path *path,
1023 				  struct btrfs_root *log_root,
1024 				  struct btrfs_inode *dir,
1025 				  struct btrfs_inode *inode,
1026 				  u64 inode_objectid, u64 parent_objectid,
1027 				  u64 ref_index, char *name, int namelen,
1028 				  int *search_done)
1029 {
1030 	int ret;
1031 	char *victim_name;
1032 	int victim_name_len;
1033 	struct extent_buffer *leaf;
1034 	struct btrfs_dir_item *di;
1035 	struct btrfs_key search_key;
1036 	struct btrfs_inode_extref *extref;
1037 
1038 again:
1039 	/* Search old style refs */
1040 	search_key.objectid = inode_objectid;
1041 	search_key.type = BTRFS_INODE_REF_KEY;
1042 	search_key.offset = parent_objectid;
1043 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1044 	if (ret == 0) {
1045 		struct btrfs_inode_ref *victim_ref;
1046 		unsigned long ptr;
1047 		unsigned long ptr_end;
1048 
1049 		leaf = path->nodes[0];
1050 
1051 		/* are we trying to overwrite a back ref for the root directory
1052 		 * if so, just jump out, we're done
1053 		 */
1054 		if (search_key.objectid == search_key.offset)
1055 			return 1;
1056 
1057 		/* check all the names in this back reference to see
1058 		 * if they are in the log.  if so, we allow them to stay
1059 		 * otherwise they must be unlinked as a conflict
1060 		 */
1061 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1062 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1063 		while (ptr < ptr_end) {
1064 			victim_ref = (struct btrfs_inode_ref *)ptr;
1065 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1066 								   victim_ref);
1067 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1068 			if (!victim_name)
1069 				return -ENOMEM;
1070 
1071 			read_extent_buffer(leaf, victim_name,
1072 					   (unsigned long)(victim_ref + 1),
1073 					   victim_name_len);
1074 
1075 			ret = backref_in_log(log_root, &search_key,
1076 					     parent_objectid, victim_name,
1077 					     victim_name_len);
1078 			if (ret < 0) {
1079 				kfree(victim_name);
1080 				return ret;
1081 			} else if (!ret) {
1082 				inc_nlink(&inode->vfs_inode);
1083 				btrfs_release_path(path);
1084 
1085 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1086 						victim_name, victim_name_len);
1087 				kfree(victim_name);
1088 				if (ret)
1089 					return ret;
1090 				ret = btrfs_run_delayed_items(trans);
1091 				if (ret)
1092 					return ret;
1093 				*search_done = 1;
1094 				goto again;
1095 			}
1096 			kfree(victim_name);
1097 
1098 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1099 		}
1100 
1101 		/*
1102 		 * NOTE: we have searched root tree and checked the
1103 		 * corresponding ref, it does not need to check again.
1104 		 */
1105 		*search_done = 1;
1106 	}
1107 	btrfs_release_path(path);
1108 
1109 	/* Same search but for extended refs */
1110 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1111 					   inode_objectid, parent_objectid, 0,
1112 					   0);
1113 	if (!IS_ERR_OR_NULL(extref)) {
1114 		u32 item_size;
1115 		u32 cur_offset = 0;
1116 		unsigned long base;
1117 		struct inode *victim_parent;
1118 
1119 		leaf = path->nodes[0];
1120 
1121 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1122 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1123 
1124 		while (cur_offset < item_size) {
1125 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1126 
1127 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1128 
1129 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1130 				goto next;
1131 
1132 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1133 			if (!victim_name)
1134 				return -ENOMEM;
1135 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1136 					   victim_name_len);
1137 
1138 			search_key.objectid = inode_objectid;
1139 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1140 			search_key.offset = btrfs_extref_hash(parent_objectid,
1141 							      victim_name,
1142 							      victim_name_len);
1143 			ret = backref_in_log(log_root, &search_key,
1144 					     parent_objectid, victim_name,
1145 					     victim_name_len);
1146 			if (ret < 0) {
1147 				return ret;
1148 			} else if (!ret) {
1149 				ret = -ENOENT;
1150 				victim_parent = read_one_inode(root,
1151 						parent_objectid);
1152 				if (victim_parent) {
1153 					inc_nlink(&inode->vfs_inode);
1154 					btrfs_release_path(path);
1155 
1156 					ret = btrfs_unlink_inode(trans, root,
1157 							BTRFS_I(victim_parent),
1158 							inode,
1159 							victim_name,
1160 							victim_name_len);
1161 					if (!ret)
1162 						ret = btrfs_run_delayed_items(
1163 								  trans);
1164 				}
1165 				iput(victim_parent);
1166 				kfree(victim_name);
1167 				if (ret)
1168 					return ret;
1169 				*search_done = 1;
1170 				goto again;
1171 			}
1172 			kfree(victim_name);
1173 next:
1174 			cur_offset += victim_name_len + sizeof(*extref);
1175 		}
1176 		*search_done = 1;
1177 	}
1178 	btrfs_release_path(path);
1179 
1180 	/* look for a conflicting sequence number */
1181 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1182 					 ref_index, name, namelen, 0);
1183 	if (di && !IS_ERR(di)) {
1184 		ret = drop_one_dir_item(trans, root, path, dir, di);
1185 		if (ret)
1186 			return ret;
1187 	}
1188 	btrfs_release_path(path);
1189 
1190 	/* look for a conflicting name */
1191 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1192 				   name, namelen, 0);
1193 	if (di && !IS_ERR(di)) {
1194 		ret = drop_one_dir_item(trans, root, path, dir, di);
1195 		if (ret)
1196 			return ret;
1197 	}
1198 	btrfs_release_path(path);
1199 
1200 	return 0;
1201 }
1202 
1203 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1204 			     u32 *namelen, char **name, u64 *index,
1205 			     u64 *parent_objectid)
1206 {
1207 	struct btrfs_inode_extref *extref;
1208 
1209 	extref = (struct btrfs_inode_extref *)ref_ptr;
1210 
1211 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1212 	*name = kmalloc(*namelen, GFP_NOFS);
1213 	if (*name == NULL)
1214 		return -ENOMEM;
1215 
1216 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1217 			   *namelen);
1218 
1219 	if (index)
1220 		*index = btrfs_inode_extref_index(eb, extref);
1221 	if (parent_objectid)
1222 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1223 
1224 	return 0;
1225 }
1226 
1227 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1228 			  u32 *namelen, char **name, u64 *index)
1229 {
1230 	struct btrfs_inode_ref *ref;
1231 
1232 	ref = (struct btrfs_inode_ref *)ref_ptr;
1233 
1234 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1235 	*name = kmalloc(*namelen, GFP_NOFS);
1236 	if (*name == NULL)
1237 		return -ENOMEM;
1238 
1239 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1240 
1241 	if (index)
1242 		*index = btrfs_inode_ref_index(eb, ref);
1243 
1244 	return 0;
1245 }
1246 
1247 /*
1248  * Take an inode reference item from the log tree and iterate all names from the
1249  * inode reference item in the subvolume tree with the same key (if it exists).
1250  * For any name that is not in the inode reference item from the log tree, do a
1251  * proper unlink of that name (that is, remove its entry from the inode
1252  * reference item and both dir index keys).
1253  */
1254 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1255 				 struct btrfs_root *root,
1256 				 struct btrfs_path *path,
1257 				 struct btrfs_inode *inode,
1258 				 struct extent_buffer *log_eb,
1259 				 int log_slot,
1260 				 struct btrfs_key *key)
1261 {
1262 	int ret;
1263 	unsigned long ref_ptr;
1264 	unsigned long ref_end;
1265 	struct extent_buffer *eb;
1266 
1267 again:
1268 	btrfs_release_path(path);
1269 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1270 	if (ret > 0) {
1271 		ret = 0;
1272 		goto out;
1273 	}
1274 	if (ret < 0)
1275 		goto out;
1276 
1277 	eb = path->nodes[0];
1278 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1279 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1280 	while (ref_ptr < ref_end) {
1281 		char *name = NULL;
1282 		int namelen;
1283 		u64 parent_id;
1284 
1285 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1286 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1287 						NULL, &parent_id);
1288 		} else {
1289 			parent_id = key->offset;
1290 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1291 					     NULL);
1292 		}
1293 		if (ret)
1294 			goto out;
1295 
1296 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1297 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1298 							       parent_id, name,
1299 							       namelen);
1300 		else
1301 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1302 							   name, namelen);
1303 
1304 		if (!ret) {
1305 			struct inode *dir;
1306 
1307 			btrfs_release_path(path);
1308 			dir = read_one_inode(root, parent_id);
1309 			if (!dir) {
1310 				ret = -ENOENT;
1311 				kfree(name);
1312 				goto out;
1313 			}
1314 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1315 						 inode, name, namelen);
1316 			kfree(name);
1317 			iput(dir);
1318 			if (ret)
1319 				goto out;
1320 			goto again;
1321 		}
1322 
1323 		kfree(name);
1324 		ref_ptr += namelen;
1325 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1326 			ref_ptr += sizeof(struct btrfs_inode_extref);
1327 		else
1328 			ref_ptr += sizeof(struct btrfs_inode_ref);
1329 	}
1330 	ret = 0;
1331  out:
1332 	btrfs_release_path(path);
1333 	return ret;
1334 }
1335 
1336 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1337 				  const u8 ref_type, const char *name,
1338 				  const int namelen)
1339 {
1340 	struct btrfs_key key;
1341 	struct btrfs_path *path;
1342 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1343 	int ret;
1344 
1345 	path = btrfs_alloc_path();
1346 	if (!path)
1347 		return -ENOMEM;
1348 
1349 	key.objectid = btrfs_ino(BTRFS_I(inode));
1350 	key.type = ref_type;
1351 	if (key.type == BTRFS_INODE_REF_KEY)
1352 		key.offset = parent_id;
1353 	else
1354 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1355 
1356 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1357 	if (ret < 0)
1358 		goto out;
1359 	if (ret > 0) {
1360 		ret = 0;
1361 		goto out;
1362 	}
1363 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1364 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1365 				path->slots[0], parent_id, name, namelen);
1366 	else
1367 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1368 						   name, namelen);
1369 
1370 out:
1371 	btrfs_free_path(path);
1372 	return ret;
1373 }
1374 
1375 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1376 		    struct inode *dir, struct inode *inode, const char *name,
1377 		    int namelen, u64 ref_index)
1378 {
1379 	struct btrfs_dir_item *dir_item;
1380 	struct btrfs_key key;
1381 	struct btrfs_path *path;
1382 	struct inode *other_inode = NULL;
1383 	int ret;
1384 
1385 	path = btrfs_alloc_path();
1386 	if (!path)
1387 		return -ENOMEM;
1388 
1389 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1390 					 btrfs_ino(BTRFS_I(dir)),
1391 					 name, namelen, 0);
1392 	if (!dir_item) {
1393 		btrfs_release_path(path);
1394 		goto add_link;
1395 	} else if (IS_ERR(dir_item)) {
1396 		ret = PTR_ERR(dir_item);
1397 		goto out;
1398 	}
1399 
1400 	/*
1401 	 * Our inode's dentry collides with the dentry of another inode which is
1402 	 * in the log but not yet processed since it has a higher inode number.
1403 	 * So delete that other dentry.
1404 	 */
1405 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1406 	btrfs_release_path(path);
1407 	other_inode = read_one_inode(root, key.objectid);
1408 	if (!other_inode) {
1409 		ret = -ENOENT;
1410 		goto out;
1411 	}
1412 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1413 				 name, namelen);
1414 	if (ret)
1415 		goto out;
1416 	/*
1417 	 * If we dropped the link count to 0, bump it so that later the iput()
1418 	 * on the inode will not free it. We will fixup the link count later.
1419 	 */
1420 	if (other_inode->i_nlink == 0)
1421 		inc_nlink(other_inode);
1422 
1423 	ret = btrfs_run_delayed_items(trans);
1424 	if (ret)
1425 		goto out;
1426 add_link:
1427 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1428 			     name, namelen, 0, ref_index);
1429 out:
1430 	iput(other_inode);
1431 	btrfs_free_path(path);
1432 
1433 	return ret;
1434 }
1435 
1436 /*
1437  * replay one inode back reference item found in the log tree.
1438  * eb, slot and key refer to the buffer and key found in the log tree.
1439  * root is the destination we are replaying into, and path is for temp
1440  * use by this function.  (it should be released on return).
1441  */
1442 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1443 				  struct btrfs_root *root,
1444 				  struct btrfs_root *log,
1445 				  struct btrfs_path *path,
1446 				  struct extent_buffer *eb, int slot,
1447 				  struct btrfs_key *key)
1448 {
1449 	struct inode *dir = NULL;
1450 	struct inode *inode = NULL;
1451 	unsigned long ref_ptr;
1452 	unsigned long ref_end;
1453 	char *name = NULL;
1454 	int namelen;
1455 	int ret;
1456 	int search_done = 0;
1457 	int log_ref_ver = 0;
1458 	u64 parent_objectid;
1459 	u64 inode_objectid;
1460 	u64 ref_index = 0;
1461 	int ref_struct_size;
1462 
1463 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1464 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1465 
1466 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1467 		struct btrfs_inode_extref *r;
1468 
1469 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1470 		log_ref_ver = 1;
1471 		r = (struct btrfs_inode_extref *)ref_ptr;
1472 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1473 	} else {
1474 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1475 		parent_objectid = key->offset;
1476 	}
1477 	inode_objectid = key->objectid;
1478 
1479 	/*
1480 	 * it is possible that we didn't log all the parent directories
1481 	 * for a given inode.  If we don't find the dir, just don't
1482 	 * copy the back ref in.  The link count fixup code will take
1483 	 * care of the rest
1484 	 */
1485 	dir = read_one_inode(root, parent_objectid);
1486 	if (!dir) {
1487 		ret = -ENOENT;
1488 		goto out;
1489 	}
1490 
1491 	inode = read_one_inode(root, inode_objectid);
1492 	if (!inode) {
1493 		ret = -EIO;
1494 		goto out;
1495 	}
1496 
1497 	while (ref_ptr < ref_end) {
1498 		if (log_ref_ver) {
1499 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1500 						&ref_index, &parent_objectid);
1501 			/*
1502 			 * parent object can change from one array
1503 			 * item to another.
1504 			 */
1505 			if (!dir)
1506 				dir = read_one_inode(root, parent_objectid);
1507 			if (!dir) {
1508 				ret = -ENOENT;
1509 				goto out;
1510 			}
1511 		} else {
1512 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1513 					     &ref_index);
1514 		}
1515 		if (ret)
1516 			goto out;
1517 
1518 		/* if we already have a perfect match, we're done */
1519 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1520 					btrfs_ino(BTRFS_I(inode)), ref_index,
1521 					name, namelen)) {
1522 			/*
1523 			 * look for a conflicting back reference in the
1524 			 * metadata. if we find one we have to unlink that name
1525 			 * of the file before we add our new link.  Later on, we
1526 			 * overwrite any existing back reference, and we don't
1527 			 * want to create dangling pointers in the directory.
1528 			 */
1529 
1530 			if (!search_done) {
1531 				ret = __add_inode_ref(trans, root, path, log,
1532 						      BTRFS_I(dir),
1533 						      BTRFS_I(inode),
1534 						      inode_objectid,
1535 						      parent_objectid,
1536 						      ref_index, name, namelen,
1537 						      &search_done);
1538 				if (ret) {
1539 					if (ret == 1)
1540 						ret = 0;
1541 					goto out;
1542 				}
1543 			}
1544 
1545 			/*
1546 			 * If a reference item already exists for this inode
1547 			 * with the same parent and name, but different index,
1548 			 * drop it and the corresponding directory index entries
1549 			 * from the parent before adding the new reference item
1550 			 * and dir index entries, otherwise we would fail with
1551 			 * -EEXIST returned from btrfs_add_link() below.
1552 			 */
1553 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1554 						     name, namelen);
1555 			if (ret > 0) {
1556 				ret = btrfs_unlink_inode(trans, root,
1557 							 BTRFS_I(dir),
1558 							 BTRFS_I(inode),
1559 							 name, namelen);
1560 				/*
1561 				 * If we dropped the link count to 0, bump it so
1562 				 * that later the iput() on the inode will not
1563 				 * free it. We will fixup the link count later.
1564 				 */
1565 				if (!ret && inode->i_nlink == 0)
1566 					inc_nlink(inode);
1567 			}
1568 			if (ret < 0)
1569 				goto out;
1570 
1571 			/* insert our name */
1572 			ret = add_link(trans, root, dir, inode, name, namelen,
1573 				       ref_index);
1574 			if (ret)
1575 				goto out;
1576 
1577 			btrfs_update_inode(trans, root, BTRFS_I(inode));
1578 		}
1579 
1580 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1581 		kfree(name);
1582 		name = NULL;
1583 		if (log_ref_ver) {
1584 			iput(dir);
1585 			dir = NULL;
1586 		}
1587 	}
1588 
1589 	/*
1590 	 * Before we overwrite the inode reference item in the subvolume tree
1591 	 * with the item from the log tree, we must unlink all names from the
1592 	 * parent directory that are in the subvolume's tree inode reference
1593 	 * item, otherwise we end up with an inconsistent subvolume tree where
1594 	 * dir index entries exist for a name but there is no inode reference
1595 	 * item with the same name.
1596 	 */
1597 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1598 				    key);
1599 	if (ret)
1600 		goto out;
1601 
1602 	/* finally write the back reference in the inode */
1603 	ret = overwrite_item(trans, root, path, eb, slot, key);
1604 out:
1605 	btrfs_release_path(path);
1606 	kfree(name);
1607 	iput(dir);
1608 	iput(inode);
1609 	return ret;
1610 }
1611 
1612 static int count_inode_extrefs(struct btrfs_root *root,
1613 		struct btrfs_inode *inode, struct btrfs_path *path)
1614 {
1615 	int ret = 0;
1616 	int name_len;
1617 	unsigned int nlink = 0;
1618 	u32 item_size;
1619 	u32 cur_offset = 0;
1620 	u64 inode_objectid = btrfs_ino(inode);
1621 	u64 offset = 0;
1622 	unsigned long ptr;
1623 	struct btrfs_inode_extref *extref;
1624 	struct extent_buffer *leaf;
1625 
1626 	while (1) {
1627 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1628 					    &extref, &offset);
1629 		if (ret)
1630 			break;
1631 
1632 		leaf = path->nodes[0];
1633 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1634 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1635 		cur_offset = 0;
1636 
1637 		while (cur_offset < item_size) {
1638 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1639 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1640 
1641 			nlink++;
1642 
1643 			cur_offset += name_len + sizeof(*extref);
1644 		}
1645 
1646 		offset++;
1647 		btrfs_release_path(path);
1648 	}
1649 	btrfs_release_path(path);
1650 
1651 	if (ret < 0 && ret != -ENOENT)
1652 		return ret;
1653 	return nlink;
1654 }
1655 
1656 static int count_inode_refs(struct btrfs_root *root,
1657 			struct btrfs_inode *inode, struct btrfs_path *path)
1658 {
1659 	int ret;
1660 	struct btrfs_key key;
1661 	unsigned int nlink = 0;
1662 	unsigned long ptr;
1663 	unsigned long ptr_end;
1664 	int name_len;
1665 	u64 ino = btrfs_ino(inode);
1666 
1667 	key.objectid = ino;
1668 	key.type = BTRFS_INODE_REF_KEY;
1669 	key.offset = (u64)-1;
1670 
1671 	while (1) {
1672 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1673 		if (ret < 0)
1674 			break;
1675 		if (ret > 0) {
1676 			if (path->slots[0] == 0)
1677 				break;
1678 			path->slots[0]--;
1679 		}
1680 process_slot:
1681 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1682 				      path->slots[0]);
1683 		if (key.objectid != ino ||
1684 		    key.type != BTRFS_INODE_REF_KEY)
1685 			break;
1686 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1687 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1688 						   path->slots[0]);
1689 		while (ptr < ptr_end) {
1690 			struct btrfs_inode_ref *ref;
1691 
1692 			ref = (struct btrfs_inode_ref *)ptr;
1693 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1694 							    ref);
1695 			ptr = (unsigned long)(ref + 1) + name_len;
1696 			nlink++;
1697 		}
1698 
1699 		if (key.offset == 0)
1700 			break;
1701 		if (path->slots[0] > 0) {
1702 			path->slots[0]--;
1703 			goto process_slot;
1704 		}
1705 		key.offset--;
1706 		btrfs_release_path(path);
1707 	}
1708 	btrfs_release_path(path);
1709 
1710 	return nlink;
1711 }
1712 
1713 /*
1714  * There are a few corners where the link count of the file can't
1715  * be properly maintained during replay.  So, instead of adding
1716  * lots of complexity to the log code, we just scan the backrefs
1717  * for any file that has been through replay.
1718  *
1719  * The scan will update the link count on the inode to reflect the
1720  * number of back refs found.  If it goes down to zero, the iput
1721  * will free the inode.
1722  */
1723 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1724 					   struct btrfs_root *root,
1725 					   struct inode *inode)
1726 {
1727 	struct btrfs_path *path;
1728 	int ret;
1729 	u64 nlink = 0;
1730 	u64 ino = btrfs_ino(BTRFS_I(inode));
1731 
1732 	path = btrfs_alloc_path();
1733 	if (!path)
1734 		return -ENOMEM;
1735 
1736 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1737 	if (ret < 0)
1738 		goto out;
1739 
1740 	nlink = ret;
1741 
1742 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1743 	if (ret < 0)
1744 		goto out;
1745 
1746 	nlink += ret;
1747 
1748 	ret = 0;
1749 
1750 	if (nlink != inode->i_nlink) {
1751 		set_nlink(inode, nlink);
1752 		btrfs_update_inode(trans, root, BTRFS_I(inode));
1753 	}
1754 	BTRFS_I(inode)->index_cnt = (u64)-1;
1755 
1756 	if (inode->i_nlink == 0) {
1757 		if (S_ISDIR(inode->i_mode)) {
1758 			ret = replay_dir_deletes(trans, root, NULL, path,
1759 						 ino, 1);
1760 			if (ret)
1761 				goto out;
1762 		}
1763 		ret = btrfs_insert_orphan_item(trans, root, ino);
1764 		if (ret == -EEXIST)
1765 			ret = 0;
1766 	}
1767 
1768 out:
1769 	btrfs_free_path(path);
1770 	return ret;
1771 }
1772 
1773 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1774 					    struct btrfs_root *root,
1775 					    struct btrfs_path *path)
1776 {
1777 	int ret;
1778 	struct btrfs_key key;
1779 	struct inode *inode;
1780 
1781 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1782 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1783 	key.offset = (u64)-1;
1784 	while (1) {
1785 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1786 		if (ret < 0)
1787 			break;
1788 
1789 		if (ret == 1) {
1790 			if (path->slots[0] == 0)
1791 				break;
1792 			path->slots[0]--;
1793 		}
1794 
1795 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1796 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1797 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1798 			break;
1799 
1800 		ret = btrfs_del_item(trans, root, path);
1801 		if (ret)
1802 			goto out;
1803 
1804 		btrfs_release_path(path);
1805 		inode = read_one_inode(root, key.offset);
1806 		if (!inode)
1807 			return -EIO;
1808 
1809 		ret = fixup_inode_link_count(trans, root, inode);
1810 		iput(inode);
1811 		if (ret)
1812 			goto out;
1813 
1814 		/*
1815 		 * fixup on a directory may create new entries,
1816 		 * make sure we always look for the highset possible
1817 		 * offset
1818 		 */
1819 		key.offset = (u64)-1;
1820 	}
1821 	ret = 0;
1822 out:
1823 	btrfs_release_path(path);
1824 	return ret;
1825 }
1826 
1827 
1828 /*
1829  * record a given inode in the fixup dir so we can check its link
1830  * count when replay is done.  The link count is incremented here
1831  * so the inode won't go away until we check it
1832  */
1833 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1834 				      struct btrfs_root *root,
1835 				      struct btrfs_path *path,
1836 				      u64 objectid)
1837 {
1838 	struct btrfs_key key;
1839 	int ret = 0;
1840 	struct inode *inode;
1841 
1842 	inode = read_one_inode(root, objectid);
1843 	if (!inode)
1844 		return -EIO;
1845 
1846 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1847 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1848 	key.offset = objectid;
1849 
1850 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1851 
1852 	btrfs_release_path(path);
1853 	if (ret == 0) {
1854 		if (!inode->i_nlink)
1855 			set_nlink(inode, 1);
1856 		else
1857 			inc_nlink(inode);
1858 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1859 	} else if (ret == -EEXIST) {
1860 		ret = 0;
1861 	}
1862 	iput(inode);
1863 
1864 	return ret;
1865 }
1866 
1867 /*
1868  * when replaying the log for a directory, we only insert names
1869  * for inodes that actually exist.  This means an fsync on a directory
1870  * does not implicitly fsync all the new files in it
1871  */
1872 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1873 				    struct btrfs_root *root,
1874 				    u64 dirid, u64 index,
1875 				    char *name, int name_len,
1876 				    struct btrfs_key *location)
1877 {
1878 	struct inode *inode;
1879 	struct inode *dir;
1880 	int ret;
1881 
1882 	inode = read_one_inode(root, location->objectid);
1883 	if (!inode)
1884 		return -ENOENT;
1885 
1886 	dir = read_one_inode(root, dirid);
1887 	if (!dir) {
1888 		iput(inode);
1889 		return -EIO;
1890 	}
1891 
1892 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1893 			name_len, 1, index);
1894 
1895 	/* FIXME, put inode into FIXUP list */
1896 
1897 	iput(inode);
1898 	iput(dir);
1899 	return ret;
1900 }
1901 
1902 /*
1903  * take a single entry in a log directory item and replay it into
1904  * the subvolume.
1905  *
1906  * if a conflicting item exists in the subdirectory already,
1907  * the inode it points to is unlinked and put into the link count
1908  * fix up tree.
1909  *
1910  * If a name from the log points to a file or directory that does
1911  * not exist in the FS, it is skipped.  fsyncs on directories
1912  * do not force down inodes inside that directory, just changes to the
1913  * names or unlinks in a directory.
1914  *
1915  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1916  * non-existing inode) and 1 if the name was replayed.
1917  */
1918 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1919 				    struct btrfs_root *root,
1920 				    struct btrfs_path *path,
1921 				    struct extent_buffer *eb,
1922 				    struct btrfs_dir_item *di,
1923 				    struct btrfs_key *key)
1924 {
1925 	char *name;
1926 	int name_len;
1927 	struct btrfs_dir_item *dst_di;
1928 	struct btrfs_key found_key;
1929 	struct btrfs_key log_key;
1930 	struct inode *dir;
1931 	u8 log_type;
1932 	int exists;
1933 	int ret = 0;
1934 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1935 	bool name_added = false;
1936 
1937 	dir = read_one_inode(root, key->objectid);
1938 	if (!dir)
1939 		return -EIO;
1940 
1941 	name_len = btrfs_dir_name_len(eb, di);
1942 	name = kmalloc(name_len, GFP_NOFS);
1943 	if (!name) {
1944 		ret = -ENOMEM;
1945 		goto out;
1946 	}
1947 
1948 	log_type = btrfs_dir_type(eb, di);
1949 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1950 		   name_len);
1951 
1952 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1953 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1954 	if (exists == 0)
1955 		exists = 1;
1956 	else
1957 		exists = 0;
1958 	btrfs_release_path(path);
1959 
1960 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1961 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1962 				       name, name_len, 1);
1963 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1964 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1965 						     key->objectid,
1966 						     key->offset, name,
1967 						     name_len, 1);
1968 	} else {
1969 		/* Corruption */
1970 		ret = -EINVAL;
1971 		goto out;
1972 	}
1973 	if (IS_ERR_OR_NULL(dst_di)) {
1974 		/* we need a sequence number to insert, so we only
1975 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1976 		 */
1977 		if (key->type != BTRFS_DIR_INDEX_KEY)
1978 			goto out;
1979 		goto insert;
1980 	}
1981 
1982 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1983 	/* the existing item matches the logged item */
1984 	if (found_key.objectid == log_key.objectid &&
1985 	    found_key.type == log_key.type &&
1986 	    found_key.offset == log_key.offset &&
1987 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1988 		update_size = false;
1989 		goto out;
1990 	}
1991 
1992 	/*
1993 	 * don't drop the conflicting directory entry if the inode
1994 	 * for the new entry doesn't exist
1995 	 */
1996 	if (!exists)
1997 		goto out;
1998 
1999 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2000 	if (ret)
2001 		goto out;
2002 
2003 	if (key->type == BTRFS_DIR_INDEX_KEY)
2004 		goto insert;
2005 out:
2006 	btrfs_release_path(path);
2007 	if (!ret && update_size) {
2008 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2009 		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2010 	}
2011 	kfree(name);
2012 	iput(dir);
2013 	if (!ret && name_added)
2014 		ret = 1;
2015 	return ret;
2016 
2017 insert:
2018 	/*
2019 	 * Check if the inode reference exists in the log for the given name,
2020 	 * inode and parent inode
2021 	 */
2022 	found_key.objectid = log_key.objectid;
2023 	found_key.type = BTRFS_INODE_REF_KEY;
2024 	found_key.offset = key->objectid;
2025 	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2026 	if (ret < 0) {
2027 	        goto out;
2028 	} else if (ret) {
2029 	        /* The dentry will be added later. */
2030 	        ret = 0;
2031 	        update_size = false;
2032 	        goto out;
2033 	}
2034 
2035 	found_key.objectid = log_key.objectid;
2036 	found_key.type = BTRFS_INODE_EXTREF_KEY;
2037 	found_key.offset = key->objectid;
2038 	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2039 			     name_len);
2040 	if (ret < 0) {
2041 		goto out;
2042 	} else if (ret) {
2043 		/* The dentry will be added later. */
2044 		ret = 0;
2045 		update_size = false;
2046 		goto out;
2047 	}
2048 	btrfs_release_path(path);
2049 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2050 			      name, name_len, &log_key);
2051 	if (ret && ret != -ENOENT && ret != -EEXIST)
2052 		goto out;
2053 	if (!ret)
2054 		name_added = true;
2055 	update_size = false;
2056 	ret = 0;
2057 	goto out;
2058 }
2059 
2060 /*
2061  * find all the names in a directory item and reconcile them into
2062  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2063  * one name in a directory item, but the same code gets used for
2064  * both directory index types
2065  */
2066 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2067 					struct btrfs_root *root,
2068 					struct btrfs_path *path,
2069 					struct extent_buffer *eb, int slot,
2070 					struct btrfs_key *key)
2071 {
2072 	int ret = 0;
2073 	u32 item_size = btrfs_item_size_nr(eb, slot);
2074 	struct btrfs_dir_item *di;
2075 	int name_len;
2076 	unsigned long ptr;
2077 	unsigned long ptr_end;
2078 	struct btrfs_path *fixup_path = NULL;
2079 
2080 	ptr = btrfs_item_ptr_offset(eb, slot);
2081 	ptr_end = ptr + item_size;
2082 	while (ptr < ptr_end) {
2083 		di = (struct btrfs_dir_item *)ptr;
2084 		name_len = btrfs_dir_name_len(eb, di);
2085 		ret = replay_one_name(trans, root, path, eb, di, key);
2086 		if (ret < 0)
2087 			break;
2088 		ptr = (unsigned long)(di + 1);
2089 		ptr += name_len;
2090 
2091 		/*
2092 		 * If this entry refers to a non-directory (directories can not
2093 		 * have a link count > 1) and it was added in the transaction
2094 		 * that was not committed, make sure we fixup the link count of
2095 		 * the inode it the entry points to. Otherwise something like
2096 		 * the following would result in a directory pointing to an
2097 		 * inode with a wrong link that does not account for this dir
2098 		 * entry:
2099 		 *
2100 		 * mkdir testdir
2101 		 * touch testdir/foo
2102 		 * touch testdir/bar
2103 		 * sync
2104 		 *
2105 		 * ln testdir/bar testdir/bar_link
2106 		 * ln testdir/foo testdir/foo_link
2107 		 * xfs_io -c "fsync" testdir/bar
2108 		 *
2109 		 * <power failure>
2110 		 *
2111 		 * mount fs, log replay happens
2112 		 *
2113 		 * File foo would remain with a link count of 1 when it has two
2114 		 * entries pointing to it in the directory testdir. This would
2115 		 * make it impossible to ever delete the parent directory has
2116 		 * it would result in stale dentries that can never be deleted.
2117 		 */
2118 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2119 			struct btrfs_key di_key;
2120 
2121 			if (!fixup_path) {
2122 				fixup_path = btrfs_alloc_path();
2123 				if (!fixup_path) {
2124 					ret = -ENOMEM;
2125 					break;
2126 				}
2127 			}
2128 
2129 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2130 			ret = link_to_fixup_dir(trans, root, fixup_path,
2131 						di_key.objectid);
2132 			if (ret)
2133 				break;
2134 		}
2135 		ret = 0;
2136 	}
2137 	btrfs_free_path(fixup_path);
2138 	return ret;
2139 }
2140 
2141 /*
2142  * directory replay has two parts.  There are the standard directory
2143  * items in the log copied from the subvolume, and range items
2144  * created in the log while the subvolume was logged.
2145  *
2146  * The range items tell us which parts of the key space the log
2147  * is authoritative for.  During replay, if a key in the subvolume
2148  * directory is in a logged range item, but not actually in the log
2149  * that means it was deleted from the directory before the fsync
2150  * and should be removed.
2151  */
2152 static noinline int find_dir_range(struct btrfs_root *root,
2153 				   struct btrfs_path *path,
2154 				   u64 dirid, int key_type,
2155 				   u64 *start_ret, u64 *end_ret)
2156 {
2157 	struct btrfs_key key;
2158 	u64 found_end;
2159 	struct btrfs_dir_log_item *item;
2160 	int ret;
2161 	int nritems;
2162 
2163 	if (*start_ret == (u64)-1)
2164 		return 1;
2165 
2166 	key.objectid = dirid;
2167 	key.type = key_type;
2168 	key.offset = *start_ret;
2169 
2170 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2171 	if (ret < 0)
2172 		goto out;
2173 	if (ret > 0) {
2174 		if (path->slots[0] == 0)
2175 			goto out;
2176 		path->slots[0]--;
2177 	}
2178 	if (ret != 0)
2179 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2180 
2181 	if (key.type != key_type || key.objectid != dirid) {
2182 		ret = 1;
2183 		goto next;
2184 	}
2185 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2186 			      struct btrfs_dir_log_item);
2187 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2188 
2189 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2190 		ret = 0;
2191 		*start_ret = key.offset;
2192 		*end_ret = found_end;
2193 		goto out;
2194 	}
2195 	ret = 1;
2196 next:
2197 	/* check the next slot in the tree to see if it is a valid item */
2198 	nritems = btrfs_header_nritems(path->nodes[0]);
2199 	path->slots[0]++;
2200 	if (path->slots[0] >= nritems) {
2201 		ret = btrfs_next_leaf(root, path);
2202 		if (ret)
2203 			goto out;
2204 	}
2205 
2206 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2207 
2208 	if (key.type != key_type || key.objectid != dirid) {
2209 		ret = 1;
2210 		goto out;
2211 	}
2212 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2213 			      struct btrfs_dir_log_item);
2214 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2215 	*start_ret = key.offset;
2216 	*end_ret = found_end;
2217 	ret = 0;
2218 out:
2219 	btrfs_release_path(path);
2220 	return ret;
2221 }
2222 
2223 /*
2224  * this looks for a given directory item in the log.  If the directory
2225  * item is not in the log, the item is removed and the inode it points
2226  * to is unlinked
2227  */
2228 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2229 				      struct btrfs_root *root,
2230 				      struct btrfs_root *log,
2231 				      struct btrfs_path *path,
2232 				      struct btrfs_path *log_path,
2233 				      struct inode *dir,
2234 				      struct btrfs_key *dir_key)
2235 {
2236 	int ret;
2237 	struct extent_buffer *eb;
2238 	int slot;
2239 	u32 item_size;
2240 	struct btrfs_dir_item *di;
2241 	struct btrfs_dir_item *log_di;
2242 	int name_len;
2243 	unsigned long ptr;
2244 	unsigned long ptr_end;
2245 	char *name;
2246 	struct inode *inode;
2247 	struct btrfs_key location;
2248 
2249 again:
2250 	eb = path->nodes[0];
2251 	slot = path->slots[0];
2252 	item_size = btrfs_item_size_nr(eb, slot);
2253 	ptr = btrfs_item_ptr_offset(eb, slot);
2254 	ptr_end = ptr + item_size;
2255 	while (ptr < ptr_end) {
2256 		di = (struct btrfs_dir_item *)ptr;
2257 		name_len = btrfs_dir_name_len(eb, di);
2258 		name = kmalloc(name_len, GFP_NOFS);
2259 		if (!name) {
2260 			ret = -ENOMEM;
2261 			goto out;
2262 		}
2263 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2264 				  name_len);
2265 		log_di = NULL;
2266 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2267 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2268 						       dir_key->objectid,
2269 						       name, name_len, 0);
2270 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2271 			log_di = btrfs_lookup_dir_index_item(trans, log,
2272 						     log_path,
2273 						     dir_key->objectid,
2274 						     dir_key->offset,
2275 						     name, name_len, 0);
2276 		}
2277 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2278 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2279 			btrfs_release_path(path);
2280 			btrfs_release_path(log_path);
2281 			inode = read_one_inode(root, location.objectid);
2282 			if (!inode) {
2283 				kfree(name);
2284 				return -EIO;
2285 			}
2286 
2287 			ret = link_to_fixup_dir(trans, root,
2288 						path, location.objectid);
2289 			if (ret) {
2290 				kfree(name);
2291 				iput(inode);
2292 				goto out;
2293 			}
2294 
2295 			inc_nlink(inode);
2296 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2297 					BTRFS_I(inode), name, name_len);
2298 			if (!ret)
2299 				ret = btrfs_run_delayed_items(trans);
2300 			kfree(name);
2301 			iput(inode);
2302 			if (ret)
2303 				goto out;
2304 
2305 			/* there might still be more names under this key
2306 			 * check and repeat if required
2307 			 */
2308 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2309 						0, 0);
2310 			if (ret == 0)
2311 				goto again;
2312 			ret = 0;
2313 			goto out;
2314 		} else if (IS_ERR(log_di)) {
2315 			kfree(name);
2316 			return PTR_ERR(log_di);
2317 		}
2318 		btrfs_release_path(log_path);
2319 		kfree(name);
2320 
2321 		ptr = (unsigned long)(di + 1);
2322 		ptr += name_len;
2323 	}
2324 	ret = 0;
2325 out:
2326 	btrfs_release_path(path);
2327 	btrfs_release_path(log_path);
2328 	return ret;
2329 }
2330 
2331 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2332 			      struct btrfs_root *root,
2333 			      struct btrfs_root *log,
2334 			      struct btrfs_path *path,
2335 			      const u64 ino)
2336 {
2337 	struct btrfs_key search_key;
2338 	struct btrfs_path *log_path;
2339 	int i;
2340 	int nritems;
2341 	int ret;
2342 
2343 	log_path = btrfs_alloc_path();
2344 	if (!log_path)
2345 		return -ENOMEM;
2346 
2347 	search_key.objectid = ino;
2348 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2349 	search_key.offset = 0;
2350 again:
2351 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2352 	if (ret < 0)
2353 		goto out;
2354 process_leaf:
2355 	nritems = btrfs_header_nritems(path->nodes[0]);
2356 	for (i = path->slots[0]; i < nritems; i++) {
2357 		struct btrfs_key key;
2358 		struct btrfs_dir_item *di;
2359 		struct btrfs_dir_item *log_di;
2360 		u32 total_size;
2361 		u32 cur;
2362 
2363 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2364 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2365 			ret = 0;
2366 			goto out;
2367 		}
2368 
2369 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2370 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2371 		cur = 0;
2372 		while (cur < total_size) {
2373 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2374 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2375 			u32 this_len = sizeof(*di) + name_len + data_len;
2376 			char *name;
2377 
2378 			name = kmalloc(name_len, GFP_NOFS);
2379 			if (!name) {
2380 				ret = -ENOMEM;
2381 				goto out;
2382 			}
2383 			read_extent_buffer(path->nodes[0], name,
2384 					   (unsigned long)(di + 1), name_len);
2385 
2386 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2387 						    name, name_len, 0);
2388 			btrfs_release_path(log_path);
2389 			if (!log_di) {
2390 				/* Doesn't exist in log tree, so delete it. */
2391 				btrfs_release_path(path);
2392 				di = btrfs_lookup_xattr(trans, root, path, ino,
2393 							name, name_len, -1);
2394 				kfree(name);
2395 				if (IS_ERR(di)) {
2396 					ret = PTR_ERR(di);
2397 					goto out;
2398 				}
2399 				ASSERT(di);
2400 				ret = btrfs_delete_one_dir_name(trans, root,
2401 								path, di);
2402 				if (ret)
2403 					goto out;
2404 				btrfs_release_path(path);
2405 				search_key = key;
2406 				goto again;
2407 			}
2408 			kfree(name);
2409 			if (IS_ERR(log_di)) {
2410 				ret = PTR_ERR(log_di);
2411 				goto out;
2412 			}
2413 			cur += this_len;
2414 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2415 		}
2416 	}
2417 	ret = btrfs_next_leaf(root, path);
2418 	if (ret > 0)
2419 		ret = 0;
2420 	else if (ret == 0)
2421 		goto process_leaf;
2422 out:
2423 	btrfs_free_path(log_path);
2424 	btrfs_release_path(path);
2425 	return ret;
2426 }
2427 
2428 
2429 /*
2430  * deletion replay happens before we copy any new directory items
2431  * out of the log or out of backreferences from inodes.  It
2432  * scans the log to find ranges of keys that log is authoritative for,
2433  * and then scans the directory to find items in those ranges that are
2434  * not present in the log.
2435  *
2436  * Anything we don't find in the log is unlinked and removed from the
2437  * directory.
2438  */
2439 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2440 				       struct btrfs_root *root,
2441 				       struct btrfs_root *log,
2442 				       struct btrfs_path *path,
2443 				       u64 dirid, int del_all)
2444 {
2445 	u64 range_start;
2446 	u64 range_end;
2447 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2448 	int ret = 0;
2449 	struct btrfs_key dir_key;
2450 	struct btrfs_key found_key;
2451 	struct btrfs_path *log_path;
2452 	struct inode *dir;
2453 
2454 	dir_key.objectid = dirid;
2455 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2456 	log_path = btrfs_alloc_path();
2457 	if (!log_path)
2458 		return -ENOMEM;
2459 
2460 	dir = read_one_inode(root, dirid);
2461 	/* it isn't an error if the inode isn't there, that can happen
2462 	 * because we replay the deletes before we copy in the inode item
2463 	 * from the log
2464 	 */
2465 	if (!dir) {
2466 		btrfs_free_path(log_path);
2467 		return 0;
2468 	}
2469 again:
2470 	range_start = 0;
2471 	range_end = 0;
2472 	while (1) {
2473 		if (del_all)
2474 			range_end = (u64)-1;
2475 		else {
2476 			ret = find_dir_range(log, path, dirid, key_type,
2477 					     &range_start, &range_end);
2478 			if (ret != 0)
2479 				break;
2480 		}
2481 
2482 		dir_key.offset = range_start;
2483 		while (1) {
2484 			int nritems;
2485 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2486 						0, 0);
2487 			if (ret < 0)
2488 				goto out;
2489 
2490 			nritems = btrfs_header_nritems(path->nodes[0]);
2491 			if (path->slots[0] >= nritems) {
2492 				ret = btrfs_next_leaf(root, path);
2493 				if (ret == 1)
2494 					break;
2495 				else if (ret < 0)
2496 					goto out;
2497 			}
2498 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2499 					      path->slots[0]);
2500 			if (found_key.objectid != dirid ||
2501 			    found_key.type != dir_key.type)
2502 				goto next_type;
2503 
2504 			if (found_key.offset > range_end)
2505 				break;
2506 
2507 			ret = check_item_in_log(trans, root, log, path,
2508 						log_path, dir,
2509 						&found_key);
2510 			if (ret)
2511 				goto out;
2512 			if (found_key.offset == (u64)-1)
2513 				break;
2514 			dir_key.offset = found_key.offset + 1;
2515 		}
2516 		btrfs_release_path(path);
2517 		if (range_end == (u64)-1)
2518 			break;
2519 		range_start = range_end + 1;
2520 	}
2521 
2522 next_type:
2523 	ret = 0;
2524 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2525 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2526 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2527 		btrfs_release_path(path);
2528 		goto again;
2529 	}
2530 out:
2531 	btrfs_release_path(path);
2532 	btrfs_free_path(log_path);
2533 	iput(dir);
2534 	return ret;
2535 }
2536 
2537 /*
2538  * the process_func used to replay items from the log tree.  This
2539  * gets called in two different stages.  The first stage just looks
2540  * for inodes and makes sure they are all copied into the subvolume.
2541  *
2542  * The second stage copies all the other item types from the log into
2543  * the subvolume.  The two stage approach is slower, but gets rid of
2544  * lots of complexity around inodes referencing other inodes that exist
2545  * only in the log (references come from either directory items or inode
2546  * back refs).
2547  */
2548 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2549 			     struct walk_control *wc, u64 gen, int level)
2550 {
2551 	int nritems;
2552 	struct btrfs_path *path;
2553 	struct btrfs_root *root = wc->replay_dest;
2554 	struct btrfs_key key;
2555 	int i;
2556 	int ret;
2557 
2558 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2559 	if (ret)
2560 		return ret;
2561 
2562 	level = btrfs_header_level(eb);
2563 
2564 	if (level != 0)
2565 		return 0;
2566 
2567 	path = btrfs_alloc_path();
2568 	if (!path)
2569 		return -ENOMEM;
2570 
2571 	nritems = btrfs_header_nritems(eb);
2572 	for (i = 0; i < nritems; i++) {
2573 		btrfs_item_key_to_cpu(eb, &key, i);
2574 
2575 		/* inode keys are done during the first stage */
2576 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2577 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2578 			struct btrfs_inode_item *inode_item;
2579 			u32 mode;
2580 
2581 			inode_item = btrfs_item_ptr(eb, i,
2582 					    struct btrfs_inode_item);
2583 			/*
2584 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2585 			 * and never got linked before the fsync, skip it, as
2586 			 * replaying it is pointless since it would be deleted
2587 			 * later. We skip logging tmpfiles, but it's always
2588 			 * possible we are replaying a log created with a kernel
2589 			 * that used to log tmpfiles.
2590 			 */
2591 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2592 				wc->ignore_cur_inode = true;
2593 				continue;
2594 			} else {
2595 				wc->ignore_cur_inode = false;
2596 			}
2597 			ret = replay_xattr_deletes(wc->trans, root, log,
2598 						   path, key.objectid);
2599 			if (ret)
2600 				break;
2601 			mode = btrfs_inode_mode(eb, inode_item);
2602 			if (S_ISDIR(mode)) {
2603 				ret = replay_dir_deletes(wc->trans,
2604 					 root, log, path, key.objectid, 0);
2605 				if (ret)
2606 					break;
2607 			}
2608 			ret = overwrite_item(wc->trans, root, path,
2609 					     eb, i, &key);
2610 			if (ret)
2611 				break;
2612 
2613 			/*
2614 			 * Before replaying extents, truncate the inode to its
2615 			 * size. We need to do it now and not after log replay
2616 			 * because before an fsync we can have prealloc extents
2617 			 * added beyond the inode's i_size. If we did it after,
2618 			 * through orphan cleanup for example, we would drop
2619 			 * those prealloc extents just after replaying them.
2620 			 */
2621 			if (S_ISREG(mode)) {
2622 				struct btrfs_drop_extents_args drop_args = { 0 };
2623 				struct inode *inode;
2624 				u64 from;
2625 
2626 				inode = read_one_inode(root, key.objectid);
2627 				if (!inode) {
2628 					ret = -EIO;
2629 					break;
2630 				}
2631 				from = ALIGN(i_size_read(inode),
2632 					     root->fs_info->sectorsize);
2633 				drop_args.start = from;
2634 				drop_args.end = (u64)-1;
2635 				drop_args.drop_cache = true;
2636 				ret = btrfs_drop_extents(wc->trans, root,
2637 							 BTRFS_I(inode),
2638 							 &drop_args);
2639 				if (!ret) {
2640 					inode_sub_bytes(inode,
2641 							drop_args.bytes_found);
2642 					/* Update the inode's nbytes. */
2643 					ret = btrfs_update_inode(wc->trans,
2644 							root, BTRFS_I(inode));
2645 				}
2646 				iput(inode);
2647 				if (ret)
2648 					break;
2649 			}
2650 
2651 			ret = link_to_fixup_dir(wc->trans, root,
2652 						path, key.objectid);
2653 			if (ret)
2654 				break;
2655 		}
2656 
2657 		if (wc->ignore_cur_inode)
2658 			continue;
2659 
2660 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2661 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2662 			ret = replay_one_dir_item(wc->trans, root, path,
2663 						  eb, i, &key);
2664 			if (ret)
2665 				break;
2666 		}
2667 
2668 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2669 			continue;
2670 
2671 		/* these keys are simply copied */
2672 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2673 			ret = overwrite_item(wc->trans, root, path,
2674 					     eb, i, &key);
2675 			if (ret)
2676 				break;
2677 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2678 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2679 			ret = add_inode_ref(wc->trans, root, log, path,
2680 					    eb, i, &key);
2681 			if (ret && ret != -ENOENT)
2682 				break;
2683 			ret = 0;
2684 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2685 			ret = replay_one_extent(wc->trans, root, path,
2686 						eb, i, &key);
2687 			if (ret)
2688 				break;
2689 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2690 			ret = replay_one_dir_item(wc->trans, root, path,
2691 						  eb, i, &key);
2692 			if (ret)
2693 				break;
2694 		}
2695 	}
2696 	btrfs_free_path(path);
2697 	return ret;
2698 }
2699 
2700 /*
2701  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2702  */
2703 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2704 {
2705 	struct btrfs_block_group *cache;
2706 
2707 	cache = btrfs_lookup_block_group(fs_info, start);
2708 	if (!cache) {
2709 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2710 		return;
2711 	}
2712 
2713 	spin_lock(&cache->space_info->lock);
2714 	spin_lock(&cache->lock);
2715 	cache->reserved -= fs_info->nodesize;
2716 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2717 	spin_unlock(&cache->lock);
2718 	spin_unlock(&cache->space_info->lock);
2719 
2720 	btrfs_put_block_group(cache);
2721 }
2722 
2723 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2724 				   struct btrfs_root *root,
2725 				   struct btrfs_path *path, int *level,
2726 				   struct walk_control *wc)
2727 {
2728 	struct btrfs_fs_info *fs_info = root->fs_info;
2729 	u64 bytenr;
2730 	u64 ptr_gen;
2731 	struct extent_buffer *next;
2732 	struct extent_buffer *cur;
2733 	u32 blocksize;
2734 	int ret = 0;
2735 
2736 	while (*level > 0) {
2737 		struct btrfs_key first_key;
2738 
2739 		cur = path->nodes[*level];
2740 
2741 		WARN_ON(btrfs_header_level(cur) != *level);
2742 
2743 		if (path->slots[*level] >=
2744 		    btrfs_header_nritems(cur))
2745 			break;
2746 
2747 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2748 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2749 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2750 		blocksize = fs_info->nodesize;
2751 
2752 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2753 						    btrfs_header_owner(cur),
2754 						    *level - 1);
2755 		if (IS_ERR(next))
2756 			return PTR_ERR(next);
2757 
2758 		if (*level == 1) {
2759 			ret = wc->process_func(root, next, wc, ptr_gen,
2760 					       *level - 1);
2761 			if (ret) {
2762 				free_extent_buffer(next);
2763 				return ret;
2764 			}
2765 
2766 			path->slots[*level]++;
2767 			if (wc->free) {
2768 				ret = btrfs_read_buffer(next, ptr_gen,
2769 							*level - 1, &first_key);
2770 				if (ret) {
2771 					free_extent_buffer(next);
2772 					return ret;
2773 				}
2774 
2775 				if (trans) {
2776 					btrfs_tree_lock(next);
2777 					btrfs_clean_tree_block(next);
2778 					btrfs_wait_tree_block_writeback(next);
2779 					btrfs_tree_unlock(next);
2780 					ret = btrfs_pin_reserved_extent(trans,
2781 							bytenr, blocksize);
2782 					if (ret) {
2783 						free_extent_buffer(next);
2784 						return ret;
2785 					}
2786 					btrfs_redirty_list_add(
2787 						trans->transaction, next);
2788 				} else {
2789 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2790 						clear_extent_buffer_dirty(next);
2791 					unaccount_log_buffer(fs_info, bytenr);
2792 				}
2793 			}
2794 			free_extent_buffer(next);
2795 			continue;
2796 		}
2797 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2798 		if (ret) {
2799 			free_extent_buffer(next);
2800 			return ret;
2801 		}
2802 
2803 		if (path->nodes[*level-1])
2804 			free_extent_buffer(path->nodes[*level-1]);
2805 		path->nodes[*level-1] = next;
2806 		*level = btrfs_header_level(next);
2807 		path->slots[*level] = 0;
2808 		cond_resched();
2809 	}
2810 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2811 
2812 	cond_resched();
2813 	return 0;
2814 }
2815 
2816 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2817 				 struct btrfs_root *root,
2818 				 struct btrfs_path *path, int *level,
2819 				 struct walk_control *wc)
2820 {
2821 	struct btrfs_fs_info *fs_info = root->fs_info;
2822 	int i;
2823 	int slot;
2824 	int ret;
2825 
2826 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2827 		slot = path->slots[i];
2828 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2829 			path->slots[i]++;
2830 			*level = i;
2831 			WARN_ON(*level == 0);
2832 			return 0;
2833 		} else {
2834 			ret = wc->process_func(root, path->nodes[*level], wc,
2835 				 btrfs_header_generation(path->nodes[*level]),
2836 				 *level);
2837 			if (ret)
2838 				return ret;
2839 
2840 			if (wc->free) {
2841 				struct extent_buffer *next;
2842 
2843 				next = path->nodes[*level];
2844 
2845 				if (trans) {
2846 					btrfs_tree_lock(next);
2847 					btrfs_clean_tree_block(next);
2848 					btrfs_wait_tree_block_writeback(next);
2849 					btrfs_tree_unlock(next);
2850 					ret = btrfs_pin_reserved_extent(trans,
2851 						     path->nodes[*level]->start,
2852 						     path->nodes[*level]->len);
2853 					if (ret)
2854 						return ret;
2855 				} else {
2856 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2857 						clear_extent_buffer_dirty(next);
2858 
2859 					unaccount_log_buffer(fs_info,
2860 						path->nodes[*level]->start);
2861 				}
2862 			}
2863 			free_extent_buffer(path->nodes[*level]);
2864 			path->nodes[*level] = NULL;
2865 			*level = i + 1;
2866 		}
2867 	}
2868 	return 1;
2869 }
2870 
2871 /*
2872  * drop the reference count on the tree rooted at 'snap'.  This traverses
2873  * the tree freeing any blocks that have a ref count of zero after being
2874  * decremented.
2875  */
2876 static int walk_log_tree(struct btrfs_trans_handle *trans,
2877 			 struct btrfs_root *log, struct walk_control *wc)
2878 {
2879 	struct btrfs_fs_info *fs_info = log->fs_info;
2880 	int ret = 0;
2881 	int wret;
2882 	int level;
2883 	struct btrfs_path *path;
2884 	int orig_level;
2885 
2886 	path = btrfs_alloc_path();
2887 	if (!path)
2888 		return -ENOMEM;
2889 
2890 	level = btrfs_header_level(log->node);
2891 	orig_level = level;
2892 	path->nodes[level] = log->node;
2893 	atomic_inc(&log->node->refs);
2894 	path->slots[level] = 0;
2895 
2896 	while (1) {
2897 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2898 		if (wret > 0)
2899 			break;
2900 		if (wret < 0) {
2901 			ret = wret;
2902 			goto out;
2903 		}
2904 
2905 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2906 		if (wret > 0)
2907 			break;
2908 		if (wret < 0) {
2909 			ret = wret;
2910 			goto out;
2911 		}
2912 	}
2913 
2914 	/* was the root node processed? if not, catch it here */
2915 	if (path->nodes[orig_level]) {
2916 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2917 			 btrfs_header_generation(path->nodes[orig_level]),
2918 			 orig_level);
2919 		if (ret)
2920 			goto out;
2921 		if (wc->free) {
2922 			struct extent_buffer *next;
2923 
2924 			next = path->nodes[orig_level];
2925 
2926 			if (trans) {
2927 				btrfs_tree_lock(next);
2928 				btrfs_clean_tree_block(next);
2929 				btrfs_wait_tree_block_writeback(next);
2930 				btrfs_tree_unlock(next);
2931 				ret = btrfs_pin_reserved_extent(trans,
2932 						next->start, next->len);
2933 				if (ret)
2934 					goto out;
2935 			} else {
2936 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2937 					clear_extent_buffer_dirty(next);
2938 				unaccount_log_buffer(fs_info, next->start);
2939 			}
2940 		}
2941 	}
2942 
2943 out:
2944 	btrfs_free_path(path);
2945 	return ret;
2946 }
2947 
2948 /*
2949  * helper function to update the item for a given subvolumes log root
2950  * in the tree of log roots
2951  */
2952 static int update_log_root(struct btrfs_trans_handle *trans,
2953 			   struct btrfs_root *log,
2954 			   struct btrfs_root_item *root_item)
2955 {
2956 	struct btrfs_fs_info *fs_info = log->fs_info;
2957 	int ret;
2958 
2959 	if (log->log_transid == 1) {
2960 		/* insert root item on the first sync */
2961 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2962 				&log->root_key, root_item);
2963 	} else {
2964 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2965 				&log->root_key, root_item);
2966 	}
2967 	return ret;
2968 }
2969 
2970 static void wait_log_commit(struct btrfs_root *root, int transid)
2971 {
2972 	DEFINE_WAIT(wait);
2973 	int index = transid % 2;
2974 
2975 	/*
2976 	 * we only allow two pending log transactions at a time,
2977 	 * so we know that if ours is more than 2 older than the
2978 	 * current transaction, we're done
2979 	 */
2980 	for (;;) {
2981 		prepare_to_wait(&root->log_commit_wait[index],
2982 				&wait, TASK_UNINTERRUPTIBLE);
2983 
2984 		if (!(root->log_transid_committed < transid &&
2985 		      atomic_read(&root->log_commit[index])))
2986 			break;
2987 
2988 		mutex_unlock(&root->log_mutex);
2989 		schedule();
2990 		mutex_lock(&root->log_mutex);
2991 	}
2992 	finish_wait(&root->log_commit_wait[index], &wait);
2993 }
2994 
2995 static void wait_for_writer(struct btrfs_root *root)
2996 {
2997 	DEFINE_WAIT(wait);
2998 
2999 	for (;;) {
3000 		prepare_to_wait(&root->log_writer_wait, &wait,
3001 				TASK_UNINTERRUPTIBLE);
3002 		if (!atomic_read(&root->log_writers))
3003 			break;
3004 
3005 		mutex_unlock(&root->log_mutex);
3006 		schedule();
3007 		mutex_lock(&root->log_mutex);
3008 	}
3009 	finish_wait(&root->log_writer_wait, &wait);
3010 }
3011 
3012 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3013 					struct btrfs_log_ctx *ctx)
3014 {
3015 	if (!ctx)
3016 		return;
3017 
3018 	mutex_lock(&root->log_mutex);
3019 	list_del_init(&ctx->list);
3020 	mutex_unlock(&root->log_mutex);
3021 }
3022 
3023 /*
3024  * Invoked in log mutex context, or be sure there is no other task which
3025  * can access the list.
3026  */
3027 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3028 					     int index, int error)
3029 {
3030 	struct btrfs_log_ctx *ctx;
3031 	struct btrfs_log_ctx *safe;
3032 
3033 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3034 		list_del_init(&ctx->list);
3035 		ctx->log_ret = error;
3036 	}
3037 
3038 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3039 }
3040 
3041 /*
3042  * btrfs_sync_log does sends a given tree log down to the disk and
3043  * updates the super blocks to record it.  When this call is done,
3044  * you know that any inodes previously logged are safely on disk only
3045  * if it returns 0.
3046  *
3047  * Any other return value means you need to call btrfs_commit_transaction.
3048  * Some of the edge cases for fsyncing directories that have had unlinks
3049  * or renames done in the past mean that sometimes the only safe
3050  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3051  * that has happened.
3052  */
3053 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3054 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3055 {
3056 	int index1;
3057 	int index2;
3058 	int mark;
3059 	int ret;
3060 	struct btrfs_fs_info *fs_info = root->fs_info;
3061 	struct btrfs_root *log = root->log_root;
3062 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3063 	struct btrfs_root_item new_root_item;
3064 	int log_transid = 0;
3065 	struct btrfs_log_ctx root_log_ctx;
3066 	struct blk_plug plug;
3067 	u64 log_root_start;
3068 	u64 log_root_level;
3069 
3070 	mutex_lock(&root->log_mutex);
3071 	log_transid = ctx->log_transid;
3072 	if (root->log_transid_committed >= log_transid) {
3073 		mutex_unlock(&root->log_mutex);
3074 		return ctx->log_ret;
3075 	}
3076 
3077 	index1 = log_transid % 2;
3078 	if (atomic_read(&root->log_commit[index1])) {
3079 		wait_log_commit(root, log_transid);
3080 		mutex_unlock(&root->log_mutex);
3081 		return ctx->log_ret;
3082 	}
3083 	ASSERT(log_transid == root->log_transid);
3084 	atomic_set(&root->log_commit[index1], 1);
3085 
3086 	/* wait for previous tree log sync to complete */
3087 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3088 		wait_log_commit(root, log_transid - 1);
3089 
3090 	while (1) {
3091 		int batch = atomic_read(&root->log_batch);
3092 		/* when we're on an ssd, just kick the log commit out */
3093 		if (!btrfs_test_opt(fs_info, SSD) &&
3094 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3095 			mutex_unlock(&root->log_mutex);
3096 			schedule_timeout_uninterruptible(1);
3097 			mutex_lock(&root->log_mutex);
3098 		}
3099 		wait_for_writer(root);
3100 		if (batch == atomic_read(&root->log_batch))
3101 			break;
3102 	}
3103 
3104 	/* bail out if we need to do a full commit */
3105 	if (btrfs_need_log_full_commit(trans)) {
3106 		ret = -EAGAIN;
3107 		mutex_unlock(&root->log_mutex);
3108 		goto out;
3109 	}
3110 
3111 	if (log_transid % 2 == 0)
3112 		mark = EXTENT_DIRTY;
3113 	else
3114 		mark = EXTENT_NEW;
3115 
3116 	/* we start IO on  all the marked extents here, but we don't actually
3117 	 * wait for them until later.
3118 	 */
3119 	blk_start_plug(&plug);
3120 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3121 	/*
3122 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
3123 	 *  commit, writes a dirty extent in this tree-log commit. This
3124 	 *  concurrent write will create a hole writing out the extents,
3125 	 *  and we cannot proceed on a zoned filesystem, requiring
3126 	 *  sequential writing. While we can bail out to a full commit
3127 	 *  here, but we can continue hoping the concurrent writing fills
3128 	 *  the hole.
3129 	 */
3130 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3131 		ret = 0;
3132 	if (ret) {
3133 		blk_finish_plug(&plug);
3134 		btrfs_abort_transaction(trans, ret);
3135 		btrfs_set_log_full_commit(trans);
3136 		mutex_unlock(&root->log_mutex);
3137 		goto out;
3138 	}
3139 
3140 	/*
3141 	 * We _must_ update under the root->log_mutex in order to make sure we
3142 	 * have a consistent view of the log root we are trying to commit at
3143 	 * this moment.
3144 	 *
3145 	 * We _must_ copy this into a local copy, because we are not holding the
3146 	 * log_root_tree->log_mutex yet.  This is important because when we
3147 	 * commit the log_root_tree we must have a consistent view of the
3148 	 * log_root_tree when we update the super block to point at the
3149 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3150 	 * with the commit and possibly point at the new block which we may not
3151 	 * have written out.
3152 	 */
3153 	btrfs_set_root_node(&log->root_item, log->node);
3154 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3155 
3156 	root->log_transid++;
3157 	log->log_transid = root->log_transid;
3158 	root->log_start_pid = 0;
3159 	/*
3160 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3161 	 * in their headers. new modifications of the log will be written to
3162 	 * new positions. so it's safe to allow log writers to go in.
3163 	 */
3164 	mutex_unlock(&root->log_mutex);
3165 
3166 	if (btrfs_is_zoned(fs_info)) {
3167 		mutex_lock(&fs_info->tree_root->log_mutex);
3168 		if (!log_root_tree->node) {
3169 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3170 			if (ret) {
3171 				mutex_unlock(&fs_info->tree_log_mutex);
3172 				goto out;
3173 			}
3174 		}
3175 		mutex_unlock(&fs_info->tree_root->log_mutex);
3176 	}
3177 
3178 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3179 
3180 	mutex_lock(&log_root_tree->log_mutex);
3181 
3182 	index2 = log_root_tree->log_transid % 2;
3183 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3184 	root_log_ctx.log_transid = log_root_tree->log_transid;
3185 
3186 	/*
3187 	 * Now we are safe to update the log_root_tree because we're under the
3188 	 * log_mutex, and we're a current writer so we're holding the commit
3189 	 * open until we drop the log_mutex.
3190 	 */
3191 	ret = update_log_root(trans, log, &new_root_item);
3192 	if (ret) {
3193 		if (!list_empty(&root_log_ctx.list))
3194 			list_del_init(&root_log_ctx.list);
3195 
3196 		blk_finish_plug(&plug);
3197 		btrfs_set_log_full_commit(trans);
3198 
3199 		if (ret != -ENOSPC) {
3200 			btrfs_abort_transaction(trans, ret);
3201 			mutex_unlock(&log_root_tree->log_mutex);
3202 			goto out;
3203 		}
3204 		btrfs_wait_tree_log_extents(log, mark);
3205 		mutex_unlock(&log_root_tree->log_mutex);
3206 		ret = -EAGAIN;
3207 		goto out;
3208 	}
3209 
3210 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3211 		blk_finish_plug(&plug);
3212 		list_del_init(&root_log_ctx.list);
3213 		mutex_unlock(&log_root_tree->log_mutex);
3214 		ret = root_log_ctx.log_ret;
3215 		goto out;
3216 	}
3217 
3218 	index2 = root_log_ctx.log_transid % 2;
3219 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3220 		blk_finish_plug(&plug);
3221 		ret = btrfs_wait_tree_log_extents(log, mark);
3222 		wait_log_commit(log_root_tree,
3223 				root_log_ctx.log_transid);
3224 		mutex_unlock(&log_root_tree->log_mutex);
3225 		if (!ret)
3226 			ret = root_log_ctx.log_ret;
3227 		goto out;
3228 	}
3229 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3230 	atomic_set(&log_root_tree->log_commit[index2], 1);
3231 
3232 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3233 		wait_log_commit(log_root_tree,
3234 				root_log_ctx.log_transid - 1);
3235 	}
3236 
3237 	/*
3238 	 * now that we've moved on to the tree of log tree roots,
3239 	 * check the full commit flag again
3240 	 */
3241 	if (btrfs_need_log_full_commit(trans)) {
3242 		blk_finish_plug(&plug);
3243 		btrfs_wait_tree_log_extents(log, mark);
3244 		mutex_unlock(&log_root_tree->log_mutex);
3245 		ret = -EAGAIN;
3246 		goto out_wake_log_root;
3247 	}
3248 
3249 	ret = btrfs_write_marked_extents(fs_info,
3250 					 &log_root_tree->dirty_log_pages,
3251 					 EXTENT_DIRTY | EXTENT_NEW);
3252 	blk_finish_plug(&plug);
3253 	/*
3254 	 * As described above, -EAGAIN indicates a hole in the extents. We
3255 	 * cannot wait for these write outs since the waiting cause a
3256 	 * deadlock. Bail out to the full commit instead.
3257 	 */
3258 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3259 		btrfs_set_log_full_commit(trans);
3260 		btrfs_wait_tree_log_extents(log, mark);
3261 		mutex_unlock(&log_root_tree->log_mutex);
3262 		goto out_wake_log_root;
3263 	} else if (ret) {
3264 		btrfs_set_log_full_commit(trans);
3265 		btrfs_abort_transaction(trans, ret);
3266 		mutex_unlock(&log_root_tree->log_mutex);
3267 		goto out_wake_log_root;
3268 	}
3269 	ret = btrfs_wait_tree_log_extents(log, mark);
3270 	if (!ret)
3271 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3272 						  EXTENT_NEW | EXTENT_DIRTY);
3273 	if (ret) {
3274 		btrfs_set_log_full_commit(trans);
3275 		mutex_unlock(&log_root_tree->log_mutex);
3276 		goto out_wake_log_root;
3277 	}
3278 
3279 	log_root_start = log_root_tree->node->start;
3280 	log_root_level = btrfs_header_level(log_root_tree->node);
3281 	log_root_tree->log_transid++;
3282 	mutex_unlock(&log_root_tree->log_mutex);
3283 
3284 	/*
3285 	 * Here we are guaranteed that nobody is going to write the superblock
3286 	 * for the current transaction before us and that neither we do write
3287 	 * our superblock before the previous transaction finishes its commit
3288 	 * and writes its superblock, because:
3289 	 *
3290 	 * 1) We are holding a handle on the current transaction, so no body
3291 	 *    can commit it until we release the handle;
3292 	 *
3293 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3294 	 *    if the previous transaction is still committing, and hasn't yet
3295 	 *    written its superblock, we wait for it to do it, because a
3296 	 *    transaction commit acquires the tree_log_mutex when the commit
3297 	 *    begins and releases it only after writing its superblock.
3298 	 */
3299 	mutex_lock(&fs_info->tree_log_mutex);
3300 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3301 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3302 	ret = write_all_supers(fs_info, 1);
3303 	mutex_unlock(&fs_info->tree_log_mutex);
3304 	if (ret) {
3305 		btrfs_set_log_full_commit(trans);
3306 		btrfs_abort_transaction(trans, ret);
3307 		goto out_wake_log_root;
3308 	}
3309 
3310 	mutex_lock(&root->log_mutex);
3311 	if (root->last_log_commit < log_transid)
3312 		root->last_log_commit = log_transid;
3313 	mutex_unlock(&root->log_mutex);
3314 
3315 out_wake_log_root:
3316 	mutex_lock(&log_root_tree->log_mutex);
3317 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3318 
3319 	log_root_tree->log_transid_committed++;
3320 	atomic_set(&log_root_tree->log_commit[index2], 0);
3321 	mutex_unlock(&log_root_tree->log_mutex);
3322 
3323 	/*
3324 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3325 	 * all the updates above are seen by the woken threads. It might not be
3326 	 * necessary, but proving that seems to be hard.
3327 	 */
3328 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3329 out:
3330 	mutex_lock(&root->log_mutex);
3331 	btrfs_remove_all_log_ctxs(root, index1, ret);
3332 	root->log_transid_committed++;
3333 	atomic_set(&root->log_commit[index1], 0);
3334 	mutex_unlock(&root->log_mutex);
3335 
3336 	/*
3337 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3338 	 * all the updates above are seen by the woken threads. It might not be
3339 	 * necessary, but proving that seems to be hard.
3340 	 */
3341 	cond_wake_up(&root->log_commit_wait[index1]);
3342 	return ret;
3343 }
3344 
3345 static void free_log_tree(struct btrfs_trans_handle *trans,
3346 			  struct btrfs_root *log)
3347 {
3348 	int ret;
3349 	struct walk_control wc = {
3350 		.free = 1,
3351 		.process_func = process_one_buffer
3352 	};
3353 
3354 	if (log->node) {
3355 		ret = walk_log_tree(trans, log, &wc);
3356 		if (ret) {
3357 			if (trans)
3358 				btrfs_abort_transaction(trans, ret);
3359 			else
3360 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3361 		}
3362 	}
3363 
3364 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3365 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3366 	extent_io_tree_release(&log->log_csum_range);
3367 
3368 	if (trans && log->node)
3369 		btrfs_redirty_list_add(trans->transaction, log->node);
3370 	btrfs_put_root(log);
3371 }
3372 
3373 /*
3374  * free all the extents used by the tree log.  This should be called
3375  * at commit time of the full transaction
3376  */
3377 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3378 {
3379 	if (root->log_root) {
3380 		free_log_tree(trans, root->log_root);
3381 		root->log_root = NULL;
3382 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3383 	}
3384 	return 0;
3385 }
3386 
3387 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3388 			     struct btrfs_fs_info *fs_info)
3389 {
3390 	if (fs_info->log_root_tree) {
3391 		free_log_tree(trans, fs_info->log_root_tree);
3392 		fs_info->log_root_tree = NULL;
3393 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3394 	}
3395 	return 0;
3396 }
3397 
3398 /*
3399  * Check if an inode was logged in the current transaction. We can't always rely
3400  * on an inode's logged_trans value, because it's an in-memory only field and
3401  * therefore not persisted. This means that its value is lost if the inode gets
3402  * evicted and loaded again from disk (in which case it has a value of 0, and
3403  * certainly it is smaller then any possible transaction ID), when that happens
3404  * the full_sync flag is set in the inode's runtime flags, so on that case we
3405  * assume eviction happened and ignore the logged_trans value, assuming the
3406  * worst case, that the inode was logged before in the current transaction.
3407  */
3408 static bool inode_logged(struct btrfs_trans_handle *trans,
3409 			 struct btrfs_inode *inode)
3410 {
3411 	if (inode->logged_trans == trans->transid)
3412 		return true;
3413 
3414 	if (inode->last_trans == trans->transid &&
3415 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3416 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3417 		return true;
3418 
3419 	return false;
3420 }
3421 
3422 /*
3423  * If both a file and directory are logged, and unlinks or renames are
3424  * mixed in, we have a few interesting corners:
3425  *
3426  * create file X in dir Y
3427  * link file X to X.link in dir Y
3428  * fsync file X
3429  * unlink file X but leave X.link
3430  * fsync dir Y
3431  *
3432  * After a crash we would expect only X.link to exist.  But file X
3433  * didn't get fsync'd again so the log has back refs for X and X.link.
3434  *
3435  * We solve this by removing directory entries and inode backrefs from the
3436  * log when a file that was logged in the current transaction is
3437  * unlinked.  Any later fsync will include the updated log entries, and
3438  * we'll be able to reconstruct the proper directory items from backrefs.
3439  *
3440  * This optimizations allows us to avoid relogging the entire inode
3441  * or the entire directory.
3442  */
3443 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3444 				 struct btrfs_root *root,
3445 				 const char *name, int name_len,
3446 				 struct btrfs_inode *dir, u64 index)
3447 {
3448 	struct btrfs_root *log;
3449 	struct btrfs_dir_item *di;
3450 	struct btrfs_path *path;
3451 	int ret;
3452 	int err = 0;
3453 	u64 dir_ino = btrfs_ino(dir);
3454 
3455 	if (!inode_logged(trans, dir))
3456 		return 0;
3457 
3458 	ret = join_running_log_trans(root);
3459 	if (ret)
3460 		return 0;
3461 
3462 	mutex_lock(&dir->log_mutex);
3463 
3464 	log = root->log_root;
3465 	path = btrfs_alloc_path();
3466 	if (!path) {
3467 		err = -ENOMEM;
3468 		goto out_unlock;
3469 	}
3470 
3471 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3472 				   name, name_len, -1);
3473 	if (IS_ERR(di)) {
3474 		err = PTR_ERR(di);
3475 		goto fail;
3476 	}
3477 	if (di) {
3478 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3479 		if (ret) {
3480 			err = ret;
3481 			goto fail;
3482 		}
3483 	}
3484 	btrfs_release_path(path);
3485 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3486 					 index, name, name_len, -1);
3487 	if (IS_ERR(di)) {
3488 		err = PTR_ERR(di);
3489 		goto fail;
3490 	}
3491 	if (di) {
3492 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3493 		if (ret) {
3494 			err = ret;
3495 			goto fail;
3496 		}
3497 	}
3498 
3499 	/*
3500 	 * We do not need to update the size field of the directory's inode item
3501 	 * because on log replay we update the field to reflect all existing
3502 	 * entries in the directory (see overwrite_item()).
3503 	 */
3504 fail:
3505 	btrfs_free_path(path);
3506 out_unlock:
3507 	mutex_unlock(&dir->log_mutex);
3508 	if (err == -ENOSPC) {
3509 		btrfs_set_log_full_commit(trans);
3510 		err = 0;
3511 	} else if (err < 0 && err != -ENOENT) {
3512 		/* ENOENT can be returned if the entry hasn't been fsynced yet */
3513 		btrfs_abort_transaction(trans, err);
3514 	}
3515 
3516 	btrfs_end_log_trans(root);
3517 
3518 	return err;
3519 }
3520 
3521 /* see comments for btrfs_del_dir_entries_in_log */
3522 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3523 			       struct btrfs_root *root,
3524 			       const char *name, int name_len,
3525 			       struct btrfs_inode *inode, u64 dirid)
3526 {
3527 	struct btrfs_root *log;
3528 	u64 index;
3529 	int ret;
3530 
3531 	if (!inode_logged(trans, inode))
3532 		return 0;
3533 
3534 	ret = join_running_log_trans(root);
3535 	if (ret)
3536 		return 0;
3537 	log = root->log_root;
3538 	mutex_lock(&inode->log_mutex);
3539 
3540 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3541 				  dirid, &index);
3542 	mutex_unlock(&inode->log_mutex);
3543 	if (ret == -ENOSPC) {
3544 		btrfs_set_log_full_commit(trans);
3545 		ret = 0;
3546 	} else if (ret < 0 && ret != -ENOENT)
3547 		btrfs_abort_transaction(trans, ret);
3548 	btrfs_end_log_trans(root);
3549 
3550 	return ret;
3551 }
3552 
3553 /*
3554  * creates a range item in the log for 'dirid'.  first_offset and
3555  * last_offset tell us which parts of the key space the log should
3556  * be considered authoritative for.
3557  */
3558 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3559 				       struct btrfs_root *log,
3560 				       struct btrfs_path *path,
3561 				       int key_type, u64 dirid,
3562 				       u64 first_offset, u64 last_offset)
3563 {
3564 	int ret;
3565 	struct btrfs_key key;
3566 	struct btrfs_dir_log_item *item;
3567 
3568 	key.objectid = dirid;
3569 	key.offset = first_offset;
3570 	if (key_type == BTRFS_DIR_ITEM_KEY)
3571 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3572 	else
3573 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3574 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3575 	if (ret)
3576 		return ret;
3577 
3578 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3579 			      struct btrfs_dir_log_item);
3580 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3581 	btrfs_mark_buffer_dirty(path->nodes[0]);
3582 	btrfs_release_path(path);
3583 	return 0;
3584 }
3585 
3586 /*
3587  * log all the items included in the current transaction for a given
3588  * directory.  This also creates the range items in the log tree required
3589  * to replay anything deleted before the fsync
3590  */
3591 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3592 			  struct btrfs_root *root, struct btrfs_inode *inode,
3593 			  struct btrfs_path *path,
3594 			  struct btrfs_path *dst_path, int key_type,
3595 			  struct btrfs_log_ctx *ctx,
3596 			  u64 min_offset, u64 *last_offset_ret)
3597 {
3598 	struct btrfs_key min_key;
3599 	struct btrfs_root *log = root->log_root;
3600 	struct extent_buffer *src;
3601 	int err = 0;
3602 	int ret;
3603 	int i;
3604 	int nritems;
3605 	u64 first_offset = min_offset;
3606 	u64 last_offset = (u64)-1;
3607 	u64 ino = btrfs_ino(inode);
3608 
3609 	log = root->log_root;
3610 
3611 	min_key.objectid = ino;
3612 	min_key.type = key_type;
3613 	min_key.offset = min_offset;
3614 
3615 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3616 
3617 	/*
3618 	 * we didn't find anything from this transaction, see if there
3619 	 * is anything at all
3620 	 */
3621 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3622 		min_key.objectid = ino;
3623 		min_key.type = key_type;
3624 		min_key.offset = (u64)-1;
3625 		btrfs_release_path(path);
3626 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3627 		if (ret < 0) {
3628 			btrfs_release_path(path);
3629 			return ret;
3630 		}
3631 		ret = btrfs_previous_item(root, path, ino, key_type);
3632 
3633 		/* if ret == 0 there are items for this type,
3634 		 * create a range to tell us the last key of this type.
3635 		 * otherwise, there are no items in this directory after
3636 		 * *min_offset, and we create a range to indicate that.
3637 		 */
3638 		if (ret == 0) {
3639 			struct btrfs_key tmp;
3640 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3641 					      path->slots[0]);
3642 			if (key_type == tmp.type)
3643 				first_offset = max(min_offset, tmp.offset) + 1;
3644 		}
3645 		goto done;
3646 	}
3647 
3648 	/* go backward to find any previous key */
3649 	ret = btrfs_previous_item(root, path, ino, key_type);
3650 	if (ret == 0) {
3651 		struct btrfs_key tmp;
3652 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3653 		if (key_type == tmp.type) {
3654 			first_offset = tmp.offset;
3655 			ret = overwrite_item(trans, log, dst_path,
3656 					     path->nodes[0], path->slots[0],
3657 					     &tmp);
3658 			if (ret) {
3659 				err = ret;
3660 				goto done;
3661 			}
3662 		}
3663 	}
3664 	btrfs_release_path(path);
3665 
3666 	/*
3667 	 * Find the first key from this transaction again.  See the note for
3668 	 * log_new_dir_dentries, if we're logging a directory recursively we
3669 	 * won't be holding its i_mutex, which means we can modify the directory
3670 	 * while we're logging it.  If we remove an entry between our first
3671 	 * search and this search we'll not find the key again and can just
3672 	 * bail.
3673 	 */
3674 search:
3675 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3676 	if (ret != 0)
3677 		goto done;
3678 
3679 	/*
3680 	 * we have a block from this transaction, log every item in it
3681 	 * from our directory
3682 	 */
3683 	while (1) {
3684 		struct btrfs_key tmp;
3685 		src = path->nodes[0];
3686 		nritems = btrfs_header_nritems(src);
3687 		for (i = path->slots[0]; i < nritems; i++) {
3688 			struct btrfs_dir_item *di;
3689 
3690 			btrfs_item_key_to_cpu(src, &min_key, i);
3691 
3692 			if (min_key.objectid != ino || min_key.type != key_type)
3693 				goto done;
3694 
3695 			if (need_resched()) {
3696 				btrfs_release_path(path);
3697 				cond_resched();
3698 				goto search;
3699 			}
3700 
3701 			ret = overwrite_item(trans, log, dst_path, src, i,
3702 					     &min_key);
3703 			if (ret) {
3704 				err = ret;
3705 				goto done;
3706 			}
3707 
3708 			/*
3709 			 * We must make sure that when we log a directory entry,
3710 			 * the corresponding inode, after log replay, has a
3711 			 * matching link count. For example:
3712 			 *
3713 			 * touch foo
3714 			 * mkdir mydir
3715 			 * sync
3716 			 * ln foo mydir/bar
3717 			 * xfs_io -c "fsync" mydir
3718 			 * <crash>
3719 			 * <mount fs and log replay>
3720 			 *
3721 			 * Would result in a fsync log that when replayed, our
3722 			 * file inode would have a link count of 1, but we get
3723 			 * two directory entries pointing to the same inode.
3724 			 * After removing one of the names, it would not be
3725 			 * possible to remove the other name, which resulted
3726 			 * always in stale file handle errors, and would not
3727 			 * be possible to rmdir the parent directory, since
3728 			 * its i_size could never decrement to the value
3729 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3730 			 */
3731 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3732 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3733 			if (ctx &&
3734 			    (btrfs_dir_transid(src, di) == trans->transid ||
3735 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3736 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3737 				ctx->log_new_dentries = true;
3738 		}
3739 		path->slots[0] = nritems;
3740 
3741 		/*
3742 		 * look ahead to the next item and see if it is also
3743 		 * from this directory and from this transaction
3744 		 */
3745 		ret = btrfs_next_leaf(root, path);
3746 		if (ret) {
3747 			if (ret == 1)
3748 				last_offset = (u64)-1;
3749 			else
3750 				err = ret;
3751 			goto done;
3752 		}
3753 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3754 		if (tmp.objectid != ino || tmp.type != key_type) {
3755 			last_offset = (u64)-1;
3756 			goto done;
3757 		}
3758 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3759 			ret = overwrite_item(trans, log, dst_path,
3760 					     path->nodes[0], path->slots[0],
3761 					     &tmp);
3762 			if (ret)
3763 				err = ret;
3764 			else
3765 				last_offset = tmp.offset;
3766 			goto done;
3767 		}
3768 	}
3769 done:
3770 	btrfs_release_path(path);
3771 	btrfs_release_path(dst_path);
3772 
3773 	if (err == 0) {
3774 		*last_offset_ret = last_offset;
3775 		/*
3776 		 * insert the log range keys to indicate where the log
3777 		 * is valid
3778 		 */
3779 		ret = insert_dir_log_key(trans, log, path, key_type,
3780 					 ino, first_offset, last_offset);
3781 		if (ret)
3782 			err = ret;
3783 	}
3784 	return err;
3785 }
3786 
3787 /*
3788  * logging directories is very similar to logging inodes, We find all the items
3789  * from the current transaction and write them to the log.
3790  *
3791  * The recovery code scans the directory in the subvolume, and if it finds a
3792  * key in the range logged that is not present in the log tree, then it means
3793  * that dir entry was unlinked during the transaction.
3794  *
3795  * In order for that scan to work, we must include one key smaller than
3796  * the smallest logged by this transaction and one key larger than the largest
3797  * key logged by this transaction.
3798  */
3799 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3800 			  struct btrfs_root *root, struct btrfs_inode *inode,
3801 			  struct btrfs_path *path,
3802 			  struct btrfs_path *dst_path,
3803 			  struct btrfs_log_ctx *ctx)
3804 {
3805 	u64 min_key;
3806 	u64 max_key;
3807 	int ret;
3808 	int key_type = BTRFS_DIR_ITEM_KEY;
3809 
3810 again:
3811 	min_key = 0;
3812 	max_key = 0;
3813 	while (1) {
3814 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3815 				ctx, min_key, &max_key);
3816 		if (ret)
3817 			return ret;
3818 		if (max_key == (u64)-1)
3819 			break;
3820 		min_key = max_key + 1;
3821 	}
3822 
3823 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3824 		key_type = BTRFS_DIR_INDEX_KEY;
3825 		goto again;
3826 	}
3827 	return 0;
3828 }
3829 
3830 /*
3831  * a helper function to drop items from the log before we relog an
3832  * inode.  max_key_type indicates the highest item type to remove.
3833  * This cannot be run for file data extents because it does not
3834  * free the extents they point to.
3835  */
3836 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3837 				  struct btrfs_root *log,
3838 				  struct btrfs_path *path,
3839 				  u64 objectid, int max_key_type)
3840 {
3841 	int ret;
3842 	struct btrfs_key key;
3843 	struct btrfs_key found_key;
3844 	int start_slot;
3845 
3846 	key.objectid = objectid;
3847 	key.type = max_key_type;
3848 	key.offset = (u64)-1;
3849 
3850 	while (1) {
3851 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3852 		BUG_ON(ret == 0); /* Logic error */
3853 		if (ret < 0)
3854 			break;
3855 
3856 		if (path->slots[0] == 0)
3857 			break;
3858 
3859 		path->slots[0]--;
3860 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3861 				      path->slots[0]);
3862 
3863 		if (found_key.objectid != objectid)
3864 			break;
3865 
3866 		found_key.offset = 0;
3867 		found_key.type = 0;
3868 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3869 		if (ret < 0)
3870 			break;
3871 
3872 		ret = btrfs_del_items(trans, log, path, start_slot,
3873 				      path->slots[0] - start_slot + 1);
3874 		/*
3875 		 * If start slot isn't 0 then we don't need to re-search, we've
3876 		 * found the last guy with the objectid in this tree.
3877 		 */
3878 		if (ret || start_slot != 0)
3879 			break;
3880 		btrfs_release_path(path);
3881 	}
3882 	btrfs_release_path(path);
3883 	if (ret > 0)
3884 		ret = 0;
3885 	return ret;
3886 }
3887 
3888 static void fill_inode_item(struct btrfs_trans_handle *trans,
3889 			    struct extent_buffer *leaf,
3890 			    struct btrfs_inode_item *item,
3891 			    struct inode *inode, int log_inode_only,
3892 			    u64 logged_isize)
3893 {
3894 	struct btrfs_map_token token;
3895 
3896 	btrfs_init_map_token(&token, leaf);
3897 
3898 	if (log_inode_only) {
3899 		/* set the generation to zero so the recover code
3900 		 * can tell the difference between an logging
3901 		 * just to say 'this inode exists' and a logging
3902 		 * to say 'update this inode with these values'
3903 		 */
3904 		btrfs_set_token_inode_generation(&token, item, 0);
3905 		btrfs_set_token_inode_size(&token, item, logged_isize);
3906 	} else {
3907 		btrfs_set_token_inode_generation(&token, item,
3908 						 BTRFS_I(inode)->generation);
3909 		btrfs_set_token_inode_size(&token, item, inode->i_size);
3910 	}
3911 
3912 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3913 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3914 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3915 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3916 
3917 	btrfs_set_token_timespec_sec(&token, &item->atime,
3918 				     inode->i_atime.tv_sec);
3919 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3920 				      inode->i_atime.tv_nsec);
3921 
3922 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3923 				     inode->i_mtime.tv_sec);
3924 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3925 				      inode->i_mtime.tv_nsec);
3926 
3927 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3928 				     inode->i_ctime.tv_sec);
3929 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3930 				      inode->i_ctime.tv_nsec);
3931 
3932 	/*
3933 	 * We do not need to set the nbytes field, in fact during a fast fsync
3934 	 * its value may not even be correct, since a fast fsync does not wait
3935 	 * for ordered extent completion, which is where we update nbytes, it
3936 	 * only waits for writeback to complete. During log replay as we find
3937 	 * file extent items and replay them, we adjust the nbytes field of the
3938 	 * inode item in subvolume tree as needed (see overwrite_item()).
3939 	 */
3940 
3941 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3942 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3943 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3944 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3945 	btrfs_set_token_inode_block_group(&token, item, 0);
3946 }
3947 
3948 static int log_inode_item(struct btrfs_trans_handle *trans,
3949 			  struct btrfs_root *log, struct btrfs_path *path,
3950 			  struct btrfs_inode *inode)
3951 {
3952 	struct btrfs_inode_item *inode_item;
3953 	int ret;
3954 
3955 	ret = btrfs_insert_empty_item(trans, log, path,
3956 				      &inode->location, sizeof(*inode_item));
3957 	if (ret && ret != -EEXIST)
3958 		return ret;
3959 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3960 				    struct btrfs_inode_item);
3961 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3962 			0, 0);
3963 	btrfs_release_path(path);
3964 	return 0;
3965 }
3966 
3967 static int log_csums(struct btrfs_trans_handle *trans,
3968 		     struct btrfs_inode *inode,
3969 		     struct btrfs_root *log_root,
3970 		     struct btrfs_ordered_sum *sums)
3971 {
3972 	const u64 lock_end = sums->bytenr + sums->len - 1;
3973 	struct extent_state *cached_state = NULL;
3974 	int ret;
3975 
3976 	/*
3977 	 * If this inode was not used for reflink operations in the current
3978 	 * transaction with new extents, then do the fast path, no need to
3979 	 * worry about logging checksum items with overlapping ranges.
3980 	 */
3981 	if (inode->last_reflink_trans < trans->transid)
3982 		return btrfs_csum_file_blocks(trans, log_root, sums);
3983 
3984 	/*
3985 	 * Serialize logging for checksums. This is to avoid racing with the
3986 	 * same checksum being logged by another task that is logging another
3987 	 * file which happens to refer to the same extent as well. Such races
3988 	 * can leave checksum items in the log with overlapping ranges.
3989 	 */
3990 	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3991 			       lock_end, &cached_state);
3992 	if (ret)
3993 		return ret;
3994 	/*
3995 	 * Due to extent cloning, we might have logged a csum item that covers a
3996 	 * subrange of a cloned extent, and later we can end up logging a csum
3997 	 * item for a larger subrange of the same extent or the entire range.
3998 	 * This would leave csum items in the log tree that cover the same range
3999 	 * and break the searches for checksums in the log tree, resulting in
4000 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4001 	 * trim and adjust) any existing csum items in the log for this range.
4002 	 */
4003 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4004 	if (!ret)
4005 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4006 
4007 	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4008 			     &cached_state);
4009 
4010 	return ret;
4011 }
4012 
4013 static noinline int copy_items(struct btrfs_trans_handle *trans,
4014 			       struct btrfs_inode *inode,
4015 			       struct btrfs_path *dst_path,
4016 			       struct btrfs_path *src_path,
4017 			       int start_slot, int nr, int inode_only,
4018 			       u64 logged_isize)
4019 {
4020 	struct btrfs_fs_info *fs_info = trans->fs_info;
4021 	unsigned long src_offset;
4022 	unsigned long dst_offset;
4023 	struct btrfs_root *log = inode->root->log_root;
4024 	struct btrfs_file_extent_item *extent;
4025 	struct btrfs_inode_item *inode_item;
4026 	struct extent_buffer *src = src_path->nodes[0];
4027 	int ret;
4028 	struct btrfs_key *ins_keys;
4029 	u32 *ins_sizes;
4030 	char *ins_data;
4031 	int i;
4032 	struct list_head ordered_sums;
4033 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
4034 
4035 	INIT_LIST_HEAD(&ordered_sums);
4036 
4037 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4038 			   nr * sizeof(u32), GFP_NOFS);
4039 	if (!ins_data)
4040 		return -ENOMEM;
4041 
4042 	ins_sizes = (u32 *)ins_data;
4043 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4044 
4045 	for (i = 0; i < nr; i++) {
4046 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4047 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4048 	}
4049 	ret = btrfs_insert_empty_items(trans, log, dst_path,
4050 				       ins_keys, ins_sizes, nr);
4051 	if (ret) {
4052 		kfree(ins_data);
4053 		return ret;
4054 	}
4055 
4056 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4057 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4058 						   dst_path->slots[0]);
4059 
4060 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4061 
4062 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4063 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
4064 						    dst_path->slots[0],
4065 						    struct btrfs_inode_item);
4066 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4067 					&inode->vfs_inode,
4068 					inode_only == LOG_INODE_EXISTS,
4069 					logged_isize);
4070 		} else {
4071 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4072 					   src_offset, ins_sizes[i]);
4073 		}
4074 
4075 		/* take a reference on file data extents so that truncates
4076 		 * or deletes of this inode don't have to relog the inode
4077 		 * again
4078 		 */
4079 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4080 		    !skip_csum) {
4081 			int found_type;
4082 			extent = btrfs_item_ptr(src, start_slot + i,
4083 						struct btrfs_file_extent_item);
4084 
4085 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4086 				continue;
4087 
4088 			found_type = btrfs_file_extent_type(src, extent);
4089 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4090 				u64 ds, dl, cs, cl;
4091 				ds = btrfs_file_extent_disk_bytenr(src,
4092 								extent);
4093 				/* ds == 0 is a hole */
4094 				if (ds == 0)
4095 					continue;
4096 
4097 				dl = btrfs_file_extent_disk_num_bytes(src,
4098 								extent);
4099 				cs = btrfs_file_extent_offset(src, extent);
4100 				cl = btrfs_file_extent_num_bytes(src,
4101 								extent);
4102 				if (btrfs_file_extent_compression(src,
4103 								  extent)) {
4104 					cs = 0;
4105 					cl = dl;
4106 				}
4107 
4108 				ret = btrfs_lookup_csums_range(
4109 						fs_info->csum_root,
4110 						ds + cs, ds + cs + cl - 1,
4111 						&ordered_sums, 0);
4112 				if (ret)
4113 					break;
4114 			}
4115 		}
4116 	}
4117 
4118 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4119 	btrfs_release_path(dst_path);
4120 	kfree(ins_data);
4121 
4122 	/*
4123 	 * we have to do this after the loop above to avoid changing the
4124 	 * log tree while trying to change the log tree.
4125 	 */
4126 	while (!list_empty(&ordered_sums)) {
4127 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4128 						   struct btrfs_ordered_sum,
4129 						   list);
4130 		if (!ret)
4131 			ret = log_csums(trans, inode, log, sums);
4132 		list_del(&sums->list);
4133 		kfree(sums);
4134 	}
4135 
4136 	return ret;
4137 }
4138 
4139 static int extent_cmp(void *priv, const struct list_head *a,
4140 		      const struct list_head *b)
4141 {
4142 	struct extent_map *em1, *em2;
4143 
4144 	em1 = list_entry(a, struct extent_map, list);
4145 	em2 = list_entry(b, struct extent_map, list);
4146 
4147 	if (em1->start < em2->start)
4148 		return -1;
4149 	else if (em1->start > em2->start)
4150 		return 1;
4151 	return 0;
4152 }
4153 
4154 static int log_extent_csums(struct btrfs_trans_handle *trans,
4155 			    struct btrfs_inode *inode,
4156 			    struct btrfs_root *log_root,
4157 			    const struct extent_map *em,
4158 			    struct btrfs_log_ctx *ctx)
4159 {
4160 	struct btrfs_ordered_extent *ordered;
4161 	u64 csum_offset;
4162 	u64 csum_len;
4163 	u64 mod_start = em->mod_start;
4164 	u64 mod_len = em->mod_len;
4165 	LIST_HEAD(ordered_sums);
4166 	int ret = 0;
4167 
4168 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4169 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4170 	    em->block_start == EXTENT_MAP_HOLE)
4171 		return 0;
4172 
4173 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4174 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4175 		const u64 mod_end = mod_start + mod_len;
4176 		struct btrfs_ordered_sum *sums;
4177 
4178 		if (mod_len == 0)
4179 			break;
4180 
4181 		if (ordered_end <= mod_start)
4182 			continue;
4183 		if (mod_end <= ordered->file_offset)
4184 			break;
4185 
4186 		/*
4187 		 * We are going to copy all the csums on this ordered extent, so
4188 		 * go ahead and adjust mod_start and mod_len in case this ordered
4189 		 * extent has already been logged.
4190 		 */
4191 		if (ordered->file_offset > mod_start) {
4192 			if (ordered_end >= mod_end)
4193 				mod_len = ordered->file_offset - mod_start;
4194 			/*
4195 			 * If we have this case
4196 			 *
4197 			 * |--------- logged extent ---------|
4198 			 *       |----- ordered extent ----|
4199 			 *
4200 			 * Just don't mess with mod_start and mod_len, we'll
4201 			 * just end up logging more csums than we need and it
4202 			 * will be ok.
4203 			 */
4204 		} else {
4205 			if (ordered_end < mod_end) {
4206 				mod_len = mod_end - ordered_end;
4207 				mod_start = ordered_end;
4208 			} else {
4209 				mod_len = 0;
4210 			}
4211 		}
4212 
4213 		/*
4214 		 * To keep us from looping for the above case of an ordered
4215 		 * extent that falls inside of the logged extent.
4216 		 */
4217 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4218 			continue;
4219 
4220 		list_for_each_entry(sums, &ordered->list, list) {
4221 			ret = log_csums(trans, inode, log_root, sums);
4222 			if (ret)
4223 				return ret;
4224 		}
4225 	}
4226 
4227 	/* We're done, found all csums in the ordered extents. */
4228 	if (mod_len == 0)
4229 		return 0;
4230 
4231 	/* If we're compressed we have to save the entire range of csums. */
4232 	if (em->compress_type) {
4233 		csum_offset = 0;
4234 		csum_len = max(em->block_len, em->orig_block_len);
4235 	} else {
4236 		csum_offset = mod_start - em->start;
4237 		csum_len = mod_len;
4238 	}
4239 
4240 	/* block start is already adjusted for the file extent offset. */
4241 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4242 				       em->block_start + csum_offset,
4243 				       em->block_start + csum_offset +
4244 				       csum_len - 1, &ordered_sums, 0);
4245 	if (ret)
4246 		return ret;
4247 
4248 	while (!list_empty(&ordered_sums)) {
4249 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4250 						   struct btrfs_ordered_sum,
4251 						   list);
4252 		if (!ret)
4253 			ret = log_csums(trans, inode, log_root, sums);
4254 		list_del(&sums->list);
4255 		kfree(sums);
4256 	}
4257 
4258 	return ret;
4259 }
4260 
4261 static int log_one_extent(struct btrfs_trans_handle *trans,
4262 			  struct btrfs_inode *inode, struct btrfs_root *root,
4263 			  const struct extent_map *em,
4264 			  struct btrfs_path *path,
4265 			  struct btrfs_log_ctx *ctx)
4266 {
4267 	struct btrfs_drop_extents_args drop_args = { 0 };
4268 	struct btrfs_root *log = root->log_root;
4269 	struct btrfs_file_extent_item *fi;
4270 	struct extent_buffer *leaf;
4271 	struct btrfs_map_token token;
4272 	struct btrfs_key key;
4273 	u64 extent_offset = em->start - em->orig_start;
4274 	u64 block_len;
4275 	int ret;
4276 
4277 	ret = log_extent_csums(trans, inode, log, em, ctx);
4278 	if (ret)
4279 		return ret;
4280 
4281 	drop_args.path = path;
4282 	drop_args.start = em->start;
4283 	drop_args.end = em->start + em->len;
4284 	drop_args.replace_extent = true;
4285 	drop_args.extent_item_size = sizeof(*fi);
4286 	ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4287 	if (ret)
4288 		return ret;
4289 
4290 	if (!drop_args.extent_inserted) {
4291 		key.objectid = btrfs_ino(inode);
4292 		key.type = BTRFS_EXTENT_DATA_KEY;
4293 		key.offset = em->start;
4294 
4295 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4296 					      sizeof(*fi));
4297 		if (ret)
4298 			return ret;
4299 	}
4300 	leaf = path->nodes[0];
4301 	btrfs_init_map_token(&token, leaf);
4302 	fi = btrfs_item_ptr(leaf, path->slots[0],
4303 			    struct btrfs_file_extent_item);
4304 
4305 	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4306 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4307 		btrfs_set_token_file_extent_type(&token, fi,
4308 						 BTRFS_FILE_EXTENT_PREALLOC);
4309 	else
4310 		btrfs_set_token_file_extent_type(&token, fi,
4311 						 BTRFS_FILE_EXTENT_REG);
4312 
4313 	block_len = max(em->block_len, em->orig_block_len);
4314 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4315 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4316 							em->block_start);
4317 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4318 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4319 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4320 							em->block_start -
4321 							extent_offset);
4322 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4323 	} else {
4324 		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4325 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4326 	}
4327 
4328 	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4329 	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4330 	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4331 	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4332 	btrfs_set_token_file_extent_encryption(&token, fi, 0);
4333 	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4334 	btrfs_mark_buffer_dirty(leaf);
4335 
4336 	btrfs_release_path(path);
4337 
4338 	return ret;
4339 }
4340 
4341 /*
4342  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4343  * lose them after doing a fast fsync and replaying the log. We scan the
4344  * subvolume's root instead of iterating the inode's extent map tree because
4345  * otherwise we can log incorrect extent items based on extent map conversion.
4346  * That can happen due to the fact that extent maps are merged when they
4347  * are not in the extent map tree's list of modified extents.
4348  */
4349 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4350 				      struct btrfs_inode *inode,
4351 				      struct btrfs_path *path)
4352 {
4353 	struct btrfs_root *root = inode->root;
4354 	struct btrfs_key key;
4355 	const u64 i_size = i_size_read(&inode->vfs_inode);
4356 	const u64 ino = btrfs_ino(inode);
4357 	struct btrfs_path *dst_path = NULL;
4358 	bool dropped_extents = false;
4359 	u64 truncate_offset = i_size;
4360 	struct extent_buffer *leaf;
4361 	int slot;
4362 	int ins_nr = 0;
4363 	int start_slot;
4364 	int ret;
4365 
4366 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4367 		return 0;
4368 
4369 	key.objectid = ino;
4370 	key.type = BTRFS_EXTENT_DATA_KEY;
4371 	key.offset = i_size;
4372 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4373 	if (ret < 0)
4374 		goto out;
4375 
4376 	/*
4377 	 * We must check if there is a prealloc extent that starts before the
4378 	 * i_size and crosses the i_size boundary. This is to ensure later we
4379 	 * truncate down to the end of that extent and not to the i_size, as
4380 	 * otherwise we end up losing part of the prealloc extent after a log
4381 	 * replay and with an implicit hole if there is another prealloc extent
4382 	 * that starts at an offset beyond i_size.
4383 	 */
4384 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4385 	if (ret < 0)
4386 		goto out;
4387 
4388 	if (ret == 0) {
4389 		struct btrfs_file_extent_item *ei;
4390 
4391 		leaf = path->nodes[0];
4392 		slot = path->slots[0];
4393 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4394 
4395 		if (btrfs_file_extent_type(leaf, ei) ==
4396 		    BTRFS_FILE_EXTENT_PREALLOC) {
4397 			u64 extent_end;
4398 
4399 			btrfs_item_key_to_cpu(leaf, &key, slot);
4400 			extent_end = key.offset +
4401 				btrfs_file_extent_num_bytes(leaf, ei);
4402 
4403 			if (extent_end > i_size)
4404 				truncate_offset = extent_end;
4405 		}
4406 	} else {
4407 		ret = 0;
4408 	}
4409 
4410 	while (true) {
4411 		leaf = path->nodes[0];
4412 		slot = path->slots[0];
4413 
4414 		if (slot >= btrfs_header_nritems(leaf)) {
4415 			if (ins_nr > 0) {
4416 				ret = copy_items(trans, inode, dst_path, path,
4417 						 start_slot, ins_nr, 1, 0);
4418 				if (ret < 0)
4419 					goto out;
4420 				ins_nr = 0;
4421 			}
4422 			ret = btrfs_next_leaf(root, path);
4423 			if (ret < 0)
4424 				goto out;
4425 			if (ret > 0) {
4426 				ret = 0;
4427 				break;
4428 			}
4429 			continue;
4430 		}
4431 
4432 		btrfs_item_key_to_cpu(leaf, &key, slot);
4433 		if (key.objectid > ino)
4434 			break;
4435 		if (WARN_ON_ONCE(key.objectid < ino) ||
4436 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4437 		    key.offset < i_size) {
4438 			path->slots[0]++;
4439 			continue;
4440 		}
4441 		if (!dropped_extents) {
4442 			/*
4443 			 * Avoid logging extent items logged in past fsync calls
4444 			 * and leading to duplicate keys in the log tree.
4445 			 */
4446 			do {
4447 				ret = btrfs_truncate_inode_items(trans,
4448 							 root->log_root,
4449 							 inode, truncate_offset,
4450 							 BTRFS_EXTENT_DATA_KEY);
4451 			} while (ret == -EAGAIN);
4452 			if (ret)
4453 				goto out;
4454 			dropped_extents = true;
4455 		}
4456 		if (ins_nr == 0)
4457 			start_slot = slot;
4458 		ins_nr++;
4459 		path->slots[0]++;
4460 		if (!dst_path) {
4461 			dst_path = btrfs_alloc_path();
4462 			if (!dst_path) {
4463 				ret = -ENOMEM;
4464 				goto out;
4465 			}
4466 		}
4467 	}
4468 	if (ins_nr > 0)
4469 		ret = copy_items(trans, inode, dst_path, path,
4470 				 start_slot, ins_nr, 1, 0);
4471 out:
4472 	btrfs_release_path(path);
4473 	btrfs_free_path(dst_path);
4474 	return ret;
4475 }
4476 
4477 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4478 				     struct btrfs_root *root,
4479 				     struct btrfs_inode *inode,
4480 				     struct btrfs_path *path,
4481 				     struct btrfs_log_ctx *ctx)
4482 {
4483 	struct btrfs_ordered_extent *ordered;
4484 	struct btrfs_ordered_extent *tmp;
4485 	struct extent_map *em, *n;
4486 	struct list_head extents;
4487 	struct extent_map_tree *tree = &inode->extent_tree;
4488 	int ret = 0;
4489 	int num = 0;
4490 
4491 	INIT_LIST_HEAD(&extents);
4492 
4493 	write_lock(&tree->lock);
4494 
4495 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4496 		list_del_init(&em->list);
4497 		/*
4498 		 * Just an arbitrary number, this can be really CPU intensive
4499 		 * once we start getting a lot of extents, and really once we
4500 		 * have a bunch of extents we just want to commit since it will
4501 		 * be faster.
4502 		 */
4503 		if (++num > 32768) {
4504 			list_del_init(&tree->modified_extents);
4505 			ret = -EFBIG;
4506 			goto process;
4507 		}
4508 
4509 		if (em->generation < trans->transid)
4510 			continue;
4511 
4512 		/* We log prealloc extents beyond eof later. */
4513 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4514 		    em->start >= i_size_read(&inode->vfs_inode))
4515 			continue;
4516 
4517 		/* Need a ref to keep it from getting evicted from cache */
4518 		refcount_inc(&em->refs);
4519 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4520 		list_add_tail(&em->list, &extents);
4521 		num++;
4522 	}
4523 
4524 	list_sort(NULL, &extents, extent_cmp);
4525 process:
4526 	while (!list_empty(&extents)) {
4527 		em = list_entry(extents.next, struct extent_map, list);
4528 
4529 		list_del_init(&em->list);
4530 
4531 		/*
4532 		 * If we had an error we just need to delete everybody from our
4533 		 * private list.
4534 		 */
4535 		if (ret) {
4536 			clear_em_logging(tree, em);
4537 			free_extent_map(em);
4538 			continue;
4539 		}
4540 
4541 		write_unlock(&tree->lock);
4542 
4543 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4544 		write_lock(&tree->lock);
4545 		clear_em_logging(tree, em);
4546 		free_extent_map(em);
4547 	}
4548 	WARN_ON(!list_empty(&extents));
4549 	write_unlock(&tree->lock);
4550 
4551 	btrfs_release_path(path);
4552 	if (!ret)
4553 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4554 	if (ret)
4555 		return ret;
4556 
4557 	/*
4558 	 * We have logged all extents successfully, now make sure the commit of
4559 	 * the current transaction waits for the ordered extents to complete
4560 	 * before it commits and wipes out the log trees, otherwise we would
4561 	 * lose data if an ordered extents completes after the transaction
4562 	 * commits and a power failure happens after the transaction commit.
4563 	 */
4564 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4565 		list_del_init(&ordered->log_list);
4566 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4567 
4568 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4569 			spin_lock_irq(&inode->ordered_tree.lock);
4570 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4571 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4572 				atomic_inc(&trans->transaction->pending_ordered);
4573 			}
4574 			spin_unlock_irq(&inode->ordered_tree.lock);
4575 		}
4576 		btrfs_put_ordered_extent(ordered);
4577 	}
4578 
4579 	return 0;
4580 }
4581 
4582 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4583 			     struct btrfs_path *path, u64 *size_ret)
4584 {
4585 	struct btrfs_key key;
4586 	int ret;
4587 
4588 	key.objectid = btrfs_ino(inode);
4589 	key.type = BTRFS_INODE_ITEM_KEY;
4590 	key.offset = 0;
4591 
4592 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4593 	if (ret < 0) {
4594 		return ret;
4595 	} else if (ret > 0) {
4596 		*size_ret = 0;
4597 	} else {
4598 		struct btrfs_inode_item *item;
4599 
4600 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4601 				      struct btrfs_inode_item);
4602 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4603 		/*
4604 		 * If the in-memory inode's i_size is smaller then the inode
4605 		 * size stored in the btree, return the inode's i_size, so
4606 		 * that we get a correct inode size after replaying the log
4607 		 * when before a power failure we had a shrinking truncate
4608 		 * followed by addition of a new name (rename / new hard link).
4609 		 * Otherwise return the inode size from the btree, to avoid
4610 		 * data loss when replaying a log due to previously doing a
4611 		 * write that expands the inode's size and logging a new name
4612 		 * immediately after.
4613 		 */
4614 		if (*size_ret > inode->vfs_inode.i_size)
4615 			*size_ret = inode->vfs_inode.i_size;
4616 	}
4617 
4618 	btrfs_release_path(path);
4619 	return 0;
4620 }
4621 
4622 /*
4623  * At the moment we always log all xattrs. This is to figure out at log replay
4624  * time which xattrs must have their deletion replayed. If a xattr is missing
4625  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4626  * because if a xattr is deleted, the inode is fsynced and a power failure
4627  * happens, causing the log to be replayed the next time the fs is mounted,
4628  * we want the xattr to not exist anymore (same behaviour as other filesystems
4629  * with a journal, ext3/4, xfs, f2fs, etc).
4630  */
4631 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4632 				struct btrfs_root *root,
4633 				struct btrfs_inode *inode,
4634 				struct btrfs_path *path,
4635 				struct btrfs_path *dst_path)
4636 {
4637 	int ret;
4638 	struct btrfs_key key;
4639 	const u64 ino = btrfs_ino(inode);
4640 	int ins_nr = 0;
4641 	int start_slot = 0;
4642 	bool found_xattrs = false;
4643 
4644 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4645 		return 0;
4646 
4647 	key.objectid = ino;
4648 	key.type = BTRFS_XATTR_ITEM_KEY;
4649 	key.offset = 0;
4650 
4651 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4652 	if (ret < 0)
4653 		return ret;
4654 
4655 	while (true) {
4656 		int slot = path->slots[0];
4657 		struct extent_buffer *leaf = path->nodes[0];
4658 		int nritems = btrfs_header_nritems(leaf);
4659 
4660 		if (slot >= nritems) {
4661 			if (ins_nr > 0) {
4662 				ret = copy_items(trans, inode, dst_path, path,
4663 						 start_slot, ins_nr, 1, 0);
4664 				if (ret < 0)
4665 					return ret;
4666 				ins_nr = 0;
4667 			}
4668 			ret = btrfs_next_leaf(root, path);
4669 			if (ret < 0)
4670 				return ret;
4671 			else if (ret > 0)
4672 				break;
4673 			continue;
4674 		}
4675 
4676 		btrfs_item_key_to_cpu(leaf, &key, slot);
4677 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4678 			break;
4679 
4680 		if (ins_nr == 0)
4681 			start_slot = slot;
4682 		ins_nr++;
4683 		path->slots[0]++;
4684 		found_xattrs = true;
4685 		cond_resched();
4686 	}
4687 	if (ins_nr > 0) {
4688 		ret = copy_items(trans, inode, dst_path, path,
4689 				 start_slot, ins_nr, 1, 0);
4690 		if (ret < 0)
4691 			return ret;
4692 	}
4693 
4694 	if (!found_xattrs)
4695 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4696 
4697 	return 0;
4698 }
4699 
4700 /*
4701  * When using the NO_HOLES feature if we punched a hole that causes the
4702  * deletion of entire leafs or all the extent items of the first leaf (the one
4703  * that contains the inode item and references) we may end up not processing
4704  * any extents, because there are no leafs with a generation matching the
4705  * current transaction that have extent items for our inode. So we need to find
4706  * if any holes exist and then log them. We also need to log holes after any
4707  * truncate operation that changes the inode's size.
4708  */
4709 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4710 			   struct btrfs_root *root,
4711 			   struct btrfs_inode *inode,
4712 			   struct btrfs_path *path)
4713 {
4714 	struct btrfs_fs_info *fs_info = root->fs_info;
4715 	struct btrfs_key key;
4716 	const u64 ino = btrfs_ino(inode);
4717 	const u64 i_size = i_size_read(&inode->vfs_inode);
4718 	u64 prev_extent_end = 0;
4719 	int ret;
4720 
4721 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4722 		return 0;
4723 
4724 	key.objectid = ino;
4725 	key.type = BTRFS_EXTENT_DATA_KEY;
4726 	key.offset = 0;
4727 
4728 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4729 	if (ret < 0)
4730 		return ret;
4731 
4732 	while (true) {
4733 		struct extent_buffer *leaf = path->nodes[0];
4734 
4735 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4736 			ret = btrfs_next_leaf(root, path);
4737 			if (ret < 0)
4738 				return ret;
4739 			if (ret > 0) {
4740 				ret = 0;
4741 				break;
4742 			}
4743 			leaf = path->nodes[0];
4744 		}
4745 
4746 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4747 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4748 			break;
4749 
4750 		/* We have a hole, log it. */
4751 		if (prev_extent_end < key.offset) {
4752 			const u64 hole_len = key.offset - prev_extent_end;
4753 
4754 			/*
4755 			 * Release the path to avoid deadlocks with other code
4756 			 * paths that search the root while holding locks on
4757 			 * leafs from the log root.
4758 			 */
4759 			btrfs_release_path(path);
4760 			ret = btrfs_insert_file_extent(trans, root->log_root,
4761 						       ino, prev_extent_end, 0,
4762 						       0, hole_len, 0, hole_len,
4763 						       0, 0, 0);
4764 			if (ret < 0)
4765 				return ret;
4766 
4767 			/*
4768 			 * Search for the same key again in the root. Since it's
4769 			 * an extent item and we are holding the inode lock, the
4770 			 * key must still exist. If it doesn't just emit warning
4771 			 * and return an error to fall back to a transaction
4772 			 * commit.
4773 			 */
4774 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4775 			if (ret < 0)
4776 				return ret;
4777 			if (WARN_ON(ret > 0))
4778 				return -ENOENT;
4779 			leaf = path->nodes[0];
4780 		}
4781 
4782 		prev_extent_end = btrfs_file_extent_end(path);
4783 		path->slots[0]++;
4784 		cond_resched();
4785 	}
4786 
4787 	if (prev_extent_end < i_size) {
4788 		u64 hole_len;
4789 
4790 		btrfs_release_path(path);
4791 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4792 		ret = btrfs_insert_file_extent(trans, root->log_root,
4793 					       ino, prev_extent_end, 0, 0,
4794 					       hole_len, 0, hole_len,
4795 					       0, 0, 0);
4796 		if (ret < 0)
4797 			return ret;
4798 	}
4799 
4800 	return 0;
4801 }
4802 
4803 /*
4804  * When we are logging a new inode X, check if it doesn't have a reference that
4805  * matches the reference from some other inode Y created in a past transaction
4806  * and that was renamed in the current transaction. If we don't do this, then at
4807  * log replay time we can lose inode Y (and all its files if it's a directory):
4808  *
4809  * mkdir /mnt/x
4810  * echo "hello world" > /mnt/x/foobar
4811  * sync
4812  * mv /mnt/x /mnt/y
4813  * mkdir /mnt/x                 # or touch /mnt/x
4814  * xfs_io -c fsync /mnt/x
4815  * <power fail>
4816  * mount fs, trigger log replay
4817  *
4818  * After the log replay procedure, we would lose the first directory and all its
4819  * files (file foobar).
4820  * For the case where inode Y is not a directory we simply end up losing it:
4821  *
4822  * echo "123" > /mnt/foo
4823  * sync
4824  * mv /mnt/foo /mnt/bar
4825  * echo "abc" > /mnt/foo
4826  * xfs_io -c fsync /mnt/foo
4827  * <power fail>
4828  *
4829  * We also need this for cases where a snapshot entry is replaced by some other
4830  * entry (file or directory) otherwise we end up with an unreplayable log due to
4831  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4832  * if it were a regular entry:
4833  *
4834  * mkdir /mnt/x
4835  * btrfs subvolume snapshot /mnt /mnt/x/snap
4836  * btrfs subvolume delete /mnt/x/snap
4837  * rmdir /mnt/x
4838  * mkdir /mnt/x
4839  * fsync /mnt/x or fsync some new file inside it
4840  * <power fail>
4841  *
4842  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4843  * the same transaction.
4844  */
4845 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4846 					 const int slot,
4847 					 const struct btrfs_key *key,
4848 					 struct btrfs_inode *inode,
4849 					 u64 *other_ino, u64 *other_parent)
4850 {
4851 	int ret;
4852 	struct btrfs_path *search_path;
4853 	char *name = NULL;
4854 	u32 name_len = 0;
4855 	u32 item_size = btrfs_item_size_nr(eb, slot);
4856 	u32 cur_offset = 0;
4857 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4858 
4859 	search_path = btrfs_alloc_path();
4860 	if (!search_path)
4861 		return -ENOMEM;
4862 	search_path->search_commit_root = 1;
4863 	search_path->skip_locking = 1;
4864 
4865 	while (cur_offset < item_size) {
4866 		u64 parent;
4867 		u32 this_name_len;
4868 		u32 this_len;
4869 		unsigned long name_ptr;
4870 		struct btrfs_dir_item *di;
4871 
4872 		if (key->type == BTRFS_INODE_REF_KEY) {
4873 			struct btrfs_inode_ref *iref;
4874 
4875 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4876 			parent = key->offset;
4877 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4878 			name_ptr = (unsigned long)(iref + 1);
4879 			this_len = sizeof(*iref) + this_name_len;
4880 		} else {
4881 			struct btrfs_inode_extref *extref;
4882 
4883 			extref = (struct btrfs_inode_extref *)(ptr +
4884 							       cur_offset);
4885 			parent = btrfs_inode_extref_parent(eb, extref);
4886 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4887 			name_ptr = (unsigned long)&extref->name;
4888 			this_len = sizeof(*extref) + this_name_len;
4889 		}
4890 
4891 		if (this_name_len > name_len) {
4892 			char *new_name;
4893 
4894 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4895 			if (!new_name) {
4896 				ret = -ENOMEM;
4897 				goto out;
4898 			}
4899 			name_len = this_name_len;
4900 			name = new_name;
4901 		}
4902 
4903 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4904 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4905 				parent, name, this_name_len, 0);
4906 		if (di && !IS_ERR(di)) {
4907 			struct btrfs_key di_key;
4908 
4909 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4910 						  di, &di_key);
4911 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4912 				if (di_key.objectid != key->objectid) {
4913 					ret = 1;
4914 					*other_ino = di_key.objectid;
4915 					*other_parent = parent;
4916 				} else {
4917 					ret = 0;
4918 				}
4919 			} else {
4920 				ret = -EAGAIN;
4921 			}
4922 			goto out;
4923 		} else if (IS_ERR(di)) {
4924 			ret = PTR_ERR(di);
4925 			goto out;
4926 		}
4927 		btrfs_release_path(search_path);
4928 
4929 		cur_offset += this_len;
4930 	}
4931 	ret = 0;
4932 out:
4933 	btrfs_free_path(search_path);
4934 	kfree(name);
4935 	return ret;
4936 }
4937 
4938 struct btrfs_ino_list {
4939 	u64 ino;
4940 	u64 parent;
4941 	struct list_head list;
4942 };
4943 
4944 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4945 				  struct btrfs_root *root,
4946 				  struct btrfs_path *path,
4947 				  struct btrfs_log_ctx *ctx,
4948 				  u64 ino, u64 parent)
4949 {
4950 	struct btrfs_ino_list *ino_elem;
4951 	LIST_HEAD(inode_list);
4952 	int ret = 0;
4953 
4954 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4955 	if (!ino_elem)
4956 		return -ENOMEM;
4957 	ino_elem->ino = ino;
4958 	ino_elem->parent = parent;
4959 	list_add_tail(&ino_elem->list, &inode_list);
4960 
4961 	while (!list_empty(&inode_list)) {
4962 		struct btrfs_fs_info *fs_info = root->fs_info;
4963 		struct btrfs_key key;
4964 		struct inode *inode;
4965 
4966 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4967 					    list);
4968 		ino = ino_elem->ino;
4969 		parent = ino_elem->parent;
4970 		list_del(&ino_elem->list);
4971 		kfree(ino_elem);
4972 		if (ret)
4973 			continue;
4974 
4975 		btrfs_release_path(path);
4976 
4977 		inode = btrfs_iget(fs_info->sb, ino, root);
4978 		/*
4979 		 * If the other inode that had a conflicting dir entry was
4980 		 * deleted in the current transaction, we need to log its parent
4981 		 * directory.
4982 		 */
4983 		if (IS_ERR(inode)) {
4984 			ret = PTR_ERR(inode);
4985 			if (ret == -ENOENT) {
4986 				inode = btrfs_iget(fs_info->sb, parent, root);
4987 				if (IS_ERR(inode)) {
4988 					ret = PTR_ERR(inode);
4989 				} else {
4990 					ret = btrfs_log_inode(trans, root,
4991 						      BTRFS_I(inode),
4992 						      LOG_OTHER_INODE_ALL,
4993 						      ctx);
4994 					btrfs_add_delayed_iput(inode);
4995 				}
4996 			}
4997 			continue;
4998 		}
4999 		/*
5000 		 * If the inode was already logged skip it - otherwise we can
5001 		 * hit an infinite loop. Example:
5002 		 *
5003 		 * From the commit root (previous transaction) we have the
5004 		 * following inodes:
5005 		 *
5006 		 * inode 257 a directory
5007 		 * inode 258 with references "zz" and "zz_link" on inode 257
5008 		 * inode 259 with reference "a" on inode 257
5009 		 *
5010 		 * And in the current (uncommitted) transaction we have:
5011 		 *
5012 		 * inode 257 a directory, unchanged
5013 		 * inode 258 with references "a" and "a2" on inode 257
5014 		 * inode 259 with reference "zz_link" on inode 257
5015 		 * inode 261 with reference "zz" on inode 257
5016 		 *
5017 		 * When logging inode 261 the following infinite loop could
5018 		 * happen if we don't skip already logged inodes:
5019 		 *
5020 		 * - we detect inode 258 as a conflicting inode, with inode 261
5021 		 *   on reference "zz", and log it;
5022 		 *
5023 		 * - we detect inode 259 as a conflicting inode, with inode 258
5024 		 *   on reference "a", and log it;
5025 		 *
5026 		 * - we detect inode 258 as a conflicting inode, with inode 259
5027 		 *   on reference "zz_link", and log it - again! After this we
5028 		 *   repeat the above steps forever.
5029 		 */
5030 		spin_lock(&BTRFS_I(inode)->lock);
5031 		/*
5032 		 * Check the inode's logged_trans only instead of
5033 		 * btrfs_inode_in_log(). This is because the last_log_commit of
5034 		 * the inode is not updated when we only log that it exists and
5035 		 * it has the full sync bit set (see btrfs_log_inode()).
5036 		 */
5037 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
5038 			spin_unlock(&BTRFS_I(inode)->lock);
5039 			btrfs_add_delayed_iput(inode);
5040 			continue;
5041 		}
5042 		spin_unlock(&BTRFS_I(inode)->lock);
5043 		/*
5044 		 * We are safe logging the other inode without acquiring its
5045 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5046 		 * are safe against concurrent renames of the other inode as
5047 		 * well because during a rename we pin the log and update the
5048 		 * log with the new name before we unpin it.
5049 		 */
5050 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5051 				      LOG_OTHER_INODE, ctx);
5052 		if (ret) {
5053 			btrfs_add_delayed_iput(inode);
5054 			continue;
5055 		}
5056 
5057 		key.objectid = ino;
5058 		key.type = BTRFS_INODE_REF_KEY;
5059 		key.offset = 0;
5060 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5061 		if (ret < 0) {
5062 			btrfs_add_delayed_iput(inode);
5063 			continue;
5064 		}
5065 
5066 		while (true) {
5067 			struct extent_buffer *leaf = path->nodes[0];
5068 			int slot = path->slots[0];
5069 			u64 other_ino = 0;
5070 			u64 other_parent = 0;
5071 
5072 			if (slot >= btrfs_header_nritems(leaf)) {
5073 				ret = btrfs_next_leaf(root, path);
5074 				if (ret < 0) {
5075 					break;
5076 				} else if (ret > 0) {
5077 					ret = 0;
5078 					break;
5079 				}
5080 				continue;
5081 			}
5082 
5083 			btrfs_item_key_to_cpu(leaf, &key, slot);
5084 			if (key.objectid != ino ||
5085 			    (key.type != BTRFS_INODE_REF_KEY &&
5086 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5087 				ret = 0;
5088 				break;
5089 			}
5090 
5091 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5092 					BTRFS_I(inode), &other_ino,
5093 					&other_parent);
5094 			if (ret < 0)
5095 				break;
5096 			if (ret > 0) {
5097 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5098 				if (!ino_elem) {
5099 					ret = -ENOMEM;
5100 					break;
5101 				}
5102 				ino_elem->ino = other_ino;
5103 				ino_elem->parent = other_parent;
5104 				list_add_tail(&ino_elem->list, &inode_list);
5105 				ret = 0;
5106 			}
5107 			path->slots[0]++;
5108 		}
5109 		btrfs_add_delayed_iput(inode);
5110 	}
5111 
5112 	return ret;
5113 }
5114 
5115 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5116 				   struct btrfs_inode *inode,
5117 				   struct btrfs_key *min_key,
5118 				   const struct btrfs_key *max_key,
5119 				   struct btrfs_path *path,
5120 				   struct btrfs_path *dst_path,
5121 				   const u64 logged_isize,
5122 				   const bool recursive_logging,
5123 				   const int inode_only,
5124 				   struct btrfs_log_ctx *ctx,
5125 				   bool *need_log_inode_item)
5126 {
5127 	struct btrfs_root *root = inode->root;
5128 	int ins_start_slot = 0;
5129 	int ins_nr = 0;
5130 	int ret;
5131 
5132 	while (1) {
5133 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5134 		if (ret < 0)
5135 			return ret;
5136 		if (ret > 0) {
5137 			ret = 0;
5138 			break;
5139 		}
5140 again:
5141 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5142 		if (min_key->objectid != max_key->objectid)
5143 			break;
5144 		if (min_key->type > max_key->type)
5145 			break;
5146 
5147 		if (min_key->type == BTRFS_INODE_ITEM_KEY)
5148 			*need_log_inode_item = false;
5149 
5150 		if ((min_key->type == BTRFS_INODE_REF_KEY ||
5151 		     min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5152 		    inode->generation == trans->transid &&
5153 		    !recursive_logging) {
5154 			u64 other_ino = 0;
5155 			u64 other_parent = 0;
5156 
5157 			ret = btrfs_check_ref_name_override(path->nodes[0],
5158 					path->slots[0], min_key, inode,
5159 					&other_ino, &other_parent);
5160 			if (ret < 0) {
5161 				return ret;
5162 			} else if (ret > 0 && ctx &&
5163 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5164 				if (ins_nr > 0) {
5165 					ins_nr++;
5166 				} else {
5167 					ins_nr = 1;
5168 					ins_start_slot = path->slots[0];
5169 				}
5170 				ret = copy_items(trans, inode, dst_path, path,
5171 						 ins_start_slot, ins_nr,
5172 						 inode_only, logged_isize);
5173 				if (ret < 0)
5174 					return ret;
5175 				ins_nr = 0;
5176 
5177 				ret = log_conflicting_inodes(trans, root, path,
5178 						ctx, other_ino, other_parent);
5179 				if (ret)
5180 					return ret;
5181 				btrfs_release_path(path);
5182 				goto next_key;
5183 			}
5184 		}
5185 
5186 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5187 		if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5188 			if (ins_nr == 0)
5189 				goto next_slot;
5190 			ret = copy_items(trans, inode, dst_path, path,
5191 					 ins_start_slot,
5192 					 ins_nr, inode_only, logged_isize);
5193 			if (ret < 0)
5194 				return ret;
5195 			ins_nr = 0;
5196 			goto next_slot;
5197 		}
5198 
5199 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5200 			ins_nr++;
5201 			goto next_slot;
5202 		} else if (!ins_nr) {
5203 			ins_start_slot = path->slots[0];
5204 			ins_nr = 1;
5205 			goto next_slot;
5206 		}
5207 
5208 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5209 				 ins_nr, inode_only, logged_isize);
5210 		if (ret < 0)
5211 			return ret;
5212 		ins_nr = 1;
5213 		ins_start_slot = path->slots[0];
5214 next_slot:
5215 		path->slots[0]++;
5216 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5217 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5218 					      path->slots[0]);
5219 			goto again;
5220 		}
5221 		if (ins_nr) {
5222 			ret = copy_items(trans, inode, dst_path, path,
5223 					 ins_start_slot, ins_nr, inode_only,
5224 					 logged_isize);
5225 			if (ret < 0)
5226 				return ret;
5227 			ins_nr = 0;
5228 		}
5229 		btrfs_release_path(path);
5230 next_key:
5231 		if (min_key->offset < (u64)-1) {
5232 			min_key->offset++;
5233 		} else if (min_key->type < max_key->type) {
5234 			min_key->type++;
5235 			min_key->offset = 0;
5236 		} else {
5237 			break;
5238 		}
5239 	}
5240 	if (ins_nr)
5241 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5242 				 ins_nr, inode_only, logged_isize);
5243 
5244 	return ret;
5245 }
5246 
5247 /* log a single inode in the tree log.
5248  * At least one parent directory for this inode must exist in the tree
5249  * or be logged already.
5250  *
5251  * Any items from this inode changed by the current transaction are copied
5252  * to the log tree.  An extra reference is taken on any extents in this
5253  * file, allowing us to avoid a whole pile of corner cases around logging
5254  * blocks that have been removed from the tree.
5255  *
5256  * See LOG_INODE_ALL and related defines for a description of what inode_only
5257  * does.
5258  *
5259  * This handles both files and directories.
5260  */
5261 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5262 			   struct btrfs_root *root, struct btrfs_inode *inode,
5263 			   int inode_only,
5264 			   struct btrfs_log_ctx *ctx)
5265 {
5266 	struct btrfs_path *path;
5267 	struct btrfs_path *dst_path;
5268 	struct btrfs_key min_key;
5269 	struct btrfs_key max_key;
5270 	struct btrfs_root *log = root->log_root;
5271 	int err = 0;
5272 	int ret = 0;
5273 	bool fast_search = false;
5274 	u64 ino = btrfs_ino(inode);
5275 	struct extent_map_tree *em_tree = &inode->extent_tree;
5276 	u64 logged_isize = 0;
5277 	bool need_log_inode_item = true;
5278 	bool xattrs_logged = false;
5279 	bool recursive_logging = false;
5280 
5281 	path = btrfs_alloc_path();
5282 	if (!path)
5283 		return -ENOMEM;
5284 	dst_path = btrfs_alloc_path();
5285 	if (!dst_path) {
5286 		btrfs_free_path(path);
5287 		return -ENOMEM;
5288 	}
5289 
5290 	min_key.objectid = ino;
5291 	min_key.type = BTRFS_INODE_ITEM_KEY;
5292 	min_key.offset = 0;
5293 
5294 	max_key.objectid = ino;
5295 
5296 
5297 	/* today the code can only do partial logging of directories */
5298 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5299 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5300 		       &inode->runtime_flags) &&
5301 	     inode_only >= LOG_INODE_EXISTS))
5302 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5303 	else
5304 		max_key.type = (u8)-1;
5305 	max_key.offset = (u64)-1;
5306 
5307 	/*
5308 	 * Only run delayed items if we are a directory. We want to make sure
5309 	 * all directory indexes hit the fs/subvolume tree so we can find them
5310 	 * and figure out which index ranges have to be logged.
5311 	 *
5312 	 * Otherwise commit the delayed inode only if the full sync flag is set,
5313 	 * as we want to make sure an up to date version is in the subvolume
5314 	 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5315 	 * it to the log tree. For a non full sync, we always log the inode item
5316 	 * based on the in-memory struct btrfs_inode which is always up to date.
5317 	 */
5318 	if (S_ISDIR(inode->vfs_inode.i_mode))
5319 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5320 	else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5321 		ret = btrfs_commit_inode_delayed_inode(inode);
5322 
5323 	if (ret) {
5324 		btrfs_free_path(path);
5325 		btrfs_free_path(dst_path);
5326 		return ret;
5327 	}
5328 
5329 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5330 		recursive_logging = true;
5331 		if (inode_only == LOG_OTHER_INODE)
5332 			inode_only = LOG_INODE_EXISTS;
5333 		else
5334 			inode_only = LOG_INODE_ALL;
5335 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5336 	} else {
5337 		mutex_lock(&inode->log_mutex);
5338 	}
5339 
5340 	/*
5341 	 * This is for cases where logging a directory could result in losing a
5342 	 * a file after replaying the log. For example, if we move a file from a
5343 	 * directory A to a directory B, then fsync directory A, we have no way
5344 	 * to known the file was moved from A to B, so logging just A would
5345 	 * result in losing the file after a log replay.
5346 	 */
5347 	if (S_ISDIR(inode->vfs_inode.i_mode) &&
5348 	    inode_only == LOG_INODE_ALL &&
5349 	    inode->last_unlink_trans >= trans->transid) {
5350 		btrfs_set_log_full_commit(trans);
5351 		err = 1;
5352 		goto out_unlock;
5353 	}
5354 
5355 	/*
5356 	 * a brute force approach to making sure we get the most uptodate
5357 	 * copies of everything.
5358 	 */
5359 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5360 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5361 
5362 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
5363 		if (inode_only == LOG_INODE_EXISTS)
5364 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5365 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5366 	} else {
5367 		if (inode_only == LOG_INODE_EXISTS) {
5368 			/*
5369 			 * Make sure the new inode item we write to the log has
5370 			 * the same isize as the current one (if it exists).
5371 			 * This is necessary to prevent data loss after log
5372 			 * replay, and also to prevent doing a wrong expanding
5373 			 * truncate - for e.g. create file, write 4K into offset
5374 			 * 0, fsync, write 4K into offset 4096, add hard link,
5375 			 * fsync some other file (to sync log), power fail - if
5376 			 * we use the inode's current i_size, after log replay
5377 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5378 			 * (zeroes), as if an expanding truncate happened,
5379 			 * instead of getting a file of 4Kb only.
5380 			 */
5381 			err = logged_inode_size(log, inode, path, &logged_isize);
5382 			if (err)
5383 				goto out_unlock;
5384 		}
5385 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5386 			     &inode->runtime_flags)) {
5387 			if (inode_only == LOG_INODE_EXISTS) {
5388 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5389 				ret = drop_objectid_items(trans, log, path, ino,
5390 							  max_key.type);
5391 			} else {
5392 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5393 					  &inode->runtime_flags);
5394 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5395 					  &inode->runtime_flags);
5396 				while(1) {
5397 					ret = btrfs_truncate_inode_items(trans,
5398 						log, inode, 0, 0);
5399 					if (ret != -EAGAIN)
5400 						break;
5401 				}
5402 			}
5403 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5404 					      &inode->runtime_flags) ||
5405 			   inode_only == LOG_INODE_EXISTS) {
5406 			if (inode_only == LOG_INODE_ALL)
5407 				fast_search = true;
5408 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5409 			ret = drop_objectid_items(trans, log, path, ino,
5410 						  max_key.type);
5411 		} else {
5412 			if (inode_only == LOG_INODE_ALL)
5413 				fast_search = true;
5414 			goto log_extents;
5415 		}
5416 
5417 	}
5418 	if (ret) {
5419 		err = ret;
5420 		goto out_unlock;
5421 	}
5422 
5423 	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5424 				      path, dst_path, logged_isize,
5425 				      recursive_logging, inode_only, ctx,
5426 				      &need_log_inode_item);
5427 	if (err)
5428 		goto out_unlock;
5429 
5430 	btrfs_release_path(path);
5431 	btrfs_release_path(dst_path);
5432 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5433 	if (err)
5434 		goto out_unlock;
5435 	xattrs_logged = true;
5436 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5437 		btrfs_release_path(path);
5438 		btrfs_release_path(dst_path);
5439 		err = btrfs_log_holes(trans, root, inode, path);
5440 		if (err)
5441 			goto out_unlock;
5442 	}
5443 log_extents:
5444 	btrfs_release_path(path);
5445 	btrfs_release_path(dst_path);
5446 	if (need_log_inode_item) {
5447 		err = log_inode_item(trans, log, dst_path, inode);
5448 		if (!err && !xattrs_logged) {
5449 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5450 						   dst_path);
5451 			btrfs_release_path(path);
5452 		}
5453 		if (err)
5454 			goto out_unlock;
5455 	}
5456 	if (fast_search) {
5457 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5458 						ctx);
5459 		if (ret) {
5460 			err = ret;
5461 			goto out_unlock;
5462 		}
5463 	} else if (inode_only == LOG_INODE_ALL) {
5464 		struct extent_map *em, *n;
5465 
5466 		write_lock(&em_tree->lock);
5467 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5468 			list_del_init(&em->list);
5469 		write_unlock(&em_tree->lock);
5470 	}
5471 
5472 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5473 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5474 					ctx);
5475 		if (ret) {
5476 			err = ret;
5477 			goto out_unlock;
5478 		}
5479 	}
5480 
5481 	/*
5482 	 * If we are logging that an ancestor inode exists as part of logging a
5483 	 * new name from a link or rename operation, don't mark the inode as
5484 	 * logged - otherwise if an explicit fsync is made against an ancestor,
5485 	 * the fsync considers the inode in the log and doesn't sync the log,
5486 	 * resulting in the ancestor missing after a power failure unless the
5487 	 * log was synced as part of an fsync against any other unrelated inode.
5488 	 * So keep it simple for this case and just don't flag the ancestors as
5489 	 * logged.
5490 	 */
5491 	if (!ctx ||
5492 	    !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5493 	      &inode->vfs_inode != ctx->inode)) {
5494 		spin_lock(&inode->lock);
5495 		inode->logged_trans = trans->transid;
5496 		/*
5497 		 * Don't update last_log_commit if we logged that an inode exists
5498 		 * after it was loaded to memory (full_sync bit set).
5499 		 * This is to prevent data loss when we do a write to the inode,
5500 		 * then the inode gets evicted after all delalloc was flushed,
5501 		 * then we log it exists (due to a rename for example) and then
5502 		 * fsync it. This last fsync would do nothing (not logging the
5503 		 * extents previously written).
5504 		 */
5505 		if (inode_only != LOG_INODE_EXISTS ||
5506 		    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5507 			inode->last_log_commit = inode->last_sub_trans;
5508 		spin_unlock(&inode->lock);
5509 	}
5510 out_unlock:
5511 	mutex_unlock(&inode->log_mutex);
5512 
5513 	btrfs_free_path(path);
5514 	btrfs_free_path(dst_path);
5515 	return err;
5516 }
5517 
5518 /*
5519  * Check if we need to log an inode. This is used in contexts where while
5520  * logging an inode we need to log another inode (either that it exists or in
5521  * full mode). This is used instead of btrfs_inode_in_log() because the later
5522  * requires the inode to be in the log and have the log transaction committed,
5523  * while here we do not care if the log transaction was already committed - our
5524  * caller will commit the log later - and we want to avoid logging an inode
5525  * multiple times when multiple tasks have joined the same log transaction.
5526  */
5527 static bool need_log_inode(struct btrfs_trans_handle *trans,
5528 			   struct btrfs_inode *inode)
5529 {
5530 	/*
5531 	 * If this inode does not have new/updated/deleted xattrs since the last
5532 	 * time it was logged and is flagged as logged in the current transaction,
5533 	 * we can skip logging it. As for new/deleted names, those are updated in
5534 	 * the log by link/unlink/rename operations.
5535 	 * In case the inode was logged and then evicted and reloaded, its
5536 	 * logged_trans will be 0, in which case we have to fully log it since
5537 	 * logged_trans is a transient field, not persisted.
5538 	 */
5539 	if (inode->logged_trans == trans->transid &&
5540 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5541 		return false;
5542 
5543 	return true;
5544 }
5545 
5546 struct btrfs_dir_list {
5547 	u64 ino;
5548 	struct list_head list;
5549 };
5550 
5551 /*
5552  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5553  * details about the why it is needed.
5554  * This is a recursive operation - if an existing dentry corresponds to a
5555  * directory, that directory's new entries are logged too (same behaviour as
5556  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5557  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5558  * complains about the following circular lock dependency / possible deadlock:
5559  *
5560  *        CPU0                                        CPU1
5561  *        ----                                        ----
5562  * lock(&type->i_mutex_dir_key#3/2);
5563  *                                            lock(sb_internal#2);
5564  *                                            lock(&type->i_mutex_dir_key#3/2);
5565  * lock(&sb->s_type->i_mutex_key#14);
5566  *
5567  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5568  * sb_start_intwrite() in btrfs_start_transaction().
5569  * Not locking i_mutex of the inodes is still safe because:
5570  *
5571  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5572  *    that while logging the inode new references (names) are added or removed
5573  *    from the inode, leaving the logged inode item with a link count that does
5574  *    not match the number of logged inode reference items. This is fine because
5575  *    at log replay time we compute the real number of links and correct the
5576  *    link count in the inode item (see replay_one_buffer() and
5577  *    link_to_fixup_dir());
5578  *
5579  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5580  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5581  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5582  *    has a size that doesn't match the sum of the lengths of all the logged
5583  *    names. This does not result in a problem because if a dir_item key is
5584  *    logged but its matching dir_index key is not logged, at log replay time we
5585  *    don't use it to replay the respective name (see replay_one_name()). On the
5586  *    other hand if only the dir_index key ends up being logged, the respective
5587  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5588  *    keys created (see replay_one_name()).
5589  *    The directory's inode item with a wrong i_size is not a problem as well,
5590  *    since we don't use it at log replay time to set the i_size in the inode
5591  *    item of the fs/subvol tree (see overwrite_item()).
5592  */
5593 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5594 				struct btrfs_root *root,
5595 				struct btrfs_inode *start_inode,
5596 				struct btrfs_log_ctx *ctx)
5597 {
5598 	struct btrfs_fs_info *fs_info = root->fs_info;
5599 	struct btrfs_root *log = root->log_root;
5600 	struct btrfs_path *path;
5601 	LIST_HEAD(dir_list);
5602 	struct btrfs_dir_list *dir_elem;
5603 	int ret = 0;
5604 
5605 	path = btrfs_alloc_path();
5606 	if (!path)
5607 		return -ENOMEM;
5608 
5609 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5610 	if (!dir_elem) {
5611 		btrfs_free_path(path);
5612 		return -ENOMEM;
5613 	}
5614 	dir_elem->ino = btrfs_ino(start_inode);
5615 	list_add_tail(&dir_elem->list, &dir_list);
5616 
5617 	while (!list_empty(&dir_list)) {
5618 		struct extent_buffer *leaf;
5619 		struct btrfs_key min_key;
5620 		int nritems;
5621 		int i;
5622 
5623 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5624 					    list);
5625 		if (ret)
5626 			goto next_dir_inode;
5627 
5628 		min_key.objectid = dir_elem->ino;
5629 		min_key.type = BTRFS_DIR_ITEM_KEY;
5630 		min_key.offset = 0;
5631 again:
5632 		btrfs_release_path(path);
5633 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5634 		if (ret < 0) {
5635 			goto next_dir_inode;
5636 		} else if (ret > 0) {
5637 			ret = 0;
5638 			goto next_dir_inode;
5639 		}
5640 
5641 process_leaf:
5642 		leaf = path->nodes[0];
5643 		nritems = btrfs_header_nritems(leaf);
5644 		for (i = path->slots[0]; i < nritems; i++) {
5645 			struct btrfs_dir_item *di;
5646 			struct btrfs_key di_key;
5647 			struct inode *di_inode;
5648 			struct btrfs_dir_list *new_dir_elem;
5649 			int log_mode = LOG_INODE_EXISTS;
5650 			int type;
5651 
5652 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5653 			if (min_key.objectid != dir_elem->ino ||
5654 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5655 				goto next_dir_inode;
5656 
5657 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5658 			type = btrfs_dir_type(leaf, di);
5659 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5660 			    type != BTRFS_FT_DIR)
5661 				continue;
5662 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5663 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5664 				continue;
5665 
5666 			btrfs_release_path(path);
5667 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5668 			if (IS_ERR(di_inode)) {
5669 				ret = PTR_ERR(di_inode);
5670 				goto next_dir_inode;
5671 			}
5672 
5673 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5674 				btrfs_add_delayed_iput(di_inode);
5675 				break;
5676 			}
5677 
5678 			ctx->log_new_dentries = false;
5679 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5680 				log_mode = LOG_INODE_ALL;
5681 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5682 					      log_mode, ctx);
5683 			btrfs_add_delayed_iput(di_inode);
5684 			if (ret)
5685 				goto next_dir_inode;
5686 			if (ctx->log_new_dentries) {
5687 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5688 						       GFP_NOFS);
5689 				if (!new_dir_elem) {
5690 					ret = -ENOMEM;
5691 					goto next_dir_inode;
5692 				}
5693 				new_dir_elem->ino = di_key.objectid;
5694 				list_add_tail(&new_dir_elem->list, &dir_list);
5695 			}
5696 			break;
5697 		}
5698 		if (i == nritems) {
5699 			ret = btrfs_next_leaf(log, path);
5700 			if (ret < 0) {
5701 				goto next_dir_inode;
5702 			} else if (ret > 0) {
5703 				ret = 0;
5704 				goto next_dir_inode;
5705 			}
5706 			goto process_leaf;
5707 		}
5708 		if (min_key.offset < (u64)-1) {
5709 			min_key.offset++;
5710 			goto again;
5711 		}
5712 next_dir_inode:
5713 		list_del(&dir_elem->list);
5714 		kfree(dir_elem);
5715 	}
5716 
5717 	btrfs_free_path(path);
5718 	return ret;
5719 }
5720 
5721 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5722 				 struct btrfs_inode *inode,
5723 				 struct btrfs_log_ctx *ctx)
5724 {
5725 	struct btrfs_fs_info *fs_info = trans->fs_info;
5726 	int ret;
5727 	struct btrfs_path *path;
5728 	struct btrfs_key key;
5729 	struct btrfs_root *root = inode->root;
5730 	const u64 ino = btrfs_ino(inode);
5731 
5732 	path = btrfs_alloc_path();
5733 	if (!path)
5734 		return -ENOMEM;
5735 	path->skip_locking = 1;
5736 	path->search_commit_root = 1;
5737 
5738 	key.objectid = ino;
5739 	key.type = BTRFS_INODE_REF_KEY;
5740 	key.offset = 0;
5741 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5742 	if (ret < 0)
5743 		goto out;
5744 
5745 	while (true) {
5746 		struct extent_buffer *leaf = path->nodes[0];
5747 		int slot = path->slots[0];
5748 		u32 cur_offset = 0;
5749 		u32 item_size;
5750 		unsigned long ptr;
5751 
5752 		if (slot >= btrfs_header_nritems(leaf)) {
5753 			ret = btrfs_next_leaf(root, path);
5754 			if (ret < 0)
5755 				goto out;
5756 			else if (ret > 0)
5757 				break;
5758 			continue;
5759 		}
5760 
5761 		btrfs_item_key_to_cpu(leaf, &key, slot);
5762 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5763 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5764 			break;
5765 
5766 		item_size = btrfs_item_size_nr(leaf, slot);
5767 		ptr = btrfs_item_ptr_offset(leaf, slot);
5768 		while (cur_offset < item_size) {
5769 			struct btrfs_key inode_key;
5770 			struct inode *dir_inode;
5771 
5772 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5773 			inode_key.offset = 0;
5774 
5775 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5776 				struct btrfs_inode_extref *extref;
5777 
5778 				extref = (struct btrfs_inode_extref *)
5779 					(ptr + cur_offset);
5780 				inode_key.objectid = btrfs_inode_extref_parent(
5781 					leaf, extref);
5782 				cur_offset += sizeof(*extref);
5783 				cur_offset += btrfs_inode_extref_name_len(leaf,
5784 					extref);
5785 			} else {
5786 				inode_key.objectid = key.offset;
5787 				cur_offset = item_size;
5788 			}
5789 
5790 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5791 					       root);
5792 			/*
5793 			 * If the parent inode was deleted, return an error to
5794 			 * fallback to a transaction commit. This is to prevent
5795 			 * getting an inode that was moved from one parent A to
5796 			 * a parent B, got its former parent A deleted and then
5797 			 * it got fsync'ed, from existing at both parents after
5798 			 * a log replay (and the old parent still existing).
5799 			 * Example:
5800 			 *
5801 			 * mkdir /mnt/A
5802 			 * mkdir /mnt/B
5803 			 * touch /mnt/B/bar
5804 			 * sync
5805 			 * mv /mnt/B/bar /mnt/A/bar
5806 			 * mv -T /mnt/A /mnt/B
5807 			 * fsync /mnt/B/bar
5808 			 * <power fail>
5809 			 *
5810 			 * If we ignore the old parent B which got deleted,
5811 			 * after a log replay we would have file bar linked
5812 			 * at both parents and the old parent B would still
5813 			 * exist.
5814 			 */
5815 			if (IS_ERR(dir_inode)) {
5816 				ret = PTR_ERR(dir_inode);
5817 				goto out;
5818 			}
5819 
5820 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
5821 				btrfs_add_delayed_iput(dir_inode);
5822 				continue;
5823 			}
5824 
5825 			if (ctx)
5826 				ctx->log_new_dentries = false;
5827 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5828 					      LOG_INODE_ALL, ctx);
5829 			if (!ret && ctx && ctx->log_new_dentries)
5830 				ret = log_new_dir_dentries(trans, root,
5831 						   BTRFS_I(dir_inode), ctx);
5832 			btrfs_add_delayed_iput(dir_inode);
5833 			if (ret)
5834 				goto out;
5835 		}
5836 		path->slots[0]++;
5837 	}
5838 	ret = 0;
5839 out:
5840 	btrfs_free_path(path);
5841 	return ret;
5842 }
5843 
5844 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5845 			     struct btrfs_root *root,
5846 			     struct btrfs_path *path,
5847 			     struct btrfs_log_ctx *ctx)
5848 {
5849 	struct btrfs_key found_key;
5850 
5851 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5852 
5853 	while (true) {
5854 		struct btrfs_fs_info *fs_info = root->fs_info;
5855 		struct extent_buffer *leaf = path->nodes[0];
5856 		int slot = path->slots[0];
5857 		struct btrfs_key search_key;
5858 		struct inode *inode;
5859 		u64 ino;
5860 		int ret = 0;
5861 
5862 		btrfs_release_path(path);
5863 
5864 		ino = found_key.offset;
5865 
5866 		search_key.objectid = found_key.offset;
5867 		search_key.type = BTRFS_INODE_ITEM_KEY;
5868 		search_key.offset = 0;
5869 		inode = btrfs_iget(fs_info->sb, ino, root);
5870 		if (IS_ERR(inode))
5871 			return PTR_ERR(inode);
5872 
5873 		if (BTRFS_I(inode)->generation >= trans->transid &&
5874 		    need_log_inode(trans, BTRFS_I(inode)))
5875 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5876 					      LOG_INODE_EXISTS, ctx);
5877 		btrfs_add_delayed_iput(inode);
5878 		if (ret)
5879 			return ret;
5880 
5881 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5882 			break;
5883 
5884 		search_key.type = BTRFS_INODE_REF_KEY;
5885 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5886 		if (ret < 0)
5887 			return ret;
5888 
5889 		leaf = path->nodes[0];
5890 		slot = path->slots[0];
5891 		if (slot >= btrfs_header_nritems(leaf)) {
5892 			ret = btrfs_next_leaf(root, path);
5893 			if (ret < 0)
5894 				return ret;
5895 			else if (ret > 0)
5896 				return -ENOENT;
5897 			leaf = path->nodes[0];
5898 			slot = path->slots[0];
5899 		}
5900 
5901 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5902 		if (found_key.objectid != search_key.objectid ||
5903 		    found_key.type != BTRFS_INODE_REF_KEY)
5904 			return -ENOENT;
5905 	}
5906 	return 0;
5907 }
5908 
5909 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5910 				  struct btrfs_inode *inode,
5911 				  struct dentry *parent,
5912 				  struct btrfs_log_ctx *ctx)
5913 {
5914 	struct btrfs_root *root = inode->root;
5915 	struct dentry *old_parent = NULL;
5916 	struct super_block *sb = inode->vfs_inode.i_sb;
5917 	int ret = 0;
5918 
5919 	while (true) {
5920 		if (!parent || d_really_is_negative(parent) ||
5921 		    sb != parent->d_sb)
5922 			break;
5923 
5924 		inode = BTRFS_I(d_inode(parent));
5925 		if (root != inode->root)
5926 			break;
5927 
5928 		if (inode->generation >= trans->transid &&
5929 		    need_log_inode(trans, inode)) {
5930 			ret = btrfs_log_inode(trans, root, inode,
5931 					      LOG_INODE_EXISTS, ctx);
5932 			if (ret)
5933 				break;
5934 		}
5935 		if (IS_ROOT(parent))
5936 			break;
5937 
5938 		parent = dget_parent(parent);
5939 		dput(old_parent);
5940 		old_parent = parent;
5941 	}
5942 	dput(old_parent);
5943 
5944 	return ret;
5945 }
5946 
5947 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5948 				 struct btrfs_inode *inode,
5949 				 struct dentry *parent,
5950 				 struct btrfs_log_ctx *ctx)
5951 {
5952 	struct btrfs_root *root = inode->root;
5953 	const u64 ino = btrfs_ino(inode);
5954 	struct btrfs_path *path;
5955 	struct btrfs_key search_key;
5956 	int ret;
5957 
5958 	/*
5959 	 * For a single hard link case, go through a fast path that does not
5960 	 * need to iterate the fs/subvolume tree.
5961 	 */
5962 	if (inode->vfs_inode.i_nlink < 2)
5963 		return log_new_ancestors_fast(trans, inode, parent, ctx);
5964 
5965 	path = btrfs_alloc_path();
5966 	if (!path)
5967 		return -ENOMEM;
5968 
5969 	search_key.objectid = ino;
5970 	search_key.type = BTRFS_INODE_REF_KEY;
5971 	search_key.offset = 0;
5972 again:
5973 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5974 	if (ret < 0)
5975 		goto out;
5976 	if (ret == 0)
5977 		path->slots[0]++;
5978 
5979 	while (true) {
5980 		struct extent_buffer *leaf = path->nodes[0];
5981 		int slot = path->slots[0];
5982 		struct btrfs_key found_key;
5983 
5984 		if (slot >= btrfs_header_nritems(leaf)) {
5985 			ret = btrfs_next_leaf(root, path);
5986 			if (ret < 0)
5987 				goto out;
5988 			else if (ret > 0)
5989 				break;
5990 			continue;
5991 		}
5992 
5993 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5994 		if (found_key.objectid != ino ||
5995 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
5996 			break;
5997 
5998 		/*
5999 		 * Don't deal with extended references because they are rare
6000 		 * cases and too complex to deal with (we would need to keep
6001 		 * track of which subitem we are processing for each item in
6002 		 * this loop, etc). So just return some error to fallback to
6003 		 * a transaction commit.
6004 		 */
6005 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6006 			ret = -EMLINK;
6007 			goto out;
6008 		}
6009 
6010 		/*
6011 		 * Logging ancestors needs to do more searches on the fs/subvol
6012 		 * tree, so it releases the path as needed to avoid deadlocks.
6013 		 * Keep track of the last inode ref key and resume from that key
6014 		 * after logging all new ancestors for the current hard link.
6015 		 */
6016 		memcpy(&search_key, &found_key, sizeof(search_key));
6017 
6018 		ret = log_new_ancestors(trans, root, path, ctx);
6019 		if (ret)
6020 			goto out;
6021 		btrfs_release_path(path);
6022 		goto again;
6023 	}
6024 	ret = 0;
6025 out:
6026 	btrfs_free_path(path);
6027 	return ret;
6028 }
6029 
6030 /*
6031  * helper function around btrfs_log_inode to make sure newly created
6032  * parent directories also end up in the log.  A minimal inode and backref
6033  * only logging is done of any parent directories that are older than
6034  * the last committed transaction
6035  */
6036 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6037 				  struct btrfs_inode *inode,
6038 				  struct dentry *parent,
6039 				  int inode_only,
6040 				  struct btrfs_log_ctx *ctx)
6041 {
6042 	struct btrfs_root *root = inode->root;
6043 	struct btrfs_fs_info *fs_info = root->fs_info;
6044 	int ret = 0;
6045 	bool log_dentries = false;
6046 
6047 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6048 		ret = 1;
6049 		goto end_no_trans;
6050 	}
6051 
6052 	if (btrfs_root_refs(&root->root_item) == 0) {
6053 		ret = 1;
6054 		goto end_no_trans;
6055 	}
6056 
6057 	/*
6058 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6059 	 * (since logging them is pointless, a link count of 0 means they
6060 	 * will never be accessible).
6061 	 */
6062 	if ((btrfs_inode_in_log(inode, trans->transid) &&
6063 	     list_empty(&ctx->ordered_extents)) ||
6064 	    inode->vfs_inode.i_nlink == 0) {
6065 		ret = BTRFS_NO_LOG_SYNC;
6066 		goto end_no_trans;
6067 	}
6068 
6069 	ret = start_log_trans(trans, root, ctx);
6070 	if (ret)
6071 		goto end_no_trans;
6072 
6073 	ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6074 	if (ret)
6075 		goto end_trans;
6076 
6077 	/*
6078 	 * for regular files, if its inode is already on disk, we don't
6079 	 * have to worry about the parents at all.  This is because
6080 	 * we can use the last_unlink_trans field to record renames
6081 	 * and other fun in this file.
6082 	 */
6083 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6084 	    inode->generation < trans->transid &&
6085 	    inode->last_unlink_trans < trans->transid) {
6086 		ret = 0;
6087 		goto end_trans;
6088 	}
6089 
6090 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6091 		log_dentries = true;
6092 
6093 	/*
6094 	 * On unlink we must make sure all our current and old parent directory
6095 	 * inodes are fully logged. This is to prevent leaving dangling
6096 	 * directory index entries in directories that were our parents but are
6097 	 * not anymore. Not doing this results in old parent directory being
6098 	 * impossible to delete after log replay (rmdir will always fail with
6099 	 * error -ENOTEMPTY).
6100 	 *
6101 	 * Example 1:
6102 	 *
6103 	 * mkdir testdir
6104 	 * touch testdir/foo
6105 	 * ln testdir/foo testdir/bar
6106 	 * sync
6107 	 * unlink testdir/bar
6108 	 * xfs_io -c fsync testdir/foo
6109 	 * <power failure>
6110 	 * mount fs, triggers log replay
6111 	 *
6112 	 * If we don't log the parent directory (testdir), after log replay the
6113 	 * directory still has an entry pointing to the file inode using the bar
6114 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6115 	 * the file inode has a link count of 1.
6116 	 *
6117 	 * Example 2:
6118 	 *
6119 	 * mkdir testdir
6120 	 * touch foo
6121 	 * ln foo testdir/foo2
6122 	 * ln foo testdir/foo3
6123 	 * sync
6124 	 * unlink testdir/foo3
6125 	 * xfs_io -c fsync foo
6126 	 * <power failure>
6127 	 * mount fs, triggers log replay
6128 	 *
6129 	 * Similar as the first example, after log replay the parent directory
6130 	 * testdir still has an entry pointing to the inode file with name foo3
6131 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6132 	 * and has a link count of 2.
6133 	 */
6134 	if (inode->last_unlink_trans >= trans->transid) {
6135 		ret = btrfs_log_all_parents(trans, inode, ctx);
6136 		if (ret)
6137 			goto end_trans;
6138 	}
6139 
6140 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6141 	if (ret)
6142 		goto end_trans;
6143 
6144 	if (log_dentries)
6145 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6146 	else
6147 		ret = 0;
6148 end_trans:
6149 	if (ret < 0) {
6150 		btrfs_set_log_full_commit(trans);
6151 		ret = 1;
6152 	}
6153 
6154 	if (ret)
6155 		btrfs_remove_log_ctx(root, ctx);
6156 	btrfs_end_log_trans(root);
6157 end_no_trans:
6158 	return ret;
6159 }
6160 
6161 /*
6162  * it is not safe to log dentry if the chunk root has added new
6163  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6164  * If this returns 1, you must commit the transaction to safely get your
6165  * data on disk.
6166  */
6167 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6168 			  struct dentry *dentry,
6169 			  struct btrfs_log_ctx *ctx)
6170 {
6171 	struct dentry *parent = dget_parent(dentry);
6172 	int ret;
6173 
6174 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6175 				     LOG_INODE_ALL, ctx);
6176 	dput(parent);
6177 
6178 	return ret;
6179 }
6180 
6181 /*
6182  * should be called during mount to recover any replay any log trees
6183  * from the FS
6184  */
6185 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6186 {
6187 	int ret;
6188 	struct btrfs_path *path;
6189 	struct btrfs_trans_handle *trans;
6190 	struct btrfs_key key;
6191 	struct btrfs_key found_key;
6192 	struct btrfs_root *log;
6193 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6194 	struct walk_control wc = {
6195 		.process_func = process_one_buffer,
6196 		.stage = LOG_WALK_PIN_ONLY,
6197 	};
6198 
6199 	path = btrfs_alloc_path();
6200 	if (!path)
6201 		return -ENOMEM;
6202 
6203 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6204 
6205 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6206 	if (IS_ERR(trans)) {
6207 		ret = PTR_ERR(trans);
6208 		goto error;
6209 	}
6210 
6211 	wc.trans = trans;
6212 	wc.pin = 1;
6213 
6214 	ret = walk_log_tree(trans, log_root_tree, &wc);
6215 	if (ret) {
6216 		btrfs_handle_fs_error(fs_info, ret,
6217 			"Failed to pin buffers while recovering log root tree.");
6218 		goto error;
6219 	}
6220 
6221 again:
6222 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6223 	key.offset = (u64)-1;
6224 	key.type = BTRFS_ROOT_ITEM_KEY;
6225 
6226 	while (1) {
6227 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6228 
6229 		if (ret < 0) {
6230 			btrfs_handle_fs_error(fs_info, ret,
6231 				    "Couldn't find tree log root.");
6232 			goto error;
6233 		}
6234 		if (ret > 0) {
6235 			if (path->slots[0] == 0)
6236 				break;
6237 			path->slots[0]--;
6238 		}
6239 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6240 				      path->slots[0]);
6241 		btrfs_release_path(path);
6242 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6243 			break;
6244 
6245 		log = btrfs_read_tree_root(log_root_tree, &found_key);
6246 		if (IS_ERR(log)) {
6247 			ret = PTR_ERR(log);
6248 			btrfs_handle_fs_error(fs_info, ret,
6249 				    "Couldn't read tree log root.");
6250 			goto error;
6251 		}
6252 
6253 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6254 						   true);
6255 		if (IS_ERR(wc.replay_dest)) {
6256 			ret = PTR_ERR(wc.replay_dest);
6257 
6258 			/*
6259 			 * We didn't find the subvol, likely because it was
6260 			 * deleted.  This is ok, simply skip this log and go to
6261 			 * the next one.
6262 			 *
6263 			 * We need to exclude the root because we can't have
6264 			 * other log replays overwriting this log as we'll read
6265 			 * it back in a few more times.  This will keep our
6266 			 * block from being modified, and we'll just bail for
6267 			 * each subsequent pass.
6268 			 */
6269 			if (ret == -ENOENT)
6270 				ret = btrfs_pin_extent_for_log_replay(trans,
6271 							log->node->start,
6272 							log->node->len);
6273 			btrfs_put_root(log);
6274 
6275 			if (!ret)
6276 				goto next;
6277 			btrfs_handle_fs_error(fs_info, ret,
6278 				"Couldn't read target root for tree log recovery.");
6279 			goto error;
6280 		}
6281 
6282 		wc.replay_dest->log_root = log;
6283 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6284 		if (ret)
6285 			/* The loop needs to continue due to the root refs */
6286 			btrfs_handle_fs_error(fs_info, ret,
6287 				"failed to record the log root in transaction");
6288 		else
6289 			ret = walk_log_tree(trans, log, &wc);
6290 
6291 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6292 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6293 						      path);
6294 		}
6295 
6296 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6297 			struct btrfs_root *root = wc.replay_dest;
6298 
6299 			btrfs_release_path(path);
6300 
6301 			/*
6302 			 * We have just replayed everything, and the highest
6303 			 * objectid of fs roots probably has changed in case
6304 			 * some inode_item's got replayed.
6305 			 *
6306 			 * root->objectid_mutex is not acquired as log replay
6307 			 * could only happen during mount.
6308 			 */
6309 			ret = btrfs_init_root_free_objectid(root);
6310 		}
6311 
6312 		wc.replay_dest->log_root = NULL;
6313 		btrfs_put_root(wc.replay_dest);
6314 		btrfs_put_root(log);
6315 
6316 		if (ret)
6317 			goto error;
6318 next:
6319 		if (found_key.offset == 0)
6320 			break;
6321 		key.offset = found_key.offset - 1;
6322 	}
6323 	btrfs_release_path(path);
6324 
6325 	/* step one is to pin it all, step two is to replay just inodes */
6326 	if (wc.pin) {
6327 		wc.pin = 0;
6328 		wc.process_func = replay_one_buffer;
6329 		wc.stage = LOG_WALK_REPLAY_INODES;
6330 		goto again;
6331 	}
6332 	/* step three is to replay everything */
6333 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6334 		wc.stage++;
6335 		goto again;
6336 	}
6337 
6338 	btrfs_free_path(path);
6339 
6340 	/* step 4: commit the transaction, which also unpins the blocks */
6341 	ret = btrfs_commit_transaction(trans);
6342 	if (ret)
6343 		return ret;
6344 
6345 	log_root_tree->log_root = NULL;
6346 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6347 	btrfs_put_root(log_root_tree);
6348 
6349 	return 0;
6350 error:
6351 	if (wc.trans)
6352 		btrfs_end_transaction(wc.trans);
6353 	btrfs_free_path(path);
6354 	return ret;
6355 }
6356 
6357 /*
6358  * there are some corner cases where we want to force a full
6359  * commit instead of allowing a directory to be logged.
6360  *
6361  * They revolve around files there were unlinked from the directory, and
6362  * this function updates the parent directory so that a full commit is
6363  * properly done if it is fsync'd later after the unlinks are done.
6364  *
6365  * Must be called before the unlink operations (updates to the subvolume tree,
6366  * inodes, etc) are done.
6367  */
6368 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6369 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6370 			     int for_rename)
6371 {
6372 	/*
6373 	 * when we're logging a file, if it hasn't been renamed
6374 	 * or unlinked, and its inode is fully committed on disk,
6375 	 * we don't have to worry about walking up the directory chain
6376 	 * to log its parents.
6377 	 *
6378 	 * So, we use the last_unlink_trans field to put this transid
6379 	 * into the file.  When the file is logged we check it and
6380 	 * don't log the parents if the file is fully on disk.
6381 	 */
6382 	mutex_lock(&inode->log_mutex);
6383 	inode->last_unlink_trans = trans->transid;
6384 	mutex_unlock(&inode->log_mutex);
6385 
6386 	/*
6387 	 * if this directory was already logged any new
6388 	 * names for this file/dir will get recorded
6389 	 */
6390 	if (dir->logged_trans == trans->transid)
6391 		return;
6392 
6393 	/*
6394 	 * if the inode we're about to unlink was logged,
6395 	 * the log will be properly updated for any new names
6396 	 */
6397 	if (inode->logged_trans == trans->transid)
6398 		return;
6399 
6400 	/*
6401 	 * when renaming files across directories, if the directory
6402 	 * there we're unlinking from gets fsync'd later on, there's
6403 	 * no way to find the destination directory later and fsync it
6404 	 * properly.  So, we have to be conservative and force commits
6405 	 * so the new name gets discovered.
6406 	 */
6407 	if (for_rename)
6408 		goto record;
6409 
6410 	/* we can safely do the unlink without any special recording */
6411 	return;
6412 
6413 record:
6414 	mutex_lock(&dir->log_mutex);
6415 	dir->last_unlink_trans = trans->transid;
6416 	mutex_unlock(&dir->log_mutex);
6417 }
6418 
6419 /*
6420  * Make sure that if someone attempts to fsync the parent directory of a deleted
6421  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6422  * that after replaying the log tree of the parent directory's root we will not
6423  * see the snapshot anymore and at log replay time we will not see any log tree
6424  * corresponding to the deleted snapshot's root, which could lead to replaying
6425  * it after replaying the log tree of the parent directory (which would replay
6426  * the snapshot delete operation).
6427  *
6428  * Must be called before the actual snapshot destroy operation (updates to the
6429  * parent root and tree of tree roots trees, etc) are done.
6430  */
6431 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6432 				   struct btrfs_inode *dir)
6433 {
6434 	mutex_lock(&dir->log_mutex);
6435 	dir->last_unlink_trans = trans->transid;
6436 	mutex_unlock(&dir->log_mutex);
6437 }
6438 
6439 /*
6440  * Call this after adding a new name for a file and it will properly
6441  * update the log to reflect the new name.
6442  */
6443 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6444 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6445 			struct dentry *parent)
6446 {
6447 	struct btrfs_log_ctx ctx;
6448 
6449 	/*
6450 	 * this will force the logging code to walk the dentry chain
6451 	 * up for the file
6452 	 */
6453 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6454 		inode->last_unlink_trans = trans->transid;
6455 
6456 	/*
6457 	 * if this inode hasn't been logged and directory we're renaming it
6458 	 * from hasn't been logged, we don't need to log it
6459 	 */
6460 	if (inode->logged_trans < trans->transid &&
6461 	    (!old_dir || old_dir->logged_trans < trans->transid))
6462 		return;
6463 
6464 	/*
6465 	 * If we are doing a rename (old_dir is not NULL) from a directory that
6466 	 * was previously logged, make sure the next log attempt on the directory
6467 	 * is not skipped and logs the inode again. This is because the log may
6468 	 * not currently be authoritative for a range including the old
6469 	 * BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY keys, so we want to make
6470 	 * sure after a log replay we do not end up with both the new and old
6471 	 * dentries around (in case the inode is a directory we would have a
6472 	 * directory with two hard links and 2 inode references for different
6473 	 * parents). The next log attempt of old_dir will happen at
6474 	 * btrfs_log_all_parents(), called through btrfs_log_inode_parent()
6475 	 * below, because we have previously set inode->last_unlink_trans to the
6476 	 * current transaction ID, either here or at btrfs_record_unlink_dir() in
6477 	 * case inode is a directory.
6478 	 */
6479 	if (old_dir)
6480 		old_dir->logged_trans = 0;
6481 
6482 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6483 	ctx.logging_new_name = true;
6484 	/*
6485 	 * We don't care about the return value. If we fail to log the new name
6486 	 * then we know the next attempt to sync the log will fallback to a full
6487 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6488 	 * we don't need to worry about getting a log committed that has an
6489 	 * inconsistent state after a rename operation.
6490 	 */
6491 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6492 }
6493 
6494